PRACTICAL

Elictrance
 MARCH 1975

1.C. IDENTELTHIT

TOTAL BUILDING COST	NEW EDU-KIT COMPLETELY SOLDERLESS ELE BUILD THESE. PROJECTS WITH 	MAJOR TRONIC CONSTRU OUT SOLDERING \qquad ic Noise Genera-
NEW	NEW	RO
ROAMER	EVERYDAY	TEN Mk. II
NINE	SERIES \square	
Alıçaft		
,	,	
	EV6	demm
		tram
POCKET	Ev7	
FIVE	为	1ρ
	ROAMER EIGHT Mk. I	U
	Now wirt	
	TONE Control	
TRANSONA	cosm	
VE now wir	\%	
Louspeaker	-min	
Total gididing cost		
$£ 2 \cdot 75$	comen	
		(tamme
	\%isem ${ }^{\text {and }}$	RADIOEXC
		Nemation
	- To ralo	
ROAMER SIX	Task	

VOLUME 11 No. 3 MARCH 1975
CONSTRUCTIONAL PROJECTS
ULTRASONIC DOPPLER SHIFT INTRUDER ALARM by J. B. Dance.
Protect your home with this easy to construct security system 206
P.E. MINISONIC-5 by G.D. Shaw
This concluding article deals with making the most of the Minisonic 212
IN-CIRCUIT OHMMETER by O. N. Bishop
For measuring the resistance of a component without having to remove it from the circuit 228
ELECTRONIC THERMOSTAT by R. A. Penfold
An accurate temperature controller particularly suitable for photographic work 236
GEIGER COUNTER by M. Plant
Detect radioactive minerals with this portable pocket radiation monitor 242
GENERAL FEATURES
SWITCHING POWER SUPPLIES 223
INGENUITY UNLIMITED
Touch-Switch-Two-way Morse Trainer-Transistor Tester-Lighting Control Circuit 219
NEWS AND COMMENT
EDITORIAL-On Guard 205
SPACEWATCH by Frank W. Hyde
Pioneer 11-Red Spot—Radio Waves from Earth 216
POINTS ARISING
P.E. Orion-P.E. Minisonic 3-Digital Leaf-Marine Speedometer 220
NEWS BRIEFS
New Loudspeaker-New Year Award-lpswich News 233
MARKET PLACE
Loudspeaker Kit, P.E. Orion, Digital Leaf and New Transistors 234
BOAT SHOW '75
Electronics for the mariner at this year's show 239
ELECTROMUSE by Malcolm Pointon
Setting-up and composing electronic music 241
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 245
PATENT REVIEW
Thought provoking ideas on file at the British Patents Office 248
READOUT
More on Boolean breakfast 249

SPECIAL FREE DATA SHEET INSIDE THIS ISSUE

I.C. IDENTICHART

An easy-to-read directory of over 450 integrated circuits

CEEFAX and ORACLE

Part 2 of this article will appear next month
Our April issued will be published on Friday, March 14, 1975

[^0]
PE SCORPIO MKR isnition systemkit now rrom ELICTRO SPARES

 * 6 OR 12 VOLT * + VE AND - VE GROUNDHere's the new, improved version of the original PE Scorplo Electronic Ignition System - with a big plus over all the other kits - the PE Scorpio Klt is designed for both positive and negative ground automotive electrical systems. Not just + ve ground. Nor just - ve ground. But both! So if you change cars, you can be almost certain that you can change over your PE Scorpio Mk. 2 as well.
Containing all the components you need, this Electro Spares PE Scorplo Mk. 2 Kit is simply built. using our easy to follow instructions. Each component is a branded unit by a reputable manufacturer and carries the manufacturer's guarantee. Ready drilled for fast assembly. Quickly fitted to any car.
When your PE Scorpio MK. 2 is installed, you instantly benefit from all these PE Scorpio Mk. 2 advantages
\star Easier starting from cold \star Firing even with wet or oiled-up plugs \star Smoother running at high speed \star Fuel saving \star More power from your engine \star Longer spark plug life * No more contact-breaker burn.

Electro Spares prices:
De luxe KIt only $£ 10 \cdot 85$ inc. VAT and $p \& p$. Ready Made Unit £13.65 Inc. VAT and p \& p. State 6 V or 12 V system.
Send SAE now for details and free list.

FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics' Superb Hi-Fi tuner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge) Electro Spares price only £28.50 inc. VAT and p \& p.

‘GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere 0.02%, and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms. Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now! Depending on your choice of certain components, the price can vary from $\mathbf{£ 5 0}$ to $\mathbf{£ 6 0}$ inc $\checkmark A T$ and p \& p

* All components as specified by original authors, and sold Boparately if you wish
* Full constructional data book with specification graphs. fault finding guides, etc. 55 p plus $9 p$ postage.
\star Price List only. Please send S.A.E. (preferably 9×4 minimum) for full detalls

MULTIMETER Model C-7081 GN Range Doubler $50,000 \mathrm{ohm} /$ volt High Sensitivity Meter 614.40. 20p P. \& P

500μ A , 70p. 5 p P. \& P.

del UD-130. Freency response 50$000 \mathrm{c} / \mathrm{s}$. Impedance al 50 K and 600 ohms, 55. IIP P. \& P.

4tin $\times 3$ in METER. 30/tA $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, £ 3.85$. I Ip P. \& P

MULTIMETER
Model D62
20,000 ohm/
volt, 67.65.
15p P. \& P.

3 WATT STEREO AMPLIFIER
64.30. 10p P. \& P.

All above prices include 8% V.A.T. LARGE S.A.E. for List No. II. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

ENGINEERS

YOURSELF FORA

Do you want promotion. a betler job. highet pay? "Neu Opportunilies" shows you how 10 get them through a lou-cost home study course. There are no books to buy and you can pay-as-you-learn.

This
read by
ead by, y ambitious success Send for this heipful 76 page FREE book now. No obligation and nobdy will call on now. No obligation and nobdy will call on

St (U) PT PT IT TS

includes dozens of useful and Interesting cireults you can bulld: data: hundreds of pletures: transistor equivalents list and hundreds of new lines. Packed with Information ONLY 35p.

SUPERSOWIC SAWE-DAY-SERVICE-MEANS OUAITV COWPDNEVST-FANYT

- RESISTORS

CARBON FILM
+W 1n-1Mn $5 \%, 1 \mathrm{Mn}-10 \mathrm{M} \Omega$ 10\% E12 FW to to $910 \mathrm{k} \Omega 5 \%$ E12 and E24 10% each
METAL OXIDE
tW 10n to $1 \mathrm{M} \cap: 2 \%$ E12 and E24 4 p each WIREWOUND
$3 W \quad 0.22 \Omega, 0.27 \cap, 0.33 \cap, 0.47 \Omega, 10 \%$ $1-2$ n to 270 ก: 5% E12 13p each Other ranges stocked. See our catalogue for detsils. 82 and decades. E24:11, 13, 16, 20, 24,30 36, 43, 51, 62, 75, 91 and decades

- TRANSISTORS AND DIODES

AC127	18p	BY126	13p
AC 128	18p	BY127	13p
AC176	17p	8 ¢164	49p
AD161/		BZY88	
162M	93p	series	13p
BA100	9 p	MPF102	36p
BA145	22p	OA91	fp
BC107	10p	OA200	7p
BC108	10p	0 C 71	20p
BC109	13p	SC146D	88p
8C109C	15p	T1S43	28 p
OC142	23p	woos	30p
BC143	28p	WO4	33p
BC147	10p	1N914	4p
BC148	10p	1N4001	${ }^{6} \mathrm{p}$
BC149	12p	1N 4002	6 ¢p
BC168C	12p	1N4003	7p
BC169C	12p	1 N 4004	7 p
BC178	17p	1N 4005	${ }^{80}$
BC182L	10p	1N4006	$8 \frac{1}{}$
BC183L	12p	1N4007	${ }^{9 p}$
BC184L	12p	1 N 4148	4 p
BC212L	$1{ }^{1} p$	2N1302	20p
BC213L	15p	2N1303	20p
BC214	${ }^{18 p}$	2N1304	30p
BCY71	22p	2N1711	$24 p$
BD131	45p	2N2219	25p
0D132	54p	2N2646	45p
BD131/2	MP	2N2905	33p
	$1 \cdot 20$	2N2925	Or.
ED135	36p	Ye, or	
ED139	49p	G\%	10p
BD140	69p	2N3053	18p
BF258	35 p	2N3055	49p
BF259	25p	2N3819	22p
BFX29	30p	2N5459	51p
BFX30	33p	7400	16p
EF×84	30p	7413	39p
EFX85	36p	7447 [¢1-10
BFX87	30 p	7473	54p
BFX88	25p	7474	45p
EFY50	200	7490	93p
BFY51	22p	7493	93p
BFY52	20p	74123	39 p
L.E.D. RED			
$2 \mathrm{mcd} \frac{1}{1 / n}$			15p
			$5 p$
(Other colours and $7-\mathrm{seg}$			

INTEGRATED CIRCUITS

CA3046 (14-pin DIL

 LH0042CH (TO99) MC13 toP (14-pin DIL) MC1496 (14-pin DIL) MFC6040NE555V (8-pin DIL) SG1495 (14-pin DIL HA741C (8-pin DIL) $\mu A 741 C$
$\mu A 747 C$
(14-pin DIL
(14-pin DIL UA 748C (8-pin DIL) ZN414 (TO18)
VOLTAGE REGULATOR HA7805 5V 1.5A (TO3) $\quad \$ 1.75$ HA7815 15V 1.5A (TO3) $\quad 12.30$
MVR $5 V$ MVA $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 500 \mathrm{~mA}$ (TO3)
HA78M05 5V 500 mA
 A78L15 15V 500 mA (TO92) 60 p AA723C Variable 2 (TO92) B00 (TO99 or 14-pin DIL) 75 Our catalogue contsins application circults and data or all the above l.C.s and

DISCOUNTS

Detalls in our catalogue. Start collecting MES Discount Vouchers Nowt

BCD OUTPUT SLIDE SWITCH Marks the end of the old rashioned thumb-whee switch. With 7 -segment type
read-our. Fut details in ou atalogue £ E . 3 B

PLUGS AND SOCKETS

JACK PLUGS

 organs
A Full Scale Electronic Organ That You Can Buld To Your Own Specification

FULL CONSTRUCTIONAL DETAILS IN OUR LEAFLETS Leaflet MES51: Price 15p, describes a fully polyphonle basic be used as the basis of a large sophlsticated ingtrument Leaflet MES52: Price description on
MES50 serles organ
and shows you how to add a second keyboard with lots more stops

THE AMAZING DMO2

A ready-bult. tested and guaranteed digital master oscillator. Accurately generates the top 13 complete tuning of your organ to ONE SIMPLE adjustment. New deslon gives selectable C to C output ranges of (approx.) $4 \mathrm{k} \Omega$ to $8 \mathrm{k} \Omega$ (highest) or $2 \mathrm{k} \Omega$ to $4 \mathrm{k} \Omega$ or $1 \mathrm{k} \Omega$ to $2 \mathrm{k} \Omega$, etc right down to 16 Hz to 32 Hz ! And thls now compatible design is even smaller: only 3 . 5 in $\times 3.7$ in tncluding goldDMO2Ted edge connection
DMO2 includes buit in variable depth and rate Prequency shift tremulant
SAJ110: 7-stage frequency divid DMO2T \&14.25 package. Sine or square wave input 14-pln DIL wave output may be converted to saw-tooth $\$ 1.40$ each or 6 for $£ 9.94$ or 12 for $£ 18 \cdot$. 16 . Keyboards high quality, fully sprung
Flat-front 48 -note F to E, $\quad \$ 15.95$ Sloping-Pront 49-note C to C
Swell pedal with 10kn log por
"Spring Une Unit (short) pot
15.95

JACK CHASSIS SOCKETS
2.5 mm open-type metal
tin Std. Mono open-type
metal
with. Mono moulded
with 2 break contacts
in Std. Stereo open-type
motal

with 3 break moulded
n-line sockets of all above typ

PHONO

Plastic-topped plug Screened plug
has is sockat iwn
$5 p$
$12 p$
$4 p$
$6 p$

MAINS CONNECTORS

pou-pin 1.5A Chassis

plug with itne socket
SA2190 3-pin 5A Chassis
sa2190 3-pin 5A Chassis
plug
SA1862
SA1862
SA2190
S437 3-pin 5A Chasals
socket with line plug

TRANSFORMERS

LT 700 m in. output. Pri. $1 \mathrm{k} \Omega$
Sec. 5Ω 200mW 500 : Sub-min mains $6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}$-95p $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 35_{p}$ (Size bott approx. $30 \times 27 \times 25 \mathrm{~mm}$).
Min mains $0-6 \mathrm{~V} 500 \mathrm{~mA}_{1} 0-6 \mathrm{~V}$
$\begin{array}{llll}500 \mathrm{~mA} & 51.36 ; & 0-12 \mathrm{~V} & 250 \mathrm{~mA}, \\ 0-12 \mathrm{~V} & 250 \mathrm{~mA} & \mathrm{~F} 1.36 ; & 0-20 \mathrm{~V}\end{array}$
$\begin{array}{llll}0-12 \mathrm{~V} & 250 \mathrm{~mA} & £ 1 \cdot 36 ; & 0-20 \mathrm{~V} \\ 150 \mathrm{~mA} & 0-20 \mathrm{~V} & 150 \mathrm{~mA} & \boxed{125} .36 \text {. }\end{array}$ $0-24 \mathrm{~V}, 125 \mathrm{~mA}, \quad 0-25 \mathrm{~V} \quad 125 \mathrm{~mA}$
§1-36.
Maine MT3AT: Sec: 12-15-20-
$24-30 \mathrm{~V} 2 \mathrm{~A} 53.60$.
Mains MTZ06AT: Sec: 0-15-20V
1A, 0-15-20V 1A $£ 3.98$

Spring Line Unit (long)

- Aeverberation Driver Module
S.A.E. please for full detalis; leaflet MES 5.34 Gold-clad phosphor-bronze wlre 30 p per yd Palladium earth bar 15p per octave length Contact Biocks 2-make (GB2)
Stop Tabs rocker type not engraved (white. Stop Tabs rocker type not engraved (white. 48p
red grey or black) with DPDT switch

SPECIAL OFFER

5W Audio Amp I.C. TBA810S with data and eircuits

Price $£ 1.00$

"ELECTRONICS TODAY INTERNATIONAL

4600 SYNTHESISER

We slock all parts for this brilliantly designed synthesiser. This includes all the P.C.B.s. metalwork and drilled and printed front panel giving a truly prolessional finish. Authoritative opinions agree the E.T.I. International Synthesiser is Complete constructional detalls in our booklet avaliable shortiy. S.A.E. please for price list and apecification. We also stock all parts for the P.E. Synthesiser, and Minisonic
P.O. Box 3, Raylelgh, Essex. Tel. Southend-on-Sea (0702) 44101

- A Please add 8% to the final total. Post and Packing FREE in U.K.

First-class post pre-paid envelope supplled free with every order

国 FOR audo
 RTVAT A BUDGET

COMPLETE STEREO SYSTEM
 ＊

System 1． $551 \cdot 00$
40 Watt Amplifier．Viscount III－R102 now 20 watts per channel．

Systeml includes
Viscount lll a mplifier－volume，bass，treble and balance controls，plus switches for mono／ stereo on／off function and bass and treble filters．Plus headphone socket Specification
20 watts per channei into B ohms．Total distortion＠10W＠1 $\mathrm{kHz}_{\mathrm{0}}$ 0－1\％．P．U． 1 （for ceramic castridges） 150 mV into 3 Meg．P．U． 2 （for magnetic cartridges） 4 mV ＠ 1 kHz into 47 K ．equalised within－1dB R．I．A．A．Radio 150 mV into 220 K ．（Sensitivities given at lull power）．Tape out facilities：headphone socket，power out 250 mW per channel．Tone controls and fifter characteristics．Bass：+12 dB to -17 dB ＠ 60 Hz ．Bass filter： 6 dB per octave cut．Treble control treble +12 dB 10－12dB＠ 15 kHz ．Treble filter： 12 dB per octave．Signal to noise tatio： （all controls at max．）－58dB．Crosstalk better than 35 dB on all inputs．Overload characteristics better than $26 d 8$ on allimputs．Size approx． $13 z^{\prime \prime} \times 9^{\prime \prime} \times 3$ 年
Garrard SP 25 Mk III deck with magnetic caftridge，de luxe plinth and hinged cover
Two Duo Type II matched speakers－Enclosure size approx． $17 \frac{1}{2}^{\prime \prime} \times 10^{\frac{3}{4}} \times 6^{\circ}$ in simulated teak．Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic twe eter． 10 watis handling． Complete System $£ 51$ ．00

System 2． $\mathbf{1 6 9 - 0 0}$

Garrard SP 25 Mk III deck（As System I）
Two Duo Jypelll matched speakers－Enclosure size approx． $27^{\prime \prime} \times 13^{\prime \prime} \times 11 \frac{1}{2}$ Finished in teak vemeer．Drive units $13^{\prime \prime} \times 8^{\prime \prime}$ bass driver，and twa $3^{\prime \prime}$（approx．）tweeters． 20 watts R．M．S．， 8 ohms frequency range -20 Hz to $18,000 \mathrm{~Hz}$ ．
Complete System $\mathbf{£ 6 9 . 0 0}$

PRICES：SYSTEM 1
Viscount Ill R102
amplifier $\quad \mathrm{f} 24.20+\mathrm{f}\} p$ \＆ p
20 uo Type Il speakers $\mathrm{f} 14.00+\mathbf{f} 2.20 \mathrm{p} \% \mathrm{p}$
Gartarl SP 25 with Mag．cartridge
de luxe plinth
and hinged cover $\quad £ 21.00+£ 1.75 \mathrm{p} \% \mathrm{p}$
total：$£ 59.20$
Available complete for only： $\mathbf{£ 5 1 . 0 0}$

+ E3．50p\＆p

PRICES ：SYSTEM 2

Viscount III R102
amplifier
$\mathbf{5 2 4 . 2 0}+\mathbf{f 1 p}$ 多p
2 解 Type III speakers $\mathrm{f} 39.00+\mathrm{f} 4.00 \mathrm{p}$ f p
Garrard SP 25 with Mag．carrridge
de luxe plinth
and hinged cover
$\mathbf{f 2 1 . 0 0}+\mathbf{f 1 . 7 5 p \& p}$
total：$£ 84.20$
Available complete for only： $\mathbf{5 6 9 . 0 0}$
$+£ 4.00 p$ p

STEREO＊QUALITY SOUND FOR LESS THAN $£ 20 \cdot 00$

Stereo 21，easy to assemble audio system kit．No soldering required． The unit is finished in white P．V．C．and the acrylic top presents an unusually interesting variation on the modern deck plinth． Includes：－BSR 3 speed deck，automatic，manual facilities together with stereo cartridge． Two speakers with cabinets．
Amplifier module．Ready built with control panel．speaker leads and full，easy to follow assembly instructions． Specifications：For the technically minded：－
Input sensitivity 600 mV ．Aux．input sensitivity 120 mV ．Power output 2.7 watts per channel． Dutput impedance 8－15 ohms．Stereo headphone socket with automatic speaker cutout．Provision for auxiliary inputs－radio，tape，etc．，and outputs for taping discs．Overall Dimensions．Speakers approx． $15 \frac{1}{2} \times 8^{\prime \prime} \times 4^{\prime \prime}$ ．Complete deck and cover in closed position approx． $15 \frac{1}{2}^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$ ．

Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance，$£ 3.85$ ．

For the man who wants to desion his own＂tereo－here＇s your chance to start
For the man who wants to desita with Unisound－pre－amp，power amplifier and control panel．No soldering－ just simply screw tegether． 4 watts per chanrel into 8 ohms．Inputs： 120 mV （for ceramic cartridge）．The heart of Unisound is high efficiency I．C．monolithic power chips which ensure very low distortian ower the audio spectrum． 240V．AC only．

8TRACK HOME CARTRIDGE PLAYER

Elegant self selector push button player for use with your stereo system． Compatible with Viscount III system Unisound module and the Stereo 21. Technical specification Mains input， 240 V ．Dutput sensitivity 125 mV Comparable unit sold eleswhere at £ 24.00 approx．Yours for only
$\mathbf{f 1 1 . 9 5 + 9 0 p p \& p . ~}$

PUSH BUTTON CAR RADIO KIT*TheTourist II

NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO
Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly. Fine tuning push button mechanism is fully built and tested to mate with printed circuit board
technical specification: (1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth. (2) Integrated circuit output stage, pre-built threestage IF Module. Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands. Size chassis $7^{\prime \prime}$ wide, $2^{\prime \prime}$ high and $4 \frac{3}{4}$ " deep approx $£ 7.70+55 p . p \& p$. Speaker including baffle and fixing strip $£ 1.65+23 p$. $p \& p$. Car Aerial Recommended-fully retractable $£ 1.37+20$ p. p. \& p.
The Tourist I Kit for the experienced constructor If you can solder on a printed circuit board you can build this model.

EMI SPEAKERS AT FANTASTIC REDUCTIONS

20 WATT

 SPEAKER SYSTEM* Syatem consists of a $13^{\prime \prime} \times 8$ (approx) eliptical wooler ynit with a 月" $^{x} \times 5$ (approx.) mid range unit incorporating parasitic tweeter and crossover components. Circuit diagramTechnical Specitication
Bass Unit
Flux density- 100 K , speech co't-1t Cone, Tripie laminated paper with PV C surfound
Mid Range Unit
Flux densty- 33 K
Flux denstry-33k, speech coil- 1 with parasitlc tweeter
Power Handling Power handing
20 watts R.M.S. impedance -8 ohms, frequency response -20 Hz to
i8.000 Hz .
OUR PRICE
f6.60. Complete
$+90 \mathrm{p} \boldsymbol{p}$ \& p .

15" 14A/780 BASS UNIT Bass ention a riged diecast chasses
Superiou cone material handles up io 50 Supe erot cone material handles up is 50
watts AMS , and is treated to give a smapth walts RMS, and is treated to give a smaoth
trequency cesponse Resonance 30 Hz flux densuly 360.000 Maxwells. impetfance at $i \mathrm{kHz}$ is 8 ohms $3^{\text {" }}$ voice coil. Recommended retail price $£ 40.80$. OUR PRICE $\mathbf{1 1 8} \mathbf{8 0}$ $+£ 1 \cdot 50 p$ \& p

DISCO AMPLIFIER

Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Outputs 20 watts R.M.S. into 8 ohms (suitable for 15 ohms). Inputs * 4 electrically mixed inputs, * 3 individual mixing controls. *Separate bass and treble controls common to all 4 inputs.

* Mixer employing F.E.T. (Field Effect Transistors) *Solid State circuitry. *Attractive styling.
IN PUT SENSITIVITIES -Input - 1.) Crystal mic. guitar or moving coil mic, 2 and 10 mV . (Selector switch for desired sensitivity).
-Inputs - 2), 3), 4). Medium output equipment - ceramic cartridge, tuner tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx: $12 \frac{1}{2} \times 6^{\prime \prime} \times 3 \frac{\frac{1}{2}^{\prime \prime}}{} . \mathbf{f 1 5 . 0 0 + 6 0 p . ~ p ~ \& ~ p ~}$

PORTABLE DISCO CONSOLE
 *

IWCORPORATES: Pre-Amp with full mixing facilities, including switched input for mic with volume control, switched input for auxiliary with volume control, bass and treble controls, volume control and blend control for turntables.
Two B.S.R. single play professional series decks, fitted with crystal cartridges. The turntables are designed and precision engineered. Thercombine clean modern styling with superb reproduction. Their many spacial features inciude square section aluminium tonearms, (high precision low mass design fully counterbalanced, with calibrated stylus pressure control for perfect tracking), and conveniently grouped easy to read linear controls. The furntables have viscous cueing devices which allows the tonearmss to be placed or lifted at any point on the record.
The two lightweight cartridge shelis have slide-in-holders to facilitate easy inspection of needles and cartridges.

TECHNICAL SPECIFICATION :
Pre-amp-Output -200 mV .
Auxiliary inputs -200 mV and 750 mV into 1 meg.
Mic input -6 mV into 100 K . 240 volt operation. Turntables capacity $-7^{\prime \prime}, 10^{\prime \prime}$ or $12^{\prime \prime}$ records. Rumble, wow and flutter
Rumble Better than -35dB. Wow Better than 0.2% Flutter Better than 0.06% (Gaumont kalee meter). Finish - Satin black mainplate with black turntable mat inlaid with brushedlaluminium trim. Tonearm and controls in black and brushed aluminium. Consale size -
Unit Closed $-17 \frac{3{ }^{\prime \prime}}{4} \times 133^{3 \prime} \times 8 \frac{3^{\prime \prime}}{4}$ (approx.) Unit Open - $35 \frac{3}{4} \frac{3}{4}^{\prime \prime} \times 13 \frac{3_{4}^{\prime \prime \prime}}{3^{\prime \prime}} \times 4 \frac{3}{6}$ " (approx.)
This disco console is ideally matched for the Reliant IV and Disco 50 or any other quality amplifier The unit is finished in black PVC with contrasting simulated teak edging, diamond spun control knobs with matching control panel.

Yours for only $£ 45.00+\mathbf{£ 3 . 5 0} \mathbf{P}$. \& P.

DO NOT SEND CARD

Just write your order giving your credit card number

Mail orders to Acton. Terms C.W.O. All enquiries stamped addressed envelope. Goods not despatched outside U.K. Leaflets available for all items listed thus * Send stamped addressed envelope. All items subject to availability. Prices correct at 1 st Jan. 1975 and subject to change without notice. All prices include V.A.T. at 8% rate. Personal Shoppers Edgware Road: 9a.m.-5.30p.m. Half day Thurs. Acton: 9.30a.m.-5p.m, Closed all day Wed.

 omnoisseur

THE B.D. 2 TURNTABLE ASSEMBLY

The famous B.D. 2 belt drive turntable with press button speed change has now been developed to feature a newly designed matt and brushed aluminium trim, and the Perspex cover has an easy "hinged-on, hinged-off" movement. The B.D. 2 is available as a chassis unit or spring mounted on a wood plinth, as above.

S.A.U. 2 PICK-UP ARM

Recognised as one of today's most advanced pick-up arms it features

* Auto-bias Compensator
* Hydraulic Lowering Device
* Precision Balance
* Adjustable Head Shell

S.C.U. 1 STEREO CARTRIDGE
A quality cartridge designed specifically for the person who appreciates his equipment.

Contact your dealer for information or send stamp for a brochure.

A. R. SUGDEN \& CO. (ENGINEERS) LTD

Atlas Mill Road, Brighouse HDG 1 ER Tefephone: Brighouse \{04847) 2142. Telegrams and cables: Connoiseur, Brighouse.

> for fast easy rellable soldering EASY TO USE DISPENSERS AND.REELS IDEAL FOR HOME CONSTRUGTORS

Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces, No extra flux is required.

SAVBIT handy
 solder dispenser

A coil of Ersin Multicore Savbit Solder in a
dispenser 7 ft 6 in of 18 s.w.g. (2.2 metre's of 1.22 mm). The Solder that reduces the wear of soldering iron bits.

Size 5
32p

SAVBIT soider

for general purpose work

A handy plastic reel of SAVBIT alloy. 63 tt of 18 s. w.g. (19.2 metres of 1.22 mm)

Size 12 £1.72

ALU-SOL for

soldering aluminium
New Multicore Alu-sol flux-cored solder in 16 s.w.g. No extra flux needed. Plastic reel holds 36 ft . Supplied with full instructions. Also avaijable in solder dispenser

Size $4 £ 2.32$

Fine gauge solder for soldering small components
Fine gauge solderfor soldering small components 138 ft of $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. (42.0 metres of 0.71 mm) Ersin Multicore 5 core solderwound on a plastic reel Suitable for intricate work and small components.

Size 10 £1.44

NE W BIB WIRE STRIPPER \& CUTTER

[^1]

IP
 I.L.P. (Electronics)Ltd

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 is a complete mono hybrid preamplifier. Ideally suited for both mono and sterec applications. Internally he device consists of two tigh quality ampiriers-the thl ine second caters for tone contol gai correction

ECHNICAL SPECIFICATION
inpuls: Magnetic Pick-ud $3 m \mathrm{~m}$ AIAA Ceramic Pick-up 30 mV : Mcrophone 10 mV : Tuner 100 mV : Auxllary $3-100 \mathrm{mV}$ input/impedance $47 \mathrm{k} \Omega$ at 9 kHz . Outpuss: Tape 100 mV Main output Dob (0.775 V RMS. Active Tone Controls Treble $\pm 12 \mathrm{db}$ at 10 kHz , Bass $\pm 12 \mathrm{db}$ at 100 Hz . Distortlon . 5% at 1 kHz . Signal/Nolse Ratio: 68ab. Overioad Capa bily: 40 db on most sensitlve inout Supply Voltege
PRICE $£ 4.50$

The HY50 is a complete solid state hybrid HI-Fi amplitier incorporating its own high conductlvity heatsink hermetically sealed in black epoxy pesin. Only five connectrons are provided input output power lines and earth
TECHNICAL SPECIFICATION
Output Power: 25 W RMS into 8Ω. Load Impedance $4-16 \Omega$. Input Sensitivity: Odb ($0-775 \mathrm{~V}$ RMS) Input Impedance: $47 \mathrm{k} \Omega$. Distortion: Less than 0.1% at 25 W typically 0.05%. Signal/Nolse hatio: Better than 75 db Frequancy Response: $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{db}$. Supply Voltage. $\pm 25 \mathrm{~V}$. Size: $105 \times 50 \times 25 \mathrm{~mm}$
PRICE $\{5.98$

The PSU50 incorporates a specially designed transformer and can be used for either mono or stereo systems

TECHNICAL SPECIFICATIONS
Output voltage: $\pm 25 \mathrm{~V}$. Input voitage: $210-240 \mathrm{~V}$. \$lze: L. 70 D $90 . \mathrm{H} .60 \mathrm{~mm}$

0 OTF $58+48 p$ VAT
P \& P FREE

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury, Kent CT4 7AD.

Tel. (0227) 63218

Please Supply
Total Purchase Price
I Enctose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Signature

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1N21 \& $$
\begin{aligned}
& 2 \eta \\
& 0.17
\end{aligned}
$$ \& \& BY213 \& $$
\mathrm{Lp}_{0.25}
$$ \& OAz20s \& $$
\begin{aligned}
& 8 p \\
& 0.45
\end{aligned}
$$ \& 28170 \& $$
\begin{aligned}
& 20 \\
& 0.10
\end{aligned}
$$

\hline 1N23 \& 0.35 \& AFZ12 2.00 \& BYZ10 \& 0.45 \& OAZ：206 \& 0.45 \& 7．8271 \& 0.18

\hline 1N80 \& 0.88 \& ABY26 0.25 \& BYZ11 \& 0.40 \& OAzz207 \& 0.45 \& ${ }_{\text {2T }}^{2}$ \&

\hline 1 N 253 \& 0.50 \& ABY27 0.33 \& BYZ12 \& 0.40 \& oaz208 \& 0.40 \& 2TX 10 \& ${ }_{0}^{0.12}$

\hline 1N256 \& 0.50 \& ABY28 0.25 \& BYZ13 \& 0.42 \& oaze09 \& 0.40 \& 2TX 108 \& 0.08

\hline 1 N645 \& 0.16 \& AnY29 0.80 \& BYZ15 \& 1.25 \& 0AZ210 \& 0.40 \& ZTX 300 \& 0.18

\hline 1 N 725 A \& 0.20 \& A8Y36 0.85 \& BYZ16 \& 0.60 \& 0AZ21］ \& 0.40 \& zTX 304 \& 0.24

\hline 1N914 \& 0.06 \& ASYJ0 0．20 \& BZY88 \& 0.10 \& oazzer \& 0.45 \& \&

\hline 1N4007 \& 0.12 \& ASYá 0.40 \& ${ }^{\text {C111 }}$ \& 0.65 \& OAZ223 \& 0.45 \& ZTXü03 \& 18

\hline 18113 \& 0.25 \& \& CRS $1 / 05$ \& 0.30 \& OAZ224 \& 0.45 \& \&

\hline 1820： \& 0.23 \& $\begin{array}{ll}\text { A8YY } \\ \text { ASY：} & 0.25\end{array}$ \& ${ }_{\text {CR4 }}{ }^{\text {CRS }}$／40 \& 1.90 \& OAZ241 \& 0－25 \& T \&

\hline 26371 \& 0.4 \& ASY66 0.33 \& CS10B \& 3.60 \& OAZ244 \& 0.25 \& CLRC \&

\hline 2G381 \& 0.22 \& AsZ21 1.00 \& DD000 \& 0.15 \& oazzic \& 0．15 \& 7400 \& 0.16

\hline 2G414 \& 0.30 \& A8223 0.75 \& DD003 \& 0.15 \& OAZZ90 \& 0.38 \& 7401 \& 0.16

\hline 26417 \& 0.25 \& AU104 $\quad 1.00$ \& DD006 \& 0.25 \& 0 O 16 \& 1.00 \& 7402 \& 0.16

\hline 2 N 404 \& 0.22 \& AUY10 ${ }^{1.00}$ \& DD007 \& 0.40 \& ${ }^{0} \mathrm{OC16T}$ \& 1.00 \& 7403 \&

\hline 2N697 \& 0.16 \& $\begin{array}{ll}\text { BC107 } & 0.14 \\ \text { BC108 } & 0.18\end{array}$ \& DD008 \& ${ }_{0}^{0.88}$ \& OC19 \& 0.60
1.00 \& 7404
7405 \& 0.28

\hline 2 N 998 \& 0.30 \& BC109 0.14 \& GD4 \& 0.10 \& ${ }^{\text {OC23 }}$ \& 1.25 \& ${ }_{7406}$ \& 0.42

\hline $\cdots \mathrm{N} 706$ \& 0.12
0.12 \& BC113 0.15 \& GDJ \& 0.88 \& $0 \mathrm{O}_{24}$ \& 1.10 \& 7407 \& 0.42

\hline 2n706A \& 0.12 \& BC115 \& GD8 \& 0.25 \& OC25 \& 0.40 \& 7408 \& 0.28

\hline 2 N 708 \& 0.15 \& BC116 0.20 \& GD12 \& 0.10 \& OC26 \& 0.40 \& 7409 \& 0.28

\hline $\square \mathrm{n} 709$ \& 0 \& BC116A $\quad 0.23$ \& GET 10： \& 0.50 \& OC28 \& 0.88 \& 7410 \& 0.16

\hline $$
\begin{aligned}
& -2 \mathrm{~N} 1091 \\
& \mathbf{N} 1131
\end{aligned}
$$ \& 0.55 \& BC18 $\quad 0.20$ \& GET103 \& 0.40 \& OC29 \& 0.65 \& 7411 \& 0.25

\hline 2 N 1132 \& 0.24 \& $\begin{array}{ll}\mathrm{BCl}^{\text {BC121 }} \\ \mathrm{HC122} & 0.20 \\ 0.20\end{array}$ \& GET113 \& 0.85 \& ${ }_{\text {OC30 }}^{\text {OC35 }}$ \& 0.40
0.55 \& 7412 \& 0.30

\hline 2 N 1302 \& 0.18 \& $\begin{array}{ll}\text { BC122 } & 0.20 \\ \text { BC125 } & 0.68\end{array}$ \& GET114 \& 0.30 \& 0 C 35 \& 0.55 \& 7413 \& 0.38

\hline 2 N 1303 \& 0.18 \& ${ }_{\text {BC126 }} \begin{aligned} & \text { BC128 }\end{aligned}$ \& GET110 \& －0．85 \& OC36 \& 0.60
0.85 \& ${ }_{7416} 7417$ \&

\hline 2 N 1304 \& 0.88 \& BC140 0 \& GET1120 \& 0．50 \& OC4：3 \& 0.85 \& 7420 \& 0.86

\hline ${ }_{2}^{2 N 1305}$ \& 0.88 \& ${ }^{\text {BC147 }} 0$ \& GET872 \& 0 －80 \& OC43 \& 0.70 \& 7422 \& 0.25

\hline $$
\begin{array}{r}
2 N 1306 \\
. \sim N 1307
\end{array}
$$ \& 0.88
0.88 \& ${ }^{\text {BC148 }} 0$ \& GET875 \& 0.40 \& OC44 \& 0.20 \& 7423 \& 0.37

\hline 2 N 1308 \& 0.28 \& $\begin{array}{ll}\text { BC149．} & 0.10 \\ \text { BC157 }\end{array}$ \& GET880 \& 0.60 \& OC44M \& 0.17 \& ${ }^{7425}$ \& 0.3

\hline 2 N 2147 \& 0.78 \& $\begin{array}{ll}\text { BC157 } & 0.14 \\ \text { BC158 } & 0.12\end{array}$ \& GET881 \& －0．25 \& ${ }_{0}^{0} \mathbf{O C 4 5}$ \& 0.2 \& 7427
7428 \& 0.37

\hline $2 \mathrm{~N}^{2} 148$ \& 0.60 \& ${ }_{\text {BC160 }} \quad 0.68$ \& GET885 \& 0.40 \& OC46 \& 0.27 \& 7430 \&

\hline 2 N 2160 \& 0.78 \& BC169 0．14 \& GEX44 \& 0.08 \& ${ }_{0} \mathrm{C} 57$ \& 0.60 \& ${ }_{7432}$ \& 0.37

\hline 2 N 2218 \& 0.23 \& BCX31 0.45 \& GEX40／1 \& 0.45 \& OC58 \& 0.80 \& 7433 \& 0.37

\hline $$
\begin{aligned}
& 2 N 2219
\end{aligned}
$$ \& 0.25
0.16 \& BCY32 0 0．85 \& QEX941 \& 0.45 \& OC59 \& 0.80 \& 7437 \& 0.87

\hline 2 N 2444 \& 1.99 \& $\begin{array}{ll}\text { BCY33 } & 0.38 \\ \mathbf{B C Y} 4 & 0.45\end{array}$ \& GJ3M \& 0.50 \& OC66 \& 0.50 \& 7438 \& 0.

\hline $2 \mathrm{~N}^{2613}$ \& 0.28 \& $\mathrm{BCY}^{89} 00.55$ \& GJ亏̆ \& ${ }_{0} 0.25$ \& OC71 \& 0.18 \& 7441 AN \& 0.02

\hline 2N2646 \& 0.50
0.80 \& BCY39 1.50 \& GJ7M \& 0.50 \& OC72 \& 0.28 \& 7442 \& 0.79

\hline 2N2904 \& 0.85 \& ${ }^{\text {BCY } 40} 00.80$ \& HG1005 \& 0.50 \& OCi3 \& 0.50 \& 7450 \& 0.16

\hline 2 N 2906 \& 0.80 \& $\begin{array}{ll}\text { BCY42 } \\ \mathrm{BCY} 70 & 0.30 \\ 0.18\end{array}$ \& ${ }_{\text {H }}^{\text {H }}$ S 100 A 100 \& 0.20 \& OC74 \& 0.30
0.30 \& ${ }^{7451}$ \& ${ }_{0}^{0.18}$

\hline 2 N 2907 \& 0.83 \& $\begin{array}{ll}\text { BCY71 } & 0.28\end{array}$ \& Mat100 \& 0.20
0.25 \& OC76 \& 0.80
0.80 \& 7454 \& ${ }_{0}^{0.18}$

\hline －N2924 \& 0.18 \& BCZ10 0.60 \& MAT120 \& 0.20 \& OC77 \& 0.54 \& 7460 \& 0.18

\hline $$
\begin{aligned}
& 2 \mathbf{N} 2925 \\
& 2 \mathrm{~N} 2926
\end{aligned}
$$ \& 0.12 \& BCZ11 0.65 \& Mat121 \& 0.25 \& OC78 \& 0.25 \& 7470 \& 0.88

\hline 2 N 3054 \& 0.48 \& $\begin{array}{ll}\text { BD } 121 & 1.00 \\ \text { BD1 } 123 & 1.00\end{array}$ \& MJEび20 \& ${ }^{0.63}$ \& OC79 \& 0.80 \& 7472 \& 0.88

\hline 2 N 3055 \& 0.45 \& ${ }_{\text {BD124 }}{ }^{\text {BD123 }}$ 0．65 \& MJE30̃ \& 0．72 \& ${ }_{0}^{0 c 81}$ \& 0.29
0.28 \& ${ }_{7474} 74$ \& 0.41
0.48

\hline $$
\begin{aligned}
& \text { 2N3702 } \\
& \text { 2N3705 }
\end{aligned}
$$ \& 0.11 \& ${ }^{\text {BDY11 }} 1.45$ \& MJE340 \& 0.47 \& 0¢81M \& 0.20 \& 7475 \& 0.59

\hline $$
\begin{aligned}
& 2 N 3705 \\
& 2 \mathrm{~N} 3706
\end{aligned}
$$ \& 0.11 \& BF115 0.20 \& MPF102 \& 0.40 \& OC81D \& 0.18 \& 7476 \& 0.45

\hline 2N3707 \& 0.13 \& $\begin{array}{ll}\text { BF167 } & 0.25 \\ \text { BF } 173 & 0.28\end{array}$ \& MPF103 \& 0.88 \& $\mathrm{OCS812}^{\text {O }}$ \& 0.45 \& 7480 \& 0.60

\hline 2 N 3709 \& 0.10 \& ${ }_{\text {BF }}{ }^{\text {BF181 }} 10$ \& MPF104 \& 0.35
0.36 \& OC82 \& 0.28
0.25 \& ${ }^{7482}$ \&

\hline $$
\begin{aligned}
& \text { 2N3710 } \\
& \text { 2N3711 }
\end{aligned}
$$ \& 0.11 \& ${ }^{\text {BF }} 184{ }^{\text {BFI }}$－ 0.29 \& NKT128 \& 0.45 \& OC83 \& 0.27 \& 7484 \& 1.00

\hline 2N3819 \& 0.38 \& BF180 0．28 \& NKT 129 \& 0.80 \& OC84 \& 0.80 \& 7486 \& 0.47

\hline 2 N 4289 \& 0.30 \& $\begin{array}{ll}\text { BF194 } & 0.10 \\ \text { BF195 } & \\ 0.13\end{array}$ \& NKT211 \& 0.85 \& ${ }_{0} \mathrm{OC114}$ \& 0.88 \& 7490 \& 0.55

\hline 2 N 5027 \& 0.53 \& $\begin{array}{ll}\text { BF190 } & 0.13 \\ \text { BF196 }\end{array}$ \& NKT213 \& 0.25 \& ${ }_{\text {OCl }}{ }_{\text {OC122 }}$ \& 1.00
1.10 \& 7491 A \& ${ }_{0}^{1.00}$

\hline ${ }_{2}^{2 N 5088}$ \& 0.33
0.59 \& BF197 0．15 \& NKT216 \& 0.40 \& \& 0.40 \& 7493 \& 0.70

\hline $$
\begin{array}{r}
23301 \\
23304
\end{array}
$$ \& ${ }_{1.15}^{0.59}$ \& BFS61

0.25 \& NKT217 \& 0.45 \& OC140 \& 1.14 \& 7494 \& 0.80

\hline 28501 \& 0.75 \& $\begin{array}{ll}\text { BFB98 } & 0.25\end{array}$ \& NKT218 \& 1.18 \& ${ }^{0} \mathrm{Cl41}$ \& 0.80 \& 7495 \& 0.80

\hline ${ }_{2} 28703$ \& 1.00 \& BFX12
BFX13 \& NKT219 \& 0.33 \& ${ }^{\text {OC169 }}$ \& 0.20 \& 749 \& 0．95

\hline AA129 \& 0.20 \& $\begin{array}{ll}\text { BFX } 29 & 0.28\end{array}$ \& NKT222 \& 0.85 \& ${ }_{\text {OCl71 }}$ \& 0.80
0.80 \& 74100 \& $\stackrel{1}{1.89}$

\hline $\mathrm{AAZZ12}^{\text {A }}$ \& ${ }_{0}^{0.72}$ \& BFX 30 0．28 \& NKT251 \& 0.4 \& OC200 \& 0.64 \& 74107 \& 0.45

\hline ${ }_{\text {AC }} 107$ \& 0.51 \& ${ }^{\text {BFX }} 3050.98$ \& NKT271 \& 0.20 \& ${ }^{0} \mathrm{C} 201$ \& 1.00 \& 74110 \& 0.58

\hline AC126 \& 0.25 \& $\begin{array}{ll}\text { BFX63 } & 0.50 \\ \mathrm{BFX}^{2} & 0.85\end{array}$ \& NKT279 \& 0.20 \& ${ }^{\text {OC202 }}$ \& 0.90 \& 74111 \& 0.88

\hline ${ }^{\text {ACP127 }}$ \& 0.25 \& | BFX84 | 0.25 |
| :--- | :--- |
| B 88 | | \& NKT273 \& 0.20 \& $\xrightarrow{\mathrm{OC2O}} \mathrm{OC24}$ \& 0.55

0.65 \& 74118
74119 \& ${ }_{1}^{0.68}$

\hline ${ }_{\text {ACl28 }}$ \& 0.15
0.21 \& BFX86 0.25 \& NKT275 \& 0.25 \& ${ }^{0} \mathrm{C} 205$ \& 1.00 \& 74121 \& 0.50

\hline ${ }_{\text {ACl }} 8$ \& 0.20 \& ${ }^{3 F X 87} 00.25$ \& NKT277 \& 0.89 \& ${ }^{\text {OC206 }}$ \& 1.10 \& ${ }_{7} 71122$ \& 0.70

\hline ACY17 \& 0.40 \& $\begin{array}{ll}\text { BFX88 } \\ \text { BFY10 } & 0.24 \\ 1.00\end{array}$ \& NKT278 \& 0.85 \& ${ }^{0} \mathrm{C} 207$ \& 1.00 \& ${ }_{7} 71123$ \& 1.00

\hline ACY 18 \& 0－27 \& \& NK T301 \& 0.85
0.75 \& OC460 \& 0.20
0.80 \& ${ }_{74145} 7414$ \&

\hline ACY19 \& 0．27 \& ${ }_{\text {BFY }}{ }^{\text {BF }} 170$ \& NKT304 \& 0.75
0.70 \& ${ }_{0}^{\text {OC470 }}$ \& 0.80
1.80 \& 74140 \& 1.75

\hline ${ }^{\text {ACP }}{ }^{\text {ACP }} 2$ \& 0.22 \& BFY18 0.45 \& NKT404 \& 0.68 \& ORP12 \& ${ }_{0.60}$ \& 74151 \& 1.00

\hline ACY22 \& 0.18 \& BFY19 0.55 \& NKT678 \& 0.80 \& ORP60 \& 0.55 \& 74154 \& $2 \cdot 00$

\hline ACY27 \& 0.25 \& ${ }_{\text {BFY24 }}{ }^{\text {BFY44 }}$ \& NKT713 \& 0.30 \& ORP61 \& 0.48 \& 74150 \& －00

\hline ACY28 \& 0.25 \& ${ }^{\text {BFYY }}$ \& NKT773 \& 0.25 \& 8x68 \& 0.20 \& 74156 \& 1．00

\hline ACY39 \& 0.78 \& $\begin{array}{ll}\text { BFY50 } & 0.21\end{array}$ \& NKT777 \& 0.38 \& 8x631 \& 0.45 \& 74157 \& 0.95

\hline ACY40 \& 0.22 \& $\begin{array}{ll}\text { BFY51 } \\ \text { BFY59 } & 0.20 \\ 0.20\end{array}$ \& OA5 \& 0.78 \& ${ }_{\text {SX }}$ \& 0.55 \& 74170
74174 \& ${ }_{1.57}$

\hline ACY41 \& 0.22 \& $\begin{array}{ll}\text { BFY52 } & 0.20 \\ \text { BFY } 3 & 0.17\end{array}$ \& ${ }_{\text {OAG }}^{\text {OAA }}$ \& 0.18
0.08 \& SX 640 \& 0.75 \& 74174
74175 \& －1．10

\hline ACY444 \& ${ }_{0}^{0.32}$ \& $\begin{array}{ll}\text { BFY64 } & 0.86\end{array}$ \& OAA47
OA70 \& 0.08 \& SX641 \& 0.75
0.60 \& 74175
74176 \& － 1.26

\hline AD149 \& 0 \& BFY90 0.81 \& 0A71 \& 0.20 \& SX642 \& 0.60 \& 74190 \& 2.00

\hline AD161 \& 0.44 \& BSX 270 \& OA73 \& 0.15 \& \& 0.85 \& 74191 \& 2.00

\hline AD162 \& 0.44 \& $\begin{array}{ll}\text { BSX } 60 & 0.93\end{array}$ \& OAT4 \& 0.15 \& ${ }_{\text {SX64 }}$ \& 0.85 \& 74192
74193 \& 2.00
8.00

\hline A Fl06 \& 0.30 \& B8X $76 \quad 0.18$ \& OA79 \& 0.10 \& T1C44 \& 0.29 \& \& 2．00

\hline AF114 \& 0.25 \& BSY26 0.17 \& 81 \& 0.18 \& V15／30P
V30／201P \& 0.75
0.75 \& ${ }_{74195}$ \& 1.80
1.10

\hline AF115 \& 0.25
0.25 \& $\begin{array}{ll}\text { B8Y27 } & 0.20 \\ \text { BSY51 } & 0.50\end{array}$ \& OA85 \& 0.15 \& V30／201P \& 0．75 \& ${ }_{74196}$ \& 1.20

\hline AFI16 \& 0.25
0.24 \& $\begin{array}{ll}\text { BSY51 } & 0.50 \\ \text { BSY95A } & 0.12\end{array}$ \& OA86 \& 0.15 \& $\checkmark 60 / 201$ \& 0．50 \& 74197 \& 1.20

\hline AFI18 \& 0.57 \& $\begin{array}{ll}\text { B8Y95 } & 0.12\end{array}$ \& OA90 \& 0.07 \& V60／201P \& 0.75 \& ${ }_{7} 7198$ \& 2.77

\hline AFI19 \& 0.20 \& BT102／500R \& OA91 \& 0.07 \& XA101 \& 0.10 \& 74 \& 2.52

\hline AF124 \& 0.30 \& 0.75 \& OA95 \& 0.07 \& Xal02 \& 0.18 \& \multicolumn{2}{|l|}{\multirow[t]{9}{*}{| Plug in sockets －low profile |
| :--- |
| 14 pin DIL 0.15 |
| 16 pin D1L 0.17 |}}

\hline AF125 \& 0.30 \& $\begin{array}{ll}\text { BTY42 } & 0.08\end{array}$ \& 0a200 \& 0.08 \& XA151 \& 0.15 \& \&

\hline AF126 \& 0.30 \& BTY79／100R ${ }_{0}$ \& \& \& \& \& \&

\hline AF127 \& 0.80
0.41 \& 0．75 \& OA210 \& ${ }_{0}^{0.20}$ \& XA161
XA162 \& 0.25
0.25 \& \&

\hline AF178 \& 0.55 \& 1．10 \& OAZ200 \& 0.50 \& XB101 \& 0.43 \& \&

\hline AF179 \& 0.65 \& BY100 0．27 \& OAZ201 \& $0 \cdot 45$ \& XB102 \& 0.30 \& \&

\hline AF180 \& 0.65 \& $\begin{array}{ll}\text { BY126 } & 0.14\end{array}$ \& OAZ202 \& 0.45 \& XB103 \& 0.35 \& \&

\hline AF181 \& 0.50 \& BY127 0.12 \& oaz203 \& 0－45 \& XB113 \& 0.30 \& \&

\hline AF \& 0.48 \& 1820.85 \& OAZ204 \& 0.45 \& XB121 \& 0.48 \& \&

\hline \multicolumn{7}{|l|}{| Open daily to callers：Mon．－Fri． 9 a．m．-5 p．m． |
| :--- |
| Valves，Tubes and Transistors－Closed Sat．I p．m．－3 p．m． |
| Terms C．W．O．only－Tel．01－677 2424－7 |
| All orders subject to V．A．T．at 8% rate．This must be added to the total order including postage． |} \& \multicolumn{2}{|l|}{Prices correct when going to press．}

\hline
\end{tabular}

5ndx0n

 Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORIESGUARANTEED TESTED HIGH PERFORMANCE MODULES-now better value than ever
SA35 €5.45

Carriage
free 35 W RMS 25-50V
SA50 $\quad 66.90$
50W RMS 25-65V
7 transistors, 7 diode
SAIOO E12.50
100 W RMS 45-70V
120 watt module complete with builtin supply-extra heavy duty $E 22.500_{\text {capr }}^{\text {carr }}$

THE SAIOO MODULE

POWER SUPPLIES UNSTABILISED-READY WIRED
 STABILISED

PS45		£4.45	${ }_{\substack{\text { carriage } \\ \text { free }}}$
MT45	$\underset{\substack{\text { Transformer for } \\ \text { above }}}{ }$	¢3.50	${ }_{\text {carriagre }}^{30}$
PS70	Suits 2 SAl00	¢5.45	
MT70	Trans	64.90	

N.B. PS70 is not suitable for the SA50

Mk II STEREO DISCO MIXER $\mathbf{E 2 2} \cdot 50$ Carr. 30p This well tried Pre-Amp mixes two decks, handles any ceramic cartridge, and features mic over-ride plus separate full range bass and treble controls on both available for P.F.L. May be used for mono and is mains operated. Fitted with sturdy sereening case. Controls: Mic vol, bass, treble. Lelect, vol, Mains. Size 17 in $\times 3$ in $\times 4 i n d e e p$.

DISCO MODULE $69.50{ }^{c_{20 r}}$
Thousands sold of this extremely popular mono Pre-Amp. A mic input may be fitted using the VA30 (see below). Low consumption from a 9 V battery. Features the same high standards of reproduction as the Stereo version, Controls: H/phone select, vol, Left deck vol, Right deck vol, bass, trebie master vol. Size 12 itin $\times 3$ in $\times 2 i n$ deep

3-CHANNEL SOUND-LITE $\mathbf{E 2 2} \cdot 50{ }^{\mathrm{c}_{30} r \text { r. }}$

Only SAXON can supply such incredible value for money. This unit features 3 kW power handling, full-wave control, bass, middle, treble AND master controls. Twin panel mount next to either of the above. Also features unique CUT-8ACK circuitry for extra wide range response. Size $12 \mathrm{in} \times 3$ in $\times 2 \frac{1}{2}$ in deep. Professionalstandards at a price you can afford!
SINGLE CHANNEL Recently reduced in price Add 8\% VAT to all orders VERSION $\quad \leq 7.50$ due to increasing sales, Carr.free operation . full wave
MULTI-PURPOSE MIXERS

M4HL
 M6HL

Featuring multiples of our VA30 module, the M4 HL and M6HL fulfil the requirements of all clubs, groups, etc. where a high quality mixer is required. Each channel has one high and one low impedance input, plus volume, treble and bass controls. Input The M4HL has four channels, and one output and the M6HL six channels (12 inputs) and a master control and two outputs. Either unit may be used free-standing or panelmounted. These mixers will feed all types of amplifier. Recommended for their versatility and high performance, and excellent
value for money.
VA30 CHANNEL $\mathbf{~} 3.50$ Carr
This is the basic channel module in the above mixer and may also be used for extra inputs on either the mono or stereo mixers. Fitted with volume, bass and treble controis, requires just a jack and supply ($9-100 \mathrm{~V}$)

SAXON loow of speech and CSE
100
COMPLETE
AMPLIFIER
$€ 39.90$
sow version identical

CALLERS AND MAIL ORDER

CSE 50
29.50 Carr free

NEW!!
SAXON MULTIMIX $100 £ 57 \underset{\substack{\text { CRER } \\ \text { FRE }}}{\text {. }}$
IOOW RMS SLIDER controls PLUS master slider. Wide range bass and treble controls--fantastic value. Ideal for complete Disco's, Groups, Clubs, etc.
SAXON MULTIMIX 50 EXACTLY ASABOVE $£ 45$

SEND IOp FOR OUR NEW 26-PAGE MANUAL-full circuits and details. tarms of busingas : c.w.0., c.0.D, ot Access (jogk rend in card number). Send 60p. 10r C.O.D
Please include s.A.E. with all enguiries.
Yat at 8% must be added to all orders inciuding carriage charges:

The largest selection

EX-COMPUTER STABILISED POWER MODULES
99 p each plus 22 p P. \& P.
LOW COST CAPACITORS $0.01 \mu \mathrm{~F} 400 \mathrm{~V}$
$000 \mu \mathrm{~F} 0 \mathrm{~V}$. Flect
3 p eacb
10 peacb

FIBRE-GLASS PRINTED

 CIRCUIT BOARDSDECON-DALO 33PC Marker
Etch resistant itinted circuit market pen
99p each

VEROBOARDS

facks containing approx., 508q. int. various
zes, all 0.1 matric 55 p
REPANCO CHOKES \& COILS
RF Chokes
CII 12.6 mH 29p CH2. 5.0 mH 30 p

colls
ORXICrystalset 31p DKR2 Dual range 45p
COIL FORMERS \& CORES
NORMAN I- Corea \& Fotmers 8p
Cores \& Formers 10 D

SWITCHES

DP/DT Toggle 36_{p} SP/\&T Toggle 30p

FUSES

0,100
QUICK-BLOW sp each

EARPHONES

Crystaiv.jun plug 42p
\& bmas :- Jmm plug 22p
\times ohus $3.51+1$ plug 22 p
DYNAMIC MICROPHONES
${ }^{13} 1223.200$ ohme plus on/oft switeh and
3-WAY STEREO HEAD.
PHONE JUNCTION BOX
Hi01: 81.87
2-WAY CROSSOVER
NETWORK
K4007. Ro chans [mp. 1nation luse 3bls \&1.21
CAR STEREO SPEAKERS
Angle(1) £3.85 per zair

BI-PAK

CATALOGUE AND LISTS Send S.A.E. and 10p.

INSTRUMENT CASES

(Biack Vingl covered)

ALUMINIUM BOXES

BIB HI-FI ACCESSORIES

De Luxe Groov-Kleen Model $42 £ 1 \cdot 95$ Chrome Finish Model $60 £ 1 \cdot 50$

Ref. 36A. Record/Stylua Cleaning Kit 33p Ref. 43. Record Care kit 22.42
Ref. 31. Cassette Head Cleaner 58p
Ref. 32. Tape eliting K It $£ 1.68$
Morlel 9. Wire Stripper/Cutter 83D
Ref. 46 Spirit Level 62p
ANTEX SOLDERING IRONS
X 25.25 watt 22.05
CCN 240 . 15 watt $£ 2.48$
Model (f. 18 watt $\mathbf{£ 2 . 2 6}$
SK2. Sollering Kit $£ 3.25$
STANDS: ST3, suitable for all models \&1 SOLDER: 188w (4 Multicore 7oz 21.61 22sw: 7oz f1.81. 18sW(G 22ft 51p 22SWG Tube 33p

ANTEX BITS and ELEMENTS
Bits No
102 For motel CN240 $\frac{3}{3}$
104 For model CN240 A
I 100 For model CCN240 $\frac{3}{32}$
1101 For model CCN 240 a" 1102 For model CCN2 40 ?*
1020 For model (12 $240 \frac{3}{32}$
1021 For model c:240 in
Ref. 13. Stylus and Turntable Cleaning Kit
 Ref. J. Tape Head Cleaning kit 82p Rel. O6. Hi-Fi Stereo Hinss and Tips 42p

PLUGS AND SOCKETS		
Ps 1	D.I.N. 2 Pin (Speaker)	0.11
P8 2	D.I.N. 3 Pin	0.12
PS 3	D.I.N. 4 Pin	0.15
P8 4	D.I.N © Pin 180	0.18
PS ${ }^{\text {a }}$	D.i.n. ${ }^{\text {a Pin } 240}$	0.18
PS 6	D.IT.N. 6 Pin	0.17
Ps 7	D.1.N. 7 Pin	0.18
PS 8	Jack 2.0 mm Sereened	0.18
P8 9	Jack 3.5mm Piastic	0.12
PS 10	Jack 3.5 mmm Sereened	0.18
PS 11	Jack f* Plastic	0.15
PS 12	Jack :' Screeneid	0.22
PS 13	Jack Stereo Screened	0.36
PS 14	Pliono	0.10
PS ${ }^{1.5}$	Car Aerial	0.22
Ps 16	Co-Axial	0.15
INLINE SOCKETS		
1’g 21	D.I.N. 2 Pin (Speaker)	0.14
P8 22	D.I.N. 3 Pin	0.20
PS 23	D.I.N. 5 Pin 180°	0.20
P8 24	D.I.N. ${ }^{\text {J Pin } 2400^{\circ}}$	0.20
PS 2.5	Jack 2.5 mm Plastic	0.16
PS 26	Jack 3-Jmm Plastic	0.16
PS 27	Jack ! P Plastic	0.30
P8 24	Jack 1" Screent	0.35
PS 29	Jack Stereo Plastic	0.30
PS 30	Jack Stereo Screened	0.38
PS 31	Phono Screerred	0.18
PS 32	Car Aerial	0.22
PS 33	Co-Axiat	0.22
SOCKETS		
PS 3.7	D.I.N. 2 Pin (Speaker)	0.08
PS 31	D.I.N 3 Pin	0.11
P8 37	d. I.N. ${ }^{\text {a P Pin } 180^{\circ}}$	0.11
P8 38	D.I.N. 5 Pin 240°	0.11
P8 38	Jack 2.5 mm 8 witched	0.12
I'8 40	Jack 3-5mm ${ }^{\text {S }}$ witched	0.12
P841	Jack ! ${ }^{\text {S }}$ witcher	0.20
PB 42	Jack 8tereo Switched	0.30
PR 43	Phono Single	0.08
PS 44	Phono Double	0.10
PS 46	Co-Axial Surface	0.10
Ps 47	Co-Axial Flush	0.20

LEADS

LS 1 Speaker Lead 2 pin D.I.N. plug to open ends approx 3 metres long

CABLES

CP I Single Lapped Screen
CP 2 Twin Common Screen
CP 3 Stereo Screene
CP 4 Four Core Common Sereen
Three Core Mains Calted Cable 0.10
Twin Oval Mains Cable
Speaker Cable
CP 10 Low Loss Co-Axial

CARBON

POTENTIOMETERS
log and Lin
$4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$
IM, 2M
VC i Single Less Swltch
VC 2 Single D.P. Switch
VC 3 Tandem Less Switch
CC 4 IK Lin Less Switel

HORIZONTAL CARBON

PRESETS
0.1 watt 0.06 each

100, 220, $470,1 \mathrm{~K}$,
$47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 47 \mathrm{M}$

CYANOACRYLATE C2 ADHESSVE
The wonder bond which works in secondscomponents, permaneritly, immediately

OUR PRICE ONLY 54p

for 2 gm . phial

BATTERY HOLDER

and lead. $34 p$.

WORLD SCOOP

JUMBO

SEMICONDUCTOR PACK
Transistors, Germ, and silicon Rectifiers, Diodes, Triacs, Thyristors, I.Cs and Zeners ALL NEW AND CODED

APPROX. 100 PIECES
Offering the amateur a Iantaatic bargain Pak and an enormous saving-identification and data sheet in every Pak

Only $\& 2$ p. \& p. 20p
RECORD STORAGE/ CARRY CASES
\qquad
121 LPP. $13 \mathrm{jin} \times 7$ in $\times 12$ in $(00$ records)
CASSETTE CASES £ $£ 30$
Holde 12, $10 \mathrm{in} \times 3 \mathrm{i} \mathrm{in} \times 5 \mathrm{in}$. Lock and handle.

8-TRACK CART. CASES
Holde 14, $13 \mathrm{in} \times 5 \sin \times 6$ in $£ 1.95$
Holds 29, 13 in $\times 8$ in $\times 5$ in $£ 2.70$ Both with lock and handle.

SPECIAL PURCHASE

2N3055. Bilicon l'ower Transistors NPN Fanous manufacturers out-ofsplec devices ablel 1 J.5W. TO3. Metal Case

OUR SPECIAL PRICE 8 for 11
REPANCOTRANSFORMERS
240V. Primary, Secondary voltages avail.
able from selected tappings $4 \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}$, I0V $14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}, 31 \mathrm{~V}, 33 \mathrm{~V}$, 40, 50 and $25 \mathrm{~V}-0-25 \mathrm{~V}$.

Type	Ampg	Price	P. \& P.
MT50/z	1	£1.93	45p
MT50/1	1	22.42	48p
MT50/2	2	£3.30	60 D

CARTRIDGES
ACOS
GP91-18C 200 mV at $1 \cdot 2 \mathrm{~cm} / \mathrm{sec}$
GP93-1 280 mV at $1 \mathrm{~cm} / \mathrm{sec}$
J-2005 Crystal/11i Output
J-2010C Crsatal Hi Output
J-20068 Stereo/Hi Output
J-2203
stylus Magnetic any/Jem/sec, including
J-2203\$ Replacement stylua for above $£ 3.00$

CARBON FILM RESISTORS
The E14 Range of Carbon Film Resiators.
it watt available tn PAKS of 50 pieces.
assorted into the following groups
R1 50 Mixed 100 ohms- 820 ohms

R4 50 Mixed 100 k - 1 M
THESE ARE UNBEATABLE PRICES JUST 1p EACH INCL. V.A.T

BI-PAK SUPERIOR QUALITY
LOW - NOISE CASSETTES
C60, 38p; C90, 48p; C120, 60p.

-the lowest prices! BI-PAK QUALITY COMES TO AUDIO!

AL10/AL20/AL30 AUDIO AMPLIFIER MODULES

	IFIER MODULES The AL10, AL20 and AL30 units are similar in their appearance and in their general specification, However, careful selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.g. The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the car and at home.	
Parameter	Conditions	Perlormance
HARMONIC DISTORTION	$\mathrm{Po}_{0}=3 \mathrm{WATTE} \mathbf{I}=1 \mathrm{KHz}$	0.25\%
LOAD IMPEDANCE		$8-16 \Omega$
INPUT 1MPED.ANCE	$1=1 \mathrm{KHz}$	$100 \mathrm{k} \Omega$
FREQUENCY RESPONBE - 3dB	Po $=2 \cdot \mathrm{WATTS}$	$50 \mathrm{~Hz}-25 \mathrm{KHz}$
SENSITIVITY for RATED O/P	$\mathrm{V}_{\mathrm{B}}=25 \mathrm{~V} . \mathrm{Rl}=8 \Omega \mathrm{f}=1 \mathrm{KHz}$	75 mV . RMg
DIMEN8IONS	-	$3^{* *} \times 2 \frac{1}{* *}^{*}=1^{*}$

The above table relates to the AL10, AL20 and AL30 in their working conditions.
Parameter

Parameter	AL10	AL20	Al30
Maximum Supply Voltage	95	30	30
Power out for 2% T.H.D. $(R L=8 \Omega i=1 K H z)$	3 watt RMS Min.	5 watts RMB Min.	10 watts RMS Min.

AUDIO AMPLIFIER

 MODULESAL 10.3 watts
$\begin{array}{ll}\text { AL 20. } & 5 \text { watts } \\ \text { AL 30. } & 10 \text { watts }\end{array}$

POWER SUPPLIES
PE 12. (Use with AL10, AL20, AL30) 85p
FRONT PANELS FP 12 with K $£ 3.25$
81.00

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY $£ 4.25$

- Max Heat Sink temp $90^{\circ} \mathrm{C}$.
- Frequency Response 20 Hz to 100 KHz
- Distortion better than 0.1% at 1 KHz
- Supply voltage $15-50$ volts
- Thermal Feedback
- Latest Design Improvements Load-3, 4, 8 or 16 ohms - Signal to noise ratio 80 dB
- Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ $\times 13 \mathrm{~mm}$

Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast

STABILISED POWER

 MODULE SPM80SPM80 is eapecially designed to power 2 of the ALU0 Amplifiers, up to 15 watt (r.m.s.) per channel simuland circuit This module embodies the latest components circuit protection. With the addition of the Mains Transformer BMT80, the unit whll provide outputs of up to 1 . amps at $3 \bar{\sigma}$ volts. Size: $63 \mathrm{n} 1 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$.
These units enable you to build Audio Syatema of the highest quality at a hit herto unobtainable price. Also Ideal for many other applications including:-Disco 8ystems, Public Address, Interconi Unitte, etc. Handbook avaiiable 10p P'RICE £3*25 TRANSFORMER BMT80 £2.15 p. \& p. 40p

STEREO PRE-AMPLIFIER TYPE PA100

3uilt to a specincation and NOT a price, and yet still the greatest value on the market he PAl00 atereo pre-amplifier has been conceived from the lateat circuit technigues. Designed for use with the AL60 power amplifer system, this quality made unit incorporates no less than eight silicon planar transistors, two of these are speclally selected low noise Three switched stereo the input stages.
Three switched stereo inputs, and rumble and scratch filters are features of the PA 100 , which also has a STEREO/MONO switch, volume, balance and continuously variable

8PECIFICATION

8PECIFICATION
Frequency Response Harmonic Diatortion Inputs: 1. Tape Head 2. Radio, Tuner Magnetic P.U

Basis Control
Filtern ; Rumble (High Pasa)
Signal/Noise Ratio
Input overload
Dimension
$20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
better than 0.1%
75 mV into 50 K
3 mV into 50 K ?
Allimput vollages are for an output of 250 mV Tape and P U inputs equalised to RIAA curve within $\pm 1 \mathrm{~dB}$. from 20 Hz to 20 KH z
Treble Control $\pm 15 \mathrm{~dB}$ at 20 KHz
100 Hz
8 KHz
better th
$+26 d 8$
+35 Foltg at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £14-25

MK 60 AUDIO KIT
Comprising: $2 \times$ AL60, $1 \times 5 P M 80,1 \times$ BTM80, $1 \times$ PA 100 , 1 front panel, 1 kit of parts to include on-off switch, neon indicator, stereo headphone sockete plus instruction TEAK 60 AUDIO KIT
Comprising: Teak veneered cabinet gize $16 \ddagger^{\prime \prime} \times 111^{\prime \prime} \times 33^{\prime \prime}$, other parts include aluminium chasais, heatsink and front panel bracket, plus back panel and appropriate aocketa, ete Kit price: 89.95 plus 45 p postage.

CHINAGLIA DINO - ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS CHINAGLIA \otimes

PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS

One example from the big range of sophisticated instruments

CORTINA MINOR

33 RANGE POCKET MULTIMETER

- SENSITIVITY 20,000n/VOLT (D.C.), 4,000 IVOLT (A.C.).
- 33 RANGES D.C. YOLTS 0-100mV, $1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}$ $500 \mathrm{~V}, 1,500 \mathrm{~V}$. O.C. CURRENT $0-50 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}$ 2.5 A . A.C. VOLTS, $0-7.5 \mathrm{~V}, 25 \mathrm{~V}, 75 \mathrm{~V}, 250 \mathrm{~V}, 750 \mathrm{~V}, 1,500 \mathrm{~V}$ A.C. CURRENT O- $25 \mathrm{~mA}, 250 \mathrm{~mA}, 2 \cdot 5 A, 12.5 \mathrm{~A}$. DB RANGES -10 to +69 . AF VOLTS RANGES O-I,500V. RESISTANCE RANGES IOK Ω, IOMQ F.S.D. CAPACITANCE RANGES 100μ F, IF F.S.D.
- ACCURACY-RESISTANCE, D.C. VOLTAGE ANO

CURRENT, 2.5% A.C. VOLTAGE AND CURRENT 3.5\%.
RESISTANCE RANGES POWEREO BY INTERNAL
RESISTANCE RANGES POWEREO BY INTERNAL
COMPACT SIZE: $150 \times 85 \times 40 \mathrm{~mm} .350 \mathrm{gr}$.

- CLEARLY CALIBRATED DIAL WITH ANTI-PARALLAX MIRROR.
- PROFESSIONAL QUALITY COMPONENTS EMPLOYED THROUGHOUT.
- FULLY GUARANTEED FOR 12 MONTHS.
- AFTER SALES SERVICE ANO SPARES FACILITIES
- SUPPLIED WITH ADOITIONAL SHOCKPROOF PLASTICS CARRYING CASE, TWO HIGHLY INSULATED TEST
- SPECIAL 30 kV PROBE FOR D.C. MEASUREMENT AVAIL.

ABLE AS AN OPTIONAL EXTRA.

METER PRICE $£ 16.30$ (p \& p 80p) PROBE $£ 8.80$ inclusive of V.A.T. for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone :-

CHINAGLIA (U.K.) LIMITED

19 Mulberry Walk, London S.W.3.
Telephone 01-352 1897

devised for storing small
parts and componenes:
resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vercical and horizontal combinations. Transparent plastic drawers have label slots. 1D and 2D have space dividers. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!
SINGLE UNITS (ID) (Sins $\times 2$ ins \times 2! ins). 62 DOZEN.
DOUBLE UNITS (2D) (Sins $\times 4$ 娄ins 24ins). C3.50 DOZEN.
TREBLE (3D) $\mathbf{4} \cdot \mathbf{5 0}$ for 8 .
DOUBLETREBLE2 drawers, in one outer case (6D2), $44 \cdot 90$ for 8.
EXTRA LARGE SIZE (SDI) C4.50 for 8. PLUS QUANTITY DISCOUNTS!
Orders $\mathcal{E} 15$ and over DEDUCT 5% in the \mathcal{R} Orders $\mathbf{3} 30$ and over DEDUCT $7 \frac{1}{2} \%$ in the \mathcal{C}
PACKING/POSTAGE/CARRIAGE: Add 40p to all orders under $\& 10$. Orders $\$ 10$ and over, packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES Please add 8% V.A.T. co cotal remietance
F A DIGAOPE (Dept PE3). 124 Cricklewood
London.
N.W. 2

SET UP YOUR OWN HI-FI A BEGINER'S GUIDE

by R. H. Warring
Price $\mathbf{1} 1.90$

STEREO F.M. RADIO HANDBOOK

 by P. Harvey/K. J. Bohlman. Price $\mathbf{E 2 . 7 0}$. RAPID SERVICING OF TRANSISTOR EQUIPMENT by G.J. King. Price $\mathbf{E 2} 2.05$. TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. Price $\mathbf{E 2 . 0 5}$. ELEMENTS OFTRANSISTOR PULSE CIRCUITS by T. D. Towers. Price $\mathbf{6 3 . 7 0}$. 110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR by R. M. Marston. Price 41.35. UNDERSTANDING SOLID STATE ELECTRONICS by Texas Instruments. Price © 1.35 .ELECTRONIC SECURITY SYSTEMS by Leo G. Sands. Price $\mathbf{E 3} 30$. PIN POINT TRANSISTOR TROUBLES IN 12 MINUTES. Price E2.80.
SEMICONDUCTOR ELECTRONICS BY WORKED EXAMPLES bY F. Brogan. Price $\mathbf{6 2 . 7 0}$.
TELEVISION RECEIVER THEORY I by G. H. Hutson. Price $\mathbf{6 2 . 5 5}$. * TOTAL PRICE INCLUDES POSTAGE \star

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19.21 PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday 1 p.m.

ELEGTROVALUE Present

 a price-stabilizing

 a price-stabilizing policy for 1975

 policy for 1975}

New revised catalogue attractive discounts free postage (U.K.)

A 100 OF THE BEST
out of our latest catalogue

2N+307	$47 p$	AF200u	${ }^{40 p}$	80132	52p
2N2646	$51 p$	AF239	60p	BD135	37p
2 N 3053	30 p	81906	36p	BD136	39p
2 N 3054	${ }^{60 p}$	BA138	$31 p$	BDY20	$83 p$
2N3055	70 p	B8103	24 p	BF194	$15 p$
2N3702	11 p	B8105	34 p	BFF39	23p
2N3703	10p	B8109	${ }^{43 p}$	BFR79	23p
2N3704	11p	BC107A	18p	BFX29	33p
2N3705	10p	BC107B	18p	BFX ${ }^{84}$	270
2 N 3794	18p	BC108B	15p	BFY51	23p
2N3819	25p	BC108C	15p	BRY39	50p
2N4062	11p	BC109B	$18 p$	BY164	$51 p$
${ }_{2}^{2 N 4443}$	93 p	BC109C	${ }^{18 p}$	C 10681	42p
2N5062	42D	BC 147A	12p	C106D1	$47 p$
2N5163	${ }^{20} \mathrm{p}$	BC1478	13p	C1406	78
2 N 5459	35 p	BC 1488	12p	MJ481	\&1. 20
40361	48 p	BC149C	140	MJ491	\$1.35
40362	${ }^{44}{ }^{\circ}$	BC158B	15p	MJ2955	${ }^{80 p}$
40602	45 p	BC159	15p	mJE371	${ }^{89} p^{\text {p }}$
40636	¢1.36	BC1678	13p	MJE529	$81 p$
40669	E1. 10	BC168B	12p	MJE2955	\$1.12
${ }^{\text {AC }}$ C 128	17 p	${ }^{\text {BC }} 1698$	${ }^{12 p}$	MJE 3055	${ }_{68 p}$
${ }^{\text {AC }}$ C 151 R	36 p	BC169C	130	OA9 ${ }^{1}$	60
	$27 p$ 370	${ }^{\text {BC }} 1798$	26p	SD4	${ }_{8 p}$
${ }_{\text {AC }}^{\text {AC }}$ (76 ${ }^{\text {a }}$	240	${ }^{\text {BC } 182 L}$	12p	TIP31A	700
${ }_{\text {AC }} \mathbf{A} 76 \mathrm{KK}$	38 p	${ }_{\substack{\text { BC } \\ \text { BC } 2124 L}}$	10p	TIP32A	${ }_{80 \mathrm{p}}^{80}$
AC 197K	31 p	BC214L	14 p	T!P42A	800 81.00
AC188K	29p	BC257A	14p	WO2	
AD133	£1.92	BC259	140	KTX300	14p
AD 136 $A D 149$	¢1.11	BCY5	30 p	ZTX304	${ }^{23 p}$
ADIE1	42 p	8 BD 130	70 p	ZTX500	$14 p$
AD162	40 p	воı3	48 p	2TX504	45p

ELECTROLYTIC CAPACITORS

μF		3 V	6.3 V	10 V	16 V	25V	40 V	63 V	100 V
0.47		-	-	-	-	-	-	11p	8 p
1.0		-	-	-	-		11p		8 p
$2 \cdot 2$		-	-	-	-	11p	-	8p	9 p
4.7		-	-	-	11p		8 p	9p	${ }^{8 p}$
10		\sim	11p	-	-	8 p	9 p	8 p	8 p
22				8 p		9 p	8 p	8 p	10p
47		8 p	-	9 p	${ }^{8 p}$	8 p	8 p	10p	13p
100		9 p	8p	8 p	8 p	9 p	10p	12p	19p
220		8 p	8 p	9 p	10p	10p	11p	17p	28p
470		9p	10p	10p	11p	13p	17p	24p	45p
1,000		11p	13p	13p	17p	20p	25p	41p	-
2,200		15p	-		26p	37p	410	-	-
4,700				$36 p$	44p	58p		-	
10.000		42p	46p	-	-	-	-	-	-
RESISTORS									
Codo			Ohms		1 109		$\begin{aligned} & \text { to } 9 g \\ & \text { see } n \mathrm{n} \end{aligned}$	100 up ote bel	
C	t		4.7-470K		1.3	1.		0.9 net	
C	d		4.7-10M		1.3	1.		$0 \cdot 9$ net	
C			4.7-10M		1.5	1.		0.97 ne	
C			4.7-10M		3.2	$2 \cdot$		$1 \cdot 92$ ne	
MO	\%		10-1M		4	3.		$2 \cdot 3$ not	
ww	1		$0.22-0.47$		16	14		11 nett	
WW	1		0.56-3.9		12	10		8 nett	
ww	3		$1-10 \mathrm{~K}$		9 p	8 p		6 nett	
WW	7		1 -10K		11	10		8 nett	

C carbon firm. high stability, low nois
MO metal oxide. Electrosil TR5 ultra low noise
WW wire wound Plessey
Values: All E12 except C $\ddagger W$. C $\frac{1}{2} W$ and $M O$ it W
er 12, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 and their E24: as E12 plus 11, 13, 16, 20, 24, 30, 36, 43, 54, 62. 75, 91 and their decades
Tolerances:
5% except $W W 10 \%=005 \cap$ below 10Ω and $\frac{1}{2} W$ MO 2% Prices are in pence each for quantities of the same ohmic value and power rating. NOT mixed values. (Ignore fractions of one penny on total value of resistor order). Prices tor 100 up in units of 100 only

1975 is the year of challenge. Rather than sit back and wait for things to happen. we have produced our own policy to help stabilize price structure and maintain the services for which ELECTROVALUE are pre-eminent

PRICES
as shown in our latest catalogue (No. 7, issue 3) will be maintalned a least until March 31st next (except in cases of severe market fluctuation) and then held after review for further three month periods instead of making day to day price changes

CATALOGUE 7 ISSUE 3
is now ready with 108 pages of bargains and Information. Price-30p post pald includlng 25 p refund voucher for use on orders list value I 5 or more.

DISCOUNTS

apply on all hiems except the few where prices are shown NETT. 5% on orders from 55 to $£ 14.99 ; 10 \%$ on orders value £15 or more.

FREE POSTAGE AND PACKING in U.K. for pre-pald mail orders ove £2 (except Baxandall cabinets). I under, there is an additional handling charge of 10 p .

QUALITY GUARANTEE All goods are sold on the understanding that they conform to makers' speclifica tons. No rejects, seconds or substandard merchandise

V.A.T. at 8%

must be added to total value of orders Every effort is made to ensure correct ness of information at time of preparing and putting this advertisement to press

ANTEX Soldering Irons				
C240	¢2. 25	Spare bits		32 p
CCN240	¢2. 65	Spare bits	入	${ }^{42} \mathrm{p}$

WAVECHANGE SWITCHES
1 pole 12 way, 2 pole 6 way
TAG STRIP 28 way
NUTS, SCREWS, etc.
in lots of 100 each
BA NUTS 21pi 6BA NUTS 28p; \ddagger "4BA Screws 30 p ;

CAPACITORS

DALY ELECTADLYTIC in cans, plasfic sleeved
$1000 \mathrm{mF} / 25 \mathrm{~V} 34 \mathrm{p}$
$2200 / 100 \$ 1.9$
1000/100 £1.0
$5000100 £ 3.56$
1000/50 50p
2000/150 70p
5000 25V 15p TYPE C 280 Radial teads for PC B mounting Working voltage 250 V d. C
$0.01,0.015,0.022,0.033,0.047$
each $3 p$
$0.225 \mathrm{p}: 0.337 \mathrm{p}: 0.47 \mathrm{Ap}: 0.6811 \mathrm{p}: 1.014 \mathrm{p}: 1.521 \mathrm{p}: 2.2 \mathrm{enp}^{4} \mathrm{p}$ SILVEAED MICA. Working voltage 500 V d.c. Tolerance 1% or $0.5 \mathrm{p} F$.
Values in pFs- $2 \cdot 2$ to 250 in 26 stages each $6 p$. $270-820$ in 9 stages. each $7 p$
1000. 1500. 1800 9p; 2200 10p; 2700, 3600, 4700, 5000 16p: 6800, 8200, 10.00025
TANTALUM BEAD
$0.1,0 \cdot 22,0.47,1.0 \mathrm{mF} / 35 \mathrm{~V}, 1 \cdot 5 / 20 \mathrm{~V}, 3.5 / 16 \mathrm{~V}$ each 16p $2 \cdot 2 / 16 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V} .4 .7 / 16 \mathrm{~V}, 10 / 6 \cdot 3 \mathrm{~V}, 3 \cdot 5 / 16 \mathrm{~V}$ 7135V. 10/16V, 22/6.3V
ach 16p $10 / 25 \mathrm{~V}, 22 / 16 \mathrm{~V} .27 / 6 \cdot 3 \mathrm{~V}, 100 / 3 \mathrm{~V}, 6 \cdot 8 / 25 \mathrm{~V}, 15 / 25 \mathrm{~V}$ POLYCARBONATE
Type 842540 Working Voltage- 250 V . Values in mF $\begin{array}{lllll} \\ 0.018,0.027,0.033, & 0.039,0.047,0.068, & 0.082,0\end{array}$ 9p; 0.39, 0.47 11p; 0.56, $06816 p$.
CERAMIC PLATE
Working voltage 50 V d.
in 26 values from 22 pF to 68000 F , each 2 p

POTENTIOMETERS

ROTAAY, CARBON TRACK

Double wipers for good conlact and long working ito P. 20 SINGLE linear 100 ohms to 4.7 megohms. P. 20 SINGLE log. 4.7 Kohms to 2.2 megohms ach 14p JP. 20 DUAL GANG lin. 4.7 Kohms to 2.2 megohms esch 4Ap JP. 20 DUAL GANG Log/antilog 10K, 22K, 47K, 1 megohm only 20 DUAL GANG antilog 10K only keleton Carbon Presets Decades of 10,22 and 47 extra avabie within limits in ranges above
pe PR, horizontal or vertical $100 \mathrm{n}-10 \mathrm{~m} \Omega$ each 6 p
SLIDEA
STEREO
from 4.7K to 1 meg Escutcheon plates Conirol knobs, blk/wht/red/yel/grn/blue/dk, grey each 10p

MINITRON DIGITAL INDICATORS
log seven segment filament compatiole with standard logic modul
16 lead DIL
Suitable BCD decoder driver 7447
3015G showing + or $-\& \$ \& \mathrm{dec}$. pl
LEDS (Light Emitting Diodes)
Photo Celts cadmium sulphide each
All postal communications. mail orders etc. to Head Office at Egham address Dept. PE3. S.A.E. with enquiries requiring answers
28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Telephone Egham 3603 Telex 264475 Shop hours 9-5.30 daily; Sat. 9-1 p.m NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 INA Telephone (061) 4324945 Shop hours 9-1 p.m. 2-5.30 daily: Sat. 9-1 p.m
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA. P O Box 27. Swarthmore PA 19081.

FREE with speaker orders over $£ 7$

All units guaranteed new and perfect. Prompt despatch. Carriage and packing; speakers 38peach. speakar klta 75 p each (E : 50 psir). tweeters and crossovers 20p

Send stamp for tree booklet Choosing a Speaker
ALL PRICES QUOTED INCLUDE VAT
WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works, Bank Square, Wilmslow. Cheshire, SK9 IHF Discount Radio. PA. HifFi: 10 Swan Street. Wilmslow.
(6) Cassettes

Agfa Low Nolse Cassettes AT LESS THAN HALF PRICE!	$\begin{aligned} & C 60 \\ & C 80 \\ & C 120 \end{aligned}$	$\begin{aligned} & 37 \\ & 37 p \\ & 560 \\ & 63 p \end{aligned}$	$\begin{aligned} & 51^{5} 80 \\ & 52 \\ & 53 \\ & 53 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 53^{10} 50 \\ & 54 \\ & 58.20 \end{aligned}$
AGFA HIGHDYNAMIC SUPER	$\begin{aligned} & \text { C8O } \\ & \text { C90 } \\ & \text { C120 } \end{aligned}$	$\begin{gathered} 1 \\ \text { sop } \\ \text { sop } \\ \text { s9p } \end{gathered}$	$\begin{aligned} & 5^{5} \\ & 82.40 \\ & 83.35 \\ & 84.90 \end{aligned}$	$\begin{aligned} & 10 \\ & E 470 \\ & 56.60 \\ & E 980 \end{aligned}$
AGFA STEREO-CHROM CHROMIUM DIOXIDE	$\begin{aligned} & \text { C80 } \\ & \text { C90 } \end{aligned}$	${ }_{85}^{1}$	$\begin{gathered} 5 \\ 5420 \\ \mathrm{E} 535 \end{gathered}$	$\begin{array}{r} 10 \\ 50 \\ 51060 \end{array}$

WILMSLOW AUDIO (DEPT. PE)
10 SWAN STREET, WILMSLOW, CHESHIRE, SK9 1HF
Cut-price prerecorded cassettes-send stamp for Ilst

CALCULATORS BUY FROM THE SPECIALISTS UP TO 45\% OFF RRP All guaranteed 1 year. Money
refunded on goods returned refunded on
within 7 days
VATMAN £14.91 + VAT

Model \qquad
Decima Yatmen
Decima Memory Decimo Slld rife Decima 9202 Antre 111
Bahn Omniltres.
Bohn Omnitrex SO1*
JUST OUT
Bohn Metric

Our Functic Pric

 measuremen
Bowmar MX75:
14.91 P. (A), R. G. 8D. E. F. K4, 16.91 P. (A). .A. G. 8 D. E. F. K4 mor MX100" 39.97 T. M, IAI. R. 8D. E, F. K4. true scientific $20 \begin{gathered}65-99 \\ \text { functions } \\ \text { T. M. BD, E, F, K4, C, V, J } \\ \text { for algetbra, geometo }\end{gathered}$ s. calculus. integrals, etc. Special import 19.90 P, M, [Al, R, 6D, E, F/2/4, K4 Alcomec 1000
(1.97 Print-OuIt
$31.97 \begin{aligned} & 2 \text { colour print-out. } A_{1}, 100 . \\ & \mathrm{F} / \mathrm{S} \text {. K4. M, sub total. }\end{aligned}$
Alcomac 1220

Code
$A=$ percentage $, ~ B ~=~ b a t t e r y ~(m a i n s ~ a d a p t o r ~ e x t r a), ~ B M ~$ battery (mains adaptor Incl.), $C=$ carrying case, $D=$ digite. $E_{2}+-\times$. F a lloating decimal point, F/S = floating
 $=x, J=x, K^{2}=$ constant $X+K^{2}=$ constant x L5 = 50 hr . Battery Hfe. L10 100 Mr . battery lite, M memory. $\mathrm{N}=$ negative entry, $\mathrm{P}=$ pocket, $\mathrm{R}=$ prorating. $S=$ desk moded, $T=$ thand and dask, $U=$ display blanking.
$V=$ rechargeable. $W=$ exchange,$X=\sqrt[V]{x}$, I $=$ extrit separate keys : " postlive feel. VAT on all sial pres 50 p P P P and please add

BARCLAY ELECTRONICS
STANLEY HOUSE, 1115 FINCHLEY ROAD
LONDON, NW11

OSMABET LTD $\begin{gathered}\text { wa make tenatormers } \\ \text { emongat other thing }\end{gathered}$

30W. L2-10; 50W. £2-70; 55 W \&5.45: 100 W . [4; 500W. $\{12$ 750 W . ह16-50; 1000W, \&20.25, *tc
LOW VOLTAGE TAANBFOMMETS
Prim. $200 / 240 \mathrm{~V}$,.c. 6-3V 1.5A. 11.45: 3A, 51-30; 6A.

 $4 A+12 V 4 A$. $\$ 5 \cdot 40$.
LI TRAN8FOMMEAS TAPPED sEC, Prim 200/240V
 $0-20-30-40-60 \mathrm{~V} 1 \mathrm{~A} . \mathrm{R4} \cdot 20 ; 2 \mathrm{~A}$. St
MIOGET RECTIFIEA TAANSFORMEAS
For FW rect $200 / 240 \mathrm{~V}$ a.c. $6-0-6 \mathrm{~V}$ 1.5A or $9-0-9 \mathrm{~V}$ IA $\begin{array}{ll}51.65 & \text { anch; } 12-0-12 \mathrm{~V} \\ 0.3 \mathrm{~A} \text { or } 120-0-20 \mathrm{~V} \text { or } 75 \mathrm{~A} \text { or } 9-0.9 \mathrm{~V} \\ 0.0-12 \mathrm{~V} & 0.25 \mathrm{~A} \text { or } 20-0-20 \mathrm{~V} \\ 0.15 \mathrm{~A} \text { or } 6 \mathrm{~V}\end{array}$

MAINS TAANBFORMERS
Prim 200/240V a.c. TK6 sec. $425-00425 \mathrm{~V} 500 \mathrm{MA}$. 6.3 V CT 6A. 6.3 V CT $8 \mathrm{~A}, 0-5-6.3 \mathrm{~V} 3 \mathrm{~A}$ ह1s.75; TXI $25-0-425 \mathrm{~V}, 250 \mathrm{MA} .6 .3 \mathrm{~V}$ CT $4 \mathrm{~A}, 6.3 \mathrm{~V}$ CT 4 A , $250 \mathrm{~V} 100 \mathrm{MA}, 6-3 \mathrm{~V} 2 \mathrm{~A}, \mathrm{E} / \mathrm{S}$, . 3.75 .
O/P TAANSFORMERS FOR POWER AMPLIFIERS P.P. sec. tapped 3-8-15 ohme A-A $6 \cdot 6 \mathrm{k} \cap$ 30W $5 \mathrm{~F} \cdot 75$; MAT/10, tapped multi O/P 10W W 4.
G.E.C. MANUAL OF POWEA AMPLIFIEAS Covering value amplifiers of 30W to 400 W 35 p .
LOUDSPEAKERS FOR AMPLIFIERS
Malor Modute
 $7 \times \sin 95 \Omega .\{1.80 ; 8 \times 5 \mathrm{in} 3.8 .15$ or $80 \mathrm{n}, \mathrm{E} 1.75$ each. LOUOSPEAKERS
2 in 8 or $75 \Omega, 2$ in 8 or 25Ω. 3 in $3,8,25$ or $35 \Omega .34$ in 8 or
 SPEAKER AUTO MATCHING TRANSFORMEF 12W 3 to θ or 15 n up or down, F 1.50 .
"INSTANT", BULK TAPE/CASSETTE ERASER instant orasure. any diameler tape spools. cmes.
SYNCHRONOUS GEARED MOTORS, 200/240V A.C rand new. Smiths Buittin gearbox, 2r p.h. 75p asch S.A.E. ENOURIRIES. LISTS. MAIL ORDER ONLY

46 Kentiworth Road, Edgwire, MIddx. HAB BYG rol. OP-958 9314

Bargains in Semi-Conductors, components, modules \& equipment.

 BARGG.NS FROM OUR FREE CATALOGUE6th edition. 20 large pages filled with real bargains in translstors. I.C s. components, equipment, etc. Send large S.A.E, with $6 p$ stamp for your FAEE copy by return. Meanwhile. for prompt delivery order from our ad. this month NOW

B.P.P. TRANSISTOR PACKS ALL AT 50p EACH

TESTED AND GUARANTEED

B79 $4 \begin{aligned} & \text { in } 40.07 \text { Sil. Rec. dio } \\ & \text { PIV } 1 \text { amp. plastic }\end{aligned}$
H39 10 Reed Switches, Yin long M41 H65 ${ }^{H 66}$
6 Integrated circuits 4 gates 2 B0131/BD132 Complementan 2 B0131/BD132 Comp
4 40361 Type NPN Sil. transis 4 40362. Type PNP SII. transis $4{ }^{40362 \text {. Type PNP SII. Trans }}$ tors To-5 can comp to H 65 tors To-s can comp to H

STIRLING SOUND AUDIO MODULES come to you as basic units assembled on P.C.B.s enabiing you to add required components in layouts of your own choice. Modules are tested and boxed before despatch and include well printed instructions

AMPLIFIER MODULES

Pre-ampliflers; tone control

SS. 100 Active tone control unit to provide bass treble, balance and volume controls
SS. 101 Pre-amp for ceramic cartridge, tape and radio
SS. 102 Pre-amp for low output magnetic cartridge tape and radio. With R.I.A.A. correction $\pm 1 \mathrm{dE}$ at $1 \mathrm{k} \Omega$

POWER AMPLIFIERS

SS. 103 Compact I.C. amp. with 3 watts R.M.S output. Operating voltage $6-22$. Size 3 in $\times 2$ in SS.103-3 Ster8o version of above using one I.C on each channel
SS. 105 A compact and useful all-purpose amplifier which will run excellently on a 12 V supply With 5 watt output, two make a good sterec amp. Size $2 \frac{1}{2}$ in $\times 1+\ln$
SS. 110 Simllar in size to SS. 103 but with a 10 watt output. Ideal for many domestic and small-size P.A. applications. Operates from $26-32 \mathrm{~V}$.

SS. 140 Excelliently designed 40 watt R.M.S. $\{\mid n t o$ 4 onms) hi-fi amplifier. S / N ratio better tha 75en. T. H.D. better than 0.2%. Rower men. To nections. Tw can be bridged to give 80 watt R.M.S. into 407 ms

TUNER MODULES

SS. 201 Ganged tuning condenser with accurately engineered slow-motlon drive in rugged housing. Excellent sensitivity. Tunes $86-108 \mathrm{MHz}$. Win A.F.C. facility. Operates from 6- 16 V

SS. 202 I.F. stage (with I.C.). Pre-tuned. A.F.C connection. Operates from 4.5-14V
s. 203 Stereo Decoder. Designed essentially for Use with SS. 201 and SS.202, this module can also be used on most mono F.M. tuners. A L.E.D may be attached. Operating voltage 9-16V d.c.

POWER SUPPLY STABILISER

SS.300 Add this to an unstabillsed supply (say typically 45 V ousput) to obtaln a steady powertul working output adjustable from 12 to 60 Money saving your aud
£1.75
£3. 25
£1.95
£2. 40
£3. 60
 $1 \cdot 60$
£2. 25
£1.60

£6. 25
£5.25
£5-62

£3. 25

Have you

had your
CATALOGUE?
\square

NAME

Riversdale Electronics
Mail Order Department PE3
P.O. Box 470, Manchester M60 4BU

CJL PRICES INCLUDE PEPAND V.A.T.

CAERIAL, telescopic, $15-120 \mathrm{~cm}$.

CAERIAL, telescopic, h and v swivel, $15-80 \mathrm{~cm}$.
BIE HI-FI ACCESSORIES
םCASSETTE TAPE RECORDER CARE KIT
IT . पCASSETTE SPLICING AND EDITING KIT पHI-FI STEREO TEST CASSETTE . -1/" TAPE EDITING KIT
DGROOV-KLEEN RECORD CLEANER.
DEARP HONE, stethoscope style, 8 ohm dynamic.
[HANO ORILL.(Leytool), compact precision arlil,
5/16"chuck. Gears totally enclosed.S/L bearimgs.

INTEGRATED CIRCUITS

QAUDIO POWFR AMPLIFIER (National) LM380 GA.M.RADIO RECEIVER(RCA)
DF.M.STEREO DECODER (Motorola) -TIMER(Signetics)
qVOLTAGE REGULATOR (Fairchild)
-VOLTAGE REGULATOR (Signetics)
DD.I.L.SOCKETS(Pk of 3)
CA3123E MC1310P NE555V UA7805 NE550A 8 or 14 pin
DKEYNECTOR
leads. Built-in piano switches, neon \& 13A fuse
口LOCKFLEX RULE (Rabone Chesterman), $3 \mathrm{~m} / 10 \mathrm{ft}$ precision pocket rule, Easy to read, $13 \mathrm{~mm} / \frac{1}{2}$ "wide steel tape. Blade length lockable-power return. A superb rule
IMICROPHONE, lightweight dynamic, remote start stop, 200 ohms, $100-10 \mathrm{kHz}, 6 \mathrm{mV}$ average output. DMULTIMETER, attractive design, Vdc-10,50,250, 1,000. Vac-10,50,250, 1,000. Idc-100mA. R-150k. DSIGNAL INJECTOR, audio through vIdeo signals, excellent for servicing amplifiers, radio \& tv GBOLDERING IRON, 25 WATT, (Antex), $\times 25,240 \mathrm{~V}$, Very low leakage, $1 / 8$ "long life bit (interchangeable) £1. 85 $\square 3 / 32$ "blt £0.45 $\square 3 / 16$ "bit £0.45 DElement £0. 95 DSTAND, ST3, High grade base, chrome plated
spring, sponges and accomodation for spare bits
DSPEAKER, mInlature, 75 mm dla, 8 ohms.

London College of Furniture

Department of Musical Instrument Technology
 Full-time Courses

HIGHER DIPLOMA COURSE:

Advanced studies for those who are 19 years of age or over and who have suitable educational or industrial qualifications.
Higher Diploma in Musical Instrument Technology
(Subject to approval)

CERTIFICATE COURSES IN:

Piano Tuning, Construction, Repair and Maintenance, Early Stringed Keyboard Instrument Construction, Harpsichord, Clavichords, Fretted Instruments, Guitars, Lutes, Violas and Cellos, Electronics for Musical Instruments.

PART-TIME COURSES:

Block Release or Day Release.
Stringed Keyboard Instrument Design and Manufacture, Violin Making, Early Fretted Instrument Making, Piano Tuning and Maintenance, Woodwind Instrument Maintenance.

Europe's Largest Hi-Fi Retailers

give you the greatest choice

TMK 200 MULTIMETER KIT Build yourself a
quality 20000 opv quality 20000 and
mutimeterer an
savemoner
Comple kit meterscale. movementand
rotary range selector ready mounted in

batteries. test prods and
instructions. Ranges: :0,0.6/6 30 120/600/1200V D.C. 0630120
600/1200V A.C. Current: $0.6 / 6$ $60 / 600 \mathrm{~mA}$. Resistance: 010
$100 \mathrm{~K} / 1 / 10 \mathrm{Meg}$ ohms. Decibels $-2010+63 \mathrm{db}$. Size: $90 \times 150 \times$

OUR PRICE E7.95 P\&P 30p. AUDIOTRONIC Model ATM1 Top value 1,000
opr pocket mult
 Complate
test leads. OUR PRICE $£ 3.25 \quad$ Pgap ${ }^{15 p}$
AUDIOTRONIC Model ATM5 aswel movement. case with edgwise
ohms adjustment ohms adjustment.
Ranges: $0.3 / 15 / 150$.
$300 / 1200 \mathrm{~V}$ AC (2500 opv). $0.6 / 30 /$ (5000 opv). 0.300 (5000 opv). 0.300
UA/0.300mA DC.
Resistance: 10 \& Resistance: $x 10 \&$
$\times 100 .-10$ to +16 dB
 booklet. Size. $121 \times 73 \times 29 \mathrm{~mm}$.
OUR PRICE $\mathbf{~} 3.95 \quad$ P\& P 20p HIOKI 720 XVOM

MODEL C7202EN

 20,000 O. P V. OC 10.000 o.p. 5 25/50/250/500 $1000 / 2500 \mathrm{~V}$. DC $10 / 50 / 100 / 500 / 1000$ V. AC OC Resistan$\times 10 . \times 1000$ (30S2 centre scale) DC $2-5 \mathrm{~mA} / 250 \mathrm{~m}$ OUR PRICE $£ 6.95$ P \& P30p

60/150/600mA
$1.5 / 6 A \mathrm{AC}$. $0 / 200 / 3 \mathrm{k} / 30 \mathrm{k}$ ohms. DC
accurary 1% AC 1.5%. Knife edge pointer, mirror scale. Complete wwith
sturdy metal carrying case, leads and instructions.
OUR PRICE

TMK MOOEL TW50K

 OUR PRIL. -20 to +81.5 dB OUR PRICE $£ 12.50$ P\&P 20 p

MODEL C7080E

O
sh
9 5060kA. 12 AR , OUR PRICE E 13.95

HIOKI MOOEL 70DX

KAMODEN 360 MULTIMETER High sponsitvity;
OC $100 \mathrm{kohm} / \mathrm{K}$ AC $10 \mathrm{kohm} / \mathrm{V}$
$5^{\prime \prime}$ mirror scale
overload overload protec.
mad.
2.5 Ranges: 05 .
 $1000 \mathrm{VC.5/10}$
$50 / 250 / 1000 \mathrm{~V}$ $0.01 \mathrm{~mA} / \mathrm{m}^{5 / 5 / 5 / 50}$
$500 \mathrm{~mA} / 10 \mathrm{~A}$ F00mA/104.
Resisisarice: $1 / 1 /$
$1 / 10 / 100$ ohms l
1010100 on $1 / 10 / 100 \mathrm{k}$ ohms
$10 / 100 \mathrm{M}$ ahms

Decibets -20 io
Dectibis -20 to
$140208 \times$ Bartury operated. Size: $180 \times 80 \mathrm{~mm}$. Supplied complete with. test leads etc. $517.50 \quad$ P \& P 400
OUR PRICE $£ 17$
Model HT100B4 MULTIME TER
Overload protected, Shock
9.5
 switch, Aarges: $0.5 / 2.5 /$
$1 / 150 / 250 / 500 / 1,000$
Voirs $D C$. 5.1050

miA +6 A AC current $-0-10 \mathrm{~A},-20$
to +62 dB Operates Trom $2 \times 1.5 \mathrm{~V}$ batteries. Size $180 \times 134 \times 79 \mathrm{~mm}$.
OUR PRICE $\mathrm{E} 17.50 \quad$ P 8 P . 40 p

OUR PRICE E19.95 P\&P 30p
U4317 MULTIME TER
$\begin{aligned} & \text { High sensitivity } \\ & \text { inst ument for field } \\ & \text { and laborator work. } \\ & \text { Knite edge pointer. }\end{aligned}$
and laboratory work.
Knife eege pointer.
B6mar mirror scale.
Overload protections
 VOC. $0.5 / 5.5 / 10 / 25 / 50 / 100 / 2000$
$500 / 1000 \mathrm{AC}$ C Current: $50 \mathrm{OA} / 0.5$

 is ance: $0.5 / 10 / 100 / 200$ ohms $1 / 3 / 3 /$
$30 / 300 \mathrm{k}$ ohms. Decibels: $-510+10 \mathrm{~B}$ Battery operatad, Size: $210 \times 15 \mathrm{x}$
90 mm . Supplied in plete with leads.
OUR PRICE 16.50 P\&P 40 D
KAMOOEN 72.200 Multitester

TMK MODEL 117 FET
ELECTRONIC VOLTMETER
Battery pperated.
11 Meg input, 26.

$149 \times 17 \times 60 \mathrm{~mm}$.
$0.3-12000 \mathrm{VC}$.
$3-300 \mathrm{~V}$ RS AC
$8-800 \mathrm{~V}$ P.
DC curn
 and OUR PRICE f 18.50 P\&P 20p
TMK 100K LAB TESTER
100,000opv.
ccale. Buzzer
scale. Burzer
Short circuit check.
Sensitivity 100,000

DC Volis: $0.5 / 2.5 /$ AC. $3 / 10 / 50 / 250 /$
$500 / 1000 \mathrm{~V}$ DC

current 10/100u
10/100/2.5/10A. Resistence:
1/710k $100 \mathrm{k} / 10 \mathrm{Meg} / 100$ Mes
Decibels
 $\times 99 m m$ mande. Size: 190×172
OUR PRICE E19.95 P\&P 30p
LB4 TRANSISTOR TESTER
Tests PNP or NPN
transistors. Audio
transstions. Audio
indication. Operates
on two 1.5 V .
battreries Complete
OUR PRICE
$\mathbf{E 4 . 5 0}$ P\&P 20
TRANSISTOR TESTER

OUR PRICE £17.50 P\& P40p U4341 Multimeter 27 ranges. 16.700 op Overload proiected. Ranges: $0.3 / 1.5 / 61$
$30 / 60 / 150 / 300 / 900$ V DC. 1.5/7.5/30/150/ $300 / 750 \mathrm{~A} A \mathrm{~A}$
Current: $0.06 / 0.6 /$ Current: 0.060 .6 .
$6 / 60600$.
$0.3 / 3 / 30 / 300 \mathrm{~mA}$
. Reststance: 0.06 , $0.6 / 2 / 6 / 20 / 60 / 200 \mathrm{k}$ ohms $/ 2$ Mohms.
Batrery
Operated. Batitry operated suphied completo
with probes, leads and stel carlying
case with grobes. leads and steel carlving
case. Size: $115 \times 215 \times 90 \mathrm{~mm}$. OUR PRICE f 10.50 S100TR MULTIMETER TRANSISTOR TESTER to0,000
scale. Overload protectian. 0/0.12 600 V DC. $0 / 6 / 30$ / $120 / 600 \mathrm{~V}$ AC,
$0 / 12 / 600 \mathrm{~A} / 12$
$300 \mathrm{~m} / 6 / 12 \mathrm{~A}$
100 Meg.
$-2010+50 \mathrm{~dB}$.
$0.01-0.2 \mathrm{MFD}$
Transisior tester measures Alpha, Beta and ICO. Complete with instructions.
batteries OUR

P\&P 25p SWR METER Model SWR3
Handy SWR meter for
transmitter antenna
ment, with built-in field
stren
strength meter. Accuracy
5%. TMedence 5 . Indic.
ator 100 OA OC Fult ator 100uA OC. Full
scale 5 section collapsible
antenna. Size $195 \times 50 \times$

OUR PRICE E4.25 P\&P 30p CI5 PULSE OSCILLOSCOPE For display of pu
and periodic wav
forms in electron forms in electronic
circuits VERT. AMP.
Bantid Bandwidth: 10 MHz
Sensitivity at 100 kHz
VRM $/$ mm $: 0.1-25$:
HOR AMP Band Width: 500 kHz zokHz
Sensitivity ay 100 kHz
VRMS $/ \mathrm{mm}=0.3-25$
Preset trigger ed sweep
$\mathrm{T}-3000 \mathrm{user}$. Free
${ }_{2 H z} \mathrm{Hm}$ in nine ranges. Cing 20-200 OUR PRICE 143.00

ALL PRICES EXCLUDE VAT
 Also see following pages

SINCLAIR DM2 DIGITAL MULTIMETER

i 11 ifi inii

Will measure AC and DC volts, AC and OC current, and resistance in total of 20 ranges The large light to 1999 and automatically indicate polarity. Indication of posıtive and negarive overload is also provided Theinstrument is fitted with a combined carrying handle and bench stand and sockets are provided for the connection of an

RANGES

DC VOLTS: $1 \mathrm{v} .10 .100 \mathrm{v}, 100 \mathrm{v}$ AC VOITS: $1 \mathrm{v}, 10 \mathrm{v}, 100 \mathrm{v} .1000 \mathrm{v}$ OC CURRENT
$100 \mathrm{~mA}, 1000 \mathrm{~m}$
AC CURRENT: 1 mA .10 mA RESISTANCE:
OUR PRICE 559.95
RUSSIAN CI16 Double 8eam OSCILLOSCOPE 5 MHz pass band. amplifiers. RectangLlar $5^{\prime} \times 4^{\prime \prime}$ CRT.
Calibrated triggered Caibep from 0.2 usec .
to 100 mill .-sec/cm to 100 milli-sec/cm Fres running time
gase, $50 \mathrm{~Hz}-1 \mathrm{MHz}$.
Builimn
Cali-int base
 Calibrator and amplitude Cas. and instruction mete with all accessories OUR PRICE £87.00
Carr. paid

MODEL TE15

GRIO DIP METER Transistorised. Operates as Grid Dip. Osillator, Absorbtion Wave Meter and Oseillating Detector. Fraquancy ranpe $440 \mathrm{kHz}-280 \mathrm{MHz}$ in six coils. 500u A meter. 9V battery operation. Size: $180 \times 80 \times 40 \mathrm{~mm}$.

OUR PRICE E17.50 P\&P 30p
transistdrised l.c.R. A.C BR/8 MEASURING BRIDGE

A new portable bridge offering excelient range and accuracy at low cost. Resistance 6 ranges: 0.1 ohm-11.1 megohm $\pm 1 \%$ Induct ance: 6 ranges: 1 microhenry- 111 henries $\pm 2 \%$ Capacity: 6 ranges: 10pf-1110 mfd $\pm 2 \%$ Turns Ratio: 6 ranges: $1: 1 / 1000-1 \cdot 11100 \pm 1 \%$ Bridge Voltage at $1,000 \mathrm{cps}$. Opera. ted from 9 -volt battery. 100 microamp meter indication. Size 7 $7^{*} \times$ $5 " \times 2^{2}$ OUR PRICE $\mathbb{2} 27.50$ p\&P $30 p$
TE16A TRANSISTORISED SIGNAL GENERATOR
5 ranges, 400 kHz so 30 MHz . An inexpensive instrument for the handy-man. Operates on 9 V battery. Wide easy to read scale. 800 kHz modulation. Size: $149 \times 149 \times 92 \mathrm{~mm}$. Complete with instructions and leads.
OUR PRICE f8.97 Psp 30p
TE-200 RF SIGNAL GENERATDR Accurate wide renge signal generator covering $120 \mathrm{kHz}_{\mathbf{z}} \mathbf{5 0 0}$ MHz on 5 bands. Directly callbrated Variable R.F. attenuator audio output, Xtal socket for calibration 220/240V ac. Brand new with instructions Size $140 \mathrm{~mm} \times 215 \mathrm{num} \times 170 \mathrm{~mm}$ OUR PRICE £19.95 P\&P50p
MODEL TE2O RF SIGNAL GENERATOR Six bands. 120kHz 260 MHz . Dual dutput RF terminais. Separate veriable audig output. Accuracy $\pm 2 \%$. Audio output to 8 V . Power requirements: 105-125V. 220-240V AC. Size: 193 $\times 265 \times 150 \mathrm{~mm}$. Complete with test leads atc. OUR PRICE £18.95 P\&P 50p

8H001 HEADSET and 80am Microphone
Moving coil. Tor lang coil. teaching.
communications etc. Headphone impedance 16 ohms. MicOUR PRICE $£ 5.95$ PBP 30 p OUR PRICE $\mathbf{£} 37.50$ P\&P 50p

SINE SQUARE
WAVE AUDIO GENERATOR Range 19. 220.000 Hz Stne Wave 19-100.000 Hz Square Wave
Output Sine or Square wave 10v P. to P Output Sine or Square wave $10 \times 90 \mathrm{man}$ Operation
Size $180 \times 90 \times 90 \mathrm{~m}$ OUR PRICE $£ 19.95$

PRP 50p

TE22 SINE SQUARE WAVE AUOIO GENERATOR

Sin to on Squ Spq tps

on 4 banic
Square 20
cps 1030
cps 1030
kHz . Outp
impedence
5000 Ohms
5000 OHms
$200 / 250 \mathrm{~V}$
AC operation. Supplied brand now
guaranteed, with instruction manual and leads. OUR PRICE $£ 24.95 \quad$ P\&P 50p

BELCO AT201 Oecade ATTENUATOR | Frequency range 0 |
| :--- |
| 200 k | 200 kHz , Attenuator

$0-111 \mathrm{~dB}, 0.1 \mathrm{~dB}$ steps. Impedence 600 ohms. Input
power maximum 30 dBm . Size: $186 \times$ power maxi
$90 \times 55 \mathrm{~mm}$
OUR PRICE £12.50 P\&P 50p

PS200 Regulated POWER

VU METER TYPE 3
Size. 33 mm 20 mm

SDHBV MONO/STEREO

HEAOFHONES Volume control for
each channel. 4/16 eampdence. Freauency
impense 20 Hz
repor response $20 \mathrm{~Hz}-18 \mathrm{kHz}$.
Complete with 10 ft Complete with 10ft.
colled lead and jack plug. OUR PRICE $\mathbf{E 4 . 9 7}$

OUR PRICE E4.97 P\&P 30 p

UNIPEX
 NT 100A
 The unipex NT100A is

a compact
portable transistorised PA amplifier. This ver satile unit has a Maximum output of 10 watts DC source negative or positive ground and uses only 1.5 A at rated output. Supplied complete with mounting brackets etc, plus full installation and operating
OUR PRICE £21.75 P\&P 50p

EA41 REVERBERATION AMPLIFIER
$\begin{aligned} & \text { Seff contained. } \\ & \text { transistorised, } \\ & \text { battery operated. } \\ & \text { Simply plug in }\end{aligned}$ microphone, guitar ate. and outpuit to
your amplifier. Volume control and depth of reverberation control. BeasuOUR PRICE £7.50 P\&P 30p

RANK AUDIO
RA $210 T$ STEREO AMPLIFIER
7: 7: watts rms. Inputs for aux. Separate base, treble. balance and volume controls. Headphone socket. Teak case. Unrepeatable offer. OUR PRICE £17.50 p\&P 50p

VHF 105

This unit will give of the ground-toair, air-to-ground waveband Simply
placebesideany
 AM or FM Radio covering $5351605 \mathrm{kHz}, 88-108$ MHz - no conversion or conne self powered by one 9 -volt (PP3) Type) battery and comes complete
with a full set af instructions and with a full set of instructions and
battery.
OUR PRICE $£ 3.50$ P\&P 50p
Just arrived - the sensational

Just arrived - the
WIEN ET1008
CASSETTE

cassettere.
corderat it
price.
ONLY
FANTASTIC VALUE! $\quad \mathbf{~} 8.95$

SPECIAL OFFER! CONVERT YOUR STEREO SYSTEM TO 40 SOUND

T(3): 4 -

This clever unt enables you to add 4 D sound to your existing system. Complete with simple connection details Use this converter (together with 2 exira speakers) phonic sound! The ffect of being mmersad within the music becomes a thrilling new OUR PRICE 535 P\& 50)

FM TUNER CHASSIS

a auiotronic
LOW NOISE CASSETTES

MP7 MIXER-PREAMPLIFIER SMicrophone
inputs each with individual gimi
controls enabling complete mixin
facilitiess. Battury opernted. Size: 235
$\times 127 \times 76 \mathrm{~mm}$. Inputs: Mics. $3 \times 3 \mathrm{mv}$
$\times 02 \times 2 \mathrm{~mm}$. Wputs: Mics. $3 \times 3 \mathrm{mV}$
$50 \mathrm{k} ; 2 \times 3 \mathrm{mV} 600$ ohms. Phono. Mag.
4 mV 50 k ; Phono Ceramic 100 mV i Mog. Output 250 mV 100 k .
OUR PRICE f8.97 P\&P 20p
AUOIOTRONIC AHA1O1
Stereo Headphone Amplifier
All silicon.
transistor
amplifier opar.
ates from
ates from mag.
netic, ceramic.
or tuner
inputs with
twin sterto headphone outputs and
separate volume separate volume controls for aach Channef. Operates from $9 V$
INPUTS: 5 mV and 100 mV .
OUTPUT: 50 mV per channel.
OUR PRICE $\mathbf{~} 8.50$ P\& 30 p

HIGH QUALITY CONSTRUCTION KITS WE ARE APPOHITED STOCKISTS AT 257 Tottenham Court Road. 34 Lisie Street. 152. Fleet Streat, BIRMINGHAM KINGATONON LEICESTER NORTHAMPTON SOUTHEND TUNBAIDGE WELLS WOLVEAHAMPTON branches. or by Mail Order.

All kits are complete with comprehensive easy to follow instructions and
Post and Packing 15 p per
AF 20 Mono amplifier..........
AF30 Mono pre-amplifie
AF35 Emitter amplifier.
AF80 0.5W mic. amplifier
AF 3102 Mono Amplifier
M160 Mult-vibrator
M1302 Transistor
M19 I VU Meter...
M19 1 VU Me ter....................
M192 Stereo balance
LF380 Quadraphonic device
LF 380 Quadraphonic device. $£ 842$
ATS Automatic light control.. $£ 375$
AT30 Photo cell switch unit... £ 668
AT50 400 W triac light
riac light
AT 562.200 W triac light
AT60 1 channel light control.
AT65 3 channel light control.
GU330 Tremolo unit.
HF65 FM tiansmite
HF75 FM recelver.
HF310 FM tuner..

HF330 Decoder $1 \mathrm{HF310/325}$
GP310 Stereo pre-amplifier
GP310 Stereo pre-amplifier
for use with $2 \times A F 310$.
GP312 Circuit board...
GP304 Circuit board...
$£ 561$
$£ 329$
$£ 320$
$£ 242$
$E 486$
$£ 767$
$£ 755$
$£ 278$
$£ 833$
$£ 537$
$£ 593$
$£ \quad 842$
$£ 375$
$£ 668$
$£ 518$
BINATONE DIGITAL CLOCK

A.C. 240 V op

OUR PRICE
SINCLAIRICI2
INTEGRATED
CIRCUIT

HF380 Iwfvht aeral amplifier
HF 395 broadband aerral amp.
NT 10 Stabilised power supply

NT310 Power Supply 240 V AC
or 2×18 VD C at 2 anips \quad E 564
NT 305 Voltage converter...... $£ 564$
NT 315 Power supply 240 V AC
$104.5 / 15 \mathrm{~V}$ DC, 500 mA $£ 12$
Amateur Electronics by Josty-Kit.
-covers the subject from basic orin.
cipals to advanced electrontc techniq-
wes. Complete with circuit board for
OUR PRICE £3.30
P\&P PR VAT
AE 1 100mW output stage......... $\begin{gathered}1.55 \\ \text { AE } 2 \text { Pre-ampliffer................. } \\ \text { f } \\ 132\end{gathered}$ AE 3 D
AEA Fiasher.....................
AE6 Monostable multı vibrato
AE7 RC generatur.
AE8 Bass filter.....
AE9 Treble filter
AE 10 CCIR filter

Also see previous page

Al Poices Excluot gat

SEW PANEL METERS Mix

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Ouantity discounts available. Send for fully illustrated brochure.

call into your nearest LASKYS BRANCH OR SEND COUPON BELOW FOR NEW 32 PAGE HI-FI PRICE LIST

CENTRALLONDON	
481 OXFOROST	01-4938641
3 LISLE ST. WCZ	01.437 2204
34 LISLE ST. WC2	$01-4379155$
118 EDGWARE RD. W2	$01-7239789$
193 EDGWARE RD. W2	$01-7236211$
207 EDGWARE RD. W2	01.7233271
311 EDGWARE RD. W2	01-262 0317
346 EDGWARERD. W2	01.723453
382 EDGWARE RD. W1	01-723 4194
109 fleET ST. EC4	01-353 5812
151/3 FLEET ST. EC4	01-353 2833
10 TOTTENHAM CT. RD.	$01-6371232$
27 TOTTENHAM CT. RD.	01.6363715
' 33 TOTTENHAM CT. RD.	01.6362605
42/45 TOTTENHAM CT. RD.	01-6360045
257/8 1OTTENHAM CT. 90.	01-500 0670
ESSEX	
B6 SOUTH ST. ROMFORD	20218
205/206 CHURCHILL WEST, VICTORIA CIRCUS, SOUTHEND 0702612241	
GLOUCESTERSHIRE	
16/20, PENN 5T. BRISTOL 0272-20421	
KENT	
53/57 CAMDEN RD., TUNBRIDGE WELLS 0692-23242	
LEICESTERSHIRE	

45 MAGKET PLACE, LEICESTER

NORTHAMPTONSHIRE

73 ABINGTON STREET
NORTHAMPTON 0604-35753
STAFFORDSHRE
30 WULFRUM WAY, WOLVERHAMPTON
G902-23304
SURREY
1046 WHITGIFT CENTRE, CROYDON
38/40 EDEN ST., KINGSTON $\begin{aligned} & \text { 01-6a: } 3027 \\ & 01-546 \\ & 1271\end{aligned}$ 32 HILLST. RICHMOND OI-948 144

WARWICKSHIRE

116 CORPORATION ST., BIRMINGHAM

ALL BRANCHES OPEN FROM Qam to 6pm MON TO SAT

OUR CUSTOMER
SERVICES DIVISION at head offic
will answer all your enquiries -
just ring $01-2001321$

EXPORT Persomal exports arranged for overseas visitors
Goods specially packed. Goods specially packed.
insured and despatched to all parts of the world at min
cost exclusive of VAT cost exclusive of VAT.
Payment by bank transter. certified cheque, postal order or money
currency.

 babclaycand \& ACCESS
 Phone your order to $01-2000037$ or NO DEPOSIT TERMS

 available on most goods for personal callerscheques ro time valut of cze. ACCEPTE IROM HEESSOMA SMOPPERS AMD FOR A OUMTS IM EXCESS Of r30. Please allow time fon cleamame
bamiens orafts accepteg banMERS DRAFTS ACCEPTED.
All prices correct at $13 / 1 / 7 \mathrm{~b}$
subject to change without notice E. \mathbf{A} O.E.
\qquad

Whether your project is electrical or electronic, SCS Components have a complete professional service for the non-professional. We are franchised distributors of Mullard components and Motorola, Ferranti,Signetics,G.I. and Monsanto,too.OurTrade Counter can supply you with all you need, including first-class technical advice. Or simply send cash with your order.

Never before have you been able to get top quality, guaranteed components so quickly, so inexpensively. Send for a free copy of our latest price list.Try us; we think you'll notice the difference.

ON GUARD

WHile technology continually advances, bringing many improvements at the material level, human nature on the other hand seems to undergo little change with the passage of time. For instance, the struggle waged between occupier and trespasser, and between owner and would-be purloiner goes on just as relentlessly today as it did in times long past.

The odds against the criminal have not altered much either, it seems, despite the increasing involvement of electronic and other technical aids. In fact electronics is probably responsible to some extent for the greater abundance of valuable, and often portable, loot that tempts today's criminals. The villains also have access to advanced technology and can, if they are sufficient determined, surmount or otherwise render innoxious many of the security systems created to deter or defeat them. The safest intruder detection systems obviously are those that do not advertise their presence, or at any rate their vital sensing elements. For in the final reckoning it is immunity from hostile action that makes a security system really 100 per cent. effective.

In this regard security systems relying upon invisible radiations have considerable advantages. Both infra-red and radio frequencies are used in security applications. Some of the more advanced commercial systems employ microwaves and exploit the Doppler shift effect to detect the presence and movement of a body within a protected area. But the use of radio transmitters does bring both the equipment and the intended user within the jurisdiction of the official licensing authority (currently the Home Office, Radio Regulatory Division). The complications involved (which include obtaining design approval for the apparatus concerned) are not likely to be worthwhile for the average person who wishes to build and install his own intruder detection system without fuss or bother. Such needs however are likely to be fully met by a Doppler shift system using ultrasonic radiations. This method can be highly effective in detecting the slightest of movements within the area under surveillance and presents none of the problems of licensing which are associated with radio frequency versions.

This month's design for an Ultrasonic Doppler Shift Intruder Alarm has been fully tested and has proved highly sensitive and consistent in performance in rooms of varying size. Undoubtedly this project will be the answer in many cases where effective monitoring of an enclosed area is required. The equipment can be installed unobtrusively so that its presence (or purpose) is not suspected by unauthorised persons, thus saving it from malicious attentions of technically knowledgeable anti-social types. The importance of this aspect cannot be over-stressed. Electronic techniques can be used for defensive or offensive purposes, and the technical capabilities and resources of today's criminal classes must not be underestimated in any degree.

INCREASE IN COVER PRICE

With effect from this month, the cover price of Practical Electronics is increased by 5 p to 30 p. Further substantial rises in the cost of paper are chiefly responsible. We naturally regret the need for this increase but trust our readers will understand that it is unavoidable.
F.E.B

Editor

F. E. BENNETT

Editorial
R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
S. R. LEWIS B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

ULTRASONIC INTRUDER

ASImple ultrasonic intruder alarm can be made in which the alarm is triggered when the intruder breaks the ultrasonic beam. Unfortunately such a simple arrangement is not very satisfactory since it may be impossible to ensure that an intruder will always pass through the beam. In addition, this type of equipment must be set up very carefully or a sufficient part of the ultrasonic signal will reach the receiver even when the intruder is in the beam and his presence will remain undetected.
This article describes an ultrasonic intruder alarm based on the Doppler shift principle. It can detect the movement of any object within a room when the object has dimensions of not less than a few cms . For example, it has been found that if a person inside the protected area breathes in, the movement of his chest can trigger the alarm. The movement of a person's hand at a speed exceeding about one inch per second can trigger the alarm.
Whilst there is some variation in sensitivity from one point to another the equipment is usually effective throughout most of the volume of a room and

Fig. 1. Wave motion from source to observer, showing how Doppler effects can be observed
there is no necessity for a burglar to be in any particular region of the room for detection to take place.

DOPPLER SHIFT

The basics of Doppler shift are familiar to everyone who has detected a fall in the frequency of the note received as a fast moving noisy object passes by him. This fall is very apparent in the case of low flying aircraft or when a car passes close to the observer with its horn sounding.

Similarly, if an observer moves towards a stationary source of sound, the frequency he observes will be higher than that emitted by the source.

THEORY

Let us imagine that the stationary source shown in Fig. 1 emits waves at a frequency of $f \mathrm{~Hz}$. If the observer is stationary, f waves will pass him per second and he will therefore observe this frequency. If, however, the observer moves towards the source, he will meet more waves per second, since these additional waves are distributed in the space through which he is moving.

The wavelength, λ, of the waves is equal to v / f metres where v is their velocity in metres/second. If the observer moves towards the source with a velocity of b metres/second, he will meet an additional $b / \lambda=b f / v$ waves per second. Thus he meets a total of $(f+b f / v)=f(1+b / v)$ waves per second. In other words, the movement of the observer towards the source causes the frequency he receives to be raised from f to $f(1+b / v) \mathrm{Hz}$.

If the observer moves towards the source with a velocity of 1% of the velocity of sound (namely about $3 \mathrm{~m} / \mathrm{s}$), the received frequency will be raised by 1%. If the waves are reflected from the observer back towards the source, a person at the source will find that the reflected waves are raised in frequency by twice this amount (that is, by 2%). This is because the observer is reflecting the waves at the

DOPPLER SHIFT ALARM

By J.B. DANCE m.sc.

frequency he is receiving them, but these reflected waves occupy a shorter distance in space owing to the movement of the observer towards the source.
A similar change will occur when the observer moves away from the source, but the frequency of the reflected waves will then be lower than the transmitted frequency.

ULTRASONICS

Let us consider the Doppler effect in ultrasonics when a transducer is employed which emits waves at the typical frequency of 40 kHz . If a reflecting object moves at $3 \mathrm{~m} / \mathrm{s}$, the reflected waves reaching the transducer will have a frequency shift of about 2% of 40 kHz , namely 800 Hz .

In the case of an intruder moving about in a room, the major components of the velocity of parts of his body are more likely to be in the range $20 \mathrm{~mm} / \mathrm{s}$ to $1 \mathrm{~m} / \mathrm{s}$. The reflected waves therefore reach the transmitter with a frequency shift of roughly 5 Hz to 300 Hz

In the prusent project the transmitting transducer and the receiver of the reflected waves are not in the same position. This will cause the frequency shift to be somewhat reduced (depending on the relative position of the reflecting object), but nevertheless the frequency change will be of the same order. The equipment must therefore be designed to detect shifts in the low audio and sub-audio frequency ranges.

POSSIBLE TECHNIQUES

Various techniques can be employed to detect the frequency shift. All depend on the detection of the frequency difference between the emitted and received frequencies and not on measurement of the frequencies themselves.
It is possible to employ a single ultrasonic transducer to transmit ultrasonic pulses and during the intervals between the pulses, use the transducer as a
receiver of the reflected signals. This would complicate the circuit so much that it would outweigh the saving in the cost of an extra transducer.

beAT NOTE

In order to keep the project as simple as possible a system which will detect the beat note developed when the transmitted frequency and the Doppler shifted reflected frequency reach the receiver simultaneously is used.

The signal from the receiver transducer is greatly amplified at 40 kHz before it is fed to a diode pump circuit. By a suitable choice of time constant, most of the 40 kHz signal can be filtered out to leave the audio or sub-audio beat note. This is used to drive a level detector circuit which, in turn, operates a relay.

TRANSMITTER CIRCUIT

The circuit of the transmitter is shown in Fig. 2. A 555 integrated circuit is employed so that the circuit can be as simple as possible.

The output at pin 3 continually switches between potentials slightly above that of the negative line and slightly below that of the positive line. This square voltage waveform drives the transducer. The frequency is set by VR1.

THE TRANSDUCERS

The output of the 555 is used to operate a new type of miniature ultrasonic transducer, the 96D-40. This is available in " T " and " R " types for the transmitter and receiver respectively. Optimum results will be obtained only if the " T " type is used in the transmitter and the " R " type in the receiver, although results may be obtained if these units are interchanged.

TRAMSMITE:

Fig. 2. The transmitter circuit

Fig. 5. Component layout and Veroboard cuts for the transmitter of Fig. 2

These transducers contain small piezo-ceramic "bimorph" plates sealed in a small aluminium cylinder slightly over $\frac{1}{2}$ in in diameter. There are two connecting pins on the back and the one connected to the aluminium case should be earthed. The ceramic plates resonate at about 40 kHz and cannot be used at frequencies which are more than about 1 kHz from this frequency.

When the square wave voltage from the 555 circuit is applied to the transmitter transducer, the ceramic plate resonates and emits an ultrasonic pressure wave into the air through the metal grille at the front of the device.

COMPONENTS . . .

TRANSMITTER

IC1 NE555V timer i.c.
C1 $0.001 \mu \mathrm{~F}, 15 \mathrm{~V}, 10 \%$ mica or polystyrene
R1 12k $\Omega, 10 \%, 0.1 \mathrm{~W}$
VR1 $10 \mathrm{k} \Omega$ preset trimmer
X1 40 kHz transducer type $\mathrm{T}, 96 \mathrm{D}-40$ (Hall Electronjcs)
S1 SPST on/off switch
B1 9 V battery or suitable p.s.u.

RECEIVER

Resistors
R1 $6.8 \mathrm{k} \Omega$
R2 100Ω
R3 $100 \mathrm{k} \Omega$
R4 $390 \mathrm{k} \Omega$
R5 $10 \mathrm{k} \Omega$
R6 $10 \mathrm{k} \Omega$
All $10 \%, 0 \cdot 1 \mathrm{~W}$ or larger.

Capacitors

C1 25μ F (Fig. 3), $8 \mu \mathrm{~F}$ (Fig. 4), 15 V elect.
$\mathrm{C} 28 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.
C3 $8 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.
C4 $8 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.
C5 $\quad 47 \mathrm{pF}$ polystyrene or mica
C6 $0.01 \mu \mathrm{~F} 63 \mathrm{~V}$ polyester
C7 10 nF (Fig. 3), $0.1 \mu \mathrm{~F}$ (Fig. 4)
C8 $\quad 0.1 \mu \mathrm{~F}$ (Fig. 3), $1.0 \mu \mathrm{~F}$ (Fig. 4)
C9 $500 \mu \mathrm{~F}$ (Fig. 3), $0.01 \mu \mathrm{~F}$ (Fig. 4)
C10 $1 \mu \mathrm{~F}$
C11 $0.1 \mu \mathrm{~F}$

Semiconductors

IC1 TAA930 (Phoenix Electronics Ltd., 139 Havant Rd., Portsmouth, PO6 2AA)
IC2 LM380N audio power amplifier
TR1 C450, BC109, etc.
TR2 D40C1 Darlington device (Jermyn Industries Ltd., Vestry Estate, Sevenoaks, Kent)
D1-5 HG1011, OA95, OA81, 1N914, 1S914, etc. (5 off)

Miscellaneous

Transducers, 96 D-40types T and R for transmitter and receiver respectively (Hall Electronics, 48 Avondale Rd., Leyton, London, E.17.). 8Ω loudspeaker. Relay RLA, 12V with 2 pair changeover contacts, e.g. GPR100 (Pye TMC Components, Roper Rd., Canterbury, Kent). 8- and 14-pin d.i.I. sockets if required. Veroboard to suit. Die-cast boxes or cases made to suit. Batteries or power supply, wire, solder, etc.

Fig. 3. Circuit diagram of the basic ultrasonic receiver

THE RECEIVER

When an ultrasonic signal strikes the transducer in the receiver a 40 kHz signal appears across the transducer terminals. The amplitude of this signal may be of the order of $100 \mu \mathrm{~V}$. One can amplify this signal by using discrete transistors, but a TAA 930 integrated circuit has been used in this project since it greatly reduces the number of components required.

One of the first circuits used by the writer to detect the beat frequency is shown in Fig. 3. The 40 kHz signal from the transducer is first amplified by the TAA 930.

This integrated circuit is actually intended for use in the sound section of television receivers as a $5 \cdot 5 \mathrm{MHz}$ i.f. amplifier/limiter and demodulator. It contains four cascaded differential amplifiers coupled by emitter followers and allows a high gain to be obtained with stability.

The 40 kHz output of the amplitude limiter at pin 10 is just over 1 V peak-to-peak when the input to pin 4 exceeds the threshold value of about $50 \mu \mathrm{~V}$. However, the signal at pin 10 is internally connected to the section of the TAA 930 intended for use as an f.m. demodulator. It was found that a low
impedance 8 V peak-to-peak 40 kHz signal could be obtained from pin 1 (which is the audio output when the device is used in television receivers).

In the circuit shown, the output from pin 1 is fed to a diode pump which has a load with a 1 ms time constant. The audio beat note is developed across this load and in Fig. 3 is fed to an LM380N audio power amplifier which drives a loudspeaker.

IN USE

The transmitter is placed a few feet from the receiver and VR1 of Fig. 2 is adjusted until a maximum voltage is obtained across C7 of Fig. 3. Whenever a person moves his hand or any other object fairly rapidly in the room, the beat note is heard in the loudspeaker. If the movement is very slow, the beat note frequency becomes too low to be heard, as would be expected from the theory.

RELAY DRIVE

The circuit of Fig. 4 is used with the transmitter of Fig. 2 as a true intruder alarm.

As in the circuit of Fig. 3, a low amplitude beat note is formed across C7 of Fig. 4. This is amplified by TR1. This transistor may be any low cur-

REGBNER ALARM CREOUT

Fig. 4. An alarm receiver circuit including a latching relay at the output

Fig. 6. Component layout and Veroboard cutting details for the receiver of Fig. 4. Note the mounting of the transducer and the extra board space which may be used for power supply or other items
rent, high gain npn transistor. Large coupling capacitors are used so that the circuit will be sensitive to the low (sub-audio) frequency beat notes which occur when the intruder moves slowly.

The output from TRI is fed to a second diode pump, D3 and D4. This converts the beat note into a steady voltage. When this steady voltage across C11 exceeds about $1 \cdot 1 \mathrm{~V}$, it drives the D40C1 Darlington device into conduction and the relay closes.

The diode D5 across the relay merely removes the transient reverse voltages which appear across the relay coil when the current falls. If D5 is omitted, these transients may damage the D40C1 device. Whilst the writer employed HG1011 diodes, any small low power germanium (or silicon) diodes should be satisfactory in this application. OA95 and OA81 are suitable.

LATCH-ON

When the switch $S I$ is open, the relay will open and close as the amplitude of the beat note rises and falls. The circuit should be tested with Sl open so that one can ascertain how much movement is required to close the relay without having to open Sl in order to de-energise the relay for the next test.

When SI is closed, the relay will be energised by the beat note as before, but a current will now continue to flow through the relay coil and the contacts RLAI even when the beat note has ceased. The relay will therefore remain latched on. Contacts RLA2 remain closed after the alarm has been triggered until the equipment is reset by opening the switch S1.

CONSTRUCTION

The transmitter and the final form of the receiver may be made up to suit individual requirements on Lektrokit, p.c.b. or on Veroboard. The transmitter layout is not at all critical but it would be wise with the receiver to keep the input leads as short as possible as the high amplification used can make the unit sensitive to external stimuli.

The prototypes shown in Figs. 5 and 6 are mounted on Veroboard for convenience and component layouts and board cutting details are shown in the figures.

Both models were constructed with a view to mounting in fairly confined spaces both because they are in any case not very large anyway and because this aids concealment if it is not wished to advertise the presence of security equipment. Each unit could be mounted in a false book back made from an old

book from which the "heart" had been cut. The aperture required in the book spine can be covered with fine muslin and painted or dyed to suit the rest of the book.

As can be seen, the receiver is mounted on a larger than needed piece of Veroboard so that, if required, a power supply or, for that matter, batteries, can be mounted on the same board.

If the constructor wishes to mount the units in plain boxes this is equally simple and 6 B.A. holding bolts can be used to secure the boards in place in any suitable die-cast or plastic box without trouble. Of course an aperture would have to be provided in one box wall to which the transducer is presented.

The switch SI is not mounted on the receiver board as its operation "arms" the system when the transmitter is operating. If set-up by someone in the same room who then leaves, obviously the alarm will be actuated. Under normal circumstances one would house this set/reset switch outside the area to be protected.

ADJUSTMENTS

When each power supply is first connected the current consumption should be checked. It should be about 8 mA for the transmitter and about 15 mA for the receiver with the relay not operated.

The units should be placed so that the transducers are close together and facing each other. A high impedance voltmeter is placed across C7 of Fig. 4. VR1 of Fig. 2 is adjusted for a maximum reading on this meter. The units are then separated by a few feet and rotated so that the transducers no longer face one another as shown in Fig. 7. A fine adjustment is made to VRI for maximum reading on the meter connected in the relay unit.

This frequency adjustment ensures that the 555 oscillator frequency matches the resonant frequency of the two transducers.

PRACTICAL POINTS

When the prototype units were close together with the transducers facing one another, it was found that the relay always remained closed even when no movement was occurring ${ }^{\text {within the room. Presum- }}$ ably enough of the 40 kHz signal then reaches TRI for it to operate the second diode pump. Variations will occur with the gain of the components used in the relay unit, but the equipment should be set up so that swamping of the receiver transducer by the transmitted frequency does not occur.

Variations of the arrangement shown in Fig. 7 seem to be best. The two transducers point away from one another towards opposite walls of the room. The reflected signal from an intruder and the reflected signal from the walls of the room will then have amplitudes of the same order and optimum sensitivity will be obtained.
As shown the area immediately in front of the transducers is the most sensitive. Regions well away from the front of the transducers are less sensitive, whilst the areas behind the equipment are least sensitive of all. When testing the equipment, remember that one cannot always expect to obtain a beat note if one moves so that one keeps the same distance from the equipment. In practice this is virtually impossible in the most sensitive areas but it may be possible by moving one's hand above the transducers.

CONCLUDING COMMENTS

The circuit is sensitive to movement over almost the whole of the room containing the equipment. It

Fig. 7. Locations of the transmitter and receiver in a room for best general effect showing, in general terms, the variations in sensitivity
is virtually impossible for an intruder to enter the room without triggering the system when the equipment is working.

Obviously the equipment has room size limitations but it has been tested successfully in rooms up to $17 \times 17 \mathrm{ft}$. Clearly, in a large room some thought should be given to the placing of the equipment in relation to the doors and windows of the room and in relation to any valuable objects requiring special protection.

Remember to shut all windows in the protected room before the equipment is switched on. Otherwise a curtain blowing in the breeze or a bird entering the window can easily trigger the alarm and someone may be aroused from his bed in the early hours of the morning!

If one wishes to have very complete protection, one may arrange that the alarm sounds when either the normally closed contacts of RLA open or when the normally open contacts close. If the intruder cuts the wires to RLA or joins them, the alarm will then sound.

The intruder alarm can, incidentally, form a useful party game where one has to move out of the room extremely slowly without triggering the alarm. In order to give people a reasonable chance, the gain may be reduced by including a resistor in the emitter circuit of TR1.

CRITICAL SETTINGS

The basic circuit does not include the gain control mentioned above and readers may find that in use the receiver is sometimes too sensitive, reacting constantly. A simple way of avoiding this is to detune the transmitter slightly by adjusting VRI.

Further, the receiver will not operate with a reduced power supply and operation will in any case be erratic if supply variations are allowed. So good batteries or a stabilised supply are needed.

The manufacturers' tolerances for the transducers used dictate the final maximum voltages used. As this is 7V the transmitter line voltage should not exceed 9 V .

The larger board used in the prototype receiver was selected specifically to accept a small power supply suitably stabilised and set to give the required rail voltages. If the two units are positioned close together, as perhaps in a pair of book ends, then it is not difficult to envisage interconnection and of course supply of the mains voltage.

Output could be along a three-core cable carrying both the connections for S1 and the output switched with a common wire. Thus the system can be wired into an existing system as a simple switch if required.

IN this the final part of the Minisonic series we will look at some of the ways in which the units of the Minisonic can be connected to produce some interesting effects. These are only suggestions, since the ways in which the Minisonic can be used are limited only by the imagination of the user.

THE VOLTAGE CONTROLLED FILTER

There are three principal ways in which the filter may be used as a sound treatment, of which two have been examined during the check-out procedure. Before going into these in any detail however let us look for a moment at what exactly it is that the filter does to the sawtooth waveform.

Fig. 5.1 illustrates a number of waveforms with the filter control voltage at different levels. In stage

Fig. 5.1. These waveforms illustrate the effect of the VCF on a sawtooth waveform with varying control voltages. The control voltage increases from a minimum at 1 to a maximum at 6
one the control voltage is very low i.e. with the frequency control just off the minimum end stop. If the sawtooth signal is around 1 kHz say, the effect of the filter is to remove virtually all the upper harmonics leaving the fundamental which is almost of sine form.

Stage two and three illustrate the situation which occurs when the control voltage is increased successively; in each case the output waveform is assuming more of the sawtooth characteristic albeit still severely rolled off.

In stage four the control voltage is such as to allow the filter to admit the whole of the sawtooth without any roll-off.

Q CONTROL

The degree of roll-off of the filter is affected very largely by the amount of feedback admitted to the ladder network by means of the Q control. With Q at minimum the roll-off is much less accentuated and, indeed, the signal level from the filter is significantly greater than when the Q is at maximum.

Thus, with the Q at minimum the filter can act very much in the same way as a tone control i.e. passing all those frequencies lying below that set by the control voltage and rolling-off all those which lie above the set value at around 6 dB per octave.

Increasing the feedback above a critical point will induce the filter to commence self oscillation. Similarly when operating at high Q the filter will also begin to oscillate when the control voltage is advanced beyond a point where the input signal is wholly accepted. This situation is illustrated in stages five and six of Fig. 5.1, the frequency of oscillation being proportional to the increase in ladder current.

What applies, in general terms, to the changes occurring in a sawtooth waveform also applies to other waveforms which are rich in harmonics. In the case of a sine wave input however the effect of the filter is simply to cause a variable degree of attenuation to the signal in a manner dependent on the input frequency, control voltage and Q control settings.

USING THE FILTER AS A VCA

Fig. 5.2 illustrates schematically the method of patching to enable the filter to act as an automatic Waa-Waa or as a voltage controlled amplifier.

In this case the negative output of the CONTROL ENVELOPE INVERTER is patched into the control input (jack socket) of the filter. The vca level control on channels 1 and 2 should be turned to minimum level and the output of the filter patched into either one of the PA stages.

Set the inverter level control about midway with the attack and decay controls of ESI set about one third of their full rotation.

Place the stylus momentarily on the keyboard and when the resultant sound has decayed away-say in four or five seconds-adjust the frequency control of the filter so that the vco signal is just barely audible.

The keyboard may now be played in the normal way during which time the attack, decay and control envelope controls may be adjusted to achieve the desired effect. Note that the greater the level of the control envelope the harsher will be output signal when the envelope is at its peak.

An inverted Waa-Waa effect can be achieved by setting the filter frequency control to maximum and using the positive going envelope to programme the filter. In this case the output of the filter should be patched into vcal external input with vcol level control set to minimum.

TRACKING THE VCO's

With the arrangement of patching as shown in Fig. 5.3 the filter may be used to track the frequency of the vco's. This is because the control input of the filter is directly linked to the output of the hold circuit and thus variations in this level will adjust the passband of the filter.

This method of operation is particularly useful if the instrument is being used in an imitative sense or if the constructor wishes to achieve a softer, harmonically reduced output signal. With this mode, the keyboard should be played at the same time adjusting the filter frequency and Q controls until the desired sound is achieved.

It will be found that a number of acoustic instruments can be effectively imitated using this method. For example, wind instruments such as the horn and trombone, string instruments such as the violin and cello and a clarinet tone have all been successfully synthesised with the prototype Minisonic.

THE FILTER AS A TONE CONTROL

In the previous method of operation the passband of the filter was continuously being adjusted as the keyboard was being played such that the proportion of harmonic roll-off was effectively constant regardless of the frequency of the input signal.

If an open circuit jack plug is now placed into the control input socket of the filter the passband is now entirely dependent on the setting of the frequency control. With this at maximum the filter will pass frequencies up to $15 \mathrm{kHz}(-6 \mathrm{~dB})$ more, in fact, than the Minisonic would normally produce in a strictly musical sense.

With the frequency control near its minimum setting the -6 dB passband is only 3 Hz and thus the greater part of any filtered musical signal from the vco's would not reach the power amplifier stages.

Fig. 5.2. Diagram showing the patching arrangement to use the voltage controlled filter as a Waa-Waa

Fig. 5.3. With the patching arrangement shown here the VCF will track the frequency of the VCO's

The filter is now acting as a treble cut system with the degree of cut obtainable being varied by the Q control. With this at minimum the roll-off is about 6 dB per octave and at maximum about 15 dB per octave.

THE RING MODULATOR

The overall function of the RING mODULATOR has been described elsewhere in this series but it might perhaps be useful to consider some of the uses to which it can be put. In a musical sense the RING mODULATOR can be used to create very rich chord structures.

For example, with both vco's tuned apart by the interval of a fifth, i.e. the frequency of one oscillator is 1.5 times the frequency of the other, the output from the ring modulator will be, in the case of the sum frequency, 2.5 times, and in the case of the difference, 0.5 times, the frequenicy of the oscillator producing the lowest pitch.

If the output of this latter oscillator is taken as being the fundamental then the output of the RING MODULATOR may be said to comprise the sub-octave and twelfth with respect to the fundamental.

If this signal is now mixed with the outputs of the vco's originating the signals then the end result is a four note, musically concordant chord.

Similar effects may be obtained when the vco's are in unison, an octave apart or tuned to other recognisable musical intervals. In all cases the richness of the resultant sound quite belies the size and complexity of the instrument producing it.

Two methods of patching in the ring modulator to give composite chords are illustrated in Fig. 5.4a and $4 b$.

Fig. 5.4a and b. Two methods of patching to give chord effects. In (a) PA1 gives VCO1 + RING MODULATOR output and PA2 gives VCO2 + RING MODULATOR output. In (b) PA1 output is silent and PA2 gives VCO1 + VCO2 + RING MODULATOR. In this case ES1 must be disabled by placing an open circuit jack plug in its control input

OTHER RING MODULATOR EFFECTS

Apart from its musical possibilities the RING MODULATOR may be used extensively in the production of sound effects. For example with white noise patched into the uncommitted input and with vcol running at low frequency-say around 10 Hz -the reset point of the sawtooth will be differentiated by the ring modulator input decoupling capacitor such that the output of the RING MODUIATOR will comprise a series of staccato cracks akin to machine gun fire. Filtering the output of the modulator can ring the changes quite widely over this one, very simple sound

Dalek type voices can be produced by the patching arrangement shown in Fig. 5.5. The microphone should be of the ceramic cartridge variety having a fairly substantial output of 100 mV or so.

Remember to connect the screen of the microphone lead to the body of the DIN socket. A range of effects may be achieved by varying the frequency of vcol between about 20 Hz and 1 kHz bearing in mind that the greater part of the resultant audio signal will be derived from this oscillator.

Fig. 5.5. Patching arrangement to give "Dalek" voices. Place open circuit jack plug in ES2 jack socket

If the microphone output appears to be insufficient to fully drive the RING modULATOR a tape recorder can be employed by first of all taping the required speech and replaying through the Minisonic from the external speaker or earphone output.

NOISE GENERATOR

Other forms of sound effects may be derived from the NOISE GENERATOR in conjunction with the filter. With vCO2 level control at zero and the NOISE generator patched into the audio input of the VCF, set the Q control to maximum and manually swing the frequency control between half and full rotation. The resultant sound will be closely akin to that of howling wind.

Resetting the Q control just off its zero point and swinging the frequency control within its lower half rotation will simulate the sound of heavy, squally rain.

Another interesting experiment with the NOISE generator and filter combination is to play the passband of the filter from the keyboard. Set Q to a maximum and adjust the keyboard span control so that there is a wider than normal voltage span between consecutive notes. Patch the output of the filter into vcal and set vcol level control to zero.

While playing the keyboard adjust the filter frequency control and keyboard span control unttil there are distinct pitch changes in the audio signal resulting from the playing of successive keys. Pure tones cannot be achieved of course but the ability to change the noise pitch rapidly and predictably comes in very useful when creating say a brush accompaniment line to a pre-recorded melody.

SIMPLE "MULTI-TRACKING"

Those fortunate owners of reel-to-reel recorders with "sound-on-sound" facilities will need no introduction to the methods whereby so-called "multitracking" may be employed to produce composite recordings. It is not generally realised however that the humble cassette recorder can also be employed in this way if a second recorder is available.

Fig. 5.6 shows schematically how the "hook-up" may be accomplished bearing in mind that with the

2 mm input socket on the PA stage it will be necessary to connect the screen of CRI output lead to either the DIN socket casing on the Minisonic or to the jack plug shield of the input lead to CR2.

Let us assume that the composite recording is to comprise a simple melodic line punctuated by sound effects of various kinds. The method is as follows:

1. Set the recording level of CR2 and switch to "Record."
2. Play the melodic line as required and check the recording by replaying.
3. If satisfactory, rewind the cassette and transfer to CRI.
4. Set up the patch for the required sound effect and check it.
5. With a fresh cassette in CR2 switch to "Record". Switch CRI to replay and, at the appropriate time, bring in the required sound effect. This is not as difficult as it might seem because, in order to get the sound effect on to the tape in CR2, the PA level control has to be set fairly high and thus the signal coming from CRI can be quite clearly heard on the Minisonic loudspeaker. (Remember to set the replay level on CRI to zero).
6. Repeat steps three to five as necessary until all the required effects have been recorded.
The number of transfers which can be made in the above manner with a cassette recorder is fairly limited due to the generally poor signal to noise ratio of these machines. Nevertheless, if the operation is carried out with care and with regard to recording levels and so on the results are likely to surprise even the most cynical.

ELECTRONIC REVERBERATION

Reverberation in an acoustic sense implies the presence of a series of multiple echoes each following rapidly on the heels of the other, each with a phase difference relative to the other and each, on successive returns, having a diminished intensity.

While the Minisonic does not possess any of the accoutrements normally associated with the production of artificial reverberation, it is nevertheless possible to utilise the long decay characteristic of the envelope shapers together with the filter to provide a kind of reverberant quality which can be quite pleasing.

REVERBERATION PATCHING

One possible method of patching to achieve this effect is illustrated in Fig. 5.7. Two acoustic channels are used. Channel 2 carries the output from vCO2 together with that of the VCF and has a relatively short envelope decay period. Channel 1 carries the output of vcol and the output of the VCF and has a prolonged decay.

If the oscillators are tuned nominally in unison but with a slow beat between them the effect at the VCF is that when the outputs of both oscillators are in phase the total input signal level at the VCF is greater, and therefore more harmonically enriched than when the signals are in antiphase.

Thus when the outputs of the Minisonic are played through the domestic hi-fi system which has the loudspeakers placed reasonably far apart the effect is for the onset of the sound to be central to the listener with a sighing decay to one side or the other.

Fig. 5.6. Using two cassette recorders to obtain "multi-tracking". The inset shows how the screen of the replay load can be earthed to the lead from CR2 if metal jack plugs are used

Fig. 5.7. A suggested patching arrangement to give a reverberation effect

With some adjustment to the controls the reverberant quality and spatial movement of the sound can be strikingly effective.

PLAYING THROUGH POWER AMPLIFIERS

The recorder outputs of the Minisonic can be considered to be compatible with the high level inputs to almost all makes of domestic poweramplifier. In fact, the playing of the instrument through the domestic system is preferable to using the small monitoring speakers which only have a poor low frequency response.

ERRATA:

In Fig. 2.8 (December 1974), breaks shown in column 40 should be repeated in column 21

In Fig. 3.10 and 3.11 a $470 \mu \mathrm{~F}$ 16V electrolytic should be connected between +9 V rail and 0 V . It may be conveniently placed on the Veroboard panel between the two power amplifiers

In Figs. 3.5 and 3.11 (HF DETECTOR), the cathode of D1 should go to -9V not ground

PIONEER II

The second look at Jupiter, a close look, was achieved by Pioneer 11 early in December. The spacecraft passed inside the proton belt where it was subjected to contact with high energy protons. Pioneer 10 passed inside the outer shell only. Normally it was to be expected that the spacecraft might have suffered considerably in this passage but the speed of Pioneer 11 , over 100,000 miles an hour, enabled a safe flight through the proton belt. This remarkable flight took Pioneer II within 26,000 miles of the cloud tops of the planet.

Many of the results from the encounter of Jupiter by Pioneer 10 were confirmed by Pioneer 11 . In particular, the very energetic electron emissions into space, modulated in intensity due to the rapid rotation of Jupiter, were encountered when the spacecraft was at the 100,000 mile distance.

It was found that Jupiter is radiating both protons and electrons. This is a puzzle that the teams are attempting to solve. These are found both at the edge and inside the magnetosphere. The extent of this magnetosphere has been confirmed by Pioneer $1 /$ to be as much as 40 Jupiter radii in the plane of the planet's orbit and as much as 80 radii in the vertical direction. The decametric radiations suggest that the electrons with energies above 3.5 MeV existed as a cause of the radiations. Pioneer 11 has shown that the flux, deduced from the earthbound observations of radio waves, is rather less than the actual value.

These findings could have far reaching consequences because the level of flux from other sources are usually calculated from the level of radiations that are received. There are some objects, such as the Crab Nebula, that may need a rechecking. On the other hand the synchroton theory of the radiations, that is the decametre radiations. may need a reappraisal.

Since the fluxes that have been observed at Jupiter are some ten times greater than those calculated from the groundbased observations, there arises very important questions in astrophysics.

JUPITER FINDINGS

The results from Pioneer 1/ are already giving still another possible model of Jupiter. It would appear to be a planet with an extended large magnetosphere which is greatly disturbed by the solar wind and stirred up by the passage of the satellites Amalthea, Io, Ganymede, Callisto and Europa. There appear also to be some special effects of the magnetic fields. For example

the electron densities appear not at the equator of the magnetic field but to the north and to the south.

The convective model suggested by the Pioneer 10 results is confirmed. Also confirmed is the drop in cloud level towards the poles. The fluid nature and hydrostatic equilibrium of the planet seems to be established beyond doubt.

RED SPOT

The red spot observed by Pioneer 10 has changed somewhat now. A large white spot has appeared and caught up with the red spot. The tail of the spot seems to be extending. The small red spots that were previously observed have disappeared. The great red spot projects above the surface of the general cloud level by about 5 miles.

The bands at the various latitudes north and south of the planet's equator are in fact the clouds of gas rising from the interior. Because the rotation of Jupiter has a surface velocity of the order of 22,000 miles an hour the clouds are stretched out round the planet to form the bands. This is strikingly different from the clouds on Earth which are formed in circular cyclonic or hurricane patterns.

Other points from the preliminary data refer to the density of the four Galilean satellites. Io is shown to have a density of 3.5 grammes/ cubic centimetres, Europa 3.4, Ganymede 1.8 and Callisto 1.5. The meteoroid particles which were detected around Jupiter by Pioneer 10 have been confirmed by Pioneer Il a_{s} being infalling to the planet. The
experiments to detect such particles have been continued by Pioneer 11 after leaving the Jovian orbit and suggest that these meteoroids originate from comets.

SATURN FLYPAST

Pioneer /1 has left Jupiter and is on its way to Saturn. Certain resetting of the track of the spacecraft has been made and it seems that the "path will take it through the rings as was hoped. The actual passage should be from above the rings between the gap bounded by the inner rings and the crepe ring.

At the point of "fly through" the spacecraft will be in the shadow of the planet. However, the angle of approach and the angle of departure will be such that the mystery of the rings will be finally settled. The spacecraft will, it is hoped, have a favourable position to take pictures of Titan.

So far calculations point to the date of the encounter of the spacecraft and the planet as being about September 3, 1979.

Pioneer 11 will leave for its journey out of the Solar system in the opposite direction to Pioneer 10. Also Pioneer $/ 1$ will be the first of the spacecraft to chart the region above the plane of the eoliptic.

RADIO WAVES FROM EARTH

Since 1970 it has been known that the Earth radiates in a manner similar to the Sun and Jupiter. It was first observed when OSI carried very low frequency detectors in orbit. This work has been continued on later satellites, one in 1971 and another in 1973. A team from Iowa University have now made a special study of this part of the radio spectrum.

The radiation is very intense and lies between the frequencies of 50 and 500 kHz . It would seem that the level of intensity lies around $10^{9} \mathrm{~W}$, as compared with $2 \times 10^{7} \mathrm{~W}$ of the radiations from Jupiter. The Earth radiation occurs at an altitude of under three earth radii. This is the region of high auroral activity.
The team from Iowa have compared the radio storms with auroral photographs from the US Airforce satellite and there seems to be a significant correllation between the pictures and the time of the radio emissions. Usually the radio bursts last for about half an hour to several hours.

The amount of energy which is dissipated during the auroral activity is about 1011 W . This suggests that there is 1 per cent dissipated as radio noise. Donald Gurnett, the leader of the lowa team, thinks that the radiation may originate from a cyclotron process.

With the Doram catalogue, even the guarantee is guaranteed.

Doram is an entirely new way of buying electronic components.

So, to succeed, it's got to have something going for it, right?

We agree with you. And where Doram scores is in the security it gives the amateur buyer.

We'll give you peace of mind three ways.

No-quibble guarantee.

Firstly, we guarantee to replace any component which arrivesfaulty. Absolutely free of charge.

And secondly, our guarantee is backed by the biggest electronics distribution Group in Britain.

7-day service.

Thirdly, we guarantee you'll have your components within 7 days from our receipt of your orders.

We're so confident of our senvice that if we can't supply
the part you want within 7 days we'll give you an immediate refund.

So you'll nevergeta tedious wait.

Youknow just where you stand with Doram.

All branded goods.

All goods supplied by Doram are made by big-name manufacturers. And they're all to manufacturer's specifications. They're the best money can buy.

Infact, Doram gives the amateur the sort of service only professionals have enjoyed before.
Millions of components.
All in all, we're big enough to offer you stocks of millions of components, on over 4,000 product lines.

All you do is buy the Doram catalogue for 25 p that's a yearly reference book for the price of a pint of lager) and then take your pick from it.

Use the coupon now. Send today for the first-ever Doram catalogue. It can take a lot of worry out of amateur components buying.

And for 25 p that's not bad, is it?

I ENCLOSE 25p: PLEASE SEND ME THE NEW DORAM CATALOGUE.

Hursit

ELECTRONICS
92 Warwick Road, Ealing, London W5 5PT Telephone: 01-567 0424

* Includes large black anodised heatsink-no further heatsinks required.
\star Top grade glass-fibre P.C.B.
* Uses high quality components.
\star Fully protected—short/open circuit proof.
\star Only 5 external connections.
\star Fully guaranteed.

TECHNICAL SPECIFICATIONS

* Power output
* Distortion
* Frequency response
\star Signal to noise
* Input sensitivity
*-Input impedance
* Supply volts
: 106W R.M.S. into 8Ω
: 0.8\% at full O/P. Typ. 0.4%
$15 \mathrm{~Hz}-23 \mathrm{kHz}$
Better than-96dB
: OdB (0.775V)
: $10 \mathrm{k} \Omega$
: 45-0-45V

Price $£ 15.12$ inc. VAT. (ready built)

Enclose 50 p postage \& packing. Power supply for HE 100 (including transformer, capacitors, rectifier) 88.95 inc. VAT. Postage \& packing 85p.

Pre-amps etc., also available
SAE for details.

Enough books are written about crime, this one stops it.

Outside it's a book. Inside it's an ingenious ultrasonic burglar alarm from Heathkit. The GD-39.

A complete kit that can be assembled in only a few enjoyable hours, with the help of a very easy to follow instruction manual.

The GD-39 works by transmitting a silent, ultrasonic signal throughout the room. And continuously monitoring it. Any movement made by an intruder in the room will then automatically produce a change in the signal. Which triggers off a lamp and, thirty seconds later, a remote buzzer, that just you hear, or a loud bell.

Enough to scare the living daylights out of a burglar.
For more details, and a bookful of other ideas, just post the coupon now for your free Heathkit catalogue.
Or, if you're in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

Heath (Gloucester) Limited, Dept. PE35. Bristol Road, Gloucester GL2 6EE. Tel: (0452) 29451.

The GD-39
Ultrasonic Burglar Alarm

GL2 6 EE. Please send me à free Heathkit catalogue.

Name
Address
\qquad Postcode

A selection of readers suggestedcircuits. It should be emphasised that these designs have not been proyen by us. They will at any rate stimulate further thought Any idea published will be awarded payment according to its merits. Why not submit YOUR IDEA?

An off touch plate could be added as shown dotted so that immediate switching can be effected.

The battery voltage and final transistor selection depends on the bulb used and this in turn depends on the application but in the prototype a BFY51/52 was used. Provided low leakage silicon devices are used no switch is required as the standing current should drop to below 0.5 u.

The switch Sl is used to keep the torch alight without holding it if this feature is required.
Of course there are other applications for this simple circuit including room lighting and indeed the lamp could be replaced by a triac or relay and be used to give locked switching if required.
P. Sanhen

Sutton, Surrey.

SIMPLE TOUCH SWITCH

The circuit shown in Fig. 1 was developed as a simple switch for a hand torch. In basic form it will switch itself off after a given delay dependent on the value of Cl .

The three transistors form one effective very high gain device and each conducts in turn when a resistance, in this case a finger-tip, is placed between the "on" touch plates. The bulb lights up when the "on" plate is touched and then slowly goes out at a rate set by Cl once the finger is removed.

THIS simple circuit (Fig. 1) using one i.c., consists of a relaxation oscillator formed by gates G1 and G2 of a 7400 with timing components $\mathrm{C} 1, \mathrm{C} 2, \mathrm{R} 1$ and R2. The outputs are gated through gates G3 and G4 to the loudspeakers LSI and LS2 when associated morse keys MKI and MK2 are operated.

Whilst the frequency may be varied by choice of the capacitors and resistors mentioned, it is probably advisable to stick to the values given since there can be problems with the circuit not starting.

A number of loudspeakers were tried, as well as headphones and all worked well. Although the recommended logic supply voltage is 5 V , a 6 V lantern battery has been used over a long period with no trouble. Drain in use is about 20 mA so battery life is good.

The resistors R5 and R6 are included as current limiters and the loudspeakers may be replaced by l.e.d.s if visual display is required as for example with deaf operators.
A. Ward,

Fig. 1.

tWO-WAY MORSE TRAINER

Fig. 1.

TRANSISTOR TESTER

WITH a view to holding costs at a reasonable level and using ex-equipment devices where possible the circuit of Fig. 1 was developed to test transistors.

Used as a plug-in extension to an existing multimeter, the tester will measure $I_{\text {coe }}$ from 0 to $30 \mu \mathrm{~A}$ and 0 to $300 \mu \mathrm{~A}$ and β from 0 to 120 and 0 to 300 at 5 mA . The values of the components given are for a multimeter with a $30 \mu \mathrm{~A}, 1 \mathrm{k} \Omega$ movement, but calculations for other instruments are quite straightforward.

Heart of the unit is the constant current scurce, R3, R4, R5, D1, D2, which feeds a known I_{b} to the transistor under test. The choice of voltage for D1 and D2 is fairly restricted as it has to be high enough to overcome $V_{b e}$ variations but sufficiently low to allow a reasonable use of the battery supply. In the event, 6 V seems a good compromise.
Neglecting a small $I_{\text {coe, }} \beta$ is given by $\cdot I_{c} / I_{b}$ which gives

$$
\mathbf{R}_{\text {base }}=\frac{V_{\text {effective }}}{I_{b}} \text { or } \frac{V_{\text {efp }} \times \beta}{I_{c}}
$$

The voltage across the base resistance R_{b}, is only the effective voltage $V_{\text {nif }}$ of one diode as the forward voltage of the other is approximately equal to V_{be}. R3 is chosen such that it allows I_{b} to flow even at a low battery voltage but does not consume excessive power.

As constant alteration of meter setting is not attractive in such an application the flexibility is accommodated in the circuit of Fig. 1 and the meter is used on its most sensitive range. R9 protects overcurrent from flowing in the event of a shorted device. R10 shunts the still

protected meter up to $300 \mu \mathrm{~A}$.
For leakage measurements S3 is open circuit and even though the base is connected to ground via D1 and D2 it is effectively open circuit.

R9 must be shorted for β measurements and R8 is used to shunt the meter to 5 mA . In this position R6 gives some protection, limiting the current to aboat 15 mA on short circuit. For a diode test R7 limits the current to 3 mA .

For reliable operation the battery voltage should be greater than 7 V and the battery should be capable of supplying 6 mA .

For a transistor holder I used half an 8 -pin d.i.l. socket soldered on a piece of Veroboard which in turn was Araldited to the top of a box containing the circuitry and switches.
S4 is connected so that with $\mathrm{S4a}$ open and S 4 b closed both h_{fe} and leakage measurements are at their least sensitive. The meter is less

LIGHTING CONTROL MODIFICATIONS

Some readers may find that the circuit used in the "Lighting Control Unit" (July 1973 issue) is not entirely suited to some salvaged components. In particular the transistor TR1.

If a silicon device is used in this position there is a danger of baseemitter breakdown due to reverse bias and this indeed occurred with two BC169C's used in the writer's circuit.

Fig. 1.

The insertion of protection diodes in the base leads has served to cure the problem quite easily and readily available OA81 devices were used. Equally, OA71 could be used.
A further modification to this useful circuit, shown in Fig. 1, is to include two controls for the original VR1 so as to obtain greater control over some of the effects.
J. Adams, Oxford.
likely to be overloaded if S4 is kept in this state and switched if needed.
S2 gives $n p n$ in position a, $p n p$ in position b and battery test in position c. For diode testing the device to be tested is inserted in the anode and cathode sockets. If it conducts on npn then the anode and cathode terminals indicate actual terminations, if the reverse then the opposite connections apply.

The unit is not intended to be accurate beyond about 10 per cent but devices can be matched to about 2 per cent.
N. E. Thomas,

Oxford.

POINIS ARISNE

P.E. ORION (January and

February 1975)
In the components list the case was quoted as being GB3, this should be GB1.
The mains transformer SL8 can be obtained direct from Gardners Transformers Ltd. see Market Place page 234.
P.E. MINISONIC-3 (January
1975)

In the components list, for the H.F. Detector transistor, TR1 was not listed. This should be type BC184.
DIGITAL LEAF (January 1975) See Market Place page 234.
MARINE SPEEDOMETER (February 1975)
Due to poor reproduction of Fig. 3 it ls impossible to identify the breaks in the copperstrips of the Veroboard. Assuming the board is annotated from the top left corner, strips A to NN and holes 1 to 46, the breaks should be made at the following points : 26G, 9J, 12T, X38, CC11, DD10, EE10, FF10, HH19, II19, LL38.

by Macel

The Elite of Scandinavian Loudspeakers

High Quality High Fidelity Loudspeaker Kits

INTRODUCTORY OFFER INCLUDES VAT AT 8\% AND POSTAGE (UK ONLY) (ALL KITS INCLUDE FULL WIRING DIAGRAM AND CABINET DRAWING) (8 otims impedance)

Improve your Disco, P.A. and Guitar sound by using these $\mathrm{Hi}-\mathrm{Fi}$ Kits in recommended compact enclosure designs. These are $\mathrm{Hi}-\mathrm{Fi}$ speakers of rugged construction capable of withstanding the high power used in the Music Industry and yet the Kits have good sensitivity giving more acoustical power out for a given electrical power input.

Kit 35 illustrated here is particularly recommended for the Music Industry. The recommended enclosure size is $24^{\prime \prime} \times 14^{\prime \prime} \times 10^{\prime \prime}$.

Naturally all Kits are ideal for Hi -Fi at home.

PRICE LIST

The following include High Compliance Bass Units and Cone Middle/Treble Units.
Kit 91H: 2 way and crossover ($1 \times 6 \frac{1}{2}$ " plus $1 \times 3 \frac{1^{\prime \prime}}{}{ }^{\prime}$ (8 - 18 litre box) 10 watts $60-20,000 \mathrm{c} / \mathrm{s}$. $\mathrm{E} 7 \cdot 35$ each. KIT 94H: 3 way and crossover ($1 \times 11^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{\prime \prime}$ plus $1 \times 3 \frac{1^{\prime \prime}}{}$ plus $\left.1 \times 2^{\prime \prime}\right)(25-40$ litre box) 25 watts $45-20,000 \mathrm{c} / \mathrm{s}$. £13. 25 each.

The following include Neoprene Edge Bass Units and Dome Middle/Treble Units. Outer connecting lead and all internal wiring with mechanical push-on connectors.
KIT 10-2: 2 way and crossover ($1 \times 6 \frac{1}{2}$ " plus $1^{\prime \prime}$ dome) (8 -12 litre box) 20 watts $45-20,000 \mathrm{c} / \mathrm{s}$. $£ 15 \cdot 35$ each
KIT 18: 2 way and crossover ($1 \times 8^{\prime \prime}$ plus $1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ dome) (15-20 litre box) 30 watts $35-20,000 \mathrm{c} / \mathrm{s}$. $£ 16 \cdot 30$ each.
KIT 30: 2 way and crossover ($1 \times 10^{\prime \prime}$ plus $1 \frac{1}{2}{ }^{\prime \prime}$ dome) ($25-35$ litre box) 35 watt $30-20,000 \mathrm{c} / \mathrm{s}$. £ 16.95 each.
KIT 35: 3 speakers and crossover ($2 \times 8^{\prime \prime}$ plus $1 \frac{1}{2}{ }^{\prime \prime}$ dome) (30-40 litre box) 60 watts $30-20,000 \mathrm{c} / \mathrm{s}$. $£ 23 \cdot 30$ each.
KIT 60: 4 speakers and crossover ($2 \times 10^{\prime \prime}$ plus $1 \times 6^{\prime \prime} \times 4^{\prime \prime}$ plus $1 \frac{1}{2}$ " dome) (50-70 litre box) $25-20,000 \mathrm{c} / \mathrm{s}$. $£ 34 \cdot 95$ each.

To MACEL ELECTRONICS LTD

P.O. Box 64, 14 High Street, Ipswich IP1 3LR.

Tel. 0473215465
I I enclose cheque/postal order
I \qquad
NAME
ADDRESS
I ..
| -Pteana dobit my BarclaycardiAccest account. Account number

BRITAIN'S FASTEST SERVICEI

A SELECTION FROM OUR COMPREHENSIVE CATALOGUE
cosmos logic
ALL ITEMS ARE BRAND NEW AND FULLY GUARANTEED

DEPT. PE 12, 7 COPTFOLD ROAD BRENTWOOD ESSEX CM14 4BN

SWITCHING POWER SUPPIIES

N THE majority of power supplies, the mains transformer and the smoothing and reservoir capacitors account for most of the bulk and weight. This situation, although unavoidable in the past, is unfortunate because the mains transformer, which contributes a major part of the weight, plays no vital part in the functioning of the power supply, its only real purpose being to isolate the mains from the output of the power supply. In practice the main transformer is also used to step down the input voltage to a convenient level, but this could easily be achieved by other means.

The basic concepts behind transformerless, or switching, power supply units have been known for some considerable time. Unfortunately, until two or three years ago, components capable of putting the ideas into practice were not available.

Switching regulators dispense with bulky 50 Hz transformers and smoothing components, yet achieve isolation between the mains and power supply output. The reduction in size and weight achieved is in the order of $8: 1$ but as with everything else. one does not get something for nothing. However. in the vast majority of cases, the trade-off is extremely worthwhile. In some cases the performances may not be as high as with linear techniques. This point will be dealt with in more detail later in the article.

OPERATING PRINCIPLES

Transformerless or switching power supplies achieve isolation between mains and output by employing a high-frequency transformer as against the
conventional 50 Hz transformer and herein lies the secret of the small size of switching power supplies. It is a fundamental fact that the higher the frequency employed the smaller a transformer can become to handle a given amount of power.

The basic principles of switching regulator operation are illustrated in Fig. 1. The mains input is converted to d.c. by a bridge rectifier and smoothing circuit after high frequency filtering. This d.c. is applied to a pair of switching transistors which are driven at tens of kHz by the control circuitry. The square wave output of the switching transistors is applied to a small h.f. transformer, the output of which is rectified and smoothed to provide the output of the power supply. This voltage is compared with a reference voltage and, if a difference exists, an error signal is generated and fed to the control circuitry. The control circuitry adjusts the markspace ratio of the signal applied to the switching transistors in such a way as to reduce the error signal to zero. Another method relies on a frequency variation. This ensures that the output of the power supply remains constant.

It will be noted that two small high-frequency transformers are employed. one in the main current path and one in the feedback loop, to ensure that the output is isolated from the mains.

The two high-frequency filters stop spurious voltages at the switching frequency and its harmonics from being fed back into the mains wiring and into equipment powered by the power supply.

Fig. 1. Block diagram of switching regulator

FIRST SYSTEM

Several circuits have been developed which give a variety of different advantages. The first (see Fig. 2) used a conventional inverter circuit working at 20 kHz . This was driven from a multivibrator, the main tránsistors TR1 and TR2 being alternately on and off.

The output from the transformer is a square wave. which is rectified by fast recovery rectifiers and then smoothed.

The input voltage to the inverter is 150 V , thus limiting the peak voltage on the transistors to 300 V . To generate this 150 V rail, the 240 V mains supply is rectified and smoothed to give 340 V . which is fed to a switching regulator that reduces the voltage to 150 V .

This regulator is a constant frequency circuit with the "on" time of the switching transistor TR3 controlled to keep the rectified output constant via the 150 V rail. The two circuits are driven from the same oscillator so that they do not beat together.

Such a unit has four active loss stages and three passive. To remove one of these active loss stages the switching regulator and the inverter must be combined. The normal inverter has alternate stages fully on or fully off, and at all times one stage is on.

The output is set by the turns ratio of the transformers which is fixed, and the input voltage. In the next inverter (Fig. 3) a variable off time is injected between each on period by controlling the ratio of the on and off pulses, thus controlling the output.

The secondary output is a series of pulses of variable mark-space, so that it is now only necessary to filter those pulses to get a mean output, which can then be varied.

CIRCUIT VARIATIONS

Two variations of the circuit are possible depending on the manner in which the mark-space ratio is varied. We can have either a constant on pulse with a variable off time, or a fixed frequency with variable on and off times.

Fixed pulse width gives a system that is free of restraints and is thus more able to overcome sudden overloads interference or mains loss. Since the pulse width determines the ripple voltage for a given choke and output capacitance value, the ripple will remain constant against line and load variations.

Transformerless $4 \frac{1}{2}$ to $6 \mathrm{~V}, 50 \mathrm{~A}$ power supply

Also the circuit can give very large swings of output voltage and input voltage without unlocking. The main disadvantages are that since it operates near the audio range it can, under light load conditions, break into the audio range. Furthermore, as the ripple frequency is variable, it is more difficult to filter out.

The other system (constant frequency) offers an almost exact complement to the fixed pulse width. It is completely quiet under normal working conditions, and filters used external to the equipment can be tuned to give maximum attenuation at this frequency.

It cannot be used over such a wide range of input and output variations, however, and is more prone to jump into an uncontrolled frequency mode of operation.

Both systems are currently in use, depending upon the application.

COMPONENT CONSIDERATIONS

In these two circuits, the components under most danger are the inverting transistors. By using the series type of inverter to limit the peak transistor volts, we have both transistors in series across the line. Control circuits must ensure that both transistors are not turned on at the same time, or a short circuit would be placed across the line, thus destroying one or both of the transistors.

Also, the pulse widths supplied to both transistors on alternate cycles must be identical, or the energy drawn from the series capacitors will be unbalanced. If this happens, the centre voltage will move towards the greater pulse width and the transformer will tend towards saturation.

The output voltage of one side will then fall, and if it falls too low it will not bring its rectifier into conduction. Such a condition is much easier to control in the constant pulse width system.

CONTROL

All control in these systems is by non-dissipating elements apart from saturated switches. Thus the highest dissipation is in the high current output rectifiers. Fast recovery rectifiers have been used for some years with proven reliability, but their saturation voltage is of the order 1 to $1 \cdot 2 \mathrm{~V}$ at the currents being used.

Schottky diodes offer an answer to the high dissipation problem in that they have a forward voltage drop of only 0.4 V at very high currents and, thus considerably reduce dissipation. At present, they only offer an increase in efficiency and not a reduction in size of the heat sink required. This is because their maximum junction temperature is $100^{\circ} \mathrm{C}$, so they have to be kept extremely cool.

Transformerless supplies, examples of which are shown in the accompanying photographs, offer three major advantages that are very difficult to provide with linear units. They can operate from mains voltages of from 200 to 264 V without tap changes; they can maintain their output voltage at full load with a mains interruption of 30 ms , and they can be used over a 0 V to 6 V range at full current with no tap changes.

In fact they run cooler with lower output voltages, and a 250 A 2 V unit could easily be produced if it were required. They are thus ideal for use as constant-current units or as bench variables.

Fig. 2. Conventional inverter circuit diagram

Fig. 3. Variable output inverters

Fig. 4. Linear regulator block diagram

The output specification of these units is satisfactory for TTL circuits, and their use in lightweight desktop equipment is advantageous because of their size and weight.

If any communications equipment is used with these power units, additional screening will probably be required; but even with a large amount of screening their size will prove most attractive.

LIMITATIONS

For highly critical applications, the switching regulator would not normally be used because, inevitably, a small amount of ripple at the switching frequency appears on the output and the transient response is not up to the best that can be achieved by good linear regulators.

However, for many purposes these factors are of no consequence and then the switching regulator
really comes into its own. From the equipment manufacturer's point of view, the space and weight savings enable more compact equipment to be produced at a lower cost.

ONE STEP FURTHER

Having looked at the relative advantages and disadvantages of the switching regulator when compared with the linear regulator, it is now necessary to look at one of the disadvantages of the conventional linear regulator. A block diagram of a typical linear regulator appears in Fig. 4.

The output voltage is compared with a precision voltage reference. If the two differ the comparator either increases or decreases the impedance of the series control transistor to correct the output voltage. To allow the series control element to do its job, the unregulated d.c. from the transformer and rectifier assembly must always be of a higher voltage than the output voltage.

If the power supply had an output which could be varied from 0 to 50 V at 10 A then the unregulated d.c. supply must be around 55 V . At $1 \mathrm{~V}, 10 \mathrm{~A}$ output, 54 V would be dropped across the series control element and 540 W would be dissipated in it. This problem is usually overcome by having a range switch which varies the output of the unregulated section so as to limit the power dissipation in the series control element to a reasonable value.

However, large efficient heat sinks are needed for the series control transistor which add to the bulk of the power supply. Due care must be taken with cooling air-flow through the power supply, further adding to the size and weight problems.

A new approach has been recently announced which was developed by APT Electronics Ltd. This involves combining switching and linear regulators in an attempt to achieve the best of both worlds.

COMBINED TECHNIQUES

A number of the disadvantages of both switching and linear regulators can be overcome or minimised by a new technique which combines both linear and

Fig. 5. Power unit incorporating both linear and switching principles
switching regulators in a single unit. A block diagram of a laboratory bench power supply, currently being manufactured by APT, is shown in Fig 5.

Operation of the system is best described by imagining that the unit is switched on and is supplying an output, say 40 V , to a load. Point A on the circuit must be at a potential of more than 40 V for the series control element to function. For reasons which will become clear later we will state that point A is at 45 V .
If the voltage reference source output is deliberately lowered to 30 V the comparator will provide an output which will increase the impedance of the series control transistor so as to reduce the output of the power supply to 30 V . As this is taking place the voltage drop across the series control element would tend to rise. The oscillator control module senses this increase and lowers the duty cycle of the oscillator so the input voltage to the series element falls. Circuit values are such that the voltage across the series element is maintained at 5 V .

With 30 V now at the output, therefore, point A will be at 35 V . The technique ensures that even for a 0 to 50 V 10 A power supply, power dissipation in the series control element is limited to 50 W even at the normal worst case condition of IV output at 10A.

The main advantages of the technique are therefore the elimination of the 500 W mains transformer and bulky 100 Hz smoothing components, and a considerable reduction in internal power dissipation allowing smaller heat sinks to be used.

Such a power supply does not perform as well as a good quality series linear regulator but is much better than a straight switching regulator. For a 50 V , 10A power supply the relative advantages of the linear series, switching and combined switching series regulators are summarised in Table 1.

Table 1.

Parameter	Linear	Switching	Linear/ Switching
Regulation	Excellent	Good	Good
Transient response	Excellent	Poor	Fair
Ripple and noise	Excellent	Poor	Good
Ease of output voltage adjustment	Fairly easy	Fairly difficult	Easy
Size	Very large	Very small	Small
Weight	Very heavy (901b)	$\begin{aligned} & \text { Very light } \\ & (101 b) \end{aligned}$	$\begin{aligned} & \text { Very light } \\ & (161 \mathrm{~b}) \end{aligned}$

A photograph of the combined switching and linear regulator is shown.

THE FUTURE

Power supply performance will continue to improve and will be assisted by monolithic integrated circuit and thick film hybrid microcircuit developments.

The SSU 10-50, 0 to 50 V , 500 W laboratory power supply from APT Electronics

Thick film microcircuits consists of a substrate (or base material) on which the circuit to be manufactured is printed. Conductors are printed with palladium, or similar ink and resistors will be formed by printing with one of the many inks available for this purpose. The printed substrate is "baked" in a furnace and then active components such as transistors and integrated circuits are added.

Hybrid microcircuits are very reliable, much more reliable than the printed circuit board with separate components, and can be designed to have a uniformity of performance very difficult to achieve by other means.

This last point is very important in power supply manufacture and indeed complete regulator control circuits using monolithic chips and discrete components are manufactured in hybrid microcircuit form at Coutant's Ilfracombe factory.

Any improvement in the monolithic results in an improvement in the hybrid. The two techniques are therefore complementary.

P.E. STAFF VACANCY

There is a vacancy for a technical sub-editor on the staff of Practical Electronics. An interesting and satisfying job for an electronics enthusiast. Sound technical knowledge and practical experience more important than journalistic experience.

Write with brief personal details to The Editor, Practical Electronics, Fleetway House, Farringdon Street, London EC4A/4AD.

THis instrument can be used for measuring the resistance of a component without the need to disconnect it from its circuit. This facility can save a lot of time in circuit checking, particularly when working with miniature components on circuit boards. It may also be used in the normal manner for checking unconnected components.

Like a conventional ohmmeter, it can be used for discovering short-circuits and checking continuityagain without removing components from the board.

Utilising a $50 \mu \mathrm{~A}$ meter, it covers five ranges with full scale deflections of $500 \Omega 2,5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega 2$ and 5 MSZ respectively. Scaling is linear with an accuracy of ± 1 per cent. This means that the meter face does not have to be calibrated.

Other applications include go/no-go checks for semiconductors and capacitors.

HOW IT WORKS

The action of this ohmmeter depends on a special property of the operational amplifier, when connected as shown in Fig. 1. Here, the potential at the inverting input is automatically held at zero, with respect to negative potential. We sometimes say that the inverting input is a "virtual ground".
The non-inverting input (+) is at negative potential simply because it is wired to the negative rail. But the inverting input has a current (I_{r}) flowing to it. To keep the potential at zero, the amplifier detects this current and almost instantaneously adjusts its own output voltage (E_{0}) to cause a current $\left(I_{x}\right)$ to flow in its feedback loop. This current is just sufficient to keep the potential of the inverting input at ground, or zero. In other words, the current I_{x} is
equal in magnitude to I_{r}, but opposite in sign. It flows away from the inverting input. Mathematically we can say that

$$
I_{x}=-I_{\mathrm{r}}
$$

The input, or reference current, comes from a reference cell, of voltage E_{r} and before reaching the inverting input flows through a reference resistor. R_{r}, so that

$$
I_{\mathrm{r}}=\frac{E_{\mathrm{r}}}{R_{\mathrm{r}}}
$$

Similarly for the current in the feedback loop:

$$
I_{\mathrm{x}}=\frac{E_{0}}{R_{\mathrm{x}}}
$$

Since I_{x} is equal but opposite to I_{r}, we can combine these two equations and get

$$
\frac{E_{\mathrm{o}}}{R_{\mathrm{x}}}=-\frac{E_{\mathrm{r}}}{R_{\mathrm{r}}}
$$

which by rearrangement of terms gives:

$$
R_{\mathrm{x}}=-\frac{R_{\mathrm{r}}}{E_{\mathrm{r}}} \cdot E_{\mathrm{o}}
$$

This is the basis of resistance measurements by the ohmmeter. R_{x} is the unknown resistance which we want to measure. R_{r} and E_{r} are known and are constant. For different values of R_{x} we obtain different values of E_{0}, and E_{0} is linearly though inversely related to R_{x}. If we place a voltmeter between the output of the amplifier and the ground rail we can measure E_{0}, and use this value to derive the value for R_{x}. In practice we do not have to do any actual calculation; we simply calibrate the meter scale of the voltmeter to read "Ohms" instead of "Volts".

IN-CIRCUIT OPERATION

Fig. 2 shows R_{x} as part of a complex network of resistors. Some of the "resistors" in the diagram might be other components with some degree of electrical resistance, such as diodes, transistors. inductances or capacitors. To operate the ohmmeter in these circumstances the distant terminals of all resistors adjacent to R_{x} must be grounded. In the diagram, points $\mathrm{C}, \mathrm{D}, \mathrm{E}$ and F would need to be grounded.

Terminal A of R_{x} is at ground potential owing to the nature of the amplifier circuit, as explained above. Points C and D are also grounded. Since both ends of R_{c} and R_{d} are at ground potential, no current can flow through these resistors-they might just as well not be there. We can ignore them. Terminal B has a potential E_{\circ} provided by the output of the amplifier. Within very wide limits of load this potential is constant. So current flows from ground through R_{f} and R_{e}, but without affecting E_{0}. In this way the meter reads the resistance R_{x}, and is entirely unaffected by the network around.

The only circumstance in which this circuit will not ignore other resistors is when another resistor is wired in parallel with R_{x}. Then it is not possible to ground its distant terminal without also grounding either point A or B. The meter will indicate the parallel resistance of R_{x} and the second resistance, but not the resistance of R_{x} alone. If the second resistor should be a variable resistor there is no problem, for by grounding the wiper of the resistor we can treat it as two separate resistors.

CIRCUIT DETAILS

The practical circuit is shown in Fig. 3. The current I_{r} comes from BI, which also powers part of the amplifier ICI. The Zener diode D1 gives a regulated $5 \cdot 1$ volts and the resistors R2 and VR1 connected across DI act as a potential divider. By adjustment of VRI a voltage of 0.1 volts can be obtained at the wiper. This is E_{r}.

Fig. 1. Basic op. amp. circuit

Fig. 2. In-circuit measurement

Fig. 3. Circuit of the ohmmeter

To provide a number of ranges any one of the resistors or'resistor combinations R3/VR2, R4, R5, R6. or R7/8 can be switched into circuit, to act as R_{r} of Fig. I. The output from the amplifier is fed out to the resistor to be measured through a terminal SK2 and back through SKI to the inverting input of the amplifier. The voltmeter for output is a microammeter in series with resistor R11. So connected. the meter will give full-scale deflection for $E_{\mathrm{o}}=-0.5$ volts. Inserting these working values of E_{r} and maximum E_{n} in the equation, we can calculate that for any range the maximum resistance measurable is:

$$
\begin{aligned}
R_{\mathrm{X}(\text { max })} & =-\frac{R_{\mathrm{r}}}{0.1}(-0.5) \\
& =5 R_{\mathrm{r}}
\end{aligned}
$$

So, when R6 is in circuit. f.s.d. of meter indicates $R_{x}=5 \mathrm{k} \Omega 2$; similarly, when R 5 is in circuit, f.s.d. indicates $50 \mathrm{k}!2$ and with R4, f.s.d. indicates $500 \mathrm{k}!2$. For a f.s.d. of 500 s one might think that R7 and R8 should total 1002, but in practice they total only 6412. This is because such a low resistance draws a heavy current from the potential divider, and the potential $\left(E_{\mathrm{r}}\right)$ of the wiper falls. A corresponding reduction of R_{r} from theoretical 100 V to practical 64 V restores the balance of the equation, and gives f.s.d. at 500Ω. At the highest range. $5 \mathrm{M} \Omega 2$ at f.s.d.. the amplifier output does not reach the theoretical level, so the reference current has to be increased by using a reference resistor less than $1 \mathrm{M} \subseteq 2$. This is provided by R3, with VR2 in series for adjustment to the correct total value.

CONTINUITY CHECKS

On all ranges short-circuiting of SK1 and SK2 puts R_{x} at zero, so E_{0} falls to zero. So this instrument can'be used for checking continuity. When the terminals are unconnected. R_{x} is infinite and E_{0} is infinite too, at least theoretically, though the
characteristics of the amplifier limit it to about -7 volts. Such a high voltage across a meter rated at 0.5 volts would damage the winding so D2 and R12 are wired in parallel to the meter to limit meter current to about $75 \mu \mathrm{~A}$. At low potentials the diode is non-conducting, but with increasing potentials the meter exceeds f.s.d. and the diode begins to conduct in its forward direction so that excess current is shunted through it.

The l.e.d. indicator is important for, unlike an ordinary ohmmeter which uses current only when actually connected to a resistor, this ohmmeter uses current as long as it is switched on. It draws about 7 mA from Bl and, with the indicator l.e.d. in the B2 circuit, draws about 4.5 mA from B2. These are low requirements, so small PP3 batteries can be used.

INTERNAL RESISTORS

By closing S2, one of two internal resistors (R9, R10) can be connected across the sockets, if the meter is also switched to range 2 ($5 \mathrm{k} \Omega$ f.s.d.) or range 5 ($5 \mathrm{M} \Omega 2$ f.s.d.). The purpose of these is threefold. They provide a simple check on battery condition and meter adjustment. They are used when checking capacitors or when measuring resistances greater than $5 \mathrm{M} \Omega 2$. The calculation for this is given later.

COMPONENTS . . .

```
Resistors
        R1 680\Omega
        R2 1k\Omega
        R3 680k\Omega
        R4 100k\Omega 2%
        R5 10k\Omega 2%
        R6 1k\Omega 2%
        R7 8.2\Omega
        R8 56\Omega
        R9 4.7M \Omega
        R10 4.7k\Omega
        R11 10k\Omega
        R12 270\Omega
        R13 2.2k\Omega
        All 5%& W carbon unless stated otherwise
Potentiometers
    VR1 1k \Omega
    VR2 500k \Omega
    VR3 100 \Omega (optional, see text)
Semiconductors
    D1 BZY88 Zener 400mW,5.1V
    D2 OA200
    D3 TIL209, l.e.d.
Integrated circuit
    IC1 741C op.amp.
Miscellaneous iv
    ME1 Microammeter, 50\muA f.s.d. SEW SD830
                        or similar
        S1 Push-switch or toggle switch, DPST
        S2 Push-switch or toggle switch, SPST
    S3 Rotary wave-change switch, 2-pole, 6-way
    SK1-3 Terminals, yellow, green, black
    Veroboard, 0.1 in matrix, 24 holes }\times24\mathrm{ strips (half
    a 5" }\times2\frac{1}{2}\mp@subsup{}{}{\prime\prime}\mathrm{ board)
    Veropins; knob for S3, battery connectors.
    1% or 2% resistors for calibration (470\Omega, 4.7k\Omega,
    47k\Omega, 470k\Omega, 4.7M\Omega.)
```


OHMMETER WIRING DETAILS

CONSTRUCTION

This presents few problems. Details of layout of circuit board are given in Fig. 4, and are not critical.

The lid of a $10.5 \mathrm{~cm} \times 13.5 \mathrm{~cm} \times 4 \mathrm{~cm}$ box was drilled for meter, terminals, switches and l.e.d., and the connections between these were completed before wiring to the circuit board. Fairly long leads were routed to these components, ready for making connections to the Veropins on the circuit board. For convenience the circuit board, with components ready mounted on it, was stuck to the back of the meter case, using contact adhesive; connections to the board then being made.

Apart from marking switch positions for S3, no panel labelling was thought to be necessary. The switch positions were indicated by coloured discs stuck in position on the panel. In order from low to high range these discs were brown, red, orange, yellow and green. This corresponds to the resistor colour code, being the third colour of a resistor corresponding to f.s.d. on each range. Coloured selfadhesive spots sold as colour-slide spots were used for red, yellow and green, and the other discs were punched from coloured card.

SETTING UP

Make sure S 2 is open, then connect a $4 \cdot 7 \mathrm{k} \Omega$ resistor across terminals SK1 and SK2. If possible, use a 1% or 2% resistor but, if not, try with several 5% resistors. Switch to the $5 \mathrm{k} \Omega$ range and switch on the batteries. The needle may rest anywhere on the scale, or even swing violently beyond 50 . Adjust VRI until the needle comes to 47 (corresponding to $4.7 \mathrm{k} \Omega 2$ on this range). It can now be seen why a precision resistor is not required for R11. Any inaccuracy in R11 is compensated for by adjusting VR1. The value of E_{r} is only nominally 0.1 V and
f.s.d. is only nominally 0.5 V , but the ratio between them remains the same $(1: 5)$ and the equation still applies.
Now check the $50 \mathrm{k} \Omega$ and $500 \mathrm{k} \Omega 2$ ranges, using $47 \mathrm{k} \Omega 2$ and $470 \mathrm{k} \Omega 2$ external resistors. These should give correct readings (47 on the scale in each case) without further adjustment of VR1. If not, check wir-ing-particularly correct connections on the rotary switch, and also that R10 really was out of circuit when you set the $5 \mathrm{k} \Omega$ range!
Now put a $4 \cdot 7 \mathrm{M} \Omega 2$ resistor across the terminals and switch to the $5 \mathrm{M} \Omega$ range. Adjust VR2 until the meter reads 47 . Finally switch to the 500Ω range, with a 470Ω resistor across the terminals; the needle should read 47. If it reads low, reduce the value of R8; if it reads high, increase R8. Some constructors may prefer to use a 100Ω preset in place of R7 and R8 and adjust this to get the correct reading.

Check the internal resistors by closing S 2 . The needle should read 47 on the $5 \mathrm{k} \Omega$ and $5 \mathrm{M} \Omega$ ranges, with no resistors connected externally to the terminals. Battery condition can also be assessed by this.

USING THE METER

Individual components are connected across SK1 and SK2. Components in circuit are tested by first disconnecting any power supply from the circuit and discharging any capacitors. Then the device under test is connected to SK1 and SK2. The distant terminals of any devices which are joined to the device under test are grounded by connecting them to SK3. A number of leads with crocodile clips will be found useful for this.

When measuring resistances, be sure to have S 2 open, or there will be false readings on the $5 \mathrm{k} \Omega$ and 5MS2 ranges.

The internal resistor of the $5 \mathrm{M} \Omega$ range can be made use of for measuring resistances higher than $5 \mathrm{M} \Omega$. The formula for such resistances in series is :

$$
\frac{1}{R}=\frac{1}{R_{\mathrm{x}}}+\frac{1}{4 \cdot 7}
$$

Where R is the resistance measured as shown on the scale, R_{x} is the unknown external resistor, and all values are expressed in megohms. This equation can be rearranged to give :

$$
R_{\mathrm{x}}=\frac{4.7 \times R}{4.7-R}
$$

So if R is measured, R_{x} can be calculated. If scale reading is 46 (normally equivalent to $4.6 \mathrm{MS} \Omega$ on this range), this would indicate a value of $R_{\mathrm{x}}=(4.7 \times$ $4.6) /(4.7-4.6)=21 \cdot 62 / 0 \cdot 1=216 \mathrm{M} 32$. So by using the internal resistor one can estimate very high resistances, though with reduced accuracy, for with high resistances the difference between 4.7 and R is only a few scale-divisions, which cannot be estimated to a high percentage accuracy. Still, one is no worse off than when measuring high resistances at the crowded end of the scale of an ordinary ohmmeter.

Diodes and transistors can be tested for shorts and open-circuit-often a sufficient means of confirming that a component is useless. Switch to the $5 \mathrm{M} \Omega$ range for these tests. Terminal SK 1 is positive to SK2, and by connecting a diode first one way round then the other it can soon be found if it passes negligible reverse current (equivalent to high resistance-of ten in excess of f.s.d.). Similarly an $n p n$ transistor will conduct from base to emitter and

from base to collector, but not in reverse or from collector to emitter. A pnp transistor will conduct only from emitter or collector to base. When connected for conduction, the meter will indicate some resistance less than f.s.d. When otherwise connected. a greater resistance (usually greater than f.s.d.) will be shown.

CAPACITORS

To test capacitors, switch to either the $5 \mathrm{k} \Omega 2$ range (for capacitors of $1 \mu \mathrm{~F}$ or more) or the 5 MS r range (for capacitors less than $1 \mu \mathrm{~F}$). Close switch S2. Without the capacitor in place, the needle should read 47. When a capacitor is connected across SK1 and SK2, the needle kicks sharply toward zero, then steadily returns to 47 . The higher the capacitance the greater the swing, and the longer time taken to return to 47. It is important to discharge the capacitor before testing and re-testing. With electrolytic capacitors observe correct polarity (positive to SK1). Take care not to charge the capacitor unknowingly; if you touch one terminal of the capacitor with one hand, and have the other hand in contact with a lead from the instrument, a current can pass through your body sufficient to charge the capacitor appreciably, and give a false reading-possibly no kick, which would be taken to indicate a useless open-circuit capacitor.

It is worth remembering this point too when measuring high resistances. The resistance of the human body from hand to hand is about $1-2 \mathrm{M} \Omega$. If this is shunted across a high resistor under test a very false reading will be obtained.

Readers may observe that the time taken for the needle to fully return to its starting point (47) is proportional to the capacitance of the capacitor. This could be the basis of a simple and rough way of estimating capacitance. Similar capacitance testing can be done with an ordinary ohmmeter, but usually a barely perceptible kick is obtained below $10,000 \mathrm{pF}$. With this ohmmeter a useful check can be made on capacitors as low as 30 pF .

New Loudspeaker

THE application of modern technology to a loudspeaker concept proposed over 30 years ago has resulted in the development of a new loudspeaker construction which promises to overcome many of the mechanical drawbacks associated with normal coneconstruction driver units.

The innovator, Mr Josef K. Manger, a German radio retailer, has used modern materials to produce a so-called resistive diaphragm driver which was demonstrated to the I.E.E. and the Technical Press last month using pre-production models and normal disc records.

Whilst all such demonstrations are subjective, this one indicated that the new units will bear close watching in the near future since, to the writer, they seemed to come closer to representing the actual sound experienced when standing in, for example, an orchestra, than anything heard so far.

This is perhaps an exaggerated claim but certainly the units are capable of reproducing a square wave as such which (again to the writer's limited knowledge) no other equipments seem able to do.

Currently the units are to be made in Germany in the near future on a commercial scale and it is understood that Mr Manger is looking for a possible British manufacturer to make here under licence.

World's Best Timekeeper Goes On Show

What is claimed to be the world's most accurate wristwatch will soon be on display at the Science Museum in London. The Omega "Marine Chronometer" has a guaranteed accuracy of within one second per month which is achieved by using a quartz crystal vibrating at 2359296 Hz as the reference.
A special feaure of this watch is that the hour and second hands can be set independently without affecting the accurate timekeeping.
Before each watch is put on the market it is sent to an independent laboratory, where a certificate is awarded confirming the watch's performance.
Complete with stainless steel case and bracelet the Marine Chronometer sells for $£ 680$.

New Year Award For Radar Executive

The New Year Honours List included the name of ${ }_{\mathrm{Dr}} \mathrm{K}$. Milne who has been awarded the OBE for outstanding work as Research Executive with Plessey Radar.
A recognised authority in microwave antenna research and design, Dr Milne has been responsible for many major projects including advanced radar, satellite communications and navaid systems. He is an active member of the Electronics Research Council and of international committees, contributing to the recognition of Britain's high status in microwave technology.

Inswich News

A lecture entitled "Sound Synthesis for the Amateur" LEcture entitled "Sound Synthesis for the Amateur"
will be given by Douglas Shaw at The School of Engineering Technology, Rope Walk. Ipswich, on February 26 at 7 p.m.
This lecture is part of a Hi Fi course currently running at the Civic College, but P.E. readers in the Ipswich area who have an interest in sound synthesis are cordially invited to attend by the course tutor, P. B. Broadribb Esq.

P.E. ORION

Good news for P.E. Orion amplifier builders, the manufacturers of the cabinet used in the prototype unit, H.M. Electronics Ltd, have recently informed us that they hope to be able to produce a pre-drilled cabinet with a self-adhesive anodised aluminium front panel as an optional extra.
H.M. Electronics have also informed us that we have quoted the wrong type number for the cabinet in our components list. The correct type number for the case is the GB1 and not GB3 as stated in the article.

Full details and a price list of their complete range of equipment cabinets can be obtained from H.M. Electronics Ltd., 275a Fulwood Road, Sheffield, S10 3DB.
We have been informed that some readers have experienced difficulty in obtaining the mains transformer. This transformer, type SL8, can be purchased from Gardners Transformers Ltd., Christchurch, Hants., BH23 3PN, for $£ 10.23$ including postage and VAT.

Alternatively, the transformer for the P.W. Texan amplifier can be used in the P.E. Orion. This has a lower current rating and will give a slightly reduced output power, but it should be entirely satisfactory for speech and music. This transformer is available from Henry's Radio Ltd., 303 Edgware Road, London, W2 1 BN , for $£ 5.94$ including postage and VAT.

LOUDSPEAKER KIT

Readers who have completed or nearing completion of the P.E. Orion, and are shopping around for a reasonable speaker system that they can build for themselves, may find the range of SEAS hi-fi loudspeaker kit now being marketed by Macel Electronics worth investigating.

Designed for sealed enclosures, there are five kits available, capable of handling outputs ranging from 20 W to 70 W . The frequency response of the units ranges from 25 to $20,000 \mathrm{~Hz}$, according to speakers used and size of enclosure. Each kit includes a tweeter, main driver(s), crossover unit and connecting wire with a din plug. The speaker impedance is 4 to 8 ohms.

A feature of the systems is that each kit contains a recommended enclosure design with full measurements and constructional guidance notes.

Further information and full details of their complete range of SEAS hi-fi loudspeaker kits can be obtained from Macel Electronics Ltd., P.O. Box 64, 14 High Street, Ipswich, Suffolk.

DIGITAL LEAF

Suitable inexpensive valves for use with the "Digital Leaf" greenhouse automatic moisture system, described in our January issue, are

Lems mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.
available from Concordia Automation Components.

Several types are available with $\frac{1}{8} \mathrm{in}, \frac{1}{4} \mathrm{in}, \frac{3}{8}$ in and $\frac{1}{2}$ in B.S.P. connections for mains or low voltage supplies at prices from $£ 6$ each. This is approximately half the figure quoted in the article.

Further information on these valves can be obtained from Concordia Automation Components Ltd., 6 Central Park, Worcester Park, Surrey, KT4 8HZ.

NEW LITERATURE

Recently formed to market p.c.b. hardware, heat sinks and modules manufactured by Assmann KG, Germany, Dieter Assmann Electronics announce the availability of a new catalogue.
The catalogue contains 50 pages of detailed information covering the whole of the Assmann product line. Dual-in-line sockets, for example, can be supplied with from 8 to 40 pins, including the popular 14 - and 16 -pin units. Sockets and mounting pads for transistors are also available in most of the popular configurations.
The range additionally includes p.c.b. connectors, and bread boards

SEAS hi-fi loudspeaker kit from Macel Electronics

for experimental and development work. Details of jumper links, terminal pins, u-pins, eyelets and insulated terminals form a complete section in the catalogue. A very broad range of heatsinks is also covered, including extruded and cast aluminium, and staggered finger types.

Copies of the catalogue can be obtained from Dieter Assmann Electronics Ltd., Victoria Works, Water Lane, Watford, Herts.

SEMICONDUCTORS

High Speed 741

In many areas of application engineers need a higher slew rate from their operational amplifiers than can be obtained from the everyday 741 chip.

Motorola have provided the answer to this problem with a plugin alternative designated MC1741SCP1.

The new device, available ex-stock from Jermyn at a 1 -off price of f0.92 each, boasts a slew rate of 10 V per microsecond, suiting it to digital-to-analogue converters and amplifiers where bandwidth from d.c. to over 100 kHz is important.

Further details available from Jermyn Industries, Vestry Trading Estate, Sevenoaks, Kent.

Audio Transistors

Five new complementary pairs of silicon epi-base, epi-collector power transistors designed for a complete voltage range have just been announced by SGS/ATES.

The first pair, BD433 and BD434, have been developed for in-car entertainment applications with power requirements up to 12 W . The second and third pairs BD435 and BD436, and BD437 and BD438, are particularly suited to hi-fi audio amplifiers up to the $15 / 20 \mathrm{~W}$ range.
All types in the range are suitable for industrial applications such as power drivers, switching circuits and current regulators up to 4 A and, of course, for automotive applications such as flashing lights, lamp dimmers and direction indicators.
All the devices are rated at 36 W $P_{\text {tot }}, 4 \mathrm{~A} I_{c}$ and an f_{t} of 3 MHz , whilst the $V_{\text {ceo }}$ values for pairs are as follows: BD433/34, 22V; BD435/ 36, 32V; BD437/38, 45V; BD439/40. 60 V and BD441/42, 80V.
Further details available from SGS/ATES (U.K.) Ltd., Planar House, Walton Street, Aylesbury, Bucks.

NGKTMONTH

The P.E. compensated photo timer not only provides simple selection of time interval from 0.1 s up to 120 s with controls designed specifically to suit darkroom conditions, but additionally provides for exposure compensation of mains voltage variation effects on enlarger lamp light output.

STARTLE YOUR FRIENDS WITH THIS MUSICAL DOORBELL

Capable of playing a tune of welcome (or rejection!) dependent on the choice of programme you put in. Integrated circuitry and state-of-the-art logic make for simplicity of construction.

STARTING NEXT MONTH...
 INTRODUCTION TO TRANSDUCERS

An important and informative series on Transducers, their operation, types, uses and technical features. Make certain not to miss any of this in-depth study of these important tools in the art of measurement.

HEAT LIGHT WEIGHT

Hiletronic

IN photographic work it is often necessary to keep solutions at a constant temperature during the printing process. The situation is especially critical when it comes to colour printing, where it may be necessary to maintain the temperature of the solutions to within a traction of a degree.

The normal method of achieving this is to place the dishes containing the photographic chemicals on a thermostatically controlled dish warmer. However, many devices of this type use mechanical thermostats which are far 100 insensitive for accurate temperature control, and can often only keep the solutions to within a couple degrees of the required temperature.

PRECISE CONTROL

The device which forms the subject of this article was built to give a much more precise control over a system such as that just described, and has proved to be very successful in use. Exactly how accurately it will maintain a given temperature will depend to a certain extent on the apparatus with which it is employed. and also on the efficiency of the sensor. It should however, be able to maintain a temperature to an accuracy of about plus or minus 0.2 degrees.

It can of course be used for any similar purpose where it is necessary to maintain a liquid at a constant temperature. The range covered by the unit is from slightly below $50^{\circ} \mathrm{F}$ to a little more than 100 F .

Circuits of this type can be rather complicated, but in this design the utilisation of an i.c. operational amplifier enables a very simple and straightforward circuit to be used.

THE CIRCUIT

A complete circuit diagram of the electronic thermostat is shown in Fig. I. The unit is designed around the 741C i.c., which is used here as a differential amplifier.

COMPONENTS

Resistors

R1, R2	$5 \cdot 6 \Omega$ (2 off)
R3	$33 \mathrm{k} \Omega$
R4	$27 \mathrm{k} \Omega$
R5	$10 \mathrm{k} \Omega$
R6	$4.7 \mathrm{k} \Omega$
R7	430Ω
R8	$220 \mathrm{k} \Omega$
All $\frac{1}{2} \mathrm{~W}$	10% carbon

Potentiometer

VR1 10k Ω linear slider

Capacitors

C1, C2 $220 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. (2 off)

Semiconductors

TR1 BC109
D1-D4 1N4001 (4 off)
D5, D6 BZY88 C10 10 V 400 mW Zener (2 off)
D7 OA200 or any general purpose silicon diode
IC1 741C 8 -pin d.i.l.
Thermistor
TH1 VA1066S

Miscellaneous

SK1 Surface mounting mains socket
RLA Miniature 12 V relay (Omron 1051, 465Ω Home Radio)
T1 Mains primary, $9-0-9 \mathrm{~V} 80 \mathrm{~mA}$ secondary (Osmor MT9, Home Radio)
S1 Single pole on/off
FS1 500 mA with holder
0.1 in matrix Veroboard 35×15 holes

6in $\times 4$ in $\times 2 \frac{1}{2}$ in aluminium chassis with base plate
Screened cable, hardware for sensor

As the name suggests, this amplifies the difference between the two input voltages. The output will be near ground if the inverting input is at a higher potential than the non-inverting input. On the other hand the output will be near the supply rail if the non-inverting input is at a higher potential than inverting one.

The gain of the i.c. is extremely high, and the voltage difference required at the inputs to cause the output to swing fully one way or the other is only a fraction of a millivolt. This tends to give the circuit built-in triggering, as there is such a restricted range of voltages which will give an intermediate state at the output.

BRIDGE CIRCUIT

At the inputs to the i.c. there is a bridge circuit. One arm of this is formed by R3, VR1, and R4, and the other by R5, R6, TH1. The supply is connected to the input of the bridge.

Thermistor TH1 is mounted in a probe which is immersed in the liquid to be controlled. Its resistance will therefore increase if the temperature of the liquid drops, and decrease if the temperature increases. This change in resistance will cause the voltage at the non-inverting input to change also, a positive change in temperature causing a negative change in voltage.

The output from $I C!$ is coupled via $R 8$ to TR1, which has the relay in its collector circuit. The contacts of the relay are taken to a mains socket, into which the dish heater is plugged. When the output of ICl is high $(+20 \mathrm{~V})$ the relay is energised. R 7 is required in order to reduce the supply to a more suitable level to power the relay. Diode D7 is the normal protective diode. Even when the output of the i.c. is low there is an output potential of about two volts. R8 is therefore required to prevent the relay from being permanently held on.

CALIBRATED SCALE

In practice VR1 is marked with a scale calibrated in degrees. If, for example, this is set to $100^{\circ} \mathrm{F}$, at the start the liquid will probably be at about room temperature, and considerably less than $100^{\circ} \mathrm{F}$. The voltage at the non-inverting input will be high in comparison to that set at the other

The completed Electronic Thermostat showing layout of controls on the front panel
input by VR1. The output of IC1 will thus be high and the heater will be turned on. As the liquid warms up the voltage at the non-inverting input will decrease, until eventually when the liquid reaches $100^{\circ} \mathrm{F}$, this voltage being equal to that at the other input, will cause the output of $I C \mid$ to go low. and the heater to be turned off.

The liquid will now of course begin to cool, but will not be allowed to cool much. as this cooling will be sensed by the thermistor, which will unbalance the input voltages resulting in the heater being turned on again. The circuit will continue to oscillate in this way, thus stabilising the temperature of the liquid.

POWER SUPPLY UNIT

A simple stabilised mains power supply is used. This consists of two full wave supplies, each providing 10 V . connected in series to give 20 V . which is

Fig. 1. Complete circuit diagram of the Electronic Thermostat

Fig. 2. Construction of the sensor using a small test tube and some silicone grease
adequate for the 741 C . D5, and D6 in conjunction with R1 and R2, and the relatively high secondary impedance of Tl give the stabilisation. Cl and C 2 provide the necessary smoothing.

SENSOR CONSTRUCTION

The thermistor must be contained in a watertight compartment, and it must also be in good thermal contact with the outer surface of the container. Fig. 2 illustrates the construction of the sensor used with the prototype. The outer casing is a small glass test tube. The thermistor is mounted at the bottom of the tube, and is immersed in silicone grease to ensure a good thermal contact with the test tube.*

The small slice of cork above this helps to keep the thermistor firmly in place, and also helps to prevent its leads from shorting together. Also, the silicone grease is rather thick, and needs to be pushed to the bottom of the tube. The slice of cork is very good for this task. Thin microphone cable is used to connect the sensor to the main body of the instrument.

CASE CONSTRUCTION

A suitable case for the unit consists of a 6 in \times 4 in $\times 2 \frac{1}{2}$ in aluminium chassis fitted with a base plate. Four rubber cabinet feet are bolted to the base. The general layout of the case can be seen from the photographs. The mains socket is mounted on top of the case on the right hand side. This mounted by two 4BA $\frac{3}{3}$ in bolts.

A large part of the socket fits behind the panel, and a large cut out must be made for this to fit through. This is easily made by drilling a string of $\frac{1}{8}$ in holes around the perimeter of the cut out, and then using a $\frac{1}{8}$ in "Abrafile" to join the holes.

The slider potentiometer is mounted on the left of the mains socket, and it is glued into position. The cut out for this can be made in a similar way as that for the mains socket. A nail file can be used to smooth up the edges of the slot.

Fig. 3. Layout of components on the Veroboard. The diode D7 is connected directly across the coil contacts of the relay

The on/off switch is mounted on the centre of the right hand side panel. The lead from the sensor enters the case opposite this on the left hand side, and the mains lead enters on the lower edge of the case. The holes for both these leads must be fitted with rubber or p.v.c. grommets.

COMPONENT PANEL

Most of the components, including those of the p.s.u. (except TI), are mounted on a $0 \cdot 1$ in matrix Veroboard panel. Fig. 3 shows the layout of this.

The mounting holes for the relay are $\frac{1}{8}$ in diameter. The mounting screws and washers are supplied with the relay. There are two mounting holes for the board, and these are for 6BA clearance. The outer braiding on the lead from the sensor is too large in diameter to go through the holes in the Veroboard, and is therefore taken to a pin.

When completed, the board is mounted on the upper side of the case by two 6BA $\frac{1}{2}$ in bolts. Two stand off insulators are required to hold the board a little way clear of the case.

ADDITIONAL WIRING

T1 is glued to the inside of the case opposite the Veroboard panel. Unfortunately the lead out wires of this are too short to reach the Veroboard panel. The leads from T1 are taken to a miniature three way connector block, and three insulated wires are taken from this to the component panel. The mains input is also taken to one side of a three-way connector block, and from here the connections are made to the various parts of the circuit.

Only the two connections to the relay contacts at the top, and middle of the relay are used, the lower one being ignored. Up to five amps at 250 V can be handled by the specified relay.
It is essential that the negative supply is earthed, as if this is not done the relay will not switch over cleanly. For reasons of safety the case must also be earthed. A solder tag on one of the mounting bolts of the component panel is used to make the connection to the case. The two connector blocks can be bolted to the case, but on the prototype these were left. supported only by the leads connected to them.

CALIBRATION

A scale is marked along the run of VR1. The various points along this are easily found. If for example it is required to find the setting which corresponds to $100^{\circ} \mathrm{F}$, the sensor is placed in some water which has been heated to precisely this temperature. Once the sensor has had time to adjust to the temperature of the water, the slider of VR1 is brought as far down the scale as possible without the relay turning off. This point is then marked $100^{\circ} \mathrm{F}$.

The scale is rather broad, as a fairly wide range of temperatures is covered. If absolute accuracy is required, it is advisable to initially use a thermometer to monitor the temperature of the liquid, and then if necessary, small adjustments can be made to the setting of VR1 to bring the temperature to exactly that required.

21st London International BOAT SHOW

ONCE again the annual International Boat Show has brought forward a variety of new and interesting developments in electronics associated with the sea. One of the most important and significant innovations on display this year was the Lucas Marine safety buoy. The buoy is automatically released from a sinking vessel and remains anchored to the vessel at depths up to $3,000 \mathrm{ft}$. It sends out a distress signal at $121 \cdot 5$ and 243 MHz , emits a high intensity flashing light, releases a 50 ft floating line with light to act as a rallying point for survivors and releases an automatically inflating four to six man life-raft. Other facilities are also available, such as marker dye and calming oil.

The electronics are powered by lithium batteries which have a recommended replacement life of four years. The transmitted distress signal has been satisfactorily received at a range of 180 miles.

Another new device to aid safety at sea is the G.H.T. Gas Safety Unit. Using solid state gas sensors and electronic control, this unit not only senses the presence of dangerous gases, but turns off the gas at source. The unit is fitted with voltage failure protection and has to be reset once triggered or if the supply fails.
One of the most popular ranges of instruments among the racing yachtsmen, Brookes and Gatehouse, has this year been increased and modified. A new unit, the Halycon-they must run out of names soon-is a repeating compass with dead reckoning indicator providing information on position in two co-ordinates. This year B. and G. have introduced a quartz crystal controlled chronometer and l.e.d. internal lighting for their repeater instruments.
Baron Instruments have introduced a Square Mk. 2 range-re-designed housings and dials. Two versions of the log are available ($0-15$ knots and $0-35$ knots) and three versions of the depth sounder $0-30,0-60 \mathrm{ft} /$ fathoms and $0-10 / 100$ metres.
Decca were showing the 36 mile 110 Radar for the first time; this equipment employs a 4 ft scanner and therefore is not likely to be seen on anything but the largest private yachts. This set is basically an improved version of the 101 Radar that has proved itself over the years.

Space Age Electronics were displaying a doppler speedometer with audible cutput for dingy tuning-the transducer is inserted in the centre board case and an increase in speed increases the frequency of the output. However, at $£ 40$ it may not be very popular.
Also from Space Age a portable echo sounder for fishermen; using l.e.d. output it is claimed that fish can be easily recognised. Can be used in a boat or from the river bank.

Finally, two points concerning EMI. The first is rather sad-The Electrascan radar will soon be discontinued, presumably competition from others, the servicing requirements and the general financial situation have all taken their toll. The second item-looking ahead to next year's Boat Show-the CCTV Division of EMI Sound and Vision Equipment Limited, is providing additional security in the form of an automatic closed circuit TV alarm system.
The system is in no way intended to inhibit normal movement through the entrances and exits, but it is intended to assist the existing security services to prevent the unauthorised entrances of people into the show halls.
 If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course. This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you dimension not only to your hobby but also to your earning capacity.
This course is accepted by and used in a large number of schools and colleges and forms an invaluable grounding for professional training in the subject. All the training is planned to be carried out in the comfort of your own home and work in your own time. You send them in when you are ready and not before. These culminate in a final test and a certificate of success.

Read, draw and understand circuit diagrams.
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

PLUS

 Build an oscilloscope. As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a professional test instrument that you willneed not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

THE time has come to introduce a few practical projects in the production of taped music. In the coming months it is hoped to bring out some hints on the creative use of the P.E. Minisonic Synthesiser, but for the moment it seems advisable to get into practice with tape manipulation, to perform a short composition and settle on the kind of equipment required to get the best out of the Minisonic-or any other sound source destined to be frozen on tape.

Firstly the equipment. It is generally advisable to have two tape machines available, although both need not necessarily be sophisticated stereo (or quadrasonic) units. Preferably both should be reel-to-reel machines (for ease of editing) though one can get along quite well with one stereo reel-to-reel machine and a cassette deck. In the interest of increased versatility a choice of tape speeds should be available (19, 9.5 , and $4.75 \mathrm{~cm} / \mathrm{s}$ being normal on domestic equipment).

If one or both machines are stereo with track-to-track dubbing (so-called multi-play) one can extend the number of superimposed recordings without unduly affecting the final quality. Personally, however, I tend to ignore this facility and use two stereo machines through a mixer in order to produce a stereo result.

Basic set-up

The mixer unit need not be an elaborate affair. A very workable battery-powered stereo unit can be built around a couple of $741 \mathrm{op} . \mathrm{amps}$ with as many input and output connections as required. For the coming projects, including this month's, I recommend at least eight inputs, individually switchable from left to right channels, and three-plus-three outputs.

Any stereo amplifier will serve in the set-up since it is to be used
only for monitoring purposes; one of the stereo outputs from the mixer will be permanently connected to its Auxiliary, Tape, Radio or Phono socket.
The final piece of equipment for this month's project is a short-wave radio receiver, see Fig. 1.

Method of composing

As a student some years ago I felt the urge to attempt some electronic music, spurred on by the apparent simplicity of the sound material in Stockhausen's "Study II". Without the mass of equipment necessary 1 had to rack my brains to find an alternative sound source. The problem was partially solved by a domestic four-waveband a.m. radio set. After hours of patient (and enjoyable) knob-twiddling | managed to find a selection of "electronic" sounds which promised to be of use. Armed with a splicing block, razor blade, splicing and leader tape and a fourspeed mono tape recorder I spent a fortnight's spare time producing a two-minute piece.

The project outlined below works along these lines, but since stereo is pretty commonplace nowadays I have decided to compose a twochannel work. Those who may only have access to mono machines could still, with a bit of juggling, produce a mono version of it.

PELORIA

I have called my piece "Peloria"* which is laid out in time, the numbers 1 to 20 across the top and bottom of the score referring to equal time intervals chosen by the performer, see Fig. 2.

Each channel has three imprecisely laid out pitch bands-high, medium and low. The dynamic levels are similarly imprecise: $p p=$ very soft, $\rho=$ soft, $m f=$ moderate level, $f=$ loud, ff $=$ very loud. The short-wave sound material, chosen by the performer, is shown largely in rectangular blocks, variously shaded; blocks containing horizontal lines indicate a rich or busy sound with no discernible melodic or rhythmic consistency;

Fig. 1. Simple tape effects set-up
similar vertical narrow bands represent a very short event.

The areas shaded with dots represent fleeting pitches which may be discernibly rhythmic or melodic yet move at great speed. The blocks shaded with short curved lines represent melodic and rhythmic patterns of a moderate-to-quick speed. Horizontal broken lines signify a decrease in level towards silence if placed after continuous lines, an increase if they appear before.

The sound material for "Peloria' " is available, from my experience, all year round. I suggest that all the sounds required for the piece be recorded at some length and at all speeds available on your tape machine; this gives sufficient length to cut out unwanted blips and to ensure an increased variety of pitch bands. Decide on the length of your time interval-you may do this roughly with the seconds hand of a watch or more precisely by measured lengths of tape. Those events which require an increase or decrease in level should be re-recorded using the level controls on the mixer.

From the material you now have snip out the measured lengths for channel one, not forgetting the periods of silence. Record the whole of the sequence on to the left-hand channel of your stereo machine. Now edit the tape for channel two, placing leader tape between events; this will allow you to pause during the gaps and come in on time for the final transfer to the right-hand channel of your stereo machine. Absolutely exact synchronisation is not necessary in this piece.
*Peloria: The regularity in a normally irregular flower (Chamber's Twentieth Century Dictionary).

Fig. 2. Mr. Pointon's method of composing electronic music for his piece called "Peloria"

The Geiger counter described in this article is small enough to be slipped into the pocket and taken out into the country to look for radioactive minerals. Quarries and old mine workings are good hunting grounds, particularly if geologically old rocks are being uncovered. Unfortunately, your search is not likely to be very rewarding in this country.

Nevertheless, the instrument will show that we are being exposed continually to a natural background radiation made up of cosmic rays and the emissions from radioactive materials in the ground and air around us and over which we have very little control. The instrument can also be used to locate sources of radioactivity should these be mislaid in the workshop and laboratory

The instrument is quite sensitive, it will count by producing a click in an earpiece. a single beta particle (an electron) whose mass is about one million billion billionth of a kilogram ($10^{-30} \mathrm{~kg}$) and which could be moving at about 800 million kilometres per hour!

GEIGER COU
 By M. PLANT m.sc.

The accompanying photographs show one form of the completed Geiger counter with the electronics housed in a plastics slide box. In use the box is held close to the ear, the thumb holding the pushbutton switch down.

THE GEIGER TUBE

The Geiger counter tube is the part which is sensitive to the atomic radiations which are emitted from radioactive sources and which make up cosmic rays. The type of tube shown in the photographs is fairly common and consists of a central anode surrounded by the cathode. Photos show the kind of tube which has an end window to allow it to respond to alpha particles the nuclei of helium atoms) and to low energy beta particles, both of which are most easily absorbed by the material through which they pass. The less sensitive tube shown in the model responds to the very penetrating radiation of gamma rays and high energy beta particles.

Geiger tubes (strictly called Geiger-Muller or GM tubes) are available on the government surplus market for a few pounds and are often advertised in the pages of this journal or are available from suppliers of Mullard equipment.

The tube selected should have an operating voltage of about 400 V . An important feature of the counts per minute versus voltage across the anode-to-cathode of a geiger tube is the so-called plateau of operating voltage which is shown in Fig. 1. The sensitivity of the tube increases gradually over this

plateau and it is important to operate the tube within this range of voltage; the midpoint of the plateau is usually chosen and the present instrument can be adjusted to operate the tube at this voltage. GeigerMuller tubes have commonly a two-pin base requiring a special holder, but some have an octal base although just two of these pins actually make connection to the tube.

THE CIRCUIT

Fig. 2 shows the circuit which consists essentially of three parts, an inverter or d.c.-to-d.c. converter, a voltage doubler, and an amplifier. The inverter and voltage doubler enable a 9 V battery to provide up to 500 V to operate the GM tube, and the amplifier is required to amplify the voltage pulses obtained across a resistor in series with the tube when the tube responds to the effect of a particle passing through it.

THE INVERTER

The inverter is a simple resistance-coupled oscillator which gives about 250 V across the secondary of the $9-0-9 \mathrm{~V} / 250 \mathrm{~V}$ transformer at a frequency of about 40 Hz .

Fig. 1. The characteristic curve of a GM tube

Up to 250 V a.c. is available across the secondary winding of the transformer and this is doubled and rectified by the diodes D1 and D2 and the capacitors C 2 and C3 to provide about 500 V d.c.

Fig. 2. Circuit diagram of the power supply, GM tube and amplifier

TRI starts to conduct when the circuit is switched on and current increases in the associated half of the primary winding of the transformer, induces a voltage in the other primary half which rapidly drives TRI into saturation via the base coupling resistor R1 and thus biases TR2 off.

Flux increases in the core of the transformer until saturation is reached when the positive feedback provided by the induced primary voltage falls to zero. TRI is returned to the off state and this ends the first half cycle of the period of oscillation. The collapsing flux in the transformer core induces a voltage in the primary winding associated with TR2 to drive it on, so initiating a second similar halfcycle.

Capacitor Cl across the collectors of the transistors eliminates the possibility of high frequency oscillation and makes for reliable starting of the inverter. The actual primary voltage being switched by the two halves of the primary winding of the transformer can be varied by means of the variable resistor VR1 in series with the 9 V battery so that the voltage available from the voltage doubler can be varied to suit the characteristics of the tube used.

The output from the supply is applied across the GM tube via R3 and R4. The passage of a radioactive particle through the gas filling the tube causes some of the gas to be ionised. Under the high voltage between the anode and cathode, a rapid avalanche of ionisation occurs and ions are collected by the electrodes resulting in a very small current through the external resistors R3 and R4. This pulse of ionisation is short-lived and the tube is quickly ready to respond to another ionising particle passing through it. The voltage change across the external resistors is coupled to a two-transistor amplifier by the coupling capacitor C4 so that a loud click is heard in the earpiece.

ASSEMBLY

A piece of Veroboard was selected for assembling the circuit, the precise dimensions depending on the physical size of the components to hand and the case used. In the present instance the case used in the prototype was a Kodak slide box measuring $108 \times$ $32 \times 52 \mathrm{~mm}$ and the Veroboard measured $46 \times$ 54 mm .

$\times 1$ BASE

TR1-4 ZTX300

Fig. 3. Component layout and Veroboard cutting details for the counter

COMPONENTS . . .

```
Resistors
    R1,R2 12k\Omega, 2 off
    R3, R4 2.2M }\Omega,2\mathrm{ off
    R5 1M\Omega
    All }\frac{1}{4}\mathrm{ W, 10%
Potentiometers
    VR1 5k skeleton pre-set
```


Capacitors

```
C1 \(1 \mu \mathrm{~F}, 250 \mathrm{~V}\)
C2 \(0.1 \mu \mathrm{~F}, 250 \mathrm{~V}\)
C3 2 off \(0.22 \mu \mathrm{~F}, 250 \mathrm{~V}\) to make up \(0.1 \mu \mathrm{~F}, 500 \mathrm{~V}\)
C4 1,000pF mica
Semiconductors
TR1, 2, 3 \& 4 Silicon npn ZTX300 or similar, 4 off
D1, \(2 \quad\) 1N4007, 2 off
Switches
S1 Push-to-make button switch or slide switch
```


Miscellaneous

```
T1 Transformer, 9-0-9V primary, 240 V secondary. Midget mains type such as Osmor MT9
LS1 Small earphone, \(75 \Omega\) or above (to \(200 \Omega\) )
X1 Mullard MX168 or similar low voltage type GM tube. Possible sources Henry's Radio, 20th Century. Electronics Ltd., New Addington, Croydon, Surrey
B1 9 V, PP3 or PP6 suits
Tube holder; co-ax cable; co-ax plug and socket; Veroboard; wire; solder; suitable box.
```


SMALL IS BEAUTIFUL

From time to time 1 have been criticised for writing too often about the smaller enterprises in the electronics industry. But there's a lot to be said. in favour of the homely neighbourhood store compared with the supermarket. Both have their role to play in our complex world. The same with electronics where there is still plenty of room for the small man in among the giants. And it is still demonstrable that for sheer profitability in the electronics industry the optimum size of the workforce is about 300 people. This is the maximum size where the boss still knows everyone and everyone knows the boss. Where people know what's going on, feel appreciated, have some job satisfaction.

It's the sort of size, too, where a company is still flexible. Reaction times are less and response is quicker. Product lines can be switched quickly to meet changing conditions. There is no multi-million pound investment in a single product line that might, and often does, go sour when brought to the market place.

A good example of what I mean is Brandenberg Ltd. which celebrated its 21 st anniversary recently. It's a comfortable little unit employing 160 people in a $25,000 \mathrm{ft}^{2}$ plant at Thornton Heath.

Turnover is running at over £1 million with $£ 100,000$ going for export. The company makes high voltage power supplies. Buy one of those super Cambridge 'Stereoscan' scanning electron microscopes and you'll find the high voltage supply made by Brandenberg.

The lethal punch in Rentokil electronic fly-killers comes from another Brandenberg unit and radar displays, photocopiers, nuclear physics,
all are grist to the Brandenberg mill for EHT assemblies. Anything up to 100,000 volts-more if a "special" is required.

BUT GROWTH NECESSARY

Having said all that, it still has to be admitted that growth remains a prime business objective, even with companies like Brandenberg. Nearly all managing directors are dedicated to growth as a desirable end in itself. The challenge is to keep growth profitable. With present rates of inflation it is natural that turnover should increase by, say, 20 per cent a year from the same volume of business, but if running cost increases are in excess of 20 per cent then the company is slipping behind. So you need greater efficiency.

GDS Sales Ltd., the Slough-based component distributors, have now implemented a computerised inventory management and order processing system based on an IBM 3/10 with disk file and video display terminals. The system is the result of over a year of planning and it really does its job. It gives a quicker order turnround for the customer but, equally important, it spins off all the management information needed for true efficiency, especially in stricter control of the $£ 400,000-$ worth of components stored in the main warehouse. GDS, in one of the most hotly competitive areas of electronics, has doubled turnover in two years and is keeping ahead of the game. In the same period the company has opened distributor operations, though as yet on a smaller scale, in Holland, Switzerland and Denmark.

TOP SECRET

High-flying Racal Electronics Group is still showing the rest how to conduct a profitable world-wide business. Last published figures show increased turnover at $£ 34.62$ million and almost $£ 3$ million profit. And 1975, despite the prevailing gloom, is again forecast as a record year. Racal chairman Ernest Harrison is one of the most forthright men in the industry. But even he keeps mum over what Racal is up to in the speech privacy market. Last year a new company was formed called Racal-Datacom based in Salisbury. It is manufacturing equipment for speech scramblingall rather hush-hush and we are told only that "the speech privacy market will grow in the next two years".

Harrison is a firm believer in small companies where people are wellmotivated. As soon as a Racal company gets too big for real efficiency it is split and a new company formed. There are acquisitions, too, such as British Physical Laboratories who recently ioined the Group.

the big league

Of course you've got to be big and have huge resources to cope with projects of great magnitude. Satellites, for example.

This year sees Marconi getting its teeth into MAROTS, the European marine communications satellite due for launch in the Autumn of 1977. Marconi is prime contractor for the satellite payload with a contract price of $£ 11$ million.

Hawker Siddeley Dynamics has a budget of $£ 9$ million for the spacecraft. And MAROTS itself is only the experimental and pre-operational unit paving the way for a more advanced system.

British Aircraft Corporation has a £ 1.25 million contract for satellite sub-systems for the ISEE-B in the International Sun Explorer Satellite System. All these satellite contracts have been placed through the European Space Research Organisation.

BAC will also be busy this year working through the backlog of orders for the Rapier low-level air defence missile in which quite a number of electronics companies are engaged on sub-contracts. BAC took orders last year for a staggering $£ 100$ million of Rapier systems, the bulk of them. from the Middle East. Total Rapier sales are now well over £200 million.

NORTH SEA ELECTRONICS

And whatever the dividends from North Sea oil in the years ahead, there's certainly plenty of business there today. The Post Office, for example, is spending a cool $£ 8$ million on quadruple diversity troposcatter systems out to the rigs operated by the Total, Mobil and Occidental Groups. Marconi gets £1.5 million of the work for the shore terminals. Marconi is also supplying huge quantities of other equipment including the privately owned troposcatter links run by BP and Phillips Petroleum.

Nobody has yet worked out the cost of defending the rigs once they become operational. Certainly there will be a need for patrol vessels and aircraft fitted with radar, sonar and communications. It's a whole new world of opportunity for the electronics industry.

Just in case anyone gets the idea that the giants can only move slowly, let me recount a story out of the $£ 200$ million a year turnover Pye of Cambridge Group. Pye TVT did a rush job for Australia to get colour TV outside broadcast vans delivered in time for the opening of the colour service on March 1, 1975. By working round the clock a twelve week installation and testing procedure was telescoped to four weeks.

NEWLOW PRICES! !

(Was £19.95-save £5!)

Britain's most original calculator now in kit form

The Sinclair Scientific is an altogether remarkable calculator.

It offers logs, trig, and true scientific notation over a 200 -decaderange features normally found only on calculators costing around $£ 100$ or more.

Yet even ready-built, the Sinclair
Scientific costs a mere $£ 21.55$ (including VAT)

And as a kit it costs under E15!
Forget slide rules and four-figure tables!
With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin,
cos and arccos,
tan and arctan.
automatic squaring and doubling.
$\log _{10}$, antilog ${ }_{10}$, giving quick access to x^{r} (including square and other roots).
plus, of course, addition, subtraction. multiplication, division, and any calculations based on them.

In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to

 assemble?No. Powerful though it is, the Sinclair Sciantific is a model of tidy engineering.

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.
Of course, we Il happily supply the Scientific or th Cambridge already built. if you prefer - they're still exceptional value Use the order form.

Components for Scientific Kit (illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons,
windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc)
8. Battery assembly and on/off switch
9. Sôft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Sinclair Scientific kit $\quad \$ 14.95$

Features of the Sinclair Scientific
12 functions on simple keyboard Basic logs and trig functions (and their inverses), all from a key board as simple as a normal arithmetic cal culator's. 'Upperand lower case operation means basic arithmetic keys each have two extra functions.

- Scientific notation Display shows 5 digit mantissa, 2-digit exponent, both signable.

200-decade range 10^{-99} to $10+99$

Reverse Polish logic Post-fixed operators allow chain calculations of unlimited length - eliminate need foran = button.

25-hour batterylife 4 AAA manganese alka line batteries (e.g. MN2400) give 25 hours continuous use. Complete independence from external power. Genuinely pocketable $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$ Weight 4 oz. Attractively styled in grey, blue and white.
(Was £14.95-save £5!)
At its new low price, the original Sinclair Cambridge kit remains unbeatable value.

In less than a year, the Cambridge has become Britain's most popular pocket calculator.

It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge Kit

1. CoIl
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch
10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)

Simply fill in the preferential order form below and slip it in the post today.

Scientific

Price in kit form $£ 14.95$ inc. VAT Price built $£ 21.55$ inc. VAT. Cambridge
Price in kit form $£ 9.95$ inc. VAT.
Price built £13.99 inc. VAT.

To: Sinclair Radionics Ltd,
FREEPOST St lves,
Huntingdon, Cambs. PE17 4BR
Please send me
\square Sinclair Scientific kit at $£ 14.95$
Sinclair Scientific built at $£ 21.55$ Sinclair Cambridge kit at $£ 9.95$
\square Sinclair Cambridge built at $£ 13.99$
All prices include 8\% VAT.
| *| enclose a cheque for f
made out to Sinclair Radionics Ltd, and crossed.
*Please debit my *Barclaycard/
Access account. Account number
*Delete as required.
Signed
Name
Address
| Please print. FREEPOST - no stamp needed.

Sinclair Radionics Ltd, FREEPOST St. Ives,
Huntingdon, Cambs. PE174BR.

PRTENTE
 ㅁㅁ

BANISHING THE STEREO SEAT

Domestic stereo systems suffer from the disadvantage that a good stereo image is obtainable only at that part of the room where the axes of the two speakers intersect. Omni-directional speakers are less critical over listening position, but are unable to produce a truly firm stereo image anywhere in the world. In BP 1368070 Andrei Vladimirovich Borisenko, of Leningrad, has a proposal which could well enable a good solid stereo image to be obtained over a wide area of a listening room.

As the inventor points out, image localisation depends on the intensity of sound heard from each loudspeaker and the time at which it arrives at the listener's ears. As the listener varies his position in a room, so both the relative level heard at each ear and the relative arrival time sensed at each ear also varies. The proposal is to use acoustic focusing devices to ensure that the intensity and arrival time of sounds heard bv a listener are effectively constant over a wide area of the listening room.

As in conventional systems, two loudspeaker cabinets are used, each with three types of transducer (woofer, tweeter and midrange) are used. But two midrange units are arranged in each cabinet as a horizontal pair and they beam their sound into the room via a laminar acoustic lens. This takes the form of a number of vertical parallel plates, see Fig. 1.

The plates are made from wood or plastic, are arranged vertically, and are of varying length. When the listener stands at position X the plates have virtually no influence or effect on the sound waves from the mid-range speakers. But as the listener moves away from the position X towards one side, the nearest speaker's plates both diminish the level of sound to that ear and delay it in dependence on how close and thus how far off the axis of the plates he is standing.

Obviouslv, the dimensions and analing of the plates will be critical and the patent suggests that, with the speakers 2.4 metres apart, each should have between six and eiaht olates, set at 40 dearees to a straight line drawn between the speakers.

PHASE CONVERSION

Single phase supplies may be converted into multi-phase supplies either by using a single phase motor driving a multi-phase alternator or by phase shifting the single phase supply in advance and retard by passive networks.

In BP 1362195 Raymond Russe!! of Newcastle-upon-Tyne claims that accurate phase shift results may be obtained from simpler passive networks, than those usually recommended. He suggests taking as a starting point the observation that a single phase supply can be regarded as an unbalanced three phase system.
in Fig. 1 three identical arms are arranged in delta configuration. Each arm has a resistor R and a capacitive impedance Z_{c}. The reactive component X_{c}, of the impedance $Z_{\text {. }}$ is such that current leads voltage by 60 degrees. A single phase supply is connected across any two of the junction points 1, 2, 3 and the resulting three phase supply is taken off across the three star-connected windings T. The windings are connected between neutral point a and junction points, b, c, d between the resistors R and impedance Z.

The inventor specifies that it is essential to arrange for R to be equal in magnitude to the 60 degree capacitive impedance $Z_{\text {c }}$. A null method of achieving this is described by way of example. The first step is to take three nominally equal capacitors and, by putting trimmers in parallel with the two smallest, match them accurately with parallel resistors they are connected at Z in Fig. 2.
The next step is to provide, from a balanced three phase supply, three voltage outputs, V_{A}, V_{n} and V_{C}. This is achieved by connecting the supply to 1,2 and 3 via three adjustable load resistors arranged in star configuration, connecting voltmeters across points 1,$2 ; 2,3$ and 3,1 and adiusting the resistors to balance the system. Voltmeters V can then be located between a and b, c and σ, and null deflections obtained with trimmers, see Fig. 2. It is claimed that a very high order of accuracy can be achieved.

Fig. 1.

Ripallat SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

" Wee Morag

Sir-With regard to $\mathrm{Mr}_{\mathrm{r}} \mathrm{Parfitt}$'s letter January issue, I was astounded to discover that "wee Morag" from the local hamburger stall has at last made good, and is serving Boolean Breakfasts, incognito, in a Croydon hotel.
I met the lady under much the same unfortunate circumstances. I had occasion to ask her for "one hamburger with onion, and one without". Imagine my chagrin when I was served with one salt and one pepper, fone tomato ketchup and one bill for $45 p$, but no hamburger and certainly no onion.

I questioned Morag. inquiring as to the whereabouts of the food, only to be told, that, according to Boolean Algebra "hamburger and onion and hamburger and no onion, equals nothing", and was shown a truth table to verify that remarkable statement. The column of zeros at the end of the analysis somewhat overcame me. I must confess, and I was therefore too perplexed to see through the deception. Had I been less staggered, I would have pointed out that a hamburger is neither true nor false; it is instead merely present or absent: and that Boole is correct when his A's and B's are logical statements, and wrong when they are hamburgers and onions (or for that matter, eggs and bacon).

Alistair C. Thompson, Lanarkshire.

On the table

Sir-The fallacy lies in the use of $\mathrm{A}+\mathrm{A} \cdot \mathrm{B}=\mathrm{A}$ to describe Mr Parfitt's breakfast, see Readout, January issue. This equation is good only when A and B are independent events.

The breakfast choice was "egg or egg and bacon". The "egg and bacon" is really "bacon if and only if egg and bacon together", which is
not A.B (in Mr Parfitt's notation) but $\mathrm{B} \equiv \mathrm{A} . \mathrm{B}$. Thus we have to consider two breakfasts (mutually exclusive)
$\mathrm{Egg}(\mathrm{A})$ or
Egg and bacon ($\mathrm{B} \equiv \mathrm{A} . \mathrm{B}$)
in an enclosure or relationship.
Mr M. J. Hughes dealt with this in "Logic Tutor", Part 5 (P.E. Sept. 1973) and gives the equation $\mathrm{Q}=\mathrm{A} \overline{\mathbf{B}}+\mathrm{B} \overline{\mathbf{A}}$
with truth table

A	\mathbf{B}	\mathbf{Q}
0	$\mathbf{0}$	0
1	0	1
0	1	1
1	1	0

No one can say that some P.E. readers are guilty of not doing their homework.
C. F. Tozer, Dorset.

Misconception

Sir-There is a very simple answer to Mr Parfitt's problem (Readout, January 1975).
By applying his own brand of mathematical analysis, he should have seen that he had only to walk out of the hotel or walk out and pay his bill. He would then argue that both courses of action are equivalent to the first, and he would never notice that he had paid his bill in full.

To be mere serious, the apparent paradox comes from a misconception of the nature of Boolean variables. In the expression: $\mathrm{A}+$ $(A B)=A, " A$ " and " B " are statements which may be "true" or "false". The expression should be read "If A. or both A and B are true, then A is true."

When written in this manner the validity of the expression is patently obvious.

The paradox of the "Boolean bed and breakfast" arises because Mr Parfitt has thought of Boolean variables as objects instead of as statements.

I hope this letter may serve to clarify the thoughts of any non-mathematically-minded P.E. readers, especially those who run hotels, and have found unexpected losses on their December balance sheets.
J. Dickson,

Rochester, Kent.

Bacon and eggs

Sir,-One of the wonderful attractions of mathematics is how easily confusion can arise. Confusion is wonderful because it is the opposite to "Blue Peter": it can be resolved only by going into it more deeply, providing great pleasure and satisfaction.

In mathematics many different algebras use the same symbols for different meanings, + and . vary according to whether they are applied to numbers, vectors, matrices. sets, truth statements. switching circuits or whatever. Mathematicians deliberately introduce this joyous confusion in order that it should be resolved by comparing the different algebras. If this comparison is not done. you may as well have different symbols for each different algebra (as in O-level SET algebra which use U and ? instead. reducing the depth to superficial levels).
If we were in the algebra of numbers, then given
$A . B+A=A$
we could deduce $A . B=0$ by subtracting A from both sides or by adding - A to both sides. But in Boolean algebra, + does not mean number or quantity addition, and subtraction does not exist.

If comparison is not acceptable. the alternative is to put more depth into the Boolean algebra: + meaning "either one or other or both" and $"="$ also not being straightforward. In the eggs and bacon situation, the algebra should be interpreted as "Given Bacon and Eggs or Eggs, necessarily implies being given Eggs." The nearest to the number-A in Boolean algebra is \bar{A} meaning the opposite of A (no eggs or maybe the rest of the menu).

If $\frac{A}{A}$ is used the $A \cdot B+A=A$
which gives $0=0$
Translated this means that although the study of mathematics. or breakfasts or waitresses or managers can give $1 / 0$ pleasure, staying in hotels always leaves one penniless.
M. Everett.

Saltdean. Sussex.

PB. PRODUCTS LTD,

ELECTRONIC : SCIENTIFIC : INSTRUMENTS
57 HIGH STREET - SAFFRON WALDEN
Tolephone: Safiron Walden 22876

ESSEX CB10 2DP
Telex: 817201

FREE RESIST COATED CIRCUIT BOARD
For every order placed tor any of the products listed below. each order will receive a piece of fibre glass circuit board. approx. size 6 in \times gin. coated with negative resist
DRILLING MACHINES AND DAILL KITS
Specially designed for engineers lab workers, jewellers. engravers, sculptors, model makers and hobbyists. These powerful, low power, drilling machines are capable of drlling
holes up to 3 mm In diameter in any materiai. They will DRILL. SAW. GRIND. BURA. BRUSH AND POLISH.
Reliant Drill with 3 collets. 9.000 r.p.m. $£ 3.68$ (50p)
Reliant Drill Kit, 3 collets, 20 tools $£ 8 \cdot 34$ (97p)
Drlil Stand, used horizontally or vertically for
Drlil Stand, used horizontally or vertically for drilling, sawing, buffing, or as a minlature lathe for turning small components between centres f8. 34 (97 p)
 ([3. 22)

SOLDERLESS MODULAA BAEADBOARDS
These OEC breadboards are used throughout the world for making prototype and production working clrcuits. The patented contact allows components to be inserted over and over again without soldering
S DEC. Discrete components only Normaliy \&: 98 only $£ 1 \cdot 32$ (25p).
T DEC. Station for one integrated circuit normally $£ 3.63$ only $£ 2.43$ (39p)
U DEC A. Discrete and I.C. Components normally $\mathrm{C3}$. 99 only E2. 67 (40 p)
Each Deç. is boxed and has instructions. carriers, plưgs, coloured leads are also available
COPPER CLAD GLASS.FIBRE CIRCUIT BOARD
thin Single sided normally 85 p per sq . ft only 55 p per sq. 1t. (29p)
If in Single sided normally $£ 1.52$ per sq. ft . only 75 p per sq. ft. (31p).
RESIST COATED CIACUIT BOARD
Positive or negative resist, slngle or double sided copper clad fibre glass circuit board. State which required

Size			$\frac{1}{3} \frac{17}{17}$	5/64in or tin or $\frac{3}{3}$ in		1.00 mm or 119 mm or in paper	
inch		SS	OS	SS	DS	SS	DS
$3 \times$	4 in	6p	$7 p$	10p	12p	8 p	9p
$6 \times$	8 in	24p	25p	46 p	$48 p$	26p	27p
$8 \times$	10 in	40p	41p	78 p	80p	42p	43p
$12 \times$	12in	72p	73p	$98 p$	19.00	74p	75p

Please add 8% VAT and $20 p$ postage to all above orders.
Example positive or negative coaled $4 \times 3 \mathrm{in} 12 \mathrm{p}$ each + VAT \& cost $5 \times 5 \mathrm{in} 25 \mathrm{p}$ each + VAT \& post. Please quote if positive or negative coated and size Ferric chloride 5 litre etchant mix $£ 1 \cdot 50$ (35 p) Temperature controlled. alr agitated etching tank 585 . 00 (56.96)
Please add to the sum shown In brackets atter the price to cover the cos! of post and VAT.

SIPASNYIIIE MkII Electronic Ignition... Betteron all points
 The SPARKRITE MK. 2 is a full capacitive discharge electronic system,

Specifically designed to retain the points assembly - with all the advantages and none of the disadvantages. No misfire because contact breaker bounce is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high rpm. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of norm, thus avoiding arcing. But you can still revert to normal ignition if need be. In seconds. If points go (very unlikely) you can get replacements go (very unlikeiy) you can get
anvwhere. All these advantages.

- Fitted in 15 minutes. Up to 20% better fuel consumption. Instant all weather starting. Cleaner plugs - they last 5 times longer without attention. - Faster acceleration. Faster top speeds. - Coil and battery last longer. Efficient fuel burning with less air pollution. The kit comprises everything needed
Ready drilled scratch and rust resistant case, metalwork, cables, coil connectors, printed circuit board, top quality 5 year guaranteed transformer and components, full
Instructions to make positive or negative earth system, and 6 page installation instruction leaflet.
WE SAY IT IS THE BEST SYSTEM AT WE SAYIT IS
ANY PRICE
ANY PRICE
A

PRICES

D.I.Y. Kll only $\{10.93$ inci. Vat and

Ready Buili Unit $813-86$ incl VAT and P \& P
(Both to ht all cars with coll/distributor ignition up to 8 cylinders)
We can supply units for any petrol-engined vehicle (boat motoreycle etc) with coil/contact breaker ignition. Details on request. Calt in and see us for a demonstration

ELECTRONICS DESIGN ASSOCIATES
(Dept PE 2) 82 Bath Street
Walsall WS1 3DE Phone 33652
Please supply
Sparkrite Mk, 2 DI.V. Kit(s) at $£ 1093$ each incl VAT and P \& P (Will make pos or neg earth) Sparkrite Ready Built Neg. Earth Unit(s) at 13 . 86 each incl VAT and P \& P Sparkrite Ready Bullt Positive Earth Unit|s) at $\mathrm{C} 13 \cdot 86$ each incl VAT and P \& P
NAME
ADDRESS

PHONOSONICS

SOUND-TO-LIGMT (P.E. Apr./Aug. 71)
The ever-popular AURORA-4 or 8 channels each responding to a difrerent sound frequency and controlling its own light. Can be used with most audio systems and lamp intensities. A must for any Disco and a fascinating visual display for the home.

4 channel component set (excl. thyristors) 8 channel component set (excl. thyristors) Power supply component set
PC8 for 4 frequency channeis
PCB for power supply and 8 lamp drivers
$511 \cdot 49$
50.42 21.32
54.78 54.78
52.50
51.25

P.E. CCTV CAMERA
 Details in List

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume duping "talk-over"-particularly useful for Disco work, or for home-movie shows.
Component set, incl. PCB

P.E. GEMINI 30W STEREO AMPLIFIER

An exceptionally high quality Stereo Amplifier system specifications for which are shown in detail in our list together with semiconductor requirements. While stock "last.

Maln Amplifter:
Set of resistors. capacitors and presets
Stereo printed circuit board
re-Amplliter:
Sets of resistors, capacitors, potentiometers and switches-
Standerd Tolerance Set
Superior Tolerance Sel
Stereo PCB (as Published)
Regulated Power Supply:
Set of resistors, capacitors and preset
Printed circuit board
510.57
516.04
52.20
54.58
72 p

HI-FI TAPE LINK (P.E. Mar./Apr. 73)
Designed for use with reasonable quality tape decks, this high performance pre-amp includes record, playback and metering circults.

Stereo component set (excl. panei meter)
Mono component sel (excl. panel
ع22.05 Mono component set (excl. pat
Stereo main PCB
Stereo sub-assembly PCB

TAPE-NOISE LIMITER
Very effectlve circuit for reducing the hiss found in most tape recordings.
Component set (incl. PCB
Regulated power supply (including PCB)

PROJECT Q4 (P.W. Oct. 73/Jan. 74) Multi-aystem Quadraphonic Decoder.

Decoder component set Power supply components Printed circuit board

SEMICONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterpriging home constructor.
Set of resistors, capacitors, semiconductors. potentiometers, makaswitches and PCB

PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded music.

Component set (incl. PCB)
[2.20
PHASING CONTROL UNIT (P.E. Oct. 74)
(for use with above Phasing Unit)

P.E. SOUND SYNTHESISER

The well-acclaimed and highly versatile Synthesiser published in P.E. Feb. 1873 to Feb. 1974.
Component sets and printed circuit boards. List shows full details including discounts.
VOLTAGE CONTROLLED FILTER (P.E. Oct. 74) Component set Printed circuit board
$53 \cdot 41$

RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patterns from 8 effects circuits (high and low bongos, bass and snare drums, long and short brushes. blocks and cymbal), and with variable time signatures. See list for discount.

Tompo, Timing and Loglc Clicult
Component set (excl. switches
Double-sided PCB for above
18.25

Mixer, Preamp and Efrects Circulis
Printed circuit board
Montior Amplifler
Component set and PCB
Power Supply
Component set and PCB

ULTRASONIC TRANSMITTER-RECEIVER

A highly sensitive and long range "invisible beam" detection circuit with numerous applications.

Component set with PCBs, but excluding transducers
54.40
P.E. RONDO

PCB details in List
POWER SLAVES
P.E. ELECTRONIC PIANO HOME INTERCOM Detalls in List

Detaila in List

SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper, tremolo. voice operated fader automatic fader and frequency doubler

Component set
Printed circuit board
6. 56
55.8

REVERBERATION UNIT (P.W. Nov./Dec. 72
A high-quality unit having microphone and line Input pre-amps, and providing full control over reverberation level.

Component set (excl. spring unit)
Printed circuit board
56.44

P.E. MINISONIC Details in list (inc. discounts)

8W AMPLIFIER (P.W. Nov. 72)
A moderately powered smplifier of more than average performance. (While stocks last.)

Maln Amplifier

Mono component set
Stereo component sat
Mono printed circuit board
rono
ono component set
Stereo component set
Stereo printed circuit board \quad E8.46
Compronent
23.90

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that. with the use of other externa equipment. can serve as lie detector, alphaphone. cardiophone. etc.
Pra-Ampilfier Module
Component set and PCB
[3. 48
Basic Oufput Clrculte
Combined component set with PCBs. for alphaphone, cardiophone, frequency meter and visual ood-back lamp driver circuits
adio Amplifier module
[5.65 Type PC?

PHOTOPRINT PROCESS CONTROL

(P.E. Jan./Feb. 72)

For colour and B. \& W. an indispensable dark-room unit or finding exposure. controliing enlarger timing, and stabilksing mains voltage.

Component set (excl. meter)
Printed circuit board

ENLARGER EXPOSURE METER AND
THERMOMETER (P.E. Sept. 73)
Dusl-purpose dark-room unit with good accuracy.
Component set with PCB, but excluding meter \quad [4.00
WIND AND RAIN UNIT (P.E. Oct. 73)
A manually controlled unit for producing the above-named sounds.

PC ETCHING KIT

 Contains llb ferric chloride, 100 sq ins copper clad board, DALO etch RESISTORS and CAPACITORS 500 asstd. resistors $\$ 1 \cdot 40,2500$ 45, 15 diferent trimmers, air-spaced and compression upro 250 pF El

VEROBOARD
100 sa ins assorted sizes and pirches.
about 8 bits 61.10 . about 8 bits $\& 1 \cdot 10$.

8 PIN DIL 741's FULL SPEC. OF COURSE $10+26 p \quad 25+23 p$ $100+21 p 250+20 p$
 ferric chloride

Anhydrous technical quality in 116 double sealed packs. 11680 p , 316 61.65, 1016 E4.45, 1001 b 635.
P.O. AMPLIFIER UNIT Contained in steel case $5 \frac{1}{2} \times 5 \times 3 \frac{7}{}^{*}$ are $2 \times$ GETH1 6 transistors on heat
 With circuit El .

SEMICONDUCTORS
All new full spec devices; AC127 ACI 28 ACI76ACI77 ACI 187 AC188

 N4D: $800 \mathrm{~V}^{\circ}$; 1 N 40048 P . ${ }^{1} 400$ 10p; 400V 6A triac $\mathcal{E} 1$.

TIG BARGAIN PARCELS Hundreds of new componentspots, resistors, capacitors, switches, All prices inclut Vaules
Cobrer include VAT and postage, SAE list, enquiries.
GREENWELD ELECTRONICS (PE3)
Head office, mailoorder dept, Wholesale/Retail shop: 51 SHIRLEY PARK
RD., SOUTHAMPTON SOI 4FX, Tal. (0703) 772501. Also callers RD., SOUTHAMPTON SOI 4FX, Tal. (0703) 772501. Also callers
welcome at 21 Deptiord Broadway SEs, Tel, 01.6922009 and 38 Lowor Addiscombe Rd., Croydon. Tel. 01.6882980.
plus PC boards with transistors and diodes. Also loads of odds and ends. Contents always changing as new
soods come in. Amazing value at goods
EL .30 .

COMPUTER PANELS Always thousands in stock, all sizes,
 12 high quality panels with power transistors, (C's, trimpots etc $\mathbf{6 2 \cdot 5 0}$. Pack containing about 500 components including at least 50 transistors
95 . Pack of boards with 50 i4 pin 95p. Pack of boar
DIL DTLIC's $C 1$.

TRANSFORMERS

All mains primary, 6-0-6V (3) 100 mA 85p;9-0.9V @ $100 \mathrm{~mA} 90 \mathrm{p}: 12-0-12 \mathrm{~V}$ (9) $100 \mathrm{~mA} 95 \mathrm{p}: 16-0-16 \mathrm{~V}$ with 9 V tap (3) $1+\mathrm{A}, 62 ; 24-0,24 \mathrm{~V}$ @ 500 mA \& $1.85 ;$
$3,4,5,6,8,9,10,12,15,18,20,24$, 30 V © A A C1.45: The following are
 5A 64.

MULTIMETERS
LT101; 0-10-50-250-1000V AC \& DC, $0-1-100 \mathrm{~mA} D \mathrm{DC}^{0-150 \mathrm{~K}} \mathrm{~B}$ Only 63.60.1T12: 20,000 0/VO' 0-5.25-50-
$250-500-2500 \mathrm{~V}$ OC, $0=10-50-100-500-$ $\begin{array}{ll}250-500-2500, & 0.50 \mu A-20-5-250 \mathrm{~mA}, \\ 1000 \mathrm{~V} \\ \mathrm{AC}\end{array}$ $0-60 \mathrm{k}-6 \mathrm{MAR} . \quad-20$ to +22 dB . Pro - $60 \mathrm{k}-6 \mathrm{Mn}$. -20 to
tected meter movement $\mathbf{~ K . 6 . 2 0 . ~}$ Computer equipment: Ampex TM2 a track \ddagger^{*} tape decks $\mathrm{E27}$ (Callers only). Also paper tape punches, readers, etc.

POWER SUPPLIES

G101. Contains mains transformer, Will thermal cut-out and bridge rect. extra capacitors (provided) $\mathbf{\& 1} \cdot \mathbf{2 0}$. Glo2. These are stabilized power supplies giving $7 \frac{1}{2} V$ (3) 225 mA . Voltage can be altered by changing zener. Not working, but only minor laules \&1.
. 01.6922009 and 38 Lower

Dimmit

range of light dimmers and lighting control systems

Illustrated is the popular PMSD1000 module. A 1000 W professional quality dimmer, linear operation. interference suppressed, 60 mm slider range. size $12 \times 5 \times 4 \mathrm{~cm}$. Ideal for low cost stage and disco lighting. Used by schools, theatres, studio, etc. Complete with scale plate. fixing screws and full instructions. $£ 7 \cdot 25$ inc. VAT and P. \& P

Illustrated is the DD61 dimmer system
Contains: six 1000 W slider dimmers type PD1000 six outlet sockets. a master control and a mains on oft switch. Size $59 \times 22 \times 12 \mathrm{~cm}$. A complete system in one unit for stage or disco lighting, etc. Other systems avaliable with 1000 W or 2000 W dimmers with 2 -preset and master controls.

The Dimmit range includes standard wall mounting models for home and office, etc. Professional modules for industrial heating applications etc. Rotary and slider control versions. Ratings: 1000 W $2000 \mathrm{~W} ; 3000 \mathrm{~W} ; 110 \mathrm{~V}$ and 240 V .

Model SL800 sound to light converter. Modulates the light in time with sound. Buift in microphone. Just place unit near any sound source -radio, hi-fi, TV, human voice, etc. No connections to speaker required simple wiring-similar to dimmer. Rating 800 W . Complete with full instructions.

For full information on all modules and lighting control systems send $15 p$ for our illustrated catalogue and price list. Personal callers welcome, visit our showroom for a demonstration of any of the modules or systems.

SUPERSOUND 13 HI-FI MONO components throughout. components
5
Sillcon
trangiators plum 2 power out put plus 2 power out transutatorsin pueh-pull. transiatorsin push-pull. tion. Output approx. 13 Watts r.m.s. into response 12Hz z. 30 KHz
rey +esponse 12Hz. 30KHz
\pm db. Fully Integrated pre-amplifier stage wilh
stage Treble cut controls. Buitable for 8 -15 ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full output. gupplled ready built and tested, with knobs, escutcheon panel, input and output

DE LUXE STEREO AMPLIFIER
 $\xrightarrow{\text { A.C. }}$ maing heavy duty
fully isole fully isols-
ted mains transform er with full
wave recti-
fication fication
giving adeValve line-up:-2 \times ECL86 Triode Pentodes. $1 \times$ EZ 1×0 as rectifier. Two dusl potentiometers are provided for cut. Adual volume control is used. Balance of the left and right hand channels can be adjusted by means of a sepa. rate 'Balance' control fitted at the rear of the chassis. Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watte per channel (8 watts mono), fitto 3 ohm speakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Supplled complete with knobs, chassis size
$11^{\prime \prime} w \times 4^{* d}$. Overall height including valves $5^{\prime \prime}$. Ready built and tested to a highstandard. \&io.75, P. \& P. 500°. YUWEK SUPRLY UNIT 200/240v, AC. input. Four switched fully smoothed D.C. output
if v. and 9 v . and 12 v . at 1 amp on lead.
Fitted insulated output terminalia and pilo: lamp indicator Hammer finimin metal case overall size $6^{\circ} \times 3 y^{\prime} \times 21^{\prime \prime}$.
Suitable for Trantistor Rarlios, Tane Hecorders, Ampli fiers etc. etc. Ready
built and tested. VYNAIR \& REXINE SPEAKERS \& CABINET FAERICS epp. 54 in , wide. Our price $£ 1.30 \mathrm{yd}$, length, P. \& P. 16 p per 5 d (min . 1•yd.). S.A.E. for samples.
$\frac{\text { per } y d . \text { min. }}{\text { HARVERSON'S SUPER MONO AMPLIFIER }}$ A super quality gramamplifler using a double wound fully solated mains transf ormer, rectifer and ECL82 triode stage. Impedance 3 ohms. Output approx. 3.5 watts. Volume and tone controls. Chassis appeonly 7 in . Wide $\times 3 i n$. deep $\times 6$ in. high overall. AC mains $200 / 240 \mathrm{v}$.
gupplied absolutely Brand New completely wiret and Supplied absolutely brand New completely wired and FEW ONLY. High grade maing transformer with grain orjentated lamination. Prinary $200 / 240$. Secondary
18.5 volta at 0.6 mmps and 4.6 volta at 0.3 amps. Size 18.5 volts at 0.6 amps and 4.6 volth at 0.3 amps. Size
2 in . long $\times 2 \mathrm{in}$. wide $\times 2 \mathrm{in}$. deep overall. \&1.35 plus

BRAND NEW KULTI-RATIO MAINS TRANSFORMERE. Giving 13 alternatives. Priniary : 0-210-240\% secondary combinations $0-5-10$ 15-20-25-30-35-40-60v haif wave at 1 anip. or $10-0-10,20-0-20,30-0-30 \mathrm{~s}$, at
2 ampa fulla wave. Slze 3 in . long $\times 34 \mathrm{in}$. wide $\times 3 \mathrm{in}$. deep. Price $£ 2$-60. P. \& P. 40 p .
MAINS TRANBFORMER. For transistor power supplies.
Pro. 200/ 240 v . Sec. $9-0-9$ at 500 mA . \&1.25. P. \& P. 25 p . Pro. 200/240v. Sec. 9-0-9 at 500 mA . $21 \cdot 25$. P. \& P. 25 p.
Pri. 200/240v. Sec. 12-0-12 at 1 amp . $21 \cdot 40$. P. \& P. 26 p . Pri. 200/240v. Sec. $10-0-10$ at 2 amp . 22.00 . P. \& P. 38 p S,VOLT RELAY. $100 \mathrm{~m} / \mathrm{a}$ single pole normally closed.

GENERAL PURPOSE EIGE STABILITY

For P.U. Tape, Mike, Guitar, etc and su
For P.U. Tape, Mike, Guitar, etc. and suitable for battery or from H.T line $200 / 300 \mathrm{w}$. Frequency regponse 15 dian $^{\prime 2} \times 1 t^{\prime \prime} \times 4^{*}$ 26dB. Solid encap-
 HANDBOOK OF TRANSISTOR EQUIVS. AND SUBS. A must for servicennen and home constructors. Including many 1000 's of British, U.S.A. European and Japsnese
ransistors. ONLY 40 p . Post 5 p . Referance Encyclopedias lor El
8 Reference Encyclopedias Ior Electronic Engineers and Dosigners, covering between them transiator characteristic, dlode and transistor equivasent
of up to date European types listed.
Diode Equivalenty 90 p. Transistor Equivalents 21 Trandistor Charactorintica $\$ 1-30$. POST FREE
All three together $£ 3$.
NEW IS8UE
Thyristor, Triac, Dlace etc. encyclopedias \&1. Post Free. 8 pole 3 way 2 bank low loss Yaxiey type switcbes 1$]^{\prime \prime}$

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER

Enjoy Fabulous Stereo Radio at this Low Introductory Price! Designed and styled to match our $10+10$ ampliffer but will suit any other standard atereo amplitler. The design incorporates the very lateat circuitry techniques with high-grait, low noise if stages. prevent drift. IC stereo decoder for maximum stereo separation. I.E.D. for stereo beacon indicator. Nominal output of tuner 100 mV . Approximate size 121 in wide \times sin deep by 2 in high. Supplied ready buitt, fully tented and fully guaranteed (not avaiable in kit iorm) Price $\mathbf{2 3} \mathbf{2 0 0}$. Post and Packing 50 p. STEREO-DECODER SIZE $\mathbf{2}^{\prime \prime} \times 3^{\prime \prime} \times \frac{1}{2^{\prime \prime}}$ Ready built. Pre-aligned and teated-
Sens. 20.560 my for 9.16 V neg. earth operation. Car be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if reyuired. Full detalls and in-
atructions (incluaive of hintsand tipa) atructions (inclusive of hints and tips)
aupplied. \&5 plus $10 \mathrm{P} P$. \& P.
 supplied. ea plus $10 \mathrm{p} P$. \& P
Stereo beacon light it required 40 p
LATEST EI SENSITIVITY UNI-DIRECTIONAL SLIMLINE CONDENSER MICROPHONE as lised by many professionals. Yery low acoustic feedback. A wable impedance or low impedance. State which requirel.
£13.50. P. \& P. 25 p.
LATEST ACOS GP91/1SC nono compatible cartridge with t/o atylus for LP/EP/78. Universal mounting bracket. C1.46. P. \& P. 15p. brackets and turnover stylus. 70 inV per channel out put
 T/O stylus Dlamond Stereo LP and Sapphire 78 .
ONLY 82.27 . P. \& P. 10 p . Also available fited with tw in Diamond T/O stylus for Stereo LP. E2.76. P. \& P. 15 p .
LATEST RONETTE T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78. \&1.80. P. \& P. 15 p . LATEST RONETTE T/C MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or stereo records on mono equipment. Only 21 -47. P. \& P. 15p.
QUALITY RECORD PLAYER AMPLIFIER ME. II A top quality record player amplifier employing hesvy
duty double wound mains transformer. ECC83, EL84, duty double wound mains transormer. ECC83, EL84,
and rectiffer. Separate Basi, Treble and Volume controls. and rectifier. Separate Bass, Treble and Volume controls.
Complete with output transformer matched for 3 ohm speaker. Size 7 in wide $\times 3$ in deep $\times 6$ in high. Ready speaker. size 7 . wide \times in deep \times. \times in h
built and tested. ALSO AVAILABLE mounted on board with outp t
transformer and apeaker. PRICE $£ 6 \cdot 70 . P$ \& P. 60 p .

HI-FI LOUDSPEAKER SYSTEM MkII

Beautifully made simulated teak finish enclosure now *ith most attractive slatted front. Size $161^{\prime \prime}$ high \times Magnet $13^{\prime \prime} \times 8^{\prime \prime}$ bass unit, H.F. tweeter unit and Magnet $13^{\prime \prime} \times 8^{\prime \prime}$ bass unit, H.F. tweeter unit and
crossover (approx). AVAILABLE IN NOMINAL 4 ohm, 8 ohm or 16 ohm impedance (state which).
OUR PRICE 99.50 each. Carr. 90p. Cabinat Available Separstely £5.00. Carr. 90p. Also avaikable in 8 ohms with EMI $13^{*} \times 8^{*}$ hass LOUDSPEAKER BARGAINS
 $8 \times 5 i n, 3$ ohm with high dur niagnet $11.70, \mathrm{P}$. \& $\mathbf{P}, 20 \mathrm{p}$ E.M.I. 13\} $\times 8$ in. with high flux ceramic magnet with parasitic tweeter 3.8 or 15 ohm $43.50, P$. $P, 30$ p. E.M.L. crosser Approx. 3 ** A vailable E.M.I.tweeter. Appr
£1.25 $+20 \mathrm{p}, \mathrm{P} . \& \mathrm{P}$.

BRAND NEW. Bakers Loudspeakers at antstential dis. counts. 12 in . $15 \mathrm{w}, \mathrm{H} / \mathrm{D}$ Speakers, 3, 8 or 15 ohms. State which. Current production by well-known British maket. Now wlth Hîlux ceramic ferrobar magnet
assembly 87.50 . Guitar models: 25 w .27 .50 .35 w . fB .50 . assembly 47.50
P. \& P. 45 p.
"POLY PLANAR" WAFER-TYPE, WIDE EANGE ELECTRO-DYNAMIC SPEAKER
Size $114^{\prime \prime} \times 14 \sharp^{\prime \prime} \times 1{ }^{\prime}{ }^{\prime \prime}$ deep. Weight 190z. Power handling 20 W r.m.s. (40 W peak). I mpedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can he mounted on ceilings, walls, doors, under tables, etc., and used with or without baffle. send S.A.E. for details. Only 8B-60 each. P. \&P. 34 p .
NOW ALSO AVAILABLE 8in. 10 W rma 20 W peak $40 \mathrm{~Hz}-20,000 \mathrm{~Hz}$. Overall depth lin . Ideal for $\mathrm{Hi}+\mathrm{Fi}$ or $\underset{\text { for use in cars, }}{40 \mathrm{~Hz}-20,000 \mathrm{~Hz} .32,13 \text { verall denth } 1 \mathrm{i}}$

SPECLAL BARGAIT OFFER
Limited number of B8R C123 Auto Changer De Luxe with lightweight tubular arm and stereo cartridge. rand new ONLY $68.00+$ p. \& p. 60p
HARVERSONIC SUPER SOUND $10+10$ STEREO AMPLIFIER KIT

A really first-class Hi•Fi Stereo Amplifier Kit. Uses 14 transistors including silicon Transistors in the fret five stages on each channel resulting in even lower noise level with improved sensitivity. Integrated pre-amp with wass, Treble ande or Crystal cartridges. Very gimple to with Ceramic or Crystal cartidges, Outputstage for any speakers fron 8 to 15 ohms, Compact design, all parts supplied including drilled metal work high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, aolder, nuta, boits-no extras to buy, Simple step by step instructions enable any constructor to bulld an amplifier to be proud of. Brief apecifcationa: Power output: 15 watts r.m.s. per chanmen Seneitivity: better quency response $t=3 \mathrm{~dB}$. Full power bandwidth: $\mathbf{t} \mathbf{3 d \mathrm { dB }}$ $12-15,000 \mathrm{~Hz}$. Hass, boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx, to -16 dB . Negative feedback 18 dB nain amp. Power requirements
Overall Slze $12^{\prime *} \mathrm{w}, \times 8^{-} \mathrm{d}, \times 22^{\prime \prime} \mathrm{h}$.
Fully detailed 7 page construction manual and parts list free with kit or send 18p.plus large 8. A.E.
AMPLIFIER KIT
$\begin{array}{lll}\text { Magnetic input components } 33 \mathrm{p} \text { extrs) } \\ \text { POWRR PACK KIT } & \text { \& } 4.32 & \text { P. \& P. } 40 \mathrm{p}\end{array}$ CABINET
(Port Free if all units purchased at same time)
(Post Free if a all units purchased at same thime)
Full after sales service Also available ready built and tested $\$ 28.08$. Post Free Note: The above amplifer is suitable for feeding tecks, etc. and willthen pronide mixing and fading faclities for med ium powered Hi-Fi Discotheque wse, ele.

3-VALVE AUDIO
AMPLIFIER HA34 ME Lf. Designed for Hi-Fi reproduc-
tion of records. A.C. Malns tion of records. A.C. Mains
operatior. Ready built on operatior. Ready buit on plated avy gauge meta $41^{\prime} \mathrm{h}$. rporates ECC83. duty, double wound meavy transformer and output mans former matched for 3 ohm seaker. Separate volume control and now with improved wide range tone controls giving bass and treble lift and cut. Negative reedback line. Output 4, Watts. Front panerting of cole wired and tested for only $£ 6 \cdot 50$. P. \& P. 45 p
HSL "FOUR" AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely different and advanced
\mathbf{P}. $\&$ P. 45 p
$10 / 14$ WATT HI-F AMPLIFIER KIT A stylishly finished monaural amplifer with an output of
14 watts from 2 ELSAa in push-pull Super reproduction Super reproductind
of both music and speech. with negli. gible hum. Separate inputs for mike and gram allow record and announcements
 Fuily Fully ahrouded aection wound output transformer to inatch $3-15$ a apeaker and 2 independent volume controle
and separate base and treble controls are provided and separate base and treble controls are provided
giving good lift and cut. Valvellne-up 2 EL84s, ECC83, giving good lift and cut. Yale simple inatruction booklet $15 \mathrm{p} \times$ AAE (Free with parts). All parts sold separately. ONLY \&10.25. P. \& P. 60 p. Also avallable ready bullt and
tested $214-00$. P. \& P. 70 p .

HI-FI STEREO HEADPHONES

Adjuatable headband with comfortable flexifoam ear muffs. Wired and fitted with standard atereo fin jack
plug. Frequency response $30-\mathbf{1 5}, 000 \mathrm{~Hz}$. Matching impedance $8-16$ ohms. Easlly converted for Mono. PRICE \$3.50. P. \& P. 25 p.

PRICES INCLUDE VAT

Closed Wednesday.
Prices and specifications correct
at time of press. Subject to
(Dept. P.E.) I70 HIGH ST., MERTON, LONDON, S.W. 19 Tel. : $01-5403985$
A few minules from South Wimbledon Tube Slation
(Please write clearly)
PLEASE NOTE : P. \& P. CHARGE8 QUOTED APPLY TO U.K. ONLI. P. P P OF OVERSEAS ORDERS
CHARGED EXTRA.

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE

 TUNING (6 Position)('WW' JUNE '73)
Exclusive Designer Approved Kits
What are the important features to iook for in an FM tuner kit? Naturally it must have an attractive appearance when buitt, but it must also embody the atest and best in circuit desion such as:-
MOSFET front end for excelfent cross modulation periormance and low noise.
GANG turng lo high selectivit
CERAMAP tuning diodes in back to back configuration for low distortion
NTEGRATED circult IF amplifiers for rellability and excellent Ilmiting/AM rejection
PHASE LOCKED Stereo decoder with Stereo mute, see below LED Ine funing indicators
PUSH BUTTON tuning (with AFC disable) over the FM band (88-104) CASTABILISED and S/C protected power supply.
CABINET double veneered against warp.
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many Typ. Specn: 20 dB quieting $0.75 u \mathrm{~V}$. Image rejection $-70 \mathrm{~dB} . \mathrm{I}$. R. Rejection -85 dB .

Basic tuner module prices sfart as low as $\mathbf{5 1 2 . 3 1}$, with complete kits starting at $\mathbf{£ 2 6 . 9 5}$ (mono) P.P. 65p, and of course all components are available separately

Our low cost alignment service is avallable to customers without access to a signal generator special tow prices for complete kits, All our lists which details all of the many options and PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. SE .
distortion P.L. decoder available. THD typlcally 0.05% (at Nel son. Sept. '70). Still the lowes distortion P.L. decoder avallable. THD typically 0.05% (at Nelson-Jones Tuner O/P level) Price $£ 7.02$ when bought with a complete N-J tuner kit or $\mathbf{£ 8} \mathbf{8} \mathbf{2 9}$ if bought separately (P.P. 21 p) PLEASE NOTE, Existing tuners are readily convertible and kits/parts are availabie for this urpose
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan designer approved Texan kits are available at $£ 30 \cdot 7$

NEW LOW COST STEREO TUNER Avaiable as basic or complete ktis

Basic stereo tuner £i5 post free Basic mono tuner £12 post tree integral pots $\mathbf{E 2}^{2} 92$.

TYP, SPECIFICATION $\mu \mathrm{V}$ for 30dB S/N
mage rejection 40 dB
F rejection 65dE

Po alignmentrich Push button tuning (6 position) with Interstation Mute, restricted range AFC, slngle LED Complete with ic regulated PSU decoder, and complete metalwork and veneered cabinet. $\mathrm{N}-\mathrm{J}$ Tuner.)
Access PRICE Complete stereo kit $£ 28 \cdot \mathbf{4 2}$ Complete mono kit $£ 24$ - 19 P. \& P. 65p

CATALOGUE/LIST FREE SEND S.A.E

 LEDS. 209 STYLE.NO CLIP. L4P ea TIL209 RED LED \& CLIP I7P ea BIG \& $"$ RED LED \& CLIP 18P ea ORANGE \& GREEN LEDS:
MINI 25P ea.BIG \& CLIP 33P ea INFRA RED LED $\{1.2$ N5 77733 P .

DIGITAL ELDCh
 MOS INTEGRATED CIRCUITS.

 AYS 12244 DIGIT CLOCK supplied with 14 pin socket data $£ 4.25$ M $\times 15311 / 146$ DIGIT CLOCK with28 pir socket \& data $£ 7.50$ 3 LDIGIT DVM AY53500 $\quad \$ 7.50$

CASSETTE mechanics 812.50 STEREO CASSETTE MECHANISM. As used in imported types costing $\{100$, Only requires a case \& electronics.Heads
supplied. Send for data 15 p

CUSTOM CABINETS

331 High Street, Rochester, Kent. Tel: Medway (0634) 404199

SPEAKER CABINETS IN HUGESAVINGS

$2^{\prime} \times 12^{\prime \prime}$ Cabinet

Disco Console (includes lid not shown) Takes two slaves

For a long time now a large number of customers have asked us to produce cabinets in kit form, and above we show examples of cabinet styles and these are now available either fully built or in kit form ready for you to produce a professional finish in a very short time I
Kits are available in all specifications and all the kits contain everything you need as follows :-

1) 4 sides with handle cutouts, front edges rounded, 1 back with jack socket hole, and1 baffleboard with speaker cutout
2) P.V.C. cut to size for frame and back, plus false front and back timbers, white front piping and speaker cloth
3) Recessed handles with fixing screws, jack socket, all fixing screws, corner plates, glue, and full instructions !

PRICE \& TYPE LIST

Type	Size	Price manufactured	Kit price
$2 \times 12{ }^{\prime \prime}$ (illustrated above)	$36^{\prime \prime} \times 18^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£21.45	£13.75
$4 \times 12^{\prime \prime}$ (illustrated above)	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£26.95	£19.25
$4 \times 12^{\prime \prime}$ P.A. Column	$48^{\prime \prime} \times 27^{\prime \prime} \times 13^{\prime \prime} \times$ 是	£33.00	£23.65
$1 \times 18^{\prime \prime}$	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{3}$	£26.95	£19.25
	$36^{\prime \prime} \times 20^{\prime \prime} \times 13^{\prime \prime} \times{ }^{\frac{3}{4}}$	£23. 10	£14.85

SPECIAL ANNOUNCEMENT

Owing to difficulties in obtaining raw materials and labour we apologise for any inconvenience caused to our customers.

* 100w RMS slave amp for Disco
* 100w RMS continuous sine wave output
* Short and open circuit protection
* Built to highest industrial spec.
* Price $£ 42.00$ complete

* Stereo studio disco mixer
* Full PFL and Monitor facilities
* As used by John Peel, Mark Wesley. Paul Burnett, DLT, Dave Christian, Tony Prince
* Price E120.00

ERC 100w power amplifier

* Electrolytic capacitors and second generation ICs
* Fully protected against short or open circuit
* Less than 0.1% distortion at all powers
* Rise time 4muS-stability-

Unconditional Price £66.50

ALL OUR PRICES INCLUDE VAT AND UK DELIVERY

Disco imp projector 150 watt tungsten unbeatable price
Includes liquid wheel and postage
Normally sold between £24-£27 • 50
OUR PRICE £19•75

TRADE AND EXPORT ENQUIRIES WELCOME

12in LONG PERSISTENCE CRT. FUl spec. Price re- 50 to include V.A.t. and Carrisge.
MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUA NEW LOW PRICED SOLID STATE SWITCH. 2 Hz to connzect to your acops bolt batiery and connect to your scops and have two cased. not callbrated
WIDE RAMGE WOBBULATOR. 5MHz to 150MHz up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, recelvers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V All this for ONLY EE.75, P \& P. 25 p. (Not cased, not calibrated.
204 y to 200 kHz WB, SINE and SQUARE GENERATOR. Four ranges Independent amplitude controls, thermistor stablilsed each. P \& P. 25p. (Not cased, not calibrated.)

GRATICULES $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic $15 p$ each. $P \& P 5 p$

Large quantity of good quality com WO OHEN 31b of ELECTRONIC GOODIES for E1.50. Post paid

ROTARY SWITCH PACK-6 brand new swliches (1 ceramic: 1 off 4 pole. 2 wly.
etc.). $50 \mathrm{p}, \mathrm{P}$ \& P. 20 p.
P.C.B. PACKS. S \& D. Quantity 2 sq. 1 no tiny pieces. 50p, P \& P 20p
CAPACITOR PACK-50 brand new components, only 50p, P. \& P. 20p
TAIMMER PACK. 2 twin 50/200pF Ceramic. 2 twin 10/60pF ceramic; 2 mi spaced preset $30 / 100 \mathrm{pF}$ on ceramic base ALL BRANO NEW. $25 p$ the lot. P. \& P 10p.
PHOTOCELL equ. OCP71. 13p each
MULLARD OCP70, 10p each

DELIVERED TO YOUR DOOR, 1CwI of Electronic Scrap chasale. board etc. No rubbish. FOR ONLY E4.

MODEAN TELEPMONES. TYOQ 708. TwO one grey, EJ .75 bach Two-ton graen \&3-75 each Black £3.75 each. P. \& P. 35p deal EXTENSION TELEPHONES with standerd GPO type dial, belf and laad coding, 51.75 each, P AP. 35 p
MANDSETS. Complete with 2 Inserts and ad. $75 p$ each, P. \& P. 37p.
DIALS. ONLY 75p each. P. \& 25 p. HIGH VALUE-PRINTED BOARO PACK Hundreds of components. transistors.
atc. -No 2 boards the same No shor atc.-No 2 boards the same. No sho £1-75, post psid. GEEHIVE TRIMMER $3 / 30 \mathrm{pF}$. Brand now Oty $1-9$ 13p each, P \& P. $15 p ; 10-9910 p$ each.

HE CAYSTAL DRIVE UNIT. 191 In rack nount. Standerd 240 V input with supert cryatal oven by Labgear (no crystals) \& seh. Cerr. $\varepsilon 2$
,000pF FEED THRU CAPACITOAS. Only sold in packe of $10,30 \mathrm{p}$, P. \& P. 10 p .
ALWAY8 SOME CHEAP SCOPES AVAIL日LE-or bulid your awn. Send for our ube list with a S.A.E

G
 GIRO NO. 331 7056. Access äccepted.
 C.W.O. oniy. $\mathrm{F}_{\text {\& }}$ \& \mathbf{P}. 10 p on orders below $\mathbf{C 5}$ Export Order enquiries welsome (VAT (fee) Official Orders acceated from
 Educational \& Governmene Departments ALLPRICES INCLUDE VAT AT 8%

MULLARDPOLYESTER CAPACITORS C280 SERIES
250 VF . C. Mounting $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3 \frac{31}{2} \mathrm{p}$. $0.068 \mu \mathrm{~F}$

MULLARD POLYESTER CAPACITORS C296 SERIE
$400 \mathrm{~V}, 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \mathrm{ip}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{ip}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4$ ip. $0.15 \mu \mathrm{~F}, 61 \mathrm{p}$. $0.22 \mu \mathrm{~F}$

 0.22μ F, $5 \frac{1}{3}$ p. $0.33 \mu \mathrm{~F}, 6 \frac{1}{3}$ p. $0.47 \mu \mathrm{~F}, 8 \frac{1}{\frac{1}{2} p} .0 .68 \mu \mathrm{~F}, 12 \mathrm{p} .1 \mu \mathrm{~F}, 14 \mathrm{p}$ MINIATURECERAMIC PLATE CAPACITORS
$50 \mathrm{~V}:$ (p F) $22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$
$560,680,820,1 K, 1 K 5,2 K 2,3 K 3,4 K, 6 K B,(1 F) 0,01,0,015,0,022$ 260, 680, $220,1 \mathrm{~K}, 1 \mathrm{KS}$. $2 \mathrm{K2}, 3 \mathrm{~K} 3,4 \mathrm{~K} 7,6 \mathrm{~K} 8$, ($\mu \mathrm{F}$) $0.01,0.015,0.022,0.033,0.047$ 2ip.
POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$
(pF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$,
$4700,6800,10,000,43 \mathrm{p}$,

SPECIAL RESISTOR KITS (Prices include post \& packing)
$10 E 12 \pm$ W KIT: 10 of each E12 value. 22 ohms-IM. a total of 570 (CARBON FILM 5%), $\mathbf{5 3 . 5 8 \text { ne }}$ 10E12 $\frac{1}{2}$ W KIT = 10 of each EI2 value, 22 ohms-IM, a totai of 570 (CARBON FILM 5%), 63.77 net $25 E 12 \mathrm{fW}$ KIT: 25 of each E12 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5%), $\mathbf{8 8}$. 19 net $25 E 12 \frac{1}{2}$ W KIT: 25 of each EI2 value, 22 ohms-iM, a rotal of 1425 (CARBON FILM 5\%), 68.28 net $5 E 12 \frac{1}{2}$ W KIT: 5 of each EI2 value, 10 ohms-IM, a total of 305 (METAL FILM 5%). 62.80 net Due to current world shortages, resistor kits may contain some wattage and value substitutions.
B. H. COMPONENT FACTORS LTD.

MULTIMETER U432
22 Ranges plus AF/IF Oscilla
de- 0.5 a 1000 V
Vac- $2.5-1000 \mathrm{~V}$ in 7 ranges Ide- $0.05-500 \mathrm{~mA}$ in 5 range Resistance- $5 \Omega-1 M \Omega$ in 4 ranges.
Accuracy- 5% of F.S.D
OSCILLATOR-I
OSCILLATOR-I KHz and $465 \mathrm{KHz}(A, M$) at approx
Size- $160 \times 97 \times 40 \mathrm{~mm}$. Supplied comple 40 mm
carrying
PRICE E8. 30 net P. \& P. 25 p

3 Ranges. MULTIMETER U4324
34 Ranges. High sensitivity.
$20.000 \mathrm{n} / \mathrm{Volt}$. Overload protected
V de- $0.6-1200 \mathrm{~V}$ in 9 ranges
$\mathrm{Vac}-3-900 \mathrm{~V}$ in 8 ranges
de- $0.06-3 \mathrm{~A}$ in 6 range
Resistance- 25Ω - $5 M \Omega$ in 5 range
Accuracy-dc and R- $2 \frac{1}{2} \%$ of F.S.D ixe- $167 \times 98 \times 63 \mathrm{~mm}$
upplied complete with storage cas
restleads, spare diode, and

27 Ranges plus Transister U4341
 $\mathrm{Vde}-0.3-900 \mathrm{~V}$ in 8 ranges. dc- $0.06-600 \mathrm{~mA}$ in 5 ranges ac- $0.3-300 \mathrm{~mA}$ in 4 ranges. Resistance - $2 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ in ac-4\% of A.S.D
hfe- $10-350$ in 2 ranges
Size-115 $\times 215 \times 90 \mathrm{~mm}$.
Complete with steel carrying
PRICEE11.30 net P. \& P. 30 P
33 ranges. Mnile edge with mirror $20,000 \mathrm{n} / \mathrm{Volt}$. High accuracy. mVde- 75 mV $V \mathrm{de}-1.5-600 \mathrm{~V}$ in 9 ranges. V ac- $1 \cdot 5-600 \mathrm{~V}$ in 9 ranges.
ide- $60-120$ microamps in 2 de $-60-120 \mathrm{mic}$ roamps in 2
Ide- $0.6-1500 \mathrm{~mA}$ in 6 ranges lac- $0.6-1500 \mathrm{~mA}$ in 6 ranges Resistance- $1 K \Omega-1 M \Omega$ in 4 Accuracy-de- $1 \frac{1}{2} \%$ ac- $2 \frac{1}{2} \%$ Size- $115 \times 215 \times 90 \mathrm{~mm}$. Complete with steel carr test leads, and battery.
PRICE $£ 13.40$ net P. $\&$ P. 30 p.

C 280 Kit -PC Mounting polyester 250 V . 5 of $0.022,0.047,0.1,0.22 \mu \mathrm{~F}, 2$ of $0.47,1 \mu \mathrm{~F}$. $\quad \mathrm{El} .30$ net. C296 Kit-Tubular polyester, 400 V , 5 of each value
$0.022,0.047,01,0.22 \mu \mathrm{~F} .2$ of $0.47 \mu \mathrm{~F}$. f .30 net. Ceramic Kit-square plaquetre 50 V . 5 each value: $22,33,47$ ramic Kit-square plaquette 50 V . 5 each value: $22,33,47$,
$100,220,330,470,1000 \mathrm{pF}, 2200,4700 \mathrm{pF}, 0.1 \mu \mathrm{~F}$. $\mathbf{~} 1.30$ 250 V Paper kit-Tubular metal case. 3 of each value: $0.05,0.1$ 500 V Paper Kit-Tubular net.
500 V Paper Kit-Tubular metal case. 3 of each value: 0.025 lo00V Paper Kit-Tubular metal case. 3 each value: 0.01 .

Ariable volitage transformers	STROBE! STROBE! STROBE!	
INPUT 230/240V a.c. 50,60 OUT VARIABLE 0-260V SHROUDED TYPE	Build a Strobe Unit, using the latest type Xenon riggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation. EXPERIMENTERS' ECONOMY KIT Speed adjustable 1 to 30 flash per sec. All electronic components including Xenon lend instructions 66.30. Post 30p. INDUSTRIAL KIT Ideally suitable for schools, laboratories, etc. Speed adiustable 1.80 f.p.S. Approx. \ddagger outpue of Hy -Lyght. Price E 14.00 . Post 50p. HY-LYGHT STROBE MK III HYr tube, printed circuit. Speed adjustable 0.20 ip.s. Light output greater than many (so called 4 Joule) strobes. 114 . Post 50p. THE 'SUPER' HY-LYGHT KIT Approx. four times the light output of our well proven Hy-Lyght strobe Variable speed from 1.13 flash per sec. Reactor control circuit producing an intense White light. ONLY 222 . Post 7Sp. ROBUST, FULEY Kit including reflector CASE. For Hy-LyEh Kic Super H 60 p. 7-inch POLISHED REFLECTOR Ideally suited for above Strobe kits. Price 55 p . Post ISp. Post ISp.	racter. 14 Pin or 66. Post paid.
		RELAYS SIEMENS, MINIATURE
2 ${ }^{\text {KVA }}$		Col.(i) 1
CARRIAGE 3 a mp Max)		
		$\mathrm{HD}={ }^{2} 2.500$
AUTO TRANSFORMERS Step up step down		OPEN TYPE RELAYS 6 VOLT D.C. 1 make contacts 35p. Post 10p.
up		 3 c/O Samp contares RELAY
150 watt $63 \cdot 18$. 300 watt $f_{6} \cdot 20$.		$3 \mathrm{e} / 05$ amp contacts. 120 ohm coil. 75p. Post 10p. 24 VOLTD.C. 3 cl0 75 p . Post 10 p .
500 wate $69 \cdot 20$. Post 65 p 1000 watt 12.00 . Post 80p.		2 HD cio 700 ohm coil. 75 p . Post 10p. 4 c 10300 ohm coil. 85 p . Post 10 p.
		100 VOLT A.C. $2 \mathrm{c} / \mathrm{o}$ sealed type. octal base 75p. Post 10p.
300 VA ISOLATING TRANSFORMER		ENCLOSED TYPE RELAYS Post 10 p . Base 15 p .
(115/230-2301230 volts. Screened. Primary two	complete	24 VOLT A.c. 3 h.d. cio. 65p. Post lop. Base $15 p$. 24 VOLT A.C. Mfg. by ITT. 2 h.d. c/o contacts.
(15Vat 150 VA each for 115 or 230 yod		55p. Post 10 p
俍		240 VOLT A.C. RELAY. Mrg. by 10 ITT. Post 10 A .
	\%	
A.C. MAINS TIMER		
		Post 10 p V 220 TT A.C. RELAY
		3 cho 5 amp contacts. Sealed. E1-23. Post 10 p . 1l-pin base 15p extra
which can be preset period up to 12 hrs. ahead	Pouwar Merte	
(tioswiteh on for any tength	Powerful sow	70p post paid 110 V .2 elo. 20 amp contacts. c1-25. Post 10 p . Many others from stock-phone for details.
		VERY SPECIAL OFFER A
for Tape Recorders, Ligh		
Electic elanketsi etc. Attractive sm	Po	MINIATURE ROLLER MICRO
		SWITCH. 5 amp. clo contacts.
VENNER TIME SW	\% hip.rers (9in and 12 inn	(Min. order 10). As above less roller/ leaver) 20 for $£ 2$. Post 10 p . (Min, order 20 .
TYPE MSQP		
200/250 Volt 2-ON/2-OFF every 2	$\begin{aligned} & \star 50 \\ & \star 750 \\ & \hline 750 \end{aligned}$	$230 / 240$ VOLT A.C. MINIATURE MOTOR. 20 R.P.M. Price 61 . Post 10 p.
amp: contacts.		
		BODINE TYPE N.C.I. \%.t\%
	fibre board incorporating 10 Two or more modules for top	GEARED MOTOR
eres relays solenoid ope pper. 24 volt D.C. Precision built to high	Two or more modules for top quality col ©I5.	(Type J) 71 r.p.m. torque 10 lb in. Reversible $1 / 70$ th h.p. eycle 0.38
		Type 2) 28 r.p.m. torgue 20
		offered in 'as new' condition. Input voltage of motor $230 / 240 \mathrm{~V}$ A.C. input.
VOLT A	POWER	
24 VOLT DC SOLENOIDS UNIT containing I heavy duty solenoid approx. 251b pull 1 inch travel. Two x approx. IIb pull \ddagger inch travel. $6 x$ approx. $40 z$. pull $\frac{1}{t}$ inch travel. One 24 vole d.e. I heavy duty single make relay. Price 62.50. Post 60p. ABSOLUTE BARGAIN.		
		'FRACM0' 240 VOLT A.C.
	POWER RH	
		GEARED MOTOR 33 r.p.m. 30 Ib. ins. Reversible.
'STC' 6" RED ALARM BELL	25 WATT $10 / 25 / 50 / 100 / 150 / 500 / \mathrm{lk} / 0 \mathrm{hm}$. 61.70. Post 10p.	Fitced with mounting feet. Brand
24,48 volt DC. ${ }^{\text {rand }}$ Naw. Price 44 . Post 50 P.		230V FAN ASSEMBLY Continuously rated, removable aluminium blades. Price EI . Post 200.
'GENTS' 6" ALARM BELL		
200/250V AC/DC. Brand New. Pr	\% ohm t3.30. Post	
INSULATION TESTERS NEW!		PRECISION CENTRIFUGAL BLOWER Mig. Airflow Developments Litd. Heavy Duty continuously rated, smooth running. $230 / 240 \mathrm{~V}$ a.c. smooth running $16 \times 14 \mathrm{~cm}$ (case motor. Size: 15×1. moty). OAL 15 cm . Aperture $6 \times 6 \mathrm{~cm}$. $66 \cdot 50$. Post 50 p .
Test to I.E.E. Spec. Rugged metal		
construction. suitable for bench or		
Size L.Bin, W. 4in. H. 6 in, weight 61 b 1,000V, 1,000 megohms, 634. Post	from U.S.A. Long term reliabity, Thpe set and 10 amp, 500 PIV, 1.00 . Post $5 p$. (Inclusive of data an application sheet.) 5uitable Diac 18p.	
		2301240 VOLT A.C. EXTRACTOR FAN KIT Comprising of impeller, continuously rated mosor, motor housing and fixings as illustrated. Price $\mathbf{6 1} 75$. Post 25p. (Totalinel. VAT and Post $\mathbf{6 2} 16$).
	All prices are subject to 8" "VAT. (8p in the $£$) 0 ail orders add 8% VAT to tota alue of goods including carriage	
All Mail Orders-Callers--Ample Parking Dept. PE3, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560 Showroom open Mon.-Fri		Personal callers only. Open Sat. 9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

	LIGHT DEPENDENT RESISTORS Metched pairs Ploneer Type 174 similar to OPR 12. Resisance $9 \mathrm{k} \Omega$ to $4 \mathrm{k} \Omega$. Dia. fin with tin llanges £1.50 for two pair (minimum) 10 or more palrs 50p.	SILVANIA MAGNETIC SWITCH Now complete with reterence magne!! A magnetscally activated switch, vacuum sealed in a glass envelope. Sllver contacts, normally closed. Rated 3A at 120 V . 1 i A at 240 V . Size (approx.) $1 \frac{\text { fibl }}{6}$ In long x tin dia. Ideal for burglar alarms. security systems. etc.. and wherever non-mechanical switching is reauired. 10 for £2. 10; P \& P. 15 F . 50 for $£ 8 \cdot 80$; tot for $£ 15.50$ FREE P \& P over 10 .
$60 \mathrm{r} . \mathrm{P} . \mathrm{m}$. at 60 Hz , 72 r .p.m. STEPPING. Holding torque 100 or 200 staps per revolution with accuracy of 0.1° per step non-cumulative. Torque characteristics can be modified enth 4 fin. spindie length 2 iin x tin dia al less than halt maker's price. 	MAINS SOLENOID This hitle unit gives vertical lift of approxi- mately tin through hinged elbow Bracket incor- porates 2 fixing screws. Length of arm. 2 in 240 V a c. c . Putl at coil is approximately 11 b . \&1. FREE P. \& P. Special quote for quantities.	AMPEX 7.5V D.C. MOTOR An ultra precision tape motor designed for use in the AG20 portable recorder. Torque $450 \mathrm{GM} / \mathrm{CM}$. Stall load at 500 mA Draws 60mA on run. 600r.p.m. It suppression. tin dia \times in suppression. in dia. \times motor 3 in dia. \times itin Original cost $\$ 16 \cdot 50$. OUR PRICE C4.25. P. \& P. 25p. Ouantity available $75 p$ each. FREE P. \& P.
MAGNETIC DEVICES SOLENOID 240 V a.c. 50 P.C. rated 181b pult, 1 in travel push or pull Shackle both ends, length overall 4 in plus 3 in travel arm $\times 2$ in $\times 3 \frac{1}{2}$ in high Brand new $[5 \cdot 25$ plus 60p P \& P or ex-equipment $\{3$ plus 60 p P \& P.	SOLENOIDS by WESTOOL 240 a.c. type, MM6 1 tin. Travel tin 90 p each P \& P 10p 240 a.c. type MM4, 21b pull. 1 in $\times 1$ itin \times lin Travel tin discounts. $\quad 10-50 \quad 10 \%$. 50 upwards 25%	
CARTER ELECTRIC Similar to above with alloy gear case. 60, p.m. This ite is ox-equipment but perfect. 81.95 . P \& P . 30 p .		
SHADED POLE MAINS MOTOR 	OPEN FRAME shaded pole GEARED MOTORS (Dural gear case) 240 a.c. 2ar. MEW HIGH TOR. 28. P. M. NE OUE. approx overal Isize 3 3in $\times 3$ tin $\times 2$ itin spindle fin dia, as illustrated, $£ 2 \cdot 70$ plus 30 p P \& P \qquad	$\times 2$ in deep. Back plate is tapped for 4 fixing screws (supplied). Well under
'LABGEAR ELIMINAC P.S.U. $200-250 \mathrm{~V} .40 / 60 \mathrm{~Hz}$. Alternative outputs fully varlable (variac Incorporated). Output 1. 12 V at 5 A d.c. Pully smoothed Output $2,12 V$ at $8 A$ d.c. with ripple content m / c motor. In attractive groy hammer finish case. In maker's carton $527 \cdot 50$. Carr \& Pkg. $£ 1 \cdot 50$		
		ALL PRICES INCLUDE VAT welcome official orders from established involce goosds under m5. Therefore, please
	COMPONENTS LTD.	315/317 EDGWARE ROAD LONDON, W. 2 Tel: 01-723 5667, 01-402 5580

FAN/BLOWER

Precision bullt in Germany Dynamically balanced tinuous rated reversible 60 ma on run. Size: $5 t i n$ dia. x 2tin deep. Back plate is (supplied) Well under maker's price at $£ 3$ plus INClUDE VAT
Whilst we welcome official orders from established practical to invoice goods under $£ 5$. Therefore. please practical to invoice goods under £5. T

\star ELECTRONIC PIANO KIT * SYNTHESISER KIT
 \star ELECTRONIC ORGAN KITS

There are five superb Electronic Organ kits specially designed for the D-I-Y enthusiast. With the extreme flexibility allowed in design. you can build an organ to your requirements, which will compare with an organ commerclally built costing double the price

* Portable organ with 4 octave keyboard, $£ 145 \cdot 29$. * Console organ with 5 octave keyboard, $£ 250.93$. \star Console organ with 2×4 octave keyboards and 13 note pedal board, £470.65. \star Console organ with 2×5 octave keyboards and 32 note pedal board, £680. * Console organ with 3×5 octave keyboards and 32 note pedal board. 5960 . $*$ W/W Sound Synthesiser Kit. £130. \star W/W Touch Sensitive Electronic Plano s100.
All components can be purchased separately. i.e., semiconductor devices. M.O.S. master oscillators, coils, keyboards, pedal boards, stop tabs, draw bars, key-contacts, etc.
Send 50 p for catalogue which includes $5 \times 10 \mathrm{p}$ vouchers or send your own parts list, enclosing S.A.E for quotation

Elvins Electronic Musical Instruments

12 Brett Road, Hackney, London E8 1JP (Tel. 01-986 8455) 8 Putney Bridge Road, London SW18 1HU (Tel. 01-870 4949): 40a/42a Dalston Lane, Dalston Junction, London E8 (Tel 01-249 5624).

Business hours: Open 10 a.m. to 7 p.m. Monday to Saturday. Closed all day Thursday. Open 10 a.m. to 1 p.m. Sunday

Marshallis
42 Cricklewood Broadway London NW2 3DH Telephone 01－452 0161／2 Telex 21492
\＆ 85 West Regent Street Glasgow G2 2QD Telephone 041－332 4133

Everything you need is in our New 1975 Catalogue
available now price 25 p （100 pages of prices and data）

Call in and see us 9－5．30 Mon－Fri

9－5．00 Sat

Trade and export enquiries welcome

Popular Semlconductors
2N456
2N456A
2N457A 2N 4575 A
2 N 490
2N491
2N492
2N492
2N493
2N493
2N696
2N697
2N697
2N698
2N699
2N699
2N706
2N706
2N706A
2N708
2N708
2N709
2N711
2N718．
2N718A
2N718A
2N720
2N720
2N721
2N914
2N914
2N916
2N916
2N918
2N929
2N918
2N1302
2N1302
2N1304
$2 N 1304$
$2 N 1305$
$2 N 1306$
2N1306
2N1307
2N108
2N1308
2N1309
2N1671
2N1671
2N1671A
2N1671B
2N1671B
2N1771
$2 N 1907$
2N1907
2N2102
2N2102
2N2147
2N2149
2N2160
2N2192
2N2192A
0
2N2192A
2N2193
2N2193A
2N2193A
2N2194
$\begin{array}{ll}\text { 2N2194 } & 0.73 \\ \text { 2N2194A } & 0.30 \\ \text { 2N2218A } & 0.32\end{array}$
2N2218A
2N2219
2N2219A
$\begin{array}{ll}\text { 2N2220 } & 0 \\ \text { 2N2221 } & 0 .\end{array}$
2N2221A 0
2N2222
2N222A
2N236B
$2 N$
$\begin{array}{ll}\text { 2N2369 } & 0 \\ \text { 2N2369A } & 0\end{array}$ $\begin{array}{ll}\text { 2N2369A } \\ \text { 2N2646 } & 0 \\ \text { 2N }\end{array}$ 2N2646
2N2647
2N2904 2N2904
2N2904A 2N2905 $\begin{array}{ll}\text { 2N2905A } & 0.24 \\ \text { 2N2903 } & 0.26 \\ \text { 2N }\end{array}$

14062	0.11
4126	0.20
	AD161
289	0.34
AD162	

Integrated Clrcults－TTL Reductions！

SN7400 $0.16\left|\begin{array}{lll}\text { SN7409 } & 0.33 & \text { SN7430 }\end{array} 0^{-16}\right|$ SN7

$\begin{array}{ll} \\ \text { SN7404 } & 0.1 \\ \text { SN7401 } & 0.1\end{array}$ | | SN7401AN | SN7410 | 0.18 |
| ---: | ---: | ---: | ---: |
| SN7432 | SN742 | | |
| 0.38 | SN7412 | 0.25 | SN7437 |
SN7438						0.38	SN7412	0.28	SN7438	0.35	SN7745			
SN7402	0.16	SN7413	0.50	SN7440	0.16	SN74								
SN7									0.16	SN74113	0.5 C	SN7440	0.16	SN74
:---	:---	:---	:---	:---	:---	:---								
SN7403	0.16	SN7416	0.45	SN7441	0.45	SN74								

SN7404	0.24	SN7417	0.30	SN7442	0.85
SN7405	0.24	SN7420	0.20	SN7445	1.59
SN	SN406	0.45	SN7423	0.37	SN7446
SN．00					
SN7407	0.45	SN7425	0.37	SN7447	1.30

SN7407	0.45	SN7423	0.37	SN74447	1.30
SN7407	0.45	SN7425	0.37	SN7447	1.30
SN7408	0.25	SN7427	0.45	SN7448	1.50

1.15

BD135 오
号

思思思 \begin{tabular}{|cc|c|}
\hline BD135 \& 0.43 \& BFY

BD137 \& 0.55 \& BFY

0.43 \& BFY19 \& 0.62 \& MJE2955

0.49 \& BFY

0.55 \& BFY

0.49 \& BFY20

0.55 \& BFY29

0.63 \& BFY50

0.71 \& BFY51
\end{tabular} 0.62

0.50

0.40 | 62 | MJE2955 |
| :--- | :--- |
| .50 | MJE 3055 | MJE 305

MP8111
MP8112
MP8113
MPF102
MPSA0 z
N

PW TELETENNIS KIT

－P．C．Marker Pen Dalo 33PC
Pilce 87p
Zeners 400 MW 2． $7 \mathrm{~V}-43 \mathrm{~V}$ 11p． $1 \mathrm{~W} 3 \cdot 3 \mathrm{~V}-120 \mathrm{~V}$ IC Sockets \＆DIL 16p． 14 DIL 17p． 16 DIL 20p． Llquid Crysials－£13
Ex－slock S．A．E．for delalls of CMOS battery Scorplo Car Ignition KIt—£11．50＋ VAT
IMF440V $51 \cdot 10$.
BSTB0246 £1－05．Transformer $\mathbf{£ 2 . 7 5}$
DL70．7 52.25 ．

Reslstors			Tant Beads	
W	Tol	Price	Value	Price
t	5\％	1p	0．1／35	14p
$\frac{1}{2}$	5\％	11p p	0． $22 / 35$	14p
$\frac{1}{2}$	5\％	2p	0．47／35	14p
1	10\％	21p	2． $2 / 35$	14p
2	10\％	6p	4．7／35	18p
21	5\％	7 p	$10 / 16 \mathrm{~V}$	18 p
5	5\％	9p	47／6．3V	V 20p
10	5\％	10p	100／3V	20p
Veroboard				
		Copper		Plain
		0.10 .15		0.10 .15
2.5×3 tin		36p	26p	－17p
$2.5 \times 5 \mathrm{in}$		40 p	40p	－19p
$34 \times 34 \mathrm{in}$		40 p	$42 p$	－ $\overrightarrow{32 p}$
3i $\times 5 \mathrm{in}$		45p	470	－ －$^{\text {a }}$ 32p
$3+\times 17 \mathrm{in}$		£1．61	£1－26 \mathbf{I}	c1．00 92p
Pins $\times 36$		300	30p	
$\times 200 \mathrm{E1} \cdot 16$			\＆1． 16	

Trade and Retall suppiled．

Bridge Rectifiers

Potentiometers
Linear or Log Single Double Rotary Pots $\quad 20 \mathrm{p} \quad$ 45p $\begin{array}{lll}\text { Rotary Switched } & 30 \mathrm{p} & - \\ \text { Stiders } & 50 \mathrm{p} & 80 \mathrm{p}\end{array}$ Full range of capacitors stocked．See catalogue for detalls
Presets－Horizontal or Vertical
Yop

Construction Kits

AV7 Aerial Amps
UHS70 Transmitter
MUE7 Raceiver for above
$\$ 2.79$
EW18 Electronics dice $\quad \begin{array}{r}\mathbf{5 3 . 2 2} \\ \mathbf{5 6 - 5 3}\end{array}$
EX20 Electronic Dice＋Sensor
£7－79
Mall Order
TRY OUR NEW GLASGOW
SHOP

DISCO, SHOP, SOUND TO LIGHT, STAGE PHOTO-FLOOD LIGHT FITTINGS

TYPE B 3-BANK UNIT

Has two brackets to accept P/C Board. Transformers. Also has holes in ends for Potentiometers. Jack Socket. Cable, etc. Ideal for making Sound to Light and Strobes. Base Cover included. Less Lamps, only £6. 50
inc. VAT P \& P 40p

SOUND TO LIGHT

Three channel. using Type B unit. Ideal for small disco's and home entertainment. Complete with Lamps. Ready wired
£25
inc. VAT P. \& P. 40p
STROBE UNIT
Using Type B unit. Adjustable frequency. Single knob control Com plete with Lamps. just plug into mains-that's it
$£ 25$
complete inc VAT P \& P. $40 p$
100 WATT SPOT LAMPS
Red. Pink Green Yellow. Blue Violet. Clear Only 80p
each Minimum 3 Lamps $=\mathbf{\Sigma 2} \cdot 40$ inc. VAT, P. \& P. 25p pe

SCOOP!! CALCULATOR I.C.

For only £2.95 you get a brand new, tested full four function calculator chip, with the following features:

8 DIGIT DISPLAY CAPABILITY
fully floating decimal point
algebraic logic data entry
KEYED CONSTANT ON ALL FOUR FUNCTIONS
TRAILING ZERO SUPPRESSION DIRECT SEGMENT DRIVE

ENORMOUS EXPONENT RANGE : 10^{-20} to 10^{+79}

THURLBY

SINGLE 'STROBE' LINE FOR SIMPLE KEYBOARD CONSTRUCTION

By the addition of a display and a few discrete components you can construct a powertul machine capable of handling advanced calculations
The XE202 is supplied with full circuit diagrams and wiring details covering the use of different types of displays and keyboards (including a low cost single digit display and rapidly constructed stylus keyboard), and with instructions for realising the full computing powers of this chip to calculate advanced functions such as roots, sines, logs, etc

ALSO AVAILABLE AT SPECIAL PRICES FOR PURCHASERS OF THE XE202

 CHIP:Specially designed display difining Intefface chip at EO. 75

Full money back guarantee.
Cash with order. Postage and packing 20p per order.
Please add 8% VAT to total order value.

All mail order and enquiries to 270 Acton Lane, Chiswick W4 5DG. Tel. 01-994 6275

SEMICONDUCTORS

DIGITAL INTEGRATED CIRCUITS						SN74707	55p	SN74167	$\mathrm{E} \cdot 25$
SN7400	10p	SN7428	50p	SN7473	40p	SN74118	\$1.90	SN74174	\&2.00
SN7401	18 p	SN7430	20p	SN7474	40 p	SN74119	\$1.90	SN74175	\&1. 35
SN7402	20 p	SN7432	42p	SN7475	55p	SN74121	$65 p$	SN74176	¢1.60
SN7403	20 p	SN7433	70 p	SN7476	$45 p$	SN74122	\$1.35	SN74177	¢1. 60
SN7404	20 p	SN7437	50 p	SN7480	80 p	SN74123	\$2.00	SN74180	\&1.55
SN7405	20 p	SN7438	50 p	SN7481	\$1.25	SN74141	51.00	SN74181	¢5.00
SN7406	30 p	SN7440	20p	SN7482	17	SN74145	¢1.50	SN74182	[2. 00
SN7407	30p	SN7441AN	$75 p$	SN7483	\$1.00	SN74150	\$1.35	SN74184	[2. 25
SN7408	$20 p$	SN7442	$75 p$	SN7484	${ }^{90} \mathrm{p}$	SN74151	\$1.10	SN74185A	[2. 40
SN7409	40 p	SN7443	51.00	SN7486	45p	SN74153	¢1-35	SN74190	¢1.95
SN7410	${ }^{18 p}$	SN7445	£1.70	SN7490	75p	SN74154	\$2.00	SN74191	¢ 1.95
SN7411	23p	SN7446	¢2.00	SN7491AN	N 51.00	SN74155	¢1. 55	SN74192	12.00
SN7412	22p	SN7447	\$1.50	SN7492	${ }^{75 p}$	SN74156	$\underline{51.55}$	SN74193	[2.00
SN7413	40 p	SN7448	\$1.75	SN7493	75p	SN74157	[1-80	SN74194	\$2. 50
SN7416	30 P	SN7450	20p	SN7794	89 p	SN74160	¢1. 60	SN74195	[1.85
SN7417	30 p	SN7451	20 p	SN7495	80 p	SN74161	\$1.60	SN74196	\$1.50
SN7420	20 p	SN4753	20 p	SN7496	\$1.00	SN74162	\$1.60	SN74197	\$1.50
SN7422	30 p	SN7454	20 p	SN7497	12.25	SN74163	\$3.40	SN74198	\$3.00
SN7423	30 p	SN7460	20 p	SN74100	12.00	SN74164	¢2.75	SN74199	¢2.60
SN7425	38 p	SN7470	30 p	SN74104	51.45	SN74165	\$2.00		
SN7427	42p	SN7472	30 p	SN74105	¢1.00	SN74166	\$4.00		

$\text { CRS } 1 / 05 \text { S.R.e } 40 \mathrm{p}$	TRIACS TXL228B 8A 400V ajp
CRS $1 / 10$ 56p	SC400 $\quad 51.40$
CRS $1 / 20$ 60p	SC40E $\quad \$ 1.65$
CRS $1 / 40$ 65p	SC450 ¢1-70
CRS 1/60 90p	SC45E £2.10
CRS3/10 62p	SC500 $\quad \mathbf{2} .42$
CRS3/20 62p	SC50E $\quad \$ 2.70$
CRS3/40 90p	DIAC 25
CRS7/400 [1.00	DIAC 25p
CRS 16/100 65p	
CRS 16/200 90p	
CRS $16 / 600$ [1.60	LINEAR I.C. 3
C106B 45p	
C106D 70p	LM309K 5V 1A
40669 90p	Voltage Reg E2.10
TiC44 35p	LM723C 237 V
2N444 $\quad \$ 1.90$	150 mA Voltage Reg. $[1.05$
BT10/500A 90p	
	MFC4000 250 mW
GRIDGE RECTIFIERS	Audio 75p
	TBA800 5 Watt
W02 1A 200V 38p	Audio \quad E1.50
BY 1641.4 A	709C Op Amp O I LTO99
200 V 57p	
MDA952/2 6A	741C Op Amp 8/14
100V 80p	D.1, L./TO99 350
	748C Op Amp
ZENER DIODES	D.1 L. 75p
BZY8B Series 400 mW	747C Dual OP
3.3V-33V, 5% 11p	Amp $\quad \$ 1.20$
1.5W range 25 p	ZN414 Radio I C \$1.25
tow range $45 p$	
L.E.D.	TAD100 Radio I.C. inc. Filter $\quad \$ 1.90$
	CA3014 [1.55
TLL209 38p	CA3018 \quad 1\%-00
HP5082 28p MA2082R 20p	CA3028 $\quad \mathbf{1} .20$
	CA3036 $\quad \$ 1.00$
	CA3046 95p
	CA3048 $\quad \mathbf{2} 2.35$
ORP12 60p	CA3075 $£ 1.60$
	CA30900 [4.15
NE555 Timer 80p	$\mathrm{MC}+303 \mathrm{~L}$ $\mathbf{2 2 . 2 0}$ $\mathrm{MC}+310 \mathrm{P}$ $\mathbf{5} .80$

TO3 VOLTAGE 1005 5V 650 mA L036 12 V 500 mA 037 15V 450 mA	ATORS	\$1.60 esch
VEROBOARD		
	0.1	0.15
24×34	32p	23p
21×5	35p	35 p
3 3 \times 3	35p	35p
34×5	40p	41p
17×2 \%	\$1.05	79p
17×34	[1.43	[1.12
17×5	[1. ${ }^{\text {c }}$	-
PIN INS. TOOL	72p	72p
SP.F. CUTTER	52 p	52p
100 PINS SS	30 p	30 p
100 PINS DS	30 p	30 p
500 PINS SS	51.20	E1. 20
500 PINS DS	[1. 20	[1. 20

ALSO STOCKED

Electrolytic Capacitors Mullard. Sprague. Lorlin etc. Polyester. Polystyrene. Silver Mica Capseitors, etc. Resistors $\frac{1}{2} \mathrm{~W}-10 \mathrm{Watt}$ Porentiometers, carbon, wirewound, Preset
Rectilinear multiturn Antex Soldering Irons Rectilinear muititurn Antex Soldering Irons switches, potary. slide, toggle. etc. Cable veroboard

Potentiometers

Linear or Log	Single	Double
Rotary Pots	15 p	42p
Rotary Switched	25 p	-

**SPECIAL OFFERS * MINIATURE MAINS TRANSFORMER. PRI 240 V SEC, 12 V 100MA Manuf.: Hinchley. Size: $36 \times 45 \times 40 \mathrm{~mm}$ F.C. 53 mm .
Price 1-65p. 100-60p ө日. 1,000-50p ad $10,000-40 \mathrm{p}$ - 0
3 CORE PVC INSULATED MAINS CABLE GREY ML6650, $3 \times 7 / 0 \cdot 2 \mathrm{~mm}$. Pilce $100 \mathrm{~m}-$ £4.50, $1,000 \mathrm{~m}$ - $\mathrm{E} 35.10,000 \mathrm{~m}$ - $£ 330$. 0.47 mid . 50 V MYLAR FILM CAPACITOR Size in $\times 0.35$ in $\times 0.65 \mathrm{in}$ P.C. Mount. Price 100-4p ea. 1.000-3p at.
240 V A.C. SOLENOID. Reversible operation twin coil. Size approx 2 fin $\times 1$ in $\times 1 \frac{1}{}$ 90 pa .
30 unmarked OC71 transistors 25 Unmarked 250 mW Zenerdiode, 4.7V $5 \cdot 1 \mathrm{~V} .6 \cdot 2 \mathrm{~V} .7 \cdot 5 \mathrm{~V} .9 \cdot \mathrm{TV}$. 10 V . Measured and tested
$801 \begin{array}{lll}89 & 0.8-2 \cdot 2 \mathrm{p} \\ 991 & 0.5-1.3 \mathrm{p}\end{array} \quad$ Price ropa
UANTITY DISCOUNTS PLEASE TELEPHONE 1.000 p F Feedthrough capacitor $5 p$ on. Miniature tubular P.C. trimmers
3. 5. 13pF
$6-30 \mathrm{pF}$
D c/o Varley 700Ω relay
METALBOXES
CUUMINIUM BOXES IDEAL FOR VEROBOARD WITH BASE AND P.K. ECraws

	Length	Widh	Height	
$A B 7$	2 i in	5) in	$1 \frac{1}{1} \mathrm{in}$	55p
AB8	sin	4 in	11/ in	55p
AB9	4 in	22:1n	1\%1n	55p
AB10	4 in	5ixn	1tin	55p
AB11	4 in	212in	2 in	65p
AB12	3 in	2 in	1 in	50p
AB13	6 in	4 in	2 in	77p
AB14	7 in	5 in	2 tin	90p
AB15	8 in	6 in	3 in	\$1.16
AB16	10 in	7 in	3 n	t1.32
AB17	10 in	41 in	3 in	£1.10
AB18	12in	5 in	3 in	¢1.32
AB19	12 in	8 in	3 in	£1.80

 PANEL-IDEAL FOR PAE.AMPS, ETC. USING SLIDER CONTAOLS
AB20 sin Long gin wide 3 in High at
back 2 in High at front 6 in Slope to front
With P.K. Screws
AB21 As above but 10in long $\quad \mathbf{2} .40$
AB22 As above but 12in lang \quad t2.60

ELECTRONIC

COMPONENTS

BARGAIN COMPONENT PACK

ALL COMPONENTS NEW AND UNUSED
\&1 pius 25 p p.p. per pack, $£ 5$ for 5 packs p/free Pack No.
1500 Carbon resistors. $\frac{1}{4}, \frac{1}{2}$. 1. 2W
2100 Electrolytic Condensers.
3250 Cersmic. Polystyrene. Silver Mica. etc. Condensers
250 Polyester, Polycarbonate, paper, etc Condensers.
525 Potentiometars, assorted.
6250 Htgh -stab. $1 \%, 2 \%$. 5% resistors.
750 Assorted Tagstrips
811 b . Assorted nuts, bolts. washers. spacers.
etc.

92 Assorted switches. rotary. lever, micro toggled, etc.
1050 Preset Potentiometers
11 Trial mixed component pack $£ 1$.
12 Jumbo mixed pack 55 .

We have the largest retall selection of components avallable. Phone or write if you are in difficulties obtaining a particular component.
C.O.D. service welcome. All mall order by return. Offlclal orders welcome by Government establishments, Education authoritles, etc.

Tel. 01-994 6275

ALL OUR PRICES INCLUDE V.A.T.

BSR HI-FI AUTOCHANGER

 STEREO \& MONO
Playt $12^{*}, 10^{\circ}$ or $7^{\prime \prime}$ records.

 Auto or Manual. A highquality unit backed by BSR quality unit backed by BSR reliability with 12 months' gise $13 ; \times 11 \frac{1}{2} \mathrm{in}$.
 Above motor boa wilh STEREO 1.8 Poit 45p

PORTABLE PLAYER CABINET

 Modern design. Rexine covered. Large front grille. Lift-up Lid. Chrome attinga. Approx. aize $17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in}$, Few on board cut for Garrard deckMotor

BSR JUNIOR SINGLE PLAYER
 Heavy duty 4-speed motor with Leparate pick-up arm fitted

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop. Stereo/mono cartridge. Bageplate 8 ire $11 \mathrm{in} \times 8$ in. Turnteble. Size 7in diameter. A/C mains. small amplifier. Three speeds. Plays all records.

E5.50
SOLID MAHOGANY PLINTH Post 45p
With P.V.C. Cover Cut out for most B.S.R. or Garrard decks.
Size $121 \times 14 \% \times 7$ in
£6.50
COMPACT PORTABLE STEREO HI-FI Two full size loudapeakers $133 \times 10 \times 31 \mathrm{in}$. Player unit clips to loudspeakers making it extremely compact, all records 33 r .p.m., $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Separate volume and tone

SPECIAL OFFER! SMITH'S CLOCKWORK 15 AMP TIME SWITCH 0 TO 60 MINUTES

Single pole two-way Surface mounting
 with fring acrewt. Will replace existing wall switch to give light for return home,
garage, atomatic anti-burglar lights, etc. Variable knob. naviated. Makers' last list or intermediate settings. Fully suaranteed. OUR PRICE $\mathbf{6 2 \cdot 2 0}$ Post 25p

BLARK ALDMINIUM CHASSIS. 18 s.w.g. 2 in in sides 14×9 in $90 \mathrm{p} ; 16 \times 6$ in $90 \mathrm{p} ; 12 \times 3 \mathrm{in} 50 \mathrm{p} ; 16 \times 10 \mathrm{in} \mathrm{f1}$ ALUMINIUMBOXES $3 \times 3 \times 3 \mathrm{in} 60 \mathrm{p} ; 4 \times 4 \times 4 \mathrm{in} 70 \mathrm{p}$ $6 \times 4 \times 4$ in $80 p ; 9 \times 4 \times 4$ in $£ 1 ; 12 \times 4 \times 4$ in $121-30$ p ALUMINIUM PANELS 18 s.w.g. $8 \times 4 \mathrm{in} 12 \mathrm{p} ; 8 \times 6$ in 19p; 14×3 in $20 \mathrm{p} ; 10 \times 7 \mathrm{in} 24 \mathrm{p} ; 12 \times 5 \mathrm{in} 25 \mathrm{p} ; 12 \times 8 \mathrm{in} 34 \mathrm{p} ;$ $18 \times \operatorname{Bin} 34 p ; 14 \times \sin 40 p ; 12 \times 12 i n 47 \mathrm{p}: 16 \times 10 \mathrm{in} 80 \mathrm{p}$. PAXOLIN PANEL 10×8 in 30p.
$1:$ inch DIAMETER WAVECHANGE SWITCHES, 45 p ea. 2 p .2 -way, or 2 p .8 -way, or $3 \mathrm{p}$.4 -way.
TOGGLE SWITCHES, ap. 20p; dp. $25 \mathrm{p} ; \mathrm{dp}$. dt. 30 p

[^2]
R.C.S. STABILISED POWER PACK KITS

All parts and instructions with Zener Diode, Printed Circuit, input $200 / 240 \mathrm{~V}$ a.c. Output voltages available 8 or 9 or 18 or 15 or 18 or $20 V$ d.e. at 100 mA or less C 9.90 PLEASE STATE YOLTAGE REQUIRED.
Details S.A.E. Size
$3 \frac{1}{2} \times 1 \frac{1}{2} \times 1 / \mathrm{in}$.

R.C.S. GENERAL PURPOSE TRANSISTOR

 PRE-AMPLIFIER BRITISH MADEIdeal Ior Mike, Tape, P.U., Guitar, etc. Can be used with Battery $9-12 \mathrm{~V}$ or H.T. liue $200-300 \mathrm{~V}$ d.c. operation. size:
 $\left.\begin{aligned} & \text { For use with valve or trausiator equipment. } \\ & \text { Full instructions sapplied. Details S.A.E. } \\ & \text { I }\end{aligned} \right\rvert\,=75 \begin{aligned} & \text { Port } \\ & \text { 10p }\end{aligned}$
R.C.S. POWER PACK KIT

12 VOLT, 750 mA . Complete with printed $62.95{ }^{\text {Post }}$

NEW TUBULAR ELECTROLYTICS CAN TYPES
$2 / 350 \mathrm{~V} \quad 14 \mathrm{p}: 250 / 25 \mathrm{~V} \quad 14 \mathrm{p}, 50+50 / 300 \mathrm{~V}$
$4 / 350 \mathrm{~V} \quad 14 \mathrm{p}, 500 / 25 \mathrm{~V} \quad 20 \mathrm{p}, 32+32 / 350 \mathrm{~V}$
$8 / 350 \mathrm{~V} \quad 22 \mathrm{p} \quad 100+100 / 275 \mathrm{~V} 65 \mathrm{D}, 32+32 / 450 \mathrm{~V}$

 $\begin{array}{lllll}500 / 25 \mathrm{~V} & 10 \mathrm{p} & 18+32+38 / 350 \mathrm{~V} & 40 \mathrm{p} & \begin{array}{l}10 \mathrm{p} \\ 4700 / 850 \mathrm{~V} \\ 4700 / 63 \mathrm{~V}\end{array}\end{array}$
E.M.I. 13 $\frac{1}{2}$ $\times 8 \mathrm{in}$. SPEAKER SALE With twin tweetors.
And erossover. 10 \&.50 watt 8tate 3 or 8 15 ohm. As illantrated. Poat 25 p With fiared tweeter cone ad ceramic magnet. 10 watt.
Bass res. $45-60 \mathrm{c} / \mathrm{s}$.
Flux 10.000 wat Flux 10,000 gavs.
State 3 or 8 or 15 ohm . Pott 25p 18×8 in Basa unit 20 wattr abber cone surroand $15 \mathrm{ohm} 25 \cdot 50$

LOUDSPEAKER FRONT GRILLES Teakwood strips mounted on cloth backing, easily glued on to hafle to modernise ca binets.
Size $18 t$ in $\times 10$ in. $75 p$ or size 10 in $\times 7$ in. $45 p$
E.M.I. $6 \frac{1}{2}$ in. HI-FI WOOFER

8 ohm . $10 \mathrm{~W}^{2}$. Large ceramic magnet. Special Rabber cone zurround. Frequency response 3012,000 c/a. Ides1 P.A.
teme
Suitable Cabinet $12 \times 8 \times 024$ suitable Tweeter 42

LOW VOLTAGE ELECTROLYTICS

$1.2,4,5,8,16,25,80,80,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
2000 mF 6V 25p; $25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mP} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$
5000 mF 8V $25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p}$
5000mF 8V 25p; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$. CERAMIC 1 pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mice 2 to 5000 pF , 4 p . PAPER 350V-0.1 7p; $0.518 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$.
$500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.110 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$ SOOV-0.001 to $0.054 p ; 0.110 \mathrm{p} ; 0.258 p ; 0.472$ Slow motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$; Twin 500 pF 75 p . Twin 410 pF 50 p . Twin 120 pF 50 p . \&HORT WAVE SINGLE. 25pF, 45p; $50 \mathrm{pF}, 55 \mathrm{p}$. NEON PANEL INDICATORS 250V AC/DC. Amber 80 p . RESISTORS. $\frac{1}{W}, \frac{1}{3} \mathrm{~W}, 1 \mathrm{~W}, 20 \% 1 \mathrm{p} ; 2 \mathrm{~W}, 5 \mathrm{p}$. 10Ω to 10 M . HIGH STABILITY. $\frac{1}{z}$ W $2 \% 10$ ohms to 6 meg. 10 p .
Ditto 5%. Preferred values 10 ohms to 10 meg ., 4 p . WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohms to 100 K lop each.
TAPE OSCILLATOR COIL Valve type 35p.
FERRITE ROD $8 \times$ in 20p; $6 \times$ in $20 \mathrm{p} ; 8 \times 1 \mathrm{in} 10 \mathrm{p}$.

\section*{MAINS TRANSFORMERS | ALL Pogr |
| :---: |
| 250 |
| each |}

$250-0-25080 \mathrm{~mA} .63 \mathrm{~V} 2 \mathrm{amp} \cdot \cdots \cdots \cdots \cdot . .$.
$250-0-25080 \mathrm{~mA}, 6.3 V$ 3-5A $8-3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2A.... 84.00 $350-0-35080 \mathrm{~mA} 8.3 \mathrm{~V} 3.5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}$ 1A or $5 \mathrm{~V} 2 \mathrm{AA} \ldots . .25-00$ $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6-3 \mathrm{~V} 4 \mathrm{~A}$ C.T.; $6.3 \mathrm{~V} 2 \mathrm{~A} .$. MINIATURE $200 \mathrm{~V} 20 \mathrm{~mA}, 6-3 V 1 \mathrm{~A} 2 \ddagger \times 2 \ddagger \times 2 \mathrm{in}$ MIDGET 220 V 45 mA, B. 3 V 2A $23 \times 21 \times 2 \mathrm{in}$. 75 p
90p HEATER TRANS, $6.3 V \frac{1}{1}$ amp $85 p, 3 \mathrm{amp}11 .20 \mathrm{p}$ at $2 \mathrm{amp}, 3,4,5.6,8,9,10,12,15,18,24$ and $80 \mathrm{~V} 84-00$ 1 gmp 6, $8,10,1 \mathrm{~B}, 18,12,18,24$ and $80 \vee 24-00$ $1 \mathrm{gmp}, 6,8,10,12,16,18,20,24,30,36,40,48,6024-00$
$2 \mathrm{mp}, 8,8,10,18,18,20,24,30,36,40,48,6026.00$ 5 amp. 6, , $, 10,12,18,18,20,24,30,36,40,48,6020.75$
 $95 \mathrm{p} ; 12 \mathrm{~V} 300 \mathrm{~mA} 75 \mathrm{p} ; 12 \mathrm{~V} 500 \mathrm{~mA} 85 \mathrm{p} ; 12 \mathrm{~V} 750 \mathrm{~mA} 95 \mathrm{p}$.
$40 \mathrm{~V} 3 \mathrm{amp} .5250 ; 22-0-22 \mathrm{~V} 4 \mathrm{smp}, 53 ; 16 \mathrm{~V} 1 \mathrm{mp} .95 \mathrm{~m} ;$ 16V 2 amp . $11-85$; $0.5 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}, 1 \mathrm{BV}$ \& 2 mp . $81 \cdot 60$, AUTO TRANSFORMERS, 115 V to 230 V or 280 V to 115 V 150W $24 \cdot 00 ; 500 \mathrm{~W}$ £7.50; 750W $215 ; 1000 \mathrm{~W}$ \& 18. CHARGER TRANSFORMERS. Input 200/250V. OO 6 or $12 \mathrm{~V}, 11 \mathrm{amp} \mathrm{ER} \cdot 00 ; 2 \mathrm{amp} \mathrm{eq} \cdot 50 ; 4 \mathrm{amp} 44 \cdot 00$ an 2 . 4 and 1f amp e2; $4 \mathrm{amp} \mathrm{st} ; 5 \mathrm{amp}$. 4.50

MAINS ISOLATING TRANSFORMER Primary 0-110-240V. Secondary 0-240V 3 ampa 780 watts. Insulated terminals. Varnish impregnated. Folly
 Can be used as 800 watt auto transformers 240-110V

SET OF 3 MOTORS FOR COLLARO STUDIO 115 VOLT TAPE DECK €1. 50 Post 50p

Volume controis

Long apindles. Midget size LIN. Ohms to 2 Meg, LOG or STEREO L/S 55 D. D. ${ }^{35 p}$. Edge 5K. S.P.Transistor 25p. 80 ohm Coax 5pyd. british aerialite AERAXIAL-AIR SPACED
40 Yd $22.00: 60 \mathrm{yd} 23.00$ 40 Yd 22.00; $60 \mathrm{yd} 23^{\circ} 00$. FRINGE LOW LOSS 10 per
Ideal 625 and colour. Wire Wound controle 1 in diam. 3 Watts. 10 ohms to 100 K British Made with long spindles fin dia. 85p each. DUAL CONCENTRIC POT 500K LOG AND 500K LIN D.P. switch. Inner spiadle $3 f$ in ; outer spindle 2 tin 75 p .

ELAC CONE TWEETER
The moving coil diaphragm gives a tood radiation pattern to the higher frequencies and a smooth extension of total renponge from $1,000 \mathrm{c} / \mathrm{to} 18,000 \mathrm{c} / \mathrm{A}$. Size $3 \mathrm{t} \times$ $3 \frac{1}{2} \times$ 2in deep. Reting 10 W .8 ohm . Cronsover ह1-25 \quad - 9.90 Pont 80p.

GOODMANS

 8 in . WOOFER8 ohm 12 watt. Deep cone Heavy ceramic mggnet. Baz resonance 35 cps . Frequency response $30-8,000 \mathrm{cpa}$. Ideal bara unit for
Hi-li usstem.

SPECIAL OFFER LOUDSPEAKERS

$8 \mathrm{ohm}, 21 \mathrm{in} ; 2$ 2in; $31 \mathrm{in} ; 51 \mathrm{n}$,
8 ohm. 2tin; 2tin; 5in $\times 3 i n ; 3 i n ; 4 i n ; 5 i n$.
$15 \mathrm{ohm}, 3 \mathrm{in} ; \mathrm{Sin}_{\mathrm{i}} 6 \times 4 \mathrm{in} ; 6 \times 8 \mathrm{in} ; 7 \times 4 \mathrm{in} ; 8 \times \mathrm{gin}$
$35 \mathrm{ohm}, 3 \mathrm{in} ; 5 \mathrm{in}$.
$80 \mathrm{ohm}, 24 \mathrm{in} ; 2$ in. $120 \mathrm{ohm} 3 \mathrm{in}$.$\quad ClEAOH$
LOUDSPEAKERS P.M. 3 OHMS. $7 \times 4 \mathrm{in} 31 \cdot 25 ; 61 \mathrm{in} \mathrm{t1} \cdot 50$; $8 \times 5 \mathrm{in}$ \&1.60; 8 in $11.75 ; 10 \times 8 i n 21.90 ; 10 \mathrm{in} 42.50$ RICHARD ALLAN TWIN CONE LOUDSPEAKERS. 81 diameter $4 \mathrm{~W} 22 \cdot 50,10$ in diameter 5 W 22.95; Po
18 in diameter, $8 \mathrm{~W}, 88 \cdot 60 ; 3$ or 8 or 15 ohm models.
SPEAKER COVERING MATERIALS. SAmples Lare
Horn Tweeters $2-16 \mathrm{Kc} / \mathrm{a}, 8 \mathrm{~W} 8$ ohm or 15 ohm 8.80 . De Luxe Horn Tweeter: $8-18 \mathrm{Kc} / \mathrm{g}, 15 \mathrm{~W}$, 15 ohm 82.00. TWO-WAY $8,000 \mathrm{c}, \mathrm{p}, \mathrm{s}$. CROSSOVERS 8.8 or $15 \mathrm{ohm} 81-26$.
CASSETTE MACEINE MOTOR. 6 Volt.
Will replace many types 81 '25.

R.C.S. 3 WAY CROSSOVER

Complete with 12 tt . twin lead fitted with din apeaker plag. Ready assembled with leads for apeakers. basis, mid and tweeter.
$3,000 \mathrm{cps}$.

VALVE OUTPUT TRANBFORMER 50p.
MIKE TRAFFFORMER MU Metal 100 p -1 21 -25. PUSH-PULL VALVE OUTPCT TRAASFORMERS. 50 watt. $812 \cdot 50$ 100 watt
815.00

ELECTRO MAGNETIC

 PENDULUM MECHANISM1.5V d.c. operation over 200 hourl continuous on APE battery, lully sdjatable swing and speed. Ideal displast, strobe, etc.

R.C.S. RECORD PLAYER AMPLIFIER

 2 stage triode pentode ralve. 8 watts output. Volume on/o and tone controls. Printed circui£4.50 ${\underset{8}{850}}_{\substack{\text { Post }}}^{\text {Pr }}$ Complete with speeker.

COAXIAL PLUG 10p. PANEL SOCKETS 10p. LHE 18 OUTLET BOXES, SURFACE MOUNTLE $40 p$.
BALANCED TWIN RIBBOR FEEDER 800 ohme, 75 Id. JACK SOCKET Std, open-circuit 14p. closed circnit 83 p JACK PLUGS Std. Chrome $20 \mathrm{p} ; 3.5 \mathrm{~mm}$ Chrome 15 p D
 Lead 3-pin 18p; 5-pin 25p. DIN PLUGS 8-pin 25p; 5-pin 28p. VALVE HOLDERS 5D; CERAMIC 10p; CANS 5p.

[^3]E.M.I. wooker and CF. 75 THE PAR, Post 45 p . -5.75 The Pair, Post 45p. Wooter
Compriaing a fine erample of a Woofer $10 \% \times 61$ in with a mataive Coramic Magnet, $440 z$ Gauss 18,000 lines. middeand top response. Also the E.M.I. Tweeter 8 tin aquare has a special lightweight paper cone and magnet flux 10,000 lines. Crossover condenter and fall Instruction supplied. Impedance Standard 8 ohms Maximum power 12 watts Uselul Reaponie $\quad 35$ to $18,000 \mathrm{cpa}$ Bees Remonance $45 \mathrm{cps} 18,000 \mathrm{cpa}$ MODERI DESICSURE $20 \times 13 \times 9 \mathrm{in}$.
 MODERA DESIGN. TEAK WOOD FINISE

ANOTHER R.C.S. BARGAIN!
ELAC $9 \times 5 \mathrm{in}$. HI-FI SPEAKER TYPE 59RM Thir famous unit now a vailable, 10 watts, 8 ohm. Price $\mathbb{£ 2 . 9 5}{ }_{25 \mathrm{p}}^{\text {Pos }}$

$8^{\prime \prime}$ or $10^{\prime \prime} \times 6^{\prime \prime}$ ELAC HI-FI SPEAKER
Dusl cone plasticised roll aurround. Large ceramic magnet. $50-16,000$ cps. Bass resonance 55 cps.
£3.75
IOin round $£ 4 \times 50$.
TEAK VENEER HI-FI SPEAKER CABINETS
Fluted Wood Fronts
MODEL "A". $20 \times 13 \times 9$ in For 12 in . dia. or $\mathcal{L} \mid 0.50$ Post MODEL "B". $1 \dot{6} \times 10 \times 7 \mathrm{in}$ For $18 \times 8 \mathrm{sin}$. or $\mathbf{6 6 6 0} \mathbf{~ P o i s}$ 8 in. speaker MODEL "4C". $30 \times 20 \times 12 \mathrm{in}$ Reflex cabinet wil] accept $1-12$ in basa unit, $1-5 i n$, mid range, $1-3 \mathrm{in}$ front $E / 8 \cdot 50^{\text {Carr. }}$ LOUDBPEAEER CABINET WADDING 18in wide, 20p it

DECCA DOME TWEETER 8 inin. diam. 18,000 C.P.S. 25 WATTS 8 s $\leq 3 \cdot 30$

BARGAIN 4 CHANNEL
TRAM8ISTOR MONO
MIXER. Add musical himbilights and yound effects to recordings. Will mix Microphone, records, tape and tuner with separate 9 volt battery $\{450$
8TEREO VERSION OF ABOVE 55.95
BARGAIN 3 WATT AMPLIFIER. 4 Transistor
Push-Pull Ready built with volume, troble and
basi controls. 18 volt battery operated.
£3.95

TEE "IM8TANT" BULK TAPE
ERASER \& HEAD DEMAGNETISER.
suitable for casbettes, and all sizes of tape reels. A.C. mains 200/250V.
Leaflet S.A.E. $\quad \mathbf{3 . 7 5}$ Post
WAFER HEATING ELEMENTS
OFPERTNG 1001 USES for every type of hesting and drying applications in the home, garage, greenhonse factory (apailable in manufacturing quantities). Approx gise $307 \times 8 \mathrm{f} \times \mathrm{h} \times \mathrm{h}$. Operating voltage $200 / 250 \mathrm{~V}$. a.c. 250 watta approx. Printed circuit element enclosed in asbestos fitted with connecting wires. Completely fexible providing safe Black heat. British-made lor use in photocopiars and print drying equipment.
deal for home handymen and experimentera. Suitable for Heating Pada, Food Warmers, Convector Heaters, etc. etc., to make efficient clothes dryers, tomel rails-ideal for siring cupboards. Idoal for anti-frost device for the garage -preventing frozen radiators or acting as oil sump heater. Use in greenhouse for seed raising and plant protection. Invaluable aid for bird houses, incubstors, etc., etc. Can be used in series for lower heat. Or in parallel for higher hest applications.
ONLY 40p EACH (FOUR FOR $£ 1.50$) ALL PO8T PAID --Discounts for quentity.

BAKER MAJOR $12^{\prime \prime}$ £8.50

$30-14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}$, double cone, wooler and tweeter cone together with a BAKER ceramic magnet ansembly
having a fax donnity of having a flax donnity of of 145,000 Marwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$ Rated 20 watte. NOTE: 3 or 8 or 15 ohms must be stated.

Module kit, $30-17,000 \mathrm{c} / \mathrm{a}$ with tweeter, cromsover, baffle and instructions. ≤ 10.95

BAKER

 "BIG SOUND" SPEAKERSRobustly constructed to stand up to long pariods of electronic power. Useful response $30-18,000 \quad$ cpa. Basa Reanance 55 cpa .
GROUP " 25 "
12 in 25 watt 3,8 or 15 ohms.

GROUP "35"
$12 i n 35 \mathrm{wa}$ tt £8.50

GROUP "50"

15 in .50 watt £ 17.80
50 watt 12 in VERSION $£ 12.95$
MAJOR 100 WATT ALL PURPOSE TRANSISTOR AMPLIFIER
All purpose transiatorised Ideal for Groups, Disco and P. mizing. Output $8 / 15$ ohm a.c. Mains. eparate treble and bana controls.
 uaranteed. Details S.A.E.

NEW MODEL MAJOR 50 WATT

 4 inpnts, 2 way mixing, $239 \cdot 95$. Carr. 21. Ideal disco ampCALLERS ONLY! DE-LUXE 100 WATT AMPLIFIER CHASSIS. 7 Velve veraion, 4 inputa, 10 wide rauge
ontrols. For Mikes, Discos, Organs, Guitars, etc.
4.8 and 15 ohm Loudspeaker matching.

QUALITY LOUDSPEAKER ENCLOSURE
Teak veneured tin thick wood cs binet. Size
$181 \mathrm{in} \times 181 \mathrm{in} \times 81 \mathrm{in}$. Weight 231 bs . Thil osbinet features a wide mesh Sulver Grill covering a separate compartment for mounting Tweeters or Mid-Range Horn. The fully sealed bss compartment is cut out for Rosewood Veraion $\mathbf{1 8} 50$. Carr. 85p.
Baffe could be cut for larger speaker.
SPECIAL OFFER 95p. Poat 25p. 100 Ohm 20 watt Rheostat $2 \frac{1}{i n}$ dia. Ceramic Former. Screw Terminala tín. dia. apindle.
R.C.S. STEREO DECODER

British made. Ready aligned and tested. Complete $\mathbf{£ 4 . 9 5}$ with instructions. Size 3 in $\times 2 i n$.

WEYRAD COILS

P50/2CC	40p	RA2W	$85 p$
P501AC	$80 p$	OPT1	$65 p$
P50,3CC	$40 p$	LPDT4	$65 p$
PCA1	$85 p$		Twin gang
81.10			

DELUXE 4 POLE MOTOR 1,400 r.p.m. rejeraible 42 Watt spindle 1 in $\times 7 / 32 \mathrm{in}$, size 3 in \times 3in. As illustrated. 240 V a.c. mains E.M.I. GRAM MOTOR 120 V or 240 V a.c. $2,400 \mathrm{rpm}$. 2-pole 70 mA . Size $2 \mathrm{i} \times 2 i \times 2 \mathrm{ilin}$.$\pm 2 \cdot 25$

BAKER HI-FI SPEAKERS high quality - british made REGENT
I2in. 15 watts
An inexpenvive unit for the beginner in high fidelity and for general purposes. insy be Amplifier $\mathrm{Hi}-\mathrm{Fi}$ or Teleritio mplifer sass Rei
lax Denaity 12,000 gaves Useful response $45-13,000 \mathrm{cp}$ 3 or 8 or 15 ohm models.

£7.75

DE-LUXE Mk II

 I2in. 15 wattsEspecially designed to provide ull range raproduction at sn conomical cost. Suitable for ystem, Builh-in concentric Fstem,
weeter cone. Bass Resonance
Flay Dentity 1400030 cpa 14,000 E8us 8 or 15 ohms models.

E9.75

SUPERB

I2in. 20 watts
A bigh quality loudspesker, its remarkable low cone resonance
reproduction on of the deepest ass. Fitted with a special copper drive and concentric tweeter cone resulting in full range reproduction with remarkable effeiency in the upper regiater.
Flux Denity $18,500 \mathrm{genfs}$ Flux Denity $\quad 16,50, \mathrm{gaus}$ 8 or 15 ohms model.

f13.80

AUDITORIUM

I2in. 25 watts
A full range reproducer for high power, Electric Guitarn, public addreas, malti-spesker ystems, electric organs, deal heques.
Bass Resonance $15,0035 \mathrm{cps}$ Useful response $25-16,000 \mathrm{cp}$ 8 or 15 ohm models.

£ $12 \cdot 95$

AUDITORIUM

I5in 35 watts

A high wattage loudapeaker of exceptionsl quality with evel response to above ,000 cpa. Ideal for Public tronic ingtruments and the ronic home. Flux Density 15,000 gaual Uasful response $20-14,000 \mathrm{cp}$ 8 or 15 ohms models.

£ $17 \cdot 80$

$\mathrm{Hi}-\mathrm{Fi}$ Encloaure Manual containing plans, dealgns, cromover dats and cubic tables. 83p

TS

CRESCENT RADIOLTD
 $11-15$ \& 17 MAYES ROAD, LONDON N22 6TL (also) 13 SOUTH MALL, EDMONTON, N. 9
 MAIL ORDER DEPT.
 II MAYES ROAD, LONDON N22 $6 T 1$ Phone 8683206 \& (EDM.) 8031685

ADD LUXURY WITH A MOTOR DRIVEN CAR AERIAL

Extended Length 100 cm Length under Fender 40 cr Cable Length 120 cm
Supplied complete with Fixing Bracket and
Control Switch. $\mathbf{\& 7 . 5 0}$
P. \& P.

1
"CRESCENT BEAT BRITE" SINGLE CHANNEL SOUND TO Thls fantastic Thls iantastic approx. $4^{\prime \prime} \times 3^{\prime \prime} \times 23^{\prime \prime}$ when mound source from 1 to 100 watts produces a psychedelic light display of up to 1000 watts. Complete with a sensitive level control the unit is fused and canA Bargain at $£ 7.50$ plus 10 p .

MINIATURE RELAYS

Brand new range of British made relays, size: 1 fin \times lin \times in. $1 \cdot 5 \mathrm{~A}$ contacts and suitable for fitting on 0.1 m veroboard. Type Volts Current ohm $27 / \mathrm{A} 12 \mathrm{~V} \quad 17 \mathrm{M} / \mathrm{A} \quad 700 \mathrm{All}$ $21 / \mathrm{A} 12 \mathrm{~V} \quad 28 \mathrm{M} / \mathrm{A} \quad 730 \mathrm{\$ 1.30}$ 12/A 6 V 33M/A 18 j each Heavy duty contacta Relay coll. All D.P.D.T. maine relay 50 p , Carr, (ree. Special quantity $£ 40$ per

MIDGET

MAINS TRANSFORMER
Varnish Impregnated
$51 \mathrm{ze} 48 \mathrm{~mm} \times 36 \mathrm{~mm} \times 31 \mathrm{~mm}$ PRI 240V

Sec	$3.0 \cdot 3$	100 ma
Bec	6.0 .6	100 mA
Sec	0.0 .9	100 mA
Sec	12.0.12	100 mA
Sc	20.0.20	100 mA
¢1.	10 p	\& P .

CRESCENT BUBBLE LIGHT SHOW This budget system compares very and haber priced nore sophisticaten SpeciAcation
Projactor- 1
cooled. At 30 ft the convection image in 16 ft .
Motor- 1 rev, per 2 min Liquld Wheel-6in
multi colour
The motor is fitted to the projector and can only be purchased as a
single unit. The liquid
model and wheel is our standard separatels.
A bargain at: Projector, 215 ;
Wheel, 25 ; Total 220 , Plus 75 p carr.

LOUDSPEAKER A top quality speaker ideal where
qmall size is important. Manufactured by F.M.I. for a wellknown hi-f set maker 4 in. Impedance: 8 ohms. Flux: 38,000 . Max. Free range: $9011 z$ to
12 kHz . Power handling: 5 F Unbeatable. Price: $£ 1.80$. Free Unbeatable. Price:
postage on this item.
"CRESCENT" I00 WATT R.M.S
ALL PURPOSE AMPLIFIER U. BUILD. IT

We supply the three modules for you to build this Disco-Group-P.A. amplifler into the cabinet of your choice.
' THE POWER AMP MODULE into 8 ohm (60 W into 16 ohm)

\$ THE PRE-AMP MODULE

Four control pre-amp, Vol. Bass, Treble. Middle controls. Designed to drive most ampllfters

* THE POWER SUPPLY

Is supplied complete with the mains transformer Complete fixing instructions are supplied and no three ready wired me is required to connect the three ready wired modules. A fantastic bargain on thiser.

12-0-12V 500M/A
240 F primary transtormer bargain. Approx. size Our price £1-20. I8V $500 \mathrm{M} / \mathrm{A}$
240 V primary. Approx. size: $60 \mathrm{~mm} \times 40 \mathrm{~mm} \times$ 50 mm . Axing centres: 75 mm . Our Price $£ 1$ each

BARGAIN BOX
Loud buzzer mounted in a metal box complete With two U2 battery size holder.
Designed and can be used as a flre alarm but ls Approx. size: 2 in $\times 6$ in $\times 1$ in .
Approx. size: $2 \operatorname{lin} \times 61 \mathrm{in}$
OUR PRICE 50 p
ABS PLASTIC BOXES
Handy boves for construction projects. Moulded extrusion ralla for P.C. or chassis panels. Fitted With 1 nmm front panels. $1005,105 \mathrm{~mm} \times 73 \mathrm{~mm} \times$
$45 \mathrm{~mm} 51 \mathrm{p} ; 1006,150 \mathrm{~mm} \times 75 \mathrm{~mm} \times 47 \mathrm{~mm} 68 \mathrm{p}$; $45 \mathrm{~mm} 51 \mathrm{p} ; 1006,150 \mathrm{mn} \times 75 \mathrm{~mm} \times 47 \mathrm{~mm} 68 \mathrm{p}$; $106 \mathrm{~mm} \times 74 \mathrm{~mm} \times 45 \mathrm{~mm}$ (sloping front) 50 p .

BARGAIN BOARDS
Components galore for the experimenter. Ex. Computer boarlls with resistors, capacitors and useful tranisistors-at least 4 transistors per board Five boards 11 .

2in. PANEL METERS Size $59 \mathrm{~mm} \times 46 \mathrm{~mm}$

Size 59 mm	$\times 46 \mathrm{~mm}$
$0.50 \mu \mathrm{~A}$ - ME6	0.100 mA -ME13
$0.100 \mu \mathrm{~A}-\mathrm{ME} 7$	0.500 mA -ME14
$0.500 \mu \mathrm{~A}$-ME8	0.1 A - ME15
0.1 mA - ME9	$0-50 \mathrm{Y}$ a.c. -ME16
0.5 mA -ME10	$0 \cdot 300 V_{\text {a.c.-ME17 }}$
$0 \cdot 10 \mathrm{~mA}-\mathrm{MEll}$	\& meter -ME18
0.50 mA - ME1:	V.U. meter-ME19
83 each. 10 p P. \& P	

POWER PACKS

PP1 8witched 3-6-7i-9V $400 \mathrm{M} / \mathrm{A}$ Transistor and
 Reversal
PP2 8witched
Approx 6-7t.9V liattery Eliminator. Approx. size $2 \frac{3}{3}$ in $\times 2 \frac{1}{2}$ in $\times 31 \mathrm{in}$. Ideal for
IPP3 Car converter $=6-7 \mathrm{k} 9 \mathrm{v}$. Easy to fit and transistor
regulated, 83.80 regulated, $£ 3.80$.
3 KILOWATTS PSYCHEDELIC LIGHT CONTROL UNIT
U.K. CARRIAGE

ISp UNLESS
OTHERWISE STATED

VAT
8% VAT TO BE ADDED TO ALL ORDERS

SEND 20p FOR A CRESCENT CATALOGUE

MINI LOUDSPEAKERS
2tin so ohin, 50 p; $2 t i n 40$ ohm, 50 p.
Please
include jp P \& P. on each L.S.
include ip P. \&P. on each Ple

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS Prim. 120/240V. Sec $120 / 240 V$ Centro Tapped and Screened ALSO AVAILABLE WITH \|I5/I2OV SEC. WINDING Ref.
No.
07
149
150
151
152
153
154
155
156
157
158

Ref.
No.
113
64
4
66
67
84
93
95
73

ef.	(Watts)
07	20
79	60
50	100
1	200
52	250
53	350
54	500
56	750
57	1500
38	2000

$\begin{array}{cc}\text { Weight } \\ 16 & 0 z \\ 1 & 8 \\ 3 & 12 \\ 5 & 8 \\ 8 & 0 \\ 13 & 12 \\ 15 & 0 \\ 19 & 8 \\ 29 & 0 \\ 38 & 0 \\ 46 & 0 \\ 60 & 0 \\ \text { AUTO }\end{array}$
va

CASED AUTO TRANSFORMERS
115 V mains lead input and U.S.A. 2-pin outlets, 20VA $62 \cdot 85, \mathrm{P}$ \& P 38 P . 500 VA \& 9.50 , P \& P 80 P . 1000 VA E 15.92 , via B.R.5.

LOW VOLTAGE SERIES (ISOLATED)
Y $200-250$ VOLTS 12 ANDIOR 24 VOLT
PRIMARY $200-250$ VOLTS 12 AND/OR 24 VOLT RANGE
Ref. Amps. Weighz
No. 12 V 24 V ib oz
No. $12 \mathrm{~V} 24 \mathrm{~V} \mathrm{lb} \mathrm{oz} 4.8 \times 2.9 \times 3.50 .12 \mathrm{~V}$ as $0.25 \mathrm{~A} \times 2 \mathrm{c}$

213 71 18 70 108 72 11 17 11 18 22

$4.8 \times 2.9 \times 3.50 .12 \mathrm{~V}$ at $0.25 \mathrm{~A} \times 2$
$6.1 \times 5.8 \times 4.80 .12 \mathrm{~V}$ at $0.5 \mathrm{~A} \times 2$
 103
104
105
106
107
118
11

5	1	
1	1	12
2	2	12
3	3	8
4	5	8
5	6	4
6	6	12
8	8	12
10	11	
15	15	
30	32	

8.9×8.
9.9×8.
$\begin{array}{ccc}\text { (Wats) }) & 16 & 0 \\ 20 & 1 & 0 \\ 75 & 2 & 4 \\ 150 & 3 & 4 \\ 300 & 6 & 4 \\ 500 & 2 & 8 \\ 1000 & 19 & 8 \\ 1500 & 30 & 4\end{array}$
$\begin{array}{ll}8 & 14 . \\ 0 & 17 \\ \text { eight }\end{array}$

9
30
38
38
45
53
53
60
67
73

MINIATURE TRANSFORMERS WITH SCREENS
\qquad $2.8 \times$
$6.1 \times$
$3.9 \times$
$4.8 \times$
$6.1 \times$
7.0×6
4.8
7.1
7.3
8.3
8 $3-0-3$
$0-6,0$
$9-0-9$
$0-9,0$
$00-8.9$
$0-8-9$,
0.15,
0.20,
$20-12$
$0-15-2$
$0.15-27$ \qquad
-9

$\begin{array}{r}P \& P \\ 0 \\ 0 \\ \hline 10\end{array}$ | 10 | |
| :--- | :--- |
| 10 | |
| 30 | |
| 13 | |
| 19 | |
| 30 | |
| 38 | |
| 3 | 19 |
| 6 | 30 |
| 8 | 38 |
| 73 | 38 |
| 50 | 38 |

PLEASE ADD 8\% FOR V.A.T.
NCLUDING P, P

F00Phoenix Electronics (Portsmouth) Ltd.
139-141 Havant Road. Drayton, Portsmouth, Hants PO6 2AA
Full member of AFDEC-the industry's association of franchised electronic component distributors
Our prices include VAT at the current rate-and carriage on all goods is free

Send for our catalogue and price list-we'll mail that to you free, too

THIS MONTH'S BARGAIN OFFER!

Rectifier kit. 4 each 1N4148, AA144, 1N4004, 1N4006, 1N5402, 1N5406, SCR 0.6 A/200V, Bridge 1 A 400 V , Triac $2 \cdot 5 \mathrm{~A} 100 \mathrm{~V}$, plus 4 voltages of 400 mW Zenerscatalogue value $£ 10 \cdot 60$. Bargain pack PEP/4A£6. 50.
Please send your catalogue-free!
Name
Address
PEP/1A

NEW PE SCORPIO

Mk. 2

Following the phenomenally successful Scorpio Capacitor-Discharge Electronic Ignition system introduced in 1972 and proved by many thousands of satisfied motorists, we are happy to announce availability of all parts for the PE SCORPIO Mk. 2 -
Now with added R.F.I. suppression.

* Fully machined and painted die-cast case with AMP termination connector block.
- Custom wound eransformer.
* NOW AVAILABLE IN 6 V . and 12 V .

Suitable for all types of Cars, Boats, Go-Karts, etc.

- Promotes easier starting-even under sub-zero conditions.
- Improves acceleration, gives better high speed performance and quicker engine warm up.
- Eliminates excessive contact breaker burning and pitting.
* PROMOTES FUEL ECONOMY

Construction of the unit can easily be completed in an eveninginstallation should take about halfan hour. A complete complement of components is supplied wish each kit iogether with ready drilled, roller tinned professional quality fibreglass printed circuit board. -Uses original plugs, points and coil.-No special parts or extras required.
(Case size: 7 i in $\times 4$ in $\times 2 \mathrm{in}$)

* All components available separately.-S.A.E. with enquiries.
- Construction manual available separately 25p.

Cost $£ 11.78$ incl. carr. and ins. or ready built and tested $£ 14.49$
Conversion kit from Mk. 1 to Mk. 2. For conseructors already possessing Mk. I Kits.-Miniature P.C. assembly $\boldsymbol{E I}$ incl. carr. and ins. With full conversion instructions.

PLEASE ADD VAT TO ALL U.K. ORDERS
(Carriage at cost outside U.K. - Export enquiries welcome.)

DABAR ELECTRONIC PRODUCTS

98 LICHFIELD STREET WALSALL, Staffs WSI IUZ

The big three from Wireless World

WIRELESS WORLD ANNUAL 1975

The first ever Wireless World Annual contains pages of features covering all aspects of electronics and communications, including new and established techniques both practical and theoretical. Content includes constructional projects for a general purpose audio oscillator and a small boat echo sounder. There is a reference section packed with useful information.

HIGH FIDELITY DESIGNS

In response to demand for reprints of Wireless World constructional projects, we have collected fifteen of the most popular designs in one book. It covers tape, disc, radio, amplifiers, speakers and headphones. Where necessary, specifications have been updated to incorporate new components which have become available.

HI-FI YEAR BOOK 1975

This is the book that tells you everything you need to know about the hi-fi equipment on the market. Separate illustrated sections cover every major category, together giving prices and specifications of over 2,000 products. And it's got a directory of dealers/manufacturers - plus a host of articles on the latest hi-fi developments and their application.

Practical Electronics Classified Advertisements

RATES: 11p per word (minimum 12 words). Box No. 30p extra. Semi-Display $£ 8.50$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House Farringdon Street, London EC4H 4AD

RECEIVERS AND COMPONENTS

Abstract

R.T. SERVICES (MAIL ORDER ONLY) 77 Hayfield Rd., Salford 6, Lancs. 12 Volt 1 AmpTrickle Charger, $£ 1.85$ P.p. FM Tuner with R.F. Stage and A.G.C., 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $£ 1.37 \frac{1}{2}$ inc. P.P. Crouzet Geared Motors, 30 r.p.m. New, El .54 inc. P.P. UHF TV Tuners. Transistorised, $£ \mathbf{E l} .85$ inc. P.P. Panels with I.C's on $7 \frac{1}{2} p$ per I.C. min. order 10 l.C's. Transformers. $7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, \mathrm{£} 1$ inc. P.P. $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, \quad \in 1 \cdot 10$ ine. P.P. $9-0.9 \mathrm{~V}$, $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, £ 1 \cdot 10$ inc. P.P. 9-0-9V, $100 \mathrm{~mA}, \mathrm{f} 1 \cdot 10$ inc. P.P. $29 \mathrm{~V} 50 \mathrm{~mA}, 85$ p inc. P.P. $6-0-6 \mathrm{~V}, 100 \mathrm{~mA}, \mathrm{E} \cdot 10$ inc. P.P. Transformer. 24 volt, approx. I amp 6.3 V CT approx. 500 mA , $: 1.40$ inc. P.P. 6.3V CT approx. 500 mA , $£ 1.40$ inc. P.P. Transformer. $20-0-20$ volt, approx. 2 amp $+6.3 \vee, 63$ inc. P.P. Transformer. 20 volt, 1 amp, $£ 1 \cdot 25$ P.P. Transformer. 45 volt, $2 \mathrm{amp}, \in 3$ P.P. P.C. Board. S/S, $5 \frac{1}{3} \times 5 \frac{1}{2}$ in, 10 for $£ 1$ inc, P.P. 3EGI Scope Tubes with base and connections, $£ 3 \cdot 30$ ine. P.P Transistorised Timer. Variable delay. 110 or 250 V A.C. input. With instructions. Brand new, $£ 2$ inc. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$. Power Unit Components Transformer. 18 volt I amp F/W bridge rectifier, 21250 mid capacitors, all new $\mathrm{El} \cdot 40$ per kit. P.P. Electrolytic Capacitors, 4,000 MF, 50 VW , $4 \frac{1}{2} \times 1 \frac{1}{1 " ~}^{\prime \prime} 80 p$. inc. P.P. Mixed Pack of C 280 series Mullard capacitors. 100 for $E 1 \cdot 15$ inc. P.P. 4 Panels each with XN3 type Nixie tube ON $£ 1 \cdot 85$ inc. P.P. Min. order 4.

PRECISIONPOLYCARBONATECAPACGTORS

ALL HIGH STABILITY-EXTREMELY LOW LEAKAGE

TANTALDM BEAD CAPACITORS-Values a vailable: $0.1,0 \cdot 22,0.47,1.0,24,4 \cdot 7,6.8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V ; $33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100.0 \mu \mathrm{~F}$ at 3 V . ALL at 10 p each. 10 for $85 \mathrm{p}, 50$ for $£ 4$. TRANSISTORS: BC183/183L $11 \mathrm{p} \mid$ BFY50 BC107/8/9 9p BC184/184L 12 p BFYo

 \begin{tabular}{ll|ll|l}
HC153/7/8 \& 12 p \& 13F194 \& 12 p \& OG71

HC182/18:L \& $11 p$ \& BF197 \& 12p \& OG71

13 \& 2N05j
\end{tabular} $\begin{array}{lllll} & 13 \mathrm{p} & 2 \mathrm{~N} 3050 & 50 \mathrm{p}\end{array}$

 6p. IN 4003 6ip: IN 4004 7p; IN $40057 \frac{1}{2} p$; IN 40068 p ; IN400784P.
 $6.2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8-2 \mathrm{~V}, 9.1 \mathrm{~V} .10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}$,
$13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V}$, ALL at 7p each, 6 for 39p, 14 for 84y. BPECIAL OFFER: 100 ziners
RESISTORS-High stability, low noige carbon flim 5% IW at $40^{\circ} \mathrm{C}$, iW at $70^{\circ} \mathrm{C}$. EIU geries only-from $2 \cdot 2 \Omega$ to
$2.2 \mathrm{M} \Omega . \mathrm{ALL}$ at lp each, 8 p for 10 of any one value, 70 p 2 ys . ALL at 1 p each, gp for 10 of any one value, 70 p
for 100 of any one value. SPECIAL PACK: 10 of each value $2 \cdot 2 \Omega$ to $2.2 \mathrm{M} \Omega(730$ resistors) E 5 .
SILICON PLASTIC RECTIFIERS-15 amp, Irand new
wire ended D027; $100 \mathrm{I}^{\mathrm{r}} . \mathrm{I} . \mathrm{V} .7 \mathrm{p}(4$ for 26 p); $400 \mathrm{P} . \mathrm{I} . \mathrm{V} .8 \mathrm{p}$ (4 for 80 p).
BRIDGE RECTIFIERS-21 $\frac{1}{2}$ amp: 200V 40p; 350 V 45 p : SUBMINIATURE VERTICAL PRESETS-0-1W only ALL at 5 p each: $50 \Omega, 100 \Omega, 2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 67 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 68 \mathrm{k} \Omega, 1 \mathrm{k} \Omega$ $2 \cdot 2 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 6 \cdot 8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega$,
$100 \mathrm{k} \Omega, 250 \Omega, 680 \mathrm{k} \Omega$. $1 \mathrm{M} \Omega, 25 \mathrm{M}, 6 \mathrm{M}, 2$ PLEABE ADD 10p POST AND PACKING ON ALL ORDERS BELOW E5. ALL EXPORT ORDERS ADD COST OF SEA/AIRMA1L.
Send SLA.E. for lists of additional ex-stock items.
Wholesale price lists available to bona fide companies
MARCO TRADING
Depl. E.3, The Old School, Edstaston,
Tel.: Whlxall 464/465 (ETD 0948 72)
(Propra.: Minicost Trading Ltd.)

			0.125	02 S	$\begin{aligned} & \text { D.ILL. } \\ & \text { SOCKET } \\ & 8 \text { pin } \\ & 12 p \\ & 14 \text { pin } \\ & 13 p \end{aligned}$	
	RED		15p	19p 8		
	GRE		27p	33p 12		
	YEL	OW	27p	33p 13		
INFRA-RED LEDS with Data		$550 \mu \mathrm{~W}$ axial lead, 49 p 1.5 mW TO46, £1. 10				
OPTO-ISOLATORS with Data HL $74.5 \mathrm{kV}, 150 \mathrm{kHz}$ $43502 \cdot 5 \mathrm{kV}, 5 \mathrm{MHz}$				OP. AMPS		
				$\begin{aligned} & 709 \text { al } \\ & 7418 \text { pin } \\ & 748 \mathrm{DIL} \end{aligned}$	25p	
				- 29p		
THYRISTORS $50 v$ 100 v 400 v TO5 1A $25 p$ 27 p 46 p TO66 3A 27 p $\mathbf{3 5 p}$ 50 p						
				$\begin{array}{lr}\text { NE555V } & \text { 80p } \\ \text { ZN414 } \\ \text { ¢1.10 }\end{array}$		
AC127 AC128 AF 117	15p	2N2926(R) 7p				
	15p	${ }_{\text {2N } 2926 \text { (G }}^{\text {2N } 3053}$	G) 12 p	BHA I.C AMP 15 W 20		
	20p		15p			
BC107	10p	2N 3055 11p		IN914 iN4001	3p	
BC108	10p	2N3702	12p		5 p	
BC109C	14p	2N3704	12p	$\begin{aligned} & \text { IN4001 } \\ & \text { IN4002 } \end{aligned}$	6p	
$8 \mathrm{BC169C}$	12p	T1S43	25p	$\begin{aligned} & \text { IN4002 } \\ & \text { IN4004 } \end{aligned}$	p	
8 C 182 L	11 p	MPF102	40p	IN4148		
BC184L	11p	2N3819	25p	OA47	6p	
BC212L	12p	2N3823	30p	OA81	7 p	
BC213L	11p	used OC84		OA95	$5 p$$5 p$	
BCY70	15p					
BCY71	22p	10 to	r 50p	OA200	6p	
BCY72 BFY50/51	12p			OA202		
0C71	$16 p$ $10 p$	7805 Reg. $\mathbb{I c} \cdot 50$ Plastic 1.5 Amp		Bridges		
2N706	10p			2A 50V	30p	
2N2904	16p	$\begin{aligned} & \mathrm{L} 1295 \mathrm{Vreg} \\ & 600 \mathrm{~mA} 1.40 \end{aligned}$		2 A 100 V2 A 400 V	36p	
2N2906	16p					
PRICES INCLUSIVE + 10p P. \& P. (1st class)						
ISLAND DEVICES, P.O. Box 11, Margate, Kent						

BRAND NEW COMPONENTS BY RETURN, Electrolytics, $15 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0 \cdot 47,1,2 \cdot 2$, $4 \cdot \overline{7}, 10 \mathrm{IIF}, 4 \mathrm{p} ; 22,47,4 \frac{1}{2} \mathrm{p} ;(50 \mathrm{~V}, 5 \mathrm{p}) ; 100$, $5 \frac{1}{2} \mathrm{p} ;(50 \mathrm{~V}, 7 \mathrm{p}) ; 220,6 \mathrm{p} ;(50 \mathrm{~V}, 9 \mathrm{p})$. Subminiature bead-type tantalums $0 \cdot 1 / 35 \mathrm{~V}, 0 \cdot 22 \cdot / 35 \mathrm{~V}$ $\begin{array}{ll}0.47 / 35 \mathrm{~V}, & 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, \\ 0.7 / 35 \mathrm{~V}, & 10 / 16 \mathrm{~V}\end{array}$ $22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, 9 \mathrm{p}$. Mylar Film 100 V $0.001,0.002,0.005,0.01,0.02,2 \frac{1}{2} \mathrm{P} ; 0.04,0.05$, 3p. Mullard Tubular Polyester 400 V E 6 series, $0.001-0.022,3 p ; 0.033-0.1$, 4 p. Mullard miniature C333 ceramics E. 12 series $2 \% 1.8 \mathrm{pF}$ $47 \mathrm{pF}, 2 \frac{1}{2} \mathrm{p} ; 56 \mathrm{pF}-330 \mathrm{pF}, 3 \mathrm{p}$. Polvstyrene 63 V E12 series $10 \mathrm{pF}-1000 \mathrm{pF}, 2 \mathrm{ip} ; 1200 \mathrm{pF}-$ 10000 pF , 3 dp. Miniature Highstab Carbon Film

DRY REED INSERTS

Overall length 185° (Body length $1-1^{\circ}$).
Diameter $0.14^{\prime \prime}$. Max ratings $250 y \mathrm{C}$ and Diameter $0.14{ }^{*}$. Max. ratings 250 y D.C. and
500 mA . Gold clad normally per dozen: 64.12 per 100 ; 630.25 per 1,000 : per dozen:
$£ 275$ per 10,000 . VAT and post paid. G.W.M. RADIO LTD.
40/42 Portiand Road. Worthing, Sussex 090334897

BETA DEVICES

$\begin{aligned} & \text { TRANBISTORE } \\ & \text { AC187/188 } \end{aligned}$		I.C'E	DIODES \& RECT
		7090 T0.99 0.90	
PR	0.40	709C D.I.L. 0.80	$1 N 41480.04$
C107/		$7+1 \mathrm{C}$ TO.99 0.36	B Y 12\% 0.14
BCI 08	0.09	741C D.I.L. 0.38	1N4001/2 00.05
BCl09C	0.11	723 C D.I.L. 0.80	1-14003/4/5 $\quad 0.08$
BCl47/8/9	0-10	7.4C b.I.L. 0.85	1 I $4000 / 7 \quad 0.08$
BCY70/T1/T20.13$\text { BFX } \operatorname{BE} / 8 / 87 / 88$		748C D.I.L. 0.86	BRIDGES
		5Watt Audio I.C.	$\text { Wol } 1 \mathrm{~A}$
EFY50	0.18	SWatt Audio I.C. TBA 800 el 50.	$100 \mathrm{~V} \quad 0.20$
BFYE1/52	0.12	Duta free with	$W 061 A$ 600 V 0.30
0 C 28	045	every order.	800 V 0.80
2N 2646	0.35		ZENERS
2N2646	0.30	D.I.L. SOCKETS	B7Y883.3-
2N3053	0.14	8 8-Pin 012	$33 \sqrt{5 \%} 0.09$
2N3066	0.38	14 -Pin $\quad 0.12$	1 Watt 6月--0.0
2N34.2	81.40	16-P'in 0.14	200 V 5\% 0.15
2N3773	22.20		L.E.D.
TIP'th	0.74	All pricea	209-Red 0.17
40836	81.00	include V. $4 . T$	L.E.D. Clip 002
C.W.O. PLUS P.P. 10p TO BETA DEVICES,			

TTL AT LOW PRICES!

	1/24	25/99		1/24	25/99
SN7400	0.15	0.14	SN7454	0.15 ${ }^{\text {d }}$	0.14
SN7401	$0 \cdot 15 \frac{1}{7}$	0.14	SN7460	0.15i	0.14 ${ }^{\frac{1}{3}}$
SN7402	$0.15 \frac{1}{5}$	0.141	SN7472	0.29	0.27
SN7403	0.15 ${ }^{\text {¢ }}$	0.14	SN7473	0.33	0.32
SN7404	0.18	0.16 ${ }^{\frac{1}{2}}$	SN7474	0.36	0.34
SN7405	0.18	0.165	SN7475	0.51	0.50
SN7408	0.18	0.16	SN7476	0.35	0.32
SN7410	0. $15 \frac{1}{1}$	0.14	SN7480	0.50	0.47
SN7412	0.23	0.21	SN7483	0.95	0.89
SN7413	0.33	0.32	SN7486	0.35	0.34
SN7420	0. $15 \frac{1}{2}$	0.141	SN7489	$3 \cdot 56$	3.33
SN7430	$0.15 \frac{1}{2}$	$0.14 \frac{1}{2}$	SN7490	0.54	0.50
SN7432	0.31	0.29	SN7492	0.54	0.50
SN7437	0.31	0.29	SN7493	0.54	0.50
SN7440	0.15\%	0.14 ${ }^{\text {a }}$	SN7495	0.73	0.68
SN7442	0.73	0.68	SN7496	0.83	0.78
SN7445	0.99	0.92	SN74107	0.36	0.34
SN7447	0.98	0.98	SN74121	0.36	0.34
SN7450	0.15	0.14i	SN74123	0.72	0.67
SN7451	$0.15 \frac{1}{3}$	0.14,	SN74157	0.87	0.81
SN7453	$0.15 \frac{1}{2}$	0.14i	SN74175	1.01	0.95

DIODES: 1N4148 4p, 1N4001 4ip, 1N 4002 5p, 1N 4003 6p, 1N40046p.
TRANSISTORS: ZTX107 10p, ZTX108 81p, ZTX109 11 p p
 $3!p ; 0.022,0.033,0.0473 \frac{1}{2} p ; 0.0884 \mathrm{p} ; 0 \cdot 1.0 .154 \frac{1}{\mathrm{p}}$.
All devices full spec by famous manufacturers. TTL All devices full spec. by famous manufacturers. TTL
MAY BE MIXED FOR 25/99 PRICES. S.A.E, for full lists TOP P \& P P on orders under 11 , otherwise POST FREE
J. C. JONES (Dept. PE3)

46 BURSTELLARS, ST, IVES
(Malt Order only)

TURN YOUR SURPLU8 capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate cash settlement.

DART ELECTRO SERVICES
 124 Oaklands Park, Buckfasteigh, Devon

ELEC. CAPS (ITT) $\mu \mathrm{F} / \mathrm{V}$ 1/100. 2•2/63, 4.7/35, 10uF/16. sp; 10/63. 22/10, 47/25. 100/10, 7p; 100/50, 10p; 470/35, 220/50, 18p; 1000/25, 24p.			
L.v. oIscs $0.01 / 18,0 \cdot 22 / 18.0 .047 / 12,6 \mathrm{p} ; 0 \cdot 1 / 30,0.22 / 6,7 \mathrm{fp}$.			
P.S. CAPS 5% 10-680pF, 5tp; 1000-10000pF. fp.			
P.E. CAPS 250V $0.01-0.047,5 p ; 0.068-0 \cdot 1,8 p ; 0 \cdot 15-0.22,8 p ; 0 \varepsilon 33-0.47$, 10p; 0.68-1 HF , 18p.			
mesistors 0.25W E12CF, 1jp:0.5W E12CF, 1+p; 0.5W E24MO.4p.			
ZENERS			
400 mW . 12p; 1W. 18 p .			
transistors			
2 N 699	45p	AD161,2 MP	95p
2N1613		8C107/8/9	${ }^{12 p}$
2 N 3053	21p	OA202	7 p
2 N 3054			5 sp
2N3055 2N3702-7	55p	1N4001/2/5	${ }_{90}$
${ }_{2 \mathrm{~N} 3773}^{2 N 302-7}$	¢2.95	1N4006/?	${ }^{13 \mathrm{p}}$
2N3B19	40 p	1 N 4148	P
2N5459	49p		
LIN. I.Cs			
UA709/14 HA709/T099		$\begin{aligned} & \mu A 741 / 8 \\ & \text { HAT23 } \end{aligned}$	78p
Please add 8% VAT and 15p Postage and Packin			

EDUCATIONAL

TELEVISION TRAINING

If MONTHS' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners.
I3 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential.

NEXT SESSION commences on April 21st.

Prospectus from London Electronics College, Dept. A3, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

C AND G EXAMS

Make sure you succeed with an ICS home study course for C and G Electrical Installation Work \&Technicians, Radio/TV/Electronics Technicians Telecomms Technicians and Radio Amateurs. COLOUR TV SERVICING Make the most of the current boom! Learn the techniques of servicing Colour and Mono TV. sets through new home study courses, approved by leading manufacturers.
TECHNICAL TRAINING Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Eomputer Engineering and programming. Also self-build radio kits. Get the qualifications you need to succeed. Free details from

INTERNATIONAL
CORRESPONDENCE SCHOOLS
Dept. 730, Intertext House, London
SW8 4UJ
Or phone 01-622 9911 (All hours)

One of the best ways of taking
A DEGREE IN ELECTRICAL or ELECTRONIC ENGINEERING and also qualifying to become a CHARTERED ELECTRICAL ENGINEER is to join the NORTH STAFFORDSHIRE POLYTECHNIC at Beaconside, Stafford.

We can introduce you to industrial firms for your practical training periods. In most cases these contacts lead to permanent staff appointment in industry upon graduation. Advice on course, accommodation and training from:

The Head of the Department of Electrical \& Electronic Engineering, Room Cl6, North Staffordshire Polytechnic, Beaconside, Stafford. Tel.: Stafford 52331.

LADDERS

LADDER8, timber and aluminium. Tel. Telford 586644 for brochure.

SERVICE SHEETS

BELL'S TELEVI8ION 8ERVICE8 for service sheets, manuals, books on radios, T.V.s, etc. Service sheets $40 p$ plus S.A.E. Free book lists on request. Back issues of P.W., P.E., E.E., TV available 25 p plus 7 p post. S.A.E. with enquiries: B.T.S. (Mail Order Dept.), 190 Kings Road, Harrogate, Yorks. Telephone (0423) 55885.

8ERVICE 8 HEET8 for over 6000 models of Televisions, Radios, Transistors, Stereo, Tape Recorders, Record Players, etc., at only 30p, plus S.A.E. with free Fault-Finding Guide. Over 50,000 sheets in stock for 10,000 models. S.A.E. enquiries. Catalogue 20 p plus S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 429066.

8ERVICE 8HEETS, Radio, TV, etc. 8,000 models. Catalogue 20p. S.A.E. enquiries. TELRAy, 11 Maudland Bank, Preston.

FOR SALE

FOR SALE back issues 1966-1973.
 Tel.

 028367011.FIBREGLA88 8HEET $T^{\frac{1}{H}}$ in. thick, high strength and insulation properties, sheets $12 \mathrm{in} . \times 12 \mathrm{in} ., 45 \mathrm{p}$ each. Send to: Richards, 15 Linden Lane, Kirby Muxloe, Leicester.

COMPLETE MINT GOLLECTION of Practical Electronics in binders with indexes, blueprints, etc. Offers 01-435 4552.

SITUATIONS VACANT

ELECTRONIC ENGINEER

required in an expanding, electronic services company in the Sultanate of Oman, specialising in commercial/industrial television and radio installations, also the installation and servicing of electronic security systems. Applicants should have a minimum of either Ordinary National Certificate or City \& Guilds Final.
Salary $£ 3,500$ p.a. nett, free furnished accommodation supplied, limited free utilities, i.e. electricity and water, company car and petrol supplied free, annual paid leave of one month with air fares provided, initial contract period minimum of two years.
Applications should be made to:

> P.O. Box 1000, Muscat, Sultanate of Oman

Jobs galore! Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks! Pay prospects? $£ 3,500+$ p.a. London Computer Operators Training Centre subscribes to the British Government backed National Computing Centre backed National of computing Centice for Computer Training Schools so you know your training will be second to none.
After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators
Training Centre Y33, Oxford Hse. 9-15 Oxford St., W.1.Tel. 01-734 2874

WANTED

TOP PRICES PAID

NEW VALVES AND TRANSISTORS
Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks.
'8COPE TUBE8 WANTED. 1 in . type 1CP1 or DH3/91, preferably with bases and screens. Price up to 85 according to age and condition. Checque or Po. by return. BARRY CHILDE, 370 Charminster Road, Bournemouth, BH8 9 RX. Tel. 516565 . Closed Mondays.

[^4]
Miscellaneous

The PE ORION HI－FI STEREO AMPLIFIER uses our GB1 Bec cablnet（Illustrated In Jan． 1974 Practical Electronics）．Special Price to readere of Practical Electronics．\＆3．60 plus 45p P．\＆P Ready Punched with a self－adhealve anodiaed aluminlum front panel．$£ 1 \cdot 80$ extra．Other sizes and types．Send S．A．E．for detalls．
Please add 8% VAT to total amount．
TRADE ENQUIRIES INVITED

H．M．ELECTRONICS

275a Fulwood Road
Broomhill，Sheffleld S10 3BD Tel． 669676

HARDWARE． Comprehensive range of screws，nuts，washers，etc．in small quantities， and many useful constructors＇items．Sheet aluminium to individual requirements， punched，drilled，etc．Fascia panels，dials， nameplates in etched aluminium．Printed circuit boards for this inagazine，and other individual requirements，one－off＇s and small runs．Machine engraving in metals and plastics，contour milling．Gend $24 \frac{1}{2}$ p stamps for catalogue．RAMAR CONSTRUCTOR SERVIUJS，Masons Road，Stratford on Avon． Warwieks，CV゙379さF．

SUPEPB INSTRUMENT CASE8 by Bazelli， manyuactured from heavy duty I＇V．C．face steel Hundrels of radio，electronic and hi－fi fintusiasts are choosing the case they require from our range of over 200 models．（ienerous trade discount．Prompt despatch，Free lit－ Wilfrid＇s，l＇oundry Lame，Halton，Lancaster，
I．A2 6 LT ．

LOW CO8T I．C．MOUNTING． 100 I．C．pin sockets 60p．Quantity rates．S．A．E．details and sample． 7 and 8 hole plastic supports $5 p /$ pair．（P．\＆P．5p／order）．LED（MLED500） $20 p$ each post free．Quantity rates．P．K．G． ELECTRONICS，Oak Lodge，Tansley， ELECTRONICS，Oa

IC 80CKET PIN8 for low cost mounting of 8 to 40 pin DILs． $70 p(+5 p$ VAT）for strip of 100 ， 40 pin
$8150(+12 p$ VAT $), ~ f o r ~$
3×100 ， $84(+32 p$ $81 \cdot 50(+12 p$ VAT），for 3×100 ， $84(+32 p$
VAT）for $1,000$. ．Instructions supplied－send SAT）for 1，000．．Instructions supplied－send under £2．SINTEL，53b Aston Street，Oxford． Tel． 086543203.

ENAMELLED COPPER MMRE S．W．G．IlbReel Itb Reel All the above prices are inclusive in U．K

 COPPER SUPPLIES102 Parrswood Rd．，Withington，Manchester 20 Telephone 061－2243553

CLEARINQ LABORATORY，scopes，recorders， testmeters，bridges，audio，R．F．generators， turntables，tapeheads，stabilised P．S．U．s，sweep generators，test equipment，etc．Lower Beed ing 236.

Build the Mullard C．c．t．v．Camera Kits are now available with compre－ hensive construction manual（also available separately at 80p）． SEND $5^{* *} \times 7^{\text {P S．A．E．FOR DETALLS TO：}}$ CROFTON ELECTRONICS madatex Twz 6 os

THE CHIPS ARE DOWN！AY－5－1224 digital clock chip now 83.95 inc．VAT，post free， Circuit and details S．A．E．GREENBANK ELECTRONIC＇S，Dept．320， 94 New Chester Road，Wirral，Merseyside，L62 5 AG ．

VALVE8，TRAN8I8TOR8，8TYLI．Valves 1930 to 1975．1，500 types．Many obsolete．List 15p． Transistors list 15p．Styli list 10 p ．S．A．E．for quotation．（COX RADIO（SUSSEX）LTD．， The Parade，East Wittering，Sussex．Tel． West Wittering 2023.

HOME SCIENTISTS

Get the key to a FANTASTIC WORLD of previously UNHEARD．OF PROJECTS．The NEW Boffin catalogue lists DOZENS of HIGHLY UNUSUAL LOW．COST BAR． GAINS，READY－BUILT MODULES．
Here are just a fow examples，there are
stocks stocks more！
Dazzling MINI－STROBE（pocket size）$\pm 2 \cdot 90$ PEOPLE DETECTOR（Pock ．．．．$£ 3.20$ Big－Ear SOUND－CATCHER
Mini DREAM LABORATORY
$\not \leq 3.20$
$\notin 30$

$$
3.20
$$

Don＇t take our word for it though！GET A COPY AND SEE！SEND ONLY 20p and we＇ll ＇GOODIES＇JUST AS QUICKLY TOO！）

BOFFIN PROJECTS
4 Cunliffe Road，Stoneleigh
Ewell，Surrey
（Mail Order U．K．only）

fibre optic suppliers

MAnE＇s Tails．Bulld a decorative diaplay with this professionally finiehed unit． $22 i n$ diameter with $7.000+$ ibres．Looks immeculate．ct 70.
FIQ MOFLEX ${ }^{\text {sizE }}$ ，Flexible 440 atrand glase light conduit unde dia． 1.14 mm ．40p per metre（ E 3 per 10 m ）．
FIBROFLEX 8 IZE $4.2 \cdot 28 \mathrm{~mm}$ bundle die． $\mathbf{E 1} \cdot \mathbf{5 0}$ per metre
（ 512 per 10 m ）． chi per fom
CAOFON 1510．64－atrand plastic llaht condult，bundia ola $1 \cdot 8 \mathrm{~mm}$ ．O．D． $3 \cdot 3 \mathrm{~mm}$ ． $\mathbf{~ 1} \cdot 20$ per motre（ $\mathbf{t s} \cdot 30$ per 10 m ）． Plam one source，dieplays．internal humination，effecte

FP40 $(1 \mathrm{~mm}$ dia．）－E2． 20 per 10 m ；c14 per 100 m ．
FPSO $(1.5 \mathrm{~mm}$ dia．$)$－ 44 per 10 m ；c3i per 100 m ．
OPTIKIT 103．Contalns 2 m Croton 1610 plus 5 m each FP20 FP40．FP60 plus pollahing compound．A handy pack for the experimenter．E4．70．
LENSES AND AEFLECTORS．We stock a renge of 6 lenees and 5 reflectors tor use in proximity detectors，intruder detectors．Datch counters．techometers，short range opilical communicationa．
OPTIKIT LS． 1 each of 6 lenses， $\mathbf{5 2} \cdot 50$
OPTIKIT ARS．I each of 5 reflectors， $\mathbf{6 1} 50$ ．
CIMCULAA POLARIEERS．Cut that glare．Reduce specular reflection by up to $20 x$－enhance contrast on cris．LED displays．nixtos，Inatruments，otc Avaliable in red／amber； LINEAA POLARISERS．FOR light valves stress anmlyeis． type HN32．Type KN42 is for high tomp．Une in projectora． Use a pair to make a psychedelic light ahow．Prtce ma for circular polarisers．
LIGHT BOURCES AND DETECTORS：MV54 Minlature （ 2 mm ）Hed LED， $20 \mathrm{p}(10$－ 11 p$)$ ；MLEDS00 TO92 Red LED．

 Photodarlington Silicon Datector．gain $\times 2.500,50 \mathrm{p}$ （ $90+45 p$ ）；MRD150 Silicon Phototranaiator－high speed， $4 \mu \mathrm{~g}$ good sensitivity． $70 \mathrm{p}(10+87 \mathrm{p})$
＊NEW ML8203．Lateat Motoroia Light Activated SCA．
High senaitivity $10 \mathrm{~mW} / \mathrm{cm}^{2}$ ：high current 400 mA （ 5 A gesk： sov．Switth amall motors or relay direct from oplical control，up to 24 W power． $\mathbf{~} 1 \cdot 20(10+81 \cdot 10)$ ． sEOS日 ULTRASONIC TAANBDUCEA．For r 40 kHz ．Tx／Rx palr． $\mathbf{4 3} \cdot 50$ ．

Please add 8\％VAT to prices above
Send $91 \mathrm{n} \times 6 \mathrm{n}$ \＄．A．E．for anort form tiat．

FIBRE OPTIC SUPPLIERS

（Dept．PE），P．O．Box 702 London W10 6SL

PRINTED CIRCUIT BOARD8．Manufacturer＇s offer：PCB＇s for ALL＂P．E．and P．W＂ projects published after June， 1974 ，at ONE price，70p each，Any 5 \＄2－85．PRODUCTION SPACE available for：PCB Production，PCB and Electronic Design to Spec．：electroplating silk－screening，roller and electro tinning．All art－work and photography undertaken．Send basic circuit，P．C layout or P．O．master stating quantity required for estimate by return，or phone：W．K．F．ELECTRONICS，Dept P．C．，Welbeck Street，Whitwell，Worksop Notts．，Ss0 4TW．Tel．：Whitwell（Derbys．） 695

LIGHTING MODULES AND KITS CHEAPER STILL
SAVE POUNDS BY BUYING DIRECT！ SOUND TO LIGHT：${ }^{3} \times$ if $k W$ channels with SENSITIVITY，DIMMING and BYPASS controls Designed to be robust and reliable and simple to build．KIT FORM；fI3．99；PREBUILT：
fi5．99．THEATRE AND DISCOICLUB DIM：－ MERS OUR SPECIALITY！
Only written enquiries and Mail Order to： SELEKTRON
21 Priors Road，Windsor，Berks．SL4 4PD

AERIAL BOOSTERS \＆3，P．\＆P．10p．We make three types of boosters：L11－VHF radio； L12－VHF 405 TV．Please state channel numbers．L45－UHF－625 TV．S．A．E．leaflets： LANCASHIRE MAIL ORDER， 6 William Street，Stubbins，Ramsbottom，Bury，Lancs．

SINTEL

Add 10p P．a P．for orders under 22 Data．and circuits where appro－ prlate．supplied with orders．or avallable separataly（ $4+\mathrm{p}$ stamp
each）．
3 Digh DIP LED calculator dispiay

 soldercon IC socket pint－ 300 pins for $\mathrm{fi} 150+$ VAT $=$
 Complete circuite and special pricen for MK50250N with LED＇

SINTEL，S3D ASTON STREET，OXFORDD．TEI（0885） 43203

FANTASTIC NEW MICROTEST 80

MEASURES ONLY

$90 \times 70 \times 18 \mathrm{~mm}$
Amazing Value at $£ 11.95$ 8 fields of measurement and 40 ranges
Volts d.c.
(20kn/V)
olta a.c. 5 ranges. $1.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1000 \mathrm{~V}(4 \mathrm{kO} / \mathrm{V})$ Amp. d.c. 6 ranges: $50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A}$ Amp a.c. $5 \mathrm{rmages}: 250 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}, 2.5 \mathrm{~A}$ Ohms 4 ranges: Low $\Omega, \Omega \times 1 . \Omega \times 10, \Omega \times 100$ (da $1 / 10$ di \cap tino a $5 \mathrm{M} \Omega$).
V Output 5 ranges: $1 \cdot 5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}$
Declbela 5 ranges: $+8 \mathrm{~dB},+22 \mathrm{~dB},+36 \mathrm{~dB},+50 \mathrm{~dB}$ $+62 \mathrm{~dB}$
Capacity 4 ranges: $25 \cdot F, 250 \mu$ F, 2,500 F F, $25,000 \mu$ F

SUPERTESTER 680 RICE 20.000 Otm per Volt sensitivity Fuly screened against externa magnetic fields Scale widi and small case dimensions (128 stablity (1% in D.C. 2% In A.C of indicated reading Simplicity and ease of use and readability - 1.000 times overioad Printed circuit board is removable withour
£18-50 de-soldering © More ranges thanany
 Accessories (extra) avallable to convert Microtest 80
and Supertestar 680 R into following SIGNAL INJECTOR, and Supertester 680R into tollowing SIGNAL INJECTOR
GAUSS METER. ELECTRONIC VOLTMETER. AMPER GLAMP. TRANSISTOR TESTER. TEMPERATURE PROBE, PHASE SEQUENCE INDICATOR-Send for deralis

MORE RANGES FOR LESS MONEY!
ACIDC Multimeter type U4324
A-DC 0.06-3A-6 Rranges
A-AC 0. 3-3A-5 Ranges.
V-DC $0.6-1200$ V-9 Ranges
V.AC 3-900 V-8 Ranges.

Frequency In the range of 45 to
20 kHz . Resistance: 500 ohm 20 kHz . Resistance: 500 oh
$5 \mathrm{Mohm}-5$ ranges. Decle to +12 dB . Accuracy $\pm 2.5 \%$. D $+4 \% \mathrm{AC}$. Dimenslons: 16
+63 mm Only 88.85

ALPHANUMERIC NIXIE TUBES B7971 The Alphanumeric
NIXIE tubehas the ability 10 display all the letters of the alphabet. numerals 0 thru 9 characters in a single tube single
From potntof both read ability and elec trica characteris tics. the Alpha
 numeric NIXIE tube provides many unique benefits including * 170 V -21mA * All d.c. Operation * Uniform continuous simple solid state drive circuits $\begin{gathered}\text { with } \\ \text { Readabillty }\end{gathered}$ high amblent light $\quad 200$ footlamberts brightness * Long life with no loss of brightness * Character height 2 ifin.
Bases for above 60p each
Price only 990 each plus $16 p$ P./P

JUST ARRIVED!!

NUMERIC INDICATOR TUBES Ultra-long life. high quality. 0-9 and 2 independent dec mal poinis. Supply voltage zoov d.c. Current 14 mA size 1.4. Brand new, quaranteed.
reaulrements. Type B5853s
1-25 £1.00; $25+90 \mathrm{p} ; 100+80 \mathrm{p}$ $1,000+$ price on application
add 8% Vat io
ELECTRONIC BROKERS LTD
49-53 Pancras Road, London NW1 2QB Tel. 01-837 7781

METER REPAIRS. Ammeters, voltmeters multi-range meters, etc. Send to METER REPAlKS, 21 Mount Road, Thundersley Bentleet, Essex, SS7 1HA.

PRINTED CIRCUIT BOARDS. PC'B for ally PRACTICAL ELECYRONICS and PRACTICAL Whafiess project, 50p pei board. From
 Add VAT plus 5 p P' " T. per board. Mai order oniy. TEC, 24l Burut-Oak, Broadway Middlesex

BOOK'S AND PUBLICATIONS

UFO CHARTS: Daty Flight, 50p; Predicrion, 54p; Maj, 50p; Propulsion. 55p: "Alli (Iravity", 55p. TV ITli() Detection (Reprint), 63p: (ircuits: Transistor Optical Detector 66p: Kadiation/Optical, 44p: Microdetectors (Memory, Lsf), 80p: Crystal Kadiation/ Counter-Timer/Stopelock, 85p. FET Multimeter, £1~70. Ik. d lí., Highlahis, Neodlait Market, Suffolk.

611.95

Latest transistorised Telephone Amplifter with detached plug-in speaker. Placing the recelver on to the cradle actlvates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for -conference calls: leaves the user's handa free to make notes, consult fles. No long waiting, save time with ong-distance calls, On/Off switch, volume. Direc tape recording model at $£[2.95$
P. \& P. 48p. 10-day price tefund guarantee.

WEST LONDON DLRECT SOPPLIES (PE3) 69 KEHSINGTON HIGH STREET, LONDON. W. 8

COMPONENT KITS NOW AVAILABLE. 4⿺辶 i p STAMP BRINGS DETAILS.

 NOISE DIODES $\begin{array}{ll}\text { ZII } & \text { 60p } \\ \text { ZIM } & 120 \mathrm{p}\end{array}$ RECTIFIERS REC4IA 120p REC46 255p REC70 40p EA100/10 100 p MDA942A/I 210p		MINISONIC P.C.B. $118 \times 295 \mathrm{~mm}$ best quality epoxy-glass, roller tinned. Complete with overlay details and instructions. $£ 3.62$ inc. VAT and U.K. postage. V.A.t. Please add gn $_{\text {n to }}$ final total of order CONSTANTAN WIRE 0.03 ohms/em as specified for the POWER SLAVES. 20 cm lengths 10 p INTRODUCING THE MINISONIC C20 AUDIO CASSETTE El-15 Inc. VAT, P. \& P.	MINISONIC COMPONENT KITS V.C.O. (2 required) £ 3.85 V.C.F. (1 required) £4.98 ES/V.C.A. (2 required) Voltage Ref. Ring. Mod. (I required) Noise Gen. (I required) Kbd. Control (1 required) HF Osc. and Det. Power Amps All above prices are for single kirs of each type and include V-AT, P. \& P. Full details are included in lists. Miscellaneous ftems VAT should be added to quoted price of miscellaneous items. SAVE BY PURCHASING A COMPLETE SET OF KITS AS DETAILED TOGETHER WITH SWITCH, BATTERY CONNECTORS, HOOK-UP WIRE AND P.C.B. Price inc. VAT \& U.K. Postage £43
		$3 J B$	ques or P.O.'s payto Eaton Audio. ers over 65 free of P. Otherwiseplease $10 p$ in the fl .

G. F. MILWARD, 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

We are glad to say that it is now possible to supply from stock the following integrated circults. ALL ARE BRANDED, FULI SPECIFIC ATION devices offered at unbeatable prices

	1/99	100/499	500/1000		1/99	100/499	500/1000		1/99	100/499	500/1000
7400	20.15	c0. 125	20.10	7442	¢0.645	¢0. 537	E0.43	7494	20.495	10.412	50.33
7401	20.15	E0.125	20.10	7443	£1.275	£1.062	20.85	7495	50.63	50.525	50.42
7402	20.15	20.125	$20 \cdot 10$	7445	ع0.855	c0. 712	20.57	7496	cil 72	50.60	50.48
7403	20.15	20. 125	10.10	7446	£1.05	20.875	$20 \cdot 70$	74104	¢0. 315	50. 262	$50 \cdot 21$
7404	50.18	E0.15	E0. 12	7446A	81.05	20.875	20.70	74105	S0. 315	c0. 262	20. 21
7405	20.18	50.15	$80 \cdot 12$	7447	51.05	50.875	20.70	74107	20.315	50.262	20.21
7406	¢0.375	50.312	E0. 25	7447A	81.05	50.875	10.70	74121	50.315	20. 262	50.21
7407	¢0.375	80. 312	50.25	7448	50.855	¢0.712	20.57	74122	20.45	20.375	50.30
7408	E0. 15	20.125	20.10	7450	c0. 15	c0. 125	E0.10	74123	50.63	10.525	80.42
7409	¢0.15	¢0. 125	¢0.10	7451	20.15	20. 125	20.10	74141	50.75	20.625	10. 50
7410	¢0. 15	¢0. 125	¢0. 10	7453	20.15	20.125	¢0.10	74151	20. 69	20.575	50.46
7412	E0. 195	c0. 162	£0.13	7454	20.15	20.125	20.10	74153	20.69	E0. 575	20.46
7413	E0. 345	50. 287	20.23	7460	50.15	¢0.125	E0.10	74155	20.69	20.575	20.46
7416	£0. 345	¢0.287	£0. 23	7472	¢0. 255	¢0-212	50.17	74156	20.69	¢0.575	10.46
7417	50.345	¢0. 287	£0. 23	7473	50. 315	¢0. 262	50.21	74160	21.005	¢0.837	20.67
7420	¢0. 15	E0. 125	50.10	7474	£0. 315	¢0. 262	$50 \cdot 21$	74161	£1.005	¢0.837	20.67
7423	50.27	20. 225	E0. 18	7475	50.465	10.387	20.31	74162	£1.005	ع0.837	20.67
7425	50.27	$50 \cdot 225$	c0.18	7476	80.315	50.262	¢0. 21	74163	£1.005	¢0.837	$80 \cdot 67$
7426	50.27	50.225	50.18	7480	50.435	c0. 362	£0. 29	74166	£1.425	£1.187	80.95
7427	20.27	50.225	50.18	7482	¢0. 75	¢0. 625	80. 50	74174	£1. 20	51.00	50.80
7430	50.15	50.125	c0. 10	7483	¢0.825	¢0. 687	20. 55	74175	¢0.975	¢0.812	£0.65
7432	50.27	50.225	c0.18	7485	£1. 275	£1-062	c0. 85	74192	£1.275	£1.062	20.85
7437	50.27	50.225	c0. 18	7486	¢0. 315	¢0. 262	50.21	74193	£1. 275	£1.062	80.85
7438	50.27	20.225	$20 \cdot 18$	7490	c0. 465	¢0. 387	20.31	74198	E2.10	£1.75	51.40
7440	20.15	20.125	20.10	7492	¢0. 465	50.387	50.31	74199	£2.10	£1.75	£1.40
7441A	20.825	20.687	50.55	7493	10.465	[0.387	20.31				

bRAN TUB!!!
 * Resistors-wlre-wound and

 carbon.Capacitors-silver-mice. paper. ceramic, polyester and electrolytic.

* Controls-volume, pre-set, carbon, wire.
* Diodes-stlicon. germanium zener.
ansistors-silicon, germanium. stock
We have made up packe of 2 lb gross weight, all are different in content and contain a mixfure of components from the above list. This is a fantastic, unrepeatable offer hat will enteble you to got a good stock of spares at a tiny fraction of normal price
To make things even more Interest Ing-TWENTY OF THESE BAGS ALSO CONTAIN A POUND NOTE WENTY CUSTOMERS WILL BE VERY PLEASEO INDEEO
and the price that we are asking? Only 1.50 including both postage nd VAT'
Rush your order now' This offer s, only made to reduce our surplus stock! it is unilkety that in these daye
of rising prices we shall ever be able to repeat

NEW! NEW! NEW! NEW!
An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ulira-violet.) Spray with developer, ilinse and etch in normal manner. Light sensitive aerosol spray
Developer and Etchant

FIBRE-GLASS COPPER LAMINATE
Single sided
75p sq.ft
Double sided
£1 sq.ft
Cut in any multiple of 6 in to a maximum size of $3 \mathrm{ft} \times 4 \mathrm{ft}$

POSTAGE 30p
NOTE: ALL GOODS PLUS 8\% VAT (EXCEPT OVERSEAS)
POSTAGE 30p

SYNTHESISER Modules by Dewtron ${ }^{\circledR}$

The synthesiser illustrated was built using Dewtron modules. as sold to constructors for some years now. With over 10 years' experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module: pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction. too. Famous "Modumatrix" patching system makes other patching a thing of the past! Send just 15p for full catalogue to:

254 RIngwood Road, Ferndown Dorset BH22 9AR
P.E.

Complete kit of semiconductors $£ 9.95$ High quality printed circuit $£ 2.95$

THIS GLASS FIBRE P.C.B. IS ROLLER TINNED AND
SCREEN PRINTED WITH COMPONENT LOCATIONS,

FERRANTI

MOTOROLA BD699 £1•10, BD700 £1-22, MJE2955 $£ 1 \cdot 30$, MJE3055 75p SIGNETICS UA748CV operational amplifier 55p each
RCA PRICES SLASHED! CA30900 stereo decoder only 53.25 each
ZN4 14 THE FAMOUS FERRANTI RADIO I.C. Only $\$ 1 \cdot 32$ with data
SCORPIO MK. II. Complete kit of semiconductors $\mathbf{8 5} \cdot 65$ (State 6 V or 12V)
ALL DEVICES SOLD BY US ARE TOP GRADE, BRAND NEW AND TO FULL MANUFACTURER S SPECIFICATION. We do not sell seconds or rejects. We are S.A.E. for quote. Send S.A.E. for our free data sheet and price list for FERRANTI semiconductors.

POSTAGE AND PACKING 10p. FREE ON ORDERS OVER £3 ALL OUR PRICES INCLUDE VAT

DAVIAN ELECTRONICS
PO BOX 38, OLDHAM, LANCS, OL2 6XJ

That's how long it will take you to fill in the coupon. Mail it today and we'll send you full details and a free book. We have successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost home study course gets results fast-makes learning easier and something to look forward to. There are no books to buy and you can pay-as-youlearn.

Why not do the thing that really interests you? Without losing a day's pay. you could quietly turn yourself into something of an expert. Complete the ccapon (or write if you prefer not to cut the page). No obligation and nobody will call on you .. . but it could he the best thing you ever did.
Others have done it, so can you
Yesterday I received a letter from the Institution informing that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have ever oblained. a view echoed by two colleagues who recently commenced the course."-Student D.I.B.. Yorks. "Completing your course meant going from a job I detested to a joh that I love. with unlimited prospects."-Student J.A.O.. Dublin.
My training quickly changed my earning capacity and. in the next fen years. my earnings increased fourfold."-Student C.C.P.. Bucks
FIND OUT FOR YOURSELF
These letters. and there are many more on file at Aldermaston College, speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to:
ALDERMASTON COLLEGE
Dept. TPE03. Reading RG7 4PF

HENRLETEREAOLARGEST SELECTION OF ELECTRONIC COMPONENTS AND EQUIPMENT.

You can bulld the Texan and Stereo FM Tuner TEXAN 20 - 20 WATT IC STEAEO AMPLIFIE:

Fealures glass fibre PC
former. 6 -ICs. 0 -transist
by Texas Instrumenis engin
Suppiied with tull chass
handook and all necessary
facilities. Stabilised supply
mains operated. Free teak
$\mathbf{£ 3 1 - 0 0 ~ (C a r r i a g ~}$
(Can
JOIN THE LARGE BAND OF

TRANSISTORISED MODULES Tuners-Power Suppliers-Amplifiers AMPLIFIERS (ail single channel unless slated)		EMI SPEAKERS
		PURCHASE Bin chassis
$4-300 \quad 9$ voit 300 MW	1.75	
049 volt 250MW	,	
1049 voit 1 watt	3.10 3.95	
9 volt 3 watt	3.95	Pr 50Tc to mats
55512 vol 3 watt	4.10	
5555ST 12 volit $\frac{1}{3}+1 \frac{1}{1}$	5.95	ohtms twin cone $\mathrm{E} 2 \cdot 20$
E1208 12 voit 5 watt		$\cdot 95010$ watis 4.8 .815 onm with twintweeters and crossover $£ 3.85$ each
60824 voit 10 wat	4.95	
28 volt to wat	4.95	EW 15 wall B ohm with lweerer ES 5.25
45 volt 30 wa	9.95	35020 watt 8 tis onm with tweeter6780 each
$40 \quad 30 / 35$ volt 15 w	5.45	
$260 \quad 45,50$ volt 25 watt	6	Polished wooo cabiner $\mathrm{E} 4 \cdot 80 \mathrm{carr}$etc 35 peach or 50 pair
A6817 24 volt $6+6$		
Amplifers with controls		
E1210 12 volt $2 \frac{1}{4}+2 \frac{1}{2}$ watts 80	8.25	UHF TV TUNERS
00 Mains 5 watts 4-i6 0	6.30	
C 14 Mains $7+7$ watts 8 ohms	11.75	
C30 Mains 15 - 15 watts 8 ohm	14.95	625 line receiver UHF transistorised :uneps UK operation Brand new (Post packing 25p each TYPE C variable tuning E 2.50 TYPE \& 4 -bution push-bution (acjuslable) 53.50
O38 9 voit $1 \frac{1}{2}+1 \frac{1}{2}$ watts 80 hms	6.95	
O68 12 volt 3 - 3 watts 8 on		
Mullard LP 1186 FM tuner (fromi end)		
lullard LP 1157 AM modul	50	PA DISCOTHEQUE LIGHTING EQUIPMENT
ulara LP 1171 AM	4.50	
Mullard LP 1179 AM/FM front end	4.85	
ullard LP 1185 10.7 MHZ IF unit wi	4.5	
FM \& AM TUNERS \& DECODER		
FM5231 (TU2) 6 volt FM tuner TU3 12 volt version (FM use with De-		
		Winout doubi U.K S best range of Lignting. mixing. microphones accessories. speakers amplifiers.
coder) SD4912 Stereo Decoder for TU3 12 volt		
SP62H 6 volt stereo $F M$ tuner		
A 10079 volt MW-AM tuner Sinclair 1245 volt FM tuner stereo		
A 10189 volt FM tuner in cabinet		
67 12 V Stereo decoder gen purpose 6 .		
Gorier Permeability FM tuner (front end)		
		NOW OPEN SUPERMARKET Come and browse round the new Edgware. Road. Bargains gatore
PREAMPLIFIERS		
Sinclair Stereo 60 Prea		Goodie bags. Components. etc Wateh for further developments
E1300 Cart Tape Mic inputs 9 volt	2.85	
310 Stereo 3 - 30 mV mag cart 9 vo	4.75	EP27 Low Cost Seven Segment Led Dign Heighisin Es-35. P8 \& 15 p L 450 rechargeable pattery 2 V 400 mA hr 50p. P \& P 15p Pnilips 12V Flworescent invertor for sw fluorescent tube Supplies with instr and tube [3.50. P \& P 30p
FF3 Stereo 3 mV tape head 9 volt	4.95	
Stereo 5-20 mV Mag cart		
225 Mono 3 -250 mV Tape Capt		
$\underset{\text { (-chassis-rest cased) }}{\text { POWER SUPLIES MAINS INPUT }}$		
		STC and ITT Miniature Relays 550~6V2p.co 180R 6 12V 2 d.c.
$470 \mathrm{C} 67+9 \mathrm{~V} 300 \mathrm{MA}$ with ad		
P500 9V 500 MA	3.20	
	5.50	tpe $2500 \mathrm{R} 18.24 \mathrm{~V} 2 \mathrm{Pc} 0 \quad 4000 \mathrm{~A}$ Z Z 2 2 pco
	3.30	
	3.30	bRand New 60p. P \& P. 15p 107 MHz Minlature Ceramic if
	7.80	
- P1081 45V 0.9A	7.80	Fliter 40p per pair P. \& P. 150 SL414 Plessey 5W Power Amp I.C
P12 4t-12V 0-4-1A	7.15	
SE101A $36 / 912 \mathrm{~V}$ TA	12.75 4.20	$\begin{aligned} & 165 \text {. \& P } 11 \mathrm{p} \\ & 10 \mathrm{KHz} \text { Ultrasonc Tric } \end{aligned}$
P1076 $3.4767 \div 912 \mathrm{~V}, \ddagger \mathrm{~A}$ SE800A 1-15 VOLT 0-+A st	4.20 17.50	5590 . P \& P 25p TAA $96040 \times \mathrm{Hz}$ amp 11.75 P \& \& ${ }^{\circ} 15 \mathrm{p}$

TEST EQUIPMENT MULTIMETERS

VAT 8% EXTRA ON ALL ITEMS

EXTRA DISCOUNTS Semiconductors-Any one type or mixed SN74 Series IC, 12-extra 10\%: 25-extra 15\%: 100exira 20%.					
74 SERIES AND LINEAR					
SN7400N	16		63	SN74191N	${ }_{2}^{\text {E }}$ P 00
SN7401N	0.16	SN7486N	1.63 0.47	SN74192N	2.00 2.00
SN7402N	0.16	SN7489N	3.87	SN74193N	2.00
SN7403N	0.16	SN7490N	0.70	SN74194N	1. 30
SN7404N	0.16	SN7491ATV	1.00	SN74195N	1. 10
SN7405N	0.16	SN7492N	0.70	SN74196N	1.20
SN7406N	0.42	SN7493N	0.70	SN74197N	$1 \cdot 20$
SN7407N	0.42	SN7494N	0.80	SN74198N	2.77
SN7408N	$0 \cdot 28$	SN7495N	0.90	SN74199N	2.52
SN7409N	0.28	SN7496N	0.95	fCA	
SN74iON	0.16	SN7497N	3.87	CA3012	$1 \cdot 32$
SN7417N	0.25	SN74700N	1.89	CA3014	$1 \cdot 80$
SN7a12N	0.30	SN74104N	0.58	CA3018	1.02
SN7413N	0.36	SN74105N	0.53	CA30 19	1.12
SN743N	0.72	SN74107N	0.45	CA3020	$1 \cdot 80$
SN749N	0.36	SN74110N	0.58	CA3022	1.93
SN7417N	0.36	SN74111N	$0 \cdot 88$	CA3028A	1.03
SN7420N	a. 16	SN74:16N	1.89	CA3036	1.08
SN7421N	0.33	SN74118N	0.90	CA3046	1.03
SN7422N	0. 25	SN74119N	1.68	CA3048	2.76
SN7423N	0.37	SN74120N	0.95	CA3075	
SN7425N	0.37	SN74121N	0.50	CA3081	1.80
SN7426N	0.32	SN74122N	0.70	CA3089E	2.94
SN7427N	0.37	SN74123N	1.00	CA30900	$5 \cdot 40$
SN7428N	0.40	SN74125N	0.65	Signetic	
SN7430N	0.16	SN74132N	0.72	NE555	0.85
SN7432N	0.37	SN74141N	0.90	NE560B	$5 \cdot 00$
SN7433N	0.37	SN74145N	126	NE561B	5.00
SN7437N	0.37	SN74150N	1.75	NE562B	5. 00
SN7438N	0.37	SN74151N	1.00	NE567B	3. 50
SN7440N	0.22	SN74153N	0.95	Motorola	
SN7441AN	0.92	SN74154N	2.00	MC1303L	1.42
SN7442N	0.79	SN74155N	1.00	MC1304P	1. 79
SN7443N	1.27	SN74156N	1.00	MC1310P	2.91
SN744N	1.27	SN74157N	0.95	MC 1358CF	0.77
SN7445N	1.60	SN74160N	1.38	MC1710CC	0.80
SN7446N	1.89	SN74161N	1. 38	MFC4000P	0.45
SN7447AN	1.60	SN7+162N	1.38	MFC4010P	0.55
SN7448N	1.27	SN74163N	1.38	MFC6040P	0
SN7450N	0.16	SN74164N	1.76	Others	
SN7451N	0.16	SN74165N	1.76	TBA800	1.50
SN7453N	0. 16	SN74166N	1.60	SN76003N	1 . 50
SN7454N	0.16	SN7A167N	3.00	SN72741P	0.60
SN7460N	0.16	SN74170N	2.52	SN72748P	0.81
SN7470N	0.36	SN74173N	1.66	702 C	0.75
SN7472N	0.38	SN74174N	1.57	709 C	0.39
SN7473N	0.41	SN74175N	1.10	723C	0.90
SN7474N	0.42	SN74176N	1.26	728C	0. 45
SN7475N	0.59	SN74177N	1. 26	${ }^{7415}$	- 50
SN7476N	0.45	SN74180N	$1 \cdot 26$	747 C	1.00
SN7480N	0.60	SN74181N	3.95	748 C	0.51
SN7481N	1.10	SN74182N	1.26	LM309K	2.00
SN7482N	0.87	SN74 +84 N	1.80	TAA960	1.75
SN7483N	1.10	SNT4185N	1.80	Sinclair	
SNT484N	1.00	SN74190N	2.00	IC12. 6 W	
					$2 \cdot 20$
COSMOS INTEGRATED CIRCUITS FULL RANGEIN STOCK					
	$\begin{aligned} & \hline \mathrm{F} \text { p } \\ & 0 \end{aligned}$		$¢$ 品 6.00		\& ${ }_{0}$
$\begin{aligned} & A A \\ & A C 107 \end{aligned}$	0.51	BSx20	0.13	TIS43	
$A C 128$	0.15	BU105	2. 20	V405A	0-22
AC187	0.21	BY100	0.27	ZTX108	0.08
ACY17	0.40	8Y127	0.12	21 $\times 300$	0.13
ACY39	0.78	BYZ13	0.42	$2 \mathrm{~T} \times 302$	0.18
AD149	0.50	C1060	0.54	2T $\times 500$	0.13
AD161	0.44	GET111	0.72	2N697	0. 16
AD162	0.14	GETT15	0.90	2N706	0.12
AF117	0.24	GET880	0.60	2N930	0.18
AF1i8	0.57	LM309K	2.00	2N98?	0.12
AF139	0.41	MAT129	0.25	2N1132	0.24
AF:86	0.48	MJE340	0.47	2N1304	0. 28
AF239	0.44	MJE520	0.63	2N 1613	0.21
ASY27	0.33	MJE3055	0.77	2N1671	1.20
BA115	- 10	MJE2955	1.27	2N2147	0.78
Bax 13	0.05	MPF105	0.36	2N2160	0.78
BC107	0. 14	NKT404	0.66	2N2926	0.12
BC108	0. 13	OAS	0.72	2N3053	0.18
BC109	0.14	OA81	0.18	2N3054	0.48
BC109C	0.16	OA200	0.08	2N3055	0.45
BC113	0.15	OA202	0.06	2N3440	0.58
BC147	$0 \cdot 10$	OC28	0.66	2N3+42	1. 39
BC.18	0.08	\bigcirc	0.55	2N3525	0.91
8C149	0. 10	OC36	0.60	2N3614	0.65
8C169C	0.15	OC44	0.20	2N3702	0.11
BC 182	0.12	$0 \mathrm{OC45}$	0.20	2N3\%14	1-41
BCY32	0.85	$0 ¢ 71$	$0 \cdot 18$	2N3771	1.77
BCT39	1.50	OC72	0.28	2N3773	2.40
BCY55	2.64	OC77	0.54	2N3790	2-10
BCY70	0.18	OC81	0.29	2N38+9	0.38
ECr71	0.22	OC83	0.27	2N3886	0.72
BCY72	0.12	OCi40	1.14	2N3903	0.15
ED124	0.65	OC170	0.30	2N4002	0.14
8D131	0.42	Oc200	0.54	2N4126	0-15
BF115	$0 \cdot 20$	OC202	O. 90	2N4871	0.34
BF 180	0. 36	OCP71	1.20	2N5457	0. 30
BF194	0-10	ORP12	0.60	25303	0.60
BFX13	0.26	ORP60	0.55	40550	0.54
BFX34	0.70	P345A	0. 18	4036 :	0.45
BFX88	0.24	TIL209	0.20	40362	0.40
BFY50	0.21	TIP29A	0.45	40408	0.50
BFY51	0.20	TIP30A	0.57	40486	0.85
BFY64	0.36	TiP31A	0.61	40636	1.00
BFY90	0.31	TIP41A	0.74	40430	0.85
send for free list no 36 for complete range of SEMI-CONDUCTORS					

[^0]: (C) IPC Magazines Limited 1975. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year. Inland £3.85, Overseas $£ 4.70$. USA and Canada $\$ 13.00$. International Giro facilities Account No. 5122007. State reason for payment, "message to payee".

[^1]: Bib Hi-Fi Accessories Limited,

[^2]: BRITISH FM/VHF TUNING HEART 88 to $108 \mathrm{Mc} / \mathrm{s}$ British made. 2 Tranaistors ready aligned
 -requires $10.7 \mathrm{Mc} / \mathrm{m}$ I.F. Complete with toing gang Connections upplied but some technical experience onsential Our price $\{3.95$ sUTTABLE IF 8 TBIP DECODER 84.95

[^3]: Illustrated Brochure, Radio Books \& Component Lists 10p Written guarantee.

[^4]: VINTAGE RADIOS are a fascinating and lucrative hobby. We have sets, literature, etc. from \&2-\&100 and urgently need more. Write for details to VINTACiE RADIO MART, 26 Bowden Lane, Chapel-en-le-Frith, stockport, Cheshire.
 "RADIO \& TV 8ERVICING"' books wanted from 1962 edition onwards. $£ 2$ paid per copy from 1962 edition onwards.'s 22 paid per copy by return post. BELL'S TELEVISION Yorks. Tel. (0423) 55885.

