PRACTICAL

ELECTRONICS

AUGUST 1973
$20 p$

The Japanese have a Yen for it.

 in case you are not familiar with Japanese:Our distributors in Japan are telling their their customers about the importance (when soldering I.C.'s and transistors) of the low leakage of our Model X. 25 soldering irons.
Model X. $25-25$ watt sells at $£ 1.75+P \& P 8 p$ VAT $18 p$ Model G -18 watt $£ 1.95+P$ \& P 5p V.A.T. 20p Model CCN - 15 watt miniature iron $£ 1.95$ + P \& P 5pVAT 20p Ask your usual wholesaler or retailer for Antex irons or if you have any difficulty. send the coupon to us direct.

CONSTRUCTIONAL PROJECTS

BATTLE CHESS by D. ColesBring the battlefield to the game of chess664
AUDIO COMPRESSOR by R. A. Penfold
Provides an almost constant output from widely varying inputs 669
P.E. SOUND SYNTHESISER-7 by G. D. Shaw
Reverberation amplifier for springline, ring modulator and peak level meter 678
550V MEGOHMMETER by B.V. Lamb
A high voltage generator for checking mains insulation 696
SIMPLE FLASHER by J.B. Dance
Using the 555 timer chip to control the operation of flashing lights 702
GENERAL FEATURES
INGENUITY UNLIMITED
Light-Operated Power Controller-Reed Relay Current Trip-Reversing Light Warning 672
25 YEARS OF SEMICONDUCTORS-2 by M. J. Rose
Power devices, photo devices and integrated circuits 692
LOGIC TUTOR EXPERIMENTS-4 -by M. J. Hughes De Morgan's Theorem 704
NEW DEVICES ... APPLICATIONS
The latest in circuit ideas for the experimenter 705
NEWS AND COMMENT
EDITORIAL-Two-Way Link 663
SPACEWATCH by Frank W. Hyde
Sun jolts the earth-Chinook winds-Asteroids 674
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Comiments on contemporary sounds 677
COMPONENT SHOW '73
Report from the recent London RECMF Show held at Olympia 689
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 698
ELECTRONORAMA
Looking at the latest developments in electronic watches 700
READOUT
Author of the Synthesiser answers back 710
IMPORTANT ANNOUNCEMENT
Quadraphonics comes to P.E.691

Our September issue will be published on Friday, August 10, 1973

[^0]

Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.
What a wonderful way to learn - and help qualify yourself for a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course, you learn by building!

You build a modern Transistor Radio . a Burglar Alarm. You learn Radio and Electronics by doing actual projects you enjoy making things with your own hands that you'll be proud to own! No wonder it's so fast and casy to learn this way. Because learning becomes a hobby! And what a profitable hohby. Because opporpunities in the field of Radio and Electronics are growing faster than they can find people to fill the than

No mathematics,

no soldering - yet you learn faster than you ever dreamed possible.
Yes! Faster than you can imagine, you pick up the technical know how you need. Specially prepared step-by-step lessons show you how to: read circuits - assemble components - build things experiment, You enjoy every minute of it!
You get everything you need. Tools. Components. Even a versatile Afultimeter that we teach you how to use. All included in the course AT NO EXTRA CHARGE' And this is a course anyone can afford. You can even pay for it in easy pavments - in fact you could make extra cash from spare-time work when you've from spare-time work when you ve
turned yoursclf into a qualitied man turned yourself into a quali
through B.I.E.T. training.

So fast, so easy,
this personalised course will teach you even if you don't know a thing today!
No matter how little you know now, no matter what your background or education, we'll teach you. Step by step, in simple easy-to-understand language, you pick up the secrets of radio and electronics.
You become a man who makes things, not just another of the millions who don't understand millions who don't understand.
And you could pave the way to a And you could pave the way to a
great new career, to add to the thrill great new career, to add to the thrill and pride you receive when at what you have achieved Within weeks you could hold in your hand vour own powerful radio And after the course you ran . And anter acquire high powered onh ion qualifichions powere B.IE'T' farincans, because B.I.E.T.'s famous course go right up to City \& Guild evels
Send now for FREE
76 page book - see how easy it is - read what others say!
Find out more now! This is the gateway to a thrilling new career or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation

POST TODAY FOR FREE BOOK

To: BRITISH INSTITUTE OF ENGINEERING TEGHNOLOGY Aldermaston Court Reading RG7 4PF

Yes. l'd like to know more about your course. Please sen me free details-plus your big, 76-page book that tells about all your courses

NAME
 ADDRESS

P.E. SOUVD STITHESISER

Buy it with Access
SIMPLY SEND EXACT DETAILS OF NAME AND NUMBER COPIED FROM THE FACE OF YOUR ACCESS CARD AND LEAVE THE REST TO US.
‘DESIGNER APPROVED KITS'
We stock a full range of professional quality components as specified for this exciting project and many prices are down.
2\% M.O. resistors now 3.2p ea. 5% low noise carbon film 1.8p ea. Cermet presets now 37.5 p ea. Full range of capacitors-Ceramic, Electrolytic, Polyester, 'Styrene, 'Carbonate, Silver Mica, etc. Modular hardware kits; Dual-Rail Regulated Power Supplies; Individual component/module kits from date of publication. P.C.B. for the exciting 'Hutchinson' Tone Control Module.
'RING MODULATOR' I.C SG 3402 N C1.74 each eletrromic atenuator MFC 6040 f1.00 each ZIJ NOISE DIODE 43.5p each 741's mini D.I.L. $\quad 32 p$ each while stocks last
4p stamp brings latest lists

Attractive discounts on quantity purchases.

EATON

P.O. Box No. 3, ST. NEOTS HUNTINGDON PEI9 3JB

TERMS: MAIL ORDER ONLY, C.W.O. Cheques or crossed P.O. payable to Eaton Audio. Minimum order $£ 2$.

Where P. \& P. charges are not shown please add 10 p in the $£ 1$ to orders under $£ 5$. Orders over $£ 5$ will be sent free of P. \& P. All prices subject to V.A.T.

CASED AMPLIFIERS

Polished wooden cabinet $14 \times 13 \times$ 9 in with hinged lid containing a sensitive ($20 \mu \mathrm{~V}$) 4 -valve amplifier with tone and volume controls, giving about 3 watts output to the 7×4 in 3Ω speaker. Also a non-standard single motor tape deck. Easily Converted to record player, guitar practice amp., baby alarm, etc. Supplied in good working condition with circuit diagram. Mains operated. Only w 3 ($£ 1$ up to 200 miles, $£ 1 \cdot 20$ over). Special cassettes $£ 1$ (25 p). Spare heads 40 p. Damaged machines from $£ I .50$ to callers only. Amplifier chassis, 2 ECC83, EL84, EZ80 £1.65 (35p).

COMPUTER PANELS

Type A: 4 OC35, 4 GET103, etc., 50p; Type C: 2 OC35, 2 OC76 6 OC42, etc., 30p; Type D: 4 OC36, 8 GET103, etc., 60 p (5 p each). Type E: 4 OC29. 4 trimpots, 4 ACY19, 8 other transistors, 35 diodes, etc. fl (10 p).
diodes, etc. 12 (10p quality boards ≤ 2 (25 p). 7/b of lower quality including some broken E2 (40D), 561 b E12 (c.p.). Boards from 5p to callers. Pack of boards containing at least 500 components, including 50 transistors 60p (15p)

7lb BARGAIN PARCELS

Hundreds of new components--capacitors, resistors, switches, crystals, pots, PC boards, etc. Outstanding value $\notin 1.65$ (35 p). 500 assorted resistors, good selection El (15p); 40 asstd. pots Cl (25p); 300 asstd, capacitors, all types \&1 (25p). Heavy duty heat sinks $6 \times 5 \times 3$ in, weight 31 b with 2 power transistors, OC36 or $2 N \| 146 A \leq 1(25$ p). Large selection of panel meters for callers. Audio oscillator 50 Hz -20kHz, BFO No. 8 E10; RFIGnalgen 8 pin
 DIL 28p; BCI07/9 14 for $61 ; 2$ N3055 35p.
Post in brackets, small parts 3 P. VAT NOT iNCLUDED. S.A.E. Post in bra
list, details

GREENWELD ELECTRONICS (PE3)

24 Goodhart Way, West Wickham, Kent. SHOP at 21 Deptford Broadway, SE8 (next to old cinema). Callers most welcome. Tel. 01-692 2009

Announcing our improved range of constructor modules

FOR DOMESTIC

- COMMERCIAL

USE
New Versions using 3A
"Plastic Power" Driver Transistors now available.

To meet demand, we have included a more powerful module in our well-established
and proven range. All rhese and proven range, All these power amplifiers are carefully
assembled, tested
and guaranteed. They offer superb galue for reliability and

A NEW ADDITION IS THE SA50 at $\mathbf{5 5} \cdot 65$

 Amplifier desicn and quality. Resdy now. Saxon.

SAl00 makes an ideal
unit in disco assemblies
 BRIEF SPEC. FOR ALL THREE MODULES

Freq. response	$15-40,000 \mathrm{~Hz}+1 \mathrm{~dB}$	All modules incorporate
Distortion	0.2% at 1 kHz	OPENAND
Loads	4 to 16 ohms	SHORT
Quiescent current	15 mA	CIRCUIT PROTECTIO
Noise	Better than -75dB	plus proof
Supply	SA3S-4SV SASO 45/65V	against over-
voltage	SAl00 40-70V	dissipation and
Size	$4 \frac{1}{\text { in }} \times 4 \mathrm{in} \times \operatorname{lin}(S A 100)$	faulty indu
	4in $\times \operatorname{inn} \times \operatorname{lin}($ SA35/SASO)	loads in its

Cireuits. connecting instruction and application data are supplied free with alt modules.

POWER SUPPLIES FOR
THE SA25/35 \& SAI00 AUDIO MODULES
PU45 Unstabilised supply for 2 SA25/35's \quad C4.90
PU70 Unstabilised supply for one or two SA 67.75 carr . 40p
PS45 Stabilised module for 2 SA2S's or two SA3S's
MT45 Transformer for above, heavy duty $\mathbf{6 3 . 5 0} \mathbf{~ c a r r}$. free
MT30 Transformerfor unstabilised supply $\mathbf{6 2} \mathbf{8 5}$ carr. 20p
MT30 Transformer for unstabilised supply complete with
PS70 Stabilised supply module for one or two SA100's
MT70 Transformer for PS70 E4.90 carr. 40p
ALL MODULES ARE BUILT ON GLASSFIBRE P.C.

TWO NEW PA/MIXER CONTROL UNITS

Built for hard work!
In extra slimline easy-fit case.
Using grouped pairs of inpurs (high Z and low Z inpurs) with individual bass, ereble and volume controls on each pair, plus master controls. These low-noise units will feed all makes of amplifiers, making them ideal for clubs, discos, ere. Standard jack sockets, compact design. In strong metal cases. All Units guaranceed for 3 years.

- HIGH AND LOW IMPEDANCE INPUTS
- 8ASS/TREBLE/VOLUME ON EACH PAIR
- MASTER CONTROL ON OUTPUT

Channel section modules, for building your own: gain- $16 \times(24 \mathrm{~dB}$) Tone
$\mathbf{4 3 . 5 0}+$ V.A.T.

CONTROL UNITS

Mono (as shown). $\mathbf{C 6}$ Car. 50
Carr. 20p.

Two decks, and full headphone monitoring. The unit is mains operared and measures $17 \frac{1}{2}$ in \times 3 in $\times 4$ in deep and is finished with a smart white on black facia. The controls are: Left/Right deck fader, volume, bass, treble. Headphone Seleccor and volume. Microphone volume, bass COMPARABLE TO UNITS AT OVER TWICE THE PRICE, (N.B.-Stereo only has mic. Input.)

3 CHANNEL UNIT
Includes bass, middle and treble as well as master controls, 2 amplifier sockets eliminate to 3 kW lighting load. Smartly finished sceel case.
$\notin 19.75$
120 WATT HEAVY DUTY MODULE Rugged class A driver stage. This module will run from all our mixers, erc. and most other makes. Delivers 120 W inco an eighe ohm load and employs 4 TO3 can (II5W) output transistors SPECIFICATION
Power ourput, 120 W into 8 ohms Module only
$\begin{array}{ll}\text { Frea. response, } 20-20,000 \mathrm{~Hz} \pm 2 \mathrm{~dB} & \text { Module only } \\ \text { Input sensitivity, } 200 \mathrm{mV} \text { into } 10 \mathrm{~K} & \text { (Carr. } 20 \mathrm{p} \text {) }\end{array}$
f13.90
Input sensitivity, 200 mV into 10 K
Construction, Fibreglass board
Construction, Fibreglass board
Size, 8 in $\times 4 i n \times 4$ in (5in with supply)
ow distortion parallel push-pull Module and Ow distortion parallel push-pull power supply
outputstage.
£ 18.95

SOUND AND LIGHT UNITS

Our popular 3 shannel model handles up to $3 \mathrm{~kW}(3,000 \mathrm{~W}$) of lighting and incorporates versatile sound control arrangement to enable professional standards to be achieved. Both units are SINGLE CHANNEL UNIT Operates from S-100 W amplifiers. Supplied for bass note operation, is easily adapted for treble or mid-range at a
cost of about 5p. Carr. pd.

COMPLETE AMPLIFIERS

CSE $100 \pm 34 \cdot 90$ carr. free
This versatile unit is now available in a black vynide case and so represents even beccer value than ever delivering speech and music powers of up to 100 W individually contious signal outputs of 70 W . F and treble controls.

-

SAXON 100 E48.50 carr. free

You'll hardly be able to
 believe your ears!

Can you really get sound quality like this for less than £18? Yes you can! with the new STEREO
 Until now, richly satisfying sound has always cost a richly satisfying price. But not any more! For an almost unbelievable $£ 17 \cdot 95$, you can have Stereo 21-audio for the connoisseur. Whatever your taste in music, you can hear it on STEREO 21 the way its composers heard it in their dreams! Beethoven or Mahler ... Ellington or Jellyroll Das Nibelung or Jesus Christ Superstar . . Carols from King's College Chapel or the return of a Beatle . . everything from a prettily fluting baroque organ to the newest pop group at full throttleSTEREO 21 does them all juskice!
And have you ever seen a handsomer audio installation? Compact enough to go in a university student's bedroom-study, elegant enough for the suavest penthouse pad in Town, STEREO 21 offers you all the pride of possession as well as a thrilling musical experience!
Top-quality amplifier, BSR turntable, matching speakers. Deck and speaker cabinets you simply wrap round and glue to build. Screw in the amplifier and connect up (all push fit, no soldering whatsoever), so simple literally anyone can do it. Except for glue and panel pins, all parts supplied including full instructions-all for $£ 17 \cdot 95$ (plus the cost of post and packing if you buy by mail), and-to round it all off-a moneyback Guarantee if your pleasure in STEREO 21 is not complete!

Personal shoppers and mail order price

Plus $£ 1 \cdot 50 \mathrm{P} \& \mathrm{P}$.

Just think-in only a few days you could be glving your ears the treat of a lifetime-AND Introducing your envlous friends to STEREO 21!

RADIO AND TV COMPONENTS (ACTON) LTD.
21d High Street, Acton, London W3 6NG
323 Edgware Road, Londón W2
Mail orders to Acton. Terms C.W. O. All enquiries stamped addressed envelope. Goods not despatched outside U.K.

VISCOUNTIIIaboost in the output

VISCOUNT III now gives you an imposing 20 watts per channel-and the price quoted is actually INCLUSIVE OF VAT゙I
The money's important, of course, but not nearly so important as value for money' And that's something you get in abundance with VISCOUNT III. We design it. we make it .. we sell it direct to you-passing on all the economies that come from cutting out middle-men' That's the only way you can get so much quality for so little money
The unique VISCOUNT III amplifier, plus the Garrard SP25 Mk III deck, plus the magnificent Duo Type III matched speakers (or Duo Type II for a small room) give you an audio installation that will prove unbeatable for listening pleasure! On the brushed aluminium front panel of the amplifier you'll find all the facilities you need-volume, bass. treble and balance controls, plus switches for mono/stereo, on/off function and bass and treble filters. Plus headphone socket on the back. And the teak finish will harmonise and enhance virtually any style of interior decor'
The heart-stopping timbre of Tom Jones at his most virile the last lingering harmonics of a solo performance by Heifetz or Menuhin, the pathos and the panache of Liza Minetli the majestic sonorities of the brass band and the elfin subtleties of the virtuoso clavichordisthear every nuance with a fidelity that you have never experienced before!
Come and hear VISCOUNT III! If it's inconvenient to travel, buy by post in the confidence that you won't be disappointed (and with a 24 -carat Money-Back Guarantee to give you extra reassurance). Don't settle for second-best!

SPEAKERS: Duo Type II Size approx. 17 in $\times 10 \frac{3}{i n} \times 6 \frac{3}{i n}$. Drive unit $13 \mathrm{in} \times$ gin wilh parasitic tweeter Max. power 10 watts 8 ohms Simulated Teak cabinet. $£ 14.00$ a pair, $£ 2 \cdot 20 \mathrm{p} . \& \mathrm{p}$ Duo Type llt Size approx. 23 in $\times 11$ in $\times 94$ in Drlve unit $13 y \mathrm{ln} \times 8 \pm \frac{1 n}{}$ with HF speaker. Max. power 20 watts. 8 ohms . Freq range 20 Hz to 20 kHz . Teak veneer cabinet £32-00 a pair + $£ 3 \cdot 30$ p \& p

PRICES: SYSTEM 1
$\begin{array}{ll}\text { Viscount lit R } 102 \text { amplifier } & £ 2420+£ 1 p \& p \\ 2 \text { Duo Type II speakers } & £ 1400+£ 220 p \&\end{array}$
Gartard SP25 Mk. III with
MAG cartridge plinth \& cover $£ \$ 800+£ 175 \mathrm{p} \& \mathrm{p}$ total $£ 56.20$

Avallable complete tor only $£ 49 \cdot 00+£ 3 \cdot 50$ p. $\& \mathrm{p}$.
PRICES: SYSTEM 2
Viscount a 102 amplifler
2 Duo Type III speakers
Garrard SP25 Mk III with
total $\overline{\Sigma 74 \cdot 20}$
Available complete for $£ 65 \cdot 00+£ 4 \mathrm{p} . \& \mathrm{p}$.

THE TOURIST PUSH-BUTTON CAR RADIO KIT $£ 6 \cdot 60$

The Tourist PB is suitable for 12 volt working on both negative and positive earth vehicles it covers the full medium and long wave bands. It is permeability tuned and sturdily constructed. Output is a fult 2.5 watts into an 8 ohms speaker. But the Tourist PB will operate into any loudspeaker from
 8 to 15 ohms
Apart from the output stage, which is an integrated circuit, the only other electronic components that need soldering are some capacitors, resistors, etc The kit includes a pre-built RF tuner unit, and fully modulised IF stages which are pre-aligned before despatch. As well as electronic components this kit also contains 2 diamond-spun aluminium knobs, elegant matching front panel dial, washers, screws and wire
The Tourist PB can be mounted in any standard size dash panel and it has an illuminated tuning scale. Chassis size is: 7 in wide, 2 in high and 4 H in deep - Circuit diagram and comprehensive instructions 55p free with parts

* Fully retractable and lockable car aerial $£ 137$ post paid

CAR RADIO KIT E6-60 p. a p. 55p
Speaker with baffle and fixing strips \&1-65. 23p p. \& p. post free if bought with the kit. Send stamped addressed envelope for leaflet.

If you can solder on printed circult board, you can bulld thls push-button car radlo kit. It's simple-just follow the step-by-step Instructions
SOUND 5045 WATT MONO AMPLIFIER. Ideal for Disco. Output Power 45 watts R.M.S. (Sine Wave) Frequency Response 3 dB points 30 Hz and 18 KHz Total Distortion less than 2% at rated output. Signal to noise ratio: better than 60 dB . Bass Control Range: 13 dB at 60 Hz . Treble Control Range. 12 dB at 10 KHz inputs: 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control 2 inputs at 200 mV into 470 K Size 191 x $10 \frac{1}{2} \times$ gins. Amplifier $£ 31.35$ plus $£ 1.65 \mathrm{p}$ and p Output for 3.8 and 15 ohm speakers.

£31•35

 the audio spectrum.

IN-CAR ENTERTAINMENT AT HOME

With this elegant stereo 8 track add on unit audio enthusiasts now have the opportunity to extend their systems to include the playing of 8 track cartridges. Simply select your channel, by push button, four digital lamps indicate channel selected. Mains operated.

$£ 9 \cdot 90$
 p. \& p. 80 p

The Viscount III, the fabulous Stereo 21 and the Unisound Modules will all accept this unit. simply connect up

Allitems advertised in previous numbers of this magazinestillavailable. There is 10% V.A.T. charge on allitems. Please add 10 p for P. \& P. on orders under 55 . LARGE S.A.E. for List No. 5. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton • Lancs. BL2 IBA

Max. supply 28 . Power or circuit board and 44-page instruction booklet.
SWANLEY IC TOMORROWThe World's most powerful IC amplifier. Similar to the above bur operates at 35 V max. supply and operates at 12 W RMS output. Manulactured for us by a leading semiconductor company. Supplied with our instructions and a 6-month guarantee, but no printed circuit. SINCIAIR EGUIPMENT

230	63.50	Stereo 60		8.80
PZ5	63.97	250		
PZ8	66.60			4.25
AFU	44.50	PZ6		6.40
Transformer for PZ8 ©2.95, Project 60 tuner $\mathbf{~ 1 6 . 6 0 .}$ Project 605 E19.90.				
EXECUTIVE CALCULATOR			\$50	

PROJECT 60 KIT 62.50 Our extremely popular kit contains the extra capacitors, din plugs and needed to complete Project 60.

KITS FORICI2 AND IC TOMORROW
Except for the power kits and speakers all irems suit borh integrated circuits.
DELUXE K1T
Includes all parts for the printed circuit and volume, bass and treble mono version $\mathbb{C l}$-45. Stereo version with balance control $£ 3.30$.
POWER KIT FOR ICI2
A set of components to construct a sinlair PZ5 13.97

POWER KIT FOR IC
TOMORROW
A set of components to construct a 35 V I A power supply $\mathbf{£ 2 . 9 7}$
LOUDSPEAKERS FOR ICI2 8 ohm types. 5^{*} El.00. $5^{\prime \prime} \times 8$ C1.45.
PREAMPLIFIER KITS.
Type I for magnetic pickups, mics. and tuners with 3 position equalisa tion switch. Mono model $\mathbf{E l} 12$. Stereo model ©2.20. Type 2 for ceramic or crystal pickups. Mono 60 p . Stereo © 1.20 .
ON KIA.E. FOR FREE LEAFLET ON KITS AND TBA65I. S-DECS AND T-DECS
S-Decs
T-Decs
T 2.44 T-Decs
μ-Decs A μ-Decs
16 dil IC carriers
IC RADIO CHIP TBA651 $\mathbf{~} \mathbf{2} \cdot 10$ The world's most advanced IC radio chip. Contains RF Amp, oscillator mixer, if Amps, wide range AGC
circuitry and voltage stabiliser. With data $\mathrm{E2} \cdot 10$. Send S.A.E.for free leaflet. Kit of resistors, capacitors and IF filters $\mathbb{C l} \cdot 75$ extra.

SWANLEY ELECTRONICS
32 Goldsel Road
Swanley
Kent BR8 8EZ
Postage 10p per item. Please add 10% extra to total cost of order for VAT Official credit orders from schools, etc, welcome. Full lists 10 p post (reet
Send S.A.E. for free 8-page book on IC TOMORROW. ICI 2 kits and TBA 651

Give us sixmonths, and well turnyour hobby into a career:

You have a hobby for a very good reason. It gives you a lot of pleasure.

So if you can find a job that involves your hobby, chances are you'll enjoy your work more, and you'll do better work.

Now CDI can help you find such a job. A job where you'll be responsible for the maintenance of a computer installation. A job that pays well too. If you're interested in mechanics or electronics (without necessarily being a
mathematical genius), have a clear, logical mind and a will to work, then we can train you to be a Computer Engineer inside six months.
So give us a call. CDI. We're the Training Division of one of the world's largest computer manufacturers. And we have the experience to know if you can make it. A ten minute talk with us, and you could be on the way to spending the rest of your life with your hobby.

Ring
 0 (657 27

between 9 a.m. and 9 p.m. and ask for Mr PLATT

It's quicker and easier to phone, but if you prefer, send this coupon to: Control Data Institute, Wells House, 77 Wells Street, London, W.I
Please give me further information.
Name
Address \square

Age : Phone PE8

CONTROL DATA CONTROL DATA INSTITUTE
 LIMITED

The Training Division of one of the world's largest Computer manufacturers.
 COMPLETE TELEPHONES
ex g.p.o. normal housenolo typ ONLY $£ 1.05$
POST \& PACKING 45^{2} EACH
TELEPHONE DIALS

Standard Post Cffice type. Guaranteed in working order

ONLY $27 \frac{1}{2} \mathrm{P}$

TESTED AND GUARANTEED PAKS

4 IN 4007 Sil. Rec, diodes.
55p
B81 $10 \begin{aligned} & \text { Reed Switches, I" long } \\ & \text { dia. Highspeed P.O. type }\end{aligned} \mathbf{5 5}$ B99 200 Mixed Capacitors Approx.

H4 250
55p
quantity counted by weigh
55p
H7 $\quad 40 \begin{aligned} & \text { Wirewound Resistors, Mixed } \\ & \text { types and values }\end{aligned} \mathbf{5 5 p}$
H9 $2 \begin{aligned} & \text { OCP7I Light Sensitive } \\ & \text { Photo Transistor }\end{aligned}$ 55p
H28 20 OC200/1/2/3 PNP silicon
H30 20 uncoded TO-5 can
20 Mixed Voltages $6.8-43 \mathrm{~V}$
55p
H35 100 Mixed Diodes, Germ. Gold bonded, etc. Marked and Unmarked
$\begin{array}{ll}\text { M38 } & 30 \begin{array}{l}\text { Short lead Transistors, } \\ \text { NPN Silicon Planar type }\end{array} \\ & \end{array}$
55p
55p
H39 $10 \begin{aligned} & \text { integrated circuits } 6 \text { gates } \\ & \text { BMC } 962,4 \text { flip flops BMC } 945\end{aligned} 55 p$
H40 20 SFY $50 / 2,2 N 696,2 N 1613$.
55p
H41 $2 \begin{aligned} & \text { BDI } 131 / 8 \mathrm{DD} 132 \text { complemen- } \\ & \text { tary Plastic Transistors }\end{aligned} \mathbf{5 5 p}$
UNMARKED UNTESTED PAKS
BI 50 Germanyum Transistors
55p
B66 150 Germanium Diodes
B83 $200 \begin{aligned} & \text { Trans. manufacturers' } \\ & \text { jects- all eypes NPN; PNP }\end{aligned}$
jects all eypes NPN; PNP, 55p
Sil. and Germ.
B84 $100 \begin{aligned} & \text { Silicon Diodes DO-7 glass } \\ & \text { equiv. to OA200, OA } 202\end{aligned}$
55p
B86 100 Sil. Diodes sub $\begin{aligned} & \text { min. } \\ & \text { IN914 and IN916 types }\end{aligned}$
B88 59 Sil Trans. NPN. PNP equiv. to OC200/1
2N706A BSY95A
H8 40250 mW . Zener Diodes
HI5 30 Top Hat Silicon Rectifie
H16 $15 \begin{aligned} & \text { Experimenters' Pak. of } \\ & \text { Integrated Circuits. Da }\end{aligned}$
HI7 $20{ }^{3}$ amp. Silicon Stud Recti-
fiers, mixed volts
H20 $20 \begin{gathered}\text { BYI26/7 Type Silicon Rect } \\ \text { fiers I amp. plastic. Mixed } \\ \text { vol }\end{gathered}$ fiers 1
volts
H34 $15 \begin{aligned} & \text { Power Transistors. PNP, } \\ & \text { Germ. NPN Silico TO, }\end{aligned}$ Germ. NPN Silicon TO-3
Can

MAKE A REV COUNTER FOR YOUR CAR
The 'TACHO BLOCK'. This encapsulated block will turn any 0.1 mA meter into a counter for any car with
£1.10 ${ }_{\text {each }}$

1,000,000
 TRANSISTORS IN STOCK

We hold a very large range of fully marked, tested and guaranteed transistors, power cransistors, diodes and rectifiers at very keen prices. Please send for free catalogue.

600,000
Silicon planar plastic transis. tors. Unmarked, untested, factory clearance. A random sampling showed these to be of remarkably high quality
Audio PNP, similar to ZTX500, 2N3702/3. BCY70, etc
Audio NPN, similar to ZTX300, 2N3708/9 BCl07/8/9, BCI68/9, etc
Please state Audio NPN or Audio PNP when
ALL AT 500 for $\mathbf{\$ 3 . 3 0}, 1,000$ for $\mathbf{~} 5.50,10.000$ for $\mathbf{E 4 4}$.

P\&PIIp per 1,000

OUR VERY POPULAR 4p TRANSISTORS

TYPE "A" PNP Silicon Alloy, TO-5 can.
TYPE " B " PNP Silicon, plastic encapsulation.
YPE "E", PNP Germanium AF or RF.
TYPE '"F". NPN Silicon plastic encapsulation. TYPE "G"' NPN Silicon, similar ZTX 300 range
TYPE "H" PNP Silicon, similar ZTX 500 range.
$\left.\left.0 \begin{gathered}\text { RELAYS FOR } \\ \text { VARIOUS TYPES } \\ \text { P } \& 27 \frac{1}{2} p\end{gathered} \mathfrak{f}\right|^{\circ} \right\rvert\, 0$
Our famous PI Pak is still leading in value for money

Full of Short Lead Semiconductors and
Electronic Components, approx. 170
We guarantee at least 30 really high
quality factory marked Transistors
quality factory marked Transistors
PNP and NPN, and
a host of Diodes and Recti
fiers mounted on Printed
Circuit Panels. Identifica.
tion Chart supplied to
give some information
on the Transistors.
Please ask for Pak P.I. Only 55p

A CROSS HATCH GENERATOR FOR $\notin \mathbf{3} .85$: $1 /$

YES, a complete kit of parts including Printed Circuit Board. A four position switch gives X-hatch, Dots. Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This is a project in the September

This complete kit of parts costs E.3.85, post paid.

A MUST for Colour T.V. Alignment.

STEREO DECODER $£ 4.95$

A ready built unit, ready for connection to the Unit. A tell tale light can be connected eo show the presence of a Scereo transmission and correct operation of the Unit. The Unit is in the form of a small printed
circuit and no further alignment is necessary, circuit, and no further alignment is necessary, as all preset adjustments have aiready been
indicating lightr and a suitable device is available
from us at 36 fp . Supplied with
written guarantee. ALLOWS COMPLETE

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. All DEXTER DIMMASWITCH models have built-in radio interference suppression. $\quad 600$ watt $£ 3.52$ Kit form $£ 2.97$ 300 watt $£ 2.97 \mathrm{Kit}$ form $£ 2.42$
All plus $12 p$ post and packing
Prices include VAT. Please send c.w.o. to
DEXTER \& COMPANY
1 ULVER HOUSE
19 KING STREET
CHESTER CH1 2 AH
Tel: 0244-25883

AS SUPPLIEO
TO H.M. GOYE月MMENI DEPARTMENTS, MOSPOTALS

EX COMPUTER PC PANELS

2×4 in packed with semiconductors and top quality resistors, capacitors, diodes, etc. Guaranceed min. 35 transistors plus data. 10 boards $50 \mathrm{p}(9 p)$
SPECIAL BARGAIN PACK
25 boards El (25p). Panels with 4 power transistors sim OC28 50p (9p).
ELECTROLYTICS
$68,000 \mu 16 \mathrm{~V}, 4 \frac{1}{5} \times 2$ in dia. $25,000 \mu 25 \mathrm{~V}$, $20,000 \mu 30 \mathrm{~V}, 5,000 \mu$ 90V, $35,000 \mu$ 15V. $8,000 \mu 55 \mathrm{~V}, 4 \frac{1}{2} \times 3 \mathrm{in}$ dia. 50 p (15 p). $15,000 \mu \mathrm{I} 5 \mathrm{~V}, 10,000 \mu 35 \mathrm{~V}, 4 \frac{1}{2} \times 2 \mathrm{in} \mathrm{dia}$. 30 p (10p). $12,000 \mu 25 \mathrm{~V}$ wire ends 15 p (5p), 12 (10p) $i .12,000 \mu$
for $E .50(15 \mathrm{p})$.

4 for $\leqslant 1$ (7p)
20A DIODES
4 for $50 \mathrm{p}(5 p)$
3A DIODES
8 BLACK TOGGLES dpst 50p (8p).
250 MIXED CAPACITORS 60p (8p)
250 MIXED RESISTORS 60p (8p)
150 HI-STAB RESISTORS 60p (8p)
200 SI PLANAR DIODES
UNTESTED
SUB-MIN. CO-AX. PLUGS
8 SKTS. 4 pairs 50 p (5 p) REED RELAYS, MIXED 10 for 50p (5p) MICRO SWITCHES 8 for $50 \mathrm{p}(8 \mathrm{p})$ ASSORTED RELAYS 8 for $\$ 1$ (12 p) MIN. GLASS NEONS 12 for 50 p (5p) 10 WAY TERMINAL BLOCKS
QH BULBS 12 V 55 W 50p (5p) PAPSTEXTRACTOR/BLOWER FANS $100 \mathrm{cfm} 4 \frac{1}{2}$: $4 \frac{1}{2} \quad 2 \mathrm{in} . \quad$ €3.50 (28p)

Postage and package shown in brackets Please add 10% VAT to prices.

KEYTRONICS

(Mail Order only)
44 EARLS COURT ROAD LONDON W8 01-478 8499

parts and components:
resistors, capacitors, diodes, transistors etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots removable space dividers. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!

SINGLE UNITS (ID) (5ins $<2 \frac{1}{4} \mathrm{ins}$ 24ins). (1.25 DOZEN.
DOUBLE UNITS (2D) (5ins $4 \frac{1}{2}$ ins x 2 ins). E2.10 DOZEN. TREBLE (3D) $\mathbf{E 2} \cdot 20$ for 8. DOUBLE TREBLE 2 drawers, in one outer case (6D2), 63.25 for 8, EXTRA LARGE SIZE (6Di) $\in 3 \cdot 10$ for 8.

PLUS QUANTITY DISCOUNTS!

Orders 66 and over DEDUCT 5% in the t

 Orders 110 and over DEDUCT $7 \frac{1}{2} \%$ in the t Orders 620 and over DEDUCT I 0% in the E PACKING/POSTAGE/CARRIAGE: Add 35p to allorders under $£ 10$. Orders $£ 10$ and over, packing/postage/carriage free.QUOTATIONS FOR LARGER QUANTITIES Please add 10° O V.A.T. to total remittance

Collect Wireless World Circards. And build a valuable dossier on circuilt design. Circards is a new and comprehensive system, launched

Subjects already covered by Circard. I. Basic Active Filters.
2. Switching circuits: Comparators and Schmitts. 3. Waveform Generators 4. AV Measurements. 5. Audio Circuits: preamplifiers, mixers, filters and tone controls.
Subjects to be published during the year.
6. Power Amplifiers. 7. Constant Current circuits.
8. Opto-electronics. 9. Basic Logic Gate circuits. 10. Astables. II. Micropower circuits.
12. Wideband Amplifiers. 13. Alarm circuits. 14. Pulse Modulators. 15. Digital counters.
 Stamford Street, London SEi gLU. Registered No: 677128

AMTRON produce a varied range of 200 electronic kits which include Power supplies; L.F. instruments; tuners; receivers and I.C. digital equipment.

Kits are sold in attractive blister packs which contain solder and full instructions.

Prices range from $£ 1.10$ to $£ 80$.

Next time the "little lady" starts to complain, try buying her a kit, and before you know it she'll be an AMTRON enthusiast too.

Contact your local stockist

Trade \& Education enquiries we/come

Fascinating to build Fantastic improvement to your car's performance. Complete Capacitive Discharge ignition system. fully proven, components fully guaranteed. Printed circuit design. All metalwork drilled ready. Fitted to car in 15 minutes when built

- Sustained peak performance. - Up to 20% fuel saving. - Instant all-weather starting. Faster acceleration, higher top speed. Suitable for all engines up to 8 cyls. - Longer spark plug life. Longer battery life. Contact breaker burn eliminated. - Purer exhaust gas emission.
A new development from the manufacturets of Gunton ignition. Psice: $£ 9.35 \mathrm{mc}$ V.A.T. and postage. (12 volt only. State Pos or Neg. earth). Ready built unit also available $\mathbf{£ 1 1 . 5 5}$ inc. VAT and postage. GUARANTEED 5 YEARS.

SFA RIDIO
 355-337 HIGH STREET, CHELTENHAM CLOUCESTER. Tel 54303

Please Note: Add 10% V.A.T. to order total including post. packing and insurance. All goods new and manufacturer guaranteed. Post, packing and insurance in brackets
Spatronic PBBC Mains 8 Track Cartridge Playback Unit. B.S R. chassis, encased and wred to leed existing stereo system, $\varepsilon 11$ (45p).
8 S. R. T145 Unit As above but chassis oniy (wired). E8-55 (40p)
B.S.R. C114 Mini-changer littod $\times 5 \mathrm{H}$ Comp. Cartridge. Unit fitted with $18, \mathrm{y}$ V overwind on
motor for mono ampiner. 13.90 (50 p)

Bany pargin B S R Auto Units for callers only at cos io of plus V AT
Garrard SP25 Mk 3 Single Play Turntable Unit (chassis) $£ 10.25$ (75p) Garrard SP25 Mik 3 fitted plinth and cover, wred feady 10 play $£ 18.75$ (95p)
Garrard $2025 \mathrm{~T} / \mathrm{C}$ fitted KS 50 A Cer Stereo Cartridge (chassis). E7.85 (75p)
Spatronic P1 Plinth/Base. Solid Afrormosia for above decks. $\mathbf{2} \cdot 10$ (30p).
Spatronic C1 Cover to lit above plinth (most are tinted). E1 (3 Pp).
Garrard AP76 Single Play Trans. Turntable (chassis). E19-50 (95p).
Garrard Zero 100S Single Play Trans. Turntable (chassis). C34. 50 (11.20)
Spatronic P2 P1inth/Base. Solid Alrormosia tor above decks. $£ 3$ (35p)
Spatronic C2 Cover to tit above plinth (mose are clear). $£ 1.00\left(355^{\prime}\right)$)
Spatronic E2 Equipment Cabinet destgned for the B.S.R. C114 Mini-player. To house either a Mono Player or the Mullard Unilex. Ask tor heaflet. Systems on permanent demonstration here
Mullard Unilx Stereo Modules and Conitrol Panel (complete). $£ 11$-30 (75p)

input amplifiers, $\mathbf{5 1} 75$ (6p).
Goldring G000 Magnetic Cartridge (very speciat offer), 53.90 (20p).
Jap NN55 5In Cer. Magnet Speaker. Pertect for cassette ext. 8 ohm. [1-10 10 p)
Ejectro-Acoustic BRM Bin Cer. Magnet Speaker State 8 or 15 ohm . Aso Single or Dual Cone.
Single. $51 \cdot 90$; Dual, $\mathbf{2} \cdot 15$ (25p)
Electro-Acoustic form Cer. Magnet Speaker. State 8 or 15 ohm. Also Single or Dual Cone
Celestion PSI2TiC 12 in Dual Cone 20 W Unit for hifi or good quality P.A or Discotheque. Many cabinets for caliers, $\varepsilon 8$ (65p)
Goodmans 12 PD Discoip A. Speaker. 8 and 15 ohm hevivy duty, $£ 10.50$ (65p)
Dulci Model 207 T + TW R M S. Stereo Amplitier, E15. 90 (60p).
Kyoto Model $5200010+$ 10W R M.S. Stereo Amplifier, 23.90 (75p)
Keietion KSA700 7 + 7W. A.M.S. Stereo Amplifier ©2 (70p)
Keletron KSA1sso
Keletfon KS4 Two Soeaker System. UW RM.S. BW music. Size H. 11 in. W. 6 in . D. 6in

Freq. Ressonse $60-19.000 \mathrm{~Hz}$. 59 (65 p)
Koletion KS\& Thre-Speaker System BW R.M.S. 16W music Size H. 19n, W 10 in. D. gin Freq. response 4 ($-19.000 \mathrm{~Hz} .\{11 \cdot 75$ (95p).

WINDSCREEN WIPER DELAY KIT

Complete kit of parts including drilled and tinned fibreglass printed circuit board.

The unit provides intermittent wiper operation with a delay up to approximately 60 seconds which can be varied to optimise visibility in conditions of light rain, spray, ete. The original wiper switch overrides when normal operation is required.

Suitable for most British cars
22.86 inc. V.A.T.

Cash with order
THEYDON BOIS, EPPING, ESSEX CM16 7LR

THIS IS THE FIRST PAGE OF THE GREAT BI－PAK SECTION

BRAND NEW FULLY GUARANTEED DEVICES

> 0.22
0.22 AD16：
AD161

0019	0.38
OC 20	0.70
Ot2\％	0.42
（23	0.48
c：	0.62
0 C 25	0.42
0 O＂6	0.28
OC：8	0.55
00：29	0.55
$0 \mathrm{OC}_{3}$	0.48
0036	$0 \cdot 55$
OC4 1	0.22
OCl2	0.27
OC44	$0 \cdot 17$
OCl	0.14
OCio	（．11
0 C 71	$0-11$
OC72	0.16
0 OCH	0.18
Oぐう	0.17
0 Caj	0.17
00%	0.28
OCSI	0.17
$0 \mathrm{C81D}$	0.17
OC8：	0.17
OC8：1	$0 \cdot 17$
OC83	0.22
OC84	0.22
OC139	0.22
OC＇ 130	0.22
OC169	0.28
OC170	0.28
OC17	0.28
（C）200）	0.28
$00^{2} 201$	0.31
OC－20	0.31
OC： 23	0.28
0 C 204	0.28
$00^{2} 205$	0.38
0 C 309	0.44
OCP71	0.48
OR1＇te	0.48
ORP60	0.44
ORP＇61	0.44
P＇346A	0.22
P397	0.46
ST 140	0.14
8T141	0.19
T1543	0.33
UT4t	0.30
$\because 6301$	0.21
9C302	0.21
$2(1303$	0.21
26：304	0.27
2 CO 30 m	0.44
26308	0.39
26309	0.39
26339	0.22
2 G 33.39 A	0.18
$2 \mathrm{C344}$	0.20

BC148	0.11	13113＇	0.50
4 Cl 19	0.13	HD138	0.55
HC150	0.20	BD）34	0.61
BCLIol	0.22	BDIso	0.68
HC102	0.19	нD）${ }^{\text {cos }}$	0.88
$1 \mathrm{Clis3}$	0.81	（1）17\％	0－66
18Clu4	0.33	HD176	0.68
1 CL 107	0.20	В1757	0．72
HC1\％s	$0 \cdot 13$	HDII8	0.72
1 ClOg	0.13	3D179	0．77
HC160	0.50	Bulro	0.77
BC161	0.55	B1185	0.72
13C16i	0.13	BD18t	0.72
130168	0.13	BI）189	0.77
13C．169	0.13	3D188	0.77
BC170	0.13	BD189	0.83
13C17	$0 \cdot 18$	HD190	0.83
1015：	0.16	13D19\％	0.84
16C173	$0 \cdot 18$	BD196	0.84
BClit	0.16	BD197	0.98
$13 C 175$	0.24	BD198	0.98
HC17\％	0.21	13 J 199	1.05
BC178	0.21	13D20	1.05
1 C 179	0.21	13D $20 \overline{3}$	0.88
ACl80	0.27	BD： 206	0.88
1C181	0.27	BDerat	1.05
BC＇182	0.11	13D208	1.05
BCJM2L	0.11	BDYe	1.10
BC153	0.11	13F115	0.27
13C183L	0－11	HF117	0.50
HC184	0.13	13Fil8	0.77
13C184L	0－13	BFIIG	0.77
1 CC 186	0.31	BF121	0.50
16188	0.31	BF12．9	0.55
［C：07	0.12		0.50
B6：208	0．12	BF127	0.55
HC209	0.13	BF152	0.61
BC゙2\％	0.12	HF153	0.50
BC2 13 L	0.12	13F154	0.50
BC＇SI4L	0.16	13F155	0.77
BC225	0.28	B $\mathrm{F}^{1} 156$	0.58
$\mathrm{BC}^{2} 26$	0.38	BF゙107	0.61
BCY30	0.27	BF1处	0.81
BCY31	0.29	BF159	0.68
BCY32	0.33	HFItio	0.44
BC： 33	0.24	1FF162	0.44
BCY34	0.28	BF163	0.44
1 CCY 70	0.18	13F164	0．44
BCY゙1	$0 \cdot 20$	15165	0.44
BCY\％	0.16	HF167	0.24
13CZ10	0.22	BF173	0.24
13CZ11	0.88	BF176	0.38
HCZ12	0.28	8ト17\％	0.39
13D121	0.88	BF178	0．33
13D123	0.72	Briz9	0.33
131）124	0.88	BF゙I80	0－33
BDi31	0.55	AFIB］	0.33
131）13：	0.66	HF゙182	0.44
13D143	0.72	［FF183	0.44
BDIs，	0.44	Bド1く4	0．28
13DI36	0.44	13ド18	

NEW COMPONENT PAK BARGAINS
ot Description
Resistors mixed values approx．（count ly weight）
（＇apacitos mixed values approx．（count by weight）
Precision Resistors 1% mixed values Price
0.58 0.58 0.55
0.85 0.58
0.56 0.55
0.55 0.55
0.55 Pieces assorted Ferrite Rods Tuning Gange．MW／LW VHF
Pack Wire 50 metera assortel colourn Reed 8witches

 | Jack Sockets 3×3 Pre－Sets |
| :--- | \qquad 0.55

0.55 0.55
0.58 0.58
0.55
0.55 0.65
0.55 0.88
0.85 0.58
0.55
0.55 0.55
0.65 0.55

Please add 10 p post and packing on all component packe，phus a further 10p， on pack Nos．C1，C2，C19 and C20

> Plus much more－ send now for the BI－PAK＂component catalogue＂ $5 p$ to cover postage，etc．

THE NEW S．G．S．EA 1000 AUDIO
T Jumbo Componevt pais
Resistors，capacitors，pots，electrolytics Auposins plum thanty uther usefnl items． induling P．\＆P．£1．65．
EYCEJTIGNAIJ GOOD YALV＇E

| BRAND NEW POST OFFICE TYPE TELE－ PHONE DIALS ONLY 83p each |
| :---: | AMP MODULE＊Guarantee

3 Watts

R．M．S．
ONLY

£2．89 each

Qty．1－9 $\mathbf{2 2 . 8 9 ; 1 0 - 2 5 ~} £ 2.51$ Price each．Larger quant it ies yuoted on request．Full hook－ap diagrama module or available separately at $10 p$ each

SYSTEM 12 STEREO

Each Kit contains two Amplifier Mod－ ules， 3 watts RMS，two loudspeakers 15 ohms，the pre－amplifier，trans－ former，power supply module， front panel and other acces－ sories，as well as an illus－ trated stage－by－stage instruc－
tion booklet designed for the beginner．
Further details available on request．

ONLY

0.51

2N30．54 0．51

2 N 2219	0.22
N 2220	0.24
22221	0.22

0.11
0.13
0.13

N40tio
$2 \mathrm{~N}+0 \mathrm{C}^{2}$
N 4285
$\begin{array}{ll} \\ 2 N+2886 & 0.19 \\ 2 N 4287 & 0.18\end{array}$
$\begin{array}{ll}2 \mathrm{~N} 4286 & 0.19 \\ 2 \mathrm{~N} 4.287 & 0.18 \\ 2 \mathrm{~N}\end{array}$
N 4289
$\mathrm{~N}+290$
N 4291
$\mathrm{~N}+292$
$\mathrm{N}+292$
$\mathrm{~N}+293$

$\begin{array}{ll}2 N 301 & 0.44 \\ 0.55\end{array}$
$\begin{array}{ll}233024 & 0.46 \\ 28302 & 0.46\end{array}$
$\begin{array}{ll}28034 & 0.67 \\ & 0.03\end{array}$
$\begin{array}{ll}28.306 & 0.93 \\ 24.307 & 0.98 \\ 28321 & 0.62\end{array}$

3.322	0.4
0.4	

$\begin{array}{ll}1323 & 0.62\end{array}$
$\begin{array}{ll}321 & 0.77 \\ 3327 & 0.77 \\ 701 & 0.48\end{array}$
$361-0.44$

IODES AND RECTIFIERS

A119	0.09	15133 0.23	（1． 10	0.38
A A120	0.09	13YItit 0.55	0 Al	0.08
A 1129	$0 \cdot 09$	BYX38／30	0.70	0.08
A1Y30	0.10	0.48	0.774	0.08
A．213	0.11	BYZ10 0.39	0.81	0.08
B． 100	0.11	13Y\％11 0.33	0 0．80	0.10
BAll 6	0－23	15 Cl 12	O．4．0	0.07
13A1：20	0.24	BYZ13 0．28	0 O91	07
13.148	0.18	HYZIti 0－44	0.495	0.08
BA154	0.13	13Y\％17 0．38	O．4200	0.07
bAlón	0.18	$13 Y \mathrm{Cl} 18 \quad 0.39$	OA202	0.08
B，Alm	0.15	BYZ19 0－31	81110	0.08
15 Y 100	0.17	Clibz	Sbla	0.08
13Y101	0.13	（0ayl Exq．）	1×34	0.08
13 ${ }^{\text {a }} 10$ ．	0.19	0.06	1234：	0.08
BY114	0.13	C6tis］－	$1 \mathrm{Nal4}$	0.07
BY 126	0.16	（0）A70－0．479）	1×916	0.07
HY127	0.17	0.07	1N＋143	0.07
By128	0.17	0．15 0．39	18021	0.11
30	0.18	OAJsle 0	18951	0.07

The largest selection

NEW LOW PRICED TESTED S.C.R.'S

SIL. RECTS. TESTED

2N2060 NPN BIL DUAL
TRANS CODE DH98 TEXAS, Our Hice 28p each.

120 VCB NXIE DRIVER TRANSISTOR. BSX21 © C407, 2N189: CODED ND $1: 20$ AND $10 p$ each. To-
25
up 170 each.

8it. trans. suitable for P.E. Organ Metal TO-18 Fiqvt. Z1X 300 6p each. Any Quantity
POWER TRANS BONANZA!

GENERAL PURPOSE GERM. PNP
Coded ($\because P 100$, $13 R A N I$ NEW TO-3 CASE, POSS REPLACE:-OC25-28-29-30-35-36. NKT 401-40:5-404-405-406-430-451-452-453. T13027-3028. 2N250A CHO 80 V YCEO 50 V IC 10 A PT. 30 WATTS HIE 30-170.
$\begin{array}{ccc}17 \mathrm{peach} & 44 \mathrm{panch} & 100 \mathrm{up} \\ 40 \mathrm{pasch}\end{array}$

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI-PAK UNTESTED SEMICONDUCTORS

Satigfaction QUARANTEED in Every Pak, or money back Pay No. \qquad
\qquad
60 Mixed Gernianium Transiators AF/P.
nium Diodes
is Cermaniun Cold Bonded Sub-Min. like OAJ. OA 47
40 Germanium Tranaistors like 0 Cl , ACl 28
60 200mA Sub-Mith. Silicon Diontes
30 Sil. Planar Trana. N PN like BSY9.a ong

[- 8 50 Sil. Planar Tiodes InO-7 (ilass 2.50mA like OA200/202
40 Mixed Voltages, 1 Watt Zener Diodes

U12 1:2 Silican Rectifiers Epoxy 500 mA up to 800 户口
U13 30 PNP NPN Sil. Transiatora OC200 \& 28104
1'14 150 Mixed Silicon and Germanium Dionlen

103 Amp silicon Rectifiers Stud Type up to 1000PI

2. Bulicon NPN Transiators like BCl08
$1120 \quad 1215 \mathrm{dmp} \overline{\mathrm{A}} \mathrm{ilicon}$ Rectifere Top Hat up to 1000 P U21 30 AF. Germanium Alloy Transistors $24: 300$ series $\& \overline{0} \overline{\mathrm{C}} \overline{\mathrm{r}}$
$\mathrm{U} 23 \quad 30 \mathrm{M} A D \mathrm{~T}$'s like M Hz Series PNP Transistors
U24 20 Germanium I Amp Rectifiers (i, M Serjea up to 300 PIV 2.) 300 MHz NPN Hilicon Tramsistors 2N708, H8Y:27

30 Fast switehing Bilicon Dindes like IN914 Micro-M
10 APN (bermanimm AF Transistors TO. 1 like AC'127
$\begin{array}{ll}10 & 109 \text { Amp SCR's TO-5 cans, up to } 600 \text { PIV CRS } \\ \text { U30 } & 15 \text { Plastic Silicon Planar Trans. Nif } 2 \mathrm{~N} 2926\end{array}$
[31 20 Silicon Planar Plast ic NPN Trans. Low Noise Amp 2N3707

U33 le Plastic Cane 1 Amp, Milicon Rectifiers IN 4000 Series
13430 silicon PNP Alloy Trans. TO-5 RCY 26 28302/4
U35 25 silicon I'lanar Transiators INP TO-18 $2 \mathrm{~N} \cdot 2906$
U36 25 silicon Planar NPN Transiators TO-5 BPY
U38 20 Fast switching silicon Trans. N1'N 400 MHz 2 N 301
QUALITY TESTED SEMICONDDCTORS Pat No

ELECTRONIC SLIDE-RULE

The MK Slide Rule, designed to simplity Elec tronic calculationa features the following scales:Conversion of Frequency and Wavelength. Calculation of L, \mathbb{C} and fo of Tuned Circuats Reactance and Self Inductance. A rea of Circles Yolume of Cylinders. Resistance of Combuctors
Weight of Conductors. Dectbel Calculations. Angle Functions. Natural Loge and "e" Functions Multiplication and Division. Squaring, Cubin and Square Roots. Conversion of kW and Hp A must for every electronic engineer and enthusiast. Size: $2 \mathrm{~cm} \times 4 \mathrm{~cm}$. Complefe with case and
matructions.

> SILICON PHOTO TRAN SISTOR. TO-18 Lens end BRANI NEW. Full data BRANI NEW. Full data Oty. $\quad 1.2420 .99100 \mathrm{up}$ Price each 80p 44p 38p

F.E.T.'S

-N3810	31p	$2 \mathrm{~N} \mathrm{~S}^{2} 58$	35p
2N3820	55p	2 N 5459	44p
2N3821	34 p	BFW10	68p
2 N 3823	31 p	MPF10\%	41p

NEW 6TH EDITION

 TRANSISTOR EQUIVALENTS BOOK. A complete cross reference and equivalenta book for European, tors. Exclusive to BI-PAK 99p each.A LARGE RAMGE OF TECEMICAL AND DATA BOOXS ARE NOW AVALLABLE EX BTIST

ADI61/162
M/P COMP GERM TRARB
OUR LOWEST PRICE OF

SILICON 50 WATTS MATCEED NPN/PNP
BIP 19 NPN TO-3 Plastic. BIP 20 PNP. Brand new VCBO $100 / \mathrm{VCEO} 50 / \mathrm{IC} 10 \mathrm{~A}$. HFE type $100 / \mathrm{ft} 3 \mathrm{mHz}$ OUR PRICE PER PAIR 3-24 pra: 68D
integrated circutt paks
Manufacturers" "Fall Outs" which fnclude Functional atud Part-Functional Unita. These are clanged an "ont-of-spec' from the maker's very rigid specifications, but re ideal for learning about IC. in and experimental work

Pak No. Contents	Price
$\mathrm{UIC00}=12 \times 7400$	0.55
$11 \mathrm{CO}=12 \times 7401$	0.55
UIC02 $=12 \times 7402$	0.55
$\mathrm{UlC03}=12 \times 7403$	0.55
UICO4 $=12 \times 7404$	0.55
UIC0J $=12 \times 7405$	0.55
TIC06 $=8 \times 7406$	0.55
UIC07 $=8 \times 7407$	0.55
LIC $10=12 \times 7410$	0.65
$\mathrm{ClC13}=8 \times 7413$	0.55
U"IC20 $=12 \times 74.0$	0-55
UIC30 $=12 \times 7430$	0-55
$1 \mathrm{ILC} 40=12 \times 7440$	0-55
VIC41 $=5 \times 7441$	0.55
UIC42 $=5 \times 7442$	0.55
UIC43 $=5 \times 7443$	0.55
UIC44 $=5 \times 7444$	0.55
UIC45 $=$ Ј $\times 7445$	0.55

Pak No. Contenta Price ${ }^{1} 1 \mathrm{C} 86=5 \times 7486$ $1 \mathrm{C} 06=5 \times 7+86$ TIC90 $=5 \times 7490$ UIC91 $=5 \times 1491$
UIC9: $=5 \times 7492$ UIC93 $=5 \times 7493$ UIC94 $=5 \times 7494$ UIC95 $=5 \times 7495$
U1C96 $=5 \times 7496$ UIC100 $=5 \times 74100 \quad 0.55$ $\mathrm{UIC121}=5 \times 741210.55$ $\mathrm{UICl}+\mathrm{I}=5 \times 74141 \mathrm{O}$ $\begin{array}{lll}\text { UIC151 }=5 \times 74151 & 0.55\end{array}$ UIC154 $=5 \times 7+154 \quad 0.55$ $\begin{array}{lll}\text { UIC193 } & =5 \times 74193 & 0.55 \\ \text { UIC199 }\end{array}$ UICXI $=25$ Assorted aks cannot be ghlit but $2 \bar{n}$ astor pieces (our mix) is available as PAK UIC X

BI-PAKS NEW COMPONENT SHOP NOW OPEN WITH A WIDE RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT COMPETITIVE PRICES-
18 BALDOCK STREET (AIO), WARE, HERTS.
TEL. (STD 0920) 61593
open MON.-SAT. 9.15 a.m. to 6 p.m., FRIDAY until 8 p.m.
All mail orders please add 10 p post and packing.
Send all orders to BI-PAK, P.O. BOX 6, WARE
HERTS.

-the lowest prices

74 Series T.T.L. I.C’s

BI-PAE STILL LOWEST IN PRICE. PULL SPECIFICATION GUARANTEED. ALL FAMOUS MANDFACTURERS

LINEAR I.C.'g-FOLL SPE

Type No.
BP201C-8L20]C BP702C-8L704C BP702-72702 BP709-72709 BP709P- 1 A 709 C BP710--72710 BP711-
BP74711
B2741 ha703C TAA263 TAA293 TAA350
EA1000

NUMERICAL INDICATOR TUBES

MODEL	CD66	GR16	3015 F Minitron	AII indicalors $0.9+$ Decimal point. All side viewing. Full data for all types gvailable on request.
Anode Voltage ($V_{\text {, }} \mathrm{l}$ c)	170 min	17 mmin	5	
Cathode Current (mA)	$2 \cdot 3$	14	8	
Numerical Height (mm)	16	13	9	
Tube Height (mm)	47	32	29	
Tube biameter (mm)	19	13	12 wide	
I.C. Driver Rec.	$\begin{gathered} \mathrm{BP} 41 \text { or } \\ 141 \end{gathered}$	$\begin{gathered} 13 P 41 \\ 141 \end{gathered}$	BP47	
PRICE EACH	21.87	81-70	\$1.50	

[^1]BI-PAK DO IT AGAIN!
$50 W$ pk 25w (RMS)
0.1\% DISTORTION: HI-FI AUDIO AMPLIFIER

* Frequency Response 15 Hz $100,000-1 \mathrm{~dB}$
* Load-3, 4, 8 or 16 ohms.
* Distortion-better than $\cdot \mathbf{1 \%}$ at 1 KHz

ONLY Volts

* Signal to noise ratio 80 dB .

Tailor male to the most atringent suecifcations using top quality comfonents and incorporating the latest solid state circuitry and ALSO was conceived to till FILSH BULLT-TESTED-Cillation needs.

STABILISED POWER MODULE SPM80

AP80 is especially lesigned to fower 2 of the ALato Amplifiers, up to 15 watt (r.m.s.) per channel simul taneonaly. This module embodies the lateat components and efrcuit techniques incorporating complete shor former MT80. the unit will provile outputs of up to 15 amps at 35 volts, Size: $68 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$
 other applications including:-Diaco grice. Abotems, Public for many (nits, etc. Handbook avaHable, 10p PRICE $\mathbf{4} \mathbf{3} 25$

TRANSFORMER BMTBO
 £2.15 p. \& p. 28p

STEREO PRE-AMPLIFIER TYPE PA100

Built to a speciflcation and NOT a price, and yet at ill the greatest value on the market Designed for use with the AL50 wower conceived from the latest circuit techniques porates no less than eight silicon planar transistors, two of these are speciatiy selected low noise NIN devices for use in the input stages.
Three switched stareo inputs, and rumble and scratch filters are features of the PA 100 . which also has a STEREDO/MONO switch, volume, balance and cuntinuously varlable bess and trebic controis.

SPECIFICATION
 Frequency Response

Inputs: Distortion
Inputs: 1. Tape Head
$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$
125 mV into 50 Ki 3. Magnetic P.U

35 mV trito 50 ka
Allinput voltages are for an output of 250 mV . Tape and P.U. inputs equalised to RIAA curve within $\pm 1 \mathrm{dH}$ from 20 Hz to 20 kHz Treble Control
+15 dB at 20 kHz
$\begin{array}{cc}\text { Filters: Rumble (8igh Pass) } & 100 \mathrm{~Hz} \\ \text { Scratch (Low Pass) } & 8 \mathbf{k H z}\end{array}$
Signal/Noise Ratio \quad better than - Rod
Input overload Supply
+260 volle at 20 mA
+35
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~m}$
ONLY £13.15
SPECIAL COMPLETE KIT COMPRISING 2 AL50's, SPM80, 1 BMT8O\&1PA100ONLY \&25•30 FREEp.\& p.

TRI-VOLT BATTERY ELIMINATOR
Enables you to Hork Hadlo. Amplities or Cassette. etri, from the private party an flectric cope of culour makes the music you probuce more interesting and will appeal to the visual as well as the aution senae This buiget aystemi conpares mophisticated ant anthe himher priced notlela.
Specitication
Specitication Projector: 100 W convection cooled, at 3uft the projected image $=1$ lift: Motor:
1 rev per 2 min. Liquid Wheel 6 in tianetet mutt icolom
The Motor is Atted Projector purchaserl as a single unity be Liquid Wheel. however. is our
very popular standardl sery popular standard mosdel d bargain- Projector with Motor
 Efiminator. Just by moving plug you can select the voltage you require. 6, 7 or 9 volt. Thie means all your trans:stor power pack applicationg can the harndled

 Philips Carsette 23 plus 10 p P. \& P . Added Tax at the Standard Stated Enables you to work your Transistor Rad or Cassette, etc, from the 12 volt car supply. Positive or negative earth. Approx. ize $=12 \mathrm{in}$. $\times 31 \mathrm{in} . \times 1$ in.
 regulated
10p P.

CRESCENT CASSETTES

AL20 5 WATT AUDIO AMPLIFIER 30 to 25 kHz

$$
=\sin \times 21 \text { in } \times 1 \text { in approx }
$$

atechniear data and diagrans with each module All guaranteed and a bargaill at $\mathbf{e} 2 \cdot 63$ plus iop I' \& F

DIGITAL CLOCK KIT 24-hr. Nixie dig. clock kit. e supply: a complete set
components: a complete of components: a complete instructions: printed circuits male io instrnctions: printed circuits mane io
make construction as aimple as possitile eabinet and front panel to give professional tinish. All for the price o the componentr. $£ 22 \cdot 50+50 p \mathrm{P}$. of P
Please send S.A.E. if your require more
\qquad
nformation. A lon cost high quality i, watt audio
armplifier designed for use in sterey syatems. re equipment Suphly Voltage $=9$ to 30 volts Frequency size
size

200/250V MAINS RELAY Heavy duty contacts mains relays $50 \mathrm{p}+$ V A.T. Car Free. special Free. special
quantity price:
e40 per 100relays.

ADD LUXURY TO YOUR CAR WITH A MOTOR DRIVEN CAR AERIAL
Spec.: 5 Section
Fxtended Length 100 cm Leng th under Fender 40 c Cable Length 120 cm Supplied complete with Fixing Bracket and

CRESCENT BEATBEITE" SINGIF OUND TO LIGHT UNIT This fantaytic

£6.75 ${ }^{\text {plus }} \mathrm{HP} \mathrm{P}$.
LOW VOLTAGE AMPLIFIER
transistor amplifier complete or 9 v d.e. and a.c. supplies. Will give about 1 W at 8 ohm out put. Wutput.
With bighimpinput this ampli-
fier will work as a record fier will
player, player,
smptitier produce light display of up to 1000 watta Complete uith a sensitive control the unit is fused and cannot harm your amplifler A bitugatin at $\mathbf{e 7 . 5 0}$ plus 10 p

\qquad
61.75

MAINS TRANSFORMER Fused Primary 240 N. Hecondary 220 (3) 50mA. bus (a) $1 A$. This trans former is made to a ver
hikh standard and is hikill size: 2 in $\times 2$ jim
$\times 2$ in. $63 p$ plus $15 p$ $\times 2 t i m$.
$\mathrm{P} . \& \mathrm{P}$.

EMI LOUDSPEAKER 450 10W $13 \mathrm{in} \times 8 \mathrm{in} \pm$ two $2 \cdot 2$ in and ready for use. This ever popular 450 in $3-8-10 \mathrm{ohm}$ imp.
$\mathbf{6 3 . 7 5}$ plus $38 \mathrm{p} P$. \& P , each.
7in $\times 4$ in LOUDSPEAKER
\qquad speaker theal where
small size is importsmall size is important. Manufactured
by E.M.I. for a wellby E.M.1. for a well
known hi-fi set maker. Size: 7 min 38.000 Mas F'ree range 90 Hz t luktiz. Power handling: 5w
Unteatable. Price: $\& 1-60$. F're postage on this item

D.I.Y. TECHNICAL BOOKS

The new 1973 VAT edition of Lasky's famous Audio-Tronics Catalogue will be available in early April-FREE on request. The 48 tabloid size pages-many infull colour-have been reprinted with VAT price changes for your convenience, together with many new items. Over half the pages are devoted exclusively to every aspect of $\mathrm{Hi}-\mathrm{FI}$ (including Lasky's budget Stereo Systems and Package Deals), Tape Recording and Audio Acces sories. Send for your copy now and see for yourself that VAT can mean a saving on many of the 1000's of items we offer.

Send this coupon with 15 p for post and inclusion on our regular mailing list - - - - - - - - -

[^2]ADDRESS

PAL RECEIVER SERVICING (280pp) MAKING AND REPAIRING TRANSISTO HOW TO REPAIR SMALL APPLIANCES TRANSISTOR RADIO SERVICING MADE EASY CAR RADIO SERVICING MADE EASY HI-FI PROJECTS FOR THE HOBBYIST TAPE RECORDING FOR THE HOBBYIST RADIO HANDBOOK (896 pp)
ELECTRONIC EXPERIMENTS AND PROJECTS TRANSISTOR-TV SERVICING GUIDE 99 WAYS TO IMPROVE YOUR HI-Fi 99 WAYS TO IMPROVE YOUR ELECT-PRO 101 EASY HAM RADIO PROJECTS ELECTRONIC GAMES, TOYS YOU CAN BUILD HOW TO BUILD SPEAKER ENCLOSURES 1-2-3-4 SERVICING STEREO AMPS 99 ELECTRONIC PROJECTS HANDBOOK OF BASIC ELECTRONIC EQUIPMENT Add 10% FOR POSTAGE AND PACKING
WHEEL (PE), 4IA ADELAIDE GROVE, LONDON WI2

(II) IL.P. (teateromes Les

NO EXTERNAL COMPONENTS

* BRITISH BUILT

With the development of the HY200, ILP bring you the first COMPLETE Hybrid Power Amplifier.
COMPLETE: because the HY200 uses no external components!
COMPLETE: because the HY200 is its own heatsink!
By the use of integrated circuit technique, using 27 transistors, the HY200 achieves total component integration. The use of specially developed high thermally conductive alloy and encapsulart is responsible for its compact size and robust nature.
The module is protected by the generous design of the output circuit, incorporating 25 amp transistors. A fuse in the speaker line completes protection.
Only 5 connections are provided, input, output, power lines and earth.
OUTPUT POWER: 100 watts RMS; 200 watts peak music power. INPUT IMPEDANCE : 10k Ω. INPUT SENSITIVITY: 0Dbm ($0 \cdot 775$ volt RMS). LOAD IMPEDANCE: $4-16 \Omega$. TOTAL HARMONIC DISTORTION: less than 0.1% at 100 watts, typically 0.05%. SIGNAL: NOISE: better than 75Db relative to 100 watts. FREQUENCY RESPONSE: $10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{Db}$. SUPPLY VOLTAGE: $\pm 45 \mathrm{volts}$. APPLICATIONS: P.A., Disco, Groups, Hi-Fi, Industrial. PRICE: £14-90 inc. VAT \& P\&P. Trade applications welcomed

CROSSLAND HOUSE • NACKINGTON•CANTERBURY•KENT

CANTERBURY 63218

G. F. MILWARD 369 Alum Rock Road, Birmingham B8 3DR.

Tel. 021-327 2339

I enclose f
for
Name
Address

Dept. A, 222/224 West Road Westclifi-on-Sea, Essex S58 9DF
SS8 9DF
Tel.: Southend (0702) 46344

Multicore Solder Cream for high quality joints in the Electronics Industry

New Multicore Solder Cream was designed for jobs where second best will just nut do. l, ike manufacturing diodes lor inslante. ()r making a tuner chassis, or soldering thich-tilm circuils. Multicore Solder Cream, a finely graded sokder alloy powder in a thixulropic organic cehicte. is easie? quicker, more evonomic and more reliable than
(onventional lechniques.
Multicore Solder Crean is different. It doesn't spit or nowd stirring. It can be applied by syringe autumatic: dispensers or screen prialing giving instant soldering with
good spread. strong joints with low contact angles. Suitable as a temporary adhesive during assembly, the clear colour flux residue-without solder globules makes inspection ansier. There are three types of Multicore Solder Creamone of them mav be just what you're loohing for.
For full information on this or any uher Mullicore products, plense write on your company's |etlerthead direct to:

Multicore Solders Lid., Maylands Avenue. Hemed Hempstead. Herts.HP2 7EP. Ten:Hemehtempstead 363n. Telex: 82363.

Build yourselfaTRANSISTOR RADIO
 WITH AFTER SALES SERVICE ROAMER 10 WITH VHF INCLUDING AIRCRAFT
 10 TRANSLSTORS. 9 TUAABLE WAVEBANDS, MW1, MWg, LW, sW1, sW8, sws,

 TRAWLER BAID, VHF AND LOCAL 8TATIONS ALSO AIRCRAFT BAMD.Built-in ferrite rod nerial for MW/LW. Retractable, chrome plated 7 section telescopic serial, can be angled and rotated for peak short wave and VHF listening. Pubh-pull output using 600mW tranastors. Car Aerial and tape record sockets. 10 traosistory plus 3 diodes. Fine tone moving coil speaker. (ianged tuning condenser with VBF aection. Separate coil for Aircraft Band. Volume/on/off, wave change and tone controls. Attractive case in black with silver blocking. Size 9 in $\times 7$ in \times in.
Easy to follow instructions and diagrams. Parts price list and easy build plans 30p (FREE
with parte)
-
total building COSTS
P.P. INS. 52p

£9.35

 (OVERSEASP.\& P. ©1-05)

7 TUNABLE WAVEBANDS: MW1, MWQ, LW, SW1, aerlal for MW and LWW. Retractable chrome flated tele scopic aerial for short waves. Push-pull output using 600 mW transisturs. Cal aerial and tape record sockets. Selectivity awitch. 8 transistora plus 3 diodes. Hine tone movith coil speaker. Air spaced ganged tuning condenser. Volume/on/onf, tuning, wave change and tone controls. Attractive case in rich chestnut shade with pold
blocking. Size !in $\times 7$ in \times in approx. Easy to follow instructions and diagrans. Parts price liat and essy build plans 25 p (FREE with parts)

TOTAL TOTAL PTOEP.P. EINS. 47p BUILDING COSTS 2 G (OVERSEAS
$P \& P \in 1.05$)

POCKET FIVE

8 TUNABLE WAVE-
BANDS: MW, LW.
TRAWLER BAND
MW BAND FOR EASIER TUNING OF LUXEMBOURG, ETC. 7 tages- - transistors arn 2 diodes, supersensitive ferrite rod acrial, fine tone noving coil fin x 3atn. Easy build plans and paris price list 10p (FREE with parts).

TOTAL E E E $\begin{aligned} & \text { P. P. \& INS. 24p } \\ & \text { COVERSEAS }\end{aligned}$
вultows coss $£ 2.50$ (OVERSEAS P. \& P. 65p)

"EDU-KIT"

BUILD RADIOS, AMPLIFIRRS, ETC. FROM EASY STAGE DLAGRAME. FIVE UNITS ETCLODInclude: Tuning Condenger: Slider switches; Fine tone moving coll 8peaker: Terminal 8trip: Ferrite Rod Aerial: 2 Pluga and Bocketa: Battery Clips: \& Tag Boarda Balanced Armature Unlt: 10 Tranelstora: 4 Diodes: Realstors: Capacitora: Three \ddagger in Knobs. Units once con. structed are detachable from Master Unit, enabling them to be stored for uture use. Ideal tor Bchools, Educaterested in radio construction Parta price ilet and easy build plans 25 p (FRFEF

ALL PARTS $\operatorname{INCLUDING}$ E
CASE AND PLANS -
.P. INS. 33p
(OVERSEASP, PP, \&f-05)

FULL
AFTER SALES
SERYJCE
t Callers side entrance "Lavell" Shop
Open 10-1, 2.30-4.30 Monday-Friday, 9-12 Saturday (PLEASE NÓTE: ALL PRICES INCLUDE Y.A.T.

TRANSONA FIVE
 5 TRANSISTORS AND 2 DIODES

3 TUNABLE WAVE BANDS: MW. LW AND TRAWLER

 BAND. 7 stalge - 5 transistors and 2 dionles. ferrite rod terial, tuning condenser, volume contro!. tirie tone moving coil speaker. Attractive case with red plans and partsprice liat 10 F (FREE with parts).TOTAL
BUILDING COSTS
£2.75
P.P. \& INS. (OVERSEAS
P. \& P. 65 p)

BAND PLUS AN EXTRA MW BAND FOR EAGIER TUNING OF LUXEMBOURG. ETC Hetritwe

Abstract

speaker. 8 stages

 case with red grille. dial and mack khol, wath parts).

TOTAL
$54 \cdot 3\} \begin{aligned} & \text { P. P. \& INS, } 31 \mathrm{p} \\ & \text { (OVERSEAS }\end{aligned}$
BUILDING COSTS E4, S. P. \& CI.05)

TRAWLER
BAND. Sensitive ferrite rod zerial for ww and iw
BAND. Sensitive fesrite rod aerial for MW and IIW,
Teleacopic amial for short waves. 3as mpraker. 8

 Push-pull output. Batcory Erom,miner switeh fur extended hattery life. Ample power to drive a larger
speaker. farts price hat and eas; build plang 250 speaker larts price list and easy build plans 25 p
(FREE with parta)

TOTAL

BUILDING costs E $4 \cdot 25$ P.P. 8 INS. 33p (Overseas P. \&P. © 1 -05)

RADIO EXCHANGE LTD

61a HIGH ST., BEDFORD MK40 1SA. TeI. 023452367 Reg. no. 788372
lenclose $£$
please send items marked

ROAMER TEN	\square	ROAMER SEVEN
ROAMER EIGHT	\square	TRANS EIGHT
TRANSONA FIVE	\square	ROAMER SIX
POCKET FIVE	\square	EDU-KIT

Parts price list and plans for
Name
Address

Sinclair Project 60

Now-the Z.50 Mk. 2

with built-in automatic transient overload protection

Abstract

When originally introduced, the Sinclair $Z .50$ proved how it was possible to design and produce a popularly priced modular power amplifier having characteristics to challenge the world's costliest amplifiers. Many thousands of 2.50 s are now giving excellent service day in, day out. But we have also learned that constructors do not always use their 2.50 's ideally. That is why we have introduced modifications whereby risk of damage through mis-use is greatly reduced and performance further enhanced. The 2.50 Mk. 2 has improved thermal stability, more accurately regulated D.C. limiting to ensure more symetrical output voltage swing and clipping and still less distortion at lower power. $Z .50 \mathrm{Mk} .2$ is compatible with all other Project 60 modules, and may be incorporated to advantage in existing systems. Eleven sificon epitaxial planar transistors are now used. two more than in the original 2.50 ; circuitry has been re-designed, making this versatile high performance amplifier better than ever.

Z .30 the power amplifier for quality and economy

with
free manual
£4.48

Brilliant new
technical specifications
Input impedance 100 K s
Input (for 30 w into 8Ω) 400 mV
Signal to noise ratio, referred to full o / p at
30 vHT 80 dB or better
Distorion 0.02% up to 20 W at 8Ω. See curve Frequency response 10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Max supply voltage $45 v$ (4Ω to 8Ω speakers) ($50 \vee 15 \Omega$ speakers only)
Min. supply voltage $9 v$
Load impedance - minimum : 4Ω at $45 v$ HT
Load impedance - maximum : safe on open circuit
with free
manual
$£ 5.48$

The Z 30 provides excellent facslities for the constructor requiring a high fidelity audio system of less power than that available from Z.50's Using a power supply of 35 voits, $Z 30$ will deliver 15 watts RMS into 8 ohms, or 20 walts RMS into 3 ohms using 30 volts. Total harmonic distortion is a fantastically low 0.02% at 15 watts into 8 ohms with signal to noise ratio better than 70 dB unweighted Input sensitivity 250 mV into 100 K ohms. Size $80 \times 57 \times 13 \mathrm{~mm}\left(3 \frac{1}{6} \times 2 \frac{1}{4} \times \frac{1}{2}\right)$ Z.30, 2.50 and $Z 50$ MK. 2 modules are compatible and interchangeable

Guarantee

f. whithin 3 months of purchesing any product dieect from Sinclair Radionics Lid., you are dissatisfied with it. your money will be refunded at once. Many Sinclair appointed Sinclair Radionles Ltd
Each Project 60 module is tested before leaving ourfactory and is guaranteed to work perfectly. Should any defect arise in normal use. we will service it at once and without any charge to vou, if it is returned within two years from the date of purchase. Outside thisperiod of guarentee a smatl charge (typically f 1.00) will be made. No charge is made for postage by surface mall, Air Mall is charged at cost

Typical Project 60 applications

System	The Units to use	together with	Units cos
Simple battery record player	2.30	Crystal P.U.. 12V battery volume contral, etc.	£4.48
Mains powered record player	2.30, PZ.5	Crystal or ceramic P.U. volume control etc	£9.45
12W. RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times 2.30 \mathrm{~s} \text {. Stereo } \\ & 60 ; \text { PZ. } \end{aligned}$	Crystal, ceramic ormag PU., F.M. Tuner, etc.	£23.90
25W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } \\ & 60: \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic PU. F.M. Tuner. Tape Deck. etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms)	2x2.50s, Stereo 60; PZ.8, mains transformer	As above	£34.88
Indoor PA.	Z.50, PZ.8, mains transformer	Mic.. guitar. speakers. etc.. controls	$£ 19.43$

F.M. Stereo Tuner (£26) \& A.F.U. (£6.98) may be added as required

the world's most advanced high fidelity modules

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems, the Stereo 60 is equally suitable for use with any high quality power amplifier Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.
SPECIFICATIONS-Input sonsitivities: Radio - up to 3 mV Mag. p.u. 3 mV correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} .20$ to 25.000 Hz . Ceramic p. U. - up to 3 mV Aux-up to 3 mV . Ourput: 250 mV Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz . BASS +12 to -12 dB at 100 Hz . Front panel: brushed aluminium with blackknobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

Bult. testedand guaranteed.
£9.98

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastiy improved signal to noise ratio Now. Sinclair have applied the principle to an F.M tuner with fanlastically good results. Other advanced features influde varicap diode tuning. printed circuit coils, an I.C. In the speciaHy designed stero decoder and switchable squetch circult for silent tuning between stations. In terms of high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in . This tuner can also be used to advantage with most other high fidelity systems
SPECIFICATIONS-Number of transistors: 16 plus 20 inI. C. Tuning range: 87.5 to 108 MHz . Sensitivity $7 \mu \mathrm{~V}$ for lock-In over full deviation. Squelch level: Typically $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ (I 1dB). Total harmonic distortion: 0.15% for 30% modulation Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. maximum Operating voltege : $25-30 \mathrm{VDC}$. Indicetors: Stereo on ; tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Buft and tested. Post free

Super IC. 12

Integrated circuit
high fidelity amplifier

Having introduced Integrated Circuits to hi-fi constructors with the IC 10 , the first time an IC had ever been made available for such purposes. we have followed it with an even more efficient version, the Super IC. 12 , a most exciting advance over our origina unit. This needs very few external resistors and capacitors to make an astonishingly good high fidelity amplifier for use with pick-up.F.M. radio or small P.A. set up. etc. The free 40 page manual supplied. details many other applications which this remarkable iC. make possible It is the equivalent of a 22 tran
sistor circuit contained within a 16 lead OIL package. and the finned heat sink is sufficient for all requirements. The Super IC 12 is compatible with Project 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak) 6-8』. Frequency Response: 5 Hz to $100 \mathrm{KHz} \pm 10 \mathrm{~B}$. Total Harmonic Distortion Less than 1% (Typical 0.1%) at all output powers and frequencies in the audio band (28 V) Load Impedance: 3 to 15 ohms Input Im Load Impedance: 3 to 15 onms input Impedance: 250 Kohms nominal Power Gain:
90 dB (1,000.000,000 1imes) after feedback 90 dB ($1,000,000,000$ 1imes) after feedback
Supply Voltage: 6 to 28 V . Quiescent curSupply Voltage: 6 to 28 V . Quiescent cur-
rent: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ in cluding pins and heat sink.
Manual avalfable separately 75 p post free,
With FREE printed circuit board and 40 page manual
£2.98

Power Supply Units
The new
PZ. 8 Mk. 3

The most reliable power supply unit ever made available 10 constructors. Brilliant circuitry makes falure from over load and even direct shorting of the output impossible. This is due to an ingenious re-entrant current limiting principle which, as far as we know has never before been available in any comparable unit outside the most expensive laboratory equipment Ripple and residual noise have been reduced to the point of almost total elimination. This is, of course, the perfect unit for Project 60 assemblies, particularly where the new Z. 50 MK 2 amplifiers are used Nominal working voltage-45
PZ.8 Mk 3-£7.98
(Mains transformer. it requrred) E5 98
PZ. 5 30v. unstabilised
(not suitable for Project 60 tuner) £4.98
PZ. 6 35v stabilised
(not surtable for IC. 12) £7.98

Project 605

the easy way to buy and build
Project 60
without Sinclair
Project 605
Anclifier
soldering
Project 605 in one pack contains one P2.5. wo 2.30's, one Stereo 60 and one Masterlink. which has input sockets and output components grouped on a single module and all necessary leads cut to length and fitted with clips to plug straight on to the modules thus eliminating all soldering.
Complete with comprehensive
£29.95 manual, post free
All you need for a superb 30 watt
high fidelity stereo amplifier

Order form

Please send
lenclose cash/cheque/money order

Name
Address

SINCLAIR RADIONICS LTD., LONDON ROAD ST. IVES, HUNTINGDONSHIRE PEI7 4HJ

paris tor practical Eilcironics projects

After many requests, Electro Spares are now supplying lists of components for all the projects featured in "Practical Electronics '", commencing with May 1973 issue. Just forward an S.A.E. (preferably $9^{\prime \prime} \times 4^{\prime \prime}$ minimum), and state which project is of interest to you-we will forward an individually priced list of the components required.
No need to buy a full kit-you need only purchase the parts you require at any one time.
All Electro Spares supplied components are new, branded products of reputable manufacturers, and carry full makers' guarantee.
We regret we cannot supply lists for projects published before May 1973 issue.
"ONE SOURCE" BUYING MAKES SENSE -
IT CAN SAVE YOU TIME, MONEY AND POSTAGE

"p.e." f.m. varicap stereo tuner

Electro Spares offer a kit of high quality parts to the published specification for this remarkable tuner, featured in "Practical Electronles'", May 1973.
Features include pushbutton "Spot On" tuning, with up to 5 pre-set stations (no difficult tuning dial and drive cord). Easy, "no problem" construction, requiring only a few simple setting up adjustments with a D.C. Voltmeter. Uses NEW pre-set modules for R.F. and I.F. circuits-no circuit alignment. Hlgh efficlency integrated circuit Phase Lock Loop Decoder for perfect stereo reception, with stereo lamp indicator.
Flbre Glass P.C. Board, neat slim line cabinet, with brushed aluminium front panel, push buttons, etc., etc.
IDEAL FOR USE WITH THE "TEXAN", "P.E, GEMINI" AND ANY GOOD QUALITY STEREO AMPLIFIER.
Please send S.A.E. for full details.

"p.e. gemini" stereo amplifier

QUALITY HI-FI FOR THE HOME CONSTRUCTOR 30 Watts (R.M.S.) per Channel into 8 ohms! Total Harmonic Distortion 0.02\%!
Frequency Response (-3 dB) $20 \mathrm{~Hz}-100 \mathrm{kHz}$!
We are still continuing to supply components for this fabulous amplifier, which is now recognised as practically the ultimate In HIgh Fidelity. We know of no better unit for the home constructor, and can supply a booklet, containing full specification, complete constructional information, wirlng diagrams, fault finding guide, etc., etc., price 55 p plus 4 p postage.
Our new, low comprehensive price list is supplied with each booklet, or supplied separately on receipt of large S.A.E.
FOR PEOPLE WHO REQUIRE THE BEST -
IT HAS TO BE THE \&6 1.8. I PIIIII's
NOTE OUR NEW ADDRESS - WITH NEW MAIL ORDER DEPARTMENT FOR QUICK EFFICIENT SERVICE.

PLEASE PAY US A CALL - VISITORS WELCOME-EASY PARKING.

Electio-Spares
 288 Ecclesall Roud Sheffield ST1 8PE Tel.: Sheffield 668888 " THE COMPONENT CENTRE OF THE NORTH"

COMPARE OUR PRICES

gpaher Bargaina
E.M.I. 13 in $\times \sin 3,8 \& 15$ ohms
plain
with tweeter
Type $350-20$ watt with tweeter 8 ohnms. P.P. 37 p

$\sin \times 5 \sin 3,8$ \& 15 ohms

6 土 $^{\prime \prime}(93850) 8$ ohm
$8^{2}(14 A / 1000) 8$ ohm 10 wate EMI 3士" Tweeter C/Magnet 8 FANE $7 \mathrm{in} \times 4 \mathrm{in} 3 \& 8 \mathrm{ohms}$ Bln 8 ohni, dual cone
OELESTION 8 in 15 ohn
BAKER GROUT 25 12in 25W
8 or 15 ohn
Fostage 25p per aper P
2fin 8 or 64 ohm P.P. 10p
Eit-lorm cabinets, teak $(17 \mathrm{in} \times 10 \ln \times 6 \mathrm{in})$ 2.00 2.00
2.25
3.50 3.50 7.25 1.25
1.10
2.20 2.20
4.00 - 1.00 80
2.10 2.40
1.40 8.00 80
45 with a 13 in $\times 8$ in or 8 In cut out $18 i n \times 11$ in $\times 9$ in with 13 in $\times \sin$ cut out for EMI 350 88.95 (12in $\times 12 \mathrm{in} \times \operatorname{bin})$ witha $\sin \times$ bin or 8 in cut out.
Add 35 p per Cabinet for post \& packing
Microphone Bargaina
CM 20 Crystal Hand
ACOA GP91/28C or GP91/3SC stereo compatible
Cos GP94 stereo ceramic
ACOS GP95 stereo crystal
9THAC Sonotone stereo ceramic
(diamond)
(diamond) slimline
ACOS GP67/2C mono erystal
ACO8 GP101 compatible crystal 19-TI sonotone stereo crybtal Postage 5p per cartridge

Battery Eliminatore
40v input 6 or 9 v d.c. output
at 150 mA
IVv d.e. input (for cars, fits in
lighter socket) $6,7 \equiv$ or 9 v
acc. output at 300 mA
P. \& P. 10p

90
1.60

Tapes-"MYIAR" base fineat quality Britioh made.
3in 600 ft 36 p 58in 1800 ft 85p
5 in 900 ft 45 p 7in 1200 ft 85 p

 Postage 9p each
Plastic Library Casea for
5 in Reels 16p 7 in Reels 21p
tict cassette-type
CM70 PLANET atick metal. switch crystal

THIS MONTH'S
DM160 Dynamic uni-dir, ball metal
130 $50 \mathrm{~K} / 600$ ohnt uni-dir ball nietal
metal dual imp hal
metal uni-dir
Conderiser Mike unt-dir 600 ohan $\quad \begin{gathered}5.75 \\ 7.95\end{gathered}$ Guitar mike
Lapel type, cr
45
40
Postage 17p each

SPECIAL OFFER
 EMI Loudspeaker Enclosur

EMI Loudspeaker Enclosure Kit (LEK 400/8). Comprising 2 EMI 450
Speakera (8 chm 10 wate. T/Tweeter plus cross-over) and $\because E M I$ Cabinet Kits $18^{*} \times 10^{\prime \prime} \times\left[1^{*}\right.$, Plus acoustic wadding. glue, screws. instructions, ete. Recom. Retail price e2z9-20. Bargain at $\mathbf{2 1 8 . 0 0 \text { ine. VAT, plus } 5 0 \mathrm { p }}$ P. \& P.

Certriages-with standard fitting

Mail Order Dept. E8/78
P.O. Box 470 ,

Manchester M004BU SEND 25p FOR COMPLETE CATALOGUE ALL OUR MERCHANDISE IS FULLY GUARANTEED

A.M.C. ELEETRONICS LTD.

SCORPIO

 ELECTRONIC IGNITION UNITCOMPLETE KIT £ 10.95 including V.A.T. and postage.
DATA 10 including V.A.T. and postape.
TRANSFORMER $£ 2.53$ including V.A.T. and postage.
P.C.B. GLASS FIBRE $70 p$ including V.A.T. and postage.

LATEST NE WS - P.E. TRIFFID. P.C.B. 70p including post and V.A.T
Please add $15 p$ to orders under $£ 1 \cdot 50$. Send S.A.E. for other itemised prices.

PARKERS SHEET
METAL FOLDING MACHINES HEAVY VICE MODELS

With Bevelled Former Bars
 No. 1. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$. Wide
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. Wide

617 carr. 50p
612 carr. 38 p No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide
 Also new bench models. Capacities $36 \mathrm{in} . \times 18$ gauge f35. $24 \mathrm{in} . \times 16$ gauge
Carriage 75 p . Add 10% VAT to total price of machine and carriage. End folding attachments for radio chassis. Tray and Box making for 36in. model, $27 \frac{1}{2}$ p per ft . Other modets $17 \frac{1}{2} \mathrm{p}$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One year's guarantee. Money refunded if not satisfied. Send for details.
A. B. PARKER, Folding Machine Works, Upper George St. Heckmondwike, Yorks. Heckmondwike 3997
within 200 yards - call and see for yourself.

INTEGRATED CIRCUITS

Why buy alternatives when you can buy the genuine article from us at CHILD

$\underset{\sim}{\text { and }}$

Type 1/1112/2420/99 Typ

\$N7400 $\quad 0.200 .180^{p}$ $\begin{array}{lllll}\text { BN7401 } & 0.20 & 0 \cdot 18 & 0.16 \\ \text { GN7 }\end{array}$ $\begin{array}{llll}\text { SN7402 } & 0.20 & 0.18 & 0.16 \\ \text { GN7402 } & 0.20 & 0.18 & 0.18\end{array}$ $\begin{array}{llll}\text { EN } 7403 & 0.20 & 0.18 & 0.16 \\ \text { QN740 }\end{array}$ $\begin{array}{llll}\text { SN7404 } & 0.20 & 0.18 & 0.16\end{array}$ $\begin{array}{llll}\text { SN7405 } & 0.20 & 0.18 & 0.16\end{array}$ $\begin{array}{llll}\text { SN7406 } & 0.30 & 0.27 & 0.25 \\ \text { BN7407 } & 0.30 & 0.27 & 0.25\end{array}$ 8N7408 $\quad 0.200 .19 \quad 0.18$ $\begin{array}{lllll}\text { gN7409 } & 0.45 & 0.42 & 0.35\end{array}$ $\begin{array}{llll}8 N & 0.20 & 0.18 & 0.18\end{array}$ $\begin{array}{llll}\text { SN7441 } & 0.28 & 0.22 & 0.20 \\ \text { SN7412 } & 0.42 & 0.40 & 0.25\end{array}$ $\begin{array}{lllll}8 N 7413 & 0.30 & 0.40 & 0.85 \\ 8 N\end{array}$ $\begin{array}{llll}\text { SN7416 } & 0.30 & 0.27 & 0.25\end{array}$ | $8 N 7417$ | 0.30 | 0.27 | 0.25 |
| :--- | :--- | :--- | :--- |
| | 0.25 | | | $\begin{array}{llll}\text { SN7420 } & 0.20 & 0.18 & 0.25 \\ \text { SN7422 } & 0.28 & 0.28 & 0.20\end{array}$ $\begin{array}{llll}8 N 7422 & 0.48 & 0.44 & 0.40 \\ \text { SN7423 } & 0.48 & 0.44 & 0.40\end{array}$ $\begin{array}{llll}8 N 723 & 0.48 & 0.44 & 0.40 \\ 8 N 7425 & 0.48 & 0.40 & 0.35\end{array}$ $\begin{array}{llll}8 N 7427 & 0.42 & 0.89 & 0.35\end{array}$ $\begin{array}{llll}\text { GN 7428 } & 0.50 & 0.45 & 0.42\end{array}$ $8 N 7430 \quad 0.20 \quad 0.18 \quad 0.18$ $\begin{array}{llll}\text { SN7432 } & 0.42 & 0.39 & 0.35\end{array}$ $\begin{array}{llll}\text { SN7433 } & 0.70 & 0.61 & 0.44 \\ \text { SN7437 } & 0.65 & 0.60 & 0.50\end{array}$ $8 N 7437 \quad 0.65 \quad 0.60 \quad 0.50$ $\begin{array}{llll}8 N 7438 & 0.65 & 0.60 & 0.50 \\ \text { SN7440 } & \text { 0. } 20 & 0.18 & 0.18\end{array}$ $\begin{array}{llll}\text { SN7441AN } & 0.75 & 0.18 & 0.16 \\ 0.72 & 0.70\end{array}$ $\begin{array}{lllll}8 N 7442 & 0.75 & 0.72 & 0.70\end{array}$ $\begin{array}{lllll} \\ \text { SN } 7443 & 1.00 & 0.95 & 0.90\end{array}$ 8N7445 $2.001 .75 \quad 1.60$ $\begin{array}{llll}8 N 7446 & 2.00 & 1.75 & 1.60\end{array}$ $\begin{array}{llll}\text { SN7447 } & 1.75 & 1.601 & 1.45\end{array}$ $\begin{array}{lllllllllll}\text { N74141 } & 1.00 & 0.85 & 0.80 & \text { SN74199 } & 4.60 & 3.70 & 3\end{array}$ PRICES OF 7400 SERIES ARE CALCULATED ON THE TOTAL NUMBER LARGER QUANTITYPRICES PHONE (O1) 4024891

Abstract

\section*{A SELECTION OF SEMI-CONDUCTORS FROM STOCK} | AAY30 | 10D | BC147 | 12p | BU105 2.25 |
| :---: | :---: | :---: | :---: | :---: |
| AAY42 | 150 | BCl 69 C | 12p | BY100 15p |
| AAZ13 | 10p | B6182 | 10p | BY12\% 15p |
| AC107 | 35p | 13 C 214 | 15p | BY127 15p |
| AC126 | 25p | BCY32 | $75 p$ | BYZ13 35p |
| AC127 | 25p | B''134 | 35p | Cl06[) 65p |
| ACl28 | 25p | BCY39 | 100 | GET111 55p |
| AC176 | 25p | BCY42 | 30p | (iET115 55p |
| AC187 | 25p | BCY43 | 25p | GET880 45p |
| AC188 | 25p | BCY\% | 2.50 | L. 1309 K |
| ACY17 | 80p | BCY70 | 15p | (T03) 1.87 |
| ACY20 | 20 p | BCY71 | 20D | MAT12I 25p |
| ACY21 | 20p | BCY7: | 15p | MJE340 50p |
| ACY39 | 55 D | BCY87 | 2.89 | MJJE370 70p |
| AD140 | 50p | BCZll | 50p | MJE520 75p |
| AD149 | 60p | BDI24 | 80p | MJE2955 |
| AD161 | 35p | BDI31 | 75p | $1 \cdot 10$ |
| AD162 | 35p | BDl32 | 80p | M.JE3055 |
| AF117 | 20p | BF115 | 25p | 75p |
| AF118 | 50p | BF167 | 25p | MPF105 40p |
| A F124 | 25p | BF173 | 25p | NKT21420p |
| AF139 | 30p | BF179 | 30p | NKT21640p |
| AFI86 | 40p | BF180 | 30p | NKT*1740p |
| AF:239 | 4Up | BF194 | 15p | NKT403 70p |
| ASY27 | 30p | B F'195 | 15p | NKT404 50p |
| ASY08 | 25 p | BFS61 | 25p | OA5 50p |
| BA102 | 30p | BFS9\% | 25p | OA10 35p |
| BA1i5 | 7p | BFX13 | 25p | OA81 10p |
| PA145 | 15p | BFX34 | 75 D | OA91 7p |
| BAX13 | 5p | RFX37 | 30 p | OA200 7p |
| BAX16 | 7 p | BFX8R | 20p | OA202 10p |
| BC107 | 10p | BFY50 | 20 p | OC16 75p |
| HCl^{08} | 10p | BFY51 | 20p | OC20 95p |
| BC109 | 10p | BFY52 | 20p | $\mathrm{OCP}^{2} 885 \mathrm{p}$ |
| $\mathrm{BC109C}$ | 12p | BFY64 | 50p | OC25 40p |
| BC113 | 15p | BFY90 | 59p | Oc28 65 |
| BC117 | 20p | RLY3f BSX20 | 800 $15 p$ | $\begin{array}{ll}\text { OC35 } & 50 \mathrm{p} \\ \text { OC36 } & 65 \mathrm{p}\end{array}$ |
| BC143 | 35p | BSY27 | 15p | OC4: 40p |

QUANTITY DISCOUNTS $\begin{array}{ll}10 \% & 12+: 15 \% \\ 20 \% & 100+: \\ 25 \% & 250+\end{array} \quad$ ANY ONE $20 \% 100+: 25 \% 250+\quad$ TYPE From above sections except Insgrated ('ircuits and Special Offers where discounts are included. Mininuth order value \&1 please

VAT Prices DO NOT include Value Added Tax. From Ist April 10\% must be added and shown sep-
aracely to your total order (inclusive post/packing). Help us help you
receive your order without delay.

NEW FROM DENMARK Already Established As One Of The Best Selling Kits in Europe

 JOSTY KIT todayis counted among the leading manufacturers of electronic kits in Europe. Constantly the experienced engineers at the JOSTY laboratories work on improvement of existing kits and on new developments. Only the best materials and components have been used. The circuit-boards are manufactured according to the newest developments in this field and are supplied with all holes drilled and printed showing the exact placing of the components. Our long standing experience enables us to guarantee every JOSTY KIT for ONE YEAR for all parts as well as the correct function of the assembled kit. JOSTY KIT'S are a quality produce of DENMARK.

Photo-cell
NO more searching for Components, it's all in the bag the Josty way.

Elegtronic Construction Kits

We are sorry, you may have a little difficulty obtaining these kits at present. We at Josty are doing everything we can to produce more kits but in the meantime they are only available from

APPOINTED JOSTY KIT STOCKISTS

T. Pattison, 5 Maritime Terrace, Blandford Streer, Sundertand, Co. Durham.
Red Radio Shop, 31 Crowtree Rd. Sunderland, Co. Durham
J. R. Gough, 27 East Smithy St., South Shields, Co. Durham.
Payne \& Hornsby Ltd 3 Andrews House, Gallowgate, Newcastle-on-Tyne.
Richley \& Freeman Ltd. 100 Percy St. Newcastle-on-Tyne
Aitken Bros. Ltd., 35 High Bridge. Newcastle-on-Tyne.
Hamilton Music Store, Corporation Rd. Middlesbrough, Teesside.

B. Williams,
16 Borough Rd
Middesbrough.
Teesside.

McKenna \& Brown Lid.
135 High St.
Redcar,
Jaytron Led.
178-9 Phibsborough Rd.
Dublin 7.
Ireland.
Bond \& Mason.
94 Church Rd.
Stockton,
Teesside.
T. Jaques.

Waterdale Rd.
Doncaster,
Yorks.
Modern Electronics,
5 Sunny Bar,
Doncaster.
York.
Misons,
Citadel Row,
Carlisle,
Cumberland
Teleview Rentals
414 Catcote Rd.
Hartlepool.
Co. Durham.

JOSTY K!T RETAIL PRICE LIST (APRIL, 1973)

Model No.	Description	RRP Exeluding V.A.T.	V.A.T.	TotalRRP incl'd. V.A.T.
AF20	Mono Transistor Amplifier	480	0.48	5.28
AF30	Mono Transistor Pre. Amplifier	2.61	0.26	2.87
AF310	Mono Amplifier (for Stereo use two)	5.91	0.59	6.50
ATS	Automatic Light Control	2.58	0.26	2.84
AT30	Photo Cell 5 witching Unit	5.70	0.57	6.27
AT50	400W Triac Light Dimmer Speed Control	4.80	0.48	5.28
ATS5	1,300W Triac Light Dimmer Speed	$5 \cdot 70$	0.57	6.27
AT56	2,200W Triac Lighs Oimmer Speed	6.90	0.69	7.59
AT60	Contral Psychedelic Lighs Control, Single Channel	$7 \cdot 80$	0.78	8.58
AT65	Psychedelic Light Concrol, 3 Channel	14.55	1.45	16.00
HF6!	Medium Wave Transistor Radio	3.33	0.33	3. 66
HF65	F.M. Transistor Transmitser	2.70	0.27	2.97
HF75	F.M. Transistor Receiver	2.88	0.28	3.16
HF310	F.M. Tuner Unit	15.81	1.58	17.39
HF325	De-Luxe F.M. Tuner Unit	24.12	2.41	26.53
HF330	Stereo Decoder for use with HF3IO or HF325	9.96	0.99	10.95
HF395	Aerial Amplifier for AM/FM Bands I. II and III	1.77	0.17	1.94
GP310	Stereo Pre-Amp to use with 2, AF310	21.27	2.12	23.39
GU330	Tremelo Unit for guitars, etc.	7.50	0.75	8.25
NTIO	Power Supply $100 \mathrm{~m} / \mathrm{a} 9 \mathrm{~V}$ Stabilised. 12 V Unstabilised	6.15	0.61	6.76
NT300	Professional Seabilised Power Supply $2 \times 30 \mathrm{~V}, 2 \mathrm{2A}$	12.51	1.25	13.76
NT305	Transistor Converter $12 / 15 \mathrm{~V}$, a.c. $/$	450	0.45	4.95
NT310	d.c. to $6 \mathrm{~V}, 7.5 \mathrm{~V}$, or 9V d.e. Power Supply 240 V a.c. $0.2 \times 18 \mathrm{~V}$	4.80	0.48	$5 \cdot 28$
	$\text { d.c. at } 2 A$			
NT315	Power Supply 240 V a.c. to 4.5-15V d.c. $500 \mathrm{~m} / \mathrm{a}$	9.57	0.95	10.52

Sole UK Distributors

P.O. BOX 27 - 39 WHITBY STREET - HARTLEPOOL TS24 7BR TELEPHONE 0429-5750 or 68002

TWO-WAY LINK

COMMUNICATION is a fundamental function of electronics. It is particularly appropriate therefore to discuss certain aspects of communication relating to this magazine and its readers. First, one unquestionable fact: the link forged between a magazine and its readers is of inestimable value and significance. To this it can be confidently added that at magazine devoted to a creative hobby is especially favoured in that feedback from its readers is often likely to be in the form of examples of readers' own personal efforts and experiences. Such direct positive evidence of a live and actively committed readership is perhaps the best and most encouraging reward the editorial staff of such a publication could wish for.

Practical Electronics is proud of the two-way link established between individual readers and the magazine. We believe this is mutually stimulating. The existence of this link has long been evident, and has been demonstrated most effectively in our pages through the medium of Ingenuiry Unlimited. Reference to the popularity and importance of this feature is not out of place. It has of ten been commented upon that the circuit ideas published constitute a most valuable source of reference to designers and constructors alike. We agree, and feel sure that many a reader must have saved time and effort through studying the ideas in Ingenuity Unlimited.

The varied nature of these miscellaneous circuits is, in itself, quite instructive. It indicates a wide catholic range of interests and shows that the inventive spirit is as much alive as ever; a refreshing and reassuring antidote to the drab uniformity of thought and action which characterises many aspects of modern life.

The circuits published in I.U. are generally of modest proportions, but that is no true measure of their actual or potential worth. They represent the new outlook and approach to electronics which has emerged in the course of the last few years. The dramatic scaling down in physical size of components over the last decade has given electronics greater-almost total-freedom in the environmental sense, and in many instances it is released entirely from the shackles of the mains umbilical cord. One result of all this has been the creation of an enormous variety of small circuits, many owing their origination to the enterprising efforts of private individuals to solve some problem or meet some particular need through the agency of electronics, the very thought of which would have been preposterous a few years ago. Many of these are worth recording for the benefit of others.

We are glad to be able to present some of the fruits of this kind of private enterprise in Ingenuity Unlimited. And never let it be forgotten that such relatively simple circuits as these may sometimes prove to be the seeds from which bigger and grander concepts grow.-I.E.B.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor G. GODBOLD
S. R. LEWIS B.Sc.

Art Dept.
J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices: Fleetway House, Farringdon St., London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

The game of chess is more Machiavellian than military in its tactics and strategy and the circuit described here provides a version which is much more like the action of a military battle than court intrigue. Thus: Battle Chess.

No claim to originality is made by the author since Edgar Rice Burroughs--of Tarzan fame-once wrote a book called the "Chessmen of Mars" in which the idea was developed fully. The trouble with the Martian game was the requirement for real people, expected to fight to the death. The finding of 32 people willing to play chess in this way would undoubtedly prove difficult but the Battle Chess circuit is designed to simulate the duels which occur.

THE GAME

In basic concept Battle Chess uses the moves of its namesake but introduces a variety of programmable factors which come into play each time there is a confrontation. Thus one piece does not merely "take" its opponent - they have to fight the situation out in an electronic simulation.

PROGRAMMING

A number of factors have been programmed into the simulation circuit which parallel those found in real life military situations:

1. The strength of the various chessmen.
2. The addition of arms which increase the fighting strength of a chessman.
3. The reduction in fighting power due to supply problems (i.e ditsance between duelling chessmen and their respective King's squares).
4 . The proximity of supporting chessmen.
4. The effects of morale.

Combinations of resistors are used to determine factors 1 to 4 . Resistance values interact with each other to affect the frequency of multivibrators (see Fig. 1).

Morale, on the other hand, is time dependent, being at its highest immediately after a successfully completed duel. The charge remaining in a capacitor simulates the effects of morale; the charge leaks away to nothing and the probability of winning the next duel drops from exceptionally high for the previously winning player to the normal value over a period of about ten minutes.

Fig. 1. Block schematic of the Battle circuit showing how the basic units are interconnected

The factors which combine in the game of Battle Chess make it virtually impossible to predict the outcome of a simulated duel. Thus the tactics and strategy which have to be developed by the player are more dynamic, more subject to caprice, than those used in conventional chess and are designed to approximate the real life strategy of a series of military engagements.

THE SIMULATION CIRCUIT

The circuit is shown in block form in Fig. 1 and in detail in Fig. 2.
Two conventional multivibrators A and B have their frequencies determined by external resistances connected between points 1 and 2 and the negative rail. The pulses of each multivibrator simulate the thrusts and parries of a duel and the resistances which combine to set the frequency of oscillation
freeze with the winning side indicated by the light which remains lit.

The opposing capacitor's charge is neutralised through diodes D1 or D2 so that the other Darlington remains unswitched. The charge in the winning capacitor remains at the switching voltage as long as the lamp remains lit and leaks away once the circuit is switched off. This slowly leaking charge represents the player-army's morale and if a fight is started before the charge has gone, it takes less time to build up to its switching value.

CONSTRUCTION

The simulation circuit layout is not critical and the Veroboard method of construction is ideal.
The multivibrators may be constructed first and checked by temporarily conrecting $3.3 \mathrm{k} \Omega 2$ resistors

Fig. 2. Detailed circuit diagram of the equipment. When setting the timing of the various sections it may be necessary to select the electrolytic capacitors C1 to C8 if the variable resistors VR1 to VR4 are unable to provide sufficient adjustment to "pull" the periods into agreement
represent the value of the chessman, its distance from its King's square-representing G.H.Q.-and the number of friendly chessmen and their relative positions.

Pulses from each multivibrator are fed to a central flip-flop via capacitors C3 and C6. These pulses switch the flip-flop so that lamps LP1 and LP2 are switched on alternately with a continuously varying mark / space ratio. The lamps, as well as providing a visual analogue of the duel, eventually indicate which side has won.
Depending on which flip-flop transistor is on, a current flows in R7 or R10 providing a potential difference which charges capacitors C4 and C5 through resistors R6 and R11. Additional resistors may be inserted at points XX^{\prime} and YY^{\prime} to reduce the overall resistance and allow C4 or C5 to charge faster.

These additional resistances simulate weapons used by the battling chessmen. When either C4 or C5 reaches a voltage of about 0.7 volts, the associated score counter, a Darlington pair, switches on, causing two things to happen. The Darlington pair output biases the flip-flop via R5 or R12, causing it to
between points 1 and 2 and the negative rail. Connect the 9 volt battery and check oscillation with a voltmeter across R4 and R13.
The flip-flop should be built on next, together with its triggèr pulse feeds, C3 and C6. Connecting the battery should now cause the lamps to flash alternately in response to the multivibrators and clearly show the variation in mark/space ratio.

When constructing the score counters remember that diodes D1 and D2 must be good ones. A reverse leak on one or both of these, even if only four to five micro-amps, will upset the impartiality of the circuit. Pliers used as a heat shunt when connecting them will reduce the risk of damaging their characteristics.

To test the score counters, connect the battery once more and briefly touch a $10 \mathrm{k} \Omega$ resistor, connected to the positive rail, to the positive lead of C3. The lights should cease to flash, LP1 should stay lit and LP2 extinguish.
Leave the circuit in this state to check that it is a stable condition; if the situation changes it will almost certainly be one of the diodes at fault. Repeat the test with C5.

Fig. 3. Veroboard layout of the components on 0.1 inch pitch board. In the present case this was cut from a sheet edge to give a blank area which can be drilled for fixing as required

Finally, test that the flip-flop is charging the score capacitors properly. Temporarily connect a $1 \mathrm{M} \Omega$ resistor across the points XX^{\prime}. Discharge the score capacitors by shorting their positive leads to the negative rail before switching on. The lamps should flash for 10 to 15 seconds and then LP1 will remain on and LP2 off. Repeat with the 1MS2 resistor across the points $Y Y^{\prime}$ and the opposite situation should occur. Failure at this stage could be due to poor solder joints, leaky diodes or slight tracking between the Veroboard copper strips.

THE PLAYING BOARD

The playing board consists of a matrix of 644 -way sockets. Each side utilises two of the pin sockets and the connections to each side are similar and may be considered separately.

One of the pin sockets acts as a power feed and is connected to the negative line through a series resistor and a switch contact as in Fig. 4. Current is transferred to the other pin socket through the resistance of the chessman as shown in Fig. 5 and to the multivibrator through a second series resistor and switch contact. The two switches (1-pole. 8-way) act as Rank and File co-ordinates and locate the

COMPONENTS

BATTLE CIRCUIT

Resistors

Miscellaneous

LP1, LP2 6V, 60 mA
S1 Single pole ON/OFF (pushbutton type)
B1 PP7, PP9 or similar
Veroboard
PLAYING BOARD
Resistors

Resistors	
R101, R115	$4.4 \mathrm{k} \Omega$
R102, R116	$3 \cdot 3 \mathrm{k} \Omega$
R103, R117	$2 \cdot 7 \mathrm{k} \Omega$
R104, R108, R118, R128	$2 \cdot 2 \mathrm{k} \Omega$
$\left.\begin{array}{l}\text { R105, R109, R114 } \\ \text { R119, R122, R127 } \\ \text { R106, R110, R113, R120, }\end{array}\right\}$	$1.7 \mathrm{k} \Omega$
R123, R126 R107, R111, R112, R121,	$1.2 \mathrm{k} \Omega$
R124, R125	$1.0 \mathrm{k} \Omega$
RX (28 off)	$10 \mathrm{k} \Omega$

Miscellaneous

Four Phono sockets
64 four-way sockets
4 single-pole 8 -way wafer switches
Wire, hardboard, 2 in $\times \frac{1}{2}$ in section wood, glue, screws, panel pins.

Fig. 4. Wiring of the playing board and Rank \& File selection switches. Only the sockets at the periphery have been shown but, of course, there is a socket in each square, wired in a similar manner to all the others
chessmen which are to take part in the duel. The combined resistance of the two series resistors reduces the base biasing current in proportion to the chessman's distance from its King s square.

In addition to the series resistance and the chessman, each Rank and File is connected to its neighbouring Rank or File by a $10 \mathrm{k} \Omega$ resistor so that a parallel path exists through every other friendly chessman. Thus the number and closeness of the other chessmen modify the final value of the biasing resistance; in effect, they lend their support.

BALANCING

Variations in the chessmen, the weapons, and the playing board resistors are quite in order and may be interpreted as the usual random variations to be found in any army. However, the battle simulator must be balanced so that should an identical situation occur, neither side has a better chance of winning. The four variable resistors VR1 to VR4 are used to balance the circuit.

Starting with the multivibrators temporarily solder a $4.7 \mathrm{k} \Omega$ resistor to each biasing network at 1 and 2 in turn, using 1 per cent or 5 per cent resistor if possible. Using a voltmeter across R4 or R13, count the number of oscillations in a ten second interval. Using the variable resistors, VRI or VR4 alter the frequencies until they are, as nearly as possible, equal.

To balance the score counters, temporarily solder two $2 \cdot 2 \mathrm{M} \Omega$ resistors across points XX^{\prime} and YY^{\prime}. Switch on the simulator and note which lamp goes out permanently first. Alter VR2 and VR3 until only a small change in each preset changes the lamp which goes out. In between each try, it will be necessary to switch off and discharge C4 and C5.

THE PLAYING BOARD

The playing board circuit is shown in Fig. 4 together with details of switch connections. The 64 sockets are arranged in an 8×8 array on a hardboard mounting which forms the top of the circuit cabinet and the playing board. The four single-pole, eight-way switches are mounted two at each end, the press on, press off mains switch, the lamps and phono sockets can be mounted in any convenient position. The line and interconnecting resistors are suspended in the wiring. The wiring can be tied into looms and attached to the inside of the wooden sides with wiring clips. The sockets can be attached with Araldite.

The sides and ends of the cabinet are fastened to the hardboard top with glue and panel pins. The bottom, another piece of hardboard, is secured to the sides with a few screws so that it can be removed for servicing. Dimensions have not been given since size and proportions will vary with the constructor.

Fig. 5. A suggested form of chessman and weapon

CHESSMEN	
Resistors	
King	0Ω (link)
Queen	330Ω
Knight	$1.2 \mathrm{k} \Omega$
Bishop	$2.7 \mathrm{k} \Omega$
Rook (Castle)	$5.6 \mathrm{k} \Omega$
Pawn	8.2k Ω
Miscellaneous Holders	32 four-way plug bases
WEAPONS	
Resistors	
Sword	2.2M Ω
Dagger	5 M S
Mace	$22 \mathrm{M} \Omega$
Miscellaneous Plugs	Phono plugs in quantity to suit

CHESSMEN AND WEAPONS

In the present example the chessmen are constructed on the four-way plug bases by soldering the correct resistors between the requisite pins as in Fig. 5 and Aralditing a length of plastic tube onto the base. The tube length may be varied to indicate the power of the piece; say three inches for a King reducing to one inch for a pawn. The name of the chessmen should be marked on the outside of the tube. The weapons are constructed similarly, using the phono plugs. Remember the Queening rule for pawns which successfully reach the opposite side of the board and make two Queens for each side.

The more ambitious might wish to mount genuine chessmen on the bases or perhaps even make pieces of their own devising. There are plenty of techniques available today to do this.

FINAL TESTING

When all the wiring is complete and the circuit board secured inside with small brackets, the complete unit may be tested. Switch both sets of coordinate switches to Rank 1, File 8 and place a pawn
from each side at this position. Switch on the simulator and observe the rate at which the lights flash. Switch off and move the pawns to square: Rank 8, File 1 and switch on; the lights should now flash more slowly. Try the same tests with Kings; the same thing should happen except that the rate of flashing will be higher in both cases. Sometime during these tests a win will be indicated; when this happens, switch off and wait for the score capacitors to discharge, or alternatively discharge by shorting while switched off.
Try adding other pieces to the board in different positions and note the different flashing frequencies of each combination. In some cases the difference will be hard to distinguish since the alteration will be small.

RULES OF PLAY

The chessmen move as for conventional chess and for the same distances.

When one player wishes to take an opposing piece and gain the occupied square, the attacking player must verbally challenge the other. Attacking and defending chessmen should be indicated and the defender cannot retreat from the challenge.

Rank and File co-ordinates are set on the switches to indicate the squares holding each piece. Weapons may be selected at any time and plugged into the phono sockets. The battle simulator is now switched on and the two lamps will fiash alternately for, typically, 20 or 30 seconds. The light which remains on after the flashing has ceased indicates the winner who can now occupy the disputed square. The loser is removed from the game and the winner confiscates the loser's weapons for his own arsenal.

TACTICS

The interaction of Player/Chessman/Position/ Weapons/Morale alters the - probability of any particular piece winning and if two roughly equal chessmen are opposed it is virtually impossible to predict a duel's outcome. The tactics used in Battle Chess can be effective in placing a player in a stronger position.

For example, wherever possible arrange to do battle as near as possible to your own King's square or try to arrange that your own combatant is close to a number of friendly pieces-the more powerful, the better.

Force battles to take place within 5 or 10 minutes of a previously successful battle or fight a delaying action for a similar time if a battle has just been lost. This avoids or uses the morale charge on the capacitor.

Of course there are the obvious comments like "don"t throw pieces away in needless battles, they may be useful for support if not for combat" and finally always remember, you may win a battle but lose the war.

notes

Although the rules of play suggested follow the rules of conventional chess, the equipment can be used to simulate modern battle conditions quite successfully. The playing board may be marked out with a map, and infantry, tanks, missiles can be substituted for pawns, knights, rooks, etc. In this case, the constructor is left to formulate his own rules.

By R. A. Penfold

AN audio compressor is an audio amplifier which is designed to provide a constant output level, from a wide variety of input levels. Thus it is sometimes referred to as a constant volume amplifier. It merely consists of an audio amplifier which is fitted with some form of automatic gain control.

AUDIO COMPRESSION

Reasons for using audio compression vary, as it can be used in several applications. It is often used in tape recording when something such as a debate is to be recorded, and only one microphone is to be used.

The use of compression obviates the need to re-adjust the recording level each time a different person speaks, as, once the level is set for one speaker, the correct modulation depth will be obtained for all the others. This is of course providing that all the speakers are close enough to the microphone, to provide a sufficient output to operate the compressor. This technique also removes the possibility of overmodulation at unexpectedly high volume levels.

Fig. 1. Drain current plotted against drain to source voltage for à typical \boldsymbol{n}-channel f.e.t.

Speech compression is used in some amateur transmitters in order to maintain a high average modulation level, without running the risk of overmodulating an a.m. transmitter, or exceeding the maximum power rating of the power amplifier of an S.S.B. transmitter.

Simple peak clipping circuits are sometimes used instead, but these introduce a comparatively high degreee of distortion, and are not as effective.

USING AN F,E.T.

When subject to a low voltage between the drain, and source terminals, an f.e.t. exhibits the characteristic of an ordinary resistor. This is illustrated in Fig. 1, which shows typical transfer characteristics of an n-channel f.e.t., at various gate voltages.

It will be seen that the value of the resistor formed by the f.e.t. can be varied by altering the gate bias voltage. It can be varied from a few hundred ohms to many megohms.

THE CIRCUIT

A circuit diagram of an audio compressor utilising an f.e.t. in a voltage controlled attenuator is shown in Fig. 2. The input impedance to the unit is high (typically 2.5 megohm), and is suitable for use with a crystal microphone. The output is at a low impedance, and will drive virtually any amplifier. For low level inputs (i.e. below the level at which compression begins) a voltage gain of about 275 is available with the gain control at maximum.

In order to obtain the required high input impedance, the input transistor, TR1, is operated in the emitter follower mode. This is direct coupled to TR2, which is a common emitter amplifier.

For TRI to produce a very high input impedance it must have a fairly high impedance in its emitter circuit. R4 is therefore used to raise the input impedance to TR2, in order to achieve this.

The bootstrapping technique has been employed in order to virtually eliminate the shunting effect the biasing resistors, R1, R2, and R3 would otherwise have on the input impedance. C3 is the bootstrapping capacitor.

Transistors TR1 and TR2 are used mainly as a buffer amplifier, and provide only a small voltage gain.

VOLTAGE CONTROLLED ATTENUATOR

The output from TR2 is fed via C4 to the voltage controlled attenuator. R7 and R8 form a tap on the main supply rail, and produce a suitably low supply voltage for the f.e.t. TR3. The drain to source impedance of TR3, and R9 form an attenuator.

With no negative bias at TR3 gate, the drain to source impedance is very low, and the attenuation factor of the circuit is very low. By giving a negative bias at TR3 gate, the drain to source impedance can be greatly increased, and the attenuation factor of the circuit thus also greatly increased. A voltage controlled attenuator is thus formed.
The output from the attenuator is fed via C5 to the input of a very high gain common emitter amplifier, TR4, which is followed by an emitter follower stage,
tens of ohms. This will have a negligible effect upon the attenuation factor of the circuit.

Raising the input level slightly will increase the bias voltage, and due to the logarithmic relationship between bias voltage, and drain to source resistance, this will cause a much larger increase in this resistance, say a few hundred ohms. This will result in a noticeable, although still only small increase in the attenuation factor of TR3 and R9.

INPUT LEVEL

It is at this point that raising the input level will begin to have a very noticeable effect on the voltage controlled attenuator, as only a very small change in bias is required to cause an increase of several kilohms in the drain to source resistance of TR3. Thus an increase in the input level causes the gain of the amplifier to drop considerably, and so reduce the output level. The output level will therefore tend to remain almost constant, even though the input level may vary considerably, providing the

Fig. 2. Circuit diagram of the complete Audio Compressor

TR5. From the emitter of TR5, some of the signal is fed via C8 to the volume control, VRI, and then to the output socket. The remainder of the signal is used to produce the biasing voltage for the attenuator.

RECTIFYING CIRCUIT

It is fed via C6, and R14 to a rectifying circuit, consisting of D1 and D2. This arrangement is used as it provides a fast attack speed, but with a long decay. C7 smoothes the a.f. half cycles to a d.c. negative bias, which is then fed to the gate terminal of the f.e.t.

There is not a linear relationship between the gate bias voltage, and the drain to source resistance of the f.e.t. With a low level input, only a small bias voltage will be produced, and this will only alter the value of the resistor formed by TR3 by a few
input is above the level at which compression commences.
Even with quite high input levels (up to about 0.25 V r.m.s.) there will be only a small degree of distortion in the circuit. The use of modern silicon transistors in the input stage ensures a low noise level.

TIME CONSTANT

The attack of the a.g.c. circuit is very fast, being virtually instantaneous, but the time constant capacitor, C7, produces a fairly long decay time ,(about two seconds). For most applications this is very desirable, as it prevents the gain from rising during brief pauses in the signal, and the noise which would subsequently accompany this.

However, the decay time can be altered to suit individual requirements by altering the value of C 7 , the larger its value, the longer the decay time.

Fig. 3. Layout of the components on the Veroboard panel and interconnections to the other components. Note breaks in copper strips

GUMMAVME. .

CONSTRUCTION

Constructional requirements will vary widely, as some constructors may wish to build the unit as an integral part of some piece of equipment, while others may wish to build it as a self-contained unit, as was the prototype. In either case the Veroboard layout shown in Fig. 3 can be used. 0.lin matrix board is used, and the copper strips run lengthwise. These are cut at a number of points as detailed in the diagram.

A 7 in $\times 4$ in $\times 1.5$ in aluminium chassis fitted with a base plate is used as a case for the prototype. The Veroboard panel is mounted on stand-off insulators in order to hold it a little way clear of the metal case. A PP6 battery is used to power the unit, this particular type being a good fit in the case, and has virtually its shelf life with normal use.

Phono sockets were use for SK1, and SK2 on the prototype, but almost any type of two way socket is of course suitable. Due to the high input impedance of the unit it is essential that the input lead is screened, in order to avoid unwanted noise pick up.

Fig. 4. Graph showing the relationship between the input and output voltages of the Audio Compressor. It can be seen that while the input changes from 2 to 50 millivolts the output only changes by 25 per cent

RESULTS

A graph of the results obtained on the prototype compressor is shown in Fig. 4. This shows input voltage versus output voltage. With an input of 1 mV or less the gain is fairly constant at about 275 , or a little less. Above this the gain decreases slightly as the input voltage is raised, until it reaches about 2.6 mV , and increasing the input voltage above this level has very little effect upon the output.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

LIGHT-OPERATED POWER CONTROLLER

THE circuit shown in Fig. I will control the a.c. power delivered to a mains load according to the level of light incident on a light-dependent resistor PCC1.|An advantage of this circuit is its extreme simplicity and consequent ease of construction.

As the mains voltage rises the capacitor Cl is charged via the potentiometer formed by R1 and PCCl . When the voltage across Cl rises sufficiently, the bi-directional trigger diode Dl breaks down and Cl is discharged into the gate of the triac CSR1, switching it into its low resistance state. The combination of a $0.1 \mu \mathrm{~F}$ capacitor and the breakover voltage of the diac of around $\pm 30 \mathrm{~V}$ gives a sufficient pulse to ensure the triggering of most commonly available triacs. The diac also ensures that the maximum voltage rating of the LDR is not exceeded. Since the triac and the diac are bi-directional this situation occurs on both positive and negative-going half-cycles of the mains supply, the triac returning to its high resistance state at each zero point in the cycle.
The point in each half-cycle at which the triac is fired is determined by the incident light on PCC1, full power being delivered to the load when this point occurs very early in the cycle-i.e. with the LDR in

REED RELAY CURRENT TRIP

ASIMPLE over current protection device for a series regulated power suppply can be made using a thyristor and a reed relay. The circuit diagram is shown in Fig. 1.

When a fault current appears across VR1 and R1, R2, diode D1 conducts a positive going signal to the gate of the thyristor CSR 1 which triggers it on. The reed relay then closes applying a negative voltage to the base of TRI cutting it off and reducing the output voltage to zero.

The action of this cutout is much faster than a fuse thus protecting the sensitive semiconductors in the circuit being supplied. The lamp LP1 will show a fault condition until the SCR is shorted by SI. If the fault is still present the thyristor will fire cutting off the supply again.

The trip current is set by VR1. The reed relay is a miniature type about an inch long with 250 turns of 32 s.w.g. enamelled copper wire wound onto the reed relay body.
G. Daddy,

Hull.
darkness. The power that can be controlled by the circuit depends only on the ratings of the triac and on the adequacy of its heat sink.

Components L1, L2, C2, R2 provide suppression of the radio interference generated by the switching of the triac and also protect the triac against mainsborne transients to which these devices are highly susceptible. Note that R2 is necessary to limit the discharge current of C2 which might otherwise exceed the peak surge current of the triac when it fires, and destroy it.

Owing to the triac's low tolerance to over-voltage transients, this circuit can not be recommended for use with motor loads without the incorporation of additional protection. If circuit values are altered, to change the light threshold or the operating range of the unit for example, care should be taken not to exceed the current/power ratings of the LDR, the diac and the triac gate.

Circuit values are such that incident daylight will result in no power being applied to the load, while the level of light around dusk will give full power.
I. Page,

London, S.W. 13.

Many cars have reversing lights fitted which are operated by a switch on the dash; this must by law be illuminated, but I have found it quite easy to leave the switch on accidentally for periods during the daytime.
I therefore devised the circuit shown in Fig. 1. This is wired in parallel with the reversing light(s), and sounds a warning if left on for more than about a minute When power is applied, Cl slowly charges up through VR1 and TR1, the latter remaining switched on until C1 is almost fully charged. TR2 is a conventional oscillator, but cannot operate until TRI turns off, when it produces a fairly loud tone in the speaker.

Components are not critical. TR1 can be any silicon pnp transistor, and any of the OC72/75/81/ 82 range will work as TR2. Transformer T1 is a small audio output transformer out of an old transistor radio.

The circuit was made up on a small piece of tagboard, and mounted behind the dashboard.
D. L. Atkin.

Sheffield.

SUN JC-TS THE EARTH

Soler stoems release an snormaus amonet of energy which can affect the spin ot the eath on its axis. Some ter years ag= the French astrenonxer. A. Danjon, announced that the very large soler fare of 1959, sigaificantly afiected he length of the cay. At tha tne re was not ve-g well supparted by colleagues.

Howewr. the very energetic sclar storm uhich occurred in August 1972 shewec an evea grzater effect on ite zarth. A change of more than 10 millieeconds was recorded This paticular solar s:orm is the greatest that ras been recordad during re 37 C years that observations have bean mate.

The forn. which kegan or Auguant e, started with very pro nounced sun spot acivity and con tinuec far a week. At that time there were frobes orbiting the eath and sun ard the Pioneer IC spazecraf. wa: ol is way towards Jupiter It was thus a time when an enormous amount of deta was io henc to record the solar azivity.

The rucorded cosmic rays and the cjected slasma measusements have enebicd an estimace to be madz of the manner in whech the magnetos shert is affezied. The storm abo gave a clue to the mechanism irvolved. There is always a short interval be.wzen the time of zorm and tre cl that the earth rezives The heory is that the partoles and te flasma dis turb the atmosphelic circulation. thereby affecting the zarth's spin.

CHANDLER WOBBEE

Trat the lergth of day s increasing has been tnown or a long time since it can be deternined by obser*ation The reain effect is from the tidal action $b z w z e n$ the sun-zarth roen system. Another condition that affects the length of day is the Chandler nobble.

Namec after its =is iovener. the poles of the earth wobble agaiast the star bazl-ground in a regular way over a period of fourteer. months. The affect is by ne means well underslood but it is though: to be due to the fluidic centre core of the earti. The wobble effect on the slowing down of ite earth's rotation is superimposed on the main tidal valiation.

In adjition to the Chancler wobse tere is still another effece and that is the seasoral variation of the large scale atrospheriz movemen:s Here again ite actual mechanism s not fully understood though is is moted thet this effec: is on te ane scale as that of the solar ac. vity.

CHINOOK WINDS

The stec-ng winds which blow on the castern slopes of the Rocky Mourtains are known as the Chinces winds and in some areas do much Jamage as there has been no wav in which io predict when these pincis will come. It is thought that the winds are related to the temperatuse inversion layer of the atmosphere on the windward side of the Continental Divide.

It is now theught that the Chincek wind of the Northern Plains. is produced because the weight of the air causes a compression which in turn raises the tempera:ure. While this is helpfully welectred in some places it is $70 t$ in ofzers.

EAR:-I WARNING

To rovide some means of predicticn. audio methods are being tried out and powerful audio pu ses are jeirg directed at the atrosphere. These pulses transmitted verticaly upwards every twenty second: at a frequency of $1,000 \mathrm{~Hz}$. are refected by the inversion layars. High power is required because some of the temperature inversion layer: are as high as $7,000 \mathrm{ft}$.

By asing a doppler sounder is hoped to measure the profiles of the wincs. The very obvious advantage of this, in addition to warning. s the passible effects of polla-ion sarried by air. Siting lactories and other process plants could be fredshermined and a possible reduction of pollution effects controlled

ASTEROIDS

The earth seems to have a wider influence in the solar system than was first thought There are from time to tme rejorts that sertain asteroids come close to the earth and but for the grace of cosmic law the home planet would be exposed to a catastrophe. It has now been established that certain of the asteroids are specifically involved.

The asteroids which have been the subject of special studs, are the Apollo group sonsisting at Toro and Geographos. which czoss the zarth's crbit. and three of the Amor zroup. Eros, Amor and Ivar. which cross Mars orti. These areroids all have orbits round the sun but. are perturbed in tese orbis oy the influence of the pianets.

Of the five asteroids named Geographos is oerturbed onlv at random. The others have regular zeriodical perturjations ir respect of the earth's ortital period The way in waich ths occurs is rather complex for there is libratior in he sense that the whole patiern of the orbit rocks about the earth-sun ine. Libration or rocking implies a periodic variation in the orbital period byt the peiod can oscillate without libration.

ORBITAL PERIODS

The periods itat emerge are in he ratic five eath periods to eght Toro which wouc result in a period of 150 years were i: not complicated by a relation with Venus. This ratio of 5 Verius periccs to 13 Toro gives \& 180 year period. The Torc orbit is therefore an unetable one ard it E expectel tha: this may change a fter 2200 A.D.
The complicated nature of these -ariations of ore body relative to enother is further indicatec by the act that the exth perturb; Eros once every sever years and also the asteroid Amor is involved. in the case of lvar twa ferturbations lake place in each 28 years. Th s has a libration of 300 years 1 Cd is the nost stable of the cribits.

TAILPIECE

It seems that there is to be a turther revival of the Volkovsky theories. Claims are being made as 10 confirmation of such events as the Jupiter radiations and te magaetic remanence n the olde- moon focks with a suggestion that the main craters an. 1 valleys are no more than 300 y yers old.

At any rate ne one can say that the astronomical world ane tha: of space is dull.

LARGE STOCKS, ATTRACTIVE DISCOUNTS DEPENDABLE SERVICE

Everything brand new and to makers' specifications.

ELECTROVALUE Electronic Component Specialists

TRANSISTORS BY SIEMENS AND NEWMARKET

2N3055 npn silicon power
AC153K pno germanium low power ACI76K non germanium low power
ADI61 nDn germanium medium power ${ }^{60 p}$

ADI 62 pnd germanium medium power $32 p$ $42 p$ AFI39 pno germanium UHF 49p
NPN: BClO7 13p, BCl08 12p, BCl09 13p, BCl67 $11 \mathrm{p}, \mathrm{BCI} 68$ 10p, BCI69 IIp.
PNP: BCI77 21p, BC178 19p, BC 179 21p, BC257 12p, BC258 IIp, BC259 I 3p.
Standard groupings available
BDI 35 npn medium power
BDi 36 pnp medium power
37p

DIODES

OA90, OA91, OA95, 6p each; OA200, 9p; OA202. 10p.

Other semiconductors: ACI28, 17p; AFII7, 32p; 8FY51, 19p. Full lists and technical data will be found in Catalogue No. 6. See also amendments list

SIEMENS' THYRISTORS
0.8 A 400 V 56p, 600V 70p.

AA $400 \mathrm{~V} 60 \mathrm{p}, 600 \mathrm{~V} 88 \mathrm{p}$

ZENER DIODES full range E24 values: 400 mW
 1.5 W rating to 3 watts (rype 266 F) 4 p .

DIN PLUGS AND SOCKETS

by Hirshmann, 4A rating

2 way LS —socket 10p, plug 12p
3 way scr.-socket 10p, plug 12p
5 way scr.-socket lip, plug i5p

TRANSISTOR ACCESSORIES
TO3 cover, 7 p ; Heat sinks $1^{\circ} \mathrm{C} / \mathrm{W}$, type 6 WI undrilled, 60 p .

SWITCHES

oggle, 20p; 409 DPDT toggle, 29p (these are chrome
plated, 2.5 A rating); 7201 sub-miniature DPDT (2)

ROTARY SWITCHES

Radiospares Miniature Maka-switch (in assembly kit form). Shaft, 48p. Wafers, MBB-2P5W, IPIIW
BBMIPI2W, $2 P 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}, 6 \mathrm{P} 2 \mathrm{~W}, 32 \mathrm{p}$ each

WAVECHANGE SWITCHES

PI2W, 2P6W, 3P4W, 413W, 24p each

ELECTROLYTIC CAPACITORS AXIAL LEAD Rated voltage: $3 \mathrm{~V} \quad 6.3 \mathrm{~V} 10 \mathrm{~V} 16 \mathrm{~V} 25 \mathrm{~V} 40 \mathrm{~V} 63 \mathrm{~V} 100 \mathrm{~V}$ POLYCARBONATE-5\% TOLERANCE 250 to $0.1 \mu \mathrm{~F}: 100 \mathrm{~V}, 0.1 \mu \mathrm{~F}$ and $0.01: 0.012: 0.015 ; 0.018: 0.022$ $0.027 ; 0.033 ; 0.047 ; 0.056 ; 4 p$ each. each. $018 ; 0.22 ; 5 p$ each. 0.27 ; 0.33 : 6p. 0.39 7p. 0.47 8p. $0.5610 p$. 0.68 IIp. I $\mu \mathrm{F}$ I3p. Prices subject to omendment by the monufacturer
Minitron Digital Counter Type 3015 F . Seven Frlament segment indicators to make $0-9+$ standard logie modules nett $£ 2$ Decoder driver type FLi $121 T$ nett El 36. DIt sacket, nett $\notin 2$.
RESISTORS - 10\%, 5\%, 2\%

Code	Power	Tolerance	Range
C	$1 / 20 W$	5%	$82 \Omega-220 K \Omega$
C	$1 / 8 W$	5%	$4.7 \Omega-470 K \Omega$
C	$1 / 4 W$	5%	$4.7 \Omega-10 M \Omega$
C	$1 / 2 W$	5%	$4.7 \Omega-10 M \Omega$
C	$1 / 2 W$	5%	$4.7 \Omega-10 M \Omega$
$M O$	$1 W$	10%	$10 \Omega 1 / 20 \Omega$
$W W$	$0.22 \Omega-3.9 \Omega$		
$W W$	$3 W$	5%	$1 \Omega-10 K \Omega$
$W W$	$7 W$	5%	$1 \Omega-10 K \Omega$

Codes: $C=$ carbon film, high stability, low noise
$M O=$ metal oxide, Electrosil TR5, ultra low noise $W W=$ wire wound, Plessey
Values:
El2 denotes series: $10,12,15,18,22,27,33,39,47,56,68,82$ and their decades.

Values avalable	1 to 9	10 to 99 (see note below)	100 up
E12	9	8	7.5
E24	1	0.9	0.75 nett
E12	1	0.9	0.75 nett
E24	1.2	1	0.95 nett
E12	2.5	2	1.6 nett
E24	4	3	2 nett
E12	7	7	6
E12	7	7	6
E12	9	9	8

Prices are in pence each for quantities of the same ohmic value and power rating. NOT mixed values. total value of resistor order.) 62, 75,91 and their decades
Send S.A.E. for latest supplement of additional lines and price amendments

KNOBS

Ahtgrub serew fitting for tin
shafts. Black. For orher types F. 14 (20 mm) pack of 2,32 p; F. 13 (26 mm) pack of 2, 38p; F. 12 (33 mm) pack of 2, 40p; F. 19 (20 mm) pack of $2,32 \mathrm{p}$; F. 18 (26 mm) pack of $2,38 \mathrm{p} ; \mathrm{F} .17$ (33 mm) pack of $2,40 \mathrm{p} ;$ KB. $4(20 \mathrm{~mm})$ pack of $4,40 \mathrm{p}$; K30/3

$\kappa 04$

TRANSFORMERS-MAINS
MT3 30V/2A plus 4 taps
MTIO3 50V/IA plus 4 taps MT10450V/2A plus 4 taps MTI2760V/2A plus 4 taps 28 TO5 $12+12 V .2-0-2 V$

$\mathbf{6 2 . 8 5}$ $\mathbf{£ 2} 55$ 63.50 63.85

 ELECTROVALUE CATALOGUE No. 6 (4th printing) contains ICs with circuit diagrams, R's and Cs of practically every kind, accessories. components, tools, materials, etc, information and equivalent tables, ete. Well 25p post free with refund $\times 8 \frac{1}{2}$ in) for 25 p allowable on orders over
PHOTOELECTRIC KIT

Contents. P.C. Chasaia Boatd, Chemicals, Etching Manual. Infra-Ked Phototranaistor, Latching Relar, 2 Transistors, Diode, Resistora, Gain Control, Terminal tranalatot, Latching Relay, - Transistors, Diode, Resistora, Hacd to build a Steady-
Block, Elegant Case, Screwa, etc. In fact everything you fiech Light Photo-Switch/Counter/Burglar Alarth, etc. (Project No. 1) which can be madified for modulated-light operation with a few additional components.

INYISIBLE BEAM OPTICAL KIT
Everything needed (except plyworl) for bilding: I luvisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglat tlarms, Connters, Door Openera, ete
CONTENTS: \because lenses, \because mirrurs, 2 di-deqree wooden blocks. Infra-red fiter. projector lamp holder. screws, nailn, bracketa, buiding plans, ete. Price f1-45. Postage and Pack. 10p (C.K.). Cummonweath Surface Mail 요. Air Mail N0p.
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Tuice the range of standerd kit. Larger Lerseps, Filter
 BIOFEEDBACK AMPLIFIER KIT
Tunable, General-Purpose, literference-Rejecting Difmential Ataplifier for experimental invertigation of sigmaly prowtuced by the brain, heart and muscles. When used with an oncillose, pe, or aural indicator, 11 enableu you to lunitor your brainwaves, learn to relax, meditate, etc. CONTENTA: All Capacitors, Resutors, Puts, Semmomdwtors, [. C^{\prime} ', Electrodes, Leads, Chassin, Case. Batteries. Plans and Instructions. Price $£ 4.75$ postage and pack. 25p (C.K.). Communwealth: Surface 30p. Air Mail \& 1
ALPHA-BETHA-THETA BRAINWAVE MONITOR KIT
Aural Brainwave Indicator for use with a Biofeedthach Amplifier. Consertas subeonic brain frequencies intu andible signals for easy recognition.
CONTENTA: Resiators, Pots, Capacitorn, Transistors, Dionlen, Leads, Chassis, Case. Earphone, Battery, Plans and Instructions. Price \&3.25. poat age and park. 15p (T.K.). Commonwealth: Surface 25p. Air Mail 75 p .

YORK ELECTRICS Mail Order Dept. 335 BATTERSEA PARK ROAD, LONDON, S.W. 11

Send S.A.E. for full details. a brief deseription of all Kita and Projeets

FERRANTI

 ZN4 14 Radio ic. only £1.32WITH DATA
WE ARE SPECIALISTS IN FERRANT SEMICONDUCTORS

POSTAGE AND PACKING $10 p-F r e e$ over $£ 2$. Send
our full price list and data sheet.
DAVIAN ELECTRONICS
PO BOX 38, OLDHAM, LANCS. OL2 EXJ

The Catalogue you MUST have!

Details of our popular Credit Account Service and our Easy Ordering System are included in the catalogue.

Strictly

by K. Lenton-Smith

THE piano, without which no home was complete several decades ago, is now becoming a rarity because of lack of living room space and other home entertainment attractions. This could be one of the reasons that the guitar is often the choice of younger members of the household.

For those wishing to take up a keyboard instrument, the Electric Piano is ideal as it occupies very little room.

ELECTRIC PIANO

The majority of these instruments suffer from only one disadvantage musically in that the keyboard is usually a standard five octave (organ) manual, against the seven octaves of a conventional piano. Nevertheless, five octaves are probably sufficient for performing many piano pieces. The cost of a compact electric piano may be well under $£ 200$ and, with preamplified output, it is small enough to be easily carried in one hand.

The percussive attack of a conventional piano will readily penetrate a semi-detached house's party wall: the volume of its electronic counterpart may be closely controlled. Earphones may be used for practising late in the evening. The electric piano allows changes of timbre, such as harpsicord, honky-tonk, etc.

Like the majority of commercial electronic organs, the generated waveform is square. The usual arrangement is a Hartley (sine wave) oscillator, followed by a series of Eccles-Jordan frequency dividers (square wave) for each of the 12 chromatic notes of the scale. The dividers are invariably integrated circuits as these are cheaper and smaller than discrete components and there is a saving in labour costs.
Piano tuners introduce small frequency variations to give an ordinary piano added brilliance: from middle " C ', notes above are progressively sharpened slightly, those below flattened. A system of electronic frequency division-where tuning must be mathematically accurate-would thus not appear to be ideal. In practice, however, this discreparicy is not noticeable and, given a good amplification system (which could well be the domestic hi-fi), a most realistic piano results.

KEYING METHODS

Diode-keying is normally used in electric pianos as this keying method can produce the attack/decay characteristics of a piano fairly closely. Keying transients are practically eliminated by diode-keying and precious metal keyswitches are not vital.

Some instruments employ a changeover keyswitch where a capacitor is kept charged while the key is at rest, depression of the key connecting the charged capacitor to the gating circuit. Filtering is required to round up the square waveform somewhat, usually in the form of a passive low pass filter for "piano" tone.
The keyboard may be split by a special control so that a "walking bass' may be played without drowning the melody line. The Italianmade "Instapiano" is an attractive example, retailing at about $£ 160$ before VAT. It measures approximately $48 \mathrm{in} \times 10 \mathrm{in} \times 4 \mathrm{in}$.

PLAYING TECHNIQUE

The electric piano has a number of advantages, not least that there is plenty of published piano music available. Though it may take a little getting used to, pianists have no difficulty in accustoming themselves to the electric piano.

Where two manuals and a pedal clavier are concerned, printed music is not so readily available-unless the player particularly likes Bach and Handel.

The pianist who turns to the organ has some formidable problems: as long as a note is held it will sound,
unlike the automatic decay of the piano/electric piano. Thus, attempting to play piano scores on an organ results in disaster-and what does one do with the pedals except "double" the left hand part?

Any constructional project is a challenge to get the beast working! Those who build musical instruments have a further challenge: they have to master the keyboard, and organists who like lighter music will find threestave scores few and far between.

CHORD SYMBOL BASIS

A number of readers will have built the P.E. Organ, or have access to an organ, and may have experienced difficulty buying music. The usual light music score includes the piano part, guitar symbols, vocal line and chord symbols; the last two are the important items for the organist. With practice, it is possible to play both manuals and pedals using this information only, on sight.

Memorising what each chord symbol involves might, at first, appear to be a mammoth task. Relatively few key signatures are used in popular music as the publishers have to bear in mind the transposing instruments (normally B flat and E flat) which may be involved. The same chords appear frequently and can be memorised as easily as the resistor colour code! But it must be admitted that the "bridge" often moves into a strange key and demands quick thinking.

The right hand part (melody) should be registered in a way that makes the tune fairly incisive; single notes are often sufficient and, where chords are used, the melody should still stand out.

The left hand part is the problem and should be considered along with the pedals; accompaniment registration should be quieter and less clear cut than the upper manual. The root of the chord symbol can be used for the pedal on the downbeats, at least for a start, alternating with the fifth (i.e., $C-G$) except where a diminished chord is indicated. The left hand plays the notes indicated by the chord symbol, according to the time signature and rhythm, using an "anchor note" if possible.

THE GOOD COMPANIONS

Two magazines designed to complement each other in every way-together satisfying the needs of everyone involved in electronics.

Everyday Electronics caters especially for the newcomer to this field, and shows, in full detail, how to build many simple and useful items; It also offers advice and facts on constructional methods and component purchase, and explains circuit operation in straightforward terms.

This month EE features the construction of a Waa-Waa Pedal, a Slave Flash for photographers, and an Electronic Doorbell.
"It's all quite simple with Everyday Electronics. August issue on sale Friday, July 20. 15p.

PE Sound Syutheriser 7 :ill mominioi reah level ilger

By G.D.SHAW

THis month the Ring Modulator, Peak Level Meter circuit and Reverberation Amplifier will be described.

THE RING MODULATOR

With the ring modulator the combination of tones follows a complex inter-relationship in which each frequency is continuously compared with and modified by the other. The resultant output provides a tone which consists of the sum and difference of the two constituent frequencies appearing at the same time and irrespective of the phase angle relationship. A typical output waveform is illustrated in Fig. 7.1

A simplified version of a transistorised ring modulator manufactured in integrated circuit form by Silicon General, the SG3402N, is shown in Fig. 7.2 and it will be seen that the device consists essentially of a pair of cross-coupled differential pairs jointly controlled by a third. Two inputs-carrier and modulator-are required and it is important to differentiate between them since the input characteristics are dissimilar. Application of equal amplitude signals to both inputs will provide an output showing about 3 dB voltage gain over either input. Removal of the modulator with the carrier still applied will result in attenuation of the output signal by about 50 dB but if the input situation is reversed the output attenuation is only about 35 dB .

Although designed primarily for communications work the SG3402N is capable of working satisfactorily at quite low audio frequencies by the simple expedient of increasing the value of the input and decoupling capacitors.

The frequency response of the prototype Ring Modulator is shown in Fig. 7.3 and will be seen to be effectively flat over most of the audio frequency spectrum. The theoretical circuit is shown in Fig. 7.4.

The maximum input signal to the SG3402N should not normally exceed 50 mV and thus resistive attenuators are employed to raise the signal level, at the input sockets, to one more compatible with the signal level normally routed around the Synthesiser. With the value of resistors employed in the attenuators the maximum input signal at the sockets is thus 500 mV .

IC2 serves to amplify the output to about 1.5 V at the rated input levels and measured at an input frequency to both channels of 1 kHz . The ring modulator shares a circuit board with the peak level meter and the board layout is shown in Fig. 7.5.

Fig. 7.1. Typical output waveform of the Ring Modulator

Fig. 7.2. Schematic of a transistorised Ring Modulator

RANGE OF SOUNDS PRODUCED

The type of modulation produced by the ring modulator is wholly unique and thus also is the range of sounds which can be achieved. If two pure tones are modulated together and one of them is reduced in frequency the resultant output would follow the pattern shown in the table below which relates the sum and difference output frequencies with the carrier and modulator input frequencies.

Frequency (Hz)								
Carrier	700	600	500	400	300	200	100	
Modulator	400	400	400	400	400	400	400	
Sum	1100	1000	900	800	700	600	500	
Difference	300	200	100	0	100	200	300	

It can be seen that, whereas the resultant sum reduces in frequency at the same rate as the carrier, the frequency reduces until it reaches zero (carrier and modulator frequencies equal) and then, as the carrier continues to fall to a frequency lower than that of the modulator, the difference frequency begins to increase at a proportional rate.
When the inputs to the Ring Modulator carry harmonics in addition to the pure tones then further series of frequency relationships are established for each of the component harmonics relative to one another and to the respective fundamentals.
When the inputs to the Ring Modulator are of symmetrical triangular waveform, such as those generated by the v.c.o., an extremely complex set of frequency relationships is established due to the fact that, in common with the square wave, the triangular waveform consists of a long series of odd harmonics.

SOUNDS PRODUCED

The Ring Modulator may be used in many fascinating ways from the creation of truly "out of this world" sounds, the transposition of tones, belllike sounds, Dalek voices and so on.
In the transposition of tones the only stipulation is that the modulating frequency should be higher than the carrier (this latter input consisting of the signal for treatment). For any range of carrier frequencies the modulator frequency has to be calculated or determined empirically, to provide the best overall effect.

An interesting experiment can be carried out by cascading two Ring Modulators. The first uses the v.c.o. output to drive carrier and modulator inputs so that the output is the octave, or second harmonic, of the v.c.o. frequency. The output of the first Ring Modulator is used to drive the modulator input of the second whilst the carrier input is derived direct from the v.c.o. Thus the difference frequency of the second Ring Modulator will follow, exactly, the performance of the v.c.o. while the sum frequency will approximate to a quarter-tone accompaniment about $1 \frac{1}{2}$ octaves higher. There are very wide possibilities for further experiment in this kind of mode.

A true bell tone is very complex and is difficult to imitate with exactitude. A fairly close approximation may be achieved by adjusting two v.c.o.s to a mid-range frequency, say 4 kHz , such that there is a slow beat between them. One v.c.o. then drives the carrier and the other v.c.o. the modulator input of the Ring Modulator. A very important characteristic of the bell-like sound lies in its envelope presentation and this will be dealt with in detail in next month's article.

Fig. 7.5. Simple resistive attenuator for use with the Ring Modulator

Modulator

COMPONENTS . .

PEAK LEVEL METER CIRCUIT

Resistors		
R1	$91 \mathrm{k} \Omega$	
R2-R3	$20 \mathrm{k} \Omega$ (2 off)	
R4	$91 \mathrm{k} \Omega$	
R5-R6	$3.3 \mathrm{k} \Omega$ (2 off)	
R7	$91 \mathrm{k} \Omega$	
R8	$110 \mathrm{k} \Omega$	
All 5%	$\frac{1}{2}$ watt carbon	

Capacitors

C1-C2 1,500pF (2 off)
C3-C4 $22 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
Potentiometers
VR1 $50 \mathrm{k} \Omega$ carbon preset

Diodes

D1-D4 IN914 (4 off)
Integrated Circuits
IC1-IC2 741C (2 off)

Miscellaneous

ME1 MR38P SEW panel meter (G. W. Smith Ltd.)
SK3 2 mm miniature socket

RING MODULATOR

Resistors			
R1	$1.8 \mathrm{k} \Omega$	R5	$10 \mathrm{k} \Omega$
R2	200Ω	R6	$10 \mathrm{k} \Omega$
R3	$1.8 \mathrm{k} \Omega$	R7	$200 \mathrm{k} \Omega$
R4	200Ω	R8	$10 \mathrm{k} \Omega$

All $5 \% \frac{1}{2}$ watt carbon

Capacitors

All tantalum

Potentiometers

VR1 100k Ω carbon preset
VR2 10kS2 miniature moulded carbon
Integrated Circuits
IC1 SG3402N
IC2 741C

Miscellaneous

JK1, JK2 3.5 mm miniature jack sockets (2 off), SK1 2 mm miniature socket, Veroboard as required

	VDR's 8 Thermistors		Capacito
Slider Pots	Resistors $\frac{1}{2}$ watt 5\% Carbon Film low noise All E2 \qquad additional 50 Deduci $33!\%$ andors and a furt type o: 25% for mixed orders over		
Diodes E Rectifiers			

EHiOMMQOMUE electronics

Please add 10°
V.A.T. to your
total order

See for yourself the range of wonderful new kits that Heath have presented in the latest catalogue. We now offer something for everyone, including stereo hi-fi equipment, radios, intercoms, calculators, automotive testers, shortwave and amateur radio, testers and instruments for technicians and hobbyists . . . all at moneysaving prices. And payment is so easy-choose cash or our low deposit terms (starting at $£ 2$ per month for up to $£ 40$ credit).

You can build a Heathkit model using only a soldering iron and a few simple hand tools. Foolproof assembly is guaranteed using the step-by-step construction manual included with every kit.

Add to this a technical consultant service both before and after purchase and you will see why kit building the Heathkit way is so popular all over the world.

Send now for your free copy of the Heathkit electronic kit catalogue-and if your friend is likely to borrow it, fill his name and address in below and we'll send him a copy too !

Please send a FREE Heathkit Catalogue to my friend

NAME
ADDRESS

HEATH (GLOUCESTER) LTD.. DEPT. PE/08/73 BRISTOL ROAD, GIOI/CESTER CL2 6EE

Please send me a FREE Heathkit Catalogue I want to know more about your Cash and J.ow Deposit Terms, without obligation.
Name
ADIDRESS

HEATH (GLOUCESTER) LTD., DEPT. PE/08/73 BRISTOI, ROAD, GI.OIICESTER GI. 2 6EE

FIRST TIME EVER at E42.50. Solartron CD7lis2 Double Beam Oscilloscope d.e. -9 MHz ; $3 \mathrm{mV} / \mathrm{cm}$ trigger delay; crystal calibrator 4 in flat faced tube. In good working condicion. Carriage 21.
SOLARTRON CT 316 (D300 range). DC to 6 mes. 3^{*} tube. TB up to 0.75 microsecs per centimetre
Built in calibrator. Size 8 . $\times 11^{\prime \prime} x$ Buite in calibrator. Size $81_{2}^{\prime \prime} \times 11$
20°. Price $£ 22 \cdot 50$. Carr. $\mathrm{El}^{\prime} \cdot 25$. MARCONI VALVE VOLT MARCON Type TF 958(CT208) DC to METER type TF 958(C 208) DC to
100 mes. 5 mirror backed meter complece with probe, leads etc. C/2.50, Carr. El. 25 .

GRATICULES. $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ in High Qualisy plascic. 30p each MODERN
MODERN TELEPHONES type 706. Two tone grey, 63.75 each. The same but black, 62.75 each. P. \& P. 25peach, Also TOPAZ
each. P. \& P. 25 f. 4.50 PHONE 87p fl. 50 . P. \& $P \dot{P} .75 \mathrm{p}$. All telephones complete with bell and dial
20 Hz to 200 kHz WB SINE AND SQUARE GENERATOR. Four ranges. Independent amplitude controls. thermistor stabilised. Ready to use. 9V supply required. to.85 each. P. \& P. 25p. (Not cased, not calibrated.)
WOBBULATOR. Sweeps 8 to 45 MHz ready to use. 6.3 V a.c. required. 69 each. P. \& P. 25p. CAPACITOR PACK
CAPACITOR PACK, 50 Brand
new components only $50 \mathrm{p} . \mathrm{P} . \& \mathrm{P}$. new
$17 p$.
5 MOVING COIL METERS various. \&2, P. \& P. 37 p .
POTS- 10 different values. Brand new-50p. P. \& P. 17p.

COMPONENT PACK consisting of 2.2 pole 2 amp push on/oH switehes; 4 poes, various, brand new; 250 resistors t and $\frac{1}{5}$ wact many high stabs, etc. Fine value a
P.C.B. PACKS S \& D. Quantity 2 sqit $\overrightarrow{20} \mathrm{p}$
FIBRE GLASS as above $\& 1$ plus P. \& P. 20p.

CRYSTALS 70 to 90 kHz . Ou choice, 50p. P. \& P. 15 p .
Matched pairs, 50p per pair. P. 8 P
TRIMMER PACK, 2 Twin 50 200pF ceramic 2 Twin $10 / 60$ p ceramic: 2 min. strip with 4 prese $5 / 20 \mathrm{pF}$ on each; 3 air spaced preset $30 / 100 \mathrm{pF}$ on ceramic base ALL BRAND NEW, 25p the lo P. \& P. 10 p .

ELECTRONIC TIMER UNITS -wall or bench mounting-2 Hybrid timer boards may be removed leaving exceliont 12 battery charger; d.c. Power supply IGHT EMITTING DIODES Red) from Hewlerr-Packard Brand Red) from Hewletr-Packard. Brand New 38p each. Holder Ip each PHOTOCELL equ. OCP7I, I3p each.
PHOTO-RESIST type Clare 703 Two for 50p.
AMERICAN OSCILLOSCOPE type USM24 A 10 meg scope-all min. valves complete with circui diagram. Mains input 15 volt 50 ycles therefore 620. With step down
MOTOR MIN, SYNCHRON OUS. size $\times 2 \times 2,240 V$ oper ation. $3 \cdot 6$ RPM, 25p each'. P \& P 5p.

$$
\begin{aligned}
& \text { DELIVERED TO YOUR } \\
& \text { DOOR I ewt of Electronic } \\
& \text { Scrap chassis, boards, erc. No } \\
& \text { Rubbish. FOR ONLY E3. } 30 \text {. }
\end{aligned}
$$

PLEASEADD 10% V.A.T.

 (rear Tech, College) Tel.: Reading 582605/85916

PRACTICAL ELECTRONICS "SCORPIO" ELECTRONIC IGNITION SYSTEM

This Capacitor-Discharge Electronic Ignition system was described in the Practical Electronics. It is suitable for incorporating in any 12 V ignition system in cars, boats, go-karts, etc., of either pos. or neg. earth and up to six cylinders. The orisinal coil, capacitor fitted in the vehicle ar used. No extra or special components are required.
Helps to promote easier starting (even under sub-zera conditions), improved acceleration, better highspeed performance: quicker engine warm-up and mproved fuel economy, ertmiker point burning and the need to adjust point and spark-plug gaps with precision gaps with precision
be compleced in an evening and installation should take no longer than half an hour. A complese complement of components is supplied with each kit rogether with ready-drilled roller-tinned professional quality fibre-glass
printed-circuit board, customwound transformer and fullymachined die-cast case. All components are available separately. Case size 7 fin $\times 4 \frac{1}{2} i n \times 2$ in. approx.
Complete
manual 25p, refundable and wiring
of kit. Price : 10.50 plus 50 p P. \& P.

PSYCHODELIC LIGHTING UNIT Mk. 3

This unie represents a natural progression from our phenomenally successful Mk. I and 2 Units. As before the drive volage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency signals into a three-coloured light display; the colour depending on intensity on the loudness af the audio source.
The unit is constructed on profes sional fibre-glass printed.circuit board material and uses latest fullwave triac circuitry. There is a master-level control, cogether with independent sensitivity controls for each channel. The original minimum been redesigned permitring have use as faders; allowing dimming from max. to zero at the turn of a knob. R.F.I. suppression is now incorporated as standard as well as provision for D.J. "Pulse-Flash" controls. The choice of two inputs enables operation from both high and low power amplifiers. Max. power 1.5 kW per channel at
Comple
Complete assembly built and rested, size gin
carr. paid
PLEASE NOTE ALL THE ABOVE PRICES ARE SUBIECT TO V.A.T. ADJUSTMENT

DABAR ELECTRONIC PRODUCTS
98a Lichfield street, Walsall, Stafts. WSI IUZ
tELEPHONF: WALSALL 34365 TELEGMMS: DABELEC Walsall Staffe.

Dalek voices are produced by modulating a modified speech waveform at about $15-20 \mathrm{~Hz}$. Speech, and certain types of music waveforms, can present a very peaky characteristic. The peaks are multiplied and added to in the Ring Modulator and thus, if the signal is remodulated several times, or if the initial frequency is high enough, the final output contains a large proportion of sound which bears a remarkable resemblance to white noise. The cure for this problem is to limit the dynamic range of the signal.

Although exact details for such a procedure lie outside the scope of this series a passable method is to feed the offending signal to one of the input amplifiers and, observing the output on the oscilloscope, adjust the gain of the amplifier so that a large proportion of the peaks are suitably clipped. If insufficient gain is available to allow an adequate degree of clipping the input amplifiers may be cascaded. The achievement of clipping means, of course, that the amplifier output signals are swinging between the positive and negative saturation levels and it will be necessary to attenuate the signal quite considerably. Fig. 7.5 shows a simple resistive attenuator which will give a signal of about 500 mV from a 28 V source.

CONSTRUCTION

Construction of the Ring Modulator is quite straightforward and the only critical requirement lies with the observation of polarity of the tantalum capacitors. Reversal of any of the capacitors will result in noisy operation and, in the case of the output capacitor, no operation at all. Tantalum capacitors have been specified in order to conserve space and there is no reason why 10 V electrolytics should not be used with an alternative layout.

SETTING UP

Setting up the Ring Modulator consists only of providing a modulation balance. Set VR1 to its mid position and apply a common sine wave signal to both inputs. The output of the ring modulator will be a sine wave which is twice the frequency of the applied signal. If the modulation is out of balance alternate peaks of the output signal will be at different amplitudes. VR1 should be adjusted to bring the peaks into line at which point the modulation is balanced.

It is a wise precaution to repeat this measurement from time to time to adjust for settling down changes in the circuit.

THE PEAK LEVEL METER

In the prototype Synthesiser the meter circuit was based on a precision rectifier built around a pair of operational amplifiers arranged in such a way as to eliminate the effect of the diode forward voltage drop. Although the circuit proved to be very responsive it was found, in practice, to present a number of disadvantages. In the case of a.c. signals the meter would read only the r.m.s. value and although it was possible to determine the actual peak-to-peak value by application of a form factor for known wave shapes the determination of peak-to-peak values for complex waveforms proved to be a very hit and miss affair.

In a similar manner, when endeavouring to set up reasonably accurate programming voltage levels, the rapid response of the meter frequently made it difficult to establish the peak value with any certainty.

In consequence it was decided to redesign the meter circuit to provide a peak reading facility which would be independent of waveform configuration and which would have a reasonably long decay time to ease the establishment of transient level readings. The final circuit is shown in Fig. 7.7. ICI and its associated circuitry is used to read the positive going peaks while IC2 deals with the negative side of the signal. The operation of the circuit is as follows.

CIRCUIT OPERATION

The input sensitivity of the circuit at the i.c. is about 200 mV for full scale deflection of the meter. A positive going peak of this value appearing at the input of IC1 will swing the output positive to a level determined by the values of R4 and R5, about 6.2 V with the values shown, and capacitor C3 will charge at a rate determined essentially by the effective current output of the i.c. The charging time for C 3 is thus rather less than 2 mS .

If, after the capacitor is charged, the 200 mV peak is replaced by a lower amplitude peak the tendency would be for the i.c. to swing hard negative due to the effect of the positive voltage from the capacitor appearing at the inverting input via R4. This tendency is prevented by D2 which limits the negative excursion of the output to about 700 mV .

Capacitor C3 discharges through R4 +R 5 in parallel with $R 8+R$ (meter) and with the values shown takes about I second. Cl serves to decouple a.c. from the feedback loop and thus effectively extends the accurate range of the meter to about 15 kHz .

The negative reading side of the circuit around IC2 operates in the same way. The circuit is adjusted to give full scale deflection with inputs of 1.0 V and 0.5 V by means of the attenuator R1,2, 3 and VR1.

In using the meter it should be borne in mind that the peak values recorded represent only half the total peak to peak value of the signal being measured
and this applies whether the signal is symmetrical or assymmetrical about zero. When measuring low frequency programming signals of greater than 1 Hz the minimum reading of the meter between peaks does not represent the lowest level of programming signal.

This particular meter circuit can be used to measure the peak level of single transients of not less than 2 mS duration.

ADVANTAGES

In tape recording the peak level meter scores heavily over the more conventionally employed v.u. meter. This latter meter will record what is essentially the mean value of signal presented to the recording amplifier and if, as is generally the practice, the mean level is kept to about -3 dB transient peaks are likely to be clipped or otherwise distorted. The use of a peak level meter, on the other hand, enables the peaks to be kept within the limits imposed by the recording amplifier and thus enhances the overall quality of the recording.

COMPONENTS . . .

THE REVERBERATION AMPLIFIER

Reverberation, or re-echo, in varying degrees is a characteristic observed in the majority of large halls, public buildings, cathedrals and so on. In a properly designed and proportioned hall the inherent reverberation characteristic can provide a high degree of enhancement to the sounds occurring therein.

Fig. 7.8. Block diagram of Reverberation Amplifier

There are a number of ways in which a reverberation characteristic may be simulated and for the Synthesiser the spring line has been adopted. The spring line consists essentially of a coiled wire, usually steel, which is supported at each end in a compliant mounting. At the supported ends of the wire are fitted electro-magnetic transducers. The line driving transducer is excited by an electrical signal and the varying field produced causes mechanical wave motion to be set up in the spring line. When the wave motion reaches the far end of the line it sets up an electrical disturbance in the line output transducer which is, in turn, amplified and added to the original signal.

Part of the original mechanical wave motion is reflected back down the spring line where it serves to modify further on-coming waves.

Because a mechanical wave motion travels much more slowly than its electrical counterpart the signals received by the line output transducer are delayed in relation to their source, such delay being a function of the length of wire used in the spring line. Thus
the mixing of the mechanically routed signal with the source signal constitutes the addition of an echo. However, since the wave motion, once initiated, travels back and forth along the line until its amplitude becomes negligible, multiple echoes are received and added to the original signal.

The spring provides a further useful feature having its origin in the fundamental resonance of the system. When the driving signal passes through the frequency at which the system resonates the output is characterised by a sudden increase in amplitude which can be as much as three times the value of the normal mean signal. Similarly when the input signal passes through any of the harmonics of the resonant frequency there is an increase in output signal amplitude, and this despite the fact that the useful range of the HR42 spring line, specified for this project, is limited at its upper end to about 4 kHz . In the prototype unit quite high resonant peaks were occurring at up to 25 kHz .

The combination of multiple echoes and varying amplitude imparts a very useful "singing" quality to an otherwise uninteresting sound.

Fig. 7.9. Circuit diagram of Reverberation Amplifier

The spring line unit is attached to the p.s.u. sub-frame

DESIGN CONSIDERATIONS

In the prototype the line driving amplifier employed a single transistor operating in what was effectively Class A. The current consumption was thus quite high even in the quiescent state and small variations in the power supply rails gave rise to noise in the system which was apparent when the line was not being driven hard. For the modular version of the Synthesiser therefore the Reverberation Amplifier was redesigned to reduce current consumption, reduce hum and noise to negligible proportions and to enable a complete divorcing of the voltage controlled part of the system so that the amplifier may be built as a separate unit outside the Synthesiser project altogether.

A fortuitous advantage of the re-design provides sufficient power capability to drive two HR42 or one HR42 and one HR162 spring lines in series. It is also theoretically possible to drive up to four of the above spring lines in any combination although this latter method has not been tested.

The advantage in using more than one spring line in the system lies in the fact that it is rare for two units to have identical resonances and delays and thus two or more units can only improve the overall reverberation characteristic.

CIRCUIT ACTION

The Reverberation Amplifier is shown in block form in Fig. 7.8 and the circuit diagram in Fig. 7.9. The input signal is led to a buffer stage, which has a gain of about six, and the output is divided to drive the line amplifier and output mixer. The line driving amplifier consists of a pre-amplifier built around a 741 and having a gain of about five which, in turn, provides drive to a complementary pair of output transistors having a current gain of about a hundred and arranged in what may be described as a modified form of Class B. The output from this latter stage provides drive direct to the spring line through a current limiting resistor.

The output from the spring line is amplified by another 741 having a gain of about nine and then led to the input of the voltage controlled amplifier based on the Motorola MFC6040. This latter device has a mraximum gain of 13 dB and a maximum attenuation of about 77 dB relative to the input signal which should not normally exceed 500 mV r.m.s. The overall gain of the spring line route is thus arranged so that when the line is being driven hard at a non-resonant frequency, and with the v.c.a. at maximum gain, the output of the v.c.a. is equal to the output of the buffer stage and thus the mixer is receiving equal components of reverberated and non-reverberated signal.

The choice of component values for C 10 and R26 may be arrived at by experiment on the basis of the measured response of individual spring lines. To limit the gain to 6 dB a value of 2.5 kilohms for R26 will suffice.

The value of ClO is calculated on the basis of the frequency at which the 6 dB gain is required. For a frequency of 15 kHz the value of C 10 is 1 nF .

The v.c.a. is controlled by a separate 741 arranged in the differential mode. The non-inverting

Fig. 7.10. Board assembly of Reverberation Amplifier
input is driven by a positive voltage derived from the divider R6, R8, and VR1. The high and low ends of VR1 are thus at 3.0 V and 1.75 V respectively. The inverting input of the 741 is driven by a control voltage which should have a swing of 2.5 V maximum.

With VRI at its minimum setting a control voltage swinging from zero to -2.5 V will have the effect of attenuating the output of the MFC6040. With VR1 at its maximum setting a control voltage swinging from zero to +2.5 V will have the effect of amplifying the output of the MFC6040 from -77 dB to +13 dB relative to its input signal. The inverting input of the 741 acting as control amplifier is prewired to a ramp generator which will, of course, provide the first mode of v.c.a. operation described due to its negative going output.

If external automatic control of reverberation is not required it is essential that a grounded jack plug be inserted into the control socket otherwise the output of the control amplifier will be insufficient to swing the MFC6040 through its full range.
The current sink at the control input of the MFC6040 is specified as being 2 mA but on several

Fig. 7.11. Front Panel Wiring

Fig.7.12. Two methods of providing external control using a potentiometer and voltage control input. The relevant response curves are located below each circuit. Here the 0 dB reference equals a 13 dB gain
tested in this mode of operation quite a wide variation in current sink was noted, the highest being 25 mA . Consequently it is prudent to provide a series transistor on the output of the control amplifier, with overall feedback, in order that the 741 is not overloaded. The effect of overload will not necessarily damage the 741 but it could result in a reduction of the output voltage swing which would, in turn, affect the operation of the 6040 .

OMITTING THE V.C.A.

For some possible applications the use of voltage control will not be required and, in these instances, the MFC6040 and associated control amplifier may be omitted from the circuit entirely. In these circumstances the gain of the line output amplifier. IC5, will have to be increased by a factor of 0.33 if equal reverberated and non-reverberated components are required at the mixer. The output of IC5 is, of course. led direct to C6 on the mixer in these latter circumstances.

CONSTRUCTION

Fig. 7.10 illustrates the recommended circuit board layout. Construction is quite straightforward and the only setting up required lies in checking'the signal levels at the outputs of the buffer, line driver and line output amplifiers to ensure that equal signal components from both sources are presented at the mixer when the line is being driven hard at a suitable non-resonant frequency.
Adjustment of the gain of the line output amplifier may be necessary and is dependent upon the mechanical attenuation of the line which may differ unit to unit.

Overall construction of the module should generally follow the pattern previously described and the wiring of the components on the front panel and McMurdo plug are shown in Fig. 7.11.
In this module the McMurdo plug has insufficient ways to carry all the necessary signals and two extra leads are required to carry the control and audio signals to the reverberation amplifier. Reference to the block diagram in the first part of the series will show that the control signal is derived from RG2 while the audio signal is derived from the right channel of the output amplifiers yet to be described. Suitable leads should be run from the respective McMurdo sockets on these latter modules to a point immediately adjacent the left hand Vero endplate and secured to the connector mounting rail by a tie of lacing cord. From this point they should run along the end plate and be trimmed so that they protrude about three inches beyond the front face of the mainframe. Terminated in 1 mm miniature plugs, they can be mated with their respective sockets on the Ring Modulator circuit board when the finished module is being inserted into the mainframe.

A fully comprehensive revision of all module interconnections will appear in part nine of the current series.

For the benefit of constructors who may wish to explore the possibilities of the MFC6040, Fig. 7.12 shows two possible methods of providing external control with the resistance attenuation curve and the control voltage attenuation curve of this very versatile device.
In Part 3, VRZ is 1002.
Next month : The Envelope Shaper will be described.

DESPITE the recent adoption of the title International London Electronic Components Show, the RECMF of old seems still to be so called both on the official catalogue and by many of the exhibitors and visitors. However, this year it bears little resemblance to the Radio Show of old. Perhaps the word "subdued" would describe the feeling best.
In size the 1973 event was not much more than half its previous size, a factor with very mixed blessings. Obviously less to see but, to the footsore visitor, the possibility of seeing most of what was there without total self destruction. And, with less stands, the opportunity to see around, particularly from the gallery which of recent years has tended to become rather crowded.
The last three years have left their mark on the industry very clearly, as the drop in the number of exhibitors showed and it is a shame that some of the more famous semiconductor manufacturers chose not to attend. In fact the usual bustle, not just of visitors, but of new. products looking for markets seemed to be muted almost out of existence.

Generally the atmosphere was one of trading rather than of displaying goods, many of the stands were totally bereft of components or equipment and, in this sense were a sad disappointment to the engineer looking for new "toys". However, the current world shortage situation in many component areas probably goes a long way to explaining this.

RADIO RECEIVER I.C.s

Perhaps one thing which stands out from the show is the advances being made in integrated circuits. It is almost possible to build anything using i.c. techniques these days and several of the manufacturers are trying to prove just that.

Fairchild displayed a set of interesting chips which can make up an a.m. or f.m. radio with stereo facilities. These included their 720 single chip a.m. receiver, the 753 f.m. gain block, the 758 phase-
lock loop stereo decoder, the 3075 f.m. i.f. amplifier and limiter, detector and audio pre-amplifier, and the 706 audio power amplifier with a 5 W capacity.

Both mono and stereo were demonstrated using either one or two of the power amplifier chips and considering the nature of the halls at Olympia, reception was very impressive.

To an extent of course, this type of display is really more of an application demonstration than a display of new concepts since the basics of such systems have been around for some time. However, it does illustrate the way in which we can expect developments to go as more and more roles are taken over by the chip.

FILTERS USING I.C.s

Take the case of Siliconix of Swansea, well known in the semiconductor market. They are investigating the ability of multi-amplifier chips to provide variable filters, of great value in audio control and generation applications.

They have already developed some prototype circuits using their L114 triple operational amplifier and have established that it is possible to obtain a tuning range from 0 to 10 kHz , that high Qs up to 400 can be obtained, that high and low bandpass is simultaneously possible and that both gain and Q are easily programmable.
Indeed, they have even developed a digitally programmed filter using one of their own DG 507 chips to do the logic control.

With all this compression of componentry on to chips one almost wonders where the discrete component went. But one only has to look at any circuit board to see the still tremendous need for power rail droppers, couplers and so on.

MULTI-PURPOSE INSTRUMENT

On the more constructional side there were a number of interesting items. For the portable instrument constructor there was the Pakit kit multi-purpose instrument. An analogue display and movement is available to fit a moulded plastic
case which has ample room for circuitry and components. Available from Elcometer Instruments Ltd., the Pakit can be bought complete with a rechargeable power supply, self-designed front panel, leather carrying case and printed circuit.

The basic unit with case will probably market for something under $£ 20$.

CASES AND PACKAGING

For the inveterate casemaker there was a display of coated aluminium panel material from Bakelite Xylonite Ltd., which provides both strong covering. attractive colours and, as an added bonus fairly high electrical insulation by virtue of the plastic coating material.

For the man who is always losing components on the bench there was an interesting adaption of the plastic packaging market. Dunlavin Converters have developed their Ducon Carripallet system for packaging delicate materials to the point where it can be used for other applications.

Thus the Carripallet is a multicavity foam plastic pad measuring $400 \times 400 \times 50 \mathrm{~mm}$ and with 25 cells. Laid on its back. which is a cardboard support layer, it can be used as a multi-compartment tray. As the material is flexible foam plastic it will not damage delicate parts and indeed components can be stuck upright in it if required.

Normally items of this type are sold in large quantity only, but we understand that single sheets are available and will probably cost about fl each.

Weller were at the show with their latest low voltage temperaturecontrolled soldering pencils (no longer irons we see), the W-MCP available with a variety of tip shapes.

PANEL METERS

On the meter front several socalled panel meters were on display including the Dinline 50, the first such product to come from the Avo stable. The name is based on the rectangular styling which follows the DIN (IEC 51) specification,

A digital panel meter is something that, only a short while ago, would have been regarded as an instrument rather than a component. By miniaturisation and recent price reductions in digital i.c.s, Analogic are able to offer a versatile 3 -digit digital panel meter at only $£ 25$ in quantity. Designated the 2530 , this unit can measure, display and transmit voltages and currents of either polarity. The 2530 has fully floating inputs just like any analogue meter so that measurements with respect to any arbitrary level in a circuit can be made.

A filament readout is used for good readability and low cost. This meter can be incorporated in many types of instrument giving a really competitive alternative to analogue measuring instruments.

West Hyde displayed their Contil digital panel meter card with three digit display in Atron tubes and costing less than $£ 25$.

Integrated Photomatrix showed their digital panel meter kit using a MOS LSI chip and l.e.d. display which is available for $£ 36.75$. Of course the IPL unit is considerably smaller than many other displays on show.

LARGE SCALE INTEGRATION

One of the fastest-growing areas of semiconductor technology must be the MOS large scale integration (LSI) field. All the major companies appear to be competing to see who can cram the most MOSTS into a single 24 -pin package.

One of the latest contenders in this competition is the Motorola MCM6571L character general i.c. It contains a read only memory of 8,192 bits which can produce 128 different characters, including upper and lower case and Greek symbols, each character being formed by a matrix of seven horizontal and nine vertical dots. As well as the stored characters themselves there are 128 bits which are used to automatically control each character position so that the "tails" of letters such as p, q, and j come below the base line as in normal typewritten material.
Another piece of news in the MOS LSI field comes from General Instrument Microelectronics who announced that slashing price reductions have been made on their C500 calculator i.c. Its new price of $£ 13 \cdot 70$ (1 off) represents an $£ 18$ drop from its previous value. G.I. hope that this new low price will encourage designers to regard the calculator i.c. as just another component for use in many types of instrument where arithmetic operations are to be carried out. For instance, they could be used in a weighing scales which automatically displays the price of the goods after the price per pound is typed in.

NEW LOW-PRICE FOR L.E.D. DISPLAYS

While MOS manufacturers are aiming at miniaturisation, the display device manufacturers are aiming at bigger and brighter components. One of the innovators of l.e.d. displays, Monsanto, announced new low prices for their displays.
Single l.e.d.s can now be bought for 5 p in large quantities making it possible for manufacturers to use them in such applications as diagnostic lamps on printed circuit boards, panel lamps, and battery "low" indicators.
On the numeric display side the MAN5, a green seven-segment device is down to $£ 3.99$ from $£ 9$ (1 off) and the MAN64A, a 0.4 in numeric display down to $£ 4.27$ from £7•85.

NEW TIMER INTEGRATED CIRCUIT

A nother example of large scale integration, but this time combining digital and analogue functions was on show at the Elremco stand. Designated the LR171E, this i.c. has an enormous range of applications because of its inherent flexibility.
It uses a digital counter so that timing ranges of seconds, hours or even weeks can easily be obtained. A digital-to-analogue converter is used to give a current output which means that a cheap meter can be used to give an indication of time elapsed.
It has eight operational modes. delayed on, delay interval etc., and has three digital outputs which give indications at $\frac{1}{8}, \frac{1}{4}$ and $\frac{1}{2}$ of a preset time period.

The i.c. is TTL compatible and has integral output drivers for a triac or SCR. Price is $£ 12$ for one off.

RUSSIAN COMPONENTS

Many manufacturers are finding difficulty obtaining such ubiquitous components as resistors and capacitors and so it is not really surprising to see more and more imported components creeping into instruments such as calculators.

Z \& I Aero Services are importers of Russian resistors and capacitors and supply both to industry and non-professional users. The components are cheap, clearly marked with their values (not colour coded) and readily obtainable.

NOVEL BREADBOARDING AID

A novel breadboarding system which has great potential in the amateur field was shown by Critchley Bros. Ltd. Manufactured by the German firm of Christel Wainwright, the system is called "MiniMounts." Each Mini-Mount is a
small rigid board with a copper pattern on one side and adhesive on the other. Components are soldered onto the boards which are then positioned anywhere on a convenient baseboard (which could be copper-plated to give a good ground plane), and stuck in place.

This system has many advantages over other similar systems: no holes need be drilled; the adhesive holds the Mini-Mounts firmly in place yet they can be moved if the circuit requires; components and Mini, Mounts can be re-used if care is taken.
Mini-Mounts to take DIL i.c.s, and other such components are available so the system gives great scope to the designer.

NEW SHAPE FOR LAMINATIONS

Though by no means a spectacular breakthrough, the new design for transformer laminations by Kent Insulations shows how old and tested designs can be improved with a little ingenuity. Instead of the usual " E " shape the new type has a tapered centre arm so that excellent mechanical and magnetic contact is made when the two halves are fitted together.

MULTI-MEMORY MACHINE

On the Advance Electronics stand and in fact using the same case as the Advance calculators was a new accounting aid from Phytron. Called the Analysis 14 this calculator incorporates 13 accumulating memories each of which can be debited or credited at any time simply by selecting the required store with one of thirteen keys. Only credit and debit (i.e. addition and subtraction) are available, the manufacturers suggesting that this instrument is to complement, rather than replace, the normal desk calculator which can multiply and divide.

At $£ 210$ this calculator cannot really be termed inexpensive by modern standards and one wonders whether a machine without a printout is really useful in accounting, where mistakes cost money.

CONCLUSIONS

One wonders why a star attraction like the actual Apollo capsule "Charlie Brown" which circled the moon four years ago, which was on show on the Livinstone Hire stand together with a piece of moonrock. received so little publicity. This could have attracted great crowds, was this what the organisers were afraid of?
At a time when electronics is developing so fast, the show was not up to expectations and one can only hope that the companies will stop hiding their lights under bushels and give us some really interesting shows in the future.

STARTING NEXT MONTH! PRACTICAL ELECTRONICS Proudly Presents the

The PE RONDO is a total system incorporating the very latest technology and it will be described in full with all constructional details in a series of articles starting next month.
The receiver incorporates a varicap f.m. tuner with integrated circuit i.f. amplifier, quadrature detector and phase-locked-loop stereodecoder; and a uniquei.c.phase-locked-loopsynchrodynea.m. medium-wave monotuner. Optional i.c. matrix decoders: CBS SQ quadraphonic decoder or CBS SQ logic-enhanced quadraphonic decoder. Additional decoders will be presented as further systems become viable.
Modular construction techniques give flexibility, whilst the use of staterof-the-art i.c. technology allows all electronics to be housed in one compact unit. The system is completed by four shelf-mounting speakers, construction of which will also be fully described in this series of articles.

C. 2马 SEMICOMDETORS
 PART 2
 By M. J. Rose (mullard ltd.)

 POWER DEVICES, PHOTO DEVICES AND INTEGRATED CIRCUITS

 POWER DEVICES, PHOTO DEVICES AND INTEGRATED CIRCUITS}

The first article described the types of transistor and small-signal diode available. This article considers power devices, photo devices using, or emitting light, and the most revolutionary semiconductor device of all-the integrated circuit.

POWER DIODES

The amount of power that can be handled by a semiconductor diode is limited by the junction temperature. Provided the heat dissipated within the device can be conducted away so that the maximum permissible junction temperature is not exceeded, the diode will operate satisfactorily. Therefore a power miode should have as large a junction area as possible, and a low thermal resistance to the case. The cooling area can be increased by mounting the diode on a suitably shaped heatsink.

Germanium power diodes were developed using these techniques, and could carry currents of approximately 10A and withstand peak inverse voltages of up to 600 V . The introduction of silicon, however, led to their replacement during the 1960's by silicon diodes with junctions alloyed or diffused with aluminium.

AVALANCHE DIODES

As the reverse voltage across a junction diode is increased, a voltage is reached where avalanche breakdown occurs, marked by a sudden increase of current. Provided the diode can withstand the current at breakdown, it will recover when the reverse voltage is decreased below the breakdown value. Avalanche diodes are designed to withstand such breakdown currents, and so can be used safely in applications where voltage transients are likely to be encountered.

By the end of the 1960 's other protection devices such as high-speed fuses had been developed so that semiconductor-diode rectifier systems were firmly established in such applications as battery chargers, electroplating and electrolysis processes,

Fig. 8 High-voltage rectifier stack operating at 12 kV and 5 A with natural convection cooling (length approximately 10 in)

and electric furnace supplies. These semiconductor systems occupied less space than the existing systems, had a higher rectifier efficiency, and for the first time presented power engineers with a device that had no wear-out effects.

A high-voltage rectifier stack is shown in the photograph of Fig. 8. Diodes are mounted on heatsinks around a central fixing stud. Such stacks can be cooled by natural convection, or for higher currents by forced-air cooling or immersion in an oil bath.

Fig. 9 Structure and circuit symbol of thyristor

Fig. 10 Phase control using thyristor

THYRISTORS

The thyristor or controlled silicon rectifier was developed for power control in parallel with the silicon rectifier diode. The rectifier action of the thyristor allows a current to flow in one direction only, but in addition current can only flow when the thyristor has been triggered.
In form, the thyristor is a four-layer pnpn device, as shown in Fig. 9. The circuit symbol is also shown in this figure. If the anode is positive with respect to the cathode, and a positive voltage is applied to the gate, the thyristor conducts. Once conduction has been established, the gate voltage can be removed.

Therefore the thyristor can be triggered by a pulse provided the duration is sufficient to allow the current to be established. The thyristor is made nonconducting by reducing the current to below a holding value.

The method of power control with thyristors is shown by the waveforms in Fig. 10. By varying the trigger angle within the half-cycle (x), the amplitude of the current pulses passed by the thyristor, and hence the power delivered to the load, can be varied. This control technique is called phase control.

A second method of control is burst triggering, used for loads with a high thermal inertia such as furnaces. In this method, complete half-cycles of the mains supply are passed by the thyristor, the ratio of half-cycles passed to those blocked determining the power to the load.

TRIACS

Another device for power control similar to the thyristor is the triac or bidirectional thyristor. This device is equivalent to two thyristors connected in inverse-parallel with a common gate connection. The circuit symbol for a triac is shown in Fig. 11. A current will flow through the device when the gate is sufficiently positive or negative with respect to

Fig. 12 Thyristor stack for operation on 440 V three-phase mains to control 110A per phase

terminal mtl, the direction of current flow depending on the relative polarities of mtl and mt 2 .

The currents that could be handled by thyristors, and the inverse voltages they could withstand, increased during the 1960 's as the manufacturing techniques were improved. Present-day thyristors can handle currents up to 1000 A and withstand inverse voltages of over 2 kV . Protection devices have been developed as with rectifier diodes to ensure reliable operation under practical conditions.

A typical thyristor stack with thyristors connected in a bridge configuration for the control of power to a load is shown in Fig. 12. The thyristors are mounted on heatsinks.

THE DIAC

The diac, or bidirectional diode thyristor, is a useful trigger device for thyristors and triacs. It uses avalanche breakdown, but as the characteristic in Fig. 13 shows, the voltage decreases after breakdown so that the gate circuit is not overloaded on triggering.

SILICON CONTROLLED SWITCH

Another four-layer pnpn device is the silicon controlled switch or SCS. Unlike the thyristor and triac, both intermediate layers of the SCS are accessible making it a four-terminal device. The structure and circuit symbol are shown in Fig. 14.

The SCS (like the thyristor) has two stable states: conducting and non-conducting. The SCS can be used in two circuit configurations. In one, the load is connected in the anode gate circuit so that the SCS operates as a four-terminal device. In the other, the load is in the anode circuit and the anode gate is not connected. The SCS then acts as a lowpower thyristor or three-terminal device.

PHOTOTRANSISTORS AND PHOTODIODES

Light falling on a junction in a semiconductor diode or transistor affects the current through the device. The energy of the light dislodges electrons and so increases the number of carriers available at the junction.

Constructive use of this effect is made in photodiodes and phototransistors where the change in current with light can be used in such applications as light meters and alarm systems.

Other semiconductor materials exhibit a change of resistance with light, and this effect is used in photoconductive cells (or light-dependent resistors). The choice of semiconductor material determines which part of the spectrum the device responds to, for example cadmium sulphide responds to visible light while lead sulphide is used for infrared detectors.

LIGHT EMITTING DIODES

Another type of photodevice is the electroluminescent or light-emitting diode (Fig. 15). This device is made from gallium arsenide or gallium arsenide phosphide, and when a sufficiently high current (a few milliamperes) is passed through, light is emitted. Such diodes can be used as indicator lights directly coupled into, for example, computing systems.

INTEGRATED CIRCUITS

Of all the semiconductor devices that followed the invention of the transistor, the most revolutionary both in reducing the size of equipment and improving reliability is the integrated circuit.

The problems of manufacturing different circuit elements on the same silicon chip were overcome so that integrated circuits that were both practicable and economic became available by the mid-1960's.

Today two types of integrated circuit (i.c.) are available, the bipolar and MOS, each with their advantages and disadvantages for particular applications.

BIPOLAR I.C.

The bipolar i.c., as the name implies, uses bipolar transistors manufactured by the planar process. Diodes are formed by a single diffusion, capacitors by using a reverse-biased diode junction, and resistors by a single diffusion like a stretched-out diode with connections at both ends. The main problem with the manufacture of bipolar i.c.s is isolation between components.

MOS INTEGRATED CIRCUITS

The transistor used in MOS i.c.s is a field-effect transistor, the MOSFET or MOST. Because MOS i.c.s are almost exclusively used in digital applications, an MOST can form the load for a nother MOST, the transistors are directly coupled, and the capacitances on which information is stored are formed by the gate capacitances of the MOSTs
themselves. Thus only transistors and connections need to be formed on the chip.

One advantage of MOS i.c.s over the bipolar type already mentioned, is the fact that no isolating diffusion is needed on the chip. In addition, an MOST is smaller than the equivalent bipolar transistor. Both these reasons lead to a higher packing density being achieved with MOS i.c.s. On the other hand, bipolar i.c.s have a higher operating speed, and can drive higher current and capacitive loads which MOS i.c.s cannot do without interface circuits.

Thus the choice of MOS or bipolar i.c. may well depend on the requirements of the application rather than any clear-cut advantage of a particular type.

In general, it can be said that small scale integration (SSI) is rarely economical with MOS i.c.s so that gate packs and flip-flops will use bipolar i.c.s.

Large scale integration (LSI) for such devices as random-access memories (RAMs) and read-only memories (ROMs) will use MOS i.c.s. The choice for medium scale integration (MSI) will depend on the application.

COMPLEMENTARY MOS

A limitation on the use of MOS i.c.s occurs through the use of field-effect transistors. The current-carrying channel for the transistor is formed in the substrate, and so normally only p-channel or n-channel devices but not both can be formed on any one i.c.

To overcome this, a technique called complementary symmetry MOS or CMOS has been developed. Areas of p-material are diffused into an n-type substrate so that both n-channel and p-channel MOSTs can be formed.

More diffusions are required for CMOS than with normal MOS i.c.s, and a lower packing density results. On the other hand, there are considerable advantages for the user, particularly higher operating speeds and lower dissipation.

Fig. 16 Integrated circuit chip compared with ordinary sewing needle, the chip being $1.5 \times$ 3 mm

FAMILY TREE OF SEMICONDUCTOR DEVICES

LINEAR I.C.s

The i.c.s described above are digital circuits. Later in the 1960's linear i.c.s were developed. In terms of the number of devices contained, these i.c.s are more complex than the equivalent discrete stages they replace, although cheaper and with better performance. Today a wide range of linear i.c.s is available covering r.f. and i.f. amplifiers, operational amplifiers, TV signal-processing circuits and audio amplifiers with output powers up to several watts.

The reduction in size possible with an i.c. is impressive, typified by such photographs as that in Fig. 16 showing a silicon chip containing over 120 devices passing through the eye of an ordinary sewing needle.

COLLECTOR DIFFUSION ISOLATION

Another process which overcomes many of the disadvantages of conventional bipolar i.c.s has been developed by Ferranti from an American idea. Known as the collector diffusion isolation (CDI) process, it makes use of thin epitaxial layers but needs only five masking processes making it comparable to MOS technology in simplicity.

Fig. 17 shows the structure of a CDI transistor. The process uses a p-type substrate into which buried low resistivity $n+$ areas are diffused where each resistor, transistor or diode is to be formed. A thin epitaxial p-type layer is then diffused. The collector diffusion is then made producing low resistivity $n+$ channels round each component. This diffusion serves three purposes: to make contact with the buried $n+$ area which forms the collector; to provide isolation between components; and to define base and resistor areas.

A shallow p-type layer is diffused over the whole slice to define resistor values. A shallow emitter diffusion then follows.

The CDI process reduces transistor areas by up to a third and also enables digital and linear circuits to be combined on one slice. The main disadvantage is that there is no pnp transistor available, though

Fig. 17 Structure of a CDI transistor (Ferranti)
a p-channel f.e.t. under development should overcome this difficulty.

CONCLUSIONS

From the original low-power low-frequency transistor have developed transistors capable of operating high in the radio frequencies, transistors handling powers of over 100 W , transistors capable of switching wave-forms with rise times of 1 ns. Signal diodes operating in the microwave frequencies have been developed, and diodes and thyristors capable of operating on high-voltage supplies controlling powers measured in megawatts. Devices reacting to and producing light are available, and devices containing a complete computer processing system on a chip only 3.5 mm square.

Although the transistor was the fore-runner, the most revolutionary device may well be the integrated circuit which has brought a new concept into electronic circuit design. The thermionic valve (apart from its more specialised forms such as klystrons and magnetrons) had a commercial life of about 35 years. It may well be that the discrete transistor apart from more specialised forms like photodevices will have a shorter life.

THE PAST few years have seen more and more houscholders tackling home wiring installation work. When the work is completed and before the mains can be permanently connected certain safety checks have to be made. This article and project deal with a very useful instrument that will measure the insulation resistance of the wiring.

Poor insulation causes current to flow between the line and earth or neutral. This current in turn will generate heat in the wiring, which if of sufficient temperature could cause fuse blowing or, more seriously, a fire.

Unfortunately, most do-it-yourself wiring enthusiasts do not possess the means for measuring leakage currents at high voltage. Commercially available instruments are expensive and secondhand units are not cheap either. The traditional instrument consists of a hand driven generator that causes a high voltage to appear across a lead terminating in a couple of croc clips, a meter registers the insulation resistance. More recently, electronic testers have tended to replace the hand driven types.

Fig. 1. Circuit diagram of the Megohmmeter

DESIGN CONSIDERATIONS

The a.c. voltage in the United Kingdom is 240 volts r.m.s. Since we are interested in peak voltage, and $V_{\text {peak }}=V_{\text {r.m.s. }} \times 1.414$ the test voltage generator will need to be at least 340 volts. In practice, however, regulations require that a minimum of 500 volts be used.

The 550 volt megohmmeter here described satisfies the twin requirements of the home electrican; it is easy to build and the price is low compared to commercially available units. Push button operation is employed as this prevents inadvertent battery run down due to a switch being left on. All of the components are readily available.

As to the choice of a suitable transistor high voltage generator; the demands made by the Megohmmeter dictate that a sine wave oscillator type d.c. convertor be used. There are three broad types of d.c. convertor that could be used, namely: ringing choke, multivibrator and sine wave.

Each of these circuits produce an oscillating voltage that is stepped up to a higher voltage by means of a transformer and then rectified to give a d.c. voltage at the required level.

Although the least efficient of the three, the sine wave oscillator is the first choice in favour of the ringing choke method when it comes to ease of starting. In economy of components it beats the multivibrator circuit. Since the Megohmmeter does not need to produce more than about 170 microamps under short circuit conditions, a low efficiency high voltage generator does not matter in the least.

CIRCUIT OPERATION

Transformer TI, TRI and the associated circuitry form a sine wave oscillator whose period of oscillation is determined by the inductance and self capacitance of TI (Fig. 1).

The feedback winding of T t sustains the oscillation and is connected to the junction of R1 and R2 which together with R3 and VR1 set the d.c. bias for TRI. Cl prevents a.c. degeneration. VR1 allows for variation in voltage developed across the collector winding of TI .

The diodes, D1, D2, D3 and D4 plus the capacitors, C2, C3, C4 and C5 comprise a voltage quadrupler circuit. This circuit rectifies the a.c. voltage appearing across L3 and multiplies by four its equivalent d.c. value.

By varying VRI over its whole range the open circuit output at the test leads can be varied from approximately 300 to 650 volts. In practice however, the voltage will be set at 550 for normal use. The wide range does allow for increased versatility and the constructor will be able to make use of this from time to time.

CONSTRUCTION

Dismantle the Ferroxcube core and carefully mount the bobbin on a suitable arbor - the author used a wheelbrace which had a gear ratio of $3.75: 1$ clamped in a bench vice and a 2 BA screw as the arbor.

Strip a 2 in length of thin pliable plastic sleeve from some spare wire and thread this onto some 41 s.w.g. enamelled copper wire (L3).

Carefully wind 400 turns and finish off L3 by insulating with one turn of Scotch Tape.

Next wind 40 turns of 41 s.w.g. for L2 and similarly insulate. Finally wind 40 turns of 28 s.w.g. for LI and complete the transformer with a layer of tape.

The rest of the construction is quite straightforward (Fig. 2). The only caution is that building the circuit on inferior leaky tagboard is bound to cause difficulty in getting an infinity reading since leakage current will cause a standing error. The ideal case is plastic although metal can be used if care is taken with insulation.

SETTING UP

Once the circuit has been built, it is first of all necessary to establish the working of the oscillator.

Fig. 2. Layout of the components on the tagboard and interconnections to the transformer, potentiometer, pushbutton and meter.

componexis

Resistors

R1 $39 \mathrm{k} \Omega$
R2 $10 \mathrm{k} \Omega$
R3 100Ω
R4 $2.2 \mathrm{M} \Omega$
All $\frac{1}{4}$ W 10% carbon

Potentiometers

VR1 $1 \mathrm{k} \Omega$
VR2 $5 \mathrm{k} \Omega$ preset
Capacitors
C1 $25 \mu \mathrm{~F} 6.4 \mathrm{~V}$ electrolytic
$\mathrm{C} 2,3,4,5 \quad 0.047 \mu \mathrm{~F} 400 \mathrm{~V}$ polyester (4 off)

Semiconductors

TR1 2N3053
D1, 2, 3, 4 1N4004 or any 400 p.i.v. low current diode (4 off)

Miscellaneous

S1 Miniature pushbutton
ME1 $\quad 100 \mu$ A f.s.d.
T1 Ferroxcube core type LA1 or equivalent 9 way Tagboard
Crocodile Clips (2 off)
9 V Battery. PP7 or similar
Metal case $4 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in}$
41 and 28 s.w.g. enamelled copper wire

Short the test clips together and the meter should indicate some value. If no movement is seen the oscillator feedback winding (L.2) has to be reversed. Once the circuit is working, the output should be set to 550 volts.

Connect a high resistance voltmeter between points A and B then adjust VRI for 550 volts. During this operation the test clips must of course be open circuited. The meter can now be calibrated in terms of megohms.

Remove the meter from its case and place it on the working surface having previously cleaned up and dusted down. Carefully remove the scaleplate and paint the reverse side matt white with emulsion paint.

When dry place the scaleplate - with its original markings uppermost-on a piece of cardboard. With a compass find the radius of the scale line and the maximum and minimum positions. Transfer these lines to the blank side. Screw the scaleplate back on the meter.

Short out the test clips and mark the scale with a soft pencil at this point. Now connect 1, 3, 10 and 50 megohm resistors and mark these equivalent points in. A professional job can be done by using plastic film ink for the scale lines and Letraset for the letters and numbers.

CONCLUSION

The 550 volt insulation tester that has been described should prove to be a valuable addition to the electricians tool kit. There are of course other uses to which it can be put, insulation tests for the electronic engineer being one example.

By making a simple twin pointed probe, relative dampness in wood and plaster can be measured.

UPTURN

Yesteryear's sobs and groans from industry salesmen were conspicuously absent at the London Electronic Components Show. Nobody seemed to care that the show was smaller than before and, from first reports, less well attended. Those who came were buyers and that was the important thing.

But it wasn't all smiles and sunshine. The spectre of empty order books may have retreated but only to make way for another spectre to give top management some sleepless nights. What is haunting the industry to-day is how to get components made fast enough to meet the demand. Those maior companies which had spare capacity have none today. An even worse fear looming up is a shortage of raw materials.

But, on the whole, things look pretty good. Quipped one exhibitor, "If you can't make a few bucks in these conditions you never will."

This year's Chairman of RECMF, Ronald Bulgin, wore one of the biggest smiles at the show. His publicly quoted family business is still a profit leader in the industry and he will preside as the component industry Chairman in a boom period. What could be better?

Wearing his chairman's hat rather than his company's, he put out a public plea for rationalisation of the exhibition calendar. And he was quite right to do so. In the past six months we have had Electronica in Munich, the Paris Salon and the British show at Olympia. What the industry needs is one big international show a year in Europe with London, Paris and Munich in rotation so that each of the three electronics "capitals" puts on a show every three years.

A sensible idea but unlikely to be accepted by exhibition organisers while they still make huge profits from the present spate of shows. The only hope is that the economic forces of the market place will do what exhortation won't. If enough would-be exhibitors opted out, the exhibition organisers would have to adjust their ideas.

ROYAL SPOKESMAN

His Royal Highness The Duke of Kent is tipped to succeed Admiral of the Fleet Earl Mountbatten of Burma as an important independent commentator on electronic industry affairs.

As yet, The Duke admits to being "' a complete amateur, hardly knowing the difference between R and C.: But having heard him speak on the subject I find him wellinformed. Naturally, he is briefed in advance of public utterances but I am reliably told that his interest in electronics borders on the enthusiastic and that he is eager to expand his knowledge of the industry not only in its technology but also in its commercial and social impact.

If knowledge is born of experience he should be learning fast. He is a member of the National Electronics Council and opened the London Electronic Components Show and, more recently, Microwave ' 73 at Brighton.

THE OLD AND THE NEW

This is a good year for anniversaries. Sperry Gyroscope has just celebrated 60 years in the U.K. with an exhibition opened by Prince Philip, Duke of Edinburgh, at the company's Bracknell HQ. Then there's AVO Ltd., celebrating fifty years in coil winding equipment and instruments (the millionth Avometer left the works as lona ago as 1965!).

But what about companies yet unborn? There are plenty on the way to swell the ranks of industry. Expect announcements soon that Jim Griffith, boss of Plastronics, is setting up a manufacturing plant in Germany and that Maurice Hatter, a co-founder of Keyswitch Relays (subsequently sold to Thorn). is moving back into relay manufacture in a plant in Italy. Two new British Euro-babies for the Common Market.

HI-FI

Cosmocord is looking to hi-fi as a logical expansion based on its long history in pick-up cartridges, audio instruments and, more recently.
head sets and ear protectors. For a start, the company has won the sole U.K. franchise for quality speakers built by Martin in the USA. There is a complete range from about $£ 30$ per pair up to $£ 200$ for a single 100W multiple speaker unit.

Cosmocord tell me that there is a possibility of making some of the Martin range in the U.K. but following the recent introduction of the ACOS "Lustre" pick-up arm (reported to be doing well), it is more likelv that manufacture will be concentrated on tuners and amplifiers to complete the audio chain. Cosmocord marketing men are scanning the market with a keen eye before committing themselves, but if the Martin speakers are to come as part of a Cosmocord hi-fi package my guess is that they are lookina at the top end of the market.

The company has now absorbed the Birch-Stolec thumbwheel switch business - renamed Cosmo--cord-Stolec-which has a turnover of some $£ 250,000$ a vear. In all Cosmocord is targeted for $£ 1.85 \mathrm{mil}$ lion turnover in the fiscal vear just started.

NOT ALL HONEY

Although the electronics capital goods sector has a more healthy looking order book than last vear. things are still sluggish according to the Electronic Enaineering Association. Sales at $£ 684 \cdot 5$ million. although marginally higher in total than in the previous year, were in real terms, showina a decline said retiring President Dr B. J. O'Kane in his "state of the industry" address at the EEA annual luncheon. Best areas in the vear under review were communications and marine radar, both of which showed gains of better than 20 per cent.

Disturbing and perhaps an uncomfortable experience for RankXerox, brightest and most profitable jewel in the Rank crown, is the impending Monopolies Commission probe. The British inquiry follows the threat to the U.S. parent company of anti-trust action by the U.S. Trade Commission. Curtailing of Rank-Xerox activities could have quite an effect on many of the smaller electronic companies who are engaged in sub-contract work for the company.

Even prosperous Mullard has its black spots. Forecast losses on integrated circuit manufacture this year is $£ 700,000$, following losses of nearly $£ 3$ million in the dast two years. Break-even is forecast by the end of the year and profit by the end of '74, or perhaps a little earlier. Meantime, the really hot lines like colour TV tubes more than make up for the deficiency.

3/ CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :

To BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, P.O. BOX 156, JERSEY. Please send your free brochure, without obligation, to: we do not employ representatives
valve experiments, transistor experiments amplifiers, oscillators. signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a c. experiments, d.c. experiments, simple counter, time delay circuit servicing procedures

> This new style course will enable anyone to really understand electronics by a modern. practical and visual method - no maths, and a minimum of theory-no previous knowledge required It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc.

ELECTRONORAMA

STEPS FORWAŔD IN TIME

UNTIL 1970 electronic watches seemed to make very little impact on the market, probably because the manufacturers themselves seemed mostly reluctant to invest in this new technology. However three years ago the major Swiss manufacturers unveiled new electronic models incorporating quartz oscillators and it became clear that the whole industry was actively concerned with "the watch of the future".

THREE TYPES

Since that time electronics have become the major topic of interest and excitement throughout the watch world. Today there are three types of electronic watches driven by batteries. These are tuning fork, quartz and solid state.

Tuning fork watches employ an acoustic resonator (tuning fork) as a timing device and a motor driven by a transistor circuit. Because of this they do not tick but emit a slight hum. The accuracy of these watches is about one minute a month.

Quartz systems with mechanical display use a quartz crystal which oscillates under the effect of an alternating electric field. These oscillations, through a system of circuits and a motor, control the hands of the watch and provide accuracy within 5 seconds a month.

Solid state electronic models show the time in figures with a digital display instead of hands and have no moving parts. They use a quartz crystal oscillator as a timekeeper and activate a liquid crystal or diode display on the face of the watch. Again these have an accuracy of around 5 seconds a month. In addition to these, there are watches which are better described as electric rather than electronic. They employ a conventional hair spring and a balance wheel as the timing mechanism, but are powered by a battery as opposed to a main spring. Their accuracy is no more than that of a comparable conventional watch.

SIMPLE SERVICING

The advent of electronic watches offers considerable benefits as substantial improvements in accuracy and reliability can be achieved. In addition, problems of aftersales service will be reduced at a time when servicing is increasing in cost and there are fewer skilled watchmakers, because the regular cleaning and maintenance necessary for conventional watches is either considerably reduced or eliminated for electronic models.

NEW DESIGN CONCEPTS

Omega, part of SSIH (Société Suisse pour I'Industrie Horlogère SA)-the world's third largest watch manu-facturer-have announced new design concepts for electronic watches, which made their international debut last month at the Swiss Industries Fair in Basle.

The three new watches are the Megaquartz 2400, the Time Computer and the Megasonic 720. The Megaquartz is a quartz watch with a mechanical display. It has a precision reaching \pm one second a month in normal wearthe world's most accurate watch.
The Time Computer is a solid state electronic watch with no moving parts, which shows the time digitally. This model has an accuracy within five seconds a month.

The third new model, the Megasonic 720 , is an original and entirely new development of the basic tuning fork watch, and has an accuracy reaching 10 seconds a month in normal wear.

THE MEGAQUARTZ 2400

The Megaquartz 2400 heralds a new generation of quartz watches. Announced as the world's most accurate watch it only varies within one second a month. This remarkable increase in precision over earlier quartz watches (about 1 minute a year) is achieved with a crystal vibration of $2,359,296$ times a second.

The first generation of quartz watches used frequencies of up to $65,536 \mathrm{~Hz}$. In order to achieve any further technical progress beyond this point it was necessary to increase frequency up to at least $1,000,000 \mathrm{~Hz}$, but microelectronic technology was not available to make this practical.

Now with the Megaquartz 2400 Omega have developed a unique electronic microcircuit. This has been achieved by using an analogue circuit dividing the quartz frequency, and by the most advanced CMOS technology in the area of integrated circuits of micropower.

One characteristic of the watch woild be important to the "Jet Set", who travel between time zones. In order to maintain the accuracy of the minute and second hands the watch can be immediately adjusted by moving the hour hand alone.

Megaquartz 2400 is now in production, and it is expected that it will be available in the U.K. in 1974, at prices starting from $£ 425$.

Photograph showing the movement of the Megaquartz 2400, claimed to be the world's most accurate watch

Movement of the Megasonic 720 - the first original development on the basic tuning fork watch

The Time Computer. A solid state digital watch with no moving parts

THE TIME COMPUTER

The Time Computer is a completely solid state digital watch with no moving parts. The display is by red light emitting diodes arranged for four digits.
Time is shown "on demand" by pushing a command button which illuminates the light emitting diodes covered by a synthetic ruby face, chosen for its hardness and filtering qualities. When the command button is pressed the time in hours and minutes is shown for 1.25 seconds and is then replaced by the seconds for as long as the button remains depressed.
Another advance in this timepiece is its unique system for resetting time that allows hours or minutes to be changed independently. This is an obvious advantage for international travellers constantly flying from one time zone to another. Time is changed by inserting a tiny magnetic key into one of the two timeset recesses in the back of the watch, one linked to the minute digits, the other to the hours. To change the hour only, the magnet is placed into the hour recess, when the face lights up to show the hour digits moving forward.

The Time Computer has the equivalent of 1,238 transistors in a surface area of only $3.8 \times 3.8 \mathrm{~mm}$. Its brain is an electronically operated quartz crystal vibrating 32,768 times a second.
The vibrations are counted and the results are fed to the driver decoder circuit, which activates the time display on derpand. The watch is powered by two tiny batteries.

Because the watch has no moving parts there is no need for the oiling and cleaning advised for conventional movements.
The Omega Time Computer will be available in the shops within a few months at around £300.

MEGASONIC 720

Electronic tuning fork (acoustic resonator) watches are well established and proven on the market. Almost all the major manufacturers offer models which are basically derived from the original invention in the 1950's by Max Hetzel.
The Megasonic 720 has distinct advantages over earlier tuning fork watches. It gives a considerable improvement in accuracy to within ± 10 seconds a month in normal wear, compared with 60 seconds in similar watches. This is achieved by increasing the frequency at which the resonator vibrates to 720 hertz compared to $300 / 360$.
The acoustic resonator is stimulated by an integrated circuit. The movement is transmitted to the train by an original micromotor. The train is driven by magnetic gear, and conventional display shows seconds, minutes, hours, day and date. A mercury battery powers the movement and guarantees it for one year's running.
Its launch is scheduled for 1974 in a new range of models styled Omega Megasonic 720. Retail prices have not yet been finalised, but are expected to be only slightly above existing models.

TRANSFORMERS

MAINS ISOLATING SERIES
Primary 200-250 Volts Secondary 240 Yolts Centre Tapped (120 V) and Earth Shiplded

		AILABLE			
Aef. No.	$\begin{gathered} \text { VA } \\ \text { (Wotes) } \end{gathered}$	Weight it or	size cm.	$\mathcal{C}^{P \& P}$	
07	20	111	$7.0 \times 6.0 \times 6.5$	17730	
100	80	38	$8.9 \times 8.0 \times 7.7$	18236	N014
61	100	5121	$10.2 \times 8.9 \times 8.3$	$2 \cdot 88 \quad 52$	
30	200	981	$12.0 \times 103 \times 10.0$	48352	
62	250	124	$9.5 \times 12.7 \times 11.4$	6.3867	
55	350	1501	$14.0 \times 10.8 \times 12.4$	8.5582	
63	500	2701	$17.1 \times 11.4 \times 159$	1232	
92	1000	400	$17.8 \times 17.1 \times 21.6$	2270	
128	2000	6302	$24.1 \times 21.6 \times 15.2$	3750	
Ref.	VA	AUTO Weight	SERIES (NOT size cm.	ISOLATED) Auto Tops	
	(wotts)) 16 oz			
113	20	11	$7.3 \times 4.3 \times 4.4$	0-115-210-240	0.9322
64	75	114	$7.0 \times 6.4 \times 6.0$	0-115-210-240	1.8230
4	150	30	$8.9 \times 64 \times 76$	0-115-200-220-240	$2.20 \quad 36$
66	300	60	$10.2 \times 10.2 \times 9.5$	4.2852
67	500	128	$14.0 \times 10.2 \times 11.4$	" ${ }^{\text {" }}$	6.3567
84	1000	160	$11.4 \times 140 \times 140$. . .	11.5482
93	1500	289	$13.5 \times 14.9 \times 165$	16.72
95	2000	$40 \quad 0$	$178 \times 165 \times 21.6$. ..	21.82
73	3000	458	$17.4 \times 18.1 \times 21.3$,.	29.70

TOTALLY ENCLOSED IISV AUTO TRANSFORMERS $115 \vee 500$ Wart totally enclosed auto transformer, complete with mains lead and two 115 V outlet sockets, $88 \cdot 63, \mathrm{P}$ \&
Also available a 20 Watt version $\mathrm{E} 1 \cdot 84, \mathrm{P}$ \& P 22 p
PRIMARY $200-250$ VOLTS I2 ANDIOR 24 VOLT RANGE
Ref. Amps. Weight Size cm . Secondory Windings
No. $12 \mathrm{~V} 24 \mathrm{~V} 1 \mathrm{~b} ~$
111

P\&
$\begin{array}{cc}\& & 0 \\ 0.93 & 22\end{array}$
$\begin{array}{ll}0.93 \\ 1.11 & 2\end{array}$
$1.46 \quad 22$ $\begin{array}{ll}1.46 \\ 2.04 & 36 \\ 2.46 & 42\end{array}$ $\begin{array}{ll}2.46 & 42 \\ 2.73 & 52\end{array}$ $\begin{array}{ll}2.73 & 52 \\ 3.23 & 52\end{array}$ $\begin{array}{ll}4.99 & 52 \\ 6.35 & 67\end{array}$ 6.3567
1.7382 Ref. Amps. Weighe Sizecm. 30 VOLT RANGE $\begin{array}{lrr}p & \& & p \\ \& & p \\ 1 & 11 & 22 \\ 1.48 & 36 \\ 2.21 & 36 \\ 2.72 & 42 \\ 3.23 & 52 \\ 4.02 & 52 \\ 4.80 & 52 \\ 6.20 & 67 \\ 7.85 & 67\end{array}$
50 VOLT RANGE $\begin{array}{ccccc}\text { Amps. Weighe } & \text { Size cm. } & \text { Secondory Tops } \\ 0.5 & 16 \text { oz } & 11 & 7.0 \times 7.0 \times 5.7 & 0-19-25-33.40 .50 \mathrm{~V} \\ 1.0 & 2 & 10 & 8.3 \times 7.3 \times 7.0 & .\end{array}$

60 VOLT RANGE
 Ref. Amps. Weight Amps. Weight Size cm

$12.51114 \quad 13.3 \times 10.8 \times 12.1$
ratings are continuous. Standard construction: open
tags and wax impresnation. Enclosed styles to order.
FULL SPEC. TRANSISTORS (E.G.)
BCIO7/108/109 10p each, $|2 \mathrm{~N} 305560 \mathrm{peach}|$ ADI61/62 60 p pai Carriage via B.R.S

* Quantity prices on application ELECTROSIL RESISTORS • AVOMETERS PLEASE ADD 10\% FOR V.A.T

BATi] ciectronics

3, THE MNORIES, LONDON EC3N 1BJ
TELEPHONE: 01-488 3316/8
neabest tuee stations aldgate a aldgate east

N The June issue of Practical Electronics the introduction of a new integrated circuit, the 555 , was discussed in detail from both the theoretical and practical point of view. Only one application as a timer suitable for photography or event control was considered as a constructional project.

Thus we now consider the application of this i.c. to the control of such items as the lights on the Christmas tree or in a window display so as to provide a flashing effect. At the instant the one set of lights is switched off, another set can be switched on if this is desired. The two sets are then illuminated alternately.

THE CIRCUIT

The type NE555V i.c. which has a dual-in-line encapsulation was used by the writer, but the NE555T in the circular TO-99 encapsulation is equally suitable. Both types have eight connecting leads and contain the equivalent of 23 transistors, two diodes and 16 resistors in a small package.

The 555 is used in the astable mode in this application. In the circuit shown in Fig. 1, the capacitor C1 alternately charges and discharges so that the potential across it varies between $\mathrm{V}_{\mathrm{cc}} / 3$ and $2 \mathrm{~V}_{\mathrm{c}} / 3$. Each time the voltage across Cl falls to $\mathrm{V}_{\mathrm{cc}} / 3$, the 555 is automatically re-triggered by means of the connection to the trigger pin 2 ; the capacitor then commences to charge again.

TIMING

The charging current flows through both R1 and $R 2$. It can be shown that the time for charging from $\mathrm{V}_{\mathrm{cc}} / 3$ to $2 \mathrm{~V}_{\mathrm{cc}} / 3$ is $0.693\left(R_{1}+R_{2}\right) C_{1}$ seconds where R_{1} and R_{2} are expressed in ohms and C_{1} is expressed in farads. During discharge the current from CI flows through R2 only; thus discharging lakes the shorter time $0.693 R_{2} C_{1}$. The frequency of oscillation is $1.44 /\left(R_{1}+2 R_{2}\right) C_{1}$. The charging time cannot be made shorter than the discharging time.

If one uses the values for $\mathrm{R} 1, \mathrm{R} 2$ and C 1 shown in the circuit, one can calculate that the charging time is 4.8 seconds and the discharging time 3.3
seconds. This should be suitable for the automatic switching of lights in a shop window or on a Christmas tree.

In practice the times will not be exactly equal to the calculated values since the values of the three components will differ somewhat from their marked values. In particular, electrolytic capacitors have very wide tolerances.

The component values can be altered to obtain the desired switching times. However, for applications of this type one does not need to adjust the values critically. One may require shorter times for use in a flashing toy; for example, Cl may be reduced to $2 \mu \mathrm{~F}$ of $1 \mu \mathrm{~F}$. The value of the power supply voltage, V_{cc}, does not affect the switching times appreciably.

THE RELAY

The relay remains open whilst the capacitor is charging, but closes during the discharging time. A diode must be placed in parallel with the relay in order to suppress the transient back e.m.f.; the latter is generated across the inductive relay coil when the current ceases to flow through it. If the transient voltage is not suppressed with a diode, it could damage the integrated circuit.

Fig..1. Circuit diagram for the simple i.c. flasher

The writer used an economical microswitch relay type MS1B designed for printed circuit board mounting. It is readily available (through retailers) from Keyswitch Relays Ltd. The value of the power supply voltage, V_{cc}, used must match the recommended relay operating voltage to within about 20 per cent. If V_{cc} is between five and seven volts, an MS1B with a $6 \mathrm{~V}, 50 \mathrm{~mA}$ coil rating should be employed. Alternatively V_{cc} may be between 9.5 and $15 \cdot 5 \mathrm{~V}$, in which case the MS1B employed should have a $12 \mathrm{~V}, 26 \mathrm{~mA}$ coil rating.

The MS1B relay has a single group of change-over. contacts which can switch 250 V at up to 5 A in a.c. circuits. This maximum power of 1.25 kW is more than is likely to be required in any shop window of moderate size.

Nevertheless, a larger relay can be used in this circuit if necessary provided that it does not require a current of over 200 mA to operate it. Another type of microswitch relay, the Keyswitch Relay type MS2B, has two pairs of change-over contacts each of which can control a current of up to 2 A in a 250 V a.c. circuit. In d.c. circuits the current ratings of relay contacts are lower $(0.2 \mathrm{~A}$ at 2.50 V and 0.25 A at 100 V for both the MS1B and MS2B).

Fig. 2. Circuit diagram for a suitable power supply

POWER SUPPLY

The circuit of Fig. 1 can be operated from a small battery. Indeed, this is the most sensible source of power to use in a toy for children. The integrated circuit itself requires a current of about 3 mA (maximum 6 mA) when V_{cc} is 5 V , but the current rises to about 10 mA (maximum 15 mA) when $\mathrm{V}_{\text {ce }}$ is 15 V . The relay coil current is additional to these values.

When the circuit is used to switch 250 V lamps on and off, it is normally more convenient to employ a small power pack which operates from the mains.

Fig. 3. Board layout for the flasher circuit

Components

Resistors

R1 $=220 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 10 \%$
R2* 470k $\Omega, 1 / 10 \mathrm{~W}, 10 \%$

Capacitors

C1* $10 \mu \mathrm{~F}, 15 \mathrm{~V}$ electrolytic

Miscellaneous

NE555V (or NE555T) Signetics integrated circuit OA47 gold bonded germanium diode. MS1B relay, 6 V or 12 V coil (see text).
Mains three-way input plug if needed.
One or two two-way output connectors (depending on whether one or two sets of lights are to be switched).
Eight pin dual-in-line socket (if NE555V used).
*Values may be altered to obtain desired switching times.

POWER PACK

T1 Small mains transformer with an output of either about 5 V or about 10 V r.m.s., depending on the relay used (see text).
D1-4 1N4001 or similar or alternatively one bridge rectifier such as REC 41A (RS Components Ltd.).
$250 \mu \mathrm{~F}$ capacitor, 15 V , electrolytic.

The whole system can then be operated from a supply which is switched off at a preset time at night by the normal type of time switch used for controlling the lighting in many shop windows.

A suitable power supply circuit is shown in Fig. 2. The output of the secondary winding of the transformer Tl should be chosen so that it is suitable for the coil operating voltage of the relay used. A 5 V r.m.s. transformer winding is suitable for a relay with a 6 V coil rating, whilst a 10 V r.m.s. winding may be used with a 12 V relay. However, these voltages are not very critical.

The output voltage of the transformer may be rectified by four separate diodes (D1 to D4), such as type 1 N 4001 . Alternatively a single bridge rectifier (such as the RS Components type REC 41A) may be used instead of the four diodes.

CONSTRUCTION

The whole unit, including the mains power pack, may be placed in a small die-cast metal box. One suitable box of approximate external dimensions $114 \times 89 \times 55 \mathrm{~mm}$ is available from RS Components Ltd., whilst another type of approximate dimensions $119 \times 93 \times 52 \mathrm{~mm}$ is available from Eddystone Radio Ltd.

The metal box should be connected to the mains earth when used with mains equipment for safety reasons. The small mains transformer can be mounted directly on the box, but the remaining components are conveniently mounted on a small circuit board. One can solder directly to the contacts of the 555 integrated circuit, but it is generally more convenient to employ an eight-pin dual-in-line socket if the NE555V is used.

In view of the simplicity of the circuitry and mechanics involved it is deemed unnecessary to discuss construction in greater depth on this project.

LOGIC TUTOR

DE AIORGAAN'S THEOREM

FIRSTLY the answer to last month's question. There are various ways of getting the six input AND but they all use the same principle. There is an Associative rule in Boolean algebra which says that if you have a number of variables coupled by the same logical functions then the variables can be grouped together in sub-groups and combined by their function independently; the independent groups can then be coupled together with like functions to produce the final desired effect.
Thus if we want to AND together inputs A, B, C, D, E and F we can carry out the operation in three stages; firstly we AND A with B and C (as a sub-group) then D with E and F as a separate sub-group. Finally we take the outputs of each of the sub-groups and AND them together in a two input gate to give the total effect.

One form of six input AND gate using NANDS is shown in Fig. 4.1. Notice that it is necessary to use a lot of gates to carry out what is basically a very simple function. It would be much more economical-in space and cost-to use a six input NAND followed by an inverter or alternatively convert a four input NAND into a six input version using an expander before inverting.

DE MORGAN'S THEOREM

Referring to the truth table for the NAND we could say that the output is 1 when A is O OR B is 0 . Remember we are describing the same function as last month but are using a different point of view. Using the Boolean nomenclature that \bar{A} represents "when A is nought" we can say that the output Q is given by \bar{A} or \bar{B}

$$
Q=\bar{A}+\bar{B}
$$

But from a different view point-last month we saw that

$$
\mathrm{Q}=\overline{\mathrm{A} \cdot \mathrm{~B}}
$$

Therefore by normal algebraic argument we can say that
This proves the first of De Morgan's Theorems which-in very simple terms-says that an inverted AND is identical to a sort of inverted OR.
There is a second theorem which is very similar (it is worth you thinking how to argue it out) which says:-

$$
\bar{A} \cdot \bar{B}=\bar{A}+\bar{B}
$$

Again in simple terms an inverted $O R$ is the same as a sort of inverted AND

Before moving on, take note of a catch that beginners sometimes fall into. $\bar{A} \cdot \bar{B}$ is not the same as saying $A . B$. This means that when writing Boolean expressions you have to be careful with the length and breaks of the negate bar over the top of the alphabetical characters. Sometimes brackets are used to make the distinction clear in complex expressions.

OR FROM NAND

De Morgan's Theorem is one of the most used in Boolean algebra because it gives a NAND gate a duality of purpose. Depending on how we want to think we can say that the output is either $\bar{A} \cdot \bar{B}$ or $\bar{A}-\bar{B}$. We have already utilised the former to give us AND from NAND. Now we can use the latter to give us basic OR.

Fig. 4.1. A solution to last month's problem.

Fig. 4.2 shows the way of producing a fundamental two input OR function. The inputs A with B become A with B at the outputs of their respective inverters. The output of the final NAND can be considered to be an OR function coupling the inverted form of its inputs. Therefore the output in this case is $\bar{A}+\bar{B}$. The double negates over each variable cancel and we are left with $A \rightarrow B$.
Use the toggle switches on the Logic Tutor to provide inputs to this circuit and monitor the logic levels at the various nodes on the lamps and check these against the truth table for the circuit shown in Fig. 4.2.

As an exercise try and use the knowledge you now have of the Associative rule and the gates available on Logic Tutor to produce a six input OR. (One answer to be given next month).
by M. Hughes
Next month we shall deal with the EXCLUSIVE OR function.

| A | 8 | $\overparen{A} \cdot \boldsymbol{B}$ |
| :---: | :---: | :---: | :---: |
| This column adso | | |
| describes $\hat{A}+\bar{B}$ | | |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 1 | 0 |

A	B	\bar{A}	\bar{B}	$A+B$
0	0	1	1	0
1	0	0	1	1
0	1	1	0	1
1	1	0	0	1

Fig. 4.2. OR from NAND logic.

I.C. TRIAC CONTROL

In this section we present a selection of both new devices and applications, with news of applications developed for existing devices.

Generally only basic circuit details will be given sufficient for the experimenter to create his own equipment.

The triac is, without a doubt, one of the most convenient forms of a.c. power control yet devised. Provided one supplies it with correctly timed trigger pulses, it will control large amounts of power reliably without taking up too much space.

A variety of methods of supplying the trigger pulse have been developed but thus far these have involved discrete components. Now a new integrated circuit has been developed by Plessey specifically for triac control circuitry. Of necessity it is internally fairly complex as can be seen from the block schematic of Fig. 1.

It includes an amplifier, capacitor charge and discharge control circuitry, a comparator, a voltage stabilizer, a zero crossing detector and a triac firing circuit.

The basic function performed by this SL440 as the device is identified is in phase control circuits in which the power in the load depends on the phase angle or point on the a.c. cycle, at which the triac is fired. The extra facilities offered by the SL440 enable various circuits to be implemented with the bare minimum of external discrete components.

Fig. 1 Block schematic diagram of the SL440

timing circuit

The SL440 contains a timing circuit with a period determined by external control voltages. It is the timing circuit's period which determines exactly when in each half cycle of the mains power supply the triac is fired.
This is illustrated diagrammatically in Fig. 2. Whenever the mains power supply crosses through zero volts,

Fig. 2 (a) When the voltage across the timing capacitor falls below the on-chip reference valtage a triac firing pulse is generated. (b) When the capacitor is discharged more quickly, more power is applied to the load
either in the positive or negative direction, a capacitor external to the i.c., but connected to it, is rapidly charged.

During the following half cycle the capacitor discharges at a rate determined by an external control voltage until the voltage across the capacitor falls to a level set within the i.c. When this occurs a pulse is generated which fires the triac.

In Fig. 2a the effect of quite a long timing period is illustrated. As the mains power supply crosses through zero the timing capacitor connected to pin 14 is charged. During each half cycle the capacitor discharges at a constant rate until the voltage across it reaches the same value as the reference when a triac firing pulse is generated.

In the illustration the dotted sinewave represents the mains supply while the solid line indicates the voltage across the load.

Fig. 3 Showing triac conduction time for different values of timing capacitor and different voltages at pin 13

DISCHARGE RATE

The external control voltage setting the discharge rate would normally range from 3 to $8 V$, this being sufficient to alter the power in the load from zero to full power. An inverse law applies in that the lower the control voltage the higher the power in the load. The actual power in the load for a given control voltage is also dependent on the value chosen for the timing capacitor.

The larger the capacitor's value the greater the power applied to the load for a given control voltage. These relationships can be seen in Fig. 3, which plots the control voltage against triac conduction time for three different values of timing capacitors.

ON-CHIP AMPLIFIER

The SL440 integrated circuit incorporates an amplifier, called a servo amplifier by Plessey, which can be used to produce the control voltage. It can really be looked at as a grounded emitter amplifier with a beta of about 2,000 and a 2 kS resistor in the emitter. It is necessary to connect a suitable external load resistor.

The amplifier is useful in motor speed control as an error voltage amplifier or it can be connected as an
integrator in automatic lamp dimmer circuits and the like.

VOLTAGE STABILIZER

The SL440 contains a voltage stabilizer which performs three main functions. Firstly, it provides a stabilized 11.3 V supply for the rest of the chip; it also provides the reference voltage against which the voltage across the timing capacitor is compared and, finally, it provides a stabilized 11.3 V supply for circuitry external to the chip. However, the current available for off-chip circuits is extremely limited and nust not be allowed to exceed 3 mA .

MAINS INPUT

The SL440 does not require a d.c. power supply in the conventional sense. Power input is obtained directly from the mains via a diode and series dropping resistor. With

Fig. 4 A circuit to replace the heat dissipating mains dropper resistor
the values recommended by Plessey, the half-wave rectified input has a peak value of about 60 or 70 V . The series resistor ($6.8 \mathrm{k} \Omega 2,5 \mathrm{~W}$) can be eliminated with the circuit shown in Fig. 4.

The half-wave rectified input, as well as supplying power, also allows the chip to detect the zero crossings of the mains. Each time a zero crossing is detected the circuifry on the chip charges the external timing capacitor.

OUTPUT AND INHIBIT

When the voltage across the timing capacitor falls below that of the reference voltage supplied to the comparator from the voltage stabilizer, an output triac firing pulse is generated. This pulse is $50 \mu \mathrm{~S}$ wide and must not be allowed to exceed 60 mA . However, this will be more than sufficient for most applications.

An inhibit input is provided which, when connected to the common line (or less than 5 V), prevents any firing pulses from being generated. This input could be used in conjunction with current sensing circuits for protection purposes.

APPLICATIONS

ALL OUR PRICES INCLUDE V.A.T.

BSR LATEST SUPERSLIM STEREO \& MONO
Plays $12^{\prime \prime}, 10^{\prime \prime}$ or $7^{\prime \prime}$ records. Auto or Manual. A high
quality unit backed by BSB relisbility with 12 months guarantee. AC 200/250V Size $13 \frac{1}{3} \times 11$!in.
Above motor beard 3 ;in. below motor board $2 \frac{t}{8}$ in
with STEREO and MONO XTAL ≤ 8.25 Poat $25 p$. PORTABLE PLAYER CABINET
Modern design. Black rexine covered. Silver front grille. chrome fittings.
Motor board cut for BSR deck $\mathbf{4 . 5 0}$ Post 25p
 Available separately Post 25p.
Wooler £4-25 Tweeter $£ 1.90$
Comprising a fine example of a Wooler $101 \times$ biin. with a massive Ceramic Magnet, 440z. Gsuss 13.000 lines. Aluminium Cone centre to improve middle and tod response. Also the E.M.I. Tweeter ajin. aquare has a special light10,000 lines. Crossover condenser and lull instructions supplied. Impedance Standard $\quad 8$ ohms Maximum Power 12 watts Uselul Response
Bese Resonance
SUITABLE ENCLOSURE $20 \times 13 \times 9 \mathrm{in}$. MODERN GROOVED FRONT DESIGN, TEAK FINISH

SPECIAL OFFER!
TIME SWITCH
Single pole two-way. Surface mountin with fxing serews. Will replace oxating wall awitch to give light tor return home. garage, a utomatic
anti-buralar lights atc. Variable knob
anti-burklar lights, etc. Variable knob.

Turn on or of at full or intermediate tettings. Two types avainable 0 to 60 minuten Type A or
0 to 6 hours Type B. Makers last list price 84.50 0 to 6 bours Type B. Makers last list price £4.50. Brand
new end fully guaranteed. Fully ingulated OUR PRICE 81.65 P \& P 15p or f3 Dair
(PLEASE STATE TYPE A OR B WHEN ORDERING)
WEYRAD P50 - TRANSISTOR COILS RA2W Fertite Aerial. 72p Spare Cores \quad - 3p Onc. PS0/1AC 33 p Driver Trans. LFDT4 1.F. P50/2CC $470 \mathrm{kc} / \mathrm{s} \quad 36 \mathrm{p} \quad$ Printed Circuit, PCA1 8rd I.F. P50/3CC P51/1 or P51/2
P50/8V der
Mullard Ferrite Rod $8 \times$ inn. 20 p . $6 \times \frac{6}{}$ in, 20 p 3 p
58 p VOLUME CONTROLS

80 ohm Coax 4 pyd. BRITISH AERIALITE AERAXIAL-AIR SPACED
$40 \mathrm{yd}, £ 1.40 ; 80 \mathrm{yd}, £ 2$. 40 yd, f1.40; 80 yd , 22 .
FRINGE LOW LOSS LIN. L/S 15p. D.P. 25p. TEREO L/S 55p. D.P. 75p. FRINGE LOW LOSS 10 p
Ideal 825 and colour
8in. or IOin. ELAC HI-FI SPEAKER Dual cone plasticised roll sur-$50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. 8 ohm impedance.
8 in 10 watts, $10 \mathrm{in} 12 \& 3.75$
 watts music power.
E.M.I. $13 \frac{1}{2} \times 8$ in.

SPEAKER SALE!

With twin tweeters.
And crossover. 10
54
15 ohm. As illustrated. Post $25 p$ With flared tweeter cone and ceramic magnet. 10 watt.
Bass res. $45-60 \mathrm{c} / \mathrm{s}$.
?

Flux 10,000 causis.
State 3 or 8 or 15 ohm. Post 25p
Bookshelf Cabinet
$£ 5.50$

BRITISH MADE STEREO

$£ 6.95$

MULTIPLEX DECODER

Post 15p
Brand New. 7 transistors Plas integrated circuit. Fibre-Giass printed circuit board. Size $2!\times 6 \frac{1}{} \times$. Pre-Aligned. Come Outpat for 100 mV Inpat. Full instructions for ans
FM Tuner. Some technical experience essential.
BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2 in sides 6×4 in $45 p: 8 \times$ Bin $53 p: 10 \times 7$ in 65p: 12×8 8in $85 p$; ALUMINIUMBOX $6 \times 4 \times 4$ in 80 p

YATES ELECTRONICS (FLTMWICK) LTD. ELSTOW STORAGE DEPOT KEMRSTON HARDWICK BEDFORD

C.W.O. PLEASE. POST AND PACKING PLEASE ADD IOp TO ORDERS UNDER 62. Catalogue which contains data sheets for most of the components listed will be sent free on request 10p stamp appreciated.

OPEN ALL DAY SATURDAYS
ALL PRICES SUBJECT TO V.A.T

RESISTORS

+W Iskra high stability carbon film-very low noise-capless construction W 2\% ELECTROSIL TRS

Power			Values	Price	
wates	Tolerance	Range	available	1-99	$100+$
\pm	5\%	4.7n-2.2Mn	E24	$1 p$	$0 \cdot 8 \mathrm{p}$
$\frac{1}{3}$	10\%	3.3Mn-10Ms	El2	$1 p$	0.8 p
$\frac{1}{2}$	2\%	$10 n-1 \mathrm{Mn}$	E24	3 5p	3 P
*	10\%	$1 \Omega-390$	E12	1p	0.8 p
t	5\%	$47 \Omega-1 \mathrm{M} \Omega$	E12	$1 p$	0.8p
4	10\%	$1 \Omega-10 \Omega$	E\|2	$6 p$	5.5p
antit	ce	y selection.	e fraction	Ot	

DEVELOPMENT PACK
0.5 watt 5% iskra resistors 5 off each value 47Ω to 1 M Ω.
E12 pack 325 resistors $£ 2.40$. E24 pack 650 resistors $£ 4.70$.

POTENTIOMETERS

Carbon track $5 k \Omega$ to $2 M \Omega, \log$ or linear ($\log \frac{1}{4} W$, lin $\frac{1}{2} W$),
Single, I2p. Dual gang (stereo). 40p. Single D.P. switch 24p
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C.
mounting (0 i matrix).
Sub-miniature 0.1 W , 5 p each. Miniarure 0.25 W , 6p each.
TRANSISTORS

ACI07	15p	AF1 25	20p	BD132	75p	OC28 50p	2 N3702	
AC126	$12 p$	AFI 26	20p	BDI33	75p	OC35 50p	2 N 3703	12p
ACl 27	12 p	AFI27	20p	BFI15	25p	OC42 12p	2N3704	13p
ACl 28	12p	AFI39	32p	BFI73	20p	OC44 12p	2 N 3705	12p
AC131	12p	AFI78	32p	BFI77	28p	OC45 12p	2N3706	11p
AC132	12p	AFI80	40p	BFI78	32p	OC70 12p	2N3707	12p
AC176	12 p	AFI81	40p	BFI79	32p	$0 \subset 71$ 12p	2 N3708	10p
AC187	22p	BC107	9 p	BFIP0	32p	OC72 12p	$2 N 3709$	IIp
ACl88	22p	BC108	9p	BF\|81	32p	$0 \mathrm{OCB1} 12 \mathrm{p}$	$2 N 3710$	I1p
AD 140	50p	BC109	9 p	BFI94	15p	OCB2D 12p	$2 N 3711$	11p
ADI49	45p	BC147	13p	BF195	15p	2N2904 20p	$2{ }^{2} 4062$	12p
ADi61	33p	BC148	13 p	BF197	15p	2N2926R 9p	40360	35p
ADi62	36p	BC149	13p	BF200	32p	2N292609p	40361	35p
AF114	20p	BC157	14p	BFY50	20p		40362	40p
$\begin{aligned} & A F I \mid 5 \\ & A F I 16 \end{aligned}$	20p	BC158	14 p	BFYSI	20p	$\begin{aligned} & \text { 2N2926Y 9p } \\ & \text { 2N2926G } \end{aligned}$	40408	40p
AFII 7	20p	BC159	14p	BFY52	20p	$10 p$	ZT×302	15p
AFlil	38p	BC187	22p	BU105	225p	2N3054 58p	ZTX500	15p
AFI24	22p	BD131	75p	OC26	45p	2N3055 60p	ZTX502	20p

DIODES

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{3} \mathrm{p}, \quad 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \frac{1}{9} \mathrm{p}$, $0.33 \mu \mathrm{FF}, 11 \mathrm{p} .0 .47 \mu \mathrm{~F}, 13 \mathrm{p}$,
 $0 \cdot 22 \mu \mathrm{~F}$, $5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \frac{1}{1} \mathrm{p}$. $066 \mu \mathrm{~F}$, $11 \mathrm{p} .1 .0 \mu \mathrm{~F}$, 13 p
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F},{ }^{3} \mathrm{p}, 0033 \mathrm{~F}, 0047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ $3 \frac{1}{3}$ p. $0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p}, 0.47 \mu \mathrm{~F}, 8 \frac{1}{2} \mathrm{p} .068 \mu \mathrm{~F}, 11 \mathrm{p}, 10 \mu \mathrm{~F}, 13 \mathrm{p}$
$15 \mu \mathrm{~F}, 20 \mathrm{p}, 22 \mu \mathrm{~F}, 24 \mathrm{p}$.
MYLAR FILM CAPACITORS I00V

ELECTROLYTIC CAPACITORS-MULLARD O15/6/7 RANGE REPLACES C426, C457 RANGES
(4 F/V) $1 \cdot 0 / 63,1.5 / 63,22 / 63,33 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63$ $22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,47 / 63,68 / 6 \cdot 3,68 / 16,100 / 4$ $470 / 6$ 3, 5 p each. $68 / 63$, 150/40, $220 / 2 \mathrm{~S}, 330 / 16,470 / 10,680 / 6,3,1000 / 430 / 4,330 / 10$, $150 / 63,220 / 40,470 / 25,680 / 16,1000 / 10 \quad 500 / 6 \cdot 3 \quad 120 / 220 / 63470 / 40 \quad 680 / 35$ $1,000 / 16,1,500 / 10,2,200 / 6 \cdot 3,15 p .330 / 63,680 / 40,1,000 / 25,1,500 / 16,2,200 / 10$ 3.300/6.3. $4.700 / 4$, 188_{p}.

SOLID TANTALUMEEAD CAPACITORS				
$0.1 \mu \mathrm{~F}$	35 V	$2.2 \mu \mathrm{~F}$	35 V	
$0.22 \mu \mathrm{~F}$	35 V	$4.7 \mu \mathrm{~F}$	35 V	$32 \mu \mathrm{~F}$
$0.47 \mu \mathrm{~F}$	35 V	6.16 V	12 F	25 V
$1.0 \mu \mathrm{~F}$	35 V	$10 \mu \mathrm{~F}$	25 V	$47 \mu \mathrm{~F}$

VEROBOARD

0.15
16p
24p
$24 p$
$27 p$
571p
$78 p$
$82 p$
$60 p$
$42 p$
$12 p$
$11 p$
$52 p$
$42 p$
$20 p$

JACK PLUGS AND SOCKETS

Standard screened $18 \mathrm{p} \quad 2.5 \mathrm{~mm}$ insulated Stereo screened $35 \mathrm{p} \quad 3.5 \mathrm{~mm}$ insulated Standard sacket $\quad 15 \mathrm{p}-2.5 \mathrm{~mm}$ socker Stereo socket $\quad 18 \mathrm{p} \quad 3.5 \mathrm{~mm}$ socker
D.I.N. PLUGS AND SOCKETS 2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin 240°, 6 pin Plug 12p. Socket 8p.
4 way screened cable, 15 p/metre
6 way screened cable 22p/metre
BATTERY ELIMINATOR \& 150

LARGE (CAN) ELECTROLYTIC

$1600 \mu \mathrm{~F}$	64 V	74 p	$2500 \mu \mathrm{~F}$	64 V	$80 p$	$4500 \mu \mathrm{~F}$	16 V	50 p
$2500 \mu \mathrm{~F}$	40 V	74 p	$2800 \mu \mathrm{~F}$	100 V	$\mathbf{6 2 . 6 0}$	$4500 \mu \mathrm{~F}$	25 V	61.68
$2500 \mu \mathrm{~F}$	50 V	$58 p$	$3200 \mu \mathrm{~F}$	16 V	50 p	$5000 \mu \mathrm{~F}$	50 V	61.10

HIGH VOLTAGE TUBULAR CAPACITORS-I,000 VOLT $\begin{array}{llllll}0.01 \mu \mathrm{~F} & 10 \mathrm{p} & 0.047 \mu \mathrm{~F} & 13 \mathrm{p} & 0.22 \mu \mathrm{~F} & 20 \\ 0.022 \mu \mathrm{~F} & 12 \mathrm{p} & 0.1 \mu \mathrm{~F} & 13 \mathrm{p} & 0.47 \mu \mathrm{~F} & 22 \mathrm{p}\end{array}$ POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \frac{1}{2} \%$ 10 pF to $1,000 \mathrm{pF}$ E12 Series Values $4 p$ each.

SMOKE AND COMBUSTIBLEGAS DETECTOR-GDI

The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen. carbon monoxide. merhane, propane, alcohol, North sea gas, as well as carbon-dust containing air or
smoke. This decrease is usually large enough to be utilized without amplification Full details and circuits are supplied with each detector. excluding case. Mains operated detector 65.20 . 12 or 24 V battery operated audible alarm £730. As above for PP9 battery, 6640
PRINTED BOARD MARKER
Draw the planned circuic onto a copper laminate board with the P.C. Pen, allow to dry, and immerse the board in the etchant. On removal the circuit remains in high relief.

LARGE RANGE ITT/TEXAS IC's NOW IN STOCK

7400
 7401
 402
 7403 7404
 7405 7406
 7406
 7408 7409
 7410 7411
 7411 7412 7413
 7413 7416
 7

416
420

PRICES ARE CALCULATED ON

Typical
 APPLICATIONS

LIGHT DIMMER

SPEED CONTROL

APPLICATIONS

Numerous applications for the device will have probably already suggested themselves to the reader. Pleisey have developed several circuits.

Fig. 5 shows the $\$ 1.440$ used in a basic lamp dimmer circuit with the minimum of external components. Resistor RI provides the triac firing circuit with its load.

The potentiometer forms a potential divider across the 11.3 V supply and varies the light output by vary. ing the voltage at pin 13. The input imperlance at this point is very high and current flow can be measured in $n A$. The internal amplifier is not employed in this circuit.

The automatic lamp fader circuit of Fig. 6 is a variation on the same theme, the main difference being that the internal amplifier can be switched to perform an integration of the control voltage.

When SI is open. the brilliance of the lamp is set by RVI. When SI is closed, the positive potential derived from the divider R2, R3 is presented to the input causing the lamp to give full output.

If now S2 is closed and S1 is opered. the lamp will gradually reduce in brightness until it reaches the brightness level corresponding to the setting of RVI. The time taken for the fade to occur will depend on the value of the integration capacitor CI. With the value shown. this will be between 20 and 35 minutes.

A motor speed control circuit is shown in Fig. 7 This is basically similar to the previous circuits except that one leg of the potential divider is formed by a tachometer generator driven by the motor.
The device is available from SDS Components Lid.. Hilsea Trading Estate, Portsmouth. Hiants, at $£ 2.08 p$ for one-off. $£ 1.82$ for 25 off.
D. TROTMAN (SDS COMPONENT.S)

Ridadout
 A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articies published in the magazine. Technical queries cannot be dealt with on the telephone.

THE TOPICAL SYNTHESISER

Sir-In answer to Mr. Baily's letter (last month)-he admits that the building of a stable, accurate log law circuit is difficult. I would tend to go further and say that for the average amateur constructor the task is almost impossible. This statement is in no way intended as a slight to the amateur but serves to highlight a situation which seems to be occurring all too often these days. Although there are many more avenues for the amateur to explore than there were a few years ago it is frequently found that exploitation of a particular circuit or function requires the possession of a bewildering array of test equipment and the technical expertise to interpret their respective readings.

I his situation is very much in evidence in the case of designing and building a log law v.c.o. as Mr. Baily has testined. There is littje point in publishing designs for such circuits since the problems arise, not so much in the building, but in the final setting-up and matching. Thus, from this point of view alone, there is considerable justification in the presentation of a linear v.c.o. which can be built with a minimum of test equipment and which behaves, with few limitations, in an exactly determinable manner. I would like to underline the fact that the P.E. Synthesiser is very much an experimental project which has been designed, as far as possible, to allow the widest possible licence to the individual constructor for the incorporation of modifications and/or additions to the system. In the case of the v.c.o. the overall response is determined by the response of the "front-end" as it is in most commercially available units. Thus by changing the response of the front end only the circuit can be made to obey a variety of laws to suit the whim of the constructor and this without disturbing the settings of the oscillator section at all.

With regard to Mr. Baily's specific criticisms of the linear v.c.o. the following observations apply :

1. No chording facility. This is a perfectly valid criticisn and without doubt is the major disadvantage of the linear v.c.o. Octave chords can be played however and the keyboard incorporates a harmony switch for this purpose. If the Synthesiser is to be used for musique concrete purposes the lack of chording facility is no disadvantage since a full range of four note chords may be set up and recorded as discrete sounds.
2. No variable keyboard pitch. Not strictly true since the keyboard oscillators have their own manual frequency control with which it is possible to vary the "spread" by about an octave either way. Since the keyboard oscillators are tuned an octave apart this effectively gives a register of seven octaves although the upper and lower ends are not tightly in tune due to the "non-logarity" of the oscillators.
3. Difficulties in tuning . . . Again not entirely valid. The variation in programming voltage from end of the keyboard to the other is only about 65 millivolts (see Fig. 3.4.) consequently there are only two values of fixed resistor and one value of preset per key. The
values of fixed resistor are chosen such that the majority of presets are operating within the middle 60 per cent of their rotation. There is thus not such a vast range of adjustment as Mr. Baily anticipates. Furthermore, and to the advantage of this particular system, the resistive value set-up during tuning affects only one note whereas in the series chain system used with log v.c.o.s any one resistor going unstable will affiect all the others downstream in the chain.
4. Poor frequency stability. Voltage and resistance wander can scarcely be cited as being problematical in this respect since they are relatively easy to correct. The use of a well regulated power supply together with adequate decoupling and the use of high stability resistors in the frequency determining networks will largely dispose of the problem. Mr. Baily correctly pinpoints the problem of thermal drift with the linear v.c.o. circuit as published.

On test at an ambient temperature of $18^{\circ} \mathrm{C}$ and with the oscillator running at 256 Hz rapid cycling between about $0^{\circ} \mathrm{C}$ (induced with a freezer aerosol) and $25^{\circ} \mathrm{C}$ (close proximity 100 watt lamp) resulted in a variation in frequency of between 222 Hz at $0^{\circ} \mathrm{C}$ and 312 Hz at $25^{\circ} \mathrm{C}$. This approximates to -10 per cent, +20 per cent on the basic frequency. On the other hand the oscillator in its case was monitored over a 48 hour period with a digital frequency meter and normal changes in day/night ambient temperatures resulted in frequency changes within ± 2 per cent. Extreme changes in ambient temperatures are unlikely under what might be termed normal operating conditions and such light changes as do occur can be adequately compensated for by adjustment of the manual frequency bias on the oscillators.
5. Uneven swing in pitch control. There is no real answer to this one since Mr. Baily is correctly citing the characteristic of the linear circuit, i.e. the requirement for a progressively increasing programming voltage in order to maintain the same rate of change of frequency as frequency increases. I feel bound to say, however, that I have never noticed this as a problem.
Two final points are worth mentioning. Mr. Baily cites the increase in power required from the use of integrated circuits as opposed to discrete components. This is undoubtedly true and while there is probably a hard core of amateur constructors who enjoy the challenge of design there is a far larger group who build for the sake of building and whose principal requirement from their hobby is results. To this latter group the integrated circuit, in its many forms, represents a release from many of the problems associated with design and allows them to enjoy their hobby more fully as a result. The increase in power required is thus surely a small price to pay?

Finally, on the subject of price, I would be very interested to have full details of the range of Dewtron modules offering the same specification as the P.E. Sound Synthesiser at under $£ 200$.
D. Shaw.

Variable voltage tannsformers

L.T. TRANSFORMERS

```
Type No
```



```
PRICE E2-20
```


\circ

 600 WATT DIMMER SWITCH. Easily fitted. Fully guaranteed by lights except fluorescent at mains structions. $£ 3 \cdot 30$.$240 V$ A.C. SOLENOID FLUID VALVE Will handle liquids or gases up to p.s.1. Forged brass body, stainles inlet/outlet. Precision
mfg . PRICE: C2.09. Special quot. 22 09 New in makers' corton)

INSULATION TESTERS NEW! Test to l.E.E. Spec. Rugged metal construction, suitable for bench or field work, constant speed clutch. 1.000 V , 1.000 megin, weight 81 b $500 \mathrm{~V}, 500$ megohms, $£ 30.80$

UNISELECTOR SWITCHES

N EW 4 Bank 25 Way, n- ${ }^{2}$ 24 V d.e. operation. 67.04. ${ }^{6}$, $=$ Bht 8 Bank 25 Way, 24 V d.c. operation. 69.46.

24-HOUR TIMER

Can be adjusted to give a switching delay of between 2 hrs , to 24 hrs .

$$
\begin{aligned}
& \text { contacts. Mynchronous } \\
& \text { Led. Supplied with seale catibrated } 0-10 \text { (} 2 \mathrm{hrs}
\end{aligned}
$$ per division). Brand New. $\{2 \cdot 20$.

HONEYWELL PROGRAMME TIMERS
240V. A.C. 5 r.p.m. motor Each cam operating a c/o micro switch. Cams are ing inumerable combinations. Ideally suited for machinery control, automation, etc
Also in the field of entertainment, for chaser lights, animated displays,
15 cam model 66.60 .
15 cam model $\mathbf{6 6 - 6 0 .}$
10 cam model $\mathbf{6 5 . 5 0 .}$
SIMPLE 12 CAM PROGRAMMER 240V A.C. 15 RPM MOTOR with 4 adjustable cams and 8 that

[^3]Dept. PE6, 57 BRIDGMAN ROAD
CHISWICK, LONDON W4 5BB Phone 01-995 1560

36V 30 AMP. A.C. or D.C. VARIABLE L.T. SUPPLY UNIT NPUT 2201240 V OUTPUT CONTINUOOULY VARIABLE 0-36V
Fully isolated. Fitted in robust metal case with Volt meter. Ammeter Panel Indicator and handes Input and output fully fused. Ideally suited for Lab. or Industrial use. $£ 77$.

MOTOROLA MAC II/6 PLASTIC
TRIAC 400 PIV. 10 AMP
Now available EX STOCK. Supplied with full data and applications sheet. Price $\mathbf{E l}, \mathbf{2 l}$.

STROBE: STROBE! STROBE4

Build a Serobe Unit, using the latest type Xenon white light flash tube. Solid state riming and EXPERIMENTERS' ECONOMY KIT Speed adiustable I to 30 flash per sec electronic components including Xenon Tube and instructions 67.26.
NEW INDUSTRIAL KIT
Speed adjustable 1-80 scho
Approx. $\frac{1}{4}$ output of Hy -Lyght. Price E $12 \cdot 10$
HY-LYGHT STROBE MK III
cube, printed circuir Speed adjustable 0-20 fips Light output greater than many (so called Joule) strobes. $£ 13.75$.
THE 'SUPER' HY-LYGHT KIT Approx. Hour times the light output of our welt - Variable spent strobe

- Reable speed from 1-3 flash per sec - Reaccor control circuit producing an intense ROBUST, FULLY VENTILATED METAL CASE. For Hy-Lyght Kit including reflector $\mathbf{4 4 . 9 5 .}$ Super Hy-Lyght Kit including reflector $\mathbf{K 8} 25$. 7-inch POLISHED REFLECTOR

uperior Quality Precision, Made NEW POWER RHEOSTATS New ceramic construction, vitreous duty brush assembly, continuousl
25 WATT $10 / 25 / 50 / 100 / 250 / 500 / \mathrm{lk} / \mathrm{l} \cdot 5 \mathrm{k}$ ohm $£ 1 \cdot 10$ 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k} / 5 \mathrm{k}$ ohm El.54.
W. WTT 1/5/10/25/50/100/250/500/lk/1.5k/2.5k 5k/5k ohm E2.20.
lack silver skirted knob calibrated in Nos. I-9, ltin. dia. brass bush. Ideal for above Rheostats,
22 p each.

Col.(1)
Col. (2)
Working
d.e. volts

Col. 3
Contracts
Col. (4)
pice
$\mathrm{HD}=$
*incl. Base All prices
inl. P. \&

1
52
52
150
185
410
600
700
700
700
700
700
700
1,250
2,500
2,400
9,000
$15 k$

$4-6$	$6 M$
$4-6$	$4 \mathrm{c} / 0$
$6-12$	$4 \mathrm{c} / 0$
$8-12$	6 M
$10-18$	$4 \mathrm{c} / 0$
$9-18$	$2 \mathrm{c} / 0$
$16-24$	4 M 2 B
$16-24$	$4 \mathrm{c} / 0$
$15-35$	$2 \mathrm{c} / \mathrm{HD}$
$16-24$	6 M
$6-12$	$1 \mathrm{c} / 0 \mathrm{HD}$
$20-30$	$6 \mathrm{c} / 0$
$24-36$	$4 \mathrm{c} / 0$
$36-45$	6 M
$30-48$	$4 \mathrm{c} / 0$
$40-70$	$2 \mathrm{c} / 0$
$85-110$	6 M

12 VOLT D.C. RELAY 140 ohm coil ype I: Three sets c/o contacts rated at 5 amps . 88p Type 2: 4-8 volt, $3 \mathrm{c} / 0 \mathrm{HD}, 67 \mathrm{ohm}$ coil. 88p. SPECIAL OFFER
700 ohm $4 \mathrm{c} / \mathrm{o}$. Ex. new equipment. 655 per 100 incl. bases (minimum 100).
230 VOLT A.C. 'DIAMOND H'
RELAYS (Unused)
Three sets c/o contacts rated
RICE: 66 . (100 lots) E44
24 volt A.C. 3 c/0 66 p. Incl. P. \& P
MINIATURE LATCHING RELAY Manuactured by Clare-Elliott Ltd. Type F. 2 c/o per-15-30 Volt D.C. Size f" high, $\boldsymbol{z}^{\prime \prime}$ wide, ${ }^{\prime \prime}$ " 150 ohm, plete with $3^{\prime \prime}$ leads. New T7p,
BLOWER UNIT
200-240 Volt A.C. Precision German built. Dynamically balanced, quiet, continuously rated, reversible motor. Con sumption 60 mA . Size 120 mm
dia. $\times 60 \mathrm{~mm}$. deep. Price $£ 3.52$.

230V FAN ASSEMBLY
Continuously rated, special sealed bearing, removable aluminium blades. Price $\in I \cdot 10$.

'HONEYWELL' LEVER OPERATED MICRO SWITCH
acts. In maker's car
PRICE: 10 for $\mathbf{E 2} 09$

MICRO SWITCH 5 mpp c/o contacts. Fitted with
removable metal panel assembly. Ex. P.O. 20 for El 10 (Min. order 20.

METER BARGAIN

balance/level meters

00-0-100 Micro Amp. Size $1 \frac{1}{2}$ in $+1 \frac{1}{2}$ in ?in. Price only 83p.
AMMETERS NEW: $2 \frac{1}{2} \mathrm{in}$. Flush round. Available in D.C. Amps 1, 5, 15 20 or A.C. Amps 5, 10, 15, 20, both

Fane Pop loow， $10^{\prime \prime}, 8 / 15$ ohm Fane Pop 60W． $15^{\circ} .8 / 15$ ohm	$\begin{aligned} & 621.45 \\ & 612.26 \end{aligned}$
Fane Pop $50 \mathrm{~W}, 12{ }^{\circ}$ ，8／15 ohm	610.17
Fane Pop 25／2 $25 \mathrm{~W}, 8 / 15 \mathrm{ohm}$	c5．94
Fant Pop $1512^{\circ} 15 \mathrm{~W}, 8 / 15$ ohm	C4．40
Fane 122／10a or 122／12	69．90
Fane Crescendo 15＊， 8 or 15 ohm	C27．50
Fane Crescendo 12＂， 8 or 15 ohm	C24．20
Fane $8^{\prime \prime} \mathrm{d} / \mathrm{cone} 808 \mathrm{c}$ ， 8 or 15 ohm	62.64
Fane \boldsymbol{a}^{*} d／cone，roll surr．807T． 8 or 15 ohm	43.16
Baker Group 25，3， 8 or 15 ohm	66.00
Baker Group 35，3， 8 or 15 ohm	c7． 30
Baker De Luxe 12＂d／cone	69.62
Baker Major	c7．50
EMI 13＊$\times 8^{*}, 3,8$ or 15 ohm	¢2．25
EMI $13^{\circ} \times 8^{\prime \prime}$ type 150 d／cone， 3,8 or 15 ohm	6.2 .38
EMI 13＂$\times 8^{*}$ type t／tw，3， 8 or 15 ohm	c3．85
EMI 13＊$\times 8^{\text {c }}$ type $350,8 \mathrm{hm}$	c8．25
EMI 61＊＊93850， 4 or 8 ohm	42.80
Elac $9^{*} \times 5^{* 59 R M L O 9, ~} 15$ ohm	62.53
Elac $9^{\prime \prime} \times 5^{*} 59$ RMLL4， 8 ohm	42.53
Elac 61＂d／cone 6RM220， 8 ohm	62.59
Elac 6f＂d／cone，roll surr．6RM171， 8 ohm	63.22
Elac 4^{*} tweecer TW4， 8 or 15 ohm	¢1．21
Celestion PS8 for Unilex	42.16
Celestion MFLOOO 25 W horn， 8 or 15 ohm	4.10 .45
Elac 5＊ 3 ohm	61.75
Elac 7＂$\times 4^{* *}, 3$ or 8 ohm	4.1 .52
Elac 8＂× 5＊，3， 8 or 15 ohm	6.4 .93
Wharfedale Bronze A RS／DD	63.11
Whariedale Super 8 R5／DD	45.50
Wharfedale Super 10 RS／DD	49.80
Goodmans 8P， 8 or 15 ohm	63.80
Goodmans 10P， 8 or 15 ohm	C4．49
Goodmans 12P， 8 or 15 ohm	611.59
Goodmans 15P， 8 or 15 ohm	617.05
Goodmans 18P， 8 or 15 ohm	629.70
Goodmans Twinaxiom 0	66.79
Goodmans Twinaxiom 10	67.61
Goodmans Axent 100	c6． 60
Eagle DT33 dome tweeter， 8 ohm	64.95
Eagle HTIS tweeter， 8 ohm	63.46
Eagle CTS tweeter， 8 ohm	¢1．21
Eagle MTiO tweeter	63.30
Eagle CTIO tweeter	61.92
Eagle Xovers CN23，28， 216	＜1．10
Kef T27	44.67
Kef T15	6.5 .50
Kef Bllo	66.16
Kef B200	67.42
Kef El39	610.72
Kefkit 2	624.75
Richard Allan 12＊d／cone， 3 or 15 ohm	42.20
Richard Allan $8^{* \prime}, 3,8$ or 15 ohm	62.27
$10^{*} \times 6^{*}, 3.8$ or 15 ohm	61.92
$8^{\prime \prime} \times 5^{*} .3$ or 8 ohm	C． 1.38
7＇\times 4＂， 3 or 8 ohm	4.38
3＊． 8 ohm or 80 ohm	65 p
2t ${ }^{\text {²，}} 64$ ohm	65p
Speaker matching transformer， 3／8／15 ohm	4.10
Adastra Hiten $10 *$ ， $10 \mathrm{~W}, 8$ or 15 ohm	62.80
Adastra Top 2012 ，25W， 8 or 15 ohm	c6．32
Stephen speaker kits and cabinets－send for illustrated brochure and list of recommended speakers．	
Car stereo speakers－ask for leaflet．	
PA／Disco amplifiers（carr．and ins．© 1 ）：	
gaker 100W	\＄46．00
Linear 30／40	\＄25．00
Linear 40／60	\＄30．00
Linear 80／100	C50．00

FREE with speaker orders over $\mathbf{\text { 57－＇＇Hi－Fi Loud－}}$ speaker Enclosures＂book．

All units guaranteed new and perfect． Prompt despatch．
Carriage and insurance 25 p per speaker． （Tweeters and Crossovers 15p each．） All prices quoted inclusive of V．A．T．

SWAN WORKS，BANK SQUARE，WILMSLOW CHESHIRE SK9 1HF

DECADE THL COUNTER UNTT

COMPLETE OR IN KIT FORM

complete unit

Decade TTL Unit on fibreglass PCB using 74 series TTL to count up to 18 MHz with Nixie tube display．These units may be coupled to provide a mult－dign readout for Frequency Counters．Timers，DVM＇s， Batch Counters etc． （Application details not available）Requires $200 /$ 250 V D．C．\＆ 5 V D C．reg KIT PRICE：E5．06 plus 10p p \＆ ASSEMBLED AND TESTED £5．40 plus 10p p\＆p
 to $6 \mathrm{~V}, 1 \mathrm{~A} \& 250 \mathrm{~V}$ for decade
power supply，with circuit using

COMPONENTS
$400 \mathrm{~V}, 8 \mathrm{~A}$ Trac isolated tab type $1 \mathrm{~L} 48,125 \mathrm{~A}$ surge 85 p 32 V Diac Type D30 sutable for triggering 1 L48 23p 5 V Voltage Regulator I／C． 103 case $600 \mathrm{~m} / \mathrm{A}$ output from $7.5 \mathrm{~V}-15 \mathrm{~V}$ D．C．input，with instructions $£ 1.98$ Heat Sink．T03．twisted vane． $8^{\prime \prime} \mathrm{C} /$ W for 5 V Regulator 20 p BC 107．BC 108
（All plus $6 \mathrm{p} p \& \mathrm{p}$ ）
Prices include VAT Please send c．w．o to
DEXTER \＆COMPANY
1 ULVERHOUSE 19 KING STREET CHESTER CH1 2AH
Tel：0244－25883

P．C．B．：For Mullard
 Transistor Audio and Radio Circuits Handbook

The following boards are now available：Ist Edition：paper base laminate．IOW H．Q．audio amp， p．102，66p．25W H．Q．audio amp， P．106，70p．10／25W H．Q．audio pre－amp，p．108，73p．
2nd Edition：fibreglass laminate． IOW Audio Amp，p．122，69p． 15／20W Audio Amp，p．126，73p． 25W Audio Amp，p．128，73p （incorporates protection circuit， p．130）．
Universal pre－amp，mono，p．148， 78p．Universal pre－amp，stereo， p．148， fl －48．
No other circuits are available．
Price includes P．\＆P．but add VAT． Remittance（not cash or stamps） with order．Allow 14 days for cheque clearance otherwise prompt despatch subject to stocks．
All boards are roller tinned， drilled and have component ident． printed on reverse．

BRIBOND PRINTED
 CIRCUITS LIMITED

Regd．in England 593908
Terminus Road，Chichester Sussex

PARTRIDGE MAIMS ISOLATION TRANSFORMER Pri：10j－ē50V，むり＇ateps，Sec：240V， 13 amps \＄15，carr．pack．± 1 ．
PARMEKO MANTS TRANSFORMER isolated windings．Pri： $200-250 \mathrm{~V}$ ，Sec： $90-120 \mathrm{~V}$ at $4 \cdot 5 \mathrm{mmp}$ ．， 44，carr．pack． j 0 p
GARDKER＇S POTTED TRANSFORMER， $0-2 J 0 \mathrm{~V}$ Pri． $200-250 \mathrm{~V}$ ．Sec．Input： 18 V ． $00 \mathrm{~m} / 1 \mathrm{n}, 30 \mathrm{y}$ $150 \mathrm{~m} / \mathrm{a}$ ，fy $250 \mathrm{~m} / a$ output．Size： 3 in $\times 21 \mathrm{~h} \times$ $2 \nmid \mathrm{in}$, el，p．p． 20 p ．Ex equip，tenterl．
RIPLEY MARS TRANSFORMER，Pri： $110 \mathrm{~V}-240 \mathrm{~V}$ ，
 p．p．25p．
MAMS TRANSFORMER，Pri： $100-2500^{\circ}$ ，Sec $\because 2: 0: 22 \quad 200 \mathrm{~m} / \mathrm{A}$ ．$\because 2: 0: 2 \cdot 2 \quad 100 \mathrm{~m} / \mathrm{A} \quad 0: 24 \mathrm{~V}$ 20m／A， 80p，p．p．20pp．
TRANBISTOR OUTPUT TRANSFORMER，Ratio $8: 1,1 \div 0 \mathrm{mH}$ ．Gentre tap 2 watts．output，20p， р．р．јp．
sMOOTHING CHOKE，IIMH， 1 if $\times 1$ in $\times 1$ in，
20p，p．p．7p．
BELLING LEE LASULATED TERMINALS．Red or Hhack．of kim max．10p jair，p．p．4p．
FINNED ALUMINIUM HEATSING．9in $\times 1 \neq 1 \mathrm{n}$
Remily drilled．80p，p－p．7p
FINRED ALUMINIUM HEATSINK， $9 \mathrm{in} \times 8 \mathrm{in} \times$ 1tin．in C．： $4 \times 2 \mathrm{~N} 30 \mathrm{~m}, 28$, p．p． 29 y
SUB－MIR．CROC．CLIPS．Red or Black，insulated 4p．
Min，quantity， $\mathbf{6}$ ，p．p． 4 p ． Min．quantity，6，1．p．4p．
GARRARD MAG．TAPE DECES： 1 ＇ij．p．f．，JOV， Holenoill operated brakes，te．Mains voltage motors $\$ 7.50$ each，p．p．R0p．
MOTEX ；Apeed tape deck $(13 \mathrm{~m} \times 33 \mathrm{in} \times 71 \mathrm{ln})$ rect tur recl 7 in matnu uperated， 87.50, p．p． $60 p$ ．
10 REED SWITCHES operated by push buttons and magnets，60p，p．p－2p．
COMPONENT PANEL 6 g＇crs（200V 4 amps）， 6 condensers， 12 resiators，30p，p．p．Ap
COMPONENT PANEL（ 9 IC＇s FJH131）（1－CA300）， 1 erystal 7 －fikkilz + varions other components， 1，p．1．Mp．
COMPONENT PANEL， $4 \times 500 \mathrm{mfd}, 50 \mathrm{~V}$ d．e．cap

NEON PANEL， 24 neon＇$*$ ，wire ended， $90-240 \mathrm{~V}$ $20 \mathrm{p} p . \mathrm{p} .4 \mathrm{p}$ ．
MAIMS NEONS
Red or direen．size： $1 \mathrm{in} \times 1 \mathrm{jn} \times 1!\mathrm{in}$ ．15p，p．p． 4 p LEVER AOTION P．O． 1000 TYPE SWITCHES
Lock 4－pole changeover，15p，p．p．4p．Ex equip．
Lock 2 －pole changeover，10p，p．p．4p．Ex equip． Lock e－pole changeover，10p，p．p．4p．Ex equip． MULLARD \＆MALLORY SCREW TERMDAL CAPACITORS $4.500 \mu \mathrm{~F}$ 64 $\mathrm{V}, 7,100 \mu \mathrm{~F} 40 \mathrm{~V}, 50 \mathrm{p}$ each． $20,00030 \mathrm{~V}, 2 \overline{3}, 000 \mathrm{zN}, 3 \bar{u}, 000 \mathrm{NW}, 30 \mathrm{p}$ each， p．p．10p．
MULLARD FULLWAVE RECTIFIERS
6－48V，15 amp，75p，p．p． 91.
BELLNG LEE $1 \cdot 5$ anp in－line rubber coverel interference suppressor，25p，p．p．8p
RUBBER 8 PIN 5 AMP NON－REVERSIBLE CABLE COANECTORS，20p，p．p．jp
gOLENOIDS 18 VOLT PULL ACTION
$\operatorname{lin} \times \ln \times$ inn，40p，p．p．$x p$
SOLENOMS $1 \because 24 V$ dic．pull action 1 in $\times 1$ in \times 1引in，40p，p．p．ip．
 $11 \mathrm{in}, 50 \mathrm{p}, \mathrm{p} . \mathrm{p} .9 \mathrm{p}$ ．
SARGAMO WESTON TIME LAPSED METER
Maina operated． $1!\mathrm{in} \times 1$ in $\times 2$ in，$\$ 1.50$ p．p． 7 p ．
ARROW RELAX， 240 V a．c．coll，double pole change over， 1 make contact＇s $10 \mathrm{~A}, ~ 240 \mathrm{~V}$ a．c．， $25 \mathrm{p}, \mathrm{p} . \mathrm{p} .8$ p．
OMRON MKZ MIDGET POWER RELAY，IUV d．c． Double pole changeover．New，70p，p．p．Jp
STC MINIATURE RELAY 280Ω ，perspex cover， double pole changeover，f．15V new，35p，p．p．5p． 8TC VARLEX，miniature relaya 700Ω ，perspex cover， 4 pole changeover，40p，p．p．jp．
POTTER BRUMFIELD 1 IV d．c． 3 pole changeover
with bage，contacts rated 7 A il．e． f 1 ，p．p． 10 p ． with base，contacts rated 7A 1i．e．，el，p．p．10p．
TELEBCOPIC AERIALS
Chromed in cloged， $28 i_{n}$ extended，is section ball jointed basr，28p，p．p．ip new．
MULLARD 4 DM 160 DNDICATORS in playtic holder／eocer．ex equip．，nize approx． 1 in $\times 1$ in \times $\frac{1}{2}$ in， 36 p，p．p． 51
PRINTED CIRCUIT BOARD／19 ． LC ： 19×10 OA200
Dionles： 1 red relay： 1 AZ $2 \cdots 9$ zether axs．erpacitor／
 240 V a．c．， 21, p．p．$\because 0 \mathrm{p}$ ．Ex equip．
WIRIMG CABLE
Size－1．020．Yarioun colours．350yils，60p，p．p．23p．
TAPE POSITION INDICATOR
Re－settable 3 digits，30p，p．p． 0% ．A．T．
All orders add 10% ．

FIELD
 ELECTRIC LIMITED

3 Shenley Road
Borehamwood，Herts．
Tel．：01－953 6009

TRANSISTORS 20301 $\left\lvert\, \begin{aligned} & 4031 \\ & 4031\end{aligned}\right.$ \begin{tabular}{ll|ll|l}
\& TRANSISTORS \& 40316

20301 \& 0.15 \& $2 N 3414$ \& 0.10 \& 40318

203602 \& 0.15 \& $2 N 3415$ \& 0.10 \& 40361

20331 \& 0.16 \& $2 N 3414$ \& 0.10 \& 40360

20302 \& 0.15 \& $2 N 3415$ \& 0.10 \& 40361

20303 \& 0.25 \& 2N 3416 \& 0.15 \& 40362
\end{tabular} 20303

20306 20309
20345 B

2 2N 1
2N
2N
2 2N
2N
2N6 2 N
2 N
2 N

c

$2 \mathrm{2N}$

2
2
2

和

2

 2N8
2

ה ה
2 N
2 N
2 N

2 n 2 N 2 N

动む

2

ส

जส

สส

ज

云条

2 N 2 $2 \mathrm{2N} 2$ 2 N 2

 $\frac{2}{2}$
2 N 2 2 N 2

 2N2
2N2

 2 N2 N
2 N 2N2

2 N 2
2 N 2
2N2
2 N 2 2 N
2 N 2 N
2 N
2 N 2 N 2
2 N 2
2 N 2 2 N 29
2 N 2
2 N 29 ${ }_{2}{ }_{2} \mathrm{~N}_{2} 2907 \mathrm{Cl}$ $\begin{array}{ll}2 \mathrm{~N} 2907 \mathrm{~A} \\ 2 \mathrm{~N} 2923 & 0 . \\ 0 .\end{array}$ $\begin{array}{ll}2 \mathrm{~N} 2924 & 0.12 \\ 2 \mathrm{~N} 2925 & 0.15\end{array}$ $\stackrel{2}{2} 2$

2N2926		3 N 141	0.81
Green	0.12	${ }_{3 N 142}$	${ }_{0} 0.58$
Yellow	0.10	3N143	0.75
Orange	$0 \cdot 10$	3N152	0.92
2N3053	0.81	3N153	0.81
2N3054	0.80	3N154	0.84
2 N 305 J	0.80	3N159	1.17
2N3990	0.20	3N187	1.55
2 N 3391	0.20	3 N 200	8.49
2N3391A	0.22	3N201	1.05
2N3392	0.18		
2N 3393	0.12		
2N3394	0.17	40050	0.78
2N3402	0.12	40251	0.81
2 N 3403	0.18	40309	0.80
2N3404	0.24	40310	0.50

Poet and Packing 18 p per order．Europe 25 p．Conmmonwealth（Air） $6 \overline{0} p$（MIN．）．Matching charge（andio
transitors only） 15 p extra per pair．Pricea subject to stock availability．

TTL LOGIC I．C．＇s

We atuck the full range of the low number SN 7400 neries－some examples：					
SN7400	0.20	SN7401	0.20	8N7402	0.20
SN7403	0.20	SN7404	0.22	3N7420	0.20
8 N 7447	1.30	8N747：	0.38	8N7493	0.75
We also stock the unuaual numbers as follows：					
sN74100	2.50	SN74153	1.58	8N74176	1.50
3N74107	0.48	9N74154	2.00	SN74180	1.55
SN7411\％	1.00	8N7415．	1.55	8N74181	7.00
8N74119	1.92	SN74157	1.80	SN74190	1.95
SN74121	0.80	SN74160	2.60	SN74191	1.95
SN74122	1.35	8N741il	2.60	＋N74192	$1 \cdot 00$
8N74123	1．85	8N74164	2.26	SN74173	1.90
sN7414，	0.90	8N7416．	4.00	8N74196	1.60
SN7414．j	1.50	SN74167	6.25	SN74198	4.80
8N74150	3.35	8N741\％4	2．00	8N74199	4.00
SN741．5	1.10	8N74175	1.35		
FM multiplex stereo demodulator $\mathrm{MCl}^{2} 04 \quad \mathbf{2 8} \cdot 60$ Dual monolithic etereo preamplifier MC1303 28.70 Stereo Decoder MC1310 EL 78					

－

BRIDGE RECTIFIERS					
PW	50	100	200	400	600
A	24p	26p	35 p	35p	40p
2 A	32p	37p	41p	46p	32p
4 A	80p	70p	78 p	85.	98p
6 A	62p	75p	80p	\＆1．10	11．25

400 MW －BZY88 and IN SERIER 15 p ．
10 watt－2s 17M and is SERIES，22p． 1.5 watt－Z1，SERIES， 85 p ． RRE，40p． 20 wat－RZ 93 SERIES，S8p．

NE555 TIMER I．C．90p．
NE560 PHASE LOCKED LOOP，e4－48．
SCORPIO IGNITION KI＇T for improved performance $210+$ $50 \mathrm{p} P$ ． I^{1} ．

MONTHLY NEWS FEATURE
1．NEW HEAD OFFICE：4：CRICKLEWOOD BROADWAY，N．W． 2
．65 BATH STREET，GLASGOW，Tel．041．3324133．
－APECIAL OFFER 3 IN 1 POWER SUPPLIES FOR EDV TIONAL ESTABLIHHMENTS．WRITE FOR DETAILS．

DIODES AND RECTIFIERS

	8 d	INJ402（3A 200pv）
1N3172（1－5A 100pv）	9p	IN5404（3A 400pr）
1N4517（1－5A 200pw	10p	（L200J（3A 600pv）
1N5173（1－5A 400pv）	11p	（ $\mathrm{L}^{\text {7006（3A 800pr＊）}}$
IN：576（1－5A 600pv）	12p	CL 7007 （3A 1000pv）
1N5177（1－5A 800pv）	15p	OL1002（ 10 A 100 pv ）
PL4007（ 1.5 A 1000 pv ）	20p	CLI003（10A 200pv）
INJ400（3A J0pv）	15p	CL1004（104 400pv）
1NJ401（3A 100pv）	17p	CL1005（10A 600pr）

20 p
28 p
25 p
87 p
80 p
35 p
40 p
47 p
86 p
ANODE AND CATHODE STUD

 $\begin{array}{rr}\text { 1N34A } & 10 \mathrm{p} \\ \text { IN914 } & 7 \mathrm{p} \\ \text { IN916 } & 7 \mathrm{p} \\ \text { IN }\end{array}$ $\begin{array}{lr}\text { IN916 } & 7 \mathrm{p} \\ \text { AA119 } & 7 \mathrm{p} \\ \text { AA129 } & 15 \mathrm{p}\end{array}$

AA129	$15 p$
BA100	$16 p$
BA102	$\mathbf{9 6 p}$
BA110	$\mathbf{2 5 p}$

OPTOELECTRONICS
 MINITHON 3015F 7. SEGMEN INDICATOR（16 PIN DIL） 28

INDICATOR（16 PIN DIL） 42 ．
DRIVER SN7447 21.80 TIL EKETA LOGHT EMITTING HOWE．Made by TEXAS INAT．
（Ked）．35p MOTOROLA MC $\triangle E R I E 8, ~ R C A ~$ CA 30NO SERIEH AND COSMOS PLFAGEYRLSERIEN．TRY［＇ FIRAT FOR LINEAR ANDDIGI－ TAL．INTEGRATEI）CIRCUITS． RECTIFIER． 1.8 A 100 piv 25 p ea． WIRE－WOUND RESISTORS
only），7p．

5 watt 5%（up to
10 watt
5%

10 watt 5%（up to 26 ka only）．

$0 \cdot 1$ Watt 6p VERTICAL
 SLIDE POTENTIOMETERS 58mm TRACK
sIN（iLEGANGEF）．LOG or LIN 1k to $1 M$ ．40p each．
TWIN IIANGED．LOO OT LIN kN to 500 k ．
KNOB． 5 p each．

Small value
SUB－MIN．ELECTROLYTICS wide range of values only $6 p$ each
ALL PRICES EXCLUSIVE OF 10% VAT

MAPLIN ELECTRONIC SUPPLIES

SEND NOW FOR YOUR COPY OF THIS BEAUTIFULLY PRODUCED FULLY ILLUSTRATED CATALOGUE AND WE WILL FORWARD IT TO YOU BY RETURN OF POST. PLEASE SEND 9p IN STAMPS. everything guaranteed brand new marked by the manufacturer

MAPLIN: Projected site of London's third airport.

RESISTORS

 Carbon film 5\% from from 1.2 Mn to 10 Ma . E12 series, fW Ip: tW 1.2 p . Metal Oxide 2\% 10Ω to 1 Ma. E24 series tw ${ }^{\text {the }}$ Pi low erp, $2 \frac{1}{2}$ W. SW low types stocked.7 SEGMENT DISPLAY

POTENTIOMETERS Miniature carbon track with tin. spindles. $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, $25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$. 250k n, 500k $\Omega, 1 \mathrm{M}$ 』. 2M 1. lin), 12p. Log or switch 23 p . Dual gang less switch 38p.

DIN PLUGS, 3 pin. $9 \mathrm{p}, 5 \operatorname{pin}$ A (180°)

 5 pin B $\left(240^{\circ}\right)$, 10 p eachDIN SOCKETS. 3 pin. 5 pin A, 5 pin B, Tp each
DIN LOUDSPEAKER. 2 pin plug, 8 p . Socker 6p.
JACK PLUGS standard fin plastic barrel, 13p. Stereo, 25p.
Bright metal barrel, 17p. Stereo. 29p.
ACK SOCKETS standard 1" open type. 10p. Moulded 2 break, 13p. Moulded stereo 3 break, 18p. ROTARY SWITCHES
Adjustable stop. 1 pole $2-12$ way, 2 pole $2-6$ way, 3 pole $2-4$ way. 4 pole

P.E. SOUND SYNTHESISER

If this project seems expensive YOU HAVEN'T SEEN OUR PRICES!
We shall be stocking all the parts for this exciting project from the special i.C.'s right down to the nuts, bolts and spacers for mounting the Veroboards.
Send S.A.E. NOW for our detailed price lists.
YOU SIMPLY MUST SEE OUR PRICES!

SPECIAL IC, for organ builders. 7 stage frequency divider in one 14 pin for pack of 12, $\mathbf{E 2 5}$.
Why not ask us to slip a dato sheet in with your catalogue.

NUDES!

Clothe those naked projects with our superb instrument cases. We are sole distributors of the

Centurion

range, designed for the professional market. now available to you at special low prices. S.A.E. please for free illustrated leaflet.

Wide range of nurs and bolts, plated brass and nylion types plus solder tags. shakeproof washers, etc. core 20p
Insulating sleeving 3 sizes, 6 colours.
74 c 36 p.
14 pin 741 C 4 p. MCMURDO Socket, RSB, 52p Plug, RP8, 36p. (As used in P.E.
Sound Synthesiser.)

SEE OUR CATALOGUE for details of how you can
obtain $C 1$ worth of components.

ABSOLUTELY FREE
V.A.T. Please add 10% V.A.T. so final total Orders and enquiries for catalogues to
MAPLIN ELECTRONIC SUPPLIES P.O. Box 3, Rayleigh, Essex SS6 BLR

Postage and packing FREE in U.K, But we have to ask you to send a 10p handling charge with order under 50p.

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence
$+$
bRTISS Mational rano \& Electronics school P.O. BOX 156, JERSEY

ELECTROKIT
 12 Lauderdale Road, London, W. 9 Telephone Ol-286 001I

LIGHT DIMMER. Kit contains all parts including circuit and construction data, 480 watts, fully suppressed. Price £2.10 SCORPIO IGNITION SYSTEMS (P.E. Nov. 1971), $£ 9.50$. This kit includes all the parts for the assembly of this popular and reliable system. The haidware and the construction data are included.

Send for details of kits available (please enclose S.A.E.). All kits sent POST FREE within the limits of the U.K.
Please note, prices shown do not allow for V.A.T. Please add 10% to your order.

STEREO IC DECODER

HIGH PERFORMANCE PHASE LOCKED LOOP (as in 'W.W.' July '72) MOTOROLA MCIBIOP

EX STOCK DELIVERY

Speen. Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$. Distortion: 0.3%. liP level: 560 mV rms. O/P level: 485 mV rms per channel. Input impedance: 50 k . Power requirements:8-12V@16mA. Will drive up to 75 mA stereo 'on' lamp or LED. Simple to build.
KIT COMPRISES FIBREGLASS PCB
(Printed and tinned), Resistors, I.C.. Capacitors, Preset Potm. and Instructions. Only $£ 3.40$ post free + V.A.T.
LIGHT EMITTING DIODE (Red)
Suitable as stereo 'on' indicator. For above with danel mounting clip and instructions. Only 29p + P.p. + V.A.T.

14 PIN DIL SOCKETS. $16 p$ each + V.A.T
NOTE.-As the supplier of the original decoder kit, of which we have sold literally thousands, our customers can benefit from our wide experience.

Fi-Comp Electronics
BURTON ROAD, EGGINTON, DERBY DE6 6GY

PRICES NOW INCLUDE VAT SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid state
new amplifier. Brand
throughout. 5 illicon transistors plus 2 tors in push-pull. Full wave rectification Output approx. 13W r.m.s. into 8 ohm 2 Hz $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$
Fully integrated amplifier stage with eparate Volume, Bass boost and Treble cut controls. Suitable for 8-15 ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full
output. supplied ready bunt and tested, with knobs outputcheon panel input and output plugs. Overall ix e 3 in high $\times 6 \mathrm{In}$ wide $\times 7 \pm$ in deep. A.C. $200 / 250 \mathrm{~V}$

PRICE $\left\{\| 1.60^{\mathrm{P}} \mathrm{P}_{25 \mathrm{p}} \mathrm{g}_{\mathrm{p}}^{\mathrm{P}}\right.$.
DE LUXE STEREO AMPLIFIER

Ac. mains 200-240 volts.
Using heavy Using heavy
duty fully duty tally inains trans-
former with full wave
rectification ing add
人EZ80 as rectifier. Two dual potentiometers are provided for bass and treble control, giving bass and Balance of the left aud right hand channels can b adjusted by means of a separate 'balance' control fitted at the rear of the chassis. Input sensitivity la approx i matey $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per channel (8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Supplied complete with knobs, chassis size in. w $\times 4 \mathrm{in} . x$ tested to a high standard. Price f9.90. P. \& P. 45p.

NEW! POWER SUPPLY UNIT 200/240V A.C. input. Four switched fully smoothed D.C
outputs giving 6 V and 7 V and 9 V and 12 V at 1 amp outputs giving 6 V and 7 FV and 9 V
continuous ($1 \frac{1}{2}$ amp intermittent). Fit ted insulated output terminals and pilot lamp indicator Suitable for Transistor Radios, Tape

BLACK ANODISED 16g. ALUMINIUM HEAT SINE8. For TO3, complete with inca's and bushes. Size $2 \boldsymbol{i l n} \times$ $31 n$ approx. 88 p pair. P. \& P: 5p.
RIGI GRADE COPPER LAMINATE BOARDS 5 for 85 p
BRAND KEW MULTI-RATIO MAINS TRANSFORMERS diary wave at 1 amp or $10-0 \cdot 10,20-0-20,300-0-30 \mathrm{~V}$, at 2 amps
full wave. \quad Bize 3 in $\mathrm{L} \times 3$ in W $\times 3 \mathrm{inD}$. Price 88.10 . P. \& P. 30 p

Size 3 in L $\times 3$ in W $\times 3 i n D$.
Price $82 \cdot 10$.
MALIS TRANSFORMER. For transistor power supplies
 GENERAL PURPOSE HIGH STABILITY TEAKGISTOR PRE-AMPLIPIRR. For P.U. Tape, Mike Guitar, etc., and suitable for use with valve or
transistor equipment. $9-18 \mathrm{~V}$. Battery or from \mathbf{H}. T . line 2001300 V . Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 26dB. Solid encapsulation size $1 \frac{1}{2} \times 1 \frac{1}{4}$ in. Brand new - con
21. P. $\& P .13 \mathrm{p}$
8 REFERENCE ENCYCLOPEDIAS FOR ELECTRONIC 8 REFERENCE ENCYCLOPEDIAS FOR ELECTRONIC
ERGLIEERS ATD DESIGAERS, covering between them, EnGLEERS AND DESIGNERS, covering between them Many thousands of up-to-date European types listed.

$$
\begin{array}{lr}
\text { Diode Equivalents } & 80 \mathrm{p} \\
\text { Transistor Equivalents } & 90 \mathrm{p} \\
\text { Transistor Characteristics } & \mathbf{4 1 . 2 0} \\
\text { All three together } & \mathbf{4 2 . 6 0}
\end{array}
$$

HANDBOOK OF TRANSISTOR EQUIVALENTS must for servicemen and home constructors. Including many 1000's of British, E.S.A., European and Japanea transistors. ONLY 40p. Post 5 p . CENTRE ZERO MINIATURE MOVING COIL METER $100 \mu A$ for balance or tuning. Approx. size
\times tin. Limited number $88 p . \quad$ P. \& P. 10 p .

RECORD PLAYER BARGAINS
Mains models. All brand mew in maker'e packing.
LATEST B.8.R. C100/C109 AUTOOKARGR UNITs. With latest atereo/mono compatible cartridge 87.60 flu With \mathbf{P}. \& P P
0.0
Gerard 8P85 Mk. III with heavy precision machined die cast turntable. 810.58. Carr. 50p
PRECISION ENGINEERED PLINTHS Beautifully constructed in heavy gauge Colorcoat plastic coated steel. Resonance free. Designed to take Gerard 1025̄, 2000, 2025 TC, 2500, 3000, 3500, 5100 , SP 25 II and III, SL65B, AT60, etc, or B.B.R. C109 C129, A21, etc. Black leatherette finish. Size 12 In x 141 in $\times 3\}$ in high (approx. $7 \frac{1}{2}$ in high, including rigid smoked acrylic cover). P. \& P. 35p. Now only \&4•95 EATEET ACOS GP01/18C Mono Compatible Cartridge with LATEST ACOS GP01/18C Bono Compatible Cartridge with
to stylus for I.P/EP/78. Universal mounting bracket to stylus for $1 . \mathrm{P} / \mathrm{EP} / 68$. Universal mounting bracket.
$81-80 . \mathrm{P} . \& \mathrm{P}$. Bp. mONOTONE OTAHC COMPATIBLE STEREO CARTRIDGE T/O stylus. Diamond Stereo LP and Sapphire 78. ON LY 28.80. \mathbf{P}, \& \mathbf{P}. 10 p . Also available fitted with twin Diamond T/O stylus for Stereo LP. 42-80, P. \& P. 10p. LATEST RONETTE T/O stereo Compatible Cartridge for EP/LP/Stereo/48. $21 \cdot 68$ P. \& P. 10p.
LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/78 mono/stereo records on mono equipment $41 \cdot 50$, P. \& P 10p.

QUALITY RECORD PLAYER AMPLIFIER ME II A top-quality record player amplifier employing heavy
duty double wound mains transformer, ECC83, EL84, duty double wound mains tranatoriner, ECC83, EL84, and rectifier. Separate Bass, Treble and Volume controls.
Complete with output transformer matched for 3 ohm Complete with output transformer matched for 3 ohm PRICE 44.40 . P. \& P. 40 p . ALSO AVAILABLE mounted on board with out put transformer and speaker PRICE \&6-85. P. \& P. 50 p

SPECIAL OFFER! HI-FI LOUDSPEAKER SYSTEM

Beautifully made teak finish enclosure with most attractive Tygan-Vyoair front. size $16 i n$ high
$\times 10$ in wide $\times 6 i n$
deep. Fitted Ceramic Magnet $13 i n \times 8 i n$ bass unit, two H.F. tweeter units and crossover. Max. power handling

Our Price $\$ 9.25$
Fop CABINET A 84.95 Carr 65 IRATELY 84.95 . Carr. 65p

Also available in 8 ohm with EMII 13 in $\times \operatorname{Bin}$. Lass HARVERSON'S SUPER MONO AMPLIFIER a super quality gram amplifier using a double wound fully isolated mains transformer, rectifier and ECL82 triode pentode valve as audio amplifier and power output stage. Impedance 3 ohms. Output approx. 3. 5 watts. Volume and one controls. Chassis size only in. Wile ${ }^{\text {r }}$ Sim. deep ${ }^{x}$ Brand New, completely wired and tested with gond OUR ROCK BOTTOM

LOUDSPEAKER BARGALIS

5 in 3 ohm 21 .05. P. \& P. 15p. $7 \times 4 \mathrm{in} 3 \mathrm{ohm}$ 21.15. P. \& P. 20 p . 10×6 in 3 or 15 ohm $21 \cdot 90$, P. \& P. 30 p . E.M.I. E.M.I. $13 \mathrm{k} \times 8 \mathrm{in}$ with high flux ceratnic mar net with E.M.1. It $\times 8$ in with high fix ceramic magnet with
parasitic tweeter 3,8 , or $I 5$ ohm 23.50 . P. $\& P$. 30 p . E.M.I. 13×8 in, 3 or 8 or 15 ohm with two inbuilt t meters and crossover network e4.65. P. \& P. 30p.
EM CERAMIC MAGNET HEAVY DUTY TWEETER. prox, 3 in. Av. 3 or 8 or 15 ohms. El 25 plus $15 p$ of. de p.
BRAND NEW. $12 \mathrm{jn} 15 \% \mathrm{H} / \mathrm{I}$ Speakers, 3 or $1 \overline{5}$ ohs. Current production by well-known British maker. Now with Hiflux ceramic ferrobar magnet assembly 27.50 .
Guitar models: 5.3 w \& 7.50 .35 w .89 .35 P. $\&$ P. 40 p each.

SPECIAL OFFER!

LIMITED NOM BE OP BRAND HEW LAC 10° TWI CORE LOUDSPEAKERS. With large ceramic magnet and plasticised
cone surround. 8 ohm impedance. 42.70. P. \& P. 25p.

12In "RA" TWIN CQNE LOUDSPEAKER

to watts peak handling. 3,8 or 10 ohm, $22 \cdot 45$, P. \& P. 30 p . 35 ohm 8PEAKRR8 ${ }^{3}$. ONLY 70p. P. \&P. 13p.
"POLY PLANAR" WAPER-TYPE, WIDE RANGE "POLY PLANAR" WAFER-T
ELECTRODYNAMIC SPEAKER
ELECTRODYNAMIC SPEAKER
Size 11 in $\times 14$ thin $\times 1 \frac{1}{\text { fin in }}$ deep. Weight $190 z$. Power handling 20W r.m.s. (40W peak). Impedance 8 ohm only, Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with t8.55 each. P. \& P. 25p. P. \& P. 15p app. yd. (min. 1 yd.). SA.E. for samples.

HI-FI STEREO HEADPHONES

Adjustable headband with comfortable fexifoam ear mulls. Wired and fitted with standard stereo tin jack plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching
impedance $8-16$ ohms. Easily converted for mono. PRICE \$8.30. P. \& P. 1 op. HIGH IMPEDANCE CRYSTAL STICK MIKES. OUR

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

NEW FURTHER IMPROVED MODEL WITH HIGH QUALITY READY DRILLED PIER GLASS PRINTED CIRCUIT BOARD WITH COMPONENT IDENTIFICATION CLEARLY MARKED FOR EVEN EASIER CON
STRUCTION

A really frst-class Hi-Fi Stereo Amplifier Kit. Use ave stages on each chancel resulting in even lower noise level with improved sensitivity. Integrated preamp with Bass, Treble and two Volume Controls, Suitable for use with Ceramic or Crystal cartridge. (Very simple to modify to suit magnetic cartridge-instructions included). Output eatage for any speakers from 5 to 10 ohms. Compact design, all parts supplied including drilled metal work, high quality ready drilled fibre glass printed circuit board, mart brushed anodised nuts, bolts- - oo extras to buy. Simple step by te instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output 14W m, m. per channel into 5 ohms. Frequency response +311 $12-30,000 \mathrm{~Hz}$. Sensitivity better than 80 mV Into 1 Ma Full power bandwidth $\pm 9 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$, Base boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16 dB Negative feedback $18 d B$ over main amp. Power require mints 35 V at $1^{-0} \mathrm{amp}$. Overall size- $12^{\prime \prime}$ wide $\times 8^{\prime \prime}$ deep ※21" high.
Fully detailed 7 -page construction manual and parts list free with kit or send 18p plus large S.A.E.
PRICES AMPLIFIER KIT $\quad 211.55$ P. \& P. 18p
(Magnetic input components 33 p extra)
POWER PACK KIT, $\$ 3.80$
P. $\&$ P. 3%
CABINET, $\quad 88.80 \mathrm{P}, \& \mathrm{P} 39 \mathrm{p}$
Must line if all units purchased at same time). Full ate sales service. Also available ready built and tested, 2R8.10. Post Free.
Note: The above amplifier is sullabie for feeding two mono sources into inputs (e.g. mike, radio, tobit record decks, elf.) and trill then provide mixing and fain
farthrec s-VALVE AUDIO
${ }_{3}$-VALVE AUDIO

AMPLIFIER EA 84 MK II Designed for H|-Fi reproduc lion of records. A.C. Main operation. Ready built on
plated heavy gauge metal plated heavy gauge meta
chassis, maize $74 \mathrm{~m}=\mathrm{m}, \times 4 \mathrm{in} . \mathrm{d} . \times$ tit. b. Incorporates ECC83 Lin. i, Incorporates ECC83,
EL84, valves. Heavy duty, double wound mains transformer and output transspeaker. Separate volume control and now with improved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output if watts. Front pane can be cached and lents extended for remote wired and tested for only $\$ 5 \cdot 50$, P. \& P. 35p.
BRITISH MADE SOLID STATE ALL SILICON sTEREO AMPLIFIER. 15 watts 1 ma per channel output. Fre. pickup tape mic, etc builtin switchable cratch filter, rumble filter and loudness control. $60 \mathrm{~m} / \mathrm{m}$ slider controls for bass, treble and volume. 10 way push button function, selector switch, This amplifier has specification and perforinance usually only found in amplifiers costing twice as much. Each amplifier supplied, tented and fully guaranteed. Finished In the most attractive contemporary style teak cabinet. Size 161 in . \times 8 8 in. \times Ain. Makers recommended price
 net. V.A.T. plus 75 p P. \& P. Bend S.A.E. for $\{$ ill details

10;14 WATT HI-FI AMPLIFIER KIT
A stylishly Banished
monaural amplifier with an output of 14 watts from 2 ELS As in push-pull super reproduction or both music and speech, with eeg
gimble bum. Separate impute for mike and spelt for mike and and announcements
 to follow each other
Fully shrouded section wound output transformer to match 3-15n speaker and 2 independent volume controls and separate bass and treble controls are provided giving
good lift and cut. Valve line-up 2 ELs 4 s. ECC83, EF86 and good lift and cut. Valve inge-up 2 ELis. EC C8,

 P. \& P. 55p.
P. \& P. 60p.

Open 9-5.30 Mon, to Fri, 9-5
Sat. Early closing Wed. Ip.m.
A few minutes from South Wimbledon
Tube Station.

Dept. PE, 170 High St., Merton, London, S.W. 19 tel. $01-5403985$
send stamped addressed envelope with all enquiries
(Please write clearly) PLEASE MOTE: PA P CHARGES QUOTED APPLY TO DIE. ONLY CHARGED EXTRA.
"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

Excellent quality at low cost. All modela-
Input $\because 30 v$. $30 / 60$ c/8. Variable output 0.260 v .

Solid atate. Variable out put $5-20 V^{2}$ d.c. up to 2 smp.
Independent meters to Independent meters to
monitor voltage and curmonitor voltage and cirsa.c. Size 2% in. x inin.
3 tin. 210.95 . Post 25 p .

PS.1000B REGULATED POWER SUPPLY
Solid ntate. Output 6, 9
or 12 V d.c. up to 3 amps. Meter to monitor a.c. Size $4 \mathrm{in} . \times 3$ in. \times

POWER RHEOSTATS

Highquality ceramic construc.
tion. Winding embedded in -itreous ensmel. Heavy dutty bruah wiper. Continuuus rat-
ing. Wide range available prestock. 8ingle bole firing
\qquad tin tha. shatts. Bulk guanti

25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1006$ ohms. 965. P. P. P. 10 p .

60 WATT. $10 / 2 \overline{5} / 50 / 100 / 250 / 500 / 1000 / 9500$ (1) W00 Ohn el.35 P \& P. 10 p

100 WATT. $1 \cdot 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 nhms. 21.05. P. \& P. 15 p.

240° Wido Anglo 1 mA Meters $\begin{array}{ll}\text { MWl } 1.660 \mathrm{~mm} \text { squser } & 88.07 \\ \text { MW'1-8 } 80 \mathrm{~mm} \text { square } & \mathbf{4 . 9 7}\end{array}$ Post extra

230 VOLT A.C. 50 CYCLES RELAYS

Brand new. 3 eets of changeover contacts at 5 amp. rating. 50 p each.
Poat 10 p (100 lots 240) quantitles available.

SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVT. DEPTS., EDUCATIONAL AUTHORITIES, ETC.
Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure.

Popt and Packing Complete Complete with easy to follow instructions and covered by full guarantee.

A F20-Mono Ampliffer, 24-80. AF30-Mono Pre-Amplitier, $\dot{£ 2 \cdot 61 \text {. }}$ AF310-Mono Amplifler 25 -91. ATS-Automatic Light Control 29.58.

T30-Photo cell 8witching l'nit 85.70.

AT50-400W Triac Light Dimmer Speed Control, 24.80 .
ATū-1,30 0W Triac Light Dinamer Speed Control, 85.70. T56-2.200W Triac Light Dimmer Speed Control, 28.90. AT60-Psychedelic Jigh
Single Channel, $87-80$. AT6́s-Psychedelic Light control A Channel, 21455.
H F61-Radio, 83.38 .
HF65—F.M. Tranamitter 82.70 .
HF75-F.M. Recelver, 28.88.
HF75-F.M. Receiver, 28.88.
HF310-F.M. Tuber Unit,
is.81.

HFSy £ 84.12.
$\mathrm{HF} 330-\mathrm{B}$
HF330-Stereo Decoder for use with MF310 or HF32ジ. 29.96.
[F3903-Aerial Amplifier for A.M.) F.M. bands J, II and I11, E1.77.
 GU330-Tremolo init for guitara, etc., 27.50 . Supply $100 \mathrm{~mA} \quad 9 \mathrm{~V}$
T $10-$ Power Suph NT10-Power Supply 100 m
Stab., 12 V Unstah., 28.16. T300-Professional Stab. Power 8upply $2 \times 30 \mathrm{~V}, 22 \mathrm{~A}, \mathrm{e12} 51$. NT305-Transistor Converter $12!15$ a.c./d.c.
44.60.

NT310- Power Supply 240 V a.c. to
$2 \times 18 \mathrm{~V}$ d.c. at $2 \mathrm{~A}, 84-80$. $4 \cdot 5-15 \mathrm{~V}$ त.c., 500 mA , 89.67 .

Send S.A.E. for new 8-page list of Semiconductors and Valves ALL PRICES ARE ALL PRICES ARE
$\times \times C L U S I V E O F 10 \% V, A, T$

AUDIOTRONIC MODEL ATM． 1

 1．c． $10 / 50 / 100 / 500 /$ ，oous a．e． $50 \mu \mathrm{~A} /$ \＆3．75．L＇ost $=10 \mathrm{p}$ ．

MODEL TH－12

lection．side switeh selector $0 / 0 \cdot 25 / 25 / 10 / 50 / 250 / 1.000 \mathrm{v}$ 1．c． $0 / 10 / 50 / 250 / 1,000 \mathrm{~V}$ a．c． $0 / 50 \mu \mathrm{~A} / 2 \mathrm{j} / 250 \mathrm{~mA}$ i．e． $0 / 3 \mathrm{~K} /$ $30 \mathrm{k} / 300 \mathrm{k} / 3$ $+50 \mathrm{~d} 1$

RUSBIAN 22 RANGE MULTIMETER

a first class versatil

tandards．bane higlies
$0 / .50 / 500 /$ Ranges：$-5 / 10$ $0 / 50 / 20011.000 \mathrm{~V}$
D．c．current $100 \mathrm{w} / 1 / 120$ $100 \mathrm{~Hz} / 1 \mathrm{~A}$ Resistance Complete with batteries test．leanls，instructions and

MODEL	500	30,000	O．P．V．

with overlosd protection mirror scale $0 / 0 \cdot 2$
$100 / 250 / 500 / 1.000$
$\begin{array}{ll}100 / 250 / 500 / 1.000 \mathrm{~V} \\ 0 / 25 / 10 / 25 / 100 / 250 / 500 / \\ 1.000 \mathrm{~V} & \text { a．c．} \\ 0 / 50 \mu \mathrm{~L} / 5 / 50 /\end{array}$ 1,0001
300 mA
 \＆8．95．Post pard．
 ／ $1 \div / 15 / 60 / 1.50 / 500 \mathrm{MA} /$ ．）／5．0．0．2914 $\Omega / 3 \mathrm{k} / 30 \mathrm{k} \Omega$ with aturdy metal carryius cast

Leather case $£ 175$
．leadis and

HIOKI MODEL 700X

MODEL C－7080 EN
$30,0040.5$ $0 / 0 \cdot 55 / 1 / 25 / 11 / 50 / 2.50 /$ $1,000 / 5.000$ V d．c． $0 / 2$－ $150 / 250 / 1,000 / \mathrm{s.0109}$ ace
$0 / 50 \mu \mathrm{~A} / 1 / 10 / 100 / 500 \mathrm{HA}$ 10 amp ． $\mathrm{d} . \mathrm{c} .0 / 2 \mathrm{~K} / 20 \mathrm{Kk}$
20 meg.
-20 to +.0 d 1 s. \＄13． 85 ．Post 3

lb3 transistor tester

HODEL 449A IN

 TOR TESTER
Ch ind

 indont．Checks leha Checks diodes intont Checks BClig，etc 50 lheo 5 500e $\mu \mathrm{A}$ z20／240 5 a．c．operat is，

817．50．Prant：＂as

MODEL U4311 SUB－STANDARD
MULTI－RANGE VOLT AMMETER sensitivity 330 ohma／ Volt a．c．arm d．c．Aecur－ Scale length 1 tijumin
$0 / 300 / 750 \mu \mathrm{~A} / 1,3 / 3 / \%$ $0 / 300 / 750 \mu \mathrm{~A} / 1 \mathrm{~J} / 3 /$
$15 / 30 / 75 / 150 / 30 /$ $750 \mathrm{~mA} / 1.5 / 3 / 5-5$ анц a．c．0／3／7 5／15／30／75／150／ $300 / 760 \mathrm{~mA} / 1 / 3 / 5 / 300 /$
amp．a．c．0／75／150／300／ $50 \mathrm{mV} / 1 \cdot 5 / 3 / 7 \cdot 5 \cdot 15 \cdot 30 /$ $5011 \mathrm{~V} / 1-5 / 3 / 7 \cdot 5 / 15 / 30 /$ $55 / 150 / 300 / 750 \mathrm{~V}$
 0／100na／il $0 / 5 \mathrm{~K} / 50 \mathrm{~K} / \mathrm{BOOK} / 5 \mathrm{MEC} / 50 \mathrm{MEC}$ － 20 ＋ti2ds．215．I＇cost 25 p

KAMODEN 72.200

MULTITESTER
High sensitivity teater． $200,000 \mathrm{u} . \mathrm{p}, \mathrm{v}$ ．Owerluad
protection．Mırror scale． protection．Mirror scale．
Ranges： $0 / 0.0 \mathrm{i} / 0.4 / 3 / 30 /$ Ranges： $0 / 0.00 / 0 \cdot 2 / 3 / 30 /$
$120 / 650 / 1,200 \mathrm{~V}, \mathrm{c}, 0 / 3 /$ $120 / 600 / 1,200 \mathrm{~V}$ d．e．， $0 / 3 / 2$
$12 / 60 / 301 / 11,200 \mathrm{~V}$ a．c． $0 / f i \mu \mathrm{~A} / 1 \cdot 2 \mathrm{ma} / 120 \mathrm{ma}$／
 $2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{M} \Omega / 2(\mathrm{ki}$ M Ω ．$\quad E 16.95$ ．Post 30 p

TMK LAB TESTER
$\begin{array}{ll}100.000 & \text { O．P．N．} \\ \text { h！in seale } & \text { birzer }\end{array}$ short eircuit check． Sensitivit y：100，000 OPV d．e．S／Volta．e．
 $10,50.250,1,000 \mathrm{~V}$ $50,250,500,1,000 \mathrm{y}$ ，11．ene curient： 10 $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{meg} .100 \mathrm{meg}$ ．Decibels

P．\＆P．Pp

ModelS－100TR MOLTIMETER／TRANSISTOR TESTER． merror scalefoverload protec－
torn． $0 /(612 / 0.6 / 3 / 12 / 30 / 120 /$ 600 J it．c． $0 / 6 / 30 / 120 / 600 \mathrm{~V}$ a $0 / 12 / 500 \mu-4 / 12 / 300 \mathrm{ma} /$
 MFD Transistor tester measures Alpha，beta in
Ico．C＇onplete with battrriew instructions and learls

\＄13．50．Post ご5）

LB4 TRANSISTOR TESTER

Tesle INP m Ni＇N transistors． Andiu indication． Conplete withallimestruct ions． ete．50．Prist $2^{2} \mathrm{~m}^{3}$

KAMODEN HM－350 TRANSISTOR TESTER High quality instrument
to test Revarse L：ah to test Revarse Liah
chrrent amD．C．curpent． Amplitication factor of NPN，PNP thansistong，
dioder，NCR＇s，ete． $4^{7} \times$ 48＂cleas scal meter． Operates from litermal
hatteries．Complete with
instrueliun buds and carrying hardle． $212 \cdot 50$ ． frost 30 p ．

Automatic cul out．Suppliad conplete with test leads，mannal ami lest certificates． 849．Post 50 p ．

TE－85 VALVE VOLTMETER | 28 ranges． |
| :--- |
| $1 \cdot 5-1,500$ | $1.5-1,500 \mathrm{~V}$ 1．5－1，500V．Res．volts

Rostane
 thon．Complete with
 Additional probes avail alhe：
e2－50．

VOLTMETER

sistance up to 2.060 g wh
£17－50．F．\＆P． 70 p ．

BELCO AF－5A SOLID STATE SINE BELCO AF－SA SUCID STATE OSATOR
 l＇ries 817.50 ．（＇arr

CI－5 P SCOPE

For display of pulsed and periotic wasefotha In electronic circuts ERT
A MP．Bandwidth 10 MH Sersitivity at 100 kHz
 500 kHz ．Senstivity at．
 0．3－2\％；Pre－set triggered sweer $1 \cdot 3,0$ н0 psec．
free running $20 \cdot 200,000 \mathrm{~Hz}$ in nine ranges Calibrator pips．已emmil 430mm， $115 \cdot 2301$

TE22 SINE SQUARE WAVE AUDIO GENERATORS S 200 kc

hathide． | hande． |
| :--- |
| $60 \mathrm{c} / \mathrm{s}$ | Output imped ance supplied brand teed with glatan

4 Barde coveriag $500 \mathrm{kHz} \cdot 30 \mathrm{MHz}$ BFO Built.in Speaker $240 / 240 \mathrm{y}$
a.c. Brand fiew with matructions.

UR-1A RECEIVER

+ Bands covering $500 \mathrm{kHz}-30 \mathrm{MHz}$ FET, S Meter, Jariable BFO for
HSB. Ruilt-in Speaker. HantASB. Ruilt-it Speaker Hami $240 \mathrm{a} . \mathrm{c}$. or 12 y d.c. $123 \times 4 \mathrm{in}$
$\times 7$ in. Brand new with intruction
 SKYWOOD CX203 RECEIVER

0.

General coverage 150.400 kHz,
$550 \mathrm{kHz}-30 \mathrm{MHz} \mathrm{FH} \mathrm{H}$, $500 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{FET}$ front ent, variable Bro, noise limitet, \&
Meter Handapread $\& F$ fann
 OMRE $\mathbf{£ 5 0 . 0 0}$ Carr
$50 p$
TRIO 9R59DS
RECEIVER
0 OB B
$0-6$

4 bande covering $550 \mathrm{kHz}-30 \mathrm{MHz}$ continuons and electrical band.
epread on 10 , $15,20,40$ and 80 metres. \& vali.e vitus 7 diode circuit $4 / R$ ohm output and phone BFO B meter. Sep, bandopread output 1.5 W Variahle HF sudio AF gajn controin $115 / 2504$
Suze: a.c.
$7 \mathrm{in} \times 13 \mathrm{in} \times 10 \mathrm{in}$
with nstruction x rim x
OUR
PRICE
PRAT 4 Carr
FOLL RANGE OF TRIO stocked

OUDSPEAKERS

O

 ACR14BATTERYMAINS CASSETTE RECORDER

 Morded 450 13intginaithtwintweeters croseover. $\overline{5} \cdot 13,000$
Hz. 8W RMs. or 15 ohina.
28.82 each. P. \& P. 25 ,

SPECIAL OFFER!

 STEREO ${ }^{\text {unf }} £ 12.95$ carr ${ }_{\text {PRICE }}$ £12.95

HA-10 STEREO HEAD PHONE AMPLIFIER
 All ailico
trangistor amplifier op. maknetic. cerannic or
tuner inputs
Wints thin atereo headphone out.
phts and separate tolime controls for each channel. Operates
trom 9 V hattery. Inputs 5 MU / OUR OUR
PRICE
£5.97 \& ${ }_{20 p} P$

MP7 MIXER PREAMPLIFIER

 Ok with in

 controlm enabling complete mixing lacilities. Battery operated. $3 \times 3 \mathrm{mV} 50 \mathrm{~K}: 2 \times 3 \mathrm{mPV} \mathbf{2 0 0} \mathrm{Mics}$ Phono meg, 4 my 50 K . Phon $250 \mathrm{~m}=100 \mathrm{~K}$.OUR $58.07^{p .4 p}$

1021 STEREO
LISTENING STATION

For manc
ing andi
gain aelec.
tign gion of loud
spks. with
add additional
facility for phone surtching. a gain controls apeaker on-off sidide switch. stere $\underset{\text { ой }}{\text { ой }}$

HAND HELD 2-WAY WALKIE TALKIES 652.50 Pair.

¢71. $\mathbf{2 5}$ Pair

Battery operation Volume and and preas to falk button Tole. acopic aerial. Complete carrying cases. 100 mW ens.95 pair. Post sop.
Note: Licence requirelt tor oper tion in ${ }^{(T}, \mathbf{K}$) rerack
recort recor
cont
in
E a

re

i

Sportsman AM/FM
Portable Radio AR1000

AMR-9000 GLOBAL
AM/FM PORTABLE

covering A M:
$33 b-1+i 05 \mathrm{kzz}$
L. W. $\quad 150-$
380 Hz 380 kHz : M. 8.0 MHz
8 W :
3.W.3: $16-24 \mathrm{MHz}$: P.S.B. $1: 30-$
 F.M. 88 - $108 \mathrm{MHz:} \mathrm{A.I.R.:} 108-$
136 MHz Features tme zone map and timing dial. Large clear scale. Telescopic aerial and bunlt in aerial. A.F.C. on F.M. 6 in \times in
apeaker and peranal earpiece

OUR
PRICE E PRICESE
STEREO HEADPHONES

AHP\&D 8 TRACK STEREO TAPE DECK

AHP8A 8 TRACK STEREO TAPE PLAYER
styled 4 track stereo with an ountanding specification offered at a remarkatsy low price. Incorporaten a atle noise tilter, normal/chrome tape selector, twin VU meter, slifer "record/playback level con. trols, front panel heasphone socket, recorting indicator lamp, Whono/Din line input sockets,
35 mmi mike ingut aockets, ete., 3.5 mml mike ingut aockets, , te.,
etc. Frequency repponse $100-$ $\begin{array}{llll}8 \mathrm{kHz} & (100-12 \mathrm{kHz} & \mathrm{CrO}) \\ 8\end{array} \quad \mathrm{~g} / \mathrm{N}$
 $-6,18$ at 10 kHz . Complete with

Incorporstes buile in ampliffer $\underset{\text { Pushbution }}{\text { giving }}+4$ Irme. output illuminated track indicatorn, sllde controls for volume, balance and tone Attractive cabinet with black sid silver trim. Outpu GWS © 7 日r

AUDIOTRONIC

DOLBY 'B' NOISE

Attractwe black and silver finish Colume. Tone and Balance speakers. mounting brackets and
instructions
ONLY $12 \cdot 50^{\text {p.ix }}$
 Pual button tuning of one
choice. 12 V pos, or nef. earth. brackety with speaker, OUR RO日

CASSETTE TAPE HEAD CLEANER 30p each. F. A. Pop

Manual tuning of Mecliun an earth. Complete with or neg

AGA SEE EIEGTIL CAB ASALAL Sos

Carriage and Packing 75D
Complete units with stered cartridge ready wired in plinth

GARRARD

 SP25 111/GR00 SPP2J $111 / \mathrm{M} 44 \mathrm{E}$ SP25 $111 / \mathrm{M} 5 \mathrm{~F}$ $\mathrm{APF}^{\mathrm{A} 6 /(6800 E}$ AP76M44E APт6matise AP76/M75EJ AP96 Module Mai-6 ZERO 1008 Modult / M93F B.8.R. McDONALD $210 / 8(7 M$
$M P G O / G 801$
MP60/TPDI/AR MP60/M44-7 Goldring GL7P/GRO0
GL75/GB00 aL75/G800F; goodmans TD100/G800 Teak LEAK Delta/M7
GA10̄̄/ GA160/GP200 Tea GA212/GP400 GA 300 (less cartridge) ancor
PIONEER
${ }^{\text {PL1 }}$ PLINC (Less cartridge) PL41D (Less cartridge) PL50 (Less cartridge) PL61 (Less cartidge) $33 \overline{3}$ (Less cartridge) THORENS TDl60C/Ortofon M15E TD125AB/11/Ortofor MiJes TD165/Ortofon M15E
wharfedale
Linton/M44-7 Teah
Linton/M4.7 White

${ }^{2} \times \mathbf{Z} 20 /$ Stereo $69 / \mathbf{P Z}{ }_{i}$
218.00. P. \& P. 37p.
$2 \times$ Z50/Stereo 60/PZ8
Trant 1
z extra.
Aetive Filter Unit 54.45 Project 60 FM Tuner $\mathbf{8 1 4 . 9 5}$. Pair of Q16 Speakera 210-70.

All 8inclair Products in stock:
 2000/3000 Btereo Tuner, 286.20 ; Q830 Speakere, 423 . 95 pair, P . \& P .

4 speed antochanger unit fitted
OUR PA.9E Carr. \&
PRICE \&4:95 Carr. \&

4 speed single record player ceramic cartridge. OUR E8-50 Carr. \&
 ONLY 6695

CASSETTE RECORDER with is
OURICE
PRE6.50
GASSETTE,
C835/(8ss spe
(ixC40D beek
ix c40 hecurder
(ixC40T Dee
(ixct 4 Deck
Gixctod Derthy ine
Gix
ix 46 Reurder
GXC45 Reard
GXC601 Deck
GXC6日B Deck.
CARTRIDGE (P, \& P. .
('R R 1 Deck with amps.
 4000DR luust (on Dish Recorter
$\times 5000$ Recurder X 201 D Deck

$6 \times 280 \mathrm{D}$
GX
C

$\xrightarrow{\mathrm{n}}$
ADM. II lyynamic (pair) $£ 7.50$ STEREO RECEIVERS

A $18080410+40$ watt
4.810052×36 cir

STEREO AMPLIFIERS

 ATisin AM/FM
ATS0 AM/r'm
4-CHANNEL UNI SPEAKERS
STEREO HEADPHONES A8E11 ASE20 AsE22

SEND LARGE S.A.E. FOR FULL HI-FI DISCOUNT LIST

ALL MAIL ORDERS TO
UNIT 4, THE HYDE INDUSTRIAL ESTATE, THE HYDE, LONDON NW9 GJJ

TELEPHONE 01-205 3735

PERSONAL CALLERS WELCOME AT ANY OF OUR RETAIL BRANCHES

CENTRAL LONDON		311. Edgware Road, W.2.	Tel: 01-262 03367
257/8, Tottenham Court Rd, W.1.	Tel:01-5800670	382, Edgware Road, W.2.	Tel:01-7234174
10, Tottenham Court Rd, W.1.	Tel:01-6372232	152/3, Fleet Street, E.C.4.	Tel:01-353 2833
27, Tottenham Court Rd, W.1.	Tel:01-636 3715	378, Harrow Road, w.s.	Tel:01-2869530
87, Tottenham Court Rd, W.1.	Tel: 01-580 3739	Essex	
21, Old Compton Street, W.1.	Tel:01-4379369	86, South Street. Romford.	Tel: Romford 20238
3, Lisle Street. W.C.2	Tel:01-4378204	SUAREY	
34, Lisle Street, W.C. 2.	Tel: 01-4379155	1046, Whitgift Centre, Croydon.	:01-681 3027
118. Edgware Road, W.2.	Tel:01-7239789	27821, Eden Street, Kingston.	Tel:01-546 7895
193, Edgware Road, W.2.	Tel:01-7236211	32, Hill Street, Richmon	

CREDIT TERMS FOR CALLERS (£50 and over)

ALL EQUIPMENT IS BRAND NEW, FULLY GUARANTEED AND OFFERED WITH FULL AFTER SALES SERVICE

All items and prices are correct at
21.6 .73
but subject to change without notice. E GO.E

HOMER INTERCOMS
FM TUNER CHASSIS

TRANSISTOR HIGH QUALITE TUNER. SIZE ONLY 6 in $\times 4$ in $>$ $1 \frac{1}{2} 3$ I.F. atazes. Double tune l ford thont amplitiers Operates on (1) battery. Coverage $\quad \mathrm{k} .108 \mathrm{MH}$ OUR $\$ 5.95^{\text {p. \& P }}$ ${ }_{\text {PRICE }}$ £5'95 200

STCGIDTVIRHISA

FERGUSON EXPORT MODELS

3408 STEREO TUNER AMF' Covers FM sc. 108 MHz. Fist mash button tuning acales. N+ ceramir cartridge and tape, ete. separate bass. treble, balance ard
 50 c 3416 STEREO TAPE DECK
 4 track. $7 \frac{1}{2}, 32,1:$ i. $\mu .1$. Sterew/ Inputa for dynamic mikes, radio, OUR
PRICE $84-45$
75 F
All prices are subject to
Order with confidence by
post-but remember to ade
10\% VAT (1Op in the f$)$ to
total value of goods
including carriage/packing
and send cash with order.
PLEASE PRINT NAME 8
ADDRESS CLEARLY.

Device of the Month NE540L
 output transistors.
This device features: internal current limiting; low standby current; high output current capability; wide power bandwidth; low distortion - features which make this device ideal for use as an audio power amplifier.

Signetics power driver NE540L Yours for just

Compatible device

 MCI339P

From Motorola, a monolithic dual stereo preamplifier for low noise preamplification of stereo audio signals. Just look at some of these features

* Low audio noise
* High channel separation
* Single powèr supply
* High input impedance
* Built-in power supply filter
* Emitter follower output

Motorola monolithic duel stereo preamplifier

AURORA
Multichannet Sound Controlled Lighe (PE Apr./Aug. 71) S/c's (excl. SCRs), Rs, C5, Pots, Cores 8 ch
 4 ch control ($\left.4 \frac{1}{\text { in }} \times 10 \mathrm{lin}\right)$ Mk. 2-also holds
rotary or slider pots E 2.35 . PCB ($4 \frac{1}{2}$ in $\times 5 \mathrm{in}$) Mk 8 cores. 8 SCRs, $\mathbf{\$ 1 . 3 5 \text { . SCRs-IA. S0p, 3A, 55p. }}$

PHONOSONICS

P. C. BOARDS

All PCBs Fibreglass, Drilled, Roller-Tinned, Layout and Circuit Diagrams Free with each PCB. Unless
staced "as published". PCBs are designed by Phonostated as published. PCBs are designed by Phon
sonics. Pots are rotary unless stated as slider.

HI-FI TAPE LINK
(PE Mar./Apr. 73). S/c's, i,c.'s, Rs, Cs, Relay and pc-base, Pot Cores and pc-bases, Sw's, Pots,

A.F. SIGNAL GENERATOR (PE Nov. 72). S/c's. Rs, Cs, Pors,
Sw's. PCB $\left(2 \frac{1}{2}\right.$ in $\times 4$ in) also holds Sw's, \&3.15.
(PE AUDIO MIXER
(PE Jan 72) Rs, Cs, Pots, PCB
DOOR BELL YODELLER
(PE Apr. 71), $5 / c^{\prime}$'s, Rs. Cs, Pors,
 L/spkr $\mathbf{E l} \cdot \mathbf{3 0}$.

BIOLOGICAL AMPLIFIER (PE Jan./Feb. 73) P/A Sec-S/c's, i.c.'s, Rs. Cs, Pots, PCB (1 tin $\times 3 \neq 1 \mathrm{n}$),
E 3.70 . O/P' Stages (S/c's. Rs. Cs, Pors and Sw's as read.). Alphaphone 60 p , Cardiophone 75 p . Freq. Meter E1.90. Vis-Feedback 60p. Audio Amp PC7 avail. co order 44.75.

ELECTRONIC PIANO
(PE Sed. 72/Jan. 73)-Details in lists
GEMINI STEREO AMPLIFIER
(PE Nov. 70/Mar. 71) Stereo Sets and PCBs. Pre-amp-S/c's 61.85. Rs. Cs.
 rotary or slider pots and Maka-Sw's, 62.10. Main Amp-Rs Cs, Pots 5540. PCB (3 i⿻ in $\times 5 \operatorname{in}$), 41.40 . PSU-Rs, Cs, Pot, 43.70 . PCB ($2 \mathrm{in} \times 4 \mathrm{in}$). 75 p .

LOGICAL RADIO CONTROL (PE Apr./Jun. 72)-Details in lists (PE GEMINI STEREO TUNER \&3.80. Apr.Jun. 72). Rs, Cs, Pot $\frac{\text { MICROPHONE MIXER }}{\text { MOB }}$ (PE APr. 69). S/e's, Rs, Cs, Pots, $\mathbf{6 2 . 9 0 \text { . PCB (} 3 \text { tin } \times 4 \text { in) also holds }}$
6 rotary or 4 slider pots, $\mathbf{f 1} 1.20$. POST AND PACKING
U.K. IOp per order. EXPORT at cost-please allow
also state whether air or surface postage required.

MODEL SERVO CONTROL (PE Feb./Mar. 72)-Details in lists 8 WATT AMPLIFIER
(PW Nov.jDec. 72). Pre-amp-S/c's, Rs, Cs, Pots, Sw-Mono, ©2.50;
Stereo, 5.20 PCB M Stereo, $\mathbf{~ 5 ~} \mathbf{2 0}$. PCB ($3 \frac{1}{4}$ in $\times 7 \frac{1}{2 i n)}$
(Stereo) also holds rotry (Stereo) also holds rotary or slider pots and Sw, \&1.50. Main AmpS/c's. Rs, Cs, Pot-Mono, 43.90; Stereo,
for this when ordering and
ordering and -

TRANNIES
 I DOCKYARD, STATION ROAD, OLD HARLOW, ESSEX Phone Harlow 37739
 P/P 10p. Price list S.A.E. (Saturday callers welcome) all prices include vat

 ?19.50 ELECTRONIC DIGITAL CLOCK

 ?19.50 ELECTRONIC DIGITAL CLOCK

 (For complete kit of parts including case.)

 (For complete kit of parts including case.)

 This $\mathbf{4}$ digit 24 hour clock is available to readers at this special price for I month only. Parts would normally cost over $\mathbf{4 2 5}$. Kit of parts ineludes twelve IC's, indicators, and a smart whiteplastic case.

74 Series TTL

	1	25		1	25		1	25		1	25
SNit00	16p	15p	8 BN 723	55p	50p	SN7450	$18 p$	15p	SN7489	6. 05p	b-85p
SN7401	18p	15p	SN742\%	$55 p$	50p	EN 7451	16p	15p	SN7490	74 p	72 p
8 N 7402	18 p	15p	SN7407	49p	48p	8N7453	18p	159	8 N 743 L	$1 \cdot 10 p$	$1 \cdot 04 p$
6×7403	16p	15p	8N7428	77p	72p	SN 7454	16p	15 p	8N7402	74 p	72 p
$8 \mathrm{SN7404}$	16p	15p	SN7430	16p	15p	SN7460	16	15p	SN7493	74 p	72 p
SN7405	16p	15p	SN743:	49p	48p	8N7470	33 p	29p	SN7494	$85 p$	72p
SN7406	38p	35p	SN7433	94 p	82p	SN7472	33p	29p	SN7495	85p	72p
SNT407	38p	35p	8N7437	72 p	68p	SN7473	41 p	39 p	SN749\%	95p	92p
SN7408	20p	18p	8N7438	72 p	89 p	8N7474	41 p	38p	SN74100	1.80 p	1.75p
8N7409	20p	18p	SNT440	16p	15p	8 N 7475	50 p	47p	8 N 74104	1.00 p	$1 \cdot 06 p$
SN7410	17p	15p	SN7441	74p	70 p	8N7476	44 p	43p	8NTil05	1-00p	1-06p
SNT411	27p	25p	SN 7442	74p	70p	8S7480	73p	70p	$8 \mathrm{~N} 7+107$	44p	42p
SN742	38p	35p	8N7443	1.43p	1-370	8×7481	1-32p	1-26p	- ENTil 10	81 p	50p
8N7413	32p	29p	8 N 744	1.43 p	$1 \cdot 37 \mathrm{p}$	8N748:	97 p	95p	SNT+111	1-37\%	27p
SN74!6	47p	43p	8N74.5	2.00 p	1-92p	857403	1-20p	15p	- 5 (74118	1.10p	1.05p
SN7417	47 p	43p	8×7415	1.07p	$1-02 \mathrm{p}$	8×7484	$1 \cdot 10 \mathrm{p}$	$1-05 p$	$8 \mathrm{NT}+119$	1.47 p	1.37 p
8N7420	16p	15]	8N7447	1.10p	1-03p	8N7485	$3 \cdot 96 \mathrm{p}$	3.85p	SNT+121	44p	41p
SN-422	55 p	50p	8N7448	1 10p	1-03p	SNT48i	36p	35p	8N742\%	.54p	43p

Devices may be mixed to qualify for Price Breaks

* 100 Plus less 10% off 25 plus break

Linear Integrated Circuits

301	DIL
301	T099
301	8 lon jolm
301.	DIL
301 A	T099
301A	8 IlN DlL
307	DiL
307	T099
307	8 PIN DIL
308	T099
308A	T099
709e	DIL
709c	T099

Transistors

RSI
VALVE MAIL ORDER CO． 162 WELLFIELD ROAD，LONDON SWI6 2 2 SPECIAL EXPRESS MAIL ORDER SERVICE

INTEGRATED CIRCUITS $5_{p}+$ Ip each added

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline IN2I \& $$
\begin{aligned}
& \text { ip } \\
& 0.17
\end{aligned}
$$ \& \& \& 0A7．11 \& $$
\log _{0}
$$ \& \& 頻

\hline 1 N 23 \& 0.20 \& AsY 260.25 \& BYZ11 0.32 \& OAZ222 \& 0.45 \& 78271 \&

\hline 1N85 \& 0.88 \& $\begin{array}{ll}\text { AsY } 27 & 0.32\end{array}$ \& BYZ1． 0.38 \& 0 OR223 \& 0.45 \& 28271 \& 0.18

\hline $1 \mathrm{~N}^{253}$ \& 0.50 \& ASY：28 0．25 \& BYZ12 0－80 \& 0 OR224 \& 0.45 \& 7T：1， \& 0.28

\hline 1N256 \& 0.80 \& ASY29 0．80 \& BYZ13 0.2 \& OAZ241 \& 0.22 \& ZT43 \& 0.25

\hline 1N645 \& 0.25 \& A8Y36 0.26 \& $3 \mathrm{BZ15} 1.00$ \& 0azide \& 0.23 \& 7TX 107 \& 0.15

\hline 1N725A \& 0.20 \& ABY50 0．17 \& BYZ16 0.62 \& 9，AZ944 \& 0.22 \& ZTX108 \& 0.12

\hline 1 N 914 \& 0.07 \& ASYOL 0．40 \& By zRRCJW 3 \& 0A724 6 \& 0.28 \& ZTX 300 \& 0.12

\hline IN4007 \& 0.80 \& AAYY3 0.20 \& －111 0.15 \& 0 AZ 290 \& 0.38 \& \& 0.25

\hline $$
18113
$$
$$
18130
$$ \& $$
\begin{aligned}
& 0.16 \\
& 0.18
\end{aligned}
$$ \& $\begin{array}{ll}\text { ASYG5 } & 0.20 \\ \text { ASY } & 0.25\end{array}$ \& $\begin{array}{lll}\text { C111 } & 0.65 \\ \text { CR8105 } & 0.25\end{array}$ \& ${ }_{0}^{0 \mathrm{Cl} 16}$ \& 0.50
0.88 \& \& 0.26
0.16

\hline 18131 \& 0.18 \& ASY86 0.88 \& CRSI／40 0.45 \& OC19 \& 0.37 \& ZTX503 \& 0.17

\hline 18202 \& 0.28 \& ASZ 210.42 \& C84B $\quad 2.50$ \& $0 \mathrm{Cl}^{2}$ \& 0.85 \& ZTX031 \& 0.25

\hline 20371 \& 0.22 \& AsZas 00．76 \& CS10］3．18 \& 0 C 22 \& 0.50 \& \&

\hline 20381 \& 0.26 \& Al＇Y10 0.98 \& DD000 0.16 \& OCL^{2} \& 0.80 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{InTEGRATED
CIRCUITS}}

\hline 20414 \& 0.80 \& AL＇101 1.60 \& DD003 0.15 \& 0 Cl 4 \& 0.60 \& \&

\hline 2 G 417 \& 0.22 \& BC

0.10 \& $\begin{array}{ll}\text { 0D006 } & 0.18\end{array}$ \& $0{ }^{0} 5$ \& 0.87 \& \&

\hline ${ }^{2} \mathrm{~N} 40.4$ \& 0.20 \& BClios
BClos 0.10 \& DD007 0.40 \& ${ }^{0 c 25}$ \& 0.87 \& － 7401 \& 0．20

\hline －${ }^{2} \mathrm{~N} 697$ \& 0.15
0.40 \& $\begin{array}{ll}\mathrm{BC} 109 & 0.10 \\ \mathrm{BCl13} & 0.15\end{array}$ \& \& 0×26
OC28 \& 0.26 \& － \& 0.20

\hline 2 N 706 \& 0.10 \& $13 \mathrm{Cl15} 0$ \& ${ }^{1} \mathrm{DD} 4{ }^{\text {d }}$ \& 0 C 29 \& 0.80 \& －403 \& 0.20

\hline 2N706A \& 0.12 \& BCili 00.25 \& （D）${ }^{\text {d }}$ \& 0 C 30 \& 0.40 \& T404 \& 0.20

\hline 2N708 \& 0.15 \& BC116． 0.80 \& 9D8 0.25 \& 0 C 35 \& 0.40 \& T40j \& 0.20

\hline 2 N 709 \& 0.68 \& $1 \mathrm{Cl18} 80.25$ \& GD12 0.06 \& $0 \mathrm{C35}$ \& 0.60 \& 74148
7407 \& 0.30
0.30

\hline 2N1091 \& 0.88 \& $\begin{array}{ll}\mathrm{BC121} & 0.20\end{array}$ \& GET10：0－80 \& OC36 \& 0.60 \& ${ }_{7}^{7} 407$ \& 0.30
0.20

\hline 2N1131 \& 0.25 \& BC122 $\quad 0.20$ \& （EET103 0.28 \& 0 C 41 \& 0.25 \& 7418 \& 0.20

\hline 2 N 1132 \& 0.25 \& BC125 0．68 \& GET113 0.20 \& OCt2 \& 0.80 \& 7410 \& 0．46

\hline 2 N 1302 \& 0.18 \& BC12ar 0．05 \& GFT114 0．16 \& OC43 \& 0.40 \& 417 \& 0.20

\hline $2 \mathrm{~N}^{2} 303$ \& 0.18 \& BC140 0.55 \& GET115 0 0．45 \& $0 \mathrm{C4} 4$ \& 0.17 \& 7411 \& 0.23
0.42

\hline 2N1304 \& 0.22 \& $\mathrm{BCl}^{147} 00.16$ \& GET116 0．50 \& OC44M \& 0.17 \& 7413 \& 0.42
0.30

\hline 2 N 1305 \& 0.22 \& 13C148 0.13 \& $\begin{array}{ll}\text { GET120 } & 0.25\end{array}$ \& 0 C 45 \& 0.12 \& ${ }^{7} 113$ \& 0.30
0.30

\hline ${ }^{2} \mathrm{~N} 130 \mathrm{O}$ \& 0.25 \& $1 \mathrm{BC149} 00.15$ \& GET872
0.30 \& OC4ism \& 0.18 \& 7413 \& 0.30

\hline $2 \mathrm{~N} 130^{\circ}$ \& 0.25 \& ${ }^{13 C 157} 00.16$ \& GET876 0－25 \& OC46 \& 0.27 \& 7417 \& 0.80
0.20

\hline ${ }^{2} \mathrm{~N} 1308$ \& 0.25 \& BC15 0.12 \& $\begin{array}{ll}\text { GET } 880 & 0.37\end{array}$ \& 0C57 \& 0.60 \& 7－ 100 \& 0.20

\hline 2 N 2147 \& 0.75 \& BCi60
0.69 \& GET881 0－25 \& （）C5y \& 0.80 \& 「＋20 \& 0.48

\hline 2 N 2148 \& 0.80 \& 3C169
0.13 \& GET882 00.25 \& ${ }^{0} \mathrm{Cay}$ \& 0.65 \& 7423 \& 0.48
0.48

\hline 2N2160 \& 0.80 \& 13C＇31 0.85 \& GET885 0.25 \& $0 \mathrm{C66}$ \& 0.50 \& － \& 0.48

\hline ${ }_{2}^{2 N} 2218$ \& 0.20 \& BCY3： 0.55 \& （EEX44 0.08 \& OC70 \& 0.12 \& － \& ${ }_{0}^{0.50}$

\hline \& 0.20
0.15 \& $\begin{array}{ll}\text { Bry32 } & 0.50 \\ \text { He＇33 } & 0.25\end{array}$ \& $\begin{array}{lll}\text {（EXX4511 } & 0.10 \\ \text { GEX } & \\ \text { Cil }\end{array}$ \& $0 \mathrm{OC71}$ \& 0.12 \& $7+2 \times$
74.30 \& 0.50
0.20

\hline $$
\begin{aligned}
& 2 \mathrm{~N} 2369 \mathrm{~A} \\
& 2 \mathrm{~N} 2444
\end{aligned}
$$ \& 0.15

1.98 \& $\begin{array}{ll}\text { He＇y33 } & 0.25 \\ \text { BCY } 34 & 0.80\end{array}$ \& \& 0 Cl
0 C 73
0 \& 0.20
0.80 \& 7430
743
7 \& 0.20
0.48

\hline ${ }_{2} \mathrm{~N}^{2813}$ \& 0.88 \& BCY 380 \& $\begin{array}{ll}\text {（1，54M } & 0.88\end{array}$ \& $00^{0} 4$ \& 0.30 \& ${ }^{7} 433$ \& 0.70

\hline 2 N 2046 \& 0.45 \& 13CY39 1.00 \& （iJ5M 0．26 \& 0075 \& 0.25 \& 7437 \& 0.68

\hline 2 N 2904 \& 0.20 \& BCY40 0.60 \& $\begin{array}{ll}\text { gJ7M } & 0.87\end{array}$ \& 0 C 76 \& 0.25 \& －13．4 \& 0.65

\hline 2 N 2904 A \& 0.25 \& BCY4： 0.25 \& HG11000 0.50 \& 0 C 77 \& 0.40 \& i440 \& 0.20

\hline 2N2906 \& 0.20 \& 13 CY 700 \& HS100A 0.20 \& OCim \& 0.20 \& 7411 \& 0.78

\hline 2 N 2907 \& 0.28 \& BCY71 0.20 \& MAT100 0.25 \& OC79 \& 0.22 \& 744： \& 0.78

\hline $2 \mathrm{~N}^{2924}$ \& 0.28 \& BCZ10 0.85 \& Matiol 0.80 \& OC81 \& 0.20 \& － 450 \& 0.20

\hline 2 N 2925 \& 0.15 \& BCZ11 0.50 \& Mat120 0.25 \& OC811， \& 0.20 \& －451 \& 0.20

\hline 2 N 2926 \& 0.10 \& BD12］0．65 \& $\begin{array}{ll}\text { MaTlel } & 0.80\end{array}$ \& OС81M \& 0.20 \& －43\％ \& 0.20

\hline 2 N 3054 \& 0.50 \& BD123 00.80 \& MJE520 0．87 \& ос81D \& 0.18 \& 34.4 \& 0.20

\hline 2 N 3055 \& 0.75 \& B1124 0.75 \& MJ E295；1．87 \& OC818． \& 0.40 \& 7460 \& 0.20

\hline 2N370：2 \& 0.10 \& BDY11 1.68 \& MJ E3055 0.87 \& OCP2 \& 0.25 \& 7470 \& 0.80

\hline 2 N 3705 \& 0.10 \& BFils 0.26 \& NKT128 0 0．36 \& OC8211 \& 0.20 \& 74： \& 0.80

\hline 2 N 3708 \& 0.23 \& BF117 0.50 \& NKT129 0．30 \& 0 C 83 \& 0.25 \& 1473 \& 0.40

\hline 1N3707 \& 0.12 \& BF167 0．25 \& $\begin{array}{ll}\text { NKT211 } & 0.25\end{array}$ \& OC84 \& 0.25 \& 7474 \& 0.40

\hline 2N3709 \& 0.10 \& BF173 0．25 \& NKT213 0．25 \& OCll \& 0.38 \& 7475 \& 0.56

\hline 2N3710 \& 0.10 \& BF181 0.85 \& $\begin{array}{ll}\text { NKT214 } & 0.16\end{array}$ \& OC122 \& 0.80 \& 7474 \& 0.45

\hline 2N3711 \& 0.10 \& BF184 0.20 \& NKT216 0 0．37 \& $0 \mathrm{Cl23}$ \& 0.68 \& T480 \& 0.80

\hline 2 N 3819 \& 0.85 \& BF185 0．20 \& $\begin{array}{lll}\text { NKT217 } & 0.35\end{array}$ \& OC139 \& 0.25 \& 748：3 \& 0.87

\hline 2N5027 \& 0.58 \& BF194 0．17 \&	NKT218
1.18	\& 0 Cl 40 \& 0.85 \& 7143 \& 1.00

\hline 2N5088 \& 0.33 \& BF195 0．15 \& NKT219 0.33 \& OClid \& 0.60 \& T484 \& 0.80

\hline 28301 \& 0.50 \& BF198 0.15 \& NKT222 0－20 \& OC169 \& 0.20 \& i48t \& 0.45

\hline 28304 \& 0.75 \& BF197 0．15 \& NKT224 0.22 \& 0 Clito \& 0.25 \& 7490 \& 0.75

\hline 28501 \& 0.87 \& HFS61 0．28 \& NKT251 0.24 \& 0 Cl 11 \& 0.30 \& 790．．N \& 1.00

\hline 28703 \& 0.62 \& BFS98 0.28 \& NKT271 0.25 \& OC200 \& 0.40 \& － 492 \& 0.78

\hline AA129 \& 0.20 \& BFX1： 0.20 \& \& OC201 \& 0.70 \& －193 \& 0.75

\hline AAZ12 \& 0.80 \& BFX13 0．25 \& NKT273 0.16 \& OC20： \& 0.80 \& 7494 \& 0.80

\hline AAZ13 \& 0.12 \& $\begin{array}{ll}\text { BFX29 } & 0.85\end{array}$ \& NKT274
1 \& Oc203 \& 0.40 \& T493 \& 0.80

\hline ACl07 \& 0.37 \& BFX30 0．25 \& $\begin{array}{lll}\text { NKT275 } & \mathbf{0 . 2 5}\end{array}$ \& OC204 \& 0.40 \& 7496 \& 1.00

\hline AC126 \& 0.20 \& BFX35 0．88 \& NKT274 0.20 \& OC205 \& 0.76 \& T497 \& 8.25

\hline ACl27 \& 0.25 \& BFX63 0.50 \& NKT278 0 0．25 \& OC206 \& 0.90 \& T＋100 \& 2.50

\hline AC128 \& 0.20 \& BFX84 0.25 \& NKT301 0.40 \& 0 C 207 \& 0.90 \& 74107 \& 0.50

\hline AC187 \& 0.25 \& BFX85 0.30 \& NKT304 0.75 \& 0 C 460 \& 0.20 \& T4110 \& 0.80

\hline AC188 \& 0.25 \& BFX88 0.85 \& NKT403 0.76 \& OC470 \& 0.80 \& it111 \& 1.45

\hline ACY17 \& 0.80 \& ${ }^{\text {BFX } 87} 0$ \& NKT404 0.55 \& OCP71 \& 0.97 \& － 4118 \& 1.00

\hline ACY18 \& 0.26 \& BFX84 0.20 \& $\begin{array}{lll}\text { NKT678 } & 0.30\end{array}$ \& ORP12 \& 0.50 \& $7+119$ \& 1.90

\hline ACY19 \& 0.25 \& BFY10 1．00 \& NKT713
0.25 \& ORP60 \& 0.40 \& 7419］ \& 0.60

\hline ACY20 \& 0.20 \& BFY11 1．25 \& $\begin{array}{lll}\text { NKT733 } & 0.25\end{array}$ \& ORP61 \& 0.42 \& 74129 \& 1.35

\hline ACY21 \& 0.20 \& BFY17 0．25 \& NKTTTT 0.88 \& B19T \& 0.80 \& 74123 \& 2.70

\hline ACY2 2 \& 0.10 \& BYF18 0.25 \& 078B 0.88 \& SAC40 \& 0.25 \& 74141 \& 1.00

\hline ACY27 \& 0.25 \& BFY19． 0.25 \& \& SFT308 \& 0.88 \& 7414 \& 1.50

\hline ACY28 \& 0.17 \& BFY24 0.45 \& $\begin{array}{ll}\text { OAB } & 0.12\end{array}$ \& ST ${ }^{\text {2 } 22}$ \& 0.38 \& 74150 \& 3.35

\hline $\mathrm{ACY}^{\text {C9 }}$ \& 0.50 \& BFY44 1.00 \& OA47 0.10 \& ST7231 \& 0.68 \& 74151 \& 1.10

\hline ACY40 \& 0.15 \& Bryso 0.22 \& OA70 0.10 \& 9X68 \& 0.20 \& 7415－4 \& 2.00

\hline ACY41 \& 0.15 \& BFY51 0．20 \& OA71 0．10 \& 5X631 \& 0.80 \& 7 $71 . \overline{0}$ \& 1.65

\hline ACY44 \& 0.26 \& BFY62 0.22 \& OA73 00.10 \& 8X635 \& 0.40 \& 741，56 \& 1.55

\hline AD140 \& 0.50 \& BFY53 0.17 \& $\begin{array}{ll}\text { OA74 } & 0.10\end{array}$ \& 8X640 \& 0.50 \& 7＋157 \& 1.80

\hline AD149 \& 0.60 \& $\begin{array}{ll}\text { BFY } 64 & 0.42\end{array}$ \& $\begin{array}{ll}0.79 & 0.10\end{array}$ \& 9X641 \& 0.55 \& 74170 \& 4.10

\hline AD161 \& 0.87 \& BFY90 0.65 \& $0.481 \quad 0.08$ \& 8×642 \& 0.60 \& 7 4174 \& 2.00

\hline AD16\％ \& 0.37 \& BSX27 0.80 \& 0 A 850.12 \& SX644 \& 0.76 \& \bigcirc \& 1.36

\hline A F106 \& 0.80 \& BSX 6000.98 \& OA86 0．15 \& 8×646 \& 0.75 \& － 4176 \& $1 \cdot 60$

\hline AF114 \& 0.25 \& B8x76 0.16 ， \& $\begin{array}{ll}0.990 & 0.08\end{array}$ \& T15／30P \& 0.60 \& －+190 \& 1.95

\hline AF115 \& 0.25 \& B9Y26 0.18 \& | 0.491 | 0.07 |
| :--- | :--- |
| 0495 | | \& －30／201P \& 0.75 \& $\stackrel{+191}{ }$ \& 1.95

\hline AF116 \& 0.26 \& BSY2 ${ }^{\text {a }} 0.17$ \& OA95 0.07 \& 「60／201 \& 0.80 \& －+192 \& 2．00

\hline AF117 \& 0.85 \& B8Y61 0.50 \& OA200 0.07 \& ${ }^{*} 60 / 2011{ }^{\text {P }}$ \& 0.76 \& 74193 \& 2.00

\hline AF118 \& 0.68 \& BSY95．A 0.12 \& $\mathrm{OAP202}^{0.2010}$ \& XA101 \& $0 \cdot 10$ \& 74194 \& $2 \cdot 60$

\hline AF119 \& 0.20 \& B8Y95 0.12 \& ${ }^{012210} 00.25$ \& X 4102 \& 0.18 \& － 410 \％ \& 1.85

\hline AFl24 \& 0.25 \& $3 \mathrm{~T} 102 / 500 \mathrm{H}$ \& 0 A 21100.30 \& X A 151 \& 0.18 \& －+100 \& 1.50

\hline ${ }_{4} \mathrm{~F} 125$ \& 0.20 \& 13Y4．${ }^{0.75}$ \& \& X A 152 \& 0.15 \& \％+197 \& 1.50

\hline ${ }_{\text {AF126 }}$ \& 0.17
0.17 \& \multirow[t]{2}{*}{BTY79／100R} \& $\begin{array}{ll}\text { OAZ201 } & 0.50 \\ \text { OAZ202 } & 0.42\end{array}$ \& X X 161 \& 0.25 \& ${ }_{7} 119 \%$ \& 4.60

\hline AF127
AF139 \& 0.17
0.80 \& \& $\begin{array}{ll}\text { OAZ204 } & 0.42 \\ \text { OAZ203 } & 0.42\end{array}$ \& XA162
X （162 \& 0.25 \& 74194 \& 4.60

\hline AF178 \& 0.55 \& $1 \mathrm{BTY}^{\text {Y }} / 4 / 400 \mathrm{R}$ \& 0Az204 0.30 \& X B 101 \& 0.48 \& \multicolumn{2}{|l|}{\multirow[t]{6}{*}{| Plus in surket 4 low profle |
| :--- |
| It bin DIL 0.15 |
| Iti！nin DIL |}}

\hline AF179 \& 0.65 \& 1.25 \& OAZ205 0.42 \& XB102 \& 0.10 \& \&

\hline AF180 \& 0.68 \& 13 y 10400.15 \& ${ }_{0}^{0 A Z 206} 00.42$ \& X B103 \& 0.25 \& \&

\hline ${ }_{4} \mathrm{~F} 181$ \& 0.42 \& $\begin{array}{ll}\text { BY128 } & 0.15 \\ \text { BY127 } & 0.17\end{array}$ \& $\begin{array}{ll}0 A Z 207 & 0.47 \\ 0 \text { AZ208 } & 0.32\end{array}$ \& X X 113 \& 0.12 \& \&

\hline AF186 \& 0.40 \& $\begin{array}{ll}\text { BY } 127 & 0.17\end{array}$ \& OAZ208 0－32 \& ${ }^{\text {X }} \mathrm{Bl21}$ \& 0.12 \& \&

\hline AFY19
AFZ1I \& 1.18
0.60 \& $\begin{array}{ll}\text { BY182 } & 0.85 \\ \text { BY213 } & 0.25\end{array}$ \& $\begin{array}{ll}0 \text { AZ209 } & 0.82 \\ 0 \text { AZ210 } & 0.82\end{array}$ \& \& 0.43 \& \&

\hline
\end{tabular}

Open daily to callers：Mon＋－Fri． 9 a．m．－5 p．m．
Valves，Tubes and Transiscors－Closed Sat．I p．m．－3 p．m．
Terms C．W．O．only Tel． $01-677$ 2424－7
All orders subject to V．A．T．at 10% rate．This must be added to the total order including postage．

VARICAP STEREO TUNER F．M．\varnothing

（ACTUAL BEECHING UNITS）

MODULES LPII85／86
REGULATOR MFC4060
DECODER MCI3IOP
${ }_{69} 9$ pair
60.78 each
63.15 each
（ 100 ＇s in stock）
PRINTED CIRCUIT BOARD＿－GLASS FIBRE $£ 1.87$ each
READY BUILT AND TESTED BOARDS
623 each
COMPLETED TUNERS IN TEAK CABINETS $£ 34$ each

（BRUSH ALU．FRONT PANEL wish 6 BUTTONS，MAINS＋ 5 STATIONS）
（ACD 25p POSTAGE TO ABOVE）
SUPER SPECIAL OFFER WHILE STOCKS LAST
25 W．R．M．S．DISCO AMPLIFIERS ONLY EIO each ！

WHAT A LINE UP：
0.2% DISTORTION， $25 W$ RMS INTO 8Ω ，FLAT RESPONSE，S／C PROTECTION！AND USING 40361／40362／MJ481／MJ491 TRANSISTORS．
WE ARE MAD！EACH ONE TESTED AND WORKING AND YET ONLY $£ 10$ Ready to use．

The eatch is you need a IOOK log VOLUME CONTROL ONLY！
B \＆B ELECTRONICS
64 MANNERS ROAD，BALDERTON，NEWARK NOTTS．

Telephone：NEWARK 6895
all puctes wcluoe vat：

BAKER LOUDSPEAKER CO．，BENSHAM MANOR PASSAGE thornton heath，surrey tel． 01 －684 1665 loudspeakers catalogue and enclosure plan 5p

NSS
 D0－IT－YOURSELF ELECTRICAL EQUIPMENT TRANSFORMERS • RECTIFIERS INDICATOR LAMPS • RELAYS CONTACTS－KEY SWITCHES BURGLAR ALARM EQUIPMENT SOLDERING IRONS－COMPONENT CASES HOLE CUTTERS－TERMINAL BOXES
 plus numerous other electrical components． Send IOp for full price list and illustrated catalogue to：
 NORTHERN SECURITY SUPPLIES（DEPT．PE） 104 KENT CRESCENT，KENTROAD，PUDSEY，YORKSHIRE

MULLARD AMP
Sensational 'Once in Life-time Ofter cleared. The amplifier is made by Mullard. Carries maker's Guarantee. In nea case. May be used for
Mono or Stereo. Music or speech. Works off dry battery. car batt or mains power pack. FREE-al who purchase we send copy of Mullard booklet DIY stereo. 1160

MIGHTY MIDGET

Probably the tiniess possible radio. as described in Practical Wireless,
parts $£ 2.20$ post paid.

TIME SWITCH

Smith's mains driven clock with 15 amp switch. also notes showing how you can wake up with music playing kelle boiling or come home to a warm house. Warn of burglars keep pets warm.
bill. etc. $\& 195$.

1 CHIP RADIO

Ferranti's latest device ZN4/4-gives results better than superhet. Supplied complete with technica notes and circuils. $\mathbf{~ 1 / 3 8}$ each. I0 for $\mathbf{5 1 1 \cdot 1 1}$.

HI-Q TUNER COMPONENTS
For experimenting with the $2 N 414$. KTI NO. 1. Plesscy Miniature Tuning Condenser
with built in LW switch and $3^{\prime \prime}$ ferrit slab and litz wound MW coil, 72p
KIT NO. 2. Air spaced tuning condenser 6° ferrite rod litz wound MW and IW coils. \$p
KIT NO. 3. Air spaced TC with slow motion drive
$\mathbf{8}^{*}$ ferrite fod. with litz wound LW and MW coils. si IU. 8^{*} ferrite rod. withlitz wound LW and MW coils. I 1 IU.
KIT NO. 4. Permeability tuner with fast and slow KIT NO. 4. Permeability tuner with fat
motion drive and LW loading coils, 45p.

12 VOLT $1 \frac{1}{2}$ AMP POWER PACK
This comprises double-
wound
$230 / 240 \mathrm{~V}$
mains transformer with full wave rectifier and 2000 mF smoothing. Price $2 \mathbf{2} 20$, plus 20 p pos: and packing.
Heavy Duty Mains Power Pack. Output voltage adjustable from $15-40 \mathrm{~V}$ in steps-maximum load
250 W -that is from 6 amp at 40 V to 15 mmp at 15 V . This reatly is a high power heavy duty unit with dozens of workshop uses. Output voltage adjustmen is very quick-simply interchange push on leads Silicon rectifiers and smoothing by 3.000 mF . Price 56.33 plus 65 p post.

MICRO SWITCH

5 amp changeover contacts. 11p each
10 for 99 p . 15 amp Model 15p Changeover 15p each.

MAINS RELAY BARGAIN

.Special this month are some single. double and treble pole changeove relays. Contacts rated at 15 amps Good British Make. Unused. Size approx. $1 t^{\prime \prime} \times 1^{\prime \prime}$. Open construction Single pole 28p each 10 for $£ 248$.

MAINS OPERATED SOLENOIDS
 Model 772-small but powerful ${ }^{1}$
pull-approx. size it $\times 1+\times 1 t^{n}$ 66p. Model $400 / 1-\AA^{\prime \prime}$ pull. Size $24^{\prime \prime} \times$
 20 p post and insurance

MAINS TRANSISTOR POWER PACK

Designed to operale Adjustable output 6 V . 9 V , 12 volts for up to 500 mA (class B working). Takes the place of any of the following batteries: PP1. PP3. PP4. PP8. PP7,
PP9, nod others. Kit comprises: mains transformer rectifier. smoot hing and load resistor cons 20 postage

DESK TELEPHONES

Ex G.P.O. Black standard model with dialing dial but no internal bell. Supplied with connection diagram
sap each-post etc. 4 p for single then 6rp per pair. Ditto. with bell plus 40 p post for single then 65 p per pair.

PAPST MOTORS
Est. $1 / 40$ th h.p. Made for $110-120 \mathrm{~V}$ working, but two of A really bearifl mains reversible. 1165 each. Postage one 23p. $1 w 0$ 230 V modet $£ 3.30$.

10 AMP DIMMER CONTROL

For the control of lighting on stage or in a studio or for control of portabic equipment in workshops, eic. This has two 13 amp socket outtets each is controlled by a 5 amp solid state regulator. The overall length is 17 in ., width 3 tin. and depth 1 fin . In the end is fitted a master OrvOff switch indicator, lamp and fuse. Price $\mathbf{5 8} \cdot \mathbf{2 5}$.

STANDARD WAFER SWITCHES

Standard size is wafer-silver-piated 5-amp contact

No.	Standard size $1{ }^{\prime \prime}$ wafer-silver-plated 5 -amp contact. standard $\frac{4}{}^{*}$ spindle $2^{\prime \prime}$ long-with locking washer and nut.								
of Poles	2 way	3 way	4 way	5 way	6 way	8 way	9 way	10 way	12 way
1 pole	44p	44 p	44p	44 p	44 p	44p	44 p	44 p	44 p
2 poles	44p	44p	44p	$4 \mathrm{4p}$	44p	44P	44p	77	77p
3 poles	44p	44 p	44p	44 p	77 p	77 p	77	¢104	5104
4 poles	44p	44p	44 p	77 p	77 p	77p	77p	51.32	¢1.32
5 poles	44 p	44 p	77 P	77 p	¢104	51.04	5104	¢160	1160
6 poles	44p	77 p	77p	$77 p$	¢104	5104	¢ 11.04	¢187	41.87
7 poles	77 p	77 p	$77 p$	5104	¢1.32	¢1.32	¢1.32	£2-15	¢2.15
8 poles	77 p	77p	77	¢1.04	¢1.32	¢1.32	E1.32	£2 42	¢2. 42
9 poles	77p	77p	¢104	51.04	¢160	\&140	¢ 11.60	¢2.70	¢ 52.70
10 poles	77p	77 p	5104	${ }_{6} 1.32$	¢1 60	£160	11.70	E3.00	53.25
11 poles	77p	1104	f104	¢1.32	£1.87	¢1.87	\$1.87	53.25	53.25
12 poles	77p	1104	£104	¢1.32	£1.87	£1 \%	11.87	f3. 5.2	E3.52

CAPACITOR DISCHARGE CAR IGNITION

ELECTRONIC IGNITION

 This system which has proved to be amazingly efficient and reliable was first described in the Wireless World about a year ago. We can supply kit of parts for an improved and even more efficient version (Practical Wireless. June). Price 65.55 plus 20 p post. When ordenng please state whether for posiDe-luxe model including printed circuit board. etc. $£ 7$. 9 .

MULLARD UNILEX

This D.I.Y. Stereo Amplifier is still available complete at 57.00 for the four Mullard Modules, or Modules can be bought separately as follows:- 4 wat amplifies module
Pre amp module Mullard Ref. No. E.P. $9001-\varepsilon 198$ each.
P0
Power Module-Mullard Ref. No. E.P. $9002-$ E2.53 each
In addition and made to Mullard specification knebs- $\mathbf{3 3} 30$.
Knobs-Set of 4-50p.
Special offer the complete Unilex with control panel at PTe VAT priceSpecial offer the
$\mathbf{1 0 0 0 0}$ post paid.

ZPM MODULATION MOTOR

Could also be used to open ventilators. doors. valve. damper ete. particularly suitable for remote controf. Made by Saichwell. Essentially a reversible geared motor fitted with internal limit swithes to stop it at the end of its travel. Size approx. bin. x sin. x. m . and weighing approx. powerful and would lift a heavy door or open a long line of
ventilators. To operate this motor you put the so cycle supply ventilators. To operate this motor you put the so cycle supply through a changeover switch. For instance a her growing house. chicken hatchery. could automatically regulate the remperature in awo the slate of open or close. Also etc. An indicator on the motor graduatede from this to a volt meter would give a remore indication of the open or close position. A very expensive motor if both direct from Satchwell., our price complete with step down Transformer is $\mathbf{\varepsilon 1 6} \cdot 50$.

CENTRIFUGAL FAN

Mains operated. turbo blower type. Pressed steel housing contains motor and impeller. Motor is $1 / 10$ th h.p. giving considerable air flow but virtually no noise. Approx. dimensions 104 in . wide $\times 12 \mathrm{in}$. dia. outlet into trunking $104 \times 4 \ddagger$ in. 66.55 plus 51 post and insurance

THIS MONTH'S SNIP

TAPE PLAYBACK UNITS

Mains operated. Made by Reditune the famous "music in background people". These are complete units ready to work and we understand that they are in good going order. We have not lested them but would exchange any That do not work properly. These have a supenor motor nd also an even equally useful valve amplifier with FI
 and also an even equally usefur valve amplifier with EL 84 outpur. in a steel case

3 hour cassettes. already recorded light music $51 \cdot 10$ each extra

24-HOUR TIME SWITCH

Made by Smiths, these are A.C. mains operated. NOT CLOCKWORK. Ideal for mounting on rack or shelf or can be built into box with 13A socket. Two completely adjustable circuit on or off during these periods. $\mathbf{2 9 5}$ post and ins. 25 p. Additional time contacts 55 p pair.

MULLARD AUDIO AMPLIFIERS
All in module form, each ready buitt complete with heat sinks and connection tags, data supplied. Model 1153500 mW power output 72 p . Model EP9000 4 watt power output $\$ 160$ EP9001 twin channel or stereo pre amp. 11 \$9. 10% discount if 10 or more ordered.

NEW ITEMS THIS MONTH
MINI SEALED RELAY
American made. Our Ref: REL A1. Measures only 3^{n} wide $\times \ddagger^{\prime \prime}$ thick and $\ddagger^{\prime \prime}$ high and it's a double changeover. we don't know the contact rating but estimate this at $3 / 5$ amps. The coil resistance is 600 ohms
and $9-12$ volt will close it. Ideal for models and miniaturised equipment. It's a plug in relay but we supply compicte with base. Price zap including base SUB-MINIATURE MICROSWITCH
Made by Burgess. their Ref V476-our Ref MS. Al.
 over contacis
or 10 for $\$ 144$.

3-CORE MAINS FLEX

Metric size. 5 mm which is approx. equivalent to the old $14 / 36$ rating. Suitable therefore for mower or imilar portable tools. Cores are colour coded to the new European standard. Brown-live ... Bheneutral . Yellow/Green-earth. Grey P.VC
covered overall. 100 mm coils $\mathrm{E5}, 50 \mathrm{~m}$ coils B and covered overall. 100 mm cols $65,50 \mathrm{~m}$ coils 53 and
25 m coils EI .75 . Post 40 p on 100 m . 25 p for 50 m coils 25 m coils EI 75 . Post
and 20 p for 25 m coils.

PANIC SWITCHES

Tough enough to foot switches and elegan enough to be panel switches. Bakelite construction with white push rod. Price 40 p less quantity discounts Switch is rated $250 \mathrm{~V}-2 \mathrm{amp}$

20 WATT CAMPING LIGHT

Also makes good car emergency light. This uses a car battery drawing approx. 1A. This gives illumi nation per amp hour of battery life far in excess to filament lamps and in fact to the miniature 8-13 watt camping lights often offered. Complete unit ready to operate, in strong white ename lied metal frame These would normally sell at $\mathrm{f6}$ are unused bu slightly soiled and

6 MAINS TRANSFORMERS

Our Ref: MTM1 27 volt al 8 amp . Upright mounting fully strouded-flying leads-fully tapped primary Price $\mathrm{E3} \mathbf{3 0} \mathbf{3 0}$.
Our Ref: MTM2 12 V at 1 amp. Upright mounting with fixing lugs. tag connection
12 V amp secondary Price 82 p .
Our Re: MTM3 6.3 V 2 amp upright mounting with fixing lugs. tag connections 240 V primary 6.3 V 2 amp secondary. Price 77p.
Our Ref: MTM4 $18 \mathrm{~V} \rightarrow$ amp with thermal cut-out upright mounting with fixing Jugs-tag connections Primary 240 V -secondary 18 V at amp. Price 88 p . leads-upright mounting lugs for fixing. Price 54 each.
6 VOLT RELAYS
Our Ref: REL M1. Removable clear plastic enclosed wo screw fixing. Have a 6 volt D.C. operated coil but wo changeovei contacts, each rated to make and AlC al 15 amps. Price 66p each
P.O. TYPE 3000 RELAY

Our Ref: REL M2- 100 ohms coil and 2 pair PHOTO-MULTIPLIER TUBE
American R.C.A. type No. 4555. These tubes have gain of a million or more. Regular Price-over $£ 15$.
We have a limited auantity and offer these at $£ 4.50$.
TANGENTIAL AIR MOVING UNITS
Work as extractors or blowers especially quiel running. perfectly balanced. plastic impeller-self oiling bearngs induction motor-outlet size $12 \times 2 \times 3$ approx
Ideal to fit in cooker hood. $E 2 \cdot 20$ plus $\quad 30$ pos
6 DIGIT COUNTER
Resettable. 440 ohm coil up to 25 impulses per second. Exequipment $12 \cdot 20$ each

COMBINATION SWITCH

> This comprises of 12 miniature changeover micro ture changeover micro switches. Joined in banks of
3 and mounted on frame with four digital numbered humb wheels and a removable ever for locking the thumb wheel the thumb wheel operates 3 hanks Over 4.000 combinations are possible but by re-wiring the switch connections underneath then thousands more variations are possible. If you are making equipmen which pou don t want swiched on accidentally or wis wout authority then this is a switch to consider operations. Very neat and compact and measurin approx $4^{\prime \prime} \times 14^{\prime} \times 1 t^{-}$deep. Priced at $\mathbf{5 3 0 3}$
PUSH BUTTON SWITCH
Type 14 D M.G. A very fine switch made by Honey well. The switch is intended for mounting on parnel through oblong hole. No screws required for fixing it's sprung clips secure it quite firmy. The operation bulton is approx. $1^{\prime \prime}$ dia. round and dished eor contacts Spring loaded, returns to normal when pressure is released. Ideal for instrument or quality gear. Price $50 p$ each, 10 for 54.50 . 100 for $E 40$.

TERMS:-10\% discount if ten of an item ordered, send postage where quoted-other lerms, post tree it
otherwise add 20 p.

J. BULL (ELECTRICAL) LTD.

(Dept. P.E.), 7 Park Street, Croydon CRO 1YD Callers to: 102/3 Tamworth Road, CROYDON:

Practical Electronics Classified Advertisements

RATES: 9p per word (minimum 12 words). Box No. 20p extra. Seml-Display $£ 7$ per single column inch. Advertisements must be prepaid and addressed to Classifled Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

SITUATIONS VACANT

Brunel
Technical College
Bristol

Ashley Down, Bristol BS7 9BU
Department of Marine and Aero-Electronics

Marine Radio and Electronic Officers

The Department offers the following Courses
(a) For prospective Radio Officers in the Merchant Navy a Course of $2 \frac{1}{2}$ years leading to the MPT General Certificate in Radiocommunications and the DoTl Radar Maintenance Certificate.
Commences September and January.
(b) A 3 -year Course for prospective Radio Officers leading to the Marine Radio and Radar Technicians Certificate (CGLI 292) and incorporating the MPT and DoTI Certificates.
(c) For qualified Marine Radio or Electronic Officers the MNTB Additional Certificate in Marine Electronics, in two modules of 3 months each.
(d) Short advanced technique Courses for serving Radio Officers. (e) MPT R/T Licences.

Licensed Aircraft Radio Engineers

The Department provides a 2 -year Full-time Course leading to a career in Civil Aviation. The Course is fully approved by the CAA so that successful students may obtain a full Category R Licence at the end of the Course if over 21 years of age.
The Department's aircraft, workshops and laboratories cover:
12.1 Airborne Communication Systems.
12.2 Airborne Navigation Systems.
12.3 Airborne Pulse and FM Systems.

Courses commence each September.
Courses are also provided for Aeronautical Engineering Certificates (AEC 7-12), Aeronautical Engineering Technicians Certificate (CGLI 258), Aeronautical R/T Licences, and Category X Compass Licences.
For further information apply to the Head of Department of Marine and Aero-Electronics. Brunel Technical College, Ashley Down, Bristol BS7 9BU. Telephone (0272) 41241.

MENH ESOP.W. can be yours

Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary, direct-fromAmerica, course, you train as a Computer Operator in only 4 weeks! Pay prospects? $£ 2500+$ p.a.
After training, our exclusive appointments bureau-one of the world's leaders of its kind-introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.

London Computer Operators Training Centre
M88, Oxford House
9-15 Oxford Street, W. 1
Telephone 01.7342874
127 The Piazza, Dept. M88 Piccadilly Plaza, Manchester 1 Telephone 061-236 2935

LADDERS

LADDER8, $24 \mathrm{ft} \mathbf{5 9} \cdot \mathbf{8 0}$, Carr. 80 p . Please add 10% V.A.T. to total order. l.eatlet. HOMB sALES LADDER ('ENTRE (PEED), Haldane, Halesfleld (1) North, Telford, Nalop. Tel. 0952-586044.

Electro-Medical Service

 Department requires
ENGINEERS

for testing and servicing electronic apparatus. Applicants should be aged 20-30, and should be of O.N.C. standard.

Apply in first instance in writing to:

SIEREX LIMITED

Electro-Medical Department
Heron House, Wembley Hill Road Wembley, Middlesex HA9 8BZ

BOOKS AND PUBLICATIONS

THOSE 1,000 BANBURY UFO's! Details our prediction. List 10 p and S.A.K. Prediction ('hart 50p. Flight Pattern 42 p . If di li, Highands, Needham, Suffolk.

DIEITAL COMPUTER Logle and Electronics. A four volume Self-instructional course, $\mathbf{£ 2 . 9 9}$ post free. Money back assurance. CAMBRIDGE LEARNING, 8a Rose Crescent, Combridge.

WANTED

```
        TOP PRICES PAID
        AND TRANSISTORS
    Popular T.V. and Radio types
KENSINGTON SUPPLIES
    367 Kensington Street
        Bradford 8, Yorks.
```


SERVICE SHEETS

8ERVICE SHEET8, Radio, TV, etc. 8,000 nodels. Catalogue 15 p . S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

8ERVICE 8HEET8 for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., from Sp with free Fault-Finding Guide. S.A.E. orders/enquiries. Catalogue $15 p$. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 29066.

MUSICAL INSTRUMENTS

HALO-the new gear as supplied to Hawkwind, Nolid Gold Cadillac. Tone generators \&12.11, ring modulators 212.77 , fuzz box \&12.11, ring modulators 212.77 , fuzz box
\&11.34, Wall-wah 211.81 , treble boost 28.81 . E11.34, Wah-wah 811.81 , treble boost $£ 8.81$.
Contact: HALO, Hituary House, Exmouth, Contact
Devon.

EDUCATIONAL

ENGINEER8. Get a technical certificate. Postal courses in Engineering, Electronics, Radio, TV, Computers, Draughtsmanship, Buiklings, etc., FlRLE book from: BIET (Dept. ZC BPE 29), Aldermaston Court leading, RG74PF. Accredited by CACC.

FOR SALE

8EEN MY CAT ? 5,000 items. Mechanical and Electrlcal Gear, and materials. S.A.E. K, R. WHISTON, Dept. PE, New Mills, Stockport.

TV LINE OUT-POT TRANGFORMERS
Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey TW9 2 EQ 01.9483702

CATALOGUE NO. 18, Electronic and Mechanieal Components and manufacturers' surplus. tredit vouchers value 50 p , Price 23 p , including post. ARTHUR SALLIS RADIO coNTROL LTI., 28 Gardner Street, Brighton, sussex.

```
FIBREOPTICS
Floxible Light Pipe for conveying light to in-
accessible positions. Fibroflex Type 1.Glass
1.14mm effective dia, PVC sheathed. 44p per
metre. (VAT inc.), P. & P. 10p. Any quantity.
Polariser Sheet up to /sq.ft. max. size. I6ip
per sq. in. (VAT inc.), P.&&. up to }6\mathrm{ in. square
10p; over 6 in. square 30p
    Cut down glare
    Seethose nixie tubes
    Make your own strain gauge for plastics
    and glass
Circuit Board Etching Kits. Full instructions.
    f1-37# (VAT inc.), P. & P. I4p
Photographic CDS Light Cells-used (with
part of original circuit free). 33p (VAT inc.),
    All items arestrictly C.W.O.
From: ARVIN SERVICE COMPANY
    12 CAMBRIDGE ROAD
    ST. ALBANS
```

[^4]METER REPAIR8. Ammeters. Voltmeters, Multi-Range meters, ete., also Jinear suale Transistorised Ohmmeters for salp. METER REPAIRS, 39 Chesholm Rd., London N160DS.
U.K. DI8TRIBUTOR "WQIII' bahms, antenna hardware, toroid cores also electro-voice microphones plas more, Large N.A.E. T.M.I' ELECTRON1(N(PPLAEN) (Dept PE) 3 Mryn Clyd, Leeswood, Mold, Flintshire 1 H74R1

LARGE QUANTITY test equipment, recejvers, ransceivers, meters, variacs,].S.L.N. Over 1,000 items for immediate disposal. N.A.E plus 25 p . Reflum on purchase over $\mathbf{2} 2$ F.J.C'., C'olne Mill, Alvington, Lydney Giloncester.

FOR 8ALE 8PRAGUE HYPA88 CAPACITOR8.
Axle fitting. ('omplete with bracket. 1,400 Axle ftting.
0.5 mF
600 V
d.e. 20 amps, 1,100
0.1 ml
 Cirange Road, Houstonn Jndustrial Estate Livingston, Wext Lothian.

FOR 8ALE TECH. TE200 R.F. Nignal gell Prator \&8. Tech. to 0•3 oscilloscope $£ 30$ Radio/TV servicing volmmes 1969-1971 820 All in new condition. Phone: Pagham 2187.

PRACTICAL ELECTRONICS. Volumes $1-5$. Offers. ('HASİ, go freenside Road, West ('roydon, Surrey.

RECEIVERS AND COMPONENTS

5-N-Channel FETs 3819E-f1

Full specification devices complete with circuit details for building voltmeter, timer. ohm-

Send 10_{D} for full list of field effect transistors and other top quality transistors available at bar gain prices.

REDHAWK SALES LTD.
45 Station Road, Gerrards Cross, Bucks. MAIL ORDER ONLY

COMPONENTS GALORE. Pack of 500 mixed components manufacturers surplus plus once used. Pack includes resistors, capacitors, transistors, diodes, 'I.C., gang, pots, ete. Tremendous value. Send $£ 1$ plus $10 p \mathrm{P}$ \& P C.W.O. to CALEDONIAN COMPONENTS, Fosterton Firs, Strathore Road, Thornton, Fife.

PECBSII					
POLYCARBONATE CAPACITOR					
e. High stability. All 63					
	80				
$2 \cdot 2$	0				
$6-8 \mu \mathrm{~F}$:					1.50
	.10				
TANTALUM BEAD CAPACITORS. Values available $0.1,0.22,0.47,1.0,2.2,4.7,6.8 \mu \mathrm{~F}$ at $35 \mathrm{~V}, 10 \mu \mathrm{~F} 25 \mathrm{~V}, 15 \mu \mathrm{~F} 20 \mathrm{~V}, 22 \mu \mathrm{~F} \quad 15 \mathrm{~V}, 33 \mu \mathrm{~F} 10 \mathrm{~V}$,$47 \mu \mathrm{~F} 6 \mathrm{~V}, 100 \mu \mathrm{~F}$ 3V-all at 9 p each: 6 for 50 p ;					
14 for $\& 1$. Special pack 6 off each value (78 capacitors) $\$ 5$.					
BC109. All at 9p each: 6 for 50 p ; 14 for $\& 1$. All brand new and marked. Full spec. devices. May be mixed to qualify for quantity prices. AF178 at 35p each or 3 for $95 p$.					
POPULAR DIODES. IN914, 7p each; 8 for 50p; 18 for \mathbf{I} I. IN916, 9p each; 6 for 50p; 14 for					
[1. is 44, 5p each; If for 50p; 24 for $E 1$. All					
NEW LOW PRI					
Values available $4.7,5 \cdot 6,6 \cdot 8,7 \cdot 5,8 \cdot 2,9 \cdot 1,10,11$$12,13 \cdot 5,15 V$. Tol. $+5 \%$ at 5 mA . All new and					
marked. Price 9p each; 6 for 50p; 4 for 21.					
Special offer 6 off each voltage (66 zeners) £4.25.					
RESISTORS. Carbon film $5 \%, \frac{1}{2}$ W at $40^{\circ} \mathrm{C}$, $\ddagger \mathrm{W}$ at $70^{\circ} \mathrm{C}$. Range from 2.20 to 2.2 Man in E 12 series.					
each: 8p for 10 of any one value: 70p for					
100 of any one value. Special pack- 10 off each value $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{Mn}$ (730 resistors) 45.					
440 V A.C. CAPACITORS. $0.1 \mu \mathrm{~F}$, size 1 in X 					
$0.5 \mu \mathrm{~F}$, size 1 i in $\times \frac{3}{2}$ in, $35 \mathrm{p} ; 1.0 \mu \mathrm{~F}$, size $2 \mathrm{in} \times 1$ in, $45 \mathrm{p} ; \mathbf{2} \cdot \mathbf{0} \mu \mathrm{F}$, size $2 \mathrm{in} \times$ lin 75 p .					
SILICON PLASTIC RECTIFIERS I.5A-					
Brand new wire-ended DO27. 100PIV at 8p each or 4 for 30p; 400PIV at 9p each or 4 for 34 ; 800 PIV at 14 p each or 4 for 50 p.					
5 p post and packing on all orders below $£ 5$.					
Dept. Es, The Maltings, Station Road Wem, Shropshire					

DRY REED INSERTS

Overall length 1.85° (Body length 1.1°). Diameter 0.14^{*} to switch up to 500 mA at up to | to 250 V . C |
| :--- |
| $\mathbf{~} 4.12$ per $100 ; ~$ |
| $10-25$ per 1,000 ; $£ 275$ per | $\mathbf{\$ 4 . 1 2}$ per $100 ;$ izo-25 pe

10,000 . All carriage paid.

40/42 Portland Road. Worthing, Sussex 090334897

COMPUTER PANELS, 9 in $\times 7 \frac{1}{2}$ in long lead trans and contps., E4, 8 trans.. 27 p (10 p); E4̄̄, 16 trans. $44 \mathrm{p}(10 \mathrm{p}) ;$ F47, 10 trans., 33p (10p)
PANELS with epory and TOl8 silicon trans 4 for 66 p (1 '2p)
MC METERS, 2 in or 3 in , three assorted $\mathrm{£1.15}$ (2ip) MANS STEPPING SWITCE, w! way with reget RESETTABLE COUNTER, if figure, 1 N/L2. V, works on $12 \mathrm{~V}, \mathrm{fR}$-20 (1 jp)
BILICON DIODES, $650 \mathrm{~V} 11 \mathrm{~A}, 30 \mathrm{~m}$ tag boarci, 35 (5p). New $800 \mathrm{Y}, \mathrm{A}, 6$ for 25 p (ip).
UNIT WITH $4 \times$ BFY5 4 gilicon
UNIT WITH $4 \times$ BFY51, 4 silicon tholes, 4 zeners, caps and reainturs, 45p (s)
COPPER CLAD
PAX. COPPER CLAD PAX. PANELS,
83p (10p).
MIXED POLYSTYRENE/S. MICA CAPS., 100 for 50 p 7 b ASSORTED COMPONENTS, $\& 1 \cdot 60$.
21 ASSORTED COMPITER PANELS, £1.60.
A.A. $\mathbf{F} .\left(9 \mathrm{l}_{\mathrm{in}} \times 4 \mathrm{in}\right.$) for list of computer panels, etc.
J.W.B. RADIO

75 Hayfield Road, Salford 6, Lancs.
Postage in brackets Mail order only

BRAND NEW COMPONENTS by return Electrolytics $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0 \cdot 47,1,2 \cdot 2,4 \cdot 7$, $10 \mathrm{mF}, 4 \mathrm{p} ; 22,47,4 \frac{1}{2} \mathrm{p}(50 \mathrm{~V}, 5 \mathrm{p}) ; 100,5 \frac{1 \mathrm{p}}{}$ ($50 \mathrm{~V}, 7 \mathrm{p}$); $220,6 \mathrm{p}$ ($50 \mathrm{~V}, 9 \mathrm{p}$). Subminiature
 $35 \mathrm{~V}, 1 / 35 \mathrm{~V}, \frac{2 \cdot 2 / 35 \mathrm{~V}, 4}{} 4.7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}, 8 \mathrm{p}$.
Mylar Film $100 \mathrm{~V}-0.001,0.002,0.005,0.01$, Mylar Film $100 \mathrm{~V}-0.001,0.002,0.005,0.01$,
$0.02 ; 2 \mathrm{p} ; 0.04,0.05,3 \mathrm{p} ; 0.068,0.1,3 \frac{1}{2} \mathrm{p}$. Poly styrene 63 V E12 series $10-1,000 \mathrm{pF}, 2 \mathrm{p} ; 1,200-$ $10,000 \mathrm{p} \mathrm{F}$, 3p. Miniature highstab resistors, 5%, E12 series-Carbon Film f W, $1 \Omega-10 \mathrm{Ms}$ (10% over 1 M Ω). Metal Film fW, $10 \Omega-$ $2 \cdot 2 \mathrm{M} \Omega$ and $1 \mathrm{~W}, 27 \Omega-10 \mathrm{MS}$ all ip each. Postage 8p. The C.R. SUPPLY CO., 127 ('hesterfleld Road, Sheffield, S8 0RN

Tompus aleatronin

Add 10% VAT, to to all prices. All brand new, no rejects. Money Back Warranty. $5 V$ DIGTTAL INDICATOR: $0-9 D P$ gocket and
 LED TYPE \ddagger * 0 -9DP DIL $22.25 \mathrm{cach} ; 6 \times \mathrm{E} 2.19$ each. ${ }^{4}$ digit type 211.
LIGHT EMITTING DIODES. All with data ami panel clip. TJL $209 \frac{1}{4 *}^{\mu^{*}}$ dia. 26p. Hed $\frac{1}{* *}^{\circ}$ dia. type GAS detector $\mathbf{2 1}$.89. Fltrasonic transducer $\mathbf{\Sigma 2}$. DALO POB resist marking pen 6日p. (ip) ber board $1^{12 *} \times 6^{*}$ SRBP 40p. Fec etch PAK 19 p . INTEGRATED CIRCUITS: with data if required. IC LITE SWITCH: Photo anup/trigder $40 \mathrm{mi} / 111-20 \mathrm{~V}$

relay or TTL 87p. Dil relay El 110
 IC digital cloch

Mos/Lsi type. 28 pin, 4 or 6 ilixit, $12 / 24 \mathrm{hr}$. Chip with socket 212 . Data 39p. $3 \mathrm{~W}_{\mathrm{AF}}$ anp 21.24.
$741 \mathrm{Dil} 8 \mathrm{pin} 28 \mathrm{p} ; 709$ 18p. Dil 29p; 74828 p ; mono 710 33p. 555 TIMER/irono/astable osc. clock 93 p .
 RECEIVER ZN+14 21.18. Mini RX Kit 81.98

G.1TEA $7400 / 1 / 2 / 3 / 4 / 5 / 10 / 20 / 30 / 40 / 50$, etc. 148

 $59 p ; 7492$ 67p; $748069 p ; 7483$ £1.10; $74 \times 137 \mathrm{mp}$

 SEMICONDUCTORS:
2N3055 40p; BC107 8p; BC 10 A 8 p ; BC109 8p

 B13131/ 55p; 13FY50/51/5: 13p; T1443 IJT 24p
 49p; $2 \mathrm{~N} 3053 \quad 17 \mathrm{p}$: 3 N3055 40p: 2N3702/3/4/\%/6/7/8/9/10/I1 AH 0p each
 CAPACITORS: 1 ise $22 p \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ 4p,
 SETS 5p each. KEALSTORS \$W 5o Itp each

$13^{*}{ }^{2}$ watt fully built with diffuser.
TRIO and CODAR communications and Hi-lit retailer. ELECTRONI("ORGANS from $\mathbf{E 6 7}$. PW ELECTRONIC CAR IGNITION KIT \&6-67
FREE CAT. S.A.E. Data sheets 8p each. P. \& P
8p, C.W.O. P.O. BOX 2日, BRACKNELL, BERKS.

R.T. SERVICES
 (MAIL ORDER ONLY)
 77 Hayfield Rd., Salford 6, Lancs.
 Matrix, 75 p each.
 Mullard A.M. Module. I.F. Strip, LPII66, t1-10 inc. P.P.
 FM Tuner with R.F. Stage and A.G.C. 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $\mathrm{fl} \cdot 37 \frac{1}{1}$ inc. P.P.
 Crouzet Geared Motors, 10-30-60 r.p.m New, 61.54 ine, P.P
 UHF TV Tuners. Transistorised, $£ 1.65$ inc. P.P.
 3BPI with Base and Screen, $\mathbf{6 2} 75$ inc. P.P. VCRI38 CRT. New, boxed, $\mathbf{6 3} \mathbf{3 0}$ inc. P.P. Brand New Panel VU Meters, $4 \frac{1}{2} \times 3 \frac{1}{4}$ in calibrated, $\mathbf{~} 3 \cdot 30$ inc. P.P.
 Transformers. $7.5 \mathrm{~V}+7.5 \mathrm{~V} 1 \mathrm{~A}$, 66 p inc $9.0-9 \mathrm{~V}, 100 \mathrm{~mA}, 69 \mathrm{p}$ inc. P.P. $12-0-12 \mathrm{~V}$ 100 mA 69 p P.P. $20 \mathrm{~V}, 1 \mathrm{~A} 88 \mathrm{p}$ inc. P.P.
 Transformers. $52-0-52 \mathrm{~V}$, $1 A+22-0-22 \mathrm{~V}$ $200 \mathrm{~mA}, \pm 2 \cdot 20$ inc. P.P
 P.C. Board. $\mathrm{S} / \mathrm{S}, 5 \frac{1}{\frac{1}{2}} \times 5 \frac{1}{2} \mathrm{in}, 10$ for 70 p inc. P.P.
 Panel with 5-200 PIV IA SCRs + 14 OA200 diodes plus components 70 p inc. P.P. 85p inc. P.P.
 Panel Meter $50_{\mu} \mathrm{A}$. Brand new, $4 \frac{1}{2}^{\prime \prime} \times 3 \mathbf{t}^{\prime \prime}$ © $3 \cdot 30$.

8PECIAL RE8I8TOR KIT. \mathbf{W} W 5% (arbon Film. 10 each E12 value. 22Ω to $2 \cdot 29$ Total 610 for e3. P. \& P. 8p. NEK ELAEC TRONIC'S. 2X farnegie Road, st. Albans, Herts.

SPECIAL INTRODUCTORY OFFER OF BRAND NEW \& MARKED COMPONENTS TRANSISTORS: BC107B, BCIOBA/B/C, BCI09B/ C allat $8 \frac{1}{2} \mathrm{p}$; BFY50/51 14p; 2 N 305538 p . DIODES: IN4148 $4 \frac{1}{5} p ;$ IN914 4 1 p . CARBON FILM RE: SISTORS: tW 5\%, ip each, $30 \mathrm{p} / 50$ any mix $22 \Omega-2 \cdot 2 \mathrm{M}$) E12.
UNMARKED BARGAIN PAKS: These transistors have been properly tested and are guaranteed to have the specified hfe spreads. Pak of S ,
Plastic BCIOBA hfe 125-240, 25p; Pak of 5 , Plastic BCI09B hfe 240-500, 25p; Pak of 5 , Plastic BCI79A he 125-240, 25p; Pak of 4, BFY5i 20p: Pak of 4, $2 N 697$ 20p. DIODES: Pak of 5 OA200 20p; Pak of 12 IN414820p.
C.W.O. P. \& P. 10 p. on orders below 44. Overseas at cost. S.A.E.forlists. Mail Order only. Money back if not satisfied. ADFONIC (Dept. PE), 18 YEW LANE ASHLEY, NEW MILTON, MANTS BM255BA

BRAND NEW FULL SPEC. DEVICES OR YOUR MONEY BACK
U.K. ORDERS-Add 10% VAT to Total

MICROCIRCUITS: 709 24p; 710 36p; 723 $51 p ; 741$ 27p; $74837 p ;$ FET Op. Amp. 61.62. SOLDERCO'N IC Pin Sockers: 0.5p per pin. SOCKETS: 14 pin DIL HI or LO 12 p each. RECTIFIERS. IA 50 V 31 p ; $100 \mathrm{~V} 4 \mathrm{p} ; 200 \mathrm{~V}$ 41p; 400V5p; 800V 6p; 1.000 V 7 p .
ZENERS (BZ.YB8): 2.7V to 33V Bp each
DIODES: IN9164p; OA906p; IN4I4B4p. LED PANEL LAMP with Bush and Data 28p. OALO PC RESISTPEN 6Bp

$(50 \mathrm{~mW}$) 1000 hms to $220 \mathrm{~K} \Omega$ PRESET
p EaSh

TRANSISTORS: $2 N 2926$ Brown 6p; 2N3053
15p; 2N3055 35p; 2N3702 10p; 2N3704 2N3819 26p; BCIO7A 8p; BCIO8B 8p; BCIO9B 8p; BCIO9C 8p; BCY70 15p; BFY50/51/52 15p; ACI 26/7/8 12p; OC44/45/71/72 12p.
Above prices on 10 th May. Check our list.
JEF ELECTRONICS (P.E.8)
York House, 12 York Drive, Grappenhall, Warrington WAA 2EJ. Mail Order Only.
C.W.O.P. \& P. at cost. 10p min. List free.

TOROIDAL MAINS TRANSFORMERS Slimline and compact, with very low stray hum field, suitable for audio amplifiers up to 60 W atts channel, etc.
Type Tl-primary 0-110-120-220-230-240V $40 / 60 \mathrm{~Hz}$. Secondary $0-45 \mathrm{~V}$ at 150 VA max. Electrostatic screen. Size-only $1 \frac{1}{2}{ }^{*}$ high $\times 4 \frac{1}{2}{ }^{*}$
diameter. Weight $3 \frac{1}{2} / b$. Mail order only Price-only $\mathbf{6 5} \mathbf{7 0}$, post free in U.K. Other types available-send S.A.E 36 Bermuda Terrace, Cambridge

RADIO \& TELEVI8ION AERIAL BO08TER8 22.95, flve television valves $\mathbf{4 5 p}$. 50 p bargain transistor packs, hargain $\$ 1$ resistor and rapacitor packs. UllF-VHH televisions 27.50. acitor packs. ALF- for 3 leaflets. VELCO ELECTRONIf, A. liridge st., Ramsbottom, Bury, Lanes.

TUNBRIDGE WELL8. (components from TELFSERYICE, 108 Camden Hoad, Tunbridge Wells, Kent. Telephone 31803.

555 TIMER I.C. only 90p emel inc. YAT.
 Holmestiekl, shetfield, sic swo. Mail order Holn
only.

BEIFORD ELEGTRONICS
 2 Grove Place • Bedford Bedford 51961
 YOUR LOCAL COMPONENTS SUPPLIER

free catalogue on request

MISCELLANEOUS

CLEARING LABORATORY, scopes, V.T.V.M's V.O.M's, H.S. recorders, transeription turntables, electronic testmeters, calibration units, P'S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, MC relays, components, ett. Lower Beeding 236 .

AT LAST YOU CAN TRANSMIT AND

 FORGET ABOUT LICENCE EXAMINATIONS
because this Ministry

 kit does not use R.FYour transmissions will be virtually SECRET since they won't be heard by conventional since Acrually it's TWO KITS IN ONE because youget Actually it's TWO KITS IN ONE because you get the transmitter AND receiver. You're going to find this project REALLY FUN.TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGEhas obvious applications for SCHOOL PROJECTS, LANGUAGE LABORATORIES, SCOUT CAMPS, tc.
GET YOURS! SEND $65-80$ (ine. VAT) NOW
S.A.E.for details) S.A.E. for details) MAIL ORDER ONLY
TO: 'BOFFIN PROJECTS:

TO: 'BOFFIN PROJECTS"
DEPT. KE2010
STONELEIGH, EWELL, SURREY

A Perfect toast every time. Automatic pop-up toaster has adjustable time control to yary the colour and crispness just the way you like it. Chromium plated with black plastic sides. $220 / 240 \mathrm{~V}, 800$. Comes with 6ft of flex and 3 months' guarantee. Size $\sin \times 4$ in \times 7in high. E341 67.20 Toaster II Compact go-anywhere cassette tape recorder can be operated by battery or a.c. mains. 220/240V. Automatic recording level. Pianotype keys control play, rewind, wind. srop and record. Sockets for remote control and microphone. Complete withfour $\cup 2$ batteries. Wood grain finish. Size $\sin \times \operatorname{Sin} \times 2 \frac{1}{2} i n$. Weight approx. 6 lb . E365 C15.30 Tape recorder ACME ELECTRIC CO. (FINSBURY) LTD. 74 Gt. Eastern Street London E.C. 2 Tel. 01-739 6486-8	

HARDWARE-Screws, nuts, washers and other useful items in small quantities. Sheet aluminium to individual requirenients, punched/drilled. send 6p for list. RAMAR ONSTRC'(TOR SERVICRS, 29 Nhelbourne Road, stratford-on-Avon, Warwickshire.

NEW FROM ELBON

L.E.D.'s (Red Emitting) Ideally suted for panel indicators Price only: 33p each or $\mathbf{\Sigma 2} \mathbf{5 0}$ for 10

Light SENSITIVE SWITCHES

Two iypes avalable giving wide operating voltages.
LITE -IC2 $11 \mathrm{~V}-20 \mathrm{~V}$ working $-\mathbf{£ 1}$ each $\mathbf{-} \mathbf{£ 8} \mathbf{5 0}$ for 10
LITE-IC3 20 V -30V working- $\mathbf{£ 1}$ each $\mathbf{- £ 8 . 5 0}$ for 10
Appications include Relay. Triac or Logic Drive automatic light switching and door controt. beam break detection - burglar alarm, batch counting and code reading
BARGAIN PACK!
2 LITE -IC2. 2 LITE -IC3 and 5 LEO s all for $\mathbf{£ 5 \cdot 0 0}$
ALL PRICES INCLUDE VAT, PACKING AND CARRIAGE Please send C.W.O. to:
LITE-IC, ELBON, SUMMERFIELD, the crescent, west wittering, sussex

Build the Mullard C.C.T.V. Camera Kits are now available with comprehensive construction manual (also available separately at $76 \frac{1}{2} p$) SEND 5" 7" S.A.E. FOR DETAILS TO: CROFTON ELECTRONICS 15/17 Cambridge Road, Kingston-on-Thames, Surrey KT1 3NG

CON8TRUCTION AID8. Screws, nuts, spacers etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied Fascia panels etched aluminium to individual requirements. Printed circuit boards-masters, negatives and boards, one-off or small numbers Send $6 p$ for list. RAMAR CONSTRUCTOR SERVICES, 29 Shelbourne Road, Stratford-on-Avon, Warwks.

THERMOCOUPLES

Acramet and Acraspeed
thermocouples, from IC are:-
Extremely accurate for fluid, gas or metal temperature measurement.

Individually calibrated and carry a certificate plus a one year guarantee.

Available with immersion or contact, non-earthed, multiples, boss or plug.

Details available on request.
International Combustion Limited,
Sinfin Lane
Derby DE2 9GJ

ENAMELLED COPPER WIRE

S.W.G.	116 Reel	$1 / 6$ Reel
$10-14$	61.15	$65 p$
$15-19$	61.15	$85 p$
$20-24$	61.18	88
$25-29$	61.55	$75 p$
30.34	61.30	$80 p$
$35-40$	1.40	$85 p$

Please add 10% to all a bove prices to cover VAT
he above prices cover P. \& P. in U.K. Supplied by
INDUSTRIAL SUPPLIES
102 Parrswood Rd., Withington, Manchester 20
Telephone No. 061 -224 3553

standard german plugs \& sockets

 $34 p$ 34 p With cable side entrySocket 210 61p
inc VAT
For bench
mounting

£ $1 \cdot 10$ inc VAT Twin socket outlet to
fit wall box
over KOpost tree
chadditional item2p
(1) michael wheeler Itd 01-388 0575

18-19 WARREN STREET LONDON WIP 5DB

P.E. SYNTHESISER

 KNOB KITComplete kit as Feb . issue
43 knobs, 7 calibrated discs
£3.91 pose DE LUXE KIT as above but calibrated for programming. £5.89 ${ }_{\text {free }}^{\text {post }}$
Inclusive postage and V.A.T.
RE-AN PRODUCTS LTD.
Burnham Road, Dartford, Kent
Tel.: Dartford 20785

PSYCHEDELIC MINI-STROBE

A Very POWERFUL, POCKET-SIZED
STROBE-LIGHT hat is SELF-CONTANED and and really BRAN-REEZE DAZZLING PSYCHEDELLC EFFECTS and STOP.MOTION FLASHES. BOFfin's new MIN-STROBE kit constitutes a fully solid-stsate
COMPIETE Electronic device which is
wis reflector unit, printed-circuit board, electronics, and source-iamp-the only extra is a battery which you can buy locally. The whole thing can be easily built in a atew hours
A veritable flulck
A veritable FLICKERING FASCINATOR Adiustable flash-rate.
GET ONE (or ${ }^{\text {two }}$ NOW NOL ANS BEGIN STEALING THE THUNDER at DISCOS and PARTIES with your own POCKET-
LIGTNING!
SEND $62 \cdot 10$ (inc. VAT) for YOUR
MINI-STROBE. MAILORDER ONLY
To: Boffin Proiects
4 Cunlifie Rd., Stoneleigh, Ewell, Surrey

ELECTRONICS FANATICS

whether beginner or advanced - we ofter.
Have you ever wanted to build A Have you ever wanted to build A make TEACHING DEVICE? Maybeyou fancy the idea of an ELECTRONIC FANTASY MACHINE? How about a "Thing" capable of REPRODUCING ITSELF? Whatever your electronic turn-of-mind, there's just GOT TO BE LOAD5 TO INTEREST YOU in the science-fictionworld of BOFFIN.
GET YOUR CATALOGUE - SEND JUST 15p NOW!

MAIL ORDER ONLY

TO: BOFFIN PROJECTS
4 CUNLIFFE ROAD
STONELEIGH, EWELL
SURREY
Designs by GERRY BROWN and JOHN SALMON and presented on TV

GLA8s FIBRE P.C. BOARD--iarge supplies a vailable. fin single sided one ounce copper, $2 p$ per 3 sq in (under 1 ft); 75 p per 84 ft (over 1 ft). $\frac{1}{10}$ in double sided one ounce copper, 1 p per sy_{f} int (under 1 ft); 21 per sq ft (over 1 ft). Please add 10p per sif ft postage and packing. We can cut to your size at ip per cut. Solid) sTATE LA(iH'TIXG, The Prirs, smallworth Lane, Garboidisham, Diss, Norfolk

ALUMINIUM 8HEET to individual sizes or in standard packs, $3 p$ stamp for details. RAMAR
 lRoad, stratford-on-A von, Warwks,

BURGLAR AND FIRE ALARM8. (ompletr Master control Moduke now avalable from our own panels. Cdal for all Alarm/switehing eircuits with datal sheet, etc. $\mathbf{E 6} 8.85$. (omplete Alarm kits 849.50 . Magnotic switehes, Sensors. Alarmits e49.50. Makturtir swiches, semsors Hox WOG, Windsor, Berks

ZIGGY'S 2001
 ELECTRONICS Co. Ltd

SPECS. MULTIMETER U4324. Sensitivity 20,000 OPV DC. Usually high current ranges. 3 amps a.c./d.c. Voltages
AC3 to 900 V d.c. 0.6 to 1200 V Resistance 500 ohms-20-200Resistance 500 ohms-20-200-
$2,000 \mathrm{k} \Omega$ Transmission level -10 to +12 dB . This high quality instrument has diode protection. Complece with test leads, batteries, etc.
MULTIMETER 4CE E8 plus 25p post, etc MULTIMETER 4313. Similar to above but and instrument is housed in metal case with carrying handle. (Illustrated leaflet sent on requesc.) ONLY 69.50 plus $25 \mathrm{p} P$. \& P . SANWA JP-5D. Diode protected. A.C. volts $0-500 \mathrm{~V}$. D.C. current $0-500 \mathrm{~mA}$. Res 0-1M ${ }^{\text {E AGLE }}$-95. P. \& P. 20p
EAGLE LT700 TRANS., LT 44 TRANS. Our price 32p each. postage 6p.
P.U. HEAD SHELLS AND SLIDES.
GARRARD C2 (SP25 Mk III, etc.) 45p. M7 (SP25 Mk Il and earlier models) ©1. MP60) 45p.
BSR McDonald ($310,510.610, ~ M P 6)$ Postage 6p pershell. RUMBLE? SP25 drive wheels, 65p plus 5 p P. \& P. MP60 drive wheels. 65p plus $5 p$ P. \& P. SUBMINIATURE TOGGLE SWITCHES Poery useful, very small. S/P. 25p, DP/ST, 33p. Postage 5peach over 10, postiree.
SUBMINIATURE MAINS TRANSFORMERS. Eagle MTG, 6-066, $100 \mathrm{M} / \mathrm{A}$. 80p. $\begin{array}{llll}\text { MERS. Eagle MT6, } & 6-0-6,100 & \mathrm{M} / \mathrm{A}, & 80 p, \\ \text { postage } 10 \mathrm{p} . & \mathrm{MT} / 2, & 12-0-12, & 50 \mathrm{M} / \mathrm{A} \\ 80 p\end{array}$ postage IOP. TINE TYPE MAINS TRANS. FORMERS. Eagle Type MT280, 6-0-6 $280 \mathrm{M} / \mathrm{A} .11 \cdot 20$; MT150. $12-0-12$, $150 \mathrm{M} / \mathrm{A}$. E1.20, MT100, 24-0-24. $100 \mathrm{M} / \mathrm{A}_{1} \mathrm{Cl} 1 \cdot 20$. R/S types, $13 \mathrm{~V}, 05 \mathrm{amp}$. C. Tapped, $£ 1.06$, 16.3 V . 0.3 amp, C.T., fl.06. Post $15 p$ on min. sixe. DIAMOND STYLI FOR SONOTONE 85pplus'spP. \& P. FOR SPEEDY DELIVERY OF THESE PLEASE SEND C.W.O. to ZIGGY'S 2001 ELECTRONICS CO. LTD., DEPT. P.E.3, 34 MABLEY STREET, LONDON, E.9.
N.B.-Please add 10% for VAT-Sorry.

LOW COST LEDs

MLED 500 in standard TO92 package for P.C. mounting. MV54 is T_{2} size, 2 mm , miniature. Both provide visible red light from $1.65 \mathrm{~V}, 20 \mathrm{~mA}$ 150Ω resistors available for $5 V$ d.c. (TTL) operation. MLED 500
 MARE'S TAILS: Spray of several thousand glass fibres, ready to use as part of decorative displays. \&Il each including P. \& P. and VAT
POLARISERS for light control, glare reduction, modulators, stress analysis, S / N enhancement for displays
HN32 Linear Polariser, for Kerr cells, etc.
HRCP7 Red Circular Polariser, for LED displays HRCP7 Red Circular Polariser, for LED displays.
HNCP37 Neutral Circular Polariser, for HNCP37 Neutral Circular Polariser, for Send $9 x$ Gin S.A.E. for full details of the above plus our full range of Fibre Opties.

FIBRE OPTIC SUPPLIERS
 P.O. Box 702
 LONDON WIO 6SL

SINGLE CHANNEL SOUND-TO-LIGHT CONVERTER

WITH LIGHT DIMMER
Max. Load 2kW at 250 V a.c
Price includes ready built and teated module, edge connector/mounting bracket, dimmer potentiometer, autio sensitivity putentionieter, full connecting data Price
EXTRA FACLITIES. Push-bution for Manual Pulaing. 25p extra. Photucel] for turning on the lights an the ambient light decreases, 75p extra

THREE CHANNEL FILTER UNIT

When uxed with three single channel modules this bilit filters the sount into bass, middle and top frecfuencies enabling three coloured light displays to
be showh. Independent sensitivity controls on each channel. Ready built and tested. Price $£ 3-40$ inc. VAT $+10 \mathrm{p} P$. \& P.
OIL WHEEL PROJECTOR

Build your own MOLTH-COLOTRED OIL WHEEL AND MOTOR ETT Sustable for mounting Projectors.

Kit contains:
\star bin tia. or tin dia OIL WHEEL (please atate size required when ordering).
Suitable Miniatur
trull inatructions.
For Professional Di
ment. Price 27.15 inc. VAT \& P, \&P
ELECTRONIC COMPONENTS
Pack Mo.
300 Carton reaistors, $\mathfrak{i}, \frac{1}{2}, 1$,
100 Electrolytic Condefisers.

- Ceramic, Polyatyrene, Silver Mica, etc. Con4250 Polyester, Polycarbonate, Paper, etc. Con densers.
$250 \mathrm{High} \cdot \mathrm{stab} .1 \%, 2 \%, 3 \%$ resiator
i0 Assorted Tagat rips.
\& lib wi, Assorted Nuts, bolta, washers, apacers, $2 \bar{j}$ Assorted switches, rotary, iever, micro, toggle 10 jo Preset Potentiometers.

ALL COMPONENTS NEW AND DNOSED $11+25 p$ P. 6 P. per pack 25 lor 5 packs
post free.

C.T. ELECTRONICS

267 Acton Lane, London W4 5DG 01-994 6275 8abs), in de-luxe plastic cabineta for deak or W'al Sobs to Mutar. Ideslly suitahle for Business sur gery, Schools, Hospital, Office and Home. Operates on one 9 V battery. On/oft switch. Volume control. Complete with 3 connecting wires each 66ft and other accessories. P. \& P. 44p.
MAINS INTERCOM (new model) No batteries-no wires. Just plug in the mains for nstant two-way, loud and clear communication On/of switch and volune control with lock aystem.

Same as 4 .station Intercoun for two way instant communication. Ideal as Baby Alarmand boor Complete with battery. P. \& P. 30 p .

[^5]
BUILD A CHORDING PROFESSIONAL SYNTHESISER

The Synthesiser shown above is the Dewtron "Apollo" A.1, which we sell ready-built to professionals. Believe it or not, it uses the SAME precision modules as we sell to you, the Constructor, to build any kind you like. The revolutionary Modumatrix system of routing makes old-fashioned patching a thing of the past. VCO-2 voltage-controlled oscillator module has accurate built-in log-law for chording and other professional effects. 3 and 4 octave keyboards and contacts. VCO-2STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 volt/ octave voltage control. $£ 22$ each or $£ 25$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touch sensitive playing when used with VCO-2 signals. £15. OFT-1 chording module £7.50. Modules (except VCO-1) guaranteed two years.
using Dewtron (Regd, Trademark)

PROFESSIONAL MODULES

 CASH SAVINGSby buying modules and parts in bulk!
All modules are available separately
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, $\mathbf{£ 1 0 . 5 0}$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type WN1, £7. Voltage-controlled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £12. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £9. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls £4.50. REVERB Module and spring unit £15. V.A.T. 10% extra, V.A.T. paid orders over $£ \mathbf{7 5}$.

With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to leading group. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy" G.I. Approved by the Association of Musical Instrument Industries. Send 150 for full catalogue of our famous musical effects.

WATFORD ELEETRONICS

35 CARDIFF ROAD. WATFDRD, HERTS, ENGLAND
C. WiO. Please: P. \& P. please add 10 p to orders under $£ 2$ MAIL OROER. CALLERS SATUROAYS ONLY

SEMICONDUCTORS															
AC125	12p						709 C 8 pin	in 32p							
$A C 126$	12 p BC148	12 p	-C71	10 p	OA90	5p	709 C 14 pin	in 32p							
AC127	12 p CC149	12 p	-C72	10 p	OA91	5 p	741 C 8 pin	in 36p							
AC128	12p EDI31		2N2218A	13 p	oaz200	8 p	741 C 14 pin	in 36 p							
$A C 187$	12p EDI32	49p	2N2220	10 p	OA202	8 p	723 C 14 pin	in 80 p							
AC188	12 p BFI94		2N2221	10p	IN914	5 p	DIL								
AD161	30 p EFI95		2 N 2483	10p	1N4001		SOCKETS								
AD162	30p BFY50	22p	2 N 2484	10p	1N4004	70	8 pin	${ }^{23} \mathrm{p}$							
AFII 4	12p EFY51		2N2926R	9	IN4007	${ }_{8}$ p	14\%16 pin	in 15p							
AFII 15	12p OC26		2N29260	9 p	1N4148	5 p	ZENER								
AFli6	$12 \mathrm{p} \circ \mathrm{C} 28$	40p	2N2926V	9	BYz10	20p	DIODE								
AF117	12 p OC35		2N2926G	10 p	BYZ13	$16 p$	BYZ B6	series							
BC 107	$9 \mathrm{OC42}$		2N3014	10p	WOI 日R	IDGE	400 mW 3	$3 \cdot 3 \mathrm{~V}-$							
BC 108	9 p OC44	0 p	2N3055	55p	RECTIFI										
	9 p				1 A .	30p	Price 12								
THYRISTOR		JACK PLUGS AND SOCKETS													
200V 4A	60	Standard Screened, 12p Stereo Screened, 30p			2.5 mm Sereened. 8p 3.5 mm Screened, 10 p										
VEROBOARD															
0.1					2.5 mm Socket, 7p										
2i $\times 37$ in	20p														
	24p 22p	DIN PLUGS \& SOCKETS				COMPA									
3) $\times 37 \mathrm{in}$	24p 22p														
$3 i \times 5$ in	27p 30p					CASSETTES									
$24 \times 17 \mathrm{n}$ 3 3	$\begin{array}{ll}75 \mathrm{p} & 60 \mathrm{p} \\ 970 & 84 \mathrm{p}\end{array}$					${ }_{C}^{C 60}$	75p; C90								
$34 \times 17 \mathrm{in}$	$\begin{array}{ll}97 p & 84 p \\ 128 \mathrm{p} & \end{array}$														
$2 \mathrm{f} \times 17 \mathrm{in}$	(plain) 40p	PHONO PLUGS AND													
$33 \times 17 \mathrm{in}$	plain) 60p	SOCKETS: PLUGS assorted				OGGLE SPST									
$5 \times 17 \mathrm{in}$	(plain) 80p	colours ${ }^{50} 5$				SLIDE DP IA									
Pkk. 50	s 20p														
Spot face	cuiter 42p	Double 7p				ROTARY Wafer									
Pin insert	ion tool 52p														
D.C. POWER SUP				STEREO HEADPHONES. HOSIDEN DH-02V-S.											
Current: 500 mA .															
				8 ohm: Individual vol. control. Solt ear											
PRICE: 63.40 P. \& P.				${ }_{P}^{\text {pad }}$											

RESISTORS

POLYESTER CAPACITORS. Axial lead type
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 0.0068 \mu \mathrm{~F}, 24 \mathrm{p} ; 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3 \mathrm{p}: 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 0.15 \mu \mathrm{~F}, 4 \mathrm{p}: 0.22 \mu \mathrm{~F}, 7 \mathrm{p}: 0.33 \mu \mathrm{~F}, 10 \mathrm{p}$: $0.47 \mu \mathrm{~F}$. ${ }^{13 \mathrm{p} .}$
$160 \mathrm{~V}=0.1 \mu \mathrm{~F}, 0.15 \mu \mathrm{~F}, 4 \mathrm{p}: 0.22 \mu \mathrm{~F}, 5 \mathrm{p}: 0.33,6 \mathrm{p}: 047 \mu \mathrm{~F}, 7 \mathrm{p} ; 0.68 \mu \mathrm{~F}, 10 \mathrm{p} ; 1 \mu \mathrm{~F}, 13 \mathrm{p}$.
Radial lead P.C. type:
$250 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}: 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3+\mathrm{p}: 0.1 \mu \mathrm{~F}, 4 \mathrm{p}$
$0.15 \mu \mathrm{~F}, 4 \mathrm{p} ; 0.22 \mu \mathrm{~F}, 0.33 \mu \mathrm{~F}, 5 \mathrm{p} ; 0.47 \mu \mathrm{~F}, 7 \mathrm{p} ; 0.68 \mu \mathrm{~F}, 10 \mathrm{p} ; 1.0 \mu \mathrm{~F}, 11 \mathrm{p}$.
ELECTROLYTIC CAPACITORS. Miniature axial lead type.
$63 \mathrm{~V}: 1 \mu \mathrm{~F}, 1.5 \mu \mathrm{~F}, 2 \cdot 2 \mu \mathrm{~F}, 3.3 \mu \mathrm{~F}, 4.7 \mu \mathrm{~F}, 6.8 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 15 \mu \mathrm{~F}, 22 \mu \mathrm{~F}, 47 \mu \mathrm{~F}, 68 \mu \mathrm{~F}, 6 \mathrm{p}$ each 40 V : $100 \mu \mathrm{~F}$, $6 \mathrm{p}: 150 \mu \mathrm{~F} 25 \mathrm{~V}$, 6 p : $25 \mathrm{~V}: 220 \mu \mathrm{~F}$, $11 \mathrm{p} ; 470 \mu \mathrm{~F}$, 13 p ; $680 \mu \mathrm{~F}, 20 \mathrm{p}$ 1,000 μ F, 25p.

CERAMIC CAPACITORS: 50 V d.c. Plaquette body 25 mm leads.
Range: 22pF-10.000pF. Price 2p each.
POTENTIOMETERS: Carbon Track 0.25 W . Log and linear values $5 \mathrm{kn}-2 \mathrm{Ma}$ Single Gang

SLIDER POTENTIOMETERS $5 \mathrm{k} \Omega-2 \mathrm{Ma}$ Single Gang $12 \mathrm{p} \quad 10 \mathrm{k} \Omega-100 \mathrm{k} \Omega$ Single gang $5 k \Omega-2 \mathrm{M} \Omega$ s/gang W/switch $24 \mathrm{p} \quad 10 \mathrm{k} \Omega$ - 100 k n Dual gang IK linear single gang. Knobs Pointer type
Knole gang Knobs pointer type
Smail Aluminium Black chrome rim

WATFORD ELECTRONICS

35 CARDIFF RD., WATFORD, HERTS, ENGLAND.
Enclose $10 p$ stamps for our comprehensive catalogue.
Name
Address

Practical Radio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit.
Everything you need to know about Radio \& maintenance and repairs for a spare time income and a career for a better future.

Electronics

 over 15

That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not do the thing that really interests you? Without losing a day's pay, you could quictly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cot the page). No obligation and nobody will call on you . . . hut it could be the best thing you ever did

Others have done it, so can you

"Yesterday 1 received a letter from the lnstitution informing that ms applimation for Associate Menberchip had been approwed. I can howe the say that thi has been the best value for mones I have per obtained - a view echerd by two colleagues who recently commened the comme". Student D.1.B., Yorks.
"Completime your course, meant gring from a job I detected to a job that I love, with undimited prospects". -Student J.A.(). Dublin.
" ${ }^{\prime}$ y training with B.I. B.i. quickly changed my earning capacity and, in the nest few year, my earning increased fomfold". -Student C.C.I., Bucks.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help your. Write to B.I.E.T. Dept. BPE07 Aldermaston Court, Reading RG7 4PF.

To B.I.E.T., Dept. BPE07 Aldermaston Court, Reading RG7 4PF

BPE07 NAME
Block Capitals Please
ADDRESS

$-$
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Latrys

BUILD
 THE TEXAN

FREE TEAK CASE

with
FEATURES: New slim design with 6 ICs, IC sockets, 10 silicon transistors, 4 rectifiers, 2 zeners Special Gardners low field slim line transfor
HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES促 RELIABILITY AND EASE OF CONSTRUCTION
FACILITIES: On/off switch indicator, headphone socket separate treble, bass, volume and balance controls, scratch and rumble filters, mono/stereo switch, input selector: Mag. P. . (Pares list Ref. 20 on request). Constructional Details Ref, No. 21.30 p Ref. 20 on request . Constr SPECIAL
$\underset{\substack{\text { RIT } \\ \text { PRIEE }}}{\text { R }}$

P. \& P. 45 p

COMPLETE WITH FREE TEAK CABINET

LOW COST HI.FI SPEAKERS
 E.M.I. Size 13 tin $\times 8 \pm$ in and Cer Thms 6.20 .0 watt. 1.8 sion E2.75. Post 22p TYPE 450 io watt with twin or 15 ohms crossover, 3 . TYPE 35020 watt with tweecer and crossover, 8 and 15 ohms.
67.50 . Post 28 p.

POLISHED CABINETS ISO, ISOTC. 450 £4.60. Post 30p ASSEMBLEDIN POLISHED CABINETS (8 OHM) SERIES 6 (Assembled 150TC) per pair $£ 16 \cdot 50$. Post 70 p SERIES 8 (Assembled 450) per pair E18.95. Post 70p.

ML3 MW/LW
TUNER TO BUILD
Uses Mullard Module. battery. Ferrite aerial. Overall. Built-in $2 \mathrm{iz} \times 3 \mathrm{izin}$. TOTAL COST TO BUILD 64.85 . Post 15 p. All parts sold separately-Leaflet No. 6 .

'BANDSPREAD" PORTABLE TO BUILD

Printed circuit all transistor design using Mullard RFilf Module. Medium and Long Wave bands plus Medium 600 mW push-pull output, fibre glass PVC covered cabinet, car aerial. Atractive appearance and performance. TOTAL COST TO BUILD 67.98, p.p. 32p (Batt. 22p)

CATALOGUE

fully detailed and
illustrated covering every
aspect of Electronicsplus data, circuits and information
10,000 stock lines at Special Low Prices and
Fully Guaranteed.
PRICE 55p Post
(40p FOR CALLERS)
PLUS! FIVE 10p VOUCHERS

Send to this address

 Henry's Radio Lid. (Dept. PE), 3 Albemarle WayCondon. E.C.I-for
catalogue by post only
All orther mail and callers to "303", see above.

VATAll prices are exclusive of 10\% VAT which must be added to all orders inc. carr./packing. (Note: Catalogue is not subject to VAT).

YOUR COMPLETE AUDIO-ELECTRONIC STORES

More of everything at the right price. Al/ your electronic requirements within 200 yards - call and see for yourself

$20+20$ WATT INTEGRATED I.C. STEREO AMPLIFIER

TEST EQU\|PMENT Just a SE250B Pocket Pencil Signal Injector, \&li.90 SE500 Pocket Pencil Signal Tracer, © 1,50
 TE15 Grid Dip Meter $440 \mathrm{KHz}=280 \mathrm{MHz}$, $£ 13.45$ $50030 \mathrm{~K} / \mathrm{Volt}$ Multimeter. C 9.25 200 H 2 K Vol Mel
 Muter, 8 8.50; with case, 69.50 tester with steel case, 610.50

TE20D RF Generator $120 \mathrm{KHz}-500 \mathrm{MHz}, 61650$. Carr. 35p TE22D Audio Generator $20 \mathrm{~Hz}-200 \mathrm{KHz}, ¢ 17 \cdot 50$. Carr. 35p TE65 Vin Pulse Scope $10 \mathrm{~Hz}-10 \mathrm{MHz}$, E39.00. Carr. 50p TE65 Valve Voltmeter 28 ranges, $t 17-50$. Carr. 40p

ALL NOMBREX MODELS IN STOCK
BUILD THIS VHF FM TUNER TRANSISTORS $300 \mathrm{ke} / \mathrm{s}$ BAND. WIDTH PRINTED CIRCUIT, HIGH FIDELTTY REPRODUĆTION. MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about itAlt parts sold separately.

Free Leaflet No. $3 \& 7$. TOTAL 66.97 , p. 200 MkI Decoder Kit ©597. Built IC Decoder E6'50. Tuning meter unit $\mathbb{\$} 1.75$.
Mains unit (optional) Model P5900 E2.47. Post 20 Mains unit for Tuner and or Decoder PS6/12 €3.25. Post 20p. PA-DISCO-LIGHTING UK's Largest Range-Writ hone or cail in. Details and J30L 3 Chen request. light unit 3 kW w 80.50
 dight unit, 3 kW . 229.50
$3 \mathrm{~kW}^{3}$ Chan

DISCOAMP Disco amp/mixer, 649.75 mixer, 665.85 watt Disco ampl 0رloss 30 watt Disco amp/mixer, $\mathbf{6 3 2} 25$ Anti-Feedback Quality Mic., $£ 1 I \cdot 50$ J 50050 watt PA amplifier, $\mathbf{4 3 . 9 5}$ JJ700 70 watt $£ 52.75$
J J 1000100 watt $£ 63.00$
roup 300 I 50 watt rms Group Valve
amplifier, $£ 86.00$
Portablediscos-details on request

- Credit terms for callers

SINCLAIR PROJEC —SAYE POUNDS Z 30 63.57 75064.37 STEREO 60 17.97 PZ PZ6 $£ 6.37$ PZ8 $£ 4.77$ Transformer for PZ8 $£ 2.95$ Active Filter Unit $\mathbf{~ 4 - 4 5 .}$ Stereo FM Tuner $£ 16.95$ ICI2 1.80 Ql6's $\& 15$ pair. Post, etc. 20p per item.

FIBRE OPTICS LIGHTING - MICS EFFECTS PRO JECTORS. SPOTS DIMMERS STANDS.MIXERS SPEAKERS Everything for Lighting.
FREE Stock List Ref. No. 18
DULES .

See earlier page of this magazine for transistors, I.C.'s and Semiconductor prices. Latest List Ref. No. 36 on request

E\&OE

ELECTRONIC KITS
Henry's incroduce new huge range of audio and electronic kits now in stock, everything supplied, tremendous value. Detaited list Ref. No. 14 on request.

IC RECEIVER
ZN414 Radio integrated circuit as featured in Practical Wireess, January, 1973. Article reprint Ref. No. 19. 10p.

BATTERY TAPE DECK Garrard 9V tape deck with heads, etc. As previously dvertised. Limited quantity 69.50. Post 30p.

LEARN A LANGUAGE Recorded Cassettes with step by step phrase books. French German, Spanish, Italian. ©l-36 per course. 65.00 per set of

DISCO SPOTBANK As illustrated on the front cover of Practical Wireless April
35 p.

HI-FI EQUIPMENT Warehouse prices with BIG DISCOUNTS plus demonstrations
TEES.
FREE 24-page detailed bro FREE chure (Ref. No. 17) \star You cansee the zavings \downarrow

HIGH QUALITY CASSETTES

The best U.K. low noise tapes but at a special price. "Living Sound" cassettes meet the highest international standard (iECinA)
savings. C60 C90 C120 $\begin{array}{cccc}3 \text { for } & £ 1.00 & £ 1.33 & £ 1.62 \\ 6 \text { for } & £ 1.80 & £ 2.57 & € 3.15 \\ 10 \text { for } & £ 2.80 & £ 4.20 & £ 5.00\end{array}$ Full guarantee. Post paid. Made by EMI especially fo Henry's.

ULTRASONIC
TRANSDUCERS
Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100 yds. Ideal remote switching and signalling. Complete with data and new
PRICEPERPAIR $£ 5.90$. Postlop. MARRIOT TAPE HEADS

> 4 TRACK MONO or 2 TRACK 5 TEREO - 17 :' Highlmpedance $\quad 12.00$ " I8:" Med. Impedance $£ 200$ "36"Med.-Low Imp. rase Headsfor above 75p Impedance mono - High
"43"Erase Head forabove 75p
7 SEG 8 NIXIE TUBES
(Post ISpper I to 6) XN3, XN13, GN6 0-9 side view with data, 85p.
GNP=7, GNP-8 $0-9$ side view with decimal points and data 95p. $3015 \mathrm{seg} . \mathrm{E} 2$ each, $£ 7$ per 4 with data. 12 and 24 hour clock circuits. Ref. No. 31 15p.

MINIATURE AMPLIFIER
5 transistor. 300 mW o/p. Fitted volume and sensitivity control 9 volt operated. 41.75

QUALITY SLIDER CONTROLS 60 mm stroke singles and ganged. Complete with knobs. $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega$, $250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega$. I meg. Log and
Lin. 40 p each, $10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$. Lin. 40 p each, $10 \mathrm{k} \Omega$, $25 \mathrm{k} \Omega$,
$50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$, Lo and $50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$,
Lin. ganged. 80 p each.

[^6]
[^0]: ©IPC Magazines Limited 1973. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2.65$.

[^1]: RTL MICROLOGIC CIRCUTTS

 | Epoxy TO-5 case | $1-24$ | 25 | 99 |
 | :--- | :--- | :--- | :--- | 3 L900 Buffer 38p 38p 29D L914 Dual 2i/p 38p 38p 29 p

 Date and Circuits Booklet for IC's

[^2]: NAME

[^3]: may be profiled to individual requirements, 64.48 .

[^4]: MORSE MADEEASY!! FACT NOT FICTION. If you start RIGHT you will be reading amateur and commerciad
 ithins month (normal progress to be expected).
 Using scientlically prepared 3 3.goeed records you without transiating. You can't belo it, it's as eavy as without transiating. W.P. M. in 4 weeke guaranteed. Beginner's Section only $\mathbf{8 3 . 3 0}$, complete course 84.50 Beginner
 (Overseas $£ 1$ extra) detaila onig, 4 p stamp. 01-680 2896 G3H8C (Box 19), 45 GREEN LANE, PURLEY, SURREY

[^5]: NEW EDITION TV ENGINEERS' POCKEE BOOK

 P. J. McGoldrick

 Price $\mathbf{1 2 . 6 5}$

 THE RADIO AMATEUR'S HANDBOOK 1973 by A,R.R.L. Price E2.95.
 I-2-3-4 SERVICING CASSETTES by F. H
 Bels. Price $£ 2.30$.
 IIO THYRISTOR PROJECTS USING SCRs AND TRIACS by R. M. Marston. VIDEO T
 VIDEO TAPE PRODUCTION AND COMMUNICATION TECHNIQUES BY INTEGRATEDCIRCUIT POCKET BOOK by R. G. Hibberd. Price $\mathbf{E 2} 60$.
 AUDIO SYSTEMS HANDBOOK by N. H. Crowhurst. Price $\mathbf{6} 1.15$.

 BEGINNER'S GUIDE TO PRACTICAL ELECTRONICS by R. H. Warring. Price f 1.40 .
 SIMPLE TRANSISTOR PROJECTS FOR HOBBYISTS AND STUDENTS by L Steckler. Price El-35.
 PRINCIPLES OF TRANSISTOR CIR. CUITS by S. W. Amos. Price fl 1.65 .
 NEW IC FET PRINCIPLES AND PRO.
 GETRANSISTORMANUAL. Price EI-20,
 GETRANSISTORMANUAL. Price EI.
 "ALL PRICES INCLUDE POSTAGE*
 THE MODERN BOOK CO.

 ## BRITAIN'S LARGEST STOCKIST

 of British and American Technical Books
 |9-2| PRAED STREET
 LONDON W2 INP
 Phone 01-723 4185
 Closed Saturday 1 p.m

[^6]: 404-406 Electronic Components and Equipment 01-4028381|Open:-9 am-6 pm 354-356 High Fidelity and Tape Equipment 01-402 5854/4736

 Opan:- 9 am-6
 6djur a wcek
 ind 1309 PA-Disco-Lighting High Power Sound 01-723 6963
 (30) closed 1309 PA-Disco-Lighting High Power Sou
 303 Special offers and bargains store

 Thursday) All mail to 303 Edgware Road, London W2 1 BW

