## PRACTICAL

## APAIL 1975 <br> .



## CONSTRUCTIONAL PROJECTS

P.E. COMPENSATED PHOTO TIMER by K. Lenton-Smith
For accurate colour and monochrome printing ..... 292
ESP DETECTOR by R. J. Johnson
An aid to paraphysical exploration ..... 312
LOGIC INDICATOR PROBE by W. H. Davies
Logic checking with visual readout ..... 318
MUSICAL DOORBELL by C.J. Allen
Welcome your caller with "Beethoven's 9th"' ..... 328
GENERAL FEATURES
TRANSDUCERS-1 by P. R. Allcock
An introduction to transducers, their operation, types and uses ..... 300
INGENUITY UNLIMITED ..... 320
Voltage Controlled Dimmer ..... 32
CEEFAX and ORACLE-2 by J. SmithThis concluding article examines some of the more detailed provisions of the system322
NEWS AND COMMENT
EDITORIAL-Vital Links ..... 291
NEWS BRIEFS
New Loudspeaker-DICE Conversion-Portable Heart Monitor-Another Component Source ..... 299, 333
SPACEWATCH by Frank W. Hyde
The Potato Moon-Helios ..... 307
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Electronics and Music ..... 308
P.E. KIT REVIEW
Building the Sinclair Scientific Calculator ..... 311
POINTS ARISING
Marine Speedometer-P.E. Minisonic-Gas Detectors ..... 333
MARKET PLACE
Digital Tutor, Pocket Multimeter and Professional Microphone ..... 335
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry ..... 336
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office ..... 339

Our May issue will be published on Friday, April 11, 1975

[^0]
## SEXOX Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORIES

GUARANTEED TESTED HIGH PERFORMANCE MODULES-now better value than ever SA35 35W RMS 25-50V 7 transistors, 7 diodes $5 A 50<6.90$ Carriage $\star 500 \mathrm{mV}$ into 20 K 50W RMS 25-65V

SA100 $\mathbf{E 1 2 . 5 0}$| Carriage |
| :---: |
| free | 100W RMS 45-70V 120 watt module complete with builtin supply-extra heavy duty $E 22.500_{600}^{\text {carr. }}$.



THE SAIOO MODULE

## POWER SUPPLIES

## UNSTABILISED-READY WIRED

| PU45 |  | ¢5.45 | ${ }_{\substack{ \\\text { Carriage } \\ \text { 300 }}}$ |
| :---: | :---: | :---: | :---: |
| P U70 |  | ¢8.45 |  |
| STABILISED |  |  |  |
| PS45 | Suits 2 SA 35 r | ¢4.45 | Carrizge |
| MT45 | ${ }_{\text {Tranter }}^{\substack{\text { Trasformer for } \\ \text { abe }}}$ | 63.50 | Carrize |
| PS70 | Suits 25A100 | ¢5.45 | ${ }_{\text {carriaze }}^{\text {cree }}$ |
| MT70 | ${ }_{\substack{\text { Transformer for } \\ \text { above }}}$ | ¢4.90 | ${ }_{\text {carcize }}^{\text {cope }}$ |

## Mk II STEREO DISCO MIXER $\mathbf{£ 2 2 . 5 0}$

This well tried Pre.Amp mixes two decks, handles any This well tried Pre-Amp mixes two decks, handles any
ceramic cartridge, and features mic over-ride plus ceramic careridge, and features mic over-ride plus
separate full range bass and treble controls on both mic and deck inputs. Ample headphone power is available for P. F. L. May be used for mono and is
mains operated. Fited with sturdy screening case. mains operated. Fitted with sturdy screening case.
Controls: Micvol, bass, treble. Left/Rightfade, deck volume, bass, treble, h/phone selecr, vol, Mains. Size $17 \frac{1}{2}$ in $\times \operatorname{3in} \times 4$ in deep.

## DISCO MODULE $\$ 9.50 \quad{ }^{\text {carr. }}$

Thousands sold of this extremely popular mono Pre.Amp. A mic input may be fitted using the VA30 (see below). Low consumption from a 9 V battery. Controls: H/phone select, vol, Left deck vol, Right deck vol, bass, treble, master vol. Size 124 in $\times 3$ in $\times 2$ in deep.


## 3-CHANNEL SOUND-LITE $£ 22.50{ }^{c_{30 p}}$

Only 5AXON can supply such incredible value for money. This unit features 3 kW power handling, fullowave control, bass, middle, treble AND master controls. Twin loudspeaker jacks for "through "connections. It may be used free standing or will panel mount next to either of the above. Also features unique CFBACX circuitry for extra wide range response. Size 12 in $\times 3$ in $\times 2 \frac{1}{2}$ in deep. Professional standards at a price you can afford!
SINGLE CHANNEL Recently reduced in price VERSION $£ 7.50$ due to increasing sales, MULTI-PURPOSE MIXERS

M4HL
M6HL $\mathbf{£ 1 9 . 5 0} \underset{\substack{\text { Carr. } \\ 50 p}}{ } \quad £ 29.50 \underset{50 \mathrm{p}}{\mathrm{C}_{\text {arr }}}$. Featuring multiples of our VA 30 module, the M4 HL and M6HL fulfil the requirements of all clubs, groups. etc. Where a high quality mixer is required. Each channel has one high and one low impedance inpuz.
plus volume, treble and bass controls. Input impedances may, if required, be easily changed The M4HL has four channels, and one output, and the M6HL six channels (12 inputs) and a master control and two outputs. Either unit may be used free-standing or panel mounted. These mixers will feed all types of amplifier. Recommended for their versatility and high performance, and excellent value for moner.
VA30 CHANNEL $\mathbf{~} 3.50$ Carr.
This is the basic channel module in the above mixers and may also be used for extra inputs on either the mono or stereo mixers. Fitted with volume, bass and treble controls, requires just a jack and supply
$(9-100 \mathrm{~V})$

Add 8\% VAT to all orders


SAXON CSE 100 COMPLETE AMPLIFIER
£39.90
Carr free

100W of speech and music.-Two separately controlled
inputs. Wide range bass and treble range cantrols. Sturdy and attractive vynide case. Twin outputs Ideal for groups.
discos, etc. Fully discos, etc. guaranteed. in appearsance identical


CSE 50
629.50 Carr. free

## NEW!!

SAXON MULTIMIX 100 £57 CARR.
IOOW RMS SLIDER controls PLUS master slider. Wide range bass and treble controls-fantastic value. Ideal for complete Disco's, Groups, Clubs, etc. SAXON MULTIMIX 50 EXACTLY ASABOVE $\mathbf{~ E 4 5}$

## Europe's Largest Hi-Fi Retailers

give you the greatest choice

TMK 200 MULTIMETER KIT


OUR PRICE 53.25 P\&P 15p

## MODEL C1092

 contrescale) DC Current 50uA
$2.5 \mathrm{~mA} / 250 \mathrm{~mA}$

## OUR PRICE E6. 95 P\&P30p

 MDDEL PL43 20,000 op PC8000 opv AC. Mirror scale oov Oc $120 / 600 \mathrm{~V}$ OC. $50 / 600 \mu \mathrm{~A} / 60$ /
600 mA
20 to 46 ds.
DUR PRICE 66.97


1.5/6A AC. $0 / 200 / 3 \mathrm{k} / 30 \mathrm{k}$ ohms. DC accuracy $1 \%$. AC $1.5 \%$. Knife edge
pointer, mirror scale. Complete with sturdy metal carrying case, leads and
instructions.
OUR PRICE ETO.75 P\&P50p
 $0-3 / 300 \mathrm{k} / 3 / 30 \mathrm{Mohms}$.
Decisels. -10 to +17 dg . Output: -
$0-3 / 6 / 15 / 30 / 60 / 120 / 300 \mathrm{~V}$. Accur. acy $\pm 3 \%$ DC, $\pm 4 \%$ AC. Sensfitivity:
50.000 opv nC, 5,000 opv ACC. 4 inch $102 \times 153 \mathrm{~mm}$. 11.95 P\&P 40p
OUR PRICE E 1.9 .
TMK MODEL TW5OK
46 ranges, mirrar
scale. $50 \mathrm{k} / \mathrm{VDC}$
$50 \mathrm{k} N \mathrm{AC}$.
.
$0.25 / 1.25 / 2.5 / 5 / 1$
$25 / 50 / 125 / 250 /$ $500 / 1000$. AC Vo
$1.5 / 3 / 5 / 10 / 25 / 50$
$125 / 25050$ $125 / 250 / 500 /$
1000.0 c current
$25 / 50 \mathrm{~A} / 2.5 / 5 / 25 /$
$50 / 250 / 500 \mathrm{~mA} / 5 /$
10 m 10A. Resistence:
$10 \mathrm{k} / 100 \mathrm{k} / 1 \mathrm{Me}$
 $10 \mathrm{k} / 100 \mathrm{k} / 1 \mathrm{Meg} / \mathrm{M}$
10 Meg ohrms. -20 to +81.5 dB OUR PRICE E12.50 P\&P 20 p

## MODEL C7080EN Giant 6" mirrop scale. 20,000 opv. $0 / 0.25 / 1 / 2.5 / 10 /$ $50 / 250 / 1000 /$ $50002 / 00$ $50 / 250 / 1000 /$ 5000 DC. $0 / 2.5 / 10 / 50 / 250$ $1000 / 5000 \mathrm{~V}$ AC. $0 / 50 \mathrm{~A} / 1 / 90 /$ $0 / 50 \mathrm{u} / 1 / 90 /$ $100 / 500 \mathrm{~mA} / 10 \mathrm{~A}$ $0 \mathrm{C} .0 / 2 \mathrm{k} / 200 \mathrm{k}$

 OUR PRICE 519.9

$\frac{\text { KAMODEN } 360 \text { MUL TIMETER }}{}$ High sensitivity,
OC 100kohm/V


\section*{

##  <br> AC $5^{\prime} \mathrm{m}$ overl ed. $2.5 /$ 1000 $50 / 2$ AC. 0.01 500 Res $1 / 1$ $1 / 1$ $10 /$ 0 ec 162 140 tes $0 U$

OUR PRICE £17.50 P \& P40p Overload protected,
shock


DC current:- $10 / 250 \mathrm{u}$ A/2.5/25/250
mA 6 l . AC current:-0-10A. -20
to +62dB. Operates from $2 \times 1.5 \mathrm{~V}$
batteries. Size: $180 \times 134 \times 79 \mathrm{~mm}$.
OUR PRICE E17.50 P\&P 40p
370WTR MULTIMETER
Features AC current
ranges. 20.000opv.
$0 / 0.5 / 2.5 / 10 / 50 / \mathrm{VC}$.
$250 / 500 / 1000 \mathrm{~V}$ OC.
$0 / 25 / 10 / 50 / 250 /$
$500 / 1000 \mathrm{~V}$ AC.
$500 / 1000 \mathrm{~V}$ AC.
$0 / 50 \mathrm{~A} / 1 / 10 / 100$
$0 / 50 \mathrm{LA} / 1 / 10 / 100$
$m A / 1 / 10 \mathrm{DCC}$
$0 / 100 \mathrm{~mA} / 1 / 10 \mathrm{~A}$
AC . $0 / 5 \mathrm{~K} / 50 \mathrm{k} / 50$
$5 \mathrm{Meg} / 50 \mathrm{Meg}$.
$5 \mathrm{Meg} / 50 \mathrm{Meg}$.
Decibels: -20 to 2 dB .
OUR PRICE E19.95 P\&P 30p and lament for field
Knife edge pointer.
86 mmm . mirror scale.


Panges. $100 \mathrm{TV} / \mathrm{Ctron}$
Panges: $100 \mathrm{mV} /$
$0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ $0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$
$V$ DC. $0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 /$
$500 / 1000 \mathrm{~V}$ $500 / 1000 \mathrm{~V}$ AC. COUrrent: $50 \mathrm{uA} / 0.5 /$
$1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 \mathrm{~A}$ DC. $0.25 /$ $1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 \mathrm{~A}$ DC. $0.25 /$
$0.5 / 1 / 5 / 10 / 50 / 250 \mathrm{mAl/15A}$ AC. Res. istance: $0.5 / 10 / 100 / 200$ ohms $/ 1 / 3 /$
$30 / 300 \mathrm{k}$ ohms. Oecibels: -5 to +10 d 8 Battery operated. Size: $210 \times 115 \times x$
90 mm . Supplied in carrying case com. plete with leads.
OUR PRICE $\mathrm{E} 17.00 \quad$ P\&P 40p KAMODEN 72.200 Multitester
High sensitivity
tester. 200,000 op
tester. 200,000 op
Overload protecte
Mirror csale.
Ranges: $0 / .06 / .3$
$3 / 30 / 12 / 600 /$
Ranges:-0/.06/
$3 / 30120 / 600 /$
1200 V DC $0 / 3$
1200 V DC. $0 / 3$
$12 / 60 / 300 / 11200$
$V \mathrm{AC} .0 / 6 \mathrm{uA}$
$1.2 \mathrm{~mA} / 120 \mathrm{~mA}$
$1.2 \mathrm{~mA} / 120 \mathrm{~mA}$
$600 \mathrm{~mA} / 12 \mathrm{ADC}$
$0 / 12 \mathrm{ACC}-2010$
$+63 \mathrm{~dB} .0 / 2 \mathrm{k} / 200 \mathrm{k}$ /


OUR PRICE f 22.50 P\&P 30 p
MDDEL AF, 105 VOM
50.000 opv .
scals. Meter
protection.
$0 / 3 / 3 / 12 / 60 / 120 /$ $300 / 600 / 1200 \mathrm{~V}$ DC $0,6 / 30 \cdot 120$
300/600/1200V DC
$0 / 30 \mu \mathrm{~A} / 6$
$60 / 300 \mathrm{~mA}$
60/300 mA
$12 \mathrm{Amp} .0 / 10 \mathrm{~K}$
$1 \mathrm{~m} / 10 \mathrm{~m} / 100$
OUR PRICE $\mathbf{E 1 2 . 5 0}$

TMK MODEL 117 FET
ELECTRONIC VOLTMETER
Battary operated,
11 Meg input 26
vangas. Large $4 \%^{\circ}$ "
mirror scale. Size:
$149 \times 117 \times 60 \mathrm{~mm}$
$0.3-12000 \mathrm{~V}$ DC.
$3-300 \mathrm{~V}$ RMS AC 8-800V P.P.
DC current $0 . \% 2-$
12 mA . Resistence


12mA. Resigstence
4 p to 2000 MOHms . Decibels: -20 to
+51 dB . Supplied complete with leads and instructions.
OUR PRICE £18.50 P8P 20p TMK IOOK LAB TESTER
$100.0000 \mathrm{pv} .61 / a^{\prime \prime}$
scale. Buzzer scale. Buzzer
short circuit check.
Sensitivity 100.000 opv OC. $5 k / V A C$
DC Vols: $0.5 / 2.5 /$ $10 / 50 / 250 / 1000 \mathrm{~V}$
AC $3 / 10 / 50 / 250 /$
LC. $1 / 1000 \mathrm{~V}$ DC,
current $10 / 100 \mathrm{ua}$

current $10 / 100 \mathrm{ua}$
$10 / 100 / 25 / 10 \mathrm{~A}$
$10 / 100 / 2.5 / 10 \mathrm{~A}$. Resistence:
$1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meo} / 100 \mathrm{M}$ $1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100 \mathrm{Meg}$ ohms.
Decibels: -10 to +4 dB . Plastic case Decibels: -10 to +49 diB . Plastic case
with carrying handle. Size: $190 \times 172$ OUR PRICE E19.95 P\&P 30p LB4 TRANSISTOR TESTER Tests PNP or NPN
transistors. Audio transistors. Audio
indication. Operates on two 1.5 V .
batterates. Complete batteries. Complete
with insifuctions etc. OUR PRICE
£4.50 P\&P
KAMODEN TT35
TRANSISTOR TESTER
High quality
instrument to
instrument to
test reverse leak
current and DC
ficationt. Ampli
NPTor of
fication factor of
NPN, PNP, diodes
wansistors, SCR's
etc. $4^{-}$squ are
clear scalo meter.
internal batteries.
Complete with

instructions, lead


OUR PRICE $£ 17.50$
U4341 Multimeter 27 ranges. 16,700opv Overload protected. Ranges: $0.3 / 1.5 / 6 /$
$30 / 60 / 150 / 300 / 900 \mathrm{~V}$ $30 / 60150 / 300 / 900 \mathrm{~V}$
OC. $1.5 / 7.5130 / 150 /$
$300 / 750 \mathrm{~V} / .45 \%$ $300 / 750 \mathrm{~V}$ AC.
Current: $0.06 / 0.6 /$ $6 / 60 / 600 \mathrm{~mA} D C$.
$0.3 / 3 / 30 / 300 \mathrm{~mA} A C$ Resistince: 0.06/ Resi/2/6/8. $60 / 60 / 200 \mathrm{k}$ ohms $/ 2$ Mohms.
Battery operated. Supplied complete Battery operated. Supplied complete
with grobes, leads and steel carrying OUR PRICE F11.00 S100TR MULTIMETER TRANSISTOR TESTER 100,000opv. Mirror
scale. Overload protection. $0 / 0.12 /$
$0.6 / 3 / 12 / 30 / 120 /$
$600 \mathrm{~V} D \mathrm{OC} \quad 0 / 6 / 30 /$ 600 V DC. $0 / 6 / 30$
$120 / 600 \mathrm{~V}$ AC. $0 / 12 / 600 \mathrm{HA} / 12$
$300 \mathrm{~mA} / 6 / 12 \mathrm{~A}$
$300 \mathrm{~mA} / 6 / \mathrm{Meg} /$
100 Meg.
$-2010+50 \mathrm{~dB}$
.


Transistor tester measures, Alpha, Beta
and 1 CO . Complete with instructions and ICO. Complete
batteries and leads.
OUR PRICE £19.95 P\&P 250 SWR METER Model SWR3
Handy SWR meter for
yransmittor antenna alig
ment, with bulti-in field strength meter. Accuracy
$5 \%$ Impedence $52^{\prime}$ Indic5\%, Impedence 52 $2^{2}$ In
ator $100 u$ DC. full scale 5 section cotlapsible antenns. Size $145 \times 50 \times$ OUR PRICE E4.25 P\&P 30 p CI5 PULSE OSCILLOSCOPE


SINCLAIR DM2 DIGITAL MULTIMETER

## (1141 1Hi

Will measure $A C$ and $D C$ volts, $A C$ and DC current. and rasistance in a
totalof 20 ranges. The largelight emitting diode display will resd up polarity. Indication of positive and negative overlosd is also provided The instrument is fitted with a combined carrying handleand bench stand and sockets art provided for the connect
external power supply.
external
RANGES
DC VOLTS: 1 v .10 .100 v .1000 v AC VOLTS: $1 \mathrm{v} .10 \mathrm{v}, 100 \mathrm{v} .1000 \mathrm{v}$ DC CURRENT
$100 \mathrm{~mA}, 1000 \mathrm{~mA}$.
AC CURRENT:
AESISTANCE
RESISTANCE: $1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 1000 \mathrm{k}$ OUR PRICE E59.95 P\& P 50 p RUSSIAN CI16 Double Beam OSCILLOSCOPE 5 MHz pass band. amplifiers Rectang Cwibr atod triggerided swep from o. 2 usec .
 Cuibrator and amplitud supplied complete with afl accessories OUR PRICE £87.00
 OUR PRICE E17.50 psp 30p

## TRANSISTORISED L.C.R. A.C BR $/ 8$ MEASURING BRIDGE




## TE22 SINE SQUARE WAVE

 AUOID GENERATOR Sing 20 cpto 200 kHz

## on 4 bindids Square 20

 Square 20cps 10 cips ${ }^{\text {ch }}$. Outpur impedence
AC operation. Supplied brand now
quarantied, with instruction manual guarrantaed, with instruction manual
and loads.
OUR PRICE $\mathbf{£ 2 4 . 9 5}$ PgP 50p MODEL U 4311 Sub-standard Multi-range Volt-Ammeter

OUR PRICE $552.00 \quad$ P\&P 50p


OUR PRICE £2. 20 P\&P 50p


OUR PRICE £19.95 P\&P50p
BATTERY/LEVEL PANEL
INDICATOR


NEW GOLDRING G102 KIT


Belt-drive 2-speed turntable in kit form complete OUR PRICE 16.95 P\&P 75p


VU METER TYPE 3

SOH8V MONO/STEREO HEADFHONES
Volume control for impedence Frequency
response 20Hz-18k Hz . rasponse
Completa with $10 f t$
coiled
lapd OUR PRICE E4.97


$$
1
$$

## STEREO

STEREO
HEADPHONES
Feather weight
(5 oz) Dynamic
providing high quality
reproduction at s budget price. Sofe removable ear pads and sire: 28 mm . Impedance : 8 ahms . Frequency response: $30-13000 \mathrm{H}$
OUR PRICE

## UNIPEX NT 100 A - O - The unipex NT100A is a compact

 This varisatile $P$ amplifier. This varsatile unit has a RMS and operates on any $10-1$ DC source, negstive or positive ground and uses only 1.84 as rated output. Supplied complete withmounting brackets etc, pluefull mounting brackets etc, pluefull installation and operating
Instructions. OUR PRICE E21.75 P\& P 50p

## EA41 REVEREERATION

 AMPLIFIER battery operated
Simply in microphong, guitar otc. and output to
your amplifier. Volume control and your amplifier. Volum control and
depth of reverberation control. Beau. OUR PRICE E7.50 PRP30p


VHF 105
instant reception of the ground-to.
air, air-to-ground air, air-to-ground
wavebend. Simply place beside any
AM or FM Radio. AM or FM Radio,
covering $535-1605 \mathrm{kHz}$. $88-10$ tion required. This converter is eelf powared by one 9 -volt (PP3 Type) battery and comes complete
with a full set of instructions and battery.
OUR PRICE £ 3.50 Pg.p 50p Just arrived - the sensational
WIEN ET1008
CASSETTE!
RECOROER
Ahighly
recom-
mended
cassitere-
corder at this
really low Laskys
price.
FANTASTIC VALUE! PRPS
SPECIAL OFFER! CONVERT YOUR STEREO SYSTEM TO 4D SOUND

## 300 80

This clever unit enables you to add 40 sound to your existing system. details. Use this converter derails. Use this converter
(together with 2 extraspeat achieve the faritastic 40 quadro. phonic sound ! The effect of being immersed within the music becomes a thrilling new OUR PRICE £3.95 pap 50p

6
$h$
hig
on
0
3
3
0
fM TUNER CHASSIS

auoiotronic

PRP 3p asch. 10 ond over Post Froe:

## MP7 MIXER.PREAMPLIFIER

 5 Microphonind
indition noividues pain
controls smabi

completa mixing

 OUR PRICE 88.97 P8P 20p

AUOIOTRONIC AHAIOI Stereo Headphone Amplifier Al wilicon,
, Mmyistior oper.

or tunew
inputs with
electronic calculators


We carry a tremendous range of Worn pocmet and desk cal
tora from as lintleas fis 90 Owing to the demand it is not
possible to tanclude them in this possible to include them in this advertisement, so send for our latest pr
branch.
MINIATURE ORGAN
MUSIC MASTER AM100


BINATONE OIGITAL CLOCK

A.C. 240 V o

Size approx. $61 \times 3 \times 3 \frac{1}{2}$ inches.
OUR PRICE $f 450$ PRP50.
SINCLAÍR ICIZ
integrateo CIRCUIT
AMPLIFIER
completo with
printed circult
mounting board
OUR PRICE E1:50 P\&P15p.
SINCLAIR Project 80 Modules

| awer Amp. | E5.95 |  |
| :---: | :---: | :---: |
| z60 Power Amp. | ¢7.45 | P\& P 15p |
| Stereo 80 Pre-Amp. | ¢13.95 | PAP15* |
| Active Filter Unit | c7.45 | A\&P15\% |
| FM Tuner | ¢13.95 | PAP15 |
| Stereo Decoder | ¢8.96 | PAP150, |
| PZE Power Supply | [5.95 |  |
| P26 Power Supply | ce,95 | P 5 P 300 |
| P28 Power Supply | c8,45 | Paf 308 |
| Tranatormar for P28 | ¢4.05 | P\&PS00 |

SINCLAIR Project 80 Packages


## TE1021 Sterea Listening Station

For balancing and gain seivection of loudspoakers with additional
facility for stere maility for stere switching. Two
 gain controls. spaakers on-off side
switch, stareo headphon OUR PRICE $£ 2.25$
win stereo

eparata volume controls outs and channel. Operaten from gV battery INPUTS: 5 mV end 100 mV .
OUTPUT: 50 mV Der chann
OUP PA:
OUR PRICE E8.50


HIGH QUALITY CONSTRUCTION KITS WE AR STOCKISTS AT Oxford sireet. 428 257 Tottenhsm Court Aoad. 341 Lisle Strget. 152 , Fleft Street. BIRMINGHAM KIN CROYDON LEICESTER NORTHAMTON SOUTMEND TUNBRIDGE WELLS WOLVERHAMPTON branches, o
by Mail Order.
All kits ars complete with compre.
hensive sasy to follow inntructions and covered by full guaranteo.


## Also see previous page <br> ALI PRICES EXCLUDE VAT

## SEW PANEL METERS <br> SEW PANEL METERS ARE STOCKED AT OUR 3 IISLE ST., 311 EDGWARE RD.. \& 152 FLEET ST., BRANCHES or order by post.

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC.
Over 200 ranges in stock-other ranges to order. Ouantity discounts available. Sand for fully illlustrated brochure.

| CLEAR PLASTIC MODEL SD640 <br> Size: $05 \times 64 \mathrm{~mm}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 50VA .. .. .. 53.90 |  |  |  |
|  |  |  |  |
|  |  |  |  |
| 800-500A .. 53.85 |  |  |  |
| 100-0.100uA.. | c3.80 |  |  |
| 1mA .. .. .. 63.75 |  |  |  |
| 10 mAA .. |  |  |  |
|  |  |  |  |
| 50 ma ... .. | ${ }_{5} \mathbf{5} 3.75$ | $10 \mathrm{~V} D C$ |  |
| 100 mA500 mA | c3.75 | 20 V DC. |  |
|  | ${ }^{3} 3.75$ | $50 \vee O C \cdot$ | c3.75 |
| 1ADC$6 A D C$ | C3.75 | $300 \vee$ OC.. |  |
|  | 63.75 | 15 V AC.. | c3 85 |
| 10A OCSVOC | 63.75 | 300 V AC .. |  |
|  | ¢ 3.75 | VU Meter | ¢4.00 |
| CLEAR PLASTIC MODEL SW100 <br> Size: $100 \times 80 \mathrm{~mm}$ |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| $1 m A{ }^{\text {1 }}$ - .. | C4.40 |  |  |
| 1ADC .. -. | c.40 |  |  |
| GADC .. | c4.40 | 150 V AC. |  |
| 20V DC. | C4.40 | 150V AC .. | c4 65 |
| 300 V DC... .. | c4.40 | VUMeter ${ }^{\text {c }}$ | C5 00 |
| EDGWISE MODEL PE70 <br> Size: $90 \times 34 \mathrm{~mm}$ |  |  |  |
|  |  |  |  |
| 50uA .. .. .. C4.25 |  |  |  |
| 100uA    <br> 200uA    <br> .. . . 54.20 <br> 1.15    |  |  |  |
|  |  |  |  |
| 500uA $\quad . \quad . .54 .00$ |  |  |  |
| 60-0-50uA - 1420 |  |  |  |
| 100-0-100uA.. 6435 |  |  |  |
| 300V AC.. .. 44.06 |  |  |  |
|  |  |  |  |


| *Items with asterisk are Moving Iron type, all others are Moving Coil |  |  |  |
| :---: | :---: | :---: | :---: |
| CLEAR PLASTIC MODEL SD830 Sire: $110 \times 83 \mathrm{~mm}$ |  |  |  |
| 50ua | C4.40 |  |  |
| 1004A .. .. | c4.36 |  |  |
| 20004 | C4.30 |  |  |
| 50-0-50uA ${ }^{\text {a }}$.. | c4.35 |  |  |
| 100-0-100UA.. | c4. 30 |  |  |
| 1mA ... .. .. | c4.20 |  |  |
| 5 mA | c4.20 |  |  |
| 10mA.. .. .. | ¢4.20 |  |  |
| 50 mA .. | C4.20 | 10 V DC | ${ }^{64.20}$ |
| 100mA .. .. | ¢4.20 | $20 V$ OC .. | c4. 20 |
| 500 mA | ¢4.20 | 6OV DC | c4. 20 |
| 1ADC .. .. | ${ }^{6} 4.20$ | $300 V$ DC .. .. | c4. 90 |
| SADC | 64.20 | 15 VAC .. .. | c4. 30 |
| 10A DC .. .. | c4.20 | $300 \vee$ AC .. |  |
| 5VDC .. .. | f4.20 | VU Motor .. .. |  |



| $4810 \times 50 R D$ | $01-4.3881$ |
| :---: | :---: |
| 3 LISLESI. WC2 | $01-4378204$ |
| 34 LISLE ST. WC2 | 01-4379135 |
| lis EDGWARE RD. W2 | 01.723 9769 |
| 193 EDGWARE RD. W2 | 01.723611 |
| 207 EDGWADE RD. W2 | 01.7233271 |
| 311 EDGWAME RD. W2 | 01-262 0387 |
| 346 EDGWAME RD. W2 | 01.7234453 |
| 362 EDGWA的 RD. W2 | 01.7234194 |
| 109 FLEET ST. ECA | 01-353 5812 |
| 152/3 fLEET ST. EC4 | 04-353 2833 |
| 10 TOTTENHAM CT. 10. | 01.6371232 |
| 27 TOTTENHAM CT. RO | 01.6363715 |
| 33 TOTTENHAM CT. RD. | 01-636 2605 |
| 42/45 TOTTENHAM CT. RO. | 01.6360865 |
| 257/8 TOTTENHAM CT. RD. | $01-5000670$ |

6 SOUTH ST. ROMFORO



$4 \mathrm{tin} \times 3$ in METER. $\quad 30 \mu \mathrm{~A}$, $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, 63.85$. 11 p P. \& P .

$500 \mu$ A 70 p. $5 p$ P. \& P.


## CARDIOID DYNAMIC MICROPHONE

Model UD-i30. Frequency response 50 $15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, 66.55. IIp P. \& P.
$42 \times 42 \mathrm{~mm}$ meters $100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 500 \mathrm{~mA}, 62.76 .11 \mathrm{p}$ P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, $\mathbf{£ 2} \cdot 92$. IIp P. \& P

Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$ $1 \mathrm{~mA}, \mathbf{\& 3} \cdot \mathbf{4 0}$. Ifp P, \& $P$.


3 WATT STEREO AMPLIFIER
64.30. 10p P. \& P.

All above prices include $8 \%$ V.A.T. LARGE S.A.E. for List No. 11 Special prices for quantity quoted on request.

## M. DZIUBAS

I58 Bradshawgate • Bolton • Lancs. BL2 IBA

## Dimmit

range of llght dimmers and lighting control systems

Hiustrated is the popular PMSD1000 module. A 1 kW slider control dimmer, interference suppressed, 60 mm slider range size $12 \times 5 \times 4 \mathrm{~cm}$. Ideal for low by itage disco ighting. Used Complete with scale plate fixing scre. Complell instructions 57.25 ing $V$ AT | and P . \& P . . $\mathrm{instructions} £ .7 \cdot 25$ inc. VAT and |
| :--- |

Hllustrated is the DD61 dimmer system Contains: six 1 kW slider dimmers type PD1000, ix outlet sockets, a master contron a mains system in
Also available DD261 dimmer system as above, but with
2-preset arrangement Future system, availebi with 2 kW
dimmers. Specials made. DD61 \&97-20 inc. VAT and P. \& P. DD261 $\varepsilon 117.72$ inc VAT and $P$ \& $P$

The Dimmit range includes standard wall mounting models for home and office, etc. Professional modules for industrial heating applications, etc. Rotary and slider control versions. Ratings $1000 \mathrm{~W}: 2000 \mathrm{~W}: 3000 \mathrm{~W}: 110 \mathrm{~V}$ and 240 V

Model SL800 sound to light converter. Modulates the light in time with sound. Built-in microphone. No connections to speaker required Simple wiring-similar to dimmer. Rating 800 W

All products are guaranteed and are supplied with full instructlons and applications. Full after-sales service. Technleal advice given

For full information on all modules and lighting control systems send 15p for our lliustrated catalogue and price list. Callers welcome visit our showroom for a demonstration of any of the modules or systems. Mon-Fri. 9.30 to 6.0 p.m. Sat. by arrangement.

## YOUNG ELECTRONICS LTD. <br> 184 Royal College Street, London NW1 9NN. <br> Tel. 01-267 0201



# For elegant, versatile, stereo hi-fi systems designed and built by you! 

Until recentiy, if you wanted a first-class hi-fi system you had two ways to get it.

You could buy the individual electronic components and build a system from scratch. If you were an electronics genius-fine.

Or you had to buy ready-made units. Expensive - and dull. About the only creative pleasure you'd get would be matching your amp and your speakers, or making your speaker enclosures.

So what's new?
A.comprehensive hi-fi system, combining the enjoyment and satisfaction of build-it-yourself (without too much struggle) ... a real value-for-money feeling... and results of the highest quality.

It's the new Sinclair Project 80.

## How does Sinclair Project 80 work?

Project 80 is a comprenensive set of hi-fi modules, or sub-assemblies. Amps... pre-amps ... FM tuners... stereo decoders ... control units... everything you need to assemble hi-fi units. They're all designed to look alike and they're all completely compatible with each other. 5 imply decide on the specifications of the unit you want to build... buy the necessary modules ... connect them ... and house them.

No need to buy everything at once for your eventual set-up. All the modules are designed so that you can add to them as your system grows - whether or not it's based on Project 80.

This applies to refinements, like filters ... to up-grading, adding a second set of amps, say, for greater output... or to real innovation, like quad. (Add a Project 80 quad decoder, a power supply, a pair of amps, and a pair of speakers - and your stereo's gone quad.)

## Is it difficult to build?

Not at all. The modules are complete in themselves. All you do is connect them to your turntable ... your speakers... or to each other. It's absorbing, but if you can solder wires to a 5 -pin DIN plug, you can build a complete system with Project 80.

And if you're not so hot with a soldering iron? Use project 805 . Project 805 uses Project 80 modules, but provides special clip-on tagged wire connections absolutely no soldering required.

And, of course, both Project 80 and Project 805 come complete with instructions for easy, step-by-step assembly. But if you do run into problems, just call our Consumer Advisory service who are always happy to help.

## OK. Where dol go from here?

Over the page! There vou'll see'for yourself the exacting specifications to which Sinclair Project 80 modules are made, and you'll see some suggested systems.

As you skim the suggestions, remember all project 80 modules are backed by the remarkable no-quibble sinclair guarantee, Should any defect arise from normal use within a year, we'll service the modutes free of charge. What


## Choose the Project 80 modules that are right for you.



## Project 80 pre-amp/control unit

The control centre of Project 80 With its distinctive white-on-matt-black styling and plastic control sliders, it's a pleasure to look at, as well as to use

Specification
19' : in $\times 2 \operatorname{in} \times 3 / 4$ in.) Separate slider controls on each channel for treble, bass and volume. inputs: PU magnetic - 3 mV (RIAA corrected). ceramic - 350 mV .


## Project 80 FM tuner

Excellent reception from a tuner onlv $3^{3}$ in long $x^{3 / a}$ in deep ${ }^{\prime}$ Styled to match Project 80 control unit

## specification

( $3^{\prime}$ : in $\times 2 \operatorname{In} \times I_{4}$ in ) Tunes 875 MHz to 108 MHz . Detector: IC balanced


Project 80 stereo decoder
Designed for use with Project 80 FM tuner. Sold separately to


## Project 80 active fliter unit

Eliminates scratch and rumble (high and low-frequency noise).

Radio 100 mV . Tape 30 mV . S/N ratio: 60 dB . Frequency range: 20 Hz to $15 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Outputs: 100 mV and tape plus AB monitoring. Press buttons for PU, radio and tape. Operating voltage: $20 \mathrm{~V}-35 \mathrm{~V}$.

Price. £13.95 + VAT
comcidence IIC equivalent to 26 transistors) Distortion: $03 \%$ at 1 kHz for $30 \%$ modulation. Sensitivity: $5 \mu \mathrm{~V}$ for 30 dB signal to norse. Output: 100 mV for $30 \%$ modulation. Aerial imp: $75 \Omega$ or $240-300 \Omega$. Features: dual varicap tuning, 4 -pole ceramic filter. switchable AFC Operating voltage: $23 \mathrm{~V}-30 \mathrm{~V}$
Price: $£ 13.95$ + VAT
keep down the price of a mono FM system, but also to make the stereo decoder available for use with existing mono $F M$ tuners.

Specification
$11^{1}$ in $\times 2$ in $\times$ 3/a in.) 1 IC equivalent to 19 transistors. LED stereo indicator glows red.
Price: $\mathbf{E 8 . 9 5}+$ VAT

Specification
(4)/4in $\times 2 \operatorname{in} \times \frac{3 / 4}{} \mathrm{in}$.) Voltage gain: -0.2 dB . Frequency response: filter at zero: $36 \mathrm{~Hz}-22 \mathrm{kHz}$; HF (scratch) out: variable 22 kHz to $5.5 \mathrm{kHz}, 12 \mathrm{~dB} /$ octave slope; LF (rumble) out: -28 dB at 28 Hz , 9 dB /octave slope.
Price: E. 7.45 + VAT


Project 80 power amplifiers
Two different amplifiers, designed to be used separately or combined, with Project 80 modules or as add-ons to existing equipment. Protectedagainst short circuits and damage from mis-use

240 Specification
( $21 / 4$ in $\times 3$ in $\times 3,4$ in. $) 8$ transistors. Input sensitivity: 100 mV Jutput: 12 W RM5 continuous into $8 \Omega(35 \mathrm{~V})$. Frequency response: $30 \mathrm{~Hz}-100 \mathrm{kHz} \pm 3 \mathrm{~dB}$. 5/N ratio: 64 dB . Distortion: $0.1 \%$


## power supply units

Range of power supply units to match desired specification of final system.
p75 Specification
Unstabilised. 30 V output. including mains transformer
Price: $E 5.95+$ VAT
at 10 W into $8 \Omega$ at 1 kHz . Voltage requirements: $12 \mathrm{~V}-35 \mathrm{~V}$. Load imp: $4 \Omega-15 \Omega$; safe on open circuit. Protected against short circuit.

Price: $\mathbf{£ 5 . 9 5 + \text { VAT }}$
260 Specification
$12^{1 / 4}$ in $\times 3^{4 / 5}$ in $\times 3^{3 / 4}$ in. 112 transistors. Input sensitlvity: $100 \mathrm{mV}-250 \mathrm{mV}$. Output: 25 WRMS continuous into8 $\Omega(50 \mathrm{~V}$ ). Frequency response: 10 Hz to more than $200 \mathrm{kHz} \pm 3 \mathrm{~dB} .5 / \mathrm{N}$ ratio: better than 70 dB . Distortion: $0.02 \%$ at 10 W into $8 \Omega$ at 1 kHz . Voltage requirements: $12 \mathrm{~V}-50 \mathrm{~V}$. Loadimp: $4 \Omega$ min; max safe on open circuit. Protected against short circuit.
Price: $\mathbf{E} 7.45+$ VAT

P26 Specification
Stabilised. 35 V output Including mains transformer.

Price: $\mathbf{E 8 . 9 5}+\mathrm{VAT}$
P285pecification
Sta bilised. Output adjustable from 20 V to 60 V approx. Re-entrant current limiting makes damage from overload or even shorting virtually impossible. Without mains transformer.
Price: E8.45 + VAT


## Project 80 SO quadraphonic decoder

Combines with and exactly matches Project 80 control unit for true quadraphonics. This unit is based on the CBS SQ system and is a complete quadraphonic decoder, rear channel pre-amp and controf unit.
Specification
(91/2 in $\times 2$ in $\times 3,4$ in.) Connects with tape socket on Project 80
control unit or similar facility on any stereo amplifier. Separate slider controls on each channel for treble, bass and volume. Frequency response: 15 Hz to $25 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Distortion: $0.1 \%$. S/N ratio: 58 dB . Rated output: 100 mV . Phase shift network: $90 \pm 10 \cdot 100 \mathrm{~Hz}$ to 10 kHz . Operating voltage: $22 \mathrm{~V}-35 \mathrm{~V}$.
Price: E18.95 + VAT

## Some system suggestions from Sinclair


sinclair 016 speaker
Original and uniquely designed speaker of outstanding quality.
Specification
(933/8 in square $\times 4^{3 / 4}$ in deep.) Pedestal base. All-over black front. Teak surround. Balanced sealed sound chamber. Special driver assembly. Frequency response: 60 Hz to 16 kHz . Power handling: up to 14 WRMS. impedance: $8 \Omega$.

Price: $£ 8.95$ + VAT

## Project 805 ampliflerkit

Containsfollowing Project 80 units:
Project 80 control unit
$2 \times 240$ power amplifier modules
$1 \times$ P25 power supply unit
Masterlink unit
On/off switch
plus pre-cut wiring loom with clip-on tagged wire connections, nuts and bolts, instruction manual.

Price: $£ 39.95^{\circ}+$ VAT

## Project 8050 quadraphonic add-on kit

Converts your existing stereo hi-fi system to quad using solderless connections.
Contains following Project 80 units:
Project 80 SQ quad decoder/rear channel pre-amp and control unit
$2 \times 240$ power amps PZ5 power supply unit Masterlink unit On/off switch
plus pre-cut wiring 100 m with clip-on tagged wire connections, nuts and bolts, instruction manual.
Price: £ $44.95+$ VAT

1. Ouadraphonic system: 25 W per channel RMS

Pre-amp/control unit + quadraphonic decoder $+4 \times 260$ amps $+2 \times$ PZ8 mains power supplies $+(2 \times$ mains transformers) + ( $4 \times$ equivalent speakers) + (turntable) . Total Project 80 cost: $£ 79.60+$ VAT.

## 2. Stereo amplifier: 12 W per channel RMS

Pre-amp/control unit $+2 \times 240$ amps + PZ6 power supply + t $2 \times$ Q16 speakers. Total Project 80 cost: $£ 52.70+$ VAT.
3. Stereo tuner/amplifier: 12 W per channel RMS Pre-amp/control unit + FM tuner + stereo decoder $+2 \times 240$ amps + PZ6 power supply $+2 \times 016$ speakers. Total Project 80 cost : $£ 75.60+$ VAT.

## Other applications

4. PA system
(Mic) + pre-amp/control unit + Z40 amp + PZ6 power supply
$+2 \times 016$ speakers. Total Project 80 cost: $£ 46.75+$ VAT.
5. Convert existing mono record-player to stereo Pre-amp/control unit + Z40 amp + Q16 speaker. Total Project 80 cost: $£ 28.25+$ VAT.

## What more can we tell you?

The basic facts are covered on these two pages. And you'll find Project 80 at stores like Laskys and Henry's.
But before you look, why not get really detailed information? Clip the FREEPOST coupon for the fully. illustrated Project 80 folder - today!

SInclair Radionics Ltd, London Road, StIves, Huntingdon, Cambs., PE17 4HJ. Telephone: St Ives (0480) 64646.


UK1 60 I.C. Mono Amp. 8 Watt Speeifications Aux input sensitivity: PHONO inpus sensativivity
Output impedance:
Power supply:
Transistors:
ic:
SALE $f 6.04$
UK80 Oscilloscope Calibrator
UKg2 Telephone Amplifier
UK1 10 Stereo Amp. 5+5 Watt
UK115 Hi-Fi Mono Amp 8 Watt
UK135 High Impedance Pre-Amp
UK140 Low Impedance Pre-Amp
UK167 C.C.I.R. Stereo Pre-Amp
UK195 Miniature Amp 2 Watt
UK255 Level Indicator
UK270 I.C. Amp 6 Watt
UK275 Microphone Pre-Amp
UK375 27MHz Crystal Calibrator
UK415/C Resistor Substitution Unit
UK425/C Capacitor Sub Unit
UK435/C Stab. Power Supply
$0=20 \mathrm{VDC} 1 \mathrm{Amp}$
UK445/C L.F. Watt Meter $5 \mathrm{mV}=15$ Watt
UK465 Quartz Crystal Tester
UK470/C Crystal Calibration Marker Gen
UK555R/C 27 MHz Field Strength Meter
UK610 Power Supply 24V DC 0.5A
UK615 Power Supply 24V DC 1 Amp
UK630 Stab. Power Supply 6V-7-5 9V-12V D
UK640 Auto Light Dimmer 200 Watt
UK670 Buffer Batt. Charger 12-16V 200 mA
UK710/C Four Channel A.F. Mixer UK765 Multiple Stereo Junction Box $4 \times$ Standard Jack Output
UK835 Guitar Pre-Amp.
UK840 Car Burglar Alarm
UK 855 Electronic Fuzz Box
UK860/C Photo Timer
UK885 Capacitive Contact Alarm
UK900 R.F. Crystal Oscillator $\mid 20=60 \mathrm{MHz}$
UK905 R.F. Crystal Oscillator
UK910 R.F. Mixer $12=170 \mathrm{MHz}$
UK915 R.F. Amp. $12=170 \mathrm{MHz}$
UK920 R.F. Mixer $2 \cdot 3=27 \mathrm{MHz}$
UK925 R.F. Amp. $2 \cdot 3=27 \mathrm{MHz}$
UK930 R.F. Power Amp. $3=30 \mathrm{MHz}$
UK935 Wide Band Amp. $3=30 \mathrm{MHz}$

## TTL AT LOWEST PRICES!

Fast Dellvery by 1st Class Post
All Prices Include VAT (at $8 \%$ )
All Full Specification by Famous Manufacturera

| Type | $\begin{gathered} 1 / 24 \\ \hline \end{gathered}$ | $\begin{array}{r} 25 / 99 \\ \hline \end{array}$ | $100+$ | Type | $\begin{gathered} 1 / 24 \\ \hline \end{gathered}$ | $\begin{array}{r} 25 / 99 \\ \hline \end{array}$ | $100+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN7400 | 0.14 | 0.13 | 0.12 | SN7454 | 0.15 | 0.14 | $0 \cdot 13$ |
| SN7401 | 0.15 | 0.14 | 0.13 | SN7460 | 0.15 | 0.14 | $0 \cdot 13$ |
| SN7402 | 0.15 | 0.14 | 0.13 | SN7472 | 0.28 | 0.27 | 0.25 |
| SN7403 | 0.15 | 0.14 | 0.13 | SN7473 | 0.33 | 0.32 | 0.30 |
| SN7404 | 0.18 | 0.18 | 0.15 | SN7474 | 0.33 | 0.32 | 0.31 |
| SN7405 | 0.18 | $0 \cdot 16$ | 0.15 | SN7475 | 0.51 | 0.49 | 0.47 |
| SN7408 | 0.18 | 0.18 | 0.15 | SN7476 | 0.35 | 0.32 | 0.31 |
| SN7410 | 0.15 | 0.14 | 0.13 | SN7480 | 0.50 | 0.47 | 0.44 |
| SN7412 | 0.23 | 0.21 | 0.19 | SN7483 | 0.85 | 0.89 | 0.83 |
| SN7413 | 0.33 | 0.32 | 0.31 | SN7486 | 0.34 | 0.33 | 0.31 |
| SN7417 | 0.30 | 0.29 | 0.28 | SN7489 | $3 \cdot 56$ | 3.33 | 2.96 |
| SN7420 | 0.15 | 0.14 | $0 \cdot 13$ | SN7490 | 0.49 | 0.48 | 0.48 |
| SN7427 | 0.29 | 0.218 | 0.27 | SN7491 | 0.99 | 0.94 | 0.8 |
| SN7430 | 0.15 | 0.14 | 0.13 | SN7492 | 0.54 | 0.50 | 0.47 |
| SN7432 | 0.31 | 0.29 | 0. 27 | SN7493 | 0.51 | 0.50 | 0.47 |
| SN7437 | 0.31 | 0.29 | 0.27 | SN7495 | 0.73 | $0 \cdot 68$ | 0.64 |
| SN7440 | 0.15 | $0 \cdot 14$ | 0.13 | SN7496 | 0.83 | 0.78 | 0.73 |
| SN7442 | 0.70 | 0.68 | 0.64 | SN74107 | 0.35 | $0 \cdot 34$ | 0.31 |
| SN7445 | 0.99 | 0.92 | 0.88 | SN74121 | $0 \cdot 36$ | 0.34 | 0.31 |
| SN7447 | 0.98 | 0.96 | 0.87 | SN74123 | 0.70 | $0 \cdot 68$ | 0.84 |
| SN7450 | 0.15 | 0.14 | 0.13 | SN74145 | $0 \cdot 69$ | 0.85 | 0.79 |
| SN7451 | 0.15 | 0.14 | 0.13 | SN74157 | 0.87 | $0 \cdot 81$ | 0.72 |
| SN7453 | 0.15 | 0.14 | 0.13 | SN74175 | > 0.99 | 0.95 | 0.84 |

TTL may be mixed to qualify for quantity prices

## DIODES/TRANSISTORS

| 1N4001 | 41p | ZTX107 | 10p | ZTX302 | 20p | $27 \times 313$ | 14p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1N4002 | 5p | $2 \mathrm{TX108}$ | $8 \pm p$ | 2TX303 | 16p | ZTX500 | 14p |
| 1N4003 | 6 8 | ZTX109 | 11\%P | ZTX310 | 10p | 2TX501 | 15p |
| 1 N 4004 | 6 p | 2TX300 | 14p | 2TX311 | 12 p | ZTX502 | 20p |
| 1N4148 | 4 P | 2TX301 | 15p | 2TX312 | 12p | ZTX503 | 16p |

MULLARD C2a0 Polyeater 250V Capacitor (radial leads for PCB
 $5 \frac{1}{2} P ; 0.022 \mu F, 0.033 \mu F, 3 \frac{1}{2} p ; 0.068 \mu F, 4 p ; 0.15 \mu F, 4 \frac{1}{2} p ; 0.33 \mu F, 7 \$ p$.
 TTL): $£ 5$ to $£ 14.9910 \%$, 15 end over $15 \%$. ALL PRICES INCLUDE VAT

## J. C. JONES

Dept. PE4, 46 Burstellars,
St. Ives, Huntingdon PE17 4XX (Mall Order only)


#### Abstract

12In LONG PERSISTENCE CRT. FUll spec. Price 5 es. 50 to include V.A.T. and Carriage. MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUA NEW LOW PAICED SOLID STATE SWITCH. $2 H z$ to 8 MHz . Hook up to a 9 voll battery and connect to your scope and have two traces for ONLY \&6-25, P. \& P. 25p. (Not traces for ONLY 2b-25, cased, not callbrated.) WIDE RANGE WOBBULATOR. 5 MHz to 150MHz up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for $\mathbf{1 0 . 7}$ or TV IF alignment, tilters, receivers. Can be used with any genaral purpose scope. Full s.c. and use within minutes of receiving. All thls for ONLY $\mathbf{8 6} \cdot 75$, P. \& P. 25p. (Not cased, not callibrated.) 20 Hz 10200 kHz WB, SINE and SQUARE GENERATOR. Four ranges. Independent amplitude controls, thermistor stabilised. each, P. \& P. 25p. (Not cased, not calibrated.) GRATICULES $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15p each. P. \& P. 5p,

Large quantity of good qually com ponento-NO PASSING TRADE-so We offer 31b of ELECTRO QOODIES for $\$ 1.50$. Post paid


ROTARY SWITCH PACK-6 brand new switches (1 ceramic; 1 off 4 pole, 2 way, etc.), 50p, P. \& P. 20p.
P.C.B. PACKS. S \& D. Quantity 2 sq. thno tiny pieces. 50p, P. \& P. 20 p .
CAPACITOR PACK-50 brand new components, only $50 \mathrm{p}, \mathrm{P} . \& \mathrm{P} .20 \mathrm{p}$.

TRIMMEA PACK. 2 twin 50/200pF ceramic, 2 twin 10/60pF ceramic; 2 min strip with 4 preset $5 / 20 \mathrm{pF}$ on each: 3 sir spaced preset $30 / 100 \mathrm{pF}$ on ceramic base ALL BRAND NEW. $25 p$ the lot. P. \& $P$ 10p.
PHOTOCELL equ. OCP71, $13 p$ eacn. MULLAAD OCP70, 10p each.

DELIVERED TO YOUR DOOR, Tawt of Electronic Scrap chassis, boards, etc. No rubbish. FOR ONLY EA.

MODERN TELEPHDNES. Type 706. Two tone grey, $\$ 3.75$ each. Two-tone green £3. 75 each. Black $\mathbf{5 3}-75$ each. P. \& P. 35 p Ideal EXTENSION TELEPHONES with
standard GPO type dlal, bell and faad standard GPO type dla!, bell and lead coding, 51.75 atch, P. \& P: 35p.
HANDSETS. Complete with 2 inserts and lead, 75p each, P. \& P. 37p.
DIALS. ONLY 75p sach, P. \& P. 25p.
HIGH VALUE-PAINTED BOARD PACK. Hundreds of components, transistors. etc.-No 2 boards the same. No short leaded translator computer boards. \$1-75, posi psid.
BEEHIVE TRIMMER $3 / 30 \mathrm{PF}$. Brand new. Oty 1-9 13p each, P. \& P. 15p; 10-89 10p each, P. \& P. 25p; 100-999 7p each, P. \&P. fres.
HE CAYSTAL DRIVE UNIT. 19in rack mount. Standard 240 V input with superb crystal oven by Labgear (no crystals) 85 each. Carr. £2.
1,000pF FEED THRU CAPACITORS. Only sold in packe of $10,30 \mathrm{p}$, P. \& P. 10 p .
ALWAYS SOME CHEAP SCOPES AVAIL-ABLE-or build your own. Send for our tube list with a S.A.E.


CHINAGLIA DINO - ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS CHINAGLIA


PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS
One example from the big range of sophisticated instruments


METER PRICE 16.30 ( $p$ \& p 80p) PROBE 68.80 inclusive of V.A.T. for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone :-

## CHINAGLIA (U.K.) LIMITED

19 Mulberry Walk, London S.W.3.
Telephone 01-35,2 1897

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence
亭



Whether your project is electrical or electronic, SCS Components have a complete professional service for the non-professional. We are franchised distributors of Mullard components and Motorola, Ferranti,Signetics, Gl. and Monsanto, too.Our Trade Counter can supply you with all you need, inchuding first-class technical advice. Or simply send cash with your order.

Never before have you been able to get top quality, guaranteed components so quickly, so inexpensively. Send for a free copy of our latest price list.

Try us; we think you"ll notice the difference.
SCS Components.
Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex HAO 1SD Tel: 01-903 3168


## 

## Bargains in Semi-Conductors, components, modules \& equipment.

BARGANS FROM OUR FREE CATALOCUE
6th edition. 20 large pages filled with real bargains In transisiors,
I.C.s, components, equipment, etc. Send large S.A.E. with $6 p$ stamp for your FREE copy by return. Meanwhile, for prompt delivery order from our ad. thls month NOW

## B.P.P. TRANSISTOR PACKS ALL AT 50p EACH tested and guaranteed

Bn 4 iN4007 Sil. Rec. diodes 1,000 H39
81 Pl Pamp. plastic
88110 Reed Swltches, ing long H35 100 Mial
H3 $100 \begin{aligned} & \text { Mixed Dooles, Gorm. Gold } \\ & \text { bonded, etc. Marked and }\end{aligned}$ Unmarked
H3B $30 \begin{aligned} & \text { Shert lead Transistors, NPN } \\ & \text { Silicon }\end{aligned}$ Silicon Planar types
Ex-equipment
UNMARKED AND UNTESTED
B1 $50 \begin{aligned} & \text { Germanium Translstora PNP. H3 } \\ & \text { AF and } A F\end{aligned} \quad 15 \begin{aligned} & \text { Power Transistors, PNP. } \\ & \text { Germ. NPN Silicon TO-3 Can }\end{aligned}$ B6t 150 Germanium Dlodes Min. H67 $10 \begin{aligned} & 3819 \mathrm{~N} \text { Channel FET's plastic }\end{aligned}$ BK 100 Sil. Diodes min. 1 N914 glass

## OVER 1,000,000 TRANSISTORS

of all most-wanted types in stock-atl at real bargain prices
PLASTIC POWER TRANSISTORS-2 ranges
In NPN OF PNP al shatteringly low prices under our Tested and Guarantead
terms.
Range 1. VCE. Min 15. HFE Min 15 Range 2. VCE. Min 40. HFE Min 40
$\begin{array}{lll}10 & 1-12 & 13-25 \\ 26-50\end{array}$
$\begin{array}{llll}40 \text { watt } & 20 p & 18 p & 18 p \\ 90 \text { watt } & 24 p & 22 p & 20 p\end{array}$
Please state NPN or PNP on order

90 watt 35p $\begin{array}{lll}33 \mathrm{p} & 30 \mathrm{p}\end{array}$

## X.HATCH GENERATOR MK.2



Arady bullt $£ 9.93$

Rotary selector switch provides choice of four patterns-essential for colour TV alignment. Featuring plug in IC's and a more sensitive sync. pick-up circuit. The reintorced flbreglass case is virtually unbreakable-
 Operates from three U-2-type batterles (extra).
$\underset{\text { kit }}{\text { complete }} \quad £ 7 \cdot 93$

## MAINS TRANSFORMERS TO SUIT STIRLING SOUND MODULES

Type A-18V/1A (suit SS.103, etc.) $£ 1.50$.
Type B-25V/2A (sult SS. 110. etc.) $£ 2 \cdot 00$
Type C-30V/2A (suit SS. 140 . otc.) $\mathfrak{\text { E }} \cdot 25$.

## SUNDRY

Metrication Pocket Charts 12p. 8 assorted relays $£ 1$. Rey. counter device (for cars) £1. UHF

## TERMS OF BUSINESS

V.A.T. Prices shown do not include V.A.T. Please add $8 \%$ to total value of your order including postage. No V.A.T. on overseas orders. pOSTAGE Except where stated, add 15 p for posiage and packing in U.K Overseas-add E 1 . any difference being charged or refunded.
PAYMENT Cash with order, Cheque or money order. Minlmum value- 1 . You can also pay by ACCESS.
IMPORTANT-Every effort is made to ensure accuracy of prices and description at time of preparing this advertisement and going to press. Prices are subject to afteration without notice. FREE


222224 WEST ROMD, WESTCLIFF-OW-SEA, ESSEX SSO SOF. TELEPHONE: SOUTHEND (0702) 46344. GITE ORDER SEPARATELY AND ATTACH COUPON IF NECESSARY


CHALLENGING VALUES!

STIRLING SOUND AUDIO MODULES come to you as basic units assembled on P.C.B.s enabling you to add required components in layouts of your own choice. Modules are tested and boxed before despatch and include well printed instructions.

## AMPLIFIER MODULES

Pre-ampllflers; tone control
SS. 100 Active tone control unit to provide bass
treble, balance and volume controls
SS. 101 Pre-amp for ceramic cartridge, tape and radio
SS. 102 Pre-amp for tow output magnetic cartridge lape and radio. With R.I.A.A. correction $\pm 1 d B$ at $1 \mathrm{k} \Omega$

## POWER AMPLIFIERS

ss. 103 Compact I.C. amp. with 3 watts S.M.S output. Operating voltage $6-22$. Size 3 in $\times 2$ in ss.103-3 Stereo version of above using one I.C on each channel
SS. 105 A compact and useful all-purpose amplifier which wilf run excerlently on a 12 V supply. With 5 watt output, two make a good stereo amp. Size $2 \frac{1}{2} \ln \times 1 \frac{1}{2}$ in.
SS. 110 Similar in size to SS. 103 but with a 10 watt output. Ideal for many domestic and small-size P.A. applications. Operates from 26-32V.

SS. 140 Excellently designed 40 watt R.M.S. (into 4 ohms) hi-fi amplifier. $\mathrm{S} / \mathrm{N}$ ratio better than
75 dB . T.H.D. better than $0.2 \%$. Power require-ments- -45 V d.c. With 0.15 in centre edge connections. Two can be bridged to give 80 watts A.M.S. Into 4 ohms

## TUNER MODULES

SS. 201 Ganged tuning condenser with accurately engineered slow-motion drive in rugged housing. Excellent sensitivity. Tunes $88-108 \mathrm{MHz}$. With F.C. facility. Operates trom 6-16V

SS. 202 I.F. stage (with I.C.). Pre-tuned A.F.C. connection. Operates from 4.5-14V
SS. 203 Stereo Decoder. Designed essentially for use with SS. 201 and SS.202, this module can also be used on most mono F.M. tuners. A L.E.D. may be attached. Operating voltage $9-16 \mathrm{~V}$ d.c.

## POWER SUPPLY STABILISER

SS. 300 Add this to an unstablised supply (say typically 45 V output) to obtaln a steady powertu working output adjustable from 12 to 60 V Essential for your audio and special systems Money saving and very reliable.

* ALL MODULES TESTED AND GUARANTEED

WITH WELL PRINTED INSTRUCTIONS

* FULL RANGES OF ANCILLARY COMPONENTS AVAILABLE-SEE CATALOGUE
£1. 60
£1.60
£2. 25
£1.75
£3. 25
£1.95
£2.40
£3.60

£6. 25
£5. 25
£5-62

£3. 25



## Have you

had your CATALOGUE?
$\qquad$

ADDRESS


 AOVANCE SINCE THE INVENTION OF THE CHRONOMETER

THE SYSTEM EXCELLED IN ACCURACY ONLY BY THE ATOMIC FREQUENCY


FROM WORLD FAMOUS MAKERSI The greatest Watch offer since time begant Everyone who sees it is fasclnated by itl it＇s unbelievable！Continuous digital reading－hours and minutes AND second Pulsator miraculously transmits betore your very eyes like a continuously changing TV Picture！A new＂dimension＂in time！Now YOU can join the elite few－the proud owners of a watch that is utterly different from any，other timepiece you ve ever known！ THEY RE NEWS！THE WATCH OF TOMORROW－TODAY！ AND you buy at a price that＇s just a fraction of what you could have paid！But remember－you can only buy at this amazing price from Shopertunities．$\quad$ UNBELIEVABLY ACCURATE TO WITHIN SECONDS A YEAR！The system excelled In accuracy only by the Atomic frequency standard！Now TIM can phone you for a time check ＊NO MOVING PARTS！＊NO MAINTENANCE！ ＊ABSOLUTELY SILENT！＊BUILT TO GIVE A LIFE－ TIME OF SERVICE！＊18CT GOLD PLATED CASE！ ＊BRAND SPANKING NEW ADVANCE 1975 MODEL！ WRITTEN GUARANTEE．Developed from the fantastic ＂space－age＂techniques that first put men on the moon， this incredible watch is based on the natural action of Quartz Crystal，that vibrates approx． 32.768 times per second！A veritable miracle of micro－circuitry！An＂elec－ tronic brain＂with 1500 Transistors！You could even spend £400 or more for a Quartz Crystal watch！OUR fantastic cash price for this masterpiece is ONLY E57．95，registered post，pack，efc．50p，including expenslve matching adjustabie satety bracelet and presentation casket．Send quickly and test for yourself on 7 days mail order approval from receipt of goods．REFUND IF NOT DELIGHTED．Or send only $\$ 12 \cdot 50$ deposit，balance by 6 monthly payments of $£ 9.47$（total credit price $£ 69 \cdot 32$ plus post）．Please hurry！ Limited quantity！THIS is the greatest investment you＇ll EVER make！Or call at either store and see this fabulous watch for yourself！At this price you just can＇t lose！


COMPONENT KITS NOW aVailable． 4！$\frac{1}{2}$ STAMP BRINGS DETAILS．

TRANSISTORS VOLTAGE | TRANSISTORS | VOLTAGE |
| :--- | :--- |
| BC204 | IIp |
| REGULATORS |  |
| BC209C | IIP |
| HA78IS |  | BC182 $11 p$ HA78IS



| BC |
| :--- |
| BC |
| BC |
| BC |



MINISONIC COMPONENT
KITS
V．C．O．（2 required）$\quad £ 3.85$
V．C．F．（I required）
ES／V．C．A．（2 required） Voltage Ref．
Ring．Mod．（I required）
Noise Gen．（l required）
Kbd．Control（I required） HF Osc．and Det． Power Amps
All above prices are for single kirs type and prices are for single kits of each are incladed in lists．

## M／scellaneous Items

$\begin{array}{ll}5 \text { way } 180^{\circ} \text { DIN sockets } & \text { 27p } \\ 5 \text { way } 180^{\circ} \text { DIN plugs } & 34 \text { p }\end{array}$ $\begin{array}{lr}5 \text { way } 180^{\circ} \text { DIN plugs } & 34 p \\ \text { Battery connectors } & 9 p / \text { pair }\end{array}$
Hook up wire， 36 colours，$\frac{1}{2}$ metre of each
Min．DPDT toggle switch $\begin{aligned} & \text { 70p } \\ & \mathbf{E l 2 0}\end{aligned}$
VAT should be added to quoted price of miscellaneous items．

SAVE BY PURCHASING A COMPLETE SET OF KITS AS DETAILED TOGETHER WITH SWITCH，BATTERY CONNECTORS WITHSWITCH，BATTERYCON
HOOK－UP WIRE AND P．C．B．
Price inc．VAT \＆U．K．Postage £43

TERMS：MAILORDER Cheques or W．O：
able to Eaton Audio．
ard
Orders over 65 free of P．\＆P．Otherwisepleas add $10 p$ in the E l


Bry it with Acces
CALCULATORS
BUY FROM THE SPECIALISTS UP TO 45\％OFF RRP Alt guaranteed 1 year．Money within 7 days． VATMAN $14: 91$＋VAT

Model
Decimo Price Functions
$\qquad$
Decimo Memary

$\qquad$
$\qquad$
$\qquad$20 Functions Algebra，Geometry Logs．Calculus，Inte－grals，etc
Dechmo 9202$39 \cdot 83 \quad \underset{K}{ }, M_{H},(\mathbb{A}], R, G, 80, E_{1}$



JUST OUT


 Bowmar MK7s＊ 39.97 T．M．［A］．R．8D．E，F．K4． Bowmar Mx100＊ 65.99 T，M，8D，E，F，K4，C．V．J J
 Ricomac to00 P $\mathrm{M}, \mathrm{I}, \mathrm{J}, \mathrm{C}, \mathrm{V}$.
Print－Oute Print－Out
2 colour print－out．$A, 10$
Code
acc＋X butfer
percéntage． $\mathrm{B}=$ battery（mains adaptor extra）BM
 flosting salect．F2 $=$ floating point and 2 places，$F 7$ flosing point and 7 places．$G^{G}=$ grean display．$H$ $\begin{array}{ll}L 5 & 50 \mathrm{hr} \text { ．battery lite，L10 }=100 \mathrm{hr} \text { ．battery lite，} \mathrm{M} \\ \text { memory，} \mathrm{N} & \text { negative entry．} \mathrm{P}=0 \text { pocket } \mathrm{A}\end{array}$ $\mathrm{S}=$ desk model $\bar{T}=$ hand and desk．U display blanking， $\mathrm{V}=$ rechargeable， w exchange．
separate keys． separate keys．$=$ posthive feel．
45 P P．$\& P$ ．and please add $8 \%$ VAT on all total prices
BARCLAY ELECTRONICS
STANLEY HOUSE， 1115 FINCHLEY ROAO LONDON，NWII

## INTERNATIONAL ELECTRONICS UNLIMITED

## ORDER DIRECT FROM THEU.S.AND SAVE SHIPMENT MADE WITHIN 3 DAYS FROM RECEIPT OF ORDER VIA AIR MAIL-POSTAGE PAID

## TTL



## INTRODUCTORY SPECIALS

ALL ITEMS ARE NEW, MARKED, TESTED FUNCTIONAL - SATISFACTION GUARANTEED
The prices as listed are in British pounds and pence. Send bank cheque (U.S. funds) with order. If international postal money order is used, send receipt with order. Minimum order $£ 2-50$ p.
INTERNATIONAL ELECTRONICS UNLIMITED
P.O. BOX 1708 MONTEREY, CA. 93940 USA PHONE (408) 659-3171

## The largest selection

## BRAND NEW FULLY GUARANTEED DEVICES







BF180





| LINEARI．C＇s |  |  |  |
| :---: | :---: | :---: | :---: |
| Type No． | 1 | 23 | $100+$ |
| 72702 | 0.50 | 0.48 | 0.45 |
| 72709 | 0.25 | 0.23 | 0.20 |
| 727091 | 0.20 | 0.19 | $0 \cdot 18$ |
| 72710 | $0 \cdot 35$ | $0 \cdot 33$ | 0.80 |
| $727+1$ | 0.30 | 0.29 | 0.28 |
| $727+1 \mathrm{C}$ | 0.28 | 0.27 | 0.26 |
| 72711 P | 0.30 | 0.29 | 0.28 |
| 72747 | 0.85 | 0.80 | 0.75 |
| 72748 | 0.38 | 0.36 | 0.34 |
| SL201C | 0－58 | 0.45 | 0.40 |
| SLJ010 | 0.50 | 0.45 | 0.40 |
| SL702C | 0.50 | 0.45 | 0.40 |
| TAA263 | 0.80 | 0.70 | －0．80 |
| TAA293 | £1．00 | 0.85 | 0.80 |
| TAA350A | ¢1．85 | － 11.80 | £1．70 |
| $\mu \mathrm{H703C}$ | 0.28 | $0 \cdot 26$ | 0.24 |
| MA709C | 0.20 | 0.19 | 0.18 |
| $\mu \mathrm{A} 711$ | 0.35 | 0.33 | 0.30 |
| MAT12 | 0.35 | 0.33 | $0 \cdot 30$ |
| TBAROO | 0.50 | £1．45 | £1．40 |
| 76003 | £1．50 | 81．45 | £1．40 |
| 76023 | \＄1．50 | £1．45 | 21.40 |
| － 7666 | 0.95 | 0.93 | 0.80 |
| LM380 | \＄1．00 | 0.87 | 0.95 |
| N Ess\％ | 0.65 | 0.63 | 0.60 |
| NEE5t | 0.95 | 0.93 | 0.90 |
| 7N414 | £1．20 each |  |  |

INDICATOR TUBES
3015F Minitron

TRIPLE 66－bit DYNAMIC SHIPT REGISTER EDSR3166
Comprises three 66 －bit 20 dynamic inpuis and ontputs．TTL com－ patibinty and buffered clock lines sented at the clockitive load pre． strapped buffer ensures a full log swing at the output．\＆

## DTL 930 SERIES



DUAL－IN－LINE SOCKETS I）UALIN－LINE I．Ces．TWO Ranges PHOFESSIONAL ANEW LOW COST PROF．TYPE No． $1-2425.99100 \mathrm{up}$ $\begin{array}{lllll}\text { TSOIf } & 14 \text { pintype } & 33 \mathrm{p} & 30 \mathrm{p} & 27 \mathrm{p} \\ \text { Tintype } & 38 \mathrm{p} & 35 \mathrm{p} & 30 \mathrm{p}\end{array}$ $\begin{array}{lllll}\text { BP814 } & \text { I4 pintype } & 16 p & 14 p & 12 p\end{array}$ BPS15 16pintype 17p 15p 13p （low cost）


 | $7 \%$ |
| :--- | :--- |
| 10 | 2N3906

2N4058 ーただ だせ





DIODES AND RECTIFIERS

－

## -the lowest prices!

## INTEGRATED CIRCUIT PAKS

TECHRICALANDDATA Books ARE HOW AVAILABLEEX8TOCK

Manuacturers "Fall Outs" whleh include Functional and Part-Functional Unit
These are clansed as 'out-of-spec' from the maker's very rigid specification bu Pak No. Contents Price $\mathrm{UIC} 00=12 \times 7400 \quad 0.64$ $\mathrm{UCO}=12 \times 7401 \quad 0.54$ $\mathrm{UICO}=12 \times 7402$ UIC $04=12 \times 7104$
 $\begin{array}{ll}\mathrm{UICO} & =12 \times 740 \overline{0} \\ \mathrm{UIC} 0 & 0.5 \\ =8 \times 7406 & 0.5\end{array}$ $\begin{array}{ll}\mathrm{U} 1 \mathrm{C} 07=8 \times 7407 & 0.5 \\ 0.5\end{array}$ $\mathrm{UIC10}=12 \times 7410$ $\mathbf{U I C 2 0}=12 \times 7420$ UIC30 $=12 \times 7430$ UIC40 $=12 \times 7440$ UIC41 $=5 \times 7441$ UIC42 $=5 \times 7442$ UIC $43=5 \times 74+3$ UIC44 $=5 \times 7444 \quad 0.5$ UIC45 $=5 \times 7445 \quad 0.5$ Paks 0.54

Paik No. Contents Price UIC46=5 $\times$ Citis Pric UlU48 $=6 \times 7446$
 UIC $5=12 \times 7450$ UICJ3 $=12 \times 74$ is UlC5 $4=12 \times 7453$ UIC54 $=12 \times 7454$ $\mathrm{UIC60}=12 \times 7460$ UIC $70=8 \times 7+70$ $\mathrm{UIC72}=8 \times 7472$ $\mathrm{UIC73}=8 \times 7472$

$\mathrm{UIC7}=8 \times 7473$ $\begin{aligned} & \text { UIC74 }=8 \times 7473 \\ &=8 \times 744\end{aligned}$ $\begin{aligned} & \mathrm{UIC76}=8 \times 7476 \\ & \mathrm{UICO}=8 \times 746\end{aligned}$ UIC80 $=\overline{0} \times 7480$ UIC81 $=5 \times 7481$ | UIC82 $=5 \times 7482$ | 0.54 |
| :--- | :--- |
| 0.54 |  | $\begin{array}{ll}\mathrm{U} \text { IC83 }=5 \times 7483 & 0.64\end{array}$

```
Pak No. Contents Price
```

$\qquad$
$\begin{aligned} \mathrm{U1C91} & =5 \times 7491 \\ \mathrm{U1C92} & =5 \times 7492\end{aligned}$
$\begin{aligned} \text { U1C93 } & =5 \times 7492 \\ \text { UIC9 } & \times 7493\end{aligned}$
UIC94 $=5 \times 7494$
UIC95 $=5 \times 7495$

UIC100 $=5 \times 74100$
UIC121 $=5 \times 74121$
UIC141 $=5 \times 74141$
UIC
UIC
UIC



2 Amp. BRIDGE RECTS.
50 RMS 35peach

| BRAND NEW TEXA |  | gUALITY TESTED SEMICONDUCTORS Pal No. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Coded and Guaranteed | ImG TRANS. TO- |  |  |  |
| Pak No. EQ | 8Tm. TO 2N708/8. Bs |  |  |  |
| T1 $82 \mathrm{G3713}$ OC71 | 27/28/95A. All usabl |  |  |  |
| $\begin{array}{lllllll}\text { T2 } & 8 & \mathrm{Dl} 1374 & \text { OC75 }\end{array}$ | devices no oplen or shor | Q $3{ }^{4}$ | OC77 type transistors |  |
| T3 8 D1216 OC81 | circuits. ALSO AVAIL |  | Matched transistors OC |  |
| T4 8 $2 \mathrm{Ca381T}$ OC81 | ABLE in PNP Sin! |  | OC75 transistors |  |
| T5 82 c 382 T OC82 | 2N2906, BCY70. Whe | Q | OC72 transistors |  |
| T6 820344 Br OC44 | ring please sta |  | 8 transistors $p$ |  |
| T7 820345 B OC45 | ference NPN or PNP |  | AC126 transistors pnp |  |
|  | fir | Q | OC81 type transistors |  |
| $82 \mathrm{Cl399} \mathrm{~A} 2 \mathrm{Nl130}$ | 20 For 0.54 | Q10 | Oc71 type tra |  |
| T10 820417 AF117 | 50 For 1.08 | Q11 | AC127/128 Complementar |  |
| All 54 p each pak | 100 For 1.92 |  |  |  |
|  | 500 For |  | AP116 type tran |  |
| ND120 NIXIE DRIV | 1000 For 14.30 | Q13 | AF117 type transib |  |
|  | P. DIODES |  |  |  |
| TRANSISTOR. |  | Q | 2N2926 sil. Epoxy transistura |  |
| Suitable replacement forBSX 21 | 300mW, ${ }^{30} 0.55$ |  |  |  |
|  | $\begin{array}{llll}\text { 40PIV(Mln.) } & 100 & 1.65 \\ \text { Sub-Min. } & 500 & 5.50 \\ & \end{array}$ |  | $2 \times 8 \mathrm{~T} .141$ |  |
| $120 \mathrm{veb} \text {. }$ | $\begin{array}{lrl} \text { Sub-Min. } & 500 & 5.50 \\ \text { Full Tested } & 1,000 & 9.90 \end{array}$ | Q18 | Madt's $2 \times$ Mat 100 \& 2 |  |
| $0.19$ |  |  |  |  |
|  |  |  | A |  |
|  | AD/61/162 |  | OC44 Ge |  |
|  |  |  | AC127 npn Germanium |  |
|  | M/P COMP. GEE |  | N KT transistors A.E. R.F. |  |
| P. E. Organ. Metal TO-18 |  |  |  |  |
| Eqvt. 7TX 300 6p each. Any Quantity. | $\begin{aligned} & \text { EST } \\ & \text { PER PRICE OF } \\ & \text { PAIR. } \end{aligned}$ | Q24 | OA81 diodes |  |
|  |  |  | IN914 Silicon diodes 7opiv 75ma 0 A 95 Gernanimm dioxles anb-min |  |
| ap 100 TO3 METAL Cage germanidm | $\begin{aligned} & \text { LOOK } \\ & \text { FOR OUR } \end{aligned}$ |  | 0 A 600 piv silicon rectiferg |  |
|  |  |  | 1842i |  |
| $\text { I.C. }=10 \text { amps. Ptot }=$ |  |  | dilcon power rectifiers HYZ13 |  |
|  | AJDIO AND | Q29 | ilicon transistors $2 \times 2 \mathrm{~N}$ 60 0 . |  |
| Replaces the majority of |  |  |  |  |
| Germanium power tran- |  |  |  |  |
| gistors in the OC, AD and NKT range. | GOMPDNE |  | ilicon switch transistors 2 N 708 , |  |
|  |  |  |  |  |
|  | SEMEHIS |  | $n \mathrm{Sillic}$ $\times 2 \mathrm{~N}$ $\times 2$ |  |
|  | IRELESS |  | silienn npn tr |  |
| GP300 TOS METAL <br> CASE SILICON <br> Vebo $=100 \mathrm{~V}$. Veco $=60 \mathrm{~V}$ |  | Q34 |  |  |
|  |  |  |  |  |
|  | RADIO CONSTRUCTOR |  | $\begin{aligned} & \text { ilicon } p p_{\mathrm{l}}^{\mathrm{T}} \\ & 1 \times 290 \overline{1} \end{aligned}$ |  |
|  | FULL RANGE OF |  |  |  |
| I.C. $=15$ amps. Ptot $=$ $115 \mathrm{~W} . \mathrm{hte}=20.1001 \mathrm{~T} .=$ |  | Q3 | N3053 npn Silicon |  |
|  | D | Q38 5 | $\stackrel{\operatorname{lop}}{2 \times}$ |  |
| 2N30ご, |  |  |  |  |

## 555IC 65p each

## ALL PRICES INCLUDE V.A.T. MAMMOTH I.C. PAK

APPROXIMATELY 200 PIECES ASSORTED MANUFACTURERS' FALL-OUT INTEGRATED CIRCUITS INCLUDING LOGIC 74 SERIES LINEAR and AUDIO AMPLI FIERS. MANY CODED also SOME UNKNOWN TYPES-YOU TO IDENTIFY.

PAK NO. M.I.C. 200
PRICE $\{1 \cdot 25$ per PAK including P. \& P. and VAT

1975 Catalogue NOW READY 10p

NEW LOW PRICED TESTED S.C.R.'S
$\begin{array}{ccccccc}\text { NEW LOW PRICED TESTED S.C.R.'S } \\ 30 & 100 & 200 & 400 & 600 & 800\end{array}$

## KIN OF THE PAKS

Unequalled Value and Quality

## SUPER PAKS

NEW BI-PAK UNTESTED SEMICONDUCTORS

## Satisfaction GUARANTEED in Every Pak, or money back.

Pas No.<br>Description<br>Price

U 1120 Glass Sub-Min. General Purpose Germanium Diodes
U 2.60 Mixed Germanium Transistors AF/P.F
U $3 \quad 7 \overline{-}$ Gerinanium Gold Boniled Sub-Min. like OA5, OA47
$\overline{\mathrm{U}} 440$ Germanium Transistors like OC81, ACI28

716 Sil. lkectifiers TOP.HAT 750 mA VLTi. RAN

U $9 \quad 20$ Mixed Voltages, 1 Watt Zener Diodes
U10 20 BAY50 charge storage Diodes DO-7 Glass
U11 $2 \dot{3}$ PNP Eil. Plalar Trans. TO-5 like 2N1132, $2 N 2904^{2}$
U13 30 PNP-NPN Sil. Trensistors OC200 \& 24 104
(114 150 Mixed Silicon and Germanium Diotes
U15 $2 \bar{j}$ NPN StI. Planar Trans. TO-5 like $1 \mathrm{~F} \overline{\mathrm{Y}} \mathrm{B}, 2 \mathrm{~N} 697$
U16 103 Amp Silicon Rectifiers Stull Type up to 1000 PIV
$\overline{\mathrm{U} 17} 30$ Germanium PNP AF Transistors TO-5 like ACY 17.32
$\overline{U 18}-8 \overline{6} \mathrm{smp}$ silicon Rectifiers BYZ13 Type up to 600 PIV
U19 25 Silicon NPN Transistors like BC108
020 1.2 $1 . \overline{5}$ Amp silicon Rectifiers Top hat up to 1000 PIV
U!2] 30 AF, Germanium Alloy Transistors 29300 Series \& OC7
U03 30 MADT's like Muz Beries PNP Transistors
U24 20 Germanium 1 Amp Rectlfers (iJM Series inp to 300 PIV
U25 0.5 300 MHz NPN Sillcon Transistors 2N708, BSY27
U26 30 Fast S witching silicon Diodes like IN914 Micro-M1n.
U29 101 Amp SCl's TO-5 can, up to 600 PIV CRSI/ $25-600$
U32 $2 \overline{2}$ Zener Diodes 400 mW DO-7 case $3-18$ volts mixed
W33 $1 \overline{5}$ Plast ic Case 1 Amp Bilicon Rectiliery IN 4000 Series
U34 30 Silicon PN '' Alloy Trans. TO-5 BCY26 28302/4
U35 :25 Silicon l'lanar Tranyistors PNP TO-18 $2 \mathbf{N} 290{ }^{\circ} \mathrm{t}$
U36 25 Silicon Planar NPN Transiatora TO-b BFY $50 / 51 / \overline{5} 2$
$\sqrt{13} \overline{7}-\frac{30}{30}$ Sillcon Alloy Transistors $\overline{\mathbf{5}} \overline{0}-2$ PNP OC200, $2 \bar{S} 32 \overline{2}$
U38 20 Fast 8witching 8illen Trans. NPN 400 MHz 2 N 3011
U39 $30 \mathrm{RF}^{2}$. Gerin. PNP Transistors 2 N N $1303 / \overline{\mathrm{V}}$ TO-5
U40 10 Dual Transistors of lead TO-5 4 N 2060
U43 25 Sil Trans. Plastic TO-18 A.J. BC113/114
$\overline{\mathrm{U} 45} \div \frac{7}{3} \mathrm{~A}$ 8CR . TO66 up to $600 \mathrm{PI} \overline{\mathrm{V}}$
U46 $20 \quad$ Unijunction translstors similar to TIS43

U49 12 NPN Sil. plastle power trans. 60 W like $2 \mathrm{~N} 5294 / 5 \pm 96$
0.54
0.54

## FREE

One 55p Pak of your own choice free with orders valued $\mathbf{f} 4$ or ov PIV $300 \mathrm{~mA} \quad 750 \mathrm{~mA} \quad 1 \mathrm{~A} \quad 1 \cdot 5 \mathrm{~A} \quad 3 \mathrm{~A} \quad 10 \mathrm{~A} \quad 30 \mathrm{~A}$ (DO7)(SO16) Plastic (SO16) (SO10)(SO10)(TO48)

CADMIUM CELLS
PP10 A8 $\begin{array}{rr}60 & p \\ 100 & 05 \\ 200 & 08 \\ 400 & 0 \\ 600 & 0 \\ 800 & 1 \\ 1000 & \\ 1200 & \end{array}$
$\qquad$

$$
\begin{aligned}
& \text { FOR USE } \\
& \text { TRIACS. }
\end{aligned}
$$







$$
\begin{aligned}
& \text { TRIACS. } \\
& \text { BR100 (D32) 25D each }
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { amp POTTED } \\
& \text { RRINGF RFCTIFIFR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { BRIDGE RECTIFIER } \\
& \text { on heat sink. }
\end{aligned}
$$

## 213055

2 POWER NPN 45p EACR

Gira No. 388-7006
Piease send oll orders direct to warehouse and despoth department

|  | Manufacturers' fall-outs |
| :--- | :---: |
| PakRo. | Contents |
| ULIC70s | $10 \times 709$ |
| ULIC710 | $7 \times 710$ |
| ULIC741 | $7 \times 741$ |
| ULIC747 | $5 \times 747$ |

우운․․

## P.O. BOX 6. WARE. HERTS

Postage and packing odd 15p. Overseas odd extra for airmail, Minimum order 55p. Cash with order please. Guaranteed Satisfaction or Money Back

## HOME RADIO (Components) LTD., Dept. PE, 234-240 London Road, Mitcham, CR4 3HD. Phone 01-648 8422



HOME RADIO COMPONENTS LTD. of Mitcham are the people! ! just don't know another firm that makes life so simple for their mail order customers.

First they devised a system whereby anybody who wanted to could have a credit account and pay monthly, thus saving the cost of several cheques or postal orders. Many credit account schemes are involved and awkward to join, but with Home Radio Components you simply have to complete a very simple form-not even references are called for. Then they send you a supply of order forms and pre-paid envelopes-another worthwhile saving. Then they really pamper you! They have installed an Answerphone system, so that you can phone orders through, any time of day or nightSundays included! Very convenient-no wonder over 700 Credit Account customers use this service.
Of course, to order your components you first need the famous Home Radio Components Catalogue-just about the best catalogue of its kind you've ever seen. It costs 98 p ( 65 p plus 33 p for post, packing and insurance). But Home Radio help you out even herewith the Catalogue they give you 14 vouchers each worth 5 pence when used against orders, so you can soon get the cost of the catalogue back, plus a bit towards postage! Just send the coupon below with your cheque or P.O. for 98p.
By the way, you'll find full details of the Credit Account system inside the catalogue, together with the necessary form. And here's your bonus-once you've joined the scheme you'll receive a new catalogue FREE each year. Yes-Home Radio Components still know the meaning of SERVICE. To prove it-send that coupon now.

## $65 p$. plus 33 post and p. plus 33p packina

Send off the coupon today. It's your first step to solving your component buying problems.

[^1]

THE very successful infiltration by electronics into miscellaneous and apparently unrelated fields is based upon the ready ability to transform different forms of energy into electrical energy, and vice versa. Without those devices embraced by the term "transducers" electronic circuitry would be limited to purely electrical or electronic functions.

Many energy transforming devices used for industrial or scientific measuring and control purposes fall clearly into the class of precision instruments. They are usually designed for specific applications in association with hydraulic, pneumatic, or mechanical systems. These kind of applications are seldom encountered by the amateur. Apart from such highly specialised transducers, there are more commonplace devices and some-like the microphone and loudspeaker-have been around for a very long time and indeed antedate the introduction of the now generally used term transducer. There are also those simple home made devices which, in comparison with their elegant commercial counterparts, seem hardly to qualify for the rather impressive title of transducer. Yet they ably perform essential energy conversion roles in some electronic system or another.

The touch plate and the moisture sensor are examples of transducers of the most rudimentary form which can be fashioned from commonplace materials and work very successfully with standard electronic circuitry. Of course far more complex and intricate devices can also be made by the amateur who is adept in mechanical matters. For example, the electrodynamic type of instrument used in the Marine Speedometer (February issue).

There is also a good variety of semiconductor devices which are used for sensing or transducing purposes. The developments in this area have been of particular value and importance to amateurs, for they have opened up additional useful applications for circuitry without introducing undue mechanical problems. One of the more recent and noteable innovations in solid state transducers is the gas or vapour detector. This device has now joined the ranks of other semiconductor devices which can sense atomic radiations, heat, light, sound and pressure. (Only taste appears to be lacking at present, but surely it can only be a matter of time before this sense is covered as well?)

As a matter of fact, this marked paralleling. of human senses tempts us to indulge in a little whimsical speculation. Can we expect one day the arrival of the thought-responsive transducer, $a_{1}$ device that will permit the control of electronic apparatus without the necessity of physical contact of any kind? Some extra-sensory perception devotees believe they really are on the track of this esoteric solution to some of life's little problems. And there has actually been a suggestion that the humble Zener diode could be a possible candidate for this post. Who knows, maybe some readers are currently engaged in pitting their wits against the undisciplined host of particles within that tiny component following the recent Probability Anomaly Detector article.

Frankly, though, we confess having doubts that any redundancy amongst orthodox transducers will result from this battle of mind over matter. So we return to wholly substantial and materialistic matters by drawing attention to the new series starting this month dealing with those important intermediaries-transducers.
F.E.B.

## Editor

F. E. BENNETT

## Editorial

R. D. RAILTON Assistant Editor D. BARRINGTON Production Editor G. GODBOLD Technical Editor S. R. LEWIS B.Sc.

Art Dept.
J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial $\&$ Advertising Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

## RECIPROCITY LAW

Experienced photographers will be aware of the reciprocity law, on which all exposure measuring devices are based

$$
T \times I \fallingdotseq K
$$

It expresses the fact that the product of time ( $T$ ) and intensity ( $I$ ) must be constant ( $K$ ) for a given sensitised material (intensity being itself the product of subject brightness and the f stop used). Although it is well known that this law breaks down at extremes of shutter speeds and low light levels, it holds good over the normal ranges encountered in camera exposure. The photographer carefully measures light intensity and, with film speed ( $K$ ) set, the (Reciprocity Law) calculator on the meter will compute the aperture/speed combinations for the material in question.

Having carefully measured camera exposure and accurately developed or reversed the material, the printing stage arrives. Here is where the Law goes out of the window!
Readers appreciate that there are small variations in mains voltage taking place the whole time, especially if a hospital or factory is nearby. More important, however, is that photographic high intensity enlarging lamps are slightly over-run, operating on a similar principle to the photoflood lamp. This means that their reaction to fluctuations is more highly-geared than with household lamps. When voltage alters, so does intensity ( $I$ ) and, if the timer gives precise intervals, " $K$ " is meaningless.

To compensate for intensity changes, exposure time must be reciprocal. If the intensity falls, exposure time must be extended-and vice versa. Fig. 1 shows the percentage changes in the light output from an 150 W enlarging lamp as voltage is decreased, the 75 W lamp following much the same


Fig. 1. Effect of mains voltage on enlarging lamps
pattern. A 10 per cent error in the exposure of papers such as Ektacolor 37 RC will be most noticeable and really demand a reprint. Ideally, all mains supply fluctuations require compensation so that repeatable results are possible. When switched to the "Compensated" mode, this timer will give the same light dosage for a given setting of the interval switches, despite any unevenness in supply voltage.

## CIRCUIT

The complete circuit is shown in Fig. 2. Pin 5 of ICI is normally supplied with about half the rail voltage, this potential altering all intervals pro rata. When S6 is switched to "Exact", pin 5 is connected in this manner. With S6 set to "Compensated", pin 5 is supplied with an amplified version of small changes in a.c. mains voltage and thus makes the timed interval reciprocate. S3 and S2 are simple make switches, but the circuit is otherwise solid state.


Fig. 2. Complete circuit of the timer


The completed front panel showing positioning of controls

Output from the timer i.c. is used to switch a thyristor in series with the primary winding of the transformer, whose secondary controls the gate of a triac and hence the lamp itself. Though a little more expensive than pure relay operation, this method is positive and reliable in obviating problems associated with relay points.

Supply voltage is nominally 12 V , with 15 V a safe upper limit. R8 may be adjusted upwards if DI passes too much current. Reset switch S 2 is connected to pin 4 of the i.c., and the start switch to pin 2. Both are held at positive potential by R3 and R2 to avoid spurious operation and are triggered by a negative going pulse when either switch is closed. The neutral side of the a.c. mains supply is ground with respect to the i.c. and its power supply. Threshold and discharge pins 6 and 7 are connected together in this application. From this point the charge on the timing capacitor Cl , being fed through the timing chain, is sensed and the i.c. output switches off when the charge on Cl reaches two-thirds of the positive rail voltage. This capacitor should be either a bead tantalum or the closer tolerance tantalum specified.

## RESISTOR CHAIN

Using the formula $t=1 \cdot 1 R C$, any combination of resistor and capacitor may be used to arrive at the basic 1 second unit. However, it is best to keep the value of $R$ as low as possible to avoid the risk of leakage currents. Mathematically, these produce just over 1 second, but capacitor tolerance and the ability to adjust VR1 and VR2 make these values ideal.

As the accuracy of the finished timer depends almost entirely on Cl and the timing chain, good quality components are essential-and the extra cost not exorbitant. Resistors should not be overheated when being fitted to S7 and S8 and the associated wiring must be kept clear of other components. New switches have better contacts than old ones.

Any "stops" should be removed from rotary switches S7 and S8 so that the pointers may be turned in any direction. Timing resistors must be used in the 11 o'clock positions (though R25 may be considered superfluous) to avoid an open circuit and consequent waste of expensive material. Though it would be simple to select a set of ordinary 20 per cent resistors using a bridge or meter, 2 per cent metal oxide types are more stable in use and are thus recommended.

COMPONENTS

| Resistors |  |
| :--- | :--- |
| R1 |  |
| R2 | $2 \mathrm{k} \Omega$ |
| R2, R3 | $22 \mathrm{k} \Omega$ (2 off) |
| R4 | $2 \cdot 2 \mathrm{k} \Omega 5 \%$ |
| R5 | $56 \mathrm{k} \Omega$ |
| R6 | $1 \mathrm{k} \Omega$ |
| R7 | $330 \mathrm{k} \Omega 5 \%$ |
| R8 | $68 \Omega 1 \mathrm{~W}$ wirewound |
| R9 | $1 \mathrm{k} \Omega$ |
| R10 | $82 \mathrm{k} \Omega 1 \mathrm{~W}$ |
| R11 | $1 \mathrm{k} \Omega$ |
| R12 | $1 \mathrm{k} \Omega$ |
| R13 | $470 \Omega$ |
| R14 | $5 \cdot 1 \mathrm{k} \Omega 5 \%$ |
| R15-R25 $51 \mathrm{k} \Omega$ (11 off). All metal oxide $2 \%$ |  |
| R26-R36 $510 \mathrm{k} \Omega$ (11 off). All metal oxide $2 \%$ |  |
| All $\frac{1}{2} \mathrm{~W} 10 \% \mathrm{carbon}$ except where stated |  |

## Capacitors

C1 $22 \mu \mathrm{~F}$ tantalum elect. 16 V
C2 $125 \mu \mathrm{~F}$ elec. 16 V
C3 $0.1 \mu \mathrm{~F} 900 \mathrm{~V}$

## Semiconductors

| TR1 | BC108 |
| :--- | :--- |
| IC1 | NE555V |
| CSR1 | 400 V 1 A Thyr |
| CSR2 | 400 V 10 A Triac |
| D1 | Z12 12V Zener |
| D2 | IN4005 (2 off) |
| D3, D4 | IN4001 (2 |
| D5 | TIL 209 l.e.d. |

Potentiometers
VR1 $10 k \Omega$ sub-minature preset VR2 $2 k \Omega$ sub-miniature preset VR3 $50 \mathrm{k} \Omega$ linear

## Switches

S1 Miniature d.p.d.t. slide switches
S2, S3 Press-to-make switches (2 off) (see text)
S4 D.p.d.t. toggle 250 V
S5 S.p.s.t. toggle 250 V
S6 D.p.d.t. slide switch
S7-S8 12 way rotary (2 off)
Transformers
T1 Douglas type MT238C5. Pri. 240V, Sec. 3-0-3V, 200 mA
T2 Brazenose 12012/1. Pri. 240V, Sec. 12-0-12V, 100 mA

## Miscellaneous

1 Pointer knob $1 \frac{1}{4} \mathrm{in}, 2$ long pointer knobs $2 \frac{1}{4} \mathrm{in}$, 4 way terminal block, 16 s.w.g. aluminium for small heat sink; Case (see text), 4 rubber feet, FS1 2A fuse and holder, L1 (see text)


Fig. 3. Underside of control panel. Flying leads terminate at Veroboard sub-chassis (Fig. 4)


Fig. 4. Veroboard sub-chassis showing assembly and wiring


A close-up of the reset switch assembly and the $1 \frac{1}{2}$ in $\times 1 \frac{1}{4}$ in aluminium heat sink for CSR2

With S6 in the "Compensated" position, operation of the chip will be affected by mains voltage. R7 and VR2 form a potential divider, half rectified by D2. A small portion of this voltage is fed to the base of TR1 through R6. R5 provides automatic transistor stabilisation and the collector of TR1 reflects changes in mains voltage. A rise in voltage at the slider of VR2 will reduce collector voltage and shorten the interval, the opposite applying when voltage falls.

## LAMP SWITCHING

Output from pin 3 of ICl is fed to the gate of CSRI through R9. The thyristor, primary winding of T1 and R10 are connected across the mains supply "so that the transformer is energised by a positive signal on pin 3 . The 6 V secondary winding of T 1 produces an a.c. signal, which is fed through R13 to the gate of the triac CSR2. The enlarger lamp is connected in series with the triac across the mains supply.

L1 and C3 form a transient suppression network which is necessary as triacs may easily be destroyed by high level pulses in the supply. In addition to fitting a 2A fuse in series with the lamp, it is advisable always to use a low resistance series limiterbecause the triac could be destroyed before the fuse blows in the event of short-circuit lamp failure. It is suggested that a 5 ohm 100 W wire-wound resistor ( $\mathbf{R}_{\mathrm{L}}$ ) be fitted externally between timer and enlarger.

As this resistor gets hot, it is inadvisable to include it in the timer in view of the accuracy required of the timing components.

Focus switch $S 5$ by-passes the thyristor so that the lamp may be turned on for an unlimited period.

## CONSTRUCTION

This should commence with the Veroboard subchassis, cutting details being shown in Fig. 4. Because some copper strips carry mains voltage and others the 12 V circuits, it is necessary to be even more careful than usual that the track is cut correctly and that solder bridges are not formed inadvertently. Veropins are best used where connections are made with inflexible flying leads.

LI consists of 50 turns of $22 \%$ s.w.g. enamelled copper wire on a short piece of $\frac{1}{6}$ in ferrite rod, but anything fairly similar will suffice. After winding the coil should be warmed up with a hair-dryer and. Araldite applied. This will cut down any tendency to buzz when the timer is operating.

T1 is small enough to mount with an adhesive, reinforced by copper wire loops passed over the mounting tags and soldered into the track. Some versions of the Douglas MT238 CS transformer have the tappings emerging from the underside of the coil (in the present case, they are brought out from the top) and could then be soldered into the board directly, with appropriate changes in the cutting pattern.

Timing resistors $\mathbf{R 1 5 - R} 25$ should be soldered round S7, bearing in mind that they progress anticlockwise when viewed from below. Even though 2 per cent resistors are being used, it is a wise precaution to measure the total value of RI5-R24 by setting S 7 to junction $\mathrm{R} 24 / \mathrm{R} 25$. R26 should be chosen to match this value and VR3 and RI4 must obviously be excluded in making this match. R14 itself is a limiting resistor (which adds $1 / 10$ second to all timing intervals) and is included to prevent damage to the i.c. if the start switch is operated with all pointers set at zero.

S7, S8, VR3 and R14 wired in series form the timing resistor chain. These may be temporarily connected to the sub-chassis by thin, flexible wires to test the basic timer circuit. With 56 bridged to the "Exact" position and 12 V applied to the i.c. supply rail, the constructor can ascertain that CSR1's gate is being supplied from pin 3 of the timer. S3 and S2 will have to be jury rigged for this test and the 12 V may be supplied from a battery or from T 2 alone connected to mains supply.

The Veroboard sub-chassis with all components mounted in position


Fig. 5. Top panel dimensions and drilling details. The black Perspex operating bar shown unshaded stands proud of the panel by means of a spacer placed under the focus switch S5


## CASEWORK

Fig. 5 gives top panel dimensions and drilling data, whilst Fig. 3 shows the underside of this panel and connections of its components to the sub-chassis. The majority of the hardware is attached to the underside of the panel, the sub-chassis being slung on supports which ensure that it clears the switching associated with the operating bar. The Veroboard supports are tapped with 8 B.A. threads and two paxolin washers should be placed between board and supports before finally screwing down. A large hole must be drilled in the block used to mount T2 so that the light emitting diode pilot can be fitted through the panel underneath the transformer.

Where timers are concerned, a control panel of insulating material is to be preferred as it minimises the possibility of leakage between switches. Formica or Paxolin are suitable, but Perspex ( $\frac{\pi}{16}$ in opaque white) has been used for this timer. Apart from being a fairly good insulator, Perspex is easy to work and neat in appearance. It may.be sawn with a hacksaw, roughly finished with a metal file and finally finished with wet emery and metal polish. Screwholes in the top of the panel may be minimised by attaching components T2 and the terminal block to pieces of tapped Perspex, then cementing to the underside. Holes may be tapped in the usual way, using white spirit as the lubricant and ensuring that the taper/plug is not allowed to clog.

The box covering the timer has also been made of Perspex, clear in this case, secured by screwing into
tapped blocks cemented to the underside of the panel. By rubbing down sawn edges on wet emery placed on a sheet of glass, good mating of the parts of the box can be achieved when cementing together.

The panel should overlap the box itself so that the timer may be free standing on four rubber feet or flush mounted into a darkroom control panel.

## OPERATING BAR

The black Perspex operating bar ( f in thick) stands proud of the panel by means of a spacer placed under the focus switch S5. This bar is intended to flex so that pressure on either end will operate the associated switches. As one side of both S3 and S2 is at mains potential-and photographic workers are handling wet processes-these two switches are inside the timer, rather than simple contacts under the 'bar. "Pushers" cemented to the underside of each end of the bar protrude through holes in the panel to óperate simple switches. Strips of phosphor-bronze have been used, though old relay contacts would probably be equally suitable. The spacer in the middle of the bar is cemented to it and the assembly held in place by countersunk screws through the underside of the panel. Focus switch S 5 will probably have to be recessed into the panel to ensure that it clears the underside of the sub-chassis and that its retaining collar can be attached. Two small, thin leather pads on the underside of the extreme ends of the bar will prevent a click as S3 or S2 are operated.


A tag-board mounted resistor ( $R \mathrm{~L}$ ) is used as a series limiter

Triac CSR2 is mounted on a small heatsink attached to the panel by small tapped blocks. As the load will not normally exceed 150 W , the size is not critical; 10 or 16 s.w.g. aluminium should be usedas large as will conveniently fit between S2 and sub-chassis mounting pillar. Main terminal 2 is electrically common to the heatsink, so the triacs connections should be sleeved and the sink should not touch other components.

A short busbar connects together one side of S2 and S3, one side of S5. centre tap of the secondary winding of T2 and one lead for the pilot. When finally assembled, this busbar is connected to the common neutral line at point 10 on the Veroboard.



Fig. 6. Variations of a 10 second setting with changes in supply voltage produced by the timer with S6 in the compensating mode. This is close to the ideal implied in Fig. 1
S7 and S8 make it easy to set these in the dark by feel, whereas the less critical setting of VR3 can be closely estimated. In practice, the timer will be set immediately the test strip has been assessed, filtration changes made and before the lights are turned off ready for the next print to be made. It is reassuring to be able to check the setting in darkness to avoid wasting an expensive sheet of colour material!
The operating bar, carrying the most used controls, are nearest to the worker and easily operated in darkness. Positions of S3 and S2 may need to be reversed depending on the timer's position relative to the enlarger, dry bench layout and whether the user is left-handed. S3 nearest to the enlarger seems to be a natural choice. Any or all of the operating bar controls could be paralleled for foot operation, thus freeing the hands for shading and other manual control.

The timer will work comfortably at 210 V or below, the author's own darkroom version having been in use during the power crisis. It will make for more consistent exposure, particularly where colour emulsions are concerned. Whilst falling mains voltage affects the colour temperature of the lamp to a small degree, the average variation will not have any practical effect, nor call for filtration changes of more than about 025 Y - which can safely be ignored. Used with a filter Nomogram, this timer should enable the user to produce consistent prints of high quality with the minimum of wastage.

## everyatay clectronics <br> 霉 CAR RALLY INTERCOM SYSTEM湖 TOUCH SWITCH \& QUIZMASTER <br> For you to construct <br> PLUS-TWO NEW FEATURES: <br> CAREERS IN ELECTRONICS WORKSHOP PRACTICE

All in the April issue on sale Friday, March 21

## NEWS BRIEFS

## Speakers In The Sun

How better to announce a new range of speakers than at a conference held in Malta? This clearly, is the view of the newly recreated Marsden Hall International company who recently held demonstrations in a luxury hotel in Malta of their latest range of quality loudspeakers.

Extending from a shelf-mounting 10 W capacity unit up to a free standing 50 W studio module, the range is split into two sections called respectively Annexe for powers up to 30W r.m.s. and Symphony for the two upper capacity modules of 35 and 50 W rating.

The units are attractively styled in either Teak or Walnut, with detachable fronts either fabric or filter foam covered. Indeed, the foam-covered versions can be supplied in any of 26 different colours.

Of course. the critical test of a loudspeaker is not really the appearance, although this counts for a great deal in some circles, but the audio performance. Here, Marsden Hall went to some lengths to present their equipment as completely as possible.

They organised an audio demonstration of the various units in stereo pairs with the ability to switch from one pair to another at will. This allowed the listener to compare the six models one with another at ease. A selection of styles of music and types of orchestration was presented to show the ability of the equipments to cope with transients, bass and treble response, and so on.
Predictably, the larger studio units came out on top in all sections, but after all, the demonstration was given in a fairly large suite and it is under such circumstances that the full bass response can really benefit. However. all the units, including the smallest Annexe XL10 pair performed as well as one would expect, if not better.

It is quite educational to switch from a triple-driver system of 50 W capacity to the smallest shelf-mounting model which uses only a six-inch base unit and a single three-inch tweeter. There is bound to be some colouration of response and a step-by-step run through the range shows this up as fairly minimal, often appearing with switching in one direction and not the other.

Prices are well in line with current ranges, running from $£ 44.50$ per pair for the smallest shelf-mounting model to $£ 172 \cdot 50$ per pair for the Symphony 4522 studio units. The two smallest units are both shelf-mounting, the largest of the Annexe range can be used as a shelfmounted or a freestanding unit whilst both the Symphony units are freestanding and can be optionally supplied with castor stands.

The prices mentioned are the recommended retail values and we understand that the units are to be available from specialist $\mathrm{Hi}-\mathrm{Fi}$ dealers throughout the U.K.


#  Loapartid INTRODUCTIONance Heat Light Speed Force Load Sound By P.R.ALLCOCK istance Force Load Sound Frequency Distance Heat 

## INTRODUCTION TO SERIES

This series of articles is intended as an introduction to the vast range of transducers that exists today. Instrumentation engineers are constantly challenged to satisfy the increasing demands made by their colleagues in other areas of specialisation and may be called upon to measure an almost infinite variety of physical phenomena.

Broadly defined, a transducer is any device by means of which energy, available in one form, may be changed to energy in another form. Energy can exist in various forms such as electrical, mechanical, acoustical and thermal and often the output energy of a transducer is in the electrical form. Devices which convert electrical power into, say, mechanical force also come within our broad definition but are often classified into a separate group known as electrical machines. Some of these devices are very important to the electronic engineer and small rotary motors, stepping motors and related devices crop up very frequently, as, for example, in equipment using tape or paper as a recording medium. Often the input energy will be in mechanical form and the first section of the transducer may then perform a conversion from say applied force to displacement.
The subsequent conversion of displacement to electrical energy would take place in a second section and could employ one of the many principles available such as: piezo electric effect, differential transformer, capacitance resistance or inductance variation, photo electric effect, magnetostriction, etc. The nature of the electrical output from the transducer depends on the principle involved in the design and may be analogue, digital, frequency modulated or some form of pulse train. In fact a transducer may be based on almost any combination of the various mechanical and electrical arrangements available.
Some examples of commonplace transducers are listed below and these will be covered in the series.

Measurement Required Possible Transducer<br>Shaft rotation or position<br>Linear displacement<br>Coded optical disc<br>Variable resistance element<br>Temperature<br>Ultrasonic sound waves<br>Mechanical strain<br>Liquid flow<br>Thermistor or variable resistance devices<br>Piezo-electrical material Resistive or semiconductor strain gauge<br>Turbine type flow-meter

IN General terms a transducer is a device which converts (or transduces) energy from one form to another. This definition is rather all-embracing since it includes devices such as electric motors, car engines and turbines whereas, at least through common usage, the term normally refers to devices of a somewhat more specialised nature.

In one category we have devices that can convert an electrical input stimulus into a mechanical output response, such as occurs in the moving coil loudspeaker, whilst in a second category we can group those devices that convert some physical quantity, property or condition to an electrical output signal as occurs for example with a pick-up cartridge.

It should be noted that transducers are not restricted to the use of an electrical signal at the input or output but such devices are by far the most common today due to the widespread use of electrical and electronic techniques in control, instrumentation, automation and measurement and the relative ease of processing or modifying such signals. For example, in many industrial processes the electrical output of a- transducer is used, either directly or after processing, as a feedback signal in a servo-loop to control the output of the system in a specific manner.

In other applications a transducer might be connected to a readout device, such as a counter, tape printer or digital meter, and used to provide quantitative measurement information to an operator. Since it is not possible to control a process without measurement of one or more variables it is clear that transducers play an important part in a wide variety of modern engineering systems and measurement processes.

## OPERATING PRINCIPLES

The operating principles of the majority of transducers in common use are straightforward, but in practice the utilization of these principles often involves very careful design and precision engineering in order that defects, which might otherwise limit the device accuracy, are kept to a low level. Even with careful manufacture, environmental factors such as temperature, vibration, shock and stray magnetic or electric fields, must be taken into account if the best accuracy is to be obtained.

Often several basic principles are used together to achieve the required output. The term measurand is often used to denote the quantity, condition or property which the transducer translates into the required output signal and in some cases the transducer does not respond directly to the measurand but to a related variable.

For example, transducers designed to measure acceleration are often activated by a displacement or force which is related in a known way to the acceleration.

[^2]The "two-stage" principle is illustrated in Fig. 1.1. The first section translates the measurand into-a displacement or stress and this in turn acts as the stimulus for the second stage which produces, the requisite output. The second stage may generate the electrical output directly from the output energy of the mechanical transduction stage in which case it is known as self generating. The alternative form, which requires an external power source for excitation, is usually called a passive transducer.

## TRANSDUCER CLASSIFICATION

It is an almost impossible task to classify the whole range of transducers now in use. However it is feasible to group them on the basis of their fundamental operating principles as in Table 1.1, even though they may be used in, or have evolved from, widely different applications.

Even with such grouping it may be difficult to classify a particular transducer uniquely because of overlap in the various selection parameters used. For example a thermistor might be classed as a variable resistance device or alternatively as a thermal device. Strictly speaking the thermal energy input is the measurand which can be related to temperature but two distinct modes of operation are possible.

If the electrical currents are kept sufficiently small the resistance will be dependent only on the heat input whereas if larger currents are permitted some selfheating will occur and the temperature will depend on two sources of heat.

## VARIABLE RESISTANCE TRANSDUCERS

In the moving contact type, the measurand, either directly or indirectly, causes a change in the resistance of an electrical element. This change is usually caused by either a moving contact system or some physical or chemical action. The basic principle of a moving contact system is illustrated in Fig. 1.2 and here changes in liquid level are used to move a sliding contact along the resistance element BC .

TABLE 1.1
SOME ELECTRICAL PHENOMENA THAT CAN BE EMPLOYED IN TRANSDUCER OPERATION

| Resistive | Electromagnetic |
| :--- | :--- |
| Capacitive | Thermo Electric (Voltaic) |
| Inductive |  |

Inductive

| Photo Resistive | Ionisation |
| :--- | :--- |
| (Conductive) |  |
| Photo Electric (Emissive) | Electrolytic |
| Photo Voltaic |  |

Photo Voltaic
Piezo Electric
Potentiometric
Piezo Resistive
Magneto Resistive

If we assume that the resistance between $A$ and $B$ is zero when the tank is empty the resistance $R_{\text {AI3 }}$ for a liquid level of $h$ will be $R_{0} \cdot h$ where $R_{0}$ is the resistance change per unit height of liquid. If we assume also that $R_{0}$ is constant i.e. the resistance element is perfectly uniform over its whole length $L$ we can express the output voltage as $V_{0}=E\left(\frac{h}{L}\right)$ volts providing no current is drawn via the output terminals (Fig. 1.4).
In some application it may be desirable to use a resistance element that is not uniformly wound in which case the output voltage is no longer given by the above equation but by

$$
V_{\mathrm{o}}=E\left(\frac{R_{\mathrm{AB}}}{R_{\mathrm{BC}}}\right)
$$

The way in which $R_{\mathrm{AB}}$ varies with height $h$ determines the characteristic law of the transducer since $E$ and $R_{\mathrm{BC}}$ are fixed. For example the resistance element $R_{\mathrm{BC}}$ could be wound on a thin wedge shaped sheet of insulating material as shown in Fig. 1.3. The resistance per unit length, $R_{0}$, is not constant for this case and will in fact increase uniformly as the slider moves from $B$ to $C$ as long as the resistance wire is sufficiently fine

and the element carefully wound so that the turns cannot move as the contact passes over their surface.

For the wedge profile shown in Fig. 1.3 the variation of $R_{0}$ with height $h$ will be as indicated in Fig. 1.5. The resistance per unit length is obviously a function of $h$ since as the slider moves along the resistance element the length of each turn of the resistance wire increases slightly. The variation of $R_{0}$ can be written as

$$
R_{\mathrm{o}}=R_{1}+\frac{h}{L}\left(R_{2}-R_{1}\right)
$$

If we put $h=0$ we find $R_{\mathrm{o}}=R_{1}$ and for $h=L$ (the limit of slider travel) we find $R_{0}=R_{2}$.

To determine the resistance between AB or BC we need to add together the resistance of all the turns of wire between the two points of interest. This is achieved mathematically by integration and for the section between A and B we have

$$
\begin{aligned}
R_{\mathrm{AB}} & =\int_{o}^{h} R_{0} d h \\
& =h R_{1}+\frac{h^{2}}{2 L}\left(R_{2}-R_{1}\right) .
\end{aligned}
$$

At full height $h=L$ and substitution in the above equation then gives $R_{1 \mathrm{BC}}=L \cdot\left(\frac{R_{1}+R_{2}}{2}\right)$ which is simply the length of the element multiplied by the average resistance per unit length.
The variation of output voltage with height for this type of element is illustrated in Fig. 1.5 which also shows, for comparison, the output of a uniformly wound element operating from the same supply voltage.

The wedge element gives the greater rate of change of output voltage providing the tank is at least half full $\left(h>\frac{L}{2}\right)$ whereas the uniform element gives the larger output voltage for all heights except $h=L$ at which level both types give the same output voltage.


## LAWS

The details discussed so far have shown that it is possible to control the characteristic law of the transducer by suitable choice of resistance variation with length of travel. In some applications it is the angular rotation of a shaft that activates the moving contact and in this case also it is possible, by choice of shape for the resistance wire former, to produce a given characteristic such as a sine or cosine variation of resistance against angular position.

Tapered resistance elements are sometimes used in bridge circuits to open out an otherwise cramped scale at the extremes of angular travel. The log and reverselog audio volume controls use graded regions on the track with different resistance values per unit angle of rotation in an attempt to give a straight line piecewise approximation to the specified law.

Obviously mechanical friction has to be kept to a minimum in devices that have to operate with low forces and wear of contact and wire can limit the useful life. . The wire used in some precision potentiometers is very fine to give good resolution and excessive currents can easily destroy the element, especially when the sliding contact is near to one end of the range of adjustment, due to the concentration of heat over a small region.

## OUTPUT LOADING EFFECTS

No mention has been made of the loading that will occur if the transducer output is fed to a resistance which is not large relative to the element resistance. This form of loading is illustrated in Fig. 1.6 where the load on the output is represented by the inclusion of $R_{\mathrm{L}}$. If $\alpha$ represents the fraction of the resistance element between $A$ and $B$ and ' $R$ represents the total resistance of the element the circuit is simply that of a potentiometer having an upper portion of $(1-\alpha) R$ and a lower portion of $\alpha R$ in parallel with $R_{\mathrm{L}}$.

Analysis of the circuit gives the output voltage $V_{o}$ as:-

$$
\begin{aligned}
V_{\mathrm{o}}= & \frac{\alpha E}{1+\frac{\alpha R}{R_{\mathrm{L}}}(1-\alpha)}= \\
& \frac{\text { (Ideal Unloaded Output Voltage) }}{1+\alpha K(1-\alpha)}
\end{aligned}
$$

where $K$ is the ratio of transducer element-resistance to loading resistance.

For a given value of $K$ we see that the output voltage is correct for $\alpha=0$ and $\alpha=1$ (i.e. $V_{o}=0$ and $V_{o}=E$ at the limits of travel) but at intermediate settings of $\alpha$ the output is in error and will always be less than the (ideal) true output.

In any reasonable system $K$ should be considerably less than unity in which case the output is lower than the true value by approximately $[100 \alpha(1-\alpha) K]$ per cent. The maximum error for a given $K$ value occurs, as might be expected, when $\alpha=0.5$ and is of the order $25 K$ per cent low providing $K$ is small. For $K=0 \cdot 1$ (i.e. $R_{\mathbf{L}}=10 R$ ) the maximum error at mid-travel would be about 2.5 per cent low.

## THERMISTORS

A thermistor is a heat-sensitive semiconductor resistor with a relatively large negative temperature coefficient of resistance, although thermistors having positive temperature coefficients are also available. A typical device will exhibit a resistance drop of about 4 per cent per degree temperature rise.

Unlike the p-n junction of a semiconductor diode or transistor, the thermistor does not depend on the effects that occur at a p-n interface and is not manufactured by doping silicon or germanium with impurities: Instead, a thermistor is made, using a sintering process, from mixtures of the oxides of metals such as manganese, nickel, cobalt, iron, copper, titanium and magnesium. Leads are attached to metallised areas on the thermistor body or connected during the controlled heating processes.
A very wide variety of shapes and sizes are now available ranging from small beads to large plates or rods.

A protective coating of epoxy or fused glass is often provided and some types are available in glass envelopes, either evacuated or gas filled. Resistance valiues at $25^{\circ} \mathrm{C}$ range from about $1 \Omega$ to several $\mathrm{M} \Omega$.

Early devices were very variable in characteristic and it was difficult to match the characteristics of two similar thermistors. Fortunately improvements in manufacturing techniques have virtually eliminated the shortcomings of the early devices and thermistors are now available which are stable with time, matched and interchangeable to within a fraction of a degree over wide temperature ranges.

Thermistors now rival thermocouples in many applications since stable amplification is invariably required with thermocouples due to their low output voltage (typically of the order of $50 \mu \mathrm{~V} / \mathrm{deg} \mathrm{C}$ ). The main advantage of the thermistor over the thermocouple is sensitivity. The output of the thermocouple is determined by the choice of the two metals and cannot be changed.

Typical thermistor bridge or potentiometer circuits can give output voltage changes of $100 \mathrm{mV} / \mathrm{deg} \mathrm{C}$ which is some 2,000 times that of an equivalent thermocouple. The useful temperature range of thermistors is considerably less than for the thermocouple, being limited to about $-100^{\circ} \mathrm{C}$ to $+400^{\circ} \mathrm{C}$ whereas thermocouples can operate over a range of thousands of degrees. The thermocouple also has a more linear output since its output voltage per unit temperature change is more nearly constant.

## THERMISTOR POTENTIOMETER

A simple potentiometer using a thermistor is shown in Fig. 1.7. Obviously the same current flows through both the thermistor and the fixed resistor. If the current is sufficiently small the self-heating of the thermistor will be negligible and its resistance will therefore depend on the ambient temperature. If this temperature rises the thermistor resistance will fall (assuming a negative temperature coefficient) and the current will increase. The resulting increase in voltage across the fixed resistor can be used as an indication of temperature but the voltage-temperature characteristic will not be linear.

The resistance-temperature relationship for a thermistor is usually approximated by the equation

$$
R=A \mathrm{e}^{\beta / T}
$$

where $R$ is the resistance at temp. $T^{0}$ Kelvin, $A$ and $\beta$ are constants for the particular thermistor, $T$ is the absolute temperature in Kelvin, and $e$ is the base of natural logarithms, $2 \cdot 7183$. By taking logarithms of both sides of this equation we see that $\log _{e}\left(\frac{R}{A}\right)=\frac{\beta}{T}$. This inverse relationship is sketched in Fig. 1.8.

For two temperatures $T_{1}$ and $T_{2}$ and corresponding


A selection of Mullard thermistors, (a) Diac NTC type, (b) Plate NTC type, (c) PTC type, (d) Rod NTC type, (e) Rod VDR type, (f) Bead in glass type
resistance values of $R_{1}$ and $R_{2}$ respectively we can write:

$$
\frac{R_{1}}{R_{2}}=\frac{A e^{\beta} / T_{1}}{A e^{\beta / T_{2}}}=e^{\beta}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

which shows that the ratio of the two resistances depends only on $\beta$ for given values of $T_{1}$ and $T_{2}$. The value of $\beta$ usually lies in the range $2,000^{\circ}$ to $5,500^{\circ}$ Kelvin and is specified by the manufacturer. Also it is usual to quote a typical resistance value at some specific temperature, often $25^{\circ} \mathrm{C}$. If the variables with subscript 2 are taken as the given $25^{\circ} \mathrm{C}$ values, then

$$
R_{1}=R_{25} e \beta\left(\frac{1}{T_{1}}-\frac{1}{298}\right)
$$

which allows $R_{1}$, the resistance at $T_{1}$ Kelvin, to be evaluated in terms of the resistance value at $25^{\circ} \mathrm{C}$. For example if a particular thermistor has $R_{25}=1 \mathrm{k} \Omega$ and $\beta=5,000$ the resistance at $0^{\circ} \mathrm{C}$ will be

$$
R=1,000\left\{e 5,000\left(\frac{1}{273}-\frac{1}{298}\right)\right\} \Omega=4,660 \Omega
$$



Fig. 1.9. A simple thermistor bridge circuit

Fig. 1.11. A simple thermistor thermostat
Fig. 1.10. The curves of a positive and a negative temperature coefficient thermistor

The resistance has changed by nearly five times for a temperature change of 25 deg C .

One disadvantage of the simple circuit of Fig. 1.7 is that the output voltage (across the fixed $1 \mathrm{k} \Omega$ ) will vary with battery voltage which renders any calibration useless. This can be avoided by using a null method as shown in Fig. 1.9.

## BRIDGE CIRCUITS

The bridge is balanced, by adjustment of $R$, to give zero output voltage. For this condition the resistance $R$ and that of the thermistor must be equal and hence the temperature can be determined. Since the bridge circuit is always balanced when a reading is taken changes in the battery voltage have no effect on the null point providing current levels are sufficiently low to prevent self-heating.

When used at low current levels the thermistor responds to the ambient temperature as the measurand. However in some applications the most significant heating effect is due to power dissipated in the thermistor itself. As the current through the thermistor rises, from some initial low value, the voltage drop across the device rises. The onset of self heating eventually occurs and at a certain temperature the voltage stops increasing since the current increase is offset by the falling resistance.

Further increase in current (and power) causes the voltage to fall below this maximum value which is typically in the range $40^{\circ}$ to $90^{\circ} \mathrm{C}$. The temperature for maximum voltage drop depends on the $\beta$ factor and ambient temperature. Another feature which is important in some applications is that of thermal time constant. An abrupt change of ambient temperature or power dissipation causes an exponential type change in the thermistor body temperature.

As mentioned earlier the temperature coefficient is large and can be shown to be equal to $-\mathrm{B} / \mathrm{T}^{2}$ per degree for negative temperature coefficient devices.

For positive temperature coefficient devices the coefficient is only positive over a finite temperature range as illustrated in Fig. 1.10 and it is usually difficult to express the resistance-temperature variation by a simple equation.

An interesting application of an n.t.c. thermistor is shown in Fig. 1.11 where the circuit behaves as a thermostat by operating the relay when the temperature falls to a predetermined level, say $t_{0}$. Resistor $R_{1}$ is set equal to the resistance of the thermistor at the specified $t_{0}$. At temperatures above $t_{0}$ the differential action of TR1 and TR2 is such that TR2 is passing current whilst TRI is off due to the fact that the voltage across $R_{1}$ is greater than that across $R_{T}$.

As the temperature falls these two voltages become more nearly equal and eventually current starts to flow in TR1 at the expense of that in TR2. The current in TR1 flows via the relay coil and the resulting increase in voltage drop causes the base voltage of TR2 to fall. This further increases the current in TR1 and due to the regenerative action TR1 turns fully on and TR2 turns off.

The relay operates due to the flow of collector current in TR1 which aids the existing relay current that flows via $R_{1}$ and $R_{2}$. Due to the positive feedback effect the turn-on is rapid but the temperature will have to rise well above $t_{0}$ before the circuit resets itself. This effect is known as hysteresis.

Ideally $R_{2}$ should be made $4.6 \mathrm{k} \Omega$ so that the bridge formed by the four "resistance arms" is balanced at the trigger temperature. Under these conditions the circuit is relatively insensitive to variation of supply voltage $V_{\text {cc. }} \quad R_{3}$ determines the current levels for TR1 and TR2 once $V_{C C}$ and $R_{T}$ are fixed. A thermistor, relay. and battery in series can act in the same way but operation will be very dependent on supply voltage and the switch-on instant will be less well defined.
Next month: Resistance thermometers, strain gauges, thermocouples and thermopiles.


A soldering iron and a screw driver If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course. This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you
how easily the subject can be mastered and add a new dimension not only to your hobby but also to your earning capacity.
This course is accepted by and used in a large number of schools and colleges and forms an invaluable grounding for professional training in the subject. All the training is planned to be carried out in the comfort of your own home and work in your own time. You send them in when you are ready and not before. These culminate in a final test and a certificate of success.


## Build an oscilloscope.

As the first stage of your training, you actually build your own Cathoderay oscilloscope! This is no toy, but a professional test instrument that you willneed not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece PLUS


> Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures. colour brochure and full details of enrolment.


## Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free

ALL STUDENTS ENROLLING IN OUR COURSES RECEIVE A FREE CIRCUIT BOARD ORIGINATING FROM A COMPUTER AND CONTAINING MANY DIFFERENT COMPONENTS THAT CAN BE USED IN EXPERIMENTS AND PROVIDE AN EXCELLENT EXAMPLE OF CURRENT ELECTRONIC PRACTICE

## BPR Prvolit mus

## CAPACITIVE DISCHARGE

 ELELTRONIL IGIITION RIT
 clrcult it completely iliminates problems of the contact breaker. There is no mistire becauts contact brasker bounce la eliminated olectronicelly by a firing it the pointe bounce open at high P.P.M Contact breaker ourn it ollminated by reduetng the
current to about $1 / 50$ oth of the norm. it will pertorm current to about $1 / 50$ th ot the norm. It wili periorm and is not doponderl upon the dwell time of the contwet breakers for rocharging ing syatem
Soarkflte incoroorates Sparkpte incorpartes thort circuit protecteck
inverter which sliminates ith probieme of SCR lock
an and on and therefore elliminatien ine ponalbility of blowing the iransistors or the SCR. (ManyCapecitive discharg Sparkrite cen theretore give you:
up to $20 \%$ better fuel consumption, Instent all weather starting. cloaner plugs-they tanat up to 5 thmer torger speeds. Ionger coll and batery lite aticient fuel burning ond less air pallullon smoother running NOTE-FUEL CONSUMPTION
The fitting of Sparkrite Mk. 2 should reduce fuel consumption sithough the amount of the reduction bexpacted, based on reporte by our customera and
any 4-cytinder venicie. $10 \%$ Improvement

it is worth remembering inat white fuel anving ie imporiant there are many other advantegas
gained from fitting a Sparkrite igniflon eyatem.

## Voted best of 8 gition aurtems sarted by 2 reading Hotoring Magagime



THE KIT COMPRISES EVERYTHING NEEDED: Ready dilled prassed steel case coated in matt black epoxy resin, ready drllied base and heatsink, top quality
5 -year guarantead transtormer and components cables. coil connectors, pilnted circult board nuts bolts. stilicon grease, full instructions to make the kit negative or positive earth. and 10 page instaliation instructions.
WE SAY IT IS THE BEST SYSTEM AT ANY PRICE

## optional extras

Electranie A.P.M. IImitation
This cen be included in the unit to prevent over reving, formance divere. etc
Electronlc/conventional Ianition switch
Gives instant changeover Fiom "Sparkelte" ignition to con ventional ignition for performance comparisons, static
timing, etc. and wili aiso awlten the ignition off completaly asise ecurlty device. Includes: switch, connectors. mounting bracker and instructions. Cables excluded.

## 

These project boxes are manufactured from 18-geuge aluminium and came complete with ilds and sciews.
180 should be added to the VAT (at $8 \%$ ) but for poslage and pecking.
Order Length Width Height Price (In) (the. VA

|  | S | n) | , | VA |
| :---: | :---: | :---: | :---: | :---: |
| ? | $5 \frac{1}{6}$ | 24 | 1 | 47p |
| 8 | 4 | 4 | 1 | 48p |
|  | 4 | 24 | 1 | 46 p |
| 1 | $5 \frac{1}{6}$ | 4 | 1. | 49 p |
| 1 | 4 | $2 \dagger$ | 2 | 46p |
| 2 | 3 | 2 | 1 | 38 p |
| 3 | 6 | 4 | 2 | $58 p$ |
| 4 | 7 | 5 | 24 | $75 p$ |
| 5 | 8 | 6 | , | 93p |
| , | 10 | 7 | 3 | [1. 14 |
| xes can be made to any size but the minimorder tor special sizes is 500 General |  |  |  |  |

You can bulld this reverse polerlty protected 12 V , 8 W fugorescent light. You will receive all of the necessary parts white enamelled ready drilled metalwork, ready drilled heatsink, printed circult board, high quality components and transformer, end caps and cable. the fluorescent tube, nuts, bolts and washers, etc. and slmple assembly instruc tions and operating instructions.
When complete the light has a wide varlety of uses such as workshop and workbench illumination, garage lighting. emergency lighting, lighting for camping, caravaning or boating, as an inspectlon lamp and many more
If you can't spare thr to put the light together then we will supply it ready buitt (for a few extra pence) PRICES
Assembly kit £3-19 (Inc. VAT, post and packing)
Ready built $[3.78$ (inc. VAT, post and packing). Ready built $\mathrm{E3} \cdot 78$ (inc. VAT, post and packing).
Diffuser 59p extra (inc. VAT, post and packing).
 both to "it ald vahicles with collidistributor ignition up to B.cylinders).

Switch for inatant changeover from, "Sparkrite" ignition to conventional Ignition £2-79*; R.P.M. Ilmiting contro Ing on kit). Vat, post and pecking.
We can supply unis yor any petrot-engined vericie (boat motoroycle, ett.) with collicontect breaker ignition CALL IN ANO SEE US FOR A OEMONSTRATION

(
'CUB' MINI-BLOWTORCH up to $2,500^{\circ} \mathrm{F}$

Vest pocket size
yet will braze, silver-solder small jewallery ltems. etc. soft solder, strip paint, putty. burn-off oiled spark plugs, etc. Burns up to 1 hr on tiny gas cylinder. Complete with 2 cylinders and instruction book.

E2-92 inc. Var. P. \&
t010 Solt-solder bit for Cub ${ }^{20 \mathrm{p}}$ Inc.
'No. 1000 BRAZING TORCH up to $5,000^{\circ} \mathrm{F}$


De luxe set. inc. lighter, bench bracket, 6 Micronox. 3 butane. otc. £ 17 - 82 inc. VAT. $P$ \& $P$
1009 butang-onty tip for low
tamparature work with
No. 1000 lorch
E1. 03
Inc.
MICROFLAME (UK) LIMITED
Freepost', Rickinghall, Diss, Norfolk, IP22 1BA. Tel. Botesdale (037-989) 555



## PHOBOS THE POTATO MOON

During the mission of Mariner 9 to make a photographic survey of Mars, some 32 high resolution pictures were oblained of Phobos, the small Martian moon. These pictures were fortunately able to cover some 80 per cent of the satellite's surface and the first atlas of this small moon has now been published. These have been "cleaned up" using the special computer technique. The atlas was compiled by a group of scientists from Cornell, Stanford, Caltech and NASA, four very active establishments.

It is common practice, in setting up an atlas, to use a sphere on which the pictures can be placed and oriented. However, Phobos presents a special problem of its own for it is irregular in shape, more like a potato. It is thought that as the satellite has such a very small gravitational field it has not been pulled into a harmonious shape as it cooled. It is perhaps a quirk of cosmological humour that it so closely resembles the familiar potato.

Many models were tried out and T. Duxbury at Caltech finally arrived at a solution. The satellite radii are found to be $11.5,15 \cdot 5$ and 9.5 kilometres. Duxbury settled on a triaxial ellipsoidal system of co-ordinates.

This reference grid was computerfitted with the information and the results suggest that Probos is in synchronous rotation around Mars. It keeps the same face to Mars and therefore behaves as the Earth's own satellite. The longest axis points toward Mars and the intermediate one of 11.5 kilometres is in the orbital plane, the shortest axis being normal to the plane.

Phobos is very heavily cratered and the surface density is close to saturation. The initial mapping reveals some 50 craters. Seven have been given names though one is only a partial crater. This is the Kepler Ridge. Others are named Roche, Wendell, Sharpless. D'Arrest, Todd and the largest complete one, Stickney. The variations of the high to low points of the craters are as much as 20 per cent of the radius.

When compared with the Earth's Moon the feeling is that Phobos was formed as an independent unit very early in the life of the Solar System. Extensive fracturing seems to have taken place as a result of meteoritic impacts. The landscape appearance has been the result of meteor impacts. No doubt also the smalliness of the body renders it liable to considerable geological change.

The structure generally suggests that Phobos is solid rock and the evidence is the manner of the cracks that can be seen. There is too little gravitation for it to be conglomerate. It is possible that the satellite is only part of a larger body that disintegrated a very long time ago.

As with all these "guestimations" alternatives are also offered. Whatever the conjectures may be there is now a good case to include a special programme to be set in operation at the time of the Mars Viking missions already planned.

## HELIOS

In a past "Spacewatch" issue some details of a planned space probe were given. This or rather the first of two probes called Helios has been launched on behalf of West Germany by NASA.

The project was given the goahead in 1969. The probes weigh some 357 kilogrammes and will operate with a 192 day orbit. They will, at the apogee point, be within $45,000,000 \mathrm{~km}$ of the sun, about onethird of an astronomical unit. Special thermal control will come into operation on these missions.

The first probe will steer into the ecliptic, the plane of the Earth's orbit, between Mercury and the Sun. Its final distance from the Earth will be some $300,000,000 \mathrm{~km}$. The primary mission will last 120 days. However, the life of the probes will be at least 18 to 20 months.

These two probes will also be supplementary, in the sense of data gathering, to that being obtained by Explorer 47 and 50 and also that from Pioneers 10 and 11 . The actual orbit of the probes will have a perihelion of 0.3 of an Astro-
about 1.0 Astronomical Unit with respect to the Sun.

The tasks set are very extensive, the instruments will investigate the magnetic field, density, speed and direction of the Solar Wind particles (electrons, alpha particles and protons). 1t will be possible to evaluate the spatial gradients involved in those quantities. The study of the electron plasma oscillations will be made by radio which exhibits the characteristic Type III outbursts.

Other experiments will look at the interplanetary dust, its gradients, density and direction and its exact composition. X-ray examination of the surface of the Sun will be undertaken.

## ODD BODY

Helios is an unusual shape for a probe with a 16 -sided central body and truncated cones top and bottom, each with 16 facets. The solar cells are disposed over the surface of the probe.

Because of the extreme temperatures involved, some $370^{\circ} \mathrm{C}$, nearly 90 per cent of the Sun's radiation must be reflected. This makes very stringent demands on the probe's thermal regulation system. The solar cells may not be subjected to a greater temperature than $+165^{\circ} \mathrm{C}$. The interior temperature must be kept within the limits of $-10^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$.

This problem is partially solved by using special SSMs, second surface mirrors, developed by NASA. They are made from fused silica and covered on the underside by a thin film of silver which is further covered by a dielectric. These cells have a high emissivity and will prevent the central body from heating up to $800^{\circ} \mathrm{C}$. This is the sort of temperature to which the aerial will be subjected when extended even though the probe is revolving at 60 r.p.m.

However, the mirrors alone are not sufficient to hold off the Sun's radiation which amounts to some 22,400 watts/sq.m. A special thermal insulation system consisting of layers of spaced metallised foil is also used. The foil is held apart by nylon mesh to avoid heat bridges. Other ingenious controls consist of bimetal levers which operate the louvres to allow the experiments to be' carried out. They are also used to control the inside temperature.

Control of the mission is being carried out at the Command Station at Weilheim, Germany, with a 30 metre dish built specially for these missions. Also in use for transmission of commands and the reception of data is the Planck Institute 100 metere radio telescope at Eifel.
non-technical musicians will give the synthesiser a wide berth. Musical readers of P.E. are probably not typical as their interests will be technical: lets face it-the constructional articles by Douglas Shaw and Alan Boothman call for a high standard of technical ability and understanding if the correct results are to be obtained.

## THE TREND

Our educational system should ensure that music has full rein in years to come. At the same time, the rising number of flat-dwellers makes the ordinary piano something of a problem in their homes. So the electric piano might well become more common, albeit the 5 -octave manual imposes its limitations (an 8 -octave instrument would present no technical problems, but would defeat the object by taking up the same space as an upright). The harassed parent could provide budding pianists with headphones through the five-finger exercise stage-surely a selling point!

Craftsmanship is rapidly becoming scarce. The special skills required in making violins, for instance, may become both expensive and hard to find as time passes. Woodwind, brass, pianos-indeed all acoustic instruments - are craftsman-made and inflation could make these difficult to afford for future generations.

## CONTROL

Although electronic components are currently in short supply, they ought to remain relatively cheap in this age of technology. So there is a strong possibility that electronic musical instruments will progressively supplement-or even sup-plant-acoustic instruments in classical music.

Where money is to be earned in music, it is certainly not in the serious field. Pop groups have proved that they have money (and even instruments) to burn! Many of them use synthesisers and other sophisticated equipment, but the end-product is often hideous!
If the serious music fraternity looks with trepidation to the future, it will have to come to terms with electronics and start to lay down guidelines to manufacturers for the types of electronic instrument it would like to see made. Failing this, pop groups will continue to give the impression that cacophony is the only end-result, to the detriment of electronics and good musical taste.


## If you're interested

## in electronics You'll like the NEW LITESOLD SUPER IRONS

We've been supplying the electronics industry with soldering irons for many years and we have now put all our experience into an iron for the electronics enthusiast.

The new LITESOLD SUPER IRONS have all the features you have been looking for; a neon indicator which glows only when the supply is connected correctly and the iron is safely earthed, an unbreakable nylon handle, a burn-proof mains lead, a special oxydised binding, a long life element, a range of bit shapes to suit every job and a special bench stand.

There are three SUPER IRONS the $\mathbf{S 9 0}$
12 watts for miniature jobs
at $£ 4.77$
the S142
20 watts for medium jobs
at $£ 4.85$
the S187
24 watts for heavy jobs
at $£ 4.89$
and the special spring stand at $£ 2.24$.
Get your LITESOLD SUPER IRON direct from

## Light Soldering

Developments Limited
97-99 Gloucester Road
Croydon Surrey
Telephone 01-689 0574
All prices include postege, packing and VAT but not the diamond ring.

## P.E. KIT REVIEW

SINCLAIR

## SCIENTIFIC CALCULATOR



## BUILDING THAT COUNTS

The pocket calculator is now firmly entrenched as a part of our way of life. It appears in almost every shop window alongside stationery, toys, cassette recorders and sweets. It comes in various forms extending from the simple four-function up to the sophisticated multi-function accountant's and engineer's dream, and can be acquired in the ready-made or even the kit style.

Recently just such an instrument became available, the Sinclair Scientific. which utilises Polish notation and logarithmic and trig functions to carry out calculations currently only available in far more complex machines.

## THE KIT

The Scientific kit comes carefully wrapped and packaged in a compartmented foam plastic moulding complete with all parts, very comprehensive instructions and a variety of guarantee conditions suited to those who either fail or meet problems at the constructional stage.

Assembly is certainly simple if one has had prior experience with i.c.s, soldering and plastic models, but it should be stated that the job is not one for the totally inexperienced if they also have no tools. For example, a quality miniature soldering iron is a must and miniature sidecutters and snipe-nosed pliers a very useful adjunct.

The writer found a need for a model-maker's scalpel at one stage in gaining a tight fit of the keyboard assembly in the very nicely designed outer case. A small amount of mould flash was intruding on the area to be occupied by the keyboard.

In fact assembly went ahead smoothly and without any real hitch thanks to the clear and precise instructions. Indeed these are directed to all possible purchasers and take the uninitiated right through the various problems to be met such as tools, handling calculator chips, cleanliness and so on in a very helpful manner.

The only part of the assembly which might pose problems to some concerns the keyboard and here it would be wise for any first-timer to follow the instructions very carefully. Its not that one damages the unit in the process, more that one has to do the job several times to get it right.

In fact, the case and mechanical assembly tend to appear to be somewhat flimsy on first inspection but the design is quite interesting, making use of the inherent flexibility and strength of the plastic material to give at one and the same time a strong and attractive case. The external appearance is not marred by fixings of any sort and yet it is a simple matter to take apart and reassemble the case.

The only point of serious criticism which came to light concerns the battery connectors. In the Scientific as in most of the Sinclair range made to the same standard, use is made of small plated spring clips which are soldered to the circuit board. These at one and the same time form the connectors and retainer clips for the batteries. Whilst each clip has a projection which engages in a hole in the board, this effects location rather than mechanical retention, so only the soldered joint provides the necessary strength.

Under normal desk use this is no problem, but the vagaries of pocket use over a period of three months have caused one terminal to come loose twice. The first time the soldering was questionable and the second occurred within a few days of first use anyway, so the problem appears to be removed with due attention to one's soldering.

## OPERATION

In use the Scientific takes some time to acclimatise to. Unlike its four-function associates such as the Cambridge, it makes use of so-called Polish notation for the normal fourfunction mathematics. Thus to add $A$ and $B$ one enters $A+$ and then $B+$. Take $B$ from $A$ one enters $\mathrm{A}+$ and then $\mathrm{B}-$.

Equally, it requires "programming" by way of pushing one of two extra buttons in order to carry out
the extra functions such as providing logs and trignometric functions.
However, this is little hardship for the results obtained. The machine is sufficiently small to fit into the palm of the hand and be operable by the thumb of that hand if one wishes to show off just a little.

Clearly, at such a low cost and in such a small package, one cannot expect to get all the refinements of a $£ 400$ equipment or even, for that matter, of an $£ 80$ item. However, the Scientific gives results well in keeping with the job it is supposed to do. For example, taking the value of logs it gives. All those tried by the writer have matched four figures tables and, indeed, six figure tables most of the time. Of course, the machine only indicates to five figures, and to some this might be a disadvantage.

One or two simple tests indicate the value of the machine. Take $2^{64}$ up to that value and then back down again to 2 , The result is 2.0001. Not bad.

Some of the Trig functions seem, in the face of accurate tables, to leave something to be desired, and it is wisest to learn just when one ought to bring a calculation out of the machine and make suitable notes in this area.
So far any errors of note on the Scientific have been clearly traceable to the user and not the equipment and the more one uses it the easier it becomes to replace the slide rule.



Experiments to detect the existence of Extra Sensory Perception (ESP) normally involve two people: the subject being tested and an operator to turn over cards and record their symbol or value. A common problem in these experiments is a gradual reduction in performance due to boredom and lack of interest.

The electronic apparatus described here was developed so that the subject alone could test himself and so that interest could be maintained by introducing a game element into the testing by using "biofeedback".

## CONTROL LAYOUT

The layout of the detector and its controls are shown in the photographs. When the sPIN button is pressed the circuitry oscillates until the button is released when the circuit freezes at either "left" or "right".

The choose lamp lights to indicate that a choice must be made between left and right. The subject then presses either the LEFT button or the RIGHT button. If he has chosen correctly, lamp LP1 lights, the CORRECT counter counts on by one digit and the totals counter (at the rear) also counts on by one digit.

If he guesses wrongly, only the rotals counter is activated. The SPIN button is used again to spin left or right and the subject chooses again and so on. If the subject makes two successive correct guesses, then lamp LP2 lights as well as lamp LP1 (and both counters count on one).

As long as he makes more correct guesses, more lamps light until all four are illuminated and these stay illuminated so long as he guesses correctly. If he chooses the wrong button, all the lamps go out and he must begin again, trying to build up a row of lights. If required, the counters provide information for statistical analysis.

## THE SYSTEM

The circuit is largely composed of cheap 74 -series TTL integrated circuits. The block diagram is shown in Fig. 1 and the detailed logic in Fig. 2.

Block MV1 is an astable multivibrator which alternates high and low or "left" and "right" at about five thousand times per second.

It may be made to oscillate at a higher frequency if required by reducing the values of two capacitors C1 and C2. In any case these capacitors should have equal capacitance so that the multivibrator spends equal lengths of time in its "left" and "right" positions.

There is no possibility of the operator guessing the state of the circuit by the length of time he presses the SPIN button because the multivibrator is spinning all the time, not just when the SPIN button is pressed.

The output from the multivibrator is fed to the clock pulse input of a 7472 gated J-K flip-flop (BS1), which will not accept the pulses from MV1 unless all J and K inputs are at logic 1. (Positive logic is used throughout, i.e. logic 0 equals zero volts and logic 1 equals about +4 volts). These J, K inputs are controlled by SPIN switch S1 coupled to a "bistable latch" (Ll).

The bistable latch is required to overcome problems of switch contact bounce and is formed from two of the NAND gates in a 7400 pack.

When Sl (whose wiper is earthed) is in position "a" so that input "a" is at logic 0, input " $b$ " is at logic 1. Output C is then at $\log$ ic 1 and output $\overline{\mathrm{C}}$, at logic 0 , is connected to the $\mathrm{J}, \mathrm{K}$ inputs of BS 1 (see Fig. 2). If SPIN switch S1 is pushed so that contact " $b$ " is earthed, the outputs $\bar{C}$ and $\bar{C}$ of the bistable latch reverse, the $\mathrm{J}, \mathrm{K}$ inputs of BS 1 are then at logic 1 and the output from multivibrator MV1 is accepted into flip-flop BS1, causing the outputs ( Q and $\overline{\mathrm{Q}}$ ) to alternate at 5 kHz .

If $\mathrm{S1}$ is released so that contact " $a$ " is earthed, output $\overline{\mathrm{C}}$ goes to logic 0 , thereby freezing flip-flop $B S 1$ in either a "left" $(Q=1, Q=0)$ or "right"


Fig. 1. Block diagram of the ESP Detectcr


## PR1-TRT-2N3704

Dr - D14 - WNOH
——- internal Le comatetions
Fig. 2. Complete logic diagram of the ESP Detector


Fig. 3. Layout of the integrated circuits and associated components on the perforated board. Circled letters indicate connections to Veroboard (Fig. 4). This shows the board viewed from below (i.e. wiring side)
$(\mathrm{Q}=0, \overline{\mathrm{Q}}=1)$ condition. This condition is then to be guessed by the operator and his response compared with Q or $\overline{\mathrm{Q}}$.

## THE OPERATOR RESPONSE

The left and right operator-response switches S2 and S3 are each connected to a bistable latch formed from each half of a 7400 quad nand pack (IC4). The output from each bistable latch is fed to the clock pulse input of a JK flip-flop (BS2 or BS3), contained in pack IC5 which is a 7473 dual J-K flip-flop. Initially the Q outputs of both BS2 and BS3 are at logic 0, but after the operator's input from L1 with S2 or from L2 with S3, the Q output of either BS2 or BS3 will change to logic 1.

The Q output of BS2 with the Q output of BS1 is fed into one AND gate of one half of a 7451 dual 2-wide 2 -input AND/OR/invert pack IC6, while the Q output of flip-flop BS3 with the $\bar{Q}$ output of BSI is fed into the other And gate of IC6a.

If the operator has guessed correctly (i.e. if the Q output of BS1 and the Q output of BS2 are both at logic 1, or if the $Q$ output of BS3 and the $Q$ output of BS1 are both at logic 1), then, and only then, will the output $F$ change from logic 1 to logic 0.

This output $F$ is fed to an inverter whose output is connected to a monostable (MS1).

## CORRECT COUNTER

The monostable was built using a 7400 quad nand pack.

When (after a correct guess) the signal from the inverter goes from logic 0 to logic 1 , the monostable output rises to logic 1 for about 0.1 seconds. Passed through base resistor R5, this signal drives TR5 into an "on" condition for an equal length of time so that the correct counter counts on one digit. Diode D9 protects TR5 from the back e.m.f. of the counter's coil.
The other half of AND/OR/INVERT pack IC6 is used to detect whether either BS2 or BS3 has been activated by switch S2 or S3 and if so, it then activates monostable MS2 (through an inverter), which drives TR6 to energise the totals counter. The output $G$ (changing from logic 1 to logic 0 ) also switches off TR7, to switch off the choose lamp. This lamp remains off until the circuit is reset through switch S 1 when the output G again rises to logic 1.

The resetting of the activated flip-flop BS2 or BS3 (depending on whether S2 or S3 was pressed) is obtained at the same time that the SPIN switch SI is pressed, by connecting the output from latch L1 (which changes from logic 1 to logic 0 as S1 is pressed) to the clear inputs of both BS2 and BS3.

## PREVENTING CHEATING

There is a further connection between the two flip-flops BS2 and BS3: the $\bar{Q}$ output of each half is connected to the J input of the other half and each $K$ input is earthed to logic 0 . This ensures that once either S2 or S3 has activated one of these flip-flops, then both flip-flops are locked and are


Fig. 4. Layout of the transistor circuits on the Veroboard panel
not affected by further operations of S2 and S3. This prevents the operator from trying one switch and then the other and from pressing one switch repeatedly to increase his score.

## LAMP DECODING AND DRIVING

The remainder of the circuit consists of IC9 and IC8, the row of lamps LP1 to LP4 and their drivers (Fig. 2). Pack IC9 is a 7493 4-bit binary counter containing four flip-flops $p, q, r, s$ and a NAND gated reset. The $F$ output (which indicates correct guesses) is fed to the input of IC9. If only one pulse is fed into IC9, the output of $p$ is at logic 1 while $\mathrm{q}, \mathrm{r}, \mathrm{s}$ are at logic 0 . The p output is routed via diode D1 and R1 to TR1 which switches on lamp LP1.

If another pulse is received, p goes to logic 0 and $q$ goes to logic 1 which is routed via diodes D2 and D3 to both TR1 and TR2 so that both lamps LP1 and LP2 light. Similarly for three pulses, both p and q are at logic 1 and their outputs are combined by gates (two of the NaND gates in 7400 pack IC8; the other two gates are not required).

Diodes D4, D5 and D3 ensure that three lamps light. For higher numbers of correct guesses (up to fifteen), the logic 1 outputs of $r$ and $s$ are routed via diodes D6, D7, D8, etc. so that all the lamps light. These lamps remain on so long as the two inputs to the reset are not both at logic 1. However, if the operator guesses wrongly, the output $F$ will remain at logic 1 and the output of MS2 will rise to logic 1, thus operating the NAND reset and switching off the lamps.

While all this may seem rather complicated, the actual construction is straightforward.

## CONSTRUCTION

In the prototype, the ten i.c.'s ICl to IC10, the capacitors and the diodes D11 to D14 were mounted on 0.1 in matrix plain s.r.b.p. board. See Fig. 3 and the photographs. Alternatively, 0.1 matrix Veroboard may be used providing the strips are cut away so that each i.c. is isolated from the others.

The connections for each of the i.c.'s (viewed from underneath) are also shown in Fig. 3.

The suggested order of construction is:

1. After labelling each i.c. from beneath the board, make the common connections between pins on the same i.c., working from Fig. 3. Use a soldering iron with a small bit and low power, touching the pins on the i.c. for the least possible length of time.
2. Make the interconnections between the i.c. soldering as before and working methodically. These connections are most easily made with colour coded wire and as each connection is made, it should be ticked off on Fig. 3.
3. Connect diodes D11 and Di2 to pack IC1. Connecting pins inserted in the matrix holes are useful here.
Similarly with diode D13 to pack IC7 and D14 to pack IC10, capacitors C 1 and C 2 to pack IC1, C3 to pack IC7 and C4 to pack IC10.
4. Connect the common earthed (negative) line to all the i.c.'s. This should go round all the i.c.'s like a ring main circuit.
5. Connect the common positive line round all the i.c.'s.
6. It is recommended that the supply line is decoupled every five packs by connecting capacitors C5, C6 between the positive and negative lines at two points on the board (see photograph).
All the lamp drivers and counter drivers are mounted on Veroboard. Fig. 4 shows the gaps to be cut in the copper strips and the component layout.

Rewind the coils of the two counters if they are not already six volt operating. In the prototype the counters were standard PO 4 -digit non-resettable with an operating voltage of about 24 V . These were dismantled to gain access to the solenoids from which all the turns of 40 s.w.g. wire were removed. The coils were then rewound with as many turns as possible (as neatly as possible) of 32 s.w.g. enamelled copper wire. The counters, when reassembled, should operate easily and firmly on 5 V or less (drawing 150 to 200 mA ).


Photograph showing the internal layout of the ESP Detector

## COMPONENTS . .

```
Resistors
    R1-R4 4.7k\Omega (4 off)
    R5, R6 680\Omega (2 off)
    R7 4.7k\Omega
    All }\pm10%\pmW\mathrm{ carbon
Capacitors
    C1, C2 0.1 \mu F (2 off) (see text)
    C3,C4 100 F F 10V elect
    C5, C6 0.1 \mu (2 off)
```


## Transistors

```
TR1-TR7 2N3704 (7 off)
```


## Diodes

```
D1-D14 1N914 or any general purpose silicon diodes (14 off)
Integrated circuits
\begin{tabular}{ll} 
IC1, 3, 4, 7, 8, 10 & SN7400N (6 off) \\
IC2 & SN7472N \\
IC5 & SN7473N \\
IC6 & SN7451N \\
IC9 & SN7493N
\end{tabular}
Miscellaneous
CO1, CO2 PO type four-digit counters (2 off) (see text)
LP1-LP5 6 V 60 mA lamps with 4 amber and one green holder (5 off)
B1, B2 Type 8003 V batteries (2 off)
S1-S3 Single pole changeover pushbutton
S4 Single pole on/off
\(0 \cdot 1\) in matrix Veroboard 4 in \(\times 2\) in
0.1 in matrix perforated board \(12 \mathrm{~cm} \times 10 \mathrm{~cm}\)
32 s.w.g. enamelled copper wire
Case to suit
```


## THE CASE

The prototype was housed in a box made from chipboard with an aluminium fascia. The counters may be held by aluminium straps to the walls of the case. Since we are using the principle of biofeedback to reinforce learning, the rotals counter should be wrapped in foam rubber to reduce noise while the correct counter should be held firmly against the side of the box so as to give a satisfying clunk on each correct occasion.

The i.c. board was mounted horizontally on wooden blocks while the Veroboard was mounted vertically adjacent to the batteries which were held in place by wooden blocks and an elastic band (see photograph). Rub-on lettering for CHOOSE, SPIN, etc. improves the apearance of the completed detector.


Photograph of the integrated circuit board

## TESTING

On first switching on, it may happen that all five lamps light. If so, press the switches until they all go off. On then pressing the SPIN switch, the choose lamp should light and remain on when the SPIN switch is released.

Pressing the left or the right switch should have no effect but releasing it should cause the totals counter to be activated. Check that this is absolutely reliable, always counting on one digit when either the left or the right switch is pressed and released after the choose lamp is lit. Releasing the left or right switch may also have the effect of activating the correct counter and lamp LP1.

Check that this counter is also reliable and always counts when another lamp lights or when the completed row remains on.

If the detector has been built for interest only, no further testing is necessary. However, any statistical analysis will rely on a $50 / 50$ chance of the spinning circuit freezing in the left or the right condition. This can be tested in two ways:
(a) by taking the output of the astable multivibrator MV1 (pin 8, IC1) to the Y-plates of a cathode ray oscilloscope and running the X-timebase at about 5 kHz . The trace should show a square

Table 1: Confidence Levels

| Excess over the mean (in standard deviations) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2.0 | 2.2 | 2.4 | 2.6 | 2.8 | 3.0 | $3 \cdot 2$ | 3.4 | 4.0 | 5.0 |
| Odds (1in) <br> Confidence <br> Level (\%) | $\begin{aligned} & 20 \\ & 95.5 \end{aligned}$ | $\begin{aligned} & 40 \\ & 97.2 \end{aligned}$ | $\begin{aligned} & 60 \\ & 98 \cdot 4 \end{aligned}$ | $\begin{gathered} 100 \\ 99.1 \end{gathered}$ | $\begin{gathered} 200 \\ 99.5 \end{gathered}$ | $\begin{gathered} 400 \\ 99.7 \end{gathered}$ | $\begin{gathered} 800 \\ 99 \cdot 9 \end{gathered}$ | $\begin{aligned} & 2,000 \\ & 99 \cdot 9 \end{aligned}$ | $\begin{aligned} & 10,000 \\ & 100 \end{aligned}$ | $\begin{aligned} & 2,000,000 \\ & 100 \end{aligned}$ |

wave with an equal mark/space ratio. If not, it implies that the capacitors C1, C2 are not equal in value and should be changed or modified (by adding smaller capacitors in parallel with the lesser of C 1 or C 2 ) until the mark/space ratio is $1: 1$ ).
(b) by pressing the SPIN and (say) the RIGHT button repeatedly for a large number of times (without touching the other button) and noting the scores on the correct and totals counters. Over a large number of results, the CORRECT number should tend towards one half of the total number of tries. Since we are testing a random process, the correct number will not be exactly one half the total number even if the probability of left / right is exactly $50 / 50$. However, almost all runs of 100 guesses should have $50 \pm 10$ correct results.
If, after repeating this several times, there is a clear bias, the value of one of the capacitors should be adjusted to reduce the bias. A small remaining bias will not affect the statistics providing the subject believes there is no bias.

## STATISTICAL ANALYSIS

In deciding whether a result is due to ESP or purely to random chance, it is usual to calculate the odds against the event occurring by chance.

The odds against a run of $x$ correct answers occurring by random chance is easily calculated by $\frac{1}{2^{x}}$. For example, the record run in the prototype was 14 correct in a row, which by pure chance would occur $\frac{1}{2^{14}}=\frac{1}{16,384}$ i.e. once in 16,384 guesses.

However, calculating the odds against getting $x$ correct answers in a session of $n$ guesses is rather more complex. The formula is $\frac{n!}{x!(n-x)!2^{n}}$ where $n$ ! (pronounced "factorial $n$ ") is calculated by multiplying $n$ by all the whole numbers less than $n$. For example: $10!=10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$ $=3,628,800$. For small values of $n$, with a lot of cancelling, this is straightforward. For large values of $n$, the calculation becomes tedious, although using Stirling's approximation the formula becomes

$$
\frac{(n / 2)^{n}}{(n-x)^{n-x} x^{x}} \times \sqrt{\frac{\mathrm{n}}{6 x(n-x)}}
$$

which, although it looks more complicated, is easier to evaluate (using logs to calculate the powers).

A simpler and sufficiently accurate way to decide whether a result is sufficiently unusual to be accepted as proof of ESP is to calculate the "standard deviation" of the results from the formula:

$$
\text { standard deviation }=\frac{\sqrt{ } n}{2}
$$



## Photograph of the transistor panel

## CONFIDENCE LEVEL

Table 1 can then be used to determine the "confidence level" of the experiment. In psychology and biology experiments where similar methods are used, odds of 1 in 20 ( 5 per cent) are normally accepted as proof, providing similar or greater odds are indicated whenever the experiment is repeated. These 5 per cent odds are usually quoted as a " 95 per cent confidence level". Naturally all results (for a particular individual) must be included for these calculations, not just good results or sessions with high scores.

## EXAMPLE

A particular subject, in nine sessions (each of 100 guesses) obtained the following scores: 49, 52, 48, $54,57,55,60,56,52$.
(a) The total number of guesses, $n=900$.
$\therefore$ The standard deviation $=\frac{\sqrt{n}}{2}=\frac{\sqrt{900}}{2}=\frac{30}{2}=15$
(b) The number of correct responses, $x=483$.

The "mean" of the 900 guesses $=900 \times \frac{1}{2}=450$
$\therefore$ The number of correct responses exceeds the mean by $483-450$.

$$
\begin{aligned}
& =33 \text { responses } \\
& =\frac{33}{15} \text { standard deviations } \\
& =2 \cdot 2 \text { standard deviations }
\end{aligned}
$$

From Table 1, an excess of 2.2 standard deviations represents a 97.2 per cent confidence level (or odds of about 1 in 40) and, if repeatable, indicates the presence of ESP in the individual who is being tested.

The requirement for a compact, lightweight and versatile logic tester for use with the current range of integrated circuits has long been recognised by many electronics hobbyists, particularly those who are not fortunate enough to possess an oscilloscope. The Logic Probe to be described not only fulfills this need, but has the added advantage of providing a facility for use in the field. It can be quickly assembled and the components purchased at relatively low cost.

## CIRCUIT DESCRIPTION

The Logic Probe is basically comprised of two readily available integrated circuits which are the SN7413 dual 4 -input nand gate (Schmitt Trigger), and the 9601 retriggerable monostable multivibrator; the various logic outputs of the integrated circuits being fed, via suitable series resistors, to light emitting diodes to provide visual indication of the logic states of the circuit under test.

The two 4 -input NAND gates are connected in series ats shown at Fig. 1. A steady logic 1 at the probe will produce a logic 0 at the output of the first gate, a potential difference will exist between points ' C ' and 'D' on the circuit diagram and LP2 will be illuminated. A steady logie ' 0 ' at the probe will produce logic ' 1 ' at the output of the gate and a logic ' 0 ' at the output of the second gate, a potential difference will now exist between points ' $A$ ' and 'B' and LP1 will be lit.

## THREE L.E.D.s LIT

In the case where the logic under test consists of a stream of d.c. pulses having an equal mark / space

## COMPONENTS

Resistors
$\begin{array}{ll}\text { R1 } & 470 \Omega \\ \text { R2 } & 470 \Omega \\ \text { R3 } & 33 \mathrm{k} \Omega \\ \text { R4 } & 470 \Omega\end{array}$
All 10\% $\frac{1}{8}$ watt carbon
Capacitor
C1 $2 \cdot 2 \mu \mathrm{~F}$ elect. 10 V
Semiconductors

| IC1 | SN7413 |
| :--- | :--- |
| IC2 | 9601 (Fairchild) |
| D1 | 1N4001 |
| D2 | OA200 |
| LP1-LP3 | TIL209 l.e.d.s (3 off) |

## Miscellaneous

Veroboard (see text) and Veropins, plastic tubing, wooden dowels, wire, miniature crocodile clips
ratio, the monostable will trigger on the negative edge of the first pulse and LP3 will be illuminated and will remain lit for the period determined by the time constant provided by Cl and R3. Should further pulses occur during this period IC2 will retrigger. In addition LP1 and LP2 will follow the positive and negative logic, thus with a square wave all three l.e.d.s will be lit.

Consider now input logic which consists of negative going pulses where the pulse width is narrow (Fig. 2). As the d.c. state at the probe is predominantly positive (or logic ' 1 ') a predominant logic ' 0 ' will exist at the output of the first gate causing LP2 to light, also the monostable will trigger on the first negative edge and cause LP3 to light; thus, with a stream of negative going narrow pulses, LP2 and LP3 will be lit.


Fig. 3. Component layout and wiring details


Fig. 4. Logic Probe housing details


Completed logic indicator probe showing the three light emitting diodes and the supply leads with crocodile clips attached

In the reverse case (e.g. positive going pulses) LPI and LP3 will be lit.

In either case, where the pulse repetition rate is low-say in the order of a few hertz-all three l.e.d.'s will flash on and off.

## CHOICE OF I.C.s

The 7413 was chosen because it has a defined hysteresis and is capable of responding to input pulses having slow rising edges. The Fairchild 9601 is a reliable 'one shot' and will generate a wider pulse from a narrow input pulse when used in the
manner described. The probe will detect pulse widths of fractions of a micro-second. The diodes D1 and D2 are merely safety devices, D1 prevents damage to the i.c.s should the battery leads be inadvertently reversed, whilst D2 prevents a reversal of voltage reaching pin 13 of the monostable during the discharge of the electrolytic capacitor.

## MATERIALS

The basic materials, excluding the electronic components, required for the construction are as follows-
(a) One $4 \frac{1}{2}$ in length of plastic lubing having an inside diameter of $\frac{3}{4}$ in (the author used plastic water piping purchased from the local building suppliers).
(b) One piece of Veroboard ( $0 \cdot 1$ in matrix) $4 \frac{1}{2}$ in in length and 3 in wide.
(c) One suitable length of wooden dowelling having a diameter of $\frac{3}{4}$ in for the probe ends, an alternative would be to use suitable corks.
(d) One metal probe. This can be made from a length of 16 swg wire or a pin.

## CONSTRUCTION

Layout of the components on the Veroboard is given in Fig. 3. The Veroboard should be drilledwhere indicated-to break continuity of the copper strips, and the i.c.s and the probe soldered to the appropriate strips. Fig. 4 shows the Logic Probe housing.


A selection of readers suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Any idea published will be awarded payment according to its merits. Why not submit YOUR IDEA?

## voltage controlled DIMMER

THE circuit of Fig. 1 uses TR1 as a constant current source to charge the timing capacitor Cl at a rate determined by the applied control voltage at the base of TR1. At the correct level the charge voltage fires the unijunction TR2 to trigger CSR1 in turn via the trigger transformer T1.

In fact the timing of the circuit can be synchronised to mains waveform by using unsmoothed 15 V power.

On the prototype a 0 V control voltage gives full power and reduction to zero occurs at about -12 V . A smaller value of control voltage could be used by increasing the value of Cl .

The transformer T1 was made up from two 40 -turn windings of 30 s.w.g. enamelled copper wire on a length of ferrite rod. The CSR1 can be a triac or thyristor; in the prototype it was a SC45D.
M. Lawrance,

Helston.
Cornwall

State-of-the-art piano design with additional choice of harpsichord or honky-tonk voicing. Keyboard is fully touch sensitive. Piano effect is further heightened with soft and sustain pedals. Other features includ'e easy tuning, two speed vibrato and stool-integrated amplifier.

## I.C. PULSE GENERATOR

A handy test instrument for analysing TTL circuits. Wide operating speeds covering 0.1 Hz to 100 kHz in six switched ranges. Pulse width is also variable from 1 s to 1 us . An output reed relay enables it to be used with electromechanical systems.

## EIECTRONIC DIRECTION INDICATOR

Electronic substitute for conventional thermal flasher. Advantages are: immediate indication when switched, long term reliability and an emergency flashing facility.


MAY 1975 ISSUE ON SALE APRIL 11, 1975

N the previous article (February) we described the Ceefax and Oracle system in fairly general terms. This month we are going to examine some of the more detailed provisions of the system. A complete working unit is of little interest at this stage owing to the fact that the present system is still rather tentative and experimental.

## SPECIFICATION

The main technical features given in the joint BBC, IBA. BREMA specification are as follows:

1. Dat:a pulses are transmitted during the television field-blanking interval using a bit-rate of 6.9375 megabits per second.
2. Each page consists of 24 rows of 40 characters using both upper and lower-case characters. coded using the ISO-7 code. A special top row called the page-header carries information for control and display purposes.
3. All data-words are eight bits in length; parity protection is used for the character data words while Hamming Codes are used for addressing and control purposes.
4. News flashes and sub titles are provided.
5. Every page-header will carry clock-time information to provide a display and to permit the automatic time-selection of certain pages.
6. Control characters are used to provide colouring and flashing of selected words.
7. A simple graphics facility is provided.

This list is taken from the specification which goes into considerably more detail regarding the definition
of terms like "page", "magazine", etc. Readers interested in a full understanding of the system are recommended to read this publication*. In this article we shall confine our attention to the more interesting technical features of the system.

## LINE ALLOCATION

Lines 17 and 18 are already allocated; they are in fact used internationally for insertion test signals. However, providing their use is restricted to this country they are available for data transmission.

Lines 13 and 14 are free, but research studies have shown that some receivers frame flyback times creep into this region. For this reason data pulses on lines 13 and 14 would be visible to some people. It is anticipated that, as the system develops, manufacturers will reduce flyback times to release these and possibly other lines to allow a better service.

## RUN-IN AND FRAMING CODE

Fig. 2.1 shows how the data is fitted onto the television line scan. The clock run-in period of 16 bits is to synchronise the internal clock which determines the position of the data.

The clock run-in starts 1010 . . . for sixteen bits ending with a " 0 ". This is followed by a framing (starting) code which identifies the start of the message. The clock run-in and starting code are the same on every line 101010101010101011100100.

[^3](a)

(b)


Fig. 2.1. Arrangement of data on TV lines. (a) shows a normal data line and (b) the page header line

This code has been carefully chosen for ease of recognition as it signifies the start of the data signal. From this point on, the clock, which has been previously synchronised determines the position of any eight bit character along the line scan period.

This clock is also vital when it comes to reading the data onto the TV screen because characters must be displayed in their correct positions along the line scan.

## ROW ADDRESS GROUP

The framing or start code is followed by the row address group. It is very important to recognise the row address correctly, errors here could not only put a row in an incorrect position, but also interfere with another row. Consequently the row address is heavily protected by the Hamming Code, discussed later.

On most lines the framing code is immediately followed by the data bits, the exception being the occasional page-header line. Page-headers only occur on lines 18 or 331, but manufacturers are advised to organise receivers on a basis of code recognition, rather than line recognition, to allow for future developments.

Page-headers only occur on row 0 which must be recognised in order to deal with the page-header line correctly. The page numbers, tens and units, are also protected with the Hamming Code and must be dealt with in the appropriate manner.

## PARITY CODE

The data are transmitted in blocks of eight, seven bits for the character; the eighth is a parity bit. The eight bits are transmitted in sequence the first bit being the least significant bit in binary encoded signals. Thus in binary notation we have;
Signal

Binary weight | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2^{0}$ | $2^{1}$ | $2^{2}$ | $2^{3}$ | $2^{4}$ | $2^{5}$ | $2^{6}$ | 0 |
| M | M | M | M | M | M | M P |  |

where $M$ are the message bits and $P$ is the parity bit.
The parity bit is " 1 " or " 0 " dependent upon odd or even message bits. The parity bit always makes an odd number of l's. If an even number of l's occurs, an extra (noise) pulse has been received and the signal is in error.

It is obvious that if two noise pulses occur the parity check will not reveal an error; however, some errors on the message signals can be tolerated.

## hamming code

Signals protected by the Hamming Code are less liable to give errors because the Hamming Code employs four parity bits.

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mathbf{P} & \mathbf{M} & \mathbf{P} & \mathbf{M} & \mathbf{P} & \mathrm{M} & \mathbf{P} & \mathrm{M}
\end{array}
$$

Again the bits are transmitted in numerical order beginning with number 1 , the least significant bit. The four parity checks are carred out as follows:

Parity check A is carried out over bits 1268 Parity check B is carried out over bits 2348 Parity check $C$ is carried out over bits 2456 Parity check D is carried out over all bits.

Table 2.1 shows the Hamming Code. A few minutes study of this code shows how the four parity checks can lead to information showing which bit is in error.

Table 2.2 shows how the various checks are used to correct some of the errors which may occur. Although Table 2.2 shows how parity bits may be complemented ( 1 's changed to 0 or 0 's changed to 1) it is only necessary to correct bits $2,4,6,8$, the message bits.

Because the Hamming Code reduces the number of message bits available, four bits giving the sixteen different states shown on Table 2.1, two blocks of eight bits are allocated for control and row address as shown in Fig. 2.1. This arrangement gives a total of $16^{2}$ (256) combinations of data which are protected by the Hamming Code.

Table 2.1: Hamming Code

| Decimal Message Value | Bit Position Number |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 3 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 4 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
| 5 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 6 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 7 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 9 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 10 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| 11 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 12 | 1 | 0 | 0 | 0 | 0 | 1 | , | 1 |
| 13 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 14 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 15 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |

Bits 1, 3, 5, $7=$ Protection bits
Bits 2, 4, 6, $8=$ Message bits

Table 2.2: Error Correction Table

| Parity Check |  |  |  |
| :--- | :---: | :---: | :---: |
| D | C | B | A |$\quad$ Action

# NEWLOW PRICES! 

 S! Sinclair Scientific kit
## Britain's most original calculator now in kit form

The Sinclair Scientific is an altogether remarkable calculator.

It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calçulators costing around $£ 100$ or more.

Yet even ready-built, the Sinclair Scientific costs a mere $\mathbf{£ 2 1 . 5 5}$ (including VAT)

And as a kit it costs under f15!
Forget slide rules and four-figure tables!
With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin.
cos and arccos,
tan and arctan.
automatic squaring and doubling,
$\log _{10}$ antilog ${ }_{10}$. giving quick access to $x^{Y}$ (including square and other roots),
plus, of course, addition, subtraction, multiplication, division. and any calculations based on them.
In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

## So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.

Of course, we'll happily supply the Scientific or the
Cambridge already built, if you prefer - they're still exceptional value Use the order form
(Was £19.95-save £5!)
Components for Scientific Kit (iilustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.


Features of the Sinclair Scientific

## 12 functions on

 simple keyboard Basic logs and trig functions (and their inverses), all from a key. board as simple as a normal arithmetic calculator's. 'Upper and lower case operation means basic arithmetic keys each have two extra functions.Scientific notation Display shows 5 -digit mantissa, 2-digit exponent, both signable.

200-decade range $10^{-99}$ to $10+99$

- Reverse Polish logic Post-fixed operators allow chain calculations of unlimited length - eliminate need for $\mathrm{an}=$ button.

25-hour batterylife 4 AAA manganese alkaline batteries (e.g. MN2400) give 25 hours continuous use Complete independence fromexternal power.

## Genuinely

pocketable $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$. Weight 4 oz. Attractively styled in grey, blue and white.

## (Was $£ 14.95$-save £5!)

At its new low price, the original Sinclair Cambridge kit remains unbeatable value.

In less than a year, the Cambridge has become Britain's most popular pocket calculator.

It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge Kit

1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch 10. Soft wallet

Assembly time is about 3 hours.

## Features of the Sinclair Cambridge



Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)

Simply fill in the preferential order form below and slip it in the post today.

## Scientific

Price in kit form £14.95 inc. VAT Price built $£ 21.55$ inc. VAT.
Cambridge
Price in kit form $£ 9.95$ inc. VAT.
Price built £13.99 inc. VAT.


Sinclair Radionics Ltd,
FREEPOST St. Ives,
Huntingdon, Cambs. PE174BR.

Reg. No: 699483 England. VAT Reg. No: 213817088.


Fig. 2.2. Character code for data broadcasting. This table shows both alphanumeric and graphics information, the latter being selected by the appropriate control code in columns 1 and 2. (Reproduced from Joint Specification)

## CHARACTER INFORMATION

The character information employs seven bits, 128 (2`) different combinations. Fig. 2.2 shows how these 128 combinations are used. A matrix of $8 \times 16$ is used to produce 128 different characters.

Rows are identified by bits $1,2,3,4$, whilst columns are identified by bits $5,6,7$. Thus if we wish to display the " $£$ " sign we will have a code 11000100. Similarily the " $\&$ " sign would be 0110010 , the parity bit being " 0 " in each case to give odd parity. A "?" sign on the other hand would be coded 11111101, where the parity bit is " 1 ".

The control instructions located in columns 0 and 1 ( 000 and 100 ) are reproduced as a blank space, but following characters are produced according to the instruction given. For example, a white number I coded 10001100 would be preceded by an instruction-space code 11111000. However, if the number was to be reproduced in red it would be preceded by the instruction-space code 10011000. In each case the last bit is the parity bit.

> An example of an ORACLE page using the graphics facility


## GRAPHIC SYMBOLS

As the system has a graphics facility there are alternative graphic symbols given in each location which must be generated when called for. If instead of a red 1 the red graphic symbol was required the graphics space signal would be given. For example :
start 12345678
12345678
gives a red 1
10011000 followed by 10001100

## 10001001 followed by 10001100 gives red spots.

Thus the specification virtually dictates the design of the ROM unit discussed in last month's article. Before discussing the ROM organisation in more detail it will pay to re-examine how the RAM stores the transmitted data.

## RAM ORGANISATION

The RAM can be organised in a variety of ways by receiver manufacturers, but from an operational point of view it is best to visualise a matrix $40 \times 24$, giving 960 locations, where each location can store seven bits of information. This then corresponds to the 40 characters and 24 rows of each page in the system.

Each row is identified by its row number ( 0 to 23 ), derived from the control and row-address group. The columns are numbered 1 to 40 and are derived from the synchronous clock.

The clock starts its division (by 40) on receipt of the framing (start) signal. Fig. 2.3 illustrates this arrangement. The row information is processed by the Hamming decoder logic which also determines if the row is " 0 " or not (i.e. the page header). If the row is " 0 ", further Hamming logic is used on the next 16 characters which give the page numbers.

The synchronous clock ensures that the whole row is filled. After this nothing more happens until


Fig. 2.3. (left) Diagram showing RAM visualisation. Each of the squares represents seven bits of data

Fig. 2.4. (right) A typical cell matrix. This particular character would be produced by the code 1000001
another line of data appears complete with its clock run-in signals, framing code and row coding, then the next row in the RAM is filled with data.

Each row of the memory may be filled at random. The transmission of each row need not be sequential and in all probability will not be. Read, write, inhibit and reset logic is also required in association with the RAM in order to fully control its function.

When filled the RAM can be visualised as the representing page of information to be written on the television screen. This idea is shown in Fig. 2.3, line 4 illustrating a programme timetable: 6.40 pm PLAY, followed by line 5, 9 pm NEWS. Of course these characters are actually stored in a seven bit binary store.

## ROM ORGANISATION

The ROM unit is rather more complicated than it appears from our preliminary examination. The character must be generated over 14 lines, so each line reproduces only a small part of the character. In addition, each line reproduces a small part of each of the 40 characters which appear along any particular row.

The ROM unit converts the parallel coded information from the RAM board to a serial output of dot information which modulates the CRT during scan. The ROM's themselves contain character information on a $7 \times 5$ dot matrix

Fig. 2.4 shows cell 1000001 (capitalA) as given by the character codes in Fig. 2.2.

The sequence of operations is as follows:

1. The clock counter (synchronised with the clock run-in pulses) access the first letter stored in the RAM, in this case a capital A.
2. The ROM is addressed so that the cell containing A is activated. (Cell 1000001 , Fig. 2.4.)
3. A television line scan counter has already activated the first line address input to every part of the ROM. (Line 1, Fig. 2.4.)
4. The contents of the ROM are transferred to a shift register of six bits. (The sixth bit is the -space between characters.)
5. In this example the contents from line 1 of the ROM transferred to a shift register are white, white, black, white, white. (Line 1, Fig. 2.4.)
6. A 6 MHz phase-locked counter shifts the information serially óut of the shift register to


An operator entering data into the ORACLE system
modulate the CRT with a dot representing the top of the " $A$ ".
7 The clock counter addresses the RAM to find the next character, " $B$ " for example.
8. The ROM cell containing " $B$ " is addressed by the RAM ( 1000010 in Fig. 2.2). This cell already has its line 1 input activated.
9. The top of the " $B$ " is transferred to the shift register and modulates the tube as described for the " $A$ ".
Proceeding thus, scan 1 moves from character to character of the row stored in the RAM, addressing the appropriate coordinates of the ROM for each character in the row. The ROM modulates the scan line with the top of each character in the row.

At the end of the row, scan line 2 on the ROM is activated to modulate the CRT with the dots required on the second line scan. The seven scan lines of character are reproduced by this means and followed by four blank lines of inter-row scan.

## ADDITIONAL FEATURES

In the most simple systems reproduction of alphanumeric characters will be all there is to the ROM, but in more advanced receivers there will be provision for graphics and character rounding. These additional features will increase the complexity of the system considerably as will some of the other provisions of the specification.

To summarise the various systems in terms of increasing complexity, we have:

1. Alphanumeric display.
2. Upper and lower case alphanumeric characters.
3. Graphics display.
4. Flashing display.
5. News flash and sub titles superimposed on the picture.
6. Coloured displays. Red, green, yellow, blue, magenta, cyan and white.
7. Timed displays. Some data may only be transmitted once during the day. A time clock system can be incorporated to capture this signal.
We can look forward to the time when manufacturers put receivers onto the market and we can see the various ways in which they overcome the complexities of the system to provide the maximum of facilities at a minimum cost.
 ated door-push type). It produces a novel sound with ample volume for an average house and a life of several months between battery changes with normal use.

## OPERATION

The circuit, Fig. I, uses an oscillator, ICI, capable of producing five different tones. The tune piayed includes up to fifteen time-slots of equal length, and during each of these time-slots the appropriate tone is selected, from ICl , using the pre-programmed diode matrix shown in detail in Fig. 2.

The oscillator's output is fed via a simple transistor amplifier to a loudspeaker LSI.

The time-slots are generated by a second oscillator, IC2. feeding a divide-by-sixteen binary counter, IC3, which in turn addresses a 4 to 16 line de-multiplexer. IC4.

IC4's seventeenth output is used to turn a latching relay RLA off. thereby removing power at the end of the tune.

## TONE GENERATION

By now the reader should be familiar with the ' 555 " timer and its use as an astable multi-vibrator. The frequency of ICl may be changed by altering any of the timing components identified jn Fig. 1 as RI to $5, \mathrm{RII}$ and Cl . Here the five different tones are generated by switching in one of the pre-set resistors VR1 to VR5 via the transistors TR1 to TR5. This is achieved by switching the associated transistor base towards ground (0V) potential using a diode matrix.

## AUDIO AMPLIFICATION

The amplifier is a very simple class A design which in fact introduces a great deal of distortion, but as the output waveform is unimportant this is ignored. Preset VR6 acts as a volume control.

Any small loudspeaker should suffice ( $3 \Omega$ to $50 \Omega$ ); the prototype used a $2 \frac{1}{4} \mathrm{i}$. speaker of unknown impedance removed from an old transistor radio.

## CLOCK AND DE-MULTIPLEXING

This section of the circuit makes use of a second 555 timer IC2, running at about 4 Hz to drive a binary counter IC3 (SN7493). The components C6 and R19 connected to IC3 set-zero input ensure that the counter is always started in the set-zero state such that the tune played starts from the chosen beginning.
The four output lines from IC3 (A, B, C and D) are then fed to a de-multiplexer IC4, which decodes the binary information into a selection of one of sixteen; that is, each of the sixteen outputs 1 to 16 is sequentially taken from logic 1 level to logic 0 for about 0.25 s , only one output being at 0 at any one time.

The value for $V_{\text {Ont }}$ in the logic 1 state of an SN74154 can be as low as $2 \cdot 4 \mathrm{~V}$. As it was felt that the transistors TR1 to TR5 would not be held fully off by these voltages, the values of resistors R1 to R10 were made lower than would appear necessary to act as pull-up resistors for the IC4 outputs, thus avoiding problems of leakage currents through the transistors.

## DIODE MATRIX

As the outputs from the SN74154 are so-called "totem-pole", each has to be diode or-gated and isolated from the others. Hence the use of a diode matrix.
If desired IC4 can be replaced with the pin-compatible, open-collector output version SN74159. This removes the need for the diodes which would then be replaced with wire links. The saving in cost of the diodes, however, does not offset the extra cost of the SN74159 and for this reason it was not used in the prototype.

The matrix of Fig. 2 is for a facsimile of the beginning of the Beethoven 9th symphony. Pauses may be introduced into the music by leaving the appropriate input to the matrix open circuit. This is demonstrated in Fig. 3 which gives the matrix for playing part of "Colonel Bogey".

## LATCHING RELAY

As noted, the seventeenth output from IC4 goes to logic 1 on starting the machine. This holds TR8,

## MUSICAL DOORBELL GIRCUIT DETALLS



Fig. 1. General circuit diagram of the electronic doorbell


Fig. 2. The diode matrix used in the prototype to produce the first bars of the Beethoven 9th


Fig. 3. Diode matrix alterations to produce Colonel Bogey

and hence the relay RLA on. Thus if the relay contacts are momentarily shorted (by the door-push) the circuit will latch and stay in that state until the tune has finished and the output of IC4 goes low, turning TR8 and the relay off. If the SN74159 is used for IC4 a $2 \cdot 2 \mathrm{k} \Omega$ resistor must be connected between this output and the +6 V rail.

## CONSTRUCTION

All the components, with the exception of batteries, loudspeaker and switch are soldered onto one piece of Veroboard, the size used being that made especially for mounting in a Lektrokit box. However, any piece of 0.1 in Veroboard of $39 \times 41$ or more holes will do.

The component layout for the Beethoven's Ninth version is given in Fig. 4, whilst the alterations necessary for playing Colonel Bogey are shown in Fig. 5.

The choice of box for mounting the circuit is left to the constructor. The prototype was built in a die-cast box $6 \frac{3}{4} \times 4 \frac{3}{3} \times 2 \mathrm{in}$ which also contains the speaker and four HP1I batteries required to power the machine.

If this method is used it is worthwhile cutting the Veroboard to fit in the box before mounting the components as shown in the photographs and Fig. 4. Make sure none of the copper strips short to any of the many protrusions in these boxes. As can be seen from the photographs, a miniature $3 \frac{1}{2} \mathrm{~mm}$ jackplug and socket were used to accept the wires from the door-push; the socket used was the type with a switch on the back, bent in such a manner that it closed when the plug was inserted. This switch turns the power to the electronics off when the plug is removed.

Holes, for mounting the board on pillars, if required, may be drilled in several places if some thought is given to not breaking any used strips and care is taken not to short any strips together or to earth. Further removal of copper with a spot face cutter may be needed.

The relay RLA used is a d.i.l. packaged device with its own protection diode. Fig. 8 shows how the batteries are mounted in the prototype but constructors may wish to use different batteries or a suitable holder for their particular requirements.

## TESTING AND SETTING-UP

The tone adjusting pre-sets are, for convenience, numbered in ascending order of frequency: VR1 the lowest tone used and VRS the highest. First of all remove IC4 from its socket, set VR6 to about $\frac{1}{3}$ of its travel clockwise, solder one end of a length of wire to earth ( 0 V ) and solder a temporary link across the terminals to the push switch. Touching the free end of the earthed wire to either end of any of the diodes should produce a tone from the speaker. By running the wire along the diodes corresponding to pins 1 to 16 respectively on IC4, the tune should be produced if the pre-sets have been correctly set. With a bit of practice and a good ear for pitch, the correct positions can soon be found.

If IC4 has been soldered in place then remove the end of the diode going to pin 1 on IC4, short

## COMPONENTS . . .



## Capacitors

| $\mathrm{C}^{*}$ | $0 \cdot 22 \mu \mathrm{~F}, 100 \mathrm{VW}$ polyester (see text) |
| :--- | :--- |
| C 1 | $0 \cdot 1 \mu \mathrm{~F}, 100 \mathrm{VW}$ polyester |
| C 3 | $2 \times 47 \mu \mathrm{~F}, 63 \mathrm{VW}$ Tant bead |
| C 4 | $2 \cdot 2 \mu \mathrm{~F}, 35 \mathrm{VW}$ Tant bead |
| C 5 | $10 \mu \mathrm{~F}, 25 \mathrm{VW}$ Tant bead |
| C 6 | $1 \mu \mathrm{~F}, 35 \mathrm{VW}$ Tant bead |

Transistors

| TR1 to 5 | BCY70 |
| :--- | :--- |
| TR6, 8 | BC107 |
| TR7 | BFX85 |

Diodes
D2 et al Any general-purpose miniature silicon device such as OA200, 1N914, IS914, etc. (15 or 32 if required)

Integrated Circuits
IC1, 2 NE555, MC1455G etc. ( 555 chip), 2 off
IC3 SN7493
IC4 SN74154, (A. Marshall)
IC5 SN7472 (if needed, see text)
IC6 SN74154 (if needed, see text)

## Relay <br> RLA D.I.L. mounting reed relay, Chromasonic Electronics

## Miscellaneous

Veroboard; suitable case; heat sink for TR7; i.c. sockets, particularly IC4 and IC6; loudspeaker, batteries or battery; wire; bell-push, etc.

[^4]
out C5 to positive 6 V . Now proceed with the steps from "set VR6" as above, making sure not to touch the wire on those ends of the diodes going directly to IC4 as this may be damaged. Always connect to the negative diode ends.

Remove the shorting link from the push (door) switch connections and either replace IC4, or remove the short from the capacitor and re-solder


Fig. 5. Veroboard madifications for the Colonel Bogey version
the diode. On wiring in a door switch and pressing it the doorbell should now function properly.

If the tune is plaged too fast or too slow this can be remedied by increasing or decreasing the value of R18. If, however, it is made to run too fast the device will not turn itself off, in which case the smoothing capacitor C 4 should be reduced in value.


Fig. 4. Veroboard component layout and cutting details for the prototype electronic doorbell


Fig. 6. Sketch of the board and battery mounting used in the prototype. Note that the loudspeaker is mounted on the lid of the diecast box.

## WARNING

Do not allow any of the potentiometers VR1 to VR5 to be set fully anti-clockwise as this could damage IC1. If the Colonel Bogey version is built, note the changes marked with an asterisk in component values given in the parts list.

When the batteries start to run low the first part of the circuit to fail will be the counter IC3. This causes the device to emit a single tone that can anly be stopped by removing the batteries. If you are at all tone-deaf get someone else to set the tones for you as even if it is set slightly off key it will sound very unpleasant, and can send connoisseurs of classical music mad at 100 yards.

## ALTERNATIVES

The matrix could be wired on to a separate board which plugs into the main board via an edge-connector. Using this method a whole library of tunes could be built; one for each day of the week perhaps? The tunes would, of course, have to be made up of the


Fig. 7. Doubling the time-slot capacity to produce a longer melody requires this circuit
same five notes otherwise the pre-sets would have to be altered each time.

If this is done it becomes economical to use the SN74159 for IC4 as diodes would thus be saved.

The circuit can, if wished, be expanded to play thirty-one beats, as shown in Fig. 7. Here IC5 (SN7472) is used as a divide-by-two counter with complementary outputs such that, on starting the machine Q is low, enabling IC4 to decode the first sixteen time-slots, whilst the high $\bar{Q}$ on the second strobe input of IC6 (SN74154) dis-enables this. On IC3's sixteenth count IC5 is toggled into its other state turning off IC4 and enabling IC6 to decode the second sixteen beats.
This modification will obviously necessitate the use of a larger diode matrix, but as this can be drawn to resemble a musical scale, working out the circuit is an easy matter.

It may be found that with or without the previous modification, more than five notes are required. This can be readily achieved by the addition of an extra output line in the matrix plus an extra transistorswitched pre-set resistor for each additional note.

Both these modifications will need a larger board and a re-designed layout for their construction.

As this circuit stands, each note follows on immediately from the preceding note. To make the tune sound more realistic short pauses between notes can be introduced by gating the output of the demultiplexer with the clock pulse such that notes are produced only when the clock's output is in the "low" state.

To do this, the output of IC1 (pin 3) should be taken to one of the strobe inputs of IC6 and/or IC4 (pin 18), the latter having first been disconnected from ground.

A sensible value for the pause-to-note ratio (mark : space ratio of the clock) is $1 / 10$. To achieve this the clock circuit must be modified by the addition of a diode between pins 6 and 7 , anode to pin 7 , and suitable alteration of R17 and R18. These then become $3 \cdot 6 \mathrm{k} \Omega$ and $33 \mathrm{k} \Omega 2$ respectively for the Beethoven 9 th tune and $4.7 \mathrm{k} \Omega 2$ and $47 \mathrm{k} \Omega$ respectively for the Colonel Bogey version. Other melodies would obviously require experimentation.

## DICE Conversion

A n agreement, signed in February, gives Marconi Communication Systems Ltd. exclusive world wide manufacturing and marketing rights of the Digital Intercontinental Conversion Equipment (DICE) developed by engineers of the Independent Broadcasting Authority.
The latest version of DICE can convert 525 -line NTSC colour pictures, as used in the U.S.A. and Japan, into the 625 -line PAL or SECAM pictures used in most other parts of the world, and vice-versa. DICE is, by a comfortable margin, the world's fastest computer.
Standards conversion is essential, not only for "live" relays via satellite, but also when programme material on video tape is exchanged between countries working to different television picture standards.
A number of different types of standards converters have been developed over the years, but IBA engineers were the first to develop a unit based on digital techniques to eliminate the need for careful alignment and adjustment and to provide conversion without perceptible picture impairment.

It is claimed that DICE solves the technically complex process of conversion between systems using 30 pictures a second, as in North America and Japan, and those using 25 , pictures a second, as in Europe, entirely electronically and with negligible distortion and is capable of satisfying a global demand for high quality pictures by satellite. It also allows programme companies making television recordings for world-wide sale to offer high quality pictures no matter which standard was used during production.

## Another Component Source ?

Another American component distributor has decided to enter the U.K. market. Cramer Electronics of Newton, Mass., is one of the largest distributors of components in the U.S. They are "broad-line" distributors offering very wide range of components with particular emphasis on the less glamorous but vitally essential nonactive components and hardware items, right down to the humble grommet.

The U.K. distribution centre to be set up in the London area will be under the control of David Griffin who has been appointed Managing Director of U.K. operations and also Marketing Manager/Europe for the Newton, Mass. (U.S.) based firm.

Although Cramer Electronics is an industrial distributor, the possibility of offering a "one-off" service to individuals is not entirely ruled out. David Griffin is aware of the needs of the constructor market and has indicated his willingness to examine this particular area.

## Portable Heait Monitor

${ }^{\mathrm{N}}$ close co-operation with Danish doctors, Simonsen \& Weel have developed a new portable, battery operated combined defibrillator/memory/scope. This unit is especially designed for the resuscitation of patients suffering from acute heart diseases.

The cardio-aid is very useful to on-the-spot ambulance staff. A feature of the unit is its capability to be linked to hospital staff from the ambulance by radio link. This enables the ECG, the heart activity of a patient in electrical form, to be sent to a qualified doctor at the hospital. The doctor can then instruct the ambulance staff, via the radio link, of any emergency treatment that needs to be carried out during the journey to the hospital.

## POInIS Dilsillt

MARINE SPEEDOMETER (February 1975)
The last paragraph on page 121 should read: "Ranges of 0 to 10 and 0 to 20 knots are obtained by selecting either VR2 alone or VR3 and R17 in series to replace VR2. Selection can be by S1 (VR3, R17 and S1 are not shown) or S1 can be part of S2 which thus becomes a three-pole three-way switch with 'Range 1', 'Range 2 ' and 'off' positions."
The Zener diodes D1 and D2 in Figs. 1 and 3 should be reversed.

Further, the co-ax outer should be connected to the battery common line in Fig. 2.
P.E. MINISONIC (January 1975)

In Fig. 3.12 pin 4 of 1 C1, MIXER 2 should be shown connected to -9 V line by means of connection at column 104, tenth strip down.

In Fig. 4.6, R14 should be disconnected from pin 6 and connected to TR5 emitter. Pins 2 and 6 should be bridged with a 100 pF polystyrene capacitor.

## GAS DETECTOR (September 1974)

Some readers have experienced trouble over the starting of oscillation after setting up has been carried out. It is suggested that the setting-up procedure be altered as follows.
Connect the "dummy" load as described but set VR1 to the fully anti-clockwise position and not the opposite as originally described. This places it in the position for producing the shortest mark-space ratio.
Now adjust VR1 till the load resistors are hot but not burning to the touch. Switch off and then on again to confirm the oscillator is indeed operating.

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| SINCLAIR |  |  |  |  |  |  |  |
| Stereo 80 Pre-Amp Z40 Amplifier Z60 Amplifier PZ5 Power Unit PZ6 Power Unit PZ8 Power Unit PZ20 Power Unit |  |  | 811.35 <br> L5. 10 <br> 26. 60 <br> 55.00 <br> 2.7.50 <br> 27.00 <br> $\$ 4.75$ | Project 80 F.M. Tuner Project 80 Decoder Project 80 A.F.U. Cambridge Calc. Camb. Memory Scientific I.C. 20 KH |  |  | 11.35 |
|  |  |  | £7.50 |  |  |  |
|  |  |  | 16.90 |  |  |  |
|  |  |  | 111.25 |  |  |  |
|  |  |  | $815 \cdot 50$ |  |  |  |
|  |  |  | ¢17.30 |  |  |  |
|  |  |  | 16.65 |  |  |  |
|  |  |  |  | [ |  | $\varepsilon$ |  | 5 |
| BC107 | 0.12 |  |  | 0.13 | 2N3053 | 0.17 |  | 0.07 0.07 |
| BC108 | 0.11 | BC214L |  | 0.13 | 2N3055 | 0.50 | 1 N 4002 | 0.07 0.05 |
| BC109 | 0.13 | BCY70 |  | 0.17 | 2N3442 | 1.50 | ind148 | 0.05 0.09 |
| BC182 | 0.11 | BCY71 |  | 0.22 | 2TX304 | 0.26 0.35 | ${ }_{709}{ }^{\text {A }}$ 91 | 0.09 0.38 |
| BC183 | 0.11 | BCY72 |  | 0.13 0.23 | $2 \mathrm{TX504}$ | 0.35 0.50 | 709 | 0.38 0.39 |
| BC184 | 0.11 | BFY50 | 0.23 0.22 | OC23 | 0.50 0.70 | $\begin{aligned} & 741 \\ & 747 \end{aligned}$ | 0.39 0.90 |
| $\mathrm{BC1}^{\text {BC22L }}$ | 0.11 0.13 | BFY51 | 0.22 0.22 | OC28 $0 \mathrm{OC35}$ | 0.70 0.60 | 747 SL301B | 0.90 0.75 |
| BC212 BC213 | 0.13 0.13 | $\begin{aligned} & \text { BS } \times 20 \\ & \text { TIP41A } \end{aligned}$ | 0.22 0.45 | OC35 | 0.80 0.30 | SL301B CA3046 | 0.75 0.75 |
| BC 213 BC 214 | 0.13 0.13 |  | 0.85 0.95 |  | 0.30 0.25 | CA3555 | 0.75 0.85 |
| 7400 | 0.19 | 7420 | 0.20 | 7475 | 0.80 | 7492 | 0.70 |
| 7402 | 0.20 | 7430 7472 | 0.20 | 7476 | 0.42 | 7493 | 0.67 |
| 7404 | 0.20 | 7472 | 0.34 | 7483 | 1.25 | 74107 | 0.45 |
| 7410 | 0.20 | $\begin{aligned} & 7473 \\ & 7474 \end{aligned}$ | 0.48 | 7486 | 0.48 | $7412 \dagger$ | 0.51 |
| 7413 | 0.35 |  | 0.42 | 7490 | 0.66 | 74141 | 1.00 |

DIECAST BOXES. $4 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in} \times 1 \mathrm{in}, 50 \mathrm{p} ; 4 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in}, 70 \mathrm{p} ; 7 \mathrm{in} \times$ $4 \frac{1}{2} \times 2$ in. $£ 1 \cdot 50$. DIL SOCKETS: $8,14,16$ pin. 16p. RESISTORS: TR5. all values, $2 \cdot 5$; TR6, $3 \cdot 5 p$. SOLDER: 22 S.W.G., $£ 1 \cdot 90 ; 18$ S.W.G., $£ 1 \cdot 80$ $\frac{1}{2}$ kilo.

VAT INCLUSIVE! POST FREE OVER £3!
49-51 ST. MARY'S ROAD, OATLANDS VILLAGE WEYBRIDGE, SURREY, KT13 9PX

Mall Ordep Only.

## Popular Semlconductors

2N456
2N457A
2N490
2N49
2N49
2N492
2N492
2N493
2N493
2N696
2N696
2N697
2N698
2N698
2N699
2N706
2N706A
2N706A
2N708
2N708
2N709
2N711
2N718
2N718A
2N718A
2N720
2N720
2N721
2N914
2N916
2N918
2N929
2N918
2N1302
$2 N 1302$
$2 N 1304$
2N1305
2N1305
2N1307
2N1308
2N1308
2N 1309
2N1671 2N16771A 2N1671B
2N1671C
2N1711
2N1907
2N1907
2N2147
2N2148
2N2160
2N2192
2N2192
2N2193 0
2N2194
2N2194A
2N2194A 0
2N2219 0
2N2219A 0.
2N222


| $2 N 2222$ | 0.21 | $2 N 38$ |
| :--- | :--- | :--- | :--- |

2N222A
2N236
2N2368
2N2369A
2N2646
2N2646
2N2647 1.
$\begin{array}{ll}\text { 2N2904 } & 0.22 \\ \text { 2N2904A }\end{array}$
2N2905 0.
$\begin{array}{ll}\text { 2N2905 } & 0.24 \\ \text { 2N2905A } & 0 .\end{array}$
2N2906
2N2906A 0.21 Orange
2N3053
$2 N 3054$
$2 N 3055$ 2N3390
2N3391
 $17 \begin{array}{lll}2 N_{3391} & 0.23 \\ 2 N_{33914} & 0.23 & 2 N_{51} 7 \\ 2 N 3392 & 0.29 & 2 N_{517} \\ 2 N 5190\end{array}$ 0.12
0.22
0.26 0.22
0.26
0.32

| .80 | 2N2907 | 0.22 | 2N4061 | 0.11 | AD150 |
| :--- | :--- | :--- | :--- | :--- | :--- | | .85 | 2N2907A | 0.22 | 2N4061 | 0.11 | AD150 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| .20 | 2N2924 | 0.14 | 2N4062 | 0.11 | AD 161 | | 2N2924 | 0.24 | 2N4062 | 0.11 | AD161 | 1.15 | 0.50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BC 171 |  |  |  |  |  |  |
| 2N4 |  |  |  |  |  |  |
| 2N2925 | 0.17 | 2N4126 | 0.20 | AD162 | 0.50 | $B Y 182 L$ | | 2N2925 | 0.17 | 2N4126 | 0.20 | AD162 | 0.50 | BCi72 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2N4289 | 0.34 | BCi82 |  |  |  |  |
| 2N2926 |  | ON161 | 1.20 | BY |  |  | $\begin{array}{ccccc}58 & \text { 2N2926 } & & \text { 2N4919 } & 0.84 \\ .99 & \text { Green } & 0.12 & \text { 2N4920 } & 0.99 \\ 20 & \text { Yellow } & 0.11 & \text { 2N4921 } & 0.73\end{array}$ AD162

AF109ABC182 | AF115 | 0 |
| :--- | :--- | :--- |
| AF116 | 0 |
| AF11 | 0 |

0.13 | BD 135 |
| :--- | :--- |
| BD 136 | 0.11 BD136

$\qquad$
AF125
AF126
AF127
$A F 139$




| Resistors |  |  | Tant Beads |  |
| :---: | :---: | :---: | :---: | :---: |
| W | Tol | Price | Value | Price |
| * | 5\% | 1 p | 0.1/35 | 14p |
| $t$ | 5\% | 1+p | 0.22/35 | 14 p |
| $t$ | 5\% | 2p | 0.47/35 | 14 p |
| 1 | 10\% |  | 2.2/35 | 14 p |
| 2 | 10\% | 6p | 4.7/35 | ${ }^{18} \mathrm{p}$ |
| 2 | 5\% | 7 p | 10/16V | 18 p |
| 5 | 5\% | 9p | 47/6.3V | 20p |
| 10 | 5\% | 10p | 100/3V | 20 p |

## Veroboard

$$
\begin{aligned}
& \text { Copper } \\
& 0.1 \quad 0.15
\end{aligned} \quad \text { Plain }
$$

$2.5 \times 34 \mathrm{in}$
$2.5 \times 51 \mathrm{in}$
$25 \times 5 \sin$
$3 i \times 3 i n$
$34 \times 51 \mathrm{n}$
0.1
36 p

## Integrated Circults-TTL Reductlons

|  | SN7400 | 0.16 | SN7409 | 0.33 | SN7430 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SN |  |  |  |  |  |


|  |  |  |  |
| :--- | :--- | :--- | :--- |
| SN7450 | 0.16 | SN7480 | 0.75 |
| SN7451 | 0.16 | SN7481 | 1.25 |
| SN7482 | 0.87 |  |  |
| SN74S3 | 0.16 | SN7483 | 1.20 |
| SN7454 | 0.16 | SN7484 | 0.95 |
| SN7460 | 0.16 | SN7485 | 1.58 |
| SN7470 | 0.30 | SN7486 | 0.45 |
| SN7472 | 0.30 | SN7490 | 0.65 |
| SN7472 | 0.44 | SN7491 | 1.10 |
| SN7473 | 0.10 |  |  |
| SN7474 | 0.46 | SN7492 | 0.75 |
| SN7475 | 0.59 | SN7493 | 0.65 |
| SN7476 | 0.45 | SN7494 | 0.85 |


| SN7495 | 0.80 | SN74151 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SN7496 | 1.00 | SN74153 | 1.09 | SN74176 |  |
| SN74100 | 2.10 | SN74154 | 1.66 | SN64180 |  |
| SN74107 | 0.43 | SN74155 | 1.53 | SN74181 |  |
| SN74118 | 1.00 | SN74157 | 1.09 | SN74190 |  |
| SN74119 | 1.92 | SN74160 | 1.58 | SN74191 |  |
| SN74121 | 0.57 | SN74161 | 1.50 | SN74192 |  |
| SN74122 | 0.80 | SN74162 | 1.58 | SN74193 |  |
| SN74123 | 0.72 | SN74164 | 2.01 | SN74196 |  |
| SN74141 | 1.09 | SN74165 | 2.01 | SN74197 |  |
| SN74145 | 1.44 | SN74167 | 4.10 | SN74198 |  |
| SN74150 | 1.44 | SN74174 | 1.80 | ) |  |


| SN74141 | $1 \cdot 00$ | SN74165 | 2.01 | SN74197 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SN74145 | 1.44 | SN74167 | $4 \cdot 10$ | SN74198 |
| SN74150 | 1.44 | SN74174 | 1.40 | SN74100 |

OPTO \& LED's
Dlodes and Rectifiers

| Do |  |  | ctil |  |  |  | OPTO \& LED' |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIV | 50 | 1002 | 200400 |  | 600 | 8001000 |  | green and yellow |  |  |  |
| 1.5 | 15p | 17p | 20p | 22p 2 | 25p 2 | 27p 30p | 0.16 diameter 31p |  |  |  |  |
| 3 | 15p | 17p | 20p | 22p 25 | 25p | 27p 30p |  | diamet | 33p |  |  |
| 10 |  | 35p | 40p$1-18$ | 47p | 56p |  | DL707 £2.35 or 4 for \& |  |  |  |  |
| 35 | $84 p$ | 92p |  |  | $2 \cdot 52$ | $3.65 \quad 4.20$ | Min | on $£ 1$ |  |  |  |
| Cathode Stud Only |  |  |  | IN3766 (35A 800pV) £3.65 |  |  |  | IN3786 (35A 1000pv) |  |  | 14. 20 |
| IN34A | 10p | BA102 | 2 25p | BA145 | 5 17p | \|BY237 | 124p | OA47 | 7\%p | OA90 |  |
| TN914 | 7 p | BA110 | 0 25p | BA154 | 12p | - BYZ10 | 35p | OA70 | $71 p$ | OA91 |  |
| 1N916 | $7 p$ | BA115 | 5 7p | BY100 | 15p | P BYZ11 | $32 p$ | OA73 | 10 p | OA95 |  |
| AA119 | ${ }^{7} \mathrm{~F}$ | BA141 | 1 17p | $8 \mathrm{BY126}$ | 6 15p | BYZ12 | 30p | OA79 | $7 p$ | OA200 |  |
| AA129 | 15p | BA142 | 2 17p | $8 \mathrm{8Y127}$ | 7 17tp | - OA9 | 10p | OA81 | Ap | OA202 |  |
| BA100 | 15p | BA144 | 4. 12p | BY140 | - 51 | 1 OATO | 20p | OA85 | 10p | OA210 |  |



Construction Klts
UHS70 Transmitter
MUE7 Aeceiver for above
EW18 Electronics dice
$\begin{array}{ll}\text { EX20 Electronic Dice + Sensor } & \mathbf{2 6 . 5 3} \\ \text { E7.79 }\end{array}$

## Mall Order

VAT All prices exelualve P. A P. 20p
TRY OUR NEW GLASGOW
SHOP

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

## ARITHMETIC TUTOR

To complement their range of computer educational aids, Limrose Electronics Ltd. have recently introduced a Digital Arithmetic Tutor.

This advanced logic trainer has been designed for teaching the principles of binary arithmetic and fourbit data word manipulation to senior students who have completed a basic course in combinational and sequential logic circuits.

The tutor consists of three general purpose 4 -bit shift registers, two 4-bit synchronous binary counters, one 4 -bit comparator, one 4-bit adder a carry store, one J-K master-slave flip-flop, four 2-input NAND gates, four 2 -input and gates and three logic inverters. Two manual single pulse generators and one continuous clock pulse generator are also available.
Logic states are displayed on the front panel by means of red light emitting diodes and interconnections are made using a 1 mm gold-plated terminal pin and patch lead system.

The equipment is accompanied by an ithustrated instruction book containing numerous computer circuits which can be constructed on the equipment. These circuits include loading and shifting of registers, 1 's and 2 's complements. addition and subtraction of 4 -bit numbers by serial and parallel methods and multiplication and division by the
shift-and-add-method. The instruction book also deals with the Octal Number System, binary fractional notation and overflow conditions in fixed point arithmetic.

Ideally suited for Universities and schools. prices of the tutor vary (approximately $£ 150$ ) and further information can be obtained from Limrose Electronics Ltd., 8-10 Kingsway, Altrincham, Cheshire, WA14 1 PJ.

## POCKET MULTIMETER

No bigger than a packet of cigarettes. the new ICE Microtest 80 multimeter combines several unique features in one compact and accurate instrument.

Covering 8 fields of measurement and 40 ranges, the meter has a $20,000 \mathrm{ohm}$ per volt sensitivity, with 2 per cent accuracy on the a.c. and d.c. scales.

The design of the meter incorporates automatic electronic regulation for zero ohms, and the movement is protected against an overload of 1,000 times in the ohmic ranges before automatic cut-out.

The mirror scale of the meter enables clear and accurate reading. Each meter is supplied with a comprehensive instruction manual, a protective case and test leads.

A brief technical specification for the meter is as follows: volts d.c., in 6 switched ranges, 100 mV to $1,000 \mathrm{~V}(20 \mathrm{k} \Omega / \mathrm{V})$; volts a.c., in 5 switched ranges. 1.5 V to $1,000 \mathrm{~V}$ ( $4 \mathrm{k} \Omega / \mathrm{V}$ ). Current d.c. in 6 switched ranges, $50 \mu \mathrm{~A}$ to 5 A ; current a.c., in 5 switched ranges, $250 \mu \mathrm{~A}$ to $2 \cdot 5 \mathrm{~A}$. Resistance, in 4 switched ranges, low ohms to ohms $\times 100$. Capacitance measurements are available from $25 \mu \mathrm{~F}$ to $25,000 \mu \mathrm{~F}$.

The meter is powered by a 1.35 V mercury battery which. in normal usage, will last up to 3 years, and a complete range of extra accessories is available. Amongst the accessories are a temperature probe $\left(-50\right.$ to $\left.+200^{\circ} \mathrm{C}\right)$, gaussmeter and a luxmeter probe.


Limrose Electronics Digital Tutor


The Microtest 80 multimeter is priced at $£ 11.95$ ex. VAT, with special terms for quantity purchase. and is available direct from Electronic Brokers Ltd., 49 Pancras Road, London, NW1 2QB.

## PROFESSIONAL <br> MICROPHONE

A professional moving coil microphone with an excellent specification and features is announced by Beyer Dynamic (GB) Ltd.

Designated type M88. it has a hypercardioid polar pattern, a frequency response of 30 Hz to $20,000 \mathrm{~Hz} \pm 2 \cdot 5 \mathrm{~dB}$, a high output, and is manufactured to a standard setting transient response and front-to-back ratio. This means that any two random units can be used as a stereo matched pair. Side attenuation at 120 degrees is approximately 23 dB and the EIA sensitivity rating is $-144 \mathrm{~dB} / \mathrm{m}$.
The design and features of the M88 make it ideal for both indoor and outdoor applications and it will withstand the rigours of professional usage, being completely unaffected by humidity and extreme temperatures. The rated load of the microphone is greater than 1,000 ohms and the 200 ohm low impedance balanced output is at a level of $-51 \mathrm{~dB} / \mathrm{m}$ at 1 kHz .
The microphone is available in two versions: the M88N with standard DIN connector at $£ 81.05$ plus VAT and the M88N(C) with Cannon connector at $£ 83.35$ plus VAT. Each microphone is supplied with a protective carrying case. Optional extras include windscreen. stands and cable transformer.

Further information and nearest stockists can be obtained from Beyer Dynamic (GB) Ltd., 1 Clair Road, Haywards Heath, Sussex, RH16 3DP.

## NOTE

The SEAS loudspeaker kits, mentioned last month, are only available in 8 ohm versions.



## EXPORTS HOLDING FIRM

Few in the electronics industry regretted the passing of 1974 with its succession of elections, budgets, industrial unrest, inflation andi general economic stress. At least 1975 promises a higher level of stability and now we are well into the first quarter of the year there are already signs that whatever the depression in the home market, mainly in entertainments products, the world is still Britain's market and that trade remains at a substantial level.

The New Year saw a flurry of activity starting with confirmation from the British Overseas Trade Board that support for exhibitions at overseas trade fairs and for outward sales missions would be greater than ever before.

Few of these exhibitions, however, were specifically for electronics companies. Their turn comes a little later in the year with a major participation in a Communications Exhibition in Moscow at the end of May as just one of the highlights in a full programme.

Quick off the mark in 1975 were Marconi-Elliott Avionics with a £1-25 million order for automatic test equipment for the US Navy and US Air Force. The equipment is for checking out head-up displays for A-7D and A-7E Corsair 2 aircraft. At the same time, sister company Marconi Communication Systems was announcing a £3 million contract for colour TV studio and OB equipment for switchover from monochrome to colour in the Egyptian TV service.
A few days later a contract worth £200,000 was announced for Marconi Mark 8 colour TV cameras for use in America.

But it's not only the truly exotic equipment that sells well. Few people are aware that Plessey, as well as being big in radar, electronic telephone exchanges and sophisticated sonar systems, have a thriving business in electronic igniters for gas stoves and boilers. In January, Plessey Windings expanded European activities by signing a contract with S.I.T., France, who will beef up markets in France, Belgium and Luxembourg.

This new agreement supplements existing arrangements in the Far East and North America. The North American breakthrough is regarded as significant because gas igniters is a cut-throat business over there. Plessey Windings is a major supplier to Caloric Corp., Pennsylvania, a principal cooker manufacturer.
Racal Group looks as vigorous as ever with Racal-Milgo high speed modems being ordered from Poland, Racal-Thermionic selling £220,000 worth of data recording equipment to French airports, and Redac Software selling computeraided design software packages to Finland, bringing Redac customers in Scandinavia up to eight including names like Saab, Asea and Tandberg. These orders all came in early January.

Muirhead celebrated the New Year with a nice little order for 23 weather chart recorders for Kenya, Uganda and Tanzania. This brought Muirhead's export orders for this type of equipment to $£ 325,000$ in three months. Chairman Sir Raymond Brown commented that Muirhead will continue aggressive exploitation of the export potential of its products.

Smaller companies are also doing well. Membrain, for example, has installed an automatic tester for computer back-planes in West Germany. It will test over 2,000 points in less than a minute. The order was taken just before Christmas. The installation was operational by January 17. Nice work!

A heartening aspect of this brief survey is that so many of the orders, and they are only a short selection, are from countries such as the United States, France and West Germany which are themselves fully developed in the electronics industry. Another is the wide geographical spread.

## WHIZZ KIDS

Gordon Pope, who led the Advance Electronics expansion programme from £800,000 turnover when he ioined Advance as general manager in 1963 to today's $£ 11$ million, now rejoices in the title of Vice-President, Gould Instruments and Electronics, Europe. This follows the acquisition of Advance by

Gould last October. We may expect to hear of further'vigorous developments in the months ahead.

You've got to move fast to keep up with Tom Jermyn who started making transistor pads in his garage as a part-time hobby and built up Jermyn Industries to a mini-multinational operating in the USA and Europe as well as the UK. But Peter Smitham, who has become the top man in the Group, second only to Tom Jermyn, is no slouch. He leapfrogged into the top spot only a little over a year after joining Jermyn to set up Mogul Electronics as Jermyn's second component distributor company. He came to Jermyn with a fine record behind him. He was the youngest divisional manager in ITT, Eurode, and has a fine academic as well as business record.

Present plans are to expand Jermyn to $£ 20$ million turnover by 1980. Latest Jermyn company is Solek Ltd., manufacturing heat pipes, a product which Jermyn Industries has been pioneering in the UK for the past two years.

And how about Clive Sinclair, well known to our hobbyist readers through his electronic kits and, more recently, through pocket calculators? Predictions in some quarters that he would overtax his capacity last year were not realised and he bounced into 1975 with vet another round of price cuts on his established calculators, some new models, and a new electronic multimeter.

On February 1 the standard Cambridge calculator came down to $£ 12.95$ (very near the £10 I was predicting in this column a year or so ago) and the Scientific came down to $£ 19.95$. His new range, announced at the same time, are equivalent to desk-top models though Sinclair prefers to call them "hand-held" indicating they will go in a brief-case, if not in the pocket. He claims to hold some 30 per cent of the calculator market in the UK. plus considerable exports with a production of some 70,000 units a month.

While majoring on calculators he is not nealecting his other product lines. His original electronic multimeter, despite its low price, was a flop. It didn't sell at all well. Nobody liked the Nixie indicators. This year's model is very superior and has an 8 mm 7 -segment LED readout on a front panel that looks and is highly professional although, at under £60, the instrument is at the low end of the price range. The old DM1 was not for me. But I'm now using the new DM2 very happily in mv own workshop.

This year should also see Sin clair's lona-awaited pocket TV set coming to the market place as well as an electronic digital watch.

# Complete the coupon and wells send you our new catalogue.Completelyfree. 

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit, every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now and we'll send you your free copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radio gear,hi-fi equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading. And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs،
Heath (Gloucester) Limited, Dept. PE-45, Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451.

A new oscilloscope from the Heathkit range.
Marine direction finder. with digital read-out.


#  STPPMT ITETST 

132 Big Pages includes dozens of usefui and interesting clrcults you can bulld: data: hundreds of pletures: translstor equlvalents Ilst and hundreds of new lines. Packed with Information. ONLY 35p.

## 

- RESISTORS

CARBON FILM
FW $1 \Omega-1 M \Omega 5 \%$. $M \Omega-10 M \Omega 10 \%$ E12.
 METAL OXIDE WIREWOUND
3W 0.22 ก. $0.27 \Omega, 0 \quad 33 \Omega \cdot 0.47 \Omega \quad 10 \%$ n: $5 \% 17$ p each Other tanges stocked Seevurcatalogue for delails.

E12 10. 12. | E 12 | $10,12,15$ | $18,22,27$ |
| :--- | :--- | :--- |
| 82 and decades E2d 11 | $13,39,47,56.68$ |  | 82 and decades. E24 11, 13, 16, 20, 24, 30

$36,43,5 \uparrow, 62,7591$ and decaoes 36, 43, 5 $\uparrow, 62,7591$ and decades

## - POTENTIOMETERS

## track jin splndle.

 $250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{Mn}, 2 \mathrm{M} \Omega$, Log. Single-gang 16p. Li wog or Lin. Singie-gank Log or Lin. Dual-gang with. out switch 49p. Slider
cased:

overall
over cased overall lengtr Values avaliable $10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{~K}, 250 \mathrm{k}$ Gang 36 p . Log Single Gang 30p. Lin or Log Dua. Gang 45p.
Presets. 0. 1W vert. or hor $2 \mathrm{k} \Omega .7 \mathrm{k} \Omega$. $10 \mathrm{k} \Omega .22 \mathrm{k} \Omega$ $47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 220 \mathrm{k} \Omega, 470 \mathrm{k} \Omega$

- CAPACITORS
Sub-miniature
Sub-miniature
Sub-miniature


## - TRANSISTORS

 AND DIODES| ${ }^{\text {AC }} 127$ | 18p | BY126 | p |
| :---: | :---: | :---: | :---: |
| AC128 | 18 | BY127 | 13p |
| AC176 | 17p | BY164 | 49p |
| AD161. |  | BZY88 |  |
| 162 MP | 93p | series | 3 13p |
| BA100 | 9p | MPF102 | 2 36p |
| BA145 | 22p | OA91 | $6 p$ |
| 8 Cl 107 | 10p | OA200 | 7 p |
| BC108 | 10p | OC71 | 20p |
| BC109 | 13p | SC146D | 88p |
| BC109C | 15p | T1S43 | 20p |
| BC142 | 23p | W005 | 30p |
| BC143 | 26p | WO4 | 33p |
| BC147 | 10p | 1 N914 | 4 p |
| BC148 | 10p | 1 N4001 | 6 p |
| BC149 | 12p | 1 N 4002 | $6 \frac{1}{}{ }^{\text {P }}$ |
| BC168C | 12p | 1 N4003 | 7 p |
| BC 169C | 12p | 1 N 4004 | Tip |
| BC178 | 17p | 1 N 4005 | 8 p |
| BC182L | 10p | 1 N4006 | 81 p |
| BC183L | 12p | 1 N 4007 | 9 p |
| BC 184L | 12p | 1N4148 | 4p |
| BC212L | 14p | 2N1302 | 20p |
| BC213L | 15p | 2N1303 | 20p |
| BC214L | 18p | 2N1304 | 30p |
| BCY71 | 22p | 2N1711 | 240 |
| BD131 | 45p | 2N2219 | 25p |
| B0132 | 54 p | 2N2646 | 45p |
| BD131/2M | MP | 2N2905 | 33p |
|  | 1.-20 | 2N2926 |  |
| BD135 | ${ }^{36}$ p | Or | 10p |
| 80139 | 49p | Ye | 12p |
| 80140 | 69p | Gn | 13p |
| BF258 | 35p | 2N3053 | 18p |
| BF259 | $25 p$ | 2N3055 | 49p |
| BFX29 | 30 p | 2N3819 | 22p |
| BFX30 | 33p | 2N5459 | 51p |
| BFX84 | 30p | 7400 | 18p |
| BFX85 | $36 p$ | 7413 | 39p |
| BFX87 | 30 p | 7447 | \$1. 10 |
| BFX88 | 25p | 7473 | 54p |
| BFY50 | 20p | 7474 | 45p |
| BFY51 | 220 | 7490 | 93p |
| BFY52 | 200 | 7493 | 93 p |
| L.E.D. RED |  |  |  |
| $2 \mathrm{mcd} \frac{1}{6}$ in |  |  | 15p |
| Panel mig clip |  |  |  |
| (Other colours and 7-seg. displays in our catalogue) |  |  |  |
|  |  |  |  |

## CIRCUITS

## CA3046 (14-pin DIL

 AC 1310 P (14-pin) MC1496 (14-pin DIL) MFC 4000 BMFC6040
NE555V (8-pin bIL) SG1495 (14-pin DIL) SG3402 (14-pin DIL)
$\mu$ A74!C (8-pin DIL) UA741C (14-pin DIL) A 748 C (8-pin DIL 2N444 (TO18) DHL) 39p VOLTAGE REGULATORS HA7805 5V 1.5A (TO3) 81.75 HA7815 15V 1.5 A (TO3)
MVR $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} .500 \mathrm{~mA}$ (TO3) $\begin{array}{ll}\text { HA78M05 } 5 \mathrm{~V} 500 \mathrm{~mA} & \mathrm{E} 1.30 \\ \text { HA78M } 15 & 15 \mathrm{~V} 500 \mathrm{~mA} \\ \mathrm{E} .30\end{array}$ HA78L05 5 V 100 mA (TO92) 60 p HA78L15 15 V 500 mA (TO92) 60p UAT23C Variable 2 to 37V Our catalogue contains oup catelogue contains for all the above I.C.s and meny more.

## DISCOUNTS

$|$| Detalis in our catalogue. Start |  |
| :--- | :--- |
| collecting | MES |
| Vouchers NOW! |  |

BCD DUTPUT SLIDE SWITCH
Marks the end of the old.
tashiched With 7 -segment type ead-out. Fult delails in our catalogue $81 \cdot 38$.

## PLUGS AND SOCKETS

## Din



JACK CHASSIS SOCKETS
2.5 mm open-type metal
3.5 mm open-type metal
in Sid Mono open-type
metal
with 2 break contacts In Std. Stereo openntype metal
In Sta. Stereo mouided

with 3 break contacts 18 p

## PHONO

Plastic-topped plug
Screened plug Chassis socket iwin
$5 p$
12p
4 p 부그를

## MAINS CONNECTORS

## P360 3-pin 1.5A Chassis

 P360 3-ptn 1.5A Chassisplug with line socket
SA2190 3 -pin 5A Chassis plug
SA1862 Line socket for

## 33p

 SA1862SA 4730 P437 3-pln 5A Chassis 25p
28p socket with IIne plug 65p

## TRANSFORMERS 艮

LT 700 mkn . Output. Pri. $1 \mathrm{k} \Omega$;
Sec. $5 \Omega 200 \mathrm{~mW} 50 \mathrm{p}$; Sub-min mains $6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}-950$
 approx. $30 \times 27 \times 25 \mathrm{~mm}$ ).
Min mains $0-6 \mathrm{~V} 500 \mathrm{~mA}, 0-6 \mathrm{~V}$
$\begin{array}{llll}500 \mathrm{~mA} & £ 1.36 ; & 0-12 \mathrm{~V} & 250 \mathrm{~mA}, \\ 0-12 \mathrm{~V} & 250 \mathrm{~mA} & £ 1.36 ; & 0-20 \mathrm{~V}\end{array}$ $150 \mathrm{~mA} .0-20 \mathrm{~V} \quad 150 \mathrm{~mA} \mathrm{E} 1 \cdot 36$; $0-24 \mathrm{~V} \quad 125 \mathrm{~mA} . \quad 0-25 \mathrm{~V} \quad 125 \mathrm{~mA}$ Mains MT3AT: Sec: 12-15-20-$24-304$ 2A £3-60.
1A, 0-15-20V 1A £3.98.

## ORGANS

A Full Scale Electronic Organ That You Can
FULL CONSTRUCTIONAL DETAILS IN OUR LEAFLETS Leaflet MES51: Price 15p, describe polyphonle organ whicn can later of a large sophisticated instrument. Leaflet MES52: Price 5 p continues the description of the
MES50 series organs and shows you how to and shows you how to add a second keyboard

## THE AMAZING DMO2

## A ready-built, tested and guaranteed digital

 master oscillator. Accurately generates the top 13 notes for your organ system and reduces the complete tuning of your organ to ONE SIMPLE adjustment. New design gives selectable C to C ortput ranges of (approx. $4 \mathrm{k} \Omega$ to $8 \mathrm{k} \Omega$ (highest) 16 Hz to 32 Hz ! And this new compatibie design is even smaller: only $3.5 \mathrm{~h} \times 3.7 \mathrm{in}$ Including goldplated edge connectionDMO2T includes buift in variable depth and rate trequency shift tremulant.
DMO2 £12.25
DMO2T $£ 14.25$ SAJ110: 7-stage frequency divider in 14-pin DIL package. Sine of square wave input. Square wave outpu may co converted to saw-tooth Keyboards high quality, fully sprung.
Fiat-front 48-note $F$ to $E$
Sloping-front 49 -note C to $\mathrm{C} \quad \begin{aligned} & \mathbf{1 5 . 9 5} \\ & \mathbf{\$ 1 5 . 9 5}\end{aligned}$ $\begin{array}{ll}\text { Sioping-front } 61 \text {-note } \mathrm{C} \text { to } \mathrm{C} & \mathbf{5 1 5 . 9 5} \\ \mathbf{2 0 . 4 4}\end{array}$ Swell pedal with $10 \mathrm{k} \Omega \log$. pot $\quad \$ 6.33$ "Spring Line Unit (short) $£ 3.05$ *Spring Line Unit (long)
 *Reverberatlon Driver Module $\quad$ E5.34 T.A.E. piease for full detalls: ieatlet MES24.
Gold-ciad phosphop-bronze-wire 30 p per yd Palladum earth bar 15 p per octave per yd Contact Blocks 2-make (GB2) Stop Tabs rocker type not engraved (white.
red, grey or black) with DPDT switch red, grey or black) with DPDT switch

## SPECIAL OFFER

5W Audio Amp I.C. T8A810S with data and circuits.

Price $£ 1.00$

## "ELECTRONICS TODAY INTERNATIONAL' <br> 4600 SYNTHESISER

We stock all parts for this brilliantly designed syntesiser. This includes ail the P.C.B s, metaltruly professional finish. Authoritative opinlons agree the E.T.I. International Synthesiser is
technically superior to most of todays models technically superior to most of todays models.
Complate constructional details in our booklet Complete constructional details in our booklet,
avellable shortly. S.A.E. please for price list and avallable shortly. S.A.E. please for price list and
specification. We also stock all parts for the specification. We also stock al
P.E. Synthesiser, and Minisonic
P.O. Box 3, Rayleigh, Essex. Tel. Southend-on-Sea (0702) 44101

VAT Please add $8 \%$ to the final total. Post and
(15p handling charge on orders under $£ 1$ )
First-class post pre-paid envelope supplied free with every order


## PRTENTI RIED IEM

TRANSDUCER IMPROVEMENTS

In BP1 364 669, STC Ltd. suggest some simple improvements to moving-iron transducers of the type used in some loudspeakers and telephone handsets. The basis of the technique described could be of interest to the experimenter.

Fig. 1 shows a conventional, rocking armature transducer (either a microphone or loudspeaker). A permanent magnet has pole piece members between which an armature is pivoted. The armature is coupled to a diaphragm and speech coils are wound on the pole pieces.

The passage of speech currents through the coils causes the armature to rock, or rocking of the armature induces currents through the coils. The arrangement works well until the armature is deffected too far and sticks or "freezes" against one pole of the magnet.

Diaphragm Fig. 2 shows the patented arrangement for preventing such freezing. The armature carries small magnets, one each side of its pivot point. The armature magnets lie between two end magnets and two front magnets. The polarity of the magnets is such that the armature floats freely in the central position as shown.

If currents are passed through the coil wound round the armature in such a direction as to make the leit hand end of south polarity, then that end moves upwards towards the end magnet 1. Reversing the current direction causes an opposite movement, and the


Fig. 1.


Fig. 2.
passage of an alternating current through the coil produces a corresponding vibration of the diaphragm. Similarly, movement of diaphragm induces currents in the coil.

Because of the repulsive forces between the magnets there can be no freezing of the armature and relatively rough-and-ready constructional techniques will provide a floating armature of low stiffness.

## SPARK-FREE SUPPLY OF A.C.

In BP 1366 134, Victor Products (Wallsend) Ltd., of Northumberland, claim a simple electromagnetic coupling system for supplying. a.c. supplies to loads in hazardous environments, such as inflammable gas atmospheres.

The obvious risk under such situations is that a spark will be generated when a connection is made or broken. It is not new to suggest using two separable halves of a transformer to provide sparkfree connection and disconnection. The primary of a transformer is provided in a wall socket and the secondary is included in a plug. When the plug is pushed into the socket the flux from the primary induces current in the secondary. The problem is ensuring that the primary does not drain current and overheat when the plug is disconnected.

The inventors show in their patent a socket with a primary winding and a plug with a secondary winding. To prevent current drain from the primary when the secondary is removed, an inductor is connected in series with the primary and a capacitor is connected in parallel with the inductor and primary. This parallel circuit is in series with a further inductor.

When the plug (sec) is coupled with the socket (pri) the circuit is tuned to the supply frequency. When the secondary is separated the inductance of the circuit decreases to cause detuning. Thus the current flowing through the primary also decreases.

As an example of component values, where the effective inductance of the primary decreases from 100 mH to 10 mH on removal of the secondary, a $0.16 \mu \mathrm{~F}$ capacitor and a 8 mH inductance was used to provide effective limiting for a supply frequency of 1 kHz .

## SPOT WELDING

In BP1 370 003, the Grumman Aerospace Corporation of Long Island, New York, explains how it is possible to spot weld by using a massive magnetic field. This creates a pressure on a metal workpiece and deforms it.

The Americans now suggest generating stress waves electromagnetically, to render the metal momentarily plastic. This they claim to have achieved with a device and circuit as shown in Fig. 1.

The power supply comprises a d.c. source, switch S1 and a capacitor bank. The capacitors are charged by the d.c. source when S1 is closed.

When charging is complete, switch S2 is closed to feed a high amperage current pulse of short duration to a pancake coil. The coil produces a high intensity magnetic field pulse which intersects a driver of aluminium or hardened copper. The driver acts as a one turn secondary winding of a transformer and the massive current which is induced in the driver sets up a high intensity magnetic field around it.

The electromagnetic repulsion created by the interaction of the two high intensity fields generates a stress wave in the driver, which is propagated through a focussing cone towards a tip. The combined effect of the backing mass and the stress from the tip deforms the workpiece and causes a spot weld.

The inventors claim success with voltages of between 4 and 7 kV . focusing cones of hardened steel, and a pancake coil of 18 turns of rectangular copper wire.



## TUAC DISCOTHEQUE MIXER WITH AUTO FADE



Designed for the discerning D.J. of protessional standard. Offering a vast variety of functions Controls: Mic Vol; Tone, over-ride depth; auto/ Manual Sw: Tape Vol; L \& R Deck Faders; Deck Volume; Treble and Bass; H. Phon Vol Selector; Master Vol On/Off Sw. Max output IV RMS.

Specification: Deck Inputs- 50 mV into $1 \mathrm{M} \Omega$; Deck Tone Controls-treble + 20-10dB at 12 kHz , Bass $+22-15 \mathrm{~dB}$ at 40 Hz : Mic Input-200 ohms upwards, 2 mV into $10 \mathrm{k} \Omega$; Mic Tone Control-Total Variation Treble 15 dB . Total Variation Bass 10 dB ; Tape Input -30 mV into $47 \mathrm{k} \Omega$ : Power Requirements-30-45 volts at 100 mA
£26.50
PANEL SIZE $18 \times 4 \frac{1}{2} \mathrm{in}$. DEPTH 3in

HOW TO ORDER BY POST
Make cheques/P.O.s payable to TUAC LTD (PE2/3) or quote Access/Barclay Card No. and post to TUAC LTD (PE2/3)
163 Mitcham Road, London: SW17 9PG
We accept phone orders against Access/Barclay Card Holders Phone: 01-672.3137/9080

Arthur Sallis Ltd., 28 Gardner Street, Brighton, Sussex. Tel 65806. Bristol Disco Centre, 86 Stokes Croft, Bristol 1. Tel. 41666. Socodl, 9 The Friars. Canterbury. Tel. 60948. Cookles, 132 West Street, Crewe. Tel. 4739 or 581202 . Calbarte Audlo, 88 Wellington Street, Luton. Tel. 411733. A1 Muslc Centre, 88 Oxford Sireet, Manchester. Tel. 061-236 0340. Damon Electronlcs, 99 Carrington Street, Nottingham. Tel 53880 , Mitchell Electronlcs, 64 Winchester Street, Salisbury. Tel 23689. Wec LIghting, 10 Commercial Road, Southampton. Tel. 28102

## 3 CHANNEL LIGHT MODULATOR

- R.C.A. 8 Amp Trlacs 1000W per channel Each channel fully suppressed and fused
- Master control to operate from 1W to 100W Full wave control-12 easy connections


MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EQUIPMENT SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT OPEN 6 DAYS A WEEK 9.30am-6.00pm TUAC TRANSISTOR UNIVERSAL AMPLIFICATION CO.LTD. 163 MITCHAM RD-LONDON SW17 9PG 01.672 3137/9080


## MULLARD POLYESTER CAPACITORS C280 SERIES

$250 \vee$ P.C. Mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 34 \mathrm{p}, 0.068 \mu \mathrm{~F}$

MULLARD POLYESTER CAPACITORS C296 SERIES
$0.015 \mu \mathrm{~F} 0.022 \mathrm{~F}, 0.033 \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ ip. $0.33 \mu \mathrm{~F}, 12 \mathrm{o}$. $0.47 \mu \mathrm{~F}$ 14D 160 . $0.01 \mu \mathrm{~F}, 0.15 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 31 \mathrm{p} .0 .1 \mu \mathrm{~F}, 41 \mathrm{p} .0 .15 \mu \mathrm{~F}, 5 \mathrm{p}$

MINIATURECERAMIC PLATE CAPACITORS $50 \mathrm{~V}:(\mathrm{pF}) 22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390.470$
$560,880,1 \mathrm{~K}, 1 \mathrm{~K} 5,2 \mathrm{~K} 2,3 \mathrm{~K} 3,4 \mathrm{~K} 7,6 \mathrm{~K} 8,(\mu \mathrm{~F}) 0.0110015,0.0220 .033,0.047$ $2 \neq \mathrm{p}$. each $011,30 \mathrm{~V}, 5 \mathrm{p}$.
POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$
(pF) 10, 15, 22, 33, 47.
$4700,6800,10,000,45 \mathrm{p}$.

RESISTORS
CF-High Seab Carbon Film, $5 \%$ MF-High Stab Metal Film, $5 \%$.


> Size mm $2.4 \times 7.5$ $3.9 \times 10.5$ $5.5 \times 1.5$ $3 \times 7$ $4.2 \times 10.8$ $6.6 \times 13$ $8 \times 17.5$
or valut mixing prices, please refer to our catalogue. (Price in pence each)
PRESET SKELETON POTENTIOMETERS
MINIATURE 0.25 W Vertical or horizontal 6p each IK, 2K2,
4K7, 10K, ete. up to IM $\Omega$
SUB-MIN O.05W Vertical, $100 \Omega$ to $220 \mathrm{~K} \Omega 5$ peach.
B. H. COMPONENT FACTORS LTD.


## ana a a $\square \square \square$

## 240 V - 50 Mz trom your 12 V car batery

$25 \mathrm{~W}-53.90+30 \mathrm{p} \quad 8 \mathrm{p}$
 $75 W-59.96+75 p_{0} 80$

50W-E18.30-800 0 \&
$300 \mathrm{~W}(24 \mathrm{~V})-£ 22 \cdot 70+£ 1.05 \rho_{P} \&_{p}$
Allice list sent on receipt of stamped addressed envelope.
250V-50Hz-150W P.W. AUTOMATIC EMERGENCY SUPPLY
and switchas over automatically from battery charging to invertor operation. \&i 10 P \& P COMPLETE FLUORESCENT LIGHT INYERTOR KIT
$8 \mathrm{~W}-12 \mathrm{~V}$-Fluorescent light suitable for tents caravans houses boats and secondary llghting for factofies, hotels etc f2in-8W $\mathbf{2 2} \cdot 90+25 p$ p \&


TRANSFORMERS AND COILS
Both high volume and small order capacity available for Mains. R'F and I.F Transformers. Before you buy elsewhere let us quote you and see what you save V.A.T. at $8 \%$ included
astro electronics, ioa springbank road. chesterfield, derbys

If you have difficulty in obtaining

## PRACTICAL ELECTRONICS

Please place a regular order with your newsagent or send I year's subscription ( $£ 3.85$ ) to Subscription Department, Practical Electronics, Tower House, Southampton Street, London WC2E 8QX

## INSULATED

 TERMINALS vailable Black, Red White, Yellow. Blue, andGreen. Brand New 12 p each.
 Available in D.C. Amps 1, 5 ,
$10,15,20$ or A.C. Amps $1,5,10,15,20$, Voltmeter
Post $15 p$.


600 WATT DIMMEA SWITCH Easily fitted. Fully guaranteed by makers. Will control up to 600 W of lighting
except fluorescent at mains voltage. except fluorescent at mains voltage. Complete with
$\mathbf{1 2 . 7 5}$. Post $25 p$.

RELAYS SIEMENS, PLESSEY. E
MINIATURE RELAYS

| Col. (1) | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
|  | 52 | 4-8 | $2 \mathrm{c} / \mathrm{o}$ | 70p* |
| Col. (2) | 58 | 5-9 | $6 \mathrm{c} / \mathrm{o}$ | 80p |
| Working | 185 | 8-12 | 6M | 60p* |
| d.c. volts | 230 | 9-18 | $2 \mathrm{c} / \mathrm{o}$ | 70p* |
| Col. 3 | 430 | 15-24 | $4 \mathrm{c} / \mathrm{o}$ | 80 p * |
| Contacts | 700 | 12-24 | $2 \mathrm{c} / \mathrm{O}$ | 60p* |
| Col. (4) | 700 | 16-24 | 4M 2B | 60p* |
| Price | 700 | 16-24 | $4 \mathrm{c} / \mathrm{o}$ | 80 p * |
|  | 1.250 | 18-36 | $2 \mathrm{c} / \mathrm{o}$ | 60p* |
| HD = | 2,500 | 31-43 | $2 \mathrm{c} / 0 \mathrm{HD}$ | 60p* |
| Heavy duty | 2.500 | 36-45 | 6 M | $60^{60}$ |
|  | 9,000 | 40-70 | $2 \mathrm{c} / \mathrm{o}$ | $60{ }^{\text {P }}$ |
|  | 15 k | 85-110 | 6 M | 60 p* |

OPEN TYPE RELAYS
6 YOLT D.C. make contacts $\mathbf{3 5 p}$. Pose 10 p
3 c/o 5 amp contacts. 70 ohm coil. 75p. Post 10p
$3 \mathrm{c} / 05 \mathrm{amp}$ concacts. 120 ohm coil. 75 p . Post 10 p
$24 \mathrm{VOLT} D \mathrm{C}$ 2 HD c/o 700 ohm coil. 75 p . Post 10 p
4 e/O 300 ohm coil. 85p. Post 10 p .
ENCLOSED TYPE RELAYS
24 VOLT A.C. MIg. by ITT. 3
55p. Post lop. Base I5p
$\mathbf{5 5}$ VOLTA.C. RELAY
$3 \mathrm{~h} . \mathrm{d} . \mathrm{c} / \mathrm{ocontacts}$. Price 55 p . Post 10 p . Base 15 p . 100 VOLTA.C. 2 s/o sealed type. 75p. Post 10 p Base 5 p
$\mathbf{2 4 0} \mathrm{VOL}$
$3 \mathrm{~h} . \mathrm{d}$. e/o contacts. Price 75 p . Post 10 p . Octal $\mathbf{2 3 0 / 2 4 0}$ VOLTA.C. RELAY. Mfg. by Arrow 2 h.d. I $5 \mathrm{amp} \mathrm{c} / 0$ contacts. Amp connectors. Price fl . Post 10 p
$220 / 240$
3 c/o 5 amp contacts. Sealed. MIg. ISKRA EI-25. Post 10p. Base I5p extra.
CLARE-ELLIOTT TYPE RPT641 G8
CLARE-ELLIOTT TYPERP7641 G8
Miniature relay. 675 ohm coil. 24 Volt D.C. 2 clo. 70 post paid. 20 amp contacts. Cl .25. Post 10 p Many others from stock-phonefor details.
VERY SPECIAL OFFER MINIATURE ROLLER MICRO SWITCH. 5 amp. c/o contacts.
NEW. Price 10 for C 1.50 . Post 10 p . (Min. order 10). As above less roller Ditto press to break, 20 ror El l .50 . Pose 10 p

SUB-MINIATURE REED RELAY $3-9$ volt d.c. Outstanding
fl for six, $f l .50$ for only
Post 15p (Min. order
ГRIACS

GENERALELECTRICPOWER-GLASTAIACS 10 amp. Glass passivated plastic triac. Latest device from U.S.A. Long term reliability. Type $5 C 146 E$
10 amp. 500 PIV. EI.00. Post 5p. (Inclusive of data and application sheet.) Suitable Diac 18p.

## 230/250 VOLT A.C. SOLENOID

 Approximately 1itlb puPrice $\mathbb{1} 1.00$. Post $15 p$.

24 VOLT DC SOLENOIDS
UNIT containing I heavy duty solenoid approx. 251b pull I inch travel. Two $x$ approx. Ilb pull $\frac{1}{2}$ inch 24 volt d.c., 1 heavy duty single make relay. Price 2.50. Post 60p. ABSOLUTE BARGAIN CENTRIFUGAL BLOWER Mig, Airflow Developments Ltd. Precision continuously rated,
smooth running, $230 / 240 \mathrm{~V}$ a.c.
mooth running, $230 / 240$.
motor. 66.50 . Post 50 p.

## All Mail Orders-Callers-Ample Parking Dept. PE4, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB

 Phone 01-995 1560Showroom open Mon,-Fri
variable voltage transformers INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V All Types SHROUDED TYPE 200 watt ( 1 amp ) 69.00

## $0.5 \mathrm{KVA}\left(2 \frac{1}{2} \mathrm{mp}\right)$ (MAX) $£ 10.00$

$2 \mathrm{KVA}(10 \mathrm{amp})(M A X) \in 28.10$
$3 \mathrm{KVA}(15 \mathrm{mp})(\mathrm{MAX}) \in 31.25$
$4 \mathrm{KVA}(20 \mathrm{amp})(\mathrm{mAX}) \quad \pm 72.50$
. 37.5 amp (MAX) $\leqslant 102.50$


CPEN TYP I amp (panel mount) $£ 9.00$
L.T. TRANSFORMERS
$0,10,17,18$ Volt at 10 amp . 67.90 . Post 60 p . $\begin{array}{ll}0.6,12 \text { olr at } 20 \mathrm{amp} & \text { E9. Post } 60 \mathrm{p} \text {. } \\ 0.12,24 \text { Volt at } 10 \mathrm{amp} . & \text { c9.20. Post } 60 \mathrm{p} \text {. }\end{array}$ 0.6 , $12,17,18,20$ Vole at 20 amp . 10.40 . Post 60 p . Other types to order at short notice-Phone your

## AUTO TRANSFORMERS

## Step up step down

$0-115 / 200 / 220 / 240$ Volts. 75 watt $\mathbf{E 2 . 6 4}$. Post 36 p . 150 watt 63.18 . Post $36 p$. 300 watt 66.20 . Post 50 p . 500 watt 69.20 . Post 65 p . 1000 watt C 12.00 .
Post 80 p .

300 VA ISOLATING TRANSFORMER
$115 / 230-230 / 230$ volts. Screened. Primary two
separate $0-115 v$ for 1150 or 230 volt. Secondarytwo 115 V at 150 VA each for 115 or 230 volt outpue. Can be used in series or parallel connections. Fully
tropicalised. Length 13.5 cm . Wideh 11 cm . Height 13.5 cm Weight 15 lb .
SPECIAL OFFERPRICE 55. Carr. 80p. $230 / 140$ VOLT A.C. MINIATURE MOTOR. ROP.M. Price \&ic. Post lop.

## BODINE TYPE N.C.I.

 GEARED MOTOR(Type J) 71 r.p.m. corque 10 Ib in.
Reversible
i/70th h.p. cycle 0.38
Reversible 1/70th h.p. evcle 0.38
amp. (Type 2) 28 r.p.m. zorque 20
amp. (Type 2) 28 r.p.m. zorque 20
Ib. in Reversible $/ / 80 t h$ h.p. 50 cycle 0.28 amp
b. In Reversible $/$ Roth h.p. 50 cycle 0.28 amp.
The above two precision made U.S.A. motors
offered in 'as new' condition. Input voltage of motor
115 V A. . . Supplied complete with transformer for
$230 / \mathbf{2 4 0 V}$ a. C. input.
Price, either type 66.25 . Post 50 p or less trans-
Price, either type 66.25
former $£ 3.75$.
'FRACMO' 240 VOLT A.C.
50 cycle SINGLE PHASE GEARED MOTOR
33 r.p.m. 301b. ins. Reversible Firted With mounting feet.
Brand New 14.
Post 60p.


9-12 VOLT D.C. GOVERNED REVERSIBLE MOTOR
Machine cut gear erain, giving
final speed or 2 r.p.m. with cam driving 3 sub-miniature micro. switches (removable). Spild te
12 mm long 6 mm dia. Bult to
 PO spec. in heavy meral
case. 63.75 . Post 25 .

## POWER RHEOSTATS : : $\ell$

 rated
25 WATT $10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} / 1 / 5 k / 2 \cdot 5 k$ ohm. El.70. Post 10 p.
$50 \mathrm{WATT} 1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k}$ ohm $£ 2 \cdot 10$. Post 10p
100 WATT $/ 15 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k} /$ $\mathbf{5 k} / 5 \mathrm{k}$ ohm $\mathbf{\$ 3 . 3 0 \text { . Post } 1 5 \mathrm { p } \text { . }}$.
Black Silver, Skirted knob calibrated in Nos. $1-9$ Black Silver, Skirted knob calibrated in Nos.
1tin. dia. brass bush. Ideal for above 22p each.

## INSULATION TESTERS

 Test to I.E.E. Spec. Rugged metalconstruction. suitable for bench or
field work constant speed clutch. field work. constant speed clutch.
Size I.Bin, W.4in, H. 6in, weight 6/b.


All prices are subject to
$8 \%$ VAT. ( 8 p in the E )
To ail orders add $8 \%$ V.AT to total value of goods including carriage/ packaging.
SERVICE
TRADING CO

STROBE! STROBE! STROBE:
Build a Strobe Unit, using the latest type Xenon
white light flash tube. Solid state timing and white light flash tube. Solid state timing and
triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation. RANGE OFFOUR STROBE KITSFROM STOCK. PRICES FROM $£ 6.30$ to $\mathbf{6 2 2}$,


## PROGRAMME TIMERS

230/240V Each cam operates a c/o micro
switch. Ideal for lighting effects.

## animared displays, ecc. Ex equipmen

## tested.

2 cam model. $£ 2.00$ post 30 p
$\begin{array}{ll}4 \mathrm{cam} \text { model. } & \mathbf{~} 2.50 \text { post } 30 \mathrm{p} \\ 8 \mathrm{cam} \text { model. } & \mathbf{~} 4.75 \text { post } 35 \mathrm{p}\end{array}$
8 cam model. 64.75 post 35
8 cam model, each camfully adiustable. 6 r.p.m,
M.f.g. by Magnetic Devices. $£ 7.50$. Post 30 p.

## A.C. MAINS TIMER UNIT Based on an electric clock, with 25 amp. single pole switch, which can be preses for any period up to 12 hrs ahead of time, from 10 mins. to additional 60 min . audible for Tape Recorders. Lights.

 Electric Blankets, erc. Ateractivesatin copper finish 20p. (Total inel. VAT and Post E2.38).VENNER TIME SWITCH TYPE MSQP
at any $00 / 250$ olt 2 -ON/2-OFF every 24 hour andinperfect condition $\mathbf{4} 4.75$. Post 25p

COIN MECHANISM (Ex London Transport) Unit containing, selector mechanism for $10,2 p$ and
$5 p$ coins. Micro switches, relays, solenoid operated hopper. 24 volt D.C. Precision built to high standard. Incredible VALUE at only $\mathbb{2}-50$. Post 60 p .
"STC' 6" RED ALARM BELL 24/48 volt DC. Brand New. rice E4. Post 50 p
'GENTS' 6" ALARM BELL


200/250V AC/DC. Brand New. Price 65. Post 60p.

9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576


D-TER L-Q C K-ING
PLASTIC STGRAGE DRAWERS
 devised for storing smal pares and components
resistors, cmpscitors. diodes, eransistors, etc. Rigid plastic units interlock together in vertical and horizoneal combinations. Transpapene plastic drawers have label slots. 10 and 20 have space dividers. Build up any size cabinet for wall, bench or table top.
buy at Trade prices!
SINGLE UNITS (ID) (Sins $\times 2$ ins $x$ 2 fins). $\angle 2$ DOZEN.
DOUBLE UNITS (2D) (5ins $\times 4$ tins 2tins). ©3.50 DOZEN.
TREBLE (JD) C3-50 for 8
DOUBLE TAEELE 2 drawers, in one outer case (6D2), C4.00 for 8.
EXTRALing Size (6DI) 44.50 for 8 . PLUS QUANTITY DISCOUNTS!
Orders 615 and over DEDUCT $5 \%$ in the 6 Orderi 630 and over DEDUCT $7+\%$ in the 2 PACKINGIPOSTAGE/CAMRIAGE: Add 40p to all erders under (10. Ordars C10 and over. sacking/pentage/capriage Irse.
QUOTATIONS FOR laRGEA QUANTITIES Please add 5\% V.A.T. se eotal romiseance
FLACDigNis (Dopt. PE4). 124 Crickiewood Tol. $01-4504844$

## OSMABET LTD wo mext imenomen

 750W. E18. 60 ; 1000 W . 280 .25, atc.
LOW VOLTAOE TMAMEFOMMERS




Lr TaAmpronmene TApped eic. Prim me/seoy 0-10-12-14-15-10 2A. ES. 3n: AA. EA. 8 .


MIDGET RECTIFIER TMAN BFOMMER




## maime thamspormens

 $425-0-425 \mathrm{~V}$ 250 MA. 6.3 VV CT 4 A . S. 3 VV CT 4 A

O/P TRAMAFORMERS FOR DOWEN AMPLIFIERE
 MRT/10. Tapped multi O/P IOW ©4.
o.E.c. mamual of powen amplipiens Covering vative amplifiere of 30 W to soow 3sp. LOUPGPEAKERA FOA AMPLIPRAE
BAKER 25W. 67.00; 35W to. H0; HI-FI Major Module

 Loudspankes
2 tin 0 or $75 \Omega, 24$ in 8 or $25 \cap$, 3 3n $3,2.25$ or $33 n$, 34 in 8 or
 apEAKEM AUTO MATCHINO TRANSFONMER 12W 3 to 10 or 15 L up or down. E1.sf.
 Inetant ermaura. eny diemater tapo apoole. eqeasette
sYCCMAONOUS OEAMEO mOTOME, zeo/acey a.e. Brand now. Smithe. Bulti-ln gaprbox. 2 . p. .h. The eect

4t Kenlhworh hoad, Edgwere, Mlddx. Hat syG Tol. 01-85s 9314

venobuanis hive a protrsaluil Finish to your waik
0.1 and $0.15^{\prime \prime}$ pitch, plain and copper clad universal circuit boards. AVAILABLE FROM YOUR LOCAL RETAILER
TRADE DIStRIBUTOR N. Rose (Electrical) Ltd., London, W.C.1.


SUPERSOUND 13 HI-FI MONO AMPLIFIER amplifier. Brand new componenta throughout $\bar{j}$ Silicon transistor plus 2 power out-put Full wave push-pul tion. Output appror 13 watts Output approx 8 ohms Frequency esponse 12 Hz . 30 KHz pre-amplifier stage with eparate Volume, Bass boost and Treble cut controls. Suitable for 8-15 ohm speakers nput for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready built an plugs. Overall size $3^{*}$ high $\times 6^{*}$ wide $\times 7^{*}$ output AC 200/250V. PRICE \&12.50. P. \& P. 50 p
DE LUXE STEREO AMPLIFIER

, Us if $n g$
heavy duty fully isola transform er with ful
'alve line-up:-2 $\times$ ECL Bmoothing with negligible hum as rectifier. Two dual potentiometers are provided for bass and treble control, giving bass and treble boost and cut. A dual volume controlis used. Balance of the left and right hand channels can be adjusted by mears of a sepaInput gensitivity is approximately $300 \mathrm{~m} / \mathrm{y}$ for chassis. output of 4 watts per channel ( 8 watta mono) into 3 pea apeakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Supplied complete with knobs, chasais slze 11 "w $\times \mathbf{4}^{\prime \prime}$ d. Overall height includitig valves $5^{\prime \prime}$. Ready PUWEH SUPPLY UNIT $200 / \approx 40$ v. A.U. input. Four gritched fully smoothed D.C. output
7 fv . and 9 v , and 12 v , at 1 amp on leat
Fitted insulated out put ter minals and pilot lamp indicator Hammer finish netal case overall size $6^{*} \times 3 य^{* \prime} \times 21$. Suitable for Transistor Radios, Tape Recorters, Ampl fers etc. etc. Ready Price 55-20. P. \& P. 35p.
built and teated. VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 64 in. Hide. Our price $£ 1-30 \mathrm{gd}$. length. P. \& P. 15 per yd. (min. I yd.).

HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifier using a double wound fully solsted mains transf ormer, rectifier and ECL82 triode pentode valve as audio amplifier and power output stage. Impedance 3 ohms. Output approx. 3.6 watts.
Volume and tone controls. Chasals size only 7 in , wide $\times 3 \mathrm{in}$. deep $\times 6 \mathrm{in}$, high overall. AC mains $200 / 240 \mathrm{y}$ Supplied absolutely Brand New completely wired and tested with good quality output transformer. $\mathbf{£ 4 . 2 0}$
P. \& P. 40p. BARGAIN PRICE
FEW ONLY. High grade mains transformer with grain 8.5 vient laminations 0.6 ampe 4.6 volts at 0.3 atups. Siz 2 in . long $\times 2$ in. wite $\times 2 \mathrm{in}$. deep overall. $£ 1.35$ plus BRAND NEW MULTI-RATIO MAINS TRANSFORMERS. Giving 13 alternatives. Primary: 0-210-240y Secondary combinations 0-5-10-15-20-25-30-35-40-60v half wave at 1 amp. or $10-0-10,20-0-20,30-0-30 \mathrm{v}$. a 2 amp fuls wave. Size $3 \ln .10$
deep. Price 82.60 . $P$. \& $P$. 40 p .
MALNS TRANEFORMER. Fortransistor power aupplies Pro. 200/240v. Sec. $9-0-9$ at 500 mA . fl.25. P. \& P. $25 . \mathrm{P}$ Pri. 200/240v. Sec. 12-0-12 at 1 amp . \$1-40. P. \& P. 26p Pri. 200/240v. Sec. 10-0-10at' 2 amp. 22.00, P. at P. 35 p 3, VOLT RELAY. $100 \mathrm{~m} / \mathrm{a}$ single pole normally closed 2 for 60 p. P. \& P. $15 p$.

> GENERAL PURPOSE HIGH 8TABILITY

For P.U. TanN MISTOR PRE-AMPLIFIER use with valve or iransistor equipment. $9-18 \mathrm{v}$ battery or from H.T line $200 / 300 \mathrm{v}$. Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 26dB. Solid encap with instructions. Price $\& 1-20$. P. \& P. 15p.
HANDBOOK OF TRANSISTOR EQUIV8. AND SUBS. A must for ser vicemen and home constructors. Including many 1000 's of Britigh, U.B.A. European and Japanese ransistors. ONLY 40D. Post 5
3 Reference Encyclopedias Ior Electronic Engineers and Dosignart, covering between them transistor character stic, diode and transistor equivalents, Many thousands of up to date European types listed.
Diode Equivalent 90p. Transistor Equivalenta 81.
All three together $£ 3$
Thyristor, Triac, Diac etc. encyclopedias 1. Post Free. 8 pole 3 way 2 bank low loss Yaxley type suftches $1 t$ oections. Standard apindle. 2 sw Friday. 9.30-5 Saturday Closed Wednesday
Prices and specificatians carrec
ot time of press. Subject
olterazion without notice
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W.I9 Tel.: $01-5403985$
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

SPECIAL BARGAII OFFER
Limited number of B8R Cl23 Auto Changer De Luxe arm and stereo cartridge Brand new. OLLY $28.00+$ p. \& p. 60p.
HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT


A really first-class Hi-Fi gtereo Amplifier Kit. Uses 1 transistors including silicon Transistors in the first fiy stages on each channel resulting in even lower nois ed senbitivity. Integrated pre-amp with Bass, Treble and two Volume Controls. Suitable for
 modiy lo suit magnetic cartrige iostuctions compac Outputstage for any speakers from8 to 16 ohms. Compark ligh quality resiy component jdentification clearly marked, smart brusbe nodised alumlnium front parel with matchlng knob wire, solder, nuts, bolts-no extras to buy. Simple ste by step instruction enable any constructor to build amplifier to be proud of. Briei specifications: Powe output: 14 watts $\mathrm{r} \cdot \mathrm{m} . \mathrm{s}$. per channel into 5 ohrns. Fre than 80 mV into $1 \mathrm{M} \Omega$. Full power bandwith: $\pm 3 \mathrm{~dB}$ $12-15,000 \mathrm{~Hz}$. Bass, boost approx. to t12dB. Treble cut approx. to -16dB. Negative reedback 18 d main amp. Power requirements $35 v$. at 1.0 amp 0 verall Size $12^{\prime \prime} \boldsymbol{4} . \times 8^{\circ} \mathrm{d} . \times 2 z^{2} \mathrm{~h}$.
Fully detailed 7 page construction manual and parts ligt free with kit or send 18p plus large S.A.E.
AMPLIFIER KIT (Magnetic input components 33 p extra) CABINET
(Post Free if al! units purchased at same time) Full after sales service
Also a vailable ready buit and teated £28-08. Post Free Note: The above amplifier is suitable for feeding two mon sources into inpuis (e.g. mike, radio, twin record deekz, elc. and willthen provide mixing and fading facilities for med ium powered $M$ i- Disconeque use,


3-VALVE AUDIO AMPLIFIER HA34 ME II tion of records. A.C. Main operation. Ready built on plated heavy gauge meta chassia, size 71*W. $\times 4^{\circ} \mathrm{d}$. $41^{\prime} \mathrm{h}$. Incorporates ECC83, EL84, EZ880 valves. Heav duty, double wound main
transformerand outputtrans former matched for 3 obs peaker. Separate volume control and now with improved cut. Negative feedback line. Output it watts. Front panel can be detached and leads extended for remot mounting of controls. Complete with knobs, valves, etc wired and teated for only £e-50. P. \& P. 45 p .
HSL "FOUR" AMPLIFIER KIT. Similar in appearanc to HA34 above but employs entirely different and advanced circuitry. Complete set of parts, etc. $\mathbf{\$ 5} \mathbf{5 0}$
P . \& $P$. 45 p .
$\qquad$
10/14 WATT HI-F AMPLIFTER KIT monaural amplifer 14 wath output of EL84 watts in push-pull Super reproduction of both musle and speech, with negligible hum. Separat inputs for mike and gram announcement
 to follow each ot be
Fully shrouded section wound output trangiormer match 3-150 apeaker and 2 independent volume controls, and separate base and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectiffer. Simple Instruction booklet 15p X SAE (Free with parts). All parts sold separately. ONLY 210.25 . P. \& P. 60 p . Also available ready built and
tested $\$ 14.00$. P. \& P. 70 p .

## HI-FI STEREO HEADPHONES

Adjustable headbend with commortable fexioam ear muifs. Wired and fitted with standard stereo fin jack plug. Frequency response $30-15,00 \mathrm{fz}$. impedance 8-16 ohms. Easily converted for Mono

## PRICES INCLUDE VAT



Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

# for fast easy relable soldering EASY TO USE DUSPENSERS AND REELS IDEAL FOR HOME CONSTRUGTORS 

SAVBIT solder
for general purpose work

A handy plastic reel of SAVBIT alloy. 63 ft of 18 s.w.g ( 19.2 metres of 1.22 mm )

Size 12 £1.72

The Solder that
reduces the wear of soldering iron bits.

Size 5 32p
SAVBIT handy
solder dispenser

A coil of Ersin Multicore Savbit Solder in a dispenser 7 ft 6 in of 18 s.w.g. (2.2 metres of 1.22 mm ). -

ALU-SOL for soldering aluminium

New Multicore Alu-sol flux-cored solder in 16 s.w.g. No extra flux
needed. Plastic reel holds 36 ft , Supplied with full
instructions. Also avallable In solder dispenser.

Size 4 £2.32


Fine gauge solder for soldering small components
Fine gauge solder for soldering small components 138 ft of 22 s.w.g. ( 42.0 metres of 0.71 mm ) Ersin Multicore 5 core solder wound on a plastic reel. Suitable for Intricate work and small components.

Size 10 £1.44


NEW SOLDER WICK


For soldering fine joints Dispensers A. Oi Ersin Multicore
Solder make those small jobs easier. 21 th of 22 s.w.g. (6.4 metres of solder, solder, sultable for soldering tin soldering tine
wires, small wires, small compon and for
repairling repairling
printed printed
circuits. Size 15 36p Or size 19A for kit wiring or Radio and T.V. repairs 7 ft . ( 2.1 metres) of 18 s.w.g. ( 1.22 mm ) Ersin Multicore Solder.

## :1b Mi-F Accessorios Limited, <br> Sole U.K. Sales Concessionaires, P.O. Box 78 Hemel Hempstead, Herts. HP2 7EP <br> Prices shown are recommended retail excluding V.A.T. <br> From Electrical and Hardware Shops. If unobtainable, send 15p P\&P Prices and specifications subject to change without notice.

## ENGINEERS



Do you want promotion, a beller job. higher pay? "New Oppottunities" shows you how to get them through a low-cost home study course. There are no books to

This heipiul guide 10 success should be read by every ambitious engineer
Send for this helpful 76 'page FREE book now. No obligation and nobdy will call on you. It could be the best thing you ever did

## Practical Radio and $\square$ Electronics (Tech- natron) Electronic Engineer- $\square$ ing Television Mainten- $\square$ ance and Servicing General Radio and $\square$ TV Engineering RadioServicing. Main- $\square$ lenance and Repairs

## To ALDERMASTON COLLEGE <br> unications

Dept. EPE04, Reading RG7 4PF

```
NAME (Block Capilals Plense)
```

ADDRESS
C. \& G Radio. TV $\square$ Electronics. Mechanics Radio Amateurs Practical TV Colour Television Computer Electronics C. \& G LI Radio TV $\square$ Servicing cerl Post Master General $\square$ 1st \& 2nd class. certs C. d G Electrica

C. \& G. LI Installa tions and Wiring
General Electrical $\square$ Engineering Sociely of Engineers $\square$ (Electrical Engineering)
Electrical Installations $\square$ and Wiring
C. \& Electrical

Technicians (Primary) C. \& G. Telecom munications Telecom-

## 4PF

0.24 709 C
710 C
741 C (8P in Minidip)
CA3046
LM300 L.Мзо9к
CD4001
CD4001
CD4009
CD4009
CD4011
CD4012
CD4012
CD4018
CO4029



TERMS : CWO - ADD 8\% VAT-10p POST \& PACKING
ROWNSGEM LTD.
Rosebiank Parade, Plough Road, Yateley, Camberley, Surrey. Phone No. 0252871717

THE PROFESSIONAL ORGANISATION FOR THE 'HOBBYIST'

# ALL OUR PRICES INCLUDE V.A.t. 

BSR HI-FI AUTOCHANGER
STEREO AND MONO
Playa 12", 10" or $7^{\prime \prime}$ recorde qualliy unlt backed by BSR reliablitiy with 12 monthe guarsntee. A.C. $200 / 250 \mathrm{~V}$ Slze $13 \ddagger \times 11$ in ln .


Above motor board 34 ln . below motor board 24 ln . whh STEREO and MONO 27.95 Post 45p
CARTRIDGE PORTABLE PLAYER CABINET
Modern design. Rexine covered.
Vynalr front grille. Chrome flttings. $£ 4.50$ post 45p size $17 \times 15 \times 8$ in approx
Motor board cut for BSR or Garrard deck.
COMPLETE STEREO HI-FI SYSTEM Two full slze loudspeakers $134 \times 10 \times 3$ īn. Piayer unit
cilps to loudspeakers making it extremely compact, overall slze only $134 \times 10 \times 8 \nmid \mathrm{ln} ., 3$ watte per channel,


SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP TIME SWITCH TME SWITCH 5 : 20
 ing with tlalng ecrew. WIII repoun axisting wall witch to wive xisting wall swich to glvellght for return home, garage, automatic
entrburglar lights, etc. Varloble knob. anfl-burgiar lights, etc. Varlable knob
Turn on or off at full or Intermediate
settings. Brand new and fully guaranteed.
TEAKWOOD LOUDSPEAKER GRILLES wIIt eally fit to

WEYRAD P50 - TRANSISTOR COILS

 | I.F. P50/2CC $470 \mathrm{kc} / \mathrm{s} 40 \mathrm{p}$ | Printed Clrcult, PCA1 $65 p$ |
| :--- | :--- |
| 3rd I.F. P50/3CC...... $.40 p$ | J.B. Tuning Gang . 51.20 | 3rd I.F. P50/3CC

Sparea C Mullard Ferrle Rod $\times$...60p OPT1 ........ ........65p VOLUME CONTROLS 80 Ohm Coax $5 p$ yd.
 L/S 55p. D.P. 75p. Edge 5K L/S 55p. D.P. 75p. Edge 5K. 40 yd, f2; 60 yd, f3 S.P. Translator $25 p$ FRoal b2s and colour $10_{\text {p y }}$
id
8in. or $10 \times 6$ in. ELAC
HI-FI SPEAKER
Dual cone plastictaed roll susround. Large ceramic magnei $50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}, 8$ ohm tm
£3. 75 poat 25p

## E.M.I. $13 \frac{1}{2} \times 8$ in. <br> SPEAKER SALE!

With flared tweeter cone and caramic State 3 or 8 or 15 ohm . Post 25p

$$
2-2
$$

And crossover. 10
watt. State 3 or 8 or
w
15 ohm . As Illustrated. Post 25p megnot. 10 wett.
Bese res. $45-60 \mathrm{c} / \mathrm{s}$.
Flux 10.000 gause.


Bookshelf Cabinet Toan tinish $^{16} \times 10 \times 7 \mathrm{hn}$


> SET OF 3 MOTORS FOR
> COLLARO STUDIO
> 115 VOLT TAPE DECK £1.50 POSt 50 P


 $14 \times 3 \ln 20 \mathrm{p}: 10 \times 7 \ln 24 \mathrm{p} ; 12 \times 5 \ln 25 \mathrm{p} ; 12 \times 8 \ln 19 \mathrm{p}$; $16 \times 6 \mathrm{in} 34 \mathrm{p} ; 14 \times 91 \mathrm{n} 40 \mathrm{p} ; 12 \times 12 \mathrm{ln} 47 \mathrm{p}$; $16 \times 10 \mathrm{in} 60 \mathrm{p}$.

## ANOTHER R.C.S. BARGAIN!

ELAC $9 \times 5 \mathrm{ln}$ HIFI SPEAKER TYPE 59RM
Thle fo mous undt now avaliable, 10 watte, 8 ohm proc $£ 2$. 95 :
R.C.S. STABILISED POWER PACK KITS All parts and Instruetions with Zonor Dlode, Printed Clicult, Bridge Rectifers and Double Wound Malna Transformer 1 input $200 / 240 \mathrm{VA.c}$. Output voltagos avanable 6 or 9 or 12 or
 RCS POWER PACK KIT
12 VOLT 750 mA . complete with $\mathbf{1 2}$. 95 post Inatructlons.
12 VOLT 300 mA KIT, £2.75. 9 VOLT 1 AMP KIT, £2.95.
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER-BRITISH MADE Ideal tol Mike. Tape. P.U., Qultar, otc. Can be used with
Battery $9-12 \mathrm{~V}$ or $\mathrm{H.T}$. $i$ ine $200-30 \mathrm{~V}$ dic. operation. Slze: $14 \times 1 \mathrm{if} \times \mathrm{ln}$. Responae $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} .28 \mathrm{~dB}$ galn.


## ELECTRO MAGNETIC

PENDULUM MECHANISM 1.5V d.c. operation over 300 hours continuous on SP
battery fully adjuatable awing and apeed ideal diapleys besthy, electro magnetism or for
teactronome, strobe, etc.

BRITISH FM/VHF TUNING HEART st to 108 m/CS Britlah made. 2 Transistors ready allgned requilres $10.7 \mathrm{~m} / \mathrm{CS}$ I.F. Complete with tuning gang. esental. OuF price $\mathbf{3} 3.95$ 10.7 M/CS I.F. sirlp E4.95 DECODER 24.95

## MAINS TRANSFORMERS

 ALL POST$25 p$ each

## $250-0-250 \mathrm{~V} 70 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 2 \mathrm{~A}$

$250-0-25080 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3.5 \mathrm{~A} 6.3 \mathrm{~V} 1 \mathrm{AA}$ or 5 V 2 Z
$350-0-350.80 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A
$300-0 \mathrm{~m}$
300-01-300V $120 \mathrm{~mA}, 6 \cdot 3 V 4 A C . T$. $6 \cdot 3 \mathrm{~V} 2 \mathrm{~A}$
MINIATUAE 200V 20mA, E.3V $1 \mathrm{~A} 2 \frac{1}{} \times 2 \mathrm{t} \times 2 \mathrm{n}$
MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A} 24 \times 24 \times 21 \mathrm{n}$
MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 2 \mathrm{AA} 24 \times 24 \times 2 \mathrm{In}$
HEATER TRANS. 6.3 V , mmp 85p, 3 amp
HEATERTRANS. 6.3V t amp sisp, 3 amp
GENERAL PURPOSE LOW VOLTAGE . 52.50 GENERAL PURPOSE LOW VOLTAGE. Tapped outputa at $2 \mathrm{amp} .3,4,5,6,8,9,10,12,15,15,24$ and 30 V £4.00 $1 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60 \mathrm{I4}-00$
$2 \mathrm{amp} .8,8,10,12,18,18,20,24,30,36,40,48,6026 \cdot 00$
$3 \mathrm{amp} . . \mathrm{B}, 8,10,12,18,18,20,24,30,36,40,48,80$

 $20 \mathrm{~V}, 3 \mathrm{amp}, \mathrm{E}_{2} .40 \mathrm{~V}, 3 \mathrm{amp}$ £2.50. 22-0-22V, 4 amp. £3. 16V, $\frac{1}{2}$ amp. 95p. 16V, 2 amp AUTO TRANS $10,16 \mathrm{~V}$, $\ddagger$ amp. $£ 1.60$ 150W \&4; 500W \&7.50; 750W E15; 1000W E18 BATTERY CHARGERS. Ready bult whith leads and cltpa

6 or 12v outputs, $1 \frac{1}{2}$ amp 40p; 2 amp 55p; 4 amp 85 p
MAINS ISOLATING TRANSFORMER Primefy 0-110-240V. Secondary 0-240V 3A 720W Insúleted terminals. Varnish Impregnated. Fully enclosed

IDEAL FOR COLOUR T.V. OR GARDEN TOOLS.


LOW VOLTAGE ELECTROLYTICS
, 2, 4, 5, 6, 16, 25, 30, 50, 100, 200mF 15 V 10 p .
500 m F $12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
2000 mF 6V $25 \mathrm{p} ; 25 \mathrm{~V}$ 42p; 50 V 57p.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p}, 300 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}$.
500 mF 50 V 62p; 3000 mF 25V $47 \mathrm{p} ; 50 \mathrm{~V}$ 65p
RIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p}$. $100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$. APER $350 \mathrm{~V}-0.17 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$ $500 \mathrm{~V}=0.001100 .055 \mathrm{p} ; 0.110 \mathrm{p} ; 0.2513 \mathrm{p} ; 0.4725 \mathrm{p}$.
MICRO SWITCH LEVER ACTION 20p
SUB-MIN MICRO SWITCH 25 p . SIngle pole change over. TWIN GANG, "0.0"' 205pF + 176pF $\mathrm{E1} \cdot \mathbf{2 0}$; 500 pF atandard 75 $385 \mathrm{pF}+385 \mathrm{pF}$ with $25 \mathrm{pFF}+25 \mathrm{pF}$, Slow motion drive 50 p .
SHGRT WAVE SINGLE. 10 p , $30 \mathrm{p}, 25 \mathrm{pF}, 55 \mathrm{p}, 50 \mathrm{pF}, 55 \mathrm{p}$ NEON PANEL INDICATORS 250 Y AC/DC. Amber 30 p . RESISTOAS. $1 \mathrm{~W}, 1 \mathrm{~W}, 1 \mathrm{~W}, 20 \%$ 1p; $2 \mathrm{~W}, 5 \mathrm{p}$. $10 \Omega$ to 10 M . MIGH STABILITY, $1 W$ 2 $2 \%$ ohms to 8 meg., 10 p . Ditto $5 \%$. Preferred values 10 ohme to 10 meg ., 4 p
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohme To 100K 10p osch.

NEW MODEL "BAKER LOUDSPPEAKER", 12IN 50 WATT. GROUP 50/12. 8 OR 15 OHM HIGH POWEA. $£ 12.95$
FULL RANGE PROFESSIONAL QUALITY. $\mathbf{~} 12.9$
BAKER MAJOR 12" $£ 8.50$

$30-14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}$. double cone, woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux denslty of of 145,000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 20 w NOTE: 3 or 8 or 15 ohms must be stated.
Module kit, $30-17,000 \mathrm{c} / \mathrm{s}$ with twester, crossover,
batile and
f10.95 Instructlons. $\& 10.95$ Please state 3 or 8 of 15 ohms. KER "BIG-SOUND" SPEAKERS
Group 25' .Group 35' |'Group 50/15
 3 or 8 or 15 ohm 3 or or 15 ohm 8 or 15 ohm For 12 in or 10 Nn . dla. speaker $20 \times 13 \times 9 \mathrm{In}, ~ £ 10 \cdot 50$ Post 75 p For $13 \times \sin$ or $8 \ln$ apesker $\quad 16 \times 10 \times 71 \mathrm{n}, 88.80$ Post $45 p$
 LOUDSPEAKER CABINET WADDING 18in wIde, 20p fi

GOODMANS 6 $\frac{1}{2} \mathrm{ln}$, HI-FI WOOFER ohm or 8 ohm. 10W. Large ceramic magnet Special Cambric cone surround. Tw
Frequency response, $30-12,000 \mathrm{c} / \mathrm{s}$. Frequency response
Ideal p.A. Columns. s. §4 HI-FI Enclosure Systeme, etc


ELAC CONE TWEETER The moving coll dlaphragm glves a good rediatlon pattern to the higher frequencles and amooth extenslon of total response deep. Aating 10w, 3 hm . crossover $£ 1.25 \quad £ 1.90$; post 20p
SPEAKER COVERING MATEAIALS. Samplos Large S.A.E. Horn Twesters $2-18 \mathrm{kc} / \mathrm{s}, 10 \mathrm{~W} 8$ ohm or 15 o
CROSSOVERS, TWO-WAY $3,000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm $£ 1 \cdot 25$. LOUDSPEAKERS P.M. 3 OHMS. $7 \times 4 / \mathrm{n} ., \mathrm{E1} \cdot 25$; 6iln., $£ 1.50$;
 SPECIAL OFFER: 80 ohm, $2 \mathrm{fln}, 2 \mathrm{iln}, 35 \mathrm{ohm}, 2 \mathrm{in}$., $31 \mathrm{n} .$,
 $3 \mathrm{ohm}, 2$ in., $2 \downarrow \mathrm{in}$., 3 jn., 5 hn . dia. f 1 each RICHARD ALLAN TWIN CONE LOUDSPEAKERS,

12in. dlameter 6 W £3.50. $3 / 3 / 15$ Ohms, please state.
VALVE OUTPUT TRANS. 40 p ; MIKE TRANS. $50: 140 \mathrm{p}$
VALVE OUTPUT TRANS. 40p; MIKK
Mike trana. MU metal 100:1 £1-25.
Loudspeaker Volume Control 15 ohms 10W with one Inch fong threaded bush top wood panel mounting. tin spladle. 65 p each, Post 15 p .
MAJOR 100 WATT
ALL PURPOSE

## GROUP

AMPLIFIER
All purpose translatorised
deal for Groups, Dlaco and P.A.
4 inputs speech and musle. 4 way
mixling. Output $/ 15 \mathrm{ohm}$, a.c, Malna.
Separate trabie and bass controls. ©49 Carr


NEW MODEL MAJOR-50 watt, 4 Input,
Treble end bass. Ideal diaco amplifler.
£39.95
BARGAIN \& CHANNEL. TRANSISTOR MONO MIXER. Add musical highilghts and sound effecis to recordings WIII mix Microphone, records, tape and tuner
with soparate controls Into single outpul. 9 V . $\mathbf{£ 4} 50$ TWO CHANNEL STEREO VERSION £5.95 gARGARH 3 WATT AMPLIFIER. A Transistor
Push-Pull Resdy Bult, with votume. Treble
\& 3.95 Push-Pull Ready Bult, with volume. Treble $23: 95$
and bass controle. 18 volt d.c. Mulna Power Peck $\mathfrak{y}$.

COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18P. OUTLET BOXES, SURFACE 40p. FLUSH 60p. TWIN B5p BALANCED TWIN RIBBON FEEDER 300 ohms. 7p yd. JACK SOCKET Std. open-circult 14p, closed clrcutt 23p; Chrome Lead-Socket 45p. Phono Plugs 5p. Phono Socket 5p. JACK PLUGS Std. Chrome 20p; 3.5mm Chrome 12p. DiN SOCKETS Chassis 3-pin 10p. 5-pln 10p. DIN SOCKETS lead 3-pIn 18p; 5-pin 15p. DIN PLUGS ${ }^{3-p I n ~ 18 p ; ~ 5-p i n ~ 25 p . ~}$
VALVE HOLDERS, 5p; CERAMICS 10p; CANS 5p.


REVERSIBLE 4 POLE MOTOR



EMI TAPE MOTOR
£1.85
EMI TAPE MOTORS. 240 V a.c. 1,200 r.p.m. $34 \times 2 \downarrow \times 2 \mathrm{fin}$ (illuatrated). Post 25 p . 120V Model, £1.


## 田T c <br> FOR AUDIO ATA BUDGET

# COMPLETE STEREO SYSTEM 

* 

System 1a. £62.00<br>40 Watt Amplitier. Viscount III - R102 now 20 watts per channel. System I includes

Viscount ill amplifier - yolume, bass, treble and balance, controls, plus switches for monol steres on/off function and bass and treble filters. Plus headphone socket. Specification
20 watts per channel into 8 ohms. Total distortion@10W@1kHzO-1\%.P.U.i (for ceramic cartridges) 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) 4 mV @ 1 kHz into 47 K . equalised within $\perp 1$ dB R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power). Tape out facilities: headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to -17 dB : 60 Hz . Bass fitter: 6 dB per octave cut. Treble control: treble +12 dB to -12 dB @ 15 kHz . Trable filter: 12 dB pet octave. Signalto noise ratio: (all controls at max.) - 580 B . Crosstalk better than 35dB on all inputs. Overload chatacteristics better than 26 dis on all inputs. Size approx. $13 \frac{33^{\prime \prime}}{} \times 9^{\prime \prime} \times 3 \frac{3^{\prime \prime}}{}$.
Garrard SP 25 deck with magnetle cartridge, de luxe plinth and cove
Two Duo Type Ile matched apeakern-Enclosure size approx. 191" $\times 99^{\prime \prime} \times 14^{\prime \prime}$ in imulated teak. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with $3^{\prime \prime \prime}$ fweeter. 15 watts handing
Complete System $\mathbf{1 6 2} \cdot 00+£ 5 \cdot 50$ p 8 p .

## System 2. £82.00

Viscount III amplifier (As system la).
Two Duo Tyoe III metched apeakers-Enclosure size approx. $27^{\prime \prime} \times 13^{\prime \prime} \times 11 z^{\prime \prime}$
Finished in teak simulate. Drive units $13^{\prime \prime} \times 8^{\prime \prime}$ bass driver. and two $3^{\prime \prime \prime}$ (appror.) tweaters. 20 watts R.M.S.. 8 ohms frequency range- 20 Hz to 18.000 Hz .
Complete System $\mathbf{£ 8 2 \cdot 0 0}+\mathbf{£ 6} \cdot 50 \mathrm{p} \& \mathrm{p}$

PRICES: SYSTEM 1a

| Viscount Ill R102 |
| :--- |
| amplifier |$\quad \$ 27 \cdot 00+51 \rho \& p$

2 Duo Type lla speakers $£ 26 \cdot 00+£ 5 \cdot 50$ D \& D
Garrard SP 25 with Mag. cartridge
and cover $\quad\{21 \cdot 00+£ 1 \cdot 75 p \& p$
lotal: 14 -00
Available complete for only: $\mathbf{5 6 2 . 0 0}$
$+55.50 \mathrm{pap}$

## PRICES: SYSTEM 2

Viscounl ill R102
amplitier $127 \cdot 00+51 p d p$

2 Duo Type III speakers $£ 38 \cdot 00+£ 4 \cdot 00 \rho \& p$ Garrard SP 25 with Mag. cartridge de luxe plinth and cover $\quad\{2 \uparrow \cdot 00+\{1 \cdot 75 p \& p$
total: 2AT-00
Available complete for only: £82.00 16.50 p A p


## STEREO "QUALITY SOUND FOR LESSTHAN£20.00

Stereo 21, easy to assemble audio system kit. No soldering required. The unit is finished in white P.V.C. and the acrylic top presents an unusually interesting variation on the modern deck plinth. Includes:- BSR 3 speed deck, automatic, manual facilities together with stereo cartridge. Two speakers with cabinets.
Amplifier module. Ready built with control panel, speaker leads and full, easy to follow assembly instructions. Specifications : For the technically minded:-
Input sensitivity 600 mV . Aux. input sensitivity 120 mV . Power output 2.7 watts per channel. Output impedance 8-15 ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs for taping discs. Overall Dimensions. Speakers approx. $15 \frac{1^{\prime \prime}}{} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1^{\prime \prime}}{}{ }^{\prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$. Complete only $£ 19 \cdot 95+£ 2 \cdot 60 p \& p$. Extras if required. Optional Diamond Styli $£ 1.37$.
Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance, $\mathbf{£ 5} \mathbf{- 0 0}$.

##  BUILD YOUR OWN* STEREO AMPLIFIER

For the man who wants to design his own stereo - here's your chance to start. with Unisound - pre-amp, power amplifier and cuntrol panel. No soldering just simply screw toge ther. 4 watts per channel into 8 ohms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum. 240V. AC only. $\quad \mathbf{E 7} \cdot \mathbf{6 4}+\mathbf{9 0 p}$.p \& p. Aliso avaidibe with 2 speakers

## 8TRACK HOME CARTRIDGE PLAYER



Elegant seif selector push button player for use with your stereo system. Compatible with Viscount lil sysiem. Unisound module and the Stereo 21. Technical specification Mains input. 240 V . Output sensitivity 125 mV Comparable unit sold eleswhere at E24.00 approx. Yours for only £12.95 + £1.45 p \& p.

## PUSH BUTTON CAR RADIO KIT*TheTourist TT



## NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO

Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly. Fine funing push button mechanism is fully built and tested to mate with printed circuit board.
technical specification: (1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth. (2) Integrated circuit output stage, pre-built three stage IF Module. Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands.
Size chassis $7^{\prime \prime}$ wide, $2^{\prime \prime}$ high and $4 \frac{3}{4}{ }^{\prime \prime}$ deep approx $£ 8.00+90 p$. $p$ \& $p$. Speaker including baffle and fixing strip $£ 1.65+37 p$. $p$ \& $p$. Car Aerial Recommended-fully retractable £1.37 + 32p. p \& p. The Tourist I Kit for the experienced constructor if you can solder on a printed circuit board you can build this model. Same techicical specifiction as Toufist $T T \quad$ Price $£ 7 \cdot 00+90 p . p \& p$.

## EMI SPEAKERS AT FANTASTIC REDUCTIONS

EASY BUILD
SPEAKER KITS


These superb simulated leakitn ished speaker kits have been specially designed by RT-VC for the cost-conscious hi:fi enthusiast who wants top quatify speakers but doesn't want to spend the earth. Built to EMI's spending soescifiction these new exacling specification, these new
RT-VC speaker kits (350 type wit) RT-VC speaker kits (350 type kit)
incorperate $13 " \times$ B $^{\prime \prime}$ woofer $3{ }^{\prime \prime}$ incorperate 13 " $\times 8$ " wooler. 3 " "weeter
and matehing crossover and matehing crossover Easily put together with just a low basic tools. Specification (each speaker) tmpedance 8 ohms, Power handling 15 walts r.m.s. \{ 30 watts peak\}
Response $20-20,000 \mathrm{~Hz}$. Size $20 \times \$ 1$
9 y approx
Comparable
Comparable built units (EMI LE3) sold elsewhere for over 145 pair.

## 20 WATT SPEAKER SYSTEM*

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ (approx) eliptical wooter unit with a $8^{-1} \times 5$ (approx.) mid range unit incorporating parasitic tweeler end crossover components. Circuit diagram. Tochnical Specification
Bass Unit
Flux density-100 K. speech coil-1t Cone. Triple laminated paper with PVC surround
Mid Range Unit
Flux density-33k. speech coll-1" with parasitic tweater.
Power Mandling
20 watts R.M.S., impedanco-8 ohms. frequency response-20 $\mathrm{Mz}_{2}$ to 18.000 Hz

OUR PRICE
£7.50. Complete $+£ 1 \cdot 35 p \& p$.
 DISCO AMPLIFIER'
Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Output 20 watts R.M.S. into 8 ohms (suitable for 150 hms ). Inputs *4 electrically mixed inputs. *3 individual mixing controls. *Separate bass and treble controls common to all 4 inputs. *Mixer employing F.E.T. (Field Effect Transistors) *Solid State circuitry. *Attractive styling.
INPUT SENSITIVITIES -Input-1.) Crystal mic. guitar or moving coil mic, 2 and 10 mV . (Selector switch for desired sehsitivity).
-Inputs - 2). 3), 4). Medium output equipment - ceramic cartridge, tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx: $12 \frac{1}{2} \times 6^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{2}$. $17-00+£ 1 \cdot 15 \mathrm{p} \& \mathrm{p}$.


INCORPORA TES: Pre-Amp with full mixing facilities, including switched input for mic with volume control, switched input for auxiliary with volume control, bass and treble controls, volume control and blend control for turntables.
Iwo B.S.R. single play professional series decks, fitted with crystal cartridges. The turntables are designed and precision engineered. They combine clean modern styling with superb reproduction. Their many special features inciude square section aluminium tonearms, (high precision low mass design fully counterbalanced, with calibrated stylus pressure control for perfect tracking), and conveniently grouped easy to read linear controls. The turntables have viscous cueing devices which allows the tonearms to be placed or lifted at any point on the record.
The two lightweight cartridge shells have slide-in-holders to facilitate easy inspection of needies and cartidges.

## TECHNICAL SPECIFICATION:

Pre-amp - Output - 200 mV .
Auxiliary inputs -200 mV and 750 mV into 1 meg . Mic input -6 mV into 100 K .240 volt operation. Turntables capacity $-7^{\prime \prime}, 10^{\prime \prime}$ or $12^{\prime \prime}$ records. Rumble, wow and flutter
Rumble Better than-35dB. Wow Better than $0.2 \%$. Flutter Better than 0.06\% (Gaumont kalee meter). Finish - Satin black mainplate withblack turntable mat inlaid with brushedlaluminium trim. Tonearm and controls in black and brushed aluminium.

## Console size -

Unit Closed $-173^{\prime \prime} \times 133^{\prime \prime} \times 8 \frac{33^{\prime \prime}}{}$ (approx.) Unit Open $-35 \frac{3^{\prime \prime}}{4} \times 13 \frac{3^{\prime \prime}}{4} \times 4 \frac{1}{2 \prime \prime}$ (approx.)

This disco console is ideally matched for the Reliant IV and Disco 50 or any other quality amplifier.
The unit is finished in black PVC with contrasting simulated teak edging, diamond spun control knobs with matching control panel.

Yours for only $£ 49 \cdot 00+£ 5 \cdot 60 p \& p$.


DO NOT SEND CARD
Just write your order giving your credit card number

Mail orders to Acton. Terms C.W.O. All enquiries stamped addressed envelope. Goods not despatched outside U.K. Leaflets available for all items listed thus $\star$ Send stamped addressed envelope. All items subject to availability. Prices correct at 1st Feb. 1975 and subject to change without notice.
All prices include V.A.T. at $8 \%$ rate
Personal Shoppers Edgware Road: 9a.m. -5.30 p.m. Half day Thurs. Acton: $9.30 \mathrm{a} . \mathrm{m} .-5 \mathrm{p} . \mathrm{m}$. Closed all day Wed.

SPEAKERS
Baker Group 25 3, 8 or 15 ohm Baker Group 35 3.8 or 15 hm Baker Group $50 / 128$ or 15 ohm Baker Deluxe 12 in d/cone
Baker Megent
Baker Superb
Baker Auditorium 12
Calestion MH1000. 8 or 15 ohm
Celestion PS8 for Unilex
Colestion G12M 8 or 15 ohm
Celestion G12H 8 or 15 ohm
loshon Gic. or 15 ohm
Corel 6 in dicon or 15 ohm
ral sin dicone roll suif. \& ohm
EMI $93 \mathrm{in} \times 8 \mathrm{in} 3.8$ or 15 ohm
MI 13 in $\times 8$ in $150 \mathrm{~d} / \mathrm{c}$ 8 ohm
M. 3 In $\times$ oin $450 \mathrm{t} / \mathrm{tw} .3 .8$ or 15 ohm

EM1 $13 \mathrm{n} \times 8$ in type 3508 or 15 ohm
MI 6 in $x$ sin 20 of tas
EMi 5 in $14 \mathrm{~A} / 7030$ mid range 8 ohm
MII $8 \times 5$ dicone, roll surr. 10 W
Eagle DT33 30W tweeter
Eagle HT 15 horn tweeter
Eagle CT5 cone twaeter
Eagle CT 10 tweeter 8 or 16 ohm
Eagle MHTtO horn tweete
Eagle crossover CN23. CN28. CN216 Egio FR65

- FRB

Elac $9 \times 5$ 59RM109 15 ohm. 59RM 1148 ohm
Elac 6 tin 6RM171 d/c roll surr
Elac 6 fin 6RM $220 \mathrm{~d} /$ cone
lac 4 in tweeter TW4
sc 10 in d/cone 10RM239 8 ohm
lac in acsizs 3 ohm
Fane Pop 15W t2in
Fane Pop 50w 30w 12 in
Fane Pop 5560 w
Fane Pop 5S 60W 12 in
fane pop 100W 18in
Fane Crescendo 12A 100W 12 in
Fane Crescendo 12B bass
Fane Crescendo 18 in 150 W
Fane soit sin dic roll surr.
Fane 807T Bin d/c roll surr.
Fane 808T Bin d/c
Fane 701 twin ribbon horn
Fane 910 horn
Goodmans 8P or 15 ohm

## WILMSLOW AUDIO

THE Firm for speakers!

Goodmans 10P 8 or 15 hm Goodmans 12P-D 8 or 15 hm Goodmens 12P-G 8 or 15 ohm Goodmans Audiomax 12AX 100 w Goodmans Audiomax 15AX
Goodmans 15P 8 or 15 hm
Goodmans 18P 8 or 15 ohm
Goodmans Hifax 750
Goodmans Axent 100 tweote
Goodmans Audiom 10012 in
Goodman Twinaxiom 8
Goodmans Twinaxiom 10
Ket 127
Kef B110

Ket B139
Kef DN8
Kat DN12
Ket DN13
STC4001G super tweeter
Richard Allan CGBT d/c r/surr
2 in $64 \mathrm{ohm} .70 \mathrm{~mm} 80 \mathrm{ohm}, 70 \mathrm{~mm} 8 \mathrm{ohm}$
2 In 75 ohm
in $\times 5$ in 3 or 8 ohm
$10 \mathrm{in} \times 6 \ln 3.8$ or 15 ohm

## SPEAKER KITS

| Baker Major Module | asch 510.75 |
| :---: | :---: |
| Decce London Ribbon Horn | 126.00 |
| Decca London Crossover | [6.50 |
| Goodmans Mezzo Twinkit | pair 236.50 |
| Helme XlK25 | pair $\mathbf{5 2 2}$.00 |
| Helme XLK30 | pair $\$ 14.95$ |
| Helme XLK50 | pair $\mathbf{5 9 8}$. 05 |
| Jordan Watts Module | 114.75 |
| Kefkt 1 | oach 220.95 |
| Kefkit 3 | each $\mathbf{5 3 6}$. 75 |
| Pearless Dome tweater | ¢0.95 |
| Radiord BD25 | 414.75 |
| Radford MD9 | ct ${ }^{\text {c }}$ 95 |
| Radtord HD3 | c0.75 |
| Radford FN12 | c. 3.95 |
| Richard Allan Twinkit | each El- ${ }^{\text {c }}$ |
| Richard Allan Triple 8 | each 513.75 |
| Richard Allan Triple | each 819.85 |
| Fichard Allan Super Triple | oach 523.75 |
| Supar 8 RS/DD | ce. 05 |
| Whariedale Linton 2 klt | pair 519.25 |
| Wharfedale Glendsle 3 kit | pair $\mathbf{1} 34.50$ |
| Wharfedale Dovedale 3 kit | pair 552.50 |

Send stamp for list.

FREE with speaker orders over $£ 7$
All units guaranteed now and perfect. Prompt despatch. Carriege and book
each ( $£ 1.50$ pair). tweeters and crossovers 20p.
Send tamp for free booklet 'Choosing a Sp
ALL PRICES OUOTED INCLUDE VAT
WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works. Bank Square, Wilmslow, Cheshire, SK9 1HF. Discount Radio, PA, Hi-Fi: 10 Swan Street, Wilmslow.


INTERNATIONAL TRANSISTOR SELECTOR
Over 10,000 USA, EURO., JAP., BRITISH TRANSISTORS,
ELECTRICAL, MECHANICAL SPECIFICATIONS
MANUFACTURERS AND AVAILABLE SUBSTITUTES
by T. D. Towers, M.B.E. Price E3-15

1975 EDITION THE RADIO AMATEUR'S HANDBOOK
by A.R.R.L $\qquad$ Price $£ \mathbf{5} \cdot \mathbf{5 0}$

VIDEOTAPE RECORDING THEORY AND PRACTICE

```
by J. F. RobinsonCIRCUITS AND SYSTEMS
by N.M. Mort
RADIO SERVICING POCKET
                BOOK
by V. Capel
            \(\star\) PRICE INCLUDES POSTAGE \(\star\)
THE MODERN BOOK CO.
    BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
    19-2I PRAED STREET
        LONDON W2 INP
            Phone OI-723 4185
            Closed Saturday I p.m.
4.STATION INTERCOM

tion problems with thls 4-Station Transistor Intorcom system (1 mastor and 8 suba, in robust platic cabineta for desk or wall
mounting. Call/talk/listen from 道aster to gobs and 8abs to \(\mathbf{H a n t e r}\). Ideally suitable tor Business, surgery, Schools, Hospital, Office and Home. Operates on one 9 V battery. Onfoff switch. Volume control. Complete with 3 connecting wires each 66ft and other accessories. P. \& P. 50p.
MAINS INTERCOM (new model) No bstteries-no wiret. Just plug in the mains for On/ofi switch and volume control with lock ayatem. Price 488.75 per pair. P. \& P. 60p extra.


Same as 4-Station Intercom tor two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with 66ft connecting wire. Complete with battery. P. \& P. 40 p .

\section*{Transistor TELEPHONE AMPLIFIER}
£6.45
Why not boost
aredible Telophons Amplifier Fiency with this incredible Telophone Amplifierwithout holding the handset. A useful office aid. On/ ofl awitch. Volume control. Complete with battery. P. \& P. 30p. Full price retunded if not satisfied in 7 days.
169 WRent Lowno pirect supqlins (Prj)

\section*{LOGIC LEISURE LTD}

KINGFISHER HOUSE
68 PARK ROAD NEW BARNET, HERTS.
Tel. 01-440 9173/4

\section*{MODULATOR UHF OUTPUT} PRICE: \(\mathbf{\Sigma 5} 50\)

BUILT AND TESTED CONVERTS ANY TV INTO MONITOR FOR CAMERAS OR TV GAMES


\section*{COMPLETE TV TENNIS KIT}

AS SEEN IN THE AMUSEMENT ARCADES

BUILD IT YOURSELF FOR \(\mathbf{2 6 8} 50\)

\section*{X-Y BAT CONTROL MODULE}

ENABLING BATS TO MOVE ALL OVER THE SCREEN PRICE: \(£ 6\) JOY STICK CONTROLS £12 PER PAIR

PRINTED CIRCUIT BOARD

THIS IS FOR THE REAL TV TENNIS GAME

OUR SPECIAL PRICE £14.50 WITH FULL INSTRUCTIONS

If you have any queries you are welcome to telephone us at 01-440 9173/4 or telex 264397 BROADTEC BARNET.
Callers are welcome at the above address for demonstration of Teleplay tennis.
Trade enquiries invited.
WE WELCOME YOUR
ORDERS WITH ACCESS


\section*{CRESCENT RADIO LTD. \\ \(11-15 \& 17\) MAYES ROAD, LONDON N22 6TL (also) 13 SOUTH MALL, EDMONTON, N. 9 \\ 11 MAYES ROAD, LONDON N22 GTL Phone 8883206 \& (EDM.) 8031685}



\section*{MINIATURE RELAYS}

Brand new range of British made relays, slze: 1 in \(\times\) lin \(\times\) in. 1.5 A contacts and suitable for titting on \(0-1 \mathrm{~m}\) veroboard. Type Volts Current Ohms \(\begin{array}{lllll}27 / \mathrm{A} & 1 \because V & 17 \mathrm{M} / \mathrm{A} & 700 & \mathrm{Al} \\ 21 / \mathrm{A} & 125 & 28 \mathrm{M} / \mathrm{A} & 430 & \mathrm{El} 30\end{array}\) \(12 / \mathrm{A}\) 65 \(33 \mathrm{M} / \mathrm{A} 18 \mathrm{~B}\) each 200/250V Msins Relay coil. All new and unused D.P.D.T. mainn relaye 50 p, Carr. free. Special quantity \(£ 40\) per 100 off

\section*{MIDGET}

MAINS TRANSFORMER
Varnish Impregnated
Size \(45 \mathrm{~mm} \times 36 \mathrm{~mm} \times 31 \mathrm{~mm}\)

\section*{PRI 240 V}
\[
\begin{aligned}
& \begin{array}{lll}
\text { Sec } & 3.0 .3 & 100 \mathrm{~mA} \\
\text { Bec } & 6.0 .6 & 100 \mathrm{~mA}
\end{array} \\
& \begin{array}{lll}
\text { Bec } & 6.0 .6 & 100 \mathrm{~mA} \\
\text { Sec } & 9.0 .9 & 100 \mathrm{~mA}
\end{array} \\
& \begin{array}{lll}
\text { Sec } & 9.0 .9 & 100 \mathrm{~mA} \\
\text { Sec } & 10.0 .12 & 100 \mathrm{~mA}
\end{array} \\
& \text { Bec } 20 \cdot 0 \cdot 20 \quad 100 \mathrm{~mA} \\
& 81.2310 \mathrm{p} \text { P. \& P }
\end{aligned}
\]

\section*{CRESCENT BUBBLE LIGHT SHOW} This budget system compares very
favourably with more sophisticatei! and higher priced models
Specification.
Projector- 150 W convectiont
cooled cooled. At
image is 161 ft . the projected Motor-1 rev. per 2 min
multi colour.
The motor is fitted to the projector and can only be purchased as single unit,
The liquid wheel is our standard model and may be purchasel separately.
A bargain A bargain at: Proicctor, 115 Whee
carr.

CABLE LESS SOLDERING IRON WAHL "ISO-TIP
* Completely partable charge.
\(\star\) Recharges in its own stand.
\(\star\) Fine tip for all types of solder
ing.
\(+\quad\) Only
- Othly 8 in long and weighs jus 07,
OUR PRICE \(£ 9 \cdot 75\)
(Spare bits are available)
"CRESCENT" 100 WATT R.M.S ALL PURPOSE AMPLIFIER
U. BUILD. IT

We supply the three modules for you to build this Disco-Groun-P.A. amplifier into the cabinet
+ THE POWER AMP MODULE
170 W r.mis. St. wave 300 W instantaneous peak N into 16 ohni).
* THE PREAMP MODULE Four control pre-arup, Vol. Bass, Treble. Middle controls. Deslgned to trive most amplifiers

\section*{* THE POWER SUPPLY}

Is supplied complete with the mains transformer. Complete fixing instruct ions are supplied and no
technical knowledge is reluired to connect the three ready wired thoululea. A fantagtic bargain \&25, carr. 7up. Send S.A.E. for further details on this or our ready buitt amplifiers.

\section*{2-0-12V 500M/A}
\(2400^{\circ}\) prinary transformer bargain. Approx. size \(60 \mathrm{~mm} \times 40 \mathrm{~mm} \times 50 \mathrm{~mm}\); fixing centres: 75 mm . Our price \(\mathbf{8 1} \mathbf{2 0}\).

> I8V 500M A

240 V prinary. Approx, size: \(60 \mathrm{~mm} \times 40 \mathrm{~mm} \times\) 50 mm . fixing centres: 70 mm . Our Price \(£ 1\) each

LOW NOISE, LOW PRICE CASSETTES Good quality tape in well made screw
caxsettes. Presented in single plastlc cases.
\[
\mathrm{C} 60 \text { 31p } \quad \mathrm{C} 9042 \mathrm{p} \quad \mathrm{C} 120
\] \(10 \%\) liscount on ten or more cassettes of one
type.

\section*{ABALy PLASTIC BOXES}
llanty boxes for construction projects. Moulded extrusion rails for P.C. or chassis panels. Fitted
 \(1007,18411 \mathrm{~m} \times 124 \mathrm{~mm} \times 60 \mathrm{~mm} 96 \mathrm{p} ; 1021\) \(106 \mathrm{~min} \times\) ismini \(\times 4\) tinm (sloping front) 50 p .

BARGAIN BOARDS
Components galore for the experimenter. Ex Computer hoards with resistors, capacitors and usefult ransistors-at least 4 iransistors per board
Five boards \&1.

\section*{Five boards \(£ 1\)}

\section*{2in. PANEL METERS}
\begin{tabular}{|c|c|}
\hline Siz & 46 nim \\
\hline  & \(0 \cdot 100 \mathrm{~mA}\)-ME13 \\
\hline \(0 \cdot 100 \mu A-M E T\) & \(0.500 \mathrm{~mA}-\mathrm{ME14}\) \\
\hline 0. \(500 \mu \mathrm{~A}-\mathrm{ME8}\) & 0.1 A -MEl5 \\
\hline 0.1 mA -ME! & 0.50 V - ME16 \\
\hline 0.5 mA - ME10 & 0300 V a.c.-MEl7 \\
\hline \(0 \cdot 10 \mathrm{~mA}\) - ME11 & 5 meter - ME18 \\
\hline 0.50 mA -ME12 & v.U. meter-ME19 \\
\hline \(¢ 3\) each. 10 p P. \& P & \\
\hline
\end{tabular}

\section*{POWER PACKS}

Pll Switched 3.6 .71 .9 V 400M/A Tranaistor and Zener Stabiliged On/Off suitch and Polarlty Reversal \({ }^{8}\)
\(\$ 5.25\) each.
PP: Switehed \(6.7 \frac{1}{2}-9 y^{\circ}\) Battery Elinuinator Approx size \(3{ }^{2}\) in \(\times 2\) in \(\times 3 \frac{3}{2} \mathrm{in}\). Ideal for cassette recorders, \(£ 3\)-25.
PP3 Car converter. From 125 Pos. or Neg. to \(=6 \cdot \% \cdot-9 V\) Easy to fit and transistor
regulated, \(£ 3 \cdot 90\).

3 KILOWATTS PSYCHEDELIC LIGHT CONTROL UNIT


Three Channel: Hass, Middle, Treble. Each channel has its oun sensitivity control. Just terninals of an anmplifer, and connect three 250 V up to 1000 W lamps to the out put terminals of the unit, and you produce a lascinating sound-light display. (All guaranteed.)
£ 18.50 plus 38 p P. \& \(P\)
MINI LOUDSPEAKERS
\(2 t\) in 80 ohm, \(50 \mathrm{p} ; 2 \mathrm{fln} 40\) ohm, 50 F

\section*{U.K. CARRIAGE}

15p UNLESS OTHERWISE STATED


SEND 30p FOR A CRESCENT CATALOGUE

PRACTICAL PAPERBACKS
FROM FOULSHAM-TAB

TV SERVICING GUIDE. BOOK, by Art Margolls
TAPE RECORDING FOR FUN AND PROFIT, by Walter G. Salm
hiff troubles, by Herman Burstein
BEGINNER'S GUIDE TO COMPUTER LOGIC, by Gerald F. Stapleton
FIRE AND THEFT SECURITY SYSTEMS, by Byron Wels
HOME-CALL TV REPAIR GUIDE, by Jay Shane
HOW TO USE TEST INSTRUMENTS IN ELEC TRONIC SERVICING, by F. Shunaman

POPULAR TUBE/TRAN SISTOR SUBSTITU. TION GUIDE
ELECTRONICS SELF. TAUGHT WITH EXPERIMENTS AND PROJECTS, by James Ashe BASIC ELECTRONICS PROBLEMS SOLVED, by Donald A. Smith

WORKING WITH THE OSCILLOSCOPE, by A. C. W. Saunders £1.50

WALKIE-TALKIE RADIO OPERATOR'S GUIDE, by Bob Brown and Paul Lawrence

64 HOBBY PROJECTS FOR HOME AND CAR, by Bob Brown and Mark Olsen
£1.80
PULSE AND SWITCHING CIRCUITS, by Harvey F. Swearer
ELECTRONIC MUSICAL INSTRUMENTS, by
Norman H. Crowhurst £1.80

MAJOR APPLIANCE REPAIR GUIDE, by Wayne Lemons and Billy L. Price
\&2. 10
PRACTICAL TEST EQUIP. MENT YOU CAN BUILD, edited by Wayne Green

OUESTIONS AND ANSWERS ABOUT TAPE RECORDING, by Herman Burstein

\section*{VEROBOARD}

Approx. 8 pieces, rotal 100 sq.in assorted sizes and pitches \(\mathbb{K 1} 15\).

\section*{CAPACITORS}

200 Mica, ceramic, poly, etc. \(£ 1\),
\(15,000 £ 42\) \(15,000 \pm 42.15\) dif. trimmers, air 1250 pF . Only E 1 .

\section*{8 PIN DIL 74I's}

FULL SPEC. OF COURSE \(10+26 p ; 25+23 p ; 100+\)
\(21 \mathrm{p} ; 250+20 \mathrm{p}\).

\section*{PC ETCHING KIT}

Contains 11 b ferric chloride, 100sa.in. copper clad board, DALO etch resist pen, abrasive cleaner,
etching dish and instructions \(\mathbf{6 3 . 3 0}\). FERRIC CHLORIDE
Anhydrous to Mil-spec double sealed pack.
\(316 £ 1.80 ; 101 \mathrm{~b}\). \(\mathrm{E4} .65\).
3IL 11.80 ; \(101 \mathrm{~b}, 44.65\).
COMPUTER PANELS
Large quantity aiways available 561 b E15.
12 high quality panels with IC's trimpors, Dower transistors, etc

Pack with 5014 pin DIL DTL IC's E1-20. Pack with 20 multi-turn trimpots plus other parts \(£ 1-10\).
Pack with 5 IA 200 V SCR's plus 60 Pack with 51 A 200 V SCR's plus 60

7IID BARGAIN PARCELS
Hundreds of new componentsresistors, capacitors, pots, switches diodes, also loads of odds and ends. Contents always changing as new stocks arrive, 62.60.
TRANSFORMERS
Alt mains primary. \(6-0-6 \mathrm{~V}\) at \(12-0-12 \mathrm{~V}\) at \(100 \mathrm{~mA} 95 \mathrm{p} ; 24-0-24 \mathrm{~V}\) at \(500 \mathrm{~mA} £ 2\). Ex-equip: \(22:-0-22 \mathrm{~V}\) at 1 A . \(62 \cdot 10\) : 18 V at 5 A . \(63 \cdot 40: 55 \mathrm{~V}\) at 5A 64.50 .
\(6 \times 5 \times 3\) in. finned aluminium with
\(6 \times 5 \times 3 i n\). finned aluminium with
\(2 \times O\) O 29 or \(2 \times\) OC 35 . Only E 1.20 . POWER S UPPLIES Glol: Mains transformer, 2A Will give \(1.7 \mathrm{~V}-10.5 \mathrm{~V}\) outpur with 2 extra capacitors (provided). With data \(¢ 1.30\). G102: stabilized supply giving \(7 \frac{1}{V}\) at 225 mA (can be altered by changing zener). Not tested, probable minor faule. Wizh circuit \&1. 10.
GIO3 ex-LEC III. Contains 55 V SA Glo3 ex-LEC III. Contains \(55 V 5 A\)
transformer. \(6 \times 5 \times 3\) in. heat sink ransformer, \(65 \times 3\) in, heat sink \(4 \times 10,000\) F 63 V stabilizer panel 1 100 V cap. erc. \(\mathbf{\$ 1 2 . 5 0}\)
MICROPHONES
V996 dynamic microphone, 50k impedance, on/off switch, heavy desk stand. Very smart appearance E3.30. Crystal microphone insert

\section*{555 TIMERS}

1-9 60p; 10-24 50p; 25-99 \(46 p ; 100+43\) p.

Price increases, which we regret, are due to higher postal, packaging and advertising costs. Prices include \(8 \%\) VAT and inland postage. S.A.E. list Compurers, components and equipment always wanted for cash.

\section*{GREENWELD ELECTRONICS (PE4)}

Mail order dept., retail/wholesale shop
51 SHIRLEY PARK ROAD, SOUTHAMPTON SOI 4FX. Tel. (0703) 772501 Also callers welcome at 21 Deptford Broadway, SE8. Tel. 01-692 2009, and 38 Lower Addiscombe Road, Croydon. Tel. 01-688 2950.

\section*{PHONOSONICS}

SUPPLIERS OF OUALITY PRINTED
CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

SOUND-TO-LIGHT (P.E. Apr./Aug. 71)
The ever-popular AURORA-4 or 8 channels each rasponding to a difterent sound frequency and controlling Its own light. Can be used with most audio systems and lamp intensities. A must for any Disco, and a ascinating visual display for the home.

4 channal component set (excl. thyristors) 8 channei component set (excl. thyristors) Power supply component set
PCB for power supply and 8 lamp drivers
E11.49
520.32
¢4.78 \(\mathbf{\Sigma 2} \cdot 50\)
\(\mathbf{1} \cdot 25\)

\section*{P.E. SYNTHESIZER Details in List}

\section*{VOICE OPERATED FADER (P.E. Dec. 73)}

For automatically reducing music volume during "talk-over"-particularly useful for Disco work, or for home-movie shows.
Component set, incl. PCB

\section*{P.E. GEMINI 30W STEREO AMPLIFIER}

An exceptionally high quality Stereo Amplifier system, specifications for which are shown in detail in our list, together with semiconductor requirements. While stocks last.

Main Amplifier:
Set of resistors. capacitors and presets
Stereo printed circuit board
Sets of resistors. capacitors, potentiometers
Standard Tol
Standard Tolerance Sel
Superior Tolerance Set
Pequlated Power Supply
Regulated Power Supply:
Set of resistors, capacitors and preset

H-FI TAPE LINK (P.E. Mar./Apr. 73 )
Designed for use with reasonable quality tape decks. this high performance pre-amp includes record, playback and metering circuits.
Stereo component set (excl. panel meter)
Mono component set (excl. panel meter)
Power supply component set
tereo main PCB
Stereo sub-assembly PCB
TAPE-NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings
Component set (incl. PCB)
Regulated power supply (including PCB)
PROJECT Q4 (P.W. Oct. 73/Jan. 74) Multi-system Quadraphonic Decoder.

Decoder component set Power supply components Printed circuit board
13.74
13.22
12.60

SEMICONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home constructor.
Set of resistors. capacitors, semiconductors, potentiometers, makaswitches and PCB

PHASING UNIT (P.E. Sept. 73)
A simple but etfective manually controlled unit for introducing the "phasing" sound into live or recorded music.
Component set (incl. PCB)
22.20

PHASING CONTROL UNIT (P.E. Oct. 74)
(for use with above Phasing Unit) Component set (Including PCB)
1.3. 50

\section*{P.E. SOUND SYNTHESISER}

The well-acciaimed and highly versatile Synthesisar published in P.E. Feb. 1973 to Feb. 1974.

Component sets and printed circuit boards. List shows full details including discounts.

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
Component set
Printed circuit board
\& 3.11
\(£ 1.10\)
RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patterns from 8 effects circults (high and low bongos, bass and snare drums. long and short brushes, blocks and cymbai), and with variable time signatures. See ilst for discount.

Tempo, Timing and Logic Clireult
Component set (excl. switches)
Double-sided PCB for above
Mixer, Pre-emp and Effects Clreults
Component sef
Printed circuit board
Power Supply
Component set and PCB
REVERBERATION UNIT (P.W. Nov./Dec. 72) A high-quality unit having microphone and line input pre-amps, and providing full control over reverberation level.
4. 58

Component set (excl. spring unit) Printed circuit board

\section*{P.E. MINISONIC \\ Details in list (inc. discounts)}

8W AMPLIFIER (P.W. Nov. 72)
A moderately powered amplifier of more than average performance. (While stocks last.)

\section*{MaIn Amplifler}

Mono component set E4.18
Stereo component set
re-Amplifier
Mono component set
Stereo component set
ows supply

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73) Multi-function circuits that, with the use of other external equipment. can serve as lie detector, alphaphone. cardiophone, etc.

\section*{ULTRASONIC TRANSMITTER-RECEIVER}

A highly senaitive and long range invisible boam detection circuit with numerous applications
(P.E. May '72)

Component set with PCBs, but excluding transducers
P.E. RONDO

PGB details in List
POWER SLAVES
PCB details in List.
P.E. ELECTRONIC PIANO HOME INTERCOM Details in List.
(While Stocks Last)
SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper, tremolo. voice operated fader. automatic fader and frequency doubler.

Component set
Printed elrcuit board
£17-25
12.30
£12.70
12.67
15.45
\(\mathbf{2} \cdot 4\).
\(\mathbf{E} \cdot 44\)
teed-back lamp driver circults
Audlo Amplifier Module Type PC74. 8

\section*{PHOTOPRINT PROCESS CONTROL}
(P.E. Jan./Feb. 72)

For colour and B. \& W. an indiapensable dark-room unit for finding exposure, controlling enlarger timing, and stabilising malns voltage.

Component set (excl. meter) \(\quad \mathbf{E D} \cdot \mathbf{8 5}\) Printed circuit board \(£ 1 \cdot 60\)

ENLARGER EXPOSURE METER AND
THERMOMETER (P.E. Sept. 73)
Dual-purpose dark-room unit with good accuracy.
Component set with PCB, but excluding meter \(\quad \mathbf{~} 4.00\)
WIND AND RAIN UNIT (P.E. Oct. 73)
A manually controlied unit for producing the above-named sounds.
Pre-Ampiliter Module
Component Module
Component set and PCB
Batic Output Clreults
23.48

Combined component set with PCBs. for alpha-
phone, cardiophone, frequency meter and visual 55.50

Component set incl. PCB
12.40
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{PCB LAYOUT AND CIRCUIT DIAGRAMS SUPPLIED WITH ALL PCBs DESIGNED BY PHONOSONICS} & \multicolumn{3}{|l|}{\begin{tabular}{l}
LIST \\
Send S.A.E. for free list giving fuller details of kits, PCBs, and other components.
\end{tabular}} \\
\hline & & BFY50 & & 2 N 3702 & \\
\hline emicon & Or & BFY51 & 22p & 2 N 3703 & 12 \\
\hline & & BFY5? & 24 p & 2 N 3704 & 12p \\
\hline \({ }_{\text {ACP }}{ }^{\text {AC178 }}\) & \({ }_{20 \mathrm{p}}^{20 \mathrm{p}}\) & BSY95A & 22p & 2N3819 & 35p \\
\hline BC107 & 13p & MJE2955 & 5110 p & 2 N 3823 E & 39 p \\
\hline BC108 & 13p & MJE3055 & 5 75p & 2N 2 N 4871 & 12 p
36 p \\
\hline BC109 & 139 & NKT0033 & 112p & 2N5245 & 51p \\
\hline \({ }^{8 C 147}\) & 12p & OC28 & 60 p & 2N5777 & 45p \\
\hline \(8 \mathrm{BC148}\) & 12p & 0C71 & 14p & & \\
\hline BC149 & 120 & OC72 & 14p & Diodes & \\
\hline \(8 \mathrm{BC157}\) & 13p & 0 O 84 & 25p & 1 N814 & \\
\hline \({ }^{8 C 158}\) & 13 p & ORP12 & 60 p & 1N8001 & \({ }_{6 p}\) \\
\hline 8C159 & 13p & ZTX107 & 12p & iN4002 & 7 p \\
\hline \({ }^{\mathrm{BC} 192 \mathrm{~L}}\) & 12p & \(2 \mathrm{Z} \times 503\) & 15p & 1N4004 & 8 p \\
\hline 8 BC 184 & 12p & \(2 T \times 531\) & \({ }^{23 p}\) & 1N4005 & 8 p \\
\hline \(\mathrm{BCO}^{\text {B }} 204\) & 14p & \({ }^{2} \mathrm{~N} 706\) & 13p & 1N4007 & 10p \\
\hline 8C209C & \(14 p\) & 2 N 914 & 22p & OA91 & 7 p \\
\hline BC212L & \(15 p\) & 2N1304 & 22p & - 1200 & 8 p \\
\hline \({ }_{8 C 213}^{8 C 478}\) & 15p & 2 N 2219 & \({ }^{27 p}\) & OA202 & 8 p \\
\hline \({ }_{8 C 478}\) & \({ }^{29} 9\) & 2 N 2905 & \({ }^{27}\) p & & 12p \\
\hline 8CY71 & 22p & 2N2907 & \({ }^{22 p}\) & 1SJ50 & 11 p \\
\hline EF978 & 40p & 2N3054 & \(66 p\) & Z1d (ZIL) & 70 p \\
\hline
\end{tabular}

PHONOSONICS, DEPT. PE34, 25 KENTISH ROAD, BELVEDERE, KENT DA17 5BW
MAIL ORDER ONLY
DON'T FORGET VAT!

\section*{PE SCORPIO MK2 gnifion systemkit मew rom HECRO SPARES}

\author{
* 6 OR 12 VOLT \\ * +VE AND - VE GROUND
}

Here's the new, improved version of the orlginal PE Scorpio Electronlc Ignition System - with a big pius over all the other kits - the PE Scorplo Kit is designed for both positive and negative ground automotive electrical systems. Not just + ve ground. Nor just -ve ground. But both! So if you change cars you can be almost certain that you can change over your PE Scorpio Mk. 2 as well.
Containing all the components you need, this Electro Spares PE Scorpio Mk. 2 Kit is simply built, using our easy to follow instructions. Each component is a branded unit by a reputable manufacturer and carrles the manufacturer's guarantee. Ready drilled for fast assembly. Quickly fitted to any car.
When your PE Scorplo Mk. 2 is instailed, you instantly benefit from ail these PE Scorpio Mk. 2 advantages
\(\star\) Easier starting from cold \(\star\) Firing even with wet or oiled-up plugs \(\star\) Smoother running at high speed \(\star\) Fuel saving \(\star\) More power from your engine \(\star\) Longer spark plug life \(\star\) No more contact-breaker burn.

\section*{Electro Spares prices:}

De luxe KIt only \(£ 10 \cdot 85\) Inc. VAT and \(p\) \& \(p\). Ready Made Unit \(£ 13.65\) Inc. VAT and \(p\) \& \(p\). State 6 V or 12 V system.
Send SAE now for details and free list.

\section*{FM VARICAP STEREO TUNER}

As featured in the May 1973 issue of 'Practical Electronics' Superb Hi -Fi tuner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge) Electro Spares price only \(£ 28.50 \mathrm{inc}\). VAT and \(p \& p\).

\section*{'GEMINI' STEREO AMPLIFIER}

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere \(0.02 \%\), and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms. Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now! Depending on your choice of certain components, the price can vary from \(£ 50\) to \(£ 60\) inc. VAT and \(p\) \& \(p\).
* Ail components as specified by original authors, and sold separately if you wish.
* Full constructional data book with specification graphs. fault finding guides, etc. 55 p plus \(9 p\) postage.
\(\star\) Price List only. Please send S.A.E. (preferably \(9 \times 4\) minimum) for full detalis.


The Comproment Cembe at the Nouth 288 ECCLESALL RD., SHEFFIELD S11 8PE (D) Tel: Sheffield (0742) 668888

SAFETY MAINS ISOLATING TRANSFORMERS Prim. \(120 / 240 \mathrm{~V}\), Sec \(120 / 240 \mathrm{~V}\) Centre Tapped and Screened ALSO AVAILABLE WITH II5/I2OV SEC. WINDING Ref.
No.
07
149
150
151
152
153
154
155
156
157
158
VA
(Wotes)
20
60
100
200
250
350
500
750
1000
1500
2000 Weight Size cm .
 CASED AUTO TRANSFORMERS 115 V mains lead input and U.S.A. 2-pin outlets, 20VA \(63.13 . \mathrm{P}\) \& P 38 p 500 VA \& \(10.45, \mathrm{P} \& \mathrm{~F} 80 \mathrm{p}\). 1000 VA \& 17.51 , via B.R.S
\[
\begin{aligned}
& \text { LOW VOLTAGE SERIES (ISOLATED) } \\
& \text { YOO-250 YOLTS } 12 \text { ANDIOR } 24 \text { YOLLT }
\end{aligned}
\]
\[
\begin{aligned}
& \text { LOW VOLTAGE SERIES (ISOLATED) } \\
& \text { PRIMARY 200-250 VOLTS I2 AND/OR } 24 \text { VOLT RANGE }
\end{aligned}
\] Ref. Amps. Weight Size cm. Secondory Windings P \& P Nef. Amps Weight
No. 12 V 24 V 16 oz 1110.50 .25
\begin{tabular}{ccccc}
0.5 & 0.25 & & 8 & 4 \\
1.0 & 0.5 & 1 & 4 & 6 \\
2 & 1 & 1 & 12 & 7 \\
4 & 2 & 2 & 12 & 8 \\
6 & 3 & 3 & 8 & 8 \\
8 & 4 & 5 & 8 & 9 \\
10 & 5 & 6 & 4 & 9 \\
12 & 6 & 6 & 12 & 9 \\
16 & 8 & 8 & 12 & 12 \\
20 & 10 & 11 & 8 & 1 \\
30 & 15 & 15 & 8 & 1
\end{tabular}
\(4.8 \times 2.9 \times 3.50 .12 \mathrm{~V}\) at \(0.25 \mathrm{~A} \times 2\) \(\begin{array}{ll}1.47 & 23 \\ 1.74 & 30\end{array}\)


MINIATURE TRANSFORMERS WITH SCREENS
Ref. mA
No. mA Weig \(\qquad\)
\(\begin{array}{lll}2.8 \times 2.6 \times 2.0 & 3.0 .3 \\ 6.1 \times 5.8 \times 4.8 & 0.6 .0\end{array}\) \(\begin{array}{ll}6.1 \times 5.8 \times 4.8 & 0.6 .0 .6 \\ 3.9 \times 2.6 \times 2.9 & 9.0 .9\end{array}\)
\(4.8 \times 2.9 \times 3.5 \quad 0-9.0 .9\)
\(1006.1 \times 54 \times 48 \quad 0.8 .9,0-8-9\)
\(1127.0 \times 6.4 \times 6.100-8-9.0-8-9\)
\(\begin{array}{llll}4 & 4.8 \times 2.9 \times 3.5 & 0-15,0-15\end{array}\)
\(4 \quad 6.1 \times 5.8 \times 4.8 \quad 0-2000\)
\(8 \quad 7.0 \times 6.1 \times 6.1 \quad 20-12-0.12-20\)
\(\begin{array}{ll}12 & 8.3 \times 7.7 \times 7.0 \\ 4 & 8.3 \times 7.0 \times 7.0\end{array}\) 20-15-20, \(0-15-20\)
\(0-15-27,0-15-27\) \(\begin{array}{ll}0-15-27, & 0-15-27 \\ 0-15-27, & 0-15-27\end{array}\) \(\begin{array}{ll}\epsilon & \\ .54 & 10 \\ .84 & 30 \\ 1.41 & 13 \\ 1.56 & 19 \\ 1.92 & 30 \\ 3.30 & 38 \\ 1.43 & 19 \\ 1.93 & 30 \\ 2.17 & 38 \\ 3.46 & 3 \\ 3.00 & 3 \\ 3.85 & 3\end{array}\) FOR V.A.T. INCLUDINGP\&P.

> BARRII electronics
> 3. THE MINORIES, LONDON EC3N 1BJ

> TELEPHONE: 01-488 3316/8
> NEAREST TUBE STATIONS ALDGATE \& ALDGATE EAST



\section*{Practical Electronics Classified Advertisements}

RATES: 11 p per word (minimum 12 words). Box No. 30 p extra. Semi-Display \(\mathbf{8 8 . 5 0}\) per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House Farringdon Street, London EC4H 4AD

\section*{REGEIVERS AND COMPONENTS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
BETA DEVICES \\
for better PRICES
\end{tabular}} \\
\hline TRANSISTORS &  & DIODES \& RECT, \\
\hline AC187/188 & 709 C T0.99 0.80 & 1N914 0.04 \\
\hline PR. 0.40 & 709C D.I.L. & 1 N 41480.04 \\
\hline BC107) & 741 C T0.09 & BY1.27 0.14 \\
\hline BC108 0-00 & 741C D.I.L. & 1N4001/2 0.0 \\
\hline BC109C 0.11 & 728 C D.1.L. & 1274009/4/5 \\
\hline BC147/8/9 0.10 & 747 C D.I.L. 0 & 1N4006/7 \\
\hline BCY70/71/720-18 & 7480 D.I.L. & BRIDOI \\
\hline BFX \(66 / 87 / 88\) & & W01 1A \\
\hline 0.80 & 5 Watt Audio I.C. & 100 v 0.80 \\
\hline BFY50 0.18 & TBA 800 I2.60. & W06 1A \\
\hline BFYS1/52 0.18 & Dita tree with & \(600 \mathrm{~V} \quad 0.30\) \\
\hline OC28 00.45 & every order. & ZETER \\
\hline \begin{tabular}{ll} 
OC36 & 0.25 \\
2N2646 & 0.20
\end{tabular} & D.L.L. B0CKETS & BZY88 3-3- \\
\hline 2N3053 0.14 & 8.pin 0.18 & \(33 \mathrm{~V} 5 \% 0.00\) \\
\hline \(2 \mathrm{~N} 3055 \quad 0.88\) & 14.Pin 0.12 & 1 Watt 8.8- 0.18 \\
\hline 2N3442 81.40 & 16-Pin 0.14 & 200V \(6 \% 0.18\) \\
\hline \(2 \mathrm{N3773}\) 20.20 & & L.E.D. \\
\hline TIP41A 0.74 & All grices & \({ }^{209}\)-Red 0.17 \\
\hline 40836 S1.00 & include V.A.T. & L.E.D. Clip 0.08 \\
\hline \multicolumn{3}{|l|}{C.W.O. PLUS P.P. 10p TO BETA DEVICES,} \\
\hline
\end{tabular}

VALVEs, TRANsISTORs, styll. Valyes 1930 to \(1975.1,500\) types. Many obsolete. List 15 p . Transistors list isp. Ntyli list 10p. N.A.E. for quotation. ('OX RADIO (SLSSEX) LTD., The larade, East Wittering, sussex. Tel.: West Wittering 2023.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline Branded Com & penents-Full & 8 \\
\hline Tha & 8.9's & LIN i.c.e DIL Price \\
\hline & & 709C O.38 \\
\hline AC125, 6/7/8 & CRS 1110 0.s & 723 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { AD } 140: 149 \\
& \text { AOT } 1 / 162
\end{aligned}
\]} & CRS1/20 0.60 & \multirow[t]{2}{*}{P41C SPECIAL} \\
\hline & \[
\begin{array}{ll}
\text { CRS } 140 & 0.45 \\
\text { CRS } 340 & 0.55
\end{array}
\] & \\
\hline A0961/162 AF114/5/6/7 AF118 & \multirow[b]{2}{*}{speclal} & \\
\hline AF118 BC107/8:9 & & . 40 \\
\hline BC147.8.9 & I.C. OFFEM & 309 K \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{BC} 1823.4 \\
& \mathrm{BC} 2123 / 4
\end{aligned}
\]} & \multirow[t]{2}{*}{5 watt
Radio Pair} & \multirow[t]{2}{*}{L} \\
\hline & & \\
\hline \multirow[t]{2}{*}{BD131.132 0.9} & fadio Pair ZN414, TBAEOO & \({ }^{18} \mathrm{P}\) Pin \\
\hline & \$2.15 peir & \({ }^{16} \mathrm{p}\) \\
\hline \(\begin{array}{ll}\text { BF194/5/6 } & 0 \cdot 10 \\ \text { BFY } 50 / 51 / 52 & 0 \cdot 10\end{array}\) & FREE DATA & FULL Rance \\
\hline \(\begin{array}{ll}\text { BY127 } & 0.25\end{array}\) & \begin{tabular}{l}
Singly \\
ZN 51.10
\end{tabular} & Over 1,500 seml* \\
\hline MJE370 0.82 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{ZN} \mathrm{EI} .18 \\
& \mathrm{TBAE} 5 \cdot 85
\end{aligned}
\]} & conductor types. \\
\hline MJE371 0.73 & & 7400 ceries at \\
\hline \(\begin{array}{ll}218 & 0.19 \\ 906 & 0.13\end{array}\) & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{low prices. Varoboard, pote. cape. otc. stc.} \\
\hline 2N2926 all 0. & & \\
\hline 2 N 3053 O 0.15 & \multirow[t]{2}{*}{\begin{tabular}{l}
DIN PLUOS \\
2, 3. 4, 5 ( \(1+60^{\circ}\) )
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Send for FREE fist. \\
S.A.E. please
\end{tabular}} \\
\hline \({ }^{2 N} 305400.42\) & & \\
\hline 2N3055 & \(\left(240^{\circ}\right) 6\) pin 0.12 & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 2 \mathrm{~N} 3702: 3 / 4 \\
& 2 \mathrm{~N} 3705 / 6 \\
& 2 N 3707 / 8 / 8 \\
& 2 N 3019
\end{aligned}
\]} & \multicolumn{2}{|l|}{BAIDGE AECTIFIERS} \\
\hline & p.i.v. IA & 2A 4A 6A \\
\hline & SoV 0.20 & \(\begin{array}{llll}0.30 & 0.45 & 0.55\end{array}\) \\
\hline B2Ye & 100 V & 0.38 \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{200 V 400 V} & 0.40 .54 \\
\hline & & 0. 00 \\
\hline & \[
\begin{aligned}
& 400 \mathrm{~V} \\
& 600 \mathrm{~V}
\end{aligned}
\] & \(\begin{array}{llll}0.45 & 0.70 & 0.87\end{array}\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
200/301 BALLAMDS LANE \\
LONDON N12 SNP ( \(01-445518\) ) MAIL ORDEA ONLY. Cabn with order. Orders under \&3 plus 15p P. \& P. Add V.A.T. to total
\end{tabular}}} \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & DUC & & \multicolumn{3}{|l|}{\begin{tabular}{l}
DEPT. 24 \\
23 AVERY AVENUE \\
HIGH WYCOMBE BUCKS.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
4 ELEMENT FM sTEDEO \(\mathbf{E s} \cdot 80+V A T\) and 35 p P. \& P. \\
18 ELEMENT TV \\
\(\mathrm{E} 2+\mathrm{VAT}\) and 35 p P. \& P. \\
10 ELEMENT TV \\
\(\mathbf{5} 1.75+\) VAT and 35p P. \& P. \\
New design, superior quallity, inciudes mounting bracket. complete with instructions.
\end{tabular}} \\
\hline AC 126 BC107 BC108 BC109 BC113 & \[
\begin{array}{r}
20 p \\
\text { ep } \\
10 p \\
10 p
\end{array}
\] & \[
\begin{aligned}
& \text { BC148 } \\
& \text { BCY70 } \\
& \text { BFY51 } \\
& \text { 2N3055 } \\
& \text { NKT218 }
\end{aligned}
\] & 4p
18p
15p
45p
\(100 p\) & INg 14 IN4004 BZY88C5V6 BZY8AC 5 LM301 LM741 & \[
\begin{array}{r}
4 p \\
8 p \\
6 p \\
9 p \\
9 p \\
37 p \\
24 p
\end{array}
\] \\
\hline \multicolumn{6}{|c|}{ADD 8\% VAT + 10p P. \& P. per £ under £5} \\
\hline \multicolumn{6}{|c|}{C.W.O. MAIL ORDER ONLY} \\
\hline
\end{tabular}

TURM YOUR SURPLUS capacitors, transistors etc., into cash. Contact COLES-HARDING \& CO. P.O. Box 5, Frome, Somerset. Immediate cash settlement.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{with Dola clip 1p} & & & 0.125 & D & \multirow[t]{4}{*}{\begin{tabular}{l}
D.I. \\
SOCKET \\
8 pin \\
\({ }_{14}^{129}\) pin \\
13p
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{ED} & 15p & 13p \({ }^{8}\) & \\
\hline & \multicolumn{2}{|l|}{GREEN} & 27. & 33 p & \\
\hline & \multicolumn{2}{|l|}{YELLOW} & 270 & \({ }^{33} \mathrm{p}{ }^{13}\) & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{INFRA-RED LED with Data}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(550 \mu \mathrm{~W}\) axial lead, 49p 1.5 mW TO46, \(£ 1.10\)}} \\
\hline & & & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
OPTO-I8OLATORS with Date \\
\(11744.5 \mathrm{kV}, 150 \mathrm{kHz}\) \\
4350 2.5kV. 5 MHz \\
ع2. 25
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{ll} 
Op. AMPs & \\
709 all & \(25 p\) \\
7418 pin & 229 \\
748 D.i.L. & \(38 p\)
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { THYR18TOA } \\
& \text { TOS } 14 \\
& \text { TOBS } 3 \mathrm{~A}
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ccc}
50 V & 100 V & 400 V \\
25 p & 27 p & 48 p \\
27 p & 35 p & 50 p
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{(1)}} \\
\hline & & & & & \\
\hline \multirow[t]{15}{*}{} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 15 p \\
& 15 p \\
& \text { 15p }
\end{aligned}
\]} & \multicolumn{2}{|l|}{} & & \\
\hline & & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{BHA 0002 15W I.C. AMP 52.50} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(er}} & \multicolumn{2}{|l|}{} \\
\hline & \[
\begin{aligned}
& 3 p \\
& 10 p \\
& 10 p
\end{aligned}
\] & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{in 4001 IN4002}} \\
\hline & \multirow[t]{2}{*}{149} & \multicolumn{2}{|l|}{2N3704} & & \\
\hline & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{}} & \multicolumn{2}{|l|}{in4002
in4004} \\
\hline & \(11 p\) & & & \multicolumn{2}{|l|}{} \\
\hline & \multirow[t]{2}{*}{110
12
12} & \multicolumn{2}{|l|}{(1) \({ }_{\text {2N3823 }}^{\text {2N3818 }}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OAA1
OA91}} \\
\hline & & \multicolumn{2}{|l|}{\multirow{3}{*}{VOLTAGE REGS.}} & & \\
\hline & 15 & & & \multicolumn{2}{|l|}{0 OA5} \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& 22 p \\
& 12 p \\
& 120
\end{aligned}
\]} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OAz200
OAz22}} \\
\hline & & \multicolumn{2}{|l|}{} & & \\
\hline & \(1{ }^{10 p}\) & \multicolumn{2}{|l|}{L129 Plastic. SV
600 mA
\(\mathbf{E 1 . 4 0}\)} & \multicolumn{2}{|l|}{ERIO} \\
\hline & \multirow[b]{2}{*}{\(11 p\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Uned OCB4}} & \multirow[t]{2}{*}{2A 100 V} & \\
\hline & & & & & V \(\quad 36 \mathrm{p}\) \\
\hline \multicolumn{6}{|l|}{PRICES INCLUSIVE + 10p P. \& P. (1st class)} \\
\hline \multicolumn{6}{|l|}{ISLAND DEVICES, P.O. Box 11, Margate, Kent} \\
\hline
\end{tabular}

\section*{PRECISION POLYCARBOMATE CAPACTTORS}

ALL HIGE STABILTY-EXTRMERY LOW LEAEAGE


 \(0.47 \mu \mathrm{~F}\left(1^{\circ} \times{ }^{\circ}\right)\)
\(0.5 \mu \mathrm{~F}\)
\(01^{\circ}\)
\(\left.\mathbf{I}^{\circ}\right)\)


TANTALUM BEAD CAPACFTORS-Values avaliable: \(0.1,0 \cdot 22,0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6.8 \mu \mathrm{~F}\) at \(15 \mathrm{~V} / 25 \mathrm{~V}\) or 35 V ;
\(10.0 \mu \mathrm{~F}\) at \(16 \mathrm{~V} / 20 \mathrm{~V}\) or \(25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}\) at \(6 \mathrm{~V} / 10 \mathrm{~V}\) or 16 V ; \(10 \cdot 0 \mu \mathrm{~F}\) at \(16 \mathrm{~V} / 20 \mathrm{~V}\) or 20 V ; \(22.0 \mu \mathrm{~F}\) or \(6 \mathrm{~V} ; 100 \cdot 0 \mu \mathrm{Fat} 3 \mathrm{~V}\). ALL at 10p each. 10 for \(95 \mathrm{p}, 50\) tor 54.
TRAFSISTORS: |BC183/183L 119| BFY50 20p \begin{tabular}{lr|ll|ll} 
BC107/8/9 & \(9 p\) & BC184/184L & \(18 p\) & BFY51 & \(20 p\) \\
BC114 & \(18 p\) & BC212/212L & \(14 p\) & BFY52 & \(20 p\)
\end{tabular} \begin{tabular}{ll|ll|ll} 
BC147/8/9 & \(10 p\) & BC5 \(57 / 558\) A & \(12 \%\) & AF178 & \(80 p\) \\
BC153/7/8 & 189 & BF194 & 12p & OC71 & \(18 y\)
\end{tabular} \begin{tabular}{ll|ll|ll} 
BC182/182L & \(11 p\) & BF197 & 189 & 18C71 & 2N3055 \\
\hline
\end{tabular}
POPULAR DIODES-1N914 ©p, 8 for 45p, 18 for 90p: 1N9168p. 6 tor \(45 p, 14\) for \(90 \mathrm{p} ; 18445 \mathrm{p}, 11\) for 50 p .24 for
1; 1N \(4148 \mathrm{p}, 6\) for \(27 \mathrm{p}, 12\) for \(48 \mathrm{p} ; 1 \mathrm{~N} 40015\) p; IN 4002 6. IN40(13 \&it; IN4004 7p; IN4005 7tp; IN4006 8p; 1N40078/p.
LOW PRICE ZEMRR DIODES- 400 mW , Tol, \(\pm 5 \%\) at 5 mA . Valuea a vailable: \(3 \mathrm{~V}, 3.3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V}\), \(\begin{array}{lll}6.2 \mathrm{~V}, & 6.8 \mathrm{~V}, & 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V} .10 \mathrm{~V}, 11 \mathrm{~V} .12 \mathrm{~V}, 13 \mathrm{~V}, \\ 13.5 \mathrm{~V}, & 16 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V}\end{array}\) ALL at 7 p esch, 6 for \(39 \mathrm{y}, 1\) it tor \(84 \mathrm{p} . \mathrm{SPECLAL}\) OFFER: 100 Zenera for 15.50 .
Rfsistons-HIgh stablity, low noise carbon film \(5 \%\) 1W at \(40^{\circ} \mathrm{C}\). \({ }^{\frac{1}{2} \text { W }}\) at \(70^{\circ} \mathrm{C}\). E12 series only-from \(2 \cdot 20\) to 2.2Mg. ALL at 1p each, 8 g for 10 of any one value, 70 p
for 100 of any one value. BPECIAL PACK: 10 of each for 100 of any one value. APECGIAL PACK value \(2 \cdot 2\) a to \(2 \cdot 2 \mathrm{Ma}\) ( 730 realstora) 25.
EILICOK PLABTIC RECTIFIERS- 1.5 mmp , brand new wire ended DO27: 100 P.I.V. 7 p ( 4 for 26 p ); 400 P.I.V. 8 p
 MUBITILATUER VERTICAL PRESETS-0.1W only; ALL at 5peach: \(500,100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega\), 1k 0 , \(2 \cdot 2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 6.8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \mathrm{Q}\), \(100 \mathrm{Ka}, 250 \mathrm{~g}, 680 \mathrm{ka} \mathrm{a} .1 \mathrm{Ma}, 2.5 \mathrm{M}, 5 \mathrm{M}\).
PLEASE ADD 10p POAT AND PACKING ON ALL ORDERS BELOW ES. ALL EXPORT ORDERS ADD COBT OF BEA/AIRMAIL.
Bend S.A.E. for lits of addtions
Bend S.A.E. for liats of additional ex-stock itema.
Wholeanle price lists available to bona fide companles.
MARCO TRADING
Dept. E.3, The old Gehoel, Edatation,
Tel.: Whirall \(484 / 465\) (9TD
Tel.: Whirall \(484 / 465\) ( 1 TD 0948 09 )
(Propra,: Minicost Trading Ltd.)

BRAND NEW DOMPONEMTE EY RETURN, Electrolytics, \(16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 0.47,1 \cdot 0,2 \cdot 2\) \(4 \cdot 7,10 \mathrm{mF} .4 \mathrm{p} ; 22,47,4 \frac{1}{2}(50 \mathrm{~V}, \mathrm{ED}) ; 100\), 8 (50V, 7p); 220, 7f (50V, 14); \(1000 / 25 \mathrm{~V}, 15 \mathrm{p}\) Subminiature bead-type tantalums, \(0.1 / 35 \mathrm{~V}, \quad 0.22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}\), \(1 \cdot 0 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4 \cdot 7 / 35 \mathrm{~V}, 10 / 20 \mathrm{~V}, 22 / 16 \mathrm{~V}\) \(47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, 9 \mathrm{p} . \mathrm{Mylar}\) Film \(100 \mathrm{~V}, 0.001\), \(47 / 6 V, 1003\).
\(0.002,0.005,0.01\),
\(0.02, ~ 2 \frac{1}{2} ; 0.04,0.05,3 p\) \(0.002,0.005,0.01,0.02,21 ; 0.04,0.05, ~ 31\)
Mullard tubular polyester 400 V E 6 geries, \(0.001,0.022,3 p ; 0.033-0.1\), 4p. Mullard polyester 160 V tubular or 250 V miniature for vertical mounting, E6 sertes, \(0.01-0.047\), 3p; \(0.088,0.1,42 ; 0.15,0.22,5 ; 0.33,6 \mathrm{~F} ; 0.47\), ? ; \(0.68,10 \mathrm{p} ; 1.0,12 p, 1 \cdot 5 / 250 \mathrm{~V}, 16 \mathrm{p} ; 2 \cdot 2 /\) 63 V E12 series \(2 \% 1.8 \mathrm{pF}-47 \mathrm{pF}, 2 \frac{1}{2} \mathrm{p} ; 56 \mathrm{pF}-\) 330 pF , 3p. Plate ceramics 50V E6 series \(470 \mathrm{pF}-47,000 \mathrm{pF}\), 2p. Polystyrene 63V, E12 series \(10 \mathrm{pF}-1,000 \mathrm{pF}^{2}, 2 \frac{1}{2} \mathrm{p}, 1,200 \mathrm{pF}\), \(10,000 \mathrm{pF}, 3 \frac{1}{2} \mathrm{p}\) Miniature highstab. carbon film resistors if E12 series 5\% (10\% over \(1 \mathrm{M} \Omega) 1 \Omega-10 \mathrm{M} \Omega, 1 \rho ; 1 \mathrm{~N} 4148\), 31p; 1 N 4002 5p; iN4006, 7p. Postage 10p, Prices VAT Chesterfleld Road, Sheffield, 88 0RN.

\section*{R.T. SERVICES \\ (MAIL ORDER ONLY)}

77 Hayfield Rd., Salford 6, Lancs.
12 Volt I Amp Trickle Charger. © 1.85 P.P FM Tuner with R.F. Stage and A.G.C. 3 transistors, neg. earth, \(2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}\) in with circuit, \(\mathrm{f} 1 \cdot \mathbf{3 7} \frac{1}{2}\) inc. P.P.
Crouzet Geared Motors, 30 r.p.m. New, fl. 54 inc. P.P.
UHF TV Tuners. Transistorised, \(£ 1.85\) inc. P.P.
Panels, with I.C's on \(7 \frac{1}{2} \mathrm{p}\) per I.C. min. order IO I.C's.
Transformers. \(7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, £ 1\) inc. \(P . P\). \(12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, \ldots 1.10\) inc. P.P. \(9-0-9 \mathrm{~V}\), \(100 \mathrm{~mA}, \mathrm{E}^{\prime} 10\) inc. P.P. 29 V 50 mA , 85 p inc. P.P. \(6-0.6 \mathrm{~V}, 100 \mathrm{~mA}\), \(£ 1 \cdot 10\) inc. P.P.
Transformer. 24 volt, approx. 1 amp
\(6.3 V\) CT approx. \(500 \mathrm{~mA}, \mathrm{E} 1 \cdot 40\) inc. P.P.
Transformer. 20-0-20 yolt, approx. 2 amp \(+6.3 V\), 63 inc. P.P
Transformer. 20 volt, I amp, \(£ 1 / 25\) P.P. Transformer. 45 volt, \(2 \mathrm{amp}, € 3\) P.P.
P.C. Board. \(5 / S, 5 \frac{1}{2} \times 5 \frac{1}{2}\) in, 10 for \(£ I\) inc.P.P. 3EG1 Scope Tubes with base and connections, E3.30 inc. P.P.
Transistorised Timer. Variable delay. 110 or 250 V A.C. input. With instructions. Brand new, \(£ 2\) inc. P.P. Size \(3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}\). Power Unit Components Transformer. 18 volt 1 amp F/W bridge rectifier, 21250 mid capacitors, all new El-40 per kit. P.P. Elactrolytic Capacitors, \(4,000 \mathrm{MF}, 50 \mathrm{VW}\),
\(41^{\prime \prime} \times 1 z^{\prime \prime} 80 \mathrm{p}\). inc. P.P. \(4{ }^{2} \times 1880 p\) inc. P.P.
Mixed Pack of C280 series Mullard capaci-
tors. 100 for \(£ 1 \cdot 15\) inc. P. tors. 100 for \(£ 1 \cdot 15\) inc. P.P.
4 Panels each with XN3 type Nixie tube ON \(£ 1.85\) inc. P.P. Min. order 4.

\footnotetext{
COPPER CLAD FIGRE GLAB8 PANELS \(12 \dagger\) in \(\times 7 \mathrm{in}\), 30p; \(18 \mathrm{in} \times 4 \mathrm{in}\). 70 p . Double sided \(12 \mathrm{jin} \times 7 \mathrm{in}\), 90p;
 PANELS, \(35-50\) Transistore. Lona leade, 85p (40p). 74 8EAIEs D.I.L. ICa ON PANELS, 10 for 00 p (10p). COPPEA CLAO PAX. PANELS, Bin \(\times 9 \mathrm{yin}, 3\) for E1. \(12 \mathrm{tin} \times 9 \mathrm{in}, 2\) for 90 p . \(18 \mathrm{in} \times 9 \mathrm{in}, 60 \mathrm{p}\). Oouble sided \(12+\mathrm{in} \times 12 \mathrm{in}\), 10 p , All post patd, 22-WAY BTEPPING SWITCH WITH RESET. A.C. maine operated, t1 (30p). to AC128. OC72, 40p (10p). 3 for E 1 , c.p. VALUPAKs P9, 100 s/mica caps 55p. P3, 10 silicon diodes 850 V 1łA, 50p. Post 12 p for one. 20p any multiple. Send 120 stemps for full liat plus computer panels, aic. Refund on purchase.

\section*{3H COMPUTER PANELB E1.75 e.p.}
J.W.B. RADIO

2 Barnifield Crescent, Salo, Cheshlre M33 INL Postage In brackels

Mall order only
}

LED's. Three colours, red, green, and yeliow. Four sizes, 0.1 in \(0.125 \mathrm{in}, 0.16 \mathrm{in}, 0.2 \mathrm{in}\). Mixtures all sizes and colours, \(50-5,100-88\) including VAT and postage. C.W.O. Larger quantitles by negotiation. INDUSTRIAL quantites by negotiation. (Stockport) Ltd. 181a Bramhall Lane, Davenport, Stockport Cheshire.


Overall length \(1 \cdot 85^{\circ}\) (Body length \(1 \cdot 1^{\prime \prime}\) ). Diameter 0.14. Max. racings \(250 \%\) D.C. and 500 mA . Gold ciad normally open contacts. 00 p per dozen: \(44 \cdot 12\) per \(100 ; 430 \cdot 25\) per 1.000 ; 275 per 10,000 . VAT and post paid.


\section*{OITUATIONE VAGAKT}


Jobs galore! Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks! Pay prospects? \(£ 3,500+\) p.a. London Computer Operators Training Centre subscribes to the British Government backed National Computing Centre backed National Computing Centre
code of practice for Computer Training code of practice for Computer Training
Schools so you know your training will be second to none.
After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation. London Computer Operators Training Centre Y34, Oxford Hse. 9-15 Oxford St., W.1.Tel. 01-734 2874

\section*{EDUCATIOMAL}

\section*{C AND G EXAMS}

Make sure you succeed with an ICS home study course for C and G Electrical Installation Work Taechnicians, Radio/TV/Electronics Technicians Telecomms Technicians and Radio Amateurs. COLOUR TV SERVICING Make the most of the current booml Learn the techniques of servising Colour and Mono TV. sets thraugh new home study courses, approved by leading manufacturers.
TECHNICAL TRAINING
Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Engineering, Maintenance, Radio, TV, Audio, self-build radio kits. Get the qualifications you need to succeed,
Free details from:
INTERNATIONAL
CORNESPONDENCE SCHOOLS
Dept. 730, Intertext House, London SWis tuj
Or phone Ol-622 9911 (All hours)

\section*{8ERVICE SHEETS}

SERVICE SHEETS, Radio, TV, etc. 8,000 models. Catalogue 205. S.A.E. enquiries. telriy, 11 Maudland Bank, Preston.

BELL'S TELEVIBION 8ERVICES for service sheets, manuals, books on radios, T.V.s, etc. Service sheets 50 plus S.A.E. Free book lists on request. Back issues of P.W., P.E., E.E., TV available 25 plus 9 p post. S.A.E. with enquiries: B.T.S. (Mail Order Dept.), 190 Kings Road, Harrogate, Yorks. Telephone (0423) 55885.

\section*{BOOK8 AND PUBLICATIONS}

UFO CHART: Dally Flight, 50n; Prediction, Sif; Map, 50\%; Propulsion, ESP; "Antl. Gravity', \({ }^{\circ}\) Sp; TV UFO Detection (Reprint), 63p; Circuits: Transistor Optical Detector, esp; Radlation/Optical, 4p; Microdetectors (Memory, LSI), 10p; Crystal Radiation/ Counter-Timer/Stopclock, ©5p; FET Multimeter, \(1 \cdot 70\), R. \&. E., Highiands, Needham Market, Suffolk.

\section*{PROFE8SIONAL 8ERVICES}

PATENT8 AND TRADE MARKB. KINGS PATENT AGENCY LIMITED (Est. 1886). B. T. King, Director, M.I.Mech.E., Registered Patent Agent, 146a Queen Victoria Street, London, EC4Y 5AT. Booklet on request. Tel. 01-248 6161. Telex 883805.

\section*{LADDER8}

LADDERs, timber and aluminium. Tel. Telford 586644 for brochure.

\section*{miscellaneous}

EXPERIMENTERE and constructors. Hundreds of unusual items cheap. List 9, 81. GRIMSBY ELECTRONICS, Lambert Road, Grimsby (callers Saturdays only).


Add 10 p P. \& P. for orders under 52. Data, end circuita where appropriste.
 7\%
 man sm typo 0.12 in 7 negment diaplay MKs rastion Alerm clock i.c \(\qquad\) ays (cend \(8 \mathrm{Na} \times\)



IC SOCKET PIN8 for low cost mounting of 8 to 40 pin DILs. \(70 p(+5 p\) VAT) for strip of 100 , \(81 \cdot 50(+12\) p VAT), for \(3 \times 100,24(+32\) p VAT) for 1,000 . Instructions supplied-send S.A.E. for sample. 10 p P. \& P. for orders under £2. SINTEL, 53 b Aston Street, Oxford. Tel. 086543203.

\section*{KIMBER - ALLEN \\ THE WORLD'S FINEST KEYBOARD}

From the distributor:
ALAN DOUGLAS, Leesbarn Road
Radcliffe on Trent, Notts. NGI2 2DS

SUPERB INBTRUMENT CABE by Bazelli, manufactured from heavy duty PVC faced steel. Hundreds of radio, Electronics and \(\mathrm{Hi}-\mathrm{Fi}\) enthusiasts are choosing the case they require from our range of over 200 models. Largest choice at highly competitive prices, why pay more? Fast despatch. Free literature (stamp would be appreciated). BAZELLI, Department No. 25 , St. Wilfrid's, Foundry Lane, Halton, Lancaster, LA2 6LT.

LIGHTING MODULES AND KITS SAVE POUNDS BY BUYING DIMECTI! SOUND TO LIGHT: \(3 \times\) I kW chan nels with SENSITIVITY, DIMMING and BYPASS controls. Designed to be robust and reliable and simple fi 5 -99. THEATRE ANO DISCOJCLUB DIMGERS THEATRE ANO
MERS OUR SPECIALITY!
Only written enquiries and Mail Order to: SELEKTRON
21 Priors Road, Windsor, Berke, SL4 4PD


HARDWARE. Comprehensive range of screws, nuts, washers, etc. in stnall quantities, and many useful constructors' items. Sheet aluminium to indiridual requirements, punched, drilled, etc. Fascia panels, dials, nameplates in etched aluminium. Printed circuit boards for this magazine, and other individual requirements, one-off's and small runs. Machine engraving in metals and plastics, contour milling. Send \(24 \neq \mathrm{p}\) stamps plastics, contour milling. Send \(24 \frac{1}{2} p\) stamps
for catalogue. RAMAR CONSTRUCTOR for catalogue. RAMAR CONSTRUCTOR SERVICES, Masons \(\mathrm{Warwicks}, \mathrm{CV37} \mathrm{9NF}\).


PRINTED GIRCUIT BOARDS. Manufacturers" offer: PCB's for ALL "P.E. and P.W." projects published after June, 1974, at ONE price, 70p each. Any 5 82-85. PRODUCTION
 SPACE available for: PCB Production, PCB
and Electronic Design to Spec.: electroplating, silk-screening, roller and electro tinning. Ali art-work and photography undertaken. Send basic circuit, P.C layout or L.C. master stating quantity required for estimate by return, or phone: W.K.F. ELECTRONICS, Dept. P.C., Welbeck Street, Whitwell, Worksop, Notts., S80 4TW. Tel.: Whitwell (Derbys.) 695.

\section*{fibre optic suppliers}
manE's TAlls. Bulld decorstlve display with this protesalonally finlohed unit, \(22 i n\) dlameter with \(7,000+\) premorlex elze 1. Fiexible 440
Fundio diax. 1.14 mm . Fiox 40 per metre (cs popas Hght condult Dor (c3 per 10m).
Finhoflex
(it per 10m).
CROFON 1616.84 -trrand plastle light conduit, bundie da
 PLAETIC OPTICAL MONOFISNE. For multiple illumination from one source, diaplays. internal Illumination. effecte. optletel coupling. ttc.
pp 40 (1mm dia.) ec.20 per 10m: c4 per 100 m .
FPBO ( 1.5 mm dia.) L4 per 10 m : \(x 50\) per 100 m .
OPTIKIT 103. Contaline 2 m Crofon 1810 plue 5 m sach FP20, FP40. FPso plut polishing compound. A handy pack for the experimenter. \(\mathbf{5 4}\)-7t.
LENs ANB AEFLECTOnt. We tock a range of 8 lenese and 5 reflectors for use in proximity detectore, intruder atectors. batch cou pleal
OPTKIT Lis. 1 bech of 8 leneen, EE.EA.
OPTIKIT RRE. 1 each of 5 reflectora. E1-E0.
CIRCULAM POLAARARNs. Cut thet glere. Reduce opeculer reflection by up to \(20 x\) - onhance contrast on cris, LED depiaye, nixies, inatruments, stc. Avallabie in red/amberf
 Hos HN32. Type KN42 is for high tomp. Ues in projeciors. Uee a palr to meke a paychedellc light ehow. price ato for circular polerlears.
LIGHT SOURCE AND DETECTOHE: MVB4 MInIature


 Photodarlington sHicon Detector, galn \(\times 2.500\). Ep tue good enenitivily. Tep \((10+\) 67p).
*NEW MLse23. Letent Motorole LIght Actlvated 8CR. High senotivity \(10 \mathrm{~mW} / \mathrm{cm}\); high current 400 mA ( 5 A peak); sov. Switeh omalt motora or relty direct
sEOSE ULTMA BONIC TRAN BDUCEM. For remoto control sEOSE ULTMAEONIC TR

Ploase add \(\% \%\) VAT to prices above
send oin \(x\) oin s.A.E. for shor form litat
FIBRE OPTIC SUPPLIERS
(Dept. PE), 2 Loudoun Road Mews London NW: ODN
Neees note change of adsrees

\section*{FANTASTIC NEW MICROTEST 80}
measures ONLY
\(90 \times 70 \times 18 \mathrm{~mm}\)
Amazing Value at \(£ 11.95\) 8 flelds of measurement and 40 ranges
Volts d.c. 8 ranges: \(100 \mathrm{mV}, 2 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 200 \mathrm{~V}, 1,000 \mathrm{~V}\) (20kก/V)
Volts a.c. 5 ranges: \(1.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}(4 \mathrm{k} \Omega / \mathrm{V})\). Amp. d.c. 6 ranges: \(: 50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A}\).
Amp. a.c. 5 ranges: \(250 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}, 2.5 \mathrm{~A}\) Amp. a.c. 5 ranges: \(250 \mu \mathrm{~A}, 2 \cdot 5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}, 2 \cdot 5 \mathrm{~A}\).
Ohms 4 ranges: Low \(\Omega, \Omega \times 1, \Omega \times 10, \Omega \times 100(\mathrm{~d} 1 / 10\) al \(\Omega\) fino a \(5 \mathrm{M} \Omega\) ).
V Output 5 ranges: \(1 \cdot 5 \mathrm{~V}, 10 \mathrm{~V} .50 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}\).
Decibels 5 ranges: \(+6 \mathrm{~dB},+22 \mathrm{~dB},+36 \mathrm{~dB},+50 \mathrm{BB}\), Decibels 5 ranges: \(+6 \mathrm{~dB},+22 \mathrm{~dB},+36 \mathrm{~dB},+50 \mathrm{~dB}\) +62 dB .
Capacity 4 ranges: \(25 \cdot F, 250 \mu\) F, \(2,500 \mu F, 25,000 \mu\) F


SUPERTESTEA 680 R ICE 20.000 Ohm per Voll senaitivity - Fully screenad against external magnetic fields Scale width and amall case dimensions. ( \(128 \times\) \(95 \times 32 \mathrm{~mm}\) ) Accuracy and stability (1\% in \(\begin{aligned} & \text { of.C., } 2 \% \text { in A.C. }\end{aligned}\) and aase of use and readsbility Full ranges of accessories - 1.000 times overioad Printed circuit board is removable without
£18.50 de-soldering More ranges than any

Accessorles Extr other meter. Ask for frea catalogue. Accessorles Exira Accessories (extra) available to convert Microtest 80 and Supertester 680R into following SIGNAL INJECTOR,
GAUSS METER. ELECTRONIC VOLTMETER, AMPER. CLAMP, TRANSISTOR TESTER. TEMPERATURE PROBE, PHASE SEQUENCE INDICATOR-Send for detalis.

MORE RANGES FOR LESS MONEY!
AC/DC Multimeter type U4324 A-DC 0-06-3A-6 Rranges.
A-AC 0.3-3A-5 Ranges.
V-OC 0. 5-1200 V-9 Rang
V-AC 3-900 V-8 Alanges
Frequency in the range of 45 to
20 kHz . Resistance: 500 onm to 5 Mohm-5 ranges. Decibel; to +12 dB . Accuracy: \(\pm 2.5 \%\). \(+4 \% \mathrm{AC}\). Dimensions: \(167 \times 98\) - 63 mm Only \(28 \cdot 85\)

ALPHANUMERIC NIXIE TUBES B7971 The Alphanumeric Nixie fube has the all thy to display the tetters of humerala o thru 9 and special Characte
singla Fingle tube. point of both read. ability and slectricai characteristics, the Alphenumeric NIXIE tube provides many unique beneflts including * 170V-21mA * All d.c. operation * Uniform
contlnuous line characters of equal height + Memory conth simple solid state drive circuits \(\pm\) Readability in high ambient light . . 200 tootlamberts brightness * Long life with no loss of brightness * Character height 2 tin
Bases for above 60p each.
Price only 99 each plus \(16 p\) P./P

\section*{JUST ARRIVED!!}

NUMERIC INDICATOR TUBES Uitra-long life, high quality, 0-9 and 2 independent deci mal potnis. Supply voltage 200 V d.c. Current 14 mA size 1-4. Brand requirements. Type B5853st
1-25 £1.00; \(25+90 p ; 100+80 p ;\) \(1,000+\) price on application.
\[
\text { Add } \% \% \text { VAT to all liems }+35 \text { p P. \& P. }
\]

ELECTRONIC BROKERS LTD
49-53 Pancras Road, London NW1 2QB Tel. 01-837 7781

\section*{HOME SCIENTISTS}

Get the key to a FANTASTIC WORLD of Previously UNHEARD-OF PROJECTS. The NEW Boffin catalogue lists DOZENS of GAINS, READY-BUILT MODULES.
Here are just a few examples, there are stacks more!
Dazzling MINI-STROBE (pocket size) \(\mathbf{6 2 . 9 0}\) PEOPLE DETECTOR Big-Ear SOUND.CATCHER
83.20 Mini DREAM LABORATOR

Don't take our word for it though! GET A COPY AND SEE! SEND ONLY 20 p and we'll RUSH YOU A COPY (YOU'LL GET THE 'GOODIES' JUST AS QUICKLY TOO!)

\section*{BOFFIN PROJECTS}
\[
\begin{aligned}
& 4 \text { Cunliffe Road, Stoneleigh } \\
& \text { Ewell, Surrey }
\end{aligned}
\]
```

(Mail Order U.K. only)

```

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

\section*{ULTRASONIC TRANSDUCERS}

Suitable for INTRUDER DETECTOR
Practical Electronics, March 1975
Tx/Rx Pair \(\mathbf{6 3 . 5 0}+28 p\) VAT
FIBRE OPTIC SUPPLIERS
2 LOUDOUN ROAD MEWS LONDON NWB ODN

METER REPAIRS. Ammeters, voltmeters, multi-range meters, etc. Send to: METER REPAIRS, 21 Mount Road, Thundersley, Benfleet, Essex, ss7 1HA.

\section*{ENAMELLED COPPER WIRE \\ \begin{tabular}{|c|c|c|}
\hline S.W.G. & 116 Reel & 116 Reel \\
\hline 10-14 & ¢2.05 & \(\pm 1.15\) \\
\hline 15-19 & 12.15 & ¢ 1.20 \\
\hline 20-24 & ¢2.20 & ¢1.25 \\
\hline 25-29 & E2.25 & \$1.30 \\
\hline 30-34 & ¢2.35 & ¢1.38 \\
\hline 35-40 & £2.50 & \&1.45 \\
\hline
\end{tabular}

\section*{COPPER SUPPLIES}

102 Parrswood Rd., Withington, Manchester 20 Telephone 061-224 3553

AERIAL B008TER8 \&3, P. \& P. 10p. We make three types of boosters: L11-VHF radio L12-VHF 405 TV. Please state channel numbers. L45-UHF-625 TV. S.A.F. leatlets LANCASHIRE MAH ORDER, 6 William Street, Stubbins, Ramsbottom, Bury, Lancs.


\footnotetext{
LOW COST I.C. MOUNTING. 100 I.C. pin sockets 60 p . Quantity rates, S.A.E. sletails and sample 7 and 8 hole plastic support 5p/pair. (P. \& P. 5p/order). LED (MLED500) 5p/pair. (P. \& P. 5p/order). LED (MLED500) 20p each post free. Quantity rates. P.K.G.
ELECTRONICS, Oak Lodge, Tansley, ELECTRONICS, Oa
}

STEREO Pidup Pre-amp RAAA.
Suitable p.u.'s \(2-10 \mathrm{mv}\) output. Features ultra low noise IC 70dB type. Max. output up to Iv . rms. (dep. on input). Frequency Response \(20 \mathrm{~Hz}-100 \mathrm{KHz}\). Mains powered for easy installation.
\&5.95 incl. VAT. P. \& P. I5p.
S.A.E. for details of other modules.

\section*{P. F. STEVENS Electro-Acoustics 8A CLARENCE ROAD SOUTH BENFLEET, ESSEX}

\section*{FOR SALE}

PARTLY BUILT ELECTRONIC ORGAN. \(12 \times 6\) stage dividers, \(12 \times\) oscillators (less coils). Tone forming circuits, distribution panel and circuit details. \&18. WESTELL. Tel. Whalley 3769 after 6 p.in.

PRACTICAL WIRELES8, Dec. 60-Sept. 71, 130 issues-cost \&15.97. PRACTICAL TELEVISION Oct. 60 -Sept. 72,143 issues, cost \&17.39. Offers to Box No. 59.

MAGAZINE8-Practical Electronics 19671974 and others. Offers to TREMLETT, 17 Radnor Road, Bristol, BST 8QS.

GREENBANK ELECTRONIC8 new components. Digital clock chip AY-5-1224 plus data \&3.66, data alone 16 p (refundable on order) DLT47 0.6 in . "Jumbo" J,FD display now only \(\$ 2.04\). \(\frac{1}{2}\) W carbon film rfsistors 4.7 ohm to \(4.7 \mathrm{M} \Omega 1 \mathrm{p}\) each. Triac TAG \(250-4008 \mathrm{~A}\), 69p. D32 diac 23p. 1N914/4148 3p. 2N3702/ 3704 9p. Post free, add standard VAT. 94 New Chester Road, Wirral, Merseyside. L62 5AG.

ELECTRONIC PIANO (five octave) with synthesised piano - honky tonk - plucked string bass and harpsichord effects. Complete with carrying case and service information Perfect working order and condition. \(\$ 100\) o.n.o. Send S.A.E. for full details. FRANCIS MORTON, 65 Malmsey House, Vauxhall Street, London, SE11 5LU

08CILLOscOPE Heathkit 10-18U for sale £54 value, six months old: \(£ 40\) o.n.o COULSON, 39 st. Bedes Close, Durham.
"GEMINI"-PCBs with most components in place; offers, POWELL, 20 Rushington Avenue, Maidenhead, Berks.

\section*{WANTED}

8ERVICEABLE MAIN8 TRANSFORMER for Solartron CD1400 oscilloscope. State price. MURPHY, 185 Otley Road, Harrogate, HG2 0 DA .

> TOP PRICES PAID NEW VALVES AND TRANSISTORS Popular T.V. and Radio types KENSINGTON SUPPLIES (B) 367 Kensington Street Bradford 8, Yorks.

"RADIO \& TV SERVICING" books wanted from 1961 onwards, any quantity. 82 paid per copy by return of post. BELL'S TELE VISION SERVICES, 190 Kings Road, Harrogate, Yorks. Tel., (0423) 55885.

\footnotetext{
P.E. WANTED. Any 1971, Jan, to Oct. 72, and Feb. 73. HANNis, Reading 882641 .
}

\section*{SYNTHESISER Modules by Dewtron \({ }^{\circledR}\)}


The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now With over 10 years' experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps sample/hold/envelope module; pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous 'Modumatrix' patching system makes other patching a thing of the past! Send just 15p for full catalogue to

\section*{D.E.W. LTD.}

\section*{254 Ringwood Road, Ferndown Dorset BH22 9AR}

\section*{CJL PRICES INCLUDE PEP AND V.A.t.}

\section*{BIB HI-FI ACCESSORIES}

DCASSETTE TAPE RECORDER CARE KIT
\(\varepsilon 1.95\)
DCASSETTE SPLICING AND EDITING KIT
\(\varepsilon 1.50\)
DHI-FI STEREO TEST CASSETTE
E2. 10 -

E1.35
DGROOV-KLEEN RECORD CLEANER
£1. 85 COMPONENT PACKS
DCAPACITORS-Electrolytic-Tubular Submin-Mixed EO. 50 DCAPACITORS-P.C.B. Polyester-Mixed Preferred \(\varepsilon 0.50\) DRESISTORS-Carbon Film-Mixed Preferred . . E0.50 IDPOTENTIOMETERS-Midget Carbon Track-Mixed \(£ 0.50\) DEARPHONE, stethoscope style, 8 ohm dynamic पHAND DRILL, (Leytool), compact precision difll 5/16"chuck. Gears totally enclosed. S/L bearings E1.00

E2. 99 integrated circuits
DAUDIO POWER AMPLIFIER (National) LM380
M380 E1.00 - A.M.RADIO RECEIVER (RCA) DF.M.STEREO DECODER (Motorola) DTIMER (Signetics)
QVOLTAGE REGULATOR (Fairchild) MC1310P E2.80 NE555V £0.78 UA7805 E1.70 -VOLTAGE REGULATOR (Signetics) NE550A E0.80 DD.I.L.SOCKETS (PK of 3) 8 or 14 pin E0. 50 DKEYNECTOR , rapid connect to mains-single/multiple leads. Built-in plano switches, neon \& 13A fuse precislon pocket rule. Easy to read, \(13 \mathrm{~mm} / \frac{1}{2}\) " wide steel tape. B lade length lockable-power return. A superb rule.
IMICROPHONE, Ilghtweight dynamic, remote start stop, 200 ohms, \(100-10 \mathrm{kHz}, 6 \mathrm{mV}\) average output DSIGNAL INJECTOR , audlo through video signals excellent for servicing amplifiers, radio \& tv
\(\qquad\) CSOLDERING IRON, 25 WATT, (Antex), \(\times 25,240 \mathrm{~V}\), Very low leakage, \(1 / 8^{\prime \prime}\) long life bit (interchangeable) \(£ 1.85\) \(\square 3 / 32\) "bit \(£ 0.45 \square 3 / 16^{\prime \prime}\) bit £0.45 DElement \(£ 0.95\) DSTAND, ST3, High grade base, chrome plated
spilng, sponges and accomodation for spare bits. \(£ 0.95\)

\section*{}

\section*{greet constructors with EXCLUSIVE INTRODUCTORY MONEY-SAVING OFFERS SCIENTRONICS}
is a new company organised to develop and promote electronic designs of especial interest to constructors. We are privileged to offer, as our opening shot, a substantial quantity of selected items no longer part of the production programme of an internationally famous British manufacturer. These include transistors by Ferrantl, Texas, ITT and others made to stringent specifications, e.g., E5401 with a guaranteed galn at 1 micro amp. All these transistors are brand new and guaranteed within the terms of our published specifications. S.A.E. brings full list by return. Leads on components are
untrimmed

\section*{TRANSISTORS}


\section*{RESISTORS}

Most values in E. 12 series are available in \(5 \%\) or \(10 \%\) tolerances Miniature types ( \(1-\frac{1}{2}\) W). Quantity rates applicable to orders of same value.
\(0.8 p\) each, 10 of same value \(7 p\) : in a range of useful values 100. 55p; \(1,000 £ 4 \cdot 50\).

\section*{CAPACITORS}

Ceramics from \(1 \cdot 1 \mathrm{p}\) to 2 p each, 10 p to 18 p for \(10,77 \mathrm{p}\) to \(\mathrm{\varepsilon 1.45}\) for 100 , £6. 25 to \(£ 11 \cdot 75\) for 1.000
Electrolytlcs from \(10-50\) Volts; 1 to \(220 \mathrm{mF}, 3 \mathrm{peach}, 27 \mathrm{p}\) for \(\mathbf{1 0 , ~} \mathbf{\varepsilon 2} \cdot 20\) for 100, £17: 25 for 1,000

NIXIE DISPLAYS/SWITCHES/TRANSFORMERS/KNOBS/NUTS/BOLTS etc. Send S.A.E. for full lists and prices-REAL MONEY SAVERS THESE.

ENQUIRIES FROM TRADE AND BULK BUYERS INVITED SPECIAL QUANTITY DISCOUNTS

\section*{ORDERING AND GUARANTEE}

All goods guaranteed within terms of specification and in stock at time of going to press. Send cheque or money order with order, or if cash, end reg. post. Please state your requirements clearly. Satisfaction guaranteed or your money refunded
MIN. ORDER ' \(£ 1\). All goods sent post paid in U.K. Overseas postage charged at cost. VAT-Add \(8 \%\) total value of order in U.K
SCIENTRONICS
Dept. PE4, 40 HIGH STREET, SOMERSHAM, HUNTINGDON, CAMBS., PE17 3JA.
Telephone Somersham (04874) 321


\section*{ELEGTROVILIE \\ IMPORTANT ANNOUNCEMENT ON PRICES}

1975
is the year of challenge. Rather than sit back and wait for things to happen. we have produced our own policy to help stabilize price structure and maintain the sevices which have made ELECTROVALUE pre-eminent.
PRICES as shown in our latest catalogue (No. 7. issue 3) will be maintained at least until March 31st next (except in severe cases of market fluctuation) and then held after review for further 3 -month periods instead of day to day price changes
CATALOGUE No. 7, ISSUE 3 is now ready with 112 pages of bargains and information. Price- 30 p post paid, including 25 p refund voucher for use on orders for \(£ 5\) or more.
DISCOUNTS apply on all ltems except the few where prices are shown NETT. \(5 \%\) on orders from \(£ 5\) to \(£ 14.99\) \(10 \%\) on orders value \(£ 15\) or more
FREE POST AND PACKING in U.K. for pre-paid mail orders over \(£ 2\) (except Baxandall cabinets). If under there is an additional handling charge of 10 p .
QUALITY GUARANTEE. All goods are sold on the understanding that they conform to maker's specification. No rejects, seconds or sub-standard merchandise SUPPLIERS OF QUALITY COMPONENTS AND SEMICONDUCTORS AT COMPETITIVE PRICES.

\section*{EEGTROINT ITO}

All communications to Dept. PE4. 28 , ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURAEY TW20 OHB Telephone Egham 3603. Telex 264475 Shop hours: \(9-530\) daily, 91 pm Sats.
NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 1NA Telephone (061) 432 4945 Shophours Daily \(9-5.30 \mathrm{pm}, 9-1 \mathrm{pm}\) Sats


\section*{Phoenix Electronics} (Portsmouth) Ltd. 139-141 Havant Road. Drayton, Portsmouth, Hants PO6 2AA

Full member of AFDEC-the industry's association of franchised electronic component distributors.

Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list-we'll mail that to you free. too.
COMPONENTS FOR I.C. APPLICATIONS BY MR. J. B. DANCE
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAJ110 & £1.96 & SAJ180 & £1.96 & SAK110/115 & [1. 23 \\
\hline TAA775G & £1.23 & TAA930A & \$1. 23 & TBA790KSD & £1.96 \\
\hline TBA800 & \$1.96 & TBA950 & \$1.76 & TCA250 & \$1.96 \\
\hline
\end{tabular}

Please send your catalogue-free!

\section*{Name}

Address

\section*{PRIt}

Practical Radio \& Electronics Certificate course includes a learn while you build

\section*{3 transistor radio kit.}

Everything you need to know about Radio \(\mathcal{\&}\) Electronics

Waver 150
wayst
engineer amaintenance and repairs for a spare time income and a career for a better future.


That's how long it will take you to fill in the coupon. Mail it today and we'll send you full details and a free book. We have successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost home study course gets results fast-makes learning easier and something to look forward to. There are no books to buy and you can pay-as-youlearn.

Why not do the thing that really interests you? Withous losing a day's pay. you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you . . . but it could be the best thing you ever did

Others have done it, so can you
Yesterday I received a letter from the Institution informing that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have ever obtained. a view echoed by two colleagues who recently commenced the course."-Student D.I.B.. Yorks.
"Completing your course. meant going from a job I detested to a job that I love. with unlimited prospects."-Student J.A.O. Dublin.
"My training quickly changed my earning capacity and. in the next few years. my earnings increased fourfold. "-Student C.C.P.. Bucks.

\section*{FIND OUT FOR YOURSELF}

These letters, and there are many more on file at Aldermaston College, speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to:

\section*{ALDERMASTON COLLEGE \\ Dept. TPE04, Reading RG74PF \\ HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY}
 Dept. TPE04, Reading RG7 4PF
NAME
Block Capitals Please
ADDRESS
post code
OTHER SUBIECTS

\footnotetext{
Published approximately on the 1 thth of each month by IPC Magazines Led., Fleetway House. Farringdon Street. London, EC4A AAD Printed in England by Chapel River Press. Andover.
Hants. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia) L.td South Africa-Central News Agency Lid.
Publisher's Subscription Rate including postage for one year. Inland \(£ 3.85\). Overseas \(£ 4.70\) U.S.A-Central News Agen
International Giro facitities Account No. 5122007 . Please state reason for payment. "message to payee
Practical Electronics is sold subject to the following conditions. namely, that it shall not. without the written consent of the Publishers first given, be lent. resold. hired out or otherwise or hired out or otherwise disposed of in a mutilated condited selling price shown on the cover. excluding Eire where the selling price is subject to V. A. T.. and that is shall not be lent. resold matter what or other.
}

\section*{You can bulld the Texan and Stereo FM Tuner TEXAN 20 - 20 WATT IC STEAEO AMPLIFIER}

Features glass fibre PC board, Gardners low field tra., sformer, 6-lCs, 10 -transistor's plus dodes. etc. Dusigned Supplied with full chassis work. detailed construction handbook and all necessary parts. Full input and control facilities. Stabilised supply. Overall size \(15 \frac{1}{4} \mathrm{in} \times 2 \frac{2}{2} 1 \mathrm{n} \times 6 / \mathrm{in}\) mains operated. Free teak sleeve with every kit

also built and tested \(\mathbf{5 3 7}\)-50 STEREO FM TUNER Features capacity diode tuning. leac and tuning meter indicators. stabilised power supply-mains operated. High performance and sensitivity with unique station indication ic stereo cecoder. Overall size in teak sleeve \(8 \mathrm{in} \times 2 \frac{2}{} \mathrm{in} \times 6 \mathrm{fin}\). Complete kit with tea sleeve \(£ 21 \cdot 00\) (Carriage 50p) (also built and tested \(£ 24 \cdot 95\) )
JOIN THE LARGE BAND OF HAPPY CONSTRUCTORS!

NEW SPECIAL PURCHASE


TEST EOUIPMENT MULTIMETERS
(Carr /packing 35p)

U4324 20 k R/V \begin{tabular}{c} 
U43 \\
with case \\
\(20 \mathrm{k} \Omega \mathrm{V}\) \\
\hline
\end{tabular} \({ }_{c}^{\text {with }}\) case \begin{tabular}{c} 
case \\
U4313 \\
\(20 \mathrm{k} \cap \mathrm{N}\) \\
\hline
\end{tabular} with stee 12.50

U43:7 20k \(\cap \mathrm{V}\) with case
U4341 \(33 \mathrm{k} \cap \mathrm{V}\) plus transistor steel case

\section*{\(4432320 \mathrm{k} \Omega / \mathrm{V}\)}

With case
\(1 \mathrm{Tl}-2\) Z \(2 \mathrm{k} \cap \mathrm{V}\) s.m
THI-2 20k \(\cap \mathrm{V}\) slum type
THL 33 D (L330X) \(2 \mathrm{k} \cap \mathrm{V}\) Robus TPLSSN 20k
TP10S \(2 k \Omega V\)
TW20S \(20 \mathrm{k} \Omega \mathrm{V}\)
TW50K \(50 \mathrm{k} \Omega / \mathrm{V}\)
EPTOKN \(70 \mathrm{k} /\)
SP100TR \(100 \mathrm{k} \Omega / \mathrm{V}\) plus transi lor tester

\section*{NEW REVOLUTIONARY}

SUPERTESTEA 680
680R Multi-fester
TEE 15 Grld dip meter A 40 FHz -
28 mHz
1 Hz 25
28
Range vaive voltmeter
TE200 RF Generator 120 kHz 500 mHz
TE22D AF Generator 20 Hz 200kHz
M350 in circuit transistor
\begin{tabular}{l} 
tester \\
C 3025 Deluxe meter \(1-300 \mathrm{mHz}\) \\
\hline
\end{tabular} T145 Compact transistor
\[
\begin{aligned}
& \text { tester } \\
& \text { G3-36 } R^{\prime} \text { OSC } 20 \mathrm{~Hz}-
\end{aligned}
\] \({ }^{200 \mathrm{kHz}} \mathrm{C} 3042\) SWR Meter
-SE350A Deluxe signal trace *SE400 Mini-lab all in one C1-5 Scope 500.000 kHz (carr
\[
\text { * } \mathrm{E} 3043 \text { S CH F/A meter }
\]

\section*{300 mHz}

Resis1ance sub box \(\left\{\begin{array}{l}\left.\text { Post, etc } \begin{array}{l}5 \cdot 75 \\ 2-40\end{array}\right]\end{array}\right.\)
Capacitor
variable
transformers
2A variable transtormers
(carr. \&1) (carr. \&1)
Radio activit Racio activity counter 0 - 10 r
(carr. 81 )
9.97 Mains unit for above (carr. 50p) 3.75

\section*{TAPE HEADS}

Marsiot XRSP 17 \& Track Hlgh \(\quad 2.50\) Marriot XRSP/78 TrackMed. 3.50 Marriot XRSP/35-Track Med.
Marriot XRSP 63 - Track High Marriot XRSP/63 Track High
Marriot Erase Heads for XRSP 17,18/36 (XES11) Martiot BXIZE 343 ; Track Erase
R/RPI Record/Play \(\ddagger\) Track H/RP Single Track Rec/Play Bogen Type UL290 Erase Rec/Play
(P.P. 15p)

\section*{EXCLUSIVE}

5 WATT IC
AMPLIFIERS


Special purchase 5 watt output 8-16 ohm load. 30 volt max. d.c. operation, or 2 Por \(£ 2 \cdot 85\). Printed Circuit Panels 50p.

CALCULATORS


VAT 8\% EXTRA ON ALL ITEMS

SEND NOW FOR OUR NEW FREE LIST NO. 36 FOR OUR COMPLETE RANGE OF OVER 10,000 DEVICES AT NEW LOW PRICES.


\section*{NOMBREX TEST EQUIPMENT}

Model 35 Stabllised Power Supply
A short circuit proof power supply delivery up to 30 V at 1 A . Built-in Volts and ammeters.
£23. 60
Model 40 Wide Range Audio Slgnal

\section*{Generator}

A high stability signal generator using the low distortion Wien bridge principle. Covering 10 Hz to 100 kHz in 4 ranges. Adjustable output from 1 mV to IV . Sine and square wave output. \(\quad\) E25.90

\section*{Model 41 RF Signal Generator}

Covering 150 kHz to 220 MHz in 8 ranges.
Built-in in AM mod. Output up to 50 mV . Crystal calibration facilities. Large linear scale with slow motion drive. \(\quad\) E35.00
Model 42 Wide Range RF Signal Generator
Covering 150 kHz to 300 MHz in 8 ranges. Highest range in harmonic. Built-in AF mod. Output up to 50 mV . Circular scale. \(£ 17.50\)

\section*{Model 43 RC Bridge}

Null indicating bridge for resistors and capacitors. Resistance range 10 A to 10 M \(\pm 2 \%\) at centre scale. Capacity range \(10 \mu \mathrm{~F}\) to \(100 \mu \mathrm{~F} \pm 2 \%\) centre scale except \(1 \mu \mathrm{~F}\) to \(10 \mu \mathrm{~F}\) range \(\pm 5 \%\). Power factor measurement 0-70\%.
£16-50
Model 44 Inductance Bridge
Measures \(1 \mu \mathrm{H}\) to 100 H in 4 ranges \(\pm 5 \%\) accuracy. Q measurement from \(0 \cdot 1-1,000\) \(\pm 10 \%\)

E27. 50
Model 45 Direct Reading Frequency Meter 10 Hz to 100 kHz in 4 ranges. Input from 10 MV to 5 V
£28-90
All models except Model 35 are Internally powered from 9V battery (extra). Carrlage and packing all models 37p.

\section*{NOW OPEN SUPERMARKET}

Come and browse round the new components supermarket at 404 Edgware Road. Bargains galore. Goodie bags. Components. etc.
WATCH FOR FURTHER DEVELOPُMENTS```


[^0]:    © IPC Magazines Limited 1975. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expres sly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland £3•85, Overseas $\mathbf{5 4} \mathbf{4 0}$. USA and Canada $\$ 13 \cdot 00$. International Giro facilities Account No. 5122007 . State reason for payment, "message to payee".

[^1]:    The price of 98p applies only to eustomers in the U.K and to BFPO Addresses.

[^2]:    * North Staffordshire Polytechnic

[^3]:    Information transmission by digitally coded signals in the field-blanking interval of 625 -line television systems. BBC, IBA, BREMA. Price 50p.

[^4]:    * See text

