

CONSTRUCTIONAL PROJECTS
P.E. POWER SLAVES by B. Reeson
A family of dual-channel high power audio amplifiers 590
RANDOM LIGHT DISPLAY by K. L. Spence
A simple lighting unit capable of producing an endessly varying and unpredictable pattern of colours 607
P.E. RONDO QUADRAPHONIC SOUND SYSTEM-8 by R. A. Cole Introduction to the f.m. tuner and decoder with decoder construction details 610
CAR SYSTEMS MONITOR by J. P. Perry
Safeguard yourself against the silent faults; add audible indication to water, oil and charging circuits 614
NIM MACHINE by R. D. Mount
An unbeatable opponent for the old chinese stick game 627
GENERAL FEATURES
FIRST STEPS IN CIRCUIT DESIGN-4 by A. P. Stephenson
Biasing gain and the emitter follower 596
INGENUITY UNLIMITED
Synthesiser patchboard 603
SOLAR POWER AND ITS APPLICATIONS FOR TODAY by P. S. Woodcock
A look at the utilisation of solar energy and its effects 618
NEWS AND COMMENT
EDITORIAL-SOUND POWER 589
SPACEWATCH by Frank W. Hyde
The Sun by Skylab 595
ELECTROMUSE by Malcolm Pointon
A musician discusses the application of electronic techniques to composition and performance 600
BOOK REVIEWS
Selected new books we have received 604, 616
NEWS BRIEFS
Marconi Centenary Exhibition-Obituary 616, 625
TUNING IN TO ESP by Peter Verwig A report from a recent IEEE conference in America on parapsychology 617
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 622
PATENTS REVIEW
Reminders on general British Patent procedures 631
READOUT
A selection of readers' letters 634
SOUND SYNTHESIS FOR THE AMATEURA special offer to Clubs, Schools and Universities to hear the P.E. Lecture on"Sound Synthesis" using the P.E. Synthesiser635

Our August issue will be published on Friday, July 12, 1974

[^0]MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 3 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 / \& \mathrm{~F}$, $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}$ p. $0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 5 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}$, 7 ip. $0.33 \mu \mathrm{~F}$, $11 \mathrm{p} .0 .47 \mu \mathrm{~F}, 13 \mathrm{p}$. $160 V: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F}, 31 \mathrm{p} .0 .15 \mu \mathrm{~F}$,
$4 \frac{1}{4} \mathrm{p} .0 .22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .3 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \frac{3}{2} \mathrm{D} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p}, 10 \mathrm{~F}, 13 \mathrm{p}$ $4 \frac{4}{4}$ p. $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 7 \frac{1}{4} \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$. MULLARD POLYESTER CAPACITORS C280 SERIES 250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$,
 20p. $22 \mu \mathrm{~F}, 24 \mathrm{p}$.

MYLAR FILM
$0.001 \mu F, 0.002 \mu F, 0.005 \mu F, 0.01 \mu F, 0.02 \mu F$, $\begin{array}{ll}0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, & \text { TORS } 100 \mathrm{pF} \text { to } 10.000 \mathrm{pF}, 2 \mathrm{p} \\ \mathbf{3 p .} 0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .\end{array}$

ELECTROLYTIC CAPACITORS_MULLARD O15/6/7

$(\mu F / V) 1 / 63,1.5 / 63,22 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40$,
$15 / 63,22 / 10.22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 1044 / 25,47 / 40,68 / 6.3$
 $47 / 63,100 / 40,150 / 25,220 / 25,330 / 10,470 / 6 \cdot 3,7 \mathrm{p}, 68 / 63,150 / 40,220 / 40,330 / 16$, $1,000 / 4,10 \mathrm{p}, 470 / 10,680 / 6 \cdot 3,11 \mathrm{p} .100 / 63,150 / 63,220 / 63,1,000 / 10,12 \mathrm{p} .470 / 25$ $680 / 16,1,500 / 6 \cdot 3,13$ p. $470 / 40,680 / 25,1,000 / 16,1,500 / 10,2,200 / 6 \cdot 3,18 \mathrm{p} .330 / 63$, 680/40, 1,000/25, 1,500/16, 2,200/10, 3,300/6.3, 4,700/4, 2lp.

SOLID TANTALUM BEAD CAPACITORS
$\begin{array}{rr}22 \mu \mathrm{~F} & 16 \mathrm{~V} \\ 33 \mu \mathrm{~F} & 10 \mathrm{~V} \\ 47 \mu \mathrm{~F} & 6.3 \mathrm{~V} \\ 100 \mu \mathrm{~F} & 3 \mathrm{~V}\end{array}$

0.15
20p
28p
28p
32p
67p
$108 p$
52p
41p
12p
11p
62p
52p
20p

JACK PLUGS AND SOCKETS | Standard screened | 28 p | 2.5 mm insulated |
| :--- | :--- | :--- |
| Standard insulated | 18 p | |
| 18 mm | | | Stereo screened $40 \mathrm{p} \quad 3.5 \mathrm{~mm}$ screened 12 p $\begin{array}{llll}\text { Standard socket } & 20 \mathrm{p} & 2.5 \mathrm{~mm} \text { socket } & 10 \mathrm{p} \\ \text { Stereo socket } & 30 \mathrm{p} & 3.5 \mathrm{~mm} \text { socket } & 11 \mathrm{p}\end{array}$ D.I.N.PLUGS AND SOCKETS 2 pin. 3 pin, 5 pin $180^{\circ} .5$ pin $240^{\circ}, 6$ pin, 7 pin 4 way $12 p$. Socket $8 p$. 4 way screened cable, 25 p/metre 6 way screened cable 30 p/metre.

FERRIC CHLORIDE

Anhydrous to Mil-spec in ilb sealed packs 110 55p (20p): $316 \mathrm{E1}-32$ (30p) 1015 53 . 85 (600)

VERSATILE POWER UNIT

Contains mains transformer, 2A ther mal cut-out and bridge rect. Will give 1.7-10.5V output with 2 extre capacitors Brand new. Only 33 p (20p). Also gwitch. Iamp. eic. (Used for Hot Wheels) Only 51.85 (30p)

AMPLIFIER UNIT

Infully screened case $5 \frac{1}{3}$ in $\times \sin \times 3$ in 2 GET 116 on heat sink. 2 zeners. 3 pot cores ${ }^{4}$ small transtormers,

3W CASED AMPLIFIER

Polished wooden cabinet ldin $\times 13 \mathrm{in}$ \times gin. containing a sensitive $(20 \mu \mathrm{~V})$ 4 valve amplifier with tone and volume controls Gives 3 watts output to the 7 in $\times 4$ in 3Ω speaker. Also a non-standard tape deck Supplied in good working condition with circuit. Stan. dard mains operation. \&3. 50 (11) herd 33p. Tape (ex computer) 75p (20p) Amplifier chassis only. complete and tested $12 \times$ ECC83. EL84. EZ80) - speaker £2.50 (40p)

7Ib BARGAIN PARCELS
Hundreds of new componentslosistors,
gwliches,
capacitors, pots boards with transistors and dodes atso crystals and loads of odds and ends. Amazing value \&1. 12 (400)

OEKATRON UNITS

Contain 2 CV2271 dekatrons. 2 4-digit resettible counters 2 sealed relays, $2 \times$ ECC81. R's. Cs etc Only £1-70 (30p)

COMPUTER PANELS
31 b asstd $£ 1 \cdot 10$ (30 p); $71 \mathrm{~b} £ 2 \cdot 20$ (40p) 561 c [12 (£2). 12 nigh quality panals with IC s. power transistors, trimpots. with $72 \mathrm{k} \Omega$ trimpots 33 p (10 p) Pack containing 5014 pin DIL. IC s. Inc. 7400 04, 10. 20, 30, 7474, etc also MC types © 20 (20p)

COMPONENT PACKS

500 assid rasistors \&1 10 (200): 2,500 £4 (50p); 10.000 \& 13 (1); 100.000 £ 88 carr 150 poly. ceramic. mica caps 66p (10p).

NEW COMPONENTS

400 V 5A SCR 66p: 20CV 44p; 0C71 9p; 14 for $51-10$; OC810 $8 \mathrm{p} ; 10 \mathrm{c} £ 5.50 ; 74 \mathrm{C}$ TO99 35p: 2N3055 30pl 723C 77p (Data Book 10p) 710C 33p: CA3C26 88p SC40D Triac 51: $3 \mathrm{~A} 10 \mathrm{C} V$ Rec. 16 p : $05,500 \mathrm{~V}$ discs. 100 to $\mathbb{C 1 - 6 6 ; ~} 1,000 \mathrm{pF}$ disc, 100 for $£ 1-65 ; 80+80+20 \mathrm{uF} 350 \mathrm{~V}$ $10 \mathrm{p}, 10$ for 83 p (30 p). $8 \mathrm{HF} 2.500 \mathrm{~V} \mathrm{E2} \cdot 20$ (50 p). 4-pole 8 -way Yaxiey switches
33 p (8p). 2-pin DIN plug 10p, 5 -pin 180° 33 p (8p). 2-pin DIN plug 10p, 5 -pin 180° 1ip, 5 mm plug 8p, phono sp 7.pin speaker cable 5 p metre 4 -core indi vidually screened 20 p metre.

TRANSFORMERS

Mains Pri., 16-0-16V 1tA Sec. with
gV tap. [1.65 (30p) Mains Pri. 360 V at $375 \mathrm{~mA}, 260 \mathrm{~V}$ at $75 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}$ at 1 A 6. 3 V at 4A. $£ 2-20$ (60p)

Scopes in stock for callers, ring for details S.A.E. List. All prices include VAT Carriage in brackets small parts 5 p

GREENWELD ELECTRONICS (PE4)

51 Shirley Park Road, Southampton
New wholesale/retail shop and mail order department. Other retail shop at 38 Lower Addiscombe Road, Croydon. Tel 01-688 2950.

Beginner's Guide To Electronics

3rd Edition

T.L. Squires and C.M. Deason

This book describes as simply as possible the basic concepts in electronic engineering and the various components used in electronic equipment so that the reader gains an understanding of the terms used and the practical side of the subject. Prominence throughout has been given to the transistor and the integrated circuit.

Provides a 'short cut' for those wishing to obtain a quick acquaintance with modern electronics
Completely revised and brought up-to-date

- Each section is dealt with nonmathematically and explanatory diagrams are used throughout 240 pages $191 \times 128 \mathrm{~mm}$. ISBN 0408001267 Cased 51.90

Borough Green, Sevenoaks, Kent

UK's

TEST EQUIPMENT MULTIMETERS

carr. etc. 30p

TI-2 $20 \mathrm{~K} / \mathrm{Volt}$ Slimline
M 210
$\mathbf{5} .95$ M210 (Case $61-25$) $20 \mathrm{~K} / \mathrm{Volt}$ Slimline deluxe $£ 6.75$
TLH33D $2 \mathrm{~K} /$ Volt Robust $£ 7.50$
Largest range OF KITS \& GADGETS

$$
\begin{aligned}
& \text { U437 } 10 \mathrm{~K} / \mathrm{Volt} 5 \mathrm{Seel} \text { case. AC } \\
& \text { AFI } 05 \text { (Case } \mathrm{El}, 90 \text {) } 50 \mathrm{~K} / \mathrm{Volt} \\
& \text { U4313 } \\
& 20 \mathrm{~K} / \mathrm{Volt} \mathrm{AC} \mathrm{curre}
\end{aligned}
$$保 10.50 Model 500 (Case \&1.95), 30K/Vol

OTHER EQUIPMENT

$\begin{array}{llll}\text { SE250B } & \text { Pocket Signal Injector } & \mathbf{2 . 1 0} \text { carr. } 15 p \\ \text { SE500 } & \text { Pocket Signal Tracer } & \mathbf{1 . 7 0} \text { carr. I5p }\end{array}$ TEI5 Grid Dip meter 440 kHz 280 mHz 15.00 carr. 30 p TE 40 AC Millivoltmeter $1.2 \mathrm{mHz} \quad 19.75$ carr. 35 TE65 28 Range valve volcmeter $\quad 22.50$ carr. 40p TE20D $120 \mathrm{kHz}-500 \mathrm{mHz}$ RF Gen. 18.95 carr. 40 p SE350A Deluxe Signal Tracer 12.50 carr. 20 p SE 400 Volts/ohms/R-C sub./RF field/RFgen. 20 .
New Revolutionary Supertester 680R 680 R
418.50

Transistor tester $\quad 11.00$ (amonic voltmeter 18.00 Temperature probe 11.95 Guass meter Signal injector Chase Sequenc EHT Probe

EXCLUSIVE: SPECIAL OFFERS

R RADIO

\qquad
 and fixings. $66.50 \mathrm{c} / \mathrm{p}$ 30p. microphones. $66.95 \mathrm{c} / \mathrm{p} 20 \mathrm{p}$

8 TRACK CAR STEREO PORTABLE CASSETTE (- Earth) with speakers in TAPE PLAYER-for car | c/p 40p. Portable Batt/Cass 20p. HANIMAX BC808 |
| :--- | Tape Player £7.25. POCKET CALCULATOR Car Lighter Plug and WITH \%/ KEY. 628.95.

adaptor for all cassecte and
HANIMAX BC8IIM MEradio $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ output MORY VERSION $£ 37.50$
(state width) K 1.95 each. (state width) El.95 each. MAINS UNIT for 8 C808,
Rotel Stereophones RH 630 BCIIM $£ 2.85$ (state model) Rotel Stereophones RH630 BCIIM $£ 2.85$ (state model)
$\mathbf{4} .50$. RH700 $£ 6.75$. RH430 HANIMAX HIOI STEREO 63.30. Rotel RA310 $15+15$ COMPACT SIO STEREO watt Stereo Amplifier PLAYER 2 RECORD (List 552.00) 634-52. Wem Complete with Speakers W500 Battery/Mains Cass-1 (List $£ 54.50$) Price $£ 39.95$ AKAI GXC40 Stereo cass- phones.
BUILD THIS RADIO
Portable MW/LW radio kit
using Mullard RF/IF module. Features MW-bandspread for extr selectivity. Slow motion tuning.
fibre glass output. All parts $£ 7.98$ (battery 22p), carr, etc. 32p.

FIBRE OPTICS

0.01 diam. Mono Filament $\mathbf{£ 3 . 0 0}$ per 50 metre ree 0.11 diam. 64 Fibres Sheathed $£ 1.00$ per metre SPRAYS 15 mm diam. (Mare's Tail Spray $\in 10.50,7 \mathrm{~mm}$

> A SELECTION OF INTERESTING ITEMS
> $\begin{aligned} & \text { C } 3025 \text { Compact transistor tester } 6.95 \text { p \& p } 15 \mathrm{p} \\ & \text { Q } 4002 \text { Photoelectric System }\end{aligned}$ E1310 Stereo mag. carc. preamp. 4.80 p \& p 25 p Easiphone D120I telephone amp $\quad 7.50$ p \& p 25p DI 203 Teleamp. with PU coil $4.95 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$ LI Door Intercomm. and chime 8.40 p \& p $25 p$ kW Dimmer/controller $\quad 3.00$ p \& p 10p
US50 Ultrasonic Switch Trans/Rec $£ 12.75$
$\begin{aligned} & \text { C } 30411-250 \mathrm{mHz} \\ & \text { C } 3043 \mathrm{CH} 1-300 \mathrm{mHz}\end{aligned}$
3043 5CH $1-300$
$\begin{aligned} & \boxed{4} \cdot 25 \\ & 65.75\end{aligned}$
HF 105 Aircraft Band Convertor 4.50 p \& p 15 p
82004 Ch . mis. mixer $\quad 4.20$ p \& p l5p
PK3 Kir Stereo mixe
6.75 p \& D 15p

SPECIAL PURCHASES

UHF TV TUNERS CHANNELS 21 TO 64 Brand new transistorised geared Uners for 625 Line Rec
IF output. $\mathbf{E 2} \cdot 50$. Post 20 p.

EASY TO BUILD KITS BY AMTRONEVERYTHING SUPPLIED
,
 switch
10.75 (electronics only)
 835 Guitar preamp.
840 Delay car alarm
875 CAP Discharge gnition (for
Engine (
80 Scope Calibrator
255 Level Indicator
$525120-160 \mathrm{mHz}$ VHF
715 Photo cell switeh
795 Electronic con-
860 Phototimer 13.25
871 Slide projector
control
235 Acoustic Alarm 70
465 Ouartz XTAL 7.60
checker 8.75 390 VOX
$\begin{array}{ll}432 \text { Testakit } & 19.30\end{array}$
670 Buffer Battery 6.5
885 Capacitive Con-
850 Electronic Keyer
820 Electronic Digital

ALL KITS OFFERED
SUBJECT TO STOCK
Prices correct at time
f preparation
Subject to change

BUILD THIS TUNER
MWILW Radio Tuner use wich any amplifier Features Multard RF/IF module Ferrite aerial built in battery. Excellent results. Size 7

MULTI-USE \& RADIONIC KITS

$\begin{array}{lll}10-1 & 10 \text { Projects } & \mathbf{3 . 6 0} \\ 50-1 & 10 \text { Projects } & \mathbf{8 . 0 0}\end{array}$

 $\begin{array}{ll}10-1 & 10 \text { Projects } \\ 150-1 & 150 \text { Projects }\end{array}$Telephone Communicator
$\times 20$ (Elec.)
$\left.\begin{array}{ll}\times 20 & 20 \text { (Elec.) } \\ \times 40 & 40 \text { (radio) }\end{array}\right\}$ Projects $\quad \begin{aligned} & \mathbf{4 . 9 5} \\ & \times 4.45\end{aligned}$
13.20
7.20
(carr./packing 40p)

TBA800 5 WATT I.C.
Suitable alternative to SL 403 D
$5 / 30$ volt operated. $8 / 16 \mathrm{hm}$

wats ope

With circuits and daea \begin{tabular}{l|l|l}
STROBE TUBE \& ST2 (D32) DIAC 25p

ZFT4A Suitable \& CRSI/40 SCR \& 45p

ZFT4A Suitable for \& CRSI/40 SCR \& ZFT4. \& 45p

Zec. 73 Pract. \& \& ZFT8 \& $\mathbf{Z 3 . 0 0}$

Electronics. \& $£ 3.00$ \& \&

\hline
\end{tabular}

All types offered subject to availability. Prices correct at time of press $E \& O E$. PKVAT TO BEADDED TOALL ORDERS UK post, etc. 15p per order unless stated.

U.K.'s

LARGEST RANGE OF
TRANSISTORS \& DEYICES
JUST A SELECTION
*TBAB00 5W IC £1.50 *3015FTSEG
*Sinclair ICR 6WIC Indicator \&1-70 *NAI4IC Radio \&1.20 TIL 209 LED 24p each Ultrasoric 20 Transducers $£ 5.90 \mathrm{pr}$
*With circuits/dara
*With circuits/data

OVER I,500 DIFFERENT SEMI-
CONDUCTOR DEVICES IN STOCK
Free stock list-latest edicion (Ref. 36) on reques
Includes radio valves, I.C.s, rectifiers, triacs Includes radio valves, I, C. s, rectifiers, triacs discounts for quantity small or large.

GARRARD BATTERY TAPE DECK
GARRARD 2 speed 9 vol cape decks. Fitted record play and oscillatorlerase heads. Wind and rewind
controls. Takes up to ${ }^{\prime \prime}$ controls. Brakes up to plete with head circuits. $\mathbf{\$ 9 . 5 0}$ carr. 30p

SINCLAIR MINIATURE AMPLI FIERS \& TUNER/DECODER

AMPLIFIERS (carr., etc. 20p)

4-300, 03 w 9 vole 1.75 SACI $4,7+7$ watc 104, I watt 9 volt $3 \cdot 10$ 304, 3 watt 9 volt 3.95 555, 3 wart 12 vole 4.10 E1208, 5 w 12 volt 5.10 $608,10 \mathrm{w} 24$ volt 4.95
$410,10 \mathrm{w} 2 \mathrm{~B}$ volt 4.45 El 206 . 30 w 45 volt 9.95 E1210.21 +21 olt 9.95 warrs 2 volt
E1 21.75 RESOO, 5 watt IC Amplifier with
controls 6.30

Stereo with

11.75

SAC13, $15+15 \mathrm{w}$
controls 14.95 SP40-5 2Z40/ Stereo B0/PZ5 25.00 5P40-6 2Z40/
Stereo 80/PZ6 27.75
SP60 $2760 /$
$\begin{array}{rrr}\text { Stereo } 80 / \mathrm{PZB} & 30.45\end{array}$

POWER

SUPPLIES FOR
EVERY PURPOSE

$470 \mathrm{C} 6 / 7 \frac{1}{2} / 9$ volt 300 MA (includes Multi-Adaptor for Tape Recorders, etc.) $\mathbf{2 . 1 5}$ post 20 p Car Lighter Voltage Adaptors 300 mA (State $\begin{array}{ll}\text { voltage } 6 V, 7 \frac{1}{2} V, 9 V & 1.95 \text { ea. post } 25 p\end{array}$ SC202 $3 / 6 / 7 \frac{1}{2} / 9$ vole 400 mA
P 5009 volt 500 mA
3.65 carr. 30 p
4.90 carr .30 p

P1l 24 volt 500 mA (chassis)
P15 $26 / 28$ volr l amp (chassis) $\quad 2.90$ post 20 p
$\begin{array}{ll}108012 \mathrm{~V} 1 \mathrm{amp} \text { (chassis) } & \mathbf{2 . 9 0} \text { post } 20 \mathrm{p}\end{array}$
$\begin{array}{ll}\text { Pl } 08145 \mathrm{~V} 0.9 \mathrm{amp} \text { (chassis) } & \mathbf{7 . 5 0} \text { post 20p }\end{array}$
P12 $4 \frac{1}{2}-12$ volt $0.4-1 \mathrm{amp} \quad 7.15$ post 30 p
$\begin{array}{ll}\text { SEIOIA } 3 / 6 / 9 / 12 \text { volt I amp (Stab.) } & 12.50 \text { post } 25 \mathrm{p} \\ \text { RPI64 } 6 / 7 \frac{1}{2} / 9 / 12 \mathrm{I} \text { amp (Stab.) } & 12.95 \text { post } 30 \mathrm{p}\end{array}$

EDGWARE ROAD, LONDON W2
404-406 Electronic Components and Equipment 01-402 8381 309 BA-Disco-Lighting High Po
303 Bargains Store (Callers only)
120 Shaftesbury Avenue, London. WI $01-4379692$ 120 Shaltesbury Avenue, London. WI Ol-437 9692
144 Burnt Oak Broadway, Burnt Oak, Edsware Ol-952 7402 190-194 Station Road, Harrow, Middlesex.01-663 7788/9
$354-356$ Edgware Road, London W2 01-402 $5854 / 4736$

IP 1.L. P (electronics)Lta

SECOND GENERATION 25 WATT HYBRID

A brand new hybrid fabrication technique, recently perfected in our laboratories, has enabled Us to achieve our latest range of completely integrated devices.
We have now finally reduced the modular audio amplifier to a simple input/output device requiring only the addition of a basic unstabilized (split line) power supply.
The HY 50 takes medium power modules to their logical conclusion by incorporating with it a heatsink, which is designed in special high conductivity alloy sufficient for normal audio use without additional chassis sinking. All this without significantly increasing the size of the module comparable in size to a packet of 'King-size cigarettes.
Consistent with modern thinking a triple rated output circuit with a load fuse allows for peak transient response without distortion but ensures the necessary protection.

OUTPUT POWER:
LOAD IMPEDANCE:
INPUT SENSITIVITY:
TOTAL HARMONIC DISTORTION:
SIGNAL NOISE RATIO
SIGNAL/NOISERATIO:
FREQUENCY RESPONSE:
SUPPLY VOLTAGE:

NEW HY5 PREAMPLIFIER

Unchallenged for two years, the HY5, our unique multifunction preamplifier/tone hybrid, has been brought into line with the advancements in our power hybrids.
Like the HY50, the new HY5 has no external components and has been redesigned to run off a split power line with improvements in signal/noise, overload capability and reduced distortion. The output has been increased to match the power module (OdB), and share the same power supply. Overall size is reduced by the use of a new thin film circuitry while the device still retains all the functions of the earlier device.
When combined with the HY50 and power supply only potentiometers are required to complete a simple mono amplifier with input and output facilities expected to be found on Hi-Fi amplifiers.
The combination of two HY5's two HY50's sharing a common power supply (PSU50) are linked by a balance control cororm a complete stereo system.

INPUTS
Magnetic Pick-up 3mV (within IdB RIAA curve)
Ceramic Pick-up up to 3 mV .
Microphone 10 mV .
Auxiliary $3-100 \mathrm{mV}$

OUTPUTS
Tape 100 mV .
Main output. od $\mathrm{B}(0.775 \mathrm{~V})$.
Price 84.85 mono 80 - 70 stereo. Price Incluaive of VAT and P. P

POWER SUPPLY PSU50

The new PSU50 has a low profile look boing only 2 tin high and can be used for either mono or stereo systems.
SPEC.
OUTPUT VOLTAGE +25 V .
INPUT VOLTAGE 210-240V.
SIZE: L. 70 D. 90 H. 60 mm .
Price $65 \mathbf{2 3}$. Price inclusive of VAT \& P. \& P.

CROSSLAND HOUSE•NACKINGTON•CANTERBURY-KENT

CANTERBURY 63218
Please note we reserve the right to substitute ai our discretion updated versions of advertised designs where applicable.

NOW AVAILABLE IN THE U.K! CHINAGLIA

PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS

One example from the big range of sophisticated instruments

METER PRICE $£ 13.75$ ($p \& p$ 80p) PROBE $£ 8.00$ inclusive of V.A.T.
for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone :-

19 Mulberry Walk, London S.W.3.
Telephone 01-352 1897

P.C.B. PACKS S \& D. Quantity 2sqit -no tiny pieces. 50p plus P. \& P. 20p. FIBRE GLASS as above $\& 1$ plus P. \& P. 20D.
S CRYSTALS 70 to 90 kHz . Our choice, 25p. P. \& P. 15p.
SANGO 50 microamp meters. 21° diameter. Ex-new radiation equip $\$ 1.25$ each. P. \& P. 17 p .
CAPACITOR PACK-50 Brand new components only 50 p. P. \& P 17p.
POTS- 10 different values. Brand
new- 50 p. P. \& P. new-50p. P. \& P. I7p.
TRIMMER PACK. 2 Twin 50 200 pF ceramic 2 Twin $10 / 60 \mathrm{pF}$ ceramic: 2 min . strip with 4 preset $5 / 20 \mathrm{pF}$ on each; 3 air spaced preset $30 / 100 \mathrm{pF}$ on ceramic base. ALL BRAND NEW, 25p the lot P. \& P. IOP.

FLAT FACED 4" Twin Beam Tube type Cossor 89D. Greentrace. Brand new 44 each. P. \& P. 37p.
LIGHT EMITTING DIODES (Red) from Hewlert-Packard. Brand (Red) from Hewlett-Packard. Brand New 38p each
PHOTOCELL equ. OCP7I, 13p each
Mullard OCP70, 10p each
MODERN TELEPHONES type 706. Two-tone grey, $\mathbf{E 3} 75$ each Two-tone green, $£ 3.75$ each. Black, $\mathbf{~} \mathbf{3} .75$ each. P. \& P. 25p each.
IDEAL EXTENSION Telephones with standard GPO type dial, bell and lead coding. $£ 1.75$ each. P. \& P. 25p.

DELIVERED TO YOUR DOOR I cwt of Electronic Serap chassis, boards, etc. No
Rubbish. FOR ONLY $£ 3.50$.

BIB WIRE STRIPPER AND CUTTER

Deluxe Model 9 Automatic opening spring,
locking catch, plastic-covered handles. Case hardened and precision ground. Adjusts to most wire sizes. Cuts and strips flex, splits plastic twin flex. 75p

CIEGTRONALIE GUARANTEED-TO-SPECIFICATION COMPONENTS

EVERYTHING BRAND NEW \star ATTRACTIVE DISCOUNTS

TRANSISTORS

and semi-conductors of many types from simple diodes to ICs photo-sensitive devices, threshold hes, etc., etc.

MINITRON DIGITALINDICATORS
30154F Seven segment filament, compatible with standard logic modutes. 0-9 and decimal point, 9 mm characters in 16 lead DIL, $61-20$. Now available in 8 mA or 15 mA per segment rating.
Suitable BCD decoder driver 7447. ©1.15.
3015 G showing + or - and 1 and dec. pt, E1.20.

CAPACITORS

DALYELECTROLYTIC
in cons, plostic sleeved $1,000 \mathrm{mF} / 25 \mathrm{~V}, 62 \mathrm{p}$: $1,000 \mathrm{mF}$ $1,000 \mathrm{mF} / 25 \mathrm{~V}, 28 \mathrm{p} ; \quad 5,000 \mathrm{mF} / 25 \mathrm{~V}, \quad 62 \mathrm{p} ; 1,000 \mathrm{mF}$
$50 \mathrm{~V}, 41 \mathrm{p} ; 2,000 \mathrm{mF} / 50 \mathrm{~V}, 57 \mathrm{p} ; 5,000 \mathrm{mF} / 50 \mathrm{~V}, \mathrm{El} \cdot 18 ;$ $5,000 \mathrm{mF} / 100 \mathrm{~V}, \in 2.91$.

POLYESTER TYPE C280
Rodial leads for P.C.B. mounting. Working voltage
240 V d.c. $0.01,0.015,0.022,0.033,0.047,3 p$ each; 0.068 , $0.1,0.15,4 p$ each; $0.22,5 p ; 0.33,7 p ; 0.47,8 p$; 0.68 , 11 p ; $1 \cdot 0,14 \mathrm{p}$; 1.5,21p; 2.2,24p.

SILVERED MICA
Working voltage 500 V d.c.
Values in pF- 2.2 to 820 in 32 stages. 6p each; 1,000 , 1,500, 7p each; 1,800, 8p; 2,200, 10p 2,700, 3,600, 12p each; 4,700, 5,000, 15p each $6,800,20$ p; $8.200,10.000,25 p$ each.

TANTALUM BEAD

$0.1,0.22,0.47,1.0 \mathrm{mF} / 35 \mathrm{~V}, 13 \mathrm{p}$ each. $2.2 / 16 \mathrm{~V}$ $22 / 6.3 \mathrm{~V}, 16 \mathrm{p}$ each. $10 / 25 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6 \cdot 3 \mathrm{~V}, 100 / 3 \mathrm{~V}$, 18p each.

POLYCARBONATE TYPE B 32540
Working Voltage 250 V .
Values in mF: $0.0047,0.0068,0.0082,0.01,0.012$, $0.047,0.056,0.068,0.082,0.1,4 \mathrm{p} \mathrm{each}$

CERAMIC PLATE CAPACITORS
Working voltage 50 V d.c.
In 26 values from 22 pF to $6,800 \mathrm{pF}, 2 \mathrm{p}$ each

POTENTIOMETERS

ROTARY, CARBON TRACK.
Double wipers for good consoct and long working life. P20 SINGLE linear 100 ohms to 4.7M Ω, I4p each. P20 SINGLE $\log , 4.7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 14 \mathrm{p}$ each.
JP20 DUAL GANG linear $4.7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 48 \mathrm{p}$
JP20 DUAL GANG linear $4.7 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \Omega, 48 \mathrm{p}$
each.
each. DUAL GANG log. $4.7 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \Omega$, 48p each. DUAL GANG log/antilog $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}$, IM Ω only, $48 p$ each.
IP20 DUAL GANG antilog lok only 48p.
2A DP mains switch with any of above 14 p extra. Decades of 10,22 and 47 only available in ranges above. SKELETON CARBON PRESETS op each.

SLIDER

Linear or log. $4 \cdot 7 \mathrm{k} \Omega$ to IM Ω in all popular values.
Escutcheon plates, black, white or light grey, 10p Cach. grey, 7p each.

JACKS AND PLUGS

Sockets
2-circuit, unswitched, SI/SS

EV CATALOGUE 7

2nd Printing

112 pages. thousands of items, illustrations diagrams, much useful technical information. The 2 nd printing of this catalogue has been updated as much as possible on prices. It costs only 25 p post free and includes a refund voucher for 25 p for spending when ordering goods list value $\mathbf{5 5}$ or more.

Plugs

circ. screened, top entry, P.I
circ. screened, side entry, SEP
Line socket, mono, 231
Line socket, stereo, 244
3-circuit, unscreened, bl/grey/wh, P. 4
2-circuit, unscreened, b//whi/red/bl/grn/grey
3-circuit, screened, top entry, P3
3 -circuit, screened, side enery, SEP3
Miniature, $\mathbf{3 . 5 m m}$, 2 -cir., screened, P5
Miniature, $3.5 \mathrm{~mm}, 2$-circ., unsereene
colours 6
INSULATED SCREW TERMINALS
In moulded polypropylene, with nickel plate on brass. With insulating set, washers, tag and nuts. $15 \mathrm{~A} / 250 \mathrm{~V}$. In b/k/brwn/red/yel/grn/bl/grey/wh, Type TP.I, 14p each.
RESISTORS
Code Watts Ohms
1 to 9
FREE POSTAGE (U.K.)

ELECTROLYTICS

DISCOUNTS

Available on all items except those shown with 10% on orders from 65 to $\mathbb{E} 14.99$. 15% on orders 615 and over.
PACKING AND POSTAGE FREE
in U.K. for pre-paid mail orders. For orders $£ 2$ and under, there is an additional handling charge of 10 p .

GUARANTEE OF QUALITY

All goods are sold on the understanding that they conform to manufacturers specifications and "seconds" or sub-standard merchandise is offered for sale.
PRICES QUOTED DO NOT INCLUDE VAT, for which 10% must be added to total nett value of order. Every effort is made to ensure correctness of information and prices at time of going to press S.A.E. with written enquiries please.

GIRO ACCOUNT No. 38/671/4002
All postal communications, mail orders, etc., to Head Office at Egham address, Dept. PE6.
28 ST, JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Telephone: Egham 3603 Telex 264475 Shop hours-9-5.30 daily. Saturdays 9-1 p.m. Northern Branch : 680 BURNAGE LANE, BURNAGE, MANCHESTER MI9 I NA Telephone 061-432 4945

Shop hours-Daily 9-1 and 2-5.30 p.m. Saturdays.9-1 p.m
U.S.A, CUSTOMERS are invired to contast ELECTROVALUE AMERICA, P.O. Box 27. Swarthmore PA 19081

At the head of-our tibre optic kingdom stands the unique genesis. This fantastic model incorporates the largest mares tail you can buy. Now combined with the most sensational kinetic light base ever desigfed in this fiel ${ }^{3}$. This lamp is unique in the way that the base is opaquely. translucert. The tinted upper section allows one to see, a slowly rotating eight coloured sculptured wheel, that seems to be floating on a blue haze, that radiates a warm mystic glow.
that radiales a warm mystic glow.
Thousande of:optical fibres energized with colour. Fibre tips flash like stars, bright with all the changing colours of the rainbow. Available in blue or green: M.M. Discount price E22.95 inc p.p. and VAT.

CASCADE Height $\mathbf{1 8}^{\prime \prime}$
Cascade, the tibre optic that's also a beautiful corner light, M.M. Discount price £16.65 inc p.p. and VAT.

Little Gem, complete with the smalter mares tail, 18 mm approx. $18^{\prime \prime} \times 10^{\prime \prime}$ high, overall height from table approx $14^{\prime \prime}$) With a single white light display, housed in a red translucent base, cowled with a special moulded three dimensional filter that throws light in array. It's amazing. we have completely shattered the style of conventional
optics with the fabulous little gem. GNLYE10 inc post and VAT OILWHEEL PROJECTORS Multi-coloured. For projecting psychedelic colours 6" or $4^{\prime \prime}$ diameter Ideal for fibre optics
6 oil wheel $£ 5.00+$ p.p. 15 p. $4^{\prime \prime}$ (suitable for optics) $£ 2.65$

AQUARIUS 100
A star for home parties, this budget priced 100-watt projector will transform your room into a swirting image of continuously changing liquid colour of reds, blues, yellows and greens
This machine is supplied with one six inch liquid wheel and includes lamp and lead. Complete with free 2×2 slide projection carrier. M \& M discount price $£ 19.95$ post free.

D.I.Y. SECTION

the Sensational mares tail Three sizes to choose from: 18 mm ferrule, $11^{\prime \prime}$ high $\times 22^{\prime \prime}$ dia 7,500 fibres, $£ 10.50+20$ p p.p 12 mm ferrule, $10^{\prime \prime}$ high $\times 19^{\prime \prime}$ dia 4,800 fibres $£ 7.85+12$ p p.p.
8 mm ferrule, $10^{\prime \prime}$ high $\times 18^{\prime \prime}$ dia. 2,900 fibres $£ 4.95+10$ p p.p. Complete instructions supplied. Display bunching of various types of fibres at low cost. TYPE A 1320. Fibres contained in a tough flexitle sheath. Makes delightful displays. M.M. Discount Price 40 p per ft £1. 10 per yd $+5 \mathrm{p} p$ p.
TYPE B. Light guides comprising of 64 fibres Each fibre .010 inch diameter in a flexible sheath $1 / 8$ inch. 45 p per ft . $£ 1.28$ per yd +5 p p.p. TYPE C. Monofilament .040 dia, single strand flexible plastic that enables heat bending for combined use with type A or type B. 22 p per ft . min order $3 \mathrm{ft} 66 \mathrm{p}+5 \mathrm{p}$ p.p. SLOW SPEED MAINS MOTOR
to rotate oil wheel and static wheel 70 p inc p.p.
 STATIC COLOUR DISC
M.M. Discount price $£ 1.40$ inc post. M.M. Discount price $£ 1,40$ inc post.
Specially made for optics. Complete with metal boss. To fit motor $4^{\prime \prime}$ dia, seven prominent colours contained in separate sections. Bulb and batton kit olus 6 ft of flex
75 p inc post and VAT.
Terms: C.W.O. cheques/po's
C.O.D. please send 50 pence when ordering BUY WITH CONFIDENCE FROM A FIRM WITH A NATIONAL REPUTATION

OPTICS, 180 WELLINGBOROUGH ROAD. NORTHAMPTON. TEL. 33487

P.C.BOREO?

- not with the
 dalo 33P6

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.

The circuit is ready to use.

NO MESS - NO MASKING A perfect circuit every time!

£ 1.10 for one off
£4.40 for six
£8.80 for twelve
V.A.T. and Post included. Available now in every country in Europe.
Please send me further details on the 33PC:
Name
Address
Post to : DECON LABORATORIES LTD.
FREEPOST
PORTSLADE, BRIGHTON, ENGLAND
(No Stamp Needed) Phone O273 414371
In

回䀘
 c
 FOR AUDIO ON A BUDGET

PUSH BUTTON CAR RADIO KIT

The first time Motor magazine have nominated a push button car radio for their Top Ten Accessory Awards

NOW BUILD YOUR OWN AWARD WINNING PUSH BUTTON CAR RADIO

Fechnical specification
1．）Output 2.5 watts R．M．S．into 8 ohms．For 12 volt operation on negative or postive earth．
2．）Integrated circuit output stage，pre built three stage IF Module．
Controls Volume，manual tuning and five push buttons for station selection，illuminated tuning scale covering full medium and long wave bands．
Size Chassis 7 ins．wide， 2 ins．high and $4 \frac{3}{16}$ ins．deep approx

NOTE：The ability to solder on a printed circuitboard is necessary to complete this kit successfully：Circuit diagram and comprehensive instructions 55 p．free with kit．

Car Radio Kit

$\mathbf{f 6 . 6 0}+55$ p．postage $\&$ packing．
Speaker including baffle and fixing strips
f1．65＋23p．postage \＆packing．
Recommended Car Aeriaf－fully retractable and locking． £1．35 post paid．

QUALITY SOUND＊ FOR LESSTHAN 19.00

Stereo 21 easy to assemble audio system kit，－no soldering required．Ineludes：－
BSR 3 speed deck，automatic，manual facilities together with ceramic cartridge
Two speakers with cabinets
A mplifier module．Ready built with control panel，speaker leads and full，easy to follow assembly instructions．

For the technically minded ：－

Specifications：

Input sensitivity 600 mV ：Aux，input sensitivity 120 mV ：Power output 2.7 watts per channel：Outputimpedance $8-15$ ohms Stereo headphone socket with automatic speaker cutout． Provision for auxiliary inputs－radio，tape，etc．，and outputs for taping discs．Overall Dimensions．Speakers approx．
$15 \frac{1}{2} \times 8^{\prime \prime} \times 4^{\prime \prime}$ ．Complete deck and cover in closed position approx． $15 \frac{1}{2}^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$ ．Complete only $\mathbf{f 1 8 . 9 5}$ Extras if required． Optıonal Diamond Stylif1．37

十 11.60 p\＆ p.
Specially solected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance， $\mathbf{~} \mathbf{3} \mathbf{8 5}$ ．

DISCO AMPLIFIER

Reliant Mk IV Mono Amplifier，ideal for the small disco or house parties．
Outputs 20 watts R．M．S．into 8 ohms（suitable for 15 ohms）．
Inputs＊ 5 Electrically Mixed Inputs．＊3 Individual Mixing controts．＊Separate bass and treble controls common to all 5 inputs． ＊Mixer employing F．E．T．（Field Effect Transis－ tors）．＊Solid State Circuitry＊Attractive Styling． input Sensitivities
1）Crystal Mic or Guitar 9mV．2）Moving coil Mic or Guitar 8 mV ．3），4），5）Medium output equipment（Gram．Tuner．Monitor，Organ，etc．） －all 250 mV sensitivity． AC Mains 240 V ．operation．
Size approx． $12 \frac{1}{2}$ ins $\times 6$ ins $\times 3 \frac{1}{2}$ ins $\mathbf{f 1 5 . 0 0}+\mathbf{6 0 p}$. postage \＆packing

DISC0 50
 4

45 WATT R．M．S．MONO DISCOTHEQUE AMPLIFIER
Ideal for Disco Work．Output Power： 45 watts R．M．S．Frequency Response 3 dB points 30 Hz and 18 KHz ．Total Distortion：less than 2% at rated output．Signal to noise ratio：better than 60 dB ．Bass Control Range： 13 dB at 60 Hz ．Treble Control Range： 12 dB at 10 KHz ．Inputs： 4 inputs at 5 mV into 470 K ．Each pair of inputs controlled by separate volume control． 2 inputs at 200 mV into 470K．Size： $19 \frac{1}{4} \times 10 \frac{1}{2} \times 8$ ins．approx．Amplifier $\mathbf{£ 2 7 . 5 0}+\mathbf{£ 1 . 5 0} \mathbf{p}$ ．\＆p
Special Offer ：Disco 50 plus two $15^{\prime \prime}$ E．M．I．speakers type 14A／780 （as illustrated on opposite page）．Complete $\mathbf{£ 5 7 . 0 0}+\mathbf{£ 4 . 0 0} \mathbf{p} \& p$ ．

COMPLETE ${ }^{(*)}$ STEREO SYSTEM

£51.00

40 Watt Amplifier
Viscount III-R102 now 20 watts per channel.
System I includes,
Viscount Ill a mplifier - volume, bass, treble and balance controls. plus switches for mono/ stereo on/off function and bass and treble filters. Plus headphone socket. Specification
20 watts per channel into 8 ohms. Total distortion@10W@1kHz O.1\%. P.U.I (for ceramic cartidges) 150 mV into 3 Meg . P.U. 2 (for magnetcc cartridges) $4 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within 1dBR.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power). Tape out facilities: headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12dB to -17dB @ 60 Hz . Bass filter: 6 dB per octave cut. Treble control: treble +12 dB to-12dB@ 15 kHz . Treble filter: 12 dB per octave. Signa/ to noise ratio: (all controls at max.) -58 dB .
Crosstalk better than 35 dB on all inputs. Overload characteristics better than 26 dB on all inputs. Size approx. $13_{4}^{3 "} \times 9^{\prime \prime} \times 3_{4}^{3{ }^{3 \prime}}$ Garrard SP25 deck, with magnetic cartridge, de luxe plinth and hinged cover.
Iwo Duo Type II matched speakers Enclosure size approx. $17 \frac{1_{2}^{\prime}}{}{ }^{\prime \prime} \cdot 10 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times 6^{\prime \prime}$ in simulated teak. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter Complete System $£ 51.00$

669.00

System II
Viscount III amplifier (As System I)
Garrard SP. 25 (As System |)
Two Duo Type IIIA matched speakers-
Enclosure size approx. $31^{\text {" }} \times 13^{\prime \prime} \times 11^{\frac{1}{2}}$ "
Finished in teak veneer. Drive units approx.
$13 \frac{1}{2}{ }^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ with $3 \frac{1}{4}{ }^{\prime \prime}$ HF speaker. Max. power
20 watis, 8 ohms. Freq. range 20 Hz to 20 kHz .
Complete System £69.00
PRICES : SYSTEM 1
Viscount IIIR 102 amplifier $\quad £ 24 \cdot 20+£ 1 p \& p$ 2 Duo Type Il speakers $\quad \mathrm{f} 14.00+\mathrm{f} 2.20 \mathrm{p}$ \& p Garrard SP25 with
MAG. cartridge de luxe plinth and hinged cover
$\mathbf{f 2 1 . 0 0}+\mathbf{f 1 . 7 5 \rho \delta p .}$
total $\mathbb{5 9} .20$
Available complete for only $\mathbf{£ 5 1 . 0 0 + £ 3 . 5 0 p . ~} \mathrm{p}$ PRICES: SYSTEM 2
Viscount R102 amplifier $\quad £ 24.20 \quad \mathbf{f 1 . 0 0} \mathrm{p}$. \& p. 2 Duo Type IIIA speakers $£ 38.00 \quad £ 4.00$ p \& p Garrard SP25 with
MAG cartridge de luxe plinth $£ 21.00 \quad £ 1.75 \mathrm{p}$. \& p. and hinged cover
total $£ 8420$

EMI SPEAKERS AT FANTASTIC REDUCTIONS

THE ULTIMATE COMPLETE SPEAKER SYSTEM EMI LE 315. List Price $£ 86 \cdot 00$

A professional standard five way speaket system with enclosure giving top quality performance.
Enclosure Dimensions
approx. $(3 \mathrm{ft}, \quad 2 \mathrm{ft}, 1 \mathrm{ft}$)
Drive Units
Hand built - 15 " diameter bass with $3^{\prime \prime}$ voice coil, - two $5^{\prime \prime}$ diameter Mid Range units, - two $3 \frac{1}{4}$ " HF units, plus matching crossover pane! with two variable potentiometers for mid and high frequency adjustment
Power Handling
Continuous rating 35 W rms., Peak power rating 70 W
Frequency Response
20 Hz 20.000 Hz . Imp. 8 ohms
Our price $£ 45 \mathbf{0 0}+\mathbf{f 3} \mathbf{5 0} \mathrm{p}$. \& p.

15" 14A/780 BASS UNIT
Bass unit on a rigid diecast chassis Superior cone material handles up to 50 watts RMS, and is treated to give a smooth frequency response. Resonance 30 Hz . flux density 360,000 Maxwells. Impedance at 1 kHz is 8 ohms. $3^{\prime \prime}$ voice coil.
Recommended retail price $\mathbf{£ 4 0 - 8 0}$.

BUILD YOUR OWN STEREO AMPLIFIER ${ }^{(*)}$

For the man who wants to design his own stereo - here's your chance to start, with Unisound - pre-amp, power amplifier and control panel. No solderingjust simply screw together 4 watts per channel into 8 ohms Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum. 240 V . AC only.
$\mathbf{£ 7} \cdot 64+55 p . p \& p$

Just write your order giving vour credit card number
DO NOT SEND yOUR CARD

Mail orders to Acton. Terms C.W.O. All enquires Stamped Addressed Envelope. Goods not despatched outside U.K.

Leaflets available for all items listed thus ($*$)
Send stamped addressed envelope.

8TRACK CARTRIDGE PLAYER ${ }^{(*)}$

Elegant self selector push button player for use with your stereo system. Compatible with Viscount III system. Unisound module and the Stereo 21 Technical specification Mains input. 240V. Output sensitivity 125 mV Comparable unit soid elsewhere at $£ 24.00$ approx Yours for only $\mathbf{£ 1 0 . 9 5 + 9 0 p . p \& p}$

回

Radio and TV Components (Acton) Ltd.
21 High Street, Acton, London W3 6NG/D 323 Edgware Road, London W2
Personal __ Edgware Road: 9a.m.-5.30p.m. Half day Thurs. Shoppers - Acton:9.30 a.m.-5 p.m. Closed all day Wed.

SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

\section*{| 60 |
| :---: |
| 4 |}

Telephone Corner

NORMAL HOUSEHOLD
 TELEPHONE DIALS

Standard Poss Office tree Guaranteed in

Only 271

 Untested Paks

| BI | 50 |
| :--- | :--- | :--- |
| Germanium Transistors | |

B66 $150 \begin{gathered}\text { Germanium Diodes } \\ \text { Min. glass type }\end{gathered} \quad 55 \mathrm{p}$

 HI6 $15 \begin{aligned} & \text { Experimenters' Pak of } \\ & \text { Integrated Circuits. Data }\end{aligned} \quad 55 \mathrm{p}$

H87 $10^{3819 N}$ Channel FET's plastic 55p
Make a rev counter
for your car
The "TACHO BLOCK". This encapsulated block will turn any
linear and accurate
and
rever an

Ex EPO Push Button Intercom Ielephones

Exactly as internal telephone systems still in changes have not yet automatic internal ex 5, 10 or 15 ways. Complete with circuits and
instructions. Necessary 24 pair cable 22p per ard. Price of each instrument is independent
$£ 2.75$
p. $38 \frac{1}{2} \mathrm{p}$

Cable can be sent by Parcel Post. Post and
Packing per 50 yds.: 731 p .
Extension Telephones $71 \frac{1}{2}$ peach, p.p. 27 1p.
ti.37t for 2, p.p. SSp. C1. 37 for 2, p.p. SSp. These phones are

Electronic Transistor

 Ignition £6'60 Ready built and tested unit $£ 9 \cdot 90$ incl. V.A.T. Now in kit form, we offer this "up-to-theminute" electronic ignition system. Simple to make, full instructions supplied with these outstanding features. Transistor and con-ventional switchability, burglar proof lock-up ventional switchability, burglar proof lock-up
and automatic alarm. negative and positive

New X Hatch

Our new vastly improved Mark Two Cros Hatch Generator is now available. Featuring plug-in ICs and a more sensitive
sync. pisk-up circuit. The case is virtuall unbreakable-ideal for the engineer's rool box-and only measures 3 in x latin x in from a major TV Rencal company.

(includes V.A.T. \& P. \& P but nobatteries)

Over 1,000,000 Transistors
in stock
We hold a very large range of fully marked. tested and guaranteed transistors. power
transistors. diodes and rectifiers at very ransistors. diodes and rectifiers at very
Our very popular 4 Transistors
TYPE ''A'" PNP Silicon Alloy, TO-5 can.
TYPE 'B'" PNP Siticon, plastic encapsulation
TYPE 'EE" PNP Germansum AF or RF.
TYPE " ${ }^{2}$ ". NPN Silicon plastic encapsulation.
TYPE "G" NPN silicon, similar ZTX 300
range. "H" PNP silicon, similar ZTX500
8 nears for $£ 1 \cdot 10$
High Speed
Magnetic
Counter

Plastic Power Transistors
NOW IN
TWO
RANGES
These are 40 W and 90 W Silicon Plastic Power Transistors of the very latest design
available in NPN or PNP at the most shatter ingly low prices of alt time. We have been selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed terms.
Range I VCE Min. IS $\underset{\substack{1-12 \\ \text { HFE Min. } \\ 13-25}}{\substack{\text { I } \\ 26-50}}$ $\begin{array}{cccc}40 \text { wart } & \text { 22p } & \text { 20p } & 18 p \\ 90 \text { watt } & \text { 26ip } & \text { 24p } & \text { 22p }\end{array}$
 $\begin{array}{llll}40 \text { watt } & 33 p & 31 p & \text { 29p } \\ 90 \text { watt } & 381 p & 361 p & 33 p\end{array}$ Complementary pairs matched for gain 3 amps. Ilp extra per pair. Please state NPN or PNP on order.

LM380 A UDIO I.C. as featured in Practical Wireless December issue. Complete with application data, $\mathrm{fl} \cdot 10$.
INTEGRATED CIRCUITS. We stock
large range of l.C.s at very competitive prices (from llp each). These are all listed in ou FREE Catalogue, see coupon below.
METRICATION CHARTS now available. This fantastically decailed conversion calreferences between merric and British (and U.S.A.) measurements of length. area, volume, liquid measure, weights,
Pocket Size, $15 p$, Wall Chart, $18 p$.

LOW COST DUAL IN LINE I.C
SOCKETS
14 pintype at 16 ip each
16 pin type at 18p Now new low
16 pin type at 18peach $\}_{\text {profile type. }}$

BOOKS

We have a large selection of Reference and Technical Books in stock, details are in our latest catalogue, send for it TODAY usim the coupon below
N.B.-Booke are void of V.A.T.

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors and
Electronic Components, approx. 170 . We guarantee at least 30 really high quality factory marked Transistors PNP and NPN, and a host of Diodes and Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied t

MAPLN ELECTRONIC SUPPLIES		
		WE kNOW YOU NEED IT CATALOOUE IS STACEED and leave the rest to us
to		

SNXON

Money saving high

performance audio equipment DIRECT FROM OUR OWN FACTORY

GUARANTEED TESTED HIGH PERFORMANCE
MODULES-now better value than ever SA35 $\mathbf{4 . 4 5}$ Carriage $\star 25 \mathrm{~Hz}-25 \mathrm{kHz}$ 35W RMS 25-50V
SA50 55
50W RM5 25-65V
7 transistors: 7 diodes
SAIOO $\quad \mathbf{E l 0 . 9 0}$

il rransistors, 6 diodes

120 watt module complete with builtin supply-extra heavy duty $£ 19.75 \begin{gathered}\text { carr. } \\ \text { 60pp }\end{gathered}$

THE SAIOO MODULE

POWER SUPPLIES

UNSTABILISED

PU45		£4.90
P U70		£7.75

STABILISED

PS45		63.50	
MT45	Transiormer for above	¢3.50	${ }_{\substack{\text { carriaze } \\ 308}}$
PS70	Suits 254100	64.90	
MT70		¢4.90	Carriage

Mk II STEREO DISCO MIXER $£ 19.75$ This well tried unit mixes two decks, handies any ceramic cartridge, and features mic over-ride plus separate full range bass and treble controls on both mic and deck inputs. Ample headphone power is
available for P.F.L. May be used for mono and is available for P.F. Lireed with sturdy screening case. vontrols: Mic vol, bass, treble. Left/Right fade, deck $17 \frac{1}{2}$ in $\times 3$ in $\times 4$ in deep.

DISCO MODULE $88.00{ }^{\text {carr }}$

Thousands sold of this extremely popular mono version. A mic input may be fitted using the VA30 (see below). Low consumption from a 9 V battery. Features the same high standards of reproduction as the Stereo version.
Controls: H/phone select, vol, Left deck vol, Right deck vol, bass, treble, Controls: H/phone select, vol, Left deck vol, Right deck vol, bass, treble, master vol. Size 12 in $\times 3$ in $\times 2$ in deep.

3-CHANNEL SOUND-LITE $\mathbf{£ 2 2 . 5 0} \begin{gathered}\mathrm{C}_{3} \text { (2r. } \\ 30\end{gathered}$

Only SAXON can supply such incredible value for money. This unit features 3 kW power handling, full-wave control, bass, middie, treble AND master controls. Twin loudspeaker jacks for "through " connections. It may be used free standing or will for extra wide rangeresponse. Size 12 in $\times 3$ in $\times 2 \frac{1}{2}$ in deeg. Professional standards at a price you can afford!
SINGLE CHANNEL Recently reduced in price Add VAT 10\% to all orders YERSION £7-50 due to increasing sales,

MULTI-PURPOSE MIXERS

M4HL

M6HL
 Featuring multiples of our VA 30 module, the M4 HL and M6HL fulfilthe requirements of all clubs, groups, ete. Where a high quality mixer is required. Each
channel has one high and one low impedance input. channel has one high and one low impedance input,
plus volume, treble and bass controls. inpur plus volume, treble and bass controls. input The M4HL has four channels, and one ourput, and the M6HL six channels (12 inpurs) and a master control and two outputs. Either unit may be used
free-standing or panel mounted. These mixers will feed all types of amplifier. Recommended for their versatility and high performance, and excellent value for money.

VA30 CHANNEL $\$ 3.50$ Carr.
This is the basic channel module in the above mixers and may also be used for extra inputs on either the
mono or stereo mixers. Fited with volume, bass and treble controls, requires just a jack and supply ($9-100 \mathrm{~V}$)

MOTOROLA
F. M. Multiplex Stereo Decoder

MC1310P each

Four Channel SQ Decoder
MC1312P
1.75

O/P Power Transistor
2N3055
0.65

SIGNETICS

I/C Timer	NE555V	0.80
Dual I/C Timer	NE556A	1.40
High Phased Locked Loop	NE560B	4.20
High Phased Locked Loop with AM Demod	NE561B	4.20
High Phased Locked Loop with Open VCO	NE562B	4.20
Precision Phased Locked Loop	NE565A	2.90
Function Generator	NE566V	1.55
Tone Decoder	NE567V	2.90

Tone Decoder
NE567V
2.90

G.I.

Eight Digit Calculator Chip C500 11.00 Eight Digit Calculator Chip C550 9.50
31/2Decade DVM Chip AY-5-3510 6.40

MONSANTO
(MAN3M) 0.115" LED Seven Segment Display O2501
1.10

FERRANTI
Radio Receiver
ZN414
1.20

Data information supplied with each device.
Write for free catalogue of our large S.C.S.
stocks of Ferranti, Motorola, G.I., P.O. Box No 26
Monsanto, Mullard, Signetics and R.C.A. (Dept PE) components.

Wembley,
Middlesex HAO 1SD,
England

A POCKET CALCULATOR FROM S.C.S. £4 DISCOUNT TO READERS OF P.E.

A unique, three-way link up between S.C.S., a major calculator manufacturer and Practical Electronics allows us to offer you a fully guaranteed pocket calculator. Powered by a second generation MOS LSI chip from General Instrument Microelectronics.

Available for $£ 24+$ V.A.T. (tested and guaranteed). LESS SPECIAL £4 DISCOUNT TO ALL P.E. READERS - don't forget to use your discount voucher.

A limited number of home constructor kits are available at $£ 15+$ V.A.T. (no discount).

N15
I enclose a cheque to the value of $£ 20+$ V.A.T. to cover the cost o
S.C.S. Pocket Calculator. (All cheques should be made payable to
S.C.S. Components Ltd.) Total f22.

NAME
ADDRESS \qquad
S.C.S. Components Ltd. P.O. Box No. 26, Wembley, Middlesex HA0 1 YY Registered in London No. 888454.

ALL

BSR HI-FI AUTOCHANGER STEREO \& MONO Plays $12^{\circ} \cdot 10^{\circ}$ or 7° records. Auto or Manual. A high quality unit backed by BSR reliability with 12 months' Euarautre.
Size $13!$
$\times 11!i n$.
Above motor bosrd 3 ain. Below motor board 2 tin with STEREO and MONO XTAL $\mathbf{~} \mathbf{6 . 7 5}$ Post 25p.

PORTABLE PLAYER CABINET Modern design. Black rexine covered. Silver trons grille.
Padded Lid. Chrome fitiogs. Size $17 \mathrm{in} \times 15 i n \times 7 \mathrm{nin}$. Padded Lid. Chrome Gttings. Size $17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in}$. Few only in red rexine.
Motor bogrd cut for
 Wotor board cut for BSR de

4 Transistor Mono Amplifier

 Poweriul 3 watt output. 15 ohm . AC mains operated with witch with knobs. Ready made on printed circuit board. Fused inpats and outputa. Famous make. Size 8 in wide $\times 4$ in deep $\times 3$ an high.Suitable 7 in $\times 4$ in apeaker, 21 .
$\$ 5.95_{\text {Posp }}^{\text {Pos }}$

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto atop. Acos stereo/mono cartridge. Baseplate.
Size 11 in $\times 8$ in. Turntable. Size 7 in diamoter. AC mains. $200,250 \mathrm{~V}$ motor has a separate winding 14 volt to power a emall amplifer.

£5.50
 Post 25p

METAL PLINTH AND PLASTIC COVER Cut out for most Garrard or B.S.R. Most will play with cover in position $12!\times 14!\times 7!i n$. 12! $\times 14$, $\times 7$ in.
Covered in black leatherette. $14 \cdot 85$ Pont 45p ALSO AVAILABLE IN SOLID NATURAL MABOGANY COMPACT PORTABLE STEREO HI-FI Two full size loudspeakers 13$\} \times 10 \times 3$ inin. Player unit elipa to loudspeskers making it extremely compact, overall size only $13 \mathrm{y} \times 10 \times 8$ in. 3 watts per chanael, play
all records 3 ? $\mathrm{r} . \mathrm{p} . \mathrm{m}$. . $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Separste volume and tove

Attractive Teak finish Weirht 13 Ib
SPECIAL OFFER! SMITH'S CLOCKWORK 15 AMP TIME SWITCH 0 TO 60 MINUTES
Single pole two-way Surlace mounting
with fixing screws. Will replace existing
wall switch to give light ior return home, garage, automatic snti-burglar lights. ete. Variable knob.
Turn on or of at full or intermediste settinga Fulls inaulated. Makers' Last list price $\mathbf{5 4} 5 \mathbf{5 0}$. Brand new and fully guaranteed. \quad OUR PRICE $\mathcal{E} 1.65$ Post 25p

BLANK ALUMINIUM CHASSIS. 18 E.W.R. 21 in gidea 14×9 in $90 \mathrm{p} ; 18 \times \operatorname{Bin} 90 \mathrm{p} ; 12 \times 3 \mathrm{in} 50 \mathrm{p} ; 16 \times 10 \mathrm{in} \mathrm{f1}$. ALUMINIUP BOXES $3 \times 3 \times 3$ in $60 \mathrm{D} ; 4 \times 4 \times 4$ in 70 p ;
 14×3 in $20 \mathrm{p} ; 10 \times 7$ in $24 \mathrm{p} ; 12 \times \sin 25 \mathrm{p} ; 12 \times 8$ in 34 p ; $16 \times 6 \mathrm{in} 34 \mathrm{p}: 14 \times 9 \mathrm{in} 40 \mathrm{p}: 12 \times 12 \mathrm{in} 47 \mathrm{p}: 16 \times 10 \mathrm{in} 6 \mathrm{mp}_{\mathrm{p}}$. PAXOLIN PANEL 10×8 Sin 20 p .
1 ! inch DIAMETER WAVECHANGE SWITCEES, 30p es. 2 p. 2-way, or 2 p. 6-way, or 3 p. 4-way.

Sub-miniature, ip. 33 p ; dp. dt. 50 p .

BRITISH FM/VHF TUNING HEART Connoectiont suppilied but some technicail sxerienco ensential.
 Our price $£ 3.95$ potit 20 o

OUR PRICES INCLUDE V.A.T.
R.C.S. STABILISED POWER PACK KITS All parti and inatructions with Zener Diode, Printed Circuit. Bridge Rectiferr and Double Wound Mains Tranaformar
input $200 / 240 \mathrm{~V}$ a.c. Output voltages available 6 or 9 or 18 input $200 / 240 \mathrm{~V}$ a.c. Output voitages avalabl or
 Detnil! 8.A.E. Size $3 t \times 1 \$ \times 1$ in. \times 20p R.C.S. GENERAL PURPOSE TRANSIST
PREAMPLIFIER BRITISH MADE Ideal for Mike, Tape, P.U., Guitar, etc. Can be used with lattery $9-18 V$ or H.T. line $200-300 \mathrm{~V}$ d.c. Operation. Size $11 \times 1 \pm$
For use with valve or tranaintor equipment.
F For use with valve or trangintor equipment. ©
Fall inatructions supplied. Detaily S.A.E.
NEW TUBULAR ELECTROLYTIC
cas typzs
4/350V 14p|250/25V 14p|

$4 / 350 \mathrm{~V}$	14 p	$500 / 25 \mathrm{~V}$	20 p
$8 / 450 \mathrm{~V}$	$80+100 / 850 \mathrm{~V}$		

$8 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$

$16 / 450 \mathrm{~V}$ | $32 / 500 \mathrm{~V}$ | 22 p | $1000 / 50 \mathrm{~V}$ | 47 p |
| :--- | :--- | :--- | :--- |
| $8+8 / 450 \mathrm{~V}$ | $2 \mathrm{p}_{\mathrm{p}}$ | | | | $82 / 500 \mathrm{~V}$ | 50 p | $8+8 / 450 \mathrm{~V}$ | 28 p |
| :--- | :--- | :--- | :--- |
| $25 / 25 \mathrm{~V}$ | 10 p | $8+16 / 450 \mathrm{~V}$ | 25 p | | $25 / 25 \mathrm{~V}$ | 10 p | $8+16 / 450 \mathrm{~V}$ | 25 p |
| :--- | :--- | :--- | :--- |
| $50 / 50 \mathrm{~V}$ | 10 p | $16+16 / 450 \mathrm{~V}$ | 40 p |
| $100 / 28 \mathrm{~V}$ | 10 p | | | $100 / 25 \mathrm{~V} \quad 10 \mathrm{p}, 32+32 / 350 \mathrm{~V} 40 \mathrm{p}$

$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
1000 mF 12V 20p; 25V 35p; 50V 47p; 100 V 70 p .
2000 mF 6V 25p; 25V 42p; 50 V 57 p.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p}: 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}: 50 \mathrm{~V} 65 \mathrm{D}$.
5000 mF 6V $25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 30 \mathrm{~V}$ 85D. $85 \mathrm{p} ; 50 \mathrm{~V} 96 \mathrm{p}$ CERAMIC 1pF to 0.01 mP , 4 p . Silver Mice 2 to 5000 pF , 4 p . PAPER $350 \mathrm{~V}-0.1$ 4p; $0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF}$ 150V 15p. $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$. $8,200 \mathrm{pF} 10 \mathrm{p}-2,700-5,600 \mathrm{pF} 20 \mathrm{p} ; 6,800 \mathrm{pF}-0.01$, 18 p ; $860-$
 WIN GANG (io 0 " $208 \mathrm{pF}+176 \mathrm{pF}$, 60p.
500 pF stendard 85 p; small 3 -gang 500 pF 21.80 .
8HORT WAVE SINGLE. $10 \mathrm{pF}, 30 \mathrm{p}$; 25 pF . $85 \mathrm{p} ; 50 \mathrm{pF}$, 55 p .
SHORT WAVE single gang. Precision Silver Plated
Gangable Tuning Condenvers.
Values wp to 100 pF .
Section Couplers supplied FREE with two or more ganga.
Section Couplers lupphed FREE with on on acinc Amber 20p.
REON PANEL INDICATORS 250V AC/DC. Amber 20p. HIGH STABILTYY. 1 W $2 \% 10$ ohms to $6 \mathrm{meg}, 10 \mathrm{p}$.
Ditto 5°. Preterred values 10 ohms to 10 meg .4 p .
WIRE-WOUND RESISTORS 5 wett, 10 watt. 15 watt, 10 ohma to $100 \mathrm{~K} 10 \mathrm{peach} ; 2$ watt, 0.5 ohm to $8 \cdot 2$ ohms 10 p TAPE OSCILLATOR COM Valve type 35p.
FERRITE ROD $8 \times$ in $20 \mathrm{p} ; 8 \times$ in $20 \mathrm{p} ; 3 \times$ in 10 p .

MAINS TRANSFORMERS ${ }_{25}^{4 L 5 p}$ posich

 $350-0-35080 \mathrm{~mA} 8 \cdot 3 \mathrm{~V} 3.5 \mathrm{AA}, 8 \cdot 3 \mathrm{~V}$ 1A or $5 \mathrm{~V} 2 \mathrm{~A} \ldots . .83 \cdot 00$ $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V}$ AA C.T.; $8.3 \mathrm{BV} 2 \mathrm{~A} . \ldots . .24 .25$
 MIDGET 220V $45 m A, 6 \cdot 3 V 2 A 21 \times 2!\times 2 \mathrm{in}$ HEATER TRARS. 6-3V amp $85 \mathrm{p}, 11 \mathrm{amp}$
E.M.I. $13 \frac{1}{2} \times 8$ in. SPEAKER SALE!
 watt. 8tate 3 or 8 or 15 ohm. As illuatrated. Poat 26 p With fared tweeter cone and ceramie magnet. 10 watt.
Bairires. 10,000 geve

- 13

Bookshelf Cabinet ${ }^{10} \times 10 \times$ sin. $\mathbf{£ 6 . 6 0}$
E.M.l. 6tin. HI-FI WOOFER
8ohm. 10 W. Large ceramic magnet.
Specini Rubber cone surround.
Frequency response Ideal P.A.
30-12,0e0 c/.
Columns. Hi-Fi Enclosure Syatems, etc.
Suitable Cabinet $12 \times 8 \times 684$ Suitable Tweeter 88

ELAC CONE TWEETER
The moving coil disphragm given a sood radistion pattern to the higher frequencies and amooth extengion of total responpe 34×2 in deep. Rating $10 \mathrm{~W}, 3 \mathrm{ohm}$. Crowover 21.RS £| 90 Pont 20p.

GOODMANS 8 in . WOOFER
8 ohm 12 watt. Deed cone. Henvy ceramic magnet. Bans resonance 35 cps . Frequency Ideal bass nnit for
$\mathrm{Hi}-\mathrm{Fi}$ agntem.

SPECIAL OFFER LOUDSPEAKERS

ALL BRAND NEW

$3 \mathrm{ohm}, 2 \mathrm{iln} ; 2$ inn; 3 itin; 5 in.
$8 \mathrm{ohm}, 2 t \mathrm{in}$; 2 lin ; $5 \mathrm{in} \times 3 \mathrm{in}$; Sin.
$15 \mathrm{ohm}, 3 \mathrm{in} ; 5 \mathrm{Sin} ; 8 \times 4 \mathrm{in} ; 5 \times 3 \mathrm{in} ; 7 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{in}$,
$25 \mathrm{ohm}, 2 \mathrm{in} ; 3 \mathrm{in} ; 5 \times 3 \mathrm{in} ; 5 \mathrm{in}$. $25 \mathrm{ohm}, 21 \mathrm{in} ; 3 \mathrm{in} ; 5 \times 3 \mathrm{in}$: 5in. 35 ohm , 2in; 8in; 5in
£ $\left.\right|_{\text {васн }}$

LOUDSPEAKERS P.M. 3 OHMS. 7×4 in 21. . 25 ; 8 if in 1.50 ; 8×5 in 81.60 ; 8 in $21.75 ; 10 \times 6 i n 12190$; 10 in 82.50
 diameter 4 W E2.50, 10 in diameter 5 W 22.50; Pont 25 p . $12 i n$ diameter, $8 \mathrm{~W}, \mathrm{f2} 95$; 3 or 8 or 15 hm models.
SPEAKER COVERING MATERIAL8. 8amples Large 8.A.E. Horn Tweeters $2-16 \mathrm{Kc} / \mathrm{a}$. 8 W 8 ohm or 15 ohm ex.20 De Luxe Horn Tweeteri 2-18Kc/s, 15 W , 15 ohm 83.50 . TWO-WAY 3,000 c.p.s. CROssoVER8 3, 8 or 15 ohm $21 \cdot 25$

TWO-WAY CROSSOVER NETWORK $3,000 \mathrm{c} / \mathrm{s}$ With variable tweter attenuator giving accurate high/low trenuency balanee. Monnted on panel stin \times in with control knob, tweeter and woofer leadaand input
terminals. Suitable for 3 to 8 ohm impedance. $80{ }_{20 p}^{\text {Pont }}$

VALVE OUTPUT TRANSFORMER 40p.
MIKE TRANSFORMER MO metal 100-1 21-25.
PUSH-PDLL VALVE OUTPUT TRANSFORMERS.
50 watt $812 \cdot 50$ 100 watt
216.00

ELECTRO MAGNETIC
 PENDULUM MECHANISM

1.5 V d.c. operation over 200 hours continuown on 8P8 battery, fully adjustahle swing and apeed. Ideal displays,

R.C.S. RECORD PLAYER AMPLIFIER

2 stage triode pentode valve. 3 watts output. Volame onjof and tone controls. Printed circuit
$\leq 4.50_{\substack{\mathrm{Post} \\ 25 p}}$
VOLUME CONTROLS 80 ohm Coax 5pyd.
Long spindles. Midget size
5 K. ohms to 2 Meg. LOG or
LIN L/8 15p DP 25p AERAXIAL-AIR SPACED 407d 1.40 ; 60 yd £2.
 Wire Wound controls 1 lin dism. 3 Watta. 10 ohms to 100 X British Made with long spindles tiv dia. 45p esch
HELICAL POT 10K LIN. List £3. Bargain 75p.
DUAL CONCENTRIC POT 500K LOG AND SOOK LIN D.P switch. Inner apindle 3 in ; outer apindle 2tin 75p.
coaxial plug 10p. panel sockets 10p. Line 18p OUTLET BOXPS, SURFACE MOUNTRG $25 p$.
BALANCED TWIN RIBBON FEED ${ }^{\prime}$ R 300 ohmi, ip id, JACK SOCKET Std. open-circuit 14p. closed circuit 28p; Chrome Lead Socket 45p. Phono Plags 7p. Phono Socket 7p JACK PLOGS Std. Chrome 20p: $3-6 \mathrm{~mm}$ Chrome 18 p DH SOCKETS Chassis 3 -pin 10 p ; 6 -pin 10p DIN 8OCEETS Lad 3-pin 18p; 5-pin 25p. DIF PLUGs 3-pin 18p; 6-pin 25p. VALVE HOLDERS 5p; CERAMIC 10p; CANS 6p.

RADIO COMPONENT
Illustrated Colour Brochure, Radio Books Components Lists IOp Written guarantee.

A

 (Available separately.
Wofer 25.25 ; Tweeter 21.90)

Comprising a Ane example of a Wooter $10: \times 6$ in with a massive Cerami Aluminium Cone centre to lines. middle and tup response. Also the E.M.I. Twoeter 3 in square has a special lightweight paper cone and magnet fax 10,000 lines. Crosjover condeneer snd Iull instructions supplied.
Impedance Standard 8 ohma
Marimum power 12 wstt
Useful Reaponse $\quad 35$ to $18,000 \mathrm{cps}$
Basa Renonance 45 cpz
£9.90
SUITABLE ENCLOSURE $20 \times 13 \times 9 \mathrm{in}$.
MODERN DESIGN. TEAK WOOD FINI8H.

Oin round 24.50 .

$8^{\prime \prime}$ or $10^{\prime \prime} \times 6^{\prime \prime}$ ELAC HI-FI SPEAKER

Dusl cone plasticised roll surround. Large ceramic magnet. $50-16,000$ cps. Basi resonsance
55 cps.
8 ohm impedsance. 10 watts.
43.75

TEAK VENEER HI-FI SPEAKER CABINETS Fluted Wood Fronts MODEL "A". $40 \times 13 \times 9$ in
For 12 in. dia. or 9.90 Pont For 12 in. dia. or
10in speaker. $\mathbf{\$ 9 . 9 0} \begin{array}{r}\text { Poat } \\ 25 p\end{array}$ MODEL "B". $16 \times 10 \times 9$ in For $13 \times 8 \mathrm{in}$. or $\mathbf{8 6 . 6 0}{ }_{\text {Post }}^{\text {P5p }}$ MODEL "'B" 2 ditto. Triangular Corner Veraion.
$\begin{array}{ll}\text { MODEL }{ }^{\text {"C". }} & 16 \times 8 \times 8 \mathrm{in} . \\ \text { For } 8 \times 5 \mathrm{in} . & \mathbf{4} 4.95 \text { Pont } \\ \text { 2pesker }\end{array}$ LOUDSPEAKER CABINET WADDING. 18in wide, 15D it.

BARGAIN AM TUNER

 Medium Wave.Tranistor superhet $\mathbf{4 . 9 5}$
Ferrite aerial. 9 volt.
BARGAIN 4 CHANNEL
BARGAN A CHANNEL
TRANSISTOR MONO
MIXER. Add musical
highligbts sad sound effect Microphone, records, tspe and taner with separate and taner with separate 9 volt battery ≤ 4.50

STEREO VERSION OF ABOVE 55.95
BARGAIN FM TUNER 88-108 Mc/s Six Transistor. θ volt. Printed circait. Calibrated slide dial tuning. Wiannt Cabinet. ≤ 12.85 BARGAIN FM TUNER. $\mathbf{~} 8.85$
BARGAIN 3 WATT AMPLIFIER. 4 Transistor
Puah-Pull Read built with volume, tranaisto
bers controls. 18 volt bettery operated.

THE "INSTANT" BULK TAPE
ERASER \& HEAD DEMAGNETISER Suitable for cassettos, and all nizes of
Leatret B.A.E.
$£ 3.50{ }_{20 \mathrm{p}}^{\mathrm{Pon}}$

WAFER HEATING ELEMENTS

THIN $\begin{aligned} & \text { OFPERING } 1001 \text { USES for every type of heating and }\end{aligned}$ drying applications in the home, garage, freenhouse rize $10 \frac{1}{2} \times 81 \times$ in in Operating voltage 200/R50v. a.c. 250 watt appror. Printed circuit element enclosed in asbentos fitted with connecting wires. Complately flexible providing safe Black hegt. Britinh-made for use in photocopiers and print drying equipment.
Ideal lor home handymen and experimenters. Suitable for Hesting Pads, Food Warmers, Convector Heaters, etc. Muat be clamped between two sheets of metal or asbeston, etc., to mare effcient clothes dryers, towel rails-ides for airing cupboards. Ideaifor anti-irosi device lor the garage Use in groenhonae for sead raising and plant protection. Invaluable aid lor bird houses, incubators, otc. etc Can be uned in aeries for lowar hast. Or in parallel for higher hest applications.
ONLY 40 EACH (FOUR FOR $£ 1 \cdot 50$) ALL POST PAID-Discounta for quantity.

BAKER MAJOR $1 \mathbf{2}^{\prime \prime}$ £9.90

$30-14,500 \mathrm{c} / \mathrm{s}, 18 \mathrm{zin}$. double cone, wooler and tweeter cone together with a BAKER ceramic magnet assembly having a fiux density of 14,000 gavil and a total fux of 145,000 Maxwellr. Bars resonance 40 c/s Rated 20
wath. NOTE: 3 or 8 or 15 ohms muat be atated.

Module kit, 30-17,000 with tweater, crossover, baffle and instructions. $\quad \leq 12.50$ Pont Free

BAKER

"BIG SOUND"
 SPEAKERS

Robustly conakructed to atand up to long periods of electronic power. As used by leading groups. Basir Resonance 55 cpa . $3,000 \mathrm{cpr}$

GROUP "25"
12 in 25 watt
3,8 or 15 ohms.
£8.80
Poat Free
GROUP "35"
12 in 35 watt
3,8 or 16 ohms.

Post Free
GROUP " 50 "
15 in .50 watt
8 or 15 ohms
50 watt 12 in VERSION $£ 17 \cdot 60$
MAJOR IOO WATT ALL PURPOSE TRANSISTOR

AMPLIFIER

All purpone trangintorised.
 deal ior Groups, Disco and P.A. mixing. Ontput $8 / 15$ ohm a.c. Mains. geparate treble and basa controls. Guaranteed. Detaila 8.A.E.
CALLERS ONLY! DE-LUXE 100 WATT AMPLIFIER CHASSIS. 7 Valve version, 4 inputs, 10 wide range controls. For mikea, Discos, Organs, Guit.
4,8 and 15 ohm Loudapeaker matching.
Q MAX CHASSIS CUTTERS A die, punch and Allen Screw
 Key "B".... $\$ 1.70$

Key "T' for above 6p	$2^{\prime \prime} \ldots{ }^{\text {E20p }}$
	$23 / 32^{*} \ldots . . .22 .50$
H*, \%*... 98p	21 ${ }_{1}$
H", ¢".... 98p	Key "C" for above13p
Key "A" lor above 6p	2:* £4.50

 Key "E" tor sbove 1- Square, with key $\begin{array}{r}2 x \cdot 10\end{array}$

SPECIAL OFFER

20 Watt 100 ohm Rheostat 2 inin dia. Ceramic former screw terminals tin dis. spindle. 85 p . Post 25p.

SPECIAL OFFER si_{1} 75. Post 25 p.

Sin Panel Meter $50 \mu \mathrm{~A}$. Unusual acale requitea re-calibration Few only 25_{j} A same price.

WEYRAD COILS

P50/1AC	40p	RA2W	85p
P50/2CC	40p	OPR1	65 p
P50/3CC	40p	LPDT4	65 p
PCA1	60 p	Twin gang	75p

[^1]BAKER HI-FI SPEAKERS
HIGH QUALITY-BRITISH MADE REGENT
12in. 15 watts
An inexpensive unit for the beginner in high fldelity and lor general purposen, May be used to improve any Radio. Amplifer, Hi-Fi or Television receiver.
Bass Renonance $\quad 45 \mathrm{cps}$
Flux Density Flux Density 12,000 gaver Useful repponae $45-13,000 \mathrm{cp}$ 3 or 8 or 15 ohm models.

£8.80

Post
Free
DE-LUXE Mk II 12in. 15 watts

Especially designed to provide full range reproduction at an economical cost. Suitable for use with may high fidelity system. Built-in concentric tweeter cone.
Bana Resonance 30cpa Flux Density 14,000 ganas Usef ul reaponie $25-16$
8 or 15 ohma modela.

fll

Pont

SUPERB

12 in .20 watts
A high quality loudspeaker, it remarkable low cone resonance ensures - clear reprodaction of the deepest bans. Fitted with a special copper drive and concentric tweeter cone reanalting in full range reprodaction with remarkable effciency in the upper reginter. Flux Density 16,500 gauns Useful response $\quad 20-17,000 \mathrm{cpa}$ 8 or 15 ohme models.

£ $16 \cdot 50$

Post
Free

AUDITORIUM

12in. 25 watts
A full range reproducer for high power, Electric Guitars, public address, multi-speaker Ideal for Hi-Fi and Disco-

Base Resonance $\quad 35 \mathrm{cps}$ Flux Density 15,000 gans Useful reaponse $25-16,000 \mathrm{cpa}$ 8 or 15 ohm models.

£ $15 \cdot 40$

Post
Free

AUDITORIUM

I5in 35 watts
A high mattage loudapeaker al exceptional quality with ol exceptional quality with a
level reaponse to above 8,000 epa. Ideal for Public Address, Discotheques, Electronic instruments and the home.
Basi Remonance 35 cps Fluy Density $\quad 15,000$ ganas Uselul response $80-14,000 \mathrm{cps}$ 8 or 15 ohmi models.

Hi-Fi Enclosure Manual containing 80 plann, denigns crossover data and cubic tablen. 42p. Port Fres.

MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EOUIPMENT SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT
OPEN 6 DAYS A WEEK, 9.00 a.m. -6.00 p.m.

TRANSISTOR UNIVERSAL AMPLIFICATION COMPANY LTD.

DEPT. E
163 MITCHAM ROAD, LONDON SW17 9PG 01-672 3137/9080

TUAC DISCOTHEQUE MIXER WITH AUTO FADE Designed for the discerning D.J. of professional standard.
Offering a vast variety of functions.
Controls: Mic Vol, Tone. Over-ride depth. Auto
Manual Sw. Tape Vol, L \& R Deck Faders. Deck
Volume. Treb \& Bass. H. Phon Vol, Selector, Master Vol, on/off aw. Max. output IV RMS. Specification: Vol. Treb and Bass Controls, 8 mV sensitivity. Treb $+28-15 \mathrm{~dB}$ at 12 kHz , Bass $\pm 18 \mathrm{~dB}$ at 40 Hz : PANEL SIZE $18 \times 4 \frac{1}{2} \mathrm{In}$. DEPTH 3ín.

POWER SUPPLY 14.75

NEW! 3 channel Light Modulator
\star 1,000 watts per channel
\star Operates from $\frac{1}{6}$ watt to 100 watts

* Full wave control
* Fully fused and suppressed
$\star 12$ easy connections
£15. 25
Single channel version $\mathbf{£ 6} \mathbf{7 5}$

NEW! NEW! NEW!

TUAC FLASHING BEACONS AS USED BY AMBULANCE FIRE SERVICES ETC.
\star Instant stop and start motor for precise control.

* Choice of 4 models. 12V $24 \mathrm{~V}, 110 \mathrm{~V}$ and 240 V .
\star Magnetic base-may be attached to any metal surface.
* 240 V model suitable for use with light modulator:
* Available in 4 coloursred. blue, amber and clear.
* Only $£ 22$.

ALL PRICES INCLUDE Y.A.T. AND POSTAGE AND PACKING ACCESS \& BARCLAY CAROS ACCEPTEO, JUST SEND US YOUR NUMBER. H.P. ARRANGED THROUGH PAYBONDS.

OSMABET LTD. We make tranatormera ADTO TRAFEEORMERS, 110/200/220/240V. $30 \mathrm{~W}, 41 \cdot 70 ; 50 \mathrm{~W}$, $22 \cdot 40$: $75 \mathrm{~W}, 82 \cdot 85$; 100 W , 83.80 LOW VOLTAGE TRANSFORMERS
Prim. 200/240V a.c. 6.3 V 1.5A, £1-20: 3A, $£ 1.50$

㒾-45:5A, $54 \cdot 80 ; 8 \mathrm{~A}, 27.35 ; 12 \mathrm{~A}$. $210.85: 40 \mathrm{~W} 3 \mathrm{~A}$ CT, $84.50 ; 50 \mathrm{~V} 6 \mathrm{~A}$ CT. $£ 18 \cdot 50 ; 25 \mathrm{~V}^{2} 2 \mathrm{~A}+25 \mathrm{~V}^{\circ} 2 \mathrm{~A}$. 24.80:12V4A +12V'4A. £4.90.

LTTRANSEORHERS TAPPED SEC. Prim. 200/240V
 $0-12-15-20-24-30 \mathrm{~V} \quad 2 \mathrm{~A}, \quad 23.40, ~ 4 \mathrm{~A}$. 54.50 ;
 MIDGET RECTIPIER TRANSFORMRRS
For FW rect. $200 / 240$ V a.e. $9-0-9$ V $0.3 A, 12-0$-10V For FW rect. $200 / 240$ a.e $9-0-95+3 \mathrm{~V}$
$0.25 \mathrm{~A} ; 20-0-20 \mathrm{~V} 0 \cdot 15 \mathrm{~A} .6 \mathrm{~V} 0.0 \mathrm{~A}+6 \mathrm{~V}: 9 \mathrm{~V}$ $0.35 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A} ; 1250.2 .5 \mathrm{~A}+1250.25 \mathrm{~A}$ or $20 \mathrm{~V} 0.15 \mathrm{~A}+19 \cdot 0 \cdot 15 \mathrm{~A}$ at $£ 1 \cdot 65$ each: $9-10-9 \mathrm{~V}$ IA. 81.85; 12-0-125 1 A or \%0-0-20. 11.7 .5 A 51.50 each MANS TRANSFORMERS
Prim. $200 / 240 \mathrm{y}$ a.c. TX6 ser., $425-0-425$. 500 Ma , $6.3 V$ CT 6A, $63 V$ CT $6 A, 0-5-63 \mathrm{~S}$ 3A, 218.50 TX $1425-0-425 \mathrm{~V} 250 \mathrm{Ma}, 63 \mathrm{C}$ CT 4A, $6 \cdot 3 \mathrm{C}$ CT 4 A ,
 O/P TRANSEORMERS FOR POWER AMPLIFIERS P.P. sec, tapped 3-8-1 johms, A-A 5 'tiK Ω 30W,
 etc.), £15.75: tapped Multio/P 10 W £3.
G.E.C. MANUAL OR POWER AMPLIPIERS Covering valve amplifiers of 30 W to 400
LOUDSPEAKERS FOR AMPLIFIERS
BAKER $25 \mathrm{~W}, \AA 7.80 ; 35 \mathrm{~W}, £ 8.40$: HI-FI Matn Module 20 W w/tweeter Xover, $£ 11-80$: Bakpr weaker Hets; FANE 50W. E10.50: H0W, E13.50: H1-FI

81.75 each.
1

LOUDSPEAXERS

 $5 \times \sin 3$ or $\mathrm{H} \Omega$, El .05 : 7×4 in 3 or $1 . i \Omega$, fi in 3Ω 21. $25: 10 \times 6 \mathrm{in} 3 \Omega$. 11.50 .

SPEAKER MATCHING TRANSPORMERS 12W 3 to 8 or 15 n up ur down £1.80.
"IMgTANT"' BULX TAPE/CASSETTE ERASER Instant erasure, any dianleter tajpe «puilw, causet . demagnetises tape heads. 200/241) : i.e. E3-25 CONDEASERS
Paper block inft 800s. 75p; Electrulytue 9mbraid $350 \mathrm{~V}, 50 \mathrm{p} ; 200+100+100 \mathrm{mfl}: 3.50 \mathrm{~V}: 50 \mathrm{p}$.
carriage and VAT in all urilers
S.A.E. EROUIRIES-LISTS, MAIL ORDER ONLY 46 Kenilworth Road, Edgware, Middx. HA8 8YG Tel. 01-9:8 0; 14

4STAATION INTERCOM

4-8tation Transiator Intercom tion problems with this 8 Sabs), in robust plastic cabineta for deas or wall mounting. Call/talk/listen from Mater to subs and Subs to Master. Ideally suitable for Buainess, Burgery, Bchools, Hoppital, Office and Home, Operatea on one 9 V battery. On/otf switch. Volume control. Complete with 3 connecting wires each 66it and
other accessories. P. \& P. 47p.
MAINS INTERCOM (now model) No batterias-no wirts. Just plug in the mains for
inatant two-way, loud and clear communicatlon. inatant two way, loud and clear commuatication, On/oft awitch and volume control with lock byatem.
Price 820.95 per pair. P, \&P. 60 p extra. Price es8e-95 per pair. P, \& P. 60p extra.

£6.50
Same as 4-Station Intercom for two was instant communication. Ideal as Baby Alarm and Door Phone. Complete with 66it connecting wire. Complete with battery. P. \& P. 35p.

credible Tolaphona Amplifiar. Take down long telephone messages or converse without holding the handeet. A useful office aid. On/ off switch. Volume control. Complete with batters, P. \& P, 27p. Full price refunded if not satisated in 7 daya.
168 WEST LONDON DIRECT 8UPPLIES (PE/5)
168 KEASDIGTON HIGH STREET, LODDON, W. 8
semiconductors

	 \%

Semiconductor QUANTITY DISCOUNTS- $12+10 \%, 25+15 \%, 100+20 \%$ mixed types, transistors and IC . Lerger quantity discounts. Phon for detalis.

	74 SERIES I.C. 3 (TTL)					SN7454 SN7460	$\begin{aligned} & 20 p \\ & 20 p \end{aligned}$	$\begin{aligned} & \text { SN7491AN } \\ & \text { SN7492 } \end{aligned}$	51.10 $75 p$
SN7400	20p	SN7411	220	SN7430	20p	SN7470 SN7472	33 p	SN7493 SN7494	75p
SN7401	$20 p$	SN7412	210	SN7432	370	SN7473	44 p	SN7495	esp
SN7402	$20 p$	SN7413	$30 p$	SN7433	43 p	SN7474	4 tap	SN7496	¢1.00
SN7403	20p	SN7416	$30 p$	SN7437	45 p	SN7475	$50 p$	SN7497	[4.32
SN7404	$20 p$	SN7417	30 p	SN7438	43p	SN7476	45p	SN74100	c2. 16
SN7405	$20 p$	SN7420	20 p	SN7440	20p	SN7480	top	SN74107	51p
SN7406	$40 p$	SN7422	23	SN7441AN	A5p	SN7482	87	SN7410	$57 p$
SN7407	$40 p$	SN7423	40 p	SN7442	${ }^{45 p}$	SN7483	\$1. 20	SN74111	88 p
SN7408	$24 p$	SN7425	37p	SN7450	$20 p$	SN7484	\$1.00	SN74118	\$1.00
SN7409	33 p	SN7427	37p	SN7451	20 p	SN7486	\$1.50	SN74119	£1.92
SN7410	20p	SN7428	43p	SN7453	20 p	SN7 490	$75 p$	SN74121	57 P

REXINE COVERED SPEAKER CABINETS

SPEAKER CLOTH

HEADPHONES
Type H-202 Features Monosstereo switch Volume controls on each

Solldey 15w
Clase 8 Audio
Amp, Thiek FIIm
Clicult,
E3. 35 ;
Handbook. 15p.

TBAB00 5W Audio
1 C.. \&1-50; Data.
10p.
fier Module. E3.75

SPECIAL OFFERS

MINIATURE MAINS TRANSFORMER: Pri. 240 V Sec. 12V, at 100 mA . Manuf. . Hinchley. Size: $36 \mathrm{~mm} \times$ $45 \mathrm{~mm} \times 40 \mathrm{~mm}$, F.C. 53 mm . Price: $165 \mathrm{p} ; 10060 \mathrm{p}$ ea. 1,000 50p ea.; 10,000 40p ea.

CORE PVC INSULATED MAINS CABLE. Gre ML6650. $3 \mathrm{~mm} \times 7 / 0 \cdot 2 \mathrm{~mm}$. Price: 100 m £4.50; 1,000m £35 .000m 2330 .
$0.55 \mathrm{in} \times 0.65 \mathrm{in}$ P.C. Mount. Price: 1006.8 p ea. 1,000 5p ea.; $10,0004 \cdot 3 p$ ea

240V a.c. SOLENOID. Reversible operation: twin coil
Size: approx. $2 \frac{3}{4}$ in $\times 1 \frac{1}{2}$ in $\times 1 \frac{3}{4}$ in $90 p$ ea.
no previous knowledge no unnecessary theory no "maths"

RAPY

3/ CARRY OUT OVER
 40 EXPERIMENTS
 ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :

BUILD, SEE AND LEARN
step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.
valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments, d.c. experiments, simple counter, time delay circuit. servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc.

SOUND POWER

AUDIo power amplifiers find their way into a very extensive and diverse range of equipments and systems, quite apart from the domestic entertainment area. The exuberant folk music of today, whether originated "live" or recreated from discs, is borne along on hundreds of watts. Public Address systems reach out as never before to cajole or inform captive audiences or, just as probably, innocent passers by. Just two of the more blatant uses of sound power.

No one can avoid the fact that amplified sound is very much part of the contemporary scene. The propriety of its widespread use can be argued about but its presence is real and, presumably, permanent.

Those concerned with technical matters can, at any rate, do their best to ensure that the amplifying medium, for its part, is beyond reproach and does not introduce gratuitously any (further) distortion. In fact, it is generally agreed that this branch of the technology has made impressive progress and audio engineering has reached almost the ultimate in the quest for faultless performance. The evidence lies among the huge variety of amplifier designs which have been developed.

Yet the question could well be posed: are there not too many designs?

The need for off-the-shelf designs to meet the constantly occurring demands for certain basic units (such as audio power amplifiers and power supply units) which form indispensable sections of many electronic systems, has been a theme of discussion among electronics people over the years. The logic behind this thought is undeniable, but the ideal general purpose design has never materialised, save in certain rather limited areas. So designs for standard routine functions still proliferate.

The continual up-dating of the technology through the introduction of new components is the stumbling block. Electronics is synonymous with change. A well proven standard device, equipment, or system is likely to have a limited life before the inevitable innovation or improvement happens.

Yet even within this volatile field there has perhaps been a rather excessive outpouring of amplifier designs than is altogether warranted.

There is still a reasonable life expectancy for many designs; and when considering a widely used item such as an a.f. amplifier there is good sense in stabilising the position as long as possible by fully exploiting one single design. If the design is capable of being produced in a number of different "sizes" so catering for the majority of power-requirements commonly called for through the simple expedient of changing component values, the attractiveness of this policy is unquestionable.
This idea materialises in our pages with the introduction of a family of audio power amplifiers. The P.E. Power Slaves comprise a family of four amplifiers having outputs of 20, 40, 65 and 100 watts respectively, suitable for use with hi fi pre-amplifiers. Furthermore any unit can easily be built in a two-channel form with a doubling of output power. Good performance, with low harmonic distortion and good signal to noise ratio, justify the claim that the P.E. Power Slaves are a step towards that goal of a universal power amplification block for embodiment in all kinds of sound reinforcement systems.
F.E.B.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor
D. BARRING TON Production Editor
G. GODBOLD Technical Editor
S. R. LEWIS B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices: Fleetway House, Farringdon St., London EC4A 4AD
Phone: Editorial 01-634 4452 Advertisements 01-634 4202

THE purpose of any audio chain is the accurate reproduction of live or recorded information, be it speech, music or just plain "sound".

Due to the low efficiency of transducers generally, with the possible exception of horn loaded systems, considerable power must be expended in order to produce sounds at an acceptable level; this level will obviously be different for different transducers in different applications. As the basic function is the same, it was felt that, rather than produce a flood of designs for specific purposes, a better approach was to produce a single basic design to fulfil all requirements.

From this article four amplifiers can be built all of them being based on a single circuit configuration. To realise the range of outputs of $20 \mathrm{~W}, 40 \mathrm{~W}$, 65 W and 100 W component changes should be made according to the relevant parts lists.

Although a single amplifier is described the prototype units were designed as double channel, that is, where two amplifiers are contained on a single chassis. This, of course, means a doubling of output capability to $20+20 \mathrm{~W}, 40+40 \mathrm{~W}, 65+65 \mathrm{~W}$ and $100+100 \mathrm{~W}$ in each case.

DESIGN CRITERIA

Where a low power system is required, there is little to be gained, and much to be lost in producing a power amplifier with an output capability of less than twenty watts into eight ohms, as cost and
physical size will not be significantly affected, and performance criteria such as transient handling capability, signal to noise ratio and distortion are not likely to improve.

Turning to the upper end of the power scale, choice of maximum power can be arrived at by examination of the transducers to be driven. Modern composite high power speakers, and individual drive units, will accept continuous sine wave outputs of between 10 and 50 watts r.m.s. Unfortunately audio signals are rarely as predictable as sine waves, but it can be assumed that twice the continuous power can be handled on transients of short duration, thus a power capability of 80 to 100 watts will be required.

When two or more speakers are connected in series, or series-parallel to maintain impedance, then the power requirement can be greatly increased. No allowance has been made for this method of use, as the damping effect of the amplifier is lost, except when units are connected by separate leads to the amplifier terminals, and thus it is felt to be a bad policy.

A further problem arises when two speakers in parallel are driven to a peak level of 100 watts each, that is, a current handling capability of at least 10 amps is required, both in the amplifier and power supply unit, and this is dangerously close to the maximum current of a TO3 transistor (generally 15 amps).

Thus a high quality amplifier should be capable of driving up to 100 watts into a single 8 ohm load, and, to satisfy the requirements of all applications, must have very low harmonic and intermodulation distortion figures, be overload protected, have a high damping factor, and a very high signal to noise ratio.

This final parameter is often neglected, and in most designs a figure of 80 dB is considered good. However, a better figure to aim for is 100 dB .

Power amplifiers can be functionally split into two sections, namely a voltage amplifier with low current gain, followed by a current amplifier with unity voltage gain, and at this stage the two sections will be considered separately.

Specification

Power bandwidth
Total harmonic distortion
Intermodulation distortion
Signal/Noise ratio
Input sensitivity into 200k Ω
Input matched to 600Ω line
Overload protected
May be d.c. coupled throughout for use as a servo amplifier
Full bridge output to eliminate "turn-on plop"
-6dB from 8 Hz to 45 kHz
0.02\%
0.04%
100dB
1V r.m.s.

PROVIDING OUTPUTS OF 20,40, 85,5100 WATTS FROM OHE COMMON CIRCUIT CONFIEURATION

VOLTAGE AMPLIFIER

The basic voltage amplifier configuration used for the power amplifiers is shown in Fig. 1. It has the advantage of providing adequate performance without undue complexity and requires no setting up.

The input resistor R1 provides bias current for TR1 and defines the slave amplifier input impedance.

R12, R2 and C2 form an attenuator which determines the proportion of the output fed back to TR2 and hence defines the gain of the amplifier. C2 allows full d.c. feedback to stabilise the output at, or close to 0 volts. Transistors TR1 and TR2 form a differential amplifier, as do TR3 and TR4, the output of this second stage being fed to a common emitter amplifier TR5.

The overall combination will have a very high open loop gain, and will be non-inverting, as a positive going input tends to increase current in TR1 at the expense of TR2, so that TR4 turns on and

TR3 off. This reduces the current drawn by TR 5 base and gives a positive going output at TR5 collector. Resistors R4, R5, R7, R8 and R9 enable a sensible standing current to be established in each stage, and eliminate any chance of leakage currents unbalancing the amplifier.
The problem of non-linearity in TR5 is overcome by operating this transistor at a constant collector current by bootstrapping the junction of R10 and R11 to the output by means of C3, providing an almost constant current in R11.

COMPOUND TRANSISTORS

The output stage is basically a Class AB compound amplifier using quasi-complementary transistors being made up of groups of three as seen in Fig. 3.

These triplet configurations have a number of advantages chief of which are (a) high current gain, (b) the inputs are presented through a single base

Fig. 2. Showing how current
Fig. 1. Basic circuit arrangement for voltage amplifier limiting is achieved

Fig. 3. Compound triplet arrangement for current amplifier
emitter junction which means that the output transistor junction temperature will not affect stability and (c) mpn output transistors are relatively cheap and readily available.

In the quiescent condition the driver transistor TRI is biased to provide a mid-rail voltage at the
output. With a signal applied the collector applies alternate drive conditions to the compound triplets so that first one group is conducting and then the other.

A "two stage" resistor is used to link the triplets to the output terminal, consisting of a fairly high value resistor shunted by a power diode and resistor.

The high value of resistance gives good quiescent stability, and the diodes limit the voltage drop under full drive conditions. To ensure reliable operation of the overload protection, a low value resistor is connected in series with each diode, and maximum current can be adjusted by means of this resistor.

OVERLOAD PROTECTION

Overload protection is provided by limiting the output current supplied by either compound triplet. The circuitry that achieves this is shown in Fig. 2 for one triplet only, a complementary circuit being used on the other.

The current supplied to the output terminal generates a voltage across the combination of R3, R 2 and D2 which is related to the current flowing. When the current rises to a level sufficient to provide approximately .1 .5 V , base current is directed through TRI and D1. Conduction of this transistor means that bias is removed from the triplet so that the output current is limited.

The peak current available before limiting must be higher than the peak current to be supplied to the load, and as this may be 5A, a dissipation of 225 W can occur with a short circuit at the output. Because of this, a fuse circuit must be inserted (FS 1) to give protection.

The complete circuit configuration for the basic amplifiers is given in Fig. 4.

Fig. 4. Basic single channel (right) configuration common to all slave amplifiers. For component value variations, see components lists. The inset shows wiring for a 180 degree, 5 pin socket for two channel. When connecting a remote preamplifier the screen is connected to earth (0 V) only at the slave to obviate hum loops

POWER SUPPLIES

Power supplies in a design such as this must provide a fairly steady supply voltage, with a high current capacity when required. As an example, 100 watts into 8 ohms will require a peak current of 5 amps per channel. This implies that for a stereo amplifier with a common power supply a peak requirement of 10 amps is necessary. The mean current drain will be $1 / 2.8$ of this value, or 3.5 amps , and so a transformer rated at 4 amps continuous current would be suitable.

Decoupling should maintain the supply within about two volts of nominal, at full power, for one half cycle of mains current so that

$$
C=\frac{I T}{V} \text { at peak output }
$$

where I is in amps, T in seconds and V volts. The equation then is:

$$
C=\frac{10 \times 0.01}{2} \text { Farads }=50,000 \mu \mathrm{~F}
$$

A composite musical signal can be shown to have a short term mean level at least 12 dB below maximum output. Occasional transients will reach maximum output, but these will generally be of short duration, two milliseconds or less being typical

From similar calculations as above the decoupling requirement for music at -12 dB is $5,000 \mu \mathrm{~F}$ and for a 2 mS transient, $6,000 \mu \mathrm{~F}$.

DESIGN CHOICE

If the amplifier is intended for home entertainment (domestic) reservoir capacitors of $6,000 \mu \mathrm{~F}$ are

COMPONENTS . . .

Fig. 5. Circuit for p.s.u. For the domestic version of amplifier the power rails are pins 1,2 and 3 . The monitoring version takes its supply from pins 4,5 and 6 . The current sensor R7 is made up from 26 s.w.g. Constantan resistance wire ($0.03 \mathrm{ohm} / \mathrm{cm}$). The tapping resistances are as follows: A to $\mathbf{B} \boldsymbol{\beta} 0.02$ ohms; \mathbf{B} to $C=0.07$ ohms ; C to $D<0.02$ ohms. Supply voltages for the 20, 40, 65 and 100 W versions are approximately $\pm 25 \mathrm{~V}, \pm 32 \mathrm{~V}, \pm 36 \mathrm{~V}$ and $\pm 46 \mathrm{~V}$ respectively
adequate assuming that neither transients nor very loud passages coincide exactly in time if two channels are being used.
For "monitoring" quality, a higher value capacity, possibly 10 or $15,000 \mu \mathrm{~F}$ should be used, or alternatively a stabilised supply particularly when used for stereo to reduce cross talk.

A composite circuit diagram for the domestic and monitoring versions of the p.s.u. is shown in Fig. 5.

Fig. 6. Showing how speaker impedance changes with frequency

For the former points 1,2 and 3 are connected to the amplifier. For the latter points 1 and 2 connect to the stabiliser circuit; no connection is made to 2.

The output mid-point in this case is derived using resistor and capacitors.

OPTIMUM LOAD

Optimum load impedance for all versions is 8 ohms but any load can be accommodated at reduced power, bearing in mind the peak voltage and current limitations.
Fig. 6 shows typical impedance curves for high quality domestic speakers demonstrating that the impedance is anything but constant. Indeed, it is not unusual to find dips of impedance as low as 1.5 or 2 ohms, causing severe current overload at critical frequencies.

IMPORTANT

Two BA148 diode suppressors MUST be added to Fig. 4 as follows-Cathode and anode to $\div \mathrm{V}$ and SK2 and SK2 and - V respectively. In Components List for all versions TR 7 and TR 10 should be MPSU57 and MPS-U07; for the p.s.u. TR2, TR3 should be MPS-U07 and TR4, MPS-U57. (See next month.)

Next month constructional details for the amplifiers will be given

THE SUN, BY SKYLAB

From the last of the experiments aboard Skylab has come new knowledge and exciting data. There is no doubt that a new era has opened for astronomers and as a result of what has been noted many programmes will be instituted in solar physics.
Much of the success is due to the (ATM) Apollo Telescope Mounting. It enabled a new view of the solar system, the galaxy and, most important, the Sun itself

Free of the atmospheric absorp tion the telescope showed that the Sun. far from being "quiet" at the near sunspot minimum was extremely active. This alone has justified the mission and also confirmed the need for man in space.

Practical Electronics received an invitation from the Institution of Radio and Electronic Engineers to attend the Clerk-Maxwell Lecture, "Man in Space" by Werhner von Braun. More than twice the number of persons attended than the seats available. Before the lecture began the writer had a conversation with Werhner vorr Braun and certain definite conclusions regarding the progress of physics emerged. In his words \qquad the time has come for another Maxwell to reorder our thoughts and set in their proper place the ever increasing number of particles, the black holes and the quasars." He also gave some information based on the early examination of some of the data.

The medical evidence is now clear and it is accepted that man could live in space indefinitely. The adaptability is not confined to man for the spider which was taken aboard Skylab was able to spin a perfect web. The pictures of the first attempts were not only comic but extremely interesting. It needed only a short while of accommodation before things were under control. The peculiar zigzag of the circles and the cross ties soon assumed the familiar shape and life went on.

The astronauts also attempted to move round the walls at a high rate to set up artificial gravity. In this they were not successful.

GREAT BALLS OF FIRE

One of the most spectacular events was a pulsing stream of plasma from the Sun which had a regular rhythm. More than forty of such events were recorded. An unexpected bonus was the ability to observe with the coronagraph these great blobs, as large as the

BY FRANK W. HYDE

Sun itself, as they moved up through the corona at a speed of 400 km per second.

The variation of the intensity of the corona over the two hemispheres of the Sun were not anticipated. One section of the Sun seemed to be in the nature of a hole at a lower temperature than the rest of the surface. This was borne out by the X-ray pictures. It also appears that the corona is composed of closed loops which fit the magnetic line structure. In both the X-ray measurements and the white light coronagraph pictures this appears.

There were a number of instances, where the conditions for sunspot appearance appeared outside the normally observed belts. Some of the "holes" indicate the source of disturbances of the solar wind which effect terrestrial conditions.

There have been tens of thousands of frames taken of the coronal conditions, more than has been observed in a thousand years of eclipses. Continuous observations with the facility to select and also combine different types of telescope, made the Skylab control console a sort of astronomical organ on which the melody of the heavens could be produced. Nothing like this success was expected and now the knowledge of what can be done in this field must ensure that the next decade will add an unprecedented amount of data for study.

More than 600 pictures a day were recorded and the number of bits in each picture amounted to 108. Among the many and continuous hours of study covering everything in the vicinity of the Sun there were two solar eclipses,
many eruptions and flares on the Sun itself, the perihelion of Kohoutek and a transit of Mercury.

The combination of control from the Johnson Spaceflight Centre and the astronauts aboard Skylab resulted in a magnificent scientific achievement. It is worth noting that the planned tasks for the crew were restricted to the pointing of the telescopes, target control and to collect and replace cameras and film. But, in fact, the crew did much more than that and it was their resource that made possible the full speed running of the observations. Despite some early difficulties. which were overcome, the crew settled down to do a job for which posterity must ever be grateful.

The cost of this mission was high and many thought wasteful. None would say this now and indeed, there is in this very extensive period of man in space, the certainty that money for the future missions will be forthcoming.

MORE OF VENUS

The Venus fly-by of Mariner 10 has been a successful mission. But some of the data obtained will need months to extract the information sought

The spacecraft approached Venus from the dark side and the first pictures showed the cusps which appear extended far beyond the normal. This is thought to be due to the atmospheric refraction. The scattering of light beyond the terminator will help to an understanding of the upper atmosphere. Haze shells were observed and these will reveal more data after computer processing.

One important aspect is the layering observed in the atmosphere. This is not yet understood nor is the material of the cloud strata.

There was great penetration of the atmosphere by the two radio probe signals. Though physical occultation began at about $10.17 \mathrm{a} . \mathrm{m}$. radio signals were still being received up to 17 minutes later. The aerial on Mariner 10 was designed to change its pointing direction in order to compensate for the bending of the radio waves which takes place when travelling through the Venus atmosphere.
Much is expected of this technique in the observation of the density of the atmosphere and it is hoped also to resolve the differences of temperature given by earlier Mariner missions and by the USSR spacecraft Venera. Helium is known to be a constituent but it would have to be at least 3 per cent to account for the differences of temperature found.

This series, specially written for the beginnet, tahes ycu step-by step through transistor circuit design in a simple, nonmathematical way.

Design of a small signal amplifier will be followed by a Class B amplifier and the series will conclude whth constructional project so that jour theoretical knowledge san be put into practice.

So FAR we have only looked at the voltage divider method of biasing a transistor stage. This month we will look at another method waich is simple and economical. These advantages are, however, at the expense of oiner parameters.

Once we are satisfied with a single stage amplifier, the
problem then arises of how to connect this into the system so that it does not disturb the driving or driven circuits. Sometimes direct coupling is possible but often we must make use of a d.c. blocking capacitor. The value of this component must be such as to maintain the required bandwidth of the system.

4.1. ALTERNATIVEBIASING ARRANGEMENT

There is an alfernative to the $\mathrm{R} 1, \mathrm{R} 2$ divider (Part 3) known as "collector to base feedback bias". Only one resistor is needed instead of two and some bias stability is possible even without the inclusion of R_{E} (see Fig. 4.1).

The resistor R_{B} provides bias and also some negative feedback which tends 10 stabilise the collector current against changes in $h_{\text {FE }}$.

Suppose that $h_{\text {FE }}$ is higher than predicted: this would tend to increase $I \mathrm{c}$ which in turn would cause the output voltage to fall. This fall would be passed via \mathcal{R}_{E} to the base causing a decrease in $/ \mathrm{c}$. The base bias conditions are therefore stabilised.

HIDDEN FEATURES

Although the method appears delightfully simple and economic, there are certain hidden features which the designer must understand.

Fig. 4.1 Simple circuit illustrating collector to base feedback (left)

Fig. 4.2 The source resistance can be seen to be an important parameter in the calculation of the circuit gain (right)
(a) The feedback is in parallel with the input signal and therefore requires extra current drive from the signal input to the stage. In other words, the stage input resistance $R_{\text {IN }}$ is lowered. In fact, the input resistance consists of two resistors in parallel, one of them being the normal $r_{\text {IN }}=h_{\mathrm{fe}} \times r_{\mathrm{e}}$ and the other equal to R_{B} divided by the gain A. This is easily understood when it is realised that the signal voltage is at one end of the R_{B} and the output voltage (A times the input signal) is at the other.
Thus A times as much current must be provided by the signal, which is equivalent to saying that R_{B} behaves as if it were $\boldsymbol{A}+1$ times smaller and across the signal input.
(b) There is no actual reduction in voltage gain, as far as the gain from base-in to collector-out is concerned. The voltage gain is still

$$
A=R_{\mathrm{C}} / r_{\mathrm{e}} \quad \text { or } \quad R_{\mathrm{C}} /\left(r_{\mathrm{e}}+R_{\mathrm{E}}\right)
$$

(If R_{E} is present).

However the lower input resistance has the effect of lowering the gain measured from signal e.m.f. to collector output. The source resistance of the signal (R_{S}) in conjunction with R_{E} forms a kind of operational amplifier configuration (see Fig. 4.2).
If A was very high, the total gain from V_{s} to $V_{\text {out }}$ wiculd be approximately

$$
A^{\prime}=R_{\mathrm{B}} / R_{\mathrm{s}}
$$

where A^{\prime} is defined as the gain with feedback. Thus the gan is independent of the transistor.
This, however, is a gross oversimplification of the situation because the transistor gain A in such a simple single stage amplifier would not be "very high" and $A^{*}=R_{\mathrm{B}} / R_{\mathrm{S}}$ would be greatly incorrect.

This analogy with the operaticnal amplifier was only given as an aid to comprehension. It is always good practice to view circuit ideas from widely differing angles.

4.2. AN ALTERNATIVE EQUATION FOR GANN

The previous circuit had no emitter resistor R_{E} which was the reason why the gain A was so high. Although a high gain may often be a desirable feature, there are two main reasons against achieving it by the omission of R_{E}.
(a) The gain is not too predictable because of its absolute dependency on r_{e}. The equation $r_{e}=$ $25 / I_{\mathrm{c}}(\mathrm{mA})$ is very useful as a rough guide but it is well to remember that the equation is only approximate. The incliusion of R_{E} in the gain formula, although lowering the gain increases the accuracy of the equation (particularly if $R_{\mathrm{E}} \gg r_{\mathrm{e}}$).
(b) A more important reason is the rather remarkable twist of the gain equation when the bias is set to allow the collector to rest at half the supply voltage.

If $V_{\text {out }}=\frac{1}{2} V_{\text {ce }}$ then $R_{\mathrm{C}}=\frac{1}{2} V_{\mathrm{cc}} / \mathrm{IC}$. Now $A=R_{\mathrm{c}} / r_{\mathrm{e}}=\frac{\frac{1}{2} V_{\mathrm{cc}}}{I_{\mathrm{C}}} \div \frac{25}{I_{\mathrm{C}}}=V_{\mathrm{cc}} / 50$.

But remembering that the figure " 25 " is millivolts, we must multiply by 1,000 , giving

$$
A=\frac{V_{\mathrm{cc}} \times 1,000}{50} \text { thus } A=20 V_{\mathrm{vc}}
$$

This means that the gain of any grounded emitter stage operating without an emitter resistor is simply 20 times the supply voltage (assuming the collector is at half the supply voltage).

This applies whatever collector current we use, so it is impossible to set the gain at any other value than 20 Vee (unless of course we use negative feedback).
It is easy to see why R_{E} is almost always present in grounded emitter amplifiers.

4.3. GOUPLING CAPACITORS

It is often required to connect two stages together by allowing the output signal of one stage to become the input signal of the next.
Sometimes the coupling can be achieved without disturbing the d.c. bias conditions, but this is sometimes unavoidable.
This problem can be overcome with the use of a "coupling capacito:" which enables the signal to pass relatively easily but blocks any d.c. from affecting the next stage.

CAPACITOR VALUE

The question is how big must the capacitor be. The answer depends on two pieces of informationthe lowest frequency that the signal is likely to be, and the input resistance of the stage which the capacitor is to feed.
The skeletal circnit is shown in Fig. 4.3.
The capacitive reactance (X_{C}) and R_{IV} form a voltage divider, so it is clear that X_{C} should be considerably less than $R_{\text {IN }}$ at the lowest frequency which it is desired to pass.

Fig. 4.3 The calculation of the coupling capacitor value is determined by the input resistance Rin of the following stage

The simplest way is to find the value of C which makes $X_{\mathrm{C}}=R_{\text {IN }}$ and then use the next highest preferred value.
Suppose the lowest frequency to be passed is 100 Hz and $R_{\text {IN }}=1 \mathrm{k} \Omega$.
Then if $X_{\mathrm{C}}=R_{\mathrm{IN}}$, then $1 / 2 \pi f C=R_{\mathrm{IN}}$ which gives $C=1 / 2 \pi f R_{\text {IN }}$.
Inserting values gives $C=1.59 \mu \mathrm{~F}$ so the next highest preferred value, $2 \mu \mathrm{~F}$ would be used.

RULE OF THUMB

A neat little rule of thumb to save a lot of fiddling with powers of ten is

$$
C=0.2 / j \times R_{\mathrm{IN}}
$$

where f is in $\mathrm{kHz}, R_{\text {IN }}$ in kilohms and C in $\mu \mathrm{F}$.
The value for C is in no way critical, providing it is at least the value calculated by the method above. Twice or even ten times larger will not matter apart from the cost.

4.4. USE OF THE EMITTER FOLLOWER STAGE

An emiter follower stage provides an easy solution to the problem of matching from a high resistance signal source to a low resistance load.

Unlike the normal grounded emitter stage, the emitter follower has no voltage gain, in fact, there is a slight voltage loss. There is, however, a substantial current gain as a signal is passed through, because of the apparent change in source resistance.
Treating the emitter follower as a black box, the effect on the input signal is as shown in Fig. 4.4.
The figures showr in the figure are purely arbitrary and are chosen crily to illustrate how the source

Fig. 4.4 An emitter follower transforms a high input impedance into a low output impedance
resistance can be substantially lowered by passing through the stage.

CURRENT GAIN

The concept of current gain can be appreciated by calculating the two short circuit currents.

If the original circuit was shorted out the current would be

$$
i=1 \mathrm{~V} / 100 \mathrm{k} \Omega=0.01 \mathrm{~mA}
$$

If the output was shorted, the current would be

$$
i=1 \mathrm{~V} / \mathrm{Ik} \Omega=1 \mathrm{~mA}
$$

This shows that a theoretical current gain of $100: 1$ has been achieved. (The short circuit current dodge is used on paper only-don't take it literally and start sticking screwdrivers across the terminals.)

It must not be supposed that an actual emitter follower would provide a magical solution. The successful design of such a stage requires quite a bit of fiddling with values to get the input resistance as high as possible.

For example, Fig. 4.4 presupposes that the input resistance of the emitter follower stage is much higher than the $100 \mathrm{k} \Omega$ signal resistance. Unless this is 30 , it is clear that the signal would be attenuated by voltage divider action between the $100 \mathrm{k} \Omega$ and $R_{\text {IN }}$ of the emitter follower.

4.5. TYPICAL CIRCUIT AND EQUATIONS OF THE EMITTER FOLLOWER

An emitter follower circuit using voltage divider feed for base bias is shown in Fig. 4.5.

We are not concerned with the design factors for setting up the correct d.c. conditions, this problem is dealt with elsewhere. Instead, we state some important equations which decide the voltage gain, input resistance and output resistance.

1. VOLTAGE GAIN

For most practical purposes, the voltage gain is nearly unity, though it is as well to know the following formula in case some badly chosen values for R_{E} lower the gain to a small fraction.
Voltage gain from $V_{\text {in }}$ to $V_{\text {out }}=R_{\mathrm{E}} /\left(r_{\mathrm{e}}+R_{\mathrm{E}}\right)$.
Since r_{e} is the internal emitter resistance and will seldom be in excess of 100Ω or sa, it it easily seen that the gain will be about 1 , providing R_{E} is in excess of $1 \mathrm{k} \Omega$.

2. INPUT RESISTANCE (RIW)

This is the same basic formula which has already appeared in connection with the grounded emitter stage
$R_{1 \mathrm{~N}}=\mathrm{R} 1, \mathrm{R} 2$ and $r_{\text {in }}$ in parallel
(remember that $r_{\mathrm{in}}=h_{\mathrm{ite}}\left(r_{\mathrm{c}}+R_{\mathrm{E}}\right)$).

3. OUTPUT RESISTANCE (R ${ }_{\text {cut }}$)

This is a bit complicated unless dealt with in two parts.

$$
R_{\mathrm{OUT}}=R_{\mathrm{s}} / h_{\mathrm{fe}} \text { in parallel with } R_{\mathrm{E}}
$$ where $R_{\mathbf{s}}=$ R1, R2 and r_{s} in paralle.

If this is too wearisome to calculate and a very rough equation is all that is needed, then use
$R_{\text {OUT }}=r_{\mathrm{s}} / h_{\mathrm{te}}$.

Fig. 4.5 Typical emitter follower with voltage divider for base bias

4.6. D.C. COUPLING

Two stages may be coupled iogether directly only if the d.c. voltage output of the first stage is compatible with the d.c. bias requirements of the secard stage.

A typical example which serves :0 llustrate the system is the circuit of Fig. 4.6 which shows a normal grounded emitter amplifier feeding an emitter follower stage.

Transistor TR provides the voltage gain and TR2 provides a low resistance (high current) output

The gain of the first stage $=\boldsymbol{F}_{\mathrm{c}}{ }^{\prime} \boldsymbol{r}_{\mathrm{e}}+\mathcal{F}_{\mathrm{E}}=(84 \mathrm{k} \Omega /$ $1 \mathrm{k} \Omega+250 \Omega)=67$.
The second stage contributes no further voltage gain.

STAGE INPUT RESISTANCE

The stage input resistance is $r_{i n}, R 1$ and $R 2$ in parallel, although it is reasonable to ignore R1

Now, $\quad r_{\text {in }}=h_{\text {te }}\left(r_{\mathrm{e}}+R_{\mathrm{E}}\right)=1 \mathrm{CO}(250 \Omega+1 \mathrm{k} \Omega)=$ $125 \mathrm{k} \Omega$, which, in parallel with $\mathbb{R} 1$ gives a value for $R_{\text {IN }}$ of about $45 \mathrm{k} \Omega$.

Currents through TR2 would be determined first. 1 mA is chosea for collector current, so assuming a pessimistic $h_{\text {FE }}$ of 100 , the base curcent of TR2 would be $10 \mu \mathrm{~A}$.

The divider eed for the bias of TR2 is the chain R_{C}, TR1 and R_{E} of the first stage which is passing 0.1 mA (which is ten times the base curreat of TR2).

Again taking an hre of 100 for TR1, the base current would be $1 \mu \mathrm{~A}$. which is fed by a divider chain taking $10 \mu \mathrm{~A}$.

The "rule of ten" has thus been used ihroughout.

OUTPUT RESISTANCE

The outfut resistance of the emitter follower is a bit tricky. The equation, as stated previously, is $\boldsymbol{K}_{\mathrm{Cu}}=$ $R_{\mathrm{s}} / h_{1 \mathrm{e}}$ in parallel with Re. The term F s is the source resistance of the signal feeding the base. which, in this case, is the output resistance of the first stage.

Tc a rough approximation this may be taken as the collector resistance, $R \mathrm{c}$, which is $84 \mathrm{k} \Omega$. Thus Rout $=$ $84 \mathrm{k} \Omega / 100=840 \Omega$. (The $9 \mathrm{k} \Omega R_{\mathrm{E}}$ which strictly is in parallel may be disregarded.)

Fig. 4.6 A twe stage d.c. coupled amplifier showing typica component values

4.7. D.C. FEEDBACK LOOPS

Leaving the emitter resistor uncypassed has so far bsen the only example of negative feedback. A more obvious example is frequently used in direct-coupled stages and, to illustrate such a system, the circuit previously discussed will be mocified to include a d.c. feedback loop (see Fig. 4.7).

The circuit, inoluding the voltages and currents are exactly the same, apart from the enethod of biasing the first stage.

Instead of the customary divider across the supply rail, the bias feed is taken from across the output resistor.

Fig. 4.7 Negat ve feedback stabilises the output voltage bui reduces gain

This is not such a violent change as appears at first sight. After ail, there are nine volis availatle so why not use them and obtain the added advantage of a d.c. feedback loop?

In choosing the values for R1 and R2 we must be careful not to disturb the output circuit too much. It is drawing 1 mA so it will hardly be aware of the theft if we diver: say $10 \mu A$ from R_{E} to feed a divider.

Since R2 must drep 0.7 V , R1 must drop the remaining 8.3 V which mears that if $10 \mu \mathrm{~A}$ is flowing the values of R1 and R2 are calculated as follows:

$$
\begin{aligned}
& \mathrm{F} 1=8.3 \mathrm{~V} / 10 \mu \mathrm{~A}=830 \mathrm{k} \Omega \\
& \mathrm{R} 2=0.7 \mathrm{~V} / 10 \mu \mathrm{~A}=70 \mathrm{k} \Omega
\end{aligned}
$$

STABILITY

Such a crrcuit has very good stability in spite of wide tolerances in the resistors R1 and R2. In fact, it is astonishing how the oulput appears to lock at 9 V

Suppose that the output tends to dift downwards: this will pull the base of TR1 down which causes the collector of TR 1 and base of TR. 2 to rise. The output tendency is the efore to rise which, due to the feed back loop is providing a correcting influence on :he tendency for the input to fall.

The origina gain beiore feedback is, of conrse, reduced from its previous value. This is cne of the penalties to be paid for the benefits c ! negative feedback.

Continued next month

THERE must be many PE readers who would never call themselves musicians but who have an interest in music, be it as listeners or as vamping-left-hand pianists. Some of them are no doubt in the throes of building the units which go to make up Mr. Shaw's Synthesiser and are wondering what on earth to do with it when it's completed. Others may not want to begin any musical project because they feel that their creative or recreative talent is nil.
Yet others may be musicians like myself who have a smattering of electronic theory and practice up their sleeves but are afraid to launch any large-scale project because they fear they may never get the finished article to function. I hope this feature may allay the fears of all these people and, indeed, offer some constructive help.

Facilities In the U.K.

Until quite recently the musician, particularly the composer and/or arranger has had to sit on the periphery of technological progress, using a small amount of electronic equipment in a limited kind of way, unable, through lack of know-how, to extend his innate creativity.
In this country it is not just knowhow that has been lacking, but the facilities needed to acquire expertise. Although there has been a tremendous surge of interest in electronically produced or processed sound over the past decade or so we still have not managed to produce a chain of national studios where the musician can work with first-rate equipment and expert technical assistance.
It is true that we have the BBC Radiophonic Workshop, wellequipped and staffed by experts, but, alas, Auntie Beeb tends to hog the show by restricting its output to broadcast material in the shape of incidental music and sound effects and a few (all too rare) commissions from composers outside the Corporation.
Numerous private studios exist too - those of Tristram Cary, Daphne Oram and Peter Zinovieff immediately spring to mind, along with such institutions as the University of York and Goldsmith's Colllege, London-yet most of us cannot hope to experience this kind of Utopian dream. Those of us who live and work away from the metropolis are, as in many things, particularly poorly off.

A studlo at home

However, having said that, there is not too much cause for gloom. Magazines like PE have made it abundantly clear that the imaginative person can build quite a sizeable and versatile studio at thome, quite apart from the commercial market.

Over the past lew years PE has included in its pages features dealing with some of the efectronic equipment available to the musician. More frequently there have appeared constructional projects specifically geared to the amateur musician: Waa Waa, Fuzz, Phase, and Sound Bender effects units; and complete instruments such as the Electronic Organ, Electronic Piano, and the Voltage Controlled Synthesiser.

The time is ripe, then, for the musician to join in and help bring the electronics engineer or experi. menter and the creative artis together. As a professional musician whose creative work calls increasingly for more and more electronic equipment, I welcome the appearance of this page as a meeting place for the exchange of information, ideas, and ventilating of nagging questions.

Until projects such as the PE Synthesiser appeared (as far as I know the first design to be published for the home constructor to build from scratch) most of us tended to sink further into the slough of despond in the belief that only a fabulous win on the pools could get us reasonably wellequipped.
By beginning in a modest way, building our equipment module by module, we can now keep pace with our pockets whilst steadily increasing our versatility in the creative music sense.

Getting started

I am often asked, particularly by secondary school music teachers who (quite rightly) feel that there is an honourable place for electronic music in the curriculum, what is necessary by way of basic equipment in order to get started.

Assuming that "canned" rather that "live" electronic music is envisaged, then I would suggest a decent half-track stereo tape machine with three or more speeds, sound-on-sound facilities and a couple (maybe only one. at first) of reasonable quality microphones; this should keep you going for quite some time.

You may be wondering why 1 recommend a half-track tape machine when the present-day quality of quarter-track machines is very high indeed. It's not a matter of quality in this instance. Amongst the tricks used in the manipulation of recorded sound one of the simplest is reverse playback, and on a standard quarter-track machine, stereo or mono, or a hallftrack mono machine, reversal of the tape direction merely gives playback of the recorded material on the new channel(s) in a forward direction. On a half-track stereo machine turning the tape over reverses the material on both channels, incidentally reversing the stereo direction too.

Tape manipulation

Strictly speaking, using only microphones, you are not going to produce electronic music, since the microphone will only pick up air-borne sounds, most of which may well be "natural" in origindried peas in a can, hand claps, vocal sounds, or the jangle of kevs, and maybe acoustic musical instruments. But by varying the tape speeds in recording, superimposition and reverse playback an amaz ing variety of sounds can be achieved. For the price of an editing block and a reel of splicing tape the sounds can be linked together to form a satisfactory sequence.

Anyone who has persevered with this kind of tape manipulationand it is, believe me, a time consuming activity-will tell you that the results can be miraculously electronic in effect.

In case you think this approach to creative sound a bit limiting, then I suggest you go out and buy a recording of "Variations for a door and a sigh' by Pierre Henry (Philips 4 FE 8504). Henry is one of the leading lights in the French movement which began in the early postwar years and produces so-called "musique concrète".
What can be more limiting than the creakings of an old barn door? Yet Pierre Henry manages, through careful handling of the granary door and a bit of superimposition back at the studio, to produce an incred ibly wide range of sounds which are as musical as they are amusing.

There is a little paperback, too, by Terence Dwyer entitled "Composing with Tape Recorders" which offers invaluable advice.

42N Marshall＇s

Everything you need is in our New Catalogue
available now price 20 pence

（100 pages of prices and data）
Call in and see us 9－5．30 Mon－Fri
9－5．00 Sat
Trade and export enquiries welcome

42 Cricklewood Broad way London NW2 3HD，Telephone 01－4520161
\＆ 65 Bath Street Glašgow G2 2BX，Telephone 041－332 4133

Popular Semiconductors

Kellner Construction Kits

We are the sole distributors in U．K．

ESS 3 watt Mohu Tramantir Amplifter Kit $\quad \mathbf{2 4 . 0 8}$								
Fisl	the C	ntrol	ad Pr	Amp	li	it 1		stereol 218.80
Es30 30 watt Muno Hi－Fi Priwer Amplither ．．\quad 80－20								
E850 50 watt Mona Hi－Fi Pruwer Amplifier ．．．$\$ 10-58$								
2－12 ．．． 42 －04								
Licence is required ．．．．．．e2－70								
MUE7 Short Wave and V゙HF Receiver Kit．Cotnpanton to								
UH870 2manz－150ndlz ．．．．． 83 －22								
EWIs Electronic lice Kit ．．．．． $\mathbf{8 -}$								
EW20 Hlectronic Dice with Sersor Button ．．．．．e\％\％								
ST800 Strobe Light Kit．120 W／⿴囗								
LO1000 Psychedelic Light Control．single channe								
LO350 Prychedelic Light Control．three channel ．．\＄13－50								
NTİ Power Supply－to 30v，1－5W								
NT85 Professional Stathlized Power Supply． 5 to 70 V $2 A$								
D800 800W I，ight Dimmer Speed Control \quad \％2．98								
WT\％Aircraft Communications Tuner 110－130mllz，Isuilt and aligned								
1	d							
All prices plus 10% VAT and plus 15p pont and packing．								
All kits with asy to follow inatructions and covered by a full kuarsatee．								
Bridge Rectifiers					Metal－Professional			
Plantic								
	\pm	E	E	ε	$\stackrel{L}{2}$	${ }^{\prime}$	E	
	14	IA	4.	fis	5	1.5	25	50.4
50	0－24	0.38	0.60	0.82	2.22	2.84	3－38	12.30
100	0.36	0.37	0.70	0.75	2.24	3.00	$3 \cdot 60$	12.36
20	$0-30$	0.41	0－75	0.80	2.82	3.78	4.32	14.40
40	0.36	0.45	0.85	1.10	$3 \cdot$	4		16.38
68	0.40	0.52	0.85	1.25				

AB Potentiometers－carbon

Rotary type 45：Shogles（Long and litear）15p．Single
switchel（Log and Inear）21p．Douhhra（logand dinear） 38 p ． Slider sype 58：singles（Lisg alal linear）30p．Houblem （Log and linear） 50 p ．
Presets： $0 \cdot 1$ watt $6 \mathrm{p}, 0$ ， $\mathbf{2}$ watt $6 \mathrm{p}, 0.3$ watt 71p．Please
specify rertical or horizontal．

Diodes and Rectifiers

PIV	50	100	200	400	n00	800	1000
$1 \cdot 5$	8p	9p	10p	11p	12p	150	20p
3	16p	17p	20p	22p	25p	27p	30p
10		35 D	40p	470	58p		
6	84p	92 p	21.18	22.15	42．52	23．85	4.20

Cathode Stud Only

			E3－65			000ps）	24.20
1N34A	10p	\＃．A141	17p	BY237	12；${ }^{\text {p }}$	OA79	7 D
INGIT	7p	BA142	17p	13YZ10	35 p	OA81	8p
1N916	7 D	BAl44	12p	13YZ11	32p	OA85	10．
AA119	7p	1sAlti	17p	В「Z12	30p	OA90	7 p
A， 1 I24	15p	BA154	12p	OA4	10p	O491	78
BA100	15p	BY100	15p	OA10	20p	OA9j	70
BA 102	25p	13Y124	15D	0.447	710	OA200	7p
BA110	25p	13Y127	17 p	0470	71 p	OA202	10p
BA115	7p	BYI40		OA73	10p	OAㄹ10	27p

Integrated Circuits－

 TTL REDUCTIONS！
Abstract

 $\begin{array}{llllllll}\text { SNTH01 } & 0-20 & \text { SN7437 } & 0-85 & \text { SN } 7483 & 1-20 & \text { SN } 741 \mathrm{D} 41.66\end{array}$ | SN7420 | 0.20 | SN 7474 | 0.48 | SN 74123 | 0.72 | SN 74193 | 2.30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RN 7423 | 0.37 | SN 7475 | 0.59 | SN $741+1$ | 1.00 | SN 741961.58 | |

[^2]
G. F. MILWARD 369 Alum Rock Road, Birmingham B8 3DR Tel. 021-327 2339

Case, cables. coll comnectors. 8 page instruction lealiet.
Fascinating to bulld Fantastic improvement to your car's performance. Complete Capacitive Discharge ignition system. fully proven, components fully guaranteed. Printed circuit design. All metalwork drilled ready. Fitted to car in 15 minutes when built.

- Sustained peak performance. - Up to 20% fuel saving. - Instant all-weather starting. Faster acceleration, higher top speed. - Suitable for all engines up to 8 cyls . - Longer spark plug life. - Longer battery life. - Contact breaker burn eliminated. - Purer exhaust gas emission.
A new developmant from the manulacturers of Gunton ignition. Price: $\mathbf{£ 1 1 . 6 2}$ inc. V.AT and postage. (12 volt only State Pos or Neg. earth). Ready built unit also avalable $£ 14.85$ inc. V.A.T. and postage GUARANTEED 5 YEARS.
ORDER NOW-send P.O./Cheque direct to:
ELECTRONICS DESIGN ASSOCIATES, Dept. PE7 82 Bath St., Walsall WS1 3DE. Phone: 33652

NEW SCORPIO

Mk. 2

Following the phenomenally successful Scorpio Capacitor-Discharge Electronic Ignition system introduced in 1972 and proved by many thousands of satisfied motorists, we are happy to announce availability of all parts for the PE SCORPIO Mk. 2-

- Now with added R.F.I. suppression.
* Fully machined and painted die-cast case with AMP termination connector block
* Custom wound transformer.
* NOW AVAILABLE IN 6V. and 12V
* Suitable for all types of Cars, Boats, Go-Karts, etc.
* Promotes easier starting-even under sub-zero conditions.
- Improves acceleration, gives better high speed performance and quicker engine warm up.
* Eliminates excessive contact breaker burning and pitting.
* PROMOTES FUEL ECONOMY.

Construction of the unit can easily be completed in an eveninginstallation should take about half an hour. A complete complement of components is supplied with each kit together with ready drilied, roller tinned professional quality fibreglass printed circuit board, - Uses original plugs, points, and coil.-No special parts or extras required.
(Case size $7 \frac{1}{4}$ in $4 \frac{1}{2} \mathrm{in} \therefore 2 \mathrm{in}$)

* All components available separately.-S.A.E. with enquiries
* Construction manual available separately 25 p.

Cost $\mathbf{£ 1 2} \mathbf{2 9 5}$ incl. carr., ins. and VAT. (Carriage at cost outside U.K. -Export enquiries welcome.)
CONVERSION KIT FROM Mk. I to Mk. 2. FOR CONSTRUCTORS ALREADY POSSESSING Mk. I KITS.-Mitiature P.C. assembly £l-10 incl. Carr., Ins. and VAT with full conversion instructions.

DABAR ELECTRONIC PRODUCTS 98 LICHFIELD STREET
 WALSALL, Staffs WSI IUZ

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be afwarded payment according to its merits.

PATCHBOARDS FOR SYNTHESISER

SYNTHESISER patchboards consist of a matrix of jack sockets by which any combination of input and output signals may be connected by inserting a shorted jack plug into the appropriate socket. A patch board for a medium sized synthesiser would require about 14 inputs and 20 outputs, making a total of 280 jack sockets which at 10 p each plus the cost of plugs adds up to around $£ 30$.

The system to be described has two advantages: a system as previously described would cost only $£ 6$, and this type of patchboard can be used to programme the synthesiser.

The patchboard is made from 20 sixteen-way edge connectors, the 0.15 in matrix size being the most practical. Each connector has its first and last pins wired to the output (Fig. 1). The remainder are wired to separate inputs.

In practice a piece of Veroboard also of 0.15 in matrix is plugged into the connector. The first and
last copper strips on the board are joined by means of a link wire which also connects to one or more intermediate strips. This forms a link between the output and one or more of the inputs according to how the board is wired.

By removing the board it can be turned over and plugged into the same connector making a completely different link or patch between the inputs and outputs. The opposite end of the board can also be used in this way making a total of four different connections available from each board (see Fig. 2).

The programme cards can be numbered for their particular function, e.g. board No. 5 will connect output 3 to input 7, etc.
J. A. Knife, Dagenham, Essex.

Fig. 2. Wiring details for a programme card

Fig. 3. Typical arrangement of connectors mounted on panel of synthesiser

ELECTRONICS - A handbook for Engineers and Scientists

By G. H. Olson
 Published by Butterworths
 482 pages. Price $£ 7$

EVER increasingly the influence of electronics is felt by more and more people whose disciplines would traditionally have been unrelated. Probably the biggest contribution to this has come in the application of electronic techniques to measurement and control in various forms of sophisticated instrumentation. All of this has demanded an understanding of the subject, be it ever so superficial.

As a lecturer with an awareness of the "language" problem of the non-electronic specialist the author has provided a course which is qualitative and informative and will be prized as a valuable reference. The depth of subject treatment is not superficial nor does it lean towards being an examination textbook. In these, usually very little attention is paid to practical details in rigorous analyses. In the handbook these aspects are common and some useful circuits are given with details of the components.

From an introductory chapter on passive components, simple circuits containing them are analysed. Semiconductor devices are then examined (thermionic valves are eschewed throughout) followed by a chapter on indicating instruments. Next comes power supplies, then a massive chapter on the various genre of amplifier.

The concluding chapters embrace oscillators, an introduction to logic and digital circuits and measuring instruments.

Useful references for further reading are included after chapters and appendices provide the means to resolve some of the finer points mathematically.

At $£ 7$ pricey, but a good investment for the d.i.y. tyro.
G.G.

RECORDING WITH COMPACT CASSETTES

Published by Agfa-Gavaert

91 pages, $210 \mathrm{~mm} \times 150 \mathrm{~mm}$. Price 65p

THE THEORY and practice of cassette tape recording are combined in this concise, non-technical, well-illustrated book.

Besides the cassette itself there is an excellent description of the theory behind tape recording, from the conversion of sound into an electronic signal to the actual recording of the signal by the head.

The book is full of hints and suggestions for getting the most out of a cassette recorder.

Many of the illustrations are in full colour, and overall the book seems excellent value for money.

This book is just one of a series on tape recording and photography and can be obtained direct from Agfa-Gavaert Ltd., Great West Road, Brentford, Middlesex.
S.R.L.

QUESTIONS AND ANSWERS ON INTEGRATED CIRCUITS

By R. G. Hibberd
Published by Newnes-Butterworths
96 pages, $6 \frac{1}{2}$ in $\times 4 \frac{1}{2}$ in. Price 75 p

AS ANY regular reader of Practical Electronics will realise, the integrated circuit is now a wellestablished component in modern electronics. However, the development of these devices from the unusual to the commonplace has been so rapid that many people will no doubt be feeling a little left behind.

For anyone in this position, this little book provides an excellent introduction to the field. In the form of questions and answers it gives the reader information about how integrated circuits are made, their advantages and disadvantages over discrete components, and their uses, both in the area of digital and linear electronics.

In the section on Digital Integrated Circuits there is a useful introduction to logic which is essential to the understanding of digital systems.

The book is written for students and technicians who require a simple, mainly non-mathematical, text on this rapidly widening facet of electronics.
S.R.L.

INSTRUMENT TECHNOLOGY (Volume 1) By E. B. Jones
 Published by Newnes-Butterworths L.td.
 402 pages, $9 \frac{1}{2}$ in $\times 6 \frac{1}{2}$ in. Price $£ 5.00$

THIS is a new (third) edition of a book which was first published in 1953 and forms the first volume of a three volume set dealing with Instrument Technology. The coverage of this volume is restricted to the measurement of pressure. level, flow and temperature and the treatment uses S.I. units throughout. The presentation is lucid and the mathematics have been kept as simple as possible. Together with the other two volumes of the set, this book should provide a good coverage of much of the material normally found in technician and craftsman level courses dealing with process control and instrument technology and should also prove useful as a reference text for engineers and other personnel who are not experienced in this field.

The text is well illustrated with clear diagrams, photographs and exploded views of numerous instruments which should prove useful to students especially, since they do not normally have access to such a comprehensive range of instrumentation.

Electronic devices and techniques such as the pressure sensitive transistor and the application of lasers to level measurement are not covered and the brief section on transistors, diodes and photocells does not reflect present day technology. In a work such as this the selection of material is difficult due to the wide range of instruments in current use. The author's stated aim has been to give a reasonably complete picture of the more common and more important devices in present use and this has been achieved. It is unfortunate that the price of this book will put it out of the range of the average student's pocket.

Thesematchboxsize amplitiers have an exceptionally good ton and quality for the price. They are only $2 \operatorname{tin} \times 1$ I inn. The 5 W Amp will run from a 12 V car batcery making it very suitable for portable voice reinforcement surh as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass volume and balance control circuit diagrams are supplied with each unir Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built orders. Mor

Now available for 5 \&10W AMPS

Pre-assembled printed circuit boards 2 in $\times 3$ in available in stereo only, will fic 0.15 edge connector. Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain or ceramic pick-up cartridges. $£ \mathbf{1 \cdot 2 1}$ Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges.

E1.69
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut. $£ 1 \cdot 21$ Instruction leaflet supplied with all units. Post and packing and V.A.T. included in prices.

enclose \mathbb{E}.

for Decoders/.........3W Amps/...........5W Amps Sterea Pre-Amps 2 Stereo Tone Controls (Please insert quantities and delete those not applicable). Name

Address

Ca Regen Ma. 820919

Great Holiday Project

In only two evenings you can build one of these Heathkit Professional Metal Locators.
Your kit comes complete down to the last nut and bolt-all you have to do is follow our simple step-by-step instructions and you're ready to go. You'll be really amazed at how easy it is.

Ideal for:

- Treasure hunting
- Beachcombing
- Locating dropped coins and other metal objects
* Tracing hidden piping underground and many other uses in and around the home
For details about these and many more models in our range, send for your FREE copy of the Heathkit Catalogue-today!

Please send me the FREE Heathkit Catalogue plus details of your low deposit terms. Without obligation.

NAME

ADDRESS \qquad
\qquad

WILMSLOW AUDIO

THE Firm for Speakers!

SPEAKERS

Baker Group 25, 3. 8 or 15 omm Baker Group 35. 3. 8 or 15 ohm Baker Group 50/12, 8 or 15 ohm Baker Deluxe
Baker Major
Baker Superb
Baker Regent
Celestion PST8 (for Unilex) Celestion MF1000. 8 or 15 hm Celestion HF1300 Mk, II
Celestion G12M. 8 or 15 ohm Celestion G12H. 8 or 15 ohm Celestion G15C. 8 or 150 hm Celestion G18C, 8 or 15 hm EMI $13 \times \sin , 3,8$ or 15 ohm EMI $13 \times \sin \mathrm{d} / \mathrm{c}, 3,8$ or 15 ohm EMI 13×8 in $\mathrm{t} \mathrm{tw}, 3,8$ or 15 ohm EMI 13×8 in type 350,8 ohm EMI 8×5 in cer. mag., 8 or 15 ohm EMI $8 \times \sin , 10$ wath, d/c roll, surr., 8 ohm EMI 6 tin. 93850,4 or 8 ohm EMI 5 in . 98132CP, 8 ohm Elsc $9 \times 5 \mathrm{in}, 59 \mathrm{RM} 10915 \mathrm{ohm}$ 59RM1148 ohm
Elac 6 tin d/c roll surr., 8 ohm
Elac 6 tin d/cone, 8 ohm
Elac Tweeter TW4 4 in
Elac $10 \mathrm{in}, 8$ ohm
Fane Pop 100 watt, 18 in
Fane Pop 60 watt. 15 in
Fane Pop 50 watt, 12 in
Fane Pop 25/2. 12in
Fane Pop 15 watt, 12 in
Fane Crescendo 12A or 12B
Fane Crescendo 15
Fane Crescendo 18
Fane 807 T 8 in d/c roll surr., 8 or 15 ohm Fane 808t 8 in $\mathrm{d} / \mathrm{c} .8$ or 15 hm
Goodmans 8P. 8 or 15 ohm
Goodmans 10P. 8 or 15 ohm
Goodmans 12P. 8 or 15 ohm
Goodmans 15P, 8 or 15 ohm
Goodmans 18P. 8 or 150 hm
Goodmens 12P-D. 8 or 15 ohm
Goodmans 12P-G. 8 or 15 hm
Goodmans 12AX Audiomax. 8 or 15 ohm Goodmans Audiom 100
Goodmans Axent 100
Goodmans Axiom 40
Goodmans Twinaxiom 3, 8 or 15 ohm
Goodmans Twinaxiom 10, 8 or 15 ohm
Kof T27
Kof T15
Kef B110
Kef B200
Kef B139
Kef DN8
Kef DN12
Kof DN13
Richard Allan $12 \mathrm{in} \mathrm{d} / \mathrm{c} .3$ or 15 ohm
Richard Allan CGBT 8 in d/c. 8 ohm
WMT1 speaker match, trans., 3-15 ohm £1.10

Wharfedale Super 10 RS/DD
£9.80
in $64 \mathrm{ohm}, 70 \mathrm{~mm} 8$ ohm, 70 mm 80 ohm 650
$\times 4 \mathrm{in}, 3,8$ or 15 ohm
$\times 5$ in, 3.8 or 15 ohm
£1.38
$0 \times 6 \mathrm{in}, 3.8$ or 15 ohm
โ1-38
£1.92

Speaker Klts

Whariedale Linton 2 (pair) $£ 19.25$
Whariedale Giendale 3 (pair) $£ 34.50$
Whartedale Dovedale 3 (pair) \quad E52.00
Aichard Allan Twinkit (each) \quad £8.25
Aichard Allan Triple 8 (each) $\quad £ 13.00$
Richard Allan Triple (each)
Aichard Allan Super Triple (each)
f18. 50

Goodmans DIN 20 (each)
Fane Mode 1 (each) $\quad £ 9.90$
Peerless 3-15 (3SP.) (each) \quad §15.00
Kefkit 2 (each)
823.50

Ketkit 3 (each)
Helme XLK25 (pair)
Helme XLK50 (pair)
Helme XLK30 (pair)
Baker Major Module
£ 34.00
£18.17
£37.18
£14.95
£10.75
P.A. and Hi-Fi speaker cabinets. Send for Free booklet "Choosing a Speaker". Carr. and Insurance 75p per kit ($£ 1.50$ pair)

PA/Disco Amplifiers

Carriage and Insurance £1

Baker Major 100 watt
 £46.00

Linear 30/40
£25.00
Linear 40/60
Linear 80/100 $\quad \mathbf{5 5 5 \cdot 0 0}$
Radios/Cassettes
Grundig Soio Boy
£16.00
Grundig Top Boy
Grundig Party Boy $500 \quad$ £22.75
Grundig Melody Boy $500 \quad £ 26.75$
Grundig Elite Boy 500 £26.75
Grundig Signal 500 £26.50
Grundig Yacht Boy $210 \quad$ £34.00
Grundig Melody Boy $1000 \quad$ £38.75
Grundig Satellite 2000 , $\quad \mathbf{1 2 1 . 0 0}$
Grundig C410 Cassette $£ 28.50$
Grundig RF430 mains radio \quad £26.75
Grundig RF310 mains radio $£ 22.00$
Tanberg TP41 £43.00
ITT Weekend Auto
ITT Golf Prese
ITT Colt
ITT Europa
ITT SL53 cassette
ITT Studio 60M cassette
ITT Studio 73 cassette
Bush VTR178. 5 band (inc. air)
Koyo KTR1770 11 band
Koyo KTR1663 or 1664, 8 band
Koyo KTR1883, 5 band
£18.00
£24.50
£11.50
$\$ 11.50$
$\mathbf{2} 0.50$
$£ 20 \cdot 50$
$£ 25 \cdot 75$
$\begin{array}{r}\text { £ } 25.75 \\ \hline\end{array}$
$£ 48.00$
£29.00
£42.00
Murphy BA209 radio/cassette $\quad \mathbf{£ 3 2 . 7 5}$ Carriage and Insurance 75p. FREE with each radio-World radio stations book.

Free with speaker orders over £7-

"HI-F1 Loudspeaker Enclosures" book. All units guaranteed new and perfect. Prompt despatch.
Carriage 35p per speaker (tweeters and crossovers 20p)
ALL PRICES QUOTED INCLUDE VAT

WILMSLOW AUDIO
 Dept. PE

Loudspeakers: Swan Works, Bank Square, Wilmslow, Cheshire, SK9 1HF
Radios, etc.: 10 Swan Street, WIImslow, Cheshire. Telephone: WIImslow 29599

THIS MONTH'S SNIP Cassette Tape Player Recorder With dynamic microphone. First clasa Jap. Made and with autornatic level control of recording standard cameettes clean jacks for mic. (which has notor stop/start switch) for recording from radio and fur being powered by mains. A bargain at 88^{95} plua 35p post, etc
alard aijex. The 4 Mullard modules-2 EP9000 cuntrol panei kit with spun aluninium post. The and ailk acreened front plate cannot be reduced, but at least we will hold the price at 83.80 despit increases in prices.
spartan Portable Radio. Long and medium ware band, telescopic pull up aerial, kather carrying case size approx. 6in x 4in $\times 2 i n$. 7 transiators ferrite rod aerisi. Uses comparatively large speaker, so cone better than average. Brand new in original packing case, untested, only 81.95 each
Instant Start Fluorencent Lighting bargaing. Starter less control gear, resin filled, super-silent cool run $65 \mathrm{~W}, 81.60$ th 80 W 81.75 , 6 ft 85 W 81.95 . Thes are about one half of maker's current prices and can't be repeated once atocks are cleared: Add 20 p pe piece carriage. 2 cone shaped porcelain Bulk hesd serinit cork wafer tor waterproofing and insulators win passing through centre, termina heade top and bottom. Price 75 p esch
Fesmge tapen. 250 ft best quality PV'C tape (USA made) on a 3 in apuol. Packed in amall mailing box 30 peach .3 for 750
Kain tranuformer 12V-0-12V i smp. Smal onst ruction for instruments, size approx. lin cube Ontput Trantformer. Ratio $140-1$ mid lin x in $\times{ }^{3}$ in. Primary impedance $4 \overline{0} 0$ ohnis, connections by fying leads, upright mounting 48 p .
0 atp
Oatput Traniformer. Ratio 80-1, smallsize, approx tin. $\times 1$ in $\times 1 \mathrm{in}$, printed circuit board connection ${ }^{56 \mathrm{p}}$.
Light cell. Has almost no resiatance in sunlight but increases to over 200 k in the dark. Size not much Clock morement has hour and minute hands which are fairly easy to extend in any length required Mains operatel, has awitches but these are easy to remove. The movement made by Smithe very reliable, price 48.
Planning tor your holidey! Don't forget your mini immersion heater to make your hot irinks. Roon aervice is usually not all that can be desired in hollday hotels and you will save the cost of you mmersion heater on your frst holiday, even though they have gone up slightly in price post and VAT paid, $51-90$ each. If going camping, we have a 12 V gatlery model, 0 p more
Asins pindie proly well mach end. This motor is puntities in stock. Price 65p.
0-100 micro amp meter. Large oblong, full vision front, size 4 in $\times 3!$ in approx. Good quality Japanese made. moving coil meter. 28,88
Mains suppremor adaptor for preventing or reducing interference caused by office machines. vacuum cleatners, sewing machines, etc. This plugs into a 5 anp socket and takes a 3 smp plug. Its rating 50 cycle to 60 crele invertore For operatin Americar instruments and other equipment made for fio cycles 115 V trom $230 / 240$ 30 cycle mains. These units have an output of 1155 a.c. and will handle a load of up to 100 W . These are precision made and have a reet type frequency meter which -lbrates when the frequency is exactly 60 c.p.s Adjustment of the frequency is by a knob on contro parnel. Input by 3 core output from 3 pin socket Original cost of this in exceak of $£ 80$. A limited quantity a vailable 825 each.
Reed Relay. Thask encaphilated reed 8 witch in $24 \sqrt{3}$ olenoid. tieaty enclosed in neat metal case, size a.c. mains. Price 35 p each

Battery Model, Balfour Auto-changer. As nuains model but for 34 V operation, also these are new ex-iactory atock not returned export
ef each plua $£ 1$ port and insurance.

TERE18: Add 10\% V.A.T

end postage where quoted-other terma
ont free if order for these itemg is
\&6.00, otherwise add 20 p .

mishair

By K.L. SPENCE

THIS article describes a Random Light Display which unlike most light displays, is not driver: by an audio signal.

The uni- consists of nine or more coloured lamps positioned behind a semi-transparent screen. Each lamp flashes on and off in an apparently random manner, without an overall fixed sequence: The resulting cffect is to fill the screen with a blaze of mixing and changing colours forming a fascinating display,

Fig. 1. Elock diagram showing the arrangement of the multivibrators and AND gates

METHOD OF OPERATION

The apparent random effect is achieved by using four slow--unning multivibrators each with different frequencies and mark-space ratios.

Each lamp is driven by gating together the outputs of two or more multivibrators using a logic And gate. The system is illustrated in Fig. 1, which shows the oterall artangement of the multivibrators and AND gates.

It can be seen that lamp LP! will only light when maltivibrator outputs B and $\overline{\mathrm{D}}$ are high. i.c. logic 1: Enp LP2 requires outputs B and C high. and lamp LP9 requires A, B and D high.

CIRCUIT DETAILS

The circuit diagram of a multivibrator is shown in Fig. 2. Four of these are required, the values of the timing capacitors C1 and C2 being given in the table.

The and gate and lamp driver circuit is shown in Fig. 3

The gate may have two, three or four diode inputs. If any of the inputs is taken to 0 V by a multivibrator output then current will flow down resistor

COMPONETIS . . .

MULTIVIBRATORS-4 OFF REQUIRED
Resistors
$\left.\begin{array}{lll}\text { R1, R4 } & 5.6 \mathrm{k} \Omega(2 \mathrm{off}) \\ \text { R2, R3 } & 33 \mathrm{k} \Omega(2 \mathrm{off})\end{array}\right\} \quad 1 \mathrm{~W} 10 \%$ carbon
Capacitors
C1, C2 see table
Transistors
TR1, TR2 2N708 (2 off)

Fig. 2. Circuit diagram of a single multivibrator circuit. The table shows the values of the timing capacitors for the four multivibrators required

Photograph showing a front view of the completed unit with the cover removed

R1 and the voltage at TR1 base will not be sufficient to switch on transistors TR1 and TR2 which need about 1.4 V to be forward biased.
However, if all inputs are at 6 V then the diodes will be reverse biased and the current through R1 will flow into the base of TR1 causing it and TR2 to conduct and the lamp to light.

COMPONENTS . . .

AND GATE/LAMP DRIVERS-9 OFF

 REQUIRED
Resistors

R1 8.2k $\Omega \nmid W 10 \%$ carbon
Diodes
D1-D4 OA200 (4 off, or as required)
Transistors
TR1 2N708
TR2 BFY52

Lamps

LP1 6V 0.3A m.e.s. with lampholder

Fig. 3. Circuit diagram of a single AND gate/ lamp driver circuit. Nine of these are required. The number of diode inputs may be two, three or four

COMPONENTS

Fig. 4. Circuit diagram of the power supply. This provides a smoothed supply for the multivibrators and unsmoothed supply for the lamps

POWER SUPPLY

The power supply is shown in Fig. 4. It has two 6 V outputs, one is smoothed for the multivibrators and the other is unsmoothed for the lamps.
The components specified are widely available, though discrete diodes instead of a bridge may be used if desired.

CONSTRUCTION

Component layout is not at all critical and the circuits may be built on any type of wiring board.

The author used a large piece of $0 \cdot 1$ in Veroboard, the general arrangement being seen in the photograph. Fig. 5 shows the multivibrator circuits and the lamp driver circuits in more detail. Four of the multivibrators and nine lamp drivers are required.

It is useful to provide a wiring pin for every multivibrator output and gate input as this greatly simplifies the cross-connections.

It is advisable to first construct and test all the multivibrators and gates' and then make the connections between them.

The constructor is free to choose for himself which outputs to connect to each gate, the only restriction being that both the outputs of a particular

Photograph showing the general arrangement of the components at the rear of the box. The power supply Zener diode, resistor R1 and capacitor C2 are mounted on the Veroboard which carries four multivibrators (MVA to MVD) and nine AND gate/lamp drivers
multivibrator must not be connected to the same gate, as this would mean the lamp would never light.

Fig. 5. Suggested Veroboard layout

The gates may have two, three or four inputs but it should be remembered that gates with four inputs will only be enabled very infrequently compared with the two-input gates.

Photographs illustrate the general manner of construction with lamps in the front of the box and the circuits behind.

The overall size is governed by the number of lamps the constructor decides to use. The prototype measured 15 in $\times 15 \mathrm{in} \times 6$ in and had nine lamps.

FRONT SCREEN

The front screen consists of a wooden frame covered with thin white cloth or tracing paper. A sheet of Perspex is then fixed on the front for protection.

The lamps may be any 6 V types and they may be covered with coloured Cellophane or painted.

MODIFICATIONS

The unit described in this article may be extended to many more lamps and multivibrators providing the transformer can handle the power output.

Higher wattage lamps could be used by incorporating thyristors in the lamp driver circuits. It could also be interesting to have a mixture of AND and OR gates instead of only AND gates.

The values of the timing capacitors can be changed to give more rapid or slower changes as the constructor desires.

BY R.A.COLE

The Rondo system is designed specifically to accept a variety of inputs to suit individual constructor's tastes. However, the initial design concept included the basic idea of providing as many facilities as possible within the one unit. One of the most important to many constructors will of course be the stereo turner and associated decoder and Part 8 will initiate the discussion of these two items.

GENERAL CIRCUIT

The basic system for an f.m. tuner and decoder is shown in block form in the accompanying Fig. 8.1 and the complete circuit in Fig. 8.2. A varicap-tuned head feeds its output to a wide-band amplifier, a ceramic filter, a further i.f. amplifier and finally to the stereo decoder. Movement of the varicap potentiometer VRI is indicated on a suitable tuning dial and a tuning meter indicates signal level.

Fig. 8.1. Block diagram of the f.m. stereo tuner/ decoder arrangement for the Rondo system

Fig. 8.2. Full circuit diagram of the tuner and decoder with the decoder board shown shaded

Fig. 8.3. Detail circuit of the Larsholt tuner head as used in the Rondo system

The tuning head used in the Rondo is a Larsholt unit, pre-built in Denmark, which makes use of j.u.g.f.e.t., m.o.s.f.e.t and bipolar devices to give a high standard of performance

The head 'feeds via a ceramic filter FI, amplifier CC 1 and filter F2 into the i.f. section. This latter is the monolithic amplifier TDA1200 or the equivalent CA3089E.

I.F. AMPLIFIER

In the i.f. amplifier there are three stages of amplification and associated level detectors that feed both delayed a.g.c. for the r.f. amplifier in the tuner, and the tuning meter. The amplification stages then feed the detector section.

The detector, a quadrature detector, requires tuning using one or two external coils and in practice this involves only peaking for maximum audio output. In fact, the use of one or two inductors is optional. A single tuned inductor LI (a) gives distortion levels around 0.5 per cent whilst the use of a double inductor configuration $\mathrm{L} 1(\mathrm{a}+\mathrm{b})$ allows levels as low as 01 per cent to be reached.

Audio output from the detector is fed to a further stage of amplification whilst, at the same time, a signal is fed to a level detector which in turn controls the mute drive circuits. This latter is connected externally of the chip to a muting sensitivity control and fed back to an audio mute control amplifier which is coupled to the audio output amplifier.

The quadrature detector also feeds an a.f.c. drive amplifier.

Finally, the output of the tuner is fed to a stereo decoder which in the present case uses the wellknown Motorola MC1310P or the RCA CA1310E phase-locked loop monolithic integrated circuit.

The circuit of the whole system is shown in Fig. 8.2 , the i.c.s and tuner head being shown in outline only.

TUNER HEAD

The tuner head circuit is shown for interest in Fig. 8.3. This Larsholt product was chosen for its sensitivity and the quality of output. Heads of this type are of course pre-aligned by the manufacturer and require no further attention from the user apart from perhaps some peaking of the output by tuning to suit the external circuitry. In the present instance this is limited to peaking of the output inductor connected to terminals E and F of the head.
The head and most of the associated circuitry are mounted on one circuit board which is located within the trough assembly of the Rondo directly beneath the pre-amplifier board but orientated parallel to the bottom of the trough.

The stereo decoder i.c., IC3 in Fig. 8.2, and associated components are mounted on a further board which is suspended under the fascia and master tone board to the top right of the assembly when viewed from the front.

STEREO DECODER

For ease of description we will consider one of the two alternative decoders as they are virtually identical.
The MC1310P is a phase-locked loop decoder with typical channel separation figures of 40 dB and total harmonic distortion typically 0.3 per cent. It is carried in a 14 -pin di.l. package.

This decoder does not require any inductors and in fact the only adjustment it might require in practice is the setting of the voltage controlled oscillator (v.c.o.). This is achieved by adjustment of VR5.

The chip automatically detects the presence or absence of stereo by detecting the presence of the 19 kHz pilot tone at the input. The input dircuit includes a threshold circuit which sets the detection of the pilot tone at about 16 mV so as to stop the

STEREO DEGODER

Fig. 8.4. Component layout on p.c.b. for the stereo decoder

Fig. 8.5. Master p.c.b. copper layout for the decoder board

Fig. 8.6. (a) Rear right-hand corner of fascia panel (see Fig. 4.1). (b) Details for the mounting of the decoder board edge connector and associated carrying brackets, their location in the main assembly, and the positioning of some off-board components

Resistors			
R1	$15 \mathrm{k} \Omega$	R13	390Ω
R2	$3 \mathrm{k} \Omega$	R14	100S
R3	$1.2 \mathrm{k} \Omega$	R15	$4.7 \mathrm{k} \Omega$
R4	470Ω	R16	$3.3 \mathrm{k} \Omega$
R5	$3.9 \mathrm{k} \Omega$	R17	330Ω
R6	100Ω	R18	$10 \mathrm{k} \Omega$
R7	100Ω	R19	$33 \mathrm{k} \Omega$
R8	8.2k Ω	R20	$3 \mathrm{k} \Omega$
R9	$1 \mathrm{k} \Omega$	R21	470Ω
R10	$3.9 \mathrm{k} \Omega$	R22	16k $\Omega, \frac{1}{2} \mathrm{~W}, 2 \%$
R11	390Ω	R23	$120 \mathrm{k} \Omega$
R12	2.2k Ω	R24	220Ω
All $\frac{1}{4}$ W, 5\% except where stated			
Capacitors			
C1	$0.1 \mu \mathrm{~F}$	C18	$0.01 \mu \mathrm{~F}$
C2	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$	C19	$0.022 \mu \mathrm{~F}$
C3	100pF Polystyrene	C20	$0.047 \mu \mathrm{~F}$
C4	1,000 $\mu \mathrm{F}$	C21	$0.022 \mu \mathrm{~F}$
C5	$0.018 \mu \mathrm{~F}$	C22	$0.01 \mu \mathrm{~F}$
C6	100pF Polystyrene	C23	$0.015 \mu \mathrm{~F}$,
C7	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$		De-emphasis
C8	$0.01 \mu \mathrm{~F}$	C24	$0.33 \mu \mathrm{~F}$
C9	$0.01 \mu \mathrm{~F}$	C25	$2 \mu \mathrm{~F}$ or greater.
C10	100pF	Tantalum	bead preferrea
C11	$0.47 \mu \mathrm{~F}$	C26	$0.047 \mu \mathrm{~F}$
C12	$0.22 \mu \mathrm{~F}$	C27	470 pF .
C13	$0.22 \mu \mathrm{~F}$		2\% Polystyrene
C14	$0.018 \mu \mathrm{~F}$	C28	$0.22 \mu \mathrm{~F}$
C15	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$	C29	$0.22 \mu \mathrm{~F}$
C16	$0.01 \mu \mathrm{~F}$	C30	$0.01 \mu \mathrm{~F}$
C17	$0.022 \mu \mathrm{~F}$		
Potentiometers			
VR1	$100 \mathrm{k} \Omega \mathrm{Lin}$		
VR2	$25 \mathrm{k} \Omega \mathrm{Lin}$ preset		
VR3	$25 \mathrm{k} \Omega$ Lin preset		
VR4	$470 \mathrm{k} \Omega \mathrm{Lin}$. preset		
VR5	$4 \cdot 7 \mathrm{k} \Omega \mathrm{Lin}$. preset		
Diodes			
D1	AA119		
D2	AA119		
D3	BZY88, 15 V Zener	, 400 mW	
D4	BZY88, 13 V Zener	, 400 mW	
LED1	Light emitting dio		

Integrated Circuits

IC1	CA 3053
IC2	CA $3089 E$ or TDA 1200
IC3	MC1310P or CA1310E

Inductors
L1 Single quadrature, KACS K586 HM or Double quadrature TKACS 34343 AVO and TKACS 34342 AVO from Toko U.K.
L2 R.F. Choke, $22 \mu \mathrm{H}$

Miscellaneous
Head
Larsholt 8317-501 stereo tuner head, f.m.
Tuning meter MEI $\quad 0-150 \mu \mathrm{~A}$ Full-View panel meter
Ceramic Filters F1, F2 CFS 107M (Toko)
Assorted wire, co-axial cable, p.c.b., 14 -way edge connector, metalwork brackets, nuts and screws etc.
decoder switching to stereo mode when the audio is too weak to give good signal-to-noise ratio.

Indication of stereo presence is given by the light emitting diode LED 1 which is wired in series with a $1.2 \mathrm{k} \Omega$ resistor. This latter drops the voltage across the diode to around 16 V at 20 mA . As most diodes give adequate light emission at this current this seems sensible even though the i.c. is capable of driving up to 100 mA if necessary.

The decoder and associated de-emphasis components are mounted on one board as shown in Fig. 8.4. The master negative for this board is shown in Fig. 8.5 and two combined scrap views show the orientation of the board in its edge connector and the mounting of this latter under the master tone control board in Fig. 8.6.

Assembly of the decoder board follows normal p.c.b. assembly procedure although it will be noted that several components from the decoder and tuner-associated circuitry are in fact mounted in the wiring, as it were. Thus R3 and R4, C4 and D4 are all mounted on the edge connector carrying the decoder board. The l.e.d. is mounted in the tuner fascia just above the tuning meter. C28 and C29 can be mounted on the pre-amplifier board.

Wiring from the decoder board is passed down the side of the fascia to the fanning-strip/switch assembly described in the last part for interconnection to the remainder of the looming.

OSCILLATOR ALIGNMENT

When the tuner/decoder system has been completed it is necessary to set the decoder oscillator. This is a simple procedure requiring that one tunes to a known broadcast and then adjusts VR5 until the pilot light illuminates. This of course assumes a stereo broadcast is taking place.

Stereo output should now be heard from the loudspeakers.

If an oscilloscope is to hand the adjustment can be made perhaps more accurately by connecting the scope to the v.c.o. test point TP1 (pin 10 of the i.c.) and adjusting VR5 until a 19 kHz waveform (55μ s cycle time) appears. Equally, a counter/timer could be used to register 19 kHz .

Tolerance of this value is ± 3 per cent or 580 Hz either side of 19 kHz .

I.C. HOLDERS

An important point is the use of i.c. holders with these types of i.c.s. It is always advisable to use holders since this gives the obvious advantage of being able to remove the i.c. later and in any case some manufacturers revoke their guarantee if their particular products have been soldered in position as there is always the risk of thermal damage occurring.

It will be appreciated that each additional item of equipment inserted in the Rondo is an extra load applied to the power supply. In general terms this is no problem since the p.s.u. is well able to deal with the demand placed on it. However, the problem is easily overcome if it does arise by simply turning TR6 of Fig. 3.1 in Part 3 "on" a little more. This can be achieved by simply lowering the value of R32 in the same figure to 470 S.

Next month : Construction details for the tuner board
and mechanical assembly

EVEN in this day and age it is not unusual to find cars stranded at the side of a motorway after having suffered boiling perhaps through loss of a fan belt or a burst hose.

Remembering that most vehicles are fitted with some form of temperature indicator for water temperature this sort of event only serves to indicate just how little attention is paid to the various dials by a driver, particularly when coping with things like motorways.

Oil, water and indeed battery charge, are all indicated visually and their loss, which can occur quietly and seemingly unnoticed, can have very damaging results including seized engine bearings or the like. So clearly what is needed is some form of audible indication in the event of failure of these parameters.

The present circuit was designed to give an instantaneous audible alarm if water temperature, oil pressure or generator output assume a fault condition.

The circuit is fairly simple and would probably cost in the region of $£ 3$ which is cheap in comparison with the cost of replacing a damaged engine or even carrying out a minor repair with labour costs in the $£ 3$ per hour region.

PRACTICAL CIRCUIT

A circuit is shown in Fig. 1. Three inputs can be connected to detect the presence or absence of voltage at for example the car temperature gauge, the ignition warning light and the oil pressure switch. In each case if the respective point is connected to chassis (earth) an alarm condition can be said to exist.

If this occurs current is taken by the associated one of the three diodes D1, D2 or D4. TR3 becomes saturated and 12 V is applied to the astable TR4/ TR5. Protection diodes D6 and D7 prevent the breakdown of the base/emitter junctions of these latter devices.

Fig. 1. Circuit diagram of Monitor

The astable is connected to a final transistor TR6 to drive a loudspeaker which may be any 2 to 3 inch 3 to 30 ohm device. The level of output is variable by choice of a suitable value for $\mathrm{R} 13,1 \mathrm{k} \Omega$ being a suitable value to start with.

LAYOUT

Veroboard is used for the layout and cutting pattern and component locations are shown in Fig. 2.

No particular problems exist as far as the board is concerned except perhaps with the diodes with which care should be taken when bending the leads to avoid cracking the glass bead.

Whilst the circuit is shown for negative earth vehicles, the positive earth version can be catered for quite simply. It only requires that the $n p n$ transistors be replaced with $p n p$ and the $p n p$ with npn, that the diodes be reversed and the electrolytic capacitors similarly turned round.

Whilst BC184's are specified together with 2N3702's and 1N914's almost any small signal transistors and diodes can be used.

TESTING

Before wiring in to a vehicle it is best to check that all is functioning properly. Simply apply the 12 to 15 V supply and temporarily connect input 1 , the water temperature gauge input, to +12 V . There should be no output.

If now any one of the inputs are connected to ground, an output should be obtained at the loudspeaker.

The volume of this buzz can be varied by selecting R13 to suit requirements.

CASE

Thus far we have only discussed a Veroboard assembly which, for use in a vehicle, should obviously

Fig. 2. Component layout on Veroboard, the copper track cuts being shown as white cut-outs

COMPONENTS . . .

Interior view of Systems Monitor showing completed unit
be cased in some form of protective box. In the prototype this took the form of a simple aluminium case and lid, with the Veroboard mounted on support pillars in the lid.

Wiring access to and from the circuit is provided via a 6 -pin DIN socket SKI mounted in the lid. As the whole assembly of lid and board is only a matter of an inch deep clearly the box can be quite shallow but it is best to use a box which can be screwed up and properly sealed against ingress of moisture from the engine compartment or wherever it is located on the vehicle.

INSTALLATION

It is probably wisest when installing any equipment in a vehicle to first of all disconnect the battery so as to avoid any damage from inadvertent shorts. Power supply to the unit is connected from the ignition switch, switched side and the inputs 1 , 2 and 3 are connected respectively to the water temperature warning light or thermometer, the oil pressure warning light or block switch and the
generator output terminal or terminal " A " on the ignition light.

The battery may now be reconnected and no output should be obtained.

If the constructor has wired in the extra components S1, FS1 and LP1, then when the ignition is switched on LP1 should come on but there should still be no output. Switching SI to the "on" position should extinguish LP1 and the unit is now "armed" for operation. In fact an ouput should be obtained because of course there is no oil pressure or generator output.

Starting the car should silence the output but if this fails it may be necessary to adjust VRI.

The vehicle should now be driven round for a while till engine temperature reaches its normal level and VRI is again adjusted till the output buzz is just extinguished. This is all the setting up required with the possible exception of small adjustment to make up for the difference between summer and winter temperatures.

H2 BOUK
 I.E.E. REGULATIONS FOR THE ELECTRICAL EQUIPMENT FOR BUILDINGS 224 pages. Price $£ 1 \cdot 50$

N Great Britain, the Institute of Electrical Engineers has, since 1882 , issued rules and regulations relating to electrical installations in general.

The regulations delineate the essential requirements for inspection, installation, testing and maintenance of consumers installations.

From time to time these are revised and amended, and this reprint incorporates all those amendments up to May 1974.

They are completely accepted by the Electricity Board, Local Authorities, Insurance Companies and consulting engineers as standard practice in the industry.

Issues are available from I.E.E., P.O. Box 8, Southgate House, Stevenage.

NEWS BRIEFS

 OBITUARYTHE name Bulgin must be one of the best-known in the electronics field in Britain. Certainly every follower must have used plugs, sockets and so on bearing this name.

Thus it is with great sadness that we mourn the passing of Arthur F. Bulgin, O.B.E. the founder of the company bearing his name. He has served our industry for 51 years and, indeed, his country as well, and it is a mark of his astute judgement that the A. F. Bulgin company is the only one in the industry to show a steady rate of growth since the last war.

Chairmanship of the company continues in Mr BuIgin's son, Mr Ronald Bulgin, M.A., C.Eng., M.I.E.E., who also shares joint managing directorship with A.F.B.'s brother, Mr Stanley Bulgin.

".n-tuning in to ESp

The chairman of the technical programme committee, Jack Raper, was one of the doubters on the advisability of including a parapsychology session in the International Convention and Exposition of the Institute of Electrical and Electronic Engineers in New York. In the end, the session went ahead and, if not exactly a sensation, it certainly caused a stir among the coolly-calculating, logically-minded scientists and engineers who formed the audience.

LECTURERS

The one aspect in favour of the session was that though the speakers may have had odd ideas, some of which might be classified as kinky, they did at least have the credibility of being engineers with normal levels of engineering objectivity and were clearly not the crankier type of mystic living on emotion rather than scientific fact.
Two of the speakers. E. Douglas Dean and John Mihalasky were from the Newark College of Engineering and the third, James B. Beal, hails from NASA, Huntsville, though he was careful to point out that he was speaking as a private person and NASA was in no way involved.

All three speakers were firmly convinced that such phenomena as extrasensory perception (ESP), precognition and telepathy were not only possible but also capable of detection and measurement in the scientific sense although much remains to be done.

TELEPATHY

The main practical work of E. Douglas Dean has been in telepathy. For his experiments he uses the plethysmograph, an instrument used in medicine for over a hundred years. It records a change in volume with correlation against blood circulation in the extremities of the body, for example the finger tip.

In the ordinary way a person has no control over any variations, but it has been shown that what we might loosely term "emotion" causes involuntary vaso-constriction leading to a lowering of blood volume in the measured part of the body. Dean's apparatus is considerably more sensitive than the old medical
plethysmograph and incorporates a pressure capacitance diaphragm pick-up and a continuous chart recorder which records the normal pulse of the heartbeat and any vaso-constriction as a pronounced dip below the average baseline.

The "subject" lies on a couch with a finger connected to the instrument and in an adjacent room the "agent" picks up a card on which is inscribed a name which may or may not have significance for the subject. Some cards are blank. The subject doesn't know what is on the cards, or the order in which they are shuffled.
The agent looks at each card for twenty seconds. Blank cards showed no response and cards with names only showed subject response on the recording pen when they had some emotional significance, for example a close relative, and the pen deflection was most pronounced when there had been recent anxiety or other strong emotion in connection with the name.

In one test the subject's two-day old new-born baby's name was on the card and the resulting vasoconstriction was so severe it took over a minute for the recorder to return to baseline.

The experiments were repeated with the agent enclosed in a fully electrically screened room and this had no effect, indicating that whatever the communication medium between agent and subject it was not affected by screening. Long distance tests have been completed north to south from New York to Florida, a distance of 1,200 miles, and east-to-west from Newark, New Jersey, to Bordeaux, France. Amazingly, the effect was also recorded with the agent 35 ft under water in Florida and the subject 4,000 miles away in Zurich, Switzerland.
The underwater test opens up the possibility of communicating with submarines submerged at great depth, of greatest potential value in the event of disabling disaster. The technique would involve the use of pre-arranged time slots and the Morse code with stimulus, for example, representing a dot and nonstimulus being a dash. The data rate would be very slow but over a period of hours it is thought that comprehensible communication could be possible.

An important finding by Dean is that using electronic equipment to establish emotional response shows scientifically that one person in every four has some level of ESP ability.

FIELD EFFECTS

James B. Beal maintains that electric fields have important effects on the body. He has gone as far as to fit a 500 V positive field generator in his car to alleviate fatigue. He has also reared beans in a $2,000 \mathrm{~V}$ positive electrostatic field and recorded a four-day earlier germination compared with a control group outside the field.

The same apparatus was used on a badly asthmatic child with beneficial results. Tests on typists showed an enormously lowered error-rate if they sat in a strong field.
Beal recalls that the ancient Chinese knew, perhaps instinctively, that beneficial health, mental and spiritual qualities could be obtained by proper geophysical orientation of homes and religious shrines in relation to the earth's magnetic poles, subterranean streams, geology and topology. It is even suggested that many mental patients are not ill but merely hypersensitive to field effects and, of course, it is well established that natural phenomena such as hot winds containing an excess of positive ions, especially in the Middle East, induce both physical and mental maladies in the population.

It was also suggested by Beal that ESP can be developed in suitable subjects by teaching machines. One such is commercially available.

SEEING THE FUTURE

Working on precognition (seeing into the future), especially in the realm of creative ideas in engineering and business has been studied for many years by Dr. John Mihalasky.

The successful engineer or businessman is often said to have intuition or insight in addition to ordinary levels of logical thought. The brilliant solution to a problem is often conceived "in a flash" from the unconscious mind spontaneously and frequently at very odd times and in peculiar circumstances.

solar power
 and its applications for TODAY

By P.S.WOODCOCK*

The oldest known power source is the sun and there have been many ways devised to use its energy. Until very recently none have withstood the march of technological progress. Modern technology is now able to provide ways of making use of a very small fraction of that power that is always available.
The utilisation of solar energy has also been limited by economic reasons; the techniques for many applications have been known and fully proven but the cost of using them has made it totally uneconomic.

PHOTOCELLS AND SATELLITES

The basic component for the conversion of solar power into electrical power is the photocell and this was introduced, as a production device, in 1957.
This cell, in the form of a silicon photovoltaic semiconductor diode, has been the prime power source on earth orbiting satellites since the first was launched in 1957. It is therefore not surprising that industry is now using this well established, fully proven space technology as a source of pollutionless terrestrial power.

GROWING SILICON CRYSTALS

The photovoltaic cell is produced from silicon, the second most abundant element on earth.

A seed of pure single crystal silicon is dipped into a bath of molten silicon and rotated and slowly withdrawn, in an inert atmosphere, producing a bar of almost pure single crystal silicon.

The silicon is required to be doped with small quantities of impurities to control its conductivity. These impurities are introduced into the bath of molten silicon so that the withdrawn bar contains the correct level of dopants.

Early technology imposed a limit on the diameter of bar that could be pulled of about one inch, but recent developments have seen this increased very significantly, and it is now usual for 2 if diameter bars to be used.

The bar of silicon is then cut so that circular slices of defined thickness are produced. The majority of cells produced for satellite applications have used silicon slices 300 micron (one micron $=10^{-6}$ metre) thick but a new generation requires cells of 200 micron thick. The thickness of silicon used does not affect production processing.

Almost all silicon produced for cell applications is boron doped so that it will conduct by means of positive charges or holes, and for this reason is called p-type.

PHOTOCELL PRODUCTION

The production of a photocell involves several basic steps and these may be listed as follows:

1. Diffusion of $p n$ junction
2. Contact formation
3. Coating

The creation of the $p n$ junction is achieved by the controlled diffusion of an impurity into the p type silicon slice. The impurity used is phosphorus which is introduced into the diffusion furnace as a vapour, the depth of the diffusion being a function of time and temperature.

The basis of operation of the photocell is such that when photons (light particles) strike the cell surface, close to the $p n$ junction, positive charges (holes) and negative charges (electrons) are produced. The electrons will tend to travel towards the n-type silicon and the holes. towards the p-type silicon. If connections are made to the n - and p-regions electric current can flow into an external load.

METALLISED COMTACTS

The next vital production stage is thus the deposition of a metallised contact structure. The p-contact, on the rear face of the cell, can cover the total cell area, but the design of the n-contact, on the front or active surface, is critical to the performance of the cell.

[^3]

Fig. 2. Drawing of a flexlble fold-up solar array. Each paddle is about one metre wide by five metres long

The requirements are many and varied and, in some cases, conflicting. For maximum cell output the contact must mask minimum cell area but must have sufficient cross-sectional area to handle the photen generated current.

Thick metallisation must be avoided as severe stresses can be set up on thermal cycling and, in the extreme, this streas could be sufficient to break the silicon. The metallisation must have good electrical and thermal conductivity, must be easily contactable, and should not degrade or cause degradation in any encountered environment.

The process by which the metallisation pattern is defined must also be of sufficient accuracy that overal pattern tolerances are maintained. Pattern definituon is achieved by a photographic mask and the metalisisation used on the satellite cell is a composite structure of nickel, copper and gold.
The rickel gives the ohmic contact to the cell, the copper gives the electrical conductivity and the gold prevents contact tarnishing.

The pattern defined on the satellite cell is a narrow top contact bar and then 24 narrow fingers running down the length of the cell. These fingers are typically 25 mictons wide and five microns thick. The multiplicity of these fingers optimises the collection efficiency of the photon generated electric current.

OPTIMISING CELL PERFORMANCE

On bare silicon, light striking the active cell surface will be partially absorbed but a certain percentage will be lost due to reflection. This percentage can be significantly reduced if a quarter wavelength thick transparent dielectric layer is deposited on the cell surface.

The refractive index of this layer is chosen to optimise cell performance. Early cells used either silicon monoxide or dioxide but the latest technology uses titanium oxide.

The almost universally used cell size for satellite applications has been 2 cm sq and the output power from a cell of this type is typically 62 mW at $25^{\circ} \mathrm{C}$ when illuminated with air mass zero sunlight at $140 \mathrm{~mW} / \mathrm{cm}^{2}$. This gives an overall power conversion efficiency of 11 per cent.

Fig. 1 shows the output characteristics of a typical solar cell.

The power requirements for a satellite have always demanded a cell of maximum power, from minimum area, at minimum weight and this has dictated that the cell produced to satisfy this requirement is of the highest possible performance.

SATELLITE SOLAR ARRAYS

Satellite solar array design has followed two distinct channels, both of which offer advantages and disadvantages in the satisfying of an overall system requirement.

In one case the cells are mounted on a cylindrical body which spins with its axis perpendicular to the sun. In the other case the cells are mounted on deployed paddles which are sun orientated.

To give some idea of sizes involved, the recently launched communications satellites designated Intelsat 4, each carry 50,000 cells mounted on a cylindrical body, nine feet in diameter and ten feet high.

This initially will provide almost 900 W of power and will provide power for 5,000 simultaneous telephone channels or ten colour television transmissions. To provide 1 kW of power from a deployable array would require approximately 17,000 cells and, using two paddles, each paddle being typically one metre wide and five metres long (see Fig. 2).

THE ADVANTAGES OF SILICON

The justification for the choice of silicon is simple. As previously stated it is the second most abundant element and it has been the foundation of the semiconductor industry. As such it has seen an investment in its technology many orders greater than all other basic semiconductor materials.

The basis of using the experience gained from developing and producing solar cells for satellite

Fig. 3. A terrestrial solar panel as used for marine applications
applications is that the silicon voltaic cell has been the prime power service in over 700 American and some 500 Russian spacecraft of varying type.

Fiom this background the selection of a silicon photovoltaic cell as a design start point for terrestrial power applications was inevitabie and inarguable.

POSSIBLE ALTERNATIVES TO SILICON

It should not be thought that silicon is the only material suitable, and some effort has been devoted 10 other semiconductors.

The most notable of these have been gallium arsenide and cadmium sulphide. The former is able to withstand high temperatures and thus is able to generate at intensities 1,000 times greater than sunlight The problems of heat dissipation must still be solved, however, before it can be considered to be technically competitive, but on cost it must be extremely doubtful if it can ever be considered to be an economic alternative.

Cadmium sulphide offers a cheap means of producing a photocell of considerable area in a flexible sheet form. It does, however, suffer the disadvantage of much lower conversion efficiency, and hence will cnly ever be able to be suitable for that market segment that can accept no restrictions on area.

TERRESTRIAL SOLAR POWER

The initial choice of cell for terrestrial use was dictated by availability, and $2 \Varangle 2 \mathrm{~cm}$ reject satellite cells were used. These were cells that failed to fully satisfy the most stringent electrical and physical requirements of a space satellite specification but
which would work quite happily when mounted on a terrestrial panel.

The panel was designed to provide 400 mA at 15 V in the equivalent of bright sunlight, and required for this output 156 cells interconnected as 39 cells in series with four cell strings in parallel.

MARINE ELECTRONICS

The design and construction of this panel, ideal for off-shore repeater or navigation aids, is not really suitable for the larger volume commercial business. A fast expanding market is that of marine power generation. The use of instrumentation and electronics on yachts and power bcats is ever increasing with very little regard for the state of the onboard battery.

A small solar panel permanently mounted on the boat is extremely attractive from an economical and environmental standpoint. The use of solar panels in marine applications will, however, be limited by price considerations and only when a panel can be produced at a low enongh price will full market penetration be achieved.

LARGER SLICES

The techniques for the production of refined single crystal silicon have not stayed stationary and manufacturers now have readily available large area slices. This realises a slice diameter of typically 6 cm and allows the use of ceils of this size and proportional power rating.

Based upon expected conversion efficiencies the output from a circular cell of diameter 6 cm should be 500 mA at 470 mV when measured under $100 \mathrm{~mW} / \mathrm{cm}^{2}$ simulated sumlight at $25^{\circ} \mathrm{C}$.

The front active cell surface will have a simple metallised contact pattern and the back face will be fully metallised. The interconnection of celts must be performed simply, easily and reliably, to permit the building of the basic power modules.

Based upon the major market requirement for recharging nominal 12 V batteries the voltage capability of the module is defined as greater than 13.8 V . Thus a basic power module can be defined as 30 cells interconnected in series.
The expected output from the package under simulated bright sunlight conditions will be 500 mA at 12 V . The calculation for overall charging rate must be subject to some hypothesis as to expected weekly hours of sunlight and at what illumination intensity.

AVERAGE SUNLIGHT

The average daily hours of daylight during summer can be considered to be 15 hours. The Meteorological Office estimate for hours of sunshine on the South coast of England is a daily average of 7 hours. Asssming this to be at 75 per cent intensity, this is equivalent to $5 \cdot 25$ hours at full sun.

Thus the daily output charge from the panel will be $2 \cdot 6 \mathrm{amp}$-hours. Based upon a five-day week for charging and the boat teing in use the other two days this gives an average weekly charging capability of 13 amp -hours, neglecting any charging that can still take place during the time the boat is in use.

The expected current drain, based upon estimated usage of electronics and ancillary electrical equipment, is of this same order, 10 to 15 amp -hours, so the projected panel size would seem suitable for this market.

OTHER APPLICATIONS

Usage of this type of panel is by no means limited to matine applications. A similar application, and one that is being studied closely, is for use with caravan tailers.

The pouer output requirements for a solar panel in this application are almost the same as on board a boall and hence the market can, hopefully, be catered for with an identically produced product.
Remote or unmanned automatic operation of road signs is receiving great attention, especially in the use of danger signs for such hazards as road works. The of ten seen flashing amber lights denoting road repairs could be easily solar powered.

Built-in rechargeable batteries could be charged during daylight hours for operation at night. The use of this twpe of power source could easily be extended to cover motorway hazard lights, emergency telephone sustems and many monitoring devices.

Solar power gives to these applications the advantage of freedom from main power links and must improve thei: suitability for utilisation in many more wide rarging areas.

FORESTRY AND METEOROLOGY

These applications are ones that are commonly encountered by a wide cross section of the public but extensite markets exist in less well known areas. Forestry requires extensive use of remote automatic equipment ior such applications as fiewarning and Fortable or remote communications. The use of this type of power source is also available for weather monitoring, rain gauges, flood warning, seismic detection. The list can be almost endless.

Two app!ication areas that will demand a high reliabild factor are those of remote area repeater links for communications and off-shore navigation aids.

REPEATER STATIONS

Microwave relay stations and telephone repeater stations are often situated in some of the remotest parts of the world and are required to remain in unattemded trouble-free operation for periods of a year or longer. It can cost a great deall of money to transpert people and spares to these sites for servicing and repair and it is therefore essential that frequency of visits is as low as possible.

Photograph of a satellite built by the Hughes Aircraft Company for NASA arid launched in 1966

Photograph taken from Skylab is showing the deployed solar arrays

POWER PRODUCTION

The present major energy crisis has spurred even greater discussion and thought towards ways of producing, economically, consumer electrical p.ower, such that it can be considered a realistic alternative to power produced from fossil fuels.

Two ideas, once considered close to science fiction, are being discussed. One involves a large solar farm in a flat desert region and the other a large solar array in synchronous orbit above the earth beaming r.f. power to a terrestal station.

Power would be taken away on a National Grid type system. The problems of maintaining the solar blankets can be imagined and no acceptable solution has been found.

ORBITING SOLAR ARRAYS

The orbital power station having two large arrays, totalling 7.3×2.7 miles, is the current design thought and these would flank a microwave transmitting antenna that would be 0.63 miles in diameter.

It is intended to try and fly a prototype satellite in 1990 and a commercial version could be flying at the end of the century.

THE SOLAR POWER AGE

The world markets for small commercial systems currently demand a high technology product in Jarge volume at low cost but this is only the smallest tip of some vast technological iceberg. A technological miracle is in the making and it is one that could revolutionise our outlooks.

The photovoltaic cell and the solar array will become everyday commodities known to all. They offer a method of saving our precious and dwindling stocks of fossil fuels for processes that require these and they will provide an economic pollution free energy solution based upon a natural power source that will never be diminished.

We have seen the Stone Age, the Iron Age, the Industrial Revolution, the Space Age. The possibility of a Solar Power Age must not be dismissed or taken lightly.

WHAT'S IN A NAME?

We are all certain to be subjected during the next few months to growlings, grumblings, even open hostility directed towards the so-called multinational companies. In fact the very word multinational has now joined other political jargon words like racist, fascist, red, speculator, capitalist, terrorist in a fully emotive sense.

Multinational, in short, has become a word of abuse. Nothing to do with injection of capital and creating employment and wealth in underdeveloped or otherwise needy areas, and everything to do with faceless (indeed, probably heartless as well) exploiters counting their gold in plush offices thousands of miles away. No wonder some of the great multinational companies are keeping a low profile and, for one or two of them, with very good reasons.

Most of the outcry is directed against US-based multinationals but it has to be remembered that nearly all the great British companies operate multinationally, as do those of France, Germany and Italy.
rather liked the argument put forward recently by the German Siemens group to an American audience in defence of their penetration of the US market by acquisition of U'S companies as well as direct sales from Germany. Siemens, said their spokesman Bernard Mayer, is a World Company and this has been true ever since the company was founded by Werner von Siemens, 126 years ago. He quoted the installation by Siemens of the 7,000 mile London to Calcutta telegraph completed in 1870 as an example of operating on a world scale. And he pointed
out that Siemens' advanced technology products, which demand two million dollars R and D expenditure alone every working day, could not be supported by domestic sales alone.
In the United States, Siemens has now grown from a handful of market research men 20 years ago to a sales and production force of 2,000 . Steady, rather than dynamic growth, and still only a drop in the vast ocean of the US electronics and telecommunications industry.

My own rough guide lines for goodness factor in multinationals operating in Britain are that they should be British-managed, have good export potential, have some element of in-house R and D (i.e. not be iust an overseas production unit), and make a genuine contribution to the economic and social life of the country. Fortunately, there are more companies like this than of any other sort.
I suppose Mullard (Dutchowned) is the most notable example and of the more recently established companies, HewlettPackard (US-owned) has an imDeccable record. But there are many others and it will do us all good when confronted with mindless political slogans to pause and think.

CUTTING THE COST

Electronics, because of its steady advance in solid-state technology, is uniquely running against the tide of rising world prices. You get more value per unit cost every year. The electronic watch which last year cost $£ 100$ will cost you £30 by 1978 according to industry forecasts.

It's all to do with volume. Last year solid-state watch sales were 250,000 in a world market of 185 million watches, only 0.14 per cent. But by 1978, say the pundits, in a projected market of 227 million watches, the solid state watch will have 51 million sales or $22 \cdot 46$ per cent of the total market. By that time the cost of the C/MOS LSI chip will have dropped from 10 US dollars to 2.50 dollars, the digital display from 9 US dollars to 2 dollars, the quartz crystal from 3 US dollars to 2 dollars and even labour (presumably through automation) from 5 US dollars to 2 dollars.

Take a single-chip electronic calculator. In 1970 the semi-conductor manufacturers made an "introductory offer" at 30 US dollars per chip. Last year, the price of the chip had plummeted to 5 dollars. This year the price is 4.50 dollars and the l.e.d. display is now 50 cents a digit instead of a dollar. The complete handheld calculator, albeit of the simplest type, is expected to fall
in cost to 20 US dollars by 1975 , well under $£ 10$ at UK prices, the limiting factor being promotional costs because intense competition encourages heavy expenditure on advertising.

The cost of a single planar transistor in 1959 was 50 US dollars. By 1976, when it should be possible to buy the cheapest calculator chip of some 3,000 transistors for 3 US dollars, the cost per transistor will work out at 0.001 of a US dollar. That's not the end of the story because if all these transistors were discrete and had to be hand-wired with external wiring at a cost, say, of 10 US cents a wire installed, then the total cost would be astronomical.

The big question now is whether the semiconductor wizards can achieve the same order of cost reductions in solar cells for commercial and domestic use to alleviate the energy crisis? One line of research is to fabricate the cells in continuous ribbons instead of individuallv. but even the optimists concede that it may be another ten years before a hundredfold reduction in cost is achieved. This is the order of cost reduction needed to make economic the direct conversion from solar to electrical energy.

INSPIRATION

We could atl kick ourselves at times for not spotting the obvious. The trembler bell in a telephone has been around ever since the telephone was patented by Alexander Graham Bell in 1876. If ever a mechanism needed up-dating it's that "oldy" in the base of your phone.
Mitel Canada Ltd. have come across with the answer, and it's an answer with enormous market potential. A replacement panel incorporating a 2 -inch loudspeaker, amplifier and control circuits.

The all-electronic bell gives a pleasant ringing tone, as good or better than any electro-mechanical bell, and it has the advantage that it can also be used for ordinary loud-speaking messages. On a PABX system in a hotel, for example, the operator can make an emergency announcement to all rooms simultaneously or individual announcements to selected guests without the receiver beina off its rest. If you are usina the phone at the time, then the announcement automatically breaks into your conversation.
It is claimed that the Mitel "Mitone" signalling system can be manufactured to sell at the same cost as the old-fashioned singlepurpose bell. Another advantage is that drive voltage is much lower and more in line with the requirements of modern electronic switchboards.

Should you be, in any way dissatisfied with the MANUALS your money will berefunded by return of post.

> approach-to-learning method nas proved beyond doubt that acquiring knowledge can be an enjoyable experience.

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES,
Please find enclosed P.O./Cheque value £............
BASIC ELECTRICITY 5 parts $£ 5 \cdot 30$
BASIC ELECTRONICS 6 parts $£ 6 \cdot 40$ -
BASIC TELEVISION 3 parts $£ 3 \cdot 60 \square$
Tick Set(s) required. Prices include Postage
YOUR 100% GUARANTEE. If after 10 days examination you decide to return the Manuals your money will be refunded in full.
NAME
block letters
FULL POSTAL..
ADDRESS

BROMLEY, KENT. BR2 7HP

 V.S.. Farley " thank you.
A.C.S. Colwyn Bay

I earnestly belie ve these manuals make the subject
become a . Cake Walk".
S. S. Lewisham

SCORPTOMR2 inntion system 1 it Hew from FHCROSPARES
 * 6 OR 12 VOLT
 * + VE AND - VE GROUND

Here's the new, improved version of the original Scorpio Electronic Ignition System - with a big plus over all the other kits - the Electro Spares Kit is designed for both positive and negative ground automotive electrical systems. Not just + ve ground. Nor just -ve ground. But both! So if you change cars. you can be almost certain that you can change over your Scorpio Mk. 2 as well.
Containing alt the components you need, this Electro Spares Scorpio Mk. 2 Kit is simply built, using our easy-to-follow instructions. Each component is a branded unit by a reputable manufacturer and carries the manufacturer's guarantee. Ready drilled for fast assembly. Quickly ted to any car or motor cycle. When your Scorpio Mk. 2 is installed, you instantly benefit from all these Scorpio Mk. 2 advantages
\star Easier starting from cold \star Firing even with wet or oiled-up plugs \star Smoother running at high speed \star Fuel saving \star More power from your engine \star Longer spark plug life \star No more contact-breaker burn.
Electro Spares prices:
De luxe Kit only $£ 11.50$ inc. VAT and $p \& p$. Ready Made Unit $£ 14.75$ inc. VAT and p \& p. State 6 V or 12 V system.
Send SAE now for details and free list.

FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics' Superb Hi - Fi tuner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'il return it in perfect order (for a nominal handling charge) Electro Spares price only $£ 28.50$ inc. VAT and p \& p.

'GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere 0.02%, and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms . Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now Depending on your choice of certain components, the price can vary from $£ 50$ to $£ 60$ inc. VAT and $p \& p$.
\star All components as specified by original authors, and sold separately if you wish
\star Full constructional dara book with specification graphs, fault finding guides, etc. 55 p plus 4 p postage.
\star Price List only. Please send S.A.E. (preferably 9×4 minimum) for full details.
\qquad

IKHITIPIS

MONEY BACK IF NOT SATISFIED Free fabulous NEW catalogue. Send SA. Sil
 \qquad
BIG ${ }^{1 / 4}$ panelclip \& RED LED 28p. GREEN \&clip $59 p$ INFRA RED LED \&1. 1C photo amp44p.\& amp/switch 85 p

Dinitel Digilay LED $1 / 3$-9pp.on. £1. 69

Minitron type 0.9dPDIL $£ 1 \cdot 19$. SOCKETS 13 p.

IL DILITAL ELDEHchips.

Texas etc with 4 displays $£ 12.6$ displays \& chip $£ 14$. Mostek date \& alarm chips with 6 displays $E 19$. ${ }^{\circ}$
Hit:All parts \& case. National chip. 4 dig it $£ 20.6 \times £ 23$.$) I$
yitimitegrated circuits 741: 8pin 29p, to 99 \& 14p in 27p 748 33p 709 21p KIT £469 710 35p 72359 p. 555 timer 79 p ZN414 rx. £l•10 built $£ 8$ 703 rf if 28P mc 1310 \& led £ $2.76 \mathrm{mcl} 339 \mathrm{fl} \cdot 20$ TADIOO \& if £2 1 AMP + REGULATOR $7805,5(\& 7-20) \mathrm{V}$. als, $12 \& 15 \mathrm{~V}$ £ 1.49 AUDIO AMPS : mfc4o o o 50p; $1 \& 2 \mathrm{~W}$ £ $1 \cdot 19 ; 3 \mathrm{~W} £ 1 \cdot 29 ; 6 \mathrm{~W} .$.

why low prices. NEW 16pin counter/driver 90/47 £2.25 DALO pcb.PEN 69p DIL SOCKETS: Prof esional/gold P.Pins hior lo profile 8,14,16 Pin 13p
2N3055 33p.fourf1. BC107, BC108, BC109 - ll 7p ea

 2N2926 Oy 7p 2N 3053 15p $2 N 3702 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 11$ all $9 p$ ea 2N3904/6 14P HEATSINKS $5 \mathrm{f} / \mathrm{TO} 518 \mathrm{f} / \mathrm{TO} 18$ 5p. TO3 $34 \mathrm{4L} 29 \mathrm{p}$ TV 3 14p GAPACITORS $25 \mathrm{~V} 10,50,100 \mathrm{uF} 5 \mathrm{~F}$. DISCS 4 p . PRESETS 5 P . CARBON-
POTS IIP.Switch +1 I PDual 55 P. ULTRASONIC TRANSDUCERS $£ 2$ e
FLUORESCENT LIGHTS,8W. 3 '12VOLT 2.59
TRTITUS FLUORESCENT LIGHTS,8W. I3" 12VOLT £2.59 algationias p.o. bOX 29, BRACKNELL,BERKS.

PSYCHEDELIC LIGHTING UNITIN KIT FORM

Make this fascinating three-channel unic from a kit which contains all components needed to produce an ever changing light display. Takes its drive from the speaker terminals of a record player, tape recorder
or portable radio. Will drive a total of 2 kW of coloured lamps at 240 or portable radio. Simplited complete with PVC covered steel cabinet with holes ready punched for controls and cable outlets. Master control included. Coloured lamps not supplied.
Price per kit E 12 .80.

METAL CABINETS

These attractive steel cabinets are PVC covered in a range of colours, and offer an economically priced unit for the home constructor. The chassis, which has a white satin PVC finish. provides an easily accessible building area, with an integral fascia panel. The cabinet is supplied complete with stick-on feet.
effort will be made to supplya selected Grey, Black, White and Blue. Every if possible.

Price
$75 p$
E1.60 your own requirements. Please send S.A.E. for quotation

FIXED VOLTAGE REGULATORS
TO3 case. Gives stabilised supply. MVR 5 V . MVR 12 V , MVR 15 V All priced at El 1.98

\section*{| $V E R O B O A R D$ | | D.IL, REED RELAY |
| :---: | :---: | :---: | :---: |}

$2 \frac{1}{2}$
$2 \frac{1}{2}$
$2 \frac{2}{2}$
$3 \frac{2}{4}$
$34 \times \sin 310$ 29p
Our CATALOGUE, oriced at $25 p$ post free in U.K., shows most of the R.S. range of professional components. Prices include VAT. All orders over 41 POST FREE-U.K. only. Overseas postage at cost. 5.A.E. with all queries please

P.O. Box No. 1. Llantwit Major, Glamorgan, Wales CF6 9YN

NEWS BRIEFS

MARCONI CENTENARY EXHIBITION

To mark the centenary of Guglielmo Marconi's birth. the Science Museum in Exhibition Road, London. is holding a special exhibition which will run throughout the summer to about October.

The exhibition consists of a large selection of documents, and a display of early apparatus together with many of Marconi's personalia and commemorative material

Experiments with radio waves were carried out in 1888 by Hertz and were extended by various physicists in following years. It was not until 1894 when Hertz died. that the young Marconi, 20 years of age, appeared on the scene.

After reading a commemorative article on Hertz he began experimenting in the attic of his parents'. large villa near Bologna, Italy. By the summer of 1895 he had transmitted a signal over a few yards using a simple spark gap transmitter, and coherer type detector

By August 1895 Marconi had achieved transmission over $1 \frac{3}{4}$ miles. The Italian government remained unimpressed and so Marconi set sail for England

Following preliminary demonstrations in his laboratory the chief engineer of the Post Office. William Preece, to whom Marconi had been introduced by his cousin, arranged formal demonstrations to Post Office officials.

Observers were suitably impressed and in a second demonstration six months later the range was extended to seven kilometres. An historic lecture at Toynbee Hall followed this and Marconi soon became a celebrity

The scientific community was, however, less enthusiastic suspecting Marconi of plagarism. In particular, Professor Oliver Lodge, who first developed the coherer and had in fact transmitted Morse signals over 60 metres before Marconi began his experiments, was deeply offended.

In 1897 Marconi established "The Wireless Telegraph and Signal Company Limited" much to the disgust of the Post Office who did not favour experiments being carried out without their involvement.
In 1899 cross-channel transmissions were successfully achieved and the possibility of transatlantic radio was soon realised.

On the 12th December, 1901 the first transatlantic message. a single Morse letter S, was transmitted from England to Newfoundland giving Marconi success against all the odds.

Photograph of Marconi in London in 1896, showing the original apparatus brought by him from Italy. (Marconi Company Ltd.)

PROUECT

HIGH IMPEDANCE VOLTMETER

AUGUST ISSUE ON SALE JUIY 12,1974

PRACTICAL

 ELECTRONICS Scutar onder with 900 K K w wiont

 WE.

	.	SILVANIA MAGNETIC SWITCH Now complate with reference magnet! A magnetically activated switch. vacuum sasied in a glass onvelope Siver contacts, normaliy burgaer alarms. security sysiems atc, end FREEP \& P over 10
	MAINS SOLENOID This lithe unit glvas mataly 1 through noxi mataty elbow $\begin{gathered}\text { hrough hinged } \\ \text { Bracket } \\ \text { Incor }\end{gathered}$ 	An ultra precision tape motor deasigned for use in the $A G 20$ portabie recorder, Torque Draws 60 ma on run 600rpm $=$ motor $3^{\prime \prime}$ dia . $\times{ }^{11^{\prime \prime} \text { "O Originai }}$ P \& P. 25p. Quantilites available
Fioreglass copper-clad laminate, Finast quality epooxy sheat plus 25p each additionat sheert		
SMITHS RINGER-TIMER Ralibite 15 minute times. sping wound (concurrant with time setting) $15 \times 1 \mathrm{~min}$ beozel 37 dia 81.40 .150 P \& P	OPEN FRAME shaded pole GEARED MOTORS (Durai gear case) High torque. approx overal! size 3 " $\times 34$ " Similar to above, 19 rpm . $22 \cdot 70$. P \& P 30p liorpm with pressed steel gear cise (similar to above but SLIGHTLY SMALLER). \&2.70. P \& P 30p	ALL PRICES INCLUDE V.A.T. Whilst we welcome official orders from established companies and Educational Departments, it is no longer practical to invoice goods under $£ 5$. Therefore, please remit cash with orders below this amount
MICROPHONE CAPSULES 		

PE RONDO QUADRAPHONIC SYSTEM

NEW ITEMS INCLUDE FM TUNER!

Garrard SP25/4. Elac STS 144/17, wired in plinth with cover
Set of 4 Patchboards, Fanning Strip, Plug. Socket, 24W Edge connector
Set of 4 new sryle edge connections
Set of 4 Pillars, 2 End Caps, Bridge and Side Trim
FM Tuner kit, very high performance
AM/FM Tuning Scale assembly, c / w meter and calibrated Electroluminescent dial
Tuner Section Fascia with window and printed trim
Quadraphonic System Selector Swirch
Knob Pack (7 slider knobs plus Tuner knob)
CBS-SQ* Matrix Decoder kit (CBS-SQ T.M. CBS INC)
Matrix decoder as a built and tested module
Full pre-amplifier with selector switch
Power supply board kit
Main smoothing capasitors and clips (per pair)
Mains Transformer-wound to specification
Punched chassis with both screens
Control Section Fascia with printed trim
Presebuilt
Deutsche
Ceushe Elac STS144/17 Magnetic Cartridge list $\mathbf{£ 1 7 . 9 0}$ only
Rondo Loudspeakers, pair, built, Teak or sheer white
Rondo Loudspeaker kits. Teak or sheer white pair
SPECIAL 4 Speaker kits, (complete)
Bass Drive units. 2 per cabinets (each unit)
Tweeters, 2 per cabinet (each unit
New style crossover kits (built 50p each extra)
Quadraphonic Headphones-to hear is to believe
SUPERB ADVANCE CALCULATORS-
pocker 2 memory. \%, square root type 88
Pocket four function \% ultra dependable type 80
OTHER MODELS AVAILABLE-S.A.E. FOR LISTS PLEASE
COMPLETE P.E. RONDO AVAILABLE AS PUBLISHED
TRADE ENQUIRIES WELCOMED ON ALLITEMS AOVERT CORRECT AS AT 1574 OVERSEAS ORDERS ADO POST, SEND TO STUDIO ELECTRONICS INTERNATIONAL. U.K. ORDERS: ALL PRICES POST FREE, ADD 10% VAT TO TOTAL.

RAPID ORDER

<PLEASE TEAR OUT

SP2S/4. P. \& C. 144/17
SP2S/4. P. \&
PATCHBOARDS
Edge Conn. Set
Edilar Set
FM Tuner
Tuner Scal
TSFW
QSSW
QSSW
KNOB
KNOB
SQ. DEC. K
SQ. DEC. B. \& T
PRE-AMP
CAPS
CAPS
CHASSIS
CSF
CESD-K
SESD.
$144 . \& T$
LS-PR, BT. TEAK/WHITE
LS-PR, K TEAK/WHITE
BASS K TEAK/WHITE
TWEET
XO KIT-B. \& T.
$162 P$
88
88
80

NAME

for playing the game of nim

NIm is a game for two players. At each move a player may take any number of sticks from one, and only one, of several piles. He must remove at least one stick and the winner is the person to take the last stick. In an alternative form of the game it is the loser who is forced to take the last stick.

The game reputedly comes from ancient China, but was first analysed at the beginning of this century at Harvard, U.S.A. Clearly one or other of the players must win-there can be no draw-and it transpires that the winning strategy is closely related to the binary representation of the number of sticks in the piles.

Various designs for Nim playing machines have appeared over the years since the development of the digital computer and this article presents a contemporary one using readily available TTL digital integrated circuits.

WINNING STRATEGY

The prescription for winning at Nim relies on the fact that any arrangement of piles may be categorised as either a winning or a losing position. Further, if the arrangement represents a winning position the next move is certain to create a losing position, whilst it is always possible to play so that a losing combination is converted to a winning one again.

Thus if player A starts with a winning position, player B is bound to leave a losing one after his move. At this point A is able to convert the position to a winning one by making the correct move. The game is now back where we started and will continue to cycle in this way until A finally wins.

Should A make a wrong move at any stage the way is open for B to take over the winning strategy. As there are many more losing combinations than winning ones it is unlikely that even a player who commences with a winning position in his favour should make all the moves appropriate to his being sure of winning.

BINARY REPRESENTATION

To discover whether a given arrangement represents a winning position or not we must first write down the numbers in the piles in the binary notation. For example, suppose that there are three piles containing 3, 6 and 7 sticks then we can write these numbers in binary form as three columns

3	0	1	1
6	1	1	0
7	1	1	1
	2	3	2

Each column of this binary set should now be summed so that in this case we find the numbers 2, 3, 2, as shown. Now, a winning combination is one in which each power of two is represented an even number of times. Hence our example is a losing position because the second column, indicating the number of times that 2^{1} occurs, adds up to 3 which is an odd number.

To convert such a losing position to a winning one a player must remove sticks from any pile containing the highest unpaired power of 2 . In this example the highest unpaired power is 2^{1}, the middle column. and as each pile contains this power it is possible to produce a winning combination by taking sticks from any pile. In fact the combinations 1.6,7 $3,4,7$ and $3,6,5$ are all winning positions.

Should the players choose the alternative game in which the last player loses, then the above strategy follows through unchanged until no pile contains more than one stick. In this case a winning position is one in which there is an odd number of piles of one match each. It will be seen that this is the opposite condition to that imposed by the normal game in this case.

BASIC DESIGN

Fig. 1 presents a block diagram for a machine which will implement the principles outlined. Rotary wafer switches represent the numbers of sticks in
four piles 1 to 4, containing up to seven sticks each. These switches give outputs in binary coded form, so that, for example, if switch $S 1$ is set to 5 then A_{0} will be a logical 1 representing $2^{\circ}, A_{1}$ will be a logical 0 representing 2^{1} and A_{2} will be a logical 1 representing 2^{2}. For each power of 2 the four outputs from the four switches are taken to a Summer which produces an output equal to logical 0 if the sum is even and logical 1 it it is odd.

The Analyser takes these outputs and decides whether a winning or a losing position is set. In the former case the win output goes low and the 'Your Move' indicator lights. In the latter case the 'My Move' indicator lights and the Analyser initiates a search of the switches to find one which has the highest unpaired power of two present at its output. When this switch is found the appropriate lamp indicator lights.

The last-to-play (L.T.P.) circuitry simply tests for the simultaneous occurrence of no pile containing more than one stick and 55 being set to 'Loser'. In such a situation the control line L goes to logical 1 and the quantity NOT Σ_{o} is presented to the Analyser in place of Σ_{0}. A little thought will show that this fits the prescription outlined above.

METHOD OF PLAY

The challenger is free to set any initial combination on the switches Sl to S4. The machine should now be switched on and one of the move indicators

Fig. 2. Wiring detail for one of the decimal to binary switch encoders. Four such arrangements are needed
will immediately light. If 'Your Move' lights the challenger should make some legal Nim move. If the 'My Move' indicator lights then one of the lamps will also be lit and the player should turn the corresponding switch back until the 'Your Move' lamp lights. This represents the machine"s move. By continuing in this way, the challenger will invariably lose.

Fig. 2 shows the suggested arrangements of one of the four Encoders S1 to S4, all of which are wired in the same way.

Fig. 1. Block diagram of NIM machine. For detailed wiring of sub-assemblies, see foliowing figures

Fig. 3. Three exclusive OR gates make up each Summer. Three such circuits are required

Fig. 4. Arrangement for last-to-play (L.T.P.) circuitry. See Fig. 1 for interwiring detail

Fig. 5. Circuit diagram of Analyser gates

(a)

Fig. 6. The Search circuit. Three of these are required

SUMMER

It will be seen from Fig. 3 that the Summer is a very simple circuit block. Each gate employed here is the exclusive OR gate, or half adder. Whenever the inputs are identical, the output is 0 but when the inputs differ the output is 1 . That this is the function we need may be seen by realising that for our purposes all even numbers are equivalent to 0 and all odd numbers to 1 .

Repeated application of the truth table to this arrangement of three gates will show that the final ouput is 1 if the power of 2 is represented an odd number of times and 0 otherwise.

L.T.P. CIRCUITRY

The control line output, L, of the L.T.P. circuit comes from IC5 which is wired as a five input AND gate (Fig. 4) needs only to invert Σ_{o} when no pile contains more than one stick and the last person to play is deemed the loser. IC4 recognises the former condition by testing the 2^{2} and 2^{1} outputs from each switch. Only if these are simultaneously zero can that switch be displaying nought or one, and in this case the NOR output is a logical 1.

When the output from each of the NOR gates is 1 and the selector is set to "Loser" a control level I is produced which causes IC1d (Fig. 1) to invert the $\Sigma_{\text {o }}$ output.

Fig. 7. Switch Indicator circuit (a) output lamp logic (b) lamp driver circuit

ANALYSER

The purpose of the Analyser circuit (Fig. 5) is to find the highest unpaired power of 2 . If all powers are paired then the game is set in a winning position, and the Analyser indicates accordingly.

Working from the top we see that if Σ_{2} is high then the 2^{2} enable line is high also, but IC6b inverts this devel which forces both the other enable lines to stay low and forces the 'Win' output high. Similarly if Σ_{2} is low but Σ_{1} is high the 2^{1} enable line is high but the 2^{2} and 2° enable lines are low and the 'Win' output is high. Only if Σ_{2}, Σ_{1} and Σ_{0} are all low does the 'Win' output go low and, in this case, all the enable lines are also low. Thus a logical 0 at the 'Win' output corresponds to a winning arrangement.

The Win output controls the Move Indicator directly.

SEARCH CIRCUITS

Suppose that the 2^{1} enable line is high (this explanation follows in the same way for both of the other enable lines) then one of the three search circuits in Fig. 1 will be activated. These work in much the same way as the Analyser circuit once they are enabled.

Consider one search circuit in Fig. 6. If the A_{1} level is high then El goes low and the other gates in the circuit are disabled forcing a high condition

COMPONENTS

Resistors

R1-R17	$1 \mathrm{k} \Omega$		
R18	17	off $)$	R20
$6.8 \mathrm{k} \Omega$	68Ω		
R21	$1 \mathrm{k} \Omega$		

R18 $\quad 6.8 \mathrm{k} \Omega$
R19 $2.7 \mathrm{k} \Omega$
Capacitors
C1-C3 $\quad 0.1 \mu \mathrm{~F}$ (line supply decoupling capacitors for every five i.c.s)
$\mathrm{C} 43,300 \mu \mathrm{~F}$ elect. 16 V
Potentiometer
VR1 $1 \mathrm{k} \Omega$ preset
Diodes
D1-D8 OA81 (8 off)
D9-D12 W005 full wave rectifier (50 p.i.v., 1A)
D13 ZL3.3, 3.3V, 1.5W Zener
Transistors
TR1-TR7 BC108 (7 off) TR8 |2N3054 TR9 BC109
Integrated Circuits

IC1-IC3	SN7486 (3 off)	IC8	SN7400
IC4	SN7402	IC9	SN7410
IC5	SN7408	IC10-IC14	SN7420
IC6.	SN7400		(5 off)
IC7	SN7410		

Switches

$$
\begin{array}{ll}
\text { S1-S4 } & 2 \text { pole, } 8 \text { way rotary wafer switches (4 off) } \\
\text { S5 } & \text { Single pole change-over } \\
\text { S6 } & \text { Double pole mains on/off toggle }
\end{array}
$$

Transformer
T1 Mains transformer-primary 240 V ; secondary $6.3 \mathrm{~V}, 1 \mathrm{~A}$
Lamps
LP1-LP6 6V, 0.04A filament lamps (6 off)
Miscellaneous
Contil Case No. 975-West Hyde Developments
at each of the other outputs $\mathrm{F} 1, \mathrm{G} 1$ and H1. This will cause lamp LP1 to light. Similarly, if B_{1} is high then F1 goes low and the other outputs are forced to stay high so that only LP2 will light.

If A_{1}, B_{1} and C_{1} are all low then Hl goes low and LP4 lights, since the enable line tells us that one of the switches must be presenting a 2^{1} contribution.

SWITCH INDICATORS

Each Switch Indicator comprises a NAND gate coupled to a lamp driver and lamp as in Fig. 7. When all three inputs are high the output of the NAND gate is low and the lamp stays off. When a low condition is received from one of the search circuits the output of the NAND gate goes high, and so the lamp lights up. So long as no fault exists, only one lamp can be lit at any one time.

The driver transistors should have a current gain of at least 50 -the higher the better-and should be capable of passing up to 100 mA . The power dissipation is very small, however, since each transistor is either fully conducting or completely off.

MOVE INDICATOR

The Move Indicator (Fig. 8) consists of two lamp driver circuits coupled by an inverter. The philosophy here is that if it isn't your go, it must be mine!

A discrete circuit is used for the inverter in the prototype, but one of the odd unused gates from the main circuit would work just as well.

The same comments as above apply to the characteristics of the driver transistors used here.

Fig. 8. The Move Indicator consists of two lamp drivers coupled by an inverter

Fig. 9. Pin diagrams for the i.c.s used

Fig. 10. Suitable power supply for the NIM machine CONSTRUCTION

Providing all interconnecting leads are kept below 10in component layout is not critical. The subassemblies given in the figures should be individually assembled and checked electrically before interwiring the complete machine according to Fig. 1:

The pin wiring for the i.c.s is given in Fig. 9 and a suitable power supply in Fig. 10.

The normal i.c. practice of decoupling every 5 to 10 packages with a capacitor of about 0.1 microfarads should be followed.

The use of i.c. holders is not recommended on grounds of cost. The simple gates used in these circuits are available very cheaply, often at prices comparable with the cost of holders.

PATENTS LIBRARY

Some remarks and reminders on general patent matters bear making As most readers will understand the British Patents reported in these columns are selected from the latest batches published (at the rate of around 4,000 a month) by the British Patent Office.

Once a week a new issue of patent specifications is laid out for public inspection in the library attached to the British Patent Office in Southampton Buildings, just off London's Chancery Lane. Similarly, issues are laid out at other libraries round the country. At the same time copies of the specifications are made available for purchase from the Patent Office Sales Branch by any member of the public at 25 p each, post free.

At first sight this publishing of orotected ideas seems a contradiction in terms. A patent application is made by an inventor who wishes to protect or monopolise his idea for a number of years. While the application is examined by the British Patent Office it is kept rigidly secret from the public; only the title, name and application date are listed in the public card indexes kept in the library. But when the application has been accepted and is published, its content is there for all to read. So what protection is a patent providing for the inventor? And would it not have been hetter for them simply to keep the r-tails of his invention secret and not involve himself in the expense of securing a patent (likelv to be at least $£ 100$ if handled by a Patent Agent)?

PATENT CONTENTS

A patent specification is worded in a language which many people regard as an incomprehensible mixture of legal and technical jargon. After a legally worded preamble, every specification launches into a general description of the invention and then moves on to a specific description (usually with drawings) which explains in detail how one or more practical embodiments of the invention actually work.

Every patent specification ends with a set of claims which are the
most important part when monopoly d infringement are considered. The claims define the scope of monopoly which the Patent Office has agreed to allow the inventor, having carried out searches through previously published patents.

If a claim is too broad, it may "catch" a large number of "infringing" articles, but it may also embrace articles that are known to be old. So the claim is in practice invalid. And anyone concerned and believing that the claims of a fresthly qublished patent are obviously invalid can either ignore them or legally oppose them at a Patent Office Hearing.

ADVaNTAGES OF PUBLLSHHG

Publishing patents also serves to enhance the richness of human knowledge and once a patent has expired (even if the full $£ 300$ worth of annual renewal fees are paid, a British patent can only last 16 years) all that it discloses and claims becomes part of the public domain. The basic reasoning is that the inventor is granted a limited monopoly in return for disclosing his idea rather than keeping it secret. Incidentally, laying open the details of an invention to the public also serves as something of an advertisement for the owner of the patent, who may be approached by manufacturers who wish to make what he claims under a licence.

It is a basic canon of patent law throughout the world that (subject to a verv few exceptions) no one san patent an invention once it has been disclosed to the public. Thus, usually, once an invention has been published (e.g. in a book or magazine, or offered for sale) no one, the inventor included, can subsequently patent it. But it is perfectly safe for an inventor to lodge an application (even if it is accompanied only by a Provisional Specification, which simply lies fallow at the Patent Office for a year) and then immediately publish his invention. Making the patent application generates a priority date which safeguards subsequent disclosure.

Where details of a circuit or construction are given in a magazine with d-i-y slant, e.g. Practical Electronics or Everyday Electronics, it would not normally be possible for anyone to apply for a patent,
for anything disclosed, after publication. However, if a contributor had already applied for a patent before the appearance of the article describing his design, then the appearance of that article would not in itself invalidate any patent subsequently granted.

LEGAL ACTION

Because the long arm of patent law moves slowly, there is often a gap of several years between original application and final acceptance and grant. Thus it is perfectly possible that a circuit or design published in a magazine such as this could already be the subject of a pending patent application which will not come into legal force until months or even years after the appearance of the relevant magazine issue.

Usually no action for infringement can ever be taken on a pending patent application (remember, they are kept secret so it would be grossly unreasonable if such action could be taken) this could under certain circumstances mean that designs to be found in some back numbers are only now protected by patents.

In practice these circumstances have never presented problems and are unlikely ever to do so, largely because the law is not often an ass. For instance, it is so unikely as to be inconccivable that the owner of a patent would ever be in a position to know who was making a "onenff' model of his design in the privacy of his own home or garden shed.

But anyone considering an expensive production run of any construction should always try and discover whether or not patent rights (perhaps owned by some completely different third party) are involved before embarking on such a project. For this reason it would seem in the interests of everyone if contributors with d-i-y projects included a reference by number to any relevant patents or patent applications.

Finally, readers believing that thev have a patent problem on their hands should seek advice from a Patent Agent; no one on Practical Electronics can enter into correspondence on such matters.

Save a massive $£ 10$ on the popular Sinclair Cambridge kit．．．

now only £14－95！

An advanced 4－function calculator in kit form

 The Cambridge kit is the world＇s largest－ selling calculator kit．It＇s not surprising－no other calculator matches the Sinclair Cambridge in functional value for money； and buying in kit form，you make a substantial saving．
Now，simplified manufacture and continuing demand mean we can reduce even the kit price by a handsome $£ 10$ ．For under £15（plus VAT），you get the power to handle complex calculations in a compact， reliable package－plus the interest and entertainment of building it yourself ！

Truly pocket－sized

With all its calculating capability， the Cambridge still measures just $4 \frac{1}{3}^{\prime \prime} \times 2^{\prime \prime} \times \frac{11_{1}^{1 "}}{16}$ ．That means you can carry the Cambridge wherever you go without inconvenience－it fits in your pocket with barely a bulge．It runs on ordinary U16－type batteries which give weeks of normal use before replacement．

Easy to assemble

All parts are supplied－all you need provide is a soldering iron and a pair of cutters．Complete step－by－step instructions are provided，and our service department will back you throughout if you＇ve any queries or problems

Total cost ？Just f16．45！

The Sinclair Cambridge kit is supplied to you direct from the manufacturer．Ready assembled， it costs $£ 27.45$－so you＇re saving $£ 11$ ！Of course we＇ll be happy to supply you with one ready－ assembled if you prefer－it＇s still far and away the best calculator value on the market．

Features of the Sinclair Cambridge
关Uniquely handy package． $4 \frac{1^{\prime \prime}}{} \times 2^{\prime \prime} \times \frac{11}{16}$＂，weight $3 \frac{1}{2}$ oz．
＊Standard keyboard．All you need for complex calculations．兴Clear－last－entry feature．
关Fully－floating decimal point．
关Algebraic logic．
谷Four operators $(+,-, x, \div)$ ， with constant on all four．
关Constant acts as last entry in a calculation．
养Constant and algebraic logic combine to act as a limited memory，allowing complex calculations on a calculator costing less than f 17 ．
丷Calculates to 8 significant digits．
Clear，bright 8－digit display．
※Operates for weeks on four U16－type batteries．

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic compcnents pack (diodes, resistors. capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book - free! If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations.

Sinclair Radionics Ltd, London Road, Silves, Huntingdonshire Reg. no: 699483 England VAT Reg. no: 213817088

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 80 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!

Take advantage of this money-back, no-risks offer today

The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year. Simply fill in the preferential order form below and slip it in the post today.

Price in kit form : $£ 14.95+£ 1.50$ VAT. (Total : $£ 16.45$)
 Price fully built: $£ 24.95+£ 2.50$ VAT. (Total : $£ 27 \cdot 45$)

To: Sinclair Radionics Ltd, London Road,
St lves, Huntingdonshire, PE17 4HJ
Please send me
\square a Sinclair Cambridge Calculator kit at
$£ 14.95+£ 1.50$ VAT (Total : $£ 16.45$)
\square a Sinclair Cambridge calculator ready
built at $£ 24.95+£ 2.50$ VAT
(Total: £27.45)
*I enclose cheque for f \qquad made out to Sinclair Radionics Ltd, and crossed.
*Please debit my *Barclaycard/Access account. Account number
*Delete as required.
PLEASE PRINT

Repardart A SEEETON RHOM OUR POSTAAG

Good olde days !

For over twenty years, I have been an inveterate constructor. In my early days they were the designs of people more clever than myself. Then, with increasing knowledge and experience. I began to try my hand at designing my "own" circuits.
An essential part of my apprenticeship was acquiring the expertise essential if one was to become a skilful "chassis basher", out of aluminium, mild steel or tin plate. A chassis was an essential prerequisite for use with valves, which were, for the benefit of those who haven't seen one, made of glass with bits of metal inside them. The valves usually glowed dull red (that's the filament, son), sometimes got very hot, and sometimes "bit" hard if one got careless. I ended up in hospital once when I got careless whilst working on high power transmitters.
A well laid out, and carefully constructed chassis, imbued its constructor with a feeling of euphoria, whilst he sniffed at the delicate aroma of hot valves, warm Bakelite and warm transformer impregnant, occasionally enlivened by over heated resistors.-What joy! What contentment!
Then along came the transistor I had to discard most of my painfully acquired wisdom and start learning again. Early results were most discouraging, but I persevered, and, slowly, success came my way. But some of the pleasure had gone. A tag board here, a turret tag there. The resulting rat's nest on an s.r.b.p. board possibly worked, but it looked ghastly and meant that one less skill to be exercised.

To cap it all, along came i.c.s, and, again, less skill was required on the part of the constructor. A few i.c.s, and sundry components mounted on a bit of "holey" s.r.b.p. board (Veroboard) and there it was. It may have worked, but did it really take much "constructing"? I personally don't think so.

Over the period of time since I first entered the world of electronics. the individual constructor has had to exercise less and less skill, more and more is done for him. In this world of "instant" instants, who has the time to learn a new set of skills to really build or construct something different, something unique? amplifier you built. were the days. Motorway

It is a chastening thought, and, I think, a saddening one, to reflect on the electronics constructors lot in. say, ten years' time. You want to "build" a radio, son? You'd like to build a 50 W stereo amplifier? Here are three "cubular modules". press the top of that one, there's the radio you built. Plug the other two into the mains, plug in your sound source and there's the stereo

Where's the fun? Where's the pleasure of actually constructing something with your own hands? Fun? Pleasure? I for one, mourn the passing of the valve; the passing of the early transistor days.-Those
H. T. Kitchen,

Bulkington, Warks

Fog warning system

Sir,-With the perennial concern for Motorway safety I feel you should know about a fog warning system I have devised after a con siderable period of experimentation.

In principle it monitors the whole of the Motorway, is automatically triggered by fog or smoke and provides advance warning to motorists 300 m prior to the affected area.
The basic system is as follows (See Fig. 1). A light beam is directed along the Motorway verge in the direction of oncoming traffic to an optical receiver 300 m away. While the beam is maintained a relay controls another signal lamp directed to a receiver a further 300 m along the Motorway verge and so on. Such a chain is optically possible since Motorways are practically

Fig. 1. Basic receiver/transmitter unit for controlling fog warning lamps on the

Psycho-sensitive semiconductors?

Sir-With reference to Mr. Brian Baily's article in P.E. April '74 about ESP I should like to propose the following explanation of the results he obtained from his experiments on plants. I wish to point out that this is merely a hypothesis and that I have no evidence other than that which I state:

In one of the programmes in the recent BBC T.V. series "Young Scientist of the Year!" the results of a group of boys' experiments on growing plants in magnetic fields, were presented. They found that plants grown in a magnetic field bent and grew along the lines of force. Could this not be something to do with the fact that there is an atom of iron at the core of the chlorophyll molecule, which may render it magnetically sensitive?

It is possible that the molecules align themselves along the lines of force, presenting a coherent chain of electrically resistive molecules, whereas normally they would be in an amorphous distribution. This migration of the vital chlorophyll towards one point would explain the tropic response of the plants in the magnetic fields.

Is it not possible then, that if a large, strong field is enough to cause the plant to change its direction of growth, the weak field surrounding an electrically active brain would be sufficient to align one or two
chains of molecules and thus cause a change in the cells' resistance?

The shrimps' nervous system on contact with the boiling water would radiate a field of far greater strength than normal, this would be selected by the plant and the appropriate change in resistance would occur. I propose that a concentrating mind, regardless of the subject of that concentration, produces a field strong enough for the plant to detect.

Assuming this theory to be correct, there must be other chemicals possessing the same property, in which case it is not hard to imagine, in the not-too-distant future, the invention of a psycho-sensitive semiconductor device. This would be a boon for handicapped people who would be able to turn on equipment merely by thinking about it, no physical help required.

> P. Watson,
> Bedfordshire.

Hot line

Sir-A short while ago, my wife and I decided to change the position of the furniture in our lounge. The arrangement we chose meant that the colour television would not plug directly into the socket, so I decided to use an extension cable. The only one which was available was a 150 ft cable which I use with the electric lawn mower,

Being the cautious type I checked that the television would not overload the cable and as the cable
was rated at 5A and the television consumption 245 W , which is just over 1 A at 240 V , I decided that it would be safe. As you can imagine, 150 ft of cable across a lounge leaves quite a lot to spare so I coiled it neatly and put it behind the television.

I offered a neighbour of mine the use of my lawn mower as he was having trouble coping with a thick growth. As the cable on the machine was not long enough 1 also offered the extension cable, this was when I found to my horror that the neatly coiled cable had welded itself together, it had apparently acted as a heating coil with IA being sufficient to create enough heat to ruin all but 15 ft of the cable. During this time the cable has not short circuited or failed but it has left a nasty burn mark on the carpet.

I had wondered why the cat had taken to sleeping under the television, she usually finds the warmest position to curl up.
R. F. Burgin, Witham,
Essex.

According to I.E.E. regulations current ratings for cable are based on a fixed amblent air temperature. Any heat arising from the cable caused through coiling must derate this figure. The combination of heat generated in a long cable magnified by coiling and the cat probably contributed to the thermoplastic insulation deteriorating.-Ed

SOUND STWTHESIS FOOR THE AMATELR

Due to the unprecedented number of letters we have received from readers stating their disappointment at not being abie to attend the P.E. Audio Fair lectures, and more recently the lecture given at Essex University, we have decided to make available (at a small fee) to Clubs, Schools and Universities a taped recording and colour slides of the lecture.

Entitied "SOUND SYNTHESIS FOR THE AMATEUR" the tape runs for approximately 45 minutes at $7 \frac{1}{2}$ l.p.s. and was recorded on a Philips N4450 domestic recorder. The colour slides contain waveforms, block diagrams and circuits on the various sections of the P.E. Synthesiser. Only two sets of tapes and slldes are available and requests will be dealt with in strict rotation of receipt.

It is regretted that this service can only be offered to CLUBS, SCHOOLS, and UNIVERSITIES. The charge is $£ 1$ to cover handling and postal charges. A refundable deposit of $£ 5$, to cover any damage to tapes or slides, is also required.

Requests for the tape and slides (with date of proposed use) should be addressed to:
The Edftor, Practical Electron/cs, Flestway House, Farringdon Street, London, E.C.4.
It is regretted that we can only hansle postal requests.

There's never been an offer like it! Construct this 80 watt RMS Quadraphonic System with 4 matched high performance speakers. All finishes including polishing of cabinets and brushing and anodising of metal work are already completed. You can achieve the finest production finish and the styling will do justice to any room setting.

PLEASE SEND ME PLEASE TICK BOX
CBS SQ* MATRIX DECODER
*TM CBS Complete kit. Post Free. Inc. CBS Licence Fee + VAT 80p PREAMPLIFIER BOARD Complete kit. Post Free. + VAT 33p
MASTER VOL./TONE/BALANCE $\mathbf{£ 9 \cdot 3 5} \square$
BOARD $\begin{array}{r}\text { Complete kit. } \\ \text { Post Free. }+ \text { VAT } 93 p\end{array}$
POWER AMP BOARD AND
HEATSINK (Stereo Pair)
Complete kit. Per Board.
Post Free. + VAT 82p
POWER SUPPLY BOARD
COMPLETE Post Free. + VAT 55p
MAIN SMOOTHING CAPACITORS $\mathbf{E I} \cdot 65 \square$
(Two reqd.) Post Free. + VAT $16 p$ per pair
MAINS TRANSFORMER
Post Free. + VAT 68p
CHASSIS-PUNCHED AND
DRILLED WITH SCREENS
Post Free. + VAT 35p

E8-00 \square RONDO CASE
Post Free. + VAT 19p HARDWARE PACK CONTROL SECTION FASCIA Post Free. + VAT 38p STEREO DECODER KIT INC. BEACON Post Free. + VAT 59p STEREO DECODER READY BUILT AND TESTED Post Free. + VAT 76p ALSO-Suitable record playing equipment GOLDRING GIOI/2 TURNTABLE $\mathbf{6 2 3 . 9 0}$ Less Cartridge

Post Free. + VAT 52.39 DEUTSCHE ELAC STS 144/17 CARTRIDGE

〔7.64 \square

SPEAKER KITS All components parts for "Rondo" loudspeaker assemblies are available, including special precision machined wrapround cabinets for very easy construction and perfect professional finish-as shown in fig. 7.9 of January 1974 issue

ADDITIONAL ITEMS
$\mathbf{£ 1 . 9 2} \square$ COMPLETE SET OF 4 EDGE- $\boldsymbol{\in l} \cdot 44 \square$ CONNECTORS
62.20 \square Pomple Pree. + VAT 14p COMPLETE SET OF PATCH
BOARDS AND FANNING STRIP
$\mathbf{\$ 3} \cdot 54 \square$
$\mathbf{£ 3 . 8 5} \square^{\text {BOARDS AND FANNING STRIP }}$
connector Post Free. + VAT 35p
©5.95 \square WUNER SECTION FASCIA AND
£3.85 \square
COMPLETE SET OF 7 SLIDER $\quad \mathbf{1} \cdot 25 \square$
KNOBS AND 1 TUNING KNOB
Post Free. + VAT 12p
QUAD SELECTOR SWITCH
E1.43 \square
4 PILLARS AND 2 END CAPS $\mathbf{£ 3 \cdot 3 0 \square}$
AND CENTRE BRIDGE AND
SIDE TRIMS Post Free. + VAT 33p
NEW RONDO ADDITION
F.M. TUNER KIT $\mathbf{I}^{\boldsymbol{\mu}} \boldsymbol{\mathrm { V }}$ S Sensitivity $\mathbf{£} \mathbf{\$ 7 . 5 0} \square$

High Performance
Post Free. + VAT $f 1.75$
TUNI': DIAL ASSEMBLY $\quad \mathbf{1 0} 42 \square$ Complete with Meter and
Calibrated Electro-luminescent
Dial Post Free. +VAT 11.04

COMPLETE SPEAKER KIT WITH 4 DRIVE UNITS,
CROSSOVER WADDING, ETC. INCLUDING CABINETS Price Per Pair

+ VAT $£ 3.55$ $\mathbf{\$ 3 4 \cdot 5 0 \quad \square}$

SPECIAL OFFER - SAVE $\mathbf{E 7}$

4 Speaker kits (as required for Rondo) $\quad \mathbf{6 2 . 0 0}$ Post $£ 2 .+$ VAT 16.40
Comprising 16 loudspeaker drive units, FOUR 5 element crossover networks including 12 prewound coils, four fully machined and polished wrap-round cabinets, four routered front and four routered back panels. 72 feet of coded coloured wire, four recess panels containing din and 4 mm sockets, 24 lengths of $2^{\prime \prime}$ thick special acoustic wadding and latest acoustically transparent Declon fronts to complete the finish.

MONEY ENCLOSED \mathcal{L} \qquadCHEQUE/P.O./MONEY ORDER

We apologize to our customers for any inconvenience caused by delay in delivery. This is due to tremendous demand for our products and we are endeavouring to clear back-log with all possible speed

BLOCK CAPITALS PLEASE
CHEQUE/P.O./MONEY ORDER

NAME
ADDRESS
POST TO:
SONAX ELECTRONICS, Spencer House, Brettenham Rd., Edmonton, London, N:18

VALVE MAIL ORDER CO. 16a WELLFIELD ROAD, LONDON SW 16 2BS SPECIAL EXPRESS MAIL ORDER SERVICE ten post free. INTEGRATED CIRCUITS 5p +ip each, adde

[^4]
TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS
Prim. 120/240V. Sec $120 / 240 V$ Centre Tapped and Sereened ALSO AVAILABLE WITH $115 / 120 \mathrm{~V}$ SEC. WINDING
 $\begin{array}{cccccccc}\text { No. (Wates) } & \text { ib oz } & & & \\ 07 & 20 & 1 & 8 & 7.0 \times & 6.0 \times & 6.0 & 2.55 \\ 149 & 60 & 3 & 12 & 9.9 \times 7.7 \times 8.6 & 3.79 & 36\end{array}$ 1 150
151
152
153
154
155
156
158 $\begin{array}{rr}1 & 200 \\ 2 & 250 \\ 350 \\ 5 & 500 \\ 750 \\ & 1000 \\ & 200\end{array}$
$\begin{array}{rrrrr}12 & 9.9 \times 7.7 \times 8.6 & 3.79 & 36 \\ 0 & 12.9 \times 8.9 \times 8.6 & 4.17 & 52 \\ 2 & 12.1 \times 11.8 \times 10.2 & 7.09 & 52 \\ 0 & 14.0 \times 10.8 \times 11.8 & 9.25 & 67 \\ 8 & 14.0 \times 13.4 \times 11.8 & 17.82 & * 2 \\ 0 & 17.2 \times 14.0 \times 14.0 & 24.31 & * \\ 0 & 17.2 \times 16.6 \times 14.0 & 29.87 & : \\ 0 & 21.6 \times 15.3 \times 18.1 & 49.25 & \end{array}$

CASED AUTO TRANSFORMERS
115500 W enclosed transformer, with mains lead and swo 115 V outiet socket

PRIMARY $200-250$ VOLTS 12 AND (ISOLATED 24 YOLT
Ref. Amps. Weight Size cm. Secondory Windings P \& P

 $\begin{array}{ll}18 & 4 \\ 0 & 6 \\ 08 & 8 \\ 72 \\ 16 \\ 17 \\ 115 \\ 187 \\ 226\end{array}$ $\begin{array}{cccc} & 2 & 12 \\ 2 & 12 \\ 3 & 8 \\ & 5 & 8 \\ 6 & 6 & 4 \\ & 6 & 12 \\ & 8 & 12 \\ & 11 & \\ 30 & 15 & 15 & 30\end{array}$
 $9 \times 8.0 \times 7.70 .12 \mathrm{~V}$ at $3 \mathrm{~A} \times 2$
$9 \times 8.9 \times 8.60 .12 \mathrm{~V}$ at $4 \mathrm{~A} \times 2$ 9.9×10 9.1×9

4.0×9 | $.6 \times$ |
| :--- |
| 9×8 |
| 9×1 |
| $9 \times$ |
| 1 |

$0-12 V$
0.12 V
f. Amps Weight Size cm. 10 VOLT RANGE

Ref. Amps. Weight Size cm. 50 VOLT RAMGE P
p
30
36
42
52
52
67
97
Ref. Amps. Weight Size cm. 60 VOLT RANGE Secondary Tops P
$\begin{array}{lllllll}\text { Ref. Amps. Weight Size cm. Secondory Tops } \\ \text { No. } & 16 \mathrm{Oz} & & \\ 124 & 0.5 & 2 & 4 & 7.0 \times & 6.7 \times & 6.1 \\ 126 & 1.0 & 3 & 0.24-30-40-46-60 \mathrm{~V}\end{array}$

124	0.5	24	$7.0 \times 6.7 \times 6.1$	0.24-30	48-60V	$2 \cdot 12$
126	1.0	34	$8.9 \times 7.7 \times 7.7$,	.,	2.97
127	2.0	64	$9.9 \times 9.6 \times 8.6$			$4 \cdot 67$
125	3.0	812	$12.1 \times 9.9 \times 10.2$.,	'	7.11
123	4.0	1312	$12.1 \times 11.8 \times 10.2$.',	\cdots	9.20
40	5.0	1200	$14.0 \times 10.2 \times 11.8$	",	",	10.83
120	6.0	158	$14.0 \times 12.1 \times 11.8$,.	",	13.35
121	8.0	2500	$14.0 \times 14.7 \times 11.8$,		15.01
122	10.0	250	$17.2 \times 12.7 \times 140$.,		$22 \cdot 10$
189	12.0	2900	$17.2 \times 14.0 \times 14.0$	"	"	24.74

$4 P$
p
36
36
42
52
67
67
82
4
4

Ref. No.	MINIATURE TR	Pre Th	ANSFORMER Size cm.	S WITH SCREENS		
		Weight		Volts		
238						
212	14	12	2.8 $6 \times$	3-0	4	
13	100	4	1.1 3.9	$0-6,0-6$. 67	2
235	330, 330	4	$4.8 \times 2.9 \times 3.5$	0-9, 0.9	1.67	0
207	500, 500	100	$6.1 \times 5.4 \times 4.8$	0-8-9, 0-8-9	2.23	22
208	IA, IA	112	$7.0 \times 6.4 \times 6.1$	0-8-9, 0-8-9	3.00	0
236	200,200	4	$4.8 \times 2.9 \times 3.5$	$0.15,0.15$	1.67	10
214	300, 300	4	$6.1 \times 5.8 \times 4.8$	$0.20,0.20$	1.76	22
221	700 (d.c.)	18	$7.0 \times 6.1 \times 6.1$	20-12-0-12-20	1.55	30
206	1A. IA	212	$8.3 \times 7.7 \times 7.0$	0-15-20, 0-15-20	4.05	
203	500,500	24	$8.3 \times 7.0 \times 7.0$	0-15-27, 0-15-27	3.10	
204	IA, IA	3	$8.9 \times 7.7 \times 7.7$	0-15-27.0-15-27	3.15	38

PLEASE ADD 10\% FOR V.A.T.
INCLUDING P. 黒 P.
BABRIE electronics

NEAREST TUBE STATIONS ALDGATE \& ALDGATE EAST

Trannies

4 Bush House, Bush Fair, Harlow, Essex.

SEMICONDUETORS				RRIDGE RECTIFTERS	
$\mathrm{ACl}^{2} 26$	14p	OC44	16p		
AC127	16p	OC45	10p	1 Amp	
AC128	15p	OC71	11 p	100 V	22p
AC141K	26p	OCX1	12p	200 V	24p
ACl42K	26p	2N706	14p	600 V	${ }^{27} \mathrm{p}$
AC176	18p	2N1131	24 p	THYRIS	
AC187	24 p	2 N 1132	28p	TORS	
AC188	241	-N2904	20p	1 Amp	
AC187K	23.	-N2926	11p	50 V	${ }^{29} \mathrm{p}$
AC188K	23p	2N3053	26p	100 V	32p
ADI49	49p	2N3054	55p	200 V	34 p
ADI61	33p	2N3055	49p	400 V	44p
AD162	40p	2N3702	14p	1 Amp	
AF114	20p	2N3703	13p	50 V	${ }^{39} \mathrm{p}$
AF\|15	20p	2N3704	14p	100 V	${ }^{44} \mathrm{p}$
AF116	20p	2N3705	13p	200 V	48 p
AF117	20p	2N3706	12p	400 V	66p
BC107	13p	2N3707	13p	5 Amp	
BC108	12p	2N3708	$11 p$	50 V	46p
BC109	${ }^{13} \mathrm{p}$	2N3709	12p	100 V	57p
BC147	$13 p$	2N3710	12p	200 V	66p
BC148	13p	2N3711	12p	400 V	77p
BC149	13p	2N3819	35p	TRIACS	
BC182	13p	40361	55p	2 Amp	
BC183	11p	40362	55p	100 V	33p
BC184	14p	40636	69p	200 V	59p
BC212	13p	IN914	8 p	400 V	77p
BC213	13p	IN916	8 p	6 Amp	
BC214	13p	IN4001	7p	100 V	66p
BDI31	68p	IN4002	8 p	200 V	${ }^{\text {a }} \mathrm{p}$
BD 132	${ }^{90} \mathrm{p}$	1N4003	10p	400 V	99p
BF 194	16p	IN4004	10p	10 Amp	
BF 195	17p	IN4006	15p	100 V	99p
BF244	27p	IN4148	6p	200 V	$1 \cdot 32$
BFYS0	18p	IN5400	16p	400 V	1.43
BFYSI	18p	IN5401	17p	400 mW	
BFYS2	17p	1N5402	19p	ZENER	
MP8111	${ }^{36 p}$	1NS404	24 p	DIODES	
OC28	50p	1N5406	28 p	$3 \cdot 3$ to 33	

* Retall Shop open 9 to 5.30 Mon. to Sat.
* Post \& Package 15p.
* 1974 Catalogue 20p.

Df 100W discotheque amp. with full miking and PFL facilities.
Stereo headphone with boom microphone. 99.90

* Trannies disco console with Gartard SP25 Mk. IV turntables. £59.00
* Pair sow Speakers © $47 \cdot 00$

OR COMPLETE SYSTEM 1189.97. carriage $55 \cdot 00$. Terms availabie, no deposit. E10.16 monthly for 24 months.

We stock a full range of Disco Equip ment. Send for list or pay a visit

£1 BARGAIN PACKS

\&1 10 Silicon NPN Power transi tors tlike 2N3055). Below spec.
\&1 30 Plastic FET's unmarked/un rested. similar to 2 N 3819 trandom test showed good yield)
ef 20 TOS transistors NPN or PNP state which. 2 to 5 gmp witested. \& 10 TOI8 transistors PNP like BC178. BC179. etc. U/tested. ع1 30 Plastic Power NPN transistor TO220 case like 2N3055. U/tested (1) 10 General Purpose fully tested FET's.
1200 mixed capacitors
E1 250 mixed resistors.

* Any 5 packs E4. 50 *

	VEROBOARD		
Resistors		0.1	0.15
t watt 5% carbon 1p	24 $2+$ $\times 3$	$24 p$ $27 p$	19p
\$ watt 5\% carbon 1p	34×34	27p	23p
I watt 10% carbon 3p		31 p	31p $\mathbf{6 3 p}$
range 10 ohms to 4.7 megohms.	17× 37	¢ $1 \cdot 10$	87 p
\& watt m/o $2 \% \ldots$.	17×5 (Plain)		90 p
range 10 ohms to 1 megohms.	Pin insertion tool Spot face cutter	57p	57p $46 p$
	Pk. 36 Pins	20p	20p

Electrolytic Capacitors

5.3 VOLT		$\begin{aligned} & 220 \mu F \\ & 680 \mu F \end{aligned}$	9p	40 VOLT		Single 13p. Dual pang pstereo) 44 p . Single- type with D.P. switch 13p extra.
$68 \mu \mathrm{~F}$	6+p		17p	$47 \mu \mathrm{~F}$	$6 \ddagger p$	
$150 \mu \mathrm{~F}$	$6+p$	$1000 \mu \mathrm{~F}$	17p	$100 \mu \mathrm{~F}$	9 p	
1704 F	11p	${ }^{15000 \mu} \mathrm{~F}$	${ }^{25 p}$	68.4 F	10p	CARBON SKELETON
$680 \mu \mathrm{~F}$	13p	$2000 \mu \mathrm{~F}$	43p	$220 \mu \mathrm{~F}$	11 p	PRESETS
$1500 \mu \mathrm{~F}$	18p	25 VOLT		$470 \mu \mathrm{~F}$	${ }^{19}$	Small high quality type (linear
$2200 \mu \mathrm{~F}$	18p			$680 \mu \mathrm{~F}$	25p	only). All valves 100.5 meg ohms.
$3300 \mu \mathrm{~F}$	26p	$10 \mu \mathrm{~F}$	6 tp	$1000 \mu_{\mu} \mathrm{F}$ $2200 \mu \mathrm{~F}$	25p 44 p	-1 watt 6 p each -2.5 watt $6+\mathrm{peach}$
10 VOLT		$22 \mu \mathrm{~F}$ $47 \mu \mathrm{~F}$	$6 \pm p$	$2200 \mu \mathrm{~F}$		
$47 \mu \mathrm{~F}$	$6+p$	$100 \mu \mathrm{~F}$	$\mathbf{8 p}^{\text {p }}$	63 VOLT		
$100 \mu \mathrm{~F}$	$6+\mathrm{p}$	$150 \mu \mathrm{~F}$	8 p	$1 \mu \mathrm{~F}$	$6 \pm p$	VISIT OUR RETAIL
$220 \mu \mathrm{~F}$	8 p	$220 \mu \mathrm{~F}$	10p	$2.2 \mu \mathrm{~F}$	${ }^{6+p}$	SHOP AT BUSH FATR
$330 \mu \mathrm{~F}$	10p	470 $\mu \mathrm{F}$	13p	$4.7 \mu \mathrm{~F}$	$6+p$	Monday to Saturday 9 to 5.3
$470 \mu \mathrm{~F}$	10p	$680 \mu \mathrm{~F}$	20 p	$6.8 \mu \mathrm{~F}$	$6+p$	
$1000 \mu \mathrm{~F}$	11p	$1000 \mu \mathrm{~F}$	22p	$10 \mu \mathrm{~F}$	$6+p$	
${ }_{2}^{15000 \mu F}$	20p	$2200 \mu \mathrm{~F}$	39p	${ }^{22 \mu \mathrm{~F}}$	$6+p$ $10 p$	SPST 11p each D.P.D.T. 13p each.
$2200 \mu \mathrm{~F}$	24p	$5000 \mu \mathrm{~F}$	68 p	$\begin{aligned} & 68 \mu F \\ & 100 \mu F \end{aligned}$	$10 p$ $11 p$	SPST 11p each D.P.D.T. App each.
16 VOLT		J VOL		$150 \mu \mathrm{~F}$	13p	MINIATURE NEON LAMPS
$15 \mu \mathrm{~F}$	6 tp	40 VOLT		$220 \mu \mathrm{~F}$	19p	
$33 \mu \mathrm{~F}$	$6+\mathrm{p}$	$6.8 \mu \mathrm{~F}$	6tp	$330 \mu \mathrm{~F}$	22p	
$150 \mu \mathrm{~F}$	6+p	${ }^{15} 4 \mathrm{~F}$	$6 \pm \mathrm{p}$	$470 \mu \mathrm{~F}$ 1000 F	26p	each.
$150 \mu \mathrm{~F}$	8 p	$33 \mu \mathrm{~F}$	$6+\mathrm{p}$	1000 uF	4 p	

Mullard Polyester Capacitors

 0.15 .0 .22 Stp. 0.33 7p. 0.47 94p. 0.68 12p. $1 \mu \mathrm{~F}$ 14p. $1.5 \mu \mathrm{~F} \quad 22 \mathrm{p}$. $2.2 \mu \mathrm{~F}$ 27p.

C296 SERIES

$400 \mathrm{~V}=0.001 \mu \mathrm{~F}, 0.0015 .0 .0022 .0 .0033 .0 .00473 \mathrm{pp} .0 .0068 .0 \cdot 01.0 \cdot 015,0 \cdot 022.0 .033 \mathrm{Hp}$ $0.047 .0 .068 .0 .14+\mathrm{p} .0 .1564 \mathrm{p} \cdot 0.22$ 8tp. 0. $3312 \mathrm{p} \cdot 0.4714 \mathrm{fp}$.

SP352

SP352
$58 \cdot 00+$ VAT $=56 \cdot 60$
 24r format-Alarm-Snooze-Multiplexed arion at a break-through price. BUILD AN ATTRACTIVE DIGITAL ALARM CLOCK WITH RADIO TURN-ON A kit of all parts except case and switches for a digital alarm clock with radio turnon using the MK5020N and highly attractive SP352 0.55in displays (see above). The kits include: Building instructions. MK50250N, SP352 displays, all semiconductors resistors and capacitors, radio turn-on relay, miniature loudspeaker for alarm, soldercon pins for IC socket, main PCB and digit mounting PCB. Both PCBs have been designed so that constructors of the 4 digit clock may easily expand their unit to 6 digits at a iater date.

4 digit Kit
$\mathbf{5 2 6} \cdot 00+\mathrm{VAT}=\mathbf{5 2} \cdot \mathbf{6 0}$

$$
6 \text { digit Kit } \quad £ 31 \cdot 40+\mathrm{VAT}=£ 34 \cdot 54
$$ Send for free information on low-cost kits using the MK50250N with LEDs. Minitrons, etc. For details of the SP352 and other Beckman Displays available from us. see our P.E. June or W.W. April ads. or send for free information.

CT5001 4 FUNCTION CALCULATOR IC
$54 \cdot 80+$ VAT $=55 \cdot 25$
We have designed an exclting low-cost calculator for the amateur constructor using this device-send for free information.
SLA7 0.33in RED LED DIGITAL DISPLAYS 'plug-in replacements for DL707

$$
\begin{aligned}
& \text { Pack of } 4: 4 \times £ 1 \cdot 70 \\
& \text { Pack of } 6: 6 \times £ 1.70
\end{aligned}
$$

$\mathbf{5 6} \cdot \mathrm{BO}+$ VAT $=\mathbf{~} 7 \cdot \mathbf{4 8}$
$\mathbf{1 0 \cdot 2 0}+$ VAT $=£ 11 \cdot 22$
CT7001
$\mathrm{£16} \cdot 50$ + VAT $=£ 18 \cdot 15$
This is the most sophisticated alarm clock IC on the market. Our data includes circult for 6 digit clock using $3 \times$ SP352.
MM5316N
$\mathbf{5 1 5 \cdot 0 0}+\mathrm{VAT}=\mathbf{5 1 6 . 5 0}$
Data supplied with all devices.
Also availabie separately at $10 p$ per device.
NO P. \& P. CHARGE for U.K. orders. Overseas P. \& P. 50 p .

SINTEL, 53 ASTON STREET, OXFORD

ENGINEERS

Do you want promotion a better job
Do you want promotion. a better job. you how to get them through alow-cost you how to get them throughalow-cost
B.I.E.T. home ztudy course. There are no
books to buy and you can pay-as-youbooks
learn.

The B.I.E.T. guide to success should be read by every ambitious engineer. Send for this helpful 76 page FREE book now. No obllgation and nobody will call on you. It could be the best thing you on you. It

Y Youve asked for it!

Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications where necessary to include new components which have become available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the Bailey and Baxandall loudspeakers - some of which have been accepted as
standard in the industry. - some of which have been accepted as
standard in the industry.

high fidelitydesigns
$£_{\mathrm{I}}$ from newsagents and bookshops. A book from
WirelessWorld

The largest selection

EX COMPUTER BOARDS
 3 for $\mathrm{ONLY} 55 \mathrm{p}+\mathrm{p} \& \mathrm{p} 30 \mathrm{p}$
SPECLAL As abore PLLIS Power Transisture

STABLISED POWER MODOLES

7i $\times \mathrm{s}^{-1}$ approx．
FIBRE－GLASS PRINTED
CIRCUIT BOARDS
DECON－DALO 33pC Marker ${ }_{90 \text { p each }}$

VEROBOARDS

Packs containing epprox
REPANCO CHOKES \＆COILS HF Chokes
CH1 25thl 25 p CH2． 2.0 mH 85 CH3． 5.5 mH 25 CD CH4． 10 m
URXI Crystal net 31p IDR R2 Dual range 48p
COIL FORMERS \＆CORES

SWITCHES
IDP／DT Tuggle 25p al＇st Toggle 18p

FUSES

16^{*} anti $20 \mathrm{~mm}, 100 \mathrm{~mA}, 200 \mathrm{~mA}, 200 \mathrm{~mA}$ QUICK－BLOW ipea．ANTI－SUREE Spez

EARPHONES
（＇rystal 2 － 5 min plug 33p
Crystal 3 ohnm plug 33p
8 ohme $\%$ bun plug 22p
8 ohms 3 ohnill plug 22p
x ahm phag 22p
DYNAMIC MICROPHONES
3－WAY STEREO HEAD－
PHONE JUNCTION BOX
2－WAY CROSSOVER

NETWORK
 SELECTED RESISTORS
 H1．Our thix，watt carbot－j0 for 50
 （Huglet1）$\ddagger 3.85$ per pair．
 BI－PAK
 CATALOGUE AND LISTS Send S．A．E．and 10p．
 INSTRUMENT CASES

（Bleck Vinyl covered）

Nu LenjutioHS		Winlla		Height		$\begin{aligned} & \text { Price } \\ & 00 \mathrm{p} \end{aligned}$
		\times	万1＂	\times	\because	
やず？	$1{ }^{\text {－}}$	\times	6°	\times	$3{ }^{*}$	\＄1．20
ALUMINIUM			BOXES			
13．a！	33°	\times	2＂	\times	$1{ }^{-1}$	42p
HA：	4	\times	4	\times	14	410
Ha3	4	\times	$2{ }^{3}$	\times	1	410
BA4	列＂	\times	4	$\stackrel{\times}{x}$	$1{ }^{1}$	47 p
BAO	4	\times	等＂	\times	\cdots	41 p
BAa	4	\times	\square	$\stackrel{x}{x}$	$1{ }^{-}$	34 p
B4\％	i^{-}	\times	5	\times	210	66p
13A8	$\stackrel{\sim}{*}$	\times	6	\times	3	84 p
18.49	${ }^{-}$	\times	4＊	\times	$\cdots{ }^{\prime \prime}$	54 p

De Luxe Groov－Kleen

Model $42 £ 1-84$
 Chrome Finish Model $60 £ 1 \cdot 50$

Ref 36 A ．Record／Stylus（leaning Kit 28p Ref．13．Record Care Kit $£ 2.35$ Ref 31．Cassette Head Cleaner 64p Kef．32．Tape editing Kit $\mathbf{1 1 . 6 4}$
Model 4．Wire Stripuer／Cutter 83p

ANTEX SOLDERING IRONS

X20． $2 \overline{0}$ watt 11.83
COX 240,15 watt 28.15
Motel（： 18 watt 22.15
$\$ K \underline{Y}$ ．Muldering Kit $\mathbf{1 2} \mathbf{2} .86$ STANDS：ST1 21．21．STU 77 p NOLDFR：188WG Multicore 70z 82p 228wG 7uz 88p．18sw（：221t 28p ranw ；Tule 22p

ANTEX BITS and ELEMENTS

102 For model CN240 ${ }^{3} 2$
102 For model CN240 A＇
100 For model CCN $240 \frac{3}{32}$
110 i for model CCN240 1°
1102 For model CCN240 t＇
1020 Fror model（a240 \＄ 1021 For mondel ce240 t^{-} 102：2 For notel G240 ${ }^{\text {an }}$
50 For model $\times 25 \frac{1}{3}$
51 For model X25 \＃ै
52 For model X25 A＂
ELEMENTS
ECN 240 £1－16
ECCK $240 _1.32$
EG 240 \＆1－18
FX $2521-16$

ANTEX HEAT SINKS 10p

VAT included in all prices．Please add 10p P．\＆P．（U．K．only）．Overites orderb－
pleate add extra for portage． please add extra for portage．

NEW COMPONENT PAK

 BARGAINSPack
No．

Precision Reaistors
mixed values
ith W Resistorm mixed preterred
Pieces assorted Ferrite Ras

l＇ack wire 50 metres amported
colonra
Reed Awiteher
Micrn Switchen
Assortet Pots \＆Pre－Setm
Jack Socketn $3 \times 3.5 \mathrm{~m}$
Standard Bwine Type
faper Condense
mixell values
Electrolytica Trans typen
Pack assorted Hardware－ laing Slide Switcher
Assorted Tag Btrips \＆Pan
Asmonted Control Knobs
Rotary Wase change $\$ w$ itchea 0.55
Relays 6－2HV Operating
Sheets Co
$10^{*} \times 7$
PS
PS
P

Ref．P．Hi－Fi Cleaner 31p Ref．32A．Stylue falance $\mathbf{2 1 . 3 6}$ Ref．J．Tape Head Cleaning Kit $\$ 1 \mathrm{p}$ Hef．34．Cassette Care $\mathbf{2 1 . 2 7}$ Ref．34．Cassette Case $\mathbf{1 1 \cdot 2 7}$
Ref．56．Hi．Fi Stereo Hints \＆Tips 38p

PLUGS AND SOCKETS SOCKETS
PS 35 DIN 2 Pin（Speaker） $\begin{array}{lll}\text { PS } 36 \text { DIN } & 3 \text { Pin } \\ \text { PS } 37 & \text { DIN } & 5 \mathrm{Pin} 180^{\circ}\end{array}$
PS 38 DIN J Pin 240
PS 39 Jack 2 wimm Suitched PS 41 Jack $3 \cdot 5 \mathrm{~mm}$ \＆wite PG 42 Jack Stereo Switched

PS $4 \overline{3}$
PS 46 Phono Single Phono Double Car Aerial Co－Axial Surface

INLINE SOCKETS
 Pg al 1）IN a Pin（speaker

PS 22 D．IN． 3 Pln
PG 23 D．I．N． 5 Pin 180°
$\begin{array}{ll}\text { PS } 24 & \text { I．I．N．} 5 \text { Pin } 240 \\ \text { PS } 2 \overline{5} & \text { Jack } 2 \text {－smm Platic }\end{array}$
PS 26 Jack 3.5 mm Plantic
PS 27 Jack ：＊Plastic
$\begin{array}{ll}\text { PS } 28 & \text { Jack ：Bcreened } \\ \text { PS } 29 & \text { Jack Stereo Plastic }\end{array}$
PS 30 Jack Stereo Icreened
PY 31 Phono Screenell
PS 3：2 Car Aerial

PLUGS

Ps 1	D．I．N． 2 Pin（speaker）	0.11
PS \because	D．IN． 3 Pin	$0 \cdot 12$
P8 3	D．IN．+ Pin	0.15
P8 4	1．I．N． $5 \mathrm{Pin} 180^{\circ}$	0.14
Ps 5	D．I．N． 5 Pia 2400°	0.15
PS $\quad 1$	D．I．N． 6 Pin	0.15
P8 7	D．I．N． 7 Pin	0.15
PS 8	Jack 9 －Jhm Screeneal	0.10
PR	Jack 3.5 mm Plantic	0.09
PS 10	Jack 3－5mni Screened	0.12
P8 11	Jack ！＊Plastic	0.13
PS 122	Jack t＂Screened	0.18
PS 13	Jack Stereo Hereessel	0.29
P8 14	Phono	0.08
PS 15	Car Aerial	0.15
PS 16	Co－Axial	$0 \cdot 10$
CABLES		
CP	Single Lapped Screen	0.06
Cr	Twin Comumon Screen	0.08
CP 3	Steren Screened	0.08
$\mathrm{Cl}^{+} 4$	Four Core Common Screen	0.23
P（ ${ }^{\text {c }}$	Four Core Indisidually Acreene	0.30
Cl 6	Microphone Fully Braided Catile	0－10
Cl	Threce Core Maine（＇able	0.07
C1） 8	Twin Oval Maina Cable	0.06
CF 9	Speaker Cable	0.04
CP 10	Low Losk Co．Axial	0.10

CARBON

POTENTIOMETERS
$4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$ ， $1 \mathrm{M}, 2 \mathrm{M}$
VC 1 Single Less Su＇itch
VC：single D．P．Switch
vC 3 Tandem Less Switch
CC 41 k Lin Less switeh

HORIZONTAL CARBON

 PRESETS0 I watt 0.08 each
$100,220,470,1 \mathrm{~K}, 22 \cdot \mathrm{~K}, 4 \cdot 7 \mathrm{~K}, 10 \mathrm{~K}, 2$
$47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4 \cdot 7 \mathrm{M}$

WORLD SCOOP

JUMBO

SEMICONDUCTOR PACK Transistors，Germ，snd silicon Rectifierd，
Diotes，Triacs，Thyriators，I．Ca and Zenera

APPROX． 100 PIECES Offering the amatenr a fantantic bargain Pal and an enormous ravis data nheet ith every pak．

ONLYE2 ғ．м P． EO_{p}

EX－COMPUTER BOARDS－

BY THE BOXFULL！
20 Boards packed with Semiconductors and other Electronde Components．Each board approx－size $8 \mathrm{in} \times 7 \mathrm{in}$ ．All k
numbers and eayilr recognigable

FANTASTIC VALUE AT
22．20 per Bor．P．\＆P． 52 p．
SPECIAL PURCHASE 2N3055．Silicon Power Transistors NPN free fromy open and short defects－every one able！ $11 \overline{\mathrm{~J} W}$ ．To3．Metal Case．
OUR SPECIAL PRICE 8 for $£ 1$
LOW COST CAPACITORS

RECORD STORAGE／
CARRY CASES
7in EP， $181 \mathrm{in} \times 7$ in $\times \sin (50$ records $) \mathbf{4 8 . 1 0}$ l2in LP， 13 in $\times 7$ in $\times 12 \%(50$ recorde $)$

CASSETTE CASES Holds 12.10 h
handle， 21.80.

8－TRACK CARTRIDGE CASES
Holds 14． 13 in x in x fin．Lock and handle，\＆1－95．
Holds 24 ． 13 in $\times \sin \times$ 可in．Lock and handle，22－70．
COLOURS：Red，b／ack and tan，
please state preference
REPANCO TRANSFORMERS
$2+0 \mathrm{~V}$ ．Primary．Secondary voltages arail
able from selected tappings $+\mathrm{V}, 7 \mathrm{~V}, \mathrm{RV}, 10 \mathrm{~V}$ able from selected tappinge $+\mathrm{V}, 7 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}$
$14 \mathrm{~V}, 10 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}, 31 \mathrm{~V}, 33 \mathrm{~V}$ 40，50 and $5 \mathrm{~V}, 0-\mathrm{y}$

Trpe	Amps	Price	P．\＆
MT50／s	21.08	80 p	
MT50／1	1	28.48	86 p
MT50／2	2	28.30	40 p

CARTRIDGES

 ACO8（ $\mathrm{GP93}-1.280 \mathrm{~m} V$ at $1 \mathrm{~cm} / \mathrm{sec} \quad \$ 1.85$ ACO8 GP96．1． $100 \mathrm{~m} V$ at $1 \mathrm{~cm} / \mathrm{sec} \quad 22.65$ TTC J－200J．Crystal／Hi Ontput 950 TTC J－20 10c：Cryatal／H1 Output Coupatible $\begin{array}{ll}\text { TTC J．} 200 \mathrm{CS} \text { Stereo／Hi Output } & \mathbf{2 1 . 6 0} \\ \text { TTC J．} 210.5 \text { Ceranic／Med．Output } & \mathbf{2 1 . 8 4}\end{array}$
TTC J．210．Ceramic／Med Output $\quad \mathbf{1 1 . 8 4}$

CARBON FILM RESISTORS The E1：2 Range of Carbon Film Resistore 1．watt available in PAKE of 50 piece assorted mo the．
R1 50 Mixed 100 ohme 820 ohms
R2 50 Mixed 1 K ohms－8－2K ohms
R： $\mathbf{j 0} \mathbf{~ M i x e d ~} 10 \mathrm{~K}$ ohns－ 82 K ohnss
R． 50 Mixed 10 K ohnis－82K ohnis 40D THESE ARE UNBEATABLE PRICES－ LEES THAN ID EACH INCL．VA．T

BI－PAK SUPERIOR QUALITY
LOW－NOISE CASSETTES
C60．32p；C90，41p；C120，62p

-the lowest prices!

 BI-PAK QUALITY COMES TO AUDIO!
AL10/AL20/AL30 AUDIO AMPLIFIER MODULES

The ALIO, AL20 and AL30 units are similar in their appearance and in their general specitication. Howeser. careful selection of the plastle power devices has resulted in a range of output powera from 3 to 10 watts R.M. 8
The veratility of their design makes them ideal for use in record players, tape recorders, stereo amplifers and cassette and cartridge tape players in the car and at home.

Parameter	Conditions	Performance
HARMONIC DISTORTION	Po $=3$ WATTS $\mathrm{f}=1 \mathrm{KHz}$	0.25\%
LOAD IMPEDANCE	-	8-16ת
INPUT IMPEDANCE	$\mathrm{f}=1 \mathrm{KHz}$	$100 \mathrm{k} \Omega$
¢REQUENCY RESPONSE-3dB	PO $=2 \mathrm{WATTS}$	$50 \mathrm{~Hz}-25 \mathrm{KHz}$
SENBITIVITY for Rated O/P	$\mathrm{V} \mathrm{s}=\overline{\mathrm{a}} \mathrm{V}, \mathrm{Rl}=8 \mathrm{\Omega} \quad \mathrm{t}=1 \mathrm{KHz}$	75 mV . M M
DIMENSIONS	-	$3^{\circ} \times 21^{\prime \prime}=1^{\prime \prime}$

The above table relates to the AL10, AL20 and AL30
modules. The following table outlines the differences in their working conditions.

Parametor	AL10	AL20	AL30
Maximum *upply Voltage	25	30	30
Power out for 2% T.H.D. ($\mathrm{RL}=\pi \Omega \mathrm{f}=1 \mathrm{KHz}$)	3 watta RMS Min.	5) watts RM8 Min	10 watts RMB Min

AUDIC AMPLIFIER

 MODU_ES 4LI0. a watte $\begin{array}{lll}1 \mathrm{~L} 20 . & 5 \text { Watts } \\ \text { 1L } 30 . & 10 \text { watts }\end{array}$82.19 22.69
83.01

POWER SUPPLIES

PR 12. (UTge with AL10 of AL20) 88p
FRONT PANELS PA 12 with Knobs 83

PA12 PRE-AMPLIFIER SPECIFICATION

The PA12 preamplifier has been designed to riatch into
noat budget stereo systems. It is compatitle with the nost budget stereo systems. It is compatible with the
iL 10 , AL 20 and AL 30 aulio power ampliflers and it :an be supplied from their associated power supplies. There are rwo stereo inputs, one has been designed for ure with *Cerumic cartridges while the auxiliary input will wit most \dagger Magnetic cartridges. Full detaila are given in he specification table. The four controls are, from left to ight: $\begin{aligned} & \text { olume and on/of switct } \\ & \text { lize } 1 \overline{5} 2 \mathrm{mrs}\end{aligned} \times 84 \mathrm{~mm} \times 3 \overline{\mathrm{~m} m}$.

LOOK FOR OUR

SEMICONDUCTOR ADVERTISEMENTS IN Practical Wiroless and RADIO CONSTRUCTOR
ALL PRICES INCLUDE VAT
The STEREO 20
Che "Steren 20 " amplifler is mounted, ready wire 1 and te
na a one-plece chasia measuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$.
Chis compenet unit comes complete with on/off switch colume conisol, bslance, bass and treble controls, ransformer, Power aupply and Power ampa. ittractivelw printed front panel and matchng control knobs. The "Stereo 20 " has been lesigned ta it into most turntable plinths pithout Interfering with the mechanism or, Iternatively, into a separate cabinet. lutput power 20w peak. Input 1 (Cer.) 00mV into 1 M . Freq. res. $25 \mathrm{~Hz}-25 \mathrm{kHz}$. nput 2 (hax.) 4 mV into 30 K . Harmonic
Histortion. Bass control $\pm 12 \mathrm{~dB}$ at 60 H . ypically 0.25% at 1 wott. Treble con 144 B at 14 kHz .
£ $14 \cdot 45$

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY $\mathbf{1 3 \cdot 9 5}$

- Max Heat Sink temp $90^{\circ} \mathrm{C}$
- Frequency Response

20 Hz to 100 KHz

- 0.1% Distortion
- Distortion better than 1% at 1 KHz
- Supply voltage $10-35$ volts

Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast
fully built - tested and guaranteed

STABILISED POWER MODULE SPM80

AP80 is especially designed to power 2 of the AL50 Apso if expecially dedige to 15 watt (r power 2 of the AL50 taneously. This module embodies the lateat components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer MT80, the unlt will provide outputs of up to 1.5 arnps at 35 volts. Size: $63 \mathrm{~mm} \times 10 \mathrm{mmm} \times 30 \mathrm{~mm}$. These units enable you to build Audio Bystems of the highest quality at a hitherto unobtainable price. Also udeai for many other applications including:-Dinco systerns, Public Address, , etc. Handbook available 10p PRICE £3.25
TRANSFORMER BMT80 £2.15 p. \& p. 28p

STEREO PRE-AMPLIFIER TYPE PA100

Built to a specincation and NOT a price, and yet atill the greatest value on the marke Designed for use with the ALint power annplifler system, this quallty made unit inchniques. no less than eight silicon planar transistors, two of these are specially selected low noise XPN devices for use in the input stages.
Three switched stereo inputs, and rumble and scratch fiters are features of the PA100,
which alao has a STEREO/MONO suitch, which alao has a ATEREO/MONO switch, volume, balance and continuously varlable
bass and treble controls.

> SPECIFICATION

$$
\begin{array}{ll}
\text { Frequency Response } & 20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB} \\
\text { Harmonic Distortion } & \text { better than } 0.1 \% \\
\text { Inputs: 1. Tape Head } & 1 \cdot 25 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega \\
\text { 1. Radio, Tuner } & 35 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega \\
\text { 3. Mesnetic P.U. } & 1.5 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega
\end{array}
$$

1.5 mV into $50 \mathrm{~K} \Omega$

All input voltages are for an output of 250 mV . Tape and P.U. input
equalised to RIAA curve within $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 KHz .
Bass Control Treble Control $\pm 15 \mathrm{~dB}$ at 20 KHz
Scrable (Hjgh Pass) Scratch (Low Pasa) Signal/Noise Ratio Input overload Aupply
Dimenaion

$100 \mathrm{~Hz}_{2}$ 8 KHz

8 KHz
better than -05 dB
$+26 d \mathrm{~B}$
+35 volts at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £ 13.15
SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1 SPM80, 1 BMT80 \& 1 PA100 ONLY £25•30 FREE p. £ p.

CRESCENT RADIO LTD．
 II－15 \＆ 17 MAYES ROAD，LONDON N2＇2 6TL （also） 13 SOUTH MALL，EDMONTON，N． 9
 MAIL ORDER DEPT
 il MAYES ROAD；LONDON N22 6TL． Phone 8883206 \＆（EDM．） 8031685

ADD LUXURY
 TO YOUR CAR

WITH A MOTOR DRIVEM CAR ARgial
Bpec．：© Section
Extended Length 100 cm Length under Fender
Cable Length 1 vocm Bupplieit complete with fixing

＂CRESCENT BEAT BRITE GINILE ＇HANNEL MOUND TO
LIGHT UNIT This fantastic litile box
approx．4＂x ，x output of sound source from 1 to 100 watts produces a paychedelic light dieplay of up to 1000 watts． Complete with a sensitive level control the unit ie fused and can－ not hartu your amplifter． A Bargain at $£ 7.50$ plus 10 p ．
＂OREBCERT＂BUBBLE LIGET
SEOW
相 A new and exciting
feature for the pro featonal diak jockey or to give tmosphere，a projected kalelilo－ cope of colour． Speciacation－Projector： 100 W convection cooled，at 301t 1 rev per 2 min ．Liquid Wheel： oin dlameter multicolous
The Motor 18 fitted to the Projector and can only be
purchased as a aingle unit The purchald Wheel，however，is our liguid wheel，however，is opelatar atandard model a very popular atandard masdel a
may be purchased aeparately．A margein－Projector with Motor resdy for instant use， $215 ; 6 \mathrm{in} \mathbf{~ L i}$ quid Wheel， $25=280+75 \mathrm{p}$ cart

TRI－YOLT BATTERY ELIMINATOR
Enablea you to work Your Transibtor
Radio，Amplifier or Canio，Amplifier otc．Irom the a．c．mains through this compact plug gou can eleet the voltage you require，6，It or 9 volt．This means all your tranaistor power pack applications can be handled by this one unit．Approx size 2 in $\times 2$ in $\times 3 t i \mathrm{p}$. Our Price E8．75 plua $10 \mathrm{p} P$ ．．P ．Same Phllipa Cassette 28 plua 10 p P ．d P ．

7 in $\times 4$ in LOUDSPEAKER
 A topaker quality c） $\begin{aligned} & \text { small size is import－} \\ & \text { ant．Manutactured }\end{aligned}$ by E．Manufactured known hl－f bet
maker．Size： $\mathrm{zin} x$ 4in．Impedance： 8 ohms．Flux 38,000 ．Max．Free range： 90 Hz to
12 kHz ．Power handling： 5 W ． Unbeatable．Price： $\mathbf{2 1 . 6 0 \text { ．Free }}$ poatage on thisitem．

（IIIIDP kITs

CKが Transintor Tester CK：Telephone Amp
K11． $\mathrm{Hi} \cdot \mathrm{Fi}_{\mathrm{i}}^{\mathrm{Am}} \mathrm{mp-8w}$
CK130 Mono Control Unit
（K145 Amp－1．5 W
LKIf5 RIAA Equalised Stereo Amp IK195 Mini－Amp－2W
UK2：0 Signal Injector
TK：330 AM－FM Aer．AInp
CK27む Mike Pre－Amp
CK300 4 Channel Radio Control T．X IK310 Radio Control Recetver VKううこ MW Radio Receiver

UKoL0 AM Thner

CK710 4 Channel A．F．Mixer
UKils Photoelectric Cell B Witch
UK83－（initar PreAmy
UKB7：（＇ap．Discharge Ignition
UK915 K．F．Allp 1：2－170MHz
UK93̄ Wide Band Anp 20 Hz to 150 MHz 22.86
Enables you to work your Traysistor Radio Amplifier or Casaetite，etc．from the 12 volt car supply．Positive or megative earth．Approx size $=2$ in $x 3$ in $x 11$ in．This converter supplies 6,7 is or 9 volts and is transistor regulated

＂C． 300 ＂DISCO CONTROL PACK

 A control Unit which when connected to twin deck makes a disco of professional quality．We supply a omart front panel which incorporates controle construction incorporating mixing pre－amp and construction incorporating mixing pre－amp andheadphone listening amplifier．The power pack enables this unit to work from the standard mains －Inputs include Mic．，Tape／Cassette and Twin Deckr．© Controls include Mic．，Tape，Each Deck Mono，214．Stereo， 517 plua 20p car

3 KILOWATTS PSYCHEDELIC LIGHT CONTROL UNIT

Three Channel：Bags－Middle－Treble． Each channel has its own ensitivity control．Just connect the input of this amplifier and connect three 250 y up to 1000 W lamps to the output terminale of the unit，and you produce a fascinating sound－light display．（All guaranteed） fl 8.50 plus 38 p P．\＆P．

LOW VOLTAGE AMPLIFIER
5 transistor amplifier complete with volume control，is auitable for 9V d．c．and s．c．supplice output
output．
With bigh IMP input this ampli
fer will work as a record
player，baby alarm，etc．
amplifier
€ 1.75 pinus $13 \mathrm{p} \mathrm{p} . \& \mathrm{p}$ ．

200／850V MALIS RELAY

 Heayy duty contacts， $2,500 \Omega$ H．All new andunused D．P．D．T nains relaye $50 \mathrm{p}+$ V．A．T．CarMINI LOUDSPEAKERS
2 tin 80 ohm， 50 p ； 2 if 40 ohm，
50p．Please include $\overline{\mathrm{j}} \mathrm{p}$ P．\＆P．on
each L． 8

CRESCENT CATALOGUE

It you construct you should own ove．Elend 20p inc．carriage．

VAT

t Please include 10% VAT on goods plus carriage

EnCase environmental

\qquad
includes screws．feet，chasais．according to size

WEST HYDE

The design of these case permits the instrument to be built or serviced within their external panels． 48 shapes．Low cost．Blu
PVC Steel with white P．V．C aluminium panels．

WEST hYDE developments LTo．，hyefielo ches．，northwood hils，midox． HAE 1NN．Tol：Northwood 24941 or 28732 Telek： 923231

PRICES INCLUDE VAT

SUPERSOUND 13 HI-FI MONO AMPLIFIER

- superb solid state audio amplifier. Brand throughout. \tilde{j} silicon transiators plus power output trangiscors in puah-pull. Full Gave rectifacation. Output approx. 13W r.m.s. into 8 ohm.
Frequency
response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$. Fully integrated preseparate Volume, Bass boost and Treble cut controls Buitable for $8-15$ ohm speakers. Input for ceramic or crytal cartridge. Sensitivity approx. $40 \mathrm{~m} V$ for full output. Supplied ready built and tested, with knobs, eacutcheon panel, input and output plugs. Overall siz
3 in high \times bin wide $\times 7$ in deep. A.C. $200 / 250 \mathrm{~V}$.

PRICE $£ 12.00$
${ }_{\text {bop }}^{\text {t. }}$.
DE LUXE STEREO AMPLIFIER

 provided for bass and treble control, giving bass and treble boost and cut. A dual volurne control is used. Balance of the left and right hand chamnela cars be adjusted by means of a separate "balance" control fitted at the rear of the cbassia. Input aensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watta per channel
(8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit all negative volume levels to be used with negligible alows high Supplied complete with knobe, chassig size $11 i n$. $w \times 4$ in. x. Overall belght including valves 5 in . Ready built and teated to a high standard. Price $\mathbf{1 0} 10.40$. P. \& P. 50 p .

NEW! POWER SUPPLY UNIT $200 / 240 \mathrm{~V}$ A.C. input. Four switched fully smoothed D.C.
outputs giving 6 V and $7 \pm \mathrm{V}$ and 9 V and 12 V at 1 amp outputs on load.
Fitted insulated output terminals and pilot lampindicat or
 Amplifers, etc., etc. Ready built and tested.

HI-GRADE CORPER LAMINATE BOARDS. $8^{\circ} \times 6^{\prime \prime}$. FIve for 60p plus 30p P. \& \mathbf{P}.
BRAKD NEW MULTI-BATIO MADNS TRANBFORMERS. Alving 13 alternatives, Primary: $0-210-240 \mathrm{~V}$. Secon-
dary combinations: $0-5-10 \cdot 15-20-25-30-35-40-60 \mathrm{~V}$ halt wave combinations: 1 amp or $10-0-10,20 \cdot 15-20-25-30-35-40-60 \mathrm{~V}$ halt
 FEW OALY. High grade mains transformers with grain orientated lamination. Primary 200/240 secondary 18.5

MALS TRANSFORMER. For transistor power supplies, Pri. 200/240V Sec. $9.0-9$ at $500 \mathrm{~mA} .21 \cdot 10$ P. \& P. 25 p . Pri. 200/240V Sec. $12 \cdot 0-12$ at 1 amp . $21 \cdot 21$ P. \& P. 26 p .
Pri. 200/240V 8ec. $10-0 \cdot 10$ at $2 \mathrm{amp} .81 \cdot 89$ P. \& P. 35 p .

GRNERAL PURPOSE HIGH STABILITY TRANG18TOR PRE-AMPLIFIER. For P.U. Tape, Mike, Guitar, etc., and suitable for use with valve or Hine $200 / 300 \mathrm{~V}$. Frequency responas $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 26 dB . Solid encapsulation size $1 \neq 1 \times 1 \times \frac{1}{4} \mathrm{in}$. Brand new - compiete with inatructions. Price

F REPREEACE ERCYCLOPRDIAS FOR ELECTRONIC ERGINRERS AND DESIGNERS, covering between them, Many thousands of up-to-date European types listed Diode Equiralents
Transistor Equivalents
80 p
90 p
$\begin{array}{ll}\text { Fransistor Characterintics } & \mathbf{E l} \cdot 20 \\ \text { All three together }\end{array}$
EAMDBOOK OP TKAMSISTUR ROUTVARENTS AFD SUASISTUR E
A must for servicemen and home constructors. Inctuding many 1000° a of British. U.S.A., E'uropean and Japanese tranistors. ONLY 40p. Post 5 p.
NEW IssUE-Thyristor, Triac, Dlac, etc. encyclopedian
95p Post Free.
95p Post Free.
Open 9.30-5.30 Mon. to Fpi.
$9.30-5$ Sat. Closed Wed.
A few minutesfrom South Wimbledon
Tube Stotion

FOR PERSONAL CALLERE ONLY! Limited number of Monoradio and stereusis covering LW; MW/FM bands 61"H, S*D. 4 Watts per channel output. ONLY \&16-50.

SPECIAL BARGAN OFFER!

Limited number of BSR Cles3 Auto Changer De Luxe with lightweight tubular arm and aterfo cartridge
Brand new. OKLY 88.00 plus P. \& P. 60 p .

PRECISION ENGINEERED PLINTHS

 Beautifully constructed in heayy gauge "Colorcoal plastic coated ateel. Reaonance free. Designed to take larrard 1025, 2000. 2025TC. 2500. 3000. 3500. 5100 SP20 II and III, BL65B, AT60, etc., or B.S.R. Cl23, C109 $14 \mathrm{fin} \times 31 \mathrm{in}$ bigh (approx. 73 in high, including smoked acrylic cover). P. \& P. 70p. Now only \&4-958 pole 3 way 2 bank low loss Yaxley type switches 11
sections. Standard spindle. 2 awitches $66 \mathrm{p}+10 \mathrm{p} \mathrm{P}$. \& P sections. Standard spindle. 2 awitches $68 \mathrm{p}+10 \mathrm{p}$ P. \& P
LATEST ACOS GP91/18C Mono Compatible Cartridge with /o stylus for I.F/EP; 8 . Universal mounting bracket SOMOTONE OTAEC COMPATIBLE STEREO CARTRIDGE T/O stylus. Diamond Stereo LP and Rapphire 78. ONLY 2-30. P. P. Diamond T/O stylus for Stereo LP. £2-80. P. \& P. 15p. LATEST RONETTE T/O Stereo Compatible Cartridge for EP/LP/Stereops. E1-68. P. \& P. 15 p .
LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/78 mono/stereo records on mono equipment $\& 1.50$. P. $\&$ P. 15 p

QUALITY RECORD PLAYER AMPLIFIER MK II A top-quality record player amplifier employing heavy duty double wound mains tranaformer. ECCE3, EL84 and rectifier. Separate Basa, Treble and Volume controls Complete with output transformer matched for 3 ohm
 PRICE 25.00. P. \& P. 50p. ALSO AVAILABLE mounted on board with outp
PRICE $\& 6.30$. P. \& P. 60p.

SPECIAL OFFER!!

 HI-FI LOUDSPEAKER SYSTEM
Beautifully made teak finish enclosure with mont

 attractive Tygan-Vynair front. Size 16 in high $\times 10 \not \mathrm{in}$ wide \times bin deep. Fitted with E.M.I.Ceramic Magnet $13 i n \times 8 i n$ bass unit, two H.F Ceramic Magnet $13 i n \times 8 i n$ bass unit, two H.F.
tweeter unita and crossover. Max. power handling 10W. Avallable 3. 8 or 15 ohm impedance.

Our Price $\mathbf{~} 9.25$ carr. 75p

CABINETAVAIL SEPARATELY 84.95. Carr. 65p. Almo available in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. basy
ppeaker with parasitic tweeter. $\mathrm{E} \mathrm{\%} \cdot \mathbf{1 5}$. Carr. 75 p

HARVERSON'S SUPER MONO AMPLIFIER A buper quality gram amplifier using a double wound fully pentode valve as audio amplifier and power output stage. Impedance 3 ohms. Output approx. $3 \cdot 5$ watts. Volume and tone controls. Chassis bize only 7 in . Wide y 3in. deep 6 ia . high overall. AC mains $200 / 240 \mathrm{~V}$. Supplied absolutely Braud New, completely wired and tested with good OUR ROCK BOTTOM
$\oint 3.85 \begin{gathered}\text { P. } \\ 40 \mathrm{p} \\ \mathrm{P}\end{gathered}$
OUR ROCK BOTT
BARGAIN PRICE

LOUDSPEAKER BARGAINS

5 sin 3 ohm El -25. P. \& Y. $15 \mathrm{p} .7 \times 4 \mathrm{in} 3 \mathrm{ohm}$ 21-40, P. \& $8 \times \mathrm{p}$. $10 \times$ w. w F.M.I. $13 \ddagger \times 8$ in with bigh magnet ell.70, P. \& P. 20p. parasitic tweeter 3, 8, or 15 ohm £3.50. P. \& P. 30p:
E.M.I. 13×8 in, 3 or 8 or 15 on and crossover network $£ 4.65$. P. \& P. 30 p. EMI CERAMIC MAGNET HEAVY DUTY TWEETER. Pprox. 3 in. Av. 3 or 8 or 15 ohrns. $21 \cdot 25$ pluy 20 p p. \& p.
BRAND NEW. 12 in $15 w$ H/D Speakers, 3,8 or 15 ohr BRAND NEW. 12 in $15 w$ H/D Speakers, 3,8 or 15 ohrh
(atate which). Current proluction by well-known Britioh (atate which). Current proluction by well-known British
maker. Now with Hiflux ceralnic ferrobar magnet
 assembly ig. 80 .
P. \& P. 45 p each.

SPECIAL OFFER!

LIMITED NUMBER OF BRAND LDITED NUMBER OF BRAND LOUDSPEAKERS. With CONE ceramic magnet and platicised cone surround. 8 ohm impedsnce. 83.70 . P. \& P. 35p
t2.70 P. \& P. 35 p
12in "RA" TWIN CONE LOUDSPEAKER
10 Watta peak handling, 3 or 8 or 15 ohm (state which). \&2.95. P. \& P. 36p
"POLY PLASAR" WAPER-TYPE, WIDE RAKGE ELECTRO-DYNA MIC SPEAKER
Size 111 in $\times 14 \frac{14}{}$ in $\times 1 \frac{1}{\pi}$ in deep. Weight 1902 . Power handling 20W
8 obm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. peak). Impedance 8 obm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted
on ceilinge, walls, doors, under tables, etc., and used with on ceilings, walls, doors, under tables, etc., and used with
or without baftle. Send S.A.E. for full details. Only or without baffle. Send S.A.E. for full details. Only
$\mathbf{8 . 6 5}$ each. P. \& P. 34 p .

HI-FI STEREO HEADPHONES

Adjustable hearband with comfortable Gexiloam ear. mulfs. Wired and fitted with standard atereo jin jack
plug. Frequencr
reaponse
$30-15,000 \mathrm{~Hz}$. Matching impedance 8-16 ubmis, Eafily converted for mono. PRICE 28.30. P. \&P. 25.

HAVERSONIC SUPER SOUND

$10+10$ STEREO AMPLIFIER KIT

NEW FURTHER IMPROVED HODEL WITH HIGH QUALITY AND INCORPORATING PRINTED CIRCUIT BEARD WRITH COMPONENT IDENTIFICATION CLEARLY
really first-class $\mathbf{H j}-\mathrm{Fi}$ Stereo Amplifier Kit. Uses 14 transiators iscluding Silicon Tranaistors in the first flve atages on each channel resulting in even lower noise level with improved sensitivity. Integrated pre-amp
with Bass, Treble and two Volume Controls 8uitable use with Ceramic or two Volume Controls. Xuitable for to modily to suit magnetic cartridge. instructions included). Output atage for any apeakera from 5 to 15 ohms. Compact deaign, all parts supplied including drilled metal work, high quality ready drilled printed circuit board. smart brushed anodleed aluminium front panel with matching knohs, wire, solder. nuts, boits-no extras to buy. Simple thep by step to be proud enable any constructor to build an amplifier to be proud of. Briet specification: Power output 14W $12-30,000 \mathrm{~Hz}$. Sensitivity better than 80 mV . Full power bandwidth $+3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. approx. to +12 dB . Treble cut approx. to -16 dB Negative feedback $18 d B$ over main amp Power require mente 35 V at 1.0 amp . Owerall size- $12^{\prime \prime}$ wide $\times 8^{\circ}$ deep -2" high
Fully detailed 7 -page construction manual and parte list free with kit or gend 18 p plus large S.A.E.
PRICES AMPLIFIER KIT, 11.35 P. \& $1^{*} .25 p$ (Magnetic input compo
POWER PACK KIT, 83.50 P. \& P. 35p. CABINET.

35 p .
(Pout Free if all units purchased at ame time). Full ather sales service. Also available ready built and tested Nole: The above amplifier is suitable for feeding twa mono tources into inpuls (e.g. mike, padia, twin record decks, etc.) and will then provide mixing and fading facilities for medium powered Hi-Fi Dizcotheque unt, ete.

3-VALVE AUDIO
AMP. HA34 MK II Designed for Hi-Fi reproduc tion of recorde. A.C. Mains operation. Ready built on plated heavy gauge meta $4 \neq \mathrm{it}$. b. Incorporate ECC83. duty. double wound Heavy ranaformer and output maina peaker eqparite volume control and nowed for 3 ohm wide range tone controls giving bass and treble lift and cut. Negative fecduack line. Output 4l watta. Front panel can be detached and leads extended for renote mounting of controls. Complete with knobs, valves, etc Fired and tested for only $\mathbf{6 8 0 0}$. P. P. 45 p .
HSL "FOUR" AMPLIFIER KIT. Similar in appearance advanced circuitry. Complete set of parts, etc. ${ }^{2} 5$-00 d. \& Panced $45 p$.
P.

I0/14 WATT HI-FI AMPLIFIER KIT

 A stylishly onishedmonaural amplifer monaural amplifer
with an output of with an output of ELS4s in push-puli. super reproduction
of botb music and speech. with negltgible hum. Separate inputa for mike and gram allow records

Fully sbrouded section wound output tranaformer to Fully sbrouded section wound oulput tranaformer to
match $3-1 \overline{5}$ a speaker and 2 iodependent volume controln, and separate bass and treble controls are provided giving EZ 80 rectifer (Free with parts). All parts sold meparately. ONLY e9-00. P. \& P. 60 p . Also a vailable ready bullt and tested 818.00 . P. \& P. 70p.

FYNAIR \& REXINE SPEAKER8 \& CABINET FABRIC8 app. 54 in . Wide. Our price $£ 1-10$ yd. length. P. \& P. 16 p
per $y \mathrm{~d}$. (min, 1 yd.). S.A.E. for samples.

HARVERSON SURPLUS CO. LTD.
Dept. PE, 170 High St., Merton, London, S.W. 19 tel. 01 -540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE MOTE: P. \& P. CHARGES
QUOTED APPLY TO U.K. OMLT. CHAP. AN OREEAS ORDERS

INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V All Types SHROUDED TYPE $0.5 \mathrm{KVA}(25 \mathrm{amp})$ (MAX) $\in 1000$ KVA (10 amp) (MAX) 628.10 $3 \mathrm{KVA}(15 \mathrm{mp})$ (MAX) $\$ 31.25$ 4 KVA (20 amp) (MAX) $\leqslant 72.50$ CARRIAGE AND PACKING EXTRA

L.T. TRANSFORMERS

All primaries 220-240V	
	Price Post $66.90+45 p$
30, 40, 50 V at 5A	$69.15+60 \mathrm{p}$
$10,17,18 \mathrm{~V}$ at 10 A	67.20+50p
6, 12 V at 20A	c8. $60+60 \mathrm{p}$
17, 18, 20 V at 20A	c9.15 +60p
$66,12,20 \mathrm{~V}$ at 20A	$68.65+60 \mathrm{p}$
12, 20, 24 V at 10A	66.75 + 50 p
4, 6, 24, 32 V at 12A	$68.60+60 \mathrm{p}$
6 and 12 V at 1	$6.4 .30+40 \mathrm{p}$

VOLTAGE CHANGING TRANSFORMER M.f.g. to highest W.D. spec. Auto wound, and rapped 0-1 $30-160-200-250$ at least 2 kVA . Can also
be used as $230-240 \mathrm{~V}$ input, 115 V out for U.S.A. equipment, or reverse to obtain 240 V from 115 V . The ideal transformer for making up solid state constant voltage unit. by use of taps the following
voltages may be obtained $30-40-50-70-90 \mathrm{~V}$ at voltages may be obtained $30-40-50-70-90$ at
10 mmps . Weight 401 b , length, 260 mm , height 190 mm , width 230 mm . In original maker's wooden 190 mm . widrh 230 mm . In original maker's wooden
case, $\mathbf{6 8}$. Carr. fl .
300 VA ISOLATING TRANSFORMER
115/230-230/230 volts. Screened. Primary two separare $0-115 \mathrm{~V}$ for 115 or 230 volt. Secondary two 115 V at 150 VA each for 115 or 230 volt output.
Can te used in series or parallel connections. Fully Can te used in series or paralel connections. Fully
tropicalised. Length 13.5 cm . Width 11 cm . Height $13.5 \mathrm{cm}$.Weight 15 lb .
SPECIAL OFFER PRICE 45 , Carr, 80p.
 for Tape Recorders. Lights, for Tape Recorders, Lights, Size $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}$. Price $\mathbf{6 2}$. Post Size
20p. (Total incl, VAT and post $£ 2 \cdot 42$).

VENNER TIME SWITCH

 TYPE MSQP$200 / 250$ Volt 2-ON/2-OFF every 24 hours at any manually pre-set time. 20 and in perfect condition 64.75. Post 25p.

FOOT SWITCH

Suitable for Morors. Drills.

 etc., etc. 5, amp. 250 voltA.C. MOTOR 'Mfg, by AEI.
A.C. MOTOR 'Mfg, by AE
Smooth running, powerlul, smooth running, pow
reversible motor. $230 / 250 \mathrm{~V}$ a.
50 gycle 150 HP . RPM 900 . $50 \mathrm{cycle} 1 / 50 \mathrm{H} . \mathrm{P}$., 8 RM
0.25 A . $£ 3.50$ pose 50 p.

METERS NEW! 2tin. Flush METERS NEWI. $2 \frac{1}{2}$ in. Flush 15,20 or A.C. Amps $1,5,10,15,20$,
Voltmeter 0.300 VA.C. All types $\mathbb{E 2}$. Poltmeter

230/240 VOLT A.C. EXTRACTOR

 FAN KITComprising of impeller, continuously rated motor, motor housing and fixings as illustrated. Price $£ 1 \cdot 75$. Post 25p. (Total incl. VAT and Post $\mathbf{£ 2 \cdot 2 0}$)

MINIATURE UNISELECTOR SWITCHES 2 Bank, 12 position, 24 volt D.C operat:on, full wiper with an-
cillary contacts. NEW Price 62.50. Post 20p. As above but with
E 3.50 . Post $20 p$.

All Mail Orders-Catlers-Ample Parking
Dept. PE7, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation EXPERIMENTERS' ECONOMY KIT Speed adjustable 1 to 30 flash per sec. All electronic components including Xenon Tube
and instructions 66.30 . Post 30 p . and instructions 68.30. Post 30p.
INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc.
Speed adiustable l-80 f.p.s. Speed adjustable I-B0 f.p.s.
Approx. t output of Hy-Lyght. Price $£ 12.00$. Approx.
Post 50p.
POSt SOP.
HY-LYGHT STROBE MK III
For use in large rooms, halls and utilises a silica For use in large rooms, halls and utilises a silica tube, printed circuit. Speed adiustable output greater than many (so called 4 Joule) strobes. ©12. Post 50p.
THE 'SUPER' HY-LYGHT KIT Approx. four times the light outpur of our well proven Hy-Lyght strobe

- Variable speed from 1-13 flash per sec
- Reactor contral circuit producing an intense White light. ONLY E20. POSt ASP. METAL CASE. For Hy-Lyght Kitincluding reflector $\mathbf{4 5} \mathbf{5}$.75.
Post 25 p.
Super Hy-Lyght case including reflector $\mathbf{6 8}$. Post 60p.
7-inch POLISHED REFLECTOR
deally suited for above Strobe kits. Price 55p
Pose 1

BLACK LIGHT FLUORESCENT U.V. TUBES 4 ft 40 watt. Price $£ 5.50$. Post 30p. Ift 20 watt, €4.25. Post 25p. (For use in standard bi-pin fittings.)
MINI. I2in 8 watt, $f 1.60$. Post 15p. Sin 6 watt, El-30. Post 15 p . Complete ballas unit and host 25 p . (9 in and 12 in measures approx.)

AUTO FADE

COLOUR BLEND MODULE Will control up to 750 W , of lighting wally pre-selected timing which may be varied between I second :o I minute. Based on 10 amp triac for maximum reliability. Ready built with switch and Time Control on 4!" $\times 5^{"}$ glass P.C.
board. Three modules or more can be board. Three modules or more can be sequenced to obtain lantastic post 30 p ber module.

PROGRAMME TIMERS
$230 / 240 \mathrm{~V}$ a.c. 15 r.p.m. Motors. switch. Ideal for lighting effec animated displays, etc. Ex
4 cam model. 62.50 post 30 p
6 cam model. $£ 3.25$ post 30 p
12 cam model. 44.00 post 35 p .
6 cam model. $3 \mathrm{r} . \mathrm{p} . \mathrm{m}$. $£ 3 \cdot 25$ post 30 p
TRIACS
GENERAL ELECTRICPOWER-GLASTRIACS 10 amp . Glass passivated plastic triac. Latest device from U.S.A. Long term reliability. Type SCI 460 10 amp .400 PIV, f1, Post 5p. Type SCl 46 E 10 amp
500 PiV, fl 1.30 . Post 5 p . (Inclusive of data and applica 500 PIV, fl.30, Post
cion sheer.) Suitable Diac 18 p .
10% VAT. (10p in the ε) To all orders add 10% VAT to total value of goods including carriagef packaging.

> SERVICE TRADING CO

NEW POWER RHEOSTATS

New ceramic construction, vitreous
enamel embedded winding, heavy enamel embedded windine, heavy
duty brush assembly. continuously duty brush assembly, continuoush 15 WATT $10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{k} / \mathrm{ohm}$
 ohm ©l-60, Post 100 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 2$
3.5k/5k ohm E2-35. Post 15p. Black Silver, Skirted knob calibrated in Nos.
I-9. Itin. dia. brass bush. Ideal for above Rheostats 22p each
RELAYS SIEMENS, PLESSEYY EECC Col.(1) Col. (2)
Working
d.e. voles

Col. 3
Contraces
Col. (4)
Price
$\mathrm{HD}=$
Heavy duty
Hnct. Base
All prices
incl. P. \& P

1
52
58
150
185
308
700
700
700
700
2,500
2,500
2,400
5,800
9,000
$15 k$

\qquad

3	4
6 M	$60 \mathrm{p}^{*}$
$6 \mathrm{c} / \mathrm{o}$	$80 p$
$2 \mathrm{c} / \mathrm{O}$	70p*
6M	60 p *
4 cjo	75p*
4M 2B	$60{ }^{\text {c* }}$
4 cjo	$80{ }^{\circ}{ }^{\text {c }}$
$1 \mathrm{c} / \mathrm{oHD}$	70 p "
6 clo	50p*
$2 \mathrm{c} / \mathrm{OHO}$	60p*
6 M	${ }^{60} p^{*}$
$4 \mathrm{c} / \mathrm{o}$	${ }^{60 p}$
$2 \mathrm{c} / \mathrm{o}$	60p*
$2 \mathrm{c} / 0$	60p.

6 VOLT D.C. I make contacts 35p. Post 5p
6 VOLT D.C. 2 make contacts 75 p. Post 5 p .
9 VOLT D.C. RELAY
3 c/O 5 3mp contacts. 70 ohm coil. 75 p. Post $5 p$.
12 VOLT D.C. RELAY 3 clO 5 amp contacts. 120 ohm coil. 75 p. Post 5 p 24 VOLT D.C 3 c/a 75p. Post 5p

ITT LOW PROFILE RELAY s/o. Price 85p. Post 5 p each.

CLARE-ELLIOTT TYPE RP764I G8

Miniarure relay 675 ohm coil 24 Volt OC. 2 clo 70p post paid.
100 VOLT A.C. 2 c/o sealed type, octal base
4. Post 10p.

24 VOLT A.C. Mig. by ITT. 2 h.d. c/o contacts. 55p. Post 5p.
240 VOLT A.C. RELAY. Mig by ITT. 240 V A.C. 10 amp h.d. c/o contacts. Octal plug in base. (Similar to illustration below). Price 75p. Post 5p.
HEAVYDUTYA.C. SEALEDRELAYS $230 / 240$ V. 2 clo. 20 amp contacts. Ilo £ $1-25$. Post 10p.
DRY REED RELAYS
Mfg. by ERG, 12 vole d.c. encapsulated.
Single c/o 65 p , post paid. Two c/o 85p, post paid
STC 280 ohm coil $6 / 12 \mathrm{~V}$ d.c. 3 make metal shrouded
to 280 paid
60p post paid.
'HONEYWELL'" PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBLY Each bank comprises a c/o rated at 10 amps 240 V . A.C. Black knobl in. Fixing hole in. ONE bank 30p; WO bank 40p; THREE bank 50 p . Quote for quantity.
HIGH VISIBILITY PANEL MOUNTING
LED's. 0.25 inch mounting, 0.16 inch lens. Typical parameters $2 \mathrm{~V}, 20 \mathrm{Mamps}$ ald type. Supplied complere with snap in mountings and data. Red 4 for \mathbb{C}, Green

VERY SPECIAL OFFER MINIATURE ROLLER MICRO SWITCH. 5 amp. c/o contacts. Mfg. BONNELLA. NEW. Price 10
\& 1.50 . Post IOp. (Min. order 10).
INSULATION TESTERS NEW! Test to li.E.E. Spece. Rusied meal construction, suitable for bench or
field work, constant speed clutch. Size L. 8 in, W. $4 \mathrm{in}, \mathrm{H}^{2} .6 \mathrm{in}$, weight 61 b . 1,000V, 1,000 megohms, 634. Post $50 \mathrm{p} .500 \mathrm{~V}, 500 \mathrm{megohms}$, 28. Post 60 p .

24 VOLT DC SOLENOIDS

UNIT containing I heavy duty solenoid approx. 251b pull linch travel. Two x approx. Ilb pull $\frac{1}{t}$ inch eravel. theavy duty single make relay. Price $\mathbf{E 2} 50 \mathrm{P}+\mathrm{p} 60 \mathrm{p}$. absolute bargain.

Personal callers only. Open Sat
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

People ask Laskys because of their keenly competitive pricing policy.
People ask Laskys because of their staggering range of choice. People ask Laskys because every item they sell is fully guaranteed for a year with no sneaked in charges for labour or parts.
People ask Laskys because they give advice that can be trusted.

 | 3 |
| :--- |
| Fa |
| ra |
| 25 |
| 25 |
| $0 / 2$ |
| 50 |
| 0 |

\section*{}

\section*{}

 $0,100 \mathrm{~mA} / 1 / 10 \mathrm{~A}$ OUR PRICE £19.95 P\&P 25p KAMODEN 72.200 Multitester
 \checkmark DC. $0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 /$
 istance: $0.5 / 10 / 100 / 200$ ohms $1 / 3 /$

 plete with laads.
OUR PRICE $£ 15.00 \quad$ P\& ${ }^{2} \mathbf{2 0}_{p}$
MODEL U4311 Sub-standard
Multi-fange Volt-Ammeter Multi-range V
Sansityity 330
Ohms $/$ olt AC

Ramm. mirror scia.
Range
$0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$

TMK 100K LAB TESTER
100.00000V. $6 / \%$.
$100.000 \mathrm{opv} .6 \%$
scale. Buzer
short cirruit check.
Sensirivery 100.000
0.000
 $10 / 50 / 250 / 5000 \mathrm{~V}$
$\mathrm{AC} .3110 / 50 / 250$ AC. $3 / 10 / 50 / 250 /$
$500 / 1000 \mathrm{DC}$. curtent $10 / 100 \mathrm{~A} \mathrm{~A} / 10 / 1$
$10 / 100 / 500 \mathrm{~A} / 25 / 10 \mathrm{~A}$ $10 / 100 / 500 \mathrm{~mA} / 2.5 / 10 \mathrm{~A}$. Resistence
$1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100$ Meg ohms. $1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100 \mathrm{Meg}$ ohms.
Decibets -10 to +49 dB . Plastic case
with carrying handle Size: 190×172 with carry
$\times 99 \mathrm{~mm}$.
OUR PRICE £19.95 P\&P 25P
 20.5/2.5/10/50/ $0 / 2.5 / 10 / 50 / 250$ $500 / 1000 \mathrm{y} / 250$ / 0/50uA/1/10/100

LB3 TRANSISTOR TESTER Tesis ICO and B.
PNPNPN. Operates
from 9V batlery from 9 V battery.
Instuctions supplied OUR PRICE
£3.95 P\&P 20p

£4.50	P\&P 20p
44341	Multimeter

Tr 27

Transistor Tester
27
Oraner Overload protoctod. Ranges: 0.3/1.5/61 DC. 1.57.5/3/30/150/ $300 / 750 V \mathrm{AC}$.

Current: $0.06 / 0.6 /$ | $6 / 60 / 600 . \mathrm{mADC}$. |
| :--- |
| $0.3 / 3 / 30 / 300 \mathrm{~mA}$. |

 $0.6 / 2 / 6 / 20160 / 200 \mathrm{k}$ ohms/2 Mohms. Batiory operated. Sup sted carving
with with grobes. leads and stoed car wing
case. Size: $115 \times 215 \times 90 \mathrm{~mm}$. DUR PRICE 10.50 P\&P 200

TRANSISTOR TESTER
100,0000 pv, Mirror
calle. Overioad
said. Overioad
protection $0 / 0.12 /$
$600 \mathrm{~V} \mathrm{DC}, \mathrm{O} / 6 / 30 /$
1201276000 A 121
301
0/10k/1 Mag/

Transistor tester measures Alpha, Bote
and ICO. Complete with instructions. batteries and leads. OUR PRICE $£ 19.95$ P\&P 25p

KAMOOEN HMG500 insulation resistance tester Range 0-1,000 Magohms, 500V. Batiery operated. Wide range clear Complere with Comptere $\begin{array}{l}\text { with } \\ \text { deluxe carrying }\end{array}$ case, batteries and instructions. OUR PRICE E19.95 P\&P 30p

OUR PRICE E19.95 P\&P 30p
CI5 PULSE OSCILL OSCOPE
For display of pulsed
For display of pulsed
and periodic waveand os in electronic
forcuits. VEAT AMP
 Sensitivity at 100 kHz VRMS/mm: 0.1-25;
HOR. AMP. Band. HOR. AMP. Band
width: 500 k Hz Ser,isitivity ay 100 kHz
VRMS $/ \mathrm{mm}: 0.3-25$ Presset triggered sweep
$:=3000 u s e c . ~ F r a e ~ r u n i n g ~ 20-200 ~$ kHz in nime ranges. Calibrator pips.
$220 \times 360 \times 430 \mathrm{~mm}$. $115-230 \mathrm{AC}$. OUR PRICE $£ 39.00$ Carr. paid

RUSSIAN C116 Double Beam	
OSCILLOSCOPE	
5 MHz pass band.	
Separate Y A and Y2	
Calibrated trigored	
Sweep from 0.2 .2 sec.	
Free running 11 mm	
Calibrator and amplitude Calibrator. Supplied compleze with all accessories and instruction menual.	
OUR PRICE 887.00	
MDOEL TE15	
Transistorised. Oper	
Oscillator, Absorb	
${ }^{\text {lom Waxe Meter and }}$	
Froquency rang	
in six coils 500u	
meter. 9 V battery operation. Size	

Also see following pages
 ALL PRICES EXCLUDE VAT

SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Quantity discounts avalable. Send for fully illustrated brochure.

CALL INTO YOUR NEAREST LASKYS BRANCH OR ORDER WITH CONFIDENCE BY MAIL ORDER

481 OXFORDST.	01-493 8641
10 TOTTENHAM CT. RO.	01.6372231
27 TOTTENHAM CT. RD.	01.6363715
33 IOTTENHAM CT. AD.	01.6362605
\$2/45 TOTTENHAM CT. RD.	01.6360845
87 TOTTENHAM CT. RD.	01.5803739
257'8 TOTTENHAM CT. RD.	01-580 0670
3 LISLE ST. WCL	01-4378204
34 LISLE ST. WC2	01.4379155
118 EDGWARE RD. W2	01-723 9789
193 EDGWARERD. W2	01.7236211
107 EDGWARE RD. W2	01.7233271
311 edgware rd. W2	01.2620387
346 EDGWARE RD. W2	01.7234453
382 EDGWARE RD. W2	01.7234194
109 FLEET ST. ECA	$01-3535812$
152/3 FLEET ST. EC4	01.353 2833

BAKELITE MODEL S80 Enlarged Window

CLEAR PLASTIC MODEL MR 52P

25
50 A
10 OHA
500 u
500 a
$50,50 \mathrm{~A}$
500 $100-0.1000 \mathrm{~A}$..
$50.0 .500 \mathrm{~A} .$.
1 mA

$1.0-1 m A$
5 mA

$5 \mathrm{~mA} A$
10 mA
50 mmA
100 m
500 mA

陵期 KENT
53/57 CAMDEN RD., TUNBRIDGE WELLS
LEICESTERSHIRE
45 MARKET PLACE, LEICESTER $0533-537678$

SURREY

1046 WHITGIFT CENTRE, CROYDON	
	$01-6813027$
27 EDEN ST. KIAGSION	01.5467845
32 HILL ST. RICHMOND	01.9481441

Dept. 2.
56. Fortis Greer Road, London, N1O 3 HN . telephone: $01-8833705$

EEM EIECTRONC ORGAK KITS

There ore four excellent quality models for the do-it-yourself enthusiast

- Portable- octave keyboard with 10 voices, 3 pitches - vibrato, 445.29. \#Console-5 octave keyboard with 10 voices, 3 pitches. Keyboard can be split into solo and accompaniment. Vibrato, built-in amplifier and speaker $\mathbf{6 2 5 0 . 9 3}$. *Console -2×4 octave built-in amplifier and speaker keybords and 13 note pedal board, 29 voices. Vibrato, Delay keyboards and 13 note pedal board, 29 voices. Wato Sustain, Reverberation. Percussion, Wah Wah, 470.65 . Vibrato, Sustain, Reverberation, Percussion,
t Console -2×5 octave keyboards and 32 note pedal board, 32 voices. Vibrato, Delay Vibrato, Sustain, Reverberation, Percussion 3 Couplers, etc., at $£ 665 \cdot 00$.

Also in stock M.O.S. Master Oscillators, I.C.'s, transistors, kit of parts for Wireless World Synthesiser and Electronic Piano, complete with reprinted instructions.
Send 50 p for catalogue which includes 50 p FREE voucher to be used against purchases, or send your own parts list, enclosing S.A.E., for quotation.

Elvins Electronic Musical Instruments

SUPPLIERS OF COMPONENTS TO THE MUSICAL INDUSTRY

12 Brett Road, Hackney, London, E.8. Tel: 01-986 8455 8 Putney Bridge Rd., London, SWI8 IHU. Tel: 01-870 4949

SICK OF WAITING FOR COMPONENTS?
Try our express service (normally return of post) Prices very competitive for example tW 5% carbon film resistors 1p; $\frac{1}{2} \mathrm{~W} 2 \%$ metal oxide $3 \frac{1}{2} \mathrm{p}$

BC $107 / 8 / 9$	$10 p$	$2 N 3702$	$13 p$	$1 N 4001 / 2$	$6 p$
BC 177	$17 p$	$2 N 3703$	$14 p$	$1 N 4003 / 4$	$7 p$
$2 N 1302 / 3$	$18 p$	$2 N 3704$	$13 p$	$1 N 4148$	$5 p$
$2 N 3055$	$53 p$	$2 N 3707$	$13 p$	$1 N 5401$	$18 p$

SINCLAIR CAMBRIDGE CALCULATOR
Ready to use-only E26.50
PRICES EXCLUDE VAT 10p P \& P
Forward $15 p$ for our illustrated catalogue to
DART ELECTRO SERVICES
24 South Town, Dartmouth, Devon
Competitive prices and descriptions of hundreds of componente, accessories etc
Name
Address:
CONTACTLESS ELECTRONIC
IGNITION EY MOBELEC

HL-FI TAPE LINK
(PE Mar /Apr. 73) S/c's. ic's. Rs. Cs. Relay and pc-base. Pot Cores and pc-bases Swis. Pots. Panel Lemp-Mono, £12.7a; Stereo. £20.41. PSU. 〔3-54. Main Circuit PCB (3 in $\times 9$ in) Stereo (also holds relay and cores). $\{2 \cdot 10$. Sub-assembly PCB (2tin $\times 6+i n$. Stereo sop.

```
    BIOLOGHCAL AMPLIFIER
PE Jan./Feb 73) P/A Set-S/c's. i.c's, Rs,
Cs. Po%s. PCB. [3-46. Output Stsges-
S/c's. Rs. Ca. Pots. Rotary Sw's and
PCBs for Alphaphone. Cardio. Freq-Mater.
Vis-Foed, [4.94. Audio Amps: PCT. {5.20
EA1000. [3-30.
```

ENLARGER EXPOSURE METEA AND THERMOMETER (PE Sept 73) S/c's. Thermistor, LDR Rs Pots. PCB. $33-90$
(PE Sept. 72 Jan. 73) Details in lists

GEMINI STEREO AMPLIFIER
(PE Nov 70.Mar 71) Stereo Sets and PCBs Pre-amp-As. Ca. Pots. Sw s-with $\ddagger \mathrm{W}$ MO Ra £14-18-with $\ddagger W$ CF Rs, E10-40. PCB as published, [2-20. Main Amp-Rs. Cs Pots. इ5.88. PCB $(3+1 n \times 5 \mathrm{in})$. $51 \cdot 28$. Power supply-Ris. Ca, Pot. 54.56. PCB (2in $\times 4 \mathrm{in})$ 659. AUDIO MILLIVOLTMETER
(PE Fob 74). S/C's. Rs. Cs. Pots. Sw's PCBs. [4.95.

MICROPHONE MIXER (PE Apr. 69). S/c's. Rs. Cs. Pots. PCB (also holds pots). [4-12. While Stocks Last

- WATT AMPLIFIER
(PW Nov./Dec. 72) Pre-amp-S/c s Rs Cs Pots. Sw-Mono. 82.50 ; Stereo, 56.03 PCB (3fin $\times 7$ in) (Stereo) also holds rotary
or slider pots and Sw. 51.66 . Main AmpS/c s. Rs. Cs. Pot-Mono. E4-18, Stereo. EB.36, PCB (2tin $\times 3$ in) (MOno). 72p. PSU. [3. 90 .

SOUND SYNTHESISER (PE Feb. 73/Feb. 74)
 RHYTHM GENERATOR

(PE Mar./June 74)
SOUND BENDER
(PE May 74)
Details of all these in List

REVERBERATION UNIT (PW Nov./Dec. 72) S/cs. Rs. Cs T/former 1tifin), £1.40. gin Spring Unit. £4.50.

LOUDHAILER ANO SIREN (PW Dec 72) Pre-zmp and Siren Generator $-\mathrm{S} / \mathrm{C} s$ s. As. Cs. Pot. PCB $(24 \mathrm{in} \times 2$ fin). C2-20. While Stocks Last Main Amp Module PC5. 56-25.

MISCELLANEOUS PCBs (WhHe Stocks Last) LOGICAL RADIO CONTROL (PE Dec 71/Jan. 72) PCBs "2A". 2B'. 50p each MODEL SERVO CONTROL (PE Feb./Mat. 72) PCBs ' 8 , Fail-safe. 33p esch DIGFCAL PSU PCB (PE Aug 72). 50p. OSCILLOSCOPE P/A PCB (PE Aug 72) 33p GEMINI STEREO TUNER PCB (PE Apr 72), $£ 1.50$. TRIFFID PCB (PE Feb 731 50p (The above PCBs are as published)
DIGITRONIC (PW Mar. 73) Read-out PCB ($1 \mathrm{j} \mid \mathrm{n} \times 3 \mathrm{l} \times \mathrm{n}$). 50p. CALLERCORD (PE Ju: 72) Main Control PCB (4in $\times 7 \pm$ in)

PHOTOPRINT PROCESS
PE Jan./Feb. 72) For Colour
(PE Jan./Feb. 72) For Colour and B \& Winds exposure, controls timing, stabilises
mains voltage. Sic's. SCR. LDR. As. Cs Pots, Relay, Keyowitch. T/imr, \&7.98. PCB (3 tin $\times 5+(n)$ also holds pots. Sw. relay. ع1-60.
(PE Sept 73/Feb 74) Datalis in List

PW OROJECT O4
(PW Oct 73/Jan 74) Multisystem Quad raphonic Decoder. Sic's. Ic's. As. Ce Pet of PCE 52.50. 12 \&o PSU, \&J. 17 Set of PCBs, 22.60 .

PHASING UNIT (PE Sept 73) S.c's, Rs. Ce. Pots, PCB

 (1 tin $\times 2$ in in). $\mathbf{5 2} 20$.

AURORA
(PE Apr./Aug 71) Multichannel Sound Controlled Light Sic s (Excl SCRs). Rs, Cs. Pots. Cores-Pre-amp. Sync Generator and 4 Chans . 510.97; 4 extra chans, Es.35. Reg PSU, 24.32. PCB (4tin x 10fin) for Pre-amp and 4 Chans (also holds pots). $£ 2 \cdot 50 . \mathrm{PCB}$ $(4+1 n \times 51 n)$ for Sync. Gen PSU. 8 cores. B SCRs. E1-25.
AURORA AUXILIARY CONTROL UNIT

2 Variable Frequency Strobe Generators and 4 Variable Amplitude Frequency Generators Sics. Rs. Cs. Pots. PCB $(34 \mathrm{in} \times 5 \mathrm{i} \mathrm{in})$. E 4.87

SEMICONDUCTOR TESTER (PE Oct 73) S/c's. Rs. Cs. Pots, Maka switches. Sub-assembly PCB. $55-30$.

ULTRASONIC

TRANSMITTER-RECEIVER
(PE May ${ }^{72}$) S/c s. Rs, Cs. Pot. Relay, Oual PCB (2in $\times 5 \dagger \mathrm{in}$). ธ4.40. Tranaducers excluded

VIBRASONIC

GUTAR PRE-AMP
(PW Sept 70) Inci. Mic P/A, 2-Guitar P/A. Trem and Tone Controls. Master Volume Sic's. Rs. Cs, LDR, Rotary Pots. Lamps. Coupling T/4mr. §7-54. PCB (3 tin $\times 104 \mathrm{in}$) lso holds pots. [9-92. Power Supply. £3-90.

TAPE NOISE LIMITER
(PE Feb 72) S/C's, Rs. Cs, Pot. Sw. PCB
(1tin $\times 3 i n)$. 5230 . Reg PSU and PCB

VERSATILE LIGHT EFFECTS
Single Channel Sound Controlied Light with bulit-in variable strobe. (PE Jun 72). Sic's. Rs. Cs. Pets. T/imrs, Keyswitch. :11.28. PCB ($3+i n \times 7$ in) also holds pots and switch. £1.70. SCRs sxcluded

VOHCE OPERATED FADER (PE Dec 73) S/e's. Re. Ca. Pot. PCB

WIND AND RAIN EFFECTS
(PE Oct 73) S/e's (inci special noise diode). Rs. Ca. Pots, 51.95

PHONOSONICS, DEPT. PE27, 25 KENTISH ROAD, BELVEDERE, KENT DA17 5BW
MAIL ORDER ONLY

Sinclair Project 80

Project 80 tuner

Stereo decoder

Project 80 Active Filter Unit (AFU)

only $\frac{3^{\prime \prime}}{4}$ deep $\times 2^{\prime \prime}$ high

Living with hi-fi takes on new meaning with Sinclair Project 80 . The electronics of these revolutionary new modules are all contained within elegantly designed matching cases no more than three-quarters of an inch deep. They are designed for mounting on any appropriate flat surface by means of 6BA bolts extending from the rear of each module and which pass through suitably drilled holes. Connections are taken away out of sight in a similar manner. The possibilities opened up by Project 80 are endless - superb hi-fi systems can be installed in ways hitherto only dreamed about and never before made practical. No more cutting out and shaping to put modules in position. A few holes drilled with the aid of templates supplied and the job is done. Now you need never again be faced with problems of keeping the hi-fi from clashing with carefully thought-out furnishing schemes. (That will surely please wives!) Slider controls have been introduced in place of knobs and all modules in the range incorporate new up-dated circuitry with emphasis on performance standards and built-in protection against óverload and shorting. The aim was to re-think modular construction completely - to make it infinitely more versatile, even simpler and more reliable - the result - Project 80 - another triumph for Sinclair, and the most exciting construction modules ever.

the slimmest,most elegant hi•fi modules ever made

Typical Project 80 applications

System	The Units to use	Units cost
Simple battery record player	2.40	$\begin{aligned} & \mathbf{£ 5} \mathbf{4 5} \\ & +54 p \vee A . T \end{aligned}$
Mains powered record player	Z.40, PZ. 5	$\begin{aligned} & £ 10.43 \\ & +£ 1.04 \text { V.A.T. } \end{aligned}$
30W. RMS continuous sine wave stereo amp.	$\begin{aligned} & 2 \times \mathbf{Z . 4 0} \text { s, Stereo } \\ & 80 ; \text { PZ. } 6 \end{aligned}$	$\begin{aligned} & £ 30.83 \\ & +£ 3.08 \text { V A.T } \end{aligned}$
50W (8Ω) RMS continuous sine wave de luxe stereo amp	$\begin{aligned} & 2 \times 2.60 \mathrm{~s}, \text { Stereo } \\ & 80 ; P Z .8 \end{aligned}$	$\begin{aligned} & \mathbf{£ 3 3 . 8 3} \\ & +£ 3.38 \mathrm{~V} . \mathrm{A} . \mathrm{T} \end{aligned}$
Indoor P. A.	Z.60, PZ.8	$\begin{aligned} & £ 14.93 \\ & +£ 1.49 \text { V.A.T. } \end{aligned}$

Project 80 FM tuner. decoder, and A.F.U. may be added as required

Mount Project 80 on a bookshelf a loudspeaker, a lampshade base a false wall with two 0.16 loudspeakers... almost anywhere.

new thinking in modular hi:fi

Stereo 80 pre-amplifier

 and control unit

- Simplest ever fixing

Each channel has its own separate tone and volume controls operated by sliders, enabling ideal environmental matching to be obtained. A virtual earth input stage forms part of the up-dated circuitry that ensures the finest possible quality from all signal sources. Generous overload margins are allowed on allinputs. Clear insiructions with template are supplied. TEEHNICAL SPECIFICATIONS
Siza $-260 \times 50 \times 20 \mathrm{~mm}$ ($10 \frac{1}{4} \times 2 \times$ 柔ns)
Finish - Black with white indicators and transparent Sliders
Inputs - Magnetic pick-up 3 mV RIAA corrected: Ceramic pick-up 300 mV Racio 300 mV : Tape 30 mV
Signal/noise ratio - 60 dL
Frequency range -20 Hz to 15 KHz 上 1 dB .10 Hz to 25 KHz t. 3 dB
Power requirements -20 to 35 volts
Outputs $-100 \mathrm{mV}+\mathrm{AB}$ monitoring for tape
Conirols - Press button for tape radio and P.U Sliders for volume.
bass (+12 dB to -14 dB at 100 Hz) treble (+11 dB to -12 dB at 10 KHz)

> R.R.P. f11.95 +£f.19

Project 80 FM tuner

11 and stereo decoder

Twin dual varicap tuning: 4 pole ceramic filter switchable A.F.C.

Making the Project 80 F.M. tuner and decoder avaflable separately gives a wider choice of systems and saves money where stereo reception may not be required. The tuner is a triumph of electronic design and assures excellent performance. The decoder gives a 40 dB channel separation with 150 mV output per channel. Both units may be used with other than 'Project 80 systems.
TECHNICAL SPECIFICATIONS OF TUNER
Size $-85 \times 50 \times 20 \mathrm{~mm}\left(3 \frac{1}{2} \times 2 \times \frac{3}{3} \mathrm{~ns}\right)$
Tunimgrange -87.5 to 108 MHz
Detector-I.C balanced coincidence for good A.M. rejection
Onel C . equal to 26 transistors
Distortion -0.2% at 1 KHz for 30% madulation
4 pole ceramic filter in I.F. section
Aerial impedance-75 Ω or 240-300 Ω
Sensitivity - 4 microvolts for 30 dB queting
Output - 300 mV for 30% modulation
Power requirements -23 to 33 volts
decoder
Size $-47 \times 50 \times 20 \mathrm{~mm}\left(1 \frac{7}{8} \times 2 \times \frac{3}{4} \mathrm{~ns}\right)$ One 19 transistor I.C.
R.R.P. f11.95+£1.19

Guarantee
If, within 3 months of purchasing any product direct from us, you are dissatisfied with it, your money will be refunded on production of receipt of payment. Many Sinclair appointed stockists also offer thes guarantee. Shourd any defect arise in normal use, we will service it without charge.

Sinclair Radionics Ltd. London Road, St. Ives, Huntingdon PE17 4HJ Telephone St. Ives (0480) 64646

Z. 40 \& Z. 60 power amplifiers

 totally short-circuit proof

Intended for use in Project 80 installations, these modules readily adapt to an even wider range of applications. Both incorporate built-in protection against short circuiting and risk of damage from mis-use is greatly reduced.
Z.40 TECHNICAL SPECIFICATIONS

Size $-55 \times 80 \times 20 \mathrm{~mm}\left(2 \mathbf{4} \times 3 \mathbf{4} \times \frac{3}{4} \mathrm{~ms}\right) 9$ transistors
Input sensitivity -100 mV
Output - 15 watts RMS continuous into 8Ω (35 v)
Frequency response $-10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Signal/noise ratio-64dB
Distortion -at 10 watts into 8Ω less than 01%
Power requirements - 12 to 35 volts
Z. 60 TECHNICAL SPECIFICATIONS

Size $-55 \times 98 \times 15 \mathrm{~mm}\left(2 \mathrm{t} \times 3 \frac{3}{2} \times \frac{3}{4} \mathrm{lns}\right) 12$ transistors
Input sensitivity -100.250 mV
Output -25 watts RMS continuous into $8 \Omega(45 \mathrm{~V})$.
Distortion - typically 0.03\%
Frequency response -10 Hz to more than $200 \mathrm{KHz} \perp 1 \mathrm{~dB}$
Signal/noise ratio - better than 70 dB
Burt-in protection against transtent overload and short circuiting Load impedance -4Ω min. max safe on open circuit

$\mathbf{Z . 4 0 R R . P . ~} \mathbf{£} 5.45+0.54 V A T, \mathbf{Z . 6 0 R R P} \mathbf{£ 6 . 9 5}=0.69$ pV.A.T

Project 80 active filter unit

Makes a highly desirable part of any worthwhile system where inputs may be from record, radıo or tape. As with Stereo 80. separate controls applied to each channel make it easier to obtain ideal stereo balance. TECHNICAL SPECIFICATIONS Size $-108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{~ns}\right)$ Voltage gain - mınus 0.2 dB
 Frequency response -36 Hz to 22 KHz controls minumum Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply
HF cut off (scratch) -22 KHz to $5.5 \mathrm{KHz} .12 \mathrm{~dB} /$ oct slope L.F. cut off (rumble) -28 dB at $20 \mathrm{~Hz} .9 \mathrm{~dB} / \mathrm{Cct}$ slope

- For scratch and rumble control
R.R.P. $\mathcal{E} 6.95+\underset{\text { V.A.T }}{0.69}$
- Transistorised active circuitry

Power supply units
 PZ. 8

Stabilised. Re-entrant current limiting makes damage from overload or even direct shorting impossible. Normal working voltage (adjustable) 45 V .
R.R.P. $\mathbf{£ 7} \cdot 98+0.79 p$ V.A.T

Without mains transformer
PZ. 5 30V unstabilised
PZ. 6 35V. stabilised
R.R P. $£ 7.98+0.79 p$ V.A.T.

To SINCLAIR RADIONICS LTD. ST. IVES, HUNTINGDON PE17 4HJ

Please send post paid

0.74 V.A.T.
for which I enclose Cash/Cheque for f \qquad including V.A.T.
Name
Address

Practicul Elecironics Classified Advertisements

RATES: 9p per word (minimum 12 words). Box No. 20p extra. Semi-Display $£ 7$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD.; Fleetway House, Farringdon Street, London EC4H 4AD

SITUATIONS VACANT

MEN!
 270 p.w. can be yours

> Jobs galore! 144,000 new computer personnel needed by 1977 . With our revolutionary, direct-fromAmerica, course, you tran as a Computer Operator in only 4 weeks! Pay prospects? $£ 3,500+$ p.a. After training, our exclusive appointments bureau -one of the world's leaders of its kind introduces you FREE to word-wide opportunities. Write or 'phone TODAY, without obligation.
> London Computer Operators Training Centre Ts9, Oxford House 9-15 Offord Street, W.1
> Telephone $01-7342874$

THE POLYTECHNIC OF NORTH LONDON holloway road, N7 80B
 Department of Electronic and Communications Engineering

LABORATORY TECHNICLAN GRADE 4
Applications are invited from candidates who are suitably qualified Electronics Technicians. Experience in microwave/radar technology would be an advantage.
This is a Laboratory Technician Grade 4 appointment with prospects of promotion for a man showing initiative. Five-day week totalling 35 hours.
Salary scale: $£ 2,022$ rising by annual increments to $£ 2,337$ per annum (including London Weighting).
Write stating age, experience and qualifications to:
THE ESTABLISHMENT OFFICER
THE POLYTECHNIC OF NORTH LONDON HOLLOWAY ROAD, N7 8DB.
Enquiries to Mr. S. A. Elliott, 01-6076767 Extn. 289.

SERVICE SHEETS

SERVICE 8HEETS, TRadio, TV, etc. X, (1) models. Catalogue 20p. S.A.E. encuirips. TELRAY, 11 Maudand Bank, Preston,

BERVICE SHEET8 for televisions, radios, BERVICE SHEET\& For to recorders, atc transistors, rechrd phatt-tindimg ghide. over from $5 p$ with free 10,000 models available s.A.b enquiries. Catalogue 20 p and s.A.E. HAMILTON RADIO, 47 Bohemia Road, St, Leonards, Sussex. Telephone Hastings 429066 .

LADDERS

[^5]
EDUGATIONAL

TEDEISION TRAINIG

I6 MONTHS' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners.
13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential.
NEXT SESSION commences on September 9th.
Prospectus from London Electronics Coliege, Dept. A7, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

C AND G EXAM

Make sure you succeed with an ICS home study course 10t C and G Electrical Installation Work and Technicians. Radio/TV/Electronics Tschnician

COLOUR TV SERVICING

Make the most of the current boom' Learn the techniques of sorvicing Colour and Mono TV sets through new home study courses. approved by leading manufacturers

TECHNICAL TRAINING
Home study courses in Electronics and Electrical Engineering. Malntenance, Radio. TV. Audio. Computer Engineering and Programming. Also self-build radio kits.
Get the qualifications you need to success Free details from
International Correspondence Schools, Dept. 730S, Intertext House, London SW8 4UJ. Or phone 01-622 9911

WANTED

TOP PRICES PAID
 NEW VALVES AND TRANSISTORS
 Popular T.V. and Radio rypes
 KENSINGTON SUPPLIES (B)
 367 Kensington Street Bradford 8, Yorks.

WANTED. Ralio am 'TV' Sprvicing books
 return of post. BELLA TELEVISION RERVFICRA, 190 Kings hoad, Harrogate,

FOR SALE

> TV LINE OUT-PUT TRANSFORMER Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey TWO 2EQ 01.9483702

8EEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R. Whiston, Dept. PE, New Mills, Stockport.

CATALOGUE NO. 18, Electronic and Mechanical Components and manufacturers' surplus. Credit vouchers value 50 p. Price $23 p_{\text {, inclu- }}$
ding post. ARTHUR SALIS RADIO ding post. ARTMER Sussex.

8PECIAL OFFER-Indicators 3015F and (r, (1)43, (1) 16 , only 95p. ('hips 7447 (BC1)-7
 B('182, 183, $10 \times, 141,8 p$ each; MJ3001, \&1. $150 \mathrm{~W}^{\circ} \mathrm{mm}, \mathrm{n} / \mathrm{m}$ photo transistors, 25p. IN゙ 4001 $41 N 4148,5 \mathrm{p} .10 \mathrm{~A}, 150 \mathrm{~V}$ bridge, $\mathrm{E1}$. Interested? Then get our cat. (100 P. O.). now! ALPHA ELED'TRONJCs, 33 Moorgate, London, EC2. (Mail order only. Prices exclude VAT.)

VALVES, VALVES AND MORE VALVES. Large stocks, many types, 1930 to 1974. S.A.E. for quotation. List 10p. COX RADIO, The Parade, East Wittering, Sussex.

LIGHT8HOW PROJECTOR8 from only £17, effect wheels from only 84 . Many lightshow bargains at ROGER SQUIRE'S (Disco (entre), 176 Junction Road, London, N. 19. Tel. 01-272 7474.

SUPERB INSTRUMENT CA8E8 by Mazelli, manufactured from heavy tuty ple faced steel, choice of 70 types, send for free list.
 Sit. Wilfrids, Foundry Lane, Halton, LA2 6LT', Nir. Eancaster.

CHA8818 supplied in stecl or aluminium. Send sketch and S.1.F. for quotation. FRAME FLECTRONICS, Knighteott Works, Banwell, Somerset.

O8CILLOSCOPE TYPE C116. Double beam, 14 months old but almost unused. $£ 45$. Telephone Ingatestone 2105.

RECEIVERS AND COMPONENTS

R.T. SERYICES

(MAIL ORDER ONLY)
77 Hayfield Rd., Salford 6, Lancs.
Veroboard $4 \times 4 \frac{2}{2} 0.1$ Matrix, 4 for 61 . $12 \times 3 \frac{3}{3} 0.15$ Matrix, 75p each.
Memory Array Panels. Full of Ferrite Rings. $£ 1 \cdot 10$ inc. P.P.
FM Tuner with R.F. Stage and A.G.C 3 transistors, neg, earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with 3 transistors, neg. earth
circuit, $£ 1.37 \frac{1}{2}$ inc. P.P.
circuit, $£ 1.37 \frac{1}{2}$ inc. P.P.
Crouzet Geared Motors, 30 or 60 r.p.m. New, $t 1.54$ inc. P.P.
UHF TV Tuners. Transistorised, $£ 1.65$ inc. P.P.
Panels with I.C's on $7 \frac{1}{2} \mathrm{p}$ per I.C. min. order 101. C's. 2
Transformers. $7.5 V+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, 88 \mathrm{p}$ inc. $\mathrm{P} . \mathrm{P}$. $12-0.12 \mathrm{~V} \quad 100 \mathrm{~mA}, 90 \mathrm{p}$ inc. P.P. $9-0.9 \mathrm{~V}$, 100 mA 90 p inc. P. $\mathrm{P} .29 \mathrm{~V} 50 \mathrm{~mA}, 70$ p inc. P.P. $100 \mathrm{~mA}, 90$ pinc. P.P. 29 Rola Celestion ReBrand new Boxed Rola Celestion Reentrant Speakers SD 25 with
former fitted 15Ω without transformer $£ 14$ former fitted 15Ω without transformer $\boldsymbol{£} 14$
inc. P.P.
Transformer. 45-0-45V, approx. 2 amp, E2.50 inc. P.P.
P.C. Board. S/S, $5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}$, 10 for 70 p inc. P.P. Panel with 2 SN7490, 2 SN7441 counting circuit with end connector, $£ 2 \cdot 20$ inc. P.P. Transistorised Timer. Variable delay. 110 Or 250V A.C input. With instructions. or 2 SoV A.C. input. With instructions. Brand new. 62 inc. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$. Power Unit Components Transformer. 18 volt I amp F/W bridge rectifier, 21250 mfd capacitors, all new El- $\mathbf{2 5}$ per kit. P.P. Electrolytic Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$. $4 \frac{1^{\prime \prime}}{} \times 1{ }^{\prime \prime} 75$ p. inc. P.P.

PRECISION POLYCARBONATE GAPACITORS
EXTP HMGH GABILAY440 V AC $(\pm 10 \%)$) 63 V Range

TANTALUM BEAD CAPACITORS-Values available: $0.1,0 \cdot 22,0.47,1 \cdot 0,2 \cdot 2,4.7,6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or $35 \mathrm{~V} ;$
$10 \cdot 0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V}: 22 \cdot 0 \mu \mathrm{~F}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or $16 \mathrm{~V} ;$ $33-0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100.0 \mu \mathrm{~F}$ at 3 V . ALL at 10 p each. 10 for 95 sp , 50 for $\& 4$
TRANSISTORS: |BC183/183L 11D BFY50 20p

 | $\mathrm{BCl} 82 / 182 \mathrm{~L}$ | 11 p | BF197 | 18 p | 2N3055 | 50 p |
| :--- | :--- | :--- | :--- | :--- | :--- | POPULAR DIODES-1N914 6p, 8 for 45p, 18 for 90 p ;

 IN4007 8, PR GENER DIODES 400 mW TOI 50% LOW PRICE EENER DIODES - 400 mW , Tol. 5% 5 mA, Values avalabie:
$6.2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}^{2}, 12 \mathrm{~V}, 13 \mathrm{~V}$,
$13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 2 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, \mathrm{LL}$ $13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}$, ALL at 7 p each, 6 for 89 D 14 for 84 p . 'APECIAL OFFER: 100 Reners for 85 . 50 .
RESISTORS-High gtability, low notse carbon film 5%, 3W at $40^{\circ} \mathrm{C}$, 3 W at $70^{\circ} \mathrm{C}$. E12 series only-from $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{Mn}$. ALL at 1 p each, 8 p for 10 of any one value, 70 D Hor 100 of any one ralue. SPECIAL PACK: 10 of each SLICON PLASTIC RECTIFIERS-1.5
wire ended DO27: 100 P.I.V. 7 P (4 for 86 p) 400 p . (4 for 80 p) ; 800 P.I.V. 11 p (4 (or 4 g). 3RIDGR RECTIFIERS- $2 \ddagger \mathrm{amp}: 200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$ 500 V 55 p .
BUBMINIATURE VERTICAL PRESETS-0.1W only ALL at 8p each: $100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{k} \Omega$ $32 \mathrm{k} \Omega, 4-7 \mathrm{k} \Omega, 6.8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega$ ${ }^{0} 0 \mathrm{~kg}, 1 \mathrm{M} \Omega$.
PLEASE ADD 10p POBT AND PACKING ON ALL ORDERS BELOW EN. ALL EXPORT ORDERS ADD COBT OF BEA/AIRMALL.

PLEASE ADD 10% Y.A.T. TO ORDERS
Wholegale

MARCO TRADING
 Dept. E.7, The Maltings, Station Road,
 Ref. P.E, 2l-25 Hart Road, Benfleet, Essex Established 23 years.

Tel.: Nantwich (Cheshire) 63291 (STD 0270) (Proprs.: Minicost Trading ItU.)

MICROCIRCUIT ELECTRONICS

SYSTEM 30 HI-FI.AUDIO MODULES
MEA30-2: 30W r.m.s. per channel stereo amplifier (s/c protection) $£ 10.00$ PS22-2: Twin stabilised heavy-duty (3.5A) power supply
Suitable Transformer £3.00
Simple power supply kit
84.00

MEP-32: Stereo pre-amp with rumble and variable scratch filters, full range tone controls, and 4 inputs (including magnetic)
$\$ 13.00$
DATA: 25p (not stamps, price refundable on purchase of any module)
All prices include post and VAT. Mail Order Service Only, Orders to:
MICROCIRCUIT ELECTRONICS (EI) 23^{\prime} Pages Lane, LONDON NIO IPU

UNIT IN SMART ALI CASE $11 \times 11 \times 4$ in contains tis illicon diod*s $600 \mathrm{~V}, 20 \mathrm{~A}, 8$ SCRa 3 OR 400 V 16 A . Vinkors. 4 amall, 2 large. together with other components, EE (EOP). M.C. METERS, 3 asmorted $2-31 \mathrm{in}$., 91.15 (35p). 5 FIGURE RESETTABLE COUNTER, $18 / 22 \mathrm{~V}$. Works on 12 V . $\mathbf{C 2} 20$ (25p). 7400 SERIES I.C. 1 to on panel(o). s1.10, c.p. COPPER CLAD PAX.
 E1-30, c.p. $11 \neq \times$ in.., 3 for 81 , c.p.; $15 \times 91 n .3$ for玉1. 30, c.p. 8MALL UNIT WITH ABFYS1 with heatsinks. ${ }^{4}$ silicon diodes 650 V tha plus resistors, 60p, c.p. SMALL PANEL with $2 \times$ AC128 and OC75 plus electrolytics, 40p for 2, c.p. VALUPAKS, P9, 100 manted simica caps. 55p; P11. 100 assorted polymiyrene caps. 75p; P13, 10 wire ended neons, 50 p ; P22; 100 assorted capacitors. 5sp, post 12 p . ny
number of Paks. Send 10p stampa for list of Valupaks, computer panels, etc. Refund on purchase. T.E ASBORTED COMPONENTS, \&1-75, c.p.

ZLB FIRST8 COMPUTEA PANE L8, $£ 1$.75, c.p.
3-B \$ECONDS COMPUTER PANELS, s1. S0, c.p.
J.W.B. RADIO
z Barnfleld Crescent, Sale, Cheshlre M33 1NL Postage in bracketa

DRY REED INSERTS

Overall length 1.85° (Body length 1.1°).
Diamecer 0.1^{4}. Max. ratings 250v D.C. and Diamecer 0.14 Max. Matings 250 v D.C. and
500 mA . Gold ciad normally open contacts. 69 p per dozen; 54,12 per 100; $£ 30.25$ per 1.000:
$\mathbf{E 2 7 5}$ per 10,000 . VAT and G.W.M. RADIO 40/42 Portland Romd, Worthing, Suthei 080334897

ELECTRONIC COMPONENTS, WATFORD

Visit our Warehouse for your requirements of Resistors. Capacitors. Transistors. SCR's

 Speakers. Metal Boxes. Headphones. Incer coms . Meters . Audio Cables . Cartridges Microphones - wide range of Plugs and Sockets, etc., etc.HILLS COMPONENTS LTD.
Unit 6, Melinite Industrial Estate, Brixton Road, Watiord, Herts. Tel.: Watford 27711

STOCK UP NOW P. \& P. FREE

RESISTORS and CAPACITORS GALORE
i. 1 , t, 1,2 watt, $\mathbf{5} \%, 10 \%, 20 \%$, Silver Mica,
Ceramic, High pulse, $2 \%, 5 \%, 10 \%, 20 \%$. ALL BRAND NEW - LONG LEADS - NO
RUBBISH.
RUST SEND \&I AND WE WILL SEND Y \mathcal{U}
EITHER: EITHER:
PAK 1. 400 Resistors-good selection.
PAK 2. 300 Capacitors-good selection SIMLA ELECTRONICS
First Ave., Hook End, Brentwood, Essex

BUILDING or PURCHASING an AUDIO MIXER

Pre-amp, auto-fade, V.U. or audio monitor, V.E, mixer, driver or power supply, etc.

First consult:

PARTRIDGE ELECTRONICS

BRAND NEW COMPONENTS by return Electrolytics $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0.47,1,2.2,4.7$, $10 \mathrm{MF}, 4 \mathrm{p}, 22,47,4 \frac{1}{2} \mathrm{p}(50 \mathrm{~V}, 5 \mathrm{p}) ; 100,5 \frac{1}{2} \mathrm{p}$ (50V, 7p); 220, 6p ($50 \mathrm{~V}, 9 \mathrm{p}$). Subminiature bead-t ype tantalums $0.1 / 35 \mathrm{~V}, 0.22 / 35 \mathrm{~V}, 0.47 /$ $35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4 \cdot 7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}, 22 / \mathrm{J} 6 \mathrm{~V}$, $47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, 8 \mathrm{p}$. Mylar Film $100 \mathrm{~V}, 0.001$, $0.002,0.005,0.01,0.02,2 \frac{1}{2} p ; 0.04,0.05,3 \mathrm{p}$. Polystryrene 63 V E12 series $10 \mathrm{pF},-1000 \mathrm{pF}$, $2 \mathrm{p} ; 1,200 \mathrm{pF},-10,000 \mathrm{pF}$., 3p. Miniature Highstab. resistors 5%, E12 series carbon film \& F , $1 \Omega-10 \mathrm{M} \Omega, \quad(10 \%$ over $1 \mathrm{M} \Omega)$. Metal film $1 \Omega-10 \mathrm{M} \Omega, 2 \mathrm{~F}, 10 \mathrm{over}-2 \mathrm{M} \Omega$ and $1 \mathrm{~W}, 27 \Omega-10 \mathrm{M} \Omega$ all 1 p
 127 Chesterfleld Rd., Sheffield, S8 0RN.

COMPONENT8 GALORE. Pack of 500 mixed components. Manufacturers' surplus plus once used. Pack includes resistors, carbon and W.W., capacitors various, transistors, diodes, trimmers, potentiometers, etc. Send \& $1+10 p$ trimmers, potentiometers, Ptc. Send $1+10 p$ NENTS, Strathore Road, Thornton, Fife.

RADIO \& TELEVISION AERIAL BOOSTER8 22.95, five television valyes 45p. 50p bargain transistor packs, bargain \&1 resistor and capacitor packs, UHF-VHF televisions 87.50 . | acitor packs, UHF-VHF televisions |
| :--- |
| Carr. $£ 1.50$. S. |
| S.E. |

 Bury, Lancs.

8EMICONDUCTOR8-Marked: 2N4292 (570 $\mathrm{MHz}) 15 \mathrm{p}, 1 \mathrm{~N} 914 \mathrm{~A} 3 \mathrm{p}$. Tested, unmarked: $n p n$ similar to BCl 108 (Hfe 50-250, Vee 25 V) 5 p, FET similar to 2 N 3819 15p, 2 N3055 20 p
P. \& P. 10p, mail order only. JOHN RIGG, P. \& P. 10p, mail order only. JOHN RIGG,

5 N-CHANNEL FETs. Type 3819E (2N3819) for $\$ 1$ (inc. VAT). Full spec. transistors complete with circuit details for building voltmeter, timer, ohmmeter, etc. For complete list of FETs and other transistors available send 10p 1.O. REDHAWK SALES LTD.. 45 Station Road, Gerrards Cross, Bucks. Mail Order Only.

TURN YOUR 8URPLU8 capacitors, transistors, etc., into cash. Contact COLES-HARDINA \& CO., P.O. Box 5, Frome, Somerset. Immediate cash settlement.

DON'T LOOK

unless you can resist the temptation to get these super 'attention-getters': \star POCKET-SIZED MAXI-VOLT Big \ddagger inch Spark Generator (instant 15,000 volts!) Ready-made, needs no batteries. Carry it around anywhere. Only weighs about 3 oz (85 g). Send $£ 1.35$ for your Maxi-volt now!

* UNIQUE TRANSMITTER/RECEIVER KIT. No licence examinations or tests required to operate this transistorised equipment. Easy to build. Get transmitting. Send $\mathbf{£ 5} 90$ for yours now \star PSYCHEDELIC MINI-STROBE KIT. Take a pocket-sized lighening storm to Disco's and Parties. 'BRAIN-FREEZE' 'EM with vari-speed stop-motion flashes. Includes super case, too. Send $\mathbf{E 2 \cdot 2 0}$ now! (All prices include VAT, packing \& postage Send remittonce to:
BOFFIN PROJECTS
4 Cunliffe Road, Stoneleigh Ewell, Surrey
(Mail order U.K. only)
Orfor more details, send 20 p for lists, plus free design project sheet

HARDWARE SUPPLIES - Sheet aluminium individual sizes or standard packs, drilled to spec. Screws, nuts, washers, etc., Fascia panels in aluminium individual requirements. Printed circuit boards, one-off or small runs. Printed circuit drafting tapes, etc, $7 p$ for list. RAMAR CONSTRUCTOL SERVICES, 29 Shelbourne Road, Stratford-on-Avon, Warwks., CV37 9JP.

fibre optic Euppliefs

LIGHT SOURCES, DETECTORS: MV54 miniature (2 mm) red LED; MLED500 TO-92 PC mounting red LED; MLED92 TO-92 infrared emitter; 2 N 5777 , high sensitivity silicon photo-darlingron amplifier. Response Time $200 \mu \mathrm{~S}, 25 \mathrm{~V}$ max. Superior to CdS cell,
OCP7I. MRD 150 miniature (2 mm) siticon OCP7I. MRDI50 miniature (2 mm) siticon phototransistor. Fast response $3 \mu S, 40 \mathrm{~V}$ max.

MV54

MLEDS00
2NS777
11
22p
33p

ULTRASONIC
TRANSDUCERS for
CIRCULAR POLARISERS for glare reduc-tion-enhance conerast ratio from LED display, nixies, scope. HRCPY red, HACP24 amber, HGCP24 green, HNCP37 neutral: 150 mm 50 mm 66p: 150 mm :
CROFON 161064 strand plastic light conduit, bundle dia. $1.8 \mathrm{~mm}, 0.0 .3 .3 \mathrm{~mm}$. Im $\in 1.32$; 5 m \&5.50; $10 \mathrm{~m} \in 10.45 ; 25 \mathrm{~m} \not 22$.
PLASTIC OPTICAL MONOFIBRE for easy light circuitry, displays, effects. Diamerer

Length m s	10	25	50	100	200

 OPTIK!T 103: Experimenter pack, 2 metres
Crofon $1610+5 \mathrm{~m}$ each FP20, FP40, FP60Crofon
\&4.84.
FIBROFLEX SIZE I: Glass light conduit, 440 Strand, bundle dia. 1.14 mm . O.D. 3.3 mm p.v.c. jacket). 5 m ©2.97: 10 m £3.85; 25 m ©6.60; 50 m © 11.00 ; 100 m ¢ 17.05 , all inc. 10 ferrules + epoxy resin for rerminations. 7.000 MARE'S TAILS: Decorative effects. 7.000 fibres in 18 mm O.D. ferrule. Professionally finished. 22in diameter in use. Add lamp stand, cover to make catching in boardroom, hall or foyer. catching in boardroom, hall or foyer
All prices include p. \& p. VAT and data. Send All prices include P. \& P. VAT and data. Send
gin \times in $\$$. A. for derails.
FIBRE OPTIC SUPPLIERS (Dept. PE), P.O. Box 702, London WIO 6SL

ENAMELLED COPPER WIRE

S.W.G.	Ilb Reel	${ }_{1}^{1 / 5}$ Ree!
10-14	41.40	80p
15-19	¢1.40	80p
20-24	\$1.43	83 p
25-29	¢1.52	$91 p$
30-34	41.57	97 P
35-40	\&1-69	61.04
Plea	all above	

102 Parrswood Rd, Withington, Manchester 20 Telephone No. 061.2243553

METER REPAIR8. Ammeters, voltmeters, multi-range meters, etc. Send to: METER REIPAIRS, 39 Chesholm Road, London, N16 ODS.

8LOW 8PEED MOTOR8 required (about 1 r.p.m.) any uuantity considered. D'hone Mr. SMITH, $061-6333527$.

PRINTED CIRCUIT MANUFACTURER8 offer any P B project Print ready drilled, One
 For estimate by return post, send hasic circuit, print design or print master. State quantity reguired. l'rint design, art work, photography undertaken. Orders, estimates, write or phone: W.K.F. ELE'TKONIC's, Dept. P. ('., Weltheck street, Whitwell, Nr. Worksop, Notts., SEO 4 TW . Tel. Whitwell (Derbys.) 695.

ELECTRONIC DRUM8, send 75p for full constructional details. MEDAC, 21 Congers Honse, Bronze Street, London, SE8 3DT.

LOW COST I.C. MOUNTING. Lengths of 100 I. ('. pin sockets, 60 p (P . A P. P . p). Quantity rates. S.A.E. for details and sample. L.E.D. (MLEDSOO), 20p each (post paid). I.K.G. ELECTRONIT'S, "Oak Lolge", Tansley, i)erlyshire.

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, II.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, $M \mathrm{C}$ relays, components, etc. Lower Beeding 236.

[^6]
Dimmit

range of light dimmers
llustrated is the popular PMSDI000 module A 1000 W professional quality dimmer, slinear operation, interierence suppression, 60 mm slider
range: size $12 \times 5 \times 4 \mathrm{~cm}$. Ideal for low cost stage range: size $12 \times 5 \times 4 \mathrm{~cm}$. deal for
and disco lighting. Used by schools, theatres. studios, etc. Complete with scale plate, fixing screws and full inseructions. 66.50 inc. VAT, add 10 p Also available in 2 kW , with separate heatsink. The Dimmit range includes standard wall mounting models for home and office, etc. Prolessional modules for use on lamps, heaters, motors, etc. Rota

NEW addition to Dimmit range. Model SLBOO sound to light converter. Modulates the light in time with sound. Built in microphone. ust place unit near any sound source-radio, hi-fi, tw, human voice, etc. No connections to speaker required, sımple Wiring-similar to dimmer Op for completernustrated cotologue and price ist.
YOUNG ELECTRONICS Mail Order Dept.
54 Lawford Road, London NW5 2LN. Telephone 01-267 0201

WORLD RADIO \＆T．V． HANDBOOK 1974

A COMPLETE DIRECTORY OF INTERNATIONAL RADIO \＆T．V． Price $\mathbf{£ 3} \mathbf{2 0}$

SIMPLE SINGLE CHANNEL RADIO CONTROL by R．H．Warring．Price $£ 1.60$ ． SERVICING WITH THE OSCILLO－
SCOPE by G．J．King．Pricefl． TRANSISTOR AUDIO AND RADIO CIRCUITS by Mulfard．Price $\$ 1.90$ ．
VIDEO RECORDING RECORD AND REPLAY SYSTEMS by G．White．Price IMPROVING YOUR HI－FI by J．Earl． Price 63．20．
ELECTRONIC HOBBYIST＇S I．C．PRO． JECTS HANDBOOK by B．Brown．Price c 1.50 ．
THE PYE BOOK OF AUDIO by Pye Ltd， Price $\mathrm{fl} \cdot 10$ ．
HOW TO FIX TRANSISTOR RADIOS AND PRINTED CIRCUITS by L．C．Lane． Price El．70
RADIO TECHNICIAN＇S
BENCH
MANUAL by H．W．Hellyer．Price $63 \cdot 20$.
THEMAZDA BOOK OFPAL RECEIVER SLECTRNG by D．J．Seal．Pricef4．
ELECTRONIC SYSTEMS FOR RADIO， by R．Lewis．Price $£ 2.50$ ．
＊ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO．

BRITAIN＇S LARGEST STOCKIST of British and American Technical Books 19－21 PRAED STREET LONDON W2 INP

Phone 01－723 4185
Closed Saturdsy I p．m．

Please mention

PRACTICAL ELECTRONICS
when replying to ADVERTISEMENTS

KIT All components，including P．C．B．designed for easy homt assembly．Bright and ciear digits．Tough A．B．S plastic case with contrasting front panel．
PRICE：$£ \mathbf{} \$ 3.00$ plus $£ 2.30$ VAT／Total $£ 25.30$ inc．post，pkg my our advanced design techmoues make this row orice possible．Kits are tested betore they leave us and are covered by the P．E．A．money－back quarantee．

Decoder， 17.45 （ 74 p ）．Trane for PZ8， 53.30 （ 50 p ）
 Projact 805，Ex．
$2 \times$ Z40／Stereo $80 /$ PZ55，玉75．00（ $22 \cdot 50$ ）
2×240 Stereo $80 / P Z 8,27 \cdot 75(\mathbf{2 2} \cdot 77)$
 Write for our mont competitive quotation．

SINCLAIR GOES QUADRAPHONIC

ntroducing the Napolex asa seli－contaned matrix
Just feed the output of a

Project 80 stereo system into it and hook on 4 speakers to obtain the iatest experlence in sound Send for free leaflet．Only E 9 － 95 （E1－30）

SINCLAIR

SUPER IC12
6 Wr．m．s．power With th page booklet and printed circuit ：2．10（43p）

SWANLEY IC TOMORROW
The world most powertul IC amplifier．Similar to C12 but rated at 10 W r m．s power．Supplied with date郎 no printed circuit．Write for leaflet．

DE LUXE KIT FOR THE IC12
ancludes all parts for the printed circuit and volume bess and treble controls needed to complate the mono version．$£ 1-60$（27p）．Stereo model with balance control．₹3．60（48p）
IC12 POWER KIT
Supplles 28V 0．5A， $\mathbf{c} 2 \cdot 87$（ 50 p ）
LOUDSPEAKERS FOR THE IC12
 PREAMP KITS FOR THE IC12
Type 1 for magnatic pickups，mice．and tuners．Mono model，$£ 1 \cdot 35(250)$ ．Stereo model．$£ 2 \cdot 40$（36p）．Type 2 for ceramic or crystal pickups Mono．65p（18p） Stereo．ह1－30（25p）．
SEND S．A．E．FOR FREE LEAFLET ON KITS
 $6 V+6 V, \mathbf{c 2} \cdot 50(350): 9 V+$
9V， $52 \cdot 50^{\circ}$（35p）．

S－DECS AND T－DECS

S－DEC \｛1．98（31p）

 T－DEC \quad โ3．63（47p） $\begin{array}{ll}\mu \text {－DEC A } & \varepsilon 3.99(51 p) \\ \mu \text {－DEC B } & \varepsilon 5.99(810)\end{array}$ IC carriers ${ }^{16}$ dil－plain，
t1p（150）：with soctes $£ 1.77$ （25p）． 10 TOS－plain． 77 p （15p）：with socket．\＆1－80

（24p） （15p）：D E2．40（35p）；E $\{4.20$（53p）．

SWANLEY ELECTRONICS

P．O．Box 68，Swanley，Kent BR8 8 TO

 Please add the sum ahown in brackets after the price to cover the cost of post and VAT Officlal credit orders from schools．No VAT charged on overse

PARTRIDGE MAIMS IEOLATIOK TRAN8PORMRR Pri：loorerov．it atapm，Sec：こ40V，I3 amp ©15，carr．pack．\＆2－25．
GARDMER＇S POTTED TRAMSFORMER，Pri Y00
 1．p．p．$\because 2$ p
RIPLEY MAIMS TRAMSRORMER，Pri ： $110 \mathrm{~V} \cdot 240 \mathrm{~V}$
 p．p．．op

 80p，p．1．：5p．
HALIS TRAMEFORMER，Pri 100－： 40 H A．

阳p．Rp．
PODER MAIRS TRARAFORMER，Ant，uount Pri：$\because 00 \cdot 250 \mathrm{~V}$ ．Aec： $105 \cdot 13 \mathrm{~N}$ ． 3 k ゾA． 215 （＇arr．ill．jo．
HADDON MAMS TRAMSFORMER，Pri：$\because 304$
MIM．MAINS TRANBFORMERS．Type $500 / 1$ ，Nee fiv．0．65． $100 \mathrm{~m} / \mathrm{A}$ ． 75 D ．Type $909 / 1$ ．Sec 5V－0．9V， $100 \mathrm{~m} / \mathrm{A}$ ，81p．Type $1 \geq 012 / 1$ ．Sec

BMOOTHIEGCHOKE，IIMH，lifll \times lin \times l京in

op．p．p．кp

FINKED ALOMINIUM HEATBINK， 4 in \times tin \times

 LOODSPEAKER \＆！in Din．， $40 \Omega, 300 \mathrm{~m} /$ watth， 50 p ． p．p．up．

GARRARD MAG．TAPE DECKS： 1 wolenoif operated brakes，ete．Mainu voltage

10 EEED 8WITCHES uperateil by push buttons and magnets， $50 \mathrm{p}, \mathrm{p} \cdot \mathrm{p} .2, \mathrm{p}$
 12 resistors，f ，lieries， $45 \mathrm{p}, \mathrm{w}, \mathrm{p}$ ． Ap ．
 contenaers，1－reajathrs，80p，p．p，4p

VEEDER ROOT ELECTRICALIMPOLSE COURTER NON－RESETTABLE，t．C： $200 \cdot 2 \cdot j 01$, E1－10，y．p．13p． GEC 畀AIM8 CIRCDIT BREAKERS，！amp or $\overline{3}$ amp， 21 each．$\mu, \mu, 14 p$ ．
LEVER ACTIOM P．O． 1000 TYPE \＆WITCHES
loock 4 －pole changeover．15p，p．p．4p．Ex equip． OULLARD a MALLORY SCRTW TORMTAL GULLARD ${ }^{\text {HALLORY SCREW TERMIMAL }}$ CAPACITOR $4,500 \mu$ Fi4＇， 100 hF 40N，50p each p． \boldsymbol{p} ．$\geq 1 \mathrm{p}$ ．
MULLARD FOLLWAVE RECTIPIERS
к－4Av，15 апир，75p，p．p．10p
BRLLING LEE $1 \div$ anp in－line rubber ruvered interference anppressor，25p．p．p．Kh
ROBBRR 8 PIF 5 AMP NON－REVERSIBLE CABLE
CONAECTORS， $20 \mathrm{D}, ~$ COMAECTORS，20p，p．p．ip．
SOLEMOIDS 12 VOLT POLL ACTION
Lin $\times \operatorname{lin} \times \frac{3}{3} \mathrm{in}, 40 \mathrm{p}, \mathrm{p} . \mathrm{p} . \mathrm{kp}$
 $1 \mathrm{in}, 40 \mathrm{p}$, 5．p． J
 1 in． $60 \mathrm{p}, \mathrm{p}, \mathrm{p} .9 \mathrm{p}$
SOLENOID8．Mant．by Bensums．シ40以 a．c．Pull action 2 in $\times 1$, ill $\times 1 \mathrm{in}, 75 \mathrm{p}, \mathrm{p} . \mathrm{p} .9_{1}$
OMRON MK MIDGET POWER RELAY，I？V d．c． Houble pole changeover．New．70p．p．p．©p
STC VARLEY，ininiatare relayy $700 \Omega, 17 \cdot 5-331$ perspex cover， 4 pole changeocer，40D．p．p．is．
POTTER BRU鴙FIELD INV ite．coil 3 pole e／u runtact ratel 7 amp．\＆1．p．p．10p
I．T．T．LOW PROFILE RELAYS． 4 pole c／overs 500 12 －JRT，75p，p．p．op
HADM RELAYS， $200 \cdot 2$ on ace \because makes．Heavy luty contacta， $50 \mathrm{p}, \mathrm{p} . \mathrm{p} .7 \mathrm{p}$
EEYSWITCH RELAY，1こY I．e．Cuil 3 W．P．C．O．90D．
TELEACOPIC AERIALS
hromed Tin closed．2xin extendel，fi nection bal joted hase，2op，p．p．op rew．
PRINTED CIRCUIT BOARD 194 AC＇Y IS＇A 10 OA：00 Dionles：I real relay： 1 AZ $2!9$ zener ass．capacitor esistors．Powet supply 2！ $250 \mathrm{~m} / \mathrm{A}$ h．c． 240 y ．c．E1．p．p．2ip．Ex．equip
PAPE POSITION INDICATOR
Re－settable 3 digits， 80 p ，1．p． jp
All orders add 10% V．A．T．

FIELD ELECTRIC LIMITED

3 Shenley Road
Borehamwood，Herts．
Tel．01－953 6009

BUILD A CHORDING PROFESSIONAL SYNTHESISER

The Synthesiser shown above is the Dewtron "Apollo" A.1. which we sell ready-built to professionals. Believe it or not, it uses the SAME precision modules as we sell to you, the Constructor, to build any kind you like. The revolutionary Modumatrix system of routing makes old-fashioned patching a thing of the past. VCO-2 voltage-controlled oscillator module has accurate built-in log-law for chording and other professional effects. 3 and 4 octave keyboards and contacts. VCO-2 STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWA VE outputs, 1 volt/ octave voltage control. f24 each or $£ 27$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touch sensitive playing when used with VCO-2 signals. E17. OFT-1 chording module £9. Modules (except VCO-1) guaranteed two years.
using Dewtion (Regd. Trademark)

PROFESSIONAL MODULES

LATEST ADDITIONS INCLUDE PITCH-TO-VOLTAGE AND SEQUENCER MODULES! AND MANY OTHERS.

CASH SAVINGS

by buying modules and parts in bulk! All modules are available separately
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, $\mathbf{\Sigma 1 0 . 5 0}$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type WN1, £7. Voltage-controlled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £13. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £10. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls £5.50. REVERB Module and spring unit £15. V.A.T. 10% extra. V.A.T. paid orders over $£ 75$.

With over 7 years' unblemished reputation in these pages, Dewfron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to leading groups Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy" G.l. Send 150 for full catalogue of our famous musical effects.

$D . E$ ETME 254 Ringwood Road, FERNDOWN, Dorset BH22 9AR

FERRANTI

- ALL devices brand new, top grade and to FULL SPECIFICATION. We sell only best quality stamped devices from the maker's current production. - WE HAVE STOCKS OF ALL DEVICES FOR IMMEDIATE DELIVERY
\star WE CAN SUPPLY ANY FERRANTI DEVICE TO ORDER. Send S.A.E. for quotation.
\star WE ARE SPECIALISTS IN FERRANTI SEMICONDUCTORS, WITH A STAFF OF EXPERIENCED ENGINEERS.
SH0RPM MK. || $\begin{aligned} & \text { Printed circuit } \\ & \text { Siemens BStBO246 SCR }\end{aligned} \begin{gathered}\text { 97p } \\ £ 1.25\end{gathered}$
FULL KIT OF SEMICONDUCTORS $£ 470$ (State 6 V or 12V)
BFS59 18p $\quad Z T \times 310$ 12p \quad ZTX504 55p \quad ZS170

| BFS59 | 18p | ZTX |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BFS 60 | $21 p$ | ZTX |
| BF | | |

$\begin{array}{lllllll}\text { BFS98 } & \text { 23p } & \text { ZTX } \\ \text { ZTX }\end{array}$

$Z T X$
Z

MOTOROLA MJE2955 $£ 1.30$, MJE 305575 p each.
RCA PRICES SLASHED! CA3090Q 53.25 each
PE TRIFFID ZT171124p. 2N1132 25p.
ZN414 £I. 32 WITh circuits and data
P1EE Our comprehensive catalogue giving data and connection diagrams for a wide range of Ferranti semiconduct
lust send an S.A.E. Copy sent with every order. \& \& PACKING 10 P . FREE ON ORDERS OVER $E 2$ ALL OUR PRICES INCLUDE V.A.T.

DAVIAN ELECTRONICS

P.O. BOX 38, OLDHAM, LANCS. OL2 6XJ

BAKER 12^{\prime} MAJOR E11.55

Double cone woofer and tweeter loudspeaker. Baker ceramic magnet assembly, flux density 145,000 gauss. BASS RESONANCE 40 cps 20 watt RMS
MAJOR MODULE KIT £14.85
30-17,000 cps. woofer, tweeter, crossover and baffle as illustrated. Size $19 \mathrm{in} \times 12 \mathrm{i}$ in.
NOTE-When ordering state 3 or 8 or 15 ohms.
BAKER LOUDSPEAKERS $\mathbf{1 0 0} \%$ BRITISH MADE

 Delare 12 in. 15 W f13. 20 Groud 3512 in. 35 W f11.55 $30-18000 \mathrm{cps}$ E 17.60

BAKER LOUDSPEAKER CO., BENSHAM MANOR PASSAGE THORNTON HEATH, SURREY Tel. OI-684-1665
PRICES INCLUDE VAT. HI-FI ENCLOSURE PLANS 42p

VARICAP TUNER
LP1185/86
MC131OP Decoder I/C ... $£ 3$.15 LP1400 Decoder Module £4.96 MFC4060 Regulator I/C £0.78
P.C. BOARDS MC131OP or LP1400 .. $£ 1.87$
(state which decoder)
READY BUILT BOARDS £24.25 (I/C) or £25-25 (L.P1400)
B. \& B. ELECTRONICS
64 MANNERS ROAD, BALDERTON, NEWARK, NOTTS. Tel. : NEWARK 6895 (Anytime)

Practical Radio \& Electronics

 Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know about Radio \& Electronics maintenance and repairs for a spare time income and a career for a better future.

That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOL. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why ment do the thing that really interests you? Without losing a day's pay, you could quictly turn yourself into something of an expert. Complete the coupon (or write if you prefer neot to cut the pager. No cibligation and nobody will call in yon . . . Dut it could be the lanst thing you ever did.

Others have done it, so can you

"Yesterday I recered aleter from the lontitution informing that me applicationi for Ascoctate Member-hip had been approved. I can homestly. say that thin han been the lest value for money I have ever obtamed - a diew achoed by two colleagnes who recently commenced the comare". Student I P.1.13., lorks.
"Completing your conrse, meant going from a joh I dotested to a job that I love, with unlimited prospect". -Studeut J.A.(). Dublin.
"My traming with B.I.E.T. quickly changed my carning capacity and, in the next few your, my carinige mereated fourfold".-Student C.C.B., Bucks

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - specak of the rewards that come to the man who has gisen himself the specialised know-how emphoyers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to B.I.ET. Dept. bPE01. Aldermaston Court, Reading RG74PF.

Published approximatety on the 1 Sth of each month by IPC Magazines Lid.. Fleetway House. Farringdon Street.| London. E.C. 4 Printed in England by Chapel River Press. Andover. Hants. Sole Agents for Australia and New Zealand-Gordon \& Goteh (Assia) Ltd: South Africa-Central News Agency Lid Publishers Subscription Rate (including postage): Inland
£3-25, Overseas $£ 3-50$. Practical Electronics.
Practical Electronics is sold subject to the following conditions, namely, that it shall not. without the written consent of the Publishers first given, be lent, resold, hired out or otherwise
disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold or condition or in any unauthorised cover by way of Trade. or affixed to price shown on the cover, and that it shall not be lent, resold or hired out or otherwise disposed of in a mutilated condition or in any unauthonsed cover by way of Trade. or affixed to or as part of any publication or advertising. literary or pictorial matter whatsoever.

1 DON'T RELY ON YOUR MEMORY BUY NOW AT BARGAIN PRICES Hi Fi and Transistors - Up to date Brochures on request

You pay less Gal with Henry' Now built and of satisfied cus. FEATURES design, overall size in

 -IC's, 10 transistors, stabilisers. Gardenerslow field transformer. Fibre Now Pailable buile and tested as well as in kit formNow kit form. HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES-DEVELOPED TEXAS ENGINEERS FOR PERFORMANCE, BY RELIABILITY AND EASE OF CONSTRUCTION. AcILITIES. On/off swicch indicator, headphones craer, separate treble, bass, volume and balance controls,
scratch and rumble filers, mono/stereo swich, inpue selector
Mag. P.U., Radio Tuner, Aux. Can bealtered for Mic, Tape, Tape-head, cte Constructional details Ref. No. 21, 30p

FREE Teak cabinet with complete kit.
KIT
PRICE

(.VAT +50 p
built and
tested

EARN YOURSELF EASY
MONEY, WITH

BORTABLE
DISCO

EOUPMENT

EQUIPMENT

DISCO MINI: A complete portable disco

 Ased mixer/preamp, 2 decks allacilities. As above bur with for conerolsSDLSIOO: 100 watt mixer/amplifier'with
erols
R50: 50 watt mixer/amplifier
R100 100 watt mixer/amplifier
DISCO AMP: 100 watt mixer/amplifier
Northcourt
40040 watt mixer amp
DISCOMIXER/PREAMPLIFIERS (O/P
for up to 6.100 watt amplifiers)
SDLII (slider controls)
DISCOVOX (slider controls) : The com plete disco preamp.
DJ100: 100 watt power amplifier for above DJ30L Mk II 3 channel 3 kW sound to light DJ30L Mk III. Slider Controls DJ DISCLITE. As 30L/II + Variable speed flashes
Carisbro Reverberation Unit
Disco anti-feedback microphone
Colt 150 watt liquid wheel projecto 150 watt $Q 1$ liquid wheel proiector 150 watt Ql cassette wheel projector Spare Effects and Liquid range of patcerns
.00 Various Cassettes Auto Trilite (mini with flashers)

$$
\begin{aligned}
& \text { Auto Trilite (mini with flashers, } \\
& \text { Bubblemaker with I gal. liquid }
\end{aligned}
$$

All prices carr paid (UK) (VAT EXTRA) Barclaycard/Access call, write or phone your order $01-7236963$ - easy terms for callers.

BUILD THE TEXAN
20+20 WATT IC STEREO AMPLIFIER

[^0]: (c) IPC Magazines Limited 1974. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland £3.25, Overseas £3.50. International Giro facilities Account No. 5122c07. Please state reason for payment, "message to payee".

[^1]: GICO DELUXE 4 POLE MOTOR
 1,400 r.p.m. reversible 42 Wath, spindle 1 jin $\times 7 / 32$ in, size 3 in x 3in. As illustrated. 240V a.c. maine.
 E.M.I. GRAM MOTOR

 120 V or 240 V a.c. $2,400 \mathrm{rpm}$. 2-pole
 70 mA . size $2: \times 2 t \times 2$ tin.
 Pont 25D
 E1.00
 Pont 25p

[^2]: More miles per gallon？
 Try our proven Scorpio ignition kit
 Price $\mathrm{ElO}^{\circ} 50$ plus V．A．T．

[^3]: *Electronic Componente Division, Ferranti Ltd.

[^4]: Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m.
 Valves, Tubes and Transistors - Closed $\$$ Sat. I p.m. -3 p.m
 Terms C.W.O. only Tel. Ol-677 2424-7
 All orders subject to V.A.T. at 10% rate. This must
 be added to the total order including postage.

[^5]: LADDER8. "special Offer" unvarnished triples. 9ft in mbsed-2:3ft lin extended. triples. Gf river HOME SALK LADDER E18.90 deliveret ${ }^{\text {a }}$ CENTRE (1), Telford, shropshire. Tel. 095: 586644 .

[^6]: Build the Mullard C.C.T.V. Camera
 Kits are now available with compre-
 hensive construction manual (also available separately at $76 \frac{1}{2} \mathrm{p}$)
 SEND $5^{\prime \prime}>7^{\prime \prime}$ S.A.E. FOR DETAILS TO:
 CROFTON ELECTRONICS
 15/17 Cambridge Road, Kingston-
 on-Thames, Surrey KT1 3NG

