PRACTICAL ELECTRONICE SEPTEMEER 1977

Australia 85c New Zealand 85c South Africa 80 c Malaysia $\$ 2.25$
 P= CMANMP

Get agreat deal from
Marshall's
A. MARSHALL (LONDON) LTD. DEPT. P.E NW2 3ET GLASGOW-85 West Regent Street G2 $2 Q \mathrm{D}$ ($1-2 \frac{1}{2}$ Regent Street G2 2QD Tel. 041-332 4133
BRISTOL-1 Straits Parade, Fishponds Rd BS16 2LX
 COMPLETE BUYERS GUIDE TO PRICE 35p POST PAID. 25p FOR CALLERS

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K EXPRESS M.O. SERVICE BY RETURN POST-all

2NE96
2N697

025	$2 N 3703$	0.15	2 N 6126	0.45
$2 N 3704$	0.15	403611	0.50	

0.45
.50
$.5 C 159$

.16	$8 D 116$
.35	$8 D 13!$

-all

|BFX85

1.20	BFX8
.51	BFX8
.54	BFX8
.37	BFX8

0.54	BFX
BFX 8	
0.37	BFX 8
0.37	BFY

INTEGRATED CIRCUITS
\qquad

MICROPROCESSOR COMPONENTS

RAMS		tristate		2102-2N			
2101-2N	3. 00	BUFFERS					
$2102-2 \mathrm{~N}$	$2 \cdot 10$	DM81LS95	1.45	RAM £1.93			
$2111-2 \mathrm{~N}$	3.00	DM81LS96	1.45				
$2112-2 \mathrm{~N}$	3.00	DM81L.S97	1.45	FOR 25 pcs.			
$74 \mathrm{C9200}$	12.57	DM81LS98	1.45				
MM5214	26.95	8080A 8 BIT MICROPROCESSOR FAMILY					
PROMS							
74 S 287	5.33						
MM5204Q	32.30	INS8080A	N Channel 40 Pin				
1702AO	10.80	DP8224N	Ctock Generator				
27080	35.00	DP82280	System Controller				
		DP8212N	8 Bit Port				
	,	1SP-8A 5000	SC MP CPU chip		$\{12$		
		1SP.8A 600	N -channel	chip			

 $\begin{array}{ll}\text { TBA7000 } & 1.61 \\ \text { TBA7200 } & 2.30 \\ \text { TBA750 } & 1.98 \\ \text { TBAT500 } & 2.07 \\ \text { TBAB0 } & 1.25\end{array}$

DIODES							
AA116	0.12	BA158	0.38			IN4005	0.10
AA118	0.12	BA159	0.51	OA47	0.13	IN4006	0.11
AA119	0.14	BA202	0.09	OA90	0.08	IN4007	0.12
AA129	0.09	BAX13	0.07	OA91	0.08	IN4148	0.07
AAZ17	0.18	BAX16	0. 10	OA95	0.10	IN4150	0.19
BA100	0.18	B8103	0.30	OA200	0.10	IN5400	0.14
BA102	0.18	BB104	0.40	OA202	0.14	IN5401	0.16
BAlad	0.12	BY 126	0.29	IN914	0.07	IN5402	0.17
8A145	0.18	BY 127	0.36	IN916	0.07	IN5404	0.18
BA154	0. 10	BY182	$1 \cdot 50$	1 N 4001	0.06	IN5406	0.22
BA155	0.12	BY206	0.20	IN4002	0.07	in5407	0.27
BA156	0.15	BY207	0.22	IN4003	0.08	IN5408	0.40
BA157	0.29	BYX10	0.27	IN4004	0.09	IS44	0.07

\qquad

TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC

$$
\begin{array}{l|l|}
0.55 & 7460
\end{array}
$$

CD4000	0.24	CD4018	$1 \cdot 15$
C04001	0.24	CD4019	0.70
CD4002	0.24	CD4020	1.27
CD4006	1.34.	CD4021	$1 \cdot 15$
CD4007	0.24	CD4022	$1 \cdot 10$
CD4008	$1 \cdot 10$	CD4023	0.24
CD4009	0.64	CD4024	0.84
CO4010	0.64	CO4025	0.24
C04011	0.24	CO4027	0.64
CD4012	0.24	CD4028	1.02
CD4013	0.60	CD4029	$1 \cdot 30$
CD4014	1.15	CD4030	0.64
CO4015	$1 \cdot 15$	CD4031	2.53
C04016	0.64	CD4035	1.34
C04017	$1 \cdot 15$	CD4037	1.10

CD4041	0.96	C04059
CD4042	0.96	$C 040$
CO404	1.95	$C 04$

玉 MICROPROCESSOR SYSTEMS

SC/MP INTROK
Budget introduction to SC/MP microprocessing
Board. CPU. Memories. Crystal, etc. Built-in debugging. SC/MP NaIE YOARD KIT
KEYBOAR

keyboard provides manual l/O commands
Full instruction and data supplied with each
Full instruction and data supplied with each
plete kit easily mates with cassette recorder.
CONSTRUCTIONAL PROJECTS
P.E. CHAMP-1 by R. W. Coles and B. Cullen Introducing the Champ family-Development System, Programmer and Eraser 16
FREQUENCY COUNTER/TIMER by P. Leah
An accurate and economic piece of test equipment 22
ACTIVE 'SCOPE PROBE by B. Savage
A broad-band, high impedance probe with switchable gain 32
P.E. MASTERMIND-2 by P. F. Turney
Entry section of logic together with random generator, comparator and master clock are described 40
LINEAR OHMMETER by R. Harris
Enables accurate measurement of resistance up to $10 \mathrm{M} \Omega$ 46
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 31
HIGH ACCURACY RECTIFIERS by D. F. Bowers
A survey of precision rectifier circuits based on operational amplifiers 53
INGENUITY UNLIMITED
Timer-Wiper Delay Unit-Transistorised Dynatron-High Impedance Audio Pre-Amp 56
NEWS AND COMMENT
EDITORIAL-And Now, Hands-on 15
NEWS BRIEFS
Video Recorder-Dublin Buses-Safety Abroad-Making History 20, 58
SPACEWATCH by Frank W. Hyde
Space Shuttle, Fulcrum of the Future 21
READOUT
A selection of readers' letters 39
STRICTLY INSTRUMENTAL by K. Lenton-Smith
VCO arrangements for synthesiser keyboards 49
MARKET PLACE
Interesting new products 50
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 52
POINTS ARISING
Burglar Alarm-Warning System 58
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 60
(The CRO Logic Monitor Generator has been unavoidably held over)
Our October issue will be on sale Friday, 9 September, 1977
(for details of contents see page 45)

[^0]

SUPER TOUCH-SENSITIVE PIANO

We have shown our special brand of skill and expertise in designing this piano featuring:-
Wide range of touch-sensitive response ESU design.
Free from breakthrough noise.
Choice of keyboard C-C or F-F with Transpose Control.
Two models are available. Model TS50 is a touch-sensitive piano only. Model TS53 has extra effects of Honky-tonk,
Harpsichord with fast and slow tremolo.
KIT SECTION PRICE LIST
ESU5 + 5 Keyer Units $£ 11 \cdot 95$ each, 5 required.
ESU5 + 6 Keyer Unit £13.95, 1 required.
Power Supply $£ 9$ - 50
Keyboard and Switches $£ 29.00$
Toneforming, Headphone and Voltage Regulator $£ 14.50$
Loud and Soft Pedal $£ 7.95$
Master Tone Generator $£ 15.00$
Tremolo Unit $£ 3.75$
Cabinet switches, etc. $£ 32 \cdot 50$
Can you afford $£ 750$ for an electronic piano? If the answer is NO why not visit our showroom and try our electronic pianos, discuss the technicalities in detail without obligation.
Wé guarantee to save you money. It is simple ONCE YOU KNOW HOW
Showroom: 12 Brett Road, Hackney, London E8 1JP. Tel. 01-986 8455.

Component shop: 40a Dalston Lane, Dalston Junction, E8 2AZ. Tel. 01-249 5624

Parts for organ builders

4-Octave C-C keyboard
£26.00
5-Octave C-C keyboard
5-Octave F-F piano keyboard
5-Octave F-F piano
13 note pedal board 830.00

25 note pedal board
£25.00
stop switches
Tone Generator Units
GD500/5 with 73 outputs
£39. 95
GD500/6 with 85 outputs
GD500/7 with 96 outputs
Diode Gate Sustain and Distribution Units
4-Octave with 3 pitches
£32.00
4-Octave with 4 pitches
£38.00
5-Octave with 3 pitches £33. 00
5-Octave with 5 pitches
5-Octave with 6 pitches
£60.00
4-Octave with 9 pitches £65.00

5-Octave with 9 pitches \quad £96.00

Toneforming Units

3 pitches with 10 voices
£24.00
4 pitches with 10 voices $\mathbf{£ 2 6 . 0 0}$
4 pitches with 15 voices $£ 27 \cdot 50$
5 pitches with 10 voices $£ 38 \cdot \mathbf{4 0}$
6 pitches with 19 voices $\mathbf{£ 6 5 . 9 5}$
9 pitches with 10 voices \quad £40.50
Rotating Speaker Units \quad ع68.00
Mid Range $\quad \mathbf{E 7 5 . 0 0}$ Hi-Fi £89.00

Prices include VAT
Other useful components in stock for organ work. Send S.A.E. for lists.

ELECTRONIC MUSICAL INSTRUMENTS
12 Brett Road, Hackney, London, E8 1JP.
01-986 8455

YOU CANHOT SKI

sIopfs

But VERO SLOPING FRONT CASES do make attractive housings for many projects.

They are available in two sizes, made from high quality, two tone plastic, with anodised aluminium front panels. Both cases have integral circuit board fixing points in the base.

65-2523E and 75-1798K make ideal housings for test equipment, audio gear (faders, mixers, rhythm generators etc.) and control boxes.
See them at your local electronics shop and judge for yourself.

Send for our booklet which describes Veroboard, Plain board, DIP board, Pins, Tools, Plastic boxes etc. S.A.E. $7^{\prime \prime} \times 9^{\prime \prime}$ plus 10 p to:VERO ELECTRONICS LTD. RETAIL DEPT.
INDUSTRIAL ESTATE, CHANDLERS FORD, HANTS. SO5 3ZR.

PHILIPS

The top sellers for home assembly in Europe - now available in the U.K.

Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to S.S.T. Distributors (Electronic Components) Ltd., West Road, Tottenham, London N17 ORN

RADIO EXGHANGELTD.

ALL PRICES include Vat

NEW EDU-KIT MAJOR
 COMPLETELY SOLDERLESS
 ELECTRONIC CONSTRUCTION KIT
 BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

4 Transistor Earpiece Radio
- 5 Transi Amplifier - Transistor LoudSignal Injector
Transistor Tester NPN
${ }_{5}{ }_{5}^{\text {speaker Radio MW/LW. }}$ Transistor
4 Transistor Push Pull
Wave Radio
Electronic Metronome Electronic Noise Genera tor
Batteryless Crystal Radio
- Sensitive Pre-Amplifier. Baseboard 24 Resistors 21 Capacitors 10 Transistors $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker Earpiece Mica 3 Knobs - Ready Wound MW/LW/SW Coils Ferrite Rod 8 witches 1 Tuning Condense sleeving, etc. Ready wound MW/LW/SW Coils Ferrite Rod $6 \$$ yards of wire 1 yard of Complete kit of parts including construction plans
Total building costs 19001 P.P. and Ins. $£ 1 \cdot 10$
One Transistor Radio
2 Transistor Regenera tive Radio - 3 Transistor Regenera Audible Continulty

V.H.F. AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of at or thic long wave band wave or the long wave band and operating an
instructions
slown in the
suphed with all parts
Uses a retractable chrone plated telescopic acrlal, gain control. F.il.r. tuning capacitor, transistor, etc.
All parts including case and plans

POCKET FIVE

Now with 3in Loudspea
3 tuneable wave-
bands. MW, LW
and trawler band
7 stages, 5 transis
tors and 2 diodes,
supersensitive ferrite rod aerial, attractive black and
gold case. Size 5 in $\times 1$ in
$\times 3 \frac{1}{2}$ in appros

Complete kit of parts including construction plans. | Tota! |
| :--- |
| Building Costs: |

EIECTRONIC CONSTRUCTION KIIS

E.C.K. 2 Seli Contained Multi-Band - Col. 2 V.H.F. Receiver Kit. 8 transiators and 3 dlodes. Push pull output. plated telescopic aerial, V.H.F. tuning capacitor resistors, capacitors, transistors, etc. Will recelve T.V. sound, public service band, aircraft, V.H.F. ocal stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit).

Complete kit of parts $£ 7.95$

5 P.P. and Ins. 90p
E.C.K. 4

7 Transistors, 6 tuneable wavebands, MW, LW, Trawler Band, 3 Short Wave Bands. Receiver Ki
With ain \times 3in loudspeaker. Push pull output stage, gain control, and rotary switch. $\overline{7}$ transistors and 4 diodes. - section chrome-plated telescopic aerial. Sin sensitive ready wound ferrite rod acrial, tuning capacitor, resistors. capacitors, etc. Operates from a 9 volt P.P. 7 battery (not upp
Complete kit of parts $\mathbf{£ 7 - 2 5}$ P.P. and Ins. 90p

EDU-KIT JUNIOR

Completely Solderless Electronic Construction Kit. Build these projects without Soldering Iron or Solder.

* Crystal Radio Medium Wave Coverage-No Battery ecessary * One Transistor Radio
* 3 ransistor Regenerative Radio K 4 Transistor Earpiece Radio Medium Wave Coverage * 4 Transistor Medium Wave L.oudspeaker Radio * Electronic Noise Generator * Flectronic Metronome
$\star 4$ Transistor Push/Pull Amplifer
All parts including loudspeaker, carpiece, MW ferrite rod aerial Completc kit of trans
$\left.\begin{array}{c}\text { Completc kit of parts } \\ \text { ncluding construction plans }\end{array}\right\}$

MODEL R.K. 3

MULTIBAND V.H.F. AND A.M
13 TRANSISTORS AND FIVE DIODES QUALTTY 5^{*} y 3^{*} LOUDSPEAKERS. WITH Multiband V.H.P. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Loca V.H.F. Stations, etc and Multiband A.M. section with Airspaced Slow Motion Drivc Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2 W. Three Short Wave BandsS.W.1,S.W.2,S.W.3and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave ancl Trawler Band, etc., Chrome Plated 7 section Telescopic Aerial, angled and rotatable peak Short Wave and V.H.F. reception. Push Pull output using 600 m W Transistors. Gain, Wavenange and Tone Controls. Plus two Slider Switches. BOOSTER SOCKET AND RESISTOR, to virtually double gain if required. Powered by P.P.9-9 volt Battery
ing strap. Building Instructions and 3530 operating Manuals. operating Manuals.

NEW

Everyday Series

Build this exciting
new ${ }^{\text {deaigns. }}$
denigns.
diode Transiators and
diodes. MW/LW. Powered by 41 V
battery. Ferrite rod aerlal, tuning condenser, volume control, and now with 3in. loudspeaker. Attractive case with red speaker grille. Size 9in. $\times 5 \nmid n . \times 2 \neq i n$.
approx. All parts including Case and Plans. pprox. All parts including Case and Plans.
Total Building costs 54031 P. \& P. + Ins. 80p
E.V.6. Case and looks as above. 6 Transistors liodes. Powered by 9 V battery. Ferrite rod aerial. in. loudspeaker, etc. MW/LW coverage. Puah/Pul all par

V.7. Case and looks as above, 7 Transistors and 3 diodes. Six wavebands, MW/LW, Trawler Band SW1, W2, SW 3 , powered by $9 V$ battery. Push pulloutput All parto including Case and Plana.
Total Building Costs Sos. 5 R.\& P. + Ins. 90p
To: RADIO EXCHANGE LTD.
61A High Street

- Callers side entrance "Lavells" Shop

Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 \$at

I enclose f
for
Name

Address

NEW ROAMER TEN

Handy size Reels and Dispensers

 OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOMEErsin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily

SAVBIT

handy solder dispenser
Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Slze 5 49p
For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC115 provides 6.4 metres approx of 0.71 mm solder for fine wires, small components and printed circuits.
PC115 57p
Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of 1. 22 mm solder.

Size 19A 53p oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.
 handy size reels of SA VBIT, 40/60, 60/40 and ALU-SOL solder
These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

Ref.	Alloy	Diam. (mm)	Length metres approx	Use	Price
$\underset{3}{\text { Size }}$	$\begin{gathered} \text { 40/60 } \\ \text { Tin/Lead } \end{gathered}$	$1 \cdot 6$	10.0	For economical general purpose repairs and electrical joints.	£1.79
$\begin{gathered} \text { Slze } \\ 4 \end{gathered}$	ALU-SOL	1.6	$8 \cdot 5$	For aluminium repairs. Also solders aluminium to copper, brass etc.	12.42
$\begin{gathered} \text { Slze } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	$39 \cdot 6$	For fine wires, small components and printed circuits.	£1.79
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	$13 \cdot 7$	For radio, TV and sim Har work. Increases copper-bit life tenfold.	£1.79

Sole U.K. Sales Concessionaires
Bib Hi-Fi Accessories Limited,
Kelsey. House; Wood Lane End, Hemel Hempstead. Herts. HP2 4RQ

Prices shown are recommended retail, inc. VAT. From electrical and hardware shops. In difficulty send direct, plus 20p P. \& P. Prices and specifications subject to change without notice.

complete digital clock kits

REAL TEAK CASE non alarm £10-65
Alaam ${ }^{\text {+65S VAT }}$ £13.43
s1.07 Vat

FEATURES: 4 red $\frac{1}{2}$ h high LEDs. 12 hour display with a.m./p.m. indication. Power failure indicated by flashing display. Precise accuracy from mains frequency. Beautiful Burma Teak case or stylish Perspex (siate first and second colour choice: white, red, blue, green, black)
NON ALARM: Complete Kit (including Teak case) $£ 11.50$ inci.; Module Kit (excluding case) $£ 9$ incl
ALARM EXTRAS: Pulsed alarm tone. Tilt operated "Snooze" period. Automatic brightness control. Simple setting
ALARM: Complete Kit (including Teak case) $£ 14.50$ incl.: Module Kit (excluding case) £12.50 inc
PERSPEX CASES: 50p less than Teak.
READY BUILT: Extra $£ 2$ on complete Clocks; extra 50 p on Modules.
TIMER FACILITY: Count in seconds up to 9 min 59 sec , extra 50 p .

'ALPHA'
 £11 incl.

Ready Buitt Non Alarm. White, black, blue, red green.
4 digits phosphorescent green, $\frac{1}{2}$ in high, 12- or 24-hour display

Discount on orders over 5 clocks or kits
Overseas: Add surface or air postage

Send payment with order. S.A.E. for details

BARON

(PE4) Southview House, 6 Gower Road Royston, Hertfordshire
Telephone: Royston (0763) 43695

- The finest components catalogue yet published.
- Over 200 A-4-size pages.
- About 5,000 items clearly listed and indexed.
- Nearly 2,000 illustrations
- Bargain List sent free.
- At $£ 1 \cdot 40$, incl. p. \& p., the catalogue is a bargain.

Send the coupon below now.
HOME RADIO (Components) LTD., 234-240 London Road. Mitcham. Surrey CR4 3 OD
POST THIS COUPON

SAXON ENTERTAINENTS LTD

SYSTEM 7000—GUARANTEED MODULES FOR ALL DISCO/P.A. APPLICATIONS

ULES 30-240 WATTS
Full RMS Sine Wave output.
Distortion typically 0.2%
10 Transistors, 4 Diodes
Response $30 \mathrm{~Hz}-30 \mathrm{kHz}$
Fully short and open circuit prool Sensitivity suits most mixers Built-in surge suppression and compensation iwin ac. and output fuses
Top-grade components throughout

30 Watts rms	60 Watts rms		120 Watts rms		240W rms
SA308	SA604	SA608	SA1204	SA1208	SA2404
30 Wrms /	60 Wrms	60 W rms	120W rms/	120W rms/	240 W rms/
8 ohms	4 ohms	8 ohms	4 ohms	8 ohms	4 ohms
£9.50	£12.50	¢13.50	£14.50	221.00	£25-50

POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED AND FUSED ON GLASS FIBRE PCB

PM301	PM601/4	PM601/8	PM 1201/4	PM1201/8	PM 1202/4	PM 1202/8	PM2404/1
For 1/2	For 1/2	For 1/2	For 1	For 1	For 2	For 2	For 1
SA308	SA604	SA608	SA1204	SA1208	SA1204	SA1208	SA2404
S9.90	$£ 12 \cdot 50$	$£ 12.50$	$£ 12.50$	$£ 12 \cdot 50$	$£ 19.50$	$£ 19 \cdot 50$	$£ 19 \cdot 50$

SYSTEM 7000 COMPLETE DISCO MIXERS (With Autofade) Mono or Stereo

A Audy to plug in and use

- Awo tone panel
 The choice of the professional D.J. $20 \mathrm{Mz}-20 \mathrm{kHz}$ Noise -77 dB
Controls: Mic volume, Bass, Treble, A/Fade Depth, Tape, L/Deck. R/Deck volumes, Bass, Treble, Master, Headphone volume, Selector and On/Off.
Mono 18V £37.50 Mains £43. 50 Stereo 18 V £53.50 Mains $\mathbf{E 5 9 . 5 0}$
IN MODULAR FORM- All you require is front panel (see below) knobs and sockets etc. All electronics are assemblad and tested
- Specification as for complete mixer All Potentiometers supplied and fitted Low cost do it yourself with step by step easy to follow instructions Mono $£ 19 \cdot 50$ Stereo $£ 29 \cdot 50$ Panel $£ 3 \cdot 50$ Supply unit $£ 8 \cdot 50$

SYSTEM 7000 LIGHTING CONTROL UNIT MK II (Four channel) Has your light unit got?

- 4.000W handling - Sequence facility - Smart 2 tone panel - Top grade components All your needs in one superbly designed unit
- Integral dimmers Automatic audio level OURS HAS!

IN MODULAR FORM-THE QUADRAFECT

โ29. 50 As with the mixers Mk II L.C. unit may be
purchased in module form with all controls, requiring only a panel.
case and knobs etc. There are 13 simple connections
1-240W Audio BA RCA triacs $0 \cdot 5-20 \mathrm{~Hz}$ Sequence Fully suppressed
CUSTOM MIXER MODULES (Complete or In printed circuit form only) Make your own mixer, mono or stereo, up to 2 channels, with full monitoring facilities, and provision for echosend/return etc

- Inputs for low and high 2 mic, ceramic and magnetic cartridge etc.
- Up to 20 input modules per single mixing module
- Feed most types of amplifier-accepts all inputs - Professional low noise circuitry $20 \mathrm{~Hz}-30 \mathrm{kHz}$ - Infinitely adaptable-Extremely economical COMPLETE MODULES With facia panel, Knobs and sockets, Monitor buttons. Ready wired and tested
Mono input $£ 8.50$ Mono mixing stage $£ 8.50$ Stereo input $\$ 12 \cdot 00$ Stereo mixing stage $\Sigma 12.00$
 PRINTED CIRCUIT MODULES with controis sockets, facia and knob Mono mixing stage $\boldsymbol{\$ 5 . 5 0}$ Stereo input $\mathbf{E 9 . 0 0} \quad$ Stereo mixing stage E9.00 Power supply for up to 20 channels-PPM18- $\mathbf{8 8} \mathbf{5 0}$.

SYSTEM 7000 SOUND-LITE (3-CHANNEL) IN COMPLETE OR MODULAR FORM

(Modular form illustrated)

- Complete unit similar to Mk II unit above - Long established and proven design - 3 Channels-100W per channel - $1-240 \mathrm{~W}$ inpul master audio level

COMPLETE UNIT--Fully
MODULAR FORM Facia and knobs cased with rear terminations-just etc. Needs only 11 simple connections plug in and go!
£24.75

COMPLETE DISCO SYSTEMS
(With two year guarantee-low interest credit) Centaur 100W

STEREO
with twin loudspeakers, sound to light sequence plusdisplay
£225 + E10 carr
Dep. $£ 28 \cdot 80,12$ months at $£ 21 \cdot 38$ or 24 months at $£ 12 \cdot 01$
Super Centaur 200W STEREO As above but with 200W
£275 + £10 carr
£ $\mathbf{3 2} \cdot \mathbf{8 0} 12$ months at $£ 29.39$ or 24 months at $£ 15 \cdot \mathbf{2 1}$
GXL Centaur 200W STEREO As the Super Centaur but with ext
£ 349 + $£ 10$ carr. lights. deck starts and superior decks Deposit $£ 42.72 \quad 12$ months at $£ 36.58$ or 24 months at $£ 20 \cdot 54$

Cue light + headphone monitoring - Mic and tape inpu Crossfade and Logeride cir
lightshow cutry
Complete and
Complete and

- Extremely rugged
construction

Send today for free illustrated leaflet on Saxon complete discos and package PA systems

All equipment subject to a guarantee

Deliveries in the U.K. by our own vans.

50W Mini Disco $£ 139 \cdot 50+£ 5$ carr. (Dep. $£ 16 \cdot 06.12$ months at $£ 113 \cdot 30$ or 24 months 100W Mini Disco £159•50 + £5 carr. (Depp. £22-66, 12 months at £14.73 or 24 months at 18 27)
Two extremely compact mono systems complete with loudspeakers and leads Twin BSR decks Headphone monitoring Mic input 00W package P.A. $£ 145+£ 7.50$ carr. with twin toudspeakers and Piezo Horns Dep. $£ 19 \cdot 70,12$ months at $£ 13 \cdot 78$ or 24 months at $£ 7 \cdot 73$)

ACCESSORIES: Condenser mics ECM7T 600 ohm £13.50; ECM81 Dual impedance £14.95; Crown headphones £6.75; Heavy duty boomstand £14.50.

10\% DEPOSIT, LOW INTEREST CREDIT ON ORDERS OVER 150
SYSTEM 7000 MINOTAUR 100 -All Purpose Wide Range Amplifier

- 100W rms-1dB
- Standard 8 ohm output

Twin mixed inputs accept
a wide range of signals $30 \mathrm{~Hz}-30 \mathrm{kHz} \pm 2 \mathrm{~dB}$
23 dB bass/treble - 2

An extremely compact and
versatile amplifier with
ull protection and a clean
attractive appearance.
Ideal for all groups
discos and clubs
Yuide covered case
$£ 49 \cdot 50$

- Fully short proof

SAXON 150 HEAVY DUTY AMPLIFIER \&59.00

SUPERSTROBE £19.75

- ${ }^{2-3}$ Bow Tules for long life

Compact 4in $\times 4$ in $\times 4$ in
PRO-STROBE
£32-50
-6-8 Joules
External trigger
Long Life tube time
 circuit

150 WATT LIQUID WHEEL PROJECTOR

- Accepts all accessories
- C/w with wheel and motor plate
Sturdy steel construction Remarkable value
Sold elsewhere a
is only: 533.00

PIEZO HORNS!
 No X-over required $\Sigma 7 \cdot 50$ each

All prices subject to VAT at 8% except SA308/PM301, mics, and headphones Ordering: By Telephone-Access, Barclay Card or COD Ring (01) 684 6385/0098 By post - Send cheque or crossed P.O.s or 60 p for COD or send in your Access/Barclay card NUMBER ONLY MAIL ORDERS AND CALLERS TO CROYDON
327-333 Whitehorse Road, Croydon, Surrey CR0 2HS
24 Hour Ansafone service (01) 6846385
Exporters to 17 countries-enquiries welcomed
Ring Sue Abegg on (01) 6846385 for U.K. trade enquiries

1TH for alatronie desinn enninears!

FIX-PRINT for printed circuits

Invaluable for holding P.C.B.'s and other panels when inserting and soldering components. Can be adjusted to suit work up to 280 mm , rotated to gain access to reverse side and locks in any position. All metal.
Price $£ 10$ inc. VAT. P. \& P. £1. Write or phone for full details.

Robust, all metal with ample throat dimensions. Adjustable height cantilever with lever actuated feed. Spring return. Will accept both P1 and P2 drills.
Price $£ 18 \cdot 50$ inc. VAT.
P. \& P. £1. 06 .

P1S
Drill
Stand

Constructed to take the popular P1 drill and ensure a high degree of accuracy in all types of electrical precision work. Price £5. 13 inc. VAT.
P. \& P. 38p.

Sole UK Distributors
PRECISION PETITELTD
HSa HIGH STREET TEDDINGTON MIDDLESEX TWH1 8HG
TEL: 01-977 0878 : 24 Hour recorded service

ELECTRONIC PIANO

ALL PARTS CAN BE SUPPLIED

Keyboard, Keyswitch, P.C.B.s. Hardware, Semiconductors. Resistors, Capacitors, Cabinets Complete kits or easy stages Send S.A.E. for details
Clef Products
31 Mountfield Road
Bramhall, Stockport, Cheshire SK7 1LY

NEW

FST216 BARGRAPH LED DRIVER
This new imported chip will drive a 16 LED array from an analogue voltage input. It may be connected for running point, discriminator magic eye, or bargraph mode. Price $£ 4$ each ($£ 7 \cdot 50$ for 2) incl. P. \& P

ITT 10 WAY LED ARRAY

Red or green. Price $£ 3 \cdot 65$ each ($£ 7$ for 2) incl. P. \& P All your electronic requirements are here at

LOW PRICES
Send for list to:

```
F.S.T. LTD.
```


THE DPEN DOQE TO EUALITY

4th ISSUE INCLUDES NEW METERS

as well as new switches and items from advanced optoelectronics to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts continue on many purchases;
Access and Barclaycard orders are accepted
SEMI-CONDUCTORS - COMPONENTS - ACCESSORIES, ETC

* FREE POSTAGE on all C.W.O. mail orders over £2 list value (excluding VAT) in U.K. If under, add 15p handling charge.

144 pages 40p post paid inc. refund voucher worth 40p

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE

DOLOMITI

$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c.

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: D.C. ranges, $\pm \mathbf{2 . 0 \%}$, A.C. \& Ω ranges $\pm \mathbf{2 . 5 \%}$
39 ranges: d.c. $\mathrm{V}, 0.150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$ $150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}, \mathrm{a}, \mathrm{c}, \mathrm{I}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 0.5 \mathrm{~A}, 5 \mathrm{~A}: \mathrm{dB}-10$ to +65 in 6 ranges; $\Omega 0.05 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. pF 50 kpF , 500kpF

Automatic overload protection and high current range fusing
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.I. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS carrying case, fused leads, handbook and full 12 -month guarantee. Optiona 30 kV d.c. probe available.

Meter £45-90 incl. VAT (£1 P. \& P.)
30 kV Probe $£ 12.85$ incl. VAT
For details of this and the many other exciting instruments in the Chinaglia range, including multi-meters, component measuring, automotive and electronic instruments please write or telephone.

A CGTOU $\mathbf{N}_{\text {Instruments Lto }}$

19 MULBERRY WALK, LONDON SW3 6DZ TEL: 01-352 1897

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones,
television, automotive instrumentation.
Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{\prime \prime}^{\prime \prime} \times 8 \frac{1}{4}^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers
Design of Digital Systems

plus 80p packing and surface post anywhere in the world.

Payments may be made in foreign currencies

Quantity discounts available on request

VAT zero rated

[^1]
Designer

These courses were written so that you
Manager Enthusiast
Scientist
Engineer
Student could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked. Cambridge Learning Enterprises (Dept. ENG),
Rivermill House, St. Ives, Huntingdon, Cambs. PE17 4BR
「 $\overline{T_{0}}:$ Cambridge Learning Enterprises (Dept. $\overline{\mathrm{ENG}} \overline{\text {) }}$
FREEPOST, Rivermill House, St. Ives, Huntingdon, Cambs. PE17 4BR *Please send me....set(s) of Design of Digital Systems at $£ 7 \cdot 00$ each, p \& p included
*or....set(s) of Digital Computer Logic and Electronics at $£ 5.00$ each, p \& p included
*or. . . .combined set(s) at $£ 10 \cdot 50$ each, p \& p included
Name
Address
*delete as applicable
No need to use a stamp-just print FREEPOST on the envelope. PE9

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors. potentio meters and transtormers. Hardware such as cases. sockets. knobs, eic. are not included bu most of these may be bought separately. Fulle details of kits, PCBs and parts are shown in our lists.
CIRCUIT. AND LAYOUT DIAGRAMS are supplled free with all PCBs designed by Phonosonics.
Photocopies of the P.E. texts for most of the kits are available-prices in our lists.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.

P.E. MINISONIC MK. 2 SYNTHESISE

A portable mains-operated Winiature Sound Synthesiser with keyboard circuits. Although having slightly fowe facilities than the large P.E. Synthesiser the function offered by this design give it great scope and versatility Consists of 2 log VCOs, VCF, 2 envelope shapers, 2 voltage controlled amps. keyboard hold and control circuits. HF oscllator and detector. ring modula

P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74)

The well acciaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. Other circuits Phasing Unit, Wind and Rain. Rhythm Generator, Sound Bender, Voltage Controlled Filter, Guitar Effects Pedal and Overdrive, Fuzz, Tremolo and Wah-Wah units.
The Maln 8ynthesleer: PSU, 2 IInear VCOs. 2 ramp generators, 2 input amps, sample hold, nolse generator, reverb amp. ring modulator, peak level circult, envelope haper, voltage controlled amp. Full details in lists. Set of basic, component kits
f 33.03
811.45
Set of printed circuit boards Main Synthesiser to make an independent musical instrument): 2 logarithmic VCOs, divider, 2 hold circuits, 2 modulation amps, mixer, 2 envelope shapers and additional PSU. Full details in our lisis?

Set of basic component kits
48.18

GUITAR EFFECTS PEDAL (P.E. July 75

Modulates the attack. decay and filter characteriatics of an audio signal not only from a guitar but from any audio source. producing 8 different switchable effects that can be urther moditied the low-priced sound effects units in our interesting of all the low-priced sofects from the Guitar Overdrive Unit
Component set with special foot operated switches $87 \cdot 59$ Alternative component set with panel mounting switches
84.98
$\$ 1.43$
ult board
SOUND BENDER (P,E, May 74)
multi-purpose sound controller, the functions of which include envelope shaper, tremolo, voice-operated fader, automatic fader and frequency-doubler.
Component set for above functions (excl. SWs) $\quad \mathbf{~} 7.84$ Printed circuit board
Optional extra-additional Audio Modulator, the use of Optional extra-additional Audio Modulator. the use of
which, in conjunction with the above component set, can produce "jungle-drum'" rhythms. Component set (incl. PCB)

PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing'" sound into live or recorded music.
Component set (incl. PCB)
4.47

PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control the rate of phasing.
Component set (inct. PCB)
SOPHISTICATED PHASING AND VIBRATO UNIT
A slightly modified version of the circutt published in "Elektor". December 1976, and includes manual and automatic control over the rate of phasing and vibrato.
Component set Printed circuit board

WAH-WAH UNIT (P.E. Apr. 76)

The Wah-Wah effect produced by this unit can be controlled manually or by the integral automatic controller. Component set (incl. PCB)
AUTOWAH UNIT (P.E. Mar, 77)
Automatically produces Wah-pedal and Swell-pedal sounds
each time a new note is played.
Component set. PCB, special foot switches \quad \&7.27

POST AND HANDLING

U.K, orders-under $£ 15$ add 25 p plus VAT, over $£ 15$ add 50 p U.K, orders-under $£ 15$ add $25 p$ plus
plus VAT. Keyboards $£ 1.50$ plus VAT plus VAT. Keyboards $£ 1 \cdot 50$ plus VAT damage in post, add $35 p$ in addition to above post and handling.
Eire. C.I., B.F.P.O., and other countries are subject to
Export postage rates. Export postage rates.

P.E. JOANNA (P.E. May/Sept. 75)

Alve-octave electronic piano that has switchable alternative oicing of Honky-Tonk piano, ordinary piano, harpsichord. ard a low tremolo. loud and soft pedal witching and sustain pedal switching. The power amplifier ypically delivers 24 watts into 8 ohms. The PCBs have been edesloned by ourselves making improved use of the space available.
Main power supply, tone generator, 61 envelope shapers. voicing and pre-amp circults.

Set of basic component kits for above
Set of printed circuit boards for above
Power amplifier
Power amplifier
Printed circuit board for power amp

RHYTHM GENERATOR (P.E. Mar./Apr. 774)

Programmable for 64,000 rhythm patterns from 8 effects circuits (high and low, bongos, bass and snare drums. Iong variable time sionatures and rhythm rates. Really fascinating and useful.

Tempo. timing and logic circuits
PCB for above clrcuits (double-sided)
Component set for all 8 effects circuits
PCB for all 8 effects
Simple mixer (our design) incl, PCB
Alternative mixer with external volume control (incl, PCB)
Power supply for T, T and L, and effecte
(incl. PCB)
$\$ 12.70$
c3. 33

RHYTHM GENERATOR-NEW CONTROL UNIT
Using an M252 Rhythm Generator integrated clrcult this Using, an M252 Rhythm Generator integrated circult timis and Logic control. It provides 15 different and readily selectable rhythm patterns quch as Waltz, Tango, March. Foxtrot, etc.
Component set (incl. PCB but excl. sw's) $\quad 12.90$
Power supply (incl. PCB)

SEE OTHER PAGE FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED

WIND AND RAIN UNIT

A manually controlled unit for producing the above-named sounds.
53.72

GUITAR OVERDRIVE UNIT (P.E. Aug. 76) GUITAR OVERDRIVE UNIT (P.E. Aug. 76) switchable controls afiecting the providing filtering. Doess not duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments.
Component set using dual slider pot
Component set using dual rotary pot
Printed circuit board

FUZZ UNIT

Simple Fuzz unit based upon P.E. "Sound Design" circuit Component set (incl. PCB)

TREMOLO UNIT

Based upon P.E. "Sound Design" circuit.

Component set (incl. PCB)

TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through it
The depth of boost is manually adjustable. Component set (incl. PCB)

P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments. Ideal for tuning acoustic and electronic musical instruments Main component set (incl. PCB)
815.59
87.03
P.E. SYNCHRONONE (P.E. Mar. 76)

An accented-beat electronic metronome, providing duple, triple and quadruple times with full control over the beat rate. Can also be used as a simple drum-beat rhythm generator. Includes power supply.
Printed circuit board
11.82
52.04

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used with the P.E. Synthesiser.

Component set
53.00

ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over attack, decay, sustain and release functions, and is for use with an existing voltage
Component set (incl. PCB)
14.85

ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)
This unit has its own voltage controlled amplifier and has full manual control over attack, decay, sustain and release functions.
Component set (incl. PCB)

TRANSIENT GENERATOR (P.E. APr. 77)
An envelope shaper, without VCA, having the usual attack decay, sustain and release functions, and in addltion it also programmed to imitate such instruments as a mandolin or banjo.

Component set
Printed circuit board

WAVEFORM CONVERTER

Slightly modified from a circuit published in a German edition of "Elektor". Converts a saw-tooth waveform int regular triangle form, and squarewave with an externatly variable mark-space ratio. Component set (incl. PCB but excl. sw's) E. 19

YOLTAGE CONTROLLED FILTER (P.E. Dec. 74)
Part of the P.E. Minisonic now released as an independent
kit for use with other synthesisers.
Component set (incl. PCB) (Order as Kit 65-1) \& 22

RING MODULATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an independent component set (incl. PCB) (Order

Component set (inct. PCB) (Order as Kit 59-1) $\quad \mathbf{5} .50$

NOISE GENERATOR (P.E. Jan. 75)
Part of the P.E. Minisonic now released as an Independent
Component aet (incl. PCB) (Order as Kit 60-1) \quad e3-35
SOPHISTICATED POWER SUPPLIES
A wide range of highly stabilised low noise power supply kits

MICROPHONE PRE-AMP (P.E. Apr. 77)
c3. 78
VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during "talk-over"-particularly useful for Disco work or for home-movie shows.
83.97

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to within a preset
lovel.
Component set (incl. PCB)
44.58

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. Alt payments must be cash-with-order, in Sterling and proferably by international Money Order or through an English Bank. To obtain list send 40 p .

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a smal

List-Send stamped addressed envelope with all U.K. requests for free list giving fuller details of PCBs. kits and other components.
OVERSEAS enquiries for list: Europeeond 20p; other countries-send 40p.

KEYBOARDS AND CONTACTS
Kimber-Allen Keyboards as required for many published circults, including the P.E. Joanna, P.E. Minisonle, and P.E. Syntheslear. The manufacturers ciaim that these are the finest moulded plastic keyboards available. All octaves are C to C. The keys are plastic, spring-loaded and 3 Octave 137 notes) 55.50 .4 ct (49
Contect Ascembiles for use with above keyboards: Single-pole change-over (type SP) as for P.E. Contect ascemblies for use with above keyboards: Single-pole change-over (type SP) as for P.E. Synthesiser. Special contact assembly (type 4PS) having 4 poles, 3 of which are normally-open make-break contacts and the fourth is a change-over contact-this special assembly enables THE SAME KEYBOARD to be used with the P.E. Synthesiser, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost of more than one keyboard. See our list for other contacta.

Contact	Each	3 Octave Set	4 Octave Set	5 Octave Se
SP	$24 p$	[8.88	\$11.76	[14.64
2 P	27p	[9.80	[13.23	515.47
4PS	53p	\$19.61	$\underline{25.97}$	[32-33

inter-wiring required, are available. Details in our lists.

MORE NEW KITS!	
ELECTRONIC ORGAN 5-octave electronic organ with 5 basic voices that can be used individually or together, 5 pitches ($2 \mathrm{ft}, 4 \mathrm{ft}, 8 \mathrm{ft}, 16 \mathrm{ft}$, $32 \mathrm{ft})$, variable attack, tremolo, vibrato, phasing, and variable sustain. Details in our list.	
ORGAN CONVERSION KIT Converts the P.E. Joanna electronic piano to also provide most of the facilities offered by the above electronic organ. Basic component set and PCB [12. 34	
SYNTHESISER TUNING INDICATOR (P.E. July 77) A simple 4-octave frequency comparator for use with synthesisers and other instrumente where the full versatility of the P.E. Tuning Fork is not required.	
Component and PCB (but excl sw.)	4
GUITAR FREQUENCY DOUBLER (P.E. Aug. 77) A modified and extended version of the circuit published. Detalle in list.	
TAPE NOISE LIMITER Very effective circuit for reducing the hiss found in most tape recordings. All kits include PCBs	
Standard tolerance set of components	
Superior tolerance set of component	3.76
Regulated power supply (will drive 2 sets)	
SOUND-TO-LIGHT (P.E. Aurora) (P.E. Apr.-Aug. 71) Four channels each responding to a different sound frequency and controtling its own light. Can be used with most audio systems and lamp intensities.	
Basic component set (excl. thyristors)	15.92
Printed circuit board for above	c3.90
Power supply	[5.78
PCB for power supply	¢1.79
3-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76) A simple but effective sound-to-tight controter capable of operating 3 lamps each of approximately 700 watts. Includes	
power supply, thyrisiors, and by-pass switches. Component set (incl. PCB)	¢11.95
DISCOSTROBE (P.E. Nov. 76) 4-channel light-show controller giving a choice of sequential, random, or full strobe mode of operation. Basic component set Printed circuit board	
BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)	
equlpment, can serve as lie-detector, alphaphone.	
Pre-Amp Module Component set (incl. PCB) \& 4.22	
with PCBs, for alphaphone, cardiophone, frequency meter and visual teed-back lampdriver	
Audlo Amplifler Module Type PC7 [7.35	
SEMI CONDUCTOR TESTER (P.E. Oct. 73)	
Essential test equipment for the enterpristing constructor. While stocks last.	
Set of resistors, capacitors, semiconductors.	

PHONOSONICS

Yourfree start to a rewarding newhobby.

Heathkit make the world's largest range of electronic kits.

Including amateur radio, test equipment, educational and general ${ }^{\prime}$ interest kits.

Every one of which comes to you absolutely complete-right down to the last nut and bolt.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

So, besides making an attractive, useful piece of equipment, you'll also have the makings of a satisfying, rewarding hobby.

To find out more, post the coupon and we'll send you our latest catalogue. Heath (Gloucester) Ltd., Dept. PE97, Bristol Rd., Gloucester, GL2 6EE. Tel: Glos (0452) 29451.

HEATHKIT

BETTER BUILT BECAUSE Y(OU BUILD IT Y(OURSELF The new Heathkit catalogue. Out now FREE
To: Heath (Gloucester) Ltd..Dept. PE97, Gloucester, GL2 6EE. Please send me my Heathkit catalogue. I enclose an 1lp stamp for postage.

HEATH
Name
Address

Showrooms at 233 Tottenham Court Road, London and Bristol Road, Gloucester.

NTERNATIONAL ELECTRONICS UNLIMITED				
		Shipment made via air-postage paid 3 DAYS FROM RECEIPT OF ORDER		
10\% OFF WITH \& 15 ORDER 15% OFF WITH $£ 50$ ORDER 	CENTRAL PROCESSING UNIT 8008 $£ 12.95$ 8080 $£ 12.95$ 		T	
		LED DISPLAYS		
	MV10B CIEAR DOMI $.170^{\circ}$ -15 MVSO CIIAR-AXIAL .04 MVSO RID-AMAI 04° -08	coser	4	
			cos	
			(ex	
		$2708 \underset{\substack{\text { ¢ } \\ \text { ¢ } 8 \mathrm{ERRO}}}{\text { ¢ } 19.95}$		
		$74 S 2000_{8 .-95}$ 256 BIT RAM TRI-STATE		
		Salisfaction guaranteed. Shipment will be made postage prepaid within 3 days fromreceipt of order. Payment may be made with personal check, charge card (inctude		
	LHCO OO70	TERNATIONAL ELECTRONICS UNLIMITED		
	ilem is pricere belion Spp each.			

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

R.C.S. 10 WATT AMPLIFIER KIT

This kit is zurtable for record players, tape play back, guitars, electronic instruments or small P.A. systems. Two versions are uses 22 semiconductors. Both kits have printed front panel and volume, bass and treble controls. Spec. 10 W output into 8 ohms TW into 15 ohms. Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$, input $100 \mathrm{M} . \mathrm{V}$. high imp. Size 9$\} \times 3 \times 2 \mathrm{in}$. AC mains operated
Mnor $_{\text {Mol }} £ 11$. 25
${\underset{k i t}{\text { Stereo }}}_{\text {fit }}^{\text {f18 }} \begin{aligned} & \text { post } \\ & 45 \mathrm{p}\end{aligned}$

Easy to build. Full inatructions supplied
ELAC 10 inch $£ 4.50$ Ribbed cone. Large ceramic magnel.
$50-16.000 \mathrm{c} / \mathrm{g}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. 10W. 15 ohm impedance.
ELAC 9×5 in HI-FI 53.45 SPEAKER TYPE 59RM Post 35 p This famous unit now available. 10W, 8 ohm.

GOODMAN'S COMPACT 12In BASS WOOFER

Standard 12 in diameter fixing with eut sides
$10 . t \mathrm{in}$ square. 14,000 gauss magnet. 30 watt
r.m.s. 4 ohm impedance. Bass resonance: 30 r.m.s. 4 ohm impedance. Beas resonance: 30
c.p.s. Frequency response: $30-8.000$ c.p.
$\varepsilon .0 .95$ each. Post $£ 1.00$.

PERIOD LOUDSPEAKER CABIMETS
Two styles availabia, Regency and Queen Anne. Size approximately $4 \times 19 \times 18 \mathrm{in}$. These cabinets are stightly soiled and are priced rom $\{10$ each. Callers only.

BARGAIN 3W AMPLIFIER. 4 Transistor Push-Pull
Ready built with volume, trable and bass controls. $\mathbf{1 8} \mathbf{1 8} \mathbf{~ v o l t ~ b a t t e r y ~ o p e r a t e d . ~} 95$

HEATING ELEMENTS

Size $104 \times 84 \times 1$ in. Operating voltage $200 / 250 \mathrm{~V}$ a.c. 250 W approx. Suitable for Heating Pads, Food Warmers, Convector heaters,

ONLY 40 P EACH (FOUR FOR $£ 1.50$) ALL POST PAD-Discounts for quantity
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE!
With tweeter. And crossover. 10W
State 3 or 8 ohm. $\mathbf{~ A s . ~} 50$ post 45p
As liustrated.
15 W model 58.50
ohms. Post 65p
20 W model 59.50
20 W model $\quad \underset{\text { Post } 65 p}{ } 4$ or 8 or 15 ohms. 50

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL $\cdot \mathrm{A} \cdot{ }^{\prime}$. $20 \times 13 \times 12 \mathrm{in}$. For 12 in . dia. or

MODEL "B". BOOKSHELF
For $13 \times$ 8in.
Bin. speaker.
£7.50 ${ }^{\text {Post }}$
R.C.S. BOOKSHELF SPEAKERS

size $14 \times 9 \times 6 \mathrm{in}$. approx. Response 50 to 14,000 6 watt rms 8 ohms. \quad E 16 pair	Post
Pl	

STIC WADDING 18in. wide, 20p in ior tape record/playback. loudspeakers, phono pick-up. externa FM-AM aerials. Auromatic sierso beacon ing Buith-in lerrite ro arial for madiumilongwave
£33.50 Post $£ 1.50$

KUBA-KOPENHAGEN

 STEREOHaxind
5
TUNER-AMPLIFIER CHASSIS AM-FM $5+5$ WATT components throughout. Features: Larse tacis first class quality components inroughout. Features: Large facia panel with 7 push
buttons for medium, long. Bhort. VFF-FM. AFC , phono. mains on-off. 4 rotary controls, tuning. volume. tone. balance. Facie
ize 17×4 in. Chassis size $17 \times 4 \times 5$ in. DiN-connector socketa

BAKER 150 WATT ALL PURPOSE TRANSISTOR MIXER AMPLIFIER
deal for Groups, Disco, P.A. and Musical Insiruments. 4 inputs speech and music. 4 way mixing. Output 48/16 ohm. a.c. Mains Separate treble fof Carr. NEW "DISCO 100 WATT", 552 ALL TRANSISTOR AMPLIFIER CHASSIS Carr. $£ 11$
2 inputs. 4 outputs separate volume treble and bass controls. Idea disco or slave amplifier chassis.
BLACK CARRYING CABINET AVAILABLE

PW SOUND TO LIGHT DISPLAY
Complete kit of parts with R.C.S. printed circuit. Three 1.000 W
channels. As featured in Practical Wireless. £14.00

GOODMANS CONE TWEETER

$18.000 \mathrm{c} / \mathrm{s}, 25 \mathrm{~W} 8 \mathrm{ohm}$.
Price £3. 25

R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

BAKER MAJOR 12

$£ 15$
Post 1.100

$30-14,500 \mathrm{c} / \mathrm{s} .12 \mathrm{in}$ double cone, woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux
density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25 W . NOTE: 4 or 8 or 16 ohms available.

Module kit. 30-17.000 c/s with tweeter. crossover, baffie, $19 \times 12 \mathrm{in}, \mathrm{E} 9$
instructiona. As illustratad.
Please state 4 or 8 or 16 ohms Post $£ 1.60$
"BIG SOUND
BAKER SPEAKERS
Robustly constructed to stand up to long proups and discos. Uoeful response $30-13$,000 Bass Resonance $55 \mathrm{c} / \mathrm{s}$.
GROUP ' 25 4. 8 or 16 ohms

GROUP " 35 "
12 in 40 W
4.8 or 16 ohms.
GROUP 50/12in
sow 8 or 16 ohms with
GROUP 50/15in
$1 \sin 75 \mathrm{~W}$
8 or 16 ohms.
£26
ost $£ 1 \cdot 60$
Dieco, Group + PA Cebinets in etock. Send to
Leaflot. Cabinet Fittings, Handies, Corners Feot, Covering Material aill in stock.
 HIGH QUALITY-BRITISH MADE SUPERB £21.95 12in 25 watt
Quality loudspeaker, low cone resonance bass. Special copper drive and concentric tweeter cone. Full range reproduction with remarkable efticiency in the upper
regisier.
Bass Resonance
Flux Density
Flux Density
$16,500 \mathrm{gan} \mathrm{c} / \mathrm{s}$
or 16 ohms mod
$20-17.000 \mathrm{c} / \mathrm{s}$

AUDITORIUM £20.95
12in 35 watt
A full range reproducer for high power Electric Guitars, public address, multi-Hi-Fi and Discotheque organ. Pese Pesonanceques.
Bass Resonance
Fiux Density Useful response $15,000 \mathrm{gauss}$
$25-16,000 \mathrm{c} / \mathrm{s}$ or 16 ohms models.

AUDITORIUM 15in model 45 watt E24.95.
Post $£ 1 \cdot 60$

BLANK ALUMINIUM CHASSI8, 18 s.w.g. 2 tin sides. $6 \times 4 \mathrm{in}, 70 \mathrm{p}$ $8 \times 6 \mathrm{in}, 90 \mathrm{p} ; 10 \times 7 \mathrm{in}, \mathrm{\Sigma 1} \cdot 15 ; 14 \times 9 \mathrm{in}, 81 \cdot 50 ; 16 \times 6 \mathrm{in}, \quad 81 \cdot 45$; ALUMINIUM'PANELS, $188 . w . g .6 \times 4 \mathrm{in}, 15 \mathrm{p} ; 8 \times 6 \mathrm{in}, 25 \mathrm{p} ; 10 \times 7 \mathrm{in}$ $30 \mathrm{p} ; 12 \times 5 \mathrm{in}, 30 \mathrm{p} ; 12 \times 8 \mathrm{in}, 40 \mathrm{p} ; 16 \times 6 \mathrm{in}, 45 \mathrm{p} ; 14 \times 9 \mathrm{in}, 50 \mathrm{p}$ ALUMINIUM ANGLE BRACKET, $6 \times 1 \times$ in. 15 p .
ALUMINIUM BOXES, MANY SIZES IN \&TOCK.
THE "INSTANT"' BULK TAPE
ERASER \& HEAD DEMAGNETISE
Suitable for cassettes. and all sizes of
ape reels. a.c. mains $200 / 240$. Pos
Leaflet S.A.E. \quad E4-50 ${ }_{40 \mathrm{p}}^{\text {Post }}$

Beginner's Guide to Integrated Circuits

There is hardly any item of domestic electronic equipment not incorporating at least one i.c. This book is for the comparative newcomer to electronics, with some knowledge of transistor circuits, wishing to acquire an understanding of i.c.s. The principles and construction of i.c.s. are described, as well as their many different uses. The book is copiously illustrated with many examples of practical i.c. circuits.

Beginner's Guides include

CONTENTS: What is an integrated circuit? Production of i.c.s. Simple voltage amplifier i.c.s. Simple digital i.c.s. MOS i.c.s. Domestic uses of i.c.s. Other specialised i.c.s. Practical construction. Index.

192 pages $\cdot 190 \times 127 \mathrm{~mm} \cdot 0408002786 \cdot £ 2.75$

ORDER NOW FROM your local bookseller or

Wewnes Technicelimooks NEWNES-BUTTERWORTHS
Borough Green, Sevenoaks, Kent TN15 8PH

Beginner's Guide to Audio
I. R. Sinclair

Beginner's Guide to Colour Television - 2 nd Ed. G. J. King

Beginner's Guide to Electronics - 3rd Ed.
T. L. Squires \& C. M. Deason

Beginner's Guide to Radio - 7th Ed. G. J. King

 $1 A+20 V V^{1 A}$
$2 A+25 V 2 A^{2}$
27

 AIOGET RECTIFIER TRANBFORMERS
MIDGET RECTIFIER TRANSFOAMERS
FOR FW
 $\begin{array}{llllll}9-0-9 V & 0.3 \mathrm{~A}, & \text { or } & 12-0-12 \mathrm{~V} & 0.25 \mathrm{~A} & \text { or } 20-0-20 \mathrm{~V} \\ 0.15 \mathrm{~A} \\ 0 \text { or } & 6 \mathrm{~V} & 0.5 \mathrm{~A} & 6 \mathrm{~V} & 0.5 \mathrm{~A}, & \text { or } \\ 12 \mathrm{~V} & 0.35 \mathrm{~A}+9 \mathrm{~V} & 0.35 \mathrm{~A} . & \text { or } \\ 12 \mathrm{~V} & 0.25 \mathrm{~A}+12 \mathrm{~V} & 0.25 \mathrm{~A}, & \text { or } & 20 \mathrm{~V} & 0.15 \mathrm{~A}+20 \mathrm{~V} \\ 0.15 \mathrm{~A},\end{array}$ all at cz-55 oach. $23 \mathrm{~V} 0.5 A \mathrm{B5D}$. 8V 0.5 A 75p.
LOUOBPEAKERS
 $8 \times \sin 4,8$ or
each \sin on 82.
" Instant" sulk cassette/tape erasen
Instant erasure of cassettes and rape spoole. demag-
netlises tape neads $200 / 240 \mathrm{~V}$. C . 50 . netises tape heads, 200,240 A.c., \&. 50 .
Size $19 \times 18 \times 20 \mathrm{~mm}$. Boon. 日Sp osch.
POWER SUPPLY MODULE, DUAL OUTPUT. 240 V G.C.
input ex-eriteh manufacture, smoothad oulputs. 20V 1.5 A
New.
 complete with diagram $£ 3 \cdot 50$.
AUTO TRANBFORMERS
CABLES-CABLES-CABLES
MICROPHONE TWIN H/DUTY, BRAIDED 8CREENNN Protessional cable for stage studio. Outdoor covered, 20p per metre.
MULTI WAY SCREENED, PVC COVERED
36 -way, ${ }^{21 ;} 25$-way 750 ; 14 -way $50 p$; 6-way 250
LOW LOSS CO AXIAL CABLE 15 ת
UHF 13p per matre: VHF 10p per me
MHINI 3-CORE CABLE, $19 / 0.10 \mathrm{~mm}$
deal for speakert. iniercoms. etc. I3. 50 per 100
$250-0-250 \mathrm{~V} 60 \mathrm{~mA}, 6.3 \mathrm{~V}$ 1AI 15 F
250 V 1100 mA 6.3 V 2 A t 1.50 .
OIP TRANSFORMERS FOR POWER AMPLIFIERS
 TWIN FIG A CABLE
Polarised, $100 \mathrm{~m} / \mathrm{e} 3$; screened stereo, $15 \mathrm{~m} / \mathrm{s} 1$

ALL TYPES DOMESTIC AND COMMERCIAL CABLE | TYPES SCREENED AND UNSCREENED CABLE |
| :--- |
| MLITI | ALL SIZES AND COLOURS CONNECTINO WIRES TRADE ENOUIRIES INVITED

46 Kenilworth Road, Edgware, Middx HA8 8 YG

MM5315 Clock chips, t3. 50
O.2.n green LEDs. $12 \rho+12 \rho$ P. 8

400 V 15A S.C. . . stud MTG. 35 p
200PF twin solid disiectric variable capacitory fin spindie. 35_{p} Grundig elsctric mike inserts with F.E.T. preamp. It.
B.S. A. dual imp \ddagger track tape haed

PL259 plugs with reducer, 3Sp
Soz3s sockats single hole or atandard mounting. ${ }^{10} \mathrm{P}$
T44 8 PIN D.IL. .C.Cs, 23p
Miniature level mator $20 \mathrm{~mm} \times 10 \mathrm{~mm} 10 \mathrm{M} / \mathrm{A} \mp \mathrm{FS} . \mathrm{D}$, , 00 D
Union carbice N . Channol $\mathrm{F} . \mathrm{E} . \mathrm{T}$. s similar to 2 N 3819 full spec, 20 p *
12 P P. \& P
Transtormer- 240 V acc. -12 V ac. 500 mA . $95 p$
Dynamic P.A. microphonas 50 kn thumb awitch, curly lead. $\mathbf{5 4} .50$ S.W.R. meter. 1:1~ $1: 3$ V.S.W.A. 52 - 75 月 imp. $\varepsilon 10.95$, with brase insert and 110 $75 \times 56 \times 33 \mathrm{~mm}, 40 \mathrm{p}$
$95 \times 75 \times 33 \mathrm{~mm}, 59 \mathrm{p}$
$115 \times 95 \times 37 \mathrm{~mm}, 57 \mathrm{p}$
12 V reed nolay 4 make, 20 P
Bulgin rolier micros. 15 p
Lucas 500 V 5 mp NPN Now Transiator full soec mpe 831268 55p
intel 1024 bit mos rams type C1103-1 with data, 95p
ETP 400 W solder gun
ETP yoow solder gun now. $\mathrm{E3} .75+50 \mathrm{p}$ P. \& P .

Savtit 500 gram cored solder per reel, $\mathbf{c z} \cdot 50+35 \mathrm{p}$ P. a P.
Stereo preamp chasis with controle, ceramic input with circuit,
E3. $50+50 \mathrm{P}$ P. \& P.
Board with 146 V reed relays: ez-40
Board with 146 V reed relays, Cz
Yoov 10 amp bridge recta, 35_{p}
300 V 10 amp bridge recta, 35p
300 Khz HCBU crystals, 40 p
500 mtr . reiels twin solid core connecting wire, $\mathbf{5 4} .00+850$ P. \& P
Car'radio chasais LW/MW dusl polarity new and complete apert
Trom outer case, W2.50 + 500 P. \& P
CV2184 2 in C.A.T. with P.D.A.. $11 \cdot 85+70 \mathrm{p}$ P. \& P
Man 3A 3 mm LED displays, sop $_{p}$
6 MH 3 amp omoothing chokes, 30 p
6-12V GPO buzzers. 30p
Board with 8 V changeover reed reley, c 1.75
3 R.P.M. 115 V a.c. amall motors with gearbox, 30 p
Modes motors 1.5-6V d.C.. 25p
with separsta alice control preampilfier, channal, self poweroc teulto with circult. E 15 -00 $+85 \mathrm{p} P$. \& P
Decca speaker cebicis, tran pair +51.20 P. \& P
GPO board whe BC 107 rype transiatore 2 reed and 0 mertury relaye diodes etc. t2-00 +550 P. \& P Nowmarket pow supply. 240 V a.c. input 8 V d.c. 250 mA . ou t1. 85 Car convertera 12 V d.c. In 9 V d.c. at 500 mA out now and boxed Pleasa inc. in prices.
rder Address
PROGRESSIVE RADIO
31 CHEAPSIDE
LIVERPOOL 2
051-236 0982

Solve your communication problema with this 4 Sintion Tranaiacor Intercorn oyatem (1 Master and 3 Subs), in robust plastic cabisets for
deak of wall mounting. Call tulk/listen from Manter to Subs and Subs to Master. Ideally suituble for Busineas, Surgery, Schoolt, Howpitals
and Oifice. Opernitas on ore 9 V buttery. OOfoff wich Volume and Office. Operives on one 9 V battery. On/off switch. Volume
contuol. Complete with 3 connecting wires each 66 ft . and ocher control. Complete with 3 connecting wises each 66 ft . and oth
accesoories $\mathrm{P} . \& \mathrm{P}$. 97 p .

anest transiatorised Telephone Amplifier with detached plug-in
spesker. Plicing the receiver on to the cradle mctiverea a switch for immediate rwo-wny converation without holding the handest, Many
 to make noter, consult fles. No long waiting, seves time with

WEST LONDON DIRECT SUPPLIES (PE9) 169 KENSINGTON HIGH STREET, LONDON WB BSN

$15-240$ WAT TS!

 stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.FEATURES: thermal shutdown: very low distortion: load line protection: integral heatsink: no externa components.
APPLICATIONS: hi-fi; disco: monitor; power slave; industrial; public address.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-120W R.M.S. into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 0.05% at 100 W at 1 kHz . Signal/Noise Ratio- 96 dB . Frequency Responae- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 45 \mathrm{~V}$. Size- $114 \times 50 \times 85 \mathrm{~mm}$.
Price $223 \cdot 32+£ 1 \cdot 87$ VAT. P. \& P. free
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! it has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: thermal shutdown; very low distortion; load line protection; no external components APPLICATIONS: public address: disco: power slave; industrial
SPECIFICATION: Output Power-240W R.M.S. into 4Ω. Load Impedance-4-16ת. Distortion-0.1\% at 240 W at 1 kHz . Signal/Noise Ratio- 94 dB . Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 45 \mathrm{~V}$. Input Sensitivity- 500 mV . Size- $114 \times 400 \times 85 \mathrm{~mm}$.
Price £32. $17+£ 2 \cdot 75$ VAT. P. \& P. free
POWER SUPPLIE8: P8U3s-suitable for two HY30s $55 \cdot 22+65 p$ VAT. P. \& P. free. P8U50-suitable for two HY50s Et - $82+$ 85p VAT. P. \& P. free. PsU70-suitable for two HY120s \&13.75 + 1. 10 VAT. P. \& P. free. PsUso-suitable for one HY200 $\Sigma 12 \cdot 65+£ 1 \cdot 01$ VAT. P. \& P. free. PsU1ee-suitable for two HY200s or one HY400 £23. $10+£ 1 \cdot 85$ VAT. P. \& P. free. I.L.P. Electronics Ltd., Crosesland House, Nacklngton, Canterbury, Kent CT4 7 AO Price $\mathbf{5} 5 \cdot 22+65 p$ VAT. P. \& P. free HY5 mounting board B.1. $48 p+6 p$ VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available
FEATURES: complete kit; low distortion; short, open and thermal protection: easy to build.
APPLICATIONS: updating audio equipment: guitar practice amplifier; test amplifier: audio oscillator. SPECIFICATION: Output Power-15W R.M.S. into 8Ω. Distortion- 0.1% t 15 W . Input Sensitivity500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $55 \cdot 22+65 p$ VAT. P. \& P. free
The HY50 leads I.L.P.'s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion; integral heatsink; only five connections: 7 amp output transistors: no external components.
APPLICATIONS: medium power hi-fi systems; low power disco: guitar amplifier
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-25W R.M.S. into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 0.04% at 25 W at 1 kHz . Signal/Noise Ratio- 75 dB . Frequency Response- $10 \mathrm{~Hz}-$ $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 25 \mathrm{~V}$. Size- $105 \times 50 \times 25 \mathrm{~mm}$.
Price $\mathbf{2 6} \cdot 82+85 p$ VAT. P. \& P. free
The HY120 is the baby of I.L.P.'s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion; integral heatsink; load line protection: thermal protection; five connections: no external components
APPLICATIONS: hi-fi; high quality disco: public address: monitor amplifier: guitar and organ
SPECIFICATION: input Sensitivity-500mV. Output Power--60W R.M.S. into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 0.04% at 60 W at 1 kHz . Signal/Noise Ratio- 90 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 35 \mathrm{~V}$. Size- $114 \times 50 \times 85 \mathrm{~mm}$.
Price $£ 15 \cdot 84+£ 1 \cdot 27$ VAT. P. \& P. free
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in singie pack; multi-function equalisation; low noise: low distortion; high overioad: two simply combined for stereo
APPLICATIONS: hi-fi; mixers: disco: guitar and organ; public address.
SPECIFICATION: Inputs-magnatic pick-up 3 mV : ceramic pick-up 30 mV ; tuner 100 mV : microphone 10 mV : auxiliary $3-100 \mathrm{mV}$: input impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs-tape 100 mV ; main output 500 mV Я.M.S. Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at 10 kHz : bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Distortion -0.1% 1 kHz : signal/noise ratio 68dB. Overload-38dB on magnatic pick-up. Supply Voltage- $\pm 16-50 \mathrm{~V}$.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
> I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD

Tel (0227) 63218
Please supply
Total Purchase price
I Enclose: Cheque \square Postal Orders \square Money Order \square Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Name and Address .
\qquad

JUETGEE FRGE

74 SERIES TTL ICs

TYPE	$\begin{gathered} \text { QUANTITY } \\ 1 \end{gathered}$		TYPE	QUANTITY		TYPE	QUANTITY	
	£	£p		£p	£p		Ep	Ep
7400	0.09	0.08	7448	$0 \cdot 70$	0.68	74122	0.45	0.42
7401	0.11	0.10	7450	0.12	$0 \cdot 10$	74123	0.65	0.62
7402 흔	0.11	$0 \cdot 10$	7451	0.12	$0 \cdot 10$	74141	0.68	0.65
7403	$0 \cdot 11$	$0 \cdot 10$	7453	0.12	$0 \cdot 10$	74145	0.75	0.72
7404	0.11	0. 10	7454	0.12	$0 \cdot 10$	74150	1.10	1.05
7405	0.11	$0 \cdot 10$	7460	0.12	$0 \cdot 10$	74151	0.65	0.60
7406	0.28	0.25	7470	0.24	0.23	74153	0.70	0.68
7407	0.28	0.25	7472	0.20	$0 \cdot 19$	74154	1.20	1.10
7408	0.12	0.11	7473	0.26	0.22	74155	0.70	0.68
7409	0.12	0.11	7474 ,	0.24	0.23	74156	0.70	0.68
7410	0.09	0.08	7475	0.44	0.40	74157	0.70	0.68
7411	0.22	0.20	7476	0.26	0.25	74160	0.95	0.85
7412	0.22	0.20	7480	0.45	0.42	74161	0.95	0.85
7413	0.26	0.25	7481	0.90	0.88	74162	0.95	0.85
7416	0.28	0.25	7482	0.75	0.73	74163	0.95	0.85
7417	0.26	0.25	7483	0.88	0.82	74164	$1 \cdot 20$	1. 10
7420	0.11	0.10	7484	0.85	0.80	74165	1.20	1.10
7422	$0 \cdot 19$	0.18	7485	1.10	1.00	74166	1.20	$1 \cdot 10$
7423	0.21	0.20	7486	0.28	0.26	74174	1.10	1.00
7425	0.25	0.23	7489	2.70	$2 \cdot 50$	74175	0.85	0.82
7426	0.25	0.23	7490	2.78 0.38	0.50 0.32	74176	1.85 1.10	1.82 1.00
7427	0.25	0.23	7491	0.65	0.62	74177	1.10	1.00
7428	0.36	0.34	7492	0.43	0.35	74180	$1 \cdot 10$	1.00
7430	- 12	0.10	7493	0.38	0.35	74181	1.90	1.80
7432	0.20	0.19	7494	0.70	0.68	74182	0.80	0.78
7433	0.38	0.36	7495	0.60	0.58	74184	1.50	1.40
7437	0.26	0.25	7496	0.70	0.68	74190	1.40	1.30
7438	0.26	0.25	74100	0.95	0.90	74191	1.40	1.30
7440	$0 \cdot 12$	$0 \cdot 10$	74104	0.40	0.35	74192	$1 \cdot 10$	1.00
7441	0.60	0.57	74105	0.30	0.25	74193	1.05	1.00
7442	0.80	0.70	74107	0.30	0.25	74194	1.05	1.00
7443	0.95	0.90	74110	0.48	0.45	74195	0.80	0.75
7444	0.95	0.90	74111	0.75	0.72	74196	0.90	0.85
7445	0.80	0.75	74118	0.85	0.82	74197	0.90	0.85
7446	0.80	0.75	74119	1.30	$1 \cdot 20$	74198	1.90	1.80
7447	0.70	$0 \cdot 68$	74121	0.28	0.26	74199	1.80	1.70

Devices may be mixed to qualify for quantity price. Data is available for the above series of ICs in booklet form price 35p.

CMOS ICs

POSTAGE AND PACKING
(ty ADD 25p FOR POSTAGE AND PACKING UNLESS OTHERWISE

TESTED TRANSISTOR PAKS All devices brand new, tested and coded

\begin{tabular}{|c|c|c|c|}
\hline 31 \& $3 \times$ AC $128 / A C 176$ each \& $J 16$ \& $2 \times$ BFY50/51/52 each

\hline J2 \& $10 \times$ BC107 \& 317 \& $6 \times 0 \mathrm{C71}$

\hline J3 \& $10 \times$ BC108 \& J18 \& $4 \times 2 T \times 108 / 9,2 \times 2 T \times 107^{*}$ each

\hline J4 \& $10 \times 8 \mathrm{BC109}$ \& 319 \& $2 \times 2 T \times 301 / 2,4 \times 2 T \times 300^{*}$ each

\hline J5 \& $3 \times$ BC148/149.2 \times BC147* each \& J20 \& $2 \times 27 \times 500 / 1 / 2 *$ each

\hline J6 \& $3 \times$ BC169/171/172* each \& J21 \& $4 \times 2 N 706 / 2 N 706$ each

\hline $J 7$ \& $2 \times$ BC177/8/9 each \& 322 \& $1 \times 2 N 2218 / 19 / 21 / 22$ each

\hline Jt \& $2 \times 8 \mathrm{EC182} / 3 / 4^{*}$ each \& 323 \& $2 \times 2 \mathrm{~N} 2904 / 05$ each

\hline J9 \& $2 \times \mathrm{BC212/213/214*}$ each \& 524 \& $3 \times 2 N 2907,2 \times 2 N 2906$ each

\hline J10 \& $2 \times \mathrm{BC} 327.3 \times \mathrm{BC328*}$ \& J25 \& $7 \times 2 N 2926 \mathrm{G}^{*}{ }^{*}$

\hline J11 \& $2 \times \mathrm{BC} 337,3 \times \mathrm{BC338}$ \& 326 \& $4 \times 2 N 3053$

\hline J12 \& $2 \times \mathrm{BF115}$, EF167, BF173 each \& J27 \& $2 \times 2 \mathrm{~N} 3055$

\hline J13

14 \& $2 \times \mathrm{BF194/5/6*}$ each
$2 \times \mathrm{BF} 258$ \& J28 \&

\hline 314
$\$ 15$ \& $2 \times \mathrm{BF} 258$
$2 \times \mathrm{BFX} 29,3 \times \mathrm{BFX} 84$ \& J29 \& $3 \times 2 N 3904 / 06^{*}$ each

\hline
\end{tabular}

TESTED DIODE PAKS
 $J 30$ $J 31$ $J 32$ $J 33$ $J 34$

 $\begin{array}{lll}J 35 & 20 \times \mathbb{N} 4001 \\ \text { d33 } & 15 \times \mathbb{N} 4002\end{array}$
 J38 $8 \times$ IN4007 PRICE 60p PER PAK
 OPTOELECTRONICS
 $343 \begin{array}{ll}4 \times D L 707+\text { data } \\ 5 \times 0.125 \text { red LED }\end{array}$
 $45 \begin{array}{ll}5 \times 0.2 \text { red LED } \\ 5 \times 0.2 \text { and } 0.125 \text { LED }\end{array}$
 \times ORP12 $\times \quad$ OCP71
 THYRISTOR PAKS
 UNIJUNCTION/FET PAKS $\begin{array}{ll}\mathbf{J 5 1} & 6 \times \text { TIS43/UT46 } \\ \mathrm{J} 52 & 4 \times 2 \mathrm{~N} 3819\end{array}$

PCB PRODUCTS

$353 \quad \begin{array}{ll}2 \times \text { Etch resistant } \\ 2 \times \text { Etchant paks }\end{array}$
51.00
51.00

DIY PRINTED CIRCUIT KIT

CONTAINS 6 pieces copper laminate, box of etchant powder and
measure, tweezers, marker pen, high quality pump drill. Stanley knife and blades, sin metal rule. Full easy-to-tollow nstructions. $\quad \mathbf{5 5 9}$ SALE PRICE E 5.50

RESISTOR PAK

$\begin{array}{ll}J 55 & 240 \text { firs } \\ & 820 \mathrm{k} \\ \mathrm{J5s} \\ & 160 \\ & \text { firs }\end{array}$
58. $820 \mathrm{k} \Omega$ first quality $\ddagger \mathbf{W}$ resistors-mixed from 100 ohm to $\varepsilon 1 \cdot 60 *$

ELECTROLYTIC PAK
$357 \underset{1,000 \mu \mathrm{~F}}{54} \mathbf{f}$
ELECTROLYTIC PAK
CERAMIC PAK

IC SOCKET PAKS
$\begin{array}{ll}360 & 11 \times 8 \text { pin DIL Sockets } \\ \\ 161 \\ 10 \times 14 \text { pin DIL Sockers }\end{array}$
$J 61 \quad 10 \times 14$ pin DIL Sockets
ZENER PAKS
$\$ 1.00$
51.00
$\$ 1.00$
$\$ 1.00$
81.00

Dept. P.E.9, P.O. Box 6, Ware, Herts SHOP 18 BALDOCK ST., WARE, HERTS AT OPEN 9 to 5.30 Mon/Sat.

AND NOW, HANDS-ON

THE promised technological revolution triggered off by the microprocessor is well under way. The last two years have seen the appearance of a bewildering variety of MPU devices and the choice of device has not been made any easier for the non-expert by the strident claims of rival manufacturers. Now at last the dust is beginning to settle, and a clearer view is obtainable of the microprocessor scene. The several quite different uses of these devices have now become clarified. The best paths for the amateur to pursue have become identified.
Two years ago we published the first account of microprocessors to be written for U.K. constructors. Another 18 months were to pass before Microprocessors Explained, our first comprehensive introductory series on this subject, was launched. (This pause for contemplation during the early stages of the "revolution" proved, in the event, very wise.) Last month this series was concluded with an overall perspective of microprocessors and a constructors' guide to the common MPU devices available.

Concurrently with the run of Microprocessors Explained, we have published a number of reviews of commercial development systems, several of these being built from the kit of parts by the reviewer before being put through their paces in what the jargon calls "hands-on" experience.

This extensive coverage of commercial equipment was deliberate, contrary though it would appear to be to our normal editorial policy. The development systems reviewed ranged from the simplest and least expensive to some representative medium priced equipments-in all embracing the price range likely to be acceptable to most of our readers.
Apart from gratuitous publicity for the makers of these equipments, the reviews provided valuable familiarisation with microprocessor development systems for our readers. They helped to demonstrate the features of various mpU chips and to make clear both the basic philosophy and the techniques involved in this new area of electronics.
So now we have done our "homework" and we trust our readers have also. The time is now right for some "handson" experience to be gained.
The development system is likely to be the principal tool of the system designer in the years ahead. This, then, is obviously the first most useful way we can apply the microprocessor in the area of d.i.y. electronics. Hence our very first micro-processor-based project is the PE Champ Development System.
Commissioned by Practical Electronics for the amateur designer, experimenter and constructor, Champ has been realised through the joint enterprise of our regular contributors Messrs. R. W.

Coles and B. Cullen. This design has some excellent uncommon features and with its attendant units, the Programmer and the Eraser, offers the individual amateur (and also the small professional designer) overall facilities for developing micro-processor-based systems and for transferring the finalised program into a PROM for incorporation in a dedicated system.

The PE Champ is the first electronic design tool of the microprocessor age planned especially for the home designer/ constructor. We envisage that with its aid countless electronic projects based on a dedicated pre-programmed microprocessor will in due course be created, and that some of these projects will eventually appear in our pages as straight-forward constructionals.

NEW FORMAT

After a 13-year run without change, the page size of Practical Electronics has now been increased, as from this month. We hope readers will welcome this larger format; it does have obvious advantages. We appreciate that the actual timing of this change may seem a little awry. Unfortunately this was dictated by production requirements and had to be synchronised with the re-ordering of bulk paper supplies by our printers.
F. E. BENNETT,

Editor.

EDITORIAL Editor

F.E. BENNETT

G.C.ARNOLD Assistant Editor D. BARRINGTON Production Editor G.GODBOLD Technical Editor M.ABBOTT Technical Sub Editor J.D. POUNTNEY Art Editor D.J. GOODING Technical Illustrator R.J. GOODMAN Technical lllustrator K.A.WOODRUFF General Artist

ADVERTISEMENTS Advertisement Manager
 D.W.B.TLLEARD
 Phone: 01-634 4504

P.J. MEW Representative

Phone: 01-634 4181
C.R.BROWN Classified Manager

Phone : 01-261 5762
MAKE-UP and COPY DEPT.
Phone: 01-634 4372

Advertising Offices:
Fleetway House,
Farringdon Street, London EC4A 4AD
Phone: Advertisements 01-634 4504
Telex: 915748 MAGDIV-G
Tex: 91574 MAGDIV-G

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

Back Numbers and Binders

Copies of our June 1977 and subsequent issues are available from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SEI OPF, at 65p each including Inland/Overseas p \& p.
Binders for PE are available from the same address at $£ 2 \cdot 10$ each to UK addresses, $€ 2.70$ overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.
Cheques and postal orders should be made payable to IPC Magazines Limited.

Editorial Offices:
Fleetway House,
Farringdon Street, London EC4A 4AD
Phone: Editorial 01-634 4452
Telex: 915748 MAGDIV-G

THE PE CHAMP PHILOSOPHY

THE microprocessor revolution is with us, and before long it will have steamrollered its way through to all but the most rudimentary electronic project areas. Before becoming a revolutionary, however, you have to make a careful choice concerning just what you want from this exciting new technology. A baby computer? A tutorial system? Or perhaps the ability to put together more effective logic and control systems? This choice is necessary because it is a fact that no reasonably priced microprocessor system can give you all of these things in a satisfactory combination.

CHAMP, in keeping with our "practical" image, is about making microprocessors work for a living; it is not a primitive attempt to emulate a full size data processing system which on grounds of cost alone, would fall short of desired performance in most respects. CHAMP is a development system which can be built economically without any requirement for expensive gadgets such as Teletypes, VDUs, or floppy discs; all you need can be built by you, including if you so wish, a PROM programmer and eraser.
WHAT CAN YOU DO WITH IT?
Well, you can't expect to sit down and write BASIC programs which beat you at chess. CHAMP is for examining switches, operating l.e.d.s and relays or playing "GodSave the Queen'", Stylophone style. It will control your model train layout or your f.m. tuner and Hi Fi system and later help you to put together small, cheap dedicated microprocessor boards to run the firmware programs you have developed to do these jobs. It has a calculator-type organisation which makes it easy for you to build up a collection of programs to crunch decimal numbers, if that is your interest. If you want to learn how to do practical things with microprocessors it will also form an excellent tutorial system to get you started.

HOW DOES IT DO IT?

Well, cheaply for a start. CHAMP uses one of the cheapest microprocessor chips around, but nevertheless has plenty of capability which you would be hard pressed to employ to the full. In our opinion it's no use investing in the fast, all-bells-and-whistles MPU chips unless you can afford the memory and peripheral facilities required to take advantage of their power.

With CHAMP you can write your programs into RAM while you are developing them, but you won't lose them when you hit the mains-off switch. CHAMP program RAM, all 512 eight-bit words of it, is of the CMOS variety which is supported by batteries when the power is off. This advanced feature removes the need for paper-tape readers or cassette interfaces and puts you streets ahead of some of the "noddy" development kits now on the market.

You write your programs into RAM with the aid of a simple hexadecimal keyboard and display, under the supervision of routines in the CHOMP firmware which (to save you buying a lot of expensive PROMs) fits into a single I702A device.

Interfacing CHAMP is simple because a low cost, program-configured interface chip is provided on the board to allow you to connect up to just about anything from a psychedelic light show to an array of toggle switches. The only addition required is the appropriate buffering, which can be mounted on the integral bread-board socket strip provided for this purpose.

In a nutshell then, the CHAMP philosophy concerns putting microprocessors to work in practical situations as cheaply as possible, using familiar constructional techniques to build a completely self-contained system with simple operating procedures.
\star Calculator-based hexadecimal keyboard and display allow rapid program entry and debug

太On-board battery supported CMOS RAM for up to 512 program steps allows retention
of carefully entered programs with power off

*Based on well supported Intel 4040 microprocessor. Has 60 easy to learn instructions which include binary and decimal arithmetic and keyboard encoding

*Twenty-four on-chip registers and interrupt facility available
©System monitor program CHOMP allows examination or modification of program memory, and program execution in single-step mode
*Open plan design allows easy access to all parts of circuit; no expensive plug-in cards to buy
*Programmable input/output interface chip makes for versatile interfacing at the breadboard level
*Optional PROM programmer and eraser allows a full development cycle to be undertaken by the home constructor for the very first time
\star No need for any expensive peripheral equipment like TTY or VDU

1-MEET THE FAMILY

Champ stands for low Cost Highly Adaptable Micro Processor, and we feel that those words really do sum up the main attributes of this versatile and capable system. CHAMP is not a toy for you to merely sample the wonders of real computers. CHAMP is a real computer in its own class, and it will not leave you wishing that you could afford a floppy disc system or another 8 K of ram, because it does not require these things to operate effectively. CHAMP is a development system for both software and hardware which will enable you to develop functional programs for their own sake, or for later inclusion in small minimal-hardware systems which could be built for a very small outlay.

CHAMP does not live on a collection of very expensive plug-in cards which have to go into an equally expensive 19 in rack case (where you can't get at them anyway without expensive extender cards). Instead it fits on one large "open-plan" $0 \cdot 1$ in matrix Veroboard which costs a lot less than a single plug in DIP board and allows you to stick your multimeter probes anywhere you like without being a contortionist.

There is ample room on the board for you to add ideas of your own, and all the buses to which you may need access are brought out on the cheap 16-pin DIL sockets so that you can debug or expand your system easily. The CHAMP circuit board slides into guides mounted above an attractive low profile plinth which houses the power supplies and also provides the control panel and a hardware development area.

KEYBOARD

The only peripheral equipment you need to enter and examine your programs is a simple hexadecimal keyboard and display unit which uses 16 keys labelled $0-9$ and A-F and can display eight digits in seven-segment format. One of

Estimated Component Costs...

CHAMP

with 256 program bytes, power supply, keyboard and breadboard socket \qquad

Fig. 1.1. Basic block diagram of the PE CHAMP Development System
the simplest and cheapest ways to build this keyboard is to modify one of the now commonplace "throw-away" calculators, and constructional details for this and a "build from scratch" version will be provided later.

ENTERING AND RUNNING PROGRAMS

Before you can enter programs of course, you have to write them, and this is done using the evolutionary process of vague flow-chart to detailed flow-chant to list of hexadecimal coded instructions, as developed in Part 3 of Microprocessors Explained. Examples of this procedure will be given later, together with some sample programs for you to try out.

When power is applied CHAMP is reset and the display shows the hexadecimal equivalent of the first program ram address. Pressing keys on the keyboard will enter hexadecimal code up to three digits long and this can be entered either as a new address (by pressing ENTER ADDRESS) or as a program instruction/data value (by pressing enter data). After the EnTER DATA switch is pressed, the current address is incremented by one to point to the next available location in ram, ready for further data. If you like, you can examine the existing contents of a RAM location using the DUMP switch whereupon the address will again be incremented to allow you to step through a program and compare it with your paper version. A reset switch is provided so that any current operation can be aborted, and run/STOP and single shot switches allow you to run a program one instruction at a time for debugging purposes.

When you are satisfied with a program you have entered you can throw the mode switch to the RUN position to allow your program to do its stuff, exiting if necessary with the RESET switch.

CHAMP circuit board

MPU CHIP

CHAMP is built around an INTEL 4040 microprocessor, but provides facilities for the development of programs and hardware for either the 4040 itself or the simpler 4004. This dual processor versatility is possible because 4004 instructions form a subset of the 4040 instruction set, making it possible to run any program written for the 4004 on a 4040 system. All that you have to remember when writing 4004 programs to try out on CHAMP is that you must not include any "4040 only" instructions in your code

The 4040 chip on CHAMP itself forms part of a complete microprocessor system which includes a versatile crystal clock circuit and both program and data memory. Two input/output interfaces are provided, one dedicated to the control panel switches and one which can be used either by the hexadecimal keyboard or by any external hardware provided by the user. A single level interrupt is provided which is used by the keyboard but which can also be used externally, when required for any particular application.

MEMORY

With the 4040 system organisation, data ram is kept separate from program RAM, leading to an easy to understand, calculator-type architecture which is extremely easy to use.

Eight kilobits of program storage are available on a fully stuffed CHAMP board, organised as 1024 eight-bit words. Of these, 512 words are available as two 1702 u.v.-erasable Prom chips, and a further 512 words are available as four 5101 cmos ram chips. Only one prom chip is required for the CHOMP firmware, although both chips will be required if the prom programmer unit is added later. The cmos ram can be added in two 256 -word increments if desired, allowing a minimum operational CHAMP configuration of CHOMP (256 words) +256 words of RAM available for user programs. The cmos rams have a very low current drain when on standby, and because of this they can be made to retain their data without mains power with the aid of a simple power-fail-detect circuit and a 3-cell DEAC battery. This part of the CHAMP circuitry is unique, and gets over that awful problem experienced with most development systems where you have to lose all your laboriously entered hexadecimal code at the end of the day, a problem which usually forces users to buy paper-tape systems or cassette interfaces to allow rapid program re-entry at the start of a new session.

CHOMP

CHOMP stands for $\boldsymbol{C H} \mathbf{~ a m p}$ Operating system and Monitor Program and is the name given to the collection of programs required to control all the CHAMP facilities during program entry and debug. CHOMP is entered automatically at power on, and can always be restarted at any time by pressing the reset button. CHOMP contains routines for refreshing the eight-digit seven-segment display, for accepting and storing keyboard entries, for entering instructions or data into RAM, for examining existing Ram content and for entering a new effective address.
In order to keep costs down, CHOMP has been made small enough to fit into a single 1702A Ргом and has been written so as to provide a range of programming examples for those new to the game. Later in this series the complete listing of CHOMP will be provided, together with a full description of how it works. Arrangements have been made for the supply of ready programmed Proms and also for CHOMP to be loaded into constructors' existing proms if required, full details of this service will be provided later.

CHAMP-PROG

CHAMP-PROG is an optional PRom programming accessory for CHAMP which extends the system's usefulness immeasurably. Using this unit, programs developed and debugged in ram can be transferred to permanent storage in the form of low-cost 1702A proms which can be erased and reprogrammed as often as required.

This facility turns CHAMP into a no-compromise development system which enables you to:
(i) Develop and debug programs in CHAMP ram.
(ii) Develop and debug interface hardware on the CHAMP breadboard, and with CHAMP-PROG.
(iii) Dump your working programs into Prom chips and plug these into "Sons-of-CHAMP" minimal microprocessor circuits which can then be used to carry out dedicated tasks.
This classic use of prom programming is not the only way in which CHAMP-PROG extends CHAMP facilities however; proms can now be used simply for the long term storage

Fig. 1.2. Using CHAMP as a development system

of useful but no longer current programs, and these can be kept in a "box-on-the-shelf" until next required. This is possible because not only does CHAMP-PROG let you dump ram into prom, it also allows you to reverse the process and dump prom back into ram. In this way a firmware library can be built up, consisting of useful program segments, games programs, etc. all of which can be reloaded into the CHAMP operational ram area in just a few seconds.

MATCHING PLINTH

CHAMP-PROG is designed to be a companion to CHAMP in every way, including the use of an identical layout technique and a matching plinth. CHAMP-PROG uses the +5 V and -10 V supplies provided by CHAMP itself, and in addition contains the 80 V d.c. supply required for the programming operation. Areas of the "open-plan" circuit board carrying this higher voltage are screened off with the aid of a clear plastic window to prevent any accidental catastrophes with bare wires.

PROMPT

CHAMP-PROG is controlled by a firmware program called PROMPT ($\mathbf{P R O M}$ Programming Technique) which fits into a 1702 A PROM and is plugged into the second PROM socket on CHAMP. PROMPT uses several CHOMP routines and also uses the CHAMP keyboard and display for the entry of programming requirements and the display of "next entry" prompting messages.

To program а рRом the required address range is entered via the keyboard, the PROM is inserted into the zero insertion force socket, the PROGRAM POWER switch is turned on, and the program button depressed. The programming of a full PROM takes about two minutes although dumping prom data into RAM is of course much faster.

CHAMP-UV

CHAMP-UV, the last of the CHAMP family, is a safe but low cost PROM eraser which becomes necessary when CHAMP-PROG is added to the CHAMP system. CHAMPUV will erase in a matter of minutes any u.v.-erasable PROM including the 1702A, 2704 and 2708 variety, and can handle up to 10 of these at a time.

Erasure is achieved in a light-tight box which houses a short-wave u.v. tube interlocked so that it is always "off" when the lid is open. This interlock is necessary because short-wave u.v. light can be harmful to the eyes and skin. A timer is included so that the over-exposure of expensive chips can be avoided.
NEXT MONTH: The PE Champ Circuitry

NEWS BRIEFS

Low Cost Video Recorder

A
N agreement recently signed between BASF AG and Bell \& Howell Corporation is expected to result in the development for the amateur market of a video cassette recorder based on BASF's Linear Video Recording (LVR) technique. The new recorder is expected to be on the market in time for Christmas 1979.

The LVR cassettes are claimed to occupy only about one quarter of the volume of other video cassettes, yet provide double the playing time. The $6.25 \mathrm{~mm} \mathrm{CrO}{ }_{2}$ tape travels backwards and forwards past a stationary head at $3 \mathrm{~m} / \mathrm{sec}$, and is recorded with 28 tracks.

Economical, high-quality tape duplication is possible in a single pass, using a multiple head.

The small size of the cassette, the low tape consumption, and the use of a simple mechanism and sophisticated electronics mean that the LVR system offers great potential for miniaturisation. For example the tape transport system could be integrated into a video camera.

AVM For Dublin Buses

THe Dublin City Bus Service's entire fleet is to have what is claimed to be the world's most advanced automatic vehicle monitoring system (AVM), supplied mainly by Storno Ltd. of Camberley, Surrey.

Each bus will be fitted with an odometer, the initial reading of which is fed to a computer at the outset of each journey. Control inspectors from seven different garages will be able to locate precisely, any bus, using telephone line modems feeding VDU terminals.

A Storno CQF612 v.h.f. Data Transmitter situated on Three Rock Mountain, will be u.h.f. linked to the computer at Q'Connell Street. The bus-borne control heads are also capable of speech communication directly to the garage, if requested.

In addition, the Storno bus data unit stores the bus location and passenger loading, as well as up to ten mechanical parameters such as engine temperature and oil pressure. The computer system will be interrogating for data at the rate of 900 buses per minute, using a fully duplicated radio system.

Control Inspectors will also be able to watch traffic and passenger queue conditions using remotely controllable CCTV cameras at city centre points.

The system is expected to be in operation by mid 1979.

FRANK W. HYDE

SPACE SHUTTLE: FULCRUM OF THE FUTURE

When history records the first shuttle spaceflight it will mark a new era in man's conquest of the frontiers of the future. In the past there have been great turning points in history but all too often a mere handful of people recognised the implications for the future.
It is to be hoped that at this space turning point, it will be realised that the world has reached a new hilltop. For the first time in all progress the frontiers are limitless in extent. It must be recognised that stagnation in growth will be but the prologue to decline and that utilisation must be the key expanding technology.

The present system of economy is impeded by fiscal considerations. This has become more and more evident by the confinement of incredible technological successes of the space age. Full utilisation is as important in terms of return for any hope of a full and happy future for mankind, as for the future growth of knowledge and understanding.

To set this in perspective low cost utilisation is required. A simple case might be illustrated by the fact that to fly in a round trip from London to the Bahamas and back a payload of 2001b uses about a third of the energy fo put the same payload into near Earth orbit. It costs about $£ 300$. To put the same payload into near Earth orbit it costs about £50,000.

The answer is not merely re-usability but rather full utilisation. To achieve this situation in a fiscal economy the man-in-the-street has to be alerted to the future benefits to himself and his dependents. These have to be practical and within his grasp.

Therefore, it must mean that the resources can provide him with peace and a good life for himself and every one else. It must be such that want or having less than the next is removed from his experience. This is the vision of the future to be made reality. The shuttle provides the first step.

It is already apparent to those close to the space technology that many practical applications are already in being. Indeed, a whole library of books could be set up to record the benefits already accrued.

Those in the immediately forseeable future cover the low cost communication systems, utilisation of the solar potential, space manufacturing and even space for living in ideal conditions. All these are within the present technology and this is but a start. In all of this mankind can participate.

THE BENEFITS

It is perhaps worth a little look into the potential benefits in the next three decades. The requirements are that the low cost transportation offered by the shuttle provide the way for the high traffic load set up by the utilisation of solar power, the needs of space manufacturing and the welfare runs for the medical care of those in need.

In the beginning the Shuttle Transportation System will be employed in the simplest of its modes. That is, it will operate somewhat as a manned booster.

Permanent space construction systems will be required for the platforms supporting solar energy collectors. Units for Spacelab operations will need to be tended and in the early days the duration of the work programmes will mean an exchange of personnel about every 15 to 30 days.

Missions which are being anticipated now will involve flights of longer duration for those such as life science activities. Other missions such as those dealing with material processing will require the transport of raw materials to, and finished products from, the more permanent space plants.

The next phase will be the establishment of permanent stations (automatic and manned) which will need tending. From thence to the third phase which could see permanent geostationary structures of large size. The ability to go into and back from the space involved sets the seal on both utilisation and volume of traffic.

Self-sufficiency will progressively increase where closed ecological environments, will use space generated power and even space produced materials. It will be the era of winning the resources of the Moon and later the other sources of raw materials that will be available for the taking.

NEW TECHNIQUES IN OPERATIONS

During the last two decades the space operations have had a basic pattern. This is that the spacecraft are kept as
simple as possible to enable extreme reliability to be achieved.

The cost of the success of this policy was the requirement that the ground based equipment became extremely complicated in order that as many functions as possible remained earthbound. With the easy access to space these considerations can be reversed. The result is that the earth based equipment can be simplified by the introduction of large and complex satellites which can be regularly serviced and multiplied in numbers.

Large antennas of high gain with unlimited power available would reduce the size of earth based terminals and in the case of communications bring them to the size of the present television aerials for any telephone subscriber and indeed perhaps directly to the wrist telephone.

SPACE PROCESSING

High vacuum and the absence of gravity offer certain unique opportunities in manufacturing and processing. Already this has been established in space missions. The growing of crystals and the manufacture of special alloys have attracted the attention of a number of planners.

One example taken from the Apollol Soyuz test mission showed that silicon ribbon could be manufactured in space economically. This has been investigated recently and it was discovered that there is a four to one advantage of the space produced ribbon over present earth based manufacturing methods.

In other fields there are pharmaceutical materials which would benefit from space production. One such is an enzyme, Urokinase, which dissolves blood clots. Its present cost is of the order of $£ 350$ per dose. Some 100,000 cases have resulted in death because of this. The cost of production in space would be within reasonable bounds. It was established that in space the zero gravity enabled the raw material for this process, kidney cells, to reach an extremely high yield over the normal method.

In other areas the production of powerful permanent magnets is superior to the process on earth. In the field of optics precision glasses can be raised to a high degree of purity.

PAYLOADS

It might be in order to show the comparisons of payloads for the present system and those possible with the shuttle system. The Thor-Delta systems can put a $2,000 \mathrm{lb}$ payload into orbit in an 8 ft diameter unit. These can be placed in transfer orbits if required. The shuttle will take over from these single unit launches and put into orbit loads of $60,000 \mathrm{lb}$ up to 60 ft in length and 15 ft in diameter.
It is not difficult to extrapolate from there and the prospects for large stations are good. It would seem that the solution of survival may well lie in the control of the Earth from space.

THis article describes the design and construction of an economical Frequency Counter/Timer unit, which operates over the range 1 Hz to 25 MHz , giving readout on a 5 digit display, and using a crystal controlled oscillator for accurate timing. The instrument is primarily intended for use with digital circuitry, being capable of operating on positive voltage swings from 500 mV to 25 V . This Counter/Timer may be operated in one of four modes by selection on a single rotary switch:

Position 1 measures frequency from 1 kHz to 25 MHz .
Position 2 on the mode selector measures frequency from 1 Hz to 99.999 kHz .
Position 3 simply counts the number of pulses occurring at the input.
Position 4 measures time in increments of 1 ms during the enable period signalled at the instrument's input.
When set to read frequency, the instrument will display the result for approximately six seconds before automatically resetting and remeasuring. When set to read time, or count pulses, the instrument will display the result until the manual reset is operated. An input invert switch is provided, which reverses the input state so that the unit can count positive or negative edges when operating in the count mode, or measure the period of either a high or low state when timing.

A d.c. coupled differential input amplifier i.c. is used at the system input, to allow voitage levels to be compared against a voltage offset. A knob is provided for this, which would be adjusted to the mid-point of the input signal voltage swing, so that the amplifier can detect the high and low states with maximum noise immunity.
The semiconductor family chosen for the counters is the standard 7400 series TTL, giving counting speed of typically 25 MHz . Since these devices require a single supply of 5 volts, it was decided to use tTL for the control and display logic also, and employ 5 V Minitron displays. This eliminated any voltage interface and multiple supply problems.

CIRCUIT DESCRIPTION

The operation of the Frequency Counter/Timer may be divided into three parts; (1) the input and display counter circuitry, (2) the control and reset circuitry, and (3), the 1 MHz oscillator and timebase counter. See Figs. 1, 2 and 4.
The timebase counter (IC15-IC20) simply divides the waveform from the oscillator down to 1 kHz and 1 Hz , the output selected depending upon whether the instrument is required to measure megahertz or kilohertz. If the counter is required to measure on the higher frequency setting, the 1 kHz clock is selected by S3a, so that the control circuitry enables the display counter (IC3-IC7) for a period of exactly lms. This "enable" command is routed via S3c. The number of pulses entering the input at SK1 during this period is accumulated in the display counter (via S3b), and subsequently displayed for approximately six seconds on the digital readout.

A frequency of say 5 MHz , when counted for 1 ms , will read 5,000 pulses. Because there are five display digits, and the decimal point is wired to appear after the second digit from the left, this figure will relate directly to megahertz, i.e. 05.000.

After the six second readout, the control circuitry will reset the display counter, so that the measuring cycle can be repeated.

When the unit is used to measure kilohertz, the 1 Hz clock pulse is selected, so that the control circuitry enables the display counter for a period of one second. Hence, the readout will display the number of pulses counted over this period, which will relate directly to kilohertz.
When measuring time, the $i \mathrm{kHz}$ clock waveform from the timebase counter is connected directly to the input of the display counter (S3b, position 4), while the input signal is routed via S3c to the display counter enable. Hence, the display counter will count in increments of 1 ms for the period during which it is enabled by the input signal at SK1.

Fig. 1. Input and display circuits. Note that pin 8 of IC1 should go to pin 1 of inverter IC2f. Pin 2 of IC2f then feeds S2 and pin 3 of IC2e

When operating in the count mode, the display counter is connected directly to SK1, and the counter is permanently enabled by S3c (position 3) which is at +5 volts. The display counter will therefore indicate directly the number of pulses entering the instrument's input.

To summarise, the rotary switch positions are:
(1) Frequency in MHz .
(2) Frequency in kHz .
(3) Count pulses.
(4) Time in ms.

INPUT. AND DISPLAY CIRCUITS

The input amplifier chosen was the differential input line receiver SN75182 (see Fig. 1), which has a TTL compatible output, and an input resistance of typically $5 \mathrm{k} \Omega$ at the inverting terminal. The non-inverting input is taken to the wiper of VR1, which is connected between 0 V and 12.5 V unregulated. Adjustment of this control determines the voltage level about which the input waveform is measured.
The TTL output from this stage (ICI) is connected to inverter IC2e, so that either the inverted or non-inverted signal may be selected via S2.

The display dividers are synchronous decade counter i.c.s which are connected in "carry look-ahead" mode. The "clock" and "clear" lines are each common to all the i.c.s,

Fig. 2. Control and reset circuit. Pin 16 of ic13 is connected to $+5 v$

Fig. 3. Waveform timing diagram of control circuit with 1 Hz clock selected
signal changes the J input of the flip-flop to logical 0 to inhibit further toggling, and ensure that the display counter remains disabled.

The rising edge of this monostable pulse operates the other monostable, IC13a, which sends a reset pulse of approximately 0.5 seconds duration to both the flip-flop, and the display counter.

After the returning edge of this pulse, the display counter and flip-flop are ready for the rising edge of the next clock pulse, so that the complete cycle may be repeated. A timing diagram is shown in Fig. 3.

This particular combination of JK flip-flop and monostable was chosen because it operates on edges rather than levels. This was necessary to eliminate any possibility of premature switching which could occur if the flip-flop was enabled while the clock input was still high. This protection comes from the fact that the i.c.s are activated only during a small voltage window, which is passed through by the clock signal on its positive excursion.

Fig. 4. Oscillator and timebase counter
while the "enable" control from S3c is only connected to the least significant digit in the chain (IC3). The carry output from this stage is wired common with the p enable of the other stages, while the tenable pins of the remaining stages are each connected to the RIPPLE-CARRY output of the preceding stage. Hence, each counter i.c. is only enabled for the clock pulse which actually clocks that particular i.c. The BCD outputs are connected directly to the BCD-seven segment decode/display drivers (IC8-IC12), which drive the Minitron displays LP1 to LP5.

CONTROL AND RESET CIRCUIT

The control and reset circuit is shown in Fig. 2, and consists of an edge triggered JK flip-flop (IC14), and the dual monostable IC13. When the system is operating in the frequency mode, either the 1 second or 1 ms timing standard will be routed to the clock input of IC14, via switch S3a. Assuming both monostables are in their standby state, the J and K inputs will be at logical 1, which enables the flip-flop to toggle. At the first rising edge of the clock pulse, the Q output will change from logical 0 to logical 1 , and hence enable the display counter. At the next rising edge of the clock waveform the flip-flop output will revert to its original state, and disable the display counter.

The falling edge of this "enable" pulse operates the monostable IC13b, which produces a negative going pulse from its $\overline{\mathrm{Q}}$ output for a period of approximately 6 seiconds. This

The monostable IC13b dictates the length of time the measured frequency is displayed for. This period of six seconds is determined by resistor $\mathrm{R} 2(33 \mathrm{k} \Omega)$ and capacitor C4 $(220 \mu \mathrm{~F})$. Should a variable display time be required, the $33 \mathrm{k} \Omega$ resistor should be replaced by a $10 \mathrm{k} \Omega$ resistor in series with a $30 \mathrm{k} \Omega$ potentiometer. This would give a display time variation of 2 to 10 seconds.

The period of 0.5 seconds produced by the reset monostable, is determined by resistor $\mathrm{R} 1(33 \mathrm{k} \Omega)$ and capacitor C3 ($47 \mu \mathrm{~F}$).

When operating in the time and count modes, a logical 0 state is applied to the clock input of the flip-flop via switch S3a, which ensures that no toggling occurs, as this would fire the monostable and prematurely reset the display counter.

OSCILLATOR AND TIMEBASE CIRCUIT

Figure 4 shows the circuit diagram of the oscillator and timebase counter. The self-start oscillator comprises two cascaded Schmitt trigger nand gates IC2a and IC2b, each operated in linear mode by connecting a $1 \mathrm{k} \Omega$ resistor between output and input, with an overall feedback loop via the 1 MHz quartz crystal. The 65 pF trimmer capacitor (C5) is provided for fine adjustment of the crystal operating frequency, while the 680 pF capacitor (C6) acts as a filter to ensure that only the fundamental frequency is generated.

Schmitt input gates were chosen to give a reasonably square waveform, while IC2c is simply used as a buffer for the oscillator output to drive the timebase counter. This

counter utilises a chain of ripple-through devices which divide the clock input by ten at each stage. It is unnecessary to use the more expensive and power consuming synchronous counters in this application, as only the time interval between successive rising edges is critical, and not the execution speed of the counter as a whole. The most significant bit of each decade counter i.c. is connected to the clock input of the following i.c. The preset and clear inputs are held in their inoperative states (logical 0). An additional inverter (IC2d) is connected from the 1 MHz frequency standard to a BNC socket (SK2) mounted on the front panel.

POWER SUPPLY

The total current taken by the Counter/Timer unit is approximately 800 mA , and this can be provided by a mains $9-0-9 \mathrm{~V}, 1 \mathrm{~A}$ transformer. The output, when fullwave rectified by D1 and D2, and smoothed by C8, produces an unregulated line of just over 12.5 volts. From this, IC21 produces a stable 5 volt power supply. The complete circuit is shown in Fig. 5, and capacitor C9 is connected across IC21 output to prevent oscillation. Disc ceramic $0.01 \mu \mathrm{~F}$ capacitors are located between +5 V and 0 V at various points along the supply line, which, because of their construction, have minimal inductance, and therefore efficiently shunt the fast spikes caused by TTL switching.
Many components used in this instrument may be found going spare in the average constructor's junk box, and indeed the prototype unit shown in the photographs used two parallel $5 \mathrm{~V} \frac{1}{2} \mathrm{~A}$ regulators instead of a single 1 A device, because they were to hand.

CONSTRUCTION

The front and rear panels of the instrument case should be drilled as shown in Fig. 6. The display window can be cut using an Abrafile or nibbler. Once the front panel has been worked, a piece of display filter material can be glued over the display window.

Fig. 5. Power supply circuit diagram. Capacitor C9 is mounted across the leads of IC21 on the back-plate

A different arrangement for SK1 and SK2 might be desired, in which case alternative drillings may be required. In the prototype these were BNC sockets, but since a mains powered instrument housed in a metal case must be earthed, it will follow that with this type of connector, the 0 V of the system under test will be linked to mains earth when the test probe common clip is applied. This generally is of no consequence, but if the application envisaged by the constructor should render this undesirable, then pairs of 4 mm terminals or sockets would be an alternative for SK1 and SK2.
COMPONENTS . . .

Resistors

R1, R2 $33 \mathrm{k} \Omega \frac{1}{}$ W carbon (2 off)
R3, R4 $1 \mathrm{k} \Omega+W$ carbon (2 off)

Potentiometer

VR1 $1 \mathrm{k} \Omega$ lin.
Capacitors

C1, C2, C7, C10	$0.01 \mu \mathrm{~F}$ disc ceramic (4 off)
C3	$47 \mu \mathrm{FF} 6.3 \mathrm{~V}$ tant
C4	$220 \mu \mathrm{~F} 10 \mathrm{~V}$ elect
C5	$5-65 \mathrm{pF}$ trimmer (Maplin)
C6	688 pF
C8	$4,700 \mu \mathrm{~F} / 16 \mathrm{~V}$ axial lead
C9	$47 \mu \mathrm{~F} 6.3 \mathrm{~V}$ tant

Semiconductors

Semiconductors		
IC1	SN75182 or DM8820 (National)	
1C2	SN7414	
IC3-IC7	SN74160 (5 off)	
1C8-IC12	SN7447 (5 off)	
1C13	SN74123	
1C14	SN7470	
IC15-IC20	SN7490 (6 off)	
1C21	LM309K	
D1, D2	1N4001 (2 off)	

Miscellaneous
LP1-LP5 Minitron type 3015F/BM15 (5 off)
S1 Sub-min mains switch (Arrow CTS3 or similar)
S2 Sub-min c/o toggle (Arrow CTS3 or similar)
S3 3P 4W rotary switch (Doram type)
S4 Min push-button c/o (Doram 337 942)
T1 Transformer 9-0-9V 1 A
XL1 1 MHz crystal
SK1, SK2 Square BNC sockets (50Ω), or 2 pairs of 4 mm sockets
Instrument case: $204 \times 76 \times 152 \mathrm{~mm}$.
Ribbon cable
, Knobs (2 off)
Grommet for mains lead
Nuts and bolts (6BA and 4BA)
Stick-on feet (4 off)
Three core mains lead, and plug
Wire, plugs, and clips for test probes
Display filter
Main p.c.b.
Display p.c.b.
Letter transfers and spray lacquer

CONSTRUCTOR'S NOTE

The SN75182 differential amplifier (IC1) is not commonly available, but can be obtained from: Technomatic Ltd, 54 Sandhurst Road, London, NW9 9LR.
The Minitron 3015F/BM15 displays are also available from Technomatic, and Electrovalue Ltd.
It is advisable to use a metal case for the counter unit, but beyond this the choice is not critical. The prototype utilised the Doram box type 3 (code 509-901), with removable front and rear panels only. Another suitable box, perhaps more convenient for wiring, is the Maplin model 121 with removable top, but a little less robust. Both cabinets are in the region of $£ 5.00$.

199

Fig. 6. Cutting details of front and rear panels. Hole sizes are correct only for the particular types of switches and sockets recommended in the components list. Both views are external to the box

If larger switches are used, or a different box layout, care should be taken to ensure that the front panel mounted components are located clear of the box flanges against which the front panel rests.

The back-plate diagram of Fig. 6 shows a few ventilation holes, and these will be made more effective if a few more are drilled through the base of the box. An easy method of marking out the holes for the regulator, which utilises the back-plate as a heat sink, is to lay a TO3 mica washer in the correct position and mark through its holes.

The transformer rating is common, and therefore the constructor may find his own source for this component. Differing physical dimensions will result, and so the best way to arrange the inside of the box, is to position the transformer and blank p.c.b. into suitable locations and mark the fixing points through the holes.

Fig. 7. Main p.c.b. and display p.c.b. (full size)

Fig. 8. Layouts for main and display p.c.b.s. Pin 3 of IC3, and other inactive inputs have been used as printed circuit routes, and have no electrical significance. The d.p. is used to orientate the Minitrons

The earth wire of the mains input lead should be connected directly to a solder tag beneath one of the transformer mounting nuts. If the transformer chosen has a screen, then this should also be wired to the solder tag.

Two printed circuit boards are needed, see Fig. 7. The component layouts are shown in Fig. 8.

The display p.c.b. contains the numerical indicators and decode/driver i.c.s, and is mounted on spacers against the front panel. The main p.c.b. contains the remainder of the electronics, and is housed in the base of the cabinet, also on spacers.

Care must be taken when assembling the main p.c.b. to correctly orientate the i.c.s, as some are facing in opposite directions.

A look at Fig. 9 will reveal that the interconnecting wire locations on the front panel are numbered to correspond with those on the p.c.b.s, and for neatness, ribbon cable has been used where possible. A three-conductor ribbon should be used to wire up switch S 2 (wires 33,34 and 35), whereby the centre core (wire 33) is earthed at the p.c.b. end only. Although unconnected at the front panel, this acts as a screen between the outer two conductors. The input and output sockets can be wired with twisted pair cables, irrespective of the type of connector used.

The front panel is labelled using dry letter transfers, which is then spray coated with transparent lacquer for protection. This is probably best done before the switches are mounted in position.

CALIBRATION

The only calibration required is the fine adjustment of the trimmer capacitor C5 in the crystal oscillator. This is most easily accomplished by using the Counter/Timer unit to measure a known frequency, whilst adjusting the trimmer to obtain the correct reading.

Most frequency standards use a crystal as their timing source, and the use of these will therefore result in calibration no better than that of the crystal against which the instrument is being compared.

By far the most superior method of calibrating the device is to use the 200 kHz carrier frequency of BBC Radio 2, which has an accuracy of 1 in 10^{11}. A simple radio receiver
tuned to this station would provide a source, whereby the Counter/Timer unit would be operated in the frequency mode, set to the kHz range. The trimmer capacitor would then be set to give a display of all zeros. It should be noted that this range setting of the instrument is too low to read the full 200 kHz . However, since you would not be setting up the basic frequency, but only trimming it, the remaining digits will serve the purpose.

ACCURACY

Once calibrated, the accuracy of the counter will depend on the stability of the crystal, which varies with temperature and age. The oscillator circuit varies with supply voltage also, because the inverters are operated in a linear mode. This supply variation is approximately $10 \mathrm{p} . \mathrm{p} . \mathrm{m} . /$ volt. The crystal variation with temperature is approximately 1 p.p.m. $/{ }^{\circ} \mathrm{C}$, and hence the overall accuracy of the crystal oscillator over a 0.5 V supply variation, accompanying a 20 degree C temperature change would be 25 p.p.m., which is 25 Hz .

The crystal will further vary by up to 3p.p.m. in the first year of operation, due to ageing; and by an additional 1p.p.m. for each subsequent year.

In any case, the counter will only be accurate to ± 1 unit of the least significant digit displayed. This is because the display counter i.c.s are edge triggered, and count the number of rising edges in a given period of time. Depending upon the incidental phase relationship between the timing standard and the input waveform, one edge may or may not be included.

TESTING

As the unit uses trl almost exclusively, testing only for logical 0 or 1 is necessary. The low state should be typically 0.2 V (0.4 V max.), and the high state should be typically 3.5 V (2.4 V min.).

Initially, ensure that a supply of between 4.75 V and 5.25 V of correct polarity is available from the regulator, and applied to the system. The crude input to the regulator i.c. should be in the region of 12.5 volts, but at the very least 7.5 volts if the regulator is to work correctly.

To check that the oscillator and timebase counter is operating, pin 11 of each decade counter i.c. (IC15-IC20) should be monitored with an oscilloscope. This output of each i.c. should reveal an even mark-space ratio, finishing with IC20, where the period will be 1 second exactly, which may be detected with an ordinary multimeter.

If the display counter is suspected of malfunction, it can be checked out by switching S2 to the count position, and applying 1 second pulses to the input at SK1. These pulses are of course available from pin 11 of IC20. The display should begin counting up in seconds, and if this is not so, then the BCD outputs of IC3 to IC7 (pins 11, 12, 13 and 14) should be examined in turn, using a meter. If these outputs are not active, then check that the 1 Hz signal reaches the clock line to these i.c.s. Do not forget to adjust VR1 during this test, and if the signal appears at pin 8 of IC1, but not the clock line of the display counter, then there is probably a wiring error.

The control circuit can be tested by operating the instrument in the frequency mode, and monitoring the Q output (pin 8) of IC14 with a 'scope, looking for 1 ms or 1 s duration pulses occurring at 6 second intervals. Alternatively, monitoring the \bar{Q} output (pin 12) of IC13b with a meter should show a positive going pulse of 1s duration occurring every 6 seconds, when S 3 is set to the kHz frequency setting. \star

SWITCH TRIGGER MATS So thin is undetectable under slightest pressure. For burglar $18 \mathrm{in} £ 2 \cdot 33$. Post and VAT 60p. $13 \mathrm{in} \times 101 \mathrm{n} \mathrm{E} 1-\mathrm{s}$. Post and 50p. ORILL CONTROLLER speed from changes mately 10 revs to all speeds by finger-tip control. everything and full instructions. including post and VAT Made up model 1 extra MAINS TRANSISTOR PACK Designed to operate transistor sets and amplitiers. Adjusiable output $6 \mathrm{~V}, \mathrm{gV}, 12 \mathrm{~V}$ for up to 500 mA (class D working). Takes the place of any of the following batteries PP1, PP3, PP4, PP6, PP7, PP9 and others. Kit comprises main transiormer rectifter, smoothing and load resistor condensers and instructions. Real snip at only $£ 1.50$. VAT and postage 50 p SOUND TO LIGHT UNIT Add colour or white light to your lamps (maximum 450 W). Unit in box all ready to work. $\mathbf{\Sigma 7} .95$ plus 95 p VAT and postage. MICRO SWITCH BARGAINS Rated at 5 amps 250 V . ideal to make a switch panel for a calculator Parcel of 10 for £1, VAT and post paid. RADIO STETHOSCOPE MULTISPEED MOTORS Six speeds are available 500, 850 and 1.100 rm and $7.000,9.000$ and 11.000 r P.m. Shati is $\frac{1}{4}$ in diameter and appeed may be further controlled with the use of our Thyristor controller. approx. 2 in dia, $\times 5$ in long. Price $\Sigma 2$ including post and VAT. With triple 10 MAINS RELAYS racts - operating coil wound for 230 V fixing. ex unused equipment 60 p each. 10 for 85 post and VAT paid. TELESCOPIC AERIALS for portable car radio or transmitter. Chrome plated- six sections, extends from $7 \frac{1}{\frac{1}{2}}$ to 47 in $50 \mathrm{p}+15 \mathrm{p}$ post and VAT. K LED MODEL FOR F.M. $80 \mathrm{p}+17 \mathrm{p}$ post and VAT. EXTRACTOR FAN Cleans the air at the rate of 10,000 cubic feet per hour. Suitable for kitchens. bathrooms. lactories, changing rooms, etc. It's so quiet it can hardy be heard. compact, 5 in casing comprises motor. fan blades sheet-steel casing, pull switch, mains con- nector and fixing brackets. $55 \cdot 25$ including post and VAT. Monthly list available free, send long stamped envelope. long stamped envelope BLACK LIGHT whitsed in discos and stage effects etc..-virtually no and cutfs eic.-we offer mains BL. lamps. 175 walts gear price $\{7+95$ p post aaand VAT or for glamorising tube with starter, choke lamp holds. etc. all for 54.50 post NEED A SPECIAL SWITCH \qquad Double lead contact. Very stight pressure, closes both $1 \mathrm{O} \mid=\cdots$ rod supplied for operating. 10 p each. 10 for 68 p . HUMIDITY SWITCH American made by Ranco, their type No. 111 . The action of this device depends upon the dampness caus- trigger a sensitive microswitch switch it on Micro 3 amp at 250 V a c Overall size of the device approx 3 in tong 1 in wide and 3 yin 65 p. PP3/PP9 REPLACEMENT MAINS UNIT Japanese made in plastic container is Ideal to power a calcutator or smoothed output of 9 V sultable for loading of up to 100 mA . $£ .53$ 	MULLARD UNILEX A mains operated $4+4$ stereo system. Rated one of the finest performers in the stereo field this would make a wonderful gift for almost any one in easy-to assemble modular form and Goodmans speakers this should sell at about £30-but buy this month we offer the system complete at only E14 SHORTWAVE CRYSTAL SET Although this uses no battery it gives really amazing results. You will receive an amazing assortment metre bands. Kit contains chassis. -crystal earphone 55p including DISTRIBUTION PANELS \qquad ork bench or lab. $4 \times 13 \mathrm{amp}$ standard 13 amp fused plugs warning light. Supplied comWired up ready to work E2-75, VAT and postage 85 p. 25A ELECTRIC PROGRAMMER lights to ward off intrudershome to. All these and many invest in an elecirical pro- grammer. Clock by famous maker with 15 amp. on/off switch. Switch-on time can be set anywhere to stay on up to 6 hours. Independent 60 VAT and postage 60p. or with glass front, chrome bezel, \& 1.50 extrs. WINDSCREEN CONTROL Vary speed of your wiper to suit conditions. All parts and instructions to make. $£ 3.75$ post and VAT paid. \qquad THIS MONTH'S SNIP Breakdown Parcel-tour unused, made useful computors and these computors unlike those from most computor panels, have wire end and of usable length. The transistors for instance have tead leads lin long-ine diodes have MOTORISED DISCO SWITCH With six 10 amp changeover switches. Multi adjustable switches are rated at 40 amp each so a total of 200 w can be controlled and this would provide a magnificent dis- play. For mains operating £4.25 post and VAT paid. Dito 9 switch £4.95 post and VAT pald. Ditto but 12 switch E5.75 post and VAT paid. 8 POWERFUL BATTERY MOTORS for models. Meccanos, drills. remote control planes, boats. etc. ع2. ROTARY PUMP MERCURY BATTERIES type 625 which are ap- prox. tin dlameter by $\begin{aligned} & \text { in }\end{aligned}$ thick in plastic tube giving a total of 10 . Being in a plastic tube it into separate c Carton of 25 batteries $\$ 1.60$. MICRO AMPLIFIER Ex behind the ear deaf aids complete with volume control $\Sigma 2 \cdot 16$. TERMS: Cash with order-under $\mathbf{I 6}$ must add 50 p to olfset packing eIC. BULK ENQUIRIES INVITED. Tel $01-6881833$. J. BULL (electrical) LTD (Dept. PE), 103 TAMWORTH RD. CROYDON CR9 1SG	IT'S FREE Our monthly Advance Advertising Bargains Liat gives bergaine which set out belore our advertivement can appear -it' en interesting list and it efree-juat eend S.A.E. Below are few of the Bargaine etil avallable from prevlous lines. from previous lines. Digital Thumbwheel Switch. Black face flush panel mounting, race size approx. 3 in $\times t i n$. White digits positions 0-9. These can be stacked edgewise to quantity. The right hand and left hand ends quantity. The right hand and left hand ends have projections for 6 BA tixing to the panel. Price lett-hand and ight-hand end switches $£ 1.50$ each +12 p . Intermediate right hand end switches $£ 1 \cdot 50$ entiches $£ 1: 25+10 \mathrm{p}$. Maine Traneformer upright mounting with top tag board primary $0-115,210,240$, two secondaries 115 voits 5 mA . primary screen. This is a 30 $£ 2.50+20 p$. Fost $40 \mathrm{p}+3 \mathrm{p}$. Ferrle Chlorlde Cryatals, for etching copper, making printed circuit boards, etc. Special purchase enables us to printed circuit boards, etc. Special purchase enable offer this in 110 bags at $50 p+4 p$. Post $20 p+2 p$. Reed Relay with double wound coil 12 voits one coil will close the read switch. 12 volts on the other coil will open the contact or sili turther close it depending upon . whether the current is opposing or assisting. Price Whether the current is opposing or assisting. Price $.51 \cdot 50+12 \mathrm{p}$. Post $20 \mathrm{p}+2 \mathrm{p}$. Relay, Clare Elliott 670 ohm . Coll sealed in metal can size approx. tin by tin x tin two pairs of changeover contacts This type ot relay is mounted by its own leads. $£ 1+8 \mathrm{p}$. Desk Instrument Case with sloping front, overall slze of sloping front is 4 in wide and Sin long Mounted on a heavy sloping front is 4 in wide and 5 sin long. Mounted on a heavy base for stability, base size 4 in $x 44$ with flex lock The heavy base is easilly removed if not requitred The aver Rlgonda Gin Mains Battery TV. A for spares, these are less missing but in the main are complete and worin having if you have one of these televisions or if you do repairs io Remember 7029. We are rapidly running out of hins and if you have not put any into stock then this could well be yourtal chance. The price for 100 年etre coil $59.50+76 \mathrm{p}$. Engine Revolution Counter. Thls is ex-Air Ministry item, beautifully made. As a revolution counter it is driven by a llexible shaft and having a permanent magnet field the voltage output would be dependent upon the speed. Of course it will also run as a low voltage d.c. motor and its spustproot and almost waterproot so it will still Tun in dut brushes fitted to these motors, these are spectal and as yot we have not been able to find a suppller, so you will buy met this during his service career and who knows of a possible source of brushes. Price $£ 2+16 p$. Post $40 p+4 p$. Nicad Battery Charger in neat plastic case size 4 itin $x 3$ in $\times 2$ tin approx with mains input lead and 4 in $\times 34$ in $\times 2 t i n$ approx with mains inplit iead and cnarging output lead terminated with din plug. This is a dualch makes it easily adaplable for many voltage cells. If not wanted as a charger could very easily be rebuilt as a power unlt for receiver or other dovice. Yhe plastlc case has a neon indicator Price $£ 2-50+20$ p. Post $40 \mathrm{p}+4 \mathrm{p}$. 7 Digital Counter. Another special purchase enables us to offer this mains-operated counter for only about a quarter of its proper price. It works off 240 V 50 Hz mains and requires no requires no sep down. There is only one point about this-it counts in even numbers only $2,4,6,8,10$ etc. it you want to count single you must divide the tinal tigure by you want to count single you mus 2. Price $50 \rho+4 \Gamma$. Post $10 p+1 p$. Garrard 4 Pote Motor, probably made for record player or tape recorder, this is $140 \mathrm{~V} 40-60$ cycle. We do not know the Garrard ref. no. but the figure 12 is pressed on the bottom bearing cover. Price $.2+25 p$. 2 . $30 \mathrm{p}+4$ p dimensions approx 2 in square by $2 \frac{1}{2}$ in deep. Price \&1-50 $+12 p$. Post $20 p+2 p$ Smiths Time and Set Switch. 15 amp normal malns operated be set to be switched on up to 14 hours in advance and for and up to one period of 4 hours. A very neat glass front instrument with cente control knob slze approximatety $4 \frac{1}{2}$ in $\times 3$ in $\times 2$ in deep. The Smiths ref. No. CS740. One obvious use is for swithing on your heating antour a warm house. Price $£ 2-50+20 \mathrm{p}$. Post $30 \mathrm{p}+3 \mathrm{p}$. home to Flash Ernle is the name we have given to our latest disco light display because it is a random flasher and effective especlaily with coloured bulbs. Kit cons motorised stud switch, master control switch, anti spark caps. 9 lamo hoiders. connecting wire and wiring diagram Price $55+40 \mathrm{p}$. Post $60 \mathrm{p}+6 \mathrm{p}$ Car Cassette Power Kin. This has a stabilised output of 6 V . and all resistors and condensers, case, and data price is Burglar Alarm-The heart of many of these is an infra reo switch complete with relay from latching and sounding alarm bellthis can also be used for doot opening counting light or dark swltching etc., but consists of photo cell l relay. all resistors and condensers and constructional data only $£ 2 \cdot 25$ including post and Emergency Light. Works from mains but automatically switches to battery should mains fail-with this your place never will be In darkness-uses PP9 battery (not supplied) otherwiso complete kit with data $£ 3.50$ including post and VAT. Wall or ceiling mounting case $£ 1.50$ extra. Stereo Gram Cabinete. Long, low, modern teak-veneered Stereo Gram Cabinete. Loly, low, modern teak-veneered cabinet, slze approximately itt 2 in by 15 ft Sin. Probable cost to make today over $£ 20$. We have a few of these, they are slightly second. at prices ranging from $£ 5$ each depend onlk.

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK: DOES IT HAVE ${ }_{\star}^{\star}$ 30A power transistors $\quad \star 2$ divers (100w unit) \star integral output capacitor Then compare with the Tamba range-excellent value- 25 , 50 and 100 W R.M.S

TAM1000 100W 4 ohms 65V	19.80
TAM500 50W 4 ohms 45 V	27.50
TAM250 25W 8 ohms 45V	85.75
POWER SUPPLIES	
For 1 or 2 TAM250/500	[27. 50
For 1 or 2 TAM1000	29.80
(Carriage 50p on supplies)	

- Suits loads 4-16 ohms
- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Silicon circuitry throughout
- Glass fibre P.C.B.
- High sensitivity (100 mV 10k)

High grade components used throughout:Texas, Mullard, R.C.A:, Plessey, etc.

> - Low distortion ($0 \cdot 1 \%$) - Low profile (1 in high $3 \frac{1}{2} i r_{1} \times 3$ in) 75\% efficient
> - Accepts most mixer/pre-amplifiers Four simple connections

- Suitable for multiple input systems

 - High and low impedance inputs - High sensitivity - Built-in supply smoothing - $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ -80 dB noise level - Accepts a wide variety of inputs - Wide range bass and treble controlsUse up to 10 PRE-AMPS with 1 power supply
Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W systems and at $12 \frac{1}{2} \%$ for 25 W systems.

Hours, 9.30 a.m. -5 p.m. Monday - Saturday. Callers welcome. Tel. (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

Careers and Hobbies in Electronics.

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.
Learn how to become a radio- amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Semiconductor UPDRATE Emo FEATURING : 57109 TMS9940 SCL5421L

CRUNCHER

If you own a scientific calculator you will be quite used to carrying out sophisticated arithmetic in floating point or scientific notation, with functions like square roots and sines only a key press away. By comparison, a microprocessor chip is in the abacus league, usually boasting only binary or BCD addition and subtraction as direct operations, with even those restricted in precision to the MPU chip word length.

The magic ingredient required to turn a microprocessor into a calculator is, of course, software. If you write long enough programs you can generate any mathematical function and calculate to any desired precision with even the most humble MPU chip, but those programs will cost you dearly in time, and putting them together can be complicated.

Of course, you may be able to get hold of software that someone else has written, but the chances are it won't suit your system without being rewritten to some extent. Calculator chips are nothing more than MPU chips with the necessary software and interface hardware built in, so wouldn't it be nice if you could use a calculator chip as a peripheral chip in your MPU system to do all the tricky maths as and when required?

Up to now, calculator chips have been very difficult to interface to microprocessors because their inputs and outputs have been geared to keyboard switches and multiplexed displays respectively, but now National have done the obvious and modified a calculator chip to accept direct interface to an MPU. The new chip, coded 57109 but affectionately referred to as the "Number Crunching Unit'' handles floating point and scientific notation, trigonometric and logarithmic functions, square roots, coordinate conversion, and memory operations, and is commanded to carry out these operations by means of six-bit binary codes delivered from the microprocessor.

The 57109 doesn't actually need a microprocessor to operate; it can work in isolation with only a few external

Fig. 1. Simple clock application for the SCL5421L
logic chips and ROM based program, but for my money the possibility of direct MPU interface is its star quality!

SHOWDOWN

According to Texas Instruments, the demise of the eight-bit microprocessor is imminent. If that news comes as a bit of a shock, let me hasten to add that most other microprocessor manufacturers would vehemently deny it, and there does seem to be an elenient ofline shooting in the announcement.
True to the traditions of the lone-star state, Texas' boast that their big 9900 microprocessor family is going to drive all the skinny eight-bit chips right out of town, western style. It's certainly true that they've got a formidable posse together to do the job, take the TMS 9940 for example . . . The 9940 is a complete 16-bit NMOS microcomputer-on-a-chip, which includes 128 bytes of RAM, 2 kilobytes of ROM, 32 general purpose input output lines, 5 MHz clock, hardware multiply and divide, and a timer/counter!

If I was you, I would tell your pet micro to make sure its interrupt is well oiled, because these Texans will soon ride into town, tall in the socket, and the bytes are going to flow thick and fast.

Don't worry too much though, if you feel that small is beautiful (like me!), the

Texas mob are too big for many jobs, and that will make them uneconomic for the bulk of eight-bit applications. As far as I am concerned, the magnificent eight rides again!

HANDY CHIP

If you are going a bit boss-eyed peering at those funny square numbers on that "bang-up-to-the-minute", "miracle of modern electronics", digital clock, and even the novelty of accuracy to within a few seconds a month has stopped compensating for the inconvenience of wearing pebble-lens spectacles, what you need is a clock with hands. No, no, don't worry, vou can still have the accuracy to which you are accustomed and tell your friends about the quartz crystal and 50,000 transistors that make it "tick".

Available from Ritro Electronics, is a neat CMOS chip in an 8 pin mini-DIP which contains an oscillator, a 23 stage binary divider and two push-pull output transistors to dirive a stepper motor at 0.5 Hz . Coded SCL 5421 L , the chip requires a $4 \cdot 194304 \mathrm{MHz}$ crystal and has facilities for time setting and a tone output for use with an alarm circuit.

Operation is possible with supplies down to 1.15 volts, making it possible to put together a capable clock with easyread hands running from a single dry celi!
(1)

A versatile accessory for your oscilloscope or frequency counter, presenting minimum loading to the circuit under test

By B. SAVAGE

THE main tool of the serious experimenter and circuit designer, after the multimeter, is the wide-band oscilloscope. In order to use this aid to gain insight into the behaviour of signals in electronic circuits, connection must be made to the circuit under investigation-and made in such a way that no alteration in performance results. This connection is normally made through a length of coaxial cable, the outer sheath being at earth potential to protect the inner conductor, which carries the signal, from the pickup of stray radiation-especially mains hum.

THE CAPACITANCE PROBLEM

The bandwidth of all amplifiers, except the tuned variety, is restricted at both high and low frequencies by the presence of capacitors, whether these are actual components or the phantom capacitances of transistor junctions. Low frequency performance is restricted by the series capacitors through which the signal must pass, and the high frequency performance by the shunt capacitors which tend to bypass the signal to ground.

A reasonable length of coaxial cable might have a capacitance of 100 pF , to which must be added the normal input capacitance of the oscilloscope, typically 25 pF across a resistance of 1 megohm. At audio frequencies this capacitance is unimportant, but at radio frequencies most of the signal would be lost in the cable. At $40 \mathrm{MHz}, 125 \mathrm{pF}$ has an impedance of only 32 ohms. It would not be practical to investigate the performance of a tuned circuit, because the resonant frequency would be altered by the extra capacitance added across it. If pulse circuits were the subject of enquiry, the user would have to remember that the pulse rise-time as displayed on the screen of the oscilloscope was lengthened by the time taken by the signal to charge and discharge the cable capacitance.

PASSIVE PROBES

One solution to the problem is the passive probe, which attenuates the signal by means of a series resistance with a small capacitor connected across it (Fig. 1). The probe acts as both a voltage and a capacitance divider-the input capacitance is reduced in the same ratio as the signal is attenuated. In this way, a divide-by-ten probe used with the cable and oscilloscope described above would reduce the 125 pF to $12 \cdot 5 \mathrm{pF}$.
The passive probe reduces the amplitude of the signal, and in achieving a really low input capacitance the consequent attenuation could leave too small a signal to be observed.

There is another difficulty with passive probes. All cables are transmission lines when high frequencies and fast pulses are being considered, and all transmission lines have a characteristic impedance. In the passive probe, each end of the transmission line is connected to what looks like an open

Fig. 1. A simple passive high-impedance probe, providing voltage and capacitance division

- Full wave contro
- 1000W per channel
- Fully supressed and fused
- Switched master control for sound operation from - Speed control for fixed rate sequence from 8 per minute to 50 per second
- Full logic integrated circuitry with aptical isolation for amplifier protection $£ 20.75$

Model 501500 W per channel as above without sound triggering
£12.25
FRONT PANEL FOR LIGHTING EFFECT MODULES
(complete with switches, neons and knobs) as illustrated

For S1LMb $\mathbf{£ 6 . 5 0}$ Size $8^{\prime \prime} \times 41 / 2$

4LSMi1 $£ 5.50$ Size $6^{1} / 2^{\prime \prime} \times 4 / 2^{\prime \prime}$
FUZZ LIGHTS
Red, Green, Blue
Amber $£ 23.50$

THE PIEZO SUPER HORN

£10.95

- NEEDS NO CROSS-OVER NETWORK - FREQUENCY RESPONSE $4,000-30,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$ - PATENTED MOMENTUM ORIVE PRINCIPLE NO VOICE COILS OR MAGNETS HIGH INTERNAL IMPEDANCE - ADAPTS TO ANY SYSTEM - HIGH ACOUSTIC OUTPUT - MANY CAN BE CONNECTED IN SERIES TO FORM AN ARRAY - INCREASED OUTPUT-POWER HANDLING CAPACITY 25 volts RMS - see chart

$3^{1 / 8 \times} 3^{1 / 8} \times 2^{7} / 8 \mathrm{ins}$
Geo Mathowa, 85/87 Murat Stroet, Birmhaham (Tol. 021-622 1941)
Arthur Sallis Ltd., 28 Gardnor Sureet Thol. Brighton 65806).
Brigel Disco Centre. 25 The Promenade, Gloucestar Pond (Tel. Brintol
Soccadi, 9 The Friaks (Tal. Cemerbury 60948)
Cookies Disco Centre, 132 Whast Surevi TTel. Crowe 4739).
M.B. Electronics. 54 Montagu Suret Iol. Kotterin9 839221 .
$\begin{aligned} & \text { Gartand Bros. Ltd., Deptford 8roadwfy, London } 01-692412 \\ & \text { Damon Electronics, } 99 \text { Carrington Stree (Tal. Nottingham } 63880 \text {). }\end{aligned}$
Luton Disco Cantre, 88 wellington Street. Luton (lol. Luton 411733)
Mitcholl Electronics. 7 Queen Strset (Tol. Salisbury 23689).
Mon-Sat 9.30 a.m. -5.30 p.m. Hall Day Wod. $9.30 \mathrm{~g} . \mathrm{m} .=1$ p.m:
$£ 129.00$
- RCA 8A Triacs

1000 W per channel
Each channel fully suppressed and fused
Master control to operate from 1 W to 100 W

- Full wave control

Single Channel Version 1500 Watts
£9.75

ADD SEQUENCE CHASING + DIMMING EFFECTS FOR TUAC 3 CHANNEL LIGHT MODULATOR

- Speed Control 3 per min. to 10 per sec - Full logic integrated circuitry - Dimmer control to each channel

3SDMI
£14.50

EXPANDING OFFER!

To celebrate the increased size of P.E. we are giving you a:-PAPERMATE CHROME PLATED PEN WORTH $£ 3.95$ with any watch under £20. PAPERMATE GOLD PLATED PEN WORTH $£ 5 \cdot 70$ if you spend over £20. CHROME PEN \& PENCIL SET (or two pens) WORTH $£ 7.90$ if you spend over £28. GOLD PLATED SET (or two pens) WORTH $£ 11 \cdot 40$ if you spend over $£ 50$. Items may be combined. Offer closes 30th Sept. 1977. Subject to availability

MQ.1. Miniature pocket version of CQ-1. 12 or 24 hour clock, stopwatch and basic calcuator 23795 ($\leqslant 34 \cdot 95$ without pen \& pencil set)

FAIRCHILD TIMEBAND LCD Watches. Latest models with BATTERY HATCH \& Push button once for REPLACEMENT BATTERY. Constant display of Hours \& minutes. AM/PM setting indlcator, easlly selected alternating tIme/date dilsplay. Beautifully styled

TMEBAND MAINS DIGITAL ALARM CLOCKS. Wake up to Timeband. Precise imekeeping, can be synchronised to the exact second. Alarm accuracy to the exact minute. Will display last minute digit and seconds. Solld state reliability, silent running. 9 minute snooze, Alarm on, Mains Fallure Indicators. C500 (left) $3 \frac{1}{2}$ " $\times 3 \frac{3}{2}$ " $\times 3 \frac{1}{2}^{\prime \prime}$. Black or white With bullt-in High/Low Intenslity elevating reading lamp $£ 23 \cdot 35$

IBICO. Traditional Swlss eraftsmanship. $5+4$ functions LCD. Mineral Glass face. 405 BICO. Traditional Swlss eraftsmanship. $5+4$ functions LCD. Mineral Glass face. 405 402 ES All stainless $£ 39$ - 90 . $700^{\prime \prime}$ " 1000 day' ' Quartz Analogue. SteppIng Motor. High speed adjustment. Seconds synchranisatlon. £33.50. Not illustrated 450 HS £69.75. 403 NS E $42 \cdot 50$. 1 BICO watches are water resistant to 100 feet or more. (Waterproof straps) W/T 6F, 6+3 functlon LED. Metal case, S/S bracelet. Superb styling $£ 11-95$. INSTAL 21 function LCD. Gold plated \& matching bracelet $\mathbf{2 9 . 9 5}$.
CALCULATORS. FX-21 £13.95, FX-29 £14.95, FX-105 £16-95, FX-110 £.17.95 (Rechargeable batteries £3 palr. AC adaptor/charger £3). FX-2000 £24.95, FX-201P £44-95 F-202P £69.95, PRO-FX1 £124.95
Send 15p for our illustrated mall order catalogue of over 50 watches (Accurist, Timex etc) clocks, car clocks. The BEST T.V. games at LOWEST prices. Prices include VAT \& P. Credlt cards welcome or send cheque, P.O. to:-

"Manta"

CAPACITIVE DISCHARGE ELECTRONIC IGNITION UNIT

the new, higher reliability version of the p.e. "SCORPIO MK II" IS NOW AVAILABLE IN KIT FORM!! OUR thousands of satisfied customers report:

M
ore miles per gallon (customers reports give 10\%-25\% saving -letters available)
A
increase in overall performance-your 4 cylinder car feels like a 6 cylinder

Nmore cold morning splutters-saves you even more petrol through much less use of choke

Th e price? A snip at only $£ 16 \cdot 50$, fully inclusive of all parts, instructions, postage/packing and V.A.T. (ready built unit available- $£ 19 \cdot 85$ fully inclusive)
A I parts to high specification, first quality and brand new
Construct this invaluable accessory, following our easy step by step instructions (also available separately, price $30 p$ posi paid). Send for our free interesting six page brochure-"Electronic Ignition-How it Works" (S.A.E. Please) 10 :

ELECTRO SPARES

Dept. P.E., 187a Sheffield Road, Chesterfield, Derbyshire S41 7JQ. Telephone: Chesterfield (0246) 36638

Wilmslow Audio

THE firm for speakers!

SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

```
ACT AUDAX - BAKER
BOWERS & WILKINS CASTLE CELESTION
        CHARTWELL COLES DALESFORD
            DECCA EMI EAGLE ELAC - FANE
GAUSS - GOODMANS - HELME I.M.F.
            ISOPHON - JR - JORDON WATTS
        KEF - LEAK - LOWTHER - McKENZIE
        MONITOR AUDIO - PEERLESS - RADFORD
            RAM RICHARD ALLAN - SEAS
        TANNOY VIDEOTONE - WHARFEDALE
```


WILMSLOW AUDIO (Dept. P.E. 8)

 SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HFDiscount Hi-Fi, etc. at 5 Swan Street and 10 Swan Street
Tel.: Wllmslow 29599 for Speakers
Tel.: Wilmslow 26213 for $\mathrm{Hi}-\mathrm{Fi}$
circuit to the signal. A fast pulse will reflect back and forth in such a line, producing a spurious ringing on the oscilloscope trace.

The ideal solution would be an active input device which could be applied directly to the signal point, presenting low capacitance and high resistance, and conveying the signal to the oscilloscope through a correctly terminated coaxial cable, without any loss of amplitude.

ACTIVE PROBES

Probes which contain a valve or field effect transistor operating in the cathode- or source-follower mode provide less than unity gain, but are sometimes used because of the high input impedance of these devices. An input capacitance of about 6 pF can be attained in this way-and the cable to the oscilloscope is properly terminated, avoiding reflections. A slight loss of amplitude results, and this is usually made to equal exactly 50 per cent, for convenience in measurements.

The active probe to be described was constructed for use with a 40 MHz oscilloscope. The probe bandwidth extends to over 40 MHz at the high frequency end, but gain rolls off below 10 kHz . The reduction of low frequency gain is intentional; it would be possible to make a probe which

When Sl is in its forward position (X 10) the incoming signal is applied directly to gate 1 of TR1. The input impedance is 100 kilohms (R 3) in parallel with the input capacitance of the MOFSET, about 7 pF in the prototype. On this range, the probe has significant gain up to 200 MHz , making it an especially useful accessory for a digital frequency meter.

With S1 in the centre position (X 1) the signal passes through R1 and R2 in series (total resistance 900 kilohms) and so is attenuated by a factor of 10 before being applied to TR1. It would seem that a capacitor of about 0.7 pF should be connected across $\mathrm{R} 1 / \mathrm{R} 2$ to compensate for the 7 pF across R3, but in fact the capacitance across the switch contacts is just about right. The effective input capacitance on this range is 3 pF .

When S1 is in the rear position $(\div 10)$, R4 is connected in parallel with R3, increasing the attenuation to 100 to 1 . Here, compensation is needed, and a capacitor of about 68 pF (C2) must be connected across R4. The input capacitance is, again, 3 pF .

DUAL GATE MOSFET

The amplifying device TR1 is a dual-gate mosfet, which is like two igfets cascode-connected in the same package. The device has two gates, the signal going to gate 1 and a direct

Fig. 2. Circuit diagram of the complete probe, plus suggested power supply arrangement
worked down to d.c., but low frequencies can be readily observed without the aid of the probe, and a probe which picked up mains hum would be irritating to use.

It should be stressed that this is not an easy project to build. A certain amount of cut-and-try is needed to ensure linear operation, avoidance of spurious oscillations, and accurate gain setting. However, a well-equipped amateur (who already has a wide-band oscilloscope) should be able to manage it. The difficulty results from the very small capacitances which are being dealt with, which means that the proximity of components to each other and to surrounding metalwork makes a lot of difference to the performance.

CIRCUIT DESCRIPTION

The probe comprises a stepped attenuator feeding a threestage amplifier with a gain of ten times. The probe input (see Fig. 2) is coupled via an isolating capacitor Cl to an input attenuator controlled by S1, a three-position slide switch.
voltage of maybe four volts going to gate 2. Because of the cascode connection, there is good isolation between input and output. The stated transconductance is better than $10,000 \mu \mathrm{~S}$, which means that a gain of 10 can be developed into 1,000 ohms. The stated input capacitance of the device is 6 pF .

The 1 kilohm load R6 cannot, of course, be shunted by much capacitance if there is to be high frequency gain, so the impedance is lowered to match the cable with two cascaded emitter followers, TR2 and TR3. The r.f. transistor types used have a collector/base capacitance of only about 3 pF , which is satisfactory for this application.

Dual emitter followers tend to be unstable near the cut-off frequency unless driven from a high impedance source; the prototype oscillated at 500 MHz ! This was cured by inserting a resistor, R7, in the base lead of the first emitter follower. Such oscillation cannot be seen on an oscilloscope unless a rectifying probe is used to find it.

The coaxial cable which carries the output signal from the probe to the oscilloscope must be terminated with the appropriate value of resistor (R10). With a little ingenuity this can generally be mounted inside the plug.

The power supply for the probe is best drawn from the oscilloscope itself, using a one watt Zener diode $\mathrm{D}_{\mathbf{x}}$ with a dropping resistor from a supply line of about 100 to 150 volts. The probe draws in the region of 25 milliamps, and the series resistor R_{x} should be chosen to allow a total current flow of 35 milliamps. Optimise the voltage for gain (see under "Calibration") before deciding what value of Zener to use.

CONSTRUCTION

The prototype probe was housed in a 105 mm length of 22 mm ($\frac{7}{8} \mathrm{in}$) diameter copper tube, see Fig. 3. A slot 19 mm wide by 25 mm long was cut at one end to accept S1. This is a three-hole, three-position slide switch, marketed by Q.A.S. (Quality Audio Supplies, Wollaton Road, Beeston, Notts) and on sale in many audio shops. The switch is secured to the tube by a self-tapping screw through its rear lug.

The printed circuit board is secured by soldering it to the lugs of S1 (all poles are connected in parallel), and must be central in the tube when assembled. The metal case of S1 is connected to the p.c.b. earth rail by a short wire link, in order to ground the probe body.

The 40673 is gate-protected by internal Zener diodes. It pays to take precautions whilst handling, however, even though the literature on this subject tends to be alarmist and

COMPONENTS . . .

Resistors

Variable Resistor
VR1 $220 \mathrm{k} \Omega$ sub-min. horizontal preset

Capacitors

C1
C2
C3, C4, C7
C5

330 pF polystyrene
C3, C4, C7
68pF polystyrene (see text)
10 nF disc ceramic (3 off)
$1 \mu \mathrm{~F} 15 \mathrm{~V}$ elect. or tant.
C6
$4 \cdot 7 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. or tant.

Semiconductors

$\begin{array}{ll}\text { TR1 } & 40673 \\ \text { TR2, TR3 } & \text { BF224 etc. (see text) (2 off) }\end{array}$

Miscellaneous

S1 3-pole, 3-position slide switch (see text)
PL1/SK1 Single-pole connector
PL2
Coaxial connector to fit oscilloscope Y-input
Printed circuit board. Materials for probe housing, etc.
makes one wonder how much danger of destruction there really is. A length of metal rod along the front of the bench, connected to ground and upon which one can rest one's forearms will surely be enough. Wrap a thin strand of wire round the pins of the device until it is soldered into place, if you are the belt and braces type.

Type BF224 transistors were used for TR2 and TR3, but many others would do. These are plastics types-if ones with metal cans which are at collector potential are used, make sure that these cannot touch the probe body. A low collector/base capacitance is essential for TR2; the requirements for TR3 are less critical. In any instrument intended for measurement of r.f. voltages, it is important to use components having the \cdot minimum self-inductance. For this reason, it is best to use ordinary carbon resistors throughout the probe.

The input prod in the prototype was fashioned from a 6BA bolt with half the head removed. This was soldered to the front of the printed circuit board. A piece cut from a felt marker was used as a front capping, and this was secured by a 6BA nut and a plastics washer, plus a self-tapping screw through the front mounting lug of the switch. A miniature crocodile clip with a 6BA nut soldered into the shaft can be screwed onto the prod for a hands-off connection, or other probes made (Fig. 3).

The signal output from the probe, as already mentioned, is carried via a coaxial cable. The cable outer also provides the power supply negative return. Ordinary 75 ohm TV coaxial is suitable, but take care to choose as flexible a cable as possible. The positive supply connection is made via a single-core flex terminated in a single-pole plug. A matching socket must be fitted to the oscilloscope and connected to the power supply circuitry described earlier.

Where the wires exit at the rear of the probe body, some kind of closure is required. A wine cork, drilled to take the leads, was used in the prototype.

A short earth connection with a crocodile clip is necessary to ground the body of the probe to the circuit under test. Something substantial, such as braid stripped from a piece of coaxial cable, should be used, and the lead kept as short as conveniently possible.

CALIBRATION

Measurements of radio frequency voltages at high frequencies will always tend to be a little vague, unless you are blessed with lots of patience and some very expensive and sophisticated equipment. This probe is not meant to be a precise measuring device, so do not set an impossible standard of accuracy when calibrating it. Errors of less than 1 dB will constitute an excellent standard-and 1 dB is about 12 per cent. The probe must be assembled completely whenever a test is being made.

Before attempting to calibrate the attenuator, the gain in the direct (X 10) position must be checked and adjusted for optimum. There are two ways of adjusting gain: changing the supply voltage or changing the voltage on gate 2 of the MOSFET. If the probe is powered from an adjustable bench power supply, varying the voltage by small amounts from a starting point of about 15 volts, at the same time adjusting VR1 for maximum gain, you may well find that a gain of ten can be exceeded. If so, R6 can be reduced to 820 ohms, thus improving the bandwidth. Do not use a supply voltage higher than that required to achieve a tenfold gain.

When it is remembered that one centimetre of twin cable has more than 1 pF of capacitance, it will be seen that it is hard to be specific about exact component values in the

Fig. 3

attenuator. A source of square waves with fast rise times is necessary for setting up the attenuators. All the attenuator components are mounted on the copper side of the printed circuit board, using minimum length leads.

The object of calibration is to get a clean, square leading edge to the displayed test waveform, with minimum overshoot or ringing on the top. With $S I$ in the $X 1$ position, it may be necessary to add a very small capacitor, in the form of a short twisted pair of insulated wires, across R1/R2. This can then be trimmed in value by snipping bits off or repositioning. On the $\div 10$ range, some slight change in the value of C 2 may be required to produce the best wave-shape.

A simple square wave generator for this purpose may be built using a 7400 quad NAND gate. A frequency of 100 kHz would be appropriate. The rise time will be about 9 nanoseconds; if your oscilloscope has wider bandwidth, use a Schottky version which will produce a rise time of some 3 nanoseconds.

FAULT FINDING

Some possible probe faults and suggested cures are as follows:

1. Complete failure

Check voltages-TR1 should be drawing about 10 milliamps, which means that there should be $\mathbf{1 0}$ volts across R6. Check that this can be varied by VR1. There is a large tolerance on this figure as these devices vary considerably.

2. Flattening of sine waves

Check that there is a reasonable voltage across R9—not less than about 4 volts as a minimum. You might be using the probe on the wrong range of the oscilloscope-signals at the output of more than one volt peak to peak may be distorted.

When observing non-symmetrical waveforms, do not forget that the probe is inverting the signal.

3. Square wave response lumpy

If this happens even in the direct (X 10) position, supply decoupling is probably at fault-you have a resonant circuit somewhere. Capacitors C6 and C7 should take care of this, if not, try a choke in the supply lead, or even a 10 ohm carbon resistor.

4. High frequency oscillation

If there is inexplicable displacement of the oscilloscope trace or misty effects around pulse waveforms, suspect oscillation first. Use a germanium detector or hot-carrier diode probe to check the output with the input shorted, and then with it open. There should not be more than a few millivolts of noise on the output.
The cure is to increase the value of R 7 , or if this is ineffective use different transistors for TR2 and TR3.

MEASURING SMALL CAPACITANCES

In the unity gain position, the probe has an input capacitance of about 3 pF . It may be used to measure small capacitors, for example the capacitance of an f.e.t. gate or transistor junction, and provide information which is hard to obtain in any other way.

Connect a square wave generator of about 200 millivolts peak to peak output with a frequency of about 200 kHz , through the capacitor to be measured to the probe. The resulting square wave displayed on the oscilloscope is related in amplitude to the value of the capacitor. Make a stairchart using small capacitors of known value, and then use the chart to measure unknown capacitors. Measurements of less than 1 pF are quite possible.

Silicon junctions will not be forward biased and will therefore look like capacitors, but it must be remembered that all silicon junctions behave like varactor diodes and change their capacitance with applied voltage. Reverse bias may be applied through a large resistor to simulate this effect. In practice, an f.e.t. gate looks like 5 pF , a general purpose transistor collector/base junction like 10 pF , and a high-speed diode maybe 2 pF .

USING THE PROBE

Remember that the probe is somewhat delicate and would be destroyed by a large r.f. voltage. In the direct connected (X 10) position, a jolt of d.c. will suffice. The manufacturer's literature on the 40673 states that the protective diodes become effective at plus and minus 10 volts. It also states that the diodes will constrain a transient pulse from a source capable of delivering several hundred milliamperes, but this refers to a one microsecond pulse. The input circuit has a time constant of 40 microseconds-it would appear that some caution is needed.

Rionllut A SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

Breadhourd

Sir-A simple and cheap way of constructing breadboard is to solder d.i.1. i.c. sockets to Veroboard, such that the i.c. fits not into one socket, but into one row of holes in each, situating it between the sockets. This means that if the Veroboard is cut in the right manner, each pin on the i.c. is accessible through the other row of holes. By placing a number of pairs of sockets on the stripboard, a breadboard of any size can be built, whereby the significant cost is that of the sockets.
Figure 1 shows the arrangement of a pair of sockets with the appropriate track cuttings. Here the supply rails run each side of the i.c. holders, and are wire linked to the sockets. Illustrated in Fig. 2 is an end view of the arrangement. Multiple connections may be made through the use of Soldercon pins, as shown in Fig. 3a. A more flexible means of linking the supply rails to the sockets is to use Soldercon pins mounted directly on the Veroboard (Fig.

3b). If 16 pin sockets are used, and a 14 pin i.c. is to be wired, the supply can be jumpered to the correct pin directly, also using Soldercon pins.
W. R. Hinds,

Hammersmith.

A Word of Warning

Sir-Firstly may I say that I welcome an article like the "Earth Leakage Circuit Breaker" which bridges that narrow line between the power and light current engineers.

I am, however, concerned about the implications of current transformer experimentation which are hinted at in your article.

If experiments are carried out using the turns ratios as indicated in Mr. Smith's design (i.e. 300:1), there is a danger that a very high voltage can be

Fig. 1

Fig. 2

Fig. 3a

Fig. 3b
induced in the winding which now acts as the secondary of the transformer (75 kV on 250 V mains). Such voltages are obviously far above the insulation ratings of a normal output transformer and are in addition quite lethal if supplied from the mains

I would, therefore, consider it essential that you issue a word of warning to would be experimenters or constructors with reference to the extremely high voltages available when experimenting with transformers in the current transformer mode.

Further to these comments l would refer to Fig. 4 of the article where various forms of resistive earth leakage faults are illustrated. I would like to see an assessment of the situation should a direct line to earth fault occur, in which case as far as I can interpret the situation, the voltage ratings of both the transformer and the input circuitry would be vastly exceeded during the time required for the breaker or fuse to clear the fault current. This would seem likely to cause severe damage to the input circuitry and I wonder if under such circumstances could a now ineffective breaker be re-closed? If this is so a suitable warning should be published.
Whilst the above comments may appear to be finicky, it has been my experience as an electrical engineer that a person will throw complete trust upon an item of equipment having a title which indicates that it can provide an added safety factor without question or consideration of the duties for which it is rated or has already been called upon to perform.
Since with this equipment and other equipment of a similar nature the safety and protection of the life of the user who may not have any electronic or electrical knowledge is being considered, it is essential that such articles receive the very closest of test and scrutiny prior to their publication and that any shortcomings or risks to the constructor or user are clearly indicated.

> P. Bevington, Birmingham.

In reply to Mr. Bevington's letter, I agree that high voltages are produced by current transformers with oper: circuit secondaries.
This was not mentioned in the article although the reason for the diodes on the "damp" circuit input of the amplifier was mentioned.
Since the core will saturate, the output at low frequencies will be small but it will of course work as a pulse transformer and give outputs comparable to the spark in a car ignition system.
The low efficiency of the windings means that fast high voltage transients will be produced, but will be caught by the diodes to protect the amplifier.

A warning should be given to avoid direct contact, should a direct line to earth fault happen.
The latter part of the letter reinforces the last paragraph of the article, in that leakage units should be an extra to full formal safety protection.-KAS

THis month the entry section of the logic is to be described, together with the random number generator, the comparator and the master clock. Modifications for the " 4 from 10 colour" facility are indicated where relevant.

THE ENTRY LOGIC

The colours forming a player's deduction are entered into the machine using double pole, changeover, push switches, but any common mechanical switch will generate contact noise that will persist until such time as the contacts settle down after operation. Instead of the output being the desired clean, well defined pulse, it will therefore initially comprise a sequence of noise impulses, called "bounce", which must be removed

A set-reset latch is used to perform this function and a single tтl package is used for all six latches required for the colour push switches. This is the SN74118N, featuring six individual set inputs and a reset line common to all six latches. If any set ("L") input is taken low the respective "Q" output goes high and if the reset input is taken low all "Q" outputs are made low.

The circuit in Fig. 2.1 shows no button pressed, and the reset line, connected to pin 9 , is held at logical zero through the push-to-break contacts of all six switches. All "Q" outputs are therefore in the zero state.

As soon as any button is pressed, the reset connection to earth is broken and a logical one appears on pin 9. This is followed by the application of a logical zero to one of the set inputs via the push-to-make contacts of the switch pressed, which in turn sets the "Q" output high.

ENCODING

Each of the six colours is represented by a three bit binary code. The codes chosen here are those representing the complements of the binary numbers $000,001,010,011,100$ and $101(0-5)$. The code for button S 1 is therefore the complement of 000 , namely 111 , and so on.

The encoding is performed by the NOR gates IC12a, IC12b and IC1la of Fig. 2.1. As an example, if S4 is pressed pin 5 of IC10 goes high-sending encoder outputs S and T low to form the code 100 .

COMPONENTS . . .

Integrated Circuits			
IC1	SN7420N		
IC2	SN7413N	IC11	SN7402N
IC3-6	SN7490N (4 off)	IC12	SN7427N
IC7-9	SN7454 (3 off)	IC13	SN7486N
IC10	SN74118N	IC14	SN7404N
RN15	SN7420N		

Resistors
R1-R8, R10 $1 \mathrm{k} \Omega$ (9 off) R9 330Ω
Capacitors
C1-C5 $\quad 0.1 \mu$ F 10 V ceramic
C6 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect

Switches

S1-S6 D.P.C.O. push button switch (6 off)
S7 D.P.C.O. push button switch
S8 Min. push-to-break push button switch
Miscellaneous
0.1 in coppered Veroboard, size $95.25 \times 431.8 \mathrm{~mm}$

12 Veropins. Multi-coloured single core wire.
Sockets for Veropins (see text)
Additions for " 4 from 10" game
Integrated Circuits
IC50 SN7407N
IC51 SN7400N IC52 SN7454N
Resistors
R27-R30 1kS2 (4 off)
Switches
S9-S12 D.P.C.O. push button (4 off)
S13 $\quad 4$ pole latching push button (RS)

Abstract

\section*{*MASTERMIND}

We apologise to Invicta Plastics Ltd., of Oadby, Leicester for our unauthorised use of their Registered Trade Mark MASTERMIND in last month's edition of Practical Electronics. It was not our intention to infringe their rights and we acknowledge their exclusive rights in the Mark. We are grateful to Invicta for allowing us to continue using their Trade Mark MASTERMIND for the remainder of the series.

The use of 000 (and its complement) as one of the codes requires special mention, since, as may be seen, the complement of this appears on lines R, S and T even with no button pressed! However, the advantages of using this particular code outweigh this disadvantage, which as we shall shortly see, is easily overcome.

THE INTERRUPT

Whenever a colour is entered, a signal called the " Z " signal (the interrupt) informs the machine that it may commence processing the entered colour. This important signal is generated by ICl (Fig. 2.1), which functions as follows. When no button is pressed the lines R, S and T from the encoder are all high, but as soon as an entry is made on one of switches S2 to S6 a low will appear on at least one of lines R, S or T, sending pin 6 of ICla low and thereby setting L6 of IC10. The output of this, pin 14 , is the " Z " signal.

The output of switch Sl is taken to pin 9 of IC1b, so that whenever this is pressed the " Z " signal also appears, instructing the machine to read the 111 inherently available on lines R,S or T. This overcomes the disadvantage mentioned earlier.

It is worthwhile to note here that the " Z " signal is high only so long as one of the colour buttons is depressed. The additional circuitry for the " 4 from 10 colour" game is shown in Fig. 2.2.

RANDOM NUMBER GENERATOR

A chain of four modulo six counters is used for this generator and the random properties are arranged as follows. The depression of the "Call" button (S7 in Fig. 2.3) connects a 22 kHz clock (IC2a) combined with noise from the switch contacts to the counter input. This noise and the variability of switch depression time ensure that the generated codes are random.

The counters used are SN7490 decade types. The required count length of six is arranged by using the occurrence of the state 0110 (binary 6) to reset the counter to state 0000 . The resulting count sequence is therefore $000,001,010,011$, 100 and 101 corresponding to the codes (in uncomplemented form) for the six colours.

The reset functions are conveniently implemented by connecting the appropriate counter outputs to the two "reset to zero" inputs of each 7490 package. The reset is activated when both of these inputs are taken to logical one (pins 2 and 3 of IC3-IC6), so that the outputs corresponding to the two ones in 110 are connected to these inputs.
The " 4 from 10 colour" version requires that the count length of each counter be changed from 6 to 10 . This is arranged, as shown in Fig. 2.4(a), by using a four pole changeover switch to disable one of the "reset to zero" inputs to each counter when in the " 4 from 10 " mode.

Fig. 2.1 Entry logic for the basic "4 from 6" game. Components within the shaded box are mounted on the switch panel

Fig. 2.2. Additional entry logic required for the " 4 from 10 " game. Switch panel mounted components are within the shaded box

Fig 2.3. The random number generator (RNG) and reset line logic

An essential factor always to be considered with binary counters concerns their behaviour in invalid states (states other than those intended). If one of our counters were for some reason to enter one of these states the machine would be "cheating" the player, since it would, in the " 4 from 6 colour" mode have a repertoire of more than six colours-a most undesirable state of affairs! However, here the invalid states are 110 and 111 and the reset function just described will never allow the counter to remain in one of these states and the count sequence will always be valid.

CODE SELECTION

Whenever the player enters a colour, the code produced on data lines R, S and T must undergo a process of comparison with each of the randomly generated codes stored in the generator. If, for convenience, the latter are called the " X codes", then the entered code on the data lines is compared with all four of these in turn, X1, X2, X3 and X4. A data selector is therefore used to select the required X code for comparison with the entry. This is formed by IC7, 8 and 9, which are type SN7454N AND-OR-INVERT packages.

Four timing signals, $\mathrm{C}_{1}-\mathrm{C}_{4}$ (to be described next month), select the appropriate X code, so that, as an example, when $\mathrm{C}_{2}=1, \mathrm{X} 2$ will appear complemented on data lines ABC . Note that this complementation now means that the randomly generated codes are of the same form as those on lines RST from the encoder.

THE COMPARATOR

The code on lines $A B C$ is compared with the entry on RST by a logical comparator, comprising IC13, 14 and 15, which produces two outputs, E and its inverse \bar{E}, called the equality signals. $\mathrm{E}=1$ indicates that the two codes are identical.

IC13 is a type SN7486N quad two input EXCLUSIVE-OR package. These gates are each such that if the two inputs are different the output is high and is low if the two inputs• are the same. An exclusive-or gate followed by inversion therefore acts as a two bit comparator. The six bit comparator here is formed from three such two bit sections with the outputs combined with an AND gate, IC15.

Changes to the data selector and the comparator necessary for the "4 from 10 colour" game are shown in Fig. 2.4(b).

Fig. 2.4(a). A four pole latching changeover push switch wired as shown provides the options for either game (b) the changes necessary to the data selector and comparator for the " 4 from 10" game

RESET LINE

In addition to "asking" for the generation of the random codes, the depression of the "Call" button, S7, is arranged to clear all the logic of any records of a previous game, or of "rubbish" when the machine is first switched on. This clear line, called RSG (reset game) is also activated by S8, the "cancel" button. The reset is affected by the appearance of a logical one on this line.

CONSTRUCTION

The wiring diagram of the switch panel is shown in Fig. 2.5 and it should be noted that the chassis is connected to the 5 V rail and so must never come into contact with the 0 V line. Approximately 20 cm of excess wire is allowed for connection to the main logic board. Note that 12 switches are required if you are incorporating the " 4 from 10 colour" game.
The colour buttons are painted so as to match the colours of the coloured pegs, which are red, green, black, yellow, blue and white in the standard, commercially available game.
When wiring up it is a good idea to adopt a wiring colour scheme, for example use a red wire for connections to the red entry button, and so on. Maintain a consistent scheme throughout the entire project, as this will considerably ease the tracing of wires in the future.
The logical circuits are divided between two boards, organised as follows:
(a) Board 1-comprising the circuit blocks (except the displays) of Fig. 1.2.
(b) Board 2-comprising the display circuits.

Since it would be 'impossible to attempt the complete description of board one in this issue a policy of construction has been arranged.

Fig. 2.5. Switch panel wiring for the " 4 from 6" game. The \mathbf{V} references are Veropins on the main board shown in Fig. 2.6

Each month a diagram illustrating the positions of the relevant i.c.s on the board is to be presented. These will not show the point to point wiring as this is too complex, and must therefore be completed with the aid of the appropriate circuit diagrams. It may be mentioned that each month's construction occupies a reasonably self-contained section of the board.
Fig. 2.6 shows the positions of the i.c.s described in this article and their associated decoupling components. Note carefully the situation of the power rails. Package density on this board is high so do not be tempted to alter their positions, otherwise remaining circuits might not fit on.
In the prototype i.c. sockets were used with the most expensive i.c.s, safeguarding the manufacturers guarantees. Where sockets are not used the most sensible procedure is to firstly position the particular i.c. on the board without
soldering it in, complete all connections to it and finally solder in those of its pins to which connections have been made. Making power supply connections is always a good starting point. Number each i.c. as soon as connections to it are completed.

UNCONNECTED LEADS

There are signal connections at the end of this month's construction that cannot be completed until subsequent sections of the logic have been described. It is advisable not to solder in the known end of such leads as this will leave a rather confusing array of loose ends-enough to unsettle the neatest of constructors! The labelling of these connections on all circuit diagrams will allow them to be connected unambiguously when they are required.

Fig. 2.6. Prototype component layout for one third of the main board (Section 'A' on photograph). Since point to point wiring here is too dense for illustration it is left to constructors to work from the appropriate circuit diagrams

VERO PINS

Connections to and from the boards are made via Veropins, with Fig. 2.6 showing the location of those pins for connections to the switch panel. The wires from this panel are not soldered to these pins yet, as this would make it almost completely impossible to wire up the main board. Instead these connections are made using "flying sockets" which sleeve over the pins and allow easy removal after testing. (If such sockets prove difficult to obtain, Soldercon i.c. sockets may be used instead). When the project is finally completed these sockets can be soldered to the pins to give a permanent and reliable connection.

The three extra i.c.s for the " 4 from 10 colour" game can be included as follows. IC50 and 51 can be mounted on a small additional Veroboard located beneath the switch panel, whilst IC52 can be positioned on board 1 between IC17 and 7 . The changeover switch may be mounted on the peg-board above board 1 .

TESTING

There are two basic ways of checking sequential logic circuits, namely dynamic and static testing. In the former the test procedure is accomplished at the full operating speed of the system, requiring the use of relatively high speed test equipment. In the latter the testing is performed on a slow, step by step basis, so that each operation may be verified using a simple logic probe or the low voltage (approximately 5 V) scale of a multimeter. This unit may be tested using the last approach.

When partially completed digital systems are checked, an important point to bear in mind is that unconnected TTL inputs behave as if a logical one is applied to them, and will often need to be grounded before a test may be made. A test schedule follows:
(a) Temporarily connect the switch panel, as described, and check that all six latches of IClO are in the zero state. Press each of the entry buttons in turn and verify that the corresponding "Q" output goes high for as long as the button is held down, and that the correct complemented code appears on lines RST. When no button or S1 is pressed these lines should read 111 . The " Z " signal, IC10 pin 14, should appear whenever any button is pressed, irrespective of which one.
(b) Check that the operation of the "Call" button will summon an unpredictable sequence of four codes in the random generator. The codes 111 and 110 should never occur.
(c) The data selector may be checked by connecting to ground all but one of the enable, or strobe lines $\left(C_{1}-C_{4}\right)$. The complemented code from the location of the counter corresponding with the ungrounded strobe line should then appear on lines $A B C$. For example, if C_{1}, C_{2} and C_{3} are all connected to 0 V , the complemented code X 4 from IC6 will be on ABC.
(d) The action of the comparator can be tested by selecting one of the X codes, as described in (c) and then depressing the button corresponding to the colour code within the selected location, for example if X 4 is selected and is found to contain the code 001 , the depression of S 2 will send E high and $\overline{\mathrm{E}}$ low. If any other button is pressed E will remain low. Note that the button must be kept depressed throughout the duration of the test.

NEXT MONTH: Scoring logic and control circuits.

An excellent project! Construction is made easy using the Siliconix LD130 i.c., when you build this battery powered multimeter.
All ranges are selected on an elegant rank of push-buttons to give, 1 V to 1000 V , and 1 mA to 1 A , with both measuring modes capable of a.c. or d.c. Resistance between $1 \mathrm{k} \Omega$ and $10 \mathrm{M} \Omega$ can also be measured.
Set to read voltage, the input impedance is $10 \mathrm{M} \Omega$. Readout is given on a three-digit (0.3 inch) J.e.d. display with overrange indication

To the guitar cognoscenti sustain is simply the artificial extension of a note. However, how this is electronically achieved can be the difference in pounds and performance. Some lower-priced, less elegant designs, can sound harsh and make chord sustain impossible so that you are limited to one or two notes. In contrast, we offer you the sophistication of non-distorting v.c.a. sustain which allows full chords at a price you can afford

Plus PE CHAMP and PEMASTERMIND continued

PRACTICAL
ELECTRONICS

[^2]

Therefore, changing the resistance by a factor of 2 does not change the current through the meter by the same factor, thus the familiar non-linearity is .produced, with the high resistance end of the scale becoming progressively more cramped.
The solution to this problem is to maintain a constant current through Rx and to measure the voltage across it. The circuit of Fig. 2 shows an operational amplifier in the inverting mode. The -ve input is the virtual ground point, and current through $R_{1 n}$ is simply $\frac{V_{i n}}{R_{i n}}$. Due to op. amp. action, this same .value of current must now flow through $R f, V_{\text {out }}$ rising to some value to achieve this. If $R f$ is half the value of $R_{i n}$, $V_{\text {out }}$ will be half $V_{i n}$. Thus the op. amp. acts as a constant current generator, feeding this constant through Rf. If $\mathrm{R}_{\text {in }}$ and $V_{\text {in }}$ are fixed, and $R f$ is made the resistance under test, $V_{\text {out }}$ will be directly proportional to Rf.

LIN
 EAR OHMM

ALinear ohmmeter is an essential piece of equipment for accurate resistance measurement as there is none of the cramping found in the usual log. scaling of the meter. The circuit to be described will measure from 0Ω to $10 \mathrm{M} \Omega$ in seven ranges. It is straightforward and fairly inexpensive to build, and would suit a newcomer to the hobby, whilst providing him with a very useful piece of test gear. With this fact in mind, a method is described of setting up the ohmmeter which requires no other test gear.

It is also useful for the experienced constructor, to complement the main multimeter, being easier to read and more accurate, and allowing the multimeter to be used just for current and voltage measurements. When one wishes to make a quick resistance check on a component it can be very frustrating if the only multimeter available is connected into a circuit under test.

PRINCIPLE OF OPERATION

The conventional multimeter circuit, good though it is in many respects, suffers from non-linearity of the scale on the resistances ranges. This is because of the nature of the circuit used (Fig. 1). Current through the meter is given by:

$$
\mathrm{V}
$$

$\overline{\mathrm{R} x+\mathrm{Rv}+\mathrm{Rm} \text { (meter resistance) }}$
Giving the expression some values, for a $100 \mu \mathrm{~A}$ meter movement and a 3 V battery, Rv +Rm must be

$$
\frac{3 \mathrm{~V}}{100 \mu \mathrm{~A}}=30 \mathrm{k} \Omega
$$

If we now make $R \times 20 \mathrm{k} \Omega$, the meter will read

$$
\frac{3 \mathrm{~V}}{30 \mathrm{k} \Omega+20 \mathrm{k} \Omega}=60 \mu \mathrm{~A}
$$

If we now double the resistance, the meter reads

$$
\frac{3 \mathrm{~V}}{30 \mathrm{k} \Omega+40 \mathrm{k} \Omega}=42 \cdot 8 \mu \mathrm{~A}
$$

Fig. 1. Conventional ohmmeter circuit

Fig. 2. Op. amp. in the inverting mode

Fig. 3. Circuit of linear ohmmeter

COMPONENTS . .

Resistors	
R1	$1.5 \mathrm{k} \Omega 5 \% \pm W$
R2	$39 \mathrm{k} \Omega 5 \%$ tW
R3	$1 \mathrm{k} \Omega$
R4	$10 \mathrm{k} \Omega$
R5	$100 \mathrm{k} \Omega \quad$ close tolerance $\frac{1}{2}$
R6	$1 \mathrm{M} \Omega$ (see te
R7	$10 \mathrm{M} \Omega$
R8	$2 \mathrm{k} \Omega$
R9	$200 \mathrm{k} \Omega$ - close tolerance $\frac{1}{2} \mathrm{~W}$
R10	$20 \mathrm{k} \Omega$ - (see text)
R11	$2 \mathrm{k} \Omega$
R12	$4 \cdot 3 \mathrm{k} \Omega 5 \%$ W
R13	$1 \mathrm{k} \Omega 5 \% \frac{1}{2} \mathrm{~W}$
R14	$18 \mathrm{k} \Omega 5 \%$ dW

Potentiometers

VR1 $22 \mathrm{k} \Omega$ miniature skeleton preset
VR2 $10 \mathrm{k} \Omega$ linear
VR3 $1 \mathrm{k} \Omega$ miniature skeleton preset

Switches

S1 Miniature "Makaswitch" kit comprising: 1 shafting assembly; 2-12 way single pole wafers (end stop set to give seven ways) (RS Comps)
S2 1-4 pole, 3 way rotary switch

Semiconductors

IC1-IC3 741 (3 off)
D1 BZY88 6.8V
D2 BZY88 5.6V

Miscellaneous

Die-cast box with card slots $121 \times 95 \times 57 \mathrm{~mm}$ ($4 \frac{3}{4} \mathrm{in} \times{ }^{\frac{3}{4}} \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}$)
2 off 4 mm sockets (one red, one black) (SK1, SK2)
2 off 4 mm plugs
2 off croc. clips or clip-on" pröbes
1 off flush mounting spindle lock
2 off PP3 batteries and connectors
Veroboard 0.1 in pitch
Veropins if required
2 knobs
M1 1 mA meter

THE CIRCUIT

The reference voltage is produced by Rl and Dl across VR1 and R2 (see Fig. 3). The slider of VR1 feeds the non inverting input of ICI , a 741 operating as a unity gain follower. This has an input resistance of several megohms and so does not load the reference voltage components. VR1 is adjusted to give an output of 5 V from IC1. Five volts was chosen as a working voltage so that some deterioration of battery voltage could be tolerated before the instrument became inaccurate.

The 5 V from $\mathrm{IC1}$ is passed into IC2, the constant current generator, via the input resistor selected by Sla, and in the case of the five upper ranges the output of IC2 is 5 V for the maximum value of $R x$ in that particular range. The two lower ranges share the $1 \mathrm{k} \Omega$ resistor of the third range, the reason being to prevent drawing too much current from ICI. This means that the maximum output of IC2 on the 10Ω range is 50 mV , and on the 100Ω range, 500 mV . The output of IC2 is passed into IC3, the function of which is to multiply the output voltage of IC2 by a factor of 100,10 or 1 , depending on the range selected.

ZEROING

IC3 also has an offset potentiometer connected in usual 741 fashion, to zero the meter. Zeroing should be carried out with S1 set to 10 because the gain of IC3 is then at its greatest and any offset is more noticeable.

The output of IC3 is passed to a 1 mA meter via R12 and VR3 which are the meter multiplier resistors. VR3 is set to make the meter read full scale with 5 volts across it. D2 is included so that during over-range conditions when the output of IC3 could rise to nearly the + ve supply voltage, the meter movement is not unduly overloaded.

In the "on" position of S2 the meter and multiplier resistors are connected between IC3 output and 0 V and the batteries are connected to the circuit. In the "off" position power is removed and the meter movement shorted to prevent too much mechanical movement of the coil assembly.

In the test battery position the meter is connected across the batteries with R14 acting as a multiplier to give approximately f.s.d. with 18 volts applied, and R13 simulating the load of the circuit.

Fig. 4. Board layout and wiring details for switch S2

CONSTRUCTION

The instrument was built into a die cast box $121 \times 95 \times$ $57 \mathrm{~mm}\left(4 \frac{3}{4} \times 3 \frac{3}{4} \times 2 \frac{1}{4} \mathrm{in}\right)$ but constructors may well have their own ideas about this.

The circuit itself is built onto a piece of Veroboard $86 \times$ 38 mm ($3.4 \times 1.5 \mathrm{in}$) with a 0.1 in hole spacing, and fits into the slots provided in the die cast box. Details are shown in the diagram (Fig. 4).

It is important to remember that in a measuring instrument such as this, final accuracy will only be as good as the components used, and therefore close tolerance resistors are necessary in the measuring section of the circuit. Two per cent resistors were used in the prototype (I per cent or better could be used if desired, although it will probably be difficult to obtain a $10 \mathrm{M} \Omega$ resistor for R7 closer than 5 per cent).

The prototype linear ohmmeter showing the range switch wiring

The circuit lends itself to modification, almost any op. amp. could be used, 741s are not imperative although the circuit board details will not necessarily be correct for another type. Because the meter is fed from an active source it too can be almost any sensitivity provided suitable multiplier resistors are used. ImA was chosen as a compromise between the fragility of a 50 or $100 \mu \mathrm{~A}$ movement, and the higher current required for a 5 or 10 mA movement.

The front panel of the box was given a brushed finish by clamping it horizontally by the flanges in a vice, and brushing it in one direction with medium grade emery paper wrapped round a wooden block. The lettering was applied with a stencil and pen, although "Letraset" or similar could be used. Finally it was protected with two or three coats of clear lacquer.

SETTING UP

With a voltmeter across the output of IC1, adjust VR1 till the voltmeter reads 5 V . Connect the voltmeter across the output of IC3, and with the 10Ω range selected, short the input sockets together. Adjust VR2 till the meter reads 0. With the voltmeter still across IC3 output, switch to the $1 \mathrm{k} \Omega$ range and place a $1 \mathrm{k} \Omega$ close tolerance resistor across the input terminals. Check that the voltmeter reads 5 V and adjust VR3 to make the instrument meter read full scale.

If the constructor has no test gear available, the following method may be used to set up the ohmmeter. Obtain a mercury cell in known good condition, with an e.m.f. of 5 V or less. Temporarily disconnect R12 from IC3 and place the cell across the meter and multiplier chain, observing polarity. Set VR3 for the meter to read in tenths of a milliamp, double the applied e.m.f., that is, for an e.m.f. of 3 volts the meter should read $0 \cdot 6 \mu \mathrm{~A}$. Now connect R12 to the output of ICI and adjust VR1 for full scale. Re-connect the meter circuitry and short the input terminals with Sl set to the 10Ω range. Adjust VR2 for zero reading.

Although VR2 has been made a panel mounting control, it will be found that once it has been set it will not be necessary to adjust it very often. For this reason it was flush mounted with a spindle locking device, a slot being cut in the spindle for screwdriver adjustment.

After a final check that the meter is operative on all ranges, and that the battery test position works, the instrument is ready for use. Note that the pointer works the correct way; low resistance on the left, high resistance on the right, unlike a conventional multimeter.

by K. Lenton-Smith

A well-tempered synthesiser keyboard should produce a well-tempered player! However, I suspect that many home constructed instruments suffer from instability and much of the enjoyment that could be derived from the finished product is lost because of the need to knob-twiddle constantly in an attempt to keep the brute in tune. If this is the case, the problem invariably centres round the VCO and voltages from the key contacts.

With most practical projects, nominal voltages will suffice: designed for 9 V , it will still work happily on 8 V or 10 V . Electronic music requires terrifying accuracy for voltage-control of frequency if the instrument is to be acceptable. For example, 0.5 V per octave is 42 mV for each semitone interval and, as a semitone is divided into 100 cents in terms of tuning and there are those who can hear a 5 cent error, we are looking for accuracy of 2 mV or so.

EQUAL VOLTAGE DIVISION

One type of VCO arrangement is to provide a linear series of voltages along the keyboard so that equal voltage increments appear between each semitone. With this system there is no difficulty in providing keyboard voltages. A chain of identical resistors is connected across a constant voltage source, "Span" being arranged by allowing a small adjustment of this voltage. Musical pitch increases on a logarithmic basis, although frequency doubling for each successive octave. Linear voltages thus have to be converted exponentially before being fed to the integrator and comparator.

The critical part of this scheme is the controlled current generator which provides the conversion and, because of the thermal sensitivity of transistors, some sort of "oven" is incorporated in the plan in order to stabilise the convertor as far as possible. Despite all precautions, frequency tends to be erratic and this is evident when playing with other instruments.

GEOMETRIC DIVISION

I recently played a Mini-Korg and decided to test this by tuning it to my Hammond immediately it was switched

Comparing log and linear conversion of control voltages to musical pitches
on. It stayed in perfect tune for several hours of use, measured against the rigid tuning of rotary magnetic generators. I have no circuitry for the Korg, nor was ! in a position to look into the "works" at the time, but I guess that a different approach is used in this and other synthesisers.

By arranging that the keyboard control provides a geometric (or log) series of voltages, converted on a linear basis
in the VCO, the problems surrounding the current generator can be obviated. Doubling the keyboard voltage results in frequency doubling (or raising pitch by one octave).

From the reliability aspect, it would seem better to adopt this system in order to dispense with the convertor: the logarithmic keyboard can be arranged with presets and octave switching contacts or CMOS devices. Voltage control from sources other than the keyboard is still available with this method, of course. Provided that thought is given to the possible temperature sensitivity of passive components and that a stabilised power supply is considered to be a sine qua non, the instrument will only need to be tuned once-during initial setting up. The only qualification is that rough treatment and slack presets will upset things, but the remedy is fairly obvious!
Exponential convertors cause no problems in other modules, such as transient generators or VCFs: they are only concerned with processing existing frequencies.

UPPER MANUAL

Readers' letters indicate that there is considerable interest in organs. An excellent introductory text for those seeking a broad spectrum understanding of electronic organs and their workings is the revised Musical Instrument Manual, from Pitman, written by Alan Douglas, costs $£ 7.50$ and has become a standard work over the years. It is not a constructional book, nor does it contain circuitry of a complete organ, but is a most useful reference manual for those wishing to increase their background knowledge. As a guide to theory and design, it offers chapters that point the way for the self-designed instrument: parts of commercial circuits and experimental methods appear in the book.

The approach by designers over the years to producing instruments capable of serious musical interpretation is probably this book's theme. It can be recommended to anyone contemplating an organ with conventional voices for light entertainment.

The Mini-Korg synthesiser

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

DIGITAL MULTIMETER

A new, low-cost, multi-function digital multimeter intended for both the amateur and professional engineer is the latest product from Fluke International Co., to be marketed by ITT Instrument Services.

The Fluke Model 8020A digital multimeter has been designed to withstand the rigours of frequent field use. It incorporates a $3 \frac{1}{2}$-digit liquid crystal display of $\frac{1}{2}$ in character height, and has the various function and range push-button selectors arranged down one side of the unit to allow one-handed operation.

A custom designed cmos/LSI circuit provides analogue-to-digital conversion and display decoding and drive. Together, the use of the Lsi circuit and LCD help to ensure maximum battery life from the small 9 V alkaline cell, which consequently gives up to 200 hours operation.

Standard features of the 8020A include auto-zero and auto-polarity, and the instrument has a total of 26 ranges and six functions. These include ten voltage ranges, from $100 \mu \mathrm{~V}$ to 1 kV d.c. or 750 V a.c. with a basic d.c. accuracy of $\pm 0.25 \%$. There are six resistance ranges, from 100 milliohms to 20 megohms with a basic accuracy of $\pm 0.2 \%$; three ranges for diode test functions, of 2 kilohms, 200 kilohms and 20 megohms; and two conductance ranges.

With the inclusion of the diode test and conductance functions, the 8020A offers, it is claimed, far more comprehensive capabilities than those normally associated
with low cost, portable analogue or digital instrumentation.

In the case of the diode test function, for example, sufficient voltage is supplied to turn on a semiconductor junction, so that diodes and transistors can be tested for the correct forward bias voltage in situ. Individual paralleled resistors can also be checked, without the need to disconnect them from circuit.

Two conductance ranges are available. One enables the measurement of resistances as high as 10,000 megohms and thus makes possible the checking of resistance values in high voltage dividers, leakage in capacitors, printed circuits, cables and insulators, etc. The second conductance range measures over the equivalent resistance range from 500 ohms to 1 megohm, and provides the means of directly measuring transistor beta.

Extensive overload protection is a built-in feature and the instrument is protected against accidental or unknown input conditions up to a continuous 300 V d.c. or r.m.s. a.c. on all functions and ranges, and against transients up to 6 kV . The range of accessories available extends its capabilities into the fields of temperature, r.f., high voltage and current measurement.

Two r.f. probes can be provided. Model 82RF enables the measurement of high frequency r.f. voltages from 100 kHz to 500 MHz , with an accuracy of 1 dB up to 100 MHz and 3 dB from 200 MHz to 500 MHz . Model 81 RF may be used for frequencies from 100 kHz to 100 MHz , and has an overall accuracy of 1 dB .

The high voltage probe, model $80 \mathrm{~K}-40$, is a general purpose accessory for measurements up to 40 kV d.c. or 28 kV r.m.s. a.c. With a guaranteed probe accuracy of 1% at $25,000 \mathrm{~V}$, the $80 \mathrm{~K}-40$ is invaluable in TV servicing applications in which the establishment of precise h.t. and e.h.t. values are essential.

To convert the 8020A into an accurate thermometer, the $80 \mathrm{~T}-150$ universal temperature probe can be used. The operational temperature range of the probe is $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, and the instantaneous temperature is registered at 1 mV d.c./ degree.

The Fluke 8020A Digital Multimeter

Wire Wrapper from Vero

Hall Effect Switches from Electronic Engineering

For high-current measurements, the 801-600 clamp-on current transformer connects directly into the 8020 A , as an interface to the circuit being checked. The transformer extends the a.c. current handling capability of the 8020 A to 600 A , and allows accurate measurements to be made without the need to break the circuit under test.

Other accessories include a battery eliminator and a protective carrying case containing test lead compartments.

The basic price of the Fluke 8020A digital multimeter is $£ 99$, the accessories costing extra. Further details, if required, can be obtained from Fluke International Corp., Dept. P.E., Garnett Close, Watford, WD2 4TT.

HALL EFFECT MICROSWITCHES

Utilising Hall effect i.c.s to give bounce free switching, Electronic Engineering Services have just announced three new ranges of contactless microswitches.

These long life, high reliability microswitches require a maximum operating force of less than $1 \cdot 2 \mathrm{~N}$ and, under constant environmental conditions, have a life in excess of 10^{8} operations.

The output is derived from two open collector transistors which generate a static uniphase or antiphase signal and, with rise and fall times of less than $0.5 \mu \mathrm{~s}$, switching currents up to 500 mA and operating voltages of between 4.5 V and 27 V , these microswitches will directly interface with all data logic systems.

Designated CM1, 2 and 3, these three sizes of microswitch are interchangeable with standard mechanical versions, have an operating temperature of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, are available with either push-on or pcb terminations and comply with the application and environmental requirements of classes HSF (DIN 40040) and IP40 respectively.
Further information on the CM1, 2 and 3 microswitches can be obtained from Electronic Engineering Services Ltd., 98 Croydon Road, Penge, London SE20 7AB.

POWER WRAPPER

A budget-priced battery powered wire wrapping gun is the latest product from Vero Systems (Electronic) Ltd. This, it is claimed, brings powered wire wrapping within the scope of the development laboratory or serviceman for the first time, since its price is reckoned to be only one-third that of other power tools.

The tool is designed for standard miniwrap terminals (0.6 mm square), and uses 0.25 mm wire. A bit and sleeve to give a "modified" wrap are fitted as standard, and there is a built-in backforce device to prevent over-wrapping. Rechargeable nickel cadmium batteries and a battery charger are also available.

The tool is supplied, excluding batteries, at $£ 32.50$ and is available from Vero Systems (Electronic) Ltd., 362a Spring Road, Sholing, Southampton, Hants.

National Semiconductor combined Digital Watch/Calculator Module

Tidy Tubs from Platignum

CALCULATOR/WATCH MODULE

A set of complementary metal oxide semiconductor lsi devices designed for use in calculator, wristwatch or control applications is now available from National Semiconductor.

Using this set of programmable, cal-culator-oriented processor chips, designated the MM58101 (rom element) and MM58102 (memory and processor), National have fabricated a combined scientific slide-rule calculator and digital watch module, complete with keyboard and liquid crystal display.

The scientific calculator and watch module is claimed to be the first to use liquid crystal display technology. In addition to presenting a six digit continuous display of hours-minutes-seconds, the unit also has a month/date calendar, AM indicator and dual night viewing lights. In the calculator mode, it employs algebraic logic, has full scientific notation, trig and \log functions, store and recall memory, pi, powers of numbers, register exchange and reciprocals.

Hybrid construction is used to mount the chips on a small p.c.b., on which is also mounted a miniature 5 by 4 matrix keyboard and field effect LCD with linch high digits.

Thirty-six possible switch functions are available on the dual function keyboard. Normally in the numeric entry mode, a function key calls up the upper case functions such as natural logs and sine or cosine. Another key is pushed to place the watch module in the timekeeping mode. The six most significant digits are displayed for calculations, with switches on the side to call up the next six signifcant digits, as well as the calendar/date functions. Switching to the calculator - mode from the timekeeping mode is done by pushing any digit key.

Unlike conventional digital watches there is no complicated procedure for setting time or date, since the calculator
keyboard may be used instead. For example, the user can add or subtract seconds by merely pushing the plus or minus key and then the desired number: of seconds. Similar procedures can be followed to set hours, minutes and days.

Also, unlike the standard digital watch, the watch-calculator module can be used to store numeric information unrelated to either calculations or time-keeping. For example, if a user wants to remember a telephone number or pricing on an item and has no paper, the number can be punched on the keyboard and entered into the calculator memory. There it will remain as long as there are live batteries in the module, or until the user calls it up and erases the information.

Full technical details of the MM58101 and MM58102 module can be obtained from National Semiconductor UK Ltd., Dept. P.E., 19 Goldington Road, Bedford, MK40 3LF.

PROBE

Off-the-shelf availability of the Chinaglia USIJET signal injector, is announced by Alcon Instruments. This pen-shaped probe is primarily intended for use in faultfinding and alignment checking in the radio and television areas, but has applications over a wide field including audio and communications markets.

The Usijet incorporates a blocking oscillator as'the main signal generator, giving a basic 500 kHz signal which is modulated at 1 kHz for identification and demodulation check purposes. It is claimed that because of the waveform used the equipment produces harmonics detectable right up to 500 MHz , very useful in many servicing applications.

Power consumption is 25 mA from an internal 1.5 V battery to give a 20 V peak-to-peak output at the probe tip.

In use the equipment case is merely connected via a fly-lead to the "earthline" of the item under test and the probe tip touched on the required point of the
circuit under investigation. The Usijet can be used in "live" test conditions and the probe can cope with circuit voltages of up to 500 V d.c., somewhat more than would normally be met in most practical circumstances.

The price, complete with earthing lead and instructions, is $£ 11.55$ inc. VAT. Further information can be obtained from: Alcon Instruments Ltd., Dept. P.E., 19 Mulberry Walk, London SW3.

STORAGE BINS

For many years the name Platignum has been associated with writing materials and drawing equipment. Now the Company has come up with a simple and effective idea that should find a home in many varied places.

Called Tidy Tubs, they are ideal for storing components, tools, such as side cutters, long-nose pliers and small screw drivers, in any one of six different size plastic tubs. Each Tub is fixed to its neighbour, forming one compact group.

A word of warning-if you find your Tidy Tubs have disappeared from your workbench or study, they make nice flower trays and are ideal for storing all those special ladies' trinkets that litter the dressing table.

Available in six different colours, the Platignum Tidy Tubs cost $£ 1.50$ each and should be obtainable from most good stores and stationers.

CATALOGUES RECEIVED

A new components catalogue and a databook have been received this month which we can recommend to our readers.

The latest Marshall's Catalogue takes on a new format, 32 large size pages, containing many new items including a revamped section on Microprocessors and support devices.

And how's this for progress during the age of spiralling prices, Marshall's have actually "Reduced" the cost of their catalogue from 55p (168 small pages) post paid to $\mathbf{3 5}$ p post paid. The price to callers is $25 p$, the old price was $40 p$.

Copies of the Marshall's Components Catalogue can be obtained from any of their shops or direct from A. Marshall (London) Ltd., Dept. P.E., 42 Cricklewood Broadway, London NW2 3ET.

At the time of going to press, Marshall's are caught up in the Cricklewood postal dispute and readers are advised to order through their Glasgow and Bristol branches.

Now available from Jermyn Distribution is the new 400 page National Semiconductor MOS/LSI Databook. Divided into 14 sections and commencing with Clocks and Counters/Timers it also includes details on Electronic Organ and TV Circuits, A / D converters, Communications/CB Radio Circuits as well as Watches, Calculators and Keyboard Encoders.

Copies of the National Semiconductor MOS/LSI Databook, price $£ 5.95$, can be obtained from Jermyn Distribution, Dept. P.E., Sevenoaks, Kent.

BRITAIN LOOKS WEST

Of all the European nations, Britain is the leading investor in the United States according to figures published by the US Department of Commerce. Second place, but a long way behind, is the Netherlands followed by Switzerland, France, Germany and Sweden.

The attractions of the USA are almost self-evident. The richest market in the world, a less onerous tax structure, high levels of productivity and better profits. The push factor, driving investment out of Britain, is high taxation, a squeeze on profits, constant government meddling, low productivity.
Who are the traitors investing overseas? Are they shady speculators? Wide boys? Currency manipulators? The biggest British investor in the United States this decade has been government-controlled BP.

Turning now to electronics, the great Wescon exhibition in San Francisco opening in September was already overbooked with a waiting list of 100 booths by last June. In contrast, the London Electronic Components Show was disappointing in both number of exhibitors and overall attendance.

No, I'm not knocking Britain. Only pointing out the difference between an environment where effort is rewarded and one where it isn't. BP in the USA earns us a lot of dollars. So do the operations of companies like GEC and Plessey and dozens of others overseas. When wealthcreation becomes respectable again in Britain, as it must, there will be plenty of investment here, too.

freE ENERGY

Alternative energy sources are going to be very good business. Post Office trials on v.h.f. telephone links powered by solar cells have already shown that even
in the bleak British winter there is sufficient free energy to keep the batteries topped up. And this with cells of comparatively low efficiency.

IBM is now claiming to have developed a gallium arsenide solar cell with a conversion efficiency of 22 per cent. Early silicon devices were typically 10 per cent efficient and more recently silicon devices for terrestrial use have achieved 18 per cent. These new levels of efficiency (IBM believe they can push up to the theoretical maximum of 27 per cent) could transform present thinking.

At a symposium staged by the Royal Institute of Navigation last December, Colin Mudie, a yacht designer and naval architect, suggested that a 400 ft long vessel operating on the edge of the tropics could receive five million kilowatt-hours of energy from the sun per year, sufficient to provide a quarter of the total propulsion power for a ship that length. He didn't think much of this and was proposing sails (wind power) as a better method of helping out on the cost of oil and its conservation. But the big increase in efficiency resulting from the IBM developments would transform his solar, energy figures.

Mudie and other workers in the field of naval propulsion are not suggesting doing away with conventional engines. They would remain but be supplemented by other energy inputs. If sails were used they would be in the form of scientifically designed aerofoils controlled positionally by hydraulic actuators. position being determined by electronic computer.

NUMBERS GAME

Gone are the days when I used to brag to acquaintances that my electronic watch (then still a novelty) had the equivalent of 312 transistors in a single chip. And today l'd feel rather foolish in admitting that it cost $£ 80$.

Even so, I was knocked back when I was sent advance information on HewlettPackard's package which for want of a better name they are calling a wrist instrument because it is more than a wrist watch, having over three dozen different functions including a calculator, a memory, a 200 year calendar, a timer, a stopwatch, an ordinary watch and an alarm. It has 28 keys and a nine-digit display and inside, including the controlling microcomputer, are the equivalent of 38,000 transistors.

The only area where I can still score is on price. The H-P wrist instrument costs 650 dollars. But for that price you could hand it down to your great-greatgreat grandchild who would still find the calendar accurate. I have to adjust mine every month when there are less than 31 days.

The H-P LSI package may, however, soon be out of date. At a recent IEE meeting, Derek Roberts of Plessey Microsystems was saying that by 1980 we could expect to see the million-device chip!

And while on the numbers game 1 might mention the increasing complexity of simple (well, they used to be) wiring looms on aircraft. Looking at three generations of aircraft, the Starfighter had 8,000 test points, the Phantom 15,000 and now the MRCA Tornado has 40,000 . Cable inspection by computerised automatic testing takes four hours. A good operator with an Avometer and Megger testing for continuity and insulation resistance would spend 10 weeks on the same task.

READY TO GO

It is 10 years since the short-range Seawolf self-defence system for the Royal Navy was conceived. Now, after two years of intensive trials in HMS Penelope, it is ready for production.

Intruders into naval air space would be wise to keep their distance. A target rocket travelling at over twice the speed of sound was destroyed first shot. Looking for an even more difficult target it was decided to try Seawolf against an ordinary $4 \cdot 5$-inch shell. It seems that nobody had thought of doing such a thing before. Seawolf attacked at a closing speed of better than Mach 2.5 and engaged successfully.
So Seawolf has proved itself as an anti-missile missile. No human operator could hope to exercise control at such speeds of engagement so everything is automatic from threat evaluation to kill recording. Like most big projects Seawolf has been a joint development with BAC building the missile, Vickers the launchers and Marconi Radar Systems main contractor on electronics with Ferranti as a major subcontractor.

The first production system is to go in HMS Broadsword a Type 22 frigate, now being fitted out in Yarrow's Yard, Glasgow.

DISTRIBUTORS GAIN GROUND

Forecasts a few years ago that the proliferation of small component distribution companies would cease and just a few big firms would survive have been confounded by events. There are still over 100 in the UK and all seem to be making a living if not a fortune.

What's more, their trade association AFDEC is projecting over 20 per cent growth in the value of component sales through these outlets. In 1978 over $£ 50$ million worth of active components will be bought through distributors and over £33 million worth of passive components. The total UK market for components next year is estimated at £254 million for active devices and $£ 244$ million for passives.

There will be some price inflation but AFDEC experts say this will be only 5 per cent for active devices, 10 per cent for passive, and thus well below the current general inflation rate. So, relatively, components are still getting cheaper.

THE diode has been with us for a very long time, and various types have been used for a multitude of purposes. Still the most common application of diodes is rectification or detection.

Modern diodes of the silicon type are very useful for rectifying medium potentials over a wide range of currents, but at low voltages the forward voltage drop begins to dwarf

Fig. 1

Fig. 2
the applied signal. This voltage drop is in any case dependent on temperature, but at low currents can also vary (logarithmically) with the current through the device.
For a silicon diode the drop is of the order of 0.7 V for currents in the milliampere range. Whilst diodes of the germanium or metal oxide type have a lower intrinsic drop, their behaviour is less well defined and their bulk resistance much greater. These diodes also have much higher reverse leakage currents than silicon types.

ACTIVE RECTIFIERS

For low-level audio and control measurements, what is needed is an active rectifier which is free from the aforementioned problems, but is also cheap. This article describes the use of operational amplifiers in this application, showing the numerous possible configurations. The circuits are all designed around the 741 integrated circuit for economy, but faster amplifiers can be used if necessary. All diodes are silicon types, 1N4148 or similar, and should be of good quality to ensure low reverse leakage.

OPERATIONAL AMPLIFIER BASICS

We do not propose to deal with the theory of op. amps. here, but one aspect is particularly useful to us. A unity gain inverting amplifier based on an op. amp. is shown in Fig. 1. The output moves to keep the inverting input at the same potential as the non-inverting input, which is earthed (through a resistor, for reasons of offset). Hence the currents through R1 and R2 must be equal and opposite, and since the resistors are equal in value the voltage drops must also be equal and opposite

If the circuit is rearranged as shown in Fig. 2, the situation remains the same on negative input excursions, with the op. amp. output settling to one diode voltage-drop (about 0.7 V) above the actual output. However, for positive input excursions the diode prevents the amplifier from maintaining the inverting input at earth potential, and feedthrough occurs.

This is overcome by inserting another feedback network as shown in Fig. 3. Output 1 consists of the positive excursions and Output 2 the negative excursions, settling to earth in between.

INTEGRATOR

Either output of Fig. 3 can be fed to an integrator such as that shown in Fig. 4, to produce an output proportional to the mean signal level. The values given are usable down to about 100 Hz , but the capacitor value may be increased proportionally for lower frequencies, or decreased to obtain a faster attack (with higher ripple). It should be noted that the tracking performance of this type of circuit is mostly dependent on the quality of the op. amp., and not upon the diode voltage drop.

The feedback resistor, R_{ib} (which should be the same value as $\mathbf{R}_{i n}$) is necessary to ensure that the input offiset voltage of the op. amp. does not cause the output to saturate. Output offset can be improved by at least an order of magnitude by trimming the 741 in the usual manner by means of the offset null potentiometer.

FULL WAVE RECTIFIER

The circuit of Fig. 4 gives a fair indication of the average value of a complete waveform only if it is symmetrical. If instead we differentially amplify both outputs as in Fig. 5 we have an "ideal" full wave rectifier, shown here producing a triangular waveform from a sawtooth one:

The low values of load resistors on Cl and high input resistors on IC2 are necessary to prevent the potential on the inverting input of IC2 from interfering with the rectification process. Following this circuit with the integrator will produce an output proportional to the true mean of the input waveform.

THE "PSEUDO-DIFFERENTIAL" CIRCUIT

A simpler circuit providing a positive full-wave rectified output is shown in Fig. 6. For positive input excursions the output of IC1 goes negative and diode D2 conducts. ICI therefore acts as an inverting amplifier and a current flows out of the inverting input of IC2. which is maintained at virtual earth by K_{fh}. A current flows into this input via R_{B}, so the net current out of the inverting input of IC2 is $I_{\text {RA }}$ $I_{r b}$. Since ICI has unity gain, these currents are proportional to the values of R_{1} and $R_{1 s}$.

For negative input excursions, the output of ICl goes positive and $\mathrm{D} \mid$ conducts, so ensuring the maintenance of the virtual earth at the inverting input of 1 C 1 . D2 is now reverse biased, therefore no current flows through R_{A} since it is connected (in series with a $22 \mathrm{k} \Omega$) resistor) between two virtual earths. The net current from the inverting input of IC2 flows through R_{13} alone. If $\mathrm{R}_{1} \quad \frac{1}{2} \mathrm{R}_{13}$, the outputs of IC2 will thus be equal for positive and negative excursions, and the overall gain of the system will be $\quad \mathrm{R}_{\mathrm{pb}} / \mathrm{R}_{13}$. For unity gain, R_{fb} in Fig. 6 should be $13.6 \mathrm{k} \Omega$.

If a mean value output is required, a capacitor can be added across R_{fb}, transforming IC2 into the integrator circuit of Fig. 4. The effective value of $R_{\text {in }}$ is $13.6 \mathrm{k} \Omega$.

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 8
Fig. 7

Fig. 9

It should be mentioned that. by reducing the value of the input resistor, all the rectifiers described so far can provide gain as well as rectification.

PEAK LEVEL MONITORING

The rectifier configuration commonly employed in audio millivoltmeters is illustrated in Fig. 7. Essentially it is based upon the same principles as have already been discussed, and relies upon the fact that at any instant, the current in the feedback network equals $V_{i n} / R_{i n}$. Neglecting diode leakage, all this current must flow through the meter, and because of the bridge arrangement must always flow in the same direction. Due to the mechanical inertia of the movement, the meter will follow the mean of the input voltage, but connecting a large capacitor across the meter will give the circuit peak reading characteristics.
The major disadvantages of this method are a very slow attack, and the inability of the circuit to provide an output voltage that can be used to control other circuits. The circuit to be described next is capable of overcoming both these disadvantages.

A general circuit for an ideal peak value detector is shown in Fig. 8. For positive input excursions, the inverting input of the op. amp. is made to follow the non-inverting input. If the input signal drops momentarily, the inverting input is held at its previous potential by Cl , and the op. amp. output goes hard negative, thus biasing off DI.
The attack of this circuit is limited only by the forward diode resistance and the op amp. output impedance, and to a limited extent by its slew rate.
This detector can be coupled to the output of the circuit of Fig. 5 to produce an ideal peak value monitor. With the
values shown, the decay time will be about one second. This can be changed by altering the value of Cl . If the output is used to drive a voltmeter, the impedance of the latter can be used as the load. The decay time will then depend upon the product of this impedance and Cl

ECONOMICAL CIRCUIT

If the peak rectifier can be fed from a low impedance source, or a known impedance (such as a common emitter transistor stage) a neat trick can be used to reduce the number of op. amps. required. The circuit of Fig. 9 is a full-wave peak detector which must either be fed from a source of significantly lower impedance than RI, or must have RI reduced in value to allow for the source impedance.

On negative input excursions, ICl feeds inverted signals to IC2, but on positive input excursions DI isolates IC1 from the circuit, and the input signal is fed directly to the detector. The detector, based on IC2, is the same as that of Fig. 8.

INPUT ISOLATION

While all the circuits shown have d.c. coupled inputs, if any standing d.c. potential is present on the source, a capacitor must be inserted in the inpur circuit. This capacitor must have a low impedance at the lowest frequency used, in comparison with the input resistor.

For very low level work, signals of less than 10 mV , the offset of the operational amplifiers will need to be nulled. This is achieved by connecting a $10 \mathrm{k} \Omega$ potentiometer across pins 1 and 5 of the 741, with its slider connected to - $V_{\text {ec, }}$, as shown in Fig. 4. This potentiometer is then adjusted to exactly zero the output with no input signal.

selection of readers original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g with regard to aboreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

Fig. 1

ATIMER based on a NE555 i.c. is shown in Fig. 1, which can be programmed to switch another circuit on or off after a variable time duration. A manual override switch is included to keep the "controlled" circuit permanently on. If programmed to switch "on" after a time duration, the l.e.d. will illuminate giving warning that time is elapsing to the moment when the controlled circuit will switch on, and remain on
indefinitely. If programmed to switch "off" after" a duration, the timer will also switch itself off completely.

This circuit was designed primarily for a radio receiver working from a 12 volt supply. Switch $S 1$ is a double pole two-way switch used for the reset and start function. Switch S2 is for the time off or time on function, and S3 is the onloff and a fimer switch.

To operate the timer, first switch
on S3 and set VRI for required time interval and S2 for mode of operation. Then switch S1 to start position, and switch off S3, otherwise the controlled unit will remain permanently on. The maximum time interval of this circuit is about thirty-five minutes.

Pek Yaw Kee,
Sarawak,
East Malaysia.

WIPER DELAY UNIT

THE problem with many published designs for windscreen wiper delay units is that they require more than one additional control to be placed somewhere in the car. The requirement to be fulfilled was that only one control be used

The problem was solved using the circuit of Fig. I. Operation is simple. ICI functions as an astable driving the relay whose contacts are wired across the wiper on/off switch.

If continuous wiping is required the wipers are switched on as normal but if intermittent wiping is required the wiper on/off switch is switched of and the unit switched on via the switched pot. The unit switches the wipers on long enough for the "self
park" facility to take over and the wipers return to their relaxed position.

The relay contacts must be rated at least 5A, and it must operate at less than 200 mA 12 V .

With the values given the relay is on for 0.75 seconds and its maximum delay is 38 seconds.

If one wishes to use different values for the timing arm VR1, R1. R 2 and C 1 the formulae are:

Relay "on" time =

$$
0.693 \mathrm{R}, \mathrm{Cl} \text { secs. }
$$

Relay "off" time $=$
$0.693\left(R_{A}+R_{B}\right) \mathrm{Cl}$
K. D. Horton,

Birkenhead,
Merseyside.

TRANSISTORISED DYNATRON

THE circuit for the transistorised dynatron is shown in Fig. 1. Its mode of operation is as follows. If a small voltage V is applied to the circuit a current I flows, mostly through TR2. As V is increased, so does I increase (Fig. 2, portion (a)).
At a point determined by the setting of VR1, further increase in V results in a decrease in I since TR1 begins to conduct, thereby switching TR2 off (Fig. 2, portion (b)). With TR2 cut off, further increase in V results in a slower rise in I than in portion (a), since most of the current now passes through R2 (Fig. 2, portion (c)).

The negative slope of portion (b) is the familiar dynatron action. In this region the circuit is in effect a two-port network with negative dynamic (i.e. small signal) resistance (Fig. 3)
If such a circuit is connected to a parallel tuned circuit, as shown in Fig. 4, oscillations will be produced, provided the losses in the resonant circuit are not too great to be cancelled out by the negative resistance, and provided the resonant frequency is not too high for the transistors used. This means that almost any tuned circuit can be resonated (within the above limits) without the inconvenience of feedback windings and capacitor
A further application, a bistable, can be realised by connecting the circuit to a load resistor R_{L} (Fig .5), chosen so that the load line cuts the characteristic curve at three points (Fig. 6). The result is a circuit capable of being switched between two stable states by pulses of the correct polarity. The output step can be made almost any required height (within the
not used. If, around the chosen working point for the circuit, this two-port network exhibits negative dynamic resistance as described above, then the circuit will be inherently unstable.

This would not matter if the power supply and wiring were perfect, but in practice the instability would manifest itself as high frequency oscillation in the wiring, or bistable action. Monostable and astable action are also possible.
D. McClure,

Ayr.

Fig. 2

vee (v)
transistor safety margins) by carefu choice of $\mathbf{R}_{\mathrm{L}}, \mathrm{V}_{\mathrm{cc}}$ and the setting of VR1 The input and output are the same point-the junction of the "black Box" and R_{L}.

These two applications give useful insight into one of the less well understood causes of instability in home-designed equipment. From the point of view of a battery or power supply, any circuit, be it a radio or a burglar alarm, active or passive, is still basically a two-port network, assuming that a split supply is

Fig. 1

Fig. 3 Fig. 4

Fig. 6

hIGH IMPEDANGE AUDIO PRE-AMP •

The circuit shown in Fig. I was developed to combine the high impedance of a field effect transistor with the high gain and repeatability of an operational amplifier. It will drive an LM380 audio amplifier with about 100 mV from almost any type of microphone

As the f.e.t. has a very high input resistance and is voltage sensitive, R3 need not be varied. Further, most types of microphone can be connected across R3 without isolating capacitors.

The d.c. potentials around the circuit are set by negative feedback from the output of IC1 to the input via TR1 (which acts as a common gate amplifier at d.c.). Transistor TR2 is a current amplifier driving TR1 source, allowing R6, R7, C1 and C2 to have reasonable values. Since common emitter amplifiers have current gain only, while common gate and common source amplifiers have roughly equal voltage gains, the overall gain can be set by feedback to the source rather than the gate of TR1

The audio frequency gain is set by R6/R7 to approximately 150 (44 dB).

Fig. 1

The upper and lower -3 dB points are set to 50 kHz and 40 Hz by Cl and C 2 respectively. Choice of the value of the output coupling capacitor C3 is governed by the input impedance of the following circuit. The value shown would be adequate for driving an LM380. Gain
may be reduced by increasing R7, and vice versa, though this will affect the low frequency response. Capacitor C 1 prevents h.f. instability.
N. Ing-Simmons,

Henley,
Oxon.

Laying of the 125 km waveguide, encased in a steel tube, will begin in 1979, and eventually employ five booster stations to reinforce the digital signals. This venture will involve materials supplied by Marconi, BICC, and the British Steel Corporation, and should be completed by 1983

POIIITS REISIIT

WARNING SYSTEM (Ingenuity Unlimited, August 1977)
We understand that organisations representing blind people have recently expressed concern to the Department of the Environment regarding the use of audible warning devices connected to direction indicator systems on motor-cycles.

A number of near-accidents have apparently been caused by blind persons mistaking the sound of such devices for the "Walk" tone at pedestrian-controlled crossings, and so stepping out into the path of traffic.

The DOE is currently considering legislation to control the fitting of these devices to motor-cycles, and we feel that our readers should also be aware of the possible dangers involved.

BURGLAR ALARM (May 1977)

In Fig. 2, page 344, the arrowed connection to S 2 b (WIPER) should come from the bottom (CHASSIS) track on the p.c.b., not as shown.

The connection labelled S2a (2)(3)(4) should be labelled S2a (WIPER).

TV SPORTCENTRE (June 1977)

The u.h.f. oscillator/modulator incorporated in the Sportcentre was a development from an original design by A. A. Birch, used in the Cross Hatch Generator published in the September 1976 issue.
We apologise for failing, through an oversight, to attribute this part of our TV Sportcentre circuit to Mr. Birch.

Bring 'scope'to your interest.

 'There's only one way
to master electronics...
to see what is going
on and learn by doing.'

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Build an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profesision. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read, draw and understand circult diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic eauipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Copies of Patents can be obtained from:

 the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each
GWE FADE-N

In BP 1468 687, Agfa-Gevaert AG of Germany describe a simple circuit for muting the magnetic recording head of a sound film camera of the Super-8 type now widely sold.

Such muting is desirable for two reasons: firstly, to prevent sound overlap when cutting between scenes (because sound is inevitably recorded one second or so ahead of the picture); secondly, to obviate the "Micky Mouse" effect created by recording speech on a medium as it gathers speed.

As shown in the circuit, Fig. 1, a microphone feeds an audio amplifier, the output signal from which is fed to the coil of the recording head. The output of Amp-1 is, however, connected to the head coil via a further amplifier and this connection will be shunted by the f.e.t. TR1 when in conductive state.

The conductive condition occurs when the gate electrode of TR1 is at negative potential. This is its normal state when
switch $\mathbf{S} 1$, which is ganged with the motor start/stop switch, is opened.

When S1 is closed, the motor starts and the film runs past the recording head which receives no audio signal, due to the shunting effect of TR1. Over the next second or so, however, capacitor C1 gradually charges, to cause a gradual movement to positive of the f.e.t. gate. The transistor becomes less conductive,

so less shunting occurs, and a gradually increasing level of audio signal is fed to the recording head.

The exact time taken for C 1 to charge and shunting to cease depends on the values of resistors R1, R2, between which the capacitor and gate are tapped. There is thus a gradual fade-in of the recorded signal, coincident with the film attaining full speed for recording.

VALVE SOUND

A timely reminder of the electronic reasons why valved amplifiers and limiters are now making a comeback is given in BP 1467 649, by Novanex Automation NV of Holland. (In fact some valve equipment has never been away; several recording studios still treasure their fifteen-year-old Fairchild limiters and refuse all cash offers for them.)

Essentially, whereas transistors clip a sinusoidal signal hard and sharp, to produce a trapezium and spiky harmonics, a valve amplifier with transformer coupling smoothes out the sine wave without chopping it. This produces the characteristic "valve sound" of pleasantly smooth limiting on overload.

The Novanex patent is for circuitry which creates a valve sound from solid state components. The essential integer is a limiter which is capable of handling a maximum of power without saturation, and this is achieved by designing the
limiter so that its performance depends on mains voltage.

Although no component values are given, the basic circuit shown in Fig. 1 uses an f.e.t. as a limiter and a Zener diode to ensure its mains voltage dependency. The preamplifier is capacitor coupled to the power amplifier and resistors R4, R5 and Zener diode D3 are series connected between the power amplifier and the negative terminal of the mains supply.

The gate electrode of the limiter f.e.t. TR1 is connected to the junction of R5 and D3, through diode D4 and R3. The gate is also connected to the input of the power amplifier via R2 and C3. The network of C3, R2 and R3 ensures symmetrical operation of TR1, even at high intensity input levels.
Diodes D1, D2, are oppositely connected in series with VR1 control parallel to R1. This arrangement smoothes out the sinusoidal input for soft limiting and a "valve sound". The Zener arrangement renders the limiting level of the f.e.t.
mains voltage dependent so that the limiting level increases with an increase in mains voltage. This, it is claimed, enables basic limiter design to around 20 per cent higher than for a comparable circuit which does not depend on mains voltage.

Fig. 1
BP 1467649

TV GAMES CHIP

 AY-3-8500 £9.95. Printed clrcuit and kit of extra parts£10-95. Add•on colour kit P.O.A. Send S.A.E. for data.

NEW COMPONENTS SERVICE
Reslstors 5% carbon E 12 in to 10M \ddagger W 1 1 pp , 1W 3p.
Preset pote subminiature 0.1 W E3 100 $9 p$, horizontal 9p. Potentlometere iW $4 K 7$ to 2M2 log of lin, single 30 p , dual 95p. Polystyrene capacitore E12 63 V 22 pF to 8.200 pF 34p. Coramle capacitors 50 V E6 22 pF to $47,000 \mathrm{pF} 3 \mathrm{p}$. Mylar capacitors 100 V 0.001 .0 .002 .
$0.0054 \mathrm{p}, 0.01,0.02,0.025$ it

 10 mF 5 p . $16 \mathrm{~V} 22,33,47 \mathrm{mF} 6 \mathrm{p} .100 \mathrm{mF} 9 \mathrm{p}, 220,330 \mathrm{mF} 9 \mathrm{p}$, 470 mF 11p, 1.000 mF 18p. Zener dlodee 400 mW E24 3V3 to 33 V 8 p p.

MAINS TRANSFORMERS

$6-0-6 \mathrm{~V} 100 \mathrm{~mA} 94 \mathrm{p}$. $9-0-9 \mathrm{~V} 75 \mathrm{~mA} 94 \mathrm{p} .0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V}$ 1A $£ 3.85$. $12-0-12 V 50 \mathrm{~mA} 94 \mathrm{p}$. $0 / 12 / 15 / 20 / 24 / 30 V 2 A \varepsilon 5 \cdot 15$
 E3. 59.

PRINTED CIRCUIT KITS etc.*

Contains etching dish, 100 sq . In of pc board, 1 lb ferric chioride, etch resist pen. drill bit and laminate cutter
¢3. 85.100 sq . in pc board 80 p . 1 lb FeCI£1.05. Etch resist pen 75p.

S-DECS AND T-DECS* S-DeC E1.94. T-DeC £3-61. н-DeCA 23.97. μ-DeCB £6.97. IC carriers with sockets: 16 dil £1-91. 10TOS £1-79.
SINCLAIR CALCUL
Sinclair pocket TV [165. Cambrldge Scientific programmable [13.95, Prog. library 54.95 . Cambridge Scientitic $\mathrm{CB} \cdot \mathbf{4 5}$. Oxford Scientific \quad [10-60. Malns adaptors (State model) $\mathbf{~} 3 \cdot 20$.
With switched output and 4 -way multi-jack connector. Type $1: 3 / 4 \frac{1}{2} / 6 \mathrm{~V}$ at $100 \mathrm{~mA}\{2 \cdot 30$. Type $2: 6 / 7 \downarrow / 9 \mathrm{~V} 300 \mathrm{~mA}$ £2.90,
100 mA RADIO MODELS With press-stud connectors. 9 V £3.45. $6 \mathrm{~V} £ 3.45 .9 \mathrm{~V}+9 \mathrm{~V}$ £5.45. $6 \mathrm{~V}+6 \mathrm{~V} £ 5 \cdot 45.4 \frac{\mathrm{~V}}{\mathrm{~V}} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V} \mathrm{E} 5 \cdot 45$.
CASSETTE MAINS UNIT
7 V with 5 pin din plug. 150 mA \& 3
FULLY STABILIZED MODEL 56.40
Switched output of $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 400 \mathrm{~mA}$ stab
CAR CONVERTORS 12 V INPUT Output $9 V 300 \mathrm{~mA}$ £1-80. Output $7 \downarrow V 300$
BATTERY ELIMINATOR KITS
Send S.A.E. for free leaflet on range. 100 mA radlo typee whith press-stud battery terminals.
E2.50.9V + 9VE2.50
Cessette type $7 \mathrm{I} V$ V 100 mA with 5 pin din plug e2. 10. Transietor stabilized 8 -way type for low hum. 3/4 $\frac{1 / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 V}{}$. $100 \mathrm{~mA} £ 3 \cdot 20$. 1 A £6. 50 .
Heavy duty 13-way typee $4 \frac{1}{2} / 7 / 7 / 8+/ 11 / 13 / 14 / 17 /$ 21/25/28/34/42V. IA model E4.95. 2A model E7.95.
Car convertor klt Input 12 V d.c. Output $6 / 7 t / 9 \mathrm{~V}$ d.c. 1A transistor stabllized £1-95.
Stabllized Laboratory power kit Switched 1 to 30 V in 0.1V steps. 1A £12.45. 2A £14.95.
SINCLAIR PROJECT 80 AUDIO MODULES PZ5 £4.95. Z40 £5-75.
BI-PAK AUDIO MODULES S450 tuner $£ 21$-95. AL60 £4.86. PA 100 £14.95. MK60 audio kit £36-45. Stereo 30 £17-95. SPM80 £3-75. BMT80 £4.25. Send S.A.E. for free data.
JC12 AND JC40 AMPLIFIERS JC12 6W IC audio amp with free data and printed circult $£ 1.95$. Also new JC 40 20W model with pcb 53.95. Send S.A.E. for free leaflet on both models and associated power supply and preamp kits.

SWANLEY ELECTRONICS

Dept. PE, PO BOX 68, 32 Goldsel Rd., Swanley, Kent Send S.A.E. for free data on kits. Post 30p. Prices include VAT. Oriciar orders welcome. Overseas on others.

LYNX ELECTRONICS (LONDON) LTD
92 Broad Street, Chesham, Bucks. Tel. (02405) 75154
VAT 8% oxcept * which are $12 \frac{1}{2} \%$. Prices correct at 30 June 1977.

THYRISTORS

TTL 7400 SERIES

N.B. Column (a) without internal irigger; (b) with internal trigger.						723 0.45 7805 1.50 7812 1.50 7815 1.50
TTL 7400 SERIES				LINEAR I.C.s		
7400	0.16	7480	0.55	$301 A \quad 0.40 *$		
7401	0.16	7482	0.75	$\begin{array}{ll}307 & 0.55 * \\ 380 & 0.90 *\end{array}$		DIODES
7402	0.16	7486	0.32	381 1.60*		SPECIAL NOTICE-
7403	0.16	7489	2.02	3900 0.70*		fabulous offer. For a
7404	0.18	7490AN	0.49	7090.27		limited period up to 31
7405	0.18	7491AN	0.65	741 0.28		October, 1977, all
7408	0.18	7492	0.57	$\begin{array}{ll}748 & 0.35 \\ \text { NE555 } & 0.45\end{array}$	MEMORIES	schools, colleges and universities may
7409	0.18	7493	0.45	NE565 2.00*	2102A-6 3.60	deduct 10\% off all
7410	0.16	7494	0.85	NE566 1.50*	2112A-4 4.75	orders over 525.
7412	0.25	7495	0.67	NE567 2.00*	$6508 \quad 7.95$	BYX36-600 0.15
7413	0.40	7496	0.82	CA3045 0.85*	$\begin{array}{rr}2102 & 2.50 \\ 2107 & 10.00\end{array}$	$\begin{array}{ll}\text { BYX } 35-900 & 0.18 \\ \text { BYX } 36-1200 & 0.21\end{array}$
7414	0.72	74100	1.07	A3	2112 - 50	BYX38-300 0.50
7417	0.43	74107	0.35	MC1304P 1.60*	2513 8.50.	$\begin{array}{ll}\text { BYX } 38-600 & 0.55 \\ B Y X 98.900 & 0.60\end{array}$
7420	0.16	74121	0.34	MC1307P 0.85*	2602 - 2.50	BYX 38 -200 0.65
7425	0.30	74122	0.47	MC1310P 1.60*	SPECIAL OFF	
7427	0.30	74123	0.65	$\begin{array}{ll}\text { MC1351P } & \text { 1.20* } \\ \text { MC1352P } & \text { 0.75* }\end{array}$	NPN TO-3 POW	Rans
7430	0.16	74141	0.78	MC1353P 0.75	Fully tested but	marked. Similar
7432	0.28	74145	0.68	MC1458P 0.77	to 2N3055 except	$V C E O=50 . \mathrm{MFE}$
7437	0.30	74154	$1 \cdot 30$	MC1496L 0.82*	$\text { (gain) }=20+\text { at }$ $<1.3 V \text { at } 3 A .5 \mathrm{pc}$	3A. VCE SAT
7441AN	0.76	74164	0.93	SAS560 2.25	PCs $87 \cdot 50 ; 100 \mathrm{DC}$	5
7442	0.65	74165	0.93	TAA300 1.61	O-18 NPN	RANSIS
7445	0.90	74174	1.40	TAA310A 1.38	Medium voltage	hain. Similar
7447 AN	0.81	74175	0.94	TAA550 0.45*		ked
7448	0.81	74180	1.06	TAA611812 ${ }^{\text {a }}$, ${ }^{\text {\% }}$		
7470	0.32	74181	$2 \cdot 70$		TO-3 HARDWAR solder tag, nuts.	Mica, washers. alts. 50 sets $£ 1$.
7472	0.26	74191	$1 \cdot 33$	TBA530 1.85*		
7473	0. 30	74192	$1 \cdot 20$	TBA5300 1.90*	RECTIFIERS. DO 50 V 80p; 10A 100 V	paCKAGE. 10a 0p: 10A 200 V £1:
7474	0.32	74193	$1 \cdot 35$	TBA560 2.80*	10 A 400 V [1-20.	Please specify
7475	0.47	74194	$1 \cdot 20$	TBA570 0.98	Polarity. Stud ${ }^{\text {a }}$	thode or Stud
7476	0.36	74196	$1 \cdot 64$	1.95*	Anode. Ideal for inverters etc.	

Price list 20p
CLOCK CHIPS

RETURN
POST
SERVICE ACCESS WELCOME

thansistors

B. BAMBER ELECTRONICS

Dept PE. 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 10E

 Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday
PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

18V DC RELAYS, 4 pole change-over (double contacts) (will work from $14-24 \mathrm{~V}$ OC). Brand New.
Slider Switches, 2 pole make and break (or can be used as 1 pole change-over by linking the two centre pins), 4 for 50 p .
Smart Min. Rectangular Push to Make Switches, black rectangular surround with white ractangular button, overall size $12 \times 17 \mathrm{~mm}$, 3 for 50 p .

A NEW RANGE OF QUALITY BOXES \&

 INSTRUMENT CASES Vinyl Coated Aluminlum inatrument Cases Light Blue tops and white lower sections. Very smart fiinish

WB1	$5 \times 2 \ddagger \times 2 \downarrow$	60p
WB2	$8 \times 4 \times 14$	[1. 10
W83	$8 \times 5 \times 2$	\$1.60
WB4	$9 \times 5+\times 2$	\&1.80
WB5	$11 \times 6+\times 3$	52.00
W86	$11 \times 7 \times 34$	c2. 25
WB7	$12 \times 6 \pm \times 5 t$	¢2.60
WB853	$8 \times 5 \frac{1}{2} \times 34$	¢2.00

MAGNETIC DEVICES PROGRAMMERS CO
MAGNETIC DEVICES PROGAMERS. COMtain 9 fuliy adjustable cams and 9 change over
micro-switches (rated approx. 1 A at 240 VAC) Needs slow-motion motor to drive (not supplied). Ideal for disco lights, sequance switch-
GARRARD 9V DC MINIATURE MOTORS, TyPE 31 BM, 3200 RPM governed. size approx. Type 1 in . dia. $\times 11 \mathrm{in}$. high, with 2 mm spindle. Brand N
OUARTZ-XTAL CONTROLLED CLOCKS, 9 to 12 V OC at approx. 3mA sequired. Dial size cases. uunit only, smart modern appearance. cases. uunit only, smant modern appearance. second hand, and red hour and minute hands (Costs over £40 to produce) £10 each while

RED LEDs (M1n. type) 5 for 70 p .
VIDICON SCAN COILS (Transistor typa but no data) comple
Brand New.
FULL RANGE OF BERNARDS/BABAN ELECTRONICS BOOKS IN STOCK. S.A.E. FOF

NEW FOR THE VHF CONSTRUCTOR. A range of tuned circuits on formers with slugs and screening cans. Frequencies quoled sre approxiake, and rang can be greatly
Type S
Type SA $2010 ~ 10 \mathrm{MHz}$ (when 33 pt fitted in parallal) Type SB 35 to 50 MHz (with link winding). Type SC 7010100 MHz (with link winding)
Type SO 135 to 175 MHz (with link winding) Type M (Min. fin. square types).
Type MA 19 to 28 MHz (when 33pF fitted in paralleel) Type MB 22 to 32 MHz \{when 33 pF flited in paralle) Type MC 25 to 35 MHz (when 330F litted in parallel Type MD 38 10 50 MHz (when 330F fitted in paralle) Type ME
Type MF 100 to 200 MHz (without slug) when 0 to 30 M . variable fitted in paraliet. All the above coilsaravailabie in packs of five only (same
type) at 50 p per pack of 5 .

PLASTIC PROJECT BOXES with screw on lids (In black ABS) with brass inserts.
ype NB 3 approx. $4 \nmid \mathrm{in}, \times 32 \mathrm{in} . \times 1+\mathrm{in}$. 60 p aach.
MULLARD $85 A 2$ B5V STABILISER VALVES (Brand New) 70 p each or 2 for $£ 1 \cdot 20$. TO3 transistor insulator sets, 10 for 50p
85×20 (VHF Osc/Mult). 3 for 50 p PBC108 (plastic BC108), 5 for 50 BFY51 Translstors, 4 for 60p. BCY72 Transistors. 4 for sop PNP audio type TO5 Transistors, 12 for 25p 2 N 3819 Fet. 3 for BOP . BC148 NPN SILICON. 4 for 50 p. BC158 PNP SILICON. 4 for 50 p . BAY31 Signal Diodes, 10 for 35p

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

SMALL MAINS SUPPRESSORS (small chokes, ideal for radlo. Hi-Fi inputs, atc.), approx $\dagger \mathrm{in}$. $\times 1$ fin., 3 for 50 p .
PERSPEX TUNER PANELS for FM Band 2 tuners) marked $88-108 \mathrm{MHz}$ and Channels $0-70$, appearance, size approx. out, smart modern 8 in $\times 1$ in.. 2 for 35p.

plUGS ANO SOCKETS

N-Type Plugs 50 ohm, 60 p each, 3 for $£ 1-50$. PL259 Plugs (PTFE), brand new, packed with Seducers. $65 p$ or 5 for $£ 3$.
type). 50 peach or 5 for $£ 2.25$
2.25

SOLDER SUCKERS (Plunger type). Standard M0pel, $\mathbf{5 5}$. Skirted Model $\mathbf{8 5} \cdot \mathbf{5 0}$. Spare Nozzles 60p each.

WELLER SOLDERING IRONS

EXPERT. Built-in-spotllght illuminates work. Plstor grip with tingertlp trigger. High effictency EXPERT SOLDER GUN 81000 ع9.90
EXPERT SOLDER GUN KIT (spare bits, case etc.) £12-90.
Spare bits 35 p pair.
NEW MARKSMAN RANGE OF SOLDERING

IRONS.

S115D 15W 240 V £3. 80.
S125D 25 W 240 V E3. 80.
S140D $40 \mathrm{~W} 240 \mathrm{~V} \mathrm{E} \cdot 20$.
S1250K $25 \mathrm{~W} 240 \mathrm{~V}+$ bits etc., KIT EA. 9
SPECIAL 12 V version S $125-1225 \mathrm{~W} 12 \mathrm{~V}$ \&3. 30 .
BENCH STANO with spring and sponge to
Marksman irons $82 \cdot 38$.
Spare bits MT9 (for 15 W) 50p, MT5 (for 25 W) 45p, ALL PRICES + 8%. VAT
TCP2 TEMPERATURE CONTROLLED IRON. Temperalure controlled iron and PSU. $£ 30+$ VAT
SPARE TIPS
Type CC single flat, Type K double that fine tip Type P, very tine tip. I1 each + VAT (Bp).
MOST SPARES AVAILABLE.

Multicore solder

Size 4 Savbit 18 s.w.g. in alloy dispenser
$32 p+$ VAT 3 St 18 s.w.g. in alloy dispenser,
Size C1SAV18) Savbit 18 s.w.g. $56 \mathrm{p}+$ VAT (4p) +Kg . (1-1/b) $60 \times 40,20$ s.w.g. on plastic reel
$\mathrm{\Sigma} 3+\mathrm{VAT}(24 \mathrm{p})$.

14 DIL REED RELAYS, 5 to 12 V DC, 450 ohm coil.Designed to work directly from TTL Logic. 3W. 81.75 each
A LARGE RANGE OF CAPACITORS AVAILABLE AT BARGAIN PRICES, S.A.E. FOR LIST.
MIXED COMPONENT PACKS, containing reststors. capachors, pots. etc. All new last.
Hundeds of
ALU-SOL ALUMINIUM SOLOER (made by Multicore). Soldars aluminlum to itself of with multicore flux, with instructions. Approx. metre coil 40 p pack. Large reel $\& 2.75$.
VARICAP TUNERS Mullard type ELC 1043/05. Brand New. E4-40 $+12 \% \%$ VAT. BARGAIN PACK OF LOW VOLTAGE ELECHINOLYIC CAPACITOW. UP to 50 working. Seatronlc Manufacture. Approx. 100 ع1. 50 par pack $+12 \% \%$ VAT.

OSMOR REED RELAY COILS (for reed relays up to $\mathbf{~ d i n ~ d i a . , ~ n o t ~ s u p p l l e d) ~} 12 \mathrm{~V} .500 \mathrm{ohm}$ coll, 2 to 50p

We now stock Spiralux Tools for the electronic enthusiast. Screwdrivers. Nut spanners, BA and Metric sizes, pop rivet guns, etc. S.A.E. for list. TWIN I.F. CANS, approx. $1 \mathrm{in} . \times$ in. $\times 1 / \mathrm{m}$, high around $3.5-5 \mathrm{MHz}, 2$ separate transformers in can, internally screened, 5 for $50 \mathrm{p}+12 \%$ VAT Dubiller Electrolytics, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p . Dubiller Electrolytics, $100 \mu \mathrm{~F}$. $275 \mathrm{~V}, 2$ for 50 p Plessey Electrolytics, $470 \mu \mathrm{~F}, 63 \mathrm{~V}, 3$ for 50 p
TCC Electrolytics, $1000 \mu \mathrm{~F}, 30 \mathrm{~V}, 3$ for 60 p . TCC Electrolytics, $1000 \mu \mathrm{~F}, 30 \mathrm{~V}$. 3 for 60 p .
Dubilier Electrolytics $, 5000 \mathrm{uF}, 35 \mathrm{~V}$. 50 p eact Dubilier Electrolytics, $5000 \mu \mathrm{~F}, 35 \mathrm{~V}$. 50 p each.
Dubiller Electrolytics, $5000 \mathrm{~F}, 50 \mathrm{~V}$, 80 p each. ITT Electrolytics, $6800 \mu \mathrm{~F}, 25 \mathrm{~V}$, high grade, screw PLEASE ADD $12, \%$ VAT TO ALL PLEASE ACITORS.
TV PLUCS ANO SOCKETS
TV Plugs (metal type), 5 for 50 p .
TV Sockets (metal type). 4 for 50 .
Pleare add $\mathbf{1 2} \ddagger \%$ Vat.

Terms of Business: CASH WITH ORDER. MINIMUM ORDER £2. ALL PRICES INCLUDE PÖST \& PACKING (UK ONLY). SAE wITh ALL ENOUIRIES Please. PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK DESPATCHED BY RETURN. CALLERS WELCOME BY APPOINTMENT ONLY

TECHNICAL TRAINING IN ELECTRONICS RND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to trained people. You study ill your own home. in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful
City \& Guilds Certificates
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

To: International Correspondence Schools
T Dept. 772K, Intertext House, London SW8 4UJ or telephone 01-622 9911

Subject of Interest
Name
Address
Tel

GOLDRING G103 Belt Drive Turntable
Famous name turntable slashed to near half price. Complete with plinth, cover and leads. Accepts any standard cartridge (not included)

SAVE OVER $£ 24$

Build your own GOLDRING CK2

Belt Drive Turntable
Beautifully engineered unit from
the famous Goldring company,
comes complete with instructions and all necessary parts. Ready to incorporate into your design plinth and cover. The pleasure of assembling your own deck
(Plinth, cover and cartridge not included)
Usually sold for $£ 54.95$ with plinth and cover
Call in or send cheque, P.O, M.O, Access,
Barclaycard, Diners Club or American Express Number.

V.D.U.

 AND MICRO COMPUTERINTRODUCING THE CROFTON EXPANDABLE V.D.U. SYSTEM

The Crofton V.D.U. is an expandable system built up on a modular basis. The system comprises Rack and P.S.U., Video Sync Generator, Character Generator Board, Memory Board, Memory Extension Board, Cursor Control, Write Control Board, Tape/Phone Interface Board, Microprocessor (SC/MP) Board. The whole system will be gradually extended to make this one of the most versatile on the market. Available in modular form or ready constructed

Send S.A.E. for information.
CROFTON ELECTRONICS LTD
Dept. E, 35 Grosvenor Road, Twickenham, Middx. Tel. 01-891 1923
Secondhand cameras and monitors always available

Transistor Devices Limited

Suite E, Georgian House, Trinity Street, Dorchester
C-MOS, SSS, TTL, NSC

Type	Price (p)						
4000	20	7400	15	7472	29	74147	248
4001	20	7401	17	7473	33	74148	157
4002	20	7402	17	7474	34	74150	140
4006	114	7403	17	7475	44	74151	70
4007	20	7404	22	7476	34	74153	83
4008	99	7405	22	7480	49	74154	148
4009	62	7406	41	7481	98	74155	88
4010	62	7407	41	7482	77	74156	88
4011	20	7408	23	7483	86	74157	87
4012	20	7409	25	7484	93	74158	154
4013	51	7410	17	7485	117	74159	198
4014	107	7411	26	7486	33	74160	108
4015	114	7412	26	7489	306	74161	108
4016	51	7413	35	7490	39	74162	108
4017	114	7414	88	7491	73	74163	108
4019	62	7416	32	7492	50	74164	107
4020	132	7417	36	7493	39	74165	135
4021	114	7420	17	7494	87	74166	123
4022	113	7421	39	7495	68	74167	306
4023	20	7422	25	7496	81	74170	225
4024	104	7423	33	7497	306	74173	144
4025	20	7425	30	74100	105	74174	113
4027	60	7427	36	74104	54	74175	83
4028	95	7430	17	74105	54	74176	113
4029	123	7432	31	74107	33	74177	113
4030	48	7437	34	74109	87	74180	107
4041	84	7438	34	74110	50	74181	292
4042	93	7440	17	74111	72	74182	80
4043	89	7441	77	74116	198	74185	130
4044	89	7442	68	74118	81	74186	896
4046	140	7443	117	74120	127	74190	140
4049	53	7444	117	74121	29	74191	144
4050	53	7445	98	74122	48	74192	117
4060	140	7446	98	74123	66	74193	117
4069	23	7447	81	74125	63	74194	117
4071	23	7448	81	74126	69	74195	87
4072	23	7450	18	74128	81	74196	117
4510	123	7451	18	74132	69	74197	117
4511	137	7453	18	74136	73	74198	193
4516	123	7454	18	74141	77	74199	193
4518	123	7460	18	74142	270	7499	
4520	123	7470	29	74145	81		

LEDS and DISPLAYS Type Colour slze Price I.C INSERTION TOOLS Type Descripilon Price 209A Red $\begin{array}{lll}1787 & 0.5 \text { in. C.A.O. } 9 & 130 \\ 1788 & 0.5 \text { in.C.C. } 9 & 130\end{array}$ 1788 O.5in. C.C.O. 9130 $1780 \begin{aligned} & \text { O-4in.C.C } \\ & \text { Double }\end{aligned}$ $1790 \begin{aligned} & \left.\text { Double } \begin{array}{l}\text { O.4in. C.A.O. } \\ \\ \text { O. } \\ 275\end{array}\right) .275\end{aligned}$ Double 9A Red
9R Red R Red $\mathrm{T}-1$
$\mathrm{~T}-1 \frac{\mathrm{~T}}{\mathrm{~T}}$
$\mathrm{~T}-1 \frac{1}{4}$
$\mathrm{~T}-1 \frac{\mathrm{~T}}{4}$
$\mathrm{~T}-1$
$\mathrm{~T}-1$ 20
21
30
40
22
32
42

C-MOS $14 / 16$ pin C-MOS 24 pin 10 40 pin 0.61 m
Bipolar 14/16 pin
Bipolar 24/40 pin Bpolar
0.6 in
£3. 50 E8. 70 £2. 50 £6.70

MICROS and MEMORIES
KIM 1-microcomputer with keyboard, LED display
Full manuals with unit TTY audro tape interfaces
Manuals only, $£ 10 \cdot 50$ set

MCS 6502	$16 \cdot 28$	MCS 6506A	20.45
MCS 6503	13.70	MCS 6512A	24.65
MCS 6504	$13 \cdot 70$	MCS 6513A	20.45
MCS 6505	$13 \cdot 70$	MCS 6514A	20.45
MCS 6506	13.70	MCS 6515A	20.45
MCS 6512	16.28	MCS 6520	$7 \cdot 21$
MCS 6513	$13 \cdot 70$	MCS 6522	9. 25
MCS 6514	13.70	MCS 6530-004	$18 \cdot 14$
MCS 6515	13.70	MCS 6530-005	
MCS 6502A	24.65	or 6553	11.85
MCS 6503A	20.45	MCS 6532	13.95
MCS 6504A	20.45	MCS 6102	$2 \cdot 70$
MCS 6505A	$20 \cdot 45$	MCS 61	70

DPM

imited quantity available $£ 25$
MISCELLANEOUS BARGAINS!
"Only while stocks last"

E304 Silconix FE7
MJE 2955
BC 173C
741 DIL
1710
2709
LN5295
LM309K

UM4 COLOUR-BOOSTER • M4 VHF BOOSTER • FM2 VHF RADIO BOOSTER
Theee unlte produce remarkable improvemente in colour and pleture quality in fringe of difficult areae with significant reduction In noise (enow).
High galn-very low nolse. Fitted fly lead-intalled
WHITE PLASTIC CASE $3 \frac{1}{4} \times 3 \frac{1}{4} \times 1 \frac{1}{2}$ n FELT BASE
Channels Group A Rod Code $21-33$ BLT BASE
FOR UHF: Group B Yellow Code
BATTERY MODEL $£ 7$-75 SELF CONTAINED

Inc. Vat Group C-D, Green Code 52-68 \quad MAINS 9.95 \& Potage

When ordaring M4 unit please apeclfy band and channel
Nominal galn 16 -18dB both bande.
TERMS: ADD 8\% (or current rate) VAT to total. All orders under £10 add postage and packing 25 p. Orders over $£ 25$ (for components only)- 10% discount. Mail order only but trade enquiries weicomed. If goods not available for despatch in 7 days, cash automatically refunded. Delivery by post in U.K. so allow time for delivery even on same day despatch. Export charged at cost. Please quote journal.

RST
VALVE MAIL ORDER CO.
Climax House Fallsbrook Road, London SW16 6ED

SPECIAL EXPRESS mail order service

	5_{0}		50		Ep		Ep		${ }^{\text {E }}$
AA119		BCY71	0.22	MMPSU01	0.32	*ZTX550		7403	
AAYYO	0.13	BCY72	0.17	*MPSU06	0.40	1 1N914	0.07	7404	0.26
AAY32	0.15	BCZ11	1.50	*MPSU56	0.45	1N916	0.07	7405	0. 28
AAZ 13	0.25	BD115	0.60	NKT 401	2.00	IN4001	0.06	7406	0.55
AAZ 15	0.31	BD121	1.50	NKT403	1.73	1N4002	0.07	7407	0.55
AAZ17	0.25	BD123	1.50	NKT 404	1.73	1 N4003	0.05	7408	0.28
AC107	0.75	BD124	1.00	NE555	0.45	1 N4004	0.09	7409	0.28
AC125	0.30	BD131	0.51	OA5	0.75	1 N4005	0.13	7410	0.20
AC128	0.25	BD132	0.54	OA7	0.55	1 N4006	$0 \cdot 15$	7412	0.26
AC127	0.25	*8D135	0.35	OA10	0.55	TN4007	0.15	7413	0.45
AC128	0.25	${ }^{-8 D 136}$	0.36	OA47	0.14	1N4009	0.15	7416	0.40
AC141	0.20	*BD137	0.37	OA70	$0 \cdot 30$	1 N 1448	0.07	7417	0.40
${ }_{\text {AC1 }}{ }^{\text {dik }}$	0.30	${ }^{\text {-BD138 }}$	0.40	OA79	0.30	1 N 5400	0.14	7420	0.20
AC142	0.20	*B139	0.43	OA81	$0 \cdot 30$	1N5401	0.16	7422	0.25
${ }_{\text {AC }}$ 142K	0.25	*8D140	0.47	OA85	0.30	1S44	0.06	7423	0.35
${ }^{\text {ACP176 }}$	0.25	BD14	2.00	OA90	0.08	15920	0.08	7425	0.35
AC187	0.25	BD181	1.38	OA91	0.08	1 15921	0.08	7427	0.35
AC188	0.25	8.182	1.48	OA95	0.08	2G301	1.00	7428	0.50
ACY17	0.65	Bp237	0.80	OA200	0.10	2 G 302	1.00	7430	0.20
ACY18	0.65	BD238	0.65	OA202	0.11	${ }^{26306}$	1.10	7432	0.36
ACY19	0.65	BDx10	0.75	OA210	0.75	2N404	0.60	7433	0.37
${ }_{\text {ACY}}$	0.65	BDx32	2.25	OA211	0.75	2N696	0.25	7437	0.42
${ }^{\text {A Cry } 21}$	0.65	BDY20	1.42	oazzoo	0.65	2N697	0.16	7438	0.37
ACY39	1.00	BDY60	0.75	OAZ201	0.65	2N698	0.30	7440	0.22
AD149	0.70	BF115	0.39	OAZ206	0.65	2N705	0.80	744AN	0.92
AD161	0.75	BF152	0.25	OAZ207	0.65	${ }^{2} \mathrm{~N} 706$	0.12	7442	0.78
AD162	0.75	BF153	0.25	OC16	1.25	2N708	0.21	7447A	1.20
AF 106	0.45	BF154	0.25	OC20	2.00	${ }^{2} \mathrm{~N} 930$	0.26	7450	0.20
AF114	0.25	BF159	0.35	OC22	2.50	${ }^{2} \mathrm{~N} 1131$	0.26	7451	0.20
AF115	0.25	BF160	0.30	OC23	2.75	${ }^{2} \mathbf{N 1 4 3 2}$	0.26	7453	0.20
AF116	0.25	BF167	0.39	OC24	3.50	${ }^{2} \mathrm{~N} 1302$	0.37	7454	0.20
AF117	0.25	BF173	0.39	OC25	0.90	${ }^{2} \mathrm{~N} 1303$	0.37	7460	0.20
AF139	0.40	BF177	0.38	OC26	0.90	${ }^{2} \mathrm{~N} 1304$	0.45	7470	0.35
AF186	1.50	BF178	0.45	OC28	2.00	${ }^{2} \mathrm{~N} 1305$	0.45	7472	0.36
AF239	0.45	BF179	0.48	OC29	2.00	${ }^{2} \mathrm{~N} 1306$	0.50	7473	0.36
AFZ11	2.75	BF180	0.45	OC35	1.50	${ }^{2} \mathrm{~N} 1307$	0.50	7474	0.40
AFZ12	2.75	8F181	0.45	OC36	1.50	${ }^{2} \mathrm{~N} 1308$	0.60	7475	0.59
ASY26	0.45	BF182	0.45	OCA 4	0.50	${ }^{2} \mathrm{~N} 1309$	0.60	7476	0.42
ASY27	0.50	BF133	0.45	OC42	0.50	${ }^{2} \mathrm{~N} 1613$	0.33	7480	0.60
ASZ15	1.25	BF184	0.39	0 C 43	1.50	${ }^{2} 11671$	1.50	7482	0.85
ASZ16	1.25	BF185	0.37	OC44	0.50	${ }^{2} 11893$	0.33	7483	1.00
AS217	1.25	*BF194	0.12	0 C 45	0.50	${ }^{2} \mathrm{~N} 2147$	1.40	7484	1.00
ASZ20	0.75	-BF195	0.11	0 C 71	0.45	${ }^{2} \mathrm{~N} 2148$	1.65	7486	0.40
ASZ21	1.50	*BF196	0.13	OC72	0.45	${ }^{2} \mathbf{N} 2218$	0.33	7490	0.52
AU113	1.70	*BF197	0.14	OC73	1.00	2 N 2219	0.42	7491AN	0.85
AUY10	1.70	BF200	0.32	OC74	0.50	2 N 2220	0.35	7492	0.60
BA145	0.15	-BFz24	0.20	OC75	0.60	${ }^{2} 12221$	0.22	7493	0.70
BA149	0.15	-8F244	0.35	OC76	0.50	2N2222	0.25	7494	0.80
BA154	0.10	${ }^{\text {BF257 }}$	$0 \cdot 37$	0¢77	1.20	${ }^{2}$ N2223	2.75	7495	0.80
BAt55	0.12	BF258	0.42	OC81	0.75	${ }^{2} \mathrm{~N} 2368$	0.17	7496	0.90
BA156	0.13	BF259	0.45	OC812	1.00	2N2369A	0.21	7497	3.67
BAW62	0.05	*8F336	0.50	0 C 82	0.75	${ }^{2} \mathrm{~N} 2484$	0.21	74100	1.75
BAX13	0.07	*8F337	0.53	OC83	0.55	2N2646	0.50	74107	0.45
BAX16	0.07	*8F338	0.55	$0 \mathrm{CB4}$	0.60	2 N 2904	0.35	74109	0.86
BC107	0.12	BFS21	2.27	OC122	1.50	2N2905	0.35	74110	0.57
BC108	0.12	BFS28	1.38	OC123	1.55	2N2906	0.25	74111	0.86
BC109	0.13	*BFS61	0.25	OC139	1.25	2N2907	0.21	74116	1.89
*BC113	0.15	*8FS98	0.25	OC140	1.95	${ }^{2} 2 \mathrm{~N} 2924$	0.15	74118	0.95
${ }^{8 \mathrm{BC} 114}$	0.18	BFW10	0.90	OC141	2.25	-2N2925	0.17	74119	2.00
*BC115	0.19	BFW11	0.90	OC170	0.60	-2N2926	0.13	74120	1.10
*BC116	0.19	BFX84	0.38	OC171	0.60	${ }^{2}$ N3053	0.25	74121	0.45
*8C117	0.22	BFX85	0.41	OC200	1.00	${ }^{2} \mathbf{N} 3054$	0.50	74122	0.60
${ }^{*} \mathrm{BC} 178$	0.16	BFX87	0.35	OC201	1.50	2N3055	0.65	74123	1.00
*8C125	0.16	BFX88	0.32	OC202	1.25	2N340	0.60	74125	0.80
${ }^{8 \mathrm{BC} 126}$	0.25	BFY50	0.28	OC203	1.25	2 N 341	0.80	${ }^{74128}$	0.80
${ }^{8 C 135}$	0.15	BFY51	0.26	OC204	1.25	2N3442	$1 \cdot 20$	74128	0.80
$\bullet{ }^{-8 C 136}$	0.19	BFY52	0.26	OC205	1.75	2N3525	0.90	74132	0.80
*BC137	0.16	BFY64	0.30	OC206	1.75	2N3614	1.20	74136	0.68
BC147	0.10	${ }^{\text {EFYgO }}$	1.32 0.34 0.3	OC207	1.25	${ }^{}$ 2N3702	0.15	74141	0.85
*BC148	0.10 0.13	BSX19 BSX20	0.34 0.34	OCP71	1.25 0.70	*2N3703	0.15 0.15	${ }_{74142}^{7414}$	3.00 3.00
*BC149	0.13 0.12	BSX20	0.34 0.32 0.32	${ }_{\text {ORP12 }}{ }^{\text {ORP08B }}$	0.70 2.25	-2N3704	0.15 0.15	74143 7414	3.00 3.00
*BC158	0.11	BT106	1.25	*R2009	2.25 2.25	${ }_{-2 \text { N3708 }}$	0.14	74145	1.00
-BC159	0.13	BTY79/400R	3.19	*R2010B	2.25	*2N3707	0.18	74147	2.45
-BC167	0.13	*Bu205	2.25	T1C4	0.36	*2N3708	0.14	${ }^{74148}$	2.00
-8C170	0.16	*BU206	2.25	T1C226D	1.30	*2N3709	0.15	74150	1.75
*BC171	0.14	* Buzos	2.50	T1L209	0.25	-2N3710	0.14	74151	0.90
*BC172	0.13	BY100	0.45	*T1P29A	0.50	*2N3711	0.15	74154	2.00
${ }^{-8 \mathrm{BC173}}$	0.15	${ }^{\text {BY }} 126$	0.14	-T1P30A	0.60	2 N 3771	1.60	74155	0.90
BC177	0.19	BY127	0.15	T1P31A	0.62	2N3772	1.70	74156	0.90
BC178	0.18	BZX61	20	tip32a	0.75	2N3773	2.65	74157	0.90
BC179	0.20	Series		T1P33A	1.00	-2N3819	0.36	74159	2.50
${ }^{3} \mathrm{BC182}$	0.11	82788	0.13	Tip3aa	1.20	*2N3820		74170	2.60 5.00
*BC183	0.11 0.12	${ }^{\text {Series }}$ CRS $1 / 05$		T1P41A	0.70 0.90	-2N3823	0.60 1.00	${ }_{74173}^{74172}$	5.00 1.75
*BC184	0.12	CRS $1 / 05$ CAS $1 / 40$	0.45 0.60	T1P429	0.90 1.00	${ }_{-2 \mathrm{~N}}^{2 \mathrm{~N} 3968}$	1.00 0.21	74173 74174	1.75 1.57
${ }_{* B C 213}$	0.14	CRS3/05	0.45	T1P3055	0.50	*2N3905	0.22	74175	1.00
* BC 214	0.17	CRS3/40	0.75	-T1543	0.35	*2N3906	0.22	74786	$1 \cdot 10$
${ }^{8 C 237}$	0.17	CRS3/60	0.90 1.50	*ZS140	0.25	*2N4058	0.20 0.15	74178	1.65 1.65
${ }^{+8 \mathrm{BC} 238}$	0.12 0.45	GEX66	1.50 1.75	*2S170	0.12 0.54	${ }^{*}{ }^{2} \mathrm{~N}$ (2059 4060	0.15 0.20	74179 74190	1.65 1.65
BC303	0.60	Gu3M	0.75	-zS271	0.22	-2N4061	0.17	74190	1.48
*BC307	0.20	G.5M	0.75	-2S278	0.56	${ }^{2} \mathrm{~N} 4062$	0.18	74191	1.48
*BC308	0.18	G.7M	0.75	-2TX107	0.11	-2N4124	0.17	74192	1.25
*BC327	0.22	GMO378A	1.50 0.40	*ZTX108	0.10	${ }^{*} 2 \mathrm{~N} 4126$	0.17 0.20	7493	1.25
*BC328	0.18 0.19	-KS100A MJE340	0.40 0.58	-2TX109	0.12 0.12	* ${ }^{\text {2N4286 }}$	0.20 0.25	74194 74195	1.25 1.10
${ }_{*}^{* B C 337}$	0.19 0.18	M M E 370	${ }_{0}^{0.65}$	-ZTX $\mathrm{Z} \times 3000$	O. $\begin{aligned} & 0.12 \\ & 0.13\end{aligned}$	- 2 N42888	0.25 0.25	${ }_{74196}^{74195}$	1.10 1.20
BCY30	1.00	MJE371	0.81	-ZTX302	0.17	*2N5457	0.35	74197	1.00
BCY31	1.00	MUES20	0.65	-2Tx303	0.17	-2N5458	0.35	74198	$2 \cdot 25$
${ }_{8} \mathrm{BCY32}$	1.00	MUES21	0.75 1.25	*21x304	0.19	${ }^{-2 N 5459}$	0.35 1.75	${ }^{74199}$	2.25 1.75
${ }_{8}^{8 C Y} 33$	0.90 0.90	MJE2955	1.25 0.75	* 27×311	0.12 0.20	3N125	1.75 0.85	*78013N	1.75
BCY34 BCY 39	0.90 3.00		0.75 0.30	*랒314	0.20 0.13	3N141	0.85		
${ }_{\text {BCY }}$ 80	1.25	-MPF103	0.30	- 2 TX $\times 501$	O.13	INTEGRA		Plugs in so	
${ }^{\mathrm{BCY} 42}$	0.30	*MPF104	$0 \cdot 30$	*2TX502	0.16	CIACUIT		-low profil	
BCY43	0.32	*MPF105	$0 \cdot 30$	- 2 TX503	0.17	7400	0.20	8 pin DIL	
BCY58	0.23	*MPSA06	0.20	*2TX504	0.20	7401	0.20	14 pin DIL	0.15
8СY70	0.18	*MPSA56	0.20	-ZTX531	0.20	7402	0.20	16 pin DIL	0.17
Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m. Valves, Tubes and Transistors Closed Saturday Terms C.W.O. only - Tel. 01-677 2424-7 Quotations for any types not listed Post and Packing 25 p per order V.A.T. to be added. Items marked * $12 \frac{1}{2} \%$								Prices correct when golng to press	

All above prices include V.A.T. LARGE S.A.E. for New List. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 1BA

SPECIAL OFFER FOR READERS

£18. 50 inc VAT + £1.45 P. \& P. \& Ins.
AM/FM Radio Alarm Clock (a.c. $220-240 \mathrm{~V}$ only)
24-Hour Clock
High quality white abs case
Push-button mode selection
Sleep delay control
Illuminated clock and radio scale
Alarm with buzzer and/or music
All chrome control knobs
Complies with BS415 (1972) safety requirements
Each unit fully inspected before despatch
Guaranteed for one year
Please send cheque or postal order to:

D. \& D. Power Supply Co Ltd 79 Lowfleld Street, Dartford, Kent
 Please allow 10-14 days for delivery Callers welcome Monday-Friday 9-5. Saturday 9-1

> 100-0-100UA TUNING METER if \times tiln, square, 90p. 20 ASSORTED VARI-CAP DIODES, untested for $45 p$

MINIATURE 2-POLE 4-WAY SWITCHES, 20p each
14 in . DIA LOUDSPEAKER 8 ohm, 75p each.
UNIJUNCTIONS TIS43 type, 20p, MEU21, 22p, MV4894, 22p, GE4JD5E29, 22p.
HEAVY-DUTY DPDT TOGGLE SWITCHES, 40p each
TEXAS SCR' TIC47 200PIV $300 \mathrm{~mA}, 18 \mathrm{p}$ each
PHONO SOCKETS single, 5p, double, 10p, Triple, 15p, quad, 20p.-
200 AS8ORTED RESISTOR 8 t. ${ }^{2}$ W. 75p.
100 ASSORTED POLYSTVRENE CAPACITORS, 57p-
100 MULLARD C2a0 CAPACITORS, assorted 57p.
PLASTIC BCIOA OR BC212 TYPE BRANDED TRANSISTORS, 10 for 60 p SILICON SOLAA CELLS $0.5 \mathrm{~V} 5 \mathrm{~mA}, 35 \mathrm{p}$
TRANSFORMERS 240 V a.c. Input. Type 122 V 1 amp 88p (20p P. \& P.); Type 222 V $300 \mathrm{~mA}, 7 \mathrm{~V} 1 \mathrm{amp}$. 99p (20p P. \& P.); Type 312 V 300 mA . 88p (15p P. \& P.); Type 49 V 500 mA asp (20 p P. \& P.): Type $550 \mathrm{~V} 2 \mathrm{amp}, 50 \mathrm{~V} 500 \mathrm{~mA}, \mathrm{\&} 3.50$ (75 p P. \& P.) : Type 6 TWO-PIN DIN SPEAKER SOCKETS, 10 p , bank (85p P. \& P.)
MINIATURE SUF 300 Y w ELECTPOLYTICs 10 Ior 57 p.
SOOyd PEEL OF PVC 14.
s00yd REEL OF PVC 14-0048 CABLE, \&3.
列
35V.W $3.3 \mu \mathrm{~F}$ 16V W $4.7 \mu \mathrm{~F} 35 \mathrm{~V}$ W 35 V .W., $3 \cdot 3 \mu \mathrm{~F} 16 \mathrm{~V}$.W., $4 \cdot 7 \mu \mathrm{~F} 35 \mathrm{~V}$.W. $5 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W}$., $6 \cdot 8 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W} ., 6 \cdot 8 \mu \mathrm{~F} 35 \mathrm{~V} . \mathrm{W}$. $10 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W} ., 15 \mu \mathrm{~F} 20 \mathrm{~V} . \mathrm{W} ., 20 \mu \mathrm{~F} 6 \mathrm{~V} . \mathrm{W} ., 22 \mu \mathrm{~F} 16 \mathrm{~V}$.W., $33 \mu \mathrm{~F} 25 \mathrm{~V} . \mathrm{W} ., 47 \mu \mathrm{~F} 6 \mathrm{~V} . \mathrm{W}$. all $9 p$ each
TOKO $55 \mathrm{M} . \mathrm{H}$. ADJUSTABLE COILS FOR FILTERS, $18 p$ each
FERRANTI ZTX108 BRANDED TRANSISTORS, 6 for $50 p$.
POWER TRANSIBTORS, OC25 50p, AD149 60p, BDA12 25p, BD187 25p, BD207 55p. WIDE BAND RADAR AMPLIFIERS, $10-100 \mathrm{MHz}$ untested whth data, 5 for 57 p. 50 ASSORTED BC 107-8-9 TRANSISTORS, untested for 57 p .
OPTO ISOLATOR LINTHONIXIS-7
OPTO ISOLATOA LINTHONIX IL-74, with data, 500 each 57 p .
CA30990 FM. I.F. I.C., $£ 1.40$ eacho-
2 FRONT EN
ASSORTED MULTI-TUAN TRIM-POTS for 600
20 ASSORTED PHOTO AND DARLINGTON TRANSISTORS, untested, for $\$ 1$. 50 AC12a TRANSISTORS, branded but untested, for 57p.

Please add 20p for post and packing on orders under £2, unless otherwise stated. Overseas orders at cost

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF
Tel. 20767

Criduritant Capacitive discharge electronic ignition kit

VOTED BESTS
TESTED BY
MOTORING'
MAGAZINE OCT. ${ }^{74}$

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Optimum fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or inree hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of thecontact breakers for recharging the system, Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, 100 quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions

OPTIONAL EXTRAS

Electronic/conventional ignition switch
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded. Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).
CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008.
PRICES INCLUDE VAT, POST AND PACKING
Improve performance \& economy NOW
NOTE--Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3 \cdot 35$ inc. VAT, post \& packing

ELECTRONICS DESION A8sOCIATES, 22 Bath St., Walsall, WS1 3DE

POST TODAY!

Quick installation
Mo engine modification required

Electronics Design Associates, Dept. PE9
82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652
Name
Address

$240 \mathrm{~V}-50 \mathrm{~Hz}$ from your 12 V car battery.

25 watt- 54.75
40 watt- 88.75
75 watt- $\mathbf{\Sigma 1 2 . 0 3}$
150 watt- $£ 21.27$

300 watt (24 V)- $\mathbf{2 2 6 . 4 5}$ 400 watt (12 V)- $£ 39.05$ 500 watt (24V)-£48.18 $1 \mathrm{~kW}(50 \mathrm{~V})-5127.00$ $1 \mathrm{~kW}(50 \mathrm{~V})-£ 127.00$ All Al above invertors are in kit form but may be purchased built up in metal case \& ready for use Price list sent on receipt of S.A.E. Prices include post and packing.

P.W. AUTOMATIC EMERGENCY

 SUPPLY$240 \mathrm{~V}-50 \mathrm{~Hz}-150$ watt invertor with built in battery charger. In event of power failure switches over automatically from battery charging to invertor operation. Cct. as appeared in Dec. 72 P.W. Complete kit of parts (excluding meter) $\mathbf{1 2 4 . 5 0}+\$ 1.70$ P. 8 P.

DIGITAL WATCH

L.E.D. display giving hours, minutes, seconds and date. Design based on American technology, and fantastic value at $16+$ 30 p P. \& P.
One year guarantee.
TRANSFORMERS \& COILS
Both high volume and small order capacity available.
Special offer. Miniature mains transformer 6-0-6V-6V.A.-85p plus 10 p P. \& P.
TRADE \& EXPORT ENQUIRIES WELCOMED

P.E. ORION STEREO AMPLIFIER

$20+20$ watts r.m.s. into 8 ohm load. Distortion less than $0.01 \% 100 \mathrm{~Hz}-10 \mathrm{kHz}$. Frequency response $\pm 1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz . Hum level virtually nil with volume full on.
This is a power amplifier of superb quality incorporating the very latest design features. Professional hi-fi enthusiasts have classed it as fantastic and real value for money. The CCT incorporates a low flux transformer and inputs for disc, tape, tuner, etc.
Complete kit of parts including slimline bookend case, silk screened front panel \& knobs. $\mathbf{£ 4 7 - 3 0}$ incl. VAT and P. \& P.

The bookend case, I.C.s and semiconductors, P.C. board, Transformer, etc., may be purchased separately if desired. Send S.A.E. for further information.

P.E. ORION TUNER

Full kit of parts for this superb tuner unit to compliment the now well established amplifier. Parts may also be purchased separately. Send S.A.E.

ASTRO IGNITION SYSTEM
Complete kit of parts for this proven and tested system £10-45 incl. VAT. Ready built with only two connections to alter £13.75 incl. VAT. Thousands have used this system both home and abroad. Consider these advantages more power, faster acceleration, fuel economy, excellent cold starting, smoother running, no contact breaker burning. Also because of the high energy spark, the fuel mixture can be made weaker giving further economy and fewer plug problems. Fitting time when built 5 minutes approx. Please state whether positive or negative earth. Trade and export enquiries welcomed.

ASTRO ELECTRONICS

Spring Bank Road, West Park Chesterfield.

TOWERS INTERNATIONAL FET SELECTOR

by T. D. Towers

Price $\mathbf{5 4} \mathbf{0 0}$

ADVANCED APPLICATIONS FOR POCKET CALCULATORS by J . Gilbert Prise $\mathbf{5 4 . 0 0}$
MICROPROCESSOR/MICROPROGRAMM. ING HANDBOOK by B. Ward Price $\mathbf{6 4 . 0 0}$ TRANSISTOR SUBSTITUTION HAND. BOOK by Howard Sams Price $\mathbf{E 4 . 0 0}$
RADIO, T.V. AND AUDIO TECHNICAL REFERENCE BOOK by S. W. Amos

WORLD RADIO T.V. HANDBOOK by J.M. Frost Price $£ 5.50$

THE RADIO AMATEUR'S HANDBOOK 1977 by A.R.R.L

Price $£ 6.50$
TOWERS' INTERNATIONAL TRAN SISTOR SELECTOR by T. D. Towers LOGIC DESIGN PROJECTS USING STANDARD INTEGRATED CIRCUITS by
J. F. Wakerly PULSE CODE MODULATION AND DIGITAL TRANSMISSION by G. H. Bennett
\star all prices include postage \star

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 INPPhone 01.7234185
Closed Saturday I p.m.

MARCONI VALVE VOLTMETER,

 TF 428B £15 each.
EX-MINISTRY GENERATOR,

$0-20 \mathrm{kHz}$; sine wave output; metered; 600 ohms, 240 V input. Size $16 \times 10 \times 9 \mathrm{in}$. deep. £22.50 each

EX-MINISTRY (MARCONI)

METER, 0-6 watts multi-range, multi-impedance power. £30 each

Don't forget our Pick-a-Pack; Pick-a-Piece and Pick-a-Meter Areas

Carriage all units $£ 2 \cdot 75$. VAT 8%
 7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College)

Tel. Reading 582605

THIS VOUCHER ENTITLES YOU TO A DISCOUNT OF ONE POUND

OFF
If you purchase a Radio-Alarm-Clock at $£ 18 \cdot 50$ (incl. VAT) $+£ 1 \cdot 45$ P. \& P. and ins.

From:
D \& D Power Supply
Co. Ltd.
79 Lowfield Street
Dartford, Kent
please see advertisement on PAGE 65 FOR DETAILS This offer is valid only until 30th September 1977

G8CZW Digital Frequency Meter

GBCZW Digital Voltmeter

Complete kit E44． 30 inc．VAT post free（U．K．）

ELECTRONICS（OLDHAM）LTD． 83 Lees Road，OIdham OL4 1JW Tel．061－624 8812

S FREECATALOGUE BYRETURN

FOR FAST SERVICE with
BY RETURN DELIVERY
PHONE OXFORD 086549791
or write to

P．O．BOX 75 B OXFORD

GREENWELD

443 Millbrook Road Southampton Sロ1 ロHx Tel：（0703）フ72501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

SAVE ON TIME－No delays in waiting for parts to come or shops to open！
SAVE ON MONEY－Bulk buying means lowest prices－just compare with others！
\star have the right PART－No guess－ work or substitution necessary！
ALL PACKS CONTAIN FULL SPEC，BRAND NEW， MARKED DEVICES－SENT BY RETURN OF POST VAT INCLUSIVE PRICES，JUST ADD 25p post TO ALL ORDERS
K001 50V ceramic plate capacitors， 5% ． 10 of each value 22 pF to 1000 pF ．Total $210, £ 3 \cdot 35$

K002 Extended range， 22 pF to $0 \cdot 1 \mu \mathrm{~F} .330$ values £4．90

K003 Polyester capacitors， 10 each of these values $0.01,0.015,0.022,0.033,0.047,0.068,0.1,0.15,0.22$ $0.33,0.47 \mu F .110$ altogether for $£ 4.75$

K004 Mylar capacitors，min 100 V type． 10 each all values from 1000 pF to $10,000 \mathrm{pF}$ ．Total 130 for $£ 4 \cdot 45$

K005 Polystyrene capacitors， 10 each value from 10 pF to $10,000 \mathrm{pF}$ ，E12 series $5 \% 160 \mathrm{~V}$ ．Total 370 for £12． 30

K006 Tantalum bead capacitors． 10 each of the following： $0.1,0.15,0.22,0.33,0.47,0.68,1,2 \cdot 2,3 \cdot 3$ ， $4 \cdot 7,6 \cdot 8$ ，all $35 \mathrm{~V} ; 10 / 2515 / 1622 / 1633 / 1047 / 6100 / 3$ ．Total 170 tants for $£ 14 \cdot 20$

K007 Electrolytic capacitors 25 V working，small physical size． 10 each of these popular values：1，2．2， $4 \cdot 7,10,22,47,100 \mu \mathrm{~F}$ ．Total 70 for $£ 3 \cdot 50$

K008 Extended range，as above，also including 220 ， 470 and $1000 \mu \mathrm{~F}$ ．Total 100 for $£ 5 \cdot 90$

K021 Miniature carbon film 5\％resistors，CR25 or similar． 10 of each value from 10 to 1 M ，E12 series Total 610 resistors， $\mathbf{£ 6} \mathbf{0 0}$

K022 Extended range，total 850 resistors from 1R to 10M £8－30

K041．Zener diodes， $400 \mathrm{~mW} 5 \%$ ．BZY88 etc． 10 of each value from 2 V to 36 V ，E24 series．Total 280 for £15． 30

K042 As above but 5 of each value $£ 8 \cdot 70$
1977 Catalogue 30 p if ordered with other goods．otherwise 45 p inc．
oostage． postage．

THE GREENWELD DRAGON IS YOUR GUARDIAN OF GOOD VALUE．

PLEASE NOTE

When replying to Classified Advertisements please ensure:
(B) That you have clearly staced right remittance
(C) That your name and address is written in block
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatch-
ing orders with the minimum of delay.

RECEIVERS AND COMPONENT8

BRAND NEW GOMPONENT8 BY RETURN

 Electrolytic Capacitors 18 V . $25 \mathrm{~V}, 50 \mathrm{~V}-0.47 .1 \cdot 0.2 \cdot 2.4 \cdot 7$ and $10 \mathrm{p}) ; 47011 \mathrm{p}(50 \mathrm{~V} 16 \mathrm{p}) ; 1,000(16 \mathrm{~V}) 15 \mathrm{p} .1 .000(25 \mathrm{~V}) 18 \mathrm{p}$ 1,000 (50V) 22p.Subminiature Bead Tantalum Electrolytics- $0.1,0.22,0.47$ $1 \cdot 0,2.2$ at $35 \mathrm{~V}, 4 \cdot 7 / 25 \mathrm{~V} 11 \mathrm{p} ; 10 / 25 \mathrm{~V} 13 \mathrm{p} ; 22 / 16 \mathrm{~V}, 47 / 16 \mathrm{~V}$ and $100 / 3 \mathrm{~V} 15 \mathrm{p}$.
Mullard min. Ceramic E12 Series 63V $2 \%-10 \mathrm{pF}$ to $47 \mathrm{pF}-1$ $3 \mathrm{p} ; 56 \mathrm{pF}$ to 330 pF 4 p .
Fertical Mounting Ceramic Plate 50V-E12 serles 22 $1,000 \mathrm{pF}$ and E 6 serles $1,500-47,000 \mathrm{pF}$ Rp.
Polyatyrene E12 Series 63V Horizontal Mounting-10
$1,000 \mathrm{pF} 3 \mathrm{p}: 1,200-10,000 \mathrm{pF} 4 \mathrm{p}$. Mullard Poivester 250 V Vertical Mounting E6 Series- 0.01 $0.14 p ; 0.15,0.225 p ; 0.33,0.478 p ; 0.6811 p ; 1.018 p ; 1520 \mathrm{p}$ 2.2 gep. Mylar (Polyeater) Film 100 V Vertical Mounting- 0.001 $0.002,0.0053 \mathrm{p} ; 0.01,0.024 \mathrm{p} ; 0.04,0.054 \mathrm{p}$. 0.25 W 18 to $10 \mathrm{M} 0 .(10 \%$ over 1 t) to . Ma. Carbon Fllm 0.25 W and 0.5 W . to $10 \mathrm{M} \Omega 8 \mathrm{p}$.
1N41488p; iN4002 5p; 1N400~ 7THIN4007 8p; BC107/8/9 BC147/8/9, BF157/8/9, BF194, 197 8p.
Fuses 20 mm glavs, 1 inn glasa, 1 in cerantic 21 p .
Post 10 p (free over \&4). Prices inclusive of VAT
THE C.R. SUPPLY CG.
127 Cheterfield Rond, Sheffield S8 ORM

ORCHARD ELECTRONICS

I,C.s. TTI. C/MOS. Linear. Capacitors. Resistors (E12). SIL/Rectifiers. Diodes. LED. Thyristors. Zeners. Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentions. Varefully selected range Sockets. Cable. Vero. Carefully selected range, excellent despatch service. Same day turn round. S.A.E. List. Suppliers to A.E.R.E. Un.K.A.E.A. Government Depts. Schools. Universities. Manufacturers. Accounts opened for trade and amateur. Join the professionals. Phone by 4 p.m.
Goods out Ist class by 5 p.m. Try us and prove it
ORCHARD ELECTRONICS
Flint House, High Street, Wallingford, Oxon Telephone 0491-35529
ELECTRONIC DEVICES and semiconductors. Com ponents for this month's projects. S.A.E. Lists NKMI, 32, Seaside_Eastberrne, Sussex. Tele phone 32921.

Power Electrolytics, $800 \mu \mathrm{~F}$, 4 SOV (value not stamped on can). Single end connections with screw terminals, $2 \frac{1}{2}$ in dia. $\times 4 \frac{1}{2}$ in high mactutdiagstuds. Min. order, 4 for formers, $12-0-12 \mathrm{~V}$. $50 \mathrm{~m} / \mathrm{a}, 28 \mathrm{mmW}, 20 \mathrm{mmH}$ 26 mmD 82p. Bridge Reetifrors, $2 \mathrm{~A} / 100 \mathrm{~V}$, 34 mm x 34 mm 40p.-Op. A Mps. Motorola MC 1530G 65p.
 4A/200V. Min. 3 for $£ 1$. Dual Transistor, 2 N 264350 p .
(Items 2-8, prices include VAT, add 20 p . \& P.) (ltems 2-8, prices include VAT, add 20 p P. \& P.) LINWAY ELECTRONICS, 843 Uxbridge Road,
Hayes End, Mddx., UB4 8HZ. Tol. Oi-573 3677 Offers of company surpluses always welcomed.

Offers of company surpluses alw
P.C.Bs Paxolin $5 \frac{1}{2}$ in $\times 5 \frac{1}{2}$ in 6 for fl . 12 in $\times 9$ in 70p.
 $15 \frac{1}{2}$ in $\times 13 i n, \pm 2 \cdot 40$. 0.5 . 7 in $\times 8$ in, $80 p$. Bank of 10
Neons with 10×407 transitors 11 . Five fogure Neons with $10 \times$ C 407 transistors 121 . Five fogure
Resettable Counter $18 / 22 \mathrm{~V}$ works on 12 V . 30 . P.S.U. Ranel $2 \times 2 N 3702,2 \times$ AC153, bridge rect. electro-
pas

 purchase.
add 15 p .
J. W. B, RADIO

2 Barnfield Crescent, Sale, Cheshire, M33 INL

SMALL ADS

The prepaid rate for classified advertisements is 15 pence per word (minimum 12 words), box number 40p extra. Semi-display setting $£ 12 \cdot 00$ per single column inch (2.5 cm). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics. Room 2337, IPC Magazines Limited King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE

 OF CLASSIFIED ADVERTISEMENTS1. Advertisements are accepted subject to the conditions appearing on our current edvertisement rate card and on the express understanding that the Advertiser warrants that the advertisament does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement
3. Athough every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consequences.

QUALITY PORTABLE RADIOs at bargain prices while stocks last. A smart MW/LW set with meta facla only 55 -50. Also sensitive FM/AM Model black facla only Aluminlum Dial Trim and Telescopic Aerial with Aluminum indal Trim and Theplied with batteries only 28 inc. VAT and postage. Suppled Southview, Station Road, Bramley, Near Guildford Surrey.

TOUCH CONTROLLED LIGHTING KITS

YALVE8-Radio, TV, industrial, transmitting. We dispatch to any part of the world by retura of post, Air or Sea Mail. 2,700 types in stock. 1930 to 1976 obsolete types a speciality. List 20 p . Quotation S.A.E. Open to callers. Mon. to Sat. Quotation S.A.E. Open to callers. Mon. to Sat.
$9.30-5.00$, closed Wed. 1.00 . We purchase all types of hew and boxed valves. COX RADIO (Sursex) Ltd., Dept. P.E., The Parade, Fast Wittering, Sussex, PO20 813N. West Wittering 2023. (STD code 024366).

CARBON FILER RE8ISTOR8. 5% स12 SerIen, $\frac{1}{3}$ W, 1 W, 1 W. Mixed to your choice, 100 for $90 p$. Elecrolytics $50 / 15 \mathrm{~V}, 100 / 15 \mathrm{~V} 7 \rho$. Microprocessors P. \& P. 15p. Mail order only. CANDAR, 9 Galloway Close, Denbigh Hall, Bletchley.

Precision Polycarbonate Capacitors All High Stability-oxtremely Low Leakage 440 V A.C. RANGE
Value Dimen
Price
63V D.C. RANGE
 TANTALUM BEAD CAPACITORS: $0.1,0 \cdot 15,0.22$
 $15 \mu \mathrm{~F} / 20 \mathrm{~V} ; 22 \mu \mathrm{~F} / 15 \mathrm{~V} ; 33 \mu \mathrm{~F} / 10 \mathrm{~V} ; 47 \mu \mathrm{~F} / 6 \cdot 3 \mathrm{~V}$ at $21 \mathrm{p}^{*} ; 68 \mu \mathrm{~F}$
$3 \mathrm{~V}-17 \mathrm{p}^{*} ; 100 \mu \mathrm{~F} / 3 \mathrm{~V}-21 \mathrm{p}^{*}$ TRANSISTORS a IC:

POPULAR DIODES: BA145-18p; BA148-18p; BA1S
 -7p; 10/66p; IN916 8p; 10/77p; 1544-7p; $10 / 60 p$ 1N4148-6p; 10/55p; IN4001-6p; 002-61p; 003-7 LOWPPRICE ZENERDIODES- 400 mW . Tol. $\pm 5 \%$ at
$5 \mathrm{~mA} 3 \mathrm{~V}: 3 \mathrm{~V} 3 ; 3 \mathrm{~V} 6 ; 4 V 7 ; 5 \mathrm{VI} ; 5 \mathrm{~V} 6 ; 6 \mathrm{~V} 2 ; 6 \mathrm{~V} ; 7 \mathrm{~V} ; 8 \mathrm{8V} 2 ;$ $9 \mathrm{VA} ; 10 \mathrm{~V} ; 11 \mathrm{~V} ; 12 \mathrm{~V}$; 13 V ; 13.5 V ; $15 \mathrm{~V} ; 16 \mathrm{~V}$; $18 \mathrm{~V} ; 20 \mathrm{~V} ; 22 \mathrm{~V}$
$24 \mathrm{~V}: 27 \mathrm{~V} ; 30 \mathrm{~V}: 33 \mathrm{~V}$ (All at 10 p each, 10 for $95 \mathrm{p}, 50$ fo 44.50, 100^{\prime} for E 8.00 (valves may be mixed).
RESISTORS-High stability, low noise carbon film 5% $\frac{1}{3} \mathrm{~W}$ at $40^{\circ} \mathrm{C}$, ${ }^{3} \mathrm{WW}$ at $70^{\circ} \mathrm{C}$. E12 series only-from 2.2Ω to $\mathbf{2 . 2 M R}$. All at $2 p^{*}$ each, $15 p^{*}$ for 10 of any one value, $95 p^{*}$
for 100 of any one value. SPECIAL PACK: 10 of each value

SUBMINIATURE VERTICAL PRESETS-0.1W ONIY
 10 for 60 p ; 100 for K 5.00 .
PLEASEADD 2SP POST ANDPACKING ON ALL ORDERS EXPORT-ADD COST OF SEA/AIRMAIL. Add 8% VAT to all Send S.A.E, for additional stock lists.
Send S.A.E. for additional stock lists.
MARCO TRADING (Dept. P.3)
The Old School, Edstaston, Wem, Shropshi
el: Whixall 464/485 (STo 09487)

A

LED's. Mixed brgs of 4 different sizes and 4 different colours. 50 , $85 \cdot 25 ; 100, \quad 29 \cdot 25$ including VAT and post and packing. C. W.O. MICHAEL Cheadle Hulme, Cheshire, SK8 7JP.

TURN YOUR 8URPLU8 capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO., 10: South Brink, Wisbech, Cambs. Tel. 09454188 Immediate settlement.

ELECTRICAL

STYLI, GARTRIDGES AND AUDIO LEAD8, etc. For the best at keenest prices send S.A.E. for fre illustrated list to: FELSTEAD LLECTRONICS (PE),
Longley Lane, Gatley, Cheadle, Cheshire, SK8 4 EE .

SITUATIONS VACANT

RADIO TECHNICIANS
 Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.

Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplement of $£ 313.20$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service.
Opportunities for service overseas.
Candidates must be UK residents.
Further particulars and application forms available from:
Recrultment Officer, Government Communications Headquarters
Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ
Tel.: Cheltenham (0242) 21491 (Ext. 2270)

EDUCATIONAL

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from;

ICS SCHOOL OF ELECTRONICS
Dept. 771K, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

TELEVISION TRAINING

12 MONTHS' full-time course in Radio and TV for beginners (GCE-or equivalent-in Maths and English).

26 WEEKS' full-time course in Mono and Colour TV (basic electronics know. ledge essential).

13 WEEKS' full-time course in Colour TV (Mono TV knowledge essential).

These courses incorporate a high percentage of practical training.

Next session starts on September 12th.
Prospectus from London Electronics College, Dept. A9, 20 Penywern Road, London SW5 9SU. Telephone $01-3738721$

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers; also self-build radio kits. Fuli details from:

ICS SCHOOL OF ELECTRONICS
Dept. 771K, Intertert House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
COURSE8-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination, and obtain your G8 licence, with an RRC Home Study Course. For details of this, and other courses (GCE, Professional Examinations etc.) write or phone-THE RAPID RESULTS COLLEGE, Dept. J.S.1, Tuition House, London SW19 411S. Tel. $01-9477272$ (Careers Advisory Service) or for a prospectus only ring 01-946 1102. (24 hr , recording service).

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 771K, Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours)

FOR 8ALE

PRACTICAL ELECTRONICS 1966 to 1972,12 missing, offers. DIGGLES, 128 Coleridge Street, Derby.

LP1186 Tuner 26. FM1185 1F 24. M. GREEN, 3 Larcheroft Road, Ipswich, Suffolk.

NEW I88UE8 of " Practical Electronics" available from April 1974 edition up to date. Price $65 p$ each. Post free. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

BACK COPIES P.E., E.E., P.W., P.T., R.C. 25p plus post. (0296) 20758. (Aylesbury).

BARGAIN PACK-1000 assorted nuts and bolts. 2, 4 and 6 BA. New, Cadmium Plated, Value at least 812. Only 84 inc., P. \& P., CWO. (UK only). Refund if not delighted. A.P., 171 Great Brays, Harlow, Essex, CM18 6DT.

DEWTRON 8 YNTHESIZER Modules at half price, perfect working order. Phone Southport 66012.

DIGITAL MULTIMETER, almost complete, needs C'RO modifications-4 Riversley Road, Gloucester.

WANTED

WANTED, NEW VALVE8, TRAN8I8TOR8, top prices, popular types-KENSINGTON SUPPLIES (B), 367 Kensington Street, Bradford 8, Yorkshire.

WANTED PEN RECORDER (Enitable for High Impedance Voltmeter PRACTICAL ELECTHONICS August 1974). Box 70.

TURN YOUR Surplus components into cash. Tel 0491-35529 (Oxon).

LADDERS

LADDER8, varnished, $25 \frac{1}{2} \mathrm{ft}$. extd., $\mathbf{8 3 0} \mathbf{4 1}$. Carr \&1•90. Leaflet. Immed. despatch. THE LADDEI CENTRE (PEE3), Halesfield (1), Telford, Salop.

SERVICE SHEETS

SERVICE SHEET8, radio, TV, etc. 10,000 models Catalogue 24 p plus S.A.E. with orders-enquiries TELRAY, 154 Brook.Street, Preston, PR1 7HP.

SERVIGE SHEET8, Radio, TV, etc., 50p and S.A.F. Catalogue 20 p and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

BELL'S TELEVI8ION 8ERVICE8 for service sheets on radio, TV, etc., 75 p plus S.A.E. Colour TV service manuals on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, X. Yorkshire. Tel. 042:3 55885.

BOOKS AND PUBLICATIONS

HOW TO 8TART A BU8INE88. By popular demand a fully illustrated manual has now been produced, showing, in easy, step by step stages, how to rewind ARMATURES AND FIELD COILS as used in on taking deaners, Drills and Portable Tools. Chapters on taking data, materials required, test instruments required, rewind instructions, charts, etc. How to cost jobs and where to obtain work. NO PREVIOLS KNOWLEDGE REQUIRED. Complete instructions manual \&4 plus 30p P. \& P. C.W.O. COPPER SUPPLIES, 102 Parrswood Road, Withington Manchester 20. Dept. PEA.

8IMPLIFIED TV REPAIR8. Full repair instructions, individual British sets, 24.50; request free circuit diagram. Stamp brings details unique TV Publications. AUSEPE, 76 Church Sticet, Larkhall, Lanarkshire.

OUTSTANDING HI-FI FM TUNER. Comprises 7 transistors superhet design with varicap tuning, AFC, Latest silicon circuitry, full coverage 88 102 MHz . Supplies built and tested with metal front panel and instruction sheet, only $89 \cdot 95+30 \mathrm{p}$ P. \& P. GREGG ELECTRONICS, 86-88 Parchmore Road Thornton Heath, Surrey.

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware, Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send 25p for catalogue from:

RAMAR CONSTRUCTOR SERVICES

Masons Road, Stratford on Avon Warwicks.

Tel. 4879

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state TRANSM. \& P.
'Brain-freeze' 'em with a MINl-STROBE kit, pocket-sized lightning flashes', varispeed, for
disco's and parties. A mere $£ 4 \cdot 10^{\prime}$ plus $25 p$. \& P. Experiment with a psychedelic DREAM LAB, Experiment with a psychedelic DREAM LAB,
or pick up faint speech/sounds with the BIG
EAR sound-catcher: ready-made multi-function EAR sound-catcher: ready-made multi-function
modules. C5 plus 20p P. \& P. LOTS MORE! Send 25p forlists.
(Prices include VAT). (Mail Order U.K. only) BOFFIN PROJECTS 4 Cunliffe Road Stoneleigh, Ewell, Surrey (P.E.)

NOW AVAILABLE for D.I.Y. burglar alarm systems. The Lawrence Electronics Solid State Control Module, \&6.50 inc. VAT, P. \& P; or S.A.E. for full details on security equipment available. LAWRENCE ELECTRONICS, 78 Manningham Lane, Bradford, Yorkshire.

CABINET FITTINGS
 for
 Stage Loudspeakers and Amplifier Cabs

 Fretcloths, Caverings, Recess Handles, Strap Handles Feet, Castors, Locks and Hinges, Corners, Trim, Speaker Bolts, etc., etcSend $2 \times 9 p$ Stamps for samples and list.
ADAM HALL (P.E. SUPPLIES)
Unlt Q, Starline Works, Grainger Road

BURGLAR ALARM equipment, safes, trade supplies. ASTRO-ALARMS, 25 Stockton Rd., Sun plies. ASTRO-ALARMS, 25 Stockton Rd., Sun-
derland. Tyne and Wear. Tel.: 77825. Free list derland

H. M. ELECTRONICS 275. Fuhwood Road, Broomhill, Sheffield \$10 3BD Give your project that protessionat looking tinish. Build it in a BEC. Dry tranater lettering now available. . .	
ORION cabinet still available punched or unpunehed. Send 15p (refundable) for leaflets.	

SCREENED CABLE-Four Core Miniature. $7 / 0 \cdot 1 \mathrm{~mm}$ 26p per metre, P. \& P. 25p. IACC ELECTRONICS, 24 St. Anselm Place, St. Neots, Cambridgeshire. Tel. (0480) 212942

100 Resistors 75p
10 WW 5% c/FILM 2.2N-2.2M (E12)
.
C60 CASSETTES 30p All Cassettes in Plastic C90 CASSETTES 45p
All prices include VAT. Quantity Discount 10 Unite 5%
100 Units 10% Case with Index anc Add Postage 10p th Add Postage 10p tri $£ 1$ SALOP ELLECTRONICS 23 WYLE COP Tol. 53206

PRINTED CIRCUIT BOARDS supplied in glass fibre, drilled, tinned or varnished from your own o pullished designs. Send S.A.E. for quotations. R. F DARLISON, 12 Whiteoaks Road, Oadby, Leicester

> PRACTICAL ELECTRONICS P.C.B.'S in glass fibre tinned and drilled. Radio Control June to Aug, 76. Set of $865 \cdot 80$. Cross Hatch Generator Sept. 76. E2.85. Digital Volt. Meter (G8CZW) April 77. Set of $2 \pm 2 \cdot 55$. Burglar Alarm May 77. \&1-68. Sport Centre June 77, including p.c.b. for the power supply $\mathbf{E 2 . 4 6}^{2}$. Digitai Watch July 77.86p Send S.A.E. for complete list and current boards. Send S.A.E. for
> PROTO DESIGN, 4 Highcliffe Way Wickford, Essex. SSII 8LA
P.E. MINISONIC Kit, partly built, 440 o.n.o. ETl Graphic Equaliser Kit, partly built, 245 o.n.o. Wanted, PE Guitar effects pedal, overdrive unit, reverb, tuning fork. Tel. Dartford 29101.

BURGLAR ALARMS	
SUPPLIES AND EQUIPMENT	
S.A.E.E. For free cataloule	
MACNETIC SWNTCOHES	
DEEECTOBS. TWTERTIA SWITCCHES.	
${ }_{2}{ }^{\text {Al }} \mathrm{D}$ D. ELECT	IICs

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236

SUPERE INSTRUMENT CASES by Bazelli, manu factured from heavy-duty pve faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 82p. Examples: width, depth, height, $\sin \times 5 \operatorname{in} \times 3$ in, $21 \cdot 70 ; 10 \mathrm{in} \times 6$ in $\times 3$ in, $22 \cdot 42$; $10 \mathrm{in} \times 8 \mathrm{in} \times 3 \mathrm{in}, 53 \cdot 02 ; 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}$, 23.96 ; $8 \mathrm{in} \times 4 \mathrm{in} \times 4 \mathrm{in}$, $21-98 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}$, 22.97 ; $12 \mathrm{in} \times \sin \times 4 \mathrm{in}, 83 \cdot 96 ; 7 \mathrm{in} \times 7 \mathrm{in} \times 5 \mathrm{in}, 82 \cdot 91 ; 8 \mathrm{in}$ $\times 10 \mathrm{in} \times 6 \mathrm{in}, 23 \cdot 96 ; 12 \mathrm{in} \times 8 \mathrm{in} \times 7 \mathrm{in}, 24 \cdot 40 ; 12 \mathrm{in} \times$ $12 \mathrm{in} \times 7 \mathrm{in}, 84 \cdot 84$. Plus 85 p carriage and 8% VAT. Over 400 models to choose from. Prompt despatch. Free literature (stamp would be appreciated): BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

WIRE THREADING KIT

WIRE DISTRIBUTION SYSTEM INTRO-KIT £6.60 inc. of VAT and P. \& P. (Mail order only) KIT CONSISTS: WIRE DISTRIBUTION PENCIL, W-D BOARD, W-D STRIPS, SPARE SPOOL OF WIRE, IC LEG
TIONS.
Or for further details please send a S.A.E.
Trade and overseas enquiries welcome.
ZARTRON|X II5 Lion Lane, Haslemere,

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for

(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

\cdot		\cdot	

NAME
ADDRESS \qquad

Send to: Classified Advertisement Manager
PRACTICAL ELECTRONICS
GMG, Classified Advertisement Dept., Room 2337
King's Reach Tower, Stamford Street,
London SEI 9LS.
Telephone 01-261 5846
15p per word, minimum 12 words. Box No. 40 p extra

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SEI 9LS.

PHOENIX ELECTRONICS
(SOLENT) LTD
46 Osborne Road, Southsea, Hants
All prices include VAT
Include 20 p extra for carriage

SOME SEMICONDUCTORS	
BC107/8/9	11p
BC177/8/9	15p
BC204/5/6	14p
BC207/8/9	9 p
BDY56	\&1.72
1 N4001	7 p
1 N 4004	10p
1 N4148	5p
2N2218/19/21/22	22p
2N2904/5/6/7	24p
2N3442	${ }^{88} \mathrm{p}$
2N3702-11	12p

INTEGRATED CIRCUITS
DTL 930 series.
TTL 74 series.
Linear series.
Consumer circuits.

RESISTORS

tW carbon film (10) 18p
\pm W metal film (5)
18p

CAPACITORS

Disc ceramic. Aluminium electrolytic. Tantalum bead.
PANEL HARDWARE
Connectors, lampholders, switches, fuses, knobs.

MISCELLANEOUS

Hand tools, instrument cases, Veroboard, relays, transformers.

SOLDERING EQUIPMENT

Weller and Adcola irons, tips, desoldering tools, instant-heat guns.

Buy More for Less Outlay with Our Bargain Packs

Please send your 1977 catalogue-free!
Name
Address

"SUPIR SPERRIMM5 NEW ELEGTRONIC IGNITION UNIT THAT SAVES MONEY AND IWPROVES PERFORMANGE

DIRECT FROM THE MAKERS!

- ADAPTABLE TO + OR EARTH AS REQUIRED
- REV. LIMITING CONTROL
- INSTANT REVERT SWITCH TO NORMAL IGNITION
- ON-OFF SWITCH TO IMMOBILIZE ENGINE
- EASY TO INSTALL
- FUlly GUARANTEED - VALUE SUPREME! Nothing extra to pay for!
With Super Spark Mk. 5 you get all the advantages of electronic ignition for your car-year-round easier starting. fuel economy, better working life from the engine PLUS essential features which come as extras in other makes. Built from heavy duty components on improved circuit board, now in heavy gauge aluminium case $6 \frac{1}{2} \mathrm{in}$. $\times 4 \frac{1}{6} \mathrm{in}$. $\times 2 \mathrm{in}$. with neon indicator and colour coded leads (approx. 27in.)
OVER 14.000 SUPER SPARK UNITS HAVE ALREADY BEEN SOLD. FOR DELIVERY BY RETURN. S.A.E brings leaflet
Made in our own U.K. factory STIRLING SOUND (Dept PE97) 37 VANGUARD WAY, SHOEBURYNESS, ESSEX

Shop-220-224 West Rd., Westcliff-on-Sea, Essex SSO 9DF
Phone: Southend (0702) 351048

TRANSFORMERS

ALL EX-STOCK—SAME DAY DESPATCH. VAT 8%

INDEX TO ADVERTISERS

Elvins Electrical Musical Instruments	
F. S. T. Lid.	
Government Communications	
Greenweld Electronics 67	
Heathkit Ltd.	9
H. M. Electronics	
Home Radio	4
I. L. P. Electronics 13	
International Electronics	
Unlimited	
Intertext-ICS . 62, 69	
Island Devices . 68	
J. W. B. Radio . 68	
Linway Electronics 68	
London Electronic College 69	
Lynx Electronics . 61	
Maplin Electronic Supplies Cover IV	
Marco Trading	
Marshall, A., \& Sons Cover If	
Minikits Electronics 70	
Modern Book Co. 68	
Orchard Electronics	68
Osmabet . 12	
Phoenix	. 71
Phonosonics	8,9
P. K. G. Electronics	

Precision Petite Lid 6
.12Progressive RadioProto Design
Radio Component Specialists 11
Radio Exchange Ltd. 3
R. S. T. Valve Mail Order Co 64
Salop Electronics 70
Saxon Entertainments 5
.69
Sentinal Supply 62
Sentinal Supply Cover III
Sintal Ltd.67
. .63
S. S. T. DistributorsSterling SoundSwanley Electronics71Tamba Electronics30
Technomatic Ltd 72
TempusTirro Electronics10
T. K. Electronics
Trampus Electronics Ltd.64
Transistor Devices 63
T. U. A. C. 33
Vero Electronics Lid. 2
West London Direct Supplies 12
.34Wilmslow Audio

		GEARED MOTORS 100 f.p.m. 1151b In. 110V. 50 Hz . 28 A single phase split capacior motor Totally enclosed. Fan cooled in-line gearbox. Length 250 mm Dias. 135 mm . Spindle dia. 15.5 mm
	INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V All Types SHROUDED TYPE 	
FT3 NEON FLASH TUBE High intensity multi turn, high voltage, nean glow, discharge flash fube Design for ignition timing. etc. $51-50$. P. \& P. 25p. 3 for \&3. P. \& P 50p.		CITENCO FHP motor type C 7333/15 220/240V a.c. 19 r.p.m. revers ible motor, torque gear ratio 144-1 Brand new incl geat ratio capactiors. our price E14.25. £1-25.
NI-CAD BATTERIES	L.T. TRANSFORMERS $0-12 V / 24 \mathrm{~V}$ at $1 \mathrm{amp}, £ 2.50$ (P. \& P. 50p). $0-15 \mathrm{~V}$ at $1 \mathrm{amp}+0-15 \mathrm{~V}$ at 1 amp (30 V 1 amp). $£ 2.50(\mathrm{P} . \& \mathrm{P}$ 50 p). ${ }^{25-0-25 V}$ at $2 \ddagger$ amp. E 4.50 (P \& P 75p). $0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at $12 \mathrm{amp} . \varepsilon 13$ (P \& $\&$ P. $£ 1.50$) $0-6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp}, \varepsilon 11.85$ (P \& P. \&1).	
		BODINE TYPE N.C.I. The above precision made U.S.A moior is offered in as new condition. Input voltage of motor Price, either type $\mathbf{\varepsilon 6} \mathbf{2 5}$. Post 75p or less transformer $\mathbf{~} 3 \cdot 75$. Post 65p. (Type 3) 71 r.p.m. 4 lb in. 230 V a.c. Continuously rated Reversible. $£ 6.50$. Post 75 p .
21 WAY SELECTOR SWITCH WITH RESET COIL. The ingenious electro mechanical device can be switched up to 21 positions and can be reset from any position by energisingthe reset coil. $230 / 240 \mathrm{~V}$ a.c. operation. Unit is mounted on strong chassis, complete with cover. Price 55.50. P \& P $75 p$	STROBE! STROBE! STROBE!	
	HY-LIGHT STROBE KIT MK IV Latest type Xenon white light flash tube. Solid state circuit. $230 / 240 \mathrm{~V}$ a c timing and triggering circuit. operation Oesigned for larger rooms, halls, etc. Speed Designed for larger rooms, halls, etc. Speed adjustable $1-20$ f.p.s. Light output greater than many (so called 4 Joule) strobes £18. Post 75p. Specially designed case and reflector for Hy-Light £8-25. P. \& P. E1.	15 R.P.M. Type SO48 801 in in Input 100/200V a.c. Length inct, gearbox隼思m. Height 135 mmm . Width 150 mm . Orive shaft 16 mm , Weight 5 kg , RAND NEW. Price fio. Carr Suitable transtormer for use on $220 / 240 \mathrm{~V}$ a.c. 50 p .
NEW HEAVY DUTY SOLENOID. mfg by Magnetic Devices. 240 V a.c Price $97 P$ P P in Price £7. P \& P 75p. Similar toabove approx. 10 tb pull $£ 3.50$. P \& P 60 p .		
		A.F.G. WATER PUMP 480 W approx $\frac{1}{3}$ h.p. Driving a centrifugal pump with $1 \frac{1}{2}$ inlet andoutlet delivering approx 40 gallons per min. at 1041 head. Ideal non-corrosive light viscosity liquid. Dozens of uses in industrial selt priming. Price $\mathbf{1 1 5}$. Post 75 p.
UNISELECTOR SWITCHES 4 bank, 25 way 75 ohm. Coil, $36-48 \mathrm{~V}$ d.c. operation. Ex. NEW equipment 5.25, . 5.40. MINIATURE UNISELECTOR 12 volt 1i-way. 4 bank (3 non-bridging, 1 homing). £2.50, P. \& P. 35p. P. 35p		
	F FLUORESCENT TUBES	PROGRAMME TIMERS ${ }^{12} \mathrm{cam}$ model $\mathrm{ET} \cdot 50$. Post 60 p . Also available for 50V operation Price as above
RODENE UNISET TYPE 71 TIMER $0-60$ sec. 230 V a.c. operation. Incorporating a precision motorised timer ideal for A precision motorised timer ideal for process timing. photography, welding. mixing, etc. Price EG. P, \& P. 60 p	4 ft 40 watt, $\varepsilon 7.75$ (callers only) bi-pin). MINI $121 n 8$ watt 81.75 (For use in standard £1.40. Post 25 p 6in 4 watt, $£ 1.40$. Post 25 . Sin 6 watt, ballast unit and holders for 6 in . 9in and 12 in tube. £3.50. Post 40 p . Also available for $12 \mathrm{~V} \mathrm{d.c}$. operation \&3. 50 plus P. \& P. 40p.	
		METERS NEW- 90 mm Diameter Type: 65CS d.c. M/C2. 5. 10, 20. 50 amp EB. 100 amp £3.25.20p. R/M/C. E3. P. \& P. 30 P .
MICRO SWITCH As iflustrated but fitted with 1 in lever. 10 for $\mathbf{£ 2}$. Sub min Honeywell roller m / s type $3115 \mathrm{~m} 906 t$. 10 for $£ 2 \cdot 50$ DOSt paid BF LEVER OPERATED 20 amp. C/O Mfg by Unimax USA, 10 for $£ 4$, P. \& P. 50 p (min. order 10).	GALVANOMETER 50 micro Mirror galvo Calibrated 50-0.050 Offerec at a fraction of maker's original ministry packing. E12. P. \& P. 60p.	WHY PAY MORE? ${ }^{\text {E }} 5$. 50 . Incl. Ieads and battery. Post 50p. (Total
	WIDE RANGE OF DISCO LIGHTING EQUIPMENT S.A.E. (fooiscap) for details	
24 VOLT DC SOLENOIDS UNIT containing 1 haayy duty solen old approx. 2510 pull 1 		
	CONTACTOR Mfs by Hendray Relays type C2839 	TIME SWITCH hour spring reserve in case of power failure Oay omitting device. Filted in heavy hlgh impact case with glass observation window. (Total inc VAT \&8.91) SANGAMO WESTON type S251 200/250V a.c. two on/two off Avery 24 hours. 20 amp contacts with over ride switch. dia tin $\times 3$ in. Price E6. P. \& P. 50 .
VORTEX BLOWER AND VACUUM UNIT Oynamically balanced totally an- closed 9 in rotor with max. air dellvery of 1.5 cubic metres per min. Max static pressure 600 mm $\mathrm{~W} . \mathrm{G}$. Suction or blow from 2 side-by-side $37 \mathrm{~mm} 1 . \mathrm{D}$ circular aper. tures fitted to base of unit. Power- ful continuously rated 115 V a.c. motor mounted on alioy base with fixing facilitios. Dimensions length $22 \mathrm{~cm} \times$ width 25 cm height 25 cm . These units are ex equipment but have had minimum use. Fully tested prior £1.50 P. \& P. Suitable transformer for $230 / 240 \mathrm{~V}$ a.c. $56+£ 1 \mathrm{P}$ \& P		
	UNTER	
	BIG INCH Tiny precision built 3RPM U.S.A motor size only 1×1 toov a.c. op supplied with resistor for 230 V a.c. Price $£ 2$. P \& 20 A \& for E 5 post	600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers. Will control up to 600W of lighting except fluorescent at mains voltage. Complete with simple £5.60, post 25p: 2,000 watt model $\mathbf{E 9} \cdot \mathbf{7 5}$, post 40p.
CENTRIFUGAL BLOWER Mig. by Smiths Industries 230/240V a.c. Miniature model, Series SE/200, sıze $95 \mathrm{~mm} \times 82 \mathrm{~mm} \times 82 \mathrm{~mm}$ Aperture $38 \mathrm{~mm} \times 31 \mathrm{~mm} 12 \mathrm{c} . \mathrm{mm}$ Price $\mathbf{~ E 2} .75$, post 50 . Other post 50p. Other types available- please phone for detalls.	AEI MOTOR 	
	GENTS' 4in ALARM BELL 34 $4 V$ d.c. Price E4. 50 . P \& P. 50 . Other types both 3 details.	Superior Quality Precision Made NEW POWER RHEOSTATS
insulation testers new! Test to to li.E.E. Spec. Rugged metal construction suitable for bench or field work, constant speed clutch. Size L. 8in, W. $4 i n$, H.6in, weight 61 b $500 \mathrm{~V}, 500$ megohms, ع40. Post 80p 1.000 V 1,000 M Ω, E46. Post 80p.	a.c. and d.c. available from stock. Phone for details. VAT AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE	New ceramic construction, vitrous enamel embeaded winuing heavy brush assembly conty 25 waTT cole Black Sliver, Skirted knob calibrated in Nos 1-9 1+in dia brass bush ideal for above 22p each
All Mail Orders-Callers--Ample Parki	AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED	Personal callers only. Open Sat. 9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576
Dept. PE11, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560 Showroom open Mon -Fri.		

[^3]

IT'S A FANTASTIC BESTSELLER!

216 big ($11^{\prime \prime} \times 8^{\prime \prime}$) pages! Over a thousand illustrations!
Over 30 pages of complete projects to build!
Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!

DON'T MISS OUT! SEND 60p NOW!

Our bi-monthly newsletter keeps you up to date with latest guarantend prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues ($5 p$ discount voucher with each copy).

MAPLIN ELECTRONIC SUPPLIES

F.O. 30X 3 RAYLEIGH ESSEX SS6 8LR

Telephone: Southend (0702) 715155
Shop: 284, London Road, Westcliff-on-Sea, Essex (Closed on Monday) Telephone Southend (0702) 47379

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE

 PRICE 60pPlease rush me a copy of your 216 page catalogue by return of post ; enclose 60p, but understand that if \mid am not completely satisfied | may return the catalogue to you within 14 days and have my 6Dp retunded immediately.

[^0]: C IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Also available-a more elementary course assuming no prior knowledge except simple arithmetic.
 Digital Computer Logic and Electronics
 In 4 volumes:

 1. Basic Computer Logic
 2. Logical Circuit Elements
 3. Designing Circuits to Carry Out Logical Functions
 4. Flipflops and Registers
    ```
    £4-20
    ```

 plus $80 p$ P. \& P.
 Offer Order both courses for the bargain price $\mathrm{E}^{9 \cdot 70}$, plus 80 p P. \& P.

[^2]: OUR OCTOBER ISSUE WILL BE ON SALE FRIDAY, SEPTEMBER 9, 1977

[^3]: Published approximately or the 1 thy of each month oy IPC Magazines Ltd.. Fieetway House. Farringdon Street, Londo
 Hants. Sole Agents for Australia and New Zealand-Gordon \& Goich (A/sia) Lid.: South Africa-Central News Agency Lid
 Sants. Sole Agents for Australia and New
 Practical Electronics is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be ient, resold, hired out or otherwise
 disposed of by disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to A. A. ., and that it shail not be lent, resold
 or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of matter whatsoever.

