PRACTICAL Ementance

ETROMASONTE electronics

Dept. 2, 56. Fortis Green Road, Muswell Hill, London, N10 3HN telephone: 01-883 3705

CONSTRUCTIONAL PROJECTS

TIME LAPSE PHOTOGRAPHY by D. J. Bonfield
Comprehensive aid to special effects photography 712
DIGITAL I.C. TESTER by W. H. Davies
A quick method of testing TTL logic 722
8-CHANNEL LOGIC TRACE MULTIPLIER by A. C. Ainslie
Construction and setting-up 731
P.E. JOANNA-5 by A. J. Boothman
This final article deals with cabinet, board interwiring, power amplifier and fault finding 738
GENERAL FEATURES
SEMICONDUCTOR UPDATE by D. W. Coles
A review of interesting devices 728
INGENUITY UNLIMITED
F.M. Centre Tuning Meter-Two Function R/C Coder 746
TRANSDUCERS-6 by P. R. Allcock
Concluding article covers opto-electronic devices 748
NEWS AND COMMENT
EDITORIAL—Private Innovators 714
SPACEWATCH by Frank W. Hyde
Mars-New Comet-Venus Probe-Biological Links With Space 721
MARKET PLACE
New products and a special offer to readers 737
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 745
PATENTS REVIEW
Thought provoking ideas on file at the British Patent Office 747
FREE ENTRY COMPETITION
HOW INVENTIVE ARE YOU?
Your chance to win a Big Cash Prize 718

Our October issue will be published on Friday, September 12, 1975
(for details of contents see page 720)

[^0]
ERSIN

ALU-SOL ior soldering aluminium

New Multicore Alu-sol flux-cored solder in 16 s.w.g. No extra flux needed. Plastic reel holds 36it. Supplied with full instructions. Also available in solder dispenser.

Fine gauge solder
for soldering small
components

Fine gauge solder for soldering small components 138 ft of 22 s.w.g. 142.0 metres of 0.71 mm) Ersin Multicore 5 core 0.71 mm Ersin Multicore 5 core
solder wound on a plastic reel. solder wound on a plastic reel.
Suitable for intricate work and small components. Size $10 £ 1.44$

For soldering fine joints

A \(\begin{aligned} \& Dispense
\& of Ersin
\& Mulicore\end{aligned}\) Multicore Solder make those small jobs easier 21 ft of 22 s.w.g. (6.4 metres of 0.71 mm) solder. specially suitable for soldering tine wires, small compone and for printed printed circuits

Size 15 40p
Or size 19A for kit wiring or Radio and T.V. repairs 7
(2.1 metres) of 18 s.w.g. (1.22 mm) Ersin Multicore Solder. Size 19A 34p

DIGITAL CLOCK KITS SENSATIONAL OFFER

FAST BUILDING, EASY TO FOLLOW INSTRUCTIONS A VERY COMPLETE KIT

CLOCK DATA SIZE $6 \frac{1}{4} \times 3 \times 2 \frac{1}{2}$ in MAINS OPERATION $50 / 60 \mathrm{~Hz}$ 12/24 HOUR
USUAL PRICE TO P.E. READERS NEW ALL WOOD CASE 70p EXTRA NO KNOWLEDGE OF ELECTRONICS REQUIRED LATEST 1975 DESIGN-ONLY £14
(including P. \& P., VAT, Circuit)
COMPARE OUR PRICES IF PURCHASED AS SINGLE ITEMS (INCLUDING VAT AND P. : P.)
1 MOS Clock Chip 12-24 hr option 1.95
$40.63^{\prime \prime}$ LED Displays (latest HI BRI Type)
1 Segment Driver Chip
1 Pack Resistors, Caps., Transistors, Switch, etc.
1 Double Sided Glass Fibre P.C. Board
1 Double-wound Mains Transformer
1 Circuit/Assembly Manual
1 Futuristically-styled Case (state colour)-Yellow, Orange, Red, Black, White, Mauve, Green, Blue
Pulse Electronics Ltd
Depl. PE2, 202 Shefford Road, Clifton, Beds. 0

held in stock. S.A.E. with all inquiries

40 YORK STREET, TWICKENHAM, MIDDX. Tel. 01-891 1692
Opening hours 9.30 a.m. to $6 \mathrm{p} . \mathrm{m}$. Monday to Saturday

SEXXOY
Money saving high
performance audio equipment DIRECT FROM OUR OWN FACTORIES

GUARANTEED TESTED HIGH PERFORMANCE
MODULES-now better value than ever
SA35 £6.60

Crree ${ }^{35 W}$ R MS 25 -50V
SA50 \quad \&8.50
50W RMS 25-65V
SA100 £ $\mathbf{2} .50 \begin{gathered}\text { Carriage } \\ \text { free }\end{gathered}$
100W RM5 45-70V
 in supply-extra heavy duty $£ 24.75$ Capr.
$\star 25 \mathrm{~Hz}-25 \mathrm{kHz}$
$\mathbf{+} 0.2 \%$ distortion $\star 0.2 \%$ distortion \star Noise-80dB * 500 mV into 20 K * 4-16 ohms. * Simple wiring * Shore and open circuit proof * Continuously rated * Top-grade Mk II STEREO DISCO MIXER $£ 29.50$ This well Carr. 30p This well eried Pre-A mp mixes two decks, handles any ceramic cartridge, and features mic over-ride plus mic and deck inputs. Ample headphone power is available for P.F.L. May be used for mono and is mains operated. Fitted with seurdy screening case. Controls: Mic vol, bass, treble. Left/Right fade, deck volume, bass, ereble, h/phone select, vol, Mains. Size
 $17 \operatorname{tin} \times 3$ in $\times 4$ in deep

DISCO MODULE EI2.50 ${ }^{\text {carr }}$ Sor

Thousands sold of this extremely popular mono Pre-Amp. A micinput may be fitred using the VA30 (see below). Low consumption from a 9 V batrery Features the same high standards of reproduction as the Stereo version Controls: H/phone select, vol, Left deck vol, Right deck vol, bass, treble master vol. Size $12 \boldsymbol{i}$ in $\times 3$ in $\times 2$ in deep

3-CHANNEL SOUND-LITE $£ 24 \cdot 75 \mathrm{c}_{50 \mathrm{r}}$

Only SAXON can supply such incredible value for money. This unir features 3 kW power handling, full-wave control, bass, middle, treble AND master controls. Twin loudspeaker jacks for "through"'connections. Uses coloured reflector lamps and panel mount next to either of the above. Size $12 \mathrm{in} \times 3 \mathrm{in} \times 2 \frac{1}{2}$ in deep. Professional standards at a price you can afford!
SINGLE CHANNEL High sensitiviry, compact, VERSION $£ 7.90$ handles 1 kW . Full wave

MULTI-PURPOSE MIXERS

M4HL

M6HL

$£ 25.00$ Carr. $\quad £ 35.00{ }^{\text {capr }}$ Corr

Featuring multiples of our VA 30 module, the M4HL and M6HL fulfil the requirements of all clubs, groups etc. Where a high quality mixer is required. Each plus volume, treble and bass controls. Input, impedances may, if required, be easily changed The M4HL has four channels, and one output, and the M6HL six channels (12 inputs) and a master control and two ourputs. Either unit may be used ree-standing or panel mounted. These mixers will feed all types of amplifier. Recommended for their versatility and high performance, and excellent value for money.
VA30 CHANNEL $\mathbf{\$ 3 . 9 0} \begin{aligned} & \text { Carr } \\ & \text { free }\end{aligned}$
This is the basic channel module in the above mixers and may also be used for extra inputs on either the nono or stereo mixers. Fitred with yolume, bass and ereble controls, requires just a jack and supply
$(9-100 \mathrm{~V})$

SAXON

CSE

100
COMPLETE
AMPLIFIER
E39.90
ALLERS AND MAIL ORDE:
ALLERE AND MAIL ORDER

NE W ! !

IOOW RMS SLIDER controls PLUS master slider. Wide range bass and treble controls-fantastic value. Ideal for complete Disco's, Groups, Clubs, etc:

SAXON ENTERTAINMENTS LIMITED
329-333 WHITEHORSE ROAD - CROYDON CRO 2HS
(Please quote magazine when ordering
SHOP HOURS: $9 \mathrm{a} . \mathrm{m} .5 \mathrm{pim}$. - LUNCH 12.301 .30 p.m. MALL ORDER DESK: $10 \mathrm{a} . \mathrm{m} .-3 \mathrm{p} . \mathrm{m}$. 24-HOUR ANSWER SERVICE TEL. 01-684 6385. TECHNICALENQUIRIES OJ-684 0098

SEND 15p FOR OUR NEW 26.PAGE MANUAL-full circuits and details. TERMS of business: c.w.o., c.o.d. or ACCESS (just send in card number). Send tor c.0.D.
with all enguiries. VAT at 8% must be added to all orders including carriage charges.

VISCDUNT IV STEREO SYSTEM
 \section*{}

System 1a. $£ 65.00$

The new $20+20$ watt Stereo Amplifier incorporating the latest silicon uansistor solid state circuitry. the RT-VC VISCOUNT IV gives you a powerful 20 watts RMS per channel into 8 ohms. Superb teakfinished cabinet, with anodised fascia to harmonise with any decor. Polished trim and knobs.
The VISCOUNT IV has a comprehensive ra.ige of controls - volume, bass, treble, balance, mono/stereo, mode selector, and scratch filter.
Front panel socket for stereo headphones. And a host of sockets at the rear - for left and right speakers, tape recorder, auxiliary, tuner. disc and microphone.
SPECIFICATION: 20 watts RMS per channel 40 walls peak. Suitable $8-15$ ohms speakers. Total distortion 10 watts better than 0.2%. Six switched inputs: 1. Magnetic P.U. - 3 millivolts 47 K ohms (R.IA.A): 2. Crystal/ceramic P.U. - 50 millivolts © 50 K ohms (R.I.A.A.): 3. 4. 6. Tape Tuner/Aux. - 140 millivalts 50 K ohms (Ilat frequèncy response): 5. Microphone - 3 millivolts a 50 K ohms (flat frequeney response).
CONTROLS: Push bution ON/OFF, stereo/mono, scratch tilter. 6 , position rotary selector. Individual rotary controls for treble, bass, balance and volume. Headphone socket, tape out socket. Aux. mains output. Frequency response: 25 Hz to 25 KHz full rated output. Signal to noise ratio: better than
 Power requirements: 200-250V A.C. mains © 60 watts. Approx. size: $154^{\prime \prime} \times 3^{\prime \prime} \times 10^{\prime \prime}$ MP60 type deck with magnetic cartridge, de luxe plinth and coves
Two Duo Type IIa matched speakers - tnclosure saze approx. $19 \frac{1}{2}^{\prime \prime} \times 1 \frac{3}{4}^{\prime \prime \prime} \times 73^{3 \prime \prime}$ in simulated teak. Drive unit $13^{\circ} \times 8^{\prime \prime}$ with $3^{\prime \prime}$ tweeter. 15 watts handling, 30 watts peak.
Complete System with thase speakers $\mathbf{£} 69.00+\mathbf{£ 6 . 5 0} \mathrm{p}$ \& p.

System 2. $£ 81.00$

Viscount IV amplifier (As System 1a) MP60 type deck (As System la) Two Duo Type III matched speakers - Enclosure size approx. $27^{\prime \prime} \times 13$ $x \quad 11 \frac{1}{y^{\prime \prime}}$. Finished in teak simulate Drive units $13^{\prime \prime} \times 8^{\prime}$ bass driver, and two $3^{\prime \prime}$ (approx.) iweeters. 20 watts RMS. 8 ohms frequency range 20 Hz to $18,000 \mathrm{~Hz}$.
Complete System with these
spaakers $£ 85.00+£ 7.60$ p \& p.

PRICES: SYSTEM TE
Viscount IV R103
amplifier $\quad \mathbf{~} 25.00+£ 1.90 \mathrm{p}$ \& 2 Duo Type Ha
speakers $\quad \mathbf{f} 30.00+f 650 \mathrm{p}$ \& MP60 type deck with Mag. cartridge
de luxe plinth
and cover
Total if purchased

Available complate for only: $£ 65.00$
$+66.50 \mathrm{p} \& \mathrm{p}$.
20×20 SYSTEM

PRICES: SYSTEM 2
Viscount IV R103
amplifier $£ 25.00+£ 1.90 \% \&$ 2 Due Type III speakers $£ 46.00+\mathbf{f 7} 7.50 \mathrm{ps}$ p MP60 ippe deck with Mag. cartridge de luxe plinth and cover Total it gurchased
separately: 99100 Availabie complate for only $\mathbf{£ 8 1 . 0 0}$

EMI SPEAKERS AT FANTASTIC REDUCTIONS

LE-4 SPEAKERS

Superb performance and beautifully finished in selected teak veneers. A professional standard four-way speaker system giving 25 watts RMS power handling. Bass unit is $14^{\prime \prime} \times 9^{\prime \prime}$ with $8^{\prime \prime} \times 5^{\prime \prime}$ unit for mid-range and twin $3^{\prime \prime}$ high frequency units to give monitor type quality and performance.
Specification - Size $33^{\prime \prime} \times 14^{\prime \prime} \times 16^{\prime \prime}$ approx. Impedance 8 ohms. Power handling 25W RMS. (Peak 50 watts.) Frequency range $35 \mathrm{~Hz}_{\mathbf{z}}-20 \mathrm{KHz}$.
Our Price $£ \mathbf{3 4 . 0 0}$ each
(nofmally $£ 66.00$) $+£ 5.80 \mathrm{p} \& \mathrm{p}$.
Scotland and the Orkneys
$P \& P$ Surcharge $£ 3.50$

EMI 350 KIT

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ approx. woofer with a $3^{\prime \prime}$ tweeter, crossover components and circuit diagram. Frequency response: 20 Hz to 20 KHz . Power handling 15 watts RMS into 8 ohms. (Peak 30 watts.)

Complete with crossover Components and circuit diagram

EASY TO BUILD SPEAKER KITS

These superb simulated teak-finished speakef kits have been specially designed by RT-VC for the cost-conscious hi-fi enthusiast who wants top quality speakers, but doesn't want to spend the earth. Built to EMI's exacting specification, these new RT-VC speaker kits (350 type kit) incorporate $13^{\prime \prime} \times 8^{\prime \prime}$ woofer. $3 \frac{1}{4}{ }^{\prime \prime}$ tweeter and matching crossover.
Easily put together with just a few basic tools. Specification (each speaker): Impedance 8 ohms Power handling 15 watts RMS (30 watts peak) Response $20-20,000 \mathrm{~Hz}$. Size $20^{\prime \prime} \times 11^{\prime \prime} \times 9 \frac{1}{2}^{\prime}$ approx. Comparable built units (EMI LE3) sold elsewhere for over $£ 45$ pair.

£22.00 pair complete

$+£ 5.20 \mathrm{p}$ \& p. Complete with crossover Components and circuit diagram

DECCA STEREO AMPLIFIER CHASSIS

Specification: $4+4$ watts into 8 ohms. Input Sensitivity 4 mV into 47 K (for magnetic cartridges). AC Mains only 240 V . Controls - volume, bass, treble, on/off, mono/stereo switch. Chassis size $11^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1}{4}$ approx:
£ $6.90+£ 1.20 p \& p$.

PUSH BUTTON CAR RADIO KIT- THE TOURIST TT*

NO SOLDERING REQUIRED

NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO
Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly. Fine tuning push button mechanism is fully built and tested to mate with printed circuit board TECHNICAL SPECIFICATIDN: (1) Output 4 watts RMS output. For 12 volt operation on negative or positive earth. (2) Integrated circuit output stage, pre-built three stage IF Madule.

Controls volume manual tuning and live push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands. Size chassis 7" wide 2" high
and $4 \frac{3}{4}$ " deep approx. $\left.\quad \mathbf{£} 9.50+f\right\} .05 p$ \& p. Speaker including bafile and fixing strip $£ 2.00$ $+45 p$ p \& p. Car Aerial Recommended - fully retractable $£ 1.60+40 p p$ \& p.
The Tourist I Kit For the experienced constructor. If you can solder on a printed circuit board you can build this model. Same technical specification as Tourist Π. Price $\mathbf{£ 8 . 2 0}+\mathrm{f} 1.05 \mathrm{p}$ \& p .

STERED] QUALITY SOUND FOR LESS THAN £24.00

Stereo 21, easy to assemble audio system kit. No soldering requited.
The unit is finished in white P.V.C. and the acrylic top presents an unusually interesting variation on the modern deck plinth.
Includes - BSR 3 speed deck. automatic. manual facilities together with stereo cartuidge.
Two speakers with cabinets
Amplifier module. Ready built with control panel, speaker leads and full, easy 10 follow assembly instructions.
Specifications - for the technically minded
$\ddagger n p u t$ sensitivity 600 mV . Aux. input sensitivity 120 mV . Power output 2.7 watts per channel, Output impedance $8-15$ ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs tor taping discs. Overall Dimensions. Speakers approx $15 \frac{1^{\prime \prime}}{} \times 8^{-} \times 4^{\text {n }}$. Complete deck and cover in closed position approx. $15 \frac{1^{\prime \prime}}{2} \times 12^{\prime \prime} \times 6^{\prime \prime}$
Complete only $£ 23.20+£ 3.00 \mathrm{p} \& \mathrm{p}$.
Extras if required. Optional Diamond Styli $\mathbf{f t} .6 \mathbf{0}$.
Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance $\mathbf{f 5 . 8 0}$.
"DISCO AMPLIFIER

Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Output 20 watts RMS into 8 ohms (suitable for 15 ohms)
inputs * 4 electrically mixed inputs. 3 individua mixing controls. "Separate bass and treble controls common to all 4 inputs. "Mixer employing FEET. (Field Effect Transistors). *Solid State circuitry. Attractive styling.
INPUT SENSITIVITIES - Input - 1). Crystal mic guitar or moving coil mic. 2 and 10 mV . (Selectar switch for desired sensitivity.) - Inputs - 2). 3), 4). Medium output equipment - ceramic cartridge. tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains. 240V operation. Size approx: $12 \frac{1}{2}^{\prime \prime} \times 6^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$
$\mathrm{f} 20.00+\mathrm{f} 1.35 \mathrm{p}$ \& p .

BUILD YOUR OWN * STEREO AMPLIFIER

For the man who wants to design his own stereo here's your chance to start, with Unisound - pre-amp, power amplifier and contral panel. No soldering - just simply screw together. 4 watts per channel into 8 ohms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum. 240 V . AC only.
Also available with 2 spaakers $\left(7^{\prime \prime} \times 4^{\prime \prime}\right) £ 10+£ 1.75 \mathrm{p} \& \mathrm{p} . \mathbf{£ 8} 85+£ 1.05 \mathrm{p} \& \mathrm{p}$.

PORTABLE DISCO CONSOLE*

INCORPORATES: Pre Amp with full mixing facilities, including switched input for mic with volume control, switched input for auxiliary with volume control, bass and treble controls, volume control and blend control for furntables. Two B.S.R. MP6O type single play professional series decks. fitted with crystal cartridges.

DO NDT SEND CARO
Just write your order giving
your credit card number

Mail orders to Acton. Terms C.W.O. All anquiries stampad addressed anvelope. Goods not despatchad outside U.K.
Leaflots available for all items listed thus* Sand stamped addrassad envelope. All items subject to availability. Prices corsect at 1 st July 1975 and subject to chenge without notice.
All prices Include V.A.T. af current rates.

TECHNICAL SPECIFICATION:
Pro-emp - Output - 200 mV Auxiliary inputs 200 mV and 750 mV into 1 meg. Mic input -6 mV into $100 \mathrm{~K} \quad 240$ volt operation. Turntables capacity - $7^{\circ} .10^{\circ}$ or 12. records. Aumble, wow and flutter Rumble Better than -35 dB . Wow Better than 0.2%. Flutter Better than 0.06% (Gaumont kalee meter)
Finish - Satin black mainplate with black turntable mat inlaid with brushed aluminium trim. Tonearm and contools in black and brushed aluminium.

Consolia size -
Unit Closed-17\}" $\times 13 子^{\prime \prime} \times 8$ za " (app.)
 This disco console is ideally matched for the Reliant IV and Disco 50 or any other quality amplifies
The unit is fit ished in black PVC with contrasting simulated teak edging. diamond spun control knobs with matching control panel.

Yours for only

f.49.00 + $\mathbf{f 6 . 5 0 p \& p . ~}$

21D HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON W2

Personal Shoppers EDGWARERD: 9 a.m. $-5.30 \mathrm{p} . \mathrm{m}$. Half day Thurs ACTON: 9.30a.m.-5p.m. Closed all day Wed.

Sinclair IC20

The watts...

The Sinclair IC2O is a revolutionary new 20 watts stereo amplifier kit

It incorporates state-of-theart integrated circuits - two monolithic silicon chips each containing the equivalent of over 20 transistors! These deliver 10 W per channel into 4Ω speakers.

And the IC20 has integral short-circuit protection and thermal cut-out - it's virtually indestructible. Use it for converting your mono record player to stereo... for upgrading your existing stereo \ldots or for improving your car radio/tape player.

Its cost? Only £ $7.95+$ VAT!

and the wherefores.

Get the full technical specifications

See what impartial hi-fi journals thought of its performance

And read up on the rest of the Sinclair hi-fi range.

It's all in the Sinclair hi-fi range fact-file.
Send for Sinclair's fact-file now!

See if the answer's here the information on the component you've been looking for.

Simply cut the coupon and
send it to the no-stamp-needed FREEPOST address below. We'll send you the Sinclair fact-file - giving you all you need to know about IC20, and the rest of the Sinclair hi-fi range

Plus information about a few extras you're sure to find rather interesting.

You've plenty to gain. so cut the coupon - now!
Sinclair Radionics Ltd. London Road, Stlves, Huritingdon, Cambs., PE174HJ Stlves (0480) 64646

P.E.
 ORION

Complete Kit of semiconductors $£ 10.95$ High quality printed circuit

THIS GLASS FIBRE P.C.B. IS ROLLER TINNED AND SCREEN PRINTED WITH COMPONENT LOCATIONS.

FERRANTI

semiconductors

BFS59	17p	27×304	24 p	ZTX503	21p	2S170	14 p
BFS60	18p	ZTX310	14p	ZTX504	25p	2S171	15 p
BFS61	19p	2TX311	15p	ZTX530	22p	2S172	22p
BFS96	18p	2TX312	17p	27×531	23p	2S174	26p
BFS97	19p	ZTX313	20p	2TX550	20p	2S176	33p
BFS98	20p	$2 T \times 314$	25p	ZTX551	21p	2S178	58 p
$2 \mathrm{~T} \times 107$	14p	ZTX320	20p	2N3055	88p	2S270	15p
ZTX108	12p	ZTX330	21p			ZS271	22p
ZTX 109	14p	ZTX331	23p	- 110		ZS272	25 p
ZT×212	19p	ZTX382	20p	2S120	17p	2S274	29p
ZTM213	18p	$2 \mathrm{~T} \times 383$	19p	-2S121	19p	ZS276	38 p
ZTX214	22p	2 TM 384	210	2S122	22p	ZS278	$6 . p$
2T×239	13p	$2 T \times 450$	20 p	2S123	29 p		
2TX300	15p	ZTX451	20 p	ZS124	33 p	* ZENERS * KSO30A to	
21×301	16p	ZTX500	$16 p$	2S140	30p		
2T×302	19p	2TX501	17 p	2\$141	46 p	KS180	${ }^{28} \mathrm{p}$
2TX303	21p	$2 \mathrm{~T} \times 502$	20p	ZS142	45p	B2V19	18p

PE TV SOUND TUNER

Glass fibre printed circuit is-25.
Complete kit of semiconductors $\mathbb{C} \cdot 40$.
Murata filters. SFE6.0MA 38p, CDA6 OMC 38p
MOTOROLA: BO699 £1-27, BD700 £1-41, MJE2955 £1.50, MJE3055 87p, MC1357PQ E1.60.
PE JOANNA: 77 ZTX108 £6.25, 183 ZS170 £18 - 30, ZN7404 40p, ZN7472 50p, ZN7473 12p each
POSTAGE AND PACKING $10 p$ per order. Orders over $£ 3$ post free.
Alt devices top grade, brand new. and to full manufacturers spec. We do not sell seconds or rejects. Send S.A.E. for our data sheet and price list. We can supply any Ferranti device to order. S A.E. Ior quotation

DAVIAN ELECTRONICS

PO EOX 38, OLDHAM, LANCE, OL2 8XJ

B. BAMBER ELECTRONICS

5 StATION ROAD, LITTLEPORT, CAMBS., CBG $10 E$
Telephone: ELY (0353) 860185 (2. lines) Tuesday-Saturday

TV plugs, metal type, 6 for 500	S TRANSFORMERS
TV sockets. metal type. 5 for 50 p.	240 V input. voltages quoted
TV line connectors (back-to-back so 5 for 50 p .	RMS. (Please quate type no only ordering).
3 tran	TYPE 10/2. 10-0-10V at $2 \mathrm{~A}_{1} £ 1.50$
xed electrolytics, large bag	TYPE 18/2. 18V at 2 A
PC board withdrawal handles. mixe 8 for 50 D .	TYPE 16/6, 16V at $6 \mathrm{~A}+45 \mathrm{~V}$ at 100 mA . E4. TYPE $28.4,28 \mathrm{~V}$ at $4 \mathrm{~A}+125 \mathrm{~V}$ t 500 mA . 84 .
Solder, 20SWG. 60/40 alloy, approx. 9yds 25p.	YPE 63/1. $6 \cdot 3 \mathrm{~V}$ at 1A. 35p onch or 2 for 51.50.
OC200 transis	TYPE 129, 400 V at $20 \mathrm{~mA}+200 \mathrm{~V}$ - $10 \mathrm{~mA}+$
erspex coll formers. 1 ifin 25p.	$2 \mathrm{~m} /$
Turret	6.3V at 400 mA . 11.25.
Rotary switches, min. 4 pole 2 50p.	TYPE 70462. 250-0-250V 2A. $81 \cdot 75$.
Telaph	RADIOSPAAES 500w AUTO TRANS-
Reeds (1or reed relays) single-pole 5 for 30 p .	FORMERS, input and output, step-up
Mullard tubuiar ceramic trimmers, 1-18, F 6 for 50p (as leatured in Rad Comm Jan. p. 25).	or step-down facility. ex-new equip 86. CURLY LEADS, 4 core telephone type. 2 tor 20p.
1.C.s. some coded. 14DIL type. untest mixed. 20 tor 25p. IF cans fin square. suitable for rewind 6 for 30p.	TRANSISTOA HEATSINKS, to take $2 \times$ TO18 transistors, screw in cimmps. block size $1 \times \$ \mathrm{fin}$. with holes for mounting, 3 for 50p.
${ }^{24} \mathrm{~V}$ min. reed relays, encapsulated single pole make, 2 tor 50p.	VARIABLE STABILISED PSU, solid-state 240 V a.c. input, output $0-24 \mathrm{~V}$ d.c. at
, 2 '8W lamps, MES typ	$500 \mathrm{~mA}, 432 \mathrm{~V}$ d.c. at approx. 50 m
hassis lages, 25p pack	Voltage controlied by external $5 \mathrm{k} \cap$ pot.
Cable clips. for naling cable. 15p pack. Minlature stider switches, 2 pole. 2-way	Size $7 \mathrm{f} \times 4 \times 2$ in (less $5 \mathrm{k} \Omega$ pot). E
$\begin{aligned} & 5 \text { for } 50 \\ & \text { Sy95A } \end{aligned}$	three-turn wiae-wound pots, 5 K . for above. 75p each.
Paudlo type TOS iransistors. 12 for 25p. lack plastic knobs. fin dia.. Iin spinde 4 for 50p.	lapge die cast boxes dorand new 17T) $107 \times 61 \times 2$ + , \&2 each.
Aling magnets. 7 mm outside dia.. 20 for SOp.	set (1 plug +1 skt)
arge box	in
	年
puter rubbish) $£ 3$ per box	
Ifth polythene chassis mounting fuse	
	itches 9 -way 4 -pole (separate
-way min push-push switch	12 fins (drilled for $1 \times$ TO3 transis
dala butions mounted on one unit. 40p.	brand new. 45p each
RMS OF BUSINESS: CASH WITH ORD	minimum order £1) POST FREE 25\% VAT.
xport enquiries welcame Please enclose S.A	llars welcome. Tues, to Sal with ALL enquiries.

 Dept.H.T., STANDISH SIR,LANCS.

Solve your colamunica.
tion problens with this 4. Station Trantistor Intercom system (1 mastep and 3 Subs) in robust plastic cabinets for flest or wal mounting Call/talk/Iisten Iront Master to Subs antl Subs to Master. Ideally suitable for Business, Surgery, Schools, Hospitals, Otice and Ilome. Operates on one 9 V battery. On/off skitch. Volume control Complete with 3 connecting wires each f6ft and

MAINS INTERCOM NEW MODEL No batteries-no wires. Just plug in the mains for instant two-way. loud and clear conmmunication per pair. I. \& P. 65 p .
NEW! AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER

ONLY
£11.95

+ VAT 96p
Latest transistorised Telephone Amplifier with detached plug in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for "conference" calis: leaves the user's hands free to make notes,
consult fles. No long waiting, saves time with long-distance calls. Onfon sritch, volume. Direct tape recording model at 812.95 + VAT $£ 1.04$ P. \& P. 65p. 10 day price refund guarantee.

WEST LONDON DIRECT SUPPLIES (PE')
169 KEASIFGTOR EIGE STREET, LONDON, W. 8

OSMABET LTD

We make transtormer amongst other things AUTO TRANSFORMERS $110-200220 / 240 \mathrm{~V}$ 30W. £2. 10; 50W, £2.70; 75W £3.45; 100W, \&4; 500W. £12 TOW SOLTAGE TAANSFORMEAS
LOW VOLTAGE TRANSFORMEAS

 $4 A^{4}+12 V 4 A$, CE $\cdot 40$.
LT TRANSFORMERS TAPPED SEC, PrIm 200/240V
 $0-5-20-30-40-60 \mathrm{~V} 1 \mathrm{~A} . \mathrm{c4} \cdot 20 ; 2 \mathrm{~A}$, cs .

MIOGET RECTIFIER TRANSFORMERS
For FW rect., 200240 V a.c. $6-0.6 \mathrm{~V} 1.5 \mathrm{~A}$ or $9-0-9 \mathrm{~V} 1 \mathrm{~A}$ $\begin{array}{ll}51.65 \\ 0.3 \mathrm{~A} \text { orch, } 12-0-12 \mathrm{~V} & 1 \mathrm{~A} \text { or } 20-0-20 \mathrm{~V} \text { o. } 75 \mathrm{~A} \text { or } 9-0-9 \mathrm{~V} \\ 0.25 & 0.25 \mathrm{~A} \text { or } 20-0-20 \mathrm{~V} \\ 0.15 \mathrm{~A} \text { or } 6 \mathrm{~V}\end{array}$ 0.3 A or ${ }^{12-0-12 V} 0.25 \mathrm{~A}$ or $20-0-20 \mathrm{~V}$ o. 15A or 6 V
$0.5 \mathrm{~A}+6 \mathrm{~V} 0.5 \mathrm{~A}$ or $9 \mathrm{~V} 0.35 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A}$ or 12 V 0.25 A $+12 \mathrm{~V} 0-25 \mathrm{~A}$ or $20 \mathrm{~V} 0 \cdot 15 \mathrm{~A}+20 \mathrm{~V} 1 \cdot 5 \mathrm{~A}$, all at El -90 each MAINS TRANSFORMERS

 O-5-6.3V 3A. [11.25; MT3 Prim.
250 V 100 MA .6 . 3 V 2 A . E/S. E3.75.
O/P IRANSFORMERS FOR POWER AMPLIFIERS P. P. sec. tapped 3-0-15 ohms. A-A $6 \cdot 6 \mathrm{k} \cap 30 \mathrm{~W}$ £6.75 8, etc.), $517 \cdot 25$ G.E.C. MANUAL OF POWER AMPLIFIEAS Covering valve amplifiers of 30 W to 400 W 35 p . HI-F: SPEAKERS
$\sin 8 \mathrm{~A}$. E1. 15; Goodman 10W fult throw 8 8 E4. 25 sin $4 \cap$. E1.50; EMI $13 \times \sin \mathrm{Bn}$. 450 \& $4 \cdot 25$; 8 in LOUDSPEAKEAS
 25 or 35Ω. $95 p$ each. $7 \times \operatorname{tin} 3.15$ or 25Ω. $10 \times 6 \mathrm{in} 3 \Omega$ $\$ 1-50.9 \times 6 \operatorname{In} \mathrm{HI} \mathrm{FI}$ C/M Bn, CZ -50.
SPEAKER AUTO MATCHING TRANSFORMER 12W 3 to 8 or 15Ω up or down, $£ 1,50$.
PAPER TUBULAR CONDENSERS W.E.
'INSTANT'' BULK TAPE/CASSETTE ERASER instant erasure. any diameter tape spools. cass SVNGHRONOUS GEARED MOTORS, 200/24OV SVNCNAONOUS GEARED MOTOAS, $200 / 240 \mathrm{~V}$ a.c.
Brand new. Smiths, Euilt-in gearbox, $2 r .0 . \mathrm{h}, 75$ p each Brand new. Smiths, luilt-in gearbox, 2 r.p.h, $75 p$ eac
Carriage and VAT extre on all orders
S.A.E. ENOUIRIES. LISTS. MAIL ORDER ONLY 46 Kenllworth Road, Edgware, Middx. HA8 8 YG Tel. 01-9589314

PRINCIPLES OF

 TRANSISTOR CIRCUITSPrice $\mathbb{\{ 3 - 4 5}$
IIO OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR by R. M. Marston Price $\mathbf{\Omega} \mathbf{0} 00$ ELECTRONICS SELF-TAUGHT WITH EXPERIMENTS AND PROJECTS by J. Ashe Price E2-10 TRANSISTOR POCKET BOOK by R.G. -00 RADIO AND LINE TRANSMISSION by
D. C. Green ELECTRONICS AN ELEMENTARY NTRO. FOR BEGINNERS by L. W. Price El-65 ELEMENTARY TELECOMMUNICA. TION PRACTICE by J. R. G. Smith SCR MANUAL INCLUDING TRIACS AND OTHER THYRISTORS 5th edition SOLID STATE HOBBY CIRCUITS by R.C.A. Price $\mathbf{4 1 \cdot 2 0}$ INTEGRATED ELECTRONICS by Millman TEST EQUIPMENT FOR THE RADIO AMATEUR by H. L. Gibson Price $\mathbf{6 2 0 5}$ WORKING WITH THE OSCILLO.
SCOPE by A.C.W.Saunders Price 6 . 70

* PRICES INCLUDE POSTAGE $*$

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-2I PRAED STREET
LONDON W2 INP
Phone 01.723 4/85
Closed Saturday 1 p.m.

ELEGTROMLDE Present stabllized price policy＊ QUALITY COMPONENTS，KEEN PRICES AND DEPENDABLE SERVICE

112 page catalogue attractive discounts free postage and packing（U．K．）

A 100 OF THE BEST out of our latest catalogue					
${ }^{2} \mathbf{N} 1307$	4p	Af200U	${ }^{40} \mathrm{p}$	80132	52p
	${ }_{510}^{510}$	${ }^{\text {AF2393 }}$	${ }^{800}$	${ }_{80135}$	${ }_{37} 5$
2 N 3054	S0p	${ }_{8 \text { B4，}}$	36p	${ }^{80136}$	${ }^{39}$
${ }^{2} 3055$	${ }^{70}$			${ }_{\text {BFig4 }}$	¢
${ }^{2 \times 3702}$	${ }^{119}$	88104	$4{ }^{\text {a }}$	вFF39	${ }_{235}$
${ }^{2 \times 3703}$	${ }^{100}$	${ }^{\text {B8105 }}$	34 p	bFR79	${ }_{23} 2$
${ }_{2} 2 \times 3704$	${ }^{11 p}$	88109	${ }^{38}$		${ }^{33 \mathrm{P}}$
${ }_{\text {2 }}$	${ }_{\text {cop }}^{10}$		${ }^{188}$	${ }_{8 \times \times 84}$	${ }^{27 p}$
${ }^{2 \times 3819}$	${ }_{25 p}$	－	189 $15 p$ 150	erysi	239
${ }^{2 \times 14062}$	${ }^{11}$	${ }^{\text {BCI } 108 C}$	15p	${ }_{8 Y 164}$	$51{ }^{5}$
${ }_{2}^{2}$	830	${ }^{\text {BC }} 1098$	18 p	C1068 1	${ }_{42}{ }^{\circ}$
－ $\begin{gathered}\text { 2N5062 } \\ \text { 2N5 }\end{gathered}$			$\underset{\substack{180 \\ 120}}{\substack{120}}$	C10601	47p
2 N5459	35p	${ }_{\text {BC } 1478}$	${ }_{13 \mathrm{p}}^{12 \mathrm{p}}$	C14066	${ }^{78}$
${ }^{40361}$	${ }^{48} 8$	${ }^{\text {BC }} 1488$	12p		
${ }_{4}^{40362}$	$4{ }^{49}$	${ }^{\text {BC }} 1498$	148	M ${ }^{\text {J2955 }}$	$80^{\text {p }}$
${ }^{40602}$	${ }^{668}$	${ }^{\text {BC }} 1588$	15p	MJE3	${ }^{89}$
40656	${ }_{51}^{51.36}$	－${ }_{\text {BC1598 }}$	（13p	MJE521	${ }^{819}$
${ }_{\text {AC } 1288}$	${ }^{178}$	化1688	12 p	MJE3055	${ }_{68}$
${ }_{\text {AC }} 153$	${ }_{278}$	${ }_{\text {BC1698 }}$	$\underset{\substack{12 \mathrm{p} \\ 13 \mathrm{p}}}{ }$		${ }_{80}^{68}$
${ }_{\text {A A A } 1763}$	${ }_{320}^{370}$	8C1798	${ }^{265}$	tip 31a	70
	${ }_{30}^{240}$	${ }^{\text {EC1 }} 18824$	${ }^{129}$	TIPP2A	${ }^{80} 9$
${ }_{\text {A }} \mathrm{Cl} 18 \mathrm{~T} \times$	319	BC212L	${ }^{12 p}$	${ }_{\text {TIPA2A }}^{\text {T1P4A }}$	8100
	${ }_{5}^{29.92}$		119	W02	
${ }_{\text {AD }}$ A 36	${ }_{\text {¢1，} 11}$	${ }_{\text {BC2593 }}$	${ }_{14}^{14}$		140 230 230
${ }^{\text {ADP149 }}$	$5{ }^{52}$	BCrss			${ }_{14 \mathrm{p}}$
${ }_{\substack{\text { AD } \\ \text { AD } 161 \\ \hline 162}}$	${ }_{\substack{40 \\ 40 p}}^{429}$	（80130	700 480	2T×504	${ }_{4}{ }^{5}$
Axial Lead					
A． 0.47 1.0	二	－＝		－${ }^{11}{ }^{11 p}$	$8{ }_{8}$
2.2			${ }^{11}$ p		${ }_{9 p}$
${ }_{10}{ }^{4}$		${ }^{110}$	$1 p^{10}$	歫	${ }_{80}$
22	－	${ }^{\text {－}}{ }^{8 p}$	${ }_{9}$	${ }_{80}$	${ }^{8 p}$
47	${ }^{8 p}$	9	$8^{8 p}$	${ }^{88}$ 10p	${ }^{13 \rho}$
100	${ }_{8}^{9}$	8 sp	$\mathrm{f}^{8 p} \mathrm{p}^{\text {p }}$	${ }^{10 \mathrm{p}} \mathrm{l}^{12 \mathrm{P}}$	lig
470	${ }_{9 p}$	${ }_{10}^{10 p}$	${ }_{11 p}^{10 p}$	$\prod_{17 p}{ }_{\text {Pap }}$	${ }_{\text {4，}}^{28 \mathrm{p}}$
1．000	${ }_{115}^{119}$	${ }^{13 \mathrm{P}} \quad 13 \mathrm{P}$	${ }_{278}^{178}$	${ }_{\text {25p }}$ 41p	
4.700	150			$11 p$	
t0，000	42p	46p		二－	

ALL IN THE E．V．CATALOGUE 7 （issue 3）

112 pages of up－dated information and prices．More valuable than ever now that our price stabilizing has been introduced． Includes a 25 p refund voucher for spend－ ing on orders for 55 or more list value．So before you even look at a screwdriver． make sure you have your E．V．Catalogue make sure you have your E．V．Catalogue
No． 7 issue 3 to hand．Price．post paid 30 p PRICE STABILIZATION
Instead of changing prices from day to day with all the difficulties that brings． EV prices are now held for 3 monthly periods and then reviewed to see if changes are necessary for the next 3 changes are nec
months following
mo far this year we have held our prices without increase up to July ist Next price review October 1st．
DISCOUNTS
apply on all items except the few where prices are shown NETT． 5% on orders from $£ 5$ to $£ 14.99 ; 10 \%$ on orders value £ 15 or more．

FREE POSTAGE AND PACKING
In U．K．for pre－pald mall orders over £2（except Baxendall cablnets）．If under £2，there is an additionalhandling charge of 10p．

QUALITY GUARANTEE
All goods are sold on the understanding that they conform to makers＇speciflca－ tlons．No rejects，seconds or sub－ standard merchandlse．
VAT－add 25% to total value of order： excess will be refunded on request Every effort is made to ensure correct ness of information at time of preparing and putting this advertisement to press

ANTEX Solderlng Irons \(\begin{array}{lll}C240 \& £ 2 \cdot 25 \& Spare bits
CCN240 \& £ 2 \cdot 85 \& Spare bits\end{array}\)
WAVECHANGE SWITCHES
1 pole 12 way 2 pole 6 way 3 pole 4 way． 4 pole 3 way
TAG STRIP 28 way
NUTS，SCREWS，etc．
ABA NUTS 34 ach
6BA Scrows 24 p ；
hexagonal £1－40；Plain spacers $\mathbf{y}^{\prime \prime}\{1.32$ ．pillars 6 BA ．

ELECTROVALUE LTD

All postal communications，mail orders etc．to Head Office at Egham marked， Section $4 / 9$ ．S．A．E．with enquiries re－ quiring answers，please．
28，ST．JUDES ROAD，ENGLEFIELD GREEN，EGHAM，SURREY TW20 OHB Telephone Egham 3603 Telex 264475 Shop hours 9－5．30 daily；Sat．9－1 p．m
NORTHERN BRANCH：680，Burnage Lane，Burnage，Manchester M19 INA Telephone（061） 4324945 Shop hours 9－1 p．m．2－5．30 daily：Sat．9－1 p．m
U．S．A．CUSTOMERS are invited to contact ELECTROVALUE AMERICA PO Box 27．Swarthmore PA 19081
CAPACITORS
DALY ELECTROLYTIC in cans．plastlc sieeved $1000 \mathrm{mF} / 25 \mathrm{~V} 34 \mathrm{p} \quad 2200 / 100 £ 1.91$ $\begin{array}{ll}5000 / 100 £ 3.56 & 1000 / 100 \mathrm{£1} \cdot 00 \\ & 10005050 \mathrm{p}\end{array}$ $5000 / 25 \mathrm{~V} 75 \mathrm{p}$ 10005050 p
$\begin{array}{ll}200025 \mathrm{~V} 45 \mathrm{p} & 5000 / 50 \mathrm{E}, 1.44\end{array}$
POLYESTEA TYPE C．280．Radial leads for P．C．E．mounting Working voltage 250 V d．c
$0.01,0.015,0.022,0.033,0.047$
$0.068 \cdot 0.1 \cdot 0.15$
$0.225 p ; 0.337 p ; 0.478 p \cdot 0.6811 p \cdot 1.014 p: 1521 p$ each $4 p$ 0.22 5p； 0.33 7p； 0.47 8p； $0.6811 p ; 1.014 p ; 1521 p ; 2.24 p$ ． SILVERED MICA．Working vottage 500V d．c．Tolerance 1% or $0.5 \rho F$ ．
Values in pFs－ 2.2 to 250 in 26 stages each 6p．270－820 in 1000．1500，1800 9p； 2200 10p；2700．3600，4700． 5000 16p； 6800，8200， 10.02025 p．
TANTALUM BEAD
$0.1,0.22,0.47,1 \cdot 0 m F / 35 \mathrm{~V}, 1.5 / 20 \mathrm{~V} \quad$ each 16p $2 \cdot 2 / 16 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4 / 16 \mathrm{~V}, 10 / 6 \cdot 3 \mathrm{~V}$ each 16p
$4.7 / 35 \mathrm{~V} .10 / 16 \mathrm{~V} 22 / 6 \cdot 3 \mathrm{~V}$ $10 / 25 \mathrm{~V} .22 / 16 \mathrm{~V}, 47 / 6.3 \mathrm{~V}, 100 / 3 \mathrm{~V}, 6.8 / 25 \mathrm{~V} .15 / 25 \mathrm{~V}$ each 23 p. POLYCARBONATE
Type 842540 Working Voltage -250 V ．Values in mF
Type B42540 Working Voltage－250
$0.0047 .0 .0068,0 \cdot 01.0 .015,0.022$
each 4p 100 V ．Values－ $0.15 p ; 0.12 .0 .156 p ; 0.18,0.227 p ; 0.27,0.33$ $9 p ; 0.39,0.4711 p ; 0.56,0.6816 \mathrm{p}$ ．
CERAMIC PLATE
Working voltage sov d．c．
POTENTIOMETERS

ROTARY CARBON TRACK

Double wipers for good confact and long working Iffe
P． 20 SINGLE lines 100 ohms to 4.7 megohms．each 14 p JP． 20 DUAL GANG in 4.7 Kohms to 2.2 megohms．each 14 p JP． 20 DUAL GANG log．4－7 Kohms to 2.2 megohms JP． 20 DUAL GANG Log／antilog 10K． 22 K .47 K .1 each 48p JP． 20 DUAL GANG antilog 10K only keleton Carbon Presets．Decades of 10,22 14pextra vailable within limits in ranpes Type PR，hopizontal or vertical $100 \Omega=10 \mathrm{M}$

SLIDER

Sinear or \log mono 4.7 K to 1 meg in all popular values STEREO，matched tracks．Ifn or log in all popular values 32 p Escutcheon
Control knobs．blk／whered／yel／grn／blue／dert grey each 10p Control knobs．blk／wh／red／yel／gin／blue／dark grey．ight grey $\begin{gathered}\text { each } 7 p\end{gathered}$

MINITRON DIGITAL INDICATORS

Jorf Seven segment flament compalible with standard 16 lead DIL 16 lead DIL
Suitable BCD decoder driver 7447
3015G showing－or－\＆ 18 dec pl
LEDS（Light Emitting Diodes）
Photo Cells cadmium sulphide each
${ }_{81}^{1815}$
8120
$\underset{40}{25 p}$

Codes：
C carbon film．high stability low noise
WW metat oxide．Electrosil TR5 ultra low norse
Values：All E12 except $C \frac{1}{3} . C$.
$\begin{array}{ccccccccccccc}\text { E12 } & 10 & 12 & 15 & 18 & 22 & 27 & 33 & 39 & 47 & 56 & 68 & 82 \\ \text { decades }\end{array}$
E24 as E1
E24 as E12 plus 11．13． 16.20 .24
and their decades
Tolerances：
5% except wW $10 \%=0.05 \Omega$ below 10Ω and $; W$ MO 2% Prices are In pence each for quantiles of the
same ohmic value and powef rating．NOT mixed same ormic value and power rating．NOT mixed
values．（lignore fractions of one penny on total value of realstor order）．Prices for 100 up In units of 100 only

BSR HI-FI AUTOCHANGER STEREO \& MONO
Playa $18^{\prime \prime}, 10^{\circ \prime}$ or 7^{*} records. Auto or Manusl. A high Quality unit bscred bs ESR guarantee. AC $200 / 250 \mathrm{~V}$. 8ise $13!\times 11$ in.

Above motor board 3 in. Below motor board $2 \frac{1}{2}$ in. with gTEREO and MONO XTAL $\mathbf{1 9 . 2 5}$ Pont 45 p .

PORTABLE PLAYER CABINET

 Modern deaign. Rezine covered. Large front erille. Lift-up Lid. Chrome fltings. Approx. size $17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in}$. $\begin{aligned} & \text { Few only in red and black rexine. } \\ & \text { Motor board cut Ior Garrard deci }\end{aligned} \leq 5.25$ Post 50 p
B.S.R. SINGLE PLAYER

YODEL P128. IDEAL AS DISCO PLAYER. ${ }^{3}$ SPEEDS. BALANCED ARM, CUEING DEVICE STEREO CERAMHC CARTRIDGE. BARGAIN. E15.50 plos post 7sp

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with suto stop. Compatible cartride. Basephate. gize $11 \mathrm{in} \times 8!\mathrm{in}$. Turntable. 8 ize Fin dismeter. A C mains. 200, 200 y motor has a separate winding 14 polt to

66.95 :

SOLID MAHOGANY PLINTH Pot 75p Whb P.V.C. Cover. Cut out for most size $181 \times 143 \times 7 \mathrm{in}$

COMPLETE STEREO HI-FI SYSTEM Two tull size loudspeakers $13: \times 10 \times 3$ in. Plager unit
clipa to loudspeakers makige it extremely compact clips to loudapeakers making it extremely compact, all records $33 \mathrm{r} . \mathrm{p} . \mathrm{m}$. . $45 \mathrm{f} . \mathrm{p} . \mathrm{m}$. Separate volume and tone

SPECIAL OFFER! SMITH'S CLOCKWORK 15 AMP TIME SWITCH 0 TO 60 MINUTES

Single pole two-way Surface mountink with fxing screws. Will repiace existing garage, automatic anti-burglar lights, etc. Variable knob Turn on of off at lull op intermediate settings. Fully inaulated. Makers' last list price $£^{4} 50$. Brand new and fully guspanteed. our price $£ 2.50$ poil 35 s

BLANK ALUMINIUM CHASSIS. 18 s.w.k. $2 \frac{1}{\mathrm{i}} \mathrm{in}$ ades $6 \times \operatorname{in} 55 \mathrm{p}: 8 \times 8 \mathrm{in} 88 \mathrm{p}: 10 \times 7 \mathrm{in} 80 \mathrm{p}: 12 \times 8 \mathrm{in} \mathrm{El}:$ $14 \times 9 \mathrm{in} 21$ "20; $16 \times 6 \mathrm{in} \mathrm{E1} 20 ; 12 \times 3 \mathrm{in} 60 \mathrm{p}: 16 \times 10 \mathrm{in} \mathrm{El} 140$
 $14 \times \operatorname{3in} 20 p ; 19 \times \operatorname{in} 24 p ; 12 \times \sin 25 p ; 12 \times 8 i n 34 p:$
$18 \times 6 i n 34 p ; 14 \times 9$ in $40 p: 12 \times 12 i n 47 p: 16 \times 10 i n 80 p$. 1! inch DIAMETER WAVECHANGE SWITCHES, 45p ea.
2 p. 2 -way. of 2 p. 8-way, of 3 p. 4-was.
1 p. 2-way, or 4 p. 2-way, or 4 p. 3-was.
TOGGLE SWITCHES, sp. 20p; dp. $25 p$; $d p$. $d t$. $30 p$

BRITISH FM/VHF TUNING HEART

88 to 108 Mc s Britush made. 2 Transistors ready alugned requires 10.7 Mc I I.F. Complete with tuning gang. euserial. Our price $£ 3.95$ por zop SUTTABLE I.F. STRIP E4.95. DECODER I4.95
R.C.S. STEREO FM TUNER BRITISH MADE

This completely cased maint powered Hi-Fi
$€ 30$ Tuner with brushed aluminiam facia is Britinh made using the latesi circuitry. Few Only. Post 45p. R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal lor Mike. Tape, P.O., Guitar, etc. Can be used with Battery $9-12 \mathrm{~V}$ or H.T, line $200-300 \mathrm{~V}$ d.c. operation. Size: For use with valve or transistor equipment. f1.AF Post Full instractions supplied. Detaila S.A.E. \& 4 "G Post

R.C.S. POWER PACK KIT

12 VOLT. 750 mA . Complete with printed $\leq 3 \cdot 25$ Post circuit board and asemble instructions.
12 VOLT 300 mA KIT, 23 VOLT 1 AMP KIT, $28 \cdot R 5$.

4MFD 800V DC PAPER CAPACITOR
lock Capacitor. Ideal es Filter Unit in 100 whtt Loodspesker syateme. 95 p each, poat 30 p .

NEW TOBULAR ELECTROLYTICS CAN TYPRS $2 / 350 \mathrm{~V} \quad 14 \mathrm{p} 250 / 25 \mathrm{~V} \quad 14 \mathrm{p} 50.50 / 300 \mathrm{~V} \quad 50 \mathrm{p}$ $1850 \mathrm{~V} \quad 14 \mathrm{p} 500 / 25 \mathrm{~V} \quad 20 \mathrm{p} 32+32 / 350 \mathrm{~V}$ | 1850 V | 14 p | $500 / 25 \mathrm{~V}$ | 20 p |
| :--- | :--- | :--- | :--- |
| $3 / 850 \mathrm{~V}$ | 22 p | $100+100 / 275 \mathrm{~V}$ | 85 p |
| $32+32 / 350 \mathrm{~V}$ | | | |
| $18 / 350 \mathrm{~V}$ | 30 V | $150+200 / 275 \mathrm{~V}$ | 70 p | $\begin{array}{lllll}18 / 350 \mathrm{~V} & 30 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} & 32+32 / 450 \mathrm{~V} \\ 350 & 30 / 325 \mathrm{~V} & 60 \mathrm{p}\end{array}$ $\begin{array}{lllll}32 / 500 \mathrm{~V} & 50 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 22 \mathrm{p} & 16+16+16 / 875 \mathrm{~V} \\ 35 \mathrm{p} \\ 25 / 25 \mathrm{~V} & 10 \mathrm{p} & \mathrm{B}+16 / 450 \mathrm{~V} & 25 \mathrm{p} & 28+32 ; 32 / 350 \mathrm{~V}\end{array}$ $\begin{array}{lllll}25 / 25 \mathrm{~V} & 10 \mathrm{p} & +16 / 450 \mathrm{~V} & 25 \mathrm{p} & 32+32: 32 / 350 \mathrm{~V} \\ 50 \mathrm{p} \\ 50 / 50 \mathrm{~V} & 10 \mathrm{p} & 16+18 / 450 \mathrm{~V} & 40 \mathrm{p} & 900 / 350 \mathrm{~V}\end{array}$ $\begin{array}{llllll}50 / 50 \mathrm{~V} & 10 \mathrm{p} & 16+16 / 450 \mathrm{~V} & 40 \mathrm{p} & 900 / 350 \mathrm{~V} & 95 \mathrm{p} \\ 100 / 25 \mathrm{~V} & 10 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 40 \mathrm{p} & 4700 / 63 \mathrm{~V} & 95 \mathrm{p}\end{array}$ LOW VOLTAGE ELECTROLYTICS

E.M.I. $13 \frac{1}{2} \times 8$ in.

SPEAKER SALE!
 15 ohm. As illuatrate $\frac{15 \text { ohm. As illotrated. Pont 35p }}{\text { With fared tweeter cone and coramic }}$ magnet. 10 wast. $\mathrm{C}=35$ Fluz 10,000 gsust
State 3 or 8 or 15 ohm. Poat 25p

18×8 in Bage unit 20 watt rubber cone surround 86.60
LOUDSPEAKER FRONT GRILLES
Teakwood strips mounted on cloth backing, easily glued on to bafine to modarnise cabinets.
Size $18!$ in $\times 10$ in. $75 p$ or nize 10 in $\times 7$ in. $45 p$
GOODMANS $6 \frac{1}{2}$ in. HI-FI SPEAKER 8 ohm. 10W. Large coramic magnet.
 Frequancé reaponte. Twin conse. $30-12,000 \mathrm{c} / \mathrm{s}$. Ideal P.A.
Columns. Hi-Fi Enclosure Syatems, etc.

ELAC CONE TWEETER

The moving coll diaphragm giver a good radiskion pattera to the higher frequencles and a ampoth extension of total responge
 Crossover $21.85 \quad 12.20$ Poat 30p.

GOODMANS

 8 in. WOOFER 8 ohm 15 witt. Rubber sur round Heavy ceramic matnet. Basi resonance 35 cpl . Frequency reaponse $30-8.000 \mathrm{cps}$. Ideal base unlt for ≤ 5.75 Hj-Fi system.

SPECIAL OFFER LOUDSPEAKERS

3 ohm . 2in: 2 tin; $34 \ln ; 5 \mathrm{Sin} ; 7 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{sin}$ 8 ohm . 2tin; 2lin; $\sin \times 3 \mathrm{in} ; 8 \mathrm{in} ; 4 \mathrm{in} ; 5 \sin ; 6 \times 4 \mathrm{in}$. $15 \mathrm{ohm}, 8 \mathrm{in} ; 5 \operatorname{in} ; 6 \times 4 \mathrm{in} ; 5 \times 3 \mathrm{in} ; 7 \times 4 \mathrm{in} ; 8 \times \sin$,
$25 \mathrm{ohm}, ~$
$2 \mathrm{in} ; 5 \times 3 \mathrm{in} ; 5 \mathrm{in} ; 6 \times 4 \mathrm{in} ; 7 \times 4 \mathrm{in}$.
 go ohm, 2!in: $2 j i n .120$ ohm 3 in . LOUDSPEAKER8. sia RICHARD ALLAN TWIN COME LOUDSPEAKER8. IiA diameter 4W $28.50,10$ in diameter 5 W 28-95: Port 25 p 12 in diameter, $6 \mathrm{~W}, 88 \cdot 50 ; 3$ or 8 or 15 obm models SPEAKER COVERING MATERIALS. Samplea Large 8.A.S Horn Twestert 2-16Kc/s. 8W 8 obm or 15 ohm 22.50
De Luxe Horn Tweters $8-18 \mathrm{Kc} / \mathrm{s}$. 15 w . 15 obm 84.50 TWO-WAY 3.000 c.p.s. CROss0VERS 3, 8 or 15 ohm $21-85$

CASSETTE MACEINE MOTOR. 6 Volt.
Will replace many typer el'25.
R.C.S. 3 WAY CROSSOVER

Complete with 12 1t. twin lead atted with din apeaker plug. Ready assombled with leads for apazkers, bass, mid and tweeter. Crossover trequencies-950 cps and ≤ 2.25
3.000 eps .

VALVE OUTPUT TRAMSFORMER 50p,
MIKE TRANSFORMER MO metal $100-1$ 21.25.

ELECTRO MAGNETIC

 PENDULUM MECHANISM $1-5 \mathrm{~V}$ d.c. operation over 200 hours continuous on 8 P8 batfery, fing electro magnetiam or tor metronome. 950 Posi tenching electro magnetism or tor metronome. 95 p 808strobe, otc.

R.C.S. RECORD PLAYER AMPLIFIER

2 atage triode pentode valve. 3 watt ontput. Volume onjorit $\begin{aligned} & \text { and tone controls. Printed circait } \\ & \text { A.C. mains complete sud tented. }\end{aligned} \leq 4.50$ Pont Complete with speaker.

COAXIAL PLUG 10p, PANEL SOCKETS 10p. LINE 18 OUTLET BOXES, SURFACE MOUNTING 50 p .
BALARCED TWIN RIBBON FEEDER 300 ohms, 7 p yd. JACK SOCEET Std, open-circuit 20 p . closed circuit 30 p ; Chrome Lead Socket 45p. Phono Plugs 7p. Pbono Socket 7 p JACK PLUGS 8td. Chrome $30 \mathrm{p} ; 3.5 \mathrm{~mm}$ Chrome 80 p DIL SOCKETS Cbassis 3-pin 10p; 5-pin 10p DIF \$OCEET8 Lead 3-pin 25p; 5-pin 25p. DIN PLUGS 3-pin 25p; 5-pin 25p. VALVE HOLDER8 5p: CERAMIC 10p: CANS 5p.

Witien wod coatrols 1 , mam, 3 Wall. Brish Made with long spindles tin dia. 85p each.
DOAL CONCEXTRIC POT 500K LOG AND 500K LIN D.P 3 witch. Inner spindle $3 \downarrow$ in ; outer spindle $2!$ in 75 p .

ALL PRICES INCLUDE VAT 30p MINIMUM POST AND PACKING CALLERS WELCOME RADIO COMPONENT

Illustrated Brochure, Radio Books \& Component Lists 10 p Written guarantee.

ALL OUR PRICES INCLUDE V．A．T．

EM WOOFER AND £6．75 TWEETER KIT Wooter separately． Wooter 84.25 ；Tweeter 81．90）
Comprining a ane example of a Wooter Magnet $440 z$ Gaus masive Ceramic Alominium Cone centre to improve middle and top reaponte．Also the E．M．I Tweeter 3tin square hat a apecial lightweight paper cone and magnet aux 10,000 lines．Crossover condenter and full instractions aupplied． Impedance Standard 8 ohms Maximum power 12 watt Usolul Response $\quad 35$ to $18,000 \mathrm{cps}$ SUITABLE ENCLOSURE 20 MODERN DESIGA．TEAK WOOD FTETSE

ANOTHER R．C．S．BARGAIN！

ELAC 9 －5in．HI－FI SPEAKER TYPE 59RM This tamous unit now availa ble， 10 watts， 8 ohm． Price $£ 3.45{ }_{300}^{\text {Port }}$

10 in round $E 5$ ．
$8^{\prime \prime}$ or $10^{\prime \prime} \times 6^{\prime \prime}$ ELAC HI－FI SPEAKER
Dusl cone plasticited roll sur－ cound．Large ceramic magnet． $50-16,000 \mathrm{cpi}$ ．Bass resonance 10 watt． $64 \cdot 35$
TEAK VENEER HI－FI SPEAKER CABINETS Fluted Wood Fronts
MODEL＂A＂． $40 \times 13 \times 22 \mathrm{in}$ Por 12 jn, dia，or
1Oin speaker．
$\leq 12.50$${ }_{7}^{\text {Pont }}$ MODEL＂B＂． $16 \times 10 \times 7 \mathrm{in}$
 MODEL＂4C＂， $30 \times 20 \times 1$ Rin． Reflex oabinet will a ccept $1-12 \mathrm{in}$ ． bata unit， $1-5 \mathrm{jin}$, mid range $1-3 \mathrm{in}$, troett LOUDAPEAKER CABMET WADDING 18 in wide， 20 p ft ．

GOODMANS CONE TWEETER
 słin，diam， 18.000 C．P．s．25 WATrs 8 at $\mathbf{\$ 3 . 6 0}$

BARGAIN CHAFREL
MIXER．Add musical
highlights and sound effects
to recordinga，Will mix Microphone，records．tap and tuner with separate 9 roll bsttery $\quad \leq 5.20$
STEREO VERsION OF ABOVE 26.85
GARGAIN 3 WATT AMPLIFIER． 4 Tranaintor $\mathbf{~ © 4 . 5 0 ~}$
base controls． 18 volt battery operated．站ains 8 apply 83 ， 48
THE＂INSTANT＂BULK TAPE
ERASGR \＆HEAD DEMAGAETISER suitable for cassettes，and all sizes ol tape reels．A．C．maing $200 / 250 \mathrm{~V}$ ． Leaflet 8．A．E．$£ 4.35 \begin{gathered}\text { Pout } \\ 20 p\end{gathered}$

20p

WAFER HEATING ELEMENTS
OFFERING 1001 USEs tor every type of heating and drying applications in the bome，garage，greenhoute fine $10 \frac{1}{1} \times 8!\times$ in msonfacturing quantitiea）Approx 250 watts approx．Printed circuit element enclosed in anbentor ftted with connecting wirel．Completely fiezible providing afe Black heat．Britith－made for use in photo－ copiers and print drying equipment．
Ideal for home handymen and experimenters．Suitable Ior Heating Pads，Food Warmers，Convector Heaters，etc． Must be clamped between two sheets of metal or arbeatos， etring cupboards．Ideal for anti－frgat device for the ideal for －preventing lrozen radistors or acting as ii sump hester Une in greenhonfe for seed raising and plant protection Invalusble aid tor bird housen，incubatora，etc．，etc．Can be used in series for lower heat，Or in parallel for higher hest spplicstions．
ONLY 40p EACH（FOUR FOR EI．50） ALL POST PAID－Dircounte for quantity．

\＆ 12.50 Post 75p

BAKER MAJOR 12＂ $\mathbb{1} 11.50$

$30-14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}$ ．double cone，woofer and tweeter cone together with a BAKER cersmic magnet assembly h8ving a fux denaity of 14，000 gauat and a tola gux resonance $40 \mathrm{c} / \mathrm{s}$ Rated 20 resonance 40
wattr．NOTE：
3 15 ohms must be stated．

Module kit． $30-17.000 \mathrm{c} / \mathrm{s}$ with tweeter，crostorer bet and instractions．≤ 14.50
please state 3 or 8 or 15 ohms．
BAKER SPEAKERS ＂BIG SOUND＂

Robuatly contructed to atand up to long periods of electronic power． A）uted by leading groups． Useful response $\mathbf{3 0 - 1 3 , 0 0 0 ~ c p s . ~}$ Baas Resonance 55 cps ．
GROUP＂25＂ 12 in 25 watt
3,8 or 15 ohm

GROUP＂35＂
12in 35 watt
3,8 or 15 obme

GROUP＂50＂ | 15 in .50 watt |
| :--- |
| 8 or 15 |
| 0 hmg | GROUP＂50／12＂ 12in 50 watt proteraional

model． 8 ohms or 15 ohms －
MAJOR 100 WAT ALL PURPOSE
TRANSISTOR AMPLIFIER
All purpose trantiatorised．
Idenl for Groupa，Disco and P．A
inputs speech and music． 4 way
mixing．Output $8 / 15$ ohm s．c．Wains．
Separate treble and basa controls．

uaranteed．Details S．A．E．

DE－LUXE MODEL IN WOOD CABLNET．BLACK， 869.
NEW MODEL MAJOR 50 WATT 4 inputs， 2 way mixing， $249 \cdot 95$ ．Carr．al．Ideal disco amp，

QUALITY LOUDSPEAKER

 ENCLOSURETesk veneured fin thick wood cabinet
ize 18 in $\times 181$ in $\times 8 \frac{1}{2}$ ．Weigh
aslb．This cebinet teaturen a wide
mesh Bilver Grill covering a separate
compartment for mounting Tweeter
or Mid－Range Horn．The tully sealed
Bi in Wooter． 8750 ．Carr． 850 ．Rosewood Version 88.50
Carr．85p．Baffe conld be cut lor larger apeaker．
3 CHANNEL SOUND TO LIGHT KIT 1,000 watte per channel．As leatured in $\mathbf{C 1 2 . 5 0}$
september issue．

R．C．S．STEREO DECODER
Aritigh made．Ready aligned and tested．Complete $\mathbf{1 4 . 9 5}$
with instractions．Size $3 \mathrm{in} \times 2 \mathrm{in}$ ． inatrontion．size 3in $\times 2{ }^{2}$ ．

WEYRAD COILS

P50／2CC	$40 p$		
P50／1AC	$60 p$	RA2W	$85 p$
P50／3CC	$40 p$	OPT1	$65 p$
PCA1	$85 p$	LTDT4	$65 p$
		Twicgang	81.20

E．M．I．TAPE MOTÓR
4 pole， 240 v． 135 mA ．sixe $3 \& \times 2 \ddagger \times 2$ inin．$\subset \mid .85$
120 v version E 1 it dirmeter．
Port 30p
E．M．I．GRAM MOTOR
120 V or 240 V a．c． 2,400 rpm， 2 －pole
70 mA ．Size $2 \% \times 2!\times 2$ in．

BAKER HI－FI SPEAKERS
HIGH QUALITY B BRITISH MADE REGENT
12in． 15 watts
An inexpensive unit tor the beginner in bigh fidelity and lor general purposes．may be used to improve any Radio， Amplifier，Hi－Fi or Television receiver．
Ban Resonance 12000 45cpa Trax Density 3 or 8 or 15 ohm m－18，000 cps
£9．50 $\xrightarrow{\text { Post }}$

DE－LUXE Mk II I2in． 15 watts

Espectally deaigned to provide lull range reproduction at an economical cost．Suitable for use with ang high fidelity
sagtem．suilf－in spatem．Buik－in concentric tweeter cone．

Basi Resonance
Flux Dennity
30 cpa
14.000 gaus

€ $12 \cdot 50$ 紫

SUPERB

I2in． 20 watts
A high quality loudapeaker， ite remsrkable low cone resonance enaures clan basas．Fitted with a apecist copper drive and concentric tweeter cone resulting in fall range reprodaction with remarkable aficiency in the upper regititer．
Esas Resonance 25 cpa Flux Density 18,500 gans Useidy responae $20-17,000 \mathrm{cps}$ 8 or 16 ohms models．

£17

 Post50p

AUDITORIUM

I2in． 25 watts
A Iull range reproducer for high power，Electric Guitars， public addres．，multi－spesker yistems，electric orgsans Ideal for $\mathrm{Hi}-\mathrm{Fi}$ and Disco－ Breques．
Base Resonance 15,000 3Seps Useful response $25-18.000 \mathrm{cps}$ 8 or is ohme models．

$€ 14 \cdot 50$ 皆

AUDITORIUM

ISin 35 watts
A high wattege loudspeaker of exceptional quality with a level response to above $8,000 \mathrm{cps}$ ．Ideal for Publit ronic instruments and the home $\mathrm{Hi}-\mathrm{Fi}$ ． Bass Resonsnce
Flux Density
15,000 gause $\begin{array}{ll}\text { Flux Density } & 15,000 \text { gauss } \\ \text { Oselul reaponse } & 20-14,000 \mathrm{cps}\end{array}$ Uselul response $\quad 20-14,000 \mathrm{cp}$ 8 or 15 ohms model
$\notin 19 \cdot 50$
Hi－Fi Enclosure Manual containing plana，designs，
crossover data and cubic tables．68p．

CUSTOMERS FREE CAR PARK
OPEN 9－6 p．m．WEDNESDAYS 9－1 p．m．，SATURDAYS 9.5 p．m．（Closed for Lunch $1.15-2.30$ ）

SPECIALISTS 337 whtrehorse Road－crovoon

Sinclair hi-fi

The watts...

The Sinclair range of hi-fi products. Three different ways of achieving hi-fi excellence whatever area of hi-fi you're interestedin.

And the Sinclair range fact-file gives you the full run-down on all of them.

On Project 80 - the
build-as-you-please hi- fi module system.

On IC20 - the revolutionary integrated circuit amplifier kit. And System 4000- the luxury hi-fi amplifier and matching tuner.

and the wherefores.

The Sinclair range fact-file shows you the whole story. Technical specifications. complete descriptions... big, clear pictures... and test reports by impartial hi-fi journals.

A real bundle of goodies.

Send for Sinclair's range

 fact-file - now!See if the answer's here the information on the component you've been looking for.

Simply cut the coupon and send it to the no-stamp-needed FREEPOST address below. We'll send you the Sinclair fact-file - giving you all you need to know about Sinclair hi-fi. And information about a few extras you're sure to find rather interesting.

Sinclair Radionics Ltd, London Road, Stlves, Huntingdon, Cambs., PE17-4HJ St lves (0480) 64646

I.F10. HIGH PERFORMANCE DELUXE I.F.STRIP

NOW wlth 70dB galn
Send E8-60

* SHARP SKIRT SELECTIVITY * CONTROLLABLE SQUELCH
* CENTRE ZERO TUNING METER + SIGNAL STRENGTH METER OUTPUT

ALL PRICES Send $8 p+$ S.A.E. for Data Sheets
QUOTED Sole U.K. Agents
INCLUDE VAT REEDHAMPTON LTD.
182-184 Addington Road, Selsdon, Surrey CR2 8LB

Other chips and displays usually available. ring for details or S.A.E. for catalogue and prices.
VAT on clocks. clock chips and displays still 8%.
We advise the use of sockets for all I.C.s. 24/28, 40-pin $£ 1$.

BYWOOD ELECTRONICS

181 Ebberns Rowd, Hemol Hempstead, Herts., HP3 9RD
Terms: C.W.O.. Access, Barclaycard (quote card No.).
All prices on this advert exclude VAT.
Tel. 044262757

DECADE 4 resistance substitution box-a must for all engineers. students and experimenters. Full details on request. Trade enquiries welcome. £33 plus 8\% VAT.
5W Chassis Stereo amp. (2. $5 \mathrm{~W} / \mathrm{CH}$) 12 V d.c. output $2.5 \mathrm{~W} / \mathrm{CH}$ into 8 ohm . input tape head 3 mV or suitable $100 \mathrm{mV} \mathrm{mic} / \mathrm{P}$.U. with external components. Slider controls. E_{L} plus
25\% VAT.
8 track car stereo players 12 V neg. earth. $£ 14$ plus
25% VAT
12 V d.c. Solenoids short duration. 55 p inc. VAT.
12 V Miniature Lamps with flying leads. Pack of 1060 p inc. VAT.
High Power Strobe Light-ideal Disco/Group use. £42 plus 8\% VAT.

SCOTT ELECTRONICS

Estcourt House, Estcourt Road,
Gt. Yarmouth, Norfolk
C.O.D. under $£ 30$

SUPERSOUND 13 HI-FI MONO
AMPLIFIER ampiniter compo. Brand new Silicon transistors plus 2 power out-put transistorein push-pull Full wave rectifica 13 watts r.m.s. int 8 obms. Frequency 3db. Fully integrated pre-amplifier stage with Treble cut controls, Suitable for 8-10 ohm speakers. mput for ceramic or crystal cartridge. Sensitivity approx. $40 \mathrm{~m} V$ for full output. Supplied ready built and enes, outpu AC $200 / 250 \mathrm{~V}$. PRICE $\$ 15.00 . \mathrm{P}$. \& P wide $\times 7!^{*}$ deep
DE LUXE STEREO AMPLIFIER
 A.C. mains
$300-240$ heavy duty fully isola transforms
er with ful tics recti
iving giving ade
 alve line-up:-2 \times ECL86 Triode Pentodeg. $1 \times$ EZ8 as rectifier. TWo dual potentiometers are provided for cut. A dual volume control is used. Halance of the leftand right hand channels can be adjusted by means of a sepa rate 'Balance' control fited at the rear of the chasaie Input sensitiwity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per channel (8 watts mono), into 3 ohm peakers. Full neqative feedback in a carefully calculated ircuit, allows high volurne levels to be used with negligible
 built and tested to a high standard. \&18.80. P. \& P. 85 p . ALL PURPOSE POWER SUPPLY UNTT 200/240v. A.C nput. Four switched fully smoothed D.C. outputs glving Fitted Insulated output terminals and on load. Hammer finish metal case overall size $\beta^{*} \times$ inp Ready built and
tested. VYHAIR \& REXIHE SPEAKERS \& CABINET FABRIC8 app. 54 in. wide. Our price 21.30 yd . leng
per yd. (min. 1 yd.). © A.E. for atmples.

HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifter uaing a double wound fully pentode valve as audior, rectifler and ECL82 triode pentode valve as audio amplifier and power output stage. Impedance 3 ohms. Output approx. 3.5 watts.
V olume and tone controls. Chatais aize only 7 in wide $\times 3 \mathrm{in}$. deep $\times 6 \mathrm{in}$. high overall. AC mains $200 / 240 \mathrm{y}$ supplied absolutely Brand New completely wlred and tested with good quality output transformer. $\mathbf{~} 5 \cdot 00$
FEW ONLY. High grade mains transformer with grain orientated lamination. Primary $200 / 240$. Secondary 18.5 volts at 0.6 andps and 4.6 volts at 0.3 amps. Size
2 in . Jong $\times 2 \mathrm{inn}$. Wide $\times 2 \mathrm{in}$. deep overall. $£ 1.40$ plus 3 上p P. \& \mathbf{P}
BRAND NEW MULTI-RATIO MAINS TRANSFOR MERS. Giving 13 alternatives. Primary: $0-210-240 \mathrm{v}$ Secondary combinations $0-5-10-15-20-25-30-35-40-60 \mathrm{v}$ halt ware at 1 amp. or $10-0-10,20-0-20,30-0-30 v$. at 2 amps full wave. Size 3in. long $\times 3$ in. wide $\times 3 \mathrm{in}$.
deep. Price 82.75 . P. $\& P$. $6 \overline{5}$. MALIS TRANSFORMER P. 65 p.
SAIN TRANSFORMER. For power dupplies.
Pri. 200/240v. Sec. 9-0-9 at $500 \pi_{1} \mathrm{~A}$. $1 \cdot 35$. P. \& P. 30 p Pri. 200/240v. 8ec. $12-0-12$ at 1 amp . 21.50. P. \& P. 30p.
Pri. $200 / 240 \mathrm{v}$. Sec. $10-0-10 \mathrm{at} 2 \mathrm{amp}$. \&2.20. P. \& P. 40 p . 3 VOLT RELAY. $100 \mathrm{~m} / \mathrm{A}$ single pole normally closed 2 for 60 p . P. \& P. 15 p .

> GENERAL PURPOSE HIGR STABILITY
> TRAN SISTOR PRE-AMPLIPIER
> For P.U. Tape, Mike, Guitar, etc. and auitable fo bate with valve or transiator equipment. 9-18v reaponse $15 \mathrm{~Hz}-25 \mathrm{KHz}$, sulation size $1^{3 \prime} \times 1^{1 / \prime} \times{ }^{\circ}$ " Brand new coluplet with instructiuns. Price $81^{*} 36$. ${ }^{\text {Brand }}$ P P. 15 p .

HARDBOOK OF TRARSISTOR EQUIVS. AND SUBS. Amuat for ser vicernen and home constructors, Including many 1000 's of British, U.S.A. E
transistors. ONLY 40 p . Puet 7p.
3 Reference Encyclopedias for Electronic Engineers and Designers, covering between them transistor character oties, diode and transistor equivalents. Many thousauds of up to date European types listed
Dode Equaris Tranastor Equivalents 81 -20. All three together $£ 3.80$.

NEW ISSUE
Thyristur. Triac, Diacetc. encyclopedias 21.70. Post F'ree. 8 bole 3 way 2 bank low losy Yaxley type spitches $1!2$
aections, Stanilard spindle. 2 switehes $75 \mathrm{p}+15 \mathrm{P}$. \& \mathbf{P}.

harversonic mains operated

 SOLID STATE STEREO FM TUNER

Enjoy Fabulous Ştereo Radio at this Low Introductory Price! Desigued and atyled to match our $10+10$ amplifier but will suit any other standard stereo amplifier but will suit any wther standard stereo amplifter.
The design incorporates the very latest circuitry The design incorporates the very latest circuitry
techniques with high-grain, low noise IF stages, Automatic frequency control to "lock on'" atation and prevent drift. 1C stereo decoder for maximum stereo separation. L.E.D. for atereo beacon indicator. Nominal output of tuner 100 mV . Approximate eize 1241 wide \times 8in deep by 2ain high. Supplied ready bullt, fully Price $\mathbf{2 7} 750$. Post and Packing El .00 .

STEREO-DECODER SIZE 2" $\times \mathbf{3}^{\prime \prime} \times \frac{1}{2} "$

Ready built. Pre-aligned and tested.
gens 20.560 mV for 9.16 V neg sens. 20.560 mV for 9.16 V neg. almost any FM VHF radio or tuner. Stereo beacon light can be fieted if required. Fult details and insupplied. $\mathbf{Z 6} 25$ plus 15 p P. \& P.
 Stere
extra.

LATEST HI BENBITIVITY UNI-DIRECTIONAL SLIM LITE CONDEASER MICEOPHONE as used by many impedsnce or low ow acoustic leedback. Avalable li | impedance or |
| :--- |
| $\mathbf{1 6} 25$. P. P impedance. State which require | \%102. P. \& P. 20p.

LATEST ACOS GP9I/18C mono compatible cartridge with t/o styha for LP/EP/i8. Univeral mounting bracket. CERAMIC PTPR 15 P .
CERAMIC STEREO CARTRIDGE. Universal mounting brackets and turnover atyius. $70 \mathrm{~m} V$ per channel output SONOTONE OTAEC COMPATIBLE STEREOCARTRIDGE T/O stylus Diamond Stereo LP and Sapphire 78. OHLY \&\&.68. P. \& P. 10 p. Also available ftited with twin Diamond T/O styius for stereo LP. \&3.18, P. \& P. $15 p$. LATEST CRYSTAL T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78. 11.98. P. \& P. $15 p$.
LATEST T/O MONO COMPATIBLE CARTRIDGE for LATEST T/O MONO COMPATIBLE CARTRIDGE fo playing EP/LP/78 mono or stereo
equipment. Only $\mathbf{2 1 - 7 5}$. P. \& P. $15 p$

QUALITY RECORD PLAYER AMPLIFIER ME. II A top quality record player amplifter employing heavy duty double wound mains transorm and rectifler. Separate Base. Treble and Volume control speaker. Size 7 in wide $\times 3$ in deep $\times 6 \mathrm{in}$ high. Ready built and tested. PRICE 88-50. P. \& P. 75p. ALSO AVAILABLE mounted on board with output

HI-FI LOUDSPEAKER SYSTEM MkII

Beautifully made sinnulated teak finish enclosure now pith most attractive sialted front. Size $16 t^{\prime}$ high \times
$10 t^{\circ}$ wide $\times 9^{\prime \prime}$ deep (approx.). Fitted with E. M. Ceramic Magnet $13^{\circ} \times 8^{\circ}$ basa unit H.F Ceramic and crossover. AVAILABLE IN NOMINAL 4 ohm, 8 ohm or 16 ohm impedance (atate whicb).
©UR PRICE\&\|.25 each. Carr. \&I. 25 Cabintt Availabie Separately $\mathbf{2 6 - 2 5}$. Carr. $\mathbf{2 1} \cdot 10$ Also available in 8 ohms with EMI $13^{\prime \prime} \times 8^{\prime \prime}$ base
speaker with parasitic tweeter $\mathbf{\$ 1 0 . 0 0 . ~ C a r r . ~ \& 1 - 2 5 . ~}$

LOUDSPEAKER BARGAITS
5in. 3 ohm 41.45, P. \& P. $15 \mathrm{p} .7 \times 4 \mathrm{in} .3 \mathrm{ohm} 21.69$, P. \& $25 \mathrm{p} .10 \times 6 \mathrm{in} .3$ or 15 ohm $82-50$, P. \& P. 35 p . E.M.I
$8 \times 5 \mathrm{in} .3$ ohm with high fux nagnet $82.06, P$ \& P. 25 p E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. with high flux ceramic magnet with E.M.I. $13 \frac{1}{2} \times 8$ in. with high fux ceramic magnet with E.M.I. 13×8 in 3,8 or 15 ohm with inbuilt tweeter and crossover network $\$ 5.50$, P. \& P. 35p.
E.M.I. tw eeter. A pprox. $3_{2}^{1 *}$. A vailable 3 or 8 or 15 ohms,$~$ $\mathrm{Eq} \cdot 00+25 \mathrm{p}, \mathrm{P}$.
BRAND NEW. Bakers Loudspeahers at substantial dis counta. 12 in . 15 w. H/D Speakers, 3,8 or 15 ohms state which. Current pruduction by well-known British asaembly 89.50 . Guitar models: 30 w . $£ 8.9535 \mathrm{~F}$. 10.50 .
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYFAMIC GPEAEER
 Jesponge $40 \mathrm{~Hz}-20 \mathrm{kHz}$, Can be mounted on ceiling onl doors, under tablet. ete., and used with or without baffe. gend S.A.E. for details, Only $£ 7$-68 each. P. \& P. 60p. NOW ALSO AVAILABLE 8in. 10 W rms 20W peak
special bargain offer
Limited number of BBR uxe with lightweight tubular arm and ster en cartringe

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

really first-class Hi-Fi stereo Amplifter Kit. Uses 14 ramaistors including Silicon Transistors in the fret five stages on each channel resulting in eren lower noise evel with improved sensltivity. Integrated pre amp with bass, Treble and two ohume Controls. Sultable for use modify to suit or eneticartridge-ingt ructions include to Outputstage for any speakers from 8 to 10 ohms. Compact design, all parts supplied including drilled metal work high quallty ready drilled printed circuit board with omponent identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, bolts no extras to buy. Simple step y atep inatructions enable any constructor to bulld an mplifier to be proud of. Brief specifications: Power utput: 1t watts r.m.s. per channer into ohms. Fre quency response $I 3 d B$. Full power sandwict : better $12-15,000 \mathrm{~Hz}$. Bass, boost approx to +12 dB . Treble ut appror to - 16 dB . Negative feedback 181 B over hain amp. Power requiremente 35 v . at 1.0 amp . Overall Bize $12^{\circ} w . \times 8^{\circ} \mathrm{d} . \times 21^{-1}$
Fully detailed 7 page construction manual and parts ligt free with kit or send 251^{\prime} pius large S.A.E.
AMPLIFIER KIT
Magnetic input components 33p ex POWER PACK KI
${ }_{85}^{\mathbf{8 5}-35} \quad$ P. \& P. 85 P ABINET at same \& P. 5
Iso a vailable ready Fuil after sales service 50 . Past Fre
Vole: The above amplifier is suitable for feeding suo mono ourcesinto inples (e o mike, radio twit record decks, etc.) and will then provide mixing and fading facilities for med-

3-VALVE AUDIO

AMPLIFIER RAB4 ME II. Designed for HI-Fi reproducperation. Ready built on plated heavy gauge metal hassils, fize $7 \frac{1}{3} \mathrm{w} . \times 4^{0} \mathrm{~d}$, \times "h. Incorporates ECC83 EL84, EZ80 valves. Heavy uty, double wound mains transformer and output trans-
former matched for 3 ohm peaker. Separate rolue control and nou with improved ride range tone controls giving bass and treble lift and panel can be detached and leads extended tor. Front nounting of controls. Complete with hnobs for remote wired and tested for only $87.75, \mathbf{P}, \&$ P. 70p.
FHL "POUR" AMPLIFIER KIT. Similar in appearance dvanced circultry. Compleys entirely difterent and P. \& P. 70 p.

10/14 WATT HI-FI AMPLIFIER KIT A stylishly finished monaural amplifier
with an output of 14 watts from EL84s in push-pul super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow records and announcements

Fuily shrouded gection wound output transformer match $3-15 \Omega$ speaker and 2 indepentient volume controls, and separate base and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 ant ER80 rectifier. Simple instruction booklet ONLY $£ 18.00, ~ P, \& 1^{2}$. $£ 1 \cdot 00$. Also available ready built and teated el6.50.

HI-FI STEREO HEADPHONES

Adsustable heanband with comforiable iexifuam ear muffs. Wired and fitted with standard stereo lin jack impedance $8-16$ ohms. Fanly converted for Mono PRICE \&4.05. P. \& P. 2íp

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday
Closed Wednesday.
Prices and specifications correc
of time of press. Subject to

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W.I9 Tel.: 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. P. \& P. ON OVERSEAS ORDERS
CHARGED EXTRA.

IP IL.P. (seatronestue

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 as a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality ampilifers-the while the second caters for tone control and balance.

TECHNICAL SPECIFICATION
inputs: Magnetic Pich-up 3mV RIAA: Ceramic Pick-up 30 mV ; Microphone 10 mV ; Tuner 100 mV ; Auxilary $3-100 \mathrm{mV}$ input/impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputa: Tape 100 mV Main output 0db (0.775 V RMS). Actlve Tone Controls: Treble ± 1200 at 10 kHz : Bass $\pm 120 \mathrm{~b}$ at 100 Hz . Diatortion: bllity: 40 db on most sensitive input Supply yoltage: $\pm 16-25 \mathrm{~V}$.
PRICE $£ 4.75$

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd.

Cróssland House, NackIngton, Canterbury, Kent CT4 7AD.
Tel. (0227) 63218

The HY50 is a complete solid state hybrid Hi-F amplifier incorporating its own high conductivity heatsink hermatically sealed in black apoxy resin. Only five connections are provided. input, output power lines and earth

TECHNICAL SPECIFICATION
Output Power: 25W RMS into 8 Ω, Load Impedance: Impedance: $47 \mathrm{k} \Omega$. Distorllon: Less than 0.1% at 25 W typically 0.05%. Signal/Nolse Ratlo: Better than 750 db . Frequency Aesponse: $10 \mathrm{~Hz}-50 \mathrm{kHz}=3 \mathrm{db}$. Supply Voltege:
+25 V . Sze: $105 \times 50 \times 25 \mathrm{~mm}$ $\pm 25 \mathrm{~V}$. Stze: $105 \times 50 \times 25 \mathrm{~mm}$.
DR:

The PSU50 incorporates a specially designed iransformer and can be used for either mono or stereo systems.
TECHNICAL SPECIFICATIONS

PRICE f6. $25_{\substack{+£ 1.56 \text { VAT } \\ \text { P. P. free }}}^{\text {P. }}$

[^1]
SEMICONDUCTORS

TRANSISTORS

BRAND NEW FULLY GUARANTEED

Type

 AC107AC113

 Type
BCl72

Prite

BI－P
Type
 ． $100+$
0.97

rype		Quan	${ }^{\text {tities }}$	Type		tities		Type	Qua		
Br930	${ }_{0}^{1} 14$	${ }_{0}^{2.18}$	0.12	${ }^{\text {BP9944 }}$	015	0.14	${ }_{0}^{00+}$	${ }^{\text {BP962 }}$	0.14	0.13	${ }^{0.12}$
${ }_{\text {BP9 }}^{\text {BP932 }}$	0.15	0.14	0.13	${ }_{\text {BP944 }}$	${ }_{0}^{0.28}$	${ }_{0.13}^{0.26}$	${ }^{0.23}$	${ }_{\text {BP9093 }}$		00	0.38
${ }_{\text {BP935 }}$	0.15 0.15	${ }_{0}^{0.14}$	－ 0.13	${ }_{88948}$	${ }_{0} .28$	－．26	0．23	${ }_{\text {BP9097 }}$	0	${ }^{1}$	0.38
вР938	0.15	0.14	0.13	BP951	0.85	0.80	0.56	BP9099	0.42		
		TR	A								
				$\begin{aligned} & 100 \mathrm{~V} \\ & 0.81 \end{aligned}$		$\begin{aligned} & 400 . \\ & 0.71 \\ & 0.71 \end{aligned}$					
		068		$\begin{aligned} & 0.51 \\ & 0.71 \\ & 0 . \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0: 92 \\ & 0: 92 \end{aligned}$	$\begin{array}{r} 0.77 \\ \qquad \\ \hline 1.12 \end{array}$		A			
＊	D．I．	L．	OC	KE							
						$100+$			7006		
${ }_{\text {TSO14 }}$	${ }_{\text {pin trp }}^{\text {pin typ }}$			${ }_{0}^{0.35}$	${ }_{\substack{0.28 \\ 0.82}}^{0.85}$	0.25 0.30					
	pin typ			0.69 0.14	${ }_{0}^{0.84}$	${ }_{0}^{0.10}$		Posta	8		
${ }_{\text {BPP14 }}$	${ }_{\text {pin }}^{\text {pipp }}$	ee low	${ }_{\text {cost）}}^{\text {cost）}}$	0.15	0.13	$0 \cdot 11$		dd ex	fra	air	nail
BPS16	pin typ	pe（low	cost）	0.18	0.14	0.12					

LINEAR I．C＇s

Type
＊i
尔只筑
Quantities 1
0.48
$100+$
Type72709
72709 P
72710
\qquad
\qquad $\begin{array}{lll}0.23 & 0.21 & 0.42 \\ 0.19\end{array}$ $\begin{array}{llll}0.18 & 0.18 & 0.17 & \text { TAA263 } \\ 0.82 & 0.91 & 0.99 & \text { TAA293 }\end{array}$
 above series of I．C＇s in booklet form．PRICE 35p． D．T．L． 930 SERIES
\qquad
Quantilie \qquadT．yp Quamilies$\begin{array}{cccr} & 1 & 25 & 100+ \\ \text { uA723C } & \mathbf{0 . 4 5} & 0.43 & 0.40\end{array}$$\begin{array}{lrrr}76003 & \mathbf{1 1 . 3 9} & \mathbf{2 1 . 3 4} & \mathbf{2 1 . 3 0}\end{array}$$\begin{array}{lllll}76023 & 21.39 & 21 \cdot 34 & \text { £1．30 }\end{array}$$\begin{array}{llll}76860 & 0.88 & 0.86 & 0.83 \\ \text { LM380 } & 0.93 & 0.90 & 0.88\end{array}$$\begin{array}{llll}\text { LM385 } & 0.93 & 0.90 & 0.88 \\ \text { N E555 } & 0.45 & 0.43 & 0.40\end{array}$$\begin{array}{llll}\text { NE556 } & 0.88 & 0.88 & 0.83 \\ \text { TBAB } & 0.39 & & 21.84\end{array}$$\begin{array}{llll}\text { TBA800 } & 21.39 & £ 1.34 & £ 1.80\end{array}$ZN414 21.11
－gL201C
SILICON RECTIFIERS

300 m
（DO

300 mA	750 mA	1 Amp	$\begin{aligned} & 1.5 \mathrm{Amp} \\ & (\mathrm{SO} 16) \end{aligned}$		${ }^{3} \mathrm{Amp}$	10Amp （ 80 10）	30 Amp (TO 48)
（DO 7）	（80 16）	Plastic			（80 10）	(玉O 10)	（TO 48）
005	0.08	IN 4001	0.05	0.07	0.14	0．19＊	0．56＊
0.05	0.07	1 N4002	0.08	0.09	0.16	$0.21 *$	0．60＊
0.06	0.09	1N4003	007	0.12	0.20	$0.23{ }^{\circ}$	0－93＊
0.07	0.14	1N4004	008	0.14	0.28	0．35＊	21．25＊
0.08	0.16	1N4005	009	0.18	0.33	0．42＊	21．76＊
$0 \cdot 11$	0.18	1N4006	0.10	0.18	0.35	$0.51 *$	21．94＊
0.13	0.28	1N4007	0.11	0.23	0.44	0．60＊＊	22．31＊＊
－	0.32			0.28	0.54	0．69＊	22．88＊

PO BOX 6 WARE HERTS

SUPER UNTESTED PAKS

Pan Mo.

$\because 50$ Mixed Germanium translehors AF/RF
If 35 Germaniun gold bondeal rub-min, tike OAB. OAt7
v 430 (iermanluns transistors like OCOA, ACles
1: 560200 mA rub-rifin. silicon diedea

U. 7 If Sil. rect. TOP-HAT 750niA VI,TG. RANGE up to 100
[' A 50 ail. planar diodes 100-7 glame 250 ma like $0 \mathrm{~A} 200 / 20$:
179 20 Mixed withagea, 1 Watt Zener Dhorea
$110 \quad 20$ BAY50 charge storage aliodes DO-7 glans
(111 20 PNP 8ll. planar trana. TU-5 like $2 \mathrm{~N} 1132,2 \mathrm{~N} 29(14$ $2113 \quad 30$ PNP-NPN SII. tranalstairs OC200 \& 2 S 104
H14 150 Mixed silicon and germanium dioden
U15 20 NPN Sil. planar traus. TO-5 Jike $2 \mathrm{~N} 69 \mathrm{~N}_{6}$ 2N697 U16 10 3Amp sil, reetflers atud tyje ap to 1000 PIV IT17 30 Germanium PNP AF trapaintors TO-5 IIke ACY iteres
IIs H6 Aus all. rectifiers HYZI's type up to 600 Pls
It19 20 Silicon NPN transistors like BU 108
ITs0 121.5 Amp sil. rectiflera top hat up to 1000 PiY
I'2l 30 AF . Germ. alloy tranagtorn $2\left(1300\right.$ serien de OC^{-7} TY23 25 MADT's like MHz series PNP trunsiators
U24 20 (ierni. I Amp rectiflera GIJM serles up to 300 Pl U25 $\quad 25300 \mathrm{MHz}$ NPN silicon transiators 2 N 70 s . B8Y:27 U26 30 Fast awitching silicon diorles like IN914 Micro-Min 1695101 AMp SCH's TO-5 can. up to 600 PIV CR81/25-800 U32 25 Zener diodes 400 flnW DO-7 cane $3-33$ volts mixell
[133 15 Plastic case I Amp sil. rectiflers IN 4000 serlea 133430 Bilicon PNP alloy trans. TO-5 BCY28 $28302 / 4$ 1'35 25 silicon planar tranaistora PNP TO-18 2N2906 113620 silicon planar NPN tranjutors TO-s BFY50/51/52 133730 8llicon alloy transintors 80-2 PNP OC200, 82322 U34 20 Fiat switching silicon tranm. NPN 400 MHz 2 N 3011 T39 30 RF. Ger. PNP itransistors 2 N 1303/5 TO-5 14030 Dual tranaistora 6 lead TO-\% 2 N 2060
T143 25 gillcon trans. plastic TO-1s A.F. Be'113/II4
$[14420$ gilicon traus plastie TO-5 BClis
$73 A$ SCR. TO86 up to 600 P1S
20 Unljudetion transistore almilar (o TLA43
$147-10$ T0220AB plastic triacs $60 \mathrm{~V} 6,1$
1489 NPN SH. power translstons like 2 N 305 s
$1: 4912$ NPN Bil. platilc power trans. 60W like 2n5294/5296
Chide No's nentloned above are given as n guide, to the
the pak. The devices themelver are normally unmarked.

EXCLUDE VAT
 AT 25\% TO ALL
 *ADD 8\% NO VAT
 add 20p overseas
 Minimum order 75p

VOLTAGE REGULATORS

TO. 3 Platic Encapsulation A.7805/L129 5V (Equiv. to MV R5V) 21.25 p uA. $7812 / \mathrm{L} 130 \mathrm{12V}$ (Equls. to MVRI2V) 21-25p 1.4.7815/L181 15V
(Equiv. to MVR15V) 81.25 p uA. 781818 V
(Equiv. to MVR18V) $\$ 1-25 p$

THYRISTORS

PIV	0.6 A	0:8A	IA	3.4	SA	5 A	7A	10A	16A	30A
	T018	T092	TOS	T066	TO66	6 TO6\&	TO48	T048	TO48	T048
10	0.18	0.15								
20	0.15	0.18	--							
30	0.19	0.22	-	-						
50	0.22	0.28	080	0.25	0.86	0.88	$0 \cdot 48$	0.51	0.54	1.18
100	0.85	0.30	0.25	0.25	0.48	0.48	0.51	0.57	0.58	$81-48$
150	0.81	0.38	-							
200	0.38	0.44	0.25	0.80	0.50	0.50	0.57	0.48	0.68	21-88
400	--	--	0.80	0.89	0.55	0.57	0.62	0.71	0.77	E1.79
600		-	$0 \cdot 39$	0.48	0.69	0.69	0.78	0.99	0.80	
800	.	-	0.88	0.85	0.81	0.81	0.82	21.28	21.88	84.07
				D		5				
Typr	Price		Type	Price		Type	Price		ype	Price
AA119	0.08		BY101	0.12		BYZ16	0.41		A85	0.09
AA120	0.08		BY105	0.18		BY217	0.88		A90	0.07
AA129	0.08		BY114	0.18		BYZ18	0.88		A91	0.07
AAY30	$0 \cdot 09$		BY124	0.18		BYZ19	0.88		A95	0.07
AAZ13	0-10		BY126	0.15		CG62			A 200	0.07
BA100 BA116	$0-10$		BY127	0.16		OA91Eq	0.06		A 202	$0 \cdot 07$
BA116	0.21		BY128	0.16		CG651 (0	A70-		D10	0.08
BA126 BA148	0.29		BY130	0.17		OA79)	0.07		D19	0.08
BA148	0.15		BY133	0.21		OA5 Short			N34	0-07
BA154	0.12		BY164	0.61		Leads	0.81		N84A	0.07
BA 155	0.15		BYX38/	1300.48		OA10	0.14		N914	$0-08$
BA156	0.14		BYZ 20	0.88		OA47	0.07		N916	0.08
BA173	0.15		BYZ11	0.31		A 70	0.07		N4148	0.06
B8104 BY100	0.15		BYZ12	0.81		OA79	0.07		3021	0.10
BY100	$0 \cdot 16$		RYZ 3	$0 \cdot 2$		OA81	0.07		8951	0.70

QUALITY TESTED PAKS

Pal Mo.

Quality Tented Pets
Q 120 Rell epot transistors PNP
Q 2 If White suot R.F. transistors PNiP
Q 34 OC 77 type tranastors
Q 4 i Matchel transistors OC44/45/81/H1)
Q 54 OC 75 transistura
5 OU 72 trankistora
4 AC 128 tranglators PNP high gain 4 AC 126 tranaistors PN?
7 OC BI type tranamators
$\begin{array}{ll}\text { Q } \\ \text { Q } & 7 \\ \text { OC } & \text { Ol type transiatork } \\ \text { Q10 } & 7 \text { OC } 71 \text { type translatorn }\end{array}$
Q11 \& AC 127/128 Completaentary lairw PNP/NPN
Ql: 3 AF 116 type transisturs
Q13 3 AF 117 type transistora
Q14 3 OC 171 H.F. type transistors
Q15 7 2N 2926 Ril. Epoxy transiators mixed
coloury \cdots gT. 141. \& 3×8 T. 140
Q18 4 MADT'S\& \times MAT 100 \& $2 \times$ MAT 120
Q19 3 MADT'S $2 \times$ MAT 101 \& $1 \times$ MATIUI
Q20 4 OC $44^{\text {Germanium transistore A.F }}$
Q21 4 AC' 127 N PN Germaniun transistore
Q22 20 NK T transisturs A.P. R.F. curled
Q23 10 OA 202 silicon diodea mub-min
Q24 8 OA 81 diodes
Q25 15 IN 914 Sllicon dionles $75 P$ PIV 75 mA Q26 8 OA95 Germaniun diodes sub-minIN69
Q27 $\quad 2$ 10A 600 PIV sillcon rectlfiers 18425 B Q28 2 silicon power rectiflers BYZ 13
Q29 48 il . transiaturs $2 \times 2 \mathrm{~N} 696,1 \times 2 \mathrm{~N} 697$. $1 \times 2 \mathrm{~N} 698$
Q30 7 gilicon awitch transiatory 2N706 NPN Q31 6 silicon switch tranulstors 2N708 NPN Q32 3 PNP 8il. trang. 2×2 N1131, 1×2 N1 132 Q33 3 Eilicon NPN transtatore 2 N 1711
Q34 7 sil. NPN trams. $2 \mathrm{~N} 2369,500 \mathrm{MHz}$ (1.ode P397)

Q35 3 Alicon PNP TO-5 $2 \times 2 \mathrm{~N} 2904 \& 1 \times$
Q36 $\quad 7$ 2N3646 TO-18 plastic 300 MHz NPN
Q37 3 2N3053 NPN silicon transistors
Q38 5 PNP transistors 3×2 N 3703.2×2 N3702 Q39 5 NPN tranbistors $3 \times 2 \mathrm{~N} 3704,2 \times 2 \mathrm{~N} 3705$ Q40 5 NPN tranglitors $3 \times 2 \mathrm{~N} 3707.2 \times 2 \mathrm{~N}^{2} 3708$ Q41 3 Platic NPN TO18 2N3904
Q43 5 BC 107 NPN tramsiatore
Q44 5 NPN translators $3 \times$ BC $108,2 \times$ BC 109 Q45 3 BC 113 NPN TO-18 translators
Q46 3 BC L15 NPN TO- 5 tranelators
Q47 4 NPN high gain transistors $2 \times$ RC 157. NPN high
$2 \times$ BC 168
$\begin{array}{ll}\text { Q48 } & 3 \text { BCY 70 PNP transistors TO-18 } \\ \text { Q48 } & 3 \text { NPN transistory } 2 \times B F Y ~ \\ 51,1 \times \text { BFY }\end{array}$ Q49 3 NPN transiatory $2 \times$ BFY $51,1 \times$ BFY

Q50
7
7 Q50 7 BSY 28 NPN 4 B8Y 95A NPN trangletors 300 MHz . Q52 8 BY 100 type silicon rectiflers Q53 25 Bil. \& Germ. trans. mixed nll marked Q54 6 TIL 209 Red LED $.81 \cdot 20 *$

UNTESTEDT.T.L. PAKS

Manufacturers "Fall Outs" which Include Functional and part Functional Units. These are clacsed as tout-ot spec" from the makers' very rigid specifications, but are ideal for learning about I.C.'s and experimental work. $\begin{array}{cr}\text { Palinto Contenta } & \text { Price } \\ \text { UICOO }=12 \times 7400 & 0.60\end{array}$ $\begin{array}{rl}\mathrm{UICO1}=12 \times 7401 & 0.60 \\ \text { UICO } 2=12 \times 7402 & 0.60\end{array}$ UICO $2=12 \times 7402$

UI
UI
UIC04 $=12 \times 7404$
UIC05 $=12 \times 7405$
UIC06 $=8 \times ; 406$
UIC07
UIC

UIC

MAMMOTH I.C. PAK

APPROX, 200 PIECES

Assorted fall-out integrated circult, including: Ligic74 merjes, Linear. Auslio and D.T.L. Many codeil devicea but aome unmirked-you to jitentity.

OUR SPECIAL PRICE 81.80 D

WORLD SCOOP

JURBO SEMICONDUCTOR PAK
Traphistors-fierm. and gillcon. Recilfiera-binley Triacs-Thyri
AND CODED
APPROX 100 PIBCES enormous raving-ur a fintartic bargain PAK and an every pak.

UNTESTED LIN PAKS

Manufucturers .-Fall Outs" which include Functional and part Founctional Units. These are clawed at 'out-otspec from the makers' very rigid ppectfcutions, but are Ideal for learning about. I. .'.'a and experimental work. Páㅡ№. Contents

Price
ULIC709 $=10 \times 709$
ULIC710=7 $\times 710$
ULIC741=7 7×71
ULIC747= 5×747
ULC748 $=7 \times 748$

C280 CAPACITOR PAK

Containing 75 of the $\mathbf{2} 280$ range of capacitore absorted In values ranging from -0IuF to $2 \cdot 2 \mathrm{uF}$. Complete with

FANTASTIC VALIU
OFLY £1-80p.

SIL. G.P. DIODES

300 mW 40 PIV (mjn) AUB-MIN FULLY TESTEJ Ideal for Organ builders
80 for $50 \mathrm{D}, 100$ tor $\$ 1.50,500$ for 25,1000 for 39.

G.P. SWITCHING TRANS

T018 8IM. TO 2N708/8 B8Y87/28/95A
All usuable devices. No open and ahorts- ALBO AVAILABLE IN PNP similar to 2 N 2906 , BCY 70 2010250 p .50 tor 81,100 for $\$ 1.80,500$ tor 88,1000 for 214.

When ordering please stato NPN ar PNP
G.P. 100

30 WATT GFRMANIUM TO3 METAL CASE Vobo 80 V , Vceo $50 \mathrm{~V}_{\mathbf{*}}$ IC 10A, Hie $\mathbf{3 0 - 1 7 0}$ replaces the majortty of Germanium power Tranglators ln the OC, AD NKT range.
AD NKT
$1-24$
25-99
$100+$
870
G.P. 300

115 WATT BILICON TO3 METAL CABE:
Vebo 100V, Veen 60V, IC 15A, Hfe, 20-100 suitable seplacement for $2 \mathrm{~N} 3055, \mathrm{BDYI}$ or BDY 20

$1-24$	$25-99$	100
50 p	48 p	46 p

INDICATORS
3015F Minitron 7 Segment Indicator 81.11 p *
MAN 3M L.E.D. 7 SEGMENT DISPLAY 0.127° High Characters 81 -76p半

ZENER DIODES
FULL RANGE IN STOCK
VOLTAGE RAMGE 2-88V
400 mw

1.5 w
17 p

10 WF
30 D

Complete the coupon and we'll sendyou our complete, new catalogue.

HEATHKIT

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit, every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now (enclosing a 10 p stamp for postage) and we'll send you your copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radiogear, hi- f_{1} equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading.

And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs. Heath (Gloucester) Limited, Dept. PE-95, Bristol Road, Gloucester,GL2 6EE. Tel:Gloucester (0452) 29451.
DC. $5 \mathrm{MHz}, 100 \mathrm{mV}$ uscilloscope

AM/FM 60 watt r.m.s. stereo receiver.

Deluxe digital alarm clock.

PRIVATE INNOVATORS

What other branch of applied science procreates ideas as abundantly as electronics? Considering the number as well as the variety of interesting and useful applications it has fostered, electronics must stand supreme. This fertility has made electronics a household word. Familiar in a superficial sense through its widespread involvement with ordinary everyday affairs, electronics is still mysterious though to the greater part of the populace so far as its innermost workings are concerned.

Because of this technical barrier, it probably remains the popular view that all worthwhile ideas and inventions in the realm of electronics must originate within industry or other professional establishments. This is obviously true of most of the major and more significant developments in the history of applied electronics. Yet the great achievements of organised research and development, whether in private enterprise or public service areas, must not be allowed to overshadow or obliterate the genuine services rendered by private inventors in furthering the wider and often more down-to-earth use of electronic devices, circuits and systems.

One of the strengths of electronics arises from the fact that the subject is no closed shop. Throughout its history electronics has always attracted private experimenters and innovators. The amateurs of the earlier days were comparatively few and many of them showed remarkable devotion as well as rare technical astuteness in pursuing a new and little understood subject, and one that was then hemmed in within narrow confines. With subsequent development and progress, the field opened up increasingly for private endeavour. The coming of solid state devices finally produced the great breakthrough and enabled electronics to become established as the widely based technology of limitless utility it is today.
With this broadening out of the functions of applied electronics the opportunities and scope for the private individual likewise increased enormously. Now that electronics had become a tool of infinite application, the amateur could enter into the innovation area as never before; his awareness of common, or not so common, needs and problems in ordinary life leading to the harnessing of circuits to previously unheard of or undreamt of uses. And the past couple of decades have certainly shown how amateur imagination can play a valuable part in the full cultivation of what is potentially the most useful of all practical sciences.
It is therefore highly gratifying whenever industry shows that it recognises the value of the vast "Think Tank" that amateurs collectively can provide. Practical Electronics is especially delighted that one of Britain's top electronics firms, The Plessey Co. Ltd., has now joined with this magazine in sponsoring a unique kind of competition intended to tap this "Think Tank". Our readers are not likely to be short of ideas, and we look forward to a bumper crop of novel suggestions for useful and viable applications of a given circuit. Substantial rewards are waiting to be won, which should help to stir the imagination.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor G. GODBOLD Technical Editor R. W. LAWRENCE, B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R, BROWN, Classified Phone: 01-634 4301

Editorial \& Advertising Offices: Fleetway House, Farringdon St. London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

For many years. time lapse photography has been an invaluable aid to the scientist. but to the ordinary photographer armed with a cine camera, it can open up a whole new field of beautiful and often strange effects. For example, a green rose bud may be transformed into a magnificent deep red rose in a matter of seconds. while at the other end of the scale. a forest of mustard and cress may appear as if by magic to rise from a seething mass of seeds

But time lapse photography is by no means confined to plant life. Sunrises and sunsets provide good subjects, and even mould growing on a slice of damp bread can be quite fascinating!

BASIC PRINCIPLES

Any cine camera with the facility for exposing a single frame of the film with each operation of the shutter relcase. can be used in conjunction with the unit to be described, to effectively compress events lasting hours or even days into a few seconds on film.

The usual way to produce this effect is to reduce the speed of the film while in the camera, and project it back at normal speed. Consider the common 8 mm cine camera. which usually runs at a speed of about 16 frames per second. If we wanted to compress 24 hours of filming into 15 seconds. we would want to take a

[^2]total of $16 \times 15=240$ frames in 24 hours, which is one frame every 6 minutes.

To meet such requirements, the Time Lapse Controller was designed to provide a reliable automatic method of operating the camera at pre-set intervals. Many subjects to be photographed will require artificial lighting, and since leaving photoflood lights on continuously is wasteful, the facility has been incorporated in the unit to electronically switch up to 1 kW of lighting throughout the period of each exposure

The unit is connected to the camera via a cable release, and the time between successive exposures can be varied continuously over the range 10 seconds to 48 minutes.

CIRCUIT DESCRIPTION

The complete circuit of the Time Lapse Controller is shown in Fig. I. The requirements for this circuit are that during each cycle in should first switch on the lighting, and then allow approximately three seconds for the lights to reach their full intensity, after which a solenoid is to be operated for about a second to release the camera shutter, followed a second or so later by the lights switching off.

555 TIMER

The basic timing element of the circuit is the NE555V integrated circuit, IC1, which is used in an astable mode. The mark-to-space ratio of the
squarewave output can be varied considerably by the two controls S1 and VR1; one cycle is shown in Fig. 2.

When the output of IC1 is low, TR2 is driven to saturation, switching on the indicator l.e.d. D5 and the triac CSR1. This in turn switches on the photoflood lighting. (A triac conducts with either a positive or negative gate signal regardless of the voltage polarity across its MT1 and MT2 terminals.) The indicator l.e.d. is useful as it shows when the solenoid is about to operate when no lighting is plugged into the unit. Thus the lights are on for about 5 seconds, determined by the pre-set potentiometer VR3, during each cycle.

DELAY

TR3 is an inverting buffer stage. As soon as the collector voltage rises, C3 begins to charge up through R22 and VR4. Due to the voltage drop across the silicon diode D6, TR4 does not begin to conduct until the voltage across C 3 exceeds about 1 volt.

The Schmitt trigger input to the monostable IC2 is used so that the voltage at TR4 emitter has to reach a certain threshold voltage before the monostable is triggered. Thus the purpose of C3, D6, TR4, and associated resistors, is to delay by about 3 seconds the triggering of the monostable, once the lighting has been switched on.

Once triggered, the monostable remains in its unstable state for about a second, determined by C4 and VR5. During this period TR5 is saturated, turning on the triac CSR2, which operates the mains solenoid.

Fig. 2. Waveforms for one cycle of operation

The solenoid actuates the camera shutter via a cable release. Shortly afterwards the output of ICl goes high, switching off the lights and completing the cycle.

POWER SUPPLY

TRI and associated components, operating in an emitter-follower arrangement, form a simple stabilised power supply, giving approximately 5 volts from a $9-0-9$ volt 100 mA miniature transformer. The 1.e.d. D4 is the mains-on indicator.

Fig. 1. Circult diagram of Time Lapse Controller

Front panel arrangement of the time lapse controller

The circuit takes its maximum current of about 180 mA when both triacs are conducting. With both triacs off, the quiescent current is in the region of 50 mA .

COMPONENTS

The triac CSR 1 controlling the lights is rated at 6 A , r.m.s. at $\pm 400 \mathrm{~V}$ at 75 degree C . so it is capable of switching about 1.4 kilowatt of lighting at mains voltage. It would probably be wise to consider one kilowatt the maximum. since no heat sink is used. When switching on one kilowatt for 5 seconds in every 10. the triac does not get sufficiently hot to warrant the use of a heat sink.
It should perhaps be emphasised that good quality components should be used for the timing capacitors. in particular C2. The higher the leakage current of this capacitor. the less accurate will be the timing on the higher ranges of SI. rather defeating the object of using 2 per cent tolerance resistors.

CONSTRUCTION

The majority of the components are mounted on one printed circuit board measuring 7 in $\times 3$ in ($1.78 \times$ 76 mm). shown full size in Fig. 3. and the component layout is shown in Fig. 4.
The author advises the use of sockets for the i.c.s if only to provide a simple method of testing other 555 's and 74121 s!
The usual care must of course be taken with the orientation of the semiconductors and capacitors. A TOS cooling clip is essential for TRI.

TRIAC MOUNTING

The triacs are mounted through $\frac{\mathrm{in}}{}$ holes drilled in the circuit board. The cases of the triacs will be live when the unit is in operation. so it is essential to ensure that there is adequate space between adjacent components. tracks on the board. and the case.

Fairly thick wire is used to join the main terminal I (MT1) of CSR 1 to MTI of CSR2. and a further short length of wire to join these MT1's to the +5 volt track on the circuit board.

COMPONENTS

Resistors	
R1	$1 \cdot 5 \mathrm{k} \Omega$
R2	150Ω
R3-R13	$510 \mathrm{k} \Omega 2 \%$
R14	$3 \cdot 3 \mathrm{k} \Omega$
R15	$2 \cdot 2 \mathrm{k} \Omega$
R16	$3 \cdot 3 \mathrm{k} \Omega$
R17	$10 \mathrm{k} \Omega$
R18	$39 \Omega \frac{1}{2} \mathrm{~W}$
R19	10Ω
R20	$39 \mathrm{k} \Omega$
R21	$12 \mathrm{k} \Omega$
R22	$22 \mathrm{k} \Omega$
R23	470Ω
R24	39Ω
R25	$1 \mathrm{k} \Omega$
All $\frac{1}{4}$ watt 5% carbon unless otherwise stated.	
Potentiometers	
VR1	$500 \mathrm{k} \Omega$ lin.
VR2-4	$10 \mathrm{k} \Omega$ S $/$ Min. Horiz. Preset
VR5	$220 \mathrm{k} \Omega$ S/Min. Horiz. Preset

Capacitors

C 1	$680 \mu \mathrm{~F}$	16 V	elect.	C5 $22 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C 2	$470 \mu \mathrm{~F}$	$6 \cdot 3 \mathrm{~V}$	elect.	$\mathrm{C} 6-90 \cdot 1 \mu \mathrm{~F} 16 \mathrm{~V}$
C 3	$100 \mu \mathrm{~F}$	10 V	elect.	polyester.
C 4	$10 \mu \mathrm{~F}$	10 V	elect.	

```
Semiconductors
    TR1 2N3053
    TR2 2N3906
    TR3-5 BC108
    IC1 NE555V
    IC2 SN74121
    D1-2 1N4001
    D3 5.6V 400mW Zener
    D4-5 TIL209 l.e.d. + clip
    D6 1N914
    CSR1 SC35D 3A 400V triac (Henry's Radio)
    CSR2 SC40D 6A 400V triac (Henry's Radio)
```


Switches

S1 1-pole 12-way rotary
S2 Double-pole on/off rocker switch (5A min.)

Solenoid

Westool type MM6, mains operated solenoid. (From Electro-Tech Components Ltd., 315/317, Edgware Rd. London W2)

Case
Instrument case size $235 \mathrm{~mm} \times 190 \mathrm{~mm} \times 90 \mathrm{~mm}$ type U. (From H. L. Smith \& Co. Ltd., 287/289 Edgware Rd., London W2 1BE)

Transformer

T1 Miniature mains transformer. $9-0-9 \mathrm{~V} \quad 100 \mathrm{~mA}$

Miscellaneous

l.C. sockets; T05 cooling clip; two 20 mm fuse holders; 5 A fuse; 250 mA fuse; 13 A flush wall mounting socket; Bulgin mains connector (plug \& socket); two knobs, cable release; p.c. board; aluminium for brackets; s.r.b.p. board and hardware for mounting solenoid.

CIRCUIT BOARD DETAILS

Fig. 3. Printed circuit board master

FIg. 4. Component layout

Components mounted on the printed clrcuit board and positloning of the transformer on the L-shaped heatsink

CASE

The whole unit is housed in a $9 \frac{1}{4} \times 7 \frac{1}{2} \times 3 \frac{1}{2}$ in $(235 \times 190 \times 89 \mathrm{~mm})$ aluminium case with a sloping front panel and an attractive hammered silver finish. Fig. 5 shows the layout inside the case. The front panel can be finished off with Letraset and protected by a coating of clear lacquer to give a professional appearance.

INTERIOR LAYOUT

The circuit board is fixed vertically at the deep end of the case, with the components facing the ventilation slot. The C2 end of the board is attached to the side of the case by a $\frac{1}{2} \times \frac{1}{2} \times 3$ in $(12 \times 12 \times 76 \mathrm{~mm})$ long " L " shaped bracket made from a piece of aluminium sheeting. The opposite end is held by a $\frac{1}{2} \times 2 \frac{1}{2} \times 3$ in $(12 \times 63 \times 76 \mathrm{~mm})$ long "L" shaped bracket. This second bracket provides a convenient position on which to mount the transformer. In the prototype a small plate of aluminium with a flange was sandwiched between the transformer and bracket to help dissipate any heat produced by the transformer.

Close-up view of the solenoid

EARTHING

It must be emphasised that although the case is earthed, neither the positive nor the negative supply lines are connected to earth, but the positive supply line is connected to mains neutral.

COMPONENT POSITIONING

The resistors R3 to R13 are mounted directly on the single-pole 12 -way rotary switch S . The two light emitting diodes are held in clips mounted in holes in the positions shown in Fig. 5. The mains on-off switch $\mathbf{S} 2$ is a double-pole rocker type rated at 5A or more. A Bulgin mains connector (chassis mounting plug and line socket) was used to give the unit a neater overall appearance. This can be mounted on one side of the cas together with the two 20 mm fuse holders.

WIRING

Insulated wire capable of carrying 5A must be used to connect the MTl's of the triacs to mains neutral via the switch S2. A standard 13A flush wall mounting socket is mounted on the front panel, into which the lighting can be plugged as required. 5A wire must again be used to connect MT2 of the triac CSR 1 to the terminal marked neutral on this socket, and again from the terminal marked live on the socket to the mains live.

THE SOLENOID ASSEMBLY

The solenoid recommended for this project has a pull of 31b, which should be sufficient for even the most stubborn shutter release.

Fig. 6 shows the method used to connect the solenoid to the cable release. It is important to be able to adjust the probe depth setting so that the camera operates smoothly, and is not damaged by the probe depth being too great. This aim is not too difficult to achieve with the specified solenoid, making use of the 4BA tapped holes in the base and end of the solenoid housing.

PLATFORM

First a platform is made out of a piece of s.r.b.p. or Perspex, approximately $4 \frac{1}{2} \times 1 \frac{3}{4}$ in $(115 \times 45 \mathrm{~mm})$. Two slots about $\frac{3}{4}$ in (19 mm) long have now to be made in it to correspond with the two tapped holes in the solenoid base. The slots are best made by drilling a series of $\frac{1}{\frac{1}{2} \text { in holes and then filing down the jagged }}$ edges. The solenoid can then be attached to the

FIg. 5. Interior layout and Interwiring details
platform by two short 4BA bolts. These bolts should not be screwed in all the way but be just loose enough to allow the solenoid to move reasonably smoothly up and down the slots.

Before the unit is put into operation, it will be necessary to glue the ends of the bolt shanks into the tapped holes with a strong adhesive such as Araldite, otherwise they may tend to shake loose due to the 50 Hz vibration of the solenoid. The platform can now be mounted at each corner on a short pillar or a couple of nuts, in the position shown by Fig. 5.

The solenoid is moved along the platform slots by a short length of 4BA studding, one end of which is screwed through a tapped hole at the end of the solenoid. A 4BA bolt is pushed through a hole in the side of the case in line with the studding, to which it is attached by means of a 4BA tapped pillar or a spacer filled with plenty of Araldite. Thus by turning the head of the bolt, the solenoid can be moved towards or away from the side of the case.

CABLE RELEASE

The next step is the cable release, which should be as long as possible; 20 in should be considered the minimum. The button at the top of the cable release shaft has to be removed, with some cable releases it simply screws off, with others it will have to be sawn off.

A suitably sized hole is drilled in the side of the case in line with the solenoid plunger, so that the collar of the cable release fits snugly into it. The gap between the solenoid and cable release is best bridged with a thin metal rod. Some type of connectors are required to join the cable release to the rod to the solenoid.

Parts from a dismantled terminal block provide a good solution, but probably Araldite will again be required to stop them working loose.

SETTING UP

Before switching on, the mains wiring must be carefully checked to ensure that the live and neutral have not become interchanged. A neutral wire should lead to the triacs, and a live wire to the solenoid and the lights socket.

If all is well, set all preset potentiometers to approximately their mid-positions. Set S1 to position 1, and set VR1 to minimum resistance. Replace FS1 by a 1A fuse for the initial testing, and plug a low wattage lamp such as a table lamp into the lights socket.

Check that the +5 V or 0 V supplies are not connected to earth, and ensure that the case is earthed.

Remembering that the cases of the triacs will be live, switch on. Within about 15 seconds, the table lamp should come on for several seconds together with the lights indicator, l.e.d. D5. Sometime during the period that the lamp is on, the solenoid should be actuated for about a second. This cycle should be repeated at approximately 10 second intervals.

PRESETS

Preset VR3 can now be adjusted until the period during which the lights are on in each cycle lasts 5 seconds. Now adjust VR4 to produce a delay of

When you saw the Portable Gas Ignitor in the July issue of Practical Electronics did you immediately think of other applications for this particular circuit? Can you suggest any ways in which the device could be put to other uses in industry or in the home? If so, here's an opportunity to put your ideas to good advantage. And if you missed the July issue, not to worry-the circuit and the essentials of its operation are given on this page.

In association with the Plessey Company, we present this fascinating challenge and offer prizes totalling over $£ 500$ in value for really practicable and ingenious ideas. And a chance, possibly, to see your idea in production! So get that grey matter plus your know-now of electronics working, and meet our challenge right away!

HOW TO ENTER

The contest is for practical applications of the Portable Gas Ignitor Circuit-either utilising the original circuitry or including design modifications to increase its scope.

To remind you, the operation of the Ignitor is:
The application of a high voltage across a pair of electrodes produces an electric field in the gas between them, this leads to ionisation and breakdown of the gas producing a spark across the gap. When the circuit of the ignitor is completed current flows from a battery into a transistor oscillator circuit and the resultant pulses of energy charge a capacitor to approximately 300 volts The capacitor is then discharged by an electronic switch into the primary of an H.T. transformer which produces the necessary voltage to cause the sparks at the electrode. The design enables a steady stream of sparks at $10,000 \mathrm{~V}$ to be generated with complete safety and employing only a single 1.5 V dry cell as the power source.
Entries must be written/drawn clearly on one side of plain paper with the entrant's full name and address at the top of every sheet. Each entry to comprise:
(a) a brief summary of the idea (about 25 words)
(b) any such further lucid description, drawings, sketches or circuit diagrams you consider the judges may need to form the best appraisal of your idea. DO NOT send actual models.
Each entry must have a properly completed entry coupon firmly affixed to the BACK of the summary.

SECOND CHANCE!

Another free entry coupon will appear in the October issue of Practical Electronics.
The closing date is Monday October 13, 1975, to allow plenty of time for you to obtain the second entry coupon from our next issue and post two different ideas in one envelope if you wish.

RULE8 AND CONDITION8

There is no entry fee nor limit to the number of entries a reader may submit but each entry must be accompanied by a proper printed entry coupon. cut from PRACTICAL ELECTRONICS, and must bear the entrant's own full name and address. Entries will also be accepted from groups-in which case the entry coupon must be completed by one of the group and the names and addresses of all the other members listed on a separate piece of paper affixed, with the entry coupon, to the back of the summary.

All accepted entries will be examined by a panel of expert judges, including Plessey engineers and the Editor of Practical Electronics, and asssesed on (a) originality of the idea, (b) technical merit, (c) practicability, (d) economic viability, (e) market potential. The prizes will be awarded for the best entries in order of merit, No entrant may win more than one award. In the event of the same idea being submitted by two or more entrants, presentation of the entry (clarity, best expression, etc) will decide such winner(s) or winning order.

In the event that the judges consider there are not enough entries of a sufficiently high standard, the Editor reserves the right not to award any prize(s) at his discretion.
Entries arriving after closing date will not be considered, nor will any received that are illegible, not wholly understandable are not accompanied by a properly completed entry coupon or in any other way do not comply exactly with the instructions and rules.
No responsibility can be accepted for entries lost or delayed in the post or otherwise; proof of posting will not be accepted as proof of receipt. No entries can be returned.

Copyright of all entries shall become the property of IPC Magazines Ltd., publishers of Practical Electronics. Ideas submitted may be used or adapted by the competition sponsors for production or other commercial use. Where appropriate, additional payment will be automatically negotiated with the entrant. Entries will not be published prior to evaluation in order to comply with legal safeguards.
Decisions of the judges, and of the Editor in all other matters affecting the competition, will be final and legally binding. No correspondence will be entered into nor interviews granted.
Winners will be notified by post and brief details of winning entries published later in Practical Electronics. The Editor reserves the right to amend and/or re-draw any sketches or diagrams of prizewinning entries for publication purposes.

The contest is open to all readers in Great Britain, Northern Ireland, Eire, Channel Isles and Isle of Man except employees of IPC Magazines Ltd., the Printers of Practical Electronics, and the Plessey Co. Ltd. and its subsidiary companies; and the families of all such employees.

Post your entry in a sealed envelope to: Ignitor Application Contest, PRACTICAL ELECTRONICS, 136 LONG ACRE, LONDON, WC2E 9QP, to arrive not later than October 13, 1975 the closing date.

TIME LAPSE PHOTOGRAPHY

continued from page 717

3 seconds between the lights coming on and the solenoid starting to operate. Next adjust VR5 so that the solenoid operates for a period of one second, leaving one second between the solenoid switching off and the lighting switching off. Thus the camera shutter will be actuated only after the lighting has had time to reach its full intensity.

Now turn S1 to position 2, and with VR1 at minimum resistance, adjust VR2 until the time between subsequent cycles is exactly 4 minutes and 10 seconds. $S 1$ will then be calibrated in 4 minute steps, and VR1 will be variable over the range 10 seconds to 4 minutes.

When the calibration has been completed, the 5A fuse FSI can be replaced, and the unit tested with larger loads up to a maximum of one kilowatt.

CONNECTING UNIT TO CAMERA

Turn the probe depth setting screw on the side of the case anticlockwise to push the solenoid to the far end of the slots, and connect the cable release to the camera. Now slowly screw up the probe depth setting screw, with the solenoid operating, until the setting is just sufficient to operate the camera shutter. Take care not to have the setting too deep or damage may be caused to the camera mechanism.

THE UNIT•IN OPERATION

If H hours of filming is to be compressed into s seconds of projection time, then the time between frames required is:

$$
\frac{60 \times H}{P \times s} \text { minutes }
$$

where P is the speed of the film when projected (i.e. 16 or 18 frames per second).

If the filming is to continue throughout the day and night, the light falling on the subject from the photoflood lighting must be of far greater intensity than any daylight that may reach the subject. Otherwise the exposure of the finished film will be inconsistent. Artificial light film should of course be used.

Now with a certain amount of patience (since it takes a very long time to expose a 50 foot length of film, taking each frame separately!) you will be able to produce some fine examples of time lapse photography.

PRACTICAL ELECTRONICS

With effect from the October 1975 issue the price of Practical Electronics will be 35p

motonists....SAVEIIL

 wru tue P. EENGINEANAVSER

An accurate portable tune-up toal for economy motoring Checks $\quad \star$ Revs
\star Dwell
\star Ignition Timing
\star Condenser, Ohms/Continuity, Volts
For 1, 2, 4, 6 or 8 cylinder engines, 6 or 12 V systems
\star And it includes a battery charger
 their future role? These are just a few of the important points raised in our new series starting next month

BUIILING A DICITAL WRISTWATCH KIT

Also - Your second chance to enter the PE/Plessey challenge competition

PRACTICAL

OCTOBER ISSUE ON SALE SEPTEMBER 12, 1975-PRICE 35p PLACE A FIRM ORDER WITH YOUR NEWSAGENT TO AVOID DISAPPOINTWENT

B Y FRAMK W. HYDE

RIFT ON MARS

The huge Coprates canyon on Mars has puzzled planetary scientists ever since the composite picture of the red planet was made from the many pictures sent back by Mariner 9. The canyon is some $2,700 \mathrm{~km}$ in length, 150 km wide, 6 km deep and stretches from the Tharsis plateau toward the east.

Recently two papers have dealt with the subject in a new way. These appeared in "Earth and Planetary Science Letters'

One of the papers by D. McAdoo and J. Burns, suggests that the cause of the great rent on the surface of the planet is the result of tensions resulting from the outer shell movement. They indicate that in their opinion the stresses were caused when the planet tried to adjust itself to accommodate with the changing position of the poles. The change that is meant here is the wandering position of the poles.

This changing of position would require that the planet's shape also changed as the outer layers sought to adjust the curvature required by the spin on the polar axis. It is this adjustment that could have resulted in the creation of the canyon.

McAdoo and Burns claim that the canyon's proximity to the equator, it's shape, particularly the s-shape, and the east to west alignment all point to "membrane" stresses. This is to some extent supported by other configurations such as the quasicircular formations in the polar regions.

An alternative view is taken by V. E. Courtillet and C. J. Allegre of the Institute de Physique du Globe and M. Mattauer of the Laboratoiire de Géologie Structurale.

They suggest that at the western end of the canyon there may be a junction of three tectonic plates. A "triple junction" as it is known.

One of the plates would be the area of the Tharsis plateau with its numerous volcanoes. Another could be in an area north of the rift and the third could be south between Coprates and the region of Pheonicus Lacus. This is a situation where the transform fault would be similar to the Aden Rift on the Earth.

There will be considerable controversy in this matter in the future for now that two positive suggestions have been made sides will be taken. Certainly there is food for thought in this matter of Mars, for there is a marked difference between its two hemispheres.

The division in this case, however, is not north and south of the equator but along a line at an angle of 50 'degrees to the equator. One hemisphere is heavily cratered, the other is only lightly sprinkled but contains the volcanoes. There is a great contrast between them and this has led to speculation as to the nature of the present state of the evolution of the planet. It is possible, some planetologists say, that Mars could be at a stage where there is one large continent and one ocean basin.

NEW COMET

The period of the first comet discovered by Dr R. West and then by Dr Ikemura of Tokio and Dr L. Kahoutek of Hamburg, is now known to have a period of six years. It is a twelfth magnitude object.

The details of its period has been calculated by Dr R. G. Marsden who says that the comet was at a perihelion on February 26 and was 218 million kilometres from the Earth. It passed within 1.5 million kilometres of Jupiter in March 1972 which probably captured it into near solar orbit at that time. It is now named West-KohoutekIkemura in the catalogues.

BIOLOGICAL LINKS WITH SPACE

From the USSR comes some interesting data about the effects of supernovae on the flora of the Earth. A botanist from Leningrad. Nikolai Lovelius of the Institute of Botany, USSR Academy of Sciences, has demonstrated these effects by using the stump of an 807 years old Juniper tree. The stump came from the slopes of Zerevshan in the Pamir-Altai range of mountains in Turkestan.

This is an area where living organisms are responsive to the slightest changes in the medium.

Lovelius carefully analysed the volume and distribution of the annular rings and discovered that there were three occasions during the lifetime of the tree when its growth was slowed down. An examination of the cosmic explosions revealed that the time of the tree's slow growth periods coincided with major cosmic events.

The first was at the time of the Tycho Brahe supernova (1572), the second at the time of the Kepler supernova
(1604) and that of the third at the time of Cassiopea-A (1700). The growth of the tree was noticeably slower in the first few years after the events. This continued for 15 years before full recovery was reached.

Lovelius does not offer any particular explanation of this new link between outer space and the Earth, but no doubt there are other trees of great age which could be used for study.

VENUS PROBE

The automatic interplanetary space station Venus-9 was launched from the USSR in June. The main aim of this mission is the further exploration of its environment.

The spacecraft will, during its flight along an Earth-Venus' trajectory, carry out research into the physical characteristics of the interplantary space including the magnetic fields, solar wind and the ultraviolet radiation.

The Venus-9 is a new type of spacecraft developed for the exploration of the planet. It was injected into an interplanetary orbit from an intermediate Earth orbit. The spacecraft is due to be within the vicinity of the planet in October next.

The flight is being directed from the long range communication centre of the USSR. Many new and novel features are on this vehicle and represent the best of Soviet technology since the launch of the first probe to Venus by the USSR in February 1961.

Venus approaches closer to the Earth than any other planet but this distance constantly varies which complicates launching. It is interesting to make a comparison about the accuracy required, which may be compared to using a rifle to hit a coin at a distance of one kilometre. Although the distance between the Earth and Venus varies between 118 and 85 million kilometres, Venus-9 will have covered around 370 million kilometres by the time of approach.

COSMOS SATELLITES

Two more Earth satellites have been launched by the Soviet Union, Cosmos 741 and Cosmos 742. The orbital elements are:

Cosmos 741
Revolution period: 89 minutes
Apogee: 246 km
Perigee: 210 km
Orbit inclination: 81.4 degrees
Cosmos 742
Revolution period: 89.8 minutes
Apogee: 375 km
Perigee: 189 km
Orbit inclination: 62.8 degrees
They were launched on May 29 and June 3 respectively.

Cosmos 741 carries a transmitter operating on 19.99 MHz in addition to the special equipment for space measurements. A feature on this satellite is a radio system for accurately determining the orbital elements.

OTPITAL I.C.ITSTER By W.H.DAVIES

IT is reasonable to assume that many readers of this magazine possess a transistor tester of one type or another and those who do will readily agree that the expense incurred to effect construction has been repaid ten-fold. Primarily, these testers proyided a facility for checking packs of untested and unmarked transistors available from component suppliers at reasonable cost and matching pairs of transistors by comparison of $h_{f,}$ measurements.

They also provide a confidence check procedure whereby a transistor can be tested prior to soldering in circuit.

Recent trends in constructional projects indicate the increasing use of logic integrated circuits and a need has arisen for a similar device on which the constructor can test a wide variety of the current range of i.c.s.

The unit described here does this. It provides a means of testing 14 and 16 pin dual-in-line TTL and DTL types, and light emitting diodes (l.e.d.s) provide a visual indication of the logic states. It is constructed in a box, either metal or plastic, the dimensions of which are determined by the physical size of the switches and associated sockets employed, and whether or not the tester is to be powered by internal batteries or from an external source.

It should be noted, however, that the changeover switches used need not be toggle types as small slider switches are available at low cost and these have an acceptable degree of etliciency. Patch cords are used to obtain the necessary combinations required to permit versatility of operation.

Fig. 1. This basic oscillator circuit can provide two differing frequencies dependent on the values of the two identical capacitors

COMPONENTS . . .

ResistorsR1 470』
470Ω
R3 to R8 330 6 off.
All $\frac{1}{8}$ W 2\%
Capacitors
C1, C4 $250 \mu \mathrm{~F}, 10 \mathrm{~V}$
C2, C3 $125 \mu \mathrm{~F} 10 \mathrm{~V}$
Integrated Circuits
IC1 BP932
IC2 BP936
Diodes
D1 to D6 TIL209 or HP5082
Switches
S1, S2, S3
DPDT slider or toggle, 3 offS4

Miscellaneous

Sockets SK1 to SK36, $2 \mathrm{~mm}, 36$ off. Plugs to suit. Batteries and holder, 4 off U11 or similar. Case, die-cast or plastic, $7 \frac{1}{2} \times 4 \frac{3}{4} \times 2$ in in model. $3 \frac{1}{2} \times$ 2 in Veroboard 0.1 in matrix, pins, nuts, bolts, spacers, wire, solder, etc.

THE OSCILLATOR

With the exception of a regulated 5 V d.c. power supply source, a pre-requisite for the tester is an oscillator capable of providing the necessary Q and $\overline{\mathrm{Q}}$ square 'wave logic. This is achieved by employing a standard multivibrator circuit derived from a DTL 930 series BP932 dual 4-input NaND gate. using the expanders with external R and C components as shown at Fig. 1.

The frequency (F) of such a multivibrator is given by the formula:

$$
F \bumpeq \frac{160}{C}
$$

where F is expressed in hertz and C in micro-farads.

Fig. 2. Circuit diagrams of the oscillator and I.e.d. drive
The oscillator, as constructed, provides a choice of fast (F) or slow (S) modes of operation by switching into circuit one of two values of $C, 125 \mu \mathrm{~F}$ or $250 \mu \mathrm{~F}$. The values are chosen so that the two frequencies are 1.28 Hz and 0.43 Hz respectively. In addition, the Q and $\overline{\mathrm{Q}}$ outputs are switchable so that the available logic may be Q and $\overline{\mathrm{Q}}$ as indicated by the socket labelling on the front panel. reversed Q for $\overline{\mathrm{Q}}$, or all one (Q or $\overline{\mathrm{Q}}$).

The general circuit diagram for the prototype board is shown in Fig. 2. The switch wiring for the $\mathrm{Q}-\overline{\mathrm{Q}}$ changeover is shown in Fig. 3.

L.E.D. DRIVE

A BP936 hex inverter with a 330 s load in series with the output of each gate supplies sufficient drive for the l.e.d.s. Gate inputs are via the l.e.d. drive sockets on the front panel. In Fig. 2 the I.e.d.s are shown as on the board with the i.c.s but in fact they, and switch SI, are mounted on the instrument front panel.

CONSTRUCTION

The oscillator and l.e.d. drive assembly is mounted on one piece of Veroboard measuring $3 \frac{1}{2}$ in by 2 in . with the copper strips running widthwise as in Fig. 4.

Fig. 3. The Q and \bar{Q} output switching for the various combinations of \mathbf{Q} and \mathbf{Q} required

Vero pins are used at the various interconnecting points to the front panel and batteries. These provide sufficient anchorage for interconnection wiring and soldering. For the prototype unit the author dismantled an old multisocket connector and used the individual socket elements as female connectors to the Vero pins; this made interconnecting relatively easy.

The switch connections and front panel layout are given at Fig. 5 which shows the wiring diagram for the reverse side of the front panel and the suggested location for the various sockets. The positioning of the oscillator and l.e.d. drive assembly and the battery holder are shown in the accompanying photographs.

Fig. 4. Component layout and Veroboard cutting details for the oscillator and l.e.d. drive circuitry

Fig. 5. General layout and wiring of the front panel viewed from the rear showing both switch connections and the wiring of the i.c. test socket patch sockets SK1 to SK14/16
 If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course.
This new style course will enable anyone to have a real understanding of electronics by a modern. practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you
how easily the subject can be mastered and add a new dimension not only to your hobby but also to your earning capacity.
This course is accepted by and used in a large number of schools and colleges and forms an invaluable grounding for professional training in the subject. All the training is planned to be carried out in the comfort of your own home and work in your own time. You send them in when you are ready and not before. These culminate in a final test and a certificate of success.

Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a professional test instrument that you willneed not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving

PLUS

 over buying a similar piece of essential equipment.

ALL STUDENTS ENROLLING IN OUR COURSES RECEIVE A FREE CIRCUIT BOARD ORIGINATING FROM A COMPUTER AND CONTAINING MANY DIFFERENT COMPONENTS THAT CAN BE USED IN EXPERIMENTS AND PROVIDE AN EXCELLENT EXAMPLE OF CURRENT ELECTRONIC PRACTICE

Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full detalls of enrolment.

- Brochure without obligation to:

BRITISH NATIONAL RADIO \& ELECTRONICS

- SCHOOL, Dept EL95
P.O. Box I56, Jersey, Channel Islands.

NAME .
ADDRESS. .
\qquad

FREE with Speaker Orders over $£ 7$

Alt units guaranteed new and perfact. Prompt despatch. Carriage and packing speakers 38peach. 12 in and up 50 each. speaker kits 75 e each ($£ 150$ par). tweeters and crossovers 25p

Send stamp for tree booklet Choosing a Speaker
Including VAT 25% on $\mathrm{Hi}-\mathrm{Fi}, \mathbf{8 \%}$ on PRO and PA
WILMSLOW AUDIO (Dept. PE)
WILMSLOW AUDIO (Dept. PE)

Loudspeakers. Swan Works, Bank Square, Wilmslow. Cheshire SK9 1HF Discount Radio, PA, Hi-Fi: 10 Swan Street. Wilmslow.
Discount TV. Hi-Fi: Swift of Wilmslow, 5 Swan Street. Wilmslow.

10 SWAN STREET, WILMSLOW, CHESHIRE, SK9 1HF
Cut-price pretectorded cassettes-send stamp for hist

THE RADIO SHOP

16 Cherry Lane, Bristol BS1 3NG Tel.: Bristol 421196. STD Code 0272

7047 seg. LED display 0-3in high, $\mathbf{5 1}-10$.
7077 seg. LED display 0.3 high. common anode. 90p.
477 seg. LED dispiay 0.6 in high . common NE555 Timer IC
741 Op amp IC. 8-pin DIL with data. 45 p .
ZN414 This is a 10 transistor TAF circuit in
TO18 can with data and circuit. 75 p .*
TBA800 Linear integrated circuit audio power amplifier. 2W with data, sop.
LATEST Decon-Dalo PC33. Quick Dri. etchresist pen. s0p.
$28-p i n ~ s o c k e t .55 p$.
CT7001 clock chip. $4.95 . *$
Catalogue 150 post paid
Please add 25% VAT. Remainder 8% Postage and packing 20p per order. Callers welcome.

devised for storing small
parts and components:
resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparene plastic drawers have label slots. ID and 2D have space dividers. Build up any size cabinet for wall, bench or table top.
BUY AT DISCOUNT PRICES!
SINGLE UNITS (ID) (Sins $\times 2$ itins \times 2tins). $\mathbb{2}$ DOZEN.
DOUBLE UNITS (20) (Sins $\times 4$ ins x 2tins), $\mathbf{6 3} 50$ DOZEN.
TREBLE (3D) $\mathbb{C 3} 50$ for 8 .
DOUBLETREBLE 2 drawers, in one outer case (6D2), $\mathbf{t 4} 40$ for 8 .
case (6D2), f4.90 for 8 .
EXTRA LARGE S1ZE (6DI) 44.50 for 8 .
PLUS QUANTITY DISCOUNTS:
Orders over 620 , less 5%.
Orders over $\mathbf{6} 60$, less 7%
PACKING/POSTAGE/CARRIAGE: Add 50p co allorders under $\mathbb{C} 10$. Orders $f 10$ and over, please add 10% carriage.
QUOTATIONS FOR LARGER QUANTITIES Please add 8% V.A.T. to total remittance

| FAA DUIFE (Dept. PE9). 124 Cricklewood |
| :--- | Tel $01-4504844$

PATCH CORDS

A minimum of 18 patch cords is desirable but not essential. However, at least two of these should be of the triple cord variety, i.e. three cords each having an individual banana plug at one end, but terminated into a common banana plug at the other.

OPERATION

Numbering the l.e.d. inputs 1 to 6 on the front panel from top to bottom, D4 becomes 1, D5 is 2 , D6 is 3 and so on.

On completion of the unit it is suggested that the Q and $\overline{\mathrm{Q}}$ sockets be tested for correct logic by patching these sockets direct to the l.e.d. drive socket. If the oscillator is functioning correctly the l.e.d.s will follow the logic and flash on and off.

With the patch cords still in this position proceed to test the FAST and SLOW modes of operation by operating the RATE switch. Then check the logic reversal facility by operating the $\mathrm{Q}-\overline{\mathrm{Q}}$ changeover switch.

Finally check the ALL Q facility by operating $\mathrm{Q} / \overline{\mathrm{Q}}-\mathrm{ALL} \mathrm{Q}$ switch. If the unit is functioning correctly we may now proceed to the next stage, that of checking known i.c.s and some examples are given.

7404 HEX INVERTER

To test a 7404 TTL hex inverter, patch socket SK14/16 to $5 \mathrm{~V}, \mathrm{SK} 36$, SK 7 to 0 V SK 35 , socket SKI to a Q socket, socket SK 2 to l.e.d. drive SK29. and l.e.d. drive SK30 to a $\overline{\mathrm{Q}}$ socket. Now insert the 7404 into the holder ensuring that it is correctly positioned for 14 pin d.i.l. operation and switch on power supply.

Light emitting diodes D4 and D5 should now flash on and off simultaneously, indicating that the inverter gate is functioning correctly. Repeat the procedure for the remaining five gates, bearing in mind that gate inputs are via sockets SK3, 5, 9, 11 and 13 and gate outputs via sockets SK4, 6, 8, 10 and 12 respectively.

7490 DECADE DIVIDER

Patch socket SK5 to the +5 V socket SK36, and socket SK10 to the 0V socket SK35 using a triple lead patch cord. Connect the remaining two leads of this patch cord-one to socket SK2 and one to socket SK6.

Patch socket SK14 to a Q socket and socket SK12 to socket SK1. Patch socket SK 11 to l.e.d. drive SK29, and I.e.d. drive SK30 to a Q socket.

Insert the 7490 ensuring that it is correctly positioned. Switch on power supply.

Diode D4 should light once for every ten pulses of diode D5 indicating that the correct frequency division has taken place.

7413 DUAL 4-INPUT NAND (SCHMITT TRIGGER)

Patch socket SK14/16 to the 5V socket SK36. Patch socket SK7 to the 0V socket SK35. Patch SK1, 2, 4 and 5 to a Q socket and socket SK6 to l.e.d. drive SK29.

Patch l.e.d. drive SK 30 to a \bar{Q} socket, and insert the 7413 ensuring that it is correctly positioned. Switch on power supply.

Diodes D4 and D5 should now flash on and off simultaneously indicating that the first 4 -input NAND gate is functioning correctly. Repeat the procedure for the second gate substituting socket numbers SK9, 10, 12 and 13 for sockets SK1, 2, 4 and 5, and SK8 for SK6.

7492 DIVIDE-BY-TWELVE

Patch SK5 to the 5V socket SK36. Patch socket SK10 to the 0 V socket SK35 using a triple lead patch cord. Connect one of the remaining two leads to socket SK6.

Patch socket SKI to socket SK12 and l.e.d. drive SK29 to a Q socket. Patch socket SK8 to l.e.d. drive SK30, connect socket SK14 to a Q socket and insert the 7492.

Switch on the power supply and diode D5 will illuminate after six pulses of D4 and remain lit for the next six pulses, indicating that the correct frequency division has taken place.

Sufficient examples have now been given for the constructor to familiarise himself with the capability and operation of the tester and no difficulty should be experienced when testing other devices provided pin connection data and truth tables are available. Some devices such as retriggerable monostables may, in some circumstances, need two external components in the form of an R and C, but these may easily be connected into circuit for test purposes by wedging the ends of the components into the appropriate sockets with the aid of the banana plugs.

MATERIALS

The two DTL i.c.s BP932 and BP936 used in the oscillator and l.e.d. drive assembly are obtainable from Messrs BI-PAK, or A. W. Marshall and Sons. The case is a normal die-cast box housing all components and the i.c. socket is a normal 16-pin holder with a bezel made up to suit. Of course it may be adhered to the case with Araldite or the like.

By R.W. COLES

LONG TIME, SMALL C

Last month 1 reported on the ZN1040E count and display circuit, an exciting example of the Ferranti C.D.I. process which is now being used in a number of interesting standard circuits, complementing the custom designs which the process has been associated with in the past. Another example of the power of standard C.D.I. circuits is provided by the new ZN1034E precision timer, which fills a big gap in the range of timing circuitry available to the circuit designer.

Until this new i.c. came along, the standard way of producing a time delay was to use a monostable circuit of some kind, a prime example being the popular and useful 555 chip which has appeared in many amateur designs.

Timers such as the 555 are limited in the length of time delay attainable by the practical limitations of the large C and R components required for long time periods. In the case of the 555 for example, the maximum delay that can be realistically achieved is about ten minutes.
To produce longer delays, some form of counter circuit has to be added which will require resetting circuitry, and can consume considerable power, two reasons why this is a messy solution not suited to simple constructions which need a long delay.

The ZN1034E is the simple answer for producing long delays because it contains in one 14 -pin d.i.l. package. a very stable oscillator and a 12-stage binary counter which gives a division of 4095 . The time period required is set with the usual C and R components external to the chip, but now the calculated time constant (C times R) can be multiplied by 4095 to derive the overall time delay produced. As a striking example, a resistor of 1 megohm and a capacitor of $1 \mu \mathrm{~F}$ will give a delay well in excess of one hour, the exact value being trimmable by means of a calibration resistance which could be a pot
The chip can be operated from a standard TTL 5 V supply, or, by using the internal regulator circuit. a supply of from 6 to 450 V can be employed. Typical consumption is a miserly 5 mA which makes battery operation quite feasible, and I think this is a device that we will be seeing more of in these pages.

A TASTE OF TOMORROW

An indication of just how much sophisticated electronics will soon
be affecting our day-to-day lives is provided by a data sheet on two new devices from Texas Instruments.

Even though we are unlikely to see these components offered for sale to amateurs in the forseeable future, the mind-boggting implications of their eventual widespread use by industry is sufficient justification for their introduction on this page. I am referring to the TMS1000NC and the TMS1200NC one chip microprocessor, devices which contain a complete digital computer including program store, data store, and a versatile arithmetic unit.

The unique feature of these particular devices is that they can be programmed to suit the user's requirements at the manufacturing stage, so that unlike, for example, the dedicated calculator chips we hear so much about these days, the TMS 1000 or 1200 will soon be found in applications as diverse as cash registers, motor vehicles, vending machines, and electric cookers, in addition to the more traditional data-processing areas such as computer terminals and printers

There are, of course, other chips around which can be used in these types of application, but in general they require a lot of back-up circuitry which means that they are expensive to use and unsuitable for "consumer" goods.

The new Texas devices can stand entirely alone in many circuits, and can be programmed to accept and display data in a wide variety of forms. The chameleon like qualities of these components are provided by the ability to buitd into the chip 1024 different programme steps which will decide whether it becomes a car nerve centre or a cash register brain, a potentially very cheap way of equipment design.-Roll on 1984!!!

BRIGHTER THAN BRIGHT

Nobody can deny that l.e.d.s are amongst the most useful devices to appear in recent years, but despite all their advantages, a few problems have remained.

One of the first serious criticisms of these devices was directed against the fact that you could have any colour. so long as it was red; a problem that semiconductor manufacturers have been acutely conscious of, and one which they have overcome by developing exotic new compounds which have added green and yellow light to their repertoire.

Another criticism sometimes levelled at l.e.d.s is that their luminous efficiency is quite low, which means that you don't get much light power for the electric power you drive them with. Of course, this means little when plenty of drive power is available, but in today's energy conscious world, the era of microwatt CMOS logic circuits, the power wasted in displays can be a thorn in the side of the designers of portable equipment.
In the forefront of technology as usual. Hewlett Packard have introduced a new range of
'Brighter-Than-Bright" I.e.d.swhich are many times brighter than their predecessors while consuming the same power. The new range is available in the three colours (with no premium to be paid for green or yellow), and two lens styles giving a wide beam (diffused), or a narrow beam (point source).
Hewlett Packard codes for the new discrete l.e.d.s are as follows: 5082-4658 (red), 5082-4558 (yellow), 5082-4958 (green) for the point sources, and 5082-4655 (red), 5082-4555 (yellow), 5082-4955 (green) for the diffused type.

The secret of the new devices is a new construction technique which uses a transparent gallium-phosphide l.e.d. chip backed up by an integral reflector, resulting in all the available light being directed exactly where it is required.

Those who are fed up with peering at their "Dimmer than Dim" calculator displays can take heart from this new technology which promises the chance of a brighter display while retaining long battery life.

MORE POWER TO YOUR DARLINGTON

Power Darlingtons are catching on in a big way because they put into a single can the traditionally used Darlington-pair" circuit with its well known advantages of very high gain (over 1,000) and high power handling capability.

A new range of Darlington devices is announced by Power-Monolithics, who aim to oust the old faithful 2N3055 and 2N3771 transistors from their present position as the almost automatic choice for very high power applications. At the top end of the new range is the PMD-17K-80 which has a gain of between 800 and 20,000 at 10 A , and an 80 V breakdown rating. Maximum dissipation is a whopping 225 W !

ORDER DIRECT FROM THEU.S.AND SAVE
 SHIPMENT MADE WITHIN 3 DAYS FROM RECEIPT OF ORDER VIA AIR MAIL - POSTAGE PAID

10\% Off on orders over £10 15\% Off on orders over £50 20\% Off on orders over £100

SEPTEMBER SPECIALS 1/2 PRICE SALE

BANKAMERICARD
notreme firx

The prices as listed are in British pounds and pence. Send bank cheque or personal cheque with order. If international postal money order is used, send receipt with order. Minimum order $£ 2-50$ p.

BUILDING AN AMPLIFIER or GUITAR?

CABINET FITTINGS

CORNER PIECES
To fit rounded corners-27p per pack of 3

GRILLES
Black, special high melt indexplastic -31p each

ROBUST FEET

$35 \mathrm{~mm} \times 15 \mathrm{~mm}-27 \mathrm{p}$ per pack of 4 .

RECESS HANDLE

For fitting into side of cabinet-63p per pack of 2.

SOCKET RECESS PLATE
For mounting of indicator lamps, jack sockets, etc . sub-flush and out of harms way- 18 p per pack of 2

KNOBS

Assemble your own custom knob with our kits of coloured tops black or grey bodies. clear black or grey skirts, plain or with pointer or clear available with black or white numbers State requirements. Pack of 2 tops, 12p; 2 bodies (black only), 36p; pack of 2 skirts, 18p.
P.E. MINISONIC KNOB KIT- 23.95

GUITAR ACCESSORIES

HUMBUCKING PICK-UP

Very high output wide frequency range pick-up Acclaimed in tests. Crackle finished in matt black£15.98.

GUITAR BRIDGE Fully adjustable, solid guitar bridge-
£4.59.

PICK-UP SWITCH

Three-position pick-up change-over switch - $£ 1$-11.

All prices include VAT. Include 20p postage on each order

121n LONG PERSISTENCE CRT. FUII spec Price $\mathbf{~ E 6} 50$ to include V.A.T. and Carriage
MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 Hz to 8 Mmz Hook up to a 9 volt battery and connect to your scope and have two traces for ONLY [6.25, P \& P 25p (Not cased not calibrated.
WIOE RANGE WOBBULATOR. $5 \mathrm{MHz}_{2}$ to 150MHz up 10 15 MMz sweep width Only 3 controls preset RF level. sweed width and frequency ideal for 407 or TV if alignment filters receivers Can be used with any general purpose scope full instructions suppled Connect or all C and 0 Onty 56.75 P \& P 35 p (Not Preceiving.
35 p (Not cased not calibrated

20H2 to 200kHz WB, SINE and SQUARE GEMERATOR. Four rances Independent amplitude controls, thermistor stabilised. Aeady to use 9V supply required fs . sf each P \& P 35p. Nol cased not calio brated.!
GRATICULES $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plestic 15p each P \& P 8p

Large quantity of good quality com-ponents-NO PASSING TRADE-SO we offer 31b of ELECTRONIC goodies for E1 70 Post paid

ROTARY SWITCH PACK-6 brand naw swithes (1 ceramic 1 off 4 pole. 2 way. etc) 50p, P \& P 37p
P.C.B. PACKS. S 8 D. Quantity 2 sg. fl no liny pleces 50p, P \& P 37p

CAPACITOA PACK-50 brand new components only 50p, P \& P 370

TRIMMEA PACK. ${ }^{2}$ iwin $50 / 200 \mathrm{pF}$ ceramic. 2 twin 10/60pF coramic: 2 min strip with 4 preset $5 / 20 \mathrm{pF}$ on esch, 3 air strip whit preset 0 . 2 p on ceramic base. spsced preset 30/100pF on ceramic LL BRAND NEW 25p the lol. P. \& 9 PHOTOCELL equ OCPTI, I3p each. MULLARD OCP70, 10p each
OELIVERED TO YOUR OOOR, Yewt of Elactronic Serap chassis. boards. etc. No rubbish. FOR ONLY E4.
modean telephones. Type 706. Iwotone grey or black, $63 \cdot 75$ each. Type 7006 wo-tone grey or green, $\{3.75$ each, Slyle similar to Type 746: grey, green or lack. \&3 each P. 8 all types 45 ach
Ideal EXTENSION TELEPHONES with standard GPO type dial, bell and lead coding 51.75 each P \& P 45 p .
HANDSETS. Complete with 2 insefts and lead. 75p each, P \& P 37p.
DIALS ONLY75p each P \& P 25p
HIGH VALUE-PRINTED BOARD PACK kundreds of components. transistors etc.-No 2 boards the same. No short leaded transistor computer boards £1.75, post paid.
BEEHIVE TRIMMER $3 / 30$ pF. Brand new Oty $1-9$ 13p each, P. \& P 15 p 10-99 10p ach. P \& P 25p 100-999 7p each. P \& P free
HE CAYSTAL DAIVE UNIT. 19in rack mount Standard 240 V input with superb erystal oven by Labgear (no crystals) 55 each Carr 12
1,000pF FEED THRU CAPACITORS. Only sold in packs of 10. 30p, P. \& P. 15p
ALWAYS SOME CMEAP SCOPESAVAIL. ABLE-ar buila your own Send for our tube list with a S.A.E

PLEASE ADD V.AT AT 8%
OPEN 9 a.m. 106.30 p.m. ANY DAY

7/9 ARTHUA ROAD, READING, BERKS.
 (rear Tech. College) Tel. Reading 582605, 55916

ENGINEERS

Do yow uont promotion. a better yob. higher pay Niew Opportunities shows you how 10 set them imrough low-cost home study cousse There are no books to buy and you can pay-as-youlearn

This helpful guide to success should on reed by every ambitious engineet Send for this helpful 76 poge FREE book now No obligation and nobody will call on
you. It could be the best thing yeu ever did

THis second part deals with construction and testing of this versatile oscilloscope adjunct.

CONSTRUCTION

The circuit is built on three p.c.b.s-one for the p.s.u. and one for the D/A converter and the third main board for all the rest.

The print drawings and component layouts are given clearly in the following figures.

The p.c.b.s can all be made using the etchant resist pens now freely available. The larger one is a rather tedious job but can be completed in a few hours if the layout is drawn in carefully and the position of the various chips is marked.

Veroboard or Matrixboard could doubtless be used for this project but would entail some complex cross linking.

The main board has wire links for almost all of the power supply wiring and the parallel inputs to IC and IC 4 are also formed using cross links

TO D/A
BOARD
Fig. 6. The main board showing component layout and interconnections to other components and boards

Similarly the wiring for the decimal/binary converter which feeds IC 1 is also cross wired. The two inputs to the 74121 involve a crossover but this is made clear on the layout. The only other cross wiring is where necessity demands. Obviously if double sided board could be used this would be a considerable advantage.

Potentiometer VR2 was originally intended to be a back panel preset but a skeleton soldered in position as in Fig. 6 is just as convenient. SI is ganged with VR1 for convenience of operation.

Fig. 7. The printed circuit master for the main board of Fig. 6

Small connecting pins are used for all external connections, including those to the D/A board.
The D/A board is quite simple, there being only one wire link shown in Fig. 8. The earth tracks should be kept as wide as possible. The Gnd. point next to the output is the only connection to the output lead braiding. The D/A board is intended to fit on top of the main p.c.b. in the vacant area. A number of short lengths of single flex twisted together constitute the input and ground connections.

POWER SUPPLY

The power supply board (Fig. 9) is also quite easy to assemble. FS2 is mounted directly onto the board with $1 \frac{1}{4}$ in p.c.b. fuse holder. Alternatively, it could be made externally accessible by mounting a fuse holder on the rear panel. However, as the fuse should only blow under fault conditions, this is not reatly necessary.

The original board was designed so that a separate $24 \mathrm{~V}-0-24 \mathrm{~V}$ winding could supply a higher voltage to TR2. However, the smoothed 15 V line proved adequate and so the points A and B are linked across. Otherwise, should a more vigorous bright-up be found necessary, the link can be removed, a $100 \mu \mathrm{~F}$ coupled between A and B and two diodes connected at D and E-driven from a centre tapped winding of up to 30 V for a 2 N 706 bright-up transistor. Higher voltages can be used with other transistors but a Z axis amplifier in the scope would be a better alternative.

TR3 is mounted on a heat sink of about 3 to 4 in square. The power dissipated is about 3 W and so the device runs well within its rating. IC15 has a relatively easy task and just gets warm. D6 does nothing until the supply tries to exceed $5 \cdot 1 \mathrm{~V}$ when it starts conducting, blowing FS2. So under normal conditions D6 should be cold. A warm device would indicate that the 5 V line was adjusted to be on the high side.

CABINET

The prototype was built in a commercial cabinet of dimensions about $8 \times 2 \frac{1}{2} \times 13 \mathrm{in}$. The layout can be clearly seen from the photographs.

In order to ease selection of the trigger channel in the prototype, eight small filament lamps were wired from +5 V to S 3 . Thus rotating S3 caused the light appropriate to the trigger channel selected to light. The lights were placed above their respective input sockets. L.e.d.s could also be used with a 470 s2 in series but they are expensive.

The prototype front panel was lettered with "Letraset" and finished with polyurethane spray. Chassis mounting BNC sockets were used for all the inputs and the "B.U." and "Trig" outputs. These sockets are grounded by the metal work which is grounded to the electronics by a short lead from the power supply ground to a solder tag bolted to the chassis. The ground connection to S 3 is made to the same point as are all the other ground connections.

WIRING

There is quite a lot of front panel wiring to complete and this is best done in the form of a harness. The lead to the B.U. socket radiates spikes as does the lead from the scope timebase gate input which is mounted on the back panel. These two leads are therefore run around the perimeter of the instrument, out of harm's way.

The output lead from the D/A is a 36 in length of $50 \Omega 2$ cable terminated in a BNC plug to plug directly into the scope Y channel. This lead is grounded only at the point adjacent to the D/A output. Originally a BNC socket was chassis mounted on the front but was susceptible to earth return spikes which blur the display.

D|A BOARD DETAILS

Fig. 8, The D/A board component layout (above) and p.c.b. master (below)

POWER SUPPLY UNIT

Fig. 9. Power supply layout (above) and associated p.c.b. master below

The p.c.b.s are mounted on $\frac{1}{4}$ in stand-offs so that the metal work forms a reasonable ground plane for the electronics.

TESTING AND SETTING UP

Initially VR10 is set to maximum resistance. The mains is applied and the 5 V rail is measured (it is pertinent to replace the logic load by a resistor of 15Ω and 10 W rating). Decreasing VR10 should increase the supply towards 5 V . With the supply set to precisely 5 V . D6 should not get even slightly warm. Setting the supply higher will cause D6 to overheat and probably blow the fuse.

With the logic connected, pin 3 of ICIO should have a roughly square wave of a few tens of kHz . VR2 is decreased until the output wave train starts to jitter. At this point the steps of the staircase will be non uniform:

The correct setting of VR2 is just prior to the onset of jitter.

With S6 set to "CHOP" and SI open, a staircase should be present at the D/A output if S4 is set to the 8 -trace position.

Fig. 10. Input circuit designed to reduce the risk of input overload

LINEARITY

The ladder is now set up to give a linear output. With VR3 and VR6 at mid position. VR7 is adjusted to make the space between traces 2 and 3 the same as between 1 and 2. Similarly VR8 adjusts the spacing of lines 4 and 5 . VR9 is now set to give one step per unit with the Y input to the scope set to a convenient step.

Grounding all inputs should cause all the traces to drop by 0.75 units. VR3, VR4 and VR5 are now adjusted to ensure that the ladder is again linear.

With the inputs floating again the other presets can be used to trim up the linearity. The settings are somewhat interdependent but very good linearity can be achieved without much difficulty. C 12 adjusts overall sharpness of the step transitions.

Connecting the B.U. lead to the Z axis input should cause the actual transitions on the display to disappear. The properly triggered display should now be a series of short clean horizontal lines.

Applying a logic signal to channel 8 and switching S3 to select CH8 as trigger source should cause the channel 8 signal to appear at "Trig Output", SK9.

Connecting this lead to the scope external trigger select should then enable the lower trace to display the CH8 signal, all other seven traces being "high". Reducing the scope sweep speed and switching to "ALT" with the scope sweep gate connected to SK 10 should cause the traces to be displayed sequentially, from 1 to 8. Switching $S 4$ should allow 8, 4 or 2 traces to be displayed. Even in the 4 or 2 trace mode, channels $1,2,3$, etc. can be used as trigger sources.

PULSE STRETCH

The next step is to check the pulse stretch operation. If a 50 ns wide pulse is applied to CH8 input with a 1 kHz p.r.f. then the pulse will not be visible at $100 \mu \mathrm{~s} / \mathrm{cm}$ sweep speed. If the trace is low then the applied pulse must be positive going. S 2 is therefore left open. SI is closed and DI should light. Rotating VRI in conjunction with S5 should show a positive pulse, of length dependent on the setting of these controls.

A negative going pulse (the trace appears to be high) is stretched with S 2 closed and will then appear as a negative going pulse of width determined by VR1/S5.

In operation the unit is very straightforward to use and has proved to be of immense value in fault finding and debugging of logic systems.

The Logic Trace Multiplier is intended for use with TTL systems and must not be used on any other system without providing an interface. To reduce the possibility of damaging the input i.c.s due to input overload the circuit in Fig. 10 may be used, with a slight loss of speed. The components can be conveniently mounted on the BNC sockets.

PUBLISHER'S ANNOUNCEMENT

The contents of Practical ELECTRONICS is fully protected by international copyright and reproduction of it in any form is prohibited without our consent.

With effect from this announcement any application for permission to reproduce, or use our material in any way or part of, must be made to the Editor. Under no circumstances will permission be given to reproduce material in a similar or competitive publication, without payment. No application need be made in the case of a private constructor, constructing one item for his/her own enjoyment and interest.

SECURITY ALARM

A new modular burglar alarm system suitable for home security protection. which, it is claimed, can be installed anywhere without the need for professional skill is now being marketed by Euroswitch Lid. The system, called the Euralarm 1 , comprises a control box, external bell box, a gin diameter bell, six magnetically operated reed switches (door contacts), two pressure pads and wire, insulated staples and connector blocks.

The control box, protected by an anti-tamper microswitch, is normally mains operated, but a battery can be placed in the box to give a standby supply if mains failure occurs. The control circuit provides for single and double pole systems, has a facility for testing the alarm circuit and has an open circuit facility which allows the pressure pads to be incorporated. Externally, the control box has a key switch, mains on indicator light, a mains fuse access cap, a push to test switch and a green systems operating light.

The alarm is easily installed by simply placing the units in the required positions and running the wire between contacts, control box and bell. The bell box also has an anti-tamper microswitch fitted.

The Euralarm 1 costs $£ 45$ and can be obtained direct from Euroswitch Lid., 121 Mildmay Road, London, N. 1 .

INSTRUMENT CASES

With economy in mind, West Hyde Developments have just introduced a range of equipment cabinets.

Known as the Contil Swift range these cases feature the use of the strengthening extrusions as semiconductor heat sinks and mounting supports for such components as transformers. By mounting these components directly to the case extrusions, this eliminates the use of mounting brackets and the need for separate heat sinks.

Full particulars of the complete range of Contil Swift cases can be obtained from West Hyde Developments Lid., Ryefield Crescent, Northwood Hills, Middlesex, HA6 1NN.

BEGINNERS CONSTRUCTION KIT

One of the latest products from Heath (Gloucester) Ltd, is an experimental, educational construction kit. type JK-18A.

This kit enables the beginner to construct up to 35 different circuits and, at the same time. learn how each component functions. Spring terminal connections eliminate any soldering and all circuits are battery powered.

ftems mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. Alf quoted prices are those at the time of going to press.

Dual in-line sockets from Dieter Assmann

OH470 ohmmeter from Chinaglia

Euroswitch alarm kit

Kanging from a 4 transistor radio to a rain alarm. all projects begin with an explanation of what the selected circuit does and how it is used.

A large schematic diagram is furnished for each experiment and includes a simple but complete explanation of what each part does. Each component is identified by a drawing and its schematic equivalent as used in circuit diagrams so that the constructor learns to read schematics while experimenting.

Full details of projects and price list for the Heath JK-18A kit is available from Heath (Gloucester) Ltd, Bristol Road, Gloucester, GL2 6 EE.

RESISTANCE METER

Designed for resistance measurements over a wide range with an accuracy of 2.5 per cent. Chinaglia have developed the OH 470 multirange ohmmeter.
Using a $40 \mu \mathrm{~A}$ moving coil movement the meter has six switched ranges covering 0.1 ohm to 50 Megohms. The meter is powered by two 1.5 V internal batteries, includes test probes and a protective plastics case.

Further information on the complete range of Chinaglia meters is available from Chinaglia, 19 Mulberry Walk, London, SW3 6DZ.

DUAL IN-LINE SOCKETS

A comprehensive range of sockets for dual in-line packages are now being marketed by Dieter Assmann Electronics Ltd.

Socket for both in-line and staggered configurations of up to 40 -pins can be supplied from stock for soldering directly inio printed circuit boards, for use with free wiring or for wrapped wire connection.

For applications in which low profile is important a range of 8 -pin, 14 -pin and 16 -pin sockets, type ZK and ZKF. having heights of 5 mm and 3.9 mm above the printed circuit board, are available.

Information on the complete series of sockets available can be obtained from Dieter Assmann Electronics Ltd., Victoria Works, Water Lane, Watford, Herts, WD1 2NW.

SPECIAL OFFER

\ln an effort to fulfil the increasing demands of the electronics enthusiast for competitively-priced, quality components, A. Marshall (London) Ltd., established since 1953, have been opening retail shops in Glasgow. Paris and Bristol carrying their new extended range of components. The 1975 Marshall's catalogue now carries a range of over 3,000 types of semiconductors as well as an extended range of passive components and accessories.
To mark the opening of their new components shop in Bristol, towards the end of August, A. Marshall \& Son Ltd. are making a special offer to all P.E. readers this month.

Readers of P.E. can purchase first class branded CMOS and TTL devices at special discount prices. This offer is for one month only.

For full details of devices available and prices, readers should turn to the A. Marshall advertisement in this issue.

APOLOGY

Due 10 production difficulties and recent VAT changes Henry's Radio would like to apologise to readers of P.E. for the delay in dispatching copies of their 1975 Components Catalogue.

Copies are now being dispatched and readers who have ordered copies should now be receiving them.

THE basic philosophy behind the cabinet design is to allow maximum wiring 10 be carried out from the rear. simplifying the interconnections between the keyswitch and the p.c.b.s. This is a considerable improvement over the prototype arrangement (see page 389 of the May issue) in which wiring was carried out from the top, thus making it impossible to remove a single board with ease: and reduces the wiring complexity.

KEYBOARD POSITION

The keybuard spans a gap between the front baseboard and the centre base spar, allowing inmediate access to the keyswitch, and a further tin gap exists between the spar and the rear panel of the cabinet. revealing the terminal pin edge of all p.c.b.s (Fig. 5.1)

The two base members in combination with the rear panel provide the main rigidity in the cabinet, further strengthened by the p.c.b. supports and keyboard when litted, and fix to the two shaped end panels. The p.c.b. supports have been designed to hold the p.c.b.s. provide lixing points for the front panel. and support to the top panel. It should be noticed that the p.c.b. slots are spaced differently on each support. The bottom retainer strips prevent the p.c.b.s falling to the bottom of the cabinet. A bottom cover panel made of pegboard covers the wiring bus allows ventilation of the cabinet

Magnetic catches have been used on the prototype to retain the top panel

ASSEMBLY OF THE CABINET

The front baseboard. centre base spar, rear and end panels should first be assembled using joints to match the skill of the constructor. The p.c.b. supports should then be fixed to the rear panel and centre base spar, and the p.c.b. retainers glued in position.

At this point the keyboard should be fixed into the cabinet inserting from the front. Large washers are used to trap the keyboard channel edging to both base bars ensuring that the keyboard is central by using the end cheeks as guides. When the keyboard is fixed, the keyboard trims can be fitted. followed by the end cheeks which are screwed down to the keyboard channel after drilling suitable holes in the channel. The top panel support. front panel support and front panel can now be fitted, followed by the rear p.s.u. support. If the unit has been constructed accurately the top and bottom cover panels should casily fit into place. and the magnetic catches can then be fixed.

KEYSWITCH ASSEMBLY

The keyswitch assembly consists of a printed circuit board to which gold plated springy wires are suldered and seven plastic blocks are fixed to support two gold plated rods (Fig. 5.2).

Before assembling the kit of parts together, the p.c.b. should be placed on the underside of the keyboard. and used as a template for drilling the six ${ }^{3}$? in holes required to take the self-tapping screws
which fix the switch assembly to the frame. The front edge of the switch assembly should be placed approximately $\frac{1}{4}$ in from the keyboard actuators, and should be centralised over its length with respect to the actuators. When holes have been drilled, and the p.c.b. removed from the frame, the keyswitch is assembled as follows.

1. Slide the seven rod supports onto one rod.
2. Insert the second rod through the remaining rod holes, and space the supports roughly opposite the holes which have been countersunk from the non-copper side of the p.c.b.
3. Fix the rod supports to the copper side of the p.c.b, using the countersunk screws, nuts and locking washers. The track is formed to indicate the correct positions.
4 Cut the gold plated wire into 61 lengths of $\frac{1}{4}$ in. and tin approximately $\frac{1}{4}$ in of one end of each wire.
4. Pass each wire between the two rods and solder the tinned end to a main pad. About $\frac{1}{2}$ in should be left to hang over the front edge of the p.c.b. The wire should be pressed flat to the p.c.b. close to the main pad using a matchstick, and the soldering iron applied to the wire and land for as short a time as possible.
5. The assembly can now be fixed to the underside of the keyboard using the self-tapping screws with two washers under each screw head.
6. The next operation is to adjust the bend of each wire to ensure that it seats satisfactorily against each rod in turn, whilst gently resting on the actuator in the nondepressed state. An attempt should be made to achieve a gentle curve in the wire commencing on the land side of the rod in order to prevent too much localised stress where the wire presses against the top rod.
The touch resistors are soldered to the pads provided, one end to the common touch rail, and the other to the land which also carries the goldplated springy wire. Top and bottom octaves should be $1.8 \mathrm{k} \Omega$, and the middle three octaves $1.5 \mathrm{k} \Omega$. The resistor leads should be bent back under the resistor and cut short before soldering to the board, which then allows the component to be fixed within the small space available.

INTERWIRING PROCEDURE

The p.c.b.s should be inserted into the slots with components facing forward and the top panel fitted.

CABINET

Front Base Board
Centre Base Spar
Rear Panel
End Panels (2 off)
Front Keyboard Trim
Front (fascia) Panel
Top Panel
Bottom Cover Panel (Pegboard)
P.c.b. Supports-shaped (4 off)
P.c.b. Bottom Retainers (4 off)
Top Panel Support (p.s.u. end)

Front Panel Support (p.s.u. end)

End Cheeks (2 off)
Rear p.s.u. Support
Felt Strip
Magnetic Catches 2 off

LEGS

Top Spar (2 off)
$\begin{array}{ll}\text { Bottom Spar (2 off) } \\ \text { Legs } & (40 \mathrm{ff})\end{array}$
Bottom Tube

PEDALS
Rear Block
Foot Pedals (2 off)
Base
Springs and hinges
STOOL
End Panels (2 off
Top/Bottom Panels (2 off)
Side Panels (2 off)

Fig. 5.2. Keyswitch assembly is screwed to the underside of the keyboard so that the actuators press against the spring wires

The cabinet should be turned upside down to reveal the back edge of the p.c.b.s (which have been effectively inserted upside down) and the keyswitch previously fitted as above. Wiring should be carried out as follows:

1. A group of three wires (suggest red, orange, yellow) should be soldered to the $C_{1}, C_{1} \#$, and D_{1} pads on the keyswitch and threaded through a hole drilled through in the centre base spar. The hole is opposite the correct pins on the three Envelope Boards, and should be connected in the same order.
2. A group of five wires (red, orange, yellow. green, blue) should be soldered to the $E^{{ }^{1}}{ }_{1}$, $E_{1}, F_{1}, E_{1} \#, G_{1}$ pads on the keyswitch and threaded through another drilled hole.
This hole is opposite the pins in five Envelope Boards, and the wires should be soldered in the same order.
3. The operation should be repeated for $A_{1}{ }^{\mathbf{b}}$, $A_{1}, B_{1}{ }_{1}, B_{1}$ (red, orange, yellow, green), passing through the $A^{1}{ }_{1}-B_{1}$ hole in the centre base spar.
4. A further group of three wires (red, orange, yellow) should be soldered to the $\mathrm{C}_{2}, \mathrm{C}_{2} \#$, and D_{2} pads, threaded through the hole marked $\mathrm{C}_{2}-\mathrm{D}_{2}$ and soldered to the relevant boards.
5. If this operation is repeated for 60 keyswitch pads (excluding C_{6}). each Envelope Board uses a single colour for five connections and is easily seen to be correct. The C_{c} connection is made to the Tone Generator Board. which has been inserted upside down.

TONE GENERATOR BOARD TUNING LOCATION

Since the Tone Generator Board has been inverted. the tuning potentiometer is not accessible. Dependent on the style of potentiometer used it may be possible to reposition it in the back of the p.c.b. in such a position that it is casily available from the top. Care should be taken to avoid shorting the copper track when an adjustment of tuning is being carried out.

INTERWIRING BETWEEN BOARDS

The next operation is to link the Envelope Boards for the outputs. +5 V . zero volt, and sustain rails. This is best achieved using bare single strand wire pre-cut to the required length. The G connections associated with each input (L, M and H) on the Voice Board (Fig. 4.8) are redundant and should be ignored. Since the pins are double-ended. one half protruding from each side of the board, links can be soldered between the pins which can be easily undone should it be necessary to remove a single board at a later date. When all the boards are interlinked the interwiting of the three rear boards should be carried out as shown. leaving flying leads for connection to the +5 V and zero volt connections on the Power Supply Unit.

At this point connections should be made to the two keyswitch rod ends. Black nearest the keyboard and red furthest away from the keyboard, and a third colour of wire connected to the common touch resistor track on the keyswitch. The three wires should be threaded through the relevant hole in the centre base spar. and left long enough for later connection to the power supply.

Still referring to the wiring diagram. connections should be made between the C Envelope Board and the Voice/Preamp Board-i.e. L. M and H outputs and the common sustain connection between Voice/ Preamp and the F Envelope Board

Zero volt. +5 V . and high output connections should then be made to the Tone Generator Board from the Λ^{D} Board. The semitone outputs from the Tone Generator Board are wired to A^{b}. A. B^{b}. and B envelope signal input pins, whilst the remaining eight leads are passed through the centre base spar and distributed to the relevant Envelope Boards via the holes in the spar marked $E^{0}-G$ and $C-D$ signal input. Colour coding of these wires is desirable. and this can be arranged in a group of three ($\mathrm{C}-\mathrm{D}$) and a group of the five ($E^{\mathbf{b}}-\mathbf{G}$).

Fig. 5.1 (a). Music stand; (b) cross section of "Joanna" cabinet assembly; (c) leg assembly; (d) soft and sustain pedal details

Fig. 5.3. Connection to Voice/Preamp Board including ground connections to minimise hum

WIRING FROM THE TOP

Before commencing top wiring the level control potentiometer, mains neon, and five control switches should be fixed in their respective positions on the front panel. Wiring can then be carried out in the following order:

1. Long leads (colour coded) should be soldered to the $+19 \mathrm{~V}(+\mathrm{V})$, and $-23 \mathrm{~V}(-\mathrm{V})$ pins on the Tone Generator Board. passed between the p.c.b. supports and keyswitch ready to connect to the Power Supply.
2. The four supply leads should be connected to the Voice/Preamp Board with similar coding for +19 V and -23 V as above.
3. All connections can now be made to the Power Supply Unit. The +10 V supply (V/2) is obtained from the junction of C3 and ICI in Fig. 2.1.
4. Coded interconnections should be made between the Voice/Preamp Board and SK2 and 4 and SK3 on the p.s.u. chassis, preferably using 2-core coaxial lead in both cases.
5. Coded interconnections should be made to the tremolo switches and voice switches, using coaxial lead for the latter link.
6. A coaxial lead should be used to link the Voice/Preamp Board and the level potentiometer.
7. Mains switch and neon connections should be made to the Power Supply Unit.
The various links between the Voice/Preamp Board and switches and sockets are illustrated in greater detail in Fig. 5.3. along with the ground interconnections to avoid any hum due to earth loops.

LEG ASSEMBLY

Details of the legs are shown in Fig. 5.1 and are constructed from four preferably hardwood blocks shaped and dimensioned as indicated, interconnected with chromium plated $\frac{3}{4}$ in diameter tubing. The legs are screwed to the Cabinet, into both front and centre base spars.

PEDALS

Pedal details are also given in Fig. 5.1. Again hardwood is used throughout.

This simple assembly, whilst fairly fragile, can stand up to sensible use, and is designed to give a neat appearance rather than for maximum strength. The rear block should be channelled or drilled to accept the bottom tube as a retainer. The simple switches are made by gluing phosphor bronze strip under the pedals to contact with the ends of screws recessed into the base. Compression springs should be held in position by indentations in the base and pedals.

POWER AMPLIFIER

The electronic piano is a device which is generally improved by high peak power capability, one commercial manufacturer incorporated a 150 W peak power rated system into his design. Completely satisfactory results have however been obtained from the system quoted above, and it is possible that a rating between 15 and 25 W (sine wave) could be acceptable.

One amplifier parameter only seems to have greater than normal importance in this application and that is intermodulation distortion. This is the effect where the mixing of two notes, say at a third interval, produces a strong difference frequency signal which is detectable as a non musically related note to the two intended notes. This is particularly noticeable in the higher registers of the keyboard where the difference frequency is a note far removed towards the lower end of the keyboard and is in the easily audible range.

Fig. 5.4. Circuit of Amplifier

It must be admitted that the author is somewhat critical on this point although it does not affect his enjoyment of the instrument, and many observers have judged the effect to be acceptable-it can be found on the majority of commercial organs.

Intermodulation can occur throughout any amplifier chain, and is minimised by maximising the linearity of the system. The final intermodulation culprit is the output stage of the Power Amplifier, and is related to the level of crossover distortion. A number of amplifier designs provide adjustment of the output stage quiescent conditions to reduce crossover tut the move to hybrid integrated modules removes this facility. Hybrid modules of course make for very easy construction and economy, and this must be weighed against the level of intermod which can be tolerated. The author's instrument continues to use such an amplifier and these notes are only included to make the situation clear, and not to deter the constructor from the use of these devices.

The circuit details of the amplifier and p.s.u. using a Sanyo STK025 are given in Fig. 5.4. The external components are mounted on a group board, and the completed unit fixed into the stool.

LOUDSPEAKERS

From the tone/voicing point of view the loudspeaker used with the "Joanna" is more important than the Power Amplifier. It is also important that the speaker has a relatively high power handling capacity, designed for use with electronic musical instruments where a rugged construction is vital.
If it is intended to use an existing hi-fi amplifier it is strongly recommended that the normal hi-fi speaker not be used since it is very likely that its capacity is insufficient to handle the peak power which can be and will be supplied by the amplifier when used in this application. Since the piano relies

COMPONENTS .

AMPLIFIER

Resistors R176 $10 \mathrm{k} \Omega$ R177 910 Ω R178 4.7Ω

Capacitors

C92-C93 $4,700 \mu \mathrm{~F}$ elect 25 V (2 off)
C94 $\quad 0.47 \mu \mathrm{~F}$
C95-C96 $47 \mu \mathrm{~F}$ elect. 25 V (2 off) C97-C99 $47 \mu \mathrm{~F}$ (2 off)

Semiconductors

IC14 SYK025
D28-D31 Bridge Rectifier (50V r.m.s. 2A)

Miscellaneous
F53 500 mA fuse and panel fuseholder
F54-1.5A fuse and panel fuseholder
LP2-Mains neon
S7-Mains switch
SK5 3 pin miniature mains socket
SK6 mono jack socket
T3-Transformer 30 V centre tapped 2A
Heatsink (R.S. 149)
Groupboard
LS1-8 225 W r.n.s.
Touch Resistors

$$
\begin{array}{llll}
\text { R179-R214 } & 1 \cdot 5 \mathrm{k} \Omega & 1 \mathrm{~W} \\
\text { R215-R239 } & 1 \cdot 8 \mathrm{k} \Omega & 1 \mathrm{~W} \text { off) } \\
\text { (25 off) }
\end{array}
$$

Music Stand

Metal Frame $36 i n \times$ in dia. aluminium rod Wooden crossbow $17 \mathrm{in} \times \frac{3}{4} \mathrm{in} \times \frac{1}{4}$ in

[^3]on very high peak power signals of short duration to produce an acceptable overall mean power, the ratio of peak to mean power required is much higher than in the average programme (music) played through your hi-fi system, and the danger is that you will increase playing volume without realising until you produce distortion. Distortion due to overloading the amplifier is not generally dangerous, but distortion due to overloading the speaker is fatal to that component.

The author has used 25 W of amplifier (sine wave rating) and 50 W (nominal) of heavy duty speaker over a period of five years with two designs of electronic piano, and whilst speakers of lower rating have been damaged in experiments, no deterioration has occurred in either a Fane POP50 or Goodmans 12P. This is not to say that other equivalent units are not available, but any speaker. used should be designed for heavy duty work and its rating be treated conservatively.

SPEAKER VOICING

From the voicing point of view the design as presented is matched to the Goodmans 12P, mounted facing downwards in the stool. Some variation in tone quality occurs dependent on the floor covering as might be expected, but the range is acceptable. This speaker appears to apply a heavy top cut to the system, which could particularly affect the Harpsichord voice if the voice circuits were not generally bright. Experiments have been tried with smaller 8 in heavy duty units, where an improved treble response is present. In order to restore the mellow piano tone, capacitors were connected across R103, R105 and R 107 with values of 47 nF in each case. This restored the basic tone, finely adjusted by VR3, 4 and 5, but the body of sound in the bass associated with a 12 in speaker was sadly missing.

STOOL

Cutting details for the stool used to house the Goodmans 12P are given and the introductory photo should prove adequate for constructional guidance. The volume is below that recommended by Goodmans, and the constructor may prefer to make a more conventional cabinet to house the speaker and amplifier.

FAULT FINDING

Generally in the event of a fault occurring in one note it can be easily located to one of the 61 similar circuits, and either experienced or inexperienced substitution of components attempted. Reference to the relevant theory in the series should assist in this.

Some possibilities and causes of malfunction are quoted-it is not intended to convey the impression that such faults should be expected to occur.
I. Incorrect p.s.u. levels-Any general malfunction should first be followed by a check on power supply voltages. There can be a fairly widespread on voltage levels-see Part 2, but particularly a severe fall in levels can effect the operation of dividers and the master tone generator.
2. "Frog"-this could appear as a distinctive grumbling distortion of a note played on its own and may be present in all notes to some degree. Such an effect would be caused by a frequency modulation of the tone generation system at a mains frequency and indicates poor smoothing either in the p.s.u. ($\mathrm{Cl}, 2,4$) or if only evident where a note is played it is likely to be a fault in either C5 or C6 on the tone generator board.
3. Excessive break through-If one or more notes break through predominantly into the background, output diodes D22 to D26 on the Envelope Boards should be suspected and changed for the note concerned. Some breakthrough will always be present and this is minimised by adjustment of VR3, 4 and 5, particularly the latter, on the Voice/Preamp Board. Maximum breakthrough will occur on the Harpsichord setting and is minimised by adjustment of VR2.
4. Spurious sustain-If a note sustains without the Sustain Pedal, the keyswitch should be checked for that note to ensure that it rests comfortably on the ground rod in the non playing condition. Sometimes this can be confused for breakthrough.
5. Overload distortion. As explained earlier, this may occur in the speaker if underated or the Power Amplifier. Under exceptional circumstances it may occur in the preamplifier if the Power Amplifier is of very low sensitivity, VR9 (preset gain) should be adjusted to give zero distortion on the Piano stop for maximum level setting and heavy playing. Remember that two stops at once gives twice the power, and three stops gives three times the power. The level control on the front panel should be reduced when multi-stops are used.
6. Mains hum-If this is continuous it is likely to be due to interwiring-particularly with respect to ground connections.
7. Intermodulation distortion-This has been covered in detail above. Do not expect perfection in this-it is an effect normally present in a wide range of electronic musical instruments.

NOTE: The mains fuse FSI in Fig. 2.1 should be 1 A . Cl 0 and Cll should be 47 nF in Fig. 2.4. It has been found that two diodes in series are necessary in the D22-D26 and D11 positions.

The transformer specified for T2 is commonly found with a 230 V primary giving a high output. A resistor of 220 ohms between 0 V and the junction of Cl and C 2 will reduce the voltage across Cl and C2 on load.
-This concludes the Joanna series of articles.

SWEDISH SOLID STATE

When you come late into the field you need to find market gaps in which to become established commercially. This is never more true than in solid state technology where, to all intents and purposes, the big volume market is controlled by the giants of the industry operating internationally.

So newcomers ASEA-HAFO, a subsidiary of the Swedish ASEA electrical group, made the decision not to compete at all in the. big league but to go exclusively for the more specialised custom-built market. As ever, timing of the operation was important and the company was building up its potential just at the time that the giants were losing all interest in the custom-built market where, almost by definition, volume is low.

But even with a comparatively modest operation the start-up costs are high if an adequate service is to be offered. When I visited the ASEA Group recently I was able to see for myself where the money goes. There is a fine modern production plant, purpose built, with all services piped in below floor. clinically clean and immaculatelv equipped. Another buildina in the locality houses design staff, mask production and an opto-electronics group.

In the past three years $£ 2$ million has been invested in the operation and another $£ 2$ million is earmarked for expansion. But turnover by the end of this year is estimated in round figures at $£ 3$ million and the first investment has already been recovered.

Paradoxically, while thinking small ASEA-HAFO was also thinking big, but in different areas. With the big volume market virtually closed the products would have to
be rather special to attract profitable business in the low-volume area. The first stage in planning was therefore to set up a substantial computer-aided-design (CAD) facility geared to I.s.i. CMOS technology. The actual production process is licensed from RCA.

The most extraordinary part of the story is that the CAD department was built from scratch with no previous experience. Hardware and software could be bought but only at a price which ASEA-HAFO couldn't then afford, especially on the software side. Today there is a fine computer installation with some 200 software routines which together give a wide range of CAD programmes. Mechanisation continues into automated mask making and, after semiconductor production, into automatic testing.

Today ASEA-HAFO has a full capability in production of CMOS I.s.i., bipolar circuits, thick film hybrids and opto-electronics. Typical custom orders are for 10,000 units in CMOS and the business is going well with a design capacity of one circuit per month.

ASEA-HAFO could not have succeeded without the massive backing of the ASEA Group, founded in 1883 and dubbed the GEC of Sweden. With 40,000 employees it ranks 11 th in the world league of electrical companies. From a mass of company statistics I think the most significant is that sales per person employed in 1974 was $£ 14,000$, a fine example of productivity achieved through quiet efficiency and heavy investment in plant and machinery.

One of the most fascinating products I saw was the ASEA Industrial Robot which, suitably programmed, can do repetitive jobs like pallet loading of components and some of the hardier tasks in bad environments such as welding and die-casting. A wonderful production aid which can work 24 hours a day without fatigue and clearly is designed to displace people. When 1 asked whether there was trade union pressure against its introduction 1 was told the unions welcomed it because it saves the members doing dult and dirty work, an attitude which has helped Sweden become prosperous.

MORE THAN A HANDSHAKE

If all has gone well, the dramatic handshake in space between American astronauts and Russian cosmonauts will have taken place (it was due on July 15) following the docking of the Apollo and Soyuz spacecrafts.

The ceremonial aspects of the occasion will perhaps have added credence to current political moves at detente between the two nations. But after this phase of the operation, which you may have seen on television, the real work began. In the American case the astronauts were due to conduct some 20 scientific investigations over the following five days. And of several groups of experiments the most important for the electronics industry was that involving the processing of semiconductor materials in a high temperature furnace under conditions of weightlessness.

This series of experiments was started during the Skylab missions in 1973 and 1974. Results were promising. An improved furnace was carried on the Apollo-Soyuz mission as part of the programme to confirm earlier Skylab findings If crystal imperfections can be eliminated by "growina" them under weightless conditions it should be possible to produce more transistors per qiven area of material and thus produce integrated circuits with the ultimate in component density.

The orbiting factory may not be 100 far in the future. It is quite conceivable that within a few years we shall not think it at all unusual that deliveries of semiconductor crystals should arrive regularly on earth from outer space.

MARITIME COMSATS

A more immediate prospect is the realisation of commercial ship's communication by marine satellite. W. Martin Lovell, deputy technical director, Marconi Space and Defence Systems, gave an up-date on the situation of the European MAROTS programme at a Communication Conference in Rotterdam.

Starting as a British national programme, MAROTS has now been transferred to the European Space Agency (ESRO). Structure thermal tests are due for completion this year, the engineering model completed by mid-76, the qualification model completed early in 1977 and the fliaht model ready for launch by Delta 3914 in October 1977.

As well as being responsible for the communications module, Marconi are pressing ahead with a shipborne terminal for general marine use. The bid market will not come until the 1980's when the system has been demonstrated and successful and ship owners decide thev can't afford to be without it.

Nobodv is better qualified in marine communication than Marconi, the first company in the world to exploit maritime communication by radio 75 years ago.

F.M. CENTRE TUNING METER

IN v.h.f./f.m. broadcasts, the best reception is arrived at when one tunes to the centre of the S curve of the detector stages, i.e. 0 V d.c. output from the detector coil (when conventional detector is employed).

Fig. I shows a circuit which allows conversion of a signal strength meter into a centre tuning indicator; the only modification required is the addition of a centre mark on the meter scale.

The circuit gets its input directly off the detector output (before any coupling capacitors). The f.e.t. serves two purposes: (a) very high
input impedance, so as not to affect the audio and stereo switching signals and (b) it responds to negative signals, yet does not require an additional negative rail.

One would find that due to the large spread of parameters. one would have to alter slightly the values of R1, which could be regarded as the gain control. R3 may also have to be changed, depending on the meter employed.

To adjust the circuit, it is required to tune into the far right of the f.m. scale, far from any broadcast station, and adjust the preset until the meter indicates centre.

Since no modification to the meter itself is required, this circuit lends itself easily for switching from centre tuning function to peak signal tuning function.

TWO FUNGTION R/G
 CODER

THE circuits shown in Figs. 1 and 2 were developed as a result of the 1971 series "Logical Radio Control". I had difficulty in getting the coder described in the series to work reliably and so it was modified so that the train of monostable-generated pulses was triggered by an astable multivibrator.
This gave a system of fixed cycle time which, if the individual pulse lengths were kept short, made the generation of a synchronising pulse unnecessary as long as a suitable decoder was used.
Difficulty in obtaining the retriggerable monostable (F9601) resulted in the development of a 2-channel decoder.

The coder can easily be built on Veroboard or a p.c.b. can be made up. Due to the short rise and fall times of the pulses, short wiring is desirable. Decoupling of the supply with $0.1 \mu \mathrm{~F}$ capacitors is also advisible. The prototype was powered from a 6 V battery with an OA81 diode connected in the + ve lead.
Testing with an oscilloscope should show a waveform of 36 ms pulses (at the collector of TR3) 0.3 ms apart. The

Fig. 1
output of IC3 should be pulses whose length will depend on the setting of VR1 and VR2. The length of these pulses should be variable from approximately 1 ms to $7 \cdot 5 \mathrm{~ms}$.
For those requiring control over more than two functions it would be
possible to add at least one more if not two more monostables but care must be taken that the maximum total pulse length does not exceed the fixed cycle time of 36 ms .
S. D. G. Tucker,

Oxford.

Fig. 1

Fig. 2

CAR GAS Detector
BP 1387488

Fig. 1

$\stackrel{+}{\square}$

Claims for a simple gas detector primarily for use in motor vehicles is outlined in BP 1387488 filed by TRW Inc.

Exposure to anything over fifty parts per million of carbon monoxiae for a period in excess of one hour can affect the capability of a driver, even though twice this concentration at three hours' exposure will be needed to cause perceptible effects. Thus, a leaky exhaust pipe can take the edge off a driver's performance without him realising it.

The circuit Fig. 1 shows a fuel cell which includes an electrode in the form of a heating element. This element is connected between supply, via ignition switch, and car earth to maintain a temperature of about 600 C . The element is surrounded by a porous refractory shroud of silica and alumina, the shroud being coated by a porous layer of tin oxide or other catalytic metal oxide.

A second electrode is connected via VR1 to the base of TR1. The latter has its collector-emitter circuit connected to the warning lamp and earth respectively.

The catalytic coating causes oxidation of any carbon monoxide present and the release of ions. This causes current to flow across the electrodes and TR1 to conduct and operate the alarm.

The value of VR1 is adjusted to control triggering of the alarm. for instance at a concentration of carbon monoxide in the atmosphere of 100 parts per million.

OUDSPEAKER FILTERING

In BP 1385 346, Saba Schwarzwalder Apparate-Bau-Anstalt August Schwer Sohne GmbH refers to the undesirable group radiation or interference effects which occur when several identical loudspeakers are used in a single small cabinet.

Where it is required to use one high frequency tweeter or midrange unit with more than one identical bass speakers, it is unacceptable to have the bass speakers sharing the same load at the region of crossover with the middle or high range units. Although the bass units may share the same load over a part of their operating frequency range, all but one of them must be rolled off to zero well before the crossover range. According to the inventors, this roll-off should be at around 12 dB per octave and start at least an octave below the crossover point

A suitable circuit is shown in Fig. 1. Two low frequency speakers of identical type are independently filtered. Loudspeaker LS1 is in series with inductance L1 and in parallel with C1. LS2 is in series with L2 and in parallel with C2.

As shown in Fig. 2, the filter for LS1 is a low-pass filter with a top cut-off of substantially f_{0}. The filter has a slope of 12 dB per octave and overlaps the curve of the high pass filter for a tweeter. The filter for LS2 also acts as a low pass filter but with a cut-off at f, which lies more than an octave lower than f_{0}. Thus, only LS1 is effective at the

Fig. 1

Fig. 2
overlap region and there is no group effect.

TV SOUND UNTT
 BP 1389228

In BP 1389 228, Dinosaur Electronics Limited,* assignees of Anthony Burton of Windsor, claim commercial protection for a TV sound unit. This enables high fidelity sound to be derived from a conventional TV receiver by picking up stray i.f. sound radiation, demodulating it and feeding it to the auxiliary socket of a conventional hi-fi system. The patent appears to cover the commercially available Telefi, and the claims are probably broad enouah to monopolise most other stray pick-up systems, including last month's PE design.

As previously explained in this column, British Patent Law is not such an ass as to prevent amateur constructors from conducting private experiments in their own homes (for instance based on circuitry published in the electronics press); but any home constructor who feels inclined to move on into even low-scale production of a patented device should take legal advice before doing so.

The Dinosaur patent explains how the tuner output of a conventional television receiver is passed to an i.f. amplifier and vision detector. This feeds a vision signal to the video circuits and a sound carrier signal to a sound i.f. amplifier, a limiter and a frequency discriminator.

The sound carrier signal is equal to the difference between the vision and the sound carrier frequencies and is frequency modulated with sound information. Inevitably there is stray radiation from the i.f. strip, and in 1971 the inventor lodged a patent claim for the straightforward but clever approach of capturing some of this stray signal by a tuned pick-up and amplifying and demodulating it to provide a high quality audio signal.

The patent covers all types of pick-up, including a coil or aerial and various transformer circuitry for connecting the pick-up to the external amplifier and demodulator.
*The above mentioned patent is now held by Rola Celestion Lid.; manufacturers of the "Telefi" sound unit.

PARTGundptoelrectronicquevicest Light Speed Force Load Sound Frequbyp.a.alicock*ce Force Load Sound Frequency Distance Heat.

This final article of the series looks at some opto electronic devices and digital encoding transducers for monitoring shaft rotation or position.

SOME BASICS OF LIGHT

Technically, the term "light" means electromagnetic radiation having a frequency or wavelength which can be perceived by the human eye. The percentage of the available electromagnetic spectrum occupied by visible radiation is in fact very small and covers the wavelength range from 4,000 to $7,000 \AA$ (Angstrom units). The wavelength and frequency of the electromagnetic waves are related to the velocity of light by the wellknown relationship:

$$
\text { Velocity }=\text { Frequency } \times \text { Wavelength }
$$

The velocity of light is approximately 3×10^{8} metres/second and is a constant. Consequently short wavelengths correspond to the high frequencies and vice versa. The wavelength range above, quoted in \AA can be related to more common units of length by noting that

$$
1 \ddot{\AA}=10^{-8} \mathrm{~cm} \text { and } 10,000 \AA=10^{-3} \mathrm{~mm}=1 \mu \mathrm{~m}
$$

Thus the wavelength range of visible light is from 0.4 to 0.7 thousandths of a mm which is very short when compared to the radio wavelengths in everyday use.

There are two related aspects of light that are used, together or separately, to explain many phenomena associated with light. Optical phenomena such as interference and diffraction patterns are explained by a wave theory such as that involved with radio waves. However, other phenomena are better explained by the quantum theory in which particle-like aspects of light are considered. According to this theory, light can be considered as discrete quanta or packets called photons.

These photons are uncharged particles each having an energy which depends only on their frequency or wavelength as given by

$$
\text { Energy }(\text { in electron volts })=\frac{h c}{\lambda}
$$

where h is a constant (known as Planck's constant), c is the velocity of light and λ is the wavelength of the light.

Notice that this relationship shows the energy as increasing as the wavelength decreases. The energy associated with any particular wavelength of light can be obtained from the above equation, which can be -implified by putting in the values of c and h thus,

$$
\text { Energy } E(\text { in } \mathrm{eV})=\frac{12,400}{\lambda(\text { Angstrom })}
$$

[^4]Table 6.1. Optical energy gaps of photodetector materials

	Chemical Symbol	Energy Gap at $300^{\circ} \mathrm{K}$ (eV)
Cadmium Sulphide	CdS	2.4
Cadmium Selenide	CdSe	1.7
Gallium Arsenide	GaAs	1.4
Silicon	Si	$1 \cdot 1$
Germanium	Ge	0.7
Indium Arsenide	InAs	0.43
Lead Sulphide	PbS	0.37
Lead Selenide	PbSe	0.26
Indium Antimonide	InSb	0.23

For the visible spectrum limits this will give us
Violet light $(\lambda \approx 4,000 \AA), E=3 \cdot 1 \mathrm{eV}$
Red light $(\lambda \approx 7,000 \AA), E=1.77 \mathrm{eV}$
Incidentally, the electron-volt unit of energy is the energy acquired by an electron when raised through a potential difference of one volt. Compared to the more familiar units of energy, the Joule, the eV unit is very small and the two units are related by

$$
1 \text { Joule }=6.24 \times 10^{18} \mathrm{eV}
$$

Photons can be emitted from the atoms of certain materials when electrons within change their energy from a high level to a lower level. The energy of the emitted photon will be equal to the energy lost in falling from the high to the low level. This energy difference is known as the energy gap and is also usually expressed in eV . Photons can also be absorbed by a variety of materials. If the energy of the entering photon is greater than the inherent energy gap of the material the valence electrons in the material can be excited and lifted up to the conduction band level with the resultant creation of free electron (and hole) current carriers. This particular process is in fact the basis of operation of all photodetectors, regardless of the particular media. Typical energy gaps for several materials used in the manufacture of photodetectors are shown in Table 6.1.

BASIC PHOTO-DETECTOR PARAMETERS

The photodetector transducer is the heart of most opto-electronic systems and the selection of the best detector for the particular application is often very important. Obviously the photodetector must be considered in relation to the light source, which might be
the sun, a filament lamp, a light emitting diode or a laser. Photodetectors can be divided into two classes.

1. Thermal Detectors in which the radiation is absorbed, converted into heat, and the detector responds to the change of temperature.
2. Quantum Detectors which respond directly to the incident photons. This class can be subdivided into
(a) Photo-emissive, where the incident photons release electrons from the surface of the detector material. This phenomena occurs'in vacuum, as in vacuum photo-diodes or phototube multipliers.
(b) Photo-voltaic, where a voltage is self-generated when light strikes the detector without any external bias. The solar cell is a well known example of this type but photo-diode operation is also based on this effect.
(c) Photo-conductive, where the conductivity of the photo sensor changes as a function of the incident light. These can be undoped devices such as photoresistors, or doped photoconductors such as photodiodes and similar devices.
In the selection of a photodetector transducer it is usually necessary to consider the following four parameters in relation to the application.

SPECTRAL RESPONSE

This is really a measure of the wavelength range over which the detector can respond. If the lightsource spectrum ranges from, say, 4,000 to $8,000 \AA$ with a peak at 6,000 , then a detector with a similar response, or at least an appreciable spectral overlap, should be used.

FREQUENCY RESPONSE

This relates to the speed with which the detector can respond to changes in the level of the incident light and is important when modulated radiation is to be used.

NOISE

Any random fluctuation of output current or voltage constitutes an unwanted noise signal. The term dark current is often used to denote the d.c. photodetector output current that exists under dark conditions whereas the noise current is the random a.c. output. Noise is directly proportional to the square root of the detector area.

RESPONSIVITY

This refers to a detector's sensitivity or output per unit light input. The responsivity can be expressed in various ways such as output current in milliamperes per input radiant light flux in watts.

SIGNAL/NOISE PERFORMANCE

The minimum detectable signal level will depend on the amount of noise produced within the photodetector. The performance is sometimes specified in terms of a Noise Equivalent Power (NEP) which is defined as the input (signal) power required to produce a signal/ noise ratio of unity when using a bandwidth of 1 Hz . Since the noise depends on the area of the photodetector and the bandwidth being considered, care must be taken when comparing different devices.

A variety of common photodetectors will now be dealt with in some greater depth.

PHOTOMULTIPLIERS

One of the traditional devices for detecting light is the photomultiplier tube. These devices provide high sensitivity and speed and the operating principle is illustrated in Fig. 6.1. Incident light releases electrons from a photocathode which has peak spectral response in the 4,000 to $5,000 \AA$ range. The electrons are focused and accelerated towards the first dynode by appropriate electric fields and here additional electrons are released by the process of secondary emission. The number of secondary electrons emitted per incident primary electron, ranges between 1 and 5 typically and by using a series of dynodes, current gains (overall) of 10^{5} or more can be obtained.
Photomultipliers and their newer counterparts, continuous channel multipliers, are usually the best choice for applications requiring extremely low-level light detection with frequency responses greater than a few megahertz. However, a wide range of solid state photo sensor/amplifier configurations are possible which can give comparable speed or sensitivity, and superior performance can often be achieved in low speed applications.

BULK PHOTOCONDUCTORS

In these devices a thin film of photo-conductive material is exposed to the incident light. Provided the energy is sufficient the photons can release electron-hole pairs in the material and the resistance of the cell therefore falls as the intensity of the light increases. An external battery and circuit is required for these devices and Fig. 6.2 illustrates the principles outlined for one particular device, the CdS cell.

Such cells exhibit an approximately exponential variation of resistance with ratios of dark to light resistance of about $1,000: 1$. The response is relatively slow, especially when the light source decreases or goes off, since it takes longer for the electrons to "drain" back to the valence band due to trapping in imperfections within the material. Resistive photo conductors also exhibit temperature effects which vary with light level and generally speaking the faster response materials are less temperature stable than the slow response types.

PHOTODIODES

In this case the detector uses a doped semiconductor $\mathrm{p}-\mathrm{n}$ junction and the incident radiation generates hole/ electron pairs providing the photon energy exceeds the energy gap requirements. The pair generation will occur at various depths depending on the energy of the photons and the nature and thickness of the materials. If the pairs are produced outside the junction depletion region there is a greater probability of them recombining so the depletion region is often widened by increasing the reverse bias across the diode.

This also decreases the transit time of the holes and slectrons. Sometimes an intrinsic layer is interposed between the p and n regions and this gives the device a p.i.n. structure which also produces a wider depletion region. The p.i.n. photodiode has a lower junction capacitance by virtue of the increase in the "plate" separation and this makes the device much faster than the conventional p-n type.

The p.i.n. structure also exhibits low noise and dark current plus greater efficiency at the longer wavelengths.

A typical structure is shown in Fig. 6.3 together with typical current-voltage characteristics. Operation with fixed reverse bias gives a current mode (high internal resistance) characteristic in which the output current is a linear function of incident radiation over about ten decades. Operation at constant bias current is also possible but gives more distortion in "linear" applications and a greater dependance on environment and bias current stability.

Fig. 6.4 illustrates the current mode where the reverse bias voltage across the diode is provided by the amplifier action and supply V_{B}. The virtual earth principle resulting from $A \gg 1$ means that e is almost zero. The diode bias is thus fixed at V_{B} volts and the photodiode current, I_{p}, is used to drive the amplifier as a current to voltage converter, to give an output voltage proportional to diode current.

AVALANCHE PHOTODIODE

The avalanche photodiode is a special photodiode designed for operation in the avalanche breakdown region in order to achieve internal photo-current multiplication. The electrons, produced by pair generation, drift into the avalanche region of the device where they are rapidly accelerated by an intense electric field. The high velocities give a high probability of generation of additional electrons by impact ionisation. The ionisation rate is a strong function of applied voltage because the electric field strength determines the energy of the generated current carriers and hence the overall current multiplication. The avalanche photodiode is a sort of solid state equivalent to the photo multiplier tube.

SOLAR CELLS

The advent of the space age resulted in extensive research into the area of direct conversion of solar energy into electrical energy. More recently, a growing need for energy conservation has come about and it seems likely that solar cell development will continue for certain applications. To be a good energy converter the solar cell spectral response should match the sun's spectrum which peaks at about $5,000 \AA$ and yields an irradience level of about $100 \mathrm{~mW} / \mathrm{cm}^{2}$ at the earth surface. For energy conversion applications it is also desirable to have a high power conversion efficiency.
'Typical solar cells for such applications must have low internal resistances and the basic structure, operation and fabrication are similar to the silicon photodiode. The doping levels and areas are much higher however and the top layer of the junction is very thin to extend the U.V. response to match the solar spectrum. In some cells the contact resistance is decreased by using a fine mesh contact and normally the cells are operated without bias in the photo voltaic mode.
Solar cells are often used in photographic exposure meters. In this application the solar cell is superior to a photodiode due to the larger area and therefore high

SONY HALF PRIGE

These top quality SQ Decoder/Amplifiers are offered at half price while stocks last. Brand new in manufacturers' cartons with one year guarantee.

SOA 100

Soa 100. a versallife Which cen convert your exipiting outroo syatem decoder/ampilifier
 realism -Just add model SOA 100 and a palr of tear apoakeris

 that your local record bhop

REC. RETAIL E52.00 incl. VAT
OUR SPECIAL HALF PRICE OFFER ONLY $£ 26.00 \mathrm{incl}$. VAT
Please add $£ 1.50 \mathrm{P}$ \& F . and Insurance

SQA 200
OUR SPECIAL HALF
PRICE OFFER
£38-80 incl. VAT
REC RETAIL PRICE 577.68 incl. VAT Please add E1.50 P. \& P. and insurance

SA 200

SO DEC
SQA 200. Providing an output of $8 W$ RMS per channel for the rear speakers, SQA 200 is a decoder ape-source monitor switch. Now that so many of your favourite artists are recording SQ albums the addition of SOA 200 plus a pair of rear spakers will add a now dimension to your stereo system

REC. RETAIL PRICE £111-85 incl. VAT OUR PRICE £74.95 incl. VAT

210
Saneul 210 34W AM/FM Stereo Multiplex Tuner Amplifler. Equipped with an FET front end for exceptionally sensitive FM reception, linear scale FM dial for preclse tuning and automatic FM stereo/mono switching, this model aiso provides a full system of accessory circuits. wide 30 to $25,000 \mathrm{~Hz}$ power bandwidth and holds distortion to less than 1%.

Prices include Vat and Post and Packing. Canclosure
Pattern as illustrated

THE FABULOUS SANSUI 210 TUNER AMPLIFIER

CHEQUES, P.O.S AND MONEY ORDERS TO

INATITPUS

s

SLA7 RED LED $0.3^{\prime \prime}$ DIGIT 0-9DP 89p ea GREEN\&YELLOW $£ 1.40$ JUMBO LED 0.6" 747 DISPLAY $£ 2.25$ ea. 3015F 0-9DP \&1 ea. ZENON FLASH TUBE £4. Data 15p.『e๔ โ3

LEDS 209 STYLE ONLY 13p ea TIL 209 HITH CLIP RED 15p ee TIL 211 \& CLIP GREEN 29p ea LARGE 0.2"' \& CLID RED 17p ea LARGE 0. 2" CLIP GREEN 30p ea 209 STYLE OR $2^{\prime \prime}$ ORANGE 39 p eq
INFRA RED LED $£ 1,2 N 577733 \mathrm{p}$, PHOTO IC 8VP TEC12 PHOTO AMP/SCMITT/RELAY DRIVER OT LED TTL INTERFACE 81p

FLUORESCENT LIGHTS 12V MADE IN UK DIGITRL ELDEH C AY5l224 4 DIGIT CLOCK $£ 3.75$ MM5311/4 6 DIGIT CLOCK

CASSETTE

 mechanicsM13075
NEW 8tk CARTRIDGE MECHANISM 88 STEREO CASSETTE MECHANISM £13.75 Suitable for 'PW ASCOT' recorder

INTEGRATED CIRCUITS

TRAMSISTORS \& DIODES

Price each
 AC127 \& 128 16p MATCATNG 16 p

AC187 \& 188 19p 19 SI
$\begin{array}{lllll}\text { AD149 } & & 43 \mathrm{p} & \text { TIP } 41 & 70 \mathrm{p} \\ \text { AD1 } & \text { TIP } & 42 & 88 \mathrm{p}\end{array}$ $\begin{array}{cccccc}\text { AD161 \& } & 162 & 33 p & \text { TIP } & 42 & 88 p \\ \text { BC107 \& } & 108 & 9 p & \text { TIP } & 2955 & 90 p\end{array}$ $\begin{array}{lllll}\text { BC109 } & 108 & 9 p & \text { TIP } 3055 & 55 p\end{array}$ BC147/8/9 10p TIS43 saesN2646 BC157/8/9 12p \quad ZTX1098301 13p sc167/8/9 $\quad 12 \mathrm{p} \quad 1 \mathrm{~N} 4001$ 8C177/8/9 18p BC182/3/4A\&L10p BC212/3/4A\&L11p $\begin{array}{ll}\mathrm{BCY} 70 / 1 / 2 & 17 \mathrm{p} \\ \mathrm{BD} 131\end{array}$ BD131 132 39p BFR51 1 N 4004 \& $7 \quad 7 \mathrm{p}$ 1N4 148 2 9144 p
2 N 697 2N697 2N2646 UJT
2N2904 \& 5 BFR50/51 23p 2N2926royg BFR50/51 23 p BFR88 250V 29p BFY50/1/2 15p BSX19/20/21 16p MJE2955 90p $\begin{array}{ll}\text { MJE2955 } & 90 \mathrm{p} \\ \text { MJE3055 } & 65 \mathrm{p}\end{array}$ MPU131 PUT $\begin{aligned} & 65 \mathrm{p} \\ & 49 \mathrm{p}\end{aligned}$ OA91 OA81 6p OA81 능 0 OA91 6 p TIP 29 \& 3052 p TIP 31 \& 32 69p fULL SELECTION IN OUR FREE LISTS,

NEW TRAMPUS FULL SPEC PAKS
PAK A 10 RED LEDS our cholce \&1 PAK B 4741 OP AMP $\begin{array}{lllllll}\text { PAK C } & 4 & 2 N 3055 & \text { \& } 1 . D & 12 & \text { BC109 }\end{array}$ $\begin{array}{lllllll}\text { PAK E } 10 & \text { BC182 } & \text { \& } 1 . F & 11 & 2 N 3704 & \varepsilon 1\end{array}$ PAK J 9 2N3053 E1,K 40 1N914

BZYBB 400 m W ZENER DIODES BRIDGE RECT $1 \mathrm{~A} 50 \mathrm{~V} \quad 20$ BR100 DIAC 25p

A/50V SCR 36 D TAG1/400 C106 \& 7 SCR D1 C14 46 D
SC146D TR
10 A 400 V

vero marpycse

 COPPER CLAD VEROBOARD 0.1^{11}

DIL IC's BOARDS $6 \times 41^{+1} £ 1.50$ 24 way edge connector 60 p . FACE CUTTER 45p. FEC ETCH PAK 50p

PRINTED CIRCUIT BOARD KIT $£ 1.69$ DECON NO MESS ETCH PAK NEW 69p DECON DESOLDER BRAID REEL 59p 'HEATSINKS 5F/TO5 18F/T018 5p ea.TV4 15p
TV3/T03 16p.EXTRUDED 4 4Y1 $29 p$ TGS308 GAS DETECTOR £1.80 ea. LOGIC PROBE TTL TESTER PEN \& 5 CAPACITORS
CERAMIC 22pf to 0.1 uf 50 v 5 p CERAMIC 22pf to 0.1 ff 50 V 5p
ELECTROLYTIC: $10 / 50 / 100$ up in $10 \mathrm{v} 5 \mathrm{p}, 25 \mathrm{v}$ 6p.50v 8p. 2uf/10v 5p $1000 \mathrm{uf} / 25 \mathrm{v}$ 18p, 200/500 25v 9 p POTENTIOMETERS (POTS) AB or EGIN LIN or LOG ROTARY 13p.SWITCH 14 DUAL 45p.SLIDERS 29p. STEREO 57p KNOBS 7p. PRESETS 6PRESISTORS 1 ip SWITCHES: SPST 18p. DPDT 25p
Din plugs all 12p. SOCkEtS 10p ALI CASES AB5/AB7 50p. AB13 65p TRANSFORMERS 1 A 6v6v or $12 \mathrm{v12v}$
Only 1.34 .100 mA type CT 75 p .

Dil sochets

LEXAS GOLD

LOW PROFILE ea
$8,14,26$ PIN $13 p$
SOLDERCON STRIPS
100 PINS 50p. 1 K \& 3

Sinclair System 4000

The watts...

Black, beautiful, and incredibly good value. Sinclair's two selfcontained hi-fi units - in one handsome, elegant style. A17 watts per channel amplifier and a matching FM tuner.

The amplifier offers 17 W RMS per channel output... 0.05% total harmonic distortion ... and a price tag
of around $£ 50$.
The System/4000 tuner completes a handsome, hardworking system.

Engineered and designed to accompany the System 4000 stereo amplifier, the FM tuner matches it in specification and design - and at around £40 completes a system of outstanding value.

Get the full technical specifications..

See what impartial hi-fi journals thought of its performance.

And read up on the rest of the Sinclair range

It's all in the Sinclair hi-fi range fact-file.
Send for Sinclair's
fact-file now!
See if the answer's here the information on the component you've been looking for.

Simply cut the coupon and
send it to the no-stamp-needed FREEPOST address below. We'll send you the Sinclair fact-file - giving you all you need to know about System 4000 , and the rest of the Sinclair hi-fi range.

Plus information about a few extras you're sure to find rather interesting.

You've plenty to gain... so cut the coupon now!
Sinclair Radionics Ltd, London Road, St lves, Huntingdon, Cambs., PE174HJ
Stives (0480) 64646

RST
VALVE MAIL ORDER CO. I6a WELLFIELD ROAD, LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE

current capability leading to a more robust meter movement. The use of the photovoltaic mode means that a battery is not required and the output current is a linear function of the incident radiation for several decades.

PHOTOTRANSISTOR

This device combines the ability to detect light and provide gain in a single device. The structure is similar to that of a conventional planar transistor except that a window or lens is provided in the case. The incident light generates hole-electron pairs in the vicinity of the relatively large reverse biased collector-base junction and these give rise to additional current by virtue of transistor action.

The dark current is also magnified by this same mechanism so that there is no basic improvement in signal/dark current ratio. The collector-base capacitance also affects the frequency response which is usually inferior to that obtained from a photodiode/amplifier combination. Variation of transistor gain (β) with current also affects the linearity and consequently their best area of application is in "ON-OFF"situations such as punched card and paper tape readers.

Linear arrays of devices have been produced for such applications. More recently photo field effect and related devices have been developed for specialised uses and light activated thyristors are yet another example of the growth that is taking place. Infra red detectors have also been developed, largely due to military applications in the first instance and many of these require operation at low temperatures.

LIGHT SOURCES

The most common form of light source is the incandescent lamp which is available in a wide variety of shapes and sizes. Gas discharge lamps are also well known and widely used in neon displays and fluorescent lighting systems, but there is a growing area of applications for low cost, solid state light sources such as the light emitting diode (l.e.d.).

A multitude of crystals have been used to produce l.e.d.s and today various coloured light sources and displays are available. Combined light source-detector combinations are also available and are usually known as opto-couplers. These can be based on any of the available opto devices but the l.e.d. photodiode (or phototransistor) is perhaps the most common. These devices can give a high degree of electrical isolation and find application in such areas as patient monitoring and diagnostic medical equipment interfaces. Combinations of devices have also been developed as photopotentiometers and photo-choppers but the photoncoupling is a common feature of all these devices.

DIGITAL ENCODERS

A fairly common requirement is to monitor the position of a rotating shaft and one way of doing this is to use a shaft encoding disc which carries a particular optical pattern. The pattern is arranged to interrupt a series of light signals in such a way that a digital code is generated that represents the shaft position. The principle is illustrated in Fig. 6.5 which shows a pattern for generating a 3-bit Gray code. This code is so arranged that only one bit of the code changes at any one time and thus the alignment problems of binary-coded discs are avoided. The three circular bands on the disc are broken

into segments and it is assumed that the shaded segments cut off the light sources from their respective photo-detectors when they fall between the lamps and detectors (such as LI, Dl). Starting with all bands "transparent", as in the region where the band numbers are shown, and assuming clockwise rotation of the disc with the letter L corresponding to the passage of "light" and B for "black" (or dark-current conditions in the detector) we get the sequence of events shown in Table 6.2.

The position of the disc is identifiable, to within any one sector of 45°, by a unique 3 -bit code. As the disc rotates only one bit change occurs at the sector boundaries due to the relative position of the segments within the three bands.

Shaft speed can be determined by using a series of holes, equally spaced around the periphery of a disc, to chop a light beam and so produce a pulse train whose repetition rate is proportional to speed of rotation. Obviously N holes in a disc rotating at n revs. per second will produce an output having a frequency of $N \times n$ pulses $/$ sec.

Light sensitive devices can obviously be used in a wide variety of applications. For example it is possible by suitable diffraction gratings or discs, to produce interference patterns involving alternate light and dark
bands. These patterns of "lines" can be detected and/or counted by opto-devices and using these techniques it is possible to measure angles of inclination of the gratings, or rotation angles of discs and shafts; to very high accuracy.

ACKNOWLEDGEMENTS

In a short introductory series it is impossible to cover all the transducers and related devices that are in current use. However, the series should provide the reader with some basic information which can be extended by selected reading. The author has been influenced by various people, papers and books over a number of years and several manufacturers have been very helpful in supplying details of their devices. The author wishes to acknowledge all these sources and suggests the following references for study by those who wish to pursue the subject further:

Practical Instrumentation Transducers by F. J. Oliver (PITMAN)
Transducer Measurements by K. Arthur (TEKTRONIX)
Piezo Electric Ceramics (Phillips, Application Book)
Piezo Electric Air Transducers (Mullard App. Notes TP1343)
Industrial Linear and Non Lìnear Resistors (TP1I74 Mullard)
Basic Electronic Instrument H/B by C. F. Coombs (McGRAW HILL)
Strain Gauges, Theory and Handling by H. Kiihl (PHILLIPS)
Understanding Thermocouples: Instrument and Control Engineering (October, November 1968)
I.E.E. Conference on Servocomponents 1969

Servó Systems. Electronic Data Library Vol. 2 (Morgan-Grampian 1969)
The E-Cell Application No. 5, Electron, 1st June 1972
The Question of Thermistors, Electron, 13th July 1972
Thermistor Manual - Fenwal Electroncis
Instrument Technology by E. B. Jones (NEWNESBUTTERWORTH).

, PRACTICAL KNOW-HOW

. . can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the EasiBinder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At $£ 1.90$ (including VAT and postage), they are obtainable from:
Post Sales Department, IPC Magazines Ltd. Carlton House, 66-68 Great Queen Street London, W.C. 2
I enclose P.O./cheque value. for binders at $£ 1.90$ each for Practical Electronics Vol. No's.
Name..
Address..

NEW! SPACE AGE KITS
 PRESENTING THE WORLD'S FIRST LED DIGITAL WRIST WATCH KIT

SINGLE I.C. WATCH PROVIDES HOURS/MINUTES/ SECONDS/DATE ON DEMAND-SAVES BATTERY POWER

Onlvi£39-50 Complate kil

+ §1-25 Airmail postage. insurance. atc.
LOOK AT THESE AMAZING FEATURES!
- Easy 2 button operation.
* Easy to read LEO display with antr-glare
* Crystal controlled accuracy. adjustibble to

2 seconds or better per month.

- incorparates the latest in solid state
technology.
- Quality nickel-silver case included. Case style may vary from that illuatrated.
* Detaled pictorial instructions supplied with overy kit.
- Batteries included at no extra cost
- Betteries last up to one full year.

This kit recommended for the advanced constructor
The prices quoted are the approximate equivalents of the actual U.S. doller prices Remittances should be sent by benk dratt or international money order for U.S. $\mathbf{5 0 0 - 0 0}$ (watch) or U.S. $\mathbf{\$ 2 8} \cdot 00$ (photo etch set). Prices include air mail postage and insurance all countries including U.K

USE DATAK'S POE-NEO FROCES The revelurtionary ototerurapicte wiey that makes PEAFFCT prifted cifreuts frow orighat ort or a pribied page.
KIT CONTAINS $5^{\prime \prime} \times 6^{\prime \prime}$ steel printing frame. 4 sheets $5^{\prime \prime} \times 6^{\prime \prime}$ photocopy film, yellow filter, chemicals for 1 pint film developer and 1 pint film fixer. 5×6. copper clad 2 sheets $8 t^{\prime \prime} \times 4^{\prime \prime}$ copper clad board, spray can of phoio etch resist, 1 pint resian developer 8 sheets dry iranster direct etch PC patterns including pads, transistors, round can and hat pack ICs. DIP ICs, edge card connectors, lines, circles, logs, etc., tho anhydrous ferric chloride to make 1 pint etchant, instructions

ER-4 COMPLETE PHOTO ETCH SET, £12.50

The above prices do not include taxes leviable by a purchaser's country of residence For your safety send all remittance via registered mail

IT MAKES SENSE TO

HIOKI 730X	U4312 MULTIMETER extrombly sturdy instrument for general electrical use. 667 opy 60/150/300/600/ 900 DCC 875 mV 0/0.3/1.5/7.5/30/ $60 / 150 / 300 / 600 /$ $900 \vee \mathrm{ACC.0/300uA}$ $1.5 / 6 / 15 / 150 / 60$ / 600mA/1/1.5/6A DC. 0/1.5/6/15/ 60/150/600mA/ 1.5/6A AC. 0/200/3k/30k ohms. DC accuracy 1%. AC 1.5%. Knife edge pointer, mirror ecale. Complete with sturdy metal carrying case, leads and instructions. OUR PRICE $£ 11.60_{\text {P/P \& }}$ \& $\operatorname{Ins} 60 \mathrm{p}$ HIOKI 750X VOLT-OHMMILLIAMETER 43 ranges: $0-0.3 / 0.6 /$ $1.5 / 3 / 6 / 12 / 30 / 60 / 150$ $300 / 600 / 1,200 \mathrm{~V}$ DC $0-3 / 6 / 15 / 30 / 60 / 120 /$ $300 / 600 / 1200 \mathrm{~V}$ $300 / 600 / 1,200 \mathrm{VAC}$. Current: $0-30 / 60 \mathrm{u} /$ 1.5/3/15/30/150/300 mA/6/12A, Pesistence: $0-3 / 300 \mathrm{k} / 3 / 30 \mathrm{Mohms}$ Decibels: -10 to +17 dB . Outout: $0-3 / 6 / 15 / 30 / 60 / 120 / 300 \mathrm{~V}$. Accur- scy $\pm 3 \%$ DC, $\pm 4 \%$ AC. Sensitivity: 50,000 opy DC, 5,000 opv AC. 4 inch meter. Built in protection. Size: $57 \times$ $102 \times 153 \mathrm{~mm}$. OUR PRICE E12.90P/P\& Ins 60p TMK MODEL TW5OK 46 ranges, mirror scale. $50 \mathrm{k} / \mathrm{V}$ OC $50 \mathrm{k} / \mathrm{V}$ AC. DC Volts: $0.125 /$ 0.25/50/125/2.5/5/10/ $25 / 50 / 125 / 250 /$ $500 / 1000$ AC $1.5 / 3 / 5 / 10 / 25 / 50 / \mathrm{s}$ 125/250/500/ 1000. DC current 25/50uA/2.5/5/25/ $50 / 250 / 500 \mathrm{~mA} / 5 /$ $104 . R$ esisiance: $10 \mathrm{w} / 100 \mathrm{k} / 1 \mathrm{Meg} /$ 10 Mag ohms. -20 10 +81.5 dB . OUR PRICE E13.50P/P \& Ins 60 P MODEL AF. 105 VOM 50.000 opr. M scals. Meter protection. $0 / 3 / 3 / 12 / 60 / 120 /$ $300 / 600 / 1200 \mathrm{~V}$ DC $300 / 600 / 1200 \mathrm{~V}$ DC. $0 / 30 \mu \mathrm{~A} / 6$ $60 / 300 \mathrm{~mA}$ $12 \mathrm{Amp} .0 / 10 \mathrm{~K}$ $1 \mathrm{~m} / 10 \mathrm{~m} / 100$ Meg Ohms. 20 to 17 dB . OUR PRICE 13.5 OF/P \& ins 60p MODEL 500 30,000 opv with overload protect- tion. Mirforscale. 0/0.5/2.5/10/25 . $100 / 250 / 500 /$ $1000 V$ DC 0/2.5/10/25/100/ AC. $0 / 50 \mathrm{u} A / 5 / 50 /$ $500 \mathrm{~mA}, 12 A$ DC. $0 / 60 \mathrm{k} / 6 \mathrm{~m}$ U4317 MULTIMETER High ensitivity instrument for field Knife edge pointer, 86 mm . mieror scale. Qurload protection Ranges: $100 \mathrm{mV} /$ V DC $500 / 1000 \mathrm{~V}$ AC. Current: 50 u A/0.5/ 1/5/10/50/250mA/1/5A DC. $0.25 /$ $0.5 / 1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 A \mathrm{AC}$. Resistance: $0.5 / 10 / 100 / 200$ ohms $/ 1 / 3 /$ $130 / 300 \mathrm{k}$ ohms. Decibets: -5 to +10 dB Battery operated. Size: $210 \times 115 \times$ plete with leads. OUR PRICE $£$ 18.35 P/P \& ins 60 op
1080 protection.	
120/600/1200V A	
$2 \mathrm{~K} / 200 \mathrm{~K}$	
2 Meg O	
10 to +	
P/P\& P Ins 30	
U4323 MULTIMETER 20,000opv. Simplat unit with audio $1 F$ oscillator, Suitable for genoral rectiver runitio. Ranges: $500 / 1000 \mathrm{~V}$ OC $2.5 / 10 / 15 / 250 / 500 / 1000 \mathrm{~V}$ AC. 0.05 : $0.5 / 5 / 50 / 500 \mathrm{~mA} \mathrm{DC}$ $\times 10 \times 100 \times 7.000 \times 10$ sistance: gotion operated. Size: $160 \times 97 \bar{x}$ 40mm. Supplied in carry ing case com. piets with teot laghe. OUR PRICE $\mathrm{f} 8.6 \mathrm{CR} / \mathrm{P}$ \& ins 60p	
TMK 200 MULTIMETER KIT	
Build yourself a quality 20000 opv multimeterand	
barteries. test prods and	
instructions. Ranges: 0/0.6/6/3 120/600/1200V D.C.0/6/30/120	
600/1200V A.C. Current:0/0.6/6	
$60 / 600 \mathrm{~mA}$. Resistance: Decibels $100 \mathrm{~K} / 1 / 10 \mathrm{Meg}$ ohms. Decen	
-20 to +'63db. Size: $90 \times 150 \times$	
OUEL	
30.000 opv DC15.000 opV AC	
6/3/75/60/300/600/$1200 \mathrm{~V} . \mathrm{DC} .6 / 30 /$	
120/600/1200 V AC	
OC Current 30uA/	
$3 / 30 / 600 \mathrm{~mA},-20$ to +63 dB OUR PRICE 59.65 P/P \& ins 30 p	
U4324 MULTIMETER	
20,00000V Ranges: $0.6 / 12 / 3 / 12 / 30$ $60 / 120 / 600 / 1200 \mathrm{~V}$ DC 3/6/15/80/150/ $300 / 600 / 900 \mathrm{AC}$ Cursent: $0.06 / 0.6 j$ $6 / 60 / 600 \mathrm{~m} / 3 \mathrm{BaC}$. $0.3 / 3 / 307300 \mathrm{~mA}$ 25/500 ohms 0 /5/5/5/50/500k ohms $/ 5$ Mohrm. Decibols: $-1010+12 \mathrm{dig}$, Size $167 \times 98 \times 63 \mathrm{~mm}$. Supoli id coma $167 \times 98 \times$. instructions. OUR PRICE $£ 10.60 \mathrm{P} / \mathrm{P}$ \& ins 60p	
U91 Clamp VOLT AMMETER For mossuring $A C$ volt. breaking curcent without $300 / 600 \mathrm{~V}$ AC. Current: 10/25/100/250/500A. Accuracy 4\%. Size $283 x$ $94 \times 36 \mathrm{~mm}$. Complete with carrying case , leach arnd tusen. OUR PRICE $£ 15.10^{\circ} / \mathrm{P} / \mathrm{P} \& \operatorname{lns} 60^{\circ}$	

Lecibels-20 to
+62 dB . Battery operated. Size: $180 \times$
$140 \times 80 \mathrm{~mm}$. Suppliod complete with $140 \times 80 \mathrm{~mm}$. Supplied complete with.
test leads otc.
OUR PRICE $\mathbf{1 8 . 9 0} \mathbf{~ P / P ~ \& ~ I n s ~} 60$.

Model HT100B4 MULTIMETER Overload protected

 OUR PRICE f $21.50 \mathrm{P} / \mathrm{P}$ \& Ins 60 p

 OUR

 Resistance: 0.06
$0.6 / 2 / 6 / 20 / 60 / 20$
Battery operated. Supplied Momplere
with with Probes, leasd supd streen carrving
case. Size: $115 \times 215 \times 90 \mathrm{~mm}$. OUR PRICE 11.85 P/P \& Ins 60 p

KAMOQEN TT35 TRANSISTOR TESTER

 High qualityingtrument
 OUR PRICE $\mathbf{f 1 8 . 9 0} \begin{gathered}\text { P/P \& } \\ \text { Ins } 60 \mathrm{D}\end{gathered}$ S100TR MULTIMETER TRANSISTOR TEST
 Transistor tester measures Alpha, Beta
and Sico. Compiete with instructions,

batteries and leath.	OUR PRICE $£ 22.65 \mathrm{P} / \mathrm{P}$ \& $\operatorname{lns} 60 \mathrm{p}$
LB4 TRANSISTOR TESTER	

 Praset trigated sweep

 OUR PRICE E47.50 $\begin{gathered}\text { E/P R1 Ins } \\ \text { E1. }\end{gathered}$

and measure $A C$ and $D C$ volts, $A C$
and total of 20 ranges. The targe light emitting diode display will read up
to 1999 and a utomatically indica to to 1999 and a utomaticallyindicate polarity. Indication of positive and The instrument is fitted with a combined carrying handle and bench stand and sockets are provided for the connection of an external power supply.
RANGES:
DC VOLTS: $1 \mathrm{v}, 10,100 \mathrm{v}, 1$ Muv. $A C$ YOLTS: $1 \mathrm{v} .10 \mathrm{v} .100 \mathrm{v}, 1$ vuuv
DC CURAENT: $1 \mathrm{~mA}, 10 \mathrm{~mA}$. DC CURRENT: $1 \mathrm{~mA}, 10 \mathrm{~mA}$.
100 mA .1000 mA 100 mA .1000 mA AC CURRENT: 1 mA .10 mA RESISTANCE RESISTANCE: $1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 1000 \mathrm{k}$. OUR PRICE $\mathrm{f} 63.70 \mathrm{P} / \mathrm{P}$ \& Ins 50 p
TRANSISTDRISED I.C.R. A.C. BR/B MEASURING BRIDGE
 ance: 6 ranges: 1 microhenry-111 $10 \mathrm{pf}-1110 \mathrm{mfd} \pm 2 \%$ Turns Ratio 6 ranges: $1: 1 / 1000-1: 11100 \pm 1 \%$ Bridge Voltage at $1,000 \mathrm{cps}$. Opers-
ted from 9 -volt battery 100 micro
 TE-20D RF SIGNAL
GENERATOR
Accurate wide range
signal generatot
covering 120 kHz - 500
MHz on 6 bands
Directiy callbested.
Variable R.F.
artenuator budio output, Xial socke lor eslibration. 220/240V a.c. Brand now with instructions
Size $140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 170 \mathrm{~mm}$ OUR PRICE $\mathbf{f} 24.30$ P/P \& ins 60 P

ALL PRICES INCLUDE VAT

Personal exports arranged for nsured and dors. Goods specially packed world at minimum cost exclusive of VAT. payment by bank transfer, certifled cheque

CUSTOMER SERVICES our Customer Services Division at Head office will answer all your enquiries -justring 01-2001321

BUY AT LLASKYYS

make sense of Hi -Fi

AUDIOTRONIC HEADPHONES LSH20 Individual
volume controls Mono/stereo switch $40-19,00 \mathrm{~Hz} .8$ ohms. OUR PRICE £6.25

LSH3O Individual tone and voluma controls. Mon
stereoswitch $30-20,000 \mathrm{~Hz}$. 8 ohms

OUR PRICE E8.95 p/P\& Ins 30p

LSH40 Two way spesket system individual volume ontrols. $20-20,000 \mathrm{~Hz}$. OUR PRICE £10.75

Belt-drive 2-speed turntable in kit form complete with pick and head shell. OUR PRICE E 21.15 ins E1.00 SUPERB QUALITY LOW PRICES AUDIOTRONIC DIGITAL CLOCK RADIOS

will give hours of enjoument to all the family. Eeputifully mished The Keyboard range can be adjusted to be in tune with any instrument. Operates from internal 9V battery. Fitted with on/otf switch, vibrato switch, earphone socket and external Size $229 \mathrm{~mm} \times 127 \mathrm{~mm} \times 64 \mathrm{~mm}$ OUR PRICE 5.95 f/ $/ \mathrm{F}$ Ins 50 p

RA 210T STEREO AM PMLIFIER $7{ }^{2} 7_{1}$ watts rms. Inpurs for aux Separade base, treble, aux. Separate base, treble, balance end valume conrols
Headphone socket. Teak case. Unrepeatablo offer. P/P OUR PRICE £21.85 Insf1.00

LIMITED STOCKS
AT Oxford Street 42 B 257 Tottenham Court Road 311 Edgware Road, CROYOON GIRMINGHAM KINGSTON LEICESTER NORTHAMPTON SOUTHEND TUNERIDGE WELLS WOLVERHAMPTON branches, o by Mail Ordor
All kits are complats with comprehensive aasy to follow instructions and covered by full guarantet.
Post and Packing Ins. 15 p perkit
AF 20 Mono ampifier.
AF25 Mixer...........itie
AF30 Mono pre-amplition
AF30 Mono pre-amplifie
AFBO 0.5 W mic. amplifier
AF 305 intercom,
AF 3102 Mono Amplifier
AF310 2 Mono Anclifier
M160 Multr-vibrator...
M1302 Transistor tester
M 191 VU Meter
M192 Stereo balance meter..
LF3 30 Quadraphonic device..
ATS Automatic light control..
c17
AT30 Photo cell switch unit... 55.5 s AT50 400W triac light AT56 2.200 We iriac light
dimmel/speed control....... $£ 10.62$
 AT65 3 channed light control.. $£ 4.95$
 HF65 FM transmitter HF75 FM receiver
HF310 FM tuner HF3 10 FM tuner
HF325 Deluxe FM tuner.
HF330 Decoder \{HF310/325) GP310 Stereo pre amplifier for use with $2 \times A$
GP3\$2 Circuit board.
GP304 Circuit board.
 $\varepsilon 8.90$
$\varepsilon 2.25$ HF 380 lw/uht aneriat amplifier 8.25
HF395 broad band aerial amp. Ea.80 NT 10 Stabilised power supply NT 1300 Stabilised p. supply.... $£ 13.95$ NT310 Power Supply 240 V AC $\begin{array}{lll}\text { or } 2 \times 18 \mathrm{VD} \text {. C. at } 2 \mathrm{amps} & \mathbf{6 5 . 9 5} \\ \text { NT } 305 \mathrm{~V} \text { oltage converter...... } & \mathbf{5 5 . 9 6}\end{array}$ NT315 Power supply 240 V AC C12.75 Amateur Electronics by Josty-Kit the protessional book for the amaleu
-covers the subject from basic prin cipals to advanced electronic lechnio UEF Comptete with circuit board for
AE1 to AE 10 listed below. AE1 to AE10 isted below. OUR PRICE £ 3.30 (No VAT) AE 1 100mW ourput stage......... $£ 1.80$ AE 2 Pre-amplifier
AEA Flasher.
AE5 Astable multi-vibrator
AE6 Monostable multi-vibrator
AE8 Bass filter...
AE9 Treble filter

TRANSFORMERS

Barrie Electronics Ltd. 3,ThE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8
NEAREST TUBEISTATIONS: ALDGATE \& LIVERPOOLST

WWMN PRACTICAL PAPERBACKS $=R O M$ FOULSHAM-TAB

N.S.E. Professional Standard KITS

The first two of a range of kits to appeal to both the novice and the experienced assembler. Branded devices and high quality components used throughout

3 CHANNEL SOUND TO LIGHT UNIT

1,000 Watts per channel FIbreglass P.C. Board

High sensitivity up-to-date design giving scintillating performance. Kit includes all components inc. mains-Transformer. Transistors and Triacs. Step-by-step instructions are provided. All you need is a soldering iron, etc. No technical knowledge required. In the unlikely event of you being unable to get the unit operational it may be returned to us for correction.

PROFESSIONAL QUALITY AT THE UNBEATABLE PRICE OF $[11 \cdot 50$. Carr 50p.

5 WATT GUITAR PRACTICE AMPLIFIER WITH TREMOLO

Fibreglass P.C. Board

High quality unit with bass and treble controls plus speed and depth controls-Kit includes mains Transformers, etc. as above. Get it going service. Another N.S.E. first at only $£ 11-50$. Carr. 50p

Send chequer NOTE-PRICES INCLUDE VAT!
Send cheque/P.O. or Access number (cash in registered envelope
only) to only) to

N.S.E. KITS

333 WHITEHORSE ROAD, CROYDON, SURREY Shop open Mon /Sat 9.30 a.m. -5 p.m. Tel: 01-689 3685 Please quote magazine when ordering

PHONOSONICS

SOUND-TO-LIGHT (P.E. Apr./Aug. 71)
the ever-popular AURORA-4 or B channels each responding to a different sound frequency and conrolling its own light. Can be Used WT tor mosy Disco. systems and lamp intensities. A mor the home.
4 channel component set (excl. thyristors) 8 channel component set (excl. Thyristors) power supply component set
PCB for 4 frequency channels.
CB for power supply and 8 lamp drivers Amp 400 V thy ristors (1 per chan. requ.) each 750 Pane meter (1mA) (optional)

VOICE OPERATED FADER (P.E. Dec. 73) For automatically reducing music volume during home-movie shows
Component set incl. PCE
TAPE-NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings.
Component set (incl. PCB)
Regulated power supply (incl. PCB) \quad E2.30

P.E. SYNTHESISER

The well-acclaimed and highly versatile large scale mains-operated Sound Synthesiser complete with keyboard circuits, and having a wider range of functions than the P.E. Minisonic. though the two may asedtage. Published in P.E. Feb. 1973 to Feb. 1974.

Full details of component sets. printed circuit boards and discount faclities are in our list. Send S.A.E.

HI-FI TAPE-LINK (P.E. Mar. Apr. 73)
Designed for use with reasonable quality tape-decks. this high performance pre-amp includes record. playback and metering circuits
Stereo component set (excl. panel meter) Mono component set (excl. panel meter) Power supply component se
Stereo main PCB
Sterec sub-assembly PCB

P.E. GEMINI 30W STEREO AMPLIFIER
 An exceptionally high quality Stereo A system. Details in ourlists. While stocks last
 Maln Ampllfier:
 Set of resistors, capacitors and presets
 Stereo printed circuit board Pre-Ampllifer
 Set of resistors. capacitors, potentiometers and switches-
 and switches- Standard tolerance set Superior tolerance set $£ 10.57$ 116.04
 Stereo PCB (as published)
 Regulated Power Supply
 Set of resistors, capacitors and preset E4.58
 | GUITAR EFFECTS PEDAL (P.E. Jul. 75) | |
| :--- | :--- |
| Component set | $£ 6.16$ |
| Printed Circuit Board | $£ 1.10$ |

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used with the P.E. Synthesiser

Component set
£3. 41
Printed circuit board E1. 10

RHYTHM GENERATOR

Programmable for 64.000 rhythm patterns from 8 effects circuits (high and low bongos. bass and snare drums. long and short brushes. blocks and cymbaly, and with variable time signatures. Really fascinating and useful' (Published in P.E. Mar./Apr. 1974)
NOW AVAILABLE WITH ALTERNATIVE NDEPENDENTLY DESIGNED PRE-AMPS AND MIXER GIVING EVEN GREATER VERSATILITY
Full details of component sets, $P C B$ s and discounts are in our list-send S.A.E

SOUND BENDER (P.E. May 74)
A multi-purpose sound controtler, the functions of which include envelope shaper. tremolo. voice operated fader. automatic fader and frequencydoubler.
$\begin{array}{ll}\text { Component set for above functions (excl. sw s) } & \begin{array}{l} \\ \text { Ci. } 86 \\ \text { Printed circuit board }\end{array} \\ £ 1.44\end{array}$ Printed circuit board
Optional extra--additional Audio Modulator, the use which, in conjunction with the above component of which, can produce "jungle-drum" rhythms.
Component set (incl. PCB)
c2. 10
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound intolive or recorded music.
Component set (incl. PCB)
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control the rate of phasing.
Component set (inci. PCB)
£3. 50

P.E. JOANNA

> The new Electronic Piano published in P.E.. series commencing May 1975. Send S.A.E for our details and discounts.

WIND AND RAIN UNIT

A manually controlled unit for producing the abovenamed sounds.
Component set incl, PCE
12. 40

OTHER PCBs (all as published) While stocks last Bench Power Supply (P E Sept. 74)
Dlgityl Power Supply (P
Pre-amp PCB (P.E. Oct. 72)
Power Supply PCB (P.E. Oct 72)
Power Slaves (P.E. Aug. 74)
Power Supply PCB
Condo: SO Decoder PCB (P:E. Sept. 73)
$\begin{array}{ll}\text { Pre-amp PCE (P E. Oct 73) } & 60 p \\ 600\end{array}$
Tone. Balance and Vol-control PCB (Oct. 73) E1.50

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that. with the use of other
Multi-function circuits that. With the use of other external equipment. can serve as lie detector. alphaphone. cardiophone. etc
Pre-Amplifler Module
Component set and PCB
Basic Output Circulte
Combined component set with PCBs, for
alphaphone, cardiophone. frequency meter
and visual tred-back lamp driver circuits $\quad \mathbf{4 . 9 6}$
Audlo Amplifier Module
Type PC7
§5.50
PHOTOPRINT PROCESS CONTROL
(P.E. Jan./Feb. 72)
or colour and B \& W, an indispensable dark-room unit or finding exposure. controlling enlarger timing. and stabilising mains voltage.
$\begin{array}{ll}\text { Component set (excl. meter) } & \text { I8.85 } \\ \text { Srinied }\end{array}$ Printed circuit board
81.60
53.50

ENLARGER EXPOSURE METER AND

THERMOMETER (P.E. Sept. 73)
Dual-purpose dark-room unit with good accuracy While stocks last.
$\begin{array}{ll}\text { Component set with PCB but excl. meter } & \text { EA. } 00 \\ \text { Panel meter }(100 \mu \mathrm{~A})\end{array}$
Panel meter ($100 \mu \mathrm{~A}$)

P.E. MINISONIC

A portable, battery or mains operated. miniature sound synthesiser, with keyboard circuits. Although having slightly fower facimies than the large P.E. Synthesiser. this design give it great scope and versathity
Full details of component sets, printed circuit bourds and discount facilities are in our list. Send S.A.E

REVERBERATION UNIT (P.W. Nov./Dec. 72)
A high quality unit having microphone and line input pre-amps. and providing full control over everberation level.

Component set (excl. spring unit)
Printed circuit board
9 inch spring unit
Panel meter ($50 \mu \mathrm{~A}$) (optional)

ULTRASONIC TRANSMITTER-RECEIVER *
(P.E. May 1972)

A highly sensitive tight-beam, long-range, invisible beam" detection circuit with numerous applications.
 SEMICONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home constructor

Set of resistors, capacitors. Semiconductors
potentiometers, makaswitches and PCB
56.56
53.50

SINE AND SQUARE WAVE GENERATOR
(P.E. July 1975)

Component Set	$\mathrm{E7.15}$
PCD	
1.55	

PCB for above components
81.55
56.32 PCB for Power Supply

72p

Semiconductors		Bryso	22p	2×3703
		OFY5	${ }^{229}$	2N3704
		BFY52	24	2N3823E
	20 p	MUE2955	$11 \mathrm{P}^{2}$	2N4060
BC107	$13 p$	M.JE3055	${ }^{75}$	2 N 4871
BC108	13p	NKT0033	1120	${ }^{2}$ N5 5787
BC109	${ }^{13 p}$	OCz8	60p	2N5777
BC147	12p	OCF°		
BC_{148}	12 p	0 C 72	140	Diodes
BC149	12p	${ }^{\circ} \mathrm{OCB4}$	25 p	
8 Cl 157	13p	ORP12	800	1N4001
BC159	${ }^{138}$	${ }^{27 \times 107}$	12 P	1N400
${ }^{8 C 159}$	${ }^{13 \mathrm{p}}$	${ }^{27 \times 503}$	15p	- ${ }^{1} \times 40028$
BC182L	12 p			in 4005
BC184	12 p	- ${ }^{2}$	220	in4007
	${ }_{14}^{14 p}$	${ }_{2 N 1304}$	22 p	OA91
BC212L	15 p	2N2219	${ }^{27}$	OA200
$\mathrm{BC213}^{1}$	15p	2 N 2905	${ }^{27 p}$	OA202
BC47	29p	2N2907	23	1 GPJ
BCr71	22p	2N3054	${ }^{4}$	
BF178	40p	2 N 3702	12p	zit (ziW)

LST
Send S.A.E. with all U.K. requests for free list giving fuller details of PCBs, kits. anduiries for list.
Europe-send 20p
Other countries-send 30 p.

${ }^{12 p}$	Integrated Clicuits	
${ }_{350}^{129}$	rog s-pin Dil	40p
399	709 TOS	469
12p	723 T05	13p
${ }_{54} 3$	7418 -pin Dil	328
$51 p$	747 14-9m OL	${ }^{115 p}$
45p	749 TO5	${ }^{39}$
	748 8-pin Dil	${ }^{63 p}$
	${ }^{748} 1848 \mathrm{Pan} \mathrm{O1L}$	${ }^{3} 8$
	LAT815 TO220	$185 p$
4	САЗ304	${ }^{6}$
${ }^{8}$	MFC6049	${ }^{3} 3 \mathrm{p}$
$7{ }^{8}$	$5 \mathrm{SO}_{3602 \mathrm{~N}}$	149
${ }^{\text {a }}$	AY.1-0212	Ssop
10 p	Zeners	
70	33 V 400 mW	12 P
4	3.8 gV 400 mW	${ }^{15 P}$
${ }^{\text {a }}$	47 Na	${ }^{29}{ }^{\text {P }}$
12p	51400 mW	$15 P$
11p	58 V 400 mW	${ }^{198}$
750	5 SV 13 W	208

Polyester
Trant

Overseas-will be charged extra. minimum charge 70p. Details of kit weights, and postage rates will be Elre and Ch overseas for posting purposes.

VAT
Add 25
Add 25% (or current rate if different) 10 full total of goods, post and handling. Overseas-VAT does not curren apply.

Sinclair Project 80

 The watts...

14 differenthi-fi modules. Between them they cater for every variety of hi-fi set-up, from a tuner amp to a full CBS SQ quadrophonic system. The value for money's amazing. A genuine 25 W per channel quadraphonic amplifier for under $£ 80$
a 12 W per channel stereo amp for around £30. And the satisfaction's even greater! If you can handle a soldering iron, you can handle Project 80 . And if you can't. use Project 805 - the same modules but with solderless clip connections.

and the wherefores.

Take a look at some of the hi-f systems you can build..

Get the full technical specifications.

See what impartial hi-fi journals thought of its performance.

And read up on the rest of the Sinclair hi-fi range.

It's all in the Sinclair hi-fi range fact-file.
Send for Sinclair's fact-file - now!

See if the answer's here the information on the component you've been looking for.

Simply cut the coupon and send it to the no-stamp-needed FREEPOST address below. We'll send you the Sinclair fact-file - giving you all you need to know about Project 80, and the rest of the Sinclair hi-firange.

Plus information abouta few extras you're sure to find rather interesting.

You've plenty to gain.. so cut the coupon - now! Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ Stlves (0480) 64646

00
 Phoenix Elecironics (Solent) Ltd.
 139-141 Havant Road Drayton, Portsmouth, Hants PO6 2AA
 You already know us-get to know us better! Our catalogue is now only 20 p-returnable on your first order.
 Our prices on a wide range of semiconductors, i.c.'s and passive components include VAT, and, despite rising postal costs, carriage is only 20p, too!
 THIS MONTH'S BARGAIN OFFER!
 Panel hardware kit. $2 \times$ F296 fuseholders, 10 fuses, 10 lead-mounted fuses, 4 each K111, K357, K430, K499, K513 knobs, $2 \times$ DPCO switches, $2 \times$ P429/P430 plugs and sockets, 2 each croc. and pin clips. Catalogue value- $£ 4 \cdot 80$. Bargain pack PEP/5A- $£ 3 \cdot 80$.

Please send your catalogue-now!
Name \qquad
Address \qquad
 costing double the price.
\star Portable organ with 4 octave keyboard; $£ 145 \cdot 29$. $*$ Console organ with 5 octave keyboard, 2250.93. $*$ Console organ with 2×4 octave keyboards and 13 note pedal board, $470-65$. \ddagger Console organ with 2×5 octave keyboards and 32 note pedal board, cae0. \pm Console organ with 3×5 octave keyboards and 32 note pedal board, ses0. $\pm \mathrm{W} / \mathrm{W}$ Sound Synthesiser Kit, 1149 . *W/W Touch Sensitive Electronic Piano, £110.
All components can be purchased separately, i.e., semiconductor devices, M.O.S. master oscillators, colis, keyboards, pedal boards, stop tabs, draw bars, key-contects, etc. Lesley type speaker units from $\mathbf{5 0}$. Send 50p for catalogue which includes $5 \times 10 \mathrm{p}$ vouchers or send your own parts list, enclosing S.A.E. for quotation..
Elvins Electronic Musical Instruments
12 Brett Road, Hackney, London E8 1JP (Tel. 01-986 8455); 8 Putney. Bridge Road, London SW18 1HU (Tel. 01-870 4949); 40a/42a Dalston Lane, Dalston Junction, London E8 (Tel 0t-249 5624).

Busineses hours: Open 10 e.m. to 7 p.m. Monday to Saturday. Closed all dey Thursday. Open 10 a.m. to 1 p.m. Sunday. Vacancy for shop aseltant with electronic knowledge

ORIGINATORS OF PRE-PACKED COMPONENTS IN BRITAIN - AND STILL LEADING!

AUDIO MODULES - today's most challenging values!

POWER AMPS

SS103
Compact I.C. amp 3 watts R.M.S. Single channel (mono) On P.C.B. size $3 \frac{1}{2}$ in $\times 2 \mathrm{in}$. Needs $10-20 \mathrm{~V}$ supply. $\quad \mathbb{E 1} \cdot \mathbf{7 5}$

SS103-3
Stereo version of above (two I.C.s)
NEW! SS105 Mk. 2
A compact all-purpose power amp. Can be run from 12 V car battery. Size $3 \frac{1}{2}$ in $\times 2$ in. Useful $5 W$ output (mono) into 3Ω using 12V. Excellent value.

22-25
SS110 Mk. 2
Similar in size to SS105 but will give 10W output into 4Ω using 24 V (mono). Two in stereo give first-class results suitable for many domestic applications
$\mathbf{\Sigma 2} \mathbf{7 5}$

SS140

Beautifully designed. Will give up to 40 W R.M.S. into 4Ω. Excellent S.N.R. and translent response. Fine for P. A., disco use, etc. Operates from 45 V d.c. Two in bridge formation will give 80W R.M.S. into 8Ω. $\mathbf{3} \cdot 60^{*}$

PRE-AMP/CONTROL MODULES

SS100

Active tone control unit to provide bass and treble facilities (stereo).
£1.60
SS101
Pre-amp for stereo ceramic cartridges, radio and tape $£ 1$ - 60
SS102
Pre-amp for low-output stereo magnetic cartridges. radio
and tape.
£2-25
BUILD A STEREO F.M. TUNER with these modules

SS201

Front End assembly. Ganged tuning with well engineered slow-motion gesred drive in robust housing A.F.C. facllity. Requires $6-16 \mathrm{~V}$. Excellent sensitivity. $88-108 \mathrm{mHz}$. £6. 25
SS202
I.F. Stage (with I.C.). Designed to use with SS201 uses I.C. Carefully checked before despatch.

SS203

Stereo Decoder. Designed essentially for use with SS201 and SS202, this excellent decoder can also make a stereo tuner of almost any single chanmel FM tuner. Supplied ready aligned. A L.E.D. can easily be fitted.
SAVE E5 ON THE S/S TUNER
By buying Units SS201, SS202 and SS203 together, the price is $£ 12 \cdot 12$-a genulne saving of $£ 5$ on this very efficient tuner. $£ 12$-12

NEW RANGE TRANSISTOR AND COMPONENT PACKS

TP SELECTION

TP5 20 Transistors. PNP GermanTP6 20 Ium, Fed Spot A. F.
TP6 tum, White spot RF.
TP7 1 2N174 150W Transistor, with mounting assembly.
TP19 100 diodes. mixed Germanlum. Gold-bonded etc. Marked marked
TP23 Twenty NPN Silicon uncoded
TOS. Similar to BFY50/2. TO5. Similar to BFY50/2.
2N696. 2N1613. etc. Complementary to TP24.
TP2 ${ }^{4}$ Twenty PNP Silicon, uncoded TOS. Similar to BFY64. TP29 $\stackrel{i}{8}$ 2N2904/5. power 2
TP29 ${ }_{8}^{8}$ power diodes 400 V . 125 A

CP SELECTION
CP1 Mixed bag of capacitorsElectrolytic. Paper. Silver Mica

CP2 200 (approx.) Resistors various types, values, watts (Sold by welght.)
CP3 40 wire wound resistors, mixed
CP4 12 pots-pre-set, w/wound carbon. dual, with/without

CP7 Heat sinks assorted. To.ft SO-Z (OC72) TO-1 (AC128) etc

SUNDRY

PI PAK-Approx. 170 short-lead semi conductors and components. PNF NPN. diodes, rectifers, etc. On PCBs data supplied 50p. UHF 625 line tuner. potary, $£ 2 \cdot 50$. Books by Bernard's Publications Newnes-Butterworth's, etc.

THE FREE CATALOGUE
New edition better then ever. It's your's for tree and well worth getting-only please send large S.A.E. with 10p
post it to you.

ALL ABOVE PACKS—50p EACH. TP Tested and Guaranteed: UT Untested. unmarked: CP Components.

CAPACITOR DISCHARGE IGNITION KIT Simple to assemble and fit. Improves car pertormance.
saves on fuel. P. \& P 30 . BI-PRE-PAK X-HATCH GENERATOR MK. 2
 and terted 59.93^{*} Piease add 30 p for postage and 93*

Ready-bulit PLUSAST SILICON* 40 WR TRANSISTORS is Invaluable to industrial and home user alike. Improved circuitry assures rellabillty and still better accuracy. Very compact, self-contained. Robustly bult. Widely used by instructions, but less batteries. (Three 42 type required.)

TV SIGNAL STRENGTH METER*
Complete kit as described in "Television" [19.50 plus 40p

UT SELECTION
UT1 50 PF PN's Germanium, AF and UT2 ${ }_{\text {glass. }}^{150}$
UT4 100 silicon diodes. min. glass similar to IN914, IN916
UT5 40 OAZ24 250 mW Zener dlodes OAZ24 range: average 50% good
UT7 30 silicom rectifiers 750 mA , mixed voltages. Top Hats. elc.
UT9 40 NPN Silicon planers. Similar to 2 N 3707.11 range. Low noise amps
UT12 $252 \mathrm{~N}_{3} 3702 / 3$ Transistors. PNP
Silicon. Plastic to 92 .

SS300 POWER SUPPLY STABILISER Add this to your unstabilised supply to obtain a steady working voltage from 16 to 60 V for your audio system, work bench. etc. Money saving and very reliable [3.25*

PLASTIC POWER TRANSISTORS

Type	Polarlty	Gain	vce	Price
40 N 1	NPN	15	15	20p
40N2	NPN	40	40	30p
40P1	PNP	15	15	20p
40P2	PNP	- 40	40	30p
SOWATT	SILICON*			
Typ*	Polaplty	Galn	vCE	Price
90N1	NPN	15	15	25p
90 N 2	NPN	40	40	35p
90P1	PNP	15	15	25p
90P2	PNP	40	40	35p

CRESCENT RADIO LTD.

$11-15$ \& 17 MAYES ROAD, LONDON N22 6TL (also) 13 SOUTH MALL, EDMONTON, N. 9

MAIL ORDER DEPT. ST. MICHAELS TERRACE, WOOD GREEN LONDON N22 4SJ Phone 888-4474
bargain project box
A plantic box with nouldect
extruxion raila for PC or Chassis extrusion rails for PC or Chassis
panels with inetal front plate fitted with four serews (all supplied).
An ideal box to give a small
proiect a professional mig project a profersional finigh. 28 min internai $81 \mathrm{~mm} \times 51 \mathrm{~mm} \times$ OTR PRICE 40D.

- CRESCENT

 beat brite" SHGLE SOUND TO LIGHT UNIT This fantastic little box connected $\begin{aligned} & \text { sound } \text { goure from } 1 \text { to } 100 \text { watts }\end{aligned}$ protuces a ispehedelic light profuces a Pisychedelic
display of up tu 1000 watts. Complete with n yensitive l control the unit io fused and cannot harin your amplifier. A. Bargan at 87.50 plus 10 p
P. $8 \mathrm{P}+80$ P. $8 \mathrm{P} .+8 \%$

Miniature relays

Brand new ranke of British macle
 1.5 contacts and suitable for Heting on 0 Im veroboaril. Type Volts Current Ohms

 19/A | gV | $33 \mathrm{M} / \mathrm{A}$ | 18 B | each |
| :--- | :--- | :--- | :--- |

MIDGET

MAINS TRANSFORMER
Varnish Impresnated
Slec $45 \mathrm{~mm} \times 36 \mathrm{~mm} \times 31 \mathrm{~mm}$ PRI 240V

40		
Me	$3.0-3$	100 ri A
sec	\$5.0.6	100 mA
rec	0.0 .4	100 mA
sec	12.0.12	100 mA
Sec	$20.0 \div 0$	100 mA
21.23	10p P. \&	P. +80

CRESCENT BUBBLE LIGHTSHOW This bualget system compares very and highor priced models. Specification:
Projector-150w
cooled. At 30 ft cooled. At 30ft the convection image is 16 ft .
Motor-1
Kev, per 2
Minuld
Wheei
Liquid Wheei-6in tiameter
The motor is
The motor is fit ted to the projector and can on
The liquit
molel alitl may ho purchasent aeparately.
A bargain at: Projector, 15 ;
Wlicel, $£ 5$; Total Wheel, 55 ; Total 220 . Plus aty
carr. $+80 \%$

CABLE LESS SOLDERING IRON + WAHL "ISO-TIP - Completely portable * Sharge.

* Recharges in its own atand. Fine ip for all types of rold ing.
* Oniy sin long and weighs just ona
OUR PRICE $\mathbf{~} 9 \cdot 75+$ ㅇ.
"CRESCENT" IO0 WATT R.M.S
ALL PURPOSE AMPLIFIER
U.BUILD. IT

We supply the three inodules for you to build this Disco-Group-P.A. anplifier into the cabinet of your choice. 170 W r.in.s. 84 . Wave 300 W instantaneous pea into 8 ohm (60W into 18 ohm).
t THE PRE-AMP MODULE
tour control pre-amp, Yol. Bass, Treble. Middle controls. Designed to drive most amplifiers uging F.E.T. first atage

* THE POWER SUPPLY

If suppliel complete with the rnains transformer Complete fixing instructions are supplied and no terhnical knowiedge is required to connect the three rcady wired inotules. A lantastic bargain. £25, enrr. Tip. Send S.A.E. for further details on thin or our ready built amplifiers. $+8 \%$.

12-0-12V 500M/A
240% primary transforiner bargain. Approx. size $60 \mathrm{~mm} \times 40 \mathrm{~mm} \times 50 \mathrm{~mm}$; fixing centres: 75 mm . Our price $£ 1 \cdot 20$. $+8 \%$.

FERRIC CHLORIDE
Anlyydrous
ferric chloride in touble sealed one our Price 60 p per

LOW NOISE, LOW PRICE CASSETTES Cood quality tape in well made screw typ cassettes. Presented in single plastic cases. C60 31p C90 42p C120 53p
10\% riscount on ten or more cassettes of one
type $+80 \%$
ABS PLASTIC BOXES
Handy boxes for construction projects. Moulded xtrusion rails for P.C. or chassis panels. Fitted With linm front panels. $1005,105 \mathrm{~min} \times 73 \mathrm{~mm} \times$ $100 \mathrm{~m}, 184 \mathrm{~mm} \times 1.24 \mathrm{~mm} \times 60 \mathrm{~mm} \times 4 . \mathrm{mm} 66 \mathrm{~m}$, $106 \mathrm{~mm} \times 74 \mathrm{~mm} \times 45 \mathrm{~mm}$ (sloping front) 50 p .
P.C. ETCHING KIT

This kit contains all that the constructor will need to etch the circuits of his onn design. Contents: Plastic etching dish. Bample copperclad board. Camininate Cutter. 1 It Ferric Chloride. Large Plastic Spoon. Etch Resist Pen. Full Etching Instructions Com
$23.75+8 \%$ VAT.

2in. PANEL METERS
Size $59 \mathrm{~mm} \times 46 \mathrm{~mm}$

Size 59 mm	$\times 46 \mathrm{~mm}$
0-50 $\mu \mathrm{A}$-ME6	$0.100 \mathrm{~mA}-\mathrm{ME} 13$
0-100MA-MET	$0.500 \mathrm{~mA}-\mathrm{ME14}$
$0.500 \mu \mathrm{~A}$-ME8	$0.14-$ ME15
0.1 mA - ME9	$0.50 \mathrm{~V}-\mathrm{ME} 16$
0.5 mA -ME10	$0 \cdot 300 \mathrm{~V}$ a.c.-ME17
$0 \cdot 10 \mathrm{~mA}$-ME11	Smeter -ME18
$0.50 \mathrm{~mA}-\mathrm{ME1:}$	V.U. meter-ME19
83 each. 10 p P. \& P.	+ 8%.

POWER PACKS

P1I Swifched $3-4$ t-6-71-9 and $12 V$ at $500 \mathrm{M} / \mathrm{A}$

 Approx. size 29 in $\times 2$? in $\times 3 \frac{1}{4}$ in. I leal for cassette recorilera, 83.25 .
$\begin{aligned} & \text { PP3 Car converter. From lis Pes, or Neg, to } \\ &= 6-7 \mathrm{~A} .95 \text {. Fasy to fit and transistor }\end{aligned}$ $=6.7 \mathrm{t}-9 \mathrm{y}$ Easy to fit
regulated, $£ 3.90$. 8%

TELESCOPIC AERIAL
Ninc sect ion fully suivelling felescopic aerial with 4BA single bolf fixing or two hole fixing bracket.
Fully vextended 43°. Fully closet 7° Our Price $\frac{50 \mathrm{D}+\mathrm{P} / \mathrm{P}+V \mathrm{AT} \text { (w) } 80 \%}{3 \text { KILOWATTS PSYCHEDELIC }}$ LIGHT CONTROL UNIT Thiree Channel
Baser. Midde Baser Middle,
Treble.
Each channel har its own sensitivity control. Just the input of this unit to the threc 3 Sins nis to 1000 W lamps to the output terminals of the unit, and you pruluce a fasci nating atomil-light diaplay. (All guarantecd.)

ENGINEERS

LR
YOURSELF FOR A BEBEID日 шітн

This 76 page FREE book shows how!

MORE PAY!

Do you want promotion. a better job. higher pay? "New oppor tunities" shows you how to get Shem through a low-cost, Home Study Course. There are no books to buy and you can pay as you

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 76-page free book NOW No obligation. nobody will call on you. It could be the best thing you
ever did.

CHOOSE A BRAND NEW FUTURE HERE

Mershinlis ITL \& BUDS offrer

To: P.E. SPECIAL OFFER
A. Marshall (London) Ltd.,

Any quantity or combination may be ordered but can only be accepted on this coupon.

OFFER CLOSES SEPT. 30TH

OR ONE MONTH ONLY AND SUBJECT TO STCCKS BEING JNSOLD

Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome
A. Marshall (London) Ltd Dept: PE

42 Cricklewood Eroadway London NW2 3ET Tel:01-452 0161/2 Telex: 21492
\& 85 West Regènt St Glasgow G2 20D
Tel: 041-332 4133
\& 1 Straits Parade Fishponds Bristol B\$16 2LX
Tel: 0272 654201/2
\& 27 Rue Danton Issy Les Moulineaux Paris 92
Tel : 6422985°
Catalogue price 25p
10%
for
Bris
Au
\therefore

LONDON—GLASGOW--PARIS
AND NOW
BRISTOL!

1 STRAITS PARADE FISHPONDS BRISTOL BS16 2LX TEL: BRISTOL 654201/2

IMPROVE PETROL CONSUMPTION

Fit the Brilliant New
P.E. Scorpio Mk. II "Dual Polarity Capacitive Discharge
Electronic Ignition system

Genuine improvement in overall petrol consumption (independent report

 claims at least $8 \%-10 \%$)* Much easier cold weather starting. less strain on your battery
* Less use of choke-increase engine life
* Smoother running at lower revs-makes youp four cylinder car teel like a six cylinder
Together with the foilowing 'Scorpio Mk. II plus features not previously available with other makes
* Only one model used for both positive (+) and negative (-) earth vehicles-if you change your car, you can certainly transfer your Scorplo
* Retains your original contact breaker points, which last their mechanical life-no points burn
* Will drive electronic tachometers.

Send a stamped addressed envelope for our free interesting brochure. Electronic Ignition-How it Works. containing curcuit and itemised rice list.
Price for complete kit of parts. with ensy to follow, comprehensive instructions, connecting wire, etc. ONLYE15-50, including VAT and poatage and packing.
Ready made unit. fully tested, for immediate inatallation with easy to ollow instructions. all leads, etc., ONL Y f17-50, including VAT and postage and packing.

THOUSANDS ALREADY IN USE-FULLY OUARANTEED.

P.E.
 "VARICAP" STEREO PUSH BUTTON F.M. TUNER

The P.E. "Varlcap" Stereo Tuner uses the latest Mullard modules for A.F. and I.F. circuits-highly sensitive and pre-aligned for ease df construction.

This superb kit has everything to enable you to construct this highly sensitive F.M. Stereo Tuner. with instant push button station selection, self contained regulated power supply, stereo decoder, etc., etc. Easy to construct, highest quality reproduction.
Price only $\mathbf{5 4} \cdot 50$, including VAT and postage and packing. Please send stamped addressed envelope for our free brochure on the Varicap, which gives performance figures, detailed description, etc., etc

P.E. "GEMINI" STEREO AMPLIFIER

Output genuine 30W R.M.S. per channel!
Distortion 0.01\%(maximum)! Frequency response-3dB, 20 Hz to 100 kHz into 8 ohms Fully comprehensive inputs, disc, tape, MIC, etc.!
Yes, we are still supplying all components for this superb Stereo Amplifier, since we have not yet found a better one!
Fully comprehensive constructional booklet available, containing full specification, performance graphs, step-by-step assembly instructions, photographs, fault finding guide, etc. etc. Price 55p plus 9p postage and packing. For itemised price list only please forward stamped addressed envelope.

Electronic

ALL PARTS CAN BE SUPPLIED

Keyboard, Keyswitch, P.C.B.s, Hardware, Semiconductors, Resistors, Capacitors, Cabinets Complete kits or easy stages
Constructed Pianos to order Send S.A.E. for details

Clef Products

31 Mountfield Road, Bramhall Stockport, Cheshire SK7 1LY

FULLY GUARANTEED
Mail order only VAT extra p\&p 20p
Bridge Electronics
PO Box No. 10 Fishponds Bristol BSi6 2LX

Trenolstore	Price	Tranaletore	Price	Diodee	Price
AC128	50.15	OC203	co. 50	1 N 4002	50.07
ACrip	c0. 35	ORP12	co. 50	1N4003	co.00
ACY20	c0. 23	TIP29A	co. 49	1N4007	co.08
ACY21	c0. 26	TIP318	co. 70	1N4148	50.07
BC107	c0. 10	TIP41A	co. 58	1N5395	50.08
BC10日	co-10	TIP42A	c0. 68		
8C108A	co. 10	Tis43	c0. 28	Linear I/C'E	
BC108B	co. 11	2780	c0. 30	709	20.30
BC108C	co. 12	2T84	c0.50	723	t0. 60
BC109A	c0. 12	2T1701	c1. 50	741	c0.30
BC109B	c. 12	2TX300	co. 11	NE555	c0. 55
BC109C	c0. 12	2TX301	c0. 11	LM309K	c1.50
BC145	co. 18	2TX303	co. 12		
BC154	c0.18	2TX310	c0. 10	TTL	
BC150	c0.08	ZTX451	c0.12	7400	50.18
BC158A	c0. 10	2TX500	co. 11	7402	c0. 16
BC159	80. 10	2TX501	c0.11	7404	60.20
BC172A	c0. 10	27×504	c. 39	7410	60.16
BC182A	co. 10	$2 \mathrm{N697}$	co. 14	7413	¢0.33
BC183L	co. 11	2N+132	c. $\cdot 20$	7420	co. 16
BC184	c0. 11	2N1613	co. 18	7430	co. 18
BC204B	co. 15	2N1711	c0.75	7447	c0. 00
BC212L	co. 15	2N2270	c0. 31	7472	50.25
BC317	c0. 10	2N2846	80.40	7473	[0.30
BCX37	c0.25	2N2904	c0. 19	7474	50.33
BCY30	¢0.55	2N2907A	20.20.	7475	co.48
BCY31	20. 60	2N3053	c0.15	7483	c0. 05
ВGY34	$\mathrm{co} \cdot 50$	2N3055	c0.45	7486	c0.31
BCY70	¢0. 15	2N3440	c0.48	7490	c0. 52
BCY71	50.18	2 N 3467	[4.30	7492	50.52
BCY72	co. 10	2 N 3553	21.00	7493	c0. 52
BD131	$\mathrm{cos}^{2} 35$	2 N 3584	51.50	74107	80.34
BD132	c0. 38	2N3702	20.11	74121	20.38
BF244A	c0. 27	2N3704L	50.13	74141	c0. 72
BFR60	50.24	${ }^{2} \mathrm{~N} 3706$	co. 11		
BFR79	co. 24	2N3707	c0. 12	Robay ${ }^{\text {Crade }}$ pole	
BFW10	$50 \cdot 65$	2N3819	co-30 co.	Cradie 4 pole $6 \vee \mathrm{~d}$ de.	
BF×29	10.23 0.23	2N3822 2N3324	co-65	12 V d.c.	[1.62
BFX30 BFX84	20.23 50.20	2N3324 2N3866	- 50.78	24 V d.c.	21.82
BFX85	50.23	2 N 3903	c0. 11	Cradie 2 pole	
BFXB8	50.20	2 N 3904	co. 11	6 V d.c.	11.33
BFY50	50.18	2 N 3906	c0. 12	12 V d.c.	41.33
BFY51	50.17	2 N 4125	c0. 15	${ }^{24 V}$ d.c.	c1.33
BFY52	50.18	2N5037	¢3.00	Cradie 2 pole	[1.43
BFY90	co-65 co. cos	2N5416 2N5.484	50.50 50.42	Octal 2 pole	21.43
BSV68	co. 30	2N6122	50.39	$6 \mathrm{vd.c}$.	51.61
ESW66	20.60	2N6125	c0. 45	12 V d.c.	81.61
BSx76	co. 13	2\$301	c0. 55	24 V d.c.	21.81
85x77	c0.30	25323	50.75	11 pin 3 pole	
BSY56	51.00			$6 \mathrm{Vd.c}$.	${ }_{81.94}$
ME0412	c0. $\mathbf{c o} 0.12$	Diodee	Price	12 V d.e.	c1. 94
ME4003	co. co. co	OA930	${ }_{50.07}$	Open Type 3 pole	
MEL32	10.30	OA91	c0.07	12 V d.c.	80.85
MEU21	c0. 30	OA95	80.07	2 pole 110 V d.c.	c0.30
MJE520	50.53	OA202	50.10	1 pole liov dic.	20.25
MpSU51	co. 50	1 N 914	¢0.08	Osmor Roed Relay	
OC36	50.50	1N4001	50.06	Coils 2 pole 29 V	

Jointhe Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation. . .Each of the 6 volumes of this self-instruction course measures $11 \frac{4^{\prime \prime}}{} \times 8 \frac{1^{\prime \prime}}{}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

Designer Manager Enthuslast Scientist Engineer Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

「To:Cambridge Learning Enterprises
FREEPOST, St. Ives, Huntingdon. Cambs. PE174BR
*Please send me....set(s) of Design of Digital Systems at $\mathbf{x} 6.45$ each, p \& p included
*or. ...set(s) of Digital Computer Logic and Electronics at E 4.45 each. p \& p included
| *or....combined set(s) at $£ 9 \cdot 75$ each, p \& p included
| Name..
Address
"delete as applicable
No need to use a stamp-just print FREEPOST on the envelope. PE9

Practical Electronics Classified Advertisements

RATES: 13p per word (minimum 12 words). Box No. 35p extra. Semi-Display £10.00 per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD. Tel. 01-634 4451.

RECEIVERS AND COMPONENTS

BRAND NEW COMPONENTS BY RETURN, Electrolytics $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7$, $10 \mathrm{mfds}, 5 \mathrm{p} ; 22,47,5 \frac{1}{2} p(50 \mathrm{~V}, 6 \mathrm{p}$) $100,7 \mathrm{p}$ (50 V , 8 p) ; 220, 8 p ($50 \mathrm{~V}, 10 \mathrm{p}$); $500,11 \mathrm{p}$ ($50 \mathrm{~V}, 16 \mathrm{p}$); $8 p) ; 220,8 p(50)$
$1000 / 25 \mathrm{~V}, 18 p$. Subminiature bead-type tantalums. $0.1 / 35 \mathrm{~V}, 0.22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}, 1 \cdot 0 / 35 \mathrm{~V}$, $\begin{array}{ll}2 \cdot 2 / 35 \mathrm{~V}, & 4 \cdot 7 / 35 \mathrm{~V}, \\ 2 . & 10 / 20 \mathrm{~V}, 0 \cdot 4 / 35 \mathrm{~V}, 1 \cdot 0 / 35 \mathrm{~V}, \\ 22 / 16 \mathrm{~V}, & 47 / 6 \mathrm{~V},\end{array}$ $100 / 3 \mathrm{~V}, 11 \mathrm{p}$. Mylar Film 100 V , $0.001,0.002$, $0.005,0.01,0.02,3 \mathrm{p} ; 0.04,0.05,3 \frac{1}{2} \mathrm{p}$. Mullard tubular polyester 400 V E6 series, $0.001-0.022$, $31 \mathrm{p} ; 0.033-0.1$, $4 \frac{1}{2} \mathrm{p}$. Mullard polyester 160 V tubular or 250 V miniature for vertical mounting E6 series, $0.01-0.047,3 \frac{1}{2} \mathrm{p} ; 0.068,0.1,4 \frac{1}{2} \mathrm{p}$; $0.15,0.22,6 p ; 0-33,7 p ; 0.47,9 p ; 0.68,11 p ;$
 Mullard miniature C333 ceramics 63 V E12
series $\quad 2 \% \quad 1 \cdot 8 \mathrm{pF}-47 \mathrm{pF}, 3 \mathrm{p} ; \quad 56 \mathrm{pF}-330 \mathrm{pF}$,
 $47,000 \mathrm{pF}$, 2 p . Polystyrene 63 V . E12 series $10 \mathrm{pF}-1,000 \mathrm{pF}, 3 \mathrm{p} ; 1,200 \mathrm{pF}-10,000 \mathrm{pF}, 4 \mathrm{p}$. Miniature highstab carbon film resistors iW $1-2 \mathrm{p}$; $1 \mathrm{~N} 4002,6 \mathrm{p} ; 1 \mathrm{~N} 4000,8 \mathrm{p}$; $1 \mathrm{~N} 4148,4 \mathrm{p}$. Postage 10p. Prices VAT inchisive. THE C.R. SUPPI, ${ }^{\text {Prices }}$ (127 Chesterfleld Road, Sheffield, S8 ORN.

R.T. SERVICES (MAIL ORDER ONLY)

77 Hayfield Rd., Salford 6, Lancs.
Tapped Auto Transformer, 240 V -lloV, 80 watts, 62 P.P. New.
Tapped Auto Transformer, 240 V - 115 V , 200 watts, E4.50 P.P. New.
100 Watt Valve Output Transformer. KT88s, etc. 8 or 15Ω or 100 volt line output, C13.60 P.P.
FM Tuner with R.F. Stage and A.G.C., 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $\mathrm{El} \cdot 54$ P.P.
Crouzet Geared Motors, 30 r.p.m. New, CI. 75 P.P.

UHFTV Tuners. Transistorised, C2. 10 P.P.
Panels with I.C's on $8 \frac{1}{2}$ p per I.C. min. order 10 I.C's.
Transformers. $7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, \mathrm{LI} \cdot 12$ inc P.P. $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, 11 \cdot 25$ inc. P.P. $9-0-9 \mathrm{~V}$ $100 \mathrm{~mA}, \subset 1.25$ inc. P.P. $29 \mathrm{~V} 50 \mathrm{~mA}, 95$ p inc. P.P. $6-0-6 \mathrm{~V}, 100 \mathrm{~mA}, \ldots 1.25$ inc. P.P.
Transformer. 24 volt, approx. I amp + 6.3 V CT approx. 500 mA , $£ 160$ inc. P.P. Transformer. 20 vole, $1 \mathrm{amp}, \AA 1 \cdot 40$ P.P. Transformer. 45 volt, $2 \mathrm{amp}, \ldots 3 \cdot 38$ P.P. P.C. Board. S/S, $5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}, 10$ for $£ 1 \cdot 10$ P.P Transistorised Timer. Variable delay. 110 or 250 V A.C. input. With instructions. or 250 A.C. input. With instructions.
Brand new, $\epsilon 2.25$ inc. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$. Prawer Unit Components Transformer. 18 volt 1 amp F/W bridge rectifier, 21250 mfd capacitors, all new $\& 1 \cdot 60$ per kit. P.P. Electrolytic Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$. $41^{\prime \prime} \times 1 \frac{3^{* \prime}}{40 p}$. inc. P.P.
Mixed Pack of C280 series Mullard capacitors. 100 for $£ 1 \cdot 30$ inc. P.P.

CLEARING DISTRIBUTOR STOCK8, transistors, diodes, components, etc. Sample pack 65 p incl. postage or send stamp for list. REDHAWK SALES LTD., 10 Maple Lodge Olose, Rickmansworth, Herts. Mall order only.

NEW COMPONENTS AT LOW COST

Silicon Rectifiers, Ceramic Capacitors, Feedthru Capacitors, Dise and Tube Capacitors, Wirewounds and Electrolytics.

Most Values Available. Many Other Items
S.A.E. For Full Details to:

BUCKINGHAM ELECTRONICS
260/261 Southtown Road, Gt. Yarmouth Norfolk.

TURN YOUR SURPLU8 capacitors, transistors, etc., into cash, Contact COLES-HARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate cash settlement.

PRECISION POLYCARBOMATEGAPACITORS

ALL HIGH STABILITY-EXTREMELY LOW LEAKAGE 440 V AC ($\pm 10 \%$) ${ }^{2} ;^{63 \mathrm{~V} \text { Range }}$

TANTALUM BEAD CAPACITORS-Values a a ailable: $0 \cdot 1,0 \cdot 22,0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V ;
$10 \cdot 0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22 \cdot 0 \mu \mathrm{~F}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or 16 V ; $33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V}: 100.0 \mu \mathrm{~F}$ at 3 V ; ALLat 10 p each. 10 for $95 \mathrm{p}, 50$ for 84.

TRARSISTORS:	BC183/183L	11 p	BFY 50	80 p								
BC107/8/9	8p	BC184/184L	12 p	BFY 5	20 p		BC107/8/9	9p	BC184/184L	12p	BFY	20p
:---	---:	:---	:---	:---	:---							
BC114	12 p	BC212/212L	14 p	BFY5\%	20 p							
BC147/8/9	10 p	BC547/558A	12 p	AF178	30 p		BC147/8/9	10 p	BC547/558A	12 p	AF178	30 p
:---	:---	:---	:---	:---	:---							
BC1473												
BC153/7/8	12 p	BF194	12 p	OC71	12 p							
BC182/182L	11 p	BF197	13 p	2 N 3055	$\mathbf{5 0 p}$							

 POPULAR DIODES-1N914 6p, 8 for 4.5p, 18 for 90 p ;
 8 p IN4003 6 ip ; IN 40047 p ; IN4005 7ip; IN 40068 p ; IN40078!p.
LOW PRICE ZENER DIODES-400mW. Tol. $+5 \%$ at 5 mA , Values a vailable: $3 \mathrm{~V}, 3.3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 5 \cdot 1 \mathrm{~V}, 5.6 \mathrm{~V}$, $\begin{array}{ll}6.2 \mathrm{~V}, & 6.8 \mathrm{~V},{ }^{7.5 \mathrm{~V}}, \\ 13.5 \mathrm{~V}, 15 \mathrm{~V}, & 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, \\ 16 \mathrm{~V}, & 18 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V},\end{array}$ ALL at 7 p each, 5 for $33 \mathrm{p}, 10$ for 65 p . SPECIAL OFFLR: 100 7eners (may be mixed) for 86-00.
RESIRTORS-High stability, low noise carbon film 5% 1W at $40^{\circ} \mathrm{C}$, IW at $70^{\circ} \mathrm{C}$. E12 series only-from $2-2 \Omega$ to $2.2 \mathrm{M} \Omega$. ALL at ip each, 8 p for 10 of any one value, 70 p
for 100 of any one value. $8 P E C I A L$ PACK: 10 of eacb for 100 of any one value. SPECIAL PACK: 10 of eacb value 2.2Ω to $2.2 \mathrm{M} \Omega$ (730 resistors) 25.
SILICON PLASTIC RECTIPIERS- 1.5 amp, brand new wire ended D027: 100 P.I.V. 7p (4 for 88 p); 400 P.1.V. 8 p BRIDGE RECTIFIERS-21 amp: 200V 40p; 3j0V 45p; SU0V 55p. ALL at 5 p each: $50 \Omega, 100 \Omega, 2 \Omega 0 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{k} \Omega$, $2 \cdot 2 \mathrm{k} \Omega, 4 \cdot 7 \mathrm{k} \Omega, 6 \cdot 8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega, 250 \Omega, 680 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 25 \mathrm{M}, 5 \mathrm{M}$.
PLEASE ADD 15P POST AND PACKING ON ALL ORDERS BELOW C5. ALL EXPORT ORDERS ADD COET OF SEA/AIRMAIL.
Send P.A.E, for lists of additional ex-stork ORR
Wholesale price lists available to bona fide companies

> I MARCO TRADING Dept. E.8, The Old School, Edataston, Jf. Wem, 8hrophire Te!.: Whixall $464 / 465$ (8TD 0948 72) (Proprs.: Minicost Trading Ltd.)

VALYEs, RADIO, TV, TRANSMITTING, INDU8TRIAL. 1930 to 1975. 2,200 types in stock, many obsolete. List 20p. Quotation N.A.R, Postal export service. We wish to purchase new and boxed valven. llealers. wholesalers, etc., stocks purchased. COX RADIO (SUSSWX) LTD., The Parade, was

Bank of 20 Neons 74p (I|p). 5 Figure Resetrable Counter $18 / 22 \mathrm{~V}$ works on $12,62.50$ (30p). Box with $20 \times$ LA2 Pot Cores $+20 \times 1 \%$ Caps, CI-50 (50 p). Copper Clad Pax. Panels $5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}$.
$6-65 \mathrm{p}, 12 \times 12 \mathrm{in} 65 \mathrm{p},. 16 \times 9 \frac{1}{2} \mathrm{in} .65 \mathrm{p}, 8 \times 9 \frac{1}{2} \mathrm{in}$. $6-65 p, 12 \times 12 \mathrm{in}$. $65 \mathrm{p}, 16 \times 9 \mathrm{i} \mathrm{in} .65 \mathrm{p}, 8 \times 9 \frac{1}{2} \mathrm{in}$.
 Sec. 25 V |A $0-4-10 \mathrm{~V}$ (10p). Mains Transformer. Refund on purchase.
7 lb ASSORTED COMPONENTS $62.20 \mathrm{C} . \mathrm{P}$.
J.W.B. RADIO

2 Barnfield Crescent, Sale, Cheshire, M33 INL Mail order only

TTL AT LOW PRICES! (Fast delivery. All prices include VAT)					
Type	1/24	25/99	Type	$1 / 24$	25/99
7400	0.14	0.13	7473	0.33	0.31
7401	0.14	0.13	7474	0.33	0.31
7402	0.14	0.13	7475	0.45	0.44
7403	0.14	0.13	7476	0.34	0.31
7404	0.16	0.15	7480	0.47	0.42
7405	0.16	0.15	7483	0.89	0.80
7408	0.16	0.15	7486	0.30	0.26
7410	0.14	0.13	$7489{ }^{\circ}$	2.99	2.80
7413	0.32	0.31	7490	0.46	0.44
7417	0.30	0.29	7491	0.74	0.69
7420	0.14	0.13	7492	0.48	0.45
7427	0.27	0.25	7493	0.46	0.44
7430	0.14	0.13	7495	0.61	0.58
7432	0.27	0.25	7496	0.77	0.69
7437	0.29	0.26	74107	0.34	0.31
7440	0.14	0.13	74121	0.34	0.31
7442	0.69	0.63	74123	0.65	0.61
7445	0.89	0.82	74141	0.71	0.69
7447	0.81	0.79	74145	0.86	0.78
7450	0.14	0.13	74151	0.91	0.88
7451	0.14	0.13	74153	0.76	0.72
7453	0.14	0.13	74154	1.80	1.55
7454	0.14	0.13	74157	0.87	0.79
7460	0.14	0.13	74174	0.99	0.90
7412	0.16	0.15	74175	0.99	0.90
7472	$0-28$	0.25	74181	2.09	1.95
TTL may be mixed for quantity prices. INTEL 2102IK static random access memories £4.50 each.					
All devices full spec. by famous manufacturers. S.A.E.for full lists. All goods sent by ist class post. 10 p P. \& P. on orders below $£ 2$ otherwise postfree.					
(Dept. PE9) 46 BURSTELLARS, T. IVES, HUNTINGDON, PEI7 $4 \times x$ (Mail Order only)					

AXIAL PRODUCTS LTD.			DEPT. 29 23 avery avenue HIGH WYCOMBE BUCKS		
aErials 4 LELEMENT FM STEREO £3. $00+25 \%$ VAT +50 P. \& P. HeLEMENT TV 92.00 + 28% VAT +50 P. \& P. $81 \cdot 75+25 \%$ VAT +50 P. \& P. New design. superior quality. ineluding mounting bracket and full instructions.					
		${ }_{4000}$			
		1 12001	P		
		${ }^{\text {in }}$ N4004			
		IN4148	P		
		744, op am	${ }_{30}^{38}$		
		${ }_{5} 555$ Timer			
		${ }^{14}$ Pin ${ }^{\text {kin }}$	rep		
All Semiconductor prices include VAT at appropriate rates. P. \& P. 10 p per $£$ under $£ 2$ C.W.O. MAIL ORDER ONLY					

REVERB LINES

$169^{\prime \prime}$ long-Twin Spring-600:2 input. Will drive from 741 I.C.
Phone for more data if required.
Price $£ 6.50$ plus $£ 1.65$ V.A.T.
P. \& P. free in U.K. Cash with order only.
G.P. ELECTRONICS

Pottery Rd., Bovey Tracey Devon 0626832670

FOR SALE

CLEARING WORKBHOP. Heathkit Multimeter MM-IU \&16. AYO \& Mk. II \&25. Heathkit Sine/Square audio signal generator AO-10 $\& 18$. Geiger counter with case $£ 8$. All with service or instruction manuals. Apply: FRANK MORTON, 24 The Chestnuts, 70 Cleanthus Road, London, S.E. 18.

COMPONENT8, RIDICULOU8 PRICE8! 'Clearout sale." S.A.E. BRIGGS, $12 a$ Bruce Grove, London, N176RA.

VOLUMES 1-10 PRACTIGAL ELECTRONICB, complete, bound with indexes. Good condition. \$12 o.u.o., carriage extra. Box No. 60 .

WANTED

TOP PRICES PAID

NEW VAIVES AND TRANSISTORS
Popular T.V. and Radio eypes
KENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks.

SERVICE SHEETS

SERVICE 8HEET8, radio, TV, etc. 10,000 models. Catalogue 24 p plus S.A.E. with orders-enquiries. TELRAY, 154 Brook Street, Preston, PR1 7HP.

8ERVICE 8 HEET8 for radio, TV, tape recorders, stereo, etc., with free fault-finding guide, 50 p and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

LADDER8

LADDERE, timber and aluminium. Tel. Telford 686644 for brochure.

EDUGATIONAL

TELEVISION TRAINING

I6 MONTHS' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners, with GCE (or equivalent) in Maths \& English.
13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential.
NEXT SESSION commences on September 15th.
Prospectus from London Electronics College, Dept. A9, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

SITUATIONS VACANT

Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks!
It can pay around $\mathbf{£ 3 5}$ p.w. as a starter and can reach over $\mathbf{£ 9 0}$ p.w. After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators Training Centre Y39, Oxford Hse. 9-15 Oxford St., W.1. Tel. 01-734 2874

MISCELLANEOUS

Low cost I.c. MOUNTING for any size DIL package. 100 pin sockets 50p. 7 and 8 hole plastic supports $5 p$ pair. Quantity rates. S.A.E. details and sample. Trial pack 50 p . (P. \& P . 10p order). P.K.G. ELECTRONICS, Oak Lodge, Tansley, Derbyshire, DE4 5 FE.

LIGHTING CONTROL UNITS $3 \times 14 \mathrm{~kW}$ per channel sound-to-light converter using solated control circuitry for maximum saitety. The unit comes in kit or ready bullt form and features individual sensitivity controls, ennsitivilty range switeh
 xtra.) Kit: $\{13 \cdot 89$. Ready bult: $\{16 \cdot 09$ Details of dimmers, sequencers and other lighting Mail order or written anquiries oniy

SELEKTRON
21 Prlor's Road, Windsor, Barks. SL4 4PD

PRINTED CIRCUIT BOARD8, all prices inclusive of P \& P. etc. No extras. We offer: "P.E." Joanna PCB's, full spec., ready to assemble, any 81.30 p each. Also full spec. ready to assemble PCB's for "P.E" Orion \&1.30p, Power-slaves (2 PCB's) $21 \cdot 52$, C.C. TV (2 PCB's) \&2-15. "Practical Wireless" Easybuild organ (2 PCB's) 25•70, teletennis (6 PCB's) \&3.68, sound effects $81 \cdot 10$, tricolour 8135, Ferret locator 75p, many others available, C.W.O. Send S.A.E. for lists. Production space available for PCB production, silk-screen printing, tinning, plus all art/graphic, photographic and design facilities. We also sell direct art/graphic aids and supplies. Cat. 40p. Production estimátes by return or phone: W.K.F. ELECTRONTCS, Welbeck Street, Whitwell, Worksop, Notts., S80 4TW. Tel. Whitwell (Derby's) 695 or 544, STD 090974. Callers seen by appointment only at Station Road.

PCB DIY 8UPPLIE8. We offer ferric chloride as used in our own plant, $4 \mathrm{lb} 22 \cdot 50,1$ cwt 823 . 1 ton 2350. 1 lb makes 1 gall. good strength. Solid carhide l'CB drill bits from 1 mm up, \$2.50. Most supplies for I'CB production available from: W.K.F. VLECTRONICN, Welbeck street, Whitwell, Worksop, Notts. Tel. Whit well (Derby's) 605.

HOME SCIENTISTS

Get the key to a FANTASTIC WORLD of
previously UNHEARD.OF PROIECTS. The previously UNHEARD.OF PROJECTS. The NEW Boffin catalogue lists LOTS of GAINS, READY-BUILT MODULES.
Here are just a few examples, there are stacks morel
Dazzling MINISTROBE (pocket size) $\quad \mathbf{6 3 . 5 0}$ PEOPLE DETECTOR MINi DREAM LABORATORY" ${ }^{\text {B }}$.. $£ 4.20$ Don't take our word for it though! GET A COPY ANO SEEI SEND ONLY 20p and We'll RUSH YOU A COPY (YOU'LL GET
'GOODUES' JUST AS QUICKLY TOOI)

```
                                    BOFFIN PROJECTS
4Cunliffe Road, Stoneleigh
                                    Ewall, Surroy
                                    (Mail Order U.K. only)
```

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipmént, etc. Lower Beed ing 236.

BUILD YOUR OWN

YOU ARE INVITED TO SEND S.A.E. FOR LISTS ON OUR VERY EXT.ENSIVE RANGE OF HIGH QUALITY AMPLIFIEPS, PRE-AMPS, F.M. TUNERS, INSTRUMENTS, RADIO CON. TROL, IGNITION UNITS AND MANY OTHER KITS.
TELERADIO ELECTRONICS 325 Fore St., Edmonton, London N9

8CREW8, nuts and washers. Useful quality assortment. $\$ 1 \cdot 50$ per packet inclusive. Write C. BRITTAIN, The Bungalow, Old Titness, Buckhurst Lane, Sunninghill, Ascot, Berks. sL5 7QB.

PHOTOTECH (EUROPE)

New optoelectronic detectors
Type I: Photodiode: 2 pin configuration Photosensitive area 0.85×10^{-3} sq in.
Type 2: Photoswitch: 4 pin configuration $20 \mathrm{~V}-30 \mathrm{~V}$ supply. Switching threshold set by external R-C.
Typa 3: Phoroswitch with automatic threshold adjustment, 6 pin configuration $20 \mathrm{~V}-30 \mathrm{~V}$ supply. Prices (including VAT, packaging and carriage) Type 1: 75p each: Type 2: fl each; Type 3 $\$ 1.50$ each.
PHOTOTECH (EUROPE) 23a Upper Elmers End Road, Beckenham, 23a Upper Elmers End R

ambur TREASURE TRACEF MK III Motal Locator

- Varicap tuning
- Fitted with Fareday zhield

Spoaker and earphons operation

- Knocke down to only 17 in .
- Prebulli asarch coll aasombly
- Five transiator clicult
- Thoroughty profeseional finish You only need soldering fron. screw. driver, pliers and anipe send atamped, and BBC-2 TV sand stam
for loeftet

LONDON E18 2AN (Mail Order Only)

HARDWARE. Comprehensive range of screws, nuts, washers, etc. in small quantities, and many useful constructors' items. Sheet aluminium to individual requirements, punched, drilled, etc. Fascia panels, dials, nameplates in etched aluminium, Printed circuit boards for this magazine, and other individual requirements, one-off's and small runs. Machine engraving in metals. and plastics, contour milling. Send $24 \frac{1}{2} p$ stamps for catalogue. RAMAR CONSTRUCTOR gERVICES, Masons Road, Stratford on Avon, Warwicks. CV37 9NF.

"PE JOANNA" BULKCOMPONENTSLIST
 (page 388 May '75 issue)

EVERYTHING LISTED FOR JUST £44.61 inc. VAT + OUR USUAL DISCOUNT VOUCHERS or WITHOUT DISCOUNT VOUCHERS

f41-61inc. BY RETURN OF POST

These are all top quality brand new components Capacitors and Resistors by Mullard, Diodes by I.TT etc. For keyboards etc, seeour catalogue'40p. * CT2 Transformer in stock $£ 2.72$ inc. VAT *

Maplin Electronic Supplies

P.O. Box 3. Rayleigh, Essex

Aluminium Project Boxes, lids and screws included			
Box No_{7}. Length * Width ${ }^{\text {a }}$, Height * Price			
8	4	$1 \frac{1}{1}$	48
9	4 2年	$1 \frac{1}{1}$	46p
10	$5 t \quad 4$	1 ${ }^{\frac{2}{2}}$	49p
11	4 2 ${ }^{\frac{1}{2}}$	2	46p
12	3 2		38p
13	6 - 4	2	58
14	7 7 5	$2 \frac{1}{2}$	75
15	$8 \quad 6$	3	93p
16	$10 \quad 7$	3	¢1.1
Prices include VAT (at 8%) but 18p should be added			
- WATT I2V FLUORESCENT LIGHT KIT			
Complete Kit including all components, heatsink,			
channel, tube, etc: Only $\{3-49$ inc. VAT p. \& p. Ready built \& 4.10 inc. VAT, p. \& p. Diffuser 59p			
extra inc. VAT P. \& ${ }^{\text {S }}$. ${ }_{\text {d }}$. with your order direct to:			
ELECTRONICS DESIGN ASSOCIATES			
Dept. PE, 82 Bath Street. Walsall, WSI 3DE,			
ENAMELLED COPPER MIRE			
S.W.G. lib Reel $11 b$ Reel			
10-14 E2.05 El.15			
15-19 £2.15 ¢1.20			
20-24 E2.20 El. EL			
25-29 £2.25 ¢1.30			
30-34 £2.35 ¢1.38			
35-40 E2.50 \quad ¢1.45			

al the above prices are inclusive in U
COPPER SUPPLIES
102 Parrawood Rd., Withington, Manchester 20 Talephone 061-4458753

SUPERB IN8TRUMENT CA8E by Bazelll, manufactured from heavy duty PVC faced steel. Hundreds of Radio, Electronic, Hi-Fl enthusiasts and Industrial users are choosing the cases they require from our range. Make your VAT go further with our competitive prices which begin at a low 75p. Examples: Width, Depth, Height, $7^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime} 82 \cdot 65$; $8^{*} \times 10^{*} \times 6^{*}=3.60 ; 12^{*} \times 8^{*} \times 7^{* *} \times 4^{*} ;$ $12^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime \prime} 84.40$. Over 200 Models to
 (stamp would be appreciated). BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

fibre oplic suppliers

mane's TAlLs, Bulld a decorative display with this
proteseionally inished unit, 22in diameter with $7.000+$
fibres. Looks immaculate. fis. IIAROFIEX SIZE 1. Flexiblo. 440
bunde die. 1.14 mm . 40 p por metre ($\mathrm{C}\{\mathrm{per} 10 \mathrm{~m}$) conduat. FIBROFLEX 8IZE 4. $2 \cdot 28 \mathrm{~mm}$ bundie dia. 51. 50 per metre (t 12 per 10 m).
CROFON 1t10. 64 -strand plantic light conduit, bundie die. 1.8 mm , O.D. 3.3 mm . $£ 1+28$ per motre (CB per 10 mm). PLASTIC OPTICAL MONOFIBRE. For multiple illumination from one source, displaya, internal lilumination. effects
FP20 10.5 mm dia.) 20 p per 10 m ; \&4 per 100 m .
FP40 (1 mm dila.)- $\mathrm{Ez} \cdot 20$ per $10 \mathrm{~m} ; \mathrm{s} 15$ per 100 m .
P80 (1.5 mm die.)- $\mathbf{R 4}$ per 10 m ; $\mathbf{5 0}$ per 100 m .
OPTIKIT 103. Containa 2 m Crofon 1610 plua 5 m each Fp20 FP40. FP80 plus polishing compound. A handy pack to the experimenter and leboratory, E4-00
and 5 reflectora for use in proximity detectors. Intrude detectors, batch countera. thehometera, hort rang aptical communicathons.
OPTIKIT L6. 1 each of B Ienees. cs
OPTIKIT RRS. 1 each of 5 reflectors, $\mathbf{e 2} \cdot 50$.
CIACULAR POLARIsERS. Cut that glare. Reduce epecula reliection by up $1020 \times$ - nhance contrast on crta. LEI displaya, nlxies, Instrumente, etc. Avalleble in red/ambes LIOHT 8OURCES AND DETECTORS: MV54 Miniatur (2mm) Red LED. $20 p$ ($10+17$ 17); MLED500 TO92 Red LEL $20 p(10+17 p)$; MLED92 Intra-Aed Emitter, $30 p(10+23 p$
$\times C 209-R ~$
3 mm
Red LED. $20 p(10+17 p)$; $\times \mathbf{C} 209-Y$ or -1 XC209-R 3 mm Red LED, $20 \mathrm{p}(10+17 \mathrm{p})$: XC209Y or ${ }^{-1}$
Yellow/Green. 30 p (10+ 25 p) 2 N 5777 High Sensitivil Photodaringtion Silicon Detector, gain $\times 2.500$, 50 $(10+42 p)$: MRD 150 Silicon Phototranmetor-high speek Tul good sensitivity. 70p ($10+37 p$).
**NEW ML8203. Latast Motorola Ligh1 Actlvated SCF High sensitivity $10 \mathrm{~mW} / \mathrm{cm}^{2}$; high current 400 mA (5 A peak 60 V . Switch mall motors or relay direct from optict
control, up to 24 W power. $\mathrm{E} 1 \cdot 20(10+£ 1 \cdot 10)$. EOSE-4OT/A ULTRABONIC TRAMBDUCEA ble for "Ultramonic DOppler Shift intruder Dete Sult Prectical Electronica. March 9975 . Tx/Rx pair 53.50 8EOSE-2ST/R ULTRABONIC TRANSDUCER PAIA ** NEW ** The SEOSB-4OT/A has proved to be al extremely popular item in our range and we ary therefore introducing the 25 kHz veralion. Although band widih ls lass it $\pm 500 \mathrm{~Hz}$. eonaltitity is better by 10 dB counters, level maters, anti-colition devices. 25 kHz Tx/fx pair 53.70.
Please add 0\% VAT to prices above (plus 22p on order FIBRE OPTIC SUPPLIERS
(Dept. PE), 2 Loudoun Road Mews London NW8 ODN

FANTASTIC NEW MICROTEST 80
 MEASURES ONLY
 $90 \times 70 \times 18 \mathrm{~mm}$ ELECTHONIC ZERO Ω

Amazing Value at $£ 11.95$ 8 fields of measurement and 40 ranges
PRINTED CIRCUIT
BOARD IS REMOVABLE
WITHOUT SOLDERING
Volt d.c. © ranges: $100 \mathrm{mV}, 2 \mathrm{~V} .10 \mathrm{~V} .50 \mathrm{~V}, 200 \mathrm{~V} .1,000 \mathrm{~V}$ (20k $\cap / \mathrm{V})$. 2% precision on d.c. and a.c. Volts a.c. 5 ranges: $1 \cdot 5 \mathrm{~V} .10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}(4 \mathrm{k} \Omega / \mathrm{V})$ Amp. o.c. sing ranes. $250 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 50 \mathrm{~mA} 2.5 \mathrm{~A}$ Amp. a.c. 5 ranges: $250 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}, 2.5 \mathrm{~A}$ din until 5Mn).
\vee Output 5 rangea: $1.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1.000 \mathrm{~V}$ Decibels 5 ranges: $+6 d \mathrm{~B} .+22 d 8 .+36 d \mathrm{~B} .+50 d 8$ $+62 \mathrm{~dB}$
Capacity 4 ranges: 25μ F. 250μ F. 2.500μ F. 25.000μ F

SUPERTESTER G80R ICE 20.000 Onm per Volt senaltivity Fully acreoned againgt external magnetic fields Seale width
and small case dimanaions ($128 \times x$ $95 \times 32 \mathrm{~mm}$) Accuracy and stability (1\% in D.C., 2% in A.C.) of indicated reading e simplicity and ease of use and readability 1,000 timef ovarioad Printec
circuit board is removable without do-soldering o More ranges than any
£18. 50 other melor. Ask for free catalogue

accousorioe Extra

 Accessories (extra) svailable to convert Microtest 80 Gin Supertester G60R into following. LIGHTMETER, CLAMP, TRANSISTOR TESTER. TEMPERATURE PROBE, PHASE SEQUENCE INDICATOR, $\cap \times 100 \mathrm{k} \cap$ Multiplier. SIGNAL INJECTOA-Send for details.MORE RANGES FOR LESS MONEY!
AC/DC Mullmeter type U4324
A-DC $0.06-3 A-8$ Ranges A-AC $0.3-3 A-5$ Ranges. V-DC $0 \cdot 6-1200$ V-9 Range
V-AC $3-900$ V -8 Renges V-AC 3-900 V-8 Ranges Frequency in the range of 45 to 20 kHz . Rasistance: 500 ohm
5 Mohm-5 ranget. Decibel: to $\pm 12 \mathrm{~dB}$. Accuracy: $\pm 2.5 \%$. DC 63 mm Oniy 29.25
ALPHANUMERIC NIXIE TUBES B7971 The Aphanumeric NXIE tube has the all the letiers of at the letters of numarals 0 thrus and special characters in a aingle From the standpointof both readbility and olec. tica, the Alpha
 numeric NIXIE ncluding $+170 \mathrm{~V}-21 \mathrm{provides}$ many unique benefite continuous line characters of equal helght * Memory with simple solid state drive circuits * Readability in high ambient light . 200 footiamberts brightneas * Long. ife with no loas of brightness * Charecter heignt 21 in .
Bases for above sop anch
Price only 99ρ aach plue 13p P./P.

JUST ARRIVED!!

NUMERIC INDICATOR TUBES
Ultra-long life. high quality. 0-9 and 2 independent decimal polnts. Supply voltage 200 V d.c. Current 14 mA . Putse duration 100 us . Character haight $0-51$, overall slize $1-4$.
Brand
Brand new. quaranteed. Surplus to manufacturer's requirements. Type B5053st
$1-25$ £1.00; $25+90 \mathrm{p} ; 100+80 \mathrm{p} ;$ $1,000+$ price on application.

49-53 Pancras Road, London NW1 $20 B$ Tel. 01-837 7781

CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors, Locks and Hinges Corners, Trim, Speaker Bolts, etc., etc.

Send $2 \times 7 p$ Stamps for samples and list.
ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road Southend-on-Sea, Essex.

35 WATT/CHANNEL

Stereo Amplifier Chassis
Just needs 50 volt, $2-3 \mathrm{amp}$ power supply. I glass fibre P.C.B. board including DIN sockets, etc.

$$
\begin{aligned}
& 35 \text { WATT RMS @ } 4 \Omega \mathrm{ch} . \\
& 25 \text { WATT RMS @ } 8 \Omega \mathrm{ch} .
\end{aligned}
$$

Disc 2mv. Aux. I, Aux. 2, tape 200 mv , $£ 38 \mathrm{inc}$. P. \& P. 50p.
P. F. STEVENS ELECTRO-ACOUSTICS 8A CLARENCE ROAD SOUTH BENFLEET, ESSEX

THE SCIENTIFIC WIRE CO.

Copper-Nickel Chrome-Eureka-Enamelled-Silk-Corton
Enamelled-Sik-Cotton-Tinned Coverings.
No minim, A,E, Brings List.
Trade and export enquiries welcome.
P.O. BOX 30, LONDON E4 9BW

6-CHANNEL TOUCH TUNING UNIT Mechanical tuning a thing of the past. Ourall electronic 6 channel unit, with AFC Mute output, feeds Varicap tuners for VHF or MW radio, VHF or UHF TV, etc. Kit comprises of quality glass fibre PCB, drilled and tinned, all electronic components and instructions.
E.D. ≤ 1.20 extra. Mail order only.

TECHNALOGICS
45 Rosemount, Birkenhead, Merseyside, L435\$0

DIGITAL CLOCK CHIP, AY-5-1224, with data and circuit diagram, e3-66 plus VAT. "Jumbo" J,FD digits (16 mm high), Economy type. DL-747, only 22.04 each plus VAT, post free. GRLIVNBANK ELECTKONICS, 04 New Chester Road, Wirral, Merseyside, L625AG.

I.C. Experimental/Educational Kits

 Learn about modern electronics with our new step-by-step kits. Use and understand digital logic techniques. Kits contain specially selected I.C.'s, Holders, Veroboard, L.E.D.'s, instructions and data. Three kits in the series now available:Kit One Gates. Kit Two Flip-Flops Kit Three Shift Registers
Each Kit $£ 3 \cdot 50$ (including P. \& P.)
S.A.E. for further details to:

AUTOMATED HOMES, 69 High Street, RYTON. Coventry CV8 3FJ.

SPECIAL OFFER

Ferranti ZN414 Radio I.C. £1-10

Ferranti Applications Booklet for ZN414, 25p includes circuits for earpiece radios, loudspeaker radios, crystal controlled recejver and frequency standard receiver.

NEW PRECISION TIMER I.C. Ferranti ZN1034E £2.90

Ferranti data sheets for ZN1034E, 10p

RADNAGE RADIO \& ELECTRONICS

2 Bottom Road, Radnage High Wycombe, Bucks.

Prices inclusive. Add $15 p$ post and packing U.K., 60p Exports. Mail Order only

SYNTHESISER Modules by Dewtron ${ }^{区}$

The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now. With over 10 years' experience in mail-order, we have supplied many famcus people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module; pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous "Modumatrix" patching system makes other patching a thing of the past! Send just 20p for full catalogue to:

D.E.W. LTD.

254 Ringwood Road, Ferndown Dorset BH22 9AR

All above prices include 8% V.A.T. LARGE S.A.E. for List No. II. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

TTL (full stocks available)

TL (full stocks available)				SN7433	700	SN4753	200	SN7451.	20p
SN7400	$14 p$	SN7412	22p	SN7437	500	SN1454	200	SN7483	0
SN7401	11p	SN7443	400	SN7438	500	SN7460	200	SN784	90
SN7402	${ }^{20 p}$	SN7416	300	SN7440	200	SN7470	$3{ }^{30}$	SN7489	p
9N7403	200	SN7417	30 p	SNT441AN	75p	SN7412	300	SN7490	759
SN7404	${ }^{20 p}$	SN7420	200	SN7442	$75 p$	SN7473	40 p	SN7491A	
SN7405	200	SN7422	$33^{\text {p }}$	SN7443	\$1.00	SN7474	48 p		11.00
SN7406	30 p	SN7423	${ }^{33}$	SN7445	$81 \cdot 7$	SN7475	550	SN7492	75p
SN7407	300	SN7425	${ }^{34}$	SN7446	¢2.00	SN1476	45 p	SN7493	75p
SN7408	${ }^{20 p}$	SN7427	42 p	SN7447	\$1.50	SN7480	100	SN7494	sop
SN7409	$40 p$	SN7428	500	SN7448	${ }^{1} 1.75$	SN7481	11.25	SN7495	10p
SNT410	130	SN7430	200	SN7450	200	SN7482	${ }^{87}$	SN7496	11.00
SN7411	23p	SN7432	42p	SN7451	200	SN7483	\$1.00	SN7497	\$2.25

s.c.f.e		triacs	
CRS 110	${ }_{56 p}$	SC400	\$1.40
CRS1 20	600	SC40E	\$1.65
CRS 140	$65 p$	SC45D	\$1.70
CRS 160	90p	SC45E	E2.10
CRS3 10	${ }^{62 \rho}$	SC50D	c2. 42
CRS3 20	${ }_{620}$	Scsoe	${ }_{82} 270$
CRS3 CRS 700	[900	DIAC	25p
CRS 16100	${ }_{85}$		
CRS 16.200	90p	LINEAR I.C.	
CRS16/600	81.60		
C106B	45p	LM304 Neg	
C106D	70p	LM30sk SV 14	
40669	90p		
TiC44	35 p		
BT 10,500A	${ }^{1} 1.90$	150 mA Vollage	
	${ }^{90 p}$		
		MFC 4000250 mW	
baidge RECTIFIERS		Audio	75p
		TBAB00 5 Watt	
W02 1A 200 V	$38 p$	Audio	93p
BY164, ${ }^{\text {4A }}$		$709 C$ Op Amp D.I.L)	
	57p	TO99	45p
MDA952 26 A 100 V	sop	741 COP Omp $814{ }^{\text {a }}$	
	${ }^{\text {sop }}$	DIL./	35p
ZENER DIODES		748C OpAmpDIL	
BZY88 Series 400 mW		747 C Dual Op	
3 3V-33V. 5%	${ }^{110}$	Amp 51.20	
15 W range10 W range	25p ${ }_{40}$	2N414 Radio I.C. 11.25 TAD100 Radio IC	
	45p		
L.E.D.			
THL209	38p		
${ }_{\text {HP5082 }}^{\text {MA } 2082 R}$	${ }^{28 p}$	CA3018 $\quad 81.00$	
	20p	CA3028 $\quad 81.20$	
MA2082R		CA3036	51.00
L.D.A.		CA3046 800	
ORP 12	$60^{\text {p }}$	CA3048CA3075	
		CA3075	\$1.60
NE555 Timer		CA30900 84.85	
	${ }^{30 p}$	MC1303L	22.20
		MC1310P	¢2.80
tos voltage regulators			

$\star \star$ SPECIAL OFFERS $\star \star$

miniature mains transformer. pai 240 V SEC. 12 V 100 mA Manut : Hinchiey Size: $36 \times 45 \times 40 \mathrm{~mm}$ F.C. 53 mm
Price $1-65 p .100-60 p$ ea. $1,000-50 p$ ea
$10,000-40 p$ VAT 10,000-40p ea. 8% VAT miniature mains transformer. Primary $115 / 240 \mathrm{~V}$ Sec. $18 \mathrm{~W} / 250 \mathrm{~mA}$ at 80 p ea + VAT and postage 33p, 8% VAT. MULLARD POT CORE TYPE FX2241 at 60p ea. + 33p p.p. 8\% VAT.
24V D.C. SOLENOID by MAGNETIC DEVICES 60p each. $2 \frac{1}{2}$ in long $\times \operatorname{tin} \times \mathrm{fin}+8 \%$ VAT 240V A.C. SOLENOID. Reversible operation twin coil. Size approx. $24 \times 1 \frac{1}{4} \times 1 \frac{1}{2}$ in 90 p 30 unmarked OC71 transistors 25 unmarked 250 mW Zener diodes. 4.7V $5 \cdot 1 \mathrm{~V}, 6 \cdot 2 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \cdot 1 \mathrm{~V}, 10 \mathrm{~V}$, Measured and tested
Please state voltage required
50 GE Diode OA47 equivalent \quad \&1.00 $8 \mu F$ GOOV WKG PAPER CAPACITORS, ideal VAT Strobe Constructors $\mathbf{£ 1} \cdot \mathbf{5 0}$ each $+8 \%$
post. Many other values of PAPER CAPACITORS in stock. Phone for details
JACKSON AIRSPACED CAPACITORS to suit tin spindie
100pF Two Gang at 55p + 25\% VAT
500 pF Two Gang at 75p + 25\% VAT.
MULLARD TUBULAR CERAMIC UHF TRIMMERS (PROFESSIONAL)
$\left.\begin{array}{cc}092 & 0 \cdot 8-2 \cdot 2 \mathrm{pF} \\ 801 & 0 \cdot 8-2 \cdot 2 \mathrm{pF} \\ 991 & 0.5-1 \cdot 3 \mathrm{pF}\end{array}\right\}$ Price 10p ea QUANTITY DISCOUNTS PLEASE TELEPHONE 1.000 pF Feedthrough capacitor $5 p$ ea. Miniature tubular P.C. trimmers
$3 \cdot 5-13 \mathrm{pF}$
$6-30 \mathrm{pF}$
6-30pF
4p cio Variey 700n relay $\quad 10 \mathrm{pea}$. Gold Flashed protessional TRANSISTOR SOCKETS. To suit small signal TO18, etc. 30 for $\$ 1 \cdot 00+8 \%$ VAT
W. WOUND POTS $1 \Omega-100 \mathrm{~K} \Omega$ at 30 p each Colvern or Reliance styles $+25 \%$ VAT.
VERO EDGE CONNECTOR 24 way 0 - 1 in pitch 30 p each $+8 \%$ VAT. All the other sizes in Stock.
SIEME
50p each. PLESSEY RELAY 2P C/O 6V operation 40 p
each.
MODERN DISC CERAMICS $\$ 1 \cdot 00$ a hundred. MODERN DISC CERAMICS E1.00 a hundred.
c8-00 a thousand $+25 \%$ VAT. Phone or write for list.
ACCESSORIES
DIL SOCKETS, 8 pin 14p, 14 pin 14p, 16 pin 14p. Mica Washers +2 Bushes (TO3 or 14p. Mica
TO66) 4 p .
ALSO STOCKED
BNC PLUGS at 35p each
UHF (N) PLUGS at 50p each
U.H.F. V.S.W.R. probes ex U.H.F. transmitters F 5 each $+8 \%$ VAT
All the above are new in original packets.
Please add 8% VAT P \& P 30p.

Potentiometers

$\begin{array}{lll}\text { Linear or Log } & \text { Single } & \text { Double } \\ \text { Aotary Pots } & 17 \mathrm{p} & 45 p\end{array}$
$\begin{array}{ll}\text { Rotary Pots } & 17 p \\ \text { Rotary Switched } & \\ & 25 p\end{array}$

SPECIAL OFFERS

KOKUSAI MECHANICAL FILTER. $455 \mathrm{kc} / \mathrm{s} .5 \mathrm{kc} / \mathrm{s}$ overall deal for A.M. 85 each inc. VAT. Postage 33p each

TRANSFORMER 240 V a.c. Primary $1185-0-1185 \mathrm{~V}$ at 360 mA Secondary, E 12 plus 8% VAT plus $£ 1 \cdot 50$ postage.

OMRON OCTAL RELAY 240V A.C. 3P cTo 75p each plus 8\% VAT

SLEEVING 2000 pieces approx size $\operatorname{zin} \times 2 \mathrm{~mm}$. Price 51.60
plus $33 \mathrm{p} P$ \& P. plus VAT 8%.

We are open from 9.30 a.m.- 6.00 p.m. Monday-Saturday
We have the largest retall selection of components available. Phone or write if you are in difficultles obtalning a particular component.
C.O.O. service welcome. All mall order by return. Official orders welcome by Government establishments, Educatlon authorltes, etc. Tel. 01-994 6275

[^5] matter whatsoever.

More than justa catalogue

Projects for you to build.

4-digit clock, 6-digit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc. CIRCUITS ... Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.

Full details and pictures of our wide range of components.
e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps fled lampholders, audio leads, adaptor plugs. rotary and slide potentiometers, presets, relays resistors (even 1\% types!), switches, interlocking pushbutton switches, pot
cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ
components, keyboards, L.E.D. s. 7-segment displays, heatsinks, transistors, diodes
integrated circuits, etc., etc., etc.
REALLY GOOD VALUE FOR MONEY AT JUST 40p.

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic leaflet MESS1, price 15p, deals with the basic construction of a simple 49-note instrument with a construction of a simple 49-note instrument with
single keyboard and a limited number of stops.
Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.
Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, also priced at 15 p.

No more doubts about prices

SYNTHESISER

 A reprint of the complete article giving full construction details published by "Electronics Today International" between JanuarySeptember '74 of the International Voltage Controlled Synthesiser. developed as a 'state of the art' will be available shortly, price $£ 1 \cdot 50$. S.A.E. please for detailed price list.

GRAPHIC EQUALISER

A really superior high quality stereo graphic equaliser as described in the January edition of 'Electronics Today International". We stock all the parts (except woodwork) including the metalwork drilled and printed. 15p brings you a reprint of the article or a S.A.E. please for our detailed price list.

[^0]: © IPC Magazines Limited 1975. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressiy forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable, We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Please Supply
 Total Purchase Price
 I Enclose Cheque \square Postal Orders \square Money Order \square
 Please debit my Access account \square Barclaycard account \square
 Account number
 Name and Address
 Slgnature

[^2]: Titie photographs by David \& Katle Upry (Bruce Coleman Ltd)

[^3]: Keyswitch
 CPS1027 (Clef Products)

[^4]: * North Staffordshire Polytechnic

[^5]: Published approximately on the 1 Sth of each month by IPC Magazines Lid.. Fiectway House. Farringdon Strect. I. Ondon. EC4A
 Hants. Sole Agents for Australia and New Zealand-Gordon $\&$ Goich (A/sia) Lid. South Africa-Ceniral News Agency Ldd.
 Subscriptions not available at home or overseas.

 Practical Electronics is sold subject to the following conditions, namely. that it shall not. without the written consent of the Publishers first given. be lent, resold. hised out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to V. A.T.. and that it shall not be lent. resoid
 or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade. or affixed to or as part of any publication or advertising. lierary or pictorial

