PRACTICAL

 NOVEMEER 1977

15-WATT KIT IN CHASSIS FORM When you are looking for a good speaker. why not build your own from this kit. It's the unit which we supply with the enclosures illustrated below Size 13": 8" \{approx. woofer (EMI),tweeter, and matching crossover components Power handing capacity
15 watts rms. 30 watts peak
£ 1700 PER STEREO PAIR

EASY-TO-BUILD WITH ENCLOSURE
Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak-
simulate enclosures, two EMI $13^{\prime \prime} \times 8^{\text {" }}$ (approx, woofers, two tweeters and a pair of matching crossovers. Easily constructed. using a few basic tools. Supplied complete with an easy-to-follow circuit diagram, and crossover components. Input 15 watts rms. 30 watts peak, each unit £ 28^{00} Cabinet size $20^{\circ} \times 11^{\prime \prime} \times 9^{\frac{1}{2} \times}$ PER STEREO PAIR (approx.).
$+p \& p £ 5.50$

COMPACT' FOR TOP VALUE
How about this for incredible bookshelf value from RT-VC! A pair of high efficiency units for only $£ 7.50$ - just what you need for lowpower amplifiers. These infinite baffle enclosures come to you ready mitred and professionally finished. Each cabinet measures $12^{*} \times 9^{*} \times 5^{\prime \prime}$ (approx.) deep, and is in wood simulate. Complete with wo B " $^{\prime \prime}$ (approx.) speakers or max, po
of watts.

per
sereo
pair
fir
80
$+p 8 p$
$£ 2.20$

SPEAKERS Two models - Ouollb, teak eneer, 12 watts rms, 24 watts peak. $18 \frac{1 \frac{1}{2}^{*} \times 13 \frac{1}{2}^{*} \times 7 \frac{1}{6}}{}$
(approx).
34 PER PAIR
$34+p$ \& p f6.50
Duo III. 20 watts rms.
40 watts peak.
$27^{\prime \prime} \times 13^{\prime \prime} \times 11_{2}{ }^{\prime \prime}$ (approx.)
f5 2 PER PAIR

amp. Module, Garrard auto/manual
deck with cueing device, pre-cut and finished cabinet work, Output 4 watt per channel, phones socket and ecord / replay socket
${ }^{\text {£ }} 26^{9}$
 KIT
Complete with speaker, baffle and fixing strip The Tourist IV for the experienced constructor only. The Tourist IV has five push buttons. tour medium band and one for long wave band The tuning scale is illuminated and attractive small aluminium control knobs are used for manual tuning and volume control. The modern style fascia has been designed to blend with most car interiors and the finished radio will slot into a standard car radio aperture.
Size approx. $7^{\prime \prime} \times 2^{\prime \prime} \times 4 \frac{1}{4}^{*} .12$ voits pos or neg earth (altered internally). p \& $p \mathrm{f} 1.50 \mathbf{f} 12^{50}$
FREE TO PERSONAL SHOPPERS BUYING
CAR RAOIO KIT ELECTROMATE Rear window heat

TO PERSONAL SHOPPERS See Below

20×20 WATT STEREO AMPLIFIER

superb viscount \mathbf{X} unit in teak-fimished cabinet. Silver fascia with alimunium rofary controls and pushtiuttons, red mains indicator and stereo jack sockel Function switch for mic. magnetic and crystal pick-ups, tape, tuner, and ㅊ auxiliary Rear panel features two mains outers. OIN speaker and input p\&p $£ 2.50$ sockets, plus fuse $20+20$ watts rms, $40+40$ watts peak.
-FREE To cash or cheque personal shoppers
A 4 channel Stereo Adaptor to all buyers of the visicpunt 20×20 Amplifier at $£ \mathbf{2} \mathbf{9}^{90}$ limited offer. Available separately at $£ \mathbf{3}^{95}$

SPECIAL
 OFFER for example.
 Duo speaket system viscount Amplther. Miscount Amplther. MP60 'ype luntable comple

 (on complete stereo systems using

ADD-ON STEREO CASSETTE TAPE DECK KIT Designed lor the experienced O.I.Y. man. This kit comprises of a tape fransport mechanism. ready built and tested record/replay electronics with twin V.U. meters and level control ready for mating together with the mechanism
Specifications: Sensitivity - Mic. 0.85 mV a 20 K DHMS Oin. 40 mV /a 400 K OHMS : Output - 300 mV RMS per channel ia 1 KHz from 2 K OHMS source : Cross Talk - 30 db Tape Counter - 3 Digit - Resettable : Frequency Response $40 \mathrm{~Hz}-8 \mathrm{KHz} \pm 6 \mathrm{db}$: Oeck Motor -9 Volt OC with $\mathbf{f 1 9 9 5}$ electronic speed regulations: Key Functions Record, Rewind, Fast Forward, Play. Stop \& Eject. p\&pf2.5

Optional extras Pair of Oynamic microphones $\mathbf{E} 3.95+\mathbf{£ 1 . 0 0} p 8 p$ Mains transformer $\mathbf{f} 2.50+£ 1.00 p$ \& p

STEREO CASSETTE record/replay fully built
P.C. board incorporating 41 .C. s. GRUNDIG $5 \frac{3}{4}$ " tape 1800 ft .
£ 120 each. 5 for $£ \int_{000}$ PAIR SIEREO 8 WATT SPEAKERS

personal shoppers

PORTABLE

MONO
DISCO

with built-in pre-amplifiers
Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type autoreturn, single play professional series record deck Plus all the controls and features you need to give fabulous disco performances.
Simply connects into your existing slave or externa! amplifier.

45 WATT MONO DISCO AMP

 ${ }^{〔} 35^{00}$$+\mathrm{p} \% \mathrm{p}$
£ 2.50
Size approx
$13 \frac{3}{8}$ " $\times 5 \frac{1}{4}^{\prime 2} \times 63^{\prime \prime} \times$?
Here's the mono unit you need to start off with. Gives you a good solid 45 watts rms, 90 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume.
$70 \& 100$
WATTMONO
DISCO AMP
Size approx.
Sloping facia, you can use the controls
without fuss or bother. Brushed alumimium fascia and rotary controls. Five smooth acting, vertically mounted slide controls - master volume, tape level mic level, deck level, PLUS INTER- OECK FAOER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre-fade level control (PFL) lets YOU hear next disc before fading 70 wat1 57 it in. VU meter monitors output level. 100 watt ${ }^{E} 65$ Output 100 watts RMS 200 watts peak. p \& p 54.00

BSR BOS95 SERIES
Belt drive turnable unit, speed, semi automatic operation $\quad \mathbb{2} \mathbf{2}^{95}$

PRACTICE GUITAR AMPLIFIER WITH BUILT-IN SPEAKER This budget practice amplifier, has been
specially designed for the

amateut, who requires a quality
self-contained unit with all facilities. 2 inputs for mic or guitar, the 2nd for record player or cassette deck, it also can be used for cine-sound amplification 2 volume controls, 1 for each input. also base and ueble controls. Power output with internal speaker 10 watts RMS. with remote
30×30 WATT AMPLIFIER KIT Specially designed by RT.VC for the experienced constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier of p Chassis is ready punched, drilled and $£ 2.50$ formed Cabinet is finished in teak $\mathbf{2 9}^{00}$ veneer. Silver fascia and easy-tohandle aluminium knobs.

NOW AVAILABLE fully built and tested. Output $30+30$ watts rms, $60+60$ peak. $£ 3500+p \& p £ 2.50$

DECCA 20 WATTS STEREO SPEAKER

 This matching loudspeaker system is hand made kit comprises of two 8 "diameter approx. base drive unit, with heavy die cast chassi laminated cones with rolled P. V.C. surrounds two $3 \frac{1}{2}$ " diameter approx. domed tweeters comp with crossover networks
f4.00p $\& \mathrm{p}$ stereo pair ${ }^{\mathbf{2}} \mathbf{2 0 0}$

\qquad

Send stamped addressed
envelope for further details.

speaker (not supplied) 20 watts ${ }^{£} 32^{50}$

HOME 8 TRACK CARTRIDGE PLAYER Automatically switches programmes monitored by indicators.

 with manual override track selection. This unit will match with the Unisound modules and is compatable with the Viscount IV amplifier with Sim teak

PYE STEREO

GRAM CHASSIS
(Complete with
circuit-diagrams)

Complete ready to install-Wave bands LM. VHF SIEREO, VHF MONO Controls for tuning volume. balance, bass and treble. Power output 7 watts R.M.S per channel 14 watts peak 8 ohms.
$2^{\prime \prime} 8^{8}$ approx chassis speakers and
BSR auto record player deck
personal shoppers ontr ${ }^{〔} 3$

CONSTRUCTIONAL PROJECTS

128 NOTE SEQUENCER by D. G. Evans
A synthesiser pre-programmer for tunes of up to 32 pitches 162
DIGITAL REACTION TIMER by D. C. Green
Can give an index of relative reaction delays 166
TTL TESTER by T. J. Hill
A simple checker for quad-gate packages 172
P.E. CHAMP-3 by R. W. Coles and B. Cullen
Development system circuit description 185
P.E. MASTERMIND-4 by P. F. Turney
The scoring logic continued 192
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R.W. Coles
A look at some recently released devices 176
ANALOGUE LOG AMPLIFIERS by D. F. Bowers
Design techniques and calculations 180
INGENUITY UNLIMITED
Wash-Wipe Controller-PA Preamplifier-Frequency Doubler-Car Systems Monitor-
Logic Probe-Sequence Generator-Counter-Clock Touch Switches 197
NEWS AND COMMENT
EDITORIAL-Window Gazing; A Choice Selection 161
NEWS BRIEFS
System X-Name Change 169
SPACEWATCH by Frank W. Hyde Space Suits 170
BOOK REVIEWS
Selected new books we have received 171
MARKET PLACE
Interesting new products 175
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 179
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 190
READOUT
A selection of readers' letters 206
SPECIAL 8-PAGE SUPPLEMENT
ICs FOR THE EXPERIMENTER
A roundup of some neoteric i.c. packages (between pages 184 and 185) 1-8

Our December issue will be on sale on Friday, 11 November, 1977
(for contents, see page 171)

[^0]

Handy size Reels and Dispensers

OF THE WORLD'S FINEST CORED SOLDER TO DO

 A PROFESSIONAL JOB AT HOMEErsin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

handy size reels of SAYBIT, 40/60, 60/40 and ALU-SOL | solder |
| :---: |
| alloys |
| $\substack{\text { sen }}$ |

These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

Ref.	Alloy	Diam. (mm)	Length metres approx.	Use	Price
$\begin{gathered} \text { Size } \\ 3 \end{gathered}$	40/60 Tin/Lead	$1 \cdot 6$	10.0	For economical general purpose repairs and electrical joints.	£1.79
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU-SOL	$1 \cdot 6$	$8 \cdot 5$	For aluminium repairs. Also solders aluminium to copper, brass etc.	¢2.42
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} \text { 60/40 } \\ \text { Tin/Lead } \end{gathered}$	0.7	$39 \cdot 6$	For fine wires, small components and printed circuits.	£1-79
${ }_{12}$	SAVBIT	$1 \cdot 2$	13.7	For radio, TV and similar work. Increases copper-bit tife tenfold.	£1.79

BIB WIRE STRIPPER and CUTTER

Fitted with unique 8 -gauge selector and handie locking device. Sprung for automatic opening. Strips flex and cable in seconds.
Pat. No.
1443913
Model 8B 86p'

SOLDERWICK

Absorbs solder instantly from tags, printed
circuits etc. Only needs 40-50 watt soldering iron. Quick and easy to use. Non-corrosive. Slze 18 97p

Sole U.K. Sales Concessionaires

Bib Hi-Fi Accessories Limited,
Kelsey House, Wood Lane End. Hemel Hempstead, Herts. HP2 4RQ

Prices shown are recommended retail, inc. VAT. From electrical and hardware shops. In difficulty send direct, plus 20p P. \& P Prices and specifications subject to change without notice

Full price list of linears, discretes, capacitors, resistors, potentiometers, tools soldering irons and accessories available. Send 20p or large S.A.E.
This list is sent free with the first order.
Prices correct June 1977.
Terms C.W.O. Add VAT to prices at 8\%. Post, etc.: U.K. 25p. overseas 75p. Access and Barclaycard, and all convertible currencies accepted.

TIRRO ELECTRONICS

Grenfell Place, Maidenhead, Berks. Tel. (0628) 36229
Mall order division of RITRO Electronics UK Lid.

The mosteconomical, compact and

 convenient breadboards on the market!They are the PROTO-BOARD* PB-6 and PB-100 solderless breadboard kits.
Buy them, and you are only minutes away from the first circuit.
Contacts are made from non-corrosive nickel-silver alloy, and are reliable for more than 10,000 insertions.
Contact resistance is a mere $0.4 \mathrm{~m} \Omega$, insertion force is typically $30 z s$ per lead, and interterminal capacitance is typically less than 5 pF .
The kits are a must for experimental and development work in digital, audio, RF, video and beyond.
Resistors, capacitors, transistors, DIP's, LED's, transformers, pots, jumpers and any other component with leads between $0.015^{\prime \prime}$ and $0.032^{\prime \prime}$ will fit the contacts.
You can run circuits well beyond the recommended ambient operating temperature $\left(100^{\circ} \mathrm{C}\right)$ if you wish, because the plastic used in the PROTO-BOARD is rated to over $200^{\circ} \mathrm{C}$.
The kits come complete with instruction manual, assembly hardware, binding posts, non-scratch feet and the appropriate number of preassembled sockets and bus strips.
The sooner you order, the sooner you'll have that first circuit operating.

THE PB-6.630 SOLDERLESS CONTACTS. TAKES UP TO SIX
14-PIN DIP'S.OR EQUIVALENT IN LARGER AND SMALLERIC'S. FOUR 5-WAY BINDING POSTS. $6^{\prime \prime} \times 4$ "'

ONLY COSTS £10.47.
-ー

Proto bloartno.100

THE P8-100. 760 SOLDERLESS CONTACTS. TAKES UP TO TEN 14-FINDIP'S OREQUIVALENT IN LARGER AND SMALLERIC'S. TWO 5-WAY BINDIING POSTS. $6^{\prime \prime} \times 4.5$!' ONLY COSTS £13.50.

Ring us (01-890 0782) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue. Our prices include VAT (8%) and postage. All prices and specifications correct at the time of going to press.

CONTRENTAL SPECIALIIES CORPORAIION

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK:
 DOES IT HAVE * 30A power transistors $\star 2$-year guarantee
 * 3A drivers (100W unit) * integral output capacitor
 Then compare with the Tamba range-excellent value- 25,50 and 100 W R.M.S

TAM1000 100W 4 ohms 65 V	$\mathbf{£ 9 . 8 0}$
TAM500 50 W 4 ohms 45 V	$\mathbf{£ 7 . 5 0}$
TAM250 25 W 8 ohms 45 V	$\mathbf{£ 5 . 7 5}$
POWER SUPPLIES	
For 1 or 2 TAM250/500	$\mathbf{£ 7 . 5 0}$
For 1 or 2 TAM1000	$\mathbf{8 9 . 8 0}$
(Carriage 50 on supplies)	

Suits loads $4-16$ ohms
$20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
$20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Silicon circuitry throughout
Glass fibre P.C.B.
High sensitivity (100 mV 10k)

High grade components used throughout: Texas, Mullard, R.C.A., Plessey, etc.

- Low distortion (0.1\%)
- Low profile (1 in high $3 \frac{1}{2} i \mathrm{r}_{1} \times 3 \mathrm{in}$) 75\% efficient
- Accepts most mixer/pre-amplifiers Four simple connections

ALL PURPOSE MIXER/PRE-AMP.
(with 60 mm slider volume)
Suitable for multiple input systems
High and low impedance inputs
High sensitivity
Built-in supply smoothing
$20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
-80 dB noise level
Accepts a wide variety of inputs
Wide range bass and treble controls
Use up to 10 PRE-AMPS with 1 power
supply
Printed circuit board assembly with
treble and bass controls plus slider
volume control

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W systems and at $12 \frac{1}{2} \%$ for 25 W systems.

Hours, 9.30 a.m.-5 p.m. Monday - Saturday. Callers welcome. Tel. (01) 6840098

You can work wonders with your free time.

There's immense satisfaction in making your own equipment. And you'll get excellent results with Heathkit.

Every kit is absolutely complete down to the last nut and bolt. The quality is the best. And each kit has an easy to follow instruction manual that explains exactly what to do at each step.

So you enjoy assembling your kit and you finish with first-class equipment every time.

That's why Heathkit are so successful. And that's why the range is the biggest in the world.

It's all in the new edition of the free Heathkit catalogue. Everything from the simplest to the most sophisticated. Alarms, digital clocks, testers, transceivers and lots more . . .even the tools are there!

See for yourself. Send the coupon now.
NEW CATALOGUE
NEW TEST INSTRUMENTS
NEW DIGITAL BATHROOM SCALES
NEW AMATEUR RADIO EQUIPMENT
NEW AUDIO SYSTEMS AND MANY OTHER NEW ITEMS

The new Heathkit catalogue.Out now FREE.
To: Heath (Gloucester) Ltd., Dept. PE117, Gloucester, GL2 6EE. Please send me my Heathkit catalogue. I enclose an 11p stamp for postage.

Name
Address

Showrooms at 233 Tottenham Court Road, London (Phone 01.636 7349) and Bristol Road, Gloucester (Phone Gloucester 29451).

LOOK!Here's how you master electronics

... the practical way

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

I Build an oscilloscope
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

Carry out over 40 experiments on basic circuits

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.
British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

VALVE MAIL ORDER CO.
Climax House Fallsbrook Road, London SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

	0		4^{4}		$¢_{\square}$		4		
AA119 AAY30	0.20 0.13	BCY71	0.22	*MPSU01	0.32	2TX550	0.16	7403	${ }_{0}^{20} 20$
AAY32	0.15	BCZ11	1.50	*MPSU56	0.40	1N914	0.07	7404	0.26
M 213	0.25	BD115	0.60	NKT401	0.45	IN916	0.07	7405	0. 23
M 215	0.31	BD121	1.50	NKT403	2.60	1N4001	0.06	7406	0.55
A 217	0.25	8D123	1.50	NKT404	1.73	N4023	0.07	7407	0.55
AC107	0.75	BD124	1-00	NE555	0.45	in4003	0.68	7408	0.28
AC125	0.30	BD131	0.51	OA5	0.75	iN4005	0.09	7409	0.28
AC128	0.25	BD132	0.54	OA7	0.55	1N4096	0. 15	7410	0.20
AC127	0.25	-BD135	0.35	OA10	0.55	1N4007	0.15	7412	0.26 0.45
AC128	0.25	*8D136	0.35	OA47	0.14	1N4009	0.15	7416	0.40
AC141	0.20	*BD137	0.37	OA70	$0 \cdot 30$	1N4149	0.07	7417	0.40
AC141K	0.30	*BD138	0.40	OA79	0.30	1N5400	0.14	7420	0.20
AC142	0.20	*BD139	0.43	OAB1	0.30	1N5401	0.16	7422	0.25
AC142K	0.25	*BD140	0.47	OABS	0.30	1544	$0 \cdot 6$	7423	0.25
AC176	0.25	BD14	$2 \cdot 00$	OASO	0.08	15920	0.00	7425	0.35
AC187	0.25	BD181	$1 \cdot 38$	OA91	0.00	1S921	0.68	7427	0.35
${ }_{\text {AC188 }}$	0.25	BD182	1.44	OA95	0.01	2G30t	1.00	7428	0.35
${ }_{\text {ACY17 }}$	0.85	30237	0.6	OA200	0.10	2 G 302	1.00	7430	0.20
ACY18	0.65	BD238	0.85	OA202	0.11	2 G 308	1.10	7432	0.20
ACY19	0.65	80×10	0.75	OA210	0.75	2N404	0.60	7433	0.37
ACY20	0.65	BDX32	2.25	OA211	0.75	2N696	0.25	7437	0.42
${ }_{\text {ACY21 }}$	0.65	BDY20	1.42	OAZ200	0.65	2N697	0.16	7438	0.37
ACY39	1.00	BOY60	0.73	OAZ201	0.85	2N698	0.30	7440	0.22
AD149	0.70	BF115	0.39	OAZ206	0.65	2N705	$0 \cdot 0$	7441AN	0.92
AD161	0.75	BF152	0.25	OAZ207	0.65	2N706	0.12	7442	0.78
AD162	0.75	BF153	0.25	${ }^{\circ} \mathrm{C} 16$	1.25	2N708	0.21	7447AN	1.20
AF106	0.45	BF154	0.25	OC20	2.00	2N830	0.28	7450	0.20
AF114	0.25	BF159	0.35	OCz2	2.50	2N1131	0.28	7451	0.20
AF115	0.25	BF180	0.30	$0{ }^{0} 23$	2.75	2N1132	0.26	7453	0.20
AF116	0.25	BF167	0.39	OC^{24}	3.50	2N1302	0.37	7454	0.20
AF117	0.25	BF173	0.30	OC_{25}	0.90	2N1303	0.37	7460	0.20
AF139	0.40	BF177	0.38	OC26	0.90	2N1304	0.45	7470	0.35
AF239	0.45	BF180	0.48	OC29	2.00	2N1306	0.50	7473	0.35
AFZ11	2.75	BF180	0.45	OC35	1.50	2N1307	0.50	7474	0. 40
-AFZ12	2.75	BF181	0.45	OC36	1.50	2N1308	0.60	7475	0. 59
ASY26	0.45	BF182	0.45	0 C 41	$0 \cdot 50$	2N1309	0.60	7476	0.42
ASY27	0.50	BF 183	0.45	OC42	0.50	2N1613	0.33	7480	0.60
ASZ15	1.25	EF184	0.39	OC43	1.50	2N1671	1.50	7482	0.85
ASZ16	1.25	${ }^{\text {BF185 }}$	0.37	0044	0.50	2N1893	0.33	7483	1.00
ASZ17	$1 \cdot 25$	*BF194	0.12	OC45	0.50	2N2147	1.40	7484	1.00
ASz20	0.75	*BF195	0.11	0 O 71	0.45	2N2148	1.65	7486	0.40
AS221	1.50	*BF196	0.13	00^{72}	0.45	2N2218	0.33	7490	0.52
AU113	1.70	*BF197	0.14	0 O 73	$1 \cdot 00$	2N2219	0.42	7491AN	0.85
AUY10	1 -70	BF200	0.32	0 O 74	0.75	2N220	0.35	7492	0.60
BA145	0.15 0.15	*BF224	0.29 0.35	${ }_{0} 0 \times 75$	$0 \cdot 60$	2N2221	0.22	7493	0.70
baisa	0.10 0	BF257	0.37	${ }_{0} 0 \mathrm{Cl} 7$	1. 200	2N2322	0.25	7494	0.80
BA155	$0 \cdot 12$	BF258	0.42	$0 \mathrm{CB1}$	0.75	2N2368	2.75 0.17	7495	0.80
BA156	0.13	BF259	0.45	ccelz	1.00	2N2369A	0.21	7496	0.90
BAW82	0.05	*BF398	0.50	0 Caz	0.75	2N2484	0.21	74100	3.67
BAX13	0.07	*BF337	0.53	OCas	0.55	2N2646	0.50	74107	1.75 0.45
BAX16	0.07	*BF338	0.55	OC8	$0 \cdot 60$	2N2904	0.35	74109	0.6
BC107	$0 \cdot 12$	BFS21	2.27	${ }_{0}{ }^{1} 12$	1.50	2N2905	0.35	74110	0.57
BC108	$0 \cdot 12$	${ }^{\text {BFS28 }}$	1.36	$0 \mathrm{OC123}$	1.55	2N2906	0.25	74111	0.86
BC109	0.13	*BFS61	0.25	${ }^{\circ} \mathrm{Cl} 130$	2.25	2N2907	0.21	74116	1.69
*BC113	0.15	*BFS98	0.25	0 O 140	1.95	*2N2924	0.15	74118	0.95
$\begin{array}{r} * \\ * \\ * \\ * B C 114 \end{array}$	0.15 0.19	BFW10	0.90 0.90	OC141 OC170	2.25	+2N2925	0.15 0.17	74119	1.95 2.00 1
*BC116	0.19	BFX84	0.38	OC171	$0 \cdot 60$	${ }^{\text {2 }}$ 2N3926 ${ }^{\text {N }}$	0.13	74120	$1 \cdot 10$
*BC117	0.22	BFX85	0.41	\bigcirc	1.00	2N3054	0.25 0.50	${ }_{74122}$	0.45
*BC118	0.16	BFx87	0.35	0 C 201	1.50			74123	1.00
-BC125	0.18	BFX88	0.32	OC202	1.25	2N3440	0.60	74125	1.00
-8C126	0.25	BFY50	0.23	${ }_{0} \mathrm{OC}^{203}$	1 -25	2N3441	0.80	74128	0.00
* $\mathrm{BC135}$	0.15	BFY51	0.26	OC204	1.25	2N3442	1.20	74128	0.40
*BC138	0.19	BFY52 BFY84	0.28 0.30	\bigcirc	1.75	2 N 3525	0.90	74132	0.80
*BC137	0.16 0.10	BFY84 BFY90	0.30 1.32	OC206	1.75	2N3614	$1 \cdot 20$	74136	0.68
-8C147	0.10 0.10	BFY BSX 19		${ }^{0} \mathbf{C} 207$	$1 \cdot 25$	"2N3702	0.15	7414	0.85
*BC148	0.10 0.13	BSx19 BSX20	1.34 0.34	OCP71 ORP12	1.25 0.70	-2N3703	0.15	74142	3.00
BC157	$0 \cdot 12$	BSx21	0.32	${ }_{}^{\text {\%R2008B }}$	0.70 $\mathbf{2}$	-2N3704	0.15	74143	3.00
*BC158	0.11	BT106	1.25	*R2009	2.25	* N3706	${ }_{0}^{0.14}$	74144	3.00 1.00
*BC159	0.13	BTY79/400R	3.19	*R2010B	2.25	-2N3707	0.18	74147	1.00 2.45
*BC167	0.13	*BU205	2.25 2.25	T1C44	0.30	*2N3709	0.14	74146	2.00
${ }_{*}^{* B C 170}$	0.16 0.14			T1C226D	1.30	*2N3709	0.15	74150	1.75
${ }^{*} \mathrm{BC} 171$	0.14 0.13	*BU208 BY 100	2.50 0.45	T1L209 + T1P29a	0.25 0.50	*2N3710	0.14	74151	0.90
${ }^{\text {BCL }} 173$	0. 15	BY126	0.14	*T1P29A	0.50 0.60	-2N3711	0.15 1.80	74154	2.00
BC177	0.19	BY127	0.15	T1P31A	0.62	2N3772	1.70	74155 74156	0.90
${ }^{\text {BC176 }}$	0.16	BZX61	0.20	T1P32A	0.75	2N3773	$2 \cdot 65$	74157	0.50
BC179	0.20	Series		T1P33A	1.00	-2N3619	0.36	74159	2.50
*BC182	0.11	BZY88	0.13	T1P34A	1.20	-2N3620	0.46	74170	2.60
*BC183	0.11 0.12	Seriea	0.45	T1P41A	0.70	* 2 N3823	0.80	74172	5.00
*BC212	$0 \cdot 14$	CRS $1 / 40$	0.45	T1P42A	0.90 1.00	${ }_{\text {2 }}^{\text {2N3866 }}$	1.00 0.21	74173	1.75 1.57
*BC213	0.14	CRS3/O5	0.45	T1P3055	1.00 0.50	- 2 N3905	0.21 0.22	74174	1.57
*BC214	0.17	CRS3/40	0.75	-T1S43	0.35	* 2 N3906	0.22	74176	$1 \cdot 10$
*BC237	0.17 0.12	CRS $3 / 60$ GEX66	0.90 1.50	*2S140	0.25	*2N4058	0.20	74178	1.85
BC301	0.12 0.45	GEX541	1.75	-ZS170	0.12 0.54		0.15 0.20	74179 74190	1.65
BC303	0.60	GJ3M	0.75	*ZS271	0.22	* 2 N 4061	0.17	74190	1.65
*BC307	0.20	GJ5M	0.75	-2S278	0.58	-2N4062	0.16	74191	1.48
*BC308	0.18	GJ7M	0.75	-21×107	0.11	*2N4124	0.17	74192	1.25
*BC327	0.22	GMO378A	1.50	${ }^{2}$ ZTX108	$0 \cdot 10$	-2N4125	0.17	74193	1.25
- BC328	$0 \cdot 18$	*KS100A	$0 \cdot 40$	-2TX109	$0 \cdot 12$	*2N4286	0.20	74194	1.25
-BC337	0.19 0.1	MUE340		- 2 TX $\times 300$	0.12	- 2 N 4288	0.25	74195	$1 \cdot 10$
${ }^{\text {BCY }}$ - 338	0.18 1.00	MJE370	0.85	* 2 ZTX 301	0.13 0.17	${ }^{+} \mathbf{2 N 4 2 8 9}$	0.25	74196	1.20
BCY31	1.00	MUE520	0.85	- $2 \mathrm{Z} \times 303$	0.17	${ }^{\sim}$	0.35 0.35	74197	1.00 2.25
BCY32	1.00	MUE521	0.75	- ZTX304	$0 \cdot 19$	- 2 NS 545	0.35 0.35	74198 74199	2.25 2.25
8CY33	0.90	MUE2955	1.25	*ZTX311	0.12	3N125	1.75	*76013N	2.25 1.75
BCY34	$0 \cdot 0$	MJE3055	0.75 0.30	- 2 X $\times 314$	0.20	3N141	0.85	-6013	1.75
BCY39	3.00 1.25	*MPF 102	0.30 0.30	* 2 TX $\times 500$	0.13				
$\begin{aligned} & \text { BCY40 } \\ & \text { BCY4 } \end{aligned}$	1.25 0.30	*MPF103	0.30 0.30	- ZTX ${ }_{\text {- }}$	0.14 0.16	InTEGRAT		Pluge in	
BCY43	0.32	*MPF105	0.30		0.16 0.17	${ }_{7409}$ CIRCUIT8		- 8 pin pril	
BCY58	0.23	*MPSA08	0.25	- 2 X $\times 504$	0.20	7401	0.20 0.20	14 pin DIL	0.15
8cr70	0.18	- MPSALS	- 28	*ZTX531	0.20	7402	0.20	16 pin OIL	$0 \cdot 17$

[^1]

100 WATT SPOT LAMPS
RED. YELLOW.GREEN 3 LIMES
BLUE
CLEAR
1
 $A \perp=B \mathrm{~N}$ ENGINBERING CO. LTD.
DEPT. PE THE CRESCENT, WORSTHORNE. BURNLEY. LANCS. Tel Burnley 20940

VERO QUAD BOARD was designed to provide a simple circuit board capable of accepting nearly all types of integrated circuits, plus transistors, resistors, capacitors and many other components.

ASK FOR V-Q - IT WAS MADE FOR YOU
No track cutting. $1 \uparrow, 624$ holes on $0.1^{\prime \prime} \times 0.1^{\prime \prime}$ matrix.
Packed complete with layout sheet. Fits Vero Plastic Cases 1237, 1238 and 1239. Costs about 90p from your local shop or mail order company.
Send for our booklet describing many other products made for you, S.A.E. $7^{\prime \prime} \times 9^{\prime \prime}$ plus 10p to:

VERO ELECTRONICS LTD. RETAIL DEPT. INDUSTRIAL ESTATE, CHANDLERS FORD, HANTS. SO5 32R.

$4 \frac{\mathrm{in}}{\mathrm{in}} \times 3 \mathrm{t}$ in METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ or $100 \mu A, £ 4 \cdot 75$. 19p P. \& P

MICROPHONES FOR
 TAPE RECORDERS

DM228R 200 ohm with 3.5
and 2.5 mm Jack Plugs $\quad \Sigma 1.30$
DM229R 50K with 3.5 and
2.5 mm Jack Plugs

DM18D 200 ohm with 5 and 3 pin Din Plugs \quad E1.75 Postage on above microphones 11p

CARDIOID DYNAMIC MICROPHONE

Model UD-130 Frequency response $50-15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, £6.02. 26p P. \& P.
$2 \mathrm{in} \times 2$ in meters $1 \mathrm{~mA}, 500 \mathrm{~mA}$, £2.92. 16p P. \& P
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}$ and 1 mA VU meter, £4.14. 11p P. \& P.
Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$, $500 \mu \mathrm{~A}$, and 1 mA, £3.40. 19p P. \& P.

TRANSFORMERS Primary 240 V		
6-0-6V	100 mA	£0.75
9-0-9V	75 mA	£0.75
12-0-12V	50 mA	£0.85
12-0-12V	100 mA	£1.05
Post on above	transfo	s 30p.
9-0-9V	1A	£1.80
12-0-12V	1A	£2.15
15-0-15V	1A	E2. 36
30-0-30V	1A	E3.10
$6.3 V$	$1 \frac{1}{2} A$	£1.80
6-0-6V	$1 \frac{1}{2} A$	£2.20
Post on above	transfo	s 45p.

All above prices include V.A.T. Send 40p for new fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 1BA

FEATURE: 4 LED
FEATURES: 4 LED digits $\frac{1}{2}$ in high. Red. 12 hour display with a.m./p.m. indication. Mains frequency accuracy. Easy to build: all components included. Beautiful real wood case or perspex: White, Black, Red, Blue and Green. Flashes to indicate power cuts.
NON ALARM: Complete kit including case, $£ 12 \cdot 50$. Ready built, $£ 14 \cdot 50$. Module kit excluding case, $\mathbf{\varepsilon 9} \cdot 50$. Ready built, $\mathbf{£ 1 0 \cdot 0 0}$.
ALARM: Pulsed alarm tone. Automatic brightness control. 9 minute "Snooze" Simple setting. Complete kit including case, $£ 15 \cdot 50$. Ready built, £17.00.
Module kit excluding case, $£ 13.00$. Ready built, £13. 50.
TIMER FACILITY: Use as stopwatch to 9 min 59 sec , extra 50p.
EXCELLENT VALUE-GUARANTEED
LIOUID CRYSTAL WATCH: 5 function. Back light. Chrome case. Black strap. Excellent value, £17-28.
DISPLAYS: FND500 $\frac{1}{2}$ in LED, $£ 1$-19: 6 for $\mathbf{\varepsilon 6}$.48. NSB 5430, 立in Red LED stick of $4 \mathrm{E} \cdot \mathbf{3 2}$. 5 LTO 2 , $\frac{1}{2}$ in Green Phosphor stick of $4 \mathrm{\varepsilon 5} \cdot 67$.
CLOCK CHIPS: 50253N Alarm 12/24 hour 4/6 digit. $55 \cdot 67$. 4 digit Alarm
50362N Calendar clock, £7.75. MM5385N 12 hr
£4.32. 6 Decade up/down counters, $50395 / 6 / 7 \mathrm{E} 13 \cdot 10$.
£4.32. 6 Decade up/down counters, 5039.6/0 £13. 10.15 .70.
MICROPROCESSORS: Z80 CPU, £29.70. Z80 CTC. $\frac{\varepsilon 15 \cdot 70 \text {. }}{\text { 1702A UV Erazable PROM, £11.35. Z80 PIO } £ 15 \cdot 70 \text {. 2102NA IK Static RAM }}$ 173.15. UV PROM ERAZER, E 103 plus $15 . \mathrm{P}$. \& P. 4 KXI 16 pin Dyn. RAM £7.05.

RECHARGEABLE BATTERY SET: Super Value E8•10. Includes 4 AA (1-2V) Nickel Cadmium batteries (separately $£ 4 \cdot 32$). $3 / 6 / 9 \mathrm{~V}$ switched Universal Mains Nickel Cadmium batteries (separately $\begin{aligned} & \text { nder } \\ & \text { Ad }\end{aligned}$ plug connector for most calculators (separately £3.78), plus Adaptor with
ELECTRONIC DOORBELL: Warbling tone. Runs off PP3 £5.40.
payment with order to:
BARON
(PE)
Southview House, 6 Gower Road Royston, Hertiordshire Telephone: Royston (0763) 43695

Join the Digital Revolution

Understand the latest

 developments in calculators, computers, watches, telephones, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{2} \mathrm{in} \times 8 \frac{1}{4}$ in and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers. Design of Digital Systems.

plus 90p packing and surface post anywhere in the world.

Overseas customers should send for proforma invoice

Quantity discounts available on request.

VAT zero rated.
Also avallable-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
£4-60
3. Designing Circuits to

Carry Out Logical Func-
tions
4. Flipflops and Registers

Offer Order both courses for the bargain price $£ 11 \cdot 10$, plus 90 p P. \& P.-a saving of $£ 1 \cdot 50$.

Designer	These courses were written so that you could teach yourself the theory
Manager	and application of digital logic. Learn- ing by self instruction has the advan-
Enthusiast	tages of being quicker and more
Scientist	thorough than classroom learning. You work at your own speed and must
Engineer	respond by answering questions on each new piece of information before
Student	proceeding to the next.

" N 首 W from Cambridge Learning Enterprises:
FLOW CHARTS AND ALGORITHMS-use, design and layout; vital for computing, training, wall charts, etc. $£ 2$ - 95
plus 45 p P. \& P.
Guarantee-If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, FREEPOST, Unit 2, Rivermill Lodge. St. Ives, Huntingdon, Cambs. PE17 4BR

To: Cambridge Learning Enterprises, FREEPOST, Unit 2,
Rivermill Lodge, St. Ives, Huntingdon, Cambs. PE17 4BR
*Please send me....set(s) of Design of Digital Systems at £8.00 each, P. \& P. included
*or....set(s) of Digital Computer Logic and Electronics at $£ 5 \cdot 50$ each. P. \& P. included
*or....combined set(s) at $£ 12.00$ each, P. \& P. included
*or....the Algorithm Writers Guide at $£ 3 \cdot 40$ each, P. \& P. included
Name
Address
*delete as applicable
No need to use a stamp-just print FREEPOST on the envelope.

TRANSFORMERS

ALL EX-STOCK—SAME DAY DESPATCH. VAT 8\%

Ref SCREENED MINIATURES m 100 100 100 330 A. 1 A 30,330 00,500 A, 1 A 200,200 300,300 $100,1 \mathrm{CD}$ 1 C 500,150 $1 \mathrm{~A}, 1 \mathrm{~A}$
 $\begin{aligned} & 0-6,0-6 \\ & 9-0.9 \\ & 0-9,0-9\end{aligned}$ $0-8-9-, 0-8-9$ $0-89.10-8-9$ $0-15,0-15$ $0-8-9,0-1$ $0-15$ $0.20,0$ $-20,0-20$ $20-12-0-12$ $0-15-20-0-15-2$ $0-15-27-0.15-2$ $0-15$ 0-15-27-0-15-2 $12-15-20-24-30$
 PLUS

HIGH QUALITY MODULES 10 WATT RMS AMPLIFIER
25 WATT RMS AMPLIFIER 25 WATT RMS AMPLIFIER
35 WATT RMS AMPLIFIER ${ }^{125}$ WATT RMS AMPLIFIER PRE-AMP for $5-10$ WATT PRE-AMP for 25 WATT POWER SUPPLIES 5 -10 WATT POWER SUPPLIES 25 WATT TRANSFORMER 5-10 WA
\qquad PC BRINTED CIRCUIT K PC Board, Clrcuit Marking Pen, Etchan
Crystals, Solvent, $£ 2.40$ VAT 8%, P' P 400 BLOB BOARD (Pack of 3)
 $3.75^{\prime \prime} \times{ }^{\prime \prime}$
$10{ }^{\prime \prime} \times 5^{\prime \prime}$
1 C Ran CRange $8^{\prime \prime} \times 3.2^{\prime \prime}$

ELECTRONIC CONSTRUCTION KIT 10 projects (including electrontc organ).

COMPONEMT PACKS 200 Mixed value resistors (count by weight) 150 Mixed value capacilors (count by welght) 30 Mixed value pr
15
Assorted pots 10 Reed switches
15 Wire wound resistors-mlxed wattage 25 pre-sets asser meter colours Please sets assoried types and values Prices correct 23-6-71. Please add $V A T$ after $P \& P$.
send 150 tri) or send your requirements. Electrosil \& semlconductor stocklsts. Panel, Multil Meters, Audio accessories, send 15p stamps for lists.

$2+25$ W An
$1+$ Pre-Am
$1+$ Power
$1+$ Transfo

+ Pre-Amp
+ Power supply
+ Transformer $1+$ Transformer
$1+$ Front Panel $1+$ KIt of parts to include on-off
switch, neon ind. Stereo phone socket. Plus Instructions book $£ 27 \cdot 55$.
Teak veneered cablnet aluminlum chassls, heat slnk and fron and sockets etc. $£ 9.20$
P\&P $£ 1 \cdot 73$ VAT 12% PECORD DECK BSR P128R SInglo Player with Cartridge
VAT $12 \frac{1}{2} \%$.

MUSIC CENTRE CHASSIS FM (STEREO/MW/LW Music Power Inc. Tran. Only E23.50.VAT $12 \frac{1}{2} \%$. P. \& P. \&1 20 POWER UNITS Stabllised $3-6-7$ multiplug outlet 5-9V/400 £. 95 multiplug outlet $\mathbf{3 3 0 0}$ fits into 13 A socket $6-75.9 \mathrm{~V}$ $\mathbf{E 5 . 9 5}$ 300 mA multiplug outlet $£ 3 \cdot 30$ RBE $3,4 \cdot 5,6,7 \cdot 5,9,12 \mathrm{~V} 500 \mathrm{~mA}$
 DECS SOLDERLESS $\begin{array}{lr}\text { S Dec } 70 \text { contacts } & \text { £. } \cdot 90 \\ \text { T Dec } 208 \text { contacts } & £ 3.65\end{array}$

Barrie Electronics Ltd.
 3, THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/7/8
 NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST

тне "Manta"
 CAPACITIVE DISCHARGE ELECTRONIC IGNITION UNIT

FITS ALL CARS-IMPROVES

 PERFORMANCE-SAVES PETROLSpecifically designed for the Home Constructor, this top quality, high output unit incorporates the latest sophisticated electronic circuitry for the best consistent performance.

Developed from the popular P.E. 'Scorpio MK 11' (designed by Messrs. Gibbs and Shaw), but improved to give highest reliability. Uses only top quality components.

PRICE OF COMPLETE KIT NOW ONLY £15.50 (inclusive of VAT, P. \& P.). After sales service available.
READY MADE UNIT ALSO AVAILABLE NOW ONLY £17-50 (inclusive of VAT and P. \& P.). Full two year guarantee. Do not confuse with cheaper electronic ignition units.

Send $7 p$ stamp for full details and our six page explanatory brochure "Electronic Ignition-How it Works'

Dept. P.E., 187a Sheffield Road, Chestertield, Derbys. S41 7JQ. Telephone: Chesterfield (0246) 36638

ELECTRET MICROPHONE INSERT with FET Pre-Amp, 51 . 85
FM TUNER FRONT END with FET R.F. Stage, with conversion details to Aircraft Band or 2 Metres, ${ }^{2} 3$.
WELL KNOWN MANUFACTURER DF HI-FI AMPLIFIERS. Discontinued line consist ing of major parts for $20+20$ watt amplifier, as follows. Stereo Pre-Amp. Stereo Tone Board. $2 \times$ Driver Boards, Volume and Tone Controls, on-off switch, 2 Push Button Assembles. Rotary Switch etc, with Circuit Diagram, and suggested Construction. All for £8-60

UNIJUNCTIDN TRANSISTORS. TIS43 Type, 20p; MEV21. 22p; 2N4871. 22p; MV4894 22p; GE4JD5E29, 22p; Programmable UJT D13T1, 25p; 2N6028, 30p.
TNo ASSORTED MULLARD C280 CAPACITORS for 57p.
BF451 SILICON PNP 3DOMHZ TRANSISTORS, 6 for 35p
50 BC107-8-9 TRANSISTORS. Assorted untested for 57p
TANTALUM BEAD CAPACITORS. $0.1 \mu \mathrm{~F} 35 \mathrm{~V} . \mathrm{W} .0 .33 \mu \mathrm{~F} 35 \mathrm{~V} . \mathrm{W} ., 1 \mu \mathrm{~F} 35 \mathrm{~V} . \mathrm{W} ., 2 \cdot 2 \mu \mathrm{~F}$ $35 \mathrm{~V} . \mathrm{W} ., 3 \cdot 3 \mu \mathrm{~F} 16 \mathrm{~V} . \mathrm{W} . .4 \cdot 7 \mu \mathrm{~F} 10 \mathrm{~V}$.W.. $4 \cdot 7 \mu \mathrm{~F} 35 \mathrm{~V} . \mathrm{W} ., 5 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W} .6 .8 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W}$. $6.8 \mu \mathrm{~F} 35 \mathrm{~V} . \mathrm{W} .10 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W} ., 15 \mu \mathrm{~F} 10 \mathrm{~V} . \mathrm{W}$., $20 \mu \mathrm{~F} 6 \mathrm{~V} . \mathrm{W} ., 22 \mu \mathrm{~F} 16 \mathrm{~V}$ W. . $33 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W}$. 47uF 6 V.W., $68 \mu \mathrm{~F}$ 3V.W. All 9p each
OPTO ISOLATOR LINTRONIX $1 \mathrm{~L}-74$ with data, 50 p
ELECTROLYTIC CAPACITORS. SCrew Terminal Type. $680 \mu \mathrm{~F} 160 \mathrm{~V} . \mathrm{W} . .4 \mathrm{4} \times 1 \frac{1}{\mathrm{in}}, 40 \mathrm{p}$; $3300 \mu \mathrm{~F} 63 \mathrm{~V} . \mathrm{W} .44 \times 1 \mathrm{in}, 55 \mathrm{p}$; $4700 \mu \mathrm{~F} 100 \mathrm{~V}$.W., $44 \times 2 \mathrm{in}$. $£ 1 ; 15,000 \mu \mathrm{~F} 40 \mathrm{~V} . \mathrm{W}$. $4 \frac{1}{2} \times 2 \mathrm{in}$ \{1; $33.000 \mu \mathrm{~F} 16 \mathrm{~V} . \mathrm{W} .4 \frac{1}{2} \times 2 \mathrm{~m} .75 \mathrm{p}: 47.000 \mu \mathrm{~F} 10 \mathrm{~V} . \mathrm{W} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. 75 p . TAG ENDED TYPE 500 F F 70V.W., $2 \frac{1}{1} \times 1 \mathrm{in}, 30 \mathrm{p} ; 500 \mu \mathrm{~F} 100 \mathrm{~V} . \mathrm{W}, 2 \frac{2}{} \times 1 \neq \mathrm{in}, 30 \mathrm{p} ; 1000 \mu \mathrm{~F}$ 100V.W. $4 \frac{4}{} \times 1 \mathrm{n} .60 \mathrm{p} ; 3000 \mu \mathrm{~F} 25 \mathrm{~V}$. W., $4 \frac{1}{2} \times 1+\mathrm{in}, 50 \mathrm{p} ; 4700 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W}, 2 \mathrm{I} \times 1 \mathrm{in}, 50 \mathrm{p}$; $500 \mu \mathrm{~F}$. W , $330 \mu \mathrm{~F} 63 \mathrm{~V} . \mathrm{W} .22 \mathrm{p} ; 470 \mu \mathrm{~F} 6 \mathrm{~V} . \mathrm{W} .5 \mathrm{p} ; 470 \mu \mathrm{~F} \cdot 16 \mathrm{~V} . \mathrm{W} ., 10 \mathrm{p}$; $680 \mu \mathrm{~F} 40 \mathrm{~V} . \mathrm{W} ., 20 \mathrm{p} ; 3300 \mu \mathrm{~F}$ C. SOCKETS
I.C. SOCKETS 8 pin, 14 pin, 16 pin, 18 pin all 15p each.
VISCONEL CAPACITORS. $0 \cdot 0005 \mu \mathrm{~F}$ 25KV.W., 40 p : $0.0005 \mu \mathrm{~F} 75 \mathrm{KV} . \mathrm{W} .50 \mathrm{p} ; 0.01 \mu \mathrm{~F}$ $6 K V$ W. 25 p.
200 ASSORTED $1 W$ RESISTORS for 75p.
100 POLYSTYRENE CAPACITORS. Assorted. 57p
10 PLASTIC BC108 or BC212 TRANSISTORS, 10 for 60p.
So AC128 TRANSISTORS. Branded but Untested for 57p
22V TRANSFORMERS. 240 V Inpul Thpe 22 V 1A. 88 p (20 p P. \& P.): Type 2

 500 mA . $33-50$ (85 p P. \& P.). Type 7. 10 V 1a twice. 20 V $10 \times 5 \mathrm{MHz}$ CRYSTALS, $50 \mathrm{p} ; 10 \times \mathrm{AJ}$ crystals $600 \mathrm{kHz}, 50 \mathrm{p}$
60 WIRE WOUND RESISTORS. Assorted for 57 p .
10 ASSDRTED MULTI-TUAN TRIM-POTS, 60 p .
TEN TURN POTENTIOMETERS, 1k 5k 10k
EN TURN POTENTIOMETERS, $1 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}, 100 \mathrm{k}, \mathrm{E} 1.50$ each
POTARY SWITCHES, 2 pole 4 wa, all 75 p each
INIATUAE ROTAAY SWITCHES, 2 pole 4 way, 20p; 1 pole 11 way, 40p; 1 pole 12 way 3 bank, 55p.
WATT TO39 NPN DARLINGTON TRANSISTORS, 20p each
sooyd REEL OF PVC 14 STRAND 0.0048 CABLE, $£ 3$.

J. BIRKETT
 RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln LN2 1JF
 Tel. 20767

- Full wave contro
- 1000 W per chann
- Fully supressed and fused
- Switched master control for sound operation from $1 / 2$ W to 125 W
- Speed control for fixed rate sequence from 8 per minute to 50 per second
- Full logic integrated circuitry with optical isolation for amplifier protection
£20.75
Model 501500 W per channel as above without sound triggering
f12.25
FRONT PANEL FOR LIGHTING EFFECT MODULES
(complete with switches, neons and knobs) as illustrated

Size $8^{\prime \prime} \times 4 \frac{1 / 2}{}$

FUZZ LIGHTS
Red, Green, Blue.
Amber $£ 23.50$

4LSM1 £5.50 Size $61 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}$

SILMB $\quad \mathbf{£ 7 . 5 0}$ Combined with 3SDM Size $9^{\prime \prime} \times 4 \frac{1}{2}$

THE PIEZO SUPER HORN £10.95

- NEEDS NO CROSS-OVER NETWORK - FREQUENCY RESPONSE 4,000-30,000 Hz $\pm 3 \mathrm{~dB}$ - PATENTEO MOMENTUM DRIVE PRINCIPLE - NO VOICE COILS OR MAGNETS • HIGH INTERNAL IMPEDANCE ADAPTS TO ANY SYSTEM - HIGH ACOUSTIC OUTPUT MANY CAN BE CONNECTED OUTPUT - POWER HANDLING CAPACITY 25 volts RMS - see chart

powea handling guide	
System Impedance	Capacity
20 mms	312 watts
40 hms	156 watts
8 ohms	78 watts
16 ohms	39 watts

STOCKISTS - CALLERS ONLY A1-Music, 88 Oxford Street. Manchester (Tel. 061-236 0340) Geo Mathews, 85/87 Hurst Stroet, Birminghem |Tol. 021-622 1941] 8risel Disco Centre, 25 The Promenade, Gloucester Road (Tal. Brishol 41666).
Soccodi. 9 The Friars (Tel. Canterbury 60948)
Cookies Disco Centre, 132 West Street (Tal. Crewo 4739). Gurland Bros. LId.; Depfford Broadway. London 01-692 4412 Luton Disco Centre. 88 Wellington Streat. Luton (Tal. Luton 41.1733) Mitchell-Electronics. 7 Quean Street (Tol. Salistury 23689).

Session Music. 163 Mitcham Rord, Tooting (Tel, 01-672 3413). Mon-Sat 10 a.m. -6 p.m. Closed Wed.

- RCA 8A Triacs
- 1000W per channel
- Each channel fully suppressed and fused - Master control to operate from IW to 125 W - Full wave control
£20.25

Single Channel Version 1500 Watts $\quad £ 9.75$
ADD SEQUENCE CHASING + DIMMING EFFECTS FOR TUAC 3 CHANNEL LIGHT MODULATOR

- Speed Control 3 per min. to 10 per sec Full logic integrated circuitry

3SDM1
£14.50

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 20 PAGE ILLUSTRATED CATALOGUE. S.A.E. STAMPED PLEASE

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets, knobs, atc. are not included but most of these may be bought separately. Fulier details of kits, PCBs and parts are shown in our lists.
CIRCUIT. AND LAYOUT DIAGRAMS are supplied free with all PCBs designed by Phonosonics.
PHOTOCOPIES of the P.E. texte for most of the kits are avallablo-prices in our lists.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.

P.E. MINISONIC Mk. 2 SYNTHESISER

A porlable mains-operated Miniature Sound Synthesiser, with keyboard circuits. Although having slightly fewer affities than the large P.E. Synthesiser the functions Consists of $2 \log$ VCOi give it great scope and versatility. Controlled amps, keyboard hold and control circuits, HF oscillator and detector, ring modulator, noise generator, output amp and mixer, power supply.
$\begin{array}{lr}\text { Set of basic component kits } & \text { from E64.25 } \\ \text { Set of printed circuit boards } & \text { E9.71 }\end{array}$

P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits in our lists may be used with the Synthesiser to good advantage, notably P.E. Minisonic, hasing Unit, Wind and Rain, Rhythm Generator, Sound Bender, Voltage Controlled Filter, Guitar Effects Pedal and Overdrive, Fuzz, Iremolo and Wah-Wah units.
generators, 2 input amps, sample hold, noise generator revert amp, ring modulator, peak level circuit, envelope shaper, voltage controlled amp. Full details in lists.
Set of basic component kits
${ }^{\mathrm{CB} 3.03}$
Set of printed circuit boards
£83.03
E 13.20
The 8yntheeleer Keyboard Circulte (can be used without the Main Synthesiser to make an independent musical instrument): 2 logarithmic VCOs, divider, 2 hold circuits, 2 modulation amps, mixer, 2 envel
Set of basic component kit
Set of printed circuit boards
E. 4.66

GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack, decay and filter characteristics of an audio signal not only from a guitar but from any audio source, producing 8 different switchable effects that can be further modified by manual controls. Possibly the most interesting of all the low-priced sound effects units in our range. Circuit does not duplicate effects from the Guitar verdrive Unit.
Component set with special foot operated switches $\mathbf{8 7} \mathbf{7 9}$ Alternative component set with panel mounting switches
$84 \cdot 96$
$51 \cdot 43$
SOUND EENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper. tremolo, voice-operated fader, Comatic fader and frequency-doubler
Component set for above functions (excl. SWs)
Printed circuit board
Optional extra-additional Audio Modulator, the use of which, in conjunction with the above component set, can produce "jungle-drum'" rhythms
Component set (incl PCB)
52.88

PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlied unit for introducing the "phasing" sound into live or recorded Com
E. 8.3

PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control
the rate of phasing.
Component set (incl. PCB)
4.48

SOPHISTICATED PHASING AND VIBRATO UNIT

A Elektor'. December 1976, and includes manual and' automatic control over the rate of phasing and vibrato. Component set
Printed circuit board
£17.69
22.33
WAH-WAH UNIT (P.E. Apr. 76)
The Wah-Wah effect produced by this unit can be controlled
manually or by the integral automatic controller.
Component set (incl. PCB)
£3. 55
AUTOWAH UNIT (P.E. Mar. 77)
Automatically produces Wah-pedal and Swell-pedal sounds
each time a new note is piayed.
Component set. PCB, special foot awitches
Component set and PCB, with panel switches
P.E. JOANNA (P.E. May/Sept. 75)

A five-octave electronic piano that has switchable alternative voicing of Honky-Tonk piano, ordinary piano, harpsichord, of the three. together with facilities including fast and slow tremolo, loud and soft pedal switching, and sustain pedal switching. The power amplifier typically delivers 24 watts into 8 ohms. The PCBs have been redesigned by ourselves making improved use of the space available.
Main power supply, tone generator. 61 envelope shapers,
voicing and pre-amp circuits.
Set of basic component kits for above
Set of printed
Printed circuit board for power amp

$\varepsilon 20 \cdot 35$ $\Sigma 15.97$

ELECTRONIC ORGAN

5-octave electronic organ with 5 basic voices that can be used individually or together, 5 pitches ($2 \mathrm{ft}, 4 \mathrm{ft}, 8 \mathrm{ft}, 16 \mathrm{ft}, 32 \mathrm{ft}$) variable attack, tremolo, vibrato. phasing, and variable sustain. Details in our list.

ORGAN CONVERSION KIT

Converta the P.E. Joanna electronic piano to also provide most of the facilities offered by the above electronic organ.
Basic component set and PCB
\&12.34

SYNTHESISER TUNING INDICATOR (P.E. July 77)
A aimple 4-octave frequency comparator for use with synthesisers and other instruments where the full versatility Component P PCB (but axd

GUITAR FREOUENCY DOUBLER (P.E. Aug. 77)

A modified and extended version of the circuit published Details in liat

> SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED

WIND AND RAIN UNIT

A manually controlled unit for producing the above-named sounds.
Component set (incl. PCB)
ع3. 72

GUITAR OVERDRIVE UNIT (P.E. Aug. 76)

Sophisticated, versatile Fuzz unit, including variable and switchable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing fittering. Does no duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments. Component set using dual slider pot Printed circuit board

FUZZ UNIT

Simple Fuzz unit based upon P.E. "Sound Design'" circuit.

TREMOLO UNIT

Gased upon P.E. 'Sound Design' circuit
Component set (incl. PCB)
E3. 64
TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through it. Compth of boost is manually adjustable.
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A ED monitor clearly displays all beat note adjustments. Ideal or tuning acoustic and electronic musical instruments
Main component set (incl. PCB)
Power supply set (incl. PCB)
c15.59
P.E. SYNCHRONOME (P.E. Mar. 76)

An accented-beat electronic metronome, providing duple. riple and quadruple times with full control over the bea ate. Can also be used as aimple drum-beat rhythm enerator. Includes power supply.
Printed circuit bincl. loudspeaker
£11.62

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape recordings. All kits include PCBs
Standard tolerance set of components
Regulated power supply (will drive 2 sets)
82.96
83.76
84.69

ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over attack, decay, sustain and release functions, and is for use with an existing voltage Component amplifier.
Component set (incl. PCB)
[4. 66

ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)

This unit has its own voltage controlled amplifier and has full manual control over attack, decay, sustain and release Component set (incl. PCB)

E5.68

TRANSIENT GENERATOR (P.E. Apr. 77)

An envelope shaper, without VCA, having the usual attack, decay, sustain and release functions, and in addition it also provides a "Repeat Effect" enabling a synthesiser to be programmed to imitate such instrumenta as a mandolin or Com
Printed circuit board
84.52
81.82

WAVEFORM CONVERTER

Slightly modified from a circuit published in a German dition of "Elektor . Converts a saw-tooth waveform into our different waveforms: sine-wave, mark-space saw-tooth. egular triangle form, and squarewave with an externaily Component set (incl. PC

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
Part of the P.E. Minisonic now released as an independent
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kit 65-1)
ع8 $\cdot 22$

RING MODULATOR (P.E. Jan. 75)

Part of the P.E. Minisonic now released as an independent
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kit 59-1) E5.50
NOISE GENERATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independent
Component set (incl. PCB) (Order
Component set (incl. PCB) (Order as Kit 60-1) \quad) 3.35
SOPHITTICATED POWER SUPPLIES
A wide range of highly stabilised low noise power supply kits is available-details in our lists.

MICROPHONE PRE-AMP (P.E. Apr. 77)
Component set (incl. PCB)
23.78

VOICE OPERATED FADER (P'.E. Dec. 73)
For automatically reducing music volume during talk-over"-particularly useful for Disco work
ouring
for home-movie shows.
Component set (incl. PCB)
£3.97
DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to within a preset
Component set (incl. PCB)
c4. 58

POST ANO HANDLING

U.K. orders-under $£ 15$ add 25p plus VAT, over $£ 15$ add 50p plus VAT. Keyboards E2.00 plus VAT.
Optional Insurance for compensation against loss or damage in post. add 35p in addition to above post and handling.
Eire. C.I., B.F.P.O., and other countries ars subject to
Export postage rates.

DON'T FORGET VATI

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export orders).

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. Ali payments must be cash-with-order, in Sterling and preferably by international Money Order or through an English Bank. To obtain list send 40p.

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of PCBs. The cases were built by ourselves and are not for sale, hough a small selection of other cases is avaliable.

LIST-Send stamped addressed anvelope with all U.K. requests for free list giving fuller details.of PCBs, kits and other components
OVERSEAS enquiries for list: Europesend 20 p ; other countries-send 40 p .

KEYBOARDS AND CONTACTS
Kimber-Allen Keyboarde as required for many published circuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesleer. The menufacturers claim that these are the finest moulded plastic keyboards avaliable. All octave
3 Octave (37 notes) £25•50. 4 Oct (49 notes) £32-25. 5 Oct (61 notes) £39.75.
Contact Assembiles for use with above keyboards: Single-pole change-over (type SP) as fop P.E Joanna and P.E. Minisonic. Two-pole normally-open make-break (type DP) as for P.E. Synthesiser. Special contact assembly (type 4PS) having 4 poles, 3 of which are normally-open make-break contacts and the fourth is a change-over contact-etis specia assembly enables SAME KEYBOADDUs beise the cost of more han one keyboard. See our list for other simultaneo

Octave Set
$\varepsilon 8.88$
£ 8.88
£ 9.99
$£ 19.61$
Octave Set
511.76
5 Octave Sel $\begin{array}{ll}\mathbf{1 1 3 . 2 3} & £ 14.64 \\ \mathbf{2 5 . 9 7} & \mathbf{1 1 6 . 4 7}\end{array}$ $\begin{array}{rr}\mathbf{2 5 . 9 7} & \begin{array}{r}16.47 \\ \mathbf{5 1 2 . 3 3}\end{array}\end{array}$
PRINTED CIRCUIT BOARDS for use with the above contacts and thus eliminating most of the inter-wiring required, are available. Details in our llsts
MORE NEW KITS!
NEW AHYTHM GENERATOR
Redesigned, improved and extended version of the PE
1974 design and including new automatic rhythm
programme selector.
TUNE-PROGRAMMABLE SEQUENCER
(PE Nov. 77) The new music unit currently being
published.
FORMANT SYNTHESISER
(Elektor Magazine 1977). Very sophisticated music
synthesiser tor the advanced constructor and for whom
cOst la secondary to performance.
GUITAR SUSTAIN UNIT
(PE Oct. 77).
Details in lists. Please send S.A.E.

SOUND-TO-LIGHT (P.E. Aurora) (P.E. Apr-Aug. 71)
four channels each responding to a different sound requency and controlling its own light. Can be used with Basic io systems and lamp intensities. Basic component set (excl. thyristors) Power supply

CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76) simple but effective sound-to-light controlter capable of perar ginms each anduces Component set (incl PCB)
£11.95

DISCOSTROBE (P.E. Nov 76)
-channel light-show controller giving a choice of sequential, random, or full strobe mode of operation. Basic component set Printed circuit board

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-functlon circults that. with the use of other external equipment, can serve as he-detector, alphaphone, ardiophone etc.
Pre-Amp Module Component set (incl. PCB) $\quad \mathbf{~ 4 . 2 2}$ with PCBs, for alphaphone, eardiophone, requency meter and visual feed-back lampdriver circuits Audio Amplifier Module Type PC7

SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essentlal test equipment for the enterprisiing home constructor. While stocks last.

$$
\begin{aligned}
& \text { Set of resistors, capacitors, semiconductors, } \\
& \text { potentiometers, makaswitches and PCB }
\end{aligned}
$$

potentiometers, makaswitches and PCB Panel meter ($500 \mu \mathrm{~A}$)

8th EDITION BEGINNER'S

GUIDE TO RADIO

CONTENTS: Electricity and magnetism. Radio signals. Signal propagation and reception. Transmitter principles. Receiver principles. Radio components. Valves, solid-state devices and transistors. Integrated circuits. Microphone, pickup and loudspeaker. Modern radio receivers. Index.

* Sept. 1977 . 240 pages . £2.75

Order now from your local bookseller or from:
NEWNES TECHNICAL BOOKS
Borough Green, Sevenoaks, Kent TN15 8PH

Introduces the reader in easy step-by-step stages to all aspects of radio technology, from simple electromagnetic theory to the full range of radio components and circuits.

Completely rewritten and updated, the 8th edition contains all the lates developments in radio technology.
Written in a non-technical style with a minimum of mathematics, this new edition will develop the reader's knowledge and interest and enable him to use radio equipment with confidence and skill.
Borough Green, Sevenoaks, Kent TN15 8PH
ex

BARGAIN PARCELS SAVE POUNDS

Huge quantlities of electronic components must be cleared as space required, 1000's of valuable components. No tlme to sort, so must sell by weight; 7 lb £4.35, $141 \mathrm{~b} £ 6.95$, $28 \mathrm{lb} £ 11 \cdot 95,56 \mathrm{lb}$ £ $19 \cdot 95,1121 \mathrm{~b}$ £25.45,
UHF TRANSISTOR TV TUNERS
UHF TRANSISTORTV TUNERS
Four Pushbutton $£ 2 \cdot 50$. Rotary Type with slow motion drive $£ 2 \cdot 50$.

BARGAIN PACKS

300 Mixed Resistors \& 1 watt	£1	51b Ferric Chloride
100 Mlxed Diodes, IN4148 etc	61	$12 \mathrm{Gen}$. Purp. PNP
100 Mixed Dlodes including Ze		1 Dalo Pen, etch resist 90p
and Power Types	£3.95	40 OA91/95 type Glass Diodes E1
100 New and Marked Signal		4 Aluminlum Boxes $128 \times 44 \times$
Transistors inc. BC148, BF194,etc	¢3.95	38 mm . Ideal for Signal Injectors etc $£ 1$
200 New and Marked Transistors		BR101 Full Spec. 5 for $\mathbf{\Sigma 1}$
Inc. AC128, 2N3055, BFY50, BD131	£6. 95	DY51 E.H.T. Rec. E 1 $^{\text {d }}$
200 Unmarked Mixed Transistors		Aluminium Coax Plugs $\quad 10$ for $\mathbf{£ 1}$
Inc. H.F. and Power types	E.4.50	20 mm Fuses 500 mA to 3.15 Amp
Send 60p for samples		In stock (Can be mixed) 15 for $£ 1$
Ilb Ferric Chloride	¢1	

DELUXE FIBRE GLASS BOARD P.C. KITS Refll Pack for P.C. KIt 150 sq . in. F/9 Board £1-50 NC. 150 sq in Copper Clad F/G Board, 1Ib Ferric Chloride, A Dalo Pen, Abrasive Cleaner, 2 Mini Drill Bits, Etch Tray and Instructions. Only $£ 5$. 30 inc. P \& P. Send cheque or P.O. with order to
SENTINEL SUPPLY, $20 A$ Waddon Road, Croydon, Surrey

BURGLAR ALARM

EQUIPMENT SUPPLIES (TRADE)
Bell boxes plastic coated steel
Magnetically operated door Magnetically operated door switch surface type
Magnetically operated door switch flush type
Pressure pads large $29 \mathrm{in} \times 15 \mathrm{in}$ 4 wires
Pressure pads stair tread size 4 wires pads stair tread size Aluminium window foll 100 ft self adhesive
Take off blocks for window foll per pair
55. 25 Heavy duty 6 in bell 12 V

Key switch
chrome plate
Chrome plate
Battery for above large HP1
£1.75 Kojak horn
E1. 75 CONTROL UNITS £1.50 Battery operated model $\begin{array}{ll}\text { £3.00 } & \text { Battery and mains model } \\ \text { B.S. } 4737 \text { model battery }+\mathrm{m}\end{array}$ E0. 40 D.I.Y. battery model £0.40 D.I.Y. battery and mains

$\varepsilon 3.00$ 52.50

 ALL PRICES + $12 \downarrow \%$ VAT. NO VAT EXPORTS. POST FREE DISCOUNTS PER ITEM: $5+10 \% ; 25+15 \% ; 100+20 \%$
ASTRO ALARMS

25 Stockton road, sunderland tyne and wear, england. TEL. 078377825

V.D.U./MACRO COMPUTER - With so many features

Look at these features

* Rock Steady Pictures
* Crystal Controlled
* Expandable Number of Lines
* Telephone Interface
* Tape Programmable
* Software Avaitable
* Ideal for Education
* Expandable Memory

* Games and Things on Tape
* Ready-Built or in Kit Form
* Video or UHF Output
* Selectable Flashing Characters
* Forward and Reverse Typing Mode
* Repeat Facility
* Tab Key
* Automatic Tape Stop/Start

COME ALONG AND PLAY MASTERMIND or S.A.E. FOR INFORMATION

Crofton Electronics Limited
35 GROSVENOR ROAD, TWICKENHAM MIDDLESEX Tel: 01-891 1923

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in single pack; multi-function equalisation: low noise: low distortion; high overload; two simply combined for stereo.
APPLICATIONs: hi-fi; mixers; disco: guitar and organ; public address.
SPECIFICATION: Inputs-magnetic pick-up 3 mV : ceramic pick-up 30 mV ; tuner 100 mV ; microphone 10 mV ; auxiliary $3-100 \mathrm{mV}$; input impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs-tape 100 mV ; main output 500 mV R.M.S. Active 1 kHz ; signal/noise ratio 68 dB . Overload- 38 dB on magnetic pick-up. Supply Voltage- $\pm 16-50 \mathrm{~V}$. Price $55 \cdot 22+65 \mathrm{p}$ VAT. P. \& P. free HY5 mounting board B.1. 48p + 6p VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink. P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available.
FEATURES: complete kit; low distortion: short. open and thermal protection; easy to build.
FEATURES: COmplete A alich low APPLICATIONS: updating audio equipment: guitar practice amplifier: test amplifier; audio oscillator.
SPECIFICATION: Output Power-15W R.M.S. Into 8Ω. Distortion- 0.1% at 15 W . Input SensitivitySPECCACATION: Output Power-15W R.M.S. into
500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $£ 5 \cdot 22+65 p$ VAT. P. \& P. free
The HY50 leads I.L.P.'s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion; integral heatsink; only five connections: 7 amp output transistors: no
external components.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-25W R.M.S. Into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 0.04% a: 25 W at 1 kHz . Signal/Noise Ratio- 75 dB . Frequency Response -10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 25 \mathrm{~V}$. Size- $105 \times 50 \times 25 \mathrm{~mm}$.
Price $56 \cdot 82+85 p$ VAT. P. \& P. free
The HY120 is the baby of I.L.P.'s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion; integral heatsink: load line protection; thermal protection: five connections; no external components.
APPLICATIONS: hi-fi; high quality diaco; public address: monitor amplifier: guitar and organ.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power--60W R.M.S. into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 0.04% at 60 W at 1 kHz . Signal/Nolse Ratio- 90 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 35 \mathrm{~V}$. Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price $115 \cdot 84+£ 1 \cdot 27$ VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown; very low distortion; load line protection; integral heatsink: no external components.
APPLICATIONS: hi-fi; disco: monitor: power slave: industrial; public address.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-120W R.M.S. Into 8Ω. Load Impedance-$4-16 \cap$. Distortion- 0.05% at 100 W at 1 kHz . Signal/Noise Ratio- 96 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 45 \mathrm{~V}$. Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price $223 \cdot 32+£ 1 \cdot 87$ VAT. P. \& P. free
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown; very low distortion; load line protection; no external components. APPLICATIONS: public address: disco: power slave; industrial.
SPECIFICATION: Output Power-240W R.M.S. into 4Ω. Load Impedance-4-16 . Distortion- 0.1% at 240 W at 1 kHz . Signal/Noise Ratio- 94 dB . Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 45 \mathrm{~V}$. Input Sensitivity- 500 mV . Size- $114 \times 100 \times 85 \mathrm{~mm}$.
Price $232 \cdot 17+£ 2 \cdot 75$ VAT. P. \& P. free
POWER SUPPLIEs: Psuss-suitable for two HY30s $\varepsilon 5 \cdot 22+65 p$ VAT. P. \& P. free. Psuso-suitable for two HY50s $85 \cdot 82+$ 85ρ VAT. P. \& P. free. PsU70-suitable for two HY120s $513 \cdot 75+1 \cdot 10$ VAT. P. \& P. free. PgUe0-suitable for one HY200 $\Sigma 12 \cdot 85+\varepsilon 1 \cdot 01$ VAT. P. \& P. free. PsU180-suitable for two HY200s or one HY400 $£ 23 \cdot 10+\varepsilon 1 \cdot 85 \mathrm{VAT}$. P. \& P. free.
I.L.P. Electronics Ltd., Crossland House, Nackington, Canterbury, Kent CTA 7AD

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

Account number .

Please supply
Total Purchase price
I Enclose: Cheque \square Postal Orders \square Money Order \square Please debit my Access account \square Barclaycard account \square

Name and Address
> I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD

Tel (0227) 63218

: 1 H High quality audio

The 450 Tuner provides instant programme selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls.
Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T461.
The S450 is supplied fully bullt, tested and aligned. The unit is easily installed using the simple instructions supplied.

- Max Heat Sink temp. 90C. Frequency response 20 Hz . Distortion better than 0.1 at $1 \mathbf{k H z}$. Supply voltage 15 . 50 v . Thermal Feedback. Latest Design Improvements. Load-3,4,5, or $160 h \mathrm{~ms}$. 曾Signal to noise ratio 80 db . Overall size 63 mm .13 mm .
Especially designed to a strict specification. Only the finest components have been used and the latest solidstate circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (r.m.s.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size: $63 \mathrm{~mm}, 105 \mathrm{~mm}, 30 \mathrm{~mm}$. Incorporating short circuit protection.
INPUT VOLTAGE OUTPUT VOLTAGE OUTPUT CURRENT OVERLEAD CURRENT DIMENSIONS

33-40V. A.C.
33V. D.C. Nominal
10mA-1-5 amps
1.7 amps approx: $\$ 3.7$ $105 \mathrm{~mm} \times 63 \mathrm{~mm} \times 30 \mathrm{~mm}$
TRANSFORMER BMT80 $55 \cdot 40+86 p$ postage

STEREO FM TUNER

Fitted with Phase Lock-loop

* FET Input Stage * VARI-CAP diode tuning * Switched AFC * Multi turn pre-sets * LED Stereo Indicator

Typical Specification:
Sensitivity 3μ volts
Stereo separation 30db
Supply required 20-30v at 90 Ma max.

STEREO PRE-AMPLIFIER

equipment mono and other modules for Stereo

ONLY

Enjoy the quality of a magnetic carridge with your existing ceramic equipment using the new BI-Pak M.P.A. 30 which is a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. Used in conjunction are 4 low noise high gain silicon transistors. It is prohigh gain silicon transistors. It is pro-
vided with a standard DIN input socket for ease of connection. Supplied with 50 full, easy-to-follow instructions.

$5 \begin{aligned} & 40 \\ & +8 \% \vee A T\end{aligned}$

A High Fidelity Power Amplifier with a maxi mum Power Output of 35 watt R.M.S., which has a maximum operating voltage of 60 v . A MUST for all HI-FI users.

Maximum supply voltage
Power output for 2\% THD Harmonic distortion Load impedance Input impedance
Frequency response +3 dB
Sensitivity for 25 watts O/P
Max. Heat sink temperature Dimensions
Mounting
Fuse requirements

$15-60 \mathrm{v}$

 35 watts R.M.S. 0.1% $0 \cdot 1 \%$3-8-16 ohm
50 K ohm $20 \mathrm{~Hz}-40 \mathrm{KHz}$
280 mV R.M.S. $90^{\circ} \mathrm{C}$
$102 \mathrm{~mm} \times 64 \mathrm{~mm} \times 15 \mathrm{~mm}$ $2,4 B A$ fixing holes in heat sink $2,4 \mathrm{BA}$
1.5 A

$$
P-0-M-E=R
$$

AL250

POWER AMP
Specially designed for use in-
Disco Units, P.A. Systems, high power $\mathrm{Hi}-\mathrm{Fi}$, Sound reinforcement systems SPECIFICATION:

Output Power: 125 watt RMS Continuous
Operating voltage: 50-80
Loads: 4-16 ohms
Frequency response: 25 Hz 20 kHz Measured at 100 watts
Sensitivity for 100 watts output at $1 \mathrm{kHz}: 450 \mathrm{mV}$
Input impedance: 33 K ohms

Total harmonic distortion 50 watts into 4 ohms: 0.1% 50 watts into 8 ohms: 0.06% S / N ratio: better than 80 dBs Damping factor, 8 ohms: 65 Semiconductor complement: 13 transistors 5 diodes
Overall size: Heatsink width 190 mm , length 205 mm , height 40 mm

The AL20 and AL30 units are similar in their appearance and In thelr general speclifcation. However, careful selection of the plasite
power devices has resulted in a range of power deviese has resuled in a range of
output powers from 510 watts R.M.S. The verisatility of their design makes them ideal for use in record players, taps
recorders, stereo amplifiers and cassetts and recorders, stereo ampline home. Harmonic cartride tape player wathe $\mathrm{f}=0.25 \%$ Load mpedance 8-16 ohm
Frequincy response $\pm 3 d 8 \mathrm{Po}=2$ watts $50 \mathrm{~Hz}-25 \mathrm{KHz}$. Sens/tiv/ly for Rated O/P-Vs $=25 \mathrm{v}$. $R L=80$ ohm
$f=1 \mathrm{KHz} 75 \mathrm{mV}$. RMS. $5 / \mathrm{ze}: 75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}$.

DEPT, P.E. 11 P.O. B0X 6 WARE HERTS COMPONENT SHOP: I8 BALDOCK STREET, WARE

W:W for elactronitu desinn anvinaers!

FIX-PRINT for printed circuits

Invaluable for holding P.C.B.s and other panels when inserting and soldering components. Can be adjusted to suit work up to 280 mm , rotated to gain access to reverse side and locks in any position. All metal. Price \&10 inc. VAT. P. \& P. £1. Write or phone for full details.

S2 Dill Stand

Robust, all metal with ample throat dimensions. Adjustable height cantilever with lever actuated feed. Spring return. Will accept both P1 and P2 drills.
Price $£ 18 \cdot 50$ inc. VAT. P. \& P. £1-06.

P2 Drill $£ 16 \cdot 50$ inc. VAT.

S1
Drill Stand
with P1 Drill

Constructed to take the popular P1 drill and ensure a high degree of accuracy in all types of electrical precision work. Price $55 \cdot 13$ inc. VAT.
P. \& P. 38p.

P1 Drill $£ 9 \cdot 67$ inc. VAT.
P. \& P. 38p.

PRECISION PETITE LTD
HPa HIGH STREET TEDDINGTQN MIDDLESEX TWH1 8HG TEL: 01-9770878

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to trained peopie. You study in your own home, in your own time and al your own pace and if you are studying for an examination ICS guarantee coaching until you are successful
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

To: International Correspondence Schools

1-1 Dept. 772N Intertext House, London SW8 4UJ or telephone 6229911

Subject of Interest
Name
Address
Tel
Age

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE

DOLOMITI

$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c.

A NEW HIGH SENSI TIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: D.C. ranges. $\pm 2.0 \%, A . C . \& \cap$ ranges $\pm 2.5 \%$
39 ranges: d.c. $\mathrm{V}, 0.150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$ d.c. $1,0.50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A} ;$ a.c. V, $5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$. $150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$ a c. $1,5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A} ; \mathrm{dB}-10$ to +65 in ${ }_{50}^{6}$ ranges: $\cap 0.05 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega, \mathrm{pF} 50 \mathrm{kpF}$. 500 kpF .

Automatic overload protection and high current range fusing
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.I. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batteries. Supplied complete with carrying case, fused leads, handbook and full 12-month guarantee Optional 30 kV d.c. probe available.

Meter £45-90 incl. VAT (£1 P. \& P.)
30kV Probe $£ 12.85 \mathrm{incl}$. VAT
For details of this and the many other exciting instruments in the Chinaglia range, including multi-meters, component measuring, automotive and electronic instruments please write or telephone.

19 MULBERRY WALK. LONDON SW3 6DZ TEL: 01-352 1897

WINDOW GAZING

ANY student of electronics knows what a difficult task it is keeping up with the ever expanding range of monolithic circuit devices. Manufaciurers' literature, ranging from single data sheets and application notes to impressive tomes of hundreds of pages, reveals a staggering variety of purposedesigned chips covering a multitude of applications including newly opened-up fields. It is all mouth-watering. But all too frequently, we can only gaze at the goods and not touch.

Some lsi devices hit the headlines, become household names, and feature almost continuously in constructional projects. But there is a far greater number of lesser-known i.c.s which have not been so well exposed in the constructor area, although they may be commonplace in the industrial scene.

Included amongst the latter will be a host of intriguing devices which have been designed for equipment manufacturers' specific requirements, and have no immediate obvious application outside this intended area. Yet unsuspected possibilities do often come to light when these chips are subjected to scrutiny by independent and unbiased eyes. Give the amateur enthusiast a chance, and it is almost a certainty that he will come up with a new idea for exploiting some such device beyond its originally intended purpose.

In terms of devices produced, it is clear that we in the constructor area have seen only the tip of the iceberg.

It is more by luck than plan when custom designed i.c.s find their way into amateur hands. More is the pity; not only for the constructor himself, but also the manufacturer and supplier. These commercial interests stand to gain by a fuller exposure of these devices.

Microcircuit manufacturers ought to consider the advantages of making their products more widely known and accessible to the amateur market. By doing so, they will be doing themselves a favour. They will be interfacing with a large body of uncommitted technical free thinkers. Any worthwhile achievements arising from these non-professional endeavours must help increase the value, repute, and sales of specific devices.

This topic was briefly touched on here last month. But it is a matter of fundamental importance and deserves underlining from time to time. And this month is particularly opportune, since we have included an extra 8-page supplement entitled I.C. Specials.

A choice selection

Some examples of the kind of devices we have in mind are mentioned in this supplement. It has been possible to include only a.few, but these have been selected to cover a variety of applications and interests.

Musical interests are well catered for and this reflects the i.c. industry's current large commitment to this expanding area of home entertainment. What's good for
the commercial organ maker is equally good for the constructor. Electronic delay lines represent an important technical development, and have endless possibilities apart from "flanging", so this particular "bucket brigade" chip does not have to be confined to the musical domain.
Temperature controllers and fluid detectors bring us into the strictly workaday area of instrumentation. Timing requirements ranging from 5 milliseconds to over 3 months are provided for by one single chip-a device which should satisfy an awful lot of requirements. And of course TV games. Our selection would not be complete without some representation from this growing area.

There's plenty of food for thought in our supplement. It provides just a small sampling of notable devices currently available but will trigger off sufficient ideas to keep our imaginative readers busy for quite awhile.

PRICE INCREASE

As readers will have discovered, the cover price of Practical Electronics has been increased to 45 p as from this issue. News of this decision came too late for mention in last month's issue. We very much regret the need for this increase, which is due to factors beyond our control.
F. E. BENNETT,

Editor.

EDTORIA

Editor

F.E.BENNETT
G.C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
M. ABBOTT Technical Sub Editor J.D. POUNTNEY Art Editor
D.J. GOODING Technical Illustrator
R.J.GOODMAN Technical Illustrator
K.A. WOODRUFF General Artist

[^2]
ADVERK:M NENTS

Advertisement Manager

D.W.B.TILLEARD

Phone: 01-634 4504
P.J. MEW Representative

Phone: 01-634 4181
C.R.BROWN Classified Manager

Phone: 01-261 5762
MAKE - UP and COPY DEPT.
Phone: 01-634 4372

Advertising Offices :

Fleetway House,
Farringdon Street, London EC4A 4AD
Phone: Advert/sements 01-634 4504
Telex: 915748 MAGDIV-G

Back Numbers and Binders

Copies of our June 1977 and subsequent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SEI OPF, at 65p each including Inland/Overseas P \& p.
Binders for PE are available from the same address at $£ 2.85$ each to UK addresses, $£ 2.85$ overseas including postage and packing, and VAT where appropriate. Orders should state the year and volume required.
Cheques and postal orders should be made payable to IPC Magazines Limited.

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

Can be added to Minisonic for sequencing melodies or rhythm pattern

THE sequencer circuit to be described will enable a voltage controlled synthesiser to automatically play a pre-programmed tune, consisting of up to 32 pitches, in a sequence up to 128 notes long. All programs are keyboard initiated.

BLOCK DIAGRAM

The heart of the sequencer is an nmos ram (random access memory) capable of storing 128 eight bit words of data. The circuit operation can best be understood by referring to the block diagram of Fig. 1. Here the ram is driven from a clocked binary counter. The binary number at the output of this defines the position in the memory that is present at the data terminals. The sequence is written into the memory via a modified 49 note keyboard which converts the 32 possible pitches into five bit words.

The 128 note sequence is built up by stepping the counter each time a new note is written in. When a sequence is complete, it is played by clocking the counter at a steady rate by means of the clock oscillator. The five bit words are then read out from the memory into a digital to analogue converter ($\mathrm{D}-\mathrm{A}$) which produces a 32 level output. This is used to drive the v.c.o. in the synthesiser.

SEQUENCE LENGTH

Although the maximum sequence length available is 128 notes, it is often desirable to use a shorter sequence. For example, if the tune to be written consists of 32 bars with three beats to the bar, it is obvious that the total number of beats would be only 96. To cope with this type of situation the circuit was designed so that the counter could be reset at any desired point in a sequence, thus producing tunes of any length from 1-128 beats.

Only five of the eight bits of memory are used to produce a control voltage for the v.c.o., the other three bits are available to perform other functions. One of these spare bits is used to provide the variable reset function, and the other two bits are used to generate trigger pulses for envelope shapers, thus adding rhythm to the generated melody.

CLOCK OSCILLATOR AND COUNTER

The complete circuit is shown in Fig. 2. Here clock pulses are produced by a simple transistor astable multivibrator. The frequency may be varied over a wide range by adjusting VR1. Clock pulses are fed to the binary counter via $S 1$, the stop/run switch.

Fig. 1. Block diagram of sequencer

Fig. 2. Complete circuit of sequencer

Fig. 3. IC3 pin-outs and internal block diagram

ICl and 2 are cascaded to form a seven bit binary counter which drives the address inputs of the ram. The stop/run switch disconnects the first stage of the counter and instead provides the counter with pulses from the keyboard. The reset inputs of ICl and 2 are connected via S4 and S2 to one of the data lines of the ram, the

COMPONENTS . . .

Resistors	
R1 $1.5 \mathrm{k} \Omega$	R20 18k Ω
R2 $22 k \Omega$	R21 $27 \mathrm{k} \Omega$
R3 $22 k \Omega$	R22 120Ω
R4 1.5 k ,	R23 $6.8 \mathrm{k} \Omega$ (see text)
R5-19 1kS (14 off)	
All $\frac{1}{4}$ W 5\% carbon	
Capacitors	
C1 10μ F elect. 25 V	C4 $10 \mu \mathrm{~F}$ elect. 25 V
C2 $0.01 \mu \mathrm{~F}$	C5 $0.22 \mu \mathrm{~F}$
C3 $16 \mu \mathrm{~F}$ elect. 25 V	C6, $70.01 \mu \mathrm{~F}$
Integrated Circuits	
IC1 7493	IC5 7402
IC2 7493	IC6 ZN425E
IC3 MCM6810L	IC7 741
IC4 74121	
Transistors and Diodes TR1-3 BC184 or similar D1-90 Any general purpose type	
Relay	
RLA D.i.I	single pole
Variable Resistors	
VR1 $2 \mathrm{M} \Omega$ pot. (lin.)	
VR2 $10 \mathrm{k} \Omega \mathrm{min}$. preset	
VR3 $10 \mathrm{k} \Omega \mathrm{min}$. preset	
Switches	
S1 s.p.c.o. miniature toggle	
S2 d.p.c.o. miniature toggle	
S3 single pole miniature toggle	
S4 miniature push to break switch	
S5 miniature push to make switch	
S6 miniature push to make switch	
S7 miniature push to make switch	
S8 miniature push to make switch	
Miscellaneous	
PCB board, front panel material	
Veroboard for diode mounting	

automatic reset pulse is written into this line by selecting "Reset Write" with S2 and depressing S5.

Returning S2 to the "Reset Read" position reconnects the data line to the counter resets. Thus, when the end of a sequence is reached, the reset data line goes high and the counters reset to zero.

RANDOM ACCESS MEMORY

Integrated circuit IC3 is a RAM, type MCM6810 designed for use with the M6800 microprocessor system. The block diagram and pin outs of the device are shown in Fig. 3. Pins 4-9 are data input/output terminals, the state of pin 16 deciding whether the device is in the read or write mode.

Pins 17-23 are the memory address inputs. The binary code fed to these pins determines which of the 128 memory cells is connected to the data terminals. Thus, when the clock and counter are running, each memory cell in turn is presented at the data terminals of the chip.

KEYBOARD BINARY CODER

In the prototype synthesiser a four octave keyboard is used to write the required sequence of notes into the memory. This accomplished by diode keying circuitry of Fig. 4. It will be seen from this that each contact connects the five data lines to the five volt rail via a combination of diodes.

These are arranged so that a binary number corresponding to the number of the key pressed appears on the data lines. The five data lines, plus an extra line for key one are also routed through diodes to a monostable IC4 which generates a read/write pulse at pin 16 of the RAM, so that whenever a key is pressed, the binary code appearing on the data lines is written into the memory.

IC4 also produces a clock pulse which drives the counter.
Therefore operation of any key causes three things to happen:

1. A binary number corresponding to the number of the key will appear on the data lines.
2. A write pulse will occur at pin 16 of IC3.
3. The trailing edge of the pulse from IC4 will clock the counter and hence step the memory on one position.

ENVELOPE TRIGGER OUTPUTS

There are eight data lines in the ram. As already mentioned, five of these are used to produce pitch information, and one to provide the automatic reset facility. The two spare data lines are used in the prototype to store trigger pulses for the synthesiser's envelope shapers.

Fig. 4. Diode keying from keyboard to main sequencer circuit

Fig. 5. Trigger inverter

Fig. 6. Alternative output circuitry

Push button switches S7 and S8 are used to write in the trigger pulses when required. When the circuit is in the read mode, the outputs from pins 3 and 2 of IC3 are gated in IC5 with clock pulses. This ensures that whenever two consecutive pulses are written, two separate pulses appear at the output. Without the gating, only one long pulse would be produced.

It should be noted that the trigger pulses produced are positive-going, and are suitable for driving either of the ADSR envelope shaper circuits that have appeared recently in this magazine. The es/VCA circuits of the Minisonic however, require negative-going pulses. These can be produced, if necessary, by the simple circuitry of Fig. 5 (three of these are needed).

The keyboard is fitted with two sets of contacts, one being used to drive the coding diodes, the other to drive a resistor chain for normal playing. For normal playing, a separate envelope trigger output is provided from the point which drives IC4. If the keyboard isolating relay (Minisonic Mk. 2) is being used it can be driven as shown in the main circuit diagram. (If not TR3 and associated components may be omitted.)

D-A CONVERTER

Early versions of the prototype utilised a number of different $\mathrm{D}-\mathrm{A}$ converters, all of them using discrete components. All the circuits tried suffered from one problem or another, and all had the disadvantage of needing close tolerance resistors to function accurately. The integrated circuit D-A finally decided upon solved all these problems, although at somewhat increased cost.

The D-A chip feeds an inverting op-amp with gain and offset controls. The voltage at the output of the op-amp is of the correct sense for the Minisonic v.c.o.s, i.e. it is negative going for increasing pitch. For oscillators requiring positive-going control voltages the alternative output circuitry of Fig. 6 can be used.

NEXT MONTH: Construction and programming detail.

THis battery powered unit displays a subject's reaction time on a "non related" scale from one to nine, and although pocket sized, it is simple to construct, costing in the region of five pounds.

It should be made clear that the device is not intended to indicate reaction delay on a true scale of time, such as in milliseconds, because generally speaking the usefulness of a simple reaction timer lies not in measuring reactions precisely in fractions of a second, but in comparing them.

If the object of the exercise is to sharpen one's personal reaction time, or to compare yours with another's, then it is of little consequence if the readout is, for example, 170 ms , since this may mean little to a subject in any case!

Digital hiflion

This novel and robust unit was designed to fill the slot requiring simple indication, and not expensive precision timing. Digital operation with numerical display was chosen however, because this eliminates argument over the results. It also precludes the possibility of a declining reading due to a discharging capacitor while the argument takes place, something which can happen with some analogue types.
The scale factor can be set to measure only those reaction times likely to be attained, and when the one to nine range of this device has been expanded to the desired time limit, it will be found to have adequate resolution, leaving no scale redundancy. This freedom to adjust the "difficulty" aspect should be found useful.

USING THE TIMER

A reaction timer must provide the user with a subtle, but clear signal to which he can react. In this circuit, it takes the form of the seven segment display decimal point, which lights up after a semi-random time delay. After switching on, the display either remains blank, or shows a spurious number. The user then pushes the button on the front panel, and waits. Any number on the display will then be cleared.
When the signal l.e.d. illuminates, he must release the button as quickly as possible. Providing he was not so slow as to be "unclassified", his response time will remain displayed, and the lower the figure, the better. Should he attempt to cheat, or if he misses the signal altogether, the display merely remains blank. For another try, the button is pushed again, whereupon the display resets and the signal is awaited once more.

COMPONENTS

Resistors	
R1, R2	$1 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W} 5 \%$
R3	$100 \mathrm{k} \Omega \frac{1}{4} W 5 \%$
R4	$47 \Omega \frac{1}{4} W 5 \%$
R5-R11	220Ω (7 off) $\frac{1}{4} W 5 \%$

Potentlometers
VR1 $220 \Omega 0.1 \mathrm{~W}$ vert min preset
VR2 $\quad 1 \mathrm{k} \Omega 0.1 \mathrm{~W}$ vert min preset
Capacitors
C1-C3 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect (3 off)
C4 $\quad 0.1 \mu \mathrm{~F}$
Semiconductors

IC1	7413	TR1	BC108
IC2	7400	D1	1N4148
IC3	7493	D2	1N4001
IC4	7447	X1	DL707

Switches

S1 Min slide switch ($\frac{1}{2} \mathrm{~A}$)
S2 Push-to-make push button

Miscellaneous

Aluminium box $100 \times 70 \times 38 \mathrm{~mm}$ (type AB9, available Maplin)
Printed circuit board
Offcut of plain matrix board
Píece of copper laminate board
Battery holder for four HP7 cells, and connector stud
Socket, d.i.I. 14 pin
Four stand-off pillars (approx 23 mm)

THE CIRCUIT

The complete circuit diagram is shown in Fig. 1, and may be divided into three functional sections: (a) The Delay Pulse Generator, consisting of ICla and its associated components. This drives the signal l.e.d. and initiates a timing cycle via the latch comprising IC2a and IC2b. (b) The Clock/Counter section formed by IC1b and IC3, which performs the actual timing operation, and (c), the Display Decoder/Driver (IC4), along with display X1.

Consider the circuit with S2 held closed. To start with, the 4 bit binary counter IC3 is held in reset because pins 2 and 3 are held high by the set/reset latch. Periodically, at about once every 5 seconds, the Schmitt Pulse Generator produces a brief positive going pulse. Transistor TRI is necessary in this circuit because the
low, pulled down by R1. This disables the clock oscillator, clamping the output high, and in turn arresting counter IC3. The BCD information on the outputs of IC3, is decoded continuously by IC4, to be displayed on X 1 . Therefore, when IC3 stops counting, a number corresponding to the reaction time is held on display until S2 is pushed for another try.

The zero blanking facility of the 7447 has been used to conserve battery power, and to eliminate distraction whilst awaiting the signal.

Gate IC2d is added, in order to inhibit pulses from the Delay Pulse Generator to the latch, when S2 is open. Without this, the latch could, under certain circumstances, be set with the push button up, which would cause a count the moment it was pressed. But as it stands, it is possible for the generator to be at any point in its

Fig. 1. Circuit diagram of the Digital Reaction Timer
minimum frequency that can be obtained from the simpler form of Schmitt oscillator, is too high for this application. Diode D1 modifies the mark space ratio of the output.

This periodical pulse is inverted by IC2d while pin. 12 is high, and is used to set the latch. The output on IC2 pin 3 then goes low. This event causes two things to happen. The signal light comes on immediately, and C3 commences discharge through VR2, and when the voltage across C3 is sufficiently low, counter IC3 is enabled, thus allowing it to be clocked by the other Schmitt oscillator comprising ICIb and VRI, etc. which runs at about 50 Hz .

If S 2 remains closed, IC3 will continue counting until it reaches 1010 (the binary equivalent of 10), when both inputs of IC2c will be satisfied, causing a low output. This will reset the latch again, forcing IC3 back to zero. With the arrival of the next pulse from the Delay Generator the whole cycle will be repeated.

If $\mathbf{S} 2$ is opened during one of these timing periods, however, the input on pin 9 of IC1b immediately goes
cycle at the instant of pressing S2. The signal can be expected at any time, ranging from almost immediately, up to about five seconds.

The circuit should be powered by four HP7 batteries. Diode D2 is necessary to drop the supply voltage to less than 5.5 volts, the maximum permissible for TTL. It will also protect the circuit from reverse polarity.

CONSTRUCTION

The prototype circuitry was housed neatly in an aluminium box, using a simple mounting method that avoids the use of nuts, bolts or screws, other than a pair of small self-tappers for securing the lid.

All the components are readily available types, the only proviso being that the capacitors, resistors, and presets are not too large physically. A recommended p.c.b. layout is shown in Fig. 2, employing a fair number of wire links on the component side of the board, so that the copper pattern is kept reasonably simple. The component layout is shown in Fig. 3.

(DICHITM REMOTIOMN THMER

Fig. 2. Printed circuit board (full size)

Fig. 3. Component layout and interwiring to off-board components

The left-hand blank p.c.b. plate is shown in detail above, and can be seen in position with the right-hand plate in the adjacent photograph

The method of fixing everything together can be seen in the incidental photographs. Two pieces of blank p.c.b. are cut out and stuck to the lid around the switch and display holes, with the copper side facing upwards. The display unit is mounted on a small piece of unclad perforated board (0.1 inch pitch), and a 14 -way i.c. holder is pushed on from behind to secure it. Loops of tinned copper wire can now be passed through the perforated board and soldered to the copper cladding. A piece of red tinted plastics film can be placed over the display before fastening it. The switch S1 can also be soldered to the cladding by means of its mounting lugs.

When assembling the p.c.b., it is quite in order to solder the i.c.s directly to the board, providing this is done with care. Nevertheless, a socket ought to be used for XI, as this allows it to be disconnected from the flying leads to the p.c.b. during wiring up. Flying leads also connect the p.c.b. to push button $\mathbf{S} 2$, the battery positive via S1, and battery negative.

FINAL ASSEMBLY

At this point, with all the connections made, the unit may be tested, and if all is well, the p.c.b. can be attached to the lid. First solder four pieces of stout wire perpendicularly to the lid, on the copper clad plates previously glued to same. Position them in a square configuration to match the mounting holes of the p.c.b. A stand-off pillar is then placed over each, and the p.c.b. is threaded over the protruding wires, onto the pillars, and soldered at each corner, The p.c.b. is mounted component side down; so the stand-off pillars must be long enough to keep the components clear of the display socket, yet not so long as to exceed the space within the box. If you have an expired ball point pen of the hexagonal plastics tube type, this could be cut to provide the spacers.

Finally, snip off any surplus wire from the p.c.b. and tape the bottom of the box to prevent shorts occurring. The battery holder should fit tightly into the recommended box, and require no other fastening, but precautions may be necessary to prevent the self-tap screw from biting into one of the cells when this lid is finally secured.

ADJUSTMENTS

There are only two of these; namely clock frequency, and commencement delay, controlled by VR1 and VR2 respectively. Both of these presets are accessible with the p.c.b. in place.

It is entirely up to the user as to how these are set, but the most useful setting is realised with a relatively high clock frequency, and the delay adjusted so that an average reaction time scores 5 or 6 . The higher the clock frequency, the higher the resolution

NEWS BRIEFS

System X

Contracts worth $£ 20$ million have bee placed by the Post Office with British manufacturers, as the next step in the System X project, the biggest development ever undertaken in British telecommunications.
It covers the design of trunk, tandem, and small! medium capacity local exchange equipment, based on microelectronic and software control technologies, and will carry the telephone system into the 21 st Century.

Already some 500 engineers are involved in System \mathbf{X}. a modular system which should lay the foundations for an expanding range of future customer facilities, and is expected to cost more than $£ 100$ million.

CES Ho Longer

OSeptember 1st, 1977, Combined Electronic Services Ltd, the service company for Philips and Pye household products, changed its name to "Philips Service".

Now part of the recently announced Philips Industries: new Central Merchandising Management Group, Philips Service (claimed to be the largest manufacturers service organisation of its kind in the UK), will continue to be responsible for the total provision of after sales service support for the Philips and Pye Consumer Division.

A new computerised order handling system was intro-duced, which is a customisation of a package already used in Europe by Philips Services. The basic philosophy is to provide the best possible service support on a local basis, by the creation of 25 Service Centres.

[回
 A Volume of Practical Know-how

can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At $£ 2.85$ inc. VAT and postage they are obtainable from:

Post Sales Department, IPC Magazines Ltd. Lavington House, 25 Lavington Street London SE1 OPF

I enclose P.O./cheque value.........for.....binders at $\mathbf{£ 2 . 8 5}$ each for Practical Electronics Vol. No's....... Name
Address.

Date.

FRANK W. HYDE

SPACE SUITS

The advent of the space shuttle brings many changes in space methods and activity. One of the most important of these changes is that of the space suit. The Apollo suits had certain disadvantages which became apparent in use and were costly indeed since each suit was virtually tailored to fit and made one mission only. The same applied to the backpacks and life support systems. The new suits will be less than half the cost.

Contrasting with the Apollo suits, the new generation of space suits will have a life of fifteen years. Many missions will be flown during that time. The new suits have a rather different arrangement from the moon suits. For example, the moon suits were pressurised and designed for the $1 / 6$ gravity of the moon. With the extra vehicular activity (EVA) of Spacelab and similar missions, zero gravity will be the norm. Also a quick turn round is necessary. The Apollo suits required about 90 minutes to don and check but the new ones will take only 15 minutes. The actual donning time is about 5 minutes.

CONSTRUCTION

The construction of the new suits is such that there are two parts. The torso and backpack are integral and hard. This allows life support systems to be solid and internal as against flexible and external in the moon suits. The lower half is soft and is "stepped into". In dressing the lower half is donned first and then the arms head and torso are "inserted" in the top half which is in a support on the wall. The two halves "of the suit are closed by a ring.

Added to the ease of dressing is the extra mobility which is obtained using joints of constant volume in place of the pulley joints in the Apollo suit. There is also another important advantage in that whereas the Apollo suit worked against the effont of the astronaut the constant volume system enables free movement without great effort.
Another basic difference between the Apollo suit and the shuttle suit is the fact that Apollo had zippers which could leak whereas the shuttle ring closures are virtually leakproof. The pressure bladder used in Apollo is now replaced by a polyurethane bladder which has seams sealed by heat. The Apollo suit had latex bladders which were tape and glue sealed.

MONITORING

The new suit will be easier to monitor, as to status, than the old ones. A microprocessor/light emitting diode unit will tell the astronaut whether there is a problem with the suit systems and what to do about them. The Apollo suits had an electric warning system but no instruction readout to tell the astronaut what to do about it. The microprocessor, which is carried in the chest pack, is a great advantage in the new suit.

The joints in all the suit electronics are solderless. These necessary joints caused trouble in the Apollo suits. The arrangement of suit/backpack design places all controls where the astronaut can see them. The 12 character readout display replaces the Apollo "cuff card" systems where warnings from the suit had to be checked by reading procedure lists carried on the sleeve.

The new suits will not be allocated to individuals. Each astronaut will choose the one he or she likes. The suits will be in three basic sizes allowing for the accommodation of male or female participants. A different urine collection system will be required but the final details will await the choosing of female astronauts.

COOLING

The liquid cooling garment which is worn by the astronaut is fitted with ventilation tubes. Oxygen is fed in through the helmet and taken to the hands and feet then returned through the backpack for reuse after conditioning. The initial length of extra-vehicular activity for the missions can be up to 7 hours. Oxygen pressure will be 4.1 psi. Astronauts will have to pre-breathe oxygen at 4.1 psi for 3 hours before extra-vehicular activity to denitrogenate the blood to avoid "bends". As little work will be required to be done with their legs, as on Apollo moon mission,
there is less loading and metabolic activity.

Recharging of the systems will take only a few minutes. Battery recharging will only take an hour while replacement takes only a few minutes. Crew and specialists will wear suits for their activities but if it should be necessary to move other personnel to or from shuttle to installation this will be done in a sphere mancuvred by astronauts.

SPINNING SOLAR SAIL

Another propulsion system, for the mission to Halley's comet in 1986, is being studied by NASA. This is a rotating sail system. It consists of 12 sails each 4 miles long by 28 ft wide.

The sails would be unfurled by centrifugal force after deployment of the vehicle from the space shuttle. The pressure of the solar wind would spin the sails and gradually accelerate the craft to the rendezvous point. The time of spin is expected to be one revolution every three minutes.

This system is now favoured over the square sail version. It is competing with the ion motor. A decision is expected soon.

SPACE TELESCOPE

Lockheed-Missiles and Space have been chosen to build the new space telescope. The optics are to be supplied by Perkin-Elmer. Among these will be the 94 in diameter primary mirror. The space telescope is large being 43 ft long and 14 ft in diameter. The shuttle will launch it into Earth orbit in 1983.

JUPITER ORBITER PROBE

The house of representatives voted out the funds for the Jupiter orbiter probe mission. There has been a reversal of that decision now and the budget for 1978 has been restored. The orbiter Jupiter Probe is now ratified by the Senate Appropriations Sub-committee.

This is an important mission in view of a number of new facts regarding the largest planet in the solar system. The cost of the two spacecraft and ancillary requirements including launching is estimated at some 450 million dollars.

Orbiters will be launched by shuttle and will be the first payload to go into deep space. It will also be the first payload to be boosted by the upperstage. The probable date of launch will be January 1982 and the encounter with the planet will be late 1984.

An aeroshell will be released to descend into the Jovian atmosphere from where radio information will be received for the first time.

Kx goon

SIMPLE ELECTRONICS FOR MODELLERS

By I. R. Sinclair
Published by Argus Books Ltd.
110 pages, $140 \times 215 \mathrm{~mm}$. Price $£ 2.95$
|N times gone by, it would have seemed ridiculous to electronically control something like a model railway, using valves and relays as large as the locos themselves. But the birth of microcircuits has reversed this situation to create a new branch of interest, and this book is based on such techniques, covering current and voltage control, generating signals and delays, measurement, counting and logic circuits, motor speed control, power supplies and p.c.b.s.

In the book, which is intended as a "methods" source rather than an instructional manual, the author proposes that many of the skills required by the modeller, are similar to those required for modern electronics construction.

RADIO CONTROL FOR MODELS

By R. H. Warring

Published by Pitman Publishing Ltd.
213 pages, $194 \times 255 \mathrm{~mm}$. Price $£ 6.95$
Extensively revised, this second edition of Radio Control For Models is mainly about "proportional" control, and starts with some historical notes which prepare you for a chapter on basic radio theory; but it's not too technical! In fact, the aim of the book is to show that your can treat all the electronics as simple black boxes, and just concentrate on the modelling aspect of the hobby.

There are no constructional features, although diagrams and photos of R/C "bits and pieces" are included, along with explanations of their basic principles. Practical workshop hints are given, and it is in this chapter that a jolly photograph appears showing various types of miniature switches compared to a threepenny piece-for those who can remember them!

ELECTRONICS FAULT DIAGNOSIS

By I. R. Sinclair

Published by Argus Books Ltd.
108 pages, $138 \times 216 \mathrm{~mm}$. Price $\mathbf{£ 2 . 7 5}$

c.IRCUITS in this book are graded, starting with the most simple and working upwards. There is no particular tendency towards domestic equipment, since much of the servicing guidance given applies to industrial or communications type electronics. This book should be useful to students studying the C \& G 272 and 222 courses.

The chapters are: Power Supplies, Audio Frequency Amplifiers, Timing Circuits, Measuring Circuits, Oscillators, Trigger Circuits, Control and Interface Circuits, and Digital and Counting Circuits.
Each chapter comprises one or more circuit diagrams with corresponding sets of voltage readings, or oscillograms, for certain points. After taking in the circuit description, it is then up to you to deduce which set of readings is correct.

The answers are in the back of the book, along with an explanation of which component failures would have caused the other incorrect readings shown.

The effect on voltages of various types of measuring instrument is also covered, and in some tables your are expected to take such loadings into account when seeking the right answer. This book is not for the absolute beginner.

PQACTICAL

OUR DECEMBER ISSUE WILL BE ON SALE FRIDAY, NOVEMBER 11

FOR 74 FAMILY OF QUAD-GATE PACKAGES

THIS gate tester was designed to be cheap, and to be capable of testing a wide range of simple QUAD-GATE packages. The unit works by applying to each gate in the i.c. under test, every possible combination of inputs, and monitoring the outputs with l.e.d.s.

TEST SOCKETS

There are two basic pinout configurations used in the 7400 series of quad gate packages, and these are illustrated in Fig. 1, where the 7400 , and the 7401 are shown.

Two i.c. sockets are fitted in this tester, to accommodate each pin arrangement.

THE CIRCUIT

Referring to Fig. 2, the 555 timer (IC1) is wired as an astable multivibrator with a frequency of about 2 Hz . The output from this is fed to at 7470 flip-flop (IC2), which divides the signal by two. This, and the original oscillator signal are taken to every gate in the i.c. under test; each

Fig. 1. Pin configurations of the 7400 and 7401

COMPONENTS . . .

Resistors

$$
\begin{array}{ll}
\text { R1, R2 } & 10 k \Omega \frac{1}{4} W 5 \% \text { (2 off) } \\
\text { R3-R10 } & 390 \Omega \frac{1}{4} W 5 \% \text { (8 off) }
\end{array}
$$

Capacitors

C1 $47 \mu \mathrm{~F} 10 \mathrm{~V}$ elect

C2 $22 \mu \mathrm{~F}$ 10V elect

Semiconductors

D1-D8	0.2 in red l.e.d.
IC1	NE555 Timer
IC2	7470

Miscellaneous

Verobox type $65-2518 \mathrm{H}$
Veroboard 0.1 in
Red 4mm terminal (SK1)
Black 4 mm terminal (SK2)
14 pin d.i.l. sockets for test positions (2 off)

Fig. 2. Circuit diagram of the TTL tester. A capacitor of $0.01 \mu \mathrm{~F}$ connected from IC1 pin 5 to ground may be found necessary for reliable operation
signal going to each of the two inputs. These input waveforms are shown in Fig. 3, and the correct output for a 7400 is shown as an example.

The outputs, drive l.e.d.s. D1 to D8, causing them to illuminate when the signal generated by the gate under test is low, thus allowing open collector type gate to be tested with this system.

Testing a 7400 , it can be seen from Fig. 3 that the output l.e.d.s should be on for one quarter of the total waveform period. This, and the relationships for other quad gate packages, can be seen in Table 1.

Table 1. Output l.e.d. illumination times for correctly operating gates. Ten 74 series quad gate packages are shown

Package type	Test socket	l.e.d. duty cycle
7400	B	25%
7401	A	25%
7402	A	75%
7403	B	25%
7408	B	75%
7409	B	75%
7428	A	75%
7432	B	25%
7433	A	75%
7438	B	25%

Fig. 3. Test waveforms applied to each gate. The correct output for a 7400 is shown

Fig. 4. Stripboard layout of prototype

CONSTRUCTION

The basic circuit was assembled on a piece of stripboard (see Fig. 4), which was then mounted in a small polystyrene case, by the integral mounting pillars.

The lid of the case was cut to accommodate two 14 pin i.c. holders, and the eight l.e.d.s. Dimensions will depend upon the type of l.e.d.s preferred, and i.c. holders used, but the photographs will show the general layout involved.

The l.e.d.s can be fixed, either by adhesive, or using the proper bezels, and the i.c. holders will best be mounted
each on a small square of stripboard, to which they can be soldered. The plate so formed, can then be used to glue the holder to the lid.

Cut holes for the two 4 mm socket terminals (SK1 and SK2), and mount these. Next drill the main component board so that it can be mounted in the base of the box.
A harness of four wires should be formed, to link the main board to the i.c. socket boards. This will carry the two signal lines, and the two supply lines. Wire both the i.c. socket units for +5 V and 0 V , and next, the two signal

In the prototype, the i.c. sockets were soldered to pieces of Vero. board which were then glued to the lid. The sockets and l.e.d.s were linked directly using the 390Ω resistors

Power is applied via the 4 mm terminals, but using a larger box would allow room for operation from an internal battery. An on/ off switch could be mounted in , place of the terminals

lines to all the appropriate pin numbers detailed in Fig. 2. The +5 V line should also be wired common to all the l.e.d.s (check for correct polarity), and the other side of each l.e.d. wired to its respectịve i.c. socket pin, by means of a 390Ω resistor (R3-R10).

The l.e.d.s should be wired up so that they are adjacent to the outputs they represent. The lid was lettered using dry letter transfers sprayed with laquer, and it may be advantageous to put the related pin numbers against each 1.e.d.

Finally, do not forget to connect up the two 4 mm terminals for the supply input.

OPERATION

In use, the i.c. to be tested is inserted in the appropriate socket (use Table 1), power is applied, and the l.e.d.s will indicate the condition of the i.c.

A gate with a faulty output stage will cause the incorrect flashing of its associated l.e.d., and a gate with a damaged input stage will possibly cause all the l.e.d.s to flash incorrectly. The operator can learn to interpret the meaning of the various indications.

The prototype is powered by an external supply, but since current consumption is only about 30 mA average, battery operation is feasible.

marker PLACE

ltems mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

CONDUCTIVE PAINT

After five years of selling exclusively to industry, Industrial Science Ltd., are now introducing one of their most successful products-Elecolit 340 -into the consumer electronics market.

This is a pure, silver filled, electrically conductive acryllic paint. It exhibits excellent conductivity because of the pure silver and outstanding environmental protection due to its acryllic base and sets by solvent evaporation similar to most good lacquer systems forming a tough film with good adhesion to ceramics, glass, rubber, plastics and most plastics films.

Typical applications include r.f. shielding, printed circuit repair, use as a conductive ink, prototype circuit manufacture
and one of the most interesting and unusual applications of all which is to repair the rear window demister of a car by means of painting over the existing track which may have either broken or shorted out.

Although it is air drying, conductivity can be improved by heating.

The shelf life is a minimum of 1 year in a closed container, and the operating temperature is from $-60^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$.

It can be applied by painting, silk screening or roller, and if necessary it can also be thinned with a solvent to lower the viscosity.

Details of price and further information can be obtained from Industrial Science Ltd., Leader House, Dept. P.E., 117-120 Snargate Street, Dover, Kent.

The Elecolit 340 conductive paint from Industrial Science

ALARM CLOCK

A particularly elegant digital alarm clock, the Fairchild Timeband is available from Tempus.

Available in white or black, and taking up little more space on your bedside table than an old-fashioned mechanical alarm clock, the Timeband offers timekeeping and alarm accurate to the second.

The readout is on large sevensegment l.e.d. displays, showing hours and minutes or, at the touch of a button, last minute digit and seconds. Indicators are provided for AM/PM, Mains Failure, and Alarm On. The alarm should be loud enough to waken the heaviest sleeper, and includes a "doze" feature which can call you up to six times in an hour.

The Timeband costs $£ 14.95$, including VAT, post, packing and insurance, from Tempus, 19-21 Fitzroy Street, Cambridge, CB1 1EH.

Semiconductor UPDATITE FEATURING : TMM142C h.L.c.D. 0024 LIm194 R.W. Coles

FORGET ME NOT

The nice thing about old fashioned magnetic core stores was that, like the elephant, they never forgot. Fill them full of lovely binary data and then hit the mainsoff switch, and next week when you switched on again it would all be just as you left it (brings tears to my eyes!).

Problem was, of course, that their uncanny resemblance to the elephant extended also to their physical bulk and their rather slow response, and those little drawbacks soon got them the chop when fast, cheap semiconductor RAM chips emerged from the undergrowth.

With semiconductor RAM of course, if you hit the power-off-switch all you end up with is a garbage, a problem the data processing industry decided it would have to live with if it wanted the other goodies on offer.

Where loss of data was a problem, non volatility could be arranged by providing battery back-up supplies, or by transferring crucial data to permanent storage media such as magnetic tapes or discs, but this proved either expensive or a headache for the software designers. In recent years the CMOS RAM has emerged to make the battery back-up solution more viable, with a stand-by life measured in years now possible with quite small batteries, but CMOS RAMs are expensive, slower, and less dense than their NMOS cousins and so the problem of volatility is still not completely solved.

A new solution to this problem has recently been introduced by Toshiba in the form of their TMM142C 256×4 RAM chip which uses a double cell in each bit position, to provide the rapid access read/ write capability of standard RAM combined with the non-volatility of the MNOS electrically alterable ROM technology.

The MNOS (Metal Nitride Oxide Semiconductor) alone is certainly non-volatile but it can't be used in place of standard RAM because writing and erasing data is slow and requires high voltages. By combining MNOS devices with conventional RAM circuitry the best of both worlds can be achieved. With power up, normal fast read/write access is possible, but when a power fail condition is detected the RAM data is transferred to the MNOS devices where it will remain for very long periods. When power is restored the stored data is duplicated in the RAM array ready for instant use. The data also remains in the

MNOS latches and must be erased before re-use by means of a positive pulse applied to the MG input.

THE DRIVER

Liquid crystal displays are pretty, popular, offer extremely low power drain, and are, unfortunately, excrutiatingly difficult to drive.

Take a standard clock or voltmeter chip with multiplexed $B C D$ or seven segment outputs and any fool can interface it with the l.e.d., Minitron, or gas discharge display of his choice, but the thought of hooking it up to a $3 \frac{1}{2}$ digit liquid crystal panel makes brave amateurs buckle at the knees and even experienced designers cough nervously.

The l.c.d.s require an a.c. display drive supply of about 30 to 100 Hz , and they cannot be multiplexed, a combination completely alien to most likely display sources. To interface to a clock chip, for example, you would first have to demultiplex and latch each display digit, then wire these to the l.c.d. via decoders and exclusive OR gates, and finally provide an l.f. backplane drive source. A glance at the serried ranks of standard CMOS chips that you would need to hanig around your clock chip might well convince you that l.e.d.s are not so bad after all!

Well, you know what I was going to say next, didn't you. Yes, somebody has gone out and done it all for us again, a complete multiplexed BCD input, to decoded seven segment l.c.d. output display system on a single chip. Hughes Microelectronics are the people to blame, and the device in
question is the H.L.C.D. 0024 which is made using CMOS technology and lives in a 40 pin plastics package.

On its inputs, the H.L.C.D. 0024 talks directly to the $B C D$ and digit strobes produced by most clock and voltmeter chips, on its outputs, it speaks parallel seven segment a.c. drive liquid crystal. Two extra uncommitted drivers are available for use with plus/minus signs, decimal points or a.m. p.m. displays, and leading digit zero blanking is provided internally.

THE PERFECT COUPLE

I remember spending hours with an AVO transistor analyser and a few dozen OC29 germanium power transistors trying to get a matched pair for use in an audio amplifier output stage. Well, I'm not sure that it was much help in the end, but I enjoyed myself anyway, there is something rather satisfying.

As a close approach to the perfect matched pair, National now produce the LM194 "Supermatch pair" which consists of two monolithic npn silicon transistors in a TO5 metal can. The emitter-base voltage match is within 50 microvolts, the current gain match to within 1 per cent, and the offset drift is less than 0.1 micro volts per degree C which as far as I remember, is a hell of a lot better than I was able to do with my OC29s!

Match pairs such as the LM194 are useful where extremely high performance operational amplifiers or high accuracy analogue multipliers must be assembled.

Fig. 1. Low drift operational amplifier using the LM194

B. BAMBER ELECTRONICS

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

18V DC RELAY8, 4 pole change-over (double contacts) (will work from $14-24 \mathrm{~V} D C)$. Brand
New, boxed, good quality, made by AEl 40 p Now, boxed, good quafity, made by AEI 40p
each. each.
Slider Switches, 2 pole make and break (or can oe used as 1 pole change-over by linking the two centro pins), tor 50p.
Smart Min. Rectangular Push to Make Switches, black rectangular surround with white rectangular button, overall alze $12 \times 17 \mathrm{~mm}$, 3 for
50 p .
A NEW RANGE OF
INSTRUMENT CASES
Aluminlum Boxes with Lids.

AB10		$\times 4 \times 1$	60p
AB13	6	$\times 4 \times 2$	s0p
AB14	7	$\times 5 \times 2 \ddagger$	£1.00
A815		$\times 6 \times 3$	E1-30
AB16	10	$\times 7 \times 3$	£1.50
AB17	10	$\times 4+3$	£1-30
AB25	6	$\times 4 \times 3$	\$1.00

Vinyl Coated Inatrument Casea Light Blue to
smart flinish.
smart
WB2
WB2
WB3
W84
W85
W86
W87
WB853 tain 9 fully adjuces PROGRAMMERS. Con-micro-switches Needs slow-motion motor to drlve (not supplied.). Ideal for disco lights, sequence switch CALIBRATOA XIALS 1.50 each. CALIBRATOR XTA.
\times can, $\{1.00$ each.
MAINS TRANSFORMERS MAINS TRANSFORMERS. Type $60 / 2$, Mains
input $200-210-220-230-240-250 \mathrm{~V}$ a.c., output $0-20$ -$40-60 \mathrm{~V}$ at 2 A , in Metal and Plastic case approx $71 \times 48 \times 4$, fully fused (ideal for PSU) $£ 3 \cdot 00$ each.
 input, 15 V at 300 mA output, $\mathbf{~ 1} .50$ each MAINS TRANSFORMERS. Type $45 / 100,240,220$,
110.20 . OV Input. 45 V at 100 mA output, $£ 1.50$

RED LED: (Min. type) 5 for 70p.
VIDICON SCAN COILS (Transistor type, but no data) complete with vidicon base ef 50 each.
Brand New.

FULL RANGE OF BERNARDS/BABANI ELECTRONIC8 BOOKS IN STOCK. S.A.E. FOR LIST. NEW FOR THE VHF CONSTRUCTOR. A range of
tuned clrcuits on formers with slugs and screening cans. Frequencias quoted are approximate, and rangs can be greatly extended by using varying capacitors in paraliel.
Type S ($t \mid n$, square, dumpy sype).
rype.SA 20 to 30 MHz (when 33pt fitted in parallel). Type SB 35 to 50 MHz (with link winding).
Type SC 70 to 100 MHz (with link winding) Type SD 135 to 175 MHz (with link winding) Type M (Min. tin. square types).
Type MA 19 to 28 MHz (when 33 pF Type MA 19 to 28 MHz (when 330F fittod in parailel), Type MB 22 to 32 MHz (when 33 pF fitted in parallel)
Type MC 25 to 35 MHz (when 33 pF fitted In paraliel) Type MD 38 to 50 MHz (when 33pF fitted in parallet). Type ME 45 to 60 MHz (when 33 pF fitted in paraliel) Type MF 10010200 MHz (without slug) when 0 to 30 pF variable titted in paraliel. type) at 50p per pack of 5 .
PLASTIC PROJECT BOXES with screw on lids (In black ABS) with brass inserts. Type NB1 approx $3 \mathrm{in} . \times 2$ tin. $\times i \mathrm{iln}$. 40p each. Type NB2 approx. 3 iin. $\times 24 \mathrm{in} \times 1 \mathrm{tin}$. sop each.
Type NB3 approx. 4 in . $\times 34 \mathrm{in} . \times 1$ in. 60 p each.

MULLARO $85 A 2$ B5V STABILISÉR VALVES (Brand New) 70 p each or 2 for $\$ 1 \cdot 20$. TO3 transiator insulator sets, 10 for 500 BSX20 (VHF Osc/Mult). 3 for 50p. BC108 (metal can), 4 for 50 p . PBC108 (plastic BC 108), 5 for 50 p
BFY51 Transistors, BFY51 Transistors, 4 for 60 p.
BCY72 Transistors, 4 for 50 p
PNP audio type TOS Transistors, 12 for 25 p . BF152 (UHF $\mathrm{amp} / \mathrm{mixer}$), 3 for 50 p . 2 N 3819 Fot. 3 for 60 p , BC148 NPN SILICON, 4 for 50p. BC158 PNP SILICON, 4 for 50p. BaY31 Signsl Diodes, 10 for $35 p$
BA121 Varlcap Olodes, 4 for 50 p

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED
741 CG op ampa by RCA. 4 tor E 1.
PERSPEX TUNER PANELS (for FM Band 2 tuners) marked $88-108 \mathrm{MHz}$ and Channels $0-70$, appearance, size approx. 8 tin $\times 1$ in., 2 for 35p.
PLUGS AND SOCKETS
N-Type Plugs 50 ohm, 60 p each, 3 for $\$ 1.50$ PL259 Plugs (PTFE), brand new, packed with SO239 Sockets (PTF type). 50p each.
-
SOLDER SUCKERS (PIunger type). Standard Model, 55. Skirted Model $\mathbf{5 5}$. 50 . Spare Nozzles 80p each

WELLER SOLDERING IRONS
EXPERT. Bullt-in-spotlight lliuminates work Pistol grip with fingertip trigger. Hlgh efficiency EXPERT SOLDER GUN 81000 50.90
EXPERT SOLDER GUN KIT (spare bits, case etc.) $12 \cdot 90$.
Spare bits 35 p pair
NEW MARKSMAN RANGE OF SOLDERING RONS
S1150 15 W 240 V ع3. 80
S 125 D 25 W 240 V 53.80
S1400 $40 \mathrm{~W} 240 \mathrm{~V} 84 \cdot 20$
S125DK 25W 240 V + bits atc., KIT £4.90
SPECIAL 12 V verslon S125-12 25 W 12V 12 V . 80 . BENCH STAND with spring and sponge for Spare blts MT9 (for 15 W) 50 p, MT5 (for 25 W) 450 MT 10 (for 40 W) 50p. ALL PRICES + 8\% VAT.
TCPD TEMPERATURE CONTROLLED IRON ($£ 2.40$) . SPARE TIPS
Type CC single flat. Type K doubie flat tine tip Type P. very fine tip. 1 each + VAT (8p).
MOST SPARES AVAILABLE.

MULTICORE SOLDER
Size 5 Saybit 18 8.w.g. in alloy dispenser
$32 p+$ VAT (3p)
size CiSAV. Savbit 18 s.w.g.. 58p + VAT (4p).

14 DIL REED RELAYS, 5 to 12 V DC, 450 ohm coil. Designed to work directly from TL Logic, Single Pole Change over. Oontact ratinga $28 \mathrm{~V}+\mathrm{A}$ W. $\$ 1 \cdot 75$ each

ALARGERANGE OF CAPACITORS AVAILABLE AT BARGAIN PRICES, S.A.E. FOR LIST.
MIXED COMPONENT PACKS, containing esistors, capacitors, pots, etc. All new. Hundred
ALU-8OL ALUMINIUM SOLDEER (made by Multicore). Solders aluminium to itself or
copper, brass, steel, nickel or tinpiste, 16 s.w. with multicore flux, with instructions, Approx. 1 metre coll 40p pack. Large reel $\sum 2.75$.
VARICAP TUNERS Muilard type ELC1043/05 Brand New, $84 \cdot 40+12 i \%$ VAT. BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 N working. Seatronic Manufacture. Approx. 100
$\$ 1.50$ per pack $+12+\%$ VAT.
OSMOR REEO RELAY COILS (for read relays ip to In die., not supplied) $12 \mathrm{~V}, 500$ onm coil, 2 for 50 p .

We now stock Spiraiux Tools for the eiectronic Onthusiast. Screwdrivers, Nut spanners, BA and Metric sizes, pop rivet guns, etc. S.A.E. for list.
TWIN I.F. CANs, approx. $1 \mathrm{in} . \times \mathrm{in} . \times 1 \mathrm{in}$. high, around $3.5-5 \mathrm{MHz}, 2$ separate transformers in 1 can. Internally screened, 5 for $50 \mathrm{p}+12 \% \%$ VaT.
Dubifier Electrolytics, $50 \mathrm{\mu F}, 450 \mathrm{~V} .2$ 7or 50 p . Dublifer Electrolytics, $100 \mu \mathrm{~F}, 275 \mathrm{~V}, 2$ for 50 p . Plessey Electrolytics, $470 \mathrm{uF}, 63 \mathrm{~V}, 3$ for 50 p . TCC Electrolytics, $1000 \mu \mathrm{~F}, 30 \mathrm{~V}, 3$ for 60 p . Dubilier Electrolytics, $5000 \mu \mathrm{~F}, 35 \mathrm{~V}, 50 \mathrm{p}$ each. Dubiller Electrolytics, $5000 \mu \mathrm{~F}, 50 \mathrm{~V}, 60 \mathrm{p}$ each. terminals, with mounting cllips, sop grach, screw PLEASE ADD 124% VAT TO ALL CAPACITORS.
TV PLUGS AND SOCKETS
TV Plugs (metal type), 4 for 50 p .
TV Sockets (meta type), 4 for 50 p .
TV Line Connectors (back-to-back sockets), 4 for
50p.

PHILIPS

The top sellers for home assembly in Europe - now available in the U.K.
Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to
S.S.T. Distributors (Electronic Components) Ltd., West Road, Tottenham, London N17 ORN

THE firm for speakers!

SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

```
ACT AUDAX BAKER
BOWERS & WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC - FANE GAUSS GOODMANS HELME I.M.F ISOPHON JR JORDON WATTS KEF LEAK LOWTHER McKENZIE MONITOR AUDIO PEERLESS - RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE
```

WILMSLOW AUDIO (Dept. P.E. 8) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount Hi-Fi, etc. at 5 Swan Street and 10 Swan Street
Tel.: Wilmslow 29599 for Speakers
Tel. Wilmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}_{i}$

DIGITAL INSTRUMENTS

The digital instrument market is becoming even more competitive. Never has so much been offered by so many companies, and prices are still tumbling. For any price range there is better value in specifications and facilities and you can now get a professional quality instrument for $£ 100$. Even that troublesome measurement of true r.m.s. can be yours for $\$ 150$.

The dilemma facing the manufacturers is whether to cut prices to the bone or hold them and build in more performance for the money. Those taking the middle course are giving their instruments an enhanced performance with a modest price cut.

In the scramble to present instruments in the best possible light there are some big claims being made. The thing to remember is that even with the latest LSI techniques which cut instrument assembly costs, long term accuracy still costs money. If you go for price alone, don't expect too much. And prices, as advertised, can be misleading. One instrument, for example, looks world-beating value with a boldly displayed price tag of under $£ 50$. But with carrying case and accessories, plus value-added tax, you can end up paying over $£ 60$.

The new trend is towards liquid crystal displays and smaller and smarter cases. For sheer smaliness there is one digital multimeter on the market which measures $48 \mathrm{~mm} \times 68.5 \mathrm{~mm} \times 99 \mathrm{~mm}$. It has a 7.5 mm l.e.d. display described as "big".

Another model has its rear moulded to conform to the wrist and back of the hand so it can be strapped on like a wrist watch. The idea is that you can work with both hands probing a circuit and right there in front of you on your wrist is the voltage or current or resistance read-out, this one with l.c.d. Another variation on the same
theme is for the whole of the multimeter to be built into the test probe.

In the UK it is estimated that over 60 per cent of low cost and general purpose digital instruments are now sold through instrument distributors as off-the-shelf items. And when you see that a digital panel meter can be bought in one-off quantities for as little as £25 you can understand the reason why.

DISPLAYS

Electronic displays have become an industry within an industry with their own specialised exhibition and conference in London extending over three days. The displays sector of the electronics market is currently expanding at 25 per cent per year.
For sheer volume the calculator, clock and watch makers are the leading customers consuming billions of digits per year. The next huge market breakthrough, somewhat delayed but beginning to materialise, is the automotive market world-wide. The oldest form of electronic display of all, the cathode ray tube, has been given a new lease of life by the enormous growth of computer graphics and visual display units.

The problem of l.c.d.s being rather drab compared with l.e.d.s looks like being solved by a fluorescence acti-vated-I.c.d. developed by the West German Institute of Applied Solid State Physics. The new technique is said to give l.c.d.s comparable brilliance to l.e.d.s and a bonus is that a choice of colours in red, green or orange will be available. The product will be massproduced by Siemens next year.

LOBBIES

Pressure groups, lobbies, call them what you will, multiply like bacteria. Do they do any good or do they neutralise themselves? I note that the antiFar East. electronics lobby is now counterbalanced by the International Consumer Electronics Association which represents importers and distributors of electronic goods from overseas including the powerful Japanese companies. ICEA members fear for the safety of their incomes if imports are restricted.

In all the sometimes secret, sometimes public wrangling, the poor old consumer often gets forgotten. The one irrefutable argument is that if the Japanese or any other nation can produce a better product at a cheaper price surely the man-in-the-street should be given the choice of buying it. Meanwhile, the free-traders and the protectionists seem to be winning.

The other great battle between lobbyists is the vexed question of Citizen's Band Radio. A statement released from the office of the Prime Minister concludes with, "It is a question of balance, and at present the Government feel that the badance of the argument is against the introduction of Citizen's Band'.

The operative words are "at present" so this leaves the door slightly ajar and the respective lobbies will battle on, each hoping for final victory.

SAFETY FIRST

The "Earth Leakage Circuit Breaker" (ELCB) described by K. A. Smith in the July 1977 issue of P.E. seems to have aroused a lot of interest including a word of warning in our correspondence columns.

On the professional front B \& R Relays have been making them for years. But it has been a long uphill struggle getting the sales message across to potential users. Everybody wants safety but when it comes to the point, few want to pay for it.

The Health and Safety at Work Act of 1975 is beginning to change the situation and now Kevin Walker, B \& R's sales manager, is forecasting an immediate UK market of about $\Sigma 1$ million rising to $£ 5$ million or more by 1980. $B \& R$ are expecting to capture 25 per cent of the business.

Walker has made a good start by selling $£ 60,000$ worth of ELCB's to Watney Mann to protect the barmen and barmaids against faults on electric beer pumps in the Watney Mann chain of pubs. The next move will possibly be to fit them to the catering equipment in pubs.

They are currently working on six new models of ELCB's, all designed for ease of fit and designed to trip within 25 milliseconds of detection of a fault.

I note that K. A. Smith says that his intention was to fit a commercial model in his colour processing darkroom"but the frustration of trying to buy such an article for private use made me determined to make one for myself". Anyone interested in buying the commercial product could try contacting B \& R Relays, Temple Fields, Harlow, Essex.

BPO BLOODHOUNDS

The Post Office's Radio Interference Service which includes a fleet of specially equipped vehicles to sniff out illegal transmissions, man-made static and other forms of interference to radio and TV reception is in process of modernisation.

The Marconi Instruments and Racal Instruments are among the firms which will benefit. MI is supplying 94 type TF2015 signal generators and RI a similar number of their type 9915 frequency meters.

The controlling authority for the Service is the Home Office so the technical requirement was drawn up by the Home Office's Directorate of Radio Technology. Both companies are delighted that their products passed evaluation tests with flying colours.

ANALOGUE/LOG AMPIIIIERS

 D. F. BOWERS, bsc

 D. F. BOWERS, bsc}

MOST voltage amplifiers in present use are designed to have a linear transfer characteristic-in other words, to multiply the voltage at the input by a fixed factor-and to have well-defined impedances at the input and output. There are, however, amplifiers which are termed "non-linear", which multiply input voltages by a factor in some way dependent on the magnitude of the input voltage.

Many non-linear amplifiers are designed for specialist applications, but certain types which have more general transfer characteristics are useful in wider fields. In the latter category, one of the most interesting is an amplifier having a logarithmic or exponential transfer characteristic.

Because many sensing devices obey exponential laws (thermistors and photodiodes, for example), logarithmic amplifiers find uses here. Compression of a wide range of voltages into a more easily handled spread is also a common use of logarithmic amplifiers. In analogue computers, they are used in conjunction with exponential amplifiers to perform multiplication and division.

WHAT IS A LOGARITHMIC AMPLIFIER?

If an amplifier has input voltage $\mathrm{V}_{\text {in }}$ and output voltage $V_{\text {out }}$, and if $V_{\text {out }} \propto \log \left(V_{\text {in }}\right)$, then the amplifier is said to be a logarithmic amplifier. If $V_{\text {out }} \propto \exp \left(\mathrm{V}_{\text {in }}\right), \exp \left(\mathrm{V}_{\text {in }}\right)=$ $\left.e\left(\mathrm{~V}_{\text {in }}\right)\right]$ or $\log \left(\mathrm{V}_{\text {out }}\right) \propto \mathrm{V}_{\text {in }}$, then the amplifier is said to be exponential or antilogarithmic.

A logarithmic amplifier in the feedback path of an operational amplifier converts the op. amp. into an exponential amplifier. Similarly an op. amp. with an exponential amplifier in its feedback path becomes a logarithmic amplifier. Hence, we need only find a way of achieving one type of transfer to create both types of amplifier.

SHOCKLEY'S EQUATION

Although very expensive logarithmic amplifiers may use intermediate digital techniques, the vast majority of analogue logarithmic amplifiers rely on the intrinsic logarithmic behaviour of a semiconductor $p-n$ junction when subjected to low bias voltages.

Fig. 1. Forward bias current curve for a typical silicon diode

The familiar transfer curve for a typical silicon diode in the forward bias mode is shown in Fig. 1. As the voltage across the diode increases from zero to about half a volt, very little current flows, but above about 0.6 V the current increases rapidly. The inverse of this curve is shown in Fig. 2, where it can be seen that the voltage across the diode increases rapidly as the current approaches I_{0}, and then more slowly until several milliamps is achieved, when the diode's bulk resistance becomes important. Between these two current values, the voltage increases (approximately) in proportion to the logarithm of the current.

To explain this, it is necessary to investigate an equation derived from statistical considerations by W. Shockley, which states:

$$
I=I_{0}\left(\exp \left(\frac{q V}{k T}\right)+1\right) \ldots \ldots(1)
$$

where
$1=$ Current through junction (amps)
$1_{0}=$ Theoretical reverse current (amps)
(This is the same l_{o} as previously described)
. $V=$ Voltage across junction (volts)
$\mathrm{q}=$ Charge on the electron (coulombs)
$\mathrm{k}=$ Boltzmann's constant
$\mathrm{T}=$ Junction temperature (kelvin)
If qv> $k T$, a condition normally satisfied, then:

$$
\begin{equation*}
V=\frac{k T}{q}\left(\ln I-\ln I_{0}\right) \tag{2}
\end{equation*}
$$

(where $\ln =\log _{\mathrm{e}}=$ the natural or Naperian logarithm)
and hence we obtain logarithmic behaviour. Departure from this equation is mainly due to qV approaching kT at low currents, to the effect of the bulk resistance at high currents, and to misbehaviour of the semiconductor junction in between.
The latter problem can be solved to some extent by using diodes designed to have a good logarithmic behaviour (such as type G130), but not very much can be done to better the

Fig. 2. Forward bias voltage curve for a typical silicon diode

Another Stirling Sound winner

Coming between SS. 140 and SS. 1100 , the new SS. 160 fills a gap in power amplifier modules (3 to 100 watts r.m.s.) that will particularly please those wanting a not-so-big disco or P. A. system as well as those with speakers needing plenty of power to drive them. With circuitry developed around a self-centering mid-rail, excellent results wlil come from using as little as 18 volts power supply. (Power output will vary accordingly). Because we use good quality components capable of operating beyond our claimed specifications, you can buy and build with confiäence. YOUR SS. 160 IS READY NOW AND WE HAVE MADE A NEW POWER SUPPLY UNIT (SS. 360) SPECIALLY FOR IT.

£8.50
 INC. V.A.T.
 POST FREE

Multi-finned large heat sink. inc. V.A.T. post free

75p

- SPECIAL STIRLING SOUND OFFER

Bought separately SS. 160 costs $\mathbf{8 8} \mathbf{- 5 0}$, SS. 360〔12.75, heatsink 75p (total- $£ 22.00$). Buying all three together, inc V.A.T. it costs you only (post free)
$£ 21 \cdot 00$

And the SS. 1100 money saver

SS.1100-£10.50: SS.370-£14.75: Large heat sink- $£ 1.50$ (total£26.75). Buying all three together saves you $£ 2.00-\mathrm{inc}$. V.A.T (post free)

To Stirling Sound, 37 Vanguard Way, Shoeburyness, Essex
Please supply:
for which I enclose $£$.
or by Access/Barclaycard
NAME
ADDRESS

This invaluable guide, which folds into a 24-page booklet, lists suppliers of electronic components and accessories and is just what you need when you're buying components.

AND HERE'S YOUR CHANCE TO USE IT

 Wide-range Voltmeter AC-DC, reliable, 6 ranges to 1000 V . Input impedance of $11 \mathrm{M} \Omega$ plus a variety of probes for measurement at RF.
RF Resonance Indicator

indicates resonant frequency of a tuned circuit up to around 30 MHz . Also selects values of capacitance and inductance for a given frequency.

Tune in to

November issue on sale 1 October 45p

SUPER TOUCH-SENSITIVE PIANO

We have shown our special brand of skill and expertise in designing this piano featuring:-
Wide range of touch-sensitive response ESU design.
Free from breakthrough noise.
Choice of keyboard C-C or F-F with Transpose Control.
Two models are available. Model TS50 is a touch-sensitive piano only. Model TS53 has extra effects of Honky-tonk,
Harpsichord with fast and slow tremolo.
KIT SECTION PRICE LIST
ESU5 + 5 Keyer Units $£ 11.95$ each, 5 required.
ESU5 + 6 Keyer Unit $£ 13 \cdot 95,1$ required.
Power Supply $\mathbf{\varepsilon 9}$-50
Keyboard and Switches $\mathbf{8 2 9} .00$
Toneforming, Headphone and Voltage Regulator $\mathbf{\Sigma 1 4}$-50 Loud and Soft Pedal 17 -95
Master Tone Generator $\mathbf{1 5} \cdot 00$
Tremolo Unit $\mathbf{\varepsilon 3} \mathbf{7 5}$
Cabinet switches, etc. $\mathbf{8 3 2 - 5 0}$
Can you afford $£ 750$ for an electronic piano? If the answer is NO why not visit our showroom and try our electronic pianos, discuss the technicalities in detail without obligation.

WÉ GUARANTEE TO SAVE YOU MONEY. IT IS SIMPLE ONCE YOU KNOW HOW.
Showroom: 12 Brett Road, Hackney, London E8 1JP. Tel. 01-986 8455.

Component shop: 40a Dalston Lane, Dalston Junction, E8 2AZ. Tel. 01-249 5624.

Parts for organ builders
4-Octave C-C keyboard
£26. 00
5-Octave C-C keyboard E28.00
5-Octave F-F keyboard
5-Octave F-F piano keyboard
28.95
£ $£ 20 \cdot 00$
25 note pedal board stop switches
£25.00
$\mathbf{\Sigma 5 5} .00$
Tone Generator Units
GD500/5 with 73 outputs
£39.95
GD500/6 with 85 outputs
$248 \cdot 50$
GD500/7 with 96 outputs
£52.50
Diode Gate Sustain and Distribution Units
4-Octave with 3 pitches
£32.00
4-Octave with 4 pitches
5-Octave with 3 pitches
5-Octave with 5 pitches
5-Octave with 6 pitches
4-Octave with 9 pitches
5-Octave with 9 pitches
Toneforming Units
3 pitches with 10 voices
ع38.00

4 pitches with 10 voices

- 00

4 pitches with 15 voices \quad| |
| :---: |
| 26.00 |

5 pitches with 10 voices
£38.40
6 pitches with 19 voices
ع65.95
9 pitches with 10 voices
£40.50
Rotating Speaker Units
Bass unit
ع68.00
Mid Range
£75.00
Hi-Fi Horn
ع89.00
Prices include VAT.
Other useful components in stock for organ work. Send S.A.E. for lists.

ELECTRONIC MUSICAL INSTRUMENTS
12 Brett Road, Hackney, London, E8 1JP. 01-986 8455
extremes. Even so, a range of over seven decades of current can be accommodated if great care is taken in the design of the logarithmic amplifier.

SIMPLE LOGARITHMIC AMPLIFIERS

A simple logarithmic amplifier based on the principles described is shown in Fig. 3. Assuming a positive input signal, the inverting input of the op. amp. will be maintained at virtual earth (by normal feedback action), and so the input current is $V_{1 n} / R$. This current must also flow through the diode, and hence we can show that:

$$
\begin{align*}
V_{\text {out }} & =-\left(\ln \frac{V_{\text {in }}}{R}-\ln \mathrm{I}_{0}\right) \frac{\mathrm{kT}}{\mathrm{q}} \\
& =-\left(\ln \mathrm{V}_{\mathrm{in}}-\ln \mathrm{R}-\ln \mathrm{I}_{0}\right) \frac{\mathrm{kT}}{\mathrm{q}} . \tag{3}
\end{align*}
$$

Thus there is a region where (at constant temperature) the output is proportional to the logarithm of the input. In this region, the output moves about 60 mV (at $25^{\circ} \mathrm{C}$) for every decade change in input voltage, but this can be increased by using several diodes in series. The main drawback of this arrangement, however, is temperature dependence.

Besides the kT / q term outside the brackets, the term I_{0} is also very dependent on temperature, and on the physical construction of the junction. It effectively causes the output level to shift up and down with small fluctuations in temperature. Although this can be corrected with simple amplifiers of this type, it is more common to replace the diode with a transistor, the base-emitter junction being used as the logarithmic law generator. A "differential" compensation method is then relatively simple to implement. Details of a practical amplifier will now be given, for the benefit of those who may wish to experiment.

A COMPENSATED LOGARITHMIC AMPLIFIER

Although the temperature problems can be solved by "ovening" the junction to keep it at a constant temperature (as in the G. D. Shaw monolithic oven used in the PE Sound Synthesiser), this arrangement is not always satisfactory, and can be difficult to set up. We will therefore explore an alternative system.

If $\mathrm{qV}>\mathrm{kT}$, then the relationship between the collector current (I_{c}) and base-emitter voltage (V_{BE}) of a transistor will be:

Fig. 4. Practical logarithmic amplifier utilising the differential compensation technique

Fig. 5. Thermistor compensation circuit to be used in place of $\mathbf{R 1}$ in Fig. 4. The thermistor should have a resistance of $10 \mathrm{k} \Omega$, at $25^{\circ} \mathrm{C}$

AN IMPROVED AMPLIFIER

The form of logarithmic amplifier described above has three major drawbacks which limit its overall performance.

1. The dynamic range is limited to about three decades of input voltage, due largely to the relatively high input offset (about 2 mV) and bias current (about 100 nA) of IC1.

The former can be improved by using as large an input signal as possible, together with a high value for R_{in}. To improve the latter, however, an f.e.t.-input op. amp. (such as the NE536T) should replace ICl . It should be possible to achieve over six decades range with this configuration.
2. The current $I_{\text {ret }}$ does not remain constant, because the non-inverting input of IC2 is not a true virtual earth. This is not too important with power supplies in the range $10-15$ volts, but for greater accuracy $V_{\text {ref }}$ and $R_{\text {ret }}$ could be replaced by a 1 mA current source.
3. Last, but not least, the kT / q term in equation (5) introduces a temperature dependence. This causes the scale factor to alter with variations in absolute temperature. The error over normal domestic temperature variations will not exceed about ± 2.5 per cent, which will be adequate for many applications.

Special temperature proportional resistors have been developed to compensate for this error over wide temperature ranges, but these are neither easy to obtain, nor cheap. In Fig. 5 is shown a method of compensation using a resistorthermistor network in place of R1 in Fig. 4. This circuit was designed by a colleague, Mr C. R. Francis of Sheffield University, and provides good compensation over the limited temperature range of a domestic environment, if greater accuracy is required.

EXPONENTIAL AMPLIFIER

To obtain an exponential amplifier, it is only necessary to rearrange the components of Fig. 4, as shown in Fig. 6. If $V_{\max }$ is the maximum output voltage, then $I_{\text {out }}=V_{\max } / 1 \mathrm{k} \Omega$. Potentiometer VR5 is adjusted to give $V_{\text {out }}=V_{\text {max }}$ when $V_{\text {in }}$ is zero, and VR2 again sets the scale factor, which is adjustable over the range 0.43 decades/volt to 1.33 decades/volt.

INTEGRATED CIRCUIT TECHNIQUES

,The amplifier system described, with its need for closely matched transistors and good op. amps., would seem a good subject for integration, and indeed this has been done by several manufacturers. Unfortunately, i.c. logarithmic amplifiers of good quality are not very cheap, but two which have proved to be good all-round performers are the Intersil 8048 (logarithmic) and 8049 (exponential) amplifiers.

The configuration of these amplifiers is basically a monolithic version of those already described, with dual f.e.t.-input op. amps. Fine temperature compensation is carried by means of a specially designed thin film resistor instead of the resistorthermistor network, and this is effective from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The 8048 features a 60 dB voltage input range, and a 120 dB current input range.

BANDWIDTH CONSIDERATIONS

Bandwidth is always a problem where semiconductor junctions operate at low currents, due to capacitive phenomena across the narrow junction. To a first approximation, the bandwith of a logarithmic amplifier will increase proportionately to the average current through the junction concerned, assuming that the perturbations are small.

It follows that to obtain the best frequency response from a logarithmic amplifier, it should be used over the upper section of its input range. Even so, it is difficult to obtain a -3 dB bandwidth past 100 kHz over three decades. Over five decades, the -3 dB point may well be only a few kilohertz. For large fluctuations of input signal the situation is even worse, and usually less predictable.

CONCLUSION

Although logarithmic circuits are not the easiest to implement, a good quality logarithmic amplifier is not over difficult to make, provided care is taken in the setting up process. It is hoped that this article will have provided a useful introduction to the subject.

ACKNOWLEDGEMENTS

Thanks are due to Mr W. Gibbons and Mr C. R. Francis, both of Sheffield University, for help given in the preparation of this article.

FOR the EXPERIMENTER

TDA2020

THE TDA2020 monolithic operational amplifier is a front runner in the power game. It is intended for use as a low frequency class B power amplifier providing 20 W into 4Ω at I per cent total harmonic distortion with a $\pm 15 \mathrm{~V}$ supply. This is a guaranteed output. At lower power levels-less than 8 W -the distortion does not exceed 0.2 per cent and at most frequencies is about 0.1 per cent.
The absolute maximum voltage is $\pm 26 \mathrm{~V}$. Although higher voltages are likely to damage the i.c. it will operate quite correctly from supply voltages down to $\pm 5 \mathrm{~V}$.
The 14 pin (alternative quad or d.i.p. plastic packages aváilable), incorporates short circuit protection which automatically limits the output transistors to their safe operating area if, say, the output was short-circuited. Thermal overload protection is also incorporated which a.llows more economic heatsink

Fig. 2. A single channel 180 W hi fi audio amplifier
design as the risk of thermal runaway found in discrete amplifier designs does not exist. All of this makes the device virtually indestructible.

Fig. 1. The TDA2020 used in a basic 20 W configuration

Unlike most audio amplifiers the TDA2020 does not require a coupling capacitor from output pin to loudspeaker (see Fig. 1) which means a saving in money and space. The omission does make it necessary to maintain the quiescent output potential to prevent d.c. flowing through the speaker. This of course means balanced power supplies but the possibility of switch on "thump" is reduced.

A single 180 W channel using a 4Ω ? loudspeaker can be built around two TDA2020's. This type of circuit (Fig. 2) is known as a bridge or push-pull amplifier. As can be seen the component count is small for such a large output.

The i.c. package includes a copper insert which is normally clamped to an external heatsink to remove circuit power dissipation. A range of heatsinks appropriate to different voltages is available from Redpoint and assembly of these is facilitated by the spacer and screws supplied with each device so that heatsink and chip will securely mate to a p.c.b.

The TDA 2020 can be obtained from Technomatic Ltd., 54 Sandhurst Road, London, NW9, approximate price $\mathbf{£ 4 . 2 0}$.

Fig. 3. A 104 battery charger timer (20 minutes to 2 days). When start button is activated RLA energises and connects the battery to the charging supply and the timer to the battery, holding RLA through TR1. At the end of the timing period the circuit switches off

About four years ago Elremco launced their 14 pin LRI71E timer chip which took two years in gestation and $£ 100,000$ in develoment. Since then the price of the device has fallen by more than a third-currently $£ 7.50$.

Long duration electronic time delays using conventional CR methods require resistance of hundreds of megohms and capacitance of hundreds of microfarads To connect components together of this dimension presents all sorts of problems most of them being inherent so that accurate timing is virtually impossible. The LRI7IE cleverly overcomes this using simple digital techniques to provide time delays from 5 ms to over 3 months with a repetitive timing accuracy of ± 0.015 per cent.
Even more astonishing, if a second LRI7IE is added in series the period can really be pushed out-in this configuration an external time constant of is $(10 \mathrm{k} \Omega / \mathrm{lnF})$ would produce a six month delay.

Basically the i.c. contains a timing oscillator to which external CR components are added to determine the timing period. A chain of 12 binary dividers follows which effectively multiplies the external CR time constant by a factor of 4095 .

A digital to analogue converter connected to the final six divider stages allows external meter monitoring of the elapsed time from the moment the timer is triggered. Outputs from the last three dividers in the chain provide facilities for specialised timing from $\frac{1}{\square} T$ to $\frac{7}{8} \mathrm{~T}$ in steps of $\frac{3}{8} T$ where T is the preset time. If you combine this with the eight possible operational modes it can be seen that the device will suit almost all timing requirements.

With a suitable dropping resistor the device can work from a wide supply range since the on-chip voltage requirement is stabilised. Typical unloaded consumption is 5 mA .

Some suggested applications by Elremco for the motorist are

1. A lime delay can be set by the user within a $0-24 \mathrm{hr}$ range after which the parking lights automatically switch on.
2. The parking lights can be switched on and off in a $0-24 \mathrm{hr}$ period.
3. A set number of minutes after switching off the ignition the headlights are automatically switched off. This prevents parking with headlights left on.
4. The car radio can be made to switch on after a preset time delay acting as an alarm clock or to synchronise with a favourite programme.
5. Providing control for a combined windscreen wiper/washer.
In the home it can be arranged to switch off any manual over-ride facility for domestic central heating.

Central heating and night storage systems are normally controlled by a programme time switch which the user presets. When heating or hot water is required outside the programme times the manual over-ride is used but usually left on with consequent fuel wastage.

The LRI7IE can be time adjusted for this to switch the system back to automatic. Switching on a morning kettle or radio alarm are other applications.

The approximate price of the LR171E is $\mathbf{£ 7 5 0}$. For more information refer to Elremco Ltd., P.O. Box 10, Bush Fair, Harlow, Essex.

Fig. 4. Battery operated alarm timer from 2 seconds to 5 minutes duration

MM57100-LM1889-MM53104-AY-3-8550-AY-3-8600-AY-3-8700

AFEw years ago the TV games market did not exist-today it is a multimillion pound industry and growing all the time.
Recently we published a design featuring the GIM AY-3-8500 games chip. It offered three basic games; tennis, soccer and squash. Additional discrete circuitry was required-a clock generator and a u.h.f modulator for interfacing to a monochrome receiver.
A more elegant games circuit available is the National MM57100 i.c. This offers bockey, tennis and handball in colour plus a lot more unpredictable play as a ball reflection from a bat can appear at eight possible angles. Complete game assembly is eased with the LM1889 video modulator i.c. and MM53104 clock generator i.c.

Of course, the LM1889 is a very useful chip in its own right since it can be used for relaying information from video tape recorders, closed circuit t.v. cameras or test equipment for display on monochrome or colour receivers.

A variant of the AY-3-8500 is the AY-3-8550 which provides the same basic games but the players' bats can be moved both vertically and horizontally requiring a lot more skill. The AY-3-8600 improves on the basic four games with basketball, hockey and gridball and increases in sophistication.

A spin-off from the popular microprocessor unit-based "tank battle" videogame commonly seen in amusement arcades is the GIM AY-3-8700.

This offers a two player "tank battle" where each player has a completely steerable tank with forward and reverse speed controls and a firing button. The screen "battlefield" includes anti-tank barricades and exploding mines to retard each tank's progress. The object of the game is to score as many hits as possible on your opponent's tank. The first player with 31 hits ends the game. Shell firing, explosion and tank sounds all add to the excitement.

All the above mentioned devices are available from A. Marshall (London) Ltd., 40-42 Cricklewood Broadway, NW2 3ET.

The MM57100 and MM53104 are available as Kit No. SK1122 for $\mathbf{£ 1 7} 18$.

|N THE consumer area probably one of the most exciting chips to appear is the digital or analogue delay line otherwise known as a "bucket-brigade" device (b.b.d.).

Some of the effects that can be achieved with these are the generation of chorus-where single instruments or voices are made to multiply which has become a popular sound usually associated with the string synthesiser; "Flanging" or "phasing", another effect similar to chorus but in performance equivalent to the sound produced when using a variable comb-filter; Vibrato which is defined as a $5-10 \mathrm{~Hz}$ cyclic pitch variation used generally to add richness to a sound produced and finally the synthesis of reverberation which is probably the most obvious application.

Of the devices around the two most readily available are the Mullard TDA1022 a PMOS circuit and the nmos Reticon SAD1024. Both are in 16 pin d.i.l. packages.

SADIO24/TDA1022-DELAY LINES

Simply explained a "bucket brigade" delay consists of 512 capacitors separated by f.e.t.s. A sample of the incoming audio waveform is stored in the first capacitor end to the command of a clock pulse, the sample moves down the capacitor chain. to emerge 512 clock pulses later as delayed audio. For fidelity the number of samples per second clocked should be twice the band width of the incoming signal.
The successive samples can be likened to buckets of charge moving down the capacitor chain hence the analogy with the old fire-fighting "bucket brigade" line. The original signal is normally retrieved by passing the output through a low pass filter to remove the clock frequency.
The sampling frequency is very much related to the reverberation time of the bucket brigade the delay for N "buckets" being N 2 f seconds, where f is the clock frequency in hertz.

Fig. 5. Achieving a vibrato effect with a bucket brigade device (b.b.d.)

Reverberation is the echo effect produced by a sound after it has ceased and accounts for the richness in "live" performance. By using b.b.d.s in parallel or serial form it is possible to add artificial reverberation to existing music systems and so enhance the sounds produced.

A typical set-up for vibrato with a b.b.d. is shown in Fig. 5. By changing the clock rate in a slow cyclical manner $(5-10 \mathrm{~Hz})$ the delay through the device and hence the pitch varies in manner analogous to the Doppler effect when
the clock frequency is high, delay time is low and vice versa.

For chorus or multiple voice effects a typical block arrangement would be as shown in Fig. 6.

Chorus produced by delay alone is likely to sound lifeless because each reproduction is a replica of the previous signal. If the clock rates of the b.b.d.s are varied slightly there is enough difference between the direct and delayed signal to make them appear to come from separate sources or "chorus" together. There are obviously lots of variations to this-the clock oscillators could be modulated in antiphase or run irregularly, say, from noise passed through a narrow band filter or another b.b.d. could be added

A "flanger" or "phaser" can be created by combining an input signal with a slightly delayed version of itself as shown in Fig. 7. Obviously the magnitude of the effect is controlled by the ratio of delayed to undelayed signal (Balance Adjust) and the amount of delay which can be varied with control of the clock frequency. These are only some of the exciting possibilities of the b.b.d. but it obviously is a device we are going to see a lot more of in the future.

The SAD1024 is available for approximately $\mathbf{£ 1 8}$ from Herbert Sigma Ltd, Spring Road, Letchworth, Herts.

Fig. 6. A block diagram for setting up chorus effects

Fig. 7. Block diagram for phasing effects

THE National LM1830 is a 14 pin monolithic bipolar i.c. for use in liquid detection systems. Application areas include sump pumps, aquaria, radiators, boilers, etc. in fact anywhere where high or low fluid levels need to be detected.
The basic circuit of the chip is shown in Fig. 8. To complete the oscillator circuit a capacitor is connected across pins 1 and 7. The frequency of oscillation is inversely proportional to this capacitor value. Pin 13 is normally connected to the probe via a capacitor so that there is no chance of probe plating.
The oscillator output amplitude is approximately $4_{\text {be }}$ so that the emitterbase junction detector will be switched on when the probe resistance to ground is equal to the $13 \mathrm{k} \Omega$ resistor.

Fig. 8. Schematic of the LM1830 fluid detector i.c.

The diode at the detector transistor base symmetrically limits the input signal so that the probe is excited with $\pm 2 \mathrm{~V}_{\text {he }}$ from a $13 \mathrm{k} \Omega$ source. If the $13 \mathrm{k} \Omega$ source is incompatible with the probe resistance range a variable resistor, say $0-100 \mathrm{k}$! could be connected from pin 5 to the probe coupling capacitor.
Fig. 9 shows an application where an audio warning is given when a conductive liquid falls below a certain level, for example, the water level in a car radiator. When the liquid falls below the probe tip the resistance will rise between probe and radiator causing the output transistor to conduct the oscillator tone to the loudspeaker. An l.e.d. could equally be used in this position.

In such car applications the internal regulator on the LM1830 provides protection against supply transients.
An example of the device being used for sump pump drive or drain valve opening when a liquid is high is shown in Fig. 10. Here the relay or solenoid drive is arranged to be switched off when

Fig. 9. Low liquid level alarm using the LM1830
the liquid level is below the probe. With the probe tip immersed it switches on. The filter capacitor ensures on-off switching.

Although the LM1830 is designed primarily for use in sensing conductive

Fig. 10. High liquid level alarm suitable for opening a drain valve
fluids, a phototransistor, 1.d.r. or thermistor could readily be substituted for the probe path.

The LM1830 is available from A. Marshall (London) Ltd (see below), approximate price £1.72.

LM3911-TEMPERATURE CONTROLLER

WHEN making up a thermistor thermometer bridge the greatest single problem is maintaining any sort of linearity in the meter scaling. This arises because of the instrinsic nonlinearity of this transducer.

If a silicon junction diode is used as a sensor this usually requires amplification as the sensitivity is only around 2.5 to 3.5 mV per degree Centigrade but there is an improvement in linearity. The usual circuit configurations are either amplification across a bridge configuration with the diode in one arm, or simply an op amp differentiating between a fixed set voltage at one input and the temperature variable diode voltage.

All of these problems have been neatly overcome in the National LM3911. Fabricated on a single monolithic chip it includes a temperature sensor, a stable voltage reference and an optional amplifier which can be used for both temperature measurement and control over a range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The output voltage is directly proportional to temperature at 10 mV per degree Centigrade with tracking linearity of 0.5 per cent. By using the internal op amp with external resistors any temperature scale factor is easily obtained.

By operating the device as a comparator the output will switch as the temperature traverses any set-point making the device useful as an on-off temperature controller. Lamps or a relay can be driveri from the op amp

Fig. 11. Block diagram of the LM3911
output as this can be returned to a 35 V rail.
The LM3911 itself has a 6.8 V Zener reference for its sensing system. This allows the use of any power supply voltage with suitable external dropping resistor.
Block layout of the device is shown in Fig. 11 with an example of a basic

Fig. 12. Circuit of a temperature controller
temperature controller in Fig. 12 and a centrigrade thermometer in Fig. 13. The unity gain comparator allows for zero setting of an attached meter.

The LM3911 can be obtained from A. Marshall (London) Ltd, 40-42 Cricklewood Broadway, NW2 3ET, approximate price $\mathbf{f l}^{103}$.

Fig. 13. A centigrade thermometer using the LM3911

Fig. 14. Block diagram showing front end of an electronic piano

THE modern electronic piano has all the features and more of the conventional strung instrument. It has a sustain and soft pedal, usually a choice of additional voices such as honky-tonk piano or harpischord, but most important of all special circuitry that ensures the loudness and tonal quality of a note sounded is proportional to the velocity of the keys as in a conventional instrument.

A strung piano also produces complex harmonic resonances which means that for successful electronic synthesis the sound produced needs to die away at a realistic rate.

To achieve this special envelope shape it has required in the past a great deal of discrete circuitry. Because of the component intensity in this area and obvious advantage of reducing assembly cost and increasing instrument reliability with an appropriate integrated circuit substitute, GIM have developed the AY-1-1320 piano envelope or keyer circuit.

This 40 pin d.i.l. package reduces the hard work of electronic piano assembly to keyboard contact wiring and discrete voicing circuitry.

A typical electronic piano block arrangement is shown in Fig. 14. Here because of harmonic variations over the conventional instrument keyboard the voicing filters are divided giving more high harmonic at the low frequency end, and lower harmonic content for the top octaves.
The twelve note top octave generator directly feeds the top keyer and twelve five stage i.c. dividers to give 60 frequencies to the keyers which is the
keyboard range plus one top note to complete the compass of a normal 61 note keyboard.

One chip keyer circuit is shown in Fig. 15. When the key is up Cl is charged to -12 V . When the key is depressed Cl is first disconnected and starts to discharge through the $390 \mathrm{k}!$ with a time constant of 18 ms . When the key is grounded the Cl 's voltage has been transferred to C2 via the gates TR2 and TR3. The faster the key velocity the larger the initial voltage on C2 and the louder the note.
The d.c. voltage on C 2 is chopped via R1 and the output from a divider to give the decaying chopped waveform shown which is fed to the voicing circuit.

When the key is released the $50 \mathrm{k}!$! damping resistor is optionally connected across C2 to damp the notes with a 110 ms time constant. Different values of RI are used for each octave to give variation in decay time across the compass.
A negative pedal voltage applied to the sustain input dampens the output with a time constant of 180 ms when the key is released. This input simulates the action of the loudpedal in a piano.
The AY-1-0212 ($\mathbf{(6 . 5 0)}$) and the AY-15050 ($\mathbf{~} 2 \cdot 50$) is available from Technomatic Ltd, 54 Sandhurst Road, London, NW9.

A complete i.c. kit based on Fig. 14 is available from Semiconductor Specialists (UK) Ltd, Fairfield Road, Yiewsley, Middlesex, price $\mathbf{£ 3 6} \mathbf{2 5}$.

Fig. 15. The basic piano keying circuit

AY-1-0212-AY-5-1317A-TBA 0470-D-ORGAN CIRCUITS-M147-AY-5050/1-AY-1-6721/5/6

Top Octave Generator

The hearts of any electronic organ are the main oscillators from which all the distinctive voices derive. Years ago in the free phase system a separate oscillator was used for each note which represented an awful problem in tuning. Today, in what is known as the divider organ system, a digital tone generator produces from a single input frequency a full octave of twelve frequencies which with subsequent division can provide all the frequencies required by an electronic music synthesiser such as an organ or piano.
A good example of an i.c. top octave generator is the General Instrument Microelectronics 16 pin AY-1-0212. It is made up of twelve divider circuits which divide a typical input frequency of about 2 MHz into twelve notes. If any one of the adjacent figures of division in Fig. 16 are divided they will be seen to approximate to ${ }^{12} \sqrt{2}$ so that the whole makes up a well tempered chromatic octave.

Frequency Dividers

Another component intensive area which has surrendered to integration is the subsequent dividers to the Top Octave Generator which in combination with the latter give all the required instrument notes. GIM provide a whole range of $4-5-6$ or 7 stage frequency divider in 14. 10 or 12 lead packages which have the same specification and are wholly compatible with each other to fulfil any arrangement of division. All circuits can be driven from a sine or square wave from, say, the AY-1-0212.
Choice of configurations are: AY-1-5050-7 stage frequency divider $3+2+1+1: \quad$ AY-1-5051-4 stage frequency divider $2+1+1$; AY-1-6721/55 stage frequency divider $3+2$; AY-1-6721/6-6 stage frequency divider $3+2+1$

Distribution

In an organ there can be several contacts under a key which when closed simultaneously route the various signals to the busbars, from the dividers, and then onto the voicing filters. The trouble is key contacts corrode and are therefore electrically unreliable, producing as they do, all sorts of nasty noises over the years. The current trend in electronic organs is to replace these contacts with electronic gates so that pressing a key and a single contact, octave related notes from a divider can be passed onto a selected voicing filter.

On this simple idea TTT came up with the TBA $0470-\mathrm{D}$ organ gate which makes

Fig. 16. Block schematic of top octave generator AY-1-0212
it possible to reduce a ten contact key assembly to one per key. The circuit simply consists of ten transistors, each transistor is a gate which is d.c. switched with the input signal information via each emitter.

Priority Latching

One bit of electronics which makes organ playing a lot easier is priority latching. This is a LSI subsystem which can be applied to pedals or keyboard but is probably more appropriate to pedals. The M147 from SGS-ATES is an example of a latch pedal sustain i.c. This has 24 pins with 13 pins for input stub pedais. When a pedal is depressed the corresponding square wave frequency spread over five octaves is immediately present at five pins. These outputs remain when the pedal is released until a new pedal is depressed. When two or more pedals are depressed only the left
one is accepted-corresponding to the lower frequency. This priority pedal produces a trigger percussion pulse when depressed and a sustain trigger with which the output sounds can be tailored.

Chord Generator

Some would say the most magical innovative thing about organs is the chord generator; as besides generating static chords the chip can be multiplexed internally to provide a walking bass, rhythn arpeggio or alternating bass.
A block diagram of the GIM 40 pin AY-5-1317A is shown in Fig 17. Here the bottom twelve notes of the divided top octave generator are fed to the chord multiplexer.

All the above devices are available from Technomatic Ltd, 54 Sandhurst Road, London, NW9.

Fig. 17. Block diagram of the AY-5-1317A chord generator

LAST month we looked at the operation of the main system components used on the CHAMP board, including the 4040 MPU chip itself, and we are now about ready to look at the operation of the circuit in more detail. Before we start to discuss the hardware at the "gates and wire" level though, a word about the system operation as defined by the CHOMP software would be helpful.

SYSTEM OPERATION

When considering CHAMP as a development system, i.e. with the CHOMP program running, there are a number of specific tasks to be performed which can be listed as follows:-
(a) Refresh 8 -character 7 -segment l.e.d. display at a rate which eliminates flicker.
(b) Accept and store hexadecimal keyboard entries of up to three characters.
(c) Scan the control panel to detect any of the following switch closures:-
enter data, enter address, dump, run-mode, test.
(d) In response to ENTER DATA, take data from temporary keyboard storage and load into the ram location pointed to by the "current address pointer" register, then increment the pointer.
(e) In response to ENTER ADDRESS, take data from temporary keyboard storage and load it into the "current address pointer" register.
(f) In response to $D U M P$, read data in the program location pointed to by the "current address pointer" register and load it into the display buffer, then increment the pointer.
(g) In response to RUN MODE, leave the CHOMP program by jumping to the start of a user program in the first program ram location (Address 200 Hex).
(h) In response to TEST, leave the CHOMP program by jumping to the start of a program in the second PROM chip (Address 100 Hex). This would normally be the PROMPT programmer firmware if fitted.
The important thing to remember about the operations listed above is that they are controlled by software, or to be more correct, firmware and are not purely hardware operations like RESET, RUN/STOP, or SINGLE STEP.

This means that although I shall be discussing the circuitry as it relates to these operations, you should bear in mind that you can use the circuitry for other purposes, providing you produce the software to do it.

This means, for example, that when you switch to RUN, your program can redefine ENTER DATA as "change points", ENTER ADDRESS as "sound horn", and $D U M P$ as "pull the flush", without you having to change a single wire!

CIRCUIT DETAIL

Referring to Fig. 2.3 (last month), let's start with IC1, the 4201 clock generator. This device is fully described starting on page 5-77 of the users manual, but in outline it is a cMOS chip in a 16 -pin package which contains the oscillator and dividers necessary to produce the 4040 twophase clock signals and the logic for the SINGLE STEP and RESET operations.

The important point about this chip is that it provides high current clock outputs capable of driving the phase 1 and phase 2 inputs of a complete 4040 system, and this leads to a requirement for special decoupling circuitry.

Fig. 3.1. The CHAMP control panel connections

R 1 , and $\mathrm{C} 1, \mathrm{C} 2$ isolate the drive current pulses from the supply line and R2, R3 help to reduce the rise time of the clock waveforms when a complete set of 4040 system components is not used, as is the case with CHAMP. The insertion of R1 produces a separate $4201 \mathrm{~V}_{\mathrm{DD}}$ node and since the reset switch and the single step switch require a V_{DD} connection, it is to this node that they must be connected.

Pin 5 on the 4201 is a mode control pin which changes the division ratio of the internal counter to slow down the resultant clock output. Since there are tangible advantages in sticking to a 10.8 microsecond clock cycle this pin is permanently connected to +5 volts in CHAMP. Pins 2 and 16 are clock outputs at TTL rather than mos levels, and are unused in the CHAMP system, R5 and C3 provide the "power-on-reset" time constant and can be altered as necessary to set an appropriate delay which ensures that the complete system is reliably "cleared" whenever power is first applied.

4040 CHIP

The mpu chip, the centre of the CHAMP system, is of course IC2. Note that pins 1, 2, 3, and 4 carry the fourbit multiplexed bus which is the key to 4040 operation and which of course was covered in detail in Part 2 last month. This bus provides communication with the 4002 data rams, the 4265 I/O chip, the 4289 program memory interface chip, and can also be accessed via the sockets for system expansion when required. Note the SYNC output, pin 16, and its interconnection to the other system components, and also the STOP input, the STOP ACKNOWLEDGE output, and the RESET input which link to the 4201 clock generator. TEST, pin 13, is an input which can be tested directly with software (e.g. "JUMP IF TESTS EQUALS LOGIC ONE") and is a unique 4004/4040 feature.

The COMMAND RAM lines, pins $17,18,19$ and 20 can each control a data ram bank which in turn may consist of four 4002 s , or three 4002 s and one 4265 . Ondy CM_{o} is used on the CHAMP board, but CHAMP PROG uses banks 1 and 2 for the two extra 4265 s. These lines are activated using the $D C L$ instruction and are used to increase the address range over that possible with only
an 8 -bit $S R C$ operation. The 4040 also has two COMMAND ROM lines so that cwo separate rom banks can be used to allow a total of 8 K of program if needed. In CHAMP only CM ROM ${ }_{0}$ is used to control a single 4289 , and it is considered unlikely that CM ROM $_{1}$ would ever be used in a CHAMP derived system.

NEGATIVE LOGIC

When first introduced the 4004 and 4040 were defined with respect to a negative logic convention, because this is more "natural" in a PMOS system where a transistor turned "on" produces a positive output level and a transistor turned "off" allows its output to be pulled down to a negative level. Inside a 4040 system this convention still holds, so that for example, a logic 1 on the DATA BUS is actually represented by a negative level, but on the inputs and outputs from the 4265 the more familiar positive logic convention is employed.

This means that a logic inversion takes place inside the 4265 , so that if for example your program writes binary 1111 (F in Hex) to 4265 port Z you can expect to see four tTL-compatible positive logic levels on the output pins even though they passed over the bus as negative levels. The 4289 Prom address and data, and the I/O and CS pins are also defined in positive logic to make life easier, and so usually you don't have to worry about which convention applies for interfacing operations, you can assume good old TTL-type positive logic.

The main exception as far as external interfacing is concerned is the 4002 ram output port which is defined in negative logic, although this port is really only a secondary facility anyway, and only becomes available when a second 4002 is added to the system. It is of course always advisable to check in the MCS-40 User's Manual what the logic convention is on individual pins like INT or INT ACK before connecting these to external circuitry.

CONTROL PANEL INTERFACE

In Fig. 3.1 we show the interconnection of the CHAMP control panel switches, which of course are mounted on the plinth and hooked up to the CHAMP main board
via a 16 -way flat strip cable. The reset, run/Stop and SINGLE STEP switches connect directly to the 4201 chip IC1, but the other four switches are wired into the system via the rom i/o lines and some til conditioning circuitry which forms, collectively, a special kind of four-bit input port.

The enter data, enter address and dump push switches directly control the PRESET and CLEAR inputs of 7474 D-type flip-flops (IC11-IC13) which are used as latches to "debounce" the switch operations and provide a clean positive-going edge for each press. The outputs from these latches are used to "clock" further D-type flip flops which have logic 1s hard-wired to their D inputs, and the \bar{Q} outputs of these pass via a 74125 tri-state buffer, IC14 to the 4289 I/o bus. This second set of three latches can be cleared via a $W R R$ instruction since they are controlled by what is, in effect, a rom output port (part of IC24 and IC25).

Suppose the enter data switch is pressed, this sets the Q output of its associated latch to a 1 and this in turn clocks a 1 into the second flip-flop whose $\overline{\mathrm{Q}}$ output is then available at the input to the 74125. This sequence of events in itself initiates no further action, since the 4040 will not realise that anything has happened until it carries out an $R D R$ instruction which strobes the 74125 and allows all four switch data bits to be transferred via the 4289 and the data bus to the accumulator.

WAIT LOOP

There won't be long to wait of course, and normally the 4040 sits in a "wait loop" which is embodied in the CHOMP software, continuously carrying out a read and check operation on these very control switches. When the enter data closure is recognised the 4040 jumps to a part of CHOMP which deals with the entry of data, and one of the first things this section of the program does is to clear all the switch flip-flops via the 4289 and part of IC24 and IC25. This is necessary to prevent multiple recognitions of the same switch closure, and points to the reason for the second D-type, since with this arrangement no matter how long you keep the switch pressed it can only be recognised once.

Note that the prog mode/run mode switch is not provided with TTL latch conditioning circuitry since it is a toggle switch and is not used repetitively like the others; its contacts are connected directly to the 74125 . We have termed the switch conditioning circuitry, just described, the switch FLAGS and in future we will use this shorthand name, and refer to the 74125 as the flag port.

KEYBOARD INTERFACE

The on-board keyboard interface, comprising IC7-IC10, interposed is between the 4265 ports and the keyboard sockets SK3, and also between the 4040 interrupt lines and SK3. The 4265 is connected to this interface circuitry via a 16-way flat strip jumper which connects SK7 to SK8 when the keyboard is in use. As mentioned in Part 1, this jumper can be removed for direct access to the 4265 when "custom" interfacing is required for user programs.

The keyboard produces a ready encoded hexadecimal output on four lines together with a common strobe, and the display section requires eight-segment anode drives (a-g \& d.p.) and a clock and data input to the internal digit-strobe shift register (see Fig. 3.2). The internal circuitry of the keyboard will be covered in detail later on.

The four hexadecimal keyboard outputs connect directly to the 4265 port W which is defined as a mode 9 input port during 4265 initialisation under CHOMP, but the common strobe is fed to the 74123 dual monostable to produce a de-bounced strobe which sets the interrupt latch (half of IC9) aid is also used to enter the hex code into the part W input latches via the port Z 1 asychronous strobe line (See MCS-40 User's Manual, pages 5-36 for further details.)

DISPLAY REFRESH

The display refresh drive is achieved by loading the next eight segment bits into output ports X and Y and then clocking the shift-register produced digit strobe along to the next common-cathode digit line. This operation has to be repeated eight times for the complete eightcharacter display, and has to be carried out rapidly enough to prevent display "flicker". The digit strobe is in effect a logic 1 shifting through a field of 0 s , a new logic 1 being presented to the shift-register via 4265 output line Z3 under software control at the start of a new display sequence.

The shift-register clock pulses are provided by output Z2 which is a synchronous strobe produced when port Y is loaded with segment data during a WR2 instruction. IC7 and IC8 are special l.e.d. anode driver arrays (75491) which provide the high-current segment drive needed by the multiplexed display, the cathode drives (75492) are contained within the keyboard case and are of course driven by the shift-register outputs. R51-R 58 perform the usual l.e.d. current-limiting function and therefore control the display brightness.

PROGRAM RAM

The original 4004 microprocessor expected its program in a rom and its data in a ram and never the twain shall meet, but CHAMP is a development system. which requires programs to be easily modified and kept in RAM and so

Fig. 3.2. The CHAMP board/keyboard interface
some special arrangements have to be made to provide this facility. Fortunately the 4040 does have instructions for writing to and reading from ram program memory, namely $W P M$ and $R P M$ respectively, but since the 4040 deals with four-bit nibbles while its program comes in 8 -bit bytes, some jiggery-pokery is still required to allow painless operation of the ENTER DATA and DUMP commands which of course are used to modify and examine program ram when required.

When a program in ram is actually running the program ram is addressed via the 4289 just as if it were prom, and eight-bit instructions are fetched from ram via the 4289 without the MPU ever knowing the difference. The need for "special treatment" arises when the so-called transitive read or write operations using the $R P M$ and $W P M$ instructions are undertaken because of the nibble/byte conflict.

To achieve proper operation of the transitive instructions the 4289 contains a FIRST/LAST flip-flop which is toggled by each use of $W P M$ or $R P M$. The output of this flip-flop is used externally to steer a nibble to either the FIRST half-byte or the LAST half-byte of a program RAM location during transitive write operations, or used internally to send the FIRST half-byte or LA'ST half-byte of program ram data back to 4040 over the data bus during transitive read operations. To accommodate this mode of operation CHAMP program ram is organised so that it may be read as a byte-orientated array of 512×8 bits but loaded as a nibble-orientated array of 1024×4 bits.

The program ram write operation is achieved using the 4289 I/o bus to transfer the data a nibble at a time, the correct half-byte of ram being selected using a logical combination of the 4289 outputs $\mathrm{F} / \mathrm{L}, \mathrm{PM}$, and OUT to produce individual write strobes for each of the two $256 \times$

4 ram chips which together form the equivalent of a single 4702A Prom chip. This gating logic is performed by the remaining parts of IC24 and IC25.

ADDRESSING PROGRAM MEMORY

As mentioned last month, the 4289 is used to demultiplex the 4040 bus to produce a 12 -bit wide address output to program memory. The lower 8 bits of this address are wired directly to each program memory device via what we shall call the 4289 address bus (pins 23 to 30 from 4289). The upper four bits are decoded by a 3205 TTL decoder to produce a unique CHIP SELECT strobe for each of the two 4702A PROM chips and each of the two pairs of 5101 ram chips so that only one "memory chip" (one 4702A or two 5101s) can be enabled at one time.

The 12 -bit address is provided by the 4040 program counter during normal operations, but when a transitive read or write is carried out the eight low order address bits must be provided by an $S R C$ operation, and the four chip-select bits must be provided via an output port. In CHAMP the port employed for this purpose is the 4002 output port from IC4, buffered by a 74L00 gate IC3, which also provides the necessary logic level inversion.

We now have two possible sources for the four chipselect bits, either pins 31 to 34 of the 4289 (normal operation) or pins 13 to 16 of the 4002 (transitive operation) and so the 74157 quad two-line to one-line data selector (IC16) is interposed between the two sources and the 3205 decoder. The 74157 SELECT input is controlled by the 4289 PM output which is active only during transitive operations, so that proper selection of the source of chipselect data is maintained.

Fig. 3.3. Simplified schematic diagram of addressing CHAMP RAM program memory

To carry out a transitive write then, as required by an ENTER DATA command, the following sequence is necessary.

1. Select 4002 port
2. Write chip code to 4002 port
3. $S R C$ to select location within chip
4. $W P M$ to write first half-byte
5. WPM to write second half-byte.

A similar procedure is necessary to achieve a transitive read, as required by the $D U M P$ command. Further details of the intricacies of addressing program memory can be gained from the 4289 data sheet, although of course to use CHAMP as a development system it is not essential to be familiar with these. See Fig. 3.3 for simplified circuit operation.

BATTERY BACK-UP

The 5101 program ram chips are cmos devices which have extremely low standby current drain. Components B1, D19, D20 and R40 form a battery supply circuit which will power the 5101s with the CHAMP main supplies turned off. B1 is a three-cell DEAC nickel cadmium battery which provides about 4 volts and is recharged via D20 and R40 when the power is on. When power is removed D20 becomes reverse biased, isolating the 5101s from the +5 V line, and D19 becomes forward biased to supply the memory standby current. Note that a dry cell battery of 4.5 volts could be used instead of the DEAC
if $\mathbf{R} 40$ is left out, although you could end up losing data when the battery eventually runs flat. It is difficult to say just how long this would take.

POWER FAIL DETECT

To ensure that the memory is not corrupted by write transients during power failure or recovery, it is necessary to raise the CE_{2} input to the 5101 s only when the main 5 volt supply is available, and to achieve this control a "power-fail-detection" circuit formed by D13, R32, R33, TR1, R34 and part of IC10 is provided. The transistor is held on by the conduction of D13 until the 5 volt line starts to drop. When it drops below about 4.5 volts D13 and TR1 turn off and CE_{2} is grounded via the 74L00 gate.

USING OTHER MEMORIES

If you can do without the non-volatile feature made possible by the 5101 devices for all or part of your program ram, then you can leave out the battery circuit and the power fail detect circuit and plug in 2101 devices which are available at very low cost. The 2101s are completely compatible with the rest of the CHAMP circuit and have been tried on the prototype.

One final note, the 5101 cmos devices must not have their inputs taken negative more than a few hùndred millivolts, and this is the reason for clamp diodes D1 to D12. The use of good quality germanium devices in these locations is essential.
NEXT MONTH: CHAMP Keyboard, power supplies, construction

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

A column or line source loudspeaker for use in a public address system which is capable of directing sound "off axis" in a chosen direction is covered by Paul Taylor, of Hertford, in BP 1456790.

Conventionally a column loudspeaker is constructed as a long box with a series of loudspeaker units arranged along its length and fed with equal, in-phase signals. Such a speaker column produces a narrow and symmetrical beam of sound which can only be directed at the intended audience by carefully mounting the column so as to point in their direction. This necessitates tilting a high column down at an awkward angle. The object of the invention is to produce a column which has an assymetrical sound characteristic and may thus beam sound down on an audience from a vertical position.
The column (Fig. 1) includes a line of loudspeaker units comprising end speakers, inner groups of equally spaced units and a central unit. The first phase reverser ensures that the input signal is fed in opposite phase to the units A

above and below the central unit C. Attenuators R1, R2, R3, R4, between the units A ensure that the relative amplitudes of the sounds radiated from these units decreases progressively in each half of the column away from the centre unit. $A+90^{\circ}$ phase shift is introduced into the signal fed to the central unit and -90° phase shift is introduced into the end units E, to minimise residual side lobes in the upper quadrant.

The phase and amplitude discrepancies along the remainder of the line produce a sound output radiation pattern which is vertically lopsided, so that a considerable amount of sound power is directed downwards and reiatively little upwards. This enables the column to be installed vertically without tilt but still beam the majority of sound reproduced down at the audience rather than up and over their heads.

HIUI : Allisile BP $145 \mathrm{~F}: 77$

There has recently been patenting activity in the field of liquid brushes for motors. In BP 1468 155, Eric Wilcox of the Isle of Man patented a slip ring formed from an alloy having 18.8 per cent tin, 50 per cent bismuth and $31 \cdot 2$ per cent lead. This alloy, which has a melting point of $95^{\circ} \mathrm{C}$, is kept liquid by a heater and is claimed not to react with a copper commutator.

In BP 1475 877, Siemens A.G. of Germany claim the use of a new type of liquid brush. The object is to cope with high current levels, up to $50 \mathrm{~A} / \mathrm{cm}^{2}$ and at all motor speeds, without loss of the liquid from the annular gap where
it is serving as a slip ring between the stationary and moving parts.

To-date gas pressure has been used to counteract the effect of skin-friction and centrifugal force. The proposed new answer is to use a ferro-magnetic liquid, for instance ferro-magnetic particles in a non-magnetic, metallic liquid. Sodiumpotassium, gallium, or gailium-indium are suggested as the liquid metal, with iron or iron alloys suitable as the particles.
A magnetic field is generated in the area of the annular gap, by the provision of carefully located windings additional to those which form an integral part of the motor or dynamo which the slip ring is serving. When the rotor is stationary the liquid is held in a stable position by a static field from the additional coils. As the rotor turns, fric-
tional forces entrain the liquid, so that it is continually interrupting the radially directed magnetic field. The frictional forces are directed axially inwards or outwards depending on the sense of rotation and upon the direction of the magnetic field.

The direction of the magnetic field produced by the additional coils is thus chosen so that the magnetic containing forces act in opposite directions inwards, towards the middle of the fluid. Provision is made to reverse the direction of the magnetic field, by reversing the current flow in the coils, when the direction of the rotor is reversed. It is also possible to increase the current to the coils as the speed of rotation increases, so that the magnetic containing field is always greater than the forces tending to disturb the liquid in the gap.

For remote control of mains and battery powered electrical equipment such as garage doors drive motor, porch light . . . also an intruder alarm

V.H.F. PORTABLE RADIO

A six transistor super-regenerative receiver for a.m. transmissions

y yerray Ics

THE NOVEMBER ISSUE
WILL BE ON SALE
FRIDAY, OCTOBER 21
Only 40p

INN the last issue, the timing circuits were described and an introduction was given to the operation of the scoring logic, where the " P " flip flops were discussed. The description of the scoring logic is to be continued this month, commencing with the details of four flip flops that are used to produce the results for the number of coloured pegs correct for colour but incorrect for position, the "I" results.

COMBINATIONS THAT CAN OCCUR

At this stage it is worthwhile considering the various combinations of entries and internal colours that may occur in a typical game, as it is the nature of this combination that determines the particular mode in which the scoring logic will operate. The combinations that may occur can be divided into four categories:
(a) The entries may be non-repeated and the internal colours may be non-repeated,
(b) the player may repeat the colours in a deduction,
(c) there may be repeated colours within the machine, and
(d) a combination of (b) and (c).

Each of these categories may be sub-divided to include the cases where there are only " I ", " P ", or " I " and " P " results occurring.

Fig. 4.1 is the overall functional diagram of the scoring logic, and this will be referred to extensively throughout the description of the operation.

THE "II" FLIP FLOPS

Four flip flops, called the "I' flip flops, are used to produce the "I" results. These flip flops are clocked by signals $C_{1} \overline{\mathrm{C}}$ to $C_{4} \bar{C}$, for I_{1} to I_{4} respectively, so as to eliminate any adverse effects that may otherwise have been produced by time delays inherent in the comparator logic, had signals C_{1} to C_{4} been used instead. This point was discussed in detail last month.

[^3]With reference to Fig. 4.1 it will be seen that the E (Equality) signal (from IC15) is common to the "J" inputs of all "I" flip flops, so that if, for example, $C_{1} \bar{C}$ and E are present simultaneously, I_{1} will be set on the trailing edge of $\mathrm{C}_{1} \mathrm{C}$. The " K " inputs to these flip flops are connected to logical zero, so that a flip flop may only be cleared by the application of logical zero to the clear input.

A simple example, in category (a), showing the collective action of the " I " and " P " flip flops, is illustrated in Table 4.1.

An example in category (b) is shown in the simplified diagram of Fig. 4.2(iii). Here the player has entered two blue pegs, the first of which will set P_{1} and I_{1}; the second one will produce no further change. However, according to the rules of play,

Table 4.1

ENTRIES	\times CODES			
Red $\{$	$\begin{aligned} & \text { Black } \\ & \mathrm{K}=1 \\ & \mathrm{C}_{1}=1 \\ & \mathrm{E}=0 \\ & \mathrm{P}_{1}=0 \end{aligned}$	$\begin{aligned} & \text { Red } \\ & \mathrm{K}=1 \\ & \mathrm{C}_{2}=1 \\ & \mathrm{E}=1 \\ & \mathrm{I}_{2}=1 \end{aligned}$	White $\begin{aligned} & K=1 \\ & C_{3}=1 \\ & E=0 \\ & I_{3}=0 \end{aligned}$	Green $K=1$ $\mathrm{C}_{4}=1$ $\mathrm{E}=0$ $I_{i}=0$
Black $\{$	$\begin{aligned} & \mathrm{L}=1 \\ & \mathrm{C}_{1}=1 \\ & \mathrm{E}=1 \\ & \mathrm{I}_{1}=1 \end{aligned}$	$\begin{aligned} & \mathrm{L}=1 \\ & \mathrm{C}_{2}=1 \\ & \mathrm{E}=0 \\ & \mathrm{P}_{2}=0 \end{aligned}$	$\begin{aligned} & \mathrm{L}=1 \\ & \mathrm{C}_{3}=1 \\ & \mathrm{E}=0 \\ & \mathrm{I}_{3}=0 \end{aligned}$	$\begin{aligned} \mathrm{L} & =1 \\ \mathrm{C}_{4} & =1 \\ \mathrm{E} & =0 \\ \mathrm{I}_{4} & =0 \end{aligned}$
Blue $\{$	$\begin{aligned} & M=1 \\ & C_{1}=1 \\ & E=0 \\ & I_{1}=1 \end{aligned}$	$\begin{aligned} & M=1 \\ & C_{2}=1 \\ & E=0 \\ & \mathrm{I}_{2}=1 \end{aligned}$	$\begin{aligned} & M=1 \\ & C_{3}=1 \\ & E=0 \\ & P_{3}=0 \end{aligned}$	$\begin{aligned} & M=1 \\ & C_{4}=1 \\ & \mathrm{E}=0 \\ & \mathrm{I}_{4}=0 \end{aligned}$
White $\{$	$\begin{aligned} & N=1 \\ & C_{1}=1 \\ & E=0 \\ & I_{1}=1 \end{aligned}$	$\begin{aligned} & \mathrm{N}=1 \\ & \mathrm{C}_{2}=1 \\ & \mathrm{E}=0 \\ & \mathrm{l}_{2}=1 \end{aligned}$	$\begin{aligned} & N=1 \\ & C_{3}=1 \\ & E=1 \\ & I_{3}=1 \end{aligned}$	$\begin{aligned} & \mathrm{N}=1 \\ & \mathrm{C}_{4}=1 \\ & \mathrm{E}=0 \\ & \mathrm{P}_{4}=0 \end{aligned}$

[^4]

Fig. 4.1. Overall functional diagram of the scoring logic
only P_{1} must remain set. Correct operation is ensured by arranging that when a given " P " flip flop sets it's corresponding "I' flip flop, I_{1} in this case, is cleared and inhibited for the remainder of the deduction. A " P " correct entry is therefore a dominant one, as shown in Fig. 4.2(iv).

This dominance of a " P " flip flop over its corresponding 'I'" flip flop can be seen in Fig. 4.1, since the complements of

Notice that comparisons that are "ignored" or "erased" are deleted in the above tables

Fig. 4.2. Examples showing collective action of "p" and "I' flip flops
the " P " outputs are connected to the inputs of the NAND gates labelled "Level 1". If, therefore, P_{1} has set, then $P_{1}=0$ acts to inhibit I_{1} via the NOR gates of "Level 0 ".

A further example in category (b) is shown in Fig. 4.2(v), where there are repeated " I " correct entries. The first blue entered sets I_{1} and the subsequent blue entries are then ignored, since I_{1} can only set once.

Category (b) has now been fully explored, but before proceeding to (c) it is firstly necessary to describe the hierarchy of gates serving to clear the "I" flip flops.

RESET LEVELS

There are three levels, of four gates each, serving to generate the various resets required for correct operation of the scoring logic, see Fig. 4.1.
"Level 0 ", comprised of NOR gates, is an unconditional level, since a logical one applied to any gate input will clear the corresponding " I " flip flop. One input to each gate of this level is derived from "Level 1", whilst the other input is connected to the logic labelled "Reset Logic", to be described next month.
"Level 1" is likewise an unconditional level, since a logical zero applied to any input sends the gate's output high and clears an "I" flip flop via "Level 0 ". The four signals $\overline{\mathbf{P}}_{1}-\bar{P}_{4}$ are each taken to a gate in this level, performing the "clear and inhibit" function mentioned previously.

The clear line, $\overline{\mathrm{R}}_{\mathrm{L} 2}$, is also connected to these gates, so that since this signal is taken low whenever the scoring logic has to be cleared, all "I" flip flops are reset unconditionally to zero.

The third set of inputs to the gates of "Level 1" comes from "Level 2". This is a conditional reset level, since all inputs to a given gate must be high in order to clear an "I" flip flop via levels 1 and 0 .

THE "S" FLIP FLOPS

Just how these reset levels function in the logic will be discussed later, but in order to proceed with the description of "Level 2" the four "slave" or " S " flip flops must be introduced. Briefly, these flip flops serve to indicate which of the "I's have set in response to any particular entry made by the player. Examples Fig. 4.2(i) and (ii) illustrate why these additional flip flops are required. Note that these are both examples in category (c).

In 4.2(i) the first colour the player enters will set flip flops P_{1}, I_{2}, I_{3} and also S_{2} and S_{3}, the "slaves" corresponding to I_{2} and I_{3}. The fact that both S_{2} and S_{3} are set indicates that two "I" flip flops have been set in response to a single entry.

Example (ii) illustrates why this information cannot always be gained from the "I" flip flops themselves, since they contain not only a record of the current entry but also of any previous entries.

In both of these examples a single entry is seen to set both an " I " and a " P " flip flop. However, one entry, by the rules of play, cannot be counted as being correct for colour and position and yet correct for colour and incorrect for position at the same time, albeit with two identical internal colours in different positions. Both examples therefore give an incorrect score. It is the main function of "Reset Level 2 " to overcome this problem.

Since a " P " correct entry is dominant it is necessary to clear any "I" flip flops that may also have been set by the entry. Therefore, in Fig. 4.2(i), both I_{2} and I_{3} must be cleared. To do this the PI signal is used, which, it may be remembered, produces a logical one output whenever a " P " correct entry has been made (until such time as a subsequent entry is made).

Fig. 4.3. Scoring logic circuitry

This signal is used to enable "Reset Level 2" in order to gate the outputs of the " S " flip flops to clear those "I" flip flops whose " S " flip flops have set. It will be seen from Fig. 4.1 that gates 3 and 4 of "Level 2 " have three and four inputs respectively. The additional inputs are inhibit inputs and will be described next month. For the moment they may be regarded as being held at logical one.

The operation of the system, with reference to Fig. 4.2(i), is now as given below.
(1) Enter first colour-Red.
$K($ from $I C 20)=1$.

$$
\begin{array}{ccc}
\mathrm{KC}_{0} & - & \text { All logic cleared. } \\
\mathrm{C}_{1} \overline{\mathrm{C}} & - & \mathrm{P}_{1} \text { set, } \mathrm{I}_{1} \text { and } \mathrm{S}_{1} \text { cleared and inhibited. } \\
\mathrm{PI}=1 .
\end{array}
$$

(2)-(4) No change. Only P_{1} remains set, which is the correct score for this deduction.
Referring to the latter sequence of events, it is seen that when PI gates \mathbf{S}_{2} to clear $\mathrm{I}_{2}, \mathrm{~S}_{2}$ is also cleared, and similarly for S_{3} following $C_{3} \overline{\mathrm{C}}$. The precise reasons for this will be examined next month, but it is important to note that the reliability of these resets depends solely on the existence of a time delay around the reset loop. Hazard free operation can only, therefore, be assured if "on spec" gates are used. The clearing of the "S" flip flops as described may be seen in Fig. 4.1, since the outputs of "Level 1" are connected to "Level S", which serves to clear the " S " flip flops.

The "S" flip flops must only provide a record of those "I"s set in response to a single entry, so they are cleared by C_{o}, connected to "Level S", at the start of each entry.

CONSTRUCTION

The positions of this month's i.c.s are shown in Fig. 4.4. Construction is fairly straightforward, reference being made to the circuit diagram of Fig. 4.3 as well as to Fig. 4.4.

Fig. 4.4. Prototype component layout for "C" section of main board (see photo last month). For assembly details one should refer to the circuit diagram

A number of input connections cannot be completed until next month and it is therefore recommended that these be left completely unconnected for the moment.
The best order in which to complete the construction is as follows: IC $31-39,41 \mathrm{c}, 45 \mathrm{a}, 41$ and 42 respectively.

The outputs from the "I" flip flops are taken to the " I " adder, described last month. Connection details are given in Fig. 4.3.

Note that \bar{E} and not E is taken to IC33, and also that $\overline{\mathrm{PI}}$, from IC30, is inverted by IC36b.

"S" FLIP FLOP J INPUTS

Again due to the fact that these flip flops must only provide a record of those " 1 "'s set by the current entry, an " S " flip flop must not set if its corresponding "I" flip flop has set in response to a previous entry. This is arranged by gating the J_{s} inputs such that $\mathrm{J}_{\mathrm{s}_{1}}=E \overline{\mathrm{I}}_{1}, \mathrm{~J}_{\mathrm{s}_{2}}=E \overline{\mathrm{I}}_{2}$, etc.

COMPONENTS . . .

Integrated Circuits	
IC31-32	SN7473N (2 off)
IC33-35	74402 (3 off)
IC36	7404
IC37-38	7473 (2 off)
IC39	7400
IC41-42	7410 (2 off)
IC45	7420

Capacitors

C11-C13 $\quad 0 \cdot 1 \mu \mathrm{~F}$ (3 off) 10 V ceramic
C14 $3,500 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic

This gating is performed by IC33 which is a 7402 quad two input NOR gate.

The circuit diagram is shown in Fig. 4.3. All flip flops are JK types SN 7473 N . The reset levels are implemented as follows:
${ }^{3}$ IC34+IC36a-Level 0
$\frac{1}{2}$ IC39 + IC4Ic + IC45a-Level 2
$\frac{2}{3}$ IC41 $+\frac{2}{3}$ IC42-Level 1
IC35-Level S.

TESTING

Testing is somewhat complicated by the fact that a number of connections have not yet been made. For example, the " 1 " flip flops are always held "clear" owing to the floating inputs to IC34, awaiting connections from the "reset logic". However, provided that the constructor connects pins 9, 6 and 3 of IC34 temporarily to 0 V , then very worthwhile testing may be performed by simply playing the game and noting the scores (the "I'" flip flops are enabled by these temporary connections).

The randomly generated codes may firstly be monitored using a d.c. voltmeter. These codes are contained in i.c.s 3-6.

The " P " results may be "read" from Veropins 16 -18 and the " 1 ". results from pins $13-15$ (see Fig. 3.5).

The scoring given by the machine should follow the rules of the game in all cases except where there are certain repeated codes within the machine, that is a combination in category (c) or (d). Remember that fault tracing can be enhanced by slowing down the internal clock, as described last month, should any problems be encountered.

NEXT MONTH: The final part of this series of articles will deal with the remainder of the scoring logic and the display circuits.

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

WASH-WIPE CONTROLLER

Fig. 1

Aclear windscreen is essential for safe driving. However, on some older cars, operating the windscreen washer and wipers simultaneously while still remaining in perfect control, is not easy.

The circuit in Fig. 1 is designed to wash the screen and then wipe it clear, having switched off the washer; all at the touch of a button. When S 1 is pushed, Cl charges up almost instantly, which holds TR1 on, and operates RLA. Consequently RLA1 charges up C2 and turns on TR2, thus energising RLB also. At this point both washer and wipers are working.

When Cl has lost enough charge through the base of TR1, RLA will drop
out, leaving C2 fully charged and RLB still energised. At this point, just the wipers are left operating. Eventually, when C2 has lost sufficient charge, RLB will drop out to switch off the wipers, and then the sequence is complete.
The values of C 1 and C 2 are a matter of choice, but with the values shown ($250 \mu \mathrm{~F}$), the washer and wipers should run together for about five seconds, and then just the wipers for a further five seconds. The resistance of the relay coils will affect this timing relationship.

Any 12 volt relay should be suitable as long as the coil current does not exceed the rating of the transistors used. When
considering the contact ratings of the selected relay, remember that the stall (starting) current of the washer or wiper motor, may well be several times the running current.

A convenient position for the WashWipe Controller switch is on the steering column, similar to indicator or headlamp flasher switches. If the button is pressed before the cycle is complete, the sequence will begin again irrespective of how far the process has gone.
J. R. Ellis,

Hitchin,
Herts.

SIMPLE LOGIG PROBE

ALogIC probe is a vital instrument in the checking of digital equipment. The circuit of Fig. 1 shows a simple threefunction probe which can be built very economically.

A high logic level at the probe tip causes TRI to conduct, illuminating the 1.e.d. marked " 1 ". A low logic level produces a high at the output of the inverter G1, causing the l.e.d. marked " 0 " to be lit.

If, however, the logic level at the probe tip is being pulsed, either a 0 pulsing to 1 , or a 1 pulsing to 0 , the monostable ICl will detect the pulses and stretch them to about 0.4 s duration. The l.e.d. marked " P " will then flash briefly.
The whole circuit was constructed on Veroboard and mounted in a small metal pill box, using three 1.5 V batteries to supply the power. The inverter Gl can be one section of any TTL package, such as a 7400,7402 or 7404 , which may be to hand, with inputs paralleled if appropriate.
A. C. Hay,

Bristol

Sequence generators find wide application as counters, and in the field of digital communications. One form of sequence generator is the feedback shift register, comprising a shift register with combinational logic feedback from its outputs to its input. This feedback determines the next logical state to be entered into the register.

The circuit diagram of Fig. 1 uses an SN7495 4-bit shift register, operating in the serial in, parallel out mode, and is suitable for use as the binary number generator for a digital die. As the shift register is clocked, its three outputs follow the 6 -state cyclic sequence shown in Fig. 2.

The SN7451 dual, 2 -wide, 2 -input And-or-Invert gate forms the combinational logic feedback network which processes the outputs \mathbf{A}, B and C to determine the next logical state for the register. This combinational logic performs the Boolean function:

$$
\mathrm{F}=\overline{\mathbf{A C}+\mathbf{B C}}
$$

Fig. 1

SEQUENCE GENERATOR

A suitable clock source is shown in Fig. 3. This consists of a simple unijunction relaxation oscillator, plus a pulse amplifier to boost its output. Closing S1 activates the oscillator and thus creates the "roll" effect for the die. An important characteristic of this clock source is that when S1 is released, the effect of any contact bounce does not appear at the output of the clock source. Such contact bounce can cause the register to clock spuriously, leading to unwanted output combinations appearing, i.e. 000 or 111.
P. Hutchinson,
Brockenhurst,
Hants.

Fig. 2

UNIVERSAL
 P.A. PREAMPLIFIER

Fig. 1

THE circuit of Fig. 1 was developed to provide improved dynamic range, distortion and signal-to-noise ratio on an otherwise conventional 741 -based, 16-channel mixer. It also incorporates a number of novel features which simplify the input switching requirements for the mixer.
This preamplifier will handle signal levels ranging from less than 1 mV , such as might come from a highquality microphone, up to several volts r.m.s., as can be produced by a high output guitar pick-up. The differential input provided by TR1 and TR2 operates over this range with low distortion, and allows a balanced input to be achieved without the expense and inconvenience of a microphone transformer.

The arrangement of the input connections eliminates the need for switching between balanced and unbalanced modes. A stereo jack is used, providing two signal connections for a balanced lead, connected by means of a stereo jack-plug. The signals are then fed via R1 and R2, giving a differential input impedance of about $90 \mathrm{k} \Omega$.

Fig. 2

An unbalanced signal source would be connected via a mono jack-plug, whose sleeve will short R2 to earth, so that the amplifier functions as a non-inverting single-ended input stage, with an input impedance of about 45 kS .

For input impedances les than those quoted above, a loading resistor R_{L} should be connected across the input ends of R1 and R2 so that the resultant paralleled value approximates to that requried (e.g. $\mathrm{R}_{\mathrm{L}}=680 \mathrm{2}$ for 60012 line). This resistor could be inserted by means of a front panel switch, but a simpler and more versatile solution is to wire an $\frac{1}{8} \mathrm{~W}$ resistor inside the actual jack-plug, as shown in Fig. 2. A robust screened jack-plug with solder terminals should be used, and colour-coded tape applied to the cable to show that it has been "preloaded" and now matches a standard high impedance input on virtually any amplifier.

The input stage feeds a high gain common-emitter voltage amplifier, TR3, with a bootstrapped collector load for increased efficiency. This is followed by an emitter-follower based on TR4, which provides a lowimpedance output for tight control of the feedback circuit, and is capable of driving channel fader or tone controls without detriment to the signal, which is closely balanced about earth.

Gain is variable between unity and $60(36 \mathrm{~dB})$, providing a minimum output of 50 mV r.m.s. for further amplification. Several such preamplifiers could be incorporated into a mixer or public address amplifier, with tone and volume controls and mixing-withgain based on i.c. op. amps. The balanced supplies could then be derived from the op. amp. supply, decoupled and Zener-stabilised as appropriate.
P. J. Willcox, London W11.

TTL FREQUENCY DOUBLER

The circuit shown in Fig, 1 is a frequency doubler using TTL gates. It provides two complete output pulses for one complete input pulse.

On the positive-going edge of the input pulse, the output for ICla goes tow and this sudden change is passed through C2 to turn D1 hard on. This causes ICl pin 5 to go low and pin 6 to go high. If no further changes are made at the input, C 2 discharges and the output returns to the low condition. On the negative-going edge of the input pulse, D2 is turned on
via Cl , causing the output of Cl b to go high again, returning to low shontly after.
The two diodes are included to prevent execessive voltages being applied to the inputs of IClib. The values of Cl and C 2 depend upon the input frequency being used. The table gives a rough guide to the actual values required for four different frequency ranges.

The shape of the output pulse may be improved by using a Schmitt nand gate (such as the 7413) for IC1b.
P. J. Hambridge, Ilford.

Fig. 1

The circuit in Fig. 1 uses a seven segment l.e.d. display to show characters that indicate a car system fault, such as low hydraulic fluid or coolant, and are accompanied by an audible tone. Altogether, these eight characters and their meanings are shown in table 1.

When any one of the sensor outputs falls to logical 0 (when a fault occurs) the output of the 7430 eight

CAR SYSTEM MONITOR

input gate, goes high. This enables a simple three gate oscillator, and TR1 drives the loudspeaker. The 7430 output also enables the seven segment display drivers (7401s). The original sensor output pulls its associated driver gate (7407) output to ground. This output pulls down the 7401 driver inputs via the diode matrix. When the drivers are enabled, the output is at ground level, therefore switching on that segment connected to it, the DL707 being a common anode display

Sensor circuits of the type used with the display are shown in Figs. 2 to 5. Fig. 2 shows a spark plug monitor. This has a discrete l.e.d. which will glow when that plug is firing. The coil picks up impulses which are fed via an amplifier to a monostable which fires for about 0.7 second. This charges up a capacitor and produces a logical 1 at the Schmitt gate input. Missing pulses will allow the capacitor to discharge, changing the state of the Schmitt trigger, and causing a final display of " S ". One circuit can be used for each plug, each feeding into the SN7413.

Fig. 3 shows an oil pressure monitor. When the input falls to zero volts, the first transistor switches off and the second transistor switches

on. This produces a zero at the "0" input of the display circuit The preset must be adjusted so that the display comes on only when the input is at exactly zero volts.

Pig. 2-SPARK PLUG MONITOR

Fig. 4 shows the headlamp and brake-light sensors, one of which is required for each bulb to be monitored. When the lamp is on, a voltage is produced across the 0.5Ω resistor, turning on TR1 and consequently TR2. This produces a low input at G1, and so too does TR3 if the headlight switch is on. The exclusive or function of G1 produces a low output whenever the two inputs are the same.

The output of G1 is fed to the exclusive or array, which will produce a low, only if one or more lamps do not draw current when switched on. The brake-light will have a similar circuit, but with effectively only gates G3 and G5 in its or array. The value of the 0.55) resistor may need to be varied according to the bulb rating it is in series with.

Fig. 4-headlamp \& brake light sensor

The battery level indicator is shown in Fig. 5a. This is a simple comparitor, working from a reference Zener diode with its voltage divided down, to minimise the effects of supply voltage variation. When the input voltage falls below 11 volts, the output drops to logical 0.

The fluid indicators apply to hydraulic and coolant levels. The output of these probe networks are connected to similar comparitors to that shown in Fig. 5a. A typical probe arrangement is shown in Fig 5 b , where, if the fluid drops below the probe, conduction ceases and the output voltage drops. The comparitor output becomes logical 0 , displaying " F " or " C " on the display, depending on which probe.
The temperature unit is similar to the fluid level sensor, but a thermistor replaces the probe. The reference voltage is connected to the positive input of the comparitor, and the signal input to the negative. The reference voltage is set so that a logical 0 is produced when the temperature becomes excessive.

Decoupling of the i.c.s is essential due to the large amount of electrical noise produced in a motor car.
P. M. Glover, $\begin{array}{r}\text { Ockbrook, } \\ \text { Derby }\end{array}$

Fig. 3-OIL PRESSURE

Hig. E-LEVEL INDICATORS

COUNTER

1 T is often a requirement to reset a 7490 counter to one instead of zero. The 7490 is in fact two separate counters in one package, with an external connection required between the A output of the divide-by-two stage and the B input of the divide-by-five stage.

These counters change state on a negative-going edge, so that if an inverter is put in the external loop between the stages, and the output of the inverter (A^{\prime} in Fig. 1) is now read as the output of the divide-bytwo stage; on reset the output count will read one.

TRUTH TABLE

Basic Count	A	A^{\prime}	B	C	D	Modified Count
0	0	1	0	0	0	1
1	1	0	1	0	0	2
2	0	1	1	0	0	3
3	1	0	0	1	0	4
4	0	1	0	1	0	5
5	1	0	1	1	0	6
6	0	1	1	1	0	7
7	1	0	0	0	1	8
8	0	1	0	0	1	9
9	1	0	0	0	0	0
	Outputs					
	to decoder					

After the first input pulse, the A^{\prime} output will go to a low logic level, and as this is a negative-going edge

Fig. 1

BD INPUT

the B output will go high, giving an output count of two.
lit can be seen from the truth table that the normal counting sequence will be followed, but running from one through to zero instead of zero through to nine.
M. R. Oakley,

Walsall.

DIGITAL GLOCK TOUCH-SWITCHES

AMAINS alarm clock using the MK50253 clock chip was built, and it was decided that touchswitches were desirable for all functions. The high input impedance, low power consumption and cost, of cmos i.c.s made them ideal for this purpose, and in fact they worked out cheaper than ordinary push switches!

Two CD4.011 quad 2 input Nand gates (G1 and G2) were used. Most of the switches consist of simple refinements to Fig. 1, which is that used for the SNOOZE control. A $10 \mathrm{M} \Omega$ resistor (R 1) holds both the inputs of Gla high, thus giving a low at the output. By placing a finger
across the input and ground, the output goes high, thereby enabling the respective pin on the clock i.c.
The circuit for setting minutes, tens-of-Minutes, and hours (Fig. 2), is similar, except that two diodes connected to the inputs of G1b and Gic allow the minutes to be advanced.

For the RUN, STOP, ALARM SET function, three gates and two diodes are required (Fig. 3). Diodes D3 and D4 are necessary to allow pin 15 of the clock i.c. to be floating when in the RUN mode.

The alarm on/off circuit shown in Fig. 4 is a simple flip-flop. The l.e.d. D5, and TR1, allow visual indication when the alarm is set.

Power can be derived straight from the existing supply if it does not exceed about 16 volts. TR1 can be any cheap p.n.p. transistor such as a 2N3703. Diodes DI to D4, are small signal silicon diodes such as 1 N 914 .

For the touch-plates, pairs of "defunct" metal cased TOI8 transistors were used. The heads were passed through small holes in the top of the case, and the appropriate wire soldered to the collector lead, which is usually connected internally to the case of the transistor. This gives a very neat appearance.
G. Watts,

Bordon, Hants.

Fig. 1

Fig. 2

Fig. 3

Fig. 4
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

R.C.S. 10 WATT AMPLIFIER KIT

This kit is suitable for record players, tape play back, guitars. electronic instruments or small P.A. systems. Two verstons are available. The mono kit uses 13 semiconductors. The stereo kit volume. bass and treble controls, Spec. 10W output in to 8 ohms,
vin into 15 ohms. Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{ke} / \mathrm{s}$, input $100 \mathrm{M} . \mathrm{V}$. high $7 W$ into 15 ohms. Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{ke} / \mathrm{s}$,
imp. Size $9+3 \times 2 \mathrm{n}$. AC maing operated.

ELAC 10 inch $£ 4.50$ Ribber cone. Large ceramic magnet.
$50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. ELAC $9 \times$ Sin HI-FI $£ 3.45$ SPEAKER TYPE 59RM Post 35

ELAC HI-FI SPEAKER 8in TWIN CONE
Dual cone plastic roll surrouno. Large ceramic magnet. $50-16,000 \mathrm{c} / \mathrm{s}$ Bass resonance $40 \mathrm{c} / \mathrm{s} .8 \mathrm{ohm}$ impedance. $\mathbf{£ 5 . 9 5}$ Post 35

GOODMAN'S COMPACT 12in BASS WOOFER
Gtandard 12 in diameter flxing with cut sides
totin square. 14,000 gauss magnet. 30 watt
 p.s Frequency response 10.95 eachuency response: $30-8.000$ c.p.s.

PERIOD LOUDSPEAKER CABINETS Two styles avallable, Regency and Queen Anne. Size approximately $4 \times 19 \times 16 i n$. These cabinets are slightly solled and are priced

ADASTRA $3+3 W$ STEREO AMPLIFIER. 10 Transistor

5 Wafer
Size $10{ }_{i} \times 8_{i} \times \frac{1}{1} 1 \mathrm{~m}$. Operating voltage $200 / 250 \mathrm{~V}$ a.c. 250 W approx. Suttable for Meating Pads, Food Warmers, Convector Heaters, etc. Must be clamped between two sheets of metal or asbestos. ONLY 40P EACH (FOUR FOR $£ 1$-50) ALL POST PAID-Discounts for quantity.

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE!
With tweeter. And crossover. State.
Nat 8 onm Model \quad I7. 95
15W model $£ 10.50$
20W model $£ 11.50$
TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A". $20 \times 13 \times 12 \mathrm{in}$. For 12in. dia. or 10 in . speaker. Illustrated. $£ 14.50$ Post $£ 1 \cdot 60$ MODEL "B". BOOKSHELF
For 13×8 in. or $\quad \mathbf{8} \cdot 50$ Post Bin. speaker. $£ 1$ R.C.S. BOOKSHELF SPEAKERS Size $14 \times 9 \times 6$ in. approx. Response 50 to $14,000 \mathrm{cps} 6$ watt rms 8 ohms. E16 pair Post $£ 1 \cdot 30$ ACOUSTIC WADDING 18 in . wide, 20 pt .

KUBA-KOPENHAGEA STEREO

TUNER-AMPLIFIER CHASSIS AM-FM $5+5$ WATT
This Continental 4band radiogram chassis uses first class quality components throughout. Features: Large facie panel with 7 push
buttons for medium. long. short, VHF.FM, AFC, phono, mains on-oft, 4-rotary controis, tuning, volume, tone, balance. Facia size 17×4 in. Chassis size $17 \times 4\} \times 5$ in. DIN-connector sockers for tape record/playback, loudspeakers. phono plek-up, external
FM-AM aerials. Automatic stereo beacon light. Built-in ferrite rod FM-AM aerials. Automatic stereo beacon light. Built-in ferrite rod aerial for medium/longwave. $\quad £ 33.50$ post $£ 1.50$

BAKER MAJOR 12 INCH
£15

$30-14,500 \mathrm{c} / \mathrm{s}$. 12 in double cone, wooter and tweeter cone together with a BAKER ceramic magnet assembly having a fluy
density of 14,000 gauss and a total flux of 145.000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25 W
OTE 16 ohms available.
Module kit, 30-17,000 α / s with tweeter.
crossover, baffe, 19×12 in.
instructions. As illustrated.
$\mathbf{1 1 9}$
Plose state 16 ohms. Post 1 1.60

BAKER 150 WATT
ALL PURPOSE
TRANSISTOR
AMPLIFIER
ldeal tor Groups, Disco, P.A. and Musical inst
speech and music. 4 way mixing. Output

NEW "DISCO 100 WATT", $£ 59$
ALL TRANSISTOR AMPLIFIER CHASSIS
dispos. 4 outputs separaie volume treble and bass controls. Ideal disco or slave amplifier chassia, Made by Jennings
BLACK CARAYING CABINET AVALLABLE E9.

RADIO COMPONENT SPECIALISTS

337 WHITEHORSE ROAD, CROYDON, U.K. Tel. 01-684 1665

The
 Amazing Mk. 2
 MINISONIC

IS HERE
TO STAY
A sound investment and a
pleasure to build, available as a
complete kit, module kits, pre-finished metal-
work kit or complete instruments. We súpplied
components for the original P.E. Minisonics, now let
us supply yours.
Send S.A.E. for full price structure.
Kits for the P.E. Sound Synthesiser are still available

BUY FROM THE SPECIALISTS

EATON AUDIO

P.O. Box 3 (6 Jutland Rise) St. NEOTS, CAMBS. PE19 3JB

TERMS: MAIL ORDER ONLY, C.W.o MINIMUM ORDER $\AA 1$. VAT. Please add 12% to value of order inc. P. \& P. unless otherwise Audio. Orders over ES free of P. A AP. otherwise please add 10 p in the $\mathrm{E1}$. Callers by appointment only

WIRE THREADING INTROKIT

Conductive paint 3 g tube " Elecolit 340°

TERMS: Add 35p P. \& P. per order (Oryx iron and stand 45p P. \& P.). Add 8\% VAT to all orders-Overseas-Allow $£ 1$ extra for P. \& P. airmail.

MAIL ORDER ONLY: Access available. Trade enquiries welcome.

ZARTRONIX, 115 Lion Lane, Haslemere Surrey GU27 1JL

For Semi-Conductors

including

Small Signal Transistors
Power Semi-conductors
TTL, CMOS, I.C.s
Linear I.C.s
Signal and Power Diodes
Zener Diodes
Magneto Resistors
Hall-effect devices
Magnetic Proximity Switches
Opto-electronic devices

For passive components

including
Plastic Film Capacitors
Electrolytics
Semi-precision capacitors
Transformers
Pot Cores
R. M. Cores

Ring Cores, etc.

ELEGTROVALDE
THE PROJECTS YOU BUILD

The Open Door to Quality

It's the Electrovalue Catalogue No. 8 (4th edition black and white cover) with completely up-dated prices. 144 pages, well illustrated. 40 p post free with 40 p voucher usable on orders for $\mathbf{5 5}$ or more. Send for yours now and order in confidence.
GOODS SENT POST FREE IN U.K. FOR C.W.O. ORDERS. Keenly competitive prices plus ATTRACTIVE DISCOUNTS and only best quality goods.

ELEGTRONALDE ITD

(Dept. PE11) 28 St. Jude's Road, Englefleld Green,
Egham, Surrey TW20 OHB.
North: 680 Burnage Lane, Burnage, Manchester Tel. (061) 4325945
T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T., FAIRCHILD etc

XEROZA RADIO

306 ST. PAUL'S ROAD HIGHBURY CORNER, LONDON N. 1

A SPECIAL OFFER FROM ALCON

The MINOR professional multimeter by Chinaglia available at $£ 28 \cdot 40$ inc. VAT

This 33 -range instrument uses a Class 1.5 movement with $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. and $4 \mathrm{k} \Omega / \mathrm{V}$ a.c. sensitivity Accuracy is $2 \cdot 5 \%$ d.c. and 3.5% a.c. Self-powered and pocket-sized, the Minor is guaranteed for 12 months and there is an optional 30 kV probe available at $£ 9 \cdot 70$.
SAVE NOW - BUY WHILST STOCKS LAST

Grablitank Capacitive discharge

 electronic ignition kit

MOTORING MAGAZINE

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Optimum fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new. old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.

THE KIT COMPRISES EVERYTHING NEEDED
Ready driled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions.

OPTIONAL EXTRAS
Electronic/conventional ignition switch
Gives insiant changeover from "Sparkrite" ignition to conventional ignition for performancé comparisons, static timing etc. and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excludec. Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).
CALLERS WELCOME. For Crypton tuning and fitting service phone (0922) 33008
PRICES INCLUDE VAT. POST AND PACKING.
Improve performance \& economy NOW
NOTE-Vehicles with current impulse tachometers (Smiths code on dial RAI) will reauire a tachometer pulse slave unit. Price $£ 3 \cdot 35$ inc. VAT, post \& packing ELECTRONICS DESIGN AssOCIATES, 22 Bath St., Walall, WSI 3DE

Electronics Design Associates, Dept. PE11
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652
Name ...
Address

Ritandut A SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.
(Fig. 3), and then etched in the usual way.

After etching, the Veroboard is replaced on the aligning pins, and used as a template to drill the p.c.b. holes. Finally the Veroboard is stuck to the p.c.b. plain side, once again using the aligning pins, but this time with the addition of pins soldered through to make the necessary connections; see Fig. 4.

This process should work out considerably cheaper and simpler than conventional double sided p.c.b.s.
R. M. Henderson,

Newcastle upon Tyne.

RIGHT DISPLAY

Sir-I would be grateful if any of your readers can explain to me why there are always two versions of 7 -segment display available? I refer to the l.h. and r.h. decimal point options.

If only they were manufactured with the decimal point (d.p.) "half way up", we could turn them through 180 degrees and make them into l.h. or r.h. decimal point as required
A little further thought on the pinout would ensure that no alteration need be made to the segment connections either
C. P. Finn, Beverley.

considerable care to be taken that both sides aligned correctly.

The difficulty can be overcome using single-sided board, by placing a strip of Veroboard, track-side down, on the copper clad surface of the circuit board. The position of the Veroboard is maintained by clamping it to the circuit board via pins inserted in diagonally opposite holes drilled through both boards simultaneously. As shown in Fig. 2, now that the Veroboard is held in register the copper surface can be marked through the Vero-holes with a sharp point. Next the printed circuit can be marked out, incorporating the points made through the Veroboard

DOUBLE-SIDED BOARD

Sir-There are many cases where double-sided printed circuit board is a necessity, such as to provide a ground plane, or to meet the requirements of certain r.f. circuits. Another situation, where a double-sided p.c.b. would be useful to overcome a logic layout problem is shown in Fig. 1, in which a printed data bus is to feed various i.c.s. To do this on single-sided board would require many tedious and untidy hard wired links. The use of conventional double-sided p.c.b. would call for

SAXON ENTERTAINMENTS LTD

SYSTEM 7000—GUARANTEED MODULES FOR ALL DISCO/P.A. APPLICATIONS

POWER AMPLIFIER MODULES 30-240 WATTS

- Fully tested and guaranteed - Full RMS Sine Wave output - Distortion typically 0.2% - 10 Transistors, 4 Diodes. - Response $30 \mathrm{~Hz}-30 \mathrm{kHz}$. - Fully short and open circuit proof - Sensitivity suits most mixers. - Built-in surge suppression and compensation Twin d.c. and output fuses. - Top-grade components throughout.

$\begin{aligned} & 30 \text { Watts rms } \\ & \hline \text { SA308 } \\ & 30 \mathrm{Wrms} / \\ & 8 \mathrm{ohms} \\ & \mathrm{E9.50} \end{aligned}$		60 Watts rms		120 Watts rms				40W rm
		SA604 60 W rms 4 ohms £12.50	SA608 60 W pms 80 hms £13-50	SA1204 120 W rms 4 ohms £14.50		SA1208 120 W rms 8 ohms 221-00		SA2404 240W rms/ 4 chms £25.50
POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED AND FUSED ON GLASS FIBRE PCB								
$\begin{aligned} & \text { PM } 301 \\ & \text { For } 1 / 2 \\ & \text { SA308 } \\ & \text { £9•90 } \\ & \hline \end{aligned}$	PM601/4 For $1 / 2$ \&12.50	PM601/8 For $1 / 2$ SA608 £12.50	PM1201/4 For 1 SA1204 £12.50	$\begin{aligned} & \text { PM } 1201 / 8 \\ & \text { For } 1 \\ & \text { SA1208 } \\ & \text { \&12.50 } \end{aligned}$			PM1202: For 2 SA1208 £19. 50	8M2404/1 POr 1 FA2404 SA19.50

SYSTEM 7000 COMPLETE DISCO MIXERS (With Autofade) Mono or Stereo

Ready to plug in and use

- Automatic Mic override Two tone panel Twin deck and mic and tape inputs - Left/Right deck fader
- $20 \mathrm{Mz}-20 \mathrm{kHz}$ Noise -77dB

Controls: Mic volume, Bass, Treble, A/Fade Depth, Tape, L/Deck, R/Deck volumes. Bass. Treble, Master, Headphone volume, Selector and On/OH.
Mono 18V £37.50 Mains £43.50 StereotBV £53-50 Mains $£ 59 \cdot \mathbf{5 0}$
IN MODULAR FORM- All you require is front panel (see below) knobs and sockets etc. All electronics are assembled and tested

- Specification as for complete mixer All Potentiometers supplied and fitted Low cost do it yourself with step by step easy to follow instructions. Mono £19•50 Stereo £29•50 Panel £3.50 Supply unit £8.50

SYSTEM 7000 LIGHTING CONTROL UNIT MK II (Four channel)

Has your light unit got?
 - $\begin{aligned} & 4,000 \mathrm{~W} \text { handling } \\ & \text { Sequence facility }\end{aligned}$ \qquad OURS HAS!

- Advanced ic panel Advanced IC circuitry
Top grade components All your needs in
one superbly designed unit

IN MODULAR FORM-THE QUADRAFECT

£29. 50
As with the mixers Mk II L.C. unit may be
(Panel £2-50)
purchased in module form with all controls, requiring only a panel,
case and knobs etc. There are 13 simple connections
CUSTOM MIXER MODULES (Complete or in printed circuit form only) Make your own mixer, mono or stereo, up to 2 channels. with full monitoring facilities, and provision for echosend/return etc

- Inputs for low and high 2 mic, ceramic and magnetic cartridge etc.
- Up to 20 input modules per single mixing module
- Feed most types of amplifier-accepts all inputs
- Professional low noise circuitry $20 \mathrm{~Hz}-30 \mathrm{kHz}$
- Infinitely adaptable-Extremely economical

COMPLETE MODULES With facia panel,
Knobs and sockets, Monitor buttons, Ready wired and tested
Mono input $\mathbf{\Sigma 8 . 5 0}$ Mono mixing stage $\mathbf{~} 8.50$

- 0.5 W headphone circuit
- Full range bass/ treble controls
Stereo input $£ 12 \cdot 00$ Stereo mixing stage $£ 12.00$
PRINTED CIRCUIT MODULES with controls fitted, requires only Mono input $\mathbf{5 5 . 5 0} \quad \begin{aligned} & \text { Sockets, facia and knobs } \\ & \text { Mono mixing stage } \\ & £ 5.50\end{aligned}$ Stereo input $£ 9.00$ Stereo mixing stage $£ 9.00$
Power supply for up to 20 channels--PPM18- 58.50.
SYSTEM 7000 SOUND-LITE (3-CHANNEL)
IN COMPLETE OR MODULAR FORM
(Modular form illustrated)
- Complete unit similar to Mk II unit above
- Long established and proven desig
- 3Channels-100W per channel
- RCA 8 A Triacs-individual channel fuses

COMPLETE UNIT_Fully MODULAR FORM Facia and knobs cased with rear terminations-just etc. Needs only 11 simple connections plug in and go! $£ 24 \cdot 75$

COMPLETE DISCO SYSTEMS (With two year guarantee-low interest credit) Centaur 100w STEREO

From only
$£ 16.06$ deposit
with twin loudspeakers, sound to light sequence plus display
£225 + 10 carr
Dep. £28.80, 12 months at $\mathbf{£ 2 1} \cdot \mathbf{3 8}$ or 24 months at $£ 12 \cdot 01$
Super Centaur 200w STEREO
As above but with 200W
£275 + £10 carr.
$\mathbf{£ 3 2 . 8 0 ~} 12$ months at $\mathbf{£ 2 9 . 3 9}$ or 24 months at $\mathbf{£ 1 5 \cdot 2 1}$
GXL Centaur 200W STEREO. As the Super Centaur but whth extra
£349 + $£ 10$ carr large twin 200 W cabinets, deck
lights, deck starts and superior decks Deposit $£ 42.7212$ months at $\mathbf{£ 3 6 . 5 8}$ or 24 months at $£ \mathbf{2 0 . 5 4}$

- Cue light + head - Micne monitoring - Mic and tape inpul override
- Logic circu - Logic circuitry
a Complete
- Complete and
- Extremely rugged
construction
- Twin BSR decks

Send today for free illustrated leaftet on Saxon complete discos and package PA systems

All equipment subject to a two year guarantee

Deliveries in the U:K.
by our own vans

50W Mini Disco £139.50 + £5 carr. (Dep. £16-06, 12 months at $£ 113 \cdot 30$ or 24 months at $£ 7 \cdot 46$)
100W Mini Disco $£ 159 \cdot 50+£ 5$ carr. (Depp. $£ 22 \cdot 66,12$ months at $£ 14 \cdot 73$ or 24 months at £8 27)
Two extremely compact mono systems complete with loudspeakers and leads 100W package P.A, $\varepsilon 145+\Sigma 7 \cdot 50$ carr. with twin loudspeakers and Piezo Horns 100W package P.A, $£ 145+£ 7 \cdot 50$ carr, with twin loudspeaak
(Dep, $£ 19 \cdot 70,12$ months at $£ 13.78$ or 24 months at $£ 7 \cdot 73$)
ACCESSORIES: Condenser mics ECM77 600 ohm £13.50; ECM81 Dual impedance £14.95; Crown headphones £6.75; Heavy duty boomstand £14.50.
10% DEPOSIT, LOW INTEREST CREDIT ON ORDERS OVER £150
SYSTEM 7000 MINOTAUR 100 -All Purpose Wide Range Amplifiter

100W rms-1dB

- Standard 8 ohm output
a wide range inputs accept
a wide range of signals
- $30 \mathrm{~Hz}-30 \mathrm{kHz} \pm 2 \mathrm{~dB}$ abso
mixin mixing ande must where output. An
mixing and power are required Wide range bass/treble - masto
An extremely compact and
versatile amplifier with
full protection and a clea
attractive appearance
discos and clubs
Vynide covered cas
Fulty short proof
£49-50
SAXON 150 HEAVY DUTY AMPLIFIER

£59.00

SUPERSTROBE £19-75

- 2-3 Joules
- 80W Tube for long life
- Compact 4 in $\times 4$ in $\times 4$ in

PRO-STROBE
£32. 50

- 6-8 Joules
- External trigger
- Long Life tube timer
 circuit

PIEZO HORNS!

150 WATT LIQUID

 WHEEL PROJECTOR- Accepts all accessories C/w with wheel and motor plate
R Sturdy steel construction
Remarkable value-
Sold elsewhere at
is only. $£ 33 \cdot 00$
Up to 150W handling No X-over required $₹ 7 \cdot 50$ each

All prices subject to VAT at 8% except SA308/PM301, mics. and headphones $\left(12 \frac{1}{2} \%\right)$. Add 50 p post and packing on all orders except where already shown Ordering: By Telephone-Access, Barclay Card or COD Ring (01) $6846385 / 0098$ By post -Send cheque or crossed P.O.'s or 60p for COD MAIL ORDERS AND CALLERS TO: CROYDON
327-333 Whitehorse Road, Croydon, Surrey CRO $2 H S$
24 Hour Ansafone service (01) 6846385
Exporters to 17 countries-enquiries welcomed
Aing Sue Abegg on (01) 6846385 for U.K, trade enquiries

INVERTORS

KIT FORM or BUILT UP.

$240 \mathrm{v}-50 \mathrm{~Hz}$ from your 12 v car battery.
O/P Powers avallable. $25 \mathrm{~W}-40 \mathrm{~W}-75 \mathrm{~W}-150 \mathrm{~W}-300 \mathrm{~W}$ $400 \mathrm{~W}-500 \mathrm{~W}-1 \mathrm{~kW}-1 \cdot 5 \mathrm{~kW}$. Various battery I/P voltages avallable.

AUTOMATIC INVERTORS

These units have built-in battery charger which functions whilst malns are healthy. Upon mains fallure unit automatically switches to invertor operation ensuring no interuption of supply. Send S.A.E. for price lists.

15 different rhythms. 9 percussion instruments. Tempo range 15 to $100 \mathrm{bars} / \mathrm{min}$. Full kit of parts avallable at $\mathrm{s} 39 \cdot 50+£ 1 \cdot 20$ P. \& P. + VAT at 8%. Prlce assembled and tested add $£ 12$. Parts avallable separately, send S.A.E. We reserve the right to alter published prices in the event of component or postal increases.
P.E. ORION STEREO AMPLIFIER \& TUNER

May be mounted shim line or stacked as above. Parts avallable separately for both unlis.
$20+20$ Watts $8 . m .8$. Into 8 ohm load. Distortion less than $0.1 \% 100 \mathrm{~Hz}$-10 kHz . Frequency response $\pm 1 \mathrm{~dB}$ 20 Hz 1020 kHz . Hum level virtually nil with volume full on. This is a power amplifier of superb quality incorporating the very latest desion features. Professional hi-fी en-
thusiasts have classed it as fantastic and real value for money. The CCT Incorporates a low flux transformer and inputs for disc, tape, tuner, etc.

TUNER UNIT

May be purchased separately in matching slim line case. As full klt or Individual parts.
Send S.A.E. for price list and specification sheets.

LOUDSPEAKERS

Binch system
Thls system is designed for use with above ampliflera corporated in an emclosure channel at 8Ω. May be in$19.3 \times 11 \cdot 51 \mathrm{n}$) approx. external, constructional detaila of which are given with each bass unit, to provide an overall frequency response of 50 Hz to 22 kHz . Fourelement cross-over, ready constructed on p.c.b. Output Cross-over frequency is 2.8 kHz , approx.

Voltage adjustable from $1-35 \mathrm{v}$ at 2 amps. Short circuit protected. Voltage and current meters incorporated cil
$+8 \%$ VAT.

ASTRO IGNITION

sAVE

Complete kil of parts lor this proven and tested system. (£11.90 +80 p P. \& P.) $+8 \%$ VAT or ready bult with

\&14.50 + 60p P. \& P.) $+8 \%$ VAT.
Consider the advantages:
Fuel economy, Faster acceleration. More power. Excelent cold starting. Smoother running. No contact breaker burning. Less exhaust gases.

TRANSFORMERS

SPECIAL OFFER
Minlature Mains Trans.
$8-0-6 \mathrm{~V}-6 \mathrm{VA}$.
$12-0-12 \mathrm{v}-6 \mathrm{VA}$

$81 \cdot 20+25 p$ P. \& P.) $+8 \%$ VAT
Transformer and colls manufactured to customer specificatlons both in High Volume and Small Order capacity.

TRADE AND EXPORT ENQUIRIES WELCOMED ON ALL PRODUCTS:

ASTRO ELECTRONICS
Springbank Road Chesterfield (31475) Derbyshire

N.B.-DELIVERIES ON ALLITEMS MAY TAKE UP GND DEMAND. CASENDING ON AVAILABILITY OR POSTAL ORDERS CAN REDUCE TIME by NOT HAVING TO CLEAR CHEQUES

NEW FROM CASIOTRON

A new range of these superb watches, available from October. Full details and photographs are not available yet but they should knock spots off all the competition. All with at least 9 functlon including backlight, plus Stopwatch to competition. All with at least 9 functiont including backlight, plus Stopwatch to measuring lap times to One Hundredth of a second. Slimmer than ever, around inch thick in some cases. We witl also be having a Casiotron Alarm Wateh with five way programming of the alarm. These watches will be All Stalniess'Steel with Mineral Glases face and Weter Reslstant to 3 atmospheres, 100 feet. We anticipate they will have a battery hatch with one battery lasting 15 months or more.
Fairchild Timeband Mains Digital Alarm Clocks
$\mathbf{C 5 0 0}$ (left) black or white £14•35; C6110 (centre) £15.90; C590 (right) $\mathbf{2} 24.95$

NEW FROM IBICO. Slim 6 digit 6 function watch plus backlight and CHRONOGRAPH, $1 / 100$ second to 1 hour. Lap and Net times. In the all Stainless Steel 402 ES Water Reslstant case. 451 ES £49.95. On leather strap 451 ELB c42. 50
I. C. New low cost 6 digit watch with $1 / 100$ second stopwatch
£32.50
Solar powered version with Tritium "Beta Light" night light. $£ 44.50$ Stainless Sew slim-line quartz analogue (stepping motor). Nuns R R Price around $\mathbf{2 5 5}$.
CITIZEN. Once the same Company as Seiko. Wide range of these superb quartz analogue and digitals including Solar Powered analogue. PAICES ON APPLICATION.

SPECIAL OFFERS. Spend over E20 on CASIO products and we give you a Brushed Chrome PAPERMATE pen worth £3-90. Casio ST-1 £24.95. CQ-1 239.95 MQ-1.33-95. Full range of Casio Scientific caiculators. Last month s prices. Gold Plated Pen and Pencil Set, or two pens, worth 2.11.90 with any of these watches: Timeband TC410 £27.95, TC412 £31.95, TC413 £28.95, National Semiconductor DAC5 YS £25.90, DAC5 YB £28-50, DAB5 WB £32-50, DAB5 YB £36.50, IBICO 405 ILB $£ 26 \cdot 50,405$ IS $£ 27 \cdot 50,450$ HS Chronograph £47.50, INSTAR $2 \frac{1}{z}$ function LCD Gold Plated on matching bracelet E15.50.
Send 150 for our illustrated catalogue. Cap clocks, TV games, etc.
Offers subject to availability. All items advertised are in stock or on order at copy date. Prices include VAT. P. \& P. Send cheque, P.O. or phone your credit card date. P

Get agreat deal from

GLASCOW－ 85 Edgware Rd W2．Ti．
CATALOGUE NE以 シin \star COMPLETE BUYERS GUIDE TO
PRICE 35p POST PAID． 25 p FOR CALLERS

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U．K．

EXPRESS M．O．SERVICE BY RETURN POST－all orders recelved despatched same day on stock litems												Please add VAT to your					
								｜ 80116		Bfx85			仡		CIR	CUITS	
${ }^{2} \mathbf{N 6 9 7}$	0.30	2N3704	0.15	40361	0.50		${ }^{35}$	－	0.51	BFX87	0.30						
2N698	0.62	2N3705	0.15	40362	0.55	BC161	0． 35	80132	0.54	BFX88	0.30	CA3020	2.00	LM1800			30
2 N 699	0.55	${ }^{2} 33706$	0.16	40363	1.30	BC167	0.12	${ }^{80135}$	0.37	BFX89	1.25	ca3020a	2.29	LM 1808	1．92		1．85
2 N 7	0.28	2N3707	0.18	40406	0.60	BC158	0.12	80136	0.37	BFY50	0.25	CA3028B	1.29	LM	1．75		2．75 $\begin{aligned} & 2.5 \\ & 1.50\end{aligned}$
2N7	0.28	2N3708	0.13	40407	0.52	BC169	0.12	80137	0.38	BFY51	0.25	CA3028A	1.01		0．85		$\begin{array}{r}1.50 \\ 1.50 \\ \hline\end{array}$
2 N	0.28		0.15	40408	0.75	BC	0.18	${ }^{80138}$	$0 \cdot 38$	${ }^{\text {BFY }}$	－0．30	CA3030	1.35 2.00		1.40		1.50 3.91 1
${ }^{2 N}$	0.58	${ }^{2}$	－ 0.16	404098	0.75		0.16	8	0.40		${ }^{0.34}$		2.00		\bigcirc		
${ }_{2}^{2 N 718}$	0.27 0.50	${ }_{\text {2N3712 }}^{2 N}$	1.20	${ }_{40419}^{40410}$	2.85	BC	0．14	${ }^{80140}$	0.40 0.40	${ }^{\text {BFY90 }}$	1.20 0.50	${ }_{\text {CA }}$	1.40 0.99	LM39	0.75 1.60	TAA9308	1.30
${ }_{2 N T 20}^{2 N 7}$	（ 0.90	${ }_{2}^{2 N 3773}$	2.30	40594	${ }_{0} 0.80$	${ }^{8 C 178}$	${ }_{0} 0.20$	8 B 2	0.45	BSK	0.33		$2 \cdot 23$	LM399	0.58		1.95
2 N 14	0.35	2N3714	2.45	40595	0.90	BC179	0.23	${ }^{80241}$	0.45	BSx21	0．32	CA3049	${ }^{1.80}$	MC1035	1.75	${ }^{\text {TBA }}$ TRA200	0．75
2N916	0.30	2 2N3715	2.55	40673	0.75	BC182	0.11	${ }^{60242}$	0.50	${ }^{\text {Bu105 }}$	1.40	CA3050	2.42	MC1303	1.03	${ }^{\text {TBAACOO }}$	2．00
2N918	0.38	2N3716	3.00	AC126	0.45	BC182L	0.14	8024	0.60	Bu205	2.20	CA3052	${ }^{1.62}$	MC1304	1.40	teasoo	2．21
$2 \mathrm{NS29}$	0.25		${ }^{1.95}$	${ }^{\text {ach127 }}$	0.45	BC	0.11	${ }^{80244}$	0.65	MEO402	0.20	${ }_{\text {c }}^{\text {CA3080 }}$	0.75 1.85	MC1305	1．40	T8A	2．21
	0.28	${ }_{\text {a }}^{\text {2N3772 }}$	2．00 2.	${ }_{\text {a }}^{\text {AC128 }}$ AC151V	0.45	BC183L	－0．14	${ }^{80245}$	0.65 0.66	MEO404	0.15	CA303086	1．88	MC1310 MC1327	1	tBas100	
2N11	0.30 0.37	${ }_{2}^{2 \times 37789}$	${ }_{2}^{2.90}$	${ }_{\text {AC152V }}$	${ }_{0}^{0.40}$		0.12 0.14 0.10	${ }^{805296}$	0.65 0.45	MEE4122	0.20 0.10	CA3088	1.70	${ }_{\text {MC }}$	碞	teas 20	2.21
${ }^{2} 1613$	0.30	2 N 3790	3．10	AC153	0.55	BC207	0.16	80530	0.50	ME41	0.10	CA3083	2.52	MC	0.90		2．30
2 N 1711	0.30	${ }^{2 \times 3791}$	3.10	AC153k	0.55	BC208	0.16	Bovzo	1.00	M 4481	1.55	cas	4.00	MC1351	1.20		
${ }^{2} 11693$	0.38	${ }^{2} 2 \times 3792$	3．50	${ }^{\text {ACLI76 }}$	0．50	BC212	0.14	${ }_{\text {BFI } 121}$	－ $\begin{array}{r}0.38 \\ 0.55\end{array}$	M．490	1．35	CA3130	${ }^{0.98}$	MC1352	10	TBA540	${ }_{2}^{2.21}$
${ }_{\text {2 }}^{\text {2N22182 }}$	0.98	¢	0.20 0.36	AC176K AC187K	0.65 0.60	BC212L BC213	－ 0.17	${ }^{\text {BF } 121}$	0.55 0.55	${ }_{\text {MJ }} \mathbf{M} 491$	1.85 1.25	LM301A	0.67 0.45	MC1558	1.91 0.40		2.21 2.30 20
${ }^{2} \mathrm{~N} 2218$	0.	2N3320	0.38	AC 188K	60	BC2	0.14	BF152	0．25	MJE340	1.25 0.58	LM304	2.45	NE556	1.10	tras	3．13
						BC214	0.16	BF153	0.25		0.58	LM307N	0.65	NE565	1.30	teas500	3.22
2 2219A	0.36	${ }^{2 N 3004}$	0.21	adi62	1.05	BC214L	$0 \cdot 11$	${ }^{\text {8F5 } 154}$	0.25	M ME 371	0.60	Lm3	1．82	NES	1.55		${ }^{3.22}$
${ }^{2 N 2220}$	0.35	${ }^{2 N 3906}$	$0 \cdot 22$	Afto6	0.55	BC237	0.14	${ }^{8 F 159}$		MJE	0.45	LM308N					
${ }^{2 N 2221}$	0.25	${ }^{2 N 4036}$	0.67	AF109	${ }^{0.75}$	BC238	0．12	${ }_{\text {BFF60 }}$	－0．30	MJE522	0.65 1.50	${ }_{\text {LM309K }}^{\text {LM317K }}$	1.85 3.00	SAS	2.50	${ }^{\text {TBACA4 }}$	
${ }_{\text {2n }}^{\text {2n } 22222}$	0．26	$\substack{\text { 2N }}_{2 \sim 1005}$	0.55 0.20	${ }_{\text {AF }}^{\text {AF } 124} \begin{aligned} & \text { AF } 125\end{aligned}$	${ }_{0}^{0.65}$	${ }_{\text {BC239 }}$	0.15 0.15	${ }^{8 F}$	－ 0.60	MJE2955	1.50 0.95	${ }_{\text {LM318N }}$	3.00 2.26	${ }_{\text {SO4 }}$	2.58 1.25	TEA651	2．20．
2N2222A	0.25	2N4059	0.15	${ }_{\text {af } 126}$	0.65	BC253	0.22	BF167	0.35		0.35		6．46	78001 N	1.30	TBA	1．52
2N2368		14060				－c3	0.17	BFit3	0.35	MP8112	0.40	Lm339N	1.40		20	teapoo	${ }^{1.61}$
					0.50			BF177	0.25	MP8113	0.45	LM348N	1.50		1.50	TB	
$2{ }^{2} 23594$	0.25		0.18	AF200	1.20	BC2598	0.18	BF778	0.25	MPP102	$0 \cdot 30$	LM36N	2.75		${ }^{50}$		98
${ }^{2 N 2646}$	0.75	2 N 4126		AF239	0.65	8c261a	0.24		0．30		0．25		2.50 1.70				2．25
${ }^{2} \mathrm{~N} 2647$	1.40	${ }^{\text {2Na } 289}$	0.20	AF240	${ }^{1} 1.14$	BC728	0．24	${ }_{\text {BFF191 }}$	0.35 0.35	MPS	O．25	LM	70	7602	1.45	TBAB10	1.25 1.25
${ }_{2}{ }^{2 N 292904}$	${ }_{0}^{0.36}$	${ }^{2} 129420$	${ }_{0}^{0.65}$	${ }_{\text {AF280 }}^{\text {AF279 }}$	－ 0.85	${ }_{\text {BC300 }}$	O． 0.40 0.40	${ }_{\text {BF182 }}$	O．35	MPSA5S	0.25	Lм373N	2.80	${ }_{76023 \mathrm{ND}}$	1.26	teaszo	${ }^{1.25}$
2 N 2905	0.37	2 N 4921	0.50	BC 107	0.15	BC301	0.40	8FF183	0.40	MPSASS	0.25	LM374N	＋1．10	763	2．20		（2．90
${ }_{2}^{2 N}$	边 $\begin{aligned} & 0.38 \\ & 0.28 \\ & 0\end{aligned}$	${ }_{2}^{2 N}$	0.55 0.70	BC108 BC109	0.15 0.15	BC333 BC307	0.50 0.15	${ }_{8 F}^{8 F}$	${ }_{0}^{0.38}$	MPSU05	0.50 0.56	LM377N	1.75 2.25	${ }_{761}^{761}$	1.18 1.51 1.51		${ }^{2.99}$
${ }_{2}^{2} \mathrm{~N} 2$	－ 0.35		0.70 0.60	${ }_{\text {BC }}$	20	${ }_{\text {BC }}$	0.15 0.15 0	${ }_{8 F}$	－ 0.15	MPSUS5	0.56 0.55	LM379s	${ }^{2} .95$	${ }_{7616 \mathrm{~N}}$	1.65	TCA160C	1．65
2 N 2907		2N5191	0.70	BC115	0.20	BC309C	0.15	BF995	0.15	MPSU56	0.60	Lma	0.90	76131 N	1.20		1．61
2 N 290	0.25	2 N 5192	0.75	BC116	0.19	BC317	0.14	${ }^{\text {BF }} 196$	0.15	T1P29A	0.45	LM38	0．988		1.56		2.25 1.30
${ }^{\text {2N2224 }}$	0.15	2N5195	0.90	BC115A	0.20	${ }^{\text {BC318 }}$	0.13	${ }^{\text {BF }}{ }^{197}$	0.17	${ }_{\text {T1P23C }}$	0.60	lim381A	2.45 1.60 1	${ }_{76228}^{7622}$	1.20 1.41	TCA290a	
${ }_{2}^{2 N 32929}$	0.17 0.55	${ }^{2 N}{ }^{2 N 5245}$	0.34 0.40	${ }_{\text {BC117 }}^{\text {BC11 }}$	0.22 0.20	${ }_{\text {BC3 }}{ }^{8 C 37}$	0.20	${ }^{8 F 198} 8$	0.18 0.35	${ }_{\text {T1P30A }}^{\text {T1P }}$	${ }^{0.69} 0$	LM3882N	1.60 1.25 1	${ }^{762353 N}$	0.75		1．84
2 N	0.2		0.40	BC119	0.30	BC337	$0 \cdot 19$	BF225	0.25	TIP31A	0.50	LM 384 N	1.45	${ }^{76532 \mathrm{~N}}$	1.40		${ }^{3.22}$
						－3038			0.35		0.66	LM386N	0.80	${ }^{76533 N}$	1.20	CA740	76
${ }^{2} \times 3055$	0.70	2N5298	0.40	${ }^{\text {BC132 }}$	0.30	BC547	0.12	8F245	0.40	TIP32A	0.55	LM3	1.05	7654		tca	30
${ }^{2} \mathrm{~N} 3380$	0.20	2 N 547	0.15	BC134	0.20	BC548	0.12	${ }^{85246}$	－0．75	${ }_{\text {TP3 }}$	0.75	LM	0．90		1．65		
${ }^{2} 123391$	0.20	${ }^{2 N 5448}$	－ 0.15	${ }^{\text {BC135 }}$	0.20	${ }^{\text {BC54 }}$ 8．	－ $0 \cdot 1.13$	${ }_{\text {er }}^{\text {BF254 }}$	0.24 0.24	${ }_{\text {T1P }}^{\text {T1P33A }}$	0．30		1.00 0.75		1．44	UAA170	
${ }_{2 N}^{2 N 392}$	－ 0.16	${ }_{\text {2NS457 }}$	${ }_{0} .32$	BC137	0.20	${ }_{8 C r 31}$	1.00	$8{ }^{\text {P25 }}$	0.37	T1P34A	0.90	LM70	0.65	${ }^{76552 N}$	0.55	UAA180	2.00
2 N	0.	$2{ }^{2 \times 5456}$	0.33	BC 140	0.35	BCY32	1.00	${ }^{\text {BF225 }}$	0.45	${ }^{\text {T1P34C }}$	1.20	LM70	0.45	${ }^{765770 N}$	${ }^{1.68}$		
			0.29	BCL41	0.40	$\mathrm{BCr}^{3} 3$	1.00	8F259	0.49	${ }^{\text {T1P }}$ TP3A	2.50	LM710	0．60	${ }^{766202 N}$	0.90 1.10		
	0.88 0.64		0.34 0.38	－	O． 0 0.30	8	1.00 2.00	${ }^{\text {BFF439 }}$	0.50 0.28		2．80	LM		${ }_{76656} 76$	${ }_{0} 0.60$		
	0.64 0.81		0.38 0.60	${ }^{\text {BCC147 }}$	－． 0.12		2.00 0.80	BFS21A	2.60	${ }_{\text {TIP41C }}^{\text {T1 }}$	0.90	LMTz3N	0.75	76666 N	0.92		
$2{ }^{2} 3442$	1.35	2N6101	0.45	BC148	0.12	BCY58	0.25		1.38	，	0.80	LMT74C	0.65	TAA32	1.00		
2 N 3	0.16	2 N 6107	0.42	BC149	0.14	BCY59	0.25	BF	0.30	TiP	1.00	LM7	0.40	TAA350A	2.48		
				${ }^{\text {BC } 153}$	0.27	${ }^{8 C Y 70}$	0．25		0.30 0.35		0．65		0.40 0.90	TAAS52	90		
－ 2 23639 31	\bigcirc	${ }^{2}$	0．41	${ }^{\text {BCF57 }}$	0.14	BCY72	0.24		0.35		0.43		0.55	taA550	$0 \cdot 60$	and	
2 N 3702	0.13	2N6123	0.43	BC558	0.14	80115	0.80	BFx84	0.35			LM 748 N	55	tas60	1．75		

WHY NOT PAY US A VISIT AT OUR NEW CENTRAL LONDON BRANCH AT 325 EDGWARE ROAD W2， ABOUT 100 YARDS NORTH OF THE WESTWAY FLYOVER．EXTENSIVE STOCK RANGE． MANY SPECIAL OFFERS TO PERSONAL SHOPPERS ONLY

CMOS LOW POWER SCHOTTKY

| | 0.24 | CD401 |
| :--- | :--- | :--- | | D 4000 | 0.24 | CD4018 | 1.15 | CD4041 | 0.96 | CD4059 | 5.45 | CD4081 | 0.25 | 74LSO2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 04001 | 0.24 | CD4019 | 0.70 | CD4042 | 0.96 | CD4060 | 1.27 | CO4082 | 0.25 | 74 LSO4 |

 | CD4010 | 0.64 | CD 402 |
| :--- | :--- | :--- | :--- |
| | 0.64 | CD 4025 |

 CO4029
CD4030

1. | 74LS 138 |
| :--- |
| $74 \mathrm{LS} 15 \dagger$ |
| 74 S |
| 1 | 74LS151 74LS 5160

74LS161 74LS162 $742 S 162$
745163
74 LS 164 $\begin{array}{ll}74 \text { LS } 173 \\ 74 \\ 74 \mathrm{LS} 174 & 1\end{array}$ 74LS

MICROPROCESSOR COMPONENTS

CLOCK MODULES DIGITAL

 MA1003 Built Tested 12 V supoly
＂WHAT IS A MICROPRO－ CESSOR？＂－A COMPLETE TEACH YOURSELF COURSE WITH CASSETTES AND BRO－ CHURE £9．95 INCL．VAT AND P．\＆P．

＝MICROPROCESSOR SYSTEMS
 SC／MP INTROKIT
 Complete with explanato National Semiconductors

KEYBOARD KIT
Budget VDU for Teletype substitute The calculator type
keyboard provides manual 10 commands to introkit．
Full instruction and data suplied wit dit
plete kit easily mates with cassette recorder

ORCHARD ELECTRONICS

SERVICE SECOND TO NONE TRY US AND SEE

SUPPLIERS TO D.O.E., A.E.R.E., U.K.A.E.A manufacturers.

Stock list FREE with S.A.E

Post and packing 25p. Discounts $\mathbf{5 5}=\mathbf{5 \%}, \mathbf{5 1 0}=7 \%$ $15=10 \%$. VAT ${ }^{*}$ add $12+\%$. Rest at 8%

TRANSISTORS									CAPACITORS ELEC. MFDN			CERAMICS S0V										
M119	0.04	BC178B	0.11	BF167	0.21	0071	0.35	2 23703 0.14*	1125 0.10*			2.2. 4	7,6. 10	22, 33.3	47, 100. 200.	555	0.490	7400		74191	2.10p	
AC125	0.25	BC1798	0.11	${ }^{\text {BF }} 173$	0.20	DC72	4.45	$2 \mathrm{~N} 37040.0 .13^{\circ}$	1/59 0.10*	47/35	$0 \cdot 12^{*}$	470, 560, 1000, 1500, 2200, 3000, 4700, 10000 47000pt: tMFD 10V. All at $6 p^{*}$ -ach. 1 MFD $63 \mathrm{~V} \mathrm{tp}_{\mathrm{p}}$.				709 (TOS9) 709 (8 PIN DIL) 741 (8 PIND D) AY-5-1224	0.35 p	7401	95 30 80			
${ }_{\text {AC126 }}$	0.23	BC1828	0.12^{*}	8F 178	0.24	0 C 74	0.45	$2 \mathrm{3} 37050.14{ }^{\text {a }}$	1/75 $\quad 0.10^{\circ}$	50/10	0-10"					0.40 p	7402	1 Bp	7192			
AC127	0.21	BC182L	0.119	8 F 179	0.25	OC81	0.60	${ }^{2} \mathbf{N} 3707080.12^{*}$	$2.2250 .10^{\circ}$	50/15	0.10°					0.26	7403	$1 \mathrm{H}_{1}$				
${ }_{\text {AC128 }}$	$0 \cdot 20$	BC1838	0.10^{*}	BF183	1.34	OC82	0.70	$2 \mathrm{~N} 378880.12^{*}$	${ }^{2.2633} 0.10{ }^{\circ}$	100118	$0.06{ }^{\circ}$					3-759	7404	$23 p$	C/MOS			
${ }^{\text {ACIL5 }}$	0.35	BC183	- 0 10**	${ }^{8 F 184}$	0.25	ORP12	0.68	${ }^{2} 23370900.14{ }^{\circ}$	${ }^{2.5664} 0.10^{*}$	10025	0.10°						AY-3-8500 T.V.		7409	408	4000	0.19
${ }^{\text {AC153 }}$	1.35	8 Cl 184 B	0.12**	${ }^{8 F 185}$	$0 \cdot 20$	TIP82a	0.47**	${ }^{2 N 3710} 0 \cdot 11^{* *}$	$\begin{array}{ll}4.7 / 16 & 0.044^{*} \\ 4.763 & 0.10^{*}\end{array}$	$100 / 35$ 100.50	$0.11{ }^{0.10}$		hird WA	E92 (5\%			Game CA 3130	${ }_{0}^{6.009} 0$	7408	240	4001	$0 \cdot 10$
	0.22	${ }^{\text {CCl }} 1845$	0.11*	${ }^{\text {BF }} 194$	\$.10*	Tip30A	0.56"	$\begin{array}{ll}\text { 2N3711 } \\ \text { 2N3619E } & 0.11^{*} \\ 0.25 *\end{array}$	$\begin{array}{ll}4.7 / 63 & 0.10^{\circ} \\ 50.10 & 0.10^{\circ}\end{array}$	$100 / 50$ $400 / 35$	${ }^{0.155^{\circ}}$	fohm	-10m oh	m .			CA 3130 LM 3014 A	0.1770° 0.550	7410	110	4002	0.19
AC187 AC188	0.23 0.20	BC186 BC187	0.25	BF 195 BF96	- 6.100° 6.12	TiP31a	0.57 0.67	$\begin{array}{ll}\text { 2N3819E } & 0.25^{*} \\ \text { 2N3820 } & 0.45^{*}\end{array}$	$\begin{array}{ll}5.10 & 0.10^{\circ} \\ 5 / 16 & 0.11^{\circ}\end{array}$	$100 / 35$ $20 / 16$	$\begin{aligned} & 0.15^{\prime \prime} \\ & 0.15^{\circ} \end{aligned}$		m			LMM 3014 AN	$\begin{aligned} & 0.550 \\ & 1.400 \end{aligned}$	7411 7412	240 250	4006	1.45 0.15	
187/188		BC204A	$0.16{ }^{\circ}$	8F197	$0 \cdot 12^{*}$	TIP33A	0.81	2N3823E 0.25*	6-8,25 0.10*	220125	0.16°	POTE	NTIOME			LM 3 309k	2.00p	${ }_{74 \%}^{74}$	330	4007	0.19 1.49	
mich. pr.	0.85	BC2048	0.16*	BF199	$0.15{ }^{*}$	tipza	1.13	$2 \mathrm{~N} 4036 \quad 0.40$	6.840 0.10*	20063	$0.25 *$	Linilo	+10m			L.M 324	2.050	7414	72	4009	1.49 0.55	
AD149	0.68	BC2098	0.13*	BF200	- 38	TIP41A	0.77	2N4058 0.15^{*}	8170	250112	-120'		25K.		250K, 500k.	LM 380 SL60745	1.290*	7416	36 p	4010	0.54	
AD161	0.52	BC212A	0.13*	$\mathrm{BFX} 29^{\text {a }}$	${ }^{0} 28$	TTP42A	0.80	2N4059 $0 \cdot 10^{\circ}$	10116 0.00*	250.50	*130	1M, 2	$1{ }^{2} 85 \mathrm{C}^{+}$	soch.	250k. 500 K .	LM 38.1 N	2.009*	7417	380	4011	${ }_{0.19}^{0.5}$	
${ }^{\text {ADA62 }}$	0.52	${ }^{\text {BC212L }}$	0.15**	${ }_{\text {BFX }}$ BF30	0.25	TIP2955	0.77	${ }^{2} \mathrm{~N} 4061$ O.12*	$10 / 250$	250/64	*. $25^{2 *}$					LM 555	0.490	7420	14 p	4012	0.19	
	1.24	3C2138	$0.12{ }^{\circ}$		0.24	TiP3055	\%.50		$\begin{array}{ll}\text { H0/35 } & 0.10^{*} \\ 10.64 \\ 0.10 *\end{array}$	$330 / 16$ $470 / 6 \mathrm{~V} 3$						LM 723	0.59 p 0.69 p	7421	\% ${ }^{2}$	4013	0.54	
${ }_{\text {AF116 }}{ }_{\text {AF117 }}$	0.24 0.24	BC213L	0.14**	8FX84 $8 \times \times 88$	0.22 0.22	T1S43		$\begin{array}{ll}\text { 2N4126 } & 0.30 * \\ \text { 2N5298 } & 0.50\end{array}$	$\begin{array}{ll}10 / 64 & 0.10^{*} \\ 10250 & 0.18^{*}\end{array}$	470:6V3 47010	- 0.10^{*}	PRES	ET MIN.	VERT.		MC 1310/CA1310E	$0.69 p^{\prime}$ 2.550	7427	329	4014	1.42	
AF124	0.30	BC214L	0.17*	BFY50	0.25	T1×300	0.13^{*}	$\begin{array}{ll}2 N 5457 & 0.50\end{array}$	15.40 0.10*	470.16	$0.14 *$	SU8	MN 4			MC 1327/SN76227	${ }_{1} .355^{\circ}$	7428 7430	509 180	4015	1.16	
AF185	0.95	BC237A	$0.16{ }^{\text {* }}$	BFY51	0.25	27X301	0.13^{*}	2 N 5458 B	15.400 0.35*	470/25	- 220	4000 ${ }^{\text {a }}$	OK, 2200	50k, 4700		MC 1330 P	0.750^{*}	7432	${ }_{29}{ }^{\text {ap }}$	4016 4077	0.52 1.12	
AF239	0.46	BC238A	1.15*	8FY52	0.25	27×302	$0.11{ }^{*}$	2 N 5459 0.40*	16.10 0.16*	68025	$0.25{ }^{\circ}$		10k, 2 k .	50k. 100	20K, 40K.	MC 1350P	0.750°	743	420	4018	1.8	
AU113	$2 \cdot 20^{\circ}$	8C261a	$0 \cdot 16$	BSX20	0.23	27×500	$0.15 *$	$2 \mathrm{SC1172} 3.60^{*}$	$20 / 15 \quad 0.10^{*}$	100016	$0.25{ }^{\text {a }}$		up			NE 535	0.490	7440	150	4019	0.51	
BC107	0.11	BC262A	0.19	84108	${ }^{2.500}$	TXX502	0.10^{*}	40361 0.50	20770	1000225	$0.30{ }^{\circ}$					SK 1122 T.V.		742	sep			
BC107A	0.12	BC267A	0.17	BU208	$3.00 \times$	27×504	$0.25{ }^{*}$	40363 0.86	22\%673 - $0 \cdot 10^{*}$	t000, 50	0.40**					Game	10.00 D	74	1.00p			
BC1078	0.13	BC268	0.17	${ }^{\text {BY126 }}$	${ }^{6} 168$	27×530	$0.23{ }^{*}$	40673 0.65	${ }^{22 / 16} 00 \cdot 100^{\circ}$	1500225	$0.35{ }^{\text {0, }}$	60 V	14			SN 76003 N	2. cop^{*}	744	1.80p			
BC108	0.10	8C299	0.17	${ }^{8 Y 127}$	0.16	tN914	0.05		$25 / 25$-11**	220016 V 3	-1.30**		1A	0.38		SN 76013ND	1. $60 \mathrm{p} \mathrm{P}^{*}$.	7446	1.000	diodes		
CILS08	0.08	8C287	0.21	$8 Y 133$ $8 Y 164$	0.20	${ }^{1} 12009$	0.05		$\begin{array}{ll}3350 \\ 47 / 543 & 0.12^{*} \\ 0\end{array}$	2200040	0.50° 0.45	200 V	${ }_{1}^{1}$	0.60	TAG 1200	SN 76013N	1.75p**	7447	34	50 V 3 A	0.13	
BC108B BC109C	0.91 0.12	$8 C 300$ $8 C 301$	0.35 0.34	CY164	0.40,	1N4002 in4003	0.06 0.09			250015 $3300 / 30$	0.45^{*} 0.45	600 V	${ }_{1 A}^{1 A}$	0. 010	TAG 1600	SN 76023N	1.75p**	7448	2	100V 3 A	0.15	
BC109	0.12	BC303	0.35	ME0402	0.13:	1 N 4004	0.08		$47 / 16 \quad 0.10^{*}$	5000.12	0.45^{*}	T00V	${ }^{14}$		BT 106	SN 76033N	2.750*	7460	${ }_{18 p}^{18 p}$	200V3 ${ }^{\text {a }}$	0.10 0.21	
BC:4098	- 13	BC327	0.26 -	ME0411	$0.18{ }^{\text {' }}$	1N4005	0.09	tran					$\stackrel{4}{6+}$		C10601	SN 76660	$0.90 \mathrm{p}^{*}$	7470	${ }_{39}$			
${ }^{\text {BCICOSC}}$	0.13	$8 \mathrm{BC328}$	$0.10{ }^{\text {0 }}$	MEOM12	0.19*	iN4006	0. 10	FORMERS								TAA 550	0.600^{*}	7472	30 p			
BC117	$0.18 *$	BC338	$0 \cdot 16{ }^{*}$	meopil	$0.15{ }^{\circ}$	1 N 4007	0:11	50-6 100mA	P0LY. A/Lead tovo 0 (09\%							tba lzaso	1.30. 0°	1473	30 p			
8 C 136	0.18*	8C310	$0.16{ }^{\prime \prime}$	MEOP14	${ }^{0.15 *}$	1 N 4148	0.05	${ }^{1.20}$	$\begin{array}{ll}009 \\ 0022 & 0.06{ }^{\circ} \\ 0.06\end{array}$							TBA 395	2.25p*	7474	35p	brioges		
${ }_{8}^{8 C 142}$	0.24	BC340	$0.15 *$ 0.35	ME0461 ME0462	${ }^{0.27 *}$	1N5430 in5401	${ }^{0.13}$	20.975 ma	$\begin{array}{ll}.0022 \\ .0033 & 0.06 * \\ 0.06 *\end{array}$		$\begin{aligned} & 0.07^{*} \\ & 0.07{ }^{\circ} \end{aligned}$	2ENE	3S (400 m			TBA 4800	1.25p**	7475	49p	100V 1A	0.21	
BC143 BC147	0.24 0.09	BC451 BC557	0.35 0.15.	ME0462	$0.21^{\prime \prime}$ 0.14	1N5401	0.15		.0033 .0077	. 15	$0.07^{0 .}$	3V. $18 \mathrm{~V}, 2$	3. 30 V .	All al 12 p	ach.	TEA 5200 TEA 5300	\$.70p**	7776	329	200V 1A	0.30	
BC1478	$0 \cdot 10$	BC558	0.15*	MEA101	0.14*	2 N 708	-20	$12.0-12 \quad 50 \mathrm{~mA}$	0058 0.060	. 22	$0.10{ }^{\circ}$					TBA 5400	4.90P*	7480 7481	85p 1.000	400 V 1 A	0.75 0.65	
BC148	$0.08{ }^{\text {c }}$	8C559	-15*	MJE340	0.76	2N1613	$0 \cdot 30$	1.30	0150.00	. 37	-.11*					TBA 5500	$3.00 \mathrm{P}^{\prime}$	7485	1.30 p	400 V 2 p		
BC1488	0.70*	BCY70	0.15	MJE3055	1.25*	2N1711	-.30	12-a-12 1A 3 - 50	$0150007 *$	47	0.15*	LEO T	7L 2090	$125 \cdot 0.2$		tBa 560CO	$2 \cdot 30 \mathrm{p}^{*}$	7486	430			
8 C 149	$0.10 *$	BCY71	0.14	MPF102	0.40*	2N2102	0.50	min $0 / P$ for	.022 0.07*	1250 V	${ }^{0.10^{*}}$					TBA 641	2. 550 \% ${ }^{\text {c }}$	7490(A)	35p			
${ }_{8 C 1498}$	$0.11{ }^{*}$	BC772	0.14	OAS	0.71	2N2219	$0 \cdot 30$	Oc71/2 use 75p	$\begin{array}{ll}.033 \\ .047 & 0.07 *\end{array}$	$1.1600 V$ 1.0400 V						T8A 750	9. $90 \mathrm{p}^{*}$	7492	55p			
	$0.11{ }^{*}$	BD123	$0 \cdot 8$	0A10	0.62	2 N 2222	0.20	$06-06 \quad 280 \mathrm{~mA}$	-047 0.07*	1.0400 V	0.12^{+}	CIp fo	rabove			TBA 8000	1.35p**	7493	55p	RED LED		
${ }_{8}^{8 C 153}$	0.78°	80124	0.30	OAM	. 14	2N2646	0.65	2.40								tba 810 So	1.49P. ${ }^{\text {a }}$	7496	90 p		$\begin{aligned} & 10 \text { for } \\ & 0 \text { ? } \end{aligned}$	
BC154	$0 \cdot 10^{\circ}$	80131	0.42	OAB1	0. 30	${ }^{2 N 29260}$	0.13*	$12-6-12150 \mathrm{~mA}$								T8A 8200	1. $20.0{ }^{*}$	7407	40 P			
$\begin{aligned} & \mathrm{BC157} \\ & \text { BC157B } \end{aligned}$	${ }^{0.72^{*}} 0$	80132 80139	0:42,	OA90	0.07 0.08		0.15*	MOT $\quad 200.40$	TANTALJM BEAD 0.1 MFD 35 V 130*							TBA $92200{ }^{\text {TRA } 9000}$	2. $2.50 \mathrm{p}^{*}{ }^{\text {a }}$	74.121	34 p	8 Cl 108 C	11 for 51	
BC158A	$0 \cdot 12^{\circ}$	BD140	0.510°	OA95	${ }^{0} 008$	2N3054	8.54	P-1K2 8n	0.15 MFD 35 V 13p*	6.8 MFD:16V	$13 p^{*}$ *,					TCA 2700	$2.20 \mathrm{p}^{\prime \prime}$	74141	30 p		100 for ${ }^{\text {cos }}$	
BC159A	0.12 *	.8D155	0.75 *	OA200	0.10	2N3663	0.28	200 mW 50p	$0.22 \mathrm{MFD} / 35 \mathrm{~V} 13 \mathrm{p}^{*}$	$10 \mathrm{MFD} / 6 \mathrm{~V} 3$	13p*		cl.		., pol	$\cup 14552300 \mathrm{~mW}$		74145	1.15p	2N3702		
8C172A	$0.15{ }^{\circ}$	BDYZ	0.60	OA202	0.11	2N3055	0.80		0.47 MFD 35 V 13p*	10 MFOLOV						Audio with data	0.35p*	74151	$94 p$		100 for 8	
${ }_{8 C 1738}$	0.10°	8F115	0.22	0 O 35	1.20	$2 \mathrm{~N}_{364}{ }^{2}$	0.17*	displays	1 MFD 35V 130*	22 MFD 16 V	140.					2 N 1414	$1.40 \mathrm{p}^{*}$	74974.	1.20p	2 N 3704		
8 BC 17	0.17	BF158	$0.20 *$	0 OCH	0.45	2N3646	0.17*	DL704 0.95	$2.2 \mathrm{MFD} / 35 \mathrm{~S}^{13 p^{*}}$	17 MFD 10 V	160.					2102	2. 50%	74180	$1 \cdot 200$		100 for	
BC178	0.18	BF166	0.30	0.45	0.45	2N3702	$0 \cdot 11$	DL707 0.75	4.7 MFO/16V 13p*	$100 \mathrm{MFD} / 6 \mathrm{~V} 3$	$2 \mathrm{p}^{\circ}$					2513 UC	8.50p	7490	1.60 p			

Become
 a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Infiliple

ASEMICONDUCTOR POWER HOUSE
TRAMPUS ELECTRONICS LTD., $58-50$ GROVE ROAD, WINDSOR BERKS. SL4 THS. (Trade export \& retail.)
Tel: Windsor (07535) 54525. Callers welcome. Mon-Sat. $9 \mathrm{am}-5 \mathrm{om}$ Fast service. On ex stock product same day despatch normally. Ouality access by post or Add $12 \mathrm{t} \%$ VAT to all other prices. Post and packing 20 p U.K. Send C.W.O. xcept Gov. depts. etc. Money back if not satisfied. Catalogue sale list All price each

IC's All price	All price amch
555 D16 8 Timer	37p*
723 TO99 Reg.	47p*
T23 DLL 14 pin	69p*
74.1 DIL 8 pin 00 amp	amp. 25p*
741 DIL 14 or TO99	$9936 p^{*}$
747 Dual 741	89p**
748 DIL 14 pin	29p*
748 DIL 8 pin	49p*
9805 plastic or TO3	¢03 ¢ ${ }^{\text {* }}$
7812 or 15 plastic	c \quad 1.50*
76013 or 76023	\$1. 69
8038 Sig . Gen.	¢5*
AY51224 Clock	¢2.50*
LM340	50p*
LM301 DIL 14 pin	n 29p*
LM301 DIL 8 oln	59p*
LM309K T03 5V	(1*
LM318 70 V U.S.	¢2.25*
LM380N 2W A.F.	${ }^{1}$
LM3900 Quad op. amp.	amp. 75p*
MC1310 Yes only	y 15p*
NE555 Timer	37p*
NE556 2×555	¢1*
SN76611 and 60 IF	IF \quad ¢1.25
TBAB10 7W A.F.	c1
LEDa tin and $0 \cdot 2 \mathrm{in} \mathrm{dia}$	2 in dia
Red no cllo	11p*
$0 \cdot 2 \mathrm{in}$ Red and clip	clip 15p*
Colour LEDs	29p*
DISPLAYS (Red LED)	LED)
$0 \cdot 3 \mathrm{in}$ DL704/2	$65 p *$
- 3in DL707/2	65p*
$0 \cdot 51 \mathrm{n}$ DL747/2	¢1*
IGS308 Gas Detector	ector ¢5*
390pF Med /Short Tuner	+ Tuner \$1*
Audible warning blee 12V 100 mA	ing bleeper §1.49*
Dalo PCB Pen, 2 tips	2 tips 74p*
SRBP 6×4 in	600^{*}
FEC	¢1*
PCB Etching Kit	¢2*
TRANSISTORS	
BC107, 108 or 109 all	9 all 9p*
BC107B	15p*
BC108B or C	15p*

TWHC Ros. wutrmerers

Supertester 680R (illustrated)

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fsd on d.c.
$4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 80 Ranges - 10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{2} 25.25+$ VAT
(For Mall Order add 80p PRP) (For Mall Order add 80p P\&PI

Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{N}, \pm 2 \%$ fsd on d.c. $4 k \Omega / V, \pm 2 \%$ fsd on a.c.
* 40 Ranges -8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$
$\mathbf{2 1 4 . 9 5}$ + VAT
(For Mall Order add 80p P\&P)

All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc. and a 50-plus page, fully detailed and illustrated Operating and Maintenance Manual.
Now available from selected stockists. Write or phone for list, or for details of direct mail-order service.

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 k \Omega / V, \pm 2 \%$ fsd on a.c.
* 48 Ranges - 10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
$\mathbf{\Sigma 1 9 . 9 5}$ + VAT

CHAMP COST CUTTERS

40404 bit Microprocessor	$£ 5.90$
4702A 256×8 bit EPROM	$£ 11.50$
4289 Memory interface	$£ 8.50$
$5101-8256 \times 8$ CMOS RAM	$£ 7.50$

Please add 8% VAT plus 40 p P. \& P. to total. For a full list of components, computers, terminals, floppy disk and tape memory. Plus software, technical services and assistance in our Microprocessor Users Group magazine, send S.A.E. to:
Computabits Ltd, 41 Vincent Street, Yeovil, Somerset. Tel. (0935) 26522.

ELECTRONIC PIANO

ALL PARTS CAN BE SUPPLIED

Keyboard, Keyswitch, P.C.B.s. Hardware, Semiconductors. Resistors, Capacitors, Cabinets Complete kits or easy stages Send S.A.E. for details
Clef Products
16 Mayfield Road
Bramhall, Stockport, Cheshire SK7 1LY

TV GAMES CHIP
AY-3-8500 $\mathbf{\text { E6.95}}$. Printed clircuit and kit of extra parts black and white version $£ 11.95$, colour model $£ 21=90$. ame to colour $\mathbf{9 9} 95$. Rifle kit $\mathbf{8 4} .95$. Send S.A.E. tor tree data.

NEW COMPONENTS SERVICE
Resistore 5% carbon E12 in to 10M $\ddagger W$ 1 1 p. iW 3p. Preset pots subminiature 0.1 W 100 Potentiometare fW $4 K 7$ to 2 M 2 log or 1 n . single 30 p .
 $8,200 \mathrm{pF}$
$47,000 \mathrm{pF}$
3 p . . Polyester capacitore 160 V E6 0.01 to
 Electrolytice $50 \mathrm{~V} 0.47,1,2 \mathrm{mF} \mathrm{5p}, 25 \mathrm{~V} 5,10 \mathrm{mF} \mathrm{5p} .16 \mathrm{~V}$ 22, 33, 47 mF 6p. $100 \mathrm{mF} 7 \mathrm{p}, 220.330 \mathrm{mF} 9 \mathrm{p}, 470 \mathrm{mF} 11 \mathrm{p}$,
$1,000 \mathrm{mF} 18 \mathrm{p}$. Zener diodes 400 mW E24 3V 3 to 33 V 8 f p .

MAINS TRANSFORMERS
6-0-6V 100mA 94p. 9-0-9V 75mA 94p. 0/12/15/20/24/30V 1A $83 \cdot 85,12-0-12 \mathrm{~V} 50 \mathrm{~mA} 94 \mathrm{p}$. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} 2 \mathrm{~A} £ 5 \cdot 15$.
 $\mathrm{E3}$. 59.

PRINTED CIRCUIT KITS etc.*
Contains etching dish, 100 sq . in of pc board, llb ferric chloride, etch resist pen, drill bit and laminate cutter
$£ 3.85 .100 \mathrm{se}$ in pe board 80 p . $11 \mathrm{bFeCl} £ 1 \cdot 05$. Etch reslst pen 75p.

S-DECS AND T-DECS*
S-DeC E1.94.
T-DeC E3.61.
μ - ${ }^{\circ} \mathrm{Ce}$ CA $£ 3.97$.
ic carrters
with sockets: 16 dil $£ 1$.91. 10TO5 \&1.79

THE DYMamIC duo

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S15 produces a system of incredible performance.
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.
The S15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15
15 watts per channel into 4Ω
Distortion $0 \cdot 2 \%$ at 1 kHz at 15 watts
Frequency response $50 \mathrm{~Hz}-30 \mathrm{kHz}$
Input Impedance 8Ω nominal
Input sensitivity 2V R.M.S. for 15 watts output
Power line $10-18 \mathrm{~V}$
Open and Short circuit protection
Thermal protection
Size $4 \times 4 \times 1$ inches
C15/15 Price $£ 17.74$ + £2.21 VAT., P. \& P, free

Data on S15
6in Diameter
51 in air Suspension
2 in Active Tweeter
20oz Ceramic magnet
15 watts R.M.S. handling
$50 \mathrm{~Hz}-15 \mathrm{kHz}$ frequency response
4Ω Impedance

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd
Crossland House Nackington, Canterbury Kent CT4 7AD
Tel. (0227) 63218

POPULAR HIGH POWER AMPLIFIER 70 watts R.M.S continuous into 8 ohms. Ready to use. S.A.E. for further details. Size: $540 \mathrm{~mm} \times 250 \mathrm{~mm}$ $\times 145 \mathrm{~mm}$ approx. Cost: $\mathrm{c} 71+8 \%$ VAT.

CLEAR PLASTIC PANEL METERS (FULL SCALE)
Size: $59 \times 46 \times 35 \mathrm{~mm}$. These meters require a 38 mm dia. hole for mounting.

ME $6=0-50 \mu \mathrm{~A} \quad$ ME13 $=0-100 \mathrm{~mA}$
$\begin{array}{ll}\text { ME } 7=0-100 \mu \mathrm{~A} & \text { ME14 } \\ \text { ME } & =0-500 \mathrm{~mA} \\ \text { M }\end{array}$
$\begin{array}{ll}\text { ME } 8=0-500 \mu \mathrm{~A} & \text { ME16 }=0-50 \mathrm{VDC} \\ \mathrm{ME} 9=0-1 \mathrm{~mA} & \text { ME17 }=0-300 \mathrm{VAC}\end{array}$
$\begin{array}{ll}\text { ME10 }=0-5 \mathrm{~mA} & \text { ME17 }=0-300 \mathrm{~V} \text { AC } \\ \text { ME11 }=0-10 \mathrm{~mA} & \text { ME18 }=\text { ' } \mathrm{S}^{\prime} \text { METER }\end{array}$
$\begin{array}{ll}\text { ME11 }=0-10 \mathrm{~mA} & \text { ME18 }=S \text { METER } \\ \text { ME12 }=0-50 \mathrm{~mA} & \text { VU'METER }\end{array}$
Our Price: $\mathbf{5 5} \cdot \mathbf{0 0 + 8 \%}$ V.A.T.
"CRESCENT" 100 WATT R.M.S. AMPLIFIER KIT
This kit consists of three modules, power amp. module, pre-amp. module and power supply module including mains transformer. Requires no technical knowledge as full instructions are supplied. S.A.E for further details.
Limited Stock-Buy Now While Stocks Last. Cost: $\{30+8 \%$ VAT. WITH ALL ENQUIRIES PLEASE

CRESCENT RADIO LTD. MAIL ORDER DEPT.
 1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ PHONE: 888-4474

ACCESS AND BARCLAYCARD ACCEPTED-PHONE ORDERS WELCOMED ALL PRICES INCLUDE POSTAGE-PLEASE ADD V.A.T. AS SHOWN-S.A.E

Personal callers welcome at: 164-166 High Road, Wood Green, N22. Phone: 8883206 and 13 South Mall, Edmonton N9.

Phone: 0031685

G8CZW Digital Frequency Meter

G8CZW Digital Voltmeter

Complete kit ع44.30 inc. VAT, post free (U.K.)

EFFECTS PROJECTOR " 150 "
Ideal for disco work, this versatile machine takes a range of accessories and is of a sturdy
metal construction. Comes complete with bulb and 6in. Liquid wheel. Ready to use.

A bargaln at 534
$+8 \%$ V.A.T.
3 KILOWATT PSYCHEDELIC LIGHT CONTROL UNIT (1000 Watt per channel)
Three channel: Bass, Middle, Treble The input of this unit is connected to the loudspeaker terminals of an amplifier and the required lighting is connected to the output terminals of the unit thus enabling you to produce a fascinating sound to ligh display.
Full instru
for details.
Fantastic Value at $£ 20.00$ $+8 \%$ V.A.T.
LOUDSPEAKER SELECTION $+12 \frac{1}{2} \%$ V.A.T.
2 tin. 8, 40, and 75 ohm at $£ 1 \cdot 10$ (please state which impedance is required)
Sin. 8 ohm Ceramic at $\mathbf{\Sigma 1} \cdot \mathbf{7 0}$
Bin. Goodmans "Audiom 8PA" 8 ohm
10in' 'ELA
oin. 'ELAC' Dual Cone 8 ohm 10 watt at £4-75

Another big competition, with the new Autumn range of

Sirac MIL1 Valve Amplifier

Complete instructions for building Chris Rogers' outstanding new valve amplifier.

How does the first-time buyer
separate the hi-fibasicsfrom the hi-fimystique? This month Practical $\mathrm{Hi}-\mathrm{Fi} \&$ Audio gives basic advice on making the right choice of system, basic fault-finding and setting up, and publishes answers to the ten questions most frequently asked by newcomers.

A System for $\mathbf{\$ 8 0 0}$

An evaluation of the new crop of moving-coil phono cartridges and their complementary voltage step-up devices. Among those tested are the Fidelity Research FR 3, Entré 1, Sony XL55, Ultimo 10A, and Nakamichi 1000, and 7 others.

Win some Aiwa Saper-fi

Aiwa equipment to be won.

November issue

GREENWELD

443 Millbrook Road Southampton SO1 OHX Tel:(0703) 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIMENo delays in waiting for parts to come or shops to open!
* SAVE ON MONEY -Bulk buying means lowest prices-just compare with others!
* HAVE THE RIGHT PART-No guesswork or substitution necessary!

ALL PACKS CONTAIN FULL SPEC, BRAND NEW, MARKED DEVICESSENT BY RETURN OF POST. VAT NCLUSIVE PRICES, JUST ADD 25 p post $F O$
K-PACS.

K001 50V ceramic plate capaciors, 5%. 10 of each value 22 pF to 1000pF. Total 210, £3-35

K002 Extended range, 22pF to $0.1 \mu \mathrm{~F} .330$ values $\mathbf{£ 4 . 9 0}$

K003 Polyester capacitors, 10 each of these yeluer: 0.010 .0150 each $\begin{array}{ll}\text { of these relues: } \\ 0.033,0.01, & 0.047, \\ 0.068, & 0.1, \\ 0.15, & 0.22,\end{array}$ $0.33,0.47 \mu \mathrm{~F}$. 110 altogether for £4.75

K004 Mylar capacitors, min 100 V type. 10 each all values from 1000 pF to $10,000 \mathrm{pF}$. Total 130 for $\mathbf{~} 4.45$

K005 Polystyrene capacitors, 10 each value from 10 pF to $10,000 \mathrm{pF}$. E12 series $5 \% 160 \mathrm{~V}$. Total 370 for £12.30

K006 Tantalum bead capacitors. 10 each of the following: $0.1,0.15$, $0.22,0.33,0.47,0.68,1,2.2,3.3$, 4.7 . 6.8 , all 35 V ; $10 / 25$ 15/16 $22 / 16$ $33 / 10-20$
$\varepsilon 14 / 6$
100/3. Total 170 tants for £14-20

K007 Electrolytic capacitors 25V working, small physical size. 10 each of these popular values: 1 . $2 \cdot 2,4 \cdot 7,10,22,47,100 \mu \mathrm{~F}$. Total 70 for $£ 3$-50

K008 Extended range, as above. also including 220.470 and $1000 \mu \mathrm{~F}$. Total 100 for $\mathbf{\Sigma 5} 90$

K021 Miniature carbon film 5% resistors, CR25 or similar. 10 of each value from 10R to $1 \mathrm{M}, \mathrm{E} 12$ series. Total 610 resistors, $\mathbf{~} 6.00$

K022 Extended range, total 850 resistors from 1R to 10 M عa. 30

K041 Zener diodes, $400 \mathrm{~mW} 5 \%$. BZY88 etc. 10 of each value from 27 V to 36 V , E24 series. Total 280 for $15 \cdot 30$
K042 As above but 5 of each value ع8. 70

POWER PACK

Wood grained metal case $90 \times 80 \times 75 \mathrm{~mm}$ containing mains Co-ax sockets PC Board with 1 in fuseholder, Rs Cs etc. Only E1.

PLASTIC CASE

Size $110 \times 80 \times 35 \mathrm{~mm}$ with clear clip-on lid. Ideal for component for $£ 2 ; 25$ for $£ 4.50 ; 100$ for $£ 14$.

FLEX PACKS AND CABLE 5 different colours, 5 metres each, thick or thin. Total 25 metres 25p. 25 way (14/0076) cable with braided overall screen and PVC sheath. 40 p per metre.

1977/78-EAALQGUE Big new catalogue now ready. Full rande of components of discount prices plus 50 p discoufl vouchers. Only 30 p plus 15p pog.

BRIDGE RECTIFIERS
$50 \mathrm{~V} 1 \mathrm{~A} 26 \mathrm{p} ; 400 \mathrm{~V} 1 \mathrm{~A} 36 \mathrm{p} ; 400 \mathrm{~V} 2 \mathrm{~A}$ $50 \mathrm{~V} 1 \mathrm{~A}{ }^{26 \mathrm{p} ;}{ }^{400 \mathrm{~V} \text { 1A }}{ }^{36 \mathrm{p} ;} 400 \mathrm{~V} 2 \mathrm{~A}$
$4 \mathrm{p} ; 400 \mathrm{~V} 2 \mathrm{~A} 58 \mathrm{p} ; 100 \mathrm{~V} 4 \mathrm{~A} 65 \mathrm{p} ; 400 \mathrm{~V}$
 $4 \mathrm{~A} 80 \mathrm{p} ; 100 \mathrm{~V} 6 \mathrm{~A} 74 \mathrm{p} ; 400 \mathrm{~V} 6 \mathrm{~A} 98 \mathrm{p}$
400 V 10A $\mathrm{E} 1 \cdot 40$.

SCR PANEL Has 1260 V 0.8A thyristors (gate durrent only $200 \mu \mathrm{~A}$). MEU21, 2 N3904

MISCELLANEOUS ICs

 MC3302P Quad Comparator plus data $£ 1 \cdot 20$. ITT 326 dual 2 plus dua 3 input TTL nand gate plus data, plus data, 8 for $£ 1$. 710 TO99 diff. comparator plus data 40p.
VERO OFFCUTS

Pack A. All 0.1" Pack B, All 0.15" Pack C, Mixed
Pack D, All 0.1" plain
Each pack contains 7 or 8 pieces with a total area of 100 sq in . Each pack is $£ 1 \cdot 40$. Also available by weight, 1 lb £3.45, 101 b £28.

FERRLE CHLORIDE Anhydroys technical quatity in 11 b double osled packs. 116 1. 1.10 . 31 b £2.30; (016 £5.60; $100 \mathrm{lb} \mathrm{Es)}$. 00 .

PC ETCHING KIT MK III Now contains 200 sq. ins. copper clad board, 1lb. Ferric Chloride. DALO etch-resist pen, abrasive cleaner, two miniature drill bits, etching dish and instructions 84-25.

7lb BARGAIN PARCEL

Hundreds of new componentspots, switches, resistors, capacitors, PC Boards with semiconductors, losds of odds and ends. Amazing value at only £3-45.

Our retail shops at 21 Deptlord Brosdway, London SEs (01-692 2009) and 38 Lower Addiscombe foad, Croydon ($01-6382950$) stock some of the advertised goods for personal callers only. Ring them for details.

All prices quoted include VAT and UKBBFPO postage except K-packs. Most orders despatched on day of receipt. SAE with en quiries please. Minimum order 51. Export/Wholesate enquiries welcome. Surplus components always wented. ${ }^{\text {ES }}$

Doram's new catalogue is one of the great events of the electronic year, 64 pages of newideas in construction kits, capacitors, resistors, semiconductors, wires and cables, transformers, plugs and sockets, hardware, indicators, switches, radio equipment, tools and test equipment, audio equipment, books. All top quality and terrific value because you can depend on Doram.

SUPERSOUND 13 HI-FI MONO

superb solid state audio amp-
lifier. Brand new componan her. Brand new components
throughout. 5 gilicon transistors plus 2 power output transistors in
push-pull. Full push-pull. Full wave
rectification,
Output approx. 13 watts r.m.s. into 8 ohms. Frequency
response
2
Hz
30 KHz response $12 \mathrm{~Hz} \quad 30 \mathrm{KHz}$ pro-amplitier stage with separate Volume. Bass boost and 15 anm Treble cut controls. Suitable for - 15 onm speakers. input for ceramic or crystal cartridge.
Sensitivity approx. 40 mV for fulf output. Supplied ready built and Sensitivity approx. 40 mV for fult output. Supplied ready built and
tested, with knobs, escutcheon panol, input and output piugs. tested. with knobs , escutcheon panel, input and output plugs.
Overall size 3 in high $\times 6$ in wide $\times 7$ tin deep. AC $200 / 250 \mathrm{~V}$. PRICE \&15-00 P. \& P. §1-20.

HAVERSONIC MODEL P.A.

 TWO ZEROAn advanced solid state general Purpose mono amplifier suitable Guitar, Gram., etc. Features 3 individually controlled inputs (each
input has a smpate 2 ptaoe ore input has a separate 2 stage preamp.). Input 1.5 mV into 47 k .
input 2.5 mV into 47 k (suitable for use with mic. or ountar etc.). input 2.5 mV into 47 k (suitable for use with mic. or guitar etc.).
input 3100 mV into 1 meg. suitable for gram. tuner. or tape etc. Input 3100 mV into 1 meg. suiteble for gram. tuner. or tape etc.
Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a
brushed anodised aluminum front escutcheon. For ac mains operation $200 / 240$ volts. Size approx. 12tin. wide $x \sin$ high x itn deep.
Special introductory price $£ 28 \cdot 00+£ 2 \cdot 50$ carriage and packing.

SPECIAL OFFERS

Mullard LP1159 RF-IF module $470 \mathrm{kHz} \mathbf{~} 2 \cdot 25$ Pye VMF/FM Tuner Head covering $88-108 \mathrm{MHz} .10 .7 \mathrm{MHz}$ I.F. output. $7 \cdot 8 \mathrm{~V}+$ eerth. Suppled pre-aligned, with tull circuit
diagram with precision-qeared F.M. diagram with precision-geared F.M. gang and 323 PF $+323 P F$ A.M. Tuning gang only $£ 3 \cdot 15+$ P. \& P. 35p.

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
 $200 / 240 \mathrm{~V}$ Mains operated Solid State FM. A Mated Tuner. Covering M.W. A.M.
$540-1605 \mathrm{KHz}$ V.H.F. F.M. $88-108 \mathrm{MHz}$.
Bult-tn Ferrite rod aerial for M.W. Full AFC and AGC on A.M. and F.M. Stereo Beacon
Lamp Indicator. Built in Preamps with variable output voltage adjustable by pre-sol controt. Max ofp Voltage 600 mV R.M.S. into 20 K . Simulated Teak finish cabinet. Will match almost any amplifier. Size 8 fin wide \times 4 in high $\times 9$ tin deep approx.
Limited number only at $£ 28 \cdot 00+£ 1 \cdot 50$ P. \& P

PRECISION MADE

Push Button Switch bank. ${ }^{8}$ buttons giving ${ }^{16}$ S/P C/O interlocked switches plus 1 Cancel Button plus 3
D/P C/O. Overail size 5 in $\times 2$ in $\times 1 / n$. Supplied complete with chrome finished switch buttons. 2 for $\& 1 \cdot 80+20 \mathrm{p} P$ \& P.

10/14 WATT HI-FI AMPLIFIER KIT

 A stylishly finished monaural amplifier with an output of 14 wattsfrom 2 EL84s in push-pull. Super reproduction of both music and speach, with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. speaker and 2 independent volume controis, and separate bass and treble confelt-ace povided giving 900 litt and cut. Valve and instructyon booklet 25p + P. A.E. (Free with parts). All parts sold separgely. ONLY \&13.50 P.) \& P. §1 40 . Also available ready built
and ifisted $118 \cdot 00$ P. \& P. $\% \cdot 40$.
"POLT-PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER Size 114 in $\times 14 \mathrm{in} \times 1 \frac{1}{1}$ in deep. Weight 190z. Power handling ${ }^{20} \mathrm{~W}$ Rz-20KHz. Can be mounted on cellings, walls doors. under tables, etc., and used with or without baffle. Send S.A.E. tor

 rectangular. ${ }^{100}$
(one 65 p , two 75 p)

SPECIAL OFFER. $6 \ddagger$ in long throw, roll surround, ceramic magnet 8 ohm 10 watt speaker chassis. Specielly sultable for Hi FI. $£ 3.95$ + 75 p P. \& P
2In PLASTIC CONE MF TWEETER 4 ohm. $\mathbf{2 3} \cdot 50$ per matched pair

HARVERSONIC SUPERSOUND
$10+10$ STEREO AMPLIFIER KIT
A really first-class HioFi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the firat five stages on each channel resulting in even lower noise level with improved sensitivity. Integral pre-gmp with Bass, Treble and two Volume simple to modify to suit magnetic cartridge-instructions included. Output stage for any speakers trom 8 to 15 ohms . Compact design. all parts supplied including drilled metalwork, high quality ready drilled printed circuit board with component identification clearly marked. smart brushed anodised suminium front panel with Simple step by step inatructions enable any constructor to build an amplifier to be proud of. Brief epecification; Power output: 14 watts R.M.S. per channel into 5 ohms. Frequency response $\pm 3 \mathrm{~dB}$
 Treble cut approx. to - 16 dB . Negative feedback 18 dB over main amp. Power requirements 35 V at 1 A
overall size 12 in wide \times in deep $\times 2$ fin high.
Fully detailed 7 page construction manual and parts list free with kit or send 25p plus large S.A.E.
AMPLIFIER KIT
£13.50 P. \& P. 80p

POWER PACK KIT
85.50 P. \& P. 95p

CABinet
55.50 P. \& P. 95p

SPECIAL OFFER-only E23. 75 if all 3 tome
ordered at one time plue $\mathrm{E} 1 \cdot 25 \mathrm{P}$. \& P.

Also available ready built and tested $£ 31.25$ P. \& P. $£ 1.50$

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis. with an output of 3-4 watts per channel into 8 ohm apeakers. Using the latest high technology integrated circuit amplifiers with built in short term thermal capacitor, fuse, tone control, volume controls. 2 pin din apeaker sockets and 5 pin din tape rec./play socket are mounted on the printed circuit panel. Size approx. 9 in $\times 2$ in \times In max. depth. Supplied brand new and tessod, wh knobs, brushed anodised horizontally or escutcheon (to allow $£ 9.00+50 \mathrm{p} \mathrm{P}$. $\& \mathrm{p}$. Mains horizontally or vertically) at only $\mathbf{k . 0 0}+50 \mathrm{p}$. \& . Mains
transformer with an output of 17 a at at $500 \mathrm{~m} / \mathrm{A}$ can be supplied at $[1.50+40 \mathrm{p}$ P. \& P. if required. Full connection details supplied.

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.
Prices and specifications correct at time of pross. Subject to alteration without notice
(Please write clearly)
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K ONLY P. A P. ON OVERSEAS OROER
CHARGED EXTRA.

THE METAC DIGITAL CLOCK

* COMPLETE KIT *

- Pleasant green display 12/24 Hour readout
- Silent Synchronous Accuracy Fulty electronic
- Pulsating colon. Push-button setting
- Building time 1 hr. Attractive acrylic case
- Easy to follow instructions Size $105 \times 5.7 \times 8 \mathrm{~cm}$
- Ready drilled PCB to accept components

KIT PRICE £9.60 + 7 ghp vat $^{\text {vat }}$
SAME DAY DESPATCH: ORDERS RECEIVED BEFORE 2.00 P.M. ARE POSTED ON THE SAME DAY

SEND YOUR ORDER TO

DAVENTRY

UXBRIDGE
METAC ELECTRONIC AND TIME 67 high street CENTRE 3 the new arcade DAVENTRY NORTHANTS.
TEL. (032 72) 76545 HIGH STREET
UXBRIDGE UXBRIDGE
MIDDLESEX Cash, Cheque or Postal Order TEt. uxpridge (0895) 56961 Barclaycard or Access, simply quote name, address and card number when ordering. Shops open 9-5.30 daily.

We can help you See and Solve your problems

HONELIGHT

Universal Portable Inspection Light The shadowless Honelight utilises the principle of optical fibres, in a tube of virtually unbreakable material, insulated, transparent and resistant to alcohol. It gives all-round illumination to otherwise inaccessible confined spaces and corners. Simple, lightweight and practical (weight with batteries 40 grammes approx.). Suitable for all professions-Electronics, Radio/TV-machines of all types. Also useful in the realm of Medicine: general and specialised, Dentistry, Veterinary etc. (Operates from 2-1.5 volt batteries).

Desoldering Tool "SPECIPROD"

High precision manufacture de-soldering pump. Available three sizes for all de-soldering requirements.
Chromed interior, nickel pump, teflon nozzle.
Three Sizes.
"'Maxi Super' ' length 37 cm , nozzle diameter 2 mm .
"'Maxi Mini" length 22cm, nozzle diameter 1.5 mm .
'Maxi Micro' length 16 cm (diameter body 12 mm , nozzle diameter 1.5 mm).
(The smallest de-soldering pump available).
Literature and general catalogue available on request from
Special Producte Distributore Limited, 81 Piccadilly, London WIV OHL Tel: 01-629 9556

Cables: Speciprod London WI

RADIO EXCHANGE LTD.

NEW ELECTRONIC MASTER KIT

With special Multi-Band V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kir, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc., Also in the kit: Transistors, Capacitors Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects ypeaker Case, Crystal components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
PRODECTS: V.H.F. Tuner Module A.M. Tuner Modute M.W. L.W. Diode Radio Six Transistor Multiband V.H.F. Earpiece Radio One Transistor M.W. L.W. Radio Two Transistor Metronome with variable beat control Three Transistor and Diode Radio M.W. L.W. Four Transistor Push Pull Amplifier Eight Transistor Multiband V.H.F. Loudspeaker Receiver - Variable A.F. Oscillator Jitfy Multitester Four Transistor and Diode M.W. L.W. Radio - A.F. R.F. Signa Injector - Five Transistor Push Pull Amplifier - Sensitive Hearing Aid Amplifier - Three Transistor and Diode Short Wave Radio Signal Tracer Three Transistor Push Pull Amplifier - One Transistor Class A Output Stage to drive Loudspeaker Sensitive Transistor Pre-amp - Transistor Tester Sensitive Three Transistor Regenerative Radio Four Transistor M.W L.W. and Diode Tuner Five Transistor M.W L.W. Trawler Band Regenerative Radio Five Transistor V.H.F. Multiband Tuner Three Transistor Code Practice Oscillator Five Transistor Regenerative Short Wave Radio Four Transistor ánd two Diodes M.W. L.W. Loudspeaker Radio Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull output One Transistor Home Broadcaster

NEW ROAMER TEN
 MODEL R.K. 3

Multband V.H.F, and A.M. Recelver. 13 Transistors and five Diodes. Quality 5in \times 3in Loudspeakers With Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Slow Motion drive Tuning Capacitor for easier and accurate tuning, covering M.W.1, M.W.2, L.W. Three Short Wave Bands S.W.1, S.W.2, S.W. 3 and Trawler Band, Buitt-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chrome Plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception Push-Pull output using 600 mW Transistors. Gain, Wave-Change and Tone Controls. Plus two Slider Switches. Negative Feedback circuit and SPECIAL POWER BOOSTER SOCKET AND RESISTOR, to virtually Complete kit of parts including carrying strap. $\quad 4+\varepsilon 1,10$ double gowered by P.P. g-g volt Baitery Building Instructions and operating Manuals.

Powered by P.P.9-9 volt Battery

NEW MODEL

R.K. 1

Multiband A.M. receiver M.W. L.W. Trawler band and three short wave bands. Seven transistors and four diodes. Push pull output stage. Sin x ferrite rod aerial Kit in ferrite rod aerial. Kit in it up including up including case stage by stage construction. Uses P.P.S-nine volt battery.

NEW

MODEL R.K. 2
M.W. L.W. and Air band receiver. Eight transistors and fou diodes. 3 in loud speaker, telescopic aerial, internal ferrite rod aerial. Complete with case enclosure kit. carrying strap and ready drilled
panels and all components necessary for construction. A sensitive receiver with the additional luxury of an air band section to pick up aircraft from many miles away. Full instruction manual enables stage by stage construction. Uses P.P. 9 -nine volt battery
£9.99 + P. \& P. £1. 10

ELECTRONIC CONSTRUCTION KITS
 E.C.K. 2

Self-Contained multi-

 band V.H.F. recelver kit. 8 transistors and 3 diodes. Push pull output. 3in loudspeaker, gain control, 7 section chrome luning capacitor, resistors, capacltors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit). Complete kit of parts $\mathbf{£ 7} .95 \begin{aligned} & \text { P. \& P. and } \\ & \text { ina. sop }\end{aligned}$

NEW

Everyday

Series

Build this exciting new design. E.V.6. 6 transistors and diodes. M.W. L.W battery. Ferrite rod aerial, tuning con denser, volume con
trol, and now with 3 in loudspeaker. Attractive case with red speaker grille. Size 9 in $\times 5$ tin $\times 24$ in approx. All parts including Case and Plans
Total Building costs $\mathbf{5 5 . 9 5}$
ALL PRICES INC. VAT

V.H.F. AIR CONVERTER KIT

NEW EDU-KIT MAJOR

Total bullding costs
£9.99
P. \& P. and

Ins. £1-10

COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT. BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

Transistor Push Pull - BatterylessRadioTransistor Loud- One TranslsTratierOneaker, Radio M.W.IransistoW.		

- 24 Resistors 21 Capacitors 10 Transistors 5 in $\times 3$ in Loudspeaker Earpiece Mic Baseboard ${ }^{3} 12$-way Connectors 2 Volume controls 2 Slider Switches 1 Tuning
condenser ${ }^{2}$ Knobs ${ }^{2}$ Ready Wound M.W. L.W. S.W. Coils Ferrite rod 64 yards of wire 1 yard of sleeving, etc. Complet kit of parts including construction plans

Build this converter kit and receive the aircraft band by placing it by the side of a radio iuned to nedium wave or the long wave band and operating tions supplied free with all parts. Uses a retractable chrome plated telescopic V.H.F. ganing control, ransistor, etc

TO: RADIO EXCHANGE LTD, 61A High street Bedford MK40 1SA
Tel: 023452367 REG NO. 788372

- Callers side entrance "Lavells" Shop
- Open 10-1, 2.30-4.30 Mon-Fri. 9-12 Sat
ll parto and plans
£4.95

BD1-The Connoisseur'sBudget Choice

BD1 with Plinth,
The Connoisseur BD1 transcription turntable is a precision engineered product designed to provide top grade performance at a moderate cost. Simplicity is the main feature of this unit giving excellent performance and reliability.
A slow speed synchronous motor is used and because of its construction the hum field is very low, so that even the most sensitive of pickups can be used, including the Connoisseur SAU2 or the SME 3009 Series II.
Speed change is achieved by a press button unit at the rear of the platform which automatically moves the drive belt from one pulley groove to the other whilst the turntable is turning. The BD1 turntable kit can be assembled by the home constructor within the hour and when completed will give top quality performance. No soldering is required. Complete the unit with a modern BD1 plinth and cover. The plinth is finished in walnut veneer and fitted with spherical, Cover \& SME Arm anti-vibration feet. Add to this a strong Acrylic, bronze cover, hinged with 2 -position lid stay and you have a first class turntable at a budget price!

Write for further details to:
A. R. Sugden \& Co. (Engineers) Ltd.

Manufacturers of Connoisseur Sound Equipment, Connoisseur Works, Atlas Mill Road,
Brighouse, West Yorkshire HD6 1ES
Telephone: Brighouse (0484) 712 142, Telex: 517144 Sugden Crighouse,
Telegrams \& Cables: Connoiseur Brighouse.

SEND STAMP ADDRESSED ENVELOPE NOW FOR THE EASY TO USE ACE ORDER FORM CONTAINING 500 TOP QUALITY POPULAR ELECTRONIC COMPONENTS AT PRICES YOU CAN AFFORD. P\&P FREE ON ORDERS OVER £2, OTHERWISE 20p. ALL PRODUCTS GUARANTEED ONE YEAR IF CORRECTLY USED. SOME EXAMPLES FROM THE COMPETITIVE ACE RANGE WITH VAT INCLUSIVE PRICES ARE SHOWN BELOW

BC107/108/109 Metal ___ 13p	${ }^{1} 4 \mathrm{~W}$ Resistors CF 55%	3for 6p
BC207/208/209 Plastic ___ $11 p$	Minpresets Horiz/vert.	8p
2N3055 65p	Electrolytic $100 \mu \mathrm{~F} 25 \mathrm{v}$.	10p
7410 p Amp-8pin __ 30p	Polyester C280 0-1/FF	8p
555 Timer _ _ 50p	LED Red 0.2"	15p
W04 1A Bridge __ 31 p	Phono plugs	8p
7400 TTL _ 15p	Mintoggle SPST	800
IN4148 Diode __ 4p	Wire-PVC Stranded 10m	25p
IN4001Rec _ $5 p$	Veroboard $0.12 .5 \times 3.75$	50p
BZY88 Zeners __ 12p	S-DEC Breadboard	216p

Gest enfesup uour slesic!

AUDIBLY SUPERIOR AMPLIFICATION

HIGH DEFINITION - ‘MUSICAL’ - POWER AMP mODULES

* T.H.D. TYPICALLY .007\% @ 10W, 500Hz
* ZERO T.I.D. [SLEW-RATE LIMIT $16 \mathrm{~V} / \mathrm{S}$)

Madule size:

$120 \times 80 \times 25 \mathrm{~mm}$. using
glass fibre peb with ident and solder resist.
Illustrated with light duty
heatsink.
CAIMSON ELEKTAIK powar amplitier modules are fast gaining a reputation as the best sounding, most musical modules availabla. Perhapa the most important features of this design are exceptional freeaom from crossover distortion (due to the use of output triples) and zero T.I.D. The amplifier is protected againat open and short circuit loads and yet will drlve a highly reactlve tower impedance load which is more simulated electrostatic loads are easily handied with negligible overshoot and a settling time of $12 \mu \mathrm{~S}$. Other spece SiN $>110 \mathrm{~dB}$. Rlse time 10 L S. Sensitivity 775 mV . OC coupled. $5 \mathrm{~Hz}-35 \mathrm{kHz}$ (-3 CB). THD $<.015 \%$. CRIMSON ELEKTRIK \qquad CRIMSON ELEKTRIK power supplies are in kif form for maximum fiexibillty and fature a low fletd silmline
toroidal transformer with a 120 -240v primary and screen, two large capacitors bridge rectifier and all tixingal
flaing.
Heatsinks are attractive black anodised extrustons, 80 mm wide

AITKEN BROS

35 High Bridge, Newcastle upon Tyne Tel. 063226729

TRANSISTORS				INTEGRATED CIRCUITS			
${ }^{*}{ }^{\text {AC125 }}$	$20 \cdot 30$	Bu205	c2. 20	*CA3060	¢0.75	*LM710/14	50.80
*AC126	20.25	ME0401	c0. 18	-CA3000A	¢1.8)	*LM723/TO99	50.05
*AC127	20.25	ME0402	50.15	- Ca3086	80. 80	*LM723/14	c0. 75
*AC128	c0.23	ME0404	c0. 15	-CA3088	\$1.70	*LM741/8	c0. 40
*AC141	20.30	MPF102	c0. 32	-CA3089	[2. 52	*LM741/14	c0. 40
*AC142	50.32	MU2855	c1. 25	- Ca3090	E4.00	*LM741/TO99	¢0.65
*AC176	50.30	MJE2955	E1. 50	CA3130	co. 98	-LM747	c0. 90
*AC187	20.30	MUE3055	20.95	-LM301/8	80. 44	*LM748/8	c0. 55
${ }^{*}$ AC188	20.27	OC25	c1. 50	-LM301/TO99	c0. 65	-LM748/14	c0.55
AD140	20.85	$0{ }^{0} 28$	c1. 40	*LM308	\&1. 2	*LM740/TO99	co. 50
AD149	81.40	TIP29A	80.47	*LM308T099	¢1.17	*LM3900	20.75
A0181	20.70	TIP30A	c0. 58	-LM309	c1. 35	-	
AD162	50.70	TIP31A	c0. 57	-LM380/4	co. 90	TL + Cm	8
AL102	c1.90	TIP2955	c0. 97	*LM380/14	co. 98	always in 3	
AL103	51.90	TIP3055	50.55	-LM709/8	80.45	NE555	80.53
BC107	50.15	2 2696	c0. 35	-LM709/14	c0.45	NE556	¢1.05
BC108	co. 15	2 2697	c0. 30	-LM709/TO99	c0. 85	-2N414	11.50
${ }_{*}^{8 C 109}$	20.15	2 2N708	c0.20	-LM710/TO99	cobe	-MC1310	E1.91
- $\mathrm{BC147}$	co. 12	$2{ }^{\text {N1613 }}$	co. 32				
-BC149	${ }_{50} 0.14$	2N2160	c1. 40	THYRISTORS			
-BC167	$\mathrm{co}_{0} 13$	2N2219A	c0.35				
${ }^{*} \mathrm{BC168}$	± 0.13	2N2220	co. 35	TO92		Fiat plastic	
*BC169	50.16	2 N 2221	c0.25	0.5 A 25V	50.32	4 A 100 V	50.40
-BC182	co. 11	2 N 2221 A	co. 23	0.5 A 50V	co. 32	4 A 200 V	c0. 51
*BC183	50.11	2N2222	c0.25	0.5 A 100V	E0.46	4A 300V	co. 52
*8C184	co. 12	2N2222A	c0. 25	0.5 A 200 V	co. 40	4 A 400 V	c0. 50
*8C212	\$0.14	2N2846	c0. 75	TOS			
*BC213	co. 14	2 N 2904	co. 35	1A 100V	50.50		c0. 54
*8C214	c0.16	2N2904A	50.37	1A 200 V	80.82	8 A 200 V	c0. 57
80115	20. 00	2N2905	c0. 37	1A 400V	50.93	8 A 400 V	c0. 82
80131 80132	ce. 50	2N2905A	20.35 00.25	1A 600 V	50.95	BA 600 V	c0. 74
80140	50.40	2N2906A	20.35	TRIACS 400V llat plastic			
BFW 10	50.60	2 N 2907	50.25				
${ }_{\text {BFW }}$ BFX 411	50.68	2N2907A	c0. 26				E1.19
BFX84 BFX 86	50.35 50.35	${ }^{2} \mathbf{2 N} 2926$	c0.15	6A	81-19	12A	81-23
$\begin{aligned} & \text { BFX } 80 \\ & \text { BFY50 } \\ & \text { BFY51 } \\ & \text { BFY52 } \\ & \text { BU105 } \end{aligned}$	20.30	2 N 3054	50.60				
	c0. 20	2 N 3055	80.70	DIODES			
	80.21	2N3702	c0. 13				
	c0. 20	2N3703	ce. 15	Bax 13	co. 06	in4003	co- 0 d
	¢1.50	2 N 3704	50.15	BY127	80.18	in4004	co. 10
SOLDERLESS BREADBOARDS				OA5	20.75	IN4005	${ }_{C 0.12}$
DECs				OA10	co. 55	iN4007	50.14
S-DEC	[1.90	U-DEC ' ${ }^{\text {a }}$ "	c3.98	OA90	c0.10	IN5400	co. 12
T-DEC	c3.63	U-OEC - ${ }^{\text {- }}$	26. 89	OA91	co. 10 80.10	IN5401	$50 \cdot 14$
Pots, capactions, boxeti, inst. ceseas. Din pluge, jack plugs, resistors alwaye in stock. For details aend 40 p for our 100 -page catelogue. 30 p to callers. Prices liess VAT. Please add 12 2 $^{\prime}$ to itoma marked *. All rest odd 8. Poatage 20p extre.				OA200	co. 10	in5403	co. 16
				OA202	¢0. 10	in5404	co. 16
				IN914	80.07	in5405	co. 18
				IN4148	c0.06	iN5406	co. 18
				1 N 4001	co. 06	in5407	50.20
				IN4002	50.08	IN5408	C0. 22

Single Stage Stereo Preamp boards max. $1 / \mathrm{P} 700 \mathrm{~m} / \mathrm{V}$ (high Z) gain 26DB, 40p. Grundig Electret Microphone inserts with F.E.T. preamp., 51 - 50 . A.M.I. FM 7 transistor tuner boards with var. cap.. 5 way push button $10-7 \mathrm{mHz}$ fllt. I.F.T.'s atc., suitable for spares, 75 p. Model motors $1.5-6 \mathrm{~V}$ d.c., 20 p . 12 V d.c. 5 pole, 40 p .115 V a.c. min. motor 3 r . p.m. with gearbox, 30 p . Grundig speaker $2 \bar{i}$ in $\times 44 \mathrm{in} 8 \Omega$, Bep. G.P.O. board with 64 BC107 type transistors. 2 reed, 1 mercury relays, diodes. etc., $52 \cdot 00+55 p$ P. \& P. 500 metres, 2 core single strand wire, $\mathbf{5 4} \cdot 00+85 \mathrm{p}$ P. \& P. Savbit 500 gram cored solder, 52.50 _ 1 Cfthly 1.F. panels 6 I.F.s 3 trans. erc., 30p. 200pF twin dialectric var. cappowers-jin spindlen 37 p. Stereo preamp. wid 25 Ib pull 4 in travel, $\mathbf{\varepsilon 3}$.25. 12V d.c. solenowe 0.0375 travol-65p. G.P.O. buzzers 6-12V. 30 p . Miniature solid state buzzers, 6-9-12 or 24 V d.c. $15 \mathrm{~mA}, 75 \mathrm{p}$. Omron 12 V a.c. relays 11 pin. 3 pole c/o 5 amp . 05 p . Miniature 220 V a.c. sealed relay 2 pole $\mathrm{c} / \mathrm{o}, 50 \mathrm{p} .12 \mathrm{~V}$ reed reiay 4 make. 20 p . 240 V a.c. sealed relay, 11 pin, 3 pole c/o 5 amp . new, 80 p . 6 MH 3 amp . smoothing chokes, 30p. Veeder root reset 3 digit 240 V a.c. counters, $£ 1.25 .100-0-100 \mathrm{pA}$ level meters $\mathbf{7 5 p}$. Stereo tuning meters $100 \mu \mathrm{~A}$ per mov., $\mathbf{5 2} \cdot \mathbf{7 5}$. Battery level meter $20 \mathrm{~mm} \times 15 \mathrm{~mm} \times 20 \mathrm{~mm}$, COp. Smiths $270^{\circ} 5 \mathrm{~mA}$ meters 115 mm dia. scaled in tons, E 1.50 . Mains transformers: 240 V a.c primary, $6-0-6 \mathrm{~V} 100 \mathrm{~mA}, 75 \mathrm{p}$. $9-0-9 \mathrm{~V} 75 \mathrm{~mA}, 75 \mathrm{p} .12-0-12 \mathrm{~V} 50 \mathrm{~mA}, 7 \mathrm{sp} .12 \mathrm{~V} 500 \mathrm{~mA}, 95 \mathrm{p} .15-0-15 \mathrm{~V} 1$ amp, $5 \mathbf{2} \cdot 00+35$ P P. \& P. $0-12-15-20-24-30 \mathrm{~V} 2 \mathrm{~A} . \mathrm{C4} \cdot 95+35 \mathrm{p}$ P. \& P. $25 \mathrm{~V} 2 \mathrm{amp}, \mathbf{£ 1} \cdot \mathbf{7 5}+35 \mathrm{p}$ P. \&
 P. 18 V 1.5A $+12 \mathrm{~V} 1 \mathrm{~A}, \mathbf{1 2} \cdot \mathbf{2 0}+35 \mathrm{p}$ P. \& P. 20V 2-5A, $\mathbf{2} \cdot \mathbf{2 0}+35 \mathrm{P}$ P. \& P. 80 watt auto tapped 240V-135-115-110-19V 80 watt, c1-75 + 35p P. \& P. 300 watt auto $240-110 \mathrm{~V}$ a.c., $\varepsilon 3 \cdot 50+50 \mathrm{p} \mathrm{P} .8$ P. Tape heads: Jap mono cassette. S0p. BSR MN1330 + track dual imp.rec/ playback, 50p. BSR SRP90 \ddagger track stereo rec/playback, E1.95. BSR TD10 dual head assemblies $\frac{1}{4}$ track rec/playback staggered stereo with built in erase per head, $81 \cdot 20$. BSR 4SE \ddagger track erase heads. 30 p . Computer capacitors, new: 14.000 H 35 V d.c. $30,00040 \mathrm{~V}$ d.c. $4,200100 \mathrm{~V}$ d.c. $60,00030 \mathrm{~V}$ d.c., all 75 p each. $20,00045 \mathrm{~V}$ d.c. ex. equip. 45 p . $2,200 \mathrm{mFd} 6.3 \mathrm{~V}$ d.c. and $4,700 \mathrm{mF}$ d 6 -3V d.c. P.C. mounting sp each type. $10 \mathrm{mFg} 6.3 V$ d.c. P.C. mig. new 2.50 per 100 semiconductors. 418 pin dil, 23p. CD4051 CMOS, sop. Motorola MRD3051 photo transistor 35p. N channel fels sim. to 2 N 3819 , 18 p . Man 3 A 3 mm led display, 50 p . Lucas 500 V 5 amp NPN stud power Iransistor, 55p. 2in green led \mathbf{s}, 12p. M203 dual matched pair mosiets, single gate per fet, 40p. SL301 dual matched pair silicon NPN trans. ft. 300mHz, 30p. Intel 1024 bi mos rams ype C103-1. 95 p . BFS95 (equiv.). 20p. 2 N 1893. 20p. 3 N 140 mosiers, 50 p . Texas
 with P D. C1-95, Board with 14 S P. . max.

 soller mp. G.P. Keysw assy. 3 swiches $2-3$ way. $1-2$ way, muti-pole, 35p. Bugg 50 mm 10 for. 15 p . Sub min. micro $3 \times 10 \times 4 \mathrm{~mm}$. 20p. Glass read swithes No 28 mm or inductors. 12p. 1 pole 18 way thumb switch 20p. ETP. 100 watt solder gun c3. 75. Migh
 asposol 607,500 . Newmarket power supply 240 V a c input, 8 V 250 mA out 81.95 . Texa mosfot Similar to 40673, 34p. Min. 45p. Monsanto 46404. 3in LEO display com cath \&1 S. mica Capacitor 0.1mFd 350 d.c. 1% tolerance, 10 p .

We stock a full range of components, project lists welcome. V.A.T. included in prices. Postage unless otherwise shown 30p P. \& P. Excess postage will be refunded with order

PROGRESSIVE RADIO
31 CHEAPSIDE
LIVERPOOL 2
051-236 0982

We're at your service onthe_

RANK A823 COLOUR CH CHASSIS
 Don't miss our detailed and comprehensive feature on this popular single standard colour

 chassis! We define all the faults you are likely to encounter and explain the remedies.
Also

TROUBLES WITH TRIPLERS

How they work, the different types, what actually goes wrong with them, and the warning symptoms of trouble.

Plus

Part 2 of the Mono Portable TV set

NOVEMBERISSUE
on sale Monday 17 October 50p

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

BRAND NEW COMPONENTS BY RETURN

 Hiloctrolytic Capacitori 16V, 25V, $50 \mathrm{~V}-0.47 .1 .0,2.2,4.7$ and $10 \mathrm{mF} 6 \mathrm{p} ; 22,4751 \mathrm{p}(50 \mathrm{~V} 6 \mathrm{p}) ; 1007 \mathrm{p}$ (50 V 8 p); $2208 \mathrm{pp}(50 \mathrm{~V}$ 10 p); 47011 p (50 V 16 p); 1,000 (16 V) 15p, 1,000 (25 V) 18p 1,000 (50V) 82 p . $1 \cdot 0,2 \cdot 2$ at $35 \mathrm{~V}, 4 \cdot 7 / 2 \overline{\mathrm{j}} \mathrm{Y}$ 11p $10 / 25 \mathrm{~V} 18 \mathrm{p} ; 22 / 16 \mathrm{Y}, 47 / 16 \mathrm{Y}$ and $100 / 3 \mathrm{~V} 15$ p. Mollard Nin. Coramic E18 Series 68 V 2\%-10pF to 47 pF $8 \mathrm{p} ; 66 \mathrm{pF}$ to 330 pF 4 p . Vortical Mount ceramic Plate LOY-E12 series 22Polyhtyrend E 6 series $1,500-47,000 \mathrm{pF}$ 2p.$1,000 \mathrm{pF} 3 \mathrm{p} ; 1,200-10,000 \mathrm{pF}$ Horizontal Mounting-10Mullard Poljester 250才 Vortical Mounting E6 Series-0.01$0.14 \mathrm{p} ; 0 \cdot 15,0.225 \mathrm{p} ; 0.33,0.478 \mathrm{p} ; 0.6811 \mathrm{p} ; 1.013 \mathrm{p} ; 1520 \mathrm{p}$; Mylar (Polgenter) Film 100V Vertical Mounting-0.001, $0.002,0.0053 p ; 0.01,0.024 p ; 0.04,0.05 \frac{1}{4 p} \mathrm{p}$. Miniature Reaistors Highstab E12 Series 5%. Carbon Film $0.25 \mathrm{~W} 1 \Omega$ to $10 \mathrm{M} \Omega$. 10% over 1 m . Metal Film 125 W 0.25 W and 0.
to $10 \mathrm{M} \Omega 8 \mathrm{p}$. IN4148 3p; iN4002 5p; 1N4006 7p; IN4007 8p; BC107/8/9, RC147/8/9, BF157/8/9, BF194, 1979p. Fuses 20 mm glans, 11 in glass, lin ceramic 21 p .
Poet 10 p (free over 24). Prices inclusive of

THE C.R. SUPPLY CO.
127 Chesterfield Road, Sheffield S8 ORM
VALVE8-Radio, TV, industrial, transmitting. We dispatch to any part of the world by return We dispatch to any part of the world by return of post, Air or Sea Mail. 2,700 types in stock. 1930 to 1976 obsolete types a speciality. List 20p. Quotation S.A.E. Open to callers. Mon. to Sat.
$9,30-5.00$, closed Wed, 1.00 . We purchase all Q,30-5.00, closed Wed, 1.00 . We purchase all types of new and boxed valves. COX RADIO (Sussex) Ltd., Dept. P.E., The Parade, East Witter (STD code 024366).

ORCHARD ELECTRONICS

I,C.s. TTI. C/MOS, Linear. Capacitors. Resistors (E/2). SIL/Rectifiers. Diodes. LED. Thyristors. Zeners. Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentiometers. Presets. Triacs. Diac. Plugs. Sockets. Cable. Vero. Carefully selected range, excellent despatch service. Same day turn round. S.A.E. List. Suppliers to A.E.R.E. U.K.A.E.A. Government Depts. Schools. Universities, Manufacturers. Accounts opened for trade and amateur. Join the professionals. Phone by 4 p. m.
Goods out Ist class by 5 p.m. Try us and prove it! Goods out Ist class by 5 p.m. Try us and prove it ?

ORCHARD ELECTRONICS
Flint House, High Street, Wallingford, Oxon Telephone 0491-35529

NOVEMBER ONLY MJE3055, 40p; T1L209, $9 \mathrm{p} F$ 2102 (500NS), 1.50 ; 8080 A , \&16; MM5314, \&2.95; BF195, 9p; BC213,9p; BC183, 9p; ССР70,16p; 7 way BF195, 9p; BC213, 9p; BC183, 9p; CCP70, 16p; 11 way
DIL switches $50 \mathrm{p} ; 74 \mathrm{HOO} 20 \mathrm{p}$. Timers in 11 pin DIL switches 50p; 74 HOO 20 p . Timers in 11 pin relay case, $13 \cdot 5$ secs-5mins approx $+\underset{P}{P}$. \& P, 10 p . LB ELECTRONICS, 43 Westacott. Hayes, Middx UB4 8 AH.

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6 \cdot 00$ per single column centimetre. All cheques, postal orders etc., to be made payable to Practical Electronics and crossed ''Lloyds Bank Ltd''. Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 GLS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants thal the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisament.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consequences.

Precision Polycarbonate Capacitors
All High Stability-extremoly Low Leakage

Value Dimen. Price	Value $\mu \mathrm{F}$	$\pm 1 \%$
$(\mu \mathrm{~F})$ sions (mm) each	$\pm 2 \% \quad \pm 5 \%$	

 0.25
0.33
0.47
0.5
0.68
1.0
1.5
2.0
7
0.
2.
6.
15

 POPULAR DIODES:BA145-18p; BA148-18p; BA155 -18p; OA47-11P:OAB1-15p:OA90 \& 91—7p. IN914 -16p; 10/66p; IN916 8p; 10/77p; IS44-7p: $10 / 60 p ;$
IN4i 004-71p; $005-8 p ; 006-9 p ; 007-10 p ;$ TIL209-25p.
 $5 \mathrm{~mA} 3 \mathrm{~V} ; 3 \mathrm{~V} 3 ; 3 \mathrm{~V} 6 ; 4 \mathrm{V7} ; 5 \mathrm{VI;} 5 \mathrm{~V} 6 ; 6 \mathrm{~V} 2 ; 6 \mathrm{V8} ; 7 \mathrm{V5;8} 2 \mathrm{~V} ;$
$9 \mathrm{VI} ; 10 \mathrm{~V} ; 11 \mathrm{~V} ; 12 \mathrm{~V} ; 13 \mathrm{~V} ; 13 \mathrm{~V} ; 15 \mathrm{~V} ; 16 \mathrm{~V} ; 18 \mathrm{~V} ; 20 \mathrm{~V} ; 22 \mathrm{~V}$; 24 V ; 27V; 30V; 33V (All at 10 p each, 10 for 95p, 50 for RESISTORS-High stability, low noise carbon film 5\%
 2.2 Mn . All at $\mathbf{2} \mathrm{p}^{*}$ each, $15 \mathrm{p}^{*}$ for 10 of any one value, $95 p^{*}$
for 100 of any one value, SPECIAL PACK: 10 of each value for 100 of any one value. SPECIAL PACK: 10 of each value
$2.2 \Omega \& 2.2 \mathrm{M} \Omega$ (730 resistors) 66.50^{*}. SUBMINIATURE PRESETS (Vert
SUBMINIATURE PRESETS (Vertical or Horizontal)-
0.1 W only $50 ; 100 ; 220 ; 470 ; 680$ ohm; $1 \mathrm{k} ; 2 \mathrm{k} 2 ; 4 \mathrm{k} 7 ; 6 \mathrm{k}$; 10k; $15 \mathrm{k} ; 22 \mathrm{k} ; 47 \mathrm{k} ; 68 \mathrm{k} ; 100 \mathrm{k} ; 220 \mathrm{k} ; 470 \mathrm{k} ; 680 \mathrm{k} ; 1 \mathrm{k} ; 2 \mathrm{M} ;$ $4 \mathrm{M7}$. All at $7 \mathrm{p}^{*}$ each; 10 for $60 \mathrm{p}^{*}$; 100 for $~ \$ 5.00^{*}$.
PLEASEADO 25P POST ANOPACKING ON ALL ORDERS EXPORT-ADD COST OF SEA/AIRMAIL. Add 8\% VAT to all items except those marked with which are $12 \frac{1}{2} \%$ Send S.A.E. for additional stock lists.
Wholesale price lists available to bona fide companies
MARCO TRADING (Dept. P.il)
The Old School, Edstaston, Wem, Shropshire
Tel: Whixal M64/465 (SToprs. Minicost Trading Led.) -

-

CARBON FILM RE8I8TOR8 5% E12 W, $\frac{1}{4}$, $\frac{1}{2}$. Your mix, $90 p$ per 100. Metal Film th. W. $10 / 100$. Mail Order Only. CANDAR, 9 Galloway Close, Bletchley
P.C.Bs Paxolin 91, in \times 7in, 45p. 12in \times 9in 70p.
$17 \frac{1}{2}$ in $\times 9 \frac{1}{2}$ in, fl . Fibre glass double sided 7 in $\times 8 \mathrm{in}$,
$80 \mathrm{p} .12 \mathrm{in} \times 6 \mathrm{in}, \mathrm{fl}$. $12 \mathrm{in} \times 12 \mathrm{in}$, t 190 . 20 wire $18 / 22 \mathrm{~V}$,
works an 12 V £3.20, 20 assorted 74 series I.C.s on
panel(s), \&1•35. Three assorted meters $\mathbf{£ 2} 20.7 \mathrm{lb}$
assorted components $\mathbf{6 2 . 9 5}$. List 15p. Refund on
purchase. Over $£ 1$ post paid; under add 20p; insurance
add 15p.
J. W. B. RADIO
2

BC351: BC207B, XK1152, BC204B, 8p. DIODE 1 S 940 , 3p. Capacitors $0 \cdot 1 / 600 \mathrm{~V}$, 3p. 1 Megohm 17p. Min order 22 . VAT inclusive. P. \& P. 20 p . HEWITT'S, 9 St. Peter's Street, Syston, Leics.

LED's. Mixed bags of 4 different sizes and 4 different colours. 50 at $25 \cdot 25,100$ at $\$ 9 \cdot 25$ including VAT and post and packing. CWO. MICHAEL WILLIAMS ELECTRONICS, 47 Vicarage Avenue, Cheadle Hulme, Cheshire SK8 7JP.

COMPONENT8 AND HARDWARE. Wide range. Fast service. Catalogue- $2 \times 9 p$ stamps. MAGENTA, J10, 61 Newton Leys, Burton on Trent, Staffs. DE15 ODW.

[^5]8PECIAL OFFER BC107/8, 10p; 1N4148, 4p; BC307, 9p; SNF400 11p; for further lists S.A.E. to: C\&M ELECTRONICS, 60 Marshallstown Road, Carrickfergus. P. \& P. 20p.

TURN YOUR SURPLU8 capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, Cambs. Tel, 09454188. Immediate settlement.

8ET OF PRACTICAL ELECTRONIC8 from Volume 1 No. 1 (November/64) to Volume 12 No. 8 (August/76). Offers. PACL IJEASANTS, 7 Barleycroft Lane, Dinnington, Sheffield. Tel. Dinnington 4257.

HARTLEY 13A O8CILLO8COPE (+ spares), 3 Volumes Practical Electronics (1970-73), 100 Appli cation Notes. Offers. Tel. Bolton 47908.

NEW I88UE8 of "Practical Electronics" availahle from April 1974 edition up to date. Price $65 p$ each. Post free, BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

213 copies of R.C., P.E., P.W. from 1958 including 9 complete years. Offers. Box No. 71.
T.T.L. 16 'happrox. $\frac{1}{\frac{1}{2}}$ price, ex board, tpated. S/A.F. list to A 1 HORE, 47 Paragise Lafe, formby,

P.E. MULTIMETER
 LD130 chip and other components Competitively priced S.A.E. for list
 SPARKS DEVELOPMENTS
 53 North Street, Melbourne, Derby.

FOR 8ALE 92 issues Practical Electronics from November 1964 to September 1972 . 3 missing. Offers-SHARP, 48 Highbury Road East, St. Anmes, Lancs.

MELCOM 83 COMPUTER, excellent condition tape punch-read, teletype, 30,000 word drum store, 10 boxes of paper. 2450 o.n.o. Tel. : Hailsham 844666 .

O8CILLOSCOPE, Heathkit 10-102 5MHz, 290 o.n.о.; ID-101 Electronic Switch, $\$ 30$ o.n.o.; both hardly used, excellent order, plus manuals. Also IG-127. Function Generator Kit unused as new, 270. EMERY 33 Belwell Lane, Sutton Coldfield. Tel. 021-308 4832.

30 NOTE Pedal Board and Bench for Piano or Organ. Suitable for Electronic Conversion. 248. H. GATEHOUSE, 5 Mountain Road, Caerphilly
CF81HG.

WANTED

WANTED-NEW VALVE8, Transistors. Top Prices, peputar types. KENINGTON SUPPLIES, (B) 367 Kensington Street, Bradford 8, Vorkshire. (8 , 367
WANTED. $81 \cdot 50$ given for a January 1973 copy of Popular Electronics, condition not important but Intust be legible. Send to N. BINET, La Fontaine, St. Mary, Jersey, C.I.

EDUCATIONAL

TELEVISION TRAINING

I2 MONTHS' full-time course in Radio and TV for beginners (GCE-or equivalent-in Maths and English).

26 WEEKS' full-time course in Mono and Colour TV (basic electronics knowledge essential).

13 WEEKS' full-time course in Colour TV (Mono TV knowledge essential).

These courses incorporate a high percentage of practical training.
Next session starts on January 3rd.
Prospectus from London Electronics College, Dept. All, 20 Penywern Road, London SW5 9SU. Telephone 01-373 8721

COURBE8-RADIO AMATEUR8 EXAMINATION. City and Guilds. Pass this important examination, Study Course. For details of this, and other courses (GCE, Professional Examinations etc) write or phone (GHE, Professional Examinations etc) write or phone J.S.1, Tuition House, London SW19 4DS, Tel. 01-947 7272 (Careers Advisory Service) or for a prospectus only ring $01-946 \quad 1102$. (24 hr recording service).

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on lor details of ICS specialist homestudy courses on
Radio, TV, Audio Eng. and Servicing, Electronics, Radio, TV, Audio Eng. and Servicing, Electronics,
Computers; also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 771N, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 771N, Intertext House, London SW8 4UJ Tel. 01-622 9911 (ail hours)

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 771 N , Intertert Hoase, London SW8 4UJ Tel. 01-622 9911 (all hours)

LADDERS

LADDER8. Varnished $25 \frac{1}{\mathrm{ft}}$ extd. $£ 30 \cdot 41$. Carr. $£ 1 \cdot 90$ Leaflet. Immed. despatch. THE LADDER CENTRE (PEE3), Halesifeld (1), Telford, Salop. Tel. 586644.

Department of Electrical and

 Electronic EngineeringLecturers in Newcastle Poly's Electrical and Electronic Engineering department are regular readers of

Practical Electronics
Not surprisingly, for they strongly approve of technological advances being made available rapidly to the experimenter. They also believe in keeping those who are interested in touch with opportunities in this area and are delighted to discuss courses and careers concerned with application of electronics.
The department specialises in digital engineering, computer applications and electronic communications, and possesses thirteen well-equipped laboratories plus a minicomputer. Full-time and part-time courses are offered.
Telephone (0632) 26002, ext 371 or write to L Barnes, Principal Lecturer in Charge at Ellison Place, Newcastle upon Tyne NE1 8ST.
Newcastle upon Tyne Polytechnic

SERVICE SHEETS

BELL'8 TELEVI8ION 8ERVICE8 for Service Sheets on Radio, TV, etc. 70p plus S.A.E. Colour TV Service Manuals on request. S.A.E. With enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire, Tel. (0423) 55885.

8ERVICE 8HEETS for Radio, Television, Tape Recorders, stereo etc. With free Fault-finding guide, from $50 p$ and S.A.E. Catalogue $25 p$ and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

BUSINESS FOR SALE

8HREW8BURY. Thriving electronics and electrical trade business. Excellent trading position in this busy market town. Previous experience in the trade not essential. Easily run by husband and wife. Premises to be let on lease. $\$ 11,000$ for goodwill, flxtures and fittings. Full information from COOPER AND GREEN, 3 Barker Street, Shrewsbury. Tel. 50081

BOOKS AND PUBLICATIONS

8IMPLIFIED TV Repairs. Full repair instructions individual British sets $84 \cdot 50$, request free circuit diagram. Stamp brings details unique. TV PUBLICATIONS (Ausepe), 76 Church Street, Larkhall, Lanarkshire.

HOW TO START A BU8INE88. By popular demand a fully illustrated manual has now been produced, showing, in easy, step by step stages, how to rewind Armatures and Field Coils as used in Vacuun Cleaners, Drills and Portable Tools. Chapters on taking data, materials required, test instruments required, rewind instructions, charts, etc. How to cost jobs and where to obtain work. No previous knowledge required. Complete instructions manual 84.00 plus $30 \mathrm{p} \mathrm{P}. \mathrm{\& P}. \mathrm{CWO} .\mathrm{COPPER} \mathrm{SUPPLIES}$, 102 Parrswood Road, Withington, Manchester 20, Dept. PEA.

ELECTRICAL

8TYLI, CARTRIDGE8, AUDIO LEAD8 etc. For keenest prices send S.A.E. for free list to: FELSTFAD ELECTRONICS (PE), Longley Lane, Gatley Cheadle, Cheshire, SK8 4 EE.

MISCELLANEOUS

QUALITY MW/LW/YHF PORTABLE RADIOB. Limited stocks only. Be ready for changes in B.B.C. service frequencies when a three band set is prefered. Metal facia with twin speaker grill, telescopic aerial and dial illumination button. Only $\mathbf{2 1 5 . 5 0}$ complete with batteries, earphone and guarantee. ELECTRONIC SUPPLIES, Southview, Station Road, Bramley, Guildford, Surrey.

BUILD YOUR OWN TV CAMERA ONLY KNOWN HIGH PERFORMANCE SOLID STATE CAMERA IN KIT FORM. AIso available factory assembled. Ideal for experimenters, ind rory security, education etc. *Will work with most other CCTV induster equipment. *Fully guaranteed. *Completely self-contained. With our equonator will connect to any domestic TV set. Model C1 complete modulatice with Vidicon $£ 99$. Less Vidicon 882.35 . (Lens avaitable as optional with Vidicon £99. Less Vidicon E82.35. (Lens avaitable as optional extra). SAE for info or phone your order through using your Barclay
 CROFTON ELECTRONICS LIMITED

OUTSTANDING HI-FI FM TUNER. Comprises 7 transistors superhet design with varicap tuning, AFC. Latest Bilicon circuitry, full coverage 88-102 MFC. Latest silicon circuitry, full coverage $88-102$ panel and instruction sheet, only $89.95+30 \mathrm{p} P$. \& P . GREGG ELECTRONICS, 86-88 Parchmore Road, Thornton Heath, Surrey.

MAKE YOUR OWN PRINTED CIRCUITS

Professional Finish

RUB-ON TRANSFERS-STARTER PACK \&1.30 (5 sheets, lines, pads, i.e. pads), SPARE SHEETS 27p.
FERRIC CHLORIDE- ilb bags 70p (P. \& P, 30p) FERRIC CHLORIDE- IIB bags 70p (P. \& P. 30p) ${ }^{\text {(}}$.
LOW.COST I.C. MOUNTING- 100 Soldercon LOW.COST \quad I.C. MOUNTING-100 Soldercon
sockets 65 p . 7 or a hole plastic supports $6 p$ pair. TRANSISTOR TESTER-Easy to use, Indicates gain.
 order except ${ }^{*}$).

P.K.G. Electronics

Oak Lodee, Tansley, Derbyshire DE4 5FE

INYENTOR8. "Proft from Your Invention". Sources of Finance and other assistance. Details: Large S.A.E. DELTA (PE), 15 St. Mary Street, SouthampSon, Hants.
to

```
GLASS FIBRE P.C.B.'s
From your owri tape, film or ink master. Send S.A.E.
                or quotation.
            PRACTICAL ELECTRONICS P.C.B.'s
        in glass fibre, tinned and drilled.
        July }76\mathrm{ Receiver 988, Decoder 79p
        nterface 58p. August76 Servodrive74p
            Servo Amp 58p, Relay Drive 68p.
            Completeset of above boards E5'80.
Dec. }76\mathrm{ Orion Tuner E2'48. April 77 Digital Volt Meter
    (G8CZW). Complete set of two boards (1304,3/4)
    £2.55. May 77 Burglar Alarm (1305-1) &1-68.
    June 77 Sports Centre (1306-1) and power supply/.
        Oscilloscope trace doubler 95p.
        77 C/R Meter (1308-1) 97p. Sept. }77\mathrm{ Freq.
    Counter Timer (1309-2/3) E3-98 set of 2 boards.
Send S.A.E. for information on current boards and a
                        full list. C.W.O. please.
            PROTO DESIGN
    4 Higheliffe Way, Wickford, Essex SSI| 8LA
```

CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntors, test equipment, etc. Tel. Lower Beeding 236.

ELECTRONIC TIME DELAY KIT, Mains, 1 kW output, Mins/Secs/Hrs, many household uses, S.A.E. details. L. O. GREEN, 4 Gurney Road, Costessey, Norwich NR5 OHA.

100 Resistors 75p

10 each of any value. Send S.A.E. for free sample

STICKIEs ARE NEW High quality IC-size self adhesive labels printed with pin-outs for the 61 most popular 16 - and 14 -pin 7400 -serjes IC's. Each pin identifled immediately. For design, construction and de-bugging, Also ideal for students. Introductory offer Set of 450 22.80 inclusive. CONCEPT ELECTRONICS (A2), 8 Bayham Road, Sevenoaks, Kent

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathbf{x 9 . 7 5}$ plus $\mathbf{2 5 p}$ P. \& P.
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed P. \& P P. Experiment with and parties. A. $\mathbf{3 0}$ plus 20 p DREAM LAB or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules $£ 5$ each plus 20 p P. \& P.

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only)

BOFFIN PROJECTS

Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

BURGLAR ALARM equipment, safes, trade supplies. ASTRO-ALARMS, 25 Stockton Rd., Sunderland. Tyne and Wear. Tel.: 77825. Free list S.A.E.

NO MORE DING-DONG

Now get MUSIC from your DOORBELL - or your CAR. New programmable Chime announces you or your suprised guests. 50 easy-to-change unes or PROGRAM YOUR OWN. Just needs speaker and existing bell transformer or 12 V . All parts, instructions and programs, postage, money back assurance, send 617.90 TODAY.
CAMBRIDGE KITS

45 (FY), Old School Lane, Milton, Cambridge

100 WATT GUITAR/PA/Music Amplifler superb treble bass overdrive slimline solidstate 12 months guarantee unbeatable offer at $\mathbf{\$ 3 9}$. Money returned f not absolutely delighted within 7 days. Send TION, 62 Thorncliffe Avenue, Dukinfleld, Cheshire.

8UPERB INsTRUMENT CA8E8 BY BAZELLI, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster

SINTEL FOR BOOKS, CMOS AND COMPONENTS 6800 Booklet 1.80, MOT CMOS Databk 3.50, 6800 Appl Man 12.95, 6800 Prog Man 5.35, SC/MP ntrokit Man 0.75, NS TTL Databk 2.10, RCA CMOS Databk 5.45, 8085 User's Man 5.15, Z80 Ass Lang Prog Man 7.50, Z80-CPU Man 5.60, Z80-CTC spec 0.80, Z80-P10 Man 3.30. Also a full range of CMOS-send for free catalogue. MPUs: MEK6800D2 190.00, MC6820 8-02, Z80 28.44, Z80A 36.98, Z80-CTC 12.80, Z80-P10 12.80. Memories: 2102A-6 2.36, 2112A-4 2.90. Displays: FND500 1.30, TIL321 1.50, TIL322 1.49, 5LTOI 4.90. Crystals: $32.768 \mathrm{KHz} 3.50,5.12 \mathrm{MHz} 3.60$. Clock ICs: AY51202 3-10, AY51224 3.50, MK50253 5.60. Soldercon Pins: $1000.50,10004.00,300010.50$. Fre catalogue by return. All items CWO (BooksNo AT) add \%

Burgarar alarins SUPPLIES AND EQUIPMENT

S.A.E. FOR FREE CATALOBUE

ULTRASONIC DETECTORS
I2V D.C. COMPLETE UNIT ONLY E35.00 + VAT ($12 \frac{1}{2} \%$) POST FREE

BELLS SIRENS FIALARM-UNITS MEABLE

BELL COVERS NHOOW FOIL

ULTRASONIC VIBRATIO
INFRA-RE EIECTORS • INERTIA SWITCHES.

A. D. ELECTRONICS

Liverpool L9 OHU.
Tel. 051-525 3440

CABINET FITTINGS

 FORStage Loudspeakeri and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles
Feet, Castors, Locks and Hinges, Corners, Trim Feet, Castors, Locks and Hinges, Corners, Trim peaker Bolts,

Send $2 \times 9 p$ Stamps for samples and list.
ADAM HALL (P.E. SUPPLIES) Unit O, Starline Works, Grainger Road

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

CMOS COOKBOOK

by D. Lancaster

Price $\mathbf{1 7 . 5 0}$

OPTOELECTRONICS THEORY AND PRACTICE by A. Chappell (Texas ins.) Price $\mathbf{E 8} 00$
BEGINNER'S GUIDE TO INTEGRATED CIRCUITS byI.R. Sinclair Price $\mathbf{\{ 3 . 2 0}$ INTRODUCTION TO MICROPROBLEMS IN ELECTRONICS WITH SOLUTIONS by F. A. Benson Price $£ 4.50$ PRINCIPLES OF TRANSISTOR CIRCUITS by S. W. Amos Price $\mathbf{6 4 5 0}$ ELECTRONICS FAULT DIAGNOSIS by 1. R. Sinclair Price $£ 3.00$ OUNDANICS by M. G. Scroggie Price $£ 4.25$ 110 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTOR by R. M.
Marston
Price $E 3.30$ NEWNES TAPE RECORDER SERVICING MANUAL VOL. I by J. Gardner Price $\mathbf{£ 8 . 4 0}$ TOWERS' INTERNATIONAL TRAN. SISTOR SELECTOR by T. D. Towers $\begin{gathered}\text { Pilee } \mathbf{5 5 . 0 0}\end{gathered}$

* all prices include postage *

THE MODERN BOOK $\mathbf{C O}$.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-2I PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday 1 p.m.

\section*{OSMABET LTD | We make transtomers |
| :---: |
| amongsi |
| $\substack{\text { onner thing }}$ |

 221.
 TWIN SEC TRANSFORMERS; PrIm 240V a.c.
$6 \mathrm{~V} 0.6 \mathrm{~A}+6 \mathrm{~V} 0.6 \mathrm{~A}: 9 \mathrm{~V} 0.4 \mathrm{~A}+9 \mathrm{~V} 0.6 \mathrm{~A}: 12 \mathrm{~V} 0.25 \mathrm{~A}+12 \mathrm{~V}$

 MIOGET RECTIFIER TRANBFORMERS; PTIM 240V A.E.
 0.75 A E2. 65 Be
0.15 A 2 EaCh
 0.15 A E2 EBCh.
LT TRANBFORMERS TAPPEO SEC; PrIm 240 V E.c.
 tov 1a ET-50.
 MAINS TAANSFORME
250.-250V 60 mA 6.3 V
250 V 100 mA 6.3 V 2 A
 3 V 0.5 A

 SPEAKER MATCHING AUTO TAANSFORMERS
$12 W .3$ to 8 or 15 , UP or down. $\varepsilon 2 \cdot 25$ inc. P. 8 .
 LOUOSPEAKERS

 4. 8 or $25 \cap$, $\mathbf{c 2} \cdot 70 ; 8 \mathrm{ins} 8$ ת $\varepsilon 2 \cdot 70$ inc. P. \&P. a
'INSTANT'' BULK CASSETTE/TAPE ERASER
 nstant erasure of casettes and tape spool, any diameter,
demagnetises tape heads. $200 / 240 \mathrm{~V}$ a.c. © inc. P. \& P. and AT.
 POWER SUPPLY, TWIN OUTPUT; Prtm 240 V e.c.
New. EX Britlsh manutacture. Smoothed ac Output 15 A New. ex Britlen manutacture. Smoothed a.c. Output 20 V 1.5 A . E4.75 inc. P \& P and VAI.
 CONDENSERS
 Electrolytic. W/E. $1000,50 \mathrm{~V} 30 \mathrm{p}$; 4700 V 40 V 60p; Paper tubular
W/E. -47/600V: 2. 2/400V: 4. 7/160V all 25p each (E15 per 1000) W/E. $47 / 600 \mathrm{~V}$: $2.2 / 400 \mathrm{~V}$. $4 / 7 / 160 \mathrm{~V}$ all 25p
Elecirolytic screw terminal $1200 / 75 \mathrm{~V}$ sop.
 EDGWISE LEVEL METER FSD ZOOA
SIZE. $19 \times 18 \times 20 \mathrm{~mm} .800, ~$
51.35
 Size. $19 \times 18 \times 20 \mathrm{~mm}$. 800 . $51.35 \mathrm{nc}, P$ \& P and VAT PAINTED CIRCUITS ETCHING KIT
 Make your own PC Boards: Compret
instructions, \& inc. P. \& P. and VAT
 MULTI WAY CABLE, SCREENED PVC COVERED

 15 way 10p: 1 way 8 Bp per mow
 MINI 3-CORE CABLE. $19 / 0.30 \mathrm{~mm}$
 TWIN FIG. a cable
 Potarised. 100 m . 55.00 inc . P. \& P. and VAT.
 alt types domestic and commercial cables
 Carriage and VAT on all orders
 except where otherwise stated.
 SA. E. Enquiries, llete.
 46 Kenilworth Road, Edgware, MIddix HA8 BYG}

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

This ultimate fully solid state a.m $/ 4 . \mathrm{m}$. clock radio has everything you need, tin high Green display that automatically dims when th lights are out to an unobtrusive glow. Wake to music or bleepe atarm, or at the slightest touch on the snooze plate have 9 min switches oft $1-59 \mathrm{~min}$. Push button switch controls, volume controt. Excellent a.m./4.m. radio ear socket. Only $\$ 49.95$. Similar clock radio but with switch to dim and button for snooze red

RADIO TV CASSETTE
machine has oventhing machine has everything you wal pleasure on poll-
sonal day abroad, anywhere in the world. TV as well: 3 in Aadio M.W.F.M and Short wave Radio
Cassette,
tape recorder
Output 3 watts, Bass

pause. Auto stop recorróx tacilities Bat Bat Mains cur. Our price onily
TV GAMES-LATEST IN HOME
ENTERTAINMENT

SETS MARK 1-Football Tennis Squash
Our price
19.95
MARK 2-De Luxe Football Tennis Squash SolofPractice 19.95 MARK 2° "C"-As Mark 2 in colour $\begin{array}{ll}\text { GUN for target and Skit Shooting } & \mathbf{£ 4 7 . 5 0} \\ \text { MARK 3C-As Mark } 3 \text { in colour } & \mathbf{5 5 4 . 9 5}\end{array}$ $£ 27.50$
$£ 38.50$ All games have auto service auto scoring on screen selectable bat ${ }_{p}$ sizes and ball

We are major suppliers to government depts.. large companies schools, etc. All products are guaranteed for 12 months. Send your
order with Cheque/Barclaycard/Cash to Dept. ET. All prices include VAT. Add 65 p for P. \& P unless otherwise state
barclay:: $: 8:$

The New 36 Step Sclenthic Programmabie from Sinclair Atgebraic logic has all scientific functions log.. trig.., sin., tan... cos., rad./degree, exp., etc. plus a programme calculator with conditional and unconditional branch instructlons. Our price only £14.95. Set of 4 programme books glving 294 programmes
£4.95. Mains adaptor $£ 2.95$.

58480 program steps up 1060 memories
ur price
E78.95
$\mathbf{c} 208.95$
59 Card programmable 960 steps 100 memories $£ 208.95$

Cioon Print craale for use win 59, 52. 56, 58
41 Financial
5200 Desk top
CBM
pr 10072 steps programmable
NR61 Statistician
SR61 Statistician
$4 / 5190 \mathrm{P} 92$ steps
4148 Full sci.
Sinclalr
New Cambridge programmable
Micro Quartz Car Clock
Micro Quartz Car Clock
[37.95

HP 25, HP67 HP29, HP91, HP97. HP11, enc. Pice
Sharp
E18120 LCD recharg \% \vee Mem $£ 23.95$

Calo $\begin{aligned} & \text { Cal Time stop watch, calc., Alarm set alarm } 4 \text { diff. times }\end{aligned}$
and 4 dift. tones $\quad[29.95$
MO1 Now LCD. Calculator Clock. Stopwatch $\quad \$ 34.90$ Sit Mem. calc. time measurement, Net. Time, Lap. $\quad \mathbf{2 6} .95$
\&ro $\mathrm{FX1}$ Card programmable
FX201 Programmable
${ }^{\text {FX2 }} 202$ Prog with Facility for keep prog. when off
FX 2000 LCD Sci
FX 110 Full SCi
FX 110 Full Sci
Lc820 Lcd in Walle
Lczzo Led in Wallet
NEW PHONE WIRELESS INTERCOM

The Phone that you don't have to get out of bed in order to dlal. All is contained in the hand piece. Not GPO approved approves. Just plug in to approves. Just plug in to
ordinary. GPO extension socket, fully guaranteed. White, red, ivory. pastel blue and green. E55. Ordinary push button for those who don't like to work their fingers too hard
£149.95.

Just plug each unit into house mains up to $\frac{1}{2}$ mile distance depending on conditions, no other wires or batteries needed, ex
cellent for offices warehouses, homes, etc. Identical units. Volume contral, on/aff switch, pilot light. Talk and lock
buttons. $£ 33.95$ P. \& P. 95p

1931 ROLLS ROYCE 1928 LINCOLN (illustrated) Replica models beautifully tinished. Nakes a tovely present
E13.75.

HVI only $£ 37.95$ per pair range up 103 km approx. control. call buzzer compact strap volume HV 100 only $885 \cdot 50$ per pair range up to 8 km
approx. 1 watt 3 channel int. circuit FET V. control call buzzer carr. case earphone. HV 2500 only $£ 165 \cdot 00$ per pars range 12 km
approx. 2.5 watt 2 channet superhet squelch V . control call buzzer carr. case earphone all sets 30% longer range at sea. These sets are solidly
made to the highest standerd. For export and made to the highest standard. For expori and

All our goods are fully guaranteed for 12 months. We also stock a range of desk. print outs, ordinary calcs. Specialist calcs., Cassette, Cassette radios Stereo. etc. Tell us your requirements
and we will supply. If you are not fully satisfled please return goods o us in proper condition within to days and we will send you a

115 FINCHLEY RD
TEMPLE FORTUNE TEL: 01-
LONDON NW11.
4584755

INDEX TO ADVERTISERS

A.B.C. Electronics	
Ace Mailtronix Lid.	218
Adam Hall (P.E. Supplies)	222
A.D. Electronics	222
Aitken Bros.	219
Alben Engineering	150
Alcon Instruments Limited	160, 205
Astra-Pak	211
Astro Alarms	156
Astro Electronics	208
Bamber, B., Electronics	178
Barclay Electronics	223
Baron	151
Barrie Electronics	52
Bib Hi-Fi	146
Bi-Pak	158. 159
Birkett, J.	152
Boffin Projects	222
British National Radio \& El	
School	149. 210
Bull, J.	177
Butterworths	156
Bywood Electronics	204
Cambridge Kits	222
Cambridge Learning	151
Clef Products	211
Component Centre, The	155
Computabits Ltd	211
Continental Specialties Co (U.K.) Ltd.	147
Copper Supplies	222
Crescent Radio Ltd.	214
Crimson Elektrik	218
Crofton Electronics	156,222
C. R. Supply Co.	220
Doram Electronics Ltd.	215
Dziubas, M.	151

Dziubas, M.

Eaton Audio	204
E.D.A.	205
Edencombe Ltd.	221
Electronic Brokers	211
Electrospares	152
Electrovalue Ltd.	204
Elvins Electrical Musical Instruments	s 182
Fraser-Manning Ltd.	220
Greenweld Electronics	215
Harversons	216
Heathkit Limited	148
H.M. Electronics	222
Home Radio	208
I.L.P. Electronics	157, 213
Intertext ICS	.160, 221
J. C. Jones	221
J.W.B. Radio	220
Linway Electronics	220
London Electronic College	221
Lynx Electronics	212
Maplin Electronic Supplies	cover iv
Marco Trading	220
Marshall, A., \& Sons	209
Metac	216
Minikits Electronics	222
Modern Book Co.	223
Newcastle upon Tyne Polytechnic.	. . . 221
Orchard Ltd. .a...................	.210, 220
Osmabet	223

hoenix Electronics Ltd.	46
Phonosonics	4, 155
P.K.G. Electronics	222
Precision Petite Lid.	160
Progressive Radio	219
Proto Design	22.2
Radio Component Specialists	203
Radio Exchange	217
Radio \&'T.V. Components R.S.T. Valve Mail Order	$\begin{aligned} & \text { cover ii } \\ & \cdots .150 \end{aligned}$
Salop Electronics	222
Saxon Entertainments	. 207
Scientific Wire Co.	222
Sentinel Supply	156
Service Trading	cover iii
Sintel Limited	222
Sparks Developments	221
Special Product Distributors Ltd.	216
S.S.T. Distributors	178
Sterling Sound	181
Sugden, A. R.	218
Swanley Electronics	212
Tamba Electronics	148
Technomatic Lid.	224
Tempus	208
Tirro Electronics	146
T.K. Electronics	220
Trampus Electronics Ltd	210
TUAC	. 153
Vero Electronics	. 150
Wilmslow Audio	. . . 178
Xeroza Radio 105
Zartronix	204

		GEARED MOTORS $100 \mathrm{r} . \mathrm{p} . \mathrm{m} .115 \mathrm{Ib} . \mathrm{In}$. 110 V . 50 Hz . $2 \cdot 8 \mathrm{~A}$. single phase split capacitor motor immense power. Continuously rated Totally enclosed. Fan cooled in-line gearbox. Length 250 mm . Dis. 135 mm . Spindle dia. 15.5 mm ength 145 mm . Sx-equle transformer 230/240V $£ 1.50$ ($£ 14 \cdot 58$ Post 75p (89.45 inc. VAT \& P.)
AE	JDED TYP	
FT3 NEON FLASH TUBE High intensity multi turn, high voltage, neon Ta.)		
	4KVA (20 amp) (MAX) CARAIAGE ANO PACKING	FHP motor type C 7333/15 220/240V a.c. 19
NI-CAD BATTERIES 2ЗAh $1 \cdot 2 \mathrm{~V}$ Plastic Case $\mathbf{5 4}$.86 35 AH 9.2 V Metal 67.56 40 AH 1.2 V Plastic Case 	L.T. TRANSFORMERS VAT \& P.) O-12V at 20 amp or $0-24 \mathrm{~V}$ at 10 amp . E12. -00. P. \& P. \&1-50 (E15.01 ine VAT \& P.) O-6V/12V/17V//8V/20V at 20 amp. \&14. P. \& P. \&1. 50 (1616 -74 inc. VAT \& P.) $0-6 \mathrm{~V} / 12 \mathrm{~V}$ at 20 amp . $£ 11$-85. P. \& P. $£ 1$ ($£ 13.88$ inc. VAT \& P. 1. Othe herypas in stock-phone your anquirles.	
		BODINE TYPE N.C.I. GEARED MOTOR The above precis ion made US.A input voltage ot motor tisV a.c. Suppled complete with
21 WAY SELECTOR SWITCH WITH RESET COLL. The ingonious eleciro mechanical device can be switched up to the reset coil. $230 / 240 \mathrm{~V}$ a.c. operation. Unit is mounted on strong chassis. complete with cover. Price \&7. P. \& P. 75p $($ E\& . 37 inc. VAT \& P.). (ziminc. AT \& P.) Similar to abo inc. VAT \& P.).		
NEW HEAVY DUTY SOLENOID. mfg. by Magnetic Devices. 240 V a.c. Price 17. P. \& P. 75p. Similar to above approx. 101 b pull £3.50. P. \& P. 60p. appearance to illustration. Approx. 1qlo pull. Size of feet 1 it \times Hin. Price ع1. P. \& P. 25p.		15 R.P.M. Type SD48 801 b . in. Input $100 / 110 \mathrm{~V}$ AC. Length incl. gearbox 270 mm . Height 135 mm . Width 150 mm . Drive shaft 16 mm Weight 8.5 kg . BRAND NEW. Price $£ 10$. Carr. $£ 1$ ($£ 11.88 \mathrm{inc}$. Weight 8.5 VAT $\& P$.$) .$ Suitable transtormer for use on 220/240V a.c. \&6. Post 50p (E7.02 inc. VAT \& P.).
	STROBE! STROBE! STROBE!	
	HY-LIGHT STROBE KIT MK IV Latest type Xenon white light flash iube. Solid state timing and triggering circuit. $230 / 240 \mathrm{~V}$ a.c. timing and triggering circuit. 230/240V a.c. Deslgned for larger rooms, halls, etc. Speed adjustable 1-20 1.p.s. Light output greater than many inc. VAT \& P.). Specially designed case and reflector inc. VAT \& P.). Specially designed case and ref.) for Hy-Light 8.25 . Post $£ 1$ ($£ 9.99$ inc. VAT \& P.)	A.E.G. WATER PUMP $200 / 240 \mathrm{~V}$ a.c. motor. 2.850 r.p.m. 480 w approx H . P Driving centrifugal pump with $1+$ inloet and outter delivering aporox outlot delivertng approx. at gallons per min. at 10 th head. Ideal for pumping or circulating any liquid. Dozens of uses in industrial ($£ 17.01 \mathrm{inc}$ VAT \& P.
UNISELECTOR SWITCHES 4 bank, 25 way 75 ohm. Coiit, $36-48 \mathrm{~V}$ E4-25. P. \& P. 75p. Total price inc. VAT c5-40. MINIATURE UNISELECTOR 12 volt 11 -way ${ }^{4}$ bank (3 non-bridging. 1 homing). . 2.50. P. \& P. 35 P (83.08 inc. VAT \& P.).		
	XENON FLASHGUN TUBES Range available from stock S.A.E. tor details.	
RODENE UNISET TYPE 71 TIMER $0-60 \mathrm{sec} 230 \mathrm{~V}$ a.c. operation. Incorporating a lapsed time indicator and repeat facilitles. A precision motorised timer ideal for A precision motorised timer deal for process timing. photography. welding. mixing, etc. Price £6. P. \& P. 60p ($\varepsilon 7.13 \mathrm{inc}$ VAT \& P.).		PROGRAMME TIMERS 12 cam model $88 \cdot 74$. Post 60p. Also available for 50 V operation. Price as above
		METERS NEW— 90 mm Diameter Type: 65C5 d, c. Mc. 0-2, 0-5, 0-20, 0-50. $0-100$ amp. $0-15 \mathrm{~V}$ d.c. $0-30 \mathrm{~V}$ d.c. Type: 62 T 2 a.c. M/1 0-1V. $0-50$ amp. $0-15 \mathrm{~V}$. $0-30 \mathrm{~V}$. Type ${ }^{65 L 5}$ A/mc. $0-30 \mathrm{~V}$ a.c. All at $53 \cdot 50$ each. P. \& P. 50p ($£ 4.32$ each inc. VAT \& P.)
MICRO SWITCHES amp. cio Mig. by unimax USA. 10 for $\& 4, \mathrm{P}$ \& $\&$ 50 p (min. order to).		
		WHY PAY MORE? MULTI RANGE METEE. Typa MF15A ac.c/d. volts $10.50250,500: 1000$, Ma, $0-5,0,100$ $0-100$. Sensitivity 2000 V . 24 range, diameter 133 by 93. by 46 mm . Price $\mathrm{E6}$-50 plus 50 P P. \& P . (ETV. 56 Inc. VAT \& P.).
24 VOLT DC SOLENOIDS 	GALVANOMETER 50 micro mirror galvo. Calibrated 50-0-50 and 0-100 M19. By Griffin \& George Lid Ottered at a fraction of maker's price, in orfinal ministry pack ($\mathbf{~} 13.60$ inc. VAT \& P)	volts $10.50,250,500$. 24 range, diameter 133 by 93 by 46 mm . Price (87.56 Inc. VAT \& P.).
		TIME SWITCH hour spring reserve Day omitting device: Builh to nighest Electricity Board Spec. nodividually Iess.ed. Price $\mathrm{E7} .75$. Post 50 p . (Total inc. VAT E8.91). sangamo weston type 5251 200/250V a.c availabie with Solar dial
VORTEX BLOWER AND VACUUM UNIT Oynamically balancesd totally en- ciosed gin fotor with max. air deivery ${ }^{0+1.5}$ cubic metres por $\underset{\sim}{w} \mathrm{G}$ Suction of blow from 2 side-oy-iide 3 mm , der circular aper ${ }^{\prime \prime}$ iu continuousily rated 115 V a.c fixing tacillites. minlmum use. Fully lested prior to dipment but have had inc. VAT \& P.)	EQUIPMENT S.A. E. (toolscap) for details.	
	CONTACTOR Mrg, by Hendroy Relays type C2839 	
CENTRIFUGAL BLOWER Mtg by Smiths industries $230 / 240 \mathrm{~V}$ ${ }_{3} 95 m m \times 82 m m \times 82 m m$. Apor	motior completa with 5 blade 6 tin Aluminium Tan. Price E3.95. P. \& P. 65 p . . . \& P. 25p 	
INSU		
Test to 1 E.E. Sonc. Augged metar construc. tion, sultabie for bench 	AT CURRENT RATE MUST E ADDED TO ALL ORDERS FOR TH TOTAL GALUE OF GOOD	 Black silvor, Skirtod knob calibrated in Nos. $1-9$ 1 \ddagger in. dia. brass Dush. icoal tor above Rheosiats 24 p each.
All Mail Orders-Callers-Ample Parking	UDING	Personal callers only. Open Sat
Dept. PE11, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560 Showroom open Mon. -Fri		9 LITTLE NEWPORT STREE LONDON WC2H 7JJ Phone 01-437 0576

[^0]: © IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m
 Valves, Tubes and Transistors - Closed Saturday Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed
 Post and Packing 25p per order $+8 \%$ V.A.T. when going to press

[^2]: Editorial Offices:
 Fleetway House
 Fleetway House,
 Farringdon Street, London EC4A 4AD
 Phone: Editorial 01-634 4452
 Telex: 915748 MAGDIV-G

[^3]: * Mastermind is the registered trade mark of Invicta Plastics Ltd

[^4]: I_{1}, I_{2} and I_{3} are set, indicating that the score is three white key pegs

[^5]: Power Electrolytics, $800 \mu \mathrm{~F}, 4 \mathrm{SOV}$ (value not stamped on can). Single end connections with screw terminals, $\mathbf{E D}_{2}$ inc. YAT (add 80 P P. \& P.), Sub-Min Mains T'ransformers, $12-0-12 \mathrm{~V}, 50^{\circ} \mathrm{m} / \mathrm{a}$. $28 \mathrm{mmW}, 20 \mathrm{mmH}$, 26 mmD 82 p . Bridge Rectifiers, $2 \mathrm{~A} / 100 \mathrm{~V}, 34 \mathrm{~mm} \times$ 34 mm 40 p . Op. Amps, Motorola MC 1530 G 65 p . Transistor, $2 \mathrm{~N}, 2401$. Min. 8 for $£ \mathrm{fl}$. Thyristor,
 $\mathrm{Cl} 106 \mathrm{BI}, 4 \mathrm{~A} / 200 \mathrm{~V}$. Min. 3 for El . Dual Transistor, 2N 2643 50p.
 (Items 2-7, prices include VAT, add 20p P. \& P.) LINWAY ELECTRONICS, 843 Uxbridge Road,
 Hayes End, Mddx, UB4 BHZ. Tel. 01.57313677 VISIT OUR SELF-SERVE RETAIL PREMISES AT THE (9.45-6,0-closed Weds.)

