PRACTICAL

= = FTRONICE

DECEMEER 1979
FREEDinsthe TRANSISTOR LEAD IDENHICHART

CONSTRUCTIONAL PROJECTS
DWELL METER by S. Jones
Check points and distributor bearings with this novel vehicle instrument 1052
P.E. CCTV CAMERA-4 by G. D. Bishop
A choice of two u.h.f. modulators 1056
P.E. MINISONIC-2 by G. D. Shaw
Details of the voltage controlled oscillator, voltage controlled filter, and envelope shaper/voltage controlled amplifier 1066
I.C. PULSE GENERATOR by M. E. Theaker
A low-cost source of logic test pulses 1076
THERMOMETER/CONTROLLER by J. N. Jones
A $-68^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ diode thermometer with analogue readout or control function abilities 1084
GENERAL FEATURES
NEW DEVICES . . . APPLICATIONS
Phase locked loop for high performance f.m. receivers 1082
INGENUITY UNLIMITED
Neon Oscillator-Zener Diode Check—Integrated Triffld—Optical Communication-555 Ramp Generator 1090
NEWS AND COMMENT
EDITORIAL-Self Service 1051
THE NEXT DECADE
Readers look to the future of electronics 1060
SPACEWATCH by Frank W. Hyde
The New Jupiter 1062
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Electronics and music 1065
NEWS BRIEFS
Ceefax and Oracle 1083
BOOK REVIEWS
Selected new books we have received1088, 1094
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 1089
PATENTS REVIEW
Thought provoking ideas on file at the British Patent Office 1097
READOUTA selection of readers' letters1098
SPECIAL DATA SHEET FREE INSIDE THIS ISSUE TRANSISTOR LEAD IDENTICHARTAt-a-glance details on over 700 transistors

Our January 1975 issue will be published on Friday, December 13, 1974

[^0]
NOW AVAILABLE IN THE U.K! CHINAGLIA

PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS

One example from the big range of sophisticated instruments

CORTINA MINOR

33 RANGE POCKET MULTIMETER

- SENSITIVITY 20,000RIVOLT (D.C.), 4000 $/$ VOLT (A.C.).
- ROBUST DIODE PROTECTED PRECISION MOVEMENT.

33 RANGESD.C. VOLTTS O-100mV. $1.5 \mathrm{VV}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}$, 500 V . $1,500 \mathrm{~V}$ V D.C. CURENT 0 - $50 \mu \mathrm{~A}, 5 \mathrm{SmA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}$, A.C. CURRENT O-25M '50, - 10 to +69 . AF YOITS RANGES O- 500 O . RESISTANG RANGES 10 ka . RANLESFIOKR. YOM』 F.S.D. CAPACITANCE RANGES

- accúracy-resistance, CURRENT, 2-5\%. A.C. VOLTAGE AND CURRENT 3 -5\% RESISTANĆE RANGES POWERED GY INTERNAL baTteries.
COMPACT SIZE: $150 \times 85 \times 40 \mathrm{~mm}$. $350^{\circ} \mathrm{gr}$
- Clearly calibrated dial with ánti-parallax MiRROR.
- professional quality components employed fully guaran
ited for iz months.
- AFTER SALES SERVICE AND SPARES FACILITIES.
- SUPPLIED WITH ADDITIONAL SHOCKPROOF PLASTICS CARRYING CASE, TWO HIGHLY INSULATED TEST LEADS AND INSTRUCTION BOOKLET
ABLE AS AN OPTIONAL EXTRA.

METER PRICE $£ 15.40$ (p \& p 80p) PROBE $£ 8.80$ inclusive of V.A.T. for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone :-

CHINAGLIA (U.K.) LIMITED

19 Mulberry Walk, London S.W.3.
TRADE ENQUIRIES WELCOMED

NEW
 PRACTICAL PAPERBACKS FROM FOULGHAM-TAB

BASIC TV COURSE, by George Kravitz

NEW SKILL-BUILDING TRANSISTOR PROJECTS AND EXPERIMENTS, by Louis E Gardner Jr

RADIO CONTROL HAND
BOOK. by Howard G
McEntee
TRANSISTORS: THEORY
AND PRACTICE, by Rufus P Turner
WORKING W!TH SEMICONDUCTORS, by Albert C W Saunders
CASSETTE TAPE RE CORDERS-HOW THEY WORK-CARE AND REPAIR. by Walter Salm ELECTRONIC MEASURE. MENTS SIMPLIFIED, b Clayton Hallmark
$51 \cdot 70$
SOLID-STATE CIRCUITS GUIDEBOOK, by Brice Ward

A V.C.O. by Fhachi

1 Hz to 100 kHz
FOR $55 \cdot 75$ P. \& P. 15p
Size 2 in long - $1_{\text {ain }}$ wide . fin high
Input $12-24 \mathrm{~V}$ d.c. (not centre tapped). 18 V input giving 10 V constant amplitude output
Requires only a $1 \mathrm{M} \Omega$ pot to tune entire range-or can be swept with a saw tooth input.
Enormous possibilities-music. synthesisers. filters. communications. frequency modulation, etc
Detalled application sheet with all purchases

FHACHI RAMP MODULE FX21

24 V d.c. input for 18 V sawtooth output. Requires only external capacitor and 100 K ohm potentiometer to control frequency range up to 100 kHz (eg 50 mfd electrolytic gives sweep of approx. 1 cm per second). In or out sync capacility. Price $55 \cdot 75 P \& P 15 p$

FHACHI FILTER MODULE FX31

Designed for use with VCO FX11 and RAMP FX21. This completes the 3 building blocks required for a basic low-frequency Spectrum Analyser that covers 100 Hz to 50 kHz . The additional components required are discrete resistors and capacitors, etc. (No inductances or specialised components are needed.) Price £13P \& P. 30p
Fibre glass P.C. board to mount FX11, 21 and 31 ready drilled. Con nection details and list of additional components required supplied with each order £2.50. P. \& P. 30p

LOW FREQUENCY WOBBULATOR

Intended for alignment of AM Receivers. 250 kHz to 5 Mhz . but effective to 30 MHz . 3 controls-RF level: sweep width and frequency. Requires 6 V a.c. and any general purpose scope Model LX63-58.50 P. \& P. 35p. Model LX63E-as above. Can be extended down to 20 kHz by addition of capacitors. Price $\mathbf{~ 1 1 . 5 0 . ~ P . ~ \& ~ P ~ 3 5 p ~ (n o t ~ c a s e d . ~ n o t ~}$ calibrated).
Both models are supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead.

PLEASE ADD V.A.T. AT 8%
OPEN 9 a.m. to 6.30 p.m. ANY DAY

7/9 ARTHUR ROAD, READING, BERKS (rear Tech. College) Tei. Reading 582605,65916

PHONOSONICS

SOUND-TO-LIGHT

The ever-popular AURORA-4 or 8 channels each resoonding to a different sound rrequency and controling its own ligh: Can be used with most audio sysiems and lamp intensites A must ior any Disco and a fascinating visual display for the home
channal component set (excl thyristors) 8 channel component set (excl thyristors) PCB for 4 frequency channels
PCB tor power supply and 8 lamp drivers

$\{11.49$

54.78
$\mathbf{E} 2.50$
62.50
$\mathbf{5 1} .25$

CCTV CAMERA
 Details in List

VOICE OPERATED FADER

Fof automatically reducing music volume during talk-over -particularly useful for Disco work. or to
home-movie shows
Component set. incl PCB

GEMINI 30W STEREO AMPLIFIER
An exceptionally high quality Stereo Amplifier system specificalions for which are snown in detalt in our list together with semiconductor requirements

Meln Amplitior:
Set of resistors. capacitors and presets
Stereo printed crrcuit board
Pet-Amplifler:
Sets of resistors capacitors potentiometers
Standard Tole
Superior Tolerance Sel
Stereo PCB (as Published)
Regulated Power Supply
Set of resistors capacitors and prese
printed circult board
HI-FI TAPE LINK
Designed for use with reasonable auality tape decks this high pertormance pre-amp includes record playback and metering circuits

Stereo component set lexcl panel meter, Mono component set (excl panel meter)
ower supply component se:
tereo main PCB
Stereo sub-assembly PCB

TAPE-NOISE LIMITER
Very effective circuit for reducing the hiss found in mos tape recordings

Component set (rncl PCB)
Regulated power supply fincluding printed circuit £3.71

PROJECT O4

Multi-System Quadraphonic Decoder
Decoder component set
[13י74
Power supply components 52. 50

SEMICONDUCTOR TESTEA

Essential test equipment for the enterprising home constructor

Set of resistors capacitors semiconductors poientiometers makaswirches and sub-assembly PCB (fuller details in list)

PHASING UNIT

A simple but effective manually controlled unit for introducing the phasing sound into live or recorded music
Componen: set (incl PCE)
[2. 20

SOUND SYNTHESISER

The weil-acclaimed and highly versatile Synthesiser published in P E Feb 1973 to Feb 1974

Comp

RHYTHM GENERATOR

Programmable for 64,000 rhythm patierns from 8 effects circuits (high and low bongos. Dass and snare drums. long and short brushes. blocks and cymball. End with variable time signatures

Tempo, TIming and Loglc CIrcult
Component set (excl switches)
Double-sided PCB for above
Mixer, Pre-amp and Effects Clicult
177.25
$£ 2.30$

Component set
PCE (lliustrated)
Monltor Amplitler
Component set and PCB
Power Supply
Component set and PCB E5.65

AUDIO MILLIVOLTMETEA
Wide-ranges and good accuracy Component
set (excl meter)
ULTRASONIC TRANSMITTER-RECEIVER
A highly sensitive and long range invisible beam
delection circuit with numerous applications

Component set with PCBs but excluding tyans
14. 40

RONDO
PCB details in L.st

POWER SLAVES

PCB detals in Lis:
ELECTRONIC PIANO HOME INTERCOM

PCB LAYOUT AND CIRCUIT DIAGRAMS SUPPLIED WITH ALL PCBs DESIGNED BY PHONOSONICS			P. \& P. Add 18p : 0 all orders			VAT Add 8% (or current rate if different to total order cost it. cluding P \& P		LIST Send SAE for free list giving fuller details of kits PCBs and other components				OVERSEAS P \& P will be charged at cos: VAT does not currently apply Lis: gives fuller details including ki: weights Charge for lis: Europe 10p other countries 20p					COLOUR CODE IDENTIFICATION SUPPLIED WITH MOST KITS AND AS PART OF LIST								
Semiconductors						Integrated Circults 709 TOS		Zeners		Electrolytic Capacitors (uFFV)						Polyester (ω F)		Tantalum (4 F V)							
AC128	20p	MJE 3055 NKTOOS3	75p	2N3E23E	$\begin{aligned} & 39 p \\ & 36 p \end{aligned}$																				
AC176	200		${ }^{112 p}$	2 N 4870		723 TOS	${ }^{40 p}$			001	3 p	0135	12p												
BC107	13p	OC28	65p	2N4871	38 p	7418 8-pin Dil	40 p	33 V 400 mW	12p							04763 V $1063 v$	${ }_{80} 8$	4763	70	47040 500	20 p	0015	3 p	02235	12 p
BC108	13 p	$\begin{aligned} & 0 C 71 \\ & 0 C 84 \end{aligned}$	14p	2N5777	45p	74714 -PIn DIL	115 p	$47 \vee 16$	25p				${ }^{5 p}$		46	0022	3 p	04735	12p						
BC109	13 p		${ }_{55} 5$			748 TO5	63 p 83 p	$5 \mathrm{6V}$: 3 W	20 p	$1563 V$ $2263 v$	${ }_{6 p}^{6 p}$	10010 10025	$\mathrm{sp}_{8 p}$	680 680 63	10p	0033	${ }^{3}$ \}p		12p						
BC147	12p	$\begin{aligned} & \text { OC } 84^{\text {ORF }} 12 \end{aligned}$	$55 p$	Dioces		7488 -pin DiL	${ }^{\text {63p }}$	62 V 400 mW	15p	${ }^{1} 2{ }^{2} 763 \mathrm{l}$	${ }_{8 p}$	10025	${ }_{7 p}$	680 680 40	20 p	0047	$3{ }^{3} \mathrm{P}$: 535	16p						
8 CC 148	12 p	ORP12 $2 T \times 107$	${ }^{\text {12p }}$	1N914	$4 p$	74814 -pin DEL		9 iv 400 mW	${ }^{15 p}$	4763 6840	${ }_{8 p} 8$	10040 10063	${ }_{12}{ }^{7 p}$	58040	$25 p$	0068	$3{ }^{19}$	2235	12p						
BC149	12 p	$2 T \times 503$	$15 p$	in4001	$8 p$	7400 7402	20 p	ITV 1w	20p	6880 1025	${ }_{6 p}$	10063 15016	${ }_{\text {12p }}^{12}$	100010 100016	14p	O 1	$4{ }^{40}$	4735	12 p						
BC157	139	27×531	$23 p$	1 N 0002	7 p	7402	20 p	12 V 400 mW	${ }^{15 p}$	1025	${ }_{60} 6$	+ 15016	12 p	100016 100025	25 p	015	50	${ }^{4} 16$	${ }^{120}$						
BC156	13 p	2N706	130	$1 \mathrm{NaCO} /$	8	7420 7447	${ }^{200}$	12 V 13 W	${ }^{20 p}$	10 15 15	${ }_{68}^{60}$	15063 22010	${ }_{6}^{129}$	100025 100040		${ }_{0}^{0} 22$	5p	1025	${ }^{16 p}$						
BC159	13p	${ }^{2} \mathrm{~N} 914$	22 p	1N4005	0	7447	175p	18 V 400 mW	15p	1540 2210		22010 220 16	5	100040	40 p	033	7 p	1563	${ }^{15 p}$						
BC182L	12p	2N1304	22p	1006	p	7473		18V 16	20 p	2210 2225					45p	047	$9 p$	$22{ }^{16}$	$15 p$						
BC204	14 p	2N2219	27p	BA145	23 p	7489	5750	20 V 400 mw	15p	2225 3363	${ }_{8 p}{ }_{8 p}$	22025 220	$10 p$	220040	50p	068	3 tp	4763	18p						
BC209c	14 p	2N2905	27p	OA9?	7 p	HA7815 TO3	250p	20V 13 W	23p				${ }^{14 \mathrm{p}}$	2800100	350p	10	${ }^{14} \mathrm{P}$	4716 V	25p						
BC212L	150	$2 \mathrm{~N} 2907$	22p	OA200	${ }_{0}$	HA7815 TO220	250 p	27 V 400 mW	${ }^{35 p}$	3316 3340	${ }_{60} 8$	22063	${ }^{21 p}$	330063	133 p	22	24P	1003	16p						
BC478	29p	2N3054	${ }^{36} \mathrm{p}$	1GP7	12p	CA3046	80p			33 40 40	6	33010 470	${ }_{80} 8$	3300100	3300										
BCY71	220	$\begin{aligned} & 2 N 3055 \\ & 2 N 3702 \end{aligned}$	50p	15.50	11p.	MFC6040	$85 p$	Thyristors		$4{ }_{4} 25$				470016	60p										
EFY50	${ }^{229}$		${ }_{12 \mathrm{p}}$	21J	60p-			IA 400 V	75p	4740		$\begin{aligned} & 47010 \\ & 470 \\ & 40 \end{aligned}$			75p $93 p$	PRIC	ARE COR	ECT AT							
BFY52	230	2N3702 2N3703	$12 p$$12 p$			SG3402N 169p Minitran 3015F 225p									93 p	PRESS. E. \& O.E. DELIVERIES SUBJECT TO AVAILABILITY.									
M, E2955	110p	2N3704 2N3819																							

SOUND BENDER

A multi-purpose sound controller the functrons of which include envelope shaper tremolo vorce operated fader automatic tader and trequency doublet
Component set
£5. 83

REVERBERATION UNIT

A high-quality unit having microphone and line inpl pre-amps and providing full control over reveroerasion level

Component set texcl spring unit
56
51.40

Printed circult board

MINISONIC
 Details in List

OW AMPLIFTEP

A moderately powered amplitier of more nan average performance

Main Amplifler

Mono component se:
Stereo component se:
Mono printed circuit board
Pre-Amplifler
Mono component se:
Stereo componert
Stereo PCB
Power Supply
Component set

BIOLOGICAL AMPLIFIER

Multiofunction circuits that with the use of other ex'ernal equipment. can serve as lie detec:or alpmaprone cardiophone etc
Pre-Amplitier Module
Component set and PCB
Basic Output Circuite
Combined componen: set with PCBs for alpha
phone cardophone frequency me'er and visua leed-back lamp diver circuits
Type PC7
PHOTOPAINT PROCESS CONTROL
For colour and 8 \& W an indespensible dark-room uni. for finding exposure' conirolling enlarger :iming and stabilising marns voltage

Component set texcl meter: 4.8.85
$\$ 9.60$

ENLARGER EXPOSURE
METER AND THERMOMETER
Dual-purpose dark-room whit with good accuracy
Component set with PCB but excludirg me'er \quad C. 00
WIND AND RAIN UNIT
A manually controlled unit for producing the above-named sounds
Component set inct PCB
c2. 40

PHONOSONICS, DEPT. PE2D, 25 KENTISH ROAD, BELVEDERE, KENT DA17 5BW MAIL ORDER ONLY

CRESCENT RADIO LTD．
 11－15 \＆ 17 MAYES ROAD，LONDON N22 6TL

 （also）13．SOUTH MALL，EDMONTON，N． 9MAIL ORDER DEPT

II MAYES ROAD，LONDON N22 6 TL

＂CRESCENT＂IOO WATT R．M．S．
ALL PURPOSE AMPLIFIER
U．BUILD．IT We supply the three modules for you to build this Disco－Group－P．A．amplitier into the cabinet
of your choice． ＋THE POWER AMP MODULE 170W r．m．s．sq．wave 300W instantaneous peak into $8 \mathrm{ohm}(00 \mathrm{w}$ into 16 ohm$)$ ．

＊THE PRE－AMP MODULE

 Four control pre－amp，Vol，Bass，Treble．Middle controls．Designed to drlve moat amplifiers using F．E．T．first stage＊THE POWER SUPPLY Complete fixing instructions are supplied and no technical knowledge is required to connect the three ready wired modules．A fantastic bargain．
\＄85，carr．75p．Send S．A．E．for further details on this or our ready built amplifiers．
$12-0-12 \mathrm{~V} 500 \mathrm{M} / \mathrm{A}$
240 V primary transformer bargain．Approx，size Out price 81 －80．
$18 \mathrm{~V} 500 \mathrm{M} / \mathrm{A}$
approx． $4^{\prime \prime} \times 3^{4} \times 21^{\prime \prime}$ When
connected to the output of 8 sound aource from 1 to 100 watts produces a paychedelic light Complete with a sensitive control the unit is fused and can－ not harm your amplifier A Bargain at $\& 7+80$ plus 10p．

MINIATURE RELAYS

Brand new range of British made relays，size： $1 \frac{1}{\text { in }} \times 1$ in $\times \frac{3}{3}$ in．
All two changeovers with 250 V $1 \cdot 5 \mathrm{~A}$ contacta and suitable for fitting on 0.1 m veroborrd． Type Volts Current Ohms $\begin{array}{lllll}27 / \mathrm{A} & 12 \mathrm{~V} & 17 \mathrm{M} / \mathrm{A} & 700 & \text { All } \\ 21 / \mathrm{A} & 12 \mathrm{~V} & \underline{\sim y M} / \mathrm{A} & 430 & 81+80\end{array}$ $\begin{array}{ccccc}21 / \mathrm{A} & 12 \mathrm{~V} & 28 \mathrm{M} / \mathrm{A} & 430 & 81+80 \\ 12 / \mathrm{A} & 6 \mathrm{~V} & 33 \mathrm{M} / \mathrm{A} & 185 & 0 \mathrm{sch}\end{array}$ 12／A ع00／250V Mains Relas Heavy duty contacts 2,500 ohm D．P．D．T．mains relays 50 p ，Carr． iree．Special quantity 840 per iree．
100 off．

MIDGET

MAINS TRANSFORMER Varnish Impregnated Size $45 \mathrm{~mm} \times 36 \mathrm{~mm} \times 31 \mathrm{~mm}$ PRI 240 V
$\begin{array}{ll}3.0 \cdot 3 & 100 \mathrm{~mA} \\ 6 \cdot 0.6 & 10 \mathrm{~mA}\end{array}$ $9.0 .9 \quad 100 \mathrm{~mA}$ $12 \cdot 0.12100 \mathrm{~mA}$

CRESCENTBUBBLE LIGHTSHOW Thls budget system compares very
favourably with more sophisticsted and higher priced models． Specification：
Projector－150W
cooled．At 30 ft the convection
projected cooled．At
image is 16 ft ．
Motor－1 rev．per 2 min Lignid Wheel－6in
The motor i日 fitted to the projector and can onls be purchased as a single unit．
The liquid wheel is our atandard separately．
separately．
A bargain at：Projector，215；
Wheel， 25 ；Total 820 ．Plus 75p carr
 OUDSPEAKER speaker ideal where speaker ideal where
small size is import－ ant．Manulactured byown h．I for a well－ maker hise set 4 in ．Impedance： 8 ohms．Flux： 38．000．Max．Free range： 90 Hz to
l2kHz．Power handling： 5 W ． Unbeatable．Price： 41.60 ．Free postage on this item．

RST
VALVE MAIL ORDER CO 16a WELLFIELD ROAD，LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE Express postage 5 p for first transistor，Ip thereafte

1N21	$\operatorname{sp}_{0.17}$	$\begin{array}{ll}\text { HZZ11 } & 1.15\end{array}$	BY：13	$\begin{aligned} & 8 \mathrm{p} \\ & 0.25 \end{aligned}$	OAZz20］	$\begin{aligned} & \varepsilon_{p} \\ & 0.45 \end{aligned}$	28170	$\begin{aligned} & \text { sp } \\ & 0.10 \end{aligned}$
IN23	0.17 0.85	AFZ 2000	BYZ10	0.45	0AZZ06	－0．45	28871	0.18
in8．	0.88	ASY26 0．25	BYZ11	0.40	OAZこ07	0.45	ZT21	0.25
1N26s	0.50	A8Y27 0.30	BYZ12	0.40	OAzz08	0.40	ZT43	0.25
IN256	0.50	A8Y28 0.25	BYZ13	0.85	OAZ209	0.40	ZTX 10	0.12
IN640	0.16	A8Y24 0．30	BYZ13	1.25	OAZ210			1
1N726A	0.20	AsY36 0.25	HYZ16	0.80	OAZ2			
1 N914	0.08	$\begin{array}{ll}\text { ABY0u } & 0.20 \\ \text { AXY }\end{array}$	BZY88	0.10	0Azzer	0.45	ZTX ${ }_{\text {Z }}$	0.24 0.15
1N4007	0.12	$\begin{array}{ll}\text { A8Y } 53 \\ \text { A85 } & 0.20\end{array}$	Clil	0．55	0 AZ2L4	0.45	ZTX 503	${ }_{0} .18$
18118	0.25	$\begin{array}{ll}\text { A\＆Y0̇S } & 0.20\end{array}$	crislus	0.80	OAZ241	0.25	ZTX ${ }^{\text {a }}$ 31	0.25
18131	0.13	$\begin{array}{ll}\text { ABYY } \\ \text { AB\％} & 0.25\end{array}$	CRS1／40	0.45	0AZ242	0.15		
18202	0.23 0.40	ASY $66 \quad 0.83$	C84B	1.80	OAZ244	0－25	INTEG	CD
$\begin{aligned} & \mathbf{2 9 3 7 1} \\ & 20381 \end{aligned}$	0.40 0.22	AsZ21 $\quad 1.00$	C810B	3.50	OAZ246	0.15	CIRC	
$2 \mathrm{CaH14}$	0.80	A8Z23 0.75	DDOU0	0.15 0.15	OAZZ90	0.38 1.00	7400	80
20447	0.25	$\begin{array}{ll}\text { AUl01 } & 1.80 \\ \text { AUY10 } & \\ 1+00\end{array}$	DD006	0.25	${ }_{0}^{0} 0$ Cl6 6	1.00	7401	0.20
2 N 04	0.22	$\begin{array}{ll}\text { Ac107 } & 0.12\end{array}$	DD00\％	0.40	OC19	0.50	7402	0.20
${ }^{2} \mathrm{~N} \times 97$	0.15	BC108 0	DD008	0.38	Oどっ	2.00	7403	0.20
9N608	0.80 0.10	BC109 0．12	GD3	0.88	OCz：	1.00	7404	20
${ }_{2}^{2 N} \mathbf{2 N 7 0 6}$	0.10	BC113 0．18	GD4	0.10	0C23	$1 \cdot 25$	7405 7406	0.20
$\begin{aligned} & 2 N 706 A \\ & 2 N 708 \end{aligned}$	0.12	BC115 0．20	GDO	0.88	OC24	1.10		40
2 N 709	0.40	BClit 0.20			OCLio	0.40	7408	0.25
2 N 1091	0.55	BC116A 0.23	GDI2	0.10	OC26	0.40	7409	0.38
2 N 1131	0.25	BC118 0.20 $6 C 12$	GET103	0.40	OC28	0.70	7410	$0 \cdot 20$
2N113：	0.25	BC121 0．20	GET113	0.38	OC29	0.40	7411	0.28
$2 \mathrm{2N1302}$	0.18	$\begin{array}{ll}\mathrm{BC122} \\ \mathrm{BC125} & 0.20 \\ 0.88\end{array}$	GET114	0.30	OC35	0.55	7412	0.28
2N1303	0.18	$\begin{array}{ll}\text { BC120 } & 0.65\end{array}$	GET115	0.75	${ }_{0} \mathbf{C 3 6}$	0.65	7413	．30
${ }_{2} 2 \mathrm{NH}^{2} 1304$	0.82 0.29	BC140 0.55	GET116	0.85	OC41	0.35	7416	0.30 0.30
2N1306 2N 1306	0.28	BC147 0	GET120	0.50	OC42	0.40	7420	20
${ }^{2} \mathrm{~N} 1307$	0.28	HC148 0.10	GeTs72	0.30	$0 \mathrm{C43}$	0.70	7422	0.28
2N1308	0.28	BC149 0.12	GE1875	0.40	OC44	0.18	7423	0.40
2 N 2147	0.75	$\mathrm{BCl}^{\text {BCO}}$	GET880	0.05	${ }_{0}^{0} 4.45$	0.17	7425	0.37
2N2148	0.60	BClis 0.12	T8		OC45	0.18	7427	0.87
2N2160	1.00	8C160	T883	0.40	o		7428	0－48
2N2218	0.28	BCY 31 0.45	GEX44	0.08			7430	0.20
2N2219	0.25	BCY31 0.4 BCY 1.20	GEX45／1	0.45	OC58	0.60	7432	0.37
${ }^{2 N} 23694$	0.16	$\begin{array}{ll}\text { BCY33 } & 0.28\end{array}$	GEX941	0.45	${ }_{0} \mathbf{C} 59$	0.60	${ }_{7437}^{7433}$	0.48
${ }_{2}^{2 N} 2 \mathrm{~N} 2644$	1.	ВСY34 0.46 0	GJ3M	0.50	${ }_{0} \mathbf{0} 66$	0.60	7437 7438	8
N2613	0.28	ВСY38 0	GJ4M	0.50	OC70	0.18	7440	
2 N 2646	0.60 0.20	ВСХ39 1.00	GJīm	0.25	0 C 71	0.15		
${ }_{2} \mathbf{2 N} 2904$	0.20	$\begin{array}{ll}\text { BCY40 } & 0.80\end{array}$	GJ7M	0.50	OC72	0.25	7441	0.85
2N2906 ${ }^{\text {a }}$	0.20	BCY42 0.30	HG1005	0.80	OC73	0.50	7450	0.20
2 N 2907	0.83	${ }^{\text {BCY70 }}$	Mat100	${ }_{0} 0.20$	${ }^{0} \mathrm{C} 74$	0	7451	0.20
2N2924	0.18	$\begin{array}{ll}\text { BCY } \\ \text { BCZ10 } & 0.20 \\ 0.80\end{array}$	MaT101	0.25	${ }^{0} \mathrm{C} 76$	0.80	7408	0.20
2 N 2925	0.15	BCZ11－0．85	MAT120	0.20	$0 \mathrm{C} 7 \%$	0.65	7454	$0 \cdot 20$
2 N 2928	0.10 0.50	$\begin{array}{ll}\text { BD121 } & 1.00\end{array}$	MAT121	0.25	0C7\％	0.25	7460 7470	
N3054	0.60 0.60	BD123 1．00	MJE520	0.65	OC74	0.30	7472	0.83
2 NyOJS	0.60	$\begin{array}{ll}\text { BD124 } & 0.80\end{array}$	MJE2955	$1 \cdot 10$	0 C 81	0.28	7473	
${ }_{2}{ }_{2} \mathrm{~N} 37025$	0.11	${ }_{\text {BDY11 }} 1.45$	MJE305．	0.75	OC81D	0.28	7474	8
${ }_{2} \mathrm{~N} 3706$	0.11	BFl15 0．22	MJE340	0.50	OC81M	0.20	747.5	0.69
2N3707	0.13	BF117 0．60	MPF102	0．38	OC81D	0.18	7475	0.45
2N3709	0.10	$\begin{array}{ll}\text { BF167 } & 0.25 \\ \text { BF173 } & 0.28\end{array}$	MPFF104	0.38	$0{ }_{0} 0$	0.45	7480	0.80
2N3710	0.11	$\begin{array}{ll}\text { BF173 } & 0.28 \\ \text { BF181 } & 0.25\end{array}$	MPF105	0.46	${ }_{0} \mathrm{C} 89 \mathrm{D}$	0.25	7482	0.87
dN3711	0.11	BF181 $\begin{array}{ll}\text { BF184 } & 0.35 \\ 0.22\end{array}$	NKT128	0.45	${ }_{0} \mathrm{OC83}^{\text {c }}$	0.25	7483	1.20
2N8819 2N4269	0.95 0.80	$\begin{array}{ll}\text { BF185 } & 0.22\end{array}$	NKT129	0.30	0 O 84	0.30	7484 7486	1.00 0.60
2N5027	$\stackrel{0}{0.53}$	BF194 0.13	NKT211	0.25	OC114	0.88	7490	0.75
2N5088	0.83	BF195 0.18	NKT213	0.25	$0 \mathrm{OCl22}$	1.00	7491	1.10
28301	0.58	$\begin{array}{ll}\text { BF196 } & 0.15 \\ \text { BF197 } & 0.15\end{array}$	NKT216	0.24	${ }_{0}^{\mathrm{OCl}}$	0.40	7492	0.75
28804	1.15	$\begin{array}{ll}\text { BF197 } \\ \text { BFE61 } & 0.16 \\ 0.25\end{array}$	NKT21\％	0.45	OC140	0．45	7493	0.75 0.85
28501	0.75	$\begin{array}{ll}\text { BFB61 } & 0.26 \\ \text { BF898 } & 0.25\end{array}$	NKT218	1.13	OC141	0.80	7494	0.85 0.85
28703	1.00 0.20	$\begin{array}{ll}\text { BF8P12 } & 0.20\end{array}$	NKT219	0.33	${ }^{0} \mathrm{Cl} 69$	0.20	7490	0.85 1.00
AAl29	0.75	BFX $13 \quad 0.25$	NKT222	0.30	OC1\％0	0.25	7497	4.82
$\begin{aligned} & \text { AAZ1: } \\ & \text { AAZ1U } \end{aligned}$	0.10	$\begin{array}{ll}\text { BFX29 } & 0.28\end{array}$	NKT224	0.25	OC171	0.30	74100	\％．18
A0107	0.85	BFX30 0．28	NKT251	0.24	OC200	0.65	$7410{ }^{\text {a }}$	0.51
AC128	0.25	BFX35 0.08	NKT271	0.20	$\mathrm{OC2O}^{0} 2$	0.80	74110	0.67
$4 \mathrm{Cl27}$	0.25	BFX63 0.50		0.20	$\mathrm{OC}^{\text {C202 }}$	55	7411	0.86
AC128	0.60	$\begin{array}{ll}\text { BFX84 } & 0.25 \\ \text { BFX85 } & 0.28\end{array}$	NKT274	0.20	${ }_{0} \mathrm{OC203}^{\text {OC204 }}$	0.85	74118	1.00
AC187	$0 \cdot 20$	$\begin{array}{ll}\text { BFX88 } & 0.28 \\ \text { BFX }\end{array}$	NKT275	0．25	OC20j	0.60 1.00	74119	1．92
$\mathrm{AC188}$	${ }_{0}^{0.20}$	$\begin{array}{ll}\text { BFX86 } & 0.25 \\ \text { BFX } & 0.25\end{array}$	NKT27\％	0．20	OC206	1.10	74121 74122	0.57
A0Y17	0．85	$\begin{array}{ll}\text { BFX88 } & 0.22\end{array}$	NKT278	0.25	OC207	1.00	74123	0.80
AOY18	0.27 0.27	BFYIO 1.00	NKT301	0.85	OC460	0.20	74141	1.00
ACY 20	0.27 0.22	BFY11 0.50	NKT304	0.75	OC470	0.30	74145	1.4
AOY21	0.22	BFY1－ 0.40	NKT403	0.70	${ }_{0} \mathrm{CP} \mathrm{Cl}^{1}$	1.00	74150	8．30
A0Y22	0.16	BFY18 0.45	NKT404	0.60 0.30	ORP12	0.55	74151	$1 \cdot 15$
ACY27	0.25	BFY19 0.55	NKT778	0.30 0.80	ORP	0	74154	$2 \cdot 30$
A0Y98	0.25	$\begin{array}{ll}\text { BFY } 24 & 0.45 \\ \text { BFY44 } \\ \text { Bra }\end{array}$	NKT773	0.25	${ }^{\text {ORP6 }}$	0.48	74150	$1 \cdot 15$
ACY 34	0.85	$\begin{array}{ll}\text { BFY44 } \\ \text { BFY } & 1.00 \\ 0.20\end{array}$	NKTi゙T	${ }_{0}^{0.38}$	${ }_{\mathbf{S X} \times 31}$	0.20	74156	1.15
AOY40	0.22	$\begin{array}{ll}\text { BFY } \\ \text { BFY } & 01 \\ 0.20\end{array}$	078B ${ }^{\text {c }}$	0.38		0.45	74157	1.09
AOY41	0.22	$\begin{array}{ll}\text { BFY } & 0.20 \\ \text { BFY52 } & 0.20\end{array}$	${ }_{0} 078$	0.60	SX 640	0.65	74170	2.88
AOY44	0.82	$\begin{array}{ll}\text { BFY } \\ \text { BFY } & 0.20\end{array}$	OAb	0.12	8X641	0.75	74174	1．80
ADI40	0.50 0.50	BFY64 0.45	$0 \mathrm{OA47}$	0.08	SX642	0.60	74173	1.20
ADI61	0.39	BFY90 0.75	OAz	0.10	SX644	0.85	74176	1.44
AD162	0.89	BSX27 0.50 8860	OA73	0.20	SX 6	0.85	74190	2.30
AP106	0.80	$\begin{array}{ll}\text { BSX60 } \\ \text { B8X } 60 & 0.98 \\ 0.18\end{array}$	OA74	0.15	T1C4	0.29	74191	$2 \cdot 30$
AF114	0.85	$\begin{array}{ll}\text { B8X } 26 & 0.18\end{array}$	OA79	0.10	V15／30P	0.75	74192	2.80
AFild	0.25	$\begin{array}{ll}\text { B8Y } 26 & 0.17 \\ \text { B8Y } 27 & 0.20\end{array}$	OA81	0.10	$\checkmark 30 / 201 \mathrm{P}$	0.75	74193	2.80
AFP116	0.26	$\begin{array}{ll}\text { BSYb } & 0.50\end{array}$	OA85	0.15	$\mathrm{V}^{60} / 201$	0.50	74194	1.72
AF118	0.50	BSY9JA 0.12	OA86 0×90	0.15	V60／201P	0.75	74193	1.44
Api19	0.80		OA91	0.07	XA101	0.18	74196	1．68
AP194	0.30	BT102／500R 0.75	0 A 95	0.07	XA151	0.15	74197	1.58
AFl28	0.30	BTY4： 0.92	OA200	0.08	XA152	0.15	74198	9．16
AF12\％	－0．80	BTY79／100R	OA202	0.	XA161	0.25	74199	2．88
AF138	0.83	0.75	0 OA	0.2	Xal6：	0.25		
4F178	0.55	BTY79／400R	OAE11	0.50	X B101	0.48		
AF1790	0.85 0.55	BY100 $\quad \begin{aligned} & \text { B }\end{aligned}$	OAZ201	0.45	XB102	0.30	-low p	le
AP180	0.55 0.50	BY126 0.14	OAZ：202	0.45	X B103	0.85		0.15
AFi8i	0.40	BY127 0.15	OAZ203	0.45	XB113	0.80	pin	
AFY19	1.18	BY1822 0.85	OAZ204	0.45	XB12I	0.48		0.17

[^1]Prices correct when going to prest．

Variable voltage transformers

STROBE! STROBE! STROBE!

COIN MECHANISM (Ex London Transport) Unit containing, selector mechanism for 1p, 2p and hopoins. 24 vole D.C. Precision built to high stand hopper. 24 vole D.C. Precision buit to high stand
ard. Incredible VALUE at only $\mathbf{6 2} 50$. Post 60 p.

230/250 VOLT A.C. SOLENOID

 Approximately 111 lPrice 61.00 . Post ilip.

24 VOLT DC SOLENOIDS

UNIT containing I heavy duty solenoid approx. 25ib ${ }_{6} \times$ approx. 4 oz . pull tinch travel. One 24 volt d.e. i heavy duty single make relay. Price $£ 2 \cdot 50$. Post 60 p ABSOLUTE BARGAIN.

230V FAN ASSEMBLY

Continuously rated, removable

PRECISION CENTRIFUGAL BLOWER Mig. Airflow Developments Ltd.
Heavy Duty continuously rated, smooth running, $230 / 240 \mathrm{~V}$ motor. Size: $16 \times 14 \mathrm{~cm}$ (case only). OAL 15 cm . Ap
$6 \times 6 \mathrm{~cm}$. 66.50 . Post 50 D .

230/240 VOLT A.C. EXTRACTOR FAN KIT
Comprising of impeller, continuously rated motor, motor housing and fix25p. (Totalincl. VAT and Post ©2•16)

TRIACS

GENERALELEETRICPOWER-GLASTRIACS 10 amp . Glass passivated plastic triac. Latest devic $10 \mathrm{amp}, 500$ PIV, 51.00 . Post 5 p . (I application sheet.) Suitable Diac 18p.

600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers
Will concrol up to 600 W of lighting Will concrol up to 600 W of lighting Complete with
62.75 . Post 250

Dept. PE12,57 BRIDGMAN ROÁD CHISWICK, LONDON W4 5BB Phone 01.9951560

Build a Serobe Unik, using the latest type Xenon
white light flash tube. Solid state timing and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. Operation EXPERIMENTERS' ECONOMY KIT Speed adiustable 1 to 30 flash per sec. All
electronic components including Xenon Tube and instructions $66 \cdot 30$. Post 30p.
INDUSTRIAL KIT
Ideally suitable for schools. laboratories, etc Speed adjustable 1-80 f.p.s.
Approx. \ddagger output of Hy-Lyght. Price 614.00 Post 50p
HY-LYGHT STROBEMK III
tube, printed circuit. Speed adiustable 0 io Light output greacer than many (so called (14 Post 50p.
THE 'SUPER' HY-LYGHT KIT Approx. four times the light output of our well

- Variable speed from 1-13 flash per sec.
- Reactor control circuit producing an intense ROBUST, FULLY VENTILATED METAL CASE, For Hy-Lyght Kit including reflector $\mathbf{E 5} \mathbf{7 5}$. Post 25p.
60p.
7 -inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 55

 Powerful source of u.V. P.F. ballast is
essential price of matehed baliast and bulb E16. Post El. Spare bulb E7, Post 40p. BLACK LIGHT FLUORESCENT U.V. TUBES 4ft 40 watt. Price E5.50. Post 30p. (4ft to
Personal callers only). 2 ft 20 watt, 64.25 . Post 25 p . (For use in standard bi-pin. MINI.
$12 \mathrm{in} 8 \mathrm{watt}, \mathrm{El} .60$. Post 15 p . 9 in of watt 12 in 8 watt, $£ 1.60$. Post 15p. 9in owatt,
61.30 . Post $15 p$. Complete ballast unit and holders for 9 in and 12 in tube, fl.70. Post
25 p . (9 in and 12 in measures approx.). 750 WATT MANUAL/AUTO DIMMER 750W Solid Stare Fader, with three funcrions Manual fade: Auto fade-up: Auto fade-down. Automatic cycling up and down. Function Two ranges of cycling for 'Flashing' or 'Slow
blending'. Ready built module $6^{\circ} \times 3^{*}$ glass fibre board incorporating IO amp TRIAC.
Two or more modules for top quality colour
 ORGAN KIT
Easy
(less sharps and flats). Fitted hardwood case (less sharps and flats). Fitred hardwood case.
Powered by two penlite I y batteries. Complete set of parts including speaker, etc.
together with full instructions and 10 tunes Price $63 \cdot 25$. Post 35p
50 in I ELECTRONIC PROJECT KIT special tools required. The kit include Speaker. Meter, Relay, Transformer, plus
host of other components and a 56 -page in struction leaflet. Some examples, of the 50
possible Projects possible Projects are: Sound Leve Meter. Transistor Radio. Amplifier, ecc. Price 67.75 .
P. \& P. 25p.

INSULATION TESTERS NEW! Test to I.E.E. Spec. Rugged metal
construction, suitabie for bench or construction, suitable for bench or
field work. constant speed clutch Size L. Bin. W. Win, H. 6in, weight 6lb. Size L.8in, W. 4 in, H. 6 in, weight
$1,000 \mathrm{~V}, 1,000$ megohms, E34. Past 60p, 500V, 500 megohms, 628. Post 60p.

All prices are subject to 8\% VAT. (8p in the $£$) To all orders add 8% VAT to total value of goods including carriagel packaging.

SERVICE
TRADING CO

Superior Quality Precision Made

NEW POWER RHEOSTATS

New ceramic construction, vitreous

 enamel embedded winding, heay duty brush assembly, conginuously 25 WATT 10/25/50/100/150/500/1k/ohm El-15. Post IOp.50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 ~ 1.5 k$ ohm C/-60. Post 10p.
100 WATT $/ 5 / 10 / 25 / 50 / 100 / 250 / 500 / \mathrm{lk} / \mathrm{l} \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ $3.5 \mathrm{k} / 5 \mathrm{k}$ ohm 62.35 . Post 15 p . Black Silver. Skirted knob calibrated in Nos 22p each

Col.(1) 1

Col. (2)
Working
Col. 3
Contracts
Col. (4) $\mathrm{HD}=$ RO $=$
Heavy dut

58	5-9	6 co
150	4-9	2 c
185	8-12	6 M
308	9.14	$4 \mathrm{c} / \mathrm{o}$
410	12-20	$4 \mathrm{c} / \mathrm{O}$
700	16-24	4 M 2 B
700	16-24	4 clo
700	20-30	$6 \mathrm{c} / 0$
2,500	31-43	$2 \mathrm{c} / 0 \mathrm{HD}$
2,500	3645	6M
9,000	40-70	$2 \mathrm{c} / 0$
15 k	85-110	6 M

$70 p$
$60 p$
$75 p$
$80 p$
$60 p$
$80 p$
$50 p$
$60 p$
$60 p$
$60 p$
$60 p$

6 VOLT D.C. 1 make contacts 35p. Post 10p
6 VOLT D.C. 2 make contacts 75p. Post 10p
YOLT D.C. RELAY
c/o 5 amp contacis. 70 ohm coil. 75 p. Post $10 p$.
12 VOLT D.C. RELAY 24 VOLTD.C. 3 c/o 75p. Post 10p.
DIAMOND 'H' Heavy Duty CLASE 10p.
Miniature relay. 675 ohm coil. 24 Vole D.C. 2 co 70p post paid.
100 VOLT A.C: $2 \mathrm{c} / \mathrm{o}$ sealed type, octal base
E1. Post 10p.
24 VOLT A.C. 3 e/o. 75 p. Posc $10 p$.
24 VOLT A.C. Mig. by ITT. 2 b.d. c/o contacts
55p. Post 10 p .
240 VOLT A.C. RELAY. MIg. by ITT. 240 V A.C $10 \mathrm{amph} . d . c / 0$ contascs. Octal plug in base. Pric 5p. Post 10p.
230/240 VOLT A.C. RELAY. Mfg. by Arrow 2 h.d 15 amp c/o contacts. Amp connectors. Price El 220/240 VOLT A.C. RELAY
c/o 5 amp contạcts. Sealed. Inel. II-pin bas 1.25. Post 10p

HEAVYDUTY A.C. SEALED RELAYS
110 V .2 clo. 20 amp contacts. El 15 . Post 10 p.
VERY SPECIAL OFFER
MINIATURE ROLLER MICRO SWITCH. ${ }^{5}$ amp. c/I Contacts. Mfg.
BONNELLA. NEW Price 10 .
for BONNELLA. NEW. Price 10
B1:50. Post 10 P. (Min, order 10) AS above WITHOUT ROLLER, 20 for \&2. Post 10 D $230 / 240$ VOLT A.C. MINIATURE MOTOR BODINE TYPE N.C.I.

GEARED MOTOR

(Type J) 71 rip.m. corque 10 b. in
Reversible ifoch h.p. cycle 0.38
amp. (Type 2228 ripm . to raue 20
b. in Reversible $1 / 80 \mathrm{ch}$ h.p. 50 cycle 0.28 amp

The above two precision made U. S.A. motors are
offered in as new condition. Input voltake of motor IISNA.C. Supplied complete with transformer for 230/240v, A.C. input. 25. Post 50 p or less trans Price, either type 80.
former 63.75 . Post 40 p
'FRACMO' 240 VOLT A.C 50 cycle SINGLE PHASE GEARED MOTOR
33 r.p.m. 30 lb . ins. Reversible
 itted with mounting fe rand New. E14. Post 60p. (Total price incl. VAT HIGH VISIBILITY PANEL MOUNTING LED's. 0.25 inch mounting, 0.16 inch lens. Typica parameters $2 \mathrm{~V}, 20 \mathrm{Mamps}$ all type. Supplied complet with snap in mountings and data. Red
3 for \mathbb{I}, Yellow 3 for EI . Post 10 p . (in order) (E1). LED READOUTS
serjes. L/H d.p. one-third high
RED or GREEN. Price El. 65, Post 10 p
RED or GREEN. Prial
4 for 46 . Post paid.

9 LITTLE NEWPORT STREET
LONDON WC2H 7JJ
Phone 01-437 0576

TUAC DISCOTHEQUE MIXER WITH AUTO FADE

Designed for the discerning D.J. of professional standard. Offering a vast variety of functions Controls: Mic Vol; Tone, over-ride depth; auto Manual Sw; Tape Vol; L \& R Deck Faders; Deck Volume; Treble and Bass; H. Phon Vol Selector Master Vol On/Off Sw. Max output IV RMS

Specification: Deck Inputs- 50 mV into $1 \mathrm{M} \Omega$; Deck Tone Controls-treble $+20-10 \mathrm{~dB}$ at 12 kHz . Bass $+22-15 d B$ at 40 Hz ; Mic Input-200 ohms upwards. 2 mV into 10k : Mic Tone Control-Total Variation Treble 15dB. Total Variation Bass 10dB; Tape Input -30 mV into $47 \mathrm{k} \Omega$; Power Requirements- $30-45$ volts at 100 mA

PANEL SIZE $18 \times 4 \frac{1}{2} i n$. DEPTH 3in.

HOW TO ORDER BY POST
Make cheques/P.O.s payable to TUAC LTD (PE) or quote Access/Barclay Card No and post to TUAC LTD (PE) 163 Mitcham Road. London. SW 17 9PG We accept phone orders against Access/Barclay Card Holders Phone: 6723137

Stockists-Callers only
A1 Music Centre, 88 Oxford Street. Manchester 1. Tel. 061-236 0340 Bristol Disco Centre, 86 Stokes Croft, Bristol 1. Tel. Bristol 41666 Calbarrie Audio, 88 Wellington Street. Luton, Beds. Tel. Luton 411733 Socodl, 9 The Friars. Canterbury, Kent. Tel. Canterbury 60948. Wec Lighting, 35 Northam Road. Southampton. Hants. Tel. Southampton 28102.

NEW! 3 CHANNEL LIGHT MODULATOR

R.C.A. 8 Amp Trlacs 1000W per channel
 - Each channel fully suppressed and fused
 - Master control to operate from 1W to 100W
 - Full wave control-12 easy connections

MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EQUIPMENT SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT OPEN 6 DAYS A WEEK $9 \cdot 30 \mathrm{am}-6.00 \mathrm{pm}$

ALL PRICES INCLUDE V.A.T. (8%) AND POSTAGE AND PACKING

ACCESS \& BARCLAY CARDS ACCEPTED JUST SEND OR PHONE US YOUR NUMBER M.P. ARRANGED THROUGH PAYBONDS

PE SCORPIO Mk2 ignition systemkit now from
 EIECIRO SPARES

* 6 OR 12 VOLT
* + VE AND - VE GROUND

Here's the new, improved version of the original PE Scorpio Electronic Ignition System - with a big plus over all the other

 kits - the PE Scorpio Kit is designed for both positive and negative ground automotive electrical systems. Not just + ve ground. Nor just -ve ground. But both! So if you change cars. you can be almost certaln that you can change over your PE Scorpio Mk. 2 as well.Contalning all the components you need, this Electro Spares PE Scorpio Mk. 2 KIt ls simply built, using our easy to follow instructions. Each component is a branded unit by a reputable manufacturer and carrles the manufacturer's guarantee. Ready drilled for fast assembly. Quickly fitted to any car.
When your PE Scorplo Mk. 2 is installed, you Instantly benefit from all these PE Scorpio Mk. 2 advantages:
\star Easier starting from cold \star Firing even with wet or oiled-up plugs \star Smoother running at high speed \star Fuel saving \star More power from your engine \star Longer spark plug life \star No more contact-breaker burn.

Electro Spares prices:

De luxe Kit only $£ 11.50$ inc. VAT and $p \& p$. Ready Made Unit f14.75 inc. VAT and p \& p. State 6 V or 12 V system.
Send SAE now for details and free list.

FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics' Superb Hi-Fi tuner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge). Electro Spares price only $£ 28.50$ inc. VAT and $p \& p$.

'GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere 0.02%, and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms. Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now I Depending on your choice of certain components, the price can vary from $£ 50$ to $\mathbf{£} 60$ inc. VAT and p \& p.

* All components as specified by original authors, and sold separately if you wish
* Fulr constructional data book with specification graphs, fault finding guides, etc. 55 p plus $4 p$ postage.
\star Price List only. Please send S.A.E. (preferably 9×4 minimum) for full details.

The Componemi Cermite: inf llae Nentls 288 ECCLESALL RD., SHEFFIELD S11 BPE(D) Tel:Sheffield (0742) 668888

Make light work

 of wiring with the NEW s:ifaniryle WIRTMATHCountless uses in industry and offices *QUICK and easy to apply -

EVEN IN AWKWaRD PLACES * Saves damage to wood and paintwork *StICKS ON INSTANTLY: HOLDS WIRE FIRMLY You'll save enormous time and trouble with the new Brandauer adhesive staple. Just peel off the backing strip and press staple into place. Then bend clips over to hold wire firmly in position. No messing with pins, tacks, soldering or drilling. No damage to woodwork, e.g. skirting boards. Use the Brandauer Staple for any wall, frame or cabinet wiring jobs - it's wonderfully easy for fitting in those awkward corners.

Send now for details to:

SPECIAL PRODUCTS DISTRIBUTORS LTD.

 81 Piccadilly, London WIV OHL. Tel:01-629 9556.
P. F. RALFE

10 CHAPEL ST, LONDON NW1
Phone 01.7238753

MUFFIN INSTRUMENT FANS
Dmensions $4.5 \mathrm{in} \times 4.5 \mathrm{in} \times 1.5 \mathrm{in}$ Very quiet funning. precision fan specially designed for cooling electronic equipment. amplifiers etc. For 110 V . a.c. operation (practise is to run from splis primary of mains transformer or use suitable matns dropper). CC only 1 it watts. List price over $\{10$ each. Our price in brand new condition, is $\{3.50$.
ITT METAIX
Model 1018
miniazure oscilloscope D.C. 10 mHz Sensitivity 100 mV . Singlebeam Dimensions $20 \mathrm{~cm} \times$ $14 \mathrm{~cm} \times 13 \mathrm{~cm}$. Weight $5 \neq \mathrm{lb}$. Sold brand now at nearly one half maker s list price. Only $£ 50$.

AVO VALVE TESTERS

Brief-case type 160. Full working condition throughout. $£ 65$.

Type FT 300
Reads as trequency meter up to 99.99 $k \mathrm{~Hz}_{\mathrm{z}}$ in three ranges or as tachometer $99.990 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Solid-state instrumen Clear read-out. Size only 8 in $\times 5$ in $\times 2$ in Weight 4 itb ECD oulputs. Operating voltage 110.240 V a.c Made by famous manufacturer These units are brand new in original makers cartons. Price 555

EDDYSTONE 770R AECEIVEA
Hange $19-165 \mathrm{mHz}$ As new. \{125

AERIAL CHANGE-OVEA AELAYS of curren: manufacture designed espec. lally for mobile equipments, coil voltage 12 V . Irequency up to 250 MHz at 50 watts Small size only 2 in x tin. Offered brand new boxed Price 51.50 , inc. F. \& P

TV WOBBULATOR Typ ' 210°

Technleal characteriatica
Frequency: 5 to $220 \mathrm{Mc} / \mathrm{s}$ in one range Accuracy: That of the marker generator (e.9. METRIX 936)

Output: Not less than 100 mV attenuable in steps of 10 down to $10 \mu \mathrm{~V}$. Sweep width: 1-2-5-10-20MC
Linearity: 10% at sweep width $10 \mathrm{Mc} / \mathrm{s}$ Ampllitude modulation: Less than 10% at sweep width $10 \mathrm{Mc} / \mathrm{s}$. Power supply: $110-130-220 \mathrm{~V}, 50-60 \mathrm{c}$ s. 130 V may be raplaced by $160 \mathrm{~V}, 220 \mathrm{~V}$ may be replaced by 240 V on demand. Power Input: 35VA approx
rubes used: $2 \times$ EC81. $1 \times 6 \mathrm{~J} 6: 1 \times 6 \times 4$ Welght: $201 \mathrm{~b} 802(9.300 \mathrm{~kg})$
Dimensions: 20 11. $\times 7$ Dimensions: $20 \times 11_{7} \times 7$ zin. $(510 \times 295$ 195 mm) overall. Price 488.50 inc. VAT

arge selection of

AF PLUGS AND SOCKETS
Available existock BNC plugs 5030 p SNC sockets 5025 ; ; type plug 5050 p; Burndept plugs 400. Burndept sockets 20 p: All plugs and sockets are brand new please add appropriate amount for postage
durathak variacs
Type 100 L . 230 V input. $0-230 \mathrm{~V}$ a.c outpul. 8 amps. Brand new minus control knobs. Price only $£ 15$, carriage $£ 1$ "

PLEASE ADD 8\% VAT TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH.

CUSTOM CABINETS

331 High Street, Rochester, Kent. Tel: Medway (0634) 404199

 SPEAKER CABINETS IN HUGE SAVINGSKIT FORM REPRESENT

$2^{\prime} \times 12^{\prime \prime}$ Cabinet

$4^{\prime} \times 12^{\prime \prime}$ Cabinet

Disco Console (includes lid not shown) Takes two slaves

For a long time now a large number of customers have asked us to produce cabinets in kit form, and above we show examples of cabinet styles and these are now available either fully built or in kit form ready for you to produce a professional finish in a very short time I
Kits are available in all specifications and all the kits contain everything you need as follows:-

1) 4 sides with handle cutouts, front edges rounded, 1 back with jack socket hole, and1 baffleboard with speaker cutout
2) P.V.C. cut to size for frame and back, plus false front and back timbers, white front piping and speaker cloth
3) Recessed handles with fixing screws, jack socket, all fixing screws, corner plates, glue, and full instructions !

PRICE \& TYPE LIST

Type	Size	Price manufactured	Kit price
$2 \times 12{ }^{\prime \prime}$ (illustrated above)	$36^{\prime \prime} \times 18^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{3}$	£19.50	£12.50
$4 \times 12^{\prime \prime}$ ((llustrated above)	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime \prime} \times$ x ${ }^{\frac{3}{2}}$	4.50	50
$4 \times 12^{\prime \prime}$ P.A. Column	$48^{\prime \prime} \times 27^{\prime \prime} \times 13^{\prime \prime \prime} \times$ x ${ }^{\frac{3}{2}}$	£30.00	50
$1 \times 18^{\prime \prime}$	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times$ x ${ }^{\frac{3}{4}}$	¢24.50	£17.50
$1 \times 15^{\prime \prime}$ with two top horn cutouts	$36^{\prime \prime} \times 20^{\prime \prime} \times 13^{\prime \prime} \times$ 年	£21.00	£13.50
Mini Disco (state deck cutout BSR, GARRARD etc.)	$33^{\prime \prime} \times 20^{\prime \prime} \times 8^{\prime \prime \prime} \times \frac{1}{2}$	£20.00	£13.00
Maxi Disco (illustrated) (state deck cutout BSR, GARRARD etc.)	$42^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime} \times \frac{1}{2}$	£25.00	£18.50

Please ask for quotation on any other type or size of cabinet you may require.

* 100w RMS slave amp for Disco
* 100w RMS continuous sine wave output
* Short and open circuit protection
* Built to highest industrial spec.
* Price $£ 37.00$ complete

* Stereo studio disco mixer
* Full PFL and Monitor facilities
* As used by John Peel, Mark Wesley. Paul Burnett, DLT, Dave Christian, Tony Prince
* Price E120.00

ERC 100w power amplifier

* Electrolytic capacitors and second generation ICs
* Fully protected against short or open circuit
* Less than 0.1% distortion at all powers
* Rise time 4muS-stabilityUnconditional Price £66.50

ALL OUR PRICES INCLUDE VAT AND UK DELIVERY

Disco imp projector 150 watt tungsten unbeatable price $£ 19.75$
Includes liquid wheel and postage
Normally £24-£27.50
UNBEATABLE NOW ONLY £18

RTV COR AUDIO ON A BUDGET

PUSH BUTTON CAR RADIOKIT

The

 TouristII

NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO

Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly. Fine tuning push button mechanism is fully built and tested to mate with printed circuit board.
Car Radio Kit $£ 7.70+55 p$ p. \& p
The Tourist I Kit for the experienced constructor If you can solder on a printed circuit board you can build this model. Same technical specification as Tourist II
Price $\mathbf{f 6 . 6 0 + 5 5 p p \& p .}$

Technical specification:
(1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth.
(2) Integrated circuit output stage, pre-built three stage IF Module
Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands
Size chassis 7 " wide, $2^{" ~ h i g h ~ a n d ~} 43 / 4^{\prime \prime}$ deep approx
Speaker including baffle and fixing strip $\mathbf{£ 1 . 6 5 + 2 3 p}$.p\&p.
Car Aerial Recommended - fully retractable f1.37+20p. postage \& packing

S*TEREO] QUALITY SOUND FOR LESSTHAN $£ 20 \cdot 00$

Stereo 21, easy to assemble audio system kit. No soldering required. The unit is finished in white P.V.C. and the acrylic top presents an unusually interesting variation on the modern deck plinth. Includes:- BSR 3 speed deck, automatic, manual facilities together with ceramic cartridge. Two speakers with cabinets.
Amplifier module. Ready built with control panel, speaker leads and full, easy to follow assembly instructions. Specifications: For the technically minded :-
Input sensitivity 600 mV . Aux. input sensitivity 120 mV . Power output 2.7 watts per channel. Butput impedance 8-15 ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs for taping discs. Overall Dimensions. Speakers approx $15 \frac{1}{2}^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$ Complete only $\mathbf{£ 1 9 \cdot 9 5}+\mathbf{f 1 . 6 0} \mathrm{p}$ \& p . Extras if required. Optional Diamond Siyli $\mathbf{f 1} \mathbf{1 7}$. optimum performance, $£ \mathbf{~} \mathbf{3 . 8 5}$.

For the man who wants to design his own stereo - here's your chance to start, with Unisound - pre-amp, power amplifier and control panel. No soldering just simply screw together. 4 watts per channel into 8 ohms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum. 240V. AC only.
£7. $64+55 p \mathrm{p}$ \&p

Elegant self selector push button player for use with your stereo system. Compatible with Viscount III system, Unisound module and the Stereo 21. Technical specification Mains input, 240 V . Output sensitivity 125 mV Comparable unit sold eleswhere at £24.00 approx. Yours for only
$\mathrm{f} 11.95+90 \mathrm{p} \boldsymbol{p} \& \mathrm{p}$

COMPLETE STEREOSYSTEM

System1. £51•00

40 Watt Amplifier. Viscount III-R102 now 20 watts per channel.
System I includes
Viscount III a mplifier - volume, bass, treble and balance controls, plus switches for mono stereo on/off function and bass and treble filters. Plus headphonesocket.
Specification
20 watts per channel into 8 ohms. Total distortion@10W@ 1 kHz 0.1\%.P.U. 1 (for ceramic cartridges) 150 mV into $3 \mathrm{Meg} . P . U .2$ (for magnetic cartridges) $4 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within 1dB R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power). Tape out facilities : headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to -17 dB a 60 Hz . Bass filter: 6 dB per octave cut. Treble control treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter: 12 dB per octave. Signal to noise ratio: (all controls at max.) -58 dB . Crosstalk better than 35 dB on all inputs. Overload characteristics better thȧn 26 dB on all inputs. Size approx. $13 \frac{33_{4}^{\prime \prime}}{} \times 9^{\prime \prime} \times 3 \frac{3}{4}$ ".
Garrard SP 25 Mk III deck with magnetic cartridge, de luxe plinth and hinged cover.
Two Duo Type II matched speakers - Enclosure size approx. $17 \frac{11^{\prime \prime}}{} \times 10 \frac{3_{4}^{\prime \prime}}{} \times 6^{\prime \prime}$
in simulated teak. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. 10 watts handling.
Complete System f51-00

System2.f $6 \cdot \cdot 00$

Viscount III amplifier (As System I)
Garrard SP 25 Mk III deck (As System I)
Two Duo Type III matched speakers-Enclosure size approx. $27^{\prime \prime} \times 13^{\prime \prime} \times 11 \frac{1}{2}{ }^{\prime \prime}$ Finished in teak veneer. Drive units $13^{\prime \prime} \times 8^{\prime \prime}$ bass driver, and two $3^{\prime \prime}$ (approx.) tweeters. 20 watts R.M.S., 8 ohms frequency iange -20 Hz to $18,000 \mathrm{~Hz}$.
Complete System f69.00

PRICES : SYSTEM 1

Viscount III R102

amplifier
2 Duo Type Il speakers $£ 14.00+£ 2.20 p$ \& p
Garrard SP 25 with
Mag. cartridge
de luxe plinth
and hinged cover
total: $\mathbf{£ 5 9 . 2}$

Available complete for only:
$\mathbf{f 5 1} \cdot \mathbf{0 0}+\mathbf{£ 3 . 5 0 p \& p}$

PRICES : SYSTEM 2

Viscount III R102
amplifier
$\mathbf{£ 2 4 . 2 0}+\mathbf{f 1 p} \boldsymbol{p} \mathbf{p}$
2 Duo Type III speakers $£ 39.00+£ 4.00 p \& p$
Garrard SP 25 with
Mag. cartridge
de luxe plinth
and hinged cover
$£ 21.00+£ 1.75 p \& p$
total : $£ 84.20$
Available complete for only:
$\mathbf{f 6 9 \cdot 0 0}+\mathbf{E 4 . 0 0 p \& p}$

EMI SPEAKERS AT FANTASTIC REDUCTIONS

20 WATT

SPEAKER SYSTEM

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ (approx) eliptical woofer unit with a $8^{\prime \prime} \times 5^{\prime \prime}$ (approx.) mid range unit incorporating parasitic tweeter and crossover components.
Technical Specification:
Bass Unit
Flux density- 100 K , speech coil- $1 \frac{1}{2}$
Cone, Triple laminated paper with
P.V.C. surround.

Mid Range Unit
Flux density-33K, speech coil-1" with parasitic tweeter.
Power Handling
20 watts R.M.S., impedance -8 ohms,
frequency response -20 Hz to
$18,000 \mathrm{~Hz}$.
OUR PRICE
£6.60. Complete
+90 p \& p .

15" 14A/780 BASS UNIT
Bass unit on a rigid diecast chassis. Superior cone material handles up to 50 watts RMS. and is treated to give a smooth frequency response. Resonance 30 Hz . flux density 360.000 Maxwells. Impedance at 1 kHz is 80 hms . $3^{\text {" }}$ voice coil.
Recommended retail price £40:80. Special Offer
OUR PRICE $£ 18.70+\mathbf{f 1} \cdot 50$ p\&p OUR PRICE $£ 19.50+\mathbf{f 1} \cdot 50$ p\&p

45 WATT R.M.S. MONO DISCOTHEQUE AMPLIFIER Ideal for Disco Work. Output Power: 45 watts R.M.S. Frequency Response 3 dB points 30 Hz and 18 KHz . Total Distortion: less than 2% at rated output. Signal to noise ratio: better than 60 dB . Bass Control Range: 13 dB at 60 Hz . Treble Control Range: 12 dB at 10KHz. Inputs: 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control. 2 inputs at 200 mV into 470 K Size: $19 \frac{1^{\prime \prime}}{} \times 10 \frac{1}{2}^{\prime \prime} \times \mathbf{8}^{\prime \prime}$ (approx.) Amplifier $£ 27.50+£ 1.50$ p. \& p.

DISCO AMPLIFIER

Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Outputs 20 watts R.M.S. into 8 ohms (suitable for 15 ohms). Inputs *4 electrically mixed inputs. * 3 individual mixing controls.
*Separate bass and treble controls common to all 4 inputs.
*Mixer employing F.E.T. (Field Effect Transistors) *Solid State circuitry. *Attractive styling.

INPUT SENSITIVITIES

-Input - 1.) Crystal mic. guitar or moving coil mic, 2 and 10 mV . (Selector switch for desired sensitivity).
-Inputs -2), 3), 4). Medium output equipment - ceramic cartridge, tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx: $12 \frac{1}{2}{ }^{\prime \prime} \times 6^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{}$.
$\mathbf{f 1 5 . 0 0}+\mathbf{6 0 p}$. post \& pack.

Radio and TV Components (Acton) Ltd.

21 High Street, Acton, London W3 6NG 323 Edgware Road, London W2

Personal \qquad Edgware Road: 9a.m.-5.30p.m. Half day Thurs. Shoppers Acton: 9.30a.m.-5p.m. Closed all day Wed.

STPHTMVIIE MkII Electronic Ignition... Better on all points

 anywhere. All these advantages.- Fitted in 15 minutes. Up to 20\% better fuel consumption. Instant all weather starting. Cleaner plugs - they last 5 times longer without attention. - Faster acceleration. Faster top speeds. - Coil and battery last longer. Efficient fuel burning with less air pollution.
The kit comprises everything needed
Ready drilled scratch and rust resistant case, metalwork, cables, coil connectors, printed circuit board, top quality 5 year guaranteed transformer and components, full instructions to make positive or negative earth system, and 6 page installation instruction leaflet. WE SAY IT IS THE BEST SYSTEM AT ANY PRICE!
 PRICES a cylinders).VAT and P \& P (Will make pos or neg earth)Sparkrite Ready Built Neg Earth Unit(s)at $\{13 \cdot 86$ each incl VAT and P \& P

Sparkrite Peady Built Positive Earth Unit(s) at $£ 13 \cdot 86$ each inct VAT and P \& P

NAME
ADDRESS

I enclose cheque/P.O. for $£$
Send SAE for brochure.

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

LINEARINTEGRATED CIRCUITS

Type No.	1	25	$100+$
72702	50p	48p	45p
79709	35 p	38p	30p
72710	45p	489	40p
72741	40p	38 p	350
72741 C	45D	43p	40p
727418	38p	36 p	34p
72748 P	38p	36p	34p
SL201C	50 p	45 p	40p
8L7010	50p	45p	400
SLiotc	50 p	45 p	40p
TAA263	80 p	700	60 p
TAA293	81.00	95 p	80 p
TAA30]0.	21.85	11.80	21.70
HA703C	28p	26D	24p
HA7090	35D	38p	800
HA711	45 p	48p	40p
NUMERICAL INDICATOR TUBES			
CD66 \ldots			11.87
GR11t			21.70
3015 F Minitron			21.50
MAN 3M.L.E.D. 7 -regment 0127°			
All indicators $0.9+$ Decimal point.			
All aide viewing. Full data for all			
types a vailable on request.			
ZN414			20 each

DTL 930 SERIES LOGIC I.C's		
		Price
Type	1	
BP9s0	15p	14 p
BP939	16p	15p
BP933	18p	15p
BP935	16p	150
BP936	16p	15 p
BP944	16p	150
BP945	30 D	28p
BP946	$16 p$	140
BP948	30 p	285
BP951	70p	65D
BP962	150	14 p
В P9093	45 p	430
BP9094	$45 p$	48 p
BP909 ${ }^{\text {¢ }}$	450	48
BP9099	450	48p
Devices may be mixed to qu for quantity price. Largerquan prices on application. (DTL		
Series only.)		
VOLTAGE REGULATORS		
从A 7805/L129 ¢V (Equiv		
MVR5V)		
MVR15V)		
$\mu \mathrm{A} 7815 / \mathrm{L} 1311 \overline{\mathrm{~V}}$ (Equiv.		
MVR15V		

TRIPLE 6e-bit DYMAMIC sHIPT REGISTER EDSR31BE
Comprises three fiti-bit 20 dynamic mputs and outpute. TTL conn: patibility and buffered clock lines oo reduce the capacitive load presented at the clock plna. A boottrapped but̃er ensures a full higis s wing at the
out put.

DUAL-ITH-LIE SOCEETS
DUAL-IN-LINE sockETS DUAL-INLINE I.C'B. TWO Ranges PROFESSIONAL \& NEW LOW COBT PROF. TYPE No. $1-2425-99100 \mathrm{up}$ T8014 14 pin type 33p 30 970 T8016 16 pintype 380 35p HPS14 14 plntype 16 p 14p 12 D BPS16 16 pin type 17p 15p 18D

BI-PAE STLLL LOWEST M PRICE. PULL SPECLFICATION

 GUARAFTEED. ALL FAMOUS MAHUFACTURERS| Type | Quantities | | | Type | Quantilies | | | ype | Quantities | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ip | ¢p | \& p | | \& p | \& P | ${ }^{2} \mathrm{p}$ | | ${ }^{\text {e }} \mathrm{p}$ | $\varepsilon_{\text {p }}$ | |
| 7406 | 0.38 | ${ }_{0}^{20.34}$ | ${ }_{0}^{100}+$ | | | 25. | $100+$ | | | | + |
| | 0.38 | 0.34 | | 7470 | 0.60 | 0.58 | 0.58 | 74101 | 1.10 | 1.05 | 1.00 |
| 7408 | 0.38 | 0.84 | 0.31 | 7476 | 0.44 | 0.43 | 0.42 | 74153 | 1.20 | 1.10 | 1.00 |
| | | 0.24 | 0-23 | 7480 | 0.74 | 0.71 | 0.84 | 74154 | 1.88 | 1.90 | 1.75 |
| 7411 | 0.25 0.28 | 0.24 | ${ }_{0}^{0.23}$ | \% 7481 | 1.30 | 1.25 | 1.20 | 74150 | 1.20 | 1.15 | 110 |
| 7412 | 0.30 | 0.29 | 0.28 | 7483 | 1.20 | 1.15 | ${ }_{1}^{1.05}$ | 74106 | 1.20 | 1.15 | |
| 7413 | 0.32 | 0.31 | 0.30 | 7484 | 1.10 | 1.05 | 1.00 | 74160 | 1.73 | 1.70 | 1.85 |
| 7416 | 0.40 | 0.39 | 0.38 | 7485 | $2 \cdot 00$ | 1.90 | 1.80 | 74161 | 1.73 | 1.70 | 1.85 |
| 7417 | 0.40 | 0.39 | 0.38 | 7486 | 0.35 | 0.34 | 0.33 | 74162 | 1.73 | 1.70 | 1.65 |
| 7422 | 0.30 | 0.28 | 0.28 | 7489 | 4.00 | 3.75 | 3.50 | 74163 | 1.73 | 1.70 | 1.65 |
| 7423 | 0.40 | 0.38 | 0.38 | 7490 | 0.74 | 0.71 | 0.64 | 74164 | 2.20 | 2.10 | 2.00 |
| 7425 | 0.40 | 0.38 | 0.38 | 7491 | $1 \cdot 10$ | 1.05 | 1.00 | 74165 | 2.20 | $2 \cdot 10$ | 2.00 |
| 7427 | 0.40 | 0.38 | 0.38 | 7492 | 0.74 | 0.71 | 0.64 | 74166 | 2.35 | $8 \cdot 30$ | 2.85 |
| 7427 | 0.40 | 0.38 | 0.36 | 7493 | 0.74 | 0.71 | 0.64 | 74174 | 2.00 | 1.85 | 1.90 |
| 7428 | 0.45 | 0.42 | 0.40 | 7494 | 0.85 | 0.82 | 0.75 | 74175 | 1.40 | 1.85 | 1.30 |
| 7432 | 0.40 | 0.38 | 0.36 | 7495 | 0.85 | 0.82 | 0.75 | 74176 | 1.60 | 1.55 | 1.50 |
| 7433 | 0.42 | $0 \cdot 40$ | 0.38 | 7496 | 0.96 | 0.93 | 0.88 | 74177 | 1.60 | 1.55 | 1.50 |
| 7437 | 0.45 | 0.42 | 0.40 | 74100 | 1.50 | 1.45 | 1.40 | 74180 | 1.60 | 1.55 | 1.50 |
| 7438 | 0.45 | 0.42 | 0.40 | 74104 | 0.70 | 0.68 | 0.68 | 74181 | 5.00 | 4.50 | 4.00 |
| 7441 | 0.74 | 0.71 | 0.64 | 74105 | 0.70 | 0.68 | 0.66 | 74182 | 1.50 | 1.45 | 1.40 |
| 7442 | 0.74 | 0.71 | 0.84 | 74107 | 0.44 | 0.42 | 0.40 | 74184 | 2.40 | 2.30 | 2.20 |
| 7443 | 1.20 | 1.15 | 1.10 | 74110 | 0.60 | 0.55 | 0.50 | 34190 | 2.15 | 2.10 | 2.00 |
| 7444 | 1.20 | 1.15 | 1.10 | 74111 | 0.95 | 0.92 | 0.90 | 74191 | 2.15 | z. 10 | 2.00 |
| 7445 | 1.98 | 1.95 | 1.80 | 74118 | 1.10 | 1.05 | 1.00 | 74192 | 2.15 | 2.10 | 2.00 |
| 7446 | 1.20 | 1.15 | 1.10 | 74119 | 1.50 | 1.40 | 1.90 | 74193 | 2.15 | 2.10 | 2.00 |
| 2447 | 1.10 | 1.07 | 1.05 | 74121 | 0.50 | 0.48 | 0.45 | 74194 | 1.90 | 1.80 | 1.70 |
| 7448 | 1.10 | 1.07 | 1.05 | 74122 | 0.88 | 0.88 | 0.84 | 74195 | 1.60 | 1.50 | 1.40 |
| 7470 | 0.22 | 0.29 | 0.27 | 74123 | 1.58 | 1.54 | 1.50 | 74196 | 1.73 | 1.70 | 1.85 |
| 7472 | 0.32 | 0.29 | 0.27 | 74141 | 0.85 | 0.82 | 0.79 | 74197 | 1.73 | 1.70 | 1.65 |
| 7473 | 0.41 | 0.39 | 0.35 | 7414% | 1.58 | 1.54 | 1.50 | 74198 | 3.45 | 3.35 | 3.20 |
| 747 | 0.41 | $0 \cdot 39$ | 0.35 | 74150 | 2.50 | 2. 40 | 2-30 | 74199 | 3.10 | 3.00 | 2.80 |

[^2]
-the lowest prices!

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

[^3]
MAPLIN ELECTRONIC SUPPLIES

ORGAN BUILDERS

Keytoards: High quality adjustable type Sloping front 61 -note C to C. E.8. 50. Sloping front 49-note C to C. A1d-35 Contacl blocks GB-7 1 make con Palladium earth bar per octave length isp Palatium earth bar per octave length. 1sp.
Stop tabs rocker type not engraved (white red. grey or black) with DPDT switch. 49 p. Gold clad phosphor-bronze contact wire per yard 2fp.

BASIC ORGAN CIRCUIT

Leaflet beS 51 shows a complete circuit for a basic fully

 polyphonic organ. Send only 15 p for leaflet and star: buildingnow? REMEMBER-when you have huilt this organ you will later be able to use the same top quality componen! parts as the basis of large sonhsticated instrum with al he facilities you want V.atch our ads for de iails.
LF.AFIET MES 5_{2}, how how to extend your MES $5 I$ basic organ to two heyhoards with lots more stops. Just send sp

REVERBERATION UNIT

Enhances the sound of any electronic musical instrument Ready built spring line driver module suitable for use with aimot any spring line. $55 \cdot 34$
Two types of spring line available
Short line. 53.05.
Long line. 57.59
A.E. please for details Leaflet MES 24.

MES announce the vary lateat development in organ circuitry.
13 Manter Frequenclea on ONE tlng circult board. LOOK AT THESE AMAZING ADVANTAGES * 13 frequencies from C8 to C9. Each irequency * Inftel tuntog for the FHOLE OROAN: ONE SIMPLE ADJU8TMENT. t Relative tuniag NEVER DRIFTS I A Exymal control allowa Inatant tune-ap to other mualciane. Hotputs will directly drive mont types of divider Including the BAJIl0. And each output can also be ued ats direct tone source. A Vari-
able DEPTH AND RATE, tremulant optional extra. able DEPTH AND RATE, tremulant optonal extra A Gold-plated plug-in edge connexion. t Complet 3.7 in . $\times 4.5 \mathrm{in}$, Very 10 power consumption

CRICEREMELY ECONOMICAL I t B.a.e. please PRICE. \quad Ready built. tested DMO2T (with tremulant) ONLY 314.25. DMO2 (without tremulant) 212.85 . AJ110 7-atage frequency divider wine. package. 8late or frequency divider in one 14 pin DIL from almost any type of master osciliator including the DMO2 (when 97 notes are avallable). Square wave outputs may be modifted to asw-tooth by the addition of iem componente. SAJ110: 22-63 each OR apecial
price for pack of $12: 225.00$. 8.a.e. please for data sheet.

P.E. SOUND SYNTHESISER

If this project wems eapensive YOU HAVENT SEEN OUR

 PRICESWe are stocking all the parts for this exciling project. from the special I.C.'s right down to the nuts, bolts and spacers for Send S. A.E now for our detailed price lists.

E.T.L SYNTHESISER

We stock all the paris for the "Electronics Tuday International" synthesiser including all the P.C B's required and ill the metalwork including a drilled and printed front parnel for al Iruly protessional finish.
Some of the circuits in this brilliant design are entirely orleinal Synthesiser is Iechnically superior to practically all synthesivers availahie roday
SA.E please for our delailed price lisis

CAPACITORS

Sub-miniasure
Axia! lead electrolytic 16

LINEARS

CA3046 Transisior artay
LH0042C.TO99 (TO5). FET i/p Op Amp
LM301A
MC
8.pin Dil. Op Amp
MC1310p
MFC4000B tw Aus. Stereo Decoder (no coils needed) MFC 6000 B . IW Audio Amp
MFC8010. 8-pin case. IW Audio Power Amp
MFC 9020 . 10-tead case $2 W$ Audio Power Amp
NESSSV. 8-pin DIL. Precision Timer
NE5618. 16-pin DIL. Phase Locked Loop
SGI495D. It pin DIL. Four Quadrant Analogue Multiplier SGi342N AmplifieriM)
$\mu \mathrm{A} 923 \mathrm{C}$. TO99 (Thier
(TOS). 21037 V Voitage Regulator $\mu \mathrm{A} 723 \mathrm{C}$. 14 -pin DIL 2 to 37 V Voltage Regulator MA741C. A-pin DiL. Op Amp
A 747 C 14-pin DIL Dual
MA748C 8.pin DIL. Op Amp
ZNA14. TOS. TRF Radio
Full data. pin conne
catalogue. Price ?

SWITCHES

Rolary with adjustable stop I pole ? to 12 way: ? pole ? to 6 way 3 pole 2 to 4 way: 4 pole 2 or 3 way
Mains rotary DPST 250 V ?A. 20p.
Side
Sub-miniature
DPDT

Push to mak
non-locking 14 p

Togele 250V' 1.5A
ritb ON/OFF plate 25 p .

High quality "sub-miniature togyle switcher
SPDT 1.5 A 240 V a.c. S8p DPDT 3A 2401 acc 77_{p} Four Pole DT 3A 240 V ac

PLUGS AND SOCEETS

yiv Plugs	MuIVS pin lea	RSK way ch	chassis	Std t stereo plus
Epinllflat mp				Pastic 18p
3 pin 硅	chassiv pluk nilh			Screened 30p
4 pin. 5 pin A	line socket.	PHONO		Open mono socket
(180\%). 5 pin B	pair ${ }^{\text {a }}$, ${ }^{313} \mathrm{p}$	Plug plastic		+" 10p: Moulded
$\left(240^{\circ}\right) .6$ pin 10 p	SA \ılyk ?	Plug screene	12 p	mono socket t' $^{\text {with }}$
	chawisplug 22p	P1	12 p	2 break contacts
	Sa lxtiline wocket		1 do	14p: Moulded stereo
DIN Sockets	for athove 25 p			socket ${ }^{\text {" milh }}{ }^{\text {a }}$
2 pin		JACK		break conlacts 18p;
${ }^{1}$ pin. ${ }^{4}$ pin. 5 pin	MPM 8 way chassis	Sid ${ }^{\text {Plasic }}$	- plus	${ }^{1} 5 \mathrm{~mm}$ plug plastic
A c180 \% ${ }^{\text {c }}$, pin B	RP8 8 way chassis	Plastic	$13 p$	9p; screersed 15p:
亿 240°). 7p, 6 pin op	plug 3 2p	Screened	$21 p$	open socke19. ${ }^{\text {p }}$.

WE KNOW YOU NEED IT !
The MEs 1074 CATALOGUE IS STACEED

OMNIUM GATHERUM

PP3. 6. etc. battery clip dual min. op.
PP1 \& eic. battery clip separare per PP1 eic. baltery clip separate per pair op.
Pair crocodile clips I red 1 black insulated Pair croco
sleeve 10 p .
sleeve 10 p .
Solder Multicore 22 $\mathrm{s} \cdot \mathrm{g}$ g 10 metres 25 p Silicone grease in special dispenser athil 54 p . Terminal Block 12 -way s A 14 p. Probe clips spring loaded per pair 30p.
Parel fuse hollera =11mm 2mp: 1 -in 41 p .
Tranaformers
$1 T$ mo mun.
${ }^{1} T^{\top}(90)$ mun. output transformer Pri $\quad 12 k \Omega$
Sub-muin. Maina Transformer
$6-10-6 V$ hemA $95 p, 12-0-12 V \sin A 95 p$

Min. Maina Transtorme

Sire to $\times 31 \times 38 \mathrm{~mm}$.
(1-12V $250 \mathrm{~mA} \quad 0-12 \mathrm{~V} 250 \mathrm{~mA}$ \&1-36
$\underset{\text { Pri }}{\text { Mains Trangformer MTT 3AT }}$
Pri $200-220-240 \mathrm{~V}$ Sec $12-15-20-24-30 \mathrm{~V}$
Malns Transtormer MT 206 AT
$\mathrm{Pri} .200-230-240 \mathrm{~V}$
$0-15-20 \mathrm{~V} \mathrm{AA} \mathrm{EB} .98$.
Hook-up wire, 7 strand 02 mm . PVC covered unned copper wire for light general connexions up to 1.4 A 11 colours thack. blue brown. green. grey orange pink red. viotel. White
yellow 10 metres of any one colour 20 p . Pack yellow (l metres of any one coiour 20p. Pa
of 11 (1 ealour) 10 m coils E 2.05 .
Single core screened 8 p per metre. Twin individually screened $104 p$ per metre. Hegh qualty singe screened $50 \cap 100 \mathrm{pF}$ per 154 p per metue.
Malis 3-core sut-minjature 1 A black PVC coveted 19 sirand 0.1 mm per conductor. 7$\} \mathrm{p}$
pet meire.

POTENTIOMETERS

Rotary minature capbon track t"apiodle
 sokk. 1 M -M tand lk l in) 16 p

Dual gang (Siereo) without switch Los or
5 k to ZM as 5k to 2 M as
above 49 p .

PRESETS

Sub-ministure 0.1 W
Vert of Horiz
$100,250,500$
$100,250,800,1 k$
$25 k, ~ 5 k, 10 k, 25 k$ $\begin{array}{ll}25 \mathrm{k}, & 5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}, \\ 80 \mathrm{k}, & 100 \mathrm{k}, \\ 250 \mathrm{k}\end{array}$ samik. |N1

RESISTORS

| Carbon Film | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Carbon Film | 5% | 1Ω to $1 \mathrm{M} ;$ | 10% | 12 M to 10 M | $\mathrm{E}!2$ | Carbon Film tw 6% l 1 to $10 \Omega: 10 \%$ 1-2M to 10 M E12

 Carbon Film IW 5% in Ω to 10 m Metal Oride tw 2% in 27 to IM Whemound 24W 10% 0.2.2ohme to 0.470
Whremound 24W 8% lohm to 270 ohms

E12 E E 24

E24 valuea $10,12,15,18,22,27,33,38,47,86,68,82$ and decadea E24 falue: 11, 13, 16, 20, 24, 30, 36. 43, 61, 62, 75. 91 and decadea

ALL PRICES INCLUDE V.A.T

Send 25p lor COMPLETE CATALOQUE, refundable upon first order.

[^4]
Riverstale Bectronios

Mall Order Department PE12 P.O. Box 470, Manchester M60 48U

for fast, easy reliable soldering
Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

YATES ELECTRONICS (FLITWICK) LTD. DEPTM PE, ELSTOW STORAGE DEPOT

Catalogue sent free on request, 10 p stamp appreciated.

PLEASE ADD 8\% VAT

RESISTORS

W and $+W$ PIHER.

Power			Values	Price	
wates	Tolerance	Range	available	1-99	$100+$
$\frac{1}{2}$	5\%	$4 \cdot 7 \Omega-2 \cdot 2 M \Omega$	E24	$1.3 p$	$1.1 p$
$\frac{1}{7}$	10\%	3.3Mn-10Mn	E12	1.3p	$1.1 p$
$\frac{1}{1}$	2\%	$10 \Omega-1 M \Omega$	E14	3.5p	3p
4	10\%	$1 \Omega-3 \cdot 9 \Omega$	El2	1.3p	$1 \cdot 1 \mathrm{p}$
t	5%	$4.7 \Omega-1 M^{\prime} \Omega$	E12	$1 \cdot 3 p$	$1.1 p$
4	10\%	$1 \Omega-10 \Omega$	El2	8p	

OEVELOPMENT PACK

0.5 watr 5% Piher resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$
E12 pack 325 resistors $\mathbf{~ 2 ~} 2.40$. E24 pack 650 resistors $\mathbf{~} 4.70$

POTENTIOMETERS

Carbon track $5 k$ n to $2 M \Omega, \log$ or linear (log $\frac{1}{4} W$, lin $\frac{1}{2} W$).
Single. 14p. Dual gang (stereo), 49p. Single D.P. switch, 29p.

SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades $505 M \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix)

Sub-miniature $0.1 \mathrm{~W}, 6 \mathrm{p}$ each. Miniature $0.25 \mathrm{~W}, 7 \mathrm{p}$ each.

TRANSISTORS									
AC107	16p	BCIO9	14p	BDII 5	75p	BF337	46p	ZTX300	18p
AC126	18p	BCII5	16p	BDI 16	60p	BFY50	22p	ZTX302	20p
AC127	18p	BCII6	15p	BDI24	$81 p$	BFY51	22p	ZTX341	18p
AC128	18p	$8 \mathrm{Cl17}$	23p	BDI31	60p	BFY52	22p	ZTX500	18p
ACI41K	22p	BC125	15p	BD132	64p	BRY39	$41 p$	ZTX503	25p
ACI42	25p	BC142	24p	BD140	66p	MJE340	47p	2N2646	60p
AC165	20p	BC143	$21 p$	BDY32	57p	MJE370	$68 p$	2N2904	28p
ACI76	18p	BC147	12 p	BF115	32p	OC26	90 p	$2 N 2905$	32p
AC187	22p	BC148	12 p	BF158	22p	OC28	90 p	2N2926	12p
ACI88	22p	BC149	12 p	BF159	22p	OC35	90 p	2N3053	31 p
AC193K	28p	BC153	$18 p$	BFI60	23p	OC42	16p	2 N 3054	60p
ADI40	53p	BC154	18p	BFI61	26p	OC44	$12 p$	2N3055	60p
ADI43	73p	BC157	15p	BFI64	22p	OC45	12 p	2N3702	15p
ADI49	70p	BCI 58	15p	BFI73	28p	OC70	$12 p$	2N3703	14p
ADI61	42p	BC159	14p	BFI77	29p	0 C 71	12p	$2 N 3704$	20p
ADI62	42p	BC169	15p	BFI78	43p	$0 \subset 72$	12p	2N3705	20p
AFII4	25p	BC171	13p	BFI79	$41 p$	OC75	12p	2N3706	19p
AFII5	25p	BCI72	22p	BFIB0	$42 p$	OC81	$12 p$	2N3707	20p
AFII6	25p	BC177	20p	BFI8,	32p	OC82	12p	2N3708	20p
AFII7	25p	$\mathrm{BC1} 82$	15p	BFI82	41 p	OCP71	35 p	2N3709	19p
AFII8	50p	BC182L	16p	BFI83	$43 p$	ORP12	65 p	2N3710	19p
AF121	50p	BC183	15p	BF184	32 p	TIP29A	49p	2N3711	19p
AFI26	50p	BCI83L	16p	BFI85	32p	TIP30A	58p	2N3819	32p
AF127	50p	BCIB4	18p	BF194	14 p	TIP31A	62p	2N4062	25p
AFI39	53p	BC186	25p	BF195	$17 p$	TIP32A	74p	40360	46p
AFI78	48p	BC187	25p	BFI96	15p	TIP33A	98p	40361	43p
AFI80	50p	BC212	13p	BF197	16p	TIP34A	148p	40362	45p
AFI86	39p	BC212L	15p	BF200	40p	TIP4IA	79p	40363	88p
AF239	48p	BC214L	19p	BF259	25p	TiP42A	90 p	40406	44p
BC107	13p	BCY70	$21 p$	BF262	26p	TIP43	35p	40486	90 p
BCIOB	13p	BDII2	52p	BF263	26p	ZTX108	18p		
ZENER DIODES $400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to 30 V . I2p.					WIRE WOUNDPOTS. $3 W, 10,25$, 50Ω and decades to $100 \mathrm{k} \Omega, 50$.				
DIODES RECTIFIER SIGNAL									
BY127		1250 V		A	12 p				7 p
IN400\|		50 V		A	7p				5p
IN 4002		100 V		A	8 p				5 p
IN4004		400 V		A	8p			202	7p
IN 4006		800V		A	10p			148	5 p
IN4007		1000 V		A	10p			14	8 p

SLIDER POTENTIOMETERS

$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of track 59 mm SINGLE IOK, $25 \mathrm{~K}, 100 \mathrm{~K}$ log. or lin. 50p.
DUAL GANG, IOK + IOK erc. log. or lin. 60p. KNOB FOR ABOVE, $12 p$.
FRONT PANEL, 90p.
18 Gauge panel 12 in \times din with slots cur for use with slider pots. Grey or matt black finish complete with
HEATSINKS—REDPOINT

| HEATSINKS—REDPOINT | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2W | $\mathbf{2 4 p}$ | 4W | 45p | TO5 Clip | 5p | TOI Single | 5p |
| 3W | $36 p$ | $6 W$ | $60 p$ | TO18 Clip | $5 p$ | TOI Double | 8p |

All have 240 V primary			
MT30/2	0-12-15-20-24-30V	2A	63.85
MT50/1	0-19-25-33-40-50	$\frac{1}{1}$ A	62.50
MT50/I	0-19-25-33-40-50V	$1 / \mathrm{A}$	c3.15
MT50/2	0-19-25-33-40-50	2 A	64.10
MT60/1	0-24-30-40-48-60V	$\frac{1}{2} A$	63.30
MT60/1	$0-24-30-40-48-60 \mathrm{~V}$	${ }_{1}^{1} \times$	64.80
MT60/2	0-24-30-40-48-60V	2A	66.80

MULLARD POLYESTER CAPACITORS C280 SERIES
$250 \mathrm{VP} . \mathrm{C}$. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3 \frac{1}{\mathrm{p}} \mathrm{p} ; 0.068 \mu \mathrm{~F}, 4 \mathrm{p}$ $0.1 \mu \mathrm{~F}, 4 \frac{1}{3} \mathrm{p} ; 0.15 \mu \mathrm{~F}, 5 \mathrm{p} ; 0.22 \mu \mathrm{~F}, 5 \mathrm{p} ; 0.33 \mu \mathrm{~F}, 7 \mathrm{p} ; 0.47 \mu \mathrm{~F},{ }^{9} \mathrm{p} ; 0.68 \mu \mathrm{~F}, \mathrm{i} 2 \mathrm{p}$ $1.0 \mu \mathrm{~F}, 14 \frac{\mathrm{p}}{} \mathrm{p} ; 1.5 \mu \mathrm{~F}, 22 \mathrm{p} ; 2.2 \mu \mathrm{~F}$, $\mathbf{2 6 p}$.
$\begin{array}{ll}\text { MYLAR } & \text { FILM } \\ 0.001 \mu \mathrm{~F}, & 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, \\ 0.02 \mu \mathrm{~F},\end{array}$
$3 p$. $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 6 \mathrm{p}$.

CERAMICDISC
CAPACITORS
100 pF to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each.

ELECTROLYTIC CAPACITORS
$(\mu \mathrm{F} / \mathrm{V}) 1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40.6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40 ;$ $15 / 63,22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3$ 68/16. $100 / 4.100 / 10$. $100 / 25$, $150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6-3,220 / 16,330 / 4,6 \mathrm{p}$. $47 / 63$ $100 / 40,150 / 25,220 / 25,330 / 10,470 / 6,3,7 \mathrm{p} .68 / 63,150 / 40$, 220/40, 330/16, $1000 / 4$. $1500 / 6 \cdot 3$. 13p. $470 / 40$, $680 / 25$, $1000 / 16$, $1500 / 10$, $2200 / 6 \cdot 3$. 18p. 330/63, 680/40, 1000/25, 1500/16, 2200/10, 3300/63. 4700/4, 21 p.

SOLID TANTALUM BEAD CAPACITORS					
$0.1 \mu \mathrm{~F}$	35 V	$2.2 \mu \mathrm{~F}$	35 V		
$0.22 \mu \mathrm{~F}$	35 V	$4.7 \mu \mathrm{~F}$	35 V	$3 \mu \mathrm{~F}$	16 V
$0.4 \mu \mathrm{~F}$	35 V	$6 \mu \mathrm{~F}$	25 V	10 F	10 F
$1.0 \mu \mathrm{~F}$	35 V	$10 \mu \mathrm{~F}$	25 V	$100 \mu \mathrm{~F}$	6.3 V

 relief.

METERS $\quad 2^{*}$ Scale- $500 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}$

BULGIN MAINS CONNECTORS

3 Pin	$11 / A$	Chassis Plug Line Socker	$\begin{aligned} & \text { 18p } \\ & \text { 22p } \end{aligned}$	3 Pin	$1+$ A	Chassis Socker Line Plug	$\begin{aligned} & 30 p \\ & 14 p \end{aligned}$
3 Pin	3 A	Chassis Plug Line Socket	$\begin{aligned} & \mathbf{2 4 p} p \\ & \text { 28p } \end{aligned}$	3 Pin	3A	Chassis Socker Line Plug	$\begin{aligned} & 34 p \\ & 40 p \end{aligned}$
3 Pin	5A	Chassis Plug Line Socket	$\begin{aligned} & \text { 24p } \\ & 32 p \end{aligned}$	2 Pin	5A	Line Plug	20p

THERMISTORS

VA1005	$15 p$
VA1026	$15 p$
VA 1033	$15 p$
VA1055S	$15 p$
VA1066S	$15 p$
VA1077	$15 p$
R53	$£ 1.35$

WAVECHANGESWITCH 33p $1 p 12 \mathrm{~W}, 3 p 4 \mathrm{~W}, 2 p 2 \mathrm{~W}, 2 p 6 \mathrm{~W}$.

ROTARY MAINS SWITCH D.P. 2A 35p

LINEAR IC's

709	14 pin DIL	40p	
741	8 pin DIL	$40 p$	
741	14 pin DIL	$38 p$	
723	14 pin DIL	$95 p$	
747	14 pin DIL	$85 p$	
748	8 pin DIL	$45 p$	
DIL	Sockers 14 pin and 16 pin	$16 p$	

WILMSLOW AUDIO

THE Firm for speakers!

SPEAKERS

Baker Group 253.8 or 15 ohm Baker Group 50.8 or 15 ohm Baker Group 50128 or 15 ohm Baker Major 12 in dicone Baker Regent Baker Superb
Baker Auditorium 12 Celestion MH1000.8 or 15 ohm Celestion PST8 for Unilex Celestion G12M 8 or 15 ohm Celestion G12H 8 or 15 ohm Celestion G15C 8 or 15 ohm Coral 6 tin dicone roll surr 8 ohm Coral sin dicone roll surr 8 ohm EMI $13 \mathrm{ln} \times \operatorname{Bin} 3.8$ or 15 ohm Ekll $13 \mathrm{~m} \pi \times 8 \mathrm{in} 150 \mathrm{~d} / \mathrm{c} 38$ or 15 ohm EMI $13 \mathrm{in} \times 8$ in 450 ttw 38 or 15 ohm EMilin \times sin type 3508 or 15 ohm EML 13in $\times 8$ in 20W bass EM1 6 tin 938504 or 8 onm EM1 8 . 5 dicone roll M1 2 in wer for Eagle DT 33 30W tweeter Eagle HT 15 horn tweeter Eagle CT5 cone tweeter Eagle CT 10 tweeter 8 or 16 ohm Eagle MHT 10 horn tweeter Eagle crossover CN23 CN28 CN216 Eagle FR4
Eagle FR6S
Elac 9 - 5 59RM109 15 ohm . 59RM114 8 ohm lac 6tin 6RM171 d/c roll surt Elac 6, in 6RM220 d/con Elac 10in dicone 10RM239 8 ohm Elac 8in BCS 1753 ohm Fane Pop 15W 12in Fane Pop 25225 W 121n fane Pop 50W 12 m Fane Pop 55 60W 12 in Fane Pop 60w 1 sin Fane Pop loow 18 in Fane Crescendo 12A 100W 12in Fane Crescendo 12B bass Fane Crescendo 15 in 100W Fane Crescendo 18in 150W Fane bort sin d c roll surt Fane 808T $8_{1 n}$ dic
Fane 701 iwin ribbon horn Fane 920 horn Goodmans 8P 8 or 15 ohm
PA/DISCO AMPLIFIERS

$\begin{array}{l}\text { (carr and ins £1) } \\ \text { Bakar Major } 100 \text { watt }\end{array}$	
Linear $30 / 40$	$\mathbf{~} 49.75$
	$\$ 30.00$

$\begin{array}{ll}\text { Baker Major } 100 \text { wat1 } & \mathbf{4 9 . 7 5} \\ \text { Linear } 30 / 40 & \$ 30.00\end{array}$
Linear $30 / 40$
Linear $40 / 60$
$£ 30.00$
$\$ 35.00$
Linear 40/60
Linear 80/100
Linear 100 watt slave
each 510.75
ach 810.75
gach 89.90
each 89.75
pair 811.00
pair Cl 14.00
pair $£ 14.95$
pair $£ 39.95$
ach $\mathbf{2 4 . 7 5}$
each 536.75
each 58.95
ach 113.75
each 519.95
pair $\mathbf{E 1 9 . 2 5}$
pair £34-50
Linear 100 watt slave \quad [44.00
Eagle PA range in stock-ask for catalogue.

Goodmans 10P 0 or 15 chm Goodmans 12P 8 or 15 chm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 hm Goodmans Audiomax 12 AX 100 W Goodmans Audiomax 15AX Goodmans 18P 8 or 15 ohm Goodmans Midax 750
Goodmans Axent 100 tweeter
Goodmans Audiom 100 12in
Goodmans Axiom 401 12in
Goodmans Twinaxiom 8
Goodmans Twinaxiom 10
Ket T27
Kef K 110
Ket 8200
Ket B139
Kel DN8
Ket DN12
Ke1 DN13
STC4001G super iweoter
Richard Allan CG8T Bin dic "/surr Whartedale Super 10RS/DD 2 y in 640 hm .70 mm 80 ohm .70 mm 8 ohm
in $\times \sin 3$
$\sin \times \sin 3$ or 8 ohm
$10 \mathrm{in} \times 6 \mathrm{in} 3.8$ or 15 ohm

SPEAKER KITS

```
Baker Major Module
```

Baker Major Module
Fane Mode One
Fane Mode One
Goodmans DIN 20
Goodmans DIN 20
Helme XLK25
Helme XLK25
Helme XLK30
Helme XLK30
Helme XLK5
Helme XLK5
Ketkit 2
Ketkit 2
Richard Allan Twinkit
Richard Allan Twinkit
Richard Allan Triple 8
Richard Allan Triple 8
Richard Allan Super Triple
Richard Allan Super Triple
Wharfedale Linton 2 kit
Wharfedale Linton 2 kit
Wharfedale Glendale 3 kit

```
Wharfedale Glendale 3 kit
```


FREE with speaker orders over £7

Hi.FI Loudspeaker Enclosures" book
All units guaranteed new and perfect. Prompt despatch Carriage and packing speakers 3 p each. speaker kits 75 p each ($\mathrm{E} 1 \cdot 50$ pair). tweeters and crossovers 20p

Send stamp for free booklet Choosing a Speaker
ALL PRICES QUOTED INCLUDE VAT
WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works. Bank Square. Wilmslow. Cheshire, SK9 1HF.
Discount Radio. PA. Hi-Fi: 10 Swan Street. Wilmsiow.

BEGINNER'S GUIDE TO ELECTRONICS

by Squires

Price £2.10

ELECTRONIC SECURITY SYSTEMS by Leo G. Sands. Price $£ 3.30$. UNDERSTANDING SOLID STATE
ELECTRONICS by Texas. Price fl. 30 . TELEVISION ENGINEERS' POCKET BOOK by P. J. Goldrick. Price £2-70. HANDBOOK OF IC CIRCUIT PRO. JECTS by J. Ashe. Price $£ 1.60$. TRANSISTOR AUDIO AND RADIO
TEST EQUIPMENT FOR THE RADIO AMATEUR by Gibson. Price $\mathbf{E} \mathbf{2}$.
HOW TO USE INTEGRATED CIRCUIT by J. W. Streater. . Price $£ 1$-60. MAZDA BOOK OF PAL RECEIVER
SERVICING byD. J. Seal.
HIGH FIDELITY DESIGNS by Wireless
World.
ELECTRONIC ORGAN SERVICING
ELECTRONIC ORGAN SERVICING
GUIDE by R. G. Middeton.
Price $\mathbf{2} 2 \cdot 45$.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
or British and American Technical Books
19-2I PRAED STREET
LONDON W2 INP
Phone 01.723 4185
Closed Saturday I p.m.

BUILD

A

PROFESSIONAL TELEVISION CAMERA

Complete kits available as designed by "Mullard" includes a comprehensive construction manual, less tube and lens at $£ 60 \cdot 00+$ VAT. Lens and tubes also available from stock. UHF Modulator Kits at $£ 7 \times 19$ including P. \& P. \& VAT. Allows standard domestic TV to be used as monitor (Modulator also suitable for TV. Tennis and other similar games).

Send 5p stamp for illustrative brochure and price sheet.

> CROFTON EIECTRONICS
> 124 Colne Road, Twickenham Middlesex TW2 6QS

> Tel. 01-898 1569

(IP HL. P. (Electronics) Ltd

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 is a complete mono hybrid preamplifier. Ideally suited for bolh mono and stereo applications internaty tirat contains frequency equalisation and galn correction. while the second caters for tone control and balance

TECHNICAL SPECIFICATION
Inpute: Magnetic Pick-up 3 mV RIAA: Ceramic Pick-up 30 mV : Microphone 10 mV : Tuner 100 mV ; Auxiliary $3-100 \mathrm{mV}$ inputimpeosance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs: Tape 100 m Main output 0ab (0.775V RMS). Active Tone Control
 bilty: 40 d on most sensitive input Supply Voltage bllity: 40 b
$\pm 16-25 \mathrm{~V}$

The HY50 is a complate solid state hybrid Hi-Fi amplifier incorporating its own high conductivity heatsink herare provided Input. output. power lines and esth.

TECHNICAL SPECIFICATION
Output Power: 25W RMS into ak Ω. Load Impedance $4-16 \mathrm{k} \Omega$. Input Senaltivity odb (0.775 V RMS) Input impedance: $47 \mathrm{k} \Omega$. Dtatortion: Less than 0.1% at 25 W ypically 0.05%. Sign $1 / \mathrm{No}$. Raz . ab Supply valtag +25 V size $105 \times 50 \times 25 \mathrm{~mm}$
PRICE 15.98
$+48 p$ VAT P. \& P free

The PSUSO can be used for slther mono or stereo systems
TECHNICAL SPECIFICATIONS Output voltag
0.90 M .60 mm two Years' guarantee on all our products
I.L.P. Electronics Ltd.

Crossland House, Nackington, Canterbury, Kent CT4 7AD.
Tel. (0227) 63218

[^5]
12 VOLT FLUORESCENT LIGHTING

INVERTER TRANSFORMERS $13 / 15 \mathrm{~W}$ (CIRCUIT INCLUDED)
'CURRENT ECONOMY' TRANSISTOR (600 ma.)
'MAXIMUM LIGHT' TRANSISTOR (1.3A)
RESISTORS/CAPACITORS TO SUIT LAMPHOLDERS (LONG LEAD)
(SHORT LEAD)
30p PAIR
20p PAIR WHITE ENAMEL CASE. 18in or 21in (POSTAGE 30p) 70p TUBE, 18in-15W or 21in-13W

NEW IMPROVED CIRCUIT!

Drives 21in 13W
18in 15W
or adaptable for
$2 \times 12 \mathrm{in} 8 \mathrm{~W}$

SMALL ELECTROLYTICS

Ref	Cape.		Price
No.	city	age.	
H8/3	$3 \mu \mathrm{~F}$	50 V	4p
H8,3A	$4 \mu \mathrm{~F}$	50 V	4p
H8/5	$5 \mu \mathrm{~F}$	10 V	4p.
H8/6A	$10 \mu \mathrm{~F}$	10V	4p.
H8/8A	$16 \mu \mathrm{~F}$	16 V	4 p
H8/9A	$20 \mu \mathrm{~F}$	70 V	4 p
H810	$22 \mu \mathrm{~F}$	50 V	4p
H8/11	$25 \mu \mathrm{~F}$	12 V	4p
H8/12A	$30 \mu \mathrm{~F}$	10 V	4p
H8/13A	$32, \mu \mathrm{~F}$	50 V	4p
H8/14	$40 \mu \mathrm{~F}$	25 V	5p
H8/14A	$40 \mu \mathrm{~F}$	16 V	4p
H8\%15A	40uF	35 V	$4 p$
H7/1A	50 HF	10 V	4p
H7/2A	64, $\mathrm{F}^{\text {F }}$	2.5 V	2p
H7/4	64,4F	15 V	4p
H7/9A	125 $\mu \mathrm{F}$	4 V	4 p
H7,10A	160ıF	25 V	3p
H7/11	$160 \mu \mathrm{~F}$	25 V	6 p
H7/11A	150, FF	16 V	5p
H7/14	220 ${ }^{\text {F }}$	50 V	10p
H7/14A	220, F	16 V	6p
H7/15	220山F	25 V	5 p
H7/15A	220uF	35 V	10p
H6, 1A	250 $\mu \mathrm{F}$	4 V	3p
H6 3A	$320 \mu \mathrm{~F}$	2.5 V	3 p
H6/4	3201 F	10 V	4 p
H6/5	$330 \mu \mathrm{~F}$	25 V	10 p
H6/5A	$330 \mu \mathrm{~F}$	35 V	15p
H6/8A	470uF	35 V	20 p
Postage 25p per order			

20 ASSORTED UNUSED MARKED. TESTED TRANSISTORS BC 108 ETC.			6 COMPUTER PANELS CONTAINING MASSES OF INDUCTORS, AESISTORS \& CAPACITORS	
POSTAGE 25p	PACK No 5		POSTAGE 30\%	PACK No. 7
	1 TRANSISTOHISEO SIGNAL TRACER KIT 1 TRANSISTORISED SIGNAL INJECTOR KIT		100 RESISTORS 100 CAPACITORS (ASSORTED TYPES)	
POSTAGE 25p	PACK NO	6	POSTAGE 25p	PACK No 8

NOTE: ALL GOODS PLUS 8\% VAT (EXCEPT OVERSEAS)

ADCOLA SOLDERING KITS INCLUDES THE FAMOUS INNADER' SOLDERING INSTRUMENT

BSR HI-FI AUTOCHANGER STEREO AND MONO
Plays $12^{\prime}, 10$ " or $7^{\prime \prime}$ records
Auto of Manual. A high
qually unit backed by BSR rellablility with 12 months guarantee. A.C. 200/250V Size $13 \mathrm{l} \times 11 \mathrm{i}$ in.

Above motor board 3$\} 1 \mathrm{n}$. below motor baard $2 \downarrow \mathrm{In}$.

CARTRIDGE

£6. 95 post 45 .
PORTABLE PLAYER CABINET
Modern design. Rexine covered
Vynalir front grille. Chrome fitings.
Motor board cut for BSR deck
E4. 50 Poat 45p.
COMPACT PORTABLE STEREO HI-FI Two full alze loudapeskers $137 \times 10 \times 3 \neq \mathrm{In}$. Player unit cilps to loudapeakers making it extromely compact
overall alze only $134 \times 10 \times 8 \frac{1}{2}$ In., 3 wattie per channel play all records 33 r.p.m., ts r.p.m. Sepprote volume and

Welght 13 lb .
SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
0-60 MINUTES $£ 1.95$ pos 25d Single pole two-way. Surface moun ing with fixing screws Will repiace existing wat switch to give light
for return home, garage, automatic anti-burglar lights, etc. Variable knob
Turn on or off at fult or intermediate settings Brand new and full guaranteed TEAKWOOD LOUDSPEAKER GRILLES will oaslly fit to

WEYRAD P50 - TRANSISFOR COILS
 3rd I.F. P50/3CC 40p J.B. Tuning Gang . . $81 \cdot 20$ Spares Cores P50/1AC
 £25 85p carrlage
 VOLUME CONTROLS 80 Ohm Coax 5 p yd. 5 K . ohms to 2 Meg . LOG or
LIN. L/S 20 p . D.P. 35 p . AERISH AERIALITE
AEALAR SPACED LIN. L/S 20p. D.P. 35 p . 40 yd , £2: 60 yd , e3 FAINGE LOW LOSS
tdeal 625 and cotour 10 pyd
8in. or 10×6 in. ELAC HI-FI SPEAKER Dual cone plasticised roll sur-$50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonince $55 \mathrm{c} / \mathrm{s}$, ohm impedance. 10 watth. music powar.
£3.75 post 25p
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$.

SPEAKER SALE!

Wht crose tweytera

And crossover. 10
wett. sjate 3 or 8 or $\& 4 \cdot 50$
15 ohm . As Hustreted. Post 25 p
With flered tweeter cone and ceramic magnet. 10 wth.
Beas res. $45-00 \mathrm{c} / \mathrm{s}$.
Flux 10,000 geus. 275

Bookshell Cabinet teak finash $16 \times 10 \times 9$ n. $13 \ln \times 8 \ln$. Bent Wooter, 20 wetts, $85.50 £ 6 \cdot 60$ Post 45p

SET OF 3 MOTORS FOR COLLARO STUDIO
115 VOLT TAPE DECK ع1.50 Post 50p

[^6]
RADIO COMPONENT SPECIALISTS

Radlo Books and Component Lists 10p. (Minimum posting charge 20p.)

ALL OUR

V.A.T.

NEW MODEL -BAKER LOUOSPEAKER", 12IN 50 WATT. GAOUP 50112,8 OR 15 OHM HIGH POWEA.
FULL AANGE PROFESSIONAL OUALITY. $£ 12.95$

BAKER MAJOR12" $£ 8.50$

$30-14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}$. double cone, woofer and tweeter cone together with a Baken ceramic magnot assembly 14,000 gause and a total flux of 145,000 Maxwetle. Basat fesonance $40 \mathrm{c} / \mathrm{s}$. Amted 20 W . NOTE: 3 or 8 or 15 ohms mus be stated.

Fiodule klt, $30-17,000 \mathrm{c} / \mathrm{s}$ wh twester, crossover, loffle and
Instructions.
E10.95 Plesse afate 3 or 8 or 15 ohm:

BAKER "BIG-SOUND" SPEAKERS

'Group 25' 'Group 35' 'Group 50/12

3 or $\%$ or 15 ohm 3 or or 15 ohm or 15 omm
TEAK VENEERED HI-FI SPEAKER ANO CABINETS
For 12in or 10in dia. tpaakef $\quad 20 \times 13 \times 91 \mathrm{n}, \mathrm{E10.50,po3175p}$
For $13 \times 8 i n$ or sinspeaker $\quad 16 \times 10 \times 9 i n, 16 \cdot 60.98145 \mathrm{p}$
For 8×5 in apeakep
For 6 in and Tweater
LOUOSPEAKER C
$16=8-61 \mathrm{n}, ~ 55 \cdot 00$. Posi $25 p$
$12 \times 8 \times 6 i n, \quad 540$, Post $25 p$

GOODMANS $6 \frac{1}{2} \mathrm{in}$. HI-FI WOOFER
4 ohm or 8 ohm. 10W. Large ceramic magne Speciml Cambric cone surround. Twis
Frequency response, $30-12,000 \mathrm{c} / \mathrm{s}$.
Fequency response
deal P.A. Columns.
Sultable Cabinet $12 \times 8 \times 6$ £4. Sultable Tweeter 52

ELAC CONE TWEETER

The moving coll diaphragm glves a good radiation pattern to the higher trequencles and smooth $1,000 \mathrm{c} / \mathrm{s}$ to $18.000 \mathrm{c} / \mathrm{s}$. Stie $31 \times$ 3×2 in deep. Rating 10 W .3 ohm . Crossover $\mathrm{Ki} \cdot 25 \mathrm{E}$ 1.90 Post 20 p .
SPEAKER COVERING MATERIALS. Samples Large S.A.E. SPEAKER COVERING MATEAIALS. Samples Large S.A. De Luxe Horn Tweeters $2-18 \mathrm{kc} / \mathrm{s}, 15 \mathrm{~W}, 15$ ohm E 4 . CROSSOVERS, TWO-WAY $3,000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm $51-25$. LOUDSPEAKERS P.M. 3 OHMS. 7x4in., £1-25; $6 \frac{1}{\mathrm{in}}$., $\mathrm{E} 4 \cdot 50$;
 SPECIAL OFFER: 80 ohm, $2 \mathrm{in}, 24 \mathrm{ln}, 35 \mathrm{ohm}, 21 \mathrm{n}$
$25 \mathrm{ohm}, 2 \mathrm{ln}$ dla., $3 \ln$ dla., $5 \ln$ dla.
 $3 \mathrm{ohm}, 2 \frac{1}{2} \mathrm{n}$., 2 y In ., 3 yln ., 5 In . dian. ($6 \times 4 \ln 8$ ohma $£ 1 \cdot 50$). RICHARD ALLAN TWIN CONE LOUDSPEAKERS.
 VALVE OUTPUT TRANS. 40p; MIKE TRANS. 50:140p. Mlke trans. mu metal 100:1 £1-25.
Loudapeaker Volume Control 15 ohms 10W with one inch long threaded bush for wood panal mounting. ain spindie. $65 p$ each, Post $15 p$.
MAJOR 100 WATT
ALL PURPOSE
GROUP
AMPLIFIER
All purpose tranusterised:
Ideal for Groups, Dlaco and P.A.
4 Inpute epeech and music. 4 way mixing. Outpur a/ts ohm. a.c. Main Separate treble and baee conirole.
NEW MODEL MAJOR 50

50 watt. 4 Input
BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER Add muslca! hightohts and sound attecte to recordings Will mix Microphone, records, tope and tuner $£ 4.50$ wht separete controls into ainglo output. 9 V . 24.50 TWO CHANHEL STEREO VERSION
55.95

BARGAIN 3 WATT AMPLIFIER. ATranslator
push-Pull Ready bultt, with volume. Treble 40 Pugh-Pult Ready bultt, with volume. Treble
and bass controls. is volt d.c.
LOW VOLTAGE ELECTAOLYTICS. 15 V 10p
$100 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
2000 mF ov $25 \mathrm{p} ; 25 \mathrm{~V}$ 42p; 50 V 57 p .
$2500 \mathrm{mF} 50 \mathrm{~V} 82 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V}$ 65p.
5000 mF 6V 25p; 12 V 42 p ; 25V 75p; 35V 85p; 50 V 95 p.
TRIMMERS 10 pF , 30pF, $50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$. CERAMIC, ${ }^{10}$ pF to 0.01 mF , ${ }^{4} \mathrm{P}$. Sllver Mica 2 to 50000 FF , $500 \mathrm{~V}=0.001$ to $0.05 \mathrm{40}: 0.15 \mathrm{sp}: 0.25 \mathrm{8p} ; 0.4725 \mathrm{p}$
MICRO SWITCH LEVER ACTION 20p.
SUB-MIN MICRO SWITCH 25p. Single pole change over. TWIN GANG (${ }^{\circ} 0 \cdot 0 \cdot 200 p F$ - 176pF $81 \cdot 20$; 500pF atanderd 75p
 SHORT WAVE SINGLE. 10pF, 30p, 25pF, $55 \mathrm{p}, 50 \mathrm{pF}$, 55 p NEON PANEL INDICATORS 250V ACIDC. Amber 30p. RESISTORS. $=\mathbf{W}, \mathrm{W}, 1 \mathrm{~T}, 20 \% \mathrm{pp}$; 2W, 5 p . 10 . 10 10 HIGH STABILITY. tw 2% ohms to 6 meg., 10 p.
Ditto 5%. Preferred velues 10 ohma to $10 \mathrm{meg} .$, ip WIRE-WOUND RESISTORS 5 watt, 10 wett, 15 watt, 10 ahme

to 100K 10p each
 TAPE OSCILLATOR COIL Velve type 35p

COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18p.
OUTLET BOXES, SUAFACE 25p. FLUSH 60p. TWIN 85p
BALANCED TWIN RIBBON FEEDER 300 ohms. 7p Ya JACK SOCKET Std. open-circult 14p, elösed ctrcult 23p: Chrome Lead-Socket 45p. Phono Pluge 5p. Phono Socket 5p. JACK PLUGS Std. Chrome 20p; 3.5 mm Chrome 12 p . DIN SOCKETS Chasels 3 -pin 10p 5-pin 10p. DIN SOCKETS load 3-pin 18p; 5-pin 15p. OIN PLUGS 3-pin 19p; 5-pin 25p.

REVERSIBLE 4 POLE MOTOR

EMI TAPE MOTOR
E.M.I. TAPE MOTORS. 120 V or 240 V e.c. 0.75 in . Size $3_{\mathrm{i}} \times 2 \mathrm{j} \times 2 \mathrm{z}$ in (lliustrated)

Poit 25 p .
£1. 85

337 WHITEHORSE ROAD, CROYDON
Open 9-6. Wed. 9-1, Sat. 9-5 (Closed for lunch 1.15-2.30) Buses 50.68,159. Rall Selhurst. Tel, 01-684 1665

65 p plus 33p
POST AND PACKING

Send off the coupon today. It's your first step to solving your component buying problems.

The price of 98p applies only to customers in the UK and to EFPO addresses

I've ofter woudered How CAN you compare one catalogue with another?

After all, few firms can give you more than a brief description. Take the Home Radio Components Catalogue for instance. They could have said that the cover is in full colour and shows Barbara Hepworth's beautiful "Theme on Electronics". Or that it consists of no less than 240 pages of quality art paper, has over 1,700 illustrations. and lists about 6,800 different items.

What really counts, however, is the organisation behind the catalogue, and in this connection I give full marks to Home Radio Components, because from my experience they really care about helping their customers. But don't merely take my word for it-find out for yourself. The best way to do that is to get a copy of their catalogue right away. Just send them a cheque or postal order for 98p (65p for the catalogue and 33p for postage, packing and insurance). By the way, they include 14 coupons in the catalogue, each worth $5 p$ if used as directed, so you can get not only the cost of the catalogue back, but $5 p$ towards the postage as well. If that's not philanthropy I don't know what is! It's just one of the ways Home Radio Components think of their customers. Send for your catalogue today-you'll never regret it.

Please write your Name and Address in block capitals
NAME.
ADORESS \qquad

SELF SERVICE

II IS a healthy sign that the throw-away philosophy which has pervaded so many aspects of life is now being questioned, mainly because of the disregard for conservation of natural resources it encourages. The uncontrolled and thoughtless exploitation of irreplaceable materials has finally become a major concern, throughout the world.

In this connection, the role of electronics cannot escape some censure. The vast growth of electronic products has been paralleled by a fall-off in servicing facilities generally available. Clearly many of the cheaper consumer products are not intended to receive any drastic servicing treatment in the course of their normal life. When they prove troublesome their destination. all too commonly, is the dustbin. On a commercial basis this makes sense, it must be admitted, for the cost of a skilled repairman's time would very quickly exceed the market value of the article. It is only the non-profit orientated private enthusiast who is likely to undertake such uneconomical work.

With larger and more expensive equipment, e.g. colour television sets, servicing still remains an indispensable feature during the normal working life of the product. Modular construction aids rapid on-the-spot servicing, although an element of the throw-away philosophy undoubtedly persists at the individual module level.

It has always been claimed that the increased use of i.cis will enhance the reliability factor and so reduce the number of failures in electronic equipment. This should help ease the demand upon the overtaxed service technicians. Yet, as in other branches of engineering, the supply of competent service technicians is likely to continue to lag far behind the demand.

One consequence of this shortage of skilled professionals and the accompanying rise in labour charges is the growth of do-it-yourself enterprise, in many different fields. The private motorist offers perhaps the most obvious example of the greatly increasing application of "self service". Car maintenance depends upon specialist knowledge and working experience. It is also a field where electronic instruments can play quite an important part-not least for the amateur. In many instances the electronics constructor can apply his interest in this subject to help eut if or when he is compelled to undertake his own car maintenance. The Dwell Meter described in this issue is another valuable instrument that seems destined to repay its cost over and over again in the austere times which we have been warned lay immediately ahead.
F.E.B.

Editor
F. E. BENNETT

Editorial
R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor S. R. LEWIS B.Sc.

Art Dept.
J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01.634 4202

This dwell meter was designed to facilitate automobile contact breaker adjustments without the use of feeler gauges. In this way worn contact breaker points can be adjusted. a task not otherwise possible.

Distributor mechanical wear and vacuum advance operation can also be checked. The prototype was checked against the most expensive commercial dwell meters atvailable and no variation between them could be detected.

Fig. 1. The waveform at the contact breaker points shown here in the upper graph. The voltage level during the closed-points period is only 12 V just to give an idea of scale. The lower graph shows the output from the bridge rectifier used in the following circuit diagram

WHAT IS DWELL ANGLE?

During the time when the points are closed, called the dwell time. the primary current through the coil builds up producing a magnetic field around the coil. If this magnetic field does not reach sufficient strength, due to too short a dwell time, its collapse when the points open may not produce sufficient voltage to cause a spark at the plug.

Dwell time is therefore very important. However. measuring it is difficult as obviously it decreases with increasing engine speed. Thus the angle for which the points remain closed is used and this remains constant through the speed range provided that the points are not moved.

This measurement can be made by examining the potential across the points during their operation.

DESIGN PROBLEMS

Although most ignition systems work on a 6 V or 12 V supply, an alternating voltage with a peak of up to 300 V is produced across the points when they open (see Fig. 1). If this 300 V were applied to a transistorised circuit without some modification it is unlikely that the transistors would survive the voltage peaks and for this reason the voltage across the contacts is first rectified and stabilised to produce a voltage suitable for transistor switching as in Fig. 1, lower curve.

CIRCUIT

A full wave rectifier formed by diodes DI to 4 (Fig. 2) is fed with the signal from the points under test: this rectifies the oscillations shown in the upper part of Fig. I to give the lower waveform. R1 limits the current flow to Zener D5 which stabilises the output from the rectifier at 4.7 V .

The voltage developed across R3 when the contacts are open makes the base of TRI positive, turning it on. This in turn switches off TR2 and no current flows through the meter MEI.

COMPONENTS . . .

Resistors
R1 $1 \mathrm{k} \Omega$
R2 $1 \mathrm{k} \Omega$
R3 $1 \mathrm{k} \Omega$
R4 $3 \cdot 3 \mathrm{k} \Omega$
All 10% o W carbon
Potentiometer
VR1 $4.7 \mathrm{k} \Omega \mathrm{Lin}$
Diodes
D1 1 N4001
D2 1N4001
D3 1N4001
D4 1N4001
D5 4.7V, 1W Zener
Transistors
TR1 2N2926 (Orange)
TR2 2N2926 (Orange)

Fig. 2. The circuit diagram of the dwell meter showing the simplicity of the arrangement

Miscellaneous

ME1 1 mA or see text
S1 SPST on/off
B1 $\quad 1.5 \mathrm{~V}$ battery (Alkaline cell size A A preferable) Veroboard, 0.1 in matrix, 29×24 hole rows. Case, $4 \times 6 \times 1.5 \mathrm{in}$.
Wire, solder, nuts, screws etc.

Fig. 3. Component layout and Veroboard cut details for the dwell meter

The Dwell Meter together with the starter switch push unit. Of course, they are not connected electrically, one going to the starter solenoid whilst the other goes to the points

When the contacts close the input to the rectifier is short-circuited by the contacts and the voltage across R3 falls. causing TRI to be turned off and TR2 on. .Current now flows through the meter via VRI.

The "earth" of the vehicle is unimportant as the input to the dwell meter is via a full wave rectifier and for the same reason it is unimportant which way round the input wires are connected across the contacts.

The ratio of on to off periods of TR2 determines the average current through ME1 and this is used to assess the actual dwell angle.
The use of the vehicle battery as a power source, even if stabilised, has been found unsatisfactory and so a 1.5 V alkaline cell is recommended. This has a shelf life of 2 years and is totally leak-proof. A standard pen cell could be used, but leakage could be a problem.

The meter MEI can be almost any value, both 1 mA and $100 \mu \mathrm{~A}$ have been used and VRI set accordingly.

CONSTRUCTION

All components are mounted on $0 \cdot 1$ in matrix Veroboard 3 in $\times 2 \cdot 5$ in which can, if desired, be mounted direct onto the meter terminals. A board layout is shown in Fig. 3. Holes may be drilled anywhere in the last inch of the board as this has been isolated from the rest of the circuit.

The board can be mounted with the copper side outwards if a shallow case is to be used. but the case itself, if metal, must not be connected to the circuitry as the case will no doubt come into contact with the vehicle chassis during normal use.

The battery is soldered direct to the Veroboard though if preferred small clips could be used, or the battery mounted separately.

CALIBRATION

With a normal 0 to 10 scaled meter, all that is required is to change the figures to 0° to 100°. Then zero the meter needle on to 90° for a 4 -cylinder engine using VR1. The meter is then ready for use reading dwell angle from 0 to 90° with a linear scale. For 6 -cylinder engines set the needle to $60^{\circ}, 8$ cylinder to 45°, 12 -cylinder to 30°, i.e. 360 divided by the number of cylinders. These zero marks can be put onto the scale for future reference as can be seen in the photographs.

Component layout on the Veroboard used in the prototype. Note the use of the alkaline cell power source

USING THE DWELL METER

Switch on and zero the dwell meter as explained above to suit the engine being examined. Connect one of the input cables to a good earth and the other to the terminal on the coil which is connected to the distributor contacts; this may be marked CB, positive or negative, depending on the age and "earth" of the vehicle.

Remove the distributor cap and rotor arm and loosen the contact breaker fixing screws so that with a screwdriver in the adjusting slot the points can be adjusted but are not loose. Switch on the ignition and while the starter motor turns over the engine, move the contact breakers with the screwdriver in the adjusting slot until the dwell is correct for your vehicle.

Tighten the screws. replace the rotor arm and distributor cap. The points are now adjusted. It is now advisable to time the engine using the timing lamp in the January issue. Always dwell then time. not the other way about.

Whilst this is a normal procedure in commercial workshops, some owners might prefer to remove the spark-plugs before turning the engine over so as to reduce the load on the starter.

DWELL ANGLES

If the dwell angle only requires checking then connect the dwell meter as described above, but run the engine at idle speed and read the dwell angle in the normal way.

The dwell angles for 4 -cylinder engines are as follows:

```
Autolite distributor
    Lucas distributor
    A.C. Delco distributor
    40. Vauxhall/Bedford
    60 B.L.M.C.
    37. Ford
```

With the Autolite and Delco 4 -cylinder distributors the dwell angle will increase when the vacuum advance mechanism operates. This is normal.

The great variety of distributors fitted to 6,8 and 12 -cylinder engines makes listing dwell angles difficult, but most libraries now carry a good selection of manuals as do book shops and they will be only too glad to let you peruse the relevant pages.

To check distributor wear, disconnect the vacuum unit and note the dwell angle at idle speed. Increase speed to 3,000 r.p.m.. noting the dwell angle again. A variation of more than 3 indicates distributor bearing wear which may, depending on the exact nature of the wear, affect the running of the engine.

The manual starter switch is simply a push-switch which is itself a push fit in a length of plastic tube to make a comfortable handle. The cable can be locked in position using wax or sealing compound

REMOTE STARTER

Some readers may have considerable difficulty in operating the starter, as in the case where it is actuated by the ignition switch, and at the same time moving the contacts. Where the starter solenoid is not operable mechanically, a remote starter overcomes the problem.

Obtain a length of stout cable, to one end fit a crocodile clip and to the other a $\frac{1}{4}$ in Lucar connector. At the centre break the cable and fit a push-to-make switch rated at at least 5A. In the version shown here a Bulgin switch was pushed into a length of plastic tube for convenience.

Locate the starter motor solenoid, which may be mounted on top of the starter motor or elsewhere in the engine compartment, and look for a single wire

View inside the prototype Dwell Meter showing the simple interwiring between the meter, board and external vehicle circuit
feeding to an isolated Lucar spade. Remove the distributor cap and then have someone turn the engine over briefly with the ignition key and disconnect this cable, the starter motor should stop if the correct cable has been selected.

If you are confronted by two small Lucar spades. one on either side of the solenoid. remove each in turn until the starter motor stops. The other forms part of the ignition system and should be left in place.

Now attach the crocodile clip to the unearthed battery terminal and the Lucar connector to the solenoid operating terminal previously located. Push the button and the starter will operate. On no account remove or make a connection to the two bolt connections of the solenoid or any wire attached to them.

Turning the engine over with the starter for what may seem quite lengthy periods to some readers is normal in the garage trade when setting tappets for instance. No damage will be caused unless the time taken for adjustment is excessive, but for those who wish. the load may be considerably lightened by removing the spark plugs.

PART FOUR

PE CCTV MONDCHROME CAMERA
 By G. D. BISHOP

U.H.F. MODULITORS: A CHOICE OF TWO

ACCTV system normally consists of a camera or group of cameras connected via a fade or switch unit to a CCTV monitor. The monitor is merely a cathode ray tube which is driven by a video amplifier and the normal scan coils and timebase circuits as would be found in a domestic television receiver. A domestic TV set can, therefore, be used as a monitor in one of two ways; the CCTV camera signal can be fed to the video amplifier input direct necessitating internal modifications to the TV set, or the camera signal can be modulated onto the normal u.h.f. carrier frequencies and applied to the usual aerial socket.

No modifications to the receiver are needed if the latter method is adopted and this article describes the construction of such a modulator using a standard domestic receiver u.h.f. tuner as the modulating circuit. The CCTV signal could be applied direct to the modulator but to avoid any distortion of the signal a small video amplifier is included, together with a low voltage power supply.

For those constructors who would prefer to build from a simple kit with instructions, an excellent modulator is available from Crofton Electronics for $£ 7 \cdot 30$. Details are given in Fig. 4.5.

Fig. 4.1. Circuit diagram of sync separator and video inverter

Fig. 4.2. Showing modifications and connections to typical u.h.f. tuner. All straight line inductances are lecher bars

BASIC PRINCIPLES

Part of the modulator (the modified oscillator section of a u.h.f. tuner) comprises a grounded base $p n p$ or $n p n$ transistor connected as a regenerative ultra-high-frequency oscillator and mixer circuit. In this design the aerial signal which would normally be fed to this transistor to mix with the oscillator sinewave is disconnected and replaced by the CCTV signal. The signal is applied to the transistor emitter (grounded base input) and in order to generate negative modulation, identical with normal u.h.f. transmissions an inverted signal must be provided. Camera signal outputs are usually positive video signals and so a single transistor inverter precedes the tuner input.

THE CIRCUIT

Fig. 4.1 shows the video inverter and sync separator with a conventional power supply centred around a 12 volt regulator unit MVR-12, providing +12 V to the tuner, TR1, TR2 and an indicator lamp. The input CCTV signal is correctly matched at 75 ohms by R1 and the transistor input impedance and is amplified with approximately unity gain in TR1. The video gain can be adjusted with VR1, a front-panel control, which with R6 provides negative feedback to increase the bandwidth: R. 4 and C3 decouple TR1 and the output signal is taken via R10 and C7 to the tuner.

The input signal is also taken via Cl to TR 2 , connected as a sync separator which is switched on only by the negative sync pulses at its base, this being a $p n p$ transistor in common emitter connection. Dl provides constant bias to the base and the amplified inverted sync pulses are fed through C4 to TRI emitter where they add to the video signal at the collector. Any pnp transistor which is silicon planar will suffice.

TUNER MODIFICATIONS

Before any u.h.f. tuner modifications are undertaken a few words on general tuner construction might enable prospective constructors to approach this task with more confidence.

The tuner, like many other radio/TV tuners comprises an r.f. section where the aerial signal is selected and amplified, and an oscillator/mixer stage where a generated sinewave is mixed with the r.f. to produce a constant carrier frequency i.f. of 39.5 MHz in the case of 625 -line TV.

Tuning is carried out with very small inductances called lecher bars which are strips of metal as seen in Fig. 4.3. Each lecher bar is tuned with one section of the tuning gang capacitance in parallel with a small trimmer capacitor. The tuner casing is split into four or five mechanical sections, each of which is a resonant cavity and which is critically tuned to the required frequency. The placing of every component is critical and no component other than those indicated must be touched.

The r.f. section is disconnected by cutting TRI collector at point X in Fig 4.2. The next step is to

Fig. 4.3. Physical details of modifications and connections to typical tuners
disconnect the output tuned circuits which, if still tuned to $39 / 5 \mathrm{MHz}$, would attenuate the u.h.f. signal on +50 to 850 MHz approximately. The i.f. coil L7 is cut and its place taken by a shorting link. Similarly the output coil L. 9 is shorted out. No other modifications are necessary inside the tuner casing.

The shorting links are of tinned $20 \mathrm{~s} . w . g$. or $22 \mathrm{~s} . \mathrm{w} . g$. copper wire and are as short as possible and not grounding to chassis.

The :terial input coaxial lead is cut or desoldered and a coaxial lead is soldered on the output connection where the i.f. lead was situated, making the brading as short as possible. Position Y is then located on the circuit diagram and on the component layout as in Fig. 4.2 and 4.3 , this being the point which is to be connected to the video amplifier of Fig. 4.3. There will be d.c. voltage on this point of about 6 wolts from R 3*. If diticulty is experienced in

COMPONENTS . . .

Resistors

R1	$100 \Omega \Omega$
R2	$1 \mathrm{M} \Omega$
R3	$180 \mathrm{k} \Omega$
R4	470Ω
R5	$2 \cdot 2 \mathrm{k} \Omega$
R6	22Ω
R7	$22 \mathrm{k} \Omega$
R8, R9	$1 \mathrm{k} \Omega$
R10	$2.2 \mathrm{k} \Omega 2$
All $\frac{1}{4}$ watt 10% carbon	

Capacitors

C1	$0.1 \mu \mathrm{~F}$ polyester
$\mathrm{C} 2-\mathrm{C} 4$	$10 \mu \mathrm{~F}$ elect. 10 V (3 Off)
C 5	$64 \mu \mathrm{~F}$ elect. 25 V
C 6	$1,000 \mu \mathrm{~F}$ elect. 25 V

Potentiometer
VR1 $2 \mathrm{k} \Omega \mathrm{lin}$.
Transistors
TR1 BC109
TR2 BC251A or BC477

Diodes

D1 OA91
D2, D3 IN4001

Transformer

T1 Mains transformer 240 V pri. $12-0-12 \mathrm{~V}, \quad 50 \mathrm{~mA}$ sec.

Miscellaneous

Transistor u.h.f. tuner assembly (type immaterial) SK1$75 \Omega$ coaxial chassis mounting socket LP1-14V miniature indicator lamp, Veroboard 0.1 in matrix, 4 cm $\times 5 \mathrm{~cm}$, metal case $1.2 \mathrm{~cm} \times$ $17 \mathrm{~cm} \times 4 \mathrm{~cm}$.

Fig. 4.4. Component layout of sync separator, video inverter and power supply. Tuner unit is adjacent
obtaining good results from point Y , point Z can be substituted this time there being phase inversion in TR2*. (components with an asterisk merely refer to those components in a typical tuner). The cause of the trouble possibly being the fact that the tuner chosen has a negative supply voltage or the CCTV input is inverted.

SCREENING ESSENTIAL

The push-button switch assembly is not required for the tuner but the copper screening cover is essential to avoid interference pick-up. Most transistor tuners require a 12 volt supply with the casing connected to the negative (earth) potential as in Fig 4.2. Location of this 12 volt rail must be carried out with reference to the circuit diagram of the tuner used.

On many receivers, this is obtained via a suitable dropper resistor (10 kilohms or thereabouts) from the 200 V valve supply in the i.f. strip. If this is the case then bypass this dropper resistor together with any r.f. gain control, a.f.c. connection or a.g.c. connections which can be ignored or disconnected.

A varicap tuner can also be used as a modulator. similar modifications being necessary using the correct circuit diagram. Two points to mention on varicap tuners are the absence of mechanical tuning gang capacitors and small internal size. If a carrier frequency control is used therefore a potentiometer must be taken to the outside case which will vary the varicap tuning voltage. Due to the small size, great care must be taken when shorting the coils L7* and L9*.

Finally, all TV transistor tuners are different in appearance and their circuits' are not identical, their operations, however, are similar and it is not a difficult task for the experienced electronics constructor to relate the circuit and layout of Fig 4.2 and 4.3 to the tuner in question.

Any tuner from a monochrome or colour receiver, single standard in preference, will be suitable. Integrated tuners with u.h.f./v.h.f. combined are too complex and cannot be used, also valve tuners cannot be used.

CONSTRUCTION

The tuner, video printed veroboard panel and power supply will fit into a metal case of dimensions 12 cm by 17 cm by 4 cm deep and are laid out as

The completed Crofton unit

seen in Fig. 4.4. The power supply leads must be kept as short as possible to prevent hum pick-up and the video leads to and from the video panel should be short to avoid interference pick-up. The tuner spindle is passed through a hole in the case so that a knob can be screwed on for carrier frequency adjustment, similarly the video gain potentiometer is screwed onto the case as shown. The power supply regulator is screwed to the chassis after drilling 4 mm holes for the input and output leads. the case of the MVR-12 is earthed.

TESTING

The camera is connected to the input socket and the output plugged into a TV aerial socket. A picture should appear on the screen when the carrier frequencies are adjusted to be the same. Adjustment of the gain control will give 'contrast' control and loss of sync when very high or very low. If trouble is experienced in obtaining good results it might be advisable to check the tuner modifications. the polarity of the input video signal or move the carrier frequency up or down the band since the continued on page 1074

Fig. 4.5. Circuit of Crofton Modulator. For effective operation layout is critical

THE NEXT
DECADE?
Tomorrow's world of electronics as our readers see it . . .

PULSING AHEAD

${ }^{\top}$ IS the cheapness of integrated circuits and their ability to produce and manipulate pulses that has given the filip to computers and produced the calculator market. Coded systems (pulse code modulation) have already started taking over the telephone system and we shall soe the existing network used for other purposes: vision phones, document transmission. remote reading of gas and electricity meters, etc. An inexpensive print-out device would add a new dimension to the phone service and then amateurs would send photos and letters to each ocher by phone and P.E. will print the results!

Nor are we limited to telephone lines. The national grid could also be used to carry additional information. A start might be made by having an extension speaker system that simply plugs into any mains outlet in the home. This is feasible now.

We could well see sound and vision broadcasts change to a pulse code system so that our receivers will be minicomputers receiving and decoding pulses. This will keep us busy so we may first have time to build our own video tape recorder using present techniques beforeit becomes obsolete!

In the home those unreliable timing devices on washing machines, etc. will be replaced by an electronic package. Any mechanical function that can be performed electronically will be fair game and this leads us to motor cars, where manufacturers have already made a start. The lighting harness could be replaced by a ring main operated by pulses. An l.e.d. display could give a direct indication of speed, braking, fuel consumption, visibility and other hazards ahead. Scope here for the enthusiastic constructor to keep his banger up to the same standard (electronically) as the most expensive in the land!

William A. L. Smith

BUY BRITISH

THE increasing use of quadraphonic high fidelity sound reproduction and the decreasing quality of the contents so that we end up listening to quadraphonic silence.

The first Megawatt discotheque amplifier goes on sale. A computer process is developed to produce colour information
from monochrome films of video recordings enabling all celevision programmes ever made to be repeated in pseudo-colour.
TV personalities and recording stars are elected Gods by electronic vote counting. Suits are made with more pockets to cater for pocket telephone, pocket television, pocket computer, pocket sterco/quadraphonic receiver, pocket aspirin dispenser.

The BBC announces that the experimental octophonic broadcasts will not become a regular feature.

A new electronic timer is developed for sports events and is adopted for the 1984 Olympics. It enables timing to a nanosecond
l.c. chips become so'small that Mullard issue a photograph of one being engulfed by a bacterium.

British viewers now have a choice of six television channels during the 1984 Olympics; this enables them to watch a different event on each channel

Sony, National Panasonic, Hitachi, having built factories in this country, urge people to "buy British".

January 1984 issue of Practical Electronics carries the announcement that with effect from February 1984 price will go up to $£ 250$.
R. N. Soar

GOOD HEALTH

THE following indicates an approach to good health which is positive, as compared with the present system which treats lack of good health, i.e. illness, as the positive factor. When an electrical machine is regularly monitored for its insulation resistance, a progressive lowering of the resistance figure (taking the weather into account) can indicate approaching trouble before disaster actually occurs, and suggest țhe need for inspection and repair.

It is reasonable to suppose that human beings could be moritored in a similar manner, not for theirinsulation resistance, but as regards temperature, pulse rate, weight, and as many other biological parameters as are quickly measurable by today's techniques, many of which employ electronic means. These measurements could be fed into a computer, say once a month, and changes over a period compared with thi changes expected for a standard person of the age, sex, weight and blood group concerned, probably
also taking into account such factors as environment, weight, food intake and type of occupation.

Any unexpecred changes developing over the period would then indicate the approach of trouble. After enough experience has been gained with the technique, and if enough biological factors were included in the measurements, it might even be possible to indicate the imminent susceptibility of an individual to a particular disease, and steps taken to counter this.
The great advantage of this method of treatment would be that the patient need not actually become "ill" before treatmens is undertaken, and so treatment should be that much easier. Another point is that the biological measurements referred to could be made by technicians, thereby freeing doctors for more urgent tasks. On the one hand, whilst subjects would hopefully be kept in paak con dition, on the other the cost of the natior's medical service would be reduced
W. Higson

OLD AND NEW

Possibly the one sure thing that anyone could predict for electronics in the next ten years would be that the production of valves will cease. Although even the honie constructor uses i.c.'s it is suprising to know that valves are still moderatcly common. When the transistor was first released professional men stuck to the valve. For this reason the valve has hung on and on and so too will the transistor now, and in its turn the i.c.

I would like to see massive efforts (particularly from the Government) in the direction of solar energy control. Alas it will be 50 years or so before the householder hires his "solar energy generator" from the M.E.B. instead of his two part tarrifmeter!

Could it be that periodicals will act as an interface between the old and new providing the "old timer" with information to help him understand the new techniques and provide food for thought and ideas for the more advanced readers.

I would like to see more modern test equipment being designed, giving top priority to producing an oscilloscope with the capability of a Tektronix or Hewlett Packard, which might be able to deal with the more advanced projects that you might come up with.
G. R. Wates

NO BOUNDARIES

WHEN making auguries for the next decade, one's imagination must take flight because of what has been born from l.s.i. electronics. Solid state TV is a reality with large scale chip miniaturisations now replacing discretes. Plausibly one could predict a standardised chip TV in the near future just like the standard a.m. discrete superhet of today. Predictions in this area include three dimensional pictures using laser display techniques. This is not just pie-in-the-sky but a possibility raised in a recent RTRA/RRI Conference.

Ceefax and Oracle are words which have insinuated themselves into the language now bristling with electronic acronyms. The U.K. leads the world in this field and recent Government approval of a two year experimental period promises much. This would mean up-to-the-minute print-outs of national and international news providing continuously revised news items, blow-by-blow accounts of stock market dealing sports news, local news and weather forecasts, all displayed in page form on the screen at the flick of a switch.
In radio, quadraphonic reception will be a certainty since pioneering spadework is already underway.

As a sop to the inevitable neurosis all this surfeit of goodies will cause, electronics will slavishly function as an unpaid locum with the dial-a-complaint computer; another feasibility which will take the mundane work load from the G.P., returning him to his crue role of family counsellor and N.H.S. clerk.
In automobiles, digital metering of fuel, temperature, speed, etc. is a certaincy since l.e.d. displays are becoming cheaper than their analogue councerparts.

Electronics is a science which has, of necessity, crossed the boundaries of so many disciplines, such as medicine. chemistry, automobile engineering, etc. that it is inevitable that its effects or spin-off in ideas must increase to the benefit of humanity.

G. Rapson

INFORMATION DESK

THE public's requirement to be kept up to date with such things as public services, entertainment and general information creates a market for message systems and information recrieval.

To enable this market to be satisfied the minicomputer in the form of a desk top model completely self-contained will supply the service. The computer will be fully programmable by either cassette tape or disposable read only memories (ROM) with visual display output (VDU) and or permanent copy by thermal printing for availability of users' information.
In order that the public can make use of the service the computers will be located at such places as libraries and
railway stations and the service will work in the following way.

As the computer is completely preprogrammed by use of either disposable ROM's or cassette tapes programmed at a central bureau, the programme material will include such things as the entertainment available in the area served by the library, updated monthiy on the basis of disposable programmed devices.
Other services offered could be timetables of buses, trains serving that area, hours of opening for public buildings, half day shopping, hotels and many other services.
For more than one user a number of displays will be available driven from the computer using time sharing techniques: also a number of inquiry points will be accommodated. The systems can be further extended to such places as large supermarkers giving information on best buys, present prices and availability of items.
R. Cepa

IT'S ALL CHEMISTRY

WHEN thinking of the furure one must take into consideration, that although a decade is not long. it is sufficient time for najor development or cultivation of a revolutionary idea.
For example, ten years ago the transistor was making its debut for home constructors; now it is an indispensible component. Similarly the laser was invented a little over ten years ago: now it holds a definite place in industry and technology.
Although not fully conversant with the intricacies of modern electronics, 1 feel that changes are inevitable and possibly will involve chemistry, where the exploitation of the heavy metal compound crystals (i.e. the rarer ones, e.g. Neodymium) is by no means exhausted
As components become more incricate and delicate, soldering will lose its popularity. The introduction of a conductive heat resistant adhesive/resin for securing components may prove suitable. "Deresinification" (desoldering) would be carried out using a non corrosive solvent (actuated at time of use to prevent spillage the consequences of such an accident can be imagined).
Similarly the copper strips on Vero or p.c. boards could be replaced with electrically conductive plastic. (The price of copper rarely fluctuates from the steady rise.)

Laser development will advance to the high degree of household necessity, for some inappropriate capability.
T.V.s will change for the commercial market. All colour, quad or stereo (personal preference), even the collaboration of holography and T.V. for 3D viewing.
B. Theiss

MATURITY

0UR TECHNOLOGY has been developing exponentially for a century, and is now approaching maturity.

The significance of maturity in technology lies in the freedom from standardisation that it brings; allows a huge increase in the range of goods available without an equivalent rise in cost at the end of the production line.

At first sight, such abundance might gladden the electronics constructor. The range of projects open to him would widen dramatically, and the price of short-run chips, anti-log pots and other expensive oddities would be decimated Design and performance would be nearperfect; integration of circuitry would bo combined with flexibility of application But the home constructor enjoys his hobby because it tests his skill, and the hobby magazines reflect this fact, suggesting projects that (a) are not available in the shops (or not so cheaply). (b) involve some skill in construction and "tuning" and (c) give enjoyment through the intelligent use of the latest technological developments. A maturing technology combined with an aggressive electronics industry will force the home constructor into beyond-the-fringe gadgetry if he wants to retain any of these features.

The start of this crend is already evident. If the history of other tech-nology-based hobbies can be trusted to repeat itself. the electronics constructor witl soon be tempted to return to the comfortable past when his radio needed him. Like a vintage car enthusiast a plate photographer, or a steam fanatic, he will gladly exchange the boring best for the challenge and involvement that previous eras provided
D. Beatcie.

IDEAS IN INK

|T IS my opinion that the next ten years will bring a much wider application of plastics within the field of electronics I envisage the development of synthetic materials with various electronic properties.
Not only will this include the simple properties of conductivity. resistivity. capacitance, etc. but it seems quite possible that a substitute for silicon and germanium could be produced.

Taking this idea a litcle further, it is easy to imagine the evolution of kits containing special resins and "inks" with templates and equipment for printing ona's own "giant size" incegrated circuits on little more than sheets of paper.

The key factor here of course is the price of the plastics involved. If they are to be particularly expensive this might more than compensate for the cheap production of i.c.s and put them out of reach of the home constructor. However, if this is not to be so then the potential of the amateur could be greatly extended
D. Gowe

THE NEW JUPITER

An analysis of the data provided by Pioneer 10 reveals some startling facts. Many of the previous conjectures about the constitution and structure of the giant planet will have to be abandoned. No doubt the first findings will be confirmed by Pioneer 11, which will fly past the planet in the first week of December, a year from the time that Pioneer 10 collected the initial data.

One of the puzzles of Jupiter has been the great Red Spot. For something like three hundred years there have been many observations and almost as many theories. These range from the possibility of a submerged satellite, suggested by Firsoff, to the Taylor column. This is an effect that could take place if there was a high projection of, say, a mountain and the consequence of hydrodynamic waves in the atmosphere. In fact it does appear that the red spot might be caused by an updraught of hurricane force. The red spot would be the vortex centre. The size of the spot, some $40,000 \mathrm{k}$ m $(25,000 \mathrm{~m})$, could be the visible evidence of this. If such is the case then the views of Professor Raymond Hide would be relevant.

The severe atmospheric effects would be expected on the new facts. From the analysis of the gravity sensing experiment, Dr J, Henderson of the Jet Propulsion Laboratory and Dr W. B. Hubbard of the University of Arizona, it appears that Jupiter is largely liquid. If there is a core 'at all, it would be molten and very small. The temperature would be very high and pressures would be high. It is worth remembering that the late B. M. Peek in his book "The Planet Jupiter" discusses these early models in detail.

COLOURED BELTS

The coloured belts have been a continuous study particularly by the amateur astronomers. The periods of revolution of some of the white and grey areas have resulted in thousands of sketches of great accuracy by members of the Jupiter section of the Astronomical Association.

The new thoughts on this subject are that the white and grey areas are in fact cloud tops only some 240 km (150 m) below the upper limit of the planet's atmosphere. The brown and orange areas would be troughs. It would appear that the clouds on Jupiter are stretched round the planet, rather than in circular groups as they are in the Earth's atmosphere. The stretching out round Jupiter is most likely due to the rapid rotation of Jupiter on its axis, some 9 hours 55 minutes. The actual speed at the equatorial belt is of the order of $35,000 \mathrm{~km}(22,000 \mathrm{~m})$ an hour.

Another problem that has been the subject of conjecture is the

BYFRANK W. HYDE
excess of heat radiated by Jupiter. This level is some two and one half times that which Jupiter receives from the Sun. The new model of the planet suggests that it is cooling off and growing smaller, this would account for the high level of heat being given off. The model of the planet which now emerges is that of a body of four conditions. The first is the possible core which would have a temperature of $29,000^{\circ} \mathrm{C}$. Next there is a level extending for many thousands of kilometres where the hydrogen has become metallic with a temperature in the region of $11,000^{\circ} \mathrm{C}$. In this area pressures could be as high as $45,000,000$ $\mathrm{lbs} / \mathrm{sq} . \mathrm{in}$. The next region which starts at about $1,000 \mathrm{~km}$ into the atmosphere is a transitional zone where there is liquid hydrogen.

The magnetic field has already been described in Sonacewatch (Sept. '74) with considerable detail. One new point to be added is that as a result of the high level of the radiation belts, which are of a similar configuration to those surrounding the Earth, high energy particles have been radiated and detected on Earth.
The four large satellites, almost of planetary size, all appear to have atmospheres of their own. The densities are proportional to the distance between them and the planet. Pictures were obtained of the satellite Ganymede, these are being processed but first findings do indicate that there are highlands and lowlands similar to Mars and the Moon. The composition of the satellites do indicate the possible combination of ice and rock, in the case of Ganymede and Callisto. Io and Europa are certainly rock.
After Pioneer $1 /$ has made its flypast it will be on the way to Saturn. It will pass between the main body of Saturn and the innermost ring.

LARGEST KNOWN OBJECTS

Two radio galaxies of immense size have been discovered by A. G. Willis, R. Strom and A. Wilson, using the Westerbork radio telescope.

One of these, the largest object so far known in the universe is 3C 236. The radio components of this galaxy are spread over the vast distance of 18 million light years. The second object is DA 240 and is 6.6 light years across.

The measurements were made by the synthesis telescope which comprises 12 parabolic reflectors working in a linear base line of 1.5 km . This provides a beam of resolution of 1.0 arc minute, with a field of 1.5°. The frequency of operation is 49 cm .

It is certain that more of these objects will be found. They are on such a vast scale and the density as low as 30 atoms per cubic centimetre, that is almost the mean density of the universe. The energy in these extensive objects must be so high that there are electrons moving at almost the speed of light.

One thing is certain and that is that if more of these objects exist, then rather drastic remodelling will need to take place. With objects like these the radio clouds will have spread relatievistic plasma throughout a volume of space equal to that of large galaxies or even clusters of galaxies. Estimates of the age of these radio sources is increased by a factor of ten. Obviously some rethinking is likely to be extensive, for the effect on cosmological theory will be profound.

MOVEMENTS OF THE CRUST OF THE EARTH

A project by NASA called Astronomical Radio Interferometric Earth Surveying (ARIES) will provide information about continental drift and improve earthquake prediction.

The technique is to receive radio emissions from extra-galactic sources at two places, and time the arrival differences. In practice this means that the antenna at Goldstone and the antenna at the Jet Propulsion Laboratory are focused on a quasar. The difference of the time of the arrival of the signals at the two places can be measured to 0.1 of a billionth of a second. These data can then be resolved in terms of distance between the two stations. This can be done at the moment with an accuracy of 10 cm ; later it will reach an accuracy of 2 cm . Any difference in the measurements will indicate movement and strain.

It will be possible to use portable antennas for this work so that by changing the position of any two an almost three dimensional picture can be built up. Thus the movement and strain along the San Andreas fault can be detected.

ACOS FOUND ENJOYMENT

Cosmocord Ltd, Eleanor Cross Rd, Waltham Cross, Hertfordshire EN8 7NX
Telephone: Waltham Cross 27331, Telex 24294.

Please send me full details of
\square
\square
\qquad

Come and hear aThousand Pound Sound at Lindair..

At Lindair House, 227 Tottenham Court Road, you'll find 3,500 sq.ft. of demonstration studios with all that's best in Hi-Fi. And now we've added Studio $1000+$ - a demo studio totally devoted to the top line in stereo equipment.

With names like TEAC, Revox, JBL, Tannoy, Marantz and others, you can hear systems which cost over $£ 1,000$ and which sound like a million.

Only Lindair give you the sort of service to match this standard of equipment. Come and have a demonstration in the relaxed atmosphere of Studio $1000+$ - and you'll hear what we mean.

If Quadrophonic takes your fancy - our 4-channel demo studio is just next door to Studio 1000+.

Studio $1000+$ is ust the baginning of a uhole complex of facilities servirg the sounds enthusiast-Stereo, 4-c7annel and Home Tape Studios. All the best-and all at Lindair.

Come in soon and sounc us out.

Lindair House, 227 Tottenham CourtRoad, Lar don W1.01-580 7383

[^7]

WITH many electronic projects, there are no half measuresthey either work or fail when first tested. Where audio applications are concerned, the project could work but only after a fashion and then some very critical faculties (sic) will come into play!

The listener with anything approaching perfect pitch will find tuning discrepancies particularly objectionable. He will stomach single note melodies, perhaps, but sustained chords produce violently noticeable beats-even to those that are tone deaf: the more upper harmonics in the chord, the worse the effect.

VOLTAGE

The last article in this series dealt with tuning generally and its main purpose was to warn the constructor to take great care in choosing his generator system. That article prompted a letter from a reader experiencing tuning drift, due to mains voltage fluctuation, with a commercially made electronic accordion. The instrument concerned uses astable multivibrators as master oscillators, followed by bistable multivibrator dividers. I decided to confirm the comments about R/C oscillators in the previous article by making up the accordion's master oscillator to see how voltage changes affected it. Using a frequency meter, a one volt change in supply in either direction caused a frequency change of about 6 per cent -or a semitone in musical terms.

If such an instrument was only played solo, very few listeners would object. After all, the key of C sharp sounds better than C-provided the whole system is in tune with itself! But the problems arise when playing with other instruments and the player will find himself at odds with a welltuned piano. Nothing will throw a small band into confusion quicker than this type of problem-or encountering a continental pitch piano!

SPACE PROBLEMS

It is essential that any electronic instrument can be accurately tuned and will stay that way. The keen amateur may be itching to get with the problem, but commercial instruments may present difficulties because of lack of space due to the use of i.c.s, and general condensation of circuitry. Reorganisation of master oscillators may have to be ruled out, therefore.
As we have seen, R/C oscillators require a precise supply voltage to stay in tune, so it might pay to look carefully at the power pack. There will probably be an array of voltages for generators, keying, pre-amplifiers, power amplifier, etc. but the most important supply is that to the generators and in particular the master oscillators. Regulation should be checked with the instrument in operation and, if this is found lacking, one of the TO3 encapsulated regulators (MVR type) might be incorporated. Both load and line regulation of these devices are better than a fraction of one per cent, if their output voltages match the circuit's requirements.

MAINS REGULATOR

If it can be proved that mains voltage fluctuation is the root cause of tuning instability, the simplest course would be to fit a mains voltage stabiliser between the a.c. supply and the instrument. If the load is fairly light, the type sold by photographic shops (for stabilising brightness and colour temperature of enlarging lamps) might be one solution.

No apologies are due for labouring the point concerning tuning: building a polyphonic keyboard instrument is a major operation. It is as well to be absolutely sure that the home constructed instrument will not require an expensive and time consuming modification after completion because the back has to be taken off every week to re-tune it.

TREMULANT

Tremulant is an amplitude modulation effect, and should not be confused with vibrato which is frequency modulation. It is fairly easy to arrange by connecting the signal across an l.d.r. and modulating this resistor by means of a lamp. The lamp could form part of the collector load of a multivibrator, or it could be a miniature neon in a relaxation oscillator circuit. Whilst the filament lamp is best suited for tremulant effect, the more precise pulsing of a neon enables it to be used for higher speed chopping-repeat effects such as mandolin and banjo.
In early instruments, tremulant was often obtained by using a motor driven variable resistor across the signal source, but these were noisy and tended to wear rapidly. Devices such as the ORP12 l.d.r. have since come on the market and are both dependable and noiseless.

VIBRATO

Good vibrato is by no means easy to obtain, especially if the oscillators are really stable. The fact is that, if you have a stable oscillator, you must expect stability! When the oscillator refuses to be modulated by an electronic vibrato, the effect is best obtained by mechanical meanssuch as the Leslie speaker.'
The vibrato oscillator should ideally produce a sine wave, although multivibrators are often used commercially. A fair amount of drive will be required, in some cases of almost medium power proportions, to the base of the os cillator transistor. A good deal of care is required in setting up, too much signal making the oscillator fail on peaks and too little producing nothing more than a mild tremulant.

DELAY LINE

Electronic vibrato often sounds uninteresting as its effect is similar for all frequencies. The Hammond delay line system overcomes this problem as its effect is more prominent at higher frequencies. The line consists of some 18 L/C sections and, according to the vibrato depth chosen by the player, sections are switched to the stators of a multielement variable capacitor whose rotor picks up the modulated signal. By scanning back and forth along the line, phase differences are converted to frequency differences: this contributes to chorus effect as modulation takes place per section of the line according to frequency.

By D. SHAW

PART TWVO

- Voltage Controlled Oscillators
 - Voltage Controlled Filter and Envelope Shaper

- Voltage Controlled Amplifiers

THIS month we begin the circuit construction of the P.E. Minisonic series by detailing the vco's, vcr and Envelope Shaper/vca`s.

BATTERY LIFE

The average current drawn by the P.E. Minisonic is about 62 mA , so it is estimated that a pair of PP9 batteries will provide up to 50 hours of useful life. Much depends, of course, on the length of the periods during which the instrument is switched on. When usage is restriced to around two to four hours per day then maximum battery life can be expected.

On the current price of PP9's, therefore, the running costs of the P.E. Minisonic are likely to vary between $1 \cdot 4$ p per hour and $2 \cdot 33$ p per hour depending on usage and this seęms, on the basis of comparison with other forms of entertainment, to represent pretty good value for money.

One of the drawbacks of battery operation is that the voltage falls in a manner proportional to the drain and to the charge remaining, and thus circuits which are voltage sensitive could begin to perform in an erratic and unreliable manner.

In the P.E. Minisonic this problem has been overcome by the establishment of voltage reference rails, considerably below nominal battery potential, in order to serve those circuits. which are particularly voltage sensitive.

In practical terms the vco's and vcF will operate without any change in performance down to $\pm 7 \cdot 5$ volts and, indeed, will tolerate supply voltages up to ± 12 volts also without change in performance.

The worst effect of falling battery voltage on these circuits not served by the reference rail is that the gain/attenuation ratio of the vCA's diminishes by between 6 to 8 dB and the noise generator will cease to operate at about ± 7.8 volts.

The great advantage of battery operation is that the instrument becomes a perfectly safe proposition for the younger enthusiast who can dabble about to his heart's content without the attendant fear of electrocution.

COMPONENTS . . .

VOLTAGE CONTROLLED OSCILLATOR (2 required)

Resistors

R1, R2	$6.8 \mathrm{k} \Omega$ (2 off)
R3-R6	$47 \mathrm{k} \Omega$ (4 off)
R7	$22 \mathrm{k} \Omega$
R8	$1.2 \mathrm{k} \Omega$
R9	$1 \mathrm{k} \Omega$
R10	$2.7 \mathrm{k} \Omega$
R11	$1 \mathrm{k} \Omega$ (see text)
R12	750Ω
R13	$22 \mathrm{k} \Omega$
R14	$82 \mathrm{k} \Omega$ (see text)
R15, R16 $10 \mathrm{k} \Omega$ (2 off)	
All $\pm 5 \% \pm W$ or $\frac{1}{8} W$ carbon	

Potentiometers
VR1 $10 \mathrm{k} \Omega$ skeleton horizontal preset
VR2 $10 \mathrm{k} \Omega$ linear carbon
VR3 $100 \mathrm{k} \Omega$ skeleton horizontal preset
VR4 $10 \mathrm{k} \Omega$ linear carbon

Capacitors

C1 $0.1 \mu \mathrm{~F}$
C2 $22 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
C3 3.3pF

Semiconductors

D1	1N914
TR1	BC184
TR2	BC213
IC1, IC2	Type 741 8-pin d.i.l. (2 off)
IC3	Type 748 8-pin d.i.I.

Miscellaneous

JK1 $\quad 3.5 \mathrm{~mm}$ jack socket
SK1, SK2 2 mm sockets (2 off)
$0 \cdot 1$ in Veroboard, 115×34 holes (This board also carries Keyboard Control, Mixers and Ring Modulator)

LOGARITHMIC LAW

Both the vco's and the VCF have a logarithmicor, more accurately-an exponential relationship between the applied control voltage and the control current which, in turn, prescribes the frequency of the vco and the pass-band of the VCF.

The so-called "log-law" has been adopted because it allows for a considerable simplification in the keyboard and pitch determining systems-an important factor in an instrument which is to be used for musical purposes and which, hopefully, is to remain in tune over relatively long periods.

In simple terms the "log-law" enables linear increments of control voltage to cause frequency changes of one octave in the case of the vco or passband variations of one octave in the case of the VCF.

In the P.E. Minisonic the control voltage increment required is 600 mV per octave but there is provision for adjusting this from about 220 mlV per octave to $1 \cdot 2 \mathrm{~V}$ per octave in order that the instrument may be matched to other synthesiser systems.

Since the control voltage increment is the same value for both vco and vCF this enables the control node for both circuits to be identical save for two minor variations.

THE CONTROL NODE

The circuit of the control node is shown in Fig. 2.1, which shows the vco but an almost identical control node is used in the vCF. ICI is a four-input summing inverter in which two inputs are committed to providing bias and manual control voltages while the
remaining two can be coupled to external programming sources.

The overall gain of the inverter is prescribed by VR3 which is used to set the so-called "law" of the system, i.e.-the relation of frequency or passband to voltage. VR1. provides a fixed bias to the inverter which serves to set the minimum frequency, or to position the overall frequency range in manual control, while VR2 provides the voltage swing, in manual, required to give a nominal ten octave range.

The input via R 5 is coupled through the normally. closed contacts of JKI to the keyboard controller "hold" circuit (which will be described next month).

Insertion of an open circuit jack plug will override the "hold" input or, alternatively, an external signal wired in to a jack plug may be routed into this input.

The input via R6 is wired to a 2 mm socket so that an external programming signal may be employed in combination with the keyboard.

The output of ICl drives a divider, R7-R8, which sets the bias on transistor TRI-a constant current generator. It is in TR1 that the exponential relationship between control voltage and control current is derived.

TRANSISTOR CHARACTERISTICS

Reference to the characteristic curves of almost any small signal transistor in which $V_{b e}$ is plotted against I_{C} will show that there is a fixed relationship between these factors which extends over a range of three or four decades.

PERFORMANCE	
Frequency Range	10 octaves, nominally 5 Hz
	to 5 kHz in manual control
Control Voltage Law	600 mV per octave
Waveform	Sawtooth, 400 mV p-p
Current Drain	5 mA

Fig. 2.1. Circuit diagram of the Voltage Controlled Oscillator. Letters in inverted commas refer to connections from the Veroboard panel to the front panel

Voltage readings with A at -1.4 V and C at 0.95 V

$$
\begin{aligned}
& B(-V) \begin{array}{lllllllllll}
0 & 0.6 & 1.2 & 1.8 & 2.4 & 3.0 & 3.6 & 4.2 & 4.8 & 5.4 & 6.0
\end{array}
\end{aligned}
$$

Fig. 2.2. Simplified circuit of the control node used in both the VCO and the VCF. The table shows typical current readings for different settings of VR2. Note that tolerance on R7 and R8 can cause significant departures from values shown. These may be compensated by adjustment of VR1. The important relationship is between the voltage at B and $/ \mathrm{c}$

Above a minimum level of $V_{\text {ter }}$, the collector current will double for each successive increment in $V_{\text {in }}$. of the order of 20 to 25 mV . Over the straight line portion of the curve, if it is assumed that the $V_{\text {b. }}$ increment is 24 mV , then increments of 2 mV will cuatse the collector current to increase successively in the ratio $1: 12 \sqrt{ } 2$ - which musicians will immediately recognise as being identical to the ratio in pitch between any two consecutive notes in an equal tempered scale. Indeed, this relationship serves to explain why the "log-law" circuit is so much more useful in a musical sense than its linear counterpart.

SETTING-UP PROCEDURE

The efficiency with which the voo's and vor function relative to their respective control voltages is entirely dependent upon the accuracy with which the setting-up of the control node is accomplished.

The principal aim is to ensure that successive increments of 600 mV supplied by VR2 result in successive doublings of the current through the constant current generator TRI. Fig. 2.2. illustrates a simplified control node together with a table of typical results obtained with the prototype instrument.

With the wiper of VR2 at ground potential, VRI should be adjusted so that the wiper is at $-1 \cdot 4 \mathrm{~V}$. VR3 should now be adjusted so that the output of ICI is at +0.95 V . These adjustments will set the operating points of the control node to within close limits of the required values.

A multimeter switched to the microamp range should now be connected between R9 and the 0 V rail and VR2 swung through the range of values shown in the table.

It should be noted that the current readings recorded will not necessarily correspond exactly with those quoted in the table since tolerance variations in R7 and R8 can cause significant differences.

Fig. 2.3a. The integrator output with resistor R11 removed

Fig. 2.3b. Output of the integrator showing, large spikes during the reset period. These are too fast to be audible

During the first swing of VR2 it is almost certain that errors will be present and it is important, at this stage, to determine whether the current through TRI is greater or less than the doubling required for each increment of 600 mV at the wiper of VR2.

For this purpose it is best to carefully record the current readings obtained over a range of input voltages-say from 1.2 V to 4.8 V -in order to establish whether the error is consistent.

If the current through TRI is greater than the doubling required for each 600 mV increment then the gain of ICI has to be reduced by adjustment of VR3. Conversely for less than the required doubling.

When the required relationship has been established the control nodes for the vco's may be matched by making a further adjustment to VRI so that, for a given voltage supplied by VR2, the current through TRI is identical in both nodes.

It should be noted that the current/voltage relationship in the control nodes need not be precisely 600 mV per current doubling. Indeed the range of adjustment afforded by VR3 allows that the relationship may be set at any value lying between aproximately 220 mV and $1 \cdot 2 \mathrm{~V}$. What is important however is that the relationship adopted should be eaacoly the same for all control nodes. If it is not then the circuits will not track accurately and the overall performance of the instrument will be marred.

The design of the Keyboard Controller is such that it can accommodate any voltage/current relationship which it is possible to set up with the component values given for the control nodes.

THE VOLTAGE CONTROLLED OSCILLATOR

The complete circuit of the vco is illustrated in Fig. 2.1. Apart from the control node and current generator the vco comprises a linear integrator around IC2, a comparator around IC3 and a reset switch TR2.

Photograph of complete board on which VCO's, VCF, Voltage Reference and ES/VCA's are mounted. (Note: some minor changes have been made to this layout)

HOW IT WORKS

If we assume that the reset cycle has just completed, the output of IC2 will be zero volts, the output of IC3 will be positive due to the voltage applied by divider R12-R13, and TR2 will be hard off. CI although nominally uncharged will, in fact, have a charge in relation to the negative rail and thus TR1 will draw on that charge at a constant rate thereby causing the output of $I C 2$ to ramp in a positive direction.

The maximum positive level of the ramp is determined by two factors. Firstly there is a positive threshold voltage set by divider R12-R13 which is equal to:

$$
\frac{750}{22750}: 6=200 \mathrm{mV}
$$

Secondly there is a positive feedback factor applied to IC3 by R14. This has the effect of determining a further threshold value on the basis of the currents applied differentially to IC3 through R10 and R14.

If x be a voltage at the output of IC2 then the secondary threshold value is determined by:

$$
J_{\mathrm{R}_{1 v}}=\frac{x}{2700}=\frac{8}{82000}-I_{\mathrm{R}_{14}}
$$

i.e. approximately 250 mV .

The overall threshold value is thus theoretically 450 mV . Although the 450 mV threshold could be derived from divider R12-R13 alone the adopted method is preferable because it has the effect of speeding up the switching process.

When the output of IC2 reaches the threshold value the output of IC3 will try to go negative. However, the biasing on TR2 is such that when the output of JC3 has moved about 200 mV , TR2 turns on and sends a relatively large puise of current into Cl in order to restore the original state.

At this point the output of IC2 moves rapidly in a negative direction and when it falls to below 200 mV , i.e. below the minimum threshold value on IC3, then IC3 will switch to positive saturation again before the output of IC2 actually reaches its minimum level. At this point the cycle repeats.

The overall effect is to provide a very rapid reset which results, in relation to the integrating rates employed, in a sawtooth waveform of almost perfect shape.

The reset time occupies a period of approximately $8 \mu \mathrm{~s}$. On most oscilloscopes the reset pulse
will be invisible at low frequencies and its presence will generally only be detectable at frequencies of the order of 5 k Hz and greater.

RESET TIME

Resistor R11 sets a limit on the reset current supplied by TR2 and thus has an effect on the reset time. With R1I significantly greater than 1 k ! it will be found that the reset will terminate at a point about +100 mV or so above zero volts, at which point integration will re-commence.

With R11 removed altogether the output of IC2 will go hard negative at each reset resulting in an output waveform as shown in Fig. 2.3a and a very slow rate of oscillation.

The ideal situation is when the value of $\mathrm{R} \mid 1$ is such that the reset, as measured at the output of IC2, terminates on the zero volt rail. The output waveform of the integrator is shown in Fig. 2.3b.

Resistor tolerances being what they are there could, in a worse case, be as much as 20 per cent variation in the integrator output waveform peak-topeak value between oscillators. This means that, with matched control nodes and for a given control voitage, the vco with the greater amplitude waveform will run at a proportionately lower frequency.

Fortunately this error is constant over the whole frequency range and may thus be compensated for by adjustment of the bias control VR1. It is more elegant however to make the adjustment on the vco itself so that the greater level in output waveform will not introduce any impairment of performance in relation to the sound treatment circuits.

Resistor R14, in view of its value and position on the circuit board is the most convenient resistor to adjust. Any adjustment should be directly proportional to the error variation in output waveform level, i.e. if the output waveform is 10 per cent high in relation to the other vco then the value of R14 should be increased by 10 per cent-to 91 kS ? sayand vice versa.

From Fig. 2.3b it will be seen that the integrator output waveform exhibits a substantial positive and negative going spike at the reset point. This is due to the differentiation of the reset pulse by Cl .

Although rather unsightly, the spike is too fast to have any effect on the audio output.

Fig. 2.4. Complete circuit diagram of the Voltage Controlled Low-pass Filter

VOLTAGE CONTROLLED LOW.PASS FILTER

The complete circuit of the filter is shown in Fig. 2.4 and comprises. in addition to the control node and current generator, a ladder network and a differential output stage. The ladder network, in which the filtering action takes place, is based on the design by Dr R. A. Moog.

The diode may be considered to be an impedance which varies inversely as the current through it, i.e. at low currents the impedance is high and vice versa. The a.c. signal is superimposed on to the diode current flow as shown in Fig. 2.5 which represents the lower half of the ladder network.
The ladder terminates in transistors TR2 and TR3 which are effectively biased on by referring their bases to the 0 V rail. Thus any current drawn through the network by means of the constant current generator passes, without restriction. through these transistors.

If an a.c. signal is now applied to the base of TR2 there will be a proportional variation in the current through the transistor and thus also a voltage variation at each diode junction in the ladder.

This applies over virtually any current drawn by the constant current generator so that, for a given level of a.c. signal, the smaller the current through the network, the smaller will be the proportional variation induced by the signal. Thus the concept of variable impedance is, in fact, due to the combined effect of diode, transistor and current generator.

FILTER PERFORMANCE

The range extends over several decades and, in the circuit given, the -6 dB passband at maximum is from 3 Hz to 15 kHz .

Fig. 2.5. Simplified circuit diagram of the lower section of the VCF showing how the a.c. signal is superimposed on the ladder current

Four filter stages are cascaded in the ladder network and since each stage has a theoretical roll-off of 6 dB per octave the maximum roll-off of the filter should be 24 dB per octave. Efficiency in this respect can only be achieved, however. if every precaution is taken to prevent loading the network both at the point of entry of the a.c. signal and also at the point of extraction.

In the interests of simplicity and economy the buffer stages have not been included in the circuit but, even so, the roll-off possible is around 12 to 15 dB per octave and, for the majority of purposes, this will be found to be quite sufficient.

FEEDBACK

The output from the filter network is amplified differentially by IC2, with VR4 being employed to cancel out any d.c. imbalance due to variations in

diode characteristics. The output signal from IC2 is capacitatively coupled into two potentiometers. VR6 is simply the output level control while VR5 is the feedback or Q control.

With the Q control at zero the base of TR3 is referred closely to the 0 V rail and thus TR2 and TR3 behave essentially as a differential pair. The output of IC2 is therefore nominally in phase with the input signal at the base of TR2.

As VR5 is advanced from zero a proportion of the output signal appears at the base of TR3 thereby tending to induce a signal in the collector circuit which is 180 out of phase with the signal which is already there due to the effect of the signal on TR2. The result is that the output signal will become significantly attenuated except at the frequency whose period is equal to the adjusted time-constant of the network.

At this critical frequency the output of the filter will peak up, the bandwidth of the signal depending on the degree of feedback applied.
Further application of feedback will cause the filter to oscillate. The frequency of oscillation is proportional to the current through the ladder network and the oscillation, which is of sine form, will be superimposed on the filter output signal. The P.E. Minisonic filter oscillates over the range 5 kHz to 25 kHz .

The filter may be operated in a number of modes each of which finds a place in the tone colour spectrum of the synthesiser. An outline of the various possibilities will be given in a later part of the series.

SETTING-UP THE VCF

The setting up of the control node for the VCF should follow exactly the same procedure as the vco with the exception that, having established the correct voltage / current relationship, VR1 is adjusted so that the maximum current through TR1 with an applied voltage of -6 V at VR2 should be of the order of 3 mA instead of the $190 \mu \mathrm{~A}$ quoted in the table shown in Fig. 2.2.

In order to achieve this result the value of R 7 in the VCF is $1.5 \mathrm{k}!2$ instead of the $1 \cdot 2 \mathrm{k}!!$ specified for R8 in the vco control nodes. Increasing the value of R7 requires that the gain setting of ICI be reduced by adjustment of VR3 and, in relation to an initial setting at VR1 of -1.4 V , the output of IC1 should be approximately +0.84 V at the commencement of the setting-up procedure.

The setting-up of the filter proper is essentially concerned only with providing the optimum balance between extreme d.c. conditions arising in the ladder due to current variations. With a high resistance voltmeter directly monitoring the output of IC2, VR5 at zero, and with the audio inputs uncommitted. the frequency control (VR2) should be moved from one extreme to the other.

The meter readings at extreme settings of VR2 should be noted and VR4 adjusted to reduce the voltage swing at the output of IC2 to a minimum. It may require several iterative adjustments to get the best possible balance

This adjustment is not too critical since the output of IC2 is capacitatively coupled although, if the filter is being programmed by a fairly rapid envelope. any significant change in d.c. level at the output of IC2 can be differentiated by the coupling capacitor and induce an unpleasant click on to the audio signal.

THE ENVELOPE SHAPER AND VOLTAGE CONTROLLED AMPLIFIER

Two distinct but very closely related circuits are covered by this section. The first is the envelope shaper which is of considerable importance in the scheme of the synthesiser since, by variation of just two controls, a whole range of differing characteristics can be imparted to an otherwise uninteresting sound.

Fig. 2.6b. A selection of envelope formats

$$
\begin{array}{lll}
\text { PERFORMANCE } \\
\text { Variable 30ms to 4s } \\
\text { Sablack }
\end{array}
$$

D.C. CONDITIONS (volts)				
	A	B	C	D
TR3 off	-0.5	0.6	0.01	0.65
TR3 on	4.5	0.8	0.24	0.65

Fig. 2.7. Complete circuit diagram of the Envelope Shaper/Voltage Controlled Amplifier. Note that potentiometer VR4 is fitted only to ES/VCA 1 to provide positive and negative going control envelopes (see block diagram Fig. 1.1)

Essentially the envelope shaper generates a control voltage which, if plotted graphically, will be found to conform with the basic waveform illustrated in Fig. 2.6a. If this waveform is applied to the control input of a VCA the amplitude of the audio signal will vary proportionately, i.e. with the envelope at zero the output of the vCa will be at its minimum volume (in the P.E. Minisonic about 54 dB below the peak output signal level).

The first excurșion of the envelope shaper output voltage is known as the "attack" and is variable, in the P.E. Minisonic, between about 30 milliseconds and four seconds.

The flat topped portion shown in the illustration is known as the "sustain" and represents the period of time that the vca output is maintained at maximum volume while, finally, the return to zero volts is known as the "decay" and is variable between about 100 milliseconds and 16 seconds. The period of sustain is determined entirely by the length of time that the envelope shaper trigger signal is present and no separate control is provided. Some idea of the kind of envelope formats possible with this arrangement is given by Fig. 2.6.

CIRCUIT DESCRIPTION

The complete circuit of the ES/VCA is shown in Fig. 2.7. ICl is a linear integrator whose output voltage is bounded, in a negative direction, by D6 and
in a positive direction by D7. Thus the output voltage excursions of the envelope shaper range between -0.5 V and +4.5 V .
In the quiescent condition R3, R4 and D1 set the bias on TR1 and TR2 such that TR1 is off and TR2 is on. Current reaching the inverting input via TR2/VR1 charges C1/C2 and thus, with the aid of D6, holds the output of IC 1 at -0.5 V .
When a negative trigger signal is applied TR2 turns off and TR1 turns on. The charge on the integrating capacitors $\mathrm{Cl} / \mathrm{C} 2$ thus leaks away via VR2/TR1 and the integrator output ramps in a positive direction until it reaches the bounded value set by D7.

Triggering signals may be applied in one of three ways:
(i) Through the manual push button SI .
(ii) From an h.f. detector (to be described next month) operated from the stylus or external keyboard.
(ii) From an external source via JK1, thereby overriding the connection to the h.f. detector.
The integrator output is linked through a divider network R6-R7 to the base of TR3 which, with the output of ICl at -0.5 V , is held at the point of conduction by means of a current supplied from the positive rail by means of R8. The table in Fig. 2.7 gives the "on" and "off" d.c. conditions which have proved to be ideal in practice.

COMPONENTS

ENVELOPE SHAPER/V.C.A. (2 required)
Resistors
$\left.\begin{array}{ll}\text { Resistors } & 560 \Omega \\ \text { R1 } & 560 \Omega \\ \text { R2 } & 20 \mathrm{k} \Omega \\ \text { R3 } & 75 \mathrm{k} \Omega \\ \text { R4 } & 3.9 \mathrm{k} \Omega \\ \text { R5 } & 1 \mathrm{k} \Omega \\ \text { R6 } & 10 \mathrm{k} \Omega \\ \text { R7 } & 620 \Omega \text { to } 750 \Omega \\ \text { R8 } & 20 \mathrm{k} \Omega \text { to } 36 \mathrm{k} \Omega\end{array}\right\}$ see text

Potentiometers

VR1 $1 \mathrm{M} \Omega$ linéar carbon
VR2 $250 \mathrm{k} \Omega$ linear carbon
VR3 $25 \mathrm{k} \Omega \log$ carbon
VR4 $10 \mathrm{k} \Omega \log$ sub. min. carbon (ES/VCA1 only)

Capacitors

C1, C2, C6	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum (3 off)
$\mathrm{C3}$	$0.1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
C 4	$1.0 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
C5	680 pF

Semiconductors

D1	1N914
D2	BZ88C6V2 6.2 V 400 mV Zener
D2-D6	IN914 (4 off)
D37	BZY88C5V1 5.1 V Zener
D7	BC213
TR1	
TR1, TR3	BC184 (2 off)
IC1	Type 741 8-pin d.i.I.
IC2	Motorola MFC6040

Miscellaneous
JK1 3.5 mm jack socket SK1 2 mm socket S1 Miniature pushbutton

SETTING-UP THE ENVELOPE SHAPER

Setting-up is restricted to the establishment of the bias conditions on TR3 as shown in the table of Fig. 2.7. With the output of ICl at $-0.5 \mathrm{~V}, \mathrm{R} 8$ should be adjusted so that a slight positive potential is apparent at the emitter of TR3. This indicates that the transistor is just beginning to conduct.

The actual d.c. level is fairly critical since too much conduction will restrict the gain/attenuation range of the VCA whilst too little will result in a propagation delay between the occurrence of the envelope shaper trigger pulse and the appearance of the audio signal at the output of the vCa.

After setting the bias the envelope shaper should be triggered manually and the button held down in order to check that the bias on the base of TR3 rises from +0.600 V to +0.800 V with the envelope at maximum level.

It is a good thing, at this time, to run a check on the VCA output with an input signal of 0.4 V peak-topeak. With correct biasing on TR3 the vca output should be around 1.25 V peak-to-peak.

It \cdot may be necessary to adjust the value of R 7 in order to achieve the VCA output signal specified and, if this is the case, it is well to recheck the biasing with the envelope in the off state and re-adjust R8 as necessary to establish the ideal minimum bias point.

No setting up is required on the VCA as such except as explained above in relating input/output signal levels with the vCA on.

ELECTRONIC ATTENUATOR

The VCA, or to give it the proper title, electronic attenuator, is a purpose designed i.c. by Motorola.

The specification of the device is to provide an attenuation of 77 dB and a gain of 13 dB , relative to the input signal which should not exceed 500 mV r.m.s., when the current sink from the control input (pin 2) is varied from minimum to maximum respectively.

Fig. 2.9. Circuit of the voltage reference section giving $\pm 6 \mathrm{~V}$

In the P.E. Minisonic the relatively low operating voltages result in a reduction of the overall attenuation/gain range to about 54 dB which is sufficient for most practical purposes.
The current sink from pin 2 of IC2 is. in the off condition. restricted by the series combination of R10 and RI3. As TR3 turns on it progressively short circuits R10 with the result that the current sink increases proportionately to a maximum which is limited by R13. It should be mentioned, of course that the linear envelope of ICl is converted into a negative exponential characteristic by TR3.

Although this is not ideal for an audio signal envelope, experience has shown that it is extremely difficult to differentiate subjectively between a negative exponential envelope and a positive exponential, or square law. envelope which is considered to give the best effect.

CONSTRUCTION

All the prototype circuits have been built in a number of alternative layouts and there appears to be no particular layout which gives rise to problems. The recommiended Veroboard layout is shown in Fig. 2.8.

Also mounted on this section of Veroboard is the voltage reference section the circuit of which is shown in Fig. 2.9 (see photograph). This gives the stabilised $\pm 6 \mathrm{~V}$ rail for use in the vco's and vcF.

It is recommended that all circuits in the P.E. Minisonic be bench tested and adjusted before any attempt to link the circuit boards with the front panel.

Next month : More of the P.E. Minisonic electronics plus details for wiring and setting-up.

Interior view of Crofton unit

camera u.h.t. signal might be beating with a normal transmitted signal giving patterning on the screen. Loss of sync is usually due to overloading of the signal and if the tuner has too much gain R10 can be increased until satisfactory results are obtained.

ALTERNATIVE MODULATOR

From what has gone before it can be seen that this form of modulator with a separate tuner might deter some constructors particularly if their involvement has never extended to u.h.f. It is for this reason that a commercial kit, the Crofton modulator, is reconmended as an alternative, its obvious attractions being simplicity and small completed size.

The circuit for this is shown in Fig. 4.5 for which we are indebted to Crofton Electronics.

The kit comes complete with detailed building instructions. Numbered packs of piece parts with contents detailed means that instructions can be ticked off in the manual as construction proceeds until the unit is completed.

A step-by-step testing procedure is also included.

SCAN COIL CHANGES

Since the publication of the camera series a run on the specified EMI scan/focus coil assembly and a surprise discontinuation from the contracted manufacturer has meant finding a new coil assembly.

The author has found that the Japanese KV-13 assembly was not only a suitable substitute but provided an improvement in picture quality. Features include an automatic vidicon target connection and vidicon lens focusing by the turn of a small screw.

Both the coils and fitting data can be obtained from EMI. 243 Blythe Road. Hayes, Middlesex. The price is $£ 14$ plus VAT.

The only electrical modifications to be made is in the focus coil current supply. For this R50 and C31 in Fig. 2.10 are not required. The supply line input is +15 V and should be taken from the Regulator circuit of Fig. 2.8.
Note that in the Components List for Part 1, R39 is $2.7 \mathrm{k}!$), $\mathrm{R} 8-4.7 \mathrm{k}$! and $\mathrm{R} 42-390$!. These values are correctly shown in the circuits.

NEXT MONTH...

 2 XT,From the same stable as the now-famous P.E. Gemini, comes the P.E. Orion. A medium power stereo amplifier contained in a compact cabinet offering a high performance for a modest outlay. The $20+20$ watt output will satisfy almost all domestic requirements.
\star Output: $20+20 \mathrm{~W}$ into 8 ohms

* Distortion less than 0.1\%
\star Excellent transient response
* Will drive electrostatic loudspeakers
\star Will accept inputs from radio, tape and disc

Flexible decorative efiect for the home, discotheque or shop. Can be shaped to almost any desired form.

DIGITAL LEAF

Automatic moisture control for greenhouse plants.
Controls a mist watering system so that your plants get just the right amount of water.

PRACTICAL
 = =-TRADNEG

JANUARY 1975 ISSUE ON SALE DECEMBER 13, 1974

IE puse GENE RATOR BY M.E.THEAKER

DURING the course of work with logic circuits it has been found useful to have a source of suitable digital waveforms to hand. However, the popular sine/square-wave generator is not ideal for this task as its signals are not compatible with the two most commonly used logic families, TTL (tran-sistor-transistor logic) and DTL (diode-transistor logic). Whilst complex signal generators, which provide suitable signals, are available at great expense, using one of these for most amateur purposes is rather like using a sledgehammer to crack a nut.

For this reason a simple and compact source of various digital waveforms was developed. It will provide a mechanically switchable output at either of the two logic levels corresponding to 0 and 1 , a continuous train of square-wave pulses variable in frequency from 10 MHz down to a pulse every few seconds, a monostable multivibrator for providing single pulses of any given duration from seconds to microseconds, a Schmitt trigger circuit and, lastly, a lamp indicator circuit to show whether the logic state of a circuit is high or low (l or 0).

LOGIC LEVELS

Some basic rules are common not only to 74 series but also to most other TTL and DTL logic families.

First, the signal level should never exceed $5 \cdot 5 \mathrm{~V}$. or be less than -0.6 V . It should occupy one of two
states, " 0 " which is typically 0.2 V (maximum 0.4 V), and " 1 " which is typically 3.0 V (minimum 2.4 V).

The next important requirement is that the time taken to go from the low state (0) to the high state (1), which is known as the rise time, or the reverse which is known as the fall time, should not exceed one microsecond ($1 \mu \mathrm{~s}$).

The reason for this is that both TTL and DTL are saturated logic circuits which operate in one of two stable states corresponding to 1 and 0 . As they switch from one state to the other they pass through an unstable linear zone where the circuit can act as an amplifier or an oscillator.

If the signal input to a logic circuit has an unduly long rise or fall time, oscillation of the circuit will occur and is highly undesirable. If the rise and fall times are less than $1 \mu \mathrm{~s}$ for gates (150 ns for flip-flops), then spurious oscillation will not occur.

THE CIRCUITS

The first requirement for testing logic circuits is to be able to provide a steady output corresponding to logic state 1 or 0 and to be able to switch between these two states at will. It might be thought that a simple switch connected to either 0.2 V or 3 V as shown in Fig. la would suffice, but this circuit would not give a single transition from one state to the other, instead it gives rise to a number of pulses due to contact bounce as at Fig. 1b.

Fig. 1. lliustrating the effect of contact "bounce" when using a normal switch

Fig. 3. The frequency of operation of this free-running multivibrator is selected using various values for C

SWITCHED LOGIC LEVELS

In order to overcome contact bounce problems the switch can be used in conjunction with a flipflop, which is made up from two 2 -input Nand gates as shown in Fig. 2.
With the switch shorting S1.1 to ground one input to gate GIC is low (0 state). As S1.2 is not grounded it is high (1 state). Thus the output at SK2, gate GID is low. Since both inputs to gate GIC are low its output at SK 1 is high.

When the switch is moved to short S1.2 to ground. GID output goes high. Since SI.1 is no longer connected to ground, it is now high and GIC output goes low. The outputs at SK1 and SK2 are now reversed and the transition is free from contact bounce. Returning the switch to position S1.1 restores the circuit to its original condition once again without contact bounce.

FREE-RUNNING MULTIVIBRATOR

Besides being able to switch at will from one logic level to the other, it is also useful to have a continuous source of pulses variable in speed from very slow to very fast. A suitable circuit is shown in Fig. 3 and consists of four 2 -input NAND gates G2A, G2B, G2C and G2D. R1 and R2 affect the symmetry of the waveform and are nominally 470S. When they are equal in value the output waveform is nominally square, i.e. the waveform has a $1: 1$ mark/space ratio. The repetition rate or frequency of the signal is determined by capacitor C .
The 2 -input Nand gates G2A, G2B and G2C, are connected with their two inputs tied together as inverters.

To explain the operation of the circuit, consider the moment when the output of gate G2B goes from 0 to 1 . Gate G2A inverts this signal and its output goes from 1 to 0 .

The charge on Cl cannot change instantaneously and so the input to gate G2D also goes to 1 and the output goes to 0 .

Now capacitor Cl begins to charge through R2 since G2A input is high whilst its output is at 0 . As the capacitor charges so the voltage at pin 13 falls until it is sufficiently low to force the output of gate G2D into the high state, which in turn forces the output of gate G2B to go low. thereby commencing the second half of the cycle.

Fig. 4. A three-gate monostable provides a source of single pulses with adjustable duration

Fig. 5. The waveforms appearing at points in the circuit of Fig. 4

The input to gate G2A now being low forces its output high. Once again the charge on the capacitor cannot change instantaneously and so pin 13 is also low. Capacitor C1 now charges through R2 until the voltage at pin 13 is sufficiently high for gate G2D to change state and its output to go low. causing the output of gate G2B to go high, completing the cycle and starting another.
The process continues indefinitely as long as input to G2D at pin 12 is high. As soon as this input is taken low by an external circuit or is connected to earth, it stops the cycle. So pin 12 can be used to switch the oscillator on and off or, in other words. to "gate" or enable the oscillator. Gate G2C is used merely as an inverter and provides a complementary output from socket SK6.
Values of capacitance Cl for various frequencies are given in Table 1.

MONOSTABLE MULTIVIBRATOR

The third requirement is for a source of single pulses of adjustable duration and such a circuit is shown in Fig. 4. This forms a three-gate one-shot (or monostable) multivibrator circuit.
Varying C3 alters the output pulse duration and approximate values of capacitance for various pulse durations are given in Table 2.

A negative-going edge at the input produces a positive pulse at the output. The various waveforms of the circuit are shown in Fig. 5.

TABLE 1

C1	Period	Frequency
None	60 ns	16.7 MHz
47 pF	120	8.33 ,
100	170	$5 \cdot 88$
220	280	3.57 "
470	515 ,	1.94 .
1 nF	$1 \mu \mathrm{~s}$	1.0 ' ${ }^{\text {Hz }}$
$2 \cdot 2$,	2.1 ,	476 kHz
4.7 ,	4.3 י	233
10	$8 \cdot 1$,	123
22	19 ",	53 "
47	37 ,	27 "
100	70 י'	14
220	190 י	$5 \cdot 3 \quad$ "
470	430 ",	$2 \cdot 3$
$1 \mu \mathrm{~F}$	909 ,	$1 \cdot 1$ ' ${ }^{\prime \prime}$
100 ,	91 ms	11 Hz

TABLE 2

C3	Pulse width
None	180 ns
47 pF	230 .
100 ,	300
220 ,	430
470	900 "
1 nF	$1.5 \mu \mathrm{~s}$
2.2 ,	3.0 ,
4.7 ,	$5 \cdot 8$,
10 ",	12 י'
22 ;	25 "
47 ",	50 ",
100 "	110 .,
220	260 י
470	680 י
$1 \mu \mathrm{~F}$	1.3 ms
- 10 .	2.3 ms

SCHMITT TRIGGER

As mentioned earlier. TTL circuits require a pulse waverorm with a fast rise time. If this requirement is not met. positive feedback between the output and input of the circuits will give rise to high frequency oscillation

In order to be able to feed signals with slow rise times such as sinusoidal waveforms into TTL circuits a Schmitt trigger is incorporated as shown in Fig. 6. Positive feedback is applied via $R 5$ in order that the

Fig. 6. A simple Schmitt trigger circuit using half of a SN7400N
output switches swiftly from one state to the other when the threshold is reached. The Zener diode D3 protects the circuit from overvoltage and the resistor R4 protects D3 from exceeding its maximum power dissipation. With R4 equal to 330Ω, inputs of up to 20 V r.m.s. can be accommodated and the circuit will trigger on 2.8 V r.m.s. With R4 equal to 100Ω, the maximum input is 6 V r.m.s. and the minimum input 2 V r.m.s.

LAMP INDICATOR

In order to check whether a circuit under test is at high or low level a lamp indicator circuit is included. The circuit is shown in Fig. 7 and consists of a transistor, TR1, a lamp LP1 and a base resistor R6 to limit the input current to the transistor.

COMPONENTS . . .

```
Resistors
    R1 470\Omega
    R2 470\Omega
    R3 22k\Omega
    R4 330\Omega
    R5 220\Omega
    R6 470\Omega or 1k\Omega (see text)
    R7 180\Omega
    All dW, 5%
```


Capacitors

C1 68pF Polystyrene (see Table 1)
C2 150pF
C3 68 pF polystyrene (internal)
(internal see Table 2)
Semiconductors

IC1	SN7400N or equivalent	
IC2	$\prime \prime$	$" \prime$
IC3	$\prime \prime$	$"$
D1	1 N 4148	
D2	1 N 4148	
D3	$4.7 V, 400 \mathrm{~mW}$ Zener	
TR1	BFY51 or similar	

Fig. 9. Veroboard and component layout for the pulse generator

Miscellaneous
LP1 Miniature 6V, 0.36W Lilliput lamp and holder (Or l.e.d.)
S1 Miniature toggle switch, SPC0
SK1 to 1616 single-pole miniature 1 mm sockets, colour to suit

Single-pole miniature 1 mm plugs in colour and quantity to suit for leads and supply lines
Veroboard, 0.1 in pitch, $3.4 \mathrm{in} \times 2.0 \mathrm{in}$. Veropins. Case (Prototype used 2×202 tobacco tins), wire, solder etc.

Fig. 7. Lamp indicator using a filament lamp. Note that the power supply is fed to sockets $14(+5 \mathrm{~V})$ and 15 (0V) from an external battery or p.s.u.

Fig. 8. Indicator using an l.e.d.

When logic 0 is applied at SK 16 the transistor is cut off and no current passes through the lamp, but when logic 1 is applied the transistor is switched on and current passes through the lamp which lights.

A further version of the lamp circuit using an l.e.d. is shown in Fig. 8.

CONSTRUCTION

The circuits are all constructed on one piece of 0.1 in pitch Veroboard, 3.4 in by 2.0 in . Whilst the layout is not critical leads should be kept as short as possible and the suggested layout of Fig. 9 works well.
The easiest way of constructing such a board is first to cut it to size, then drill the three 6B.A. clearance holes required for mounting the board in the case. Next the pins should be inserted and then the cuts in the copper strips should be made. Following this, the wire links should be inserted and soldered in place, followed by the discrete components and finally the transistor and three integrated circuits.

CASE

The case for the prototype pulse generator was made from a standard two-ounce tobacco tin. Three 6B.A. screws approximately half an inch long should be screwed through the bottom and Araldited in place to accept the Verobard. The top of a further tin can be rubbed down to remove the paint from the top rim and then Araldited underneath the bottom of the case and allowed 24 hours to set.

Bonding a lid underneath the case prevents the heads of the 6B.A. screws (which are now hidden) from scratching other equipment or furniture and means the generator may be stacked on to a second tin containing the leads and spare timing capacitors.

When the Araldite has set, the case should be painted and the sockets labelled as shown in the photograph. "Letraset" was used for the prototype and then varnished, which provides a very durable finish.

The capacitors used for adjusting the frequency of the astable multivibrator and the pulse width of the monostable multivibrator should have Veroboard (or similar) pins soldered to their leads for connection into the sockets provided on the case. A number of leads should be made up, some with a plug on one end for connection to external circuits, and some with plugs on both ends for interconnecting the sockets of the generator. These leads should preferably not exceed 1 ft length for reliable operation.

The 1 mm sockets used here are probably the only ones small enough to use in a tobacco tin. However. if a larger unit is used different output arrangements could be adopted. If component'switching and other refinements are added care will be required over length of leads and interaction between signals.

Now-two fascinating ways to enjoy saving money! NEW! Sinclair Scientific kit

Britain's most original calculator now in kit form

The Sinclair Scientific is an altogether remarkable calculator.

It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around $£ 100$ or more.

Yet even ready-built, the Sinclair Scientific costs a mere $£ 32.35$ (including VAT).
And as a kit it costs under £20!
Forget slide rules and four-figure tables!
With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin,
cos and arccos,
tan and arctan.
automatic squaring and doubling,
$\log _{10}$, antilog ${ }_{10}$, giving quick
access to x^{r} (including square
and other roots).
plus, of course, addition, subtraction, multiplication, division,
and any calculations based on them.
In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to assémble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.
All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.
Of course, we Il happily supply the Scientific or the Cambridge already built, if you prefer - they're still exceptional value Use the order form.

Components for Scientific Kit (illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panei
7. Electronic components pack
(diodes, resistors, capacitors, etc)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific

- 12 functions on simple keyboard Basic logs and trig functions (and their inverses), all from a keyboard as simple as a normal arithmetic calculator's. 'Upper and lowercase' operation means basic arithmetic keys each have two extra functions.
- Scientific notation Display shows 5-digit mantissa, 2-digit exponent, both signable.

200-decaderange 10^{-99} to 10^{+99}.

Reverse Polish logic Post-fixed operators allow chain calculations of unlimited length-eliminate need for an $=$ button.

25-hour battery life 4 AAA manganese alkaline batteries (e.g. MN2400) give 25 hours continuous use. Complete independence from external power. Genuinely pocketable $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$. Weight 4 oz. Attractively styled in grey, blue and white.

Sinclair Cambridge kit

At its new low price, the original Sinclair Cambridge kit remains unbeatable value.

In less than a year, the Cambridge has become Britain's most popular pocket calculator.

It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge Kit

1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch 10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

Uniquely handy package. $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$, weight $31 / 2 \mathrm{oz}$.

- Standard keyboard. All you need for complex calculations.
- Clear-last-entry feature.
- Fuliy-floating decimal point.
- Algebraic logic.

Four operators $(+,-, x, \div)$, with constant on all four.

- Powerful constant with separate ' K ' button.
- Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 15$.

Calculates to 8 significant digits.
Clear, bright 8-digit display.

- Operates for weeks on four AAA batteries.

Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and well refund your money without question.
All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)

Simply fill in the preferential order form below and slip it in the post today.

Scientific

Price in kit form $£ 19.95$ inc. VAT. Price built f 32.35 inc. VAT. Cambridge
Price in kit form $£ 14.95$ inc. VAT.
Price built £21.55 inc. VAT.

To: Sinclair Radionics Ltd, FREEPOSTSt Ives. Huntingdon, Lambs. PE174BR

Please send meSinclair Scientific kit at $£ 19.95$

Sinclair Scientific built at $£ 32.35$
Sinclair Cambridge kit at $£ 14.95$
Sinclair Cambridge built at $£ 21.55$
All prices include 8\% VAT.
| *I enclose a cheque for $£, ~$
| made out to Sinclair Radionics Ltd, and crossed.
*Please debit my *Barclaycard/
Access account. Account number

|Signed
Name
Address

Please print. FREEPOST - no stamp needed. PE/12/74

Sinclair Radionics Ltd, FREEPOST St. Ives, Huntingdon, Cambs. PE1748R. Reg. No: 699483 England. VAT Reg. No: 213817088.

PHASE LOCKED LOOP FOR HIGH PERFORMANCE F.M. RECEIVERS

THE SIGNETICS International Corporation have recently introduced a new type of phase locked loop integrated circuit known as the NE563. This device employs new techniques to provide an exiremely good performance in high quality f.m. receivers.

PERFORMANCE

The NE563 can provide an audio output signal having a total harmonic distortion of less than 0.5 per cent when fed with a 10.7 MHz input signal having a 75 kHz deviation at a 1 kHz modulation frequency. This distortion level is lower than that of any other f.m. demodulator circuit known to the writer.

However, the NE563 not only excels in its low distortion, the a.m. rejection is 70 db , far greater than that of most other circuits which seldom exceed 50 db . The signal-to-noise ratio of 70 db also illustrates the performance of this new device.

Although it provides such good performance figures, the NE563 is also convenient to use, since it functions as a complete i.f. strip without any coils whatsoever.

It also contains a built-in limiter circuit which itself has a gain of up to 60 db .

POWER SUPPLY

The NE563 operates from power supply voltages in the range 10 V to 15 V , this being less than that required by the earlier NE560, 561 and 562 series. The supply current is about 35 mA . The NE563 is more sensitive than these earlier devices, having an input sensitivity of typically $5 \mu \mathrm{~V}$ (maximum $10 \mu \mathrm{~V}$) for a 30 db signal-to-noise ratio.

A further added bonus provided by the 563 is the high audio output level of 500 mV r.m.s. (which may be compared with the typical value of 60 mV obtainable from the NE560 series of devices). The maximum load which can be applied to the audio output is $2 \mathrm{k} \Omega$.

The NE563 also incorporates facilities for interstation muting and for the operation of a signal strength meter.

The 563 device is encapsulated in a 16 pin dual-inline case with the connections shown in Fig. 1.

Fig. 2. Recommended circuit for the NE563. (R11 has been reduced from the value of $7.5 \mathrm{k} \Omega$ suitable for the $75 \mu \mathrm{~s}$ pre-emphasis used in the U.S.A.)

CIRCUIT OPERATION

The basic circuit recommended by the manufacturers of the 563 is shown in Fig. 2. The excellent performance is, of course, related to the techniques employed in this circuit.

A 10.7 MHz signal from the front-end unit is capacitively coupled into the limiter input at pin 7 of the device. The limited output signal from pin 5 is passed through the 10.7 MHz miniature ceramic filter marked F1 into the mixer input at pin 2.

The two resistors R1 and R2 on each side of the filter F1 are required for matching the filter impedance to that of the circuit. If they are omitted, the band-pass characteristics of the filter will be impaired.

The 10.7 MHz signal entering the device at pin 2 is mixed with a 9.8 MHz local oscillator signal generated by the crystal controlled oscillator connected in the circuit of pins 1 and 16. A difference frequency of 0.9 MHz is thereby generated.

Table 1: Showing the typical readings of a high resistance voltmeter connected to pin 8 at various input signal levels

Input	Meter Reading (V)
$1 \mu \mathrm{~V}$	0.3
$10 \mu \mathrm{~V}$	0.35
$50 \mu \mathrm{~V}$	0.6
$100 \mu \mathrm{~V}$	0.85
$500 \mu \mathrm{~V}$	1.4
1 mV	1.6
5 mV	2.3
10 mV	2.75
50 mV	3.6
100 mV	4.0

The centre frequency of the voltage controlled oscillator of the phase locked loop is determined by the value of the capacitor C10 connected between pins 11 and 12 of the device; this capacitor is selected to provide a free-running or centre frequency of about 0.9 MHz . The loop therefore becomes locked to the frequency of the difference signal.

The error signal voltage which keeps the loop in lock is the required audio output. The audio signal is filtered by R10 and C12 (time constant $2 u \mathrm{~S}$) to reduce the amplitude of any radio frequencies present, whilst leaving the high frequency components of the stereo signal virtually unaffected.

The audio signal is also filtered by R11 and C11 which provide the required de-emphasis of 50 us for monaural signals.

The 563 provides an automatic frequency control output signal from pin 15 which may be fed to the front end unit. A voltage is provided by pin 8 which can be fed to a high resistance voltmeter to provide an indication of the signal level at pin 7. Typical values of the meter reading for various input voltages are shown in the table.

CONCLUSION

The use of this new device should lead to both an improvement in the performance of high quality f.m. receivers and also a simplification in their circuitry. Although a 9.8 MHz crystal is required for use with the NE563, the circuit is extremely simple and requires no coils or alignment. It seems to be equally suitable for use by the manufacturer of high quality commercial receivers and by the amateur constructor.

NEWS BRIEFS

Approval of Ceefax and Oracle experiments

The Home Secretary has approved the introduction for a two-year experimental period, of the broadcasting of live information on television by means of the techniques known as CEEFAX (BBC) and ORACLE (IBA).

The purpose of the experiment, whereby those in possession of the necessary receivers will be able to receive printed information over a wide range of topics on their television screen, is to enable an assessment to be made of the demand for the service, to determine what form it should take and to estimate the scope for the manufacture of the equipment. It is assumed that the Annan Committee on the Future of Broadcasting will consider the techniques involved against its review of broadcasting policy as a whole.

Oracle demonstration

| UST prior to the Home Secretary's approval a "live" \int demonstration of the "Oracle" system was staged at Crawley Court near Winchester, headquarters of IBA's engineering division. There direct feeds from ITN, the Meteorological Office and the A.A. provided information which could be immediately up-dated. The display material was coloured with upper and lower case letters, included graphics and whole words could be flashed to rivet the attention of the viewer to an important item.
"Oracle," an acronym for Optional Reception of Announcements by Coded Line Electronics, can provide such presented information at the touch of a button.

This "broadcasting of the written word" is obtained by inserting a digital signal during part of the field blanking interval of a 625 line waveform. Since the details of the signal coding differed for the experimental BBC and IBA systems it has been necessary to draw up a common data broadcast standard which has now been ratified.

Up to 100 different pages of data, each page comprising up to 150 words or diagram could be transmitted continuously. Viewers having the necessary decoder (which will be integral to future generation receivers) will have immediate access to any of the pages being transmitted on the channel tuned. This can be displayed on a neutral background or superimposed on the television picture

Whilst a regular transmission of live broadcasts by the BBC was started on September 23rd, the IBA experimental service is not expected to commence till next year.

THERMOMIETR/CONTROLIER

By J.N.JONES

THE relationship between the forward voltage drop of a diode and the temperature of the surroundings often caluses problems in electronic circuitry. The present project makes use of this drawback to measure temperature.

The circuits described are simple, easily constructed and linear. The diode used is the very common 1N914 (equiv: IS914) which can be obtained for as little as 3 p and, since it is physically small. can be used to sense the temperature of small as well as large objects. Also, the size leads to a fast response rate.

Silicon diodes have one limitation, the range extends only from $-65^{\circ} \mathrm{C}$ up to $+175^{\circ} \mathrm{C}$ but this is wide enough for most applications and the instrument can be calibrated anywhere in this range.

APPLICATIONS

The article describes four basic circuits, a simple indicator in detail and an indicator/controller with set-point display, a blind (non-indicating) controller and a switched range version of the first indicator. The first mentioned is taken to the prototype stage in detail whilst the others are described in basis only.

Obviously there are many applications including normal workshop testing as when a transistor is running hot. The indicator can show if it is too hot or still within its range. The blind controller can be used to maintain an item of equipment at a given pre-set temperature using a heating element.

CIRCUIT

A basic indicator circuit is shown in Fig. 1. Here a stable reference voltage for the diode probe and operational amplifier inputs is provided by an integrated circuit [Cl which is in fact a 723 device which also carries an amplifier used elsewhere in the sircuit (IC3).

The diode probe is connected in the feedback loop of IC2, connected to the inverting input. By careful adjustment of the potentiometer VRI, the bias provided to the non-inverting input of IC 2 is held to about 600 mV below the $V_{\text {ref }}$ (Pin 6) provided by [CI. (Actually the diode DI forward voltage drop at $0^{\circ} \mathrm{C}$ or whatever temperature zero meter current represents.)

Fig. 1. Circuit diagram of the heart of the indicating diode thermometer showing the use of integrated circuits to provide sophisticated circuit functions in a very simple manner

IC2 works in the inverting mode feeding current through Di to R3 so that the inverting input is held at the same potential as the non-inverting. The output is thus one diode drop greater than the bias voltage provided by VR!

The sensitivity of a silicon diode is about $-2 \mathrm{mV} /$ degree C. thus the p.d. is in fact about 600 mV at $0^{\circ} \mathrm{C}$ and 400 mV at $100^{\circ} \mathrm{C}$. IC2 output thus changes from $V_{\text {ref }}$ at $0^{\circ} \mathrm{C}$ (or zero meter current temperature) to approximately $V_{\text {ref }}-200 \mathrm{mV}$ at $100^{\circ} \mathrm{C}$.

Amplifier IC3 also operates in the inverting mode, passing current through the indicator ME1 to maintain the two input pins at the same potential. As the input impedance of IC3 is high all the meter current passes through VR2. Thus one end of VR2 is held at $V_{\text {ref }}$ by IC3 whilst the other varies from $V_{\text {ref }}$ to $V_{\text {ref }}-200 \mathrm{mV}$ (at $100^{\circ} \mathrm{C}$).
Thus VR2 value determines the current per unit temperature flowing in ME1. A $100 \mu \mathrm{~A}$ indicator, to correspond to $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ requires VR2 of about $2 k \Omega$ and thus a $10 k!$? potentiometer is suitable.

VOLTAGE REGULATOR

A circuit of this type, to retain accuracy, needs to be supplied with reasonably constant voltage at the probe and other operational amplifier inputs. Hence the use of the 723 regulator chip. These can be obtained for about 57 p and contain the required 7 V reference source and an amplifier which is useful.

In the circuit, R1 provides short circuit protection for the amplifier section and Cl is necessary for frequency compensation.

The 741 amplifier chip was selected for IC2 and either the 8 or 14 -pin d.il. packages may be used in the Veroboard layout of Fig. 2. This device has its own internal frequency compensation.

R4 is required if negative (below $0^{\circ} \mathrm{C}$) temperatures are to be investigated and for setting to zero since IC3 can only drive the meter in one direction

METER PROTECTION

Since removal of the diode probe with the instrument switched on will cause heavy meter current, apart from any other reasons, meter protection is a good idea. Hence diode D2 which protects the meter against large overloads but does not affect normal readings.

In addition, the 723 amplifier, IC3, has programmable short circuit protection which can be selected to lie close to the sum of meter f.s.d. current and R4 current. Programming is by selection of R1 from the following equation

$$
1 \bumpeq \frac{0.65 \mathrm{~V}}{\mathrm{R} 1}
$$

As R4 is selected to sink enough current to give reverse f.s.d. on the meter then I must equal (current through R4 plus the current through the meter) $\times 1.5$. The factor 1.5 is to ensure that normal IC3 currents do not enter the range where

Resistors			
R1	$2.2 \mathrm{k} \Omega$	R7	$1 \mathrm{k} \Omega$
R2	$47 \mathrm{k} \Omega$	R8	3.9k Ω
R3	$10 \mathrm{k} \Omega$	R9	$68 \mathrm{k} \Omega$
R4	$47 \mathrm{k} \Omega$	R10 to R18	100Ω
R5	$180 \mathrm{k} \Omega$	R19	$18 \mathrm{k} \Omega$
R6	47k Ω		
All 2% except R10 to R18 which are 1\%.			
Potentiometers			
VR1 10 k	VR3	5k Ω VR5	50k Ω
VR2 10	VR4	5k Ω	
For best results use Cermets or miniature multi-			
Capacitor C1 100p			

Fig. 2. Veroboard layout of the main circuit components of Fig. 1

Integrated Circuits

IC1 \& 3 One 723 Regulator i.c.
IC2 741 Operational Amplifier
IC4 741 Operational Amplifier
Diodes
D1 1N914 D2 1N914
Transistors
TR1 BFY51

Switches

S1 3-pole, 4-way slide or rotary
S2 2-pole changeover
S3 1-pole, 10 -way

Miscellaneous

ME1 $100 \mu \mathrm{~A}$ meter or to suit.
Veroboard; Octal relay plug and socket if required; case, batteries, wire, etc.

Fig. 3. The assembled circuit of the indicating instrument developed from the basis of Fig. 1
short circuit protection begins as scale non-linearity could result.

PROTOTYPE CONSTRUCTION

For convenience and neatness the original was made up in an octal-based relay case and the pin numbers used are shown in both Fig. 1 and Fig. 3. These are not firm and can be modified. Pin 7 for example was used to retain the battery lead for convenience but is not connected to the Veroboard.

SWITCHING

The 3-pole, 4-way switch S1 of Fig. 3 provides on/off, battery check, 0 to $\pm 100^{\circ} \mathrm{C}$ (in fact only to $-60^{\circ} \mathrm{C}$). In the off position the meter is shorted out for added protection.

In the battery check position the $180 \mathrm{k} \Omega$ resistor R5 converts MEI to an approximately 18 V voltmeter. This is effected with the load connected so a proper test is indeed performed.
In fact the instrument can function with battery voltage as low as 10 V with very little loss in accuracy.

An assembled circuit board mounted on its octal plug carrier and with the cover removed

Fig. 4. A variation of the diode thermometer designed to give both control and indication functions

METER

Provision is made for an external meter if this is required. It should of course match the existing meter $(100 \mu \mathrm{~A})$. Normally the link is left in place.

If it is required to substitute a 1 mA movement for the $100 \mu \mathrm{~A}$ suggested in Fig. I then R1 becomes 220!, VR2 becomes 1 kS , and R4 becomes 4.7Ω. Other meter values between these two limits can be accommodated if desired by interpolation.

CALIBRATION

Instrument calibration is in fact fairly simple. After assembly and circuit checking the instrument is now ready. Due to characteristic variations from diode to diode, calibration is needed each time a diode is changed.

In addition, the diodes themselves need some form of protection. Thus it is best to coat them with material such as cellulose varnish, synthetic resin, silicone rubber or the like to both prevent ingress of damaging fluids and, of course, to avoid faulty readings due to conductive fluids altering the diode characteristics.
Of course the coating will to some extent reduce the speed of reaction of a diode but this can be accepted happily in many applications.

The easiest way to calibrate is to use boiling water for the $100^{\circ} \mathrm{C}$ standard and melting ice for the other $0^{\circ} \mathrm{C}$ level. Thus a simmering pan of water and a thermos flask containing a water/ice mix are convenient.

With the instrument switched on, place the probe first in the ice/water mix and adjust VR1 to set the meter zero value. Now place the probe in the simmering water and adjust VR2 to set the end-ofscale $100^{\circ} \mathrm{C}$ correctly to the f.s.d. mark on the meter if it is a 0 to 100 scale.

An interesting point is that whilst Fahrenheit is now out of fashion it is just as easy to calibrate a scale to Fahrenheit if one wants.

It will probably be necessary to repeat the procedure to check calibration. Of course, the scale can be compressed or expanded as required.

INDICATOR/CONTROLLER

By using an extra amplifier IC4 as in Fig. 4, in the comparator mode, the signal at IC2 output can be compared to any preset value and a resulting switching action used to provide control or alarm functions. With the switch S2 in the "Normal" position the circuit of Fig. 4 provides both visual indication of temperature and a switching output function. IC4 comparator controls TR1 which in turn controls the required external circuits.

With S2 in the "Set Alarm" position IC4 is connected as a voltage follower, buffering the set-point potential of VR3 and presenting it to IC3 and the meter. Thus the meter indicates the setpoint value.

BLIND CONTROLLER

The circuit of Fig. 5 can be used to drive lamp or relay circuits in order to effect a blind (non-indicating) control function.

SWITCHED RANGE INSTRUMENT

The circuit of Fig. 1 can be modified as in Fig. 6 to provide a scale expansion function in which the indicator gives a 0 to 10 degree indication and the

Fig. 5. A "blind" controller based on the diode thermometer. The output is "on" when the sensed temperature is below the set point
switch S3 selects the lower point of the indicated scale. Thus as shown the $10^{\circ} \mathrm{C}$ scale can start at $0^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ and so on up to $90^{\circ} \mathrm{C}$ as selected by the switch.

This gives a scale expansion of one order of magnitude which can be useful in many applications.

When calibrating this version of the instrument VR1 is adjusted as before with S 3 in the $0^{\circ} \mathrm{C}$ position, VR2 is adjusted to give a $10^{\circ} \mathrm{C}$ range indication, and then VR5, is adjusted with S3 at $90^{\circ} \mathrm{C}$ position and the probe in boiling water to give f.s.d. The VR2 adjustment will probably require the use of a normal thermometer.

Fig. 6. A modification of Fig. 1 which gives an expanded scale covering $10^{\circ} \mathrm{C}$ but switchable to start at any of a number of selected temperatures

PIEZOELECTRIC CERAMICS

By J. van Randeraat and R. E. Setterington Published by Mullard Ltd. 211 pages. Price $£ 4$ clothbound

This latest addition to the Mullard technical library offers, in one volume, a comprehensive textbook on the subject of piezoelectric ceramics from basic theory through mechanics and associated mathematics to the practical application of a wide range of devices manufactured by the publishers.

This volume is up to the usual high Mullard standards with plenty of back-up information provided in the form of recognised symbols used in the art, tables of information on the various shapes and forms of device available and details of behaviour under temperature variation.

Apart from the in-depth technical information. space is given to discussion of the main application areas for this recently developed material, such as in gas ignition, in flexture elements those which move on application of electric current) and in resonant devices as in filters and ultrasound equipment.

A variety of circuits are worked through, even as far as production of p.c.b., and suggestions are put forward for such items as a depth sounder, control transmitter/receiver installations and intruder alarms.

Following the usual Mullard tradition this book will be of use anywhere this type of device is considered from the educational establishment to the industrial workshop and is undoubted value in current terms.

Available from technical bookshops or directly from the distributor. Technical Press Ltd.. Freeland, Oxford. OX7 2AP.
R.D.R.

SL600 SERIES APPLICATIONS MANUAL
 By James M. Bryant
 92 pages, $6 \mathrm{in} \times 8 \frac{1}{4} \mathrm{in}$

This is the second edition of collected applications information specific to the Plessey Semiconductors SL600 series i.c.s.

Completely updated, the contents break down to three sections with appendices. Section 1 covers circuit data; section 2-system design and section 3 on relevant technical data.

In section 1 chip circuitry is explained and the area of applications detailed. The remainder of the manual looks at complete communications systems including the devices with an end section on product characteristics with operating notes.

Copies of the manual are available from Plessey Components Ltd., Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW. Price 50p.

RADIOISOTOPE EXPERIMENTS IN PHYSICS, CHEMISTRY AND BIOLOGY

By J. B. Dance
Published by Hutchinson Educational
246 pages, $8 \frac{1}{2}$ in $\times 5 \frac{1}{2}$ in (softback). Price $\mathbf{£ 1} \mathbf{7 5}$

THE study of nuclear radiation is receiving increasing attention in schools and colleges. It offers opportunities to demonstrate the fundamental nature of matter with quite simple equipment, such as the well-known Geiger counter.

This book describes in full detail more than 70 experiments that can be performed using either naturally occurring radioisotopes or artificially produced isotopes. The topics covered include those of interest to students of physics, chemistry, statistics, and biology, up to G.C.E. Advanced Level.

The collection of experiments (well catalogued for immediated reference in the Contents) makes up rather more than half of this book. It is preceded by five sections dealing with theoretical and practical matters, which collectively form an excellent introduction to the subject.

Appendices give valuable information and data; in particular, the regulations and codes of practice governing the use of radioisotopes in educational establishments and addresses of suppliers of equipment and radioactive sources.

This book is an expanded and updated version of the author's Radioisotope Experiments for Schools and Colleges which was first published by Pergamon Press in 1967.
F.E.B.

RECEIVING PAL COLOUR TELEVISION

By A. C. Priestley

Published by Argus Books Ltd.
261 pages. Price $£ 5$

To readers of our companion magazine Television, the author's name is no doubt familiar. With a background of many years in TV design and the creator of correspondence courses in colour TV one would assume these were the ingredients for producing a successful book on the subject.

With a publishing date that coincides nicely with the start of a new term of evening and day classes it will obviously attract engineers, technicians and students who already have a working knowledge of the principles of monochrome television and wish to extend their knowledge to embrace PAL colour systems.

Since the mathematical explanations are marginal, the enthusiastic amateur might get better results from his set with judicious reading.

Chapter one deals with the origins of the PAL system, basic light theory and a short review of monochrome fundamentals.

Subsequent chapters include analyses of the transmitted colour signal, display tubes, decoding, colour display adjustment and servicing which includes test gear requirements, interpretation of results along with rudimentary troubleshooting procedures.

The reading is made so much easier by the abundance of sideheads which break up each chapter. They also prove a useful reference, being included in the contents page.

There are many line drawings and a number of colour plates. Final appendices cover vectors, phasors and colour bar signal waveforms.

CALCULATOR NEWS

Sinclair Radionics, Britain's largest calculator manufacturer with an output of 50,000 units per month, of which 70 per cent are exported, is on the brink of its biggest deal ever. This is a completely new calculator which will be marketed by the Gillette Company of Boston, U.S.A. First reports suggest that the calculator is unlike any of the five Sinclair models currently available and is being designed to an original Gillette specification. Details are hush-hush at the time of writing, but I understand a test marketing by Gillette in the United States is imminent. If the market responds satisfactorily, big production contracts will follow. And it is hinted that "big" is measured in millions of units.

Advance Electronics is offering a version of the Model 162P fully programmable calculator in kit form at $£ 99$ plus VAT. The assembled 162 P is listed at almost $£ 200$ which suggests that assembly and testing is a tedious and timeconsuming affair. But Advance say that the kit can be assembled 'in a matter of minutes without requiring any special tools". This is another example, it seems to me, of the erratic pricing structure in the calculator business. Even in these days of wage inflation, $£ 70$ or so for "a matter of minutes" in assembly seems somewhat excessive.

Mullard's new MOS i.c.s for calculators enable any would-be calculator manufacturer to get into business. Announcing the new range, Mullard say all you need is a keyboard, a display and a few interface components. There are four i.c. kits for desk models of all complexities, including memory circuits and print-out drives, and a couple of single-chip i.c.s for the simpler pocket calculators. But
before leaving the car in the drive and setting up an assembly plant in the garage, remember that it's easier to make things than market them. I have been told that in the early days it cost one manufacturer £15 in press advertising for each calculator he sold.

BARGAINS

With share prices at an all-time low it's a wonder more companies haven't been snapped up by bargain hunters than have been. Who would have imagined a few years ago that one of the real high flyers, Advance Electronics, would change hands for a mere $£ 4-25$ million? But so it was after weeks of rumour. Advance, who was once well fancied as a possible buyer of Marconi Instruments, now finds itself a wholly-owned subsidiary of Gould Inc., of Chicago.

As long ago as November 1971 Gould was known to be shopping for European companies with over £25 million to invest and is now operating in nine European countries. It's hard to believe that this go-ahead concern runs its European operations not from some lush office suite in one of the great financial centres but from the Epping home of Gould Europe's director Richard A. Holmes.

Advance Electronics is a good buy. Chairman Sir Edward Howard reported record pre-tax profits of £709,793 for 1973 and full order books for 1974. And the Advance product range in no wav conflicts with Gould's own range.

Whether George Kent will be a bargain for GEC remains to be seen. Kent was about to conclude a deal with the Swiss company Brown Boveri in which the latter would have acquired a majority shareholding. With remarkable suddenness, and apparently with Government support, GEC put in a counter-bid which would give GEC 50 per cent ownership, the other shares being owned 41 per cent by the Government and nine per cent by Rank. The new alianment was not firm at the time of writing but few observers doubted that the deal would go through. The odd thina about the offer, apart from its speed and timing. was that it is entirely contrary to GEC's normal policy of total control. But these are strange times.

SEMICONDUCTOR PRICE WAR

Following dire warnings from Fairchild, reported in last month's Industry Notebook, there is evidence that a new round of pricecutting has started. The European SGS-ATES concern has reacted to reports of U.S. underpricing by slashing their own prices by up to 50 per cent on some consumer
i.c.s and by up to 40 per cent on some professional devices.

We all know that demand for consumer i.c.s has slackened but I feel it is perhaps goina too far to talk of a "semiconductor mountain". But it is true that stocks have been buildina up and first redorts suaqest that the SGS-ATES nrice cuts apolv onlv to the U.K. market-at least for the time beina. Whatever the decline in the demand. a spiral down in prices on a world scale can hardlv do anvone anv oood. As it is. today's prices for i.c.s average out at less than 50 oer cent of what thev were four vears ago in spite of inflation.

AEROSPACE FLIES HIGH

Britain's aerospace industry stood up well in comparison with foreign exhibits at last September's Farnborough Air Show. In round figures the output of the industry is . $£ 800$ million including $£ 500$ million of exports with a labour force of under 200,000 people. And the electronics sector looked really good with plenty of advanced technology products ranging in size from Plessey's new 3-D radar down to a tiny hand-held laser rangefinder shown by Barr \& Stroud which, in size and appearance, is like a pair of binoculars and yet has a range of three miles with L.E.D. digital read-out, and all operating from internal batteries.

Industry leaders were clearly pleased with the performance of their companies but with the threat of nationalisation over their heads I can only sum up the general atmosphere as one of nervous optimism.

The most honoured guests were those from the oil-rich nations whose multi-million pound orders were gratefully received. It's a straight swap of technologv against the purchase price of oil.

BRIGHT BOYS

Keep an eye on Membrain, already big in automatic test equipment and growing at a phenomenal pace. It's manned by a youthful team of enthusiasts headed by C. A. (Tony) Davies, now aged 30, who started the company in July 1970. Average age of Membrain staff is 33 years and 42 per cent of the 140 staff are under 30 .

Starting from zero they have built a business which is now turning over $£ 1.5$ million a year. It is still on the cards that Membrain will acquire the ATE interests of Honeywell, though both sides are currently dismissing the rumour. Not bad going for a bunch of youngsters who, apart from building a fine business, won the Queen's Award for Technological Innovation earlier this year.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought Any idea published will be awarded payment according to its merits. Why not submit YOUR IDEA?

NEON OSCILLATOR

This circuit is simple for the beginner to both build and understand and. using readily available components it can be assembled very cheaply. The frequency range is quite wide. from one pulse per second or less up to the higher audio frequencies.
In the circuit of Fig. I the capacitor C1 charges via R1 and R2 and the primary of T 1 , an old valve output transformer of 20 or 30 to 1 turns ratio. When the voltage across Cl reaches the striking voltage of the neon. the latter discharges. producing a flash at the neon and an

Fig. 1
output pulse from the secondary of TI.
After the circuit is constructed R1 should be adjusted from its highest value until oscillation starts and then R2 is adjusted to set the rate of charge of Cl and thus the frequency of oscillation. In this way one can use R1 as a coarse adjustment and R2 as a fine adjustment increasing the resistance to reduce the frequency.
With C 1 at $0.1 \mu \mathrm{~F}$ oscillations vary from a slow flash to about 50 Hz . Smaller values of Cl produce higher frequencies. Capacitor C2 is really optional and is used to alter the tone of the audio output. The output can be fed to a small loudspeaker or an amplifier as desired.
Applications are numerous. The circuit can form a useful voltage indicator or can perhaps be the basis of a synthesiser. Powering is either from the mains using a suitable rectifier and smoothing or using a battery of the valve receiver type $(90 \mathrm{~V}$). With the former it is possible to obtain a descending audio note on switching off and a continued illumination of the neon for some time after that because of smoothing capacitor charge holding. This could perhaps have timing applications.

The diode DI can be used to replace the neon if only an audio output is required. This should be a low reverse breakdown device so that Cl discharges through it when the breakdown voltage is reached.
M. J. Maynard Wednesbury.

ZENER DIODE GHARACTERISTICS

AN oscilloscope is a fairly usual adjunct to the workshop these days and most oscilloscopes are fitted with a sawtooth output from the ramp generator. This can be used to great advantage to measure the characteristics of Zener diodes.

All that is required in addition to the oscilloscope is a potential divider network which is connected up as shown in Fig. 1. The sawtooth potential is divided down so that it can be applied to the device under test. the same points being connected to the Y-amplifier input.

With no device connected, or one which is open circuit. the oscilloscope will display the plain ramp waveform, an evenly increasing voltage. With a short-circuit device connected the display will be a simple horizontal line as there will be no input to the Y amplifier.

Fig. 1

A good device will cause the display to assume the normal ramp shape until the voltage across the diode reaches the Zener voltage value when the trace will become horizontal. Thus the Zener voltage can be read from the scope graticule and Y amplifier setting.
A device with an intermittent fault will show a display which oscillates between the two possible other displays. depending on the fault failing to short or open circuit.

The characteristics of any diode can be investigated using this method and for other voltages the potential divider is suitably modified using Ohms Laiv to give a voltage level which exceeds the Zener voltage of the device under test. Of course, the sawtooth output must not be overloaded or the diode parameters exceeded.
R. Beck

Romney Marsh.

Now there's Doram, you need never wait for electronic components.

7-day service.

Buy the new Doram catalogue and you could have your components within 7 days of our receipt of your order.

If you don't,you'll have your money back and no questions asked.

What you won't get is a tedious wait. Which goes on. And on. And on. And on. You know just where you are with Doram.

Millions of components.

Doram is a brand-new deal for serious amateurs. It's a complete door-to-door components service operated by mail order.

You buy the Doram catalogue for 25 p lthat's a yearly reference book for the price of a pintt and then you order from it.

We're big enough to offer you stocks of millions of components on over 4,000 productlines.

And so confident of our service that if we can't supply the part you want within 7 days of receiving your order, we'll give you your money back. Immediately.

No-quibble guarantee.

It's just about impossible to buy a defective part from us. Because our checking is so pains-taking.

But even if the unthinkable does happen-and you're unlucky-then we'll still make you happy quickly.

Because we offer a noquibble replacement part service.

And our guarantee is guaranteed by the fact that we belong to the biggest electronics distribution Group in Britain.

All branded goods.

All goods supplied are branded goods. Made by bigname manufacturers like RS, Mullard,SGS-ATES,Ferranti, Siemens etc.

Doram brings the amateur the sort of service only professionals have enjoyed before.

So don't delay. Use the coupon. Send today for your first Doram catalogue. It can make your life a whole lot easier.

For 25 p that can't be bad, can it?

ELEGTRONALIE Deasent components for priceminded buyers

112p. CATALOGUE , FREE POSTAGE (U.K.) • ATTRACTIVE DISCOUNTS • SPECS. GUARANTEED

A 100 OF THE BEST From our translstor stock

2N1307	47 p	BC149C	14p
2N2646	51p	BC158日	15p
2N3053	26p	BC159	15p
2N3054	60p	BC167B	13p
2N3055	80p	BC168B	12p
2N3702	10p	BC169B	12p
2N3703	10p	BC 169C	13p
2N3704	11p	BC1798	$26 p$
2N3705	10p	BC 182L	26p
2N3794	18 p	BCte4L	26p
2N3819	25p	BC212L	12p
2N4062	11p	BC214L	14p
2N4443	52p	BC257A	14p
2N5052	420	BC2598	14p
2N5163	20p	BC758	30p
2N5459	32p	BD130	90p
40361	48 p	BD131	$4{ }^{4} \mathrm{p}$
40362	44p	80132	52p
40602	46p	B0135	37p
40636	[1. 36	80136	39p
40669	[1. 10	BDY20	83 p
AC128	17p	BF194	15p
AC151R	23 p	BFR39	23p
AC153	27p	BFR79	23p
AC153K	37 p	BFX29	33p
AC176	24p	BFX184	27p
AC176K	38 p	BFY51	23p
AC187K	31p	BRY39	45p
AC188K	29p	BY164	$51 p$
AD133	\&1.92	C10681	42p
AD136	E1.11	C106D1	82p
AD149	85p	C1406	73p
AD161	42p	M. 1481	[1. 20
AD162	40p	MJ491	£1.35
AF200U	70p	M 32955	90p
AF239	80p	M.JE371	89p
B1906	36p	M.JES21	$81 p$
BA138	31p	MJE2955	[19 12
B8103	$24 p$	MJE3055	68p
B8105	$34 p$	OA91	6p
B8109	18 p	SD4	${ }^{\text {a }}$
BC107A	15p	TIP31A	70p
BC407B	15p	TIP32A	80 p
BC108B	14p	TIP41A	80p
BC108C	14p	TPP42A	11.00
BC1098	18p	WO2	30 p
BC109C	18p	ZTX300	14p
BC147A	12p	ZTX304	23p
BC1478	13p	ZTX500	14p
BC148B	12p	21×504	45p

BAXANDALL SPEAKER KIT

As designed by P J. Eexandall and described originally in Wiretess wortd. Simple to assemble tantastically good results and a greater money saver. Carries 10 watts RMS 15 ohms impedance. Size 18in $\times 12 \mathrm{in} \times 10 \mathrm{in}$. Complete kit, including pack-flat cabinet. \$14.90.
The size and weight of this product obtiges us to charge 70p pait cost of carr in U.K. Equaliser Assembly. E2. 30 .
Loudspeaker Unit 59RM109, E2-45.
Cabinet kit (to Baxandall design), $\{10.45$. Cross-aver chooke for additional wooter to above $£ 1.50$.

DISCOUNTS

Avallable on all tems except those shown with
NETY PRICES. 10% on orders from \&S to §14.99 over.

FREE
POSTAGE
in U.K. for pre-paid malr for £2 lis? value mand orders there is an additional handing charge of 10 p . plage charced at cost. GIro A/C No.

RESISTORS

Code	Watts	Onms		$\begin{aligned} & 10 t \\ & \text { e not } \end{aligned}$	$9 \text { p } 100$ elow)
C	1/3	4.7-470K	$1 \cdot 3$	1.1	0.9 nett
c	1/2	4.7-10M	$1 \cdot 3$	$1 \cdot 1$	0.9 nett
c	3/4	4.7-10M	1.5	1-2	0.97 nett
C	1	4.7.10M	$3 \cdot 2$	2.5	1.92 nett
MO	1/2	10-1M	4	$3 \cdot 3$	$2 \cdot 3$ nett
WW	1	0.22-3.9R	11	10	-
Ww	3	1-10k	9	5	6
Ww	7	1-10k	11	10	6 '
Codea: $\mathrm{C}=$ carbon film, high stability. low noise. MO = metal oxide. Electrosli TR5 ultra low noise WW = wire wound, Plessey.					
Values: All E12 except $C+W, C \nmid W$ and $M O \ddagger W$.					
E12: 10. $12.15,18,22,27,33,39,47.56,68,82$ and their decades.					
E24: as E12 plus 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75. 91 and their decades.					
Tolerances:					
Prtces are in pence each for quantitles of the same ohmic value and power rating. NOT mixed values. (Ignore fractions of one penny on total value of realstor order.) Prices for 100 up in unite of 100 only					

POTENTIOMETERS

ROTARY, CARBON TRACK

Double wipers for good contact and long
Double wiper
working iffe
20 SINGLE linear 100 ohms to 4:7
megohms
20 SINGLE $\log 4.7$ Kohms to 2.2 megohms
$\log 4.7$ sech $2 \cdot 2$
each JP. 20 DUAL GANG IIn. 4.7 Kohms to 2.2 megohms. each isp JP 20 DUAL GANG 'log. 4.7 Kohms to JP. 20 DUAL GANG LOG antlog 10 K 22K 47K, megohm only. Gach 4ap JP 20 DUAL GANG antilog 10 K only 43 p 2A DP mains switch for any of above Decades of 10,22 and 47 only avallable in ranges above
Skeleton Carbon Presets. Type PA horlzontal or vertical each 6p

SLIDER

Linear or \log mono 4.7 K to 1 meg . in all popular values each 30p STEREO matched tracks. lin or log in all popular values from 4.7 K to
1 meg . Escutcheon plates, mono black, white or light grey. each 10p Control knobs, blk/wh/radiyel/grn/
blue/dk. grey. it. grey each $7 p$

CAPACITORS
DALY ELECTROLYTIC in cans, plastic
$1000 \mathrm{mF} / 25 \mathrm{~V} 28 \mathrm{p} \quad 2200 / 100 \mathrm{E1} \cdot 56$ $5000 / 100$ £2. 91 500025 V 62 p

POLYESTER TYPE C.280. Radial rada for P.C.B mounting. Working voltage 250 V o.c.
$0.01,0.015$
$0.068,0.15,0.022,0.033,0.047$, each 3p
$0.2250,0.337 p, 0.47$ each 4p $0.225 p ; 0.337 p ; 0.47$
$14 p ; 1.521 p ; 2.24 p$
SILVERED MICA. Working voltage 500 V

V.c.

Values in $\mathrm{pFs}-2-2$ to 820 in 32 stages
1000. $1500 \mathrm{7p} ; 1800 \mathrm{sp}$; 2200 Cop 10. 2700 3600 12p; 4700. 5000 15p; 6800 20p; 8200 $10.00025 p$
TANTALUM BEAD
$\begin{array}{r}0.1, \\ 3.5 .16 \mathrm{~V},\end{array} 0.47,1.0 \mathrm{mF} / 35 \mathrm{~V}, 1.5 / 20 \mathrm{~V}$ $2.2 / 16 \mathrm{~V}, \quad 2.2 / 35 \mathrm{~V}, \quad 47 / 16 \mathrm{~V}, \quad \begin{array}{ll}\text { each } 14 \mathrm{p} \\ 10 / 6.3 \mathrm{~V}\end{array}$ 4. $7 / 35 \mathrm{~V}$. $10.16 \mathrm{~V}, 226.3 \mathrm{~V}$ each 1 pp $\begin{array}{ll}10 / 25 \mathrm{~V}, & 2216 \mathrm{~V} . \quad 27 / 6.3 \mathrm{~V} \text {. } \quad 100.3 \mathrm{~V} \text {. }\end{array}$ $6.825 \mathrm{~V}, 15 / 25 \mathrm{~V}$
POLYCARBONATE
Type 842540 Working voltage-250V
$0.0047: 0.0068: 0.0082 ; 0.01: 0.012: 0.015$
$0.018: 0.022: 0.027: 0.033: 0.039: 0.047$ $0.056,0.068,0.082,0.1$ each $4 p$ CEAAMIC PLATE
Working voltage 50V. d C.

MINITRON DIGITAL INDICATORS
3015 F Seven segment fitament compatible with standard logic modules. $0-9$ and decimal point: 9 mm characters in Suitable BCD decoder driver 7447
3015G showing - or - $8 \$ 8 \mathrm{dec}$ pt
LEDS (Light Emitting Diodes)
ANTEX Soldering Irons
$\begin{array}{lll}\text { CN340 } & £ 1 \cdot 95 & \text { Spare bits } \\ \text { CCN240 } & \mathrm{E} .30 & \text { Spare bits }\end{array}$
$32 p$
$40 p$
DESOLDER BRAID 611 strip 66p WAVECHANGE SWITCHES
1 pole 12 way; 2 pole 6 way 3 pole 4 way: 4 pole 3 way each $29 p$
TAGSTAIP 28 way NUTS, SCREWS, etc.

$4 B A$ NUTS 2 sp :

4BA NUTS 28p: 6BA NUTS 28p Threaced pillars 6BA. 6BA Screws 24p
Pialn spacers $\frac{1}{2}$ " round $\quad \begin{aligned} & \text { £1.66 } \\ & \text { It.12 }\end{aligned}$
Other sizes svailable
ENAMEL COPPER
WIRE In 2 ounce reels
16. 18, 20, 22 SWG 34 p
24, 26. 28,30 SWG 40p
32. 34 SWG 46p. $36,38,40$ SWG 54 p

DIN CONNECTORS

1 way lousspeaker Socket Pluo

 3 way audio5 way audio 180
5 way audio 240
6 way audio
EV CATALOGUE 7
2nd printing-Oreen and yellow Cover 112 pages, thousands of items- illustra information. The 2nd printing has been updated as much as posslble on prices It cosis only 25 p post tree, including relund voucher for 25 p for spending when ordering goods hist value $£ 5$ or
more

OUALITY GUARANTEE

 Al goods are sold on the orm to manufacturers specifications and satiafaction is guaranteed as such-no rejects, seconds or suboffered for sale.orfered for sale.
V.A.T. for which 8% must be added to total nett value of ordar. Every effort is made to ensure the correctness of information and prices at lime of going to press. Prices subject to alteration without
notice.

integrated triffid

Readers may be interested in this integrated version of the Triffid receiver published in Practical Electronics. As shown in Fig. 1 the circuit works only on medium waves but if long wave coverage is required the modifications can be found in Practical Electronics, February 1973.

The present circuit was built on a small printed circuit board and mounted in a case measuring $2 \times 3 \times \frac{7}{8}$ in using a 250 pF trimmer fitted with a long spindle for tuning.

For size reduction reasons it is probably best to use a combined potentiometer and switch for the $10 \mathrm{k} \Omega$ potentiometer.
C. M. Rose

Alsager, Stoke-on-Trent

optical communigation

THis system was originally developed for transmitting digital information on a light beam in a security system. In view of the nature of the information a fairly flat response was required and as may be well known, incandescent lamps have a very unlinear response because of their thermal inertia.

Thus one way of overcoming the trouble is to amplify the lamp signal using an amplifier with considerable treble boost. Hopefully in such a case the amplifier characteristics would be a reverse of the lamp characteristics to obtain fairly level response. but this is difficult to obtain in practice.

One way round the problem is proposed here in which an amplifier is still used to feed the lamp but at the same time the output from the lamp is observed by a photocell which is positioned in the feedback circuit of the amplifier. In this way light output is directly linked to amplification with a corresponding smoothing of the response curve.

In the circuit of Fig. 1 an operational amplifier is used to provide the lamp drive via transistor TR1. Output from the lamp is sensed by the ORP70 light dependent resistor which in practice is mounted next to the light bulb. This signal is applied to the amplifier as negative feedback via R4.

In the present instance the amplifier gain is set at 100 by R4 and R5 as higher gain makes the loop unstable but probably it is best to use the highest gain commensurate with the lamp in use.

Fig. 1
Fig. 2

VR1 sets the quiescent current/ brightness of the bulb and is adjusted to give 7V across the bulb in the no-signal condition. Remember to set VR1 to maximum value before switching on the circuit.

The prototype was used over a distance of loft but no doubt greater distances could be accommodated with some care as to use of reflectors at transmitter and receiver. In the model these were simple bicycle lamp reflectors and
no real care was taken over alignment.

Both speech and music were transmitted over the model circuit with good results but better treble boost above 1 kHz would improve matters in noisy environments.
Input to the system was about 100 mV to give a reasonable signal and a simple receiver is shown in Fig. 2.
R. Warren-Smith

Redhill

555 RAMP GENERATOR

EN(iINEERS are often on the look out for a better linear voltage sweep generator for their deflection. ramp. and function generalor circuit designs. The recently introduced MC 1555 timer can be used to make a simple linear voltage sweep circuit.

In the usua! MCI555 timing circuit. it senses the exponentially rising voltage across the capacitor in an KC network. Essentially, from a discharged state. the capacitor begins receiving charge until the voltage across it rises to $2 / 3 \mathrm{~V}_{6} \mathrm{r}$ at which time it is discharged in preparation for the next charging (trigger) pulse.

By replacing the resistor in the RC network with a constant current source. the voltage across the timing capacitor is caused to increase linearly

The charging time can be determined as follows:-

$$
\begin{gathered}
f=\frac{2 / 3 V_{C C} C}{l} \\
\text { where }: I=\frac{V_{\mathrm{CH}}-V_{\mathrm{E}}}{R_{\mathrm{E}}}= \\
\frac{V_{\mathrm{CH}}-V_{\mathrm{B}}-V_{13}}{R_{1:}}
\end{gathered}
$$

(t in seconds, V in volts and C in farads)

By setting $V\left(c-V_{13}\right.$ so that $V_{b E}$ is negligible :

$$
I=\frac{V_{\mathrm{CC}}-V_{13}}{R_{\mathrm{F}}}
$$

Since V_{13} is directly proportional to $V_{C C}$

$$
I=\frac{V_{\mathrm{Cc}}-K \cdot V_{\mathrm{CC}}}{R_{\mathrm{E}}}=\frac{V_{\mathrm{CC}}-V_{\mathrm{B}}}{R_{\mathrm{E}}}
$$

where : $K=\frac{V_{\mathrm{B}}}{V_{\mathrm{CC}}}$
or $: t=\frac{2 / 3 V_{\mathrm{CC}} \cdot C}{\frac{V_{\mathrm{CC}}(1-K)}{R_{\mathrm{E}}}}=\frac{2 / 3 C \cdot R_{\mathrm{E}}}{1-K}$
From this equation, it can be seen that the time period is essentially
independent of the supply voltage if the voltage across the emitter resistor of the current source is much larger than the $V_{B E}$ of the transistor.

Since the capacitor voltage must reach at least $2 / 3 \mathrm{~V}_{\mathrm{cc}}$ the current source may be operated on a higher voltage supply than the timer allthough this is not necessary if the supply voltage is well regulated. The constant current source should be kept larger than $1 \mu \mathrm{~A}$ so that it is always large compared to the current needed for the comparators.

Motorola Semiconductors Lid.
Geneva

NEW DIRECTIONS IN PARAPSYCHOLOGY

Edited by J. Beloff, B.A., Ph.D.
Published by Elek Science
174 pages, $8 \frac{3}{4} \mathrm{in} \times 5 \frac{1}{2} \mathrm{in}$. Price $£ 3.00$

PsyCHICAL research with its considerable involvement in spiritualism was treated with scepticism by the scientific world following its inception towards the end of the 19th century despite the fact that two of its most important and earliest supporters were those eminent men of science. Sir Oliver Lodge and Sir William Crookes. In later times investigations into the supernatural or paranormal have taken on a more respectable guise and the field of investigation has been extended to cover all phenomena that cannot be explained by the accepted laws of physics.

The number of workers in parapsychology-which is the present day term that has more or less replaced psychical research-is large and includes distinguished academics working in universities and other learned establishments in various countries. It may be "a struggling science" as the Editor of this book describes it, but there can be no doubt of the sincerity and devotion of its apostles.

In New Directions In Parapsychology seven specialists who are all actively engaged in research in one or another aspect of ESP or PK have contributed accounts of their experiments and results obtained. Only one of these contributions has direct relevance to electronics, but since most paranormal experiments are based upon
statistical data. electronic equipment plays a major role. In the chapter Instrumentation In The Parapsychology Laboratory. Helmut Schmidt describes the use of automated equipment, data recording equipment. random number generators. PK test machines, and provides circuit and technical details of a remote number generator designed by the author for ESP and PK experiments. This chapter makes clear the heavy dependence of parapsychology upon modern electronic lechniques.
Through this association many people involved in electronics will already have become aware of parapsychology and some begun to apply their circuit expertise to the devising of circuits for ESP and PK investigations, if not actually undertaking an active part themselves in such investigations. Such individuals and others wishing to learn more about this unusual science will find this book a useful acquisition. The Glossary of Technical Terms and Abbreviations is in itself a good guide for the uninitiated around this strange science.

The Editor John Beloff. who is Senior Lecturer in Psychology at the University of Edinburgh, contributes a reasoned introduction to Parapsychology. arguing that sutficient evidence exists now for a general acceptance of this new "borderland" science. whilst at the same time also acknowledging some embarrassment from the activities of earlier "spiritist" workers and from the current wave of bandwagon jumpers (many associated with fanciful and unscientific occult and religious bodies) who offer a threat to the credibility of Parapsychology as a reputable science.

Arthur Koestler contributes a postscript and appears to support a "chance" basis for paranormal "phenomena: this is in contradiction to the "orthodox" philosophy which considers that the prime aim of all PSI experiments is to achieve repeatability and thus establish a clearly defined coulse as the basis for all extra-sensory experiences. A most fascinating and pregnant argument to round off this instructive and authoritative book.

RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT

OVER
40 EXPERIMENTS
ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including:

> valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a c experiments, d.c. experiments, simple counter, time delay circuit. servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory -no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

InAIIIPIS
 FIEARDIIS Ita
 58-60 GROVE ROAD, WINDSOR, BERKS.

MONEY BACK IF NOT SATISFIED LARGE STOCKS. LOH PRICES. ALL BRAND NEW TOP GRADE FULL SPEC DEVICES.CALLERS WELCOME.

FAST SERVICE.
SEND C.W.O. ADD VAT TO ALL PRICES IN U.K. P\&P 15P. EUROPE $25 P$.OVERSEAS 65P.
CATALOGUE/LIST FREE SEND S.A.E

LEDS $14 \mathbf{~ p . ~}$

MINI PIN SOURCE OR RED DIFFUSE TIL209 RED LED A BIG \&" RED LED \& CLIP 18 P ea
ORANGE \& GREEN LEDS:

DIGITAL ELDEH

MOS INTEGRATED CIRCUITS.
AY51224 4 DIGIT CLOCK supplied
with 14 pin socket \& data $£ 4.25$

CASSETTE

mechanics
f] 2 $\therefore 50$
TEREO CASSETTE MECHANISM
As used in imported types

AUDIBLY DETECTING SPEED CHANGES

BP 1352030

In BP 1352030 Customflex Inc. of Ohio, USA, describes a simple gadget for use with a transistor radio to provide an audible indication of speed change, for instance of a boat through water.

As the inventors point out, the ear has difficulty in detecting the difference between 500 clicks per second and 505 clicks per second, but has no trouble in detecting the same difference between 10 clicks and 15 clicks.

With this premise in mind, the inventors suggest an arrangement consisting of a small brass rod, pivoted at one end. A water resistant thread passes from the end of the rod through a coiled compression spring to a ferrite core. All these elements are contained in a hollow, plastic cylinder, which is wrapped with an insulated reaction coil.

This arrangement is mounted on the underside of a boat. As the boat moves through the water, the rod is repeatedly moved in an arc to pull the thread and with it the ferrite core, down against the spring. This movement of the ferrite core changes the induction of the reaction coil.

The coil is connected to an ordinary portable transistor radio by two leads and a miniature jack plug which is inserted in the jack socket provided on most radios for ear-plug use.

According to the inventors this produces a change in the oscillator and thus the sound produced by the radio which is indicative of the rate of the boat movement.

Also described is a circuit for a transistor converter which combines the functions of oscillator and mixer. A capacitor and a variable induction coil is incorporated in a series tuned circuit which imposes an electrical load on the converter to produce controlled "motor boating" clicks. Varying the radio set tuning capacitor by turning the tuning dial will adjust the basic rate of digital clicks heard on the radio.

Few further details of the transistor converter are given because the inventors regard the circuit as sufficiently well known already.

KEYBOARD INSTRUMENT

BP 1354407
Electronic musical instruments having 12 keys to the octave are well known. These instruments can produce only semitones and in BP 1354 407, a Japanese inventor, suggests that under certain circumstances it may be desirable for exotic musical effects to produce quarter tones as well.

The circuit achieves this in a very simple manner. A keyboard of the conventional semitone type operates twelve switches of an array, and a d.c. power source circuit which produces d.c. voltages to control a v.c.o.

In conventional manner, individual operation of the keys of the chromatic octave produces individual semitones from the loudspeaker. But, when adjacent keys are simultaneously depressed, the v.c.o. is supplied with a voltage which is substantially one half of the sum of the voltages representative of the keys pressed. The frequency produced is substantially a quarter tone between the two keys simultaneously pressed.

Electronic ald to Cure Stammerng

In BP 1352 682, George Donovan and Charles Hansel of Swansea claim electronic circuitry for use in speech therapy with particular relevance to the suppression, treatment and study of stammering. The obiect is to produce speechmasking signals in the lower part of the audio frequency band of various duration and type. For instance, it has been found that a continuous masking sound is effective in most cases to suppress a stammer but, for therapy, bursts of masking sound are required.

As shown in Fig. 1, a Schmitt trigger Q1 is connected as a free running multivibrator with fixed and adjustable resistors R1, VR1 and a $10 \mu \mathrm{~F}$ capacitor C1 to generate a masking signal of which the frequency, 180 Hz , is controlled by adjustment of VR1. The output of trigger Q1 is coupled to the first
input of NAND gate G1, of which the output is coupled to an earphone.
A second Schmitt trigger Q2 is connected with $2000 \mu \mathrm{~F}$ capacitor C2 as a free running multivibrator. and generates a lower frequency, for example 60 or 90 Hz , adjustable by R3, VR2. The output of Q2 is coupled to trigger a monostable multivibrator, with parallel capacitances C3, C4, selectively switchable by switch S1. The switch S1 also controls connection of the output of the monostable to the second input of the gate G1.

When the supply switch S2 is closed and with switch S1 in position A, the masking input of the gate G1 is not inhibited and a substantially continuous masking noise is delivered through gate G1 to the earphone. Switching S1 to positions B and C will cause the continuous output of trigger Q1 to be inhibited and an accurately shaped output of adjustable width delivered by the monostable to gate G1. Adjustment of VR3 controls the pulse width, for instance, to give a short burst of speech masking sound producing a metronomic beat in the earphone or a pulse with a mark-to-space ratio of 1 or more, equivalent to long bursts of speech-masking sound. The socket SK1 is provided for coupling auxiliary apparatus to the output of G1.

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

Visual monitor

Sir,-A musician myself, I frequently end up advising other musicians on p.a. equipment, not infrequently building units to their requirements. Although most users seem rather unconcerned with it, a point that always worries me is that of the keen performer who turns his volume controls full on automatically (yes! they are still aroundyou don't have to look for them, just listen!) Distortion and ruined speakers may be prestige symbols to some, but work out expensive.

Whilst it is possible to siraddle Vu meters on pre-amplifier outputs it is usually fairly messy to do, and is still only a rough guide (honest) to how rough you ate being.

Recently, however, after building a power amplifier that delivered about 100 W with an input of 1 V , I thought of a very simple way of having a visual indication of over load on the input. I simply put an l.e.d. across it: I used a TIL 209 straight across the input. This device needs just over IV across it before it will light up and goes on up to about 3 V quite happily. Its current consumption is exceedingly low and at worst it puts about 20 k !? across the input. The effect on the input is acoustically unnoticeable.
l've given it a good try out and it does its job very well. Those unavoidable peaks give a pleasing little red flash and on real overload (don't watch the speaker) it works like a traffic light.
It doesn't matter which way round it is connected, of course, since the signal will be a.c. and scanning the market should provide a device of suitable voltage to suit most high power amplifiers.
I know the idea sounds too simple but who cares? It works!

Peter Quinn.
Portsmouth

Russian roulette

Sir.-In his novel "The Gambler". the Russian author Fyodor Dostoyevsky writes the following:
"However, I deduced from the scene one conclusion which seemed to me reliable-namely.
that in the flow of fortuitous chances there is, if not a system, at all events a sort of order. This is, of course, a very strange thing. For instance, after a dozen middle figures there would always occur a dozen or so outer ones. Suppose the ball stopped twice at a dozen outer figures: it would then pass to a dozen of the first ones, and then, again, to a dozen of the middle ciphers, and fall upon them three or four times, and then revert to a dozen outers; whence, after another couple of rounds, the ball would again pass to the first figures, strike upon them once, and then return thrice to the middle series-continuing thus for an hour and a half, or two hours. One. three, two; one, three, two. It. was all very curious. Again. for the whole of a day or a morning the red would alternate with the black, but almost without any order, and from moment to moment, so that scarcely two consecutive rounds would end upon either the one or the other. Yet, next day, or, perhaps, the next evening, the red alone would turn up, and attain a run of over two score, and continue so for quite a length of time-say, for a whole day"
Alexei Ivanovitch's observations concerning the phenomena of roulette seem to tally very well with Mr. Baily's experiences with the "Random Timer". Perhaps the tense atmosphere which must be in evidence in places where roulette is played is a factor which should be taken into account.

A. J. Fisher, Hereford

Discord

Sir-I would like to take to task your correspondent Mr Malcolm Pointon regarding his article "Electromuse" in the September issue of P.E. He is altogether making too big a deal about synthesisers and electronic music generally.

What is this new phase we are entering in 1974? Evidently Mr Pointon overlooks the fantastic new phase of electronic music (in its own right) in the early 50 's when no-one
knew where it was leading except Stockhausen; or the pioneers of voltage control whose work was consolidated by R. A. Moog in the mid-sixties. No, Mr Pointon, the only new phase entered into in 1974 was my acquisition of a synthesiser and an incredible education in electronics thanks to Messrs. G. D. Shaw and P.E. Music, I'm afraid. is always wallowing in primeval mud waiting for the particles to settle (at least it has been ever since someone discovered the great polyphonic era was not the musical ultimate).

What seven modes were used in early music"? As far as I know only six were used. The seventh (I_ocrian) has never been used except as a joke -no doubt because of its peculiar interval relationships, there being no perfect fifth from the "keynote".
Regarding the emancipated second half of the twentieth century, I cannot see how this suddenly makes the aural universe boundless and open to anyone. It always has been for someone having the will to pursue it. Wagner, Stravinsky $\mathfrak{c} l \mathrm{al}$, chose dynamics from the inaudible to the painful; Aloir Haba played "between the cracks": Liszt and Paganini are known for playing music unperformable by a human being... In any event, how much of our human-being music can be played by machine? I'd be delighted to hear from anyone who has patched Stravinsky's "Rite of Spring" or Ravel's "Daphnis and Chloe" on a synthesiser.
Lastly, how are we "widening our horizons beyond the natural?" With electronics? If Mr Pointon is suggesting that acoustic instruments are natural, a quote from "Studio Sound", May 1972, page 33, would be in place:
"The synthesiser is no more artificial than a saxophone. The one produces sound from vibrating electronics, the other from a vibrating reed, the harpsichord from vibrating strings . . . etc."

Coming to terns, the synthesiser is nothing more than a laboursaving device. Most of the gadgets contained therein have been around for a long time in one form or another. Dr Moog spotted the commercial value of putting them all in the same box, and Mr G. D. Shaw repackaged this to the less wealthy, like myself, who could not afford Dr Moog's prices.

Tragically, many synthesisers will fall to a fate best summarised by a further quote from the above journal: "But, for the love of music, avoid the trap which faces composers of electronic pop: using a $£ 7,500$ synthesiser to imitate unconsciously but all too successfully a cheap divider organ. It has been done and it degrades the most promising invention since the development of the chromatic keyboard."
lvor Stuart-Colwill. L.ondon, S.W.IG.

Sinclair's $4^{\text {th }}$ dimension in high fidelity

Project 80

The slim modules for building stereo,
hi-fi with FM:

Project 805

Project 80 made even easier to build
Project 805SO
The add on assembly that gives you quadraphons
016Loudspeakers
The square speakers for 4 channel listening

Four channel listening has arrived!

Thanks to Project 80 versatility and marvellous compactness, adding two more channels is easy, efficient and economical - you simply add on Project 805 SO , or select the necessary modules from the Project 80 range detailed on the fourth page of this advertisement. Another way is to start with the new Project 805 (which is Project 80 complete in one pack) and add B05SQ to it. Our technicians have adopted the CBS SQ matrix principle to carry the rear left and right channels since it is already clearly the most widely used method in quadraphonic recordings. The decoder, however, can be modified to discrete systems without difficultly. Sinclair suitability for quadraphonics by no means stops with Project 805 SQ.The $\mathbf{Q} .16$, always a superb loudspeaker in its own right becomes one of the best ways of creating effective ambience without taking up too much space or money. Project 80 quadraphonic modules are ready now for you to enjoy both stereo and true quadraphonics right away with better reproduction from mono records as well.

(18.

Siereo 80
pre-amp/contiol unit

Project 80
Project 80
F.M. tuner

Project 80 stereo

Project 80S0
quadrophonic decader

Forward with Project 80 into

Everything you want in one pack to build the world's' most advanced modular hi-fi WITHOUT SOLDERING

1 Stereo 80 Control Unit
For mag and ceramic cartridges, radio and tape.
2 Project 80 power amplifiers Two Z.40s to give $8 / 8$ watts R.M.S. output per channel.
3 Power supply unit One PZ.5.
4 Connecting wires All wires plus nuts, bolts, screws etc.
5 Project 805 Masterlink For input and output connections.
6 Mains switch block and instructions manual (not illustrated).

SINCLAIR RADIONICS LTD
London Rd, St. Ives. Huntingdon PE174HJ
Telephone St. Ives (0480) 64646

This is Project 80 made even easier to build

You have seen how the marvellously compact Project 80 modules (only $2^{\prime \prime}$ high $\times \frac{3^{\prime \prime}}{4}$ deep) are so adaptable and easy to install. Now, with Project 805, this wonderful system is made easier still to put together. In this, you have not only all the Project 80 modules in one pack for building an $8 / 8$ watt R.M.S. hi-fi amplifier - there is also a loom of colour coded wires cut to length and tagged for clipping on so that you dont even have to solder! Input and output connections go via the 805 Masterlink panel. With the explicit stage-by-stage large 32 page instructions manual included, it becomes easy for anyone, no matter how inexperienced to install an ultra-modern assembly so advanced in appearance and design that it sets, brand new concepts in domestic hi-fi - and of course. you can convert to quadraphony just whenever you wish by adding 805SO. Only Sinclair know-how and manufacturing facilities could hope to bring you such quality and versatility

TAGGED WIRES CUT TO LENGTH•NO SOLDERING Project 805 the complete ready-to-build hi•fi STEREO AMPLIFIER

[^8]£39.95
$+£ 3.20$ VAT (R.R.P.)

true quadraphonics... NOW!

1. Project 80 SQ decoder with controls
2. Two $Z .40$ power amplifiers.
3. PZ.5 power pack
4. Project 800 Masterlınk unit

5 Wireloom, with clip-on tags - NO SOLDERING!
6. (Not Illustrated) Instructions manual, nuts bolts, washers, etc.

The most effective and economical way to enjoy this spectacular breakthrough in hi-fi listening

Add a fourth dimension to your stereo sound

It's so simple to convert to quadraphonics when you already have Project 80, or are about to start with Project 805. Project 805 SO is a complete add-on system at the heart of which is the Project 80SO decoder. It uses the CBS.SQ matrix principle, by now the widest used method of containing four sound channels within the groove of the record. Project 805SO includes two power amplifiers, power supply unit, connecting wire loom, 8050 Masterlink, switch block and instructions manual. The 80SQ decoder (also obtainable separately) has independent tone and volume slider controls on the two rear channels for matching true four channel sound to domestic environment. Project 805SO is money saving too since you do not have to scrap existing Project 80 equipment to enjoy the newest and most exciting form of home listening in the entire history of sound, and your Project 80 quadraphonic assembly is compatible with stereo and mono records

- Frequency response $\pm 3 \mathrm{db} 15 \mathrm{~Hz} \cdot 25 \mathrm{kHz}$
- Rated output 100 mV
- S/Nratio 58dB
- Distortion 0.1\%
- Power requirements $22-35$ volts
- Phase shift network $90^{\circ} \pm 10^{\circ}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$
- Adaptable to discrete (CD4) use

Project 805SQ

The output from any good stereoc artridge feeds into Stereo 80 and passes via the tape outlet to the 80SO decoder. Here the signal is separated into its constituent 4 channels, those for the front being accepted by the Stereo 80, those for the rear going from the decoder to the two additional power amplifiers and speakers.

Guarantee If, withon 3 months of purchasing any product direct from us, Guaran you are dissatisfied with it, your money will be refunded on production of receipt of payment. Many Sinclair Appointed Stockists also offer this guarantee Should any defect arise in normal use within 2 years, we will service it without charge. For damage arising from mus-use a nominal charge will be made.

Project 80 quadraphonic modules may be purchased separately if required. The Project 80SQ decoder may be used with any other amplifier having tape and monitoring facilities. $\mathbf{Z 4 0}$ or $\mathbf{Z 6 0}$ power amps can be used as required.

The Project 80 programme to date

KEEP THIS PAGE FOR HANDY REFERENCE USE THE PRIORITY ORDER FORM IN CASES OF DIFFICULTY

Stereo 80 pre-amp/control unit

$260 \times 50 \times 20 \mathrm{~mm}$ ($10 \frac{1}{6} \times 2 \times \frac{3}{4} \mathrm{ins}$) separate slider controls on each channel for treble, bass and volume INPUTS - Mag. P.U 3 mV (RIAA corrected) ceramic -300 mV , Radio 100 mV , Tape 30 mV S $/ \mathrm{N}$ ratio 60 dB Frequency range -20 Hz to $15 \mathrm{KHz} \pm 1 \mathrm{~dB}$. OUTPUTS -2.5 V rms max (30 V . supply) and tape plus $A B$ monitoring. PRESS BUTTONS for P.U. Radio and Tape Operating power - 20 to 35 V . Black case with white indications

Project 80 F.M. tuner

Size $85 \times 50 \times 20 \mathrm{~mm}\left(3 \frac{1}{2} \times 2 \times \frac{3}{2}\right.$ ins.). Tunes 87.5 to 108 MHz . DE TECTOR - I.C balanced coincidence (I.C equivalent to 26 transistors) Distortion - 0.2% at 1 KHz for 30% modulation. SENSITIVITY - 5 microvalts for 30 dB quieting. Output -300 mV for 30% modulation Aerial imp. -75Ω or $240 \cdot 300 \Omega$. Dual Varicap iuning. 4 pole ceramic filter. Switchable A.F.C. Operating power 23-30 volts.

Project 80 stereo decoder

Size $47 \times 50 \times 20 \mathrm{~mm}$ For adding to Project 80 FM tuner. With one I.C equal to 19 transistors, and LED indicator which glows on funing in stereo signal.

Project 80 active filter unit (A.F.U.)

Size $108 \times 50 \times 20 \mathrm{~mm}$. Useful where there is need to eliminate unwanted high frequencies (scratch, whistle, etc) or low (rumble). Voltage gain minus $0 \cdot 2 \mathrm{~dB}$. Frequency response (filter at zero) 36 Hz to 22 KHz . H.F cut (scratch) variable from 22 KHz to 5.5 KHz 12 dB /octave slope. L.F cut (rumble) -28 dB at 28 Hz . slope $9 \mathrm{~dB} /$ octave
£7.45
VAT (R.R.P.)

Project 80 power amplifiers

Intended for use in Project 80 installations, these modules readily adapt to an even wider range of applications. Both incorporate built-in protection against short circuiting and risk of damage from mis-use is greatly reduced
2.40

Size $-55 \times 80 \times 20 \mathrm{~mm}$
9 transistors
Input sensitivity -100 mV
Output - 12 watts RMS continuous into $8 \Omega(35 \mathrm{v})$
Frequency response $-10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
S/N ratio-64dB
Distortion -0.1% at 10 watts into 8Ω at 1 KH
Power requirements - 12 to 35 volts

2.60

Size -55×98, 20 mm
12 transistors
Input sensitivity $-100-250 \mathrm{mV}$
Output - 25 watts RMS
continuous into 8Ω (50V)
Distortion -0.02% at $10 \mathrm{~W} / 8 \Omega / 1 \mathrm{KHz}$
Frequency response -10 Hz to more than $200 \mathrm{KHz} \pm 3 \mathrm{~dB}$ S / N ratio - better than 70 dB
Built-in protection against transient overload and short circuiting Load impedance - $4 \Omega \mathrm{~min}$; max. safe on open circuit

Power-supply units
PZ. 5 Unstabilized 30 volts. Suitable for $Z .40$ assemblies, etc.
PZ. 6 stabilized. Output voltage adjustable between 20 and 50 volts approx. Protecting fuse

PZ. 8 stabilized. Output adjustable from 20 to 60 V . approx Reentrant current limiting makes damage from overload or even shorting. impossible. Without mains transformer
f8 45^{+680}
$\stackrel{+680}{\text { VAT (R.R.P.) }}$

Project 805 (previous pages)
$£ 39.95$
Project 805SQ quadraphonic add-on kit
$£ 44.95{ }^{+£ 3.60}$ VAT (R.R.P)

Project 80SQ quadraphonic decoder

Size $260 \times 50 \times 20 \mathrm{~mm}$, matching Stereo 80 in style. Connects with tape socket on stereo 80 or similar facility on any stereo amplifier. Frequency response 15 Hz to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$. Distortion $0.1 \% . S / \mathrm{N}$ ratio 58 dB , Rated Output -100 mV . Separate bass and treble slider controls on each channel, also volume. Phase shift network $90 \pm 10^{\circ} 100 \mathrm{~Hz}$ to 10 KHz . Operating power-22-35V.
f18.95 $\underset{\substack{\text { VAT (R.R.P. } \\ \text { ¹. }}}{ }$
Sincláir Q. 16 loudspeaker
An original and uniquely designed speaker of outstanding efficiency. Balanced sealed sound chamber and special driver assembly. Loads up to 14 W./R.M.S. 8 ohms imp. Size 248 mm square $\times 120 \mathrm{~mm}$ deep. Pedestal base. All-over black front, teak surround.

$$
£ 8.95{ }^{\text {tita }}
$$

Sinclair Radionics Ltd. London Road St. Ives Huntingdonshire PE1 74 HJ Telephone St. Ives (0480) 64311
R.O. St. Ives: Reg No 6994583 Eng.

USE THIS PRIORITY ORDER FORM IN CASES OF DIFFICULTY

To Sinclair Radionics Lid
Please send, (carriage paid in U.K.)

For which I enclose $£$ cheque/moneyorder iNCLUDING V.A.T

NAME

ADDRESS

(ACTUAL SIZE 2将 INCHES LONG)
Specially made for readers of Practical Wire/ess this mini-screwdriver is ideal for the intricate work involved in radio construction - and it comes, exclusively, in this month's issue of Practical Wireless.
START BUILDING THE PRACTICAL WIRELESS ‘KEMPTON' CAR STEREO CASSETTE PLAYER
This issue of Practical Wireless also contains Part 1 of a new series giving full constructional details for making this unique cassette tape unit.

DECEMBER ISSUE ON SALE NOW. 25p.

Enough books are written about crime, this one stops it.

Outside it's a book. Inside it's an ingenious ultrasonic burglar alarm from Heathkit. The GD-39.

A complete kit that can be assembled in only a few enjoyable hours, with the help of a very easy to follow instruction manual.

The GD-39 works by transmitting a silent, ultrasonic signal throughout the room. And continuously monitoring it. Any movement made by an intruder in the room will then automatically produce a change in the signal. Which triggers off a lamp and, thirty seconds later, a remote buzzer, that just you hear, or a loud bell.

Enough to scare the living daylights out of a burglar.
For more details. and a bookful of other ideas. just post the coupon now for your free Heathkit catalogue.

Or, if youre in London or Gloucester, call in and see us The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

Heath (Gloucester) Limited, Dept. PE124, Bristol Road, Gloucester GL2 6EE. Tel: (0452) 29451.

The GD-39
Ultrasonic Burglar Alarm
Fo: Heath (Gloucester) Limited. Dept. PE124,Gloucester (GL2 6EE. Please send me a free Heathkit catalogue.

ETriomisonle electronics
 56, Fortis Green Road, London. N1O 3HN
 telephone ot 8833705

FHiOw icinic electronics telephone: 01-883 3705

C. T. ELECTRONICS

Now opan-our now components shop. Theas promlaes are very much larger ond will enable us to have greater stocka than we tready have. Having sill the components under ona root whill now range of componentt 10 choose from. Hyou are having problema getting your componente then come slong. We are open from $9.30 \mathrm{am} . \mathrm{m}$. through till 6.0 P.m. Monday to Saturday. The neareat

NOW AT 267 \& 270 ACTON LANE, LONDON W4 5DG

AUDIO ACCESSORY SHOP, 17 TURNHAM GREEN TERRACE, CHISWICK, W. 4

All mail order and enquiries to 270 Acton Lane Tel. 01-994 6275

SEXOY
 Money saving high performance audio equipment DIRECT FROMOUR OWN FACTORIES

 in supply-extra heavy duty $\left\{22.50{ }^{\text {Carr }}\right.$ Cop

POWER SUPPLIES
UNSTABILISED-READY WIRED

PU45	Suits 2 SA 35 or 1 SA50 (4 ohm)	45.45	$\begin{gathered} \text { Carriage } \\ 30 \mathrm{p} \end{gathered}$
PU70	Suits 2 SA50 or 2 SA100 (8 ohm)	¢8.45	$\begin{gathered} \text { Carriage } \\ 40 \mathrm{p} \end{gathered}$

STABILISED			
PS45	Suits 2 SA 35 or 2 \$A50 (4 ohm)	\$4.45	Carriage free
MT45	Transformerfor above	$63 \cdot 50$	$\begin{gathered} \text { Carriage } \\ 30 p \end{gathered}$
PS70	Suits 2 5A100	15.45	Carriage free
MT70	Transformer for above	\$4.90	$\begin{gathered} \text { Carriage } \\ .40 \mathrm{p} \end{gathered}$

Mk II STEREO DISCO MIXER $£ 22.50$
This well tried unit mixes two decks, handles any ceramic cartridge, and reatures mic over.ride plus separate fult range bass Ample headphone power is available for P.F.L. May be used for mono and is mains operated. Fitted with sturdy sereening case. Controls: Mic vol, bass, treble. Left/Right fade, deck Yolume, bass, treble, h/phone select, vol, Mains. Size $17 \frac{1}{2}$ in $\times 3$ in $\times 4$ in deep.

DISCO MODULE $£ 9.50{ }_{c}^{\text {carr }} \underset{20}{ }$

Thousands sold of this extremely popular mono version. A mic input may be fitted sold of this extremely populaw consumption from a 9 V battery. be fitted using the VA30 (see below).
Features the same high standards of reproduction as the Stereo version. Features the same high standards of deprool, Right deck vol, bass, treble,

3-CHANNEL SOUND-LITE E22.50 ${ }^{\text {Carr. }}$

Only SAXON can supoly such incredible value for money. This unit features 3 kW Only SAX handling, full-wave control., bass, middle, treble AND master controls. Twin loudspeaker jacks for "through" connections. It may be used free standing or will panel mount next to either of the above. Also features deep. Professional standards for extra wide range respo
at a price you can afford!
SINGLE CHANNEL Recently reduced in price Add 8\% VAT to all orders VERSION \quad 77.50 due to increasing sales, MULTI-PURPOSE MIXERS

M4HL M6HL

Featuring multiples of our VA30 module, the M4HL
and M6HL fulfilithe requirements of allclubs, groups,
ect. Where a high quality mixer is required. Each channel has one high and one low impedance input, impedances may, if required, be easily changed The M4HL has four channels, and one outpur, and the M6HL six channels (12 inputs) and a master control and two outputs. Either unit may be used free-standing or panel mounted. These mixers will feed all types of amplifier. Recommended for their versatility and high periormance, and excellent value for money
VA30 CHANNEL $\mathbf{~ M ~} 3.50 \underset{\text { free }}{\text { Carr }}$
This is the basic channel module in the above mixers and may also be used for extra inputs on either the mono or stereo mixers. Fitted with volume, bass and ereble controls, requires iust a jack and supply ($9-100 \mathrm{~V}$)

SAXON CSE
100
COMPLETE
AMPLIFIER
634.90

Carr. free

100W of speech and musie- - Two
separately controlled separately controlted
inputs. Wide range bass and treble
cantrols. Sturdy and atrractive yynide idease $\begin{aligned} & \text { Twin outputs } \\ & \text { Idea } \\ & \text { groups. }\end{aligned}$ discos, etc. Fully tested and guaranteed. in appearance.

CSE 50
629.50 Carr. free

Four individually cour indiled FET in put stages plus wide range bass trols. 120 W or speech and music output from iwin loudspeaker SAXON 100 COMPLETE AMPLIFIER £53.00 Carr. free SAXON 50 sockets Sturdy case, and an atcractiv excellent value for money. Hundreds in use by groups, discos, clubs, et £ 37.50
sow version identical in appearance.

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS Prim. $120 / 240$ V. Sec $120 / 240 V$ Centre Tapped and Screened ALSO AVAILABLE WITH Il5/I20V SEC. WINDING
Aer.
No.
07
149
150
151
152
153
154
155
156
158
VA
(Wates)
20
60
100
200
250
350
500
750
1000
2000

Weight
ib oz

$$
\begin{aligned}
& 7.0 x \\
& 9.9 x \\
& 9.9 x
\end{aligned}
$$

VA
Weight
VA (Wotts)
60×8
$\times 7.7 \times 8$
$\times 89 \times 8$.

$$
\begin{array}{r}
2 \\
7 \\
15
\end{array}
$$

$$
\begin{aligned}
& 5.8 \times 5.1 \times 4.50 .115 .210 .240 \\
& 7.0 \times 67 \times 6.10 .1+5-210.240
\end{aligned}
$$

$$
\begin{array}{ll}
7.0 \times 67 \times 6.1 & 0-115-210-240 \\
8.9 \times 7.7 \times 7.7 & 0-115-200-220-2
\end{array}
$$

$\begin{array}{rr}300 & 6 \\ 500 & 12\end{array}$

$$
\begin{array}{r}
8.9 \times 9.6 \times 8.6 \\
12.1 \times 11.2 \times 10.2
\end{array}
$$

$\begin{array}{lll}500 & 30 & 4\end{array}$
$\begin{array}{lll}2000 & 32 & 0 \\ 3000 & 40 & 0\end{array}$

$2 \times 16.6 \times 14.0$ $\times 13.4 \times 18.1$

CASED AUTO TRANSFORMERS
115 V mains lead input and U.S.A. 2-pin outlets, 20VA 62.64, P \& P 38p. 500 VA C9.50, P \& P 80p. 1000 VA El 5.92 , via B.R.S

LOW VOLTAGE SERIES (ISOLATED
PRIMARY $200-250$ VOLTS 12 AND/OR 24 VOLT RANG Ref. Amps, Weight Size cm. Secondory Windings of \& f
No. 12 V 24 V it oz No. 12 V 24 V Werght oz
1110.50 .25 $48 \times 2.9 \times 3.50 .12 \mathrm{~V}$ at $0.25 \mathrm{~A} \times 2$
 p
23
30
38
38
45
45
53
53
60
73
85
4

Ref. Amps. Weight Size cm. 50 VÖLT R'ANGE Sendory Tops P\& z으응 P P

104
106
107
118
118
<

124
126
127
125
123
40
120
121
122
189
Ref. MINIATURE TRANSFORMERS WITH SCREENS
Ne. mA Weight Size cm. Volts SCREENS \& \&
23
$\begin{array}{lllllll}235 & 330.330 & 4 & 3.9 \times 2.6 \times 2.9 & 9.0 .9 & 1.28 & 13 \\ 207 & 500 & 400 & 4.8 \times 2.9 \times 3.5 & 0.9 .0 .9 & 1.42 & 19\end{array}$
207 500, $500 \quad 1006.1 \times 5.4 \times 4.8 \quad 0.8 .9,0.8 .9$
$208 \quad 1 A_{1} 1$ A $12 \quad 7.0 \times 6.4 \times 6.1 \quad 0.8 .9,0.8-9$
$\begin{array}{lllll}214 & 300,300 & 4 & 6.1 \times 5.8 \times 4.8 & 0.15,0.15\end{array}$

2061 A. IA $2128.3 \times 7.7 \times 7.0 \quad 0-15-20,0-15-20 \quad 3.78$
$203 \begin{array}{llllllll} & 500,500 & 2 & 4 & 8.3 \times 7.0 \times 7.0 & 0-15-20,0.15-20 & 3.78 & 38 \\ 3 & 4 & 8.9 \times 7.7 \times 7.7 & 0.15-27,0-15-27 & 3.06 & 38\end{array}$

PLEASE ADD 8\% FOR V.A.T. including p. a p.

BMidile electronics
 3, THE MINORIES, LONDON EC3N 1BJ
 TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIDNS ALDGATE \& ALDGATE EAST

All above prices include 8% V.A.T. Please add 10 p for P. \& P. on orders under $£ 5$. LARGE S.A.E. for List No. 10. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

ENGINEERS

higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E. T. home suady course. There are no books to buy and you can pay-as-you.

The B.I.E.T. guide to success should be read by every ambitious engineer Send for this helpful 76 page FREE book now. No obligation and nobody will cal on you. It could be the best thing you

Marshollis
A. Marshall (London) Lid. Dept. PE

42 Cricklewood Broadway London NW2 3DH Telephone 01-452 0161/2 Telex 21492
\& 85 West Regent Street Glasgow G2 2OD Telephone 041-332 4133

Everything you need is in our New Catalogue available now price 20p (100 pages of prices and data)

Call in and see us 9-5.30 Mon-Fri
9-5.00 Sat
Trade and export enquiries welcome

Popular Semiconductors

										80135	0.43	BFY 19	0.62	MJE2955	
2N456	0.80	2N2907	0	2N	0.11	A	0.63	BC1	0. 13	80136	0.49	BFY20	0.50		$1 \cdot 12$
2N456A	0.85	2N2907A	0.24	2N4062	0.11	AD161	0.45	BC 172	0.11	BD137	0.55	BFY29	0.40	MJE3055	
2N457A	1.20	2N2924	0.14	2N4125	0.20	AD162	0.45	BC182	0. 12	8D138	0.63	BFY50	0.23		0.68
2N490	3.16	2N2925	0.17	2N4289	0.34	AD161	PR	BY182L	$0 \cdot 12$	80139	0.71	BFY51	0.23	MP8111	32
2N491	3.58	2N2926		2N4919	0.84	AD162 ${ }^{\text {s }}$	1.05	BC183	0.09	80140	0.87	BFY52	0.21	MP8112	40
2N492	3.99	Green	0.12	2N4920	0.99	AF109P	0.40	BC183L	0.09	BDY	1.05	BFY53	0.18	MP8113	0.47
2N493	$4 \cdot 20$	Yeltow	0.11	2N4921	0.73	AF115	0.24	BC184	0.11	BF 115	$0 \cdot 25$	BFY90	0.75	MPF 102	0.39
2N696	0.22	Orange	0.11	2N4922	0.84	AF116	0.25	BC ${ }^{184}$ L	0.11	BF116	$0 \cdot 23$	BRY39	0.23	MPSA05	0.25
2N697	0.16	2N3053	0.25	2N4923	0.83	AF!17	0. 20	BC186	0.25	BF117	0.43	BU104	2.00	MPSA06	0.26
2N698	0.40	2N3054	0.60	2N5172	0. 12	AF118	0.55	BC187	0.27	BF119	0.58	BU105	2.25	MPSA55	0.26
2N699	0.45	2N3055	0.75	2N5174	0. 22	AF 124	0.30	BC207	0.12	BF121	0.25	C106A	0.46	MPSA56	0.27
2N706	0.14	2N3390	0.26	2N5175	0.26	AF 125	0. 30	BC208	0.11	BF 123	0.27	C106B	0.55	NE555V	0.70
2N706A	0.16	2N3391	0.23	2N5176	0.32	AF126	0.28	BC212K	0.10	BF 125	0.25	06	0.65	NE 560	4.48
2N708	$0 \cdot 17$	2N3391A	0.29	2N5190	0.92	AF127	0.28	BC212L	0.16	BF 152	0.20	C106E	0.43	NE561	4-80
2N709	0.42	2N3392	0.13	2N5191	0.95	AF 139	0. 39	BC214L	0.16	BF15	21	A3020A	1.80	NE 565A	4. 48
2N711	0.50	2N3393	0.13	2NS 192	1.24	AF 170	0.25	BC237	0.09	BF	0.20	CA30	$0 \cdot 70$	OC23	1.35
2N718	0.23	2N3394	0.13	2N5195	1. 46	AF172	0.25	BC238	0.09	BF 158	0.23	30	$2 \cdot 11$	OC28	0.76
2N718A	0.28	2N3402	0.18	2N5245	0.43	AF 178	0.55	BC239	0.09	BF 159	0.27	CA3089E	1.96	OC35	0.60
2N720	0.50	2N3403	0.19	2N5457	0.49	AF179	0.65	BC251	0.20	BF 160	0.23	CA3090	$4 \cdot 23$	OC42	0.50
2N721	0.55	2N3440	0.59	2N5458	0.45	AF180	0.58	BC252	0.18	BF 161	0.42	CO4000	0.51	OC45	$0 \cdot 32$
2N914	0.22	2N3441	0.97	2N5459	0.49	AF186	0.46	BC253	0.23	BF 163	0.32	CO4001	0.51	OC71	0. 20
2N916	0.28	2N3442	1.25	40361	0.48	AF200	0.35	BC257	0.09	BF 166	0.32	CO4002	0.51	OC72	0.25
2N978	0.32	2N3414	0.20	40362	0.50	AF239	0.51	8C258	0.09	BF 167	0.21	CO4009	1.07	OC81	0.25
2N929	$0 \cdot 30$	2N3415	0.21	40363	0.88	AF240	0.72	BC259	0.13	BF 173	0.24	CO4010	1.07	OC83	0.24
2N1302	0. 19	2N3416	0. 34	40389	0.46	AF279	0.54	BC261	0.20	BF177	0.29	CO4011	0.51	ORP12	0.55
2N1303	0.19	2N3417	0.24	40394	0.56	AF280	0.54	BC262	0.18	BF 178	0.35	CD4015	2.66	R53	1.20
2N1304	0.24	2N3638	0.15	40395	0.65	AL102	0.75	BC263	0.23	BF 179	0.43	CO4016	1.02	RL54	0.15
2N1305	0.24	2N3638A	0.15	40406	0.44	AL. 103	0.70	BC300	0.36	BF18	0.35	CO4017	2.66	SC350	1.68
2N1306	0.31	2N3639	0.27	40407	0.33	BC107	0.16	BC301	0.34	BF18 ${ }^{1}$	0.34	CO4020	$2 \cdot 96$	SC360	1.46
2N1307	0.22	2N3641	0.17	40498	0.50	BC108	0.15	BC302	0.29	BF182	0.40	CO4023	0.51	SC400	1-89
2N1308	0.40	2N3702	0.12	40409	0.52	BC109	0-19	BC303	0.54	BF183	0.40	CD402	1.90	SC410	1.32
2N1309	0.36	2N3703	0.13	40410	0.52	BC113	0.15	BC307	0.11	BF18	0.30	CO4027	56	SC450	1.89
2N1671	1.44	2N3704	0.14	40411	2.00	BC 115	0.17	BC307A	$0 \cdot 10$	BF 185	0.30	CO4028	$2 \cdot 34$	SC450	1.96
2N1671A	1.54	2N3705	0.12	40414	3.55	BC 116	0.17	BC308	$0 \cdot 12$	BF194	0.12	402	3.79	SC500	2. 60
2N16718	1.72	2N3706	0.09	40430	0.85	BC 116 A	0.18	BC308A	0.12	BF195	0.12	4	2.11	SC510	2. 39
2N1671C	4.32	2N3707	0.13	40583	0.23	BC117.	0.21	BC3088	0.09	BF196	0.13	CO4044	$2 \cdot 11$	SL414A	0
2N1711	0.45	2N3708	0. 10	40601	0.67	BC118	0.11	BC309	0. 10	BF197	0.15	CD4047	1.65	SL623	4.59
2N1907	5. 50	2N3709	0.11	40602	0.46	8C119	0.29	BC309A	$0 \cdot 10$	BF198	0.18	CD4049	0.90	TAA263	-00
2N2102	0.50	2N3710	0. 12	40603	0.53	BC121	0.23	BC3096	0.10	BF199	0.18	CD4050	0.90	TAA350	2.10
2N2147	0.78	2N3711	0.11	40604	0.56	BC. 125	0.16	BC237	0.21	BF200	0.40	LM301A	0.48	TAA621	2.03
2N2148	0.94	2N3712	0.96	40636	1.10	BC126	0.23	BC238	0.19	BF225	$0 \cdot 19$	LM304A	2.03	TAA661B	
2N2160	$0 \cdot 90$	2N3713	1. 20	40669	1.00	BC132	$0 \cdot 30$	BC337	0. 19	BF237	0.22	LM309	1.88		1.32
2N2192	0.40	2N3714	1.33	40673	0.70	BC134	0.13	BC338	$0 \cdot 19$	BF238	0.22	LM702C	0.75	TAD10	1.50
2N2192A	0. 40	2N3715	1.50	AC107	0.51	EC135	0.13	8CY30	0.64	BF244	0-21	LM709		Filter	0.70
2N2193	0.58	2N3716	1.80	AC113	0.16	8C136	0.17	ECY31	0.64	BF245	0.33	TO99	0.48	TBA27	0.54
2N2193A	0.61	2N3771	2.20	AC117	0. 20	BC 137	0.17	BCY32	1.15	BF246	0.58 0.49	8 DIL	0. 38	TBA641B	
2N2194	0.73	2N3772	1.80	AC126	0.20	BC138	0.24	ECY33	0.45	BF247	0.49	14DIL.	0.40		$2 \cdot 25$
2N2194A	0.30	2N3773	2.65	AC127	$0 \cdot 20$	BC140	0.34	BCY34	0.49	BF254	6.16	LM723C	0.90	TBA800	1.50
2N2218A	0.22	2N3789	2.06	AC128	0.20	BC141	0.29	BCY38	0.55	BF255	0.17	LM741		TEA810	1.50
2N2219	0.24	2N3790	2.40	AC151V	0.25	BC142	0.23	BCY39	1.50	BF257	0.46	TO99	0.40	TIL209	0.30
2N2219A	0.26	2N3791	$2 \cdot 35$	AC152V	0.17	BC 143	0.25	BCY40	0.87	BF258	0.59	8DIL	0. 40	TIP29A	0.49
2N2220	0. 25	2N3792	2.69	AC153	0.25	BC145	0.21	BCY42	0.28	BF259	0.55	14 DIL	0.38	TIP30A	0. 58
2N2221	0.18	2N3794	0.24	AC153K	0.33	BC147	0.12	BCY58	0.21	BFS21A	2.30	LM747	1.00	TIP31A	0.62
2N2221A	0.21	2N3819	0.37	AC154	0.20	BC148	0.13	BCY59	$0 \cdot 22$	BFS28	0.92	LM748		T1P32A	0.74
2N2222	0.20	2N3820	0.64	AC176	0.23	BC 149	$0 \cdot 12$	BCY70	0.17	BFS61	0.27	8DIL	$0 \cdot 60$	TIP33A	1.01
$2 N 222 A$	0.25	2N3823	0.78	AC176K	0.33	BC153	$0 \cdot 18$	BCY71	$0 \cdot 22$	BF S98	0.25	140IL	0.73	17P34A	1.51
2N2368	$0 \cdot 25$	2N3900	0. 28	AC187K	0. 23	BC 154	0.18	BCY72	$0 \cdot 13$	BF×29	$0 \cdot 30$	LM7805	2.00	TIP35A	2. 09
2N2369	0.37	2N3901	0. 32	AC188K	0.34	BC157	0.14	BCY87	3.54	BF $\times 30$	0.27	MC1303P		TIP36A	3.70
2N2369	0.41	2N3903	0.24	ACY18	0.24	BC158	0.13	BCY88	2.42	${ }^{B F \times 44}$	0.33		1.26	TIP41A	0.79
2N2646	0.55	2N3904	0.27	ACY 19	0.27	BC159	0 0.14	BCY89	0.97	BFX63	2. 48	MC1310	2.92	TIP42A	0.90
2N2647	1.12	2N3905	0.24	ACY20	0.22	BC160	0.37	BD115	0.75	BFX68	0.30	MC1458C	9	TIP2955	0.93
2N2904	$0 \cdot 22$	2N3906	0.27	ACY21	0.26	BC167B	0. 13	BD116	1.00	BF×84	0.24		0.79	TIP3055	0.60
2N2904A	0.24	2N4036	0.63	ACY28	$0 \cdot 20$	BC168B	0.13	BD121	0.75	BFX85	$0 \cdot 30$	MJ480	0.90	$2 T \times 300$	0.13
2N2905	0.24	2N4037	0.42	ACY30	0. 58	BC168C	0.11	BD123	0.32	BF×87	0.28	MJ48 1	1.14	ZTX302	0. 20
2N2905A	0.26	2N4058	0.16	AD142	0.59	BC1698	0.13	BD124	0.67	BFX88	0.25	MJ490	0.98	ZTX500	0.15
2N2906	0. 19	2N4059	0.09	AD143	0.60	8C169C	0. 13	BD131	0.40	BFX89	0.45	MJ491	1.38	ZTX502	0.18
2N2906A	$0 \cdot 21$	2N4060	0.11	\|AD149V	0.58	BC170A	0.11	80132	0.50	BFY18	0.52	MJE340	0.45	2TX530	$0 \cdot 21$

Integrated Circults-TTL Reductlons !

$\begin{array}{ll}\text { SN7400 } & 0.16 \mid \\ \text { SNi7401 } & 0.16\end{array}$
SN7401
SN7401AN

| | 0.38 | SN7411 |
| :--- | :--- | :--- | :--- |
| SN7402 | 0.16 | SN7412 |
| SN74 | 0.16 | |

$\begin{array}{ll}\text { SN7402 } & 0.16 \\ \text { SN7403 } & 0.16\end{array}$
$\begin{array}{ll}\text { SN7403 } & 0.16 \\ \text { SN7404 } & 0.24\end{array}$
$\begin{array}{ll}\text { SN7405 } & 0.24 \\ \text { SN7406 } & 0.45\end{array}$

SN7405	0.24	SN7420	0.16	SN7445	1.59
SN7406	0.45	SN7423	0.37	SN7446	2.00
SN7407	0.45	SN7425	0.37	SN7447	1.30
SN7408	0.25	SN7427	0.45	SN7448	1.50

SN7495	$\mathbf{0 . 2 0}$	SN74151	$\mathbf{1 . 1 0}$	SN74175	$\mathbf{1 . 2}$							
SN74496	$\mathbf{1 . 0 0}$	SN744153	109	SN74176	1.44							
SN74												
NN7							SN7496	1.00	SN74153	1.09	SN74475	1.29
:---	:---	:---	:---	:---	:---							
SN74100	$\mathbf{2 . 1 6}$	SN74154	1.68	SN6418	1.44							
SN7410								SN74	2.16	SN74154	1.68	SN64180
:---	:---	:---	:---	:---	:---							
SN74107	$\mathbf{0} .43$	SN74155	1.55	SN74181	SN		SN74107	0.43	SN74155	1.55	SN74181	5.18
:---	:---	:---	:---	:---	:---							
SN74118	1.00	SN74157	1.09	SN74190	1.95		SN74118	1.00	SN74157	1.09	SN74190	1.95
:---	:---	:---	:---	:---	:---							
SN74119	1.92	SN74160	1.58	SN74191	1.95							

PW TELETENNIS KIT As featured on $98 C$ NBtionwide and in the
Oally Meal 2 Oci. 74 to toal game for whot
family No nend to modity your TV set lust

P.C. Marker Pen Dalo 33PC Price 87 P IC Sockets 8 DIL 16p. 14 DIL 17p. 16 DIL 20p Liquid Crystals- $\mathbf{E x} 13$ Scorpio Car Ignition Kit- $111 \cdot 50+$ 1 MMF440V $1440 \mathrm{~V} £ 1 \cdot 10$. BSTB0 $46 ~ £ 1 \cdot 05$. Transformer $£ 2 \cdot 75$ DL 707 E2. 35 or 4 for EB

Resistors			Tant Beads		
W	Tol	Price	Va		Price
i	5\%	1p	0.1		14p
\div	5\%	119p	02		14 p
\%	5\%	2p	0.4		14 p
1	10\%	21 P	$2 \cdot 2$		14p
2	10\%	6p	4.7		18p
2	5\%	$7 p$	$10 /$		18p
5	5\%	$9 p$	47/6		20p
10	5\%	10p	100		20p
Veroboard					
		Copper		Plałn	
		01	0.15	01	0. 15
$2 \cdot 5$	34 in	28p	20p	-	14p
2.5	5 n	30p	30 p	-	14p
34	$3 \frac{1}{\text { in }}$	30p	30 p	-	-
$3 \frac{1}{4}$		34 p	35p		24p
	17.n	¢1.21	95p	$76 p$	69p
$\text { Plns } \times 36 \quad 24 p \quad 24 p$					
	$\times 200$	$89 p \quad 92 p$			
Trade and Retall supplled.					

Dlodes and Rectifters
PIV $50 \quad 100 \quad 200 \quad 400$

$$
\begin{array}{lllll}
50 & 100 & 200 & 400 & 60 \\
15 p & 17 p & 20 p & 22 p & 25 \\
15 p & 17 p & 20 p & 22 p & 25 \\
-84 p & 35 p & 40 p & 47 p & 56 \\
82 p & 1.18 & 2 \cdot 15 & 2
\end{array}
$$

$\begin{array}{llllll}15 p & 17 p & 20 p & 22 p & 25 p & 27 p \\ & 27 p & 27 p\end{array}$

IN914	7p	BA110	25p	BA154	12p	EYZ10	$35 p$	OA70	7pp
IN916	Pp	OA91							
INA115	7p	BY100	15p	BYZ11	$32 p$	OA73	10p	OA95	

 30p 0.20 diameter 330

OPTO \& LED's
000 Red. green and yellow 1000 Red grean and yellowner
30 p o 16 diameter 31 p

Potentlometers
Linear or Log Single Double Rotary Pots
Rotary Switcheo Sliders
locknge of capacitors
stocked. See catalogue for detalls
Presets-Horizontal or Vertical 0.2 W 6p

[^9]NOW OPEN

DISCO, SHOP, SOUND TO LIGHT, STAGE PHOTO-FLOOD LIGHT FITTINGS

TYPE B 3-BANK UNIT
Has two brackets to accept P/C Board. Transformers. Also has holes in ends for Potentiometers. Jack Socket. Cable, etc. Ideal for making Sound to Light and Strobes. Base Cover included Less Lamps. only £6. 50

```
inc VAT. P. & P. 40p
```


SOUND TO LIGHT

Three channel. using Type B unit Ideal for small disco's and home- entertainment. Complete with Lamps. Ready wired
£25
inc. VAT P. \& P 40p
STROBE UNIT
Using Type B unit. Adjustable frequency. Single knob control Complete with Lamps. just plug into mains-that's it
£25
complete inc VAT P \& P. 40p
100 WATT SPOT LAMPS
Red Pink. Green Yellow, Blue. Violet Clear. Only
80p
each. Minimum 3 Lamps = $\mathbf{£ 2} \cdot 40$ inc. VAT. P \& P. $25 p$
TRAFALGAR SUPPLIES Dept H.T. • Standish Street • Burnley • Lancs

GETIT WHILE IT'S GOING

This is the first ever Wireless World Annual. It's got 140 pages of features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include : A General Purpose Audio Oscillator by L. Nelson Jones (a constructional project specially commissioned for the annual) ; Constructional Design for a Small Boat Echo Sounder by John French; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel. There is also a reference section packed with useful information.
£1 from newsagents or $£ 1.35$ inclusive by post from the publishers.

Wireless World Annual 1975

To: General Sales Department, Room 11, Dorset House
Stamford Street, London SE1 9LU

Please send me copy/copies of Wireless World Annual 1975 at $£ 1.35$ each inclusive. I enclose remittance value $£$ (cheques payable to IPC Business Press Ltd).
Name (please print)

Address.

wireless world annual 1975

ONLY £1. 50

COMMUNICATIONS • ELECTRONICS

LUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

TELEPHONE DIALS
Sole

Tested and Guaranteed Paks

D Unmarked

Untested Paks

Ba4 100 sition iond

8601005
50p

Make a rev counter

for your car

The "TACHO BLOCK". This encapsulated block will turn any 0.1 mA meter inso a
linear and accurate rev. counter for any car with normal co

Electronic Transistor

 ro make, full instructions supplied with these ventional switchability, burglar prooflock-up and automatic alarm, negative and positive compatibility

Extension Telephones

New X Hatch
 ur new vastly improved Mark Two Cross Hatch Generator is now available. Will align the colour guns on a colour TV receiver. Feacuring plug-in $1 C_{s}$ and a more eceiver. Feacuring plug-in ICs and a more virtually unbreakable-idealfor the engincer's | Ready built |
| :--- |
| unit only |
| \mathbf{Q} |
| $\mathbf{9 5}$ | (includes P, \& P. but no batteries) $1 M 380$

 We have just received a large consignment of M380 ICs. These are specially selected to ber SL60745This fantastic litele 3 w audio IC only requires two capacitors and two potentiometers to erol. The quality is good and has to be heard

$$
\begin{aligned}
& \text { to be believed. } \\
& \text { Our special } \& 1 \text { each complete with data } \\
& \text { ondee proiects book }
\end{aligned}
$$

Over 1,000,000

Transistors

in stock
ested and very large range of fully marked. ransistors guaranteed transistors, power
\qquad

Our very popular Ap Irmasisters

TYPE "A". PNP Silicon Alloy, TO-5 can.
TYPE "B". PNP Silicon, plastic encapsula
TYPE "E" PNP Germanium AF or RF. TYPE : G NPN silicon plastic encapsulation TYPE "G" NPN Silicon, similar ZTX300

UHF TV Tuner Units

Brand new by a famous manufacturer Data supplied £2.50

Plastic Power Transistors

NOW IN TWO RANGES

These are 40 W and 90 W Silicon Plastic vailable in NPN or PNP very latest design, aly low prices or PNP at the most shatter selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed Range 1 VCE Min. 15 HFE Min. 15

40 wast	$1-12$	$13-25$	$26-50$
	$20 p$	$18 p$	$16 p$

 $\begin{array}{llll}40 \text { watt } & 30 p & \text { 28p } & \text { 26p } \\ 90 \text { watt } & 35 p & 33 p & 30 p\end{array}$
\qquad
HIGH-SPEED MAGNETICCOUNTERS EX G.P.O. 4 digit (non-reset) $4 \times 1 \times 1=30 p$

INTEGRATED CIRCUITS. We stock a large range of I.C.s at very comperitive prices FREE Catalogue, see coupon below

METRICATION CHARTS now available This fantastically detailed conversion cal-
culator carries thousands of classified references between metric and British (and U.S.A.) measurements of lengeh. area. Pocker Size, 12p, Wall Chart. I8p.

LOW COST DUAL IN LINE IC.
SOCKETS
16 pin cype at $17 p$ each $\}$ Now new low

BOOKS

We have a large selection of Reference and rechnical Books in stock, details are in our latest catalogue.
N.B.-

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors and
Electronic Components, approx. 170 . We guarantee at least 30 really high quality ractory marked Transistors PNP and NPN. an Printed Circuir Panels Rectifiers mounted supplied to give some information on the

Please ask for Pak P. 1. only 501
Picose send the the FREE Bi-Pre-Pak Catologue. Please add V.A.T. at Current
NAME.
ADORESS

MINIMUM ORDER 50p. CASH WITH ORDER PLEASE. Add I5p post and packing per order. OVERSEAS ADD EXTRA FOR
POSTAGE.

SOLID STATE TIME!

DIGITRONIC II

Reads: Hours minutes. seconds

- Bright, clear display
- No moving parts
- Executive styling
- Solid state reliability

Complete with all completents. case, etc: plus full instructions
$£ 29 \cdot 65^{*}$
P/P Built, tested and fully guaranteed

Completely Electronic No moving parts

The DIGITRONIC III £46.50

DIGITRONIC III
\square Reads: Time, Date and Alarm
\square Electronic "beep' alarm tone
\square Ten-minute "snooze" feature
\square Four-year calendar
\square Attractive "woodgrain" case

Mail orders: BYWOOD ELECTRONICS Callers welcome (2 m from M1/M10 junction) Payment. Cash. Cheque. PO. Access VAT: Ail prices exclude VAT

181 Ebberns Road, Hemel Hempstead, Herts. HP3 9RDA Tel: 0442-62757

DIGITRONIC Clocks and Kits are also avallable from AMBIT. Brentwood. Goddards. St. Albans. HENRY RADIO SINTEL Oxiord STUDIO ELECTRONICS Harlow and by the time this ad. aopears many other electronics shops and oftice equipment dealers

OUTSTANDING OFFER!

For one month only* we are offering to PE readers the opportunity to own a superb British-made calculator by Advance Electronics.

Advance 88 - a fully user-orientated hand-held machine with 2 independent memories, $\%, \mathfrak{V}, 16$ digits. Algebraic logic.

Advance 161R - a first-class desktop machine with full 16 digits, $\%, \sqrt{ }$, independent memory and full algebraic logic (enter the problem as you would write it).

All other Advance machines available. Also full program service.

* Offer ends November 30.

We also stock calculators by Mortek, T.I., National, etc.
New 6 digit frequency counter kits from £45!

P.E. Rondo

Complete kit with 4 speakers, u / c decoder, FM tuner and turntable. Value approx. $£ 209+£ 16 \cdot 72 \mathrm{VAT}$.
Fully built Rondo, complete as above. Value $£ 266+£ 21$ VAT. Delivery on complete systems may be $6 / 8$ weeks from date of order.
Set of 4 speakers fully to specification with pre-built cabinetsvery professional finish. Very comprehensive kits.
We supply all Rondo parts and modules.
Quadraphonic headphones-a new experience!
Stereo Headphones-padded with volume controls.

ALL ITEMS ARE POST fREE.

We are appointed distributors for Uher quality tape recorders and Videosonic Dolby processors.
Have you had our book list?

Telephone: Hartow(stdo279) 25457

88-complete set with desk stand, charger, rechargeable batteries and case. List price $£ 115$ + VAT.
Offer price only
$£ 89$
$+£ 7.12$ VAT
161 R—List price $£ 130+$ VAT.
Offer price only
$\$ 100$
$+£ 8$ VAT
$\mathbf{£ 1 9 5}+£ 15 \cdot 60$ VAT
$£ 245+£ 19.60$ VAT
$£ 62+£ 4.96$ VAT
$£ 18.50+£ 1.48$ VAT
£4.80 + 38p VAT

NAME

Pructical Elecironics Classified Advertisements

RATES： 11 p per word（minimum 12 words）．Box No， 30 p extra．Semi－Display $£ 8.50$ per single column inch．Advertisements must be prepaid and addressed to Classified Advertisement Manager，＂Practical Electronics＂IPC MAGAZINES LTD．，Fleetway House，

Farringdon Street，London EC4H 4AD

WANTED

TOP PRICES PAID
 NEW VALVES AND TRANSISTORS
 Popular T．V．and Radio types
 KENSINGTON SUPPLIES（B
 367 Kensington Street Bradford 8，Yorks．

FOR SALE

8EEN MY CAT？5，000 itens．Mechanical and Electrical Gear，and materials．S．A．E．K．K． WHISTON，Dept．PE，New Mills，stockport．

VALVES，VALVES AND MORE VALVES， large stocks 1930－1974，many ohsoleto．Also avalable many tepes of lansistors and st ýli．

 Wittoring ：0） 3 ．

SUPERB INSTRUMENT CASES ly Bizrolli， mamberturm from heaty duty ires fared

 Nir．Lancastir．
＂PRACTICAL ELECTRONICS＇＂$\overline{:} 3$ I for the lot to box Nu．Jit．

PROFESSIONAL SERVICES

PATENT8 AND TRADE MARKS．KINGS PATENT AGTENC＇I LIDITLED（Est．INsi） B．T．King，Director，M．I．Mecd．E．，Registered Patent Agent．146a Queen Victoria street， Iondon，RC4i 5AT．Jooklet on reguest． Trl． $01-2486161$ ．Trlex NQ380\％．

LADDERS

LADDERS．＂special offar＂．lumaminhal triples．Gft $\overline{i n}$ elomed to $2: 3 f$ lin extended， 218．52，delivered．Tel．：Trefford indititt．order， and pay caslo ou delivery

RECEIVERS AND COMPONENTS

$\begin{aligned} & \text { Len } \\ & \text { with Data } \\ & \text { Clip 1p } \end{aligned}$		dia．	$0 \cdot 125^{\circ}$	0.2	D．I．L．SOCKETppin 12p14pin 13p
	RED		170	20p	
	GREEN		32p	35p	
	YELLOW		32p	35p	
${ }^{\text {AC } 127}$	20p	${ }^{2 N} \mathbf{2 N 3 0 6}$	15 P	IN914	30
	${ }_{250}^{20 p}$	2N3053	150	｜N400	p
${ }_{\text {BC }} 107$	${ }_{14} 18$	2N3702	12 p	IN4148	40
BC108	12 p	2 N 3704	12p	OA47	p
BCiogC	$14 p$	2 N 2926	R） $7 p$	OA81	P
BCY70	17p	2N2926		OA91	5p
BCY7	22 p	TIS43	25p	OA95	p
BCY72	12 p	MPF10	45p	OA200	sp
BFY50	1ap	2N3819		OA202	
OC71	10p	2N3823	30 p	in	sp
\qquad				$555.70 p$	
				$\begin{aligned} & \text { ZN4 } 414 \mathrm{EI} \cdot 10 \\ & 7400 \mathrm{THL} 18 \mathrm{p} \end{aligned}$	
PRICES INCLLSIVE＋10p P．\＆P．					
ISLAND DEVICES，P．O．Box 11，Margate，Kent					

PRECISION POLYCARBONATE CAPPCCITORS
ALL HIGH STABILITY－EXTREMELY LOW LEAKAGE

TANTALUM BEAD CAPACITORS－Values avaitable： $0.1,0.22,0.47,1.0,2 \cdot 2,4.7,6.8 \mu \mathrm{~F}$ at $15 \mathrm{~J} / 25 \mathrm{y}$ or 35 V
 3.0μ at 10 y ALL at 10p

 POPULAR DIODES 1 N914 $6 \mathrm{p}, 8$ for $45 \mathrm{p}, 18$ for 90 p ； 1 N9168p， 6 for $45 \mathrm{p}, 14$ for 90 p ； $18445 \mathrm{p}, 11$ for $50 \mathrm{p}, 24$ for 6p，IN4003 BjP ；IN 4004 7p； $1 N 400 \overline{5}$ 71p；IN 40068 p ；

$$
\text { IN } 400781 \mathrm{p} \text {. }
$$

$$
\text { LOW PRICE ZENER DIODES }-400 \mathrm{~mW} \text {, Tol. } \pm 5 \%
$$ 5 mA ．Values available： $3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 5 \cdot 1 \mathrm{~V}, 5.6 \mathrm{~V}$ $6 \cdot 2 \mathrm{~V}, 6 \cdot 8 \mathrm{~V}, 75 \mathrm{~F}, 8 \cdot 2 \mathrm{~V}, 9 \cdot 1 \mathrm{~V}, 10 \mathrm{~V}, 2 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}$,

$13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, \mathrm{ALL}$ at 7p each，fi for 39p 14 for 84 p ．APECLAL＇OFFEK： 100 Zeners for $£ 5-50$ ．
RESISTORS－High stability，low noive carbon flim 5% ， IW at $40^{\circ} \mathrm{C}, 3 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$ ．El：2 series only－from $2-2 \mathrm{n}$ to for 100 of any one value．SPECIAL PA（；K； 10 of each far 100 of any nive value． $2 \cdot 2$ to $2 \cdot 2 \mathrm{M} \Omega(730$ resistors） E 5 ．
GILICON PLASTIC RECTIFIERS－1．5 aup），hrand new
wire ended DO 27 ： 100 P．IV．7p（4 for 26 p ）； 400 P．I．V． 8 p wire ended DO27： 100 P．I．V． $7 p$（ 4 for 26p）： 400 P．I．V． 8 p （ 4 for 30p）： 800 P．I．Y． 11 p （ 4 for $42 p$ ）．
BRIDGE RECTIFIERS－2方 anp：200v $40 \mathrm{p}: 350 \mathrm{Y}$ 45p；
600V S5D， ALL at 50 each： $50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 2.5 M$ $5 \mathrm{M} .1 \mathrm{k} \Omega, 2 \cdot 2 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 6.8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$ PLEASE ADD 10 p POST ANI）PACKING ON ALL ORDERS BELOW ES．ALL EXPORT ORDERS ADL CORTOF SEAAAIRMAIL．

PLEASE ADD 8\％V．A．T．TO ORDER8
Sind S．A．E．for liats of additional ex－stock items．
Wholesale price lists available to bona fure companies
MARCO TRADING
Dept．E．12，The Old School，Editaston，
Tel．Wr．Wem，8hropahire
（Proprs．：Ninicost Trading Ltel．）

R．T．SERVICES
 （MAIL ORDER ONLY）

77 Hayfield Rd．，Salford 6，Lancs．
Veroboard $7^{\prime \prime} \times 5^{\prime \prime}$ app． 0.1 Matrix， 2 for $£ 1.10$ P．P． $12 \times 3{ }_{4}^{3} 0.15$ Matrix，75p each．
12 Volt 1 Amp Trickle Charger． 11.85 P．P． FM Tuner with R．F．Stage and A．G．C． 3 transiszors，neg．earth， $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit，$£ 1.37 \frac{1}{2}$ inc．P．P．
Crouzet Geared Motors， 30 r．p．m．New， El .54 ine．P．P．
UHF TV TUners．Transistorised，$£ 1.65$ inc．P．P．
Panels with I．C＇s on $7 \frac{1}{2}$ p per I．C．min． order $101 . \mathrm{C}$＇s．
Transformers． $7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{3} \mathrm{~A}, 88 \mathrm{p}$ inc． $\mathrm{P} . \mathrm{P}$ ． Transformers． $7.5 \mathrm{~V}+7.5 \mathrm{~V}, \mathrm{~A}, 88 \mathrm{p}$ inc．P．P．
$12-0.12 \mathrm{~V}$ ， $100 \mathrm{~mA}, 90 \mathrm{p}$ inc．P．P． $9-0.9 \mathrm{~V}$ ， $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, 90 \mathrm{p}$ inc．P．P． $9.0-9 \mathrm{~V}$ ，
$100 \mathrm{~mA}, 90 \mathrm{p}$ inc．P．P． $29 \mathrm{~V} 50 \mathrm{~mA}, 70 \mathrm{p}$ inc．P．P． $100 \mathrm{~mA}, 90 \mathrm{pinc}$ ．P．P， Brand new Boxed Rola Celestion Re－ entrant Speakers SD 25 with 100 V line trans－ former fitted 15Ω without transformer $£ 14$ inc．P．P．
Transformer． 20 yole， $1 \mathrm{amp}, ~ £ 1 \cdot 10$ P．P． Transformer． 45 volt， $2 \mathrm{amp}, 62.75$ P．P． Pot Cores．LAl225．Brand new． 4 for E1－10 P．P．
P．C．Board． $5 / 5,5 \frac{1}{2} \times 5 \frac{1}{2}$ in， 10 for 70 p inc．P．P． 3EGI Scope Tubes with base and con－ nections， $\mathbf{E} 3$ inc．P．P．
Transistorised Timer．Variable delay． 110 or 250 V A．C．input．With instructions． Brand new，$£ 2$ inc．P．P．Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$ ． Power Unit Components Transformer． 18 volt 1 amp F／W bridge rectifier， 21250 mid capacitors，all new $1 / 25$ per kit．P．P． Electrolytic Capacito
$4 \frac{1}{2} \times 1 \frac{1}{2}^{\prime \prime} 75$ p．inc．P．P．

ALLARD ELECTRONICS					
Branded Components－Full Specification					
TRANSSSTO		SCR＇s	$\begin{gathered} \text { Price } \\ \text { ea. } \end{gathered}$	DIODES	
ACL2 $2 / 6 / 6 / 8$	0.15	CRS1／03．			
AD140／149	0.49	CRs1／10	0.56		
AD161／162	0.37	CRS1 120	0.60		
AF114／5／6／	0.15	CRS $1 / 40$	0.45		
AF118	0.35	CRS3／40	0.55		
BCL $07 / 8 / 9$	0.09	CRS7／400	0.85	硡	EE
BC1478／9	0.10 0.10	CRS16／200	0.88	INTROD	UCTORY
BC＇212／3／4	0.11	CRS 16／600	1.50	OFP	
BCY70／71／：	0.15	I．C＇s		$2 \overline{4}$	etres
BD131／132	0.35	Trias00	1.35	Connec	ng Wire
BP194／J／6	0.13	free data		with ev	
BFY¢0／ぁ1／5	0．16	SPECIA OPFER		$\left\lvert\, \begin{aligned} & \text { (arious } \\ & \text { var } \end{aligned}\right.$	
BY127	0.25	Ni41			
MJE370	62	Radio 1		FULL R	Range
MJE331	0.73	\＆1 Free	reuit	FLL	series，
	0.50	ZEFERS		Yeroboar	rd，Pots，
${ }_{0} 0$ C83	0.20	BZY88	0.10	Caps，	，etc．
TIL209	0.22	${ }^{\text {All }}$ R roltages			
2N218	0.18	${ }_{1} \mathrm{BZA} \mathrm{w}^{61}$ seri	0.17	S．A．E．	please
${ }^{2} \mathbf{2 N 2 9 0 6}$		DGE Rectilier			
2N3053	0.15				
2N3054	0.50	p．i．v．1A		4A	
2N 30.5	0.44	$5010 \cdot 0.24$	0.34		
2N3702／3／4	0.10	100 V 0.24	$0 \cdot 39$	54	69
2N370076	0.10	20050.27	0.4	0.58	
2N3707／8／9	0.10	400 V －	0.49	0.64	0.8
2N3819	0.28	600V 0.28	－	0.74	
299／301 BALLARDS LANE LONDON N12 BNP MAIL ORDER ONLY Teléphone enquiries： $01-4455188$ Cash with order．Add V．A．T． Orders under $£ 2$ plus 12 P P．\＆P．					

> COMPONENTS GALORE．Pack of 500 mixed components manufacturers＇surplus plus fall out．Pack includes resis：ors，carbon and W．W．，capacitors，various，transistors，diodes， trimmers，potentiometers，etc．
> Send 81 plus 15p P．\＆P．C．W．O．To
> CASCADE COMPONENTS COMPANY Bankhead Farm，South Queensferry， West Lothian

```
COPPER CLAD FIERE OLASS PANELS 12%In }\times7\mathrm{ 7in
75p c.p Double sided a5p c.p NEONS, BANK OF
FIVE, WITH 5-C407 driver transistors. 60p c.p. M.C.
METERS. 3 assorted 2-3in. E1.30 (30p) 5 FIOURE
RE&ETTABLE COUNTER. 18/22V. Works ON 12V
$2.25 (25p). D.L.L. IC ON PANELS. 10 %or 60p (10p)
COPPER CLAD PAX. PANELS. 5% \times 5;in. 6 % % S 2p
E1. All posi pald. SMALL UNIT WITH 4BFY51 with
hest sinks. 4 silicon diodes 650V 1&A. B5p c.p. THREE
TRANSISTOOR AUDIOIAMP. Transistors equiv. to 
AC128. OC72. 40p (10p). 3 for E1 c.P 22-waY STEP
PING SWITCH WITH RESET. A.c. malns operated. I1
(25p).VALUPAKS. P9. 100 s/mica caps. 55p. P11, 100
polystyrene caps, 75p. P16. 3 small panels with 3 uhi
pakz Send 10p stamps for list of Valupakg. Computer
Panels, atc. Retund on purchase
    IID ASSORTEO COMPONENTS (1.75 e.p.
        J.W.B. RADIO
2 Barnfleld Crescent, Sale, Cheshire M33 1NL
Postage In brackets.
                                    Mall order only.
```

Disc Ceramics: 1000, 220p. $470 \mathrm{p} .1 \mathrm{n} .2 \mathrm{2n2,4n7} 4 \mathrm{p}$ each.
Minlatur Electrolytice: $1000 \mathrm{~L}, 25$ 22p, $47 \mu / 63 \mathrm{8p}$,
$3 \mu 3 / 100.1 \mu / 63.3 \mu 3 / 50$. $10 \mu / 25$. $47 \mu / 25$. 4ρ each

BD 139 50p. BD140 55p. $1 \mathrm{~N} 40028 \mathrm{8p}$. 1 N 4005 10p. Crystal-
line Ferric Chloride 110 Bag 43p +20 p P 8 P
STAG ELECTRONICS
90 Kingsdale Gardens
Drighilngton, Bradford BD11 1EZ
Tel. 097-330 2075

RE8I8TOR8．$\frac{1}{2}$ W Carbon Film，Type UPM 050 ip each plus VAT＇，post free，GiREENBANK Electronics， 94 New（hester Road． Wirral，Merseyside，L62 5A（：

TTLATEOMESI					
(All devices					
	1/24	25/99		1/24	25/99
7400	$0 \cdot 17$	$0 \cdot 15$	7402	$0 \cdot 17$	0.15
7404	$0 \cdot 20$	0.18	7410	0.17	0.15
7420	0.17	0.15	7430	0.17	0.15
7440	0.17	0.15	7442	0.74	0.73
7445	1.03	0.96	7447AN	0.98	0.98
7451	0.17	0.15	7473	0.36	0.34
7474	0.36	0.34	7475	0.56	0.50
7576	0.35	0.32	7480	0.53	0.50
7483	1.02	0.95	7489	3.56	$3 \cdot 33$
7490	0.57	0.55	7492	0.57	0.53
7493	0.59	0.56	74121	0.37	0.35
74123	0.72	0.67	7486	0.36	0.34
74157	0.87	0.81	74175	1.01	0.95
All devices full spec. by famous manufacturers. Devices may be mixed for 25/99 prices. S.A.E. for full list. 10 P P. \& P. on orders under EI, otherwise post free.					
J.C.JONES					
HUNTINGDON PE17 4XX (Mail Order only)					

DRY REEDINSERTS
 Overall length 1.85° (Body lengch 1.1°), Diameter $0.14^{\prime \prime}$ Max, ratings 250 v O.C. and 500 mA . Gold clad normally Open contacts. 69p 6275 per 10,000 . VAT and pose paid.
 G.W.M. RADIO LTD.
 $40 / 42$ Portlend Road. Worthing, Suseex 090334897

BRAND NEW GOMPONENTS BY RETURN, Electrolytics, $15 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0.47,1,2 \cdot 2$ $4 \cdot 7,10 \mathrm{mF}, 4 \mathrm{p} ; 22,47,4 \mathrm{p} ;(50 \mathrm{~V}, 5 \mathrm{p}) ; 100$, $5 \frac{1}{2} p ;(50 \mathrm{~V}, 7 p) ; 220,6 p ;(50 \mathrm{~V}, 9 p)$. Subminiature bead-type tantalums $0.1 / 35 \mathrm{~V}, 0.22 \cdot 135 \mathrm{~V}$, $0 \cdot 47 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2.2 / 35 \mathrm{~V}, 4.7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}$, $22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, 9 \mathrm{p}$. Mylar Film 100 V $0.001,0.002,0.005,0.01,0.02,21 p ; 0.04,0.05$, $0.001,0.002,0.005,0.01,0.02,2$
$3 p$. Mullard Tubular Polyester 400 V TE 6 series, $0.001-0.022,3 p ; 0.033-0.1,4 p$. Mullard miniature C'333 ceranies E. 12 series $2 \% 1.8 \mathrm{pF}-$ $47 \mathrm{pF}, 2 \frac{1 \mathrm{p}}{} \mathbf{1} 56 \mathrm{pF}-330 \mathrm{pF}, 3 \mathrm{p}$. Polystyrene 63 y . E12 series $10 \mathrm{pF}-1000 \mathrm{pF}, 2 \mathrm{LP}$; $1200 \mathrm{pF}-$ 10000 pF , 31p. Miniature Highstab Carbon Film Resistors $1 \mathbb{N}$ Lis series 5% 1 $2-10 \mathrm{M} \Omega$ (10% over $1 \mathrm{M} \Omega$), 1 p . Postage 8 p . Prices VAT inclusive. THE C.R. SUPPLY CO., 197 Chesterfiek Road, Sheffield, S8 ORN.

AB8OLUTELY UNBEATABLE VALUE. OuT quality pack of 550 comtponents is a must for every experimenter. Pack comprises loads of transistors, diodes, potentioneters, resistors, capacitors, etc., plus 2 free panels packed with components. Send only $\$ 1.50$ for speedy delivery to CAPITAL COMPONENTS, 13 ('M 3276, LONDON, WCIV 6XX.
"GA8 8EN8OR TG8105 with circuits $\$ 1.90$ post frec. BARON ELECTHONICS, 176 Brookhurst Avenue, Bromborough, Wirral, Merseyside, L63 0PI'."

LED's. Red, Green, Yellow, Sizes: 0.1in, $0 \cdot 125 i n, 0 \cdot 16 i n, 0 \cdot 2 i n$. Mixed bags all sizes and colours. $50 £ 5,100 £ 9$, including postage, VAT. C.W.O. Individual types and larger quantities by negotiation. INIIISTRIAT ELECTIRONJC SUPP'JEN (STOCKI'()RT) LTD., 181 a Irramball Lane, Daveraport, Stockport, Cheslire.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HAIRDING \& CO., P.O. Box 5, Frome, Somerset. Immediate cash settlement.

SITUATIONS VAGANT

INTERNATIONAL DI8COTHEQUE company requires experienced Audio/Installation lingi neer for work in England and abroad. Tel $01-491745$.

NATIONAL PHYSICAL LABORATORY, DIVISION OF MARITIME SCIENCE

VACANCIES

AT TEDDINGTON, MIDDLESEX AND HYTHE, HAMPSHIRE ELECTRONIC DEVELOPMENT

A number of interesting posts with a wide range of duties are available at the above locations.
We use analogue and digital circuits, audio and radio frequencies, land and sea based equipment, together with computers to handle our results.
Assistant Scientific Officers, with an interest in electronics, are required to join small teams at both sites to help us maintain and develop our systems, and to assist in trials on ships and offshore structures.
Excellent opportunities exist to obtain broad practical experience and to study for higher qualifications leading to a worthwhile career.
The minimum qualifications are 4 GCE or CSE Grade 1 subjects, to include Maths. Sclence and English Language.
Salary ranges from $£ 887$ (at age 16) to $£ 1,547$ (at age 25) rising to $£ 1,899$. If you would like further details you may telephone Mr R. F. Johnson or Mr R. W. Cuffe at the numbers shown.
Mr R. F. JOHNSON: 01-977 3222 Ext. 4165 during working hours or Woking 65942 evenings and weekends.
Mr R. W. CUFFE: Hythe (Hants) 3065 (STD 042-14) in working hours, or Hythe 6804 evenings and weekends.
Alternatively, write to Mr H. B. Boyle. Officer-in-Charge, Department of Industry, National Physical Laboratory, Division of Maritime Science, St John's Street, Hythe, Southampton, Hampshire, SO4 6YS, quoting Reference MS/INST.

MEN ! \$70 p.w. can be yours

Jobs galore! Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks! Pay prospects? $£ 3,500+$ p.a.
After training, our exclusive apAter training, our exclusive ap-
pointments bureau - one of the world's leaders of its kind - introworld's leaders of its kind - intro-
duces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators Training Centre T63, Oxford House
9-15 Oxford Street, W. 1
Telephone 01-734 2874

SERVIGE SHEETS

8ERVICE 8HEET8, Radio, TV, etc. 8,000 models. Catilogue 20p. S.A.E. enquiries. TELRAY, 11 Maudiand Bank, Preston.

8ERVICE SHEET8 for over 6000 models of Televisions, Radios, Transistors, Stereo, Tape Recorders, Record Players, etc., at only 30 p ,
plus S.A.E. with free Fault-Find.ng Guide. plus S.A.E. With free Fault-Find.ng Guide. S.A.E. enquiries. Catalogue 20p plus S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 429068.

EDUCATIONAL

C AND G EXAM

Make sure you succese with an ica homentudy course tor C and G Electrical instatiotion wort and Teennictane. Radio/TV/Electronles Tectinician comms Technicions and Redlo Ambteure

COLOUR TV SERVICING

Make the mott of the current booml Learn the techniquee of emerycing Colour and Mono TV atts through now home aluay courees. epproved by reading manufacturers.

TECHNICAL TRAINING
Home tudy courane in Electronica and Electrical Engineering. Maintanance. Aedio. TV. Audio. eolf-build radlo kite
Get the qualification you need to auccese free detsile from

International Correspondence Schools, Dept. 730X, Intertext House,
London SW8 4UJ. Or phone 01-622 9911
MISCELLANEOUS

Build the Mullard C.C.T.V. Camera Kits are now available with comprehensive construction manual (also available separately at 80 p).
SEND $5^{\prime \prime} \times 7^{\prime \prime}$ S.A.E. FOR DETAILS TO:
CROFTON ELECTRONICS
124 Colne Road, Twickenham Middlesex TW2 6QS

MORE RANGES FOR LESS MONEY!

AC/DC Multimeter type U4324 A.OC 0. OG-3A-6 Ranges A-AC $0-3-3 A-5$ Rangas.
$V-D C O-6-1200 \mathrm{~V}-9$ Aange V-AC 3-900 V-8 Ranges. Froquency in the range of 45 to 20 kHz Resistance: 500 ohm
$5 \mathrm{Mohm}-5$ fanges. to +12 dB . Accuracy $+4 \%$ AC
$\times 63 \mathrm{~mm}$.

Onty $£ 8.85$

SUPERTESTER 680 R ICE 10 Fields-80 Ranges. Plus a dot of accessories for
measurements of $500 \mathrm{~A}-\mathrm{AC}$ 100 A DC- Temperaturefields to +200 C - Magnetic Phase indicator- EHT 15 KGaussElectronic Volt- EHT 25 kV Transistor Diode Tester ote $\times 32 \mathrm{~mm}$ Dimensions 128 = $95 \times 32 \mathrm{~mm}$ 300 grams 20kOhm Accuracy
£18.50

ALPHANUMERIC NIXIE TUBES B797
The Alphanumeric
NIXIE fube has the
NIXIE tube has the
abllity to display all the letters of
the alphabet numerals 0 thru 9 characters in a single From the stand point of both read abillty and elec tics. the Alpha
 lics. the Alpha humeric NIXIE tube provides many unique benefits line characters of equal height * Memory with simple solid state drive circuits \star Readability in high ambient light 200 footlamberts brightness \star Long life with Character hergit 2t,
Price only 99p each plus 16p P./P

SPECIAL OFFER

 The SInclalr Scientific. Logs, trig and arithmeilc. All at the touch of a button. Al last there s a pocket calculator which glves you log and trig functions instantly Full 12 function machine. With the qunctlons avatiable on the Sclentific keyboard, you can handie
directly log antilog, in and arcain. cos and arcos tan and arctan auto tomatic squaring auromatic doubling. x^{p} (Including square and other roots), plus of course addition, subtraction. multiphiand division and calculations based on them -digit scientific notation, 200 -decade range. Revers Polish logic and 25 -hour battery life. £27-50
Add $\%$ VAT to all Iteme + 35p PaP
ELECTRONIC BROKERS LTD
49-53 Pancras Road, London NWi 2QB Tel. 01-837 7781

SLOW SPEED MOTORS reminid (atrout Ir.p.in.) any quantity consideral. Jhone Mr. s.yith, $06 \mathrm{j}-633$ 35ッ7.

PSYCHEDELICATESSEN

is the only way to describe the parodise
of FREAKY gear now available from Boffin. LOOK!

Kits
NO LICENCE EXAM. Transmirter/ Receiver
Variable-rate, BRIGHT-FLASH, Pocker Mini-Strobe
Aeady-Made Experimental Modules
Maxi-Volt SPARK GENERATOR (1 inch
Mini DREAM-LABORATORY
MinIDREAM-LABORATORY
STETHOSCOPE
Electronic VOICE-THROWER
GHOST.HUNTING AID
PEOPLE DETECTOR
SPEAK-THRU.WATER-FONE
PSYCHEOELIC MEDITATION AID
Bird-Watchers REMOTE MONITOR
Psychological CROSSEYED EARS
Device
'Big Ear'SOUND.CATCHER $\quad \mathbf{E 3 . 2 0}$
(All prices include VAT, packing \& postage)
Send remittance to:
BOFFIN PROJECTS
4 Cunliffe Road, Stoneleigh Ewell, Surrey
(Mail order U.K, only)
Or for more details, send 20 p for lists, plus tree design project sheet

Pillibe optic euppliers

MARE'S TAILS. Build your own decorative lamp unit and save Efs. Over 7.000 fibres in 18 mm ferrute, protessionalfy finished, 22 in dia. Looks absolutely stunning in boardroom, foyer or hall. Pi
VAT. (Airmail Australl/New Zealand ह2).
CROFON 1610. 64-strand plastic light conduit, bunale dia. 1.8 mm . O.D. $3.3 \mathrm{~mm} .1 \mathrm{~m} £ 1 \cdot \mathbf{2 0} .5 \mathrm{~m} £ 5,10 \mathrm{~m} £ 9.70$. FIBROFLEX SIZE 1. $1.14 \mathrm{~mm}, 40$ glass fibre light conduit, very flexible 40 p per metre.
ULTRASONIC TRANSDUCERS SEO5B. $40 \mathrm{kHz} \mathrm{Tx} / \mathrm{Rx}$ palr for remote control E 3.50 .
CIRCULAR POLARISERS. Cut that glare on crt. LEDs. nixies, meters or almost any sort of display. Enhance contrast ratlo by up to 20 times. If you have ever used polaroid sunglasses to see through glare on water you will know jusi how effectlve these can be. Avaliable in red, amber, green o
square $80 \mathrm{p}, 75 \mathrm{~mm} \mathrm{f1} \cdot 20,150 \mathrm{~mm} \mathrm{f} 4$.
LINEAR POLARISERS. TuIn your walls into living kinetic art. Use a pair of KN42 (high Iransmission high temp.) polarisers to convery your slide pro jector into a multi-colour light show. 50 mm square £1.20 per pai
PHOTODETECTORS. 2N5777 HIgh Sensitivity Medium Speed Photodarlington, 25 V (Gsin 2.500 X). 50 p $(10+45 p)$. MRD 150 Minlature Migh Speed Sillcon
Photer Photolraistor,
LIGHT EMITTING DIODES. MLED500. TO92 siyle red $20 \mathrm{p}(10+11 \mathrm{p})$ MLED92, intra-red omiter 30p $(10+$ 27p) XER29, 3 mm case red 20p (10 - 18p) XE209,
PLASTIC OPTICAL NONOFIBRE. We stock piastic flares in diameters from 0.125 mm to 1.5 mm . Low cost. easy to use
FAEE OFFER. During November we will send 2m FP20 (0.5 mm monotibre) FREE to P.E. readers, together with our short form cat. with full details of prices.
OPTIKITS. LENSES and ACCESSORIES. Send $9 \times 61 \mathrm{n}$ SPAE End mark Nov Offer
VAT. Please add 8% Vat to all prlces above

FIBRE OPTIC SUPPLIERS

(Dept. PE), P.O. Box 702 London W10 6SL

> Lighting Modules and Kits Bought SOUND TO LIGHT: $3 \times 1 \frac{1}{2} \mathrm{~kW}$ channels with bypass, sensitivity and dimming controls. This bypass, sensitivity and dimming controls. This
unit was designed for use by hire firms and has unit was designed for use by
proved to be very reliable.
> MODULE (ready built), £16.99. KIT, £|4.99. DIMMERS: 2 -way wallmounting units, 89 p .

> THEATRE ANO DISCOICLUE DIMMERS
> CUSTOM BULIL
> Written enquiries and Mait Order only to 21 Priors Road, Windsor, Berks. SL4 4PD

METER REPAIRS, Anmmers, voltmeters, malti-range meters, ete semat to NF:TER REDSIRs, -1 Mount Rowd, 'Thumbersley,

TELERADIO ELECTRONICS ARE STOCKING THE MODULES FOR THE P.E. RONDO QUADRAPHONIC SYSTEM

F.M. Tuner 617.50

Power Amp £8.25
Pre-Amp
Stereo Decoder £3.30 67.64
P.S.U. 65.50

Transformer 66.87

Chassis £3.57
Further OST FREE

TELERADIO

325-7 Fore Street, London N9 OPE $01-8073719$
CLOSED THURSDAYS

```
P.C. BOARDS FOR THE P.E. CCTV
    CAMERA
```

Manufactured from highest grade glass fibre
material,
pC8I- $1 \cdot 10$ plus 9p VAT
PCB2-90p plus. $7 \mathrm{p} V A T$
Or supplied cut to size but undrilled, $£ 1 \cdot 25$ the
pair plus 12p VAT. All Post Eree.
WASCO ELECTRONICS
Queen Street, Lancaster LAI IRX

ENAMELLED COPPER WIRE

$5 . W . G$	Ilb Reel	$\ddagger 1 b$ Reel
$10-14$	$£ 1.90$	$£ 1.05$
$15-19$	$£ 2.00$	$£ 1.10$
$20-24$	$£ 2.05$	$£ 1.15$
$25-29$	$£ 2.10$	$£ 1.20$
$30-34$	$£ 2.20$	$£ 1.35$
$35-40$	$£ 2.35$	

COPPER SUPPLIES
102 Parrswood Rd., Withington, Ma

LOUD 6V SIRENS for burghr alarms, ete. (new and boxed) $\$ 1.20$. Add 10 p Pif. List No. 96 p . GRIMSBC BLECTRONIC'S, 64 T'emyson Road, ('Jeethorpes, Lines.

AUDIOSCAN, the "do-it-yourself" speaker mail-order specialists. High fldelity speaker kits, chassis units, sound absorhent, grille fabric and much more. Send s.a.e. for bargain list to: AUDIOSCAN゙, Dept. P127, 4 Priíces Square, Marngate, Yorkshire.

HARDWARE 8UPPLIES-Sheet aluminium individual sizes or standard packs, drilled to spec, Screws, nuts, washers, etc., Fascia panels in aluminium individual requirements. Printed circuit boards, onewff or small runs. Printed circuit drafting tapes, etc., $7 p$ for list RAMAR CONSTRUCTOTR SERYICES 28 Shelbourne Road, Stratford-on-Avon, Warwks., CY37 9JP.

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.N.C.s, sweep generators, test equipment, ete. Lower Beeding 236.
PRINTED CIRCUIT MANUFACTURER8 offer any P.E. Project P.O. ready drilled. One Price 65p. C.W.O. Also P.C. production, Design, Art-Work and Plotography underDesign, Art- Hork and Plotography under-
taken. Send basic circuit, P.C. layout or P.C. taken. Send basic circuit, P.C. layout or P.C.
Master stating quantity required for estimate Master stating quantity required for estimate
hy return or Phone: W.K.F. ELECTRONICS, hy return or Phone: W.K.F. ELECTRONICS, sop, Nott's., S80 4TW. Telephone Whitwell (Derbys) 695.
0.014 in TRANSFORMER LAMINATIONS. Opportunity to purchase small quantities. E's and I's $6 \frac{1}{4}$ in $\times 5 \frac{1}{2} 1 \frac{1}{2}$ in tongue. Winding space $3 \frac{1}{2} \mathrm{in} \times 1 \frac{3}{8} \mathrm{in}$. Twelve to the pound at $48 \mathrm{p} / \mathrm{lb}$ plus 50 p per 10 lb postage. C.WV.D. to: DIATHERM FCRNACDS, 23 Greencourt Road, Petts Wood, Kent.
AERIAL BOO8TER8 \&3. We make three types of aerial boosters: L45-C'HF625, L12-VHF405, L11-VHF radio. TELE. VISION VALYES. Most types. Any $545 p$. S.A.E, leaflets. LANCASHIRE MAIL. ORDER, 6 William Street, Stubbins, Ramsbottom, Buty, Lancs.
ALUMINIUM PIECES for Practical Electronics COTV Camera. Set of 4 , \&2 inc. P. \&P. Terms C.W.O. Quotes for other projects. NEW ERA, "Ravenstor", Lower Stock Road, Stock, Essex
ALUMINIUM BOXE8. 'Allsizes, sheet aluminium, stock sizes, netal cases, etc. Send S.A.E. for complete list. S. BLAKE, 21 Widmore Road, Hillingdon Middx.
P.C.B.'s. $\begin{aligned} & \text { in glass flbre, ready drilled, for }\end{aligned}$ most P.E. projects, 8p/sq, in plus P. \& P, 10 p . M. \& G. PYWELL, 16 Goverton Square, Bulwell, Nottingham.

OSMABET LTD. We make tranetormers. AUTO TRANSFORMERS, $110 / 200 / 220 / 240 \mathrm{~V}$. $30 \mathrm{~W}, 21.70 ; 50 \mathrm{~W}, £ 2 \cdot 40 ; 75 \mathrm{~W}, £ 2.85 ; 100 \mathrm{~W}, ~ £ 3.80$ 500W, $£ 10-80 ; 750 \mathrm{~W}, £ 14.25$; $1000 \mathrm{~W}, ~ £ 18-00$, ct LOW VOLTAGE TRANSFORMERS
Prim. $200 / 2404$ a.c. $6.351 \cdot 54,81 \cdot 20 ; 3.1$, $£ 1,50$; $6 \mathrm{~A}, \mathrm{s2}-55 ; 12 \mathrm{~V} 1 \cdot 5 \mathrm{~A}, £ 1-50 ; 3 \mathrm{~A}, £ 2.55 ; 6 \mathrm{ACT}, £ 3-40$;
 CT, f4.50; 50V 6A CT, $£ 13 \cdot 50$; 25 $2.1+25 \mathrm{~V} 2 \mathrm{~A}$, £4.90; 12V 4A +12V 4A. £4. 90 .
LT TRANSFORMERS TAPPED SEC. Prim. 200/240V $0-10-12-14-16-18 \ \quad \because \mathrm{~A}, \quad £ 2 \cdot 60 ; \quad 4 \mathrm{~A}$, 83.75 $\begin{array}{lllll}0-12-15-20-24-30 V^{\circ} & 2 \mathrm{~A}, & £ 3.40 ; & 4 \mathrm{~A}, & £ 4.50 ; \\ 0-5-20-30-40-600^{\circ} & 23.40 ; & 2 \mathrm{~A}, & \mathrm{4} \cdot 50\end{array}$
 MIDGET RECTIFIER TRANSFORMERS.
For FW rect. 200/240V a.c. $9-0-9 \mathrm{~V} 0.3 \mathrm{~A} ; 12-0-12 \mathrm{~V}$ For FW rect. $200 / 240 \mathrm{~V}$ a.c. $9-0-9 \mathrm{~V} 0.3 \mathrm{~A} ; 12-0-12 \mathrm{~V}$
$0-25 \mathrm{~A} ; 20-0-20 \mathrm{~V} 0.15 \mathrm{~A}$. $6 \mathrm{~V} 0.5 \mathrm{~A}+6 \mathrm{~V} 0.5 \mathrm{~A}: 9 \mathrm{~V}$ $0.35 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A} ; 12 \mathrm{~V} 0.25 \mathrm{~A}+12 \mathrm{~V} 0.25 \mathrm{~A}$ or $20 \mathrm{~V} 0 \cdot 15 \mathrm{~A}+12 \mathrm{~V} 0.15 \mathrm{~A}$ at $81-65$ each; $9-0-9 \mathrm{~V} 1 \mathrm{~A}$, E1-35; 12-0-1.25 1 A or $20-0-20 \mathrm{~V} 0.75 \mathrm{~A}$ 21.50 each. MALNS TRANSFORMERS
Prim. 200/240V ac. TX6 sec., 425-0-425 500 Ma , $6 \cdot 3 V$ CT $6 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}$ CT $6 \mathrm{~A}, 0-5-6.3 \mathrm{~V} 3 \mathrm{~A}$, $£ 16-50$; TX1 $425-0-42 \mathrm{JV} 250 \mathrm{Ma}, 6 \cdot 3 \mathrm{~V}$ CT $4 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}$ CT 4 A $0-5-6.3 \mathrm{~V} 3 \mathrm{~A}, ~ 88 \cdot 75$; MT3 Prim. $0-110-240 \mathrm{~V}$ sec 250 V 1
O/P TRANSFORMERS FOR POWER AMPLIFIERS P.P. sec, tapped 3-8-15ohms, A-A $6 \cdot 6 \mathrm{~K} \Omega$ 30W etc.), £15.75; tapped Multi O/P 10W £3. G.E.C. MANUAL OF POWER AMPLIFIERS Covering valve amplifiers of 30 W to 400 W 35 p . LOUDSPEAKERS FOR AMPLIFIERS BAKER $25 \mathrm{~W}, ~ £ 7 \cdot 60: 35 \mathrm{~W}$, $£ 8 \cdot 40$: HI-FI Major Module 20W w/tweeter Xover. $£ 11.80$; Baker speaker lists; FANE; $50 \mathrm{~W}, ~ £ 1050$; $60 \mathrm{~W}, \mathrm{E} 13.50$; HI-FI speakers, EMI bass $13 \times 8 \mathrm{in}, £ 2-00 ; \operatorname{in} 8 \Omega, 81-15$;
$7 \times 4 \mathrm{in} 15 \Omega, £ 1.60 ;-8 \times 3 \mathrm{in} 3,8,15,25$ or 80Ω, 7×4 in 15Ω, $21 \cdot 60:$
f1.75 each.

LOUDSPEAKERS

$2 \operatorname{in} 8,16$ or $75 \Omega, 3$ in 8 or $25 \Omega, 3$ in $3,8,25$ or $35 \Omega, 3$ in 8,15 or $80 \Omega 90 \mathrm{p}$ each; jin 3,8 or 25Ω, $5 \times 3 \operatorname{in} 3$ or $8 \Omega, \varepsilon 1.05 ; 7 \times 4$ in 3 or $15 \Omega, 61$ in 3Ω, $£ 1+25 ; 10 \times 6$ in $3 \Omega, £ 1.50$.
SPEAKER MATCHLNG TRANSFORMERS 12W 3 to 8 or 15Ω up or down $11 \cdot 30$.
"LNSTANT"BULK TAPE/CASSETTE ERASER Instant erasure, any diameter tape spools, cassettes, demagnetises tape heads. 200/240V a.c. $53-25$. SYACHRONOUS GEARED-MOTORS, 230/240V, Brand ne
75 p each.

Carriage and vat extra on all orders S.A.E. ENQUIRIES-LISTS, MAIL ORDER ONLY 46 Kenilworth Road, Edgware, Middx. HA8 8YG Tel. 01-9088 9314

SYNTHESISER Modules by Dewtron ${ }^{\circledR}$

The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now. With over 10 years' experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module: pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous "Modumatrix" patching system makes other patching a thing of the past! Send just 15 p for full catalogue to:

254 Ringwood Road, Ferndown Dorset BH22 9AR

FERRANTI ZN414

IC radio chip with data, E1-20 (22p) Also avallable kit of extre parts to complete a radio, $\$ 2.45$ (42p) Send S.A.E. for free leaflet

NEW SINCLAIR IC20
High power IC audio amplifier chip. is.45 (£1-05)

DELUXE KIT FOR THE IC12

Includes all parts for the printed circuit and volume bass and treble controls needed to complete the mono version, $\{1.70(26 \mathrm{p})$. Stereo model with balance control. E. $3 \cdot 70$ (43 p)
IC12 POWER KIT
Supplies 28V 0 5A, £2. 77 (48p).
LOUDSPEAKERS FOR THE IC12
$5 \mathrm{in} 8 \mathrm{ohm}, ~ £ 1 \cdot 20(27 \mathrm{p}) 5 \mathrm{n} \times 8 \mathrm{n} 8 \mathrm{ohm}, ~ £ 1 \cdot 65$ (37p). PREAMP KITS FOR THE IC12
Type 1 for magnetic pickups, mics and tuners Mono model, $£ 1-40$ (25p) Stereo model. $\mathbf{c 2} 50$ (33 p) Type 2 for ceramic or crys.
Stereo. $\$ 1-40$ (24).

SEND S.A E FOR FREE LEAFLET ON KITS

BATTERY ELIMINATOR BARGAINS
The most versatlle battery
eliminator ever offered ellminator ever offered
Switched output of 3,44 6. 7 z .9 and 12 V at 500 mA . 53.90 (70 p)

Other eliminators stocked $250 \mathrm{~mA}-3$ way switched model giving 6, 7t and 9V.
£2. 25 (55p)
$50 \mathrm{~mA}-6 \mathrm{~V}, \quad £ 1.95$ (40p). 9 V
I .95 (40p). $7+\mathrm{V}^{\text {casserte }}$
type. $£ 2.50$ (40 p) Double $6 \mathrm{~V}-6 \mathrm{~V}, 52.75$ (43 p) $9 \mathrm{~V}-9 \mathrm{~V}$, £2.75 (43p)
500 mA -Heavy duty deluxe models 6 V ع2.78 (55p) 71 V . $22 \cdot 78$ (55p) 9V. $\mathbf{~} 2 \cdot 78$ (55p)

S-DECS AND T-DECS		
S-DEC E1.98 (31p)		
T-DEC [3.63 (47D)		
51p (15p). With socket,		
¢1-77 (25p). 10 T05-plain.		
78 p (15p). With socket.		
£1.68 (24p).		
Experiment guides-A, 51.50 (26p), B. E1-77 (29p),		
		(53p

SWANLEY ELECTRONICS

P.O. Box 68, Swanley, Kent BR8 870 Please add the sum shown in brackets after the price to cover the cost of post and new VAT Official credit orders from schools. etc, welcome. No VAT charged on overseas orders

LOOK! Lowest palices IN THE BOOK!

7400-5	0.20	7437	0.38	${ }^{7} 476$	0.42	72702	0.45	IN4001	0.06
7406-7	0.48	7438	0.38	7482	0.89	72709	0.31	IN4002	0.06
7408-9	0.20	7440	0.20	7483	$1 \cdot 25$	72710	0.37	IN4003	0.07
7410	0.20	7442	0.85	7485	1.65	72723	0.80	IN4006	0.09
7412	0.26	7445	$1-80$	7486	0.48	72741	$0 \cdot 36$	1N4007	0.12
7413	0.38	7447	1-30	7489	4.95	72747	1:00	IN448	0.05
7416	0.44	7450	0.20	7490	0.66	72748	0.36	OA47	0.07
7417	0.30	7451	0.20	7491	1.10	ZN414	1-25	OA90	0.08
7420	$0.20{ }^{\circ}$	7453	0.20	7492	0.70	TAA350	2-10	OA91	0.06
7422	0.28	7454	0.20	7493	0.68	LM3018	0.75	OA200	0.06
7425	0.38	7460	0.20	7494	0.90	CA3046	0.70	OA202	0.09
7427	0.45	7470	0.34	7495	0.12	CA3036	1.00	IN916	0.06
7428	0.45	7472	0.34	7496	0.99	CA3028	1.20	88105	0.45
7430	0.20	7473	0.45	74100	2.20	CA3090]	4. 50	IS44	0.05
7432	0.45	7474	0.42	74141	0.99	NE555	0.85	TIL209	0.27
7433	0.45	7475	0.80	74192	$2 \cdot 12$	TAA661B	1.40	OAB1	0.07
BC107	0.10	BCY70	0.13	OC23	0.45	2N930	0.20	2N3702	0.10
BC 108	0.10	BCV71	0.12	OC24	0.47	2N1131	0.22	2N3703	0.10
BC109	0.10	8 CY 72	0.12	OC28	0.70	2N1132	$0 \cdot 21$	2N3705	0.10
BC177	0.22	B0121	0.78	OC35	0.80	2N1711	0.11	2N3706	0.10
BC178	0.22	BFY50	0.25	OCT70	0.25	2N1893	0.52	2N3707	0.10
8C179	0.24	BFY51	0.21	OC171	0.25	2N2219	0.40	2N3819	0.20
BC182	0.10	BFYS2	0.22	TIP30A	0.82	2N 2904	0.40	2N3820	0.45
BC183	0.10	BS $\times 20$	0.18	TIP29a	0.52	2N 2905	0.23	2N3823	0.21
BC184	0.10	OC44	0.20.	TIP41A	0.85	2N3053	0.18	2N3442	1.45
BC212	0.12	OC45	0.20	TIP42A	0.90	2N3054	0.44	3 N 140	0.98
BC213	0.12	0C71	0.13	27×304	0.26	2N3055	0.48	3N141	0.88
BC214	0.12	OC84	0.25	$2 T \times 504$	0.35	2N3391	0.29	3N142	0.85

Electrosil TR5 resistors 2\%, 3p; TR6, 4p; TR4, 10p. Wirewound resistors, all values 2.5 W .10 p ; $6 \mathrm{~W} .10 \mathrm{p} ; 9 \mathrm{~W}$. 12p; 12 W . 15 p . Dlecas! boxes $4 \mathrm{in} \times 2 \frac{1}{4} \mathrm{In} \times 1 \mathrm{in}$ $40 \mathrm{p} ; 4 \mathrm{in} \times 2 \mathrm{tin} \times 2 \mathrm{in}, 50 \mathrm{p} ; 7$ in $\times 4 \mathrm{in} \times 2 \mathrm{in}, \mathrm{E1} \cdot \mathbf{2 5}$. Solder $18 \mathrm{~s} . \mathrm{w} . \mathrm{g} ., \mathrm{I} 1 \cdot 80 / \mathrm{lb}$ Dalo pen. 75p. Litesold irons, $10 \mathrm{~W}, \mathrm{£1} \cdot \mathbf{7 5} ; 25 \mathrm{~W}, \boldsymbol{£ 1} \cdot \mathbf{7 5}$; spare bits, 6 p . Fibreglass
 Tantalum beads, afl at 13p. I.C. sockets, 8-pin. 18p; 16-pin, 18p; 14-pin, 15p 8ZY88 series zeners. Full range, 400mW, 10p: 20W. 80p. Siemens polycarbonate capacitors. full range. 4p up to $0 \cdot 1 / 250 \mathrm{~V}$. Bulgin miniature 3 -pin mains sockels 17p. plugs, 16p. Full specification devices discounts for quantityMany more items available. Send for lists, etc. Cash with order Mail order only. P. \& P. 12p

VAT INCLUSVE! POST FREE OVER 2?!
49-51 St. Mary's Road, Oatlands Village, Weybridge, Surrey

NEW PE
SCORPIO
Mk. 2

Following the phenomenally successfat Scorpio Capacitor-Discharge Electronic Ignition system introduced in 1972 and proved by many thousands of satisfied motorists, we are happy to announce avail ability of all parts for the PE SCORPIO Mk. 2-

* Now with added R.F.I. suppression
* Fully machined and painced die-cast case with AMP termination connector block
* Custom wound transformer.
* NOW AVAILABLE IN 6V. and 12 V
* Suitable for all eypes of Cars, Boats, Go-Karts, etc.
* Promotes easier starting-even under sub-zero conditions.
* Improves acceleration, gives better high speed performance and quicker engine warm up
- Eliminates excessive contact breaker burning and pitting
- PROMOTES FUEL ECONOMY

Construction of the unit can easily be completed in an eveninginstallation should take about half an hour. A complete complement of components is supplied with each kit iogether with ready drilled, roller tinned professional quality fibreglass printed circuit board. -Uses original plugs, points and coil.- No special parts or extra required.
(Case size: 7 f in $\times 4 \frac{1}{\mathrm{~h}} \mathrm{in} \times 2 \mathrm{in}$)

* All components available separately.--S.A.E. with enquiries
- Construction manual available separately 25p.

Cost $£ 11-78$ incl. carr. and ins. or ready buile and tested $£ 14.49$
Conversion kit from Mk. I to Mk. 2. For constructors already possessing Mk. I Kits.-Miniature P.C. assembly El incl. carr. and ins. With full conversion instructions.

PLEASE ADD VAT TO ALL U.K. ORDERS
(Carriage at cost outside U.K. - Export enquiries welcome.)
DABAR ELECTRONIC PRODUCTS
98 LICHFIELD STREET
WALSALL, Staffs WSI IUZ

SUPERSOUND 13 HI-FI MONO AMPLIFIER amplifier. Brand new amplider. Brand new components throughout Silicon transistors arsigtorsin push-pull full wave rectifica tion. Output approz 3 watts r.m.s. into ohns. Frequency $\pm 3 \mathrm{db}$. Fully integrated parate Volume, bass boost and Treble cut controls. Suitable for $8.1 \bar{y}$ ohn speakers
Input for ceramic or crystal cartridge. Sensitivity Input for ceramic or crystal cartridge. Sensitivity
approx. 40 m 保 for full output. Supplied ready built and tested, with knobs, escutcheon pank, mput and out put AC $200 / 2 \overline{0} 0 \mathrm{~V}$. \qquad 50 p .
DE LUXE STEREO AMPLIFIER

(2020	s i	11
ave		
dut		tully isola transform

er with ful wave recti
fication giving ade
4 a
4 Valve line-up:-2 \times ECLBoothing with negligible hum, tass and treble control, potentioneters are provided for bass and treble control, giving bass and treble boont and right hand channels can be adjusted by means of a sepa rate 'Balance' control fitten at the rear of the chassis Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watte per channel (8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculate circuit, allows high volume levels to be used with negligibl distortion. Supplied complete with knobs, chassis size
$11^{*} w \times 4{ }^{\prime} \mathrm{d}$. Overall height including valves 5^{*}. Ready built and tested to a high ataulard. $£ 10.22$. P. \& P, $\mathbf{5} 0 \mathrm{p}$ POWER SUPPLY UNIT 200f240v. A.C. input Fou switched fully smoothed D.C. Ontjuts giving 6v. and Firted and 9 . and 12 . at 1 amp onlead.
Fitted insulated outputterminala and pilot lanp indicator Hanmer finish metal case overall size $6^{* *} \times 3^{\frac{1}{2}} \times{ }^{2} \times z^{*}$,
Suitable for Transistor Radios. Tape Recorders, Ampli flers etc. etc. Ready
built and tested. Price $\mathbf{4 . 9 0}$. P. \& P. 35p

VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in . wide. Our price $\& 1 \cdot 10 \mathrm{yd}$. length. P. \& P. 15 p per 5 d . (minn. 1 yd.). S.A.E. ior samples.

HARVERSON'S SUPER MONO AMPLIFIER

 A super quality gram amplitier using a double wound fully solated mains transformer, rectifler and ECL82 triodepentode valie as aulio amplifier and poker output pentode valie as audio amplifer and nouer output
stage. Imperiance 3 ohms. Output approx. 3.5 watts stage. Imperiance 3 ohms. Ontput approx. 3.0 watis
Volume and tone controls. Chasais size only 7 iin. widje $\times 3 i n$. deep \times bin. high overall. AC Mains $200 / 240 \mathrm{~V}$ Supplied absolutely Brand New completely wired and tested with good quality output transformer.
P. \& P. 40 p. BARGAIN PRICE $\mathbf{~ B ~} 78$
BRAND NEW MULTI-RATIO MAINS TRANSFOR MERS. Giving 13 alternatives. Primary : $0-210-240 \mathrm{v}$ Secondary combinatione $0-5-10-15-20-25-30-35-40-60 \mathrm{v}$
half wave at 1 amp. or $10-0-10,20-0-20,30-0-30 \mathrm{v}$ a half wave at 1 amp. or $10-0-10,20-0-20,00-0-30 v$ a
2 amps tulls wave. Size 3in. long $\times 3$ in, wide $\times 3$ in deep. Price $£ 2.31$. P. \& P. 40 p ,
MAINS TRANSFORMER. For transistor power Buppliee Pro. $200 / 240 \mathrm{v}$. 8ec. 9 0-9 at 500 mA . £1-10. P. \& P. 25 p
Pri. $200 / 240 \mathrm{v}$. Sec. $12-0-12$ at 1 anup. 11.21 P. \& P. 26 p Pri. 200/240\%. Sec. $10-0-10$ at 2 annp. £1-82. P. \& P. 35 p
HI-GRADE COPPER LAMINATE BOARDS

GENERAL PURPOSE HIGH STABILITY TRANSISTOR PRE-AMPLIFIER For P.U. Tape, Mike, Gnitar, etc. and suitable for use with valve or transistor equipment. $9-18 \mathrm{v}$, battery or from H.T line $200 / 300 \mathrm{v}$. Frequency response $15 \mathrm{~Hz}-2 \overline{\mathrm{KHz}}$. Gain 26 dB . Solid encap-

HANDBOOK OF TRANSISTOR EQUIVS. AND SUBS A manyt 1000 's of British, U.S.A. European and Japanese many 1000 's of British, U.S.A. E
transistors. ONLY 40p. Post dp.
3 Reference Encyclopedias for Electronic Engineerts and Designerg, covering between them transistor characterof up to date European types listed.
Diode Equivalente 80p. Transistor Equivalents 80p. Transistor Characteristica $£ 1-15$. POST FREF
All three together $£ 2$-60.
Thyristor, Triac, Disc etc. ISSUE
共 8 pole 3 nay 2 bank low loss Yaxley type switches li
sections. Standard spindle. 2 switches 64D +10 p P. \& P

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER

Enjoy Fabulous Stereo Radio at this Low Introductory Price! Deaigned and styleto match our $10+10$ amplifer The tesign incorporates the very tatert tiriculutry

 Price $£ 21.60$. Post and Packing 50p. STEREO-DECODER SIZE 2" $\times \mathbf{3}^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$
 PRECISION ENGINEERED PLINTHS Beautifully constructel in heary gauge "Colorcoat" plastic coated steel. Resonance free Degigned to take
(iarrard $1025,2000, ~ \simeq 025 \mathrm{TC}, 2500,6000$. 2500,5100, SP2̄ 11 and III. SLfößs, ATG0 etc. for 13.S.K. Clo9, C120, A21 etc. Black leatherette finioh. Size $121^{*} \times$
$141^{\circ} \times 31^{\prime \prime}$ high tapprox. ${ }^{*}{ }^{*}$ high. including rigid smoked acrylic cover). NOW ONLY \&4.76. P. \& P 76 P . LATESTACOSGP9/1SC mono compatible cartriuge with f1.46. P. \& P. $15 p$.
SONOTONE $9 T A H C C O M P A T I B L E S T E R E O C A R T R I D G E ~$ SONOTONE 9TAHCCOMPATIBLESTEREOCARTRIDGE ONLY \&2-2\%. P. In P. 10p. Also available fited with twin Diamond T/O stylus for Stereo LP E2.76. P- \& P. IBH.
LATEST RONETTE T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78. £1.80. P. \& P 15 p
LATEST RONETTE T/C MONO COMPATIBLE CABTRIDGE QUALITY RECORD PLAYER AMPLIFIER MK. II A top quality record player amplifier employing heavy
duty double wound hains transformer, ECC83. EL84, and rectifier. Separate Bass, Treble and Volume controle. Complete with out put transfornuer matched for 3 ohn
speaker. Size $i n$ wide $\times 3$ in teep $\times 6$ in high. Ready speaker. Size 7 in wide $\times 3$ in deep $\times 6$ in high
luilt and tested. PRICE $£ 4.91$. P. $\&$. $\overline{50}$ p. ALSO AVAIBABLE mounted on board with output

HI-FI LOUDSPEAKER SYSTEMS

Reautifully made teak finish enclosure wth most
atiactive Tygan-Vynair front. Size $16^{\prime \prime}$ high $\times 10 t^{*}$ wide $\times 6^{-}$deep. Fitted with E.M.I. Ceramic Magnet crossover. Maximum power handling Io watts. Available 3 or 8 or 15 ohtno impedance.
OUR PRICE 69.10. Carr. 75p Cabinet Available Separstely £4-86. Carr. 65 p .
Also available in 8 ohms $\mathbf{~ i t h}$ EMI $13^{\circ} \times 8{ }^{\circ}$ bass Also available in 8 ohms with EMI $13^{\prime \prime} \times 8^{\circ}$ bass
speaker witll parasitic (weeter $£ 7$.60. Carr. 75 p .

> LOUDSPEAKER BARGAINS
 $20 \mathrm{p} .10 \times 6 \mathrm{in}$. 3 or 15 ohm $£ 2 \cdot 10$, P. \& P. 30p. E.M.I
8×3 ohm with high tlux magnet El-70, P. \&. 20 p
 parasitic tweeter 3,8 or 15 ohm $£ 3.50, \mathbf{P}$. P. 30 p E.M.I. 13×8 in 3,8 or 15 ohm w. \& P. 30 p
E.M.I.tweeter. Approx. $3 \mathrm{z}^{*}$. A vailable 3 or 8 or It ohme
£1.25 + 20p, P. \& P.
BRAND NEW. Bakers Loudspeakers at gubstantial discounts. 12 in . $15 \mathrm{w} . \mathrm{H} / \mathrm{D}$ Speakers, 3,8 or 15 ohms. State which. Current production by well-known British maker. Now with Hiflux ceramic ferrobar magnet
assembly $£ 7.50$. Guitar models: $25 w .{ }^{27} 50$. 35 w. $88-50$. assembly $£ 7.50$. Guitar models: $25 w . £^{7} 750$. 35 w. £8-50.
\mathbf{P}. \& P. 45 p . 12in. "RA" TWIN CONE LOUDSPEAKER. 10 watts peak handling. 3 or 8 or 15 ohm (atate which) $£ 2 \cdot 70$ "POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAEER
 handing $20 \mathrm{~W} . \mathrm{m} \cdot \mathrm{s} .(40 \mathrm{~W}$ peak), Impedance 8 ohm only.
Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can he mounted on ceilings. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can he mounted on ceilings.
walls, doors, under tables, etc., and used with or without baffle. Send S.A.E. for full details. Only \&6-48 each.

SPECIAL BARQAM OFFER
Limited number of BSR Cl23 Auto Changer De Luxe wringhtweight tubtiar arm and stereo cartritge.

HARVERSONIC SUPER SOUND
10 + 10 STEREO AMPLIFIER KIT

A really first-clash Hi-Fi Stereo Amplifter Kit. Uses 14 ransistors including silicon Transistors in the frst five level with inproved sensitivity. litegrated pre-amp with lass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions included. Outputstage for any speakersfrons to lōohms. Compact design, all parts supplied includlng drilled metal fork, high quality ready Jrilled printed circuit board with anodiged aluminium front panel with matching kuols wire, solder, nuts, boltg-no extras to buy. Simple atep wire, solder, nuts, boltiable any constructor to build an amplifier to be protud of. Brief specification: Power output: I4 watts rim. per channel into 5 ohns. Frequency reaponse $\pm 3,1 \mathrm{~B} 12-30,000 \mathrm{~Hz}$ Senntivity: better $12-15,000 \mathrm{~Hz}$. Bass, boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16dH. Negative feedback 184 dB over main amp. Power requirements $3 \overline{\mathrm{j}}$. at 1.0 amp .
Orerall Size 12^{*} w. $\times 8^{*} d . \times 2 q^{* h}$.
Fully detailed 7 page construction matual and parts list free with kit or send !8p phal large N.A.E.
AMPLIFIERK1T AMPLIFIERK1T
(Magnetic input components $33 y$ extra) POWERPACK KIT CABINET 23.46 P. \& P. 40 p (Post free if all units purchased at same time) Also available ready built and tested £24.60. Puat Free. Sote: The aboze ampliffer is suitable for feeding two mono sourcesinto inputs (e q. nitie, radio, tuein record decke, ete.)
and willthen prowide mixing and fading facilities for med.
inm porered Hi-Pi Discotheque luse. etc.

3-VALVE AUDIO AMPLIFIER HAB4 MK II. tion of records. A.C. Malns
operation. Ready built on plated heavy gange metal chassis, vize $7 \mathbf{t}^{\circ} \mathbf{w} . \times 4^{\text {f }} \mathrm{d}$. \times EL\&A, Ez80 valves. Heavy duty, double wound mains
transformer andoutputtrans. former matched for 3 ohm speaker. Separate volune control and now with improved cut. Negative feedback line. Output 4! watta. Front panel can be detached and leads extended for remote
mounting of controls. Connplete with knobs, valres, etc. wired and tested for only $£ 5-90$. P. \& P. 45 p .
HSL "POUR" AMPLIFIER KIT. Sinilar In appearance to
advanced circuitry. Complote set of parta, etc. $£ 4.98$. P. \& P. 45 p .

10/14 WATT HI-FI AmpLIFIER KIT monaural amplifter with an output of 14 watts from 2 EL84s in push pull.
Super reproduction Super reproduction of both misic atid. speech, with neglit.
gible hum. Scparate gisputa for mike and gram allow recorils
 to follow each other
Fully ghrouded aection wound output transformer to match 3-15 Ω speaker and "independent volume controle, and separate liase and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83,
EF86 and EZ80 rectifier. Simple instruction booklet EF86 and EZ80 rectifier. Simple instruction booklet
$15 \mathrm{p} \times \mathrm{SAE}$ (Free with parts). All parts sold separately 15p KY 89.60. P. \& P. 80p. Also available realy buit and

HI-FI STEREO HEADPHONES

Adjustable headband with comfortable Hexlfoam ear. plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching impedance 8-16 ohms. Easily converted for Mono. impetance ${ }^{8-16}$ ohmb. ER 24 . P. \& P. 25 .

PRICES INCLUDE VAT AT 8\%

Open 9.30-5.30 Monday to
Friday. 9.30-5 Saturday
Closed Wednesday.
Coto minutea fro
don Tube Station

HARVERSON SURPLUS CO. LTD.
(Dept, P.E.) I70 HIGH ST., MERTON, LONDON, S.W. 19 Tel. : OI-540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. P \& P. ON OVERSEAS ORDERS
CHARGED EXTRA.

9GIRO NO. 3317056

SPECIAL RESISTOR KITS (Prices include Post and Packing)

IOEI2 IW KIT: 10 of each E12 value, 22 ohms-IM, total of 570 (CARBON FILM 5%). 63.65 net IOEI2 W KIT: 10 of each EI2 value, 22 ohms-IM, a rotal of 570 (CARBON FILM 5%). 63.85 net $25 E 12$ W KIT: 25 of each EI2 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5%). 68.35 net
$25 E I 2 \frac{1}{2}$ W KIT: 25 of each EI2 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5%). ©8. 45 net 5EI2 iW KIT: 5 of each EI2 value, 10 ohms-IM, a total of 305 (MFTAL FILM 5%), E2.85 net
CONTAIN BOTH WATTAGE AND VALUE SUBSTITUTIONS.

MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. Mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3, \mathrm{ip}, 0.068 \mu \mathrm{~F}$
 $15 p .1 \cdot 5 \mu \mathrm{~F}, 23 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 26 \mathrm{P}$.
MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 21 \mathrm{i}, 0.0047 \mu \mathrm{~F}, 3 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 31 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 41 \mathrm{p}$. $0.15 \mu \mathrm{~F}, 61 \mathrm{p} .0 .22 \mu \mathrm{~F}$ $81 p .0 .33 \mu \mathrm{~F}, 12 p .0 .47 \mu \mathrm{~F}, 14 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$.

$50 \mathrm{~V}:(\mathrm{pF}) 22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$, $560,680,820$, $1 K, 1 K 5,2 K 2,3 K 3,4 K 7,6 K B,(\mu F) 0.01,0.015,0.02,0.033,0.047$ $2 \neq$ each. $0-1,30 V, 41 p$.
POLYSTYRENE CAPA
(pF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$ 4700, 10,000, 41 p .

RESISTORS

w.	Type	Range	1.99	100-499	500.999	$1000+$	Size mm
	CF	22-1M		0.75	0.60	$0 \cdot 55$	2.4×7.5
$\frac{1}{4}$	CF	22.2M2	\dagger	0.75	0.80	0.55	3.9×10.5
$\frac{1}{1}$	CF	22-1M	1	0.75	0.80	0.55	5.5×16
$\frac{1}{4}$	MF	$10-2 \mathrm{M7}$	2	1.54	1.32	$1 \cdot 1$	3×7
$\frac{1}{1}$	MF	10.2 Mz	2	1.43	1.21	0.99	4.2×10.8
I	MF	10.10 M	3	1.98	1.81	1.85	6.6×18
	MF	10.10 M	4.5	3.52	3.08	2.75	8×17.5

MF IO-IOM 4.5 please refer to our catalogue (price in pence each).
For value mixing prices, plater
VALUES AVAILABLE-E12 Series only. Net prices above 100 .
PRESET SKELETON POTENTIOMETERS| Wavechange Switches MINIATURE O.25W Vertical or horizontal op each IK, 2K2, 4K7, 10K, etc. up to iMn

1.04F63V	$61 p$	$68 \mu \mathrm{~F}$	16 V 6p
$1.5 \mu \mathrm{~F} 63 \mathrm{~V}$	$61 p$	$68 \mu \mathrm{~F}$	63 V 12 p
$2.2 \mu \mathrm{~F} 83 \mathrm{~V}$	61 p	$100 \mu \mathrm{~F}$	10V61p
$3 \cdot 3 \mu \mathrm{~F} 63 \mathrm{~V}$	61p	$100 \mu \mathrm{~F}$	25V 6tp
4.0رF 40 V	610	$100 \mu \mathrm{~F}$	63V 14p
4.7رF 63 V	$61 p$	$150 \mu \mathrm{~F}$	16V6ip
6.84F 63 V	$61 p$	$150 \mu \mathrm{~F}$	$63 \vee 15 p$
$8.0 \mu \mathrm{~F} 40 \mathrm{~V}$	$61 p$	$220 \mu \mathrm{~F}$	6.4 V 61p
$10 \mu \mathrm{~F} 25 \mathrm{~V}$	$61 p$	$220 \mu \mathrm{~F}$	10V 8 pp
$10 \mu \mathrm{~F} 63 \mathrm{~V}$	61 p	$220 \mu \mathrm{~F}$	16 V 8p
$15 \mu \mathrm{~F} 16 \mathrm{~V}$	61 p	$220 \mu \mathrm{~F}$	63V21p
$15 \mu \mathrm{~F} 63 \mathrm{~V}$	61 P	$330 \mu \mathrm{~F}$	16V 12p
$16 \mu \mathrm{~F} 40 \mathrm{~V}$	61 p	$330 \mu \mathrm{~F}$	$63 \vee 25 p$
22 $\mu \mathrm{F}$ 25V	$61 p$	$470 \mu \mathrm{~F}$	6.4 V 9p
$22 \mu \mathrm{~F} 63 \mathrm{~V}$	$61 p$	$470 \mu \mathrm{~F}$	40V 20p
$32 \mu \mathrm{~F}$ lov	$61 p$	$680 \mu \mathrm{~F}$	16V 15p
$33 \mu \mathrm{~F} 16 \mathrm{~V}$	610	$680 \mu \mathrm{~F}$	40V 25p
$33 \mu \mathrm{~F} 40 \mathrm{~V}$	61p	$1000 \mu \mathrm{~F}$	16V 20p
$32 \mu \mathrm{~F} 63 \mathrm{~V}$	61p	$1000 \mu \mathrm{~F}$	25V 25p
47 $\mu \mathrm{F}$ lov	$61 p$	$\begin{aligned} & 1500 \mu \\ & 1500 \mu \end{aligned}$	$\begin{aligned} & 54 \\ & 16 v \\ & 16 p p \end{aligned}$
$47 \mu \mathrm{~F} 25 \mathrm{~V}$	$61 p$	2200ر	10V 25p
$47 \mu \mathrm{~F} 63 \mathrm{~V}$	$61 p$	3300μ	6.426

POTENTIOMETERS

Carbon Track 5K Ω to 2 Ma , log or lin. Single, $16 \frac{1}{2}$. Dual Gang 46p. Log Single with
\qquad
PLUGS $\begin{array}{ll}\text { PLUGS } & \\ \text { DIN } 2 \text { Pin } & 12 p \\ 3 \text { Pin } & 13 p \\ 5 \text { Pin } 180^{\circ} & 16 p \\ \text { Std. Jack } & 20 p \\ 2.5 \mathrm{~mm} \text { lack } & 13 p\end{array}$ Std. Jack 10p
2.5 mm Jack
13p SOCKETS
DIN 2 Pin $10 p$

| | 3 Pin | $10 p$ | METALLISED PAPER CAPACITORS |
| :---: | :---: | :---: | :---: | :---: |
| 5 Pin 180° | $12 p$ | $250 V: 0.05 \mu F, 0.1 \mu \mathrm{~F}, 6 p, 0.25,6 p, 0.5 \mu \mathrm{~F}, 71 \mathrm{p}$. | |

$\begin{array}{llll}5 \text { Pin } 180^{\circ} & 12 p & 250 V: 0.05 \mu \mathrm{FF}, 0.1 \mu \mathrm{~F}, 6 p, 0.25,6 p, 0.5 \mu \mathrm{~F}, 71 \mathrm{p}, 1 \mu \mathrm{~F}, 9 \mathrm{p}\end{array}$

6p 28p.

Integrated
 Integrated

Circuits
$\mu A 709 \mathrm{C}$
MATA1C
MA741C
MA723C
ZN414

Screened Wire, Metre
Swin Screened Wire. Metre
Connecting Wire. All Colours, Metre
Connecting Wire. All colours
Neon Bulb, goV Wire Ended

6ip	NEW CAPACITOR KITS
$12 p$	- PIease send for List
$12 p$	NOTE ALL STOCK ADVER-
$2 \% p$	
$24 p$	TISED IS SUBJECT TO

Dimmit

range of light dimmers and lighting control systems

Illustrated is the popular PMSD1000 module. A 1000 W protessional quality dimmer linear operation, interference suppressed. 60 mm slider range, size $12 \times 5 \times 4 \mathrm{~cm}$. Ideal for low cost stage and disco lighting. Used by schools, theatres, studio, etc. Complete schools, theatres, studio, etc. Complete
with scale plate, fixing screws and full with scale plate, fixing screws an
instructions. Also avallable in 2000 W .
lllustrated is the DD61 dimmer system Contains: six 1000W slider dimmers type PD1000. six outlet sockets, a master control and a mains on/ off swltch. Size $59 \times 22 \times 12 \mathrm{~cm}$. A complete system
in one unit for stage or disco lighting, etc. Other systems in one unit for stage or disco lighting, etc. Other systems
available with 1000 W or 2000 W dimmers up to 10 channels with 2-preset and master controls.

The Dimmit range includes standard wall mounting models for home and office, etc. Professional modules for industrial heating applications, etc. Rotary and

Model SL800 sound to light converter. Modulates the light in time with sound. Bullt in microphone. Just place unit near any sound source -radio, hi-fi. TV, human voice etc. No connections to speaker required simple wiring-simitar to dimmer. Rating 800 W . Complete with full instructions.

For full information on all modules and lighting control systems send $15 p$ for our illustrated catalogue and price lis?. Personal callers welcome, visit our showroom for a demonstration of any of the modules or systems.

PC. ETCHING KIT

Contains ferrlc chloride. 100sa.tn copper clad board, DALO etch resist pen, abraslve cleaner. etching dis
and instructions. all for only $£ 3.30$. FERRIC CHLORIDE
Ahhydrous technical qualty to MIIspec in 110 double sealed
116 B0p; $31 \mathrm{E} \Sigma 1.65$; 1010 $£ 4.45$.

VEROBOARD

100sq.in assorted sizes and pitches no tiny pieces) ह1. 10.
3W TAPE AMPLIFIERS
Polished wooden cablnet $14 \times 13 \times 9$ in containing a sensitive ($20 \mu \mathrm{~V}$) 4 -valve amplifier with tone and volume con trols. Gives 3 watts output to the $\times 4$ in 3Ω speaker. There is also a Supplied in good working condition with circuit. Standard ma!ns operation, $£ 4-50$. Suitable cassettes, $81-10$. Spare head, 30p. Tape (ex-computer) 75p. Amplifier ($2 \times$ ECC83, EL84, EZ80) complete and tested with speaker, 33 . SLOTMETER
Ex-ray TV takes 10 p pleces, has 3-dight mechanical counter. a coin counter, Sangamo Weston impulse movement. nyton gearing. switch stc. Only $51 \cdot 20$. Impulse movemen only. 40p
RESISTORS AND CAPACITORS 500 assorted new resistors. S1.40: 200 poly, Mica, ceramic, etc., capsci-
tors. E1, 15 DIF trimmers, compres sion and airspaced up to 1250 pF E1. LEO III COMPUTER
Paper tape readers. Ampex TM2 tin tape decks card readers. Anatex 41000 line printers. IBM typewriters plus software. All avallable
late-October.

UNISELECTORS

1000 way. bank inc. one continuous. conditlon. Ex-equipment in good conditlon, $52 \cdot 50$.

71b BARGAIN PARCELS
Hundreds of new components-pots, capacitors. resistors, switches plus
P.C. boards with transistors and dlodes, loads of odds and ends. contents always changing as new goods come in Amazing value at E2 • 30 .

P.O. AMPLIFIER UNIT

Contained in steel case $53 \times 5 \times 3$ in are $2 \times$ GET116 translstors on heat sinks, 3 pol cores. 2 zor zeners. 4 caps. With circuit diagram ह1

COMPUTER PANELS

310 asstd. E1.40; 71b E2.65; 561b £15.
 at least 50 transistors $95 p$. 12 high quality panels with power transistors. ICs and trimpots. etc.. $£ 2 \cdot 50$. 24 FCH181 ICs. E1. Thousands of boards at shops for callers. Special export pack, delivered anywhere in the worid for EB
VERSATILE POWER UNIT
Contains malns transformer. 2A thermal cut-out and bridge rectifier. Will give 1.7-10.5V output with 2 extra capacitors (provided) with data and circuits. $81 \cdot 20$.
MISCELLANEOUS
Transformer. mains pri., 16-0-16V paper capacitor $60 \mathrm{pec} 0 . \mathrm{Ez} .40 \mathrm{~F}$ F 150 V with cam and microswitch. $£ 1.30$ $0 \cdot 2 r$ p.h. motor, E1.
S.A.E. LIST, ENQUIRIES

ALL PRICES QUOTED INCLUDE 8\% VAT AND MAINLAND CARRIAGE
SURPLUS COMPONENTS AND EQUIPMENT WANTED FOR CASH

GREENWELD ELECTRONICS (PE9)

Mail Order Dept., wholesale/retail shop: 51 Shirley Park Road, Southampton (Tel. 0703 772501). Also callers at: 21 Deptford Broadway SE8 (Tel. 01-692 2009), and 38 Lower Addiscombe Road, Croydon (Tel. 01-688 2950) Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know Over 150 㖛 maintenance and repairs for a spare time income and a career for a better future.

That's how long it will take you to flll in the coupon. Mail it today and we'll send you full detalls and a free book. We have successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost home study course gets results fast-makes learning easier and something to look forward to. There are no books to buy and you can pay-as-youlearn.

Why not do the thing that really interests you? Without losing a day's pay. you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you ... but it could be the best thing you ever did.

Others have done it, so can you

"Yesterday I received a letter from the Institution informing that my application for Associate Membership had heen approved. I can honestly say that this has been the best value for money I have ever obtained. a view echoed by two colleagues who recently commenced the course "-Student D.I.B.. Yorks.
-Completing your course :. meant going from a joh I detested to a job that 1 love uith unlimited prospects. "-Student J.A.O.. Dublin.
\because My training quickly changed my earning capacity and. in the nevt few years my earnings increased fourfold."-Sudent C.C.P.. Bucks

FIND OUT FOR YOURSELF

These letters. and there are many more on file at Aldermaston College speak of the rewards that come to the man who has given himself the specialised knowhou employer seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost fou a stamp to find out hou we can help you. Write to:

ALDERMASTON COLLEGE

[^10]

SUPPLIERS OF ELECTRONICS FOR OVER 30 YEARS. 8% VAT TO BE ADDED TO ALL ORDERS. VAT-UK ONLY.

Transistor Lead Identichart

[^0]: © IPC Magazines Limited 1974. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressiy forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland £3-25, Overseas £4-10. International Giro facilities Account No, 5122007. Please state reason for payment, "message to payee".

[^1]: Valves．Tubes and Transistors ．Closed Sat．
 Valves．Tubes and Transistors ．Closed Sat．I p．m．
 All orders subject to V．A．T．at 8% rate．This must
 be added to the total order including postage．

[^2]: Devices may be mixed to qualify for quantity price

[^3]: Pres Brochure, without obligation to brtish mational radio \& electronics school Dept. EB124, P.O. BOX 156, JERSEY
 NAME
 ADDRESS : EB114
 BLOCK CAPS please

[^4]: ALL OUR MERCEANDISE IS FULLY GUARANTEED Subject to manufacturers' increase and availability

[^5]: Please Supply
 Total Purchase Price
 I Enclose Cheque \square Postal Orders \square Money Order \square
 Please debit my Access account \square Barclaycard account \square
 Account number
 Name and Address
 SIgnature

[^6]: GLANK ALUAINIUM CHASSIS. is s.w.g, 2 y In . sidee $6 \times 4 \ln$ 45p; $106 \ln 53 \mathrm{p} ; 10 \times 7 \ln 65 \mathrm{p} ; 12 \times 8 \mathrm{in} 85 \mathrm{p}$ $14 \times$ 9ln 90p; $16 \times 6 \ln 90 p ; 12 \times 3 \ln 50 p ; 16 \times 101 \mathrm{n} 81$
 ALUNINIUM BOXES, $3 \times 3 \times 3 \ln 80 p ; 4 \times 4 \times 4 \ln 70 p$
 ALUMINIUM PANELS $18 \mathrm{~m} . \mathrm{w} . \mathrm{g} .8 \times 4 \ln 12 \mathrm{p}$; $8 \times 6 \ln 19 p$ SRPE 34p; $14 \times$ In 40p; $12 \times 12 \mathrm{in} 27 \mathrm{p} ; 16 \times 101 \mathrm{n}$ 60p.

[^7]: Toleshone ordas azcepted. Access add Erclayearo welcome. H.P. arivele yemenlers from AVC̆O Firarcial Semoces.

[^8]: Project 805 comprises a Stereo 80 Pre-amp/Control Unit with input for both magnetic and ceramic cartridges, radio, tape; separate bass and treble cut/ lift, and volume controls $2 \times Z .40$ power amplifiers, PZ. 5 power unit, 805 Masterlink, wire loom, instructions manual, etc. down to nuts, bolts and washers. For technical specifications, see fourth page of this advertisement.

[^9]: Constructlon KIts
 Av7 Aerlal Amps
 UHS70 Transmitter
 MUE7 Receiver for above
 ¢2.04
 MUE7 Receiver for above $\quad £ 3.22$
 EW18 Electronics dice
 EX20 Electronic Dice + Sensor $\begin{array}{r}£ 6.53 \\ \mathbf{5 7} .79\end{array}$ Mall Order

 OUR NEW GLASGOW SHOPIS

[^10]: Puhlished approvimately on the 1 sth of each month by IPC Magasiner Liti. Flectuat House. Farringdon Street. London. EC4A 4AD Printed in England by Chapel River Press. Andover, Hants. Sole Asents tor Aumiralts and Neu Zealind-Gordon \& Goth (A/hat Lid South Afnca- entral News Agency Lid.

 Practical
 Practical Electronics is sold subject to the following conditions. namely. that it shall not, without the written consent of the Publishers first given. be lent. resold. hired out or otherwise or hired out or otherwise disposed of in a mutilated condition or in any unauthonsed cover hy way of Trade or affixed to or as price is subject to V. A T.. and that it shall not be lent. resold or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover hy way of Trade. or affixed to or as part of any publication or advertising. literary or pictorial
 matier whatsocver

