## PRACTICAL



NOVEMBER 1973


PRESOUND SYWHEESEER KEYBOARD UNII
(1) 4H:


- LIGHT-OPERATED DEVICE
c WAA WAA
- DIODE THERMOMETER - TOUCH SWATCH



# is this the price you pay? 

Probably if you're still using an ordinary soldering iron Ordinary soldering irons can cause damage to transistors and integrated circuits - damage which wastes time and cosis money. Now, with the unique ANTEX $\times 25$ and CCN Iow leakage soldering irons no harm can come to the most delicate equipment. even when soldered 'Live'
(You could be making quite a saving). All prices include V.A.T. at $10 \%$

# CONSTRUCTIONAL PROJECTS 

STAGE LIGHTING DIMMER by R. Liffen
A four channel system for controlling 13 kW of lighting ..... 950
P.E. RONDO QUADRAPHONIC SOUND SYSTEM-3 by R. A. Cole
Power supplies and main chassis details ..... 956
P.E. SYNTHESISER-10 by G. D. Shaw
Keyboard unit-Log Law Oscillators ..... 964
SEMICONDUCTOR TESTER-2 by J.H.Perkin
General purpose discrete semiconductor tester ..... 982
GENERAL FEATURES
LOGIC EXPERIMENTS-7 by M. J. Hughes
The half adder ..... 963
AUTOMATED MAIL by F.J. Morris ..... 973
NEW DEVICES ... APPLICATIONS
A four digit calculator using an LSI MOS integrated circuit ..... 980
PHASE LOCKED LOOPS-2 by J. B. Dance
Phase locked loops in f.m. and a.m. demodulators, and frequency synthesisers ..... 989
NGENUITY UNLIMITED
P.S.U. protection-Servo amplifier-Car lights monitor ..... 995
NEWS AND COMMENT
EDITORIAL-Take Your Pick ..... 949
SPACEWATCH by Frank W. Hyde
Black Holes-Comet Kohoutek-Mars Vehicles ..... 955
ON THE FRINGE by Gerry Brown The more unusual aspects of electronics ..... 960
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry ..... 986
SPECIAL SUPPLEMENT-AUTUMN QUICKIES
DIODE THERMOMETER-WAA WAA-OPTOELECTRONICS-TOUCH SWITCH
FREE INSIDE THIS ISSUE: VEROBOARD PRINTED WIRING BOARD

[^0]
# Exciting...theStereo21! 

Can you really get sound quality like this FOR LESS THAN £19? YES, YOU CAN! WITH THE NEW

Until now, richly satisfying sound has always cost a richly satisfying price. But not any more! For an almost unbelievable $\mathbf{£ 1 8 \cdot 4 5}$, you can have Stereo 21 -audio for the connoisseur! Whatever your taste in music, you can hear it on STEREO 21 the way its composers heard it in their dreams! Beethoven or Mahler . . . Ellington or Jellyroll Morton . . . Das Nibelung or Jesus Christ Superstar ...Carols from King's College Chapel or the return of a Beatle ... everything from a prettily fluting baroque organ to the newest pop group at full throttle-STEREO 21 does them all justice!
And have you ever seen a handsomer audio installation? Compact enough to go in a university student's bedroomstudy, elegant enough for the suavest penthouse pad in Town, STEREO 21 offers you all the pride of possession as well as a thrilling musical experience!
Top-quality amplifier, BSR turntable, matching speakers. Deck and speaker cabinets you simply wrap round and glue to build. Screw in the amplifier and connect up (all push fit no soldering whatsoever), so simple literally anyone can do it. Except for glue and panel pins all parts supplied including full instructions-all for $£ 18.45$
(plus the cost of post and packing if you buy by mail), and-to round it all off-a money refund if not satisfied if your pleasure in STEREO 21 is not complete!

[^1]Diamond stylii, if required. $£ 1 \cdot 37$ extra Suitable pair of stereo headphones with individual lever controls, if required $£ 3 \cdot 85$.

## EMI SPEAKERS AT UNBELIEVABLE PRICES

950 Kit . Five matched speakers and crossover unit for handling up to 45 watts, from 20 to $20,000 \mathrm{~Hz}$ Huge -19 in $\times 14$ in (approx.) high efficiency 16, 500 -gauss bass unit built on a heavy diecast frame. The four 10,000 gauss tweeters, each $3 \frac{1}{4}$ in dia. approx., are fed by the crossover with a critically adjusted signal for maximum fidelity. Impedance at 1 kHz is 8 ohms. Bass coil 2 in others $0 \cdot 5 \mathrm{in}$. Recommended list price $\{44$.
OUR PRICE $£ 25 \cdot 00+£ 1 \cdot 50$ p. \& p


15in 14A/780. Bass unit on a rigid diecast chassis. Superior cone material handles up to 50 watts RMS, and is treated to give a smooth frequency response. Resonance 30 Hz . Flux 360,000 Maxwelis. Impedance at 1 kHz is 8 ohms. 3in voice coil.

Recommended retail price £40. 80 .
OUR PRICE $£ 18.70$

$+£ 1 \cdot 50$ p. \& p.


RADIO AND TV COMPONENTS (ACTON) LTD, 21C HIGH STREET ACTON, LONDON W3 6NG - 323 EDGWARE ROAD, LONDON W2

Edgware: 9 a.m. to 5.30 p.m., half day Thurs
Acton: 9.30 a.m. to $5 \mathrm{p.m}$. Closed all day Wed.; also see opposite.
Mail orders to Acton. Terms C.W.O. All enquiries Stamped Addressed Envelope. Goods not despatched outside U.K.

# 田T-vICVISCOUNT III aboost in the output. 

## VISCOUNT III now gives you an imposing 20 watts per channel-and the price quoted is actually INCLUSIVE OF VAT!

The money's important, of course, but not nearly so important as value for money' And that s something you get in abundance with VISCOUNI III. We design it, we make it we sell it direct to you-passing on all the economies that come from cutting out middle-men! That's the only way you can get so much quality for so little money
The unique VISCOUNT III amplifier, plus the Garrard SP25 Mk III deck, plus the magnificent Duo Type III matched speakers (or Duo Type II for a small room) give you an audio installation that will prove unbeatable for listening pleasure! On the brushed aluminium front panel of the amplifier you'll find all the facilities you need-volume, bass. treble and balance controls, plus switches for mono/stereo. on/off function and bass and treble filters. Plus headphone socket on the back. And the teak finish will harmonise and enhance virtually any style of interior decor!
The heart-stopping timbre of Tom Jones at his most virile. the last lingering harmonics of a solo performance by Heifetz or Menuhin...the pathos and the panache of Liza Minelli...the majestic sonorities of the brass band and the elfin subtleties of the virtuoso clavichordisthear every nuance with a fidelity that you have never experienced before?
Come and hear VISCOUNT III! If it's inconvenient to travel. buy by post in the confidence that you won't be disappointed (and with a 24 -carat Money-Back Guarantee to give you extra reassurance). Don't settle for second-best!

SPEAKERS: Duo Type II Size approx. 17 in $\times 102$ in $\times 6$ in. Orive unit 13 in $\times 8$ in with parasitic tweeter. Max. power
 £32.00 a parr $+£ 3 \cdot 30 p \& p$.

## PRICES: SYSTEM 1

Viscount II R 102 amplifier $\quad £ 24 \cdot 20+\varepsilon 1 p$ \& $p$
2 Duo Type II speakers $\quad £ 14 \cdot 00-£ 2 \cdot 20 p \& p$
Garrard SP25 Mk. It with
MAG cartridge plinth \& cover $£ 18 \cdot 00+£ 175 \rho \& p$
total $\quad 556 \cdot 20$
Available complete tor only $£ 49 \cdot 00-£ 3 \cdot 50 \mathrm{p} . \& \mathrm{p}$.
PRICES: SYSTEM 2
Viscount R 102 amplifie
2 Ouo Type III speakers
Garrara $\quad £ 32 \cdot 00+£ 3 \cdot 30 \mathrm{p}$ \& p
MAG. cartridge plinth \& cover $£ 18 \cdot 00+£ 175 p \& p$
total $\quad \mathbb{5 7 4} 20$
Available complete for $£ 65 \cdot 00+£ 4$ p. \& p.

焐

THE TOURIST PUSH-BUTTON CAR RADIO KIT $£ 6.60$
The Tourist PB is suitable for 12 volt working on both negative and positive earth vehicles it covers the full medium and long wave bands. It is permeability tuned and sturdily constructed. Output is a full 2.5 watts into an 8 ohms speaker. But the Tourist PB will operate into any loudspeaker from
 Apart from the output stage, which is an integrated circuit, the only other Apart from the output stage, which is an integrated circuit, the only other electronic components that need soldering are some capacitors, resistors, etc. The kit includes a pre-buit RF tuner unit, and fully modulised if stages which
are pre-aligned before despatch. As well as electronic components this kit also contains 2 diamond-spun aluminium knobs, elegant matching front panel, dial, washers, screws and wire
The Tourist PB can be mounted in any standard size dash panel and it has an illuminated tuning scale. Chassis size is: 7 in wide, 2 in high and 4 H in deep.

* Circuit diagram and comprehensive instructions 55p free with parts
* Fully retractable and lockable car aerial 1137 post paid


## CAR RADIO KIT £6•60 p. \& p. 55p

Speaker with baffle and fixing strips $£ 1 \cdot 65$. 23p p. \& p., post free if bought with the kit. Send stamped addressed envelope for leaflet.

If you can solder on printed circult board, you can bulld thls push-bution car radio kit. It's simple-just follow the step-by-step Instructions.


## PE TAPE LINK

 CONSTRUCTORSSuitable 3 speed tape deck, lese hesdie. Caters degk,
up to $5 \frac{1}{4} i n s, ~ s p o o l s . ~$
240 V up to 5 tins. spools. 240 V AC mains, Unused but
store soiled hence no store soiled hence no



## RELIANT MK IV $£ 13.50$

*5 Electricaliy iwixeo inputs. *3 Individual Mixing controls. *Separate bass and treble controls common to all 5 inputs. *Mixer employing F.E.T. (Field Effect Tran sistors). *Solid State Circuitry. Attractive Styling INPUTS 1. Crystal Mic or Guitar 9 mV 2. Moving Styling or Guitar 8 mV . Inputs 3, 4 \& 5 are suitable for a widg coil Mic. medium output equipment (Gram. Tuner, Monitor. Organ a wide range of medits into 8 ohms (suitable for 20 watt, etc.). All 250 mV sensitivity. Output 20 watts into 8 ohms (suitable for 15 ohms). Size 9 pprox. $12 \frac{1}{1} \times 6 \times 3 \frac{1}{2} \mathrm{ins}$. £ 13.50 p \& p. $60 p$

## UNISOUND MODULES

ONLY 27.64 + 55p p. \& p.
For the man who wants to design his own stereo-here's your chance to start, with Unisound-pre-amp power amplifier and control panel No soldering -just simply control panel. No soldering-just simply screw together. 4 watts per channel into 8 ohms. inputs. 120 mb tor ceramic cartridge). The heart of Unisound is high efficiency 1.C. monolithic power chips which ensure very low distortion over
 the audio spectrum.


## IN-CAR ENTERTAINMENT AT HOME

With this elegant stereo 8 track add on unit, audio enthusiasts now have the opportunity to extend their systems to include the playing of 8 track cartridges. Simply select your channel, by push button, four digital Simply select your channel, by push button, four dig
lamps indicate channel selected. Mains operated. The Viscount III, the fabulous Stereo 21 and C 10.60 p . \& p.80p
the Unisound Modules will all accept this unit, 1000 the Unisound Modules will all accept this unit, 210.00 . \& P. $80 p$
simplyconnect up.
ALL PRICES INC. VAT

## SEE OPPOSITE PAGE FOR ADDRESS DETAILS



## KEEP WARM ATA COOL PRICE.

## Slash central heating costs with AMKIT.

If you can put in electric wiring, you can install Amkit. The unique nylon pipe hot water central heating system, that you install yourself in hours.

Look at these advantages :
No soldering
No 'T' junctions
No special equipment
No leaks, no lagging, no corrosion
No structural upheaval
Just reliable, effective central heating (Guaranteed 25 years) at a saving of between $£ 150 \& £ 250$. This famous system has been successfully marketed since 1968.

Clip the coupon, and we'll tell you more.
To Autocon Manufacturing Co.
Spring House, 10, Spring Place, London, NW5, 3BH Please send your brochure telling me all about Amkit.
Name
Address.
or see for yourself at: THE AMKIT D.I.Y. CENTRE,
15, Procter St., London, W.C.1. (opp Holborn Undgnd). Open Mon-Fri $9.30 \mathrm{am}-5-30 \mathrm{pm}$. Sat 9 am-1 p.m.

SPECIAL ${ }^{40}$ MHZ SCOPESOLARTRON CDI212 ONLY 550. Has to be a snag. There are no plug-in $Y$ a mps available.
TB- 100 nanosecs per cm to 5 secs per cm in 24 calibrated ranges. 20 nanosecs per cm with times 5 expansion. trace locator. 0.2 microsec signal
delay.
Buitt-in calibrator
$i k H z$ square wave. 200 micro volts to 100 volts in 18 calibrated ranges. Tube sensitivity 3 Vcm . Main Frame Y Amp boosts this to better than 200 MV per cm ar 40 MHz 240 V 50 Hz input. Complete with full manualincluding plug-in circuits. Come and
see one working or Carriage $\mathbf{~} \mathbf{1} \cdot 50$. see one working or Carriage E1.50.
MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 Hz to 8 MHz . Hook up 29 volt battery and connect to your scope and have two traces
for ONLY 5.50 . P. \& P. 25p. (Not for ONLY \&3.50. P. ${ }^{\text {fos. }}$
NEW WIDE RANGE WOBBULATOR 5 MHz to 150 MHz up to 15 MHz 5 weep width. Only 3 controls, preset $R F$ level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6-3V A.C. and use within minutes of receiving. Als ehis for cased, not calitrated.)

20 Hz to 200 kHz WB.
SINE and SQUARE GENERATOR. Four ranges. Independent amplitude controls, thermistor stabilised. Ready to use, $9 V$ supply required,
(Not cased, not calibrated.)
GRATICULES. $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15p each. P. \& P. 5p. $12^{\circ}$ Long Persistance Crt , full spec. 12 Long persistance
Price f 12.50 to include V.A.T. \& carr.

COMPONENT PACK consistinz of 5 pots, various, brand now; 250 resistors $t$ and watt, many high stabs, etc. He value at 50 p . P. AP.17p
P.C.B. PACKS 5 \& D. Quantity 2 sqft Fno tiny pieces. 50 p plus P. \&P. 20 p FIBRE GLASS as above El plus P. AP. ${ }^{20}$ P 5 CRY5TALS 70 to 90 kHz . Our choice, 23 PP. P. \& P.i5p. METEMS various E2. P. \& P. 37p. CAPACITOR PACK- 50 Brand
new components only 50p. P. \& P. new components only 50p. P. \& P. ${ }^{17}{ }^{17}$.
POTS-10 different values. Brand new-50p. P. \& P. 17p.
TRIMMER PACK. 2 Twin $50 /$ 200 pF ceramic 2 Twin $10 / 60 \mathrm{pF}$ 5 ceramic; 2 min strip with 4 preset 520pr
preset $30 / 100 \mathrm{pF}$ on coramla base ALL BRAND NEW, 25p the lot. P. \& P. 10p.

FLAT FACED 4* Twin Beam Tube, type CV2193. Green trace. Brand new 54 each. P. \& P. 37p.
LIGHT EMITTING DIODES (Red) from Howlett-Packard. Brand New 38p each. Holder ip each. Information 5p.
PHOTOCELL equ. OCP7I, 13p PRHOTO RESISTOR type Clare 103. Two for 50 p .

MODERN TELEPHONES Eyp 706. Twotone grey, 63.75 each. The sume but black, 2.75 aech. P. \& P. 25 peach.

Also TOPAZ YELLOW 4.50 each. P. \& P. 25p
IDEAL EXTENSION Telephones with standard GPO type dephones and lead coding. $\& 1.75$ each. P. \& $P$.

DELIVERED TO YOUR DOOR 1 ewe of Electronic Srap chassis, boards, otc. No Rubbish. FOR ONLY $\mathbf{3}$.50.
(rear Tech. Colloge)

## (II) i.L.P. (teatemenes Les

## 100 WATTS! <br> * NO EXTERNAL COMPONENTS

With the development of the HY200, ILP bring you the first COMPLETE Hybrid Power Amplifier.
COMPLETE: because the HY200 uses no external components!
COMPLETE: because the HY200 is its own heatsink!
By the use of integrated circuit technique, using 27 transistors, the HY200 achieves total component integration. The use of specially developed high thermally conductive alloy and encapsularit is responsible for its compact size and robust nature.
The module is protected by the generous design of the output circuit, incorporating 25 amp transistors. A fuse in the speaker line completes protection.
Only 5 connections are provided, input, output, power lines and earth.
OUTPUT POWER: 100 watts RMS; 200 watts peak music power. INPUTIMPEDANCE: 10k $\Omega$. INPUT SENSITIVITY: 0Dbm ( $0 \cdot 775$ volt RMS). LOAD IMPEDANCE: 4-16 2 . TOTAL HARMONIC DISTORTION : less than $0.1 \%$ at 100 watts, typically $0.05 \%$. SIGNAL: NOISE: better than 75Db relative to 100 watts. FREQUENCY RESPONSE: $10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{Db}$. SUPPLY VOLTAGE: $\pm 45 \mathrm{volts}. \mathrm{APPLICATIONS:} \mathrm{P.A.}, \mathrm{Disco}$, Groups, Hi-Fi, Industrial. PRICE: £14.90 inc. VAT \& P\&P. Trade applications welcomed.

CROSSLAND HOUSE•NACKINGTON•CANTERBURY•KENT
CANTERBURY 63218
Please note we reserve the right to substitute at our discretion updated versions of advertised deisigns where applicable.

| Mk III Sound to Light Unit Chassis Version $\qquad$ | MN3 3 Channel I.C. Mixer Kit $\qquad$ | STL/I Single Channel Sound to Light Unit <br> Single channel "Sound to Light" unit with 60 mm slider fader controls for audio trigger level and background load dimmer This unit is switchable for response to High, Mid. and Low frequency audio signals, selected by facia control. A D. "pulse-flash" push button is fitted for manual flashing of the lampload rogether with neon load indicator. Maximum Load: 1 kW at 240 V a.c. Size: Bin $\times 3.6 \mathrm{in} \times 3 \mathrm{in}$. |
| :---: | :---: | :---: |
| Practical Electronics "Scorpio" Electronic Ignition System Kit <br> This Capacitor-Discharge Electronic Ignition system issues of Practical Electronics, It is suitable for boats, go-karts, etc. Case size: $7 \cdot 25 \mathrm{in}^{2}$. $4 \mathrm{in} \times 2 \mathrm{in}$ approx. Complete assembly and wiring manual $\mathbf{2 5 p}$ Price $\mathrm{C} 12 \cdot 10$. | STL/3 Sound to Light Unit | AUDIO EFFECTS <br> CREATE 'PHASE'EF FECT ON YOUR RECORDS, TAPES, ETC., UNIQUE CIRCUITRY ENABLES YOU TAPES, ETC., UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A supplied). COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD AND FULL All prices quoted include postage and VAT. DABAR ELECTRONIC PRODUCTS 98 LICHFIELD STREET, WALSALL STAFFS WSI IUZ |



## CASED AMPLIFIERS

Polished wooden cabinet $14 \times 13 \times$ 9 in with hinged lid containing a sensitive $(20 \mu \vee) 4$ valve amplifier with tone and volume controls, giving about 3 watts output to the
$7 \times 4$ in $3 \Omega$ speaker. Also included is a non-standard single motor rape deck. Easily converted to record player, guitar practice, baby alarm, etc. Supplied in good working condition with circuit diagram. Mains operated. Only 63 ( $£ 1$ up to 200 miles, $(1-20$ overj). Special cassettes, $£ 1$ ( 25 p). Spare heads, 40 p. Damaged machines from fl .50 to callers only. Spare heads, 40 p. Damaged machines from $£ 150$ to callers only.
Discounts on quantity. Amplifier chassis, $2 \times E C 83$, EL84, EZ80, Dircounts
$\mathbf{E} 1.65\left(35_{p}\right)$.

## 7lb BARGAIN PARCELS

Hundreds of new components-capacitors, resistors, switches, crystals, pots, PC boards, etc., etc. Outstanding value, $\in 1.65$ (37p). COMPUTER PANELS: TyPe E: 4 OC29, 4 ACY19, 8 other transistors, 35 diodes, etc., fl (10p). Type H: 12 ASZ20+176 R's, C's \& D's, 60 p ( 10 p ). Parcel of 12 top quality boards, inc. power transistors, trimpots, IC's, etc., $£ 2$ (25p); 100 for $£ 15$ ( $£ 1$ ); 1,000
 (c.pd.). Pack of boards containing at least 500 components including 50 transistors, 60 p (15p).
NEW COMPONENTS:741C TO99 or 8 pin DIL, 32p; BC107-9. 8p or 14 for $£ 1$; 2N3055, 35p;10+, 32p; $50+$, 29p. OCl40 25p; OCI70 15p; BFY18 12p; BCY728p.
PANEL METERS: Clearing 200 meters from 10p each to callers only. Oscilloscopes available, also lots of odd units for spares. TFI44G sig. gen. $85 \mathrm{kHz}-25 \mathrm{MHz}$, from $\mathbf{£ 1 2 - £ 2 2 \text { . Oscilloscopes }}$ available: CD711S2 from 635. CDI212, etc. BFO No. 8 audio oscillator $50 \mathrm{~Hz}-20 \mathrm{kHz}, \ldots 10$. $10 \times$ crystals, 25 asstd., 75 p ( 25 p ); 4 p0w switches, 40 p ( 10 p ); 2-8pF beehive trimmers, 5 p ; $3 \times 2 \mathrm{f}$ in 15 A thermocouple meters, $\mathrm{EI}(10 p)$ ) delay line unit, operating around 1 MHz with 7 transistor amplifier. Short delay, 40 p ; long delay, 60 p ( 10 p each). IM $\Omega$ pocs, 5 p .500 assed. resistors El ( 15 p ); 20,000 $€ 25$ ( $£ 1$ ); 100,000 £80 ( $£ 2$ ); 300 assed. capacitors $£ 1$ (25p).
Post in brackets, small parts 3p. VAT NOT INCLUDED-ADD $10 \%$ TO TOTAL. S.A.E. list, enquiries.

## GREENWELD ELECTRONICS (PE5)

All mail to 24 Goodhart Way, West Wickham, Kent., BR4 OES. Shop at 21 Deptiord Broadway, SE8 (next to old cinema). Tel. $01-692$ 2009. Callers most welcome. Also 38 Lower Addiscombe Road, Croydon.


# NEW VAT INCIUSTVE PRICRS 

OVERSEAS CUSTOMERS DEDUCT ONE ELEVENTH.


## EHROMASONTE electronics



## VEII INVOICES ON RIDOUBESY



Mallard LP 1186
Varactor diode tuned F.M. tuning heart. £4.15, as described in P.E. May 1973. LP.E. May matching I.F LP1185 ma
strip. $£ 4 \cdot 85$.


PT 7
$20+20$ Watt Integrated Stereo Amplifier Kit Superb state-of-the-art design by engineers of Texas Instruments $\mathbf{5 1 . 3 5}+$ P. \& P 49p


SEE EA1000
watt amplifier module. Price including handbook and FREE heatsink. Our price £2-49. Quantity discounts


A1005S
F.M tuner chassis fully transistorised 9 Volt positive earth operation Operation $\mathbf{O}$. 35.


A1018 F.M. tuner, similar to A1005S but in oiled walnut cabinet, etc.


A1005MS
Multiplex Stereo Decoder, fully built and aligned, to match A1005S Our Price 55.95

Audio I.C. Leaflet No 12. FREE (only with I.C. s-10p separately

Pre-Amplifler Dual. MC1303L

Low Noise Dual, MC 1339P $\quad$ £1-29

Amplifiers
250 mW , MFC4000A
1 watt, TAA300
2 watt. LM 380 £1-59 5 watt, TBA800 15 watt, BHAOOO2


## the component people

Dept. 2.
56. Fortis Green Road, London. NIO 3HN telephone: 8833705

 atmosphere, a projected kaleido. scope of colour anakes the music you produce thore interestitig and will appeal to the visual as uell as the andio senses. This budget assatell compares
very favourably with the very favourably with the mure sophisticated aflid tuuch higher
priced tuodela. priced modela.
specifteation-Projector: 150w
convection cooled, at 30ft the convection cooled, at 30 t th
projected image $=16 f t:$ Motor 1 rev per 2 mint. Liquid Wheel bin diameter multicoluur The Motor is fitterl Projector and can onl purchased as a single unit. The
Liquid Wheel, however, is ent very popular standard model fias the purchased separately.
bargain-Projector with bargain-Projector with Mutor fuid Wheel, $£ 5=£ 20+$ Tinp carr

## CRESCENT CASSETTES



Prp quality cassettes at unbeatabte prisp (comple te with 3KILOWATTS PSYCHEDELIC LIGHT CONTROL UNIT Three Channel: Bash-Midille-Treble. conch channel bas its own rensitivity, Just conneet the input of this unit to the louispeaker terminals of an amplifier, and connect three 250 v up to 500 W lamps to the output terminals of the unit, and you produce a fascinating
sound-light digplay. (All guaranteel) $\mathbf{E I 8 . 5 0} \mathrm{plus} 38 \mathrm{p} \mathrm{J}^{\prime}$. \& P . If you require more information please send S.A.E


TRI.VOLT BATTERY ELIMINATOR
Erahles you to work your Transistor Ranlio, Amplifier or Cassette, etc., from Ehe a c. mains through this compant Eluginator. Just by mowing

 pack applications can be handled
hy this one nnit. Approx. aize 2. 2.75 finn $\times 3 \mathrm{in}$. Our Price model suitatly wired for the Philips Cassette $£ 3$ plus $10 p$ P, \& $P^{\prime}$. FERI-VOLT CAR SUPPLY Enables you to work your Transistor Radio, Amplifier or Cassette, etc. from the 12 volt carsupply. Positive or inegative earth. Approx. size $=2 \mathrm{in}, \times 3 \downarrow \mathrm{in} . \times 1 \frac{1}{2}$ in.
This converter supplies $6,7 i$ or 9 volts and is transistor regulatef. A real money saving device for $22-50$ ptur $10 \mathrm{p} \mathrm{P}$.
MINI LOUDSPEAKERS Mtin 80 ohm, 50 p ; 2 in 40 ohtm,
50 p . Please include 3 p , 50 p . Pleave include op $\mathrm{I}^{2}, \$ \mathrm{P}$. On
each L.
 information. Rate.
$\qquad$

DIGITAL CLOCK KIT
"CRESCENT" 100 WATT R.M.S. ALL PURPOSE AMPLIFIER
$24-h r$. Nixie lig. clock kit. of components; a complete eet of easy to follow insiructions: printed circuits made to haske construction as simple as possible: a calinet and front pariel to give a protessional tinish. All for the price of The components. $\mathbf{£ 2 0 \cdot 5 0}+50 \mathrm{pl} \mathrm{P}$. \& P. Please send S.A.E. it you require more

From lst April, 1973, will you plesse inciade on your Total (Goods plus Poatage and Packing) Falue plus Poatage and Packing Value
Added Tax at the Standard Stated

STEREO/MONO
HEADPHONE VOLUME
CONTROL BO CON
Plug
whone Phones into this control box andy yon then incorporate a right and left hand volume control
and astereolmonoswitch Complete with stereo
 Jack plug and
bargain at 11. "CRESCENT SINGLE
CHANNEL CHANNEL
SOUND TO SOUND TO
LIGHT UNI brite $\quad \begin{aligned} & \text { LIGHT UNIT } \\ & \text { This fantastic }\end{aligned}$
 littie box approx. $4^{\prime \prime} \times 3^{\circ} \times 22^{*}$ when connected to the output of a sound source from 1 to 100 witts display of up to 1040 watts. Complete with a sensitive level
control the unit is fused and carl control the unit is fused and cars
not harm your amplifier. not harm your amplifier.
A Bargain at $£ 7-50$ plus 10
U.BUILD.IT

LOW VOLTAGE AMPLIFIER

## transietor aniplifier complete

 with volume control, is suitable for 9 V dice and a.c. supplies. Will give about $1 \mathbf{W}$ at 8 ohm output.With Zigh IMI input this ampliher will work as a recorl player. baby atarm
amplifier.

61.75

913 P . 4 P.

We supply the three modules for you to build this Disco. Group-P.A. amplifier into the cabinet of your choice.

* THE POWER AMP MODULE TPIOOW
(60W into 16 ohm . Wave 300 W instantaneous peak into 8 ohm - THE PRE-AMP MODULE
our control pre-amp, Vol, Bass, Treble, Midille controls esigned to drive most amplifiers using F.E.T. flrst stage. * THE POWER SUPPLY MODULE PS100



## RING BOARD PRINTED CIRCUITS



Photograph shows a circuit built on RING BOARD containing 42 components

RING BOARD is a fantastic new, quick and easy method to transfer Normal price per full board S5p Special Opening Price 47p Normal price per fulb board, S5p Special Opening Price 47p
Normal price per half board, 33p. Special Opening Price 26p Normal price per hal board, 33p. Special Opening Price 2p RING BOARDS can be cut into half and quarter boards and still retain the same characteristics.
Full instructions of method with each RING BOARD purchased RING BOARDS are
Simple to use
2. Little or no planning.
3. Positive and negative rails easily recognised
4. Can be used with split voltage systems.
5. Build what you like when you like.
6. Neat and professional finish
7. Flux varnished for easy soldering

## RING BOARD PRINTED CIRCUITS

259 Chesterfield Road, Sheffield S8 ORT

## A CASE FOR "IMPEX"

Problem: I have a tuner, timer, mixer and digital clock for which I require suitable cases.
Answer: "IMPEX" Instrument Cases.
Problem: All the instruments are different sizes.
Answer: "IMPEX' have a standard range of 48 sizes
Problem: I want them to be robust and stylish
Answer: "IMPEX" cases were designed to be functional and attractive.
Problem: I don't think I could afford them; they sound expensive.
Final Answer: "IMPEX" cases are very competitively priced. Find out how they answer all your problems. Details from:

## "IMPEX"

15 QUEENS STREET, NEWCASTLE UPON TYNE NEI 3UG

## Dimmit range of light dimmers <br> Hustrated is the popular PMSDI000 module. 1000 W professional quality dimmer operation, interference suppression, 60 mm slider and disco lighting. Used by schools, theatres tudios, ecc. Complete with scale plate, fixing screws and fult instructions. 65.50 inc. VAT, add $10 \mathrm{p} P$. \& $P$ Also available in 2 kW . with separate heatsink. <br> models for home and office, etc. Professional modules for use on lamps, heaters, motors, etc. Rotary and Slider <br> NEW addition to Dimmit range-Model SL800 sound to light converter. Modulatesthelight in time with sound. Built-in microphone. Just place unit near any sound source-radio, hi-ff, tv, human voice, etc. Black Al case-size $12 \times 4 \times 7 \mathrm{~cm}$. Full instructions. $\mathbf{£ 6 . 5 0}$ inc. VAT, add <br> YOUNG ELECTRONICS <br> 54 Lawford Razd, London NW5 2LN. Telephane OI-2670201

YES, "YOU'VE GOT THE WHOLE WIDE WORLD IN YOUR HANDS"! ALMOST UNBELIEVABLE! Think of fhe ear ASTAND 17 and SEE for yourself that the incredible Russians have done it all NOW! It's the radio perfectionist's Mream come true! THIS ONE S UPERSEDES ALL EARLIER a "crystal set"! Complete with optional battery eliminator for both battery and mains use! We're almost giving them away at only $\mathbf{1} 18.50$-a mere fraction of even today's Russian miracle price! We challenge you to compare performance and value with mail order 7 day approval, refund if not goolighted. Or call. Volume controlled from a whisper to a roar that would point". starion selection! Plus "MAGIC EYE" tuning level indicator for ultra perfect tuning sensitivity! Yes.
the Russians have surpassed themselves, proving again their fantastic ability in the field of electronics and brilliantly reflecting their advanced micro-circuitry techniques in the field. ol space-
ship and satellite communications. Yes, EVERY WAVEBAND instantly at your fingertips including Standard Long, Medium, Short and Uitra Short Wavesto cover the four corners of the earth during 24 hoursaday includingall normaltransmissions. VHF, FM/USW, AM:LW, MW, SW, gets, locally, local 2 new stations not yet operational, and Messages from all
over the world! Expensive TURRET TUNER side control over the worid! Expensive TURRET TUNER side control
waveband selection unis (as used on expensive T.V.'s!). Every waveband clicks into positiongiving incredible ease of station tuning! Genuine push-pull outpurt ON/OFF volume and separate Treble tone! Press-button dial illumination! Take it anywhereruns economically on standard batteries (obtainable everywhere) or direct through battery eliminator from $220 / 240 \mathrm{~V}$ AC mains supply. Internal ferrite rod aerial plus built-in "rotatable" tele-
scopic aerial extending to 39 in approx. |t's also a fabulous CAR scopic aerial extending to 39 in approx. It's also a fabulous CAR
RADIO. Can also be used through extension amplifier, tape recorder or public address system. SIZE $13 \mathrm{in} \times 10 \mathrm{in} \times$ Min overallapprox. Magnificently designed, in highly polished cases. Made to give years of perfect service. Purer \& sweeser tone than
ever. (U.K. service facilities \& spares available for years \& years to come, if ever necessary!). With WRITTEN GUARANTEE, Manual ultra sensitive earphone for personal listening. ONLY \&i8.50 (with mains/battery eliminator E2.25 exera) BOX, POST, ETC. 45p. NO MORE TO PAY! "BUT WAIT, for only $75 p$ extra
you get the sensational "COMPUTERISED" WORLD TUNING GUIDE (it enables you to zone and time in a flash for transmissions the whole world over-even a child can do it in a flash-it even lets
you know when to sune into the U.K. when abroad. NO You know When to sune into the U.K. When abroad. No and Converter Plug. (Sorry-We cannot change these new radios for any earlier model purchased.) Send quickly to Uxbridge Road address. or call at either Store. But HURRY! SHOPERTUNI.

## THITSW IV

 1923: SHRINKSTHE WORILD FOOMPUTERISED? THISFANTASTIC BRANDNEW $\begin{gathered}\text { FABULOUS } \\ \text { FA }\end{gathered}$ ипй portable radio \& communications


Shopertunities "thunder" ahead with an offer that's FANTASTIC (even by our standards!). We've snapped up 500 magnificent machines. Latest senRadio AND Cassette Tape Recorder \& Player combined \& it also runs off tandard batteries or mains. (Simply plug in the 220/240V AC line cord), Record and play back anything, anywhere! IMPORTERS RECOMMENDED RETAIL PRICE E44! WE OFFER AT UNDER HALFPRICF! Wonderful reatures: 丸 Press-button Keyboard Control Panel or latest check/recording level indicator or built-in automatic Leveller! t Separate ON/OFF and HI-LO volume controls! $\star$ Heavy duty built-in speaker! * Earphone (for personal listening or ' monitoring") and extension peaker sockets! * Remote control microphone! \& Built-in swivel celescopic extension aerial (24in approx.)? Magnificently made case with carry handle. (DESIGNS VARY SLIGHTLY.) Takes standard 30, 60, 90 or 120 -minute Cassette Tapes, obtainable everywhere. AND the amazing buitein full circuit $H$ H. AM/FM Radio gives you superb clarity of tone, inlocal city and regional stations in every parr of the country, plus B. B.C. National, HF. Picks up dozens offoreign stations Fabulous in your cart You could pay CCC's more for a Car Radio or Car Cassette player ALONE! $\mathbf{2 0} 9.97$, carr.etc., 50 pNO MORE TO PAY! Complete with simpleinstructions, remotecontral nicrophone with on/off switch and microphone stand. WITH WRITTEN GARANTEE. Send quickly, test on mail order 7 day approval from receipt gonds, refund if not delighted. Or call.
Callers: ACCESS : BARCLAYCARDS ACCEPTEDATBOTH

## SHOPERTUNITIES LTD.



THE ONE STEP FORWARD EVERYONE HAS WAITED FOR! NOW a superb de luxe portable BATTERY/MAINS rape recorder and player-and incredible apertunities bring it to you for ONLY 10.95 . Due to our cut price we BEST: Expensive "PIANO KEYBOARD" CONTROG MASTER SWITCH control) AND AUTOMATIC LEVEL CONTROL No fiddling with awkward tape and reels, just "slap-in" a cassette and off you go! (Takes 30, 60, or 90 ininute standard cassette tapes obtainable every where.) Amazing performance ensures perfectcapings and superb reproduction Remote control microphone. Rapid Rewind! Fast forward! Beautiful tone from whisper to roar! Complete-record anywhere, indoors or out! Runs remore control microphone, etc. Size $9+i n \times 5 i n \times 2$ in approx. Design can vary slightly. With carry handle. WRITTEN GUARANTEE and full instructions. mporters (Recommended selling price $£ 26.97$ !) OURPRICE ONLÝI0.95, post etc. 50p. NO MORE TO PAY! "Send quickly, from receipt of goods test on mail order 7 day approval-refund if not delighted. Or call at either microphone stand 55p extra if required.

Order by post to Uxbridge Road address or call at either store.
Bargains galoreat both stores.-(COMMERCIAL TRAVELLERS PLEASE Bargains galore at both stores.-(COMMERCIAL TRAVELLERSPLEASE NOTE: Merchandising office at Holborn Store.)

Dept. PE/NC/32, 164 U XBRIDGERD. (facing Shepherds Bush Green) LONDON WI2 日A ${ }_{\text {H }}$ (Thurs. I, Fri. 7). Also at 3y/39 HIGH T p.m.) BOTHOPREN MON. TOSAT, 9 A.M. TILL 6 P.M.

## U|दGFlulus



ALL PRICES ARE INCLUSIVE OF V.A.T.

## FANTASTIC OFFER

 GARRARD SP25 Mk III. Goldring G800. Teak finish, plinth and tinted cover with mains lead and DIN plug and screened ead. Al fully wired.Please add $£ 1.75$
fir TURNTABLES

## loase add 95p P. \& P \&

 BSR MP60 ${ }_{\text {Garrard SP25 Mk.III }}$ 69.05 Garard SL65Garrard AP76 69.25 arrard AP76 625.95 Garrard Zero 100 (single) Garrard Zero 100 (Auto) Goldring GL85/P. P. \& C. 637.45
659.30 Goldring G101/P P. \& C $\quad 619.75$ oldring GL72 Goldring GL75 Goldring GL75/P. Goldring GL75 Lid Goodmans TD 100 P. \& C. C80 $\begin{array}{lr}\text { Cart } \\ \text { Thorens TOI } 25 & \mathbf{6 4 7 . 1 5} \\ \text { C59.95 }\end{array}$ Thorens TDI25 AB Mkll $\quad 692.50$ horens TO 160 AB \& C $\quad 651.50$ Thorens TOI $65 . A B$ \& $C \quad 644.95$ TUNERS
Please add 95p P. \& P. \& Ins

Alpha Highgate FTI50 $\quad \mathbf{5 3 . 9 5}$ Alpha Highgate Priso Multiplex $3000 \quad$ E23.90 $\begin{array}{ll}\text { Amstrad MMIMEX N/P } & \text { E42.75 } \\ \text { Lowther FM MK } 8 \text { N/P }\end{array}$ Lowther FM Mk 9 N/P \begin{tabular}{l}
642.50 <br>
<br>
\hline

 Metrosound FMS 20 Mk II $\quad \mathrm{E} 37.75$ Rogers R/brook FET 4 (Cha.) €32.95 Rogers R/brook FET 4 (Cased) 

Sinclair PRO60 Mod \& $\pm 14.90$ <br>
Sined <br>
\hline 25.30
\end{tabular} 536.50

$E 14.90$

## Speakers

### 1.65 for P. \& P. (per pair)

 Amstrad Acoustra 1500 Apollo 138 B W DMSCelestion Ditton 15 elestion Dition 44 Goodmans D/Maxim Goodmans Mezo 3 Goodmans Havant Keletron KS8
Keletron KS
$\begin{array}{r}\text { Sinclair } 816 \\ \text { Sinclair } \\ \hline 100\end{array}$

## AMPLIFIERS

Ploase add 95p P. \& P. \& Ins.
Amstrad 8000 Mk il
EIS.85 Amstrad 8000 Mk II $\quad 15.85$ Amstrad IC2000 Mk II Amstradintegra 4000 Alpha Highgate FA400 Gi.obal $10+10$
G. obal $20+20$ Keletron 700 Keletron 1500 Metrosound ST20E Mk II Merrosound ST60 Rogers R/brook (Ch.) Rogers R/brook Mk ill. (Ca.) Rogers R/bourne (Ch.) Rogers R/bourne (Ca.) Sinclair 3000 Sinclair 3000 $\begin{array}{r}\quad 24.00 \\ 630.50 \\ \hline\end{array}$
 Sinclair PRO $602 \times \mathbf{Z 5 0 / P Z 8}$
Trans.
Sinclair AFU (Filter Unit)


Sinclair Stereo 60 Preiamp.
Sinclair Z30 Amp.
Sinclair PZ5 Power Supp.
Sinclair PZ 6 Power Supp.
Sinclair PZB Mains Trans.
Sinclair PZ8 Power Supp

## TUNER/AMPLIFIERS

lease add : $1 \cdot 10$ P. \& P. \& Ins Alpha FR 3000
Goodmans Module 80
Goodmans Mod. 80 Com
Goodmans Mod. 90
Rogers R/brook (Cha.)
Rotel 150A
Rotel 200A

| 622.95 |
| :---: |
| -622.25 |

Wharfedale WE4O Receiver $\begin{array}{r}\text { E45.25 } \\ \mathbf{E 5 7 . 9 5} \\ \hline 69.95\end{array}$

## PLINTH \& COVERS

£3. 20
For Gar-
rard SP25,


Wharfedale Denton II
3000 . BS'R

AP76, SL72B, SL958, etc


## CARTRIDGES

please add IIp P, \& P. \& In
Goldring G850
Goldring G800
Goldring G800E

| 62.75 |
| :--- |
| 63.95 |
| 6.35 |


| Wharfedale Linton Kit |
| :--- |
| Wharfedale Glendale Kit |
| 16.85 |
| $E 29.95$ |
| 1025 | Whariedale Glendale Kit



Dept. (PE1I), 174 Pentonville Road, London, N.I. Tel. Ol-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue llford, Essex. Tel. 01-550 1086

[^2]
## The leading U.K. $¢$ U.S.A.electronic Manufacturers use ERSIN MULIICORE SOLDER

containing 5 -cores of non corrosive extra active flux.
YOU TOO CAN USE THIS RELIABLE SOLDER
obtainable from your retailer. (ask for 'ERSIN MULTICORE')


## Multicore Solders Ltd.

Maylands Avenue,
Hemel Hempstead, Hertfordshire, HP2 7EP
Tel: Hemel Hempstead 3636 Telex : 82363



## LEARN about MODERN TV Design by building this Heathkit 12" B/W Portable

on the new Heathkit GR-9900 portable 12" UHF Monochrome Television kit. A unique chance to double the pleasure available from any other television set because you build this yourself.

Wo've used the latest modular construction and advanced design concepts to produce an outstandingly high performance TV worthy of the Heathkit name. All the main electronics are mounted on two easy-toassemble printed circuit boards-this plus the use of no less than four integrated circuits perform the complex function of IF, video, sound, line frame and scan. Factory pre-aligned coils make alignment very easy and there are four presetable pushbutton controls for channel tuning-a luxury found in very few other models. The quality and fidelity is therefore excellent, and of a far higher standard than most ready-built televisions in the shops.

The GR-9900 is portable too-equally at home on
the mains or off your 12 volt battery for car, boat or caravan use. Add to this Heath's world renowned experience in the design of equipment for first-time kit builders, and you will be impressed on all counts of engineering, styling, and performance.

The instruction manual is surprisingly simple with big, clear illustrations to map out your way. Would-be TV engineer? Here's your chance to learn-by actually building a television yourself. The manual not only shows you how to get $100 \%$ personalised quality control on your own; in the event of anything going wrong, a Trouble-Shooting section enables you to find the faultand, in most cases, to put it right unaided.

The GR-9900 is a kit you'll be proud to build and own. You have a choice of fully finished cabinets in teak or modern white and the kit price, $£ 62.70$ (carriage extra), includes a FREE high performance indoor aerial.

Choose cash or Heath Monthly Budget Plan

## FREE <br> Heathkit Catalogue

Contains something for everyone: Hi-Fi Stereo Tésters \& Instruments. SWL Metal Detectors . . even a Battery charger Kit Mail the coupon... Today Heath (Gloucester) Limited, Gloucester GL2 6EE:
LONDON showroom
233 Tottenham Court Road Tel 6367349


## Irms

UK'S LARGEST RANGE OF TRANSISTORS, IC'S RECTIFIERS, ALL SEMICONDUCTOR DEVICES
BEST PRICES RETAIL. TRADE EXPORT \& INDUSTRIAL

FREE BOOKLET
All types of
TRANSISTORS - RECTIFIERS BRIDGES - SCR's - TRIACS INTEGRATED CIRCUITS F.E.T. - LIGHT DEVICES
OVER 1500 DIFFERENT DEVICES ENTIRELY NEW 1973 EDITION

8END FORYOURFREECOPYTODAYY! INTEGRATED CIRCUITS, VERY IMPORTANT-ONLY BRANDED IC'S ARE TO THE FULL MANUFACTURERS SPECIFICATIONS. ALL OTHER ARE NOT. HENRY'S SELL ONLY BRANDED INTEGRATED CIRCUITS.
FROM TEXAS.. IT.T. FAIRCHILD SIGNETICS SO WH FROM TEXAS. I.T.T. UNDAIRCHILD. SIGNETICS SI SO WHY
BUY ALTERNATIVES OR UNDER SPEC. DEVICES WHEN YOU CAN PURCHASE THE GENUINE ARTICLE FROM US EX STOCK...NEED WE SAY MORE


#### Abstract

8N7400N SN7401N SN7401AN 8N7402N SN 7403 N SN7403AN 8N7403AN 8N7404N 8 N 7405 N SN7405AN SN7406N SN7407N SN7408N SN7409N SN7409AN SN7410N SN7411N 8N74112N SN7412N SN7412AN SN7412AN 8N7414N 8N7418N 8N7417N 8N7420N 8N7422N BN $^{\text {SN } 74223 N}$ N SN7423N 8N7427N SN7428N 8N7430N 8N7432N SN7433N SN7433AN gN7437N SN 7438 N SN7438AN 8N7440N 8N7441AN SN7442N SN7442N SN7443N SN7444N SN7444N $\begin{array}{llll}1.60 & 1.27 & 1.18 & 8 N 74123 N \\ 2.16 & 2.16 & 1.88 & 8 N 74125 N\end{array}$ NUMBER OF SN7400 SERIES IS CAL SN74 (HIGH POWER) SN74 (LOW POWER MIX free on request. Low Profile Sockets, 14 pin, 5 p , 16 pin stock. Send for List 36


TRANSISTORS-A selection

## For full list send for booklet 36 today

AAZ 1 P 10 BCl 6 $A C l$
$A C 1$
$A 8$ $A C Y I$
$A C Y 3$
AD 149
AD 161 AD162 AF117 AFII8 AFI 39
AFI
AF2
BA115
BAXI
BAX 13
BC 107
$8 C 108$
$8 C 108$
$8 C 109$
BC 109 C
$\mathrm{BC} \mid 13$
BC 113
BC147

MORE DEVICES NEW PRICES<br>NEW RANGES THIS IS A MUST FOR ALL SEMI-CONDUCTOR USERS!

```
TBA 8005 WATT I,C.
Suitable alternative
Suitable alternative to
SL403D, \(5 / 30\) volt oper
ated. \(8 / 16\) ohm 5 watt
output.
With circuits and data
El.50.
SINCLAIR ICI2
With circuits and
data. 6 W IC with
printed circuit board
28Voperated, 61.80 .
```


## ZN4I4 IC

```
Integrated circuit radio as \(\begin{array}{lc}\text { featured by many } \\ \text { magaxines. } & \text { (PW Jan. } 73 \\ \text { Reprint } & \text { Ref. No. } 19\end{array}\) Reprint \(\begin{aligned} & \text { Ref. } \\ & \text { for } 10 p), ~\end{aligned} 1-20\).
```

| TOSHIBA POWER <br> AND PREAMPLIFIER MODULES <br> TH9013P 20W pawer amplifier 22-0-22 or single 45 V operated, 4.57. <br> TG9014P Stereo on two channel preamplifier, $\mathbf{E 1 . 5 0}$. (Circuit book No. 42 price 10p). <br> ULTRASONIC TRANSDUCERS <br> Operate at 40 kHz up to 100 yds . Ideal remote switching and signalling, complete with data transmitter and receiver, new I.C. circuits. Per pair, 85.90. <br> TA 960 I.C. with socket El -00. |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| 30I5F 7 SEC. <br> IC size complete with data price $\mathbf{E 2}$ each or 4 for $\mathbf{E 7}$. (Digital clock circuits Ref. <br> No. 31, 15p). |  |  |  |
| :---: | :---: | :---: | :---: |
| TRANSISTORS-SPECIAL OFFERS |  |  |  |
| 2N30 |  | BY12 |  |
| 25 | 47p each | 25 | 12p each |
| 100 | 42p each | 100 | 10p each |
| 500 | 39p each | 500 | 9p each |
| 1000 | 34p each | 1000 | 8p each |
| AFII |  | OC35 |  |
| 25 | 15p each | 25 | 46p each |
| 100 | 13 p each | 100 | 42p each |
| 500 | 12p each | 500 | 38 p each |
| 1000 | 10p each | 1000 | 34p each |

TRIACS-Stud Mounting with
accessories
3 AMP RANGE TYMP RANGE I-1
TYPE P.I.V. Price 80,
SC35A 100 V 80p $\begin{array}{ll}\text { SC35A } & 100 \\ \text { SC35B } & 200 \\ \text { SC35D } & 400 V\end{array}$ $\begin{array}{lr}\text { SC35E } & \text { 400V } \\ \text { SAMP RANGE } \\ \text { SC40A } & 100 \mathrm{~V} \\ \text { SC40B } & 200 \mathrm{~V}\end{array}$ $\begin{array}{ll}\mathrm{SC} 40 \mathrm{~B} & 200 \mathrm{~V} \\ \text { SC40D } & 400 \mathrm{~V}\end{array}$ SC40D 400 V
SC40E

10 AMP RANGE | 10 AMP RANGE |
| :--- |
| SC45A 100V |
| $5 C 45$ |
| 1.05 | $\begin{array}{lll}\text { SC45B } & 200 \mathrm{~V} & \ell 1.15 \\ S C 45 D & 400 \mathrm{~V} & \mathrm{Cl} .45 \\ \text { SC45E } & 500 \mathrm{~V} & \mathrm{Cl} .85\end{array}$ 15AMP RANGE SC50A

SC50B SC50B
SC50D SC50E
TRIAC
TYPES
 1.45
4.65
1.95


NEW RANGES
BRIDGE RECTIFIERS FEATURES SMALL
SIZE \& LOW COST SIZE \& LOW COST
$250 M / A+A M P$ P.I.V.
B025/05 50
B025 100
$4 \times 4 \times \operatorname{tin}$ dia. $\frac{1}{2} \times{ }^{2} \times \neq$ in
$\frac{1}{2} A M P$
 LINEARI.C. 1 702C (T05) 702 C (T05)
709 C (T05) 709 C (DIL) 723C (T099) 723 C (DIL)
728 C (DIL) 728C (T099) 741 C (T05) 741 C (DIL) $\begin{array}{lr}747 \mathrm{C} \text { (T099) } & 1.00 \\ 747 \mathrm{C}\end{array}$ 747 C (DIL)


| SILICON <br> RECTIFIERS | SEM1- |
| :---: | :---: |
| I amp series. | CONDUCTOR |
| IN400I zoln 4007. From 6 p each. |  |
| 1.5 amp . |  |
| PL4001 to PL4007. | DISCOUNTS |
| From 8 p each. | DISCOUNTS |
| PL7001/IN5400. | 10\% $12+15 \%$ |
| From 14p each. | All one typ |
| Send for full tist 36. | except where |
|  | quantity discounts |
| MORE OF | Min. order $\mathbb{C 1} \cdot 00$ please. |
| EVERYTHING |  |
| See pages 935, | $0 \%$ |
| 936. and |  |
| Cover of this magazine. | TO BE ADDED |
| BEST VALUE | ORDERS |


| SILICON CONTROLLED RECTIFIERS |  |  |
| :---: | :---: | :---: |
| 1 AMP (TOS) | P.I.V. | 1-11 |
| CRS I/05AF | 50 V | $30 p$ |
| CRS I/IOAF | loov | 30p |
| CRS I/20AF | 200 V | $35 p$ |
| CRS 1/40AF | 400 V | 45p |
| CRS I/60AF | 600V | 55p |
| 3 AMP (TO48) |  |  |
| CRS 3/05AF | 50 V | 40p |
| CRS 3/10AF | loov | 40p |
| CRS 3/20AF | 200V | 45p |
| CRS 3/40AF | 400V | 55p |
| CRS 3/60AF | 600 V | 65p |
| 5 AMP | 400 V | $60 p$ |
| CRS | $5 / 400 \mathrm{~V}$ | 60p |
| 7 AMP (TO48) |  |  |
| CRS 7/100 | 100 V | 60p |
| CRS 7/200 | 200 V | $67 p$ |
| CRS 7/400 | 400 V | 65p |
| CRS 7/600 | . 600 V | 95p |

404-406 Electronic Components and Equipment 01-402 8381 354-356 High Fidelity and Tape Equipment 01-402 5854/4736 309 PA-Disco-Lighting High Power Sound 01-723 6963 303 Special offers and bargains store

# Lenrys 

 PANEL METERS • TRAHSFORMERS - COHTROLS - RELAYS RROWS • TOOLS • VALVES • POT CORES MOST TYPES of COMPONENTS You need a catalogue! 55p post paid complete with Discount Vouchers

## TEST EQUIPMENT

MULTIMETERS
(carr., etc. 30p)

$\mathbf{2 0 0 H}$ (M2|0) $20 \mathrm{k} / \mathrm{V}$ Slimline with case, $\mathbf{t 4 . 9 5}$
THL33D $2 \mathrm{k} / \mathrm{V}$ Robust with case. $\mathbf{1 4 . 9 5}$ 0437 10k/V Steel case. A.C. up to $40 \mathrm{kHz}, 64.95$ AF $10550 \mathrm{k} / \mathrm{V}$ with leat her case, 69.50
U4313 20k/V A.C. current. Steel case, $\mathbf{\&} 10-50$ U4341 Plus built in transistor tester, $\notin 10.50$ Model 500 30k/V, 69.95
OTHER EQUIPMENT
 SE500 Pocket Signal Tracer, 11.50 . Carr. 15 P
TEI5 Grid Dip Merer $440 \mathrm{KHz}-280 \mathrm{MHz}$. 13.45.
TE40 A.C. Millivoltmeter 1.2 MHz , $\in 18.75$. Carr. $30_{\mathrm{P}}$ TE65 28 Range Valve Voltmeter, €19.25. Carr. 40 p TE20D $120 \mathrm{kHz}-500 \mathrm{MHz}$ RF Generator. $£ 16.95$. TE22D $20 \mathrm{~Hz}-200 \mathrm{kHz}$ Audio Generator E 18.75 . SE350A Deluxe Signal Tracer, 69.95. Carr. 20p ${ }^{\text {CiPD }}$ $S E 400$ Volts/ohms/R-C sub. $R$ Ffield $/ R F$ gen., $E 11-25$.

Carr. 20
A SELECTION OF INTERESTING ITEMS
C3025 Compact rransistor rester, $\mathbf{6 5 \cdot 5 0}$. P. \& P. 15p El310 Stereo mag cart preamp, $\mathbf{6 4 . 9 5 .} \mathbf{P}$. \& \& $\dot{P}$. 25 p Easiphone telephone amplifier, 66.15, P. \& P. 25p DI 203 Teleamp with PU coit, $\in 3 \cdot 60$, P. \& \& P. 20p
LLI Door Intercomm. and chime, fil.95, P. \& P. 25p LLI Door Intercomm, and chime, til.95, P. \& P. 25p Chatralite (lights as youtalk), \&13-90. P. \& P. 20p IkW Dimmer/controller, f3.00. P, \&
gin Twinspring unir, for Reverbs, E2. gin Twinspring unit, for Reverbs, E2.75, P. \& P. 15p 16 in Twinspring unit, for Reverbs, ©6.50. P. \& P. 25p
Car Tachometer Electronic, 67.50 . P. \& P. I5p

VHF 205 Marine band converter, ©3.95, P. \& P. I5p B20054 Ch. mic. mixer, £2.95. P. \& P. I5p
B20042 Ch. stereo mixer, $£ 4.75$. P. \& P. 15p

## BUILD THIS RADIO

PORTABLE MW/LW RADIO KIT using Mullard RF/IF module. Features
MW-bandspread for extra selectivity. Slow motion cuning. Fibre glass PVC cabiner 600 MW ourput All parts 67.98 (battery 22p). Carr. etc. 32p.

## EXCLUSIVE: SPECIAL OFFERS

MW/LW CAR RADIO + or - earth with £6.50 carr/packg. 30 p 8 TRACK CAR STEREO (- earth) with speakers, in pods and fixings. E12.50 carr/packg. 40p.
HANIMAX HCIOO HANIMAX HCIOOO recorder. \&10.50 carr/ packg. 25p HANIMAX HC2000 battery/mains cassette recorder. $\quad 13.50$ carr/packg. 30p AKAl GXC40 stereo Casserte recorder $\mathbf{6 5 9 . 9 5}$ carr/packg. 50 p

Pair Akai ADM carr/packg. 20p.
5 WAVEBAND PORTABLE TWIN SPEAKER RADIO FM/MW/SW/ PUBLR-
CRAFT - PUBLIC SERVICES. $\quad 10.45$ carr/packg. 30p.
PORTA B L E PLASSERTE for Car or PLAYER - for car or
carry around. $\in 7.25$ carr/packg. 20p.
HANIMAX POCKET $\%$ key 633.50

## SPECIAL PURCHASES

AVOMETER MOVEMENTS
 Brand New AVO's. 63.50. Post 20D

UFH TV TUNERS CHANNELS 21 to 64 Brand new transistorised geared tuners for 625 Line Receiver IF output.
t2.50. Post 20 p

## EASY TO BUILD

## KITS BY AMTRON-

## EVERYTHING SUPPLIED

## Model No.

310 Radio control receiver
00 4-channel R/C transmitter
45 Superhet R/C receiver
50 TV sweep generator
60 FM signal generator
65 Simple transistor tester
15 aW amplifier


## GARRARD BATTERY TAPE DECK

GARRARD 2 speed 9 volt tape decks. Fitted record piay and oscillator/erase heads. Wind and rewind plete with head circuits. E9.50. Carr. 30p.

IOP QUALITY SLIDER MARRIOT TAPE HEADS CONTROLS
60 mm strokehigh quality 2 TRACK STEREO controls complete with High Impedance, knobs (post. erc. 15p any quantity).
Singles Log and Lin 5 kR , 10 kR . $22 \mathrm{k} \Omega$ $50 \mathrm{kn}, 100 \mathrm{kn}$. 250 ka . 500k $\Omega$. I Meg. 45p each. Ganged Log and Lin $100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$. 65 p each (Quantity $\begin{aligned} & \text { discounts } \\ & \text { R730/E73 } 2 \text { Track Mono }\end{aligned}$
 with knobs. 75 p pair

S!NCLAIR AND MINIATURE AMPLIFIERS

## AMPLIFIERS (Carr etc. 20p).

4-300 0.3 watt 9 volt
$\begin{array}{ll}104 & 1 \text { watt } 9 \text { volt } \\ 304 & 3 \text { watt } 9 \text { volt }\end{array}$
555 3 watt 12 volt
E1 2085 watt 12 volt
608 10 wart 24 volt
Z30 15 watt 30 volt
$\begin{array}{ll}\mathrm{E} 1206 & 30 \\ 750 & \text { watt } 45 \\ 40 \\ \text { volt }\end{array}$
$\begin{array}{ll}250 & 30 \text { watt } 50 \text { volt } \\ \text { E1210 } & 2 t+2 \frac{1}{3} \text { wates } 12 \text { volt }\end{array}$
RE500 5 watt IC mains operated Amplifier
SACI $\begin{gathered}\text { with controls } \\ 7\end{gathered}+7$ watt Stereo with controls
SAC30 $15+15$ watt Stereo with controls
SINCLAIR UNITS (Carr. 20p)
Z30 3.57 A. .
PZ5
PZ
PZ6
PZ8 (for $\mathbf{Z} 50$ )
TRANS
SINCLAIR PACKAGE DEALS. Post 25p
$2 \times 230$, Stereo 60, PZ5
$2 \times 230$, Stereo 60, PZ6
$2 \times$ Z50, Stereo 60, PZ8
Transformer for PZ8
PROJECT 605 KIT


## MULTI-USE AND RADIONIC KITS

10-1 10 Projects
${ }^{\ell}$
50-1 50 Projects
Telephone Communicator
$\times 2020$ (Elec) $)$ Projects
$\times 20$ (radio)
8.00
13.20
$\times 4040$ (radio)
4.95
9.45

ALL TRANSISTOR CIRCUITS WITH HANDBOOKS

All types offered subject to availability. Prices correct at time of press E \& OE. $10^{\circ}$ VAT TO BE ADDED TO ALL ORDERS. UK post, etc. 15 p per order unless stated.

denres
 stration. Phone for keenest price STEREC MAGNETIC

## CARTRIDGES

SHURE
44.25; M55E; M44.7 $\mathbf{3 1 . 9 5}$; M44E

M75/6 MB
M75EJII 20.75 ; M7SEDI \&8.50;
M75EJII 87.95 ; M75GII 47.25 .
GOLDRING
G850 G2.85; G800 63.95; G800H 3.95; G800E C5.95; G8005E 10.00 ; G82.35 6.70; G820E E10.00; G820SE ADC
AD
Q36 £10.70; Q32 $8 \mathbf{8} \cdot 70 ;$ Q30 $£ 5.90$. GRADO FTR. 5.25
\&18.75.

BATTERY/MA
(Carr. etc. 35p)
Wien RT452. Elizabethan LZ315
Amerex ACIO4
Philips N2204
N 2205
Pre 9115
Pre 9115
9118.
Hitachi TRQ29i
Sanyo M2000G
MR4010
M4000G
BASF CC9201
BATTERYIMAINS RADIO
CASSETTE RECORDERS
(Car.etc. 30p)
Amerex ACR200
ACR201
Elizabethan LZ̈ 416
Elizabetha
LZ516
BASF CC9301
Philips RR322
RR413
RR712
Sanyo M4141
M2400W
M2400FG
M4400FG
Grundiz C250
Hitachi TRK1240E
Hitachi TRK
TRS 161
STEREO RECOORDER DËCKS
(Carr./packing 50p)
Cassette
Philips N2506
Phillips N2410
Phillips N2410
Pye 9145
Tandbers TCD 3000
Akai C530D
Akai C5300
CS330
$G \times C 360$
$G \times C 400$
GXC 380 Doiby
GXC460 Dolby
GXC 45 D Dolby $. . \quad .$.
TEAC: A250/A $350 /$ A 450 stocked.
Real to Reel
Akai 400DS Tandberz $332 \dot{i} / 334 i \dot{ }$

Large range
Teac stocked.
gTrack
Akai CR8
STEREO (carr.) PHONES 20p.)
$\begin{array}{lll}\text { Akai: ASE11 C4.75; } \\ \text { ASE20 } & \text { C7.30; ASE22 }\end{array}$
C8.25. 5 H650D C2.25;
\$H850GX 63.95; \$H 1300 VS 65.25.
AKG: K60 69.25.
Rotel: RH630 44.85;
RH700 66.75 ;
Senheisser: HD414

Whariedale: 001
E8.95; 1500 YN 415.00 .
Koss: K6 69.95; K6/LC
C1I.25: K711 67.95 : KRO7II 67.95 ; HVI 617.50; K0727B ©12.45; $K 0747$ €15.95; PR04AA E21.95; PR05L.C 623.95. 2000 E2.75. CI5250 E5.25. C151000 ©7.50: CIS2000 E15.25. G3000 66.60 . TTC: G3000 66.60; Low Cost: MD802
\&1.95; MD806 13.75 .
Pioneer: SE2OA 45.90; E18.25; Courier MCIOI

Pioneer: SE20A 65.90 ; 18.25 ; Courier MCIOI
SE30A 59.45 SE50 610.95 ; PC51

 Al2.99. $\mathrm{Accessories:} \mathrm{H} 1012$ Stereo Cassette (carr./
 $\begin{array}{ll}\text { EI.40; IB3DE Din NA } 300 \\ \text { Junction } & \text { E18.50; CP401 }\end{array}$ Junction Box $£ 1.60$; E23.75; Philips N2607
JBIID De Luxe Junc- E26.40;
 $\begin{array}{lll}\text { Phone } 5 \text { witch C4-75. } & \text { E24.75; } 2253 \text { E28.40; } \\ \text { Control Boxes: G1301 }\end{array}$ Control Boxes: G1301 Hanimax $\quad$ HC6010
(two phones) $62.62 ;$ G38.95; Selmar (olus
 FF17 2—pairs (Sliders) Stereo 8 track (carr.l C6.25; Koss T4A packg. 35p) complete Koss TIOA C8.50; HW ST80S ElS; Waltham Mk.II Controller 66.90 .

## IN CAR

ENTERTAINMENT
Car radios (carr./packg 35p). MW/LW complete with speakers. Shira Touring E7; Shiramatic C9: Philips RN270 C13.65; RP305 ©17.40; Pye 2644 126.75; 2062

TREI500 E2I.
8 track with MW/ LW radio (carr.fpackg.
35 p ) complete with 35p) complete with
speakers. Shira $5 T 1000$ speakers. $\$$ hira ST1000
$\$ 25.70$; ST2000 \&31.50. MW/Stereo FM (carr.) packg. 35 p) complete packg. $35 p$ ) complete
with speakers. Sharp AR953 car radio 636.50; track) $442 \cdot 65$.
YOU CAN PAY BY
BARCLAYCARD OR ACCESS
For callers or by phone
$01-4024736$
Easy credit terms for callers to
309 and $354-356$

10\% VAT TO BE ADDED TO ALL ORDERS. Prices and description correct

# Henry's <br> RADIO LIMITED 

404-406'Electronic Comporients and Equipment 01-4028381 354-356 High Fidelity and Tape Equipment 01-402 5854/4736 309 PA-Disco-Lighting High Power Sound 01-723 6963 303 Special offers and bargains store

RSI
VALVE MAIL ORDER CO. 16a WELLFIELD ROAD, LONDON SWI6 2BS special express mail order service

Express postage 1 p per transistor, over ten post fre
INTEGRATED CIRCUITS $5 \mathrm{p}+1 \mathrm{p}$ each added

Open daily to callers: Mon.-Fri, 9 a.m.-5 p.m
Valves, Tubes and Transistors - Closed Sat. I p.m. . 3 p.m. All orders subject to V.A.T. at $10 \%$ rate. This the total order including postage.

## QUALIFY TO EARN MORE MONEY In a betterjob

Exciting new career opportunities! They're just waiting to be grasped-in the ever-growing industries of electronics, radio and television. And with ICS behind you, you can soon win the qualifications you need to assure your career success. Win them in your own time, in your own home, by starting an ICS learn-as-youearn correspondence course now. You get personal, individual attention from really expert and experienced tutors. We teach you
the theory, we teach you the practice. Books and components are the theory, we teach you the practice. Books and compone
provided. So is all the assistance, all the backing you need. We also have a complete range of courses at the ready for people keen to score success in other fields. Whatever qualification you're after, we can help you get it, whether you're pushing ahead where you are or switching to something completely new.
Take your first step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

## Take one of these courses

Society of Engineers Graduateship (Electrical Engineering) C \& G Telecommunications Technicians Certificates C \& G Electrical Installation Work
C \& G Certificate in Technical Communication Techniques C \& Radio Amateurs
MPT General Certificate in Radio Telegraphy
Audio, Radio and TV Engineering and Servicing
Electronic Engincering Maintenance, Engineering systems
Instrumentation and Control systems
Computer Engineering and Technology
Electrical Engineering, Installations, Contracting Appliances Self-build radio courses
or take one of these if your future lies in other tields

| GCE O and A. Level | Management, Marketing |
| :--- | :--- |
| Basic foundation for success | and Business |
| in a thousand and one | Instruction in the latest |
| careers-recognised by | proved principles and |
| everybody. | techniques used in each |
| All Boards-64 subjects | highly specialised area. |
| Building | Personnel |
| Tuition for recognised | Administrative |
| technical qualifications in all | Works |
| fields. | Transport |
| Architecture | Business |
| Builders' Quantities | Industrial |
| Carpentry, Joinery | Sales |
| Draughtsmanship | Marketing |
| Quantity Surveyors | Advertising |
| Clerk of Works | Marketing |
| Heating, Ventilating | Public Relations |
| Engineering | Sales |
| Theoretical and practical | Business |
| tuition geared either to | Computers |
| professional and technical | Purchasing |
| examinations or to vocational | Book-keeping |
| (non-exam) courses. | Work Study |
| Mechanical, Motor, Diesel, | Storekeeping |
| Chemical | Small Business Owners |
| Welding | Fire Service |
| Refrigeration | Promotion and Institute of |
| Draughtsmanship | Fire Engineers |
| Garage Management | Police |
| Couges | Entrance and Promotion |

* Courses for appropriate professional exams available in addition /CS Diploma courses.


## POST TODAY FOR FREE DETAILS

 your key to a brighter better futureTo: International Correspondence Schools, Dept. 230X
Intertext House, Stewarts Road, London SW8 4UJ.
Name .... .........................................................................
...........................................................................................

Accredited by the Council for the Accreditation of Correspondence
Colleges. Colleges.


$\star$ Portable- 4 octave keyboard with 10 voices, 3 pitchesvibrato, $£ 145 \cdot 29$. $\star$ Console-5 octave keyboard with 10 voices, 3 pitches. Keyboard can be split into solo and accompaniment. Vibrato, built in amplifier and speaker $\mathbf{£ 2 5 0 . 9 3}$. $\star$ Console $\rightarrow 2 \times 4$ octave keyboards and 13 note pedal board, 29 voices, Vibrato, Delay Vibrato, Sustain, Reverberation, Precussion, Wah Wah, £406.00. * Console $-2 \times 5$ octave keyboards and 32 note pedal board, 32 voices. Vibrato, Delay Vibrato, Sustain Reverberation, Precussion, 3 Couplers, etc., at $£ 572 \cdot 55$.

ALL COMPONENTS CAN BE BOUGHT SEPARATELY. SEND 50p FOR LATEST CATALOGUE, WHICH INCLUDES SPECIALIZED COMPONENTS, HI-FI EQUIPMENT, ELECTRICAL HOUSEHOLD APPLIANCES. PLUS $5 \times 10 \mathrm{P}$ VOUCHERS.

## ELVINS ELECTRONIC MUSICAL INSTRUMENTS

YOU ARE WELCOME TO VISIT THE ONLY D.I.Y. ELECTRONIC ORGAN CENTRE IN EUROPE AT 12 BRETT ROAD, HACKNEY, LONDON, E.8. TEL. $01-9868455$


# parts for PRACTICAL ELECTRONICS projects. "One Source" buying makes sense-saves you time, money and postage. 

## "P.E. RONDO" QUADRAPHONIC SOUND SYSTEM

Complete kits for the entire P.E. Rondo Project will be available as this appears in the magazine. These contain top quality components with fibre glass p.c. board, etc. etc.

## "P.E." F.M. VARICAP STEREO TUNER

Electro Spares offer a kit of high quality parts to the published specification for this remarkable tuner, featured in "Practical Electronics", May 1973. Features include pushbutton "Spot On" tuning, with up to 5 pre-set stations (no difficult tuning dial and drive cord). Easy "no problem" construction requiring only a few simple setting up adjustments with a d.c. Voltmeter. Uses NEW pre-set modules for R.F. and I.F. circuits-no circuit alignment. High efficiency integrated circuit Phase Lock Loop Decoder for perfect stereo reception, with stereo lamp indicator. Fibre Glass P.C. Board, neat slim-line cabinet, with brushed aluminium front panel, pushbuttons, etc. etc.
IDEAL FOR USE WITH THE "TEXAN", "P.E. GEMINI" AND ANY GOOD QUALITY STEREO AMPLIFIER.
> "P.E. GEMINI" STEREO AMPLIFIER
> QUALITY HI-FI FOR THE HOME CONSTRUCTOR. 30 Watts (R.M.S.) per Channel into 8 ohms!
> Total Harmonic Distortion 0.02\%! Frequency Response ( -3 dB ) 20 Hz 100 kHz !
> We are still continuing to supply components for this fabulous amplifier, which is now recognised as practically the ultimate in High Fidelity. We know of no better unit for the home constructor, and can supply a booklet, containing full specification, complete constructional information, wiring diagrams, fault finding guide, etc. etc., price 55 p plus 4 p postage.
> Our new, low comprehensive price list is supplied with each booklet, or prices for components supplied separately on receipt of large S.A.E.

FOR PEOPLE WHO REQUIRE THE BEST-IT HAS TO BE THE "p.e. gemini"

ALL PARTS for Varicap tuner and Gemini amplifier supplied separately. Please send S.A.E. for full details of any of the above or call yourself. Visitors welcome -easy parking.


The Component Centre of the North.

## P.E. SOUND SYTITIESISER



The
'RING MODULATOR' I.C SS 3402N ¢1.74 each

TRANSISTOR ARRAY ML 3046P 75p each ZIJ NOISE DIODE 43.5p each 741's mini 32 peach whilestocks last
$4 p$ stamp brings latest lists

SIMPLY SEND EXACT DETAILS OF NAME AND NUMBER COPIED FROM THE FACE OF YOUR ACCESS CARD AND LEAVE THE REST TO US

## 'DESIGNER APPROVED KITS'

We stock a full range of professional quality components as specified for this exciting project and many prices are down.
$\mathbf{2 \%}$ M.O. resistors now $\mathbf{3 . 2 p}$ ea. $5 \%$ low noise carbon film I.8p ea. Cermet presets now 37.5p ea. Full range of capacitors-Ceramic, Electrolytic, Polyester, 'Styrene, 'Carbonate, Silver Mica, etc. Modular hardware kits; Dual-Rail Regulated Power Supplies; Individual component/modulekits from date of publication. P.C.B. for the exciting 'Hutchinson' Tone Control Module.

Attractive discounts on quantity purchases.

## EAT1 1 IIID <br> P.O. Box No. 3, ST. NEOTS HUNTINGDON PEI9 3JB

TERMS: MAIL ORDER ONLY. C.W.O. Cheques or crossed P.O. payable to Eaton Audio. Minimum order $£ 2$.

Where P. \& P. charges are not shown please add $10 p$ in the f 1 to orders under $£ 5$. Orders over $£ 5$ will be sent free of $P . \& P$. All prices subject to V.A.T.


Fascinating to build. Fantastic improvement to your car's performance Complete Capacitive Discharge ignition system, fully proven, components fully guaranteed. Printed circuit design. All metalwork drilled ready. Fitted to car in 15 minutes when built

- Sustained peak performance. Up to $20 \%$ fuel saving. - Instant all-weather starting. Faster acceleration, higher top speed. - Suitable for all engines up to 8 cyls. - Longer spark plug life. - Longer battery life. - Contact breaker burn eliminated. - Purer exhaust gas emission.
A new development from the manufacturers of Gunton ignition. Price: $\mathbf{f 9 . 3 5}$ inc V.A.T. and postage. ( 12 volt only. State Pos. or Neg. earth). Ready built unit also available $£ 11.55 \mathrm{inc}$. V.A.T. and postage. GUARANTEED 5 YEARS
ORDER NOW-send P.O./Cheque direct to
ELECTRONICS DESIGN ASSOCIATES, Dept.PE11 82 Bath St., Walsall WS1 3DE. Phone : 33652



## WHAT READERS SAY

Delighted with the excellent publication. As a retired electrical engineer, Electronics is a new field for me to take up as a hobby. H.W.. Leamington Although they are very instructive they are very easily and quickly read. L.T., Swansea
Many thanks indeed including my own and heartiest appreciation of a fine set of volumes and at such an almost nominal price.
B.L., Trowbridge

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT. BR2 7HP
Please find enclosed P.O.|Cheque value $£ . . . . . . . .$.
BASIC ELECTRICITY 5 parts $£ 4 \cdot 50$ BASIC ELECTRONICS 6 parts $£ 5 \cdot 40$ BASIC TELEVISION 3 parts $£ 3 \cdot 60 \square$ Tick Set(s) required. Prices include Postage and Packing. YOUR $\mathbf{1 0 0} \%$ GUARANTEE. If after 10 days examination you decide to return the Manuals your money will be refunded in full.
NAME
block letters
FULL POSTAL......................................................................................................
ADDRESS

# LARGE STOCKS, ATTRACTIVE DISCOUNTS DEPENDABLE SERVICE <br> Everything brand new and to makers' specifications. <br> ELEGTROVALUE Electronic Component Specialists 

## TRANSISTORS BY SIEMENS AND NEWMARKET

2N3055 non silicon power
ACl53K pno germanium low power
ACI76K npn germanium low power
ADI6I npn germanium medium power
AD162 pnp germanium medium power
60p

AFI 39 pnp germanium UHF
NPN: BCIO7 13p, BC108 $12 \mathrm{p}, \mathrm{BCIO9} 13 \mathrm{p}$ IIp, BC168 10p, BC169 IIp.
PNP: BC17721p, BC178 19p, BC179 21p, BC257 12p, BC258 IIp, BC259 13p.
Standard groupings available
BDI35 npn medium power
BDI 36 pnp medium power
38p
DIODES
OA90, OA91, OA95, 6p each; OA200, 9p; OA202. 10p.
Other semiconductors: AC128, 17p; AF117, 32p; BFY51, 19p. Fulf lists and technical data will be found in Catalogue No. 6. See also amendments list.

Send S.A.E. for latest supplement of additional lines and price amendments to our No. 6 Catalogue

ZENER DIODES full range E24 values: 400 mW 2.7 V to 36 V , 14 p each; 1 W : 68 V ro 82 V . 21 p each
1.5 W : 4.7 V to 75 V , 48 p each. Clio to increase 1.5 W : rating to 3 wats (type 266 F ) 4 plp .

DIN PLUGS AND SOCKETS
by Hirshmann, 4A rating

$\frac{2}{3}$ way LS —socket 10 p, plug 12p
3 way ser.-socket 10p, plug 12p
5 way scr.-socket IIp, plug 15p
TRANSISTOR ACCESSORIES
TO3 cover, 7P; Heat sinks $1^{\circ} \mathrm{C} / \mathrm{W}$, type 6 WI .
undrilled, 60 p .

## SWITCHES

## $\begin{array}{lr}1011 & \text { SPST } \\ \text { toggle, } 20 \mathrm{p} ; & 409\end{array}$

 toggle, 20p; 409DPDT roggle, 29p (these are chrome plated, 2.5 A rating); 7201 sub-miniature DPDT

## ROTARY SWITCHES

Fiadiospares Miniature Maka-switch (in assembly kit form). Shaft, 48p. Wafers. MBB-2PSW, IPIIW

## WAVECHANGE SWITCHES

IPI2W, 2P6W, 3P4W, $413 \mathrm{~W}, 24 \mathrm{D}$ each.

\section*{ELECTROLYTIC CAPACITORS <br> Rated voltage

Capacity $\mu \mathrm{F}$ <br> \begin{tabular}{|c|c|c|c|c|c|c|c|c|}

\hline $$
\mathrm{Capacity}_{0.47} \mu \mathrm{~F}
$$ \& - \& - \& - \& - \& - \& - \& 10p \& 7p <br>

\hline 1.0 \& - \& - \& - \& - \& $\overline{10}$ \& 10 p \& \& 7p <br>
\hline 2.2 \& - \& - \& - \& \& 10p \& - \& 7p \& 8p <br>
\hline 4.7 \& - \& - \& - \& 10p \& $\checkmark$ \& 7p \& 8 p \& 7p <br>
\hline 10 \& - \& - \& - \& - \& 7p \& 8 p \& 7 p \& 8p <br>
\hline 22 \& $\cdots$ \& - \& 7 p \& 7 p \& - \& 7 p \& 7 P \& ${ }^{9} \mathrm{p}$ <br>
\hline 47 \& 7p \& - \& 8p \& 8 p \& 8 p \& 7p \& 9 p \& 12p <br>
\hline 100 \& 8 p \& 7 p \& 7p \& 7 p \& 7p \& 9 p \& 11 p \& 19p <br>
\hline 220 \& $7 p$ \& 8 p \& 8 p \& 8 p \& 9 p \& 10p \& 17p \& 27p <br>
\hline 470 \& 8 p \& 9 p \& 9 p \& 10p \& 12p \& 17p \& 24p \& 43p <br>
\hline 1,000 \& 10p \& 12p \& 12p \& 17p \& 20p \& 24p \& 40p \& - <br>
\hline 2.200 \& 14p \& 17p \& 22p \& 25p \& 36p \& 40p \& - \& - <br>
\hline 4,700
10,000 \& 25p \& 28p \& ${ }^{37} \mathrm{p}$ \& $41 p$ \& 54p \& - \& 二 \& 二 <br>
\hline
\end{tabular}

## POLYCARBONATE- $5 \%$

 250 V UD to $0.1 \mu \mathrm{~F}$ : $100 \mathrm{~V}, 0.1 \mu \mathrm{~F}$ and above. $012: 0.015: 0.019$. 0.022 i $\begin{array}{lll}\text { above. } \\ 0.01: 012 ; & 0.015 ; 0.018 ; 0.022 ;\end{array}$ $0.027 ; 0.033 ; 0.047 ; 0.056 ; 4 \mathrm{p}$ each. $0.068 ; 0.082 ; 0.1 ; 0.12 ; 0.15 ; 4 p$ $\begin{array}{llll}\text { each. } 0.18 ; 0.22 ; & 5 p & \text { each. } & 0.27 \text {; } \\ 0.33 ; 6 p .0 .39 & 7 p .0 .478 p . ~ & 0.5610 p .\end{array}$ $0.68 \mathrm{IIp} .1 \mu \mathrm{~F}$ 13p. Prices subject to omendment by the monufacturer. Minieron Digital Counter Type 3015 F . Seven Filament seg.ment indicators to make 0.9 + ment indieators to make $0.9+$
decimal point. Compatible with standard logic modules, nett $\mathrm{E2}$. standard logic modules, nett 22 .
Decoder driver type FLL $121 T$ neet 61 16. Dhl socket, nett $\mathbf{E} 2$.

## RESISTORS - 10\%, 5\%, 2\%

| Code | Power | Tolerance | Range | Values | 1 to 9 | $10 \text { to } 99$ | 00 up |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 1/20W | 5\% | 82n-220K $\Omega$ | El2 | 9 | ${ }_{8}$ | 7.5 |
| C | 1/8W | 5\% | $47 \Omega-470 \mathrm{~K} \cap$ | E24 | I | 0.9 | 0.75 nett |
| c | $1 / 4 \mathrm{~W}$ | 5\% | $4.7 \mathrm{n}-10 \mathrm{Mn}$ | E12 | 1 | 0.9 | 0.75 nett |
| C | 1/2W | 5\% | $4-7 \Omega-10 M \Omega$ | E24 | $1 \cdot 2$ | 1 | 0.95 nett |
| C | IW | 5\% | 4-7 $n-10 \mathrm{M} \Omega$ | E12 | 2.5 | 2 | 1.6 nett |
| MO | 1/2W | 2\% | $10 \Omega-1 \mathrm{M} \Omega$ | E24 | 4 | 3 | 2 nett |
| WW | IW | $10 \% \pm 1 / 20 \Omega$ | 0.22 $\Omega-3.9 \Omega$ | E12 | 7 | 7 | 6 |
| WW | 3W | 5\% | $1 \Omega-10 \mathrm{~K} \Omega$ | E12 | 7 | 7 | 6 |
| WW | 7W | 5\% | $1 \Omega-10 \mathrm{~K} \Omega$ | E12 | 9 | 9 | 8 |

Codes: $C=$ carbon film, high stability, low noise.
$M O=$ metal oxide, Electrosil TR5, ultra low noise. $\mathrm{WW}=$ wire wound, Plessey.
Values
E12 denotes series: $10,12,15,18,22,27,33,39,47,56,68,82$
and their decades.
E24 denotes series: as E12 plus $11,13,16,20,24,30,36,43,51$
$62.75,91$ and their decades.

## KNOBS

All grub screw fitting for tin
shafts. Black. For other types
F. 14 ( 20 mm ) pack of $\overline{2}, 32 \mathrm{p} ; \mathrm{F} .13$ ( 26 mm ) pack of 2 , 38p; F. 12 ( 33 mm ) pack of 2, 40p; F. 19 ( 20 mm ) pack of 2, 32p; F. 18 ( 26 mm ) pack of 2, 38p; F. 17 ( 33 mm ) pack of $2,40 \mathrm{p} ; \mathrm{KB.4(20mm)} \mathrm{pack} \mathrm{of} \mathrm{4,40p;K30/3}$ ( 17 mm ) aluminium, 24p each.


K*4



## TRANSFORMERS—MAINS

| MT3 30V/2A plus 4 taps | 62.85 |
| :---: | :---: |
| MT103 50V/1A plus 4 taps | E2.55 |
| MT $10450 \mathrm{~V} / 2 \mathrm{~A}$ plus 4 taps | 63.50 |
| MT127 60V/2A plus 4 taps | 63.80 |
| $13 \mathrm{TOS} 13 \mathrm{~V} / \frac{1}{2} \mathrm{~A}, \mathrm{CT}$ | E1.25 |
| 28TOS $12+12 \mathrm{~V}, 2-0-2 \mathrm{~V}$. | E1.65 |

$28 T O 512+12 \mathrm{~V}, 2-0-2 \mathrm{~V}$
.50
63.80
61.25
6.65

## BAXANDALL SPEAKER KIT

As designed by P. J. Baxandall and described originally in "Wireless World." Simple to assemble. lantastically good results and a greater money saver.
Carries 10 watts RMS. 15 ohms impedance. Size $18 \mathrm{in} \times 12 \mathrm{in} \times 10 \mathrm{in}$. Complete kit, including pack-

Equaliser Assembly, E2,
Loudspeaker Unit 59RM109, $\mathbf{\text { L2.45. }}$
Cabinet Kit (to Baxandall design), $\mathbf{4} 10-45$.

POTENTIOMETERS
Rotary. carbon track.
dоиыро wip.
S1NGLE P20 lin, $100 \Omega$ to 2.2 Meg . $12 \mathrm{p} ; 1 \mathrm{P} 20 \mathrm{log} 4.7 \mathrm{~K} \Omega$ 2.2 Meg 12p; JP20 log. $4.7 \mathrm{~K} \Omega$, lin. $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$;
Dual log. $4.7 \mathrm{~K} \Omega$ to 2.2 Mn . 42 p ; Log/antilog, 10K, 22K, 47K, IM $\Omega$ only, 42p; Dual antilog. $10 K$ only, 42p. Any
type with $2 A$ D.P. mains switeh i2p extra.

$$
\begin{aligned}
& \text { 2p extra. } \\
& \text { Only decades of } 10,22 \text { and } 47
\end{aligned}
$$

$$
\begin{aligned}
& \text { available in ranges quoted. } \\
& \text { DUAL CONCENTRICDP20 }
\end{aligned}
$$

$$
\text { in any combination of } \mathrm{P} 20
$$

$$
\begin{aligned}
& \text { values; 60p; with switch, 72p. } \\
& \text { Silnep }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SLIDER } \\
& \text { Lin. or log. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lin. or log. IOK to I meg. in all } \\
& \text { popular values, each } 26 \mathrm{p} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { popular values, each 26p. } \\
& \text { Conerol knobs blk./whit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { popular values, each 26p. } \\
& \text { Conerol knobs blk./white/red ong } \\
& \text { yel./gr./blue/dk. grey/lt. grey, } \\
& \text { 5p each. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Control knobs blk./White/red } \\
& \text { yel./gr./blue/dk. grey/l. grey. }
\end{aligned}
$$

CARBON SKELETON PRE.'

$$
\begin{aligned}
& \text { SETS } \\
& \text { Small }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Small high quality, PR lin. } \\
& 100 \Omega .220 \Omega, 470 \Omega \text {, IK, }
\end{aligned}
$$ $2 \mathrm{K2}, 4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$. 47 K , $100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M2}$,

$5 \mathrm{M}, 10 \mathrm{M}$. Vertical or horizontal mounting,


## $5 p$ each.

 terms of business, cooy of which available on request.
Not allowed on nett price items. $10 \%$ on orders for
f.5 or more. $15 \%$ on orders of E 15 or more. \$5 or more. $15 \%$ on orders of $\mathbf{E} 15$ or more. notice. Prices quoted DO NOT include V.A.T. Orders received from U.K. customers must be accompanied by an additional $10 \%$ of the nett value for V.A.T.

## POSTAGE AND PACKING FREE

Overseas Coserseas orders carriage and insurance charged at VALUE, AMERICA, P.O. BOX 27, Swarthmore,
PA 19081 .

ALL OUR PRICES INCLUDE V.A.T.

BSR LATEST SUPERSLIM STEREO \& MONO

Playi 12", $10^{\prime \prime}$ or 7" recordi. Anto or Manual. A high quality unit backed by B8R
reliability with 12 months' reliability with 12 months' guarantee. AC
Site $18 t \times 11+\mathrm{in}$.
Above motor board $8 \frac{2}{2} \mathrm{in}$. Below motor board $2 \frac{1}{2} \mathrm{in}$. with stereo and mono xtal $\mathbf{~} 8.25$ Pont 25 p.

PORTABLE PLAYER CABINET Modern denign. Black roxine covered. silver tront grille. Motor board cut lor B8R deck $\mathbf{~ ( 4 , 5 0 ~ P o n t ~ 2 5 p ~}$

## 4 Transistor Mono Amplifier

 Powertul 3 watt output. 15 ohm. AC maina operated with tranblormer. 3-Controls, volnme, treble, bail and On/On Fused inputs and outputs. Fsmona make.Size 8 in wide $\times 4$ in deep $\times 8$ in high.
Suitable 7 in $\times 4$ in apeaker, 41
PRICE 65.95 ${ }_{\text {R80 }}^{\text {Poit }}$

## BSR JUNIOR

 SINGLE PLAYER Heavs duts 4-apeed motor with P/78 turnover mono 4.95 GARRARD DECCA HI-FI DECK Single play Stereo Mono Deram transcription head and arm. your speeds.
10 in turntalle. Anti-rumble fitter. Bias compensation Laboratory motor.

METAE PLINTH AND PLASTIC COYER Cut out for most Garrard or B.S.R. Most will play with cover in position.
$12!\times 14 ? \times 7$ in.


Covered in biacin leatherette
ALSO AVAILABLE IN SOLID NATURAL MABOGABY
COMPACT PORTABLE STEREO HI-FI
Two tull size loudspeakers $131 \times 10 \times 33^{3}$ in. Player unit clips to loudspeakers making it extremely compact, all records 33 r.p.m., 45 r.p.m. Separate volume and tone


Weight 13 lb 85p Carriage
SPECIAL OFFER! SMITH'S CLOCKWORK 15 AMP TIME SWITCH Single pole two-way Surtace mounting wall awitch to give light for return home
 garage, automatic anti-burglar lights etc. Variable knob Turn on or off at full or intermediate settings. Two type available type A 0 to 60 minutes or type B 0 to 6 hours. Fully insulated. Makera last list price 84.50 . Brand new and lully guaranteed.
OUR
PRICE C1.65
P. 15p or E 3 pair

BLANK ALUMINIUM CHASSIS. 18 a.w.g. 21 in gide $8 \times 4 \mathrm{in} 45 \mathrm{p} ; 8 \times 6 \mathrm{in} 53 \mathrm{p} ; 10 \times 7 \mathrm{in} 65 \mathrm{p} ; 12 \times 8 \mathrm{in} 85 \mathrm{p} ;$
 ALUMINIDM BOXES $3 \times 3 \times 3$ in $60 \mathrm{p} ; 4 \times 4 \times 4$ in 70 p $6 \times 4 \times 4$ in 80 p; $\boldsymbol{\theta} \times 4 \times 4$ in $\mathrm{fl} ; 12 \times 4 \times 4$ in $81 \cdot 30$.
 $14 \times 3 i n 16 p ; 10 \times 7 i n 18 p ; 12 \times 12 i n 40 p ; 18 \times 10 i n 50 p$.
$18 \times 6 i n 28 p ; 14 \times 9 i n 34 ; 12 \times 12$ PAXOLINPANEL $10 \times 8$ III 15 p .
I! inch DIANETER WAVECHANGE 8 WITCHES, 25p. $2 \mathrm{p}, 2$-way, or 2 p . 8 -way, or 3 p .4 -way, 25 p each. 1 p.1. 2-way, or 4 p. 2 -way, or 4 p. 3-way, 25 p. TOGGLE SWITCHES, 3p. $4 p$, dp. 22p, dp. dt. 22 sub-miniature, sp. 30p; dp. 37p; dp. dt. 45p

## BRITISH FM/VHF TUNING HEART

 88 to 108 Mc/a Britimh made. 2 Tranistors ready aligned Frequires $10.7 \mathrm{Mc} / \mathrm{s}$ l. $\mathrm{F}^{2}$. Complete with tuning gang. oumental. Our price $£ 3.95$ pot 200pR.C.S. STABILISED POWER PACK KITS All parts and instructions with Zener Diode, Printed Circuit. inppt Rociginer and Double Wonad Mans Transorme or 16 or 18 or 20 V d.c. at 100 mA or less

R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal lor Mike, Tape, P.U., Guitar, etc. Can be used with is $x$ in $x$ in 1ixifx in. Response 25 c/4 to 25 kc/a, 28 dB gain. For une with valve or tranaistor equipment.
Full inatrnotions supplied. Details B.A.E.
$\pm 412$
HEW TUBULAR ELECTROLYTICS CAN TYPES $\begin{array}{llllll}2 / 360 \mathrm{~V} & 14 \mathrm{p} & 250 / 25 \mathrm{~V} & 14 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} \\ 4 / 350 \mathrm{~V} & 14 \mathrm{p} & 500 / 25 \mathrm{~V} & 20 \mathrm{p} & 80+100 / 350 \mathrm{~V} & 85 \mathrm{p} \\ 8 / 450 \mathrm{~V} & 18 \mathrm{p} & 1000 / 25 \mathrm{~V} & 35 \mathrm{p} & 32+32 / 250 \mathrm{~V} & 20 \mathrm{p} \\ 16 / 450 \mathrm{~V} & 22 \mathrm{p} & 1000 / 50 \mathrm{~V} & 47 \mathrm{p} & 32+32 / 450 \mathrm{~V} & 48 \mathrm{p} \\ 32 / 500 \mathrm{~V} & 50 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 28 \mathrm{p} & 350.50 / 325 \mathrm{~V} & 55 \mathrm{p} \\ 25 / 25 \mathrm{~V} & 10 \mathrm{p} & 8+18 / 450 \mathrm{~V} & 25 \mathrm{p} & 32+32+32 / 350 \mathrm{~V} & 55 \mathrm{p} \\ 50 / 50 \mathrm{~V} & 10 \mathrm{p} & 18+16 / 450 \mathrm{~V} & 40 \mathrm{p} & 100+50-50 / 350 \mathrm{~V} & 55 \mathrm{p}\end{array}$ 10w 10 D +32/50V 40 D
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{~m} \mathrm{~F} 15 \mathrm{~V} 10 \mathrm{p}$. $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.

2500 mF 50 V 62 p ; 3000 mF 25 V 47 p ; 50 V 85 p
5000 mF QV 25p; 12 V 42 p ; 25V 75p;35V 85p; 50V 95p. CERAMIC 1pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mica 2 to 5000 pF , 4 p . PAPER 001 to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 1 \mathrm{mF}$ 15p; 2 mF 150 V 15 p . SILVER MICA. Close tolerance 10 D : $2.2-500 \mathrm{pF} 8 \mathrm{p}$; $580-$ 2.200pF $10 \mathrm{p}: 2,700-5.600 \mathrm{pF} 20 \mathrm{p} ; 6,800 \mathrm{pF}-0.01$, mfd 30 p ench. TWIN GANG. " $0-0$ " 208 pF . $176 \mathrm{pF}, 65 \mathrm{p}$.
Slow motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pr}$. 50 p :

SHORT WAVE SINGLE. $10 \mathrm{pF}, 30 \mathrm{p}$; 25 pF . 55 p ; 50 pF , 55 p .
short wave simgle gang. Preciaion Silver Plated Gangable Tuning Condenaers.
Values up to 100pF.
NEON PANEL INDICATORS 25OV AC/DC. Amber 20p
RESISTORS. IW. 1 W. $1 \mathrm{~W} .20^{\circ} \mathrm{o} 1 \mathrm{p} ; 2 \mathrm{~W}, 5 \mathrm{p} .10 \Omega$ to 10 M HIGH STABILITY. $\frac{1}{3} \mathbf{W}^{2}$ ", 10 ohms to 6 meg. 10 p .
Ditto $5{ }^{\circ}$. Preferred values 10 obms to 10 mek., 4 p .
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohms to 100 K 10p each: 0.5 ohm to 8.2 ohms 10 p . 10 ohms to 100K 10p each: 0.5 ohm to 8.2 ohms 10 p . FERRITE ROD $8 \times$ in 20p: $6 \times!$ in $20 \mathrm{p} ; 3 \times$ 多 10 p .

## MAINS TRANSFORMERS $\begin{gathered}\text { ALL } \\ 2 \mathrm{pb} \text { post } \\ \text { poct }\end{gathered}$

 $350-0-35080 \mathrm{~mA} 8 \cdot 3 \mathrm{~V} 3.5 \mathrm{FA}, \mathrm{B} \cdot 3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2A $300-0-300 \mathrm{~V}$ 120mA, 8.3 V 4A C.T.; 8.3V 2 A.
MINIATURE 200 V 20mA, B.3V 1 A $2!\times 2!\times 2 \mathrm{n}$ MINIATURE $800 \mathrm{~V} 20 \mathrm{~mA}, 8.3 \mathrm{~V} 1 \mathrm{~A} 2 ; \times 2, \times 2 \mathrm{in}$
MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A} 24 \times 2, \times 2 \mathrm{in}$. HEATER TRANS. $6 \cdot 3 V$ 3A GE $2 \mathrm{amp}, 4,5,8,8$ OLTAGE. Tapped outputil 1 amp, 8, 8, $10,12,16,18,20,24,30,38,40,48,6022.25$ 2amp. $6,8,10,12,18,18,20,24,30,38,40,48,8083.80$
$5 \mathrm{amp}, 6,8,10,12,18,18,20,24,30,36,40,48,6048.75$
 $3,5,8,10,13$ snd $5-0-5 \mathrm{~V}$ e1-30, Ditto 5 amp . 81.50 ;
 500 mA 85p $12 \mathrm{~V} 750 \mathrm{~mA} 95 \mathrm{p} .40 \mathrm{~V} 1 \mathrm{amp} \mathrm{E1.75}$.
AUTO TRANSFORMERS. 115 V to 230 V or 230 AUTO TRANSFORW ERS. 150 . 8 . 500 F to 230 or 230 V to 115 V CH.ARGER TRANSFORMERS. Input 200/250V. tor 6 or $12 \mathrm{~V}, 1 \mathrm{amp} 21.50 ; 2 \mathrm{amp} \mathrm{21.80:4amp} \mathbf{2 8 . 5 0}$ bATTERY CHARGERS. Ready built with leadi and clipa
 8 or 12 V outputs. $1!$ amp $40 \mathrm{p}: 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$.
MAINS ISOLATING TRANSFORMER Primary 0-110-240V. Secondary 0-240V 3 amps 720 watts. Insulated terminals. Varnigh impregnated. Fully enclosed in steel case with Hxing feet. $C 10$ Carr. Can be used at 800 watt auto tranaformers 240-110

## SET OF 3 MOTORS FOR COLLARO STUDIO TAPE DECK <br> 62.50 Post 50p

VOLUME CONTROLS 80 hm Coax 4p yd.
Long spindles. Midget Size K. ohms to 2 Meg. LOG or BRITISH AERIALITE IN. L/B 15p. D.P. 25p. $40 \mathrm{yd} £ 1.40 ; 60 \mathrm{yd} \varepsilon 2$. Edgesk s.p Tr. D. P. 75p. PRINGE LOW LOSs 10 per Wire Winnd controls 1 lin diam. 3 Watts. 10 ohms to 100 K British Made with long in apindles tin dia. 45p each. HELICAL POT 10K LIN. L ist f3. Bargain 75p.
DUAL CONCENTRIC POT 500K LOG AND SOOK LIM D.P DUAL CONCEATRIC POT 500K LOG AND SOM
switch. Inacr spindle 3 jin; outer spindle 2 in 75 p .
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$.

SPEAKER SALE!
With twin tweteri. £4.50
And cromover. 10
watt. State 3 or 8 or
ohm. Al hllatrated. Pont 25p
With fared tweeter cone and ceramic
magnet. 10 watt.
lux $10,000 \mathrm{gaycs}$
Bookshelf Cabinet $\overline{18} \times 10 \times$ in. $\mathbf{£ 5 . 5 0}$
Bookshelf Cabinet Teak thish Pont 25p

## GOODMANS $6 \frac{1}{2} \mathrm{in}$. HI-FI WOOFER

8 ohm. 10 W . Large ceramic magnet. Special Cambric cone surround 0-12,000 c/r. Ideal P.A.


Columns. Hi-Fi Enclonure Syatema, etc Suitable Cabinet $12 \times 8 \times 624$ Suitable Tweeter $\$ 2$


## ELAC CONE TWEETER

The moving coil diaphragm gives a good radiation pattern to the bigher frequencies and smooth extennion of total reaponase $31 \times 2 \mathrm{in}$ deep. Rating $10 \mathrm{~W}, 3$ ohm or 15 ohm model. $\quad \$ 1.90$ post 20 p .

## GOODMANS

## 8 in . WOOFER

8 ohm 12 watt. Deep cone. Heavy ceramic magnet. Ban response $30-8,000 \mathrm{cps}$. Ideal dasin unit tor
Hi-Fi matem.


LOUDSPEAKERS P.M. 3 OHM8. $7 \times 4$ in 21.25 ; 6 fin 21.50 ; $8 \times 5 \mathrm{in} 21 \cdot 60$; 8 in 21.75 ; $10 \times 6 \mathrm{in} 21.90$; 10 in 82.00 , SPECIAL OFFER! 80 ohm, 2 in 2$\}$ in 35 ohm , Rin. 8 in $5 \mathrm{in} 25 \mathrm{ohm}, 2 \mathrm{in}$ dia; Jin. dia;

 RICHARD ALLAN TWIN CONE LOUDBPEAKERS. 81D diameter $4 \mathrm{~W} 28.50,10$ in diameter 5 W 48-50; Post 25 p 12in dismeter, $8 \mathrm{FW}, \mathrm{f2.95} 3 \mathrm{3}$ or 8 or 15 ohm models. SPEAKER COVERING MATERIALS. Samples Large 8.A.E
 TWO-WAY 3,000 c.p.s. CROSSOVERS 3, 8 or 15 ohm OSp

TWO-WAY CROSSOVER NETWORK $3,000 \mathrm{c} / \mathrm{s}$ With variable tweeter altenustor giving accurate high/low irequencs balance. Mounted on panel 51 in $\times 4$ in with control knob, tweeter and woofer leadsand inpntt $\mathbf{C 2} 20$ Pos erminals. Suitable for 3 to 8 ohm impeda

VALVE OUTPUT TRANSFORMER 25p
MIKE TRAMSFORMER MO metal 100-1 11.25 .
5 WATT MULTI RATIO. 3,8 and 15 ohms, 80 p .
PUSH-PULL VALVE OUTPUT TRANSPORMERS
50 watt.
214.00

## ELECTRO MAGNETIC

 PENDULUM MECHANISM1.5 V d.c. operation over 100 hours continuous on 8P8 battery, fully adjuntable awing and ipeed. ideal dispiays strobe, etc.

BRITISH MADE STEREO MULTIPLEX DECODER
Brand Now. 7 tranaiatort plus integrated circuit. Fibre glasm printed circuit bosrd wize $21 \times 8$ a x in. Pre-aligned. Complet operation. 400 mV output for 100 mV input. Fall instructions for any FM Tuner. Some technical experience essential. $\mathbf{6 6 . 5 0}$

DIPOLE LOFT AERIAL $\$ 1.50$. Post 150
 300 OHM CABLE 5p Fard

COAXIAL PLUG 10p. PANEL SOCXETS 10p. LIME 18p OUTLET BOXES, SURFACE MOUFTRYG 250 .
BALANCED TWI RIBBON PEEDER 300 ohms, 5 p yd JACK SOCKET Sid. open-circuit 14p. cloned circuit 23p Chrome Land Socket 45p. Phono Plugs 5p. Phono Socket JACK PLUGS 8td. Chrome 15 p : 3 -5mm 10 Chrome DIN 80 CKETS Locke 3-pin 18p:5-pin 15p. DIN PLUG8 3-pin 18p; 5-pin 260 VALVE HOLDERS 5p; CERAMIC Bp; CARS 5p.

E．M．I．WWOFER AND £5．75 THE PEETER KIT THE PAIR，Poat 25p． （Available teparately． Woofer
E1．00） Oomprining a fine example of a Wooler
$104 \times 6$ in with a maisive Coramic
Maget Magnet，440s Gauas 18,000 lines．
Alaminium Cone centre to improve middie and top reaponse．Also the E．M．I． Twetter 8 in uluare has a apecial ightweight paper cone and magnet flus 10，000 lines．Crossover condonser and inil instructiona upplied． Impedance Standerd Uroful Reaponie Urelul Reaponte 12 watts
 MODERA DESIGN．TEAK WOOD FIKEB．


Pont 25p


## 8in．or 10 in ．ELAC HI－FI SPEAKER

Dusl cone pleaticired roll sur－ cound．Large ceramic magnet



TEAK VENEER HI－FI SPEAKER CABINETS Fluted Wood Fronts
 BARGAIR AM TUKER． Mediam Ware．
Tranaitutor Superhet $\{4.95$
BARGAIM 4 CHANAEL SRAKSISTOR MOITO MIXER．Add mulical highitghta and sound ofiect or Focordinge．Will mix microphone，records，tape controls into single output 9 vols bsttery $\{3.95$



TEREO VERSIOA OF ABOVE E5．95 BARGAN FM TUAER． ${ }_{0}^{88-108}$ Mc／a Six Transintor． Volt．Printed circuit． Wainut Cabinet． $\mathcal{E} / 2.85$ BARGAM FM TONER．$\leq 8.85$ aron ARRhALI 3 WATT AMPLIFIER． 4 Trenaistor Puh－Puil Ready built with volume，treble and $\quad \mathbf{4 . 5 0}$
basp controls． 18 volt battery operated．

THE＂INGTAKT＂BULK TAPE
GRABER \＆HEAD DEMAGFETISER uitable for cassottes，and sil cizel oi tape reels．A．C．majna $200 / 250 \mathrm{~V}$ ． $\begin{array}{ll}\text { Lempt s．A．E．} & \leq 2.50 \text { Poat } \\ 15 p\end{array}$


## WAFER HEATING ELEMENTS

 OFYZRING 1001 UgES los every type of heating and drying application in the borne，garage，greenhouse Lactory $\mathrm{jot} \times 8 \mathrm{t} \times$ in in．Operating voltage 2001250 V ．a．c． 250 watts approx．Printed circuit element onclosed in a abento fitted with connecting wirer．Completely flezible providing sate Blacl heat．Britiah－made for use in photo－ copiers and print drying equipment．Ideal lor home handymen and experimenters．Suitable for Heating Pad，Food Warmers，Convector Heatera，etc． etc．，to make efficient clothes dryers，townel ratis－ideal lor atring cuphoarda．Ideal lor anti－frost depice for the garage －preventing frozen radiators or acting as oil anmp heater． Ose in greenhouse for aeed raising and plant protection． Invaluable aid for bird hopses，incubators，etc．，etc．Can be ased in series for lower heat．Or in parsilel for higher heat applicatione．
ONLY 40p EACH（FOUR FOR 41.50 ） ALL PORT PAID－Dtecountr for quantity．


MAJOR IOO WATT ALL PURPOSE TRANSISTOR AMPLIFIER
All purpose tranaiatorised．
Ideal for Groups，Disco snd P．A．
4 inputs epeech and music． 4 way
geparate treble and bass controls．
Guaranteed．Detalle 8．A．E．


CALLERS ONLY！DE－LUXE 100 WATT AMPLIFIER CHASSIS． 7 Valve version， 4 inputs， 10 wide range controls．For Miken，Discon，Organn，Guitars，atc．
4,8 and 15 ohm Loudepeaker matching．

## Q MAX CHASSIS CUTTERS

A die，punch and Allen Screw


Araike in both LOG and LINEAR type．
Sixe 8 震 $\times{ }^{2} \times$ nin．with knobs．
250K， $500 \mathrm{~K}, 1 \mathrm{MEG}, 2 \mathrm{MEG}$ ．
65p each


## deluxe 4 POLE MOTOR

 3in．As illaztrated．240V a．c．mains． Pont 25p E．M．I．GRAM MOTOR 180 V or 840 V e．c． $\mathbf{2 , 4 0 0 \mathrm { rpm } . 8 \text {－pole } \mathrm { c }}$ 70 mA ．Size \＆i $\times 2 t \times 2$ \＆in．
ONE RPM GEARED MOTOR
240V a．c．main．Ideel for diaplay $/$
dieco lightwhesis．
\＆ 1.00 Pont 25 p
El． 25
Poit 25p

BAKER HI－FI SPEAKERS HIGH QUALITY－BRITISH MADE REGENT
12in． 15 watts
An inexpensive unit for the eginner in high fidelity and lor general purposes．May be uned to improve any Radio， Amplifier，Hi－Fi or Television eceiver．
 Tlux Deniity $18,000 \mathrm{gavs}$ 3 or 8 or 15 ohm modell．

## £8．80 은․

## DE－LUXE Mk II

I2in． 15 watts
Especially designed to provide ull range reproduction at an conomical cost．suitable fo ystem Built－in concentric tweeter cone．
Basa Resonance
Flux Density $\quad 14,000$ gsuas Uneful response $25-16,000 \mathrm{cp}$ 8 or 15 ohms modelo．

## fll

## SUPERB

I2in． 20 watts
A high quality loudspeaker， it remarkable low cone resonance ensures clear bass．Pitted with a apacia！ copper drive and concentric weeter cone resulting in full range reproduction with emarksble efllciency in the Baes regiter．
Bass Resonsince
Rlux Denalty
25cps
16，500 Flux Denaity $\quad 16,500$ gaus 8 or 16 ohms models．

## $£ 16.50$ 앙…

## AUDITORIUM

I2in． 25 watts
A full range reproducer lor high Dower，Electric Guitars， pubilic addrena，multinpeazer yateme，electric Organa， Ideal 10
Base Resonance 35 cps Flux Density 15，000gause Jedul renponse $25-16,000 \mathrm{cps}$ 8 or 16 ohme modeli．

## $£ 15 \cdot 40 \underset{\substack{\text { 品品 } \\ \hline 1}}{ }$



## AUDITORIUM

ISin 35 watts
A high wattage loudapeaker exceptional guality with level response to above 8,000 cess．Ideal for Public Addresp，Discotheguen，Elec－ tronic instrumenti and the home．
Bara Resonance
35icps
Plux Density $\begin{array}{ll}\text { Flux Density } & 15,000 \text { gans } \\ \text { Oeful reaponse } & 20-14,000 \mathrm{cps}\end{array}$ 8 or 15 ohms models．

12 $2 \begin{gathered}\text { Pont } \\ \text { Free }\end{gathered}$
Hi－Fi Enclosure Manual containing 2u plane，designe， crossover deta and cubic tables．42p．Poen Free．


CALLERS WELCOME CUSTOMERS FREE CAR PARK OPEN 9．6 p．m．WEDNESDAYS 9－I p．m．，SATURDAYS 9．5 p．m．（Closed for Lunch I．I5－2．30）

## SPECIALISTS 377 wirtehonse road

## THE Firm for speakers!

## SPEAKERS

ENI $13 \times 6.3,8$ or 15 hm EMil $13 \times 8$. $450 \mathrm{~d} / \mathrm{c} \mathrm{3,8}$ or 15 ohm EmI1 $13 \times 8$ type 3508 ohm EMI 6fin 938504 or 8 ohm ENI $6 \times 5 \mathrm{~d} / \mathrm{cone}$ roll/s 8 ohm Bater Group 253.8 or 15 ohm Baker De Luxe 12 in d/cone Baker Major 12 in
Ke1 T27
Ke1 B110
Kof 8200
Ke1 8139
Kot DNG
Kof DN9
Ke1 DN13
Fans Pop $100 \mathrm{~W} 8 / 15 \mathrm{ohm}$
Fane pop 60 W 8/15 ohm
Fane Pop 50W $8 / 15 \mathrm{ohm}$
Fans Pop 25/2 25W $8 / 15 \mathrm{ohm}$ Fane Pop 15W $8 / 15$ ohm Fane Crescendo 15 in 8 or 15 ohm Fane Crescendo 12A 75 W 8 or 15 ohm Fane Crescendo 12B 75 W bass 8 or 15 ohm Fane 808 T Bin d/cone 8 or 15 ohm Goodmans Axent 100 tweeter
Goodmans BP 8 or 15 ohm Goodmane 10P 8 or 15 hm Goodmana 12P 8 or 15 ohm Goodmane 15P or 15 ohm Goodmane Twinaxiom B
Goodmane Twinaxiom 10
Elac $9 \times 5$. 59RM109 15 ohm . 59RM114 8 ohm Elac $6 \frac{y}{i n} \mathrm{~d} / \mathrm{c}$ roll/s 8 ohm Elac 6 oin dicone 8 ohm Elac fin tweeter TW4 Whartedale Bronze 8 RSIDD Whartedale Super 8 RSSDD Wharedale Super Corlolich dicone rolls ohm Stren 6 tin 3 or 8 ohm
Rlchard Alion $12 \mathrm{in} \mathrm{d/c} 3$ or 15 ohm $10 \mathrm{in} \times 6 \mathrm{in} 3,8$ or 15 ohm
$8 \mathrm{in} \times \operatorname{Sin} 3$ or 8 ohm
7 in $\times 4$ in 3 or 8 ohm
24 in 64 ohm or 70 mm 80 ohm
Adagtra Hiten 10 in 10 W 8 or 15 ohm
Eagle DT33 dome tweeter
Eage HT15 tweeter
Eage CT10 tweeter
Eagle MHT10 tweeter
Eagle FR4
Eagle xover CN23. 28. 216
Sp. matching transtormer 3-15 ohm
Chleation $M F 100025 \mathrm{~W}$ horn 8 or 15 chm
Celvetion PS8 (for Unilex)
Coleation G12M 8 or 15 ohm
Cetestion G15C 8 or 15 ohm
Celemition G18C 8 or 15 ohm
Car Stereo speakers-ask for leafle
SPEAKER KITS
Wharfedale Unit 3
Whartedale Unit 4
Wharfedale Unit 5
Fichard Alien Twinkit
Richard Allan Triple 8
Rlchard Alan Triple Assem
Flichard Allan Super Triple
Fene Mode One

Koflkt

Kefith 3
Peerieas $2-8$
Peeriess $10-2$
Perriess
Peerless $20-2$
Helme XLK 25 (poir
Heime XLK 50 (pair)
Heime XLK 50 (pair) 511.17
stephen speaker kits and cabinets-send tor fre booklet "Choosing a Speaker'
PRICES INCLUDE VAT.
Free with orders over 57-"Hi-fi Loudspeaker Enclosure' book. Al units guaranteed new and perfect. Prompt despatch. Carriage and insurance speakers 35 p each. speaker kits 750 each, tweeters and crossovers 20p
Carriage and insurance 50 p per kit.


## FREE with speaker orders over $£ 7$

"HI FI Loudspeaker Enclosures" book. All unlts guaranteed now and perfect. Prompt despatch.
Carrlage and insurance 25p per speaker (tweoters and crossovers 15p). ALL PRICES QUOTED INCLUDE VAT.

## WILMSLOW AUDIO (Dept. PE)

Loudspeakers: Swan Works, Bank Square, WIImslow, Cheshire, SK9 1HF. Radios, etc.: 10 Swan Street, WIImslow, Cheshire, SK9 1HF. Telephone: Wilmslow 29599.
5.75

## A DEXTER DIMMASWIIBH

## ALLOWS COMPLETE

he DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the norma light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. All DEXTER DIMMASWITCH models have built-in radio interference suppies sion. 600 watt $£ 3.52$ Kit form $\mathbf{£ 2 . 9 7}$

300 watt $£ 2.97$ Kit form $£ 2.42$
All plus 12 post and packing
Prices include VAT. Please send c.w.o. to
 4-Station Pranuistor Intercom systern ( 1 master and 3 subs), in de-luxe plastic cabinets for desk or wall mounting. Call/talk/listen from Master to 8 ubs and Subs to Master. Ideally suitable for Business, Surgery, Schools, Hospital, Ottice and Home. Operatea on one 9) battery. On/oft switch. Colume control. Complete with 3 connecting wires each i6ft and
MAINS INTERCOM (new model) No batterias-no wires. Just plug in the mains for instant two-way, loud and clear communication. Onfor switch and volume control with lock system Price 818.95 . P \& P. 60p extra.


Same as 4 -Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with 6 connecting wire. Complete with battery P. \& 3.5
 ler. T withouk hown telephone measages or converve off swit toh vime hantrol. Auplete with bittery P. \& P. 27 p . Full price refunded if not satisfied in 7 lays

WEST LOHDON DIRECT SUPPLIES (PE/11
109 KEHSIIGTON HIGH STREET, LOIDON, W. 8


## The largest selection

EX COMPUTER BOARDS Packed with transistors, diodes, capacitor 3 for ONLY $56 \mathrm{p}+\mathrm{p}$ \& p 30 D 8PECLAL. As above PLUS Po
ONLY 55p each + pd plop
STABILISED POWER MODULES
Complete with circuit diagrams, etc. 09p
 4 for $80 \mathrm{p}+\mathrm{p}$ \& p 20 p .

FIBREGLASS PRINTED CIRCUIT BOARDS
$161 \times 4$ approx. 2 for 55D
DECON-DALO 33pC Marker Etch resistant printed circuit marker pen 90p each

## VEROBOARDS

Pack containing approx
size all 0.1 metric 550
REPANCO CHOKES \& COILS

## RF Choker

CH 3 2.5 mH 25 D CH. 5.0 mH 25 COILS CH 5. 1.5 mH 25D

## COILs

DRX1 Crystal set 66p DRR2 Dual range 45p
COIL FORMERS \& CORES
NORMAN $t^{\circ}$ Cores \& Formers 7D
$j^{\circ}$ Cores \& Formers Bp
SWITCHES
DP/DT Toggle Asp 8P/BT Toggle 18p

## FUSES

$11^{\circ}$ and $20 \mathrm{~mm} .100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}$, $500 \mathrm{~mA}, 1 \mathrm{~A}, 1.5 \mathrm{~A}, 2 \mathrm{~A}$
QUICK-BLOW 4 p ea. ANTI-SURGE bp en.

## EARPHONES

Crystal 2.5 mm plug 88 D
Crystal 3.5 mm plug 88p
8 ohms 2.5 mm plug 22p
8 ohms 3.5 mm plug 22p
DYNAMIC MICROPHONES
B1223. 200 ohms plus on/oft switch and
2.5 mm and 3.5 mm plugs 21.60

3-WAY STEREO HEAD.
PHONE JUNCTION BOX
H $1012 \quad 21.87$
2. WAY CROSSOVER

NETWORK
K4007. 80 ohms Imp. Insertion lose 3 dB B1-21
SELECTED RESISTORS
R1. Our mix, watt carbon-50 for 56 g

## CAR STEREO SPEAKERS

(Angled) 28.85 per pair.

## BI-PAK

CATALOGUE AND LISTS Send S.A.E. and 10p.
INSTRUMENT CASES

(Black Vinyl covered)

ALUMINIUM BOXES


VISIT OUR COMPONENT SHOP
18 ' BALDOCK ST., WARE, Hers. (A10)
Open Mon.-Thure, 9.15 .6 pom. Sat. 9.15-5.30. Late Night shopping until 7 Fri. Tel, 61693
Ref. 36A. Record/8tylu Cleaning Kit 88p Ref. 43. Record Care Kit $\mathbf{2}$. 85 Ref. 31. Cassette Head Cleaner 54p Ref. 32. Tape editing Kit $\$ 1.54$
Model 9. Wire Stripper/Cutter 88p

## ANTEX SOLDERING IRONS

 X 25.25 watt 81.98CON 240 . 15 watt 28.15
Model G. 18 watt 42 -15 SK2. Soldering Kit $£ 2.86$ STANDS: 8T1 11-21, 8T2 77D SOLDER: 188WG Multjcore 7oz 82p 228wG 7oz 82p. 188wG 22ft 28p 228WG Tube R2D

## ANTEX BITS and ELEMENTS

Bits No.
102 For model CN240
102 For model CN240 A
1100 For model CCN240
1101 For model CCN $240{ }^{\prime}$

## BIB HI-FI ACCESSORIES



Rel. P. Hi-Fi Cleaner 31p Ref. 32A. Stylus Balance 21-36 Ref. J. Tape Head Cleaning KIt SIp Ref. 34. Cassette Case 21.27 Ref. 56. Hi-Fi Stereo Hints \& Tips 38p

## PLUGS AND SOCKETS

 socketsPS 35 DIN 2 Pin ( $\mathbf{S}_{\text {weaker) }}$ Pg 36 DIN 3 Pin
PB 37 DIN 5 Pin $180^{\circ}$
PS 38 DIN 5 Pin $240^{\circ}$
PS 38
Pg 40
Pr

| PR 40 |
| :--- |
| PB |
| PB |
| 12 |

Ps $43 \quad$ Phon Single
PS $44 \quad$ Phon Double
$\begin{array}{ll}\mathrm{Pg} & 45 \\ \mathrm{Pg} & \text { Car Aerial } \\ \text { Co }\end{array}$ $\begin{array}{ll}\text { Pg } 46 & \text { Co-AIlal Surface } \\ \text { Pg } 47 & \text { Co-Arial Flush }\end{array}$

## INLINE SOCKETS

Pg 21 D.I.N. 2 Pin (Speaker) PS 22 D.I.N. 3 Pin Pg 23 DIN. 5 Pin $180^{\circ}$ PE 25 Jack 2.5 mm Plastic PS 26 Jack 3.5 mm Plastic PS 27 Jack t' Plastic $\begin{array}{ll}\text { PS } 28 & \text { Jack } \\ \text { PG } 20 & \text { Jack Stereo Plastic }\end{array}$ PS 30 Jack Stereo Screened PS 31 Phonol Screened Ps 32 Car Aerial Ps 33 CoAxial

## PLUGS

## PE 1 D.I.N. 2 Pin (Speaker)

 Pg 2 D.I.N. 3 Pin PE 3 D.I.N. 4 PinPS 4 DIN. 5 Pin $180^{\circ}$
PR 5 D.I.N. 5 Pin $240^{\circ}$ Pg 6 D.I.N. 6 Pin Pg 7 DIN. 7 Pin PE 8 Jack 2.5 mm Screened Pg 9 Jack 3.5 mm Plastic PS 10 Jack 9.5 mm Screened PR 11 Jack $\frac{1}{2}$ Plastic PS 12 Jack $1^{-}$Screened PS 13 Jack Stereo Screened PS 14 Phono PS 15 Car Aerial PS 16 CoAxial

## CABLES

CP 1 Single Lapped Screen
CP 2 Twin Common Screen CP 3 Stereo Screened CP 4 Four Core Common Screen PC 5 Four Core Individually Screened $0-80$ CP 6 Microphone Fully Braided Cable 0.10 CP 7 Three Core Mains Cable CP 8 Twin Oval Maine Cable CP 9 Speaker Cable

## CP 10 Low Loss CoAxial

## CARBON

## POTENTIOMETERS

Log and Lin $22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$ MM, aM

## M, 2

VC 1 Single Leas 8 witch
C 2 Single D.P. Switch
$\begin{array}{ll}\text { VC } 3 & \text { Tandem Less switch } \\ \text { VC } 4 & 1 \mathrm{~K} \text { Lin Less switch }\end{array}$ $\begin{array}{ll}\text { VC } 4 & 1 \mathrm{~K} \text { Lin Less } \text { Switch } \\ \text { VC } 5 & 100 \mathrm{~K} \text { Log antl-Log }\end{array}$

## HORIZONTAL CARBON

## PRESETS

0.1 watt 0.06 each
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$ $47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{M}$

BOOK BARGAIN BUNDLE

## Books comprialn

2 Transistor Equivalent Books
1 Radio and Electronic Colour Code and Data Chart
1 Radio Valve Guide PLUS
other Constructional books on Receivers FM Tuners, etc.
Also 1 General Constructional book
Value £3 Our Price £2 10p p \& p

BP1 Handbook of Transistor Equivalents and Substitutes
BP:2 Handbook of Radio, T.Y. and Industrial Tube \& Valve Equiv. 40p
BP3 Handbook of Tested Translator Circuits 40 D
BP4 International Handbook of the World'e Short Wave, Medium and Long Wave Radio Stations and
FM/TV Listings
BP5 Handbook of Simple Transistor Circuits
Radio \& Electronic Colour Codes Data Chart
BP8 Sound and Loudspeaker Manual 50,
BP 38 Practical Tested Diode Circuits for the Home Constructor
Practical Translator Novelty
Circuit a
Universal Gram-Motor Speed
Universal Gram-motor D peed
Indicator
How to make FM a TV Aerials,
Bands 1,2 and 3
Bends 1, 2 and 3
Radio Servicing for Amateurs
High Fidelity Loudspeaker
Enclosures
Transistor Circuits Manual No. 116 D
Coil Design \& Constructional Manual
Radio, TV and Electronic Data
Book
Transistor Circuits for Radio Controlled Models
Transistor Subminiature Receivers
Transistor Test Equipment and Servicing Manual
Transistor Audio Amplifier
Manual
Modern Transistor Circuits for
Beginners
A Comprehensive Radio Valve Guide, Book 5
183 How to Receive Foreign TV Pro grammes on your set by simple Tested Shortwave Receiver Circuit using MAT's The TEL Mark ' 4 ' Valved FM Tuner
and its construction
Reactance -Frequency Chart for Audio \& RF use
Resistor Colour Code Disc Calculator

## CARTRIDGES

ACC GP 91-18C. 200 mV at $1.2 \mathrm{cms} / \mathrm{sec} 21.10$ $A C O 8$ GP93-1.280mV at $1 \mathrm{~cm} / \mathrm{sec} \quad 21.66$ ACES GP96.1. 100 mV at $1 \mathrm{~cm} / \mathrm{sec} \quad \mathbf{2 8 . 6 5}$ TTC J-2005. Crystal/ Bi Output 950 TC J 20010 C Crystal/ Hi Output Compatible

TTC J-200 Cg stereo/ Hi Output 81.60 TTC J-2105 Ceramic/Med. Output $\mathbf{2 1 - 6 4}$

## CARBON FILM RESISTORS

The E12 Range of Carbon Film Resistors, $t$ watt available in PAKS of 50 pieces, assorted into the following groups.
R1 B0 Mixed 100 ohms- 820 ohms R2 50 Mixed 1 K ohms -8.2K ohms 400 hms 40 p Rs 50 Mixed 10 K ohms 82 K ohms
RA 50 Mixed 100 K ohms- 1 Meg ohms 40 THESE ARE UNBEATABLE PRICESLEGS THAN ID EACH INCL. V.A.T

BI-PAK SUPERIOR QUALITY LOW-NOISE CASSETTES

C60, 32D; C90, Alp; C120, 68p <br> \title{
-the lowest prices
} <br> \title{
-the lowest prices
} BI-PAK QUALITY COMES TO AUDIO!

## AUDIO AMPLIFIER MODULES



The AL10, AL20 and Al30 units are aimilar In their appearance and in their general speciflication. However, careful melection of the plastic power devices has resulted in a range of output powera from 3 to 10 watts R.M.S
The veratility of their denign makes then ideal for use in record players, tape recordera, stereo amplifera and casaette and cartridge tape players in the car and at home

| Parameter | Conditions | Pertormance |
| :---: | :---: | :---: |
| HARMONIC DISTORTION | PO $=3$ WATTSt $=1 \mathrm{KH}_{\mathbf{z}}$ | 0.25\% |
| LOAD IMPEDANCE | - | 8-16п |
| INPUT IMPEDANCE | $1=1 \mathrm{KHz}$ | $100 \mathrm{k} \Omega$ |
| FREQUENCY RESPONSE -3dB | $\mathrm{Po}=2 \mathrm{WATTS}$ | $50 \mathrm{~Hz}-25 \mathrm{KHz}$ |
| SENSITIVITY for RATED O/P | $\mathrm{Vs}=25 \mathrm{~V} . \mathrm{R} 1=8 \Omega \mathrm{f}=1 \mathrm{KHz}$ | 75 mV , RM8 |
| DIMENSIONS | - | $3^{*} \times 21^{\prime \prime}=1^{*}$ |

The above table relates to the AL10, AL20 and AL30 modules. The following table outlines the differences in their working conditions.

| Parameter | AL10 | AL80 | AL80 |
| :---: | :---: | :---: | :---: |
| Maximum Supply Voltage | 25 | 30 | 30 |
| Power out for $2 \%$ T.H.D. $(\mathbf{R L}=8 \mathrm{Q} t=1 \mathrm{KHz})$ | $\begin{aligned} & 3 \text { writs } \\ & \text { RMS Min. } \end{aligned}$ | 5 watta RM8 Min. | 10 watts RMB Min. |

## AUDIO AMPLIFIER

 MODULES AL 10. $\quad 3$ watts
## POWER SUPPLIES

 PB 12. (Use with ALIO AL 8PM 80. (Uae with slao AL30 \& AL50) FRONT PANELE PA 12 with Knobs 88.26
## PRE-AMPLIFIERS

PA 12. (Uaewith AL10\& AL20) 24.85 PA 100. (Use with AL30\& AL50) 213.15

## TRANSFORMERS

T481 (Use with ALl0) $\mathbf{5 1 . 3 8 \mathrm { P }}$ \& P 15p T538 (Use with AL20) 21.93 P \& P 16y BMT80 (Use with AL30 \& AL50) 29.16

## PA12 PRE-AMPLIFIER SPECIFICATION

The PAl2 pre-amplifer has been deaigned to match into AL 10, AL 20 and AL 30 audio power amplifers and it can be aupplied from their associated power supplies There are two stereo inputs, one has been designed for une with Ceramic cartridges while the suxiliary input will wit most $\dagger$ Magnetic cartrldges. Full details are given In the specification table. The four controls are, from left to right: Volume and on/off ewitch, balance, bass and treble Size $162 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}$.

Frequency response Be $20 \mathrm{~Hz}-50 \mathrm{~K} \mathrm{~Hz}(-3 \mathrm{dD})$ Babs control Treble control- $\pm 12 \mathrm{~dB}$ at $60 \mathrm{~Hz}_{z}$ $\pm 14 \mathrm{~dB}$ at 14 KHz *Input l. Impedance 1 Meg . ohm
Sensitivity 300 mV - Input 2. Impedance Tinput 2. Impedance
30 K ohma
Senaitivity 4 mV Sensitivity 4 mV
EA1000 AUDIO AMP MODULE 5 WATTS R.M.S.
Module Tested and Guaranteed. Full hook-up diagrams and complete technical data aupplied free with each module or avallable separately at 10 p each

SPECIAL OFFER £2 each while stores last

## The STEREO 20

The "Stereo 20 " amplifer is mounted, resdy wired and tested on a one-plece chassis measuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$ This compsact unlt comes complete with on/oft switch volume control, bslance, bass and treble controle ateractively printed front and Power amp: ag control knobs. The "Stereo 20" has been designed to fit into most turntable plinths without interfering with the mechanism or alternstively, into as separate cabinet Output power 20 w peak. Input 1 (Cer. 300 mV into 1 M . Freq. res. $25 \mathrm{~Hz} \cdot 25 \mathrm{kHz}$ Input 2 (Aux.) 4 raV into 30 K . Harmonle typically $0.20 \%$ at 1 watt. Treble con typically $0.25 \%$ a
$\pm 14 \mathrm{~dB}$ at 14 kHz .
£ $13 \cdot 48$

## 50W pk 25w (RMS)

## $0.1 \%$ DISTORTION!

 HI-FI AUDIO AMPLIFIER THE AL50$\star$ Frequency Response 15 Hz to $100,000-1 \mathrm{~dB}$.

ONLY
£3"58 aach

* Supply voltage $10-35$ Volts.
* Overall size 63 mm $105 \mathrm{~mm} \times 13 \mathrm{~mm}$.
$\star$ Signal to noise ratio 80 dB .

Tailor made to the most atringent specifications using top quality components and Incorporating the latest solid atate circuitry and ALsO wan conceived to fll the need for all your A.F. amplification need.
FULLY BUILT-TESTED-GUARANTEED.

## STABILISED POWER MODULE SPMBO

AP80 is especialiy designed to power 2 of the AL50 Amplifere, up to 15 watt ( $\mathrm{r} . \mathrm{m} . \mathrm{s}$.) per channel aimultaneously. This module embodies the latest components and circuit techniques incorporating complete short circuit protection. With the addition of the Malns Trans-
former MT80, the unit w11 provide outputa of up to 1.5 ampe at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$.
These units enable you to build Audio Systems of the higheat quality at a hitherto unobtainable price. Also ideal for many other applications including:-Disco Systems, Public Address, Intercom Units, etc. Handbook available 100 PRICE $\mathbf{E 3 \cdot 2 5}$
TRANSFORMER BMT80 £2.15 p. \& p. 28p

## STEREO PRE-AMPLIFIER TYPE PA100

Built to a specification and NOT a prlce, and yet atill the greateat vaiue on the market, the PA100 stereo pre-amplifier has been conceived from the latest circuit techniques. Designed for use with the AL50 power amplifier aystem, this quality made unit Incorporatea no less than eight silicon planar transiators, two of these are specisilly selected low nolse NPN devices for use in the input stagea.
Three switched stereo inputs, and rumble and seratch filters are teatures of the PAl00. base and treble controls.

SPECIFICATIOR
 Frequency Response
Harmonic Distortion Inputa: 1. Tape Head Inpute: 1. Rape
2. Radio, Tuner
$20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
1.25 mV inte 50 K

35 mV into 50 K
1.5 mV Inte 50 K

All input roltages are for an output of 250 mV . Tape and P.U. Inputa equaliged to RIAA curve within $\pm 1 \mathrm{~dB}$. from 20 Hz to 20 KHz . Bass Control Treble Control Filters : Rumble (High Pase) Scratch (Low Paes) Signal/Noise Ratio
Iqput o
Supply
Dimendions
$\pm 15 \mathrm{~dB}$ at 20 Hz
$\pm 15 \mathrm{~dB}$ at 20 KHz
8 KKHz
better than - 68 dB
$+26 \mathrm{~dB}$
+35 volta at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £13.15
SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1 SPM80, 1 BMT80 \& 1 PA100 ONLY £25*30 FREE p. \& p.

Allprices queted in new pence Gire No. 388-7006
Please send all orders direct to warehouse and despatch department


## The Catalogue you MUST have!



## TAKE YOUR PICK

THE tendency towards larger and more ambitious projects is a perfectly natural development in the wake of technological advancement. Not everyone wants to become involved in building the more complex project, that is true. But this expansive side of home construction should be welcomed by all the genuine enthusiasts, since it provides an opportunity for amateurs to keep up to date with the latest developrents and techniques and to make practical use of them as and when they feel so inclined.

It is worth considering, also, the beneficial effect on the retail components market arising from the demand generated by some larger projects. Such demands encourage suppliers to hold a wide variety of stocks and to seek out lines in components they might not otherwise contemplate handling. A healthy and venturesome retail trade is to the advantage of everyone who purchases components, whether in large or small quantities.

The needs and interests of constructors vary widely, but so far as generalisation can go, it seems reasonable to suppose that out of the whole, a majority of constructors confine their activities to the more simple kind of project. Newcomers undoubtedly start this way too, although many will in due course feel the compulsion to pursue their hobby to greater heights. Our recognition of the need for small simple designs is reflected in this month's special supplement. This contains details of four uncomplicated but useful and highly adaptable circuits, any of which can be assembled on the piece of printed wiring board presented free with this issue of Practical Electronics.

Returning now to larger projects, it may be recalled that the virtues of modular construction were discussed here last February when the P.E. Sound Synthesiser made its debut. With the synthesiser main unit now completed, this month's article in the series introduces the complementary keyboard unit.

It will interest many readers to learn that over the past 12 months the complete synthesiser has been handled by a number of professional musicians, and its unique creative possibilities-both as a composing machine and as a live performance instrument-have been established and enthused upon. Moreover, it has been confirmed that the keyboard unit on its own does constitute a valuable and versatile instrument for live performance. For example, it will meet the needs of many musical groups, being able to provide novel avant-garde accompaniment.

This feasibility is another bonus or "spin off" from the modular approach. It confirms the importance of considering both the whole and the parts, where many large and ambitious projects are concerned.
F.E.B.

## Editor

F. E. BENNETT

Editorial
R. D. RAILTON Assistant Editor D. BARRINGTON Produclion Editor G. GODBOLD Technical Editor S. R. LEWIS B.Sc.

## Art Dept,

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classiffed

Phone: 01-634 4301
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.,
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202


THIS Stage Lighting Dimmer was built to the specific requirements of an amateur revue company. It consists of four independent channels each capable of dimming 13 amps ( 3250 watts) of incandescent (not fluorescent) lighting. The number of channels may be increased as necessary providing the current capability of the input is uprated

## SYSTEM DESCRIPTION

Each of the four dimmable channels is controlled by a linear slider fader. Any channel can be switched to a Master Fader which is a double unit made up of two stereo slider potentiometers. The Master has control over all channels simultaneously when required.

Each channel has a mimic light next to the fader control which gives a visible representation of the relative brilliance of the lights plugged into that channel.
A preset potentiometer in each channel allows the cutoff point of each channel to be adjusted for different wattage lamps with differing thermal capacities.

Interference suppression is included and the dimmers are mounted in an earthed box to reduce radiation.

The output to each channel is fed via a 13 amp switched socket and input from the mains is taken via a 60 amp fused switch which can act as a "Master Blackout" control when it is necessary to cut out all the lamps in the fastest possible time.

## CIRCUIT OPERATION

Each of the four channels uses an identical circuit which uses a triac to control the current through the lamps. The basis of this circuit is shown in Fig. 1

A triac is a four layer semiconductor device with three terminals. It will only conduct when a voltage is applied to the gate ( g ) terminal and will then continue conducting in either direction even when the gate voltage is removed. It will cease to conduct when the current through it drops below a threshold level known as the holding current.

The circuit shown in Fig. 1 varies the average current through the lamps by controlling the point in the mains cycle at which the triac is triggered into conduction. This method of control is known as phase control.

## EACH CAPABLE OF DIMMING $3 \frac{1}{4} k W$ OF LIGHTING



Fig. 1. The basic phase confrol triac circuit. The waveforms in different parts of the circuit are shown right


Fig. 2. The circuit of one of the control channels of the Stage Lighting Dimmer. Four identical channels are used in the unit


Referring to Fig. 1, capacitor Cl and variable resistor VRI form a phase shift circuit which alters the phase of the signal at their junction with respect to the applied mains voltage.

The diac in series with the triac gate is a fourlayer device which presents a high impedance until the voltage across it exceeds a value known as the breakdown voltage (about 30 volts) when it presenis a low impedance. When the breakdown voltage is reached the capacitor Cl discharges into the gate of the triac causing it to conduct. Typical waveforms are also shown in Fig. 1.

## COMPLETE CIRCUIT

In the actual circuit used, shown in Fig. 2, VR is the Channel Fader and VR? is one section of the Master Fader which can te over-ridden by SI to give independent control. VR1 and C2 form the phase control network and R1 and Cl are additions to provide smooth control at low light levels.

The current supplied by $\mathbf{R} 1$ and C 1 is determined by VR3 in series with R2. VR3 can be used to

Practical Electronics


Photograph showing the layout of the components on the front panel and the output sockets mounted on the side of the case. Another two sockets are similarly fixed the other side
preset the extinguishing point of the lamp when the Channel Fader is fully down. There are two modes of use for VR3: it may be used to fully extinguish a lamp which would otherwise "sing" (due to the filament vibrating in the presence of small residual spiky current; alternatively it may be set so that the filament glows dull red, which enables a big lamp to be taken to full brightness quickly.

## MIMIC CIRCUIT

Components D2, R3 and LP1 form a "mimic" circuit to give a visual indication of the lamp brightness. D2 and R3 simply reduce the mains voltage down to six volts. The four resistors (R3 and its counterparts) dissipate nearly 10 watts each and must be placed in a well ventilated position.

Note the special connection between the switchboard 13 amp socket and D2. This is necessary because with no lighting load plugged in, the leakage through the triac will give a glow in the mimic lamp which can be disturbing to the lighting operator. With no lamp plugged in, the channel should be switched off at the socket.

The point to connect D2 will be found as a copper rivet head on the rear of the socket and should be verified with an ohmmeter.

## LOAD CONNECTION

The load is connected on the neutral side of the triac. This reduces the risk of electric shock from

MIMIC LAMP DROPPER RESISTORS. (R3s)


OUTPUT SOCKET (40ff) TRIACS ON HEATSINK (Insulated from case)

[^3]Fig. 3. Block diagram showing the four circuits of Fig. 2 interconnected and the extra components needed to complete the unit

defective lamps, since the lamp is at neutral rather than live when faded down. It also enables all the triacs to be mounted on a heatsink without insulating washers although this has the disadvantage that the heatsink is live and must therefore be insulated from the case.

The triac, though a bi-directional device, operates best with the main terminal $2(\mathrm{mt} 2)$ live with respect to mtl . For the SC50D mt 2 is the threaded stud.

Interference suppression is obtained using two capacitors ( C 9 and $\mathrm{Cl0}$ ) connected between the supply lines as shown in Fig. 3. Also seen on Fig. 3 is the mains indicator neon and the 60 amp fused switch.

## CONSTRUCTION

The dimmer was designed to be mounted on a wall so the control box and the switched fuse were

Fig. 4. Layout of the components on the tagboard and interwiring for one of the four channels. Components should be mounted on the front panel, the case and the tagboards, and then interwiring should be done using this diagram and Fig. 3 as a guide. Wires which carry the current to the lamps should be heavy duty to reduce heating effects.


$\stackrel{\rightharpoonup}{*}$
Photograph showing the completed unit and 60 amp switched fuse mounted on the backing board
fitted on a wooden panel fitted with mounting brackets (see photograph). The metal box used for the prototype is not generally available but any aluminium or steel box of sufficient size (13in $\times$ 10 in $\times 5$ in) can be used.
The four triacs are mounted on a large heatsink which is connected to the live input via the switched fuse. A smear of heat-conducting grease should be applied before the triacs are bolted in position.

All the small components are mounted on two tagboards as shown in Fig. 4. The only exceptions are the four mimic lamp resistors (R3 etc.) which are mounted on a separate tagboard in a ventilated position.

The m.e.s. lampholders must be of the type which have both lamp terminals insulated from the case as neither must touch the case which is earthed.

The four preset potentiometers (VR3 etc.) are mounted on the outside of the case so that they are easily adjusted.

The output sockets are mounted two on either side of the case. The tagboards are mounted on pillars.
Plastic brackets are used to support the heatsink without it touching the case. Make sure that the lid of the case does not touch it when fitted.

Vents must be cut in the case to allow air to circulate if none are present.

Front panel layout is not critical, the photographs showing the prototype layout. Note that the two stereo sliders which form the Master Fader should be mounted as close as possible to each other so that they may be moved together. They may be physically joined with a metal bracket if this is desired.

Cables capable of carrying the 60 amp input current must be used for connection to the unit. A heavy duty earth cable should be connected to the case using a screw terminal.

## COMPOMEITS

Resistors
$\left.\begin{array}{ll}\text { R1 } & 150 \mathrm{k} \Omega \\ \text { R2 } & 4.7 \mathrm{k} \Omega \\ \text { R3 } & 2.7 \mathrm{k} \Omega\end{array}\right\} \frac{1}{2}$ watt carbon

Potentiometers
VR1 $100 \mathrm{k} \Omega$ linear slider
VR2 $100 \mathrm{k} \Omega+100 \mathrm{k} \Omega$ linear stereo slider (each channel uses half of one)

## Capacitors

C1, C2 $0.47 \mu \mathrm{~F} 400 \mathrm{~V}$ (2 off)
Semiconductors
D1 Diac type ST2 (Henry's Radio) D2 1S557, BY100 or any 400 V 1 A diode CSR1 SC50D 400V 15A Triac (Henry's)

Miscellaneous
LP1 6 V 60 mA m.e.s. lamp and holder
SK1 13A switched mains socket (MK2957) + mounting plate MK2200 21L
S1 Mains on/off switch
The components above are required for each of the four channels, i.e. four of each (except VR2) are required. The components below are required to complete the unit

Resistor
R13 $150 \mathrm{k} \Omega$ (not needed if included with neon)
Capacitors
C9, C10 $0.1 \mu \mathrm{~F} 1000 \mathrm{~V}$ (2 off)
Miscellaneous
LP5 Mains neon indicator
S5 M.E.M. 60A switch/fuse
12 way tagboards (2 off)
4 way tagboard
Screw terminal, 6 in $\times 6$ in $\times 2$ in finned heatsink, plastic brackets, 16 mm copper double insulated (p.v.c./p.v.c.)

## PRACTICAL POINTS

To reduce the interference effects of the unit it should be used on a supply separate from that being used by any microphone or musical instrument amplifiers, i.e. the 60 amp cables to the input should be taken to the nearest low impedance mains supply, the local "main feeder."

Ordinary household ring main circuits will not handle the unit on full load. In the case of a house or small hall the connections should be made direct to the fuse box, having first checked that the incoming mains can supply 13 kW .

Footlights present a special problem since they are often chose to stage microphone cables. If possible use footlight feeder cable which has an earth screen totally enclosing the conductors.

The slots in the box for the faders was made using a Monodex metal cutter.

A heavy duty soldering iron is necessary for soldering the 60 amp cables.

Total cost of the unit was approximately $£ 35$.


## BLACK HOLES

There are many enquiries about "black holes" and not surprisingly they are mostly of the form "What is a black hole?"
The term "hole" is the main difficulty. just as it was with solid state devices. Perhaps this is because usually a hole is some space which is at an angle to a surface.

Since the situation is one of concentration of matter and energy it is better to use the word concentration. The new name then is a "black concentration" and in this case it means that energy and matter is not radiating outwards but is concentrated away from the observer. It is, therefore, a black condition.
Proceeding from there. imagine that the Sun in following its life course goes through the process of normal star evolution and death. It will expand to many times its present size to become a Red Giant. In expanding it will cool down and as the fuel of it becomes consumed the gravitational forces will cause it to contract to about one per cent of its volume. This will mean that it will become very hot again. It will then acquire a new name, that of White Dwarf. Its brightness will have increased and so will its density so that a cubic inch would weigh many tons.

However, by the nature of the process there is a limit to the compression and in the case of the Sun it will probably remain as a White Dwarf, gradually cooling down.

## GRAVITATIONAL COLLAPSE

In the case of stars more massive than the Sun the energy produced during the life cycle may be such as to make the stage from Red Giant to White Dwarf much more
concentrated. In this case a state of gravitational collapse may occur and a "black concentration" will take place.

Not only does this effect apply to the star itself but also to the surrounding media. In this condition it is possible that other concentrations of matter nearby are sucked into the area.

The advent of gravitational collapse is likely to arise after the transition from Red Giant to White Dwarf. This could be because the White Dwarf stage is not a halting point as it were, and the energy of the shrinking from Red Giant may over-run the White Dwarf point. In this case the enormous energies will build up to a catastrophic explosion and a supernova would be the result. This will appear as an extremely bright object and parts of the original star will be flung out at fantastic speeds of the order of hundreds of miles a second. There will be left a small highly concentrated mass. the neutron star. This is the Pulsar according to the accepted current theory.

Sometimes the energy is so great that the situation is not ended at this point and the collapse goes beyond the neutron star point. It is here that the condition of the "black hole" is reached.

It is not easy to accept the implications of this manner of events. It would mean that no light or radiation of any kind comes out of this concentration.
The gravitational field is so great that in the comparatively short distance involved (if the Sun became a "black hole" it would be only two miles in diameter) matter in moving inwards from the "surface" would stretch out from the observer. In fact, there would persist for some time an image of the original matter and this would not appear to change for a very long time. In effect there would be a reversal of all the conditions that are regarded as normal.

## NEW LOOK

At this point it is time to ask whether physicists have to take a new look at the whole situation. It would seem that there are no universal laws. but rather that the laws depend upon conditions as they are found. This is not merely a matter of reality but also of profound philosophical implications. It may be that other views will be expressed and that this interpretation is in itself rejected.

There is still no direct evidence. for the existence of the "black hole" but work which is going on at the moment may help to clear up the matter. It is hoped that there will be sufficient data shortly to report on the progress of a new project aimed at providing new evidence.

## COMET KOHOUTEK

The comet Kohoutek, which is likely to make a sensational appearance and will be visible to the naked eye for four months or so, will be at its peak in December when it will be visible in full daylight. It will be visible to the naked eye from about the first of November.

There was not time for the organisation of a probe to intercept this comet though in other fields the early warning of its advent is useful. Professional gatherings have been held to set up a study programme and to avoid unnecessary duplication of observations.

Studies will be made in infra-red and observations in the $50-100$ micrometre wavelengths will be made from a jet plane. It may well be that a programme will be set for observations from Skylab.

It so happens that a number of dispersed observations from automatic satellites and a probe will be able to provide useful data. Satellites $O S O-3$ and $O S O-7$ will be able to make photographic observations and Mariner 10 will be able to monitor the inter-planetary medium as it proceeds on its journey to Venus and Mercury.

All these study programmes will help to practice different techniques which can be used for the special observations of Halley's comet which is due in 1986.

## LIGHTS IN THE SKY

Three years ago a search for fluorescent pulses, induced by Xray photons, was made. During this observation the fast atmospheric pulsations of light were discovered. Since this discovery there have been observations which threw more light on these effects.

At Ankara H. Ögelman has made observations with baselines of 175 and 3,300 kilometres. The results of this work are being correlated, but first results seem to indicate that these FAP's, as they are called. appear from discrete directions and are more frequent than was supposed.

The energies are being measured and later results will appear in this column.

## MARS VEHICLES

Considerable re-design may be necessary for the manned vehicles to Mars because of the high radiation levels that might be normally encountered.
This conclusion arises from the examination of the materials of the Apollo spacecraft after returning from the Moon. The extent of the radiation has supplied the solution and it is thought a re-arrangement of the present design will be possible to overcome this hazard.


## BY R.A.COLE

## THE DISCERNNG CONSTRUCTORS CHOICE:

\author{

* A Total Quadraphonic System
}


## * An advanced design AM/FM radio

## Complete loudspeaker enclosure design

* Flexible design allows individual modules to be incorporated in existing equipment


## $\star$ Switching facilities and modules for SQ, QS(RM) and CD4 systems

T
He previous articles described the construction of the SQ decoder, the power amplifiers, preamplifiers and volume/tone/balance controls. their circuits and operation.

The present article is devoted to the construction of the power supply and the construction and assembly of the main chassis member.

## POWER SUPPLY

The power requirements for the Rondo are dual rails providing positive and negative supplies with a centre earth for the preamplifiers, tone controls and power amplifiers, and a positive rail and negative earth supply for the tuners, stereo decoder and quadraphonic decoder(s).
 complete power supply

## COMPONENTS . . .

## POWER SUPPLY

Resistors
R32 1.5ks2
R33 470s
R34 470s2
R35 39s.
R36 33 2
All $\begin{aligned} & \text { a } \\ & \text { 1 } \\ & \text { 10\% }\end{aligned}$

## Capacitors

| C19 | $3,500 \mu \mathrm{~F}$ | 40 VW |
| :--- | :--- | :--- |
| C 20 | $3,500 \mu \mathrm{~F}$ | 40 VW |
| C 21 | $1,000 \mu \mathrm{~F}$ | 16 VW |
| C 22 | $1,000 \mu \mathrm{~F}$ | 16 VW |
| C 23 | $1,000 \mu \mathrm{~F}$ | 35 VW |
| C 24 | $1,000 \mu \mathrm{~F}$ | 25 VW |
| C 25 | $1,000 \mu \mathrm{~F}$ | 25 VW |
| C 26 | $1,000 \mu \mathrm{~F}$ | 25 VW |
| All elect. |  |  |

## Semiconductors

D1 to 8 BK32
(2 in parallel) Semicron.
D9 to 12 B40 C1000 Semicron.
D13 24 V Zener.
D14 \& 15 15V 10\%. Zener.
D16 20 V Zener.
D17 18V Zener.
All Zeners are 400 mW
TR6
TIP29
Transformer
T1 Primary 240 V a.c.
Secondaries
1, 20-0-20V a.c., 4A.
$2,24 \mathrm{~V}$ a.c. $\frac{1}{2} \mathrm{~A}$.


Fig. 3.2. Circuit board master for the Rondo power supply


Fig. 3.3. Component layout for the power supply board viewed from the component side

## MAIN CHASSIS DETAILS



Fig. 3.4. Main supporting chassis metalwork shown in general detail in the fabricated form and with external critical dimensions for simplicity. There should be no reinforcement where the sides meet, as the sides must be able to be pressed inwards when the wooden sleeve is fitted

## POWER AMPLIFIERS SUPPLY

The dual rail supply is, as shown in Fig. 3.1, derived from a $20-0-20 \mathrm{~V}$ transformer Tl winding with a 4 A capacity rectified by two bridge rectifiers DI-D8 in parallel. The expedient of using two smaller (at lower cost) unmatched, bridge rectifiers in parallel is open to criticism because of "current hogging". That is, that the rectifier with the lower impedance will have a higher current flow. The rectifiers have been chosen so that, under all operating conditions, there are no detrimental effects due to this phenomenon.

The transformer centre tap is taken direct to the junction of two $3,500 \mu \mathrm{~F}$ main smoothing capacitors C19, C20, joined negative to positive, and the rectified d.c. supply to the free positive and negative terminals of these capacitors respectively. The d.c. voltage, after rectification, is around +25 to -25 V . (The centre zero is at earth potential.) The supplies to the main power amplifier output stages are taken direct from the main smoothing capacitors.

## OTHER BOARD SUPPLIES

All the 748 's are fed from $\pm 15 \mathrm{~V}$ d.c. rails obtained by dropping through resistors R33, R34 from the $\pm 25 \mathrm{~V}$ supplies smoothed by two $1,000 \mu \mathrm{~F}$ capacitors $\overline{\mathrm{C}} 21, \mathrm{C} 22$. As these rails do not have to be at precisely 15 V but the i.c.s have to be protected against exceeding a maximum rating of 18 V , they are "clamped" to 15 V by two Zener diodes (D14 and D15).

The positive rail and negative earth supply is obtained from a separate winding on the transformer T1. This winding is 24 V a.c. at 250 mA and is rectified by a 1 A bridge rectifier, D9 to D12, smoothed and then regulated by a series regulator circuit TR6. R 32 and D13 to 24 V d.c. and smoothed again.

From this point is taken the supply to the varicap diodes of the f.m. tuner.

A further ladder of droppers, Zeners and smoothing capacitors produces 20 V d.c. to the SQ decoder, 18 V d.c. to the a.m. tuner, f.m. tuner head transistors, i.f. stages and the stereo multiplex decoder. The values of the ladder are chosen so that either the a.m. or f.m. tuner may be on, or both tuners off, without disturbing the voltages of the other supplies significantly.

The components C26 and C27 and resistor R37, together with DI8 are associated with the tuner unit (yet to be described) and in fact appear on that unit's board. They are shown here merely for completeness.

## CONSTRUCTION

The power supply p.c.b. master negative is shown in Fig. 3.2 which indicates the simplicity of the circuit in practice.

The component layout appears in Fig. 3.3 which is self explanatory. Capacitors C19 and C20 are too large for board mounting and are in fact clamped in the main chassis.

## MAIN CHASSIS

The main chassis member is a rectangular boxform which in fact sits on its back in the final assembly. Thus it is used as a trough with components mounted within it rather than in the more conventional manner.


General view of the "trough" form of the main chassis for the Rondo showing the orientation of the power amplifiers and power supply with some of the general wiring in place. Plug and socket holes are not sized as this will depend on items selected

The chassis is shown in the bent-up form in Fig. 3.4. The material used for the prototype was 20 s.w.g. mild steel plate but of course this may present some difficulties to constructors since it is not easy to bend. Thus it is possible to use 16 s.w.g. "halfhard" aluminium sheet which is somewhat easier to bend or, indeed, to fabricate the structure from flat sheets cut to size. For this reason only the major dimensions have been given as it is felt that each constructor will probably adopt his own style of construction.
It should be added that the chassis, in the prototype design, contains all the various parts of the system and supports the outer wooden case and facia which is in the form of a sleeve which slips over the unit and is fastened to the chassis.

## PLUGS AND SOCKETS

As individual constructors may wish to vary the types and sizes of plugs and sockets used the positioning shown is open to variation to suit though of course major shifting of components is not advised as this can create feedback paths for which the equipment is not designed.

## CHASSIS SCREENS

The power supply includes the mains transformer, board and main smoothing capacitors and the whole is placed behind a shield to cut down hum pick-up at the pre-amplifier and elsewhere.

Two screens are used, as illustrated in Fig. 3.5 and 6. The smaller acts as a support for the power supply p.c.b. and is fastened to the transformer using 4BA screws. The p.c.b. is then attached to the screen using 6BA screws and $\frac{3}{8}$ in spacers.

The larger screen is assembled later in the sequence and is held in place using self-tapping screws.

[^4]

## DOGGED RESISTANCE

Honestly, the trouble to which people go in order to maintain their various equilibria.

The latest in this mania for status quo manipulation appeared in a letter to a professional U.S. magazine. This, in fact, took the form of a reply to an earlier piece of correspondence which complained about noise from a barking dog, and which simply requested "Help! Widget wanted to drive the Mutts Nuts."

Help, if this is what it could be referred to, appeared a month later as a package deal comprising a 20 kHz oscillator and (twenty watt!) amplifier combo driving a hi-fi tweeter horn. The suggestion was, that by continuous use, although no human would be able to hear the thing, poor ole' Fido would make such an awful din that his ever-loving owner, thinking he'd gone out of his tiny mind, would be just itching the next day to have him put down!

Now no one could accuse me of holding any torches for the canine community, nevertheless, I cannot help feeling that this is a singularly pernicious use of electronics.-One couldn't help noticing that the correspondent had asked to have his name withheld!

## LSI or AU PAIR?

The number of times we have to hear about the feasibility of robot "flunkies" in the home, and how extraordinarily easy it's all going to be once they're installed. All you need is a handful of super-LSI chips, and you'll never look back! No doubt, the electronics represent no
insurmountable problem, but how practical would something like this be, even assuming the mechanical aspects could be solved?

The variety of jobs that can be performed by automated equipment is already overwhelming; what with tumble driers, telephone answerers, record players, etc., it might even be questionable whether a place exists for robots in the true sense of the word. Yet, I read, just last week, that Dr George Müeller of Systems Development Corporation, California, reckons that a computerised set-up of this sort would be a viable proposition within, say, ten years.

Once written, ! suppose, executive programmes having the same general format could be hard-wired into the devices prior to despatch. The "crunch" might come when the new owner needed to programme the confounded thing for the sundry tasks around the home.


Imagine trying to write a programme for accomplishing the "simple" job of pouring drinks. You would need to tell it to "come out of your storage cupboard', "turn left after three feet", "continue for nine feet seven inches" (at this point you might be wondering whether it only understood metric), "stop", "move right arm slowly towards cupboard right-hand handle"', "grip handle gently and rotate it 180 degrees counter-clockwise" (supposing that the catch didn't release until 181 degrees?).
"Carefully open door 120 degrees, then release handle", "lower arm, and scan inside cupboard for port bottle (does robot think I mean the bottle on the left?), "if located, remove the cork in this bottle and pour a quantity of liquid from the bottle into each of the glasses situated below the bottle rack'", 'ensure that each glass is only filled to the $\frac{3}{4}$ mark', etc., etc.

With such a system, one need only forget about junior's toy duck, 'plum in the middle' of the automaton's path, to give it a full-blown seizure!

A machine able to rely on learning techniques might prove to be a better proposition, always provided you could tolerate the broken glass, wine-sodden carpets, and the bill from the psychiatrist while it got the hang of things!

## MAINSTREAM

By nature (I'm told) the trout is a lazy sort of fellah; loves to bask himself in the sun, and only makes a sudden dart across the current if, in his myopic way, he fancies he's seen a fly somewhere on the surface. In this life, though, there is rarely anything that escapes exploitation and the trout represents a typical case in point.
Recently, you see, the waterworks at Boran sur Oise, near Paris, have overcome some difficulties associated with the monitoring of pollution levels by recruiting the aid of this delicious member of the aquaticae. Seemingly, ordinary detection/warning systems in this application are insufficiently sensitive; as a corollary, the waterboard's laboratory have "roped-in" three good-sized brown trout to do the job instead.

Each animal is located in a glasssided tank fed from normal supply water and running at a rate consistent with typical river current. Normally, the trout orientates himself up-stream; however, if conditions cause the water to be slightly polluted, he'll about-turn to face downstream.
By fitting up each of the fish with tiny electrodes, an alarm can be triggered whenever all three fish do a simultaneous 'flip round'. Individuals turning-tail are ignored by logic ANDing circuits to avoid false alarms.
Several days of this treatment do not appear to upset these creatures, in spite of the fact that if any of them stop swimming they are given an electric shock into the bargain. Since these animals are required to work in a sterile environment one wonders what technical arrangements have been made to feed 'em tool


[^5] communicate directly with che reader.

## December 1971

Mr. J. Bickerstaffe, 15 Deanshill Close, Seafford.
Novamber 1969, February to April 1970 Mr. S. R. Dunning, 103 Glebe Road, Deanshanger, Wolverton, Bucks.

July to October 1972
Mr. J. Y. T. Lee, 20 Wong Chuk Hand Road, 2nd Floor, Aberdeen, Hong Kong.

Saptember 1972
Mr. K. R. Whitbread, 14 The Orchard, Bedford Park, London. W4 IJX.

Mry D. Lawrence, \& Stringers Drive, Rodborouch, Stroud, Glos.
May 1972
Mr. J. Hoppe, Murraymead, Bracknelt Lane, Hartley Wintney, Basingstoke, Hants.

October, November 1972
Mr. L. Davis, 27 Highfield Avenue, Burnewood, Nr. Walsall, Staffs.

May 1969 to March 1970
T. Hall, 60 Archers Road, Marlborough Estate. Takajuna 10, Auckland, New Zealand.
Ausust 1967
Mr. M. Ferguson, 6 Boundary Road. Thornlands, Queensland, 4163. Australia.


## electronics really mastered

... practical ...visual ...exciting!
no previous knowledge no unnecessary theory no "maths'



FAAPY

BUILD, SEE AND LEARN
step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

## 1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

## 2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS


as used currently in the various fields of electronics.

## 3/ CARRY OUT

 OVER40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :
valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c experiments, d.c experi ments, simple counter, time delay circuit servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory--no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

# Ondis Ltd. 

P.O. BOX 25, CANTERBURY, KENT TEL.: CANT. (0227) 52139

## THE FAMOUS WELLER NOW AVAILABLE TO YOU

* TEMPERATURE CONTROLLED
* IRON PLATED LONG LIFE TIP
* LOW VOltage isolated element
L.E.D. Red. 30p,
L.E.D. Green, 75p.

MINITRON 30I5F, $\mathbf{£ 1 . 5 0}$.
INTEGRATED CIRCUITS in 8-14 D.I.L. packages: 74| 36p; 748 38p.

Hi-Fi stereo pre-amps.: TBA23। Ł1.43; CA3052 $£ 1.30$.
F.M. decoder limiter $5\|\| A, f I$.
0.25 watt audio amp. MFC 4000,45 p.

Timing circuit 555V, 80p.
3 watt audio amp. SN76013, 61.75.
TIS88A, 36p; TIP4IA, 70p; TIP42A, 85p.
IOOV 25A Plastic Power Transistors:
TIP35C E3; TIP36C £4.
2N3055 50p.

## MINIATURE SWITCHES

S.P.C.O. Toggle, 35p.
S.P. Push to make, 29p.
D.P.D.T. Slide, 10 p.

## AEROSOLS

Freezer, 70p.
Printed Circuit Lacquer, 75p.
Silicone Grease, 75p.
Contact Cleaner, 75p.
Anti-Static Inhibitor, 85p.

## SOLDERING AIDS

ADCOLA L646 23 watt, mains iron, E2. 10.
De-Soldering braid, 60p.
18 SWG SOLDER 0.5 kilo, E1.16.
22 SWG SOLDER 0.5 kilo, $\mathbf{2 1 . 2 6 .}$
18 SWG SOLDER $2 \cdot 5$ kilo, $\mathbf{£ 5} 50$.
P.C. Mounting Stereo Pots 100 K Lin. 100 K Log. IOK Log. alf at 35p.


Please add $10 \%$ VAT to total cost of all items


All spares readily available

## VARICAP STEREO TUNER F.M. $\varnothing$

(ACTUAL BEECHING UNITS) IN STOCK

MODULES LPI 185/86 REGULATOR MFC4060 DECODER MCI3IOP PRINTED CIRCUIT BOARD-GLASS FIBRE (With lettering) READY BUlLT AND TESTED BOARDS $\mathbf{E 2 3 + 2 5 p}$ COMPLETED TUNERS IN TEAK CABINETS $\begin{gathered}\text { postage }\end{gathered}$ (BRUSH ALU. FRONT PANEL with 6 BUTTONS, MAINS +5 STATIONS) VAT. INCLUDED

## STILL SOME LEFT!

25 W R.M.S. DISCO AMPLIFIERS (Juke box)
ONLY $£ 10$ each +35 p postage
CHASSIS CONSTRUCTION WITH POWER SUPPLY
S/C PROTECTED. DELIVERS 25 W INTO $7 \Omega$
(OR $2 \times 15 \Omega$ ). FROM PICK UP: SENSITIVITY ABOUT 100 MV INTO I M $\Omega$. USING 40361/40362/ MJ481/MJ491 TRANSISTORS
EACH ONE TESTED, REQUIRING ONLY A VOLUME CONTROL

READY BUILT AND TESTED STEREO DECODERS FOR 9 V -12V SUPPLY $\quad \mathbf{4} \cdot 50+10 \mathrm{P}$ postage

B \& B ELECTRONICS
64 MANNERS ROAD, BALDERTON, NEWARK NOTTS.

## PHOTOELECTRIC KIT

Contents. P.C. Chassia Board, Chemicala, Etching Manual. Infra-Red Phototransistor, Latching Relay, : Transiators, Diote, Resistors, Gain Control, Terminal Block. Elegant Case. Screws, etc. In fact everything you need to build a steadyLight Photo-Bwitch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modiffed for modulated-light operation with a fer additional components.


Photoelectric kit £2.85
Postage and Pack. 15p (U.K.) Commonwealth SURFACE MAIL 25p AIR MAIL $£ 1-40^{\circ}$ Australia, New Zealand. S. Africa, Canada and U.B.A.

Also Eseential Data Circuite and Plans for Building 10 Adranced Deaigns

## INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywrool) for builling: 1 Inviaible.Beam Projectur and 1 Photocell Receiver (as illustrated). Suitable tor all Photoelectric Burglar Alarms, Counters, boor Openers, etc.
CONTENTS: 2 lenses, 2 mirrors. $24 j$-degree woden blocks. Infra-red filter, projector lamp holder, acrews, nails, brackets, building plans, etc. Price $\mathbf{2 1}$-45. Postage and Pack. 10p (U.K.). Commonwealth: Surface Mail 20p, Air Mail 50p.
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Tuice the range of atandard kit. Larger Lenses, Filter
 BIOFEEDBACK AMPLIFIER KIT
Tunable. General-Purpose, Interference-Rejecting Differential Amplifier tor experimental investigation of signals produced by the brain, heart and muscles. When ueed with an oscilloserpe, or aural indicator, it enables you to monitor your brainwaves, learn to relax, meditate, etc.
CONTENTS: All Capacitors, Resiators, Pots. Semiconductors, I.C., Electrodes, Lead, Chasis, Case, Batteries, Plans and Instructions. Price $\mathbf{8 4} \mathbf{7 5}$ postage and pack.
25 p (U.K.). Commonwealth: Surface 30p. Air Mail 21 . 25p (v.K.). Commonweath: Surface 30p. Air Maile
ALPHA-BETHA-THETA BRAINWAVE MONITOR KIT
Aural Brainwave Indicator for use with a Bloteedback Amplifier. Converts subsonic brain frequencies into andible signals for easy recognition.
CONTENTS: Resistors, Pots, Capacitors, Transistors, Diodes, Leads. Chassis, Case, Earphone, Battery, Plans and Inst ructions. Price 88.25 , postage snd pack. 15 p (U.K.).
Commonwealth: Surface 25p. Air Mail 75 p .

YORK ELECTRICS Mail Order Dept.
335 BATTERSEA PARK ROAD, LONDON, S.W. 11
Send S.A.E. for full details, a brief deseription of all Kits and Prajeets

# LOGIC TUTOR EKP而RIMENTS THE HALF ADDER <br>  

THE circuit we left you to puzzle over last month was another form of the EXCLUSIVE OR gate. The Boolean expressions for the various nodes are shown in Fig. I. The outputs of the two gates that are WIRED OR'd together would have been $\bar{A}+\bar{B}$ and $A+B$ respectively without the link between them but as soon as the link is made these two functions become ANDed together and then it is a simple matter of Boolean manipulation to show that the output function is EXCLUSIVE OR.

## Binary Addition

It is necessary to understand the basic principle of adding together two binary integers. The rules are very simplein fact exactly the same as in conventional denary arithmetic except that whenever you get a sum greater than I you must carry over a digit into the next cqlumn. Let's take the simple case of adding two single digit numbers together. We'll call the digits $A$ and $B$ to differentiate between them and show the sum and carry-when necessary-in the following simple table. Note that we are carrying out pure addition here and in this instance + means plus and not OR

$$
\begin{aligned}
\text { Digit A }{ }^{\text {Digit B }} & \text { Sum } \\
0+0 & =0 \\
1+0 & =1 \\
0 & =1 \\
1+1 & =0 \text { (carry I over) }
\end{aligned}
$$

In this list of sums we have used every permutation of the two numbers. Compare the arithmetic with the truth table for the EXCLUSIVE OR gate shown in Fig. 2. If we used electrical signals to represent the numbers we wanted to add together and could accept an electrical signal as an answer you can see that the output of an EXCLUSIVE OR gate gives use a true representation of the sum of the two binary integers. It does not, however, give us the carry digit when we want to add I and I. In addition we only need a carry when we have I AND I so it is a simple matter to provide this output from the same pair of inputs by introducing an AND function.

Fig. 3 shows how this can be done by taking the $\overline{A B}$ function -generated at the centre node of the EXCLUSIVE OR-and inverting it. You can see that the truth table for the circuit shown in Fig. 3 is an exact replica of the answers we would wish to get when carrying out a tinary addition. The circuit is called a half adder. As is often the case there are various ways of designing half adders-you now know at least three ways of making the EXCLUSIVE OR function so try making some more half adders yourself on the Logic Tutor.

You might query why this is called a half adder. The reason is that when we come to add together two multidigit numbers (see Fig. 4) our current circuit is quite capable of dealing with the least significant column (i) but when we come on to the other columns we have to be able to add together the respective digits of numbers $A$ and $B$ but also have to be able to add in any carry over that was generated in the previous (lesser significance) column. Thus to add multidigit numbers together we must have a circuit that can handle three inputs.

A circuit that will do this is called the full adder and we shall deal with this next month.
by M. J. Hughes


Fig. 1. Answer to last month's problem. The circuit is an EXCLUSIVE OR

Fig. 2. Comparison of binary addition with EXCLUSIVE OR truth table


Fig. 3. A half adder is an EXCLUSIVE OR plus an AND function of the inputs


Fig. 4. When carrying out addition of two multidigit numbers a half adder is capable of dealing with column (i) but when it comes to column (ii) there must be provision for three inputs, digit (ii) of A + digit (ii) of $B+$ possible carry over from column (i). The same applies to all higher power columns

# PE Sound Synthesiser 11 

 HEV:OMRIDWith these added units the keyboard becomes a unique musical instrument

WHEN the Sound Synthesiser was originally presented for publication it was the intention that it should be classed as a general purpose instrument which could be exploited in the widest possible number of ways and yet retain a basic simplicity of design and ease of construction. During the course of the series however many readers have commented that the musical capabilities of the instrument have been severely restricted by the lack of logarithmic v.c.o.s and thus the oscillator to be described in this article has been included in the keyboard unit in the hope that it will put matters right.

Prospective constructors should note that although the logarithmic v.c.o is based on the linear v.c.o. which was described in Part 3, the parameters of operation are quite different and the setting-up is rather more critical if it is desired to operate the device within the limitations of a precise range of control voltages.

Although limited to about 11 octaves range with the design values given, it is possible to adjust the operating points to cover a much wider bandividth. The prototype has operated quite happily from less than 1 Hz to greater than 150 kHz with a control voltage swing of about 11 V and there is no reason to suppose that it could not reach 1 MHz , or greater, if the integrator output voltage were to be reduced and a faster comparator employed. As a result it is possible that the oscillator may be suitable for a number of applications outside the sphere of sound synthesis

The v.c.o. is shown in block schematic form in Fig. 10.1. The control voltage to the oscillator is modified in a differential input summer and then applied to a constant current generator housed in a "transistor oven". The output of the current generator is then led to an integrator/comparator stage through the medium of a current switch which is controlled jointly by the comparater and inverter. The triangular wave output is led to a waveform shaping circuit which provides a sine wave having a very low harmonic content.

## DESIGN CONSIDERATIONS

It was decided that the best way of providing a $\log$ law performance to the basic v.c.o. outlined in Part 3 of the series was to utilise the entirely predictable logarithmic relationship between the base/emitter voltage ( $V_{\text {be }}$ ) and collector current ( $I_{c}$ ) of a bipolar transistor.
... Start Here!
This month we start detailing the operation and construction of the keyboard unit for the synthesiser. Regular readers of P.E. who may have been put off by the apparent complexity and/or cost of the synthesiser project as a whole may be interested to learn that the facilities offered by the keyboard unit are such as to allow the instrument to be classed as a music synthesiser in its own right, and at an overa!! cost of less than $£ 80$. Main features of the instrument are as follows:

Two tracking oscillators featuring a variable logarithmic law which allows compatibility with a wide range of control voltages and provides square, triangular and high purity sine wave outputs.

A novel "floating" divider system which greatly simplifies tuning the instrument and by means of which the compass of the keyboard can be swung, in tune, from a low frequency of about 6 Hz to a high frequency greater than 27 kHz . The divider features a switchable "span" facility.

Two modulation amplifiers by means of which the oscillators may frequency modulate one another either separately or at the same time.

Two analogue memory circuits which retain the last programmed divider voltage to either oscillator. Separate portamento controls are incorporated in the hold circuits giving six values of delay from instantaneous to one second.

Two simplified envelope shapers incorporating voltage controlled amplifiers each having a variable Attack and Decay characteristic and featuring a switched percussive attack

## A simple two channel, fixed gain mixer.

Finally, the keyboard divider system incorporates a link switch which allows the two oscillators to be programmed independently by the lower 18 and upper 31 keys respectively. This particular feature greatly improves the "live performance" possibilities. An independent p.s.u. is included.


Although the current generator could be almost any discrete transistor the effect of ambient temperature variations would be such as to cause the current demand to vary quite widely and thus adversely affect the "tune" of the oscillator. Consequently it was decided to make use of the inherently close thermal and electrical matching between transistors mounted in a monolithic integrated circuit - the ML3046P and CA3046 both having been tried in the prototype. Extremely close thermal stability is ensured by employing two of the transistors in the array as a heater and sensor respectively and terming the whole arrangement as a "transistor oven."

Fig. 10.2a shows a detailed arrangement of the "oven" while Fig. 10.2 b shows the pin connections for the 3046 device. Fig. 10.3 illustrates how the $V_{\text {be }}$ of transistors on the array will vary over a wide range of temperatures and provides a guide as to the actual temperature of the chip when the $V_{\text {be }}$ of the sensing transistor is known.

In Fig. 10.2a Q1 serves as the heating element while Q2 is used to sense the temperature of the chip. The $\mathrm{V}_{\mathrm{b}, \mathrm{e}}$ of Q 2 is compared with a reference
voltage set up by R3, VRI and R4. The reference voltage will correspond to a temperature which is considerably higher than ambient and will thus be at a lower value than $Q 2 V_{\text {be }}$ when power is first applied. Thus the comparator will switch positive and turn on Q1. As the temperature of the chip rises $\mathrm{Q}^{2} \mathrm{~V}_{\text {be }}$ will fall to a point where it is equal to or less than the reference voltage at which time the comparator will switch negative and turn off Q1.

The criteria determining the value of R 1 are as follows:-

1. The temperature of the chip must be set considerably above normal ambient conditions (say 40 degrees to 45 degrees Centigrade).
2. The combined power dissipation of Q1 and Q2 must exceed, by a wide margin, the combined power dissipation of the remaining transistors in the array.
3. The current switching of Q1 must not be so violent as to impart a significant jitter to the oscillator waveform.


Fig. 10.2(a). Detailed arrangement of the transistor oven; (b) pin connections of the ML3046 and CA3046. Note that pin 13 must be connected to the most negative point in circuit


Fig. 10.3. Showing the change in $\mathbf{V}_{\text {be }}$ for variations in ambient temperature for the ML3046 and CA3046

In practice the value of RI which gives the closest approach to the above criteria is 270 kilohms. With this value it is possible to set $\mathrm{Q}^{2} \mathrm{~V}_{\text {be }}$ to 680 mV , that is approximately 45 degrees Centigrade while the .combined dissipation of Q1 and Q2 is about 90 mW as opposed to the combined dissipation of Q4 and Q5 (the current generators) of about 1.4 mW . Detailed setting-up instructions for the "oven" are given later in this article.


Fig. 10.4. Simplified layout of oscillator section showing operation of current switch

## CURRENT SWITCH

Having thus established a thermally stable current generator it now remains to couple this to the input of the v.c.o. In the linear version of the v.c.o. a diode bridge was employed which was switched entirely by the action of the comparator. While this system could no doubt still operate satisfactorily a rather more sophisticated version has been adopted which utilises transistors in place of diodes. The so-called current switch is illustrated in Fig. 10.4. Assuming that the output of IC4 is positive to start with, the operation of the current switch is as follows.
With IC4 positive, the output of IC5 is negative and thus TR3 and TR4 are on and off respectively. With TR3 on the current generator demand will cause a drain across R15 and thus make the base of TRI more negative than its emitter. TR1 will then turn on in proportion to the demand of the current generator and a current flow $I_{c_{1}}$ is established through TR1, R15 and TR3. $\mathrm{I}_{\mathrm{c}_{1}}$ will set up a p.d. across R15 which will have the effect of biasing on TR2 and establishing a second current flow, $\mathrm{I}_{\mathrm{c} 2}$ through R16 and TR2.
This latter current flow is entirely dependent upon the demand of the current generator which is varying the p.d. across R15 and thus TR2 may be said to track the demand of the current generator. The closer the matching of R15/R16 and TR1 and TR2, the better will be the tracking and the better the symmetry of the integrator output waveform. Thermal stability is not a problem with TR1 and TR2 since the arrangement gives an equal and opposite reaction between these transistors for any variation in temperature.
$I_{c 2}$ causes the integrator to ramp negatively and at a predetermined negative level IC4 will switch negative and IC5 positive. Thus TR3 and TR4 are now off and on respectively and since TR3 is off so also is TR2 and the current generator now discharges CI via TR4 at a constant rate. The integrator will thus ramp positively until the switching point of IC4 is reached at which time the cycle repeats.

## SINE WAVE SHAPER

The sine wave shaper used in the v.c.o. has been adapted from a design by D. T. Smith which appeared in Wireless World (Feb. 1973). Fig. 10.5 shows a detail of the circuit together with the waveforms presented at various points when the circuit is producing a sine wave having a low harmonic content.
The sine-shaper utilises the non-linear characteristics of a field-effect transistor in order to produce the desired output waveform and thus the operating points are quite critical. R20, 21 and D5, 6 provide a network which allows the gate to track the input signal and apply the necessary degree of "pinchoff" as the source signal approaches its maximum on both positive and negative half-cycles. Since the gain of the f.e.t. is changing continuously relative to the input signal the device may be considered to be operating in the ohmic region as a voltage variable resistor.
In Fig. 10.5 VR5 controls the d.c. offset of the input waveform and it is necessary to compensate for slight asymmetries which could be introduced in


Fig. 10.5. Showing the waveforms occurring in the sine shaper. VR6 is adjusted for minimum third harmonic distortion and VR7 for minimum second harmonic distortion

the oscillator section. Over adjustment of VR5 in either direction can provide an alternative output waveform rich in harmonics.
VR6 sets the input signal level to the network. Too low a setting and the output waveform will be triangular while too much gain will give a waveform which is virtually a rounded off trapezoid. Careful adjustment of VR6 enables third harmonic distortion on the output to be reduced to a minimum.
VR7 controls the output amplitude of the signal. Too great a setting and the sine wave will become peaky while too low a setting will result in a squat, flattened out, waveform. Thus VR7 may be considered to control the second harmonic level and should be adjusted to minimise this characteristic.

## BUILDING THE OSCILLATORS

The theoretical circuit of the complete oscillator module is shown in Fig. 10.6 while the recommended circuit board layout is shown in Fig. 10.7. It is strongly urged that construction of the module follows the guidelines suggested otherwise the interdependance of some of the controls is likely to make the final setting-up something of a nightmare.
Construction should start with assembly of the transistor oven, differential input summers and current generators. RI should be 470 kilohm and left with fairly long leads to facilitate exchange during the final setting-up. Position the temperature control, preset VR1 to the R3 end of its travel to ensure that the comparator goes negative and thus turns off Q1 when power is applied. R10 should then be temporarily linked to the 0 V rail and a decision taken as to the fate of R11. This resistor is optional in that it may be utilised to provide a third controlling input to the v.c.o. or it may be omitted at this stage without affecting anything. However, if it is decided to include R11 for the purpose of possible future additions to the circuitry it is important to remember that its presence could possibly compromise the setting-up of the oscillator if certain precautions are not taken.

If a third programming signal is to arrive at the oscillator from a low impedance source such as the output of another operational amplifier it is important that R11 also be temporarily linked to the 0 V rail. Alternatively R11 may be left open circuit with the idea of using it only for the provision of occasional programming signals during which the tuning of the oscillator will have to be adjusted by means of VR4. In the setting-up instructions which follow R11 is open circuit.

## SETTING UP

Since only one current generator can be set-up at a time the base of the second one (Q5) should be temporarily linked to the -15 V rail to reduce the possibility of accidents. Set VR3 so that its value is 530 ohms. Note that if the positive lead of the ohmmeter is coupled to the -15 V rail for this measurement the reading will not be compromised by the forward conduction of Q4. Set VR2 to the R6 end of its travel to ensure the minimum forward bias of Q4.
Set VR4 to its minimum setting and connect a milliammeter between the collector of Q4 and the 0 V rail as shown in Fig. 10.8. As a safety precaution set the milliammeter to the 25 mA range to start with. If the wiring up has been correctly carried out the milliammeter will show no reading when power is applied. On the other hand if the base of Q4 is incorrectly biased towards the positive region Q4 will pass a large current on switch-on which, besides possibly destroying the transistor, could also damage the meter.

Apply power and if no meter movement is observed reset to the 1 mA range. Again there should be no obvious reading. Adjust VR2 towards the R5 end until the pointer of the meter makes a definite upward movement. At this point swing VR4 carefully over its full range and observe the maximum current drawn through Q4. The actual figure can vary quite widely at this stage and will probably be in the region $0.25-0.75 \mathrm{~mA}$.


Fig. 10.6. Circuit of complete oscillator module. Points A, B and C are coupled to waveform selector switch

Set VR4 so that the meter is reading 0.2 mA and place a slightly moistened finger on IC8-the transistor array. The meter reading should be seen to increase quite rapidly. Having made the above adjustments switch off and remove the meter from the collector circuit of Q4. Without disturbing the setting of any of the potentiometers temporarily link Q4 collector of the 0 V rail. The same adjustments should now be made to the circuitry around Q5having first removed the base/negative rail link.

In this case, however, leave the meter in circuit for the next stage of setting-up which entails fixing the thermal working points of the transistor oven.

Couple the oscilloscope to the output of the comparator ICl which, at this point, will be about -14 V . Carefully adjust VR1 until the comparator switches to +14 V . At this time two things will start to happen. The first is that the meter will show a progressive increase in reading which, if the adjustment of VR1 has been made with care, should not exceed 1 mA . The second is that within a second or so of the comparator switching positive the oscilloscope trace, which starts as a straight line, will begin to display a varying waveform.

At first the oscillation will zero about a point
approximately 12 V positive, but, as the chip temperature stabilises, the zero point will move down to about +6 V to +9 V . Monitor the base emitter voltage of Q2 which should be in the region 650 mV to 680 mV .

## LOW LOAD POINT

At this time all four connected transistors are contributing towards the heating on the chip. Q1 with its 470 kilohms base resistor will be passing about 3 mA and contributing about 45 mW , Q2 in passing 1 mA will be contributing about 15 mW whilst Q 4 and Q5 will be contributing about 6 mW jointly. These latter devices, however, are passing considerably more current than they will be required to do when coupled to their respective oscillators and running at high frequency. It is therefore necessary to establish a low load set point to ensure that the oven maintains the same temperature over the full working range of the oscillators.

On both Q4 and Q5 reduce VR4 to its setting and readjust VR2 hard over towards R6-in other words reduce the forward bias on the transistors to the absolute minimum. These adjustments will cause

## VOLTAGE CONTROLLED OSCILLATORS

COMPONENTS
LOGARITHMIC V.C.O.s.
(2 required)

## Resistors

R1* 270k $\Omega$ (see text)
R2* 15kS
R3* 27k $\Omega$
R4* 1kS
R5 $30 \mathrm{k} \Omega 2 \%$ metal oxide
R6 $\quad 4.7 \mathrm{k} \Omega 2 \%$ metal oxide
R7-R11 $47 \mathrm{k} \Omega$ (5 off) $2 \%$ metal oxide
R12 33k $\Omega$ 2\% metal oxide
R13 270 2 2\% metal oxide
R14 4.7k $2 \%$ metal oxide
R15-R16 $6.8 \mathrm{k} \Omega 2 \%$ metal oxide
R17 $20 \mathrm{k} \Omega$
R18-R19 1k $\Omega$ (2 off)
R20-R21 $1 \mathrm{M} \Omega$ (2 off)
R22 See text
R23 $75 \mathrm{k} \Omega$
R24 $1.2 \mathrm{M} \Omega$
R25 47k』 2\% metal oxide
R26 75k $\Omega 2 \%$ metal oxide
R27 $2 \cdot 2 \mathrm{k} \Omega$
R28 8.2 kS
R29-R31 $10 \mathrm{k} \Omega$ (3 off)
R32 $8.2 \mathrm{k} \Omega$
R33 10ks
R34 47kS2 2\% metal oxide

## Capacitor

C1 15 nF
Potentiometers
VR1* 500S cermet preset
VR2 10k 2 cermet preset
VR3 $1 \mathrm{k} \Omega$ cermet preset
VR4 $10 \mathrm{k} \Omega$ midget moulded carbon
VR5 $500 \Omega$ cermet preset
VR6 $50 \mathrm{k} \Omega$ cermet preset
VR7 $500 \Omega$ cermet preset (see text)
VR8 $500 \Omega$ cermet preset
Integrated Circuits
IC1* 741C
IC2, IC3, IC5, IC6, IC7 741C (5 off) IC8* ML3046P (Q1, Q2, Q4, Q5) IC4 748C

## Transistors

TR1-TR2 BC204 (2 off)
TR3-TR4 BC209C (2 off)
TR5 2N3819

## Diodes

D1-D6 IN914 (6 off)
Note: For components marked with an asterisk only 1 off is required.

| 1. Slider VR4 (1) | 5. Slider VR4 (2) |
| :--- | :--- |
| 2. Hi-end VR4 (1) | 6. Hi-end VR4 (2) |
| 3. R10 Control Input (1) | 7. R10 Control Input (2) |
| 4. Spare Control Input (1) | 8. Spare Control Input (2) |

2. Hi-end VR4 (1)

Sid VR4
7. R10 Control Input (2)
4. Spare Control Input (1)

Fig. 10.7. Board layout of oscillator module. Link point $Q$ to $Q$. Link point N to junction of R33 and R33 or V.C.O.2.
Link point P to junction of R28 and R29 on V.C.O. 2
the oven temperature to fall and thus the comparator switching waveform will tend to move more positive and revert to a straight line trace.

Monitor the base/emitter voltage of Q2 again which, with the comparator positive, should not be greater than 680 mV . If it is, or if, after a few seconds, the comparator waveform does not show signs of rippling, then the heat dissipation of Q1 is insufficient to maintain the set temperature. Much,


| $\begin{aligned} & \text { Bias } \\ & \text { Voltage } \\ & \text { "A"" } \end{aligned}$ | $\mathrm{V}_{\mathrm{BE}} \mathrm{Qz}=680 \mathrm{mV}: \mathrm{R}_{\mathbf{T}}=750 \Omega$ |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Total Voltage } \\ \text { "B"' } \\ \text { Bias + Control } \end{gathered}$ | Ic | $\begin{gathered} \mathbf{V}_{\mathrm{BE}}(\mathrm{Q} 4) \\ (\mathrm{mV}) \end{gathered}$ |
| 2.74 | 2.74 | 12nA (calc) | 395 |
| 2.74 | 5.75 | 160 nA | 461 |
| $2 \cdot 74$ | 7.76 | 600 nA | 500 |
| 2.74 | 8.76 | $1.5 \mu \mathrm{~A}$ | 528 |
| 2.74 | 9.76 | $3.7 \mu \mathrm{~A}$ | 550 |
| 2.74 | 10.78 | $7.0 \mu \mathrm{~A}$ | 570 |
| 2.74 | 11.78 | $20.0 \mu \mathrm{~A}$ | 595 |
| 2.74 | 12.78 | $41.0 \mu \mathrm{~A}$ | 617 |
| 2.74 | 14.39 | $60.0 \mu \mathrm{~A}$ | 630 |
|  | Referred to OV Rail |  | Referred to -15 V Rail |

Fig. 10.8. Measurements of $\mathbf{Q 4 V}$ be made with Avo 8 which illustrate the degree of error that is possible when interpreting the reading
of course, depends upon the ambient conditions when these measurements are being made and it is best to set up the low load point at the coolest temperature at which the v.c.o. is likely to be operated.

Under cool conditions therefore, if the comparator still does not ripple, it will be necessary to adjust the value of R 1 to increase the current through Q1. In the prototype a value of 270 kilohms proved to be satisfactory and gave the desired comparator switching waveform at low load. The value of R 1 is quite'important because if it is too low the current switched by Q1 will be excessive and cause a considerable degree of jitter on the oscillator waveform.

Monitor $\mathrm{Q}^{2} \mathrm{~V}_{\text {be }}$ once more and adjust VR1 as necessary to bring the voltage to 680 mV . All settingup on the prototype oscillator was carried out at this value and it is important to bear in mind that the values of all subsequent measurements bear a close relation to this figure. If $\mathrm{Q} 2 \mathrm{~V}_{\text {be }}$ is lower than 680 mV this implies that the temperature of the oven is higher and thus Q4 will pass a higher current for any given value of control voltage. Since the frequency of the oscillator is linearly related to the current through Q4 then the frequency will also be higher.

The reverse will occur if the value of $Q 2 V_{b e}$ is higher than the specified figure. However, for small variations from the specified value, the performance of the oscillator will still remain wholly logarithmic and sufficient tolerance has been allowed in the biasing control VR2 to compensate for such variations. Once satisfied that the upper and lower temperature set points have been correctly established VR1 may be locked with a small dab of non-conductive adhesive such as Araldite. Link the bases of Q4 and Q5 temporarily to the -15 V rail.


Fig. 10.9. Basic circuit elements of the oscillator and inverter (IC5). Resistor $R$ is any value between $2 \mathbf{k} \Omega$ and $1 \mathrm{M} \Omega$ and is temporarily coupled as shown to prove oscillator function

## PROVING THE OSCILLATORS

Fig. 10.9 shows the circuit elements involved in the construction of the oscillator section. When these items have been assembled temporarily connect a resistor of between 2 kilohm' and 1 megohm from the junction of R27/R30 and the inverting input of IC3. With an oscilloscope monitoring the output of IC3 apply power and a triangular waveform will be observed at a frequency dependent upon the value of linking resistor chosen. Having proved the functioning of the oscillator assemble one current switch and couple to a current generator having first removed its base shorting link. Resistors R28/29 and R32/33 should be added at this time. The purpose of these resistors is to establish a negative bias point for transistors TR3 and TR4 in the


Fig. 10.10. Control voltage/frequency relationship current switch and whereas the exact value of the resistors concerned is not entirely critical it is important that R28/32 and R29/33 be as closely matched as possible to ensure that the bias points of TR3 and TR4 are the same.

A quick check may now be made to ensure that the separate circuits work together as a complete unit. Remember to reset VR2 and VR4 to about mid position. Depending upon the setting of VR3 it is possible that rotation of VR4 will cause the oscillator to go into saturation towards either extremity but this is not important at this stage and will be dealt with during final setting up.

The next stage is to build the second oscillator following the same general pattern and, having established that it functions. begin the process of matching the performance. The closest possible matching of performance will be obtained if relatively close tolerance components have been used in the construction and, for this reason, 2 per cent resistors have been specified throughout. In particular it is prudent to obtain a matched pair of integrating capacitors (Cl).

## BIASING

Firstly it is necessary to establish a value of minimum bias on Q4 and Q5 which will support oscillation. Due to the inherently close electrical matching of the transistors on the 3046 the same level of bias will result in current flows through the transistors which are, for all practical purposes, identical. In the prototype it was found that the output of IC 2 was at +2.74 V referred to the OV rail for an oscillation frequency of $0 \cdot 2 \mathrm{~Hz}$.

Set VR4 to its minimum position and adjust VR2 until the output voltage on IC2 (both oscillators) reaches +2.74 V as above. Monitoring the integrator output waveform on both oscillators at the same time, if possible, adjust VR3 on Q4 and Q5 with the greatest care so that both oscillators are running at the same frequency-the exact rate is not critical. With VR4 still at its minimum setting apply an external control voltage to R10 on both oscillators at the same time having first broken the temporary link connecting R10 to the $O V$ rail. A fresh 9 V battery with a suitable potentiometer coupled across its terminals is ideal for the purpose of providing the control voltage.

Connect the positive end of the battery to the OV rail and the slider of the potentiometer to both R10's. With the slider hard negative monitor the
output frequencies of both oscillators, preferably at the same time, and confirm that they are running at the same frequency which should be in the region of 3 kHz . Note that since the oscillators are not phase locked a certain degree of drift between them is almost inevitable and it should be the aim to reduce the amount of drift, by adjustment of VR3, to within I per cent or better of the frequency being monitored. Thus for a frequency of 3 kHz a drift of about 30 Hz would be at the limits of acceptability. Compare frequencies at various settings of the potentiometer to ensure that the frequencies and drift relationships remain stable over the full range.

## OFFSETTING SATURATION

If, at the minimum setting, either or both oscillators go into saturation due to the adjustments made to VR3 it will be necessary to establish a slightly higher bias point by re-adjustment of VR2 and then repeat the whole of the setting up procedure so far outlined. Careful adjustment will result in a pair of oscillators which track the control voltages very accurately. It should not be the aim to reduce the drift between the oscillators to a very low figure as the beat frequency introduced by a drift of 0.5 per cent to 1 per cent will add interest and colour to the sound when both oscillators are being programmed in harmony. On the other hand a very low beat frequency can add quite unpleasant characteristics to a sound.

When satisfied that the oscillators are tracking over the full range of the control potentiometer the control voltage measured at the output of IC2 should be plotted against the frequency of oscillation at various points in the range. Fig. 10.10 shows the result of plotting the performance of the prototype oscillators.

## F.E.T. CHARACTERISTICS

Before beginning the assembly of the sine shaper it is necessary to determine the exact characteristics of the f.e.t. which is to be used in the circuit. The two operational parameters which require to be known are the saturation current ( $\mathrm{I}_{\mathrm{DSS}}$ ) at zero gate bias and the gate bias required to reduce the current through the device to negligible proportions. Fig. $10.11 \mathrm{a} / \mathrm{b}$ illustrates the methods of making the measurements specified. If a variable voltage source

(a)


Fig. 10.11(a). Method for determining $I_{\text {DSS }}$ at $V_{G S}=$ 0 (b) method for determining $V_{G S}$ when $\mathrm{I}_{\mathrm{DS}}=\mathbf{0}$


Fig. 10.12. Graph showing how $\mathbf{V}_{\mathrm{p}}$ and I ISS vary with $\mathbf{V}_{\mathbf{G S}}$
is available it is preferable to use this in the source drain circuit rather than the divider arrangement illustrated and thereby gain the benefit of greater accuracy in the measurements.

The first stage is to measure the $\mathrm{I}_{\mathrm{I} \text { ss }}$ at zero gate bias. With the variable voltage source at zero volts and the milliammeter on the 1 mA range gradually increase the voltage setting, plotting, at various stages, the current/voltage relationship.

The point which is of interest is that at which further increases in voltage result in only a very small increase in current through the device. The voltage at which this phenomenon first occurs is known as the pinch-off voltage ( $\mathrm{V}_{\mathrm{p}}$ ) and should be carefully recorded. After the pinch-off point has been reached the voltage may be increased quite significantly with very little increase in current until the avalanche breakdown region is reached. At this point the current through the f.e.t. will increase hugely and almost instantaneously and result in the destruction of the device. Hence the requirement to plot the measurements very carefully and note the point at which $V_{p}$ is reached.

Fig. 10.12 shows a typical family of curves for any one f.e.t. and depicts the way in which the pinchoff voltage reduces as the gate bias is made progressively more negative with respect to the source. The next measurement to make therefore is the point at which the current through the f.e.t. reduces to negligible proportions and the set-up for doing this is illustrated in Fig. 10.11b. Having made the connections shown and with the 10 kilohm potentiometer wiper at the positive end of its travel adjust the variable voltage source so that the meter is indicating the $I_{\text {isss }}$. At this point gradually advance the wiper and note that the meter reading reduces in proportion. Switch to a lower range on the meter as required and advance until the reading is zero. At this point carefully measure and note the voltage across the gate/source of the f.e.t.

The value of resistor $R 22$ in the sine shaper is calculated on the basis of the readings above in the following way:-

$$
\mathrm{R} 22=\frac{\mathrm{V}_{\mathrm{p}}}{2 . \mathrm{I}_{\mathrm{DSS}}}
$$




(c)

(d)

Fig. 10.13. Showing the effect on the sine shaper output waveform of adjustment of VR6 and VR7(a), VR6 too low (b), VR6 too high (c), VR7 too high (d), VR7 too low

The $V_{p}$ in the above calculation refers to the value of gate/source voltage at which the current through the f.e.t. is zero. The value of the resistor will depend on the actual characteristics of individual f.e.t.s but would normally be expected to be quite small. In the prototype, for example, R22 was 180 ohms in one shaper and 270 ohms in the other. The value of VR7 should be chosen to provide a fairly wide margin of adjustment over the calculated value of R22 and in most cases a 500 ohm preset would be satisfactory.

## ASSEMBLY

Having completed the above measurements the sine shaper can now be assembled. Bear in mind that f.e.t.s can be rather tricky to handle and it is a wise precaution to solder all the other components in position before actually inserting and fixing the f.e.t.

Setting-up the sine shaper consists of adjusting the values of VR5, 6 and 7 to provide the optimum sine wave. With power on adjust VR4 so that the oscillator is running at about 3 kHz and monitor the output of IC7. The preset adjustments should be made with reference to Fig. 10.13 which illustrates the various waveform characteristics associated with these controls.

If a sine-wave oscillator is available it is helpful to compare the output of the shaper with a "genuine" sine wave of the same frequency. The scale of the waveform on the oscilloscope screen should be as large as possible for this purpose. This latter procedure was carried out with the prototype shapers and resulted in a sine wave output having a total harmonic distortion of only 1 per cent. A wave analyser or distortion meter if available could enable a higher purity sine wave to be obtained.

Next month: Envelope shaper, mixer networks and analogue memories for the keyboard unit.

## QUICKIIES



$\lambda_{\text {OLECTR }}$


## THERMOMETER



## A temperature measuring <br> device

## with many applications



THE electronic thermometer has been proposed in various forms, usually associated with a thermistor detecting element. This latter is a resistor the value of which changes with changes in temperature, hence the name from thermal resistor.

However, whilst capable of providing an indication with fairly simple circuitry, this device is basically non-linear, the change in resistance for a given change in

## COMPONENTS . . .

## Resistors

R1 22k』
R2 $1.5 \mathrm{k} \Omega$
RS $1.5 \mathrm{k} \Omega$
All $10^{\%} \% \frac{1}{4} \mathrm{~W}$ carbon

## Potentiometers

## $\left.\begin{array}{ll}\text { VR1 } & 10 k \Omega \\ \text { VR2 } & 22 k \Omega\end{array}\right\}$ skeleton presets

## Diodes

D1 1N914 (or 1 S914 or other silicon diode)
D2 BZY88 (5.6V) Zener diode
Integrated Circuit
IC 741 Operational Amplifier

## Miscellaneous

ME1 0-1mA Meter (see text) Veroboard (free with this'issue) Total cost (excluding meter) about 95 pence.
Meters are available from about £2.50.

temperature is not the same for all temperatures.

There is a much smaller and, in linearity terms, more accurate device readily available, the forward - biased semiconductor diode.

## Diode Probe

It is admitted that the range over which a small silicon switching diode can be used in temperalure terms is limited to the area which will not damage the device, namely from around $-60^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$. In addition, the variation of resistance and thus voltage across the diode' is very small for a change in temperature of 1 degree C , in the region of 2.5 to 3.5 mV .

Thus the change needs to be amplified in some way if it is to be useful.

The advent of cheap integrated circuit amplifiers has provided the answer to that problem and the
operating range of these diodes is quite sufficient for most applicaions.

## Circuit

- A number of alternative approaches offer themselves for use here. One could use the "bridge" method with the measuring diode set up in a bridge circuit and the amplifier looking at the bridge signal.

However, a simpler approach is to use the amplifier as a differential amplifier which can compare two input voltages, one due to the diode and the other variable in order to select the point at which the scale of the instrument starts.

Such a circuit is shown in Fig. 1, where the diode D1 is connected to vary the inverting input of the operational amplifier whilst the non-inverting input is set by the potentiometer VR1. The choice of inputs is required to give an increasing output voltage for


or its holder if one is used as in the prototype, and one to separate the output from VR1.

As can be seen, pins have been used to bring out the battery, input and output connections but of course wiring may be connected directly to the board if desired

## Applications

A circuit of this type can be used anywhere it is necessary to measure and control as a result of light variation. A side light control for a car is a typical idea. Other automotive applications include
light actuation of a garage door, car light failure alarm and perhaps even a burglar alarm.

Similarly in the home there are many applications starting off with things like a burglar alarm, light switches to turn house illumination on after dusk both for convenience and security and the like.

In technical areas devices of this sort can be used as object counters on a production line, as endstops for limiting machine travel, as automatic door openers and so on.

Dependent on the light resistor used the equipment will be sensitive to slightly different areas of the visible light spectrum but for normal visible light work most types will suffice including the wellknown ORP 12 and its brothers from Mullard.


# TOUCH SWITCH 

Multi-purpose switching by touch alone

THE touch switch has many household, commercial and industrial applications. Specific examples in each area are intrusion alarms, opening supermarket doors and safety devices for machine operators.

In principle, simply touching a wire or metal plate will cause a relay to operate. To fulfil this the intermediary circuitry must be sufficiently sensitive to detect the very small noise currents provided by the hand.

## Timer Chip

Touch switch circuits usually consist of cascaded amplifier stages (f.e.t. or bipolar). Construc-
tion of these for a beginner can be irksome and the results disappointing through spurious triggering, a common conditton with these circuits

A convenient and economic package which can be simply adapted for this role is the Signetics 555 timer integrated circuit. Although this is usually used to provide accurate delay periods from microseconds to hours it will suit our purpose to use this facility to provide a variable period latch for the relay.

Input sensitivity is extremely high and the chip has a useful relay drive capability so that any relay coil operating in the $6-9 \mathrm{~V}$ range and up to 200 mA .

## Simple Circuit

The first thing that one notices in looking at the circuit of Fig. 1 is its simplicity and economy in parts which makes for easy construction.

Since the internal functioning of the 555 was more than adequately covered in the June 1973 issue it will suffice to say that the circuit operates as a sensitive monostable.

In the quiescent state, that is with no hand applied to the touch plate or wire, battery drain is about 7 mA none of this being taken by the relay. When a hand is applied relay coil current flows and the contacts close for a period determined by the timing constants R1 and C1.

For the component values shown the time is around 3 seconds but longer delay periods can be achieved by increasing the value of C1. With the resistor given delay periods in seconds for a particular capacitor can be approximated by the simple equation $t=9 C_{1}$ where $C_{1}$, is in microfarads. For a delay of an hour you would, for example. need a $400 \mu \mathrm{~F}$ capacitor but leakage would no doubt affect this estimate. A practical limit for very long delays would be about $10,000 \mu \mathrm{~F}$.

## Triggering

The current required at pin 2 to activate the circuit need only be half a microamp which indicates the extreme sensitivity. Unfortunately this can create problems of backlash triggering particularly with inductive loads. This is obviated by the inclusion of R 2

The transient suppressing diode protecting the chip can in fact be any switching diode.

## Touch Off

There are times when a touch on/touch off switching facility might be required as with say, a bedside night light. For this do

## COMPONENTS . . .

## Resistors

| R1 | $8 \cdot 2 M \Omega 2$ |
| :--- | :--- |
| R2 | $2 \cdot 2 M \Omega$ |
| All | $10 \%$ |
| $\frac{1}{2}$ |  |

Capacitors
C1 $0.33 \mu \mathrm{~F}$ polyester (see text)
Integrated Circuit
IC1 NE555V (Signetics)
Diode
D1 0A47
Relay
RLA 6V $410 \Omega$ coil (type 912 R.S.)

Miscellaneous
Veroboaid (free with this issue), 9 V battery



Fig. 1. Circuit of the touch switch


Fig. 2. Component layout and wiring on Veroboard
not connect pin 4 to the supply line but to another touch plate. A simple method of providing two adjacent touch plates is to join equal numbers of copper strips on a largish piece of Veroboard and simply wiring each "plate" to the appropriate 555 pin.

## Construction

The components are easily mounted on the sample Veroboard as in Fig. 2. Cuts to be made in the copper underside are also clearly shown.

The 8 pin d.i.p. socket was included as it simplifies any future need to remove the chip either through damage or for use in another project

## Other Relays

The delay periods provided by the timing component are almost independent of supply voltage. Since the 555 can be operated between 4.5 and 16 V the supply rail can be lifted to accommodate other relay drive requirements but this should not exceed 16 V and 200 mA .



# AUTTMAAIID mall 

 By F.J.MORRIS B.s.c.ERa, A. A.c.G.

RAPID, often startling. developments which have been made in the field of telecommunications owe much to the application of electronics. But electronics are, of course. contributing to the advance of other forms of human communication. Take, for example, one of the most traditional communications systems of all-the letter post. Electronics have an essential role in the multo-million pound plans to automate Britain`s postal service.

## THE NEED FOR AUTOMATION

The need to automate the postal service is imperative for two major reasons. First, to reduce the service's dependence on manpower ( 75 per cent of all Eritain's postal costs are for labour) and secondly to maintain traditionally high standards while meeting the demands of today's fast moving world.

Since each of the 35 million letters the Post Office handles every working day in this country may have to be sorted up to eight times during its journey there is clearly ample scope for mechanisation and, helped by electronics, much has already been achieved. Electronics systems are enabling machines to select, stack and sort letters automatically at speeds far higher than even the most skilful postman-sorter.

The key to automation is the British postcode system, of its kind the most advanced in the world. Postcodes have been developed as the answer, or at least a supremely effective compromise, to the so far insuperable problem of total automation through machine-read addresses. Research is progressing but apart from the obvious difficulties with machinereading of handwritten addresses it will still be many years before even typescript addresses can be read reliably without unreasonable restrictions on inks or type faces.

The postcode, however, by expressing an address in a machine language, easily keyed and translatable electronically, enables a high degree of automatic sorting to be introduced with present technology.

## THE PRESENT SITUATION

Fully mechanised sorting offices are now operating at 12 centres in Britain and the eventual total will be around 100 . Progress and the eventual success of the system depend on two factors-the completion of the programme to give each of Britain's 20 million addresses its own postcode; and the subsequent use of the postcodes by the public. In fact, postcoding of the country will be completed by August this year and while use of existing postcodes is rising steadily the importance of maximum use will become clear from the remainder of this article.

## THE POSTCODE

The postcode is familiar to most people but the reasoning behind its planning and form is not so widely known and its explanation is appropriate here.
In fact the principle is simple. Each code consists of between five and seven alpha-numerical characters. The first one or two alphabetic characters in the code refer to one of 121 main towns or code centres in the UK (e.g. S for Sheffield, IP for Ipswich, LS for Leeds). A number following the alphabetic characters in the first or "outward" part of the code represents a sub-division of the area (e.g. IP3, IP7. IP17). These districts are geographic units similar in concept to the familiar London postal districts, such as SE1.

Each district is sub-divided into smaller areas or sectors which are again geographic units, represented by the first character or "inward" part of the postcode (e.g. IP3 9--, LS8 5--, etc.). Finally, the last two characters of the postcode give information about a street, part cf a street, or, in the case of larger firms, a single address.

Thus a complete code in the case of part of a street in Ipswich for example reads IP3 7PS with the final two letters. PS, pinpointing that part of the street-usually between 15 and 20 addresses.

## INITIAL SORTING

During initial sortation specially trained operators at postcoding desks equipped with electronic keyboards read each code and print onto the envelopes a series of code marks. The complete code is translated into a pattern of up to 28 marks and printed in two rows of 14. The code marks are virtually invisible to the naked eye but glow blue under ultraviolet exposure (see Fig. 1). The glow remains'for a time after the ultra-violet light has been removed and this after-glow is detected by a photo-multiplier tube and the pattern recovered.

The pattern is next translated electronically to decide into which of 144 sorting boxes the letter is to be deposited by the machine. Once the postcode has been transcribed at the coding desk repeated exposure of the code marks and subsequent reading allow fully automatic sorting of the letter during its journey until it reaches the postman who is to take it on his delivery round.

## FOUR PROCESSES

While looking in closer detail at the electronics behind the coding desk and the automatic sorting machine it is necessary to follow in sequence the

[^6]four processes which a letter goes through from being received in the sorting office and being slotted automatically into its sorting box on the machine. The first two processes-segregation and facing-are preparatory to the final two-coding and sorting.

When letters arrive in a fully mechanised sorting office those which can be handled by automatic sorting machinery must be segregated from those which cannot. A wide assortment of letter shapes and sizes are found in every mail collection and those that are too unwieldy or thick must be culled from the letter stream before being allowed to pass into and possibly jam, or severely damage, the automatic sorting equipment.

The letters pass through a series of ingenious pro-cesses-rotating slatted drums, tilted conveyor belts, spaced rollers-which between them allow the unsuitably sized letters to slip from, or be plucked out of the stream, collected and then sorted by hand. The remaining letters are stacked automatically and passed to the next machine-the automatic letter facer (ALF). This is the first of the automatic sorting stages to employ electronics (see Fig. 2).

## AUTOMATIC LETTER FACER (ALF)

The job of ALF is to arrange the letters so that they face the same way (the stamp upwards) preparatory to the stamps being postmarked or cancelled. Additionally ALF separates First and Second class letters so that the former may be sorted later.

While the operation of letter sorting machinery -elies on the glow picked up from the code-marks printed onto the envelopes at the coding desk, ALF relies on a similar glow effect but obtained from the stamps themselves. Each stamp is surfaced with bars of phosphorescent material. The number of bars differ according to the value of the stamp. This enables the machine to detect if a stamp is present on the envelope, its position and whether the letter is being sent First or Second class.

ALF first strips letters off the feed stack and accelerates them along a series of rollers to obtain a stream of letters with a small gap between each one. The letters then pass under the first of two arrays of ultra-violet (UV) lamps which causes the phosphor on the stamps to glow. The glow continues after the letter has left the UV section and passes under two photo-multiplier tubes.

One of the tubes scans the top section of the letter face (which was exposed to the UV) and the other tube looks at the bottom of the face. In the dark only a tiny current flows in the multiplier but the glow from a UV "excited" stamp boosts the current.

The change in the current is detected and if a stamp is "seen" at either end of the letter face the letter is allowed to pass on. If no glow is picked up ALF assumes that the letter is facing the wrong way up and routes the letter through a twisted belt section to turn the letter over.

Now, all facing the same way, the letters pass under a second series of UV lamps and photomultiplier tubes. This time the number of phosphor bars on the stamps are noted and the letters identified as First or Second Class. At this stage, also, underpaid letters and those bearing no stamps are spotted.

ALF actually sorts letters into five boxes (cancelling their stamps on the way) of which two are for First Class, two for Second Class and the fifth for underpaid letters. Pairs of boxes are needed so


Fig. 1. A typical postcode pattern. The dots imprinted at the coding desk are normally almost invisible to the naked eye and have been outlined here
that letters with stamps in the leading position can be separated from those with stamps in the trailing position. The operator who unloads ALF correctly combines these two stacks before passing them to the next stage, the postcoding desk.

## CODING DESK

The Coding Desk, with the help of an operator, provides each letter with its pattern of UV sensitive marks translated from the postcode. Where letters do not carry a postcode the operators imprint a code giving the post-town destination of the letter which enables initial automatic sorting to go ahead. But without the complete information which the correct postcode provides these letters must pass through a second coding desk to identify the delivery street

Fig. 2. Inside an automatic letter facing machine (ALF) which arranges letters so that they face the same way and the correct way up in the sorting office. ALF also separates first and second class mail and cancels the stamps, dealing with up to 20,000 items of mail an hour



Fig. 3. Letters passing through a postcoding desk operated by a specially trained postman
when they arrive at the delivery sorting office. The full potential of the postcode is therefore missed and hence the importance of using the postcode wherever it is known.

The coding desk presents each letter at a display "window" facing the operator who is seated at a keyboard (see Fig. 3). The operator, who is a specially trained postman, types out the postcode on his keyboard which converts each character into a different pattern of binary signals on six wires.

Fig. 4. A medium speed Letter Sorting Machine with 144 selection boxes. These automatic machines read the first half of the postcode and sort the letters to their office of destination. At this office coded letters are again automatically sorted by machines which read the second half of the code and sort for the appropriate delivery postman


## ELECTRONIC TRANSLATOR

The signals, from each coding desk keyboard are sent to an electronic translator which contains a memory store of the patterns sent out from the keyboards. The translator recognises when the operator has completed a postcode and converts it into a pattern of 28 binary digits (bits). This 28 bit answer is then transmitted to the coding desk. Once this answer is received the coded letter is moved on to the print position.

Because the code marks are indelible the letter is held for a time in a cancel position so that the operator has time to correct any mistake before the irrevocable printing step is taken.

The information received by the translator on the code pattern to be printed applies to the letter held in the "cancel" position and must be remembered until the letter is printed. Thus two translations must be stored in the desk and kept in synchronisation as the letters pass through. From being first presented in the display window to printing the average time the letter spends in the coding desk is two seconds.

After printing, the letter is ejected and collected and stacked automatically before being passed through the sorting machine. (In delivery offices postcoded letters arriving from other offices have already been through the coding desk stage at the previous office and are simply sorted automatically down to street or single address level. Here the last part, or "inward" code is used).

## THE LETTER SORTING MACHINE

Like the coding desk and ALF the sorting machine (see Fig. 4) is fed letters in stacks and has first to separate them into a stream of spaced letters. They are then passed under UV lamps to generate the glow from the imprinted code-marks which are detected by the code-mark reader.

In the reader the row of marks on the letter pass a narrow slot behind which is a photo-multiplier tube which "recognises" each mark it sees by the increased current caused in the tube. The coded marks are read and stored in the sorting machine's memory. The code is fed into a second electronic translator which returns a 15 -bit pattern identifying the box to which the letter should be routed.

## ROTATION

The machine continues to store the translation and passes it on in stages for every two inches of letter travel. About three feet after passing the codereader the letter is rotated through 90 degrees to travel the remainder of the machine with its longest edge forwards.

Just before the right-angle rotation a photo-electric beam is broken to give an exact positional reference of the letter within the machine. The original codemark translation continues to be passed on its stages while the machine keeps track of the letter. When it arrives at the appropriate sorting box the box is opened and the letter has been sorted.

If the sorting machine is being used for outward mail (that is letters which are to go on to another sorting office) the letters are taken from the boxes, bundled and sent on by road or rail in the normal way. If the machine is sorting letters which are to
be delivered in the sorting office area (inward mail) the letters are taken from the boxes and prepared for actual delivery by the postman on his round.

## SYNCHRONISATION

All three of the machines described in this article, ALF, the coding desk and the sorting machine, must perform the required operation on each letter passing through the machine at the correct relative time.

To achieve this on the sorting machine and ALF it is necessary to pick up a signal to keep the electronics in synchronisation with the machine and hence the letters moving through it. This is achieved


Fig. 5a. Diagrammatic representation of a shift register. The timing pulses cause the data held in each of the bistables to be shifted one place to the right


Fig. 5b. After eight shifts the letter will have reached the franking rolier and a logic 1 in position 8 of the shift register causes the stamp to be cancelled
by shining a light beam through a series of holes drilled around the perimeter of a wheel driven by the machine's transport belts. A phototransistor is illuminated by the beam whenever a hole passes. The current changes in the phototransistor are detected and used to generate timing pulses which step data through electronic models of the machines and hence control the letter flow.

All the control functions of the machines follow a simple scheme. Somewhere on the machine some characteristic of the letter is inspected and the signals generated are converted to logic voltages. From this information a decision is taken as to which of a number of operations the letter should undergo. However the alternative operations may be carried out some distance down the machine and it is necessary to keep track of the letter and its data until the point of operation is reached.

## SHIFT REGISTER

This letter tracking is achieved by storing the data in a shift register and moving it one place down the machine for each timing pulse received. Thus on the sorting machine and ALF each stage of the shift register represents information associated with a letter whose leading edge is in a particular 2 in length of belt.

At some later stage on the machine, where the operation has to be carried out, the associated shift register stage can be looked at electronically to detect when the letter is present and then indicate the operation. The word carried down the shift register varies in complexity from a single bit on part of ALF indicating whether or not a letter has to be turned over, to the 15 bits identifying the sorting machine outlet.

The Shift Register has a vital role to play in postal machines; repeatedly information is collected some distance from the position where action is taken on it.

In simple terms, let the figure represent an 8 stage shift register which represents the occupancy of 16 inches of a machine's transport belts. When no letters are present all the stages of the shift register are at logic " 0 " (Fig. 5a). A photo-electric eye detects the leading edge of a letter and marks the first stage of the shift register at logic " 1 " so it now reads 10000000 . Each timing pulse from the machine passes the information on stage down the register. So, after 7 pulses, stage 8 alone will be marked 00000001 if no more letters have entered this section of belt.

A logic circuit is used to detect stage 8 being switched to logic " 1 " and causes the franking roller ( 14 inches from the photoelectric eye) to operate, cancelling the stamp (Fig. 5b).

Shift registers can be made to carry much more information and this need not all be collected at the same time.

## ELECTRONIC CIRCUITS

From the "job descriptions" of the machines involved in automated mail handling it is clear that they rely heavily on electronics for both machine timing control and data storage.

All the electronic circuits required are constructed from components soldered onto small plug-in printed circuit boards. The components used-silicon planar epitaxial diodes and transistors, metal oxide resistors and polystyrene capacitors-are all highly reliable; However reliable, of course, some failures are inevitable, in which case a new circuit can readily be inserted in exchange.

Many thousands of these circuits are in use by the Post Office throughout the country. Although more than a hundred different circuits have been developed for various tasks, perhaps a dozen commonly-used circuits form some 90 per cent of the total.

## DIGITAL LOGIC

Most of these common circuits are digital logic circuits requiring inputs of either +6.6 volts (logic " 0 ") or 0 volts (logic " $l$ ") and giving outputs at the same levels. Some of the circuits, however, have to interface between the logic system and the electromagnetic devices used to control the machine. One
of these gives a logic output when the current in a phototransistor exceeds a certain level; another has to apply voltage to a load device (which could be a diverter or print pin solenoid) whenever its input is at 0 volts. However, not all circuits operate with logic levels at either input or output.

## DOLLILOG

The range of logic circuits is often referred to as "Dollilog". This name derives from "Dollis Hill Logic" after the PO Research Station at Dollis Hill where the system was developed.

Some of the more common Dollilog circuits are described briefly in the following paragraphs together with some ideas on how they are used.


Fig. 6. Circuit diagram of a three input NAND gate used in the Dollilog system

## NAND GATE

The diagram (Fig. 6) shows a three input Nand gate. The output ( x ) of this circuit will be at the logic " 0 " voltage ( +6.6 volts) only if all three of the inputs ( $A, B$ and $C$ ) are at the logic " $l$ " voltage ( 0 volts). In this case the transistor will be cut, off

It any one of the inputs is at the logic " 0 " voltage the transistor will be saturated and the output will be at the logic " 1 " voltage.

The nand gate can be used to detect when several different conditions occur simultaneously and cause some process to be carried out.

Other logic circuits are used, one of which only gives the logic " 1 " output voltage when all three inputs are at logic " 0 ", this being a NOR gate. Another circuit gives a logic " 1 " if both inputs are the same.

## SCHMITT TRIGGER

The Schmitt trigger has two outputs which are never the same. The outputs states interchange when ever an input voltage exceeds one threshold or falls below another.

## POWER AMPLIFIER

The power amplifier's output transistor will be saturated whenever the input to the circuit is at logic " 1 ". The usual circuit can control loads of up to 25 watts although other high power versions exist.

## BISTABLE MULTIVIBRATOR

The bistable multivibrator is another circuit which has two outputs which are always opposite. The outputs are switched by pulses applied to "set" and "reset" inputs. Bistables can be used to store information.

## SHIFT REGISTER

Shift registers are arrays of bistables with a common clock input which can be pulsed to step data along the register.

## NEW TECHNOLOGY

To some readers, these circuits will look a little dated. To some extent this is true; it must be remembered, however, that the system has proved satisfactory in use. The Post Office has to consider any change on this scale very seriously. Various factors have to be considered such as replacement cost, the cost of training maintenance engineers in any new system and the compatibility of any new equipment with the old.

At present, many new techniques are being tried and tested. The coding desk keyboard contains a number of DTL integrated circuits while the new memory which will replace the sorting machine's original mechanical memory is being developed using MOS integrated circuits. A new translator uses small general purpose computers rather than specially built electronic circuits. At present, however, only the relatively cheap keyboard, where size is critical, uses integrated circuits in a production item.

## EE POINTS THE WAY

## in the november issue AN 8 PAGE SUPPLEMENT

on constructional methods. Shows how circuits can be built on various types of circuit board, etc.

Using the supplement as an introduction almost anyone can build any of the featured projects:
$\star 4$ Band T.R.F. Receiver-covers three short wavebands plus the normal medium wave-easy to build using ready wound coils throughout.
$\star$ Gas Alarm-simple detector and alarm for combustible gases and vapours and smoke.
> $\star$ Three By Three Game-a novel game for two players.

[^7]
# The Sinclair Cambridge... no other calculator is so powerful and so compact. 

## Complete kit-£24•95!

## The Cambridge - new from Sinclair

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 5 \cdot 50$ !

## Truly pocket-sized

With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime} \times \frac{11^{\prime \prime}}{16}$. That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U16-type batteries which give weeks of life before replacement.

## Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

## The cost? Just £27•45!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 32.95$ - so you're saving $£ 5.50$ ! Of course we'll be happy to supply you with one ready-assembled if you prefer-it's still far and away the best calculator value on the market.

Features of the Sinclair

## Cambridge

*Uniquely handy package. $4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{1}{1} \frac{1}{6}$ ", weight $3 \frac{1}{2}$ oz. *Standard keyboard. All you need for complex calculations. *Clear-last-entry feature. *Fully-floating decimal point. *Algebraic logic.

* Four operators (,,$+- \times, \div$ ), with constant on all four.
*Constant acts as last entry in a calculation.
*Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 30$.
*Calculates to 8 significant digits, with exponent range from $10^{-20}$ to $10^{79}$.
*Clear, bright 8-digit display.
*Operates for weeks on four U16-type batteries. (MN 2400 recommended.)


# A complete kit! 

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents :

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.


## This valuable book-free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.

But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.


How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations like :
Logs Sines Cosines Tangents Reciprocals nth roots Currency Compound conversion interest and many others...


Sinclair Radionics Ltd, London Road, St Ives, Huntingdonshire
Reg. no: 699483 England
VAT Reg. no: 213817088

Why only Sinclair can make you this offer
The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year. Simply fill in the preferential order form below and slip it in the post today.
Price in kit form : $\mathbf{£ 2 4 . 9 5}+\mathbf{£ 2 . 5 0 V A T}$. (Total: $\mathbf{£ 2 7 . 4 5 )}$
Price fully built : $£ \mathbf{2 9 . 9 5}+\mathbf{£ 3 . 0 0}$ VAT. (Total : $\mathbf{£ 3 2 . 9 5}$ )
To: Sinclair Radionics Lid, London Road,
St lves, Huntingdonshire, PE17 4 HJ
Please send me
a Sinclair Cambridge calculator kit at Name


Fig. 1. Block diagram of a four digit calculator using the C554 integrated circuit


Fig. 2. A more complete circuit diagram showing l.e.d. seven segment display with all the necessary driver transistors. All voltages are with respect to the $\boldsymbol{V}_{\mathrm{ss}}$ line

# DEVICES ...APPLICATONS 

## FOUR DIGIT MOS CALCULATOR I.C.

| T SEEMS only a short while ago that we were all impressed by the technology needed to put a complete calculator on one chip, yet already General Instrument Microelectronics have developed a second generation M.O.S. calculator integrated circuit. The main advantage of the new device is greatly reduced power consumption, this teing made possible by reducing the necessary supply voltage from 25 volts to 15 volts.

The new calculator i.c.s, type C550 and C554, enable either eight (C550) or four (C554) digit calculators to be built. The reduction in power supply voltage is made possible by the use of new materials. The new process is called General Instrument Advance Nitride Technology (GIANT). Reduction of power supply voltage reduces chip consumption to a mere 150 mW .

## FOUR DIGIT CALCULATOR

Since eight digit calculator i.c.s are most widely used the more unusual four digit i.c. (C554) will be described. This calculator needs only a four digit display so is much cheaper and probably just as useful as the eight digit type.

Fig. 1 shows the block diagram of a calculator built around the C554. All switches would be contained on a keyboard. Some of the connections to the i.c. are used both as inputs and outputs, this being done to keep the pin count down to 24 . The i.c. is driven by an 80 kHz clock generator.

The i.c. generates a strobe pulse at pin 23 which is fed to all the keyboard contacts except the interchange (INT) switch. If any of the keyboard contacts are closed during the strobe pulse then the appropriate input will be fed to the i.c. The strobe pulse only occupies a very small proportion of the total clock period, the rest being used to display the output.

## DISPLAY

A multiplexing system is used for the output whereby each of the four digits is selected in turn. A seven segment output is generated on the same lines used as numerical inputs (pins 6 to 12) as well as decimal noint information. The display can be any seven segment type such as l.e.d., liquid crystal or hot filament; the driver (interface) circuit is the only thing that needs changing.
Fig. 2 shows a more detailed circuit diagram using l.e.d. seven segment displays and single.transistor drivers. The 220k』 resistors are needed because the MOS output transistors are "open drain" types. All voltages are specified with respect to the $V_{s s}$ level. The $560 \Omega$ resistors are simply to limit the current through the l.e.d.s and the $4.7 \mathrm{k} \Omega$ resistors are to limit the transistor base current.

## INTERCHANGE SWITCH

One point that has not been so far explained is the interchange switch labelled int. The C554 has been described as a four digit device in that it only displays
four digits at a time but, in fact, it can accept up to eight digit inputs and produces an eight digit output. The interchange switch interchanges the two sets of four digits si that more accurate answers may be obtained if desired. The l.e.d. shown indicates which of the groups is being displayed. The decimal point appears in whichever gioup is appropriate: if the decimal point does not occur in the group being displayed it will be obvious as all the decimal points on all four digits, will be illuminated.

As mentianed earlier the C554 needs a 15 V power supply and an 80 kHz clock input. Both of these needs can be satisfied with the sircuit shown in Fig. 4. An oscillator penerates the 80 kHz clock pulses and its output is fed to a regulator which gives 15 V at up to 10 mA .

## USING THE CALCULATOR

The Cist can perform all the normal arithmetic operations: addition. subtraction, multiplication and division. The true sign of answers is given if the result is negative the minus sign replacing the most significant digit so that only three digits are available.

There is a single clear key which can be used to clear either the complete calculator or the last entry. If the depression of the clear hey is followed by pressing a function key, only the last entry will be cleared; if a digit key us pressed then the whole calculator will be cleared.

There is a constant facility whereby a result of a calculation might be stored to be used after the entry of another number. The constant store can hold a multiplier, divisor. subtrahend or addend.


Fig. 3. A power supply and clock generator for the C554 i.c. which is all that is needed to cemplete the calculator in Fig. 2


Following the circuit description last month the construction of the semi-conductor Tester will be described.

## CONSTRUCTION

Most of the components are mounted on 0.15 in matrix Veroboard measuring $3 \frac{3}{8}$ in $\times 1 \frac{1}{4}$ in. Breaks in the copper strips should be made as shown in the Veroboard layout of Fig. 7.

The positions of the components are shown the reverse of Fig. 7, but the layout is not critical. The resistors and capacitors are mounted first, remembering to connect the electrolytic capacitor C6 $(2 \mu \mathrm{~F})$ the correct way round i.e. $+v e$ to $+v e$. The component leads are fed through the Veroboard holes and bent so as to lie along the copper strips. The leads are then cut so that about $0 \cdot 1$ in of lead remains on the copper strip, and then the leads are carefully soldered to the strip.

The transistors and diodes are mounted last, care being taken not to overheat the leads as this can cause component failure.

## Meter face

The meter face should be modified to include all the numbers in Fig. 8. Letraset can be used for this purpose.

## Case and component interconnections

The case used was a $18 \mathrm{~cm} \times 15 \mathrm{~cm} \times 13.5 \mathrm{~cm}$ West Hyde MOD303.
The lettering on the front panel may be done using Letraset. The components are then mounted on the front panel and the connections shown in the circuit diagram are made. Use a different coloured wire for each connection link if possible for simplicity.

Connect one male battery connector to a female battery connector by 4 in of wire for the battery "jumper" lead.

## VEROBOARD PANEL

## Printed Circuit Supporting Bracket

The bracket used to support the Veroboard panel may be made from aluminium sheet, 22 s.w.g. being quite suitable.


Fig. 7. Layout of the components on the Veroboard panel

Two holes should be made in the Veroboard panel to align with holes made in the bracket.

The batteries are retained in the case in the prototype using one piece of lin wide elastic which is 8.5 in long. Each end of the elastic is secured to the base of the case by a 4 BA bolt, and nuts. The feet supplied with the case are now stuck to the base of the case. The test leads are made as shown in Fig 9, each lead being about 60 cms long.

## TESTING

Testing may be accomplished as follows, the components being tested are listed at the beginning of each test to facilitate fault finding by beginners.

1. S3, Batteries, S1A, S1B, S1C, R9, D4, D5, 52A, 52B, 526, ME1, R14, S4. Socket leads C and E.
(a) Set METER switch to $I_{\text {ceo }}$, DEVICE switch to PNP, and ON/OFF switch to ON : -meter should indicate zero.
(b) Connect a resistor of approximately $50 \mathrm{k} \Omega$ between leads $C$ and $E$ :-meter should read approximately $200 \mu \mathrm{~A}$.
$($ f.s.d. $=10 \mathrm{~mA})$.
(c) Depress F.S.D. $\div 20$ switch :-meter should read approximately $200 \mu \mathrm{~A}$.
(f.s.d. $=0.5 \mathrm{~mA}$ ). Release F.S.D. $\div 20$ switch.
(d) Set DEVICE switch to NPN and repeat I(b) and 1 (c).
(e) Connect lead C to lead E:-meter should read approx. 10 mA (f.s.d. $=10 \mathrm{~mA}$ ).
(f) Set (METER switch to $I_{c}$ and repeat (e).
(g) Disconnect lead C from lead E:-meter should read zero.
Switch OFF tester.
2. R1 to 6, R16, R21, R18, R17, VR2A, C1, C2, C3, C6, D3, D7, TR1 to TR4, SIF, S2A, 52C. Meter. R7, C4.


Fig. 8. The modified meter face


Fig. 9. Transistor, CSR and diode leads

Rear view of the front panel of the Semiconductor Tester



Photograph of the components on the Veroboard panel
(a) set METER switch to $h_{f e}$, DEVICE SWITCH TO PNP, ON / OFF switch to ON : -meter should read approx. f.s.d. If meter reading is somewhat less than f.s.d. decrease value of R16, if meter reading is greater than f.s.d. increase value of R16. (b) Set DEVICE switch to NPN:-meter reading should remain as in 2 (a). Switch tester OFF.
3. VR1, R15, R19, C3, R22, S1E, S2D, VR2B, R10.
(a) Connect a "working" transistor to the transistor socket SKI or the "Flying Leads" lead C to collector, lead B to base, and lead E to emitter. Set METER switch to $I_{c}$, DEVICE switch to PNP or NPN depending on transistor type, set SET $I_{c}$ to min, switch ON tester:-meter reading should increase as SET $I_{c}$ control is turned from min. to max. Adjust SET $I_{\mathrm{c}}$ so that the meter current is 2 mA (f.s.d. $=10 \mathrm{~mA}$ ).
(b) Set METER switch to $\mathrm{h}_{\mathrm{fe}}$ and adjust $\mathrm{h}_{\mathrm{fe}}$ con-trol:-it should be possible to find a position where the meter deflection is a minimum. Switch OFF tester and remove the transistor.
4. SIF, LP1, D2, R8, VR4, R20, VR3, D1, R11, S2A, R13, R12, S2C, S4, S2B, S1E, R22, S2D, D6, R23, leads $b$.
(a) Set DEVICE switch to THY ZEN UJT V, METER switch to THY GATE 1 , turn SET I to max. and SET $V$ to min. short leads $B$ and $C$, switch ON tester and adjust SET V from min. to max.:-meter reading should increase from zero to approx. $\frac{3}{4}$ f.s.d.
(b) Set SET V to min, depress and hold F.S.D. -

20 switch and adjust SET $V$ for f.s.d., release F.S.D. $\div 20$ switch:-meter should now be $1 / 20$ of f.s.d. Remove short between leads $B$ and $C$, switch OFF tester.
(c) Set METER switch to THY GATE V, switch ON tester, adjust SET $V$ from min. to max:meter reading should decrease from 12 V to 0 V (f.s.d. is 25 V ).
(d) Set METER switch to THY HOLD I, turn SET I to min, short leads $C$ and $E$, and increase SET I from min. to max:-meter reading should increase to approximately f.s.d. when lamp L1 should be lit.
(e) Set SET 1 to min., depress and hold F.S.D. 20, increase SET I control until meter reads f.s.d., release F.S.D. $\div 20:-$ meter should read $1 / 20$ f.s.d.

## OPERATING INSTRUCTIONS

Transistor testing

1. Connect transistor to socket SK1 or to flying leads, $E$ to emitter B to base, C to collector.
2. Set DEVICE to PNP or NPN depending on transistor type).
3. Set METER switch to $I_{\text {ceo }}$, switch tester ONmeter shows $I_{\text {ceo }}($ f.s.d. 10 mA$)$. Operate F.S.D. 20 if required.
4. Set METER switch to $I_{\mathrm{c}}$.
5. Adjust SET $I_{\mathrm{c}}$ control for required $I_{\mathrm{c}}$ on meter (f.s.d. 10 mA ).
6. Set METER switch to $h_{\mathrm{fe}}$.
7. Adjust $h_{f \mathrm{e}}$ control for minimum reading. The $h_{\mathrm{fe}}$ is indicated on $h_{\mathrm{fe}}$ scale.

## Diode Testing

1. Connect to socket SKI on to flying leads of transistor lead. E to anode and C to cathode.
2. Set METER switch to $I_{\text {ceo }}$.
3. Set 'DEVICE switch to PNP, switch TESTER ON meter shows forward current (f.s.d. 10 mA ) $\mathrm{RF}=$ $\frac{12000}{\text { If (in mA) }}-1200$.
4. Set DEVICE switch to NPN-meter shows reverse current
$R_{R}=\frac{12000}{\mathrm{I}_{\mathrm{R}}(\text { in } \mathrm{mA})}-1200$ (F.S.D. $\div 20$ may be used if required

## Zener Diodes (0-10V)

1. Connect diode to socket SK1 or to flying leads of transistor lead. $C$ to cathode $E$ to anode, connect lead B to lead C.
2. Set DEVICE switch to THY ZEN UJT V.
3. Set SET V to min.
4. Set SET I to min.
5. Switch METER switch to THY GATE V/V, switch tester ON-meter reads Zener voltage (f.s.d. $=25 \mathrm{~V}$ ).
6. Adjust SET I from min. to max. meter reading should only change by a small amount. This check gives a rough indication of the a.c. resistance of the diode. (The current through the diode
at any point can be found by setting meter switch to THY HOLD I, I.

Note that for Zener voltages in excess of 10 V it is necessary to insert a battery of known voltage between the emitter lead of the Zener diode and lead E of the tester, then Zener Voltage $=$ meter reading + battery voltage.

## Thyristor Testing

1. Connect the thyristor to SKI or to the flying leads of the transistor testing lead anode to E , cathode to C, Gate to B.
2. Set SET V to min.
3. Set SET I to max.
4. Set DEVICE switch to THY ZEN. UJT. V
5. Set METER switch to THY GATE I, switch tester ON.
6. Adjust SET V slowly clockwise noting the meter current. When the lamp L1 lights (thyristor conducting). Use $F S D \div 20$ if required. Meter reading to gate trigger current.
7. Set SET V to min.
8. Switch tester OFF then ON-lamp L1 should extinguish indicating that thyristor has reset.
9. Set METER switch to THY GATE V-meter indicates supply voltage.
10. Adjust SET V slowly clockwise-meter reading slowly falls then suddenly drops to zero, note the voltage (trigger voltage) at which the meter reading suddenly falls.
Gate trigger voltage $=$ Supply voltage -trigger voltage
11. Set SET $V$ to min .
12. Set METER switch to THY HOLD I, I.
13. Adjust SET I from max. to min. and note the point at which the meter current falls to zero, this current is the thyristor holding current. (F.S.D. $\div 20$ may be used if required).

## Unijunction transistor testing

1. Set DEVICE switch to THY, ZEN, UJT, V.
2. Set METER switch to THY GATE V, V.
3. Set SET V to min.
4. Connect unijunction to SKI on to flying leads Base 1 to C, Base 2 to E, Emitter to B.
5. Switch tester ON
6. Adjust SET V (noting decrease in meter voltage reading until meter "kicks" when:-
Intrinsic Standoff ratio $=\frac{\text { decrease in meter voltage }}{\text { maximum meter voltage }}$

## Using tester as a Voltmeter

1. Set DEVICE switch to PNP.
2. Set METER switch to THY GATE U, V.
3. Connect voltmeter lead to voltage to be measured

Using tester as an Ammeter (f.s.d. $=100 \mathrm{~mA}$ or 5 mA ).

1. Set METER switch to THY HOLD I, I.
2. Connected current lead to current source (F.S.D. $\div 20$ may be used if required).

## TRANSFORMERS



TOTALLY ENCLOSED IISV AUTO TRANSFORMERS II5V 500 Watt totally enclosed auco transformer, complete with mains lead and two 115 V ourlet sockets, $69 \cdot 49, \mathrm{P}$ \&
Also available a 20 Wart version, $€ 2.02, \mathrm{P} \& \mathrm{P} 22 \mathrm{p}$.

 PRIMARY 200-250 VOLTS 12 AND/OR 24 VOLT RANGE
Ref. Amps. Weight Size cm. Secondory Windings P \& P
 $\begin{array}{llllllllll} \\ 213 & 1.0 & 0.5 & 1 & 4 & 4.8 & 2.9 \times & 2.5 & 0.12 \mathrm{~V} \text { at } 0.25 \mathrm{~A} \times 2 & 1.02 \\ 71 & 2 & 1 & 1 & 12 & 7.0 \times & 5.8 \times & 4.8 & 0.12 \mathrm{~V} \text { at } 0.5 \mathrm{FA} \times 2 & 1.2\end{array}$

$$
\begin{array}{r}
7 \\
7 \\
7
\end{array}
$$



## 



## TOUGH FIELD

It takes a lot of guts to take on the big boys, especially in a field as tough as mobile radiotelephones. This is the field where household names like Cossor, Ultra and STC have all chucked in the sponge within the past year or so.

Pye is still undisputed market leader and Burndept, strengthened by the acquisition of Cossor and Ultra business, is second. The question is whether Dymar can succeed when better-known companies have failed?

I can report that there was no lack of confidence in the Dymar management when the company launched its new 'Lynx' range of mobiles on September 12. For one thing the Lynx, with a 20 W output. has a technical edge on the competition and Dymar has prepared the sales ground well by appointing a nation-wide network of distributors and service centres.

Although Dymar as a name is not yet well known, the company has a huge back-log of experience in both design and manufacture of mobile radio. To date, Dymar has produced 30,000 mobile equipments of which half have been made under contract to other companies' designs and about 7,500 have been land or marine mobiles of Dymar's own design and manufacture.

Approximately $£ 150,000$ has been invested in the Lynx development and it could be a real winner. In fact the company expects no less than half the total 1974 turnover in Lynx with the other half split 35 per cent in marine radiotelephones, and 15 per cent in instruments of which Dymar make a range for manufacture, testing and servicing of r.f. systems.

## SATELLITE NAVIGATION

While Dymar was launching Lynx in Whitehall, Redifon was launching a marine satellite navigation receiver half-a-mile away in the Strand.

The Redifon Satellite Navigator is another milestone along the road forecast by J. R. Brinkley when, earlier this year, he said the company was now fully committed to a huge modern technology programme to win a large share of the communications and navigation markets. It was on that occasion that he was able to announce that the Redifon Omega Navigator had already been fitted to 100 ships and had realised $£ 0.5$ million in revenue.

What industry observers are waiting for now is the Redifon v.h.f./u.h.f. programme. No hardware has yet been announced although $R$ and $D$ expenditure in this area is said to be $£ 100.000$. As part of the expansion programme a new blant is under construction in Wales which could ultimately house 1,000 workers.

## battle continues

The light-emitting-diode battle continues with increasing intensity. Ferranti's new green LED's are reported to be coming out of the factory at 1.5 million a year now, stepping up to a rate of 10 million a year by the Spring of ' 74 .

Plessey's Optoelectronics and Microwave Unit at Towcester is also in on the action with a new yellow gallium phosphide device which is claimed to have a higher light output and spot brightness than any other solid state light source currently available. The Towcester Unit is also offering custom-built hybrid arrays in green. yellow and red, a typical array recently produced for a customer having 32 diodes. They are assembled and encapsulated on a metallised ceramic substrate which can include dropping resistors if required.

## INSTRUMENTS— A HARD LIFE

The instrument industry is struggling back to life after three years in the doldrums. Renewed activity springs from the big investment programmes now being undertaken by many major user companies.

But the instrument business is no sinecure. John Ceresa, marketing director of Racal Instruments, recalls that 13 years ago a 10 MHz counter cost £400. By 1970, in ten years, the price had dropped 75 per cent for the same instrument in a solid state version and with much improved performance and reliability. You then found you had to
sell four times as many to make the same turnover and maybe eight times as many to make the same profit.

Another angle on the life and hard times of instrument men comes from David George, managing director of SE Laboratories, one of the companies who have been through a bad patch. He says it is suicidal for any company to try to compete in every generation of instruments. One of the ways of cutting $R$ and $D$ costs is to do a deal with a complementary manufacturer elsewhere in the world. SE Labs has actually done this with Data Precision Corporation in USA.

I note with interest that even Tektronix with a near stranglehold on the top end of the oscilloscope market is finding it hard to expand any further without diversifying into other fields. Although the oscilloscope market shows no signs of a decline-it is still growing at least 10 per cent a yearTektronix has moved into programmable calculators and more recently has acquired a Californian Company which specialises in TV studio equipment.

## AD-POWER WORKS!

Just when you think there are no surprises left in the industry you encounter another. I had this experience when I visited Kingshill Electronic Products who make professional quality power supplies for the universities, the Government, and the industry in general. The company is a subsidiary of Islington Metal and Plating Works Ltd., one of the pioneers of chromium plating nearly 50 years ago. The electronics off-shoot was started in 1964 by Dr. Henry Herbst who still sits in the managerial chair. His sort of company would normally have a flock of travelling salesmen chatting up potential customers and a sales programme involving appearances at major electronic exhibitions.

Not Kingshill. Herbst has never had a salesman on the road, has never shown at an exhibition. Kingshill sells on press advertising and personal recommendation. It seems to work. The production lines turn out 18,000 units a vear which not only go to U.K. users but also to out-of-the-way olaces like Fiji and Thailand.

The premises were a surprise. too. They were originally stables for the horses of the old London horse-drawn trams: Not so unexpected is that Herbst, with a solid business now established in Dower supplies and a firm economic base from which to operate, is looking for new electronic fields to conquer.

PRICES NOW INCLUDE VAT SUPERSOUND 13 HI-FI MONO AMPLIFIER

superb solid state andle amplifier. Brand throughout. $\bar{J}$ silicon transistors plus ${ }^{2}$ ors in push-pull. Full Fave rectification. Output apprux. 13W Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz}+3 \mathrm{db}$. Fully integrated pre. eparate folume, Hass boust and Treble cut controla. Suitable for $8-15$ ohm speakers. Input for ceramic or cryatal cartridge. Sensitivity approx. 40 mV for fill output. Supplied ready built and tested, with knobs, escutcheon panel, input and output plugs. Overall
3 in high $\times 6 \mathrm{in}$ wide $\times 7$ in deep. A.C. $200 / 250 \%$.

DE LUXE STEREO AMPLIFIER
 K LZ 80 as tectifier. Twn dual pontentioncters are
provided for bisq anis treble contool, giving bass and treble boost and rut. A duat volune eontrol is used. Halance of the left and right hand channels can be adjusted by means of a aeparate 'balance' ' control fitted at the rear of the chassia. Input aensitivity is approximately $300 \mathrm{~m} / \mathrm{V}$ for full peak output of 4 watts per champel feedback in a carefully calculated circuit, allowis high feedback in a carefuly calculated circuit, allows high
volume levela to be used with negligible distortion. Supplied completc with knobs, chassis aize 11 in . $\% \times 4 \mathrm{in}, x$. Overall height including raivea 5 in. Ready built and tested to a high standard. Price $\mathbf{1 9 . 9 0}$. F. P. 50 p .

NEW! POWER SUPPLY UNIT 200/240V A.C. input. Four switched fully smoothed D.C. outputs giving 6 V and 7 V and 9 V and 12 V at 1 amp. continuous ( 11 amp intermittent).
Fitted insulated outnut terminala and pilot lampindicator. Hammer finish metal ca"e, overall size $6^{\circ} \times 31^{\circ} \times 2 \frac{1}{*}^{\circ}$.
Suitable for Tranaintor Radios
Tape Suitable for Tranaintor Radios,

## 

HLACK ANODISED 18g. ALUMINIUM HEAT SINKS. For TO3, complete with mica's and bushes. Size 21 in $x$ 31 n epprox. 28p pair. P. \& P. 6p.
HIGE GRADE COPPER LAMMATE BOARDS. $8^{*} \times 6^{*}$ 5 for 55p. P. \& P. 23p

BRAND NEW MULTI-RATIO MAINS TRANSFORMERS. Giving 13 alternatives. Primary: $0.210-240 \mathrm{~V}$. Becon. rary combinations: $10 \cdot 5-10-15-20-25 \cdot 30 \cdot 35 \cdot 40-60 \mathrm{~V}$ half
wave at 1 amp or $10 \cdot 0 \cdot 10,20-0 \cdot 20,30-0-30 \mathrm{~V}$, at 2 arupa full wave. Size 3 inL $\times \sin W \times \sin D$. Price 2810 . P. \& P. 40 p.

MAINS TRANSFORMER. For transistor power supplies. Pri. 200/240V' Sec. $9-0-9$ at 500 mA . \&1 P. \& P. $25 p$. Pri. 200240V 8ec. $12-0-12 \mathrm{at} 1 \mathrm{amp}$. $21 \cdot 10 \mathrm{P}$. \& P. 26 p .
Pri. 200/240V Sec. $10-0-10$ at 2 amp £1-65 P. \& P. 35 p.

GENERAL PURPOSE HIGE STABILITY TRAN8IgTOR PRE-AMPLIFIER, For P.U. Tape, Mike, GIgTOR PRE-AMPLIFIER, For use with valve or tranaistor equipment. 9-18V. Bat tery or from H.T. line 2001300 V . Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$.
Gain 26 dB . Solid encapsulation size $1 \% \times 1+\times \frac{\mathrm{in}}{}$. Brand new - complete with instructions. Price
\&1. P. \& P. 15 p.

3 REFERENCE ENCYCLOPEDIAS FOR ELECTRONIC WNGINEERS AND DESICNERS, covering between them, Mank the character inde, Many thusands of up-to-date European types liated.

$$
\begin{aligned}
& \text { Diode Equivalents } \\
& \text { Tranalistor Equivalents } \\
& \text { Transistor Characteristics } \\
& \text { All three Logether } \\
& \text { POST FREE }
\end{aligned}
$$

80 p
90 p
2120
28.60

HANDBOOK OF TRANBIBTOR EQUIVALENTS AND SUBSTITUTES
A must for ser wicemen and home constructors. Including meny 1000's of British. U.S.A., European and Japanese

CENTRE ZRRO MINLATURE MOVING COIL METER.
 95p Post free Msinz modols. All brand new in maker's packing. With lategt Rtereo/mono compatible cartridge 27. 00 plu 50 p P. \& P.
Gerrard SPES MK. MI with heavy precision machined die cast turntable. $210 \cdot 56$. Carr. 55 p .

## PRECISION ENGINEERED PLINTHS

 Beautifully constructed in heary gauge Colorcoar plastic coated ateel. Resonance free. Designed to take Garrard 102., 2000, Sl29, If and Th, BL6s, AT60, etc., or B.s.R. 14 in $\times 3$ in high (approx 7 in high, including rigid moked acrylic cover). P. \& P. 70 . Now only £4.95LatEst AcOs GP91/18C Mono Compatible Cartridge with tho tylus for I.P/EPi78. Universal mounting bracket. SONOTONE 9TABC COMPATIBLE GTEREO CARTRIDGE 2.30. P. \& $\mathbf{P} 10 \mathrm{p}$. Also $A P$ and sapphire 78 . ONLY
 LATEST RONETTE T/O Stereo Compatible Cartridge for EP/LP/Btereo/r8. 21-68. P. \& P. 15p.
LATEST RONETTE T/O Mono Compatible Cartridge fo EP/LP/78 mono/atereo records on mono equipment El .80 P. \& P. 15 p.

QUALITY RECORD PLAYER AMPLIFIER MK II A top-quality record player amplifier employing heavy and double wound mains transiorme Complete with output transformer matched for 3 ohm peaker. Stize 7in. w. $3 \mathrm{~d} ., 6 \mathrm{~h}$. Ready built and tested PRICE $\$ 4.40$. P. \& P. 40p. ALSO AVAILABLE molnted on board with outp
PRICE \&5.85. P. \& P. 60p.

## SPECIAL OFFER!! <br> HI-FI LOUDSPEAKER SYSTEM

## Beautifully made teak finish enclosure with most

 attractive Tygan-Vynair iront. Size 16 in high$\times 10 \mathrm{in}$ wide $v$ fin deep. Fitted with E $\times 10$ in wide fin deep. Fitted with E.M.I Ceramic magnet 13 n , sin bass unit, two H.F.
tweeter minty and crosbover. Max. power bandling 10W. Available 3, 8 or 15 ohm impedance.

Our Price 19.25
CABINET AVAILABLE GEPARATELY 84-95. Carr. 65 p
Also available in 8 ohin with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. Leayy
HARVERSON'S SUPER MONO AMPLIFIER A super quality gram numpifier using a double wonnd fully
 Impedance 3 ohtha. Output approx $3 \cdot \bar{v}$ watts. Voluhie and tone controls. Chassis size only 7in. wite, 3 in . deep 6 in . high overail. AC mains $200 / 240 \mathrm{~V}$. Supplied absolutely Brand New, completely wired aml tested with good quality output transformer
$\begin{array}{lll}\text { OUR ROCK BOTTOM } \\ \text { BARGALN PRICE } & £ 3.30 & \text { P. \& } P \\ 40 \mathrm{p}\end{array}$

## LOUDSPEAKER BARGAINS

$\sin 3 \mathrm{ohm} 21 \cdot 05$, P. \& P. 15p. $7 \times 4 \mathrm{in} 3$ ohm $11 \cdot 16$, P. A $P$ Op. $10 \times 6$ in 3 or 15 ohm $£ 1.00$, P. \& P. 30p. E.M.I F.M.J. $134 \times 8$ in with high flux ceramic magnet 20 p parasitic tweeter 3,8 , or 15 ohm 23.50 . $P$. $\& P$. 30 p G.M.J. $13 \times 8 \mathrm{in}$, 3 or 8 or 15 ohm with two inbuilt tweeters and croscover network $£ 465$. P. \& P. 30p.
EMI CERAMIC MAGMET HEAVY DUTY TWEETER pprox. 3 ;in. Ay. 3 or 8 or 15 ohms. $21-25$ plun 20 p p. \& $p$ BRAND NEW. I2 in liaw II/D Speakers, 3 or 15 ohm. Current profluction ly well-known I3ritiah maker. Now
with Hitux ceranic ferrohar magnet assembly $8 \% \cdot 50$.



## SPECIAL OFFER!

LIMITED NUMBER OF BRAND NEW ELAC $10^{\circ}$ TWIM CONE LOUD8PEAKER8. With large ceramic nagnet and plasticisec 82.70. P. \& P. 35p.

Also arailable specitication as above but
$28 \cdot 70$ and size $8^{\prime \prime}$ round $28 \cdot 60 \mathrm{P}$. \& P . 35 p .
12in "RA" TWIN CONE LOUDSPEAKER
in watts peak hantling. 3, 8 or 15 ohm, $£ 2 \cdot 45$. P. \& P. 3fp 35 ohm SPEAKER8 $3^{\circ}$ ONLY 70p. P. \& P. "25p.
"POLY PLANAR" WARER-TYPE. WIDE BANGE ELECTRO-DYNAMIC BPEAKER
Size 111 in $\times 14$ Hin $\times 1 \frac{1}{1}$ in deep. Weight $190 z$ Power handing 20W r.m.s. (40W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on cellings, walls, doors, under tables, etc.. and used with of without baffle. Send S.A.E. for full details. Only 88.55 each. P. \& P. 34p.

App 54 e app. 54 in . Wide. Our price 8.5 g yd. length
per yd. (mit. 1 yd.). $8 . A . E$. for samples.

## HI-FI STEREO HEADPHONES

Adjustable headband with comiortable flexiloam ear muffs. Wired and fited with standard stereo fin jack plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matchlng \$8-80. P. \& P. 25p.


NEW FURTEER IMPROVED MODEL WITH HIGHER OUTPUT AND INCORPOKATING HIGH QUALITY READY DRILLED PRINTEI CIRCUIT BOARD WITH MARKED FOR EVEN EASIER CON. MARKED FOR EVEN EASIER CON
STRUCTION

A really first-class $1 \mathrm{li} \cdot \mathrm{Fi}$ stereo Anplifier Kit. Uses fue stages on each channei resuiting in even lower nolse level with improved gensitivity. Integrated pre-amp with Bass. Treble and two Volume Controla. Sultable for use with Ceramic or Crystal cartridgts. (Very simple to modily to suit magnetic cartridge-instructions included). Output stage for any apeakers from 5 to 15 ohms. Compact desiga, all parts supplien including drilled metal work, high quality ready drited
printed circuit board, gmart brushed anodised aluminium front pantwith matching knols , wire, solder nuts, bolts-no extras to buy. Simple step by step instructions enable any constructor to buld an atnplifier to be proud of. Bricf speciffation: Power output 14W r.m.s. per channelinto 5 ohris. Frequency response $\pm 30 B$ $12-30,000 \mathrm{~Hz}$. Senaitivity better than 80 mV into $1 \mathrm{M} \Omega$. Full power bandwidth $\pm 3 \mathrm{~d}$ Bs $12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16 dB . Negative feedback 18 dB over main amp. Power requlre
menta 35 V at 1.0 amp. Overall size- $122^{*}$ wide $\times 8^{*}$ deep $2 z^{3}$ high. 1.0 am Fully detailed 7 -page conatruction manual and parte list free with kit or send 18p plus large S.A.E.
PRICES AMPLIFIER KIT, E11.55 P. \& P. 25p.
(Magnetic ingut components 33p extra)
POWEIR PACK KIT, 23.30 P. \& P. $35 p$.
CABINET.
(l'ost I'ree if all unita purchased at same time). Full after sales service. Alsn available ready built ant tested, E23.10. Fost rre Note: The above amplifier is suilable for feeding two decks, elc.) and will then protide mixing and fading decks, ele.) and kill then propide mixing and fading
facilities for medium powered Hi-Fi Discotheque use, etc. 3-VALVE AUDIO

## AMPLIFIER



## HA34 MK II

Designed for Mi-Fi reproduc* tion of records. A.C. Maide
operation. Ready built on operation. Ready built on
plated heavy gauge metal plated heavy gauge metal
chassia, size $7 \mathrm{in} w . \times 4 \mathrm{in}$ d. $\times$ 4ith. h. Incorporates ECC83, ELS4, EZ80 valves. Heavy duty, double wound mains forner matehel for 3 ohm aker Stparaitc rolutne control and now with improved wide rauge tone controls giving lass and treble lift and panel can lye detached and leads extended for remote mont of cotro wired and tested for only \&5.50. P. \& P. 45 p.

HSL "POUR" AMPLIFIER KIT. Similar in sppearance to HA34 sbove but employs entirely different and advanced circuitry. Complete aet of parts, etc. $44 \cdot 50$. P. $\mathbf{H}^{\text {P. }} 45 \mathrm{p}$.

## 10/14 WATT HI-FI AMPLIFIER KIT

A stylishly funished monaural amplifier 14 watte from 2 EL84a in pusb-pull. Super reproduction of both music and speech, with negilgible hum. Separate gram allow recordt and announcements


Fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls, and separate bass and treble controls are provided giving sood iift and cut, Valve inne-up 2 ELE4s, ECC83, EF88 and (Free with parts). All parte sold separately. ONLY 88.80


O pen 9-5.30 Mon. to Fri. 9-5 Sat. Early closing Wed. Ip.m.

A few minutes from South Wimbledon Tube Stotion.
(Please write clearly) please hote: p. \& p.charaza QUOTED APPIPTO TiE. OMLY.


4GIRO NO． 3317056 ers below 65 SPECIAL RESISTOR KITS



 15 E 12 IW KIT： 15 of each E12 value． 10 ohms－IM，a total of 915 （METAL FILM $5 \%$ ）\＆ 8.15 ne

MULLARD POLYESTER CAPACITORS C280 SERIES
 $15 \mathrm{p} .1 \cdot 5 \mathrm{FF}, 22 \mathrm{p} .2 .2 \mu \mathrm{~F} .25 \mathrm{p}$
MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{3} \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$

 $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} .068 \mu \mathrm{~F}, 1 \mathrm{Ip} .1 \mu \mathrm{~F}, 12 \frac{1}{2} \mathrm{p}$
MINIATURE CERAMIC PLATE CAPACITORS
50V：（ p F） $22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$ $560,680,820,1 K, 1 K 5,2 K 2.3 K 3.4 K 7,6 K 8$ ，（ $\mu \mathrm{F}) 001,01015.0022,0033,0047$ POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$
（pF） $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$

## B．H．COMPONENT FACTORS LTD．

| Miniature Mullard Electrolytics |  |  |  |  | VEROBOARD 01015 |  | POTENTIOMETERS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 10 \\ & 1 \\ & 1 \end{aligned}$ |  | $6 p$ $6 p$ | $68 \mu \mathrm{~F}$ | $16 \mathrm{~V} 6 p$ 63 V 120 | $2 \frac{1}{2} \times 5^{\prime \prime}$ |  | Carbon Track $5 \mathrm{~K} \Omega$ to $2 \mathrm{M} \Omega, \log$ or linear．Singie， $16 \frac{1}{2} \mathrm{p}$ Dual Gang 46p Log Single with DPswiceh 26 p |  |  |  |  |  |
| $2.2 \mu \mathrm{~F}$ | 63 V | ${ }_{6 p}^{6 p}$ | $68 \mu \mathrm{~F}$ 100 aF | 10V6p | $32 \times 3$ |  |  |  |  |  |  |  |
| $3 \cdot 3 \mu \mathrm{~F}$ | 63 V | 6p | $100 \mu \mathrm{~F}$ | 25V 6p |  |  | DIODES | PLUGS |  | ELECTROLYTIC CAPACITORS．Tubular \＆Large Cans |  |  |
| $4.0 \mu \mathrm{~F}$ |  | 6p | $100 \mu \mathrm{~F}$ | 63V14p | $2 \frac{1}{2} \times 1$ |  | $\begin{aligned} & \text { IN4001 } 6 \frac{1}{2} p \\ & \text { IN4002 } 7 \frac{1}{2} p \end{aligned}$ | IN 2 Pin |  | （uF／V）： $22.25,2 \cdot 2 / 63.4 .7 / 10,4.7 / 25,4.7 / 63,22 / 10,22 / 25$. |  |  |
| $4.7 \mu \mathrm{~F}$ | 63 V 63 V | $6 p$ | $150 \mu \mathrm{~F}$ | 16 V 6p | $2 \frac{1}{2} \times 5^{\prime \prime}$（Plain）－14p |  |  |  |  | $2263.5 p .2 / 10,10 / 10,50 / 10,100 / 10,10 / 25,50 / 25,10 / 50,5 \pm p$. |  |  |
| 6． $8 \mu \mathrm{~F}$ | 63 V 40 V | $6 p$ | $150 \mu \mathrm{~F}$ | $63 \vee 15 p$ | $2 \frac{1}{} \times 3 f^{\prime \prime}$（Plain）－ 12 p | －22p | $\begin{aligned} & \text { IN4002 } 7 \text { p } \\ & \text { IN4003 } 9 p \end{aligned}$ | Std．jack 14 |  |  |  |  |
| $8.0 \mu \mathrm{~F}$ | 40 V | $6 p$ | $220 \mu \mathrm{~F}$ | $64 \vee 6 p$ |  |  | $\begin{aligned} & \text { IN4005 12p } \\ & \text { IN4006 } 14 \mathrm{p} \end{aligned}$ | 2.5 mm lack 11 p |  | 39p 1000／100．66p， 2000 25，27p．2500／12，17p．2500／25，33p． |  |  |
| $10 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ | 16v | $6 \mathrm{6p}$ | $220 \mu \mathrm{~F}$ | 10 V 6p | Track Cutrer 44p 44p |  |  |  |  | 2500／50，62p．3000／50． | 72p． 5000 | 25，66p．5000／50，94p，7000／50． |
| $10 \mu \mathrm{~F}$ | 63 V | $6 p$ | $220 \mu \mathrm{~F}$ | 63V21p | Pins．Pkt． $25 \quad 10 \mathrm{p}$ 10p |  | IN4006 14p | SOCKETS |  | 60p． $25.000 / 25,74 \mathrm{p}$ ．HI－VOLT ：B／350，14p 16／350，19p $32 / 350$ ， |  |  |
| $15 \mu \mathrm{~F}$ | 16 V | $6 p$ | $330 \mu \mathrm{~F}$ | $16 \vee 12 p$ |  |  | IN916 7p | DIN 2 Pin 10p |  | 25p．50／250，18p 100／500．33p． |  |  |
| $15 \mu \mathrm{~F}$ | $63 V$ | 6 p | $330 \mu \mathrm{~F}$ | $63 \vee 25 p$ | TRANSISTORS |  | $\begin{aligned} & \text { BA100 10p } \\ & \text { OAS } 42 p \end{aligned}$ |  |  | METALLISED PAPER CAPACITORS |  |  |
| $16 \mu \mathrm{~F}$ | 40 V | $6 p$ | $470 \mu \mathrm{~F}$ | $6.4 \vee 9 p$ | ACI27 16⿺辶 ${ }^{\text {P }}$ P | BC212LBC213L12p |  |  |  | 250V： $0.05 \mu \mathrm{FF}, 0.1 \mu \mathrm{~F}$ 4 $\mathrm{P}, 0.25 \mu \mathrm{~F}, 5 \mathrm{~s}, 0.5 \mu \mathrm{~F}, 6 \mathrm{fP}, 1 \mu \mathrm{~F}, 9 \mathrm{p}$ ． $500 \mathrm{~V}=0.025 \mu \mathrm{~F} .0 .05 \mu \mathrm{~F} .4 \mathrm{p}$ ． $0.1 \mu \mathrm{~F}, 5 \frac{1}{2} \mathrm{P} \cdot 0.25 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{P} \cdot 0.5 \mu \mathrm{~F}, 9 \mathrm{p}$ $1000 \mathrm{~V}: 001 \mu \mathrm{~F}, 10 \mathrm{p} .0 \cdot 022 \mu \mathrm{~F}, 12 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0 \cdot 1 \mu \mathrm{~F}, 16 \mathrm{p} .022 \mu \mathrm{~F}$ ． 31p， 0 47 $\mu$ F．39p． |  |  |
| $22 \mu \mathrm{~F}$ | 25 V 63 V | $6 p$ | $470 \mu \mathrm{~F}$ | $40 \vee 20 \mathrm{p}$ | ${ }_{\text {AC }} \mathrm{BC128} 8220$ |  | $\begin{aligned} & \text { OAS 42p } \\ & \text { OA47 } 9 p \\ & \text { OA81 } 11 p \\ & \text { OA200 8p } \end{aligned}$ | $\begin{aligned} & 5 \text { Pin } 180^{\circ} 12 p \\ & \text { Std. lack } 14 \text { p } \\ & 2.5 \mathrm{~mm} \text { lack } 11 p \\ & \text { Phono } 5 \frac{1 p}{2} \mathrm{p} \end{aligned}$ |  |  |  |  |
| $22 \mu \mathrm{~F}$ | 63 V | $6 p$ | $680 \mu \mathrm{~F}$ | $16 \vee 15 p$ | BCIO7 11p | BC214L 17p |  |  |  |  |  |  |
| $33 \mu \mathrm{~F}$ | 16 V | 6p | $680 \mu \mathrm{~F}$ 1000 FF | $40 \vee 25 p$ $16 \vee 20 p$ | $\begin{array}{ll} B C 109 & 13 p \\ B C 148 & 12 p \end{array}$ | $\begin{array}{ll} \circ C 71 & 13 p \\ \circ C 81 & 16 p \end{array}$ | Integrated |  |  |  |  |  |
| $33 \mu \mathrm{~F}$ | 40 V | $6 p$ | $1000 \mu \mathrm{~F}$ | 25V25p |  |  |  |  | Screened Wire Metre 5tp |  |  | QUANTITY DISCOUNT |
| $32 \mu \mathrm{~F}$ | 63 V | $6^{6 p}$ | $1500 \mu \mathrm{~F}$ | $6.415 p$ | BC149 12p | OCI70TiS4323p | $\begin{aligned} & \text { "A709C } \\ & \text { "A741C } \end{aligned}$ | $\begin{aligned} & 50 p \\ & 55 p \end{aligned}$ |  |  | 10 p | SPECIAL BULK BUY PRICES |
| $47 \mu \mathrm{~F}$ | 10 V | 6p | $1500 \mu \mathrm{~F}$ | 16V25p | 8C182L 12p |  |  |  | Twin Screened Wire．Metre Stereo Screened Wire，Metre |  | 10 p | ARE AVAILABLE BY |
| $47 \mu \mathrm{~F}$ | 25 V | ${ }^{6 p}$ | $2200 \mu \mathrm{~F}$ | 10V 25p | BCI83L 12p | 2N2926 11p | $\begin{aligned} & 11 \mathrm{~A} 723 \mathrm{C} \\ & 116914 \end{aligned}$ | $\begin{array}{r} 55 p \\ 51 \end{array}$ | Conneeting Wire．All colours．Merre |  |  | QUOTATION FOR LARGE |
| $47 \mu \mathrm{~F}$ | 6 | B | $3300 \mu \mathrm{~F}$ | ， | BCIB4L 13p |  |  | $35 p$ | Neon Bulb，90V Wire Ended |  | or 24 | JECTS AND |

# ADCOLA Soldering Equipment of the Finest Quality！ 


$15 E 12$ W KIT： 15 of each E12 value， 10 ohms－IM，a total of 915 （METAL FILM $5 \%$ ）， $88 \cdot$ is net
$10 E 12$ W KIT： 10 of each Ei2 value， 10 ohms—IM，a total of 610 （METAL FLLM $5 \%$ ）$\& 12.65$ ne

## RESISTORS

CF－High Scab Carbon Film，5\％MF－High Stab Metal film，5\％ $\begin{array}{llllllllll}\text { W．Type Range } & 1.9 & 10-49 & 50-99 & 100-249 & 250-499 & 500-999 & 1000 & 5 i z e \mathrm{~mm} \\ \ddagger & \text { CF } & 22-2 \mathrm{M2} & 0.8 & 0.65 & 0.62 & 0.55 & 0.5 & 0.45 & 3.9 \times 10.5\end{array}$ $\begin{array}{llllllllll}\quad \mathrm{CF} & 22-2 M 2: & 0.8 & 0.65 & 0.62 & 0.55 & 0.5 & 0.45 & 3.9 \times 10.5 \\ \frac{1}{2} & \mathrm{CF} & 22-2 M 2 & 0.8 & 0.65 & 0.62 & 0.55 & 0.5 & 0.45 & 5.5 \times 16\end{array}$ $\begin{array}{lllllllllll} & \text { MF } & 10-2 M 7 & 0.9 & 0.8 & 0.7 & 0.65 & 0.65 & 0.6 & 3 \times 7 \\ M F & 10-2 M 2 & 0.9 & 0.8 & 0 & 7 & 0.65 & 0.65 & 0.6 & 42 \times 108 \\ M & 10.10 M & 5 & 125 & 1.25 & 1 & 1 & 0.95 & 0.88 & 66 \times 13\end{array}$ | MF | $10.10 M$ | 1 | 5 | 1.25 | 1.25 | 1 | 1 | 0.95 | 0.88 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MF | $10.10 M$ | 2.5 | 2.5 | 2 | 1.75 | 175 | 16 | $8 \times 13$ |  | （price in pence each）

## PRESET SKELETON POTENTIOMETERS

MINIATURE 0.25 W Vertical or horizontal 6 p each $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7$ ．IoK．ete SUB－MIN 0.05 W Vercieal， 100 』 so 220K 3 5p eac

1 Non min

sol

## 

ELECTROLYTIC CAPACITORS．Tubur uF／V）： $2225,2 \cdot 263.4 .7 / 10,4.7 / 25,4.7 / 63,22 / 10,22 / 25$ 20010 ， $25,50,50,50010,200125,100150,10,50,510$ ， 500150 16 P 1000150 27p．2500／12，17p．2500／25，33p 20p．25，000 25，74p．HI－VOLT：8／350，14p 16／350，19p $32 / 350$

25p．
$00 \mathrm{~V}: 0.025 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F} .4 \mathrm{D}, 0.1 \mu \mathrm{~F}, 5 \mathrm{D}, 0.25 \mu \mathrm{~F} .6 \mathrm{P} 0.5 \mu \mathrm{~F} 9 \mathrm{P}$ $1000 \mathrm{~V}: 00 \mathrm{OF}, 10 \mathrm{p} .0 \cdot 022 \mu \mathrm{~F}, 12 \mathrm{p} .0 \cdot 047 \mu \mathrm{~F}, 0 \cdot 1 \mu \mathrm{~F}, 16 \mathrm{p} .022 \mu \mathrm{~F}$
quANTITY DISCO QUARE AVALLABLE BY Quotation for large
projects and trade

## PHASE CCKED LCPPS EYJ.B.DANEF m.sc.

## PART 2: <br> A.M. AND F.M. DEMODULATION AID Frequelicy Sthitherisers

| NIAST MONTH'S article the basic principles of phase locked loops were described. This month we will look at the application of these principles in f.m. radio reception, a.m. demodulation and trequency synthesisers.

## RECEIVER TECHNIQUES

An amplitude modulated (a.m.) radio signal consists of a high frequency sine wave, whose frequency is fixed for any particular broadcasting station, but whose amplitude varies in sympathy with the audio signal that is the information to be transmitted. The carrier frequency $f_{s}$ ranges from about 200 kHz up to many megahertz, whilst the audio frequency ranges from 30 Hz to 15 kHz . The receiver must be able to reproduce the modulating audio signal as faithfully as possible and must provide as much separation as possible between signals whose carrier frequencies are close

## T.R.F. RECEIVERS

One of the simplest forms of radio receiver is the so-called "tuned radio frequency" (t.r.f.) receiver. The basic form of this type of receiver is shown in the block diagram of Fig. 2.1.


Fig. 2.1. A block diagram showing the stages in a t.r.f. receiver

Fig. 2.2. A block diagram of a superheterodyne receiver. The use of an r.f. stage is optional

The incoming signal is amplified in the radio frequency stage. No change in the frequency or in the form of the signal takes place in this stage, but tuned circuits are employed to provide selectivity and to reject unwanted signals of other frequencies.

The signal is then demodulated or detected, usually by a stage that provides some amplification. The audio signal from the detector $\left(f_{\mathrm{a}}\right)$ is fed to an audio amplifier which can provide sufficient power output to drive the loudspeaker.

The selectivity provided by receivers of this type is very limited, partly because it is not practical to employ more than about four tuned circuits operating at the radio frequency $f_{s}$. Each tuned circuit requires a separate gang of the tuning capacitor and the relatively long connections to this capacitor can lead to unwanted feedback and oscillation.

It is normally necessary to employ a fairly large value of tuning capacitor (typically 300 pF to 500 pF per gang) in order that the desired tuning range can be covered. This may make it impossible to design the tuned circuits for optimum $Q$ factor (especially at high signal frequencies): the selectivity and gain therefore suffer.

The limitations of t.r.f. receivers become very noticeable at the higher frequencies. The pass band is so broad that it is impossible to obtain adequate selectivity and noise rejection, whilst the signal frequency amplification is normally inadequate in the short wave bands.

## SUPERHETERODYNE RECEIVERS

Many of the disadvantages of the t.r.f. receiver can be avoided by the use of the superheterodyne principle, but some other undesirable features are then introduced. A block diagram of a superheterodyne receiver is shown in Fig. 2.2.

The incoming signal from the aerial at a frequency $f_{\mathrm{s}}$ may be fed into a radio frequency stage (shown dotted) or directly into the mixer stage. In the latter stage it is mixed with a frequency $f_{0}$ generated by a local oscillator. The frequency $f_{0}$ is varied with the frequency to which the receiver is tuned.

The output from the mixer consists mainly of the sum and difference frequencies of the signals which are fed into it, that is, $f_{o}+f_{\mathrm{s}}$ and $f_{o}-f_{\mathrm{s}}$. It is arranged that the frequency of one of these outputs (normally the difference frequency in receivers covering the long, medium and short wave bands) is kept constant no matter what the frequency of the input signal, $f_{\mathrm{s}}$. This constant frequency output signal is known as the intermediate frequency or i.f.

The mixer stage is followed by one or more stages of amplification at the intermediate frequency. These stages involve the use of a number of tuned circuits (typically six) which resonate at the intermediate frequency.

The intermediate frequency tuned circuits are fixed tuned and they can therefore be designed with the optimum inductance/capacitance ratio for high selectivity and gain; they provide virtually all of the selectivity of the receiver. Each tuned circuit can be incorporated inside a metal can so that unwanted coupling is reduced to a minimum.

## DISADVANTAGES OF SUPERHETS

Superheterodyne receivers have the disadvantage that they tend to suffer from spurious responses. Noises such as whistles may be generated when the local oscillator frequency (or one of its harmonics) beats with certain incoming frequencies. One of these undesired responses occurs at the image frequency, where a sigral at a frequency of $f_{s}+2 i . f_{\text {. }}$ mixes with the local oscillator frequency to form an interfering signal.

Image frequency interference may be reduced by using tuned circuits before the mixer or by using a high intermediate frequency so that the image frequency is far away from $f_{s}$ and easily rejected by the tuned circuits in the r.f. amplifier, though this latter method tends to reduce selectivity.

Another disadvantage of superhets is that the tuned circuits used throughout cannot be formed on an integrated circuit chip. Integrated circuits are not only smaller but because of the ease of assembly they greatly reduce labour costs.

## THE SYNCHRODYNE

The synchrodyne receiver is the forerunner of the phase locked loop and aroused great interest in the late 1940's. The synchrodyne type of receiver is illustrated in the block diagram of Fig. 2.3.


Fig. 2.3. The stages employed in a synchrodyne receiver

The signal from the aerial is fed via an optional radio frequency stage to the demodulator and also, via another amplifier stage, to a local oscillator. This signal keeps the local oscillator locked or synchronised to the input signal frequency-hence the name synchrodyne.

When the two signals of the same frequency come together in the demodulator stage (which is like the mixer of a superheterodyne), sum and difference frequencies are formed. The sum frequency, $2 f_{\mathrm{s}}$, is not required and is rejected by the succeeding lowpass filter. One might expect the difference frequency to be zero, but this really means that the carrier frequency is zero. In other words the output of the demodulator in Fig. 2.3 consists of the required audio signal minus the carrier.

Any interfering radio signals will not have the same frequency as the local oscillator. They therefore produce an output signal from the demodulator stage which is normally of a much higher frequency than that due to the wanted signal. The interfering signal cannot pass through the low-pass filter which follows the demodulator.

## SYNCHRODYNE SELECTIVITY

One of the great advantages of the synchrodyne is that it does not obtain its selectivity by means of conventional tuned circuits, but by the use of a lowpass audio filter. This low-pass filter can be very simple (see Part 1) and can be designed to cut off at any point so as to provide the desired selectivity. It is easy to make the selectivity variable by adjusting the value of a single component.

Another important advantage of the synchrodyne receiver is that relatively few tuned circuits are employed in it. The only tuned circuit which is essential is the one in the oscillator circuit, but it is normally desirable to include some tuned circuits in the radio frequency stages to prevent very strong unwanted signals from overloading the mixer stage.

The local oscillator of a synchrodyne receiver must be locked in frequency to the wanted signal if one is to avoid the generation of beat frequencies. This type of receiver is either correctly tuned or not tuned at all. Unlike most other forms of receiver, a distorted audio output signal cannot be obtained as a result of the mis-tuning of the local oscillator.

As the local oscillator tuning is altered, the oscillator will remain synchronised to the incoming signal over a certain range, although the local oscillator signal may change in amplitude somewhat. Thus the only effect of a slight oscillator mis-tuning will be an alteration in the audio volume.

## ADVANTAGES AND DISADVANTAGES

The synchrodyne receiver does not suffer from image responses. We have seen that an interfering signal at a frequency of twice the intermediate frequency plus the wanted signal frequency can produce an image response in a superheterodyne receiver; in the synchrodyne, however, the "intermediate frequency" is zero and therefore the image frequency becomes equal to the wanted signal frequency.

For domestic listening, the main objection to the use of the synchrodyne receiver is the loud whistles which are generated when one is tuning into a signal. These whistles are, of course, due to the local


Fig. 2.4. An a.m. demodulator using a phase locked loop. The components of the loop itself are shown inside the box.
oscillator beating with the input signal before their frequencies become locked together. This problem can be overcome by the use of switched tuning.

Another reason for the limited use of synchrodyne receivers in the past has been the lack of simple. but effective phase locking circuits.

Other names for the synchrodyne receiver include "homodyne". "phase conrol" or "PC" receivers. synchronous detectors and phase locked detectors.

## A.M. DEMODULATION

The block diagram (Fig. 2.4) shows a practical circuit for a.m. receivers using a phase locked loop.

The phase locked loop (comprising the units shown inside the dotted line) locks onto the input signal in the normal way, The voltage controlled oscillator produces a signal of the same frequency as the input signal, but it is unmodulated.

When the free-running frequency of the voltage controlled oscillator is the same as that of the incoming signal, locking will occur with these two signals $90^{\circ}$ out of phase. In the system of Fig. 2.4, the phase shift circuit changes the phase of the input signal by $90^{\circ}$ so that it is in phase with the output from the voltage controlled oscillator.

The two signals of the same phase are mixed in a second phase comparator or multiplier. The output from the multiplier is passed through a second lowpass filter so that only the difference frequency remains. This difference frequency is proportional to the amplitude of the input signal and is therefore the required audio output.

Systems such as that shown in Fig. 2.4 provide a higher degree of noise rejection than can be obtained from conventional a.m. demodulators which detect the peaked noise pulses.

## F.M. DEMODULATION

The voltage controlled oscillator is normally designed so that its frequency is linearly related to the applied control voltage. As this latter voltage keeps the voltage controlled oscillator frequency the same as the incoming signal frequency. the control voltage is linearly related to the frequency deviation of the input signal.

In other words, the output voltage from the system (Fig. 1.1.) is the demodulated audio signal when the incoming signal is a frequency modulated one. The voltage controlled oscillator produces a greatly amplified copy of the input signal from which most of the noise has been removed.

One might expect that a very simple f.m. receiver could be constructed by merely feeding the input signal to the phase locked loop. In actual practice, however, a somewhat more complex system than this must be employed.

Currently available phase locked loops cannot operate at frequencies above about 60 MHz . Most f.m. signals will therefore have to be converted to a lower frequency before they are passed to the phase locked loop. However, it seems likely that phase locked loops will be available at some future date which can operate at typical f.m. frequencies (about 100 MHz ) and it may then be possible to construct an f.m. receiver without the use of a frequency converter.

## SENSITIVITY

Although phase locked loops can operate with a signal of just under a millivolt, some problems do arise if one wishes to operate them from an input of about $10 \mu \mathrm{~V}$ (such as one may obtain from a receiving aerial at a considerable distance from the transmitter). It is generally better to amplify the signal before feeding it to the phase locked loop. Some tuned circuits are usually included in the system before the phase locked loop in order to reject signals which could produce spurious responses.

The phase locked loop may be employed to demodulate both narrow and wide band f.m. signals. It offers greater linearity than can be obtained by any other means and is therefore especially suitable for high fidelity systems.

At the other extreme, phase locked loops are employed in communications receivers where they are excellent for recovering weak signals in a noisy region of the radio spectrum.

## FREQUENCY SYNTHESISERS

Frequency synthesisers are required for use in radio communications networks which will generate any one of a large number of frequencies with great accuracy at the touch of a button. For example, an aircraft navigation/communication band synthesiser may be required to produce frequencies in the range 108 to 136 MHz at 50 kHz intervals so as to cover each of the 560 channels.

Such frequency synthesisers can be designed using banks of quartz crystals and tuned circuits. However, it is normally more economic to employ a single quartz crystal to provide one accurate reference frequency and to obtain the other frequencies from it by the use of a phase locked loop together with a digital pulse frequency dividing circuit. This system has the additional advantage that fewer spurious frequencies are generated.

The basic system used in a phase locked loop frequency divider is illustrated by the block diagram of Fig. 2.5. The reference frequency is generated by a very stable quartz crystal controlled oscillator which is kept in a special constant temperature oven. If the frequency of this oscillator is 100 kHz , the pulses may be divided in frequency to produce, perhaps, a 1 kHz signal. The latter is fed as the reference signal to the input of the phase locked loop of Fig. 2.5.

## DIVIDER CIRCUIT

The main difference between the frequency synthesiser circuit of Fig. 2.5 and the simple phase locked loop is the inclusion of a frequency divider circuit


Fig. 2.5. The building blocks of a simple frequency synthesiser using a phase locked loop


Fig. 2.6. In this type of frequency synthesiser a fast divider (the pre-scaler) is used to divide the pulse frequency.


Fig. 2.7. Because phase locked loops can handle only relatively low frequencies, a mixer can be used to multiply the voltage controlled oscillatorfrequency.


Fig. 2.8. In this type of frequency synthesiser a mixer is used to reduce the high voltage controlled oscillator frequency for the divider stage
between the voltage controlled oscillator and the phase comparator. This enables the voltage controlled oscillator to operate at a much higher frequency than the input reference signal

If the reference signal has a frequency of 1 kHz and the frequency divider is set so that it divides by, say, 569, the phase locked loop will come into lock when the voltage controlled oscillator frequency is 569 kHz .

This frequency is divided so that it produces the same frequency as the input reference signal. In order to obtain any other output frequency from the voltage controlled oscillator, it is only necessary to change the factor by which this frequency is divided before it is fed to the phase comparator.

All frequencies generated in this way have the same stability as the reference frequency.

## HARMONIC LOCKING

Phase locked loops will lock to a multiple of the input frequency, but the locking range decreases as higher and higher harmonics are used, since the amplitude of such harmonics is low.

Harmonic locking can be used in frequency synthesisers, but in general one should not attempt to lock a phase locked loop to a harmonic higher than about the tenth.

## HIGHER FREQUENCIES

Digital frequency synthesisers are often required which will provide outputs of the order of some hundreds of megahertz. Voltage controlled oscillators can generate such frequencies, but programmable counters which can operate at above about 25 MHz are very expensivc.

It may therefore be more economic to operate the voltage controlled oscillator at a lower frequency and to multiply this frequency by a number of cascaded frequency multiplier stages. However, such a system has the disadvantage that tuned circuits are required in the multiplier stages and these must be re-tuned whenever the frequency is changed.

A more convenient system is shown in Fig. 2.6. The output from the voltage controlled oscillator is divided in frequency by a pre-scaler before being passed to a programmable frequency divider.

Other techniques for obtaining high frequency outputs include mixing the output from the voltage controlled oscillator with a stable frequency. The sum frequency is the required output, as shown in Fig. 2.7.

In yet another system, the output from the voltage controlled oscillator is mixed with a stable reference frequency and the difference frequency output is used to operate the programmable frequency divider. This type of system is illustrated in Fig. 2.8.

If a signal from a frequency synthesiser is fed to the mixer stage of a radio receiver together with the input signal, one can select the signal to be received merely by choosing the ratio by which the voltage controlled oscillator signal is divided. The drift in the tuning of such a system is quite negligible, since the reference frequency is crystal controlled.

Next month this series will continue with a review of the types of phase locked loops available from various manufacturers together with practical examples of the circuits in which they can be used.

# YATES ELECTRONICS (FLITWICK) LTD. ELSTOW STORAGE DEPOT KEMPSTON HARDWICK BEDFORD 

C.W.O. PLEASE, POST AND PACKING PLEASE ADD 10p TO ORDERS UNDER 4.
Catalogue which contains data sheers for most of the components listed will be sent free on request. 10p stamp appreciated.

OPEN ALL DAY 5ATURDAYS

MESISTORS
tW Iskra high stability carbon film-very low noise-capless construction, iW Mullard CR25 carbon

| Power wates | Tolerance | Range | Values available | $\begin{aligned} & \text { Price } \\ & 1-99 \end{aligned}$ | $100+$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Wate | 5\% | 4.7n-2.2Mn | E24 | Ip | 0.8p |
| \% | 10\% | $3 \cdot 3 \mathrm{Mn}-10 \mathrm{Mn}$ | E12 | 1 p | 0.8p |
| $\frac{1}{2}$ | 2\% | $10 n-1 \mathrm{Ma}$ | E24 | 3.5p | 3p |
| + | 10\% | 10-3.90 | E12 | Ip | 0.8p |
| $t$ | 5\% | $4 \cdot 7 \Omega-1 \mathrm{Mn}$ | El2 | Ip | 0.8 P |
| 4 | 10\% | $10-10 n$ | E12 | 6p | 5.5p |

Quantity price applies for any selection. Ignore fractions on toral order.
DEVELOPMENT PACK
0.5 watt $5 \%$ iskra resistori 5 off each value 4.70 to 1 Mn . E12 pack 325 resistors $\mathbf{6 2 . 4 0}$. E24 pack 650 resistors $\mathbf{6 4 . 7 0}$.

## POTENTIOMETERS

Carbon track $5 \mathrm{k} \cap$ to 2 Ma , log or linear (log $\ddagger W$, lin $\frac{1}{2} W$ )
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting ( 0.1 matrix)
5 ub -miniature $0.1 \mathrm{~W}, \mathrm{~s}_{\mathrm{p}}$ each. Miniature $0.25 \mathrm{~W}, 7 \mathrm{p}$ each.
TRANSISTORS

| AC107 |  | AFI39 | 32p | BFI77 | 28p | OC45 | 12p | 2N3710 | p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACl 26 | 12p | AFI78 | 32p | BFI78 | 32p | -C70 | 12 p | 2N3711 | $11 p$ |
| AC127 | 15p | AFI80 | 40p | BFI79 | 32p | $0 C 71$ | 12p | 2N3819 | 32p |
| ACI28 | 15p | AFI81 | 40p | BFI80 | 32p | $0 \mathrm{C72}$ | 12 p | 2N4062 | 12p |
| AC131 | 12p | BC107 | 12p | BFIPI | 32p | OC81 | 12p | 2N4286 | 20p |
| AC132 | 120 | BC108 | 12p | BF194 | 14p | OC82D | 12p | 2N4289 | 20p |
| ACl 76 | $15 p$ | BCl09 | 12p | BF195 | 14p | 2N2646 | 60p | 40360 | 35p |
| AC187 | 22p | BCl47 | 12 p | BF197 | 15p | 2N2904 | 20p | 40361 | 35p |
| ACl88 | 22p | BCI48 | 12 p | BF200 | 32p | 2N2926 | 10p | 40362 | 40p |
| ADI40 | 50p | BCI49 | 12p | BFY50 | 20p | 2N3054 | 58p | 40408 | 40p |
| ADI49 | $45 p$ | BC157 | 14 p | BFYSI | 20p | 2N3055 | 60p | ztx108 | 15p |
| ADi61 | 33 p | BC158 | 14 p | BFY52 | 20p | 2N3702 | $13 p$ | Z $+\times 300$ | 15p |
| AD162 | $36 p$ | BC159 | 14 p | BUYIO5 |  | 2N3703 | 12p | $2 \mathrm{zT} \times 302$ | 20p |
| AFII 4 | 20p | BC187 | 22p |  | E2.25 | 2N3704 | 13p | ZTX500 | 15p |
| AFII 5 | 20p | BD131 | 75p | OC26 | 45p | 2N3705 | 12p | 2TX503 | 20p |
| AFII 6 | 20p | BD132 | 75p | OC28 | 50p | 2N3706 | $11 p$ |  |  |
| AFl17 | 20p | BD133 | 75p | OC35 | 50p | 2N3707 | 12p |  |  |
| AFII8 | 38p | BFII5 | 25p | OC42 | 12p | 2N3708 | $10 p$ |  |  |
| AFI 26 | 20p | BFI73 | 20p | $0 \mathrm{OC4}$ | 120 | 2N3709 | Ilp |  |  |

ZENER DIODES $\quad 12 \mathrm{p}$ WIRE WOUND POTS, $3 \mathrm{~W}, 10,25$, $400 \mathrm{~mW} 5 \% 3.3 \mathrm{~V}$ to $30 \mathrm{~V}, 12 \mathrm{p}$. 50 n and decades to $100 \mathrm{k} \Omega, 35 \mathrm{p}$.


MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, \quad 2 \neq \mathrm{P}, 000068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu F, 0.022 \mu F, 0.033 \mu F, 3 p, 0.047 \mu F, 0.068 \mu F, 0.1 \mu F, 4 p, 0.15 \mu F, 6 p, 0.22 \mu F, 7$ ph . $0.33 \mu \mathrm{~F}, 11 \mathrm{p}, 0.47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$60 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F} 3$ tp. $0.15 \mu \mathrm{~F} 4 \mathrm{t} \mathrm{p}$. $0.22 \mu \mathrm{~F} .5 \mathrm{p} .0 .33 \mu \mathrm{~F} .6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 71 \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p}, 1.0 \mu \mathrm{~F}, 13 \mathrm{p}$
MULLARD POLYESTER CAPACITORS C280 SERIES 250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, \quad 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ $31 \mathrm{p}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 61 \mathrm{p}, 0.47 \mu \mathrm{~F}, 81 \mathrm{p}, 0.68 \mu \mathrm{~F}, ~ 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$.
$1.2 \mu \mathrm{~F}, 20 \mathrm{p}, 2.2 \mu \mathrm{~F}, 24 \mathrm{p}$. $1.5 \mu \mathrm{~F}, 20 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$.
$\begin{array}{llll}\text { MYLAR } & \text { FILM } & \text { CAPACITORS } & \text { lo0V } \\ 0.001 \mu F, & 0.002 \mu F, & 0.005 \mu F, & 0.01 \mu F, \\ 0.02 \mu F,\end{array}$


CERAMIC DISC CAPACITORS 100 pF to $10,000 \mathrm{pF}$, 2p each.

## ELECTROLYTIC CAPACITORS-MULLARD OI5/6/7

$(\mu$ F/V $) 1 / 63,1.5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40$, 5/63, 22/10, 22/25, 22/63, 33/6.3, 33/16, 33/40, 47/4, 47/10, 47/25, 47/40, 68/6.3, 68/16 $150 / 25,220 / 25,330 / 10,470 / 6,350 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 p$. 47/63, $100 / 40$, $680 / 6 \cdot 3,11 \mathrm{p} .100 / 63,150 / 63,220 / 63,1,000 / 10,12 \mathrm{p} .470 / 25,680 / 16,1,500 / 6 \cdot 3$. 13 p . $470 / 40,680 / 25,1,000 / 16,1,500 / 10,2,200 / 6 \cdot 3,18$ p. $330 / 63,680 / 40,1,000 / 25,1,500 / 16$, 2,200/10, 3,300/6-3, 4,700/4, 21 p.

| SOLID TANTALUMBEAD CAPACITORS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $0.1 \mu \mathrm{~F}$ | 35 V | $2.2 \mu \mathrm{~F}$ | 35 V |  |
| $0.22 \mu \mathrm{~F}$ | 35 V | $4.7 \mu \mathrm{~F}$ | 35 V | $3 \mu \mathrm{~F}$ |
| $0.47 \mu \mathrm{~F}$ | 35 V | $63 \mu \mathrm{~V}$ | 10 V |  |
| $1.0 \mu \mathrm{~F}$ | 35 V | $6.8 \mu \mathrm{~F}$ | 25 V | $47 \mu \mathrm{~F}$ |


| VEROBOARD |  | JACK PLUGS AND SOCKETS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 tandard screened |  | 2.5 mm insulated | 8 p |
| $2+34 \quad 22 p$ | $16 p$ | 5randard insulared | 12p | 3.5 mm insulated | 8 s |
| $2 \mathrm{P} \times 5$ 24p | 24p | 5tereo screened | 35p | 3.5 mm screened | 13p |
| $34 \times 34$ | 24p | Standard socket | 15p | 2.5 mm socket | 8 |
| $34 \times 5$ | 27p | Stereo socket | 18p | 3.5 mm socket | 8 p |
| $17 \times 24$ | $57 \neq p$ | D.I.N. PLUGS AND SOCKETS |  |  |  |
| $17 \times 34$ 100p | 78p |  |  |  |  |
| $17 \times 5$ (plain) | $81 p$ | 2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin |  |  |  |
| $17 \times 3+$ (plain) | 60 p | Plug 12p. Socket 8p. |  |  |  |
| $17 \times 2 \frac{1}{2}$ (plain) | 429 | 4 way screened cable, 15p/metre. |  |  |  |
| $2+\times 5$ (plain) <br> $2 \frac{1}{2} \times 3+$ (plain) | $12 p$ | 6 way screened cable 22p/metre. |  |  |  |
| Pin insertion tool 52p | 52p |  |  |  |  |
| Spot face cutter 42p | 42p | BATTERY ELIM | NAT |  | 1.50 |
| Pkt. 50 pins 20p | 20p | 9 V mains power su | Y. | Same size as PP9 |  |

LARGE (CAN) ELECTROLYTICS


POLYSTYRENE CAPACITORS $160 V 2 \frac{1}{2} \%$
SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreasesits electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon monoxide, methane, propane, alcohol, North Sea gas, as well as carbon-dust containing air or smoke. This decrease is usually large enough derector.
Full derails and circuits are supplied with each Derector GDI. 62 . Kit of parts for detectors including GDI 12 or 24 V bartery operated audibl alarm E7.30. As above for PP9 batrery, c6.40.
PRINTED BOARD MARKER
Draw the planned circuit onto a copper faminate board with the P.C. Pen, allow to dry, and immerse the board in the etchant. On removal the circuit remains in high relief

## LARGE RANGE ITT/TEXAS IC's NOW IN STOCK

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{Prices are calculated on total number ordered regardiess of mix} \\
\hline \& 1-11 \& 12-24 \& 25-99 \& \(100+\) \& 7448 \& 185 \& 175 \& 170 \& 185 \& 74118 \& 100 \& 82 \& \({ }_{38} 7\) \& \({ }_{36} 6\) \\
\hline \& is \& 16 \& P4 \& \({ }_{3}\) \& 7450
7451 \& 18 \& 16 \& 14 \& 13 \& \begin{tabular}{l}
74121 \\
7441 \\
\hline 745
\end{tabular} \& 100 \& \({ }^{40}\) \& 98 \&  \\
\hline 7401 \& 18 \& 16 \& 14 \& 13 \& 7753 \& 18 \& 16 \& 14 \& 13 \& \begin{tabular}{l}
74145 \\
74150 \\
\hline
\end{tabular} \& \({ }_{130}^{130}\) \& 140
280 \& 135
250 \& 130
220 \\
\hline 7403 \& 18 \& 16 \& 14 \& 13 \& 7460 \& 18 \& 16 \& 14 \& 13 \& 74151 \& 110 \& 100 \& \({ }^{95}\) \& \({ }^{89}\) \\
\hline 7404 \& 20 \& 18 \& 16 \& 14 \& 7470 \& 30 \& 28 \& 25 \& 24 \& \begin{tabular}{l}
7453 \\
7454 \\
\hline 15
\end{tabular} \& 120 \& 188 \& 170 \& 105 \\
\hline 7405
7406 \& 20
50 \& 18 \& 18 \& \({ }_{35}^{45}\) \& 7472
7473 \& 30
40 \& \({ }^{28}\) \& \({ }_{36}^{27}\) \& \({ }_{30}^{23}\) \& \begin{tabular}{l}
74154 \\
7455 \\
\hline
\end{tabular} \& 150 \& 120 \& 100 \& 86 \\
\hline 7407 \& 56 \& 50 \& 4 \& 38 \& 7474 \& 40 \& 36 \& 32
32 \& \({ }^{28}\) \& 7456
7150 \& 130

55 \& 120 \& 1110 \& -968 <br>
\hline 7408 \& 36
36 \& 30
30 \& ${ }_{27}^{27}$ \& ${ }_{33}^{23}$ \& 7475
7476 \& 35
40 \& ${ }_{36}^{52}$ \& 50
32 \& 30 \& 74180
7190 \& 195 \& 190 \& 185 \& 180 <br>
\hline 7410 \& 18 \& 16 \& 14 \& 13 \& 7480 \& 100 \& 95 \& 90 \& ${ }^{85}$ \& 74191 \& 195 \& 190 \& 185 \& 180
185 <br>
\hline 7411 \& ${ }_{3} 23$ \& 21 \& 20 \& 18 \& 7481 \& 125 \& 115 \& 9 \& $\begin{array}{r}105 \\ 85 \\ \hline\end{array}$ \& 74192
74193 \& ${ }_{200}$ \& 180 \& 170 \& 150 <br>
\hline 7413 \& 34 \& ${ }_{28}^{30}$ \& 26 \& 22 \& 7483 \& 100 \& 97 \& 95 \& 92 \& 7496 \& 200 \& 190 \& 188 \& 1780
170 <br>
\hline 7416 \& 45 \& 43 \& 39 \& 34 \& 7484 \& 120 \& 115 \& 110 \& 105 \& 74197 \& 200 \& 195 \& 180 \& 170 <br>
\hline 7421 \& ${ }^{18}$ \& 16 \& 14 \& 3 \& 7485 \& 250 \& 24 \& 24 \& \& \& \& \& \& <br>
\hline 7426 \& 32 \& 29 \& 23 \& 20 \& ${ }_{7496}$ \& 75 \& 67 \& 80 \& 52 \& \& \& LINEAR I \& \& <br>
\hline 7430
7432 \& 20 \& ${ }_{36} 18$ \& 12 \& ${ }_{28}^{14}$ \& ${ }_{7491}{ }^{\text {A }}$ \& ${ }^{100}$ \& ${ }_{70}^{92}$ \& 85
85 \& 80 \& 709 \& \& 14pin ${ }^{14}$ \& \& ${ }_{40}^{40}$ <br>
\hline 7432

7440 \& ${ }_{20}$ \& ${ }^{36}$ \& 12 \& | 28 |
| :--- |
| 14 |
| 8 | \& 7492

7993 \& $\begin{array}{r}75 \\ 75 \\ \hline 95\end{array}$ \& ${ }_{68}$ \& 80 \& 52
80 \& 7414 \& \& 14 pin ${ }^{1}$ \& \& ${ }_{\text {c }}^{385}$ <br>
\hline 7441
7442 \& 80 \& ${ }_{75}^{75}$ \& 70 \& 65
65 \& 7494 \& 95

+105 \& 100 \& | 85 |
| :--- |
| 9 | \& ${ }_{80}^{80}$ \& ${ }^{747}$ \& \& 14 pin ${ }^{14}$ \& \& Stisp <br>

\hline 7443

7447 \& | 125 |
| :--- |
| 175 | \& 120 \& (150 \& 115 \& 7449

74100 \& 100
250 \& $\begin{array}{r}\text { 95 } \\ 240 \\ \hline\end{array}$ \& ${ }_{235}^{90}$ \& 85
230 \& 748 ${ }_{\text {OLi }}$ \& \& ${ }^{8} 8$ pin ${ }^{\text {pin and }}$ \& 6 pin \& 16p <br>
\hline
\end{tabular}

## P.E. RONDO

FULL SPECIFICATION KITS

Complete designer approved kits. Full data and even solder included. Top quality PCBs fand components.

* CBS-SQ MATRIX DECODER
$\mathbf{\$ 8 . 0 0 + ~ P o s t ~ F r e e ~}$
* PRE-AMP BOARD, COMPLETE $\mathbf{£ 3 . 0 0 + \begin{array} { c } { \text { Post Free } } \\ { \text { 300 VAT } } \\ { \hline } \end{array} )}$
-mstrat vororoveal $\mathbf{8 8 . 5 0} \begin{array}{r}\text { Post Free } \\ +85 p \text { VAT }\end{array}$
* POWER AMP BOARD + HEAT. SINK

$\mathbf{£ 7 . 5 0 ~}+$| Post Free |
| :---: |
| $75 \mathrm{p} V A T$ |

* POWER SUPPLY BOARD $\mathbf{5 5 . 0 0}+\begin{gathered}\text { Post Free } \\ +50 \mathrm{p} \text { VAT }\end{gathered}$
* MAIN SMOOTHING CAPS £0.75

Post Free $+7 p$ VAT

* MAINS TRANSFORMER £6. 25

Post Free
$62 p$ VAT

* PUNCHED CHASSIS

Post Free E2. 25

22 p VAT
PHASE LOCKED LOOP STEREO DECODER

EASY TO BUILD!
(Approximately 30 mins.)

- EMPLOYS MCI3IO IC
- REQUIRES 10 -I5v d.c.
- NO INSTRUMENTS NEEDED TO SET UP
- SIMPLEINSTRUCTIONS SUPPLIED

COMPLETE KIT $\mathbf{£ 3 \cdot 4 0}$
Plus 34p VAT
AUTOMATIC BEACON FITTING $34 p+3 p$ VAT Exira

All other items will be offered as published TRADE GLADLY SUPPLIED

STUDIO ELEGTRONIOS
P.O. BOX No. 18,HARLOW, ESSEX CM18 6SH

Telephone: Harlow (02796) 25457


## UNDERSTANDING SOLID-STATE EEECTRONICS

Basic course in semiconductor theory, Texas Inst. Price $£ 1.40$

IO4 EASY TRANSISTORPROJECTS YOU CAN BUILD by R. M. Brown, Price $\mathrm{fl} \cdot \mathbf{3 0}$.
INTEGRATED CIRCUIT POCKET BOOK by R. G. Hibberd. Price $\mathbf{4 2 . 6 0}$.
HOW TO GET THE BEST OUT OF YOUR TAPE RECORDER by P. J. Guy. Price $£ 1.60$.
50 PHOTOELECTRIC CIRCUITS AND SYSTEMS by P. S. Smith. Price El.35.
COLOURTV WITH PARTICULAR REF. TO PAL SYSTEM by G. N. Patchett. Price
女3.10.
GETTING STARTED WITH TRANSIS. TORS by L. E. Garner. Price $\{1.30$.
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. Price $\mathrm{EI}^{1.90}$.
FOUNDATIONS OF WIRELESS AND ELECTRONICS by M. G. Scroggie. Price C2.00.
THE RADIO AMATEUR'S HANDBOOK 1973 by A.R.R.L. Price $\mathbf{6 2 . 9 5}$.
BEGINNER'S GUIDE TO PRACTICAL ELECTRONICS by R. H. Warring. Price \& 1.60 .
ELECTRONIC ORGAN SERVICING GUIDE by R. G. Middleton. Price $\mathbf{E 2} \cdot \mathbf{4 0}$.
*ALL PRICES INCLUDE POSTAGE*

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-2I PRAED STREET LONDON W2 INP Phone 01.723 4185
Closed Saturday Ifp.m

resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/ 10 and 20 have removable space dividers. Build up any size cabinet for wall, bench or table top

## BUY AT TRADE PRICES!

SINGLE UNITS (ID) (Sins $\times 24$ ins $x$ 24ins). ©l-40 DOZEN.
DOUBLE UNITS (2D) (5ins $\times 4$ ihins $x$ 21 ins). E2.30 DOZEN.
TREBLE (3D) $\mathbf{E 2} \mathbf{5 0}$ for 8 .
DOUBLE TREBLE 2 drawers, in one outer case (6D2), 63-60 for 8, EXTRA LARGE SIZE (6DI) $\$ 3 \cdot 40$ for 8 .

## PLUS QUANTITY DISCOUNTS!

Orders $£ 10$ and over DEDUCT 5\% in the $£$ Orders $E 20$ and over DEDUCT $71 \%$ in the $f$ Orders $£ 50$ and over DEDUCT $10 \%$ in the $£$

PACKING/POSTAGE/CARRIAGE: Add 35p to all orders under $£ 10$. Orders $£ 10$ and over, packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES Please add $10 \%$ V,A.T, to total remittance (Dept. PE I 2 ) 124 Cricklewood FLA $\mathrm{LL}[\mathrm{NE}$ ( Bropt. PEi2) L24Crickiowo

## SINCLAIR EQUIPMENT  doen



DELUXE KIT FOR THE ICI2
includas all parts for the printed circuit and volume, bast and treble controls needed to complate the mono version $£ 1.55$ (26p). Stereo
model with balance control $\mathbf{\$ 3} .50$ (46p).

BASIC KITS FOR THE ICI2
Contains components for P.C. board and volume and simple tone controls. Mono version $\mathbf{f} 1 \cdot \mathbf{2 5}$ $(24 \mathrm{D})$. Stereo model with balance control $\mathbf{4 2} \cdot \mathbf{9 0}$ 40p).

CI2 POWER KIT
ase of components to construct a 20 V 0.5 A power supply 2247 (50p).
LOUDSPEAKERS FOR THE ICI2
$\sin 8 \mathrm{chm}$ \& 1.10 (27p). Sin $\times \sin 8$ ohm © 1.55 (37p). 10 in $\times 6$ in 15 ohm $£ 2.20$ (44p).
PMEAMPLIFIER KITS FOR THE ICI2
Type Ifor magnetic pickups, mics and tuners, with ${ }^{3}$ position equalization switch. Mono
model $\mathrm{fl} \cdot 30$ (24p). Stereo model 62.30 (34p). Type 2 for ceramic or erystal pickups. Mono $60 p$ (17p). Stereo 41.20 (23p).
SEND S.A.E. FOR FREE LEAFLET ON KITS
SINCLAIR 春XECUTIVE CALCULATOR


Now only 134.95 ( 63.70 )

## SWANLEY ELECTRONICS

32 Goldsel Road, Swanley, Kent
Please add the sum shown in brackets after the price to cover the cost of past and VAT


A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

## PSU PROTECTION

WHEN using a regulated PSU to reduce a supply voltage there is always the danger of component failure in the PSU and consequent damage to the equipment. A fuse will protect equipment when an excess of current is drawn but might be too slow to cope with overvoltage conditions.

In Fig. 1 the values shown suit a car battery supply being used to drive a battery tape recorder at 7.5 V . The load requirement is 300 mA and the trip voltage was set to 8 V to protect the recorder in the event of regulator fault.


Fig. 1. Power supply protection circuit
R1 and VR1 form a potential divider which samples the output voltage as set by adjustment of VR1. The CSR1 is selected to carry at least twice the fuse rating. The full supply voltage is connected to the input of the regulator.

Transistor TR1 is held biased off by R2 and CSR1 so that the lamp LPI is held off. If the output voltage rises above a set trip value then CSR1 will conduct, FSI will blow and TR1 will be supplied with base current via $R 2$ and the lamp will light up.
J. Sadler,

Cheshire.


Fig. 1. Circuit diagram for the servo amplifier

Adigital proportional decoder was published in the series Logical Radio Control (no issues available) and I have developed the following servo amplifier to go with such a device, see Fig. 1. Using a 741 operational amplifier for compactness, the circuit accepts the positive-going pulses, of variable length, from the decoder. These are integrated by RI and Cl to give a d.c. which, using my decoder, varies from +0.2 to +1.2 V .

Potentiometer VR1 is adjusted to give a value equivalent to minus the centre voltage at its wiper. In my case this is -0.7 V . The 741 is used as a summation amplifier.

If VR3 is set at $10 \mathrm{k} \Omega$ so that the gain of the 741
is unity, then the output will be $1.2-0.7 \mathrm{~V}=+0.5 \mathrm{~V}$ at one transmitter control extreme and $0 \cdot 2-0.7 \mathrm{~V}=$ -0.5 V at the other. In fact, the gain is set so that the output swings $\pm 3 \mathrm{~V}$.

The transistors form a current amplifier to drive the servomotor and feedback from the motor is provided via the potentiometer VR2 which is ganged to the motor. The deadband of the servo may be controlled by varying VR3 and when the optimum value is found replacing with a fixed resistor.

The values of R2 and R3 are found by experiment.
P. Skan,

Sutton Coldfield.

## CAR LIGHTS MONITOR



Fig. 1. Circuit diagram of the car lights monitor

Perhaps the enclosed circuit of a car light monitor would be of interest to some of your readers. The circuit, Fig. 1, was designed to indicate the presence of a bulb failure in either the two front side lights or the two rear lights (the number plate light could also be included).

The $3.3 \Omega 2$ resistor R1 makes no visible difference to the bulbs light output as only approximately IV is dropped across it. When the bulb filament $R_{\mathrm{x}}$ goes open circuit there is no forward bias to TR1 and its collector voltage rises and turns TR2 hard on, illuminating the indicator bulb LPI.

The circuit as shown will operate on positive earth cars; for negative earth cars pnp transistors, such as the AC128, should be used. The connecting details are shown in Fig. 2.

A wide variety of bulbs can be used in the LP1 position as long as the ratings of TR2 are not exceeded. The prototype used $6 \mathrm{~V} 0 \cdot 1 \mathrm{~A}$ bulbs with 33』 2 ballast resistors.
I. K. Staley, Mansfield, Notts.


Fig. 2. Showing how the circuit is connected into the car wiring. The circuit in Fig. 1 is repeated for each light to be monitored

NEKT MONTH...


Have fun with the Party Strobe!
An easy-to-build, low cost medium power stroboscope which will amuse your friends at parties or discotheques.

## VOICE DPERATED FADER

Run a super-efficient Disco-when you speak the music fades and when you stop it comes back up.
Ideal for the tape enthusiast who wants to add commentaries to his recordings.


## PART FOUR

## enacun <br> 




## ELECTRO-TECH ${ }^{\text {componerrs sp. }}$



## ELECTRONIC DETECTOR for

## GAS 3 SDOES

COMPLETE MAINS OPERATED parts kit \& flush or surface mounting box £8.45 p\&pzop parts available separately
TGS 105 sensor E1.80 P\&P $10 \rho$
Transformer ET 50 P\&P $20 \rho$ PCB and circuit diagram ...............EO.55 P\&P 10 D PLEASE ADO 1O\% VAT tO the above

ELECTROMEC L.td, Rurckinge, Ashford,Kent in26 2 ef

T UAC (An) NEW TUAC POWER MODULES. Now in their second successful year offering more power and quality than ever before.
TP100 $\quad \star 125$ Watts RMS continuous sine wave output
lliustrated $\star 4$ RCA 150 Watt 15 Amp output transistors
f15.75

- Special layer wound driver transformer
t Short, open, and thermal overload protection $\star$ Compact size: $7 \times 6 \frac{1}{2} \times 3$ in.


TL100
Illustrated


$$
\begin{aligned}
& \star 100 \text { Watts RMS sine wave } \\
& \star 2 \text { RCA } 15 \text { Amp output transistors } \\
& \star \text { Rugged transformer driver } \\
& \star \text { Full thermal overload protection } \\
& \star \text { Compact size: } 5 \times 5 \times 3 \mathrm{in} .
\end{aligned}
$$

## TL60

* 60 Watts RMS
sine wave
-RCA 115 Watt output transis丸Only six connections to make $\star$ Same size as TL100

Specification on all three power modules:
All output power ratings $\pm 1 \mathrm{~dB}$. Output impedance $8-15$ Ohms. THD at full power $1 \%$ typically $0.5 \%$
input sensitivity 60 mV into $10 \mathrm{k} \Omega$. Frequency response $10 \mathrm{~Hz}-25 \mathrm{kHz} \pm 2 \mathrm{~dB}$. Hum and noise better than -75 dB
Power supplies vacuum impregnated Transformers with supply board incorporating stabilised pre-amp supply
PS $125 \pm 50$ volts for one TP100
£8 75
PS $100 \pm 45$ volts for one TL100
PS $60 \pm 40$ volts for one TL60
PSU 2 For supplying Disco Mixer
PRE AMPLIFIERS
All Tuac audio modules are constructed on glass fibre P.C. board, are ready assembled and fully tested. Low noise silicon and FET transistors together with H.S. carbon film resistors are used throughout. Extensive research has gone into the
various wide range tone control circuits, producing superb sound quality from any signal. Previous range still available. various wide range tone control circuits, producing superb sound quality from any signal. Previous range still available
40 V d.c.; 60 mV o/p.

VA08
Vol, Treb, Mid and Bass Controls. HI IMP. FET I/P. Suitable Mic, Guitar, Radio, Crystal/Ceramic
P.U. Sensitivity 4 mV . Treb +35 dB at 16 kHz . Mid $+20-15 \mathrm{~dB}$ at 1 kHz , Bass $+20-10 \mathrm{bB}$ at 40 Hz .
€4. 22
VA06 Vol, Treb and Bass Controls. 8 mV sensitivity. Treb $+28-15 \mathrm{~dB}$ at 12 kHz , Bass $\pm 18 \mathrm{~dB}$ at 40 Hz .
$\notin 3.72$
AMF01 Tuace Auto Fade Unit fades music when you speak
Auto Mic Over-ride for Disco use. Feed Deck and Mic Pre-amps in. Auto fade O/P to main Amp. $\mathbf{£ 4 . 4 0}$ 30 mV operating level. Depth and Vol. Controls.


SIZE $6 \frac{1^{\prime \prime}}{} \times 2^{\prime \prime} \times 1^{\prime \prime}$

## ALL PRICES INCLUDE V.A.T. AND POSTAGE AND PACKING

ACCESS \& BARCLAY CARDS ACCEPTED, JUST SEND US YOUR NUMBER. H.P. ARRANGED THROUGH PAYBONDS.


TUAC DISCOTHEQUE MIXER WITH AUTO FADE Designed for the discerning D.J. of professional standard.
Controls: Mic Vol, Tone, Over-ride depth, Auto Manual Sw. Tape Vol, L \& R Deck Faders, Deck Volume. Treb. \& Bass. H. Phon Vol, Selector. Master Vol, on/off sw. Max. output
 Offering a vast variety of functions. IV RMS. Specification as VA05.
TUAC HIGH POWER AMPLIFICATION-built to high
 standards, and built to last
50 WATT RMS SINE WAVE ALL PURPOSE AMPLIFIER
Suitable for Disco, PA, Guitar. 4 inputs. 2 volume controls. Master volume, treble,
middle and bass controls. Rugged cirmiddle and bass controls. Rugged cir-
cuit, rugged leather-cloth covered case, short and open circuit protection. Tone

control specification as VA08 pre-amp.

50
WATT $\& 42-25$
WATT $\& 64-50$
50
WATT $\& 42-25$
WATT $\& 64-50$

PANEL SIZE $18^{\prime \prime} \times 4 \frac{1}{2}$ " DEPTH $3^{\prime \prime}$

## TUAC LIGHT MODULATORS

Constructad on glass fibre
P.C. board,
individually tested.
Three channel light mod. ulator will control three separate sets of lights, up channel responds to the bass, one to the middle, and one to the high frequencies. Input sensitivity only 0.5
 3 Channel S/LMB Illus the Three individual controls allow for adjustment of he three channels, and a master sensitivity control allows for input levels up to 100 Watts to be safely accommodated. Full interference suppression. Full SILMB 3 Channel
wave control. Isolating input transwave control. isolating input trans-
former does not affect Amplifier operation. Fully Fused.

की 7.45
SINGLE CHANNEL VERSION SZLMB
Increased capacity of 1800 Watts. S2LMB S2LMB 1 Channel Sensitivity control. Isolating inpui transformer does not affect amplifier operation.

MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EQUIPMENT


## WOW』 A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS


#### Abstract

Build as you learn with the exciting new TECHMATRON Outft! No mathematics. No soldering-you learn the praotical way.


Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s simplified study method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

## Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

. . and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile' Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.

## You LEARN-but it's as

 fascinating as a hobby.Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the springboard for a career in Radio and Electronics.


## BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this clourse-but it teaches the real thing. The easy to understand, practical projects-from a burgiar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of courses up to City and Guilds standards.

Specialist Booklet
If you wish to make a career in Electronics, send for your FREE copy of "NEW OPPORTUNITIES". This brand new booklet -just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.


Dept. BPE21 ALDERMASTON COURT, READING RG7 4PF
Accredited by the Conneil for the Acrreditation of Correapondence Colleges.


## FM TUNER

## NELSON-JONES

## PUSH BUTTON VARICAP

Tuning now available.
Six Position variable push button unit with individual frequency scales. Teak case and full metalwork matches the Texan amp.
Approved parts of this outstanding design. Featuring $0.75 \mu \mathrm{~V}$ sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning. S.A.E. please for lists.

## PE RONDO

We are kit stockists for this excellent design

## LIGHT EMITTING DIODES

RED only 29p each $10+23 p$
GREEN only 69p each $10+59 p$

## 7 SEGMENT LED DISPLAY

0.325 in Characters $0-9$ and nine letters. TTL, DTL compatible. ONLY $\mathbf{£ 2} .46$ each, p.p. IOp.

Please add $10 \%$ V.A.T. for U.K. orders.
INTEGREX LIMITED, DEPT. P.E. P.O. BOX 45, DERBY DEI ITW

Tel.: Repton (028389) 3580

| All items advertised in previous numbers of this magazine |  |
| :---: | :---: |
|  | MULTI- <br> METER <br> Model 200H 20,000 ohm/ <br> volt, $\mathbf{\text { E5-28. }}$ |
| CARDIOID DYNAMIC MICROPHONE Model UD-130. Frequency response 5015,000c/s. Impedance Dual 50 K and 600 ohms, 64.95. | AMPLIFIER 64.30 |

All above prices include $10 \%$ V.A.T. Please add 10 p for P. \& P. on orders under 65. LARGE S.A.E. for List No. 6. Special prices for quantity quoted on request.

## M. DZIUBAS

I58 Bradshawgate - Bolton • Lancs. BL2 IBA
post \& PACKING 45p EACH

## TELEPHONE DIALS

Standard Post Office type. Guaranteed in working order

## ONLY $27 \frac{1}{2} \mathrm{p}$ POST \& PACKING 16\&

TESTED AND GUARANTEED PAKS | 876 |
| :--- | IN 4007 Sil. Rec. diodes. , 000 PIV 1 amp. plastic


B99 200 Mixed Capacitors. Approx. 55p

200 quantity, counted by weight Post \& packing 15p.
H4 250 Mixed Resistors. Approx. quantity counted by
Post \& packing I5p.
M7 $40 \begin{aligned} & \text { Wirewound Resistors. Mixed } \\ & \text { types and values }\end{aligned}$
H9 2 OCP7I Light Sensitive
H28 20 OC200/1/2/3 PNP Silicon
55p
H30 20 uncoded TO-5 can
55p
H30 $20 \begin{aligned} & 1 \\ & \text { Mixed Voltages } 6: 8-4 j V\end{aligned}$
H35 100 Mixed Diodes, Germ. Gold bonded, etc
Unmarked
H38 30 Short lead Transistors,
55p
H39 WPN Silicon Planar types
55p
H40 20 BMC 962,2 flip flops BMC
55p
H4I $2 \begin{aligned} & \text { BDI3I/BDI } 32 \text { Complemen- } \\ & \text { tary Plastic Transistors }\end{aligned}$ 55p
UNMARKED UNTESTED PAKS
BI 50 Germanium Transistors
B66 150 Germanium Diodes
B83 200 Trans. manufacturers' re-
55p
$\overline{\text { Sil and Germ. }}$
B84 $100 \begin{aligned} & \text { Silicon Diodes DO-7 glass } \\ & \text { equiv. to OA200, OA } 202\end{aligned}$
$886 \quad 100 \begin{aligned} & \text { Sil. Diodes sub. min. } \\ & \text { IN914 and IN9i6 types }\end{aligned}$
H6 $40 \begin{aligned} & 250 \mathrm{~mW} \\ & \text { DO. Zener Din. Glass Type }\end{aligned}$55p

HI5 30 Top Hat Silicon Rectifiers,
H16 $15 \begin{aligned} & \text { Experimenters' Pak of } \\ & \text { Integrated Circuits. Data }\end{aligned}$ Integrated Circuits. Data
supplied
HI7 20 amp. Silicon Stud Recti-
H20 $20 \begin{aligned} & \overline{\text { BYI26/7 Type Silicon Recti }} \\ & \text { fiers } 1 \text { amp. plastic. Mixed }\end{aligned}$
H34 15 Power Transistors, PNP. Germ. NPN Silicon TO-3

## MAKE A REV COUNTER

 FOR YOUR CARThe 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter linear and accurate rev counter for any car with hormal coil ignition system

Our famous PI Pak is still leading in value for money

Full of Short Lead Semiconductors and
Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP and NPN, and a host of Diodes and Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Pleas: ask for Pak P.I. Only 55 p .

## A CROSS HATCH GENERATOR FOR $\mathbf{4} \mathbf{3 . 8 5}$ il !

YES, a complete kit of parts including Printed Circuit Board. A four position switch gives X-hatch. Dots, Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This was a project in the This complete kit of 63.85, post paid.

A MUST for Colour T.V. Alignment.

## Electronic Transistor Ignition

Now in kit form, we offer this "up-to-the. minute" electronic ignition system. Simple to make, full instructions supplied with these outstanding features: Transistor and conventional switchability, burglar proof ock-u-up and automatic alarm, negative and positive compatibility. This projectis s " "star' 'feature in the September edition of "Electronics Today International" magazine. Our kit is recommended by the ETI magazine.
Complete kit including P. Z. P. $67 \cdot 92$ Ready builta tested unit $\operatorname{\text {K}}$.02 EXTRA

## FREE

CATALOGUE FOR

transistors, RECTIFIERS, diones. integrated Clickut

FULL PRE-PAK ${ }^{\text {FULTLTS }}$

## PLASTIC POWER TRANSISTORS

## NOW IN TWO RANGES

These are 40 W and 90 W silicon Plastic Power Tranjistors of the very latest design, available in prices of all time. We have been ingly low prices of all time. We have been
selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed
terms. VCE Mi IS HFE Min 15

$\begin{array}{cccc}40 \text { watt } & 1-12 & 13-25 & 26-50 \\ 90 & 22 p & 20 p & 18 p\end{array}$

$\begin{array}{lccc} & 1-12 & 13-25 & 26-50 \\ 40 \text { wate } & 33 p & 31 p & 29 p \\ 90 \text { watt } & 301 p & 36 \not p & 33 p\end{array}$
30 watt
Complementary pairs matched for gain at
3 amps. Ilp extra per pair. Please state
NPN or PNP on order.
INTEGRATED CIRCUITS. We stock a large range of I.C.s at very competitive prices (from Ilp each). These are all listed in our
METRICATION CHARTS now available.
This fantastically detailed conversion calThis fantastically detailed conversion calculator carries thousands of classified
references between metric and British (and references between metric and British (and volume, liquid measure, weights, etc. Pocker Size. 15p, Wall Chart, 18p.

LOW COST DUAL IN LINE I.C.
SOCKETS
$\left.\begin{array}{l}14 \text { pin type at } 16 \text { ip each } \\ 16 \text { pin type at } 18 p \text { each }\end{array}\right\} \begin{aligned} & \text { Now new low } \\ & \text { profile type }\end{aligned}$
BOOKS
We have a large selection of Reference and Technical Books in stock.
These arejust $t$ wo of our popular lines
B.P.I. Transistor Equivalents and
Substitutes:

Substitutes:
This includes many thousands of British. 40p T.S.A. European and C.V. equivalents. The lliffe Radio Valve $\mathrm{E}_{\mathrm{i}}$ Transintor Data Book 9th Edition: P\&P231p. 7Sp Characteristics of 3.000 valves and eubes. 4,500 Transistors, Diodes, Rectifiers and Integrated Circuits.

Send for lists of publications.
N.E.一悤ooks are void of V.A.T.


# THED.YYELECTRONICSKIT FORSTUDENTS,TECHNCIANS AND HOBBYISTS 

## Now available from all leading electrical shops, the complete <br> D-I-Y printed circuit kit. Save time and money with this latest development by GSPK in the field of home electronics.



The GSPK Signal Booster is designed to improve car radio reception in towns and built-up areas. It's also claimed to eliminate any loss of signal caused by rear mounted aerials with long leads. The solid state unit is plugged into the aerial lead and takes its power supply from the car battery. Is manufactured in positive and negative earth versions and costs $\mathbf{£ 3 . 2 9}$ including VAT plus postage and packaging-15p.


Our products are available from all leading electrical
gspk
Hookstone Park, Harrogate, Yorkshire HG2 7BU

NORTH AMERICAN SEMICONDUCTOR COMPANY LIMITED



MAINS MOTOR
Preciaion Inade-as used in record decks and tape recurfan, blower, heaters, extractor and blower, heaters, etc. New
and perfect. 8nip at $78 p$. Pustage 20 p for first one
10 p for each one ordered.

## MUSIC ON TAPE

A further buy enables us to offer theas at an even for list of titles. We can't repeat when sold out
BALANCED ARMATURE
UNIT
500 ohm , operates as speaker or microphone, so usefulln intercon or simila

CAR ELECTRIC PLUG
Fits in place of cigarette light Useful method for making a quick
connection Into the car electrical aystem, 88 p each or 10 for 23.42 .

12 VOLT II AMP POWER PACK
This comprises double wound $230 / 240 \mathrm{~V}$ mains transformer with full wave rectifier and
2000 mF smoothing. Price 2000 mF smoothing. Price
82.20, plus 20p post \& packing. Heavy Duty Mains Power Pack. Output voltage adjuatable from $1 \overline{5}-40 \mathrm{~V}$ in stepo-maximum load 200 W -that is from 6 amp at 40 V to 15 amp unit with dozens of workshop por heavy duty voltage adjustment is very quick-simply inter change push on leads. Silicon rectifiers and smoothing by $3,000 \mathrm{mF}$. Price $\mathbf{8 6 - 3 8}$ piug fi5p pust BAKELITE INSTRUMENT CASE Size approx. $6 \frac{1}{2}^{2} \times 3 \frac{1}{2 \prime}^{2} \times 2$
deep with brass orners and bakelite panel this corners and bakelite panel. This ouse instruments and special rigs, etc. Price. 50p each


## MINIATURE

WAFER SWITCHES
3 pole. 2 way-4 pole, '3 waypole, 4 way- 3 pole, 4 way- 2 pole way-l pole. 12 way. All at 25 p

## CONNECTING WIRE

7.0076 Copper conductors. 500 metre drums available in the following colours: Red/Brown, Green/White, Grey/White, Blue/Orange, Brown Red, Brown/White, Red/Grey, Blue/Grey, Blue Brown. Price $22 \cdot 20$ per drum plus 40 p post. State alternative colours.
Screened Cable. 70076 core suitable for pick up or nike lead or for inter-connecting amplithers. 10 metres. 83p.

## DOOR SWITCH

As fitted to retrigerators, etc. Switches off as door MICRO SWITCH
5 amp changeover contacts, 11 p Model 15p each. Changeover 19p

## each.


U.V. LIGHTING

Useful for flaw detection in metale and for looking for water marks, etc., also for fitting over tropical which must haven violets and other indoor plants outfit comprises starter holder and tube ends. Price $\mathbf{2 8}$. 20 plus ${ }^{20 p}$ pos
80 WATT TUBULAR ELEMENTS Brasa encased with beaded flex ends. Standar butalso has dozens of other uses. 83 p each.

## SPIT MOTOR



200-250V Induction Motor ling of Carter gear box with unning at frev drive bhat Intended for resa per minute. Intended for roasting chickens models-windnills, coloured disc lighting effect etc., etc. 82.04 plus 20 p post and insurance


RIGGER MATS
go thin is undetectable under slightest pressure. For on with alarms, shop doors, ete. birgla
$24 \mathrm{in} \times 18 \mathrm{in}$ s1. 68. 13 in $\times 10 \mathrm{in} 81.21$.
ROCKER SWITCH 13 amp self-fixing into an oblong hole. 10 for 82p.

## KETTLE ELEMENTS

Made by the famous A.E.I. Co. Complete with washers and combined fixing ring and plug fhroud. Normal 2 round pin and load reatet push button. 2 Modelslin. (approx.) suitable for Swan and other similar models-lizin. (approx.) suitable for G.E.C. Hotpoint, etc. All quick boil $2 \frac{1}{3} W$ elements at 240 V . Price 21.38
each.


远
MULLARD AUDIO AMPLIFIERS
Alin thendule forin. each ready bunccomplete with heat ninks and connect ion tags, data supplied. Model 1153 j00mw power output 78 p. Houel 1179750 m W. power oulpul 94 p . Inilex DIY STEREO. Complete 11130 .

## CENTRIFUGAL BLOWER

nit by Woods. Powerful but specially built for awer anit by Woods. Powerful but specially built for quiet pecially built low cushone bearings, overall size $4 \geq \sim$ with $\times 4^{-}$. When mounted by flange, air is blown into the equipment but to suck air out, mount it from centre using clamp. Ideal for cooling electrical equipment or fltting into a cooker hood, film drying cabinet or for removing finx 92.05.

## MIGHTY MIDGET

Probably the tiniest possible radio, as described in Practical Wireless, 4 January 73. All electronic parts $22-20$ post paid.

## TAPE PLAYBACK UNITS

Mains operated, Made by Reditune the Thene are complete units for plaving tape a standard speed (3 $3^{* *)}$. These have a superior motor driven fly wheel to control the tape through the capstan and also an even equally useful valve amplifier with EL84 ontput. 1n a steel case with carrying handle. Tested and in good working order es- 50 or some in need of repair but complete $23 \cdot 50$. Cassettes of tape pre-recorted 21.10 (please state type miles then 50 p per 100 mines extra. up to 200


## 6 MAINS TRANSFORMERS

## Our Rel: MTMI 27V at 8A. Uprigit <br> ully tapped primary Price 89.80

Oar Ref: MTME. 12 V at 1 A . Upright mounting with fixing luge, tag connections. 240 V primary- 12 V 1 A secondary. Price 88 p .
Ouf Ref: MTM3. 6.3V 2A upright mounting, with fixing luge, tag connections Our Rel.
Our Rel: MTM4. 18V-1A with thermal cut-out. upright mounting with fixing Mains Lar connections. Priniary 240 V -secondary 18 V at $\frac{1}{} \mathrm{~A}$. Price 88 p .
Maing Leolstion, 350 W earth shielded-flex leads-upright mounting lugs for
 intermittent 5 A continnous. Price 55 p .

## DISTRIBUTION PANELS

Just what you need for work bench or lab $4 \times 13$ amp sockets in metal box to take standard 13 amp fused plugs and onfofi switch with neon warning light. Supplied conplete with 7 feet of heavy cable
Wired up ready to work, 82.50 plus 20 p post and insurance.


## 24-HOUR TIME SWITCH

Made by Bniths, these are A.C. mains operated, NOT CLOCKWORK. Ideal for mounting on rack or shelf or can be built into box with 13A socket. Two com pletely adjustable time periods per 24 hours, 5A
changeover contacts will switch circuit on or ofl during these perjods. $\$ 2.75$ pont and ins. $\mathbf{2 5 p}$ Additional time contacts 55 p pair.

## THYRISTOR LIGHT DIMMER

in any lamp up to 1 kw . Mounted on switch plate to fit in place of standard switch. Virtually no radio interference. Induatrial mode! $\overline{5 A}$ e3-30. Not on plate.


## THIS MONTH'S SNIP WALL THERMOSTATS

## WALL THERMOSTATs

Made by the famous Smiths Instrument Co. called Colourstat. Wall mounting and in a handsome plastic case (cream and beige). Adjustable by alider (lockable) and may be aet to control temperatures from around freezing through to $50^{\circ} \mathrm{C}$. The silde panel ls engraved and indicates "frost, "warm", "very warm", etc. The thermostat will control heaters, etc., up to 15 A at hormal mains voltage and is ideal for living room, bed
roon and greenhouse, etc. Price $\mathrm{El} \cdot \mathrm{B} 5$ Don't misa this.

## THE TWENTYLITE

Fluorescent lighting units with polyeater choke and finished white enamel. 2ft. model, ideal kitchen,
 bedroom, hallway, porch, lift, etc.


## 10 AMP. DIMMER/CONTROLLER

For the control of lighting of stage or studio or portable equipment in workshops, etc. This has socket outlets each controlled by 5 AMP Solid State Regulator. Also fitted with master switch fuse and neon indicator and terminating with 6 feet of flex. Overall length 17 in. 3 in. $\times 1 \frac{1}{2}$ in. deep. $67 \cdot 50$ plus 25 p P. \& P.

## TANGENTIAL HEATER UNIT

This heater unit is the very latest type, most emicient, and quite running. Is as fitted in hoove
and blower heaters costing $£ 15$ and more. We have a few only. Comprises motor, impeller 2 kW element and 1 kW element allowing awitching 1. 2 and 3 kW and with thermal safety cut-out. Can be fitted into any metal line case or cabinet Only needs control switch. 88.85 . 2 kW Model as above except 2 kW W2.75. Dor't miss this
Control Bwitch 44p. P. \& P. 40p.


TERMS: $10 \%$ discount if ten of an item ordered, send postage where quoted-other items, post free if order for these items is $\pm 6 \cdot 00$, otherwise add 20 p.

Voltage Changing Tranaformera made Dy Parmeko Upright mounting, fully ahrouded and with tet minal blocks for input and output. For changing equipment from $230 / 240 \mathrm{malng}$ and for increasing voltage due to losses in long leads. Voltege up votage due to losses in long leads. Voltage up
ur ween $190-250 \mathrm{~V}$. 250 W . Price 81.85 plus 30 p port, ete. Door Opening or Platiorm Rotating Motors. very powerful motors estimated rating at $\mid \mathrm{h} . \mathrm{p}$ Reversible with gearbox and of beit drisich weighs approx. Iovtb is elio. Note. These are ex-equipment but guaranteed for six months.
Gas and 8moke detector/Sensor-ret. GD1cach; circuit ot smoke detector alarm included. Conatructional details appeared in September Practical Wireless, so we can supply the SL03L at $21 \cdot 75$, the ZX4 14 at $21 \cdot 35$, a lso most other ttems, send for PW 10 radio parts list
8pring Return Waler 8 witch. As used in inter com and other bimitar equipment a two wafer pole 3 way suritch, spring return from centre position when turned clockwise and permanent off or on when turned anti-clockwise. Price
$\mathbf{5 5 p}$ each.
55p each.
A.C. Buzzers. 12 V . Fix thege into a box which will resonate and they will give a loud piercing note. Suitable for alarms or signal. S3p each. Push-on Tag Connectors. These are being increasingly used on cars and domestic appliances. 2 sizes prevail, the most popular bein 10 for $10 \mathrm{p} ; 50$ for $40 \mathrm{p} ; 100$ for $70 \mathrm{p} ; 1,000$ for $\mathrm{E5}$. 4 Minute Timed on 8 witch by 8 mitha. Our ref plates, etc. Has a scale graduated $0-4 \mathrm{~min}$. plates, etc. Has a scale graduated $0-4 \mathrm{~min}$
Turn the polnter knob, and set it at the deaired time-switch will stay closed until pointer knob returns to zero. Clockwork motor, to can be independent of majns if desired. but the suritch
itaelf fi double pole, rated 250 V , 15 Amps . Price itself
$21-65$.
One Hour Timed On Switch by smitha, Our ref. TS AUS. As TS AUl except that the com-
plete rotation of the pointer knob lasts for 1 hr . plete rotation of
Price $21-10$ each.


DRILL
CONTROLLER NEW IKW MODE Electronically changer
apeed from spproxi-

Full power at all everything and full instrue
tlons. E1.95. 13p post and p. Made up model also available. E8.95
MAINS TRANSISTOR POWER PACK
Designed to operate transistor sets and ampli Biers. Adjustable output $6 \mathrm{v} ., 9 \mathrm{v} ., 12$ volts for up
to 500 mA (clasa B working). Tikes the place on to 500 mA (class $\mathbf{B}$ working). Takes the place of ally of the following batberies: PP1. PP3, PP4 PP6, PP7, PP9, and others, Kit comprises: maina condensers and instructions. Real snip at onl 21.10. Plus 20 p postage.

Stereo Pre-amp Module. Mullard ref. LP 7182/2-transistors and all anclilary com
ponents nounted on PC board 81.32 with ponente mount
connection dig.

$]_{\text {PRoGRAMMER }}^{15 A}$
PROGRAMMER Have radio playing You awake-switch on
lights to ward of warm honse to come home to. All these and many other things you can do if you invest in an electrical prog of be set anywhere to stay on up to 6 hours. In dependent 60 minute memory jogger. A beautiful unit. Price f2.15 $+20 \mathrm{p} p$. \& $p$. or with glass
front chrome bezel 88 pextra. front chrome bezel 88 p extra.
THERMAL CUTOUT
A miniature device ${ }^{3}$ in dia. on one acrew fixing mount-can be used for motor overlosd protection 15 amp contacts open with flame-radiant or conducted beat. $11 p$ each or 10 for $99 p$.

## HONEYWELL PUSH BUTTON

## MICRO SWITCHES

As used in some vending machines, etc. Each Intended for paner mounting with fixing nuts and aingle black push knob. Single changeover switch 28p. Double switch 48p. Triple switch 61p. MACLAREN THERMOSTAT
Make and break 20A a.c. with the sensor probe
coupled by 2 feet capillary covering range of $10-100^{\circ} \mathrm{C}$ complete with large engraved contro knob. Price 88p

## 



RUSSIAN 22 RANGE MULTIMETER Model T'33 10,000 O.P.'.
A frat clask versatile in-
 carrying case OU'R PRICE 24.95 . Post 25 p .

MODEL $500 \quad 30,000$ O.P.V. with overlosd protection 100/250/500/1,000 $0 / 25 / 10 / 25 / 100 / 250 / 500 /$ $1,000 \mathrm{~V}^{1}$ a.c. $0 / 50 \mu \mathrm{~A} / \mathrm{J} / \mathrm{Joj}$ $500 \mathrm{~mA} \quad 12$ amp. $\quad 12 \mathrm{c}$. 10.50 . Pust paid.


370 WTR MOLTIMETER Features a.c. current $0 / 0 \cdot 0 / 20 / 10 / 50 /=50 / 500 /$
10/: 5/10/501250/500/ 1.0004
$0 / 50 \mu \mathrm{~s} / \mathrm{/} / 10$ / $100 \mathrm{~mA} / 1 / 111$


- 0 + 42118 , £17-50. post 2.50 .

TMELAB TESTER
$100,000 \quad$ O.P.V,
6 in scale huzzer
whort circuit check Sensitivity: 100,000 OP.c. volts: $0.5,2.5$
 A.e volta: $3,100,100$ $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{meg} . \mathrm{JOO} \mathrm{meg}$. Decibels:
 P. \& P. 2ip.

[^8]

Models-100TR MOLTIMETER/TRANSISTOR TESTER 100,000 U.P.V t ion: $0 / 0 \cdot+2 / 0 \cdot 5 / 3 / 12 / 30 / 1 \cdot 20 /$ $0 / 12 / 600 \mu \mathrm{~A} / 12 / 300 \mathrm{ma} / 1$. amp. 11.c. 0/10 K/1 ME(i/10n MEA: - 20 to + 50dB. 0.01-: MFIS Transistor tester measures Alpha, beta and Ico. Complete with batt
inat ructions and leads. inatructions and leads
$\varepsilon 14.95$. Post 2 pp .

## LB3 TRANSISTOR TESTER

 Testa ICO and B. AV battery. Complete 48-85. Post 20 p .

LB4 TRARSISTOR TESTER Teats PNP or NPN transistors, Audio indications on two $1 \cdot 5 \mathrm{~V}$ batteries.
Complete $\begin{aligned} & \text { tith allingtractiona, }\end{aligned}$ etc. Checks true a.c beta in/out. Checks Icbo. Checks aliules infout
Checks SCR. etc Beta HI 10-500 LO


## $2-50$ Ibeo $0.5000 \mu \mathrm{~A}$ <br> $290 / 240 \mathrm{~V}$ a.c. operation. 817.50. Post 2 áp.

## KAMODEN HM-350 TRANSISTOR TESTER

## 

 carrying b, leads and carryingPost 30p.


TE-65 VALVE VOLTMETER


## KAMODEN 72.200

MULTITESTER
High sensitivity tester
200,000 o.p. \% orerlua protection. Mirror scale Ranges: 0/0-06/0:3/3/30/ 120/600/1,2005 dic.. o/R/ $0 / 6 \mu \mathrm{~A} / 1 \cdot 2 \mathrm{ma} / 120 \mathrm{~mA} /$ $0 / 6 \mu \mathrm{~A} / 1 \cdot 2 \mathrm{ma}$
$600 \mathrm{~mA} / 12 \mathrm{~A}$
a.c. -20 tu $+63 \mathrm{~dB} .0 /$
ak
and

$\frac{2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{M} \Omega / 200}{\mathrm{M} \Omega . \mathrm{E} 16.95 . \operatorname{Post} 30 \mathrm{p},}$
MODEL J4311 SUB-STANDARD
MOLTI-RANGE VOLT AMMETER


75/150/300/7an wite.
Antomatic cut unt. Suphed complete with test leads, manual anti test certificates
e49. Post nop.



TME KODEL 117 F.E.T. ELECTRONIC VOLTMETER BoLTMETER Bag input. 26 ranges. Large $4{ }_{4}^{\ddagger}$ in mirror scale. Size 5 in $\times 4$ in $\times 2 l i n$. D.c. Volts $0.3-1,200 \mathrm{~V}$.

 sistance up to $2,000 \mathrm{M}$ ohm. Decibels - 20 to
+51 ll . Complete with leads/instrictions. E17.50. P. \& P. 20p.
 219-95. Post 30p.

MODEL TE15 GRID DIP METER Trangistorised. a Gric Dip, Operatlator Absorption Wave Meter and Oscillating Detector. Frequency range 440 kHz
280 MHz in f coils. 500 mA meter. ot battery opera. tion. Size $180 \mathrm{mim} \times 80 \mathrm{~mm}$
$\times 40 \mathrm{~mm}$. ${ }^{\times 15}$. Post $20 p$.

TERE SLRE GQUARE WAVE AUDIO

##  <br> g 20 b 2 0 0 2 2 s n t t

$2 n e$
bands
20c/s
0
$0 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$.
Output
Output imped-
ance $\overline{5}, 000$ ohms ance 5,000
$200 / 250 \mathrm{y}$
Supplied brand

teed with ingtruc-
tion manual and leads. 217.50. Carr. 37†p ARF-300 AF/RF
SIGNAL GENERATOR
All transistorised, com All transistorised, compact, fully portahle. AF
gine wave 18 Hz to 220 sine wave 18 Hz to 220 18 Hz to 100 KHz . Output sine/square $10 v$ 200 MHz . Output 1v. maximum. Operation $220 / 240 \mathrm{v} . \mathrm{AC}$. Complete with instructions and


MODEL ATR01 DECADE Frequency $0-200 \mathrm{kHz}$. Attenuator0-111dB,


Shms. $\times 90 \mathrm{~mm} \times 55 \mathrm{~mm}$. \&12.50. Post 37p.


## CI-5 8 8COPE

 periodic waveforms in electronic circuits/ERT. AMP. Barulwidth 10 MHz .Sensitivity at 100 kHz Sensitivity at 100 kHz RMS/rimi O-1.05:
HOR. AMP. Handwidth Hook. AMP. Sensitivity at $100 \mathrm{kllz}, \quad \mathrm{F}$ FMS/nim

3.2.15. I're-set triggered sweep $1-3$,0uuんsec free running $20-200,0001 \mathrm{Lz}$ in nine ranges. Calibrator pips. $230 \mathrm{~mm} \times 360 \mathrm{~mm} \times$ $430 \mathrm{~mm}, 11 \overline{2} 230 \mathrm{~V}$ a.c. operation \&39. Carr. paill.


## TE-20D RF SIGNAL GENERATOR

hecurate witle range sig
hal generator covering $120 \mathrm{hHz}^{2} \mathbf{0} 00 \mathrm{MHz}$ on if bamds. Directly call-
braterl. Variable H.F, attemuator aulio output, X tal nocket for ealibration. $220 / 240 \mathrm{~V}$ a.c. Brand new
ne with instructions. $817 \cdot 50$. Carr. 37 p. Size 140
215 m .
$\times 170 \mathrm{~min}$.



POWER RHEOSTATS
High quality ceranic construction. Windings embedded in
vitreous enamel. Heavy duty brush wiper. Continuous rating. Wide range available ex-stock. Single hole fixing. tin dia. shafts. Bulk quanti-


25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000$ ohms. 95 D P. \& P. 10 p .

60 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohms. $81 \cdot 8 \mathrm{~s}, \mathrm{P}$. \& P. 10p.
100 WATT. $1 \cdot 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or
$240^{\circ}$ Wide Angle Ima Meters
MW1-6 60mm square
MW1-8 80 mm Rquare
88.87
4.87 Post extra

"YAMABISHI" VARIABLE
VOLTAGE TRANSFORMERS
Excellent quality at low cost. All modelsInput $230 v .60 / 60 \mathrm{c} / \mathrm{s}$. Variable output
0.260 .
 MODEL S-260
GENERAL
PURPOSE
BENCH MOUNTIN
 ${ }_{8}$ amp :


(6)


MODEL S-260B $\begin{gathered}1 \mathrm{amp} \\ 2.6 \mathrm{mmp}\end{gathered} . . .88 .00$

Carriage and
Packing Extra
AUTO TRANSFORMEAS


OUR PRICE $\quad \begin{array}{lll}\text { E4.97 } & \text { P. \& P. } 30 \mathrm{p}\end{array}$

## TUNING DIAL

 dials. Log scale width 4 lin. Dial size $\sin \times \sin$. Overallsize
deep including knot
and compling. in dia
OUR PRICE £1.62 P.\&P.15p

## SEW GLEAR PLAStic PanEl meters

USED EXTENSIVELY BY INDUSTRY, GOVT. DEPTS., EDUCATIONAL AUTHORITIES, ETC.
Over 200 ranges in stock-other ranges to order. Quantity discounts available Send for fully illustrated brochure.



AUDIOTRONIC AHA10
STEREO HEADPHONE AMPLIFIER
 All silict
transistor
amplifler op amplifler op-
erates r rith magnetic. ceramic or
tuner inputs with $t$ win stereo healphone ontputs and separate volume constrols for each channel. Operates
from 9 S battery. 100 mv. Ontput 60 mw per channel.

## 

UNR 30 RECEIVER


4Bandy covering $650 \mathrm{kHz} \cdot 30 \mathrm{MHz}$.
BFO Bullt in Bpeaker $220 / 240 \mathrm{y}$ a.c. Brand new with inatruction OUR PRICE 2 15075 carp

## UR-1A RECEIVER



4 Hands rovering $550 \mathrm{kHz} \cdot 30 \mathrm{MHz}$. FET. Meter. Variable BFO for spread. Sensitivity Control. 220/ 240 V ac. or 12 V d.c. $123 \times 43 \mathrm{in}$ นй


General coverage $150-400 \mathrm{kHz}$ $660 \mathrm{KHz-30MHz}$. FET front end 2 mech. Bitera, product detector,
variable $B \mathrm{BO}$, noise limiter, Marisble Bandepread. RF Gain. $15 \ln \times 91$ in $\times 8$ in. 181 b . $240 /$
240 V ac. or 12 V d.c. Brand new with inc. or 12 v



4 bands covering $550 \mathrm{kHz}-30 \mathrm{MHz}$ continuous and electrical bandmetres. 8 valve plus 7 diode circuit. $4 / 8$ ohm output and phone
jack. SSB.CW. ANL. Variable BFO. 8 meter. Sep. bandspread dial. IF frequency 445 kHz andio
 AF gain controls $115 / 250 \mathrm{~V}$ a.c. instruction manual.
OUR
PRICE $249-50 ~$
Paid
polle range of trio stoceed
TRIO JR3IO SSB
RECEIVER


Covers $3 \cdot 5,7,14,21,28, ~ 18.5$ and
29.1 MHz bands, and WHy 15 MHz . SsB, AM and Cw. AF nutput more than IW. Gryatal
controlled BFO for $S \mathbb{S B}$. 8 meter, controlle.l BFO for ssB 8 nieter, ANL, etc. A.c. $110 / 120-120 / 240 \mathrm{~V}$
Size $330 \times 179 \times 310 \mathrm{~mm}$, Carr OURICE
PRTS00
Paid


TRIO JR599 RECEIVER
 MHz W.14-14timHz and 10.00 FM. AF mutput more than 1 B S. Meter. Syuelch curtral. BFO.
Variable RF and tr 4-16 ohn output and phone jack. Power reyuirements $100 / 240 \mathrm{~V}$ a.c.,
OUR S155-1
PRICE Carr.
Paid TRIO TR2000 TRANSCEIVER

 spuelch control. channel selectur,
mikike sucket, earphone/external speaker socket. Complete with
linicrophone, $144 \cdot 48,144.72$ ant
 PRICE TS515/PS515 TRANSCEIVER


High quality
amateur band
Teveiver covering amatenr band recejver covering
$80,40,20,15$ and 10 metre bands with PSJ15 power supply and speaker unit. Transmit/receive
frequency $3 \cdot \bar{v}-29 \cdot 7 \mathrm{MHz}$ output $1 \cdot 5 W$ Pourer recquirements $110-$ $\begin{array}{ll}1020 / 20 & 240 \text { a.c. } \\ \text { OUR } \\ \text { PRICE } & 2100 \\ \text { Paid. }\end{array}$ BELTEK W5400 CAR TRANSCEIVER


Solial state nobile tranaceiver for 12V $1 . c$. neg. use. Transmits and
Receives on any iof of channels Receives on any 10 of 18 channels
between 144 anll 146 M 1 Iz . Power bet ween 144 and $146 M 12$. Power
nutput $10^{W}$ and IW suitchable. Controls: Volumefon/off, squelch, channel selector. Internal 3in speaker. Complete with dynannic
mike, PT'T switch, three sets of cryatsig
$144.60 \mathrm{MHz}, \quad 145.00 \mathrm{MHz} .48 \mathrm{MHz}$, ing bracket and instructions.
OUR OUR
PRICE
51500
Parr. $\begin{array}{ll} & \\ & \text { HAND HELD } \\ & \text { W-WAY } \\ & \\ & \end{array}$ Battery operation. Volume and squelch eontrols. Call button and Aerial. Complete with carrying caves.
SKYro
$100 \mathrm{~mW}, \varepsilon 84.05$ pair, post 50 p . 300 m W, 452.50 pair, pont 50 p . P1003 3 CHANNEL
prat1.271.25 pair, poat nop LICENSE REQYIRED IN C'.K. 3-STATION INTERCOM KE.
630


Master and two nuh ntations.
Can he used on clesk or wall Can he used on desk or wall
monnted. Complete with cable amibateries
OUR
PRICE

offereli at a
rernarkally
host onty low price. Incorporates hose of feat urea including awitchtape selector, iwin VU meter, slder record/playback level concrola, front panel hearphone
socket, recording indicator lamp. phono/Din line input sockets, $3 . j n i n \prime$ mike input sockets, etc., $8 \mathrm{kHz} \quad(100-12 \mathrm{kHz} \quad$ CrO2 $) \quad \quad 8 / \mathrm{N}$
 -6 dB at 10 kHz . Complete with OUR
PRICE $59+5(1)$
Carr. \&

## AHP8A 8 TRACK

STEREO TAPE PLAYER Incorporates
 aelector, illu
minaled track indicators, slider controls for volume, balance and
tone. Attractive cabinet with black and silver trim. Output ORHELE
 for all frequencies above 3000 H . Size 16 igin $\times 8$ in $\times 3$ in. a.c. $00 / 250 \mathrm{~V} 2$.
PROCESS TWO
For use with cassette and tape recorders. Freq. res. $20 \mathrm{kHz}-2 \mathrm{~dB}$. Off tape nonitoring. $\mathrm{g}_{\text {witchable multiplex filter }}$ Suitehable multiplex filter. Two
Dolby calibration meters.
S $/ \mathrm{N}$ better then 70aB.
Supplied with test cassette or
tape as required
OUR
PRICE SK
PROCESS FOUR
For use with semi professional tape
recorders. Freq. res. 30 Hz -
20 kHz .
70 d
2 dB . Fill source tape monitoring. Record/Replay metering, 8 witch. able multiplex filter. supplied OUR
PRICE SB-

ACR14 BATTERYMAINS CASSETTE RECORDER Portable twin
track mono track mono
recorder with

AHP8D 8 TRACK STEREO TAPE DECK Can be used Pueh button rack selector track indicators. Attractive Outputievel 750 mV . $220 / 240 \mathrm{~V}$ a.c.
 recorder with

for radio or
record player.
Fast forward and rewind. Output 500mw: control niticrophone, mains lead, earpifce and batteries.
~int $£ 10 \cdot 50^{\circ}{ }^{\circ}$ at
 speaker systeai
Individual
rolume controls. 8 ohms. $20-20,000 \mathrm{~Hz}$
46.95 P. \& P. 30 p

LSH 60. 3in speaker units.
$20-20.000 \mathrm{~Hz}$
plete
carrying case
\&8.50 P \& $P$ IQU1t00.
dyramic
phones.
picce ham 4 drive
$0-20.00011 z$
69.95 P. \& P. 30p

LSH50. Electro. Natic with sell and control unit speaker searlector. $4-32 \mathrm{ohm}$
$24,000 \mathrm{~Hz}$. $\leq 15$

## ACP8 8-TRACK

 CAR PLAYER

12 V neg. earth. Slider controls for Volume, Tone and Balance. Channelaelector bition with pilot
lanup. With apeakera, mounting OUR \&ヶ9.E~P.\&P


## LOW NOISE CASSETTES

| Top Hi-Fi quality in library casea |  |  |  |
| :---: | :---: | :---: | :---: |
| TYPE | 5 | 10 |  |
| C60 | 21.29 | 22.53 | 25.88 |
| C90 | 21.85 | 43.62 | 18.59 |
| C120 | 28.29 | £4.48 | 210.88 |
| P. \& P. 15p Post Free |  |  |  |
| CASSETTE TAPE HEAD |  |  |  |
| CLEAN | ER 30p | ach. | 4. P6p. |

AR1000 Sportsman
AM/FM Portable wavebands Portable
, $\mathrm{MHz}_{\mathrm{M}} \mathrm{W} . \mathrm{B}$
162.5MHz Large
dial with logging
scale. Slider
volnme
squelch controls. 7 aection
scopic aerial for F.M. and bullt In errite bar for A.M. A.F.C. 3 in eatheretite coveres cabinet with metal side panels. Size $102 \times 79 \times$ OUR
PRICESE, - 51 P.\&P


P.8.R.2: 148-

174 MHz F.M. $88-108 \mathrm{MHz}$ :A.I.R.:
$108-136 \mathrm{MHz}$. Features time zone map and timing dial. Large clear scale. Telescopic aerial and bullt-
in aerial. A F.C. on F.M. 6 in 4 in apeaker and personal earpiece 4in apeaker and personal earpiece.
Battery/mains operation. gize $345 \times 133 \times 305 n 1 m$. P P $P$


AM/FM PORTABLE RADIO AR3000


LW $14 \mathrm{~J}-285 \mathrm{KHz}^{2}$
$\mathrm{gW} \quad 5 \cdot 8-12.5 \mathrm{MHz}$.
Pusil button wave
change plus AFC
and on/off. Thumbwheel tuning Slider rolume and tone controls.
Earphone socket. Built in and Earphone socket. Built
socket Battery/Mains operation
OUR
PRICE 55 4 4 5 57p
DIGITAL CLOCK/
am-M
RADIO
ADC.
Covers AM $540-1600 \mathrm{KHz}$, FM $88-108 \mathrm{MHz}$ with AFC. 24 hour leaf type digital clock with one
minute division time change. Illuminated dial. 24 hour alarn setting. Wake up to the bonnd
of mnsic or lond buzzer. Cnique sleep suitch will automatically turn off radio when youl have gone

Internal speaker phus socket for earpiece or pilow fpeaker. A.c.
$\geq 40 \mathrm{y}$. Size $254 \times 92 \times 178 \mathrm{nun}$
Complete with earpiece, FM aerial
and
and operating instructions. P.\&P
OUR
PRICE
50 E


## MEN: Giris! YOU CANEARNE50p.w. Plus anexciting life and a secure future. HOW?

Get into the fabulous Computer Industry now. On the ground floor: While industry, commerce, science and governments are desperately seeking trained personnel. Give us only four to six weeks and we can train you in any one of the three vital careers in computers: (1) Programming (men and girls). (2) Operating (men and girls). (3) Key Punching (girls exclusively). We are the only training organisation able to make this offer. And our teaching methods succeed because they combine specially prepared courses with equipment such as the unique Eduputer, exclusive to us.
Thanks to our methods, people from all walks of life have exchanged boring, under-paid, insecure jobs for careers that have meaning, prestige and security.
Past performance counts for nothing. Provided you have the aptitude (which we can discover quite simply), there is no reason why you should not get out of the rut and into Tomorrow's World-the fascinating world of Computers.
The moment you qualify-and we will help you do just that-one of our own exclusive appointments agencies. will introduce you to opportunities galore. Worldwide. At no cost to you. All part of our continuing service.
What have you to lose by enquiring? Information and advice are yours for the asking. Post the coupon TODAY for full details FREE and without obligation.



## London Computer Training Services

R69, Oxford House, 9-15 Oxford Street, W.1. Telephone 01-437 9906


Name

Address


## ALL PRICES INCLUDE V.A.T.




## Audio THE HI-FI MAGAZINE FOR LEISURE LISTENING

Britain's exciting new-style magazine in music and hi-fi, AUDIO is about every important aspect of the modern sound scene-from the make-up of sound, to the latest means of reproducing it... the equipment, its installation and its operation. AUDIO examines new trends, looks at the latest discs and tapes, shows you how to get the most for your money-in clarity, definition and craftsmanship.

IN THE NOVEMBER ISSUE OUT FRIDAY OCT. 19 Exclusive interview with André Previn. Tape recording for beginners. Is that heavy turntable really necessary. Up-to-theminute report on Video. Record reviews.


## VARIABLE VOLTAGE TRANSFORMERS

NPUT 230/240Y ac 50/60 OUTPUT VARIABLE 0-260V
All Types

from to 50 amp from stock SHROUDED TYPE 1A 67. Post 50p | 10A $\mathbf{2} 22.50$ 2.5A £8.05. Post 15 A \&25 5A £11.75. Post | 60p | 20A 649 |
| :--- | :--- |
| $37.5 A$ | 682 | CARRIAGE AND PACKING EXTRA unless shown Panel Mounting) OPEN TYPE I amp E7, Post 50p. 2 $\frac{1}{2}$ amp C8.05. Post 60p.

## L.T. TRANSFORMERS



VOLTAGE CHANGING TRANSFORMER M.f.g, to highest W.D. spec. Auro wound, and tapped $0-130-160-200-250$ at least $230-240 \mathrm{~V}$ input, 115 V out for U.S.A equipment, or reverse to obtain 240 V from 115 V The ideal rransformer for making up solid state constant voltage unit, by use of taps the following voltage's may be obtained $30-40-50-70-90 \mathrm{~V}$ at 10 amps. Weight 401 b , length, 260 mm , height 190 mm , width 230 mm . In original maker's wooden

PARVALUX Type: SDI.
S/86896/OJ
$230 / 250 \mathrm{~V}$ A.C. 50 r.p.m. $7 \mathrm{lb} / \mathrm{in}$ 66. Post 30p incl. base

1.0600 WATT DIMMER SWITCH Easidy fitted. Fully guaranteed by makers. Will control up to 600 W of all lighrs excepr fluorescent at mains
voltage. Complete with simple in. ructions. $\mathbf{\text { 2.75. Post 25p }}$
2000 WATT POWER CONTROL
For Power toois. Heating, Sewing Machines, Lighting
VENNER TIME SWITCH TYPE MSQP
200/250 Volt 2-ON/2-OFF every 24
hours at any manually pre-set time. 20
hours at any manually pre-set time. 20
and in perfect condition $\mathbf{E 4} \mathbf{4 5}$, Post 25p
FOOT SWITCH
Suitable for Morors. Drills,

UNISELECTOR SWITCHES
NEW

$24 V$ d.c. operation. 66.90 Pa

## 

 W. So. Post 40 p. . 24 . operation. $\qquad$
GENERALELTACS
GENERALELECTRICPOWER-GLASTRIACS framp. Glass passivated plastic triac. Latest device $10 \mathrm{amp}, 400 \mathrm{PIV}, \mathrm{GI}$. Post Sp. Type SCI46E 10 amp 500 PIV, $\in 1 \cdot 30$. Post 5 p. (Inclusive of data and applica

All Mail Orders-Callers-Ample Parking Cept. PEII, 57 BRIDGMAN ROAD
CHISWICK, LONDON W4 5BB Phone 01-995 1560

STROEE ! STROBE ! STROBE
Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and
triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation. EXPERIMENTERS' ECONOMY KIT Speed adjustable 1 to 30 flash per sec. All electronic components including Xenon Tube and instructions 66.30. Post 30p.
NEW INDUSTRIAL KIT
Ideally suitable for sehools, laboratories, etc. Approx. t output of Hy-Lyght. Price El 0.50 . Post 50p.
HY-LYGHT STROBE MK III
or use in large rooms, halls and utilises a silica tube, printed circuit. Speed adjustable $0-20$ f.p.s.
Light output greater than many (so called 4 Light output greater than
Joule) strobes, $£ 12$. Post 50 p .
THE ‘SUPER' HY-LYGHT KIT Approx. four times the light output of our well proven Hy-Lyght strobe

- Variable speed from 1-3 flash per sec.
- Reactor control circuit producing an intense ROBUST, FULLY E20. Post 75p WIILATED METAL CASE. For Hy-Lyght Kit including reflector $\mathbf{~ 4 . 7 5 .}$
Sost 25p. H -Lyght Kit insluding reflector 67. Post 60p.
7 -inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 55p.


## RAINBOW STROBEFOUR LIGHT

 CONTROL MODULEWill operate four of our Hy-Lyght or Super Hy-Lyght Strobes in either 1. 2, 3, 4 sequence: $2+2$; or all together. Thoroughly tested and reliable. Complete with full conSend S.A.E. for details.
COLOUR WHEEL PROJECTOR
Complete with oil
filled colour wheel.
100 watt lamp. 200 240 V AC. Features extremely efficient op-
tical system. f18.50. Post 50p. 6 INCH COLOUR WHEEL lighting effecrs, ecc. P
2201240 NOR
$220 / 240$ volr a.c. I r.p.m. synchronous motor Motor only 20 mm deep. Fixing cencres 44 mm Motor anly 20 mm deep. Fixing cencres 44 mm
Price $£ 1 \cdot 10$. Post 5p. Suitable for above wheel
BIG BLACK LIGHT
400 Warc . Mercury vapour
ultra violet lamp.
Innumerable industrial appli-
cations also ideal for stage,
display, discos, etc PF ball
display, discos, etc. P.F.ballast
is essential with these bulbs.
Price of matched ballast and bulb $£ 16$. Post EI.
Spare bulb £7. Post 40p
BLACK LIGHT FLUORESCENT U Y TUBE5
4 ft 40 watt. Price $\mathbf{5} 5.50$. Post 30 p .2 ft 20 watt,
fictings.)
MINI. 2 in 8 watt \& f .60 . Post 15 p gin 6
MINI. 12 in 8 watt, $\$ 1 \cdot 60$. Post $15 p$. 9 in 6
watt, EI.30. Post $15 p$. Complete ballast unit and holders for 9 in and 12 in tube. £1.70. Post 25p. ( 9 in and 12 in measure
approx.)
approx.) ELECTRONIC ORGAN KIT
Easy to build. Solid State. Two full octave less sharps and flats). Fitted hardwood case. plete set of parts including speaker, etc together with full instrucsions and 10 tunes,

50 in I ELECTRONIC PROJECT KIT So easy to build Projects. No soldering, no special cools required. The kit includes Speaker, Meter. Relay, Transformer, plus host of other components and a 56 -page in-
struction leaflet. Some examples of the 50 possible Projects are: Sound Level Meter, 2 P. \& P. 25p
-All pricès are sūbject to
10\% VAT. (10p in the C ) To all orders add $10 \%$ VAT to total value of qoods including carriage/ packaging.

## SERVICE <br> tRADING CO

Superior Quality Precision Made

## NEW POWER RHEOSTATS

 New ceramic construction, vitreous enamel embedded winding, heavy duty 25 WATT $10 / 25 / 50 / 100 / 250 / 300 / 500 / \mathrm{lk} / \mathrm{hhm}$ ohm 100 WAT. 35 . Post 10 D .
100 WATT I/5/10/25/50/100/250/500/1k/l $5 \mathrm{Fk} / 2 \cdot 5 \mathrm{k}$ Black Silver, Skirted knob
Black Siver, brass in in in calibrated in Nos 20p each.

Col:(1)
Col. (2)
Working
Col. 3
Contracts
Col. (4)
$\mathrm{HO}=$
Heavy duty
-Incl. Base
All prices
incl. P. \& P.

| 52 |
| ---: |
| 150 |
| 185 |
| 280 |
| 410 |
| 700 |
| 700 |
| 700 |
| 700 |
| 700 |
| 700 |
| 1,250 |
| 2,500 |
| 2,400 |
| 9,000 |
| $15 k$ |

$4-6$
$6-12$
$8-12$
$8-16$
$10-18$
$16-24$
$16-24$
$15-35$
$16-24$
$6-12$
$20-30$
$24-36$
$36-45$
$30-48$
$40-70$
$85-110$
$6 M$
$6 \mathrm{c} / \mathrm{O}$
6 M
$2 \mathrm{c} / \mathrm{O}$
$4 \mathrm{c} / \mathrm{O}$
4 M 2 B
$4 \mathrm{c} / \mathrm{O}$
$2 \mathrm{c} / \mathrm{HO}$
6 HO
$1 \mathrm{c} / \mathrm{HO}$
$6 \mathrm{c} / \mathrm{HO}$
$4 \mathrm{c} / \mathrm{O}$
$6 M$
4 clo
$2 \mathrm{c} / \mathrm{O}$
6 M
$60 p^{\circ}$
$80 p$
$60 p$
$60 p^{\circ}$
$70 p^{\circ}$
$60 p^{\circ}$
$80 p^{\circ}$
$70 p^{\circ}$
$60 p^{\circ}$
$50 p^{\circ}$
$80 p^{\circ}$
$60 p^{\circ}$
$60 p^{\circ}$
$50 p$
$50 p^{\circ}$
$50 p^{\circ}$

9 VOLT D.C. RELAY
c/o 5 amp contacts. 70 ohm coil. 75p. Post Sp.
3 c/o 5 amp contacts. 120 ohm coil. 75 p . Post 5p,
230 VOLT A.C. 'DIAMOND H
RELAYS (Unused)
Three sets c/ zcontacts ratedat 5 amps
PRICE: 55 p. Posc 5 p. ( 100 lots) $£ 40$. 24 volt A.C. $3 \mathrm{c} / 0$ 55p. Post 5p.

MINIATURE LATCHING RELAY
Manufactured by Clare-Elliott Ltd. Type F. 2 clo per manent latching in either direction. Coil ilso ohm 5-30 Volt D.C. Size $t^{\prime \prime}$ high, $\frac{1}{2}^{\prime \prime}$ wide, in $^{\prime \prime}$ thick. Com.

BLOWER UNIT
200-240 Volt A.C. Precision German built. Dynamically
balanced, quiet, continuously rated, reversible motor. Con sumption 60 mA . Size 120 mm . dia, $\times 60$
Post 30 p.

4 BANK 3c/O PUSH
BUTTON ASSEMBLY
Black rectangular buttons


5 units
Post 15 p
"HONEYWELL" PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBLY Each bank comprises a cio rated at ixing hole it in. ONE bank 30p; TWO bank 40p; THREE bank 50 p . Quote for quantity.
VERY SPECIAL OFFER
Micro Switch. 5 amp c/o con-
taces. Mif.e. bg. Honeywell
NEW. Twenty for $\$ 1,50$. Pos
10p (min. 20).
'HONEYWELL' LEVER OPERATED
MICROSWITCH
acts. In maker's carron.
PRICE: 10 for $\mathbf{E l} \cdot 90$. Pos
INSULATION TESTERS NEW!
Test to I.E.E. Spec. Rugged meta field work. constane speed clutch, Size L.8in, W. 4 in , H. 6 in, weight 61 b . ,000V, 1,000 megohms. $£ 34$. Post 60 p . $500 \mathrm{~V}, 500$ megohms, $\mathbf{6 2 8}$. Post

## BALANCE/LEVEL METERS

100-0-100 Mirro Amp. Size $1 \frac{1}{3}$ in $+1 \frac{1}{2} \mathrm{in}+$
+
$100-0-100$ Micro Armp. Size $1 \frac{1}{3}$ in $+1 \frac{1}{2}$ in +
(in. Price only 70 p. Post 5 p.
Iin. Price only 70p. Post 5p.
round. Available in D.C. Amps $1,5,10$.
15,20 or A.C. Amps $1,5,10,15,20$,
borhtypes $£ 2 \cdot 00$. Post 15 p. Voltmeter
$0-300 \mathrm{~V}$ A.C. E2. Post 15 p .


9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

Phone 01-437 0576

## SPECIAL INTRODUCTORY OFFERS-IMPORTER TO CONSUMER! ALL NEW GOODS-FULLY GUARANTEED-PLEASE ADD VAT TO TOTAL PRICES

## HILLS HEADPHONE JUNCTION BOX

 MODEL JB-3Designed 10 connect headphone to amplifier previously not fitted with head-
 phone socket or atternatively for remote switching. 3 position switch allows instant switching between speakers and head-
phones or both simultaneously. phones or both simulaneously
OUR PRICE $\begin{aligned} & \text { ROMER" INTERCOM } \\ & \text { "HONE }\end{aligned}$ One of the leading mekes. Ideal for home. office, factories. etc. This 2 -
station Intercom

includes volume control and on-off switch Supplied with 66ft. cable and batteries. OUR PRICE | E2.75 |
| :--- | :--- |
| 2.75 |

HILLS DYNAMIC HEADPHONE MODEL M-707 VS DE-LUXE An extremely high quality head.
phone supplied with Padded Headphone and Earcups together with SLDER volume controls for precise listening levels. Specially offered at an Unvestable
$20-20,000 \mathrm{~Hz}$ $\begin{array}{lll}\text { Retail Price } & \begin{array}{l} \\ \text { R }\end{array} \\ \text { OUR PRICE } \\ \mathbf{~} 5.75\end{array} \quad$ P. \& P. 25p
HILS DYNAMIC HEADPHONE MODEL H-101 VSM Otfered at a remarkably low price,
supplied with padded Headband and Earcups. adjustable and mono switch. 8 ohms imp., $30-18,000 \mathrm{~Hz}$. Rec. Retail $£ 5.25$ Rec. Retail
OUR PRICE
2.

CAR STEREO SPEAKERS MODEL CRE-200

These dual purpose Car Speakers can be used for either shelf mounting or converted to door mounting. Sin brilliant audio pertormance. | Rec. Retail | $1 \$ 5 \cdot 25^{*}$ |
| :--- | :--- |
| RUR |  | OUR PRICE ${ }^{\text {33.50* P \& p } 25 p}$ plus 65 p P. \& $P$.

ELAC SPEAKER, in 8 ohm CERAMIC AND TWEETER, 22•70, plus 20p P. \& P OTHER ITEMS AT BARGAIN PRICES OFFERED IN OUR AUDIO COMPONENTS CATALOGUE. PLEASE WRITE FOR A FAEE COPY (ENCLOSING 3p STAMP).
Vat Please add $10 \%$ to the total value of goods including postage and packing.
HILLS COMPONENTS LTD.


Antex Soldering Iron CCN240, Rec. Retail §2.15; Our Price $£ 1$ - 60 . P, \& P. 10 p Antex Soldering Iron X25, Rec. Retail £1-93; Our Price \&1.40. P. \& P. 10p Ferrantl Rado Chip ZN414, Our Price E1: 10. P. \& P. 5p.

Hill Colled Headphone Extenston Cable 5ft. Rec. Retail £2.25. Our Prlee 11.45 . P. \& P. 10p


AURORA
Multichannel Sound Controlled Light (PE Apr./Aus. 71). S/c's (excl. SCRs), Rs, Cs, Pors, Cores 88 ch . ci7.50; 4 ch. 59.95 . Reg. PSU 43.65. PCB-
4 ch. control (4in $\times$ lotin) Mk. 2-also holds
 rotary or slider pots 2.20 . PCB
B cores, 8 SCRs, fl 110 . SCR
A. F. SIGNAL GENERATOR (PE Nov. ${ }^{72}$ ). S/c's, Rs, Cs, Pots, Sw's, $£ 3.15$.

LOUD-HAILER AND SIREN
(Pre-amp and Siren Generator) (PW Dec, 72). S/c's, Rs, Cs, Pot, PCB (2tin $\times 2$ tin). $\mathbf{E 2 . 2 0}$ (While stocks last). Main Amp Module PC5 + obtainable to special order, $£ 6$

## PHONOSONICS

NEW LOW PRICES FOR MANY PCB's AND KITS


(PE Mar./Apr. HI-FI TAPE LINK's, Lic.'s, Rs, Cs, Relay and pe-base, Pot Cores and pc-bases, Sw's, Pots, K2.50. PCB-Main Circuit (3iin $\times 9$ in) (Stereo) also' 2.50. PCB-Main Circuit (3iin $\times$ in) (Stereo) M1so
PCB-Sub-Assembly. (2tin $\times 6 \frac{1}{2}$ in) (Stereo) Mk. 2 holds relay and cores, 11.85 . PCB-Sub-Assembly.
holds Sw, Rs, Cs, Presets and mounts on Sws,
(PW Nov./Dec. 72). S/c's, Rs, Cs, Slider Pots, T/fmr, C6.80. PCB(2in $\times 11 \not / \mathrm{in})$


VIBRASONIC GUITAR

$$
\begin{aligned}
& \text { PRE-AMP } \\
& \text { (PW Sept. 70). Incl._ }
\end{aligned}
$$

(PW Sept. 70). Incl. Mic P/A, $2-$
Guitar P/A, Trem and Tone Controls, Master Volume. S/c's, Rs, Cs, LDR, Rotary Pots, Lamp. Coupling T//mr, Rotary Pots, Lamp. Coupling ( $3 \frac{1}{2}$ in $\times$
$\mathbf{6 6 . 6 5}$. PSU, 22.80 . PCB 10 inj ) Mk. 2, also holds 7 rotary or
slider slider pots, $\& 1.75$.

ULTRASONIC
TRANSMITTER-RECEIVER (PE May 72). S/c's, Rs, Cs, Pot, Relay, Dual PCB ( $2 \mathrm{in} \times 5 \frac{1}{2}$ ), 63.90 .
T/ducers avail. to order, 46.30 per pair.
ALSO
PCBs as published (while stocks last) OF:
OIGITAL PSU (PE Aug. 72), 50p
OSCILIOSCOPE P/A (PE AUs. 72), 33p SCORPIO (PE Nov./Dec. 71), 60p TRIFFID (PE Feb. 73), 60p

DIGITRONIC (PW Mar. 73). Read.
DIGITRONIC (PW Mar.
out PCB ( $1 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in), 60p.
SWITCHES

(PE Feb. 72). S/C's, Rs, Cs, Pot, PCB ( 1 i in $\times 3 \mathrm{in}$ ), $2 \cdot 20$. Reg. PSU and PCB (1- in $\left.\times 2 \frac{1}{2} i n\right), 43 \cdot 10$.

VERSATILE LIGHT EFFECTS UNIT
Single Channel Sound Controlled Light with built-in variable strobe. (PE June 72). S/c's. Rs, Cs, Pots,
T/fmrs, Keyswitch, $88 \cdot 85$. PCB ( 31 in T/imrs, Keyswitch, 88.85 . PCB ( $3 \frac{1}{1}$ in x 7tin) Mk. 2, also holds pots, SW,
T/T7 T/fmr, il.50. SCRs-IA, 50p.

## PHOTOPRINT PROCESS

(PE Jan./Feb. 72). For colour and B \& W -finds exposure, controls timing stabs. mains voltage. S/c's, SCR, LDR Rs, Cs, Pots, Relay, Keyswitch,
T/fmr, 67.50 PCB ( $3 \frac{1}{t} \mathrm{in} \times 5 \frac{1}{2} \mathrm{in}$ ) also T/fmr, $\left\{7.50\right.$ PCB ( $3 \frac{1}{2} \mathrm{in} \times 5 \frac{1}{2} \mathrm{in}$ ) also
holds pots, Sw, relay, El .20 .

SOUND SYNTHESISER (PE 1973) Details of PCBs \& Compon
lists. SOMEPRICES DOWN.

## SEMICONDUCTORS

| ACl28 | 20 | ZTX531 | p |
| :---: | :---: | :---: | :---: |
| ACl76 | 20p | 2N708 | 3p |
| ADI61 | 40p | 2N914 | 22p |
| BCIO7 | 9p | 2NI304 | 20p |
| BClos | 9 p | 2N2905 | 23p |
| BClo9 | 9 p | 2N2907 | 22p |
| BC147 | $11 p$ | 2N3702 | 10p |
| BC148 | $11 p$ | 2N3704 | 10p |
| BC149 | $11 p$ | 2N3823E | $31 p$ |
| BC157 | 12p | 2N5777 | 40p |
| BCl5 | 12p | N914 | 4p |
| BCI59 | 12p | \| N 400 | | 6p |
| BC204 | 14p | IN 4002 | 7p |
| BCY71 | 22p | 1N4004 | 8p |
| BFY51 | 16p | IN4005 | 10p |
| BSY95A | 12p | BA145 | 17p |
| OC28 | 45p | OA91 | 7 p |
| 0 O 71 | 12p | OA200 | $6 p$ |
| OC84 | 24p | Z1J | 50p |
| ORP12 | 48p | 741 C | 16p |
| T1543 | 24p | (8-pin DIL |  |
| ZTX107 | $9 p$ | $\mu A 7815$ | 62.47 |
| $2 \mathrm{Y} \times 503$ | 14p | (rO3 can) |  |

## CAPACITORS

| $(\mu F / V)$ | TANTALUM | POLYESTER |
| ---: | ---: | ---: |
| 60 | BEAD | $(\mu F / V)$ |
| C280AE |  |  |


|  | 220/10 | 6p | BEAD | ( $\mu \mathrm{F} / \mathrm{V}$ ) | C280 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6p | 220/16 | $6 p$ | $0.1 / 35$ | 12p |  | ( $\mu \mathrm{F})$ |
| 6p | 220/25 | 10p | 0.22/25 | 12p | 0.01 | 3p |
| 6p | 220/40 | 12p | 0.47/35 | 12p | 0.015 | 3 p |
| 6p | 226/63 | 18p | $1.0 / 35$ | 12p | 0.022 | 3p |
| 6p | 330/10 | $6 p$ | 1.5/35 | 16 p | 0.033 | 3 p |
| 6 p | 470/6.3 | 6p | 2-2/35 | 12p | 0.047 | 3p |
| 6p | 470/25 | 12p | 4.7/35 | 12p | 0.068 | 3 p |
| 6 p | 470/40 | 16p | $10 / 16$ | 12p | 0.1 | 4 p |
| 6p | 500/64 | 40p | 10/25 | 16p | 0.15 | 5 p |
| 6 p | 680/6.3 | 10p | 15/6.3 | 16p | $0 \cdot 22$ | 5 5p |
| 6p | 680/25 | 18 P | 22/16 | 16p | 0.33 | 7 p |
| 6p | 1000110 | 12p | 47/6.3 | 16p | 0.47 | Pp |
| 6p | 1000/25 | 20p | 47/16 | 25p | $0 \cdot 68$ | $11 p$ |
| ${ }_{6 p}{ }^{\text {p }}$ | 1000/40 | 40p |  |  | 1.0 | 14p |
| $6 p$ | 2200/40 50p |  | POLYSTYRENE 63V 5\% ( $\rho$ F) <br>  |  |  |  |
|  |  |  |  |  |  |  |
|  | $3300 / 63$ | 110 p |  |  |  |  |
| 6 p | 3300/100 | 43 |  |  |  |  |
| P | 4700/25 | 60p | RESISTORS (E24 SERIES) |  |  |  |
| 2p | 4700/40 | 93p |  | 1p: | $W$ | P; |

## now...




Project 80 Active Filter Unit (AFU) the slimmest, most elegant hi•fi modules ever made


Living with hi-fi takes on new meaning now that Project 80 is here. These amazing new modules mark a brilliant technical advance all round; their size and presentation bring exciting new opportunities to install systems in ways hitherto only dreamed about but never before made practical. You can build a Project 80 system virtually anywhere and it is unbelievably simple to install and connect up. Everything that could possibly be wanted in a top quality do-it-yourself domestic hi-fi system will be found in Project 80 - compactness, elegantly ultra-modern styling, ease of fixing and operation, new control methods, and above all superb performance. New as well as popular established ideas on installation are featured on page four of this announcement to provide just a few examples of the system's fantastic versatility.


## Project 80 new modules

## Stereo 80 pre-amplifier and control unit

As with other Project 80 units, the Stereo 80 is mounted by means of two bolts fixed at the rear which pass through holes drilled in the wood or olastic on which modules are to be mounted. All the electronics are contaned within the $\frac{3}{4}$ " deep front panel! Connecting leads are taken away similarly out of sight Each channel in the Stereo 80 has its own independent tone and volume controls operated by slifers This enables exceptionally good environmental matching to be obtained Provision is made for magnetic and ceramic pick-ups. radio and tape in and out A virtual earth input slage forms part of the up-dated circuitry of the Stereo 80 to ensure the finest possible quality from all signal sources Generous overload margins are allowed on all inputs Clear instructions with template are supplied

TECHNICAL SPECIFICATIONS
Size - $260 \cdot 50 \cdot 20 \mathrm{~mm}$ ( $10 \frac{1}{4} \times 2 \times$ 쿤(ns)
Finish - Black, with white markings
Inputs - Mag P U 3 mV RIAA corrected: Ceramic P U. 300 mV
Radıo 300 mV . Tape 30 mV
S/N ratio - 60db
Frequency range -20 Hz to $15 \mathrm{KHz} \cdot 1 \mathrm{~dB} \cdot 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power requirements - 20 to 35 volts
Outputs $-100 \mathrm{mV}+A B$ monitoring for tape
Controls - Press button for tape. radio and PU selection Volume.
Bass -: 12 dB to 14 dB at 100 Hz . Treble +11 dB to -12 dB at 10 KHz



## Project 80 FM tuner <br> smaller, more efficient

A iruly remarlable tuner in every way - its unbelievably compact size its original circuitry - its dependable pertormance - all this in a boldly designed modern case measuring $85.50 \cdot 20 \mathrm{~mm}$ ( $3 \frac{1}{2}, 2$, $\frac{3}{4}$ ins). Greater adaptability (and possibly financial conventence) results from the tuner and stereo decoder section being made available separately

TECHNICAL SPECIFICATIONS
Size $-85 \cdot 50 \cdot 20 \mathrm{~mm}$ (approx 31 $\cdot 2 \cdot \frac{3}{3} \mathrm{~ns}$ )
Tuning range -87 to 108 MHz
Detector-I.C balanced coincidence, for good A M. rejection AFC - Switchable, with thermistor control to prevent from drift One 26 transistor I.C.
Twin dual varicap tuning
Distortion-0 $3 \%$ at 1 KHz for 75 KHz deviation
Ceramic filter in I.F. section
Aerial impedance-75 $\Omega$ or $240-300 \Omega$
Sensitivity - 4 microvolts for 30 dB queting
Power requirements - 12 to 45 volts

## Project 80 stereo decoder

Making the Project 80 decoder separate from the F.M. tuner gives the constructor a wider choice of systems as well as saving monev in cases where stereo receotion may not be required This unil gives a 40 dB channel separation with an output of 150 mV ger channel. The gallium arsenide light emiting beacon automatically lights up to show when a stereo transmission is tuned in. Designed essentially as an integral part of Project 80 systems. this multiplex siereo demodulator may be used in many cases with existing single channel frequency modulated tuners to provide stereo reception.
Size-47 -50, 20mm (1, $\cdot 2 \cdot \frac{3 n \mathrm{~ns})}{}$
One 19 transistor I.C.

## new constructional techniques

. . and again Sinclair leads the world
1962 Micro-minıature power amp small enough to stand on a
10p. piece. Slimline pocket receiver smalier than a 20
cigarette pack
1963 Micro-6 receiver, smalter than a matchbox
1964 Pocket F.M. receiver: PWM amp.
1965 Z.12 power amplifier module, PZ. 3 power supply
1966 Stereo 25 pre-amp/control unit
1967 Micromatic. Q. 14 loudspeaker: the first Neoteric
1968 IC.10, the first everintegrated circuit for constructors use

## Project 80 active filter unit

This efficiently designed unit makes a highly desirable part of any worthwhile system where inputs may be from record, radio or tape As With Stereo 80, separate controls are applied to each channel thereby making is easier to obtain ideal stereo balance in any kind of indoor environment

TECHNICAL SPECIFICATIONS
Size $-108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{\mathrm{y}}{4} \times 2\right.$. $\frac{3}{4}$ ins $)$
Voltage gain-minus 02 dB
Frequency response -36 Hz to 22 KHz . controls minumum
Distortion - at $1 \mathrm{KHz}-003 \%$ using 30 V supply
HF cut off (scratch) -22 KHz to $5 \cdot 5 \mathrm{KHz}, 12 \mathrm{~dB} /$ oct slope
L.F. cut off (rumble) -28 dB at 20 Hz . $9 \mathrm{~dB} / \mathrm{oct}$. slope

## Z. 40 \& Z. 60 power amplifiers totally short-circuit proof

Ether of these entirely newpower amplifiers is intended for use in Project 80 installations although, of course, they are readily adaptable to an even wider range of apphcations. Both Z 40 and $Z .60$ incorporate bultin protection against shortcircuiting and risk of damage arising frem mis-use is greatly reduced Comprehensive instructions are supplied with each of the modules
Z. 40 Technical Specifications Size -- $55 \times 80 \times 20 \mathrm{~mm}$
( $2 \frac{1}{8} \times 3 \frac{1}{9} \times \frac{3}{4}$ ins) 9 transistors Input sensitivity- 100 mV Output-15 watts RMS continuous into $8 \Omega(35 \mathrm{~V}) .30$ watts music power|into $4 \Omega$ (30V)
Frequency response -10 Hz $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Signal to noise ratio -64 dB Distortion - at 10 watts into $8 \Omega$ less than 0.1\%
Power requirements $-12-35$ volts

Z 60 Technical Specifications Size $-55 \times 98 \times 20 \mathrm{~mm}$
(21. $3 \frac{3}{3} \times$ 妾ins) 12 transistors Input sensitivity $-100-250 \mathrm{mV}$ Output - 25 watts RMS into $8 \Omega(45 \mathrm{~V}) 50$ watts music power into $4 \Omega$ (50V)
Distortion-typically 0 03\% Frequency response -10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Signal to noise ratio - better than 70 dB
Built-in protection against transient overload and short circuit
Load impedance - $4 \Omega$ mın. max safe on open circuit

## Sinclair power supply units PZ. 8

the worlds most
advanced unit in its class
Siabilised power supply unit. Reentrant current limiting makes damage from overload or even direct shorting impossible, a principte mercially avalable constructor mod. ule Normal working voltage (adus te Nor 45 V working voltage (adus. table) 45 V
R R.P. $£ 7.98+079$ p $\vee$ AT Without mains transformer
PZ. 530 V unstabilised
R.R.P. £4.98+0.49p VAT. PZ. 635 V . stablised


R R.P $\in 7.98+0.79 \mathrm{p} \vee$ A.T.

 Practical Electronics November 1973

1969 Q. 16 - improved version of Q. 14 Systems 2000 and 3000: Project 60 launched
1970 IC. 12 : Project 605
1971 Project 60 stereo FM tuner. Z.50: PZ. 8
1972 Improvements to Project 60 with Z. 50 MK. 2 and PZ. 8 Mk. 3 The Executive Calculator: Digital multi-meter Q. 30 speaker

1973 Cambridge Calculator
PROJECT 80 LAUNCHED


Recommended Project 80 applications

| System | The Units to use | Units cost |
| :---: | :---: | :---: |
| Simple battery record player | 2.40 | $\begin{aligned} & \mathbf{£ 5 . 4 5} \\ & +54 \mathrm{p} \vee A T \end{aligned}$ |
| Mans powered record player | 2.40, P2.5 | $\begin{aligned} & £ 10.43 \\ & +£ 1.04 \mathrm{VAT} . \end{aligned}$ |
| 30W RMS continuous sine wave stereo amp. | $\begin{aligned} & 2 \cdot 2.40 \mathrm{~s}, \text { Stereo } \\ & 80 ; \text { PZ. } \end{aligned}$ | $\begin{aligned} & \mathbf{£ 3 0 . 8 3} \\ & +£ 308 \text { VA.T. } \end{aligned}$ |
| 50W ( $8 \Omega$ ) RMS continuous sine wave de luxe stereo | $\begin{aligned} & 2 \times 2.60 \mathrm{~s}, \text { Stereo } \\ & 80 ; \text { P2.8 } \end{aligned}$ | $\begin{aligned} & £ 33.83 \\ & +£ 338 \vee A . T . \end{aligned}$ |
| amplufier <br> Indoor P.A | 2.60, PZ.8 | $\begin{aligned} & £ 14.93 \\ & +\mathrm{f} 1.49 \vee \mathrm{~A} . \mathrm{T} \end{aligned}$ |
| Car Radıo | $\begin{aligned} & \text { F.M. tuner, } \\ & \text { Z. } 40 \end{aligned}$ | $\begin{aligned} & £ 16.40 \\ & +£ 164 \vee A T . \end{aligned}$ |

## From Sinclair the worlds most advanced hi-fi modules

## Sinclair Project 80 the ultra-modern non-obtrusive hi-fi


 a shelf could be sufficient to contain a complete system


The modules mount very easily onto a playing plinth

A novel application
would be to build around the base of a lampshade


Project 80 could be easily mounted onto a loudspeaker cabinet


Two Sinclair Q. 16 loudspeakers suitably positioned together with Project 80 could be mounted on to a faise wall

When you have seen for yourself how fantastically slim and cleverly designed these modules are, further ways will suggesi themselves in which they can become a pleasing part of your particular domestic environment.


## Guarantee

If, within 3 months of purchasing any product direct from us, you are dissatisfied with it, your money will be refunded on production of receipt of payment. Many Sinclair appointed Stockists also offer this guarantee.

Should any defect arise in normal use, we will service it without charge. For damage arising from mis-use a small charge (typically 11.00 ) will be made.


# TRANNIES <br> 1 Dockyard Station Road, Old Harlow, Essex <br> (Saturday callers we/come) 

# All prices inclusive of V.A.T. 



## 74 Series TTL

## Linear Integrated Circuits



## Electrolytic Capacitors

| Volume controls POTENTIOMETERS <br>  |
| :---: |
| Resisto |
|  |

## Carbon

skeleton presets
Ninan high quality type (inear only) A.1 values 100 - 5 meg ohtrs. $0 \cdot 25$ watt 7 p each

## Vereoboard

## SEW <br> Clear Plastic <br> Panel Meter

UP TO $25 \%$ OFF POPULAR SEW METERS Type MR38P 1-21/32in Square Front

| rual Price | Our Price |
| :---: | :---: |
| ¢2. 50 |  |
| ¢2.50 | £2.05 |
| ¢2.50 | 12.05 |
| ¢2.50 | ¢2.05 |
| 22.50 | 22.05 |
| $\pm 2 \cdot 85$ | 82.05 |

Type SWI $100 \times 80 \mathrm{~mm}$

|  | 0.15 | 0.1 |
| :---: | :---: | :---: |
|  | matris | matrix |
| 2\} $\times 31$ | 17p | 22p |
| $2 \frac{1}{2} \times$ | 22p | 24 p |
| $31 \times 3$ ? | 22p | 24D |
| $31 \times 5$ | 28p | 28p |
| $2 \frac{1}{4} \times 17$ | 60p | 79p |
| $3{ }^{\frac{3}{4} \times 17}$ | 81p | £1.05 |
| Pin insertion tool |  | 82p |
| Spot face cutter | 52D | 52p |
| Fack of 36 pins | 42p | 42p |
|  | 20p | 20p |

 $0-100 \mathrm{~mA}$ 8 meter 1 rinA



$47 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{p} \quad 22 \mu \mathrm{~F}$ OLT $100 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{p} \quad 47 \mu \mathrm{~F} \quad 6 \frac{6}{2} \mathrm{p}$ | $220 \mu \mathrm{~F}$ | $6 \frac{1}{2} \mathrm{p}$ | $100 \mu \mathrm{~F}$ |
| :--- | :--- | :--- |
| $330 \mu \mathrm{~F}$ | $6 \frac{1}{2} \mathrm{p}$ | $220 \mu \mathrm{~F}$ |


| $330 \mu \mathrm{~F}$ | $6 \frac{1}{2} \mathrm{p}$ | $220 \mu \mathrm{~F}$ | 8 p |
| :--- | :--- | :--- | :--- |
| $1000 \mu \mathrm{~F}$ | 13 p | $330 \mu \mathrm{~F}$ | 10 p |


| $1000 \mu \mathrm{~F}$ | $13 p$ | $330 \mu \mathrm{~F}$ | 10 p |
| :---: | :---: | :---: | :---: |
| $4700 \mu \mathrm{~F}$ | 29p | $470 \mu \mathrm{~F}$ | 10 p |


| $4700 \mu \mathrm{~F}$ | 29p | $470 \mu \mathrm{~F}$ | 10 p |
| :--- | :--- | :--- | :--- |


| $6 \cdot 3$ | VOLT | $1500 \mu \mathrm{~F}$ | 20 p |
| :---: | :---: | :---: | :---: |
| $33 \mu \mathrm{~F}$ | $6 \frac{1}{2} \mathrm{p}$ | $2200 \mu \mathrm{~F}$ | 24 p |


| $33 \mu \mathrm{~F}$ | $6 \frac{1}{2} \mathrm{p}$ | $2200 \mu \mathrm{~F}$ | 24 p |
| :--- | :--- | :--- | :--- |
| $68 \mu \mathrm{~F}$ | $6 \frac{1}{2} \mathrm{p}$ |  |  |

$150 \mu \mathrm{~F}$
$150 \mu \mathrm{~F}$
$470 \mu \mathrm{~F}$
$680 \mu \mathrm{~F}$
$1500 \mu \mathrm{~F}$
$2200 \mu \mathrm{~F}$
$3300 \mu \mathrm{~F}$
$6800 \mu \mathrm{~F}$

## Mullard Polyester's

MULLARD POLYESTER CAPACITORS C280 SERIES


## MULLARD POLYESTER CAPACITORS C296 SERIES

$4003: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 1.6047 \mu \mathrm{~F}, 21 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$ 020 $0.23 \mu \mathrm{~F}$, $0.33 \mu \mathrm{~F}, 6 \nmid \mathrm{p}-0.47 \mu \mathrm{~F}, 8 \mathrm{q} \cdot 0.68 \mu \mathrm{~F}, 12 \mathrm{p} .1 \cdot 0 \mu \mathrm{~F}, 144 \mathrm{p}$

## Popular Transistors and Diodes

(Many other types stocked)

| A | 1 | AJ)149 | 40 | 1 Cl |  | BFY50 |  |  |  |  | 66 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACl26 | 14D | AD161 | 32p | BC1. 8 | 12p | BFY5 1 | 170 | 2 N 3054 | 50p | DIODES |  | OA47 0.81 0.81 |
| AC127 | 14p | AD162 | 32p | $13 C 159$ | 13p | BFY52 | 170 | 2N3055 | 52p |  |  |  |
| AC128 | 14p | AF114 | 15p | BC 68 | $11 p$ | MP8111 | 35 p | $2 \times 3702$ | $11 p$ | 1N9I4 | 8p | OA90 |
| AC142K | 25p | AFlls | 15p | BClit9 | 11p | OC28 | 40p | 2N3703 | 11p | 1 N916 | 8 p | OA91 |
| AC141K | 26D | AF116 | 15p | Br 182 | 12p | OC35 | 40p | 2N3704 | 11p | 1N4148 | 5 p | OA91 |
| AC176 | 15p | AF117 | 15p | BCIS3 | 12p | OC3i | 45 | 2N 3705 | 11p | 1N4001 | $4{ }^{\circ}$ |  |
| AC187 | 140 | 1C107 | 8p | BC184 | 12p | 0 C 44 | 140 | 2N3706 | 11p | 1 N 4002 | 410 |  |
| AC188 | 14p | RC108 | 9p | BC'212 | 12p | OC45 | 14 p | 2N3707 | 11p | 1N4003 | $51 p$ |  |
| AC187K | 25 D | RC109 | 10p | BC213 | 12p | 0 C 71 | 140 | 2N3708 | 110 | 1N4004 | Stp |  |
| AC188K | 24D | BCl47 | 11p | BC214 | 12D | $0 \mathrm{C81}$ | 14 D | 2N3709 | $11 p$ | IN400t | 6¢D |  |
| ACY20 | 22p | BC148 | 11p | 13F194 | $15 p$ | Trrata | 79p | 2N3710 | 11p | N4006 | p |  |
| AD140 | 40p | BC149 | 12p | BF195 | 17p | тIP4 |  | 2 28819 |  |  |  |  |

$$
\begin{array}{c|c}
L T & \\
6 \frac{1}{2} p \\
6 \frac{1}{2} p \\
6 \frac{1}{2} p & E \\
6 \frac{1}{2} p & 3
\end{array}
$$



\section*{Transformers <br> 12.24 volt <br> Secondary <br> | Volts | Ampa | Volt, | Ampn | Part Nu. | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 |  |  |  |  | inc. P/ |
|  | b00ma | 24 | 250 mA | MT111 | £1.20 |
| 2 | 1 | 24 | 500 mA | M T213 | £128 |
| 2 | 2 | 24 | 1 | MT71 | 11.89 |

30 volt
Secondary 12, 15, 20, 24, 30y Amps
1 $\underset{\text { Mart }}{ }$

MT79
MT3.
MT51 inc. $\mathrm{P} / \mathrm{P}$
$\mathrm{e2} \cdot 02$
£2.78

50 volt
Secondary 19, 25, 33, 40, 50v
Alepe Part No.
1
MT104
Price inc. P/P

Many other types available
See our Catalorae.

## GIIIRID

We are now Stockists of AMTRON High Quality Construction Kits (S.A.E. for full list)

| UK65 | Transistor Tester | 2.50 |
| :---: | :---: | :---: |
| UK92 | Telephone Amplifier |  |
| UKIIO | Stereo Amplifier $5+5 w$ | 11.07 |
| UKIIS | Hi-Fi Amplifier 8w | 4.31 |
| UK120 | Hi-Fi Amplifier 12w | 5.20 |
| UK125 | Stereo Control Unit | 6.30 |
| UK160 | 1.C. Amplifier 8w | 11.07 |
| UK220 | Signal Injector | 2.57 |
| UK235 | Acouscic Alarm for Absent-minded Drivers | 2.57 7.39 |
| UK240 | Parking Lights Automatic Switch | 8.66 |
| UK500 | LW/MW/FM Radio Receiver | 35.30 |
| UK515 | MW Radio Receiver | 9.86 |
| UK640 | 200mw Light Dimmer | 7.24 |
| UK790 | Capacitive Burglar Alarm | $7 \cdot 57$ |
| UK840 | Adjustable time lag car Burglar Alarm | 6.81 |
| UK875 | Capacitive Discharge Electronic Ignition for internal Combustion Engines | 6. |
| TRA I | 24-hour Digital Clock | $24 \cdot 50$ |

Transiscor Tester
plifier
UKIIS Hi-Fi Amplifier 8w
KK125 Hi-Fi Amplifier 12w
UK 160 I.C. Amplifier 8w
UK220 Signal injector
UK240 P
UK 500 Parking Lights Aucomatic Switch
UK5I5 MW Radio Receiver
200mw Light Dimmer
UK840 Adjustable time lag car Burglar Alarm
Combustion Engines
TRA I 24-hour Digital Clock

# Practical Electronics Classified AdvertisemenIS 

RATES: $9 p$ per word (minimum 12 words). Box No. 20 p extra. Semi-Display $£ 7$ per single column inch. Advertisements must be prepald and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

## YOUR TALENT CAN EARN YOU MONEY

as a

## T.V. Engineer with

## Radio Rentals

## Britain's No. I T.V. Rental Company

Are you on the right lines in your present job? Switch to Radio Rentals and be assured a good future. Here are 5 star reasons for joining us.

* Full Training given for Colour T.V.
* 5-day week
* Private use of a Company Vehicle or generous car allowance
* 3 weeks' holiday per year, rising to 4 weeks
₹ Good salary (up to $£ 34.95$ per week after 2 years)
Your present holiday arrangements will be honoured. Work towards a better future, better chances of promotion and more security. Telephone Mr. Mann, 0|-540 |304 or write to:


## RADIO RENTALS

86 The Broadway • Wimbledon • London • S.W. 19

## FOR SALE

| TV LIXE OUT-PUT TRAMGFORMERS |
| :---: |
| Tidman Mail Order Led., 236 Sandycombe |
| Road, Richmond, Surroy TW9 2EQ |
| 01.9483702 |

CATALOGUE NO. 18, Electronic and Mechanical Components and manufacturers' surplus. Credit vouchers value 50 p . Price 23 p , including post. ARTHUR SALLIS RADIO CONTROL LTD., 28 Gardner Street, Brighton, Sussex.

AUDIO MIXER MODULES for hi-fl applications. Catalogue free. Large S.A.F. HILLCREST ELECTRONICS, 123 Harestone Hill, Caterham, Surrey.

FOR 8ALE Practical Electronics, Nov. '64 to Sept. '73. Unbound. Offers: MR. ANGEL, (01) 7364057.

AUDIO MIXER MODULE8. Catalogue free. Large S.A.E. HILLOREST ELECTRONICS, 123 Harestone Hill, Caterham, Surrey.

SEEN MY CAT ${ }^{5}$ 5,000 items. Mechanlcal and Electrical Gear, and materlals. S.A.E. K. R. WHISTON, Dept. PE, New Mills, Stockport.

## ULSTER: <br> THE NEW UNIVERSITY <br> INSTITUTE OF COWTINUING EDUCATION: <br> magee university college LONDONDERRY <br> C.C.T.V. TECHNICIAN <br> Applications are invited for the above post. <br> Duties will include the operation and maintenance of CCTV services and preparation of programme material. <br> Qualifications: HNC or equivalent, plus at least seven years' previous experience. <br> Salary scale: £1,881-£2,241 per annum. Appiication forms and further particulars should be obtained from the Registrar, The New University of Ulster, Coleraine, Co. Londonderry, Northern Ireland (quoting Ref. No. 73/130/149/31/ 98) to whom completed applications, including the names and addresses of three referees, should be returned not later than 31st October, 1973.

```
FIBREOPTICS
Floxible Light Pipe for conveying light to inaccessible positions. Fibroflex Type 14 Glass 1.14 mm effective dia. PVC sheathed. 44p per metre. (VAT inc.), P. \& P. IOp. Any quantity.
Polariser Sheet up to I sq. ft. max. size. I6\}p persq. in. (VAT inc.), P. \& P. up to 6 in. square 10p; over 6 in, square 30p
* Cut down glare
- Cross the nixie tubes
* Make your own strain gauge for plastics and glass
Circuit Board Etching Kits. Full instructions. x1.37) (VAT inc.), P. \& P. 14p
Photographic CDS Light Cells-used (with part of original circuit free), 33p (VAT inc.), All items are strictly C.W.O.
From: ARVIN SERVICE COMPANY 12 CAMBRIDGE ROAD ST. ALBANS
```



## TELEVISION TRAINING <br> (MONOCHROME AND COLOUR)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of 16 months' duration, with daily attendance, are available' for beginners and shorter courses for men with previous training in Electronics and Radio. Next course commences January 2nd. Training courses in Marine Radiocommunication and Radar are also available. Write for prospectus to: London Electronics College, Dept, B/11, 20 Penywern Road, Earls Court, London SW5 9SU. Tel. 01-373 8721.

## SERVICE SHEETS



8ERVICE 8HEET8, Radio, TV, etc. 8,000 models. Catalogue 15p. S.A.E. enquiries. TElRAY, II Maudiand Bank, Preston.

8ERVICE SHEETS for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., from 5p with free Fault-Finding Guide. Etc., from 5p with free Fault-Finding Guide. HAMLLTON RADIO, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 29066.

## 5-N-Channel FETs 3819E-EI

Full specification devices complete with circuit details for building voltmeter, timer, ohmmeter, etc.
Send 10 p for full list of field effect transistors and other top quality transistors available at bar sain prices.

REDHAWK SALES LTD.
45 Station Road, Gerrards Cross, Bucks. MAIL ORDER ONLY

> 50 RESISTORS AT 0.56p EACH ALL COMPONENTS BRAND NEW1 W C/Film, Low Cost 22 TEED your choice 28 p/50, Cost ( 22 ohms to $2 \cdot 2 \Omega$ ), your choice 28p/50. 4 Wiskra C/Film (4.7ohm to $4.7 \Omega$ ) your choice 33p/50. All Resistor
Values in Stock. Electrolytics. lov (mfd price) -4.7/4p; 10/4p; 22/4ip p; 50/4 \&p; $100 / 5 \mathrm{p}$; 200/6p; 500/8p; 1,000/9p; 2,000/16p. 25Vi (mfd/price)-2.2/4p; 4.7/4p; 10/4p; 22/431p; 50/41p; 100/51p; 20017p; 500/11p; 1,000/16p 50 V (mid/price) - $10 / 4 \mathrm{p} ; 50 / 5 \mathrm{p} ; 100 / 7 \mathrm{p}$; 200 9p; $500 / 14 \mathrm{p} .63 \mathrm{~V}$ (mfd/price)-2.2/5p; 4.7/5p; 10/6p; 22/6p. Transistors-2N3055 35p; Heatsinks-I $\times$ TO3 9p 13p; OC45/71 10p; All $16 s w g$ Black Anodised, Cases and Semiconductor PAKs see August and October Issues, Add 10\% VAT to total order. Catalogue with full component range free.
> 18 Yew Lane, Ashley, New Milton, Hants
BH25 5 BA, C.W.O. \& \& P. at cost $9 p$ min BH25 5 BA, C.W.O. P. \& P. at cost 9p min. Mail order Only.

## PRECISION POLYCARBONATE CAPACITORS

 Close tolerance. High stability, All 63V d.c.$0.47 \mu \mathrm{~F}: \quad \pm 5 \% \quad 30 \mathrm{p} ; \quad \pm 2 \% \quad 40 \mathrm{p} ; \quad \pm 1 \% \quad 50 \mathrm{p}$ $\begin{array}{lllllll}0 \cdot 47 \mu \mathrm{~F}: & \pm 5 \% & 30 \mathrm{p} ; & \pm 2 \% & 40 \mathrm{p} ; & \pm 1 \% & 50 \mathrm{p} \\ 1 \cdot 0 \mu \mathrm{~F}: & \pm 5 \% & 40 \mathrm{p} ; & \pm 2 \% & 50 \mathrm{p} ; & \pm 1 \% & 60 \mathrm{p} \\ 2 \cdot 2 \mu \mathrm{~F} ; & \pm 5 \% & 50 \mathrm{p} ; & \pm 2 \% & 60 \mathrm{p} ; & \pm 1 \% & 75 \mathrm{p}\end{array}$ $4.7 \mu \mathrm{~F}$ : $4 \cdot 7 \mu \mathrm{~F}$ :
$6.8 \mu \mathrm{~F}$ : $10 \mu \mathrm{~F}:$
$15 \mu \mathrm{~F}:$

 | $\%$ | $80 p$ |
| :---: | :---: |
| $2 \%$ |  |
| 21.15 |  | $\pm 1 \%$

$\pm 1 \%$
$\pm 1 \%$

$\pm 1.15$ | $15 \mu \mathrm{~F}: ~$ | $\pm 5 \%$ | $\pm 1 \cdot 60 ;$ | $\pm 2 \% 21 \cdot 40 ;$ |
| :--- | :--- | :--- | :--- |
| $2 \%$ | $\pm 2 \% 10 ;$ | $\pm 1 \% 82.80$ |  |
| $12 \%$ |  |  |  | TANTALUM BEAD CAPACITORS. Values | available $0.1,0.22,0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at |
| :--- |
| $35 \mathrm{~V}, 10 \mu \mathrm{~F}^{\prime} 25 \mathrm{~V}, 15 \mu \mathrm{~F}^{\prime} 20 \mathrm{~V}, 22 \mu \mathrm{~V}$ |
| $15 \mathrm{~V}, 33 \mu \mathrm{~F} 10 \mathrm{~V}$ | $47 \mu \mathrm{~F} 6 \mathrm{~V}, 100 \mu \mathrm{~F} 3 \mathrm{~V}-a l l$ at 8 p each; 6 for 45 p ; 14 for 95 p. Special pack 6 off each value ( 78 Capacitors) 64.50 .

NEW:-TRANSISTORS. BC107, BCIO8, BC109. All at 9 p each; 6 for 50 p ; 14 for Cl . Al brand new and marked. Fuli spec. devices. May be mixed to qualify for quantity prices. AFI78
at 35p each or 3 for 95 p. at 3 p each or 3 for 95 p.
POPULAR DIODES. UN914, 6p each; 8 for 45p; 18 for 90p. IN916, $8 \mathrm{p} \mathrm{each} ; 6$ for 45p; 14 for 90 p. 1544, 5p each; 11 for 50p; 24 for Cl . Al NEW LOW PRICE NEW LOW PRICE - 400 mW Zoners. alues ava,lable $4 \cdot 7,5 \cdot 6,6 \cdot 8,7 \cdot 5,8 \cdot 2,9 \cdot 1,10$, 11
$12,13 \cdot 5,15 \mathrm{~V}$. Tol. $\pm 55$ at 5 mA . All new and marked. Price 7p each; 6 for 39p; 14 for 84p. Special offer 6 off each voitage ( 66 zeners) 43.65 . RESISTORS. Carbon film $5 \%, \frac{1}{2} \mathrm{~W}$ at $40^{\circ} \mathrm{C}$. 1 W at $70^{\circ} \mathrm{C}$. Range from $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ in EJ 2 series
i.e. $10,12,15,18,22,27,33,39,47,56,68,82$ and i.e. $10,12,15,18,22,27,33,39,47,56,68,82$ and
their decades. High stability, Iow noise. All at Ip each; 8p for 10 of any one value: 70p for loo of any one value. Special pack- 10 off each value $2 \cdot 2$ n 2 .
ting A.C. CAPACITORS. $0 \cdot 1 \mu \mathrm{~F}$, size If in $X$年, 25p; $0.25 \mu \mathrm{~F}$, size 17 in $\times$ in, 30 p ; 0.47 and
 SILICON PLASTIC RECT
Brand new wire-ended DO27 each or 4 for 30 p; 400 piv at $9 p$ each or 4 for 34p; 800PIV at lip each or 4 for 50 p .
$5 p$ post and packing on all orders below $\mathbf{E} 5$.
Please add 10\% VAT to all orders MARCO TRADING
Dept. Ell, The Maltings, Station Road Wem, Shropshire

DIGITAL CLOCK COMPONENTS 4/6 Digit Clock Chip $\mathbf{E 9 . 0 0}$; 6 Minitro Displays E6.00; Kit of Discrete Driver Displays $£ 6.00$; Kit of Discrete Driver
Transistors and Diodes $£ 3.50$; Minitron Sockets 25 peach. $2 N 7447$ drivers $\$ 1-20$ each LOW COST LED LAMPS
Red 3 mm dia, 20p each; Red 4.45 mm dia. 23p each; Green 3 mm dia. 55 p each Green 4.45 mm dia. 55 p each.
CALCULATOR DISPLAY
0.12 inches Character Height Flatpack 62.00 each.

SLIDER SWITCHES
1 pole 2 position-Miniature 14 p each; 2 pole 2 position 14 p each; 2 pole 3 position 21 peach; I pole 4 position 23p each.
U.K. Postage and packing 10 p . Overseas

25p. Vostage and packing
PERDIX COMPONENTS LTD.
Dept. PE73, 3I Green Lane, Chislehurst, Kent.

DRY REED INSERTS

Overall length $1.85^{\prime \prime}$ (Body lengrth I.I").
Diamerer $0.14^{\prime \prime}$. Max ratings 250 v D.C. and Diamerer $0 \cdot 14^{*}$ Max. ratings 250 v D.C. and
500 mA . Gold clad normally/open contacts. 69 p 500 mA . Gold clad normalylopen contacts. 69p
per dozen. 64.12 per $100 ; 630.25$ per 1.000 : 6275 per 10,000 . VAT and post paid. G.W.M. RADIO LTD.

40/48 Portiand Roed, Worthing, Susey 090334897

BRAND NEW COMPONENTS by return, Eilectrolytics $16 \mathrm{~V}, 25 \mathrm{~V} .50 \mathrm{~V}-0 \cdot 47,1,2 \cdot 2,4 \cdot 7$. $10 \mathrm{mF} ; 4 \mathrm{p} ; 22,47,4 \frac{1}{2} \mathrm{p}(50 \mathrm{~V}, 5 \mathrm{sp}) ; 100,5 \frac{1}{2} \mathrm{p}$ ( $50 \mathrm{~V}, 7 \mathrm{ip}$ ); ' $220,6 \mathrm{p}$ ' ( $50 \mathrm{~V}, 9 \mathrm{p}$ ). Subniniature bead-type tantalums $0 \cdot 1 / 35 \mathrm{~V}, 0 \cdot 2=/ 35 \mathrm{~V}, 0-15$ $35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4.7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}, 8 \mathrm{p}$. Mylar Film $100 \mathrm{~V}-0.001,0.002,0.005,0.01$, $0.02,2 p ; 0.04,0.05,3 p ; 0.068,0-1,3 \frac{1}{3} p$. Poly:styrene 63 V E12 series $10-1,000 \mathrm{pF}, 2 \mathrm{p} ; 1,200-$ $10,000 \mathrm{pl}, 3 \mathrm{p}$. Miniature highstab resistors, $5 \%$, E12 series- Carbon Film $\frac{1}{}{ }^{\circ}, 1 \Omega-10 \mathrm{M} \Omega$ (10\% over 1 MS2). Metal Film, $1 \Omega, 10 \Omega$ $2 \cdot 2 M \Omega$ and $1 \mathrm{~W}, 2 \pi \Omega-10 \mathrm{M} \Omega$ all ip each. $2 \cdot M \Omega$
Postage $8 p$. The C.R. SIPPLY.
CO.,
127 Chesterfield Road, sheffield, so ors.

TUNBRIDGE WELLS. Components from: Teleservice. S.A.E. or call in for list. Special offers, limited quantity; Matched AD161/Z, 68p: 10 transistors similar $2 \mathrm{~N}: 3702 / 3$ unmarked, 32p; 12 $1 \times 914 / 6$, 20p unnarked ; air spaced twin gang receiver tuning capacitors, unused, 50p; thin grey connecting fle $x, 1 p, y$ Minimum order 40p, post free, but add $10 \%$ VAT. 108 Canden Road, Tunbridge Wells, Kent. Tel. 31803.

## RADIO \& TELEVISION AERIAL BOO8TER8

 22.95, flve television valves 45p. 50p bargain transistor packs, bargain $\$ 1$ resistor and capacitor packs. UHF-VHF televisions \$7.50. Carr. £1.50. S.A.E. for 3 leaflets. VELCO ELECTRONICS, Bridge st., Ramsbottom, Bury, Lancs.[^9]
## Trompus alanimain

Add $10 \%$ vat ( t ) to all prices. All brand new, no rejecta. MIMoney Bacci Warranty. SV DIGITAL MIDICATOR: 0-9DP socket and ${ }^{\text {filter } 81.45 .}$
Leach. 4 dige tí type 0 -9DP
each. 4 panel clip. TITHG DIODES. All with data and
 GAB detector $\$ 1$ i. 69 . Ultrasonic beanaducer 22 . DALO PCB retist marling pen 69p. Copper board $12^{*} \times 6^{*}$ \&RBP 40p. FeC etch PAK 19p. INTEGRATED CIRCUITS: with data if required. IC LITE SWITCH: Photo amp/trigger $40 \mathrm{miA} / 11-20 \mathrm{y}$

## relay or TTL 87D. Dil relsy 2110 . <br> IL digital clach

mOS/Las type. 28 pin, 4 or 6 digit, $12 / 24 \mathrm{hr}$. Chip with socket 213; PCB 21.69; KIT $821 \cdot 49$. DVM voltmeter 812 . Data 30p. 3W AF amp 81.24.

741 Dil 8 pin 28p; 709 19p. Dil 29p; 74829 p ; mono 710 33p. 555 TMMER/mono/astable osc. clock 93p
REGULATORS: 1 A 5 to 20 V \&1.49; 723 57p.
 1310 stereo decoder for tuner $82 \cdot 68$, K1T $\& 8.45$.

GATES $7400 / 1 / 2 / 3 / 4 / 5 / 10 / 20 / 30 / 40 / 50$, etc., 14 p
 59p; 7492 87 p : 7480 69p; 7483 81.10. 7486 87p 7493 73pi 7494 83p; $749583 p ; 7496$ 880: 74121 $45 p$; 74141 89p; $74190 / 91 / 92 / 93 / 96$ ع2.89. DIL Plugs/IC case 10 mm high 16 pin 35 p .
DL BOCKETS: low or high profle $8 / 14 / 16$ pin 18p. SEMICOMDJCTORS:
2N3055 40p; $\mathrm{BC107} 8 \mathrm{p} ; \mathrm{BC108} 8 \mathrm{p} ; \mathrm{BC109} 8 \mathrm{p}$; BC147/8/9 10p: $\mathrm{BC} 167 / / / 9 / 913 \mathrm{p}$; $\mathrm{BCL} 177 / 8 / 9$ 15p;
 2N706 11p: 2 N 2369 12p: 49p; 2N3053 17p; 2N3055 40p; 2N3614 65 p 2N3702/3/4/j/6/7/8/9/10/11 All 9 p eac FETS: 2N3819 27p; 2N3823 29p; 8CR 400V; 1A 23P; 4A 55p. TRANSFORMER: 1466 and 12481 . CAPACITORS: 11isc $22 \mathrm{pF}^{\text {F }}$ to $0.1 \mu \mathrm{~F}$ 4p. ${ }^{25 \mathrm{~V}}$ electrolytic 10, $50,100 \mu \mathrm{~F}$ 5p; ${ }^{1,000 \mu \mathrm{~F}} \mathrm{ISp}^{2}$. PRE-
SETS 5 p each. RESISTORS CARBOR POTS 12 peach . Dual 40 p . Switch +120 All Din Plugs 13p; sockets 9p; Vero RRP.

13" 8 watt fully built with diffuser.
TRIO and CODAR communications and $\mathbf{H} / \mathrm{Fi}$ retailer. ELECTRONIC ORGANS frome 267 .
VAT: YOU MUST ADD $10 \%$ ( 1 ) to all price
FREE CAT. S.A.E. Data sheets 8 g esch. P. \& P.
8p. C.W.O. P.O. BOX 29, BRACKMELL, BERK8.

COMPUTER PANELS ${ }^{6}$ asorted. No rubblah. s1 (25p). M.C. METERA 3 nasorted 2in-3in, 81.16 (25p). 6 Fif. RESETTABLE OOUNTES $18 / 22 \mathrm{~V}$. Works on 12 V , 28.20 ( 15 p ). BILICOR DLODFs 650V 14A. 10 on tagboard 35p (5p). New 800 , 1A. 6-25p (5p). UNTT Diodes, 4 2eners, capa and resistorn 400 (8p). c.p. 7 it in $\times 9$ in 85 p c.p. 6 for $£ 1.20 \mathrm{c} . \mathrm{p}$. 8 tin $\times 9 \mathrm{in}$
 E1.40 c.p. WIRE ENDED NEOKB 10-60p (8p); Bank of 5 with $6 \cdot \mathrm{C} 407$ driver trans. $60 \mathrm{p}(8 \mathrm{p})$. POLYSTYRERE CAPACITORE 125V. $100,150,180,220$, $330,390,560,680,820,1,200.1,600,1,800,2,200$, $2,700,3,300,3,900,5,600,6,800.0 \cdot 01,0 \cdot 012$. 22p dozen (8p). Mixed with a/on $100-50 \mathrm{p}$ c.p
7LS ASSORTED COMPONEATR 21.60 c.p.
2LE ASSORTED COMPUTER PAKELS 81.60 c.p.
Lista computer panela, etc. 10p stampa refunded on purchase.

## J.W.B. RADIO

75 HAYFIELD RD., SALFORD 6, LANCS.
Postage in Brackets Mail Order Only

100 MIXED RE8I8TORS (our choice), many wire wound. 55p $(10 \mathrm{p})$ ) 100 mixed capacitors (our choice), silver MICA, polystyrene, ceramic, ptc. $55 p$ (10p). SIECIAL PACK includes 6 mixed pots, 10 mixed valve bases, 100 mixed resistors, 100 mixed capacitors. Good value at 22.50 (20p). Prices include V.A.T. postage in brackets. No used components. S.A.F. for list. GRC, 82 High Street, Winsford, cheshire.

NORTHERN IRELAND READER8. BC10710p; BC182L-10p; BC184L-10p; BC212L -10p; 2N3702-12p; 2N3055-65p; TIS4340p; TIP29-58p. Spraque $5 \mu \mathrm{~F} / 150,10 \mu \mathrm{~F} /$ $150,25 \mu \mathrm{~F} / 100$. All 10 p each. Full range of radio spares, Eagle, etc. Send large S.A.E. for catalogue. $\mathbf{P}$. \& $\mathbb{P}^{\prime}$. 5 p per order. R.L.S. ELECTRONICS, 114 High Street, Holywood, Co. Down BT18 9HW.

## R.T. SERVICES (MAIL ORDER ONLY)

 77 Hayfield Rd., Salford 6, Lancs. Yeroboard $6 \times 5 \quad 0.1$ Matrix, 2 for $£ 1$. Matrix, 75p each.Matrix, ${ }^{75 p}$ each, Module. I.F. Strip, LP1I66, Mullard A.M.
FM Tuner with R.F. Stage andr A.G.C. 3 cransistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $\in 1 \cdot 37 \frac{1}{1}$ inc. P.P.
Crouzet Geared Motors, 30-60 r.p.m. New, $£ 1.54$ inc. P.P.
UHF TV Tuners. Transistorised, $£ 1.65$ inc. P.P.
YCRI 38 CRT. New, boxed, $£ 3 \cdot 30$ inc. P.P. Brand New Panel VU Meters, $4 \frac{1}{2} \times 3 \frac{1}{4}$ in calibrated, $£ 3 \cdot 30$ inc. P.P.
Transformers. $7.5 \mathrm{~V}+7.5 \mathrm{~V}$ 1 $\mathrm{A}, 66 \mathrm{p}$ inc. P.P. $18-0-18 \mathrm{~V}, 200 \mathrm{~mA}+24 \mathrm{~V},{ }^{77} \mathrm{P}$ inc. P.P. $9-0.9 \mathrm{~V}, 100 \mathrm{~mA}, 69 \mathrm{p}$ inc. P.P. $12-0-12 \mathrm{~V}$, 100 mA 69 p P.P. 20 V , IA 88 p inc. P.P. Transformers. $52-0-52 \mathrm{~V}$, $1 \mathrm{~A}+22-0-22 \mathrm{~V}$, $200 \mathrm{~mA}, \mathbf{1 2} 20 \mathrm{inc}$. P.P.
P.C. Board. $\mathrm{S} / \mathrm{S}$, $5 \frac{1}{2} \times 5 \frac{1}{3} \mathrm{in}$, 10 for 70p inc. P.P.
Panel with 5-200 PIV IA SCRs + I4 OA200 diodes plus components 70 p inc. P.P.
$2,500 \mathrm{mfd} 100 \mathrm{VW}$ capacitor $4 \frac{1}{2}^{\mu} \times 1 \frac{1}{3}^{\prime \prime}$. New, 85 p inc. P.P.
Panel Meter $50 \mu$ A. Brand new, $41^{\prime \prime} \times 3 t^{\prime \prime}$. E3.30.
Panel with 2 SN7490, 2 SN7441 counting eircuit with end connector, $£ 2 \cdot 20$ inc. P.P. Panel with 2 min . nixie tubes to slot in, E 2 inc. P.P.

## FACIAS AND CONTROL PANEL FRONTS - Made to Order <br> 

MANUFACTURED FROM HARDWEARING PLASTIC LAMINATE MATERIAL. AVAILABLE IN WIDE COLOUR CHOICE, INCLUDING WOODGRAIN. LEGEND PERMANENTLY MACHINE ENGRAVED. THE IDEAL AND ECONOMIC ANSWER FOR SINGLE, SHORT BATCH OR EXPERIMENTAL PANELS. SEND DIMENSIONED SKETCH FOR QUOTATION. WE ALSO MANUFACTURE ENGRAVED LABELS AND NAMEPLATES.

RAPOWESIGN \& PRODUCT CO.
32 Sheridan Road, Hereford Tel. 2415

## TELERADIO ELECTRONICS ARE STOCKING THE MODULES FOR THE P.E. RONDO QUADRAPHONIC SYSTEM

| Matrix Decoder | $£ 8.80$ |
| :--- | ---: |
| Pre-Amplifier | $£ 3.30$ |
| Stereo Amplifier | $£ 8.25$ |
| Controls \& balance panel | $£ 9.35$ | Prices include VAT and Post ;

Further information gladly supplied on request
TELERADIO
325-7 Fore Street, London N9 OPE 01-807 3719

COMPONENT8 GALORE. Pack of 500 mixed components. Manufacturers' 'surplus plus once used. Pack includes resistors, carbon and W.W., capacitore various, transistors, diodes, trimmers, potentiometers, etc. Send $1+10 \mathrm{p}$ P. \& P. C.W.O. to: CALEDONIAN COMPONENTS, Strathore Road, Thornton, Fife.

FOR BARGAIN LIBTB worth seeing, plus FREE SAMPLES send S.A.E., 2 Richmond Terrace, Ulverston, Lancs.

## COMPONENTS, HARDWARE, CARTRIDQE8.

GP91/3SO 90p. STYLI from 20p-V.A.T. included. 18-page lists, 3 p stamp. R.F. included. 18 -page lists, 3 p stamp. R.F.
SUPPIIES, Down Barton, Woodham Road, Woking, Surrey.

## MISGELLANEOUS

| TREASURE TRACER <br> MK III moas teater |
| :---: |
|  |
|  |

CONBTRUCTION AID8. Screws, nuts, spacers, etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit boards-masters negatives and boards, one-off or small numbers Send 6 p for list. RAMAR CONSTRUCTOR SERVICES, 29 Shelbourne Road, Stratford on-Avon, Warwks.

## Build the Mullard C.C.T.V. Camera Kits are now available with comprehensive construction manual (also available separately at $76 \frac{1}{2} \mathrm{p}$ ) <br> SEND 5" $7^{\prime \prime}$ S.A.E. FOR DETAILS TO: CROFTON ELECTRONICS 15/17 Cambridge Road, Kingston: on-Thames, Surrey

METER REPAIRs. Ammeters. Voltmeters, Multi-Range ineters, etc., also Linear scale Transistorised Ohmmeters for sale. METER REPAIRS, 39 Chesholm Rd., London N160DS.

ALUMINIUM SHEET to individual sizes or in standard packs, 3p stamp for details. RAMAR CONSTRUCTOR SERVICES, 29 Shelbourne Road, Stratford-on-Avon, Warwks.

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, tables, electronic testmetrs, p. pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M C relays, components, etc. Lower Beeding 236.

QLA8s FIBRE P.C. BOARD-large supplies available. it in single sided one ounce copper, 2 p per 3 sq in (under 1ft); 75p per sq ft (over 1 ft ). A in double sided one ounce copper, 1 p per sq in (under 1 ft ); 81 per $8 \mathrm{q} \mathrm{ft}^{\mathrm{ft}}$ (over 1 ft ). Please add 10 p per sq ft postage and packing. We can c1 ${ }^{4}$ to your size at 1 p per cut. SOLID We can cirito your size at 1 p per, cut. Lane, Garboldisham, Diss, Norfolk.
A.L.S. PRESENTS OUR
E.C. 100 Watt Hi-Fi Amplifier
E.C. 100 Watt Hi-Fi Amplifier
ready drilled P.C.B. with full instructions
only $E 2$ plus 10p post.
Service Sheets, Manuals, Books, etc.
Service Sheets, Manuals, Books, etc.
See our main advert in 'TELEVISION'
or send S.A.E. for details.
10 DRYDEN CHAMBERS, 119 OXFORD ST.,
LONDON WIR LPA (B).
fibre oplic suppliers
LOW COST LED-MLED 500 , MV 54 ing MV 54 is Ty size, 2 mm . miniarure. Borh emit visible red light. Current requirement $20 \mathrm{~mA}, 150 \mathrm{n}$ resistors available for 5 V d.c. (TTL) operation.

2N5777-SILICON PHOTO DARLINGTON AMPLIFIER Economical, high sensitivity, TO92, LIGHT DETEC
$\begin{array}{lccccc}\text { MLED500 } & \text { 22p } & 2 & 5 & 10 & 25 \\ \text { MV54 } & \text { ¢1.10 } & 62.20 & 63.74\end{array}$ $\begin{array}{llllll}\text { MLED500 } & \text { 22p } & \text { 44p } & \text { £1.10 } & \mathbf{6 2 . 2 0} & \mathbf{6 3 . 7 4} \\ \text { MV54 } & \text { 22p } & \text { 44p } & \mathbf{4} 1.10 & \mathbf{~ 2 . 0 9} & \mathbf{6 3 . 5 2} \\ 150 \Omega & - & -10 & \end{array}$ $\begin{array}{llll}150 \Omega \\ 2 N 5777\end{array} \quad 55 \bar{p} \quad \& 1 \cdot \overline{10} \quad 42 . \overline{53} \quad 44 . \overline{62} \quad 11 p$

TRANSMITTER RECEIVER PAIR 40 kHz for burgular alarm. remote control, novelties. Great value at $\mathbf{6 3 . 8 5}$ per trans; receiver pair.

HNCP 37-NEUTRAL CIRCULAR
Reduce glare on cris misiers
Reduce glare on crt's, meters, displays, panels. $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ ( 2 in ), 66p; $75 \mathrm{~mm} \times 75 \mathrm{~mm}$. C1.21; $150 \mathrm{~mm} \times 150 \mathrm{~mm}, 44.40$.
CROFON $1610-64$ FILAMENT LIGHT CONFUIT
1.8 mm active dia., 3.3 mm o/d. Simply cut to length and conduct light where required. For displays, internal illumination, multiple point lighting. I metre. $\mathbf{£ 1 . 3 2 ; 2 \mathrm { m } , 4 2 . 6 4 ; 5 \mathrm { m } , 4 5 . 5 0 \text { ; } 1 0 . 4 5}$
$\qquad$ LASTIC OPTICAL MONO.
Single strand
Single strand unjacketed light guide, simple to
use. 5 metres, $\{1 \cdot 10 ; 10 \mathrm{~m}, \mathrm{E} 1.98 ; 25 \mathrm{~m}$, 3.85 FP20 (0.5mm) and FP $60(1.5 \mathrm{~mm}$ ) also available. MARE'S TAILS FOR DECORATIVE DISPLAYS
7,000 fibres, professionally finished, beautiful. Add lamp, stand, cover to make a Fibre Optic Lamp. Eye catching in boardroom, hall or foyer, $\$ 11.00$ each.
All prices shown include P. \& P., VAT. C.W.O please. For full information on our complete range, send 9 in $\times$ bin S.A.E. to
FIBRE OPTIC SUPD
P.O. Box 702 London WIO 6SL

## NEW FROM ELBON

L.E.D.'s (Red Emitting) tdeally suited for panel indicators Price only: 33p each or $\mathbf{\Sigma 2 \cdot 5 0}$ for 10
Light SENSITIVE SWITCHES
Two types avaitable giving wide operating voltages: LITE-IC2 1 l V-20V working - $£ 1$ each - $\mathbf{£ 8} .50$ for 10 LITE-IC3 20V-30V working- $\mathbf{E} 1$ each $-\mathbf{\$ 8} 50$ for 10 Applications include: Relay. Triac or Logic Drive. automatic light switching and door control, beam/break detection - burglar alarm, batch counting and code reading.
BARGAIN PACK!
2 LITE-IC2. 2 LITE-IC3 and 5 LED's all for $\mathbf{~} 5 \cdot 00$
ALL PRICES INCLUDE VAT. PACKING AND CARRIAGE Please send C.W.O. to:
LITE-IC, ELBON, SUMMERFIELD,
THE CRESCENT, WEST WITTERING, SUSSEX

ENAMELLED COPPER WIRE

| S.W.G. | 116 Reel | 116 Ree |
| :--- | :--- | :--- |
| $10-14$ |  | 1.27 |
| $15-19$ | 61.27 | $72 p$ |
| $20-24$ | 61.30 | $72 p$ |
| $25-29$ |  | 1.38 |
| $30-34$ | 1.43 | $75 p$ |
| $35-40$ |  | 1.54 |
|  |  | $88 p$ |
|  |  |  |

Please add $10 \%$ to all above prices to cover VAT
The above prices cover P. \& P. in U.K. Supplied by
INDUSTRIAL SUPPLIES
102 Parrswood Rd., Withington, Manchester 20 Telephone Ne. 061-224 3553

LOW CO8T I.C. MOUNTING. I.C. socket pins in lengths of 100 pins for 60p. (P. \& P. 5p) S.A.E. Details and sample. GASKELL Oak Lodge, Tansley, Derbyshire.

HARDWARE-Screws, nuts, washers and other useful items in small quantities. Sheet aluminium to individual requirements, punched/drilled. Send 6p for list. RAMAR CONSTRUCTOR SERVICES, 29 Shelbourne Road, Stratford-on-A von, Warwickshire.

Do you suffer from tired eyes due to bright lights, or need a softer light for watching television in comfort? Well, we have the answer, a

## GREENBANK DIMMER SWITCH

Just look at these features:
$\star$ Velvet dim to full brightness at the touch of a finger
$\star$ Positive off position
$\star$ Built-in radio interference suppression
$\star$ Controls up to 300 watts
$\star$ Easy replacement for a standard light switch

## All this for only £3.75 complete

(500 watt model also available)
This price includes V.A.T., also P. \& P. Why not write or phone now? Please send C.W.O. to:

## GREENBANK ELECTRONICS

94 New Chester Road New Ferry, Bebington Cheshire L62 5AG
Tel. 051-645 3391

TOP PRICES PAID NEW VALVES AND TRANSISTORS
Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks:

## LADDERS

LADDER8 24ift E 12.39 , carr. $£ 1.10$. Leaflet. HOME SALES LADDER CENTRE (PEE2), Haldane (North), Halesfieid (1) Telford, Shropshire. Tel. 0952586644.

## ANNUAL WAREHOUSE CLEARANCE SALE

SAT. OCT. 6 - NOV. 3 TUES. -SAT. 10 a.m. - 5 p.m.

* THOUSANDS OF BARGAINS *
* TEST EQUIPMENT *
* OSCILLOSCOPES *
* SIGNAL GENERATORS *
* COUNTERS *
* CAIDETS *
${ }^{\star}$ * METERS ${ }^{*}$
* METERS
* TRANSMITTERS *
${ }^{*}$ RECEIVERS *
* POWER SUPPLIES *
* LABORATORY EQUIPMENT *
* GALVANOMETERS *
* AUDIO EQUIPMENT *
* VIDEO EQUIPMENT *
* BATTERY CHARGERS* ${ }^{\star}$
* MOTORS *
* ETC. * ETC. *


## 20 TONS OF

ELECTRONIC COMPONENTS

* RESISTORS * RELAYS
* CAPACITORS
* SWITCHES
* TRANSFORMER
* METERS

COM. PONENT

* SEMICONDUCTORS
* CABLE
* VALVES

REGRET NO LISTS AYAILABLE PERSONAL CALLERS ONLY. CASH AND CARRY ONLY

ELECTRONIC COMPONENTS

## ack 10.

Pack LO.
1500 Carbon resiators, $\frac{1}{2}, 1,1,2$
2
100
Eleotrolytic Condeneera.
3250 Ceramic, Polystytene, Bilver Mics, etc. Con
4250 Polyeater, Polycarbonate, Paper, etc. Con25 densers.
525 Pofentiometers, asoorted.
6250 High-stab. I \%, $2 \%$, $5 \%$ resistors.
750 Assorted Tagatrlps.
811 wt . Assorted Nuts.
1/b wt. Assorted Nuts, bolte, washer, apacers,
925 Assorted switches, rotary, lever, micro, toggle,
1050 Preset Potentlometers.
ALL COMPONENTS NEW AND UNUSED
$\mathbf{E 1}+\mathbf{2 5 p}$ p.p. per pack, $\mathbf{E 5}$ for 5 packs p/free


Mail Order, Retail Shop, Components-
267 Acton Lane, LONDON W45DG O1.994 6275
Warehouse, Test Equibment, Surplus Goods-20-24 Beaumont Road, LONDON,W.W.
Audio Accessory Shop, Components-
17 Turnham Green'Terrace, LONDON, W. 4

## Mullard Components

CARBON FILM RESISTORS
High stability，very low noise．El2 series Ignore fractions．
$\begin{array}{lccc}0.33 \mathrm{~W} \mathrm{5} \mathrm{\%} & 1+ & 100+ & 1.000+ \\ & \mathbf{0 . 7 p} & 0.7 \mathrm{p} & 0.6 \mathrm{p}\end{array}$
ELECTROLYTIC CAPACITORS Miniature series．Tolerance $-10 \%+50 \%$ $\begin{array}{llll}\mathrm{Al} & 4 \mathrm{p} \text { each } \\ 4 \mathrm{~V} & 6.3 \mathrm{~V} \quad 10 \mathrm{~V} 16 \mathrm{~V} 25 \mathrm{~V} 40 \mathrm{~V} 63 \mathrm{~V} 63 \mathrm{~V} 63 \mathrm{~V}\end{array}$ $\begin{array}{lllllllll}47 & 33 & 22 & 15 & 10 & 6.8 & 1.0 & 4.7 & 22 \\ 100 & 68 & 47 & 33 & 22 & 15 & 1.5 & 6.8 & 47\end{array}$ $\begin{array}{llllllll}100 & 68 & 47 & 33 & 22 & 15 & 1.5 & 6.8 \\ 220 & 150 & 100 & 68 & 47 & 33 & 2.2 & 10 \\ 330 & 470 & 220 & 150 & 100 & 47 & 3.3 & 15\end{array}$ $\begin{array}{llllllll}330 & 470 & 220 & 150 & 100 & 47 & 3.3 & 15\end{array}$

POLYESTER CAPACITORS $\begin{array}{ll}\text { C280 series．250V PC mounting：} & 0.01 \\ 0.015,0.022,2 p ; & 0.033,0.047,0.068, \\ 0.1\end{array}$ 3p； $0.15,0.22,4 p ; 0.33,5 p ; 0.47,6 p ;$ 0．68，8p；1．0． $10 \mathrm{p} ; 1.5,14 \mathrm{p} ; 2.2$ ，16p．

All prices include VAT．Please add 8p postage and packing on orders below $\mathbf{C 2}$ ． $5 p$ stamp for our comprehensive catalogue．

## C．N．STEVENSON <br> 304 Avery Hill Road London SE9 2JN

## SOLID STATE LAMPS

Try out the latest light emitting diodes

Experimenters＇pack of four Motorola light emitting diodes （LEDs）complete with circuits， data and full instructions．

El•10 per pack plus 5 p postage c．w．o．

Trium Company Ltd．， 12 Mount Ephraim，Tunbridge Wells，Kent

Please mention


OSMABET LTD．We make tranatormers AUTO－TRANBFORMERS， $110 / 200 / 2801240 \mathrm{~V}$ ． $500 \mathrm{~W}, 29 \cdot 30 ; 750 \mathrm{~W} .212 \cdot 75 ; 1000 \mathrm{~W}$ ．215．75； 2000 W 28 ．300W $289.00: 4000 \mathrm{~W}$ ． 280.00 etc
LOW VOLTAGE TRANSFORMER8




LT TRAMSFORMERS TAPPED SEC，Prim．200／240V $0-10-12-14-16-18 \mathrm{~V} \quad 2 \mathrm{~A}$ ． $22.26 ; 4 \mathrm{~A}$ ． 83.40 ； $0-12-15-120-24-305 \quad 3 \mathrm{~A}$ ．28．00；4A，\＆4．05； $0-40-50-60-80-90-100-110 \mathrm{~V} 1 \mathrm{~A}, 24 \cdot 20$ ．
MIDGET RECTIPIER TRAN8FORMER8 $0-12 \mathrm{y}$ For FW＇rect．： $200 / 240 \mathrm{~V}$ a．c． $9-0-9 \mathrm{~V}$ 0－3A． $2-2 \mathrm{~N}$ 12 ，
 MADIS TRABBFORMERS FOR POWER
AMPLIFIERB
Prim．200／240 a．c．TX6 sec．， $425-0-425500 \mathrm{Ma}$ ． $6 \cdot 3 \mathrm{~V}$ CT 6A． 6.3 V CT 6A．0．5－6．3N 3A． $215 \cdot 00$ ； TX1 425－0－425 $2 . j 0 \mathrm{Ma}, 6.3 \mathrm{~V}$ CT $4 \mathrm{~A} .6 \cdot 3 \mathrm{~V}$ CT 4A， $0-5-6 \cdot 3 V 3 \mathrm{~A}, 49.40$ ；MT2A $250 \mathrm{~V} \quad 100 \mathrm{MA}$ ，
$63 \mathrm{~V} 2 \mathrm{~A}, 21 \cdot 50$ ．
 P．P．sec，tapped $3-8$－15ohms．A－A $6.6 \mathrm{k} \Omega \mathrm{S}^{30 W}$ ． P．P．sec．tapped 3－8－150．00； 100 W（EL34 KT88， etc．）． $218 \cdot 50$ ；tapped Multi $0 / \mathrm{P}$ 10W， $28 \cdot 26$ ． G．E．C．MARUAL OF POWER AMPLIFIES8 Covering valve ampliffers of 30 to $300 \mathrm{~W}, 80 \mathrm{p}$ ． COUDSPEAKERS POR POWER AMPLIFIERS BAKER 25 W ， 28.40 ： $35 \mathrm{~W}, 27.20$ ；HI－FI．Major Module $20 \mathrm{~W} w / t$ weeter Xover． $29 \cdot 20$ ；Baker speaker ista．FANE 11.60 ．apeakera for HI－Fl 5 in $13 \times 8 i n 3$ or 15 in 3,8 or $15 \Omega 8175$ ． LOUDSPEAKERS
tin，8， 16 or $75 \Omega$ ． $24 \mathrm{in} 25 \Omega$ ．3in．3， 8 or $25 \Omega$ ． $3 \neq \mathrm{in}$ 8,15 or 800.80 p ；5in 3．8． 15 or $25 \Omega$ ． $5 \times 3 \mathrm{in}$ 3,8 or $25 \Omega$ el．05； $61 \mathrm{in} 3 \Omega, 6 \times 4$ in $25 \Omega .7 \times 4 \mathrm{in}$ 3． 15 or 25 ． $8 \times 2 \operatorname{lin} 3 \Omega 81.28 ; 8 \times \sin 15$ or $25 \Omega 21.50 ; 10 \times 6 \operatorname{in} 3 \Omega 21.50$
BPEAKER IIATCHDG TRAN8FORMERS
12W 3 to 8 or 15 R Up or
BULE TAPE ERABERS
BULE TAPE ERABERS instant eranure． $200 / 240 \mathrm{~V}$ a．c． 88.60 plus $P$ ．\＆$P$ ． CONDENSERS
Paper，tubular w／E 2.2 mfd 250 V Xovers，etc． 15 p. Paper，tubular 15 per 100 ：Bluck $4 \mathrm{mfd} 800 \mathrm{~V}, 75 \mathrm{p} ; 8 \mathrm{mfd} 750 \mathrm{~V}$ ． 78 p ； Electrolytic， 900 mfd 350 V ． $50 \mathrm{p} ; 0.01 / 2 \mathrm{KV}, 12!\mathrm{p}$ ． ．A．T．extra on all ordera
Carriage extra on all ordere．
B．A．E．ENQULRIES－LISTS，MAIL ORDER OMLY
46 Kenilworth Rosd．Edgware，Middx．HA8 8YG
Tel．01－958 9314

PARTRIDGE HADS ISOLATION TRANGFORMERR Pri： $105-250 \mathrm{~V}, 5 \mathrm{~V}$ steps，Sec： $240 \mathrm{~V}, 13 \mathrm{mmps}$ ． 15，carr pack，e1－50．
PARMEKO MANS TRANSFORMMR isolated windics Pr： $200-250 \mathrm{~V}$ ．Sec： $90-120 \mathrm{~V}$ at 4.5 amp 24，carr．pack． 75 p ．
GAEDKER＇S POTHED TRANSYORMER， $0-250 \mathrm{~V}$ ． Pri． $200-250 \mathrm{~V}$ ．Sec．Input： $18 \mathrm{~V} 500 \mathrm{~m} / \mathrm{n}, 50 \mathrm{~V}$ $150 \mathrm{~m} / \mathrm{a}, 6 \mathrm{~V} 250 \mathrm{~m} / \mathrm{a}$ output．Bize： 3 in
RIPLEY MATMS TRAMSFORMER Pri： $110 \mathrm{~V}-240 \mathrm{~V}$ RIPLEY MALS TRAM $750 \mathrm{~m} / \mathrm{A} \cdot 7 \mathrm{~V}: 0: 7 \mathrm{~V} 1 \mathrm{~A}, \mathrm{i}$ Sec： $12 \cdot 5$
p．p． 25 p．
MALS TRANSPORMER，Pri： $100-250 \mathrm{~V}$ ，gec 22：0：22 TRANSFORM： $200 \mathrm{~m} / \mathrm{A} . \quad 22: 0: 22 \quad 100 \mathrm{~m} / \mathrm{A} \quad 0: 24 \mathrm{~V} \quad 20 \mathrm{~m} / \mathrm{A}$ ， $80 \mathrm{p}, \mathrm{p} . \mathrm{p} .2 \overline{\mathrm{o} p}$ ．
MAINS TEANSFORMER，Pri：230V，Sec：14V， 120 amps．215，p．p． $81 \cdot 50$
MATRS TRANSYORMER，Pri： $100-240 \mathrm{~V}$ a．c． $36 \cdot 5-0-38 \cdot 5 \mathrm{~V}, 27 \mathrm{~m} / \mathrm{A}, 0-21 \cdot 5,260 \mathrm{~m} / \mathrm{A}, 80 \mathrm{D}$ ，D．p． 25 p ． TRAKBIBTOR OUTPUT TRANSFORMER，Hatio 8：1， 120 mH ．Centre tap 2 watts．output， 20 p ． 8：1， 120 ．
p．p．
 80 p, p．p． 8 p ．
FIMNED ALUMINIUM HEATSITK， 4 fin $\times 6 \operatorname{in} \times$ lin， $2 \times 2 \mathrm{~N} 3055,21$ ，p．p． 13 p
GOODMANS 8 in 8PEAKERS $3 \Omega$ \＆1－50，p．p．28p．
FHITED ALUMDIUM HEATSLIE． $9 \mathrm{in} \times 8 \mathrm{in} \times$

 olenoid operated brakes，etc．Mains voltage cotors $87 \cdot 50$ each，p．p．60p
MOTEK 3 speed tape deck（ $17 \mathrm{in} \times 3$ 新in $\times 7 \mathrm{in}$ ） rel to reel 7 in mains operated， $87 \cdot 50$, p．p．63p．
10 EEED SWITCEES operated by push buttons and magnets， 60 p ，p．p．25p．
OMPONENT PANEL 6 scr＇s（ $300 \mathrm{~V}, 1 \cdot 6 \mathrm{~A}$ ） 6 cond．， 2 resistors， 6 diodes，45p，p．p． 8 p．
COMPOREXT PAMEL, 6 s＇crs（ 200 V
condensers， 12 resistors， 30 p ，p．p． 8 p ．
ondensers， 12 resistors， 30 p．p．p． 8 p
COMPONENT PANEL（9 ICs FJH131）（1－CA300）， crystal $7 \cdot 68 \mathbf{k H z}+$ various other components， 81，p．p．8p．
COMPONERT PANEL， $2 \times 500 \mathrm{mF} 50 \mathrm{~V}, 3 \times 100 \mathrm{mF}$ 25 V ，cap． $1 \times 2 \mathrm{~N} 2612,2 \times 2 \mathrm{~N} 404,3$ diodee plus various other components， $10 \mathrm{p}, \mathrm{p} . \mathrm{p} .9 \mathrm{p}$ ．
COMPORENT PANEL， 94 0A81 diodes，10p，p．p．6p． VEEEDER ROOT ELECTRICAL IMPULSE COUKTERR HON－RESETABLE，A．C．200－250V，81－10，p．p．13p． GEC MALTS CIRCUIT BREAKERS， 2 amp or 5 amp， 81 each，p．p．14p．
LEVER ACTION P．O． 1000 TYPE SWITCEES
Lock 4 －pole changeover， $15 p$ ，p．p．4p．Ex equip． equip． MOLLAED \＆MALLORY BCREW TERMEAL CAPACITORS $4,500 \mu \mathrm{~F} 64 \mathrm{~V}, 7,100 \mu \mathrm{~F} 40 \mathrm{~V}, 50 \mathrm{p}$ each． $20,00030 \mathrm{~V}, 25,00025 \mathrm{~V}, 35,00015 \mathrm{~V}, 30 \mathrm{p}$ each， p．p． $21 p$ ．
MULLARD FULLWAVE RRCTIPIERS
$6-48 \mathrm{~V}, 10 \mathrm{amp}, 75 \mathrm{p}, \mathrm{p} . \mathrm{p} .10 \mathrm{p}$ ．
BELLING LED 1.5 amp in－line rubber covered interference suppressor， 25 p ，p．p． 8 p ．
RUBEER 8 PIN 5 AMP NON－BEVERSIBLE CABLE COAHECTORS，20p，p．p．5p．
SOLENOIDS 18 VOLT PULL ACTION
$2 \mathrm{in} \times \operatorname{lin} \times$ 冬伿，40p，p．p．8p．
SOLEROIDS $12-24 \mathrm{~V}$ d．c．pull action 1 fin $\times 1$ in $\times$ 1 inin，40p，p．p．5p．
sOLETODS 240 V a．c．pull action $2 \frac{1}{2}$ in $\times 1$ in $\times$ 1 tin， 50 p, p．p． 9 p ．
SANGAMO WESTON TME LAPSED METER
Maine operated．$\quad 1 \frac{1}{2} \times 1$ in $\times 2 \mathrm{in}$ ， 81.50 p．p． 7 p ． ARROW RELAY， 240 V a．c．coil，double pole change over， 1 make contact＇s 10A，240V a．c．， $25 \mathrm{p}, \mathrm{p} . \mathrm{p} .9 \mathrm{p}$ ． OMRON ME2 MIDGET POWER RELAY，12V d．c． Double pole changeover．New，70p，p．p．3p．
STC VARLEY，miniature relays 700 $2,17 \cdot 5-37 \mathrm{~V}$ perapex cover， 4 pole changeover， $40 \mathrm{p}, \mathrm{p} . \mathrm{p} .5 \mathrm{p}$ ．
POTTER BRUMFIELD 12V d．c． 3 pole changeover with base，contacts rated 7A d．c．，\＆1，p．p． 10 p ． I．T．T．LOW PROFILE RELAY8． 4 pole c／overs． $500 \Omega$ 12－18V，75D，p．p．5p．
MALIS RELAYS，200－250V a．c． 2 makes．Heavy duty contacts， $50 \mathrm{p}, \mathrm{p} . \mathrm{p} .7 \mathrm{p}$ ．
TELESCOPIC AFRIALS
Chromed 7 in closed， 28 in extended， 6 section ball jointed base，88p，p．p．5p new．
PRINTED CIRCUIT BOARD／19 ACY 19＇s 10 OA200
Dlodes： 1 reed relay： 1 AZ 229 zenner ass．capacitor／ resistors．Power supply $22 \mathrm{~V}, 250 \mathrm{~m} / \mathrm{A}$ d．c．Output 240 V a．c．，81，p．p． $2 \overline{\text { app．Ex equip．}}$
WIRIMG CABLE
Gize－1－020．Various colours． 350 yd ，60p，p．p． 28 p． TAPE POBITIOR INDICATOR
Re－settable 3 digits， 80 p, p．p． 5 p
All orders add $10 \%$ V．A．T．
FIELD ELECTRIC LIMITED
3 Shenley Road
Borehamwood，Herts．
Tel．01－953 6009


# BUILD A CHORDING PROFESSIONAL SYNTHESISER 



The Synthesiser shown above is the Dewtron "Apollo" A.1. which we sell ready-built to professionals. Believe it or not, it uses the SAME precision modules as we sell to you the Constructor, to build any kind you like. The revolutionary Modumatrix system of routing makes old-fashioned patching thing of the past. VCO-2 voltage-controlled oscillator module has accurate built-in log-law for chording and other professional effects. 3 and 4 octave keyboards and contacts. VCO-2STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 volt/ octave voltage control. £24 each or $£ 27$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touch sensitive playing when used with VCO-2 signals. £17. OFT-1 chording modute £9. Modules (except VCO-1) guaranteed two years.
using Devition (Regd. Trademark)

## PROFESSIONAL MODULES

## CASH SAVINGS

by buying modules and parts in bulk! All modules are available separately:
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, $\mathbf{£ 1 0 . 5 0}$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type WN1, £7. Voltage-controlied amplifier VCA1, $£ 10$. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £13. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £10. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls $£ 550$. REVERB Module and spring unit £15. V.A.T. $10 \%$ extra. V.A.T, paid orders over $£ 75$.

With over 7 years' unblemished reputation in these pages, Dewfron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to leading groups. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. 'Gipsy'' G.I. Approved by a Musical Association.

| AC | 14 | AFI80 | 45p | BC158 | P | BF180 |  | BFY |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC127 | $16 p$ | AFI8 | $43 p$ | BCI59 | $14 p$ | BFIBI | 32p | 2N305 |  |
| AC128 | 14p | AF239 | 44p | BC177 | 20p | BFI84 | 35p | 2N3054 | 57 |
| ACI4IK | 24p | BCIC7 | 12p | BC183L | 14p | BFIB5 | $35 p$ | 2N3055 | 60p |
| ACl42K | 24p | BC108 | 10 p | BCIB4L | $12 p$ | BF186 | 45p | T1P29 | 66p |
| ACl76 | 20p | BC109 | 12p | 8 BCl 87 | 22p | BF | $15 p$ | TIP30 | $75 p$ |
| ACl87 | 18p | BC113 | 25p | BC294 | $16 p$ | BF195 | 15p | T159 | 48p |
| ACligk | 24p | BC114 | 30p | BC440 | 50p | BF196 | $15 p$ |  |  |
| ACIB8K | 24p | BCII | 20p | BC460 | 68p | BF197 | 15p |  |  |
| ADI 42 | 45p | BCII6 | 20p | BD124 | 80p | BF200 | 31p | DIOD |  |
| ADI49 | 45p | BCII7 | 15p | BD131 | 60 p | BF258 | 40p | AN |  |
| AD161 | 34p | BCI25 | 14p | BD132 | 60p | BF259 | 40p | AND |  |
| ADI62 | 34p | BC142 | 25p | 80139 | ${ }^{63}$ p | BF337 | 23p | TIFIER |  |
| 5 | $21 p$ | BCI43 | 25p | BD× 32 | C2.00 | BFT42 | 44p |  |  |
| AFII6 | $21 p$ | BC147 | 13p | BFIIS | 25p | BFT43 | 44 p | OA91 |  |
| AFII7 | $21 p$ | BCI48 | 13 p | BFI21 | $35 p$ | BF×84 | 40 p | 2 |  |
| AFII8 | 49p | BC149 | 13p | 8F158 | 19p | BFX88 | 30p | 1 N 4148 |  |
| AF139 | 40p | BC154 | 20p | BF167 | 20p | BFX89 | $67 p$ | BY127 |  |
| AFI78 | 45p | BC157 | 14p | BF | 39p | BFY50 | $21 p$ | 1 N | 8p |
|  |  |  |  |  | $\begin{aligned} & \text { PO } \\ & \text { TR } \end{aligned}$ | $\mathbf{N T I}^{\prime}$ | E |  |  |
| RESISTORS METAL FILM $5 \%$ TOL. <br> $+W,+W,+W$, El2 values to 2.7 M all Ip each. <br> IW to IOM EI2 values 3p each IW to IOM EI2 values 4p each: 5 W wire wound, loW wire wound 8 p and 9 p each. See Cat. for values. |  |  |  |  | 5K, 10K, 25K, 50K, 100K, 250K. |  |  |  |  |
|  |  |  |  |  | 500 K. |  |  |  |  |
|  |  |  |  |  | log or lin less swire |  |  |  |  |
|  |  |  |  |  | Log or lin with switch 13p |  |  |  |  |
|  |  |  |  |  | Dual log less switch $250 \mathrm{~K}, \mathrm{l}$500K $1 \mathrm{M}, 2 \mathrm{M}$ only |  |  |  |  |
|  |  |  |  |  | Dual lin less switeh 5K, 10K. |  |  |  |  |
|  |  |  |  |  |  | , 50k, | OOK, O |  | 9p |
|  |  |  |  |  | Dual log with switch IOK. |  |  |  |  |
| Scandard insulared J1p; Scandard screened 18p; SCREENED WIRES |  |  |  |  |  |  |  |  |  |
| Standard insulated Jlp; Scandard screened |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Standard socket switched 17p; Stereo socker 7p/metre; Min. twin |  |  |  |  |  |  |  |  |  |
| switched 21p: 3.5 mm socket switched 6 p |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| PHONO-D.I,N. PLUGS AND SOCKETS Stereo screened twin |  |  |  |  |  |  |  |  |  |
| Phono plug insulated 7p; Phono plug screened 10p/metre; |  |  |  |  |  |  |  |  |  |
| IIp; Phono line socket screened 12p; Metal coax individually screened |  |  |  |  |  |  |  |  |  |
| plug 8p: 2. 3, 5 pin $180^{\circ}, 240^{\circ}$, D.I.N. plugs $12 \mathrm{p} ; \quad 14 \mathrm{p} /$ metre; |  |  |  |  |  |  |  |  |  |
| 4.6, 7 pin plugs 13 p; 2, 3, 5 pin 180 line sockets 13p: 2, 3, 5 pin $180^{\prime \prime}$ chassis sockets $7 p$. <br> wire twin metre. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

## E. A. HALL (ELECTRONICS)

The Manse, Little Brington, Northampton NN7 4HX Mail Order Only. C.W.O. Postage and packing 10p per order. Detailed Catalogue 6p. Please add V.A.T on total order incl. postage and packing Many orher items in our catalogue.

If you have difficulty in obtaining

## PRACTICAL ELECTRONICS

Please place a regular order with your newsagent or send I year's subscription ( $£ 2 \cdot 65$ ) to Subscription Department, Practical Electronics, Tower House, Southampton Street, London WC2E 8QX


## BAKER 12" MAJOR $\mathbf{E 9 . 9 0}$

30-14,500 cps. Double cone woofer and tweeter loudspeaker. Baker ceramic magnet assembly, flux density 145,000 gauss. BASS RESONANCE 40 cps 20 watt RMS.
MAJOR MODULE KIT £12.50
30-17,000 cps. woofer, tweeter, crossover and baffle as illustrated. Size $19 \mathrm{in} \times 13 \mathrm{in}$. NOTE-When ordering state 3 or 8 or 15 ohms.

## BAKER LOUDSPEAKERS $100 \%$ BRITISH MADE

 Regent 12 in. 15 W £8.80 Superb 12 in. 20W $£ 18.50$
all PRICES
 INCLUDE V.A.T.

BAKER LOUDSPEAKER CO., BENSHAM MANOR PASSAGE THORNTON HEATH, SURREY TEI. 01-684 1665
loudspeakers catalogue and enclosure plan 5p
 betterfuture

That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.'T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not to the thing thater realy intervets, you? Withumt thsing :


 the best thing you erer did.

## Others have done it, so can you











## FIND OUT FOR YOURSELF

These leters - and there are many moreon file at. Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to B.I.E.T. Dept. BPE10, Aldermaston Court, Reading RG7 4PF.


10\% VAT TO BE ADDED TO ALL ORDERS. Prices and descriptions correct at time of press E \& OE.

404-406 Electronic Components and Equipment 01-4028381 354-356 High Fidelity and Tape Equipment 01-4025854/4736 309 PA-Disco-Lighting High Power Sound 01-723 6963 303 Special offers and bargains store


[^0]:    © IPC Magazines Limited 1973. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, to any part of the world, $\mathbf{x 2 . 6 5 .}$ International Giro facilities Account No. 5122007. Please state reason for payment, 'message to payee".

[^1]:    Just think-in only a few days you could be giving your ears
    the treat of a lifetime-AND
    Introducling your envious friends to STEREO 21!

[^2]:    Open Monday to Saturdey $9.30 \mathrm{a} . \mathrm{m}$. to
    6 p.m. LATE NIGHT FRIDAY 7 p.m.
    MAIL ORDERS: Order with confidence. Send Postal Order. Cricque.
    Mail. CALLERS: Please note that eneques can only be accepred logether

[^3]:    Photograph showing the arrangement of the triac heatsink, the presets, the tagboards and the input connections within the case. The heatsink must not touch the earthed case

[^4]:    Note that the transistors in the power amplifier last month should be type MJE3055K

    ## Next month we will finalise the mechanical assembly details and discuss the unit interwiring

[^5]:    BACK NUMBERS WANTED
    Anyone who can supply the undermencioned are asked to
    We regret that back numbers of Practical Electronics can no anger be supplied. We will try to publish announcements of readers' requirements (without a guaranteed date) free of charge.

[^6]:    *Post Office Mechanisation Branch

[^7]:    Everyday Electronics the companion magazine to PRACTICAL ELECTRONICS. November issue on sale Friday, October 19 - order your copy now.

[^8]:    ALI PRICES ARE
    SUBJECT TO 10\% VAT

[^9]:    miniature highstab resistors $5 \%$ iW $22 \Omega$ to 2.2 M EI2 series 10 each value. Total 610, 63.
    CERAMIC CAPACITORS 50V (pi) 1,500, $2,200,3,300,4,7006,800,0 \cdot 01,2 i p$ each. BCIO8 9p. P. \& P. 10 p.

    NEKELECTRONICS (P3)
    28 Carnegie Road, St. Albans, Herts, Mail order only.

