PRACTICAL

H-ETRONICE
 ロCTロBER 1977
 40p

Alsa in this issuc...

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

This kit is suitable for record players, tape play back, guitars, electronic instruments or small P.A. systems. Two versions are
availeble. The mono kit uses 13 semiconductors. The stereo kit available. The mono kit uses 13 semiconductors. The stereo kit
uses 22 semiconductors. Both kits have printed front panei and volume. bass and treble controls. Spec. 10W output into 8 ohrns, 7 W into 15 ohms. Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$, input $100 \mathrm{M} . \mathrm{V}$. high imp. Size $9 \frac{1}{2} \times 3 \times 2 \mathrm{in}$. AC mains operated
Mono $£ 11 \cdot 25$

 ELAC 10 inch $£ 4 \cdot 50$ Ribbed cone. Large ceramic magne
$50-16.000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. $50-16.000 \mathrm{c} / \mathrm{s}$. Bass reson
10W. 15 ohm impedance.
ELAC 9×5 in HI-FI 23.45 SPEAKER TYPE 59RM Post 35p This famous unit now available 10w, 8 ohm.

ELAC HI-FI SPEAKER 8 in TWIN CONE Dual cone plastic roll surround. Large ceramic magnet. $50-16.000 \mathrm{c} / \mathrm{s}$. Bass resonance $40 \mathrm{c} / \mathrm{s}$. 8 ohm impedance. $\mathbf{1 5}$ watts. RMS. $\mathbf{5 5}$ Posi 35p

GOODMAN'S COMPACT 12in BASS WOOFER
Standard 12 in diameter fixing with cut sides $\mathrm{r} . \mathrm{m} . \mathrm{s}$. 4 ohm impedance. Bass resonance: 30 c.p.s. Frequency response: $30-8.000$ c.p.s.
$£ 10.95$ each. Post $£ \dagger-00$.

PERIOD LOUOSPEAKER CABINETS Two styles available, Regency and Queen Anne. Size approximately $34 \times 19 \times 16 \mathrm{~m}$. These cabinens are slighty solld from 10 each. Callers only

BARGAIN 3+3W STEREO AMPLTFIER. 10 Transisto Push-Pull Ready bultt with volume. treble and bass $\mathbf{E 1 0 . 9 5}$
controls. 240 V operated.

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$ SPEAKER SALE!
State 3 or 8 ohm.

As illustrated. $\mathbf{~ 7 ~} \cdot 95$ Posi 45p
15W model $£ 10 \cdot 50$
20W model \quad £11.50
TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A". $20 \times 13 \times 12 \mathrm{in}$. For 12 in . dia. or
10 in . speaker. Illustrated. $\mathrm{C14.50} \mathrm{Post}$
MODEL "B'. BOOKSHELF
For $93 \times$ Bin. or
Bin. speaker.
E8. $50 \begin{gathered}\text { Post } \\ \text { c1 }\end{gathered}$
R.C.S. BOOKSHELF SPEAKERS

Size $14 \times 9 \times 6 i \mathrm{in}$. approx. Response 50 to 14,000 DS 6 watt rms 8 ohms. £16 pair $\begin{gathered}\text { Post } 30\end{gathered}$

ACOUSTIC WADDING 18 in . wide, 20p ft.

KUBA-KOPENHAGEN STEREO
 mex

TUNER-AMPLIFIER CHASSIS AM-FM $5+5$ WATY
This Continental 4band radiogram chassis uses first class quality components throughout. Features: Large facia panel with 7 push
buttons for medium, long, short, VHF-FM AFC buttons for medium, long, short. VHF-FM, AFC, phono. Mains
on-off. 4 rotary controls. tuning, volume, tone, balance. Facia size 17×44 in. Chassis size $17 \times 4 \frac{4}{2} \times 5 \frac{1}{2}$ ine. DiN-connector socket for tape record/playback. loudspeakers, phono pick-up. external FM-AM aerials. Automatic stereo beacon light. Built-in ferrite rod aerial for medium/longwave.
£33.50 Post $£ 1.50$

$\Sigma 15$ Post $£ 1$-00
$30-14,500 \mathrm{c} / \mathrm{s}$. 12 in double cone, wooter and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14.000 gauss and a total flux
of 145,000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25 W .
NOTE: 4 or 8 or 16 ohms available.

Module kit, $30-17,000 \mathrm{c} / \mathrm{s}$ with tweeter crossover, baffle, 19×12 in.
instructions. As illustrated.
Please state 4 or 8 or

Ideal for Groups. Disco, P.A. and Musical Instruments. 4 inputs
 and bass controls.
NEW "DISCO 100 WATT' E52
ALL TRANSISTOR AMPLIFIER CHASSIS
inputs. 4 outputs separate volume treble and bass controls. Ideal disco or slave amplifier chassis.
BLACK CARRYING CABINET AVAILABLE g9.

PW SOUND TO LIGHT DISPLAY

Complete kit of parts with R.C.S. printed circuit. Three 1.000 W channels. As featured in Practical Wireless. $\quad £ 14.00$
CABINET extra 53.

GOODMANS CONE TWEETER

$18.000 \mathrm{c} / \mathrm{s}$. 25W 8 ohm.
E.M.
Sin. mid
E.M.I. Sin. mid range 25 W £4.95.
E.M.I. $13 \times 8 \mathrm{in}$. 25 W Bass Unit $£ 10.50$
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Professional model. Four inputs. Treble. Bass. Master Volume Controls. Ideal disco, P.A. or groups. S.A.E. for $\mathbf{E} 85$
details. 5 speaker outputs 3 or 8 or 15 ohm. 100 V line to 85 derder. Suitable carrying case 116 -50.
LOW VOLTAGE ELECTROLYTICS
1, 2. 4, 5. 8, 16. $25.30,50.100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} .500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p}$
 $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V}$ 62p; $3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ;$
$50 \mathrm{~V} 65 \mathrm{p} .390 \mathrm{mFF} 100 \mathrm{~V} 1.60 .4700 \mathrm{mF} 63 \mathrm{~V} 1 \cdot 20.500 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ;$

R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener diode,
printed circuit rectifiers and double wound
mains transformer. Input 200/240V a.c. Output Post 95 voltages available 6 or 7.5 or 9 or 12 V d.c. up to 100 mA or less
R.C.S. POWER PACK KIT
printed circuil
board and assembly instructions.
£3. 35
12 V 300 mA KIT E3. 15 gV 1 Kit
Post 30p
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER-BRITISH MADE $f 1.45$
Ideal for Mike. Tape. P.U. . Guitar. Battery 9-12V or H. T. line 200-300V d.c. operation. Size $1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1 i n}{} 25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$. 26 dB gann. For valve or transistor equipment instructions supplied

ELECTRO MAGNETIC
PENDULUM MECHANISM
95 p Post ${ }^{\text {on }}$
1.5 V d.c. operation over 300 hours continuous on SP2 battery, fully adjustable swing and speed. Ideat displays. teaching electro

HEAVY METAL PLINTHS

Extra Large Pilnth and Cover. For transcription decks. Size $20 \times 17 \frac{1}{2} \times 9 \mathrm{in}$. uncut board. Callers only $£ 18 \cdot 50$.
TINTED PLASTIC COVERS ONLY

 tape decks. etc. Post 75p.
BAKER HI-FI SPEAKERS
HIGH QUALITY-BRITISH MADE
SUPERB
12in 25 watt
Post £1-60
Quality toudspeaker, low cone resonance ensures clear reproduction of the deepest bass. Special copper drive and concentic remarkable efficiency in the upper register.
Bass Resonance
Flux Density
$16.500 \begin{array}{r}25 \mathrm{c} / \mathrm{s} \\ \text { gauss }\end{array}$
Useful response
8 or 16 ohms mo
16.500 gauss
$20-17.000 \mathrm{c} / \mathrm{s}$

AUDITORIUM
12in 35 watt
A full range reproducer for high powe
Electric Guitars, public ad speaker systems, electric address, multi-$\mathrm{Hi}-\mathrm{Fi}$ and Discotheques. organs. Ideal for Bass Resonance
Flux Density
Useful response
AUDITORIUM
$£ 26$
15in 45 watt
Post $£ 1 \cdot 60$

 ALUMINIUM' PANELS, $18 \mathrm{s.w.g.6} \mathrm{\times 4in,15p;} 8 \times 6 \mathrm{in} .25 \mathrm{p} ; 10 \times 7 \mathrm{in}$ $30 \mathrm{p} ; 12 \times 5 \mathrm{Sin}, 30 \mathrm{p} ; 12 \times 8 \mathrm{in}, 40 \mathrm{p} ; 16 \times 6 \mathrm{in}$. $45 \mathrm{p} ; 14 \times 9 \mathrm{in}, 50 \mathrm{p}$;
$12 \times 12 \mathrm{in} .5 \mathrm{p}, 16 \times 10 \mathrm{in}, 750$. ALUMINIUM ANGLE BRACKET
ALUMINIUM BOXES, MANY SIZES IN STOCK.
THE 'INSTANT"' BULK TAPE
ERASER \& HEAD OEMAGNETISE
ERASER \& HEAD OEMAGNETISER.
Suitabie for cassettes, and all sizes of
tape reels. a.c. mains $200 / 240 \mathrm{~V}$.
$\begin{array}{lll}\text { Leaflet S.A.E. } & \quad \AA 4.95 & \text { Post } \\ \text { 40p }\end{array}$
CONSTRUCTIONAL PROJECTS
DIGITAL MULTIMETER by P. A. BirnieA battery powered general purpose meter90
P.E. CHAMP-2 by R. W. Coles and B. Cullen
A detailed look at the CHAMP circuitry and the 4040 MPU chip 105
GUITAR SUSTAIN UNIT by D. Gibbs and I. Shaw
Enables the length of a guitar note to be greatly extended without distortion 112
P.E. MASTERMIND-3 by P.F. Turney
Description of the control circuit and introducing the scoring logic 120
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R.W. Coles
A look at some recently released devices 111
INGENUITY UNLIMITED
Flash Trigger—Mains Touch Switch—Multichannel Overload Protector 128
NEWS AND COMMENT
EDITORIAL-Fult measure; Fun and Games 89
SPACEWATCH by Frank W. Hyde
The Voyagers 98
MICRO-BUS by DJD
A new feature covering all aspects of microprocessors and minicomputers 101
POINTS ARISING
Sound Design-Linear Ohmmeter-Frequency Counter/Timer 111
IBA ENGINEERING CENTRE
Some of the experimental and development work on show at a recent series of open days 116
MARKET PLACE
Interesting new products 118
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 125
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 126
NEWS BRIEFS
SERT Microprocessor Symposium—Intelligent Instruments 130

Our November issue will be on sale Friday, 7 October, 1977
(for details of contents and special 8 page supplement see page 119)

[^0]
EXPANDING OFFER!

To celebrate the increased size of P.E. we are giving you: a PAPERMATE CHROME PLATED PEN WORTH 83.95 with any watch under £20; a PAPERMATE GOLD PLATED PEN WORTH 55.70 if you spend over £20; a CHROME PEN AND PENCIL SET (or two pens) WORTH £7.90 if you spend over £28; a GOLD PLATED SET (or two pens) WORTH $£ 11.40$ if you spend over $£ 50$. Items, may be combined. Offer closes 30 th Sept. 1977. Subject to availability.

CASIO CASIOTRON S15B
WATER RESISTANT WATCH AND STOPWATCH to 130 ft 8 functions. LCD with backlight. DUAL TIME Battery hatch. Around 15 months battery life R16B (not lllust) £34.95. Black or blue

MQ-1. TIMEPIECEICALENDAR. LCD display of
hours, minutes, seconds, a.m. month, year. 12 or 24 hour clock. TIMER with count down facility or second TIME ZONE
STOPWATCH. Standard and STOPWATCH. Standard and net times. CALCULATOR. Time and date calculations. Around
18 months battery life tin $\times 1$ in $\times 4$ in. $£ 37.95$ ($\{34.95$ without pen)

ST-1. STOPWATCH/CALCULATOA. FOU
stopwatch functions Including two kinds of lap stimes. Time calculations. square roots. \%, full memory $£ 27 \cdot 50$ (24.95 without pen)

FAIRCHILD TIMEBAND LCD Watches. Latest models with BATTERY HATCH AND VOUCHER FOR FREE REPLACEMENT BATTERY. Constant display of hours and minutes. Pusti button once for month and date, twice for seconds. Backllght, automatic calendar, a.m./p.m. Setting indicator
easily selected alternating time/date display. Beautifully styled $\mathrm{Swiss} / \mathrm{W}$. German cases. TC4i chrome £19.95, TC440 Gold Plated £21.95, TC410 Gold Plated £27.95, TC413 St/St bracelet $£ 28$-95, TC412 Gold Plated $\$ 31$.95.

TIMEBAND MAINS DIGITAL ALARM CLOCKS. Wake up to Timeband. Precise timekeeping, Alarm accuracy to the exact minute. Solid state rellability. Silent running. 9 minute snooze. Alarm on. Mains falure Indicators. C500, C590 can be synchronised to the exact second and will display As C500 but mite sophlsticated controls $\mathrm{f} 15 \cdot 90$. C590 (right) With buit in Hightow (atensity As elevating reading lamp $£ 23.35$ controls

From NATIONAL SEMICONDUCTOR
functions. As Timeband but without alte
$5+3$ Time/Date facility. DAC5 series (left)
DACS WS Chrome on Strap DAC5 WB Chrome Dracele
DAC5 YB G. P. Bracele
OAB5 Series (Right)
DAB5 WB All stainles DABS YB Heavy G.p.

$\mathbf{2 2 2} .90$ $\mathbf{2 5} .90$ $\mathbf{2 4 . 5 0}$ $\mathbf{2 2 5} \cdot 90$ $\mathbf{2 4} .90$ $\mathbf{2 8} .50$ 33.50 39.50

W/T 6F

IBICO. Traditional Swiss craftsmanship. $5+4$ functions LCD. Mineral Glass face. 405 ILB strap £33. 90. 405 IS SUSt bracelet £35.50. 402 ELB Stainless sieel on strap £30-90. 402 ES All stainless £39.90. 700 ' 1000 day" Quartz Analogue. Stepping Motor. High speed adjustment. Seconds feet or more. (Waterproof straps.)
W/T 6F. $6+3$ function LED. Metal case. S S bracelet. Superb styling £11.95. INSTAR $2 \downarrow$ function LCO. Gold plated and matching bracelet E 9.95 .
CALCULATORS. FX-21 £13.95, FX-29 £14-95, FX-105 £16.95, FX-110 £17.95 (Rechargeable batteries £3 pair. AC adaptor/charger £3). FX-1000 £19-95, FX-2000 £24-95, FX-201P £44.95, FX-202P £69.95, PRO-FX1 £124.95
Send $15 p$ for our illustrated mail order catalogue of over 50 watches. (Accurist, Citizen, etc.),
clocks, car clocks. Probably the BEST TV games at LOWEST prices. Prices include VAT and clocks, car clocks. Probably the BEST TV games at LOWEST pi

TMMPUS

Dept. P.E.
19-21 Fitzroy Street
Cambridge CB1 1EH
Telephone (0223) 312866

LOOK! Here's howyou master electronics

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course

1 Build an oscilloscope

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the protession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television radio, computers and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits

We show you how to conduct

 experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

British National Radio \& Electronic School
 P.O. Box 156, Jersey, Channel Islands
 NAME
 ADDRESS

GREENWELD

443 Millbrook Road Southampton S01 OHX Tel：（ロフロЗ） 772501

BUY A COMPLETE RANGE OF COM－ PONENTS AND THESE PACKS WILL HELP YOU

＊SAVE ON TIME－No delay＊in walting for parte to come or shops to open！
＊SAVE ON MONEY－Gulk buying means lowest prices－luat com－ pere with others！
＊have the right part－No guesswork or subattution necessary！

ALL PACKS CONTAIN FULL SPEC， BRAND NEW，MARKED DEVICES－ SENT BY RETURN OF POST．VAT INCLUSIVE PRICES．

K001 50 V ceramic plate capaci－ tors， $5 \%, 10$ of each value 22 pF to 1000pF．Total 210， $\mathbf{5 3} \cdot 35$

K002 Extended range， 22 pF to $0.1 \mu \mathrm{~F} .330$ values $\mathbf{\$ 4} .90$

K003 Polyester capacitors， 10 each of these values： $0.01,0.015,0.022$ ， $0.033,0.047,0.068,0.1,0.15,0.22$ ， $0.33,0.47 \mu \mathrm{~F}$ ． 110 altogether for ع4．75

K004 Mylar capacitors，min 100 V type． 10 each all values from 1000 pF to $10,000 \mathrm{pF}$ ．Total 130 for $\mathbf{~} 4-45$ K005 Polystyrene capacitors， 10
each value from 10 pF to $10,000 \mathrm{pF}$ ， each value from 10pF to $10,000 \mathrm{pF}$ ，
E 12 series $5 \% 160 \mathrm{~V}$ ．Total 370 for E12． 30 K006 Tantalum bead capacitors．
10 each of the following： $0.1,0.15$ ， $0.22,0.33,0.47,0.68,1,2 \cdot 2,3 \cdot 3$ ， $\begin{array}{llll}0 \cdot 22, & 0.33, & 0.47, & 0.68,1,2 \cdot 2,3 \cdot 3, \\ 4.7,6 \cdot 8, & \text { all } 35 \mathrm{~V}, & 10 / 25 \quad 15 / 16 & 22 / 16\end{array}$ 33／10 47／6 100／3．Total 170 tants for ع14－20
$K 007$ Electrolytic capacitors 25 V working，small physical size． 10 each of these popular values：1，2•2， $4 \cdot 7,10,22,47,100 \mu \mathrm{~F}$ ．Total 70 for £3．50

K008 Extended range，as above also including 220,470 and $1000 \mu \mathrm{~F}$ Total 100 for $55-90$

K021 Miniature carbon film 5\％ resistors，CR25 or similar． 10 of each value from 10R to $1 \mathrm{M}, ~ E 12$ series．Total 610 resistors， $\mathbf{2} 6.00$

K022 Extended range，total 850 resistors from 1 R to $10 \mathrm{M} \mathrm{ss} \cdot \mathbf{3 0}$

K041 Zener diodes， $400 \mathrm{~mW} 5 \%$ ． BZY88 etc． 10 of each value from 27 V to 36 V ，E24 series．Total 280 for \＆15－30

K042 As above but 5 of each value 88.70

PC ETCHING KIT MK III Now contains 200 sq．ins．copper clad board， 1 lb ．Ferric Chloride， DALO etch－resist pen，abrasive DALO etch－resist pen，abrasive
cleaner，two miniature drill bits， etching dish and instructions， \＆4．15．

FERRIC CHLORIDE
Anhydrous technical quality in 11 b double sealed packs． $1 \mathrm{lb} £ 1 \cdot 00 ; 31 \mathrm{~b}$ £2－18；101b £5．60； $100 \mathrm{lb} \mathbf{~} 39 \cdot 00$ ．

MOTORS

240 V ac 60 rpm ．High torque，drive to 6 mm shaft 20 mm long．Size 70 mm dia $\times 55 \mathrm{~mm}$ £2． 20

LED DIGIT DRIVER
ITT type 7105 ． 16 pin DIL package Supplied with data sheet． 8 for $\& 1$ ．

VERO OFFCUTS

Pack A，All $0 \cdot 1^{\prime}$ Pack B，All 0.15
Pack C，Mixed Pack D，All 0．1＂plain Each pack contains 7 or 8 pieces with a total area of $100 \mathrm{sq} \mathrm{in}$. pack is $£ 1 \cdot 30$ ．Also available by weight， 1 lb £3．45，101b £28．We are also VERO wholesalers－Trade price list on request from Bone Fide Companies．

VEROCASES

－Plastic top and bottom，ally panels front and back．
Type
$1410205 \times 140 \times 40 \mathrm{~mm} \quad \mathrm{E3.70}$
$1411205 \times 140 \times 75 \mathrm{~mm}$
$1412205 \times 140 \times 110 \mathrm{~mm}$
$1237154 \times 85 \times 40 \mathrm{~mm}$
$1238154 \times 85 \times 60 \mathrm{~mm}$
$1239154 \times 85 \times 80 \mathrm{~mm}$

PLASTIC BOXES

Professional quality，two tone grey polystyrene with threaded inserts for mounting PC Boards．
Type
$2520150 \times 65 \times 40 \mathrm{~mm}$ $2522188 \times 110 \times 60 \mathrm{~mm}$ $\mathrm{\Sigma} .24$
$\mathrm{K2} .68$
E .72

Sloping．front version．
Type
2523
$220 \times 174 \times 100 / 52 \mathrm{~mm} \quad \mathbf{~} 6.90$ $1798171 \times 121 \times 75 / 37.5 \mathrm{~mm} \quad \mathrm{E} 4.65$ Gen．purpose plastic potting box $71 \times 49 \times 24$ ．In black or white $40 p$ Hand Controller box，shaped for ease of use in the hand， $94 \times 61 \times$ 23mm 64p．

S－DECS \＆T－DECS
S－DEC Breadboard $\begin{array}{ll}\text { T－DEC Breadboard } & \mathbf{2 2 . 1 0} \\ \end{array}$

1977 CATALOGUE NOW AVAIL． ABLE－MUCH BIGGER AND BETTER，WITH DISCOUNT VOUCH
POST．

Our retail shops at 21 Deptford Broadway，London，SE8（01－692 2009）and 38 Lower Addiscombe Road，Croydon（01－688 2950）stock some of the advertised goods for personal callers only．Ring them for

All prices quoted include VAT and UK／BFPO postage．Most orders des－ patched on day of receipt．SAE with Enquiries please．MINIMUN ORDEA from schools，etc．（Minimum in voice charge E5）．Export／Wholesale enquiries welcome．Wholesale list now available for bona－fide traders Surplus components always wanted．

LEKTROPAKS

17 TURNHAM GREEN TERRACE，CHISWICK，LONDON W． 4 Tel．01－994 2784
\star LARGE RANGE OF COMPONENTS NOW STOCKED．SEND LARGE S．A．E． FOR FREE LISTS．
\star OCTOBER OFFER－25\％OFF ALL SEMICONDUCTOR SALES FOR PER－ SONAL CALLERS BRINGING THIS ADVERT．

＊WALK－ROUND SELF－SERVICE SHOP NOW OPEN MON－SAT 9．30－5．30．

＊MANY SURPLUS COMPONENT BAR－ GAINS FOR PERSONAL CALLERS．
＊RESISTORS，CAPACITORS，TRANSIS－ TORS，DIODES，TRIACS，DIACS，ICs， POTS，ALI BOXES，VERO，COPPER CLAD BOARD，CABLE，AUDIO CONNECTORS， SPEAKERS，MICROPHONES，P．A．TRANS－ FORMERS，KNOBS，ETC，ETC：

complete digital clock kits

FEATURES: 4 LED digits $\frac{1}{2}$ in high. Red. 12 hour display with a.m./p.m indication. Mains frequency accuracy. Easy to build: all components included. Beautiful real wood case or perspex: White, Black, Red, Blue and Green. Flashes to indicate power cuts.
NON ALARM: Complete kit including case, $£ 11 \cdot 50$. Ready built, $£ 13 \cdot 50$. Module kit excluding case, $\mathbf{~ 9} \cdot \mathbf{0 0}$. Ready built, $\mathbf{5 9} 50$.
ALARM: Pulsed alarm tone. Automatic brightness control. 9 minute " Snooze Simple setting. Complete kit with case, £14-50. Ready built, £16.50. Module kit excluding case, £12.50. Ready built, $\mathbf{E 1 3} \cdot \mathbf{0 0}$. TIMER FACILITY: Use as stopwatch to 9 min 59 sec , extra 50 p

EXCELLENT DESIGN ANODISED ALUMINIUM CASED ALARM CLOCKS Green Display (tin) Snooze Repeater Alarm. Gold or Sliver case, £18.36 - Red Display ($\frac{1}{2}$ in) Brightness control. Snooze, $£ 17 \cdot 28$

DISPLAYS: FND500 $\frac{1}{2}$ in LED, $£ 1$-19 each. 5 for $£ 5 \cdot 40$.

Green Phosphor 5LT-O2, £5.67.
CLOCK CHIPS: 50253N Alarm 12/24 hour $4 / 6$ digit, $\mathbf{\Sigma 5} \cdot 67$
50362N Calendar clock, £7•75. 50395/0/76 Decade up/down counter, $£ 13 \cdot 10$ MICROPROCESSORS: Z80 CPU, £29•70. Z80 CTC, £15•70.
1702A UV Erazable PROM, $£ 11$-35. UV PROM ERAZER, $£ 103$ plus P. \& P. £5
2102NA 1K Static RAM, £3•15. 4KXI Dynamic RAM 16 pin, £7-05.
RECHARGEABLE BATTERY SET: Includes 4 Nickel Cadmium AA batteries (separately $£ 1.08$ each). 3/6/9V Universal mains adaptor/charger (separately £3.78 each), with multiplug for running Calculators plus battery pod, £8.10 Calculator Adaptor, $\mathbf{£ 2} 43$.
ELECTRONIC DOORBELL: Warbling tone from PP3 Battery, $\mathbf{£ 5} \mathbf{4 0}$.
LCD WATCH: 5 function. Constant display. Back light. Hours mins/monith date/secs. Elegant Chrome case. Black strap. Excellent value, $\mathbb{£ 1 7} 28$.

BARON

(PE) Southview House, 6 Gower Road Royston, Hertfordshire

Telephone: Royston (0763) 43695 Overseas: Add Airmail or Surface postage

When you make your own PCB's, you need Sen Etch-Resist

Transfer Symbols!
High-definition, etch-resist transfers that adhere perfectly to copper-clad board, offering a superb professional finish
to the one -off PCB
Ten types of symbol
in strip form for
greater accuracy.
Packs of ten strips
mixed, or of any
one symbol.
for only E2:

From your usual component
supplier or
direct
Send in the coupon below
for details of the Sens / 33
for details of the Seno $/ 33$
range of aids to PCB preparation

Deco Laboratories Ltd. Freepost, Portslade. Brighton BN4 1EQ (no stamp needed)

Name
Address

Grablitemk Capacitive discharge electronic ignition kit

VOTED BEST
OF 8 S
 TESTED BY
'POPUp Mot MA MAGAZINE OCT. 74

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Optimum fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, of even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Spark rite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions.

OPTIONAL EXTRAS

Electronic/conventional ignition switch
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded. Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).

CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008
PRICES INCLUDE VAT, POST AND PACKING. Improve performance \& economy NOW
NOTE-Vehicles with current impulse tachometers (Smiths code on dial RV will require a tachometer pulse slave unit. Price $£ 3 \cdot 35$ inc. VAT, post \& packing

ELECTRONICS DESIGN Associates, B2 Bath St, Walsall, WSI 3DE
Quick installation Ho engine modification required
Electronics Design Associates, Dept. PE10 82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652

Name

Address

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets. knobs, etc. are not included but most of these may be bought separately. Fuller details of kits. PCBs and parts are shown in our lists.
circuit and layout diagrams are supplied free with all PCBs designed by Phonosonics. PHOTOCOPIES of the P.E. texts for most of the kits are available-prices in our lists.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.

P.E. MINISONIC MK, 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser with keyboard circuits. Although having slightly fewe facilities than the large P.E. Syntheslser the function offered by this design give it great scope and versatility. Consists of 2 log VCOs, VCF, 2 envelope shapers, 2 voltage controlled amps. keyboard hold and control circuits. HF oscillator and detector, ring modulator, noise generator output amp and mixer, power supply.

Set of basic component kits
from $\begin{array}{r}\text { 864. } 25 \\ 59.71\end{array}$
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits in our lists may be used with the Synthesiser to good advantage, notably. P.E. Minisonic Phasing Unit, Wind and Rain, Rhythm Generator, Sound Bender, Voltage Controlled Filter. Guitar Effects Pedal and Overdrive, Fuzz, Tremolo and Wah-Wah units.
The Maln Synthesiser: PSU. 2 linear VCOs. 2 ramp generators, 2 input amps, sample hold, noise generator shaper voltage controlled amp. Full details in lists
Set of besic component kits. Full details in lisis. Set of printed circuit boards
883.03
$\mathbf{1 1} 1.45$

The Synthesiser Keyboard Circults (can be used without the Main Synthesiser to make an independent musical instrument): 2 logarithmic VCOs, divider, 2 hold circuits, modulation amps, mixer, 2 envelope shapers and additiona PSU. Full details in our lists Set of basic component kits
$£ 48.18$
$\varepsilon 7.66$
GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack, decay and filter characteristics of an avitar but from any of an source, producing 8 different switchable effects that can be further modified by manual controls. Possibly the mosi interesting of all the low-priced sound effects units in our range. Circuit does not duplicate effects from the Guitar Overdrive Unit
Component set with special foot operated switches $\mathbf{~} 7$-59 Alternative component set with panel mounting switches
Printed circuit board
54.96
51.43

SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper, tremolo. voice-operated fader uency-doubler
Component set for above functions (excl. SWs)
Printed circuit board
Optional extra-additional Audio Modulator, the use of which, in conjunction with the above component set, can produce "jungle-drum" rhythms
Component set (incl. PCB)

PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded music.

Component set (incl. PCB)
C2. 8
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control the rate of phasing

Component set (incl. PCB)
SOPHISTICATED PHMSING AND VIBRATO UNIT
A slightly modified version of the circuit published in
A slektor'. December 1976, and includes manual and automatic control over the rate of phasing and vibrato. Component set Printed circuit board
\& 17.69
$£ 2.33$
WAH-WAH UNIT (P.E. Apr. 76)
The Wah-Wah effect produced by this unit can be controlled manually or by the integral automatic controller.
Component set (incl. PCB)
\&. 3.55
AUTOWAH UNIT (P.E. Mar. 77)
Automatically produces Wah-pedal and Swell-pedal sounds
Component set PCB specia
Comperial foot switches
1-27

POST AND HANDLING

U.K. orders-under $£ 15$ add 25p plus VAT, over $£ 15$ add 50 p plus VAT. Keyboards $\{1 \cdot 50$ plus VAT
Optional Insurance for compensation against loss or damage in post, add 35p in addition to above post and handling.
Elre, C.I., B.F.P.O., and other countries are subject to Export postage rates.
P.E. JOANNA (P.E. May/Sept. 75)

A five-octave electronic piano that has switchable alternative voicing of Honky-Tonk piano, ordinary piano harpsichord or a mixture of any of the three, together with facilities ncluding fast and slow tremolo, loud and soft pedal switching, and sustain pedal switching. The powar amplifier ypically delivers 24 watts into 8 ohms. The PCBs have been edesigned by ourselves making improved use of the space available.
Main power supply, tone generator, 61 envelope shapers, oicing and pre-amp circuits.
Set of basic component kits for above
Set of printed circuit boards for above
ower amplifier
$£ 75.29$
$\mathbf{8} 20.35$
Printed circult board for power amp

RHYTHM GENERATOR (P.E. Mar./Apr. 774)

Programmable for 64.000 rhythm patterns from 8 effects circuits (high and low, bongos, bass and snare drums, long and short brushes, blocks and soft cymball, and with ariable time signatures and rhythm rates. Really fascinating and useful.
rempo, timing and logic circuits
PCB for above circuits (double-sided)
Component set for all 8 effects circuits
PCB for all 8 effects
Simple mixer (our design) incl. PCB
(incl. PGB) with external volume controls
Power supply for T, T and L, and effects
(incl. PCB)
(See our list for Power Supplies for Mixers)
$\mathbf{E 1 2 . 7 0}$
$\mathbf{E} 3.33$

HYYTHM GENERATOR-NEW CONTROL UNIT
Using an M252 Rhythm Generator integrated circuit this using an M252 Rhythm Generator integrated circuit this and Logic control. It provides 15 different and readily selectable rhythm patterns such as Waltz. Tango, March. Foxtrot, etc.
Component set (incl. PCB but excl. sw's) \quad 12.50
Power supply (incl. PCB)
12.90
812.00

SEE OTHER PAGE FOR KEYBOARDS, AND
OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED

WIND AND RAIN UNIT

A manually controlled unit for producing the above-named ounds
Component set (incl. PCB)

GUITAR OVERDRIVE UNIT (P.E. Aug. 76)

Sophisticated, versatile Fuzz unit. including variable and witchable controls affecting se fuzz qualty whinst relaing and decay, and also providing filtering. Does not duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments.
Component set using dual slider pot
Component set using dual rotary pot
Printed circuit board

FUZZ UNIT

Simple Fuzz unit based upon P.E. 'Sound Design' circuit.
Component set (incl. PCB)
TREMOLO UNIT
Based upon P.E. ''Sound Design'" circuit.
Component set (incl. PCB)
£3-84

TREBLE BOOST UNIT (P.E. Apr. 76)

Gives a much shriler quality to audio signals fed through it.
The depth of boost is manually adjustable.
Component set (incl. PCB
£2.40

P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A
LED monitor clearly displaya all beat note adjustments. Ideal for tuning acoustic and electronic musical instruments alike.

Main component set (incl. PCB)
£15. 59

DON'T FORGET VATI
Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export orders).

P.E. SYnCHRONOME (P.E. Mar. 76)

An accented-beat electronic metronome, providing duple triple and quadruple times with full control over the bea rate. Can also be used as a simple drum-beat rhythm Component set (incl loudspeaker)
Printed circuit board $\quad \$ 11.62$

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used with the P.E. Synthesiser.

Printed circuit board

ENVELOPE SHAPER WITHOUT VCA (P.E. Ocl. 75)
Provides tull manual control over attack, decay, sustain and release functions, and is for use with an existing voltage confolied amplit
Component set (incl. PCB)

ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unit has its own voltage controlled amplifier and has full manual control over attack. decay, sustain and releas
Component set (incl. PCB)
E5. 68
TRANSIENT GENERATOR (P.E. Apr. 77)
An envelope shaper, without VCA, having the usual attack, decay, sustain and release functions, and in addition it also provides a Repeat Elect enabling a synthesiser to be programmed to imitate such instruments as a mandolin or
Comp
Printed circuit
84.52
51.82

WAVEFORM CONVERTER

Slightly modified from a circuit published in a German adition of "Elektor'. Converts a saw-tooth waveform into four different waveforms: sine-wave, mark-space saw-tooth regular triangle form, and squarewave with an externally Component set (incl. PCB but excl. sw's)

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
Part of the P.E. Minisonic now released as an independent Cit use with other synthesisers. Component set (incl. PCB) (Order as Kit 65-1)
£8.22

RING MODULATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independen
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kit 59-1)
£5.50

NOISE GENERATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independent it for use with other synthesisers.
Component set (incl. PCB) (Ord

SOPHISTICATED POWER SUPPLIES
A wide range of highly stabilised low noise power supply kits is available-details in our lists.

MICROPHONE PRE-AMP (P.E. Apr. 77)
Component set (incl PCB)
E3. 78
VOICE OPERATED FADER (P.E. Dec. 73) For automatically reducing music volume during Component set (incl. PCB)

ع3.97

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to within a preset
Component set (incl. PCB)
ع4.58

EXPORT ORDERS are welcome, though we advise that

 a current copy of our list should be obtained betore ordering as it also shows Export postage rates. All payments must be cash-with-order, in Sterling and preferably by International Money Order or through an English Bank. To obtain list send 40 p.
AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is available.

LIST-Send stamped addressed envelope with all U.K. requests for free other components.

OVERSEAS enquirles for list: Europe
send 20 p : other countries-send 40 p .

KEYBOARDS AND CONTACTS

Kimber-Allen Keyboards as required for many published circuits, including the P.E. Joanna, P.E. Minlsonic, and P.E. Synthesiser. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C. The keys are plastic. spring-loaded and mounted on a robust aluminium frame.
3 Octave (37 notes) £25.50. 4 Oct (49 notes) £32-25. 5 Oct (61 notes) 839.75.
Contact Assemblles for use with above keyboards: Single-pole change-over (type SP) as for P.E. Joanna and P.E. Minisonic. Two-pole normally-open make-break (type DP) as for P.E. Synthesiser. Special contact assembly (type 4PS) having 4 poles. 3 of which are normally-open
make-break contacts and the fourth is a change-over contact-this special assembly enables THE make-break contacts and the fourth is a change-over contaci-this special assembly enables $14 E$
SAME KEYBOARD to be used with the P.E. Synthesiser, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost of more than one keyboard. See our list for other contacts.

Contact	Each	3 Octave Set	4 Octave Set	5 Octave Set
SP	$24 p$	$£ 8.88$	$£ 11.76$	$£ 14 \cdot 64$
2P	$27 p$	$£ 9.99$	$£ 13.23$	$£ 11.47$
4PS	$53 p$	$£ 19.61$	$£ 25.97$	$£ 32.33$

PRINTED CIRCUIT BOARDS for use with the above contacts and thus eliminating most of the inter-wiring required, are available Details in our lists.

MORE NEW KITS!

ELECTRONIC ORGAN

Soctave electronic organ with 5 basic voices that can be used individually or together. 5 pitches ($2 \mathrm{ft}, 4 \mathrm{ft}$. $8 \mathrm{ft}, 16 \mathrm{ft}$, 32tt), varlable attack, tremolo, vibrato, phasing. and
variable sustain. Details in our list.

ORGAN CONVERSION KIT

Converts the P.E. Joanna electronic piano to also provide most of the facilities offered by the above electronic organ.
Basic
£12.34
SYNTHESISER TUNING INDICATOR (P.E. July 77) A simple 4 octave frequency comparator for use with the full

Component and PCB (but excl sw.)
GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)
A modified and extended version of the circuit published Details in list.

TAPE NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings. All kits include PCBs
standard tolerance set of components
Superior tolerance set of components £2.96
ع3. 76
Regulated power supply (will drive 2 sets) $\mathbf{2 3 . 7 6}$

SOUND-TO-LIGHT (P.E. Aurora) (P.E. Apr.-Aug. 71)
Four channels each responding to a different sound frequency and controlling its own light. Can be used with most audio systems and lamp intensities.
Basic component set (excl. thyristors)
Printed circuit board for above
Power supply
515.92
53.90

PCB for power supply
3-CHANNEL SOUND-TO-LIGHT (P.E. Apr, 76)
A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. Includes power supply, thyristors, and by-pass switches.
Component set (inct. PCB)
£11. 95
DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of om, or full strobe mode of operation. Basic component sel

BIOLOGICAL AMPLIFIER (P.E. Jan /Feb. 73)
Multi-function circuits that, with the use of other external cquipment. can serve as lie-detector. alphaphone, cardiophone etc. Pre-Amp Module Component set (incl. PCB) Basic Output Circulte-combined component set
with PCBs. for alphaphone, cardionhone, with PCBs. for alphaphone, cardiophone,
frequency meter and visual feed-back lampdriver frequency meter and visual feed-back lampdriver
circuits
Audlo Amplifier Module Type PC7
SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprisiing home onstructor. While stocks last.
Set of resistors, capacitors, semiconductors. polemior (500, makaswitches and PCB
Panel meter ($500 \mu \mathrm{~A}$)
prices are correct at time of press.
E. \& O. E. DELIVERY SUENECT TO AVAILABILITY

TRANSISTORS	
AC128	26p
AC176	26p
BC107	14p
BC108	14p
BC109	14p
BC 147	12p
BC148	12p
BC149	12p
BC157	13p
BC158	13p
BC159	13p
BC182L	12p
BC184	12p
BC187	25p
BC204	14p
BC209C	14p
BC212L	15p
BC213	15p
BC478	29p
BCY71	22p
BD131	44p
BD132	54p
BFY50	22p
BFY51	22p
BFY52	24p
BSY95A	22p
MD8001	172p
OC28	60p
OC71	20p
0 O 72	25p
OC84	25p
ORP12	70p
ZTX107	12p
ZTX108	${ }^{9 p}$
2TX501	13p
ZTX503	15p
ZTX531	23p
2N706	13p
2NS14	22p
2N1304	22p
2N2219	27p
2N2905	35 p
2N2905A	36p
2N2907	22p
2N3053	18 p
2N3054	66p
2N3055	48p
2N3702	12p
2N3703	12p
2N3704	12P
2N3819	35p
2N3820	$64 p$
2N3823E	39p
2N4060	12P
2N5245	51p
2N5459	33p
2N5777	45p
INTEGRATED	CIRTS.
318	230p
709 TO5	40p
709 8-pin DIL.	48 p
723 TOS	105p
7418 -pin OIL	32p
748 TO5	63p
7488 8-pin DIL	63p
[A7805 TO220	205p
HA7808 TO220	$205 p$
μ A7812 TO220	205p
μ A7815 TO220	205p
山A7818 TO220	205p
AY-1-0212	6509
AY-1-6721/6	195p
CA3046	90p
MC3340	150p
SG3402N	262p

PHONOSONICS

Join the Digital Revolution

Understand the latest

 developments in calculators,computers, watches, telephones,
television, automotive instrumentation
Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{2}$ in $\times 8 \frac{1}{4}$ in and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

Quantity discounts available on request. VAT zero rated.

Also available-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4.volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4-60
 plus 90p P. \& P.

 ManagerEnthusiast
Scientist
Engineer
Student

Designer These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

'NéWfrom Cambridge Learning Enterprises:

FLO'O CHARTS AND ALGORITHMS-use, design and layout; vital for computing, training, wall charts, etc. £2.95

Guarantee-If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, FREEPOST, Unit 2. Rivermill Lodge, St. Ives, Huntingdon, Cambs. PE17 4BR

To: Cambridge Learning Enterprises, FREEPOST, Unit 2 ,
Rivermill Lodge, St. Ives, Huntingdon, Cambs. PE17 4BR
*Please send me....set(s) of Design of Digital Systems at £8.00 each, P. \& P. included
*or....set(s) of Digital Computer Logic and Electronics at £5-50 each, P. \& P. included
*or . . . combined set(s) at $£ 12 \cdot 00$ each, P. \& P. included
*or....the Algorithm Writers Guide at $£ 3.40$ each, P. \& P. included
Name
Address
*delete as applicable
No need to use a stamp-just print FREEPOST on the envelope.
PE10

WIRE THREADING INTROKIT £6•60

KIT INCLUDES

\star Wire Distribution Pencil

* Spare wire sppool
* Circuil Board
\star IC leg deformer
* W-D Strips (press \& glue fit) * Full instructions

Prototype working with all but a few ICe has alway been a problem and when one has a dozen TTL packages, the problom is major.
The Zartronix Wire Thraeding introkit gives you all you need to heve an excallent prototype syatem youraifi. The Brasdboard will take twenty 14 pin DIL packeges (or a malter number of 16-pin, itc., packages) and the pen, which holds its own quickly and neatly. The W-D strips fit between the rows of ICB and act as anchora and guldee, keeping the prototype neat.

PLUS Professional tools essential for successful wire threading

ORYX Temp. Cont. Sold. Iron (fine tip fitted)

ع8.10
ORYX Safety Stand
£3. 40 Microshear Cutters (with safety clip) Quality Tweezers £1.50

MISC: 'Elecolit 340 ' 3 g tube
Conductive Paint-PCB repair bus bars RF Shielding etc.
£2.50
TERMS: Add 8\% VAT to all items.
Cash with order.
Min. order $£ 2.50$.
P. \& P. $35 p$ per order (Oryx Iron Stand P. \& P. 54p).

Overseas $£ 1$ extra for P. \& P. airmail.
Mail Order only
Access avallable
Trade enquiries welcome

ZARTRONIX

115 LION LANE, HASLEMERE, SURREY GU27 1JL

 ENGLANDTel. HAS 52445

тн "Manta"
 CAPACITIVE DISCHARGE ELECTRONIC IGNITION UNIT

FITS ALL CARS—IMPROVES PERFORMANCE-SAVES PETROL
Specifically designed for the Home Constructor, this top quality, high output unit incorporates the latest sophisticated electronic circuitry for the best consistent performance.

Developed from the popular P.E. "Scorpio Mk 11" (designed by Messrs. Gibbs and Shaw), but improved to give highest reliability. Uses only top quality components.

PRICE OF COMPLETE KIT NOW ONLY £15. 50 (inclusive of VAT, P. \& P.). After sales service available.
READY MADE UNIT ALSO AVAILABLE NOW ONLY £17-50 (inclusive of VAT and P. \& P.). Full two year guarantee. Do not confuse with cheaper electronic ignition units.

Send 7p stamp for full details and our six page explanatory brochure "Electronic Ignition-How it Works'.

ELECTRO SPARES

Dept. P.E., 187a Sheffield Road, Chesterfield, Derbys. S41 7JQ. Telephone: Chesterfield (0246) 36638

NEARLY ALL CONSTRUCTION PROJECTS REQUIRE SOME TYPE OF CIRCUIT BOARD.
VEROBOARD is offered to you in 15 sizes, $0.1^{\prime \prime} \times 0.1^{\prime \prime}$ and $0.15^{\prime \prime} \times 0.15^{\prime \prime}$ matrix. Every square inch of $0.1^{\prime \prime}$ Veroboard has 100 accurately placed holes for maximum versatility (imagine drilling those yourself!) Vero also manufacture boards for integrated circuits, strip boards, plain boards, tools, pins and a superb range of plastic and metal cases. All these products are available from your local shop or mail order company.

Send for our booklet describing these products. S.A.E. $7^{\prime \prime} \times 9^{\prime \prime}$ plus 10p to:-

VERO ELECTRONICS LTD. RETAIL DEPT. INDUSTRIAL ESTATE, CHANDLERS FORD, HANTS. SO5 32R. Telephone Chandlers Ford 2956

FUZZ LIGHTS
Red, Green, Blue
Amber. $\mathbf{£ 2 3 . 5 0}$

THE PIEZO SUPER HORN

£10.95

- NEEDS NO CROSS.OVER NETWORK - FREQUENCY RESPONSE $4,000-30,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$ - PATENTED MOMENTUM DRIVE PRINCIPLE - NO VIICE COILS OR MAGNETS - HIGH INTERNAL MCEDANCE ADAPTS TO ANY SYSTEM - HIGH IN SERIES TO FORM AN ARRAY - INCREASED OUTPUT - POWER HANDLING CAPACITY 25 volts RMS - see chart

Power handung guide	
$\underset{\substack{\text { Sy atem } \\ \text { Impoctence }}}{ }$	Capsecty
20 hms	312 watts
4 Ohms	156 wath
0 ohms	78 watts
16 onms	39 wals

$31 / 8 \times 31 / 8 \times 27 / 8 \mathrm{ins}$

STOCKISTS - CALLERS ONLY

Geo Mathews. 85/87 Hurat Street, Birmingham (Tal. 021-622 4941) Bristol Disco Cemre, 25 The Promenade, Gloucestar Road Tral. Britrol Soccodi, 9 The Friers ITel. Conterbury 60948) Cookles Disco Centre, 132 Wert Streot (Tel. Crewe 4739). Gariend Bros. Ltd., Deptford Brosdway, London 01-692 4412 Luton Disco Centre, 88 Wellington Straet. Luton (Tat. Luton 411733) Mitchell Elecronics. 7 Queen Streer (Tal. Salisbury 23689).

Session Music. 163 Mitcham Road, Tooting (Tel. 01-672 3413). Mon-Sat 10 a.m. - 6 p.m. Closed Wed.

- RCA 8A Triacs
- 1000W per channel
- Each channel fully suppressed and fused
- Master control to ooerate from IW to 125 W
- Full wave control £20.25

Single Channel Version 1500 Watts
£9.75
ADD SEQUENCE CHASING + DIMMING EFFECTS FOR TUAC 3 CHANNEL LIGHT MODULATOR

- Speed Control 3 per min. to 10 per sec.
- Full logic integrated circuitry
- Dimmer control to each channel

3SDMI
£14.50

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 20 PAGE ILLUSTRATED CATALOGUE. S.A.E, STAMPED PLEASE

B. BAMBER ELECTRONICS

Dept PE. 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 IOE Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

REV DC RELAYS, ${ }^{4}$ pole change-over (double
Contacts) (will work from $14-24 \mathrm{~V}$ DC) Brand
New, boxed, good quality, made by AEI 40 p New,
each.
Slider Switches, 2 pole make and break (or can be used as 1 pole change-over by linking the two
centre pins), 4 for 50 p.
Smart Min. Rectangular Push to Make Switctes, black rectangular surround with white rectangular button, overall size $12 \times 17 \mathrm{~mm}$, 3 for
S0p. sop.
A NEW RANGE OF QUALITY BOXES ASTRUMENT CASES

Vinyl Coated inatrument Cases. Light Blue tops and White lower sections. Very wBy fly fillish
WB1
W82
W82
W83
WB4
WB5
WB6
W86
W87
WB853
MAGNETIC DEVICES PROGRAMMERS. $\quad 22.00$
ain 9 tully devices PRoGRAmmens. Contain
micro-switches (rated approx. 1 A at 240 VAC) Needs slow-motion motor to drive (not supplied). Ideal for disco llghts, sequence swltchGARRARD $9 V$ OC MINIATURE MOTORS, TyPe $31 \mathrm{BM}, 3200 \mathrm{RPM}$ governed, size approx. 1 tin dia. $\times 1+\mathrm{in}$, high, with 2 mm spindle. Brand New.
sop each or 2 for K 1 . bup each or 2 or $\mathrm{E1}$.
QUARTZ-XTAL CONTROLLED CLOCKS, 9 to 12 V DC at approx 3 mA required. Dlal slae
approx. 2 , depth of unit approx. 2 Not in approx. 2 unit only. smart modern appearance black face with white lettering. 12 hr . with second hand, and red hour and minute hands (Cosis over $£ 40$ to produce) $£ 10$ each while

RED LED (Min. type) 5 for 7op.
VIDICON SCAN COILS (Transistor type, but no data) complete with vidicon base $88 \cdot 50$ each Brand New.
FULL RANGE OF BERNARDS/BABANI ELECTRONICS BOOKS IN STOCK. S.A.E. FOR

NEW FOR THE VHF CONSTRUCTOR. A range of tuned clrcuits on formers with slugs and screening can be greatly extended by using varying capacitors in paralies.
Type S (tin. square, dumpy type).
Type SA 20 to 30 MHz (when 30 pitfed in parallel) Type SB 35 to 50 MHz (with link winding).
Type SC 70 to 100 MHz (with link winding) Type SC 70 to 100 MMZ (with link winding)
Type SD 135 to 175 MHz (with link winding)
Type M (Min. tin. square types).
Type MA 19 to 28 MHz (when 33 p fitted in parallei).
Type MB 22 to 32 MHz (when 33 F fited in parallel) Type MB 22 to 32 MHz (when 33 pF fitted in paraliel).
Type MC 25 to 35 MHz (when 33 pF fitted in parallel) Type MC 25 to 35 MHZ (when 33 pFF fitted in patrallel).
Type MD 38 to 50 MHz (when 33 pF fitted in parallel). Type MD 38 to 50 MMz (when 33 pF inted in paraliel). Type MF 10010200 MHz (without slug) when 0 to 30 pF variable fitted in parallet.
All the above coils avallable in packs of five only (same type) at 50 p per pack of 5
PLASTIC PROJECT BOXES with screw on lids (in black ABS) with brass inserts.
Type NB1 approx 3 in . $\times 2$ ifn. $x i$ in. 40 p each.

MULLARD B5A2 E5V STABILISER VALVES (Brand New) 70p each of 2 for $£ 1 \cdot 20$.
TO3 transistor insulator sets, 10 for 50p
B5x20 (VHF Osc/Mult). 3 for 50 p
BC108 (metal can), 4 for 50 p.
PBC108 (plastic BC108), 5 for $50 p$.
BFY51 Transistors, 4 for 60 p .
BCY72 Transistors. 4 for 50 p
PNP audio type TOS Transistors, 12 for 25p
BF 152 (UMF amp/mixer).
2 N 3819 Fet., 3 for 60 p ,
BC148 NPN SILICON, 4 for 50 p
BC158 PNP SILICON, 4 for 50p.
BAY31 Signal Diodes, 10 for 35p.

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

SMALL MAINS SUPPRESSORS (small chokes ideal for radlo, Hi-Fi inputs, etc.), approx. tin.
$\times 1$ tin. 3 for 50 p .

PERSPEX TUNER PANELS (for FM Band 2 PERSPEX TUNER PANELS (for FM Band 2 tear numbers, rest blacked out, smart modern appearance. size approx. atin $\times 1$ tin.. 2 for 5p.

PLUGS AND SOCKETS

N -Type Plugs 50 ohm. 60 p each. 3 for $£ 1.50$. PL259 Plugs (PTFE). brand new, packed with reducers, 65p or 5 for $\mathrm{E3}$.
SO239 Sockets
type). 50 p each or 5 for $£ 2.25$
SOLDER SUCKERS (Plunger zype). Standard Model. ©5. Skirted Model E5•50. Spare Nozzles WELIER

NELLER SOLDERING IRONS

EXPERT. Bult-in-spotlight illuminates work igger. High etticiency EXPERT SOLDER GUN 8100 D E9. 90
EXPERT SOLDER GUN KIT (spare bits. case tc.) 212 .90.
Spare blts 35p pair
NEW MARKSMAN RANGE OF SOLDERING RONS.
S115D 15W 240 V ᄃ3. 80.
S125D 25 W 240 V 53.80
S125D 25 W 240 V £. 3.80
S140D 40 W 240 V .
S125DK 25 W 240 V + blts etc., KIT $£ 4.90$
SPECIAL 12 V version S125-12 25 W 12 V ह3. 80. BENCH STAND with spring and sponge tor Marksman trons $£ 2 \cdot 38$. 5 , 10 , MT5 (for 25W) 45p. MT 10 (for 40 W) 50 p .
ALL PRICES $+5 \%$ VAT
TCPZ TEMPERATURE CONTROLLED IRON. Temperature controlied ifon and PSU. $£ 30+$ VAT SPARE TIPS
Type CC single flat Type K double flet fine tip Type P, very fine tip. $£ 1$ each + VAT (8D).
MOST SPARES AVALABLE.

MULTICORE SOLDER
Size 5 Savbit 18 s.w.g. in alloy dispenser.
Size 5 Savbit 18 s.W.g. in alloy dispenser.
$32 p+$ VAT (3p).
Size C1SAV 8 .
Size C1SAV t8 Savbil 18 s.w.g., $56 p+$ VAT (4p).
$+K g .(1 \cdot 116) 60 \times 40.20$ s.w.g. on plastic ree

14 DIL REED RELAYS, 5 to 12 V DC. 450 ohm coil. Designed to work directly from TTL Logic. Single Pole Cha
3 W . 1 - 75 each.
A LARGE RANGE OF CAPACITORS AVAILABLE AT BARGAIN PRICES, S.A.E. FOR LIST. MIXED COMPONENT PACKS, containing resistors. capacitors, pots, etc. All new Hundreds of items. \&2 per pack, while stocks
ALU-S
ALU-SOL ALUMINIUM SOLDEA (made by Multicore). Solders aluminium to 1 tself or
copper, brass, steel, nickel or tinplate, 16 s.w. 9. copper, brass. steel, nickel or tinplate, 16 s.w. 9.
with multicore metre coil 40p pack. Large reel $\mathbb{\$ 2}$-75.
VARICAP TUNERS Mullard type ELC1043/05 Brand New. $\mathbb{4} \cdot 40+12 \% \%$ VAT
BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronic Manufacture. Approx. 100 £1. 50 per pack + 12 \% \% VAT
OSMOR REED RELAY COILS (for reed relays up to 1 in dia., not suppiled) $12 \mathrm{~V}, 500 \mathrm{ohm}$ coil. 2 for 50 p .

We now stock Spiralux Tools for the electronic enthusiast. Screwdrivers, Nut spanners, BA and Metric sizes, pop rivet guns, etc S.A.E. for list.
TWIN I.F. CANS, approx. $1 \mathrm{in} . \times$ in. $\times \operatorname{lin}$. high. around $3.5-5 \mathrm{MHz}, 2$ separate transformers in 1 can. internally screened, 5 tor $50 \mathrm{p}+121 \%$ VAT.
Dubilier Electrolytics, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p . Dubilier Electrolytics. $100 \mathrm{\mu F} .275 \mathrm{~V}$, 2 for 50 p. TCC Electrolytics, $1000 \mu \mathrm{~F}, 30 \mathrm{~V}$. 3 for 60 p . Oubllier Electrolytics, $5000 \mu \mathrm{~F}, 35 \mathrm{~V}, 50 \mathrm{p}$ each Oubilier Electrolytics, $5000 \mu \mathrm{~F}, 50 \mathrm{~V}, 60 \mathrm{p}$ each $1 T \mathrm{~T}$ Electrolytics. 6800 HF . 25 V . high grade. screw
terminals, with mounting clips, 50 p each. PLEASE ADD $12 \mathrm{j} \%$ VAT TO ALL CAPACITORS.
TV PLUGS AND SOCKETS
TV Plugs (metal type). 4 for 50 p .
TV Line Connectors (back-to-pack
50p.

S FREE CATALOGUE BY RETURN

1.Our easy to use FREE CATALOGUE 1. $\begin{aligned} & \text { gives circuit diagrams } \\ & \text { full information on o }\end{aligned}$

FOR FAST SERVICE with
BY RETURN DELIVERY
PHONE OXFORD
086549791

OR WRITE TO

E
P.O. BOX 75B

OXFORD

BURGLAR ALARM
 EQUIPMENT SUPPLIES (TRADE)

Bell boxes plastic coated steel $\quad \mathbf{5} .25$ Magnetically operated door Magnetically operated door switch flush type
Vibro sensitive switch Pressure pads large 29 in $\times 15 \mathrm{in}$ 4 wlres
Pressure Pressure pads stair tread size Aluminium window foil to0tt self adhesive Take off blocks for window foil per pair
20.65
20.65
$£ 0.60$
$£ 2.75$
E1.75
81.50
53.00
perpair \quad E0.40

Heavy duty 6 in bell 12 V Siren 12 V

CONTROL UNITS Battery operated model Battery and mains model D.I. Y battery model 514.00 £19-00
$\mathbf{\$ 3 2} .00$ $\mathbf{1} 22.00$
$£ 11.00$ ALL PRICES + $12 \% \%$ VAT. NO VAT EXPORTS. POST FREE
DISCOUNTS PER ITEM: $5+10 \% ; 25+15 \% \cdot 100+20 \%$

ASTRO ALARMS

25 STOCKTON ROAD, SUNDERLAND
TYNE AND WEAR, ENGLAND

THE DPEN DOOR TO EUALTY

THE COVER IS BLA
WHITE HITE

4th ISSUE INCLUDES NEW METERS

as well as new switches and items from advanced opto electronics to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts continue on many purchases; Access and Barclaycard orders are accepted SEMI-CONDUCTORS COMPONENTS ACCESSORIES, ETC. * FREE POSTAGE on all C.W.O. mail orders over $£ 2$ list value (excluding VAT) in U.K. If under, add $15 p$ handling charge

POSSIBLY A NEW NAME TO YOU, BUT KNOWN IN OVER 25 COUNTRIES FOR THE SUPERIOR INSTRUMENTS WHICH THIS GERMAN COMPANY PRODUCE

USED BY WEST GERMAN BROADCASTING SERVICE

(1)
 PLAYED BY KLAUS
 WUNDERLICH AND OTHER FAMOUS ORGANISTS

Without doubt, the most comprehensive kits and the most up-to-date designs available today. Just consider a few of the features
The Flagship of the WERSI range of Organs

WERSI is the first kit producing company applying the latest achievements of the space age technology.
This has decisive effects on the technical and musical quality of WERSI's electronic organs for the do-it-yourselfer.
The application of modern integrated circuits, so-called IC's, simplifies the organ construction considerably. A single IC may replace up to 10,000 conventional electronic components. In addition, IC's save a lot of space and they are extremely reliable devices.
WERSI, however, went a step farther yet. IC's which were not available on the open market were developed for specific purposes by WERSI engineering. They are being produced by the most highly reputed IC manufacturers in the world. The result: economical electronic organs with the most up-to-date techniques and unsurpassed musical capabilities.

- Precision Master Generator, using MOS-LSI.
- Integrated electronic keying in $I^{2} L$ technology
- Unique-All switch functions are programmable.
- Even the smallest organ has drawbars in addition to fixed stops.
- Craftsman-made cabinets available in 5 veneers
- Ready-made wiring harnesses eliminate errors

Send now for the 104 page full colour catalogue and 16 page price list describing the 8 organs in the range, together with the complementary kits which WERSI produce.

To: AURA Sounds, P1., Copthorne Bank, Crawley, West Sussex.
Please telephone to arrange demonstration 0342713338 I enclose $£ 2 \cdot 00$, refundable against my first order to the value $£ 25 \cdot 00$. Please send the Wersi catalogue and price list.

NAME
ADDRESS

THE 'NUTS \& BOLTS' OF THOSE PROJECTS

SEMICONDUCTORS-COMPONENTS

BABANI BOOK OFFER

60p pack from thle page FREE		
BP2	Handbook of Radio. TV and Industrial and Transmitting Tube and Valve Equivalents	${ }^{60 p}$
B	Handbook of Tested Transistor Circuits	40 p
BP6	Engineers and Machinists Reterence	
BP7	Aadlo and Electronlc Colour Codes and Dat	15p
BP10	Modern Crystal and Transistor Set Circuits for Beginners	p
BP14	Second Book of Transistor Equivalents	
BP15	Constructors Manual of Electronic Circuits for the Home	50p
BP16	Handbook of Electronic Circuits for the Amateur Photographer	60p
BP18	Boys and Beginners Book of Practical Radio and Electronics	p
BP	79 Electronic Novelty Circuits	p
BP23	First Book of Practical Electronic Projects	75p
BP24	52 Projects Using IC741 (or equivalents)	5p
BP26	Radio Antenna Handbook for Long Distance Reception and Transmission	${ }^{85}$
BP27	Giant Chart of Radio Electronic Semiconductor and Loglc Symbols	
$\begin{aligned} & \mathrm{BP}_{29} \\ & \mathrm{BP} 32 \end{aligned}$	Major Solid State Audio Mi-Fl Construction Projects How to Build Your Own Metal and Treasure	p
	Locators	85p
BP34	Practical Repair and Renovation of Cold	
BP35	Handbook of IC Audio Preamplifier and Power Amplifier Construction	95p
BP36	50 Circults Using Germanium. Silicon and Zener Dlodes	p
BP3	50 Projects Using Relays. SCRs and TRIACS	
BP3	50 (FET) Field Ethect Transistor Projects	\$1.25
129	Universal Gram-motor Speed Indicator	p
160	Coil Design and Construction Manual	
161	Radio. TV and Electronics Data Book	p
196	AF-RF Reactance-Frequency Chart Constructors	15p
202	Handbook of Integrated Circuits (ICs) Equivaient and Substitutes	pp
205	First Book of Hi-Fi Loudspeaker Enclosures	60 p
213	Electronic Circults for Model Railways	85 p
214	Audio Enthusiasts Handbook	85p
216	Electronic Gadgets and Games	Pp
217	Solid State Power Supply Handbook	5p
219	Solid State Novelty Projects	5p
220	Build Your Own Solid State $\mathrm{Hi}-\mathrm{Fi}$ And Aud Accessories	85p
222	Solid State Short Wave Receivers for Beginners	95p
223	50 Projects Using IC CA3130	5
224	50 CMOS IC Projects	95p
225	A Practical introduction to Digital IC*s	95p
226	How to Bulld Advanced Short Wave Receivers	\&1. 20
PCC	Resistor Colour Code Disc Calculator	10p

THYRISTORS					
$\begin{aligned} & \text { voris } \\ & 20 \\ & 20 \\ & 50 \\ & 500 \\ & 2000 \\ & 400 \end{aligned}$		\square			
		coicle			

ORDERING
PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT FORGETTING TO INCLUDE OUR PART NUMBER

VAT
ADD $12 \frac{1}{2} \%$ TO PRICES MARKED*. ADD 8% TO OTHERS EXCEPTING THOSE MARKED \dagger. THESE are zero rated

POSTAGE AND PACKING
Add 25 p for postage and packing unless otherwise shown. Add extra for airmail. Min. order £1

SUPER UNTESTED PAKS

k	Oty.		Ordar	
U50	100	Germ. gold bonded OA47 diode	16130	£0.60
U51	150	Germ. OA70/81 diode	16131	co. 60
U52	100	Sllicon diodes 200mA OA200	16132	¢0.60
453	150	Diodes 75mA 1N4148	16133	c0. 60
454	50	Sil rect top hat 750 mA	16134	¢0. 60
U55	20	Sil rect stud type 3 amp	16135	¢0. 60
456	50	400 mW zeners DO7 case	16136	¢0. 60
457	30	NPN trans BC107/8 plastic	16137	-50. 80
U58	30	PNP trans BC177/178 plastic	16138	* 50.60
U59	25	NPN TO39 2N697/2N1711 silcon	16139	ca-60
U60	25	PNP TO59 2N2905 silicon	16140	£0.60
U61	30	NPN TO18 2N706 silicon	16141	c0. 60
U62	25	NPN BFY50/51	16142	¢0.60
U63	30	NPN plastic 2N3906 silicon	16143	- 50.60
U64	30	PNP plastlc 2N3905 silicon	16144	* 20.60
$\cup 65$	30	Germ. 0071 PNP	16145	¢0. 60
466	15	Plastic power 2N3055 NPN	16146	11. 20
$\cup 67$	10	TO3 metal 2 N 3055 NPN	16147	¢1. 20
U68	20	Unijunction Irans TIS43	16148	¢0.60
469	10	1 amp SCR TO39	16149	¢1. 20
470		3 amp SCR TO66 case	16150	§1.20

COMPONENT PAKS

Pak No. C1	$\begin{aligned} & \text { Oty. } \\ & 200 \end{aligned}$	Resistor mixed value applox. (count by weight)	Order No. 16164	$\begin{aligned} & \text { Price } \\ & +\mathbf{\$ 0 . 6 0} \end{aligned}$
C2	150	Capacitors mixed value approx. (count by weight)	16165	+ $\mathbf{5} 0.60$
C3	50	Precision resistors. Mixed values	16166	\$0.60
C_{4}	80	IW resistors mixed preferred values	16167	* 50.60
C5	5	Pieces assorted ferrite rods	16168	* 50.60
C6	2	Tuning gangs. MW/1W VHF	16169	- $50 \cdot 60$
67	1	Pack wire 50 metres assorted colours single strand	16170	\$0.60
C8	10	Reed switches	16171	* 50.60
C9	3	Micro switches	16172	- 50.60
C10	15	Assorted pots	16173 16174	+ ${ }^{\text {¢ }} \mathbf{0} 0.60$
C11	5	Metal jack sockets $3 \times 3.5 \mathrm{~mm}$ $2 \times$ standard switch types	16174	- $50 \cdot 60$
C12	30	Paper condensers preferred types mixed values	16175	*¢0.60
C13	20	Electrolytics trans. types	16176	- 50.60
614	1	Pak assorted hardwarenuts/bolts, gromets, etc	1617	\&0
C15	5	Mains slide switches ass.	16178	- 50.60
C16	20	Assorted tag strips and panels	16179	¢0.60
C17	15	Assorted control knobs	16180	* 50.60
C18	4	Rotary wave change switches	16181	* C 0.600
C19	2	Relays 6-24V operating	16182 16183	²0.60 ¢0.60
- $\mathbf{C} 20$	1	Pak, copper laminate approx. 200 sq.in	16183	£0.60
C21	15	Assonted tuses 100mA-5 amp.	16184	50.60
C22	50	Metres PVC sleeving assorted size and colour	16185	¢0.60
C23	60	i watt resistors mixed preterred values	16188	+20.60
C24	25	Presets assorted type and value	16186	* $\mathrm{E} \mathrm{O} \cdot 60$
C25	30	Metres stranded wire assorted colours	16187	¢0.60
SLIEEBPAMS				
Pak No. No.	aty.		Order No. 16190	Price + 10.60
S1	,	Stider potentiometers, mixed values		$\text { *£O } 60$
S2	6	Slider potentlometers. all 470 onms	16191	- 20.60
53	6	Sllder potentiometers. all $10 \mathrm{k} \Omega$ lin	16192	* 50.60
54	6	Slider potentiometers. all $22 \mathrm{k} \Omega$ lin	16193	+10.60
S5	6	Slider potentiometers, all $47 \mathrm{k} \Omega$ lin	16194	- 50.60
S6	6	Slider potentiometers. all $47 \mathrm{k} \Omega$ log	16195	* 20.60
CERANEMAN				
Containing a range of first quality miniature ceramic capacitors Unrepeatable value.				
Pak. No.	24		Order No. 16160	Price $+50 \cdot 60$
MC1	24	3 of each value-22pF, 27pF $33 \mathrm{pF}, 39 \mathrm{pF}, 47 \mathrm{pF}$. 68 pF and 82 pF		
MC2	24	miniature ceramic capacitors. 3 ot each value-100pF. 120pF. 150 pF. 180pF, 120pF, 270pF. 330 pF and 390 pF	16161	*¢0. 60
MC3	24	miniature ceramic capacitors. 3 of each value-470pF. 560pF 680 pF . $\mathrm{B} 20 \mathrm{pF}, 1,000 \mathrm{pF}, 1,500 \mathrm{pF}$. 2,200 pF and 3,300pF	16162	*£0. 60
MC4	21	miniature ceramic capacitors 3 of each vaiue - $4,700 \mathrm{pF}, 6,800 \mathrm{pF}$. $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$ $0.033 \mu \mathrm{~F}$ and $0.047 \mu \mathrm{~F}$	16163	* $20 \cdot 60$

LINEAR PAKS

Manufacturer's Fail Outs which include Functional in-spec" from the maker's very rigid specifications -spec from the maker's very rigid specineamons, u721-30 Assorted Linear types 709, 741, 747, 748, 710. SRDER ETC.
ORDE

U76SD FM STEREO DECODER
ICs 76110 equivalent to MC1310P-MA767.
Data supplied with pak
ORDER No. 16229
U76A AUDIO POWER OUTPUT
AMPLIFIERS
8 assorted types. SL403, 76013, 76003. stc. Data Opplied with pak.

74 SERIES PAKS

Mndacturers Fallouts which include Functiona and part-Functional Units. These are classed as "out of-spec " from the makar's very rigid specitications
work. 100 Gates assorted 7400-01-04-10-50-60, et ORDER No. 16224 4F-50 Flip-Flops assorted 7470-72-73-74-76-104-109 ORDER No. 16225

VEROBOARDS PAKS

VB1-Approx. 30sq. In varlous sizes. All 0 . in matrix

ORDER NO. 16199
ORDER No. 16200
ORAP

ELECTROLYTIC PAKS

A range of paks each containing 18 first quality
mixed value minlature electrolytics. ECI-Values from 0.47 mF to 10 mF . ORDER No. 16201
EC2-Values from 10 mF to 100 mF .
ORDER No. 16202
EC3-Values trom 100 mF to 680 mF . -60p
EC3-Values trom 100 mF to 680 mF . *60p
ORDER No. 16203

C280 CAPACITOR PAK

75 Mullard C 280 capacitors, mixed values ranging ORDER No. 16204

CARBON RESISTOR PAKS

These paks assorted into the following groups:
R 1 - -60 mixed $1 / 4 \mathrm{~W} 100-820$ onms.
ORDER No. 16213
R2- 50 mixed $1 / \mathrm{w}$
R2-60 mixed $1 / \mathrm{w}^{\mathrm{w}}$ 1-8
ORDER No. 16214
R3-60 mixed $1 / 1 / \mathrm{W} 10$
ORDER No. 16215
R4- 60 mixed $1 / w W^{2} 100-820 \mathrm{k} \Omega$

R5-40 mixed $1 / 2 \mathrm{~W}$ 100-820
R6- 40 mixed $1 / 2 W 1-8 \cdot 2 \mathrm{kn}$.
OROER NO. 16218
RT- ORDER No. $16219-82 \mathrm{k} \Omega$.
R8-40 mixed $1 / 2 W 100-820 \mathrm{k} \Omega$.
ORDER No. 6220
ORDER No. 16220
R9- 60 mixed $1 / 410 \mathrm{~W} \Omega$.
R9-60 mixed $1 / 1 \mathrm{~W} 1$-10M Ω.
ORDER No. 16230
R10-40 mixed $1 / 2 W^{2}$
ORDER No. 16231

WORLD SCOOP!
 JUMBO
 SEMICONDUCTOR PAK

Transistors, Germ. and Silicon Rectifiers, Diodes Triacs, Thyristors, iCs and Zeners.

Approx. 100 ALL NEW AND CODED. OHfering the amateur a fantastic bargain PAK and an enormous saving-identificatio ORDER No. $16222{ }^{2}$

Dept. P.E.10, P.O. Box 6, Ware, Herts SHOP 18 BALDOCK ST., WARE, HERTS AT

WdIIfor elatronit dasimuan aninaers!

FIX-PRINT for printed circuits

Invaluable for holding P.C.B.s and other panels when inserting and soldering components. Can be adjusted to suit work up to 280 mm , rotated to gain access to reverse side and locks in any position. All metal. Price $£ 10$ inc. VAT. P. \& P. £1. Write or phone for full details.

S with

Drill Stand

Robust, all metal with ample throat dimensions. Adjustable height cantilever with lever actuated feed. Spring return. Will accept both P1 and P2 drills.
Price $£ 18.50 \mathrm{inc}$. VAT.
P. \& P. £1-06.

Drill
Stand
with
P1
Drill

Constructed to take the popular P1 drill and ensure a high degree of accuracy in all types of electrical precision work. Price $£ 5 \cdot 13$ inc. VAT.
P. \& P. 38p.

PRECISION PETITE LTD
119a HIGH STREET TEDDINGTON MIDDLESEX TWII 8HG TEL: 01-977 0878 • 24 Hour recorded service

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that wilt enable you to take advantage of the many opportunities open to trained people. You study in your own home. in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching unili you are successful.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineexing and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET
To: International Correspondence Schools
\rightarrow CT Dept. 772L Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address
Tel
Age

A SPECIAL OFFER FROM
 ALCON

The MINOR professional multimeter by Chinaglia available at $£ 28 \cdot 40$ inc. VAT

This 33 -range instrument uses a Class 1.5 movement with $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. and $4 \mathrm{k} \Omega / \mathrm{V}$ a.c. sensitivity. Accuracy is 2.5% d.c. and 3.5% a.c. Self-powered and pocket-sized, the Minor is guaranteed for 12 months and there is an optional 30 kV probe available at $£ 9 \cdot 70$.
SAVE NOW-BUY WHILST STOCKS LAST

19 MULBERRY WAL.K. LONDON SW3 6DZ TEL: 01-352 1897

UNIJUNCTIONS TIS43 TYpe, 20p, MEU21, 22p, 2N4871, 22p, MU4894, 22p, GE4JD5E29. 22p, Programmable UJT, D13T1, 25p, 2N6028. 30p.
FM TUNER FRONT END with FET RF Stage with conversion data for Aircraft Band or 2 Metres. E .
MINIATURE 2 POLE 4 WAY ROTARY SWITCHES, 20p each.
100 MULLARD C280 CAPACITORS assorted for 57p.
ELECTRET MICROPHONE INSERT with FET Pre-Amp, £1-85.
WIDE BAND RADAR AMPLIFIERS I.C.' 10 to 100 MHz Untested 5 for 57 p.
40 KHz AKG TRANSDUCERS at $£ 1 \cdot 50$ each. -
MULLARD C2810.1 $\mu \mathrm{f} 250 \mathrm{~V}$. W. CAPACITORS, 20p doz.
BF451 SILICON PNP 300MHz TRANSISTORS, 6 for 35p.
UNMARKED GOOD BFYS1 TRANSISTORS, 6 for $57 p$.
$100-0-100 \mu$ A 14×1 ifI TUNING METER, 90p.
20 ASSORTED VARI-CAP DIODES Untested, 45p.
TEXAS S.C.R.' TIC47 200PIV 300 mA , 18 p each.'
SILICON SOLAR CELLS 0.5 V 5 mA 35 p .

10 ASSORTED MULTI-TURN TRIM-POTS for $80 p$.
20 ASSORTED PHOTO AND DARLINGTON TRANSISTORS Untested for $£ 1$.
ZN414 RADIO I.C. with data, £1.
250p SOLID DILECTRIC VARIABLE CAPACITOR, 33p.
$0.1 \mu f 250 \mathrm{~V}$. W. C281 MULLARD CAPACITORS for 20 p doz
POWER TRANSISTORS OC25, 50p, AD149, 60p, BD112, 25 ninamy 25p, BD207, 55p. 50 BC107-8-9 TRANSISTORS Assorted Untested for 57p.
200 ASSORTED \downarrow. +W RESISTORS for 75p.
1 itn Dla. a ohm LOUDS PEAKER, 75p each.

TRANSFORMERS 240 V a.c. input. Type 122 V 1 A .88 sp (20 p P. \& P.); Type 222 V 300 mA . 7V 1A, 99 p (20p P. \& P.); Type 312 V 300 mA . 88p (15 p P. \& P.); Type 49 V 500 mA 88 s

PLASTIC BC108 or BC212 Type TRANSISTORS. 10 for 60p.

THO PIN OIN SPEAKER SOCKETS 10p, Bank of 2, 19p.
WELL KNOWN MANUFACTURER OF HI-FI AMPLIFIERS Discontinued line consisting of Major Parts for $20+20 \mathrm{~W}$ Stereo Amplifier as follows: Stereo Pre-Amp, Stereo Tone Board, $2 \times$ Driver Boards, Volume and Tone Controls. On-OHf Switch, 2 Push Button Units, Rotary Switch, etc. with circuit diagram and suggested construction. All for ces 60.
MAINS TRANSFORMER for above $\mathbf{\varepsilon 3} \mathbf{5 0} \mathbf{5 0}$ (85p P. \& P.).
Please add 20p for post and packing on orders under $£ 2$ unless otherwise stated. Overseas orders at cost.

J. BIRKETT

RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln LN2 1JF

Tel. 20767

C-M	09	4066	$60 p$	7410	20p	7492	54Pp	74172 74173	880p
4000	20p	4070	50p	7412	20p	7494	88p	74174	100p
4001	20p	4071	25p	7413	38 p	7495	$65 p$	74175	98p
4002	$20 p$	4072	25p	7414	$98 p$	7496	90p	74176	123p
4006	114p	4073	28p	7416	35p	7497	358p	74177	123p
4007	20p	4076	118p	7417	40p	74100	120p	74178	110p
4008	99p	4077	48p	7420	20p	74104	73p	74179	138p
4009	57p	4081	20p	7421	40 p	74105	73p	74180	108p
4010	$57 p$	4082	25p	7422	28 p	74107	38p	74181	282p
4011	20p	4093	95p	7423	32p	74109	75p	74182	83p
4012	$20 p$	4502	123p	7425	32p	74110	50p	74184	234p
4013	51p	4510	139p	7426	107p	74111	86p	74185	187p
4014	107p	4511	150p	7427	89p	74116	251p	74190	134p
4015	114p	4512	$81 p$	7428	81p	74120	155p	74191	134p
4016	51p	4514	284p	7430	20p	74121	35p	74192	115p
4017	114p	4515	264p	7432	29p	74122	53p	74193	115p
4018	110p	4516	123p	7433	118p	74123	61p	74194	107p
4019	62p	4518	123p	7437	$38 p$	74125	59p	74195	102p
4020	115p	4520	123p	7438	38 p	74126	59 p	74196	134p
4021	101p	4522	122p	7440	20p	74128	98p	74197	130p
4022	99p	4526	122p	7442	69p	74132	75p	74198	124p
4023	20 p	4527	140p	7443	130p	74142	302p	74199	199p
4024	79p	4528	115p	7444	130p	74143	346p	74221	109p
4025	20p	4531	115p	7445	105p	74144	346p	74246	205p
4028	155p	4543	115p	7447	90p	74145	90p	74247	195p
4027	60 p	4555	115p	7448	gop	74147	148p	74248	171p
4028	95p	4556	115p	7450	20p	74148	150p	74249	171p
4029	123p	4581	348p	7451	$20 p$	74150	150p	74251	170p
4030	55p	4582	140p	7453	20p	74151	78 p	74265	94p
4033	155p	4584	99p	7454	20p	74153	78 p	74278	$331 p$
4034	347p	4585	108p	7460	20p	74154	138p	74279	75
4035	118p			7470	33p	74155	90p	74283	94p
4040	132p			7472	30 p	74156	90p	74284	712p
4041	84p	11		7473	33p	74157	82p	74285	712p
4042	89 p	7400	18p	7474	33 p	74158	140p	74290	122p
4043	99p	7401	18 p	7475	46p	74159	288p	74293	122p
4044	91p	7402	18p	7481	125p	74160	102p	74298	173p
4046	137p	7403	$20 p$	7483	95p	74161	102p	74365	93p
4049	55p	7404	$24 p$	7484	119p	74162	102p	74366	93p
4050	55p	7405	$24 p$	7485	128p	74163	102p	74367	93 p
4051	140p	7406	42p	7486	$33 p$	74164	115p	74368	93p
4052	140p	7407	58 p	7489	340p	74165	115p	74390	189p
4053	140p	7408	25p	7490	43p	74167	358p	74393	189p
4060	140p	7409	25p.	7491	$77 p$	74170	213p	74490	254p

Full price list of linears, discretes, capacitors, resistors, potentiometers, toois, soldering irons and accessories available. Send 20p or large S.A.E.
This list is sent free with the firgt order.
Prices correct June 1977.
Terms C.W.O. Add VAT to prices at 8%. Post, etc.: U.K. 25p. overseas 75p. Access and Barclaycard, and all convertible currencies accepted

TIRRO ELECTRONICS

Grenfell Place, Maidenhead, Berks.

Doram's new catalogue is one of the great events of the electronic year, 64 pages of new ideas in construction kits, capacitors, resistors, semiconductors, wires and cables, transformers, plugs and sockets, hardware, indicators, switches, radio equipment, tools and test equipment, audio equipment, books. All top quality and terrific value because you can depend on Doram.

DRYAm

BD1-The Connoisseur'sBudget Choice

The Connoisseur BD1 transcription turntable is a precision engineered product designed to provide top grade performance at a moderate cost. Simplicity is the main feature of this unit giving excellent performance and reliability. A slow speed synchronous motor is used and because of its construction the hum field is very low, so that even the most sensitive of pickups can be used, including the Connoisseur SAU2 or the SME 3009 Series II.
Speed change is achieved by a press button unit at the rear of the platform which automatically moves the drive belt from one pulley groove to the other whilst the turntable is turning. The BD1 turntable kit can be assembled by the home constructor within the hour and when completed will give top quality performance. No soldering is required. Complete the unit with

BD1 with Plinth, a modern BD1 plinth and cover. The plinth is finished in walnut veneer and fitted with sphericat,

D1 with Plinth anti-vibration feet. Add to this a strong Acrylic, bronze cover, hinged with 2 -position lid stay and you have a first class turntable at a budget price!

	Write for further details to: A. R. Sugden \& Co. (Engineers) Ltd. Manufacturers of Connoisseur Sound Equipment, Connoisseur Works, Atlas Mill Road, Brighouse, West Yorkshire HD6 1ES Telephone: Brighouse (0484) 712 142, Telex; 517144 Sugden Crighouse, Telegrams \& Cables: Connoisseur Brighouse.

Write for further details to:
A.R.Sugden \& Co. (Engineers) Ltd.

Manufacturers of Connoisseur Sound Equipment, Connoisseur Works, Atlas Mill Road,
Telhouse, West Yorkshire HD6 12
Telegrams \& Cables: Connoisseur Brighouse.

V.D.U.
 AND MICRO COMPUTER
 INTRODUCING THE CROFTON EXPANDABLE V.D.U. SYSTEM

The Crofton V.D.U. is an expandable system built up on a modular basis. The system comprises Rack and P.S.U., Video Sync Generator Character Generator Board, Memory Board, Memory Extension Board, Cursor Control, Write Control Board, Tape/Phone Interface Board, Microprocessor (SCLMP) Board. The whole system will be gradually extended to make this one of the most versatile on the market. Available in modular form or ready constructed

Send S.A.E. for information

CROFTON ELECTRONICS LTD

Dept. E, 35 Grosvenor Road, Twickenham, Middx. Tel. 01-891 1923
Secondhand cameras and monitors always available

VALVE BARGAINS

Any 5-64p, $10-$ - $1 \cdot 20,50-65 \cdot 00$. Your choice from the list below.
ECC82, EF80, EFI83, EFI84, EH90, PCF80, PCF802, PCL82 PCL84, PCL85, PCL86, PCL805, PL504, PY81/800, PY88, 30PL. 14, 6F28. PFL200.

Colour Valves-PL508, PL509 PL519, PY500/A. All tested 35p each.

Aerial Splitters-2 way, 75 OHMS, Inside Type, £I.50

AERIAL BOOSTERS

Aerial boosters can produce remarkable improvements on the picture and sound, in fringe or difficult areas. Bll-For TH stereo and standard VHF/FM radio
B12-For the older VHF tele-vision-Please state channel numbers.
B45-For Mono or colour this covers the complete UHF Television band.
All boosters are complete with battery with Co-ax plugs and sockets. Next to the set fitting.
\&4.20

Capacitor Clearance Sale
ALL MULLARD C280 AND C281 RANGE OF POLYESTER FILM CAPACITORS 250 AND 400 VOLTS WORKING. VERY GOOD MIXED SELECTION OF VALUES FROM 01μ TO 1.5μ f

PRICE $100-\mathrm{fl} \cdot 50,500-\mathbf{6 7 . 0 0}, 1000-\mathbf{6} \mathbf{1 2 . 0 0}$

ALL PRICES INCLUDE VAT. P\&P 30p PER ORDER. PLEASE SEND UNCROSSED P.O. OR CHEQUES FOR RETURNING IF WE ARE OUT OF STOCK OF CAPACITOR BARGAIN PACKS. EXPORTS WELCOME AT COST
ELECTRONIC MAILORDER LTD.
62 BRIDGE STREET, RAMSBOTTOM, BURY, LANCS. Telephone: RAMS (070 682) 3036

VOLUME 14 No. 2 OCTOBER 1977

FULL MEASURE

| T is an exceptional hobby where most of the tools and instruments needed for its practice can be made in the norinal pursuance of that activity. This ideal state of affairs, representing a big move towards total do-it-yourself, is enjoyed by the electronics enthusiast. From time immemorial the designing and building of test gear has been an essential part of this hobby. One type of instrument invariably excluded on grounds of impracricability has been that indispensable workhorse the multimeter. This was the one vital instrument one had to buy.
But eventually the moving-coil instrument lost its monopoly of this area of electrical measurement, with the coming of entirely electronic methods for measuring and displaying those prime quantities: volts, amperes, and ohms. The digital multimeter has now become just another project for the constructor, so extending his area of self-sufficiency even further.
With specially designed i.c.s now available the constructional work is reduced to the minimum and, also of great importance, the performance of the finished instrument can be vouched for.
This month's cover features a Digital Multimeter having useful and valuable features. This multimeter is fully described in our pages and we consider this an excellent example of the kind of highclass instrument the constructor can build for himself today.

Seen against the broader background, this particular project typifies much that is happening in electronics at this time. The constructor's general indebtedness to the i.c. industry is one of the facts of life. What a boon these custom-designed devices have proved to him. And yet this certainly is no one-way traffic. Many original ideas germinating in fertile minds outside the industry find their way back into commercial areas, since they enhance and extend the usefulness of a particular i.c. A very happy situation benefiting, in the long run, all concerned.

FUN AND GAMES

What is the explanation for the popularity of electronic games? Are they one form of escapism from economic blues? There again it might, rather unkindly, be suggested that we are suffiering from a plethora of these amusements, simple and harmless in their performance though they be. Certainly the attraction of some electronic games wanes quite quickly. The television game is a particular victim for it is reckoned (by some who should know) to have an active life of only about four weeks before the attraction wears off and the equipment is consigned to the cupboard under the stairs.

Clearly, in the long term, monochrome ping-pong for two cannot hold a luminescent spot to the all-family attractions of The XYY Man or The Black and White Minstrel Show. Still, technologically speaking, we can count on enterprising designers to continue producing more involved and appealing(?) games for our amusement. It is one very useful and convenient way for i.c. designers to exercise their talents.
Games have a particularly significant place in the field of minicomputers. The personal minicomputer, far more than the television set, has a definite need for "invented" tasks to keep it in full-time employment. How else to justify its existence after one has run through one's personal accounts and income tax records? There is an awful lot of capacity awaiting programming. So why not play games-highly intellectual ones pre-ferably-?
Our new feature Micro-Bus will include examples of programs for gamesfor the very good reason that ". . . the techniques of programming are much the same whether one is writing a gameplaying program or a factory process control program .. ." Micro-Bus will present other useful information and ideas concerning microprocessors and minicomputers, all having a distinctly practical bearing on the application side of this fast opening-up area of electronics.
F. E. BENNETT,

Editor.

EDITORIAL Editor

F.E. BENNETT
G.C. ARNOLD Assistant Editor
D. RARRINGTON Production Editor
G. GODBOLD Technical Editor
M.ABBOTT Technical Sub Editor
J.D. POUNTNEY Art Editor
D.J. GOODING Technical Illustrator
R. J. GOODMAN Technical Illustrator
K.A. WOODRUFF General Artist

ADVERTISEMENTS Advertisement Manager
 D.W.B.TILLEARD
 Phone:01-634 4504
 P.J. MEW Representative
 Phone: 01-634 4181
 C.R.BROWN Classified Manager Phone: 01-261 5762

MAKE-UP and COPY DEPT.
Phone: 01-634 4372

Advertising Offices

Fleetway House,
Farringdon Street, London EC4A 4AD
Phone: Advertisements 01-634 4504
Telex: 915748 MAGDIV-G

Editorial Offices: Fleetway House,

Farringdon Street, London EC.4A 4AD
Phone: Editorial 01-634 4452
Telex: 915748 MAGDIV-G

Back Numbers and Binders

Copies of our June 1977 and subsequene issues are available from: Post Sales Departissues are available from: Post Sales Depart-
ment, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SEI OPF, at 65p each including Inland/Overseas p \& p.
Binders for PE are available from the same address at $£ 2 \cdot 10$ each to UK addresses. £2.70 overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.
Cheques and postal orders should be made payable to IPC Magazines Limited.

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.
-

Multimeter
 P. BIRNIE

THE construction of a digital voltmeter (DVM) has in the past involved the use of many components, both linear and digital, and with further circuitry to perform other functions, the digital multimeter (DMM) has required still more discrete and integrated devices. This has been a deterrent to the wouldbe constructor, even with the help of recent digital i.c.s which perform the system control of analogue to digital conversion (A to D).

The Siliconix LDI30 has brought nearer, the day of the "one chip DVM", because with only the assistance of a BCD to 7 segment/decode driver i.c. and a few other passive components, a $0-999 \mathrm{mV}$ DVM can be built.

The LDI30, comprising both linear and digital circuitry, could offer an accuracy of ± 1 count when used in this fashion, in addition to automatic polarity with an output for polarity sign indication, and an input impedance of higher than $10^{9} \Omega$, provide an underrange/overrange output which may be used for auto-ranging, and would operate from ± 5 volt unregulated supplies, consuming only 25 mW (the LDI 30 itself).

The DMM featured in this article is such a digital voltmeter, with a few refinements such as an input attenuator network to allow other voltage ranges to be measured, and converters to enable a.c., resistance, and current to be measured also.

LO130 OPERATION

This device has improved upon the Siliconix dual LD110/ LD111 A to D system employing the "Quantised Feedback" principle, by incorporating the two functions in a single i.c.

Very basically, quantised feedback is a system whereby the voltage to be measured is integrated to ramp up or down (depending on polarity), and then fed to a voltage comparitor before going to the digital controller. The comparitor reference level is designated "analogue ground", and if its output is positive, set charge packets of opposite sense are delivered to the integrator input until the ramp returns to zero. Consequently the comparitor will then go negative. If the comparitor was initially negative, the reverse happens; but in
either case the digital controller counts the number of ct arge packets required by the feedback path to zero the integrator.
The reason for the name "Quantised Feedback" now becomes apparent. There are of course many refinemencs to this system, and advantages too, and these shall be explamed.
Figure 1 shows a block diagram of the LDI30, and this can be split into two areas: the logic zone (right), and the analogue zone (left). The logic zone controls the switching into circuit of the various amplifier elements, and also generates the information for interfacing with the three digit multiplexed display. An independent output (pin 5) is multiplexed in conjunction with the digit drive lines, to provide negative sign, overrange, and underrange indication.
If the control logic is the brain of this device, then by the same analogy the analogue section is the limbs; in this case clutching measuring beakers! It should be remembered that everything happens to the beat of pulses generated by the internal oscillator, and squared through a flip-flop. This pulse train is then used to motivate the control logic and is hereafter referred to as the "clock".
During conversion from A to D, which takes 3072 clock cycles, there are two pericds: Auto-Zero (AZ), and Measure (M), each occupying 1024 and 2048 clock cycles respectively.

The AZ period is best described first, as the purpose of this is to null offsets within the LD130 linear stages before going. ahead with measurement, and as will be seen later, to provide a negative reference voltage to enable inputs of either polarity to be converted

THE A-Z PERIOD

At the start of the Auto-Zero period the non-inverting input of the Input Buffer is grounded, and a few clock cycles later the non-inverting input of the Auto-Zero Buffer is routed to internal resistor RD. This links the AZ Buffer and integrator together as a closed loop second order system, at which time the up/down (U/D) switch pulses at 50 per cent duty cycle. That is, up to Vref for four cycles and down to analogue ground for four cycles.

It should be noted that the latter, and all other operations work on clock pulse groups of eight, which are called octets. At the outset of the 50 per cent U/D signal, the AZ Buffer, which is monitoring the integrator output, will be theoretically at zero volts; therefore the integrator will only be working on an input switching at 50 per cent duty cycle between ground and Vref (which is 2 volts).

A stepped negative going ramp will be generated at the output of the integrator, which will be repeated at the AZ Buffer output. This, you will see from the diagram, is back at the integrator input! Now that the ramp is under-way; due to the positive reference voltage across R_{A}, and the increasing negative voltage now across Rc, the integrator will begin to produce a gradually more triangular waveform until equilibrium is reached, with the integrator output being a true triangle wave, about a mean negative voltage.

At this point the relationship between the values of RA and Rc should be considered. Since the value of these two resistors is the same, the integrator output will only hold steady when the current in each is equal and opposite, since this will give an average centre voltage of zero.
Simple figures will show that this is when the AZ Buffer voltage is exactly $-\frac{1}{2}$ Vref.

Let the integrator current during U/D high, be I_{1}, and during U/D low be I_{2}.
The AZ Buffer output voltage (to be established) $=\mathrm{V}_{\mathrm{AZ}}$.
The integrator ceases ramping when $\mathrm{I}_{1}+\mathrm{I}_{2}=0$. (1)

$$
\begin{align*}
& \mathrm{I}_{1}=\frac{\mathrm{Vref}}{\mathrm{RA}_{\mathrm{A}}}+\frac{\mathrm{VAZ}^{\mathrm{RC}}}{} \tag{2}\\
& \mathrm{I}_{2}=\frac{\mathrm{VAZ}}{\mathrm{RC}} \tag{3}
\end{align*}
$$

Using equation (1), ramping ceases when:
or

$$
\begin{gathered}
\frac{\mathrm{Vref}}{\mathrm{RA}}+\frac{\mathrm{VAZ}_{\mathrm{A}}}{\mathrm{RC}}+\frac{\mathrm{VAZ}_{\mathrm{A}}}{\mathrm{Rc}}=0 \\
\frac{\mathrm{Vref}}{\mathrm{RA}}=-2 \frac{\mathrm{VAZ}}{\mathrm{RC}}
\end{gathered}
$$

Since $R_{A}=R c, V_{A Z}=-\frac{1}{2} V r e f . \quad V r e f=2 V$, therefore $V_{A Z}=$ -1V.

This negative voltage is stored on capacitor CAZ, whilst during the last few cycles of the $A Z$ period, the integrator is returned to zero. The a to D converter will now be ready for the measure (M) period.

THE M PERIOD

Now that internal offsets have been taken care of, and a balanced negative reference voltage ($\mathrm{V}_{A Z}$) has been prepared, the Input Buffer will be switched to monitor Vin, and the loop via the $A Z$ Buffer is broken.

The integrator will now begin to ramp (rate and polarity depending on Vin), and the comparitor will switch accordingly. Charge packets will now be fed back to the integrator input, by control of the U/D switch. This is done in response to the comparitor output, and follows an elementary set of rules.

For a "high" comparitor, the U/D voltage will be $u p$ for 1 clock cycle, and down for 7 (Duty cycle A).

For a "low" comparitor, the U/D voltage will be up for 7 clock cycles and down for 1 (Duty cycle B).

The comparitor is sampled only during the clock cycle preceding each octet. An up/down BCD counter increments by one count for each U/D "up" charge packet, and decrements

Fig. 1. Internal block diagram of the LD130 DVM chip

Fig. 2. Circuit diagram of the DMM
for each U/D "down" charge packet, consequently registering a net count of six for each duty cycle. The input polarity is detected by sensing which duty cycle is being employed.

COUNT CORRECTING OVERRIDE

For the most part, the counting is done in groups of six, but an exception to this rule has to be made as a final stage in measurement. Within the first 32 clock cycles of the following AZ period, a little time is stolen to fine tune the counter to the nearest individual count. During this period, known as the "override interval", individual charge packets are fed back to balance the integrator, thus improving the accuracy of the system to ± 1 count.

BASIC DVM CIRCUIT

The diagram of Fig. 2 shows the complete circuit of the DMM, which without the Input Range Selector section, leaves what is basically the DVM part of the multimeter.

The components which form the voltage reference for IC1 can be seen connected to pin 2 (R2, VR1, and CR1). The BCD coded output from ICl is decoded into seven segment drive using a CD4511, cmos decoder driver with output source capability of 25 mA continuous.

Because the IC2 outputs are not current limited, seven 68Ω resistors are used as current limiters.

The seven segment displays have their segment anodes in common, in the conventional multiplexed display manner, and the cathodes are driven by three pairs of transistors connected
in "super-alpha" configuration (TR2--TR7). Using BC182L transistors in this way, allows a very small drive current to control the relatively large peak currents required by the displays. This is important to prevent the LD130 from having to source several milliamps current.
A single point source l.e.d., driven from TR1 which is controlled by the "negative sign" output of the LD130 (pin 5), illuminates when the input applied to the DVM is negative.

The input to ICl goes via a $\mathrm{IM} \Omega$ resistor (R32), which provides protection against over-voltage, but because the input impedance of IC 1 at $\mathrm{VIN}_{\text {IN }}$ is $1,000 \mathrm{M} \Omega$, this series resistor has virtually no effect on readings.

A capacitor of 1 nF connected between the input pin and ground prevents any noise spikes picked up along the p.c.b. from adversely affecting the readout. In addition, several smoothing capacitors are used (C5, C6, C18 and C19), and these are absolutely essential for correct operation, as are D1 and C7.

INPUT RANGE SELECTOR

The complete input range selection circuitry is shown in Fig. 3. Switches are shown in the non-select (out) position, and the use of press button keys for all ten switches is assumed, although conversion to rotary switches should be fairly straightforward.

The five range selection switches (S6-S10) are mechanically interlocked such that only one can be operated at any given time. The other five switches are partially interlocked.

Fig. 3. Input Range Selector

The on/OFF and $A C / D C$ switches are push-to-select, push-tocancel, and do not interact with any other switches.

The ohms, amps and volts switches are interlocked such that only one function can be selected at any one time.

A word of warning is needed here, about connection of inputs with the wrong range selected, or illegal button combinations. As with an analogue meter, such actions may cause serious damage to the input circuitry, although the design carefully protects the LDI30 itself against applications of up to 1 kV on any range, leaving only a few resistors and an operational amplifier to suffer the consequences.

During normal operation, with S5a pressed, the input voltage "sees" R20 to R27 in series, about $10 \mathrm{M} \Omega$ in all, and dependent on the range selected, a proportion of the input voltage appears at point X . The a.c. to d.c. converter is always operational, and if the AC/DC switch is pushed, then S3a will select the rectified signal rather than the voltage at point X . The pole of S3a is now fed to Vin of the LD130.

On a current input, with S4a operated, the current passes through some or all of resistors R24-R27, depending on the range selected. Point X is now at the voltage generated across the selected shunt resistors, and switch S3a selects either this voltage, or the output of the converter. Again, the pole of S3a now goes to VIN of the LD130.

OHMS CONVERTER

The measurement of resistance relies on the use of the programmable current generator of Fig. 4. At the input terminal, 'a constant current is produced which is dependent on the value of resistor selected by the range selection switches. This current passes through the positive input terminal of the meter, the unknown resistor, and the negative input terminal to ground. The voltage developed across the resistance by the known current is measured by the DVM section of the instrument.

The range selector switch contacts activate the display decimal point at the correct position for the particular range selected.

DC TO DC CONVERTER

The system requires a negative supply of about 5 volts, and rather than provide a separate supply for the LD130 and two operational amplifiers, the simple d.c. to d.c. converter of Fig. 5 is used.
Transistors TR8 and TR9 form a free running oscillator with the collector of TR9 having a 1 mH inductor rather than the usual load resistor. The back e.m.f. from the switch-off current in Ll is coupled by C 16 to be shunted by D7. Diode D8 conducts when C16 is pushed negative by induced e.m.f. from L1. This latter conduction is negative with respect to ground, and C17 is charged with this voltage, but regulated to around 5 volts by the Zener diode which is fed back in such a way as to damp down oscillation when it conducts.

Fig. 4. Ohms Converter

Fig. 5. DC-DC Converter

AC TO DC CONVERTER

This conversion is performed using a straightforward precision rectifier with smoothed output (Fig. 6). The a.c. signal is applied to the input of the CA3130 cmos operational amplifier, and amplified by a factor of 5 . The output, when rectified, is a d.c. voltage of the same value as the r.m.s. voltage of the input waveform. The scale factor is set during calibration by preset VR3.

It should be noted that only sinewave inputs will give a true reading with this circuit.

LAYOUT PHILOSOPHY

The development of any system involving both digital, and sensitive linear circuitry, brings to light problems related to power supply ripple, and noise pick-up at the input wiring.

The pulse currents caused by the multiplexed display (up to 210 mA), passing along a p.c.b. track with a resistance of, say, $20 \mathrm{~m} \Omega$, can cause over 4 mV of noise to appear. It would be disastrous if the input earth line shared a current path such as this.

It is for this reason that the LD130 has separate earth lines internally for its analogue and digital sections, and which emerge at different pins. With isolated earths it can therefore be arranged on a p.c.b. for the noisy digital earth to return directly to the supply source, and the input signal earthing to do the same.

The positive supply is provided with $6,600 \mu \mathrm{~F}$ of reservoir capacitance to "soak up" much of the peak current requirements of the displays. As will be seen, the p.c.b. layout has two links which are used to connect Vin and analogue ground to the LD130 to keep crosstalk to a minimum.

ASSEMBLY OF CIRCUIT BOARDS

The Main p.c.b. (Fig. 8)'is single-sided, and should be of glass-fibre at least one millimetre thick so that it will firmly support the switches without flexing, which might split the tracks. Short mounting spacers may be néeded for this p.c.b.

Assembly should be commenced by making up the two switch frames, taking care that the interlock functions operate as desired (so that two conflicting ranges cannot be operated simultaneously). Next, mount them on the p.c.b. as shown in Fig. 8. No screws are used for this, as the many soldered leads will be sufficient. The wire links are then soldered in position, all except the one marked " A ". The components can then be mounted, leaving the i.c.s until last, after ensuring that the soldering iron is earthed. The usual precautions for cmos devices must be taken.

Taking the Display p.c.b. (Fig. 7); again insert the links first, followed by all other components. The seven segment displays are orientated using their decimal points. The polarity of the sign indicator l.e.d. can be checked with a meter, and this component should be stood-off from the board so as to make it sit close to the display window. This board is now put aside while a check on the Main p.c.b. is carried out.

CONVERTER CHECK

The correct operation of the DC-DC Converter on the Main p.c.b. can be checked by connecting a 6 volt battery to the supply and operating the on/Off switch. A multimeter connected across C17 should now read approximately 5 volts negative. If this test is satisfactory, switch off the power and connect link " A ". Otherwise check the component positions and soldering.

The two sets of holes provided for tying down the inductor core are for a "U" shape copper wire strap, and not a continuous loop of wire, since this would cause an effective shorted turn by destroying the flux path in the vicinity.

FINAL ASSEMBLY

An aluminium bracket should be cut out as showṇ in Fig. 9 and fixed to the Main p.c.b. using two M3 screws. Next the 2 mm input sockets are bolted in position, with the positive socket on the left. Two leads connect these sockets to the Main p.c.b., and should be connected up. The Display p.c.b. is now mounted on the bracket using M3 nuts to space them apart.

COMPONENTS . . .

Resistors

R1	820Ω	R22	90k $\Omega 1 \%$ hi-stab $\frac{1}{2} W^{*}$
R2	$5.6 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ m.o.	R23	$9 \mathrm{k} \Omega 1 \%$ hi-stab $\frac{1}{2} \mathrm{~W}^{*}$
R3. R4,	$10 \mathrm{k} \Omega$ (2 off)	R24	900S 1% hi-stab $\frac{1}{2} \mathrm{~W}^{*}$
R5-11	68Ω (7 off)	R25	$90 \Omega 1 \%$ hi-stab $\frac{1}{2} W^{*}$
R12	$1 \mathrm{M} \Omega$	R26	$9 \Omega 1 \%$ hi-stab $\frac{1}{2} \mathrm{~W}^{*}$
R13	470kS	R27	$1 \Omega 1 \%$ high-stab, 1.5 W *
R14, R15	10 kS (2 off)	R28	$3 \cdot 3 \mathrm{k} \Omega$
R16	$4.3 \mathrm{k} \Omega$	R29	$4 \cdot 7 \mathrm{kS}$
R17	$100 \mathrm{k} \Omega$	R30	$47 \mathrm{k} \Omega$
R18	3.3 k ת	R31,	R32 1MS (2 off)
R19	330 ,		
R20	$9 \mathrm{M} \Omega 1 \%$ hi-sta	$\frac{1}{2} W^{*}$	
R21	900k $\Omega 1 \%$ hi-st	$b \frac{1}{2} W$	

All $\frac{1}{4}$ W 5\% unless otherwise stated
*See Constructor's Note

Potentiometers

VR1 2'2k 2 hor cermet preset
VR2 $1 \mathrm{k} \Omega$ hor cermet preset
VR3 $2 \cdot 2 k \Omega$ hor cermet preset

Capacitors

C1
C2, C16
C3, C4, C10, C14
C5, C6
C7, C18, C19
C8, C9
C11-C13
C15
C17
C20
$0.033 \mu \mathrm{~F}$ polyester
$0.1 \mu \mathrm{~F}$ polyester (2 off)
$0.001 \mu \mathrm{~F}$ polystyrene (4 off)
$3300 \mu \mathrm{~F} 6.3 \mathrm{~V}$ electrolytic (2 off)
$47 \mu \mathrm{~F} 6.3 \mathrm{~V}$ tantalum bead (3 off)
$47 \mu \mathrm{~F}$ tantalum bead (2 off)
$4.7 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum bead (3 off) 470pF polystyrene
$470 \mu \mathrm{~F} 6.3 \mathrm{~V}$ electrolytic
100 pF polystyrene

Inductors
L1 35 turns of 30 s.w.g. enamelled copper wire, on Mullard FX3312 ferrite toroid

Semiconductors

IC1	LD130 Siliconix
IC2	CD4511
IC3, IC4	CA3130T (2 off)
CR1, CR2	E501 Siliconix current regulator (2 off)
TR1, TR8	BC212L (2 off)
TR2-TR7, TR9	BC182L (7 off)
X1-X3	DL704 (3 off)
D1-D5, D7, D8	1N914 (7 off)
D6	6.2 V Zener 300 mW
D9	TIL209 red

Switches

S1, S3-S5, S10 2 pole c/o push button (5 off) RS type
S2, S6-S9
4 pole c/o (5 off) RS type

Miscellaneous

Mounting frames to take six switches each (2 off)
Square plastic buttons (10 off)
Input sockets 2 mm (1 red and 1 black)
Polystyrene case $188 \times 110 \times 60 \mathrm{~mm}$ (1 off)
HP7 batteries (40 off) and suitable holder with press sfud connector to fit
Main p.c.b. and display p.c.b.
8 mm M3 panhead screws for main p.c.b. mounting, and 3 mm solderable metal spacers for same (4 off each) Aluminium for display mounting bracket
6 mm M3 panhead screws (2 off)
12 mm M3 countersunk screws (2 off).

Fig. 7. Display p.c.b. This is mounted on the input socket bracket

M3 nuts (8 off)
Red display filter $60 \times 20 \mathrm{~mm}$ (1 off)
Dry letter transfers and lacquer.
Stick-on cabinet feet
Two 2 mm plugs, some flexible wire, and a couple of probe clips will be required for the test leads. Integrated circuit holders.

CONSTRUCTOR'S NOTE

The Siliconix LD130 and the two E501 current regulators are available from Semiconductor Specialists (UK) Ltd, Premier House, Fairfield Road, Yiewsley, West Drayton, Middlesex. The combined cost of the three items is approximately $£ 11 \cdot 00$.
The interlocking switches and associated accessories are available from Doram Electronics, and also the Mullard FX 3312 toroid, 30 s.w.g. wire, and polystyrene case. The switches must be the RS type, which are available via Doram by special order.
*The resistors R20 to R27 are shown in the components list as their ideal values. Such a range of close tolerance high-stab resistors may be difficult to obtain through amateur component suppliers with no expensive minimum order charge. However, Maplin Electronic Supplies do a sufficiently good range of $\frac{1}{2} \mathrm{~W} 1 \%$ resistars to provide the following values: R21-910k $\Omega, \mathrm{R} 22-91 \mathrm{k} \Omega, \mathrm{R} 23-9 \cdot 1 \mathrm{k} \Omega$, R24-910 Ω, and R25-91 Ω.
Accuracy will not be significantly affected by going to the E24 range resistors in multiples of $9 \cdot 1$, or by the extreme upper and lower value resistors reverting to 2% tolerance.
Resistor R27 may be the Maplin $1 \Omega 3 \mathrm{~W}$ wirewound resistor at 5% tolerance, if nothing closer can be found.

Fig. 8. Main p.c.b. Mounting spacers may be necessary, and may be soldered to the copper cladding

Fig. 9. Dimensions of the aluminium input socket bracket

The segment drive resistors can next be soldered in position between the two p.c.b.s, and all other flying leads, including the decimal point flying leads from S 8 and S 9 . The display window and push button slot should now be cut out to the dimensions shown in the photograph.

The battery holder can be glued to the lid of the box, or if a removable type is used, it can be held in place by a plate and two screws.

TESTING AND CALIBRATION

With a 6 volt supply and the unit switched on, the display should read all zeros when the $A C / D C$ switch is in the $D C$ position (out), and the voltage function is selected. Due to small amounts of crosstalk, the display may occasionally indicate 001 , but this is of little significance, as it represents an error of only 0.1 per cent. Should a greater reading than this appear, of a value up to 004 or thereabouts, switch off the power and carefully clean any flux away from the pins of the LD130 using switch cleaner or cellulose paint thinner. This should reduce stray signals to a minimum thereby correcting the display reading.

The voltage reference for the LD1 30 must now be set, using a known voltage source and adjusting VR1 for the correct display reading. Any source of supply, from a battery to a power supply will suffice, as long as it is known to the accuracy desired from the DMM after calibration. The ideal voltage from which to calibrate is about 0.9 V because this range setting will bypass the range selector resistors, and hence you would be calibrating the LD130 DVM chip directly.

Certain combinations of E501 and LD130 may not allow VR1 to give sufficient voltage range to allow the reference to be set, and in this case R2 should be changed until the correct setting can be achieved.
Calibration of the AC-DC Converter is carried out by feeding a known sinewave voltage to the instrument, and adjusting VR3 for a correct reading. The response of the circuit to changes in VR3 is fairly slow, and a few seconds should be left after each alteration to this preset before noting the display.

The Ohms Converter can be set up by connecting a close tolerance resistor to the instrument, selecting ohms and the appropriate range, and then adjusting VR2 for the correct display reading.

Note that with ohms selected and no resistor at the input of the instrument, the overrange indication (flashing display) will be active.

OPERATION

Care is required when using this meter to ensure correct function selection lest the instrument be damaged. This really applies to the function switches for oHMs, AMPS and volts, as the range selection switches will, if wrongly set, cause either no display or the flashing overrange indication.

The AC-DC switch position has no effect on the operation of the ohms circuitry, although this switch must be in the correct position for current and voltage inputs.

In use, the instrument should be used on the most sensitive range obtainable without overrange indication.

ACKNOWLEDGEMENT

The design of this DMM, is in part based on circuits suggested in the Siliconix LSI Design Catalogue.

FRANK W. HYDE

THE VOYAGERS

The two Voyager vehicles which will make their way to Jupiter and Saturn are of the Mariner class. Included in the programme for the Jupiter and Saturn encounter are detailed surveys of their satellites or moons. Each of the Voyagers could fly past four planets and a dozen satellites during the estimated 12 year period of the mission.
From the control centre at the Jet Propulsion Laboratory it will be possible to direct one of the vehicles to Uranus after the Saturn encounter. It could be that the Voyager will go on to Neptune for an encounter in 1989.
Some of the broad outlines of this mission have already been noted in a recent Spacewatch. Now further details are available as the launch date arrives. When you read this article the first of the vehicles will be on its way for the "launch window", open for 30 days, opened on August 20.
The spacecraft Voyager 2 will be the first to be sent on its way. It will follow a trajectory which will allow the Voyager I to overtake it and make its encounter some four months ahead of its companion. By the time of the Saturn encounter Voyager 1 will be nine months ahead of Voyager 2.
The trajectories are very carefully planned and are subject to special considerations, particularly those concerned with safety, since the spacecraft will pass through an intense area of radiation when in the vicinity of Jupiter. There are also the possible hazards in the ring area of Saturn. The particle size in the rings themselves and the environment near them is not known though many theories thrive.

Cost and complexity are rivals in these matters since there will be low Sun-Earth-spacecraft angles and this will affect telemetry, command performance and data return. The scientific importance that arises from variations of trajectory in order to do special tasks, as for example taking a look, a close look, at the Saturnian satellite Titan. This is known to have an atmosphere and may well be a priority for close observation.

Also, now that the possibility of a ring system around Uranus has been established, this becomes a must for investigation at close quarters.

LAUNCH SYSTEM

Because the Titan/Centaur launch vehicle cannot accelerate the payload of 800 kg ($1,760 \mathrm{lbs}$) to the energy level required for a ballistic trajectory to Jupiter, an additional upper stage is required. This expendable module will be attached to the bottom of the mission module. This will be the first time that such a module has been used on a planetary spacecraft.

This stage is ignited about 15 seconds after the separation from the Cemtall. The basic vehicle is a module which weighs 24.5 kg (541 lb), it is a ten sided framework with ten electronic compartments and has a spherical tank mounted in the centre of the framework. This tank contains the Hydrazine fuel for the thrusters which maintain attitude of the spacecraft.

As the mission is away from the Sun, solar panels for the power supply would not be a suitable system to use. The panels would have to be very large and would have the effect of reducing the effective payload. In place of these panels, isotope thermoelectric units will be used. There are three of these units grouped together on a boom which holds them away from the main body, thus ensuring the least interference with the experimental equipment. The output of the generators is some 430 watts at launch falling to about 380 watts after the Saturn encounter.

On these spacecraft there is a much larger high gain antenna, 3.66 metres in diameter, than has been used before. Communications with the spacecraft will be in the S-band for "up" links, and for the "down" links the X and S -bands will be used. The X-band horn is set in the centre of the main reflector. The S-band feed horns are mounted back to back on the structure of the antenna. One of the special features of this mission is that every 50 million miles these spacecraft will slowly rotate on their axes and optical measurements will be taken in all directions thus making direct calibrations of the instruments.

MISSION PROGRAMME

The spacecraft will commence activity shortly after launch and will observe the Earth and the Moon. The actual imaging
of Jupiter will begin on December 1978 when Vovager / will be within 80 days of its encounter position.

Some hours before the closest approach of the spacecraft to Jupiter, it will pass the satellite Amalthea. This satellite is very close to Jupiter and will be within 290,000 miles of the spacecraft. By March 1979 the fly past of the Voyager $/$ will be at a distance of 174,000 miles and at this time the spacecraft will observe the Galilean satellites.
The distance of lo will be about 15,000 miles, Europa will be at a distance of about 465,000 miles and Ganymede and Callisto at a distance of 80,000 miles. When Voyager 2 is passing lo it will fly through the region of intense magnetic and plasma activity known as the "flux tube".
The Voyager I will cease imaging Jupiter in April 1979 at the time when Voyager 2 begins its task. At this time Voyager 2 will also observe four of the satellites.
On July 10 the spacecraft will pass at a distance of 397,000 miles from Jupiter. This distance from the planet has been selected to avoid danage to the spacecraft by the intense radiation in that area. The imaging stage will be terminated in August 1979.

One year later in August 1980 Voyager 1 will be imaging Saturn. The spacecraft will then be some 62 million miles from the ringed planet. The picture taking will go on until January 1981.
When Voyager l passes Saturn it is estimated that it will be 2,200 miles from the large satellite Titan. This satellite is larger than the Earth and is known to have an atmosphere, making it a focus of special interest for scientists. The other satellites Rhea, Tethys, and Enceladus will be scanned before the spacecraft passes Saturn and its rings.
As this situation will block out the Sun and Earth as seen from the spacecraft, the spacecraft will make occultation measurements. Voyager 1 will then pass the southern hemisphere of Saturn at about 80,000 miles.
At this time it will be possible for the controller to decide whether Voyager 2 should be retargeted to Uranus instead of Saturn. The decision need not be made until the spacecraft is within four months of the Saturn encounter. It is a decision which will depend on the possible damage that may have occurred on Volager I in passing the rings of Saturn. The decision will also depend on the "health" of Voyager 2 particularly as to whether there is enough attitude control gas available.

The best trajectory would be for a flyby of Saturn at 62,000 miles which would mean that Voyager 2 passed the visible edge of the outer ring by 23,000 miles. If it is possible to approach Uranus it will be in an ideal position to study the profile of its magnetosphere and any plasma cloud that may exist.

SAXON ENTERTAINMENTS LTD
 SYSTEM 7000—GUARANTEED MODULES FOR ALL DISCO/P.A. APPLICATIONS
 POWER AMPLIFIER MODULES 30-240 WATTS
 From only

- Fully tested and guaranteed
- Full RMS Sine Wave outpu
- Distortion typically 0.2%

祭 Response $30 \mathrm{~Hz}-30 \mathrm{kHz}$.

- Rully short and open circuit proot
- Sensitivity suits most mixers.
- Built-in surge suppression and compensation
- Iwind.c. and outpul fuses

s rms	120 Watts rms		240 W rms
SA608	SA1204	SA1208	SA2404
60W rms	120 Wrms	120 W rms	240 W rms/
8 ohms	40 hms	8 ohms	4 ohms
$£ 13.50$	$£ 14.50$	$£ 21.00$	$£ 25.50$

POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED AND FUSED ON GLASS FIBRE PCB

PM301	PM601/4	PM601/8	PM1201/4	PM 1201/8	PM1202/4	PM1202:8	PM2404/
For 1/2	For 1/2	For 1/2	For 1	For 1	For 2	For 2	For 1
SA308	SA604	SA608	SA1204	SA1208	SA1204	SA1208	SA2404
$\mathbf{£ 9 . 9 0}$	$\mathbf{£ 1 2 . 5 0 ~}$	$\mathbf{£ 1 2 . 5 0 ~}$	$\mathbf{£ 1 2 . 5 0}$	$\mathbf{£ 1 2 . 5 0}$	$\mathbf{£ 1 9 . 5 0}$	$\mathbf{£ 1 9 . 5 0}$	$\mathbf{£ 1 9 . 5 0}$

SYSTEM 7000 COMPLETE DISCO MIXERS (With Autofade) Mono or Stereo

- Ready to plug in and use

Automatic Mic override
Twin deck and mic and tape inputs Left/Right deck fader
The choice of the professional D.J. $20 \mathrm{Mz}-20 \mathrm{kHz}$ Noise Controls: Mic volume, Bass, Treble. A/Fade Depth, Tape, LDeck. R/De ono 18V £37.50 Mains £43.50 Stereo 18 V £53.50 Mains £59.50 IN MODULAR FORM- All you require is front panel (see below) knobs and sockets etc. All electronics are assembled and tested.

- Specification as for complete mixer All Potentiometers supplied and fitted Low cost do it yourself with step by step easy to follow instructions Mono $\mathbf{£ 1 9 . 5 0 ~ S t e r e o ~} \mathbf{£ 2 9 . 5 0}$ Panel $\mathbf{E 3} \mathbf{5 0}$ Supply unit £8.50

SYSTEM 7000 LIGHTING CONTROL UNIT MK II (Four channel)
as your light unit got?

- 4,000W handling - Sequence facilify - Smart 2 tone panel - Top grade components
- Integral dimmers Automatic audio leve OURS HAS!

ONLY £42.50
IN MODULAR FORM-THE QUADRAFECT
As with the mixers Mk II L.C. unit may be
purchased in module form with all controls, requiring only a panel
case and knobs etc. There are 13 simple connections
$1-240 \mathrm{~W}$ Audio 8 A RCA triacs $0.5-20 \mathrm{~Hz}$ Sequence Fully suppressed
CUSTOM MIXER MODULES (Complete or in printed circuit form only) Make your own mixer, mono or stereo, up to 2 acilities, and provision for echosend/return etc

- Inputs for low and high 2 mic, ceramic and magnetic cartridge etc
- Up to 20 input modules per single mixing module
- Feed most types of amplifier-accepts all inputs
- Professional low noise circultry $20 \mathrm{~Hz}-30 \mathrm{kHz}$
- Infinitely adaptable-Extremely economical

COMPLETE MODULES With facla panel,
Knobs and sockets, Monitor buttons. Ready wired and Knobs and sockets, Monitor buttons, Ready wired and
tested

- 0.5 W headphone circuit
Full rang Mono input $£ 8.50$ Mono mixing stage $£ 8.50$ treble bass/ treble controls Stereo input $\mathbf{E 1 2 . 0 0 ~ S t e r e o ~ m i x i n g ~ s t a g e ~ £ 1 2 . 0 0 ~}$
-cs sockets facia and knobs

Power supply for up to 20 channels-PPM18- $28 \cdot 50$.
SYSTEM 7000 SOUND-LITE (3-CHANNEL)
IN COMPLETE OR MODULAR FORM

(Modular form illustrated)

- Complete unit similar to Mk II unit above - Long establlshed and proven design - 3 Channels-100W per channel - RCA BA Triacs-individual channel fuses

1-240W input-master audio level plus Bass/Middle/Treble
COMPLETE UNIT—Fully MODULAR FORM Facia and knobs cased with rear terminations-just etc. Needs only 11 simple connections plug in and go
£24.75 £16.50 (Panel £2.50)

COMPLETE DISCO SYSTEMS

COMPLETE DISCO SYSTEMS

(With two year guarantee-low interest credit)
Centaur 100W
STEREO
£16.06 deposit

£225 + E 10 carr

Dep. $£ 28 \cdot 80,12$ months at $£ 21 \cdot \mathbf{3 8}$ or 24 months at $£ 12 \cdot 01$
Super Centaur 200W STEREO
As above but with 200 W $£ 275$ + $£ 10$ carr
£32.80 12 months at $\mathbf{£ 2 9 \cdot 3 9}$ or 24 months at $\mathbf{£ 1 5 \cdot 2 1}$
GXL Centaur 200W STEREO As the Super Centaur but with extra £349 + £10 carr A 200 W cabinets, deck lights. deck starts and superior decks Deposit £42.72 12 months at £36.58 or 24 months at £20.54
Cue light + head-
phone monitoring
Mic and tape inputs
Crossfade and
override
Logic circuitry
lightshow
Complete and
ready to use
Extremely rugged
Construction
feaflet illustrated
len Saxon

50W Mini Disco £139•50 + £5 carr. (Dep. £16.06, 12 months at $£ 113 \cdot 30$ or 24 months £7-46)
H00W Mini Disco £159.50 + £5 carr. (Depp. £22.66, 12 months at $£ 14 \cdot 73$ or 24 months at £8 27)
Two extremely compact mono systems complete with loudspeakers and leads Twin BSR decks Headphone monitoring Mic input 100W package P.A. $£ 145+£ 750$ carr. with twin loudspeakers and Plezo Horns (Dep. $£ 19 \cdot 70,12$ months at $£ 13 \cdot 78$ or 24 months at $£ 7 \cdot 73$)
ACCESSORIES: Condenser mics ECM77 600 ohm $£ 13 \cdot 50$; ECM81 Dua impedance £14.95; Crown headphones £6.75; Heavy duty boomstand £14.50.

10% DEPOSIT. LOW INTEREST CREDIT ON ORDERS OVER $£ 150$

System 7000 MINOTAUR 100 -All Purpose Wide Range Amplifier

- 100W rms-1dB

Standard 8 ohm output
Twin mixed inputs accep
a wide range of signals
$30 \mathrm{~Hz}-30 \mathrm{kHz} \pm 2 \mathrm{~dB}$
23 dB bass $/$ treble
e a must where multiple Four and power are required

$$
\begin{array}{llll}
\text { Mono input } £ 5 \cdot 50 & \text { Mono mixing stage } & \text { £5.50 } \\
\text { Stereo input } £ 9.00 & \text { Stereo mixing stage } & £ 9.00
\end{array}
$$

An extremely compact and versatile amplifier with full protection and a clean attractive appearance Ideal for all groups. discos and clubs

Vynide covered case
Fully short proof Fully short proof
Superb value for
£49.50 Superb value for money

SAXON 150 HEAVY DUTY AMPLIFIER $£ 59.00$
SUPERSTROBE £19•75

- 2-3 Joules

80W Tube for long life
PRO-STROBE
£32. 50

- 6-8 Joules
- External trigger

Long Life tube timer
circui
150 WATT LIQUID WHEEL PROJECTOR Accepts all accessories C/w with wheel and motor - plate

- Sturdy steel construction Aemarkable value
Sold elsewhere at
£39.50. Our price $£ 33.00$

Up to 150 W handling
No X-over required $£ 7 \cdot 50$ each
All prices subject to VAT at 8% except SA308/PM301, mics. and headphones
$\left(12 \frac{1}{2} \%\right)$ Add 50 p post and packing on all orders except where already shown Ordering: By Telephone-Access. Barclay Card or COD Ring (01) 684 6385/0098 By post -Send cheque or crossed P.O.'s or 60 p for COD or send in your Access/Barclay card NUMBER ONLY MAIL ORDERS AND CALLERS TO: CROYOON
327-333 Whitehorse Road, Croydon. Surrey CR0 2HS
24 Hour Ansatone service (01) 6846385
Exporters to 17 countries-enquiries welcomed
RIng Sue Abegg on (01) 6846385 for U.K. trade enquiries

CMOS cookbook

by D. Lancaster

Price $\mathbf{6 7} \mathbf{7 0}$

OPTOELECTRONICS THEORY AND PRACTICE by A. Chappell (Texas ins.) Price $£ 8.00$ BEGINNER'S GUIDE TO INTEGRATED CIRCUITS by I. R. Sinclair Price $\mathbf{£ 3 . 2 0}$ INTRODUCTION TO MICRO-
PROCESSORS by D. Aspinall
Price $f 5 \cdot 40$ PROBLEMS IN ELECTRONICS WITH SOLUTIONS by F. A. Benson Price $\mathbf{E 4} .50$ PRINCIPLES OFTRANSISTOR CIRCUITS ELECTRONICS FAULT DIAGNOSIS by FOUNDATIONS OF WIRELESS AND ELECTRONICS by M. G. Scroggie Price $\mathbf{~} 4.25$
110 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTOR by R. M.
Marston
price $£ 3.30$ NEWNES TAPE RECORDER SERVICING $\begin{array}{ll}\text { MANUAL VOL. I by J. Gardner Price } £ 8.40 \\ \text { VOL. II } & \text { Price } £ 8.40\end{array}$ TOWERS' INTERNATIONAL TRAN.
SISTOR SELECTOR bYT. D. Towers
Price $£ 5.00$
\star all prices include postage *
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-2] PRAED STREET

LONDON W2 INP

Phone 01-723 4185

MICRO-EUS

Compiled by DJD

This is the first of a new regular feature covering all aspects of microprocessors and minicomputers. Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

DIGITAL WAVEFORMS

OIE interesting area where micros are being used is in the synthesis of electronic music. The mpu can actually generate any arbitrary waveform. The levels at regular intervals along the wave are coded into 8 -bit binary numbers and stored in memory; the program outputs these numbers to a digital-to-analogue converter which converts the 8 -bit number to a voltage level proportional to that number.

The D/A converter can be connected to the mPU bus by an 8 -bit latch, and one way of forming a latch is from two 74157 quad 2 -input data selectors as shown in the circuit diagram, Fig. 1. These devices are already present in the SC/MP kit with keyboard, seven of the latches being used to drive the segment lines of the display. If the eighth unused data selector is connected to DB7 as shown, the eight outputs can also serve to drive the D/A since the display is blank when a program is being executed. The latches can be addressed as any location with AD9 different from AD10; e.g. X'0400 (X'= Hexadecimal).

Fig. 1. Circuit showing a latch formed from a pair of 74157 quad 2-input data selectors

A program to test the circuit is given in Fig. 2, and this outputs the 36 values stored at X'OF50 repeatedly to the D/A to give a digital approximation to a sinewave. The values in locations X'OFF7
to X'OFFC are loaded into the pointer registers by the monitor program; in systems without such a monitor, code to load these registers will have to be appended to the program.

TITLE SINE-WAUE

; FOR SC/MP INTROKIT OR KEYEOARD KIT

$=$ BF 30					
9 F 30	CADB	OUTPUT:	LDI	BEGIN-LAST	; FROGRAM START
0F32	01	NEXT:	XAE		: LOAD E WITH -37
0 F 33	C180		LD	-128(1)	: LOAD FROM P1+E
0F35	CAbb		ST	(2)	: STORE TO DAC
9F37	40		LDE		
dF38	F401		ADI	1	: FOR NEXT FOINT
OF3A	9894		JZ	OUTPUT	'LAST PDINT?
OF3C	9694		JMP	NEXT	, NO
; LOCATIONS TO SET POINTERS . $=$ OFF7 7					
BFF7	BF2F		. DBYTE	OUTPUT-1	: FC FOR INTROKIT
0FF9	OF74		. DEYTE	LAST	;P1 -) ENO
AFFB	B4BF		. DEYTE	048F	; P 2 -) DAC
; POINTS FOR SINE-WAVE . $=0 \mathrm{~F} 50$					
0F50	日	EEGIN:	. BYTE		
QF59	FF		. BYTE		
0F62	80		. BYTE	080, 06A, 054, 040, 02E, 01E, 011, 608, 002	
6F6E	00		$\begin{aligned} & \text { EYTE } \\ & \text { = LAST } \end{aligned}$	000, 002,808	91E, 62E,040,054, 06A
	0000		END		

Fig. 2. Program for SC/MP to give a digital approximation to a sine wave

Fig. 3. Oscilloscope traces of sine wave produced from program in Fig. 2

The resulting waveform is shown in the oscilloscope traces, Fig. 3. The measured first-harmonic distortion was about 0.3 per cent, which is what you would expect since 8 bits gives you 256 levels-the maximum deviation from a true sine-wave is $1 / 256$.

Although a sine-wave was chosen for this demonstration, any waveform can be generated with its accuracy determined by the number of sample points and the number of bits, and the frequency can be made continuously variable by feeding a variable-frequency oscillator to the interrupt input SENSE-A and modifying the program to output the data on interrupts.
To take the idea a step further an electronic organ or synthesiser could contain "templates" in read-only memory for the waveforms of notes of different instruments. These would then be used by the MPU to generate the different voices of the instrument.

THE EURO-MICRO

The Ferranti $F 100-\mathrm{L}$ is a unique microprocessor in two respects. Firstly it has been developed and designed entirely in Europe. Secondly it uses the bipolar CDi technology rather than the more usual nmos giving it a speed of around 10 MHz , at least twice that of other mpus, and a typical instruction time of $4 \mu \mathrm{sec}$.
It can address up to 32 K 16 -bit words, and it communicates with the memory and peripherals by a 16 -bit bus and 5 control lines. The decoding into address and data lines is performed by special interface sets which will cater for a variety of possible requirements.

The instruction set has a pleasing orderliness about it and all the instructions can use the four addressing modes: direct, immediate indirect, immediate data and pointer indirect. With direct addressing any location within the first 2 K of memory can be specified in a-single-word instruction; alternatively immediate indirect addressing allows one to specify the full 15 -bit address in the next word.

Immediate data addressing supplies the operand in the second word. Finally pointer indirect addressing takes the contents of a pointer to be the required address. There are no pointer registers on the CPU chip; instead any of locations 1 to 255 can be specified as pointers, with the option of auto-increment or decrement. Thus up to 255 separate stacks can be maintained in memory.

As well as the usual instructions to add/ subtract memory into the accumulator there are add/subtract accumulator into memory instructions, making it possible to replace: load X , add Y , store to Y , by the shorter: load X, add to Y.

Although there are no multiply or divide instructions, an additional singlechip unit, the F101-L, will provide these functions with execution times of less than $15 \mu \mathrm{sec}$.

The arithmetic and logical functions act on the accumulator and memory, but the shifts and a variety of bit-test, set, and clear instructions operate on any of the

 cows: $0 \mathrm{NA}^{2} \mathrm{NXD}=1$ cow

Fig. 4. The eight consecutive locations for Bulls and Cows game
accumulator, condition register, or memory. A single instruction provides a jump if a defined bit in a word is set (or clear) and then clears (or sets) it; this would be invaluable for controlling lockouts in timesharing or multi-processor systems.

The prospective computer-builder reading this may be disheartened to learn that production devices will not become available until October, when the prices will be $£ 55 \cdot 00$ for the processor and $£ 25.40$ for the interface set (1 off). However, you can already set about designing your system with the help of the Hardware and System Manual, available for $£ 7.50$.

BULLS AND COWS GAME

The techniques of programming are much the same whether one is writing a game-playing program or a factory process-control program, and whereas the first is of almost universal interest, the second would probably only inspire a very restricted brand of programmer. For this reason game programs will frequently

Fig. 5. Program for "Bulls and Cows"
be featured in Micro-Bus while at the same time admitting that microprocessors have inore serious applications.

One absorbing game which lends itself to being programmed is the traditional pencil-and-paper guessing game variously referred to as "Bulls and Cows" or "Moo", and recently made popular as "Mastermind". For those not already familiar with it , a brief description of one form of the game follows:

The two players first each think of a code consisting of four digits, each digit being one of the eight octal digits $0-7$. The players then take turns in trying to determine the other player's code by making a guess of a number. The guesser is told the number of "bulls", i.e. digits correct and in the right position (bullseyes), and the number of "cows", i.e. digits correct but in the wrong position. This information guides the player towards deducing the code. For example, if the code is " 3455 ", to the guess " 4653 " the reply is 1 bull, 2 cows. The first player to guess the other's code wins.

A program has been written for the 6800 in which the human player and the microprocessor alternately try to guess each other's code. It centres around the two subroutines which count the numbers of bulls and cows between two numbers, and listings for these in assembler are given below, Fig. 5.

The two numbers to be compared, referred to as KEY and TRY in the program, are stored unpacked (one octal digit per word) in the eight consecutive locations starting at 0000 ; see Fig. 4. Subroutine BULLS is called first and makes four comparisons between corresponding pairs of digits, returning with the number of matches in the B accumulator (2 bulls in the case shown). It complements matching digits so that they will not be counted as cows. Subroutine COWS then compares each digit in TRY not complemented with the four digits in KEY again returning with the number of matches in $\mathbf{B}(1$ cow in this case). XREG is a double-byte variable used to store the X register.

The machine's strategy is at every stage of the game to make a guess chosen at random from the class of numbers consistent with the replies made to its previous guesses. The program usually wins unless its human opponent uses careful logical thinking, and the result is a highly entertaining game; readers with microcomputer systems are urged to program it. Alternatively the program "Bulls and Cows" is available from Practical ElecTronics in a form suitable for running on a Motorola D2 kit and using $\frac{1}{2} \mathrm{~K}$ of memory. A listing and Kansas-City format cassette containing the program will be supplied on receipt of $£ 2.50$.

The next Micro-Bus will be in the December issue, and we hope to feature circuits and programs submitted by readers. If you have any interesting and original contribution, send it to: Micro-Bus, Practical Electronics, Fleet way House, Farringdon Street, London, EC4.

PRICE 35p POST PAID. 25p FOR CALLERS

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K.

2 N 698
2N69
2N 706
2N706
2N70
2N708
2N70S
2N718
EXPRESS M.O. SERVICE BY RETURN POST-all
orders received despatch e day on stock ltems

ITL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC.

OPTOELECTRONICS

dowicos.u. in our

SYSTEMS

SC/MP INTROKIT
 SC/MP

Budget VOU tor Telerype substitute. The calculator type

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK:
 DOES IT HAVE * 30A power transistors
 * 3A drivers (100W unit)
 * 2-year guarantee
 Integral output capacitor
 Then compare with the Tamba range-excellent value- 25,50 and 100 W R.M.S

TAM1000 100W 4 ohms 65 V	¢9.80
TAM500 50W 4 ohms 45V	£7. 50
TAM250 25W 8 ohms 45V	¢5.75
POWER SUPPLIES	
For 1 or 2 TAM250/500	£7. 50
For 1 or 2 TAM1000	£9. 80
(Carriage 50p on supplies)	

High grade components used throughout: Texas, Mullard, R.C.A., Plessey, etc.

- Low distortion (0.1\%) - Low profile (1in high $3 \frac{1}{2} \mathrm{ir}_{1} \times 3 i n$) 75% efficient
- Accepts most mixer/pre-amplifiers Four simple connections

ALL PURPOSE MIXER/PRE-AMP.
(with 60 mm slider volume)

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W systems and at $12 \frac{1}{2} \%$ for 25 W systems

Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome. Tel. (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

PHILIPS

The top sellers for home assembly in Europe - now available in the U.K.
Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to
S.S.T. Distributors (Electronic Components) Ltd., West Road, Tottenham, London N17 ORN

Last month we examined the CHAMP "family" concept of combining a microprocessor unit (CHAMP itself), PROM programmer (CHAMP-PROG), and a PROM eraser (CHAMP-UV) to produce a self-sufficient and capable development system.

This month we shall start to look in detail at the circuitry on the CHAMP microprocessor board, and at the 4040 MPU chip around which the system is constructed.

MAIN BOARD

The main objective of the CHAMP design was to produce a complete microprocessor system at the lowest possible cost, and in keeping with this objective no expensive plug-in cards and edge connectors are used at all. Major circuitry is mounted on a single piece of 0.1 in matrix Veroboard which, in fact, is a much more convenient packaging solution than more expensive plug-in cards anyway!

Connections to the board are made via 16 -way d.i.l. plugs and sockets, and in the basic system, only two of these are occupied with the others available for system expansion and debugging purposes. Power is coupled to the board via three hardwired leads terminated in wander plugs. These can be plugged into sockets on the power supply itself, or, when the board is in its vertical position, into sockets adjacent to the breadboard.

CONSTRUCTOR'S NOTE

A kit comprising the main i.c.s for CHAMP:

4040	4289	2 off $5101-8$
4201 A	1 off $4702 A$	Plus
4265	3205	4040 XTAL
1 off $4002-1$		

is available from Rapid Recall Ltd., Dep. N, 9 Betterton Street, Drury Lane, London WC2H 9BS at the special price of $£ 49.68$ including post, packing and VAT

The board can be removed rapidly when necessary by simply uncoupling the connectors mentioned above and then sliding it sideways out of the self adhesive card guides in which it rests. Under the board, on the plinth, is another card guide which can be used to support the board in the vertical position with all connections remade, on those occasions where access to both sides of the board is required.

The board itself measures $305 \times 159 \mathrm{~mm}$ and carries 25 integrated circuits including PMOS, сMOS and TTL devices.

4040 MPU CHIP

At the heart of the board is of course the 4040 microprocessor chip. The 4040 is a development of the Intel 4004, which had the honour of being the first microprocessor ever produced. As mentioned last month, CHAMP is downwards compatible with the 4004 chips, allowing the development of very low cost dedicated systems when the more sophisticated features of the 4040 are not required.

The 4004 chip is housed in a 16 -pin package whereas of course the 4040 uses the larger 24 -pin version; both chips are made using the well tried pmos technology and need 15 volt supplies. In CHAMP, supplies of --5 V and -10 V are used so that interface to TTL and cmos can be simply achieved without recourse to level translation.

The 4040 and 4004 are "four-bit" microprocessors, which means that their arithmetic units operate on "words" of four binary bits, and that transfer of data within a 4040 or 4004 system is carried out four bits at a time. This does not of course mean that arithmetic resolution is limited to four bits: any arithmetic resolution can be achieved by simply cascading four-bit operations. "Natural" 4040 arithmetic resolutions are in fact 64 bits binary or 16 digits decimal, as we shall see when we consider the arrangement of data memory.

Fig. 2.1. System timing and data bus contents for the 4040

COMPONENTS . . .

CHAMP BOARD		
Resistors		
4 off 47Ω	R1-3, R40	
2 off 100Ω	R33, 59	
8 off 150Ω	R51-58	
1 off 270Ω	R32	
17 off $1 \mathrm{k} \Omega$	R6, R8-13, R15, 17, 26,	, 31, 34, R35-38, R60
13 off $5 \cdot 1 \mathrm{k} \Omega$	R14, R18-25, R45-48	
9 off $10 \mathrm{k} \Omega$	R4, 7, 16, 39, R41-44, R	R49
4 off $12 k \Omega$	R27-30	
1 off $47 \mathrm{k} \Omega$	R50	
1 off $1 \mathrm{M} \Omega$	R5	
All 2\% $\frac{1}{1}$ W carbon film		
Capacitors		
2 off 33pF	Sub-min ceramic C	4, 5
7 off 10nF	Ceramic disc 18V C	6-11, C14
1 off $0.1 \mu \mathrm{~F}$	Ceramic disc 18V C	
3 off $0.22 \mu \mathrm{~F}$	Polyester C1	1, 2, 13
1 off $1 \mu \mathrm{~F}$	Tantalum bead 35V C3	
1 off $4.7 \mu \mathrm{~F}$	Tantalum bead 35 V C1	
Transistors		
5 off BC108	TR1-5	
Diodes		
1 off BYZ88C	3 V 9 Zener, 3.9 V 400 mW	D13
14 off OA47	D1-12, D19-20	
6 off 1N4148	D14-18, D21	
Integrated Circuits		
1 off 3205	IC17	
2 off 4002	IC4, 5	
1 off 4040	1 C 2	
1 off 4201	1 C 1	
1 off 4265	IC6	
1 off 4289	1 C 15	
2 off 4702A	IC18, 19	
4 off 5101	IC20-23	
3 off 74L00*	IC3, 10, 24	
1 off 74L02*	IC25	
3 off 74L74*	IC11-13	
1 off 74123	IC9	
1 off 74125	1 C 14	
1 off 74157	1 C 16	
2 off 75491	1C7, 8	
*See Text		
Miscellaneous		
B1 Nickel Cadmium stack, 4.8 V 225 mAh		
XL1 Crystal $5 \cdot 185 \mathrm{MHz}$		
8 off 16-pin d.i.l. low profile sockets, SK1-8		
500 off Soldercon sockets		
Veroboard VB124 $179 \times 454 \mathrm{~mm}$		

4040 INSTRUCTIONS

Although the 4040 is a "four-bit" device, its instruction set is based on an eight-bit word length which means that program memory (which is separate to data memory) is organised as consecutive locations each containing eight bits. A popular name for an eight-bit word is "byte", and a fourbit word is often called a "nibble" (for obvious reasons!). From now on we will be using these terms when appropriate.

The 4040 has a total of 60 separate instructions, some of which are 16 bits long and require two consecutive bytes in program memory.

For dedicated applications, program memory would normally consist of roms or Proms, but because CHAMP is a development system, an area of RAM program memory is also provided, for user programs, and this makes it important for us to differentiate between program and data ram which are of course used for different purposes. The 4040 uses a 12-bit address counter which allows up to 4096 bytes of program memory to be directly addressed, although only 1024 locations are actually used in the CHAMP system as it stands, 512 bytes being assigned to Prom and 512 bytes to ram. The CHOMP system firmware occupies 256 bytes only; when the PROMPT programmer firmware is added however, the full 512 bytes of PROM are utilised.

USER'S MANUAL

It is important that any intending CHAMP constructor should obtain a copy of the "Intel MCS-40 User's Manual" preferably of the March 1976 or later edition. This is provided free when a chip set is purchased, and is a mine of information on 4040 operation, programming, and interfacing, and contains data sheets on systems components like rams and PROMS.
The description of 4040 operation provided here is necessarily limited by space considerations, and most CHAMP users will soon find themselves wanting to know more! The User's Manual provides all the answers to technical questions and includes many programming and applications examples to whet one's appetite!

4040 OPERATION

The 4040 uses the dynamic mode of operation which means that it must be continuously clocked to ensure proper data retention. The necessary 2-phase clock is best provided by the Intel 4201 clock generator which is produced especially for
this purpose, since in addition to containing the clock circuitry this device provides the power-on reset logic and the single step logic which forms an essential part of any development system. The basic clock frequency is determined with the aid of a crystal, and is normally set, as in CHAMP, to $5 \cdot 185 \mathrm{MHz}$ to give the data sheet instruction cycle time of 10.8 microseconds. The basic clock frequency is divided in the 4201 to give two 740 kHz nonoverlapping pulse trains which are used to drive the MPU chip clock inputs.

Inside the 4040 this clock frequency is further divided into "instruction cycles" which each consist of eight clock periods. The instruction cycle is really the shortest interval which can be isolated in an operational system. When the single shot mode is used it initiates either one or two of these instruction cycles depending on whether a one- or two-byte instruction is involved. The 4040 signals the start of a new instruction cycle with a pulse output on its SYNC pin, and this signal is wired to all the other devices which interface directly with the 4040 bus so that they can keep in step with processor timing.

The 4040 uses a four-bit data bus ($\mathrm{D}_{0} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3}$) to communicate with its associated flock of program memory, data memory, and input/output ports. In fact this so called data bus is really a combined data and address bus, since there is 。 no separate address bus as in most other microprocessors.

Now, if you have followed me so far, you may be wondering how on earth the 4040 manages, during the execution of a single instruction, to send out 12 -bit addresses, retrieve 8 -bit instructions, and shift 4 -bit data nibbles around when all it has to do it with is a single four-bit bus! The answer, of course, is provided by time multiplexing, and now we can begin to see why one instruction cycle consists of eight clock cycles.

DATA BUS CONTENTS

Immediately after the 4040 sync pulse, the low order four bits of a program memory address are sent out on the data bus followed one clock cycle later by the middle four bits, and then the high order four bits, after this back to the 4040 come the first four bits of the instruction, followed by the second four bits. This leaves three clock cycles out of the eight for the execution phase of the instruction, when the accumulator contents and data ram addresses are able to use the bus as required by the particular instruction which was fetched.

The use of a time multiplexed bus of this type drastically reduces the number of interconnections required (at least 20 wires would be required by a non multiplexed bus) but it does impose a time penalty. It is our contention that for home built systems this is a trade-off worth making, after all, even with a 10.8 microsecond instruction cycle, 92,592 single-byte instructions can be carried out in one second! System timing and data bus contents are summed up in Fig. 2.1.

ADDRESSING DATA MEMORY

The data memory used with a 4040 system is of a special type, organised in a unique way. The chips used are coded 4002 and they contain, in a 16 -pin package, four ram registers and a four-bit output port. Each register consists of 20 separately addressable locations of four bits, subdivided into 16 main memory locations and 4 status characters (Fig. 2.2).

Fig. 2.2. Organisation of 4040 system data memory

This memory organisation was originally intended for the convenient storage of 16 -digit binary coded decimal floating point numbers, the status characters being intended for storage of the mantissa sign, two-digit exponent, and exponent sign. Despite this design intention, the 4002 structure is quite suitable for all other likely uses and can readily be used for the storage of binary arithmetic operands, status flags, counters, and what-you-will. The status characters are directly addressable within a register and are therefore useful as "overspill" registers to take the load off the internal 4040 register array when space is limited.

Addressing a particular 4002 location is achieved with the aid of an instruction called SRC (Send Register Control) which causes the eight-bit address of a ram location to be sent out on the 4040 data bus in two consecutive nibbles. The 4002 contains all the necessary demultiplexing circuitry to unscramble and latch this address.

ADDRESSING PROGRAM MEMORY

The CHAMP system uses standard 4702A EPROM chips and 5101256×4 RAM chips to form the program array, but these chips have no internal facilities for demultiplexing the 4040 bus. To provide the necessary multiplexing and demultiplexing functions, another member of the 4040 family, the 4289 memory interface chip, is ised. The 4289 "unscrambles" the 4040 bus to give tweive parallel address outputs, and also "scrambles" the eight-bit instruction words from the program memory so that they can be sent back to the mpu chip over the bus.
The combination of 4289 and standard memory components is therefore equivalent to the 4308 mask-programmed roms which do contain 4040 bus interface logic but which are of course unsuitable for use with a development system because they cannot be reprogrammed. The 4308 parts also contain a number of input/output ports which can be accessed using the $R D R$ and $W R R$ instructions, after selection with an appropriate $S R C$. To duplicate this function the 4289 provides a four-bit bidirectional I / o bus which interfaces with up to 16 input and 16 output ports built with TTL or cmos logic.

INPUT/OUTPUT

In the CHAMP system this "rom $1 / 0$ " facility is used only by the CHOMP firmware for control functions and for writing programs into program Ram. CHAMP users would normally concern themselves only with the data ram based i/o provided by the 4265 programmable general purpose $1 / \mathrm{O}$ chip.

Fig. 2.3. Circuit diagram of the CHAMP board

Bird's-eye view of the CHAMP board

The 4265 is a powerful addition to the 4040 family which can live at the end of the 4040 bus and yet provide 16 input/ output lines which may be configured using software into any one of 14 separate operating modes. The 4040 system can directly address up to four 4265 chips, and one is provided on the CHAMP main board. If CHAMP-PROG is added, then a further two 4265s come with it, their ability to talk directly to the 4040 bus being demonstrated by the fact that only a single 16 -way flat cable is needed to pass all programming data and power supplies between the two units!

The 4265s occupy address space normally used by 4002 data ram chips, and are in fact addressed and accessed in the same way, using the same instructions. The mode of operation for each 4265 is programmed during system initialisation by means of the WMP instruction, subsequent data transfers being made by use of the $W R 0$ to $W R 3, R D 0$ to RD3, $W R M, R D M, A D M$ or $S B M$ instructions.
The CHAMP "on board" 4265 is put into mode 9 during initialisation and used as the keyboard/display interface during program load and debug. When a user program is run, however, the same 4265 can be reprogrammed to a different mode, with connections to user circuitry made via the 16 -way d.i.l. socket provided for this purpose. Needless to say, this is a very useful and powerful facility! The 4265 chips even have a mode which allows them to be used as a data memory interface for use with standard memory chips like the 2111 . This is very useful where a lot of data ram is required because a 4265 and four 2111 chips provide 1024 four-bit nibbles in a much more compact form than the 16 4002 chips otherwise required. It is only fair to point out, however, that most 4040 applications do not need that much data Ram!

INTERRUPTS

The 4040 has a single-level interrupt which can be extended externally to any number of lines. CHAMP uses the interrupt facility for keyboard entries, although user programs can reallocate the interrupt to another source or sources as required; multiple interrupts being resolved by using an input port to "poll" all possible sources.

The 4040 has an internal seven-level hardware address register stack which is used to save the current address value when an interrupt occurs. This stack is also used for saving subroutine return addresses.

PUTTING THE PIECES TOGETHER

In Fig. 2.3 we show the overall circuit of the CHAMP board and you should now be able to pick out the main. system components like the 4201 clock generator, the 4002 data RAM, the 4289 program memory interface, the 4702 A and 5101 program memory chips, the 4265 programmable $1 / 0$ and of course the 4040 MPU chip itself. You will also see that scattered among these major systems components there are a number of TTL gates and flip-flops and of course a variety of discrete components, which together form an essential part of the CHAMP microprocessor circuit. Next month we shall be examining the operation of this circuitry in detail, but meanwhile a word about interfacing is necessary.

TTL COMPATIBLE

CHAMP brings together on one board pmos system chips, CMOS memory chips and TTL gates and flip-flops, all of which differ in their interface requirements. Most 4040 system parts have a variety of options available via their supply pins so that their output drive levels may be programmed to be compatible with all the logic families likely to be encountered.
In CHAMP, tTL interfacing has been chosen since this is practical and uncomplicated and is also suitable for use with 5 volt cmos. For complete details of the interface considerations involved, refer to chapter three of the user handbook where the $4040,4289,4265$, and the 4002 are dealt with.
In general it is best to use low power TTL in an MCS40 system since it is both sufficiently fast and easy to drive, although certain 4289 and 4265 outputs are capable of driving standard TTL loads if necessary. In CHAMP, low power TTL is recommended, although it is only essential in the IC3 position.

NEXT MONTH: circuit description

Semiconductor UPDATilkeo FEATURING : sc/MP-II MC4000 B-Series R.W. Coles

REVAMPED SC/MP

The SC/MP microprocessor chip from National is a good compromise between price and performance, and has now become very popular with hobbyists both here and in the USA.

It's not just the basic price of an MPU chip which determines the overall cost of a working system of course, the numbers and types of any necessary supporting i.c.s will usually be more important, and it is on this count that the SC/MP chip beats the more sophisticated opposition represented by the Intel 8080 A and the Motorola 6800.

The SC/MP has an on-chip clock oscillator which will run with just an RC timing network if required, and this alone can save the significant cost of a crystal and the clock generator chip (or chips) often required. It also has CMOS or TTL compatible outputs too, and the use of memory mapped input/output removes the need for the more capable but rather expensive, programmable interface chips, allowing a functional system to be built with just an MPU chip and a handful of standard Iogic.

To improve this image of capable economy, the SC/MP needs a low cost plastics package and the advantage of operation from readily available five volt logic power supplies, but with the PMOS process technology this has not been possible. Both these assets could have
been gained by switching to NMOS technology but until now this switch has been avoided because PMOS has been cheaper and more readily produced.

Now National have relented and introduced SC/MP-II which does live in a plastics package and does run from a single 5 V supply. SC/MP-II retains all the original SC/MP-1 fəatures and an identical instruction set, but now an advanced silicon gate n-channel ion implant process is used for chip manufacture.

In most cases the new chip can be directly substituted for the old with just a change of chip supply voltage, and 1 believe that a low cost conversion set is to be offered to the many users of the popular Introkit.-Well done National!

BE BUFFERED

You may have decided that 4000 series CMOS logic, with its wide supply voltage range, low power operation, and high noise immunity is the best thing since sliced bread. Or, you may be a TTL man! No matter what your feelings about CMOS, you should take a new look at this popular but sometimes controversial family now that B-series devices are becoming freely available.

The B in B-series CMOS stands for "buffered" because each ouptut is isolated from its associated inputs by a separate buffer stage so that output drive
is independent of the number of driven inputs. This is a big improvement over standard 4000 series devices, which have a poor output drive capability which can sometimes only be improved by paralleling gate inputs!

The B-series CMOS will drive without compromise a couple of low power TTL loads or a single low power Schottky load over the full temperature range. A big improvement, but that's not all. The Bseries devices have been improved in other respects, and now feature improved noise margins, reliable high voltage operation, improved static charge protection and a guaranteed fanout to over 50 fellow CMOS inputs.

Motorola already offer about 100 suffix B types with such favourites as the 14011, the 14016 and 14013 now freely available in this new style as the 14011B, 14016B and the 14013B. Certain B series devices are complete redesigns of existing 4000 series parts and these offer performance advantages in other areas.

Take the MC14538B dual monostable for example. This is a plug-in replacement for the older MC14528 dual mono with improvements like high precision pulse timing, reduced temperature dependence, and a new timing equation. This device should bring CMOS mono performance claser to that of the excellent workhorse, the TTL 74123, and put an end to the difficulties sometimes encountered with the 14528.

Pollits baishlic

P.E. MINISONIC 2

('Sound Design'"-A P.E. Publication)
On the component layout drawing. Fig. 21, page 24, the diode D5/2 in the Envelope Shaper should have its polarity reversed.

Readers intending to make their own printed circuit boards for this project can obtain a clean copy of the track layout master from the Editorial Office, free of charge. Please send a large stamped addressed envelope.

LINEAR OHMMETER (September 1977)

In Fig. 3. page 47, VR2 wiper should connect to IC3 pin 4. In the second paragraph under the side heading "Setting Up", $0.6 \mu \mathrm{~A}$ should read 0.6 mA .

FREQUENCY COUNTER/TIMER (September 1977)

Referring to Fig. 8, the unmarked pad on pin 11 of 1 Cl 17 should be numbered: 37. In Fig. 4, capacitor C6 goes to ground and not $+5 V$.

Every guitarist must be familiar with the sound of a sustain unit. It enables the length of a note to be greatly extended-indefinitely if necessary with acoustic feedback to help. A sustain unit for an electric guitar works by maintaining a constant output level as the actual output signal from the guitar dies away.

ALTERNATIVES

The simplest way to achieve sustain is to use a high gain amplifier and then clip the output in a similar way to a fuzz unit-The clipped output is then filtered to remove harsh sounding high order harmonics and give a more musical sound (Fig. 1).

The second, and more sophisticated method is to automatically increase the gain of a v.c.a. (voltage controlled amplifier) as the output signal from the guitar dies away (Fig. 2).
Using this method preserves the original sound of the guitar without distortion. It also enables full chords to be played unlike the first method-which causes such severe intermodulation distortion that care has to be taken to avoid playing even two notes simultaneously.

The circuit described here uses the second method with all its advantages. Obviously the circuit cannot amplify a signal which is infinitely small and the maximum gain has to be a compromise between a long sustain and excessive noise and hum pickup as the gain increases to maximum at very low signal levels.

FULL ATTACK

To maintain the guitar's natural attack the initial transient is allowed to pass through the unit without compression, but the circuit then maintains a virtually constant output level down to 0.5 mV input, when the output dies away.

INVESTIGATIONS

There are two problems in designing a v.c.a. type sustain unit-firstly to design a v.c.a. system with a sufficiently fast response to follow the envelope of the output waveform from a guitar without causing any significant waveform distortion, and secondly thehieve an acceptable noise performance.

Fig. 1. Clipping type sustain unit

Fig. 2. Block layout for producing a non-distorting sustain unit using a voltage controlled amplifier

Various methods of controlling the amplifier gain were tried out in several experimental prototypes, using f.e.t.s and biased diodes, but all suffered from either poor transient response or unacceptable distortion. Eventually the answer was found in a combination of an l.e.d. and a cadmium sulphide photoresistor (I.d.r.). As the current through the l.e.d. is increased its brightness increases-causing the resistance of the photoresistor to fall and hence reducing the gain of the amplifier. This arrangement also has other

Fig. 3. Output response for different input levels

useful characteristics. The photoresistor responds rapidly at high signal levels but much more slowly at low levelsthis effectively gives the system a variable time constant and reduces distortion at low levels, as the note is dying away. Also as the negative feedback provided by the photoresistor is reduced so the bandwidth of the amplifier is reduced too. This helps to reduce noise and hum at low levels and at the same time it gives increased emphasis to the higher harmonics in the guitar output to compensate for the falling harmonic content in the note as it dies away.

Low noise is an essential requirement in a sustain unit as the gain can increase by 500 times from the start to the end of a note. This design uses a specially selected ZTX384 type transistor in the first stage, operated at a low collector current to obtain as good a noise performance as posisible.

CIRCUIT DESCRIPTION

In Fig. 5 TRI and TR4 form a two stage amplifier with an open loop gain of around 1000 . Negative feedback is provided by the l.d.r. to control the gain and d.c. feedback to stabilize the operating point by R8. This circuit arrangement was chosen because it has very good stability and will operate over a wide range of battery voltage-from 10 V for a fresh battery down to 6 V for a worn out one. The average current' drain is only about 2 mA , in the interests of a long battery life.

Normally there would be a resistor from the collector of TR4 to the negative rail, but in this design the resistor has been replaced with a constant current source comprising TR2 and TR3. This increases the gain of the amplifier and enables a very large output voltage swing to be obtained. The circuit will give an output of at least 2 volts r.m.s. without distortion, which enables the high amplitude transients at the start of a note to pass through the amplifier with minimum distortion. Commercial sustain units often use two batteries to achieve similar performance.

Fig. 4. Frequency response of sustain unit showing how bandwidth changes with input

Fig. 5. Circuit diagram of sustain unit

CUITMR SUSTAMIN

Fig. 6. Printed circuit board (full size)

Fig. 7. Component layout and mounting details for D1 and R12 shown above

COMPONENTS ...

Resistors

Resistors			
R1	$22 k \Omega$	R7	$3.3 k \Omega \Omega$
R2	$220 k \Omega$	R8	$22 k \Omega$
R3	$27 k \Omega$	R9	$27 \mathrm{k} \Omega$
R4	390Ω	R10	$220 k \Omega$
R5	$150 k \Omega$	R11	390Ω
R6	$22 k \Omega$		

All resistors $\frac{1}{3}$ Watt 5 per cent carbon film

Potentiometer

VR1 $100 \mathrm{k} \Omega$ single gang log law potentiometer

Capacitors

C1 220 pF 63 V polystyrene
C2 $\quad 0.1 \mu \mathrm{~F} 250 \mathrm{~V}$ Mullard C280 polyester
C3 $22 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic or tantalum
C4 $22 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic or tantalum
C5 10 pF ceramic or polystyrene
C6 $0.015 \mu \mathrm{~F} 250 \mathrm{~V}$ Mullard C280 polyester
C7 $0.1 \mu \mathrm{~F} 250 \mathrm{~V}$ Mullard C280 polyester
C8 $150 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic

Semiconductors

R12	RPY58A Mullard
D1	XC5053R Xciton
TR1	ZTX384W
TR2	ZTX108 Ferranti
TR3	ZTX108 Ferranti
TR4	BC415P Ferranti
TR5	ZTX108 Ferranti
TR6	BC415P Ferranti

All semiconductors can be obtained from Davian Electronics

Miscellaneous

JK1 Jack socket, front contact normally open rear contact normally closed
JK2 Standard jack socket, non switching
S1 Arrow D.P.D.T. push to make/push to break footswitch (Davian)
Case ITT Diecast box type 46R.CS00.043.A00
Printed circuit-Davian Electronics
Control knob, PP3 battery, battery clip, connecting wire, rubber feet, small piece of foam rubber

TR 5 and TR6 operate as a half wave rectifier, the compound Darlington arrangement providing a very high input impedance so as not to load the output of the amplifier. The operation is as follows.

When a note is played this passes through the amplifier and turns on TR5 and TR6. This causes the l.e.d. D1 to light up, which reduces the resistance of the I.d.r. and hence the gain of the amplifier to provide an output signal just sufficient to keep TR5 and TR6 turned on. All this occurs in the first few cycles of the note.

As the input signal dies away the signal at the base of TR5 tries to fall. This reduces the current through the l.e.d., increasing the gain of the amplifier to maintain constant output. When the input falls below about 0.5 mV , DI is extinguished and the gain of the amplifier cannot be increased any further. The output then falls with the input.

MECHANICAL CONSTRUCTION

The unit is constructed in an ITT diecast box, which provides an enclosure rugged enough to be stood on, dropped or generally kicked around.

After drilling the case should be cleaned thoroughly and sprayed with paint. Gold was used on the prototype and gives a very attractive finish. The unit can then be lettered with Letraset or some similar product and finished off with a thin coat of protective clear lacquer.

To prevent the unit sliding around on the floor it is a good idea to fix two small rubber feet to the rear of the case lid. This also tips the box forward at a convenient angle for foot operation. Finally glue a small piece of foam rubber inside the lid to hold the battery in place.

ELECTRICAL CONSTRUCTION

Most of the components are mounted on a small printed circuit board which fits into the slots in the box. There is not a great deal of room to spare and miniature components should be used.

The printed circuit board pattern and layout are shown in Fig. 6 and should be largely self explanatory. The only point to note is that R12 is mounted flat on the printed circuit board with the active face pointing upwards (the opposite side to that which the wires are connected to). The I.e.d. is then mounted facing down towards the l.d.r. with the leads bent double. Take care when bending the l.e.d. leads as they tend to be rather brittle. The I.d.r. should be soldered in place as quickly as possible with a clean iron. It is rather sensitive to heat and the wires tend to fall off if it is overheated! The anode of the l.e.d. is the shorter of its two leads and this should be connected to the positive rail.

Mount the two jack sockets, the output potentiometer and the footswitch in the diecast box. Note that the push button switch must have a push to make/push to break action. The tags on the footswitch must be bent sideways so as they lie flat-otherwise they will short out to the lid of the box.

The negative rail of the circuit is earthed to the diecast box by means of a wire soldered to the case of the output potentiometer. One of the metal tab. securing the cover of the pot can be bent up and used as a solder tag if desired.

Miniature screened cable must be used for the input and output and the leads to the footswitch as any stray coupling between input and output can cause the circuit to oscillate. Note that the input jack socket JK1 has a front contact (nearest the nut) which is normally open. The battery negative is wired to this contact (see photo) which makes when the input jack is inserted to switch, the unit on.

USING THE SUSTAIN UNIT

For best results the unit should be operated with as much input as possible, therefore the volume control on the guitar should be set at or near maximum. The output control on the sustain unit should be set to give the same output level as with the unit switched out.

It is possible with the high gain involved for magnetic or mechanical feedback to occur between non-humbucking pickups and the loudspeakers and care must be taken to avoid this by reducing the volume control on the guitar or by moving further away from the loudspeakers. On the other hand acoustic feedback can be used advantageously to sustain the note for as long as desired, but a certain amount of playing technique is involved as the sound system may have a peak at some frequency other than the note being played, and this may cause other strings to be excited if they are not damped.

One final point. The unit will not work if any external light is allowed to fall on the l.d.r. The diecast box is excellent in this respect since it has a lip around the lid which provides a very effective light seal. Needless to say, a makeshift box which is not light proof, or failure to use a box at all, will prevent the circuit from giving any noticeable sustain effect.

IBA

EMEAINERIIIG

Independent Broadcasting Authority is responsithe for the desion, construction and operation of the large network of tansmitting stations throughout the UK for Independent Television and for the new Mreperdent Local Radio.

SOME aspects of the Independent Broadcasting Authority's current engineering developments were revealed during a series of open days held at the IBA Engineering Centre, Crawley Court, near Winchester, in July.

Crawley Court is a purpose-built Broadcast Engineering and Administration Headquarters situated in idyllic surroundings in a well-wooded park. This modern building has an elegance not always synonymous with precast concrete structures; it well simulates the quiet atmosphere of a venerable college, yet it has the practical advantages of a well-planned functional layout within.

RESEARCH AND DEVELOPMENT

Of the 400 persons employed here about 40 are research engineers who, with an additional 50 -strong technical services team, work in the Experimental and Development Department's Laboratory. This is divided into three sections: Automation and Control, Radio Frequency, and Video/Colour. Examples of important work in progress in all these sections were shown and demonstrated to visitors. A summary account of some of these activities is given below.

ORAGLE JUNIOR

A service with information generated by computer was devised by IBA engineers and first demonstrated in 1973.

This first "Oracle" system allowed up to 50 pages with text in only one colour. The present system is more attractive and flexible, with up to 800 pages, colour and other features. including a digital clock accurate to 20 msec
(The generic title "Teletext" is now often used, $b: a t$ the name Oracle remains for the ITV service.)

Current development includes work on a small Oracle system based on a microprocessor, for origination and demonstration purposes. It operates at 64 kilobauds and provides up to 60 pages. A semiconductor memory is used. The keyboard (part of a VDU) provides insert/delete facilities. Apart
from its use in broadcasting organisations, it was suggested that this small Oracle system has commercial possibilities for hotels, holiday camps, etc., allowing local information to be inserted as an alternative to nationally transmitted information.

MEASUREMENT OF DATA SIGNALS

Satisfactory Oracle (Teletext) reception requires the receiver to be able to distinguish between 1 and 0 , despite multi-path propagation distortion or "ghosting". The measurement of data signals requires different methods to those employed for normal transmis. sions. Teletext decoder manufacturers have little means of checking the performance of receivers their instruments will be used with, and to solve this problem a signal generatór has been developed as a design aid for decoder makers.

This signal generator provides pulse and bar test pattern, and facilities for carrying out the different methods for measuring Teletext signals. It is understood that a standard for such measurements will be produced in the future.

StEERABLE ADAPTIVE AERIAL

Receivers used as part of a broadcast link are likely to suffer from co-channel interference (CCI), resulting in severe patterning from other stations, if a conventional aerial is used.

The provision of colour TV to the Channel Islands proved to be particularly difficult since reception from the nearest mainland station in Devon was subjected to considerable co-channel interference from other UK and European transmitters.

After initial investigations an experimental 8-element Adaptive Aerial System was built at Crawley Court. The final system built during the beginning

This 2W u.h.f. transposer has been designed by IBA devalopment engimeers as part of a feasibility study into fow-power, low-cost stations for small communities. Maintenance is on a pre-aligned module basis to minimise the reed for test equipment in remote locations

of 1977 at Alderney, Cl , incorporates a 16×4 dipole array.

The Adaptive Aerial is essentially a phased array in which the amplitude and phase of the outputs of the individual elements are adjusted before combining in such a way as to produce an aerial pattern which has nulls in the directions of the interfering sources.

It is expected that simpler versions of this aerial system will be used for rebroadcast reception at other sites in the UK where the increasing number of transmitters will require aerial systems with the ability to null CCl by up to 50 dB .

ADAPTIVE FILTER

Another method for overcoming CCl_{1} is the Adaptive Filter. This is a comb filter with adjustable notches which can track the frequencies of the CCl beats. This device is seen as complementary to the Adaptive Aerial, in improving the technical quality of signals.

LOW-COST U.H.F. TRANSPOSER

To bring u.h.f. television to small viewer areas. IBA engineers have de-

Experimental digital vision mixer developed by the IBA. Input and output signals are coded in linear PCM, at a sampling rate of $2 \mathrm{f}_{\mathrm{sc}}$. The mixer offers additive mixing and split-screen wipe facilities
requirements, and they consider there is much in favour of a system combining features of Matrix H and 45 J .

Engineers are able to listen to various types of programme material encoded in QS, SQ, UMX, Matrix H and 45J.

These off-air pictures show the effect of SABRE on CCI which is only 20dB below the wanted signal
signed a low-cost 2 watt transposer. This receives a broadcast and retransmits the programme on another channel. The transposer is small and portable, of suitcase construction and designed with ease of on-site servicing in mind.

Independent local radio

Since the advent of Independent Radio in 1972. IBA has had an interest in sound radio. More recently, Crawley Court has become involved in a study of "surround sound" or quadraphony. The establishment of standards for broadcasting is important, for those adopted are likely to stand for 20-40 years.

The current investigations are concerned with both subjective and technical problems of this subject and IBA engineers have now come to the conclusion that a " $2 \frac{1}{2}$-channel" type of system best meets these two difficult

the all-digital studio of the future

As part of a long-term study of digital techniques for television the IBA has developed in experimental form the major component parts needed for an all-digital television studio. All major studio vision operations, excluding picture origination, are carried out using digital video signal processing, including digital vision coding and decoding, vision mixing and switching, video tape recording and the generation of a colour-bar test signal.

The development of an operational digital studio depends on overcoming the problems of recording digital signals on magnetic tape without requiring extremely high-speed tape transport.

The experimental digital recording system developed by the IBA applied to a standard broadcast analogue machine is capable of producing excellent halfwidth colour pictures with a tape consumption half that of conventional

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

PRINTING CALCULATORS

Into the very competitive market of small calculators, Hewlett-Packard Ltd. has just launched its first pocket-sized printing calculator. The new HP-10 is a general purpose, pre-programmed "adding machine type" instrument with all proven functions, plus a printer for "hard copy" readout.
Intended for executives and professionals in their business and personal applications, the HP-10 features a 10 digit l.e.d. display, a quiet thermal printer, keys to allow the user to add, subtract or recall data from memory, a data storage accumulator, and automatic decimal point positioning for pounds and pence calculations. This calculator weighs 12 ounces, measures $3.4 \times 6.5 \times 1.6$ in and costs $£ 125$.

Three other new calculators for specialist applications have also been announced by Hewlett-Packard.

Full financial evaluation capabilities with mathematical and statistical functions are embodied in the HP-92 Investor, a portable printing model designed for professional investment analysts, stockbrokers, bankers and other finance executives. The HP-92 has a powerful set of pre-programmed functions to suit these applications. Price $£ 475$.

A new scientific pocket calculator, the HP-29C, is intended for engineers. scientists, technicians and students. Fully merged programming allows as many as

The first pocket printout calculator, type HP-10, from Hewlett-Packard
four keystrokes to be combined into a single step of memory. Programming is further simplified by the 30 storage registers. CMOS memory chips allow programmes and data to be retained in memory for long periods after switch off. Price $£ 149$.

A handheld printing version, the HP-19C, will be available shortly, at approximately $£ 260$.

ORGAN KIT CATALOGUE

An exciting new catalogue featuring musical instruments, effects units and amplification systems from Wersi Electronic has just arrived. Wersi, a well-known company in Europe, predominantly specialise in electronic organ kits for the do-it-yourselfer. Conceived eight years ago, Wersi has grown considerably. One can only assume that this is as a result of the technical excellence and quality of the products, this is certainly reflected in the detailed, full colour, 104, page catalogue.

The fact that the eight organs available -from smallest spinet to the largest console-have a professional specification would indicate that they are not cheap. For example, at the low end the fully assembled and tested Wersi Orion W1T retails at $£ 4,594$ with VAT to add! At the top end the three manual Galaxis W4 is a heady $£ 18,239$. However, since the range is available in kit form these figures can be dramatically reduced- $£ 1,913$ for the Orion WIT and $£ 5,957$ for the Galaxis.

The organisation of the Wersi kit concept is based on the constructor's requirement to play either entertainment music or more ambitious works. Usually, these ambits are regulated by keyboard size, either 49 or 61 notes.
As an example, to assemble a full biown entertainment organ such as the Orion WIT, a dozen kit packs would be required. These packs are made up of the p.c.b.s, components, wiring harnesses and other piece parts to make up the various organ sub-assemblies, each being labelled for contents.

To mastermind the assembly of a pack an illustrated manual is included with step-by-step instructions and check list so that project realisation can be achieved with maximum continuity.

To defer the cost of a full specification instrument, it is possible to make up a basic organ from any one of the Wersi range and then add to it-money permitting.

To achieve this, kit packs are organised in so-called "option levels" of purchase. Option Level I for the Orion WIT would cost you $£ 906$, consist of 5 kit packs and provide you with an 8 octave multiple wave master generator and dividers, manuals, electronic keyer circuits, drawbars, special effects and cabinet. From this you have a playable instrument. The second option of 4 kit packs would cost another $£ 426$ but would provide pedals, fixed stops, rotating and string choir sounds and other effects.

The final option of 3 kit packs provides piano voices, a 24 rhythms unit, autoaccompaniment and registration memories. This for an extra $£ 581$, but now the instrument is truly complete.

Other instruments, besides organs, in the Wersi catalogue include rhythm units, electronic pianos, string orchestras, PA systems, mixers and rotating sound systems.

Handling Wersi kit sales is Aura Sounds, Dept. P.E., Copthorne Bank, Crawley, West Sussex. Anyone wishing to hear or view instruments or equipment should first ring Mr Griffiths (0342-713338) for an appointment.

The catalogue price is $£ 2$ which is redeemable on purchases.
Another new Catalogue/Order Form worth investigating is the one just released by a new company known as Ace Mailtronix Ltd.

This company, specialising in mail order, lists approximately 500 of the more popular components that the home constructor might require at one time or another. The catalogue is layed out more in the form of an order sheet/s with spaces for inserting quantities required and component costings. This means that the purchaser simply indicates his/her requirements, adds up totals, attaches the relevant sum and posts the order.
It is claimed that delivery is ex-stock, that is to say every order is despatched on the day it arrives at their office. Prices are guaranteed and fixed throughout a preset period of validity of an order form, the form being updated and automatically replaced with each order received.
All products are guaranteed for twelve months from date of purchase since they are all hona fide new products. Items carried include transistors, diodes, i.c.s, resistors, capacitors, switches, lamps, plugs and sockets and technical books.

Copies of the catalogue/order form are available from Ace Mailtronix Ltd., Dept. P.E., Tootal Street, Wakefield, West Yorkshire, WF1 5JR.

MPU LECTURES ON RECORD

In the May ' 77 issue we reported the success of a microprocessor forum jointly organised by National Semiconductor (UK) Ltd., A. Marshall (London) Ltd., and ourselves. In fact the venture was so oversubscribed a second forum had to be staged.

Fortunately, for anyone who might have missed this baptism in microprocessor technology, the edited lectures have been committed to tape by a team called Specialist Productions. The result is in effect an audio-visual "teach yourself" course as the C60 and C90 cassettes are backed by a 72 page booklet which is keyed to the lectures.

The course components are available from A. Marshall (London) Ltd. (see advertisement in this issue) price $£ 9.95$ which includes VAT and postage.

An 8 -page supplement describing a range of selected integrated circuits, having some particular emphasis in consumer applications. Areas of application include Electronic Musical Instruments, Motor Vehicles, Domestic Control Systems, TV Games, etc. A certain source of inspiration for experimenters and constructors alike

TUNE-PRIGGRAMMABLE SEQUENCER...

Digital beaction timer

Displays digitally a subject's reaction time on a scale of 1-9. The time scaling is arbitrary

This unit will enable a synthesiser, e.g. PE MINISONIC, to automatically play a pre-programmed tune consisting of up to 32 pitches in a 128 -note-long sequence from a single RAM. The note length and the rhythmic pattern can be made variable.

PRACTICAL
GLECTRONICS

THis month will see the description of the control circuits and an introduction to the scoring logic, where we deal with the formation of the results for the number of the players' coloured pegs correct for both colour and position (the "P" results).

THE ENTRY COUNTER

Each single deduction comprises four entries which are counted by the "entry counter" within the machine. A shift register, type SN 7496 N (IC20), is used to perform this function producing four output signals, K, L, M and N .

The 7496 is a five bit shift register, although for this counter only the first four bits are required. The circuit diagram is shown in Fig. 3.1

The depression of one of the clear buttons, $S 7$ or $S 8$, will clear the register, setting all outputs to logical zero and making the serial input, pin 9, logical 1 via the Nor gate IC12c. When the first colour is entered into the machine the Z signal clocks the counter and the first output, K, goes high and the serial input low. The second entry simply steps the logical 1 from position K to position L and so on.

* Mastermind is the registered trade mark of Invicta Plastics Ltd

Fig. 3.1. Control logic circuitry

On the fourth entry output N is high and will remain as such until the next deduction is commenced, the first entry of which will set K high again. The counter is therefore a simple ring counter, so called because a single 1 circulates around through all outputs in succession.

COMPARISONS COUNTER

The main function of the comparisons counter is to provide the signals $C_{1}-C_{4}$. These signals are generated each time an entry is made so that the code on lines RST is compared with each X code in turn. The results of these comparisons appear on the E lines and it is the function of the scoring logic to interpret these and produce from them the correct scores for display to the player.

In addition to these four signals, the counter generates C_{0}, the pre-clear pulse, and C_{5} which performs computational duties in the scoring logic.

A shift register is used, the six bits being obtained from one half of a type SN 7474 N (IC16b) dual flip-flop $\left(\mathrm{C}_{0}\right)$, and an SN7496N five bit shift register, IC17 ($\left.\mathrm{C}_{1}-\mathrm{C}_{5}\right)$. The whole counter is enabled by the Z signal, connected to its clear inputs, pin 13 of IC16b and pin 16 of IC17. Note that all the flip-flops are cleared by logical zeros.

When an entry is made the Z signal is generated and is used to clock flip flop IC16a sending its output, pin 5, to logical 1. This output is connected to pin 12, of IC16b, the first stage of the register, whose output, pin 9, will go high when it is clocked by the master clock, forming the signal C_{0}. However, C_{0} will promptly clear IC16a, via IC11b, so that pin 12 of IC16b is from then on 0 . A single string of 1 s therefore appears on the outputs $C_{0}-C_{5}$, as shown in the timing diagram of Fig. 3.2.

SERVICE SIGNALS

The various service signals required are produced by 1C19 and 27 . $\overline{\mathrm{KC}}_{0}$, IC19 pin 3, is the pre-clear signal, serving to clear the scoring logic of the results of a previous

Fig. 3.2. Timing diagram for the comparisons counter

Main board assembly order

Fig. 3.3. Illustrating the clock phasing

Fig. 3.4. The "P" flip flops and associated logic
deduction, thus obviating the need to manually clear the logic after each deduction. This is combined with the external clear signal, RSG, to form:

$$
\overline{\mathrm{R}}_{\mathrm{L} 2}=\overline{\mathrm{KC} C_{0}+\mathrm{RSG}}
$$

which is the equation for the unconditional reset of the logic.
A single $S N 7400 \mathrm{~N}$ NAND gate has a maximum permitted fan-out of ten, but since $R_{L 2}$ will be applied to more than this number of inputs two 7400 gates are used in parallel to provide a fan-out capacity of twenty inputs.

INTRODUCTION TO THE SCORING LOGIC

As hinted earlier, the function of the scoring logic is to interpret the results of the comparisons, appearing on the E lines, in relation to the timing signals produced by the entry and comparison counters. We now consider how the " p " results are derived from this information.

If the first entry made by a player is equal to the first code, X 1 , within the generator, then this particular entry is obviously correct for both colour and position. Similarly if the player's second entry is equal to the second code, X 2 , then this too is correct for colour and position, and so on.

Since C_{1} from the comparisons counter calls the first X code, X1, for comparison, and since the player's first entry is recognised by the fact that signal K from the entry counter will be high, then a flip flop clocked during C_{1} and presented with data KE will set if the entry is correct for position and colour. A second flip flop clocked during C_{2} and presented with input LE will record the second " P " result, and similarly for the third and fourth entries.

THE "P" FLIP FLOPS

These four flip flops are called the "P'" flip flops and are 'shown in Fig. 3.4 as IC22 and 23.

The " K " inputs to these are not required, and are therefore grounded. The equations for the " J " inputs are $\mathrm{J}_{\mathrm{P}_{1}}=\mathrm{KE}$, $\mathrm{J}_{\mathrm{P} 2}=\mathrm{LE}, \mathrm{J}_{\mathrm{P} 3}=\mathrm{ME}$ and $\mathrm{J}_{\mathrm{P} 4}=\mathrm{NE}$, these functions being implemented using the and gate of IC21.

An example illustrating the action of these flip flops is shown in Table 3.1.

CLOCK PHASING

Flip flop P_{1} is not clocked directly by C_{1}, nor is P_{2} by C_{2}, etc. The reasons for this stem from the existence of time delays in the gates of the data selector and the comparator, which if not considered would lead to errors in the functioning of the system. The signal $C_{1} \bar{C}$ is therefore used to clock P_{1}, being related to C_{1} as shown in Fig. 3.2. Fig. 3.3 is an example showing just how this derived or "phased" signal overcomes the time delay problem. As shown in the diagram $\mathrm{E}=1$ during C_{2}, so that P_{2} would set if L were present. If C_{2} had been used for the clocking, then the $E=0$ overlapping from the C_{1} interval would be responsible for setting P_{2} to 0 , producing an error in operation. The phased clock ensures that the data input to the flip flop is absolutely stable for the entire duration of the clocking period ($\mathrm{C}_{2} \overline{\mathrm{C}}$ in this case).

Notice that when no entry has been made $E=1$. This is of little consequence, however, since E will remain high until an untrue comparison is made.

IC18 produces the phased clocking signals, this being an SN7408 and package.

"P" INDICATOR LINE

Consider the combination of X codes and first entry shown in Table 3.2. We see that entry one is " P " correct. However,

P_{1}, P_{3} and P_{4} are set indicating that three colours are correct for position
it is also correct for colour and incorrect for position ("' I " correct) with two of the remaining X codes, X 2 and X 3 . The correct score for this entry is just one black key peg, so that the comparisons with X2 and X3 must be disregarded. A strobe signal, to be called Pl , is therefore formed to indicate to subsequent logic that the first entry is " P " correct, and as such the comparisons made between it and X2 and X3 may be disregarded. Clearly the function $\mathrm{PI}=\mathrm{K} \mathrm{P}_{1}$ will serve here for the first entry, so that for all four entries the function is

$$
\mathrm{PI}=K \mathrm{P}_{1}+L \mathrm{P}_{2}+M \mathrm{P}_{3}+N P_{4} .
$$

IC30 produce the inverse of this, $\overline{\mathrm{PI}}$, shown in Fig. 3.4.

RESULT ADDERS

The number of " P " flip flops which are set indicates the " p " result and this number is formed by an adder. The circuit is shown in Fig. 3.4, and ICs 24 and 25 take the four "P" outputs and produce from them two individual two bit sums,

Table 3.2				
Entries		X Codes		
	$\begin{gathered} \text { Red } \\ \times 1 \end{gathered}$	$\begin{aligned} & \text { Red } \\ & \text { X2 } \end{aligned}$	$\begin{aligned} & \text { Red } \\ & \times 3 \end{aligned}$	$\begin{gathered} \text { Blue } \\ X_{4} \end{gathered}$
Red	$\begin{array}{r} \mathrm{K}=1 \\ \mathrm{C}_{1}=1 \\ \mathrm{E}=1 \\ \mathrm{P}_{1}=1 \end{array}$	$\begin{aligned} \mathrm{K} & =1 \\ \mathrm{C}_{2} & =1 \\ \mathrm{E} & =1 \\ \mathrm{PI} & =1 \end{aligned}$	$\begin{array}{r} \mathrm{K}=1 \\ \mathrm{C}_{3}=1 \\ \mathrm{E}=1 \\ \mathrm{PI}=1 \end{array}$	$\begin{aligned} \mathrm{K} & =1 \\ \mathrm{C}_{4} & =1 \\ \mathrm{E} & =0 \\ \mathrm{PI} & =1 \end{aligned}$
Green	$\begin{aligned} \mathrm{L} & =1 \\ \mathrm{C}_{1} & =1 \\ \mathrm{E} & =0 \\ \mathrm{PI} & =0 \end{aligned}$	$\begin{aligned} \mathrm{L} & =1 \\ \mathrm{C}_{2} & =1 \\ \mathrm{E} & =0 \\ \mathrm{P}_{2} & =0 \end{aligned}$	$\begin{aligned} \mathrm{L} & =1 \\ \mathrm{C}_{3} & =1 \\ E & =0 \\ \mathrm{PI} & =0 \end{aligned}$	$\begin{aligned} \mathrm{L} & =1 \\ \mathrm{C}_{4} & =1 \\ \mathrm{E} & =0 \\ \mathrm{PI} & =0 \end{aligned}$
P_{1} is set, so that the score at this stage is one black key peg				

Fig. 3.5. Prototype components layout for the middle third of the main board (section \mathbf{B} in photograph). To assemble this constructors should work from the circuit diagrams
which are subsequently added together by IC26, a type SN7482N adder package.

The mode of operation is as follows. The and gate whose output is pin 11 of IC24 and the exclusive or gate whose output is pin 6 of IC25 together form one of the two bit adders, producing the binary sum $\mathrm{P}_{1} \mathrm{QP}_{2}$. IC24, pin 8 , and IC25, pin 3, produce the second two bit sum $\mathbf{P}_{3}+\mathbf{P}_{4}$. These sums are then added together by IC26, producing the three bit sum $P_{1}+P_{2}+P_{3}+P_{4}$. An identical adder serves for the " 1 " results; this is also shown in Fig. 3.4.

CONSTRUCTION

The main board positions of the i.c.s are shown in Fig. 3.5, and with reference to the circuit diagrams of Figs. 3.1 and 3.4 the wiring is very straightforward and is carried out using single cored wire on the blank side of the board.

The timing, reset and equality signals are connected to a large number of i.c.s, some of which have yet to be described, It is for this reason that the most important of these are wired to a signal bus, organised as in Fig. 3.5. The connections to the i.c.s from this bus may then be made using wires of a recognisable colour particular to each different signal.

The six outputs from the "P" and "I" adders are taken to six Veropins, as shown in Fig. 3.5, ready for connection to the display board later.

TEST SCHEDULE

The timing circuits are to be tested first as these are required in order to test the rest of this month's construction.

(a) The Entry Counter

This is readily checked as follows. Press either $\mathbf{S 7}$ or S8 and using a logic probe or a voltineter (d.c.) verify that all outputs of IC20 are at logical 0 . Then using the colour entry buttons, check that the counter operates. (Note that a logical 0 will be in the region of 0.5 V and a logical 1 approximately 3.5 V .)

(b) The Comparisons Coumter

An almost static test may be performed on this by slowing down the master clock, IC2, to a frequency below 1 Hz . This is achieved by placing a large electrolytic capacitor (approximately $4,700 \mu \mathrm{~F}$) temporarily in parallel with C_{3} of IC2. This clock will now be slow enough to enable the counter to be monitored using a d.c. voltmeter and Fig. 3.2 verified.

With the master clock operating so slowly it will be necessary to hold an entry button depressed for about ten seconds in order to give all the signals from this counter a chance to appear.

Verify that $\overline{\mathrm{R}}_{\mathrm{L}_{2}}$ goes low whenever a first entry or one of $\mathbf{S 7}$ or $\mathbf{S 8}$ is activated.

(c) The Flip Flops

Still keeping the clock running slowly, monitor and record the four X codes in ICs 3-6. Now, after clearing with $\mathbf{S} 8$, enter the first of these codes using the colour entry buttons, holding the button down until P_{1} sets. Enter the three remaining codes, after which all flip flops should be set. The output of the "P" adder, 1C26, should be $100(4)$ on pins 10,12 and 1 respectively, indicating that the entries were all correct for position.

Variation may be introduced by entering four colours, only two of which are correct for position, so that IC26 gives 010, etc.

In all these cases the PI signal, IC30 pin 8, should go low, whenever an entry correct for colour and position is made, following the setting of the respective " P " flip flop.

If these tests are successful restore the master clock to full speed and play a crude version of the game! Note that with the clock frequency of approximately 22 kHz the machine takes only $6 / 22000 \mathrm{sec}$. to produce signals $C_{0}-C_{5}$, so that even the shortest manual press on an entry button will allow plenty of time!
NEXT MONTH: Scoring logic continued.

EMPLOYMENT

Engineers' salaries have been creeping up during the year. Far more jobs are being advertised with salaries up to 25,000 with the occasional breakthrough to $£ 6,000$ or even more in special cases. But there are still far too many homebased jobs round the $£ 3,000$ mark which, at today's income levels, is almost an insult to qualified engineers.

If you can put up with the climate the best financial openings are still in the Middle East where senior people can earn over $£ 10,000$ tax free and tech. nician engineers $£ 7,500$ tax free plus a whole range of fringe benefits. Scanning through the classified columns the demand for engineers looks as high as ever it has been, but employers are clearly being selective.

How salary rates for engineers will fare during the next few months of free-for-all wage bargaining is anyone's guess but my own view is that engineers will fall back again relative to manual workers who are looking for a norm of $£ 5,000$ in those industries where militancy is rampant.

PRIVATE SECTOR LAGS

It will be interesting, too, to see whether private sector employees will recover their position relative to those in the public sector. The last IEE salary survey showed that qualified electronic engineers in the public sector were ahead by about $£ 1,000$ a year. And according to the Society of Electronic and Radio Technicians, technician engineers in the nationalised industries were £300 a year better off than their colleagues in the private sector.

It seems odd that while concern is being expressed that fewer and fewer of our young are showing interest in the engineering professions that the IEE,
whose membership has increased at an average of 650 over the past few years has, for the past two years enjoyed a gratifying increase. Last year it shot up by 2,000 and this year it was 1,200. Total membership is now about 70,000 .

This year the IEE's Career Consultancy Service is available to all members. The Service is to run on a pilot scale for two years. If successful and there is a genuine need it will be expanded.

WHAT'S GOOD FOR GEC ...

To paraphrase the old tag about General Motors we might say what's good for GEC is good for Britain. Sir Arnold Weinstock has done it again. Turnover for the first time has topped £2,000 million and pre-tax profits are up. Export orders nearly doubled to £936 million and GEC has a healthy cash balance in the bank of nearly £500 million.

To keep the pot boiling GEC has started a management game in which all the companies in the group are invited to enter teams. The game starts in September and runs through to next April. HQ of the game is GEC's management college at Dunchurch and each team's management decisions will be processed by GEC Midlands Computer Services Ltd. The idea is to get everyone in the group motivated towards business and what it's all about. Not every employee can directly participate but it is hoped that all will follow the fortunes of their own team.

THE TIDDLER

Compared with GEC, Racal is a comparative tiddler, but their annual report shows another year of dramatic growth. In 1972 turnover was $£ 21$ million with just over £3 million pre-tax profit. The 1977 figures are $£ 122$ million and $£ 32$ million. The forecast for $1977 / 78$ is for a turnover of $£ 200$ million. The company was formed in 1950 with a capital of £100.

Hard on the heels of Racal's acquisition of Milgo in the United States, Racal recently purchased Hellerman Cassettes Ltd from the Bowthorpe-Hellerman Group. Purchase price was $£ 825,000$ and the acquisition puts Racal-Zonal, the magnetic tape company, firmly in the cassette market.

Don't be surprised if other acquisitions by Racal are announced soon. Plessey, tipped as a possible, is defensive. Chairman Sir John Clark points out that Plessey is doing very nicely, thank you, with sales and profits both up and a record $£ 600$ million order book. While Sir John has been adamant that Plessey has not been talking to the National Enterprise Board, he is coy on the subject of discussions with other private enterprise companies.

CB RADIO

The lobby for Citizens Band two-way radio has been as active as ever. The prize for industry is said to be a home market in the UK of $£ 100$ million and the creation of 5,000 jobs. The penalty could be unholy pollution of the frequency spectrum. The entrepreneurs are looking enviously at the United States where over 20 million CB radios have been sold and they are looking for a similar bonanza in Europe. Even in the UK, cramped for space and not exactly overflowing with spare cash in the citizens' pockets, exponents of $C B$ are suggesting that UK sales could top a million units a year within two years of the service being sanctioned.

Heady figures, indeed. But it has already been pointed out that there is no guarantee that the sets would be made in UK. The Japanese are already old in the tooth at supplying the American market in which they are the dominating force with over 100 companies in the business. But, says the UK CB lobby, our sets will not be cheap junk on 27 MHz . We are aiming at 230 MHz with 44 channels and the sets will cost between $£ 100$ and $£ 200$ each.

Anyone with an atom on sense knows that the Japanese can and will supply the market whatever the technical specification. In principle, there is no reason why the UK should be denied CB radio. But its possible benefits to the UK electronics industry or to the citizen user needs more consideration than the bandying about of hypothetical statistics.

MPU INSTRUMENTS

Dr Colin Gaskell, technical manager of Marconi Instruments, warns of gimmickry in the use of microprocessors in instruments. He said at an SERT symposium at Keele University that few instruments are as yet making effective use of them. But he added that commercial security could well be keeping some exciting applications under wraps for the time being. He also warned that MPU technology is moving so fast that those now being used in some instruments may well be obsolete quickly and a buyer may have trouble in getting replacements if they fail in service.

PO SUCCESS

How nice to be able to congratulate the Post Office. 1 refer to the contract worth $£ 6.75$ million for assistance in planning the Libyan trunk telephone cable network. The contract is especially welcome because it is a repeat order from the same customer and ten times the size of the first consultancy order (worth $£ 650,000$) announced iust over a year ago.

AUTOMTIO SWITH: OFF

A system for automatically switching off a radio or TV receiver when transmissions cease has been patented in BP 1471 585, by Ashok Jain of New Delhi, and Bindu Gandhi of Bombay.

The object is to overcome the disadvantage of simple systems which may shut off the receiver whenever there is a temporary absence of audio or video signal but the transmitter is still on-air, e.g. during extended fadeouts. This is achieved by detecting the presence or absence of i.f. or r.t. signals rather than audio or video.

In the simplest circuit (Fig. 1) a d.c. amplifier receives rectified d.c. con-

Copies of Patents can be obtained from:
the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

sisting of i.f. or r.f. signals from a receiver, and is connected to power source S through S1. The output of the amplifier supplies the coil of relay RLA1, the relay contact being closed when the coil is not energised. The receiver is thus normally connected to power source S via RLA1.

To provide for automatic shut-down of the receiver when transmissions cease, switch S 1 is closed to activate the amplifier. This is biased so that it has no output whilst still receiving r.f. or i.f. from the receiver. Thus, when the supply of i.f. or r.f. ceases, the amplifier powers the relay to open the contact RLA1 and disconnect the receiver.

Clearly the disadvantage of this simple system is that the amplifier continues to draw current after it has switched off the receiver. This disadvantage is overcome in another circuit where the relay is again energised by the amplifier only in the absence of i.f. or r.f., but is a latched relay. Details are also given for a circuit which switches off the d.c. amplifier and receiver from the power source.

TVMIN Display
 8P 1444080

The Japanese company Matsushita, which makes National Panasonic and Technics equipment, patents (in BP 1454060) a novel approach to the digital display of tuning on a radio receiver. The idea behind the invention would also appear to have wider applications, for instance in the display of clock times.

The receiver tuning capacitor is connected by gears to a drum over which runs a continuous loop of opaque paper or photographic film. Thus as the receiver is tuned, the loop advances.

The loop carries a sequence of radio frequencies, encoded as sets of indicia, generally elongated perforations or clear patches of film. To encode three numbers: each set of indicia consists of three columns, and there are seven positions in each column.

A light source is arranged inside the loop and a sensing head lies opposite the light source on the other side of the loop material. The sensing head is laced with the ends of a bundle of optic fibres, the other ends of the fibres being laced into a display panel with three 7-bar numeral windows each in the form of a squared figure-of-eight. In dependence on the indicia positions
on the loop, various combinations of the display bars are illuminated by light picked up from the source to form digits between zero and nine. In this way, any 3 -digit number can be represented, to denote the frequency of a received broadcast station.

Ideally another light source is arranged opposite a photo cell, with the light path between this source and cell interrupted by a set of control perforations on the loop. The photo cell controls illumination of the main light source by solid-state switching circuitry. This ensures digital display only when the loop is in a position fully suited for display, i.e. when all three digits of a tuning frequency are correctly aligned with the optic fibres.

IV 14 in

BP 1471 369—Yazaki Sogyo KK: Taximeter. An indication of future development trends for taxicab fare meters. A device similar to a calculator, with a single display and single keyboard panel, integrates control pulses (on engine speed and distance travelled, etc.) and stores them in a memory. The stored information can be called up by
the keyboard and each item of data (fee for last fare, total fee for the day, miles travelled without fares) displayed on the readout window as required.

BP 1471 508-Messrs Leclercq, Poirier \& Guichard: Picture-phone Communication System. An elaboration of the basic picture telephone concept (with a camera and monitor at each end of the phone line), which enables a person being called to decide whether or not to accept the incoming call.

Pulses characteristic of the incoming call origin trigger a character generator to signal the incoming caller's identity before the called party picks up his telephone to accept the call and energise his camera.

BP 1466 902-Nissan Motor Co. Ltd.: Gear Interlocking Device. This is another electronic system providing electro-mechanical interlock between functions essential to operation of a car (this time a manual gear change lever) and the seat belt latches.

A weight-sensitive switch under the driver and passenger seats is interlocked with switches associated with the seat belts. In a "no go" condition (i.e. driver or passenger sitting without seat belt fastened) solenoids operate to jam the gear lever controls.

GBCZW Digital Frequency Meter

Complete 50 MHz kit $\mathbf{5 5 4} \cdot 00$ inc. VAT, post free (U.K.)

ZN1040E Count/Display I.C.

[^1] Integrated Circuit Pack Displays and Filter Pack Semiconductor and Diode Pack Resistor and Capacitor Pack Logic and Display P.C.B.s 5 MHz Crystal
Transformer 8-0-0V 0.5 A
(+75 p P. \& P.)
Switches KnOb BNC's atc.
Switches, Knob, BNC's etc. \quad-1.15

G8CZW Digital Voltmeter

hardware and Wire Pack toel punched and lettered eel, punched (+95p P. \& P.) Min BNC Sockets (50 ohm) Min BNC Plugs (50 ohm) 500 MHz Prescaler Kit SP06318 500 MHz I.C NE592 Wideband Video Amp Hi-Z Buffer Kit D.F.M. Reprint (post free)

Complete kit £44.30 inc. VAT, post free (U.K.)

Hardware and Wire Pack

ZNA116E 3t Digit I.C. Integrated Circuit Pack Displays and Filter Pack Semiconductor and Diode Pack Resistor Pack inc. cermets Capacitor Pack
Logic and Display P.C.B.s Voltage Attenuator Pack
Range Switch 6P. 4-way Case, Two-tone p.v.c.faced steel, punched and lettered (+95 p P. \& P.)
I.C. Sockets Pack

ELECTRONICS (OLDHAM) LTD. 83 Lees Road, Oldham OL4 1JW Tel. 061-624 8812

> MMS316 clock chips C3-50; 200PF twin solid dialectric varlable caps tIn apindle 33 p ; Orundig olectret mike Ineerte with F.E.T. preamp $\mathbf{5 1 - 5 0 ;}$ PL250 pluge with reducer 55p; 80230 sockete alngle hole or standard mtg . 40 p ; 12 V reed relay 4 make $20 \mathrm{p} ; 12 \mathrm{~V}$ sealed relay 3 pole
cored solder per reel $22.50+35 \mathrm{p}$ P. + P.; stereo Preemp chassis with controls ceramic
input with circuit $\mathbf{E 3} \cdot 50+50 \mathrm{p}$ P. + P.: 100 V 10 mmp bridge rectifiers 35 p ; 300 kHz HCBU
crystala 40p; 500 MTR reels twin sollid core connecting wire $£ 4.00+85 \mathrm{p}$ P. + P.: CV2184 21 in
C.R.T. with P.D.A. $21 \cdot 95+80 \mathrm{p}$ P. + P.; Board with 1412 V reed relays, 82.40 ; MHH 3 mmp
smoothing chokea 30p; 6-12V d.c. G.P.O. buzzere 30p; 6-12V hooters 50p; Board with 6 V
mercury relays diodes etc. $\mathrm{a} 2+75 \mathrm{p}$; Newmarket power supply 240 V a.c. input 8 V d.c. output
at 250 mA Et .85 ; Cryetal microphone inserts 37 mm 60 p ; Bridge rectivier 500 V 800 mA ox.
squip. 10 mm cube $2 \mathrm{sp;}$ Long + medium wave serials tin $\times 8$ in $40 \mathrm{p} ; 240 \mathrm{~V}$ a.c. solenoid 45 p ;
24 V d.e. solenoid heavy duty 75p; tereo decoder boards with SN76104 I.C. 12 V E2; 100-0-100
$10 v e l$ metere Tip; Stereo tuning meterat 100μ per movement $2.15 ;$ Level meter $20 \mathrm{~mm} \times$
electro-mech. counter 24 V d.c. with count carry contact 50 p; Cunty leade 7 core heavy, 5 t
max. $39 p ;$ sev e.c. geered motor driving 24 way atud contaci switch bsp; Connecting wire 5
$\times 5$ yard lengthe multi coloure 30p; 12 V a.c. 3 c/o 5 A 11 pin RLA, new, $95 p$.
M.8.1. th. TAPE HEADS
TD10 dual head aseemblies \& track record playback staggered stereo with built-In erase pe
head t1-20; 4 SE STD \& track erase heads 30p; Mono cassette head jap sop.
MANAS THANSFORMEAS 240 V a.c. primary
0-0-0V 100mA $75 ; 9-0-9 V 75 \mathrm{~mA} 75 \mathrm{p} ; 12-0-12 \mathrm{~V} 50 \mathrm{~mA} 75 \mathrm{p} ; 12 \mathrm{~V} 500 \mathrm{~mA} 95 \mathrm{p} ; 15-0-15 \mathrm{~V} 1 \mathrm{amp} \mathrm{m}$

> 2.5 mp $22 \cdot 20+35 p$ P. $+P$.
> MOTOA model $1.5-0 \mathrm{~V}$ d.c. 20 p ; 240 V a.e. $1 / 2$ th R.P.M. 65p; 240 V a.c. '1th R.P.M. 65p; 3 $\begin{aligned} & \text { R.P.M. } 115 V \text { A.c. small mo } \\ & \text { COMPUTER CAPACITORA }\end{aligned}$
> $14,000 \mu 35 \mathrm{~V}$ d.c. NEW $7 \mathrm{SF}_{\mathrm{p}} ; 30,000 \mu 40 \mathrm{~V}$ d.c. NEW $7 \mathrm{~s}_{\mathrm{p}} ; 4.200 \mu 100 \mathrm{~V}$ d.c. NEW $7 \mathrm{~S}_{\mathrm{p}} ; 60,000 \mu 30 \mathrm{~V}$ $\begin{aligned} & \text { d.c. NEW }{ }^{55 p} \text {; } 20,000 \mu 45 \mathrm{~V} \text { d.c. ex. equip. } 40 \mathrm{p} \text {. } \\ & \text { T.V. ELECTHOLYTIC }\end{aligned}$
> T.V. ELIECTMOLYTICs
> 100 MFD 350 V d.c. 90 p ; 200 MFD 350 V.d.c. $00 \mathrm{p} ; 100+400+32$ MFD 275 V d.e. $80 \mathrm{p} ; 100+400$ $\begin{aligned} & +16 \text { MFD } 275 \mathrm{~V} \text { d.c. } 0 \text { Pp; } 150+150 \text { MFD } 350 \mathrm{~V} \text { d.c. } 60 \mathrm{p} ; 150+150+75 \text { MFD } 350 \mathrm{~V} \mathrm{d.c.} 60 \mathrm{p} ; 100 \\ & +100+200+300 \text { MFD } 275 \mathrm{~V} \text { d.c. } 60 \mathrm{p} ; 100+300+200275 \mathrm{~V} \text { d.c. } 60 \mathrm{p} ; 400+200+75+32\end{aligned}$

> 5 Sp 4,700 MFD ${ }^{8.3 V}$ d.c. ${ }^{2} \mathrm{EP}$ each.
> sfmiconductor ofpehs ALL FULL spec.
> OC45 15p; BF18120p; BF200 20p; BFS85 (Equiv.) 20p; 2N1893 20p; BC104C 12p; ZTX302 12p; Motorola MRD 50.51 photo transiators 33p; N. Channel F.E.T.S. similar to 2 N3819 20p; Lucas
transtator Ft. 300 mHz 30 p ; MAN 3 A 3 mm L.E.D. displays 50 p ; INTEL 1024 bit mos rams type
C1103-1 ESP.
S.P.S.T. $12 \times 8 \times 9 \mathrm{~mm} 54$ p; D.P.D.T. $12 \times 11 \times 9 \mathrm{~mm}$ EOp; D.P.D.T. centre off $12 \times 11 \times 9 \mathrm{~mm}$
7S; 4 pole 2 way sidider $20 p ; 2$ pole 2 way centre off alider 20 p ; 6 pole 3 way stider 30p; S.P.S.T.

> Project lists welcome.
> Postage 25p per item on orders under £2; 25p postage and packing on orders over $£ 2$ unless otherwise shown. VAT included in all prices. Excess postage refunded with order.

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2. Tel. 051-236 0982

Another Stirling Sound Winner

Coming between SS140 and SS1100 the new SS160 fills the gap in power amplifier modules ($3-100$ watts r.m.s.) that will particularly please those wanting a not-so-big disco or P.A. system as well as those with speakers needing plenty of power to drive them. With circuitry developed around a self-centering mid-rall, excellent results will come from using as little as 18 V power supply. (Power output will vary accordingly.) Because we use heavy duty components able to operate beyond our claimed specifications, you can buy and build with confidence. YOUR SS160 IS READY NOW AND WE HAVE MADE A NEW POWER SUPPLY UNIT (SS360) SPECIALLY FOR IT.

INC. VAT
post free

TWO GOOD MONEY SAVING OFFERS

The SSt100 100W r.m.s. amplifier ($\mathbf{\Sigma 1 0} \cdot \mathbf{5 0}$), the large finned heat-sink ($£ 1-50$) and the SS1370 power supply ($£ 14.75$)-TOTAL VALUE $£ 26 \cdot 75$.
INCLUDING VAT AND $\mathbf{1 2 4 . 7 5}$
POST FREE IN U.K.
Amplifier
$24: 75 \quad$ POST FREE IN U.K.
Amplifier outputs quoted in watts r.m.s. ± 1018
STIRLING SOUND POWER SUPPLY UNITS
With 13-15V take-ott points on ail models except SS312.

 $\mathbf{8 8 3 1 0 / 5 0}$. Stabilised supply; variable from $10 \mathrm{~V} 50 \mathrm{~V} / \mathbf{2 A}$. $\mathbf{8 1 7} \cdot \mathbf{7 5}$ 88300 . Power stabilising unit $10-50 \mathrm{~V}$ adjustable. $\mathrm{Es} \cdot 50$

PAY ONLY THE PRICE YOU READ-All prices quoted include VAT. Goods sent post tree in U.K. Owing to the time berween sending in our ad. and lit appearing to the poublic, pri

STIRLING SOUND

Dept. PE 107,
37 Vanguard Way,
Shoeburyness, Essex
Shop: 220-240 West Rd

Telephone: (03708) 5543 Westcliff-on-Sea, Essex

stirling sound, 37 Vanguard way, shoeburyness, essex

Please supply:
(for which I enclose cheque/money order E .
name
ADDRESS

The SS160 60W r.m.s. amplifier ($\mathbf{E 8} \cdot 50$). the finned heat sink (75 p) and the S 1360 power supply ($\mathbf{(1 2 2} \cdot 75$)-TOTAL VALUE £22-00. ncluoing vat and 921.00

Y UNIT

SSO 9DF
Telephone: (0702) 351048

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere

MULTICHANNEL OVERLOAD PROTEGTOR

Fig. 1

WHERE it is necessary to supply circuitry with several differen voltages at various currents, overload protection can become quite complex. A simple fuse will rarely act quickly enough to protect delicate components

Conventional electronic protection circuits rely on a voltage developed across a sensing resistor by the error current turning on a transistor or thyristor, the latter turning off or reducing the output of the power supply

Fig. 1 illustrates a somewhat unconventional approach to overload protection. It is fairly fast-acting, effective from a few milliamps upwards, is easily added to existing circuitry, and provides complete isolation between the different supplies monitored

When excessive current is drawn by a monitored circuit, the voltage across
a sensing resistor, R_{s}, rises above 2 V This causes a parallel wired l.e.d. to light up, the current through the latter being limited by R3. All l.e.d.s are directed on a light dependent resistor, which triggers a thyristor when illuminated, RI limiting the thyristor gate current. The s.c.r drives a relay. Its normally closed contacts (one set for each monitored circuit) open, cutting off all power supplies. A lamp in series with the relay lights up, indicating that the trip has operated. The power supplies remain isolated until reset by S1

The device may be powered by its own supply, or from one being monitored. R2 is selected to limit the relay/lamp current to a suitable level

The minimum operating voltage is about 12 V , at which level R 2 is omitted

The l.e.d.s. are mounted pointing at R4, and it is essential to exclude
extraneous light from this vicinity The number of channels which can be monitored is limited by the number of l.e.d.s it is possible to direct upon the l.d.r., and the sets of relay contacts.
$\mathbf{R}_{\mathrm{s}}=$ (2 V divided by required max current) ohms.

Power rating $=\mathrm{R}_{\mathrm{S}} \times$ (max. current ${ }^{2}$
\mathbf{R}_{S} may be replaced by a fixed and variable resistor, allowing a continuously variable current limit. A wirewound potentiometer of ample rating is essential in this case. A typical set-up would be a 4 ohm 1W resistor and a 250 ohm 1 W potentiometer
B. Woodland,

Harlesden, London

MAINS TOUCH SWITCH

T
The circuit diagram of Fig. 1 is for a touch switch offering the advantages of negligible current consumption, complete mains isolation, high noise immunity, great sensitivity and low cost.
The heart of the circuit is a CD4016 or CD4066 integrated circuit containing four independent смоs bilateral switches. Only half of the i.c. is used, but the other half could be incorporated into another channel.
One bilateral switch is wired with positive feedback to form the ON/OFF
latch. The other is used to drive the unijunction transistor oscillator feeding high frequency pulses via isolating transformer T1 to the gate of the Triac. The transformer used in the prototype was made by winding 50 turns of $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire for each winding, on a 25 mm length of ferrite rod. The two windings must be well insulated from each other. The capacitors across each touch plate should be between 3.3 and 10 nF . Component values are far from critical.
With the 40669 Triac shown, loads of
up to 2 kW can be handled with an adequate heat sink. Without a heat sink, 250W is the limit. If the Triac will not turn on, more turns may be needed on the secondary winding of TI .

The 9 volt battery shown may be replaced by a small battery eliminator if required. The voltage is not critical and may range between 9 and 15 volts.
S. M. Fifield,

Twickenham.

FLASH TRIGGER

The circuit in Fig. 1 is a multi-mode flash trigger which can be operated as a slave flash, sound operated flash, or simply as an independent flash for nonsynchronised cameras.

Phototransistor TR1 is an OCP71, which can be switched either by the incident light on its junction, or by a voltage at its base. In either case the collector voltage rises causing TR2 to turn on, whose emitter then rises to almost supply voltage, thus firing CSR1 via R3. The voltage at the base of TR2 can be varied by VRI, and this therefore acts as a sensitivity control. To determine the optimum setting, the unit can be operated with S2 set to turn on LPJ instead of firing the flashgun. Limiting resistor R1 protects TR1 from excessive collector current, and similarly R3 protects the gate of CSR1. Resistor R5 is a voltage dropper to enable a $6 \mathrm{~V}, 60 \mathrm{~mA}$ bulb to be used for LP1.

When the unit is used in the soundtriggered mode, the crystal microphone will generate sufficient voltage (via C2) to switch TRI on, without the need for

intermediate amplification. Used in the independent mode, $\mathrm{S} \mid$ acts as the trigger button, by applying bias directly to TR2; this operation of course being irrespective of the sensitivity setting.
It is suggested that the microphone is connected via a phono socket so that it may be unplugged when the unit is being used in the light-triggered slave mode. The output should be connected via a proper flash plug and socket, which will be available from most photographic dealers.

Normally, both electronic and bulb flashguns use the inner terminal of the flash socket as the positive pin, but it may be best to check first using a multimeter.

The sound-triggered flash has many intriguing applications. Photographs may be taken of glass at the instant of shattering, or a champagne cork leaving the bottle, and many other sudden events too quick for the eye to see.
G. Stokes,

Walsall

NEWS BRIEFS

Intelligent Instruments

THE effect of the microprocessor on electronic instruments, both present and future, was one of the principal topics at the recent symposium on Electronic Measurement and Instrumentation, organised by the Society of Electronic and Radio Technicians at Keele University. The event attracted a broad spectrum of instrument manufacturers and users, plus the fine weather which has become almost a tradition for SERT symposiums.

The first benefit of the microprocessor has been the simplification of front panel layouts. Placing of controls is far less subject to mechanical constraints, and scaling factors can be taken care of "behind the panel" without resort to cams, linearising adjustments, etc. Digital readout of output level on a signal generator, for example, can be switched to provide the data in volts, microvolts, $\mathrm{dBm}, \mathrm{dBV}, \mathrm{d} \mathrm{B} \mu \mathrm{V}$ or whatever, according to what the test schedule for a particular piece of equipment calls for, with a great reduction in the mental arithmetic required, and in control markings.

The future of the microprocessor, as seen by at least one manufacturer, was the replacement of the presently used minicomputer in a "universal measuring system". Not quite universal; the one restriction is that what you want to measure must be capable of being displayed on the screen of an oscilloscope

The displayed waveform-be it repetitive or transient-is digitised and stored in memory. Then any desired characteristic of the waveform can be computed, be it frequency, period, amplitude, peak or average power, rise or fall time, etc., and displayed
in whatever form and units required. As one speaker remarked, this could make a lot of other instruments obsolete.

In general, it was thought that many instruments of the future would be of the form: a alogue to digital converter; digital processor; digital to analogue converter or other output interface; display

Incidental benefits of using a microprocessor are that it can be used to carry out continuous calibration checks and adjustments, and to diagnose fault conditions, within the instrument, so reducing the m.t.t.r. (mean time to repair). From telling you what repairs are required, the next stage is presumably an instrument that can repair itself!

SERT Microprocessor Symposium

Readers who have a particular concern in the applications of microprocessors will be interested to learn that a residential symposium, entitled "Microprocessor Systems and Software", has been organised by the Society of Electronic and Radio Technicians for the 26 to 29 September, at the University of Kent.

Five technical sessions are being arranged. The first will be an introduction covering the terminology, the ranges of microprocessors available, the principles of a working system and the need for software. The second will be on basic programming techniques and aids including an overview of programming, machine codes, assemblers and loaders, PROM programming, program development aids, system testing and documentation of software.

These will be followed by three other sessions giving examples of working systems in use, the papers here outlining the original requirements and the associated hardware and software solution.

The papers will be presented by experts from research departments in industry and universities, the Post Office, and research associations. There will be discussion sessions, an associated exhibition, and a full social programme.

Further details and registration forms can be obtained from the Secretary, Society of Electronic and Radio Technicians, Faraday House, 8-10 Charing Cross Road, London, WC2H 0HP

Amnouncing the Winner... TR

Foundations of Wireless and Electronics

\author{

- 9th Edition by M. G. Scroggie
 521 pages
 $£ 3.75$
}
"Mr Scroggie is authoritative without being academic or dogmatic "
"A rich compilation of many subjects so much so that any engineer, scientist or technician who has thorough/y digested it knows properly all the essential groundwork of electronics."

Finlay (Tyne \& Wear)
"We found important knowledge, adequately expounded, that is only skimmed over in other books we have"

Blake (New South Wales)

Congratulations to Mr John Chadwick Finlay of East Boldon, Tyne \& Wear, the winner of the Quarter Million Competition. The prize is a beautiful crimson leather bound, gold embossed copy of the book.
"There is now, and there will always be, a strong demand for a book which combines the basic principles of Electronics and Wireless with a lucid and immensely readable style. This is such a book, and is in my opinion the definitive work for all beginners in the vast field of Wireless and Electronics." Dickens (Leeds)
"The best book for the lab. or shelf". Hall (Norwich)
"The popularity of "Foundations of Wireless and Electronics" is its completeness regarding the essential foundations of the subject " "

Gibson (Leeds)

TRANSFORMERS
ALL EX-STOCK—SAME DAY DESPATCH. VAT 8%

12 AND 24 VOLT OR 12-0-12V PRIMARY 220-240 VOLTS Amps				
Ref	12 V	24 V	f	\mathbf{P} \& \mathbf{P}
111	0.5	0.2	$2 \cdot 20$	0.45
213	1.0	0.5	2.64	0.78
71	2	1	3.41	0.78
18	4	2	4.03	0.96
70	6	3	$5 \cdot 35$	0.96
108	8	4	6.98	$1 \cdot 14$
72	10	5	7-67	$1 \cdot 14$
116	12	6	8.99	$1 \cdot 32$
17	16	8	10. 39	1-32
115	20	10	13.18	2.08
187	30	15	17.05	2.08
226	60	30	26.82	OA
50 VOLT RANGE				
Prim 220/240V Sec 0-19-25-33-40-50V				
Voltages available 6, 7, 8, 10, 14, 15, 17,				
18, 25, 31, 33, 40, 50 V or 25-0-25V P e P				
102			3.41	0.78
103			$4 \cdot 57$	0.96
104			6.98	1.14
105			$8 \cdot 45$	+ 32
106			10.70	$1 \cdot 50$
107			14.62	1.64
118			17.05	2.08
119	10		21.70	OA

MAINS ISOLATING (SCREENED)
PRIM 120/240 SEC $120 / 240 \mathrm{CT}$

PRIM 120/240 SEC $120 / 240 \mathrm{CT}$			
Ref	VA (Watts)	\&	
07	20	4.40	0.79
149	60	6.20	0.96
150	100	7.13	1.14
154	200	11.16	1.50
152	250	12.79	1.84
153	350	16.28	2.15
154	500	19.15	2.15
155	750	29.06	$0 A$
156	1000	37.20	$0 A$
157	1500	45.60	$0 A$
158	2000	54.80	$0 A$
159	3000	79.05	$0 A$

HIGH VOLTAGEMAINS
Prim 200/220V or $400 / 440$ Sec $100 / 120 \mathrm{~V}$ or $200 / 240 \mathrm{~V}$

	Sec 10	20	
60	243	5.89	P
350	247	14.11	$1: 8$
0	250	35.65	

30 VOLT RANGE oltages 220/240V Sec 0-12-15-20-24-30V Voltages available $3,4,5,6,8,9,10,12$,
$15,18,20,24,30 \mathrm{~V}$ 15-0-15V,12-0-12

Our wide range of transformers are too numerous to IIst, please cail (open 9am-5pm Mon-Fri) or send your

P.E. JOANNA

ELECTRONIC PIANO

ALL PARTS CAN BE SUPPLIED

Keyboard, Keyswitch, P.C.B.s, Hardware. Semiconductors Resistors, Capacitors, Cabinets Complete kits or easy stages Send S.A.E. for details

Clef Products

31 Mountfield Road
Bramhall, Stockport, Cheshire SK7 1LY

All prices include V.A.T Carriage \& packing add 25p (U.K.). Addextra for overseas. Cash with order only Discounts over $£ 5$ less 5% extra for overseas. Cash with order only Discounts over $£ 5$,over $£ 10$ less 10%. over $£ 25$ less 15%. over $£ 50$ less 20%				ASTRA-PAK 92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB							. ${ }^{\text {a }}$	* NEW * FULLY GUARANTEED COMPONENTTS * FULL SPEC SEMICONDUCTORS \# QUANTITY DISCOUNTS \#SEND S.A.E. FOR COMPLETE LIST *							
											$\begin{aligned} & 4042 \\ & \hline \text { 4044 } \\ & \text { So49 } \\ & \hline 049 \end{aligned}$.90 .95 5	${ }^{7111^{1 / 4}} \mathbf{2 . 3 2}$		16 26 20 30		, 74		
													50			30			
	5	055	${ }^{06}$		$1{ }_{11}^{12}$. 38	${ }_{\text {N }}$. 055			${ }_{\text {dor }}^{4069}$	${ }_{26} 8$		${ }^{3} 4.35$	$\underset{\substack{33 \\ 16 \\ 16}}{ }$		75	
	${ }_{10}^{68}$	${ }^{055}$	${ }^{09}$	-	11		. 08	04	. 075	$2{ }^{2} 3710$		2093	20	${ }_{79}^{78515}$				45	
CARBon film resistors	22 33 O8 08	085.10	15		,	OAas	-07	Na005	109	-		${ }_{12}^{22}$	201	. 20	(ial		96		(15
Oweach . 09 tor 10 or any one value	47 100 .08 10	13	${ }_{26} 19$	$\underset{\substack{\text { BCryo } \\ \text { BCry }}}{ }$	18	OA	. 98	Natoor	11	込	¢	,	1.00			${ }^{16}$		37	
		${ }_{16}{ }^{1} .20$	${ }_{32}^{28}$	${ }_{80131}^{8.81}$	40	Oc35	${ }_{78}^{8}$	N5402	16	2N40	${ }_{12}$. 05	${ }^{7400}$-16	7533	16		, 50	
sockers	33	29	${ }^{36}$	${ }_{\substack{80132 \\ 8 \times 885}}^{\substack{\text { Pr }}}$	${ }_{4}^{41}$	${ }_{\text {OTP }}^{\text {OC36 }}$. 46	${ }_{\text {cose }}^{592}$	${ }_{06} 05$			${ }^{3} 5956$	${ }_{80}^{98}$	7403				${ }^{5}$	
a	770 78	${ }^{20}{ }_{20}^{20}{ }^{29}$			24	${ }_{\text {T1p }}^{\text {Tp } 2988}$	52	2NT066	15	${ }_{400}^{400}$				${ }_{7}^{7404}$				1.00	
${ }_{60}{ }_{60}$ Ambeer 25				Bet		T103	54		35			70914		${ }^{7406}$			74	50	
							54		co	($\begin{aligned} & 4012 \\ & 4013 \\ & 0015\end{aligned}$				${ }^{2407}$					
(6amp 4000.78					$\begin{aligned} & .20 \\ & .25 \\ & .65 \end{aligned}$		$\begin{aligned} & 82 \\ & .85 \\ & .68 \end{aligned}$			(${ }_{70}$						
	.005		11	Mje ${ }_{\text {Ma }}$		(1ipali	$.67$		12	402			50	${ }_{7412}^{741}$		25		${ }^{1.25}$	
	. 09			MJES521			75		7			-				42		.95	
1.00												${ }_{7}^{515}$	${ }_{.32}{ }^{36}$	3476 177		${ }_{42}^{48}$. 40	

	EP_{1}		sp_{5}		Ep		Ep		sp
AA119	0.20	BCY71	0.22	*MPSU01	$0 \cdot 32$	*ZTX550	0.18	7403	0.20
AAY30	0.13	BCY72	0.17	*MPSU06	0.40	1N914	0.07	7404	0.28
AAY32	0.15	BCZ11	1.50	-MPSU56	0.45	1N916	0.07	7405	0.28
AAZ13	0.25	BD115	0.60	NKT401.	2.00	1 N 4001	0.06	7406	0.55
AAZ15	0.31	BD12t	1.50	NKT403	1.73	1 N 4002	0.07	7407	0.55
AAZ17	0.25	BD123	1.50	NKT 404	1.73	1 N 4003	0.08	7408	0.28
AC107	0.75	BD124	1.00	NE555	0.45	1 N 4004	0.09	7409	0.20
AC125	0.30	BD131	0.51	OA5	0.75	1N4005	0.13	7410	0.20
AC126	0.25	BD132	0.54	OA7	0.55	1N4006	0.15	7412	0.26
AC127	0.25	*BD135	0.35	OA10	0.55	1N4007	0.15	7413	0.45
${ }^{\text {AC128 }}$	0.25	*BD136	0.39	OA47	0.14	1N4009	0.15	7416	0.40
AC141	0.20	*BD137	0.37	OA70	0.30	iN4148	0.07	7417	0.40
AC141K	0.30	*BD138	0.40	OA79	0.30	TN5400	0.14	7420	0.20
${ }^{\text {A C }} 142 \mathrm{~L}$	0.20	*80139	0.43	OAB1	0.30	TN5401	0.16	7422	0.25
AC142K	0.25	*BD140	0.47	OA85	0.30	1S44	0.06	7423	0.35
AC176	0.25	BD144	2.00	OA90	0.08	15920	0.08	7425	0.35
AC187	0.25	BD181	$1 \cdot 38$	OA91	0.08	1S929	0.08	7427	0.35
AC188	0.25	BD182	1.45	OA95	0.08	2G301	1.00	7428	0.50
${ }^{\text {A Cry }} 17$	0.85	B0237	0.60	- A 200	$0 \cdot 10$	2G302	1.00	7430	0.20
${ }_{\text {A }}{ }^{\text {cri }} 18$	0.85	8 B 238	0.85	OA202	0.11	26306	$1 \cdot 10$	7432	0.36
${ }^{\text {ACY }} 19$	0.65	BDX10	0.75	OA210	0.75	2N404	0.80	7433	0.37
ACrzo	0.65	BDX32	2.25	OA211	0.75	2N696	0.25	7437	0.42
ACY21	0.65	BDY20	1.42	OAZz00	0.85	2N697	0.18	7438	0.37
ACY39	1.00	BDY60	0.75	OAZ201	0.65	2N698	0.30	7440	0.22
AD149	$0 \cdot 70$	BF115	0.39	OAZ206	0.65	2N705	0.80	7441AN	0.92
AD161	0.75	BF152	0.25	OAZ207	0.65	2N706	0.12	7442	0.78
AD162	0.75	BF153	0.25	OC16	1.25	2N708	0.21	7447AN	1.20
AF106	0.45	BF154	0.25	0 C 20	2.00	2N930	0.28	7450	0.20
AF114	0.25	BF 159	0.35	0 C 22	2.50	2N1131	0.20	7451	0.20
AF115	0.25	BF160	0.30	OC23	2.75	2N1132	0.28	7453	0.20
${ }_{\text {AFP16 }}$	0.25	8F167	0.39	$\bigcirc \mathrm{OC} 24$	3.50	2N1302	0.37	7454	0.20
AF117	0.25	BF173	0.39	OC25	0.90	2N1303	0.37	7460	0.20
AF139	0.40	BF177	0.38	$\bigcirc{ }^{\circ} \mathrm{C} 26$	0.90	2N1304	0.45	7470	0.35
AF186	1.50	BF178	0.45	OC28	2.00	2N1305	0.45	7472	0.36
AF239	0.45	${ }^{\text {BF }} 179$	0.45	OC29	2.00	2N1306	0.50	7473	0.36
AFZ11	2.75	BF180	0.45	OC35	1.50	2N1367	0.50	7474	0.40
AFZ12	2.75	BF181	0.45	${ }^{\circ} \mathrm{C} 36$	1.50	2N1308	0.60	7475	0.59
ASY26	0.45	8Fi82	0.45	0 O 41	0.50	2N1309	0.80	7476	0.42
ASY27	0.50	BF183	0.45	OC42	0.50	2N1613	0.33	7480	0.80
ASZ15	1.25	${ }^{\text {BF } 184}$	0.39	OC43	1.50	2N1671	1.50	7482	0.85
ASZ16	1-25	${ }^{\text {BF } 185}$	0.37	OC44	0.50	2N1893	0.33	7483	1.00
ASZ17	1.25	*BF194	0.12	OC45	0.50	2 N 2147	1.40	7484	1.00
ASZ20	0.75	*F195	0.11	OC71	0.45	2N2148	1.65	7486	0.40
AS221	1.50	-BF196	0.13	OC72	0.45	2N2218	0.33	7490	0.52
AU113	1.70	*EF197	0.14	OC73	1.00	2N22 19	0.42	7491AN	0.85
AUY10	1.70	BF200	0.32	OC74	0.50	2 N 2220	0.35	7492	0.80
BA145	0.15	*BF224	0.20 0.35	OC75	0.60	2N2229	0.22	7493	0.70
BA148	0.15	*BF244	0.35 0.37	OC76	0.50	2N2222	0.25	7494	0.80
BA154	0.10 0.12	BF257 BF258	0.37 0.42	OC77	1.20	2 N 2223	2.75	7495	0.80
BA155	0.12	${ }^{\text {BF258 }}$	0.42	OC81	0.75	2N2368	0.17	7496	0.90
BA156	0.13 0.05	${ }_{* 8 F 259}^{\text {EF }}$	0.45 0.50	OC812	1.00	2N2369A	0.21	7497	3.67
BAWE2	0.05	*BF336	0.50	OC82	0.75	2N2484	0.21	74100	1.75
BAX13	. 0.07	${ }^{\text {* BF337 }}$	0.53 0.55	OC83	0.55	${ }^{2 N} 2646$	0.50	74107	0.45
BAX16	0.07	*8F338	0.55	OC84	0.80	2N2904	0.35	74109	0.88
$\mathrm{BCl}^{\text {BC7 }}$	0.12 0.12	AFS21	2.27	OC122	1.50	2N2905	0.35	74110	0.57
$8 \mathrm{BC108}$	0.12	BFS28	1.38	OC123	1.55	2N2906	0.25	74111	0.86
BC109	0.13 0.15	*BFS61	0.25	OC139	1.25	2 N 2907	0.21	74116	1-89
${ }_{*} \mathrm{BC} 113$	$0 \cdot 15$	*BFS98	0.25	OC140	1.95	-2N2924	0.15	74118	0.95
${ }^{*} \mathrm{BC} 114$	0.18	BFW10	0.90	OC141	2.25	*2N2925	0.17	74119	2.00
*BC115	0.19	BFW11	0.00	OC170	0.60	-2N2926	0.13	74120	1.10
*BC116	0. 19	BFX84	0.38	OC171	0.60	2N3053	0.25	74121	0.45
${ }_{*}^{* B C 117 .}$	0.22 0.16	BFX85 BFX87 BFX	0.41 0.35	OC200	1.00	2N3054	0.50	74122	0.60
*BC125	0.16 0.18	BFX BFX88	0.35 0.32	OC201	1.50 1.25	2N3055	0.65	74123	1.00
*BC+26	0.25	BFY50	0.28	OC203	1.25	2N3441	0.60	${ }_{74126}$	O. 0.400
*BC135	0.15	BFY51	0.26	OC204	1.25	2N3442	1.20	74128	0.80
*BC136	0.19	BFY52	0.28	OC205	1.75	2N3525	0.90	74132	0.80
*BC137	0.16	BFY64	0.30	OC206	1.75	2 N 3614	$1 \cdot 20$	74136	$0 \cdot 68$
*BC147	0.10	BFY90	1.32	$\bigcirc{ }^{\circ} \mathbf{C} 207$	$1 \cdot 25$	*2N3702	0.15	74141	0.45
*BC148	0.10	BSx19	0.34	OCP71	1.25	- 2 N3703	0.15	74142	3.00
*BC149	0.13 0.12	BSX20	0.34 0.32	ORP12	0.70	* 2 N3704	0.15	${ }^{74143}$	3.00
*BC159	0.12 0.11	BSx21	0.32 1.25	* ${ }^{\text {R } 200088}$	2.25 2.25	*2N3705	0.15 0.14	74144	3.00
*BC159	0.13	BTY79/400R	3.19	*R20108	2.25	- 2 N3707	0.10	74147	2.45
*BC167	0.13 0.16	*BU205	2.25 2.25	T1C4	0.36	*2N3708	$0 \cdot 14$	74148	2.00
*BC170	0.16	*BU206	2.25	T1C226D	$1 \cdot 30$	*2N3709	0.15	74150	1.75
*BC171	0.14	* Bu208	2.50 0.45	T1L209	0.25	-2N3710	0.14	74151	0.90
*BC172	0.13	BY100	0.45	*T1P29A	0.50	*2N3711	0.15	74154	2.00
* ${ }^{\text {BC173 }}$	0.15	BY126	0.14	*T1P30A	0.60	2N3771	1.60	74155	0.90
${ }^{\text {BC177 }}$	0.19 0.18 0.18	BY127 BZX61	0.15 0.20	T1P31A	0.62	${ }^{2 N} 3772$	1.70	${ }_{7}^{7156}$	0.90
BC 178 BC 79	0.18 0.20	${ }_{\text {B }}$	0.20	T1P32A	0.75	2N3773	2.85	74157	0.90
*BC182	0.11	BZY88	0.13	T1P34A	1.00 1.20	+2N3819 * 2 N 3820	0.36 0.4	74159 74170	2.50 2.60
*BC183	0.11	Series		T1P41A	0.70	*2N3823	0.60	${ }_{74172}$	$2 \cdot 60$ 5.00
*BC184	0.12	CRS 1/05	0.45	T1P42A	0.90	2N3866	1.00	74173	1.75
*BC212	0.14	CRS1/40	0.60	T1P2955	1.00	*2N3904	0.21	74174	1.57
* BC 213	0.14	CRS3105	0.45	T1P3055	0.50	*2N3905	0.22	74175	1.00
* BC 214	0.17	CRS 3140	0.75	${ }^{*}$ T1S43	0.35	*2N3906	0.22	74176	1.10
*BC237	0.17	CRS 3160	0.90	*ZS140	0.25	*2N4058	0.20	74178	1.65
* BC238	0.12	GEX66	1.50 1.75	*S Z 170	0.12	*2N4059	0.15	74179	1.65
$8 \mathrm{BC301}$	0.45	GEX541	1.75	*2S178	0.54	*2N4060	0.20	74180	1.85
${ }^{86} 303$	0.80	G.3M	0.75 0.75	-25271	0.22	*2N4061	0.17	74190	1.48
*BC307	0.20	G.5M	0.75	-2S278	0.58	-2N4062	0.18	74191	1.48
$\because 8 C 308$	0.18	GJ7M	0.75	-2TX107	0.11	-2N4124	0.17	74192	1-25
*BC327	0.22 0.18	${ }^{\text {GMO378A }}$	1.50 0.40	*2TX108	0.10	${ }^{2} \mathrm{NNA}_{126}$	0.17	74193	1.25
*BC328	0.18 0.18	${ }^{\text {- KS }}$ MJE340	0.40 0.58	*ZTX109	0.12	*2N4286	0.20	74194	1.25
*ВС338	0.18	MUE370	0.65	- 2 TTX $\times 301$	0.12 0.13	*2N4288	0.25	74195	1.10 1.20
ВСү30	1.00	MUE371	0.81	-2TX302	${ }_{0} 0.17$	-2N5457	0.25 0.35	74196 74197	1.20 1.00
BCY31	1.00	MUES20	0.65	- 21×303	0.17	-2N5458	0.35	74198	2.25
BCY32	1.00	MJES21	0.75	${ }^{2}$ Z ${ }^{2} \times 304$	0.19	-2N5459	0.35	74199	2.25
ВС¢33	0.90	MJE2955	1.25	${ }^{2} \mathbf{Z 1 \times 3 1 1}$	0.12	3N125	1.75	*76013N	1.75
8CY34	0.90	MJE3055	0.75	*ZTX314	0.20	3N141	0.85		
8 BCY 39	3.00	*MPF102	0.30	-ZTX500	0.13	 INTEGRATED CIRCUITS 7400 0.20 7401 0.20 7402 0.20		Plugs in socket -low profile 8 pin DIL 0.15 14 pin DIL $\quad 0.15$ 16 pin DIL $\quad 0.17$	
BCY40	1.25	*MPF103	0.30	-ZTX501	0.14				
BCY42	0.30	*MPF104	0.30 0.30	-2TX502	0-16				
BCY43	0.32 0.23	*MPF105 *MPSA06	0.30 0.20		0.17 0.20				
ecy70	0.10	*MPSA56	0.20 0.20	*ZTX504	0.20 0.20				

[^2]

Home prices include VAT and carriage. Payment by cheque. PO COD 60ρ ($£ 50$ limin). Expon no probiem.
European prices inctude carriage, insurance and handling Dayment in 8 terling by bank dratt PO, European prices includg carriage insurance and handling payment in sterling by bank dratt, PO,
International Giro or Monoy Order. Outzice Europe please wrte for specific quote Dy return. Send SAE or two International Reply Coupons for full literature. Favourable trade quantity price list on request. Suitable proamp circuit 20 p .

DETECKNOWLEDGEY

DETECKNOWLEDGEY ?
Not a spelling mistake, but a new publication from AMBIT that sets out to explain some of the basic theory that surrounds metal location techniques. It is an explanation, that builds up from first principles, why iron sometimes reacts like a non-ferrous metal, what determines detector range, what the shortcomings are, how to avoid them. In fact, it explains about BFO, IB, VCO and Puise Induction techniques, as a result of research carried out to produce our range of locators, and why we chose the methods we used. As a general purpose reference work for designers, constructors, users etc., we think you will find it unique. $£ 1.00$ inc. postage.
Bionic Ferret Metal Locators
As a result of our investigations, we offer you three metal locators now: The VCO 4000, the IB phase angle meter, and the 'Pulsedec' pulse induction metal locator, It is impossible to catalogue the relative virtues of each type here, so please send an SAE for details.

Components for Wireless: ICs, Coils, Ceramic \& Mechanical Filters, trimmers etc
 MC1310/KB4400 2.20 NE555V* $\quad 0.70$ EF5600 5 cet varicap head

2.50 EC3302 3.cet varicap head	2.50	12.95
	7.50	507030 linear phase FM if system 10.95 91196 high spec mpx decoder 0.57 Other types in catalogue UA753

HA1137W HA1137W
CA3090AQ HA1196
UA720/CA3123E HA1197 TBA651

LM380N \begin{tabular}{ll|l}
\& 1.00 \& MVAM115 varicap

LM381N \& 1.81 \& MVAM125

\hline LM3900* \& 0.75 \& MVAM2

TDA2020 \& 2.99 \& BB104

\hline

\& 2.98 \& BB 104

TCA940 \& 1.80 \& BB105

\&

TBA810AS \& 1.09 \& BA102/BA121

MC1312 \& $\mathbf{1 . 5 0}$ \& ZTX/BC107/8/9
\end{tabular} 7805UC* 1.55 ZTX/BC212/4

78M12* /TDA1412 1.20 BC413

| $78 \mathrm{M} 20^{*}$ | 1.20 | ZTX451/551 |
| :--- | :--- | :--- | :--- | | | 1.20 | BD609 |
| :--- | :--- | :--- |
| UA723CN* | 0.80 | BD610 |

TAA550B* $\quad 0.50$ more in price list............ PPCB construction: SAE for leaflat pse

PLEASE NOTE: Vat is extra, at 12.5% except where marked * (8\%). PP 22p per order, An A5 size SAE for frae current price lists, or 40 p for the complete catalogue. Write to: 37a High Street, Brentwood, Essex. CM14 4RH. (tel. 0277-216029)

REVERSIBLE
ASSEMBLY FRAME FOR PRINIED CIRCUTS Simply assemble,turn over and solder

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE
$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c.

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEA. TURES YOU WILL EVER NEED

Accuracy: D.C. ranges, $\pm 2 \cdot 0 \%$, A.C. \& \cap ranges $\pm 2.5 \%$
39 ranges: d.c. $\mathrm{V}, 0.150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$; d.c. $, ~ 0.50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A}$, a.c. V. $5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$, $150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$; B.c. $1,5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A}: \mathrm{dB}-10$ to +65 in 6 ranges; $\Omega 0.05 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega, \mathrm{pF} 50 \mathrm{kpF}$.
500 kpF. 500 kpF .

Automatlc overload protection and hlgh current range fusing.
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.I. Class imovement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batteries. Supplied complete with carrying case, fused leads, handbook and full 12 -month guarantee. Optional $30 k V$ d.c. probe available.

Meter $£ 45.90$ incl. VAT ($£ 1$ P. \& P.)
30kV Probe £12.85 incl. VAT
For details of this and the many other exciting instruments in the Chinaglia range, including multi-meters, component measuring, automotive and electronic instruments please write or telephone. instruments Ltd.

19 MULBERRY WALK. LONDON SW3 6DZ TEL: 01-352 1897

Yourfree start to a rewarding new hobby:

Heathkit make the world's largest range of electronic kits.

Including amateur radio, test equipment, educational and general interest kits.

Every one of which comes to you absolutely complete-right down to the last nut and bolt.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

So, besides making an attractive, useful piece of equipment, you'll also have the makings of a satisfying, rewarding hobby.

To find out more, post the coupon and wéll send you our latest catalogue. Heath (Gloucester) Ltd., Dept. PE107, Bristol Rd. Gloucester, GL'2 6EE. Tel: Glos (0452) 29451.

HEATHKIT

BETTER BUILT BECAUSE YOU BUILDIT YOURSELF

The new Heathkit catalogue. Out now FREE

To: Heath (Gloucester) Ltd.,Dept. PE 107. Gloucester, GL2 6EE. Please send me my Heathkit catalogue.
I enclose an 1lp stamp for postage.

Name
Address

Showrooms at 233 Tottenham Court Road. London and Bristol Road, Gloucester.

bought this beautiful little milliamp-meter through the special Bargain List that Home Radio sent me when I bought a copy of their famous Components Cataloque. I reckon I saved a good $£ 1 \cdot 50$ on this one item alone-more than the catalogue itself cost. If I'm not mistaken, you got that natty transformer the same way,

so no doubt you're as familiar as I am with the scores of bargains they re offering
But have you noticed that there are quite a few bargains in the main catalogue itself? That Resistor Pack SP22 for instance-400 preferred value $\frac{1}{4}$ watt 5% resistors for only $£ 6$, beautifully arranged for easy selection. If that's not a bargain, what is? For those readers who have not yet caught on to the advantages of dealing with Home Radio let us explain. It's perfectly simple. Purchase a copy of the Home Radio catalogue, $£ 1.40$ including postage and packing or $£ 1$ over the counter. It has over 200 pages, listing about 5,000 items, nearly 2,000 of them illustrated. It's a marvellous production. With every catalogue Home Radio give you free an up-to-date Bargain List. You're on to a winner, so why wait? Send the coupon with a cheque or postal order for $£ 1.40$ to Home Radio Components, 240 London Road, Mitcham, Surrey

HOME RADIO (Componenis) ITD Depi PE 234.240 Lunilon Rodil Mitcham CR4 3HD Phune 01. 6488422

SPECIAL OFFER FOR READERS

£18. 50 inc VAT $+£ 1.45$ P. \& P. \& Ins.

```
* AM/FM Radio Alarm Clock (a.c. 220-240V only)
 24-Hour Clock
High quality white abs case
Push-button mode selection
- Sleep delay control
```



```
- Alarm with buzzer and/or music
All chrome control knobs
- Complies with BS415 (1972) safety requirements
Each unit fully inspected before despatch
muaranteed for one year
```

Please send cheque or postal order to

D. \& D. Power Supply Co Ltd 79 Lowfield Street, Dartford, Kent
 Please allow $10-14$ days for delivery Callers welcome Monday-Friday 9-5, Saturday 9-1

TMATIIPUS

A SEMICONDUCTOR POWER HOUSE
TRAMPUS ELECTRONICS LTD., 58-60 GROVE ROAD, WINDSOR eERKS. SLA 1HS. (Trade. export \& retall.)
Tel: Winasor (07535) 54525. Caflers welcome. Mon-Sat. 9 am-5 pm ast service. On ex stock product same day despatch normally. Quality Access by post or telephone $£ 5$ minimum. Vati add 8% to prices marked * Add $12 \mathrm{t} \%$ VAT to all other prices. Post and packing 20 p U.K. Send C.W.O. except Gov. depts. etc. Money back if not satisfied. Catalogue sale hist free, send S.A.E.

15-240 WATTS!
 The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired

HY5
 Preamplifier

 function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.FEATURES: complete pre-amplifier in single pack: multi-function equalisation: low noise: low distortion: high overload. two simply combined for stereo.
APPLICATIONS: hi-fi; mixers; disco; guitar and organ: public address.
SPECIFICATION: Inputs-magnetic pick-up 3 mV : ceramic pick-up 30 mV : tuner 100 mV : microphone 10 mV ; auxiliary $3-100 \mathrm{mV}$: input impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs-tape 100 mV ; main output 500 mV R.M.S. Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Distortion- 0.1% at 1 kHz ; signal/noise ratio 68 dB . Overload- 38 dB on magnetic pick-up. Supply Voltage- $\pm 16-50 \mathrm{~V}$. Price $55 \cdot 22+65 p$ VAT. P. \& P. free HY5 mounting board B.1. 48p + 6p VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available.
FEATURES: complete kit: low distortion: short. open and thermal protection; easy to build.
APPLICATIONS: updating audio equipment; guitar practice amplifier; test amplifier; audio oscillator. SPECIFICATION: Output Power-15W R.M.S. into 8Ω. Distortion- 0.1% at 15 W. Input Sensitivity500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $55 \cdot 22+65 p$ VAT. P. \& P. free
The HY50 leads I.L.P.s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion: integral heatsink: only five connections: 7 amp output transistors: no external components.
APPLICATIONS: medium power hi-fi systems: Jow power disco: guitar amplifier.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-25W R.M.S. into 8Ω. Load Impedance-4-16 Ω. Distortion- 0.04% at 25 W at 1 kHz . Signal/Noise Ratio-75dB. Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $\pm 25 \mathrm{~V}$. Size- $105 \times 50 \times 25 \mathrm{~mm}$.
Price $56.82+85 p$ VAT. P. \& P. free
The HY120 is the baby of I.L.P. s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion; integral heatsink; load line protection: thermal protection; five connections; no external components.
APPLICATIONS: hi-fi: high quality disco: public address. monitor amplifier, guitar and organ
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- -60 W R.M.S. into $8 \mathrm{\Omega}$. Load Impedance-4-16 Ω. Distortion- 0.04% at 60 W at 1 kHz . Signal/Noise Ratio- 90 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $\pm 35 \mathrm{~V}$. Size $-114 \times 50 \times 85 \mathrm{~mm}$.
Price $£ 15 \cdot 84+£ 1 \cdot 27$ VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATUAES: thermal shutdown: very low distortion: load line protection: integral heatsink; no external components.
APPLICATIONS: hi-fi; disco: monitor; power slave; industrial: public address.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-120W R.M.S. into 8 8 . Load Impedance-$4-16 \Omega$. Distortion- 0.05% at 100 W at 1 kHz . Signal/Noise Ratio- 96 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply voltage- $\pm 45 \mathrm{~V}$. Size- $114 \times 50 \times 85 \mathrm{~mm}$.
Price £23. $32+$ £1-87 VAT. P. \& P. free
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! it has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES; thermal shutdown: very low distortion: load line protection; no external components. APPLICATIONS: public address; disco: power slave; industrial.
APPLICATIONS: public address; disco: power slave; industrial.
SPECIFICATION: Output Power-240W R.M.S. into 4Ω. Load Impedance-4-16. . Distortion- 0.1% SPECIFICATION: Output Power-240W R.M.S. into 4Ω. Load Impedance- -16 B . Distortion- -1%
at 240 W at 1 kHz . Signal/Noise Ratio- 94 dB . Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Suppiy Voltage at 240 W at 1 kHz . Signal/Noise Ratio-94dB. Frequency Respo
$- \pm 45 \mathrm{~V}$. Input Sensitivity- 500 mV . Size- $114 \times 100 \times 85 \mathrm{~mm}$.
Price £32•17 + £2. 75 VAT. P. \& P. free
POWER SUPPLIE8: PSU34_suitable for two HY30s $\mathbf{8 5} \cdot \mathbf{2 2}+65 \mathrm{p}$ VAT. P. \& P. free. P8U50-suitable for two HY50s $86 \cdot 82+$ 85p VAT. P. \& P. free. PSU70-suitable for two HY120s $\$ 13.75+1 \cdot 10$ VAT. P. \& P. free. PsUso-suitable for one HY200 $\Sigma 12.65+£ 1.01$ VAT. P. \& P. free. PsU180-suitable for two HY200s or one HY400 $223 \cdot 10+\varepsilon 1 \cdot 85$ VAT. P. \& P. free. I.L.P. Electronics Ltd., Crossland House, Nackington, Canterbury, Kent CT4 7AD

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

> I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD

Tel (0227) 63218

Total Purchase price

I Enclose: Cheque \square Postal Orders \square Money Order \square Please debit my Access account \square Barclaycard account \square

Account number

Name and Address

$240 \mathrm{v}-50 \mathrm{~Hz}$ from your 12 v car battery.
O/P Powers avallable. 25W-40W-75W-150W-300W$400 \mathrm{~W}-500 \mathrm{~W}-1 \mathrm{~kW}-1 \cdot 5 \mathrm{~kW}$. Various battery $/ / \mathrm{P}$ voltages available.

AUTOMATIC INVERTORS

These units have built-in battery charger which functions whilst malns are healthy. Upon mains failure unlt automatically switches to invertor operation ensuring no interuption of supply. Send S.A.E. for price lists.
 range 15 to $100 \mathrm{bars} / \mathrm{min}$. Full kit of parts avallable at $£ 39 \cdot 50+£ 1 \cdot 20$ P. \& P. + VAT at 8%. Price assembled and tested add £12. Parts available separately, send S.A.E.
We reserve the right to alter published prices in the event of component or postal increases.
P.E. ORION STEREO AMPLIFIER \& TUNER

May be mounted slim line or stacked as above. Parts available separately for both unlts.
$20+20$ Watts r.m.s. into 8 ohm load. Distortion less than $0.1 \% 100 \mathrm{~Hz}-10 \mathrm{kHz}$. Frequency response $\pm 1 \mathrm{~dB}$ This is a power amplifler of superb quallity incorporating the very fatest design features. Protesslonal hi-fी enthusiasts have classed it as fantastic and real value for money. The CCT incorporates a low flux transformer and inputs for disc, tape, tuner, etc.

TUNER UNIT

May be purchased separately in matching slim line case. As full kit or Individual parts
Send S.A.E. for price list and specification sheets.

inch system
This system is designed for use with above ampliflers rated up to 25 W r.m.s. per channel at 8Ω. May be incorporated In an enclosure $295 \times 490 \times 295 \mathrm{~mm}(11 \cdot 5 \times$ $19.3 \times 11 \cdot 5 i n)$ approx. external, constructional detalls
of which are given with each bass unit, to provide an overall frequency response of 50 Hz to 22 kHz . Fourelement cross-over, ready constructed on p.c.b. Output leads have push-on receptacles to suit speaker tags.
Cross-over frequency is $2 \cdot 8 \mathrm{kHz}$ approx.

Voltage adjustable from $\mathbf{1 - 3 5 v}$ at 2 amps. Short circuit protected. Voltage and current meters incorporated. Full KIt of parts \& $48+8 \%$ VAT or assembled and tested
$\mathbf{E} 58+8 \%$ VAT.

ASTRO IGNITION

Complete kit of parts for this proven and tested system ($\mathbf{E 1 1} \cdot \mathbf{8 0}+60 \mathrm{p}$ P. \& P.) $+8 \%$ VAT or ready built with only two connections to alter.
(214.0 + 60p P. \& P.) $+8 \%$ VAT.

Consider the advantages:
Fuel economy, Faster acceleration. More power. Excelent cold starting. Smoother running. No contact breake burning. Less exhaust gases.

TRANSFORMERS
SPECIAL OFFER
Miniature Mains Trans.
6-0-6v-6VA.
$12-0-12 v-6 \mathrm{VA}$
$(£ 4 \cdot 29+25 p$ P. \& P.) $+8 \%$ VAT
Transformer and coils manufactured to customer specificatlons both in High Volume and Small Order capacity.

TRADE AND EXPORT ENQUIRIES WELCOMED ON ALL PRODUCTS

ASTRO ELECTRONICS

Springbank Road Chesterfield (31475) Derbyshire
N.B.-DELIVERIES ON ALL ITEMS MAY TAKE UP

TO. 2 Z DAYS. DEPENDLNG ON AVAILABLLITY ANDDEMAND. CASHINREGISTEREDENVELOPE OR POSTAL ORDERS CAN REDUCE TIME bY NOT HAVING TO CLEAR CHEQUES

ETCH RESIST TRANSFER KIT SIZE 1:1
COMPLETE KIT 13 SHEETS 6 in $\times 4 \frac{1}{2}$ in $£ 2.50$ WITH ALL SYMBOLS FOR DIRECT APPLICATION TO P.C. BOARD. INDIVIDUAL SHEETS $25 p$ EACH. (1) MIXED SYMBOLS (2) LINES 0.05 (3) PADS (4) FISH PLATES AND CONNECTORS (5) 4 LEAD AND 3 LEAD AND PADS (6) DILs (7) BENDS 90° AND 130° (8) $8-10-12$ T.O.5. CANS (9) EDGE CONNECTORS 0.15 (10) EDGE CONNECTORS 0.1 (11) LINES 0.02 (12) BENDS 0.02 (13) OUAD IN LINE.

CIRCUIT LAYOUT TRANSFERS SIZE 2:1

ONE SHEET $12 \mathrm{in} \times 9$ in GIVING ALL TRANSFERS AS IN ETCH RESIST FROM No. 3 TO No. 10 INCLUSIVE MAKES CIRCUIT LAYOUT EASY. BLACK ONLY. PRICE $£ 1$.

FRONT AND REAR PANEL TRANSFER SIGNS
ALL STANDARD SYMBOLS AND WORDING. OVER 250 SYMBOLS, SIGNS AND WORDS. ALSO AVAILABLE IN REVERSE FOR PERSPEX ETC. CHOICE OF COLOURS RED, BLUE, BLACK OR WHITE. SIZE OF SHEET $12 \mathrm{in} \times 9 \mathrm{in}$. PRICE $£ 1$.

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES AVAILABLE ALSO IN REVERSE LETTERING. COLOURS RED, BLUE, BLACK OR WHITE. EACH SHEET $12 \mathrm{in} \times 9$ in CONTAINS CAPITALS, LOWER CASE AND NUMERALS. $\frac{1}{8}$ in KIT OR $\frac{1}{4}$ in KIT £ 1 COMPLETE.

ALL ORDERS DISPATCHED PROMPTLY. ALL POST AND VAT PAID.
EX. U.K. ADD 50 p FOR AIR MAIL. SHOP AND TRADE ENQUIRIES WELCOME

E. R. NICHOLLS.

P.C.B. TRANSFERS. DEPT. PE/10 46 LOWFIELD ROAD, STOCKPORT, CHES. 061-480 2179

THE METAC DIGITAL CLOCK

\star COMPLETE KIT \star

- Pleasant green display. 12/24 Hour readout
- Silent Synchronous Accuracy. Fully electronic - Pulsating colon. Push-button setting
- Building time 1 hr. Attractive acrylic case
- Easy to follow instructions. Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$
- Ready drilled PCB to accept components

KIT PRICE £9.60 + 76p vat
SAME DAY DESPATCH: ORDERS RECEIVED BEFORE 2.00 P.M. ARE POSTED ON THE SAME DAY

SEND YOUR ORDER TO

DAVENTRY	UXBRIDGE
METAC ELECTRONIC AND TIME	
Postal Order or it you wish ess, simply quote name, address	
ss, simply quote name, address a	

DAVENTRY

UXBRIDGE
UR
HIGH STREET CENTRE 3 THE NEW ARCAD UXBRIDGE MIDDLESEX Cash Cheque or Postal Order TEL. UXBRIDGE (O895) $\mathbf{5 6 9 6 1}$ Barclaycard or Access, simply quote name, address and card number when ordering. Shops open 9-5.30 daily

GOULD ADVANCE OS245A

A professional-quality, dual- trace oscilloscope for just $£ 175.00$ (+VAT)

Fault finding, circuit testing or servicing! An oscilloscope is indispensable. Saves time and costly mistakes and enables you to tackle more ambitious electronic projects. Gould Advance offer you this professional-quality, dual-trace instrument at a price which brings it within reach of every enthusiast. Just look at these great Gould Advance features - then compare the OS245A for value, and send for yours today!

* DC-10MHz Bandwidth $\star 5 \mathrm{mV} /$ div. sensitivity
\star Dual-trace \star Time-base speed to $100 \mathrm{~ns} /$ div.
* Clear controls, simple operation
* $4^{\prime \prime}$ CRT with 8×10 div.
* Full 2 year guarantee with every instrument

GOULD advance

Practical Electronics Classified Advertisements

RECEIVERS AND COMPONENT8

FREE POSTAGE AND PACKINGI BARCLAYCARD ONLY \&I INCLUDING VAT.	
transistors	
(Per Pagk)	at
	20 IN4001 (50 O)
	$10.10{ }^{10} 40007(1000 \mathrm{~V})$
	TRIACS and diacs
${ }_{8}^{8} \mathrm{BC177179}$	${ }_{5}$ (TO220)
${ }^{\text {BCCV7 }}$	5 BRIOODIAC
${ }_{\text {BFY }}{ }_{\text {BFY }}$	${ }_{8}^{\text {LED }}$ REED LED's
	2 GREEN LED'S 3 or
(1)	4 YELLOW LED's 3 or
POLYESTER	
${ }^{\text {che }}$	LINEA
	${ }_{1} \mathrm{Lm5} 380$
Please send two stamp FRASER-M	or Catalogue if required. NNING LTD. IP4 RES (Ipswich 50975)

VALYES-Radio, TV, industrial, transmitting. We dispatch to any part of the world by return of post, Air or Sea Mail. 2,700 types in stock. 1930 to 1976 obsolete types a speciality. List 20p. Quotation S,A,E. Open to callers. Mon, to Sat. $9.30-5.00$, closed Wed. 1.00 . We purchase all types of new and boxed valves. COX RADIO (Sussex) Ltd., Dept. P.E., The Parade, East | West Wittering 2023. |
| :--- |
| ing, Sussex, | ing, Sussex, PO20

(STD code 024366).

ORCHARD ELECTRONICS

1,C.s. TTI, C/MOS, Linear. Capacitors. Resistors (E12). SIL/Rectifiers. Diodes. LED. Thyristors. Zeners. Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentiometers. Presets. Triacs. Diac. Plugs. Sockets. Cable. Vero. Carefully selected range, excellent despateh service. Same day turn round. S.A.E. List. Suppliers to A.E.R.E. U.K.A.E.A. Government Depts. Schools. Universities.
Manufacturers. Accounts opened for trade and Manufacturers. Accounts opened for trade and
amateur. Join the professionals. Phone by $4 \mathrm{p} . \mathrm{m}$. Goods out ist class by 5 p.m. Try us and prove it!

ORCHARD ELECTRONICS
Flint House, High Street, Wallingford, Oxon Telephone 0491-35529

POWER SUPPLY. 0-20V. $0-1$ amp. Adjustable current limit. Drilled case, Kit- $\$ 17.98$. Built61 Newton Leys, Burton-on-Trent, Staffs., I) E15 ODW

CARBON FILM RESISTOR8. 5\% E12 Series, 贯W, $\frac{2}{4} \mathrm{~W}, \frac{2}{2} \mathrm{~W}$. Mixed to your choice, 100 for 90 p . Elec trolytics $50 / 15 \mathrm{~V}, 100 / 15 \mathrm{~V} 7 \mathrm{p}$. Microprocessors SC/MP 215, Introkit £77, Keyboard kit 874 , MM6800 227.
\mathbf{r}^{\prime}, \& \mathbf{P}. 15 p . Mall order only. CANDAR, 9 Galloway Close, Denbigh Hall, Bletchley.

PER8PEX-CLEAR $\frac{1}{\text { inn }}$, Send $1 \mathrm{p} / \mathrm{sq}$.in, and 10 p per order. Components and hardware in stock. Tewts $2 \times 7 \mathrm{p}$ stamps. MAGENTA, PA9, 61 Newton Leys, Burton-on-Trent, Staffs., DE15 01)W.

> Precision Polycarbonate Capacitors All High Stability-extremely Low Leakage $\begin{aligned} & \text { 440V A.C, RANGE } \\ & \text { Value Dimen- Pric }\end{aligned}$ $\begin{aligned} & \text { Value Dimen- Price } \\ & (\mu \mathrm{F}) \text { sions (} \mathrm{mm} \text {)each }\end{aligned}$ $\begin{array}{ll}.1 & 27 \\ .15 & 27 \\ .22 & 33 \\ .25 & 33 \\ .33 & \\ .47 & \\ 0.5 \\ 0.68 \\ 1.0 \\ 1.5 & \\ 2.0\end{array}$ $\begin{array}{ll}2.7 & £ 1.34 \\ 2.7 & £ 1.52 \\ 16 & £ 1.66 \\ 16 & £ 1.78 \\ 16 & £ 1.92 \\ 19 & £ 2.08 \\ 19 & £ 2.24 \\ 19 & £ 2.4 \\ 19 & £ 2.6 \\ 25.4 & £ 3.1 \\ 25.4 & £ 3.7\end{array}$ 63V D.C. RANGE

 $\begin{array}{ll}0.33,0.47,0.68,1 \cdot 0 \mu \mathrm{~F} \text { at } 25 / 35 \mathrm{~V} \text { - } 10 \mathrm{p}^{*} ; i .5 \mu \mathrm{~F} / 35 \mathrm{~V}-11 \mathrm{p}^{*} \text {; } \\ 2.2 \mu \mathrm{~F} / 35 \mathrm{~V}-12 \mathrm{p}^{*} . & 3.3 \mu \mathrm{~F} / 35 \mathrm{~V}\end{array}$ $15 \mu \mathrm{~F} / 20 \mathrm{~V} ; 22 \mu \mathrm{~F} / 15 \mathrm{~V} ; 33 \mu \mathrm{~F} / 10 \mathrm{~V} ; 47 \mu \mathrm{~F} / 6 \cdot 3 \mathrm{~V}$ at $21 \mathrm{p}^{*} ; 68 \mu$
$3 \mathrm{~V}-17 \mathrm{p}^{*} ; 100 \mu \mathrm{~F} / 3 \mathrm{~V}-21 \mathrm{p}^{*}$. TRANSISTORS \& I.C.'s

ACI28	28p	BCY72	18p	32A 57p
ACl76	35p	BD131/132	$41 p$	TIP42A 79p
AD149	68 p	BFII5	42p	2N2926G/O/Y17p
AFI78	64p	BFI73	27p	2N3053 42p
AF239	$45 p$	BFI78	42p	2N3054 97p
BC107/8/9	12p	BFI84	28p	2N3055 65p
BC114	15p	BF194/195	12p	2N3055 65p
BC147/8/9	10p	BFI96/197	15p	2N3702/3/4** ${ }^{\text {d7p }}$
BC153	16 p	BF200	38p	2N3705/6/7/9*
BCI57/8/9	12p	BF262/263	40p	17 p
C177	18 p	BFY50/51/52	22p	2N3819 42p
BC182/183	12p	BFX84/85	29p	MPUI3I 35p
BC184/212/3	13p	BFX86/87	31 p	NE555 61p
BC214	13p	BR101	$41 p$	7418 pin DIL 38p
BC238	17 p	GET872	15p	2N414 ± 1.65
BC267	25p	OC44/OC45	40p	SN76013ND 11.55
C268A	12p	OC71/72	45p	SN76013ND 1.55
C547	12p	A	55p	SN76023ND 11.55

 IN4I4B-6p; iO/55p; IN400I-6p; $002-61 p ; 003-7 p$
$004-7 \frac{1}{2} p ; 005-8 p ; 006-9 p ; 007-10 p ;$ TIL209_-25p-7p LOW PRICE ZENERDIODES- 400 mW . Tol $\pm 5 \%$
 $24 \mathrm{~V} ; 27 \mathrm{~V} ; 30 \mathrm{~V} ; 33 \mathrm{~V}$ (All at 10 p each, 10 for $95 \mathrm{p}, 50$ for
$£ 4.50,100$ for $£ 8.00$ (values may be mixed).
RESISTORS-High stability, low noise carbon film 5%
$\frac{1}{3} W$ at $40^{\circ} \mathrm{C}, 1 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E/2 series only-from 2.20 to $\frac{1}{2} \mathrm{~W}$ at $40^{\circ} \mathrm{C},{ }^{1+} \mathrm{W}^{2}$ at $70^{\circ} \mathrm{C}$. E12 series only-from $2.2 \mathrm{~m}^{\text {to }}$ for 100 of any one value. SPECIAL PACK: 10 of each value

SUBMINIATURE VERTICAL PRESETS-O.IW only
 $22 \mathrm{k} ; 47 \mathrm{k} ; 100 \mathrm{k} ; 320 \mathrm{k} ; 680 \mathrm{k} ; 1 \mathrm{M} ; 2 \mathrm{MS} ; 5 \mathrm{M}$. All at 7p* each;
10 for $60 \mathrm{p} ; 100$ for $\mathbf{5} .00 \mathrm{l}$. PLEASEADD 25 R E 5.00.
PLEASEADD 25p POST AND PACKING ON ALL ORDERS to all items except those marked with * which are $12 \frac{1}{2} \%$ Wholesale S.A.E. for additional stock lists.

MARCe lists available to bona fide companies
MARCO TRADING (Dept. P.3)
The Old School, Edstaston, Wem, Shropshire
(Proprs, Minicost Trading Ltd.)

BC348, BC351, $\mathrm{BC} 108, \mathrm{BC} 109,7 \mathrm{p} ; 1 \mathrm{~s} 940,3 \mathrm{p}$. Capacitors $0 \cdot 1 / 600 \mathrm{~V}, 2 \mathrm{p} ; 0 \cdot 22 / 250 \mathrm{~V}, 4 \mathrm{p}$. $1 \mathrm{~m} \Omega$ horizontal preset $0 \cdot 25 \mathrm{~W}, 11 \mathrm{p}$. Rectifier $1 \mathrm{~A} / 50 \mathrm{~V}, 1 \mathrm{BB} 05,16 \mathrm{p}$. All prices for 10 off. P. \&P, 15p, HEWITT'S, 9 st. Peter's Street, Syston, Leics.

QUALITY MW/LW/VHF PORTABLE RADIOS, limited stocks only. Be ready for changes in BRC service frequencies when a three bandset is required. Letal facia with twin speaker grile, telescopic aerial with batteries earplone and guarantee ELEC TRONIC SUPPLIES, Southview, Station Road, Bramky, Guildford, Surrey.

FREE STORAGE DRAWER-yours with each full value pack of new full specification components. ('hoose from flve! All crammed full with lots of tod suality items from our current catalogue. 1. semiconductors-ICs, transistors, diodes, etc. 2. Resistors and capacitors-trimmers, $\frac{1}{4}$ watts, electrolytics, etc. 3. Hardware-switches, knobs, etc. 4. Essential sundries-veroboard, serews, It sockets, etc. 5. Mixed-selected from above packs. Kend 83.95 each. Details $2 \times 7 \mathrm{p}$ stamps. Extra drawers 49p. MAGENTA, PB9, 61 Newton Leys, Jurton-on-Trent, Staffs., l)E15 0DW.

$$
\begin{aligned}
& \text { P.C.Bs Paxolin } 9 \frac{1}{2} \text { in } \times 7 \mathrm{in}, 45 \mathrm{p} \text {. } 12 \mathrm{in} \times 9 \mathrm{in} 70 \mathrm{p} . \\
& 17 \frac{1}{\frac{1}{2}} \times 9 \frac{1}{2} \mathrm{in}, \mathrm{Cl} \text {. Fibre glass double sided } 7 \mathrm{in} \times \text { 8in. } \\
& 80 \mathrm{p} \text {. } 12 \mathrm{in} \times \operatorname{Gin}, \mathrm{f} 1.12 \mathrm{in} \times 12 \mathrm{in}, \mathrm{E} 190.20 \text { wire ended } \\
& \text { neons, } £ 1 \cdot 50 \text {. Five figure Resettable Counter 18/22V } \\
& \text { works on } 12 \mathrm{~V} \text { £3.20. } 20 \text { assorted } 74 \text { series l.C. } 5 \text { on } \\
& \begin{array}{l}
\text { pansol(s), } \mathbf{E} \cdot \mathbf{3 5} \text {. Three assorted mezers } \mathbf{~ c o m p o n e n t s ~} \mathbf{£ 2} 95 \text {. List 15p. Refund on }
\end{array} \\
& \text { purchase. Over } 61 \text { post paid; under add } 20 \text { p; insurance } \\
& \text { add 15p. } \\
& 2 \text { Barnfield Crescent, Sale, Cheshire, M33 INL }
\end{aligned}
$$

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. ('ontact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. Tel. 09454188. Inmediate settlement.

ELECTRONIC DEVICES and semiconductors, Components for this month's projects. S.A.E. Lists. NKM, 32, Seaside, Enstbourne, Sussex. Telephone 32921
$\begin{aligned} & \text { Power Electrolytics, } 800 \mu \mathrm{~F}, 450 \mathrm{~V} \text { (value not stamped } \\ & \text { on can). Single end connections with serew terminals, }\end{aligned}$
21 in dia, $\times 4 \frac{1}{2}$ in high, including studs. Min. order, 4 for
$\begin{aligned} & \text { E2 inc. VAT (add } 80 p \text { P. } \& \text { P.). Sub-Min Mains Trans- } \\ & \text { formers } 12-0.12 V, 50 \mathrm{~m} / \mathrm{a}, ~ 28 \mathrm{mmW}, 20 \mathrm{mmH},\end{aligned}$
$\begin{aligned} & \text { formers, } 12-0-12 \mathrm{~V}, \quad 50 \mathrm{~m} / \mathrm{a}, \quad 28 \mathrm{mmW}, 20 \mathrm{mmH}, \\ & 26 \mathrm{mmD} \text { 82p. } 8 \text { ridge Rectifiers, } 2 \mathrm{~A} / 100 \mathrm{~V}, 34 \mathrm{~mm} \times\end{aligned}$
34 mm 40 p . Op. Amps, Motorola MC 1530 G 65 p .
$\begin{aligned} & \text { Transistor, 2N. 2401. Min. } 8 \text { for } £ 1 \text {. Thyristor, } \\ & \text { Clo6 } 101,4 A / 200 \mathrm{~V} \text {. Min, } 3 \text { for } \mathrm{fl} \text {. Dual Transistor, }\end{aligned}$
$\begin{aligned} & \text { Cl } 106 \mathrm{B1}, 4 \mathrm{~A} / 2 \\ & 2 \mathrm{~N} 2643 \mathrm{~s} \text {. }\end{aligned}$
2N 2643 50p.
LINWAYELECTRONICS, 843 Uxbridge Road,
VISIT OUR SELF-SERVE RETAIL PREMISES AT THE
(9.45-6.0-closed Wed
P.C.B, KIT, 1 lb Ferric Chloride, etch pen, 10 in \times 9in Board, solvent + dish only $83 \cdot 50$ inc. P. \& P. M. METCiALFE, 8 Templars Way, South Withanı, Grantham, Lines. NG33 5PS. Send'S.A.E. for list.

BOOKS AND PUBLICATIONS

YOU CAN'T HELP BUT MAKE MONEY if you follow the planned and detailed information on how to start your own business rewinding armatures, set out in the new manual which is profusely illustrated and leads you through easily-understood stages of fault diagnosis, taking data, test procedures, laying down new windings, where to obtain work, how to cost jobs, etc. No previous electrical knowledge required. Complete instruction manual 84 plus 30 p P. \& P., C.W.O. COPPER SUPPLIES, Dept PEB, 102 Parrswood Road, Withington, Manchester 20.

NEW BOOKS

IREAIDY NOW

BP36	50 Circuits using Germanium, 75 p Silicon and Zener Diodes R. N. Soar
BP37	50 Proiects using Relays, SCR's $\mathbb{E}\|\cdot\| 0$ and Triac's F. G. Rayer
BP38	Fun and Games with your Elec- 75 p tronic Calculator James Vine
BP39	50 (FET) Field Effect Transistor $\mathbb{E} \mid \cdot 25$ Projects F. G. Rayer
223	50 Projects using IC CA3I30 R. A. Penfold
224	50 CMOS IC Projects R. A. Penfold
225	A Practical Introduction to 95p DigitallC's D. W. Easterling
226	How to Build Advanced Short $\in \mid \cdot 20$ Wave Receivers R. A. Penfoid
1	Obtainable through most large branches of W. H. Smith, good bookshops, component dealers, mail-order houses, etc.
	A.E, BRINGS FULL LIST OF TITLES
BABAN the c LONDC	PRESS \& BERNARDS (Patilisters) LTD. GRAMPIANS, SHEPHERDS BUSH ROAD, WN W6 7NF $01-60325817296$

8IMPLIFIED TV REPAIRs. Full repair instructions, individual British sets, $84 \cdot 50$; request free circuit diagram. Stamp brings details unique TV Publications. ALSEPE, 76 Church Street, Larkhall, Lanarkshire.

LADDERS

LADDER8, varnished, $25 \frac{\mathrm{ft}}{}$. extd., $\mathbf{2 0 \cdot 4 1}$. Carr 21.90. Leaflet. Immen. despatch. THE LADDER CENTRE (PEE3), Halesfleld (1), Telford, Salop. TeI. 586644.

ELECTRICAL

8TYLI, CARTRIDGES, AUDIO LEADS etc. For keenest prices send S.A.E. for free illustrated list to FELSTEAD ELECTRONICS (PE), Longley Lane Gatley, Cheadle, Cheshire SK8 4EE

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers; also self-buld radio kits. Full details from

ICS SCHOOL OF ELECTRONICS
Dept. 771L, Intertext Hoase, London SW8 4UJ
Tel. 01-622 9911 (all hours)

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Specia courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from

ICS SCHOOL OF ELECTRONICS
Dept. 771L, Interteyt House, London SW8 4UJ Tel. 01-622 9911 (all hours)

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from

ICS SCHOOL OF ELECTRONICS
Dept. 771L, Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours)
COUR8E8-RADIO AMATEUR8 EXAMINATION City and Guilds. lass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this, and other courses (GCE, Professional Examinations elc.) write or phone-THE RAPID RESULTS COLJEGE, Jept. r.s.1, Tuition House, London sW] 9 4 JS, Tel $01-9477272$ (Careers Advisory Service) or for a prospectus only ring 01-946 1102. (24hr. recording service).

WANTED

WANTED, NEW VALYE8, TRANSISTOR8, top prices, popular types-KENSINGTON SUPPLIEs (IB), 367 Kensington Street, Bridford 8, Yorkshire.

MISCELLANEOUS

WIRE THREADING KIT

WIRE DISTRIBUTION SYSTEM INTRO-KIT £6.60 inc. of VAT and P. \& P. (Mail order only) KIT CONSISTS: WIRE DISTRIBUTION PENCIL, W-D BOARD, W-D STRIPS, SPARE SPOOL OF WIRE,
IC LEG DEFORMER, COMPREHENSIVE INSTRUC: IC LEG
TIONS.
Or for further details please send a S.A.E. and overseas enquiries weico
ZARTRONIX 115 Lion Lane, Haslomere,

SUPERB IN8TRUMENT CASE8 by Bazelli, manufactured from heavy-duty pre faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 82p. Examples: width, depth, height $\sin \times 5 \mathrm{in} \times 3 \mathrm{in}, \mathbf{2 1 \cdot 7} ; 10 \mathrm{in} \times 6 \mathrm{in} \times 3 \mathrm{in}, \mathbf{2 2 \cdot 4 2}$; $10 \mathrm{in} \times 8 \mathrm{in} \times 3 \mathrm{in}, \mathbf{2 3} \cdot 02 ; 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, 23 \cdot 96$; $8 \mathrm{in} \times 4 \mathrm{in} \times 4 \mathrm{in}, 5198 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}$, 22.97 $12 \mathrm{in} \times \sin \times 4 \mathrm{in}, 53 \cdot 96 ; 7 \mathrm{in} \times 7 \mathrm{in} \times 5 \mathrm{in}, 82 \cdot 81 ; 8 \mathrm{in}$ $\times 10 \mathrm{in} \times 6 \mathrm{in}, 83 \cdot 96 ; 12 \mathrm{in} \times 8 \mathrm{in} \times 7 \mathrm{in}, 84 \cdot 40: 12 \mathrm{in} \times$ $12 \mathrm{in} \times 7 \mathrm{in}, 24 \cdot 84$. Plus 85 p carriage and 8% VAT, Over 400 models to choose from. Prompt despatch. Free literature (stamp would be appreciated) BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6L'T

BURGLAR ALARMS SUPPLIES AND EQUIPMENT

S.A.E. FOR FREE CATALOBUE

ULTRASONIC DETECTORS 12V D.C. COMPLETE UNIT ONLY E35.00 + VAT ($12 \frac{1}{2} \%$)

A. D. ELECTRONICS

217 Warbreck Moor, Aintree Liverpoof L9 0HU.

Tel. 05I-525 3440

HIGH ENERGY LITHIUM BATTERIE8 outperform conventional dry cells for less volume and weight Remarkable voltage stability, long shelf life. S.A.s. for details: HIRSH JACOBSON LTD., 91 Marytebone High Street, London, W.1.
P.C.B.'s-

FAST SERVICE FROM YOUR MASTER
1.6 mm Glass Fibre +1 oz copper + solder varnish
$£ 1.35+4 \mathrm{p} / \mathrm{sq}$. in. (VAT and P. ${ }^{2}$ P. inc.). S.A.E. $\pm 1 \cdot 35+4 p / \mathrm{sq}$. in. (VAT and P. \& P. inc.). S. A.E. for quantity discounts/specials.
FUNCTION SIGNAL GENERATOR
This mains operated lab. equip. generates sine, square, triangle, sawtooth and pulse waveforms from 1 Hz to 100 KHz into 50 ohm. Includes polarity switch plus variable
Comple and guaranteed at $£ 47 \cdot 50$.

MICRONICS ELECTRONIC ENG. SERVICES
13z Clive Road, Birkdale, Southport, Merseyside
PR8 4RZ.
Tel.: Southport (0704) 64935

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathbf{£ 9 . 7 5}$ plus 25 p
P. \& P.
'Brain-Freeze' 'em with a MIN1-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $\mathbf{£ 4} \mathbf{3 0}$ plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 20 p P. \& P.

LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).
BOFFIN PROJECTS
Cunliffe Road, Stoneleigh
Ewell, Surrey (P.E.)

MAKE YOUR OWN PRINTED CIRCUITS

RUB-ON TRANSFERS - starter pack (5 sheets, lines, pads, I.C. pads) E1.30, spare sheets 27p.
FERRIC CHLORIDE-11b bags 70 (P. \& P. 30 p). SOLDERCON SOCKETS - 1000^{650} \& Puantity rates). PLASTIC SUPPORTS- 7 or 8 hole 6 p/pair.

S.A.E. lists, sample. P. \& P. 15p/order.

P.K.G. ELECTRONICS

Oak Lodge, Tansley, Derbyshire

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware.
Printed circuit boards, top quality for individual designs.

Prompt service.
Send $25 p$ for catalogue from:
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford on Avon
Warwicks.
Tel. 4879

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.li. generators, turntables, fapeheads, stabilised P.S.U.s, sweepgenerators, test equipment, ete. Lower Beeding 2:36

OUT8TANDING HI-FI FM TUNER. Comprises 7 transistors superhet design with varicap tuning, AFC. Latest silicon circuitry, full coverage 88 -
102 MHz Supplies built and tested with metal front 102 MHz . Supplies built and tested with metal front
 GREGG ELECTRONLC's
Thornton Heath, Surrey.

SWG		$\begin{aligned} & \mathrm{DCO} \\ & 8 \mathrm{OZ} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { WIRE } \\ & 40 z \\ & f \end{aligned}$	202
14.19	2.40	1.20	0.60	0.50
20.29	2.45	1.60	0.82	0.59
30-34	2.60	1.70	0.89	0.64
35-40	2.85	1.90	1.04	0.75
Inclusive of P. \& P. and VAT. S.A.E. brings catalogue of copper and resistance wires in all coverings. THE SCIENTIFIC WIRE COMPANY P.O. Box 30, London, E4 9BW Reg. Office: $\mathbf{2 2}$ Coningsby Gardens				

STICKIES ARE NEW high-quality I('-size selfadhesive labels printed with pin-outs for the 61 most popular 16 and 14 -pin 7400 -series I("s. Each pin de-bugging. Also ideal for students. Introductory de-bugging. Also iteal for students. Introductory TRON1(S (A1), \& Bayham Road, Sevenoaks, Kent.

U8ED T.T.L. IC8. 90° good. \& 4 per 100. J. 13 RUERI: 7 Heakl (lose, Slawelough, Rochdale.

RECHARGEABLE BATTERIES

'AA' pencell (HP7) $£ 1 \cdot 26$; sub $£ 1 \cdot 29$; ' C^{\prime} (HPII) £2.38; 'D' (HP2) £2.92; PP3 \&4.98. Matching Chargers 55 each except 53 charger $\mathbf{E 4}^{4} 9$ 'Charging holders for $2,3,4,5$ or 6 pencells 35 p. C' and 'D' size holders, 4 cell only, 50p. Prices include VAT. Add 10% post, package and
insurance orders under $£ 20$. 5% over $£ 20$. S.A.E. insurance orders under $£ 20$. 5% over $£ 20$. S.A.E. for full details plus 75p for 'Nickel Cadmium Power' booklet. Mail orders to:

SANDWELL PLANT LTD.
201 Monmouth Drive, Sutton Coldfield, West Midlands. Tel. 02l.354 9764 Callers to T.L.C., 32 Craven Street, Charing
P.E. Last 110 issues ع18. P.W. 58 issues 27. Lot £22. F.'T.I. All 60 to 1975 \&12. Joanna Piano Keyboard plus most parts phus 1 '('3's (home made) $\mathbf{8 4 5}$. F 8 Mk V (latest) $£ 34$. MM5:316 83.50 ench, 10 for 230 . Tel. Milborne St. Andrew 434.

Bear Microcomputer Systems
 COMPUTER DESIGNS for home construction (which need no expensive peripherals)
 * 77-68-a simple microcomputer using a 6800 £7.50
 * WB-1-a simple microcomputer using TTL logic $\quad \mathbf{~ 6 . 5 0}$
 GAMES SOFTWARE for "Mikbug'" based systems, including paper tape.
 * The Bear Game (in which the computer learns!)
 \star The Well-tempered Microprocessor (musical software£2. 00 BOOKS
 * "Introduction to Microcomputers"', Vol. 1-Basic Concepts, by Adam Osbourne, 88, P. \& P. 50p.
 Plus Motorola publications, design notes, programming aids, etc. Send a S.A.E. for full details and an up-to-date catalogue to:
 B.M.S., 24 College Road, Maidenhead, Berks SL6 6BN

The
Amazing Mk. 2
MINION
IS HERE
TO STAY
A sound investment and a
pleasure to build, available as a
complete kit, module kits, pre-finished metal-
work kit or complete instruments. We supplied
components for the original P.E. Minisonics. now let us supply yours.
Send S.A.E. for full price structure.
Kits for the P.E. Sound Synthesiser are still available.

BUY FROM THE SPECIALISTS . . .

EATON AUDIO

P.O. Box 3 (6 Jutland Rise) St. NEOTS, CAMBS. PE19 3JB

TERMS: MAIL ORDER ONLY. C.W.O. MINIMUM ORDER £1. VAT. Please add $12+\%$. stated. Cheques or P.O.s payable to Eaton Audio. Orders over 25 tree of P. \& P., otherwise please add 10p in the E 1 . Callers by appointment only.

Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

AITKEN BROS

35 High Bridge, Newcastle upon Tyne Tel. 063226729

TRANSISTORS				INTEGRATED CIRCUITS					
*AC125	${ }^{50} 30$	Buzos	${ }^{2} 2.20$	${ }^{-2} \mathbf{C A 3 0 8 0}$	co.	-LM710/14	80-60		
-AC126	80.25	ME0409	${ }^{50} 0.18$	-CA3080a	11.88	-LM723/T099	¢0.85		
${ }^{\text {A A } 127}$	${ }^{\text {c0. } 25}$	ME0402	c0. 15	-CA3036	c0. 60	*MM733/14	c0. 75		
${ }^{-} \mathrm{AC128}$	${ }^{80} \cdot 28$	ME0404	50.15	-CA3088	11.70	*LM741/8	c0. 40		
*AC141	80. 30	MPF 102	c0. 32	-CA3089	c2. 52	-LM741/4	c0. 40		
*AC142	E0. 32	MJ2955	11.25	-CA3090	c4.00	*LM741/TO99	20.65		
*AC176	¢0.30	MUE2955	51.50	ca3130	50.98	-LM747	c0.90		
${ }^{*}{ }^{\text {ACl187 }}$	80.30	MJE3055	${ }^{50.95}$	-LM301/8	50.4	-LM748/8	¢0. 55		
*AC188	${ }^{\text {¢0 }}$-27	${ }^{0} \mathbf{C} 26$	51.50	"LM301/T099	${ }^{\text {co }}$. 65	-LM748/14	c0. 55		
AD140	¢0. 65	OC^{28}	${ }^{51} 1.40$	-LM308	11. 12	*LM748/TO99	80.50		
AD149	${ }^{81} 1.40$	T1P29A	${ }^{\text {co }}$ - 47	"Lм308т099	11.17	-LM3900	c0. 75		
${ }^{\text {AD161 }}$		TIP30A	${ }^{50} 58$	-LM309	11.85				
AD162	80.70	TIP31A	¢0.57	"LM380/8	50.90	TTL + CMO	8		
AL102	11.90	TIP2955	${ }^{20} 0.97$	*LM380,14	20.98	always			
AL103	81.90	TIP3055	20.55	*LM709/8	c0. 45	NE555	${ }^{50} \cdot 53$		
BC107	¢0. 15	2 N 696	${ }^{20} \cdot 35$	-LM709/ 14	c0. 45	NE556			
BC108	80.15	${ }^{2 N 697}$	${ }^{20} 30$	-LM709/TO99	ع0. 65	-2N414	\$1.50		
${ }^{\text {8C109 }}$	E0. 15	${ }^{2} \mathrm{~N} 706$	${ }^{50} 28$	-LM710/TO99	80.60	-MC1310	81.91		
- ${ }^{-8 C 147}$	¢0. 12	${ }^{2} \mathbf{2 N 1 6 1 3}$	cot	THYRISTORS					
		$2 N 1711$ 2N2160	c0. 81.40						
${ }_{*}^{* B C 149}$	¢0. 13	${ }_{2}{ }^{\text {N2219A }}$	${ }_{\text {cose }}$	T092		Fiat Plastle			
-BC169	80.13	2 N 2220							
-8C169	80.14	2 N 2221	ع0. 25	0.5 A 25V	${ }_{50.32}$				
-8C182	¢0.11	$2{ }^{2} 22214$	${ }^{\text {c0 }}$-28 28	$0.5 A$ 0.54 0	80.48	4A 2000	cot		
${ }^{*-8 \mathrm{BC} 183}$	¢0.11	${ }_{2 N}^{2 N 22222 A}$	80.25 80.25	$0.5 A$ $0.5 A$ 0	80.48	4 A 4 A 400 V			
${ }^{*-\mathrm{C} 212}$	${ }_{50} \cdot 14$	2 N 2846	80.75	TO5					
-BC214	¢0. 14	$2{ }^{2} 2904$	${ }^{\text {c0. } 36}$	1a 100v	co. 58	84.50 V	50.54		
		2 N 2904 A	${ }^{80} 37$	1 A 200 V	c0. 62	88.200 V			
${ }^{\text {BD115 }}$		${ }^{2} 2{ }_{2} 2905$	${ }^{80} 50.37$	1 A 400 V	${ }^{50} 0.93$	8 A 400 V	$\mathrm{c}_{50} \mathbf{8 1 2}$		
-	80. 50	2N29062N2906A	$\begin{gathered} \varepsilon_{80}=20.35 \\ \varepsilon_{0} \end{gathered}$	1 A 800 V	80.98	8A 600 V	c0.74		
	80.40			TRIACS 400 V flat plastic					
${ }^{80} 810$		${ }^{2} 2 \times 2907$	80.25 80.26						
8FW11	哏0.35	2N239782N3053	c0. c0. 15 80	4 A	50.98	10A	\$1.19		
8F×885			80.30	6 A	51.19	12A	. 23		
		2N30542N355		DIODES					
BFY52	¢00.28	2N37032N3704	c0. 15		co.				
BU105	81.50		80.15			1N4004			
SOLDERLESS BREADBOARDS				OAF^{4}	${ }^{\text {c0. }} \mathbf{7 5}$	IN4006	${ }^{\text {co }}$ O 12		
DECs				OA10	co. 80.10	IN 4007 in 500	${ }_{50}^{50 \cdot 12}$		
S-DEC	${ }_{\text {c }}^{1.98}$	U-DEC "A.	${ }_{\text {cke }}^{53.99}$	OA91	${ }_{\text {co }}$	in5401	cor		
T-DEC	ع3.63	U-DEC "B"	8\%.99	OA95	co. 10	INS402	¢0. 16		
Pots, capacitors, boxes, inst. cases, Din plugs. jack plugs, resistors always in stock. For details send 40 p for our 100 -pagecatalogue. 30 to callers. Prices less VAT. Please add 12t' to items marked *. All rest add ${ }^{8}$ '. Postage 20 extra.				OA200	c0. 10	IN5403	${ }^{20} 16$		
				OA202	co. 10	INS404			
				INS14	co. 07 co. 08		cotid		
				IN1488	80.088	INS4	${ }_{80}^{\mathrm{co}} \mathbf{8 0} \mathbf{1 8}$		
				IN4002	${ }_{80} 08$	insto	$\begin{aligned} & 80.20 \\ & 50 \cdot 22 \end{aligned}$		

CABINET FITTINGS

 FORStage Loudspeaker* and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles Feet, Castors, Locks and Hinges, Corners, Trim Speaker Bolts, etc., etc

Send $2 \times 9 p$ Stamps for samples and list.

- ADAM HALL (P.E. SUPPLIES)

 Unit Q, Starline Works, Grainger HoadBURGLAR ALARM equipment, safes, trade suliplies. ASTIRO-ALARMS, 25 Stockton Rd., Sun derland. J'me am Wear. 'Jel.; 77825 . Free list. S.A.E.

GLASS FIBRE P.C.B.'s

From your own tape, film or ink master. Send S.A.E.
PRACTICAL ELECTRONICS P.C.B.'s
in glass fibre, tinned and drilled.
May, June 76 Digital Frequency Meter (G8CZW)
une 76 Transmitter 98p, Coder 94p
July 76 Receiver $98 p$, Decoder 79 p , Interface 58p. August 76 Servodrive 74p, Servo Amp 58p, Relay Drive 68 p . Complete set of above boards $\mathrm{ES} \cdot 80$. Dec. 76 Orion Tunar $£ 2.48$ Feb. 77 Decoder (1302-1) E1-32. April 77 Digital Volt Meter (G8CZW).
Complete set of two boards ($1304-3 / 4$) $£ 2.55$. 77 May 77 Burglar Alarm (1305-1) $£ 1 \cdot 68$. June 77 Sports Centre (1306-1) and power supply
P.C.B. $£ 2.46 \mathrm{p}$. July 77 Digital Stop Wateh ($1307-1$) 860. Oscilloscope trace doubler 950 . Earth Leakag 86p. Oscilloscope trace doubler 95p. Earth Leakage
C.B. (1307-2) 1 . 96 . August $77 \mathrm{C} / \mathrm{R}$ Meter (1308-1) 97 p . C.W.O. please.

Send S.A.E. for information on current boords.
PROTO DESIGN
4 Highcliffe Way, Wickford, Essex SSII 8LA

FOR 8ALE

PRACTICAL ELECTRONICS. Back numbers. S.A.E for list. NETTLE, 68 Langdale (lose, Rainham, Kent.

PRACTICAL ELECTRONIC8, all issues from Voluine Number 1 will sell singly Price $50 p$ each plus S.A.E (C.W.O. GREEN, 29 Stokesay Avenuc, Shrewsbury Salop.

SERVICE SHEETS

SERVICE SHEETS for radio, television, tape recorders, stereo, etc. With free fault-finding guide, from 50p and S.A.E. Catalogue 25p and S.A.E. HAMILTON RADIO, 47° Bohemia Road, St. Leonards, Sussex.

BELL's TELEVISION 8ERVICE8 for service sheets on radio, TV, etc., 75 p plus S.A.E. Colour TV service manuals on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0423 55885.

SERVICE SHEET8, radio, TV, etc. 10,000 models. Catalogue 24p plus S.A.F. with orders-enquiries TELRAY, 154 Brook Street, l'reston, PR1 7HP.

THIS VOUCHER ENTITLES YOU TO A DISCOUNT OF ONE POUND
 OFF

If you purchase a Radio- AlarmClock at $£ 18.50$ (incl. VAT) + £1.45 P. \& P. and ins.

From:

D \& D Power Supply Co. Ltd.

79 Lowfield Street Dartford, Kent please see advertisement on PAGE 65 FOR DETAILS
This offer is valid only until 30th September 1977

resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots. 10 and 20 for wall, bench or table top.

As supplied to Post Office, Industry and Government Depts.

SINGLE UNITS (1D) $(5 i n \times 2 \underset{i}{ } \mathrm{in} \times 2 \underset{i}{ } \mathrm{in})$.
C2. 90 DOZEN.
DOUBLE UNITS (2D) ($5 \mathrm{in} \times 4 \frac{1}{2} \mathrm{in} \times 2 \mathrm{i} \mathrm{in}$)
84.90 DOZEN

TREBLE (3D) 84.90 for 8.
DOUBLE TREBLE 2 drawers, in one outer case (6D2), $£ 7 \cdot 25$ for 8 .
EXTRA LARGE SIZE (6D1) E6. 25 for 8.
PLUS QUANTITY DISCOUNTS
Orders over £20, less 5%.
Orders over £60, less $7 \frac{1}{2} \%$
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under £10. Orders £10 and over. please add 10\% carriage.

QUOTATIONS FOR LARGER QUANTITIES
Please add 8% V.A.T. to total remittance
All prices correct at time of going to press

FLAIRLINE SUPPLIES

(Dept. PE10)
124 Cricklewood Broadway, London NW2 Tel. 01-450 4844

MARCONI VALVE VOLTMETER, TF 428 f 15 each.
EX-MINISTRY GENERATOR, $0-20 \mathrm{kHz}$; sine wave output; metered; 600 ohms. 240 V input. Size $16 \times 10 \times$ output; metered; 600 oh
9 in . deep. $\mathbf{~ E 2 2 . 5 0 ~ e a c h ~}$
EX-MINISTRY (MARCONI) METER, 0-6 watts multi-range, multh-impedance power. £30 each

BACK IN STOCK

Attractive cast alloy front panel, vertical mount. Size $16 \frac{1}{\frac{1}{2}} \times 15 \frac{1}{\frac{1}{2}} \times 5 \frac{1}{4} \mathrm{in}$. containing 72 pushbuttons with manual or electrical reset (28 V) with provision for mabelling with your code; 65 ilfuminated symbols or functions (complete with 28 V lamps) which again you can change; 16 bit front panel microswitch assembly to enable your coded cards to be read. and a host of other electronic parts. NOW 55 each.
*POT PACK. All brand new modern single and ganged. Our choice 7 for 25 p. P. \& P. 48 p.
SEMICONDUCTORS-Now all at $5 p$ each*. P. \& P. extra. Guaranteed all full spec. devices. Manufacturer's markings: BC147, 2N3707, 2N4403, EC172B, BC261. BC251B, BC348B. BC171A/B, 2N5879 with 2N5881 Motorole 150 Watt. Complete pair $£ 2$ pair. P. \& P. 15p. fibreglass board pack, More board-less money. Larger pieces. Not less than 2.5 gq . ft . for 95p. P. \& P. 65p.
a lange ouantity of miscellaneous test GEAR, CHASSIS UNITS, te., on vlew at LOW COST.

Don't forget our Plck-a-Pack;
Pick-a-Piece and Plck-a-Meter Areas

Carriage all units £2•75. VAT 8%. Items marked* VAT $12 \frac{1}{2} \%$

-RILTMEA?LTV 7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College)
 Tel. Reading 582605

TV GAMES CHIP
AY-3-8500 £6.95. Printed circuit and kit of extra parts black and white version $£ 11 \cdot 95$, colour model $£ 24.95$. Colour generator kit-converts any black and white TV game to colour £17.05. Rifle kit £4.95. Send S.A.E. for free data.

NEW COMPONENTS SERVICE

Resistors 5\% carbon E12 1n to 1OM iW 1tp, iW 3p. Preset pote subminiature o.iW 100 n to 4 M 7 9p Potentiometers \ddagger W $4 K 7$ to 2 M 2 log or lin, single 30 p , dua
95p. Polystyrene capactors $\mathrm{E12} 63 \mathrm{~V} 22 \mathrm{pF}$ to $8,200 \mathrm{pF}$ 3 3p. Coramic capacltors 50 V E6 22 pF to 47.000 pF 30 . Polyester cap eicltors 250 V E6 0.01 to $0.1 \mathrm{mF} 5 \mathrm{tp}, 0.15$, $0.22,0.33 \mathrm{mF} 7 \mathrm{p}, 0.47 \mathrm{mF} 11 \mathrm{p}$. Electrolytics 50 V 0.47 .1 $2 \mathrm{mF} 5 \mathrm{p}, 25 \mathrm{~V} 5.10 \mathrm{mF} 5 \mathrm{p} .16 \mathrm{~V} 22,33,47 \mathrm{mF} 6 \mathrm{p} .100 \mathrm{mF} 7 \mathrm{p}$ 220, $330 \mathrm{mF} 9 \mathrm{p}, 470 \mathrm{mF}$ 11p, 1.000 mF 18p. Zenef diodes 400 mW E 243 V 3 to 33 Y s pp .

MAINS TRANSFORMERS

6-0-6V 100mA 94p. 9-0-9V 75mA 94p. 0/12/15/20/24/30V 1A £3.85. 12-0-12V 50mA 94p. 0/12/15/20/24/30V 2A £5.15
 $\begin{array}{ll}12-0-12 \mathrm{~V} & 1 \mathrm{~A} \\ £ 2 & 69 \text {. } 15-0-15 \mathrm{~V} \\ 1 \mathrm{~A} & \mathrm{E} 2 \cdot 89 \text {. } 30-0-30 \mathrm{~V} \\ 1 \mathrm{~A}\end{array}$ [3. 59.
PRINTED CIRCUIT KITS etc.*
Contains etching dish, 100 sq . in of pc board. Ilb ferric chloride. etch resist pen, drill bit and laminate cutter 23.85. 100 sq . in pc board 80p. 11b FeCl £1-05. Etch resis pen 75p.

S-DECS AND T-DECS*

S-DeC 11.94.
T-DeC E3.61.
μ-DeCA 53 -97.
it DeCB E6. 67
IC carriers

SINCLAIR CALCULATORS AND POCKET TV
Sinclair pocket TV \&196. Cambridge Scientific programmable £13.95, Prog. inbrary £4.95. Cambridge cteptors 33.20 .

BATTERY ELIMINATOR BARGAINS
3-WAY MODELS
With switched output and 4 -way multi-jack connector Type 1: $3 / 4 / 4 / 6 \mathrm{~V}$ at $100 \mathrm{~mA} £ 2 \cdot 30$. Type 2: $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 300 \mathrm{~mA}$ E2.90.

100m A RADIO MODELS
With press-stud connectors. 9 V £3.45. 6 V £3.45.9V +9 V $\mathrm{E} 5 \cdot 15.6 \mathrm{~V}+6 \mathrm{~V} \mathrm{E5} \cdot 15.4 \frac{1}{2} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V} \mathrm{E5} \cdot \mathbf{1 5}$.

CASSETTE MAINS UNIT

$7 \frac{1}{2} V$ with 5 pin din plug. 150 mA e3-65.
FULLY STABILIZED MODEL $\mathbf{E 6 * 4 0}$
Switched output of $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{VV} 400 \mathrm{~mA}$ stabilised.
CAR CONVERTORS $12 V$ INPUT
Output 9V 300mA £1-80. Output $7 \frac{1}{2} \mathrm{~V} 300 \mathrm{~mA}$ £1-80.

'BATTERY ELIMINATOR KITS

Send S.A.E. for free leaflet on range.
100 ma radio typee with press-stud battery terminals. $4 \frac{1}{} \mathrm{~V} £ 2 \cdot 10.6 \mathrm{~V} £ 2 \cdot 10.9 \mathrm{~V} £ 2 \cdot 10.4 \frac{1}{2} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V} £ 2 \cdot 50.6 \mathrm{~V}+6 \mathrm{~V}$ $£ 2 \cdot 50.9 \mathrm{~V}+9 \mathrm{~V} £ 2 \cdot 50$.
Cassette type 7tV 100 mA with din plug $£ 2 \cdot 10$.
Tranalstor stablilsed 8 -way type for low hum

 21/25/28/34/42V. 1A model £4.85. 2A model $87 \cdot 95$. 1A transistor stabilised £1.95.
Stablised Laboratory power klt Switched 1 to 30 V
in 0.1 V steps. $\mid A £ 12 \cdot 45.2 A £ 14.95$.
SINCLAIR PROJECT 80 AUDIO MODULE
240 E5.75.

BI-PAK AUDIO MODULES

S450 tuner $£ 21$-95. AL60 £4.86. PA100 £14.95. MK60 audio kit $£ 36 \cdot 45$. Stereo 30 £17•95. SPM80 £3.75. BMT80 84.25. Send S.A.E. for free data.

SINCLAIR IC20

IC20 10W + 10W stereo integrated circuit amplifier kit with printed circuit and data $£ 6.95$.
PZ20 Power supply kit for above £3•65,
VP20 Volume, tone-control and preamp kit 88.95.
Send S.A.E. for free leaftet on the whole system
JC12 AND JC40 AMPLIFIERS
JC12 6W IC audio
amp with free data
and printed
circuit E1.95.
Also new JC40 20 W
model with pcb
£3.95. Send S.A.E. for free leaflet on both models and
associated power supply and preamp kits.

FERRANTI ZN414

IC racio chip £1.44. Extra parts and pcb for radio $\mathbf{~} 3 \cdot 85$ Case E1. Send S.A.E. for free data.

SWANLEY ELECTRONICS

Dept. PE, PO BOX 68, 32 Goldsel Rd., Swanley, Kent Send S.A.E. for free data on kits. Post and packing 30p. Prices include VAT. Official orders welcome Overseas customers deduct 7% on items marked and 11% on others.

SUPER TOUCH-SENSITIVE PIANO

We have shown our special brand of skill and expertise in designing this piano featuring:-
Wide range of touch-sensitive response ESU design.
Free from breakthrough noise.
Choice of keyboard C-C or F-F with Transpose Control.
Two models are available. Model TS50 is a touch-sensitive piano only. Model TS53 has extra effects of Honky-tonk, Harpsichord with fast and slow tremolo.
KIT SECTION PRICE LIST
ESU5 +5 Keyer Units $£ 11.95$ each, 5 required.
ESU5 +6 Keyer Unit $£ 13 \cdot 95,1$ required.
Power Supply $\mathbf{£ 9} 50$
Keyboard and Switches $£ 29.00$
Toneforming, Headphone and Voltage Regulator $£ 14.50$ Loud and Soft Pedal 17.95
Master Tone Generator 115 -00
Tremolo Unit £3.75
Cabinet switches, etc. £32-50
Can you afford $£ 750$ for an electronic piano? If the answer is NO why not visit our showroom and try our electronic pianos, discuss the technicalities in detail without obligation.

WÉ GUARANTEE TO SAVE YOU MONEY. IT IS SIMPLE ONCE YOU KNOW HOW.
Showroom: 12 Brett Road. Hackney, London E8 1JP Tel. 01-986 8455.

Component shop: 40a Dalston Lane, Dalston Junction, E8 2AZ. Tel. 01-249 5624.

Parts for organ builders
4-Octave C-C keyboard
26.00

5-Octave C-C keyboard £28.00
5-Octave F-F keyboard
5-Octave F-F piano keyboard . 90 $30 \cdot 00$
13 note pedal board £25.00
25 note pedal board
stop switches
Tone Generator Units
GD500/5 with 73 outputs
239.95

GD500/6 with 85 outputs \quad £48.50
GD500/7 with 96 outputs $\quad \mathbf{~ 5 2 . 5 0 ~}$
Diode Gate Sustain and Distribution Units
4-Octave with 3 pitches
£32.00
4-Octave with 4 pitches $£ 38.00$
5-Octave with 3 pitches $\quad \mathbf{£ 3 3 . 0 0}$
5-Octave with 5 pitches
260.00

5-Octave with 6 pitches $\quad \mathbf{E 6 5 . 0 0}$
4-Octave with 9 pitches \quad £88.00
5-Octave with 9 pitches \quad E96.00
Toneforming Units
3 pitches with 10 voices
24.00

E26.00
4 pitches with 15 voices $\mathbf{£ 2 7 \cdot 5 0}$
5 pitches with 10 voices $£ \mathbf{E 3 8} \cdot \mathbf{4 0}$
6 pitches with 19 voices $\mathbf{~} 65.95$
9 pitches with 10 voices $\mathbf{£ 4 0 . 5 0}$
Rotating Speaker Units
Bass unit
£68.00
Mid Range
$£ 75.00$
Hi-Fi Horn $\quad \mathbf{E 8 9 . 0 0}$
Prices include VAT.
Other useful components in stock for organ work. Send S.A.E. for lists.

ELECTRONIC MUSICAL INSTRUMENTS
12 Brett Road, Hackney, London, E8 1JP. 01-986 8455

SEND STAMP ADDRESSEDENVELOPE NOW FOR THE EASY TO USE ACE ORDER FORM CONTAINING 500 TOP QUALITY POPULAR ELECTRONIC COMPONENTS AT PRICES YOU CAN AFFORD. P\&P FREE ON ORDERS OVER £2, OTHERWISE 20p. ALL PRODUCTS GUARANTEED ONE YEAR IF CORRECTLY USED. SOME EXAMPLES FROM THE COMPETITIVE ACE RANGE WITH VAT INCLUSIVE PRICES ARE SHOWN BELOW

BC107/108/109 Metal $13 p$	4WW Resistors CF $\pm 5 \%$ _ 3 for $6 p$
BC207/208/209 Plastic _....._11p	Minpresets Horiz/vert.__8p
2N3055__ 65p	Electrolytic $100{ }^{\prime} \mathrm{F} 25 \mathrm{~N}$ _ _ _ 10 p
741 Op Amp-8pin ___ _ _ 30p	Polyester C280 0-1,F_ F [P
555 Timer - 50p	LED Red 0.2" 15p
W04 1A Bridge ___ ${ }_{\text {a }}$	Phonoplugs_ 8p
7400 TTL _...... 15 p	Mintoggle SPST _ 80p
IN4148 Diode _ _ _ _ $4 p$	Wire-PVC Stranded 10m _ 25p
IN4001Rec__ _ 5p	Veroboard $0.12 .5 \times 3.75 \quad 50 \mathrm{p}$
BZY88 Zeners_ 12 p	S-DEC Breadboard 216p

THE firm for speakers!

SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

```
            ACT AUDAX BAKER
BOWERS & WILKINS CASTLE OELESTION
        CHARTWELL COLES DALESFORD
        DECCA EMI EAGLE ELAC - FANE
        GAUSS - GOODMANS - HELME - I.M.F
            ISOPHON - JR - JORDON WATTS
        KEF - LEAK - LOWTHER - McKENZIE
MONITOR AUDIO PEERLESS - RADFORD
            RAM - RICHARD ALLAN SEAS
        TANNOY - VIDEOTONE WHARFEDALE
```

WILMSLOW AUDIO (Dept. P.E. 8) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount Hi-Fi, etc. at 5 Swan Street and 10 Swan Street
Tel.: Wilmslow 29599 for Speakers
Tel.: Wilmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}$

MINI CONSOLES Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. Incorporates slots for holding 1.5 mm thick pcb's Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. Add 25 p per $£ 1$ order value for Post \& Packing	Stop wasting time soldering The NEW MW BREADBOARD accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins Includes slot-in Component Support Bracket and has over	SC BOXES (square corners) Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick peb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes. Add 25 p per $£ 1$ order value for Post \& Packing
ECONOMY QUALITY LED's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours	Includes slot-in Component Support Bracket and has over 400 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.)	
FULL SPECIFICATION LED's Red (specify size) 75 p per pack Green, Yellow, Orange (specify size) $£ 1.20$ per pack (Each pack contains 5 LED's, Mounting Clips and Data)	TYPE MP NEON INDICATOR Supplied with resistor for $\mathbf{2 4 0}$ Volts operation 150 mm leads, held in 6.4 mm hole by nut Red, Amber, Clear, Opal 20p each	etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. £9.72 (includes VAT \& P.P.) Accessory tools... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8$ th Drills, $3 / 32^{\prime \prime}$ Collet Price $£ 1.75$ (Includes VAT \& P.P.)
TYPE A NEON INDICATDRS Supplied with resistor for 240 Volts operation Held in 8 mm hole by plastic bezel 150 mm wire leads	SEVEN SEGMENT DISPLAYS Economy Quality Common Anode - 0.3" - Left Decimal Red, Yellow and Green @ 45p each Full Specification Common Anode - 0.3" - Left Decimal Red @ 98p each Green and Yellow @ $£ 1.35$ each (Data supplied with Full Spec. displays only)	RC BOXES (round corners) Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick pcb's. Close fitting flanged lids held by screws running into integral brass bushes.
12 VOLTS MINI HAND DRILL Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with 3/32" and . $050^{\prime \prime}$ dia. shanks. £7.56 (Includes VAT \& P.P.)	Quantity quotations on request P.P. Note Unless included in price add 25p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Michael Williams Electronits 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JP	RC $100 \times 50 \times 25 \mathrm{~mm}$ $51 \mathrm{p}(1-9)$ $49 \mathrm{p}(10+)$ RC $112 \times 62 \times 31 \mathrm{~mm}$ $59 \mathrm{p}(1.9)$ $52 \mathrm{p}(10+)$ RC $120 \times 65 \times 40 \mathrm{~mm}$ $68 \mathrm{p}(1.9)$ $62 \mathrm{p}(10+)$ $R C 150 \times 80 \times 50 \mathrm{~mm}$ $77 \mathrm{p}(1.9)$ $74 \mathrm{p}(10+)$ $R C 190 \times 110 \times 60 \mathrm{~mm}$ $£ 1.33(1.9)$ $£ 1.30(10+)$ Polystyrene version in grev only with no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} \quad 35 \mathrm{p}(1-9) \quad 32 \mathrm{p}(10+\}$ Add $\mathbf{2 5 p}$ per $£ 1$ order value for Post \& Packing

VALVEAMPLIFIER Build Chris Rogers' SIRAC MK 1 stereo design
 We think music sounds better through our valve amplifier, and that transistors now have some real competition.

Starting in October, details on how to construct this outstanding 50 watt per channel valve amplifier. Also we've arranged for construction kits, components and even the complete valve amplifier to be made available.

TEN CASSETTE DECKS COMPARED

Gordon King and Fred Judd join forces in another big cassette deck comparison with reliability and performance checks - and a comprehensive 'panel listening comparison'

BUDGET HI-FI SUPPLEMENT
This month there's a Hitachi system together with Eagle's A4600 amplifier and PRE 38 pre-amplifier reviews.

FIVE YAMAHA CASSETTE DECKS TO BE WON

and twenty pairs of headphones for the winning entries in this month's Yamaha competition - and we test them too.
FREE INSIDE
Guide to hi-fi plugs and connectors - information card.

SUPERSOUND $13 \mathrm{HI}-\mathrm{FI}$ MONO AMPLIFIER

MAINS OPERATED SOLID STATE AM／FM STEREO TUNER

 Tuner．Covering M．W．A．M．540－1605 K11Z．WHFFM
$88-108$ M1／Z Built－in Ferrite rod aerial for M．W．Full
 Indicalor．Built－in lre－amps with rariable output rolt．
age adjustable by pre－set control，Max o／p Voltage 600 age adjustable by pre－set control，Max of p Coltage bon
u／r RMS into 20 h ．Simulated teak finigh cabinet．Will

SPECIAL OFFERS

Mullard LIPIIG9 RFF－IF bonshe Tuned Amplifier Module
 and connection details supplied．$£ 2 \cdot 25+P$ ．\＆P．20p．

RECISION MADE

Push Button Switch bank．S Buttons giving $16 \mathrm{~S} / \mathrm{P}$ C／O interlocked switches plusj Cancel Button Plus $3 \mathrm{~d} / \mathrm{p}$ c／o． Overall size $5 " \times 2{ }^{\circ} \times 1 "$ supplied complete with
chtome finishefl switch buttons 2 for $£ 1 \cdot 50+20 \mathrm{P}, \mathrm{P}$ \＆ P ．

HI－FI LOUDSPEAKER SYSTEM MkII

Beautifully made simulated teak finish enclosure now $10 \frac{1}{\prime \prime}^{\text {wide }} \times 9^{\prime \prime}$ deep（approx．）．Fitted with E．M．1． Ceramic Magnet 13＂× $8^{\prime \prime}$ bass unit，H．F．tweeter unit and crossover．AVAILABLE IN NOMINA．
$4 \mathrm{ohm}, 8 \mathrm{ohm}$ or 16 ohm impedance（state which）． Handling power 10 watt R ．M． S ．
Our Price $£ 12 \cdot 80$ each．Carr．$£ 2 \cdot 20$ each． Cabinet Arailable Separately $£ \mathbf{E} \cdot 60$ each．Carr $£ 1-60$ Also arailable in 8 ohns with EMI $13^{\prime \prime} \times 8^{\prime \prime}$ bass speake：with parasitic tweeter $£ 11 \cdot 10$ each．Carr．
£．2．20．

 Tweeter Approx．3！＂Available or 8 or lo ohms，

SPECIAL OFFER

magnet 8 ohm 10
for Hi Fi．$£ 3.95$
2＂PLASTIC CONE HF TWEETER 4 ohm，£a． 50 ner
HIGH POWER HI－FI 8 ohm Dome Tweeter 1 ＂voice coil．Magnet size $3^{\prime \prime}$ dia．suitable for use in up to 50
watt syateme．$£ 4.50$ each +800 ．\＆P ．
VYNAIR \＆REXINE SPEAKERS \＆CABINET FABRICS VYNAIR \＆REXINE SPEAKERS \＆CABINET FABRICS
app． 54 in，wide．Our priee $£ 1.50$ yd length．P．$\$$ P． 50 p app． 4 in．Whate．Oilr priee $£ 1.50$ yd．leng
per yol．（min． 1 yd．）．S．A．J．ior samples．
＂POLY PLANAR＂WAFER－TYPE，WIDE RANGE ELECTRO－DYNAMIC SPEAKER
Size lla $\times 14$ 多 $\times 1{ }^{16}$ deep．Weight $190 z$ ．Powe Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$ ．Can be mounted on ceilings，walls ete．and used with or without baffe．Send S．A．E．for
details．Onir $£ 8-40$ each．P ．\＆P M0p for one．$£ 1.10$ for $t w o$ ． details．Only $£ 8-40$ each．P．\＆P． 40 p for one．$£ 1 \cdot 10$ for two．

SONOTONE 9TAEC COMPATIBLE STEREO CARTRIDGE T／O stylus D．
ONLY £2．36．
 CARTRIDGE for EILIPISter STEREOCOMPATIBLE LATEST T／O MONO COMPATIBLE CARTRIDGE fo blaying EH／LP／is Mono or stereo records on mon equipment．Only $£ 1.58$ ．P．\＆P． 18 p ．

FOR PERSONAL CALLERS ENQUIRIES CAN NOW OFFER A FULL REPAIR SERVICE ON ALL HI－FI EQUIPMENT

HARVERSONIC SUPER SOUND $10+10$ STEREO AMPLIFIER KIT

reallg first－class $\mathbf{H i}$－li Stereo Amplifier Kit．Uses 14 ransistors including Silicon Trangistors tages on each channel resulting ink eren lower noise bass．Treble and two Volume Controla．Suitable for uso with Ceramic or Crystal cartridges．Very simple to
modify to suit magnetic cartyidge．instructionsincluded Ontput stage for any specakersfron 8 to 1 ö ohms．Compac design，ali parts supplied inclnding cirilled metal Wopk high quality ready drilled printed circuit board with anodised aluminium front panel with matehing linobs nodised by step instructions enable any constructor to build an amplifier to be proud oi．Briei specifications：Power output： 14 watts r．m．s．per channel into ohme．Fre than 80 mV into $1 \mathrm{M} \Omega$ ．Full $12-15,000 \mathrm{~Hz}$ ．Bass，hoost approx．to 12 dH ．Treble cut approx，to－1GdB．Negative leedback 1811
main amp．Power requirements 3 s．at $1 \cdot 0$ amp．
Overall Size 1ごw．$\times 8$ d．$\times 2$＂ h ．
 list free with kit or send läp phislarge S．A．F．
AMPLIFIER KIT＇
$£ 13 \cdot 50 \quad$ I＇．\＆P．80p MOWER PACK KIT $\quad £ 5.50 \quad \mathrm{I}^{2} . \& \mathrm{P}$ ． 95 p CABIN FT $\mathbf{8 5 . 5 0 ~ 1 ’ . ~ \& P . ~ 9 5 p ~}$ Special offer－only $£ 23.75$ if all $\mathbf{3}$ units ordered at one tíme plus $£ 1 \cdot 25$ P．\＆P．

Full after sales service
Also a vailable ready built and tested $£ 31 \cdot 25$ ．P．\＆P．\＆1．50．

－VALVE AUDIO
AMPLIFIER HA34 MK II． Designed for Hi－Fi reproduc－ tion of records．A．C．Mains operation．Ready built on
plated heavy gauge metal
 4．4h．Incorporates LCC83，
FL84．EZ80 valves．Heavy EL84，Ez80 valves．Heavy
duty，double wound mains duty，double wound mains
transformer and output trans－ former matched for 3 ohm speaker．Separate volume control and now with improved cut．Negative feedback line．Output 4！watts．Front nane can be detached and leads extended for remote mounting of controls．Conipiete with knnlis，valv
wired and tested for onlv $£ 8.20$ ．P．\＆$]$ ．$£ 1.40$ ．
HSL＂FOUR＂AMPLIFIER KIT．Simitar in appearance dvanced circuitry．Complete set of parts，etc．$£ 7,60$ ． 1．\＆P．£1 40

10／14 WATT HI－FI AMPLIFIER KIT monaural amplifier with an ontput of 14 watts from EL84s in fursh－pull Super reproduction of both music and speech，with negli gible hum．Separate inputs for mike and
gram allow records and announcements
 to follow each other Fully shrouded section wownd output teassion match $3-10 \Omega$ speaker and 2 independent volume controls， iving good lift and cut．Valve line－up 2 EL84s．FCC83 giving good lift and cut．Valve line－up EL84s，ECC83， Up \times SAE（Free with parts）．All parts sold separately and tested $£ 16.50$ ．

SPECIAL LINES $\begin{gathered}\text { ofrerben subject to } \\ \text { stock avalublity }\end{gathered}$ Limited number of 13 ritish Mannfacturer＇s Surplus eatures： 2 separate power modules，i for Bass response and 1 for mid．ranse／t weeter $\overline{5}$ stage Lifil display for nower o／p indication．A／c mains j / p switchable for 110 AVAILABLE TO PERSONAL CALLERS ONLY－PLEASE PHONE TO CONFIRM AVAILABILITY．
frand new and tested onivilabil．
OUR PRICES INCLUDE VAT AT CURRENTRATES
（Please write clearly）
PLEASE NOTE：P．\＆P．CHARGES QUOTED APPLY TO U．K．ONLY P．\＆P．ON OVRES

Hans．Sole Agents ror Austratia and New
Practical Electronics is sold subject to the following conditions，namely，that it shall not，without the written consent of the Publishers first given，be lent，resold，hired out or otherwise

IT'S A FANTASTIC BESTSELLER!

216 big ($11^{\prime \prime} \times 8$ ") pages! Over a thousand illustrations!
Over 30 pages of complete projects to build!
Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!
DON'T MISS OUT! SEND 60p NOW!

Our bi-monthly newsletter keeps you up to date with latest gueranteed prices - our latest special offers Ithey save you pounds) - details of new projects and new lines. Send 30p for the next six issues ($5 p$ discount voucher with each copy).

MAPLIN ELECTRONIC SUPPLIES

P.O. BOX 3 RAYLEIGH ESSEX SS6 8 LR

Telephone: Southend (O702) 715155 Shop 284, London Road, Westcliff-on-Sea, Essex YClosed on Monday) Telephone Soúthend (10702) 47379

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE 60p

Please rush me a copy of your 216 page catalogue by return of post enclose 60p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

NAME
AÓDRESS

[^0]: (C) IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: f. 10
 l
 $\mathbf{9} \cdot 25$ 9.25
 7.710 $2 \cdot 3.5$
 2.51

[^2]: Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m.
 Valves, Tubes and Transistors - Closed Saturday Terms C.W.O. only • Tel. 01-677 2424-7 Quotations for any types not listed when going
 Post and Packing 25p per order $+8 \%$ V.A.T. Items marked * 12 $\frac{1}{2} \%$

