PRACTICAL

= = CTRONICE

EEPTEMEER 197a

25p

こ= लOTV سоvor GITM

Over IS

engineer a better future

HIGHER PAY A BETTERJOB find out how in just 2 minutes

That's how long it will take you to fill in the coupon. Mail it to B.I.F.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.

Why not do the thing that really interests vou? Without busing day's paty, vou could quietly turn yourself into something of an expert. Complete the compon (or write if you prefer wot to cut the page). Sombigation and nobody will call on you . . . hut it conld be the best thing you erer did

Others have done it, so can you

"Youterday I recomed a letter from the Juntintnon informine that my
 sas that tha lan been the beat value for mosere l hase exer ohtained - a view echoed by two colledene who recently commenced the comber. Student I.1.13., Yotio
"Completing volur comres, meant going from a jobl detesterl to a job that I lose, with mblonted properets".-Student J.A.O. I Mblin.

 C.('. ${ }^{\prime}$ ', Buck

FIND OUT FOR YOURSELF

These letters - and there are many more on file alt . Idermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer wat of getting ahead or of opening up new opportunities for yourself. It will cost vou a stamp to find out how we can help you. Write to B.I.E.T. Dept. beEso . Aldermaston Court, Reading RG7 4PF.

Practical Radio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know about Radio \& Electronics maintenance and repairs for a spare time income and a career for a better future.

To B.I.E.T., Dept. BEE80
Aldermaston Court, Reading RG7 4PF
NAME
Block Capitals Please
ADDRESS

OTHER SUBJECTS

CONSTRUCTIONAL PROJECTS

P.E. CCTV CAMERA by A. V. Flatman

The first article on building a monochrome camera for home entertainment

BENCH POWER SUPPLY by D. W. Lloyd

 A low cost stabilised bench psu with switched voltage selection and over current protectionGAS DETECTORS by J.C. Perrett
A series of gas/smoke detectors suited to use in domestic, industrial and leisure areas-in mains and portable form 794
REMOTE VOLUME CONTROL by R. Whitaker
A simple and useful device, using a single f.e.t. 802
GENERAL FEATURES
FIRST STEPS IN CIRCUIT DESIGN-6 by A. P. Stephenson
Amplifier design procedures and pitfalls 774
NEW DEVICES ... APPLICATIONS
An integrated circuit with a gain in the order of one million 784
INGENUITY UNLIMITED
Continuity Tester-Touch Start Rhythm Device—Distance Measurer for Golfers- Toy Train Speed Controller-R/C Decoder 790
NEWS AND COMMENT
EDITORIAL-Sorry For The Delay-A New Season and A New View 765
SPACEWATCH by Frank W. Hyde
Results from Jupiter-Sunspots and Thunderstorms-Beads from the Moon 779
ELECTROMUSE by Malcolm Pointon
A musician discusses composition and performance 780
ESP etc. by Brian Baily
Unexplained happenings and phenomena 783
BOOK REVIEWS
Selected new books we have received 792
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 801
PATENTS REVIEW
Thought provoking ideas on file at the British Patent Office 805
MARKET PLACE
Interesting new products 808
READOUT
A selection of readers' letters 809

Because of prevailing production problems, no firm publishing date can be announced for the October issue. Readers are advised to check regularly with their local supplier from mid-September onwards.

[^0]DON＇T RELY ON YOUR MEMORY BUY NOW AT BARGAIN PRICES Hi Fi and Transistors－Up to date Brochures on request

A SELECTION OF INTERESTING ITEMS

## EXCLUSIVE：SPECIAL OFFERS MW／LW CAR RADIO PORTABLE CASSETTE ＋or－Earth with speaker TAPE PLAYER－for car and fixings， $66.50 \mathrm{c} / \mathrm{p} 30 \mathrm{p}$ ．or carry around． $67.25 \mathrm{c} / \mathrm{p}$ ． and fixings． 6.50 c／p 30p，or earry around． 67.25 e／p． g TRACK CAR STEREO 20p．HANIMAX BC808 g TRACK CAR STEREO （－Earth）with speakers in POCKET CALCULATOR PO Pods and fixings $£ 12.50$ WITH \％KEY 628.95. c／p 40 p．Portable Batt／Cass HANIMAX BC8IIM ME－	radio $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ output 633.95 ． E MA
（state width）$\$ 1.95$ each．	（state width）El．95 each．〔6．80．RH700 〔10．25．RH430 COMPACT RECORD £414．Rotel RA3IO $15+15$ PLAYER 2 ．${ }^{7}$ watts． watt Stereo Amplifier Complete with 5 peakers （List $£ 52.00$ ） 634.52 ．Wem（List $£ 54.50$ ）Price $\mathbf{6 3 9 . 9 5}$ W500 Battery／Mains Cass．Plus free pair of stereo tte Recorder 12.75. phones． BUILD THIS RADIO Portable MW／LW radio kit Features MW－bandspread for extra selectivity．Slow motion cuning． Fibre glass PVC sabines． 600 MW outpur．All parts $£ 7.98$（battery 22 p ），carr．etc． 32 p ． FIBRE OPTICS 0.01 diam．Mono Filament $\mathbf{5} 5.50$ per 100 metre ree SPRAYS 15 mm diam．（Mare＇s Tail Spray $£ 10.50$ ） SPR

TEST EQUIPMENT MULTIMETERS

IT4－2 20K／Vole Shmine 65.9 Slimline deluxe 66.75 433 2 K Volt Robust $\mathbf{E 7 . 5 0}$ AFIOS（Case $\mathbf{(1 . 9 0}$ ）SO .50 U4341 Plus Built－in transistor tester 10.50

\section*{OTHER EQUIPMENT} | SE250B Pocket Signal nijector 2.25 carr． |
| :--- |
| TE1S Grid Dip meter 440 kHz 280 mHz |
| 16.50 carr 30 p | TE40 AC Millivaltmeter $1.2 \mathrm{mHz} \quad 19.75 \mathrm{carr}$ ． 35 p TE200 120 kHz .500 mHzRFGen ． 18.95 carr .40 p 12.95 carr．200 SE400 Voles／ohms／R－C sub．／RF field／RFgen． 20p

New Revolutionary Supertester 680R
 Transistor tester 11.00
18.00 Transistor cester 11.05 Temperacure probe Signal iniecto Phase Sequence EHT Probe EhT Probe
）
$15 p$
3.70 $25 p$
$20 p$ 15p 25 p 64.25 C $30411.250 \mathrm{mHz}_{2}$
 $B 20054 \mathrm{Ch}$ ．mic．mixer $6.75 p \& p 15 p$ PKK

SPECIAL PURCHASES

UHF TV TUNERS CHANNELS 21 TO 64 Brand new transistorised geared
tuners for 625 Line Receiver
IF output． 62.50 ．Post 20p． PUSHBUTTON UHFTV Tune New purchase of 4 butcon transistorised UHF cuners， $\mathbf{6 3} 50$ ，post 20 p
EASY TO BUILD KITS BY AMTRON－ EVERYTHING SUPPLIED

$\begin{aligned} & \text { Mod } \\ & 310 \end{aligned}$	Radio control \＆ D Receiver $\mathbf{3 . 2 9}$	$\begin{aligned} & \text { Mod } \\ & 760 \end{aligned}$	elNo． Acoustic swicch 12.57,$~$
300	4－channel R／C transmitter 6.61	780	Metal Decector （electronies only）
345	$\begin{aligned} & \text { Superhet R/C } \\ & \text { receiver } \end{aligned}$	790	Capacitive Burglar
65	Simple transistor		alarm 7.92
	tester Amplifier	835	Guitar preamp． \qquad
	8 watt Amplifier 4.50	840	Delay car alarm
120			6.99
	4.73	875	CAP Discharge
125	Stereo conerol unit 6.01		ignition（for car engine（一Ve
130	Mono control		Earth） 13.99
	unir 4.16	80	Scope Calibrator
605	Power supply for 115 5．31	255	Level Indicator ${ }^{2.65}$
610	Power supply		6.98
	for 120 5．31	525	120.160 mHz VH
615	Power supply for $2 \times 120 \quad 6.64$	715	$\begin{aligned} & \text { timer } 11.31 \\ & \text { Photo cell switch } \end{aligned}$
230	AM／FM aerial		8.97
	amplifier 3.29	795	Electronic con－ 4
240	Auto packing 6.90	860	tinuity cester 4.97
275	Mic．preamplifier 6.98	235	Acoustic Alarm for driver 8.61
570	S LF generator $10 \mathrm{~Hz}-1 \mathrm{mHz}_{2} 21.45$	465	$\begin{aligned} & \text { Quariz XTAL } \\ & \text { checker } \end{aligned}$
57	5 Sa．wavegene	220	Signal Injector 2．30
	$20 \mathrm{H}_{2}$	432	Testakit $\quad 19.30$
590	SWR meter 9．47	670	Buffer Battery
630	STAB Power $\begin{array}{ll} \text { supply } 6-12 \mathrm{~V} \\ 0.25 .0 .1 \mathrm{~A} \end{array} \quad 9.24$	885	Charger 6.55 Capacitive Con－ tact Alarm 6.25
690	DC motor speed Gov． 3.31	850	Electronic Keyer 18.75
700	Electronic Chaffinch 7.92	820	Electronic Digital $\begin{array}{ll} \text { Clock } & 58.50 \end{array}$
			KITS OFFERED ECT TO STOCK ABILITY
		Pri of Sub	escorrect at time reparation． ject to change

BUILD THIS TUNER ML3
MN／LW Radio Tuner to use with any amplifier． Mentur Rado Tuner to use with any mullard RF／IF module Ferrite aerial．

MULLARD FM MODULES LPII86 Tuning Heart Module LPI 185 IF Module complete with data Price 69.00 pair	FM TUNER MODULE FM5231 12v FM Tuner SD4912 Stereo Decoder SF62H 6v Scereo FM Tuner 614.95
TBA800 5 WATTI．C． Suitable alternative to SL 403D． $5 / 30$ volt operated．8／16 ohm 5 watt output．With circuits and data 61.50 Kit with printed circuitpanel 62.70 All kits available from stock．	STROBETUBE ZFT4A Suitable for Dec ＇73 Pract．Electronics
SINCLAIR SPECIAL OFFER Stereo 60 Pre－amplifier －for use with mose small amplifiers． Exclusive offer 66.75	PP9 ELIMINATOR KIT Complete module kit 9v 100 mA output $\& 1.95$ p \＆p 25p
All types offered Prices correct at ti 10% VATTO BE AD UK post，etc．15p p	ect to availabi TO ALL ORDE

HENRY＇S
CATALOGUE matiages of paper changes，
existials，all prices indraw existing call prices in the prices．A arl or phone no longer be available 4 new catalog lor lapest

U．K．＇s
LARGEST RANGE OF TRANSISTORS \＆DEYICES
JUST A SELECTION
－TBA800 5W IC \＆1．50－3015F7SEG ＊Sinclair ICI2 6W IC Indicator \quad \＆ 1.70 ZN4IfIC Radio E1．20 TIL 209 22p 24p each Ulerasonic 21.20 Transducers 65.90 pr ．

Wich 22p each per 1
With circuits／daca

OVER I， 500 DIFFERENT SEMI－ CONDUCTOR DEVICES IN STOCK
Free stock list－latest edition（Ref．36）on request Includes radio valves，I．C．＇s，rectifiers，triacs， SCR＇s，LEDs，etc．More types－better prices－ discounts for quantity small or large．

GARRARD BATTERY TAPE DECK
GARRARD 2 speed 9 vole tape decks．Fitted record play and oscillator／erase controls．Takes up to $4^{\text {＂}}$ spools．Brand new com－ plece with head circuits．$\$ 9.50$ earr．30p．

TOP QUALITY MARRIOT TAP SLIDER

MEADS
SLIDER
CONTROLS
4 TRACK MONO
60 mm stroke high quality wort knobs（post， ece．ISp any quantity）． Singles Log and Lin $5 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 50 \mathrm{~K}$ 100K，250K，500K Meg．45pea
Ganged Lor and Lin
$0 \mathrm{~K}, 22 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$ 250K，65p each
Quantity discounts vailable）
\qquad Migh mpedance
62.50 36＂M $\begin{array}{r}\text { ³．50 }\end{array}$ 36＂Med，Impedance 730／E732 track mono Record／Eraselow imp $75 p$ pair
rase Heads for＂ 17.00
18 ＂and＂36＇＂ 1.00 63＇ 2 track mono． High Imp．Erase Head for ． 63. Post．etc．15p any Complete with knobs．

quantity

SINCLAIR MINIATURE AMPLI－ FIERS \＆TUNER／DECODER
AMPLIFIERS（carr，etc．20p

4700 17 volt 300 MA（includer Multi－Adaptor 2.25 post 20 p Car Lighter Voltage Adaptors 300 mA （State $\begin{array}{rr}\text { Yoltage } 67.7 \frac{1}{2} V, 9 \mathrm{~V} \\ \mathrm{SC} 2023 / 6 / 7 \frac{\mathrm{~m}}{2} / 9 \text { volt } 400 \mathrm{~mA} & 4.25 \text { carr．} 30 \mathrm{p}\end{array}$ HC244R Stabilised version $\quad 5.50 \mathrm{carr}$ ． 30 p P500 9 volt $500 \mathrm{~mA} \quad \mathbf{3 - 2 0}$ post 20 p PII 24 volt 500 mA （chassis）$\quad \mathbf{2 9 0}$ post 20 p PIS $26 / 28$ volt I amp（chassis）$\quad \mathbf{2 . 9 0}$ post 20 p $\begin{array}{ll}\text { P1080 } 12 \mathrm{~V} 1 \mathrm{amp} \text {（chassis）} & \mathbf{4 . 7 0} \text { post 20p } \\ \text { Pl081 } 45 \mathrm{~V} 0.9 \mathrm{amp} \text {（chassis）} & 7.80 \text { post 20p }\end{array}$ Plo8 45 V 0.9 amp （chassis） 7.15 post 30 p PE12 41． 12 Volt $0.4-1 \mathrm{amp}$（Stab．） 12.75 post 250 RP164 6／7＋19／12 1 amp （5tab．）$\quad 13.45$ pose 30 p

EDGWARE ROAD，LONDON W2

"SHARP 12"

THE ARISTOCRAT OF PORTABLE TELEVISIONS

* FROM THE INTERNATIONALLY FAMOUS SHARP AUDIO \& ELECTRONICS CORPORATION
\star instantly tunable in all U.K. areas
\star MAINS OR 12 V BATTERY
* ALL SOLID STATE CIRCUITRY FOR RELIABILITY AND INSTANT WARM-UP
\star REMOVABLE SUN SHIELD
\star IMPECCABLY STYLED CASE IN OFF-WHITE HIGH IMPACT ACRYLIC WITH FOLDAWAY HANDLE
\star COMPLETE WITH MAINS LEAD, PERSONAL EAR PHONE AND UHF AERIAL
* GUARANTEED FOR I YEAR
\star RECOMMENDED RETAIL PRICE E75.95 (INC. of V.A.T.)

OUR PRICE $443 \cdot 05$

* THE LATEST HIGH QUALITY PRODUCT FROM THE RENOWNED GERMAN BASF COMPANY
* STYLISH, COMPACT MAINS OR BATTERY OPERATION
* SUPERB TONE AND PROVISION FOR EXTERNAL LOUDSPEAKER * BUILT-IN HIGH SENSITIVITY CONDENSER MICROPHONE AND PROVISION FOR EXTERNAL MICROPHONE
* PIANO KEY CONTROLS, RECORD METER AND AUTOMATIC RECORD LEVEL CONTROL
* SUPPLIED WITH CARRYING CASE, MAINS

LEAD AND 3 PIN DIN-DIN LEAD

* RECOMMENDED RETAIL PRICE E36.35
(Exclusive of V.A.T.)

BASF CASSETTES (TYpe lh in SNAP-pack)

	C30	C60	C90	Cl20
PRICE EACH:	$\mathbf{4 7 p}$	$\mathbf{5 5 p}$	$\mathbf{7 6 p}$	$\boldsymbol{£ 1} 1 \mathbf{1 3}$

PHIER $\frac{1}{4} \& \frac{1}{2}$ WATT CARBON FILM RESISTORS

E12	$\frac{1}{4}$ watt $10 \Omega-1 \mathrm{M}$
$\frac{1}{2}$ watt $10 \Omega-10 \mathrm{M}$	

IF EXACT VALVE IS OUT OF STOCK THEN NEAREST WILL BE SUPPLIED
TERMS (TRADE AND BULK ENQUIRIES WELCOME)

* PRICES DO NOT INCLUDE V.A.T.
* PAYMENT WITH ORDER ONLY

ㄴ TOTAL PAYMENT $=$ COST OF GOODS $+\mathrm{P} / \mathrm{P}+10 \%$ V.A.T.
\star MINIMUM ORDER 100 RESISTORS

* MINIMUM PER VALVE 25

BSR HI-FI AUTOCHANGER STEREO \& MONO Plays $12^{\prime \prime}, 10^{\circ}$ or $7^{\prime \prime}$ records. Anto or Manual. A high quslity unit backed by BSR reliability with 12 months' cuarantee.
Size $18!$
$\times 11$
AC
in.

Above motor board 3iin. Below motor board 2tin with STEREO and MONO XTAL 66.75 Pout 45p.

PORTABLE PLAYER CABINET Modern design. Black rexine covered. Silver front grille. Padded Lid. Chrome Attings. \quad ise $17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in}$. pew only in red rexine. £4.50 Port 50 p

4 Transistor Mono Amplifier

 Powerful 3 watt output. 15 ohm. AC mains operated with trandlormer. 3 -Controls, volume, treble, bas and On/On Fitch with knobs. Ready made on print inputs and outputs. Famous make. Size $\sin w i d e \times 4$ in deep $\times 3$ in high. Suitable $\operatorname{Fin} \times 4$ in apeaker, $£ 1$.f5.95 ${ }_{25 \mathrm{p}}^{\text {Poat }}$

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop. Acos atereo/mono cartridge. Baneplate. Size $\operatorname{Liin} \times 8 \frac{1}{2} \mathrm{in}$. Turnteble. Size 7 in diemeter. A/C maina. 200/250V motor has a separate winding 14 volt to power a amall amplifer. Three apeedu. Plays all records.

E5. 50
METAL PLINTH AND PLASTIC COVER
Cut out for most Garrard or E.S.R. Mont will play with cover in position. $121 \times 14 \frac{1}{2} \times 7$ in.
Covered in black leatherette.
Post 45p
ALSO AVAILABLE IN SOLID NATURAL MAROGANY COMPACT PORTABLE STEREO HI-FI Two full size loudspeakers $131 \times 10 \times 3 \frac{1 \mathrm{in} \text {. Player unit }}{}$ clips to loudapeakers making it extremely compact, overall size only $131 \times 10 \times 8!$ in., 3 watts per channel, playa all records 33 r.p.m., 45 r.p.m. Separate volume and tone

SPECIAL OFFER!

SMITH'S CLOCKWORK 15 AMP TIME SWITCH 0 TO 60 MINUTES
8ingle pole two-way Surface mounting with fxing serews. Will replace exinting warage, utomatic anti-burglar lights, etc. Variable knob Turn on or of at full or intermediste settings. Fully insulated. Makera' lant list price $\mathbf{5 4 - 5 0}$. Brand new and lully guaranteed. OUR PRICE $\& \| .95$ Poat 25p

BLANE ALUMINIUM CHASSIS. 18 s.w.R. $2 \frac{10}{1} \mathrm{in}$ siden 6×4 in $45 p ; 8 \times 6 i n 63 p ; 10 \times 7 i n 65 p ; 12 \times 8 i n 85 p ;$ 14×9 in $90 \mathrm{p} ; 16 \times 6$ in $90 \mathrm{p} ; 12 \times 3$ in $50 \mathrm{p} ; 16 \times 10 \mathrm{in} \mathrm{fl}$. ALUMINIUMBOXES $3 \times 3 \times 3$ in $60 \mathrm{p} ; 4 \times 4 \times 4$ in 70 p ;
 ALUMINIUM PANELS 18 s.w.R. 6×4 in $12 p ; 8 \times 6$ in $19 p$; 14×3 in $20 \mathrm{p} ; 10 \times 7 \mathrm{in} 24 \mathrm{p} ; 12 \times 5 i n 25 \mathrm{p} ; 12 \times 8 \mathrm{sin} 34 \mathrm{p}$;
$16 \times \operatorname{Bin} 34 \mathrm{p} ; 14 \times 9$ in $40 \mathrm{p} ; 12 \times 12 \mathrm{in} 47 \mathrm{p} ; 16 \times 10 \mathrm{in} 80 \mathrm{p}$. $16 \times \operatorname{Bin} 34 p ; 14 \times 9$ in $40 \mathrm{p} ; 12 \times 12 \mathrm{in} 47 \mathrm{p}: 16 \times 10 \mathrm{in} 80 \mathrm{p}$. PAXOLIN PANEL $10 \times$ 8in 20 p . . 2 p .2 -way, or 2 p .8 -way, or $3 \mathrm{p}$.4 -why.
TOGGLE SWITTCHES, sp. 20p; dp. 25 p ; dp. dt. 30 p .
Sub-minieture, ip. 33p; dp. dt. 50 p .

[^1]UR PRICES INCLUDE V.A.T.
R.C.S. STABILISED POWER PACK KITS All parta and inatrnctions with Zener Diode, Printed Circuit, Bridge Rectifers and Double Wound Mainu Trantormer input $200 / 240 \mathrm{~V}$ a.c. Output voltages available 8 or 8 or 12 or 15 or 18 or 20 V d.c. at 100 mA or lefs. PLEASE STATE YOLAGEREQURE R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal for Mike, Tape, P.O., Guitar, etc. Gan be used with
 For use with valve or tranaiator equipment.
Full inutructions Eupplied. Detaill s.A.E.
R.C.S. POWER PACK KIT

12 VOLT, 750 mA . Complete with printed $\mathbf{2} 2.95$ Post

 new tubular electrolytics can types \begin{tabular}{ll|ll|ll}
$2 / 350 \mathrm{~V}$ \& 14 p \& $250 / 25 \mathrm{~V}$ \& 14 p \& $50+50 / 300 \mathrm{~V}$ \& 80 p

$4 / 350 \mathrm{~V}$ \& 14 p \& $500 / 25 \mathrm{~V}$ \& 20 p \& $60+100 / 350 \mathrm{~V}$ \& 85 p

$8 / 450 \mathrm{~V}$ \& 18 p \& $1000 / 25 \mathrm{~V}$ \& 35 p \& $32+32 / 250 \mathrm{~V}$ \& 20 p

$18 / 450 \mathrm{~V}$ \& 29 p \& $1000 / 50 \mathrm{~V}$ \& 47 p \& $32+82 / 450 \mathrm{~V}$ \& 60 p

$32 / 500 \mathrm{~V}$ \& 50 p \& $8+8 / 450 \mathrm{~V}$ \& 28 p \& $350+50 / 325 \mathrm{~V}$ \& 55 p

$25 / 25 \mathrm{~V}$ \& 10 p \& $8+16 / 450 \mathrm{~V}$ \& 25 p \& $16+16+18 / 275 \mathrm{~V}$ \& 45 p

$50 / 50 \mathrm{~V}$ \& 10 p \& $18+18 / 450 \mathrm{~V}$ \& 40 p \& $39+32+32 / 850 \mathrm{~V}$ \& 65 p

$50 / 50 \mathrm{~V}$ \& 10 p \& $16+18 / 450 \mathrm{~V}$ \& 40 p

$100 / 25 \mathrm{~V}$ \& 10 p \& $82+32 / 350 \mathrm{~V}$ \& 40 p
\end{tabular} $\begin{array}{ll}100 / 25 V & 10 \mathrm{p} \\ \text { LOW VOLTAGE ELEGTROLYTICS }\end{array}$

LOW VOLTAGE ELECTROLYTICS.
$1,2,4,5,8,16,25,80,50,100,200 \mathrm{~m}$: $15 V 10 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 85 \mathrm{~F} 35 \mathrm{p} ; 50 \mathrm{~V} 4 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
2000 mF 6V 25p; 25V $42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$.
2500 mF 50v $62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}$.
2500 mF 50V 62p; $3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V}$ 65p.
5000 mF 6V 25p; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p}$.
 CERAMC 1 pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mica 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$.
PAPER $350 \mathrm{~V}-0.14 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF}$ 15p; 2 mF 150 V 15 p . $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$. TWIN GANG. "0.0" $208 \mathrm{pF}+176 \mathrm{pF}, 75 \mathrm{p}$.
Slow motion drive $365 \mathrm{pF}+865 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$; SHORT WAVE 8DNGLE, $10 \mathrm{pF}, 30 \mathrm{p}$; 25pF, 55p; 60 pF , 55 p .
SHORT WAVE SINGLE GANG. Precision Bilver Plated Gangable Tuning Condensers. ioopr. 50 p each

NEON PANEL IMDICATORS 250V AC/DC. Amber 80 p .
 HIGH 8TABILITY. 1 W $2 \% 10$ ohm to 6 mek., 10 p .
Ditto 5%. Preferred values 10 ohms to 10 meg., 4 p .
WIRE-WOUND RESISTORS 5 watt, 10 Watt, 15 Watt, 10 ohms to 100 K 10p each; 2 watt, 0.5 ohm to $8 \cdot 2 \mathrm{ohm}$ whep. APE O8CILLAKOR COL Valve 8 .
ERRITE ROD $8 \times$ lin 20p: $6 \times$ in $20 \mathrm{p} ; 3 \times$ in 10 p .

MAINS TRANSFORMERS $\begin{gathered}\text { ALL } \\ 25 \mathrm{p} \\ \text { poss } \\ \text { eash }\end{gathered}$

Esgle MT12 12-0-1VV 50 mA . $350-0-35080 \mathrm{~mA} 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A}, 6.3 \mathrm{~V}$ 1A or 5 V 2 A $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}$ C.T.; $6.3 \mathrm{~V} 2 \mathrm{~A} \ldots$. MINIATURE 200 V 2 $20 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A} 2 \xi \times 21 \times 2 \mathrm{in}$. MIDGET $220 V^{45} \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 2 \mathrm{~A} 21 \times 21 \times 2 \mathrm{in}$. HEATER TRANS, 6.3V amp 65p, 1 amp 75 GENERAL P 2 a 2 amp. $3,6,8,9,10,12,15,18,24$ and 30 v e3. 30 at 2 amp. $3,4,5,6,8,9,10,12,15,18,24$ and 30 V 23.00
1 amp, $8,8,10,12,16,18,20,24,30,36,40,48,6023.00$ 1 amp, $8,8,10,12,16,18,20,24,30,38,40,48,6023.00$
2 amp, $6,8,10,12,16,18,20,24,30,36,40,48,8024.00$ $2 \mathrm{amp}, 6,8,10,12,16,18,20,24,30,36,40,48,80$
5 amp, $6,8,10,12$
5
 $6-0-6 \mathrm{~V} 500 \mathrm{~mA} 90 \mathrm{p} ; 9 \mathrm{~V} 1 \mathrm{amp} 95 \mathrm{p} ; 12 \mathrm{~V} 300 \mathrm{~mA} 75 \mathrm{p} ; 12 \mathrm{~V}$ $500 \mathrm{~mA} 85 \mathrm{p} ; 12 \mathrm{~V} 750 \mathrm{~mA} 95 \mathrm{p} ; 22 \mathrm{~V} 0.22 \mathrm{~V} 2 \mathrm{~A}$. 22. AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150W $£ 2.80$; 500 W 26.25; $750 \mathrm{~W} \& 10 ; 1000 \mathrm{~W}$ £15 lor 6 or $12 \mathrm{~V}, 1 \mathrm{amp} \mathrm{El} 50 ; 2 \mathrm{amp} \mathrm{El} \cdot 80 ; 4 \mathrm{amp} £ 2 \cdot 50$ BATTERY CHARGERS. Ready built with leadi and clipa 1f amp $22 ; 4$ smp $84 ; 5$ amp. $84 \cdot 50$.
1f amp e2; amp $24 ; 5$ amp. f4.50.
FULL WAVE BRIDGE CEARGER RECIPIERS 6 or 12 V outpute. $14 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p}: 4 \mathrm{amp} 85 \mathrm{p}$. MAINS ISOLATING TRANSFORMER Primary 0-110-240V. Secondary 0-240V 3 ampa 720 watts. Insulated terminals. Varnish impregnated. Fully enclosed in steel case with fxing leet. f 10 Carr. Gan be used an 800 watt anto transformers $240-110 \mathrm{~V}$.

SET OF 3 MOTORS FOR COLLARO STUDIO 115 VOLT TAPE DECK £2. 50 Post 50p

VOLUME CONTROLS 80 ohm Coax 5 prd Long spindles. Midgei Size BRITISH AERIALITE 5 K . ohm to 2 Meg. LOG or AERAXIAL-AIR SPACED
 8TEREO L/S 55p. D.P. 75 p . Edge 5K. 8.P.Tranisior 25p. Ideal 625 and colour. 10 ped Wire Wound controls 1 lin diam. 3 Watts. 10 chms to 100 B British Made with long spindles tin dia. 45p each. British Made with long spindlen in dia. AND 500 K LIN D.p. witch. Inner spindle 3 tin; outer spindie 2tin 75 p .
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. SPEAKER SALE!

With twin tweeters.

 watt. State 8 or 8 or ont 25p With fiered tweeter cone and cerami magnet. 10 watt. Flux $10,000 \mathrm{ganse}$ State 3 or 8 or 15 ohm. Poat 25p

LOUDSPEAKER FRONT GRILLES Teakwood strips mounted on cloth backing, easily glued on Teskwood strips mounted on cloth bige to modernite cabinets. Size $18 \mathrm{im} \times 75 \mathrm{p}$
10 in .

Or size $10 \sin \times 7 \mathrm{in}$. 45p
E.M.I. $6 \frac{1}{2}$ in. HI-FI WOOFER

8 ohm. 10W. Large ceramic magnet. Special Rubber cone surround. Frequency response $30-12,000 \mathrm{c} / \mathrm{s}$. Idea) P.A.

Columna. Hi-Fi Enclosure Sytatoms, ete. \$uitable Cabinet $12 \times 8 \times 6 \mathrm{et}$ Suitable Tweeter

ELAC CONE TWEETER

The moving coil diaphragm given a sood radiation pattern to the higher frequencies from $1,000 \mathrm{c} / \mathrm{s}$ to $18,000 \mathrm{c} / \mathrm{s}$. 8ize $8 \frac{1}{} \mathrm{X}$ $3 \frac{1}{3} \times 2$ in deep. Rating $10 \mathrm{~W}, 8$ ohm.

GOODMANS

8 in. WOOFER
8 ohm 12 watt. Deap cone. Heavy ceramic magnet. Basi resonance 35 cpa . Frequency reaponse $30-3,000 \mathrm{cps}$. $\begin{aligned} & \text { Ideal bains unit ior } \\ & \text { Hi-Fi system. }\end{aligned} \leq 3 \cdot 75$

SPECIAL OFFER LOUDSPEAKERS

 ALL BRAND NEW3 ohm, 21 in ; $24 \mathrm{in} ; 3$ in; 5 in.
$8 \mathrm{ohm}, 2 \mathrm{in} ; 2 \operatorname{lin} ; 5 \mathrm{in} \times 3 \mathrm{in} ; 5 \mathrm{in}$,
$15 \mathrm{ohm}, 3 \mathrm{in} ; \operatorname{Sin} ; 6 \times 4 \mathrm{in} ; 5 \times 3 \mathrm{in} ; 7 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{in}$.
$25 \mathrm{ohm}, 2$ lin; $3 \mathrm{in} ; 5 \times 3 \mathrm{in}$; 5 in .
$35 \mathrm{ohm}, 2 \mathrm{in}$; 3 in ; 5 in .
$80 \mathrm{ohm}, 2 \mathrm{jin} ; 2 \mathrm{sin}$. 120 ohm 3 in .
fl еасн
LOUDSPEAKERS P.M. 3 OHMS. $7 \times 4 \mathrm{in} 21.25$; 6 Iin 21.50 ; $8 \times 5 \mathrm{in} 21.60 ; 8 \mathrm{in} 21.75 ; 10 \times 6 \mathrm{in} 91.90 ; 10 \mathrm{in} 42.50$ RICHARD ALLAN TWIN CONE LOUDSPEAKERS. 8 In diameter 4W $82 \cdot 50,10$ in diameter 5 W £2.50; Poat 25p. 12in diameter, $6 \mathrm{~W}, \mathrm{e} 2 \cdot 65 ; 3$ or 8 or 15 ohm models.
8PEAKER COVERING MATERIALS. Samplea Large 8.A.E. Horn Tweeters $2-16 \mathrm{Kc} / \mathrm{s}$. 8 F 8 ohm or 15 ohm 29.20 . TWO-WAY $3,000 \mathrm{cpe}$ CROSSOVERS 3.8 or 15 ohm 81.25 .

3 WAY CROSSOVER

Complete with 12 It. twin lead atted with din spealerer plag. Ready assembled with leads lor apeskers, basa, mid and tweeter. Cronsover trequencies-950 cpa and ≤ 1.95 $3,000 \mathrm{cps}$

VALVE OUTPUT TRANSFORMER 40p.
MIKE TRANSFORMER MUT metal 100-1 $21 \cdot 25$.
PUSH-PULL VALVE OUTPUT TRAMSFORMERS.

ELECTRO MAGNETIC
 PENDULUM MECHANISM

$1-5 V$ d.c. operation over 200 hours continuous on SPR battery, fully adjustable swing and apeed. Ideal diaplays, teaching electro marnetism or for metronome, $95 \mathrm{P}_{80 \mathrm{p}}^{\text {Pont }}$
strobe, otc.

R.C.S. RECORD PLAYER AMPLIFIER

 2 ntage triode pentode valve. 3 watta output. Volume on/on $\begin{array}{ll}\text { and tone controls. Printed circuit } & \mathbf{4} .50 \\ \text { A.c. maina complete and teited. }\end{array}$ Complete with spealker.COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18
COAXIAL PLUG 10p. PANEL SOCKETS 10p
OUTLET BOXES, SURFACE MOUNTING 25 p .
OUTLET BOXES, SURFACE MOUNTANG 25p. \quad BALANCED TWIN RIBBON PEEDER 300 ohms, 7 y .
BALANCED TWIN RIBBON FEEDER 300 ohms, 7p 9d. JACK SOCKET Std. open-circuit plap. closed circid 2ap; JACK PLUGS 8td. Chrome 20p; 3.5 mm Chrome 15 p DIA SOCKETS Chansia $3-$ pin 10 p : 5 -pin 10p DH 80CKETS Leed 3 -pin 18p; s -pin 25p. DIN PLUGS 3 -pin 25 p ; 5 -pin 25 p . VALVE HOLDERS 5p; CERAMIC 10p; CANS 5p.
 RADIO COMPONENT

Illustrated Colour Brochure, Radio Books \& Components Lists 10 p Written guarantee.

ALL OUR PRICES INCLUDE V.A.T.

E.M.I. WWORER TWND £6.75 (Available separately.
Wooler $25-25$; Tweeter 21.90)

Comprising a fine exampio of a Wooter $101 \times 61 \mathrm{in}$ with a manive Coramic Magnet, 44oz Ganas 18,000 lines. middle and top reaponse. Also the E.M. Tweeter 3tin aquare has a mpecial lightweight paper cone and magnet fux 10,000 lines. Cronsovar condenser and Inll inatructions supplied.
Impedence Standard 8 ohms
Aarimam power 12 watt
Useful Response 35 to $18,000 \mathrm{cps}$ Basi Renonance $45 \mathrm{cp1}$ SUITABLE ENCLOSURE $20 \times 13 \times \operatorname{Oin}$

£ 10.50 MODERN DESIGN. TEAK WOOD FINISH.

ANOTHER R.C.S. BARGAIN !

ELAC $9 \times$ Sin. HI-FI SPEAKER TYPE 59RN
Thil lamoul unit now a vailable, 10 watts, 8 ohm. Price $£ \mathbf{~} \mathbf{3} \cdot{ }^{\mathbf{3}}{ }_{25 \mathrm{p}}^{\text {Post }}$

$8^{\prime \prime}$ or $10^{\prime \prime} \times 6^{\prime \prime}$ ELAC HI-FI SPEAKER

Dual cone plasticised roll surronnd. Large ceramic magnet. $50-16,000 \mathrm{cps}$. Bans relonance 55 cpl. 8 ohm impedsnce.
10 watt.
$\{3.75$
10 in round $£ 4 \cdot 50$.
TEAK VENEER HI-FI SPEAKER CABINETS
Fluted Wood Fronts
MODEL "A". $20 \times 13 \times 9 \mathrm{jn}$ For 12 in. dis. or $\leq \mid 0.50$ Post
10 in apesker. Oin speake

For $13 \times 8 \mathrm{in}$. or $\mathrm{f6.60}$ Pon 8 in. spesker $\quad 26.60{ }^{95 p}$ MODEL "B" \& ditto. Triangular Corner Vernion.

MODEL " C ". $16 \times 8 \times 6 \mathrm{in}$. For 8×5 in. $\quad\{4.95$ Poit LOUDSPEAKER CABINET WADDING 18in wide, ROD ft.
bargain am TUNER. Tranuittor \&uperhet $\mathbf{6 5 , 5 0}$ BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER. Add musical highlights and sound effects to recordinge. Will mix Microphone, records, tape and tuner with reparate controlsinto single outpat. 9 volt battery ≤ 4.50
STEREO VERSION OF ABOVE 25.95
BARGAIN 3 WATT AMPLIFIER. 4 Tranciator
Push-Pull Ready built with volume, treble and
£4.50
THE "INSTANT" BULK TAPE
ERASER \& HEAD DEMAGNETISER.
Suitable for cassettes, and all sixes ol tape reels, A.C. maine 200/250V. Lezflet S.A.E. $\quad \mathbf{3 . 5 0} \begin{gathered}\text { Post } \\ 20 \mathrm{p}\end{gathered}$
WAFER HEATING ELEMENTS
OFFERING 1001 USES for every type of heating and drying applicationg in the home, garage, greenhouse
tactory (available in manofacturing guantitios). Approz isctory (available in manaisctaing quantities). Approx
aze $10 \frac{1}{1} \times 81 \times$ Hin. Operating voltage $800 / 250 \mathrm{~V}$. a, 250 watte approx. Printed circuit element enclosed in asbentos Gtted with connecting wires, Completely fexible providing sale Black heat. British-made for use in photocopiers and print drying equipment.
deal for home handymen and experimenters. Suitable tor Heating Pads, Food Warmers, Couvector Heaters, etc. Must be clamped between two sheets ol metal or asbeston, airing cupboards. Ideal for anti-frost device for the garage -preventing frozen radistors or acting el oil sump heater. Use in greenhouse for seed raising and plant protection. Inveluable aid for bird houses, incubators, etc., etc. Can be ased in series for lower heat. Or in parallel for higher heat applications.
ONLY 40 EACH (FOUR FOR $£ 1 \cdot 50$)
ALL POST PAID-Discounts for quantity.

MAjOR 100 WATT ALL PURPOSE TRANSISTOR
AMPLIFIER
All parpose tranaistorised. Idesi for Groups, Dinco and P.A. 4 input! speech and music, 4 wat mixing. Output $8 / 15$ ohm e.c. Mains Separate treble and basi controls. Guaranteed. Detaila S.A.E.

CALLERS ONLY: DE-LUXE 100 WATT AMPLIFIER CHAS8I8. 7 Vatve version, 4 inputs, 10 wide range controls. For Mires, Diacoi, Organs, Gaitars, etc. $\mathbf{4} 89$ and 15 ohm Loudapeaker matching.

Q MAX CHASSIS CUTTERS

A die, punch and Allen Screw

20 Watt 100 ohm Rheostat 2hin dia, Ceramic Iormer screw terminals tin dis. spindle. 95 p. Post 25 p .
R.C.S. STEREO DECODER

Britiah made. Ready aligned and tested. Complete 66.95

WEYRAD COILS

| P50/20C | 40p | RA8W | 85p |
| :--- | :--- | :--- | :--- | :--- |
| P50/3CC | 40p | OPT1 | $65 p$ |
| PCA1 | 60 p | LFDT4 | 65 p |

$$
\begin{aligned}
& \text { DELUXE } 4 \text { POLE MOTOR }
\end{aligned}
$$ E.M.I. GRAM MOTOR

120 V or 240 y a.c. 2.400 rpm. 2 -pole
70 mA . size $2 \boldsymbol{2} \times 2 \dot{2} \times 2 \ell \mathrm{in}$.
£ 1.00
Post 25p

BAKER HI-FI SPEAKERS HIGH QUALITY-BRITISH MADE REGENT
I2in. 15 watts
An inexpentive unit for the beginner in high fldelity and lor general purposes. May be used to improve any Radio, Amplitier, Hi-Fi or Televition receiver.
Basi Relonance 45 cpi Flux Density $\quad 12,000 \mathrm{gana}$ Ureful reiponse $45-18,000 \mathrm{cp}$ or S or 15 ohm models.

£8.80
 Post Free

DE-LUXE Mk II

I2in. 15 watts
Eapecially derigned to provide ull range reproduction at an conomical cont. Suitable tor ase with any high fidelity system. Built-in concentric tweeter cone.
Basi Resonance 14,000 30 ps Flaz Donnity $\quad 14,000$ gause 8 or 15 rehmonte $20-16,000$ ep fll

Pree

SUPERB

AUDITORIUM

l2in. 25 watts

A Iull range reprodacer for high power, Electric Guitars, public address, multi-speaker ystem, electric organt, deal for $\mathrm{Hi}-\mathrm{Fi}$ and Discotheques.
Bass Resonance 36 cps Flux Density $\quad 15,000$ genast Useful responie $25-16,000 \mathrm{cp}$ or 15 ohmil models.

£ $15 \cdot 40$
 Pont Fret

AUDITORIUM

I5in 35 watts

A high watigge loudspeaker of exceptional quality with a level response to above 8.000 cpa. Ideal lor Public Addrest, Discotheques, Elec. tronic instroments and the home.
Bana Resonance 35 cps $\begin{array}{ll}\text { Flux Density } & 15,000 \mathrm{gans} \\ \text { Oseful pesponse } & 20-14,000 \mathrm{cps}\end{array}$ 8 or 15 obme model.

(1) Post

Hi-Fi Enclonure Manasl containing 20 piana, devigna, crossover data and cubic tables. 42p. Post Frae

If you're looking you needn'tlook any further.

It's not only technicians who can see the finer points of Eagle multi-meters.

Every handyman notices them too
They're easy to read.
They're tough.
Their construction comes up to laboratory standards.

Even our inexpensive pocket sized models have features you'd usually only find on professional equipment.

Take a look through our catalogue
You'll see over twenty models.
Specifications that would impress the most experienced technician.

And a price range that takes in amateurs as well as professionals.

We guarantee every one for two years
With parts to service them in notime.
So you can confidently find fault in anything.

Laigle

The name on Britain's widest range of electronic equipment.

[^2]
回䀦 FOR AUDIO ON A BUDGET

 \section*{\section*{PUSH BUTTON CAR RADIOKIT
 \section*{\section*{PUSH BUTTON CAR RADIOKIT The TouristII The TouristII

 NOW BUILD YOUR OWN

 NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO PUSH BUTTON CAR RADIO

 Easy to assemble construction kit comprising fully

 Easy to assemble construction kit comprising fully completed and tested printed circuit board on which completed and tested printed circuit board on which no soldering is required. All connections are simple no soldering is required. All connections are simple push fit type making for easy assembly. push fit type making for easy assembly.

 Fine tuning push button mechanism is fully built and

 Fine tuning push button mechanism is fully built and tested to mate with printed circuit board. tested to mate with printed circuit board.

 Technical specification

 Technical specification

 (1) Output 4 watts R.M.S. output. For 12 volt

 (1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth. operation on negative or positive earth.

 (2) Integrated circuit output stage, pre-built three

 (2) Integrated circuit output stage, pre-built three stage IF Module. stage IF Module. $\left\{\begin{array}{l}\text { NO SOLDERING! } \\ \text { REQURED! }\end{array}\right.$ $\left\{\begin{array}{l}\text { NO SOLDERING! } \\ \text { REQURED! }\end{array}\right.$

 Controls volume manual tuning and five push

 Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale buttons for station selection, illuminated tuning scale covering full, medium and long wave bands. covering full, medium and long wave bands. Size chassis 7" wide, 2" high and $4 \frac{5}{16}$ " deep approx Size chassis 7" wide, 2" high and $4 \frac{5}{16}$ " deep approx Car Radio Kit $\mathbf{f 7 . 7 0}+\mathbf{5 5 p}$. postage \& packing Car Radio Kit $\mathbf{f 7 . 7 0}+\mathbf{5 5 p}$. postage \& packing Speaker including baffle and fixing strip $\mathbf{£ 1 . 6 5 + 2 3 p . p \& p . ~}$ Speaker including baffle and fixing strip $\mathbf{£ 1 . 6 5 + 2 3 p . p \& p . ~}$

 Car Aerial Recommended - fully retractable and locking

 Car Aerial Recommended - fully retractable and locking f1.37+20p. postage \& packing f1.37+20p. postage \& packing

 Tourist Mk. 1 kit still available-price $\mathbf{1 6 . 6 0 + 5 5 p}$. p\&p.

 Tourist Mk. 1 kit still available-price $\mathbf{1 6 . 6 0 + 5 5 p}$. p\&p.

 See July issue for full specification}

 See July issue for full specification}

QUALITY SOUND* FOR LESSTHAN 19.00

Stereo 21 easy to assemble audio system kit. - no soldering required. Includes:-
BSR 3 speed deck, automatic. manual facilities together with ceramic cartsidge.
Two speakers with cabinets.
Amplifier module. Ready built with control panel, speaker teads and full. easy to follow assembly instsuctions.

For the technically minded:-
Specifications
Input sensitivity 600 mV : Aux input sensitivity 120 mV : Power output 2.7 watts per channel: Output impedance $8-15$ ohms. Stereo headphone socket with automatic speaker cutout.
Provision for auxiliary inputs - radio, tape, etc., and out puts for taping discs. Overall Dimensions. Speakers approx.
$15 \frac{1^{\prime \prime}}{}{ }^{\circ} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1_{2}^{\prime \prime}}{} \times 12^{\prime \prime} \times 6^{\prime \prime}$. Complete only $\mathbf{£ 1 8 . 9 5}$ Extras if required. $\mathbf{f 1 . 3 7} \quad+1.60 \mathrm{p}$ \& p Optional Diamond Styli $£ 1.37$
Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optumum performance, $\mathbf{£} \mathbf{\$. 8 5}$.

DISCO AMPLIFIER

Reliant Mk IV Mono Amplifier. ideal for the small disco or house parties. Outputs 20 watts R.M.S. into 8 ohms (suitable for 15 ohms)
Inputs * 4 Electrically Mixed Inputs *3 Individual Mixing controls، *Separate bass and treble controls common to all 4 inputs * Mixer employing F.E.T. (Field Elfect Transistors). *Solid Siate Circuitry. *Attractive Siyling. INPUT SENSITIVITIES
-Input-1.) Cirystal mic. guitar or moving coil mic. 2, and 10 mV . (selector switch for desired sensitivity.-Inputs-2), 3). 4, Medium output equipment--ceramic cartridge, tuner, tape recorder, organs etc. all 250 mV sensitivity. AC Mains 240 V . operation. Size approx. $12 \frac{1}{2}$ ins $\times 6$ ins $\times 3 \frac{1}{2}$ ins $\mathbf{f 1 5 . 0 0}+\mathbf{6 0 p}$. post $\&$ pack

45 WATT R.M.S. MONO DISCOTHEQUE AMPLIFIER

 Ideal for Disco Work. Output Power: 45 watts R.M.S. Frequency Response 3 dB points 30 Hz and 18 KHz . Total Distortion: less than 2% at rated output. Signal to noise ratio: better than 60 dB . Bass Control Range: 13 dB at 60 Hz . Treble Control Range: 12 dB at 10 KHz . Inputs : 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control. 2 inputs at 200 mV into 470K. Size: $19 \frac{1}{4} \times 10 \frac{1}{2} \times$ 8ins. approx. Amplifier $\mathbf{£ 2 7 . 5 0}+\mathbf{f 1} .50 \mathrm{p}$. \& pSpecial Offer: Disco 50 plus two 15" E.M.I. speakers type 14A/780 (as illustrated on opposite page). Complete $£ 57.00+\mathbf{f 4 . 0 0} \mathbf{p} \& p$.

COMPLETE ${ }^{(*)}$ STEREO SYSTEM

£51-00

40 Watt Amplifier
Viscount III - R102 now 20 watts per channel.
System I includes.
Viscount III amplifier - volume, bass, treble and balance controls, plus switches for mono/ stereo on/off function and bass and treble filters. Plus headphone socket. Specification
20 watts per channel into 8 ohms Total distortion@10W@1kHz 0.1\%.P.U.I (for ceramic cartridges) 150 mV into $3 \mathrm{Meg} . P . U .2$ (for magnetic cartridges) $4 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within $=1 \mathrm{~dB}$ R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power). Tape out facilities: headphone socket, power out 250 mW per channel. Tone contro/s and filter characteristics. Bass: $+12 \mathrm{~dB} 10-17 \mathrm{~dB}$ @ 60 Hz . Bass filter: 6 dB per octave cut. Trable control: treble +12 dB to-12dB@ 15 kHz . Treble filter: 12 dB per octave. Signal to noise ratio: (all controls at max.) - 58 dB .
Crosstalk better than 35 dB on all inputs. Dverload characteristics better than 26 dB on afl inputs. Size approx. $13 \frac{3}{4}{ }^{\prime \prime} \times 9^{\prime \prime} \times 3 \frac{3}{4}$
Garrard SP25 deck, with magnetic cartridge, de luxe plinth and hinged cover.
Two Duo Type Il matched speakers Enclosure size approx. $17 \frac{1_{2}^{\prime \prime}}{}<10 \frac{3}{4}{ }^{\prime \prime} \times 6^{\prime \prime}$ in simulated teak. Dfive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter 10 watts handling
Complete System f51.00

669.00

System II
Viscount III amplifier (As System I)
Garrard SP. 25 (As System I)
Two Duo Type IIIA matched speakersEnclosure size approx. $31^{\prime \prime} \times 13^{\prime \prime} \times 11^{\frac{1}{2}}$ Finished in teak veneer. Drive units approx. $13 \frac{1}{2} \times 88_{4}^{\prime \prime}$ with $3 \frac{1}{4}^{\prime \prime}$ HF speaker. Max. power 20 watts, 8 ohms. Freq. range 20 Hz to 20 kHz .

Complete System £69.00

PRICES: SYSTEM 1
Viscount III R 102 amplifief $\quad \mathrm{f} 24 \cdot 20+\mathrm{f} 1 \mathrm{p} \delta \mathrm{p}$ 2 Duo Type II speakers $\quad £ 14 \cdot 00+£ 2 \cdot 20 p$ \& p
Garrard SP25 with
MAG. cartridge de luxe plinth and hinged cover
$\mathbf{f 2 1 . 0 0}$ - $\mathbf{f 1 . 7 5 p \& p . ~}$
total $£ 59.20$
Available complete for only $\mathrm{f} 51.00+\mathrm{f} 3.50 \mathrm{p}, \mathrm{\&} \mathrm{p}$
PRICES: SYSTEM 2
Viscount R102 amplifier $\quad £ 24.20-\mathrm{f} 1.00 \mathrm{p} . \& \mathrm{p}$ 2 Duo Type IIIA speakers $£ 39.00 \quad £ 4.00 \mathrm{p}$ \& p Garrard SP25 with
MAG cartridge de luxe plinth $\quad £ 21.00 \quad \mathrm{f} 1.75 \mathrm{p}$ \& p and hinged cover
total $£ 84$-20
Available complete for only $\mathbf{~} \mathbf{6 9} 900+\underline{f_{4}}$ peqp.

EMI SPEAKERS AT FANTASTIC REDUCTIONS

20 WATT SPEAKER SYSTEM

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ (approx) eliptical woofer unit with a $8^{\prime \prime} \times 5^{\prime \prime}$ (approx.) mid range unit incorporating parasitic iweeter and crossover components.
Technical Specification:
Bass Unit
Flux density-100 K, speech coil- $1 \frac{1}{2}{ }^{* \prime}$, Cone. Triple laminated paper with P.V.C. surround. Mid Range Unit
Flux density-33K, speech coil-1" with parasitic tweeter.
Power Handling
20 watts R.M.S., impedance -8 ohms, frequency response - 20 Hz to $18,000 \mathrm{~Hz}$,

15" 14A/780 BASS UNIT
Bass unit on a rigid diecast chassis Superior cone material handles up to 50 watts RMS, and is treated to give a smooth frequency response. Resonance 30 Hz flux density 360,000 Maxwells. Impedance at 1 kHz is 8 ohms. 3^{3} voice coil
Recommended retail price $\mathbf{£ 4 0} \mathbf{8 0}$.

Five matched speakers and crossover unit for handling up to 45 watts, frequeacy response from 20 to 20.000 Hz Huge $19^{\prime \prime} \times 14^{\prime \prime}$ (approx.) high efficiency Bass -Speaker with 16,500 -gauss magnet built on a heavy diecast frame
The four 10,000 gauss tweeters, each $3 \frac{1}{4}$ dia approx., are fed by the crossover which critically adjusts signal for maximum fidelity. Impedance at ! kHz is 8 ohms Bass coil 2", others 0.5". Recommended list price f 44.00 . OUR PRICE 19.50

For the man who wants to design his own stereo - here's your chance to start. with Unisound - pre-amp, pewer amplifier and control panel. No soldering just simply screw together. 4 watts per channel into 8 ohms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C monolithic power chips which ensure very low distortion over the audio spectrum 240V. AC only.
$\mathbf{f 7 . 6 4}+55 p . p|\&| p$

BARCLAYCARD

Just write your order giving your credit card number
DO NOT SEND YOUR CARD

Mail orders to Acton. Terms C.W.O. All enquires Stamped Addressed Envelope. Goods not despatched outside U.K.

Leaflets available for all items listed thus (x)
Send stamped addressed envelope.

Radio and TV Components (Acton) Lid.

21 High Street, Acton, London W3 6NG 323 Edgware Road, London W2

Persona \qquad Edgware Road: 9a.m. -5.30 p.m. Half day Thurs. Shoppers Acton: $9.30 \mathrm{a} . \mathrm{m} .-5 \mathrm{p} . \mathrm{m}$. Closed all day Wed

NOW AVAILABLE IN THE U.K! CHINAGLIA

PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS

 One example from the big range of sophisticated instruments
CORTINA MINOR

33 RANGE POCKET MULTIMETER

- SENSITIVITY 20.000 R/VOLT (D.C.), 4000 I $/$ VOLT (A.C.)
- ROBUST DIODE PROTECTED PRECISION MOVEMENT
- 33 RANGES D.C. VOLTS O- $100 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}$, 2.5 A , A.C. VOLTS, $0-7.5 \mathrm{~V}, 25 \mathrm{~V} 75 \mathrm{~V}$, 250 V , 750 V , 500 V A.C. CURRENT $0=25 \mathrm{~mA}, 250 \mathrm{~mA}, 2.5 \mathrm{~A}, 12.5 \mathrm{~A}$. AB RANGES -10 to +69. AF VOLT'S RANGES 0-I 500V. RESISTANCE RANGES IOK Ω, IOM Ω F.S.D. CAPACITANCE RANGES 100μ F, IF F.S.D.
- ACCURACY-RESISTANCE, D.C. VOLTAGE AND - RESISTANCE RANGES POWERED BY INTERNAL BATTERIES.
- COMPACT SIZE: $150 \times 85 \times 40 \mathrm{~mm} .350 \mathrm{gr}$
- CLEARLY CALIBRATED DIAL WITH ANTI-PARALLAX

PROFESSIONAL QUALITY COMPONENTS EMPLOYED THROUGHOUT
FULLY GUARANTEED FOR 12 MONTHS.
AFTER SALES SERVICE AND SPARES FACILITIE5
SUPPLIED WITH ADDITIONAL SHOCKPROOF PLASTICS CARRYING CASE, TVO HIGHLY INSULATED TEST LEADS AND INSTRUCTION BOOKLET.

- SPECIAL 30kV PROBE FOR D.C. MEASUREMENT AVAIL-
ABLEAS AN OPTIONAL EXTRA.

METER PRICE $£ 15.40$ ($p \& p$ 80p) PROBE $£ 8.80$ inclusive of V.A.T. for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone:-

CHINAGLIA (U.K.) LIMITED

19 Mulberry Walk, London S.W.3.
trade enquiries welcomed
Telephone 01-352 1897

YATES ELECTRONICS

 (FLITWICK) LTD.
DEPTMPE, ELSTOW STORAGEDEPOT

C.W.O. PLEASE. POST AND PACKING
PLEASE ADD 100 TO ORDERS UNDER $\& 2$.

Catalogue sent free on request. $10 p$ stamp appreciated
PLEASE ADD 10% VAT

RESISTORS

$\frac{1}{2}$ W iskra high stability carbon film-very low noise-capless construction ELECTROSIL TR5

DEVELOPMENT PACK

O. 5 watt 5% Iskra resistors 5 off each value 4.7Ω to $1 M \Omega$.

POTENTIOMETERS
Carbon track $5 k \Omega$ to $2 M \Omega$. log or linear (log $\frac{1}{2} W$, lin $\frac{1}{2} W$).
SKELETON PRESET POTENTIOMETERS
Linear: $100,250.500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal orvertical P.C. mounting
Sub-miniature $0.1 \mathrm{~W}, 5 \mathrm{p}$ each. Miniature $0.25 \mathrm{~W}, 7 \mathrm{p}$ each
SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDl is the world sfirst semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon containing air or smoke. This decrease is usually large as well as carbon-dust containing air or smoke. This decrease is usually large enough to be utilized without amplification. Full details and circuits are supplied with each detector.
Detector GDI. $£ 2$.

SMOKE AND GAS DETECTOR KIT
Mains operated with audible alarm, $\mathbf{6 5 \cdot 6 0}$.
Mains operated meter indicator, $£ 7.90$.
$12 / 24$ battery operated, $68 \cdot 40$.
12 V battery operated two remote sensors, $\mathbf{6 1 2} 80$
NOTE-The battery operated kits incorporate our patented circuit to minimise battery drain. Typically 120 mA for 12 V . These kits contain all parts required with the exceptio
operated kits, 85 .

MULLARD POLYESTER CAPACITORS C296 SERIES
H00V: $0.001 \mu F, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F} 0.0047 \mu \mathrm{~F}$
$0.015 \mu \mathrm{~F}$. $0.02 \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 3 \mathrm{P}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, . $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}, 34 \mathrm{p}, 0.15 \mu \mathrm{~F}$, MULLARD POLYESTERCAPACITORS C280 SERIES $1 \cdot 0 \mu F_{1} 13 \mathrm{p} .1 .5 \mu \mathrm{~F}, 20 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$.
 $0.001 \mu \mathrm{~F}, 0002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$, TORS 100 pF to $10,000 \mathrm{p} F, 2 \mathrm{p}$
$3 \mathrm{p}, 0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}$. ELECTROLYTIC CAPACITORS-MULLARD O15/6/7
(μ F/V) $1 / 63,1.5 / 63,2 \cdot 2 / 63,3.3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40$, $15 / 63,22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4.47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3$,
$68 / 16,100 / 4,100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,60$ $\begin{array}{llllllll}68 / 16,100 / 4, & 100 / 10,100 / 25, & 150 / 6 \cdot 3, & 150 / 16,220 / 4, & 220 / 6 \cdot 3, & 220 / 16,330 / 4,6 p, \\ 47 / 63,100 / 40, & 150 / 25,220 / 25, & 330 / 10,470 / 6.3 & 70 . & 68 / 63,150 / 40 & 220 / 40,330 / 16,\end{array}$ $47 / 63,100 / 40,150 / 25,220 / 25,330 / 10,470 / 6 \cdot 3,7 p .68 / 63,150 / 40,220 / 40,330 / 16$,

$1,000 / 4,10 \mathrm{p} .470 / 10.580 / 6 \cdot 3,11 \mathrm{p} .100 / 63,150 / 53,220 / 63,1,000 / 10,12 \mathrm{p} .470 / 25$, 680/6, $1500 / 6 \cdot 3,13 \mathrm{p} .470 / 40,680 / 25$ 1 $000 / 16$, $500 / 10,2,200 / 6 \cdot 3$ IBp. $330 / 63^{\circ}$ $680 / 40,1,000 / 25,1.500 / 16,2,200 / 10,3,300 / 6 \cdot 3,4,700 / 4,21 \mathrm{p}$. $2,100 / 10,30 / 63$, | SOLIDTANTALUM BEAD CAPACITORS | | | 12 P | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0.1 \mu \mathrm{~F}$ | 35 V | $0.22 \mu \mathrm{~F}$ | 35 V | $0.47 \mu \mathrm{~F}$ | $35 \mathrm{~V}: 1.0 \mu \mathrm{~F}$ | $35 \mathrm{~V} ;$ |
| $2.2 \mu \mathrm{~F}$ | 35 V | $4.7 \mu \mathrm{~F}$ | 35 V ; | | | | | $0.1 \mu \mathrm{~F}$ | $35 \mathrm{~V} ;$ | $0.22 \mu \mathrm{~F}$ | $35 \mathrm{~V} ;$ | $0.47 \mu \mathrm{~F}$ | $35 \mathrm{~V} ;$ | $1.0 \mu \mathrm{~F}$ | $35 \mathrm{~V} ;$ | $2.2 \mu \mathrm{~F}$ | $35 \mathrm{~V} ;$ | $4.7 \mu \mathrm{~F}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $6.8 \mu \mathrm{~F}$ | $25 \mathrm{~V} ;$ | $10 \mu \mathrm{~F}$ | $25 \mathrm{~V}:$ | $22 \mu \mathrm{~F}$ | $16 \mathrm{~V} ;$ | $33 \mu \mathrm{~F}$ | $10 \mathrm{~V} ;$ | $47 \mu \mathrm{~F}$ | $6.3 \mathrm{~V} ;$ | $100 \mu \mathrm{~F}$ | VEROBOARD JJCK PLUGS ANDSOCKETS

 dry, then ín
high relief.

CUSTOM CABINETS
 328/30 The Banks, Rochester, Kent. Tel : Medway (0634) 404199 SPEAKER CABINETS IN HUGE SAVINGS KITFORM REPRESENT
 $2^{\prime} \times 12^{\prime \prime}$ Cabinet

 $4^{\prime} \times 12^{\prime \prime}$ Cabinet

 Disco Console (includes lid not shown) Takes two slaves

For a long time now a large number of customers have asked us to produce cabinets in kit form, and above we show examples of cabinet styles and these are now available either fully built or in kit form ready for you to produce a professional finish in a very short time!
Kits are available in all specifications and all the kits contain everything you need as follows :-

1) 4 sides with handle cutouts, front edges rounded, 1 back with jack socket hole, and1 baffleboard with speaker cutout
2) P.V.C. cut to size for frame and back, plus false front and back timbers, white front piping and speaker cloth
3) Recessed handles with fixing screws, jack socket, all fixing screws, corner plates, glue, and full instructions !

PRICE \& TYPELIST

Type PRICE\& TY	Size	Price manufactured	Kit price
$2 \times 12^{\prime \prime}$ (illustrated above)	$36^{\prime \prime} \times 18^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£19.50	£12.50
$4 \times 12^{\prime \prime}$ (illustrated above)	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£24.50	£17.50
$4 \times 12^{\prime \prime}$ P.A. Column	$48^{\prime \prime} \times 27^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£30.00	£21.50
$1 \times 18^{\prime \prime}$	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£24.50	£17.50
1×15 " with two top horn cutouts	$36^{\prime \prime} \times 20^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£21.00	£13.50
Mini Disco (state deck cutout BSR, GARRARD etc.)	$33^{\prime \prime} \times 20^{\prime \prime} \times 8^{\prime \prime} \times \frac{1}{2}$	£20.00	£13.00
Maxi Disco (illustrated) (state deck cutout BSR, GARRARD etc.)	$42^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime} \times \frac{1}{2}$	£25.00	£18.50

Please ask for quotation on any other type or size of cabinet you may require.

* 100 w RMS slave amp for Disco
* 100 w RMS continuous sine wave output
* Short and open circuit protection
* Built to highest industrial spec.
* Price $£ 37.00$ complete

* Stereo studio disco mixer
* Full PFL and Monitor facilities
* As used by John Peel, Mark Wesley,

Paul Burnett, DLT, Dave Christian,
Tony Prince

* Price $£ 120.00$

* Concorde mono M400 mixer
* Full PFL and Monitor facilities
* Mike overide
* Magnetic inputs
* Broadcasting quality £85.00

ALL OUR PRICES INCLUDE VAT AND UK DELIVERY

ERC 100 watt power amplifier

* Electrolytic capacitors and second generation ICs
* Fully protected against short or open circuit
* Less than 0.1% distortion at all powers
*Rise time 4 muS -stability-
Unconditional Price $£ 66.50$

Disco imp projector 150 watt tungsten unbeatable price E19.75
Includes liquid wheel and postage
Normally $£ 24-£ 27.50$

Sond 25p for COMPLETE CATALOGOE, refundable apon Arat order all our merchamdise is pully guaranteed
Sabject to manufacturera' inerease and availability
Riverstale Electroniss
Mail Order Department PE/s
P.O. Box 470, Manchester M60 4BU

FERRANTI

* ALL DEVICES BRAND NEW, TOP GRADE AND TO FULL SPECIFICATION. We sell only best quality stamped devices from the maker's current production. * WE HAVE STOCKS OF ALL DEVICES FOR MMMEDIATE DELIVERY.
t WE CAN SUPPLY ANY FERRANTI DEVICE TO ORDER. Send S.A.E. for quotation.
- WE ARE SPECIALISTS IN FERRANTI SEMICON DUCTORS, WITH A STAFF OF EXPERIENCED ENGINEERS
- HU:1 M MK. || $\begin{aligned} & \text { Printed circuit } \\ & \text { Siemens BStBO246 SCR \&i.25 }\end{aligned}$

FULL KIT OF SEMICONDUCTORS $£ 5.65$ (State 6 V or 12V)
 RCA PRICES SLASHED! CA3090Q stereo decoder. Only f3.25. PE TRIFFID ZTI7II 29p, 2NII32 32p.
ZN4I4 with circuits and data $£ 1.32$
Fi E Our comprehensive catalog ue giving data and connection diagrams for a Wide range of ferranti semiconduct
just send an S.A.E. Copy sent with every order.
POSTAGE \& PACKING IOp. FREE ON ORDERS OVER E3
DAVIAN ELECTRONICS
P.O. BOX 38, OLDHAM, LANCS. OL2 6XJ

ENGINEERS

Do you want promotion. a better job. higher pay? New opportunities shows you how to get them through a low-cost B.1. E. T. home study course. There are no
books to buy and you can pay-as-you-

MAPLIN ELECTRONIC SUPPLIES

ORGAN BUILDERS

Keybosards: High quality adjustithle typ Sloping front 44 -note C to C. $\mathbf{5 1 4 \cdot 3}$ lat front 48-note F to E 114.35. Confact blocks GB-2 (2 make contacts). 19p. Palladium earth bar per octave length. 20pStop tatss rocker type not engraved (white.
red. grey or black) with DPDT switch. A9p

BASIC ORGAN CIRCUIT
Leaflet MES SI shows a complete circuis for a bassic fully polyphonic organ. Send only 15 por leaflet and start huilding later he able to use the same top quality component parts as the hasis of a large sophisticated instrument with all the facilities you want. V'atch our ads for details.

REVERBERATION UNIT

Enhances the sound of any electronic musical instrument Ready built spring line driver modute suitable for use with almo any spring line. $25 \cdot 34$.
Two types of spingy line available
Short line s. 3.05
S. A.E. please for details. Leafiet MES 24

MES announce the very latest development in organ circuitry. THE DMO
13 Master Frequencles on ONE tiny circuit board. LOOK AT THESE AMAZING ADVANTAGES $\star 13$ frequencies from C8 to C9. \star Each irequency digitally derived from siNGLE h.f. master ogcillator. S Initial tuning for the Whole organ $\quad \rightarrow$ Relative tuniag NEVER DRIFTS : t External control allows instant tune-np to other musicians. \star Outputs will directly drive moat types of dividers including the gAJllo. A And each output can also be used as a direct tone source. t Variable DEPTH AND RATE tremulant optional extra © Gold-plated plug-jn edge connexion. * Complet $3.7 \mathrm{in} . \times 4.5 \mathrm{in}$. \downarrow Very low power consumption

* EXTREMELY ECONOMICAL $*$ 8.e.e. please PRICE. \star Ready built, teated and fully guaranteed. DMO2T (with tremulant) ONLY S14.85.
DMO2. DMO2 (without tremulant) 212.25. details.
Trade enquiries veleome. SAJllo 7-stage irequency divider in one 14 pin DIL package. Sine or square wave input allows operation from aimost any type of master oscllator including the DMO2 (when 97 notes are available). Square wave outputs may be modified to saw-tooth by the addition
of a few components. SAJ110: 22.63 each OR speclal price for pack of $12: 225 \cdot 00$. 8.a.e. plense for data sheet.

P.E. SOUND SYNTHESISER

If this project seems expensive YOU HAVEN T SEEN OUR PRICES specil mounting the Veroboards
Send S.A.E now for our detailed price list

E.T.I. SYNTHESISER

We stock all the parts for the Eiectronics Touday international synthesiser including all the P.C B.'s required and all the metalwork including a drilled and printed front panel for a truly professional finish.
Some of the circuits in this brilliant design are entirely original. Independent authoritative opinions agree the E. T. I. International uvailable today
S.A.E please for our detailed price lisis

CAPACITORS

 Sub$A x i a$
M / d
1
$1 \cdot 5$
2.2
$3 \cdot 3$
4.7
6.8
6.8
10
10
15
15
15
22
22
22
33
33
33
47
47
47
47
47

Sub-ministure							
		d el	ectro				
Mid	V	Price	Mld	V Price			
1	63	6	68	6.350			
		8D	68	16 6p			
		60	68	63100			
	63	6D	100	4 6D	Mid		Price
	63	6	100	10 88	470	6.3	${ }^{6 p}$
	40	6	100	25 80	470	10	10p
6.8	63	$6{ }^{8}$	100	40 80	470	25	12p
10	25	8	100	.6312p	470	40	18p
10	63	6D	150	436	680	$6 \cdot 3$	10p
15	16	6p	150	16 6p	680	16	12p
15	40	${ }^{6 p}$	150	25 6D	680	25	185
15	63	80	150	40 10p	680	40	22p
22	10	6p	150	63120	1000	4	10p
22	25	6D	220	4 6p	1000	10	12D
22	63	80	220	10 6p	1000	16	18p
33		3 8p	220	16 6p	1000	25	22p
33	16	60	220	2510 p	1500	8.3	12p
33	40	8p	220	4012 p	1500	10	18p
47	4	8 D	220	63 18p	1500	16	22p
47	10	60	330	4 6D	2200	$6 \cdot 3$	18p
47	25	8 D	330	10 6p	2200	10	22p
47	40	80	330	$1610 p$	3300	6.3	22]
47	63	6p	330	63 22p	4700	4	22.

LINEARS

CA3046 Transistor array
H 0042 C TO99 (TOS) FET i/p Op Amp
PLUGS AND SOCKETS

viv Plutis

\qquad

DIS Sockets

A $\left(180^{\circ}\right) .5$ pin $\left.{ }^{5}{ }^{2} 240^{\circ}\right) .7 \mathrm{p} .6$ pin
MAIN
P36, ${ }^{\text {M }}$, pin 151

\qquad
WE KNOW YOU NEED IT!
 CATALOGUE
IS STACKED

LM301A. 8-pin DIL. Op Amp
MC 1303L. 14-pin. Stereo Preamplifier
MC1310P. 14-pin DIL. FM Stereo Decoder (no coils needed) MFC4000B tW Audio Amp
MFC6040 Eiectronic attenuato
MFC8010. 8-pin case, IW Audio Power Amp
MFCSO20. 10-lead case. 2W Audio Power Amp
NESSSV. 8-pin DIL. Precision Timer
SG1495D I4-pin DIL. Four Quadrant Analogue Multiplier
SG 3402 N Amplifier/Multipliez
MA 723 C . TO 99 (TO5). 2 to 37 V Voltage Regulator
MA723C. 14 -pin DIL. 2 to 37V Voltage Regulator
нA741C. 8-pin DIL. Op Amp
4A741C. 14-pin DIL. Op Amp
$\mu \mathrm{A} 47 \mathrm{C}$. 14-pin Dil Dual Op Amp
ZNA14. TOS TRF Radio
Full date in conrexio
Full data. Price 25 pexions, etc., on nearly all types above in our

SWITCHES

Rotary with adjustable stop 1 pole 2 to 12 way 3 pole 2 to 4 way; 4^{4} pole 2 or ${ }^{3}$ wa
Mains rotary DPST
250 V
2 A
20 p.

Slide Sub-miniature DPDI

Push to make
120
Toggle 250 V 1.5 A
ajith $\mathrm{ON} / \mathrm{OF}$
plate 25 p .

High quality High qualiches
togele swithe
SPDT DPDT 3A 240 V a.c. 50 p Four Pole DT 3 A 240 V a.c.

OMNIUM GATHERUM

pp3. 6. etc. battery clip dual min. 9p.
pP1, 4, etc.. kattery clip separate per puir 6 p . Pair crocodile clips. I red. I blach insulated Sleeve 10 p .
Solder Multicore $22 \mathrm{~s} .4 . \mathrm{g}$. 10 metres 25 p
Silicone grease in spec . Solicone grease in special dispen
Terminal Block 12 way 5 A 14 p . Probe clips spring loaded per pair 30 p . Probe chps spring loaded per pair wp.
Panel fuse holders 20 mm 20 p : 1 fin 35 p .

Trandormers

1.T 700 min, output transformer Pr_{y} ($5 \Omega 200 \mathrm{~mW} 50 \mathrm{p}$.

Size: Both approx $30 \times 27 \times 25 \mathrm{~mm}$
Min. Mains Trandormer
Size: $46 \times 31 \times 38 \mathrm{~mm}$
$0-12 \mathrm{~V} 250 \mathrm{~mA} \quad 0-12 \mathrm{~V} 250 \mathrm{~mA} \times 1 \cdot 36$.
Matins Transformer MT 3AT
Pri.
1 A
E 3.31 .
Malins Tranatormer MT206AT

Hook-up wire, 7 strand 02 mm . PVC covered tinned copper wire for light general conriekions up to 1.4 A . 11 colours: black. blue hrown green. grey. orange. pink red, viole. White of H1 1 of each colour 10 m coils $\mathrm{E2} .0 \mathrm{5}$. Pack
Single core screened 8 per metre
Twin individually screened 1040 per metre. Hegh quality single screened son loopF per
metre. ideal for high grade audio connexions 154p per metre
Mains ${ }^{3}$-core sub-minjature IA black PVC covered 19 strand 0.1 mm per conductor. $7!p$
per metre.

POTENTIOMETERS

Carbon Film tW $5 \% 1 \Omega$ to $1 \mathrm{M} ; 10 \% 12 \mathrm{M}$ to 10 M E12 Ip Carbon Film iW $5 \% 1 \Omega$ to $10 \Omega: 10 \%$ 12M to 10 M E12 Carbon Flim iw 5% il Ω to 910 k
Carbon Film iw 6% in Ω to 10 M Carbon Film IW $6 \% 10 \Omega$ to 10 m

 Wirewound 24W 50% Ehm to 270 obma 12 p E12 values $10,12,15,18,22,27,33,39,47,56,68,82$ and decades E24 values 11, 13, 16, 20. 24, 30, 36, 43, 51, 62, 75, 91 and decades

VAT
Please add 10% to the final total.

Post and Packing FREE in U.K. (15p handiling charge on ordert under £1) First cinse pest pre-peld envelope supplied tree with every order

Orderis and enquiries for catalozues to MAPLIN ELECTRONIC SUPPLIES. P.O. Box 3, Rayleigh, Essex. Tol. Southend-on-Sea 070244101

Project 80

a brilliant new concept in modular hiffi

Project 80 is going to be the ultimate in modular hi-fi construction for a very long time to come. It combines the qualities mast demanded of any modern domestic system - good circuitrv, reliability and fine performance - with other features to be
found nowhere else in the world. For example, compactness - Project 80 control units are $\frac{3}{4}$ " deep $\times 2^{\prime \prime}$ high, and each one is completely self-contained
Elegance - all of Sinclair's design leadership has been concentrated on producing designs of outstanding functional elegance unsurpassed for styling and simplicity. Flexibility -
the size and styling of Project 80 modules makes them the most versatile units ever. Combine them how you will, where you will, the Project 80 System
of your choice gives you the best

Sinclair Project 80

technically
 the world's most advanced

Project 80 gives you choice from a range of 9 different modules for combining in a variety of ways to suit your requirements. The Stereo 80 is a versatile pre-amp control unit designed to meet all domestic hi-fi requirements including tape monitoring, high sensitivity magnetic cartridge input, and of course, individual slide controls on each channel for precise output matching. By separating the F.M. tuner and stereo decoder, useful economies can be effected where stereo radio reception is not needed. Two power amplifiers - 2.40 (18 watts RMS continuous into 4 ohms using 35 V) and Z.60 (25 watts RMS continuous into 8 ohms using 50V) are available with choice of 3 different power supply units. The $P Z .8$ with its virtually indestructible circuitry is particularly recommended. For the final word in system building, the Active Filter Unit puts the finishing touch of quality to what are easily the world's most technically advanced hi-fi modules Any further units likely to be added to Project 80 range will be compatibie with those already avallable.

Guarantee

If, within 3 months of purchasing any product direct from us you are dissatisfied with it your money will be refunded on production of recelpt of payment Many Sinclair .appointed stockists also offer this guarantee Should any defect aris? in normal use. we will service it without charge

Stereo 80 Control Unit Size $-260 \cdot 50 \cdot 20 \mathrm{~mm}\left(10 \frac{1}{4} \cdot 2 \times\right.$ zns $)$ Finish - Black with white indicators and transparent sliders Inputs - Magnetic pick up 3 mV RIAA corrected. Ceramic prck-up 350 mV Radio 100 mV . Tape 30 mV Signal/notse ratio - 60 db Frequency range - 20 Hz to 15 KHz Tape 30 mV Signal/notse ratio - 60 do requency 20 to 35 volis Outputs 100 mV . AB montoring for tape Controls - Press button tape radio and $P \mathrm{U}$ Sliders on each channel for volume bass treble 19 R R P f11. 95
Project 80 FM Tuner size - 85.50 .20 mm (31 $\cdot 2$. Tuning range Dual varicap - 875 to 108 MHz Detector - IC balanced coincidence One I.C equal to 26 transistors Distortion - 0.2% at 1 KHz for 30% modulation 4 pole ceramic filter in I.F. section Aerial impedance - 75Ω or 240300Ω Sensitivity - 5 microvolts for 30 dB S/N ratio Output - 300 mV for 30% modulation Power requirements -25 to 35 volts $f 11.05$
$(R R P$ add $£ 19 \mathrm{VAT}) \leq 11.95$
Project 80 Stereo Decoder size $-47.50 \times 20 \mathrm{~mm}\left(1 \frac{7}{8} \times 2\right.$. $\frac{3}{a}$ ins) One 19 transistor I.C. Channel separation greater than 30dB Power requirements -25 V Output 150 mV per channel $\underset{(a d d 74 \mathrm{DV} \text { R.AT) } \text { R } 7.45}{ }$
Active Filter Unit separate controls on each channel Size $108 \cdot 50 \cdot 20 \mathrm{~mm}\left(4 \frac{1}{4} \cdot 2 \cdot \frac{3}{4} \mathrm{nms}\right)$ Voltage gain - minus 02 dB Frequency response -40 Hz to 22 KHz controls minimum Distortion - at $1 \mathrm{KHz}-003 \%$ using 30 V supply H.F. cut off (scratch) -22 KHz to 55 KHz 12 dB /oct slope LF cut off (rumble) $-28 d \mathrm{~b}$ at 20 Hz . 9dB/oct slope RRP f $\begin{array}{r}\text { (add } 69 \mathrm{p} \text { VAT) } \mathrm{E} 95\end{array}$
Z.40 Power Amplifier size-55.80-20mm (21 $\left.\cdot 3 \frac{1}{1} \cdot \frac{3}{2} \mathrm{~ns}\right) 9$ tansistors Input sensitivity -100 mV Output 18 watts RMS continuous into 4Ω (35V) Frequency response 30 Hz 100 KHz - $3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio - 64 dB Distortion - at 10 watts into 8Ω less than 01% Power requirements - 1210
35 volis. bult ill protection against overloadrr RRP \&
 transistors Input sensitivity - 100250 mV Output - 25 watts RMS coninuous into $8 \Omega(50 \mathrm{~V})$ Distortion - typically 003% Frequency response - 15 Hz to more than $200 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio - better than 70 dB Bult in protection against iranstent overload and short crrcuiting Load impedance f6.95
Power Supply Units pz 8 Stabilised Re entrant current hming makes danage from overload or Even direct shorting impossible Normal working voltage (adjustable) bOV RRP E798.79p VAT Without mains transformer PZ 635 V stabilised RRP \quad E7.98.790 VAT PZ.5 30 V un stabilised R R P $44.98 \quad 49 p$ VAT

To Sinclair Radionics Ltd. St. Ives Huntingdon PE174HJ
Please send post paid

[^3][^4]Address \quad PEA ___

Sinclair Radionics Lid London Rd St Ives Huntingdon PE174HJ Telephone S: ives (0480) 64646

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS Prim. 120/240V. Sec 120/240V Centre Tapped and Screened ALSO AVAILABLE WITH $115 / 120 V$ SEC. WINDING

CASED AUTO TRANSFORMERS
 LOW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-250$ VOLTS 12 ANDIOR 24 VOLT RANGE Ref. Amps. Weight Size cm. Secondory Windings P \& P $\begin{array}{ll}\text { No. } 12 V & 24 V \\ 111 & 0.50 .25\end{array}$

 1.34
1.58
2.09 22
22
22
36 $\begin{array}{ll}2.99 & 36\end{array}$ $\begin{array}{rrrrrr}70 & 6 & 3 & 8 & 8.9 \times 8.0 \times 7.70 .12 V \text { at } 3 A \times 2 \\ 08 & 8 & 5 & 8 & 9.9 \times 89 \times 860.12 V a t 4 A \times 2 \\ 72 & 10 & 5 & 8 & 4 & 99 \times 96 \times 8 \times 60-12 V \text { at } 5 A \times 2 \\ 16 & 12 & 6 & 612 & 9.9 \times 10.2 \times 8.60012 V \text { at } 5 A \times 2 \\ 17 & 16 & 8 & 12 & 12.1 \times 9.9 \times 10.20-12 V \text { at } 8 A \times 2 \\ 15 & 20 & 10 & 11 & 8 & 140 \times 9.6 \times 11.80-12 V a t 10 A \times 2\end{array}$ 3.52
3.96
4.67
7.2
7.2
9.2 $\begin{array}{llllll}18730 & 15 & 15 & 8 & 140 \times 12.1 \times 11880.12 V \text { at } 15 A \times 2 & 16.94\end{array}$ Ref.
Ref. Amps Weight
size cm.
30 VOLT RANGE \qquad $P \& P$ p
22
36 0.510 oz $4.1 \times 5.8 \times 4.80-12-15-20-24-30 \mathrm{~V}$ 6.58×6
$7.9 \times 77 \times 7$

$80.12-$ Amps 12 1 size cm .

VÓLT RANGE

PLEASE ADD 8 \% FOR V.A.T.

NCIUDING P. \&

BARAIE electronics

3, THE MINORIES, LONDON EC3N 18J TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS ALDGATE \& ALDGATE EAST
$-5 \square \square \square \square$

STEREO DECOOER

Ready built unit, ready for connection to the I.F. stages of existing FM Radio or Tuner. A tell tale light can be connected. The unit is a small princed circuit, no further alignment necessary. L.E.D. is recommended as the indicating light, suitable device available from us at $36 \underset{2}{2}$ p. Instructions included.

5W \& 10W AMPS

5Wonvi£1.98 10W only £2.49

These matchbox size amplifiers have an exceptionally good cone and quality for the price. They are only $2 \frac{1}{4} i n$ in $1 \frac{3}{4} i n$. The 5 W Amp will run from a 12 V car battery making it very suitable or portable voice reintorcement such as publis functions. Two amplifiers are ideal for stereo. Complete connection details and reble, bass, volume and balance control circuit diagrams are upplied with each unit. Discounts are available for quancity orders. More details on request. Cheapest in the U.K, Built and tested.

Now available for 5 \& 10W AMPS

Pre-assembled printed circuit boards 2 in $\times 3$ in available in stereo only, will fit 0.15 edge connector
Stereo Pre-Amp I (Pre 1). This unit is for use with low gain or ceramic pick-up cartridges. $\mathbf{E 1 / 2 1}$ Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges. $£ 1 \cdot 69$ Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut. £1-21 Instruction leaflet supplied with all units. Post and packing and V.A.T. included in prices.

C．T．ELECTRONICS

 Mow opan－our now componento thop．These promlees are very much larger and wim enabte us Chave greater stoeke than wo ohready have．Heving alk the componente under one root will now ounantece you speedier eervice on the counter，and on the mati ordef bide．Wour components then

NOW AT 267 \＆ 270 ACTON LANE，LONDON W4 5DG

	 \qquad ※もの？？ 3Nッツ \qquad いッシ \qquad

S．C．R．E	
CRS1／05 ．．．．．40p	TRIACS
CRS $1 / 10$ ．．56P	TXL228B 8A 400V 95p
CRS $1 / 20$ ．．．．．60p	SC400－． 51.40
CRS $1 / 40$ ．．${ }^{\text {c }}$ P	SC40E $\quad . . .51 .65$
CRS $1 / 60$ ．．．．90p	SC45D ．．．．．r1－70
CRS3／10．．．．．62p	SC45E ．．． $\mathbf{5 2} 10$
CRS3／20 ．．．62p	SC500 ．．． 52.42
CRS3／40 ．．．．．．gop	SC50E ．．．． $\mathbf{8 2 . 7 0}$
CRS $7 / 400$ ．．．． 51.00	DIAC ．25p
CRS 16／400 ．．85p	
CRS 16／200 ．．90p	LINEAR I．C．
CRS16／600 ．．．． 51.60	LM309K 5V．IA．Voh．
C106B ．．．．．．．45p	19e Reg．${ }^{\text {che }}$［210
C106D ．．．．．70p	LM723C $2-37 \mathrm{~V}$ ． 150 mA
40669 ．．．．．．．．．． 90 p	Voltage Reg．$\quad 19.05$
TIC44 ．．．．．．35p	MFC4000 250 m W Audio 60 p
2N4444 BT105004	TBA800 5WattAudio $£ 9.50$ 709C Op Amp O1L．
BT10／5004 ．．．．．sop	
BRIDGE RECTIFIERS	741C Op Amp 814
WO2 1A 200 V 30 P	D．1 L．／TO99－${ }^{\text {55 }}$
BY164 1 4A 200V 57p	${ }^{740 \mathrm{C}}$ Op Amp DIL ${ }^{\text {75p }}$
MDA952／2	747C Dual Op Amp $\quad 1.20$
6 A 100 V 80 p	ZN414 Radio IC ${ }^{\text {c }}$［1．25
ZENER DIODES ${ }^{\text {SZYgS Serves }}$ 403mW	$\begin{aligned} & \text { TAD100 Radıo IC } \\ & \text { inc Filter } \end{aligned}$
	CA3014 51.55
$\begin{array}{lll}3 & 3 \mathrm{~V}-33 \mathrm{~V} .5 \% \\ 15 \mathrm{~F} \text { range }\end{array}$	CA3018
$15 W$ range ， $25 p$ low range	CA3028 51.20
rango	CA3036 ．． 11.00
L．E．0．	CA3045 ．．95p
THL209 ．．．．．26p	CA3048 ． 82.35
HP5082 ${ }^{\text {a }}$ 24p	CA3075－¢1．00
MA2082R ．．25p	CA30900－ 54.85
L．D．A．	MC1303L ${ }^{\text {c }}$ ¢2．20
$\begin{array}{lll} \text { ORP12 } & \ldots 60 \\ \text { NE555 Timor } & 60 p \\ \hline \end{array}$	SN76023 6W Audiol C with circuit $\$ 1.75$
ALUMINIUM BOXE IDEAL FOA VEROBOARD WITH BASE	
AB7 24 Lang	Wide if Hlgh sop
A88	
AB9 4	$1{ }^{1 / 40 p}$
${ }^{\text {AB }} 10$	12
$4 \mathrm{AB11} 4$	\％${ }^{\text {P }}$
AB12	$4{ }^{4} \mathrm{P}$
${ }^{\text {AB }} 13$	${ }_{24}{ }^{2}$
$\mathrm{ABP14}^{\text {a }}$	
$A B 15$	3 （ 51.04
ABt5 10	81． 23
AB17 10 a	11．e0
AB18 ${ }^{\text {A }} 12$	c1． 20
	LOPING TOP PANEL E－10．6AL
ALUNINIUM BOXES WITH SLOPING TOP PANEL－IDFAL FOR PAE．AMPS．ETC．，USING SLIDER CONTHOL＊	
AB20 \＆Long 9 Wide 3t Hid 2 High al front 6 sio With Pk Screws	$\begin{aligned} & \text { an ot back } \\ & \text { pe to front } \end{aligned}$
AB21 AI above but in long	
The V 418 callerated－ 2020.3 and 0.100% mekimg it	
output indicator seneltivity： 130 uA Internal peolatence： 600 onme	
ALTOBTOCKED	
Prasal．Rectilimear multiturn Anrex Soldering iront ewitchas．rotery．alide．togole elc Ceble verobosid	

AUDIO ACCESSORY SHOP

HEADPHONES
Type H－202 Features Monorstare controls on each channei
Type H－202 Features Mono／stereo switch Volume controls
Freq．response $20-20.000 \mathrm{~Hz}$ ．Impedance： $4-160 \mathrm{hms} \mathbf{~} \mathbf{4} \cdot 50$

8in HI－FI SPEAKER
Dual cone plasticised rollsurround Large ceramic magnet． $50-1$
$10.000 \mathrm{c} / \mathrm{s}$ ．Bass resonance $55 \mathrm{c} / \mathrm{s}$ ohm impedance． $81 n$ ． 10 watt ［3．75 each．Post 250

E．M．I． $13 \frac{1}{2} \times 8 i n$ ． SPEAKER SALE！
With twin twesters and crossover． speakers．Goodmans．Fane．Celes－ tion．alc

FULL RANGE OF EAGLE AND TTC PRODUCTS AVAILABLE AT DISCOUNT PRICES．

SECONDHAND BARGAIN BASEMENT

 NOW OPEN：HIGH QUALITY HI－FI AND AUDIO EQUIPMENT．ALL MAIL ORDERS AND ENQUIRIES TO 270 ACTON LANE，LONDON W4 5DG Tel．01－994 6275

MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EOUIPMENT SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT
OPEN 6 DAYS A WEEK, 9.00 a.m, $-6.00 \mathrm{p} . \mathrm{m}$.

TRANSISTOR UNIVERSAL AMPLIFICATION COMPANY LTD. DEPT. E
163 MITCHAN ROAD, LONDON SW17 9PG 01-672 3137/9080

> TUAC DISCOTHEQUE MIXER WITH AUTO FADE Designed for the discerning D.J. of professional standard. Offering a vast variety of functions. Controls: Mic Vol. Tone. Over-ride depth. Auto Manual Sw. Tape Vol. \& \& Deck Faders. Deck Volume. Treb \& Bass. H. Phon Vol, Selector, Master Vol. on/off sw. Max. Output iV RMS. Specification. Vol. Treb and Bass Controls, 8 mV sensitvity. Treb $+28-15 \mathrm{~dB}$ at 12 kHz , Bass $\pm 18 \mathrm{~dB}$ at 40 Hz . PANEL SiZE $18 \times 4 \frac{1}{2} / \mathrm{n}$. DEPTH 31 n . POWER SUPPLY $£ 4.75$

NEW! 3 channel Light Modulator
\star 1,000 watts per channel
\star Operates from $\frac{1}{8}$ watt to 100 watts
\star Full wave control
\star Fully fused and suppressed

* 12 easy connections
£15.25
Single channel version $£ 6 \cdot 75$

NEW! NEW! NEW!
TUAC FLASHING BEACONS: AS USED BY AMBULANCE. FIRE SERVICES, ETC.

* Instant stop and start motor for precise control.
\star Choice of 4 models, 12 V , $24 \mathrm{~V}, 110 \mathrm{~V}$ and 240 V .
* Magnetic baso-may be attached to any metal surface.
* 240 V model suitable for use with light modulator.
\star Available in 4 coloursred, blue. amber and clear.
* Only $£ 22$.

ALL PRICES INCLUDE V.A.t. AND POSTAGE AND PACKING ACCESS \& BARCLAY CARDS ACCEPTED, JUST SEND US YOUR NUMBER. H.P. ARRANGED THROUGH PAYBONDS.

(IP) IL.P. (teatemeneele

SHEER SIMPLICITY!

luner
\qquad
Gram

Tape o.p

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consigts of two high quality amplifiers-the first contains frequency equalisation and gain correction while the second caters for tone control and balance

TECHNICAL SPECIFICATION
Inpute: Magnetic Pick-up 3 mV RIAA: Ceramic Pick-up 30 mV ; Microphone 70 mV : Funer 100 mV : Auxillary ${ }^{3-100 \mathrm{mV}}$. Main oulput Dab (0775 V RMS). Actlye Tone Controle: Treble +12 db at 10 kHz Bass +12 db at 100 Hz . Distortion 0.5% at kHHz Signal/Nolse Ratlo: 68db Overlond Capa bifity: 40db on most sensitive input. Supply Voltage $=16-25$

The HY50 is a complete solld state hybrid Mi-Fi amplifier incorporating its own high conductivity heatsink her metically sealed in black epoxy resin. Only five connections are provided imput, output, power lines and earth
TECHNICAL SPECIFICATION
Output Power: 25W RMS into 8 k (, Lo 0 d Impedance $4-16 \mathrm{~K} \Omega$. Input Seneliflyly 0 db (0.775 V AMS). Input Impedence: 47 k 亿. Distortion: Less than 0.1% at 25 W typically 005%. Signal/Noine Ratlo: Better than $75 \mathrm{~d}^{\mathrm{b}}$. Frequency Response: $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{db}$. Supply Voltege $\pm 25 \mathrm{~V}$ Size: $105 \times 50 \times 25 \mathrm{~mm}$
PRICE 55.98
+59p VAT
P. \& P. free

The PSUSO can be used for ather mono or stereo systems.
TECMNICAL SPECIFICATIONS
Output voltage: 25 V . Input vortage $210-240 \mathrm{~V}$ Stze: L 70 D. 90 H 60 mm

two Years' GUARANTEE ON ALL OUR PRODUCTS

CROSSLAND HOUSE • NACKINGTON CANTERBURY KENT
CANTERBURY (0227) 63218

Splashed out? Invested is more the word! It cost me just 77 pence (including packing and postage) and I saved more than that on my first order. And if I take into account the satisfaction l've gained from using such a comprehensive, clearly set out, well illustrated production, I've saved the outlay many times over. Think I'm exaggerating? Why not test it for yourself? The coupon below is just waiting to be filled in and sent off with your cheque or postal order. No need to keep it waiting any longer.

By the way, the catalogue contains 10 free Vouchers, each worth 5 pence when used against orders-so you can soon get most of the price of the catalogue back anyway!

SORRY FOR THE DELAY

FIRST a word or two of explanation and apology. Like our weather this summer, the economic and industrial climate has been unsettled and changeable over the whole country. And the Publishers of this magazine have had their share of problems, as many readers will have guessed. We can only apologise to all our readers and advertisers who regularly support us for any disappointment, perplexity and inconvenience they may have experienced by the delayed appearance of some recent issues of Practical Electronics.
Because of continuing production problems erratic publication dates must be expected for the next few issues, also. But we hope soon everything will be restored to normal. In the meantime, while writing, we have to admit not knowing just when this particular issue will appear on the bookstalls. It may be during the second half of August, but more probably during the first half of September (yes, we did try ESP, but alas to no avail).

A NEW SEASON-AND A NEW VIEW

In any event, September is a significant turning point in the year so far as hobbies are concerned. It is a month when those typically summer activities start to fade and become overshadowed by the different prospects that lie just ahead for the autumn and winter-the period when indoor activities realiy come into their own. Now the electronics constructor faces his most productive period of the year and starts to think again of projects long intended, but not so far realised. A foraging amongst back numbers of periodicals probably brings to light some design ear-marked long ago for the earliest possible attention. And there is the constant flow of new ideas that come from sources such as this magazine regularly each month (normal conditions prevailing).

Some constructors like a reasonably large and involved project to get their teeth into, and something which will keep them usefully occupied over several months. This kind of need will be satisfied in many instances by the P.E. Closed Circuit Television Camera. Although CCTV systems are common enough in commercial and industrial fields, this particular type of instrument has not yet come into general use. Since most homes possess the necessary monitor in the form of the normal TV set, it is a pity that a private, personal CCTV facility is not more readily available. With our specially commissioned design for a camera, this does now become a reasonable and economic proposition for the average constructor, and permits him to extend his technical knowledge and experience by acquiring new skills in video work which can be applied to instruct or entertain his own family or circle of friends, in a multitude of ways.
Of course, some constructors prefer smaller and less complicated designs. We don't neglect or ignore them. There is always a wide choice of subjects in P.E. each month.

Whatever the individual choice may be, of this there is no doubt: by becoming immersed in his hobby the electronics constructor can forget for a while some of the more gloomy news which seems to provide a constant background to present day affairs.
F.E.B.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
S. R. LEWIS B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices: Fleetway House, Farringdon St., London EC4A 4AD Phone: Editorial 01-634 4452 Advertisements 01-634 4202

PE CCTV MONOCHROME

 CAMERA EY A.V. FLATMAN *B.Sc.MOST commercially available closed circuit television equipment is of semi or fully professional quality and is therefore financially prohibitive to a large group of potential users. This project describes an economical and relatively simple, black and white, amateur grade CCTV Camera.

The constructor should, without the use of specialised test equipment, be able to build this interesting and extremely useful item for less than $£ 60$-the cost being controlled to a large extent by the lens used with the camera.

GENERAL DESCRIPTION

The greatest economy is made by basing the design of the camera unit on an amateur grade one inch diameter Vidicon (namely the EMI 9677). This device may be obtained, together with its scan coil assembly and pin connector, from EMI Electron Tube Division, 243 Blyth Road, Hayes, Middlesex UB3 1 HJ .

7400 family logic is utilised to generate the complex synchronisation signals required within the camera system. This feature renders the widely used, discrete component equivalent obsolete and enables a cheaper, more compact and less power consuming replacement. The hybrid nature of the circuitry, due to the combination of digital integrated circuits and transistors, will, it is hoped, give the constructor some interesting examples of how these contrasting components may live together in harmony.

Fig. 1.1. CCIR 625/405 line TV Standards

祭 Lecturing
 \% Remote Monitoring

笽 Survellance

The camera, whose circuitry is mounted on two printed circuit boards and is compatible to either 625 or 405 line TV standards (by a simple adjustment), may be coupled to a remote TV monitor via a single coaxial link. Alternatively, the unit may be used in conjunction with a standard domestic 625 line TV receiver with the aid of a u.h.f. modulator. This will enable the video information from the ca mera to be injected into the receiver aerial socket.

A strong aluminium case houses the mainspowered camera in a compact yet accessible manner and caters for the attachment of a standard photographic tripod.

BRITISH TV STANDARDS

A television picture is made up of a series of merging horizontal lines. One complete picture or frame is scanned out every $1 / 25$ second, and is "enhanced" by the tube phosphor for a very short time-thus enabling following frames to be scannedout to give a flicker free and lifelike appearance to the moving picture.

If one visualises a picture being sliced into thin horizontal strips, which are linked end-to-end to form a long chain, then it is not a difficult conception to understand how the information is conveyed from a TV camera to its monitor. Reconstruction of the "mutilated" picture in the above example requires knowledge of the exact location of each sirip, and introduces the need for two groups of

Table 1.1		625 -Line	405 -Line
A	Line sync pulse	$4 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$
B	Line blanking period	$12 \mu \mathrm{~s}$	$18 \mu \mathrm{~s}$
C	Line period	$64 \mu \mathrm{~s}$	$98 \mu \mathrm{~s}$
D	Field sync pulse	$250 \mu \mathrm{~s}$	$350 \mu \mathrm{~s}$
E	Field blanking period	1.28 ms	1.4 ms
F	Front porch	$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
G	Back porch	$6 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$
H:J	Video: Sync ratio	$7: 3$	$7: 3$
H + J	Composite video level	$\mathrm{IV} \mathrm{pk} / \mathrm{pk}$	$\mathrm{IV} \mathrm{pk} / \mathrm{pk}$

[^5]information-video and synchronisation. For convenience, both groups of information are then compressed into a composite signal to enable single channel conveyance.

Approximate CCIR $405 / 625$ line TV standards are shown in Fig. 1.1. Video and sync information are easily distinguished by their respective positive and negative-going directions. Most aspects of the composite video waveform shown may be summarised as follows.

Line Sync Pulse The leading edge of the line sync pulse marks the end of a line scan and initiates a beam flyback in the scanning process. Inaccuracy in the generation of these sync pulses will give rise to line slip or the breaking up of the monitored picture-they must therefore be inserted precisely in time with fast vertical edges.

Line Blanking Period The electron beam in any TV system requires a finite time to traverse the face of the tube. To allow for this flyback time, and to prevent the action of beam flyback from interfering with the intended scanning process (by retracing itself), a line blanking period is employed. This period blanks-off the video signal and starts slightly before the line sync pulse, ending some microseconds after its completion and accounts for up to 15 per cent of the total available line time.

Front Porch This period allows time for the video signal voltage to fall to the blanking level before the action of the line sync pulse.

Back Porch Composite video signals are often processed by amplifiers having no d.c. coupling facilities. This unfortunately allows the video levels to drift and give a mean voltage level coincident with zero volts d.c. D.c. restoration is simply achieved in the TV monitor/receiver by clamping the reference level to the back porch for the duration of the following line. All picture half tones are thus faithfully reproduced.

Field Sync Pulse The leading edge of the field sync pulse marks the end of a complete field and initiates a beam flyback. As field deflection coils are generally more inductive than line deflection coils, the time taken for a flyback operation is understandably longer (as $t=L / R$ seconds). The energy in the fieid sync pulse must then be correspondingly larger than that in the line sync pulse. Pulse energy is calculated as the product of its height (volts) and its width (seconds) and is, in this case, more conveniently controlled by its width. A field sync pulse of $160 \mu \mathrm{~s}-300 \mu \mathrm{~s}$ width performs the required task admirably, at the same time making it easily differentiated from the line sync pulse.

A frame sync pulse of at least $150 \mu \mathrm{~s}$ duration would obliterate several line sync pulses and momentarily inhibit the operation of the line generator in the monitor/receiver. It is preferable to maintain the free-running of the line generator due to its difficult fast-starting properties. For this reason, the long field sync pulse is broken up into a series of broad pulses, enabling the delivery of a pulse whenever the line generator expects one.

In more sophisticated TV systems, the field sync pulse is the most complex signal of them all. This is to cater for the fully synchronised interlacing;
whereby in 625 line standards, for example, field 1 would commence scanning at the top left hand corner and comprise 312.5 lines, whilst field 2 would start scanning the inter-leaved remainder of the 625 lines halfway along the top line. Interlaced scanning is accurately achieved in this way but is unfortunately costly in circuitry. The alternative to fully synchronised scanning will be explained shortly.

Field Blanking Period Blanks the video signal whilst field flyback is performed, taking about 20 line periods.

Composite Video Bandwidth The theoretical maximum frequency of the signal from a TV Camera is given by:
$f_{\text {max }}=\frac{\mathrm{a} \mathrm{N}^{2} \mathrm{P}}{2}$ where N is the number of lines in a picture frame, P is the number of frames/second and $\mathrm{a}=\frac{4}{3}$ the picture aspect ratio.

For 625 lines $f_{\text {max }}=6.5 \mathrm{MHz}$; for 405 lines $f_{\text {max }}=$ 2.74 MHz .

The theoretical maximum bandwidth assumes equal horizontal and vertical resolution. In practice this is not so and lower working bandwidths are possible- 5 MHz for 625 line standards.

RANDOM INTERLACING

The CCIR system of field sync pulses required to generate fully synchronised interlacing requires costly additional circuitry, which would therefore defeat the object of producing a compact, low-cost TV camera. For this reason alone, the above system is not incorporated and will not be summarised in this preamble.

If the field and line sync pulses were generated separately and not synchronised to one another in any way, a system of random interlacing would be obtained. To use random interlacing to its fullest potential, the line generator must generate exactly half the number of lines in a picture frame per field, thus positioning the interlaced field accurately within the first field.

In practice, the frequency of a simple line generator will have a limited stability-and will thus impair the accurate positioning of interlaced fields. Alternate fields will randomly vary in position to give a maximum possible resolution of 625 lines/ frame-and a mean resolution of slightly less than 625 lines/frame.

Fig. 1.2. CCTV camera system block diagram

TV CAMERA SYSTEM

The schematic diagram of the TV Camera is shown in Fig. 1.2. All the sync signal timing and generation is performed by the Master Logic, which may be thought of as the system heart. Each of the control pulses is then directed to its appropriate location.

Scanning within the Vidicon camera tube is made possible by driving the deflection coils with current waveforms, which are synchronised to the line and field sync pulses and generated by the Line and Field Generators. Actual width and height of the scanned area are set within the Line and Field Generator circuitry.

The scanning beam of the Vidicon is switched off by the Cathode Switch to inhibit the video signal during blanking periods. The video signal is amplified up to the required level and mixed with the line and field sync pulses-driving composite video into a 75 ohm load.

MASTER LOGIC

Examination of the Table 1.1 of the CCIR TV standards shows that the shortest period involved is $2 \mu \mathrm{~s}(625$ line front porch). A convenient and accurate technique of obtaining a great proportion of the pulses required within the Master Logic would be to generate a 2μ s pulse chain from a 250 kHz clock and successively divide it down in time using a binary counter. A 4-stage binary counter, using SN7473's, would count to 16 negative going pulse edges before repeating itself, giving a repeat time of $16 \times 4=64 \mu \mathrm{~s}$, or the line time of a 625 line picture. Within this 64μ s repeat time, logic gates could easily construct pulses of various durations from any combination of the available 2 us "time slots".

Fig. 1.3 shows the Master Logic circuit diagram and Fig. 1.4 its relevant waveforms.

A 4 -stage divider, comprising $\mathrm{BSl}, 2,3$ and 4 , is driven from a variable frequency clock to give pulse chains A, B, C, D and E, and their inverted complements. The clock is basically two cross-coupled Nand gates, G3 and G4, which means that either output A or \bar{A} is high $(+5 \mathrm{~V})$ at any one time. If A is high, then D2 becomes reverse biased and C 2 is allowed to charge via the input resistance of G2. The output of G 2 will subsequently become low (0V) and \bar{A} high, causing D2 to conduct and rapidly discharge C 2 . The repeat of this procedure will occur now in the other half of the clock (concerning G1, D1 and C1), thus completing the loop and maintaining repetitive generation of $2 \mu \mathrm{~s}$ pulses. R 1 and VR1 control the capacitor charge rate (clock frequency), and G5 is simply a self starting gate, ensuring the output of G2 to be low immediately aftor switch-on.

Remembering that all inputs of a NaND gate must be high for its output to be low, the selection of line sync and blanking pulses may now be understood. The first six $2 \mu \mathrm{~s}$ time slots are selected by G6 and G7 to represent a line blanking period of $12 \mu \mathrm{~s}$. The first $2 \mu \mathrm{~s}$ time slot represents the front porch, whilst the second and third are selected by G8, G9, G10 and G11 to represent a line sync period of $4 \mu \mathrm{~s}$. This latter pulse is inverted by G 12 to give it the correct positive going direction.

FIELD CONTROL SIGNALS

Concentrating now on the field control signal generation, we move to the waveform shaper. When the high gain stage comprising TR1, R2 and R3
amplifies the Vidicon heater voltage, which is already 6.3 V a.c. or $18 \mathrm{~V} \mathrm{pk} / \mathrm{pk}$, the resultant will be the square shaped waveform with 20 ms cycle time, as shown by H. D3 simply protects TR1 against the high reverse $\mathrm{V}_{\text {be }} \mathrm{C} 3$ and R4 will further act to differentiate this square-shaped signal to present negative edges to Monostable I input every 20 ms . Monostable 1 will then generate the field blanking pulse of 1.2 ms and Monostable 2 the field sync pulse of $250 \mu \mathrm{~s}$-both Monostables being effectively triggered by the negative-going edges J
The operation of both monostables is understood from the description of the clock, which is basically two monostables itself. Again, the values of C4 and

C6 determine the widths of the generated pulses, which are available together with their complements at the outputs of the monostable.
Line and field blanking pulses, F ($12 \mu \mathrm{~s}$) and K respectively, are mixed in G16 and inverted by G17 to give the correct negative going direction.

The mixing of line and field sync pulses is not so straightforward. In the absence of a field sync pulse, line sync pulses are routed through GI3 and G15 to be outputted as positive going signals. However, in the presence of a field sync pulse, the mixed sync output is made high, whilst line sync pulses are routed through GI4 and GI5 to be effectively inverted at the output. In this way, the long field

MASTER LOGIC CIRCUIT

Fig. 1.3
sync pulses are divided into a series of broad pulses and line sync pulses are still conveyed.

VR1 is adjusted for 625-line operation by setting the clock frequency to $250 \mathrm{kHz}(2 \mu \mathrm{~s}$ time slots), or for 405 -line operation by setting the clock frequency to 162 kHz ($3 \cdot 1 \mu \mathrm{~s}$ time slots).

As previously stated, the master logic is the heart of the TV camera system and controls the timing of all control signals. Tremendous flexibility is obtained by the use of a master clock, which, by the adjustment of a single control, enables the alteration of all the required control signals to suit almost any TV standards.

THE VIDICON

A cross sectional view of the Vidicon, given in Fig. 1.5, shows how a scene is imaged onto the photoconductive target by an optical lens. The focused image, which the human eye knows to be a complex light pattern, is then converted into an electrical charge pattern by the photoconductive target.

Fig. 1.4. Master Logic waveforms ; (a) clock ; (b) (e) outputs from four stage divider; (f) line blanking pulse and $4 / 2 \mathrm{~s}$ sync pulse; (g) $6 \mathbf{3 V}$, 50 Hz signal ; (h) output from Waveform Shaper; (i) Monostable 1 trigger pulse; (k) field blanking pulse; (1) mixed blanking pulses; (m) field sync pulses; (n) mixed sync pulses

An electron beam is generated by the Vidicon electron gun (comprising cathode, control grid Gi and limiter anode G2) and focused into a fine spot on the rear surface of the target. Suitable beam deflection, made possible by the scan coils, will then scan the beam in a raster fashion to cover the required area of the focused image. The bean current is adjusted to neutralise the electrical charge pattern during the scanning process and enables yet another conversion; this being the conversion of electrical charge into current. We now have a complex current pattern which resembles the initial light pattern of the focused image, and, although the

Fig. 1.5. The EMI 9677 1in Vidicon
range of target current is small, it is now in a form found most convenient for electronic processing (i.e. amplification).

A potential V_{t} is applied to the target in order to enable the electron beam to reach its rear surface (just as in valve theory we have to apply positive anode potentials to enable current flow from the cathode). This potential roughly determines the operational sensitivity, higher values of $V_{\text {t }}$ giving a more efficient conversion (more target current per level of light intensity). Typical values of V_{t} are +50 V for low-light conditions, and +20 V for bright-light conditions. One point to remember is that operation at high values of V_{t} gives correspondingly higher "black" currents (target current representing black or unlight areas of the image), resulting in a "grey" reproduction of the shade black.

Sensitivity may also be controlled to some extent by the electron beam current. Beam current is simply controlled by the control grid potential $V_{G_{1}}$, higher currents being obtained from less-negative value of $V_{\mathrm{G}_{1}}$. The beam current is adjusted to neutralise or discharge the electrical charge pattern established on the target; a typical value of $V_{G_{1}}$ being +20 V with respect to the cathode. It must be appreciated that operation at high beam currents will correspond to a larger focused spot-and a lower picture resolution.

VIDEO SIGNAL CURRENT

Assuming the Vidicon camera tube to be suitably adjusted (i.e. correct electrode potentials are applied) for the capture of a well illuminated scene, the video signal current from the target will range from approximately 10 nA , representing the black level, and 300 nA , representing the full white level. This range of currents must be suitably amplified to give a working level of $700 \mathrm{mV} \mathrm{pk} / \mathrm{pk}$.

The most convenient way of amplifying this signal would be to convert it to a voltage signal prior to amplification. To do this, various points must be

Transistors	
TR1-TR10	BC109 (10 off)
TR11	BF178
TR12	BC10
TR13	2N4060
TR14	2N5245
TR15-TR16*	BFY51 (2 off)
TR17	BC109
TR18*	BFY51
TR19	BC109
* transistors must include clip-on heatsinks	

Integrated Circuits

IC1	SN7410
IC2	SN7400
IC3-\|C4	SN7473 (2 off)
IC5	SN7400
IC6	SN7420
IC7-IC9	SN7400 (3 off)
Diodes	
D1-D5	OA47 (5 off)
D6	OA202
D7	BZY88 400 mW 5.6V Zener
D8-D11	IN4001 (4 off)
D12	IN4007
D13	IN4005
D14	BZY88 400mW $5 \cdot 6 \mathrm{~V}$ Zener
D15	BZY88 400mW 3.9 V Zener

Potentiometers

VR1	$4.7 \mathrm{k} \Omega$ miniature skeleton
VR2	100Ω miniature skeleton
VR3	470Ω miniature skeleton
VR4	$1 \mathrm{k} \Omega$ miniature skeleton
VR5	$4.7 \mathrm{k} \Omega$ miniature skeleton
VR6-VR7	$50 \mathrm{k} \Omega$ linear (2 off)
VR8	470Ω miniature skeleton
VR9	10002 miniature skeleton
VR10	10051 W wire wound

Transformers

T1 Type 634 Pri-250V, Sec. 17.5 V © 1.6 A (R.S. Components)
T2 Midget mains Pri-245V, Sec. 125-0-125V a $50 \mathrm{~mA} ; 6.3 \mathrm{~V}$ © 1.2 A (R.S. Components)

Inductors

L1, L2 150 and 85 turns respectively of $36 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire on Mullard FX2239 ferrite cores
\(\left.\begin{array}{ll}L3 \& Focus coil

L4-L5 \& Line scan coils

L6-L7 \& Field scan coils\end{array}\right\}\)| EMI, |
| :--- |
| 243, Blyth Road, |
| Hayes, Middlesex |

Vidicon Tube

V1 9677 Vidicon (EM1) (see text) '

Camera Lens

Soligor television lens, $f 1 \cdot 9,25 \mathrm{~mm}$ focal length (Dixons Photographic)

Miscellaneous

Flush-mounting Coax Socket
D.p.s.t. Mains toggle

3 knobs
Assorted 6BA, 4BA and 2BA nuts and bolts
$\frac{1}{4}$ in $\times \frac{1}{4}$ in steel rod
Eight 2BA chrome-head screws
Length of 3 -core Mains lead
Sheet 18 s.w.g. aluminium $18 \mathrm{in} \times 6 \frac{1}{4}$ in
Sheet $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium $11 \frac{3}{4}$ in $\times 12$ 名in
1 in $\times \frac{1}{4}$ in aluminium $3 \frac{1}{2}$ in long
$2 \frac{3}{4}$ in $\times 2 \frac{3}{4}$ in $\times \frac{1}{2}$ in aluminium block
Rubber grommet $\frac{1}{4}$ in $\times \frac{1}{2}$ in
6.3V Pilot lamp (panel mounting)
considered. Let us firstly examine the equivalent input network required to convert the video current to a voltage signal, which will subsequently be presented to the Video Amplifier input. Such a network is shown in Fig 1.6.

The output of the Vidicon may be considered as being a current source (i.e having infinite shunt resistance). Conversion of signal current to voltage is then simply achieved by passing $/$, through R_{in}, the input resistance of the Video Amplifier. Now, by Ohm's law. $V=I_{1} \times R_{\text {in }}$. and the magnitude of the voltage available at the Video Amplifier input will be proportional to the value of $R_{\text {in }}$. Unfortunately, however, there exists an equivalent shunt capacitance, $C_{i n}$, which is made up from the output capacitance of the Vidicon and the input capacitance, of the Video Amplifier. $C_{i n}$ will, in zonjunction with $R_{\mathrm{i}, 1}$. determine the frequency response of the input network by:

$$
f_{\max }=\frac{1}{2 \pi C_{\mathrm{in}} R_{\mathrm{in}}} \mathrm{~Hz}
$$

Therefore, as C_{11} is essentially fixed, $R_{\text {in }}$ must be limited to a value giving the 5 MHz maximum working frequency required for 625 -line operation.

Fig. 1.6. Equivalent input network of the Video Amplifier

VIDEO AMPLIFIER

The Video Amplifier circuit diagram is shown in Fig. I.7. Due to the application target, the first stage potential, \boldsymbol{V}_{1}, to the Vidicon target. the first stage of the Video Amplifier is a.c. coupled via C10. V_{1} is then simply conveyed to its destination by R6
after being decoupled by C9 to prevent any unwanted signals breaking through to the extremely sensitive amplifier input.

As a common emitter stage presents a relatively low impedance at its input, we are presented with two alternatives in design. Either overall negative feedback is applied to the amplifier to increase its input impedance, or an emitter follower front end is used. Overall negative feedback tends to create instability in wideband amplifiers, whilst an emitter follower stage inherently presents a relatively high input impedance. The first stage is therefore chosen to be an emitter follower or impedance converter of unity voltage gain.

The equivalent shunt input capacitance, C_{in} is 6 pF . Now, for 5 MHz bandwidth, commanded by 625 line TV standards, the total shunt input resistance, R_{in}, may be calculated as:

$$
R_{\mathrm{in}}=\frac{1}{2 \pi C_{\mathrm{in} \max }}=5.3 \mathrm{k} \Omega
$$

In practice, $R_{\text {in }}$ is made up from resistors R6, R7 and R8, which are designed to give an equivalent shunt resistance of $5.3 \mathrm{k} \Omega 2$. The input resistance of TR2 is very high and may be neglected in the above calculation.

From knowledge of the maximum signal current, $I_{1(\text { max })}$, the input voltage developed across $R_{\text {in }}$ may be found as:

$$
\begin{aligned}
V_{\text {in }(\text { max })}=I_{(\text {max })} \times R_{\text {in }} & =300 \mathrm{nA} \times 5.3 \mathrm{k} \Omega \\
& =1,590 \mu \mathrm{~V} \mathrm{pk} / \mathrm{pk}
\end{aligned}
$$

A Video Amplifier gain of 440 is therefore required to produce the required 700 mV of video signal at the output. Additional gain will also be made available for increased sensitivity if required.

Most of the signal gain is achieved by the second stage. which is a cascode amplifier, comprising TR3, TR4 and associated components.

Low-noise BClO^{\prime} 's are used in this novel mode to enable high gain. wideband amplification. Stage 2 is directly coupled from stage 1 and achieves a voltage gain of 70 .

The output signal from the cascode stage is taken to the next voltage gain stage via an emitter follower. This emitter follower, TR5 and R16, is directly coupled to the cascode stage and establishes a low

Fig. 1.7. Video Amplifier and Sync Mixer
impedance drive into the capacitive input of the common emitter stage built around TR6. Wideband amplification is ensured by the use of this accepted technique.

Local negative feedback is applied to TR6 to control its stage gain, VR2 giving the required range of amplification of between 6 and 40 . Sufficient gain has now been contributed to the Video Amplifier to give 700 mV of video signal.

Two further functions are to be facilitated in the video amplification-180 degree phase shift to give a positive going video waveform, and impedance conversion to give 75 ohm output impedance. The final stage of TR7 and associated components is a common emitter amplifier with approximately 75 ohms load in both collector and emitter circuits and therefore performs the impedance conversion and acts as a unity-gain signal inverter.
A.C. coupling has been utilised in the Video Amplifier via C10, C15 and C17. Each value of capacitance is designed to pass the lowest frequency component of the video signal-that being the field repetition frequency of 50 Hz .

The supply to each stage is individually decoupled to prevent unwanted breakthrough (feedback) of the various signals within the TV Camera system.

SYNC MIXER

Mixed sync pulses are used to switch TR8, which in turn will switch the d.c. level of the collector of TR7 negatively by a controlled amount. VR3 is adjusted to enable 0.3 V negative sync pulses to be superimposed on the video signal.

CATHODE SWITCH

Blanking is facilitated by the Cathode Switch, whose circuit diagram is shown in Fig. 1.8.

The Vidicon electron beam current may be cut off by either applying a large negative potential to the control grid G1, or conversely, a large positive potential to the cathode. Arguing for and against these two methods, beam cut off control via the cathode seems to be most convenient.

As all Vidicon electrode potentials are measured with respect to the cathode. alteration of the cathode potential therefore controls several mechanisms

within the tube. I he beam current is reduced and a limited number of electrons reach a less positively biased target with the application of +15 V to the cathode.

Mixed blanking pulses are used to switch TR9 and apply the Vidicon cathode with one of two potentials -0 V to make the required beam current available for scanning, and +15 V to blank or switch off the beam during flyback periods.

The video signal is now blanked and sync pulses added accordingly to produce the composite video waveform.

Next month: P.C.B. construction and more camera electronics

Stable and predictable power amplifiers are not easy to design and it is only fair to warn would-be designers of the danger of increasing the bank overdraft!

A miscalculation in a resistor value, a too hasty twiddle of a preset, or a loose nut on a heatsink, can often be enough to trigger off an avalanche of disaster.

A typical sequence of events would commence with a slight rise in the temperature in the output
transistors; this increases the drive current which in turn increases the temperature and so on. Eventually (usually after a few milliseconds) bang go the outputs, the drivers and, if you are particularly unlucky, the loudspeaker cones.

In fact the writer's experience suggests that the fuse is the hardiest component in the chain.

Strictly speaking, the power amplifier should be left in the hands of the professional.

6.1. POWER AND VOLTAGE AMPLIFIERS COMPARED

If one's aims are moderate, in the sense of only a few hundred milliwatts rather than tens of watts, there is no reason for not trying one or two circuits if only to get the feel of the beasts. The best way to start is to list the problems of power amplifiers in comparison with voltage amplifiers.

Voltage amplifiers normally operate with relatively small signal swings well within the available limits of ground and supply rail.

Thus distortion due to non-linearity is not too serious because the small part of the transistor characteristic used is almost a straight line.

Power amplifiers, in order to operate efficiently, must use all the available voltage swing, giving rise to distortion levels which would be unacceptable without circuit sophistication.

The power output transistors require large currents, sometimes many amps. This means considerable heat production which tends to be cumulative. because
(a) Leakage current is no longer negligible.
(b) Base to emitter voltage (V_{BE}) can no longer be taken as 0.6 V because of the relation to temperature (V_{BE} falls by 2 mV for every degree C rise).
(c) h_{FE} is dependent on temperature, rising as temperature increases. Thus the drive increases with temperature.

High power transistors have a much lower $h_{\text {FE }}$ -20 or 30 instead of 200 or 300 .

6.2. BASIC CIRCUIT OUTLINES

Class B push-pull is used almost exclusively for power output stages but, unlike the old valve circuits, modern circuits dispense with transformers.

There are many possible permutations as will be seen in the following selection. No intricate details will be shown, merely the outlines.

PURE COMPLEMENTARY PUSH-PULL

Figs. 6.1 and 6.2 show two complementary pushpull circuits which have the merit of neatness, balance, low impedance output, and high, equal drive impedances.

There is one practical disadvantage-it is difficult to match high power pnp and npn transistors. So-called "matched pairs" are available on the market but are quite expensive if close matching is required.

QUASI-COMPLEMENTARY PUSH-PULL

Because it is easier to match transistors of the same type, particularly npn pairs, the arrangements shown in Figs. 6.3 and 6.4 are very popular.

There are two snags however: one transistor is an emitter follower and the other is grounded emitter. The other snag is the input phasing which means that a pair of anti-phase signals are necessary.

Fig. 6.1. Complementary push-pull circuit using a centre-tapped supply rail and Fig. 6.2. using a single supply rail

Fig. 6.3. Quasi-complementary push-pull circuit with a centre-tapped supply and Fig. 6.4. using a single supply rail

6.3. QUIESCENT CURRENT IN CLASS B

The virtue of pure Class B can be stated in one word-efficiency.
With the volume control turned down (i.e. no drive signal) the power-hungry output stages are also off and draw no current. Thus the power consumed by the output stages is proportional to the input signal.

In Class A the output stages are permanently consuming power without an input signal.

CROSSOVER DISTORTION

Unfortunately we are unable to use pure Class B with transistor pairs because of the rather disagreeable "crossover distortion".
Consider what happens if we apply a signal to a pair of complementary outputs whose bases are tied together (see Fig. 6.5).
The top waveform is the input signal voltage which drives TRI to conduction on the positive

Fig. 6.5. Circuit showing how crossover distortion arises. The circuit (left) shows a complementary output pair with bases driven from the same signal.
The transistors do not conduct until the base/emitter voltage reaches 0.6 V thus causing the distortion as shown right

input cycles and TR2 on the negative. Thus the load receives its current only from one transistor at a time, because the other is cut off.
The bottom waveform shows the current through the respective transistors and the distortion due to "crossover".

From zero volts to +0.6 V there is no current in TR1 and from zero volts to -0.6 V there is no current in TR2. Thus we have discontinuities in the current waveform in the vicinity of the crossover point at zero volts.
To overcome this, the transistors are usually operated with a small forward bias so that, in the absence of an input signal, they are both slightly conducting.

The value of this current is called the "quiescent current" and is, in practice, a rather trial and error affair being a compromise between acceptable crossover distortion and acceptable quiescent dissipation.

6.4. THE DRIVER STAGE

A simple driver stage can be used to serve two purposes: to provide some voltage gain; and to develop the 1.2 volts needed to ensure that both bases are slightly forward biased at zero s'gnal.
Fig. 6.6 shows a simple but quite workable little circuit which is worth studying.

Note carefully the following points:
(a) The d.c. voltage drops are the quiescent values (zero signal).
(b) To avoid a centre tapped supply, the loudspeaker is connected via a d.c. blocking electrolytic capacitor to ground-a well-established practice although alternatively it could be returned to the positive rail, with the capacitor polarity reversed.
(c) The diode is not absolutely necessary, but does help to compensate for V_{BE} changes in the output transistors.
In theory, we could have two diodes and scrap VR1 altogether, because the two together would give us the $1 \cdot 2 \mathrm{~V}$ needed to turn on the bases of TRI and TR2. However, this assumes that the temperature coefficients of both diodes and transistors are identical.
By using one diode and a "twiddler" we can make a fine adjustment in quiescent current.
(d) The bias current for TR3 is bled from the output line via $R 2$ which introduces heavy d.c. negative feedback and keeps the output locked at midpoint $(4.5 \mathrm{~V})$.
There is no signal negative feedback so the gain is not affected.
(e) The "voltage gain" of the circuit is a figure whose calculation can easily be tackled from the wrong lines.
Superficially we may be tricked into thinking that TR3 is an ordinary voltage amplifier stage with a gain equal to $R_{\mathrm{C}} / r_{\mathrm{e}}$ where R_{C} is $\mathrm{R} I$.
There is nothing wrong with the equation but it is erroneous to think that R 1 in the diagram is the collector resistor since it is swamped by the $R_{1 N}$ of the output transistors.
The effective signal load of TR3 is the input resistance of an emitter follower stage which is

$$
R_{\mathrm{IN}}=h_{\mathrm{FE}} R_{\mathrm{L}}
$$

where R_{L} is the loudspeaker impedance.

Fig. 6.6. Complementary output stage with a simple driver circuit using single diode for base/ emitter voltage stabilisation

EXAMPLE

Assume the h_{FE} of the output transistors is 50 , the collector current of TR3 1 mA , and the speaker impedance 8 ohms.

The voltage gain from the base of TR3 to speaker is

$$
\begin{gathered}
A=R_{\mathrm{C}} / r_{\mathrm{e}} \text { where } r_{e}=25 / I_{\mathrm{C}}(\mathrm{~mA})=25 \text { ohms } \\
\text { and } R_{\mathrm{C}}=h_{\mathrm{FE}} \cdot R_{\mathrm{L}}=50 \times 8=400
\end{gathered}
$$

Hence gain $=400 / 25=16$.
(f) The input resistance ($R_{\text {IN }}$) of TR3 is

$$
h_{\mathrm{fe}} \times r_{\mathrm{e}} \text { in parallel with } \mathrm{R} 2 / A
$$

If this seems strange, remember that the method of obtaining the bias is fundamentally "col-lector-to-base feedback" which was discussed in section 4.1.
The gain of the emitter followers being unity means that, although R2 is taken from the output stages, it is effectively taken from the collector of TR3.

6.5. LIMITATIONS OF THE SIMPLE CIRCUIT

The high frequency response of the circuit. described is poor mainly due to the capacity of the collector-base diode of TRI. When TRI is off the capacity is across R1.

To reduce this effect we can bootstrap RI by splitting it in two and connecting the output to the junction via a large blocking capacitor.

This has the effect of making RI higher by a factor equal to the reciprocal of one minus the voltage gain of the output transistor (α).

$$
\mathrm{R} 1^{\prime} \left\lvert\,=\frac{\mathrm{R} 1}{1-\alpha}\right.
$$

This does however introduce some positive feedback.

Another advantage of this bootstrapping technique is that the current through TR3 is virtually constant since the voltage across R1 is kept constant.

Thus the drive to the output transistors is via a constant current source which decreases the nonlinearity of the $V_{B E}$ characteristic of the output stages.

Next month: Concluding article and special constructional project linked to this series

Come and hear aThousand Pound Sound at Lindair...

At Lindair House, 227 Tottenham Court Road, you'll find 3,500 sq.ft. of demonstratior studios with all that's best in Hi-Fi. And now we've added Studio $1000+$ - a demo studic totally devated to the top line in stereo equipment.

With names like IEAC, Revox, JEL, Tannoy, Marantz and ot eers, you can hear systems which cost over $£ 1,000$ and wh ch sound like a million.

Only Lindair give you the sort of service to match this standard of equipment. Come and have a demonstration in the relaxed atmosp eere of Studio $1000+$-and yju'll hear what we mean If Quadrophonic takes your fancy-ou* 4-channel demo studio is just next door to Studio 1000+.
S.udio $1000+$ is just the beginning of a whole zomplex of facilities serving the sounds er-husiast - Stereo, 4 -channel and Home Tape St Jdics All the best - and all at Lindair.

Eme in soon and sound us out.

L ndair House, $2 P$ Tottenham Court Road, London W1.01-580 7383

BYHEDI -

解 We deal only in these types of devices so that we can offer an expert advisory service to your advantage.If you want to go digital then telephone the digital people-BYWOOD at Hemel Hempstead (0442) 62757. Whether you want one or a thousand, or just a chat about digital clocks. we will be pleased to talk to you

CLOCM CHPS			Pin
			Count
MM5311	chip. BCD outputs	59.00	28
MM5314	As MM5311, no BCD outputs	c7.20	24
MM5309	As MM5311 plus reset to zero	TBA	28
MM5316	4 digit alarm chip. Liq. Crys. driv	C15.00	40
MM5375	6 digit alarm. Sperry drive	TBA	24
MK5017	6 digit alarm, sleep and snooze	\$14.00	24
MK50250	6 digit alarm	17.60	28
CT7001	Alarm/date/sleep/snooze/etc.	¢18.50	28
CT7002	As CT7001 but BCD outputs	¢16.50	28
TMS3952	Alarm/stopwatch	120.00	28
CT6002	CMOS, Lia. Crys arive for battery clock	¢22.65	40

DIGITRONIC II

BYWOOD are pleased to announce our first complete kit for a digital clock. The chip used is commercially still on the secret list, but it has been proved to be a success in many applications both in the UK and in the USA. Its functions are a basic six digit clock with $12 / 24$ hour display options (it will switch from 12-24 and back at any time). The timing frequency used is the mains 50 Hz but it is hoped to make a quartz crystal unit avaitable soon. The digits are Sperry types. four are 0.55 in and two are $0 \cdot 33$ in high. Many other features are available inctuding a reset to zero facility so the clock can be used for elapsed time counting. The kit contains overything except a mains plug at only $£ 29 \cdot 65$ or it is available ready built for only £33.65!
This is a really beautifully finished unit-send S.A.E. for details

DISPLAY READOUTS

(70		Price ¢1.70
DL704	Common Cathode DL707	\$1.70
OL747	Common Anode 0.6in LED	E2.
DG 10A	Phosphor-diode 8.5 mm	\&1.10
DG12H	Phosphor-diode $12.5 \mathrm{~mm}(0.5 \mathrm{in})$) 81.20
LC823440	Field effect Liq. Crys.. Pour digits	
5F	Minitron filament, 9mm digit	
30	Minitron type filament, 12 mm digit	
	nitron type filament. 16 m	
		. 00
SP752	Sperry high voltage, 0.5 in , 2 digits	

VAT: All prices exclude VAT P. \& P.: 10p. Data: S.A.E.

Bywood Electronics 181 Ebberns Road Hemel Hempstead HP3 9RDA
 Tel. (0442) 62757

CALCULATOR CHIPS

$\begin{array}{ll}\text { CT5002 } & \text { Four function, } 12 \text { digits } \\ \text { CT5031 } & 8 \text { digit. Constant }\end{array}$
Price 55.00
\$14.55
CT5032 12 dig, cons., mem., average. tc. ع19. 36
$\begin{array}{ll}\text { CT5037 } 8 \text { dig. cons.. mem., internal } \\ & \text { m.p.x. }\end{array}$
SOCKETS-We advise the use of sockets with the above chips
24 or 28 pin £1, 40 pin £1-35.

KITS

We can supply you with complete clock kits. evaluation kits or our new MHI kit system. We have kits. for basic clocks from E16; kits for LED. Sperry. Phosphor-diode and Liquid Crystals; kits for alarm clocks; kits for alarm/date clocks. In fact, whatever type of digital clock you want to build, we can help.

All of our kits are advertised in the latest issues of Practical Wireless and Electronics Today International.

DIGITAL WATCHES

The CT6002 chip is available built into a complete digital watch module complete with everything except case-no soldering to do, the module is actually running when you get it! CT6002/M. £92. 60

Sensational lighting effects at prices you can afford!

faturnac:

Our 3-Channel Sound-Light System.

With controls for each channel and a master sensitivity control. It has a metal case. $11^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ and 1500 W per channel.

All for only £16-80.
Introducing also our Single Channel Version for either bass, middle or treble frequencies.

And that's only $£ 6.95$.
Of course, things get more exciting with our Bass
Triggered Variable Strobe Effect. With this unityou get the basic sound to light effect or an adjustable strobe effect.

But the mostamazing thing is that this unit can combine these effects. This gives you a strobe effect whose flashing rate is controlled by the changes in music intensity!
This effect is truly Sensational and it costs only $£ 25 \cdot 00$.
Want to know more? Send aS.A.E.to Soundlite Systems for full details of the rest of our extensive range of strobe effects, spot banks and sound to light converters.

515

Professional standards at competitive prices.
Terms C.W.O. mallorder only to 17 St Andrew's Crescent, Harrogate, Yorks. HG2 TRT. Postage included.

LOOK! Lowes palices IN THE BOOK!

7400-5	0.20	7437	0.36	7476	0.42	72702	0.45	IN4001	0.06
7406-7	0.41	7438	0.36	7482	0.69	72709	0.31	in4002	0.05
7408-9	0.20	7440	0.20	7483	1.25	12710	0.37	[N 4003	0.07
1410	0.20	7442	0.40	7485	1.65	12723	0. 80	IN4006	0.09
7412	0.24	7445	1.60	7486	0.48	72741	0.30	IN4007	0.12
7413	0.34	7447	1. 30	7489	4.95	72747	1.00	IN4148	0.05
7416	0.44	7450	0.20	7490	$0 \cdot 68$	72748	0.30	OA47	0.07
7417	0.30	7451	0.20	7491	1.10	ZN414	1.25	OA90	0.06
7420	0.20	7453	0.20	7492	0.70	TAA350	$2 \cdot 10$	OA91	0.06
7422	0.23	7454	0.20	7493	$0 \cdot 6$	LM301B	0.75	OA200	0.06
7425	0.36	7460	0.20	7494	0.50	CA3046	0.70	OA202	0.04
3427	0.45	1470	0.34	7495	0.82	CA3036	1.00	IN916	0.06
7428	0.45	7472	0.34	7496	0.99	CA3028	1.20	BB105	0.45
7430	0.20	T473	0.45	74100	$2 \cdot 20$	CA30900	4. 50	1S44	0.05
7432	0.45	7474	0.42	74141	0.80	NE555	0.85	TIL209	0.27
7433	0.45	7475	0.60	74192	$2 \cdot 12$	TAA661B	$1 \cdot 40$	OA81	0.07
EC107	0.10	BCY70	0.13	OC23	0.48	2N930	0.20	2N3702	$0 \cdot 10$
BC108	0.10	BCY71	0.12	OC24	0.47	2N+131	0.22	2N3703	$0 \cdot 10$
BC109	0.10	BCY72	0.12	OC28	0.70	2N1132	0.25	2N3705	0.10
BC177	0.22	B0121	0.71	OC35	0.60	2N1711	0.18	2N3706	0.10
BC178	0.22	BFY50	0.25	OC 170	0.25	2N1893	0.52	2N3707	0.10
BC179	0.24	BFY51	0.21	OC171	0.25	2N2219	0.40	2N3819	0.20
BC182	0.10	BFY52	0.22	TIP30A	0.12	2N2904	0.40	2N3820	0.45
BC183	$0 \cdot 10$	BSX20	0.18	TIP29A	0.52	2N2905	0.23	2N3823	0.21
BC184	0.10	OC44	0.20	TIP41A	$0 \cdot 8$	2N3053	0.16	2N3442	1.45
BC212	0.12	OC45	0.20	TIP42A	0.80	2 N 3054	0.45	3N140	0.90
BC213	0.12	$0 \mathrm{C71}$	0.13	2T $\times 304$	0.24	2N3055	0.48	3N14 1	0.08
BC214	$0 \cdot 12$	OC84	0.25	2TX504	0.35	2N3391	0.29	3N142	0.85

Electrosll TR5 resistors 2\%, 2p; TR6. 3p; TR4. 4p. Wirewound resistora, all values 2.5 WW . 10p; 6W. 10p; 9W. 12p; 12W, 15p. Diecast boxes $4 \mathrm{fin} \times 2 \mathrm{fin} \times 1 \mathrm{in}$. 40p; 4 in $\times 2$ in $\times 2 \mathrm{in}, 50 \mathrm{p} ; 7 \mathrm{in} \times 4 \mathrm{in} \times 2 \mathrm{in}, \mathrm{c1} .25$. Solder 18 s.w.g. $11-30 / \mathrm{lb}$ Dalo pen. 75p. Litesold irona, 10W. ©1-75; 25 W . $\mathrm{Cl} \cdot 75$; spare bits, 6 p . Fibregiass Tantalum beads. all at 13p. I.C. sockets. 8-pin. 18p; 16-pin, 1sp; 14-pin, 15p. BZY88 series zeners. Full range, 400mW. 10p; 20W, epp. Siemens polycarbonate capacitors. full range. ip up to $0.1 / 250 \mathrm{~V}$. Bulgin miniature 3 pin mains sockets. 17p. plugs, 18p. Multard LP1186 F.M. module. E5.05. SBA750A, \&1.50; SL3045. c1. Fullapecification devicea discounta for quantity-Many more items available. Send for lists, etc. Cash with order. Mail order oniy. P. \& P. 12p.

VAT INCLUSIVE! POST FREE OVER E2!

P.E.C. $\begin{aligned} & \text { 49-51 St. Mary's Road, Oatlands } \\ & \text { Village. Weybridge, Surrey }\end{aligned}$

RESULTS FROM JUPITER

The data returned from Pioneer 10 about Jupiter will take a great deal of time to analyse and correlate. However, there is now emerging some early interpretation of the data

When the study of the radio radiations began, with the discovery in 1955 of the intense outbursts of energy from the planet, it was clear that for this effect to occur it required an intense magnetic field to be present. This is because high electron energy. more than 3 MeV . is needed to produce synchroton radiation

The Earth-based results had indicated that the magnetic field was more intense than that of the Earth. as high as $8 / 10$ gauss, and it was suggested that the magnetic field was in fact 11° off centre and at a meridian of about 220°. These theories were based on the radio rotation period of Jupiter.

It was also suggested that because the pole of the magnetic field was so far inclined from the rotation axis. it produced a variability which gave rise to the radiation.

ANALYSIS RESULTS

An analysis of the whole matter by using both the geographical axis and the magnetic axis gave results which indicated that Jupiter's satellite lo had a profound effect on the times of the radio radiations. In tests carried out by the writer and others as part of a NASA project under the leadership of C. H . Barrow this effect was found to be correct for about 60 per cent of the events. The events not lining up with this can now be explained as a result of the Pioncer findings.

The in situ measurements that were made by the spacecraft have shown that there are two areas of magnetic effect. One is the field of 4 gauss, which extends to a distance of 20 Jupiter radii. and the other a non dipole field which extends to 108 Jupiter radii. In the latter field the lines seem to be centred near the equator. This displaced relative to the magnetic equator is about 0.1 Jupiter radius north. The longitudinal position is about 174°.

At the central region of the magnetic field the magnetosphere seems to behave in the same way as that of the Earth. In the region beyond this protons and electrons are concentrated near to the equator. This seems to be emphasised on the dawn side.

It is clear that the satellites Amlthea, Io, Europa and Ganymede are "absorbers" of electrons. Thus, there is an explanation for the variations in the Jupiter radiations.

It also raises the question of Saturn which though of a similar composition chemically and physically shows no observable magnetic field. It could be that the presence of the rings of the planet inhibit the formation of a magnetic field. This should be cleared up by Pioneer $1 /$ which is to pass inside the rings.

Meanwhile Pioneer 10 is leaving the Solar system at the rate of 280 million miles a year. At present it continues to send back data of its environment.

SATELLITES ON CALL

The call for satellite assistance is now beginning to be a part of the peaceful economic use of space technology.

The Australian Government sought the assistance of NASA to photograph Lake Eyre during the recent serious flooding. The photographs are required in order to see what were the reasons for the immense amount of water flowing in formally dry watercourses in Australia's most arid regions. Lake Eyre is at the present time covering an area of 300 square miles and the satellite pictures will enable a plan to be formulated in case of future floodings.

Water is pouring in from as far away as Western Queensland and it is thought that if the level of the lake can be kept high, then the rainfall can be increased in areas as far apart as South Australia. New South Wales and Western Australia.

It is also being suggested that pumping sea water into the area could have a profound effect on the environment. It is a new economical possibility that Australia must consider.

SUNSPOTS AND THUNDERSTORMS

It has long been a joke that almost anything can be predicted by sunspot cycles, from birth incidence to car sales. However. some of the correlations are now receiving special attention and one of these is the event of the thunderstorm.
Using the 11 years sunspot cycle there does appear to be a positive link between the sunspots and thunderstorms. Data produced by M. F. Stringfellow working at the Electricity Council's research centre. who examined records from 1930 to 1973 , based on the number of faults induced in overhead lines. taken together with the number of thunderstorm days has revealed a formula.

It is claimed that the events are related in that the number of lightning flashes is proportional to the square of the mean number of events. This can be applied in a predictive form to provide warning in advance. It is certain this cyclic variation is consistent and had an amplitude of ± 30 per cent of the mean.
The next solar maximum is predicted to have a two-fold increase on 1973

BEADS FROM THE MOON

The minute and almost spherical glass beads, returned from Apollo 12, found in the Lunar regolith to the extent of 1 per cent have been studied by B. Scarlett and R. E. Buxton of Loughborough University of Technology. Results have shown that they are the product of the break up of liquid jets of rock. These delicate jets are produced when a meteorite impacts the Lunar surface.
The beads vary in size and composition from 0.1 micrometres to 1.0 mm . They are coloured red, yellow, silver. grey or just opaque. It is this variance which suggest meteoritic bombardment as the source rather than the well mixed volcanic mixture. The sizes indicate that the temperature formation is not less than $1.450^{\circ} \mathrm{K}$ and probably in excess of $2.000^{\circ} \mathrm{K}$
The two researchers offer certain conclusions about the beads and "balloons". One of these larger spheres was some 260 micrometres in diameter with a wall thickness of 5 micrometres. These are probably blown up because of the volatilisation of some of the lighter constituents like sodium and magnesium

Calculations show that if these particles are formed as Scarlett and Buxton suggest. the maximum size cannot exceed 1 mm . Surface tension would fix a lower limit of size at about 10^{-2} micrometre.

WE are going through a patch at the moment not too dissimilar to that experienced by the early classical composers in Mannheim during the eighteenth century. These men discovered the expressive power of the orchestra and spent their time composing symphony after symphony which used dramatic contrast between wind and string timbres, carefully controlled gradations of dynamics, incredible (for the time) finesse in melodic phrasing and demanded an extremely professional approach to ensemble playing. Previous ages had not regarded shades of attack, decay, dynamics or phrasing as necessary to the overall musical effect, so it was quite natural that these new experiences were shunned by some and extolled by others.

About a hundred and fifty years later the orchestra, much augmented, had reached the peak of its achievement in symphonic works like Mahler's Ninth Symphony, Strauss' 'Also sprach Zarathustra" (from which BBC TV took its theme music for the Apollo space shots), Stravinsky's "Rite of Spring" and Debussy's "La Mer".

Here, in 1974, we are at the beginning of a new phase, but it is so new that we cannot see where it is all leading. We have at our disposal electronic equipment whose potential is beyond imagination, acoustic instruments which are widening their scope, and yet we are still grovelling in the primeval mud waiting for the particles to settle.

The Mannheim composers churned out symphony after symphony, yet out of this vast acreage of manuscript paper and manhours there is little of musical value left. Until Mozart and Haydn
arrived and saw a way through there was little in the way of substance but a heck of a lot of mannerisms and repetitive sound effects. What they did not appreciate was that sound effects do not necessarily constltute a satisfactory piece of music.

We are in that same position. The Synthesiser can produce an incredible range of effects, but let us never forget that effects, noises, sounds-call them what you will -are meaningless abstractions in themselves; until they are laid before our ears with some kind of structure-albeit * apparently random-they might as well not exist at all.

Pitch systems

Until comparatively recently artmusic (as opposed to popular or folk music) was indulged in only by those who had some standing in societv or who were educated cufficiently to be able to read and write. In early Christian Europe the priests acquired literacy in order to propagate the faith and their written music set the trend for future aenerations. In order to remember melodies set to specific liturgical texts a new script had to be devised, and it is from this early notation that we know what sort of bitch system thev employed. All the chants were based on a series of scales (of Greek origin) containing seven notes to the octave.

These 'modes' took as their keynote (i.e. the note which was a point of focus or of rest) the first pitch in the ascending scale. If one plays the white notes on a modern keyboard starting from D and ending on the D an octave above the Dorian mode will be heard, D being its key-note. It so happens that seven modes were employed, equivalent to playing an ascending sequence of seven notes from any of the seven white notes of a keyboard.

By the sixteenth century some of these modes had proved more popular than others and certain coincidental chords had gained wide acceptance. A hundred or so years later the number of modes had dropped to two and become the major and minor scales, with certain chords from within them predominating. From this point on the whole focus of music has been on the two modes; any elaboration, including excursions into so-called 'chromatic' notes (i.e. discrete pitches not contained in the modes themselves), was largely decorative.

Rhythm changes

Rhythm has undergone similar changes. In the Middle Ages polyrhythm was not unknown; there
are numerous examples of pieces in three melodic lines performed simultaneously which differ from each other in rhythmic phrasing, metre and accentuation as well as language! But the introduction of the bar-line killed that. Originally brought in to aid the performer's eye across the page by grouping rhythmic pitches together, the barline became a rigid constraint; underlying pulses were largely grouped into continuous repetitions of 2, 3, 4 or 6 beats at a time with strong accentuation at the beginning of each bar.

In the less clearly-defined area of timbre ideas have changed too. In most early music vocal or instrumental timbre was unimportant. Even as late as the Baroque period (roughly 1650 to 1750) the choice of musical instruments for a qiven piece was fairly arbitrary, given that the violin family held sway anyway. and instrumental effect, beyond a few acceptable techniques, was negligible. The nineteenth century saw the growth of the orchestra into a mammoth acoustic synthesiser, yet, because of the rhythmic and tonal restrictions imposed on the notes themselves, orchestration tended to represent the icing on the cake.

Schoenberg reached breaking point with the old hierarchical structure of pitch relationships around 1910 when he realised that decorative chromaticism was clogaing up the works; he eventually structured chromaticism. Stravinsky and Bartok rebelled against the riaidity of the bar-line at about the same time. In the 1920 s Varèse unset the whole works by putting pitch, timbre, rhythm and structure on an equal and totally new footing.

Towards emancipation

And now, in the (emancipated?) second half of the twentieth centurv, electronic technology, though not geared specifically to music, has allowed us to widen our horizons beyond the 'natural'. The aural universe is now apparently boundless and open to evervone, and with the lead given us by Schoenberg and others our ears should be cleansed and our endeavours positively bursting with euphoric enthusiasm. We can now accept or reject the old order of pitch relationships, even 'play between the cracks' of the twelvenote keyboard; we can move into rhythmic patterns unperformable by a human being (though conceived bv one); we can choose our dynamics from the inaudible to the painful; we can order timbre to taste; we can utilise the space around the listener; we can be as strict or as free as our imagination permits; the rules are the ones we make ourselves.

Before you build a Heathkit send away for a free bookful of encouragement.

The new Heathkit catalogue.
In it you'll find the whole range of Heathkit electronic kits. The world's largest range, in fact.

Every one of which you can build yourself. Easily. And quickly.

And, if you're not convinced, we're sure a quick glance through our catalogue will soon encourage you to try.

You'll probably surprise yourself.
Because, even if you've never used a soldering iron in your life, you can build a Heathkit.

The easy to understand assembly manual and Kit Builder's Guide you'll get, see to that.

Start with something comparatively easy perhaps. Like our very popular digital alarm clock-the one on the front cover of the catalogue. It should only take you about threc enjoyable evenings.

After which you may like to try your hand at the AR-1214 ste reo receiver. Beautifully finished and
 power a channel, it's ideally suited to form the basis of a complete stereo system.
Or, if you want something to drag you away from watching television all night, we have just the thing: a television.

The GR-9900 to be precise. A $12^{\prime \prime}$ solid-state black and white television designed for mains or 12 V battery operation.

So you can use it in the boat or caravan as well as at home.

Yet it's so straightforward to build that even a first time kit builder will probably be switching on after only a few short evenings of absorbing work.

Send us the coupon now and we'll send you your free catalogue. Or, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is in Tottenham Court Road (where else?) at number 233.

The Gloucester showroom is next to our factory in Bristol Road.

At either one you can be sure you'll get a lot of encouragement.

Heath (Gloucester) Limited, Dept PE-974, Bristol Road, Gloucester, GL2 6EE.

Telephone: Gloucester (0452) 29451.

The newHeathkit catalogue.Out now.FREE.

To: Heath (Gloucester) Limited, Dept PE-974, Gloucester, GL2 6EE. Please send me my free Heathkit catalogue.
Name Address

Remember easy terms are available with the Heathkit Monthly Budget Plan

q

$$
\begin{aligned}
& \text { GIRO NO. } 3317056 \\
& \text { C.W.O. only. P. \& P. I Op on orders below } £ 5 \\
& \text { Discount: E10-10\%, } £ 20-15 \% \text { (except net items) } \\
& \text { Export Order enquiries welcome (VAT free) } \\
& \text { Offlcial Orders accepted from } \\
& \text { Educational \& Government Departments }
\end{aligned}
$$ ALL PRICES INCLUDE VAT

SPECIAL RESISTOR KITS (Prices include Post and Packing)

IOEI2 1 W KIT: 10 of each EI2 value, 22 ohms-IM, a total of 570 (CARBON FILM 5%). $£ 3.65$ ne IOEI2 iW KIT: 10 of each EI2 value. 22 ohms-IM, a total of 570 (CARBON FILM 5%). E3.85 ne $25 E 12$ WW KIT: 25 of each EI2 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5%). E8. 35 ne
 PLEASE NOTE: DUE TO CURRENT WORLD SHORTAGES THESE KITS MAY TEMPORARILY CONTAIN BOTH WATTAGE AND VALUE SUBSTITUTIONS

MULLARD POLYESTER CAPACITORS C280 SERIES

250 VP . C. Mounting o $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 31 \mathrm{p} .0 .068 \mu \mathrm{~F}$,
 15p.
MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 21 \mathrm{p} .0 .0047 \mu \mathrm{~F}, 3 \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \ddagger \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \frac{\mathrm{tp}}{} .0 .15 \mu \mathrm{~F}, 6 \frac{1}{} \mathrm{p} .0 .22 \mu \mathrm{~F}$

0.22μ F, 5 to $0.33 \mu \mathrm{~F}, 61 \mathrm{p}$ MINIATURE CERAMIC PLATE CAPACITORS
$50 \mathrm{~V}:$ (PF) $22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$ $560,680,820,1 K$, IK5, $2 K^{\prime} 2,3 K 3,4 K 7,6 K B_{2}(\mu F) 0.01,0.015,0.02,0.033,0.047$. 2ipeach 0.1, 30V. 4 tp.
POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$
POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$. $150,680,1000,1500,2200,3300$,
(P) $10,15,22,33,47,68,100,150,220,330,470,680,10,000,4 \frac{1}{3}$ p.

RESISTORS

F-High Stab				MF-High	-	1000	
W.	Type	Range	1.99	100.499	500.999	$1000+$	Size mm
$\frac{1}{6}$	CF	22-1M	1	0.75	0.60	0.55	2.4×7.5
\pm	CF	22-2M2	,	0.75	0.60	0.55	3.9×10.5
$\frac{1}{2}$	CF	22-1 M	1	0.75	0.60	0.55	$5 \cdot 5 \times 16$
$\frac{1}{4}$	MF	10-2M7	2	1.54	1.32	1.1	3×7
$\frac{1}{2}$	MF	10-2M2	2	1.43	1.21	0.99	4.2×10.8
1.	MF	10.10M	3	1.98	1.81	1.65	6.6×18
2	MF	$10-10 \mathrm{M}$	4.5	3.52	3.08	2.75	8×17.5
For value mixing prices, please refer to our catalogue (price in pence each)							

VALUES AVAILABLE-EI2 Series only. Nec prices above 100
PRESET SKELETON POTENTIOMETERS Wavechange Switchez
 KU, $2 \mathrm{K2}, 4 \mathrm{KF}$, 10 K , etc. up to IM Ω

B. H. COMPONENT FACTORS LTD.
(P.E.) 61 CHEDDINGTON ROAD PITSTONE

NR. LEIGHTON BUZZARD, BEDS. LU7 9AG
Tel.: Cheddington 668446 (Std. Code 0296) CATALOGUE No. 3 20p.

Miniature Mullard Electronics
1-0 $1 \mathrm{~F} 63 \mathrm{~V} \quad 6 \frac{1}{1} \mathrm{p} \quad 68 \mu \mathrm{~F} \quad 16 \mathrm{~V} 6 \frac{1}{2} \mathrm{p}$ $\begin{array}{llll}-0 \mu \mathrm{~F} 63 \mathrm{~V} & 61 \mathrm{p} & 68 \mu \mathrm{~F} & 16 \mathrm{~V} 6 \frac{1}{2} \mathrm{p} \\ .5 \mu \mathrm{~F} & 63 \mathrm{~V} & 61 \mathrm{p} & 68 \mu \mathrm{~F}\end{array}$ $1.5 \mu \mathrm{~F} 63 \mathrm{~V} 61 \mathrm{p}$
$2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V} 6 \frac{1}{p}$ $1.3 \mu \mathrm{~F} 63 \mathrm{~V} 61 \mathrm{p}$
$4.0 \mu \mathrm{~F} 40 \mathrm{~V} 61 \mathrm{p}$ $4.0 \mu \mathrm{~F} 40 \mathrm{~V} 6 \mathrm{p}$ C- $0 \mu \mathrm{~F} 63 \mathrm{~V} 6 \mathrm{p}$ $8.0 \mu \mathrm{~F} 40 \mathrm{~V} 6 \mathrm{p}$

6 p $10 \mu \mathrm{~F} 25 \mathrm{~V} 6 \mathrm{p}$ $\begin{array}{lll}10 \mu \mathrm{~F} & 63 \mathrm{~V} & 6 \nmid \mathrm{p} \\ 15 \mu \mathrm{~F} & 2\end{array}$ $15 \mu \mathrm{~F} 16 \mathrm{~V} 6 \mathrm{P}$ $15 \mu \mathrm{~F} 63 \mathrm{~V} 61 \mathrm{P}$ $16 \mu \mathrm{~F} 40 \mathrm{~V} 6 \frac{1 p}{p}$ $22 \mu \mathrm{~F} 25 \mathrm{~V} 61 \mathrm{p}$ | $22 \mu \mathrm{~F}$ |
| :--- |
| 22 F |
| 32 V |
| 6 p |
| 1 P | $32 \mu \mathrm{~F}$ 10V $6 \frac{5 \mathrm{p}}{3}$ $33 \mu \mathrm{~F} 16 \mathrm{~V}$ 63p $33 \mu \mathrm{~F} 40 \mathrm{~V}$ 6ip $32 \mu \mathrm{~F} 63 \mathrm{~V} 6 \frac{1 \mathrm{p}}{}$ $47 \mu \mathrm{~F}$ lov 61 p $47 \mu \mathrm{~F} 25 \mathrm{~V} 61 \mathrm{p}$ $47 \mu F 63 v 64 p$

POTENTIOMETERS

Carbon Track $5 K \Omega$ to $2 M \Omega$, log or lin, Single, $16 \frac{1}{3}$. Dual Gang 46 p . Log Single with
Switch 26 p . \quad Slider'Pots, $10 \mathrm{~K}, 100 \mathrm{~K}, 500 \mathrm{~K} .30 \mathrm{~mm}, 34 \mathrm{p}, 45 \mathrm{~mm}, 47 \mathrm{p} .60 \mathrm{~mm}, 55 \mathrm{p}$

MULTIMETER Model C-708I GN Range Doubler 50,000 ohm/ volt High Sensitivity Meter ! 1440 .

TAPE

RECORDER LEVEL

METER
$500 \mu \mathrm{~A}, 70 \mathrm{p}$

CARDIOID DYNAMIC MICROPHONE

Model UD-I30. Fre. quency response 50 $15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50K and 600 ohms, £6.55.

4tin \times 3tin METER $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, \mathbf{\$ 3} \cdot 65$.

MULTI.
METER Model D62 $20,000 \mathrm{ohm} /$ vole, $£ 7.00$.

3 WATT STEREO AMPLIFIER £4.30

All above prices include 10% V.A.T. Please add 10 p for P. \& P. on orders under 25. LARGE S.A.E. for List No. 10. Special prices for quantity quoted on request.

> M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

Colbert Pana-Vise WORK The required work position is POSITIONERS are specially firmly secured with a patented designed to quickly and easily ONE KNOB CONTROL, a achieve the most CONVENIENT, unique feature of COLBERT COMFORTABLE and TIMEPOSITIONERS
SAVING work position
Avallable with vacuum clamp or
screw-on base. They can be avilles of special holders is crew-on base. They can available for various types of AOTATED TIPPED. TILTED, work
ANGLED, ELEVATED
LOWERED
Full details available on request

Distributors

SPECIAL PRODUCTS DISTRIBUTORS LTD.

Learning by Experience

By now many readers are probably thinking that my presentation of the subject shows rather much bias, considering that I have said more than once that I am not easily convinced. If this is so, I can only repeat that I constantly seek proof that a phenomenon is not explainable by normal means, but here it must be clearly understood what we mean by normal.

My own belief is that ESP covers a number of presently little-known phenomena, as well as completely unknown ones. But let me give a simple example. Most of us can drive a car or motor-cycle, or at least a bike. Whatever you can drive or ride, cast your mind back to the early day of mastering your vehicle. Remember how you used to panic and force the gear into reverse at about $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., or steer the handlebars to the left when you were falling to the right.

But whatever the mistake, you knew better at the time, but your conscious mind was panicked into doing either the wrong thing, or the right thing too late. But how many times do you find yourself doing silly things like that now? Not very often, if at all. This is mainly because you have conditioned yourself to take the proper course allfomatically. But how?

Well, we cannot be certain exactly, but we do know that practice makes perfect, and that we do not have to think out reasons for doing some things once experience has taught us they are the right things to do at particular times.

The examples above are concerned with facts that conscious learning has precipitated into our sub-conscious mind, and are treated as facts which are known to be true, so our conscious mind can conveniently forget about the experience that taught them to us.

Subconscious Learning

But it is not only conscious learning that can take place. Experiments using lower forms of animal life, where conscious thinking is absent or near-absent, show that experience is learned at a different level, but certainly learning takes place. When assessing results of experiments. concerning ESP we must always look for this kind of learning. Not that it will preclude the existence of ESP altogether but simply that it enables us to categorise what is responsible. At present, II would consider the subconscious learning process as a legitimate ESP phenomenon, because it cannot be placed in the group of experiences using the five senses.
Subconscious learning is a very useful asset, and it is a good idea
to try to cultivate it. I first discovered it after trying to find out what it was that certain successful people had in common. To me it appeared that people I knew who seemed to "get on" did so without flustering and without going about everything deliberately. They seemed to have a curious quality of being able to stay in top gear in everything and very rarely had to change down. Was it, I wondered, that their success made them carefree, or could it be that they owed their success to the state of mind of keeping their cool?

Many years taught me a lot about this. 1 tried to take things more lightly whenever I could, and if I met obstacles which seemed unsurmountable, I just passed them over and left them for another time, rather like you are told to do in an examination when you don't understand a question. Come back to it later. By this means, you would expect to get along all right on all the easy stuff. but later on you would expect to be faced with a mountain of insoluble problems.

Limitations of Logic

Logically, this would be true. But statistically, the experience is quite different. In the intervening time, each problem seems to have turned itself around, to show a quite different side, which then looks so simple that you wonder why you did not turn it round in the first place. But you couldn't. because your conscious mind is logical, and logic is certainly not the solution to all problems.

Of course, the problem itself had not altered, but ever since the time that you looked at it initially your subconscious has been working. unbeknown to your conscious mind, on the problem, and has presented the facts, probably quite randomly, and arranged them in a way that logic would not have led you to on. its own. Hence, you suddenly see a chink of light and this could be the very thing which leads to the solution you require.
must stress that some of the above is based on suppositions, as I doubt if any true analysis has been carried out (or even could be) on the actual workings involved.
If you are doubtful about the validity of what I have written. why not try out a few exercises for yourself. Select a few jobs which are not vitally important for starters, of course, or even invent an experiment or two. For instance, try your friends at judging quantities of small identical items, such as beads, beans or dried peas. You will be amazed how accurate some become at selecting say, 30,50 or 100. Now, if in your first attempts someone arrives at EXACTLY the right number, then you may (or may not) have reason to question whether another form of ESP has crept in, as experience, conscious or subconscious, cannot be seen to be involved.

Decision Makers

You may well wonder why I have dwelled upon the subject this month. in the form I have chosen. But I assure you, it is very relevant to what I wish to present now and later. Firstly, it has now been established that many people in top managerial positions make decisions which they cannot at the time justify by any particular logical or statistical data. Naturally, it is hard to get an admission out of such people, as admissions to this sort of thing would appear most unscientific. But such decisions later prove to be right. against all evidence of facts available at the time.

A detailed analysis was made of results of some special experiments and is covered in detail in Vol. 1 No. 7 of the Journal of Paraphysics, in an article by Prof. John Mihalosky, Newark College of Engineering.

This article is of great interest, and I am going to quote here a few extracts from its text. A number of top decision-makers were asked how they came up with the particular decisions they had to make, many upon which millions of pounds profit or loss might hinge, and the answers were: "I don't think businessmen know how they make decisions. I know I don't" and "You don't know how you do it; you just do it" and "There are no rules"; and "It is like asking a baseball player to define the swing that has always come natural to him" or, as one put it, "Whenever I think. I make a mistake". One even said, "I have found that some of the most horrible mistakes we have made came after I ignored my intuition under the pressure of what looked at the time like unshakeable evidence".

Well, what do you think?

PROTECTED POWER TRANSISTOR WITH A GAIN OF A MILLION

THE NEW LM395 series of devices available from National Semiconductor look like a normal TO3 power transistor, but are actually integrated circuits which behave like fast npn power transistors with a current gain of the order of a million. They contain some fifty internal components, including 21 transistors.

The protective circuits incorporated in these devices are one of their most important features. If the temperature of the chip exceeds $165^{\circ} \mathrm{C}$, the power output stage is shut down. This enables a much smaller heatsink to be used with safety than would otherwise be possible. In addition, a current limiting circuit prevents damage to the device by excessive current.

Any number of the devices can be connected in parallel to increase the current capacity, since no device will pass more than the limiting value of the current.

THE LM395

The LM395 is the most economical device in the series, the price being about four times that of the well-known 2N3055 power transistor. The LM195 and LM295 are similar to the LM395, but can operate over a wider temperature range and have the higher maximum operating voltage of 42 V .
The LM395 may be destroyed if the maximum permissible voltage rating (36V) is exceeded, but it is almost impossible to destroy it in any other way.

Even if this device is destroyed by the application of an excessive voltage, it will become open circuited
and will protect other devices in the circuit. (A normal power transistor becomes short circuited if an excessive voltage is applied to it.)

CONNECTIONS

The connections to the LM395 series of devices are shown in Fig. 1. It should be noted that the case of the device is connected to the emitter electrode. It is expected that the same type of device will be available in the smaller TO5 package in due course.

The typical base current is quoted as $3 \mu \mathrm{~A}$. If a current appreciably greater than this is fed into the base, the collector voltage will fall to its saturation value of about 1.8 V for collector currents of up to 1 A .

It was found that the device conducted when the base was open circuited, but became non-conducting when the base was connected to the emitter.

The switching time is typically 500 ns .

TYPICAL APPLICATIONS

1. Simple current limiter

The circuit of Fig. 2 forms a very simple current limiter. The internal circuit of the device limits the collector to emitter current to about 2 A (minimum 1 A at 15 V). When no heatsink was used with an LM395 in this circuit with a 6V supply, the current fell to about 0.5A after a short time as the device became hot.

If the base connection is switched from the collector to the emitter of the device, the collector current will fall to the quiescent value of a few milliamps.

Fig. 1. Connections of the LM395 series of devices (lookIng at underside)

Fig. 2. A simple current limiter circuit using the LM395

Fig. 3. A simple time delay circuit

Fig. 4. A very high impedance emitter follower circuit

The base current which must be switched is very small and one could, for example, use the output from a TTL circuit to control a current of at least 1A in the emitter-collector circuit.

2. Time Delay

A very simple time delay circuit is shown in Fig. 3. When S1 is opened, C1 discharges through R1. The LM395 remains fully conducting until the voltage between the base and emitter falls below 1 V . When the values of R1 and C1 shown are used, the current in the load begins to fall about ten seconds after S1 is opened.

The load shown in Fig. 3 is a lamp, but other types of load may be used. The maximum current is about 2A and this will not be exceeded even if the load is accidentally shorted.

3. Emitter Follower

An LM395 emitter follower circuit with a very high input impedance is shown in Fig. 4. The output voltage is fed back to the junction of R1 and R2 so that the voltage across R 1 remains almost constant.

This feedback arrangement ensures that the input impedance is very high. The resistor R3 is required to prevent possible oscillation and should be used in all LM395 emitter follower circuits.

The circuit of Fig. 4 can be used to control a current of over 1A in the load using a control signal of high impedance.

4. 1A Regulator

The circuit of a voltage regulated supply which can deliver up to 1 A is shown in Fig. 5. The output can be set anywhere in the range of 4.5 V to 30 V by adjusting VR1. The output current is automatically limited by the circuits inside the LM395.

The LM305 device is a voltage regulator which accepts an unregulated input at pins 2 and 3 and provides a regulated output from pin 8. The latter controls the LM395 which is connected as an emitter follower.

The voltage controlling signal is taken from the tapping on the load in the emitter circuit.

5. Power pnp transistor

If one requires a $p n p$ circuit which is equivalent to the LM395, one may use the arrangement shown in Fig. 6. When a current is taken from the base lead through R1, the transistor TR1 conducts and supplies base current to the LM395.

This circuit has the same thermal overload protection and current protection as the LM395 itself. It may be used in the same way as an LM395 with all polarities reversed.

The LM395 can also be used in operational amplifier circuits which must provide a high output power, in high power oscillators at frequencies up to 1 MHz , in switches with optical isolation, etc.

Further details on the LM395 series of devices are available from National Semiconductor, The Precinct, Broxbourne, Hertfordshire.

Fig. 5. A one amp woltage reguiator with current limilting

Fig. 6. A pnp circuit for a power transistor with thermal overload and current limiting

THis article describes a bench power supply using the minimum of components without sacrificing performance. Normally power units with similar specifications cost anything up to $£ 30$; this unit should cost much less than that.

One of the items that makes power supplies costly is the meter which so many people rely on for accuracy when setting up the output voltage. This device however is inaccurate or, to be more correct, will only typically be 2 per cent accurate or worse. which is the tolerance on most meters.

The power unit described here uses no meter and is as accurate as the tolerance on a chain of switched fixed resistors with which the voltage can still be read directly. As can be seen from the illustrations the output voltage is set up by the use of thumb wheel switches and on the particular unit shown the output voltage is in fact controllable from zero volts up to 19 V in 1 V steps.

BASIC CIRCUIT

The basic circuit is shown in Fig. I from which it can be seen that the mains supply transformer is provided with two secondary windings. One, identified A, is the power supply source proper, whilst the second is a low current winding which powers the regulator chip ICI. This floating mode of powering for the chip allows the sweep of voltage fed to the error amplifier in the regulator to be increased beyond the limits of the voltage of the main power supply.

In this way it is possible to control output voltage from 0 volts to full voltage from winding A.

In addition to allowing full sweep of the output voltage, the use of this floating independent supply for the chip also assists in regulation. Clearly the regulator supply will not vary in the same way that the main supply will as the load is varied.

The circuit is simple and effective in regulation and has the added advantage of being flexible on the current front. By selection of the series regulating transistor the unit can be preset to supply up to $250 \mathrm{~mA}, 1 \mathrm{~A}$ or 2 A whilst using the same control board. The only other basic alteration to increase current output is of course the provision of a suitably rated transformer.

SPECIFICATION

Supply
 Output Voltage

Output Current
Output Regulation
Line Regulation

Ripple

 Output Resistance Temperature Coeff.$230 \mathrm{~V} \pm 20 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Up to 0 to 19 V in 1 V steps or as required (see text) $250 \mathrm{~mA}, 1 \mathrm{~A}$ or 2 A 0.08 per cent For 10 per cent line variation is 0.05 per cent
3 mV
$10 \mathrm{~m} \Omega$
0.02 per cent

The voltage regulator used in the circuit is the 723, generally available from several manufacturers. This chip contains an accurate reference source, an error amplifier and a controlled output with current limit facilities.

Operation of the output is effected as a result of variations in the measured voltage, in this case the output of the main power supply, being fed to the error amplifier which then controls the output to maintain the main voltage at a constant level.

Current limit is achieved by placing a known low value resistor, in the present case R 1 , in the regulated supply line and making use of the voltage developed across it (which is proportional to current through it) to operate a limit on the current allowed through the main supply. Frequency compensation is provided on the chip through a feedback link to pin 13 via capacitor C4.

OPERATION

The regulator supply, winding B, is rectified by bridge rectifier D2 and smoothed by C2 before passing to pins 7 and 12 of the i.c.

Similarly, the output of winding A is rectified by diode bridge D1, smoothed by capacitor C1 and then subjected to regulation as a result of the output current and voltage requirements. Control is effected mainly by the series transistor TR1 in the case of 250 mA output or TR2/TR3 in the case of 1 or 2 A outputs. Connections for the three forms of circuit are shown in Fig. 1.

Resistors R2 and R3 are used either in parallel or associated with TR2 and TR3 which are run in parallel. Thus they present a $1 \cdot 1 \Omega$ series resistance

The main sensing and control signal is obtained from the series chain R4, VR2 and R6, being tapped from this chain and fed via R5 to pin 4 of the regulator i.c. Resistor R4 determines the output voltage and can be made up in a number of ways.

In the prototype R4 is formed of a series of discrete resistors selected to give unit and decade switching of the output voltage from 0 V to a maximum dependent on the output of winding A. In the prototype this is 19 V . Selection of the resistors is by means of two thumbwheel switches S3 and S4 connected between points P3 and P4 of the circuit although of course rotary switches or, for that matter a 10 -turn potentiometer, could be used if desired.

In order to allow the controlled voltage to be swung down to zero volts the non-inverting input of the error amplifier in the regulator chip is connected to the negative output rail whilst the inverting input is connected to the sensed voltage. In this way the
negative supply to the i.c. from winding B is negative with respect to the negative of the main output by the same value as the reference voltage.
Any variations in the main output are fed back into the regulator and serve to control the output in the opposite sense, thus giving stabilisation. The chain including VR2, R6 and R4 serves to set the point about which stabilisation occurs.

Preset potentiometer VR2 serves to ensure that the current through the chain is 10 mA , a value at which the values of the step resistors selected by S3 and S4 can thus become $1 \mathrm{k}!2$ and 10052 respectively for steps of 10 V and 1 V respectively. In this way the output voltage control is as accurate as the resistors selected so that 1 per cent resistors give a control function to 1 per cent and 0.1 per cent to the same $0 \cdot 1$ per cent level.

EARTHING

It will be seen that neither side of the output is earthed to the chassis or to an output earth point. This allows the unit to be used in any configuration of other units; |to supply, for example, ithe positive or the negative half of a double supply or perhaps even be used in series with another supply to uprate the output voltage.

An earth terminal connected to the unit case is mounted on the front panel and can be connected externally as required to either rail.

Components . . .

Resistors

R1	$1 \Omega 1 \mathrm{~W}$, wire-wound (n.i.) for 1 A version
R2	$2.2 \Omega 2 \mathrm{~W}$
R3	$2.2 \Omega 2 \mathrm{~W}$
R4a	$1 \mathrm{k} \Omega$ or as required, see text; 1% or better
R4b to j $9 \times 100 \Omega$ or as required, see text, 1% or	
R5	better
R6	$2.2 \mathrm{k} \Omega 2 \%$
R6	$390 \Omega 2 \%$

Potentiometers
VR1 100Ω pre-set
VR2 $1 \mathrm{k} \Omega$ pre-set
Semiconductors
D1 10DB1A bridge rect.
D2 10DB1A bridge rect.
TR1 BD220
TR2 2N3055
TR3 2N3055
IC1 723 d.i.l. stabiliser i.c.

Capacitors
C1 $2,200 \mu \mathrm{~F}, 25 \mathrm{~V}$
C2 $470 \mu \mathrm{~F}, 50 \mathrm{~V}$
C3 $0.047 \mu \mathrm{~F}$
C4 $0.047 \mu \mathrm{~F}$
C5 $470 \mu \mathrm{~F}, 25 \mathrm{~V}$

Switches

S1 D.P.D.T. mains switch
S2 D.P.D.T. miniature 2A d.c. toggle
S3 Digital Thumbwheel (Birch Stolec Ltd.)
S4 Digital Thumbwheel (Birch Stolec Ltd.)

Transformer

T1 240V, 50 Hz I/P, 18V r.m.s. @ up to 2A and 22 V at 250 mA O/Ps. Type 1069, $£ 3.85$, Zeta Windings, 26 All Saints Rd., London, W.11; Toroidal form is Type T1182 from Siga Electronics Ltd., Sandy, Beds.

Miscellaneous

Case, terminals, p.c.b., 1 A|fuse (FS1) and holder

Fig. 3. Layout of components on the circuit board of Fig. 2 identifying the flying leads to other cicuit devices

CONSTRUCTION

As can be seen from the illustrations, construction is simple and in fact is quite flexible since some of the options used in the prototype can be altered to suit individual requirements.

For example, whilst the printed circuit board and layout shown in Fig. 2 and Fig. 3 includes only the main components of the circuit, with the transformer and switched resistors mounted elsewhere, some constructors may wish to have a much larger board and mount all or most of the components thereon.

As has been noted, switch S3/S4 could be replaced by a rotary unit or even by a potentiometer if required or even by a fixed value resistor if only one output voltage is required. It should be remembered that any deviation from the electrical arrangement suggested might degrade the performance by introducing errors so alterations in this part of the circuit should be viewed with some care.

A single-throw mains switch with self-contained neon indicator was used in the prototype but of course any suitable arrangement can be used here as in the switching of the d.c. rail by switch S 2 . This latter is included in the circuit so as to avoid build-up and decay time problems which occur when switching the mains supply. The latter being switched ON most of the time and supply switching being effected in the d.c. rail.

There is no particular problem with the remainder of the assembly except perhaps with the power transistors used at TR2 and TR3 where these are needed. In the prototype the output was set to 1 A so that only TR2 was required. The (or each) device is mounted on the back panel of the unit using the mica insulating washer supplied with the transistor so as to avoid shorting the transistor to earth.

MAINS TRANSFORMER

A toroidal transformer was used in the prototype as one was to hand and in any case is smaller than its more normal counterpart, thus allowing a smaller case to be used. Using a toroidal transformer the radiated magnetic field is also smaller than with a conventional device, but either may be used if required.

The square holes in the front panel for the thumbwheel switches were cut by first drilling and then filing. If some other form of switching is used then obviously this step is avoided.

Finishing touches have been added using Letraset over the top of a coat of paint followed by fixing varnish to give a professional appearance.

TESTING

After assembly the first thing to check is the isolation of the power transistor/s case/s. A simple resistance check here and at the mains input lines to ensure that nothing is shorted to chassis or elsewhere is always valuable at this stage.

Switching on the supply should now illuminate the mains neon indicator and of course produce voltages in the circuit. Check that the voltage across C 1 is not less than 22 V . That across C 2 should be not less than 28 V and not more than 40 V .

The output level is set quite simply by placing a voltmeter across the output, setting the switches to give a 1 V output and then adjusting VR2 until the output is indeed 1 V .

CURRENT LIMITING

It is quite simple to set the current limit to the required value. Take the case of a 1 A unit. Set the output switches to the 10 V position and connect a 10S 2 load so that a 1 A current flows. Monitoring the output voltage, adjust an added current limiting potentiometer VR1 between points P1 and P2 (shown dotted in Fig. 1) till the output voltage just starts to fall. Turn the potentiometer back a little so that the supply is operating in the regulated portion of its curve and the output is now set to limit at just over 1A. The potentiometer may now be replaced by fixed resistors if required. If VRI is not used at all and the load current determined by R1 alone then points W and Pl on the circuit should be shorted together.

A simple way of testing this is to leave the meter connected, remove the load and then to switch on with the meter switched to a range greater than 2 A . In this case the meter forms its own load and the reading should be just over 1 A .

A check of the voltage over the load(meter) will show that this has dropped to a very low level. This illustrates the way in which this design acts to protect load circuitry connected to the output when shorts exist in that load.

Exploded view of the prototype power supply show-

 ing the use of a toroidal mains transformer, digital thumbwheel switches and the power transistor mounted on the rear panel

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

A SIMPLE CONTINUIY TESTER

Fc. I shows three gates of the familiar 7400 connected via RI and C1 to form a relaxation oscillator continuity tester. The output is fed through the remaining gate, which acts as a buffer amplifier, to LSI, a miniature earphone. With the values shown for R1, CI and LSI the frequency is about 800 Hz . Virtually any earphone or loudspeaker can be used. If one of a lower resistance is chosen the signal may be unacceptably loud, but can be reduced to any level by inserting a suitable series. resistor.

The test leads can be in either positive or negative supply. When they are joined the note will sound and the current flowing will be about 8 mA . The oscillator will continue to sound until the battery has run down to three volts or less.

Fig. 1. Integrated circuit continuity tester
When the test leads are connected across a resistance a higher note is produced. The device is useful up to some 400 ohms or so and is just audible across 1 kilohm. The smallest resistor which can be distinguished from no resistance at all is about 4 ohms.

Diodes, if tested so that they are reverse biased, do not of course make the oscillator sound. If forward biased the note is about a third, musically speaking, higher than when the leads are shorted. The polarity of the test leads should therefore be marked. Capacitors of $40 \mu \mathrm{~F}$ and up give a chirp as they charge.
R. Parfitt, Croydon.

TOUCH START OF AUTOMATIC RHYTHM DEVICE

VERY few electronic organs manufactured before 1970 are equipped with facilities for remote control of an automatic rhythm device. This circuit is activated by an audio signal from the lower manual (or pedal). making it possible for the performer to play the prelude on the upper manual and the pedal, and when the first note is played on the lower manual, the rhythm accompaniment is started.

At the front end of the circuit two alternatives are shown; a high impedance input for connection to the lower manual toneshaper output of an electronic organ, and an electromechanical Hammond
organ connection using a transformer and a series resistor.

The transformer could be any output transformer for use in portable radios with a ratio of $1: 10$ to 1 : 1,000 . An incoming signal will be amplified through TR1 and TR2, and turn on TR3. If S1 is closed, a current will pass through to TR5, triggering the bistable, causing the relay to pull in. S2 and S3 are used for manual start and stop.
K. B. Sorensen, Copenhagen,
Denmark.

DISTANCE MEASURER FOR COLFERS

THIS is a simple project for all those golfers who feel they have the need to measure the length of their drives.
The distance is measured by counting the number of revolutions of the wheel of the golf trolley. Having 12 in diameter wheels, one revolution of the wheel of the trolley under load is very nearly one yard ($\pi \mathrm{d}$).
A small magnet was fitted to the hub of a wheel and a dry reed switch fitted to the axle. Each revolution closes the contacts briefly, but not for long enough to operate the counter.
A simple monostable is included to extend the time of the pulse long enough to operate the awkward counter (see Fig. 1). The time interval is adjusted by changing the value of capacitor Cl but $6 \cdot 8 \mu \mathrm{~F}$ was found to be adequate.
The counter draws about 18 mA at 36 V , so a switching transistor is included. This can be any $n p n$ type capable of handling the current.
D. F. Woods, London N11

Fig. 1. Circuit of the distance measurer for golfers

TOY TRAIN SREED CONTIOLHER

LIKE A few thousand other parents, I quickly learnt this Christmas that a train set has only one speed, this being set by the age of the battery.

Worse still, a well-used model eats batteries at the rate of one a day. Obviously something better was called for and the circuit of Fig. 1 was developed.

Components D1, D2 and C1 form a conventional supply. Positive going pulses are passed via D4 and D5 to the divider R1 and VR2 where they are tapped off. As soon as the pulses exceed 0.7 V , TR1 is switched on. How early or late in the cycle TR1 is switched depends on the setting of VR2. D7 and D8 clip the driving pulses.

Transistor TR1 in its turn switches on the constant current generator R5, R6, D6, TR2, and TR3 which should turn very hard on. Thus at the rails we have constant amplitude, current limited pulses
of variable width with a repetition frequency of 100 Hz .

Diode D3 shields the circuit from the back e.m.f. of the motor. C2 is an r.f. suppressor.

The design is robust enough to work into an open or a short circuit. TR3 is mounted on a.small heatsink.

Obviously train sets vary, but for a loaded train to be derailed while going flat out on a radius of 15 in , an h.t. exceeding 20 V is required across Cl . At the other extreme a well oiled motor on a clean track can be made to creep around at one inch per second.

One final word of caution: if the circuit is to be used only by a child, please enclose it in a sealed metal container with a good earth connection.
J. Vella

Carlisle

Fig. 1. Circuit of the toy train speed controller

The circuit of Fig. 1 shows a decoder capable of dealing with a two-channel system. It was developed as a result of work carried out with the Radio Control System described in P.E. in December 1971 and the following two issues.
The section of the circuit enclosed in a dashed line replaces the re-triggerable monostable and associated components of the earlier system and can be used in its place to supply the clear pulse to the shift register for more than two channels if required.

Positive pulses are fed from the receiver (if negative then they can be inverted by a spare gate).

TRI is held on by the input voltage whilst the pulses are being received and remains on for a short time after the second pulse.

When TRI turns off a positive pulse through C3 turns TR2 off for a short time. It is normally held on by R3 connected to the 0 V rail. This produces the required negative-going clear pulse.
The outputs from the edge-triggered flip-flop are fed to two gates along with the input signal and the separate outputs are obtained. The unused J and K inputs are connected to positive to give better noise immunity. A. Sansome, Sutton Coldfield.

EFFECTIVE TECHNICAL WRITING AND SPEAKING

By Barry T. Turner

Published by Business Books Ltd.
206 pages, $9 \frac{1}{2}$ in $\times 6 \frac{1}{4}$ in. Price £4.75

THE so-called "communications explosion" places greater and heavier responsibilities upon all communicators, whether they be scientists, engineers, technical writers in industry, or contributors to the technical press.

This book has been prepared to help those who may be called upon to present technical information through the medium of the printed or spoken word. The author is Professor of Industrial Management, University of Newcastle-upon-Tyne. The work is an excellent textbook covering the special requirements and practices involved in the many forms that communication can take.

Technical report and article writing, technical business correspondence, preparation of specifications and standards, handbooks and manuals, and patent writing receive individual expert consideration.

On the aural side, the preparation and delivery of talks and lectures, and the running of meetings receive detailed treatment.
) As would be expected, this book is itself a good example of the doctrine it preaches; clear exposition of facts, good division and arrangement of contents, supported by many useful references for "Further Reading," and finally nicely rounded off with an extensive and valuable collection of appendices.

An indispensible companion for all who, whether in the course of duty or by choice, have at times to perform in the role of a communicator of technical information.
F.E.B.

SEMICONDUCTOR DEVICES:

Testing and Evaluation

By C. E. Jowett
 Published by Business Books Ltd. 134 pages, $9 \frac{1}{2}$ in $\times 6 \frac{1}{4}$ in. Price $£ 5.00$

THIS is a specialist's book, and is probably unique. It deals with the subject of standard comprehensive testing of semiconductor devices within industry. Thus its appeal will be chiefly to those engaged professionally as designers or technicians and to college and university students. To such readers, this volume will no doubt constitute a definitive source of reference, and its recommendations and procedures are thus likely to become widely adopted.

The tests described are divided into four classes: environmental, mechanical, and electrical tests for transistors and diodes.
F.E.b.

chis DITICTORS . . . FOR HOME • FACTORY CARAVAN • BOAT

By J. C. PERRETT

> Several circuit variations using state-of-the-art catalytic gas/smoke detec. of-the-art catalytic gas/smoke detec-
tors to indicate the presence of such dangerous materials as methane, propane or butane

CIRCUITS

Fig. 1 shows a basic experimental circuit which will allow a reader to determine for himself the reactions of the transducer to various stimuli if VRL7 is plotted against concentration of the stimulus in air.

An alarm may constitute almost anything, though a 6 V bell is used in the most simple prototype. Because the current for the bell (Fig. 2) is fed through a thyristor, the bell becomes polarity conscious. This unit may be simply built on a piece of tag strip and is useful for permanent site monitoring of environments where gas appliances are used.

The components to the left of the line, $\mathrm{Z}-\mathrm{Z}$ in Fig. 1 constitute a mains power supply and is repeated in some following circuits and denoted by the reference to $\mathrm{Z}-\mathrm{Z}$ in those figures.

The circuit of Fig. 3, the first prototype, is also mains operated, but includes meter monitoring and a light which gives visual warning of a predetermined level of gas.

The alarm is driven by monitoring the voltage across transducer using the meter bridge circuit, D1 to 4. This voltage is also applied to the base of TR1. The $1 \mathrm{k} \Omega$ VR2 is the alarm sensitivity control which attenuates the voltage available to drive the base

Fig. 1. Test circuit for examining the characteristics of the Figaro gas detectors

Fig. 2. A basic detector in its simplest form

MAINS GAS/SMOKE DETECTOR

Resistors	
R1	4.7 ${ }^{\text {4 }}$ W
R2	$1.8 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R3	$1.8 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R4	470Ω
Potentiometers	
VR1	$5 \mathrm{k} \Omega \mathrm{Lin}$.
VR2	$1 \mathrm{k} \Omega \mathrm{Lin}$.
Semiconductors	
D1 to	to 4 OA91 (4)
D5	1 N4001
TR1	BC107
TR2	BFY50

Miscellaneous

F2 2A fuse and holder

GD1 TGS 308 or TGS 202 and B7G valve holder
LP2 6 V bulb and SL90 holder
LP3 6V bulb and SL90 holder
ME1 1 mA moving coil meter
Case AB17 aluminium box, $10 \times 4.5 \times 3$ in

Fig. 3. The prototype mains operated version of the gas/smoke detector

Rear view of the front panel of the mains unit showing location of the various components, Veroboard and meter. The detector socket is mounted in the panel behind the Veroboard

of TR1. The inclusion of diode D5 prevents the base/collector junction of TR1 becoming forward biased during the time when the emitters of TR1 and TR2 become positive.
The detector itself may be neatly mounted using a B7G valve base, as shown in the illustrations; the heater becoming pins 1 and 6 . The sensors may be fitted either way round, in pins $1,6,2,5$ of the valve base. Such a circuit is simple and may easily be assembled onto Veroboard.

It is possible for the detector to be used remote from the main circuit board by using a 3 -core mains lead of at least 5A capacity. If a very long length of lead is used the resistance of the cable connected to pins 1 and 6 of the B7G base should be subtracted from the 4.7Ω ballast resistor R1 so that the heater voltage remains correct for the type of sensor fitted.

The circuit of Fig. 3 is one of the non-latching type and will automatically stop showing an alarm condition when the gas concentration falls below the level set by the alarm sensitivity control VR2.

PORTABILITY

The low voltage heater used in the transducer makes battery operation difficult, the problem being aggravated by the dependence of the sensitivity of GD1 on the heater voltage. If batteries are used directly, stabilisation of the heater supply will be required, but most methods of doing this are very inefficient due to the high power loss in the regulator section of the instrument.

To overcome this a chopper supply has been proposed in Fig. 4, and this circuit will allow the unit to be used from HP1I torch batteries.

To understand the circuit we first must study the power requirements for the gas detector. The heater requires 1.5 V and the heater resistance (cold) is approximately 2Ω. In normal use a current of 0.5 A is required.

Thus the power requirement is 0.75 W .
From this point forward we are only interested in the power requirement of the device. Assume

The portable mains/battery version opened up to show location of the main component parts. Note the use of battery holders and only part of the p.c.b. circuitry
that the use of a 10 V supply is convenient; if the 10 V supply is connected across the heater the power dissipated would become

$$
\frac{V^{2}}{R}=\frac{100}{2}=50 \mathrm{~W}
$$

It is quite obvious that if current continued to flow the device would be destroyed.

This problem is overcome by pulsing the supply voltage to reduce the average power dissipation to 0.75 W . To calculate the mark/space ratio required to reduce the heater power from 50 W to 0.75 W use the formula:

$$
\begin{aligned}
\text { Mark/space ratio } & =\frac{\text { Max peak power (instantaneous) }}{\text { Average power dissipation required }} \\
& =\frac{50}{0.75}=66: 1
\end{aligned}
$$

In the circuit of Fig. 4, a mains or battery version designed for portability, the multivibrator comprising TR1, TR2, TR3 is capable of providing a 100 to 1 mark/space ratio. The output of the oscillator appears at the emitter of TR3 which is connected to base of TR4, this transistor acts as a switch which connects the detector to the supply voltage. The oscillator frequency is not critical and runs at a few hundred hertz.
In practice a 0.5Ω resistor is connected in series with the sensor to reduce the peak current and increase circuit flexibility. This somewhat lowers the overall efficiency but is worthwhile. The inclusion of this resistor modifies the drive requirement for the sensor. The equivalent circuit is now a $0.5 \Omega 2$ resistor, the detector and TR4 in series across the supply.

Ignoring TR4 $V_{\text {sal }}$ the voltage across the detector now becomes 8 V providing a peak power of 32 W . This gives a mark/space ratio of $42: 1$. Thus total battery drain, maximum current divided by the mark/space ratio is 0.095 A .
For this current approximately 0.025 A should be added to allow for circuit operation. Thus the total requirement is 120 mA .
The capacitor Cl supplies the high current pulses required during the time when TR4 is conducting. When TR4 is off C 1 charges from the supply transistor TR5.

BATTERIES

If the completed unit is to be used as a portable instrument it may be powered by heavy duty HP11 batteries. The gas concentration meter can also double as a voltmeter which may be switched to monitor the supply. To allow the sensor to be used as an alarm its performance must be predictable, even if the supply voltage changes. For this reason a power regulator circuit is recommended.

Due to the long mark/space ratio required, a high current consumption is normally drawn by the multivibrator which reduces circuit efficiency. To overcome this problem TR. 1 is included to give extremely rapid charging of C2. During the time when TR2 is conductive, C2 turns off TR3, the collector of TR3 is therefore at full supply potential. Supply is placed on the base of TR1 via R4, making it non-conductive and $R 1$ is now the feed resistor for TR2

Fig. 4. The portable battery/mains detector using a plug-in head which connects with the instrument via a stereo jack plug and socket

COMPONENTS

Fig. 5. Detector head made up from an old cigar tube, mains lead and stereo jack plug

Miscellaneous

GD1 TGS308
M1 1 mA moving coil meter
S1 3-pole 4-way selector switch
F2 1A mains fuse
F3 250 m A fuse
Printed circuit board, batteries and holder, case AB17, $10 \times 4.5 \times 3$ in, Bulgin 1.5A chassis plug, socket, knobs, fuseholders, stereo jack PL1 and socket JK1, and power supply section from Fig. 1.

MASTER PRINTED CIRCUIT BOARD

Fig. 7. Printed circuit board component layout suitable for all versions

Fig. 8. Printed circuit master (full size) suitable for all versions of the gas/smoke sensors

As C2 discharges through R3-VR1, TR3 comes into conduction and the collector voltage falls. This falling voltage via C3 turns off TR2, at the same time the voltage on the base of TR1 is reduced, which causes TR1 to saturate; this connects the left hand side of C 2 to the supply line, causing it to rapidly charge. The circuit will remain in this condition until C3 discharges through R6.

The output of the oscillator is taken from the emitter of TR3 to ensure sufficient drive to make TR4 saturate. Waveforms for the circuit are given in Fig. 6 and details of the head mounting are in Fig. 5.

INDICATION

The meter ME1 is driven from the slider of VR7, the sensitivity attenuator control. Overall sensitivity is set by the value of R13. Two diodes D8, D9, in series with the meter allow a suppressed zero effect to be obtained without attenuation of the signal and D10 provides some degree of overload protection for the meter.

Switch S 1 provides four switch functions. Position 1 is off. 2 allows the regulated supply voltage to be measured, normally 9.5 V on load. Position 3 allows the instrument to run from the batteries, and position 4 is for use from the mains. Note that it is not possible to turn off mains power without removing the plug from the front panel. Connection to the mains is indicated by the neon lamp LPI.

CONSTRUCTION

Any well ventilated case may be used to house the circuit of Fig. 2, and the components may be mounted on tag strip. The thyristor CSRI is suitable for alarm currents up to 0.8 A .

The prototype of Fig. 3 is shown built inside an AB17 case, the circuit built on Veroboard, part of which is fixed to the reat of the meter.

A printed circuit layout is shown (Figs. $7 \& 8$) of the portable version of Fig. 4, for those people who like to make their own p.c.b. The board holds most of the components. The attenuator control (pre-set) should be left off the board, taking two wires from the board to connect to the remote $5 \mathrm{k} \Omega$ pot on the front panel.

The p.c.b. has room for extra components not listed for this circuit. These are made use of in further versions. In addition, the p.c.b. can accept two sizes of thyristor, the TIC 106 and the 2N5060 to 2 N 5064 series. The former will switch up to 4 A with a sink whilst the latter will only cope with lamp circuits up to about 0.8 A . Clearly the constructor may decide which he prefers to use dependent on external loads he might wish to apply.

Wiring details of some of the off-board components is shown in Fig. 5. The jack socket must be of the insulated type to avoid supply to chassis shorts as this may well destroy the detector.
The latter is fitted into a discarded cigar tube and should be a good push fit. A hole drilled in the other end allows the $5 \mathrm{~A}, 3$-core cable to enter. A rubber sleeve must be fitted to stop cutting of the wire. As the cigar tube is very light, Plasticine may be added to the inside to give the unit a better balance.

Ensure that both the lid and the case are correctly earthed to the earth pin of the mains socket. If required an l.e.d. circuit may be added to the unit, to give warning of inadvertently leaving the device switched on. This will, however, increase battery drain current by approximately $10 \mathrm{~m} \cdot \mathrm{~A}$.

look

 electronics

 electronics really really mastered

 mastered}
no previous knowledge no unnecessary theory no "maths'

RAPY

BUILD, SEE AND LEARN
step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT

 OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c experiments, d.c. experi ments, simple counter, time delay circuit, servicing procedures

This new style course will enable anyone to really understand electronics by a modern, practical and visual method-no maths, and a minimum of theory - no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

MOBILE THOUGHTS

The Chairman of the Mobile Radio Committee of the Electronic Engineering Association, Brinkley, as well as being Manag ing Director of Redifon Telecommunications Ltd., is no mean hand at deploying an argument. At the recent Communications 74 Exhibition and Conference at Brighton he gave some startling statistics on what it costs to run Europe's road transport and how much could be saved if the 90 million vehicles all had two-way radio.

The UK share of this mammoth fleet is 16.5 million vehicles which have an annual running cost, excluding manpower, of $£ 8,000$ million. This, says Brinkley, is equal to the total revenue from income tax or twice the national defence budget or three times the cost of the national health service. So even a one per cent saving would vield $£ 80$ million and a ten per cent saving £800 million.

He argues that the 200,000 vehicles already fitted with radiotelephones in the UK give them a 20 per cent edge on efficiency compared with unfitted vehicles. In other words four vehicles fitted with radio will do the work of five without. But to date, only one per cent of all vehicles are so fitted and these generally work privately with their own base stations in a small radius of $10-20$ miles. What is really needed is a sort of national grid with all vehicles being tied in by radio to the public telephone network.

Such schemes are already being planned in the USA with adequate frequency allocation in the 900 MHz region. We use this band partly for TV in Europe but Brinklev sees the present Band III 405 -line TV allocation, due to close down in the UK in five years' time, as a promising alternative.

Of course, we already have a public system but costs are relatively high. A mammoth increase in utilisation would bring prices tumbling down. To equip, say, ten per cent of all cars would mean big production lines with consequent economy of scale which would be expected to result in a rental charge per vehicle of $£ 2$ a week, plus calls charged on a time basis. With petrol at over 50p a gallon and time in excess of $£ 1$ per hour the system could be a bargain for the user.

Meantime, the mobile radio market is still running at 15 per cent growth rate. Pye, the brand leader in the UK, has been pushing exports with a floating exhibition and seminar on the River Rhine taking in France, Switzerland, Germany and the Netherlands. There is no nicer way of doing business and the trip netted over $£ 500,000$ of orders confirmed with the prospect of more to come.

CONSUMER ICs...

The Philips Group is determined to consolidate its leading position in consumer i.c.s. No less than 26 new devices, most of them of considerable complexity and all real state-ot-the-art are due for production next year and will be in TV, radio, hi-fi and tape equipment from then on.

To get set manufacturers acquainted with the new circuits Philips invited 300 engineers from 13 countries for a full-scale seminar in Eindhoven. Sixteen of the new circuits are for TV and ten for radio/audio equipment.

The designs are truly international and originate from Mullard experts in the UK and from Philips' men in Holland and Germany. Production technology is to be that already proven on the existing range so there should be big vields (therefore, low prices) from the start, but the chips are larger to accommodate many more functions.

The philosophy behind the new circuits is mainly to reduce the number of external peripheral components and the number of factory adjustments. For example, on a typical colour TV, Philips say the number of peripheral components can now be halved from 320 to 160 and the adjustments reduced from 20 to 10.

It's hard to pick out specific examples but typical of the new thinking is a complete recorder using only three i.c.s. One has the pre-amplifier, level control and recording and playback amplifier, another incorporates motor speed control, automatic stop, and erase oscillator, and the third the complete power amplifier.

More circuits are in development including one for search tuning in which a band of frequencies is electronically scanned and each receivable station is given 1.5 seconds playing time so that the listener can have a quick listen to see what programmes are on offer.

... AND AVIONICS

With Philips so strong in consumer electronics it is only too easy to forget the Group's potency in professional equipment and not least in avionics. The Group is planning a major sales drive at the Farnborough Air Show next September with no less than seven companies based in the UK, Holland, France, Sweden and Canada taking part.

The British effort from MEL at Crawley includes airborne weather and ground-mapping radars for civil use and the very advanced tactical radar fitted in Sea King helicopters of the Royal Navy and a number of other navies. On the ground MEL scored a big hit with MADGE, a NATO award-winning portable microwave tactical approach aid and then, of course, there is direct involvement with the Clansman project where MEL is responsible for transmitter/ receivers in the range $1 \cdot 5-30 \mathrm{MHz}$ with powers up to 400 Watts.

Quite apart from selling individual pieces of equipment Philips has both the economic and technical strength to undertake large turnkey projects. One of these is for Zaire where 40 airfields are involved for a contract price of £35 million.

ENERGY

At the turn of the year we were all sick with fear over the energy crisis. Now it seems we have slipped back into easy acceptance that provided we pay over 50p a gallon for petrol and, perhaps. £40 a ton for coal we shall remain mobile and warm and in business. I think this is a poor attitude, probably encouraged by the prospect of North Sea Oil. We should still be looking for economies.

An exciting development is the electric bicycle for which Cam. bridge Consultants contributed the idea of an electronic throttle working on pulse width modulation to give smooth speed control without recourse to gear changing.

Radius of action is 20 miles (i.e. a 40 mile round trip) before recharging which costs about $2 p$. With oump petrol selling at 50 p this gives personal mobility at an equivalent of 1,000 m.p.g. with the added bonus that there is no exhaust fume pollution of the atmosphere.

A WIRED-IN SYSTEM WITH MANY APPLICATIONS

THIS design was developed to give a method of balancing a stereo amplifier from a distance but in fact it has many other uses. In particular it can be used when testing other circuits with a general purpose amplifier as the amplifier volume control inay be placed close to hand. The circuit is remarkably simple and is fairly cheap to construct.

DESIGN CONSIDERATIONS

The circuit uses a field effect transistor (f.e.t.) in a conventional amplifier stage. The characteristics of an f.e.t. are shown in Fig. I and it can be seen that the slope or gradient of the graph of I_{d} or drain current against $V_{p s}$ or gate voltage varies according to the value of the gate-source voltage $V_{g s}$. This is the basis of the remote operated volume control.

In fact the slope of the graph is called the g_{m} or the mutual conductance of the f.e.t., a term borrowed from valve technology

If we look at the basic f.e.t amplifier circuit shown in Fig. 2 then the voltage gain can be shown to be $\mathrm{g}_{\mathrm{m}} \times$ RL. Thus by varying $V_{\mathrm{gs}}, \mathrm{g}_{\mathrm{m}}$ is changed and so the gain can be varied.

One way of varying $V_{R s}$ is to make R2 variable since the voltage drop across $R 2$ is in fact the way in which $V_{k s}$ is produced. The current through R2 depends on V_{gs} and this means that $V_{g s}$ can never be made to be V_{p} the pinch-off voltage of Fig. 1. This means that the volume cannot be faded to zero but only to a very low lovel. To overcome this, a potential divider is used for R2 and in this way $V_{p s}$ can be varied from 0 V to V_{p} or even higher to ensure cutoff.

THE CIRCUIT

The circuit has only two main design criteria. The first is to decide the working point A of Fig. 1.

Resistors
$\begin{array}{llll}\text { R1 } & 2.2 \mathrm{M} \Omega \text { Metal Oxide } & \text { R3 } & 2 \cdot 2 \mathrm{k} \Omega(5 \cdot 6 \mathrm{k} \Omega \text { for } 2 \mathrm{~N} 3819) \\ \text { R2 } & 100 \mathrm{k} \Omega \mathrm{Metal} \text { Oxide } & \text { R4 } & 270 \Omega \\ \text { All } \frac{1}{4} \text { or } \frac{1}{8} \mathrm{~W}, 5 \% \text { carbon } & \text { R5 } & 56 \mathrm{k} \Omega & (6.8 \mathrm{k} \Omega \text { for } 2 \mathrm{~N} 3819)\end{array}$

Capacitors

$\begin{array}{llll}\mathrm{C} 1 & 0.01 \mu \mathrm{~F} & \mathrm{C} 3 & 100 \mu \mathrm{~F} \\ \mathrm{C} 2 & 0.01 \mu \mathrm{~F} & \mathrm{C} 4 & 0.01 \mu \mathrm{~F}\end{array}$

Transistors

TR1 BW42 or 2N3819 (Most n-channel f.e.t.s suit on selection)

Potentiometer
VR1 $10 \mathrm{k} \Omega$ linear carbon
Miscellaneous
Veroboard, wire, screened cable for feed, cable to VR1, suitable mono or stereo jack plug and socket

Fig. 3. Practical circuit of a remote volume control

The second is to make sure that the potential divider can produce a high enough voltage to turn the f.e.t. off.

Looking at Fig. 3, a practical version of the control circuit, the resistors R1 and R2 form the input impedance of the amplifier and also reduce the amplitude of the input so that there is slow distortion in the circuit. R3 is chosen so that the gain of TR1 makes up for the loss due to R1 and R2 giving a circuit with a voltage gain of one when it is not acting as an attenuator.

Thus the circuit can be inserted directly into a reproduction chain without any loss.

R4 is used to set the maximum drain current (i.e. point A on Fig. 1) and VRI is used to alter the gain. At VR1 $=0 \Omega 2$ the gain is maximum and at VR1 $=$ $10 \mathrm{k} \Omega 2$ the f.e.t is cut off. C2 is used to short circuit high frequencies which may be picked up on the leads to VR1. C3 is a bypass capacitor and its value determines the low frequency gain of the amplifier. R5 together with VRI and R4 set the maximum voltage at the source of the f.e.t. to ensure it is cut off.
This circuit, using a BW42 n-channel f.e.t., has a flat frequency response from below 20 Hz to about 10 kHz and is 3 dB down at 20 kHz . It has a high input impedance and a relatively low output impedance. Indeed the author's prototype used two such circuits as a remote stereo volume control. The resistor VR1 was chosen at $10 \mathrm{k} \Omega 2$ to give a voltage swing at the source of the f.e.t. of 0.6 V to 1.6 V since the devices selected had a pinch-off voltage V_{p} of 1.6 V .

In fact f.e.t.s do have a rather large spread of V_{0} from one device to the next, even of the same type number. 2 N 3819 s could be used, but the ideal thing would be to plot the $V_{\mathrm{gs}}, I_{\mathrm{d}}$ characteristic for a device which you have and then alter the circuit to suit.

DESIGN PROCEDURE

The design procedure is simple. First of all the characteristic of the devices to be used is plotted using the circuit shown in Fig. 4. Only one meter is needed really although two are shown.

Fig. 4. Circuit used to determine the V_{D} of an f.e.t. for use in the remote control, and associated component values

First set the voltage, then measure the current for several values of voltage. It might be as well to first vary VR2 until no current is read on the meter ME2 then bring VR2 back to just where the current begins to flow. Measure this voltage, it is V_{p}.

Choose a suitable working point A considering that the gain does not vary over straight parts of the graph. Calculate R4 to drop the value of $V_{\text {gs }}$ chosen. Select R3 to give the required gain, bearing

Fig. 5. Printed circuit pattern (full size) and component layout for the remote volume control
in mind the earlier comments on unity gain. g_{m} can be found from the tangent to the graph at the working point, then gain $=g_{\mathrm{m}} \times R L$.

Make certain that RL does not drop so much voltage that there is less than 3 V across the drain and source of the f.e.t., remembering that R4 will be dropping some voltage (i.e. $V_{\text {gs }}$ chosen).

Since at cut-off the drain current I_{d} is zero, choose the value of VR1 and R5 to give a voltage greater than V_{p} at their junction. The only current flowing in them at this time will be that through them. None flows through the f.e.t.

It is suggested that the same values of R1 and R2 as in Fig. 3 be used as they are suitable for inputs of up to IV r.m.s. Also, use the same capacitor values.

VOLTAGE CONTROL

The circuit can in fact be voltage controlled by applying a variable voltage from 0.6 V to 1.6 V in place of VRI. This could form the basis of a talkover circuit for a discotheque or an automatic fader.

The leads to VRI can be as long as required and do not have to be screened.

The prototype used a stereo switching jack to connect the control into the amplifier with the two control circuits mounted in the amplifier and powered from its supply. The amplifier controls can be used to preset maximum volume. The jack contacts were arranged so that the gain was 1 when the jack was unplugged.

The circuit works well, but if two are to be used for stereo then it is best to get two matched f.e.t.s.

CONSTRUCTION

Each circuit was constructed on a printed circuit board, see Fig. 5. Layout is not critical, but the leads to RI should be screened since the input impedance is high. The f.e.t. should be soldered in last so that it has least chance of being affected by the heat of soldering.

Two values of some components are given in the components list. The first is for use with a BW42 device and the second for a 2 N 3819 . The single values are common to both circuits. The 2N3819 version exhibits a slightly lowered performance, being 3 dB down at 25 Hz .

PRIENII in , U EMoos

IMPROVING TREBLE CONTROL

In BP 1337284 from General Electric Co of New York is a typical British patent specification of USA origin. For legal reasons in the States it is essential for every last nut, bolt and blob of solder to be described in minute detail and for convenience the same text is often used for both countries This makes for tedious reading and difficulty in sorting out where the novelty of the real invention lies, but it also provides masses of detailed background information.
The GEC patent concerns modifications in treble tone control circuits for audio amplifiers and to highlight the modifications, the inventors first of all describe and draw a conventional audio amplifier (complete with component values) for which no patent protection is claimed.

Although bass tone control, contour or loudness circuit, bass boost circuit and a volume control all operate exactly as in conventional amplifiers, the main difference and invention lies in the treble tone control circuit, see Fig. 1.
The mid-band attenuation has been reduced and the emitter bypass circuit, shown dotted in Fig. 1 , is removed. The modified treble control circuit includes capacitors C1, C2 and C3.
When the wiper of the treble control potentiometer is at minimum, capacitor C1 effectively shunts to provide treble cut. When the wiper is at maximum, the shunting effect of C 1 is minimised
and treble frequencies are boosted. Also, when the wiper is at maximum, C2 passes h.f. audio signals and an additional path for these components is provided, via C3, to boost treble when the volume control is below maximum.

When the treble tone control is turned towards its minimum position, not only is the shunting effect of C1 increased to provide high frequency roll-off but also the treble boosting effect of the capacitors C2 and C3 is reduced.

Graphs are given to show how control of this type can have considerable effect on the upper frequencies, including a 4 dB increase between the maximum and minimum treble settings over conventional circuits at 10 kHz and a 5 dB increase at 20 kHz

TEMPERRTURE SENSTITVE OSCILLATOR

A clever use for a threshold glass switch is described by Standard Telephones and Cables in BP 1341 172. The switch is constructed by embedding a pair of conductive wires in a bead of vitreous material, the device switching to conduction when a critical voltage is exceeded and returning to a high resistance state when the current is reduced below a critical holding current.
In the simple circuit of Fig. 1 C1 is charged from a constant voltage supply via VR1. When the voltage across the capacitor reaches the switching voltage of

Fig. 1.

Fig. 2.
the glass switch S1, the capacitor discharges through it. The discharge continues until the current through the switch falls below the critical holding current. The switch then returns to its high resistance state and the next charge/discharge cycle commences.

In the graph of Fig. 2 the voltage waveform across the switch at a given temperature is represented by (A), the switching voltage being V_{1}. The voltage at which the current through the switch falls below the critical holding current varies only slightly with temperature, but the critical voltage varies significantly. Thus if the temperature of the switch is raised the critical voltage falls to V_{2} (Fig. 2) and the voltage across the switch produces the higher frequency waveform (B).

In practice the error due to changes in value of the R/C components with temperature are small compared to the significant change per degree centigrade.

The circuit may be arranged so that at 37 degrees centigrade (body temperature) the frequency of the waveform is 10 kHz . If the output of the circuit is compared with a 10 kHz locked frequency signal (e.g. from an oscillator) then an audio frequency signal can be generated as a beat frequency as the temperature of the switch is varied up or down from 37 degrees centigrade. In this and other ways the circuitry may be used to signal changes of temperature around a notional norm, such as the 37 degree centigrade level. The adjustment necessary at resistor VR1 to zero the beat can be used to indicate the temperature change that has occurred.

The Cambridge kit is the world＇s largest－ selling calculator kit
It＇s not surprising－no other calculator matches the Sinclair Cambridge in functional value for money； and buying in kit form，you make a substantial saving．
Now，simplified manufacture and continuing demand mean we can reduce even the kit price by a handsome $£ 12 \cdot 50$ ．For under $£ 15$ you get the power to handle complex calculations in a compact，reliable package－plus the interest and entertainment of building it yourself ！

Truly pocket－sized

With all its calculating capability， the Cambridge still measures just $4 \frac{1}{3}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11_{1}^{\prime \prime}}{16}$ ．That means you can carry the Cambridge wherever you go without inconvenience－it fits in your pocket with barely a bulge．It runs on ordinary U16－type batteries which give weeks of normal use before replacement．

Easy to assemble

All parts are supplied－all you need provide is a soldering iron and a pair of cutters．Complete step－by－step instructions are provided，and our service department will back you throughout if you＇ve any queries or problems．
Total cost？Just £14．95！
The Sinclair Cambridge kit is supplied to you direct from the manufacturer．Ready assembled， it costs $£ 21 \cdot 95$－so you＇re saving $£ 7$ ！Of course we＇ll be happy to supply you with one ready－ assembled if you prefer－it＇s still far and away the best calculator value on the market．

Features of the Sinclair

 CambridgeKUniquely handy package．
$4 \frac{1}{3}{ }^{\prime \prime} \times \mathbf{2}^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}$ ，weight $3 \frac{1}{2}$ oz．
＊Standard keyboard．All you need for complex calculations． ＊Clear－last－entry feature．
直Fully－floating decimal point．
＊Algebraic logic．
＊Four operators（ $+,-, \mathrm{x}, \div$ ）， with constant on all four．
＊Constant acts as last entry in a calculation．
谷Constant and algebraic logic combine to act as a limited memory，allowing complex calculations on a calculator costing less than $£ 15$ ．
兴Calculates to 8 significant digits．
＊Clear，bright 8－digit display．
＊Operates for weeks on four U16－type batteries

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container, It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book - free!

 If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations.

sirncleir

Sinclair Radionics Ltd, London Road, St Ives, Huntingdonshire Reg. no: 699483 England VAT Reg.no:213 817088

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 80 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.

Price fully built: $£ 19 \cdot 95+£ 2 \cdot 00$ VAT. (Total : $£ 21 \cdot 95$)
To: Sinclair Radionics Ltd, London Road, St lves, Huntingdonshire, PE17 4HJ
Name
Please send me
\square a Sinclair Cambridge Calculator kit at $£ 13.59+£ 1.36$ VAT (Total: $£ 14.95$)
\square a Sinclair Cambridge calculator ready
Address
built at $£ 19.95+£ 2.00$ VAT
(Total: £21-95)
*| enclose cheque for f
made
out to Sinclair Radionics Lid, and
crossed.
\square
*Please debit my *Barclaycard/Access account. Account number
PE/9/74
*Delete as required.

mprictItems mensioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

CAR RADIO KIT

It is unfortunate that this magazine cannot make awards to manufacturers for designs and service to readers' interests. If we did then Radio \& TV Components Lid. would certainly be top of our list for service to readers and probably very close to Sinclair's for top honours for design.

Although R\&TV have had tremendous success with their unit audio systems and car radio kits, they have decided that because some of their clients are not too hot on soldering a new range of "solderless" units is required.
The first of these items is the Tourist Two car radio which dispenses entirely with soldering in its construction. Instead, all electrical connections are made through press-on tags and it is claimed that the kit can be assembled in less than two hours by any "do-it-yourselfer".

By utilising an integrated circuit and a printed circuit board allied to tested sub-assemblies. construction is simply a matter of fixing the various component assemblies to the chassis using the screws provided. and completing the electrical circuit by means of colour coded press-on tags.

The Tourist Two radio has five pushbuttons which can be tuned to any preselected station. Four of the buttons operate on the medium band and the other on the longwave band. The finished radio will slot into the standard car radio aperture.

The technical features of the kit include permeability tuning and longwave coils to ensure good sensitivity and selectivity on both wave bands. The r.f. sensitivity at 1 MHz is claimed to be better than $15 \mu \mathrm{~V}$ and the power output into 3 ohms is claimed to be 4W. The output stage is short circuit proof for added safety.

Both the i.f. module and tuner are pre-aligned and the kit is suitable for 12 V positive or negative earth operation.

Complete with step by step instructions, including details for installing in the car, the Tourist car radio is available by post or direct from Radio \& TV Components Ltd., 21 High Street, Acton, London, W.3, price $£ 7$ plus VAT. Postage and packing is 55 p.

Additional extras include a speaker with baffle and fitting strips. £1.65 plus 23 p postage and packing, and a matched fully retractable locking aerial, $£ 1 \cdot 37$ plus 20 p postage and packing.

DIGITAL ALARM CLOCK CHIP

Readers who like to experiment with clock circuits may find a new integrated circuit chip available from Sintel of particular interest.
Known as the Mostek MK5025ON, the 28 -pin device may be used to construct a 24 -hour digital alarm clock, with the addition of only a single power supply, display and standard interfacing components.
Special features of the device are that when the "snooze" button is operated it will temporarily turn off the alarm signal to allow an additional 10 minutes' sleep. The "bleep" alarm is generated within the chip and there is no need for an external oscillator circuit.

CHANGE IN VAT

Owing to the change from 10 per cent to 8 per cent in the rate of VAT, occurring as this issue closed for press, it has not been possible to alter all prices shown in advertisements.

If a low house voltage condition occurs. the a.m./p.m. indicator will flash at a 1 Hz rate to signify an incorrect time display.

The 6 -digit multiplexed outputs make the chip compatible with gas discharge or l.e.d. displays. An additional facility allows the use of an economical 4-digit display, hours and minutes, to be used if required.

The cost of the MK5025ON is $£ 8.36$ including VAT and full technical details can be obtained from Sintel, 53 Aston Street. Oxford, OX4 IEW.

DISCO CONSOLES

It is well known that noise is debilitating. With many discotheques distortion components generated through poor equipment can contribute to this unmusical sound providing cumulative discomfort.

With this in mind it is nice to record a new range of disco consoles from Citronic Ltd., with a hi fi specification. The Stateline range includes one mono and three stereo units covering a basic range of 75 to 150 W r.m.s.

A feature of the consoles is the modular assembly typified in the
four and six channel mixer/preamplifiers which can, in fact, be purchased as separates.

The power amplifier module provides a basic 75W r.m.s. which is compounded to provide the high outputs.

Top of the Stateline range is the Texas console which, in its quadruple amplifier configuration, is believed to be the most powerful self-contained disco unit on the U.K. market, giving 300 W r.m.s. or approximately 500 W music power. The Texas is equipped with two standard or transcription quality record decks and a cassette tape unit. If required an eight-track cartridge player may be incorporated as well. The Iowa. five inches shorter and without the option of quadruple amplifiers, may also include a cartridge unit.

At the lower cost end of the range the Delaware and Kansas units. mono and stereo respectively, have two record decks and give 75 W mono or 150 W as the stereo equivalent. The Delaware also has a dualamplifier option.

Other optional extras include the stand. transcription quality record decks and electronic lighting effect control units.
Information and price list of the complete range of Stateline consoles mav be obtained from Citronic Ltd., Melksham. Wilts.

PRINTED CIRCUIT KIT

A new professional printed circuit kit. providing all the necessary tools and equipment for producing good prototype printed circuits quickly. efficiently and at an economic price. has been introduced by GSPK (Electronics) Ltd.
Ideal not only for the electronics enthusiast but for engineers and students. it is claimed that a complex circuit board layout can be produced in a few minutes.

The Professional Kit contains six pieces of single sided laminate, a box of etchant. measuring scoop. steel rule, cutting knife, hand drill. etchant dish and printed circuit board marking pen.

Available from GSPK (Electronics) Ltd., Hookstone Park. Harrogate. Yorks, each kit contains full instructions and the recommended retail price is $£ 8.40$ including VAT. postage and packing being extra.

Ripallout A SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

Professional manner

Sir,-Mr. Kitchen's recent letter under the heading "Good Olde Days" (Readout, July), expresses sentiments which have been expressed by every generation on all matters.
Mr. Kitchen obviously enjoyed messing around with, and being bitten by those frightful, hot, glass bottles which imposed appalling restrictions on any constructor, but he must be very naive to think that all the fun has gone. The proof that there are a very large number of constructors, who I assume enjoy their hobby, is the very existence of Practical Electronics and many other magazines.

The advantages that transistors and integrated circuits have brought us are numerous: ease of handling, lower dissipation, smaller size, improved performance, etc. These advantages have opened up new areas of design, which were not possible with valves, and present designs cover all facets of everyday life. I would agree that 10 or 20 years ago chassis had to be "bashed out", but I can assure Mr. Kitchen that there are many who still "bash their own chassis".

Construction has been simplified, in some respects, by printed wiring and other methods, and basic circuit design is probably dying, although i.c. manufacturers haven't got all the answers. In its place we build our own "tag-boards" using copper clad insulating board and ferric chloride (far more skilful than buying tag-boards and insulating pillars); and we have application design which requires as much skill as circuit design, as we firstly have to interpret the design data sheets. which use terms like "on-chip address decoding, tri-state outputs. slew rate, propagation delay", and secondly wonder why the 40 legged monster does its nut when we can see nothing in its input (35 nanosecond nasties can be a bit trying!)

I suggest Mr. Kitchen tries constructing a digital clock similar to the one described recently in P.E.. but using techniques and components of 20 years ago. If he can get no enjoyment from constructing such a device using i.c.'s and on switch-on finding a mass of numbers rolling round then I pity him.

I think we should be thankful for present day technology in taking the shackles off us and allowing us to construct items which are not only rewarding to design and construct. but which can be useful and built in a professional manner.

Peter Seddon,
Rugby.

Psycho . . .

Sir.-Regarding Mr. Watson’s letter on "Psycho-sensitive semiconductors" and their possible existence (Readout, July) I would like to say how interested 1 was to read these comments, particularly as it takes us out of the superstition that P.K. (psycho kinetics) can only be effected from living being to living being. Though the latter is considered the most common, I am sure it is not the only method of proving the power of P.K., and I add to this the results obtained by Uri Geller, who is able to bend objects without even touching them! O.K., I know this is a matter of controversy among (so-called) scientists at present, but I venture to add that I am|willing|to|accept|the evidence.

1 would venture to state that mind over matter is a fact, and that it operates at a sub-microscopic level, possibly at atomic level, which results in a cumulative effect to create perceptible consequences. At this time 1 have certain facts at my disposal which suggest that nonbiological material is affected equally well as plant or animal cells, but 1 have to await certain results for my own satisfaction.

The point Mr. Watson mentions about molecules of magnetic material being affected by mind power may well be true, but I would prefer not to be as specific on this point for one good reason at least. Experimenters in the field of P.K. have so far indicated that they find the effect is not diminished by distance between "transmitter" and "receiver".

As we know from basics, magnetic effects, light and radio waves included, are subject to attenuation on an inverse square law with distance. Hence, one would expect one of two things to happen with distance. Firstly, as in the case of
amplitude modulation, definition would be lost with increasing distance. or in the case of f.m. the effect may be sudden loss at a specific distance when carrier was lost into background noise. Secondly, if pulse-width modulation, or mark / space ratio modulation of some kind were used, the effect of distance would be greatly reduced, but again, a point should be reached where intelligibility would cease.

Nature uses a system similar to the latter in conveying information of an analogue type to muscles in the body, and it may be fair to assume a similar principle is involved in P.K. If so, it seems that distance has not defeated any known experiment as yet, unless the results of the Americans' space experiments in P.K. found that there was an attenuation. And it is unlikely that we shall hear much of those experiments
particularly if successful!

Meanwhile, it is surely up to all of us keen experimenters to delve deeper into the subject.

Brian H. Baily,
Dorset.

theory

Sir,-I have just read the letter by Mr. P. Watson in the July issue of P.E. I should like to point out to Mr. Watson that the head of the chlorophyll molecule will probably not be magnetic as it contains an atom of magnesium (Mg) not iron (Fe).
However, there are compounds present in the plant cell which contain an atom of iron, e.g. cytochromes. I do not, however, see the advantage the plant would gain in aligning itself up with the lines of force of the magnetic field. This does not disprove Mr. Watson's theory of a magnetic field interacting with iron containing molecules.
I would now like to put forward my own theory. There is a class of compounds present in plant cells which initiate movements in plants when they are acted on by certain external stimuli, e.g. light and water. These compounds are called auxins and the movements they produce are called tropisms. The plant has no control over these movements, once the auxins have been produced they begin to act. One such tropism known as geotropism occurs in plant roots, in this an auxin is produced in one side of the roots causing them to bend downwards towards the centre of the earth.

It is known that strong magnetic forces radiate from the centre of the earth, could not these magnetic forces cause a concentration in the lower side of plant roots causing them to bend downwards?
P. Crilly,

Reid Kerr College.
Paisley, Scotland

TRANSISTORS— maso varaty

| AC126 12p | BC107 | ep | BD131 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2N2905	19p	BAIDQE RECTIFIERS			
2N2926	9p				
2N3053	18p			400V	
2N3054	42p	250mA	14 p	$\overline{\text { cop }}$	
2N3055	$40 p$	${ }^{1 / 4}$	70p	${ }^{25 p}$	$5 p$
2N3442	120p	${ }^{2 A}$	30 p	4pp	p
2N3702	11p	4A	4p		p
2N3703	11p				100p
2N3704	11p				
2N3705	10p				
2N3706	10p	SCR-T	HYAIS	ISTORS	
2N3707	11p				600 V
2N3708	${ }^{\text {Pp }}$				600 V
2N3709	9p	${ }_{1}{ }^{\text {a }}$ A	25p 31		
2N3773 2N3819	230p			60p 55	65p
2N3819	22p			0p	110p
2N3823	48p	16A		top roop	120p
2N3905	15p				
40360	35p	triacs			
40361	38p	triacs			
40362	${ }^{38 p}$		30 V 5	50 V 400 V	500 V
ZTX 107	12p			sip -	
ZT $\times 108$	12p	3A		${ }^{35 p} 9$ 9p	120p
ZT $\times 109$	13p	6 A		30p 120p	150p
ZT $\times 500$	15p	10A		O9p $154 p$	165p
ZT $\times 501$	15p	16A	- 1	45p 110 p	200p

CIRCUITS

CA3028 Mixer RFIIF Oscillator
CA3048 Four Independent
CA3090 FM Stereo Decoder
LM377 Stereo Amplifier
2Wichannel

D

2N414 TRF Radıo Receiver
2.30 LINEAR INTEGAATED CIRCUITS
4.50 CA3046 Transimto Array
${ }_{1}^{\varepsilon} \cdot 10$

Fxed Output Posltive Voltage Regulators

$1.00 \quad 650 \mathrm{~mA}$
650 mA
LM 309 K 5 V 3. 00 LM307OP Amp with Int Comp

1. 50 MC4455 Timer (similar to NE555)

MC1303 Stereo Preamplifier MC1304 FM Stereo Decoder MC1310 Coiless FM Stereo Decoder MC1312 Four Channal SQ Decoder MFC4000 - Watt Audio Amplifier MFC6010 IF Amptitier Non-saturatin Limiter
TAD 100 TRF Audio Amplifier
TBABOD 5 Watt Audio Amplifier
TBAB00 7 Watt Audio Amplifier
TBA820 2 WEtt Audio Amplifier
1.80
2.80 only
NE555 NE555 Timer 709 Op Amp with Ext Comp 10 Differential Voltage
0.80 Comparstor

0.8574100 Amp with int Comp | . 85 |
| :--- |
| 741 Op Amp with |
| t. 50 |
| 747 |

$\quad 0.90$ Data she日ts on above ICs each

Minimum order $£ 2$
All prices exclusive of VAT.
P \& P 10p for orders below 55
Export inquiries welcome.
Inquiries from trade OEM. Colleges welcome.

All goods brand now and guaranteed to manufacturers specifications Money refunded if not satisfied.
Callers, by appointment, welcome. Catalogue on request. 15p.

Technomatic Ltd
54 Sandhurst Road, London, N.W. 9 Telephone 01-204 4333

PC ETCHING KIT

Containa 11b lerric chloride. 100 wa in copper-clad board OALO otch reaist pen. abrasive cleaner otching dish and instructions. sll for only 53 - 30 .

FEARIC CHLORIOE

Anhydroue tochnical quality to Mil spoc in lib double mealed packs 110 e0p. 310 51-45. 1010 54-45, 10010 c35.

VEROBOARO

100eq in aseorted wizes and pitches (no tiny plecer) E1-10.
3W TAPE AMPLIFIERS
Poliehed wooden cabinel $14 i n \times$ $13 i n$ an containing aenartive (20) vol vilve amp whe rone and volum contr Aleo a Supplied in good working condtion with ctrcult Stenderd maine oper tion s4.50 Suiteble cesertte s1.10 Spare heed 33p. Tepe (ex-computer) 15 p . Amplifier chassis only complote and teated (2 \times ECC83. EL84 EZ80) and speaker $\mathfrak{x 3}$.

SLOTMETER

Ex-Pay TV. takes 10 p pleces. has 3-digit mechanical counter. coin counter. Sangamo-Weston impulse movement nylon gearing switch etc Only $51-20$.

DEKATRON UNIT

Contains 2 CV2274 dekatrons. 2 -digit electromagnetic resettable Rs. Ce otc $\mathbf{c 2}$

RESISTORS AND CAPACITORS

500 asmorted resistors 51.35. 2500 c4.70. 150 poly. ceramic. mica. etc capacitors 80p.
PO AMPLIFIER UNIT
Contained in stoel case 5 fin $\times 5$ in \times 3 in are $2 \times$ GET 116 transistors on hemr sinks. 3 pot cores. 230 V zeners. and caps With circult diagram 5 .

71b BARGAIN PARCELS

hundreds of new components-pots. ealstors. capacitors. switches plus Ciodesards whth transistore and Amazing value at only E2. 30 .
COMPUTEA PANELS
310 asstd 51 -40; 71b E2. 85; 56Ib 15. Pack containing 500 components with at least 50 transiators 95p. 12 high quality panels with power tranaistors, trimpots, tCe etc e2.50. Thousands of boards at shops for callers from 50

VERSATILE POWEA UNIT

Contains mains tranaformer. 2A thermal cut-out and bridge rectifier Will give $17-10.5 \mathrm{~V}$ output with 2 axtra capacitors (aupplied) $51 \cdot 20$. Also availeble model garage with witch. lamp. fack plup. etc. (used for Hot wheela) $51 \cdot 70$.
MISCELLANEOUS
Transtormer, mains pri , $16-0-16 \mathrm{~V}$ with Viap sec $1+$ A E2. Post Office 4 digit counters sp. Balanced armatupo arpieces. 38 as mic. or apkr 20 N $80+20 \mu \mathrm{~F} 350 \mathrm{~V}$ 15\%: 10 for $£ 1.15$

> All prices shown include VAT and postage (mainland only). S.A.E list

GREENWELD ELECTRONICS (PE6)
Mail order dept., wholesale/retail shop: 51 Shirley Park Road, Southampton (Tel. 0703 772501). Other retail shops at: 21 Deptford Broadway SE8 (Tel. 01-692 2009) and 38 Lower Addiscombe Road, Croydon. Callers Welcome.

SNXON

 Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORYGUARANTEED TESTED HIGH PERFORMANCE
MODULES-now better value than ever SA35
35W RMS 25-50V
7 transistors. 7 diodes
SA50 $\mathbf{E 6 . 9 0} \underset{\substack{\text { Carriage } \\ \text { free }}}{\text { SA5 }}$
50W RMS 25-65V
SA100 $£ 10.90$
SA 100 RMS 45-70V
$11 /$ rransistors 6 diodes $\star 25 \mathrm{~Hz}-25 \mathrm{kHz}$
$\star 0.2 \%$ distortion $\star 0.2 \%$ distortio
\star Noise- 80 dB $\star 500 \mathrm{mV}$ into 20 K $\star 4-16$ ohms \star Simple wring \star Short and open * Continuously * rated * Top-grade components

POWER SUPPLIES

UNSTABILISED

PU45	Suits 2 SA 35 or I SA50	¢4.90	$\begin{gathered} \text { Carriage } \\ 30 \mathrm{p} \end{gathered}$
PU70	Suits 2 SA50 or 2 SA100	¢7.75	$\begin{gathered} \text { Carriage } \\ 40 \mathrm{p} \end{gathered}$
STABILISED			
PS45	Suits 2 SA 35 or 2 SA50	63.50	Carriage free
MT45	Transformer for above	¢3.50	$\underset{\substack{\text { Carriage } \\ 30 \mathrm{p}}}{ }$
PS70	Suirs 2 SAl00	¢4.90	Carriage free
MT70	Transformer for	¢4.90	Carriage

120 watt module complete with builtin supply-extra heavy duty $£ 19.75 \underbrace{\substack{\text { cit. }}}_{\substack{\text { carr. } \\ \text { cop }}}$

Mk II STEREO DISCO MIXER $£ 19.75$
This well tried unic mixes two decks, handies any seramic cartridge, and features mic over-ride plus separate full range bass and treble controls on both mic and deck inputs. Ample hable for P.F.L. May be used for mono and is mains operated. Fitsed with sturdy screening case. Controls: Mic vol, bass. treble. Left/Right fade, deck volume, bass, treble, h/ph
17 tin $\times 3$ in $\times 4 i n d e e p$.

DISCO MODULE $68.00{ }^{\text {carr. }}$

Thousands sold of this extremely popular mono version. A mic input may be fitted using the VA30 (see below). Low consumption from a $9 V$ battery. Features the same high standards of reproduction as the Stereo version. Conerols: H/phone select, val, Left deck
master vol. Size $12 \frac{3}{4}$ in $\times 3$ in $\times 2$ in deep.

3-CHANNEL SOUND-LITE E22.50 ${ }^{c_{\text {arr }}}$

Only $5 A X O N$ ean supply such incredible value for money. This unit features 3 kW
power handling. full-wave control, bass. middle, treble AND master concrols. Twin loudspeaker iacks for "through "connections. It may be used free standing or will panel mount next to either of the above. Also features unique CUT-BACK circuitry
for extra wide range response. Size $12 \mathrm{in} \times 3 \mathrm{in} \times 2 \frac{1}{2}$ in deep. Professional standards
SINGLE CHANNEL Recently reduced in price Add VAT 10% to all orders
(750 due to increasing sales. VERSION $\mathbf{~ 7} \cdot 50$ handles kW . Full wave

MULTI-PURPOSE MIXERS

M4HL

£ 18.50
M6HL
Featuring muleiples of our VA30 modur 50 p and M6HLfulfilthe requirements of all clubs, groups and M6HLfulfilthe requirements of all clubs, groups,
ete. where a high qualiey mixer is required. Each etc. Where a high quativy mixer required each
channel has one high and one low impedance input. Cham net has one hirb and onetow mpedance nput,
plus volume. treble and bass conerols. input impedancess may, if required, be easily changed. The Mthlit has four chanels, and one output, and the M6HL six channels (12 inputs) and a master Control and dwo ourouts. Either unier may be used reeerstanding or panel mounted. These mixers will
reed all teres of amplifier Recommended er sil feed all types of amplifier. Recommended for their versatility and high performance, and excelfent
valuefor money.
VA30 CHANNEL $\mathbf{~} \mathbf{3} \mathbf{3} 50 \begin{gathered}\text { Carr } \\ \text { free }\end{gathered}$
This is the basic channel module in the above mixers and may also be used for extra inputs on either the
mono or stereo mixers. Firsed with volume, bass mono or stereo mixers. Fisted with volume, bas and treble
$(9-100 \mathrm{~V})$

SixXON

SAXON
CSE
100
COMPLETE
AMPLIFIER
£34.90
Carr.free

100W of speech and music.-Two inputs. Widerange bass and treble controls. Siurdy and attractive vynide case. Twin ouspucs. deal for groups, tested and guaranteed. version identical

CSE 50
29.50 Carr.free

N.B. PS70 is not suitable for the SA50

 Four individually controlled FET input stages
wide rang
range bass and treble
trols. 120 W conspeech and music
output from win loudspeaker sockets. Sturdy case, and an attractive facia make this excellent value for money. Hundreds in use by groups,
iscos, clubs, etc.
spW version dentical in appearance.

SAXON 100 COMPLETE AMPLIFIER £53.00 Carr. íre SAXON 50 £ 37.50 Carr. free

CALLERS AND MAIL ORDER:

SAXON ENTERTAINMENTS LIMITED
327-333 WHITEHORSE ROAD - CROYDON CRO 2HS
(Please quoce magazine when ordering)
SHOP HOURS: 9 a.m. S P.m. LUNCH 12.301 .30 p.m. MAIL ORDER DESK: 10 a.m:-3.p.m. 24-HOUR ANSWER SERVICE TEL. 01-684 6385

MIDGET
MAINS TRANSFORMER
Vardinh Impregrated
Blze $45 \mathrm{~mm} \times 36 \mathrm{~mm} \times 31 \mathrm{~mm}$

PRI RAOV

TRI-VOLT BATTERY ELIMINATOR
Enables you to work
your
Transiator Radio, Amplifler or the a.c. manns through this compact plug sou can select the voltage you plag sou can select the voltage you
require, 6 , 71 or 9 volt. Thio meane all your traneistor power pack applications can be handled by this one unit. Approx. size $2 \operatorname{lin}_{20} \times 2 t$ in $\times 3 \mathrm{tin}$. Our l'rice 22.75 ylus 10p P. \& P. Same model suitably wired for the
Philips Cassette 23 plus 10 p P \& .

7in \times fin LOUDSPEAKER
 A top quality ppeaker ideal wher snt. Manufactured by E.M.I. for a wellknown hi-fl set maker. Size: $7 \mathrm{in} x$ 4 in . Impedance: 8 ohms. Flux 38,000 . Max. Free range: 90 Hz to
12 kHz . Yower handling: GW , Unbeatable. Price ©1.60 Free postage on thle item.

KITS

UK65 Transiator Tester UK92 Telejtbone Amy

 UK115 H1-Fi Amp-8W UK130 Mono Control Undt UK145 Amp-1.6WUK165 RIAA Equalised gtereo Arap UK195 Mini-Amp-2W
UK220 Signal Injector
UK230 AM-FM Acr Amp UK276 Mike Pre-Amp UK300 4 Channel Radio Control T.X. UK310 Radio Gontrol Receiver UK515 MW Radio Receiver UK520 AM Tuner
UK710 4 Channel A.F. Mixer UK715 Photoeiectric Cell Bwitch UK835 Guitar PreAmp UK875 Cap. Discharge Ignition UK915 K.F. Arnp 12*170MHz UK935 Wide Band Amp 20 Hz to 150 mH \$8.06 TRI-VOLT CAR SOPPLY Enables yout to work your Transistor Radio,
Amplifler or Cassette, etc. from the 12 volt car supply. Positive or negative earth. Approx. size $=2 i n \times 3$ in $\times 1$ in \quad This converter
supplies 6 , 7 or 9 volts and ist ansistor regulated. A rea; money saving levice for $£ 2-50.10 ; 1$ P. \& P.

"C, 300 " OISCO CONTROL PACK

 A control Unit which when connected to twin decks makes a disco of frofessional quality, We supply ow itch and inputsockets. The cont rol module, I.C. construction incur porating mixing, pre-arnp and beadphone listening amplitier. The power fack enables this unit to work from the standard mains. * Inputs include Mic., Tape/Cassette and Twin Mono, 514 . Stereo, e17 tus 20p carr Mono, s14. Stereo, 817 ylus 20p car
$0.50 \mu \mathrm{~A}-\mathrm{ME} 6$ $0.100 \mu \mathrm{~A}-\mathrm{ME7}$
$0.500 \mu \mathrm{~A}-\mathrm{ME8}$ $0.500 \mu \mathrm{~A}-\mathrm{ME8}$
$0.1 \mathrm{~mA}-\mathrm{ME} 9$ $0.1 \mathrm{~mA}-3 E 9$
$0.6 \mathrm{~mA}-\mathrm{ME10}$ $0.10 \mathrm{~mA}-\mathrm{ME11}$ 0.50 mA - ME12 ¢3 each. 10 j , F^{\prime} \& I

LOW VOLTAGE AMPLIFIER

5 transistor amplifler complete tor 9 V d.c. and a.c. supplies. Will give about IW at \& ohm output.
With bi
With bigh IMP ingut this ampli. fier will work as a record player,
amplifier

CRESCENT CATALOGUE

If you construct you should own
one. Henll 20 p inc. carrlage.

VAT

Please include 8% VAT on goods plus carriage.

\section*{ELEGTROVALIE | Present top quality components for |
| :---: |
| price-minded constructors |}

Guaranteed to spec. - Genuine discounts - Free postage in U.K.

TRANSISTORS
ACl53K pnp germanium low power 37p
AD161 npn germanium medium power 42 p
AD162 pnp germanium medium power 40p
AF139 prip germanium UHF 57p
BC107 15p; BC108 14p; BC109 18p;
BC167 15p; BC168 14p; BC16913p each $\}$ npn
$\left.\begin{array}{l}\text { BC1 } 77 \text { 25p; BC178 23p; BC179 26p; } \\ \text { BC257 14p; BC258 12p; BC259 14p }\end{array}\right\}$ pnp
Standard groupings available
BDI 35 non med. power 37 p
BDI36 pnp med power 39p
DDIJ6 pnp med, power 39p
DIODES
OA90. OA
A990, OA91. OA95 each 6p
Other semiconductors
AC128 17p; AFII7 37p
BFY51 23p
Full lists and technical dato will be found in Cotologue No. 7.

RESISTORS
Code Wates Ohms 1 to9 $108099 \quad 100$ up

Codes:
$C=$
carbon film, high stability, low nois
$\mathrm{MO}=$ metal oxide, Electrosil TR5, ultralow noise
Vatuas: All El2 excepr C $\$ W, C \$ W$ and $M O+W$
E12: 10, 12, $15,18,22,27,33,39,47,56,68,82$
E24: as E12 plus $11,13,16,20,24,30,36,43,51$ $62,75,91$ and their decades.
Tolerances:
5% except WWI 10%
$\pm 0.05 \Omega$ below $10 n$ and MO in W 2%
Prices are in pence each for quantities of the mixed values (lenore fractions of one penny mixed values. (ignore ractions Prices for 100 up in units of 100 only.

MINITRON DIGITALINDICATORS
30154F Seven segment flament, compatible with standard logic modules. $0-9$ and decimal point in 8 mA or 15 mA per segment rating.
$3015 G$ showing + or - and I and dec. pt, $\& 1.20$

This is EV Service

OISCOUNTS

Available on all items except those shown with NETT PRICES. 10% on orders from E5 to E 14.99 5% on orders $E 15$ and over
PACKING AND POSTAGE FREE
in U.K. for pre-paid mail orders. For orders $\mathcal{E 2}$ and under, there is an additional handling charge of 100

GUARANTEE OF QUALITY

All goods are sold on the understanding that they conform to manufacturers specifications and satisfaction is guaranteed as such-no rejects, for sale.
PRICES QUOTED DO NOT INCLUDE VAT, for which 8% must be added to total nett value of order. Every effort is made to ensure correctness of information and prices at time of going to press. Prices are subject to alteration without notice. S.A.E. with written enquiries please.

GIRO ACCOUNT No. 38/671/4002

CAPACITORS
DALY ELECTROLYTIC
$1.000 \mathrm{mF} / 25 \mathrm{~V}, 28 \mathrm{p} ; \quad 5,000 \mathrm{mF} / 25 \mathrm{~V}, 62 \mathrm{p} ; 1,000 \mathrm{mF}$ $50 \mathrm{~V}, 41 \mathrm{p} ; 2.000 \mathrm{mF} / 50 \mathrm{~V}, 57 \mathrm{p} ; 5.000 \mathrm{mF} / 50 \mathrm{~V}, \mathrm{LI} \cdot 18$ $50,00 \mathrm{mF} / 100 \mathrm{~V}, 42.91$; $2.200 \mathrm{mF} / 100 \mathrm{~V}, \mathrm{Cl}$-56.
POLYESTER TYPE C280
Radial leads for P.C.B. mounting. Warking valtage
$0.01,0.015,0.022,0.033,0.047,3 p$ each: 0.068 $0.1 \quad 0.15$ 4p each; $0.22,5 p ; 0.33 \quad 7 p ; 0.478 p$ 0.68 , 11p; 1 0. 14p; 1.5, 21p; 2.2, 24p.

SILVERED MICA
Working voltage SOOV d.
Values in pF- 2.2 to 820 in 32 stages. $6 p$ each 1,000, 1,500, 7p each, 1,800, 8p, 2,200, 10p , 000 , 20 p 1200 , $10,000,25$ pech .800, 20p; 8,200, $10,000,25 p$ each
TANTALUMBEAD
$0.1,0.22, \quad 0.47,1.0 \mathrm{mF} / 35 \mathrm{~V}, 14 \mathrm{p}$ each. $2.2 / 16 \mathrm{~V}$ $2.2 / 35 \mathrm{~V}, 4.7 / 16 \mathrm{~V}, 10 / 6 \cdot 3 \mathrm{~V}, 14 \mathrm{p}$ each. $4.7 / 35 \mathrm{~V}$ $0 / 16 \mathrm{~V}, 22 / 6 \cdot 3 \mathrm{~V}, 18 \mathrm{p}$ each. $10 / 25 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6 \cdot 3 \mathrm{~V}$ $100 / 3 \mathrm{~V}, 6 \cdot 8 / 25 \mathrm{~V}, 15 / 25 \mathrm{~V}, 20 \mathrm{p}$ each
POLYCARBONATE TYPE B 32540
Working Voltage 250V.
Values in mF: $0.0047,0.0068,0.0082,0.01,0.012$ $0.015,3$ 3 each. $0.018,0.022,0.027,0.033,0.039$ $0.047,0.056,0.068,0.082,01,4 \mathrm{p}$ each.
CERAMIC PLATE
in 26 values from 22 pF to 6,800 pF, 2p each.

ELECTROLYTIC Axial Leads

uF	3 V	6.3 V	10 V	16 V	25 V	40 V	63 V	100V
0.47		-					$11 p$	8 p
1.0						$11 p$	-	8 p
$2 \cdot 2$					$11 p$		8p	9p
4.7	-			IIp		8p	9p	$9 p$
10	-	-		-	8 P	9 p	8 p	8 p
22		-	8p	-	9 p	8 p	8p	10p
47	$8 p$	\bigcirc	9 p	8 p	8 p	8 p	10p	13 p
100	9p	8 p	8 p	8 p	9 p	10p	12p	19p
220	8p	8p	9p	10p	10p	$11 p$	17p	28p
470	9 p	10p	10p	I1p	13p	17p	24p	$45 p$
1,000	$11 p$	13p	13p	17p	20p	25p	41p	-
2,200	15p	18p	$23 p$	26p	37p	$41 p$	-	-
4,700	26p	30p	39p	44p	58p	-	-	-
10.000	42p	46p	-	-	-			

POTENTIOMETERS

ROTARY, CARBON TRACK
Double wipers for good contact ond long working tife P20 SINGLE linear 100 ohms to 4.7Mn. I4p each JP2O DUAL GANG linear $4.7 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \Omega$, 48p each. DUAL GANG log. 4.7k Ω to 2.2M@. 48p each. DUAL GANG log/antilog lok, $22 \mathrm{~K}, 47 \mathrm{~K}$ MO only, 48p each
JP20 DUAL GANG antilog lok only 48 p .
2A DP mains switch with any of above 14 p extra
Decades of 10.22 and 47 only available in ranges becades SKELETON CARBON PRESETS \quad Ppeach

SLIDER

Linear or log, 4.7k 0 to IM 0 in all popular values, Escutcheon plates, black, white or light grey, 10p each.
Control knobs blk/wht/red/yel/grn/blue/dk. grey/le grey, 7p each.

ELECTROTALUE LTO

JACKS AND PLUGS

Sacket:
2-circuit, unswitched, SI/SS

-circuit 2 break contaces, SI/BB

 -circuit. unswitched (not GPO), S3/5ss 3 -circuit with 3 break contacts. S3/BBB 20p circuit with chrome nut and black/white/red green or grey unswitched, S5/SS 14p```
circuit with chrome nut and black/whice/red
```

green with 2 break contacts, S5/BB 2 br. cont
Miniature, $3.5 \mathrm{~mm}, 2$-circuit (black), 2 br cont.,
$\mathbf{8 p} / \mathrm{BB}$
\$6/BB

Plugs
2 circ. sereened, top entry. P. I Line socket, mono. 231
-ine socket, stereo, 244 , bircuit, unscreened, b/gh, P. 4
-circuit, unscreened, b/whi/red/bl/grn/grey
3-circuit, screened, top entry, PJ -circuit, screened, side entry, SEP 3 Miniarure, $\mathbf{3 . 5 m m}$, 2 -circ., unsereened, various colours, P6
INSULATED SCREW TERMINALS
in moulded polypropylene, with nickel plate on bass. With insulating set, washers, tag and nuts 15A/250V. in blk/brwn/red/yel/grn/bligrey/wh, Type TP.1, 14p each.
ZENER DIODES rull range E24 values: 400 mW : 2.7 V to 36 V , 14 p each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to $82 \mathrm{~V}, 21 \mathrm{p}$ each; I.5W: 4.7V to 75 V , 67 peachits to 3 watts (rype Clip to increase 5 F rating to wate (typ 266F) 5p.
VEROBOARD
Copper clad 0.1 in. matrix $-2.5 \times 3.75$ ins. 32p.
$3.75 \times 3.75$ ins., 35 p. $2.5 \times 5$ ins., 35 p. $3.75 \times$ 5 ins., 39 p . Copper clad 0.15 in. matrix $-25 \times 3.75$ ins. 24 p .
$3.75 \times 3.75$ ins. 35 . $2.5 \times 5$ ins. 35 . $3.75 \times 2$. $3.75 \times 3.75$ ins., 35 p. $2.5 \times 5$ ins., 35 p. $3.75 \times$
5 ins., $44 p$. 5 ins., 44p.
Vero spot face cutter (any matrix), $53 \mathrm{p}, 0.040$ pins (for 0.1 matrix) per $100,35 \mathrm{p} .0 .052$ pins (for 0.15

## KNOBS

In a great variety of modern types, for tin. shaft per pack of two (Catalogue 7 , page 62 )

## CONNECTORS

DIN from 2-way to 7-way plugs and sockets; phono Dines mains connectors, etc. (Catalogue 7, page B8)

## SIEMENS THYRISTORS

$0.8 \mathrm{~A} 400 \mathrm{~V}, 65 \mathrm{p} ; 600 \mathrm{~V}, 94 \mathrm{p} ; 3 \mathrm{~A} 400 \mathrm{~V}, \mathrm{fl} .06$; 600 V 81.50 .

## DESOLDERING BRAID

6p, Reels, $25 \mathrm{~m}, \mathbf{4 7} 15$.

## EV CATALOGUE 7

2nd Printing (Green and yellow cover) 112 pages, thousands of iterns, illustrations, dia printing of this catalogue has been updated as much as possible on prices. It costs only 25p post free and includes a refund voucher for 25 p for spending when ordering goods list value E 5 or more.

All postal communications, mail orders, etc., to Head Office at Egham address, Dept. PE9.
28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Telephone: Egham 3605 Telex 264475 Shop hours-9-5.30 daily. Soturdays 9.1 p.m. Northern Branch: 680 BURNAGE LANE, BURNAGE, MANCHESTER MI9 I NA Telephone 061-432 4945

Shop hours-Daily 9.1 and 2.5.30 p.m. Saturdays 9.1 p.m U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27, Swarthmore PA 19081

## The largest selection

EX COMPUTER BOARDS
Packed with tranialators, diodes. capacitorn
and resistors-COMPONENTVALUE 11.50 .
 PR +
special one ab above plus power Transigtora ONLY 55p each + P. \& P. 15p. PAXOLINE BOARDS 7 is $\times 9^{*}$ approx 4 for $80 \mathrm{p}+$ P. $\&$ P. 20p

FIBRE-GLASS PRINTED CIRCUIT BOARDS

DECON-DALO 33PC Marker Etch res
90p each

## VEROBOARDS

Packs containing approx, j0sm. in. various
REPANCO CHOKES \& COILS
RF Choker
$\begin{array}{ll}\mathrm{CH} \\ \mathrm{CH} 3.25 \mathrm{mHH} 39 \mathrm{p} & \mathrm{CH} 2.50 \mathrm{mH} 30 \mathrm{p} \\ \mathrm{CH} 4.10 \mathrm{mH} 33 \mathrm{D}\end{array}$

DRX1 Cryatal set 31p DRR2 Dual range 45p
COIL FORMERS \& CORES
NORMAN $\mathfrak{f}^{\circ}$ Cores \& Formers 8p
1 - Cores a Formers 10p
SWITCHES
DP/IDT Toggle 36p SP/ST Toggle 30p

## FUSES

1\% and 20 mm . $100 \mathrm{~mA}, 200 \mathrm{ma}$, 250 m , QUICK-BLOW 'sp each

EARPHONES
Cryatal 2.5 mm m phag 42p
Cryatal 3.5 mm plug 42 p
8 ohme 3.5 mm plug 22p

## DYNAMIC MICROPHONES

B1223, 200 ohtus plus on/of
2.6 nmm and 3.5 mm plugs 81.85
3-WAY STEREO HEAD.
PHONE JUNCTION BOX
H1012 81.87
2-WAY CROSSOVER
NETWORK
K 4007.80 ohms rap. Insertion loss 3b [3 21.21
CAR STEREO SPEAKERS
(Angled) 83.85 jeer pair

## BI-PAK

CATALOGUE AND LISTS Send S.A.E. and 10p.

INSTRUMENT CASES

(Black Vinyl covered)


## ALUMINIUM BOXES

| BA1 | $5{ }^{\circ}$ | $\times$ | $29^{\circ}$ | $\times$ | $1{ }^{10}$ | 42p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{HA}^{2}$ | 4 | $\times$ | 4 | $\times$ | $11^{\circ}$ | 42 p |
| 14.3 | $4^{\circ}$ | $\times$ | $4{ }^{\circ}$ | $\times$ | $11^{*}$ | 42 p |
| BA4 | at | $\times$ | 4 | $\times$ | $1{ }^{*}$ | 50 D |
| baj | $4{ }^{\circ}$ | $\times$ | $24^{\circ}$ | $\times$ | $2{ }^{*}$ | 42p |
| 136 | $3{ }^{\circ}$ | $\times$ | 2- | $\times$ | 1. | 340 |
| $\mathrm{BAF}^{7}$ | $7{ }^{\circ}$ | $\times$ | $5^{*}$ | $\times$ | " ${ }^{\text {c }}$ | 70 p |
| BA8 | $8{ }^{\circ}$ | $\times$ | $6^{\circ}$ | $\times$ | 3 | 90 p |
| BA9 | $6^{*}$ | $\times$ | 4. | $\times$ | $2^{*}$ | 58p |

## BIB HI-FI ACCESSORIES

De Luxe Groov-Kleen Model-42 £4-95 Chrome Finish Model $60 £ 4 \cdot 50$


Ref. 36A. Record/Btylus Cleaning Kit 33p Ref. 43. Record Care Kit 28.42 Ref. 31. Cassette Head Cleaner 88D Ref. 32. Tape editing Kit $£ 1.68$ Het 46 Spirit Level 82 p

## ANTEX SOLDERING IRONS

 X25. 25 watt $\mathbf{~} \mathbf{2} .05$OCN 240.15 watt $£ 8.48$ Mollel 1 . 18 watt 22.26 K K 2. Soldering Kit $£ 3-25$ STANDS: 8T3, auitable for all models 41 SOLDER: 188 WG Multicore $70 z \& 1.81$ 228以 702 21.61. 188WG:22ft 51p 228WG Tube 33p

ANTEX BITS and ELEMENTS Bits No.
102 For model CN240 sh
104 For mondel CN240
1100 For mudel CCN 240 \$3
1101 For model CCN 240 :" 102 For incmlel CCN $240 t^{-}$
1020 For model G240 sis
1021 For model $\mathbf{G 2 4 0} \mathbf{1 -}^{-}$
1022 For model G240 8
50 For moriel $\times 253_{3}^{3}$.
ol For model X25
52 For model X 25 is
elements
ECN $240 £ 1.30 \quad$ ECCN $240 £ 1.32$
E 1240 21.07
EX 25 £1.16
ANTEX HEAT SINKS 10p
VAT included in all prices. Please add 10p P. \& P. (J.K. only). Overseas ordersplease add extra for postage.

NEW COMPONENT PAK BARGAINS
Pack
No. Qty. Description
C1 200 Renistors mixed values approx
C1 $\begin{gathered}\text { count by weight } \\ \text { C. } 150 \text { Capacitors mixed values approx } \\ 0.55\end{gathered}$.
apacitors mixed values approx
count thy weight
0.55
recision Resisto
mixed values
Ith w Resistors mixed preferred
values
Pieces assorted Ferrite Lods 0.55
Turing crangs, MW/LW VHF 0.55
ack Wire 50 metres assorted
colours
810 Reed switch er
c9 3 Micro Switches
C10 15 Assorted Pots \& Pre.Bets
Jack Sockets $3 \times 3.0 .55$
standard Switch Type $\quad 3 \mathrm{~cm} \times$
Paper Condensers preferred
nixed values
01320 Electrolytice Trans. types 0.55
Ci4 1 Pack assorted Harduare
Nuts/holts, Gromimets, etc. 0.55
Mains Slide Kwitches
C16 20
Assorted Tag Strips \& Pa
C17 10
C18 4 Rotary Wave Clange Switches 0.55
C19 2 Retayn 6-24V Operating 0.55
C 201 Pack sherts of Copper Laminat

1
1 Ref. 32A. Hi-Fi Cleaner 31p Ref. J. T Hylus Balance $£ 1-37$ Ref Jif. Hi-Fi giereoling Kit 6Rp Ref. 45. Anto Changer Groove Cleaner $\& 1.08$

## PLUGS AND SOCKETS

PS 1 D.1.N. 2 Pin (Speaker)
PS 2 D.I.N. 3 Pin
$\begin{array}{lll}\text { PS } & 3 & \text { D.I.N. } 4 \text { Pin } \\ \text { PS } & 4 & \text { D.I.N. } 5 \text { Pin } 180^{\circ}\end{array}$
PS 5 D.I.N. 5 P'in $240^{\circ}$
PS 6 D.I.N. 6 Pin
$\begin{array}{lll}\text { P'S } & 7 & \text { D.I.N. } 7 \text { Pin } \\ \text { P'S } & 8 & \text { Jack } 2 \text {-5mm Screened }\end{array}$
Ps 9
P Jack 3 omm Plastic
1'g 10
Jack
$3 \cdot 5 \mathrm{~mm}$ Hereened
PS 11 Jach :" Plastic
PS 12 , fack ! 1 Screened
PS 14 Phono
I'S 15 Car Aerial
IN 16 Co-Axial
INLINE SOCKETS
PS:21 D.IN. 2 Pin (Speaker)
$\begin{array}{ll}\text { P8 22 } & \text { D.I.N. } 3 \text { Pin } \\ \text { PS } 23 & \text { D.IN. } 5 \text { Pin } 180\end{array}$
PS 24 D.I.N. 5 P'in $240^{\circ}$
PS 25 Jack 2.5 mm Plastic
PS 26 Jack 3.5 mm Plastic
PS 27 Jack $t^{7}$ Plastic
$\begin{array}{ll}\text { PS } 28 & \text { Jack } \\ \text { I's } 29 & \text { Jack Screened } \\ \text { Stereo Plastic }\end{array}$
PS 30 Jack Stereo Screene
PS 31 Phono Screenet
PS 32 Car Aerial
$\frac{\text { P8 } 33 \mathrm{Co}}{\text { SOCKETS }}$
is 3ij D.I.N.2 Pin (8peaker)
IS 36 D.I.N. 3 Pin
PS 38 D.I.N. 5 Pin $240^{\circ}$
PS 39 Jack $2 \cdot 5$ mu Switehed
PS 40 Jack 3.5mm Switched
PS 41 Jack $\ddagger^{*}$ Switched
PS 42 Jack Stereo Switched
P'g 43 Phono Single
$\begin{array}{lll}\text { PS } 46 & \text { Phono Double } \\ \text { Po-Axial Surfac }\end{array}$
PB 47 Co Axial F゙lush

## LEADS

LB 1 Speaker Lead 2 pin I.I.N. plug to

## CABLES

CP I Single Lappied Screera

CP ? Twin Comtann Screen

## CP Btereo Screened

CP 4 Four Core Conmon Screen CP 6 Micropre Individually Screened 0.30
Cl' 7 Microphone frully Braided Cable 0.10
CP 9 Twin Oval Ma

## CP 10 Low Lors Co-Axial

## CARBON

## POTENT

Log and Lin

## 13, 2M

VC 1 Single Less Switch
VC ${ }^{2}$ Single D.P. Switcl
VC 4 Tandem Less Switch
$\begin{array}{ll}\text { VC } & \text { K K Lin Less Swit } \\ \text { VC } 5 & 100 \mathrm{~K} \text { anti-Log }\end{array}$
HORIZONTAL CARBON

## PRESETS

0.1 watt $\quad 0.06$ each
$100,220,470,1 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$

## IT'S NEW

IT'S POWERFUL
(15 + 15w R.M.S.) AND IT LOOKS GOOD!
THE

## LEGIONAIRE

STEREO AMPLIFIEP

ORDER NOW-
ONLY £39.95 p. \& p. 50p
OR Write for full details

\section*{WORLD SCOOP <br> JUMBO <br> SEMICONDUCTOR PACK <br> Transistors, Germ and Silicon Rectifiers, Diodes, Triaes, Thyristors, I.Cs and Zeners. <br> APPROX 100 PIECES <br> Offering the amateur a fantastle bargain Pak and an enormous saving-identifeation and <br> Only $\& 2$ p. \& p. 20p <br> RECORD STORAGE/ CARRY CASES <br> $\qquad$ <br> 

CASSETTE CASES
Holds $1 \because 10$ in $\times 3 \frac{1}{3} \times$ zin. Lock and handle, $£ 1 \cdot 30$

## SPECIAL PURCHASE

 2N3055. Silicon Power Translatora NPN. Famous manufacturers out-of-spec devicen ablel 115 W . TO3. Metal CaseOUR SPECLAL PRICE 8 for $£ 1$

## LOW COST CAPACITORS

 $0.01 \mu \mathrm{~F} 400 \mathrm{~V}$$500 \mu \mathrm{~F}^{5} 50 \mathrm{~V}$. Elect
3p asch
0 p anch
REPANCO TRANSFORMERS
240 V . Primary. Secondary voltages available from selected tap pinga $4 \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}$ $4 \mathrm{~N}, 15 \mathrm{~V} 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}, 31 \mathrm{~V}, 33 \mathrm{~V}$
40,50 and $25 \mathrm{~V}-0-25 \mathrm{~V}$.
Ty
$M$

## CARTRIDGES

ACOS
GP91-I $8 \mathrm{C}=00 \mathrm{mV}$ at $1.2 \mathrm{~cm} / \mathrm{sec}$ GP93-1 280 mV at $1 \mathrm{~cm} / \mathrm{sec}$ P96-1 100 n V at $1 \mathrm{cru} / \mathrm{sec}$ $-2005 \mathrm{Crystal} / \mathrm{Hj}$ Output
-2010 C Crystal/Hi Output Compati
-2006s Stereo/hi Output
-2105 Ceramic/Med output
J-2203S Replacement stylus for above 23.04

| $\overline{\mathrm{j} m} / \mathrm{sec} \quad \mathbf{E 8 . 3 0}$ |  |
| :---: | :---: |
|  |  |

CARBON FILM RESISTORS
The E12 Range of Carbon Film Resstors, $\frac{1}{h}$ watt arailable in PAKS of 50 pleces, R1 $\quad 50$ Mixed 100 ohing- 820 ghms. Res Mixed orab ohm
R3 50 Mixed $10 \mathrm{k} \Omega-82 \mathrm{k} \Omega$
Rt 50 Mixed $100 \mathrm{k} \Omega \mathrm{m}$
TIIESE ARE UNBEATABLE PRICES JUST 1p EACH 1NCL. VA.T.

BI-PAK SUPERIOR QUALITY
LOW - NOISE CASSETTES
C60, 38p; C90, 48p; C120, 80p.

## -the lowest prices!

## BI-PAK QUALITY COMES TO AUDIO!

## AL10/AL20/AL30 AUDIO AMPLIFIER MODULES



The AL10, AL20 and AL30 units are similar in their appearance and in thelr general specification. However. careful
selection of the plastle power devices resulted in a range of output powers from 3 to 10 watts R.M.S.
The verastility of their design makea them ideal for use in record players, tape recorders, stereo amplifiers and casactte and cartridge tape players in the car and at home.

| Parameter | Conditions | Pertormence |
| :---: | :---: | :---: |
| IARMONIC DISTORTION | Po $=3$ WATTS $\mathrm{t}=1 \mathrm{KHz}$ | 0.25\% |
| .OAD IMPEDANCE | - | 8-16 $\Omega$ |
| NPUT IMPEDANCE | $t=1 \mathrm{KHz}$ | 100 kR |
| 'REQUENCY RESPONSE - 3 dB | $\mathrm{Po}=2 \mathrm{WATTS}$ | $50 \mathrm{Hz-25KHz}$ |
| ENSITIVITY for Rated o/P | $\mathrm{V}_{\mathrm{s}}=25 \mathrm{~V}, \mathrm{RI}=8 \Omega \mathrm{f}=1 \mathrm{KHz}$ | 75 mV . RM8 |
| DMENSIONS | - | $3^{*} \times 21^{*}=1^{*}$ |

The above table relate日 to the AL10, AL20 and AL30
modules. The following table outlines the differences
in their working conditions.

| Parameter | AL10 | AL80 | AL30 |
| :---: | :---: | :---: | :---: |
| faximum Supply Voltage | 25 | 30 | 30 |
| 'ower out for $2 \%$ T.H.D $(\mathrm{RL}=8 \Omega:=1 \mathrm{KHz})$ | 3 watts RMS Min. | 5 watte RMS Min. | 10 watts RMS Min |

IUDIO AMPLIFIER MODULES
iL $10 . ~$
$i L$
20
5 watts
5
e2. 19
28.59
28.59
28.01

IOWER SUPPLIES
812. (Use with AL10, AL20, AL30) 88p PM 80. (UBe with AL60) RONT PANELS PA 12 with Knobs

## PA12 PRE-AMPLIFIER SPECIFICATION

## PRE-AMPLIFIERS

PA 12. (Use with AL10*AL20) 24-35 PA 100. (U*e with AL30 \& AL60) 218-15

## TRANSFORMERS

T461 (Use with ALl0) £1.38 P \& P 15p T538 (Use with AL20, AL30) 11.93 P \& $P$

BMT80 (Use with AL60) 82.15
P\& P 25 p

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY $£ 3.95$

- Max Heat Sink temp $90^{\circ} \mathrm{C}$
- Frequency Response 20 Hz to 100 KHz - $0.1 \%$ Distortion Distortion better than $1 \%$ at 1 KHz - Supply voltage $10-35$ volts
- Thermal Feedback - Latest Design Improvements - Load - 3, 4, 8 or 16 ohms - Signal to noise ratio 80 dB
- Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ 13 mm

Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F enthusiast.


## STABILISED POWER MODULE SPM80

S1M 80 is eapsecially deaigned to power 2 of the AL60 Amplifiers, ug to 15 watt (rin.s.) per channel simultaneously. This module embodies the latest componente and circuit techniques incorporating complete shor circuit protection, With the addition of the Mains TransCormer BMT80, the unit will provide outputa of up to 1.5 Theas units erable you to build Audio 8 ystems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including:-Disco 8ystema, Public Addreas Intercom Unita, etc. Handbook svailable 10p PR|CE $3 \cdot 25$
TRANSFORMER BMT80 £2•15 p. \& p. 28p

## STEREO PRE-AMPLIFIER TYPE PA100

Built to a speciflcation and NOT a price, and yet still the greatest value on the narket, the PA100 stereo pre-amplifier has been conceived from the latest circuit techniques, no less than eight gilicon planar transistors, two of these are specially selected low noise NI'N devices for use in the input stages.
Three switched atereo injuts, and rimble and scratch filters are features of the PA100. which also has a STEREO/MONO mwitch, volume, balance and continuously variable bass and treble controls.

8PECIFICATION


Frequency Reaponse
Harmonic Distortion $\quad \begin{aligned} & 20 \mathrm{~Hz}-20 \mathrm{KHz} \pm \\ & \text { better than } 0.1 \%\end{aligned}$
Inputs: 1. Tape Heal $\quad 3.25 \mathrm{mV}$ into $50 \mathrm{~K} \Omega$
$\begin{array}{ll}\text { Radio, Tuner } & 75 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega \\ \text { Magnetic P.U. } & 3 \mathrm{mV} \text { tnto } 50 \mathrm{~K} \text {. }\end{array}$
All input voltages are for an output of 250 mV . Tape and P.U. input equalised to RIAA curve within +1 dB . from 20 Hz to 20 KHz . Bass Control
Filters: Rumble (High Pass)
geratch (Low Pass)
$\pm \underset{4}{15 d B}$ at 20 Hz
15 dB at 20 KHz
${ }_{8}^{100 H z}$
better than -65dB
8ignal/Noise Ratio
Input overload
Supply
+28 dll
+35 volts at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £13.45
MK 60 AUDIO KIT
Comprising: $2 \times$ AL60, $1 \times 81^{1}$ M80, $1 \times$ BTM80, $1 \times$ PA 100,1 front panel, 1 kit of parts to include on-off switch, neon indicator, stereo headphone sockets plus instruction booklets. Complete Price: $\$ 28.75$ plus 30 p postage.
TEAK 60 AUDIO KIT
Comprising: Teak veneered cabinet size $161^{*} \times 111^{*} \times 33^{\prime \prime}$, other parts include aluminium chassis, heataink and front panel bracket, plus back panel and approprlate sockets, etc. Kit price: $\mathbf{\$ 9 . 9 5}$ plus $30 \%$ postage.


The PA12 pre-amplifter has been deaigned to match into nost budget stereo oystems. It is compatible with the L 10, AL 20 and AL 30 audio power ampliffers and it an be supplied from their associated power supplles. There are two stereo inputs, one has been designed for use ith *Ceramic cartridges while the auziliary input will uit most †Magnetic cartridges. Full details are given In he specification table. The four controls are, from left to ight: Volume and on/off switch, balance, basa and trebie. ze $152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}$.
'he 'Stereo 20'" amplifier is mounted, ready wired and tert n a one-piece chassis measuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$. olume control, balance, bass and treble controls. 'ransformer, Power supply and Power ampa. ttractively printed front panel and match$2 g$ control knobs. The "Stereo 20" has been emigned to fit into most turntable plinths thout intertering with the mechaniam or, ternatively, into a separate cabinet. utput power 20 w peak. Input 1 (Cer.) omut a istortion Bas control 12 dB . poleally $0.25 \%$ at 1 watt. Treble con. 14 dB at 14 kHz . watt. Treble con. $\mathbf{~} \mid 4.45$

## FC20 TEAK VENEERED CABINET

'or Stereo 20 (front board undrilled) Size $101^{\prime \prime} \times 81^{*} \times 3^{\prime \prime}, 28.95$ plus 30p postage
SHP80 STEREO HEADPHONES
-16 ohms impedance. Frequency response 20 to $20,000 \mathrm{~Hz}$. Stereo/mono switch and volume ontrole, 24.95

SEMICONDUCTOR ADVERTISEMENTS in

ALL PRICES INCLUDE V.A.T.

## The STEREO 20

## NEW SCORPIO Mk. 2 <br> 

Following the phenomenally successful Scorpio Capacitor-Discharge Electronic Ignition system introduced in 1972 and proved by many thousands of satisfied motorists, we are happy to announce availability of all parts for the PE SCORPIO Mk. $2-$

* Now with added R.F.I. suppression.
- Fully machined and painted diecast case with AMP termination connector block.
- Custom wound transformer
- NOW AVAILABLE IN 6 V . and 12 V
- Suitable for all types of Cars, Boats, Go-Karts, etc.
- Promotes easier starting-even under sub-zero conditions.
- Improves acceleration, gives better high speed performance and
quicker engine warm up.
- Eliminates excessive contact breaker burning and pitting.
- PROMOTES FUEL ECONOMY.

Construction of the unit can easily be completed in an eveninginstallation should take about half an hour. A complete complement of components is supplied with each kit together with ready drilled, roller tinned professional quality fibreglass printed circuit board. -Uses original plugs, poines and coil.-No special parts or extras required. (Case size: $7 \downarrow$ in $\times 4 \frac{1}{2}$ in $\times 2 i n$ )

- All components available separately.-S.A.E. with enquiries.
- Construction manual available separately 25p.

Cost $£ 11.78$ incl. carr. and ins. or ready built and tested $£ 14 \cdot 10$.
Conversion kit from Mk. I to Mk. 2. For constructors already possessing Mk. I Kits.-Miniature P.C. assembly $\& 1$ incl. carr. and ins. With full conversion instructions.

PLEASE ADD VAT TO ALL U.K. ORDERS
(Carriage at cost outside U.K. - Export enquiries welcome.)
DABAR ELECTRONIC PRODUCTS
98 LICHFIELD STREET
WALSALL, Staffs WSI IUZ

## INAIIIPIS

MONEY BACK IF NOT SATISFIED) all brand new full spec. Top grade. Free fabulous NEW catalogue. Send SAE red +1 'r pinLED 'S 17p: Til209
data
 data source LED`S 17p: Til209\&clip 22
BIG'-4 panelclip \&REI) LEI) 28p, GREEN \& clip59p INFRA REDLED EI. IC photo amp44p.\& amp/switch 85 p


Calculator Minitron type 0-9dpnif $£ 1 \cdot 19$. sockets 13 p .

Texas etc with 4 display 12 . 6 displays \& chip 14 Mostek date \& alarm chips with 6 displays $£ 19$

# E. 

 hitit:All parts \& case. .Nat ional thip. tigisit $£ 20.6 \times \times 2337$
 710 35p 723 59p. 555 timer 79 p ZN 144 rx. $£ 1$ - 10 built 703 rf if 28 P mc $1.310 \&$ led $£ 2.76 \mathrm{mc} 1339 \mathrm{fl} \cdot 20$ TADIOO \& if E 2 1AMP+ REGULATOR 7805,5 ( \& 7-20)V.also $12 \& 15 \mathrm{~V} £ 1-49$ AUDIO AMPS:mfc4o oo 50p; 1\& 2W£ $1 \cdot 19 ; 3 W £ 129 ; 6 \mathrm{~W}$...
 $749269 p^{241} 7149 \mathrm{P}$. \& all others inca NEW 16 pin counter/driver $90 / 47$ £2-25

DAL. low prices. DEW 16 pin counter/driver 90/47 £2.25 DALO pat.PEN 69 p. DIL SOCKETS: Profesional/gold P. Pins hior lo Prof ile $8,14,16$ Pin I3p 2M3055 33p.four \&1. BC107, BC108, BC109 \& II 7pea




 POTS IIP.Swithtl IPDual 55 P UITRASONIC TRANSIDUCERS \& 2 Fa
TIGTIPUS GURESOKVAT TOPRICES.P\&PIOR CWO. RIREUICIIGS 58-60 GROVE ROAD, WINDSOR


# Marshall's 

Everything you need is in our New Catalogue
available now price 20 pence (100 pages of prices and data)
A. Marshall \& Son (London) Limited

42 Cricklewood Broadway London NW2 3HD, Telephone 01-452 0161
\& 65 Bath Street Glasgow G2 2BX Telephone 041-3324133

9-5.00 Sat
Trade and export enquiries welcóme


## NEW from A.S.P.

Also available (watt $9 \quad 30^{\circ} \mathrm{C}$ Carbon Film Resistors El2. Range; $10 \Omega$ to Price 95p per 100.

## CASED AUTO TRANSFORMERS

240 oit Mains to 115 Volts, Bmart steel with power lead, fuse and 115 V volt American type socket up to 500 VA , above 500 VA Cable entry
A (Watt
20
200
200
500
1000
2000

## NEW!

$2^{\prime \prime}$ \& 4" PANEL METERS
2 $x$ NGME: llunn Wide 40ım beep. 43 Hm Deep. O-50 Ohns Mosemen I.R. $0-50$ micros A. $1: 550 \quad 0-50$ miceris A. 1400 $0-100$ intero A. $5 \times 0$ 0-100 micro A. 730 $0-1$ imero A. $170 \quad 0-000$ tmern A. $=00$ $0-5 \mathrm{~mA} \quad 170 \quad 0-5 \mathrm{~mA}$ $\begin{array}{lll}0-50 \mathrm{ma} & 0.5 & 0-10 \mathrm{~mA} \\ 0-50 \mathrm{~A}\end{array}$ $0-100 \mathrm{ma}$
$0-10$ $0-500 \mathrm{mi}$ $0-1$ AmP $\begin{array}{lll}0.500 \mathrm{~mA} \\ 0-2.5 \mathrm{MP} & 0.5 & 0-500 \mathrm{~mA} \\ 0-.25 & 0.5 & 0-1 \mathrm{AMA}\end{array}$


 Malertots are complete with letecto.s.
 f'wat $10_{1}$, Lamps 35 p per set

## TRANSFORMERS

## SAFETY ISOLATING

Prim. 1R0/240V. Sec. 120/R40V. Contre Tap with screen.


MINIATURE AND EQUIPMENT

## Prim. 240V with sereen. Milliamp

| Volte |  | Millamps |  | Type | Price | Pont |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sec. 1 | Bec. 2 | Sec. | 1 Sec.3 | No. | ! | E |
| 3-0-3 | - | 20 | 0 - | 238 | $1 \cdot 23$ | 0.10 |
| 0-6 | 0-6 | 50 | 0 500 | 234 | 1.80 | $0 \cdot 10$ |
| 0-6 | 0-3 | 1000 | 01000 | 212 | 1.68 | $0 \cdot 22$ |
| 9-0-9 | -- | 10 | 0 | 13 | $1 \cdot 28$ | $0 \cdot 10$ |
| 0-9 | 0-9 | 33 | 330 | 235 | 1.48 | $0 \cdot 10$ |
| 0-8-9 | 0-8-9 | 50 | 00500 | 207 | 2.28 | $0 \cdot 22$ |
| 0-8-9 | 0-8-9 | 100 | 01000 | 208 | 3.03 | 0.30 |
| 15-0-15 | - |  | 0 - | 240 | 1.23 | $0 \cdot 10$ |
| 0-15 | 0-15 | 20 | 00200 | 236 | 1.30 | $0 \cdot 10$ |
| 20-0-20 | - |  | 30 - | 241 | $1+23$ | $0 \cdot 10$ |
| 0-20 | 0-20 | 15 | 0150 | 237 | $1 \cdot 80$ | $0 \cdot 10$ |
| 0-15-20 | $0-15-20$ | 50 | 00500 | 205 | $2 \cdot 97$ | 0.38 |
| 0-20 | 0-20 | 30 | 300 | 214 | 1.76 | $0 \cdot 22$ |
| 0-20 | - | 350 | 0 (No screen) | 1116 | 3.00 | 0.40 |
| 20-12-0-12-20 | - |  | 00 (D/C) - | 221 | 1.55 | 0-30 |
| 0-1b-20 | 0-15-20 | 100 | 1000 | 20 n | $8 \cdot 80$ | 0.38 |
| 0-15-27 | 0-15-27. | 50 | 000500 | 203 | 3.08 | $0 \cdot 38$ |
| 0-15-27 | 0-15-27 | 100 | 101000 | 204 | 3.24 | $0 \cdot 38$ |

PLASTIC CASED SILICON BRIDGE RECTIFIERS
 100 P.J.V. 25p 100 P.I.V. 40 p 200 P.I.V. 580
 PLEASE ADD 10\% FOR V.A.T. ADD 10p P. \& P. PER ORDER

## A.S.P. ITD ourn nem smmonos ano . mestase

 CANTERBURY KENT Canterbury (0227) 52436
## EHiOMAFOMTE electronics

Dept 2
56. Fortis Green Road, London, N10 3HN
telephone: $01-8833705$



HI-FI TAPE LINK
(PE Mar/apr 73). S/cs. ics. Rs Cs Relay and pc-base. Por Cores and pc-bases. Sw s. Pots. Panal Lamp-Mono £13.31. Stereo £21.95 PSU £3.62 Man Circuit PCB
 Stereo *p.
(PE Jan Feb 73) P/A Set-SIFIER
(PE Jan Feb 73) P/A Set-Sic s ics. Rs. Cs. Pots. PCB. $83 \cdot 46$. Output Stages-
$\mathrm{S} / \mathrm{c}$.s. Rs. Cs. Pots. Rotary Sws and PCBs tor Alphaphone. Cardio. Freq-Meter Vis-Feed [4.96. Audio Amps PC7 $55 \cdot 20$ EA 1000 . $53 \cdot 30$.

ENLARGER EXPOSURE
METER AND THERMOMETER (PE Sept 73) Scs. Thermistor, LDR Rs Pots PCB. $\mathbf{5 3}$. 90.
(PE Sept $\begin{aligned} & \text { ELECTRONIC PIANO } \\ & 72 \text { Jan 73) Details in lists }\end{aligned}$

> GEMINI STEREO AMPLIFIER
(PE Nov 70 Mar 71 ) Stereo Sets and PCEs Pre-amp-Rs. Ca. Pots. Sw s-with $\ddagger W$ MO Rs $514.18-w i t h$, $W$ CF Rs. $510 \cdot 40$. PCB as published. $52 \cdot 20$. Main Amp-Rs Cs.
 65p.

## AUDIO MILLIVOLTMETER

 (PE Fab 74). S/c's. Re Ce. Pols. Sw PCBs. [5. 17 .PROGRAMME SHEETS For Sound Synthesiser and Rhythm Generator Now available

## 8 WATT AMPLIFIER

(PW Nov Dec 72) Pre-amp-S/cs. Rs Cs Pots. Sw-Mono. $£ 2.50$; Stereo. £6.03 PCB (3tin $\times 7$ in) (Stereo) also hoids romary
or sider pots. and Sw . $11-66$. Main Amp$\mathrm{S} / \mathrm{cs}$ s. Rs. Cs. Pot-Mono. \&4.18, Stereo. £8.36, $\mathrm{PCB}(24$ in $\times 3$ in) (Monol 720, PSU.
£3.90. §3.90.

## SOUND SYNTHESISER

(PE Feb. 73/Feb. 74)
RHYTHM GENERATOR
(PE Mar./June 74)
SOUND BENDER
(PE May 74)
Details of all these in List

REVERBERATION UNIT (PW Nov (Dec. 72) S/C s. Rs. Cs T/forme -with Rotary Pots. E8.44. PCB (2in 11 yin ) £1.40. Spring unit excluded

PW LOUOHALLER AND SIREN (PW Dec 72) Pre-amp and Siren Generator 52. 20. While Stocks Last Main Amp Module PC5. 56-25.

## MISCELLANEOUS PCBe (While Stock: Leat

LOGICAL RADIO CONTROL (PE Dec. 71/Jan 72) PCB 2B'. 50p.
MODEL SERVO CONTROL (PE Feb /Mar 72) PCB. Fail-sale. 33p
DIGICAL PSU PCE (PE Aug 72). 50p. OSCILLOSCOPE P/A PCE (PE Aug 72) 33p. GEMINI STEREO TUNER PCB (PE Ap T 72) $51 \cdot 50$. TRIFFIO PCB (PE FED. 73), 80p. (The above PCBs are as published)
CALLERCORO (PE July 72) Main Control PCB ( $41 n \times 7+i n)$

## PHONOSONICS PCB's AND KITS

PHOTOPRINT PROCESS
CONTROL
(PE Jan./Feb, 72). For Colour and B \& W finds exposure. controle timing. stabilises mains voltage. S/C's. SCR. LDR. Rs. Cs. Pots. Relay. Keyswiten. Tifmr. ci es. PCB (34. $\times 5$ tin) also holds pots. Sw relsy. C1-80.

RONDO
(PE Sept 73. Feb 74) Details in List

PROJECT 04
(PW Oct 73/Jan 74) Multisystem Quadraphonic Decoder. Stc's. $1 / \mathrm{C}$ s Rs Cs . Pots. Makeswitches
Set of PCBs. $\mathbf{\Sigma 2} \cdot 60$.
(PE Sept PHASING UNIT
(PE Sept ${ }^{73}$ ) S/Cis. Rs. Cs. Pots. PCB
$(1+10 \times 2 t i n)$ en



AURORA
(PE Apr/Aug 711 Multichannel Sound Controlled Light. S/C s (Exci SCRs). Rs. Cs. Pots, Cores-Pre-amp. Sync Generator and 4 Chans, $£ 10.97$; 4 extra chans, £. 35 . Reg PSU. 4 . ( 4 fin $\times 5$ in) for Sync Gen PSU. 8 cores. 8 SCRs, $£ 1,25$.

GURORA AUXILIARY CONTROL UNIT
2 Variable Frequency Strobe Generators and \& Variable Amplitude Frequency Generators 2 Variable Fraquency Strobe Generators and

SEMICONDUCTOR TESTER
(PE Oct 73) S/C s. Rs Cs Pots Make switches Sub-assombly PCB. \&5.04

## ULTRASONIC <br> TRANSMITTER-RECEIVER

(PE May 72) S/c's. Rs. Cs. Pot. Relay. Dual PCB (2in $\times 5 \frac{5}{}$ in), R4.40. Transducers excluded

## VIBRASONIC

GUITAR PRE-AMP
(PW Sept 70) Incl Mic P/A. 2.Guitar P/A. Trem and Tone Controls. Master Volume S.c's. Rs. Cs. LOR. Rotary Pots. Lamps. Coupling T/fmr. 57.54. PCE (3fin $\times 10 \mathrm{yin}$ ) While stocks last
While stocks last

TAPE NOISE LIMITER (PE Fob 72) S/C's. Rs. Cs. Pot. Sw. PCB


VERSATILE LIGHT EFFECTS
Single Channel Sound Controlled Light with buidt-in variable strobe (PE Jun 72) S/c's. Rs. Cs. Pots. T/imis. Koyswitch. E17-2s. PCE (3yin $\times 7$ tin) atso holds pots and switch. £1.70. SCRs excluded While stocks last

VOICE OPERATED FADER (PE Dec 73) Sic's. Rs Cs. Pot. PCE ( $11+1 \mathrm{n} \times 3$ (in). 22.95 .

WIND AND RAIN EFFECTS
(PE Oct 73) Scs (incl special noise diode). Rs. Cs, Pots. £1-95.

| RESISTORS | SEMICONDUCTORS |  |  |  |  | ELECTROLYTIC ( $\mu \mathrm{F} / \mathrm{V}$ ) |  |  |  | POLYESTER ( $\mu$ F) |  | AOD 15p P. A P. <br> ADD $10 \%$ VAT to total cost (including P\& P) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | ${ }_{200}^{200}$ | 2N290 |  | $27 p$ 32 p 120 | ${ }^{0}{ }^{0} 9763$ | ${ }_{60}^{60}$ | 10010 10025 | $6_{60}^{60}$ | OOP 0 0 0 | $3 \mathrm{3o}$ |  |
| ${ }_{7} W$ and $\ddagger W$ |  | 200 400 | ${ }^{2} \mathrm{~N} 17 \mathrm{~T}$ |  | 120 | +2263 | ${ }_{0}$ | 10040 | 78 | 0.015 0022 | ${ }_{3 p}$ | SEND SAE (Stamped Addressed En- |
| CAR BON FILM | BC107 BC 108 | 13p | ${ }^{2} \mathrm{~N} 3770$ |  | ${ }_{12 \mathrm{p}}^{12 \mathrm{p}}$ | 4735 4763 | ${ }_{6 p}^{6 p}$ | 10063 15016 | ${ }^{120}$ | 0033 | 3 p | velope) for Fre itemised List (and with all |
| MANUFACTURED BY | $8 C 108$ <br> $B C 109$ <br> $6 C 14$ |  | 2N381 |  | 35 p | 68 40 | ${ }_{60}$ | 15063 | 120 | 0 0 0 0 068 | ${ }_{3}^{318}$ | enquiries please) |
| AEI TO DEF 6112A | ${ }^{\text {BC1 }} 14$ | 120 |  |  | 360 | 1023 1053 | 8 | 22010 22016 | 68 | 01 | ${ }^{4 p}$ | OVERSEAS COSTS P \& P will be charged |
| E24 SERIES |  | 12p | DIODES |  |  | 1540 | ${ }_{60}{ }_{6}$ | 22025 | ${ }_{108} 108$ | 015 |  | at cost (most kit weights and postal rates |
| ${ }_{\text {a }}$ W $5^{\circ}$ 。4E7 to 1M | ${ }_{8 C+5}$ | ${ }_{12 \mathrm{p}}$ |  |  | 2210 | 68 | 22040 | 310 | $\bigcirc 33$ | 70 | are shown in list) Send international Peply |  |
| \#W 50. 4E7 | BC158 8 Cl 59 | ${ }_{12 \mathrm{l}}^{12 \mathrm{p}}$ | IN916in400, |  |  |  | $\mathrm{sp}^{\text {p }}$ |  | 23253 | 22063 | ${ }^{\circ} \mathrm{O} 47$ | ${ }_{19}^{9 p}$ | Coupon for Free List \& with all enquiries |
| to 2 M 2 then $10 \% 10$ | ${ }_{861822}$ | 12 p | 1N4002 |  | ${ }_{p}$ | 3315 | $6_{60}$ | 33010 47063 | ${ }_{10 \mathrm{c}}^{68}$ | (10 ${ }^{0}$ | 14 p | VAT does not apply to exports EXPORT ORDERS ARE ALWAYS WELCOME |
| 10M | BC 204 BC 209 C | ${ }_{140}^{140}$ | 1N4005 |  | ${ }_{\text {sp }}$ | 3340 3350 | ${ }_{60}$ | 17010 47025 | 140100200 | - |  |  |
| COMPAEHENSIVE |  | 149 150 |  |  |  |  | 470405004 | TANTALUM日EAD (HM |  | MAILING LIST SERVICE-details with list |  |
| STOCKS | BCY71 | 22p |  |  |  |  |  |  |  |  |  | ${ }^{23 p}$ | ${ }_{4}^{480}$ |
| FACIlitate rapio | BfY50 | ${ }_{230}^{229}$ | $\begin{aligned} & \text { OAR200 } \\ & 16 P ? \end{aligned}$ |  | 12 p110 |  | 506. | 68063 | 10 p | BEAD ( $\mu \mathrm{F} / \mathrm{V})$ |  | COLOUR CODE identification supplied with most kits and as part of list |
| PROCESSING | EFY529 | ${ }_{120}^{239}$ |  |  | \% ${ }_{5}$ | 69040 |  | ${ }^{250}$ | 0 0 0 0 23535 | 120 120 | with most kits and as part of list PCEs are Fibreglass. Dilled. Tinned. and designed by Phonosonics unless stated |  |
| AS APPOINTED | MJE 2955 | ${ }^{1409}$ |  |  |  |  |  | ${ }^{1000} 16$ | $25 p$ | 0473512 p |  |  |
| DISTRIBUTO | NKT0033 | 112 p | INTEGRATED |  |  | CIRCUITS |  | 100025 |  | 1035 1535 |  | 12 D 180 | 'as published |
| WE WELCOME | $\mathrm{OC}_{\mathrm{O}} \mathrm{C} 71$ | ${ }_{14 \mathrm{c}}^{65}$ | 9 TOS |  | 400 | 7417 | 175p | 1000 2200 25 | $\begin{aligned} & 40 \mathrm{p} \\ & 45 \mathrm{p} \end{aligned}$ | 2235 | 12 p | PCB Layout and Circuit Dhagram suppliad tree with Phonosonics-designed PCBs |
| TRADE ENOUIRIES | $\bigcirc \mathrm{CO}_{8}$ | 25p | 723 | TO5 | ${ }^{95 p}$ | 74737489 | ${ }_{432 \mathrm{p}}$ | 220002800100 | ${ }_{3509}$ | 4735 |  |  |
| Write or Phone | $\mathrm{ORP}^{\text {O }} 12$ | 549 |  | ${ }_{14}^{98}$ | ${ }_{1150}$ |  |  |  |  | 1025 |  | Tree with Phonosonics-designed PCBs POTS are cotary unless stated as stider |
| Write of Phone Trade Dept | 2N706 | 138 | 7487400 | ${ }_{0}^{8}$ TOS | 630 | CA3046PA263 | (690 | 3300100 | ${ }_{3500}$ | 1563 | 140 | PRICES correct at tume of press E \& OE DELIVERIES subject to availability |
| ERITH 30737 | - ${ }_{\text {2N914, }}^{\substack{\text { 2N1304 }}}$ | 32 p |  |  | 20020020p |  |  | 470025470040 |  | $\begin{aligned} & 476{ }^{3} \\ & 1003^{2} \end{aligned}$ | ${ }_{180}^{150}$ |  |
|  | 2N13219 | ${ }_{27} 7^{2}$ | 7402 7402 |  |  |  |  |  | ${ }^{390}$ |  |  |  |

PHONOSONICS, DEPT. PE29, 25 KENTISH ROAD, BELYEDERE, KENT DA17 5BW MAIL ORDER ONLY

## Pescontom 4 arionsitem tio ncW Trom GITCRO SPARES <br> * 6 OR 12 VOLT <br> * + VE AND - VE GROUND

> Here's the new. improved version of the original PE Scorpio Electronic Ignition System - wlth a big plus over all the other klts - the PE Scorpio KIt is designed for both positive and negative ground automotlve electrical systems. Not just + ve ground. Nor just - ve ground. But both! So if you change cars. you can be almost certaln that you can change over your PE Scorpio Mk. 2 as well.
> Contalning all the components you need, this Electro Spares PE Scorpio Mk. 2 Kit is simply bullt, using our easy to follow instructions. Each component is a branded unt by a reputable manufacturer and carries the manufacturer's guarantee. Ready drilled for fast assembly. Quickly flted to any car.
> When your PE Scorpio Mk. 2 is installed, you instantly benefit from all these PE Scorpio Mk. 2 advantages:
> $\star$ Easier starting from cold $\star$ Firing even with wet or oiled-up plugs $\star$ Smoother running at high speed $\star$ Fuel saving $\star$ More power from your engine $\star$ Longer spark plug life $\star$ No more contact-breaker burn.
Electro Spares prices:
De luxe Kit only $£ 11.50$ inc. VAT and $p$ \& $p$
Ready Made Unit $£ 14.75$ inc. VAT and $p$ \& $p$.
State 6V or 12 V system.
Send SAE now for details and free list.

## FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics' Superb Hi-Fituner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge) Electro Spares price only $£ 28.50$ inc. VAT and $p \& p$.

## 'GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere $0.02 \%$, and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms. Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now I Depending on your choice of certain components, the price can vary from $£ 50$ to $£ 60$ inc.
VAT and $p \& p$.
$\star$ All components as specified by original authors, and sold separately if you wish.
$\star$ Full constructional data book with specification graphs. fault finding guides, etc. 55 p plus 4 p postage.
$\star$ Price List only. Please send S.A.E. (preferably $9 \times 4$ minimum) for full details.

RST
VALVE MAIL ORDER CO. I6a WELLFIELD ROAD, LONDON SWI6 28S SPECIAL EXPRESS MAIL ORDER SERVICE Express postage $3 p$ for first transistor, Ip thereafter, over
ten post free. INTEGRATED CIRCUITS $5 p+1 p$ aach added


[^6]Terms C.W.O. only * Tel. 01-677 2424-7
All orders subject to V.A.T. at $10 \%$ rate. This must be added to the total order including postage.

## Prices correct

when going
to press.


## A.C. MAINS TIMER UNIT

Based on an electric clock, with
25 A2 amp sisglee pole switch,
which can bee preset for any ate Which can be preset for an
period up to 12 hrs. ahea
to switch on for any lenget to switch on for any length
of time. from 10 mins. to
6 hrs. then switch off. An
additional 60 min. audible

## STROBE: STROBE! STROBE

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and EXPEREIMENTERS' ECONOMY KIT EXPERIMENTERS' ECONOMY KIT Speed adjustable 1 to 30 flash per sec. All
electronic components including Xenon Tube and instructions E6.30. Post 30p.
INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc Approx. $t$ output of Hy-Lyght. Price 614.00 , Approx.
Post 50p.
HY-LYGHTSTROBEMK III
For use in large rooms, halls and utilises a silica Light output greater than many (so called Joule) strobes. $\boldsymbol{\text { l }}$ 4. Post 50p
THE 'SUPER' HY-LYGHT KIT Ur times the

- Variable speed from 1-13 flash per sec.
- Reactor control circuit producing an intense White light. ONLY E22. POSt ASPE METAL CASE. For Hy-Lyght Kit including reflector $\mathbf{\$ 5 . 7 5}$ Post 25p.
Super Hy-Lyght case including reflector 68. Pos
60p.
7 -inch POLISHED REFLECTOR
deally suited for above Strobe kits. Price 55p
COLOUR WHEELPROJECTOR


BIG BLACK LIGHT
400 Watt . Mercury vapour ultra violet lamp
Powerful source of U.v. Innumerable in
dustrial applications also ballast is essential
display, discos. etc. P.F. bill with these bulbs. Price of matched ballast
and bulb Elb. Post $\in$ I.
BLACK LIGHT FLUORESCENT U.V. TUBES
4 ft 40 watt. Price 55.50 . Post 30 p . 2 ft 20 wat E4.25, Post 25 p . (For use in standard bu-pin
Mintings.i2in 8 wate, 61.60 . Post 15 p . 9in 6 watt, $\mathbf{6 1 . 3 0}$. Post $15 p$. Complete ballast unit and holders for in and 1.70 . Post 25 in and 12 measures
£.70. Post 25p. (9in and 12 in measures
approx.)
24 VOLT DC SOLENOIDS
UNIT containing I heavy duty solenoid approx. 251b pull $l$ inch travel. Two $x$ approx. lib pull , inch travel heavy duty single makerelay. Price $\mathbf{E 2} 50 \mathrm{P}+\mathrm{p} 60 \mathrm{p}$ ABSOLUTE BARGAIN.

INSULATION TESTERS NEW! Test to I.E.E. Spec. Rugged metal construction, suitable for bench or
field work. constant speed clutch.
 $50 \mathrm{p}, 500 \mathrm{~V}, 500$ megohms, E28. Post
 60 p .

TRIACS
GENERAL ELECTRICPOWER-GLASTRIACS 0 amp . Glass passivated plastic triac. Latest device 1 rom U.S.A. Long, term reliablity. Type 10 amp. 500 PIV, $<1 \cdot 30$. Post 5 p. (Inclusive of data and applica tion sheet.) Suitable Diac I8p.
HIGH VISIBILITY PANEL MOUNTING LED's. 0.25 inch mounting, 0.16 inch lens. Typical parameters $2 \mathrm{~V}, 20 \mathrm{M}$ amps alfype. Supplied complete with snap in mountings and dara. Red 4 for 61 . Green

## LED READOUTS

7 series. L/H d.D. one-third high
RED or GREEN. Price 61.65 . Post 10 p.

## All prices are subject to <br> All prices are subject to $8 \%$ VAT. $(8 \mathrm{p}$ in the $\varepsilon$ ) <br> To ail oiders add $8 \%$ VAT to total value of goods including carriage,

## packaging <br> SERVICE

 TRADING CO
## New ceramic construction, vitreous enamel embedded winding, heavy

enamel embedded winding. heavy duty brush assembly, continuously 25 WATT $10 / 2 \mathrm{~S} / 50 / 100 / 150 / 500 / 1 \mathrm{k} / 0 \mathrm{hm}$ fl/15. Post IOp.
50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \cdot 5 k$ ohm LI•60, Post 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ $3.5 \mathrm{k} / 5 \mathrm{k}$ ohm 62.35. Post 15 p .
Black Silver, Skirted knob calibrated in Nos I-9. It in. dia. brass bush. Ideal for above Rheostats 22p each.

RELAYS SIINENS, PLESSEF EECC.
Col.(1)
Coil ohms Col. (2) Working
d.e. volts Col. 3 Col. (4) Price
HD $=$ Heavy duty

- Incl. Base

All prices

| 1 |
| ---: |
| 58 |
| 150 |
| 185 |
| 308 |
| 110 |
| 700 |
| 700 |
| 700 |
| 700 |
| 2.500 |
| 2.500 |
| 9.000 |
| $15 k$ |



| $6 \mathrm{c} / 0$ |
| :--- |
| $2 \mathrm{c} / 0$ |
| 6 M |
| $4 \mathrm{c} / 0$ |
| $4 \mathrm{c} / 0$ |
| 4 M 2 B |
| $4 \mathrm{c} / 0$ |
| $1 \mathrm{c} / 0 \mathrm{HD}$ |
| $6 \mathrm{c} / 0$ |
| $2 \mathrm{c} / 0 \mathrm{HD}$ |
| 6 M |
| $2 \mathrm{c} / \mathrm{O}$ |
| 6 M |



6 VOLT D.C. I make contacts 35p. Post 5p
6 YOLT D.C. 2 make contacts 75 p . Post $\mathrm{S}_{p}$
9 VOLT D.C. RELAY
3 c/o 5 amp contacts. 70 ohm coil. 75p. Post $5 p$.
12 OLT D.C. RELAY ohm coil. 75p. Post 5 24 VOLT D.C. 3 c/o 75 p. Post 5p
DIAMOND 'H' Heavy Duty
$230 / 240 \mathrm{~V}$ ac 2 clo 25 amp RES at 250 V a.c. EZ

## CLARE-ELLIOTT TYPE RP7641 G8

70p post paid
100 VOLT A.C, 2 c/o sealed type, octal base 6. Post 10p.

5 VOLT A.C. Mig. by ITT. 2 h.d. c/o contacts. 240 VOLT A.C. RELAY. Mrg, by ITT. 240 V A.C $10 \mathrm{amph} . \mathrm{d}$ c co contacts. Octal plug in base. Price 75 p . Post 5 p.
220/240 VOLT A.C. RELAY
c/o 5 amp contacts. Sealed. Incl. II-pin base (1.25. Post 10p.

HEAVYDUTYA.C.SEALED RELAYS
DRY REED RELAYS
Mfg . by ERG. 12 volt d.c. encapsulated.
Single c/o 65p, post paid. Two e/o 85p, post paid STC 280 ohm coil $6 / 12 \mathrm{~V}$ d.c. 3 make metal shrouded. 60 p post paid.
HONEYWELL"PUSH BUTTON PANEI
'HONEYWELL"'PUSH BUTTON, PANEL Each bank comprises a c/o rated at
10 amps 240 V . A. C. Blacte knob 1 in . Fixing hole in. ONE bank 30p:

VERY SPECIAL OFFER MINIATURE ROLLER MICRO
SWITCH. 5 amp. c/o contacts. Mfg.
BONNELLA. NEW. Price 10
GO.50. Post $10 p$. (Min. order 10 ).
AS above WITHOUT ROLLER. 20 for E2, Post 10 p .
FOOT SWITCH


INSULATED TERMINALS Available in black, red, white,


## METERS <br> NEW! <br> round. Available in D. 15,20 or A.C. Amps <br> 15, 2 or A.c. Amps 1, 5, 10, 15, 20.

Voltmete
Post 15 p .
Personal callers only. Open Sa:
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

Phone 01-437 0576

Dept. PE9, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

## MOTOROLA

F.M. Multiplex Stereo Decoder

Four Channel SQ Decoder
OP Power Transistor OP Power Transistor

## SIGNETICS

| I/C Timer | NE555V | 0.80 |
| :---: | :---: | :---: |
| Dual I/C Timer | NE556A | 1.40 |
| High Phased Locked Loop | NE560B | $4 \cdot 20$ |
| High Phased Locked Loop with AM Demod | NE561B | $4 \cdot 20$ |
| High Phased Locked Loop with Open VCO | NE562B | $4 \cdot 20$ |
| Precision Phased Locked Loop | NE565A | 2.90 |
| Function Generator | NE566V | 1.55 |
| Tone Decoder | NE567V | 2.90 |
| G.I.M. |  |  |
| Eight Digit Calculator Chip | C500 | 11.00 |
| Eight Digit Calculator Chip | C550 | 9. 50 |
| $3 \frac{1}{2}$ Decade DVM Chip | AY-5-3510 | 6.40 |
| Decade Counter, Latch. Driver | AY-5-4007D | $8 \cdot 35$ |
| Organ Clircuits: |  |  |
| 7 Stage Generator | AY-1-0212 | 5.55 |
| 7 Stage Divider | AY-1-5050 | $2 \cdot 35$ |
| 4 Stage Divider | AY-1-5051 | $1 \cdot 20$ |
| 5 Stage Divider | AY-1-6721/5 | $1 \cdot 30$ |
| 6 Stage Divider | AY-1-67216 | $1 \cdot 45$ |
| Static Shift Reglsters: |  |  |
| Static Shift Register | SL-6-2064 | 2.90 |
| Static Shift Register | SL6-4032 | 4.00 |
| Static Shift Register | SL5-2128 | 3.45 |
| Static Shift Register | SL7-2128 | 3.80 |
| Static Shift Register | SL7-4056 | 3.45 |
| Static Shift Register | SS-6-8211 | $3 \cdot 30$ |
| Static Shift Register | SS-6-8212 | $2 \cdot 15$ |

## FERRANTI

Radio Receiver

## ELECTRONICICALCULATOR

Details of the Offer
1 eight-digit calculator ic. (General Instrument Microelectronics Type C500); plus 8 seven-segment l.e.d. alpha-numeric displays (Monsanto. Type MAN3)
Data sheets are supplied
Price for the "package" offer: $£ 14$ plus VAT
Data information supplied with each device.
Write for free catalogue of our large stocks of Ferranti
Motorola. G.I. Monsanto Mullard. Signetics and R.C.A components.

On total add $20 p$ postage and packing + VAT on total of order

P.O. Box No. 26 (Dept. PE), Wembley, Middx. HAO 1SD, England

## Trannies <br> 4 Bush House, Bush Fair, Harlow, Essex.

 5.30 Mon. to Sat* Post \& Package 15p
$\star 1974$ Catalogue 20p

| SEMICO | NDU | (TORS |  | RRIDGE <br> RECTI- |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{ACl}^{2} 6$ | 14p | OC4 | 16p | fiers |  |
| AC127 | 16p | OC45 | 10p | 1 Amp |  |
| AC128 | 15p | OC7 | 11 p | 100 V | 22p |
| AClit ${ }^{\text {c }}$ | ${ }^{26} \mathrm{p}$ | 0081 | 12p | 200 V |  |
| AClis ${ }^{\text {K }}$ | ${ }^{20} \mathrm{p}$ | 2N706 | 14p | 600 V | 27p |
| AC 178 | ${ }^{18} \mathrm{p}$ | 2N1131 | 24 p | THMRIS- |  |
| ${ }^{\text {AC }} 187$ | ${ }^{24} \mathrm{p}$ | 2N1132 | 28 p | TORS |  |
| ${ }^{\text {AC }} 188$ | 24p | 2N2904 | $20 p$ | 1 Amp |  |
| $\underset{\text { AClig7K }}{\text { ACl }}$ | ${ }_{23}^{23 p}$ | 2N3936 | 11 p | sov | 29 p |
|  | ${ }^{239}$ | 2N3053 | ${ }_{55 p}^{26 p}$ | 100 V |  |
| ADI61 | 330 | 2N30s5 | 49p | 400 V | 44 p |
| AD16? | 40p | 2N3702 | 14p | Amp |  |
| AF114 | 200 | 2N3703 | 13p | 50 V |  |
| AFILS | 200p | iN3704 | 14 p | 100 V |  |
| AFI16 | ${ }^{200}$ | 2 N 3705 | ${ }^{13 p}$ | 200 V |  |
| AF117 | ${ }^{200}$ | 2N3706 | 12p | 400 V | 66p |
| $\mathrm{BC}^{\text {C }} 107$ | ${ }^{13 p}$ | 2 N 3707 | 13p | 5 Amp |  |
| ${ }^{\text {BCO }} 108$ | 12p | 2N:3708 | 11 p | sov | 46p |
| $\mathrm{BC}^{8} 109$ | 13p | 2N3709 | ${ }^{12 p}$ | 100 V |  |
| AC147 | ${ }_{13} 13$ | 2N3710 | 12p | 200 V |  |
| ${ }_{\text {BCO }}{ }^{\text {BC }} 149$ | ${ }_{13 \mathrm{p}}$ | in 3819 | ${ }_{3}^{12 \mathrm{p}}$ | triacs |  |
| BC182 | 13p | 40.361 | ssp | 2 Amp |  |
| ${ }_{8}^{8 C 183}$ | 11p | 40.363 | ${ }_{55}{ }^{\text {p }}$ | 100 V |  |
| $\mathrm{BCl}_{8} 8$ |  | 40636 | 69p | 200 V |  |
| ${ }^{\text {AC }}$ - 12 | ${ }_{1}^{13 p}$ | IN914 | ${ }_{8 p}$ | 400 V |  |
| BC214 |  | 1N916 | ${ }^{8 p}$ | ${ }^{6} \mathrm{Amp}$ |  |
| HDI31 |  | 1N400? | 8 p | 200 V |  |
| BD132 |  | 1 N 4003 | ${ }^{10} \mathrm{p}$ | 400 V |  |
| BF194 |  | (1N4004 | ${ }^{10 p}$ | ${ }^{10} \mathrm{Amp}$ |  |
| BF 244 |  | IN4148 | ${ }_{\text {15p }}^{15}$ | 200 V |  |
| Bryso |  | INS400 | 16p | 400 V | 1.43 |
| BFYSI |  | IN 5401 | ${ }^{17 p}$ | ${ }^{400 \mathrm{mw}}$ |  |
| BFYS? <br> MPSIII |  | 1N540? | 19p | ZENER |  |
| 0 C 28 |  | ins404 | 24p | DIODES |  |
| ${ }_{0}{ }^{\text {c } 26}$ | sop |  |  | volt 11p | each |
| See advertisement to Practical Wireless for full range of TTL integrated circuits |  |  |  |  |  |

TRANNIES DISCO UNIT


Includes

* DJ loow discotheque amp. with full mixing and PFL facilities.
* Stereo headphone with boom misrophone. $£ 9.90$.
* Trannies disco console with 2 Garrard SP25 Mk. IV turntables. E59-00
* Pair sow Speakers E47•10

OR COMPLETE SYSTEM £189-97. cartiage fs-00. Terms available. no deposit. $£ 10 \cdot 16$ monthly for 24 months.
We stock a full range of Disco Equipment. Send for list or pay a visit.

## £1 BARGAIN PACKS

(1 10 Silicon NPN Power transis tors (like 2N.30S5). Belou spec 11 30 Plastic FET's unmarked umiesied. similar to 2N3819 (random showed good yield
120 TOS transistors NPN or PNP state which. 2 to 5 amp witested. 20 TOI8 transistors PNP lik 30 Pi. BCla. ele Ukested 30 Plastic Power NPN transistor
10 Ceres Purpose fillest 10 General Purpose fully tested FETs.
1200 mixed capacitors
1500 mixed resistors
Pos $A$ package 10 p per pach

## Resistors

$\div$ watt $5 \%$ carbon watt $5 \%$ carbon 1 walt $10 \%$ carbon range 10 ohms to 4.7 megohms
1 watt $\mathrm{m} / \mathrm{o} 2 \mathrm{c}$
range 10 ohms to 1 megohms.

|  | VEROBOARD |  |  |
| :---: | :---: | :---: | :---: |
|  |  | $0 \cdot 1$ | 0.15 |
| 1p | $3{ }^{2+} \times 37$ | 24 p | 19p |
| 1p | 2t $\times 5$ | 27p | 23p |
|  | $34 \times 34$ | 27p | 23p |
| 3 p | $1{ }^{32} \times \times 5$ | $318_{31 \mathrm{p}}$ | ${ }_{6.3}{ }^{31}$ |
|  | $17 \times 3$ | £1-10 | 87 p |
| 4p | $17 \times 5$ (Plain) |  | 90p |
|  | Pin insertion tool | 57p | 57p |
|  | Spot face culter Pk. 36 Pins | 46p | 46p |

Electrolytic
Capacitors

| 6.3 VOLT |  | $\begin{aligned} & 220 \mu \mathrm{~F} \\ & 680 \mu \mathrm{~F} \end{aligned}$ | $\begin{array}{r} 9 p \\ 17 p \end{array}$ | 40 VOLT |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 684 F | 6tp |  |  | 47, F | $6+\mathrm{p}$ |
| 150, F | $6+p$ | $1000 \mu \mathrm{~F}$ | 17p | 100 $\mu \mathrm{F}$ | 9p |
| $470 \mu \mathrm{~F}$ | $11 p$ | $1500 \mu \mathrm{~F}$ | 25 p | 68 $\mu \mathrm{F}$ | 10p |
| $680 \mu \mathrm{~F}$ | 13p | $2000 \mu \mathrm{~F}$ | 43p | $220 \mu \mathrm{~F}$ | $11 p$ |
| 15001 F | 18p |  |  | 470, F | 19p |
| 23004 F | 18p | 25 VOLT |  | $\mathrm{GRO}_{4 \mu} \mathrm{~F}$ | 25p |
| $3300 \mu \mathrm{~F}$ | 26p | $10 \mu \mathrm{~F}$ | $6+p$ | 10004 F | 25p |
| 10 VOLT |  | $22 \mu \mathrm{~F}$ | $6+p$ | $2200 \mu \mathrm{~F}$ | 4 p |
| ${ }_{4} 7 \mu \mathrm{~F}$ | $6+p$ | $47 \mu F$ | $6+p$ | 63 VOLT |  |
| 1004 F | $6 \pm p$ | $100 \mu F$ $150 \mu F$ | 8p 8 p | $1 \mu \mathrm{~F}$ | 6tp |
| $220 \mu \mathrm{~F}$ | 8p | $220 \mu \mathrm{~F}$ | 10p | $2 \cdot 2 \mu F$ | $6{ }_{6}$ |
| 3304 F | 10p | $470 \mu \mathrm{~F}$ | 13p | $4 \cdot 7 \mu \mathrm{~F}$ | $6+\mathrm{p}$ |
| $470 \mu \mathrm{~F}$ | 10p | $680 \mu \mathrm{~F}$ | 20p | $6 \cdot 8 \mu \mathrm{~F}$ | 6 tp |
| $1000 \mu \mathrm{~F}$ | 11 p | ${ }_{1000 \mu} 10$ | 22p | $10 \mu \mathrm{~F}$ | $6+p$ |
| $1500 \mu \mathrm{~F}$ | ${ }^{20} \mathrm{p}$ | $2200 \mu \mathrm{~F}$ | 39p | $22 \mu \mathrm{~F}$ | $0 \pm p$ |
| $2200 \mu \mathrm{~F}$ | 24p | $5000 \mu_{\mu} \mathrm{F}$ | 68p | 68 HF | 10p |
|  |  |  |  | 1004 F | 11p |
| 16 VOLT |  |  |  | $150 \mu \mathrm{~F}$ | 13p |
| $15 \mu \mathrm{~F}$ | $6+p$ | 40 VOLT |  | $220 \mu \mathrm{~F}$ | 19p |
| $33 \mu \mathrm{~F}$ | $6+p$ | $6.8 \mu \mathrm{~F}$ | $61 p$ | $330 \mu \mathrm{~F}$ | 22p |
| 1504F | $6+p$ | $1.5 \mu \mathrm{~F}$ | $6+p$ | $470 \mu \mathrm{~F}$ | 26p |
| $150 \mu \mathrm{~F}$ | 8 P | $33 \mu \mathrm{~F}$ | $6+p$ | $1000 \mu \mathrm{~F}$ | 44p |

促
Potentlometers
Carbon track $500 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$
Log or Linear.
Single 13 p. Dual gang istereol 44 p . Single type with D.P. switch 13p extra

CARBON SKELETON
PRESETS

Small high quality type linear only). All valves $100 \cdot 5$ meg ohms | -1 watt |  |
| :--- | ---: |
| -2.5 watt | 6 each |

| VISIT OUR RETAIL |
| :--- |
| SHOP AT BUSH FAIR |
| MOnday to Saturday 9 to 5.30. |
| SLIDE SWITCH |
| SPST lip each. D.P.D T 13 p each. |
| MINIATURE NEON |
| LAMPS |
| 240V or IIOV 1.4 sp s plus 4 fp |
| each. |

## Mullard Polyester Capacitors

C2s0 SERIES
 C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F} .0 .0015,0.0022 .0 .0033,0.00473 \mathrm{3p} .0 .0068 .0 .01 .0 .015 .0 .022 .0 .033 \mathrm{Hp}$ $0.047 .0 .068,0.14 \mathrm{pp} .0 .156 \not \mathrm{fp} \cdot 0.228 \mathrm{fp} .0 .3312 \mathrm{p} .0 .4714 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015,0.022 .0 .033,0.047,0.068 \quad 34 \mathrm{p} .0 .1$ 4p. 0.15 4p. $0.1 \quad 44 \mathrm{p}$



## for fast,easy

 reliable solderingErsin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

## EASY-TO-USE DISPENSERS



Savbit alloy 18 swg, 30p (illustrated). Slze 19A 60/40 alloy 18 swg .30 p Slze 15 60/40 alloy 22 swg. 34p

## IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons in 40/60, 60/40 and Savbit alloys in 7 gauges 46p

Size 12 REEL for Service Engineers and Electricians. 18 swg
Savbit alloy, £1-46


## BIB WIRE STRIPPER AND CUTTER

Deluxe Model 9 Automatic opening spring, locking catch, plastic-covered handles. Case dened and precision ground. Adjusts to most wire sizes. Cuts and strips flex, splits plastic twin flex. 75p

Prices shown are recommended retail, excluding VA.T.
From Electrical and Hardware Shops. If. unobtainable, send $10 p$ p \& p direct to: Bib Hi-Fi Accessories Limited, Hemel Hempstead, Herts HP2 7EP

## SOLARTRON Precision Laboratory Oscilloscope type CD 643. $\mathrm{Hz} .5^{\text {f }}$ Flat face tube. $\mathbf{4 5}$ each Carr. El .50

 NEW WIDE RANGE WOBRULATOR 5 MHz 10150 MHz to 15 MHz 5 MHz to 150 MHz up to 15 MHz sweep width. Only controls preset RF tevel, sweep width andfrequency. Ideal for 10.7 or $T V$ irequency. Ideal for 10.7 or T be used with any general purpose scope. Full instructions supplied. Connect 6.3V A.C. and use within minutes of receiving. All this for ONLY $E 5.75 \mathrm{p}$. P. \& P. 25p. (Not cased, not calibrated.)

20 Hz to 200 kHz WB. SINE and SQUARE GENERA TOR. Four ranges. Independent amplitude controls, thermistor stabilised. Ready to use, $9 V$ supply required, 67.85 each. P. \& P. 25 p (Not cased, not calibrated.)
GRATICULES. $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15 p each. P. \& P. 5p. $12^{*}$ Long Persistence Crt, full spec fi WORTH OF "UFS" \& bland new capacitors all berween brand new capacitors all between
15 V and 100 V . Toral capacitance not less chan $7,000 \mathrm{mF}$. P. \& P. 45p

Large quantity of good quality components - NO PASSING TRADE - 50 we offer 3 lb of for El . 50 post paid.

ROTARY SWITCH PACK, Six brand new switches (I ceramic off, 4 pole, 2 way, etc.), 50p P. \& P. 20p

COMPONENT PACK consisting of 5 pots, various, brand new; 250 resistors $\frac{1}{4}$ and $\frac{1}{2}$ watt, many high stabs. etc. Fine value at 50 p P. \& P. 27 p
P.C.B. PACKS S \& D. Quantity 2 saf -no tiny pieces. 50 p plus P. \& P. 20p

FIBRE GLASS as above $£ 1$ plus |  |
| :--- |
| 5 |
| CRYSTALS |
| 20 |
| 0 | 5 CRYSTALS 70 to 90 k

choice, $25 p$. P. \& P. I 5 p .
METERS. Ernest Turner Model 402. 100 micro amp. Brand new. Lousy scale-hence $£ 2.25$ each. P. \& P. 25p. METERS by Sifam eype M42. 25-0-25 micro amp. Scaled 25-0-25 green: 250-0-250 red. Linear. As new. $\{3.50$ each. P. \& P. 37p ELECTROSTATIC VOLTMETERS also available. S.A.E. with requirements
CAPACITOR PACK-50 Brand new components only 50p. P. \& P. POT
POTS-10 different values. Brand new-50p. P. \& P. 20p
TRIMMER PACK, 2 Twin 50 j 200pF ceramic 2 Twin $10 / 60 \mathrm{pF}$ $5 / 20 \mathrm{pF}$ on each; 3 air spaced presec $30 / 100 \mathrm{pF}$ on ceramic base. ALL BRAND NEW, 25p the lot. P. \& P. 10 p .

Replacement TUBES for Cossor $1035 \mathrm{Mk} .1,2$ and 2 A and Cossor 1049 Mk. I, 2 and 3. Used-guaranteed. £3 each. P. \& P. 37p.
LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New 38p each. Holder ip each. Information 5p.
PHOTOCELL equ. OCP71, 13p.
Muliard OCP70, 10p.
CRYSTALS. Brand New. 4.43 MHz 61.25 each. P. \& P. 10p.

MODERN TELEPHONES type 706. Two-tone grey, green or black. 3.75 each. P. 2 . 25 p each IDEAL EXTENSION Telephones with standard GPO type dial, bell and
25 p.

DELIVERED TO YOUR DOOR I ewt of Electronic Serap chassis, boards, ecs. No
Rubbish. FOR ONLY E3.50.

## P.C.BOREO?


£ 1.10 for one off
£4.40 for six
£8.80 for twelve
V.A.T. and Post included. Available now in every country in Europe.

> Please send me further details on the 33PC:

## Name

$\qquad$

Post to: DECON LABORATORIES LTD. FREEPOST
PORTSLADE,BRIGHTON,ENGLANDI (No Stamp Needed) Phone 0273414371

SUPERSOUND 13 HI-FI MONO AMPLIFIER
A superh solid state sudio amplifier. Brand new cornponents throughout. 5 sillicon transiators plus 2 powet
output 4 ransistors in puah-pull. Full wsve rectificatlon Output approx. 13 watts r.m.s. into 8 ohme Frequencs response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{~dB}$. Fully integrated preamplifier stage with separate Volume, Bass boost and Treble cut controls. Suitable for $8-15$ ohm speskers. Input for ceramic or crystal cartridge. Senaitivity approx. 40niV for full output. Supplied ready huilt and tested, with knobs, escutcheon panel, input and output plugs. Overall size $3^{-}$high $\times 6^{\circ}$ wide $\times$
AC $200 / 250 \mathrm{~V}$. PRICE $\mathbf{2 1 2} .00$. P. \& P . 50p.

DE LUXE STEREO AMPLIFIER A.C. mains $200-240 \mathrm{~V}$. Using heavy duty fully isolated
mains transformer with full wave rectification giving adequate smoothing with negligible hum. Valve line up: $2 \times$ ECL86 Triode Pentodea, $I \times$ EZ80 as rectifler Two dual potentiometers are provided for bass and treble control, giving bass and treble boost and cut. A dua hand channels can be adjusted by means of a separate "Halance" control fitted at the rear of the chassis Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{c}$ for full peak output of 4 watte per channel ( 8 wat ts rmonu), into 3 ohm apeakers. Full negative feedback in a carefully calculated circuit, allows high volume tevels to be ured with negligible distortion. Supplied complete with knobs, chassis size $11{ }^{*} w \times 4^{*} d$. Overall height including valven $5^{\prime}$. Heady puite \& teated to a high standard. PRICE \&10.40. P. \& P. 50 p .

## LOUDSPEAKER BARGAINS


 E.M.1. Bin $\times$ in 3 uhm with high flux magnet, $21-70$,
P. $\&$ P. 20 p. E.M.1. 13 itin $\times$ Sin with high fux ceranic P. \& P. :0p. E.M.1. 13 inin $\times$ sin with high fux ceranic
magnet with parasitic tweeter 3.8 or 15 ohm, 83.50 P. magnet with parasitic tweeter 3.8 or 15 ohm, 23-50, P. \&
P. 30p. F.M.I. I3in $x 8$ in 3 or 8 or 15 ohm with two P. 30p. Fi.M.I. I3in $\times 8$ in 3 ur 8 or 15 ohm with two 30p. CERAMIC MAANET HEAVY DUTY TWEETER Approx.3in. Av. 3 or 8 or 15 ohms, 21-25, P. \& P. 20p.

## SPECIAL OFFER!

LIMITED NOMBER OF BRAND NEW ELAC 10in TWIN CONE LOUDSPEAKRRS. With large ceramic magnet and plasticised cone surrounl. Kuhm impedance. \&3-70, P. \& P. 35 p .

## PRICES INCLUDE VAT

## SPECIAL OFFER!

## HI-FI LOUDSPEAKER SYSTEMS

## Beautifully made teak fnish enciosure with most attractive Tygan-Vynair front. Size 16 in higlu attractive Tygan-Vynair front. Size 16 in high

 $\times$ lotin wide $\quad$ fin deep. Fitted with E.M.I. Ceramic Magnet $13 i n \times 8$ in bass unit, two H.F. tweeter units and crossover. Max. power bandlingOur Price $\mathbf{~} 9.25$ Carr. 75 p .
GABINETAVAIL. SEPARATELY EA' 95 . Carr, 65p. Also available in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. bass speaker with parasitic tweeter. 27 15, Carr, 75 p.

## 3-VALVE AUDIO AMPLIFIER

 HA34 MK IIDesigned for Hi-Fi reproduction of records. A.C. Mains operation. Ready built on plated heavy gauge metal chasais, size $7!^{-w} \times 4^{-} \mathrm{d} \times{ }^{4} \times{ }^{\circ} \mathrm{h}$. Incorporates ECC83 EL84, EZ80 valves. Heavy duty, double wound mains transformer and output tranaformer matched for 3 ohm speaker. Separate volume control and now with improved wide range tone controlagiving bassand treble lift and cut. Negative feedback line. Output 41 watta, Front panel can be detached and leads extended for remute mounting of controls. Complete with knobs,
valves, etc., wired and tested for only $\& 6$. $P$. $P$. 46 p . H8L "POUR" AMPLIPIER EIT. Similar in appearance to HAB4 above but employs entirely different and advanced circuitry. Complete set of parts, etc. 8500 . P. \& P. 45p.

SPECIAL BARGAIN OPPER!
Limited number of RSR Cliz3 Auto Charger De Luxe Brand new. ONLY $8.00+$ and stereo cartridge

BATTERY OPERATED MEGGER

## CIRCUIT TESTER

mate by Everahed and Vignoles Ltd. Measures from $0 \cdot 1$ ohm to 300,000 ohms in 2 switched ranges. Used but in perfect condition. Connplete with teat probes. Only \&7.00 + P. \& P. 40 p .

HARVERSONIC SUPER SOUND
10 + 10 STEREO AMPLIFIER KIT
NEW PORTHER IMPROVED MODEL WITH HIGH QUALITY RNEADY DRILLED PRINTED CIRCUIT READY DRILLED COMPONENT IDENTIFICATION CLEARLY MARKED FOR EASIER CONSTRUCTION
A really first-class Hi-Fi Stereo Amplifer Kit. Uses 14 transistors includiag silicon Transistora in the first five atages on each channel resulting in even lower nolse with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Cryatal cartridges. (Very sirmple to modify to suit magnetic cartridge-instructiona included). Output stage for any speakers from 5 to 10 ohms. Compact design, all parts supplied including drilled metal work, high quality ready drilled printed circuit board, smari brushed anodised aluminium (ront pane] with matching knots, wire, solder outs, bolts-no extras to buy. simple step by btep to be proul of. Brief specification: Power output 14 W r.1n.s. per channel into 5 ohtus. Frequency responge +3 dB $12-30,000 \mathrm{~Hz}$. Seositivity better than 80 mV into $\pm \mathrm{Ma}$ Full power bandwidth $\pm 3 d B 12-15,000 \mathrm{~Hz}$. Base boon approx, to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16 dB Negative feedback $18 d B$ over main amp. Power requirements 35 V at 1.0 amp . O verall alze $-12^{\circ}$ wide $\times 8^{\prime \prime}$ deep $\times 23^{\prime \prime}$ high.
Fully detailed 7 -page construction manual and parta liat free with kit or send 18p plus large 8.A.E.
PRICES AMP. KIT, Ell. 58 . \& ( 28,60 P. \&P. 35 CABINET, 2 . I \& P. 35 p .
sales service. Also avail. ready built same lime). Full after

## 10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output of 14 watts from '2 EL848 in pulh-pull Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow recorda and announcements to follow each other. Fully shrouded section wound output tranaformer to inatch $3-15 \Omega$ speaker and independent volume controls, and separate bass and treble controls are provided giving good lift and cut Salve line-up 22 EL84s, ECC83, EF86 and EZ80 rectifier parts) instruction booklet isp plus B.A. 60 p . Also svail. ready built \& tested \$13. P. \& P. 70 p

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday few minutes from South Wimbledon Tube Station

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.), I70 HIGH ST., MERTON, LONDON, S.W.I9 Tel. 01-540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE KOTE: P. P. CHARGES QUOTED APPLY TO D.K. OMLY CHAROED EXTRA

> PSYCHEDELIC LIGHTING UNIT IN KIT FORM
> Make this fascinating three-channel unit from a kit which contains all components needed to produce an ever changing light display. Takes its drive from the speaker terminals of a record player, tape recorder or portable radio. Will drive a total of 2 kW of coloured lamps at 240 volts. Supplied complete with PVC covered steel cabinet with holes
ready punched for controls and cable outlets. Master control included. eady punched comprols and cable outlets. Master control includ Price per kit $\& \mid 2.80$ supplied.

> METAL CABINETS
> These attractive steel cabinets are PVC covered in a range of colours, and offer an economically priced unit for the home constructor. The chassis, which has a white satin PVC finish, provides an easily accessible building area, with an integral fascia panel. The cabinet is supplied complete with stick-on reer.
> Colours available include Green, Grey, Black. White and Blue. Every effort will be made to supply a selected colour, but please give alternatives
if possible. osstble


Price
75p
$\mathbf{4} 1.60$ 12.04

Other sizes tospecial order. HOLES PUNCHED in ${ }^{6 \frac{1}{2}}$ Iront or back panels to your own requirements. Please send S.A.E. for quotation.
FIXED VOLTAGEREGULATORS
TO3 case. Gives stabilised supply. MVR 5 V, MVR 12 V , MVR 15 V.
All priced at $\mathbb{1} 1.98$

SEND 5p STAMPS
FOR YOUR
COPY OF OUR
LATEST SUP.
PLEMENT NO. 4
D.I.L. REED RELAY

Operates direct from 5 volt TTL logic efements. Normally open contact rated at
$0.25 \mathrm{~A}, 100 \mathrm{~V}$ d.c.
Price each $£ 1.50$

Our CATALOGUE, priced at 25p post free in U.K., shows most of the R.S. range of professional components. Prices include $V A T$. All orders over EI POST FREE-U.K. only. Overseas postage at cost.
S.A.E. with all queries please.
P.O. Box No. I, Llantwit Major, Glamorgan, Wales CF6 9YN
 BAKER 12" MAJOR £11.55

- 30.14,500 cps. Double cone woofer and tweeter loudspeaker. Baker ceramic magnet assembly, flux density 145,000 gauss. BASS RESONANCE 40 cps 20 watt RMS. MAJOR MODULE KIT £14.85
30-17,000 cps. woofer, tweeter, crossover and baffle as illustrated. Size $19 \mathrm{in} \times 121 \mathrm{in}$. NOTE-When ordering state 3 or 8 or 15 ohms.
BAKER LOUDSPEAKERS 100\% BRITISH MADE



BAKER LOUDSPEAKER CO., BENSHAM MANOR PASSAGE THORNTON HEATH, SURREY Tel. 01-684-1665 PRICES INCLUDE VAT. HI-FI ENCLOSURE PLANS 42p

## VARICAP TUNER

LP1185/86
MC131 OP Decoder I/C LP1400 Decoder Module MFC4060 Regulator I/C P.C. BOARDS MC131OP or LP1400 SPEAKER BRACKETS 2-way swivel READY BUILT BOARDS £24-25 (I/C) or £25-25 (LP1400)

Prices include V.A.T. P. \& P. 25p.
B. \& B. ELECTRONICS

84 MANHERS ROAD, BALDERTON, MEWARK, NOTTS.
Tel.: NEWARK 6895 (Anytime)



## SPEAKERS

Baker Group 253.8 or 15 ohm Baker Group 353,8 or 15 ohm Baker Deluxe 12in d/cone
Baker Major 12 in d/cone Baker Regent
Baker Superb
Baker Auditorium 12
Celestion MH1000. 8 or 15 ohm
Celestion PST8 for Unilex
Celestion G12H 8 or 15 ohm
Celestion G15C 8 or 15 ohm
Celestion G18C 8 or 15 ohm
Coral $6 \neq$ in dicone roll surr 8 ohm
Coral din d/cone roll surr 8 ohm
EMI $13 \mathrm{in} \times \operatorname{gin} 3.8$ or 15 ohm EMI 13in $\times$ Bin 150 dic 3,8 or 15 ohm EMM 13in $\times \operatorname{Bin} 450$ t tw 3 , 8 or 15 ohm EM1 13 i - $\times 8$ H Jow
EMI 6 tin 938504 or 8 ohm
EMI 5 in 98132CP 8 ohm
EMI $8 \times 5$ dicone. roll surr 10W
EM: $2 \frac{1}{2}$ in tweeter 97492AT
Eagle DT33 30W tweeter
Eagie HTT 15 horn tweeter
Eagle CT 5 cone tweeter
Eagle CT 10 tweeter 8 or 16 ohm
Eagle crossover CN23. CN26. CN2 16
Eagle FR4
Eagle FR65
Eagle FR8
Elac $9 \times 5$ 59RM109 15 ohm , 5SRM114 8 ohm Elac 6yin 6RM171 d/c roll sur,
Elac 6yin 6RM220 d/con
Elac 4in tweeter TW4
Elac 10in d/cone 10RM23s 8 ohm
Elac 8 in 8CS 1753 ohm
Fane Pop 15W 12 in
Fane PoD 25: 2 25W 12in
Fane POD 40W 10 in
Fane Pop 50W 12.n
Fane Pod 5560 W 12in
Fane Pop 60 W 15 iri
Fane POD 100W 18 in
Fane Crescendo 12A 100W 12 in
Fane Crescendo 12 B bass
Fane Crescendo 15 in 100 W
Fane Crescendo 18in 150W
Fane 801T 8 in d/e roll surr
Fane 607 T sin d/c roll surr
Fane Boat 8 in d/c
Fane 701 twin ribbon horn
Fane 910 horn
Goodmans 8P 8 or 15 ohm

## WILMSLOW AUDIO

## THE Firm for speakers!

|  | Goodmens 10P 8 or 15 hm Goodmans 12P 8 or 15 ohm | $\begin{array}{r} \mathrm{C5} .30 \\ \mathrm{C} 12.95 \end{array}$ |
| :---: | :---: | :---: |
|  | Goodmans 12P.D 8 or 15 ohm | \$16.75 |
| c7.75 | Goodmans 12P.G 8 or 15 ohm | ¢15.75 |
| ¢ 51.50 | Goodmans Audiomax 12AX 100W | 239.65 |
| £12. 50 | Goodmans Audiomax 15AX | c42.00 |
| ¢10.75 | Goodmans 15P 8 or 15 ohm | [15.50 |
| 1.50 | Goodmans 18P 8 or 15 ohm | 533.00 |
| 17.75 | Goodmans Midax 750 | 16.00 |
| ¢14.50 | Goodmans Axent 100 tweeter | [1. 25 |
| \$12.50 | Goodmans Audiom 10012 in | [12.00 |
| c10. 5 | Goodmans Axiom 401 12in | 415.5 |
| c2.55 | Goodmans Twinaxiom 8 | ci. 25 |
| ¢12.00 | Goodmans Twinaxiom 10 | c9.00 |
| \$15.00 | Ket T27 | 55.25 |
| 524.00 | Ket T15 | ci.00 |
| E33-00 | Kef 8110 | 17.00 |
| 52.42 | Ket B 200 | ct. 00 |
| [3.11 | Ket B139 | 512.75 |
| [2.25 | Kef DN8 | c.2.00 |
| 12.50 | Kef DN12 | 84. 50 |
| 23.75 | Kef DN13 | E2.75 |
| ct. 25 | STC4001G super tweeter | ¢8.18 |
| 18.00 | Richard Allan CG8T Bin d/c r/surr | 16.35 |
| 13.00 | Whartedale Super t0RS. DD | 59. 60 |
| 12.50 | 2 tin 64 ohm. 70 mm 80 ohm 70 mm 8 ohm | 50.85 |
| 12.50 | 2 t in 75 ohm | 50.50 |
| c0. 85 | $7 \mathrm{in} \times 4 \mathrm{in} 3$ or 8 ohm | ¢1.40 |
| 45.45 | $8 \mathrm{in} \times \sin 3$ or 8 ohm | \$1.50 |
| [3. 20 | $10 \mathrm{in} \times 6 \mathrm{in} 3.8$ or 15 ohm | \$2.30 |
| 11.50 |  |  |
| [2. 54 |  |  |
| 13. 40 | SPEAKER KITS |  |
| [1.20 | SPEAMER NITS |  |
| 5.30 c. 75 | Baker Major Module | each 10.75 |
| 59. 50 | Fane Mode One | each 59.90 |
| 12.60 | Goodmans DIN 20 | each 58.75 |
| [3. 50 | Helme XLK25 | paur 122.00 |
| 12.65 | Helme XLK30 | pair 114.85 |
| \$1.21 | Helme XLK50 | pair ¢ 38.85 |
| 12.85 | Ketkit 2 | each f23.50 |
| [2. 50 | Ketkit 3 | each 534.00 |
| 14.80 | Richard Allan Twinkit | bach 58.25 |
| c6.95 | Richard Allan Triple 8 | -ach $\{13 \cdot 00$ |
| E8. 50 | Richard Allan Triple | each $\mathbf{1 1} .50$ |
| 211.00 | Richard Allan Super Triple | each $\mathrm{E21}$-50 |
| 112.50 | Whartedale Linton 2 kit | pair 510.25 |
| \$13.00 | Whartedale Glendale 3 kit | patr $534 \cdot 50$ |
| c22.50 | Whartedale Dovedale 3 kit | pair $\mathbf{5 2} \mathbf{5 0}$ |
| E200 |  |  |
| L2.00 PA/DISCO AMP | PA/DISCO AMPLIFIERS |  |
| t36.60 |  |  |
|  |  |  |
| c7.00 | (carr and ins £1) |  |
| f3. 85 | Baker Major 100 watt | ¢ 49.75 |
| [2.75 | Linear 30/40 | 1 30.00 |
| ¢23.00 | Linear 40/60 | ¢35.00 |
| ¢ 10.75 | Linear 80/100 | [59.75 |
| ¢30.50 | Linear 100 watt slave | [44.00 |
| E5.00 | Eagle PA range in stock-ask for cat | logue |

PARTRIDGE MAIFS ISOLATIOS TRAMAFORMRR
Pri: $150-250 \mathrm{~V}, 5 \mathrm{~V}$ teps, Sec: $240 \mathrm{~V}, 13 \mathrm{amps}$ 16, carr. pack, $£ 2 \cdot 25$
GARDNER'S POTTED TRAMSFORMER, Pri. 200260 V . Sec. $18 \mathrm{~V} 500 \mathrm{~m} / \mathrm{a}, 50 \mathrm{~V} 150 \mathrm{~m} / \mathrm{s}, 6 \mathrm{~V} 250 \mathrm{~m} / \mathrm{a}$
output, 81, p.p. 28 p .
RIPLEY MARNS TRANAFORMER, Pri: $110 \mathrm{~V}-240 \mathrm{~V}$, $\mathrm{Bec}: 12.5 \mathrm{~V}: 0: 12.5 \mathrm{~V} \quad 750 \mathrm{~m} / \mathrm{A} \quad 7 \mathrm{~V}: 0: 7 \mathrm{~V} \quad 1 \mathrm{~A}$, 81 , p.p. 20 p .

MANS TRANSFORMER, Prl: $100 \cdot 250 \mathrm{~V}$, Iec: 22:0:22 $200 \mathrm{~m} / \mathrm{A}$. $\quad 22: 0: 22 \quad 100 \mathrm{~m} / \mathrm{A} \quad 0: 24 \mathrm{~V} \quad 20 \mathrm{~m} / \mathrm{A}$, 30p, p.p. 25p.
MADIS TRANSFORMER, Prl: $100-240 \mathrm{~V}$ a.c. $86 \cdot 5 \cdot 0-36 \cdot 5 \mathrm{~V}, 27 \mathrm{~m} / \mathrm{A}, 0-21 \cdot 5,280 \mathrm{~m} / \mathrm{A}, 80 \mathrm{p}$, p.p. 25p. TRANBISTOR OUTPUT TRAESFORMEB, Ratio $8: 1,120 \mathrm{mH}$. Centre tap 2 watts. output. 20 p , p.p. 8 p

WODEN MAINS TRANSFORMER, Auto wound. Pri: $200 \cdot 250 \mathrm{~V}$. Sec: $105-135 \mathrm{~V}$. $3 \mathrm{kVA}, 216$. Carr. 1 1.50.
HADDON MALNS TRANGFORMER, Pri: 230V. sec: 20V 1 smp , 21.60 , p.p. 27p.
MII. MANTS TRANBFORMERS. Type 606/1. Sec: BV-0-6V, $100 \mathrm{~m} / \mathrm{A}, \quad 75 \mathrm{p} . \mathrm{Type} 909 / 1$. Sec: GMOOTHING CHOKE, $11 \mathrm{MH}, 1$ in $\times 1$ in $\times 1 \frac{1}{i} \mathrm{in}$, 20p, p.p. 8p.
FINGED ALUMINIUM HEATBINE, $4 \frac{\mathrm{in}}{} \times 6 \mathrm{in} \times$ $11 \mathrm{n}, 2 \times 2 \mathrm{~N} 3055$, 81, p.p. 13p.
GOODMANS 8 in SPEAKERS $3 \cap 21-60$, p.p. 28 p.
LOUDSPEAEER 2tin Dia., $40 \Omega, 300 \mathrm{~m} /$ watte, 80 p . p.p. 5 p

FLNEED ALUMINIUA HEAATEME, gin $\times$ gin $\times$ 1 hm . $\operatorname{In} \mathrm{C} .: 4 \times 2 \mathrm{~N} 3055$, 28, p.p. 29 p .
GARRARD MAG. TAPE DECKS: 1 if.p.s., 50 V , solenoid operated brakes, etc. Mains voltage motors 27.60 each, p.p. 60p.
10 REED swITCHES operated by pueh buttons and magnets, $80 \mathrm{p}, \mathrm{p} . \mathrm{p} .26 \mathrm{p}$.
COMPONENT PANEL, 6 acr's ( $300 \mathrm{~V}, 1 \cdot 6 \mathrm{~A}$ ) 6 cond., 12 reaiators, 8 diodes, 48 p, p.p. 8p.
OOMPONEIT PANEL, 1 scr: $100 \mathrm{~V}, 15 \mathrm{amp}, 1$ diode, $1 \mathrm{cmp}, 500 \mathrm{mtd} 50 \mathrm{~V}, 50 \mathrm{p}, \mathrm{p} . \mathrm{p} .7 \mathrm{p}$.
VEADER ROOT ELEGTRICAL IMPDLSE COURTER 01-RESETHABLE, A.C. $200 \cdot 250$ V, $81 \cdot 10$, p.p. 13 p. GEO MALS OIRCUIT BREAKERS, 2 mp or 5 amp, 81 each, p.p. 14p.
LEVER ACTION P.O. 1000 TYPE SWITCEES
Lock 4-pole changeover, 10p, p.p. 4p. Ex equip. Lock 2-pole changeover, $10 p$, p.p. 4p. Fiz equip. MULLARD A MALLORT BCREW TERMLNAL CAPACITORS $4,500 \mu \mathrm{~F} 64 \mathrm{~V}, 7,100 \mu \mathrm{~F} 40 \mathrm{~V}, 80 \mathrm{p}$ each. $20,00030 \mathrm{~V}, 25,00025 \mathrm{~V}, 35,00015 \mathrm{~V}, 80 \mathrm{p}$ each. p.p. $21 \mathrm{p} .10,000 \mu+40 \mathrm{~V}$ d.c. at 72 p , p.p. 12p. $3.000 \mu+50 \mathrm{~V}$ d.c. price 45 p, p.p. 7 p. $2,000 \mu+25 \mathrm{~V}$ d.c. at 45 p , p.p. 5 p .

MULLARD POLL WAVE RECTIPTERS
$6-48 \mathrm{~V}, 15 \mathrm{amp}, 76 \mathrm{p}, \mathrm{p} . \mathrm{p} .10 \mathrm{p}$.
BELLDG LEE 1.5 map In-line rubber covered Interference suppressor, $85 \mathrm{p}, \mathrm{p} . \mathrm{p} .8 \mathrm{p}$.
BUEBRE 3 PIN 5 AMP NOH-REVER8IBLE CABLE CONHECTORS, 80 p, p.p. 5 p.
SOLENOIDS 18 FOLT PULL ACTIOR
$2 \mathrm{~m} \times 1 \mathrm{n} \times 1 \mathrm{in}, 40 \mathrm{p}, \mathrm{p} . \mathrm{p} .8 \mathrm{p}$.
SOLENOIDS 12-24V d.c. pull action 1 ifn $\times 1$ in $\times$ 1din, 40 D , p.p. 5 p .
SOLENOIDS 240 V a.c. pull action $2 \operatorname{lin} \times 1 \neq \ln \times$ 1th, 80p, p.p. 9p.
BOLENOIDS. Mant. by Bensons. 240V a.c. Pull action $21 \mathrm{in} \times 1 / \mathrm{in} \times 1 \mathrm{n}, 75 \mathrm{p}, \mathrm{p} . \mathrm{p} .9 \mathrm{p}$.
OMRON ME2 MIDGET POWER RELAY, 12V d.c. Double pole changeover. New, 70p, p.p. 5p.
8TC VARLEY, minlature relay: 700@, 17.5-37V, perspex cover, 4 pole changeover, 40 p, p.p. 5 p .
POTTER BROMFIELD 12V d.c. coll 3 pole e/o
contacts rated 7 amp . \&1, p.p. 10p.
I.T.T. LOW PROFILE RELAY8. 4 pole c/overs. 8000 12-18V, 75p, p.p. 5p.
MANS RELAYS, 200-250V a.c. 2 makes. Heavy duty contacts, $50 \mathrm{p}, \mathrm{p} . \mathrm{p} .7 \mathrm{p}$.
KEYSWITCE RELAY, 12 V d.c. Coll 3 B.P.C.O. 90p, p.p. 5 p.

TRLESCOPIC AERLALS
Chroraed 7 In closed, $28 i_{n}$ extended, 6 section ball jointed base, 88 p, p.p. 5 p new.
PRINTED OLRCUIT BOARD/ 19 ACY 19'a 10 OA200 Diodes: 1 reed relay: 1 AZ 229 zener ass. capacitor/ realatora, Power supply $22 \mathrm{~V}, 250 \mathrm{~m} / \mathrm{A}$ d.c. 240 V a.c., 21, p.p. 25p. Ex. equip.

TAPE POSITION INDICATOR
Re-settable 3 diglts, $30 \mathrm{p}, \mathrm{p} . \mathrm{p} .5 \mathrm{p}$.
All orders add 10\% V.A.T.

## FIELD ELECTRIC

 LIMITED3 Shenley Road
Borehamwood, Herts.
Tel. 01-9536009

## SUPPLIERS OF GEMI-CONDUCTORS TO THE WORLD



Telephone Corner
COMPLEETELEPHows ORMAL HOU
 TELEPHONE DIALS Standard Post Office type. Only 271 working order. 2 PPOST \& PACKING $16 \frac{1}{2} p$

## Tested and Guaranteed Paks

B79 $\quad 4 \begin{aligned} & \text { iN } 4007 \text { sil, Rec. diodes. } \\ & 1,000 \text { PIV } i \text { amp. plastic }\end{aligned} \quad$ 55p B.I $10 \begin{gathered}\text { Reed Switthes, 1" long } \\ \text { dia. Highspeed P.O. type }\end{gathered}$ H35 100 Mixed Diodes, Germ. Gold Unmarked
H38 30


H39 6 Integrated circuits 4 gates integrated circuits 4 gates
BMC 962,2 flip flops BMC 945 H41 2 BDI $\begin{aligned} & \text { cary Plastic Transistors } \\ & \text { come }\end{aligned}$ H85 440361 Type NPN transist
to 466
4 103
Ho6 $\quad \mathbf{4} \begin{gathered}\text { tistors } \\ \text { sist } \\ \text { HOSe }\end{gathered}$
$\square \operatorname{lan}$ InIM?
Untested Paks
BI 50 Germanium Transistors $\quad$ 55p
866150 Germanium Diodes
55p
B83 $200 \begin{gathered}\text { Transistors, manufacturers' } \\ \text { rejects, AF, RF, Sil, and }\end{gathered}$
B84 $100 \begin{aligned} & \text { Silicon Diodes DO.7 glass } \\ & \text { equir to OA200, } 0 \text { A } 202\end{aligned} 55$ p
886100 Sil. Diodes sub. min.
55p
H20 $20 \begin{gathered}\text { BY| } 26 / 7 \text { Type Silicon Recti- } \\ \text { fiers } 1 \text { amp. plastic. Mixed }\end{gathered}$ 55p
$\begin{array}{ll}\text { H34 } & 15 \\ \text { Power Transistors, PNP, } \\ \text { Germ. NPN Silicon TO-3 }\end{array} \quad \mathbf{5 5 p}$
H67 $10 \begin{aligned} & 3819 \mathrm{~N} \\ & \text { case } \text { Channel }\end{aligned}$

## Make a rev counter

## for your car

The "TACHO BLOCK". This encapsulate block will turn any 0.1 mA meter into linear and ascurate
rev. counter for


## Ex EPOPush Batton Intercom Telepphoness

Exactly as internal telephone systems still in every day use where automatic internal exchanges have Complete with circuits and instructions. Price o each instrument is independent of the number of

## $£ 2.75$ <br> n. 384 p

Extension Telephones $71 \frac{1}{\text { ipeach, p.p. } 27 \$ p \text {. }}$ 61.37 for 2, p.p. 55 p. These phones are

## New X Hatch

Our new vastly improved Mark Two Cros Hatch Generator is now available. Will align the colour guns on a colour TV rec pick-up circuit. The case is virtually unbreakabledeal for the engineer's tool box-and only
 (includes V.A.T, P. A P. but no batteries)


We have just received a large consignmant of LM380 IC. These are specially selected to a higher
SL 60745.
This fantastic little 3 w audio ic only fequires two capacliors and two potentiometers to make an quality g good and has to be heard to be believed
Our epecial ff . 10 each complete with date

## Over 1,000,000

 Transistors
## in stoch

We hold a very large range of fully marked tested and guaranteed transistors. power kransistors.
Our very popmar ip Trenesiaters
TYPE " A", PNP Silicon Alloy, TO-5 can.
TYPE "'B". PNP Silicon, plastic encapsulation TYPE ''E", PNP Germanium AF or RF. TYPE "F"' NPN Silicon plastic encapsulation.
TYPE "G" NPN Silicon similar ZTX range. "HP" PNP Silicon, similar ZTX500 range

## 8 nelars for $£ 1 \cdot \mid 1_{p}^{\text {p.ap } .27]_{0}}$ UHF TV Tuner Units

Brand new ty a famous manufacturer
Data supplied $£ 2.75$

Plastic Power Transistors

NOW IN
TWO
RANGES


These are 40 W and 90 W silicon Plastic vailable in NPN or PNP at the most shatter. ngly low prices of all time. We have been selling these successfully in quantity to all parts of the world and we are proud to offer erms.

$\begin{array}{cccc}40 \text { wate } & 1-12 & 13-25 & 26-50 \\ 90 \text { watt } & 22 p & 20 p & 18 p\end{array}$

$\begin{array}{cccc}40 \text { wate } & 1-12 & 13-25 & 26-50\end{array}$
90 watt $\quad 381 \mathrm{p} \quad 36 \frac{12}{31 p} \quad$ 39p
Please state NPN or PNP on order
HIGH-SPEED MAGNETICCOUNTERS 4 digit (non-reset) $4 \times 1 \times 1$ 33p.P. \& P. 5p.

INTEGRATED CIRCUITS. We stock a large range of I.C.s at very competitive prices (irom CREE Catalogue, see coupon below.
METRICATION CHARTS now available, This fantastically detailed conversion cal culator carries thousands of classified
references between metric and British (and references between metric and British (and
U.S.A.) measurements of length, area. volume, liquid measure, weights, etc. Pocket Size. 15p, Wall Chart, 18p.

LOW COST DUAL IN LINE I.C.
SOCKETS
14 pintype at 161 peach) Now new low
type at 18p each $\}$ profile type

## BOOKS

We have a large selection of Reference and Technical Books in stock, detaits are in our
latest catalogue, send for it TODAY using the coupon below
N.B.-Books are void of V.A.T

## Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors and
Electronic Components, approx. 170, We guarantee at least 30 really high quality and a host of Diodes and Recrifiers mounted on Princed Circuit Panels. Identification Chart upplied to give some information on the

Please ask for Pak P.1. only $\circlearrowright 5$ p


## name.... <br> ADDRESS

all prices include $10 \%$ V.A.t. MINIMUM ORDER 55p. CASH WITH per order OVERSEAS ADD EXTRA FOR postage.
BUY THESE GOODS WITH ACCESS

# Pructical Electronics Classiified Advertisements 

RATES: 11 p per word (minimum 12 words). Box No. 30 p extra. Semi-Display $£ 8.50$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

## SERVIGE SHEETS

## SERVICE SHEET8, Hadio, TV, etc. $x, 000$

 models. Catalogue 20 p . 心.A.F. enquiries. TFLRAS, 11 Matadand Bank, Preston.8ERVICE 8 HEET8 for over 6000 models of Televisions, Radios, Transistors, Stereo, Tape Recorders, Record Players. ete., at only 30 p , plus S.A.E. with free Fault-Finding ivuide Over 50,000 sheets in stock for 10,000 models S.A.E. enquiries. ('atalogue 20 p plus S.A.E. HAMILTON RADIO, $47^{\circ}$ Bohemia Road, St. Leonards, Hussex. Telephone Hastings 429066.

## FOR SALE

```
TV LINE OUT-PUT TRANSFORMERS
Tidman Mail Order Ltd., 236 Sandycombe Road, Aichmond, Surrey TW9 2EQ 01.9483702
```

SEEN MY CAT? 5,000 items. Mechanical and Electrical (lear, and naterials. S.A.E. K. R. WHISTON, Dept. PE, New Mills, Stockport.

CATALOGUE NO. 18, Nlectronic and Mechanical Components aml manufacturers' surplus. ('redit vouchers valuc 50p. l'rice 23p. including post. ARTHINR SALIIS RADIO
 Sussex.

LIGHTSHOW PROJECTOR8 fiomi only £17. effect wherels from only en. Many Jightshow bargains at luomikik sulilkEs (Disio ('entre), 176 Junction Roma, lombon, N.19. Tel. 01-272 7474.

100 I8sUE8 OF P, E. FOR 8 ALE. ('omplete Stpt. 68-Oct. 73 plus 14 earlipr issues, 215 . 'Tele phonf 01-224 1986 (Hattersea IAndon).

VALVES, VALVES AND MORE VALVE8. Large stocks, many types, 1930 to 1974. S.A.E. for $\mathrm{p}^{\prime}$ utation. List 10p. ('OX RAD)IO, The Parale, East Wittering, Sussex

BARGAIN8! NOYELTIE8! ! uberatable savings to be made by mail order. Send without delay for our FREFIIst. (HANDIERSOF BRIAHTON, 4 Wentworth streft, Brighton, sussex.

8YNTHE8I8ER BUILDER8. Varions Iewtron modules, power supply, patching, pots. I year old. Also. wired circuits and unused components for Wireless World and P.E. Syuthesisers. Private sale. Nend S.A.E. for lletails to: J. W. SMITH $4 \overline{4}+$ Duke Ntrept, top Flat, flasgow, (i31 1QF.

## WANTED

```
 TOP PRICES PAID
 NEW VALVES AND TRANSISTORS
 Popular T.V. and Radio types
 KENSINGTON SUPPLIES (B)
 367 Kensington Street
 Bradford 8, Yorks.
```

            LADDERS
    LADDERS. "special Offer" unvarnished triples. 9 ft - in closed--23ft 1 in extended. \&18-90 (lelivered. HOME SALEN LAADDER OENTRE (PEE2), Haddane (North). Halesfield (1), Telford, shropshire. Tel, 095: 586644 .

## EDUCATIONAL

## television thainug

I6 MONTHS' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners.
13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential. NEXT SESSION commences on September 9th.
Prospectus from London Electronics College, Dept. A9, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

## SITUATIONS VACANT

## C AND G EXAM

Make sure you succeed with an ICS home atudy couras for C and G Electrical Installation Work and Technicions. Redio/TV/Electronics Technicians. Telecomma Technicians and Radio Amateura.

## COLOUR TV SERVICING

Make the most of the current booml Leern the techniques of aervicing Colour and Mono TV ets hrough new hothe study coursses. approvad by

## TECHNICAL TRAINING

Home ofudy courses In Electronic and Electricml Engineoring. Maintenance, Radio. TV. Audlo. Computar Enginesting and Programming. Also self-build redio kits
Get the qualifications you need to success Free detaile from

Internatlonal Correspondence Schools, Dept. 730T, Intertext House, London SW8 4UJ. Or phono 01-622 9911

## BOOKS AND PUBLICATION8

UFO CHART8: Wave Prediction, 49p; Daily Flight Pattern, 44p; Map, 44p TV'CFO DetecFion, 2 Optical Circuits, 55 p , Propulsion Theory, 55p; "Anti-gravity", 55p; Detection C'ircuits: Transistor Optical, 66 p ; Radiation Optical, 40p; Microdetector (memory, LSI Auto-record), 75 p ; Radiation Counter/Timer, 85p. R \& E, Highlands, Needham, Suffolk.

SELLING: 170 issues "Wireless World", 141 "J. Acoustical Society America", 58 'Practical Electronics". 28 "Industrial Electronics', 11 "British Communications and Electronics". 21 "Ultrasonics", 22 IEEE "Electronics". 21 "Cltrasonics", ${ }^{22}$ IEEE $\because$ "Spectrum", 70 "Proceedings IEEE", 21 -IEEE Sonics and "ltrasonics", 22 Miscellan-
pous. 825 Lot, or would consider aplitting-up. GRIFFITHS, 354 Ilford Lane, Ilford.

## WIRELESS TECHNICIANS

There are vacancies at the Home Office Central Communications Establishment and London Region Depot both of which are situated at Headstone Drive, Wealdstone, Harrow, Middlesex, also at Rochester Row, London, SWI for Wireless Technicians to assist with the installation and maintenance of VHF and UHF systems. Ability to drive a car and possession of current driving licence is desirable.
PAY: inclusive of an optional interim addition is $£ 1,370$ (at 17) and $£ 1,965$ at 25 rising to $£ 2,309$ (plus $£ 110$ Outer London Weighting at Harrow and $£ 228$ Inner London Weighting at Rochester Row). Generous leave allowance, good pension scheme and good prospects of promotion.
QUALIFICATIONS: City and Guilds, Intermediate Telecommunications Certificate or equivalent.

Vacancies also occur from time to time in various parts of the country.

For further details phone or write to:
MR. C. B. CONSTABLE
Directorate of Telecommunications
60 Rochester Row, London, SWIP IJX
(Telephone Number 01-828 9848. Extension 734)

# British Nuclear Fuels Limited 

## WINDSCALE AND CALDER WORKS require INSTRUMENT MECHANICS

There are vacancies for instrument Mechanics in the Nuclear Reactors, Chemical Plants and Laboratories at the Windscale and Calder Works of British Nuclear Fuels Limited.
Applicants should have served a recognised apprenticeship and be experienced in the maintenance of electronic equipment and instruments and controls used for the measurement of flow, pressure, temperature, pH, etc.
A knowledge of modern electronic equipment using transistors and integrated circuits in amplifiers and logic control would be an advantage.
*RATE OF PAY: Approx. $£ 39$ a week after training inclusive of Incentive Bonus earning.
*Contributory Superannuation Scheme.
*I8 Days Paid Holiday a year.
*Housing at economic rents on the edge of the Lake District.
*Hostel accommodation for single mentor married men awaiting housing.
For further details and an application form write quoting ref. SEI72 to:

## Works Labour Manager

British Nuclear Fuels Limited
Windscale and Calder Works
Sellafield, Nr. Seascale
Cumberland, CA20 IPG

## MEN ! 670 p.w. can be yours

Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary, direct-fromAmerica, course, you train as a Pay prospects? $£ 3,500+$ p.a.
After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators
Training Centre T61, Oxford House 9-15 Oxford Street, W. 1 Telephone 01-734 2874

CHALLENGING NEW PROJECT requires an engineer experienced in circuit design and manufacture. He would be involved in many aspects of production. Work would be parttime initially but well paid for the right man. Find out more from STEPHEX ISROWN on Walton 24709 or write to $\div$ Ashley Road, Walton-on-Thames, Surrey.

## RECEIVERS AND COMPONENTS

DRY REED INSERTS

Overall length $1.85^{*}$ (Sody length $1.1^{\circ}$ ). Diameter 0.14*. Max. ratings 250 v D.C. and 500 mA . Gold ciad normally open contacts. 69p per dozen: $64 \cdot 12$ per 100 ; $430 \cdot 25$ per 1.000 ;
K 275 per 10.000 . VAT and post paid. K27 per M RADIO TD
40/42 Portland Road. Worthing. Sumex 090334897

## R.T. SERVICES <br> (MAIL ORDER ONLY)

77 Hayfield Rd., Salford 6, Lancs. Veroboard $4 \times 4!0.1$ Matrix, 4 for 11. $12 \times 3 \frac{3}{3} 0.15$ Matrix, $75 p$ each. Memory Array Panels. Full of Ferrite Rings. $£ 1 \cdot 10$ inc. P.P.
FM Tuner with R.F. Stage and A.G.C., 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $£ 1.37 \frac{1}{2}$ inc. P.P.
Crouxet Geared Motors, 30 or 60 r.p.m, New, £l. 54 inc. P.P.
UHF TV Tuners. Transistorised, $£ 1.65$ inc. P.P.
Panels with I.C's on $7 \frac{1}{2} p$ per I.C. min. order IO I.C's.
Transformers. $7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, 88 \mathrm{p}$ inc. P.P. $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}$. 90 p inc. P.P. $9-0-9 \mathrm{~V}$, $100 \mathrm{~mA}, 90 \mathrm{p}$ inc. P.P. $29 \mathrm{~V} 50 \mathrm{~mA}, 70 \mathrm{p}$ inc. P.P. Brand new Boxed Rola Celestion Reentrant Speakers SD 25 with 100 V line transformer fitted $15 \Omega$ without transformer $£ 14$ former fit
inc. P.P.
Transformer. $45-0-45 \mathrm{~V}$, approx. 2 amp , £2.50 inc. P.P
P.C. Board. S/S, $5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}, 10$ for 70pinc. P.P. Panel with 2 SN7490, 2 SN7441 counting circuit with end connector, $\mathbf{£ 2} 20$ inc. P.P. Transistorised Timer. Variable delay. I 10 or $250 V$ A.C. input. With instructions. Brand new, $£ 2$ inc. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$.
Power Unit Components Transformer. 18 volt I amp F/W bridge rectifier, 21250 mfd capacitors, all new $£ 1 \cdot 25$ per kit. P.P. Electrolytic Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$, $4 \frac{1^{\prime \prime}}{} \times 1 \frac{3}{4}^{\prime \prime} 75$ p. inc. P.P.

LED's. Three colours, red. green, and yellow. Four sizes, $0.1 \mathrm{in} 0.125 \mathrm{in}, 0.16 \mathrm{in}, 0.2 \mathrm{in}$. Mixtures all sizes and colours. 50-25, 100-89 including VAT and postage. ( W.O. Larger including AT and postage. C.W.O. Larger
quantities by negotiation. indut StaAL quantities by negotiation. IND (stockport) Ltd., 181a Bramhall Lane, Davenport. Stockport, Cheshire.

TURN YOUR 8 URPLU8 capacitors, transistors, etc., into rash. ('ontart COLES-HARDING \& Co., P.O. Box 5 , frome, Somerset. Immediate cash settlement.

PREGOON POLYARRONATEGAPAOTORO
ALL HIGH stabllity-EXTREMELY LOW LEAEAGE

| 440 V AC ( $\pm 10 \%$ ) | 63V Range |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 50 p |  | $\pm 1 \%$ | $\pm 2 \%$ | $\pm 5 \%$ |
| $0 \cdot 22 \mu \mathrm{~F}\left(11^{\circ} \times{ }^{\text {¢ }}\right.$ ) | 898 | $0.47 \mu \mathrm{~F}$ | 56p | 46 | 88 |
| $0.25 \mu \mathrm{~F}$ (17\% $\mathrm{Cl}^{\text {¢ }}$ ) | 68p | $1 \cdot 0 \mu \mathrm{~F}$ | 60] | 560 | 40. |
|  | 710 | $2 \cdot 2 \mu \mathrm{~F}$ | 80 p | 650 | 56 |
|  | 75p | $4 \cdot 7 \mu \mathrm{~F}$ | E2.80 | E1.05 | 86 |
| $0.68 \mu \mathrm{~F}\left(2^{\prime \prime} \times{ }^{\frac{1}{2}}\right)$ | 800 | $6.81 \mu \mathrm{~F}$ | 21.04 | 21.28 | . 11.09 |
|  | 910 | $10.0 \mu \mathrm{~F}$ | 28.00 | 21.60 | 31.40 |
| $20 \mu \mathrm{~F}$ ( $2^{*} \times \mathrm{l}^{\prime \prime}$ ) | \$1.22 | $15.0 \mu \mathrm{~F}$ | 22.75 | 22.15 | 41.90 |

TARTALUM BEAD CAPACTTORS-Values available:
$0 \cdot 1,0 \cdot 22,0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V ; $10.0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22 \cdot 0 \mu \mathrm{~F}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or 16 V ; $33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V}^{*} ; 47 \cdot 0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100 \cdot 0 \mu \mathrm{~F}$ at 3 V . ALL at 10 peach . 10 for $95 \mathrm{p}, 50$ for Et .

 | BC107/8/9 9p | BC184/184L | $18 p$ | BFY | B1 |
| :--- | :--- | :--- | :--- | :--- |
| BCl | 20p |  |  |  |



 BC182/182L 18p 2 N 3055 50p POPULAR DIODES- 1 N914 6p, 8 for $46 \mathrm{p}, 18$ for 90 p ; 1N9168p, 6 for $45 p, 14$ for $90 p$ : $18445 p, 11$ for $50 p$. 24 for s1. NN4003 . IN404 7D. IN4005 71D: NiN006 8p IN 40078 EP
LOW PRICE ZENER DIODRS- 400 mW , Tol, $+5 \%$ at ${ }_{6} \cdot 2 \mathrm{~V}, ~ 8.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}$, $13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}$. ALL at 70 each, 6 for 89 p 14 for 84p. SPECIAL OFFER: 100 Zeners for 85.50.
RESIRTORS-High atability, low notse carbon flm $5 \%$, IW at $40^{\circ} \mathrm{C}$. $\$ \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E12 aeries only-from $2 \cdot 2 \mathrm{n}$ to $2 \cdot 2 \mathrm{Mn}$. ALL at 1 p each. 8 p for 10 of any one value, 70 p

gIUICON PLAgTIC RECTIFIERE-1-4
wire ended D027: 100 P.I.V. 7 p (4 for 26p); 400 P.I.V. Bp (4 10r 80p): 800 P IV, 11 p ( 4 (ar 42p).
BRIDGR RECTIFIERS-2t amp: $200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$; 600 V 55 p .
SUBMIMIATURE VERTICAL PAESETB-0.1W only: ALL at 5 p each: 50 の, $100 \Omega, 220$ 日, $470 \Omega, 680 \Omega$, 1kn $2.2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega$, $3.8 \mathrm{k} \Omega$. $10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega$. $22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega$ $100 \mathrm{k} \Omega, 680 \mathrm{k} \Omega$. $1 \mathrm{M} \Omega$
PLEASE ADD 10p POBT AND PACKING ON ALL ORDERS BELOW 25. ALL EXPORT ORDERS ADD COBT OF SEA/AIRMAIL.

PLEASE ADD 8\% V.A.T. TO ORDERS
End B.A.E. for lists of additional ex-stock items.
Wholesale price lista avallable to bona fide companles.

## MARCO TRADING <br> Dept. E.9. The Old 8chool, Edstaston.

Tet : Nantwich (Cheshire) 33291 (STD 0270) (Proprs.: Minicost Trading Litd.)

UNIT IN BGAART ALI CABE $11 \times 11 \times 4 \mathrm{in}$.. Contains of aillcon dlode $800 \mathrm{~V}, 20 \mathrm{~A}$, 8 SCA 3 OR 400 V 16 A . Vinkors. 4 mall. 2 large, together with other components, IS (60p). A.C. METER8. 3 easorted $2-3 i n$. 51.15 (35p). S FIGURE AESETTABLE COUNTER, 18/22V. worke on 12V. E2.20 (25p). 7400 \#EWIES I.C.e, 10 on panel(e). \&1-11, c.p. COPPER CLAD PAX. PANELS, $5+\times 5 \nmid$ in., 8 tor $50 p$, c.p.: $7 \ddagger \times 9 t n . .8$ for $\mathrm{E1} \cdot 30$, c.p.; $11+\times 9 \mathrm{Hn} .3$ tor £1, c.p.: $15 \times 9 \mathrm{in}$.. 3 for s 1 -30, c.p. 8 MAALL UNIT WITH 4PFYS 1 with heatrinke. 4 sllicon dodes 650 V itA gius resistors. e0p, c.p. SMALL PANEL with $2 \times$ ACi2s and OC75 plut olectrolytice, 40p for 2. c.p. VALUPAKS, P9. 100 aworted imica cepp. ssp; P11. 100 seorted polystyrene cape. 75p; P13. 10 wire noted neons. 30p P22: 100 asearted capacitors. 5sp, post 12p any number of Pake. Send iop stampe for list of Melupak. COmputer pandi, etc. henup on purcha LD A8sOnTED COMPONENT8, \&1-75, c.p.
LB FIABTA COMPUTEA PANELS E1. C.p.
LE BECONO COMPU J.W.B. RADIO

2 Barnfleld Crescent, Sale, Cheshlre M33 iNL Postage In brackets Mall order only


BUILDING YOUR OWN HI－FI AMPLIFIER？

## 

WHY NOT UBE A PROFESBIONAL CASE？ Wo have limited number of high quality cane LOOK AT THESE FEATUAES：

Aeady punched ateel chamal
3piece，tonk veneered case
sereen printed front and rear piates
FRONT PANEL
Function switch for P．U．TAPE solection．MONO／ STEREO and SCRATCH FILTER swliches．Bass． treble，volume and balance．On／off and neon indicato DACK PANEL
P．U．input socket．Tuner input socket．Tape in／out socket．MAGNETCCERAMIC switch．Speaker out put sockets．headphone outpul socket．A．C．outlet HARDWARE COMPLIMENT Includes
Pugh button switch rifily．sockets，knobs，plastic foet slide awitch．neon indicator，screwa，nuts etc COMPLETE KIT OF PART8 ONLY EB． 20 POST FMEE． READY BUILT and TE8TED E21 POST FREE （10 watte R．M．S．per CHANNEL）
3．A．E．for full ilst

## SOUND ELECTRONICS

（NEWCASTLE）LIMITED
43 Heeton Grove．Newesstio upon Tyne，NEt SNP Tel．（0832） 650108

BRAND NEW COMPONENTS BY RETURM， Electrolytirs， $15 \mathrm{~V}^{\circ}, 25 \mathrm{~V} .50 \mathrm{~V}^{*}-0.47,1,2.2$ $47,10 \mathrm{mF}, 4 p ; 22,47,4 \mathrm{tp;} \mathrm{(50V,5p);100}$,
$5 \frac{1}{2} p ;(50 \mathrm{~V}, 7 p): 220,6 p ;(50 \mathrm{~V}, 9 p)$ Subuniniature beitd－tye tantalumis $0 \cdot 1 / 35 \mathrm{~V} 0.22-135 \mathrm{~V}$ ， $0.47 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4.7 / 35 \mathrm{~V}, 10 / 18 \mathrm{~V}$ $20 / 16 \mathrm{~V}, 4 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}^{\circ}$ ，9p．Mylar Film 100 V $0 \cdot 001,0 \cdot 002,0 \cdot 005,0.01,0 \cdot 0=2 \frac{1}{2} \mathrm{P} ; 0 \cdot 04,0 \cdot 05$, 3p．Mullard Tubular Polyester 400 V E6 stries， $0 \cdot 001-0.022$ ，3p；（0．0333－0．1，4p．Mullard miniature（ $3: 3: 3$ erramies L .12 series 20 ＂ $1 \cdot 8 \mathrm{pF}-$
 E12 series 10 pF －1000pif．2ip； $1200 \mathrm{pF}-$ $10000 p \mathfrak{F}$ ， $32 p$ ．Miniature Hishotab（＇arbon Fitm Resistors fil j：12 series i＂ $1 \Omega-10 \mathrm{M} \Omega$（ $100^{\circ}$ over 1 MSt．1p．Postage 8p．Prices Vat inclusive．THE（．R．SlPPPI，CO．，1ご （＇hesterfield Road，shetfield，SK ORN．

RADIO \＆TELEVISION AERIAL BOOSTERS \＄2．95，tlve television valves 45p．50p hargain transistor packs，bargain es resistor and cap－ acitor packs．IHF－VHF televisions 87.50 ． Carr．£ $1 \cdot 50$ ．S．A．E，for 3 leaflets．VEJCO HLEUTRONICS，Bridge it．，Ramsbottom， Hury，Lanes．

## MISCELLANEOUS

## PSYCHEDELICATESSEN

is the only way to describe the paradise of FREAKY gear now available from Boffin LOOK！

Kits
NO LICENCE EXAM．Transmitter／
Receiver
Variable－rate．BRIGHT－FLASH，Pocket $\$ 6.40$
Mariable－rate．BRIGHT－FLASH，Pocket 62.40
Mini－Strobe Ready－Made Modules
Maxi－Volt SPARK GENERATOR（！inch
spark），15，000 Volts．
Experimental Mini DREAM－LAB－
ORATORY
SENSITIVE non－anatomical electronic
STETHOSCOPE
Electronic＇VOICE－THROWER＇
GHOST－HUNTING AID
PEOPLE DETECTOR
Experimental WATER－FONE
PSYCHEDELIC MEDITATION AID
Bird－Watchers＇REMOTE MONITOR
Psychological CROS5－EYED EARS
Superice 50 UND－CATCHER
All prices include VAT，packing \＆postage）
Send remittance to：
BOFFIN PROJECTS
4 Cuniiffe Road，Stoneleigh
Ewell，Surrey
（Mail order U．K．only）
Or for more details，send 20 p for lists，plus

## fibre optic suppliers

NEW LENSES OPTIKIT L5 5 canvex lenses for photoelectric devices，detector diameter／focal length $7 / 7,14 / 12,21 / 18,26 / 23$ $45 / 50 \mathrm{~mm}, 62.20$.

LIGHT＇SOURCES，DETECTORS：MV54 miniature（ 2 mm ）red LED；MLED500 TO－92 PC mounting red LED；MLED92 TO－92 infra red emitter：2N5777 high sensitivity silicon photo－darlington amplifier，Response Time $200 \mu \mathrm{~S}, 2 \mathrm{MRDI50}$ ．Superior 12 mm sinien phototransistor．Fast response $3 \mu \mathrm{~S}, 40 \mathrm{~V}$ max | phototransistor．Fast response 3 | $\mu S$ | ， 40 V max． |
| :--- | :--- | :--- |
| MV54 | 2 | 2 | MV54

MLED500
MLED92 2N5777
MRD
 remote contral 40kHT TRANSDUCERS for CIRCULAR POLARISERS for 43.85
tion－enhance contrast ratio from glare reduc－ tion－enhance contrast ratio from LED display，
nixies，＇scope．HRCP7 red，HACP24 amber， nixies scope．HRCP7 red，HACP24 amber $50 \mathrm{~mm} 66 \mathrm{p} ; 75 \mathrm{~mm} \times 75 \mathrm{~mm}$ \＆1．21： $150 \mathrm{~mm} \times$ 150 mm 64.40
CROFON 161064 strand plastic light conduit bundle dia． 1.8 mm ，O．D． 3.3 mm ．Im $\{1.32$ ； 5 m E5． 50 ： 10 m £10．45；25m 222 ．
PLASTIC OPTICAL MONOFIBRE for easy light circuitry，displays，effects．Diameter $\begin{array}{ccccc}0.5 \mathrm{~mm}-F P 20 ; & 1.0 \mathrm{~mm}-\mathrm{FP} 40 ; & 1.5 \mathrm{~mm} \text { —FP60．} \\ \text { Length m } & 50 & 10 & 25 & 50 \\ 100\end{array}$ $\begin{array}{llllll}\text { Length m } & 5 & 10 & 25 & 50 & 100 \\ \text { FP20 } & & & £ 1.32 & £ 2.20 & £ 3.85 \\ \text { FP40 } & \& 1.10 & £ 1.98 & £ 3.85 & 66.60 & 〔 12.10\end{array}$ $\begin{array}{llllrl}\text { FP40 } & £ 1.10 & £ 1.98 & £ 3.85 & 66.60 & £ 12.10 \\ \text { FP } 60 & £ 1.98 & £ 3.85 & £ 7.70 & £ 13.20 & £ 24.20\end{array}$ OPTIKIT 103：Experimenter pack， 2 metres Crofon 1610 ＋ 5 m each FP20，FP40，FP60－ 64．84．
MARE＇S TAILS：Decorative effects．7，000 fibres in 18 mm O．D．ferrule．Professionally finished，22in diameter in use．Add lamp． stand，cover to make Fibre Optic Lamp．Eye catching in boardroom，hall or foye
All prices include p．\＆p．VAT and data．Send
9 in $x$ gin S．A．E．for details． FIBRE OPTIC SUPPLIERS（Dept．PE）， P．O．Box 702，London WiO 6SL

$\square 0$

Calculeter Keybeard（to order）only P3．54 sp352

 Send 20p，atampa H you llke．for full data and our circula on all of above．or a 4 tp otamp for our product lint，to： SINTEL，S3 ABTON TREETT，OXPONO

> Lighting Modules and Kits Brought OUND TO LIGHT： $3 \times 1 i \mathrm{~kW}$ channels wi bypass，sensitivity and dimming controls．This unit was designed for use by hire firms and proved to be very reliabie．
> DIMMERS：2－way wall），$£ 16 \cdot 99, \mathrm{KIT}, ~ £ 14 \cdot 99$. THEATRE AND DISCOICLUB DIMMERS CUSTOM BUILT Written enquiries and Mail Order only to：
SELEKTRON 21 Priors Road，Windsor Berks．SL4 4PD

MORE RANGES FOR LESS MONEY！
AC／DC Multimeter type U4324
A－DC $0.06-3 A-6$ Ranges． A－AC $0.3-3 A-5$ Rannes．
V－DC $0.6-1200$ V－9 Aange
V－AC $3-900 \mathrm{~V}-8$ Ranges．
Frequency in the range of 45 to 20 kHz ．Resiatance： 500 ohm，to 5 Mohm－5 ranges．Dectbel：－10 to +12 dB ．Accuracy：$\pm 2.5 \%$ ．DC
$+4 \% \mathrm{AC}$ ．Dimensions： $167 \times 98$
$\times 83 \mathrm{~mm}$ Only E 8.00


SUPERTESTER 680 R ICE 10 Fields－B0 Ranges：Plus lot of accessories to
neasurements of 500 A －AC 100 ADDC－Temperature -50 C to +200 C Magnetic fields up to 15 KGauss－
Phase indicator－EHT 25 kV Electronic Volt Onm－mete Transistor Diode Tester．etc
 300 grams 20kOhmV Accuracy
10 DC．Ask for free catalogue Accessorles Ex

ALPHANUMERIC NIXIE TUBES B7971
The Alphanumeric
NIXIE tube has the ability to display all the letters of
the alphabet the alphabet．
numerals 0 thru 9 numerals 0 thru 9
and
special characters in a single tube From the stand－ point of both read－ ability and slec． trical characteris hics．the Alpha－ numeric NIXIE tube provides many uniaue benatits including ${ }^{*}$ All d co operation $\star$ Unitorm．continuous
line characters of equal height $\star$ Memory with simple solid state drive circuits \＆Readability in high ambien ight ．．． 200 footlamberts brightness＊Long life with no loss of brightness \＃Character height 2 tin．
Price only 99p

## SPECIAL OFFER

The SInclalr Sclentific．
Logs，trig and arlihmetic． All at the touch of a button． At last there a pocket calculator which gives you log and trig functions instantly Full 12 function machine．
With the functions available on the Scientific keyboard，you can handle directly log to． os and arcos．tan and sectan，sutomatic squaring coota）．plus，of course，adotition．subtraction and othar cation，division and any calculations besed on them． 7－digh acientific notation， 200 －decade range．Reverse Poligh logic and 25 －hour battery hife．
Send for further information．$£ 45$
Add $8 \%$ VaT to all liema $+35 p$ Pap
ELECTRONIC BROKERS LTD
49－53 Pancras Road，London NW1 2QB
Tel．01－837 7781

## Build the Mullard C．C．T．V．Camera Kits are now available with compre－ hensive construction manual（also available separately at 80p）． <br> SEND $5^{\prime \prime} \times 7^{\prime \prime}$ S．A．E．FOR DETAILS TO： CROFTON ELECTRONICS 15／17 Cambridge Road，Kingston－ on－Thames，Surrey

ENAMELLED COPPER WIRE

| S．W．G． | 115 Reel | 116 Reel |
| :---: | :---: | :---: |
| 10－14 | \＆1．90 | ¢ 1.05 |
| 15－19 | 42.00 | \＆ 1.10 |
| 20－24 | 42.05 | c1．15 |
| 25－29 | 42.10 | 41.20 |
| 30－34 | 12.20 | \＆ 1.28 |
| 35－40 | 62．35 | C1．35 |

All the above prices are inclusive in U．K．${ }^{\text {IN }}$ ．
INS Parrswood Rd．WL Withing SUPLIES
102 Parrswood Rd．，Withington，Manchester 20 Telephone 061．224 3ss3

METER REPAIR8. Ammuters, voltmeters multi-range meters, ete, send to: METER HEPAIRS, 39 Chesholm: Road, Iondon, N16 ODS.

8LOW 8PEED MOTOR8 rujuired (about I r.j.in.) any quantity consilerad. Phonr Mr. NMETH, 061-633 35 $\mathbf{2 x}^{-1}$.

PRINTED GIRGUIT MANUFAGTURER8 offer any P.E. Project P.' ready drilled. Onf Price 65p. ('W.O. Also P. P. production. Design, Art-Work and Photography undertaken. Send basic circuit, P'S. layont or P. ('. Master stating quantity required for estinate
 Dent, P.('.. Welbeck Street. Whit well, WorkDept. P.('. Welbeck sitreet. Whit well, Work-
sop, Notts., Sso tTW. Telephone Whitwell (Derbys) 695.

AUDIO8CAN, the "do-it-yourself" speaker matilorder specialists. High tidelity speaker kits, chassis units. somud absorbent, grille fabric and much mori. send s.a.f. for bargain list to: Al DiOS'AN, Dept. PEA, 4 Pribees Sguare, Harrogate, lorkshire.

PRINTED CIRCUIT8 for any P.E. and P. W. P.C.B. Project or any P.('.B. if artwork Pupplied. $5 p$ per si in. P. d P. 10 p . Nend: A. THOMNON. 10 Clayland ('lose Bozeat, Nr. Wellingborough. Northants., NJ9 - NT.

HARDWARE 8UPPLIE8-Sheet aluminiun individual sizes or stamdard packs, drilled to spec, screws, nuts, washers, ete.. Fuscia panels in aluminium individual requirements. Printed circuit hoards, one-off or small runs, Printed circuit drafting tapes, ete., 7p for Iist. RAMAR (ONSTR C'TOJ, SFRVFCLis, 29 Shelbourne Hoad, stratford-on-Avon, Warwks., ('V37 9, ['.

LOW CO8T I.C. MOUNTING. Jangths of liw 1.C. pin sockets, 60p (I'. \& I'. Sp). Quantity rates. S.A. Fi, for details and sumple. L. W. I). (SLEDFMO), 20p each (post paid). 1.K.l: FLLECJROSIK's, "()itk Lodge', T'ansley, Derbyshite.

GLEARING LABORATORY, scopes, V.'I'V.M's, V.O.M's, H.S. recorders, transcription turntsbles, electronic testmeters, calibration units, I'S.U.'s, pulse generators. 1).C. nullpotentiometers, bridges, spectrum aualysers, voltage regulators, sig-gens, MC relays, components, etc. Lower Beeding 236.

## Digital Eloch SPACE RESEARCH ERINGS YOUA DIGITAL CLOCK - WITH NO MOVINE PARTS - FOR YOU TO BUILD

KIT All components, including P.C.B. designed for easy home assembly. Bright and clear digits. Tough A.B.S plastic case with contrasting front panel. PRICE: $\mathbf{£ 2 3 . 0 0}$ plus $£ 2.30$ VAT/Total $£ 25.30$ inc. post/pkg Onfy our advanced design techniques make this iow price possible. Kıts are tested before they leave us and a


OSMABET LTD. We make traneformers A UTO TRANSFORMERS, $110 / 200 / 280 / 240 \mathrm{~V}$.
 $500 \mathrm{~W}, 110.80 ; 750 \mathrm{~W}$, $214-25 ; 1000 \mathrm{~W}, 218 \cdot 00$, etc. LOW VOLTAGE TRANSFORMERS
Prim. 200/240V a.c. $6 \cdot 3 \mathrm{~V}$ 1-5A, $81.20 ; 3 \mathrm{~A}, 21.50$; 6A, $22.55 ; 12 \mathrm{~V} 1.5 \mathrm{~A}, 41.50 ; 3 \mathrm{~A}, 52.55 ; 6 \mathrm{ACT}, 88-40$; $8.45 ; 5 \mathrm{~A}, 24.80 ; 8 \mathrm{~A}, 27.35 ; 12 \mathrm{~A}, 210.85 ; 40 \mathrm{~V} 3 \mathrm{~A}$ $8.45 ; 5 \mathrm{~A}, 24.80 ; 8 \mathrm{~A}, 27.36 ; 12 \mathrm{~A}, 210-85 ; 40 \mathrm{~V} 3 \mathrm{~A}$
CT,
$24.50 ; 50 \mathrm{~V} 6 \mathrm{~A}$, $213.50 ; 25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V} 2 \mathrm{~A}$, CT, $84 \cdot 80 ; 50 \mathrm{~V}$. 4 A CT, $412.50 ; 25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V} 2 \mathrm{~A}$ LTTRANSFORMERS TAPPED SEC. Prim. 200/240Y $0-10-12-14-16-18 \mathrm{~V}$ 2A, $28.60 ; 4 \mathrm{~A}$, 28.75 ; $\begin{array}{lllll}0-10-124 \\ 0-12-15-20-24-30 \mathrm{~V} & 2 \mathrm{~A}, & 23.40 ; & 4 \mathrm{~A}, & 24.50 \text {; } \\ 0-5-20-30-40-60 \mathrm{~V} & 1 \mathrm{~A}, & £ 3.40 ; & 2 \mathrm{~A}, & 24.50 \text {; }\end{array}$
 MIDGET RECTIFIER TRANSFORMERS. For FW rect. $200 / 240 \mathrm{~V}$ a.c. $9-0-9 \mathrm{~V} 0-3 \mathrm{~A} ; 12-0-12 \mathrm{~V}$ $0 \cdot 25 \mathrm{~A} ; 20-0-20 \mathrm{~V} 0 \cdot 15 \mathrm{~A}, 6 \mathrm{~V} 0.5 \mathrm{~A}+6 \mathrm{~V} 0.5 \mathrm{~A}$; 9 V $20 \mathrm{~V} 0.15 \mathrm{~A}+12 \mathrm{~V} 0.15 \mathrm{~A}$ at $£ 1.65$ each: 9-0-9 1 1 A 1.35: 12-0-12V 1A or $20-0-120 \mathrm{~V} 0.75 \mathrm{~A} 81.50$ each MAINS TRANSFORMERS
Prim. 200/240V a.c. TX6 sec., $425-0-425 \quad 500 \mathrm{Ma}$ 63 V CT $6 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}$ CT $6 \mathrm{~A}, 0-5-6.3 \mathrm{~V}^{*} 3 \mathrm{~A}, 416.50$; TX1 425-0-425V $250 \mathrm{Ma}, 6 \cdot 3 \mathrm{~V}$ CT 4A, $6 \cdot 3 \mathrm{~V}$ CT 4A. $0-5-6.3 \mathrm{~V} 3 \mathrm{~A}$, 29.75 ; MT3 Prim. $0-110-240 \mathrm{~V}$ eec. $250 \mathrm{~V} 100 \mathrm{Ma}, 6 \cdot 3 \mathrm{~V} 2 \mathrm{~A}, ~ E / \mathrm{S}, \mathrm{f} 2 \cdot 70$.
O/P TRANSFORMERS FOR POWER AMPLIFIERS P.P. yec, tapped $3-8-150 \mathrm{hms}$, A-A $6.6 \mathrm{~K} \Omega 30 \mathrm{~W}$, 25.70; A-A 3K $\Omega 50 \mathrm{~W}$, 29.00; 100 W (EL34 KT88 G.E.C. MANUAL OF POWER AMPLIFIER Covering valve ampliflers of 30 W to 400 W 35p LODDSPEAKERS FOR AMPLIFIERS
BAKER 25W $27-60$; 35 W , $88 \cdot 40$; HI-FI Msjor Module 20 W w/tweeter Xover, f11-80; Bakerspesker Ists; FANE; 60W, $£ 13 \cdot 50$; HI-FI speakers, EMI bas $13 \times \sin 3$ ot $15 \Omega, 42 \cdot 00 ; \sin 8 \Omega, 21 \cdot 15 ; 7 \times 4 \operatorname{in} 15 \Omega$, e1-60; $8 \times 5$ in $3,8,15,25$ or $80 \Omega, 2175$ each. LOUDSPEAKERS
2 in 8,16 or $75 \Omega$, 2 in 8 or $25 \Omega, 3 \operatorname{in} 3,8,25$ of 35 Q, $3 \neq \mathrm{in} 8,15$ or $80 \Omega 90 \mathrm{p}$ each; $5 \mathrm{in} 3,8$ or $25 \Omega$ $6 \times 3 \operatorname{in} 3$ or $8 \Omega, £ 1.05 ; 7 \times 4$ in 3 or $1 \overline{0} \Omega$, 8 in $3 \Omega$ SPEAKER MATCHING T

CRING TRANSFORMERS "INSTANT"BULK TAPE/CASSETTE ERASER Instant erabure, an y diameter tape spools, cassettes, demagnetises tape heads. $200 / 240 \mathrm{~V}$ a.c. 88.25. SYNCHR ONOUS GEARED MOTORS, 230/240Y Brand new, Smiths. Bult-in gear box, 2 RPH 75 p each.

Carriage and VAT extra on all orders
S.A.E. ENQUIRIES-LISTS, MAIL ORDER ONLY 46 Kenilworth Road. Edgware, Middx. HA8 8Ya Tel. 01-958 9314



Cembridge kit
$27.85(23 \cdot 20)$
$211 \cdot 5(21 \cdot 55)$ Cambridge Agsembled 211.85 ( 1 1-55)
( 18.25 ) Now Sinclair Scientific ᄃ23-05 (22-71)

## FERRANTI ZN414

IC redio chip with date, $\mathbf{£ 1 \cdot 2 0 \text { (23p). Also avaliable } \mathrm { kh }}$ S.A.E. for free leaflet.


SWANLEY IC TOMORROW The world's moat powerful ic amplifier. Similar to C12 but rated at 10W r.m 8 power Supplied with date but no printed circuit Write for leaflet

DE LUXE KIT FOR THE IC12
Includes all parts for the printed circuit and volume. bass and treble controls needed to complete the control, \&3.60 (48p)
IC12 POWER KIT
Supplles 28V 0.5A. E2-67 (50p)
LOUDSPEAKERS FOR THE IC12
$5 \mathrm{in} B \mathrm{ohm}$. \&1. 10 (27p) 5 in $\times 8 \sin 8 \mathrm{ohm}$. $\mathbf{1} \cdot 55$ (37p). PREAMP KITS FOR THE IC12
Type 1 for magnetlc pickups, mics and tuners Mono model. £1-35 (25p), Stereo model, $£ 2 \cdot 40$ (36p). Type 2 for ceramic or crystal pickups. Mono. 65p (18p). Stered. $\mathbf{1 1}-30$ (25p).
SEND S.A.E. FOR FREE LEAFLET ON KITS

BATTERY ELIMINATOR BARGAIN The most versatlive battery
eliminator over offered. eliminator over offered $6,71,9$ and 12 V at 500 mA . 6, 71, 9 and
s4.15 (70p).
Other ellminators slocked: $250 \mathrm{~mA}-3$ way witched model giving $6,7 t$ and $9 V$. ع2. 85 ( $60 p$ ).
 $\mathrm{L} \cdot 80$ (40p): 7 V cassette
type, $\mathbf{2 2} 25$ (40p) Double type, $\mathbf{~ c 2} \cdot 25(40 \mathrm{p}) ;$ Double
$6 \mathrm{~V}+6 \mathrm{~V} . \mathrm{E2} .50(45 \mathrm{p})$ $9 \mathrm{~V}+9 \mathrm{~V} . £ 2 \cdot 50(45 \mathrm{p})$


## SWANLEY ELECTRONICS P.O. Box 68, Swanley, Kent BR8 8 TQ

 VAT change-please deduct $2 \%$ from all prices Please add the sum shown in brackets after the price to cover the cost of post and VAT.official credit orders from schools. etc. wolcome. No VAT charged on overseas orders.

## BUILD A CHORDING PROFESSIONAL SYNTHESISER



The Synthesiser shown above is the Dewtron "Apollo" A.1. which we sell ready-built to professionals. Believe it or not, it uses the SAME precision modules as we sell to you, the Constructor, to build any kind you like. The revolutionary Modumatrix system of routing makes old-fashioned patching a thing of the past. VCO-2 voltage-controlled oscillator module has accurate built-in log-law for chording and other professional effects. 3 and 4 octave keyboards and contacts.
VCO-2 STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 valt octave voltage control. Also available 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touch sensitive playing when used with VCO-2 signals: OFT-1 chording module. Modules (except VCO-1) guaranteed two years.
using
(Regd. Trademark)

## PROFESSIONAL MODULES

## Latest additions include Pitch-to-voltage and SEQUENCER MODULES! AND MANY OTHERS. <br> CASH SAVINGS

by buying modules and parts in bulk! All modules are available separately: Ring Modulator RM2, Voltage-controlled Oscillator VC01, giving sawtooth and square-wave outputs. Envelope shapers, ES1, self-triggered or ES2 keyboard-triggered, White noise type WN1, Voltagecontrolled amplifier VCA1, Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, Voltage-controlled Phase PH1, Automatic Announcement Fader module for fading of music by microphone announcement, AF1, etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls. REVERB Module and spring unit. V.A.T. paid orders over $£ 100$.

With over 10 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to leading groups. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy" G.l. Send 15 p for full catalogue of our famous musical effects.

## $D E F=T / D=254$ Ringwood Road, FERNDOWN, Dorset BH22 9AR







FREE Teak cabinet with complete kit.
kre metrand $£ 35 \cdot 00$

1. VAT + 50p carr/pasking) or ( + VAT + 50p carr/packing) as illustrated

EARN YOURSELF EASY MONEY, WI
PORTABLE DISCO EQUIPMENT
 DISCO MINI: A complete portable disco. fitted mixer/preamp, 2 decks all facilities 100 watr amplifier for above
SDLSI00: 100 watt mixer/amplifier with slider conerols
watt mixer/amplifier
R150 100 wate mixer/amplifier
Northcourt
40040 watt mixer amp
800
80
80080 watt mixer rmp M OLIFIERS (OIP
for up to 6.100 watt amplifiers)
SDLII (slider controls)
DISCO VOX (slider controls) : The com. plete disco preamp
DJ100: 100 watt po wer amplifier for above DJ30L Mk 113 channel 3 kW sound to light DJ DISCLITE. As $301 / 11+$ Variable speed
Carlsbro Reverberation Únit
Disco anti-feedback microphone
Cole 150 watt liquid wheel projector 150 watt Ol liquid wheel proiector 150 watt Q1 casserte wheel projector
5 pare Effects and Liquid cassettes. 5pare Effects and Liquid cassettes, large
range of range of patterns 6.00 Various Cassettes Mini spot bank fitted 3 lamps
Auto Prilite (mini with flashers)
Bubblomaker with 1 gal. liquid
MIXERS/MICS/SPEAKERS/LIGHTING
FAEE STOCKLISTRef. No. 18 ON REQUEST
AKG/RESLO/DJ/CARLSBRO/EAGLE
CHASSIS AND COMPLETE SPEAKER SYSTEMS, MEGAPHONES, TURNTABLES, STANDS, MIXERS. CABINETS CERAMIC FILTERS
10.7 MHz Ceramic filsers now in stock

All prices carr. paid (UK) (VAT EXTRA)
Barclaycard/Access call, write or phone your order $01-7236963$-easy terms for callers.


## EXCLUSIVE

 DECCA KELLY SPEAKERS12 watt speaker Tweeter
systems. gin Bass/Midrob
 and Melinex Dom HFradiator plus crossover $\mathbb{1} 12 \cdot 50$ per pair of systems (carr/packg. 40 p ) or built into ven cered cabiners, size $18 \times 12 \times 6 \mathrm{in}$
f 19.50 pair (carr. E 1 ). € 19.50 pair (carr. $£ 1$ )

HI-FI TAPE
EQUIPMENT
U.K.'s largest range
with discounts and
with discounts and
callers. Latest stock lists on request (Ref. No. 17).
Phone 01-402 4736 for Barclay/Access Card. Direct orders and latest prices.

## TRANSISTORS

## SEMICONDUCTORS

U.K.'s largest range for every appli cation. Small quantity discounts Also Trade, Export and Industria enquiries invited. Latest stock list
(Ref. No. 36). Including yalves on request.

JOSTY KITS
NOW IN STOCK
Latest stock list


SINCLAIR PROJECT 80
sct
Stereo Preamplifier 611.95 Audio filter Unit Z 6025 watt Amplifier PZ5 Mod. for 1 or 2 Z40 PZ6 Mod. ( 5 Tab) I or 2 Z40
PZ8 Mod. (S Tab) I or 2 Z60
RANSFORMER FOR
NEW FMTUNER
STEREO DECODE
BUILD THE NEW HENELEC STEREO
FM TUNER
A completely new high stability stereo FM tune
Features variable capacity diode tuning, stabiliser power supply, IC Decoder, high gain low noise. IF stages. LED ndicators, Tuning meter, AFC. Masy to construct and use modern design with fibre glass PC, reak cabinet. etc. Available as a kit to build or ready buile Overall size: 8 in $\times 2$ in $\times 6$ in. Produced to give high performance with and constructionaldetails

Nistributors UK and Europe.
Kit Price
£21.00
( + VAT)
or buill ond tested
£24.95 ( + VAT)
LIVING SOUND LOW NOISETOP QUALITY CASSETTES MADE BY EMI TAPES LTD. TO INTERNATIONAL LIANS THAN ESPECIPRICES. COMPLETE WITH LIBRARY CASES.

LEARN A LANGUAGE-complete with phrase book. German, French, Spanish, Italian. $£ 1.36$ per course. $\$ 5$ for any 4.

## LOW COST HI-FI SPEAKERS <br> SPECIAL OFFERS

EMI $13 \mathrm{in} \times 8 \mathrm{in}$-full range speakers (post 20 p each or 30 p pair)
150TC- 8 ohms Twin Cone 10 watt, $\mathbf{6 2} 20$ each or $\mathrm{C4}$ pair; $\$ 450$ 10 wart c/o Twin Tweeters 3, 8 or 15 ohms, $£ 3.85$ each: EW is watt 8 watt c/o win weeters 3 , each or $£ 7 \cdot 40$ per pair: 35020 watt c/o
ohmeeters 8 or 15 ohms, $£ 7.80$ each.
Polished wood cabinet $\mathbf{£ 4 . 8 0}$, post 35 p.
8 ohms full range (post 20p)
R8 8 in 15 watt, 88 ; FR65 6 in 10 watt. $66 \cdot 30$ : C8.40.
BASS AND MID RANGE-8 ohms (post 20p) AA 12 Sin 15 watt. $€ 3.75 ;$ B110 $5 \frac{1}{2}$ in 15 watt, £7.20; B200 8 in 15
30 watt LF, $£ 13.75$.

TWEETERS AND CROSSOVERS (post 20p)
8 ohms, $63 \cdot 35 ; \mathrm{K} 2011$
 $\mathbf{6 5 - 5 0 ; ~ K ~} 40091 \mathrm{kHz} / 5 \mathrm{kHz} \mathrm{c} / \mathrm{o}, \mathbf{£ 2} .70$; SN75 3 kHz var. c/o, $\mathbf{£ 3} \mathbf{3} \mathbf{1 0}$.
SPEAKERKITS (carr. etc. 35p)
20-2 8 in 30 watc, $£ 24.50$ pair; $20-38$ in 40 watt, $£ 3595$ pair: LINTON 2 20 watt, $£ 18.30$ pair; GLENDALE 330 watt, $\mathbf{£ 3 2 . 9 5}$ pair; DOVEDAL
50 watt, $£ 51.50$ pair; KEF KK2, $£ 55.00$ pair; KEFKK $\mathbf{~ K ~} \mathbf{E 7 8}$.00 pair.

## BUILD YOURSELF A POCKET CALCULATOR

A complete kit, packaged in polystyrene container and raking about 3 hours to assemblefrom Henry's. Some of the many features include interface chip. thisk-film resistor pack, printed circuit board, electronic components pack Size; $4 \frac{1}{2}$ in long $\times 2 \mathrm{in}$ wide $\times \frac{11}{16}$ in deep Free of charge with the kit for the more advanced technologist is a 32 -page bookler explaining how to calculate Logs. Tangents, Sines.etc
SPECIAL OFFER
Price $£ 13.60$ (+ VAT)
$10 \%$ VAT TO BE ADDED TO ALL ORDERS. EXPORT SUPPLIED. Prices and deseriptions correct at ime of proof. Subject to change without notice
ALWAYS BARGAINS EOR CALLERS


[^0]:    © IPC Magazines Limited 1974. Copyright in all drawings, photographs and articles published in PRACTiCAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are express!y forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland £3-25, Overseas £3.50. International Giro facilities Account No. 5122007. Please state reason for payment, "message to payee".

[^1]:    BRITISH FM/VHF TUNING HEART 88 to 108 Mcial British made. 8 Tranititors ready aligned Feadiret 10.7 molit IP. Complete with tuming ging. connection, zuppied but some zecanical ezperienct

[^2]:    Please send me the Eagle electronics catalogue containing the complete range of test equipment.

    Name
    Address

    Eagle international Precision Centre Heather Park Drive Wembley HAO 1SU Telephone 01.9030144

[^3]:    for which I enclose Cash/Cheque for f $\qquad$ including $\vee A T$

[^4]:    Name

[^5]:    *North Staffordshire Polytechnic

[^6]:    Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m

