PRACTICAL

=- =TRONICG

 septemeer 1976 35p

ALSO INEIDE..

GAS/SMOKE DETECTOR • CAR LIGHT-UP ALARM

RADO EXCHNEGETTD． NEW EDU－KIT MAJOR

COMPLETELY SOLDERLESS

 ELECTRONIC CONSTRUCTION KITBUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER
－${ }^{4}$ Transistor Earpiece Radio
－Signal Tracer
－Signal Injector
－Transistor Tester NPN －PNP
－ 4 Transistor Push Pull Amplifier
－à Transistor Push Pull
Amplifier
－ 7 Transistor Loud－
－${ }^{\text {speaker Transistor }}$ Short
Wave Radio
－Electronic Metronome
－Electronic Noise Genera－ tor
－Batteryless Crystal Radio
One Transistor Radio
－ 2 Transistor Regenera－
3 Transistor Regenera－
Audible Continuity Tester
－Sensitive Pre－Amplifier． 24 Resistors 21 Capacitors 10 Transistors
312 －way Connectors 2 Volume Controls 2 Slider Switches 1 Tuning Condenser Baseboard 3 Knobs Ready Wound MW／LW／SW Coils Ferrite Rod $6 \frac{1}{3}$ yards of wire 1 yard of sleeving，etc． Complete kit of parts including construction plans Total building costs $\mathbf{4 9 0 0 0}$ p．p．and Ins．85p

V．H．F．AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the long wave band and operating as shown in the instructions supplied free with all parts．
Uses a retractable chrome plated teleacopic aerial，gajn control，V．II．F．tuning eapacitor，transistor，etc． All parts including case and plans

POCKET FIVE

 3 tunable wave－ band trawler Mand 7 stages， 5 transis－ tors and 2 diodes， supersensitive ferrite rod
aerial，attractive black and
gold case．Size $5 \frac{1}{2}$ in $\times 1 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in approx．
Complete kit of parts including construction plans．
\＆3－60 P．P．and
Ins． 60 p

NEW ROAMER TEN MODEL．R．K． 3

MULTMBAND V．E．F．AND A．M． BECEIVER． 18 TRANBISTORS AND FIVE DIODES． QUALTTY $5^{\prime \prime} \times 3^{\prime \prime}$ LOUDBPEAKERS． WITH Multiband V．H．F．section covering Mobites， Air，T．V．Sound，Local V．H．F．Stations，etc．And Multiband A．M．section with Airspaced Slow Motion Drive Tuning Capacitor for easier and accurate tuning，covering M．W．1，M．W．2，L．W． Three Short Wave Bands S．W．1，S．W．2，S．W． 3 and Trawler Band．Built－in Ferrite Rod Aerial for Medium Wave，Long Wave and Trawler Band，etc．， Chrome Plated 7 section Teleacopic Aerial，angled and rotatable for peak Short Wave and V．H．F．reception． Push Pull output using 600 mW Transistors．Gain， Wave－Change and tone Controls．Plus two Slider Switches．Negative Feediback circuit and SPECLAL FOWER BOOSTER SOCKET AND RESISTOR，to virtually double gain if required．Powered by P．P． $8 \cdot 9$ volt Battery．
Complete kit of parts including carry
ing strap，Building Instructions and in I $^{\circ} 0^{\circ}$ operating Manuals．

P．\＆P．83p． Case enclosure kit（if required）， $21-80$ inc．P．P．and Ins

EECTRONIC CONSTRUCTION KIS

E． 2 Self Contained Mrulti－Band
Eecell． 2 V．H．F．Receiver Kit．
8 tranaistors and 3 diodes．Push pull output
3in loudspeaker，gain control，superb 9 section 3in loudspeaker，gain control，superb 9 section
swivel ratchet and retractable chrome plated tele scopic aerial，V．H．F．tuning capacitor，resistors， capacitors，transistors，etc．Will receive T．V＇ sound，public service band，aircraft，V．H．F．local stations，etc．Operates from a 9 volt P．P． 7 battery（not supplied with kit）．
Complete kit of parts $£ 7.95$ P．P．and Ins．70p
E．C．K． 4
7 Transitors， 6 tuneable wave bandg，HW，LW，Trawler Band， 8 Short Wave Bands．Receiver Kit，
With 5in $\times 3$ 3in loudspeaker．Push pull output stage， gain control，and rotary switch． 7 transistors and 4 diodes． 6 eection chrome－plated telescopic aerial． 8 in sensitive ready wound ferrite rod aerial，tuning capacitor，resistors， capacitors，etc．Ope
supplied with kit）．
complete kit of parts $\mathbf{1 7} \cdot \mathbf{2 5}$ P．P．and Ins．70p

Cage enclosure kit（if required）， $51 \cdot 50$ inc．P．P．and Ins．

EDU－KIT JUNIOR

Completely Solderless Electronie Construction Kit．Build these projects without Soldering Iron or Solder
＊Cryatal Radio Medium Wave Coverage－No Battery necessary
＊One Transistor Radio
太 2 Transistor Regenerative Radio
太 3 Transistor Earpiece Padio Medium Wave Coverage太 4 Transistor Medium Wave Loudspeaker Radio太 Electronic Noise Generato
太 Electronic Metronome
1 parts including loudspeaker，earpiece 4 Tranist
All parts including loudspeaker，earpiece，MW ferrite rod aerial， capacitors，resistors，transistors，etc．- P．\＆P ．

NEW
 Everyday
 Series

Build this exciting
new series of
designs．
E．V．5． 5 Transistors and
2 diodes．MW／LW．Powered by $4 \frac{1}{2} \mathrm{~V}$
battery．Ferrite rod aerial，tuning condenser，volume control，and now with 3in．loudspeaker．Attractive case with red speaker grille．Size 9in．$\times 5 \frac{1}{2} \mathrm{in} . \times 2$ inin． approx．All parts including Case and Plans．
Total Building costa 1423 P \＆ $\mathrm{P}+$ Ins． 50 p
E．V．6．Case and looks as above． 6 Transistors 3 diodes．Powered by 9 V battery．Ferrite rod aerial， 3in．loudspeaker，etc．MW／LW coverage．Push／Pull output．
All parts including Case and Plans．
$\mathbf{E 4 \cdot 9} 5_{\text {P．} \& \mathrm{P} .+\mathrm{Ina} \text { ．} \text { bap }}$
Total Building cos looks as above， 7 Transistors and 3
E．V．7．Case and diodes．Six wavebands，MW／LW，Trawler Band SW1 SW2，SW3，powered by 9V battery．Push pull output Telescopic aerial for short waves．Bin．Loudspeaker． All parts including Case and Plans．

To：RADIO EXCHANGE LTD．

61A High Street

Bedford MK40 1SA

Tel．：0284 58867，BEG NO．788872
－Callers side entrance＂Lavells＂Shop．
－Open 10－1，2．30－4．30 Mon．Fri．9－12 Sat
I enclose $£ . . .$. ．．．．．．．．．．．for ．．．．．．．．．．．．．．．．．．．
Name ．．
Address ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

ELECTRONICS
VOLUME 12 No. 9 SEPTEMBER 1976

CONSTRUCTIONAL PROJECTS

CROSS-HATCH GENERATOR by A. A. BirchA self-contained instrument providing a u.h.f. signal for TV fault finding and adjustment708
RADIO CONTROL SYSTEM by J.D. Whiteley
Full constructional details for a multi-channel on/off system based on tone coding 716
GAS/SMOKE DETECTOR by M. D. Page
Invaluable fire alarm/smoke and gas detector for the house, boat or caravan 728
P.E. DIGISCOPE-3 by R. W. Coles \& B. Cullen
Lower deck circuitry and constructional details 736
LIGHT-UP ALARM by M. Plant
Don't be a danger to yourself and others on the road: make sure you "light up" at the right time with this simple alarm 742
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R.W. Coles
A look at some recently released devices 723
CITIZENS' BAND by Pat HawkerThe pros and cons of radio communications for the man in the street (and his family)731
INGENUITY UNLIMITED
Heads/Tails Indicator-Square Wave Converter-Simple Servo-Sound-to-Light Con-verter-Improved Phaser Control-Light Pipe Controller-Sidelight Alarm-Rear Wind-screen Wiper Controller-Seat-Belt Alarm-Car Cassette Power Supply746
NEWS AND COMMENT
EDITORIAL-Tapping the Glass 707
SPACEWATCH by Frank W. Hyde
Space Seeds-Salyut Research 720
HEDA SHOW REPORT by G. C. Arnold
An impression of the Home Electronics section 724
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 727
POINTS ARISING
Shoot-Digital Frequency Meter-P.E. Digi-Probe 730
NEWS BRIEFS
VAT Leaflet-Fog Bound-Microprocessor Symposium—Courses-Sonax Electronics 733
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 734
Our October issue will be published on Friday, September 10, 1976(for details of contents and special announcement, see page 735)

[^0]
Borntitame Capacity discharge electronic ignition kit

VOTED BEST
OF ESSTEMS TESTEDEY
POPULAR
MOTORMG.

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Up to $\mathbf{2 0 \%}$ better fuel consumption
Spark rite Mk. 2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried. tested, proven, reliable and complete. It can be assernbled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Spärkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and. therefore. eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin. ready drilled base and heat-sink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts. bolts, silicon grease. full instructions to make the kit negative or positive earth, and 10 page installation instructions.

OPTIONAL EXTRAS

Electronic/conventional ignition switch
Gives instant changeover from "Sparkrite" ignition to conventiona ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded. Also avaiłable RPM limiting control for dashboard mounting (fitted in case on ready built unit).
CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008
PRICES INCLUDE VAT, POST AND PACKING. Improve performance \&economy NOW

POST TODAY!

Quick installation Mo engine modification required
Electronics Design Associates, Dept. PE9,
82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652
Name
Address

enclose cheque/PO

H.B. ELECTRONICS

Semiconductors

AA119	10p	BF194/5/6/7
AC126/7/8	16p	BF 198/9
AC 176/187/8	19p	BF200
AD149/161/2	50p	BFX29/30
AF114/5/6/7	25p	BFX86/88
AFt18	45p	BFY50/1/2
BA145/8/754	16p	BFY90
BC 107/8/9	10 p	BA101
BC147/8/9	10p*	BRY39
BC157/8/9	10p*	BY127
BC177/8/9	$18 p$	E300
BC182/3/4L	12p*	MJE340
BC212/3/4L	12p*	MJE341
BC237/8/337/8	16p*	MJE2955
BC547/8/9	12p**	MJE3055
BCY70/1/2	15p*	MPF102
131/2	40 p	TIP31

TIP32A
TTP41A
TIP42A
TIS43
ZTX $107 / 8 / 9$
ZTX $300 / 500$
IN4148
IN $4001 / 2$
IN4003/4/5
IN4006/7
2N 1613
2N2646
2N2926 (BAOYG
2N3053
2N3054
2N055
2N3819 55p
$70 p$
$85 p$
$30 p$
$10 p$
$20 p$
$4 p$
$4 p$
$5 p$
$8 p$
$20 p$
$45 p$
$10 p^{*}$
$16 p$
$45 p$
$50 p$
$20 p$
Bulk offers
IN4001/2 30p/10 N4003/4/5 in $4006 / 7$ BC 107/8/9 7418 dil

NES55 45 $\beta / 10$ sp/ $/ 10$ | NE555 | $\begin{array}{l}\text { \&2.10/10 } \\ £ 1.70 / 4\end{array}$ |
| :--- | :--- | 0.125 in LED for P.E. Diglscope E8.50/80 Red LED 0.2in $81 / 10$ Yellow/Green/Amber LED 0.2in \$1.50/10 iN4148 30p/10 Push to make switeh DPST slide swltch

Other components Zener diode 400 mW $3-3 \mathrm{~V}$ to 47 V E12, 12p; Resistors. carbon film tw 5' E12. 2p; Veroboard 0.1 in and $0.15 \mathrm{in}, 2+\mathrm{in} \times \mathrm{sin} .40 \mathrm{p}$; Sub. min vertical preset, fit 0 - 1 in board. 8 p ; Resistors WW 2.5 W 0.22 to 10 ohm E24. 20p; Clock chlo apecial MM5316, $\mathbf{5 5}$-50. 80Ω loudapeaker 90p*

VAT: add high rate to *items, standard rate to all others POST: free on orders over $£ 5$ otherwise please add 30 p DISCOUNT: 10% discount on orders over $£ 15$ (excluding bulk offers)

54 Montagu Street, Kettering, Northants.

Tel. Kettering 83922
Shop open daily, PAYMENT. C.W.O. Access and Barclaycard for phone orders. GUARANTEE: All devices are brand new and full spec. Any faulty item returned unused within 7 days refunded or exchanged.

耑 WiK:F ELECTRONICS
 THE P.C.B. SPECIALISTS

PRACTICAL ELECTRONICS "PRINTED CIRCUIT BOARDS NOW AVAILABLE

TYPE 'A' : Made in 1.6 mm Epoxy/Glass-fibre. supplied Roll-tinned $\&$ drilled TYPE 'B' : Made in 1.6 mm S.R.B.P., supplied Roll-tinned \& drilled.
All units available Ex. Stock by return. All prices INCLUDE Post-Pack, and V.A. T. TERMS: Cash with order. Cheques \& P.O.s payable to W.K.F. Electronics.
issue

QTY of TYPE 'A' TYPE 'B
issue
PROJECT
PC.B.s PAICE PRICE
$\begin{array}{ll}\text { Sept. } 1974 & \text { Gas \& Smoke Detector } \\ \text { JAN. } 1975 & \text { ORION STEREO 2OW AMPLIFIE } \\ \text { May 1975 } & \text { IC. Pulse Generator } \\ \text { DEC. JAN. 1976 } & 50 \text { + 50W GUITAR AMPLIFIER } \\ \text { JUNE } 1976 & \text { DIGITAL FREQUENCY MËTER } \\ \text { June 1976 } & \text { Audio Millivolt Meter }\end{array}$

1	-	1.75
1	3.60	2.20
1	-	1.40
3	3.25	2.00
4	4.25	3.50
2	-	1.60
8	5.70	4.30

PRODUCTION SPACE ALWAYS AVAILABLE FOR:
P.C.B. PRODUCTION-ELECTROPLATING-SCREEN PRINTING-TINNING CONTRACT DRILLING-ANY PHOTOGRAPHIC ART PROCESS

SERVICE FOR:

PC.B. MASTER PREPARATION + ANY GRAPHIC ARTS PROCESS

FROM:

ROUGH COPIES-EXISTING UNITS-CIRCUIT DIAGRAM
EVEN FELT TIP PEN ON OLD FISH \& CHIP PAPER ${ }^{*}$

QUOTATIONS FREE OF CHARGE BY RETURN

Large discounts given for long puns. Pun-an's and repeat orders. Also call-oh orders accepted

20×20 Watt STEREO AMPLIFIER

Superb Viscount IV unit in teak-finished cabinet. Black fascia with aluminium rotary controls and pushbuttons, red mains indicator and stereo jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panel features two mains outlets, DIN speaker and input sockets, plus fuse. $20+20$ watts rms, $40+40$ watts peak.

TOW YOU CAN SAVE ${ }^{\text {2 } 2490}$

SYSTEIM 1B

For only $£ 80$, you get the $20+20$ watt Viscount IV amplifier; a pair of our 12-wattrms Duo Type Ilb matched speakers; a BSR MP 60 type deck complete with magnetic cartridge,
de luxe plinth and cover

SYSTEM 2

Comprising our 20+20 watt Viscount IV amplifier; a pair of our large Duo Type III matching speakers which handle 20 watts rms each; and a BSR MP 60 type deck with magnetic cartridge
de luxe plinth and cover.
£9200
Carriage surcharge to Scotland: System1b £2.50, System 2 ع5

SPEAKERS Two models-Duo lib, leak veneer, 12 watts rms, 24 watts peak,

 Duo III, 20 watts Ims, 40 watts peak, $27^{\prime \prime} \times 13^{\prime \prime} \times 111^{\prime \prime}$

$248^{+p 7.50}$

PER PAIR

TURNTABLE Popular BSR MP 60 type, complete with magnetic cartridge, diamond stylus, and de luxe olinth and cover. $\mathcal{E} 24^{00}$ $+0 \& 0.83 .50$

STEREO CASSETTE DECK KIT

Again, this kit is specially designed Specially designed by RT-VC for the experience constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier. Chassis is ready punched, drilled and formed. Cabinet is finished jn teak veneer. Black fascia and easy-to-handle aluminium knobs. Output $30+30$ watts
\&2900 rms, $60+60$ peak.
$+p$ \& p .52 .10 for the experienced constructor - for mounting into his own cabinet. Features include solenoid-assisted AUTO-STOP, 3 -digit counter, record/replay PC board, mains transtormer and input and output controls. AC BIAS AND ERASE.
$+p \&$ p. £1. 50

DIY STEREO
 SYSTEM

COMPLETE WITH SPEAKERS
Here's real value in DIY! Comprises ready-built amplifier module, 3 -speed Garrard auto-return deck, and teak-veneer simulate cabinets with clear plastic top. 828^{95} Easily buill by hơbbyists. +p \& p .84 .05 TURNTABLES BY BSR Big value from RT-VC! Two units COMPLEEE WITH PLINTHS. First, the popular MP 60 type semi-professional deck. $\mathbf{£ 1 7 5 0 + p \& p . \varepsilon 2 5 0}$ Second, the lower-cost c141 automatic unit, fitted with a stereq ceramic cartridge. \&1195 ${ }_{6255}^{+08 .}$.
Both units have plinths finished in superb teak veneer. Either wav, you're on to a bargain from RT-VC.
 you get pre-amp, power amp, and all the control panel parts. Features include IC power chips for Low distortion. For the experienced constructor only.

DISCO EQUIPMENT

35-WATT DISCO AMP

Here's the mono unit you need to start off with. Gives you a good solid 35 watts ms, 70 watts peak output. Big fealures include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independen bass and treble controls and
$E 2750$
master volume.
p\& P. $£ 1.50$

100-WATT DISCO AMIP

All the big features as on the 70 -watt disco amplifier, but with a massive 100 watts rms,
200 watts peak
output power.
E6500
Not illustrated
p 5 p. $£ 4.00$

PORTABLE DISCO CONSOLE

 with built-in pre-amplifiers Here's the big-value portable disco console from RT-VC! it features a pair of BSR MP 60 type auto-return, single-play professional series record decks. Plus all the controls and features you need to give fabulous disco $\$ 5700$ connects into your existing $+p \& p$. $\varepsilon 6.50$ slave or" external amplifier
70-WATT DISCO AMP Notilustrated

Brilliantly styled for easy disco performance. Sloping fascia, so that you can use the controls without fuss or bother. Brushed aluminium fascia and rotary controls. Five smooth-acting, vertically mounted slide controls - master volume, tape level, mic level, deck level, PLUS INTER-DECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice-versa. Pre-fade level control (PFL) lets YOU hear next disc before fading it in. VU meter monitors output level. 70 \&400 watts rms, 140 watts peak output. $+p \& p$. £3.00

Minimum order on Access and Barclaycards $£ 15$

DO NOT SEND CARD Just write your order giving your credit card number

ALL PRICES INC. VAT at Current rates

All items subject to avallability. Price correct at 1st July 1976 and subject to change without notice
For further information, please send stamped addressed envelope

EASY-TO-BUILD, WITH ENCLOSURE

Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak-simulate enclosures, two EMI $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) woofers, two $3^{11 / 4^{\prime \prime}}$ (approx.) tweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied cemplete with an easy-to-follow circuit diagram, and crossover components. Input 15 watts rms, 30 watts peak,

'COMPACT'

\section*{FOR TOP VALUE} | each unit. Cabinet size | | |
| :--- | :--- | :--- |
| $20^{\prime} \times 11^{\prime \prime} \times 91 / 2^{\prime \prime}$ (approx). | $\mathbf{5} 50+0$ \& p . | How about this for incredible |

15-WATT KIT YOUCANT
 IN CHASSIS FORM

When you are looking for a good speaker why not build your own from this kit. It's the unit which we supply with the above enclosures. Size $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) EMI wooter, $31 / 4^{\prime \prime}$ (approx.) weeter, and matching crossover. \qquad $8750+0 \& p$ 15 watts ims, 30 watts peak. PER SET
 bookshelf value from RT-VC! A pair of high efficiency units for only $£ 7.50$ - just what you need for low-power amplifiers. These infinite baffle enclosures come to you ready mitred and professionally finished. Each cabinet measures $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ (approx.) deep, and is tinished in simulated teak. Complete with two $8^{\prime \prime}$ (approx.) speakers for max. power \&750 handling of 7 watts.

20-WATT HI-FI KIT IN CHASSIS FORM

For extra power, choose this super RT-VC kit! EMI $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) triple-laminate-coned woofer with massive $5^{\prime \prime}$ (approx.) magnèt, plus $5^{\prime \prime}$ (approx.) mid-range unit with concentric $2^{\prime \prime}$ parasitic tweeter and $23 / 4^{\prime \prime}$ (approx.) magnet. Complete with circuit diagram and crossover componenis. 27050 PGp 5
\square

NO GOODS
DESPATCHED
OUTSIDE

210 HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON W2
Personal Shoppers EDGWARE ROAD: 9 a.m. -5.30 p.m. Half day Thurs. ACTON: 9.30a.m.-5p.m. Closed all day Wed.

TIMEKEEPING KITS-CMOS-DISPLAYS-MEMORY-BOOKS

GUARANTEE: Telephoned orders recelved by 4.30 p.m. (Mon.-Fri.) guaranteed dispatched the same day. First Class Post. The same applies to written ordere. Tolephone Orders: Private customers (min. tel. order E 5) quote Access or Earclaycard no. Official orders. no minimum telephone order value.

GREEN CLOCK KIT
Four digit 12 or 24 hr . mantel-piece slectronic clock with $0 \cdot \sin$ GREEN displays in. 8 whlte slim-line case.
Easy to bulld. Order as "GCK" $\mathbf{5 1 2 . 9 0}$
CRYSTAL CONTROL and BATTERY BACK.UP can be added to this clock. If mains power is disconnected (through a power cut. accidental switching. off or moving clock) the clock will keep perfect time. Order as "GCK + XTK + GBEK" $819 \cdot 65$ CCX: Crystal-Controlled, 6. Digh, Car Clock Kit with Independant Journey Timer (P.E. Feb. '76)
Auns off 12 V (car) battery-protected against low voltage drop-ou-internal battery back-up allows temporary disconnection-6 digit limer himes lourneys
 ATTRACTIVE G-DIGIT ALARM CLOCK KIT.
With optional CAYSTAL CONTMOL for high accuracy and battery back-up-bieep alarm, snooze, automatic intensity control-uses Red O. Sin LEDs-optional touchswitch" for snooze (ext
Order as "ACK" $228-80$
Order as "ACK Com^{28-80}, plus crystal control and battery Complete kit as accurate to within a few seconds a month-no need to reset your clock each time power is disconnectedalarm operational while clock is on back-up. Order as "ACK + XTK + BBK" 233.58
50 Hz Cryatal TImebase Kit: provides an extremely etable output of one pulse every 20 msec . Uses: Improving accuracy of digital clocks if used with battery back-up atso makes clocks power-out or switch-off proof Replacing 50 Hz signal on battery-powered equipment Providing film synchronisation Monitoring or improving turntable speed. Complele kit. Order as and with output 50 Hz Cryeti. Time base moduler as above, but buit preset to within ± 5 p.p.m. Order as " $671-50$ " cs. 80
100 Hz Cryetal Tlmebase Module. Use as a pulse generator for any system counting in $1 / 4001 \mathrm{~h}$ sec. units. High stability. Iow current consumption (3 mA
 ADD VAT at $8 \%-25$ p P. \& P. on aH orders Access and Barclaycard orders welcomed, by post or phone (see above) Price List sent with orders or free on request (send S.A.E.) Export orders welcome: No VAT
$\mathbf{1 5 \%}$ (Overseas) for Ar Mali P. \& P. (Contact us irst for Export rates on books).

5n Pa,

BAPCLAKCARD OXFORD. TEL. 08654979 E

CMOS from the top manufacturers, mainfy RCA and Molorola

CD4000	0.15	CD4028	0.73	CO^{4053}	0.11 1.01	CD4096	0.82 1.34	Choch Chips MK 50250	
CD4001	0.15	CD4029	0.00	CO4054	1.01	CD4089	1.34	MK50250	$5 \cdot \infty$
C04002	0.15	CD4030	0.45	CO4055	1.14	CO4093	0.69	MK50253	5.60
CD4006	1.02	CD4031	$4 \cdot 92$	CD4056	$1 \cdot 14$	CO4094	1.12	AY51202	$2 \cdot 89$
CO4007	0.16	CD4032	0.92	CD4057	21.56	CO4095	0.81	AY5122	5
CD4008	0.43	CD4033-	$1 \cdot 21$	CO405s	4.71	CD409\%	0.11		
CO4009	0.43	CD4034	1.65	CD4060	0.17	CD4097	$3 \cdot 12$	an	
CO4010	0.4	CD4035	1.02	CD4061	18.12	CD4099	1.50		- $\cdot \infty$
CD4011	0.18	CD4036	$2 \cdot 23$	C04062	7.77	CD4502	1.07		
CO 4012	0.16	CD4037	0-43	C04063	0.05	CD4S10	1.11		
CD4013	0.45	CD4038	$0 \cdot 23$	C04066	0.01	CD4511	$1 \cdot 3$	75141a	2.64
CD4014	0.17	CO4039	2-23	CO4067	3.12	COMS14	2.72	7514110	3.04
CD4015	$0 \cdot 4$	CD 4040	0.92	CO40sa	0.10	CDA515	2.72	751237J	1.72
CO4016	0.45	CD4041	0.73	CD4069	0.16	CD4516	$1 \cdot 1$	7512380	$2 \cdot 15$
CD4017	0.87	CD4042	0.73	CD4070	0.44	C04518	1.00		
CO4018	0.17	CD4043	0.68	CD4071	0.14	COH520	1.00	Sundry	
CD4019	0.45	CD4044	0.61	CD4072	0.18	CD4527	1.37	CA3130	0.40
CO4020	0.87	CD4045	$1 \cdot 22$	C04073	0.11	CD4532	$1 \cdot 25$	75401	0.96
CO4021	0.37	CD4046	1. 16	CD4075	0.14	CD4555	$0 \cdot 71$	75492	$1 \cdot 22$
CD4022	0.33	CD4047	0.71	CD4078	1.34	CD4556	0.7		
CO4023	0.18	CO4048	0.48	CD4077	0.4	MC14528	1.01	Memory ICs	
CD4024	$0 \cdot 67$	CD4049	0. 48	CD4078	0.18	MC14534	6.04	P2102A-6	$3 \cdot 35$
CD4025	0.16	CO4050	0.48	CD4081	0.16	MC14553	4.07	P2112-2	4.74
CD4026	1.50	CD4051	0.51	CD4082	0.18	MC14566	1.21	IM6508CPE	0.05
CD4027	0.48	CO4052	0.01	CD4085	0.62	MCM14552	05	MCM14552	1.05

aw 1976 RCA cmos and Uneaf IC compined Databook
New 1976 RCA 'Power and Microweve' Databook
64.95
54.95

Motorole McMOS Databook (Vol. 5 Series A), c. 500 pages

$\begin{array}{lll}\text { TTL } & \text { enge and many other T.I. IC'a } & \text { E2.95 }\end{array}$
MEMORY IC from intel; P2102A-6 (new version of 2102-2) 16 pin. TTL compatlble 024×1 bit Static RAM (Data supplied with 1 C) \quad £3-35 s-way BOSS Swftch: 8 ultra-miniature toggle switches in 16 pln DIL Ez-60 $32 \cdot 768 \mathrm{kHz}$ Min. Watch Quartz Crystal $\mathbf{5 4} \cdot 50$. $\quad 5 \cdot 12 \mathrm{MHz}$ Quartz Crystal $\mathbf{8 3} \cdot 60$ LOW COST IC SOCKETS
Soldercon IC socket pins are the ideal low cost method of providing sockets tor TTL, CMOS, IC's. Displays. Simply cut off the lengths you need, solder Into board and snap off the connecting carrier.
Strip of 100 pins for $50 \mathrm{p} .1,000$ pins for $£ 4.3,000$ pins for $£ 10 \cdot 50$.
 7 Segment Displays

			81.02
FNDS00	Ped C.C. LED	0.5in	ع1.02
TIL322	Fled C.C. LED	0.5in	81.20
TIL321	Red C.A. LED	0.5in	81.30
XAN652	Green C A. LED	$0 \cdot 6 \mathrm{in}$	¢1.75
XAN654	Green C.C. LED	0.6 in	81.75
MAN3M	Red C.C. LED	$0 \cdot 13 \mathrm{in}$	48 p
$5 \mathrm{LTO1}$	Green Ph. Diode	$4 \times 0.5 \mathrm{in}$	25.80

You can rely on a CROFTON KIT Whether professional, student, teacher or amateur, the field of electronics can open up a new world for you.

上
 SPECIAL OFFER

COMPLETE Camera Kit with lens and tube $£ 90$ (including VAT and P. \& P.).

This offer is open for 30 days from'publication of this magazine.
Delivery.-We would expect to be $3 / 4$ weeks from receipt of order, but should demand exceed our expectations we could not guarantee such delivery.

All orders will be dealt with strictly in date order, and customers will be advised.
NOTE PCBs for most published projects available to order
CROFTON ELECTRONICS LTD
Dipt. E, 35 Groavenor Road, Twickenham, Middx. 01-891 1924

$\sigma^{-} \times 4^{\prime \prime}$ sheet only $39 p$ inct. VAT and postage. Use with types A and B as previously advertised.

PLAIN P.A.K. STRIP
 Prumba mpolict tor)

Make your own p/c

 boards without etchingPLAIN P.A.K. STRIP is a very thin copper-coated P/C board with a self-adhesive backing. Cut any shape you want with scissors and just stick down. Butt solders perfectly. Use on plain drilled matrix board and you can prick holes in It with a pin.
TIP OF THE MONTH. How to turn a plastic box into a screened boxHine it with PLAIN P.A.K. STRIP.

PRINT-A-KIT ELECTRONIC SUPPLIES

408 Sharrow Vale Road, Sheffield S11 82P
OVER 2,000 ELECTRONIC COMPONENTS INA

15-240 WATTS!

The HY5 is a mono hybrid amplifier ideally suited for all applications. Alt common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pro-amplifier in single pack; mult-function equalisation; low nolse; low distortion; high overioad: two simply comblned for sterso.
APPLICATIONS: hi-fi: mixers: disco; guitar and organ; public address.
SPECIFCATION: Inputs-magnetic plek-up 3 mV ; ceramic pick-up 30 mV ; tuner 100 mV : microphone
 A.M.S. Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at 10 kHz : Bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Dlatortion- 0.1% at 1 kHz ; signal/noise ratio 68 dB . Overload- 38 dB on magnetic pick-up. Supply Voltage- $\pm 16-50 \mathrm{~V}$. Price $\mathbf{8} \cdot \mathbf{7 5}+59 p$ VAT. P. \& P. free
HY5 mounting board B.1. 48p + 6p VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible

HY200
120 W into 8Ω

HY400
240W into 4Ω
I.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink, P.C. board. 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available. FEATURES: complete kit: low distortion; short, open and thermal protection; easy to build.
APPLICATIONS: updating audlo equipment; puitar practice amplifier; test amplifier; audio oscillator. SPECIFICATION: Output Power-15W R.M.S. into 8 . Distortion- 0.1% at 15 W . input Sensitivity500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $£ 4 \cdot 75+59$ p VAT. P. \& P. free
The HY50 leads I.L.P.'s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most rellable and robust High Fidelity modules in the World. FEATURES: low distortion; Integral heatsink; only five connections; 7 amp output transistors; no external components.
APPLICATIONS: medium power hi-tl systems: low power disco; guitar amplifier.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-25W R.M.S. Into 8Ω. Load Impedance--$4-16 \Omega$. Distortion- 0.04% at 25 W at 1 kHz . Signal/Noise Matio- 75 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 25 \mathrm{~V}$. Size $-105 \times 50 \times 25 \mathrm{~mm}$.
Price $\mathbf{\& 6} \cdot \mathbf{2 0}+\mathbf{7 7 p}$ VAT. P. \& P. free
The HY120 is the baby of I.L.P. 's new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion; Integral heatsink; load line protection; thermal protection; five connections; no external components.
APPLICATIONS: hi-fi; high quality disco: public address; monitor amplifler; gultar and organ.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- 60 W R.M.S. Into 8Ω. Load Impedance
$4-15 \Omega$. Distortion- 0.04% at 60 W at 1 kHz . Signal Noise Ratio-90dB. Frequency Response-10Mz$45 \mathrm{kHz}-3 \mathrm{~d}$. Supply Voltage $- \pm 35 \mathrm{~V}$. Size- $114 \times 50 \times 85 \mathrm{~mm}$. 90 dB . Frequency Response-10 Hz kit -3as. Supby
Price $£ 14 \cdot 40+£ 1 \cdot 16$ VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group white still retaining true hi-fi performance.
FEATURES: thermal shutdown; very low distortion; load line protection; integral heatsink; no external components.
APPLICATIONS: hi-fi; disco: monitor; power'slave; industrial; public address
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-120W R.M.S. Into 8Ω. Load Impedance-$4-16 \Omega$. Distortion- 0.05% at 100 W at 1 kHz . Signal/Noise Retio- 96 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Vollage- $=45 \mathrm{~V}$. Size $-114 \times 100 \times 85 \mathrm{~mm}$
Price $\mathbf{5 2 1} \cdot \mathbf{2 0}+\mathrm{f} 1 \cdot 70$ VAT. P. \& P. free
The HY 400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown; very low distortion; load line protection; no external components, APPLICATIONS: public address: disco; power slave; industrial.
SPECIFICATION: Output Power-240W R.M.S. into 4Ω. Load impedance-4-16 . Distortion- 0.1% at 240 W at 1 kHz . Signal/Nolse Ratio- 94 ch . Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage - $\pm 45 \mathrm{~V}$. Input Sensitivity- 500 mV . Size- $114 \times-100 \times 85 \mathrm{~mm}$.

Price $229 \cdot 25+£ 2 \cdot 34$ VAT. P. \& P. free
POWER SUPPLIES: PSU3s-suitable for Iwo HY 30 s \&4-75 + 59p VAT. P. \& P. free. PSU50-sultable for two HY50s 20 - $20+$ 77p VAT. P. \& P. free. PSU70-suitable for two HY120s' $\mathbf{1 2} \cdot 50+£ 1-00$ VAT. P. \& P. free. PSUgo-suitable tor one HY200 $\Sigma 11 \cdot 50+92 p$ VAT. P. \& P. free. PSU180-suitable for two HY200s or one HY $400 \mathrm{E} 21+\varepsilon 1 \cdot 68$ VAT. P. \& P. free.

AVAILABLE JUNE 1976

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

Please supply
Total Purchase price
I Enclose: Cheque \square Postal Orders \square Money Order \square Please debit my Access account \square Barclaycard account \square

Account number

Name and Address

 LOOK WHAT'S IN IT FOR YOU
 * SEM CONDUCTORS * cApACITOAS * ICO * MANI CERAMCS * REMSTOAS * ~OIENTIOMETEAS * TMERMISTORS * BRIDGE RECTIFIEAS * AEOULATORS ? MADIO mODULES * AUDIO AMES \$ TIMERS * CADLE * TRANFORME RS * FGTC SUPRESSION FILTERS \& CRYSTALS * RELAYS * CONMECTORS *PLUCS \& sOCKETS * CASES \& kNOES \& DIALS HEAT SINKS \# SCREWE, NUTS, TAGS, GNOMMETS \& AOHESIVES \& CLEANERS © DIODES \& INOICATORS * PANEL METERS a BULES HLUM WUSH BUTTON TOGGLE, ROCKER B PROXIMITY SWiTCHES * SOLOEAING INCW

 MCROPHONES © CAEINETS © MUL TIMETERS - LOEIC PROBES ANO MUCK MUCH MORE I

DORAM'S NEW CATALOGUE HAS BEEN SPECIFICALLY DESIGNED FOR THE AMATEUR RADIO, ELECTRONICS \& HI FI ENTHUSIAST.

DORAMS SERVICE ALSO INCLUDES-

MANY PRICE REDUCTIONS QUANTITY DISCOUNTS ON CAPACITOR, RESISTOR OR SEMICONDUCTOR ORDERS
FREE - UP-DATE PRODUCT INFORMATION SERVICE DURING LIFE SPAN OF CATALOGUE

ALL ORDERS SENT BY RETURN-OF. POST

NOQUIBBLE REPLACEMENT PART SERVICE
POST \& PACKING FREE FOR ORDERS OVER $£ 1$ (Only applies for Great Britain N.Ireland and B.F.P.O. Nos.- Overseas orders F.O.B.)

SEND FOR YOUR NEW CATALOGUE AND/OR KIT BROCHURE NOW!

If catalogue ordered (priced 60p) you will receive a refund voucher of 25 p.
If catalogue and kit brochure ordered together, price 70p plus $2 \times 25 p$ refund vouchers.

DORAM ELECTRONICS LTD.

P.O. Box TR8,

Leeds, LS12 2 UF.
I enclose Please send me by return my new catalogue and/or kit brochure. (Over seas orders except for N. Ireland please add 30p for post and packing surface only.

PLEASE PRINT BLOCK CAPITALS
NAME:
ADDRESS: \qquad
\qquad
POST CODE
An Electrocomponents Group Company.

58-53 crovls RD.
 ADD 8% VAT TO PRICRS MARKKD ADD $12 \frac{1}{2} \%$ VAT TO ALL OTHER PRICRS
SEND C. W . (EXCEPT GOVT' DRPTS) SEND C. W. O. (EXCEPT GOVT' DEPTS
POST \& PACKING 2Op FOR THE UK

H1 X A

 secysum

IC's LOW DRICES

7
7
7
7
7
7
7
7
7
7
7
7 TIL209 or $0.2^{\text {"RED }}$: CLIP 13p* GRBEN LARGE/SYALL CLIP $22 \mathrm{p}^{*}$ ORANGE LARGE/SMALL A CLIP 22p*

 AT51224 £3.49* - PCB \&1* CAPACITORS
CERAMIC 22pi-0. 1up 50v 5p. ELECTROLYTIC: $10 / 50 / 100$ ut 10 or 25 V 7 P . $50 \mathrm{~V} 9 \mathrm{p} .2 \mathrm{Lf} / 10 \mathrm{~V} 6 \mathrm{p}$. 1000uf 25 V 18p. $200 / 500 \mathrm{uf}{ }^{9} 9$. PRESETS 6p. RESISTORS 1 P ea

HEATSINKS TO5/18 7p.TO3 15p. SITCHES: SPST 19 p . DPDT 24 P . ALI CASES: A35/AB7. 50 p AB13 95 p . TRANSPORNERS 100 mA 89 p ea* \$A/1A $6 / 12$ ori2/24 $£ 2$ each. NET AUDIBLE TARNING BLEBPER $¢ 1$ trampus full spec paks all il ea PAK A 10 पED LEDS our cboice C1* | PAK | | |
| :--- | :--- | :--- |
| PAK | 5 | 5 |

TRAMSISTORS

PRICE EACH:
PRICE EACH:-10p NATCEIFG 20p*

 $\begin{array}{llll}\text { BC107 } & \text { 8p } & \text { TIP2955 } & \text { 99p }\end{array}$

 $\begin{array}{llll}\text { BC108 } & \text { 7p } & \text { T1S43 } \\ \text { BC108B } & \text { 2 } & \text { ZTX107/8/9 } & \text { 11p }\end{array}$ $\begin{array}{lr}\text { BC108B } & 12 p{ }^{\circ} \\ \text { BC109 } & 8 p\end{array}$ BC109
BC109C $8 p^{\circ}$
$12 p^{*}$ BC147/8/9 $\quad 9 \mathrm{p}$ $\begin{array}{ll}\text { BC147/8/9 } & \text { 12p } \\ \text { BC157/8 }\end{array}$ $\begin{array}{ll}\mathrm{BC} \\ \mathrm{BC} 167 / 8 / 9 & 12 \mathrm{p} \\ \mathrm{BC} 177 / 8 / 9 & 18 \mathrm{p}\end{array}$ BC177/8/9 18p BC177/8/9 18p
BC182/3/4A\&L10p BC182/3/4A\&L10p
BC212/3/4A\&L12p BC212/3/4A\&L12p
BCY70/1/2 16 p
BD BD131 - 132 39p ${ }^{\text {B }}$ BFRBE 250 V 35p $\begin{array}{ll}\text { BFR88 } & 250 \mathrm{~V} \\ \text { BFY } 50 \\ \text { BPY51 } & 14 \mathrm{p} \\ \text { B } & 14 \mathrm{p}\end{array}$
 BFT52 45314 p
BSX19/20/21
16p MJ2955 T03 75p* $\begin{array}{ll}\text { MJE2955 } & 89 \mathrm{p}^{*} \\ \text { MJE3055 } & 64 \mathrm{p}^{*}\end{array}$

2TX107/8/9 11p
2TX300 304 20p
2TX500 504 42p
2N706 708 11p
2N2646 U.JT 38p
2N2904 \& 5 20p
2N2926broyo 9p
2N3053 16p*
2N3054 42p*
2N3055 115ः 37 p*
2N3055 MCA 60p
2N3702/3/4/5 8p
2N3706/7/8/98p 2N3710 11 8p 2N3819E FET 12p 2N3820 FET 40p 2N3823E FET 16p 2N3904j5]6 15p 2N4289 mint 31p 2N5457 FET 45p

emos labic

NEW MOTOROLA CD14533 E3.35*

CD4000	$15 p^{*}$	CD4028	$73 p *$
CD4001	$16 p^{*}$	CD4 46	11

1N4001 1A50V \& 1N4002 5p 1N4004 6p* 1N4007 9p* 1N4148 हP 1N914 SILICON 4p ZKNERS BZY88 400 m 9p. ZENERS 18T 17 PR, Z1Jnofeeci GRIDGE RECTIPIER 1A50 18p 1A400V 25p. 4A100V 45p
SCR'S TRIACS
SCR's TAG1/400 1A400V 50p* 1A50V 38p* 14 600\% $70 \mathrm{p}^{\text {* }}$ C106D 4A400V SCR ONLY 47p* TRIAC SA4007 SCR ONLY 47 p
TR 10 A 400 V it
 DIACS:ST2 20p.BR100 25p

$v \Rightarrow \square$

36PINS 28p*FACE CUTTER49p* COPPERCLAD 0.1 PITCH VERO 2\}"x5" 32p* 2\}"x3\}" 29p* 3""x5" 37 p " 3才"x3i" 32p 3" " 17 " $11,70^{*}$ 3)"x17" PLAIN 0.1"£1.06* DIL BREADBOARD 6x4" E2*

DALOBGB
 DALO ETCH RESIST PEN 69p*

 FEC ETCH PAK 500 gm 89p 6x4" COPPER BOARD SOP* PCB KIT 3 ITEMS 50p* CASSETTE MECHANISM 99 asE12 TaS GAS DETBCTORS 308etce 2^{*} JH SDEHEtS TOP QUALITT NYLON SOCKETS 8PIN 12p* 14PIN 12p半16PIN 12p SOLDERCON PINS:

THE EEETRONICC WUSCCAL INSTRUMENT MANALL

by A. Douglas
Price $\mathbf{E 8 P O}^{\mathbf{0}}$

ELECTRONICS POCKET BOOK by P.I. McGoldrick.

Price $64 \cdot 25$
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR bY A. Douglas. Price 4480 DESIGNING WITH TTL INTEGAATED CIRCUITS by Texas Instruments. Price $67 \cdot 60$ TRANSISTOR POCKET BOOK bY R. G. Hibberd Price.
nsistor RAPID SERVICING OF TRANSISTOR
EQUIPMENT bYG, J. King. IC OP-AMP COOKBOOK by W. G. Jung

COLOUR T.V. WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by SOLID STATE COLOURT.V. CIRCUITS WORKING WITHTHE OSCILLOSCOPE by A.C.W. Saunders.

Price E 1.85

RADIO YALVE AND SEMICONDUCTOR DATA bY A. M. Ball. Price $\mathbf{6 2 . 5 0}$

* PRICES INCLUDES POSTAGE *

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Book
19-21 PRAED STREET
LONDON W2 INP
Phone 01-7234185
Closed Sazurday 1 p.m

Lentest tranaiatorised iesepulone Amplifier with detached plug-in speaker. Placing the receiver on to the cradle activates on/oti awitch for immediate two-way conversation without holding the handeet. Many people can listen at a time. Increase emeiency In office, shop, workshop. Perfect for "conference calls: leaves the user's hands free to make noves,
consult flies. No long waiting, saves time with long-distance calls. Volume. Direct tape recordiag model at 618.95 + VAT 21-12 P. \& P.75p. 10-day price refund guarantee.

WEST LOXDOI DIRECT SUPPLIRS (PE9) 189 KENEINGTON EIGH BTREET, IOIDONT, W. 8

SINGLE UNITS (1D) ($5 \mathrm{in} \times 2 \mathrm{tin} \times 2 \mathrm{i} \mathrm{in}$) E2.50 DOZEN.
DOUBLE UNITS (2D) $(5 \mathrm{in} \times 4 \mathrm{fin} \times 2 \mathrm{iin})$. \&4.40 DOZEN.
TREBLE (3D) $£ 4 \cdot 20$ for 8.
DOUBLE TREBLE 2 drawers, in one outer case (6D2), £6-50 for 8 .
EXTRA LARGE SIZE (6D1) $85 \cdot 50$ for 8.
PLUS QUANTITY DISCOUNTS
Orders over £20, less 5\%.
Orders over $£ 60$. less $7 \frac{1}{2} \%$
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under $£ 10$. Orders $£ 10$ and over, please add 10\% carriage.

QUOTATIONS FOR LARGER QUANTITIES
Please add s\% V.A.T. to total remittance
All prices correct at time of going to press
FLAIRLINE SUPPLIES
(Dept. PE9)
24 Cricklowood Broadway, London NW2 Tel. 01-450 4844

RETURN OF POST MAIL ORDER SERVICE

R.C.S. IO WATT
AMPLIFIER KIT
0 OLI

This kit is suitable for record players, tape play back, guitare, electronic instruments or small P.A.systems. Tro rersions are a valiable. A mono kit or a stere stereo he mono kit uses is semiconductors. The panel and volume, bass and treble with printed fron pane output into of ohms, 7 W into 15 ohans. Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$, input $100 \mathrm{M} . \mathrm{T}^{\circ}$. bich imp. $81 z e 91 \mathrm{in} \div 3 \mathrm{in}<2 \mathrm{n}$.
$\mathrm{Mano}_{\mathrm{M} \text { Mo }}^{\text {Masy to bulld. Full instructions supplied. }}$

ELAC 10 inch

Das cone plasticised roll our round. Itarge ceramic magnet
$50-16,000$ c/b. Bass resonance $5 \mathrm{c} / \mathrm{s} .8$ ohm impedance 10W5in. model 53.25 . $C 4 \cdot 95$

MAINS TRANSFORMERS ALl PosT

 $250-0-260 \mathrm{~V} 80 \mathrm{~mA}, 6 \cdot 3.2 \mathrm{~A} \quad 50 \mathrm{p}$ each. $350-0-36080 \mathrm{~mA}, 0 \cdot 3 V 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 V$ IA or 5 V 2A 25.80 $\begin{array}{ll}300-0-300120 \mathrm{~mA}, 6-3 V & \text { \& A C.T., } 6.3 \mathrm{~V} 2 \mathrm{~A} \\ 37.00\end{array}$ MIDGET $220 \mathrm{~V} 46 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}^{+} 2 \mathrm{~A}, 21 \times 2 \mathrm{~F}^{\circ} \mathrm{Kin} \mathrm{E} 1.40$ HEATERTRANB, $6-3 V 3 A, 81-45$ is 2 mp . 95 p GENERAL PURPOBE LOW VOLTAGE. Tapped outputs at 2A $3,4,5,6,8,9,10,12,15,18$,
$1 \mathrm{~A} 6,8,10,12,16,18,20,24,30,36,40,48,60{ }^{24} 4 \cdot 60$ $2 A, 6,8,12,12,16,18.20,24,30,36,40,48,6027=00$ $3 A, 6,8,10,12,16,18,20,24,30,36,40,48,60$, 8870 $6 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60,11-25$
$6,8,10,16 \mathrm{~V}+\mathrm{A} 8.6-0-6 \mathrm{~V} 500 \mathrm{~mA}$ ह1. 9 V 1 A .

 40 V 3 A 22.50 . $30 \mathrm{~V} 5 \mathrm{~A}+34 \mathrm{~V} 2 \mathrm{Act} .88 \cdot 75$.
$20-0-20 \mathrm{~V} 1 \mathrm{~A} 42.30 \mathrm{~V} 1+\mathrm{A}$ 组-75.
AUTO TRANBFORMERS, 115 V 10230 V or 230 V to 115 V 150W 88 CHARGER TRANBFORMERS. Input 200/250 or 6 or $12 V 13$ A 28.75 ; 4 A 84.60 .
FULL WAVEBRIDGECHARGER RECTIFIERS:
6 or 12 V outputs $1 \$ 440 \mathrm{p} ; 2 \mathrm{~A} 55 \mathrm{p} ; 4 \mathrm{~A} 85 \mathrm{p}$.
R.C.S. STABILISED POWER PACK KIT

Ali parta including printed circuit and instructions to build thia unit. Yoltages avallable: $6 \mathrm{~V}, 7 \cdot 6 \mathrm{~V}, 9 \mathrm{~V}$ 12 V . Up to 100 mA out puk.
Please state voltsge required
$\mathbf{1 2 . 9 5} \begin{aligned} & \text { Post } \\ & 45 \mathrm{p} .\end{aligned}$

R.C.S. STEREO FM TUNER

Thif completely cased mains powered Hl-Fi $\mathbf{2 7 . 5 0}$ made using the latest circultry. Bergain. Btereo Tuner/Amplifier Chasnif. Brand new $888 \cdot 50$. BARGAIN 3W AMPLIFIER. 4 Tranaistor Puoh-Pull Ready built with volume, treble and $\mathbf{~} 5 \cdot 95$
basan controls. 18 voll battery operated.

WAFER HEATING ELEMENTS

 a.c. 250 W approx. Suitable for Feating Pads, Food Warmert, Convector Heaters, etc. Must be clamped between two sheete of metal or abbestos.
ONLY 40P EACH (FOUR FOR AF-50)
ALL POBT PAID-Discounts for quantity.
E.M.I. $13 \frac{1}{2} \times 8$ in

SPEAKER SALE!
With tweeter. And
crossover. 10 W .
crossover. 10W.
Asillustrated.
Post 45p
15 N model 17.95
8 or 16 ohms.
Post 50 p
20W model 48.95
8 or 150 hms .

BAKER MAJOR $12 \quad \mathbf{1} 10.35$
Post 00 p

$30-14,600 \mathrm{c} / \mathrm{m} .12$ in double cone, wooler and tweeter cone ceramic magnet assembly having a fux density of 14,000 gaute and a total fur of 145,000 Maxwells. Basa resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25 W . NOTE: 3 or 8 or 15 ohms must be atated.

Module rit, $30-17,000$ c/s with tweeter, crossover, bafle and inatructions. $\mathrm{E} \mid 3$ Pieme atate 3 or 8 or 16 ohms. Poet 80 p

"BIG SOUND" BAKER SPEAKERS

Robuatiy constructed to atand up to ong.periods of electronic power at used by leading groups and disco Bass Responance $55 \mathrm{c} / \mathrm{B}$
GROUP "25"
121n 30w
£8.95
GROUP "35"
$12 \ln 40 \mathrm{~W}$
3,8 or 16 ohms.

60W 8 or 15 ohms 4,50 with aluminium presence dome GROUP "50" 151 n 70 W £ $19 \cdot 50$

Disco, Group +PA Cablaets in atock
BAKER I50 WATT ALL PURPOSE TRANSISTOR

MIXER AMPLIFIER

Ideal for Groupt, Disco, P.A. and Musical Inatruments. 4 inputs speech and music. 4 way Separate treble and bass controls. ≤ 06 Carr. 50 watt model 449.
NEW 'DISCO 100 WATT' $\Varangle 52$ ALL TRANBISTOR AMPLIFIER CHAB8IS 2 Inputs. $\&$ outputa separate volume treble Carr, is and bass controis. Ideal disco or slave amplifier chassja. WOOD CABINET AVAILABLE $\varepsilon 9$.

PW SOUND TO LIGHT DISPLAY
Complete kit of parte with R.C.S. printed circult Three $1,000 \mathrm{w}$ Practical Wirelest. ≤ 12.50 CABINET extra \&a

GOODMANS CONE TWEETER $18,000 \mathrm{cl} .{ }^{25 W} 8$ ohm. Price $\quad \mathbf{E 3} \cdot 25$

R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Profesaional model. Four inputs. Treble, baso,te olume Controls. Ideal disco, P.A. or groupe. A. A.E. for detalle 5 speaker outputs 185 Suitable carrying case $316=50$.
plus $£ 2.50$ cerr
E,M.I. GRAM MOTOR \& 1.25

120 V or 240 V a.c. $2,400 \mathrm{r} . \mathrm{p}$
70 mA . slze 2.
$23 \times 24 \mathrm{n}$.

1,400 r.p.m. Bpindie sitin dis 20 V version 81 . (Illuatrated) Bize $31 \times 2\} \times 2$ in

NEW BSR HI-FI AUTOCHANGER
Plays 1:in, 10 in or tin recoris Allo or Manual. A high quality unit backed by B8R charantee. with 19 months size 13\} 111 in.
Above motor board 3 in Below motor board $2 \frac{1}{2}$ in With STEREO/MONO
CARTRIDGE.
15.50
10.95
version $515 \cdot 50$
All Post 75p

PORTABLE PLAYER CABINET $\mathbf{~} 4.50$

Modern deaign. Size $16 i n=16 i n \times 7 \mathrm{in}^{\text {Pout } 50 \mathrm{p}}$ rexine covered. Large front grille. Hinged lid. Chrome fittings. Motor board cut for Garrard or BgR deck.

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop, itereo/compat. cartridge Baseplate. 8ize $11 \mathrm{in} \times 8$ jin. Turntable. Size 7 in diamcter. A.c. mains. $220 / 250 \mathrm{~V}$
3 apeeds plays all kize recorda. ©
Two for \& 12 . Post 75p. 4 Post
$45 p$
HEAVY METAL PLINTHS With P.V.C. Cover. Cut out for most
B.B.R. or Garrard decks. 8llvergrey
finish. inish

Poat 75p. Model' ' B^{\prime} '. Size $16 \times 13_{3}^{2} \times 7$ in. 86.95. TINTED PLASTIC COVERS ONLY Sizes: 'A'-14 $\ln \times 12 \operatorname{lin}<4 \frac{1}{1 \mathrm{ln}}, \quad 22-50$. $\cdot \mathrm{B}-20 \ln x$
 Ideal 10 record decks, tapc dec
BAKER HI-FI SPEAKERS high quality-british made SUPERB
12 in 25 watts A high quality loudspeaker its remarkable low cone renonance entures clear reproduction of the deepest basa. Fitted with a special copper drive and concentric treeter cone resulting in full range reproduction with remarkable efficiency In the
upper register. upper register.
Flux Density $\quad 16,500^{25} \mathrm{c} / \mathrm{s}$ Useful response $20-17,000 \mathrm{c} / \mathrm{s}$

£ $16 \cdot 30$ 趿

 AUDITORIUMI2in 35 watts
A full range reproducer for public address, multi-upeaker aytems, electric organs. Ideal for Hi-Pi and Dieco. theques.
Basu Resonance $35 \mathrm{c} / \mathrm{s}$ Flux Density 15,000 tana Useful response $25-16,000 \mathrm{c} / \mathrm{a}$

E $15 \cdot 50$

ISin model 45 watts $\mathrm{E} 19 \cdot 50$. Post 90 p .
BLANK ALUMIINIUM CHA88IS, 18 s.w.g. 2 $6 \ln \times 4 \mathrm{in}, 70 \mathrm{p}, 8 \mathrm{in} \times 6 \mathrm{in}, 90 \mathrm{p} ; 10 \mathrm{in} \times 7 \mathrm{~m}, 11 \cdot 15:$ $14 \mathrm{in} \times 9 \mathrm{in}, 21.50 ; 16 \mathrm{in} \times 6 \mathrm{in}, 21.45 ; 12 \mathrm{in}<3 \mathrm{in}, 87 \mathrm{p} ;$ $16 \mathrm{in} \times 10 \mathrm{in}, 81.70$.

ALUMIDIUIA PARELS, 18 a, $\cdot \mathrm{g} .6 \ln \times 4 \mathrm{in}, 15 \mathrm{p}: 8 \mathrm{~g} \mathrm{n} \times 6 \mathrm{in}$,
 $16 \mathrm{in} \times 6 \mathrm{in}, 45 p ; 14 \mathrm{in} \times 9 \mathrm{n}, 50 \mathrm{p}$; $12 \mathrm{in} \times 12 \mathrm{in}$. 50

TRANSISTOR UNIVERSAL AMPLIFICATION CO. LTD. PHONE 01-672 3137-6729080

(9) MONO DISCO MIXER WITH AUTO FADE

Designed for the discerning D.J. of professional standard. Offering a vast variety of functions. Controls: Mic Vol; Tone, over-ride depth, auto/manual sw; Tape Vol: L \& R Deck Faders; Deck Volume; Treble and Bass; H. Phon Vol Selector: Master Vol On/OHt sw. Max output $3 V$ RMS.
Specification: Deck Inputs- 50 mV into $1 \mathrm{M} \Omega$; Deck Tone Controlstreble total range 36 dB at 15 kHz -Bass total range 36 dB at 50 Hz . Mic input-200 ohms upwards 2 mV Into 22 k . Mic Tone ControlTotal range 40 dB at 15 kHz . Tape input- 100 mV into 200 ohms. Power requirements $20-50$ volts d.c. at 50 mA . R.I.A.A. comp mag inputs available $\mathbf{7 5 p}$ extra.

PANEL SIZE $18 \times 4 \frac{1}{\mathrm{i}} \mathrm{in}$. DEPTH 3 in .
$£ 39.75$

TUAC AMPLIFICATION

Loline 125 watt with sustain 881
Loline 60-watt with sustain $£ 65$
Combo twin 60 reverb $£ 140$
Combo 30 .575
4×12 200-watt cabs $£ 135$
2×12 100-watt cabs $\mathbf{8} 80$
Mini PA Bin $£ 125$
Disco Reflex Cab $£ 95$

STOCKISTS-CALLERS ONLY
Geo Mathews, $85 / 87$ Hurst Streot, Eirmingham (Tel. 021-522 1941) Arthur Salils Lid., 26 Gardner Street (Tel. Brighton 65806)
Bristol Disco Centre, 26 The Promenade, Gloucester Road (Tel. Erlstol 41666)
Socod, 9 The Friars (Tel. Canterbury 60948)
Cookles Disco Centre, 132 West Street (Tel. Crewe 4739)
H.B. Electronics, 54 Montaqu Street (Tel. Kettering 83922

Lelghton Electronics Centre, 59 North Sireet (Tet. Lelghton Buzzard 2316) A1 Music Centre, 88 Owford Electra Centre, 58 Lancsster Road (Tel. Preston 58488)
Luton Dlsco Centre, 88 Wellington Street, Luton (Tel. Luton 411733) Mitchell Etectronics, 64 Winchester Street (Tei, Salisbury 23689) TUAC Sound Centre, 163 Mittham Aoad, Tooting (Tel. 01-672 3413) Mon-Sat. 9.30 a.m.-5.30 p.m.

PRE AMPLIFIERS

VAO8

Designed for use with TUAC power amplifier modules. Extensive research has gone into various wide range tone control circulis to produce superb sound quality. Thousands are already in use in high quality protessional amplification systems.
VAO Vol. Treb. Mid and Bass controls. HI. IMP. FET. UP sultable Mid. Gultar, Radio, Crystal/Ceramic P.U. Sensitivity 4 mV . Treble +35 dB at 16 kHz . Mid $+20-15 \mathrm{~dB}$ at 1 kHz . Bass $+20-10 \mathrm{~dB}$ at ${ }^{9} 4 \mathrm{~Hz}$.
£8.50
VAO6 Vol. Treb, and Bass controls. Sensitivity 8 mV . Treb $+28-15 \mathrm{~dB}$ at 12 kHz , Bass $\pm 18 \mathrm{~dB}$ at 40 Hz .

L7. 50
SVAO8 STEREO PRE AMP Vol, Treb, Mid and Bass controls, I/P sultable, Gultar, Radio, Grystal/Ceramic P.U. Sensitivity 4 mV . Treble +35 dB at 16 kHz . Mid $+20-15 \mathrm{~dB}$ at 4 kHz . Bass $+20-10 \mathrm{~dB}$ at 40 Hz Plus Full Balance Control. Full $1 / \mathrm{C}$ operation supply voltage $\pm 15 \mathrm{~V}$ DC.
£15.00

AMPLIFIER MODULES

(7) TL30 d.C. COUPLED POWER AMPLIFIER MODULE. - Output power 30 watto R.M.S. continuous sine wave into 8 ohme - T.H.D. at full powar 0.5\%

- Signal to noise retlo -85dB
- Input sensilitity y 80 mV Into 年 50 khms - Frequency reaponse $25 \mathrm{H} 2 \mathrm{z}-50 \mathrm{kHz}$
- 8 transistiore. 4 dlodes
£12.50
(11) TL60* $5 \times 5 \times 3$ 3n
- 60 watts R.M.S. continuous sine wave output 2R.C.A. 110 watt 15 amp transiatore
£16:75
TL100* $5 \times 5 \times 3$ in
- 100 watte R.M.S. continuous sine wave outpu:

2 R.C.A. 150 watt 15 amp trancistors
£18:75
TL125* $7 \times 4 \times 3$ an

- 125 watte R.M.S. continuous sine wave output - 4 R.C.A. 150 watt 15 amp output transiatore
£23. 25
Specification on "power modules.
- Rugged layer wound driver transformer
- Short-Open-and Thermal overioad protection
- Only 6 connectlons

All output power ratings $\pm 0.5 \mathrm{~dB}$; Output impedance $8-15$ ohms; THD at full power 2% typically 1\%; Input sensitivity 60 mV into $10 \mathrm{k} \Omega$: frequency response $20 \mathrm{~Hz}-20 \mathrm{kHz}$ $\pm 2 \mathrm{~dB}$; Kum and noise better than -70 dB .

N.A.D.J. 'DISCO 76' EXHIBITION

Bloomsbury Centre Hotel, Coram Street, Russell Square, London

ALL PRICES INCLUDE V.A.T. POSTAGE AND PACKING FREE TECHNICAL INFORMATION: TEL. 01.6723137

TRADE AND EXPORT ENQUIRIES: TEL. 01-6729080

MANUFACTURERS OF ELECTRONIC \& AMPLIFICATION EQUIPMENT

(5) POWER
 SUPPLIES

Vacuum varnish impregnated. Transformers with supply bqard incorporating pre-amp supply: PS 250 for supplying 2 TP125s £28.00 PS $60 / 60$ for supplying 2 TL60s £25.50 £16.75 £15.50 £14. 50 PS 100 ± 43 voits for TL100 PS 60 ± 38 volts for TL60 £9. 75 PS 30 ± 25 volts for TL30 £6. 50

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER-
 4LSMI

- RCA 8A Triacs

1000W per channel
Fuily suppressed and fused
Switched master control for sound operation from 1 W to 125 W Speed control for fixed rate sequence from 8 per minute to 50 per second Full logic Integrated circultry with opticai isolation for amplifier protection Full wave controi

Patents applied tor $£ 18 \cdot 75$
Model 501500 W per channel as above without sound triggering £12. 25

10
 3 CHANNEL LIGHT MODULATOR-S1LMB

- RCA 8A Triacs
ro00w per channel
- Each channel fulty suppressed and fused

Master control to operate from iw to 100 W

- Full wave control
£18.00
- 12 easy connections
(Single Channel Version 1500 Watts $\mathbf{5 9} \cdot \mathbf{5 0}$)
ADD SEQUENCE CHASING AND DIMMING
EFFECTS TO YOUR TUAC 3 CHANNEL LIGHT
MODULATOR
- Speed Conitrol 3 per min. to 10 per sec.
- Full logic integrated circultry
- 9 easy connections ach channel
-9 easy connections
(3)

Sequence Dimmer Modulo- 3SDMI
£13.00
See you on STAND 39
We will be demonstrating our full range daily
Sept. 6-7-8 noon to 9 p.m.

12 STEREO DISCO MIXER

With touch sensitive switching and auto fade
INPUTS: Four identical stereo inputs avaliable with any equalisation. Two magnetic and two Hat supplied as standard. High quality slider control on each channei. Volume, trebie and bass controls for each pair of sliders. Sensitivity mag.. 3 mV (R.I.A.A. comp.). Flat 50 mV at 1 kHz . Bass controis $\pm 18 \mathrm{~dB}$ at 60 Hz . Treble controls $\pm 18 \mathrm{~dB}$ at 15 kHz . OUTPUT: Up to 3 volts (+12 dB) available. Attenuated output for TUAC Power Modules. Rotary master and balance controls. Band width $15 \mathrm{~Hz}-25 \mathrm{kHz}$ $\pm 1 \mathrm{~dB}$.
P.F.L.: Output 250 mV into 8 ohms. Rotary volume control. Monitoring taelilty for alf 4 channels. Solection via touch sonsitive illuminated ewitches. Switched visual cue indicator.

Miscellaneous Faellitles: Two llluminated deck on/off switches. Mains illuminated on/off switch. Auto fade illuminated on/off switch. Mains powered with integral screen and back cover. Complete with fult instructions
Size: 25 in long $\times 6 \ln$ high $\times 3$ in doep

FRONT PANELS FOR LIGHTING EFFECT MODULES
complete with switches, neons and knobs anlluatrated

For sime $£ 6 \cdot 50$

For 4LSM1
£5.50

For S1LMB
comblned with 3SDM1
£7.50

FUZZ LIGHTS

aed oaten blue

 AMBER240 volt A.c. Long Life Cendle Bulb, qevolvIng Reflector, edds a disco lighting effects.

6

£19-50

Suppliers to H.M. Govt. Depts. Manufactured and assembled in Gt. Britain fully tested and guaranteed

TO ORDER BY POST

Make cheques/P.O.s payable to TUAC LTD. (PE9) or quote Access/Barclaycard No. and post to TUAC LTD. (PE9), 119 Charimont Road, London, SW17 $9 A B$. We accept phone orders from Access/Barclaycard Holders. Phone 01-672 3137/9080.

Send large stamped addressed envelope with all enquiries for fully illustrated 12 page catalogue

SYNTHESISERS, SOUND EFFECTS AND

P.E. SYNTHESISER
(P.E. Feb. 73 : 60 Feb. 74)

The well acclaimed and highly versatile large-scale mains-operazed Sound Synthesiser complete wizh keyboard eircuits. All function circuits may be used independently, or interconnected. The greater the number of circuits, the greater the versatility. Other circuits in our lists may be used with she Synthesiser to
good advantage (notably P.E. Minisonic, Phasing Unit,
Wind and Rain Wind and Rain, Rhythm Generazor, Sound Bender. Volzage Controlled Filter, Guitar Effects Pedal).

THE MAIN SYNTHESISER

Stabilised power aupply and one lnverter-all 3 circuits

C12.05
PCB (2 sre required)
Two Ramp Generators and Two Input
Amplifiers
PCB (holds all 4 circuirs)
Sample-Hold and Noise Generator
PCB (holds both circuits)
Tone Contral
CB
Reverberation Amplifier
Sprine Line unit for Reverb. Amp.
Ring Modulator
Pask Level Moter Circuit
PCB zo hold Reverb, Ring Mod and Meter Circuirs
Envelope Shaper
PCB
Voleage Controlled Amplifier and Differential
Amplifier
PCB (holds both circuirs)
THE SYNTHESISER KEYBOARD CIRCUITS
(Can be used withour the Main Synchesiser so make an independent musical instrument)
Two Logarithmic Voltage Controlled
Componene se
PB (holds both circules)
Divider, 2 Hold Circuits, 2 Modulation Amplifiers, Mixar and 2 Envelope Shapers
PCB (holds the first 6 circuits)
PCB for both Envelope Shapers
Keyboard Stabllised Power Supply
Prinzed Circuir Board
GUITAR EFFECTS PEDAL (P.E. July 75)
Will modify an audio signal not only from a zuitar bus from any audio source, producing 8 different switchable effects that can be further modified by manual controls. effects unizs in our range.
Component Set with special foot operated switches
Alternative component set with panel mounting
swirches
Printed
Cirtuit Board
SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper, tremolo, voice-operated Component Set for above functions (excl. 5 Ws) Printed circuit board

PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automacically control the rate of phasing.

WAH-WAH UNIT (P.E. Apr, 76)
63.75

The Wah-wah effect produced by this unit can be controlled manually or by the integral automatic controller
Component Set incl. PCB

POST AND HANDLING

U.K. orders-under $\in 15$ add 25 p plus VAT, over $\in 15$ add 50p plus VAT
Optional Insurance for compensation against loss or damage in post, add $35 p$ in addition to above post and Eire, C.I., B.F.P.O., and other countries are subject to Export postage razes

COMPONENTS SETS include al necessary resistors, eapacitors, semi conductors, potentiometers and srans
 these may be bought separately. Fuller derails of kies, PCBs and pares are shown in our lists.
CIRCUIT AND LAYOUT DIA GRAMS are supplied free with all PCBs desigried by Phonosonics.
PHOTOCOPIES of the P.E. texts for most of the kits are available-prices in ur liszs.
P.E. JOANNA (P.E. May/Sept. 75)

A five-ocrave electronic piano that has switchable alternative voicing of Honky-Tonk piano, ordinary piano, harpsichord, or a mixture of any of the three, zogether soft pedal switching, fast and slow eremolo, loud and power amplifier eypically detivers 24 watts into 8 ohms. The PCBs have been redesigned by ourselves makina improved use of the space available.

Main Power Supply

Tone Generator and Top C Envelope Shaper
PCB for Main PSU, Tone Gen \& Top C E.S.
Envelops Shapers for all notes (except Top C) $\$ 32.16$
Set of PCBs for Envelope Shapers (except Top C)
© 10.40
Voicing and Pre-Amp Circuits
PCB for Voicing and Pre-amp PCB for Power Amp and PSU
RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patzerns from 8 effects
circuizs (high and low bonsos, bass and snare drums
long and short brushes, blocks and soft cymbal), and with
variable time sig natures and rhythm rates. Really fascina-
ting and useful.
Tempo. Timing and Logic circuirs
PCB for above circuits (double-sided)
Componens ser for all 8 effects circuits
PCB for all 8 effects
612.57

Simple mixer (our design) incl. PCB
Alternazive mixer with external volume controls,
incl. $P C B$
incl. PCB
Power Supply for T, T and L, and Effects, incl. (See

A high quality unit having microphone and line inpur
A high quality unit having microphone and line input pre-an
level.
Component Ser (excl. spring unit)
67.55
61.76

Printed Circuit Boar
9 in. Spring
Panel Merer ($50 \mu \mathrm{~A}$) (optional)
WIND AND RAIN UNIT
A manually controlled uniz for praducing the above-
named sounds.
Componene ser incl. PCB
C2.83
P.E. MINIMIX 6 (P.E. Nov./Dec. 75)

Each of the 6 input channels has its own gain, volume and panning controls. The volume of the twin channel ourpurs are fully manually controllable, as are the head. phone and pre-fade monitoring facilities. Twin vu
meters provide visual display of channel audio levels. ideal for use with effects and synthesiser kits.

For details see our lise.

8-INPUT MIXER

A simple mixer having 8 inpurs each of which has a preses level control and which are combined into onie output channel having a preset over-all level conerol and a
master output volume control. Designed for intermaster output volume control. Designed for intercoupling our various sound effects and synthesiser kits.
Component set incl. PCB

25 WATT MONO AMPLIFIER (P.E. Sept. 75)
A good general purpose integrated circuit power amplifier eypically delivering 25 wates into 8 ohms. own bandwidth 20 Hz to $20 \mathrm{kHz}, 3 \mathrm{~dB}$, Input impedance 20 km . Distortion 0.2%. Suitable for use with any of Component Set incl. power supply
Printed Circuit Board
For stereo use two sets and PCBs are required
TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through
Componepth of boost is manually adjustable.
Component Ses incl. PCB
P.E. MINISONIC MK I
(P.E. Nov. 1974 to March 1975)

A portable, battery or mains operated, miniature sound synchesiser, with keyboard circuits. Alchough having slishzly fewer facilities than the large P.E. Synthesiser. the functions offered by this design give it great scope and versatility. Like the large Synshesiser it soo may be advantageously used with other circuits in our lists.

Two Voltage Controlled Oscillators
Voltage Controlled Filter and Voltage Reference Circuit
Two Envelope Shapers and Two Voltage Controlled Amplifiors
63.41

Koyboard Controller and Hold Circuits

Ker

 Keyboard Divider Resistors (select type to suit 3 Octave $£ 1.48$; Octave $£ 1.96$; S Octave $£ 2.44$. H.F. Oscillator and DetectorRing Modulator. Noise Generator and Envelope Inverter
Two Power Amplifiers and Two Mixers
Batzery Eliminator
Temperasure Stabiliser
PCB to hold 2 VCOs, VCF and V-Rer
PCB to hold 2 ESs, 2 VCAs, 2 Mixers, Ring Mod
Keyboard Control and Hold
PCB to hold 2 Power Amps Noise Gen
Envelope tolderter, H.F. Osc and Detector
PCB to hold Batzery Eliminator and Temperature Scabiliser

P.E. MINISONIC MK 2

Conversion kits and PCBs for updating the MK I version are now available. Details in our list.

EMVELOPE SHAPERS

Both of the kits below have manual control over their Artack, Decay, Sustain and Release functions. Both kizs
include PCB (VCA means Voltage Controlled Amplifier) Envelope Shaper and VCA (P,E, Apr. 76) 65.43
Envelope Shaper (without VCA) (P.E. Oct. 75) 44.11
VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during "'s
over"-particularly useful for Disco work or for he
movie shows.
Component Ser incl. PCB
63.05

Voltage controlled filter (P.e. Oct. 74)
An independently designed VCF that can be used with
the P.E. Synthesiser
Component Ser
63.41

Printed Circuir Board
E1.25
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. An LED monitor cleafly displays all beat note adjustments. Ideal for tuning acoustic and electronic musical instrumenes alike.
Main Component Set incl. PCB
614.22

Power Supply set incl. PCB
46.57

P.E. SYNCHRONOME (P.E. Mar. 76)

An accented-beat electronic metronome, providing duple, triple and quadruple eimes with full control over the beat rate. Can also be used as a simple drum-beat rhythm generator. Includes power supply. Component Set incl. Ioudspeaker
$\subset 10.20$
Pringed Circuit Board
\&1.70
PEAK LEVEL INDICATOR (P.E. Mar. 76)
A twin-channel visual display unit for monitoring the peak level of audio signals. Well suized for use when inter-coupling our many sound producing kits so halp avoid signal over-loading.
Component Set incl. PCB (as published)

VAT
Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export orders).

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payby International Money Order or through an Englist by International Money Order or through an English
Eank. To obtain list for Europe send 20 p , for other countries send 40 p .

OTHER PROJECTS

PHOTOGRAPHS in this advertisement show swo of our units containing some of the P.E. projects built from our some of the P.E. projects built from our
kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is available.
LIST-Send Stamped Addressed Envelope with all U.K. requests for free list giving fullor details of $P C B s$, kits, and other components.
OVERSEAS enquiries for list: Europesend 20p; Other Countries-send 40p.

KEYBOARDS AND CONTACTS

Kimbor-Allen Kerboards as required for many published cirsuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesiser. The manufacturers claim that these are the finest moulded plastic keybords available. Alloctaves are C to C. The keys are plastic, spring-loaded and mounted on 2 robust aluminium frame.
3 Octave (37 notes) $£ 20-50$. 40 Ct (49 notes) $£ 23.50$, 5 Oct (61 nores) $\in 27$

Contact Assemblies for use with above keyboards: Single-pole change-over (type DP) as for P.E. Synthesiser. Special contact assembly (eype 4PS) having 4 poles, 3 of which are normally-open make-break contacts and the fourth is a change-over contact Whis special assembly enables THE SAME KEYBOARD to be used with the P.E. Synthesiser, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost of more than one keyboard.

PRINTED CIRCUITBOARDS for use with the above contacts and thus eliminating most of the inter-wiring required, are available. Details in our lists.

SOUND-TO-LIGHT (P.E. Apr./Aug. 71)
The ever-popular Aurora- 4 or 8 channels each responding so a different sound frequency and controlling its own light. Can be used with most audio systems and famp intensities. A MUST for any Disco, and a fascinating visual display for the
4 Channel Component Set (excl, thyristors) Channel Component Set (excl. thyristors) PCB for 4 frequency channels
PCB for power supply and 8 lamp drivers
iA 400 V thyristors (1 per chan. req.) each ,Panel meter ($1 \mu \mathrm{~A}$) (optional)

£6. 20
plus 80p packing and surface post anywhere in the world.

Payments may be made In foreign currencies.

Quantity discounts available on request.

VAT zero rated

3-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76)
A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. Includes power supply, thyristors, and by-pass switehes.
$\$ 11.36$
BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that, with the use of other external equipment, can serve as lie-detector, alphaphone, cardiophone etc.
Pre-Amp Module Component Set incl. PCB
Basle Output Circuite-combined component set with PCBs, for alphaphone, cardiophone, frequency meter and visual feed-back lamp-driver circuits Audio Amplifier Module Type PC7

TAPE NOISE LIMHTER
Very effective circuit for reducing the hiss found in most sape recordings. All kits include PCBs.
Superior Tolerance Sot of Components Regulated Power Supply (will drive 2 sets)
62.60
63.22

SINE AND SQUARE WAVE GENERATOR (P.E. July 75)
Suitable for audio, digital, or general purpose. Controllable ation throush 10 ranges from 10 V to 1 mV peak-to-peak Component Set
PCB for above components
Power Supply
PCB for Power Supply
68.88
61.60
4.70
960

NEW GUITAR EFFECTS UNIT

Practical Electronics, August, 1976
Details in list
SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home constructor. White stocks last.
Set of resistors, capacitors, semiconductors, potentiometers, makaswitches and PCB
Panel meter ($500 \mu \mathrm{~A}$)
PHOTOPRINT PROCESS CONTROL (P.E. Jan./Feb. 72)
For colour and B \& W, and indispensible dark-room unit for finding exposure, controlling enlarger timing, and stabilising mains voitage. While stocks last
Component Set (excl. meter) $\quad \in 10.72$
Panel Meter (1 mA)
TREMELO inc. P.C.B. $£ 2.85$
FUZZ UNIT inc. P.C.B. $\quad 1 \cdot 80$
PAICES ARE CORAECT AT TIME OFPRESS. E. \& O.E.

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones,

television, automotive instrumentation.
Each of the 6 volumes of this self-instruction course measures $11 \frac{3^{\prime \prime}}{} \times 8 \frac{1^{\prime \prime}}{4}$ and contains 60 , pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

Also available-s more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

E4-20
plus 80p P. \& P.
Offer Order both courses for the bargaln price $\mathbf{5 9 . 7 0}$, plus 80 p P. \& P.

Designer Manager Enthusiast Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digitai Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

To: Cambridge Learning Enterprises (Dept. ENG)
FREEPOST. St. Ives, Huntingdon, Cambs. PE17 48R
*Please send me....set(s) of Design of Digital Systems at $£ 7.00$ each, p \& p included
*or....set(s) of Digital Computer Logic and Electronics at $£ 5.00$ each, p \& p included
*or . . . combined set(s) at $£ 10 \cdot 50$ each, p \& p included
Name
Address

1 "delete as applicable
No need to use a stamp-just print FREEPOST on the enveiope. PEg

Handy size Reels \& Dispensers

OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

SAVBIT
handy solder dispenser

Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times
Size 5 39p
For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC 115 provides 6.4 metres approx. of 0.71 mm solder fo fine wires, small components and printed circuits.
PC115 50 p
Or size 19A for kit wiring or radio and TV repairs
2.1 metres approx. of 1.22 mm solder.

Size 19A 43p

handy size reels of SAVBIT, These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. "Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.					
Ref.	Alloy	Diam. mm	Length metres approx	Use	Price
${ }_{3}$ Size	$\begin{aligned} & 40 / 60 \\ & \text { Tin/Lead } \end{aligned}$	1.6	10.0	For economical general purpose repairs and electrical joints.	$\Sigma 1$.
Size_{4}	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	$£ 1.99$
$\begin{aligned} & \text { Size } \\ & 10 \end{aligned}$	60/40 Tin/Lead	0.7	39.6	For fine wires, small components and printed circuits.	£1.49
Size 12	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	81.49

and cable in seconds. Model $88 \mathbf{8 6 p}$

SOLDERWICK
 Absorbs solde instantly from tags, printed circuits etc. Only needs 40-50 Watt soldering iron. Quick and easyto use. Non-corrosive.

Sole U.K Sales Concessionaires
Prices shown are recommended retail,'inc. VAT From Electrical
:ib Mi-Fi Accessories Limited,
Kelsey House, Wood Lane End. Hemel Hempstead. Herts. HP2 4RO
and Hardware Shops. In difficulty send direct, plus 15 p P\&P. Prices and specifications subject to change without notice.

Make light work of wiring with the NETW
 Whesthris

Countless uses in industry and offices *QUICK AND EASY TO APPLY -

EVEN IN AWKWARD PLAGES * SAVES dAMAGE TO WOOD AND PAINTWORK *STICKS ON INSTANTLY : HOLDS WIRE FIRMLY You'll save enormous time and trouble with the new Brandauer adhesive staple. Just peel off the backing strip and press staple into place. Then bend clips over to hold wire firmly in position. No messing with pins, tacks, soldering or drilling. No damage to woodwork, e.g. skirting boards. Use the Brandauer Staple for any wall, frame or cabinet wiring jobs - it's wonderfully easy for fitting in those awkward corners.

Send now for details to:
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 Piccadilly, London WIV OHL. Tel:01-629 9556.

DISCOUNTS

THESE DISCOUNTS APPLY TO TOTAL OF ORDER - SPECIALS INCLUDED 10% OFF ON ORDERS OVER £15
15% OFF ON ORDERS OVER £50
arge quantity pricinc avallable on request
PLEASE SPECIFY ITEM AND QUANTITY

SYETM~HOTIUUTVRS TRANSISTORS
 BRAND NEW FULLY GUARANTEED

Abstract

Type Price为 TYP AFI7 $A F$ $A F$ $A F$ $A F$ $A F$ $A L$ $A L$ $B C$ $B C 1$ $B C$ $B C 1$ $B C 1$ | BF137 BF198
 BF118
 BFI52 BF153
 BFI54
 BF155
 BF156
 BF157 BF158
 BFI59
 BF173
 BF176
 BF 180
 BF181
 BF194
 BF195
 BF197
 BF198
 BF199
 BF258
 BF259
 BF262
 BF263
 BF274
 BF272
 BF273
 BFX29
 BFX84
 8 8×85
 ${ }_{8} \mathrm{~F}^{886}$
 $8 F \times 87$ $B F \times 88$
 BFY50
 BFY51
 BFY52 |
| :---: |

\section*{SUUPER_UNTESTED PAKS} $\begin{array}{ll}\text { Ul } \\ \text { U } & 120 \text { Glass Sub-min. General purpose Germ. diodes }\end{array}$ U $4 \quad 30$ Germanium transistors like OC81. AC128

60200 mA sub-min. silicon diodes 20 PNP Sil. planar trans. TO-5 like 2N1932, 2N2904 U15 20 NPN Sil. planar trans. TO-5 like 2N696. 2N697 31920 Silicon NPN transistors like BC108 U26 30 Fast switching silicon diodes like IN914 Micro-Min U29 101 Amp SCR s TC-5 Can. up to 600 CRS/25-600 U32 U36 20 7 U45 7 3A SCR. TO66 up to 600 PIV U46 20 Unilunction transistors sumitar to TIS43 Code NO NPN Sil, power transistors like 2N3055 in the No stentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked.

Price	Ty	Price	Ty	Price			
-1. 46	BFY53	- $0 \cdot 13$	0 C 75	**-16			
- 71	BSY19	-9.1岳	0 O 76	* ${ }^{\text {ct }} 18$			
- $0 \cdot 7$	BS $\times 20$	- ${ }^{-15}$	$0 C 77$	* 26			
$0 \cdot 55$	BSY25	* 16	\bigcirc C89	*-16			
- 46	BSY26	-0.18	$0 \mathrm{C81D}$	*-15			
$0 \cdot 45$	BSY27	* $\cdot 18$	0 Ca 2	"0.16			
- 7	BSY28	* 15	0 C 82 D	- 0 -15			
- 0.4	BSY29	*-18	\bigcirc C83	-0.24			
*0.58	BSY38	* 11	OC139	-1.20			
- 55	BSY39	*-19	OC140	* 0.23			
d. 1	BSY40	-0.23	OC169	-4.28			
*- 15	BSY41	* $0 \cdot 29$	OC170	- $0 \cdot 2$			
- 36	BSY95	* $* 13$	0 C 171	-0.28			
- $0 \cdot 31$	BSY95A	- -13	OC200	- ${ }^{-1} 26$			
- $\cdot 31$	BU105	-1.0	OC201	- $3 \cdot 2$			
- 0.31	MJES21	- 0 : 56	OC202	* ${ }^{\text {c }} 2$			
- 10	MJE2055	* $0 \cdot 8$	OC203	4.85			
- 11	MJE3055	* +57	OC204	- 4.25			
- 22	MJE3440	* $\cdot 51$	0 C 205	${ }^{-1} \cdot 3$			
- 12	MPF102	* $\cdot 23$	0 OP 71	* ${ }^{-14}$			
- 12	MPF104	- $0 \cdot 28$	ORP12/				
- 12	MPF105	-0.28	NSL4931	-8.45			
* 21	0 O 19	* 0.35	ORP60	-8. 41			
-8.31	${ }_{0} \mathrm{C} 20$	*-80	ORP61	-1.41			
* 0.46	0 O 22	$0 \cdot 47$	TIP29	$0 \cdot 4$			
e. 56	0 O 23	-0.43	TIP 30	-0.45			
- 58	0 C 24	4.57	TIP31A	* 0.52			
*. 35	$\bigcirc \mathrm{C} 25$	-0. 38	TIP32A	* 60			
- 31	0 C 26	*9.38	TIP41A	* $\cdot 5$			
- $\cdot 31$	0 C 28	-8. 0^{5}	TIP4EA	* 0.72			
- 35	0 C 29	- $0 \cdot 0$	TIS43	* $0 \cdot 25$			
- 38	${ }^{\circ} \mathrm{C} 35$	-0.45	UT46	- 20			
*-25	OC36	$\cdot 0 \cdot 51$	ZTX107	- 07			
-0.18	0 O 41	-0.23	$2 T \times 108$	- 07			
$40 \cdot 25$	OC42	-0. 25	ZTX109	0.07			
- 22	0 O 44	-1. 15	2 TX300	- 07			
-0.22	$0 \mathrm{OC45}$	- 3.13	Z TX500	$0 \cdot 09$			
-0.22	0 C 70	-0.10	2N696	* $0 \cdot 10$			
48.13	$0 \mathrm{OC7}$	-0.10	2N697	*0. 11			
-0.13	0 O 72	-0. 15	2N698	*0. 20			
- 13	0 C 74	$\cdot 0.15$	2N699	* $0 \cdot 38$		Type Price	Type Price
:---	:---	:---	:---				
2N706		$\begin{array}{cc}\text { Type } & \text { Price } \\ \text { 2N2646 } & -3.34 \\ \text { 2N2904 } & 0.14\end{array}$					

Type Pric* 2N706A * 0 . 6
2N708
2N914
2N214 © \quad-11
$2 N 2901$
$2 N 290$
$2 N 290$
2N29
2N2
2N2
$\begin{array}{ll}\text { 2N1134 } & 18 \\ \text { 2N1132 } & 18 \\ \text { 2N1302 } & 15\end{array}$

2N20
2N20
2N29
2N20
2N2
2N2
$\begin{array}{ll}2 N 1308 & -24 \\ 2 N 1309 & -24 \\ 2 N 1613 & 0.15\end{array}$

SIL.G.P.DIODES

300 mW 400 PIV (min) SUB-MIN FULLY TESTED Ideal for Organ builders
30 tor ${ }^{*} 50$ p, 100 for $=\$ 1.50,500$ for $* 55$

2 Amp 6 Amp 10 Amp	$\begin{aligned} & \text { Case } \\ & \text { TO5 } \\ & \text { TO66 } \\ & \text { TO48 } \end{aligned}$	$\begin{aligned} & 100 \mathrm{~V} \\ & * 0.31 \\ & * 0.51 \\ & * 0.77 \end{aligned}$	$\begin{aligned} & 200 \mathrm{~V} \\ & * 0.51 \\ & * 0.61 \\ & * 0.02 \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & * 0.71 \\ & * 0.77 \\ & * 1.12 \end{aligned}$

GP300

115 WATT SILICON TOZ METAL CASE Vebo 100 V . Vceo 60V. IC 15A. Hfe. 20-100 suitable replacement for 2N3055. BOY11 or BDY20.
$\begin{array}{r}25-99 \\ \text { *4 } \\ \hline \text { p }\end{array}$

GP Switching Trans

TO18 SIM. TO 2N706. 8 BSY27/28/95A
All usable devices. No open and shorts. ALSO AVAIL-

When ordering please state NPN or PNP
-WORLDSCOOPIT
JUMBO SEMICONDUCTOR PAK
Transistors-Germ. and Silicon
Rectifiers-Diodes Triacs-Thyristors-i. C. s and Zeners
ALL NEW AND CODED
(
ZENER DIODES

HANDBOOKS

TRANSISTOR DATA BOOK
OTE +227 Pages packed with intormation on European Transistors. Fuh specifleation including outlines.
TRANSISTOR EQUIVALENTBOOK Price $+£ 2.95$ each BPE 75256 Pages of cross references and aquivalents prehensive equivaients book on the market today and has an introduction in 13 lanGUages EQUIVALENT BOOK
DE 74144 Pages of cross references and equivalents for European, American and Japanese diodes, Zeners. Thyristors. Trlacs. Diacs and L,E.O. s.

Price +51 - 28 each THE WORLD'S BROADCASTING STATIONS WBS 75 An up to the minute guide for those broadcasters on SW, MW and LW, as well as European FM/TV stations.
THL DATA BOOK
DIC 75 Now complete Data book of 74 series TTL (7400-74132). Covering 13 main manugives full data as well as equivalents.

Price +53. 74 each A full range of technical books available on reques

Postage and Packing add 25 p unless otherwise shown. Add extra for airmail. £1 minimum order.

PIV	$\begin{aligned} & 300 \mathrm{~mA} \\ & (\mathrm{DO} 7) \end{aligned}$	$\begin{array}{r} 750 \mathrm{~mA} \\ \text { (SO } 16 \text {) } \end{array}$	1 Amp Plastic		$\begin{aligned} & 1.5 \mathrm{Amp} \\ & \text { (50 } 16 \text {) } \end{aligned}$	3 Amp (SO 10)	10 Amp (SO 10)	$\begin{aligned} & 30 \mathrm{Amp} \\ & \text { (TO 48) } \end{aligned}$
50	0.05*	$0.06 *$	in4001	0.05*	0.07^{*}	0.14°	0.19*	0.56*
100	$0.05 *$	$0.07 *$	IN4002	0.06*	$0.09 *$	0.16*	0.21 *	0.69**
200	0.06*	$0.09 *$	IN4003	0.07*	0.12**	$0 \cdot 20$	0.23*	0.93*
400	0.07*	$0 \cdot 14 *$	IN4004	$0.08 *$	0.14*	$0.28{ }^{\text {* }}$	$0.35 *$	1-25*
600	0.08**	$0.15{ }^{*}$	IN 4005	0.09*	0. 18**	0.33*	0.42*	1.76"
800	0.11*	0.18*	1N4006	0.10*	0.10*	$0.35 *$	0.51*	1.94*
1000	0.13*	0.28*	IN4007	0.11*	0.23**	0.44*	0.60"	2.31*
1200	-	0.32*			0.28*	$0.54 *$	0.69*	2.88*

Type	1	25	$100+$	Type	1	25	$100+$	Type	1	25	$100+$
7400	- 0	- 0	- 00	7448	- 10	- 71	3.75	74122	- 53	- 4 4	- . 45
7401	- 10	- 0	$0 \cdot 08$	7450	- 12	- 11	$0 \cdot 10$	74123	- 58	- 58	- 54
7402	- 11	- 11	- 0	7451	- 12	- 111	$\cdot 10$	74141	- 5	- 5	- 5
7403	- 11	-1 10	- 0	7453	0.12	- 11	-10	74145		- 0.8	- 3
7404	- 13	- 12	- 11	7454	0.12	- 11	- 10	74150	E1. 3	\&1.25	81.20
7405	. 13	-12	- 11	7460	- 12	- 11	- 16	74151	- 76	- 74	- 72
7406	$0 \cdot 25$	- 24	$0 \cdot 23$	7470	- 25	- 24	- 23	74153	- 95	- $\cdot 93$	- $\cdot 1$
7407	- 25	- 24	- 23	7472	- 22	- 21	- 20	74154	E1.53	c1.45	E1.40
7408	- 15	- 14	- 13	7473	- 25	- 24	- 22	74155	- 6	- 76	- 76
7409	- 15	- 14	- 13	7474	- 27	- 25	- 23	74156		- 76	- 7
7410	9.0	$0 \cdot 0$	- 9t	7475	- 43	$0 \cdot 44$	0.44	74157	- 0	0.63	- 71
7411	- 23	- 22	-21	7476	- 25	- 24	- 23	74180	E1-0		
7412	- 28	- 0.25	-24	7480	$0 \cdot 50$	- 48	- 40	74161	E1.04		
7413	- 21	0.26	-25	7481	E1.02	$1 \cdot 0$	$0 \cdot 98$	74162	E1-4	-	
7416	- 28	- 27	- 24	7482	- 03	- 81	- 7	74183	Efen	$0 \cdot 1$	
7417	- 23	0.27	- 2 2	7483	- ${ }^{\text {d }}$	-	- 4	7414	E1-25	E1-20	E1-15
7420	- 12	- -11	-18	7484	$0 \cdot 8$	- ${ }^{\text {e }}$	- ${ }^{\text {c }}$	74165	E1-25	[1-2	ET-15
7422	-	0.17	- $2 \times$	7485	E1. 25	E1. 20	¢1.15	74166	E1.4	51.44	81.39
7423	- 34	- 28	-28	7486	- 32	- 30	- 2	74174	- 5	0-95	
7425	- 30	$0 \cdot 28$	0.24	7489	22.0	2. ${ }^{2}$	¢2.70	74175	$0 \cdot$ - 0	-. 93	
7426	-. 30	- 28	- 2.2	7490	- 37	- 35	. 33	74176	E1.14	[1-11	
7427	- 39	- 28	$0 \cdot 21$	7491	- 0	- 3 S	- 56	7417	E1-14	81-11	$E 1$.
7428	- 42	- 21	- 36	7492	- $\cdot 43$	- 42	- 41	74180	51.10	E1-11	E1-5
7430	- 12	- 11	-14	7493	0.43	0.42	- 41	74181	52.4	E1.so	E1.0
7432	- 30	- 28	- 21	7494	- 43	. 42	- 41	74182	- 0	-	- 88
7433	- 38	- 37	- 35	7405	$0 \cdot 70$	- 6	-	74184	51.67	81.42	E1.5
7437	- 30	- 21	- 23	7496	-68	-	- 4	74190	51.54	S1.45	E1-4
7438	- 34	- 26	- 26	74100	E1.05	-	0.48	74101	E1.51	81.45	51-40
7440	- 12	- 11	- 10	74104	- $\cdot 40$	- 3 3	- 31	74102	E1-15	E1-10	5 Ec
7441	0.4	- 82	- 6	. 74105	0.40	- 3 3	- 36	74103	E1.15	E1-10	E1.05
7448	- 4	- 63	- 61	74107	- 3	- 34	- 32	74194	21.15	E1-10	E1-0
7443	51.10	E1-65	E1.00	74110	- 5 ¢	- $5 \cdot 5$	- 32	74195	- 0	- 73	- 7
7444	51.16	E1.05	E1.00	7411	$0 \cdot 63$	- 1	- 79	74196	E1.0	-	- 0
7445	$\text { - } 0$	- $0 \cdot 0$	c- 85	74118		- 新	0.	74197	E1.0	- +	
7448	E1-10	E1.05	Et-0	7419			E1.15	74198	E2.10	$\mathrm{EL} \cdot \mathrm{C}$	
7447	- $\cdot 7$	- ${ }^{5}$	- 6	74121	- 2.2	- 26	- 25	74199	$51 \cdot 0$	£1-*	21-5

Devices may be mlxed to qualify for quantity price. (TL 74 serles only), Data is available for the above serles of I.C.'s In bookiet form. PRICE 35p.

DTL 930 Series

Type		$\begin{aligned} & \text { ifties } \\ & 25 \end{aligned}$	$100+$	Type		$\begin{gathered} \text { thie } \\ 25 \end{gathered}$	
BP930	- 14	0.13	0.13	BP944*	-15	0.14	0.93
BP932	0.15	0.14	0.13	BP945	- 23	- 24	0.23
EP933	- -15	0.14	0.13	BP946	- 14	- 13	-12
BP935	- 15	- 14	-13	BP948	0.28	0.2 2	0.23
BP936	- 15	C-14	0.13	BP951	0-65	- 60	- 36

\star D/L Sockets

```
BPS8 8 pin type (low cost) BPS14 14 pin type (low cost) \(\begin{array}{lll}.14 & 0.12 & 0.10\end{array}\) BPS18 18 pln type (low cost) .18 0.14 0.12 BPS24 24 pin type (low cost) \(\quad 0-35 \quad .33 \quad e .30\)
```


Type Quantliles BP962 BP9083 BP9003 8P9097 8P9098 \star Voltage Regulators
TO. 3 Plaste Encapsulation uA. $7805 / \mathrm{L} 1295 \mathrm{~V}$ uA.7812/L130 to MVR5V) $\boldsymbol{\epsilon 1 - 2 5}$ (equlv, to MVR12V) E1.2s uA. $7815 / \mathrm{L} 13115 \mathrm{~V}$
(equiv. to MVR15V) $£ 1 \cdot 25$ 4 A. 781818 V
(equiv. to MVR18V) $\boldsymbol{\kappa}^{1 \cdot 25}$
Fownew
2NSzis NPN to 3 Plastic Power VCE 50v. VCE 60v P 36w. Ic 4A
hFE $30-120$ hFE 30
ONLY
£1-50*

Bring 'scope'to your interest.

'There's only one way to master electronics... to see what is going on and learn by doing.'

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1Bulld an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and understand circult diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and count less other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circults.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full detais'of enrolment Write to:- British National Radio \& Electronics School, P.O. Box 156, Jersey, Channel Islands.
\qquad
\qquad
NAME ADDRESS \qquad

TAPPING THE GLASS

ONE of the earliest indications of a positive recovery trend in economic affairs should be a resurgence in business amongst the makers of electronic capital equipment. In general, any re-equipping and modernising of factories implies extensive use of electronic products, whether in the form of computers, machine tool and process control systems, or multifarious instruments and devices for equally multifarious uses. Investment in such capital equipment is an essential prelude to the economic miracle we all fervently await.

Thus the fortunes of a sector of the electronics industry are, in a sense, a barometer of the national economic condition. The current reading based largely on comment heard at some trade exhibitions earlier this year is set "Fair". Probably nothing more definite can be interpreted at this stage in our affairs, but this is a reasonably happy state and, in comparison with 12 months ago, gives cause for hope.

But it will take time for any recovery to work its way through to all strata of the economy. In the electronics consumer area for example, home entertainment products are still in the doldrums and may remain there for some time to come. The reduction in the rate of VAT has done little, it appears, to alleviate the general shortage of cash in the pocket. The long hot summer has aggravated the situation, of course.

When the consumer market revives this will be taken as a sure sign of national recovery. Yet it may not herald a full and complete recovery in the U.K. electronics industry, for it cannot be assumed that the home industry will reap most of this trade. On present form, overseas competitors, especially those in the Far East, are set to capture a large and it is feared ever increasing share of the radio, television and audio market.

The real threat to the future of our own electronics industry must not be ignored. Already we have seen the colour tube manufacturing capacity of the U.K. drastically cut, with the resultant loss of self-sufficiency and of jobs, because of the great influx of Japanese television sets. This could extend to other types of components. Our component industry exists essentially to supply the needs of our set and equipment makers. If the latter are hit by increasing imports, our component makers likewise suffer. Any diminution in range or quantity of components made could in turn seriously affect all other parts of our electronics industry including the makers of capital goods. Naturally, any weakening here would give greater opportunities for overseas competitors to get a foothold in that most valuable sector of U.K. electronics which has an eminent position, often leading the field worldwide.

The home constructor's personal interest in the components situation is self-evident.

What is the answer-higher tariffs or some form of limitation of imports by quotas? The latter course has been strongly advocated by Jack Akerman, Managing Director of Mullards, the largest electronic component manufacturers in Britain. It has to be faced that the average person will not take kindly to any restriction on his access to cheaper goods, no matter that they could mean in the long term the death knell for the British electronics industry. Such defensive action by the Government thus seems unlikely. But something so basic to modern life as the electronics industry must somehow be protected so that it can perform its rightful role in the vanguard of our economic affairs and be widely recognised as a genuine barometer of national prosperity.
F.E.B.

Editor

F. E. BENNETT

Editorlal

G. C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
R. W. LAWRENCE, B.Sc

Art Dept.

J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Editorial Offices:
Fleetway House, Farrington St.
London EC4A 4AD
Phone: 01-634 4452

Advertisement Manage ${ }^{\text {an }}$
D. W, B: TILLEARD

Phone: 01-261 5148
P. J. MEW

Phone: 01-261 5190
C. R. BROWN Classified

Phone: 01-261 5762
Advertising Offices:
King's Reach Tower, Stamford Sì. London SE1 9LS

cross-hach H. ${ }^{2}| |$

 Generator

 Generator By A.A. BIRCH

 By A.A. BIRCH}

THE cross-hatch generator is primarily intended for use when correcting colour television receiver convergence errors. However, the generator's usefulness extends to geometry correction of both colour and black and white 625 -line receivers. In the design to be described, the squares of the cross-hatch pattern have a height to width error of less than I per cent.

BLOCK DIAGRAM

Referring to Fig. la, the heart of the cross-hatch generator is a master oscillator, the output of which is applied to a series of dividers shown in more detail in Fig. 1b. Four frequencies are derived which correspond to the vertical and horizontal components of the cross-hatch video, and also line and field sync. The
mark-space ratios of each of these four waveforms are set by means of timing circuits consisting of $\mathbf{C / R}$ differentiators and integrators. Further timing circuits derive line and field blanking pulses which along with the four waveforms previously mentioned are applied to a system of gates. The resulting two waveforms, "mixed and blanked video" and "mixed sync", are themselves mixed in the video/sync mixer. Finally, the composite video waveform thus produced is used to modulate a u.h.f. carrier.

CIRCUIT OPERATION (Fig. 2)

The master oscillator is formed using two of the six inverting amplifiers in the CD4069 package, IC4a and IC4b. The frequency of this oscillator is adjusted by

Fig. 1a، Block diagram of the cross-hatch generator

means of VR1, SET SYNc, and is normally 625.0 kHz . The rounded square wave at pin 10 of IC 4 b is applied to the input of a seven-stage binary counter (only the first five stages are used). The first stage acts as a buffer, providing a more square waveform at half master oscillator frequency at the output Q1. The differentiator formed by C4, R8 and IC6a converts the 312.5 kHz , one-to-one mark space square wave to narrow positive-going pulses of approximately 400 ns in duration. These define the width of the vertical lines in the cross-hatch pattern. The 2nd, 3rd, 4th and 5th stages in IC1 are arranged to divide by ten. D1, D2 and R2 form an AND gate which detects the binary number 1010 (decinal 10). At this instant the logical 1 is buffered by IC5a and used to reset the counter to
zero. The logical 1 falls to zero as the counter resets, and a fast positive pulse results. These pulses occur every $32 \mu \mathrm{~s}$, the duration of each pulse is equal to the sum of the propagation delays in the loop circuit.

MONOSTABLE

Inverters IC4c and IC4d plus associated components form a monostable with a time constant of approximately 48μ s, i.e. $1 \frac{1}{2}$ times the input pulse rate. The monostable thus acts as a divide-by-two stage, the output frequency being 15.625 kHz . This is applied to the differentiator formed by C5, R11 and IC4e. The resulting compressed pulses are $4 \mu \mathrm{~s}$ in duration at line frequency. These are line sync pulses. The 15.625 kHz waveform is also applied to the input of the counter IC2, again only the first five stages of this binary counter are used. The counter is arranged to divide by 21 by the detection of the binary number 10101 which initiates reset pulses in the same way as IC1.

Fig. 1b. Basic arrangement of the frequency divider chain

Fig. 2. Circuit diagram of the complete cross-hatch generator

In this instance, the reset pulses are fed back to the counter via D9, one input of the OR gate formed by D8, D9 and R6. The reset pulses are integrated by C3, R7 and IC5c. The result is a train of stretched pulses, each approximately $60 \mu \mathrm{~s}$ in duration occurring every 1.34 ms , i.e. one line scan width every 21 lines. These pulses form the horizontal component of the cross-hatch video. The output of the NOR gate IC6a consists of mixed video (horizontals plus verticals), the pulses are negative-going.

DIVIDERS

The first ten stages of IC3, a 12 -stage binary counter, are used to provide a divide-by-625 function. R10, combined with the input capacitance of IC3, serves to increase the loop propagation delay and thus broaden the reset pulses. The latter are thus more easily stretched by the integrator C7, R13 and IC5e to approximately $300 \mu \mathrm{~s}$. These pulses are at 20 ms rate and "are the field sync pulses. Line and field sync
pulses are or gated together at the inpùt of TR1. Integrators C6, R12, IC6b and C8, R14, IC5f further stretch the line and field sync pulses respectively to form line and field blanking pulses which are combined in IC6b and inverted by IC6c. The positive-going mixed blanking pulses applied to pin 13 of IC6d inhibit the passage of video through IC6d during the blanking periods. Mixed and blanked video is taken via R17 to TR1 collector. TR1 forms the video/sync mixer. Its function is to invert the sync pulses relative to the video, and convert the voltage levels giving a 70 per cent video to 30 per cent sync ratio. This composite video waveform modulates theu.h.f. oscillator transistor TR2 via its emitter. The modulated u.h.f. carrier is picked off the emitter circuit by L3 and taken to the coaxial output socket SK1.

Returning to the field-frequency reset ,pulses appearing at IC5d pin 6, these are also used to synchronise the counter IC2 via D8. This ensures that the horizontal lines in the cross-hatch pattern occur in the same relative position in every field.

CONSTRUCTION

A printed circuit board (see Fig. 3) is necessary for this project as the u.h.f. oscillator can most easily be fabricated in this form. The oscillator components are soldered directly to the copper areas on the under side of the p.c.b., see Fig. 4b. No holes are required to be drilled in this area. A screening can is mounted over the u.h.f. oscillator components. A double-sided p.c.b. is required not only to help produce a more condensed and tidy unit, but also to provide an unetched area of copper to complete the screening for the u.h.f. oscillator. This copper screening on the top side of the board also prevents any movement of the battery from detuning the oscillator. Layout of the remaining parts of the board is not excessively critical, therefore deviation from the p.c.b. design or specified components is most likely to result in mechanical rather than electrical difficulties.

Having produced the p.c.b., assembly should start with the 46 through connections; these are represented

Potentiometer
VR1 $50 \mathrm{k} \Omega$ linear ${ }^{\frac{3}{4} \mathrm{jn}}$ multiturn cermet (RS Components)

Capacitors

C1 10 pF 63 V sub. min. plate ceramic
C2 1 nF 250 V MKM polycarbonate C3 1 nF 250 V MKM polycarbonate C4 47 pF 63 V sub min. plate ceramic C5 $\quad 100 \mathrm{pF} 63 \mathrm{~V}$ sub min. plate ceramic C6 $\quad 100 \mathrm{pF} 63 \mathrm{~V}$ sub min. plate ceramic C7 1 nF 250 V MKM polycarbonate C8 10 nF 250 V MKM polycarbonate C9 10pF 63 V sub min. plate ceramic C10 47 pF 63 V sub min . plate ceramic
C11 10 nF 100 V Wee-C ceramic
C12 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ bead tantalum elect
Note: MKM polycarbonate capacitors are available from Electrovalue Ltd. Remainder from RS Components (access through Doram)

Semiconductors

D1-D20	1N914 (20 off)
TR1	BC109
TR2	2N3663
TC1	CD4024AE
IC2	CD4024AE
IC2	CD4040AE
IC3	CD4069BE
IC4	CD4010AE
IC5	IC6

Miscellaneous

Plastic instrument case, $150 \times 80 \times 50 \mathrm{~mm}$ (RS Components, Inst. Case Code 509-591-or available with transparent top from Vero Electronics Ltd. Code 90-30-081)
Double sided copper clad fibreglass laminate, $142 \times 72 \mathrm{~mm}$ ($5.6 \times 2.85 \mathrm{in}$)
Slide switch d.p.d.t. (RS Components)
Coaxial socket, flush mounting (RS Components) Battery connector, size PP3/PP6. 4 spacers, $6 \mathrm{BA} \times 10 \mathrm{~mm}$ (0.375 in) (Electrovalue). 6 Soldercon i.c. pins (optional 88 extra pins, see text). Tinplate anid battery bracket plus sponge rubber, see Fig. 5. TO18 transistor mounting pad. 4 printed circuit terminal pins. 1 solder tag, 6BA, screws, wire, solder etc.
L1, L2 and L3 are formed by adjacent copper tracks

Fig. 3a. Upper side pattern of the p.c.b., drawn full size
by dots in Fig. 4a. All components should be mounted in profile order, that is, starting with the lowest profile components and working up, with the exception of the i.c.s which should be left until last. Reference should be made to Figs. 4 a and 4 b and the photographs when mounting p.c.b. components. The usual precautions should be taken when handling the cmos i.c.s to eliminate possible damage caused by static electricity. A properly earthed soldering iron must be used. If the constructor prefers, Soldercon i.c. pins may be used
so that the i.c.s can be plugged into the p.c.b. Note that there is insufficient clearance around the i.c.s to fit full sockets. TR1 should be mounted on a TO18 pad/spreader.

The u.h.f. oscillator screening can is produced from a piece of tinplate which may be provided by a discarded biscuit tin, etc. The tinplate should be cut as shown in Fig. 5a and any paint taken off using paint remover. The four sides are bent at right angles. The screening can is held in place on the p.c.b. using six modified

Fig. 3b. Under side pattern of the p.c.b., drawn full size

Fig. 4a. Component layout of the p.c.b. (upper side). Note that the print pattern shown here is that on the upper side of the board. The blobs represent through connections to the underside print pattern (Fig. 3b)

Soldercon i.c. pins. This method of mounting allows rapid access to the oscillator components for any future frequency trimming, and also the screening can edges are raised from the surface of the p.c.b. sufficiently to prevent short circuiting copper tracks. Referring to Fig. 4b, break the two side pieces and the tail off six i.c. pins. Mark the six mounting positions on the p.c.b. as shown, and very lightly tin them with solder. Also tin the bases of the six pins and push them onto the edges of the screening can in the appropriate

Vievs of the u.h.f. oscillator section

Fig. 4b. Component layout and mounting details for the u.h.f. oscillator (p.c.b. underside)

The u.h.f. oscillator section with its screening can fitted
places. Offer the screening can up to the board, check the alignment of the pins and the screening can, and heat the pins in turn at their bases until the solder runs. Care should be taken not to solder the pins to the screening can.

Make the battery bracket as shown in Fig. 5b from springy metal such as rolled phosphor bronze. Stick a piece of sponge rubber on the under side of the top section of the bracket and also a piece on the p.c.b. in the area where the battery will be positioned. Mount the bracket on the p.c.b.

Cut and drill the ends of the plastic case as shown in Fig. 6. Make sure that the end of the case that will bear the slide switch and coaxial socket is that which has its p.c.b. mounting studs closest together. Cut all the terminals on S1 and the centre terminal of SK1 down to $4 \mathrm{~mm}(0.15 \mathrm{in})$ before mounting them in the case. A solder tag should be attached to SK1 using the lower fixing screw. Mount the p.c.b. in the case using spacers $10 \mathrm{~mm}(0.375 \mathrm{in})$ long; note that the four screws required are metric, M3 15 mm . Wire S1, and SK1 as shown in Fig. 2.

Fig. 5. (a) Oscillator screening can details. (b) Battery bracket dimensions

Fig. 6. Case drilling details. Note the difference in spacing of the mounting studs at the two ends of the case

The completed p.c.b. lit from behind to show the relationship of the two track patterns

TESTING AND ADJUSTMENTS

Install a PP3 battery and bridge the contacts of S1 with a milliammeter. If all is well, a reading of approximately 12 mA should be observed. Connect the output of the cross-hatch generator to the aerial socket of a 625 -line television receiver and tune the receiver to approximately channel 50 , where the signal should be located. If more than one signal is present, the strongest of these should be selected. If the pattern is not locked, adjust VR1, but do not disturb the hold controls of the receiver. Tune the receiver to give optimum definition, a reduction in brightness setting may be necessary.

The cmos gates used have a spread in input transfer voltage of up to 33 per cent of supply voltage. It may thus be found necessary to trim one or two of the timing circuits in the cross-hatch generator. The following list may be used to identify and correct any observed pattern malformations.

1. Verticals too narrow, or too wide in comparison to the horizontals.
Remedy-increase or reduce respectively the value of R8.
2. Horizontals not present at right-hand side of screen, or double thickness at left-hand side of screen.
Remedy-increase or reduce respectively the value of R7.
3. Field flyback lines showing, or no video present at top of screen.
Remedy-increase or reduce respectively the value of R14.
4. Line flyback lines/striations showing, or no video present at left-hand side of screen.
Remedy-increase or reduce respectively the value of R12.
Having established a satisfactory cross-hatch pattern, VR1 should be given a final accurate trimming. Most modern television receivers will lock to the output of the cross-hatch generator over a wide range of sync frequency. Care should be taken to set the sync as
near as possible to the correct frequency to minimise possible pattern distortion caused by the generator. For those constructors not having access to an oscilloscope, the following procedure should be carried out. Making bodily contact with a metal object such as a small screwdriver blade, bring the latter into contact with pin 5 of IC5c. This causes the length of the displayed horizontals to be modulated at mains frequency. The observed beat frequency should be reduced to zero by adjusting VR1. This adjustment should be checked periodically, but it will be found that the master oscillator is quite stable under changing conditions of temperature and supply voltage. To improve supply voltage stability and thus prolong optimum performance, a Mallory Duracell battery type MN1604 may be fitted which will give approximately six times the life of the standard battery.

Finally if it is required to alter the frequency of the u.h.f. oscillator, C9 should be changed in value.

P.E. STAFF VACANCY

There is a vacancy for a technical sub-editor on the staff of PRACTICAL ELECTRONICS. An interesting and satisfying job for an electronics enthusiast. Sound technical knowledge and practical experience more important than journalistic experience.

> Write with brief personal details to The Editor, Practical Electronics, Fleetway House, Farringdon Street, London EC4A 4AD.

THE recent Radio Control series (Practical Electronics: June-August) has met with such popularity that we have decided to continue it and publish details of an alternative system which can be used with the same transmitter and receiver, and which provides multi-channel switched output rather than the fully proportional capability of the original system.

This section therefore, is aimed at the constructor who requires a switched output system (e.g. for use with escapement type actuators commonly used in the control of model gliders and light aircraft).

System operation depends on the transmission of tones of different frequencies (one for each channel) which are decoded at the receiver and used to provide on/off control for each channel. The tone generator at the transmitter uses a 566 function generator, and at the receiver decoding is performed by a 567 tone

Tone Generator Board
decoder i.c. The 567 is basically a phase locked loop, with additional circuitry to detect the "locked" condition.

THE TONE GENERATOR

The circuit diagram of the tone generator is shown in Fig. 1. The NE566 (IC1) is a voltage controlled function generator producing a square and triangle wave output from pins 3 and 4 respectively. The oscillator frequency can be adjusted over a 10 to 1 range by selecting the appropriate resistance using the same value of capacitance. The frequency can also be adjusted by altering the voltage to the control terminal pin 5; this is the method adopted in this case.

The triangle wave output is used in preference to the square wave due to the problem of harmonics being generated in the receiver at the frequencies selected.

The frequency can be determined from the following formula:

$$
f_{0} \bumpeq \frac{2}{\mathbf{R C}_{1}}\left[\frac{\mathrm{~V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{c}}}{\mathrm{~V}_{\mathrm{cc}}}\right] \mathrm{Hz}
$$

where V_{cc} is the supply voltage V_{c} is the voltage at the control terminal R is the total resistance (between $2 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$).
Adjusting VR1 will correct all three frequencies if three channels are selected, thus making alignment a simple process.

CONNECTION TO THE TRANSMITTER

At this stage it is worth referring to the circuit diagram of the transmitter which was published in the June issue of Practical Electronics, page 488. The tone generator is connected to the modulator input (R22 on the transmitter board). Capacitor C2 on the generator board isolates the output d.c.-wise, and resistors R3 and R4 set the bias of the modulator stage TR7 and TR6 (also on the transmitter board).

TONE GENERATOR

Fig. 1. Circuit diagram of the tone generator

COMPONENTS . . .

TONE GENERATOR

Resistors

R1 $1.2 \mathrm{k} \Omega$
R2 $10 \mathrm{k} \Omega$
R3 $10 \mathrm{k} \Omega$
R4 $27 \mathrm{k} \Omega$
*Ra $6.8 \mathrm{k} \Omega 2 \%$
All resistors $\frac{1}{6}$ W 5\% carbon, unless otherwise stated

Potentiometer
VR1 500Ω min. preset (0.1 in . maţrix)

Capacitors

C1 $0.022 \mu \mathrm{~F}$ plastic
C2 $0.1 \mu \mathrm{~F}$ plastic
Semiconductors
IC1 NE566V function generator
Miscellaneous
Single sided p.c.b. $55 \mathrm{~mm} \times 45 \mathrm{~mm}$
P.c.b. pins

8 pin d.i.l. i.c. socket
S1-3 Single pole switches (push to make, release to break)
*Given for channel A only $(1,860 \mathrm{~Hz})$. See Table 1 for values for other channels.

Fig. 2. Tone generator p.c.b. master and component layout

TONE DECODER

Fig. 3. Circuit of the tone decoder

COMPONENTS . . .

TONE DECODER

Resistors
*R5 $5.6 \mathrm{k} \Omega$
R6 $1.8 \mathrm{k} \Omega$
R7 220Ω
R8 100Ω
All resistors $\frac{1}{8}$ W 5\% carbon

Capacitors

C3 $0.1 \mu \mathrm{~F}$ plastic
C4 $1 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
C5 $2.2 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
C6 $22 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum

Semiconductors
IC2 NE567V p.l.I tone decoder
TR1 BCY70
TR2 BFY51
D1 1N4148
Miscellaneous
Single sided p.c.b. $48 \mathrm{~mm} \times 48 \mathrm{~mm}$
P.c.b. pins

8 pin d.i.l. i.c. socket
*Given for channel A only ($1,860 \mathrm{~Hz}$). See Table 1
for values for other channels.

Fig. 4. Tone decoder p.c.b. master and component layout

Table 1
Channel operation frequencies and resistor values for generator and decoder circuits. The values in brackets indicate how the resistance given is made from standard resistors

Channel	fo (Hz)	Tone generator resistor Ra, b, c	Decoder resistor R5
A	1860	$6.8 \mathrm{k} \Omega$	$\begin{gathered} 5.7 \mathrm{k} \Omega(3.9 \mathrm{k} \Omega+ \\ 1.8 \mathrm{k} \Omega) \end{gathered}$
B	1438	$\begin{aligned} & 8.6 \mathrm{k} \Omega(6.8 \mathrm{k} \Omega+ \\ & 1.8 \mathrm{k} \Omega) \end{aligned}$	$\begin{aligned} & 7.6 \mathrm{k} \Omega(6.2 \mathrm{k} \Omega+ \\ & 1.5 \mathrm{k} \Omega) \end{aligned}$
C	1109	$\begin{gathered} 11.3 \mathrm{k} \Omega(6.8 \mathrm{k} \Omega \\ +1.8 \mathrm{k} \Omega+ \\ 2.7 \mathrm{k} \Omega) \end{gathered}$	$10 \mathrm{k} \Omega$

THE DECODER

The decoder circuit diagram is shown in Fig. 3, and as can be seen, is built around a NE567 tone decoder. The decoder receives its drive from the output of the receiver (C16 on the receiver circuit diagram shown on page 569 of the July issue).

The 567 is a highly stable phase locked loop which contains additional circuitry to detect when the loop is in a locked condition. When a phase locked loop is locked to an incoming signal, the p.1.1. v.c.o. is in phase quadrature with the input signal, and therefore the locked condition can be detected by a quadrature phase detector monitoring both the v.c.o. output and the input signal. The detector causes pin 8 of the 567 to go low when the loop is locked.
The capture range (bandwidth) of the p.l.1. can be independently controlled and the detection frequency is set by means of an external resistor and capacitor. The maximum voltages which can be applied are 10 V to pin 4 and +15 V to the resistor connected to the open collector output at pin 8 ($\mathrm{I}_{\mathrm{c}} \max 100 \mathrm{~mA}$).

CIRCUIT DESCRIPTION

The phase-locked-loop free running frequency f_{0} is set by R5 and C3 using the formula $f_{0} \bumpeq 1 \cdot 1 / \mathrm{R} 5 \mathrm{C} 3$.
The bandwidth for inputs greater than 200 mV is a function of $f_{0}(\mathrm{~Hz})$ and $\mathrm{C} 4(\mu \mathrm{~F})$ and in this case will be about 14 per cent. This can, however, be reduced to

around 7 per cent by increasing C 4 to $2 \cdot 2 \mu \mathrm{~F}$. The capacitor C5 (whose value is not critical) is used to prevent chatter at the output (pin 8).

As stated above when the selected frequency is present pin 8 is driven low. This causes TR1 to be switched on which in turn switches on TR2. It will be noted that the supply rail voltage for the output stage is 3 volts and this should not be exceeded otherwise TR1, TR2 may be damaged, since typical escapements have winding resistances of between 8 and 12 ohms. The diode D1 is included for protection of TR2.

Further tone decoders may be connected simply by connecting the inputs in parallel as shown in Fig. 5.

Fig. 5. Method of connecting three tone decoders. If further channels are required, they should be connected similarly

CONSTRUCTION

The circuit boards are etched to the pattern given in Fig. 2 and Fig. 4 and the components soldered in the positions shown. As before, pins are used for wire take-off points. It was felt best to use i.c. sockets on these printed circuit boards since the i.c.s are rather costly and if found to be faulty probably could not be replaced if they have been soldered.

TESTING AND SETTING UP

The circuits can be tested independently of the transmitter and receiver by connecting the boards together via a $0: 1 \mu \mathrm{~F}$ capacitor and a $27 \mathrm{k} \Omega$ resistor in series. The selected tone is generated by operating a switch, and with an ammeter in the tone decoder supply $(0-100 \mathrm{~mA})$ a current rise from 10 mA to about 18 mA should indicate the presence of a tone when VR1 is adjusted. By rotating the pot about the "operate" position, the centre of the capture range of the p.1.1. can be located. From Table 1 the values of R5 for the other boards can be determined.

LICENCE

> We would like to warn constructors that a licence is required to operate any Radio Control system. This licence may be obtained from: The Home Office, Radio Regulatory Department, Waterloo Bridge House, Waterloo Road, London SE1 8UA. (A licence for 5 years costs $£ 2.40$)

Tone Decoder Board

SPACE SEEDS

Seeds of Canadian spruce brought back from space have been sown in the botanical gardens of the Academy of Sciences in Moscow. These seeds were part of the exchange made between the U.S.S.R. cosmonauts and the American astronauts during the joint link up of the Soyuz-Apollo mission.

The Americans handed over Canadian spruce seeds and the Russians handed over seeds of pine from the Volga region, larch from Tuva, balsam fir from the north Caucasus and cedar from the banks of the Yenesei river in Siberia.

It was decided that the two crews should on their return home sow the seeds as a commemoration of the first joint Space Flight. The members of the crews were Alexei Leonov and Valeri Kubasov from Russia and Tom Stafford, Vance Brand and Donald Slayton from the USA.

Academician Tsitsin, director of the botanical gardens, said he hoped the Soviet seeds would thrive on American soil. Every seed sent to space was checked with the help of X-rays and the best ones were selected for the flight.

INTERCOSMOS

The space vehicle Intercosmos 15 was launched by the Soviet Union on June 19. Its purpose is to conduct large scale scientific research in the field of flight conditions, testing new systems of operation, including telemetry.

A number of countries associated with the U.S.S.R., East Germany, Hungary, Poland, and Czechoslovakia took part in the development and manufacture of the telemetry system. Specialists from the participating countries prepared the
equipment for launching and are controlling its operation. The single system of telemetry will be in action for the first time.

The principal ground stations which are receiving signals are in East Germany, Hungary and the U.S.S.R. This will also extend to Czechoslovakia. Previously only the Soviet ground stations collected the data and processed it, now other countries are participating.

It is seven years since the first Intercosmos was launched and a great deal had been learned during that time. When the whole network is complete there will be nine participants which will include Bulgaria and Cuba.

The scientific research is mainly in the communication field, and space physics. These include meteorology, biology, medicine and allied subjects. During the past experiments new data had been acquired regarding the mechanism of solar terrestrial links and the Earth's atmosphere. The study of radiation round the Earth is enabling the medical researchers to predict more accurately the safe periods for manned flight.

The Satellite orbital period is 94.6 min , perigee 487 km , apogee 521 km and the orbital inclination $74 \cdot 0$ degrees.

VENUS PROBES

A year has passed since the launching of the venus 10 automatic station and eight months since it went into orbit round Venus. A great deal of scientific information has been received from the station during this time. The on-board systems and equipment are operating normally

The Venus 9 and Venus 10 automatic stations fulfilled the main flight programme by March 22 this year, after which each continued their studies under additional individual programmes. Venus 9 completed the additional programme and has now ceased functioning. Venus 10, which is now at a distance of 260 million km from the earth, is continuing its research work.

From the point of view of an observer on Earth the planet is now passing behind the sun. This opens up a rare opportunity to carry out a radio trans-illumination of near-solar space with the aim of studying the solar corona. On June 16, a radio beam sent to earth by Venus 10 passed within $1 \frac{1}{2}$ million km from the surface of the sun.

An analysis of the parameters of radio signals coming from Venus 10 shows that the streams of near-solar plasma are very heterogeneous and subjected to rapid changes in time.
Subsequent processing of this data will produce quantitative characteristics of these conditions. Also studied during the radio sessions was
the possibility of receiving information and controlling spacecraft which depends on the radio beam condition during its passage near the sun.

SALYUT RESEARCH

The speed of plasma reaches $50 \mathrm{~km} / \mathrm{sec}$ in the active regions of the sun. This observation, says cosmonaut Dr Konstantin Feoktistov, is among the most interesting results of investigation carried out in the Salyut orbital station. The solar telescope installed has helped to obtain hundreds of spectrograms of such active regions on the sun as flares, prominences and floculli.

The data collected by two expeditions aboard the Soviet station last year are still being processed. The irregularities of radiation have been measured from well-known X-ray sources such as those in the constellations of Scorpius, Cygnus and Virgo.

CHECK UP ON EINSTEIN

A test of the general theory of relativity has been carried out by the use of a probe launched from Wallops Island, Virginia.

It was named GP-A (Gravity Probe-A). The sensitivity of this experiment will be some 500 times more sensitive than any method so far used. The test will be of the principle of gravitational and inertial equivalence.

The principle states that within small regions of space the effect of accelerating a body cannot be distinguished from the effect of a gravitational field on the body. This could be put another way by saying that if an observer is enclosed in a vehicle he has no way to determine whether he is stationary in a gravitational field or is accelerating in the absence of a gravitational field.

The observer in one system observes the changes such as length or time in the other. Checks are made of these parameters and both length and time can be referred to clocks. Such changes, however, are minute and very difficult to measure.

Now a hydrogen maser clock has been devised with a stability of one part in 10^{15}. This means it could gain or lose not more than about 2 seconds in a hundred million years.

It is planned to use the clock developed by the Smithsonian Astrophysical Observatory in this experiment. The clock will fly in a two hour elliptical trajectory over the Atlantic and the readings compared with a similar clock on the ground. The probe borne clock will, because of the weaker gravity field, appear to run faster than the earth based clock.

The accuracy of the synchronisation is about 5 thousandths of one per cent. The cost of the experiment is of the order of 6 million dollars.

Semiconductors from LYNX ELECTRONICS

THYRISTORS

PIV	8 A	1 A	3 A	4 A	6 6	8 A	10A	15A
	(T092)	3TOS)	(C106)	T0220)	(TO220)	(TO220)	T0220)	T0220
50	$0 \cdot 20$	0.25	0.35	0.32	0.41	0.42	0.47	0.96
100	0.25 *	0.25	0. 40	0.37	0.47	0.40	0.54	
200	$0.27 *$	0.35	0.45	0.40	0.58	0.60	0.68	1.14
400	$0.30{ }^{\circ}$	0.40	0.50	0.45	0.87	0.88	0.98	1.40
600	-	0.65	0.70		1.09	1.19	1.26	1.80

TRIACS (PLASTIC TO-220 PKGE ISOLATED TAB)

	4 A		6.5A		8.5A		10A		15A	
	(a)	(b)								
100 V	0.60	0.50	0.70	0.70	0.70	0.71	0.83	$0 \cdot 83$	1-01	1.01
200 V	0.64	0.64	0.75	0.75	0.97	0.87	0.87	0.17	$1 \cdot 17$	$1 \cdot 17$
400 V	$0 \cdot 77$	0.78	0.80	0.83	0.97	1.01	1.13	1.19	1.70	1.74
600 V	0.96	0.99	0.87	1.01	1 -21	1. 26	1.42	1.50	$2 \cdot 11$	2-17

N. Triacs without internal trigger diac are priced under column (a). Thacs with in
are priced under column (b). Whan ordering please Indicate cleariy the type requltod

LINEAR ICS		
301A	8 Pin Dil	0.35 *
307		$0.55{ }^{\circ}$
308	14 Pin Dil	0.90**
381	14 Pin Dil	$1.60{ }^{*}$
555	8 Pin Dil	0.45
565	14 Pin Dil	2.00°
566	${ }^{8}$ Pin Dil	$1.50{ }^{\circ}$
567	8 Pin Dil	2.000
709	$8 / 14$ Pin DII	0.35
741	8/14 Pin Dil	0.26 0.35
748	8 Pin Dil	0.35
3900	14 Pin Dil	0.70*
CA3045		0.85**
CA3046		0.50 \%
CA3089E		${ }^{2} \cdot 14 *$
CA30900		$3 \cdot 22^{*}$
CA3130		0.79
MC1304P		1.63*
MC1307P		1.17**
MC1310P		1.96 $0.91 *$
MC 1351 P		$0.91 *$ $0.91 *$
MC1352P		0.91*
MC 1458P		0.17 1.10
MC1496L		$2 \cdot 55$
SN75451		$0.89 *$
SN75452		0.89**
TAA263		$0.95{ }^{\circ}$
t Aa300		1.20*
TAA310A		1.10*
TAA350A		1.95**
TAAS50		0.45***
TAA611812		1.25**
TAA861		$0 \cdot 65$
TAD 100		1.95**
TBA4800		1.30**
TEA530		1.85*
TBA5300		1.90**
TBA540		2.10**
TBA5400		2.20**
TBA5500		$3.05 *$ $2.80 *$
TBA560		2.80**
TBA5600		3.05 0.98
TBA570		0.98 1.95
TCA2700		1.95

74 Series TTL	
$\begin{aligned} & \text { Less } 5 \% \text { for } 10+ \\ & \text { Less } 10 \% \text { for } 25+ \end{aligned}$	
7400	0.14
7401	0.14
7402	0.14
7403	0.15
7404	0.45
7408	0.16
7409	0.15
7410	0.16
7413	0.29
7417	0.27
7420	0.16
7427	0.27
7430	0.16
7432	0.27
7437	0.27
7441	0.75
7442	0.65
7445	0.85
7447	0.81
7448	0.75
7447 A	0.95
7470	$0 \cdot 30$
7472	0.25
7473	0.30
7474	0.32
7475	0.47
7476	0.32
7482	0.75
7485	1.30
7486	0.32
7489	2.92
7490	0.49
7491	0.65
7492	0.57
7493	0.45
7495	0.67
74100	1.08
74107	0.35
74121	0.34
74122	0.47
74141	0.78
74145	0.68
74154	1.62
74174	1.00
74180	1.06
74181	$3 \cdot 20$
74192	ti. 35
74193	1.35
74196	1.64
HAR	ARE
1 Mica-2washers	
Solder TA6	
2 Nute/Bolts Washers	
100 for 45p	

TRANSISTORS, DIODES, RECTIFIERS
 $\begin{array}{lllll} & \text { ACI26 } & 0.15 & \text { BC117 } & 0.19 \cdot \\ \text { EC301 }\end{array}$ $\begin{array}{lllll}\text { AC127 } & 0.16 & \text { BC125 } & 0.19^{\circ} & \text { BC301 }\end{array}$ $\begin{array}{lllll}\text { AC127 } & 0.16 & \text { BC125 } & 0.16^{\circ} & \text { BC323 } \\ \text { AC128 } & 0.13 & \text { BC126 } & 0.20^{\circ} & \text { BC327 }\end{array}$ $\begin{array}{lllll}\text { AC128 } & 0.13 & \text { BC126 } & 0.20^{\circ} & \text { BC327 } \\ \text { AC128K } & 0.25 & \text { BC141 } & 0.26 & \text { BC328 }\end{array}$ $\begin{array}{lllll}\text { AC14t } & 0.11 & \text { BC142 } & 0.23 & \text { BC337 }\end{array}$ $\begin{array}{lllll}\text { AC14IK } & 0.28 & \text { BC143 } & 0.23 & \text { BC338 } \\ \text { AC142 } & 0.11 & \text { BC144 } & 0.30 & \text { BCY30 }\end{array}$ $\begin{array}{lllll}\text { AC142 } & 0.11 & \text { BC144 } & 0.30 & \text { BCY30 } \\ \text { AC12K } & 0.21 & 8 C 147 & 0.09 . & \text { BCY31 } \\ \text { AC176 } & 0.16 & \text { BC148 } & 0.09 & \text { BCY }\end{array}$
 AC176 AC176
 0.32
 .32-BDY80
 | |
| :--- | :--- | BDY62 85178 BF179 $\begin{array}{llllll}\text { BC108 } & 0.09 & \text { BC237 } & 0.16^{\circ} & \text { BD184 } & 1.20 \\ \text { BC109 } & 0.09 & \text { BC238 } & 0.16^{*} & \text { BDY20 } & 0.10 \\ \text { BC109C } & 0.12 & \text { BC300 } & 0.34 & \text { BOY38 } & 0.60\end{array}$ $\begin{array}{lll}8 C 109 & 0.09 & 8 C 238 \\ \text { BC103C } & 0.12 & 8 C 300\end{array}$

SEMEDNUUTID: UPDAIIB

ICM7205 A7800

DOING THE SPLITS

Sports fans will be electrified by the new ICM7205 from Intersil, because it crams into a 24 -pin plastic package all the electronic springwork of a sophisticated two function stopwatch. Not just a modified clock-chip this, but a set of circuit functions optimised for use in the demanding sporting environment, designed to provide accurate interval timing over periods of up to one hour with hundredths-of-a-second precision.
The chip uses CMOS technology for low power battery operation, and will drive a small six digit l.e.d. display without the need for interface components. The internal oscillator is synchronised by an external 3.2768 MHz crystal for high accuracy, control inputs are provided for great versatility of timing circuit and display operation, and the thoughtful designers have even added a "low battery" indication output which can drive the display decimal points or a discrete l.e.d.
Two timing modes can be switch selected, "Taylor" or "Split". In the Taylor mode the clock can be reset to zero and will commence counting when the START/STOP switch is pressed; when the START/ STOP switch is next pressed the display indicates the time so far,
but the counter is reset to zero and then continues counting. On subsequent presses the display changes to indicate the new "lap" time, but not an overall total.

In the split mode the "lap" times are accumulated and the display updated at each press of the START/ STOP switch so that a running total of lap times are recorded. In both modes the display is stationary between presses of the START/ STOP switch unless the "DISPLAY UNLOCK' is pressed to allow the display to catch up with the counter, and "RESET" can be activated at any time to restart the process.
To sports fans the promise of this new chip will be obvious but I wouldn't mind betting that a lot more applications will be found for this exciting device.

FAMILY REGULATOR

Fixed voltage, three terminal, positive regulator integrated circuits have been around for a few years now, and I for one have certainly not stopped appreciating them! When I think of the trouble I had to go to to get a really stable output voltage in the face of varying loads and line voltages before these devices came along, I offer up a silent prayer of thanks.

Fig. 1. The ICM7205 as a full-function stopwatch
"Well O.K." I can hear you saying "they're very good, but what's new?" The Signetics micro A7800 series is new, that's what, and it is not just a single regulator i.c. but a whole family of regulators for different output currents and different voltages.

The 7800 family must cover 90% of regulator requirements; 'if you want a voltage of $2.6 \mathrm{~V}, 5.0 \mathrm{~V}, 6.0 \mathrm{~V}, 8.0 \mathrm{~V}$, $12.0 \mathrm{~V}, 15.0 \mathrm{~V}, 18.0 \mathrm{~V}$ or $24.0 \mathrm{~V}-$ no problem, they're all standard. A 1 A current rating? no problem either. How about that audio preamplifier though, you only need 20 mA at 12 V for that, it wouldn't seem right to have to use a TO3 can regulator, would it?

Well, why not use the μ A78L12S which comes in the little TO-92 plastic small-signal-transistor package and offers a 100 mA current rating. You don't like plastic packages? Then use the A78L12DB, which also has a 100 mA rating but comes in a little TO39 metal can.

This plastic/metal can choice is not limited to the 100 mA tiddlers either; the $1 A$ versions can be had in the traditional TO3 metal pack, or the TO220 power-tab plastic pack.

POWER PAK

A couple of new audio amplifier circuits have been introduced by Texas Instruments, and as befits the easy-to-use electronic design, a new easy-to-use plastic package, called Power Pak, has been designed to house them.

The Power Pak package is a simple 5-pin plastic power transistor arrangement which can be easily heat-sunk with a single, central, nut and bolt without the problems associated with the more usual d.i.l. designs.
The new devices are the SN76008N and the SN76018, each of which will deliver a creditable 10 W of audio power at full output. The difference between the two lies in the design load impedance and supply voltage, the SN76008N delivering 10 W to a 4 ohm load while the SN76018N will deliver the same to an 80 hm load at a higher supply voltage.
These devices are not in the hi-fi class, and the T.H.D. starts to climb rapidly after about 8 W , but at less than $£ 3$ apiece, what can you expect?

HEOR

 SHOW REPORT By G.C.ARNOLDHEda-the International Home Electronics and Domestic Appliances Exhibition-was the second big electronics and electricals show to be staged at the new Birmingham National Exhibition Centre. It was open to trade visitors only from May 23-27, but the home electronics section carried on under the name Sound and Vision '76, open to the public from May 28-31.

TELEVISION

Developments in television were principally in two fields, remote control and teletext reception. Cordless, ultrasonic remote-controlled receivers were displayed by amongst others Rank Radio International (Bush), Thorn Consumer Electronics (Ferguson), Tandberg, Roberts Video, Telefunken and ITT. All of these provide channel selection and most also allow sound muting or volume control from the comfort of your armchair.

Also on some ITT sets is a button called Ideal Colour-otherwise known as a "Granny Button". When pressed, this returns the display to predetermined levels of colour and contrast, regardless of control set-tings-very helpful for those who are baffled by the multiplicity of controls on a colour TV receiver. On ITT's latest models, this feature is extended even further by the addition of a photo-electric cell which adjusts the Ideal Colour levels to compensate for changes in room brightness.

TELETEXT

On the teletext front, several manufacturers were showing experimental receivers, and there were also comprehensive exhibits on the BBC and IBA stands. The question mark which has been poised over the future of the teletext services has to a large extent been removed by the recent BBC decision to make a continuing financial provision for the Ceefax service. In fact, a second service, providing a second magazine, was inaugurated on BBC 2 on the HEDA Exhibition opening day.

Post Office Telecommunications stand. Here, two Viewdata terminals were on view, one based on a domestic television receiver and the other a prototype specially designed for office use and known as "Viewdataphone". The Viewdata system is now undergoing pilot trials, a full public trial period is planned to commence in the autumn of 1977

SOUND

In the hi-fi department there seemed to be little that was really new; generally it was a case of "bigger, better and more features". Telefunken were introducing their TRX 2000 AM/FM 4-channel receiver. A digital read-out is included which displays tuned frequency on radio, or otherwise operates as a 24 -hour clock. Providing 50 W r.m.s. per channel, and with enough knobs and dials to satisfy the most demanding, the TRX2000 incorporates an SQ-matrix decoder. Price is yet to be announced.

From Bib Hi-Fi Accessories Limited comes a natty little instrument called a Cassette Opener. Made of tempered steel and spring operated, this opens welded cassettes safely in seconds. Price including VAT is 48 p.

FIGURES

Coming finally to calculators, CBM Business Machines Limited announced the first of their new range of third generation scientific calculators. This one, the Commodore Statistician, offers a wide range of pre-programmed functions for the statistician, plus all the usual mathematical and trig functions. The display handles a ten digit mantissa and two digit exponent and signs for each. Price is $£ 99.95$ including mains adaptor/charger.

The TRX2000 receiver from Telefunken

The CBM Statistician calculator

\section*{2N456
 | 2N456A | 1.40 | 2N2926 |
| :--- | :--- | :--- |
| 2N457A | 1.50 | Yren |} ${ }^{2 N} 457 \mathrm{~A}$

2N491
2N493
2N493
2N696
2N696
2N698
2N698
2N699
2N706
2N706
2N706A
2N706A
2N708
2N708
2N709
2N711
2N718
2N718
2N718A
2N720
2N914
2N915
2N916
2N918
2N918
2N929
2N930
2N1302
2N1302
2N1303
$2 N 1303$
$2 N 1304$
2N1304
2N1305
2N1306
2N1306
2N1307
2N1308
2N 1309
2N1309
2N1671
2N1671A
2N1671B
2N1671B
2N1711
2N1711
2N1907
2N2102
2N2102
2N2147
2N2148
2N2160
2N2 2160
2N2
2N2
2N2219
2N2219A
2N2220
2N221
2N2221
2N2221A
2N2222
2N2222A
2N2368
2N2369
2N2369A
2N2646
2N2647
2N2904
2N2904A
2N2905
2N2905A
2N2906
2N2906A
2N2906A
2N2907
2N2907
2N2907A
2N2925

NEW REDUCTIONS FOR TTL
SN7400
SN7401
SN7402 SN7403
SN7404 SN7404
SN7405 SN7405
SN7406
SN7406
SN7407
SN7409
N7409

0.16	SN7410

TOP 500 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K. All devices manufacturers branded stock

 NE561
NE565A
OC28 NE565A

OC28 OC35 | 1.54 | Green |
| :--- | :--- |

 꿍ํㅇ́ㅇ Orang
2N3053
$2 N 3054$
 0

0 \square | A |
| :--- |
| AD161 |
| A |
| AD162 |
| AF106 |
| AF114 |
| AFF15 |
| A |
| AF116 |
| AF117 |
| AF |
| AF118 |
| AF124 |
| AF125 |

0.25
0.25
$0.25 M_{1} 0_{1}$
$L M$ LM308N
LM309K 2.07
0.75

$$
\begin{aligned}
& \text { OCB3 } \\
& \text { ORP } 12 \\
& \text { R553 }
\end{aligned}
$$ 2N3054 2 N 305

2 N 3090 N33391
N3392

$$
\begin{aligned}
& \text { ies } \\
& \text { T } \\
& 25 \\
& 25 \\
& 25 \\
& 35 \\
& 30 \\
& 30 \\
& 40 \\
& 33 \\
& 13 \\
& 38 \\
& 45 \\
& 48
\end{aligned}
$$

EE LARGEST RANGE IN TH
CK
EE LARGEST RANGE IN TH
CK

$$
\begin{aligned}
& \text { ORP } 12 \\
& \text { R53 } \\
& \text { SL414 }
\end{aligned}
$$ $2 N 3393$

$2 N 3402$

$$
\frac{-\sum \sum \sum}{25 x y}
$$ ${ }^{2}{\underset{N}{N}}^{3}$ N 2N3440

$2 N 3441$ | 28 | $2 N$ |
| :--- | :--- |
| 34 | $2 N$ |
| $2 N$ | |

37	2N 2341	0
2N3702	0	
2N3703	0	

2N37 $2 N$
$2 N 3$
$2 N 3$
$2 N 3$
$2 N$

2 | 30 | 2N3707 |
| :--- | :--- |
| 2N3708 | |

 \begin{tabular}{l|l}
27 \& 2N3713

\hline 0 \& 2N3714

\hline

50 \& 2 N

\hline 50

2 N

 . 40

10 \& $2 N$

47

$2 N$
\end{tabular}

.52	2N3			
35	2N37			
	$2 N 3$		22	2 N
:---	:---			
25			25	
:---	:---			
$2 N 3$				
$2 N 3$				
$2 N 3$				

SN7474	0.30	SN7492	0.43	SN74141	0.72	SN74167	$\mathbf{3 . 7 0}$									
SN7475	0.40	SN7493	0.43	SN74145	0.74	SN74174	1.06		SN7476	0.40	SN7493	0.43	SN74145	0.74	SN74174	1.06
:---	:---	:---	:---	:---	:---	:---	:---									
SN7494	0.74	SN74450	1.20	SN74175	0.04				SN7480	0.45	SN74945	0.74	SN74150	1.20	SN74175	0.94
:---	:---	:---	:---	:---	:---	:---	:---									
SN7481	1.10	SN7496	0.7	SN74151	0.77	SN74176	0.36		SN7441	1.10	SN74496	0.75	SN74153	0.73	SN74176	0.76
:---	:---	:---	:---	:---	:---	:---	:---									
SN7482	0.67	SN74100	1.75	SN74154	1.78	SN74180	1.23	SN7482								

SN7483
SN7484 SN7483
SN7484 SN7485

NEW RANGE TOOLS-HIGH QUALITY MINIATURE ELECTRONIC PLIERS INSULATED HANDLES
Round nose box joint 4 in
long
Diagonal cutters box joint
4in long
E2. 50
Flat long

Flat nose box joint 4 in long | $\varepsilon 2.80$ |
| :---: |
| 20 |

Snipe nose box joint 4 in long $£ 2-40$ Desoldering tool
£5-00

P.C. MARKER PEN DALO 33PC. 87 p.

ZENER OIODES 4COMW 11p, iW 17p. 2. 5W 35p.

IC SOCKETS 8 DIL 14p, 14 OLL 15p, 16 DIL
18p. IW 3p (100 per value 52 -00)
SCORPIO CAR IONITION KIT £12.95
JUMBO 7 SEGMENT DISPLAYS 2.
DL 707 E1-75.
MINITRON E1-50
LEDs Red. green and yellow, 0-2in dia. 24p.

SEE MAR MAS

Veroboard

	Copper 0.1	0.15	Plain 0.1	0.15
$2.5 \times 3 \mathrm{sin}$	36p	29 p	22p	17p
$2.5 \times 5 \mathrm{in}$	44 p	40 p	-	19p
34×3 in	44p	40p	-	-
$3{ }^{3} \times 5$ in	49p	54 p	32 p	32 p
$34 \times 17 \mathrm{in}$	£1.73	51.44	\$1.00	[1.92
$\begin{aligned} & \text { FINS } \times 36 \\ & \times 200 \end{aligned}$	$\begin{array}{r} 30 \mathrm{p} \\ £ 1 \cdot 16 \end{array}$	$\begin{array}{r} 30 p \\ \$ 1 \cdot 16 \end{array}$		

Trade and Retall Supplied

Potentlometers
Linear or Log Single Double
Rotary Pots
Rotary Swliched
Sliders
Full range of capacitors
stocked. See catalogue for detalls
Presets - Horizontal or Vertical
0.1W .sp 0.3W 10p

DIN PLUGS- 14 DIN CHASSIS SOCKETS- 10 p
LINE SOCKETS-14p each
3 pin. 5 pln 180° and spkr.
PHONO PLUGS (screw top)
Red, white, black. green or yellow 10p
LINE PLUGS (same colour) 10p
PHONO CHASSIS, zockets
single $7 p$, double 10 p, 3 -way 12p, 6-wey 25 p, 8 -way 35 p

JACK PLUGS AND SOCKETS

tin mono plastlc plug 15 p
tin mono chrome plug 22p
tin plastic switch socket 10p
tin stereo plastic plug 20 p
tin stereo chrome plug 30 p
tin stereo plastic line socket 20p
In stereo chrome line socket 35 p
In stereo chrome line socket 35p
fin stereo plastic switched socket 25
3.5 mm plug $10 \mathrm{p} ; 3.5 \mathrm{~mm}$ socket $10 \mathrm{p} ; 3.5 \mathrm{~mm}$ tine socket 10 p ; 2.5 mm plug 10p; 2.5 mm socket 10p

SEND FOR OUR NEW 160 PAGE CATALOGUE-CRAMMED WITH NEW PRODUCTS, TECHNICAL INFORMA TION AND ALL BACKED BY THE USUAL SUPERLATIVE MARS'HALL'S SERVICE-FOR ONLY 40p POST-PAID OR 30p TO PERSONAL CALLERS. PLEASE ADD VAT TO YOUR ORDER. POSTAGE AND PACKING 30p.

COLLARED

A dog collar which emits a signal when the dog has been away from the owner for greater than a preset length of time, and is thus regarded as being lost, is described in a patent (BP 1418 680) taken out by Herbert, Enid and Mary Corbin together with Mary. Nicholas.

The circuit, built in a small box mounted on the collar (Fig. 1), includes a field effect transistor with source and drain electrodes connected, via R2, across the supply and the gate connected to VR1 and S1b. The drain is also connected to a Darlington pair, TR2 and 3 , which switches the multivibrator, TR4 and 5, and causes the lamp LP1 to flash. The timing of the multivibrator is determined by C2 and R5.

Before the start of a dog walk the owner closes S2 and S1 to charge C7. The gate and source electrodes of TR1 settle at the same potential, the Darlington conducts and power is supplied to the multivibrator and LP1 flashes on and off.

As the walk commences S1 is switched back to the position in Fig. 1 and C1 begins to discharge, applying a voltage between the f.e.t. gate and source causing it to cease conduction and LP1 to be extinguished. After a predetermined time, set by VR1, the
capacitor C1 has discharged to such a value that the voltage across the gate and source of TR1 is reduced sufficiently to allow conduction to commence again. TR2 and 3 again become conductive and LP1 begins to flash.

The lamp will generally be arranged behind a translucent panel carrying the legend "I am Lost" or similar wording.

VOICE BOX

There have recently been granted several patents for gadgetry to help would be singers join in with a record in their own homes. In BP 1.427 607, the Sony Corporation, of Tokyo, Japan, patents a sophisticated system of artificially improving the quality of the amateur singer's voice, to make it resemble the sound of a voice recorded in a professional studio.

As shown in Fig. 1, the stereo record player feeds left and right signals through a conventional audio train to left and right loudspeakers. The singer "sings along" into the microphone, Mic. 1, and the signal is amplified and fed direct into a mixer to blend with the left-hand channel sound. But the signal is also fed to an "effects circuit, which adds delay and vibrato to the voice before blending it in the right channel mixer.

BP 1418880

Fig. 1.

Fig. 1.

The effects circuit includes variable delay, in which the microphone signal is delayed and frequency modulated. This is achieved by using a bucketbrigade device (BBD) in which a series of f.e.t.s are provided with capacitors connected between their source and gate electrodes.

The gate electrodes of the oddnumbered f.e.t.s are connected to a first clock pulse input terminal, and the gate electrodes of the even numbered f.e.t.s are connected to a second clock pulse input terminal. The clock oscillator produces first and second clock pulses which are shifted in phase by 180° relative to each other and applied to the terminals.
The resultant alternate switching of the f.e.t.s causes the charge stored in the first capacitor to be shifted through the capacitor chain. As a result, delayed signals are delivered at the output terminal. The order of delay time envisaged is a few tens of milliseconds, this time being made variable by making the oscillator an astable multivibrator.

In one alternative embodiment, the delayed voice signal is fed to both stereo channels. A further interesting suggestion is a matrix differencing circuit used to eliminate the centrefront (in-phase, equal amplitude) content of the professionally recorded stereo pair and permit its replacement by the injected delay signal.

Most professional recordings place the lead singer centre-front, so this technique enables the amateur singer to replace the professional at sound centre stage.

THIS unit is designed to monitor the level of gas or smoke concentration in an enclosed space, and to operate an external warning device (e.g. lamp or syren) when a predetermined threshold is exceeded. The sensing device is a thermal gas sensor, whose operation was described in detail in Practical Electronics, September 1973 (back copies are not available). Briefly, it consists of two electrodes encapsulated in a bead of doped semiconductor material, one of the electrodes acting as a heater. In the presence of oxygen, a high resistance of some $10-50 \mathrm{k} \Omega$ exists between the electrodes. In contact with a deoxidising gas or vapour, ionic action increases the number of free electrons in the material, and the interelectrode resistance falls to about $\mathrm{lk} \Omega$. A flash-proof wire mesh shield surrounds the device, also helping to reduce the cooling effects of draughts.

The particular sensor used in this design is the TGS105 made by Figaro Engineering. This was chosen for its fast warm-up time of $1 \frac{1}{2}$ minutes, fast response and fast decontamination. It does not respond to steam or dust. Connections are by four pins which are arranged so that the sensor may be mounted in a B7G valve base.

CIRCUIT DESCRIPTION

The thermal gas sensor requires a heater supply of 1 volt at 600 mA which is supplied by a high efficiency sine-wave inverter TR1/T1 (see Fig. 1). Transistor TR1 and Cl have to withstand a voltage several times that of the supply line due to the inductive effects of transformer T1. Therefore Cl should be a good quality, high voltage capacitor, and TR1 the quoted specially chosen high voltage device, though these are less critical for the 12 V version. Base bias for TR1 is provided by RI ! R 2 and decoupled by C 2 .

The output side of the sensor, X1, feeds a Schmitt trigger TR2/TR3, whose input is decoupled by C3 to reduce the possibility of false triggering by noise spikes. When the interelectrode resistance of X 1 is reduced in the presence of gas or smoke, the voltage at the base of TR2 will fall due to potential divider action. The trigger threshold is set by R4/VRI, thus providing control of sensitivity. The bias for TR2 is fed via the output electrode of the sensor, so that should the sensor be removed inadvertently from its socket, the Schmitt circuit will be triggered and the output will go to the alarm state. The unit is thus fail-safe under these conditions, though TR1 may be damaged as a result of the oscillator output being unloaded.

Fig. 1. Circuit diagram for the Gas/Smoke detector. See components list for changes in 12 V version

The output of the Schmitt trigger is taken to TR4 which acts as a driver stage for a miniature thyristor CSR1. The network R11, R14, C4 is for decoupling. When fired, CSR1 completes the circuit to the OV rail for the external load (which will normally be a relay) and also for the local l.e.d. indicator, D4 with its associated dropping resistor R13. The l.e.d. is included so that when several units are used in an installation, the particular unit which has triggered may be identified. The diode D3 is to isolate the output when units are paralleled.

WINDING	26 V	12 V	GAUGE
PRI	$25 \frac{1}{2} \top$	$11 \frac{1}{2} 2^{\top}$	30 SWG
SEC	$1 \frac{1}{2} 2^{\top}$	$1 \frac{1}{2}{ }^{\top}{ }^{\top}$	26 SWG
F.B.	$1 \frac{1}{2} 2^{\top}$	$1 \frac{1}{2} 2^{\top}$	30 SWG.

Fig. 2. Winding details for T1
The supply lines are decoupled by C5, and the circuit protected from damage due 'to supply polarity reversal by D2. The Schmitt trigger is provided with its own stabilised nine volt supply by D1 and R3, again to provide immunity to supply line fluctuations.

COMPONENTS

As mentioned above, several of the components around the sine-wave inverter are rather critical, and the types specified in the components list should be adhered to. Winding details for T1 are given in Fig. 2 and the associated table. The printed board layout is shown in Fig. 3.

COMPONENTS

Resistors

tR1	$4.7 \mathrm{k} \Omega$	$R 5$	470Ω	R9	$1 \mathrm{k} \Omega$	$R 13$	$1.5 \mathrm{k} \Omega$
tR2	270Ω	$R 6$	$1 \mathrm{k} \Omega$	$R 10$	$2.7 \mathrm{k} \Omega$	R14	470Ω
tR3	$2.2 \mathrm{k} \Omega$	$R 7$	$1.5 \mathrm{k} \Omega$	R11	$10 \mathrm{k} \Omega$		
R4	$22 \mathrm{k} \Omega$	R8	$2.7 \mathrm{k} \Omega$	R12	$1.5 \mathrm{k} \Omega$		

All resistors $5 \% \frac{1}{4} \mathrm{~W}$
†For 12 V version, R1 $1.5 \mathrm{k} \Omega$, R2 120Ω, R3 330Ω

Potentiometer

VR1 22k Ω miniature horizontal preset

Capacitors

C1	$4,700 \mathrm{pF} 100 \mathrm{~V}$ d.c. ceramic
C2	$22 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C3, C4	$2.5 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. (2 off)
C5	$47 \mu \mathrm{~F} 35 \mathrm{~V}$ elect.

Semiconductors
*TR1 2N5551 (Motorola) or ZTX341/342 (Ferranti)

TR2, TR3	2N3704 (2 off)
TR4	2N3703
D1	BZX83 or BZY88 9.1V Zener
D2, D3	1N4003 (2 off)
D4	Min l.e.d. ($\frac{1}{8}$ in)
CSR1	2N5061

Inductor
T1 Pot core transformer using Siemens components:
Coil former, 2-section Polyacetal GV B65542-A0000-H002
Pot core, 14×8 Siemens Matt. N28 B65541-K025-A028
P.C.B. mounting assembly (6 -pin) B65545-A0010-X000
For winding details see Fig. 2

Miscellaneous

*X1 Sensor, Figaro TGS105
SK1 B7G valveholder (pins 3, 4 and 7 removed)
P.C.B. and housing.

* These items are available from P.H. Electronics Ltd., Sandwich Industrial Estate, Sandwich, Kent.

Fig. 3. Component layout and printed circuit board master

APPLICATIONS

The unit has only three external connections and thus lends itself to an installation using standard three-core mains lead for the wiring. Many units can be wired in parallel. The thyristor specified has a maximum rating of 800 mA , and is capable of driving a low power 24 V or 12 V lamp, or a relay to control higher powered or mains voltage equipment. Care should be taken not to short the output lead to the positive supply rail as this will result in a blown thyristor.

Intending constructors should note that the 24 V version has proved to be more reliable in operation,

Copper side of board showing mounting of the B7G (SK1) valveholder base
and is to be preferred where a choice of supplies is available. The total quiescent current consumption is only 45 mA on 24 V and 90 mA on 12 V . A cable size of $16 / 0.2 \mathrm{~mm}(14 / 0.0076 \mathrm{in})$ should be adequate for runs up to 30 m (100 ft) on 24 V or half this distance on 12 V . For reliable operation, the power supply voltage should be maintained within $\pm 10 \%$ of the nominal value.

The unit will find uses in the home, boat or caravan as a fire alarm, gas detector, and also as a carbon monoxide detector in the boiler house of oil or gas fired central heating systems.

polits nilitio

SHOOT (April 1976)

Severat readers have reported that their game produces a circulating chain of illuminated I.e.d.s, instead of the pattern described in the article. This would appear to be due to the track break under the top end of R14 (Fig. 2, p. 320) having been missed, so applying a permanent +5.5 V to pin 8 of IC3 and thus to one input of IC4a.

DIGITAL FREQUENCY METER (May 1976)

In the circuit diagram on page 378, the pin connections for IC1 pins 1 and 14 should be transposed (i.e. pin 14 should be connected to GND line).

P.E. DIGI-PROBE (April 1976)

In Fig. 7, page 292, the component below R3 should be annotated D1. Also, diode D3 anode should be connected to the junction of R3 and D2 (i.e. strip above).

There should be a link from IC2/P11 to IC3/P3. The link from pin 7 to 8 of IC3 should be moved at the righthand end to allow a break between IC3/P8 and C1 negative (and IC3/P7 via above link).

There should be a link from the negative end of C1 to TR3 emitter

CITIZENS' BAND...

The Pros and Cons By P. Hawker

ANYONE who has crossed the Atlantic recently can confirm the tremendous upsurge in the use being made of the 27 MHz Citizens' Band two-way radio in the United States and the corresponding "General Radio Service" in Canada. Or again, in some countries in Europe, including the Federal German Republic, CB operation is legally established; in others it is, in effect tolerated.

It would be contrary to our curious Wireless Telegraphy Acts for me to describe what anyone in the U.K. can hear on 27 MHz whenever "Sporadic $E^{\prime \prime}$ conditions prevail, since none of those many, many stations are either "authorised broadcasting stations for general reception" or "Ifcensed amateur stations"

Six million U.S. citizens-including innumerable long-distance lorry drivers and ordinary motorists-have two-way radios in their vehicles as an interactive traffic information service; others have "base" units in their homes or offices to talk to the drivers or to one another. Countless others use compact two-way hand-held transceivers which, if the output power is less than 100 mW , do not even require registering.

New Language

A whole new communications industry has been created; a new colourful jargon of CB slang has emerged and one finds, among many other publications for the CBers, "slanguage" dictionaries running into hundreds of pages. The radio shops, department stores, discount houses and auto-suppliers feature $C B$ equipment under the brand names of Regency, Lafayette, Johnson, Panasonic, Sony, Craig, Pace, Radio Shack, Hallicrafters, Cobra, etc. Many equipments are for single-sideband (s.s.b.) operation with synthesiser systems for channel switching, fully as modern in concept and design as current professional and amateur radio equipment, often costing several hundred dollars.

Some of the equipment is made in the United States where even television factories are being converted for CB production; much of it comes
from Japan. Amateur radio enthusiasts complain of the shortage of crystals and components diverted to CB; a new outlet for techniciansservicing CB radio-is blossoming. CB pop songs have made the hit parade. Everyone seems to want a CB radio; some of them are even prepared to acquire a licence to operate!

Is it all a transient craze that, like the yo-yo and the hula hoop, erupts across a nation for a few months or a few years, only to fade away? Or is the present popularity a genuine reflection of the pent-up demand for, and usefulness of, a low-cost (or relatively low-cost) communications facility of an inherently different nature to the orthodox "business radio" service and the long-established amateur radio service?

Then again there is the possibility that the frequencies assigned to CBers will become so congested that effective communications, even at short range, may become virtually impossible so that the whole system could collapse under its own popularity.

There is no provision for authorised CB operation in the United Kingdom. Indeed, under Section 7 of the Wireless Telegraphy Act, 1968, the licensing authority (nowadays this is the Radio Regulatory Division of the Home Office) has specifically prohibited the import or manufacture of such equipment.

Until that Act was passed, CB equipment was widely offered for sale in the U.K. and possibly up to almost 100,000 small hand-held units, mostly from Japan, were sold. Many still exist, and recently such units seem to be reappearing in the shops; certainly they can be bought over the counter in many European countries. But few of the more elaborate base and vehicle s.s.b. units have been seen here.

How CB developed

Why has CB boomed in some countries while severely frowned upon and harassed in others? Should two-way radio communication be freely available to the ordinary citizen without formality?

To examine such questions it is necessary to go back almost 30 years to the beginnings of the "Citizens' Radio Service", inaugurated in the U.S.A. in 1947 to provide two-way radio for the private citizen in the conduct of his personal affairs or business activities. The FCC authorised this service to use frequencies from 460 to 470 MHz , at powers up to 50 W . At that time 460 MHz was a virtually unexploited band, at least for such applications as land mobile communications.

There was no early rush to take advantage of this new service, and very few firms marketed suitable u.h.f. equipment. Indeed interest remained very slight, and firmly within the United States, until 1958 when a new Class D system was established, using frequencles around 27 MHz (currently 23 channels between 26.965 and 27.255 MHz).

This new Class D facility quickly registered an appeal to a type of user for which the service was not originally intended, the "hobby" enthusiast; many with a largely frustrated interest in radio communication but who, for various reasons, were not prepared to study for and sit the technical and Morse examinations needed to obtain an "amateur" licence. The CB regulations were intended to discourage hobby operation, by limiting the power to 5 W , restricting the height of aerials, prohibiting interState operation.

CB Permit

But even with communication officially limited to around 15 miles, the CB permit seemed a far softer option than the amateur licence. Furthermore, as the American licensing authority (the Federal Communications Commission) quickly found out: it is one thing to try to tell the citizen what he should and should not do with his two-way radio; quite another matter to enforce such regulations.

It would have needed an army of inspectors, equipped with every type of surveillance equipment, to have traced the most flagrant offenders or to limit the amount of interference caused to television in urban centres.

At times of high sunspot activity 27 MHz signals are effectively reflected by the F-layer of the ionosphere and bounce down at good strength hundreds and thousands of miles away. At many other times unpredictable "Sporadic E" conditions may allow communication over hundreds of miles.
Soon the number of CB permits had passed the quarter-million mark. From around 50,000 in 1959 to around a million in 1971-72. It was the energy crisis of late 1973 and the subsequent $55 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. speed limit n the U.S.A. that proved a further urning point: American long-dislance truckers began using CB to help colleagues locate petrol supplies and to avoid speed traps.

Unofficial Service

In no time an unofficial traffic information service was attracting the attention of millions of motorists. Not all the lorry drivers bothered with the formality of a licence. In 1974 a check of 36,000 vehicles revealed that 7,000 were carrying CB equipment, more than half of them unlicensed and many exceeding the power regulations.

CBers and Radio Amateurs

The Class D Citizens' Band system fell foul of the American amateur radio movement from the outset. The 27 MHz frequencies, although not internationally allocated to amateurs, had for some years been made available to them in a number of countries, including the United States. So they felt that CB had deprived them of valuable frequencies. Further, any transgressions by CBers (and there were many) were usually written up in the press as being due to "amateur" or "ham" operators, particularly when it was a matter of interference to television reception.

There was also undoubtedly a strong feeling that CBers had obtained their privileges without personal effort or training, whereas the amateur licence involves months of study. The amateurs soon noted that the so-called "5-watt" CB stations were often running at powers up to 1 kW , using beam antennas and operating under virtually the same conditions as the amateurs.

It was also soon obvious that, following the introduction of Class D CB, the growth of amateur radio in the United States slowed down and for many years remained static. CB was clearly absorbing many hobby enthusiasts who might otherwise have persevered and obtained an amateur licence.
A further blow came in 1974 when the FCC proposed a new Class E CB service using frequencies in the 220 MHz region that were part of an American amateur band. Again it
looked as though amateur radio would lose frequencies to CB, but strong opposition has apparently caused the FCC to think again, and Class E is at present on the shelf.
More recently the FCC has formally decreed that CB can legally be used "as a hobby or diversion", with interstate contacts and with Channel 11 designated as a national calling frequency.

Very few American amateurs can find a good word to say in favour of $C B$ and the resentment still runs deep, despite recent attempts to patch up the quarrel.

The International Scene

The international situation of $C B$ was equally fraught with problems. Almost all countries throughout the world are members of the International Telecommunications Union, ITU (an agency of the United Nations), and have agreed that in assigning radio frequencies they will be bound by the "Radio Regulations"-a very formidable treaty document that carefully assigns radio frequencies to specific uses and defines the various services that may use them.
The amateur service is formally defined as "a service of self-training, intercommunication and technical investigations carried on by amateurs, that is, by duly authorised persons interested in radio technique solely with a personal aim and without pecuniary interest".

But nowhere in the current Radio Regulations is there any mention of or any definition of anything resembling a Citizens' Radio Service. What has become numerically the largest of all radio-communication services is entirely ignored, both in the Atlantic City (1947) and the Geneva (1959) Radio Regulations.
If it does not exist officially how can it be assigned any frequencies? The answer is to be found in footnotes to the ITU frequency table. Certain spot frequencies, with an agreed tolerance, have been assigned to "industrial, scientific and medical" (i.s.m.) purposes, including $27,120 \mathrm{kHz} \pm 0.6 \%$. The Radio Regulations make no attempt to define precisely what it meant by i.s.m. equipment-a low-priority communications service can presumably be regarded as an industrial use of the frequency.

Then again, there is nothing to prevent any country from allocating any frequency for any purpose it chooses if this is deemed incapable of causing interference to the services of other countries. For example, FCC could, within the terms of the Radio Regulations, allocate 220 MHz to CB, but would have to ensure either that no such stations were located within range of the Canadian border or alternatively to secure the agreement of the Canadians to this variation of the ITU allocations.

The FCC are now proposing to shift the very low power hand-held transceivers to the frequency band 49.82 to 49.90 MHz . It could equally decide to put CB around 40.68 MHz , another of the i.s.m. spot frequencies.
There is thus still a lot of power invested in national administrations to set up CB should they wish to do so, even when bound by the Radio Regulations that appear not to recognise such a service.

CB and the U.K.

So why no CB in the U.K.? The standard reply is that the 27 MHz i.s.m. allocation is already in use for radio-paging and by many thousands of radio-control modellers-and that both these services would be seriously jeopardised by $C B$ operation. If anyone attempted to shift CB operation into the amateur 28 MHz band it would not only incur the wrath of radio amateurs throughout the world but under Radio Regulations the licensing authority would be obliged to ensure that no harmful interference could be caused to amateurs in any country outside the U.K.-a virtual impossibility with "Sporadic E" and F-layer propagation.

But it would be naive, as the American experience shows, for the Home Office to claim that no frequencies could possibly be found for CB or even for radio-controlled garage door openers. For example, large blocks of frequencies in the U.K. were reserved for military communications at a time when channel-widths were much wider than are now necessary, and when British military commitments were very different from today.
But the will would have to be there. And everything in the history of radio in the U.K. shows the reluctance of the licensing authorities, whether the Post Office or the Home Office, to extend the use of radio by the public unless gradually worn down by external pressures.

In the early 1920 s they hesitated long before allowing the man-in-thestreet to have "oscillating detector" receivers and delayed the start of broadcasting. In 1925 they attempted to stifle all communication overseas by radio amateurs ... the list is a long one.

The Home Office is of course well aware that even low-power CB transmitters can be used for odd purposes or may cause an embarrassing amount of interference. The escape of the Russian doubleagent, George Blake, from prison was facilitated by the use of illegal CB equipment. The Baker Street bank robbers of September 1971 used CB radio to their look-out man, unaware that their messages were being intercepted. Some of the smaller CB units can be used as radio "bugs".

Amateur Opposition

The Radio Society of Great Britain as the body representing British radio amateurs, goes along with the Home Office in opposing the extension of CB to the U.K. saying: "No support can be given to the establishment of a communications band in this part of the spectrum. Reports of CB activities in the U.S.A. show gross violations of the regulations, leading in some cases to heavy fines and prison sentences. The Society has no desire to see the spread of these practices to the U.K."

The author, holder of an amateur licence for 40 years, finds it difficult to support fully this view, though recognising that amateurs have very real reasons to fear and resent some aspects of CB operation. It is easy to imagine how those with a Class B amateur licence, who have had to pass the Radio Amateurs' Examination to use frequencies above 144 MHz , would resent the issue of lower-frequency CB licences on request. There is plenty of evidence that licences that are obtained without personal effort are but little respected by the hobbyist.

Friendly Service

Yet the American Radio Relay League, the national society of American and Canadian amateurs, is currently striving to reduce tensions
between amateurs and CBers, pointing in glowing terms to some of the more socially useful aspects of CB operation and carefully distinguishing between the hobby users of CB (who the League feels should be encouraged to become amateurs) and those who simply want lowpriority communications.

Even the much-publicised "Smokey Bear" warnings of police speed traps are now often tolerated and made use of rather than opposed by the American law enforcement agencies. A Channel 9 emergency service -"REACT"-exists in many areas and has been credited with useful services rendered to the public.

Sailing and power-boat enthusiasts often use CB equipment as a safety measure in circumstances where normal marine radio would be far too costly. Mountain rescue teams have made good use of CB radio.

Much of the argument for CB is philosophical. Two-way radio has been developed to the stage where it can be used by the public with only a small element of risk to others. Are we then right to deny such a service to the citizen on the grounds that it would inevitably be abused by a small minority? We do not try to deny the public access to the telephone service because a few people use it to make obscene calls.

If six million transmitters in the U.S. can be accommodated in only 23 channels and yet the public still find
it worthwhile acquiring more $C B$ units, is there not an obligation on the U.K. licensing authorities to find some space for such a service?
The radio spectrum is a national resource but not one that is diminished by use. It is a wasting asset only if it is not well managed and fully utilised for the public good. We need to weigh the pros and cons carefully, not to argue from our prejudices.

Good Citizen

In brief, the Home Office Radio Regulatory Division should surely be encouraged to explore how modern two-way radio systems could be extended to the public domain for such purposes as traffic information and "companionship", and for the original concept of assisting the private citizen in the conduct of his personal affairs or business activities. On the other hand there is a strong argument for firmly channelling the hobbyist into amateur radio, where. he belongs, with its self-training and technical investigations, possibly by provision of temporary novice or beginner licences, but with a built-in incentive to progress to the standard licences.
Short-range two-way radio has reached the stage where the public at large can benefit by the facilities it provides-is it not time that the U.K. licensing authorities recognise this?

New VAT Leaflet

AVAT Leaflet No. 8/76/VLA, "Higher Rate of VAT: Electrical and Electronic Components" is due to be published at the end of August. This lists recent alterations of rate and changes of interpretation as they affect components. Traders not in receipt of regular VAT bulletins can obtain a copy from their local Customs and Excise office.

Fog Bound

THE Royal Aircraft Establishment is to research the vertical structure of fog using a new visual range monitoring equipment, MET-1, developed by Marconi Radar Systems Ltd.
Two MET-1 (Marconi Environmental Transmissometer Mk 1) equipments are to be supplied for use by RAE at Bedford and Cardington, for joint Civil Aviation Authority and Ministry of Defence experiments.

The system was developed by Marconi Radar Systems Ltd as a visual range measuring system for use on airfields, motorways, ships and in ports, industrial areas, tunnels and underpasses and in any situation where accurate measurement of visibility is required in the presence of fog, dust, rain, snow, smoke or other pollutants in the atmosphere.

Microprocessor Symposium

The Society of Electronic and Radio Technicians is holding a residential symposium on microprocessors and their applications at Sussex University from 26-29 September 1976. Associated with the symposium is a competition for an application of MPUs by the home constructor which is simple, economic, original and useful or entertaining. First prize is $£ 150$.

Details from the MPU Secretariat, SERT, 8-10 Charing Cross Road, London, WC2H 0HP.

Courses

T
he Bury Radio Society will be running a RAE course in the 1976/77 session:
Enrol: Tuesday Aug 31 and Sept 7, time, 8.00 p.m. at the Mosses Youth and Community Centre, Cecil Street, Bury.
The Shelburne Radio Club are starting a new RAE course aimed at the December 1977 exams to allow time for practical experience.

Comm.: Monday Sept 6 at the Shelburne Radio Club, White Lion Street School, London, N.1.

A course for the RAE City \& Guilds No. 765 giving tuition in theory, Morse and practical work is being run by the Walsall College of Technology.

Enrol: Wednesday September 8, time, 6.30 p.m. at the Walsall College of Technology, Walsall, WS1 1XN.

SONAX ELECTRONICS

We are advised that Sonax Electronics are now in liquidation and that all claims outstanding against this company are being handled by the Official Receiver at Atlantic House, Holborn Viaduct, London, EC1N 2HD.

INVESTMENT/ EXPANSION

Far too much is heard from the groaners about lack of investment in British industry. Investment, of course, is one of those things you can't have too much of but investment doesn't come out of thin air.

The tax-payer foots the bill, like it or not, for nationalised industries, at least for the unprofitable ones which means most. For private enterprise, new investment must come out of profits, which are hard to come by, or from investors who, these days, are more timid than they used to be having suffered from dividend restraint and then being taxed to the hilt on the dividends they get.

Far from grumbling about how little is invested I fintd it astonishing that, in all the circumstances, there is so much.

Take Mullard, part of the Philips international group. The new clean room facility for the production of N-MOS memory circuits has cost £3 million as a first instalment. Only one third of it is in current use and by the time it is full up the grand total invested will be more like $£ 6$ million.

The Mullard semiconductor plant at Southampton is being turned into the main European manufacturing centre for MOS circuits. The products will be marketed as Signetics, the Californian based company which Philips acquired last year and the first product line is to be the Signetics $4 k$ RAM.

The decision to build the new facility was taken, however, before the acquisition of Signetics, taken in fact at the very depth or nearly so of the recession.

Ploughing in a steady $£ 400,000$ a year into new plant and machinery is Marconi Instruments. British Physical Laboratories (Racal Electronics Group) has just opened. an extension to its factory at Radlett, part of a $£ 100,000$ expansion scheme. Racal Communications has also just moved receiver production to a larger factory-it needed more space.

Flushed with success from world-wide demand for EMI-Scanner X-ray equipment, EMI has had to find new premises for what is virtually a brand new business. The Medical Electronics Group has acquired a $£ 2$ million 40,000 sa ft . office complex at Slough. By the end of the year some 200 staff will have moved in, increasing to 260 during 1977. The staff will be mainly administration and sales with some engineering support. Building the EMI-Scanner takes half a dozen manufacturing centres, all of "which have needed investment in equipment and people.

This, in turn, has caused another spin-off in investment. SE Labs (EMI) Ltd, has increased turnover by $£ 5$ million in the past year, some of it coming from the supply of instrumentation to EMI's medical group. So SE Labs has had to expand, too, and has taken over the 40,000 sq ft . factory at Frimley previously occupied by Shandon Southern Instruments, who themselves have moved on to Ash Vale.

SE Labs', Frimley plant is additional to SE's existing plants. It's a nice acquisition for SE Labs because they have taken over a number of skilled people already employed on the site who didn't want to move and will be recruiting another 150 people over the next year.

PLENTY OF ACTION

If you just look at worn-out industries, sure you won't see much movement. Look at electronics where there is a big future and there's still plenty of action.

Trade figures are looking better all the while. ICL, once the slumbering giant of the computer industry, had a record six months to the end of March. Turnover up 23 per cent to $£ 136$ million, operating profit up 35 per cent to $£ 10.5$ million over the comparable period in 1975. STC, the British end of ITT, reports turnover up 15 per cent at £383 million with exports up 20 per cent from $£ 57$ million to £68 million. Net income, however, was down $£ 4$ million but, on the other hand, over $£ 4$ million extra was spent on R and D.

Order books are firm with some nice single contracts like a $£ 1.25$ million flight simulator from Redifon destined for Brazil, and a
colour TV broadcast contract worth £5 million for EMI from Nigeria. Of course there is still anxiety and uncertainty in some quarters of the industry, particularly over the general economic situation, but there is still plenty of business to be had for those who are prepared to go and get it. But the consumer market is still in the doldrums. A rumour that the CTV licence fee is going up to $£ 27$ is discouraging buyers and has already nullified the hoped-for boost from the VAT reduction recentlv made.

COMMUNICATIONS

I was one of the crowd of 14,000 sweltering in the heatwave which coincided with the Communications '76 Conference and Exhibition at Brighton. Both the conference and the exhibition were a triumph for organiser Tony Davies. There were 160 companies and organisations in the show and the conference attracted 659 delegates from 32 countries. The British Overseas Trade Board did a great job in organising a sponsored tour of British manufacturers for buyers from over 40 countries.

I hope to discuss some of the commercial implications of the communications business in future issues but here are a few statistics to be getting on with. Today's U.K. population of mobile two-way radios, excluding the military, is some 200,000 installations with an anticipated increase to 500,000 by 1985.

London's Post Office public radio paging system, due to open in a few weeks, will eventually cater for 100,000 users although only 20,000 are being allowed for in the first period of operation. A central solid state 100 W transmitter is situated atop the Post Office Tower and a ring of at least nine supplementary transmitters will give coverage over the whole of the capital. A user can be paged from anywhere in the U.K. automatically through STD.

But these figures are small fry in comparison to those postulated for Citizens Band radio for the U.K., if it comes, and there is plenty of commercial pressure to make CB come (see special article elsewhere in this issue-Ed.). Expect an announcement shortly.

If we look to the United States for the pattern we find over six million CB licences already issued and the authorities now arapplino with half 'a million licence applications a month. Scale down to the U.K. population size and we could have a 1.5 million CB radios in action in a few years. Chaos! But nice revenue for the Government and a bonanza for set manufacturers.

PLUS THESE SOUNDD DESIGNS

PRICE INCREASE-As from the October issue, the cover price of Practical Electronics will be 40p.
This increase is regretted, but rising production costs make this unavoidable

PRACTICAL
 ELFCTRONICE
 PLEASE NOTE:
 It is in your Interest to place a flrm order with your newsagent-In advance. Back numbers are not avallable, so make sure of your copy nowl

OUR OCTOBER ISSUE WILL BE PUBLISHED ON FRIDAY, SEPTEMBER 10, 1976

THE lower deck of Digiscope is based on a piece of strip board identical to that used for the upper deck and it carries the circuitry which makes up the Reference Generator, Comparators, Row Decoder, Blanking Gates, Row Drivers, Trigger Generator, Trigger Latch and Sweep Generator.

You may remember from Part I that the output of the Y-Amplifier is "digitised" with the aid of a series of comparator circuits each connected to a unique reference voltage differing from its neighbours by about 800 mV .

REFERENCE GENERATOR

The reference voltages required by the Comparators are generated by the Reference Generator circuit which is made up of a series string of forward biased silicon diodes so that the basic reference increment is the V_{ℓ} of the diodes or about 800 mV .

The choice of reference voltage increment is fundamental to the design of Digiscope since it sets the gain required of the Y-Amplifier and determines the d.c. trace shift error with time and temperature. Using Zener diodes in the Reference Generator could make each increment more precise and increase stability against temperature fluctuations but would require the use of larger voltage increments because Zener diodes start at about 3 V and are not much good up to about 5 V . Even using 3 V devices the voltage required at the Y-Amplifier output would be excessive and difficult to achieve in practice without resort to expensive types of op-amps. Reducing the reference increment below 800 mV would be possible if suitable, dependable, reference diodes were available although large reductions would not be possible anyway, because the d.c. drift at the output of the Y-Amplifier would cause a significant shift in trace position with time and temperature. A resistor chain could be used to set these reference increments but the supplies to the chain would have to be floating with respect to other Digiscope supplies because Y-shift is achieved by connecting an appropriate point on the reference chain to 0 V via an eight way switch.
In practice the 800 mV reference provided by forward biased diodes works very well and gives a cheap and easy to implement system with repeatable results.

Transistor base-emitter junctions are used as the reference diodes since these tend to give a tighter spread on their forward voltage characteristics, and are also in easier-to-handle packages. The Reference Generator circuit can be seen to the left of Fig. 3.1. R42 and R43 set the diode current to between 4 and 7 mA depending on the setting of S3. C14 and C15 decouple any h.f. noise which could cause jitter at the Comparator outputs, and S3 is, of course, the Y-shift control. Using S3 to control the reference chain zero means that the Y-Amplifier can run without any d.c. offset and so is easier to design.

COMPARATORS

The Comparators are required to give a logic-type output indication of whether their common input is above or below their particular reference voltage. 741 -type op-amps can be used as comparators by operating them "open-loop" so that a very small voltage difference at their inputs causes the output to switch to one or other of the supply rails, but this solution is not practical for Digiscope for two reasons. First, the output of a standard op-amp operated as a comparator is not compatible with TTL logic levels and so would require level shifting circuitry to achieve an interface with the Row-Decoder. Secondly, and perhaps more fundamentally, the Digiscope Comparators are required to switch very rapidly indeed from one state to another as the input signal passes their threshold, and standard op-amps are really too slow for this job, requiring times in the order of 1 microsecond to switch states. When you consider that an input signal of 1 MHz will have completed one whole cycle during the 1 microsecond transition period you will be able to see why a purpose built comparator integrated circuit is necessary with switching times at least an order of magnitude faster.

Fortunately there is a cheap solution to the problem in the form of the 710 high speed voltage comparator which has been around for quite a while now, available in a variety of package styles. The 710 runs from plus 12 V and minus 5 V supplies and has an output with iTL voltage levels. The response time is a mere 40 ns which guarantees a faithful display of high TTL voltage levels. The response time is a mere

As can be seen in Fig. 3.1, nine 710 devices are used in all, each with its non-inverting input connected to a unique reference voltage from the Reference Generator circuit. The Y-Amplifier output drives all the inverting inputs of the Comparators in parallel, so that the same signal voltage is applied to each. R41 and the back-to-back Zeners form a limiter circuit to prevent the Y-Amplifier output swinging further than about plus and minus 6 V from ground, this being necessary to comply with the data sheet ratings for the 710 input voltages during overload conditions, when the Y-Amplifier attenuator is set wrongly, for example.

ROW DECODER

The nine Comparator outputs drive the Row Decoder inputs, and the operation of these two circuit blocks together is best understood by referring to Fig. 3.2, which is a simplified block diagram. For the sake of this diagram, an instantaneous Y-Amplifier output
voltage of $5 \frac{1}{2} \times \mathrm{V}_{\text {ref }}$ is assumed, and the Y -shift control is set so that the lowest comparator reference is at 0 V . Since the input is equivalent to $5 \frac{1}{2} . V_{\text {ref }}$ then the outputs of comparators $1,2,3,4,5$ and 6 will switch to give a logic 1 out, and comparators 7,8 and 9 will give a logic 0 out.
The Row Decoder consists of a series of Exclusive-or gates whose purpose is to detect the transition point between Comparator outputs which are 1's and those which are 0 's. The exclusive-or gates are of the til 7486 type, and unlike familiar NAND and NOR gates each 7486 gate gives a logic 1 output only when its two inputs are different, i.e. 10 or 01 , and a logic 0 output when its inputs are the same, i.e. 00 or 11.

For any instantaneous value of input voltage, then, only one of the eight Row Decoder outputs will be a logic 1 and this output will light up a particular row on the l.e.d. matrix. Because only one column of the matrix is enabled by the Sweep Generator, however, only a single l.e.d. in the matrix can be on at any instant.

Fig. 3.1. Reference Generator, Comparators, Row Decoder, Blanking Gates, Row Drivers, Trigger Generator, Trigger Latch and Sweep Generator. The diode chain is made up of transistors as indicated

Fig. 3.2. Example of Y deflection logic operation

BLANKING GATES

The outputs of the Row Decoder drive the l.e.d. matrix via level shifting and gating circuits. The 7401 open collector NAND gates provide both the necessary inversion to interface with the pop Row Driver transistors, and a common inter-trace blanking facility, which when driven low by the Trigger Latch output, disables all the Row Drivers so that the display is off. This facility is necessary because at the end of a single timebase sweep the timebase halts whilst awaiting another trigger pulse. The Sweep Generator would enable column 1 during this pause and would give an incorrect display.

ROW DRIVERS

The 8 pnp Row Driver circuits have a critical job to do since they have to switch the l.e.d. drive current as quickly as possible to allow good picture definition at high timebase speeds. The l.e.d. current is set by the 100 ohm resistor to about 30 mA peak, and each Row Driver has to be able to switch this current in less than 100 ns . General purpose silicon $p n p$ transistors were used to achieve this performance in the prototype, but no doubt an improved performance could be achieved with a transistor optimised as a fast switch.

HORIZONTAL DEFLECTION

We have now followed the vertical deflection system from the Y-Amplifier to the Row Drivers, and now need to consider the remaining parts of the horizontal deflection system which follow the timebase system described last month. In a conventional oscilloscope, horizontal deflection is achieved by driving the X plates of the c.r.t. with a high voltage, linear, ramp waveform. This has the effect of moving the spot across the tube face from left to right during the linear rising ramp period, and causing it to return rapidly to the left during the fly-back period.
Since Digiscope does not employ an electron beam to drive its display the word "deflection" is really a misnomer, and in fact no high voltage ramp is necessary, only a simple binary counter and decoder. The rising ramp is simulated by the binary counter starting from zero and incrementing on each clock pulse until the terminal count is reached, and the flyback occurs as the counter returns to zero on the next clock pulse.

Initiation of the ramp is of course normally brought about by the triggering circuitry, and a similar operation takes place in Digiscope though with the advantage that no analogue circuitry is involved at all.

TRIGGER GENERATOR

Fig. 3.3 shows the core of the horizontal deflection circuitry, and the best place to start is with the Trigger Generator. The output from the Trigger Amplifier is a logic compatible positive edge coincident with a transition of the Y-Amplifier signal through a selected threshold level, and in a selected directiondpositive or negative).
This positive going edge triggers a 74123 TTL monostable to give a very short, negative going pulse at its $\overline{\mathrm{Q}}$ output which can be used to initiate a single horizontal sweep. The second monostable in the 74123 package is triggered by the output of its neighbour, although in this case the CR network is set to produce a long pulse. This second monostable is used to provide the important facility of auto-trigger.

AUTO-TRIGGER

This is a technique for ensuring that there is always a bright-line trace on the screen, even if there is no triggering signal available for synchronisation. This facility is useful because a reference trace is always displayed, allowing measurements of d.c. voltages and offsets to be made easily. The old way to achieve a bright trace in the absence of a signal was to allow the timebase to "free-run" and use the trigger signal to synchronise the timebase free-run frequency. This led to the exasperating phenomenon of "dodgy" triggering where the trigger sensitivity had to be painstakingly adjusted for each new signal waveform.
The problem was due to the fact that the timebase was basically a free running oscillator, and had to be coaxed into synchronisation, whereas with the Digiscope circuit the timebase is not allowed to free-run unless a suitably long time interval has elapsed since the last trigger pulse was received. Once the Digiscope Trigger Generator has switched to the free running mode then a single trigger pulse will cause it to switch back instantly to the triggered mode whereupon it will again wait for a period before reverting once more to the free-run mode if no further trigger pulses are received.

Fig. 3.3. Horizontal display circuitry

OPERATION

The length of period is set by the time constant of monostable IC23b, and the operation of this novel circuit can be followed with reference to Fig. 3.3.

When a normal input signal is present then each transition causes IC23a to be triggered to produce a single, narrow, negative-going output pulse which is presented to the input of IC19a and to IC23b. The time constant of IC23b is long, at about 40 milliseconds, so that an input frequency of greater than about 25 Hz wilh cause this monostable to retrigger so that its \bar{Q} output remains in the logic 0 state. The $\overline{\mathrm{Q}}$ output is inverted by IC19b so that the second input to IC19a is a logic one and the trigger pulses from IC23a are allowed through to the Trigger Latch.
If the trigger pulses stop, or their frequency drops below about 25 Hz then IC23a and IC23b are not triggered, although of course the \bar{Q} output of IC23b cannot return immediately to a logic 1 because of its long time constant. When it does go to a logic 1 then the output of IC19a is forced to the logic 1 state, enabling IC19c and initiating another sweep by clearing the Trigger Latch. If no more trigger pulses are generated then IC19c remains enabled so that the Trigger Latch clears itself at the end of each sweep to give a virtual "freerunning" timebase.
The circuit will remain in this state until further trigger pulses are detected so that a continuous trace is produced on the screen even with d.c. input signals.

TRIGGER LATCH

The Trigger Latch is a D type flip-flop and is normally set by the terminal count output of the SN74160 at the end of a sweep and cleared via IC19c on the receipt of a trigger pulse. The outputs of the Trigger Latch control both the Timebase Oscillator and the Blanking Gates as previously described.

SWEEP GENERATOR

The Sweep Generator consists of a 74160 synchronous TTL decade counter and a 74145 four line to ten line decoder driver. The clocking of the Sweep Generator is performed by the Timebase Oscillator and is enabled by the output of the Timebase Dividers giving a range of clock periods from 100 ns to 10 s depending on the control settings. The four line b.c.d. output from the counter drives the decoder inputs to give ten unique outputs per sweep to drive the ten column inputs of the l.e.d. matrix, each output remaining on for one clock period only.

After nine clock pulses the terminal count goes high to prime the Trigger Latch, and on the tenth clock pulse the counter returns to a count of zero and the Timebase Oscillator is gated off by the Trigger Latch until another sweep is initiated by a trigger pulse.

The 74145 decoder has ten high sink-current outputs and is ideal for driving the heavy load represented by the l.e.d. matrix drive current.

Fig. 3.4. Simplified display schematic

DISPLAY MATRIX

Fig. 3.4 is a simplified schematic of the 1.e.d. display and its associated drives, and at this point it is possible to tie together the X and Y deflection systems to see

how the display operates. The essential thing to remember is that at any instant, only one l.e.d. in the matrix can be on, and the particular l.e.d. required is selected by the intersection of a valid row drive and column drive. The Row Drivers are driven asynchronously by the Y input signal, and the Column Drivers are driven synchronously by the Timebase Oscillator so that the combination of these two drives results in a graph of the input signal being plotted, relative to time, on the points of the display matrix.

LOWER DECK CONSTRUCTION

The construction of the lower deck circuits follows the same pattern as the upper deck, and, as before, the use of fine connecting wire and miniature components is absolutely essential. Terminal pins were used extensively on this board, in particular to allow the distribution of power supply voltages via tinned copper wire buses on the upper side of the board, as shown in Fig. 3.5.

The outputs from the Reference Generator diodes are also terminated on pins, as are the main supply voltage inputs from the power pack. The minus 5 V for the 710 comparator circuits is derived from the minus 12 V rail by a resistor/Zener network mounted under the board near the main supply inputs, since there is little point in producing a separate minus 5 V supply in the power pack when the current drain on this rail is so low.

COMPONENTS . . .

Fig. 3.5 Component layout of lower deck. For interwiring details reference should be made to the appropriate circuits

```
-Resistors
    R41
    R42, R43 1.5k\Omega
    R44-R52 1k\Omega
    R53-R60 620\Omega
    R61-R68 820\Omega
    R69-R76 620\Omega
    R77-R84 100\Omega
    R85 100\Omega
    R86 5.6k \Omega
    R87 5.6k\Omega
    R89 1k\Omega
Capacitors
    C14-C17 0.01 \mu F ceramic
    C18 24pF
    C19 10\mu\textrm{F}\mathrm{ elect 25V}
```

Semiconductors

TR14*-TR21*	Any sllicon pnp (plastic)
D18-D19	BZY88 $5 \cdot 6 \mathrm{~V}$ 400mW Zener (2 off)
D20	BZY88 5.1 V 400 mW Zener
D21*-D28*	2N2926 (8 off) (see text)
(TR6-TR13)	
IC6-IC14	710 d.i.p. (9 off)
IC15-IC16	SN7486 (2 off)
IC17-IC18	SN7401 (2 off)
IC19	SN7410
IC20	SN77160
IC21	SN7474
IC22	SN74145
IC23	SN74123

The 710 circuits themselves can be obtained in a wide variety of package styles some of which are incompatible with the board layout so it is important to shop around for the correct type. The 8 pin mini-d.i.p. style was used in the prototype, coded N5710V from Signetics, but there is no real reason why the TO5 style package should not be used if you don't mind all the lead forming necessary to mate with the "square" hole matrix.

CIRCUIT TESTING

It is probably best to wait until the overall interconnections (to be detailed next month) are completed before testing the Trigger Generator, Trigger Latch and Sweep Generator, but the Reference Generator, Comparators and Row Decoder can be tested in isolation if desired. The lower end of TR13 should be connected to $0 V$ (to simulate the d.c. level shift control) and voltage source variable between zero and about 8 V should be connected between 0 V and the left hand end of R41. (A variable power supply or a potentiometer could be used). With appropriate power supplies connected the voltage source can be adjusted while individual comparator outputs are observed with a multimeter.

The performance of the Comparator outputs should conform to the principles described in Fig. 3.2, and of course, using the same test set-up, the Row-Decoder outputs can be checked against this figure also.

Next month: Final construction and power supply details.

аиани

By M.PLANT

THE "law" is becoming increasingly impatient with drivers who fail to switch on their lights soon enough during the approach of darkness or in conditions of poor daylight generally. Commerciallymade units which provide an audible warning of lighting-up time are costly, but the circuit described below shows how to build a low-cost warning system which can be installed in the car simply and unobtrusively. The circuit provides the warning by flashing a lamp and is designed to stop flashing as soon as the lights are switched on.

CIRCUIT

The circuit uses a dual operational amplifier in integrated circuit form. This is the 747 type which contains two identical op amps of the common 741 variety. As a matter of interest, this dual op amp is good value for money since it can be bought for less than the price of two individual 741s. Note that the two op amps share the same negative supply connection but have independent positive supply pins. Otherwise the two internal circuits are quite separate from each other.

Fig. I shows how the two integrated circuit op amps are used to provide the alarm circuit. The dotted line divides that part of the circuit which responds to the failing daylight from that part designed to flash the warning lamp.

First the circuit employing ICla. This is used to detect the sign of the voltage difference between the midpoints of the bridge of the four resistors VR1,

RY, R1 and R2. The inverting input (pin 1) of ICla is held at half the supply voltage by means of the voltage divider R1 and R2. The voltage at pin 2, the non-inverting input, is at a voltage determined by the resistance of the photocell for a given setting of the preset resistor VR1. Under bright light conditions, the resistance of R9 is low, therefore holding the voltage at pin 2 below that of pin 1. This ensures that the output voltage at pin 12 is low, usually just above 0 V . But as darkness falls, the resistance of R9 increases, raising the voltage at pin 2 .

When this voltage reaches a fraction above that at pin 1, the op amp amplifies the small difference and the output voltage rises sharply to near the value of the supply voltage. Since ICla is operated open-loop, no feedback resistor being connected between the output and the inverting input to control the voltage gain of the amplifier, the change in light intensity required to make the output voltage swing from near zero to the supply voltage is very small. In other words, the circuit operates at a very precise level of light intensity. The required setting of VR1 is described later.

OSCILLATOR

Now to concentrate on the way IClb is used. This op amp is powered from pin 12 of ICla by connecting this pin to the positive supply pin of IC1b. This second op amp is connected as a freerunning astable multivibrator providing square wave pulses at pin 10 varying from just above 0 V to near the supply voltage. When the output voltage is low, the npn transistor TR1 is off, and when it is high TRI switches on and lights the lamp. Briefly, the astable multivibrator works as follows.

COMPONENTS . . .

Resistors

R1, 2	$470 \mathrm{k} \Omega$
R3, 4,5	$100 \mathrm{k} \Omega$
R6	$33 \mathrm{k} \Omega$
R7	$47 \mathrm{k} \Omega$
R8	$100 \Omega \frac{1}{2} \mathrm{~W}$
R9	ORP12 or similar

All resistors $\frac{1}{8} \mathrm{~W}$ carbon 10% unless otherwise stated

Potentiometer

VR1 $47 \mathrm{k} \Omega \mathrm{min}$. preset for 0.1 in matrix board

Capacitors

C1 $10 \mu \mathrm{~F} 25 \mathrm{~V}$ eiect.
C2 $2 \cdot 2 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C3 $100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.

Semiconductors

IC1 747 (SN72747, $\mu \mathrm{A} 747 \mathrm{C}$ etc.)
D1 OA200, OA202, OA91, 1 N4001 etc.
TR1 BC107, BC108, 2N2926, 2N3704, ZTX3000 etc.
Miscellaneous
LP1 6V, 60mA LES lamp and holder
0.1 in stripboard 3 in $\times 1.5 \mathrm{in}$

5-way terminal block
Suitable case

If capacitor Cl is initially charged so that the voltage at pin 7 is higher than at pin 6, the output voltage is low. However, CI will discharge through R6 so that the voltage at pin 7 decreases exponentially. When this voltage falls just below that at pin 6 , the op amp immediately drives the output into positive saturation, thereby driving on TR1 causing LP1 to light. Capacitor C1 now begins to charge up through R6 and the voltage at pin 7 rises. When once again this voltage exceeds that at pin 6, the output voltage sharply drops to near zero and the cycle repeats. The repetition rate is determined by the value of C 1 and all the values R 3 to R 6 , decreasing for higher values of C1 and of R3, R4 and R6. but for lower values of R5. For the values indicated in the circuit diagram, the lamp flashes at a frequency of about 1.5 Hz . The lamp used in the prototype was a generally available $6 \mathrm{~V}, 60 \mathrm{~mA}$ type in a lamp holder and lens and its voltage necessitated the inclusion of a 100 ohm resistor in series with it in the collector load of the transistor. Capacitor C2 in parallel with the photocell ensures that
the side or headlights. This positive voltage at pin 7 ensures that capacitor Cl remains charged and the lamp remains off

ASSEMBLY

As illustrated in Fig. 2, the circuit board can be a 30×14 hole 0 .lin matrix stripboard. The components may be assembled in a different way to that shown. if their physical size necessitates this.

Once the components are soldered into place and excess component lead showing underneath removed, the stripboard should be cut in the places indicated. Leads are then taken out from this board to the terminal block as also shown in Fig. 2. Having decided where the unit is going to be firmly fixed in the car (e.g. behind the steering column), you must determine the length of leads required for the lamp and the photocell, the lamp being mounted preferably on the dashboard, and the photocell positioned somewhere near a window so that ambient light is caught by it. You should take care to make

Fig. 1. Circuit diagram of the Car Light-up Alarm
the lamp is not momentarily switched on by sudden changes in light intensity. Capacitor C3 across the supply lines ensures that the operation of the circuit is immune to the effects of voltage spikes on the vehicle's electrical circuitry.

LAMP CONTROL

There are two methods for ensuring that the lamp ceases to flash as soon as the sidelights or headlights of the car are switched on. The first method requires that the photocell is positioned inside the lamp housing so that it becomes illuminated by the car's lights as soon as they are switched on. This arrangement, however, is only possible if the headlights are not of the sealed-beam type.

The second method relies upon the circuit being able to detect the rising voltage across the lamp which is being switched on. A diode DI is connected as shown with its cathode to pin 7 and its anode to the switch terminal on the car rising from 0 V to 12 V when the switch is operated to bring on

Fig. 2. Diagram showing stripboard cutting details and component layout, together with connections to the terminal block
firm connections to the photocell to avoid the possibility of the leads to it breaking off. It is a good idea to put the photocell inside a short length of plastic tube to protect it and provide it with an ability to respond to light substantially from one direction. The prototype circuit was housed inside a small plastic box used for photo transparencies. The circuit board should be firmly held inside this box by a piece of foam rubber or expanded polystyrene. Take leads from the terminal block sufficient in length to reach the chassis (negative connection for negative earth vehicles) and to the positive connection of the battery via the ignition switch.

INSTALLATION

The circuit should be tested by connecting the supply leads from the terminal block to the car battery and, by covering the photocell, adjusting the preset resistor VRI until the lamp begins to flash. Upon allowing light to reach the photocell, the lamp should remain off. Leave the final setting of VR1 until the unit is installed. When the lamp and photocell are firmly positioned, the 0 V lead from the terminal block is connected to a convenient point on the chassis of the car for negative earth operation.

You will need to gain access to the side/head switch and to use a voltmeter or 12 V lamp to find a switch terminal which rises from 0 V to 12 V when either the side or head lamps are switched on. When you have found this terminal, the lead from the terminal block connected to the "inhibit" connection I is joined to it, ensuring that the connection is reliable. In order to set the circuit to respond at the correct twilight level you will need to wait for the right conditions (or drive into a partially darkened garage) in order to set VR1 to bring the light on. Subsequently you may need to make fine adjustments to this setting.

COMPONENT VALUES

Many of the components in the circuit are not critical although the values used in the prototype are listed. VR1 may range from $100 \mathrm{k} \Omega$ to $22 \mathrm{k} \Omega$. R1 and R2 may each be $100 \mathrm{k} \Omega 1$ or $220 \mathrm{k} \Omega$. C3 may be as high as $1000 \mu \mathrm{~F}$ if room can be found for it but, to be effective, should not be less than the value listed. Simliarly, C2 may be as high as $220 \mu \mathrm{~F}$. D1 may be any general purpose silicon or germanium diode. The values of Cl and R6 are open to experiment since they determine, more significantly than the other components, the rate at which the lamp flashes. However, to obtain approximately the same Hashing rate as in the prototype (about 1.5 per second), an increase of R6 to, say, $120 \mathrm{k} \Omega$ requires Cl to be decreased to about $2 \cdot 2 \mu \mathrm{~F}$. The transistor can be any medium current switching transistor capable of handling the maximum filament current of the lamp (i.e. about 100 mA). Alternative transistors are listed.

"Manta" Capacitive Discharge Electronic Ignition Unit IMPORTANT NEWS:

We are pleased to announce that the "Manta"-one of the highest quality ignition units available-is now supplied in Kit Form.
Construct this top performance electronic ignition unit and benefit from improved petrol consumption, smoother running and instant starting for your vehicle.

ONLY Kit price (including postage and packing, VAT, fuil
£16-50 assembly and installation instructions

T, postage and packing)
Send S. A.E. todey for fall detalls of thas top quality unit to:

ELECTRO SPARES

Dept. P.E., 187a Sheffield Road, Chesterfield, Derbyshire S41 7JQ. Tel. (0246) 36638

ELECTROVALUE

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order (and industrial) suppliers of semi-conductors, components, accessories, etc. There are wide ranges and large stocks to choose from as well as many worthwhile advantages to enjoy when you order from Electrovalue.

CATALOGUE 8 ISSUE 2 READY NOW!

Second printing (Green cover) with up-dated information, 144 pages. Now items. Opto-electronics. Diagram of components. applications, C. circuits, etc. Post free 40 p , including voucher for 40 p for use on order over $£ 5$: 00 list value. A must for careful buyers.

DISCOUNTS

On all C.W.O. mall orders. except for some items marked NETT. $5 \% \quad$ on orders list value 10% on orders list value Not applicable po credit card purchases.

FREE POST AND PACKING

On all C.W.O. mail orders in U.K. over 22 list value. If under, add $15 p$ handing charge

PRICE STABILIZATION POLICY

Prices are held and then reviewed over minimum periods of 3 months. Next review period effective from October ist

QUALITY GUARANTEE

On everything in our Catalogue-No manufacturers rejects, seconds or sub-standards merchandise.

ELECTRONALUE LTD

All communicstions to Dept. 9/2. 2 ST. JUOES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB. Telephone Egham 3603, Telex 284475. Shop hours $9-5.30$ daily, $9-1 \mathrm{pm}$ Sats.
NORTHERN BRANCH: 680 Burnage Lene, Burnage, Manchester M19 1NA. Telephone (061) 4324945 . Shop hours Daily 9.5 .30 pm : $9-1 \mathrm{pm}$ Sats.

"HEADS-TAILS" INDICATOR WITH VARIABLE PROBABILITY

NUMEROUS circuits have been published for "heads/tails" indicators, based on multivibrators. These usually consist of a gated astable multivibrator with a 1:1 mark to space ratio, running at a frequency such that individual states cannot be recognised during the gating period. The $1: 1$ mark to space ratio ensures equal probability of either state being achieved.

Many games use a random indication of one of two states, but require a weighting to be applied to these states such that there is not an equal probability of either state being achieved. An obvious though not very satisfactory way of achieving this uses an astable multivibrator with a variable mark to space ratio.

The circuit shown in Fig. 1 overcomes most of the difficulties and consists of three main blocks:
(a) A resettable binary counter with a decoded decimal output of 0-99. It uses two 7490 s, each wired to
divide by 10 , the output from the first driving the second. The respective BCD outputs from each are decoded to a decimal form using two 7442 s . (b) A gated astable multivibrator using 3 of the 4 gates of an SN7400. The frequency of the $1: 1$ square wave output is controlled by the value of capacitor C 1 (1 nF produces a frequency of approximately 1 MHz).

Oscillation is achieved by the application of a logic 1 signal to the enable gate IC7c.
(c) The gating and parity detecting circuitry of IC6 (SN 7427) together with half of a D-type flip-flop (SN 7473), control the resetting of the BCD counters to zero, and the alternate enabling of two reset gates IC6a and b.

Assume that the "heads" probability is set to 40 and the "tails" probability to 60 ; the BCD counters IC 1 and IC2 to zero ($\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Qc}$ and Q_{D} all at logic 0) and the flipflop $\frac{1}{2} \mathrm{IC} 5$ with $\overline{\mathrm{Q}}$ at 0 and Q at 1 .

On applying a logic 1 signal to the enable input of the clock generator (IC7c) square wave pulses are applied to the A input of the first decade counter (IC1). The binary output is decoded to a decimal equivalent by the corresponding BCD decoder (IC3) and each 10th pulse passes to a similar counter (IC2) and decoder (IC4).

When the decimal output of IC4 $=4$ and IC $3=0$ the output of IC6b goes from 0 to 1 (since all three inputs of IC6b are at 0). Any 1 at IC6c produces a corresponding change from 1 to 0 at its output. This produces two simultaneous effects.
(1) After inversion by IC7d the positive pulse resets both IC1 and IC2 to a binary equivalent of zero, and
(2) The negative-going pulse from the output of IC6c, applied to the clock input of IC5 reverses the states of the two outputs such that $Q=0$ and $\bar{Q}=1$. This has the effect of disabling the action of IC6b and enabling the action of IC6a.

The counting now continues in a similar fashion until the decimal output of IC3 and IC4 correspond to 0 and 6 respectively, when a similar sequence of events occurs except that the reset pulse is now derived from IC6a.

The net effect is that the Q and $\overline{\mathrm{Q}}$ outputs of IC5 are alternatively switched on and off with a mark to space ratio of $6: 4$. Indication may be taken directly from the Q and \bar{Q} outputs of IC5 using l.e.d.s or suitable lamp drivers.

No external reset for the 7490 s or the 7473 are provided since the gating period is significantly longer than the clock period, and the states at switch on or at the end of a gating period will have little effect on the output obtained.

Dr M. J. Hacker,
Chirk, Clwyd.

RSI

B. BAMBER ELECTRONICS

Dept PE, 5 STATION ROAD, LITTLEPORT, CAMBS., CB61QE
Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED
FREE WELLER 25W (SP25) SOLDERINGIRON worth $53 \cdot 24$ inc. Van with ill ordere over tzo Umited period only. Eend now.
VARIABLE BTABILISED POWER SUPPLY, mains input, 0-2aV output. tabilised and curront limiting it $500 \mathrm{~mA}+32 \mathrm{~V}$ at 50 mA . Brand now by
British manutacturer. Size approz. $7+\times 2 \downarrow \times 4$ in. complete with external $5 \mathrm{k} \Omega$ 3-turn pot for voltage controi. Connection data suppled. E7.
$50 \mu \mathrm{~A}(25-0-25 \mu \mathrm{~A})$ EDGEWISE METEAS, moderm type by Sangamo Westarn. ditelay area if x 1itn with 2 mounting lugs. (Can be zeroed lelt or right hand.) 51-50 each, while stocke ise

MANB ISOLATION TAANBFORMERE. Tapped | mains input. 240 V of $3 \mathrm{~A}+12 \mathrm{~V}$ at 500 m |
| :--- |
| New, boxed, made by Gardnera, |
| 12 |

FLEXIELE HEATEA STMIP, 240 V e.c. 150 W . approx. 1 metre long (unsulated with fibregiass) with mains connector block. Many, many uees. sep atach
MEAVY DUTY MELAVE, $24 V$ d.c. oparated (will work on $18 V) 3$ hosvy duty make contacts (around 19 A rating) +4 change over contacts $\stackrel{\text { I Drask contact. Now, compiete with }}{+}$ Lincarts.) Many uses for this high quality unit. 19.50 sach. Good Quality Presaure Guages. 2 Hn dila.
 2N305s type Tranaistors. O.K.. but unmarked. 5 101 81 .

110 V NEONS, SCREW-IN-TYPE. 4 for S0p. SIow motion motora (suliable for programmere between 1 and 2 revs per minute, $\mathrm{Et}-25$ each.

MINIATUAE PLIERS High qually "Crescent"
hade in USA. $24 \cdot 35+$ VAT (35p).
SIOE CUTTERS, nigh quallity
n USA E4.45 + VAT (4Ap).
MIXED COMPONENT PACKB, containing resietore, capacitors, swith hes. Dota. ttc. All now (random sample beg revoulad apprax. 700 toma). 62 por pack. while stocks latit.
TUNED COILE, 2 soction coils. around 1 MHz . win atack smart tuning knob, which moves usise. asesily rewound, 3 for $50 p$.

HIGH QUALITY SPEAKERS, g\%in \times bin allipticsi only 2 in deep, inverse magnet, 4 ohms. rated up
io low, 11.50 esch, or 2 for $\mathrm{tz}, 75$ (aty. discoun avallabie + 121% VAT.
TOS iransiator inmulator sets, 10 for 50 p
MINIATUAE Z PIN PLUGS AND SOCKETE litit into tin hole, pint enclosed. with covere for
chantis mounting. or cin be used for in line connectore), Bargaln pack of 3 pluge +3 sockel + covera. 50p.
PROGRAMMERS (magnotic devicess). Contain 9 microswitchas (euitable for malne operation with lor for awitching dietco lighta. diaplays. ofc. or Industrlal machine programming. (Need stow motion motor to drive cami. not tupplied) 9 awiteh version $\$ 1.50$.
HEAVY DUTY HEATBINK BLOCKS, undrilled base aree 2 in \times zin. whith 6 fine, total naigh RUBEER MAGNETS \ddagger in square. with mounting hole. 20 for 300.
SPEPAY 7-SEGMENT P.Q.D. DISPLAYS, digit haight 0.3 in red. With decimal points. 150 V to zoov (nominal r80V) operation. phatione high normal dhplays. All brand new. AT THE BARGAN PRICE OF 500 PER DIGIT. TYPE 332 (two digite in one mount) is each, TYPE 333 (three digite on one mount) atingle digit avalabie.) Data Supplied.
BSX20 (VHF Osc/Muli), 3 for 50 p . BC 108 (mptal can). 4 for 50 p . PBC 108 (plastic BC100), 5 for $50 p$ OCz00 Transietors. 6 for 50p. eCy72 Transistors. 4 1or 50p PNP audio type TOS Tranaistors, 12 for 25 p . BF152 (UHF amp/mixer), a for 50 p . BA121 Varicap Dioder, ${ }^{4}$.
1N 914 diodes, 10 for 25 .
gMALL MAINS SUPPRESSORS (small chokes tideal for radio. Mi-FI Inputs. stc.) approx. tin ti in. 3 for sop.
PERSPEX TUNER PANELS (for FM Band 2 tunera) marked $88-108 \mathrm{MHz}$ and Channess $0-70$, clear numbert, rest blacked oul. smart modern Load auppresize approx. atin $\times i \not i \mathrm{in}, 2$ for 35 p . leads. 4 for Sop.

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED

ALU-sOL ALUMINIUM SOLDE月 (mede by Multiore) Soldere aluminlum to theelf or copper
 multicore flux, with inutructions. Approx. 1 melre coil 300 peck. Lerge reel (approx. 12 metraa) c2-75.
IfIn polythene chatesie mounting fuseholders, 8 for 30 p.
Mullard
Muilard Tubular coramic trimmeris. $1-18 \mathrm{p} F$
for sop.
mixed. 20 for 25p

Mobile Convertera. 24 V OC inpul 33 -8y a pproz 3.4 A DC output, fully timblisea. it 50 orry battery). WS Midget
OD each.
We now stock Splralux Tools for the electronic nthuainat Screwdrivers. Nut Spannars. BA and enthuaiset, Screwdrivers. Nut Spanners. GA and
F. Cans. fin square, wultuble for rewind. 6 or $3 \mathrm{Sa}_{\mathrm{p}}+12 \neq \%$ VAT.
Miniature orarphonss with min. lack plug. 2 for sep + $12 \mathrm{t} \%$ VAT
TWIN I.F. CANs, approx. $\operatorname{lin} x+\operatorname{lin} \times \operatorname{lin}$ high

Dubilier Electrolytica. $50 \mathrm{uF}, 450 \mathrm{~V}, 2$ for 50 p . Oubiliter Elactrolytics. 100 FF . $275 \mathrm{~V}, 2$ for 50 p . Pleasay Eiectroiytics. $470 \mu \mathrm{~F}, 63 \mathrm{~V} .3$ for 50 p .
TCC Eiectrolytics, $1000 \mu \mathrm{~F}, 30 \mathrm{~V}, 3$ for TCC Eiectrolyticm. $1000 \mathrm{HF}, 30 \mathrm{~V}, 3$ tor 20 p .
Plensay Electrolytics. $1000 \mathrm{~F}, 180 \mathrm{~V}$, top ench (3 for E1). Oubsilier Electrolytics, $5000 \mathrm{mF}, 35 \mathrm{~V}, 50$ each. Oubilier Electrolytics, 5000 uF , 50 V , 6 . iTT Electrolytics. 68000 FF . 25 V . hiph grade, sc torminals, with mounting elips, $30 p$ otich, Plessey Cuthodray Copscitors $0-0.4 \mu \mathrm{~F}$ at 12.5 kV OC. Screw terminais. E1. S0 each. PLEASE ADO 12 \% Y VAT TO ALL CAPACITORS A LAROE RAMOE OF CAPACITORS AVAILABLE
AT BARGAIN PRICES, SA.E. FOR LIBT.

V Pluos and sockets
V Pluge (metal type). 5 for 50 p.
TV Socketa (metal type), 4 for 50 p .
, 50p Connectore (back-to-bsek sockete). 4
PLUGS AND SOCKETS
PLUG8 AND 80 CRET8
N-TYp Plugs 50 ohm, eap each, 3 for $\mathrm{t1}-50$.
N-Type sockets (4 hols chestis mounting). 50 ohms (a smail coux lead type). Sop each.
L259 Plugi (PTFE), brand now, packed with educert. 850 or 5 for 53.
nd now (4-hole fixting
 +1 skt).
Plugs and eockete sold separatoly at $23 p$ wach. Sulgin Round Free Skts. 3 pin, for mains input test equipment. etc., 2sp each

WELLER SOLDEMING IRONS
XPEAT. Built-in-spotlight illuminates work

EXPERT SOLDER OUN. es. 30 + VAT (54p) EXPERT SOLDER OUN KIT (spar bIt case tc.). E8. DO + VAT (78D)
MAAKSMAN SOLDEFING IRONS
SP15D 15W 53 + VAT (24p)
SP25D 25 W t3 + VAT (2te)
SP25DK 25 W + Dits
SP25DK 25 W + bits. etc. kdt es. 15 + VAT (31p) SP40D HOW CH. 4 + + VAT (2lip) 22. $22+\operatorname{VAT}$ (18p)

SPARE BITs
MT8 for $15 \mathrm{~W}, 4 \mathrm{4p}+$ VAT (4p).
MT4 for $25 \mathrm{~W}, 3 \mathrm{Mp}+$ VAT (3p)
MT10 for $40 \mathrm{~W} .42 \mathrm{p}+$ VAT (3p)
TCPI TEMPERATURE CONTROLLEDIRON Temperature controlited Iron a PSU, 20 + VAT (51.89)

PPARE TIPS
Type CC aingle tlat. Type K double flat fine tip Type pr. very fine tip. 51 each + VAT (ep).
multicone solder
Size 5 Sevbit 18 a w.g. In alloy diepenser. 32p + VAT (30).
Size C1SAV18 Savbir 18 e.w.g., Sep $+V A T$ (4p).
Size 12 SAVBIT 18 . Size 12 SAVBIT 18 .w.g. on plastic real $\mathrm{El} . \mathrm{en}$
$+\mathrm{VAT}(15 \mathrm{p})$

Terms of Business: CASH WITh ORder. MInimum order al. ALL prices include post \& Packing (uk only). SaE with all enquiries please. PLEASE ADD VAT AS SHOWN. ALL GOOOS IN STOCK DESPATCHED BY RETURN. CALLERS SATURDAYS ONLY 9.30-12.00, 1.30-5.00.

New to the UK from PRONTO

 Battery operated LCD read out CALENDAR CLOCK KIT-crystal accuracy Bold Digits-runs on two Penlight Cells.Now is the time for the hobbyist to move into Advanced Technology with Prontol
PRONTO MODEL 301 - The first completely portable liquid crystal display, digital CALENDAR CLOCK KIT offered in the United Kingdom

- Battery operation - two small alkaline cells give a minimum life of 12 months.
- Superb accuracy through crystal control - of 3 minutes a year -Wide angle display with f inch digits
- Push Buttons give choice of 3 display modes - hours minutes on 12 hour display with flashing colon, or seconds, or date. -PRONTO 301 comes complete with easy to follow
£29-50 including V. A.t. You save
instructions AT $£ 2$ S-SD inc
counds off the recommend
Comparable made up clock. TERMS: Cash with order - make a cheque and/or postal orde
payable to PRONTO ELECTRONIC SYSTEMS LIMITED
(P \& P - U.K. $£ 0.45$ Overseas $£ 1.50$)

Ingenious gravity alarm - time setring mode switch * Full assembly instructions т $15-50$ including V.A.T With all PRONTO products - enquiries from the Trade, as well as the Hobbyist, are welcome, and you can also buy individual components!
PRONTO CONSTRUCTOR'S CLUB When you buy your first Pronto kit you're automatically a Member of the PRONTO CONSTRUCTOR'S CLUB. It will not only keep you in the picture on new ideas and kits . . . but gives you FREE a $£ 2$ Voucherjagainst the purchase of your next kit!
Isn't it time you joined the Club?

I10:59

Pronto Electronic Systems Ltd.
645/647 High Rd., Seven Kings,
Essex IG3 8RA. Ö1.599 3041
My cheque/P.O. for \qquad is enclosed NAME

ADDRESS

 Please send me PRONTO 301 KIT/S AT £29.50 EACH (Plus P \& P)PRONTO $304 \mathrm{KIT} / \mathrm{S}$ AT £15.50 EACH (Plus P \& P)

[^1]
SQUARE WAVE CONVERTER

T
HE circuit shown has been designed to add extra versatility to the Minisonic synthesiser by way of providing another waveform from the v.c.o.s.

This circuit converts the sawtooth waveform of the integrator to a pulse waveform by means of a differential comparator. The pulse waveform can be varied from very short, through square to a rectangular form; either by manual control or by voltage control. The switching between manual and voltage control proved beneficial when the synthesiser was being used for live performance work.

ICI is functioning as a differential comparator, the reference voltage level decides the wave shape. In normal operation the comparator is swinging between positive and negative saturation levels; diode D1 serves to clip off the negative cycle and D2 is present in order to attenuate the positive swing to around 0.6 V . Capacitor C3 blocks any d.c. which might be present at the output of ICI.
C 1 and C2 are necessary in order to prevent any ripple spreading to the v.c.o.s. Voltage control is provided by using an n channel f.e.t. as a voltage controlled resistor. IC2 is a simple buffer/sumning amplifier with unity gain. Its function is similar to that of the control nodes in the N.c.o.s.

The circuit is simple to set up. With a high impedance voltmeter across VR2, VR1 is adjusted so that

Fig. 1

the potential is 350 mV . The voltage control may be set up by applying a slow positive-going ramp from a v.c.o. and adjusting VR3 until the best effect is heard. The setting of VR4 will alter the minimum pulse length available.

By careful adjustment of these two presets, the waveform shapes that are shown may be obtained.
P. R. Symons, East Acton, London W.12.

LIGHT PIPE CONTROLLER

HIS unit can be inserted into the circuitry of the Light Pipe. Practical Electronics. January 1975. with connection A attached to the collector of TR3 and connection B attached to pin 1 if IC1. The line connecting these two points must, of course, be broken.

With the unit off the Pipe runs normally, but with the unit on the Pipe runs then freezes, runs then freezes, and so on. The speed control in the original design still controls the running speed of the Pipe, whilst this unit's VR1 controls the number of times that the Pipe starts and stops per minute.
Some experimenting may be necessary with R3 and R4 to get

the correct start-stop speeds, as the gain of TR1 and TR2 will obviously vary from transistor to transistor.

When the unit is OFF, S1 shorts out TR3 and also removes power from the unit.
S. J. Baxendale. South Shields

Fig. 1

LERE is an updated design prompted
by the Phasing Control (Oct. 1974). This has several advantages over the original circuit. First of all it uses a 9 V rail, also it uses fewer, but more-common components.

With the values shown, the circuit has a fixed frequency of 1 cycle per 8
secs. The capacitor C3 enables a fast start at switch on. To set up, adjust VR1 for a reasonable maximum minimum brightness. Since the impedance through VR1 is relatively high, this has no effect on the timing of the multivibrator.

Two things worth noting: TR4 gets hot, and since the unit uses 150 mA of current it would be ludicrous to use a battery. A suitable mains unit would suffice as these can be bought for around $£ 2$.
Q. A. Rice,

Mitcham, Surrey.

3-GHANNEL SOUND-TO-LIGHT CONVERTER

Fig. 1

THE circuit in Fig. 1 is a sound-tolight converter with 3 independent channels handling the low, middle and high frequency ranges respectively.

Signal from an amplifier speaker output is first passed through an attenuator (to allow accommodation of a wide range of input levels). Filters then divide the input into the three separate frequency ranges.

The filter outputs are then fed via an amplifying stage to the gate of CSR1 which is acting as a switch.

Table 1

	Low	Middle	High
R8, 9	$12 \mathrm{k} \Omega$	$3 \cdot 3 \mathrm{k} \Omega$	820Ω
R12, 13	$56 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$	$3 \cdot 3 \mathrm{k} \Omega$
$\mathrm{C} 2,3$	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$

The CA 3059 provides an output pulse at the next zero crossing point of the mains after the thyristor is fired. No RFL supression is therefore required, as all switching is performed at the zero-crossing point.

The output pulse from the CA 3059 then fires the triac via the $1: 1$ pulse transformer T1.

Component values for the three filters are given in Table 1, the actual circuitry being the same for all three.
D. G. J. Kingsbury, Soulby.

Baker Group 25, 3. 8 or 15 ohm Baker Group 35, 3. 8 or 15 ohm Baker Group 50/12 8 or 15 ohm Baker Group $50 / 158$ or 15 ohm Baker Deluxe 124, 8 or 15 ohm Baker Major 3. 8 or 15 ohm Baker Superb 8 or 15 ohm Baker Regent 121 ln 8 or 15 ohm Baker Auditorium 12 in 8 or 15 ohm Baker Auditorium 15 in 8 or 15 ohm
Castle 8RS/DD 4 or 8 ohm
Celestion G12M 8 or 15 ohm
Celestion G12H 8 or 15 ohm
Celestlon G12/50 8 or 15 ohm
Celestion G12/50TC 8 or 15 ohm
Celestion G12/50 2236 /cone
Celestion G12/50 2239 s/cone, alum. dome Celestion G15C 8 or 15 hm
Celestlon G18C 8 or 15 ohm
Celestion HF1300 8 or 15 ohm Celestion HF2000 8 ohm Celestion MH1000 8 or 15 ohm Celestion C03K
Decca London ribbon horn
Decca London CO/1000/8 crossover Decca DK30 ribbon horn
Decca CO/1/8 crossover (DK30)
EMI $15013 \times 8 \mathrm{in} \mathrm{d} /$ cone 8 ohm EMI $13 \times \sin 20 \mathrm{~W}$ bass 8 ohm
EMI $14 \times$ gin bass 8 ohms, 14 A770 EMI $8 \times 5 \mathrm{in}, 10 \mathrm{~W}$, d/cone, roll surr EMI 6 in d/cone, roll surr., 8 ohm EMI Bin roll surr. bass
EMI 5in mid range
Elac 59RM 109 (15 ohm), 59RM114 (8 ohm)
Elac $6 \frac{t}{i n}$ d/cone. roll surf., 8 ohm
Elac 10in 10RM239. 8 ohm
Eagle Crossover $3000 \mathrm{~Hz} 3,8$ or 15 ohm Eagle FR4
Eagle FR65
Eaple FR8
Eagle FR10
Eagle HT15
Eagle HT21
Eagle MHT10
Eagle FF28 Multicell, horn
Fane Pop 15. 8 or 16 ohm
Fane Pop 33T, 8 or 16 ohm
Fane Pop 50, 8 or 16 ohm
Fane Pop 55.8 or 16 ohm
Fane Pop 60, 8 or 16 hm
Fane Pop 70, 8 or 16 ohm
Fane Pop 100, 8 or 16 ohm
Fane Crescendo R2A, 8 or 16 omm
Fane Crescendo 128L. 8 or 16 ohm
Fane Crescendó 15/100A, 8 or 16 ohm
Fane Crescendo 15/125, 8 or 16 ohm
Fane Crescendo 18, 8 or 16 ohm
Fane 910 Mk II horn WHLMSLOW AU

	SPEAKERS	
¢8.64	Fane 920 Mk It horn	£36.95
\{10.25	Fane HPX1 crossover 200w	C2. 50
514.00	Fane $13 \times 8 \mathrm{in}$. 15 W dual cone	E5.50
¢18.62	Fane 801t 8 in d/c, roll surr.	¢8.96
¢12.38	Gauss 12in	295.00
¢10.96	Gauss 15in	110.00
£16.31	Gauss 181n	\$121.00
c9.00	Goodmans Axent 100	¢7.60
¢14.65	Goodmans Audiom 2008 ohm	\$13.46
¢19.41	Goodmans Axiom 4028 or 15 ohm	ع19.80
¢9.28	Goodmans Twinaxiom 8.8 or 15 ohm	¢9.50
£12.95	Goodmans Twinaxiom 10, 8 or 15 ohm	[9.86
£15.95	Goodmans 8P 8 or 150 hm	c5.95
£16.50	Goodmans 10P 8 or 15 ohm	¢6.25
£18.00	Goodmans 12P 8 or 15 ohm	¢14.95
\&16.50	Goodmans 12PG 8 or 15 ohm	¢16.50
\$17.00	Goodmans 12PD 8 or 15 ohm	¢16.95
¢26.95	Goodmans 12AX 8 or 15 ohm	£39.00
โ34.50	Goodmans 15AX 8 or 15 hmm	\$45.00
¢7.75	Goodmans 15P 8 or 15 ohm	£22.50
c9. 50	Goodmans 18P8 or 15 Ohm	¢39.00
¢13.50	Goodmans Hifax 750P	£16.00
¢4.46	Goodmans 5in midrange 8 ohm	[4.05
$\begin{array}{r} \varepsilon 28.80 \\ 86.75 \end{array}$	Jordan Watts Module, 4, 8 or 15 ohm	£15.36
¢17.25	Kef T27	55.18
¢4.50	Kef T15 Kef B110	¢6.25
E2.94	Kef 8200	26.75
¢9.00	Kef B139	
¢11.92	Kef DN8	[2.08
¢3.56	Kef DN12	¢5.39
¢3.93	Kef DN13 SP1015 or SP1017	¢4.05
¢5.73	Lowthe, PM6	
£3.50	Lowther PM6 Mk 1	¢32.85
¢3. 38 53.83	Lowther PM7	[48.60
¢3.83	Peerless KO10DT 4 or 8 ohm	[7.25
E1. 57	Peerless DT10HFC 8 ohm	£8.26
¢5.51	Peerless KO40maf 8 ohm	9. 50
ca. 68	Peerless MT225HCF 80 hm	£2.95
111.08	Richard Allan CA12 12 in bass	ع19.80
[14.06	Richard Allan HP8B	\{11.93
[3. 96	Richard Allan LP8B	¢8. 33
ce. 13	Richard Allan DT20	c6.08
E4.00	Richard Allan CN8280	£16. 20
c. 10	Richard Allan CN820	c3. 15
¢5.25	Richard Alan Super Disco 60W 12in	¢16.95
¢9. 25	Rlchard Allen CG15 151n bass	¢27.45
[12.50	Richard Allan Super Disco 12in 60 watt	¢16.95
¢15.50	Richard Allan Super Disco toin 50 watt	¢13.25
\{17.95	Richard Allan Super Disco Bin 50 watt	\$12.95
\$18.75	Radford BD25	¢22.00
£27.95	Radford MD9	\$10.50
¢37. 95	Radford MD6	¢12.50
£39.95	Radford TD3	¢7-25
¢49.95	Radford Cross Over Network	\$13.00
¢59.95	STC 4001G	55.90
¢67.95	Tannoy 10 lm Monitor HPD	\$74.00
£15.75	Tannoy 12in Monitor HPD	\$86.00

Complete kits in stock for Radford Studio 90, Radford Monitor 180, Radford Studio 270, Radford Studio 360, Hi-Fi Answers Monitor (Rogers), Hi-Fi News No Compromise (Frisby), Hi-Fi News State of the Art, Wireless World Transmission Line (Bailey), Practical Hi-Fi and Audio Monitor (Giles), Practical Hi-Fi and Audio Triangle (Giles), Popular Hi-Fi (Colloms), etc.
On dem. Answers Monitor, State of Art, etc. Construction leaflets for Radford, Kef, Jordan Watts, Tannoy, Hi-Fi Answers Monitor, free on request.
P.A. amplifiers, microphones, etc., by Shure, Linear, Eagle, Beyer, AKG, etc.
FREE with orders over £10-"Hi-Fi Loudspeaker Enclosures" book.

Tannoy 15 In Monitor HPD Whartedale Super 10 RS/DD 8 ohm

SPEAKER KITS

Baker Major Module 3,8 or 15 ohm	each	\$13.28
Fane Mode One Mk II 15W	each	¢10.35
Fane D40 Disco Kit	each	[19.95
Goodmans DIN 204 or 8 ohm	each	[13.28
Goodmans Mezzo Twin kit	pair	¢ 46.50
Helme XLK 30	pair	¢21.95
Heime XLK 35	pair	228.75
Helme XLK 40	pair	238-50
Helme XLK 50	pair	555.50
Ketkit 1	pair	259.00
Kefkit III	each	245.00
Peeriess 1060	palir	\$50.40
Peerless 1070	each	[41.40
Peerless 1120	each	145.00
Peerless 2050	pair	39.50
Peerless 2060	pair	¢53.00
Richard Allan Twin assembly	each	£13.46
Richard Allan Triple 8	each	¢20-25
Richard Allan Triple 12	each	E25-18
Richard Allan Super Triple	esch	E29-25
Richard Allan RA8 Kit	pair	[37.80
Richard Allan RA82 Kit	palir	C59.40
Richard Allan RA82L Kit	pair	¢65.70
Wharfedale Linton Il kit	pair	E21.50
Wharfedale Glendale 3XP nit	pair	[47.70
Wharfedale Dovedale III klt	pair	259.40

HI-FI ON DEMONSTRATION in our showrooms:

Akal, Armstrong, Bowers \& Wlikins, Castle, Celestion, Dual. Goodmans, Kef, Leak, Ploneer, Radford. Rlchard Allan. Rotel. Tandberg, Trlo, Videotone Wharfedale: etc.-ask for our HI-FI dliscount price itst.

THIS MONTH'S SPECIALS! (Carr. E2) Pioneer PL12D
Pioneer CT2121
143.00 Pioneer CT2121
Ploneer SX434 Videotone Saphir 1 § 115.00 Videotone Minimax 2

ALL PRICES INCLUDE VAT
Send stamp for free 32 page booklet "Choosing a Speaker")
ALL UNITS GUARANTEED NEW AND PERFECT Carriage and insurance: Speakers 55p each (12in and up 85p each); Kits $£ 1$ each (22 per 'palr): Tweeters and Crossovers 33p each.

WILMSLOW AUDIO

Dept PE
Loudspeakers, mall order and export: Swan Works, Bank Square, Wilmslow. Hi-Fi, Radio and TV: Swift of Wilmslow, 5 Swan Street, Wilmslow, Cheshire.
PA, Hi-Fi and Accessories: Wilmslow Audio, 10 Swan Street, Wilmslow. Cheshire.
Telephone: Loudspeakers, mall order and export-Wilmslow 29599; Hi-Fi. Radio, etc.-Wilmslow 26213.

FULL SPEC. DEVICES

 SWITCHES\square
\square

Rhythm Generiator.

all Component parts are

available

SEPARATELY S.A.E. FOR LISTS, OR FOR PRICING.
Tel. 0246-31475

 KIT INCLUDES NEW UPDATED P.C.B.'s
With Printed layout for easy assembly, all components "nice" switches and knobs, case, in fact everything you need to complete this very exciting Project P.C.b.'s ARE AVAILABLE SEPARATELY

Sol of NEW UPDATED p.C.B.' with printed layout, made in first class quallty tlbre-glass, by a well known national company

Price on appllcation to:
ASTRO/WKF INC. 1 QUEEN STREET NORTH WHITTINGTON MOOR, CHESTERFIELD DERBYSHIRE Tel: 0246-31475

SPECIAL OFFER

CRESCENT RADIO LTD, 164-166 HIGH ROAD, WOOD GREEN, N22 (also) 13 SOUTH MALL, EDMONTON, N. 9
 i St. MICHAELS TERRAACL, WOOR DEPT. GREN, LONDON N22 45,

8 EILOWATTS PSYCEEDELIC EIGET CONTEOL ONLT Three Channel: Bass, Middie, Treble. Each channel han its own senaltivity control. Just connect the laput of this unit to the loudepeaker terminals of an ampliner, and connect three 250 V up to 1000 W lampe to the output terminals of the unit, and you produce a fascinating sound-light display. (All guaranteed.)
\& 18.50 plus 75 p. P. \& P. $+8 \%$.
CABLE LESS SOLDERING IRON WAHL "ISO-TIP t Completely portable

* Bolders up to 150 joints per - Berge.
* Recharges in its own atend.
* Fine ttp for all types of solder\rightarrow Only
- Oniy bin long and weighs just

60z
OUR PRICE $69 \cdot 75+8 \%$

(Spare bles are availabie)

BARGAIN PROJECT BOX

A plastle box with moulded extrusion raila for PC or Chassis psnels wilh metal front plate fitted with four serew (all supplied).
An Ideal box to give a small project a profesulonal finjoh. 8IZE (internal) $81 \mathrm{~mm} \times 51 \mathrm{~mm} \times$

"CRESCENT" 100 WATT R.M.S ALL PURPOSE AMPLIFIER U. BUILD. IT

We supply the three modules for you to build this Disco-Group-P.A. amplifer Into the cabinet of your choice.

+ THE POWER AMP MODULE
170W f.m.s. 8q. Wave 300 W instantancolls peals into 8 obm (60 W into 16 ohm).
+ THE PREAMP MODULE
Four controi pre-amp, Vol. Bass, Treble. Niddle controls. Designed to
using F.E.T. frst stage.
+ THE POWER SUPPLY
If supplied complete with the mains transformer. Complete fixing instructions are supplied and no technical knowtedge is required to connect the three ready wired modules, A fantastic bargaln. 827-50, carr. £1-20. Send 8.A.E. for further detadis on thls or our ready bullt ampliters. $+8 \%$.
$12-0-12 V 500 \mathrm{M} / \mathrm{A}$
240 V primary transformer bargain. Approx. size: $60 \mathrm{~mm} \times 40 \mathrm{~mm} \times 50 \mathrm{~mm}$; Bxing centres: 76 mm . Our price $21.20 .+8 \%$.

GOODMANS CROSSOVER

Bargain price Crossovers manufactured by Goodmans for the "Havant" loudspeaker syatem $\operatorname{ITP}=80 \mathrm{HM}$. \quad | each $+12 \frac{1}{4} \%$ VAT

Low Voltage Stereo Amplifier

8 transistor atereo amplifier with volume, basa, paiance chandel. Needs a $9 / 12 \mathrm{Y}$ d.c. Aupply and complete on a $21 \mathrm{in} \times 7 \ln \mathrm{P} / \mathrm{c}$ board. Idesl for domestic record players, etc.

A BARGAII AT $85+22 \%$ VAT
U.E. GARRIAGE BOp UMLESS OTHERTISE STATED

VAT-All priens afe oxciruing VAT. Flemesd to ench itom the VAT rate indicated

Fig. 1

THE circuit in Fig. 1 was originally constructed to control the X and Y axial travel of an $X-Y$ recorder and has since found use as a servo unit for a radio-controlled car.

A voltage at pin 3 of IC 1 between 0 and 10 V will drive the motor via TR1 and TR2, or TR3 and TR4 and hence adjust the feedback pot VR2 until the slider voltage is identical to that on pin 3.

The purpose of TR5, TR6 and their associated components is to modulate the reference voltage at pin 3 with a 3 kHz square wave, its amplitude being adjustable from zero to a few volts with VR3. This modulation effectively creates a "dead-band" region at the operating point of the servo; VR1 being adjusted for maximum positional resolution consistent with good damping.

A side effect of the modulation is that the motor tends to vibrate at the modulation frequency. This reduces hysteresis or stickiness that may be present.
The components as shown will drive any small motor up to a maximum current of about 1 A .
J. D. Jardine, Dewsbury

GAR SIDELIGHT ALARM

How often have readers parked their cars and forgotten to turn off the sidelights, only to return to find the battery flat? This simple circuit can be used to sound a buzzer or to drive a multivibrator connected to a loudspeaker, to give an audible alarm when the ignition is switched off with the lights still on. A push button is provided to override the alarm should it be necessary to park the car with the sidelights on.
The alarm is driven from the sidelight circuit via relay contacts RLA1 and RLB1. When the ignition is on, relay RLA is operated disabling the alarm. Switching off the ignition releases RLA and contact RLA1 closes to sound the alarm. RLA2 makes which allows the override circuit to operate. If the sidelights must be left on, then, pushing S1 will operate relay RLB. RLB1 opening breaks the alarm circuit and RLB2 holds RLB operated.

Fig. 1

The next time the ignition is turned on RLA operates, thus releasing RLB. This gives the driver the protection of not leaving the alarm overriden by mistake.

The type of relay used is not critical, except that both relays RLA and RLB should be 2 pole changeover types.
M. Spendley, Arnos Grove.

REAR WINDSCREEN WIPER CONTROLLER

T
HIS circuit makes use of the well known NE 555 V timer chip in an astable mode of operation

Potentiometer VR1 is linked to S1a and S1b and provides on/off and varies the delay between sweeps (between continuous operation and up to two minutes is available with values shown). VR2 controls the time the relay is closed and therefore the length of the wiper sweep. Careful adjustment of VR2 gives a uniform sweep and a self-parking facility.

Fig. 1

The circuit is contained in a small box approx. 4 in wide $2 \frac{1}{2}$ in high and $1 \frac{1}{2}$ in deep, and can be used in negative or positive earthed cars
according to relay contact connection.
G. T. McDermid, Ramsbottom.

GAR SEAT-BELT ALARM

alarm sounding when working on the car with the ignition on.

If both from seats are to be equipped, a seat switch (normally closed) and a reed switch (normally open) should be fitted to the passenger seat. These two switches
should be connected in parallel and wired in series with the driver's reed switch.
A. R. Knight, Blackbird Leys,

Oxford.

CAR-GASSETTE POWER SUPPLY

THE unit shown here was designed to run a cassette tape recorder in a car. Diode D1 protects the circuit against wrongly connected supply lines. A reference voltage provided by R1/D2 controls the series transistor TR1, Cl removes any noise that may be generated by D2, while C2 deals with any spurious signals at the output.

Overload protection is provided by means of R2/TR2. Because the load current is flowing through R2 there is potential difference across it. Once this p.d. exceeds 0.6 V TR2

will begin to conduct. This will turn off the series transistor TRI by diverting its base current to the negative line, and the output voltage will fall to zero. Once the overload is removed, the supply will return to normal.

The voltage rating of D2 can be chosen to suit the voltage of the cassette player. A 6.2 V zener will provide an output of six volts.
G. Luck,

Gosport,
Hants.

UNIT 1 PRE-AMP/CONTROL

SUPERB VALUE At

$£ 7.80$

WITH ACTIVE TONE CONTROL CIRCUITRY

UNIT 1, latest addition in the Stirilng Sound range of reallstically priced constructlonal modules is going to assure many, many more constructors of obtalning quallty where price has prevented it before. UNIT 1 offers full stereo facilities, Is guaranteed and easy to connect up.

Input sensitivity- 50 mV , adjetabie

- Output-200mV for 50 mV in
- Base control- $\pm 15 \mathrm{~dB}$ at 30 Hz
- Treble control- $\pm 15 \mathrm{~dB}$ at 10 kHz - Balance control; volume control - Operating voltage-10 to 16 V GREATER VALUE SS140 MK. 3 POWER AMP Built for hard work

40 WATT'S R.M.S. INTO 4Ω
£3.95
$+8 \%$ VAT

Resulting from reatarch and development, the Mk. 3 vereion of thle most popular power amp. now Includes bullt-in output capacitor with improved stability under severest working conditions. Greatly used for P.A., disco and similar work, SS140 offers fantastic value for the price.

Build and save with Stirling Sound

BASIC MODULES FOR BUILDING UP TO A STEREO TUNER-AMP POWER AMPS
SS125 De-luxe hi-fi 25W r.m.s. power amp. with a fantastic distortion rating of only 0.04% at all levels. 25 W into 8 ohms using 50 V supply
SS103 3W r.m.s. amplifier incorporating I.C/SL60745. With current, short-circuit and thermal protection
SL103-3 Stereo version of above using 2 I.C.s
SS105 \quad WW amplifier to run from 12 V ($3 \frac{1}{2}$ in $\times 2$ in $\times \frac{4 \mathrm{in}}{}$)
SS110 Mk. 3 Similar to SS105 but more powerful giving 10W into 4 ohms, using 24 V
SS120 Mk. 3 20W module when used with 34 V into 4 ohms
CONTROL
SS100 Active tone control, stereo, $\pm 15 \mathrm{~dB}$ cut and boost with suitable network
SS101 Pre-amp for ceramic p.u., radio and tape with
passive tone control details
SS102 Stereo pre-amp with R.I.A.A. equalisation. mag.. p.u., tape and radio in
POWER STABILISER
SS300 Add this to your unstabilised supply to obtain a steady working voltage from 12 to 50 V for your audio system, workbench etc. Money saving and very reliable
F.M. TUNING

SS201/X Front end, geared drive capacity tuning, 88-108 MHz . AFC facility
SS202 I.F. amp A meter and/or A.F.C. can be connected (size 3 in $\times 2$ in)
SS203 Stereo decoder
For use with Stirling Sound modules, or with any other good mono F.M. tuning section. A L.E.D. beacon can be added to indicate when a stereo signal is tuned in (3in $\times 2 \mathrm{in}$)

NEW SHOWROOM

TERMS OF BUSINESS:
We have entended our premises and opened up new demonstration showroom. All welcome.

£2.75
ع3. 25
E1. 60
51 - 60
£2. 25

83. 25^{*}

Stirling Sound POWER

VAT at $12+\%$ muat be added to total value of order except for items marked * or (5%) when VAT ts to be added 18%. No VAT on ovarseas orders. POST \& PACKING add 30p for UK orders unies marked otherwlese. Minimum mall order moceptable- $£ 1$. Oversegs orders, sod ct for postage. Any difference will becheredited or charged. PRICES subject to altoration without notice. Aviort ie mede to all going to press when every emort la mide to ensure correctneas of Informatlon.

Order your Stirling Sound products from EH-FREPAK LTO
222224 WEST ROAD. WESTCLIFF. ON- SEA ESSEX SSO 9DF. TELEPHONE: SOUTHEMD 0702146344 Cheoyes/Money orders payable to bi-pre-pak lto.

Please send
\qquad
Inc. V.A.t.
NAME
ADORESS

PACKS

Not only do these excellent power packs stand up unflinchingly to hard work, inclusion of a take off point at around $13-15 \mathrm{~V}$ adds to their usefulness and once again price value is outstanding.
Add 50p for p/p any model.
Made to serve for years

SS312	$12 \mathrm{~V} / 1 \mathrm{~A}$	$£ 3 \cdot$ n* *
SS318	$18 \mathrm{~V} / 1 A$	$£ 4 \cdot 15^{*}$
SS324	$24 \mathrm{~V} / 1 A$	$£ 4 \cdot 60^{*}$
SS334	$34 \mathrm{~V} / 2 A$	$£ 5 \cdot 20^{*}$
SS345	$45 \mathrm{~V} / 3 A$	$£ 6 \cdot 25^{*}$

Direct from the makere ind obtalniable only from BI-Pre-Pak Lid. Stirling Sound producte are destgned by protesional experte ind made In our own factory. They are distributed excluelvaly through BI-Pre.Pek Lid.

TAMBA ELECTRONICS FOR HI-Fi. DISCO. P.A. GROUP AND CLUB USE

Choose the power you need from these five pure complementary amplifiers Two-year guarantee

All amplifiers feature a pure complementary symmetry output stage for low distortion and high reliability-the highest grade components (by MullardTexas. Plessey-RCA etc.) used throughout

- Suits loads 4-16 ohms (optimum load 8 ohms. TAM50/100/250, 4 ohms TAM500/1000)
- Low distortion (0.1\%)
- $20-20,000 \mathrm{~Hz} \pm 1 d \mathrm{~B}$
- Silicon circuitry throughout
- Inherently open circuit proof
- Four simple connections

TAM50 5W RMS 25 V supply TAM100 10W RMS 35 V supply TAM250 25W RMS 45 V supply TAM500 50W RMS 45 V supply TAM 1000 100W RMS 65 V supply E3. 20 £3. 75 ¢4. 25 $\begin{array}{r}\text { 8. } \\ \mathbf{8 6} \text {. } 95 \\ \hline\end{array}$ (all modules carriage free)

POWER SUPPLIES

For 1 or 2 TAM50/100 $\mathbf{~} 4.25$ (carr 50p)
For 1 or 2 TAM250/500 $\mathbf{\& 6 . 9 5}$ (carr 50p) For 1 or 2 TAM1000 \quad \&9-80 (carr 50p)

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc) C.O.D. (50p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for $50-100 \mathrm{~W}$ units and at $12 \frac{1}{2} \%$ for $5-25 \mathrm{~W}$ units

Hours, 9.30a.m.-5p.m. Mon.-Sat. Callers welcome.
Tel: (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

Greenbank Electronics
 (Established 1970)
 DIGITAL CLOCK MODULES, KITS

Further detalls free on request.

"E" LED DISPLAYS

DL-704E 0.3In
DL-707E 0.3 in
DL-728E $2 \times 0.5 \mathrm{in}$
DL-728E $2 \times 0.5 \mathrm{in}$
DL-727E $2 \times 0.5 \mathrm{in}$ $\Sigma 1.80$
$\Sigma 1.80$ CMOS WITH DISCOUNTS! (ANy mix: CA $3130 \quad 0.75 \quad$ 4033/$4001 / 14001 \quad 0.15 \quad 4034 / 14034$ $4001 / 14001 \quad 0.15 \quad 4035 / 14035$ 4002/14002 $0.15 \quad 4036 /-$ $4006 / 14006 \quad 1.00 \quad 4037 /-$ $4007 / 14007 \quad 0.15 \quad 4038 / 14038$ $4008 / 14008 \quad 0.80 \quad 4039 /-$ $4009 / 14009 \quad 0.45 \quad 4040 / 14040$ $4010+14010 \quad 0.45 \quad 4041 /$ $4011 / 14011 \quad 0.15 \quad 4042 / 14042$ $4012 / 14012 \quad 0.15 \quad 4043 / 14043$ $4014 / 14014 \quad 0.85 \quad 4044 / 14044$ $4015 / 14015 \quad 0.85 \quad 4045 /-$ 4 $4016 / 14016$ $4017 / 14017$ 4018/$\begin{array}{ll} \\ 4018 /- & 0.85 \\ 0.85\end{array}$ 4019/14519 0.45 $4020114020 \quad 0.95 \quad 4$ $4021 / 14021 \quad 0.85 \quad 4051 / 14051$ $\begin{array}{lll}4022 / 14022 & 0.80 & 4053 / 14053\end{array}$ $4023 / 14023 \quad 0.15 \quad 4$ $4024 / 14024 \quad 0.65 \quad 4$ 4025/14025 4026i-4026/4028/14028 4029/-$40291-\quad 0.95$ 4031/- $\quad 1.90$ $\begin{array}{lllll}4032 / 14032 & 0.90 & 4066 / 14066 & 0.6\end{array}$

DL-750E 0.61 n DL-747E 0.6in
CLOCK CHIPS
AY-5-1224A
MK 50253
70 p
81.80
CA 3130 (COS/MOS)

Terms: C.W.O. Add VAT to nll prices at 8%. Post etc. U.K. 10 p per order. Orders processed same day Official govt., varsity. poly, etc. orders welcomed

GREENBANK ELECTRONICS (Dept. E9P)

94. New Chester Road, New Ferry. Wirral, Merseyside, L62 5AG, England. Tel: 051-645 3391

LARGE MINISTRY RELEASE ENABLES US TO OFFER THE FOLLOWING

MARCONI PORTABLE FREQUENCY METER TF1026/11 $100-160 \mathrm{MHz}$ Very flne condition	THE LATE MODEL MARCONI OSCILLATOR TF885A/1 in superb condition. Covering 25 Hz to 12 MHz sine wave in 3 ranges and 50 Hz to 150 kHz square wave. Migh output 31.6 V . Meter scaled in volts and dBs.	SOLARTRON A.C. MILLIVOLT METER VF252 1. 5 mV to 150 V full scale in 10 ranges. 6 in meter $\pm 1 \%$. GOOD CONDITION.
AVO R.F. SIGNAL GENERATOR- A.M. MODULATION Freq. range $2-250 \mathrm{MHz}$ 240 V operation. Suitcase style. Size approx. 15 in wide $\times 10$ in high x 6 in deep.	ALL ITEMS £22.50 each OR 3 DIFFERENT UNITS FOR $£ 60$	AVO VALVE TESTER CT160"THE SUITCASE', Size approx. 15in wide $\times 10 \mathrm{in}$ high \times 11 in deep.
CARRIAGE £. 50 EACH UNIT-EXCESS REFUNDED VAT: ADD 8\% OPEN 9 a.m. 10 5. 30 D.m. ANY DAY 7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel . Reading 582605		

Electronic Organ with 4 footages, 11 voices and sustain

Super touch sensiltive Plano Kit with special effects
A wide range of keyboard insiruments for the D.I.Y. enthusiast. Our, low prices are based on component costs only, and no extras. Send lerge S.A.E. for detalls.
Keyboards: 4-octave $£ 17$-50; 5-octave £24. GU500 Top Octave Generator £12-95. GO500/5 Top Octave Generator and Dividers £35-20. Organ I.C.s: AY-1-0212 $\mathbf{~ 6 - 2 3 ;}$ AY-1-5051 £1-34; AY-1-6721/5 £1-45; AY-1-6721/6 £1-62; AY-1-5050 £1.96. Rhythm Generator AY-5-1315 £5-06. Chord Generator AY-5-1317A ع6-18. Priority Latching AY-1-1313 $\mathbf{8 6} \cdot 18$.
Al prices Incluae VAT. Callers only. Construction manual for portable organ 02.25. Catalogue 60 p svaileble by post. Telephone for Mall Order Service.

Eluins
 Slectronic Musical Instruments

Organ Centre: 12 Brett Road, Hackney, London E8 1Jp (01-986 8455). Now Component Shop; 40/42a Dalston Lane, London E8 2AZ (01-249 5624)- 1 minute walk from Dalston Junction Station. 8 Putney Bridge Road, London SW18 1HU (01.870 4949).

This exciting new series provides clear and easily understood descriptions, advice and general help for amateur constructors, students and technicians aimed at breaking down the barriers that often deter beginners in electronics.

PROJECT PLANNING AND BUILDING

Morris A. Colwell

This guide will help the constructor to plan, design and lay out his electronic projects. The book explains planning, use of tools, component board layout, the design and layout of chassis and cases, and assembly and wiring.
There is also an extremely useful Appendix.

| 128 pages | $216 \times 138 \mathrm{~mm} \quad$ Illustrated |
| :--- | :---: | :---: |
| 0408002298 | $£ 1.95$ |

SIMPLE CIRCUIT BUILDING P. C. Graham

This guide provides a logical introduction to general purpose circuits for the home constructor and to converting theoretical circuits into practical layouts. The book covers a wide range of easy to assemble circuits, including switching and logic circuits and their layouts, operational amplifiers, a.c. amplifiers and d.c. power supplies.

| 128 pages | $216 \times 138 \mathrm{~mm} \quad$ Illustrated |
| :--- | :---: | :---: |
| $0408002301 \quad £ 1.95$ | |

PRACTICAL ELECTRONIC PROJECT BUILDING

Alan Ainslie and Morris A. Colwell

A concise but informative guide to some of the current popular methods of construction and techniques employed in home construction. Contains hints on finishing and fault-finding methods.

128 pages	$216 \times 138 \mathrm{~mm}$	Illustrated
040800231	95	

Other titles published in this series are: ELECTRONIC DIAGRAMS-0 40800201 8-£1.80; PRINTED CIRCUIT ASSEMBLY-0 40800203 4-£1.80; ELECTRONIC COMPONENTS-0 40800202 6£1.80

For details of all Newnes Technical Books please write for a free catalogue and watch for announcements in following issues of Everyday Electronics.

00 MewाusTG贝ीवत: 003
 NEWNES-BUTTERWORTHS

Borough Green, Sevenoaks, Kent TN15 8PH

complete

DIGITAL CLOCK KITS TEAK CASES

prompt order despatch "DELTA" 4 RED 0.5 in LEDs. 12 hr display GENUINE TEAK or PERSPEX CASE

		Alarm	Std
		$£$	$£$
Electronic Module excl. case	Kit	$10 \cdot 50$	$8 \cdot 00$
Electronic Module excl. case	Built	$11 \cdot 00$	$8 \cdot 50$
Complete Clock	Kit	$12 \cdot 91$	$10 \cdot 36$
Complete Clock	Built	$16 \cdot 50$	$14 \cdot 00$

"DELTA"
$\begin{array}{lr}\text { NON-ALARM } & £ 9 \cdot 60+£ 0 \cdot 76 \text { VAT } \\ \text { ALARM } & £ 11 \cdot 95+£ 0 \cdot 96 \text { VAT }\end{array}$
"NOVUS" CALCULATORS: 550 Mathbox $£ 5 \cdot 40 ; 850$ Mathbox $£ 6 \cdot 75$; 4510 Mathematician $£ 16 \cdot 20 ; 6020$ Statistician $£ 21 \cdot 60$
Send S.A.E. for
complete range

Cash. Cheque or Postal Order, or if you wish to use Barclay= card or Access simply quote name, address and card number when ordering by phone or post.

PULSE ELECTRONICS LTD

Dept. P.E. 2, 202 SHEFFORD ROAD CLIFTON, SHEFFORD, BEDS.

Telephone: Mitchin (0462) 814477

41 in $\times 3$ in METER. $30 \mu \mathrm{~A}$, $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, 63 \cdot 90$. I6p P. \& P'

500μ A, 80 p. 10 p P. \& P.

CARDIOID DYNAMIC

 MICROPHONEModel UD-130. Fre. quency response 50 $15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, 67.50. 26p P. \& P.
$42 \times 42 \mathrm{~mm}$ meters $1 \mathrm{~mA}, 500 \mathrm{~mA}$, \&2.76. $16 p$ P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$. $500 \mu \mathrm{~A}$ and $\operatorname{ImA} V U$ meter, $63 \cdot 05$. IfpP. \& P.

Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$, $500 \mu \mathrm{~A}$, and $1 \mathrm{~mA}, 63 \cdot 40$. 16 p P. \& P.

3 WATT STEREO $\left(1 \frac{1}{\frac{1}{2}}+1 \frac{1}{2}\right)$ PER CHANNEL

AMPLIFIER
64.30. 16p P. \& P.

All above prices include V.A.T. LARGE S.A.E. for New List. Special prices for quantiey quored on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

50 AC12: TRANSISTORS. Branded but untested, 57p.
SILICON SOLAR CELLS. O.5V 5MA 35p: 0.5 V SOMA SOp: 0.5 V 100MA sop: 0.5 V 200 MA E1; 0.5 V 500 MA E1.05.

1 WATT AUDIO I.C. TEXAS SN76001, $55 p$ each
5 WATT NPN TO3: DARLINGTON TRANSIBTORS, 20p ench
FERRANTI XTZ100 TRANSISTORS, 6 for 57p.
20 Assorted TUNING VARACTOR DIODES. Untested. 45 p.
300μ F 25 V.W. P.C. ELECTROLYTICS, 15 for 50 p .
PLASTIC TRIACS. 50 PIV 6A 15p: 400 PIV 6A B0p.
TV SEMIC ONOUCTORS, R2008 50 P ; R2010 80p; AY 10240 p .
VHF DUAL GATE MOS FETS LIKE 40873 , 33 p ea ch . 4 for $\mathrm{E} 1 \cdot 10$
BF180 OR BFTE1 TRANSISTORS, 4 for 57 p .
DISC CERAMICS. $0.1 \mu \mathrm{~F} 60 \mathrm{VW} 20 \mathrm{p}$ doz.: $0.05 \mu \mathrm{~F} 30 \mathrm{VW} .0 .02 \mu \mathrm{~F} 50 \mathrm{VW} .0 .01 \mu \mathrm{~F}$
BAANDED 10 WATT ZENERS. 15. 18. 22. 33. 56, 100V. all 30p.
20 AFD17-0C 177^{2} TRANSISTORS. Untessed. 57 P
GERMANIUM TRANSISTORS. AC141K, AC 142K, AC 153K, AC176K, AC187K, AC188K, 20p each
VAF TUBULAR TRIMMERS. BpF. Ep BaCh
20 STC 750MA BRANDED DIODE, Assorted, 50 p .
SO ASSORTED TRANSISTOR ELECTROLYTIC CAPACITORS, 57p 100 RESISTORS. ${ }^{2}+W$ W, 17 different values, 57 p.
100 SUB-MINIATURE DISC CERAMICS. Assoriod
100 SUB-MINIATURE DISC CERAMICS. Assorted 3.3pF 100.01 HF, 57p.
10 SUB-MINIATURE $10 A$ SILICON BRIDGES. Untested. E1-25
60 ASSOATED WIAE WOUND RESISTORS. $1-10 \mathrm{~W}$. 37 P .
SILICON PHOTO TRANSISTORS AND PHOTO DARLINGTONS.
SOO F 40 VW ELECTROL
1,000MF 40 VW ELECTROLYTICS. Size 1 in \times fin. 3 for 35 p
100 MULLARD C210 CAPACITORS. Assorted. 57 p .
TAG-ENDED ELECTROLYTIC CAPACITORS. Size $2 \mathrm{tin} \times 1 \mathrm{itin}$. $3,300 \mu \mathrm{~F}$ 64VW SOD: $4.700 \mu \mathrm{HF} 40 \mathrm{VW} 45 \mathrm{p}$.
STACKPOLE ROCKER SWITCHES. 5A 240 V 15p; 4 for 50p
FWM IC LIKE TAA 570 Untested with data, 5 for 57 p .
25 BC $107-t-$ TAANSISTORS. Untested, 57 .
TRANSISTOR R. F. CHOKES. $10 \mathrm{M} \Omega$, 5 for 57_{0}.
TRANSISTOR R. F. CHOKES. 10M, 5 f for 57p.
30 WATT POWER TRANSISTORS. NPN 22p; PNP 25p; 35p palr.
NEW BOOKS AVAILABLE. Constructing Simple Short Wave Receivers. E0p; Constructing Simple Test Gesr, 75p. Both by G. Dobbe
TUNING CAPACITOAS. $500+500+17+17 \mathrm{pF}$, with SM Drive, 30p.
Please add 20p post and packing on U.K. orders under $\mathcal{E 2}$

J. BIRKETT
 RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln LN2 1JF
 Tel. 20767

GREENWNELD
 443 Milibrook Road Southampton Sロ1 DHX Tel:(ロ703) 772501

All mall orders and callers to this address please-callers only to 21 Deptford Broadway. SE8 (Tel. 01.692 2009) and 38 Lower Addiscombe Road, Croydon

NEW 4 PAGE CATALOGUE
 10P + LARGE S.A.E.

Free with orders over £2
DIGITAL I.C.s

7400	10p	7450	13p	74958
7401	12p	7451	120	749672
7402	12p	7453	12	7410732 p
7404	15p	7454	129	74121 30p
7405	20 p	7460	12 p	74122
7406	25p	7472	24p 7	74123 54p
7408	120	7473	240	74132
7410	11p	7474	240	74150
7413	25p	7475	46 p 7	741541200
7414	540	7476	240	7415582
7420	12p	7483	7 p	74157 58p
7430	12	7486	35p	7415918
7432	180	7490	40 p 7	74174
7437	$16 p$	7491	340	74179100 p
7440	13p	7492	45p 7	74180
744	72	7493	45p 7	7436
OIL socketo- 8 pin 12p; 14 pin 13p; 15 pin 14p. 100 + lese 25%.				
LINEAR I.C. 3 741 25p; 555 40p: 723 (TO99) 50p Platic voltage Regulatora: TO126 case $5 \mathrm{~V} 600 \mathrm{~mA} 40 \mathrm{p}, 12 \mathrm{~V} 500 \mathrm{~mA}$ 300				
TRANSISTORS			BD131	
${ }^{\text {AC127 }}$ (15p			BD132BFY50	
AC128		15p		
AC176		15p	BFY51 15p	
AC ${ }^{\text {A }} 1878$		13 p	BFY52	
		$1{ }^{\text {p }}$	TiP41A	00
		35p	TIP42A 75p	
AD161		35p		
AD162BC107		10p	TIP3055 420	
BC108		10p	2N2219 27p	
		10p	2N2369 220	
${ }_{\text {BC147 }}^{8 C}$		15p	2N2646 42p	
		10p	2N2926G 120	
BC1478 CCH 48		10p	${ }_{2}^{2 N 3053}$	
aC149		10p		
BC157		10 p	2N3055	38 p
${ }^{\text {BC158 }}$		10p	2 N 3440 540	
BC159		10p	$2 \mathrm{~N} 3442 \mathrm{E1}$-20	
BC161		18 p	2N3702 10p	
BC182		120	2N3703 10p	
		120	$2 \mathrm{~N} 3704{ }^{\text {a }}$	
$\mathrm{BC183}$$\mathrm{BC184}$		120	2N3705 100	
BC212.		140	2N3708 100	
${ }^{\text {BC213 }}$		$14 p$	${ }_{2}{ }^{2} 3819$	
BC214		14p	2 N 4059 100	
$\begin{aligned} & \mathrm{BCYO} \\ & \mathrm{BCY7} \end{aligned}$		15p	2N4418 10p	
		15p	$\begin{aligned} & 2 N 5294 \\ & 40873 \\ & \hline \end{aligned}$	300

DIODES AND LEDS AND SCR's
500V 5A SCR 45p; 400V 2A Triac 40p; Ditec BA 100 2sp; 400 V 15A Triac E1.50; LED 15p; 0.2in LED Rod 2pp; green. Yellow or amber 24p
1N4002 5p; 1N4004 8p; 1N4007 sp; IN4148 4p; BY 127 12p; 100 V 3 M 12p;
 50 V 1 A bridge $22 \mathrm{p} ; 800 \mathrm{~V}$
250 V 2 A 400
sov 30A rect.
Zenero 400 mW O BZYBe. All voltages $\frac{1}{7}$ rom 3 V to 30 V 10 p
1.3W plastic from 3 V to 200 V 20 p

RESISTORS

Carbon film 5%, \mathbf{W} miniature. Al values in E12 series from 1 n to 10 Mn (over 1Mn 10\%) 14peach.
Matal Film 5% iW. Al valuea in E12 series from 27 n to 10 Mn 2 2 p . 1% and detter-S.A.E. for lists of over 250 values
 Wirewound 5 W all values from in to

TRANSFORMERS
6-0-6V $100 \mathrm{~mA} 90 \mathrm{p} ; 9-0-9 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p}$; $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 90 p ; 12-0-12 \mathrm{~V} 100 \mathrm{~mA}$ ᄃ1; 12-0-12V 1A c2. $80 ; 20 \mathrm{~V} 55 \mathrm{~mA} 90 \mathrm{p}:$ $22 \mathrm{~V} 100 \mathrm{~mA} 51 ; 29 \mathrm{~V} 50 \mathrm{~mA} 85 \mathrm{p} ; 6.3 \mathrm{~V}$
 $150 \mathrm{~mA} 10 \mathrm{p} ; 17 \mathrm{~V} 1 \mathrm{~A}$ £1. 10 ; 25 V 14 A c2. 30; 30-0-30V 1A E3.70. Multhapped type to give 3, 4, 5, 6, 8 ,
$10.12 .15 .18, ~ 20 ~ 24 ~ o r ~$
10 10. $12,15,18,20.24$ or 30 V , of
 E3.20, 2 A verslon 54-50: 16 V 20A
E8.50. Bell transformer in white case. Bell transiormer in white case. gives 4, 8 or 12 V 1A E2. 55-0-55V
5A ci. 50 .

WIRE

Enamelled copper wire on 202 reele SWG. price: $16 / 32 \mathrm{p}$. 18/34p, 20/36p $3238 \mathrm{p}, 24 / 40 \mathrm{p}, 26 / 42 \mathrm{p}, 28 / 4 \mathrm{p}, 30 / 48 \mathrm{p}$

RF CHOKES
$0.75, \quad 6-8,10,27,47,68 \mu \mathrm{H}$. all 10 p each: $1 \cdot 5, \quad 2 \cdot 5,5 \cdot 0.7 \cdot 5, \quad 10 \mathrm{mH}$, all 30 p each.
CAPACITORS
Ceramic plate, 22pF to 1.000 pF 20 ; $\begin{array}{llll}\text { polyester } & 1.000 & \text { to } & 6.800 \mathrm{pF} \\ 0.015, & 5 p ; & 0.01 \\ 0.022 & 0.033 & 0.047 & 0.068 \\ 0.10 & 0.1 \mathrm{mF}\end{array}$ $0.015,0.022,0.033$,
$40.0 .047,0.068,0.1 \mathrm{mF}$
0.15
$0.22 \mathrm{mF} 50 ; 0.336 \mathrm{p} ; 0.47 \mathrm{Bp} ;$ $0.6810 \mathrm{p} ; 1 \mathrm{mF} 12 \mathrm{p} ; 2.2 \mathrm{mF}$ 18p; 3.3 mF
24p: $1,000 \mathrm{pF}, 10,000 \mathrm{p}$ F $15 \mathrm{p} ; 0-1 \mu \mathrm{~F}, 0.2 \mu \mathrm{~F}$. $0.25 \mu F$ 30p; $2 \cdot 2 \mu F 550$.
Polystyrene 10 pF to $1.000 \mathrm{pF} 4 \mathrm{p} ; 1.200 \mathrm{pF}$ to $10,000 \mathrm{pF} \mathrm{fp}$. All $2 \neq \%$.

Electrolytics:

All $25 \mathrm{~V}: 0.47,1,2 \cdot 2,4 \cdot 7,10,22,47 \mathrm{mF}$ ${ }^{6 p ;} 100 \mathrm{mF} 7 p ; 220 \mathrm{mF} 9 \mathrm{p} ; 470 \mathrm{mF}$ 11p: 1, 100 mF ; 220 mF 20p; 470 mF 11 p . $1,000 \mathrm{mF} 32 \mathrm{p} ; 2,200 \mathrm{mF} 40 \mathrm{p}$
Tantalum bead, $\mathrm{mF} / \mathrm{V}: 0.1 / 35 ; 0.22 / 35$.
$\begin{array}{ll}\text { Tantalum bead, } \mathrm{mF} / V: ~ & 0.1 / 35 ; \\ 0.33 / 35: & 0.22 / 35 ; \\ & 0.47 / 35: \\ 1 / 35 ; & 2.216: \\ 2.2 / 35:\end{array}$ $3 \cdot 3 / 35 ; 4 \cdot 7 / 35 ; 6 \cdot 8 / 35 ; 10 / 16 ; 10 / 25 ; 15 / 10$: 22/6-3: 22/10; 22/16; 33/10; 47/6-3; 100/3. 11p each.

VEROBOARD

100 sa.in good size offcuts. Mixed, or
all $0.1 \mathrm{~F} 1-30$. ALUMINIUM BOXES
Complete with base and PK Screws

AB7	$133 \times 70 \times 38 \mathrm{~mm}$	50p
AB8	$102 \times 102 \times 38 \mathrm{~mm}$	50p
AB9	. $102 \times 70 \times 38 \mathrm{~mm}$	47p
AB10	$102 \times 133 \times 38 \mathrm{~mm}$	50 p
AB11	$102 \times 64 \times 51 \mathrm{~mm}$	47p
AB12	$76 \times 51 \times 25 \mathrm{~mm}$	440
AB13	$152 \times 102 \times 51 \mathrm{~mm}$	15p
AB14	$178 \times 127 \times 64 \mathrm{~mm}$	$5{ }^{5}$
AB15	$203 \times 152 \times 76 \mathrm{~mm}$	\$1.50
AB16	$254 \times 178 \times 76 \mathrm{~mm}$	[1. 80
AB17	$254 \times 114 \times 76 \mathrm{~mm}$	\$1.50
AB18	$307 \times 128 \times 76 \mathrm{~mm}$	\$1.75
AB19	$307 \times 203 \times 76 \mathrm{~mm}$	[2.00
AB23	$102 \times 102 \times 64 \mathrm{~mm}$	80p
AB24	$133 \times 102 \times 64 \mathrm{~mm}$	90p
AB25	$152 \times 102 \times 76 \mathrm{~m}$	\$1.00

VEROBOXES AND CASES

Prolessional 2 part boxes made of dark and light grey high impact polystyrene. $2518 \quad 120 \times 65 \times 40 \mathrm{~mm}$ $\begin{array}{ll}2520 & 150 \times 80 \times 50 \mathrm{~mm} \\ 2522 & 188 \times 110 \times 60 \mathrm{~mm}\end{array}$ Sloping tront version, ideal mixers Cases 84.95 front and back aluminium paneis that slot in. Type.
$1410205 \times 140 \times 40 \mathrm{~mm}$
$1412205 \times 140 \times 75 \mathrm{~mm}$
$1237154 \times 85 \times 40 \mathrm{~mm}$
$1238154 \times 85 \times 60 \mathrm{~mm}$

1239
$154 \times 85 \times 60 \mathrm{~mm}$
80 mm

Smail general purpose plastic boxes
$\begin{array}{ll}1413 & 711 \times 40 \times 244 \mathrm{~mm} \\ \mathrm{~PB} 1 \\ 115 \times 75 \times 36 \mathrm{~mm}\end{array}$ PB1 $115 \times 75 \times 36 \mathrm{~mm}$
DEVELOPMENT PACKS
Save EEEE s by buying a full range of components at one gol All full spec marked devices, no rejects or old stock 50 V cefamic plate capacitors $5 \% 10$ of each value, 22pF to 1.000 pF . Total 210 capacitors
10 of each film resistors, + watt 5%
 Extended
resistors cs. 30 .
Electrolylles, wire ended 25 V working 10 each of: 1, 2.2, 4.7, 10, 22, 47 and 100 mF 70 capacitors for $\mathrm{E3} \mathbf{2 0}$.
C280 polyesters. 10 at each value: 0.01 $0.015, \quad 0.022, \quad 0.033, \quad 0.047,0.068$ $0.1,0 \cdot 15,0.22,0.33 .0 .47 \mathrm{mF} .110$ esps C4.00.
Zeners. $400 \mathrm{~mW} 5 \%$ EZY88, 10 each
$3 V$ to 30 V total 260 . $3 V 1030 \mathrm{~V}$ total 260 \& 14.00 .
t pack. 5 of each value c8-20.
Tantalum Bead caps. 14 values from 0.13510100 .3 , 10 of each total 140
caps $£ 11 \cdot 00$.

See Practical Wireiess for detalls of packe of componenta. aurplua goode, atc. All prices quoted include VAT. Add 15p postage on orders under C2. Most orders despatched on dey of recelpt. SAE with enquiries. Send 10p for Multimeter catalogue-iree on requeet on orders over \&3. Oricial Ordera accepted from Schools. Etc. Export/wholessle enquirles welcome. Surplus components alway wanted

SINCLAIR IC20

IC20 10W + 10W atereo IC amplifier kit with tree bookle and printed circull, 24.55.
PZ20 Power supply kit for the above. E3.95
VP20 volume, tone-control and proamp kit, $87 \cdot 95$.
Send S.A.E. for Iree leaflet.

JC12 AMPLIFIER

6W IC audio amp.
with tree data and
${ }_{51.05{ }^{\circ}}$ printed circuit,
${ }^{51.95 *}$.
DELUXE KIT FOR JC12

Containe extra parte for the pCt and volume and tone controls. Mono version $\mathrm{CL} \cdot 33$. Stereo $\mathrm{E4} .95$.
JC12 POWER KIT
Supplies 25V 1A. Es-s5.
JC12 PREAMP KITS
Type 1 for magnetic piekups, mics and tuners. Mono $51 \cdot 50$, Steroo 53 . Type 2 for ceramic or crystal pickups. Mono Sep, Stereo $\mathrm{E} 1 \cdot \mathrm{Ts}$.
Send S.A.E. for tree leaflet.
S-DECS AND T-DECS*
S.DeC E2. 24

T-DeC E4.05
H-DeCA 54.45

ic carriers
16 dil: plain E1.07, with socket $\mathbf{2} \cdot 21$. 10TO5: plain 99p, with socket $£ 1 \cdot 95$.

FERRANTI ZN414

IC radio chip \$1.44. Extra parts and pcb for radio e3.65. Came sop. Send S.A.E. for free data.

SINCLAIR PROJECT 80 AUDIO

MODULES

FM tuner £13-25. O16 59.50, PZ5 53.95. PZ6 £8-70. PZ8 50.10. Trans for PZ8 E5.60. 240 ©5-75. Stereo 80 £11.95. Project 8050 c18-95. Quad decoder 814.95 .
BI-PAK AUDIO MODULES
S450 Tuner £18-95. AL60 E4.33. PA100 513 .45. MK60 audio kit $527 \cdot 20$. Teak $60 \mathrm{Eg} \cdot 95$. Stereo $30 \mathrm{\Sigma 15} \cdot 95$. TC30 $£ 4 \cdot 60$. AL250 $\mathbf{1 1 6} \cdot 15$. Send S.A.E. for free data.
SAXON ENTERTAINMENTS AUDIO MODULES
SA1200 \&18.85. SA1204 513.30. SA608 $511 \cdot$.85. SA604 $£ 10 \cdot 30$, PM1201/8 511 - 45. PM12028 514 . B5. PM1202/4 814 - 05 . S.A.E. for free leaflot.

SINCLAIR BLACK WATCH
Fully assembled
with black
strap. $£ 20 \cdot 95$
Bracelet, 2.

SINCLAIR CALCULATORS*

Scientific N/A. Cambridge \% $\mathbf{2 7} .35$. Cambridge Scientific E11.45. Oxford $100 \mathrm{~N} / \mathrm{A}$. Oxtord $300 \mathrm{E13.30}$. Programmable Scientific with free mains untit $\mathbf{E 2 4} .95$. Mains adaptors: for Oxfords $\mathbf{~} \mathbf{~ 1 / 1 0}$; for Cambridge and Scientific e3. 15 .

CBM CALCULATORS*

796MD 8 digit. \%. memory 55 .90. 89708 digit. \%, 4 function memory $28 \cdot 45$. SR7919D 8 dilith or $5+2$ memory. trig. log. pi. powers $811 \cdot 90$. SR1800 10 digit sclentific E20. 55 . SP4148R 14 digit rechargenble scientific $\mathbf{2 2 1 - 9 5}$. Mains adaptors $19 \cdot 20$.
CASIO CALCULATORS*
Personal Mini $6+6$ digits, squares, powers, reciprocals 4-45. Pocket 858 digits. \%, const. c8-55. Memory 8 R 8 digit. \%, memory, const ge.55. Pocket Mini P-810

NOVUS CALCULATORS*

7506 digit ES .45 .855 digit. \%. const. 89 root. 4 function
 Free charger with 4515, 4520 and 4525. Mains adaptors for other models $£ 4 \cdot 20$.

MISTRAL 24 HR. DIGITAL CLOCK KITS*

 Includes pcb. power supply, case, tin display, chip and all parts. Kit $\mathrm{E10}$-95. Built $\mathrm{E12} \cdot \mathbf{5 0}$. Also Mistral 2. de fuxe assembled version with alarm and tiit sleep-over facility 13.95.NATIONAL MA1001H OIGITAL CLOCK

MODULE*

Complete module including tin display and clock chip fully assembied on a 1 tin $\times 3 \mathrm{in}$ pcb. Just add a power supply, switches, etc., to produce a 24 hr . clock with

Send S.A.E. for our Digital Clock leaflet
PRINTEO CIRCUIT KIT E3-95*
Make your own printed circuits. Contains etching dish 100 sq in of pc board, lib terric chloride. etch resist pen small drill bit, laminate cutter.
SWANLEY ELECTRONICS
Dept. PE, PO Box 68, Swanley, Kent

Battery Eliminator Bargalns STABILIZED POWER UNITS*
Miilenile series. Switched $1-30 \mathrm{~V}$ In 0.1 V steps. 1 A output: Kit E11.4s; Kit + case $214 \cdot 40$; Built 518.40. 2A output: Kit E13.95; Kit + case $516 \cdot 90$; Built Een.E5.
6-WAY SPECIAL £5 - 20
Switched output of $3 / 4 \mathrm{y} /$
$6 / 7 \not / 9 / 12 \mathrm{~V}$ at 500 mA .
6-WAY DOUBLE
RADIO MODEL E6 - 20
Switched output
$+3 / 41+4 / 6+6$
$7+7 \downarrow / 9+912+12 \mathrm{~V}$ at 250 mA . Also $15 / 18 / 24 \mathrm{~V}$ single. 3-WAY MOOEL
Switched output of $6 / 7 \pm 19 \mathrm{~V}$ at 250 mA with 4 -way multi-jack piug and free matching socket, $\mathbf{e} .95^{*}$.

RADIO MODELS

50 mA with press-stud battery connectors. 9 V E3. 25. Also 9V 300mA 4.95.

CASSETTE MAINS UNITS

$7+V$ output with 5 pin DiN plug. 50 mA [3. 45 . 300 mA E3. 95 . CAR CONVERTORS
Input 12 V d.c. Ouput $6 / 7 \frac{1}{2} 9 \mathrm{~V}$ d.c. 1 A regulated. $£ 4 \cdot 75^{*}$.

BATTERY ELIMINATOR KITS

Send S.A.E. for free leaflet on range.
00 mA radio type with press-stud battery terminals. 4 V 1. $85.6 \mathrm{~V} \mathrm{E1} \cdot 85.9 \mathrm{~V} \mathrm{\Sigma 1} \cdot \mathbf{8 5}$.

100 mA double redio type with preas-atud battery tarminala. $4 \mathrm{~V}+4 \mathrm{~V}$ e2.60. $6 \mathrm{~V}+8 \mathrm{~V}$ e2.e0. $9 \mathrm{~V}+9 \mathrm{~V}$ e2-60. 100 mA casette type with 5 pin DiN plug. $7+\mathrm{V}$ E1.85
Stabilized a-way type tranalator stabilized to give fow hum. $3 / 4 \mathrm{t} / 6 / 7 \downarrow / 9 / 12 / 15 / 18 \mathrm{~V}$ 100mA $83 \cdot 15 ; 500 \mathrm{~mA}$ c4. 65 . Heavy duty 13-way typen $4 \frac{1}{7} / 6 / 7 / 8+111 / 13 / 14 / 17 / 21 / 25 /$ $28 / 34 / 42 \mathrm{~V}$. 1 amp model 44.40 . 2 amp model $58 \cdot \mathrm{g5}$. Cer Convertor kh. Input 12 V d.c. Output $8 / 7 / 9 \mathrm{~V}$ d.c. 1 A regulated 12 -95.

MAINS TRANSFORMERS .

$50-6 \mathrm{~V} 100 \mathrm{~mA} 95 p .90-9 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p}$. $18 \mathrm{~V} 1 \mathrm{~A} \mathbf{\Sigma 1 \cdot 6 5}$. . 12. 15. 20, 24, 30V 1A ©3.co. 12-0-12V 100 mA et.05.

Post 30 p on orders under \mathbb{E}, otherwise free. Prices include VAT (Overseas customers deduct 7% on items marked *, otherwise 11%). Official orders welcome.

ELECTROTIME

SPECIALISTS IN ELECTRONIC TIMEKEEPING

ELECTRONIC DIGITAL ALARM CLOCK MODEL EC3

* LARGE 4 DIGIT DISPLAY * 24 HOUR ALARM * A.M.IP.M. INDICATOR \star BRIGHTNESS CONTROL t FLASHING SECONDS INDICATOR * ATTRACTIVE WHITE CASE * 5 MINUTE REPEATING SNOOZE ALARM
Complete Built Clock
£14 inc. VAT
THE "MISTRAL"' ${ }^{1}$
DIGITAL CLOCK

* PLEASANT GREEN DISPLAY * PULSATING COLON * $12 / 24$ HOUR READOUT * PUSH BUTTON SETTING \star FULLY ELECTRONIC * BUILDING TIME 1 HOUR

Complete Kit
£11.07 inc. VAT
Built Clock
£14.95 inc. VAT

LCD MODELTLC4
\square Continuous Readout utilising Liquid Crystal Display with Backlight for night reading

Features:

 - HOURS * minutes * SECONDS * dateRhodium
Gold

We are proud to announce the opening of our new showroom in which you will find one of the largest ranges of digital electronic clocks and watches available in the U.K. So why not call and see us? One year's guarantee with all models. Electronic accuracy to within seconds per week.

ELECTROTIME, Dept. 3/7, 11 Shepley's Yard, Shopping Precinct, Town Centre, Chestertiold, Derbyshile. Tel. (0246) 35804

Please supply
I enclose cheque/postal order
NAME
ADDRESS

WENTWORTH RADIO

1a Wentworth Court, Alston Road, Barnet Telephone: 01-440 0409, 01-441 2328

INTEGRATED CIRCUITS									
ETTR6016	c2. 15	tBatzos	20p	TBA540	12.10	TBA673	c2. 85	TBA9900	12.90
TAASSO	20.	TBA4800	11.00	TBA5400	12. 50	TBA7500	$5 \cdot 25$	TCA2700	12.00
TMA700	c3. 25	1BA5200	12.50	TBAS500	12.50	tBabco	$95 p$	TCA270SO	12. 85
TAMS40	[2.30	TBA530CO	¢1.50	TEAS600	12.50	TBA9200	12.80	TDA440	C2.00
SEMICONDUCTORS									
2N696	120	2N2369A	15p	BF337	25p	E5386	11 p	TIP32C	51.64
${ }^{2 N 697}$	13p	${ }^{2 N} 2646$	440	BFT42	46p	MJE340	3 p	TIS90	19p
2N698	23p	2 N 2904	14p	BFX29	$24 p$	OA47	6 p	TIS91	11 p
2N699	$34 p$	2N2904D	19p	BFY50	19	OA90	${ }^{\text {P }}$	BAt00	10p
2N706	11p	2 N 2906	$14 p$	BR100	$20 p$	OA91	$6 p$	BA144	15p
2N70	14p	2N4287	17p	ER101	30	OLTO	120	BA145	20p
2N914	14p	2N4288	$14 p$	BRY39	40 p	IN4002	80	BA148	$14 p$
2N918	$31 p$	8F160	200	ESY51	$20 p$	IN4006	p	Bat54	12
2 N 1132	210	BF167	25p	BT106	3sp	IN4148	80	BA155	11p
2N1131	200	EF173	21 p	But05/02	29.00	2N697	15p	BAX 16	20p
2N1302	14p	BF178	$30 p$	BU105/04	12.40	2N3055	34 p	BC107	4 p
2N 1303	140	$8 F 179$	30 p	BY103	17p	2N6178	80 p	BC108	\%p
2 N 1304	12p	BF180	$28 p$	BY126	10p	2SC643A	51.70	BCiosC	9
2N1305	18p	BF181	270	BY127	100	2SCil12Y	12.24	BC109	9
2N1306	200	BF182	35p	BY133	15p	T1P29	40	BC113	$10 p$
2N 1307	180	8 BF 183	\%1p	BY164	2 tp	TIP29a	$40 p$	BC116	15p
2N1308	2	BF194	15 P	BYX 10	15p	TIP298	40 p	BC116A	$17 p$
2N1309	240	BF185	20	82×61CB	15p	TIP29C	480	EC117	$17 p$
2N1618	140	BF186	259	BZX61C15	15p	TIP30	$4{ }^{40}$	BC119	2tp
2N171?	200	BF194	$11 p$	BZX61C43	15p	TIP30A	50	BC125	16p
2N2147	70p	BF195	129	BZX61C81	150	TIP30B	4 p	BC138	19p
2 N 2148	$58 p$	BF196	12	B2X61C39	18 p	TIPsoc	50p	BC 139	$25 p$
2N2218	$20 p$	BF197	140	$82 Y 88 C 12$	120	Tip31	55p	BC142	$25 p$
2N2219	19p	BF198	110	BZY8eCTV8	12p	TIP31A	48 p	BC143	220
2N2220	230	BF199	18 p	BZY88COV2	12	TIP318	500	BC147	10
2 N 221	1sp	BF256LC	40 p	BZY88C11	12	TIP31C	48	BC148	0
$2 \mathrm{Nz23}$	10p	BF259	$28 p$	BZY88C18	120	T1932	80p	BC149	2p
2N2304	170	BF271	14 p	E1222	12	TIP32A	54	BC152	14p
2N2369	10p	BF336	330	E5024	$14 p$	T1P32B	100	BC154	18p

SPECIAL OFFER

NEW MULLARD ELC1043/05 U.H.F. TUNERS £3. 50

All devices top quality. By return service. Trade enquiries welcomed. C.W.O. Minimum order 75p. S.A.E. for complete lists. VAT to be added: 12% Semiconductors: 8% integrated Circuits. Postage and packing: add 25p for all orders under £1.50; add extra for airmall

Prices firm to end of 1976

The expert and personel guidance by fully qualified tufors, backed by the ICS guarantee of tuition untif successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Post this coupon or 'phone today for free ICS careers guide.

\qquad

Age
To ICS, Dept. 772X, Intertex House. London SW8 4UJ
or telephone 01-622 9911 (all hours)

TRANSFORMERS
ALL EX-STOCK-SAME DAY DESPATCH MAINS
ISOLATING
PRI. 120/240V
SEC. 120/240
SEC. 120/240 SENTREN
SCAEEN

	${ }^{\text {(Wart }}$	s)
07*	20	4.68
149	60	5.93
150	100	6.78
151	200	10.57
152	250	12. 80
153	350	15.12
154	500	17.41
455	750	23.69 \dagger
156	1000	$33.01+$
157	1500	$37.40{ }^{\text {¢ }}$
156	2000	42.034
159	3000	$66.40 \dagger$
*115V	or 240 V	Sec.

30 vOLT RANGE Prim. 0 200-212-15-20-24-30
Sec

So VOLT RANGE Prim. 200-240V Sec. $0-24-30-40-48-60 \mathrm{~V}$ $\begin{array}{ll}\text { Ret. } & \text { Amps } \\ 124 & 0.5 \\ 124 \\ 1\end{array}$

Ref	Amps	$£$
124	0.5	$\mathbf{3 . 5 4}$
126	1.0	4.44
127	2.0	6.74
125	3.0	9.72
123	4.0	11.58
40	5.0	12.54
120	6.0	14.69
121	8.0	17.014
122	10.0	20.954
189	12.0	21.874

CASED AUTO TRANSFORMERS
240 V mains lead input \& USA 2 pin outlats

20 VA	54.42	Ret 133 W
150 VA	$£ 7.90$	Ref 4 W
500 VA	$£ 13.32$	Ret 67 W
1000 VA	$£ 13.86 \dagger$	Ret 84 W
2000 VA	$\mathrm{c31.01} \mathrm{\dagger}$	Ref 95 W

NO HIDDEN EXTRASWHE Prices include VAT and P. \& P. EXCEPT WHERE CARRIAGE WILL BE ACCORDING TO WEIGHT AND DISTANCE-BRS Electroreal Audlo accessorles, somiconductora, panol moters and multi-meters

CALLERS WELCOME (MON.-FRI.)

OR SEND STAMP FOR LISTS.
OR SEND STAMPONENT PAKS
COM
200 Mixed value resistors (count by weight) 150 Mixed value capacitors (count by weight) 30 Mixed value precision resistors $+\mathbf{w} 2 \%$ 15 Assorted pots a pre-sets
10 Reed switches
3 Micro switches
20 Assorted tag strips
PLEASE STATE PAK REOUIRED
90D PER PACK 90p PER PACK

HIGH OUALITY MODUL 3 Watt RMS AMP MODULES 3 Watt RMS AMPLIFIER
5 Watt RMS AMPUFIER 5 Watt RMS AMPLIFIER
10 Watt RMS AMPUIFIER 10 Watt RMS AMPLIFIER
25 Watt RMS AMPLIFIER 25 Watt RMS AMPLIFER
125W RMS AMPLIFIEA PRE-AMP for 3-5-10W PRE-AMP for 25 W POWER SUPPLIES 3-5-10W POWER SUPPLIES 25W TRANSFORMER $3 W$ TRANSFORMER 5-10W TRANSFORMER 25W

BSR MINI-DECK 4 Speed Auto Changer
Single and

$$
\begin{aligned}
& \text { Single and Auto (Chassis } \\
& \text { Garrard SP25 (Chassis) }
\end{aligned}
$$

NEW STEREO 30
Complete Stereo Chasgis inc.
$7+7 \mathrm{w}$ RMS. Amp. Pro-amp, Power Supply. Front Panel. Knobs (only needs Mains Trans.). Stereo 30 ع17-99 Mains Trans $\mathbf{5 3} .56$. Teak veneered
cab. $\mathbf{5 4} .54$.

รา7. 33

AVO \& MK5
Avo 72
Avo TT 169
AVO MM5 U4315 USSA) incsteel POWER UNIT
CC12-05 Output Swlithed
3-4.5-6-7.5-9-12V at 500 mA . $\mathrm{ES} \cdot 11$

Dimmit range of light dimmers and lighting control systems

Illustrated is the popular PMSD 1000 module. A 1 kW slider control dimmer, interference suppressed, 60 mm slider range size $4 \times 2 \times 1$ in. Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, etc. Complete with scale plate, fixing serews and full instructions. ≤ 9.06 inc. VAT and postage and packing.

Complete compact lighe dimmer systems for stage, club and disco lighting, etc.

DD6IM (illustrated). Six 1 kW channels, six outlet sockets, master control, mains on/off switch, size $23 \times 8 \downarrow \times 5 \mathrm{in}$. Price $\mathbf{C} 140.40$ inc. VAT.

DD6I-B. Six 1 kW channels, using module PMSD 1000 , lowest cost system. Sizel $6 \frac{1}{2} \times 8 \times 5 \mathrm{in}$. Price $\mathbf{\$ 6 4 \cdot 5 0} \mathrm{inc}$. VAT.

DD62M. As DD6IM but with six 2 kW channels, size $25 \times 10 \frac{1}{\mathrm{j}} \times 6 \mathrm{in}$. Price $\mathbf{E} \mathbf{2 0 5} \mathbf{2 0}$ inc. VAT.

Add $£ 2-20$ postage and packing for all systems.

The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}$.

All products are guaranceed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.

For full information on all modules and lighting control systems send 15p for our illustrated catalogue and price list. Callers welcome, visit our show room for a demonstration of any of the modules or systems. Mon.-Fri. 9.30 to 6.0 p.m. Sat. by arrangement.

YOUNG ELECTRONECS LTD.
184 Royal College Streat, London NWI 9NN Tel. 01-267 0201

- $=$ A Volume of Practical Know-how

can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At £2.10 inc. VAT and postage they are obtainable from:

Post Sales Department, IPC Magazines Lid. Lavington House, 25 Lavington Street London SE1 OPF
I enclose P.O./cheque value..........for.....binders at $\mathbf{~} 2 \cdot 10$ each for Practical Electronics Vol. No's.

SAXON CENTAUR STEREO SOUND-LIGHT MOBILE DISCO

To-day's most challengling value-with sound-light converter, synchronous motor twin turntables, and features that give you protesslonal levels of operation, it still cosis under $£ 200$ (V. A. T extra). With full-range heavy duty speakers which pack to make a single complete transportable unit. ABSOLUTELY COMPLETE INC. HEADPHONES. CONDENSER MIC. AND CONNECTING CABlES.

- 4-channel soundflight converter. variable speed X-fade and P.F.L
£199:00
- Tape and microphone Inputs \qquad Delivered UK

STEREO!
100 WATTS
R.M.S.

MINOTAUR 100

 100 WATT RMS TOTAL RANGE AMPLIFIERCompatible with all Saxon System 7000 units, this is a superb amplifier readily adaptable to a wide range of applications.
$-100 \mathrm{w} . \mathrm{r} . \mathrm{m} . \mathrm{s}$ into 8Ω
Two mixed imputs, wide range bass and treble controls.

- May be operated as a slave amplifler

Extremely compact $(27 \mathrm{~cm} \times 16 \mathrm{~cm} \times$ 10 cm)

- Fully protected against all incorrect loads and short circuits
- Plug isolated terminals - Silver anodised facia

SYSTEM 7000 MODULAR MIXING

Loudspeakers ${ }_{14000}^{12 " / 50 \mathrm{~W} \text { high grade chassis units: }}$

Power Supply £7-50

SYSTEM 7000
LIGHTING CONTROL

- Full control of 3 kW of fights (1kW/channel)
- Audio control plus séquence plus override
- Variable speed sequence
- Stainless steel two tone panelmatches mixer
- Operates from any amplifier
- Altractive Bondene case-free standing or panel mountling

SUPERFECT MODULE
On P.C.B. penel mounting $£ 27 \cdot 75$ SOUNDLITE 3KW CONVERTER
£15.50

SAXON STROBES \& LIQUID WHEEL

SUPERSTROBE - 1 flash/2 secs.-Up to $20 / \mathrm{sec}$, - Ideal for moblle disco or sm PRO-STROBE

- Diant 80 watt tube - Extemarge energy up to 6 joules 150 WATT LIQUIO WHEEL PROJECTOR Complete with wheel and 150 watt Tungsten lamp
Wide range of extra effects may be
attached attached

NOW
ONLY £17.50 NOW
ONLY
£29.50
£29 - 20
Spare wheels 14.90

ACCESSORIES PRICES include carr. and packing. VAT must be added to all orders at 8%. C.O.D. $65 p$ extra: S.A.E. all enquiries please.

Send your
ACCESS or
or phone in your number
for prompt attention. Atter
4.0 p.m. leave your message
on our answerphone.

Orders by post-Please make cheques or crossed P.O s payable to
SAXON ENTERTAINMENTS LTD.
327-333 WHITEHORSE ROAD, CROYDON, SURREY CRO $2 H S$ Tolephone: $01.6846385 / 0098$
Shop Hours 9am-5pm. (Lunch 12.30-1.30): Sat. $9.30 \mathrm{am}-5 \mathrm{pm}$ Tolephone: $01.6846385 / 009$ alteration without notice.

Mail Order speclficalions subject to
Mail Order desk 10am-4pm Mon-Fri.

TRADE ENQUIRIES NORMAN ROSE (ELECTRICAL) LTO London 01.8379111 Birmingham | $021 \cdot 235$ |
| :--- |
| 273 |
| 1498 | 273

0274
28104

RATES: 15p per word (minimum 12 words). Box No. 40 p extra. Semi-Display $£ 12.00$ per single column inch. Advertisements must Room 2337, King's Reach Tower, Stamford Street, London SE1 9LS. Tel. 01-261 5918 Room 2337, King's Reach Tower, Stamford Street, London SE1 9LS. Tel. 01-261 5918

RECEIVERS AND COMPONENTS

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

TTL SPECTACULAR!

(All famous makes. Prices include VAT)					
$\begin{aligned} & 7400 \\ & 7401 \end{aligned}$	$12 p$	7447	80 p	74107	29p
7402	13 p	7450		74109	54p
7403	13 p	7451	13 p	74122	31 p
7404	15 p	7453	13 p	74123	59
7405	$15 p$	7454	13 p	74141	
7406	$27 p$	7460	13 p	74145	78 p
7408	$15 p$	7472	22p	74150	C1.05
7410	13 p	7473	27p	74151	69p
7411	20p	7474	28p	74153	65p
7412	16 p	7475	47 p	74154	f1.35
7413	33 p	7476	28p	74155	74p
7414	65p	7480	44p	74157	$86 p$
7417	26 p	7483	76p	74160	\&1.10
7420	13 p	7484	97p	74164	¢1.35
7422 7425	${ }_{26 p}$	7485	$\underline{1.03}$	74174	81.10
7427	${ }_{26 \mathrm{p}}$	7486	29p	74175	92p
7430	13 p	7489	42.50	74181	¢2.19
7432	25p	7491	60 p	74191	¢ 1.25
7437	29p	7492	46 p	74192	2.25 $k 1.08$
7440	13p	7493	46p	74193	C1.08
7441	69 p	7495	60 p	74195	
7442	63 p	7496	69 p	74196	41.19
145	${ }^{80} \mathrm{p}$	74100	97p	1N4148	
08	7p	ZT×300	12p	IN4003	p
Intel 2102 IK Memory ${ }^{3} 3$ DL707E 0.3 in. Display 69 p Min. order E2. P. \& P. 20p (Ist class) C.W.O.					
Send S.A.E. for full list					
J. C. JONES (Dept. PE2I)					
46 Burstellars, St. Ives, Cambs.					

TURN YOUR 8URPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate cash settlement.

R.T. SERVICES (MAIL ORDER ONLY)

77 Hayfield Rd., Salford 6, Lancs.
Tapped Auto Transformer, 240V-110V, 80 watts, 62 P.P. New.
Heat Sinks $5 \times 4 \mathrm{in}$, drilled for 2 TO3 transistors. New 65p.
Transformer 240 V primary 25 volts at I $\frac{1}{3}$ amps. New E2. P.P.
FM Tuner with R.F. Stage and A.G.C. 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, ¢I-75 P.P.
Crouzet Geared Motors 240V. 5/6/15/20 r.p.m. New $£ 1$-75 P.P

Panel with 220 approx. marked IC's only £450 inc. VAT, P.P.
Memory Array Panel. El' 50 inc. VAT, P.P. Electrolytic Capacitors. 2,500 at 40V. Size $3 \times 1 \frac{1}{2} \mathrm{in} .2$ for $\mathbb{I} 1$ P.P. NEW.
Transformers. $12-0.12 \mathrm{~V}, 100 \mathrm{~mA}, 9-0.9 \mathrm{~V}$. $100 \mathrm{~mA}, 6-0.6 \mathrm{~V}, 100 \mathrm{~mA}, 99 p$ each P.P.
P.C. Board. $5 / 5,5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}, 10$ for $£ 1-25$ P.P. Mixed Pack of C280 series Mullard capacitors. 100 for $£ 1 \cdot 30$ inc. P.P.
Very large quantity of Mullard C280 capacitors. In sacks. Mixed values. Also Mullard electrolyties in sacks. Mixed values. Enquiries invited from bulk buyers. Tel. 061-236 1541
All prices include VAT and P.P.

VALVE8, RADIO, TV, TRAN8MITTING, INDUSTRIAL. 1930 to 1975 . 2,200 types in stock, many obsolete. List 20p. Quotation S.A.E. Postal export service. We wish to purchase new and boxed valves. Dealers, Wholesalers, etc., stocks purchased. COX RADIO (SUSSEX) LTD, The Parade East Wittering, Sussex. Tel. West Wittering 2023.
A-MP 14 PIN DIL IC HOLDERS with non-
$\begin{aligned} & \text { rev's clip, } 11 \mathrm{p} \text { each; } 10 \text { for } \mathrm{f} 1 \text {. Belling Lee } \\ & \text { Instrument Pointer Knob, } 8 \mathrm{p} \text {. } 10 \text { for } 20 \mathrm{p} \text {. }\end{aligned}$
$\begin{aligned} & \text { Instrument Pointer Knob, 8p; } 10 \text { for 20p. } \\ & \text { Diamond H. } 20 \mathrm{~A}, 250 \mathrm{v}, \mathrm{D.P} \text {. } \mathrm{T} \text {. Toggle Switch, } \\ & 65 \mathrm{p} \text {, }\end{aligned}$
$\begin{aligned} & \text { 65p each; }\{5 \cdot 50 \text { for } 10 \text {. BZX } 795.1 \text { volts } 400 \mathrm{~mW} \text {, } \\ & 8 \mathrm{p} \text { each; } 10 \text { for } 60 \mathrm{p} \text {. } 1215 \text { is volt I watt, } 10 \mathrm{p}\end{aligned}$
$\begin{aligned} & \text { eaphath, } 10 \text { for } 90 \text { p. NiN914 } 50 \text { for } \mathrm{KI} \text {. Watt, } 10 \mathrm{p} \\ & \text { eatorola }\end{aligned}$
Diodes $6 \mathrm{v}, 7 \mathrm{v}, 8 \mathrm{v}, 9 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}$
$\begin{aligned} & 18 \mathrm{v}, 20 \mathrm{v}, 22 \mathrm{v}, 39 \mathrm{v}, \text { all } 10 \mathrm{w}, 20 \mathrm{p} \text { each. Bush set } \\ & \text { for T.I.P. transistors, } 10 \text { for } 20 \mathrm{p} \text {. } 100 \text { for } 61.75 \text {, }\end{aligned}$
Sude Sw. S.P.C.O., I5p each; $£ 1.20$ for 10 . Mini-
$\begin{aligned} & \text { mum post } 200 \text {. Aii'prices include VAT. All com- } \\ & \text { ponents full spec. FIELD ELECTRIC }\end{aligned}$
$\begin{aligned} & \text { ponents full spec. FIELD ELECTRIC LTO. } \\ & 3 \text { Shenley Rosid Boreham Wood, Herta. 01-953 } 8009\end{aligned}$

Precision Polycarbonate Capacitors All High Stability axtremely Low Loaikg 440 VAll Eigh Stability
Value Dimen- Price Value Dimen- Price
$(\mu \mathrm{F})$ ilina (mm) esch
$\begin{array}{ll}0.1 & 27 \\ 0.15 & 27 \\ 0.22 & 33 \\ 0.25 & 33 \\ 0.33 & 33 \\ 0.47 & 33 \\ 0.5 & 33 \\ 0.68 & 6 \\ 1.0 & 5\end{array}$
 TANTALOM BEAD CAPACITORS-Value avallable: ${ }_{6}^{15 V} / 25 \mathrm{~V}$ or $35 \mathrm{~V} \cdot 10.0 \mu \mathrm{~F}$ at $16 \dot{V}^{2} / 20 \mathrm{~V}$ or $25 \mathrm{~V}: 22 \cdot 0 \mu \mathrm{~F}$ at ${ }_{6}^{6} \mathrm{~V} / 10 \mathrm{~V}$ or $16 \mathrm{~V} ; 33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or
 Sor $55^{\circ}, 100$ for ${ }^{2} 9^{\circ}$
BC107/8/9

 POPULAR DIODES-1N914 6p, 8 for 45 p , 18 for 80 D ; IN916 8p, 6 for $48 \mathrm{p}, 14$ for 90 D ; 18445 F , 11 for 50 p ; 26 for 41.00 , 1 N 4148 sp , 6 for $27 \mathrm{p}, 12$ for $48 \mathrm{p} ; 1 \mathrm{~N} 400 \mathrm{i}$

 $8 \mathrm{~V} 2 ; 9 \mathrm{~V} 1 ; 10 \mathrm{~V} ; 11 \mathrm{~V} ; 12 \mathrm{~V} ; 13 \mathrm{~V} ; 13.5 \mathrm{~V} ; 15 \mathrm{~V} ; 16 \mathrm{~V} ; 18 \mathrm{~V}:$ $20 \mathrm{~V} ; 22 \mathrm{~V} ; 24 \mathrm{~V} ; 27 \mathrm{~V}$; 30 V ; 33 V , All at 7 p each, 6 for 38 p . 10 for $65 \mathrm{p}, 50$ for $83 \cdot 12$. 8 PECLAL OFFER: 100 Zenera (may be mixed) for 88.00 .
RESISTORS-HIgh atability, low noise carbon film 5% $\$$ W at $40^{\circ} \mathrm{C}$, ${ }^{\frac{1}{2} \mathrm{~W} \text { at } 70^{\circ} \mathrm{C} \text {. E12 eries only-from } 2.20}$ to $2.2 \mathrm{M} \Omega$. ALL at $1 \mathrm{p}^{*}$ each, $8 \mathrm{p}^{*}$ for 10 of any one value, 70D for 100 of any one value. SPECIAL PACK: 10 of each value $2 \cdot 2 \Omega$ to $2 \cdot 23$ a (730 resistors) 25°
Do27: 100 P.I.V. 7p (4 for 26p) ; 400 P.I.V. Bp (1 ire-ended

SUBMINLATURE VERTICAR PRESERS-0.1W only: All st 5p* each; 50; 100; 220; 470; 680 ohm; 1k; 2k2: 2M5; 5M. 15 k ; 15 k ; 22k; 47k; 100k; 320k; 680 k ; 1M;
PLEASE ADD 20p POST AND PACKING ON ALL ORDERS, EXPORT-ADD COST OF SEA/AIRMAIL. Add 8% VaT to all jtems except those marked with : Send S.A.E. for additlonal s
Wholesale price lists available to bona fide companies.
MARCO TRADING (Dept. P.3)
The Old School, Edstaston, Wem, Shropshire Tel: Whixall 464/465 (STD 094872)
(Proprs. Minicost Trading Ltd)

[^2]BRAND NEW COMPONENTS BY RETURN Electrolylic Capacitora $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0.47,1 \cdot 0$,
$2.3,4.7$ and $10 \mathrm{mF} 5 \mathrm{p} ; 22,4757 \mathrm{p}(50 \mathrm{~V} 6 \mathrm{p}): 1007 \mathrm{p}$ $2.3,4.7$ and $10 \mathrm{mF} 5 \mathrm{p} ; 22,4754 \mathrm{p}(50 \mathrm{~V} 6 \mathrm{p})$; 1007 p
 $1,000(16 \mathrm{~V}) 16 \mathrm{p}, 1,000(25 \mathrm{~V}) 18 \mathrm{p}, 1,000(60 \mathrm{~V}) 22 \mathrm{p}$. $0.22,0.47,1.0,2.2$ at 35 V Bead Electrolytica- 0.1 ,
 Mullard Min, Ceramic E19 Serio
$3 \mathrm{p} ; 66-330 \mathrm{pF} 4 \mathrm{p}$. Ceramic plate $60 \%-10-47 \mathrm{pF}$ 2p; $66-330 \mathrm{pF} 4 \mathrm{p}$. Ceramic plate 50 V E12 serie Polyatyrane k12 Series 63 V For $10-1.000 \mathrm{pF} 3 \mathrm{p} ; 1,200-10,000 \mathrm{pF} 4 \mathrm{p}$. Mollard Polyester 250 v Yortical.
 $0.6811 \mathrm{p} ; 1.013 \mathrm{p} ; 1.520 \mathrm{p} ; 2.222 \mathrm{p}$.
afylar (Polyenter) Film 100V Vertical Mounting$0.001,0.002,0.0053 \mathrm{~s} ; 0.01,0.0231 \mathrm{D}: 0.04,0.054 \mathrm{p}$. Miniature Resiatori Highatab. E12 Soriel $5 \%-$ Carbon Flim tW $10-10 \mathrm{Ma}$ (10% 1M up) 1 p ; Metal Film tW 10a-2M2 a 1.5 p ; Metal Film iw 100-2M7 a 1-5p; Metal Film iw 27a-10Mo 1.75 p.

1N4148 3p; 1N4002 Sp; 1N4006 7p: 1N40078p: Buses 20 mm glass, 1tin glass, 119 $18 / 79 \mathrm{p}$.
Pot lop (free over E4) glass, iln ceramic $2 p$ THE C.R. SUPPLY CO.
127 Chasterfield Road, Sheffield S8 ORN
500 COMPONENTS. Resistors, capacitors, diodes, transistors, pots, coils, etc. Identifled, formed leads, fall-out and surplus. Good value at $81 \cdot 60$. All inclusive (U.K. postal rates only). C.W.O. please to: L. PENSENFY (PE), Bankhead Farm, South Queensferry, West Lothian.

$4_{\substack{\text { panel } \\ c l i p ~ \\ \text { cp }}}^{5}$	0.125	0.2	NFRA RED 550 山W Axial lead 49p 6 mW [1.55 OPTOData free	
	15p	19p		
	27p	33p		
	27p	33p		
Avoeliond 2 gm	$15 p$			
	2N2926(G) 2N3053 2N3054 2N3055 2N3702 3 4 2N3903 4 $5 / 6$ 2N2646 MPF102 2N3819 2N3823	$\begin{aligned} & 12 p \\ & 15 p \\ & 45 p \\ & 41 p \\ & 12 p \\ & 16 p \\ & 35 p \\ & 40 p \\ & 25 p \\ & 30 p \end{aligned}$	VOLTAGEREGS. 5V 7805 Plastic 12V 7812 1 Amp SV 7815 all $\begin{array}{lll}18 \mathrm{~V} 7818 & \mathrm{El} .50 \\ 723 \text { DIP14 } & 50 \mathrm{p}\end{array}$	
			BRIDGE RECTS. 2A 50V 30 p 2A 100 V 30 p 2A 200V 11 p 2A 400V 4Sp	
	IN9 14			
	IN4001	${ }_{5 p}$		
	IN4002 3	$6 p$	ZENERS 2 7-33V BZY88 or sim 9p	
	IN40045	70		
	INA148	4 p	555 Timer 60p	
	8A100	p	$5562.55551 \cdot 10$	
	OA47 ${ }^{\text {a }}$	${ }_{60}$		
	OA70 OA79	8 p		
	OA91 OA95		D.I.L. SOCKETS	
	OA200			
	OP. AMPS		(14-Din	
			${ }_{\text {Mice }}$ Mo3 bushes	
	48 DIL	${ }_{36 \mathrm{p}}$	Daiopen 70p	
PRICES INCLUSIVE + 15p P. \& P. (1st class)				
ISLAND DEVICES, P.0. Box 11, Margate, Kent				

ELECTRICAL

8TYLI AND CARTRIDGE8. For the best at keenest prices send SAE for free illus. list to FELSTEAD ELECTRONICS (PE), Longley Lane, Gatley, Cheshire, SK8 4EE.

FOR 8ALE

08CILLOsCOPE. Heath 10.18 U unused 850 . GRANT, $29 / 5$ Hillmeads Road, Kings Norton, Birmingham.

DISCOLIGHT8. Summer sale. Soundlights (3-channel) 816. Strobes 222. Free catalogue: AARVAK ELECTRONICS, 12a(L) Bruce Grove, London N17. (01-808 8923).
LIMITED OFFER, MM5314 full spec with data 82•65. BC108A (plastic) 10 for 70 p; IN 400210 for 50p. 12-0-12 50MA sub min. 85 p. BCY70 7 for 51 . MAN3M with data 35p. SP322B (JK flip flop) 15p. Add 10p P. \& P. L.B., 43 Westacott, Hayes, Middx. UB4 8AH.
MINI8ONIC part bulit including keyboard for sale. FISHER, 54 Waterloo Road, Waterloo, Huddersfleld.

WANTED

TOP PRICES PAID NEW VALVES AND TRANSISTORS Popular T.V. and Radio types KENSINGTON SUPPLIES (B) 367 Kensington Street Bradford 8, Yorks.

BOOKS AND PUBLICATIONS

UFO CHART8: Prediction Wave; "Antigravity"; Propulsion Theory; Daily Flight Pattern; Optical Transistor Detector Circuit; Radiation/Optical; 3-way MOS Detectors; each 75p. DFM; Programmable Clock; 16 Channel Computerised Recorder; Each circult $\$ 1 \cdot 20$. Newsletter (Technology Sightings Reviews) 60p. R \& E PUBLICATIONS, Highlands, Needham Market, Suffolk.

START YOUR OWN BUSINESS
 REWINDING ELECTRIC MOTORS

This unique instruction manual shows step by step how to rewind motors, working part or full time, without previous experience. Everything you need to know easily explained, including where to obtain materials, how to get all the work you need, etc., etc. A goldmine of information and knowledge. Only $\mathbf{E 3 . 6 5}^{\mathbf{6}}$ pus 25 p P. \& P. From:
MAGNUM PUBLICATIONS, Dept. PE5
Brinksway Trading Estate, Brinksway Stockport SK3 OBZ
Overseas Distributors wanted.

FREE T.V.
 CIRCUIT DIAGRAMS

All main British T.V. sers (plus many foreign) comprehensively covered in our easy-co-follow Just send model no., if colour (mfrs. chassis iy helps) with $\& 4$ and receive the manual covering your set-plus your set's circuiz diagram on request free. Set of 7 only $\mathbb{E 2 5}$.
British T.V. Circuit Diagram Manuals-the main mono (over 37 series) for 69.50 and virtually every colour for 416 .
full details of these ard

T.V. TECHNIC

76 Church Street, Larkhall, Lanarks, ML9 IHE
Tel. (0698) 883334

SERVICE SHEETS

SERVICE SHEETE for radio, TV, tape recorders, stereo, etc., with free fault-finding guide, $50 p$ and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

BELL'S TELEVISION 8ERVICES for service sheets on radio, TV, etc., 75p plus S.A.E. Colour TV service manuals on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

SERVICE SHEET8, radio, TV, etc. 10,000 models. Catalogue, 24 p plus S.A.E. with orders-enquiries. TELRAY, 154 Brook Street, Preston, PR1 7HP.

LADDERS

LADDER8, varnished, 20ft. 9in. extd., $220-50$. Carr. £1-90. Leaflet. Alloy ext. and loft ladders. Immed. despatch. THE LADDER CENTRE (PEE), Halesfleld (1), Telford, Salop. Tel. 586644. Order C.O.D.

EDUCATIONAL

TECHNICAL TRAINING.

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio. TV. Audio Eng. and Servicing. Electronics. Computers; also selfbuild radio kits. Full details from: ICS SCHOOL OF ELECTRONICS: Dept.
771X, Intertext House, London, SWB 4UJ. Tel. 01-622 9911 (all hours).

RADIO AMATEUR8 EXAMINATION. Clty and Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For detalls of thls, and other courses (GCE, Professional Examinations, etc.) write or phone: THE RAPID RESULTS COLLEGE, Dept JS1, Tuition House, London, SW19 4DS, Tel: 01-974 7272 (Careers Advisory Service) or for a prospectus only ring 01-846 1102 (24 hr recording service).

CITY a GUILDE EXAMS.

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for; Telecoms. Technicians, Electrical Instaliations, Radio. TV \& Electronics Technicians, Radio Amateurs. Full details from: ICS SCHOOL OF ELECTRONICS, Depr.
771X, Intertext House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

TELEVISION traintiva

16 MONTHS' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners, with GCE (or equivalent) in Maths \& English.
13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential. NEXT SESSION commences on September 13th.
Prospectus from London Electronics College, Dept. A9, 20 Penywern Road, London SW5 9SU. Tel. 01-373 872I.

COLOUN TV SEAVICINO.

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles. practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from: ICS SCHOOL OF ELECTIONICS. Dept. 771X, Intertext House, London, SW8 4 UJ. Tel. 01-622 9911 (all hours).

MISCELLANEOUS

ORION cabinet still available punched or unpunched Send $15 p$ (refundabie) for leatlets.

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware, Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send I5p for catalogue.

RAMAR CONSTRUCTOR SERVICES

Masons Road, Stratford on Avon Warwicks.

Tel. 4879

DO-IT-YOUR8ELF LOUD8PEAKER8 for hH-fi are our speciality, Full range of components and accessories including chassis speakers, cross-overs, sound absorbent, grille fabrics; etc., always available. We stock the fabulous value Helme speaker kits (complete with full and easy instructions), also Peerless and Wharfedsle kits. Just about the lowest prices anywhere! Send 81p stamp for bargain list to: AUDIOSCAN, Dept. PE-976, 4 Princes Square, Harrogate, North Yorkshire.

BURGLAR ALARM8
Supplies and equipment
Special Offer-Large size PRE8sURE MAT8 $81-20$
MAGNETIC CONTACT8
with magnet. Flush and Surface
BELLS, 8IREN8, ALARM-UNIT8, CABLE,
BELL COVER8, WINDOW FOIL, VIBRA-
TION CONTACT8. Send S.A.E. forfree cat.
COMPLETE KIT. FANTA8TIC VALUE
Everything you need-only
Please add V.A.T. at $12 \frac{1}{2} \%$ plus 50p P.P.
A. D. ELECTRONIC8, Warbreck Moor
Aintree, Liverpool L9 0HU.

12 VOLT FLUORESCENTS	
35% RRP	MADE BY THORN LIGATING. Ideal for Caravan. Boat, Tent. Emergency Lighting etc. All lamps guaranteed for 12 months.
21 Ins 13 wat £4-90	
All lamps have On Protection Device and	Swith. Wrong polarity ser.
C60 CASSET TES 32p C90 CASSETTES 45p	All Cassettes in Plastic Case with Index and Screwed Assembly.
All prices include V	Add Postage $5 p$ in ε ¢.
Quantity Discounts 10 Units 5\% 50 Units 7% 100 Units 10%	SALOP ELECTRONICS 23 WYLE COP SHREWSEURY Tel. 53206

I.C. EXPERIMENTER'S KITS Learn about modern electronics with our riew series of Kits on digital logic techniques. Each Kit contains specially selected I.C.s, Holders Available ar $\$ 3.50$ each (inicluding P. \& P.)
Available at $\$ 50$ each (including Ṕ\&
Kit One-Gates Kit Two-Flip-Flops Kit Four Three-Shift Registers Kit four-Counters K. K. for further details to: AUTOMATED HOMES
69 High Street, Ryton, Coventry CV8 3FJ (Mail Order Only)

GLRSS EIBRE P.C.B.'s

From your own tape, film or ink master
Send S.A.E. for quotation
PRACTICAL ELECTRONICS printed circuit boards in glass fibre, drilled and tinned. Radio Control System June to Aug. 76. Complete set of 8 boards 65.30 p.
Digital Frequency Meter May to June 76. Complete set of 4 boards $\mathbf{2 4} \cdot 20 \mathrm{p}$. C.W.O. please. PROTO DESIGM, 4 Hightilife Way, Wickford, Eısex SSII BLA

8UPERB INSTRUMENT CASE8 by Bazelli, manufactured from heavy duty pve faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range, competitive prices atart at a low 75 p . Examples: width, depth, height, $8 \mathrm{in} . \times$ $6 \mathrm{in} \times 3 \mathrm{in}, 21.55 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 3 \mathrm{in}, 22.20 ; 10 \mathrm{in} \times$ $8 \ln \times 31 \mathrm{in}, \quad 52.75 ; 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad 23.60$; $8 \mathrm{in} \times 4 \mathrm{in} \times 4 \mathrm{in}, 21.80 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}, 22.70 ;$ $12 \mathrm{in} \times 8 \mathrm{in} \times 4 \mathrm{in}, 83.60 ; 7 \mathrm{in} \times 7 \mathrm{in} \times 5 \mathrm{in}, 82.65$; $8 \mathrm{in} \times 10 \mathrm{in} \times 6 \mathrm{in}, £ 3.60 ; 12 \mathrm{in} \times 8 \mathrm{in} \times 7 \mathrm{in}, 84$; $12 \mathrm{in} \times 12 \mathrm{In} \times 7 \mathrm{in}$, 84.40 . Plus over 400 model ' to choose from. Prompt despatch. Free literature (atamp would be appreciated): BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

TRANSMIT!

* Unique TRANSMITTER RECEIVER Kit. No licence examinations or tests required to operate this transistorised equipment. Easy to build. Get trans
mitting. Send $\mathbb{C 7} .95$ plus 20 p P. \& P .
*. Psychedelic MINI-STROBE Kit. Tak a poeket-sized lightning storm, to Disco's and parties. 'Brain-freeze' 'em with vari-speed stop-motion flashes.
Includes super case too. Send $\mathbf{E 3 . 5 0}$ Includes super case too. Send $\mathbf{6 3 . 5 0}$ plus 20p P. \& P.
(All prices include V.A.T.)
Send remittance to:
BOFFIN PROJECTS
4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY (Mail order U.K. only)
Or for more details, send 20 p for lists

QUALITY ASSORTED nuts, screws, washers. Brass and steel. Various sizes. Approx. $60 z$ 65p inclusive: BRITTAIN, The Bungalow, Buckhurst Lanc, Sunninghili, Berks. SL5 7QB'

RADIO-CONTROL JOYSTICKS

XTALS-SERVO MECHANICS-TXCRX CASES-MINIATURE PLUGS/SOCKETS, ETC. S.A.E. OR PHONE EVENINGS FOR DETAILS

MODELGEAR, 58 Lowther Grove
Garforth, Leeds L825 IEW
Tel. 097-38 4355 evenings

COLCHESTER'S COMPONENT BHOP open Sunday-Friday, 12-6 p.m. J. K. ELECTRONICS, 11 Ḿrersea Road. Tel. 64433.

LOW COST - HIGH EFFCCEEECY

RANGE: 10 Hz to 100 kHz . OUTPUT: IV. sine/sq. DISTORTION: less than 0.02%. 9 V battery. Also available in Kit form at El4. Add 8\% VAT. P. \& P. and ins. 75 p .
Leaflet available, also F.M. Signal Generator, Millivoltmeter, freq. meter. THD analyser,

P.S. Units.

TELERADIO ELECTRONICS
325 Fore Street, London, N9 OPE Tel. 01-807 3719

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.
PHOTOTECH (EUROPE)
$\begin{gathered}\text { New Optoolectronic Detectors } \\ \text { Type 1: Photodiode, } 2 \text { pin Configuration: Photo- }\end{gathered}$
Type 1: Photodiode, 2 pin Configuration: P
Tensitive area $0.85 \times$ 10-2 square inches.
20 V -30V supply. Switching threshold set by
external R-C.
Type 3: Photoswitch with automatic threshold
$\begin{aligned} & \text { Type }: \text { Photoswitch with automatic threshold } \\ & \text { adjustment. } 6 \text { pin Configuration } 20 \mathrm{~V}-30 \mathrm{~V}\end{aligned}$
supply.
LED: Gallium Arsenide Phosphide red emitting
diode.
Data and operating notes sent with each order.
$\begin{aligned} & \text { Type 1:75p each packaging and carriage) } \\ & \text { Type 2:c1:00 }\end{aligned}$
Type 1: 75p each Type 2: 61.00 each
LED: Type 3: 17 p . 1.50 each
$\begin{aligned} & \text { optoelectronic detector ordered. } \\ & \text { Please send } C \text {.W.O. or S.A.E. for data only to: }\end{aligned}$
Phototech (Europe), 23a Upper Elmera End
Road, Beckonham, Kent

PRINTED CIRCUIT BOARD8. Supplied complete, glass fibre with a soldering varnish finish. ($6 p$ per sq. in. P. \& P. 30p). R. DARLISON, I Valentine Drive, Oadby, Leicester. Tel. (0533) 716273.

> ZNIO4OE inc. data $\mathbf{8 7} \mathbf{7 0}$
> Unmarked reject of above $\mathbf{2 3 . 5 0}$ Counts/Displays/Resets O.K. 7489 Fully Funcrional 64 Bit Ram-Speed Failures 90 p . 2-Dual/Matched NPN Trans. 81 4-Tested Silicon Phorodiodes $£ 1$ All prices inc. (Mail Order Only)
> GJD ELECTRONIC8, 105 Harper Fold Road, Radcliffe, Manchester M26 ORQ

LOW CO8T I.C. MOUNTING for any size DIL package. 100 Soldercon sockets 65 p. 7- and 8 hole plastic supports 5p/pair. Quantity rates. S.A.E. detalls and sample. Trial pack 65 p . (P. \& P. 10p/order): PKG EEECTRONICS, Oak Lodge, Tansley, Derbyshire, DE4 5FE.

PUBLIC ADDRESS ENGINEERING!

Find out more, join the Association of Publis Address Engineers-Details from:
The Secretariat
APAE
47 Windsor Road
Slough, Berks.
RECHARGEABLE NICAD BATTERIE8, Pencell, AA 94 p ; Sub. "C" $81 \cdot 16$; "C" 81.92; "D" 82.59; PP3 84-48. Chargers: 84-48, 24-48, 24-98, 24.98, 23 .98 respectively. Others available. All prices include VAT. Add 10% P. \& P. 8.A.E. for price list plus 25p for Information booklet. SANDWELL PLANT LTD., 1 Denholm Road, Sutton Coldfield, West Mildiands. Tel. 021-354 9784.

G8CZW DIGITAL FREQUENCY METER

COMPLETE 50MHz KIT $£ 54$ Inc. VAT and POBt
ZN 1040 E Count/Display I.C.
Integrated Circuit Pack
Displays and Filter
Semiconductor and Diode Pack
Resistor and Capactlor Pack
Logic and Display P.C.B.'s
5 MHz Crystai
Transtormer $8-0-8 V(+60$ p P. \& P.)
I.C. Sockets Pack

Switches, Knob. BNC Sockets. etc.
Hardware and Wire Pack
Case-Two-tone PVC-faced steel punched
and lettered (+75 p P. \& P.)
Spare min. BNC Sockets (50 ohm
Spare min. BNC Plugs (50 ohm)
Complete kit of parts for Migh Impedance
Buffer (includes PCB)
High̆ Impedance Butter P.C.B. oniy
Complete kit for VHF pre-scaler (includes PCB
but less I.C.)
VHF Pre-acaler prinied circult board only
SP8631B 500 MHz Pre-scaler I.C
ZN1034E Precision Timer t.C.
ZN1034E Precision Timer t.C.
ZNA116E 3! digit digi-voltmeter I.C.
Digital Voltmeter P.C.B s and Circuits
NE592 Wideband video amplifier I.C.
L
8.90
8.25

All prices inc VAT at the atanderd rate. Proas 20p P. P. for packa. S.A.E. tor full Ilets.

(abc ELECTRONICS (OLDHAM) LTD.

83 Lees Road, Oldham OL4 1JW Tel. 061-624 8812

ELECTRONIC DIGITAL CLOCK with alarm and snooze features

SPECIAL OFFER £18.95

inc. VAT and P. \& P.

Features: 0.7 Inch High Digits Variable Intensity 24-hour Alarm 5-minute Repeating, Snooze Alarm Alarm Set Indlcator Snooze Indicator Pulsing Second Indicator Power Interrupt Indicator Alarm Cancel Features-TIIt Operation - Alarm Tone Output A.M.-P.M. Indicator

Size: $130 \mathrm{~mm} \times 90 \mathrm{~mm} \times 95 \mathrm{~mm}$. Welght: 100 z . Power supply: 230 V a.c. $\pm 10 \% 50 \mathrm{~Hz}$.
Manufactured to high stañdaros by a major American electronics corporation. this superbly styled solid-state timepiece is made available to all readers fully guaranteed.
Free trial in your home-Try out the clock in your home. If digltal lime is not for you return it in original condition within 10 days and we'll relund your money without question.

TIME MICROELECTRONICS
 TMP.O. Box 29, Brighton Hill Parade,
 Basingstoke, Hants RG22 11EH.

Please send \square electronic clocks as illustrated. I enclose cheque \square postal order \square money order \square for $£ 18.95$ which includes P. \& P

Name
Address

Signature

ELECTRDTIVKIT

Bulld, Dismantle and Rebuild Over 100 Different Projects and Design New Clicults too

Radio Receivers and Transminters. Telephone Amplifiers, Tlme Buzzers, Bettery Checkers, Computer Circuits, Amplifiers, Directlonal Transmitters. Metal Detectors, Continuity Testers. Electronics Birds. Guns. Metronomes. Sirens. Roulette, etc. All In one kith

- ducatlonai kits of exceptional qualliy" (Audio mag.
worthwhile , . . good value for money" (Everyday Electronicsmag.)

Educational manuale in cluded with each kit No previous experience re quired. Suitable for begin ners and experts too

100 project kit
45 project kit
25 project kit
Add-on kits avallable too)
Prices Include menuals, betteries, VAT and P. \& P

Cheque/P.O. (or 11 p for illustrated Itrerature) to Dept. PE
P.E. JOANNA Electronic

ALL PARTS CAN BE SUPPLIED

Keyboard, Keyswitch, P.C.B.s, Hardware, Semiconductors Resistors, Capacitors, Cabinets Complete kits or easy stages

Send S.A.E. for details

$$
\begin{aligned}
& \text { Clef Products } \\
& \text { 31 Mounttield Road, Bramhall } \\
& \text { Stockport, Cheshire SK7 1LY }
\end{aligned}
$$

INSTANT ATMOSPHERE
SOUND TO LIGHT WITH A.G.C. Adds visual impact to sound and beat-Essential for mobile discos-Ohtperforms all manual control unitsFeatures advanced electronics which automatically sel each channel for optimum performance-infinite combinations of any three coloured lights-Creates the perfect atmosphere for dancing-Functions 200w without adjustment-Provides instant atmosphere for any eccasion.

* AGC range 2 V to 40 V input (RMS). Suits 4.8 or 16 ohm systems
- Input impedance greater than 1.000 ohms. Completely isolated for absolute safety.
- Full wave operation. Ensures dazaling brilliance. Total lamp rating 3000 W . Allows for furure expansion.
* Two through-connected input jacks. Ensures tidy
wiring to speakers via unit.
- lluminated switch makes controller visible in the
Size: 8 tin $\times 4+\mathrm{in} \times 2$ tin
Plus non
$2.5 \times 108 \times 58 \mathrm{~mm}$
stip feet

UNBEATABLE VALUE
 £32.95

inc. VAT. P. \& P.. 3 plugs plus generous mains lead.
Sturdy. reliable. attractively finished and easy to use. Just plug in three sels of lights. Many practical design eatures. Full details S.A.E. Money back quarantee Send today to sole distributors:

A1 FACTORS

Dept. Ea3. 245 North Sherwood Street, Nottingham. NG1 4EQ. Demonstration to caliers. Tel. Nottingham 54694 or 412255.
PRICES INCLUSIVE OF VAT

ONLY

BY TEXAS			
7400	17p	7489	$291 p$
7401	18p	7490	40p
7402	18p	7491	$81 p$
7403	18p	7492	45p
7404	239	7493	40 p
7405	25p	7494	86p
7406	45p	7495	$75 p$
7407	39 p	7496	$84 p$
7408	22p	7497	205p
7409	$22 p$	74100	130p
7410	1tp	74107	35 p
7411	28p	74110	${ }^{64}$
7412	2tp	74118	90p
7413	36p	74127	32 p
7414	80p	74122	53p
7416	35 p	74123	13p
7417	36p	74126.	78p
7420	18p	74128	90p
7422	20p	74132	78 p
7423	36 p	74136	$81 p$
7425	33 p	74141	80 p
7427	40p	74145	90\%
7430	18p	74148	173p
7432	30 p	74150	135p
7437	$32 p$	74151	77
7440	18p	74153	92
7441	80p	74154	164p
7442	75p	74155	12
7443	130p	74156	$8{ }^{8}$
7444	130p	74160	104p
7445	100p	74161	107p
7446	108p	74162	107p
7447	81p	74163	107p
7448	85p	74164	130p
7450	18p	74166	1330p
7454	18p	74174	130P
7453	18p	74175	92p
7454	18p	74176	130p
7460	20p	74177	130p
7470	32p	74180	114p
7472	30p	74181	322 p
7473	329	74182	89p
7474	38 p	74185	160p
7475	48 p	74191	180p
7476	36p	74192	130p
7480	549	74193	130p
7482	85p	74194	130p
7483	95p	74195	104p
7484	103p	74196	130p
7485	130p	74197	130p
7486	30p	74198	214 p

OP AMPS		
301A	Ext. Comp. 8 pin DIL	40p
709	Ext. Comp. 814 pin DIL	34 p
710	Diff. Comp. 14 pin DIL	540
741	int. Comp. 8/4 pin DIL	25 p
747	Dual 74114 pin DIL	$67 p$
748	Ext. Comp. 8 pin DIL	30
CA3100	Op. Amp. TOS	160p
CA3130S	CMOS Op. Amp. 8 pin DIL	108p
LM3900	Quad Op. Amp. 14 pin DIL	$61 p$
MC1458	Dual Op. Amp. 8 pin DIL	75p
NE536T	FET Op. Amp. TO99	300p
LINEAR ICa		
CA3028	Diff. Cascade Amp.	112p
CA3046	5 Transistor Array	$75 p$
CA3048	Quad Low Nolse Amps.	250 p
Ca3089E	FM IF System 16 DIL	2500
CA3090AO	FM Stereo Decoder	450p
ICL8038CC	vco Funct. Gen.	370p
LM380	2W Audio Amp.	115p
LM381	Stereo Pre Amp.	175p.
M252	Mhythm Generator	900p
MC1310P	FM Stereo Dec.	175p
MC1495L	Multiplier	$360 p$
MC1496L	Bal Mod/Demod.	115p
MFC4000B	tW Audlo Amp.	$75 p$
MFC6040	Electronic Attenustor	100p
NE555V	Tlimer 8 pla DIL	40p
NE556	Dual 55514 pin DIL	90p
NE561B	PLL with AM Demod.	300p
NE562B	PLL with VCO	300 p
NE565	PLL	216p
NE566V	PLL Function Gen.	200p
NE567V	PLL Tone Decoder	200p
2567	Dual 567	400p
SN72733	Video Amp.	150p
SN76013N	Pwr. Audio Amp + HS	175p
SN76023N	Pwr. Audio Amp + HS	175p
TBA641B	Audio Amp	300 p
TBA800	5W Audio Amp.	112p
TBA810	TW Audio Amp.	125p
TBA820	2W Audio Amp.	100p
TDA2020	20W Audio Amp.	$375 p$
ZN414	trf Radio Receiver	140p
MM5314	Clock IC 24 pin DIL	460 p

TRIACS

${ }^{\text {ACt }} 18 / 7$	18 p
AC128	15p
AC141/2	20p
AC176	18p
AC187/8	18 p
AD149	46p
AD161/2	39p
AF114/5	18p
AF116/7	18 p
AF139	40 p
AF239	44p
BC107/8	10p
BC109C	11p
BC147/8	9 p
BC149	10p
BC157	11p
8C158/9	13p
BC169C	15p
8С177	20p
BC178	17p
BC179	20p
BC182/3	12p
BC184	14p
BC187	32p
BC212	14 p
BC213	120
BC214	17p
8CY70	20p
BCY71	24p
BD131	39p
BD132	43p
8 O 135	50p
80139	72p
BD140	79p
BF115	24 p
BF167	${ }^{257}$
BF173	27p
BF194	12 p
BF195	10p
BF196	14p
BF197	140
BF200	36 p
BF257/8	34 p
BFR39/40	37p
BFR79/80	37p
BFX84	30 p
BFX85/6	30 p
BFX87	30 p
BFX88	30 p
BFY50	13p

TRANSISTORS

$\begin{array}{llll}\text { BFY51 } & \text { 16p } & \text { 2N2926RB } \\ \text { BFY52 } & \text { 18p } & \text { 2N29260 }\end{array}$ | BFY51 | 16p | 2N2926RB |
| :--- | :--- | :--- |
| BFY52 | 18p | 2N29260 |
| BRY39 | 45p | 2N2926YG |
| BSX19/20 | 20p | 2N3053 |

S4 SANDHURST ROAR

Orchard Electronics ...	
Phonosonics 700,701	
Phototech (Europe) 766	
Precision Petite 726	
Print-A-Kit . 692	
Pronto Electronics 748	
Proto Design ... 768Pulse Electronics	
Radio Components Specialists 697	
Radio Exchangecover if.	
Ramar Constructor Services 765	
R.S.T. Valve Mail Order Co. 747	
R.T. Services ..	
Salop Electronics 765	
Saxon Entertainments Ltd. 763	
Sintel ... 692	
Tamba ... 756	
Tandy .. 692	
Technomatic Lid. 768	
Teleradio Electronics 766	
Time Micro Electronics 767	
T.U.A.C. ... 698, 699	
TV Technic ... 765	
Wentworth Radio 761	
West London Direct Supplies 696	
Wilmslow Audio 751	
W.K.F. Electronics 690	

SUPERSOUND 13 HI-FI MONO AMPLIFIER

 a superb solid state audioamplifier complifer. Brand new
conts throughout components throughout.
5 Silicon transistors plus 2 power out-put Fuansistors in push-pull Full wave rectifica-
tion. Output tion. Output approx
13 watts r.m.s. into 8 ohms. Frequency
response 12Hz. 30KBz $\pm 3 \mathrm{db}$. Fully Integrated pre-amplifier stage with controls. Separate Volume, Bass boost and Input for ceranic or crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready built and tested, with knobs, escutcheon panel, input and autput AO $200 / 250 \mathrm{~V}$. PRICE 213.75 . P. \& P. $£ 1 \cdot 00$.
 A.C. mains
 heavy duty
fully
fisola ted mains
trantorm er with full wave rectification
giving ade giving ade-
Valve line up:-2 \times ECL86 Triode Pentodes $1 \times$ EZ80 as rectifier. Two dual potentiometers are provided for bass and treble control, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and rate 'Band chance' control fitted at the by means of a sepaInput sensitivit is
 speakers. Full negative feedback in a careno), into 3 ohm circult, allows high volume levels to be used with calculated distortion. Supplied complete with knobs, chassig size $11^{\prime \prime} w \times 4^{\prime \prime}$ d. Overall height including valves $5^{\prime \prime}$. Ready bullt and tested to a high standard. $£ 12$-40. P. \& P. $£ 1 \cdot 30$.

HARVERSONIC STEREO 44
 A solid state
stereoamplifler chassis, with an output of 3.4 watts perchannel into 8 ohm
speakers. Usspeakers. Us-
ing the latest ing the latest
logy integrated circuit amplifiers with built in short term thermal overload protection. All components including rectifler smoothing capacitor, fuse, tone control, volume controls, 2 pin din speaker sockets and 5 pin din tape rec. /play socket are mounted on the printed circuit panel, size approx. $91^{\prime \prime} \times 29^{\prime \prime} \times 1^{\prime \prime}$ max. depth, Supplied aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically), at only 87.50 pe 50 p P. \& P. Mains transformer with an output of 17 V a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $\mathbf{~} \mathbf{1} 50$ plus 40 p P. \& P. if required. Full connection details supplied, BRAND NEW MULTIFRATIO MALIS TRASSFORDERRS, Giving 13 alternatives. Primary : $0-210-240 \mathrm{v}$ Secondary combinations 0-5-10-15-20-25-30-35-40-60v half wave at 1 amp. or $10-0-10,20-0-20,30-0-30 \mathrm{v}$. at 2 amps full wave. Size 3in. long $\times 3 \frac{1}{2}$ in. wide $\times 3$ in. deep. Price 82-90. P. \& P. 90p.
Pri. 200/240v. Sec. $9-0-9$. For power supplies.
Pri. 200/240v. Sec. 9-0-9. at 500 mA . 81.50 . P. \& P. 60 p . Pri. 200/240v. Sec. 12-0-12 at 1 amp. 21.65. P. \& P. 60p.
Pri. 200/240v. Sec. $10-0-10$ at 2 amp Pri. 200/240v. Sec. 23v. at 1.5 amp , 6 v . at $\cdot 6 \mathrm{amp}$. 8 v . at Pri. 200/240v. Sec. 23v. at $1.5 \mathrm{amp}, 6 \mathrm{v}$. at $6 \mathrm{amp}, 8 \mathrm{v}$. at
50 mA . $28.00+65 \mathrm{P}$. \& P .

GENERAL PURPOSE HIGH STABMITY
For P.U. Tape, Mike, Guitar, etc. and suit
For P.U. Tape, Mike, Guitar, etc. and suitable for use with vaive or transistor equipment. $9-18 \mathrm{v}$.
battery or from $\mathrm{H} . \mathrm{T}$ line $200 / 300 \mathrm{y}$. Frequency battery or from H.T line 200/300v. Frequency
response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 26 dB . Solid encapsulation size $1 \underline{g}^{*} \times 1 \frac{1}{n}^{n} \times z^{\prime \prime}$. Brand new complete
with instructions. Price $\$ 1^{\prime} 60$ P. \& P. 1op.
STEREO-DECODER SIZE 2"
Ready built. Pre-aligned and tested.
Sens. $20-560 \mathrm{mV}$ for $9-16 \mathrm{~V}$ neg.
earth operation. Can be fitted to almost any FM VHF radio or tuner Stereo beacon light can be fitted if required. Full details and instructions (inclusive of hintsand tips) supplied, $25 \cdot 62$ plus 20p P. \& P Stereo beacon light if required 40 p

QUALFIY RECORD PLAYER AMPLIWIER MK. II A top quality record player amplifier employing heavy and rectifier. Separate Bass, Treble and ${ }^{\text {V }}$, ECC83, EL84, Complete with output transformer matched for 3 ohm speaker. Size 7 in wide $\times 3$ 3in deep $\times 6$ in high. Ready
built and tested. built and tested. PRICE $\mathbf{8 6 - 2 0}$. P. \& P. 90p. ALSO AVAILABLE mounted on board with output
transformer and speaker. PRICE $27-30$. P. \& P. £1-00.

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER

Designed and atyled to match our $10+10$ amplifier but will suit any other standard stereo amplifier. The design incorporates the very latest circuitry techniques with high-grain, low noise IF stages. Automatic frequency control to "lock on" atation and separation. L.E.D. for ztereo beacon indicator. Nominal output of tuner 100 mV . Approximate size 12 in wide \times sin deep by 2 zin high. Supplied ready huilt, fully tested and fully guaranteed. AC mains $200 / 240 \mathrm{~V}$ (not available in kit form).
Special Offer $\mathbf{£ 2 2} \mathbf{5 0}+\mathbf{E 1} \cdot \mathbf{4 0} \mathbf{P}$. $\mathbf{\&}$.

LATEST ACOS GP91/1SC mono compatible cartridge with t/o stylus for LP/EP/78. Universal mounting bracket. CERAMY. \& STEREO CARTRIDGE. Universal mounting brackets and turnover stylus. 70 mV per channel output. SONOTONE GTAFHC COMPATIBLE STEREQ CABTRIDGE T/O atylus Diamond Stereo LP and Sapphire 78 ONLY $22-36$. P. \& P. 10p. Also available fitted with twin Llamond T/O stylus for Stereo LP. e2.86, P. \& P. 18p. CARTRIDGE for EP/LP/Stereo 78. \&1-80. P. \& P. 18p. CARTRIDGE for EP/LP/Stereo 78. \&1-80. P. \& P. 18p.
LATEST TO MONO OOMPATLBLE CARTRIDGE for playing EP/LP/78 mono or stereo records on mono equipment. Only $\& 1-58$. P. \& P. 18 p .

SPECIAL OFFERS

Multard LP1109 RF-IF Double Tuned Amplifier Module for nominal 470 kHz . Size approx. $2 \mathrm{z}^{*} \times 1 \frac{1}{* *}^{7} \times \mathfrak{l}^{\prime \prime}$ and connection detailé supplied. $32 \cdot 25+$ P. \& P. 12p.

Pye VHF/FM Tuner Head covering $\quad 88.108 \mathrm{M} / \mathrm{Hz}$.
$10.7 \mathrm{M} / \mathrm{Hz}$ IF output $7-8 \mathrm{~V}+$ $10 \cdot 7 \mathrm{M} / \mathrm{Hz}$ IF output $7-8 \mathrm{~V}+$
earth. Supplied pre-aligned, with full circuit diagram. Connection details supplied. Beautifully made with pre-
cision-geared FM. Gang and $323 \mathrm{Pf}+323 \mathrm{Pf}$ AM Tuning Gang only 28-15+P. \& P.35p

PRECISION MADE

Push Button Switch bank. 8 Buttons giving 16 S/P C/O interlocked switches plus i Cancel Button Plus $3 \mathrm{~d} / \mathrm{p}$ c/o. Overall size $\overline{5}^{\prime \prime} \times \mathbf{2 1}^{\prime \prime} \times \mathbf{1}^{\prime \prime}$. Supplied complete with
chrome finished awitch bup

HI-FI LOUDSPEAKER SYSTEM MkII

Beautifully made simulated teak finish enclosure now with most attractive slatted front. Size $161^{\prime \prime}$ high \times $10{ }^{\prime \prime}$ wide $\times 9^{\prime \prime}$ deep (approx.). Fitted with E.M.I. Ceramic Magnet $13^{\prime \prime} \times 8^{\circ}$ bass unit, H.F. tweeter
unit and crossover. AVAILABLE IN NOMINAL unit and crossover. AVAILABLE IN NOMINAL
$4 \mathrm{ohm}, 8 \mathrm{ohm}$ or 16 ohm impedance (atate which). OURPRICEEI2.00 each. Carr. £I.90 Cabinet A vailable Separately 87-25. Carr. $£ 1.40$. Also available in 8 ohms with EMI $13^{\circ \prime} \times 8^{\prime \prime}$ bass
speaker with parasitic tweeter $£ 10.25$. Carr $£ 1.90$ speaker with parasitic tweeter $£ 10-25$, Carr. $£ 1.90$

LOUDSPEAKER BARGADNS

$5 \mathrm{in} .3 \mathrm{ohm} £ 1 \cdot 45, \mathrm{P}$. \& P. 35 p . $7 \times 4 \mathrm{in} .3 \mathrm{ohm} 21 \cdot 69, \mathrm{P} . \& \mathrm{P}$ 48 p . $10 \times 6 \mathrm{in}$. 3 or $15 \mathrm{ohm} \mathrm{f2} 50$, P. \& P. 75p. E.M.I $8 \times$ 5in. 3 ohm with high flux magnet 82.06, P. \& P. 50 p E.M.1.tweeter. Approx. $3 \frac{2}{2}^{\circ}$. Available 3 or 8 or 10 ohms

VYNAIR \& REXINE SPEAKERS \& CABNTET PABRICS app. 54 in. wide. Our price $\$ 1-50$ yd, iength. P. \& P. 35 p per yd. (min. 1 yd.). S.A.E. for samples.
"PPOLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYAAMIC SPEAKER
Size $111^{\frac{3}{3} \times} \times 14 \frac{11}{16^{\prime \prime}} \times 1 \frac{7^{\prime \prime}}{6}$ deep. Weight 190z. Power
handling 20 W . handling 20 W r.m.s. (40W peak). Impedance 8 ohm only Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, details. Only $\mathbf{£ 7 . 2 5}$ each. P. \& P. 75p for one, 90 p for two.

Now also available $8^{* *} 8 \mathrm{ohm} .10$ watts r.m.s. 20 watt peal

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

A really first-ciass Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including silicon Transistors in the first five stages on each channel resulting in even lower noisc Bass, whinproved sensitivity. Integrated pre-amp wis rith modify to suit magnetic cartridge-instructions included Output stage forany speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metal work high quality ready drilled printed circuit board with omponent identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, bolts-no extras to buy. Simple step by step instructions enable any constructor to build an to be proud of. Brief specificat quency; response $\pm 3 \mathrm{~dB}$ 1 $2-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into $1 \mathrm{M} \Omega$. Full power bandwidth: +3 dB $2-15,000 \Pi 2$. Bass, boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16 dB . Negative feedback 18 dB ove main amp. Power requirements 35 v , at 1.0 amp
Overall Size $12^{\prime \prime} w . \times 8^{\prime \prime}$ d. $\times 2 \frac{3}{2}^{\prime \prime} \mathrm{h}$.
Fully detailed 7 page construction manual and parts AMPLIFIER KIT $\& 13.50$ P. \& P. G5p
 POWER PACK KIT CABINET $\cdots \quad \cdots 22 \cdot 50$ if all 3 units ordered at one time plus $f 1.00$ P. \& P.

Full after sales servic
Also available ready built and tested $£ 29 \cdot 25$. P. \& P. $£ 1 \cdot 00$.

AMPLIFIER HAB4 MK II. Designed for Hi-Fi reproduc tion of records. A.C. Mains operation. Ready built on plated heavy gauge metal
chassis, size $7 \frac{1}{2}{ }^{\prime \prime}$ w. $\times 4^{\prime \prime}$ d. \times
 44 h, Incorporates
EL84, EZ 80
valves. Heavy EL84, EZ80 valves. Heavy
duty, double wound mains transformer and outputtransontrol and now with improved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output $4 \frac{1}{2}$ watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, val
wired and teated for only 87.80 . P. \& P. £1-00.
Wired and tested for only e7 80 . P, \& P. E1 '00.
HBL "FOUR" AMPLIFIER KIT. Similar in appearance o HA34 above but employs entirely different and advanced circu
P. \& P. $\$ 1 \cdot 00$.

10/14 WATT EII-FI A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. super reproduction of both music and speech, with negligible hum. Separate
inputs for mike and inputs for mike and and announcements
 o follow each other
Fully shrouded section wound output transformer to match 3-15 Ω speaker and 2 independent volume controls, and separate base and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, RF86 and EZ80 rectifier. Simple instruction booklet $20 \bar{p} \times$ SAE (Free with parts). All parts sold separately.
ONLY $£ 11-25$. P. \& P. $£ 1-3 \bar{y}$. Also available ready built ONLY \&11-25. P. \& P. $£ 1 \cdot 3 \breve{5}$. Als
and tested $\mathbf{8 1 5 \cdot 2 0}$. P. \& P. $21 \cdot 35$.

SPECIAL OFFER

Limited number of the latest BSR Cl 41 R1 Auto/Manual changer de-luxe. Lightweight tubular arm cue.ing lever bias
Also similar but without cue-ing lever or bias compensator
only $£ 11.00+£ 1.40 \mathrm{P}$. P . only $811 \cdot 00+21.40 \mathrm{P}$. \& P.
Latest model Garrard 6300 Auto/Manual changer de luxe unit fitted with cueing lever, bias compensator, counterbalanced low resonance arm. Also Acos 104 diamond ceramic stereo cartridge, only $£ 14 \cdot 50+£ 1 \cdot 50 \mathrm{P}$. \& \mathbf{P}.

OUR PRICES INCLUDE VAT AT CURRENT RATES

Open 9.30-5.30 Monday to
Friday. 9.30-5 Saturday Closed Wednesday.
Prices and specifications correct ot time of press. Subject to alteration without notice

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.) I70 HIGH ST., MERTON, LONDON, S.W.I9 Tel. : OI-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE note: P. \& P. Charges QUOTED APPLY TO D.K. ORLY. PUOPE ON OVERSEAS ORDERS

Published approximately on the 15th of each month by IPC Magazines Ltd., Feetway House, Farringon Street, London EC4. Printed in England by Chapel River Press, Andover, Hants. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia) Lid.: South Africa-Central News Agency Ltd.
Subscriptions not available at home or overseas.
International Giro facilities Account No. 5122007 . Please state reason for payment, "message to payee"
Practical Electronics is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise
disposed of by way of Trade at more than the recommended selling price shown disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to V.A.T., and that it shall not be lent, resold or hired out or otherwise disposed of in a mutiated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary or pictorial

We stock all the parts for this brilliantly designad synthesiser, including all the PCB's, metalwork and a drilled and printed front panal, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is tachnically superior to most of todays models. Complete construction details in our booklet now available price $£ 1.50$, or send SAE for specification.

A really superior high quality stereo graphic equalizer featuring nine octaves per channel. We stock all the parts (except wooawork) Including the metalwork dililed and printed. 15 p brings you a reprint of the article.
 electronic clock madule as Illustrated. Data sheet supplied.
Simple to connect to alarm and your battery/matins radio. Smart case avallable.
Data sheet available separately. Please send SAE.
*Bright 4 Digit 0.5" Display *Sleep Timar

- Bright 4 Oigit $0.5^{\prime \prime}$ Display
* Flashing Colon ($1 \mathrm{H}_{2}$)
- Switch for Oisplay Seconds
- Alarm Set Indicator
* P.M. Indicator
* Power Failure Indicator

SIMPLE ALARM KIT - £9.38 ALARM CLOCK KIT - $£ 10.99$ ALARM CLOCK \& RAOIO CONTROLLER KIT - £11.51. SMART PLASTIC CASE with fully punched chassis - $£ 2.49$. Please send SAE for our Clock date sheet.

Sleep Timar
Snooze Timar

- Time can be set accurately to within one second
* Leading Zero Blanking

Get our fabulous

 NEW 197T/78 CATALOGUE PUBLICATION DATE OCT.28. 1975 ON APPROVALAll new - Completely re-written * Thousands of new lines Lots of exciting now projects to build - PRICE 50p. SENO NO MONEY NOW. Overseas send 8 International reply coupons.

JOIN OUR MAILING LIST NOW!
Published every two months our Newsletter
gives full details of our letest guaranteed prices.

SAVE Ef's ON SPECIAL.
OFFERS!

- DETAILS OF NEWPROJECTS AND NEW LINES

MAPLIN ELECTRONIC SUPPLIES
All mail to: P.O. 8ox 3, Rayloigh, Essex SS6 8 LR,
Shop: 284 London Road, Wertelift-on-Sez, Essex
(Closed on Mondsy). Tel: Southend (0702) 44101
(Headphones and VU meters)
Saund operated light show plus many other advantages.

[^0]: (c) IPC Magazines Limited 1976. Copyright in all drawings, photographs and articles pubilished. in PRACTICAL ELECTRONICS is fulily protected, and reproduction or imitations in whole or part are expressly forbidden. Ali reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data diven to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: ssex 163 8RA. 01 -599

[^2]: Bank of 20 Neons, 80 p (20 p). 6 Figure Resettable Counter,
 with $20 \times \mathrm{LA} 2$
 Pot (80 y). Copper Clad Paz. Panels $51 \times$ caps, 21.75 $12 \times 12 \mathrm{in}, 80 \mathrm{p} ; 171 \times 9 \mathrm{in}, 90 \mathrm{p} ; 81 \times 91 \mathrm{nn}, 3$ for
 13×11 in, 21.50 ; double.sided plus) 10% All C.P. 74 Series ICs on Panels, 30 for $\mathrm{f1}$ (20), 100° Ass. S/Mica Capa, 70 p c.p. List 15 p . refund on purchase. 71 b Assorted Components, $29 \cdot 60 \mathrm{c} . \mathrm{p}$. J. W. B. RADIO

 2 Barnfield Crescent, Sale, Cheshire M33 2NL
 Mostage in brackets
 Mail order only

