PRACTICAL

NOVEMBER 1972
20p
220.240 Volts or

100-120 Volts

ModelX25

The leakage current of the NEW $\times 25$ is only a few microamps and cannot harm the most delicate equipment even when soldered "live" Tested at $1500 v$. A.C. This 25 watt iron with it's truly remarkable heat-capacity will easily "out-solder" any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages.

Fitted long-life iron-coated bit $1 / 8^{\prime \prime}$

$$
2 \text { other bits available } 3 / 32^{\prime \prime} \text { and } 3 / 16^{\prime \prime} \text {. }
$$

Model CCN

 220 volts or 240 voltsThe 15 watt miniature model CCN also has negligible leakage. - Test voltage 4000 v . A.C. Totally enciosed element in ceramic shaft. Fitted long-life iron-coated bit 3/32" 4 other bits available $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime} 1 / 4^{\prime \prime}$ and $1 / 16^{\prime \prime}$ PRICE: $£ 1.80$ (rec. retail) OR Fitted with triple-coated,

Totally enclosed element in ceramic and steel shaft Bits do not "freeze" and can easily be removed

PRICE: $£ 1.75$ (rec. retail)
Suitable for production work and as a general purpose iron
(iron, nickel and Chromium) bit $1 / 8^{\prime \prime}$ PRICE: £1.95 (rec. retail)

MODEL CN

Miniature 15 watt soldering iron fitted $3 / 32^{\prime \prime}$ ironcoated bit. Many other bits available from $3 / 64^{\prime \prime}$ to $3 / 16^{\prime \prime}$. Voltages $240,220,110,50$ or 24
PRICE: $£ 1.70$ (rec. retail)

MODEL CN2

Miniature 15 watt soldering iron fitted with nickel plated bit 3/32". Voltages 240 or 220.
PRICE: $£ 1.70$ (rec. retail)

MODEL G
18 Watt miniature iron, fitted with long life ironcoated bit $3 / 32^{\prime \prime}$. Voltages 240,220 or 110. PRICE. $£ 1.83$ (rec. retail)

From radio or electrical dealers, car accessory shops or. in case of difficulty direct from ANTEX LTD. FREEPOST

Please send the ANTEX colour catalogue. Please send the following:

I enclose cheque/P.O./Cash (Giro No. 2581000)

NAME

ADDRESS
contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder, stand and "How to Solder" booklet.
PRICE £2.75
(Rec. retail)
MODEL SK. 2 KIT contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$
 heat sink, solder and booklet"How to Solder'

PRICE $£ 2.40$
(Rec. retail)
MODEL
MES.KIT Battery-operated 12v. 25 watt iron fitted with 15^{\prime} lead and 2 heavy clips for connection to car battery. Packed in strong PRICE f1.95

(Rec. retail)

The BIG discount house!

Comoisseur

B.D. 2 Press Button Speed Change Turntable

Now a new development on the well established Connoisseur BD2 belt drive turntable - press button speed change. This new development is exciting news for the enthusiast and comes as part of an integrated turntable and pickup arm assembly which also features a special version of the popular SAU2 arm. This is now fitted with a new lifting, device which gives improved lowering characteristics, the headshell allowing for lateral adjustment of the cartridge. The BD2 is supplied as a chassis unit or spring mounted on a wooden plinth with dust cover.

S.AN. 2 Pick-Up Arm
 Recognised as one of today's most advanced

 pick-up arms it features- Auto-bias Compensator
- Hydraulic Lowering Device
- Precision Balance
B.DATurntableKit

The B.D.I. well known for its superb performance and quality two speed working through a flexible belt drive system is now ava lable in kit form. Construction is simplicity itself with no soldering required. Now it's so easy to own the best.

(1)
KOntampingemie "astathusaden)

KONTAKT "Cold Spray 75"
For rapid and effective fault location Non-toxic, non-inflammable, Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to - 42 centrigrade. It can also be used to prevent heat damage during soldering processes, for the rapid freezing of small articles for biological and technical purposes and the prompt location of hairline cracks and other faults in temperature dependent components.
Other Kontakt products:
Kontakt 60 and Kontakt 61 for relay contact cleaning: Plastic Spray 70, transparent proeertive lacquer: Insulating Spray 72; Kontakt WL, Spray Wash: Antistatic Spray 100. Ancistatic agent for plastics; Politur 80, Polish
Fluid.
Details from U.K. distributors

Special Products Distributors Ltd.

81 Piscadilly, London, W. 1
Tel. 01-6299556

Ask for Rendar Jack plugs and sockets at your local stockist. They come in a wide variety of configurations, and in cases of difficulty can be ordered DIRECT from the Rendar factory.
Standard, mini and sub-miniature sizes . . . plugs in both screened and unscreened versions . . . socket bodies in high melting point thermoplastic... several unique features (some protected by UK and US Patents) ... Post Office and NATO specifications.
If you want to study all the facts and figures, all the ingenious construction details, send for the Rendar Electronic Components Catalogue of technical data sheets covering their entire range of products
The cost of the catalogue is 25 p , including P \& P, and it's money very well spent!

RENDAR

Rendar Instruments Ltd., Victoria Road
Burgess Hill, Sussex. Tel. Burgess Hill 2642-4
Cables: Rendar, Burgess Hill

2 HZ to 20 MHZ SOLID STATE BEAM SWITCH

Completely assembled P.C. Board, ready to use on any standard commercial oscilloscope. Size $4 \frac{3}{4}$ in $\times 3 \frac{1}{4} \mathrm{in}, \pm 9 \cdot 25$ each. P \& P 25p. Completely encased with attenuators and BNC connectors $£ 25$ each.

20HZ to 200KHZ SINE WAVE GENERATOR

In four ranges. Wein bridge oscillator, thermistor stabilised, amplitude control, 3 V peak to peak. Completely assembled P.C. board, ready to use. 9 to 15 V supply required. $£ 4.85$ each. P \& P 25p.

TRANSISTOR INVERTOR
12 V to 1.5 kV 2 MA AC. Size $\quad 1 \frac{1}{2}$ in $\times 2 \frac{1}{2} i n \times 4 i n$. ONLY $£ 2.95$ each. P \& P 25p.

STABILISED POWER UNIT

For BC 221 Frequency meter. Slide-in and connect. ONLY £ 3.75 each. P \& P 75p.

LARGE RANGE OF OSCILLOSCOPES

ALWAYS AVAILABLE WRITE FOR LISTS

MODERN INSTRUMENTS CASES

All aluminium construction, etched chassis with removable blue vinyl cover.

Small case

Size $4 \frac{1}{2}$ in wide, $1 \frac{1}{2}$ in high, $4 \frac{1}{4}$ in deep with 2 position tilted hinged rest, 95p each. P \& P 15p.
The advertised Beam Switch, Square Wave Generator and Sine Wave Generator will fit the smaller case.

WOBBULATOR

For displaying response of 10.7 MHZ (FM receiver I.F.'s) and 30 40 MHZ (TV I.F. alignment). Requires 6.3 V AC and any general purpose oscilloscope. Instructions supplied. Completely assembled P.C. Board, $\boldsymbol{£ 9}$ each. P \& P 25p.

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605/65916

Come and isten atheregts most cycing -1T1010

Join thousands of Hi-Fi enthusiasts in an atmosphere that will sel your ears tingling with excitement. Whatever your taste classics, jazz or pop - there will be something for you. The international giants of the Hi-Fi industry will be there - showing the latest specialist equipment: unit audio; tape recorders, cassette, cartridge and reel-to-reel; loudspeakers; AM/FM tuners, receivers; amplifiers, radios; tapes and discs. There will be continuous demonstrations in over 65 special Audio Studios - plus daily presentations, lectures and discussions in the Hi-Fi Theatre. And the Sunday Mirror is offering concession rates of admission to its readers, plus exciting competitions. Don't miss this great event.

Sponsored by the Sunday Mirror

OLYMPIA Ionoen

Tuesday 24 October to
Saturday 28 October
Daily 10 a.m. to 9 p.m.
Admission 40p

YOU MUST HEAR

MINIWISE AUDILECT YOUR PERSONAL TUTOR

Bring PLEASURE to your CAREER or HOBBY through Integrated LEARNING.
ORGANIZED TUITION in your own HOME at your own SPEED-with the TUTOR OF YOUR CHOICE will give you rapid UNDERSTANDINGthe key to SUCCESS.
ASSURE YOUR FUTURE in RADIO, TV or ELECTRONICS.

WRITE NOW-RIGHT NOW TO MINIWISE PRODUCTS
 FREEPOST, BLETCHLEY, BUCKS

FOR FREE DETAILS OF THIS UNIQUE sensible method just send us your name and address quoting PEII, no one will call. Or include only 90p to own a trial LESSON* on either a C90 cassette in Lib. case or L.P. Tape (state which).
*Your money INSTANTLY REFUNDABLE if not 100% convinced that chis can be the surning point in your hobby or career.

THE NATURAL WAY TO LEARN

The most accurate pocket size calculator in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 4.50$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.

CARBIC LTD. (Dept. PE43)
54 Dundonald Road, London SW19 3PH

CELECTRON-E
P.O. BOX No. I, LLANTWIT MAJOR, GLAMORGN CF6 9YN

NOW WORLD WIDE RCCPFTOON

ANOITER EASTEUROPEAN MIRACLE!

PERSONAL PORTABLE

IN YOUR CAR

FANTASTICI Brand 5panking
new from East
incredible
I Radiol First class makers our crazy price, lates we must tion memBeautifully made. $9 \times 5 \times$
$2 \pm$ Every approx date techno logical improve CONDUC TORS: 9 Tran
sistors. 5 Diodes and Stabiliser! WA A Y E VHF model with AM/FM Long bands! Wave- Will around the world, including Standard Long. Medium and Short Wave, also 5 section 26 in . swivel telescopic aerial. On/off/volume and tone controls. Clear Station Selector Dial. Waveband selector! Equally wonderful in CAR or HOME! TWO Tuning Dials for flat or upright use as illustrated,
RUNS OFF 12 VOLT BATTERY! (AS A PORTABLE it runs on standard batteries.) PLUG IN 12 VOLT ADAPTOR JACK PROVIDED and automatically cut out internal batteries, usirg car battery only! Don't you
think it's miraculous? Span the Oceans and pull in hundreds of eransmissions day and night including short wave-even in car! BUT WAIT-simply remove Radiofrom car, "snap on" optional carry handie AND YOU HAVEA DE-LUXE PORTABLE, with additional upright tuning dial. WRITTEN GUARANTEE. Only 699 box, post 45p. "Sprungall metal matching detachable carry handle (as illus.) + batteries only $\mathbf{2 5 p}$ ex. if required. Match with sets costing $£ 35$ or more. Test 7 days-refund if not delighted
Order by post to Uxbridge Road address, or call at either store.
COMMERCIAL TRAVELLERS NOTE: Merchendizing ofee at Holborn Store.

Shopertunities "chunder" ahead with an offer that's FANTASTIC (even by our standards!) We've snapped up 500 magnificent machines. Latest FM Radio AND Cassette Tape Recorder \& Player combined it also runs of standard batteries or mains. (Simply plug in the 220/240V. AC ine Radio as you listen! RECOMMENDED RETAIL PRICE GENUINEIY 644! WE OFFER AT ALMOST HALF PRICE! Wonderful features: - Prease CONTROL! ${ }^{\text {C }}$ "MAGIC EYE" Visual Batcery check/recording level indicator or built-in automatic Leveller! \star Separate ON/OFF and HI-LO valume controls! \star Heavy duty built-in speaker! * Earphone (for personal listening or "monitoring') and extension speaker sockets! * Remote control microphone! * Built-in swivel telescopic extension aerial (24in approx.)! Magnificently made case with carry handie. Cassetgis VARY SLIGMTLY.) Takes standard 30, wo, go or 20-minute circuit YHF AM/FM Radioverywe. AND the amazing buile-in fou seleccion Unique roraring Station Selector Dial-get all local city and regional stations in every part of che country plus B.B.C. National, VHF. Picks up dozens of foreign stations. Fabulous in your car! You could pay Et Es morefor olete with simple instructions, remote control microphone with on/of switch and microphone stand. WITH WRITTEN GUARANTEE. Send tudoy or call at either store. Test 7 days, refund if not delighted. BON US OFFER; Batteries and Cassette Tape $\mathbf{2 5 p}$ extra if required

SHOPERTUNITIES LTD.

Dept. PE/22, 164 U XBRIDGERD. (facing Shepherds Bush Green) LONDON WI2 BAQ. (Thurs. I, Fri, 7). Also at $37 / 39$ HIGH HOLBORN (opposite Chancery Lane). LONDON, W.C.I. (Thurs.
$7 \mathrm{p} . \mathrm{m}$) BOTH STORES OPEN FROM MONDAY TO SATURDAY FROM 9 A.M. UNTIL $6 P . M$.

回四回 IIE

uscouvr ill avoio s． 5 2amplete
 $14+14$ watts r．m．s． 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$ ．Total distortion at 10 watts
 iscount IIIR 101 amplifier $622 \cdot 00+90 \mathrm{p}$ \＆

at $\mathrm{lkHz}-\mathbf{0} .1 \%$ ．

This is real value for money！We have designed 2 systems and the heart of them all is the Viscount III amplifier．A unit of great eye appeal with teak finished cabinet． FET＇s（Field effect transistors）are incorporated on the input stages，just like top priced units．FET＇s give you more of the signal you want and almost none of the hiss you don＇t．Both units have output sockets for headphones and tape recorder． Filters and tone controls give a wide range of bass and treble adjustment．

For both systems we have chosen the famous Garrard SP25 Mk．III deck which comes complete with simulated teak plinth and dust cover．

The exclusive Duo loudspeaker systems are incomparable for quality within their price range．Large speakers in extremely substantial cabinets．There＇s a choice of the Duo Il＇s for the smaller room or the big Duo Ill＇s for real bass response． SPEAKERS
Duo Type 11 Size approx． 17 in ． $10 \frac{3}{\frac{3}{i n}} 6 \neq \frac{1 i n}{}$ in．Drive unit 13 in ． 8 Bin ．with parasitic tweeter． Max power 10 watts，ohms．Simulated Teak cabinet． \｛l4 pair $+\{3 p$ \＆p ．
Duo Type 111 Size approx． $23 \frac{1}{2} \mathrm{in}$ ．$\times 11 \frac{1}{2} \mathrm{in}$ ．$\times 9 \frac{1}{2} \mathrm{in}$ ．Drive unit $13 \frac{1}{2} \mathrm{in}$ ． $8 \frac{1}{4} \mathrm{in}$ ，with H．F．speaker． Max power 20 watts at 3 ohms ．Freq．range 20 Hz to 20 kHz ．Teak veneer cabinet f32 pair $+£^{3} \mathrm{p}$ \＆ p ．
SPECIFICATION RIOI
14 watts per channel into 3 to 4 ohms（suitable 3 － 15 ohms）．Total distortion＠ 10 W $1 \mathrm{kHz} 01 \%$ ．P．U．f．（for ceramic cartridges） 150 mV into 3 Meg ．P．U． 2 ．（for magneticcartridges） 4 mV ＠ 1 kHz into 47 K equalised within $\pm I \mathrm{~dB}$ R．I．A．A．Radio 150 mV into 220 K ．（Sensi－ tivities given at full power．）Tape out facilities：head phone socker，power out 250 mW per channel．Tone controls and filter characteristics．Bass：+12 dB to $-17 \mathrm{~dB}(\mathbf{a}) 60 \mathrm{~Hz}$ ．
Bass filter： 6 dB per octave cut．Treble control：treble +12 dB to -12 dB （a） 15 kHz ． Bass filter：6dB per octave cut．Treble control：treble +12 dB to -12 dB ， 15 kHz ． Treble filter： 2 dB per octave．Signol－to－noise rotio：（all controls at max）－P．U．l．and chorocteristics betrer than 26 dB on allinputs．Size approx．I 3 on an．$\times 9$ in．$\times 3$ ing． chorocteristics betier than $26 d B$ on allinputs
Send S．A．E．for fully illustrated brochure．
12 MONTH＇S WRITTEN GUARANTEE． 12 MONTH＇S WRITTEN GUARANTEE．
$2 \times$ Duo Type II speakers $\quad 14.00+£ 2$ p\＆p K Duo Type 11 speakers
Garrard SP25 Mk．HII with
MAG．cartridge plinth and
cover

$$
\text { Total } \quad \overline{659.00}
$$

Available complete for only $\mathbf{6 5 2}$ §3．50 p 8 p

PRICES：SYSTEM 2
 Viscount R 101 amplifier $\quad 622.00+90 p \mathrm{p} \& \mathrm{p}$ $2 \times$ Duo Type 111 speakers $\{3200+43 \mathrm{p}$ \＆ Garrard SP25 Mk．III with $\begin{aligned} & \text { MAG．cartridge plinth and } \\ & \text { cover }\end{aligned} \quad 23.00+\mathrm{Cl} .50 \mathrm{p} \& \mathrm{p}$
 Total $\overline{\mathbf{6 7 7 . 0 0}}$

Available complete for $\overline{\mathbf{E 6 9}+\mathrm{E}} \mathbf{4} \mathrm{p} \boldsymbol{p}$
－ONLY FROM US

MUSIC MAKERS

A Natural＇only from

 THE TOURIST PB CAR RADIO KIT
Abstract

Apart from the output stage，which is an integrated circuit，the only other electronic components that need woldering are some capacitors，resistors，etc．The kit includes a pre－built RF tuner unit，and fully modulised IF stages which are pre－aligned before despatch．As well as electronic components，this kit also contains 2 diamond－spun aluminium knobs，elegant matching front panel，dial，washers，screws and wire The Tourist PB is suexable for 12 volt working on both negative and positive earth vehicles．It covers the full medium and long wave bands．Four push－buttons for medium wave，one for long wave．It is permeability tuned and sturdily constructed．Output is a ull 2.5 watts into an 6 ohm speaker．But the Tourist PB will operate into any loud－ speaker from 8 to 15 ohms．Power consumption is less than I amp． The Tourist PB can be mounted in any standard size dash panel and it has an illuminated tuning scale for easy reading at night．Chassis size is： 7 in wide， 2 in ．high and $4 \frac{15}{18}$ in ． deep（excluding front panel，etc．）． ＊Circuit diagram and zomprehensive instructions 50p，free with parts． ＊fully retractable lockable car aerial El 25 post paid PRICEONLY £7 +p ． $\mathbf{3}$ p 50p 8 ohm speaker with baffle and fixing strips $1150+25 p$ p $8 p$ ，post free if brought with the kit

If you can solder on printed circuit board，you can build this push－ button car radio kit．It＇s simple－ just follow the step－

RELIANT MK．IV

$\star 5$ Electronically Mixed Inputs．$\star 3$ Individual Mixing Controls．太 Separate bass and treble controls common to all 5 inputs．\＃Mixer employing F．E．T．（Field Effect Transistor）．\star Solid State Circuitry．\star Attractive Styling．\star Sides finished in solid teak．
INPUTS：－1．Crystal Mic．or Guitar 9 mV ．2．Moving coil Mic．or Guitar 8 mV ．Inputs 3， 4 \＆ 5 are suitable for a wide range of medium output equipment（Gram．，Tuner，Monitor，Organ，etc．）．All 250 mV sensitivity． CONTROLS： 3 Volume controls．Bass control range：13dB＠60Hz．Treble control range：+12 dB ＠ 15 KHz ．Separate ON／OFF Switch．Neon indicator．POWER OUTPUT： 12 Watts
R．M．S．into 3 to 4 ohms speaker．SIGNAL NOISE：Better than 60 dB on inputs 3．4 and 5 \＆-50 dB on I \＆2．SUPPLY：－220－250 A．C．Mains．SIZE：－I2 $\frac{1}{2} \mathrm{n}$ ． Gin． $3 \frac{1}{2}$ in．

VIIIIT OUR SHOWROOM

回形可
Radio and TV Components（Acton）Ltd． 2ID High St．，Acton，London W3 6NG 323 Edgware Road，London，W． 2
Mall orders to Acton＊Terms C．W．O．• All enquiries S．A．E． Goods not dispotched outsice U．K．

TRANSFORMERS

MAINS ISOLATING SERIES Primary 200-250 Volts Secondary 240 Volts Centre Tapped (I20V) and Earth Shielded AVAILABLE WITH II5/I20V SEC. WINDING							
Ref.	VA	Weight	Size cm.				P
	(Wott	lb oz					P
07	20	111	$7.0 \times 6.0 \times 6.5$			1.61	30
100	60	38	$8.9 \times 80 \times 7.7$			2.39	36
61	100	512	$10.2 \times 89 \times 83$			2.62	52
30	200	981	$12.0 \times 10.3 \times 100$			4.39	52
62	250	124	$9.5 \times 12.7 \times 1.4$			5.80	67
55	350	1501	$14.0 \times 10.8 \times 12.4$			7.77	82
63	500	2701	$17.1 \times 114 \times 159$			11.20	
92	1000	4001	$17.8 \times 17.1 \times 21.6$			20.63	
128	2000	6302	$24.1-21.6 \times 15.2$			34.10	
Ref.	VA	AUTO Weight	SERIES (NOT Size cm.	ISOL	ATED) o Tops		\& P
No.	(Wasts)) lb oz					p
113	20	11	$7.3 \times 4.3,4.4$	0-115-2	210-240	0.85	22
64	75	114	70×64.60	0.115	$210-240$	1.66	30
4	150	30	$8.9 \times 64 \times 7.6$	0-115-20	200-220-240	2.00	36
66	300	60	$102 \times 102 \times 9.5$			3.89	52
67	500	128	$140 \times 102 \times 11.4$			5.78	67
84	1000	160	$11.4 \times 140 \times 140$			10.49	82
93	1500	289	$13.5 \times 14.9 \times 16.5$			15.20	
95	2000	40	$1788 \times 16.5 \times 216$			19.84	*
73	3000	458	$17.4 \times 18.1 \times 21.3$			26.99	*

TOTALLY ENCLOSED IISV AUTO TRANSFORMERS mains lead and two 115 V outlet sockets, 67.87 . P \& P 67p.
6. Also available a 20 Watt version. El.67. P \& P 22p

50 VÓLT RÄNGE

$\begin{array}{cc}\rho \& & P \\ \& & p \\ 1.35 & 36 \\ 1.88 & 36 \\ 2.94 & 42 \\ 4.48 & 52 \\ 5.78 & 67 \\ 8.37 & 82\end{array}$
8.3782

LEAD ACID BATTEAY CHARGER TYPES
Amps. Weight BATTERY CHARGER TYPES

$\left.\begin{array}{rrrrrrr}45 & 15 & 1 & 9 & 7.0 \times 6.0 \times 6.0 \\ 5 & 40 & 3 & 11 & 102 \times 8 \times 8.3 \\ 86 & 6.0 & 5 & 12 & 10.2 \times 8.9 \times 8.3 \\ 146 & 80 & 6 & 4 & 8.9 \times 10.2 \times 10.2 \\ 50 & 12.5 & 11 & 14 & 13.3 \times 10.8 \times 12.1\end{array}\right\} \begin{aligned} & 1.34 \\ & \text { All }\end{aligned}$
Alr ratings are continuous. Standard construction: open with solder
tag and wax impregnation. Enclosed styles to orde
BCIO7/108/1099.0p each 2N 3055 68p each AD 161/162 60ppair

$100+65 p$
$500+6 p$
Minimum order 10
$100+55 p$
$500+45 p$
$500+45 p$
$\begin{array}{cc}25+ & 55 p \\ 100+ & 50 p \\ 500+ & 45 p\end{array}$

> AVOMETERS • MAINS KEYNECTOR ELECTROSIL RESISTORS

CARRIAGE TIA BRg
BARPIE electronics
11 MOSCOW ROAD, QUEENSWAY LONDON W2 4AH Tel: 01-229 6681/2 NEAREST TUBE STATIONS: BAYSWATER . QUEENSWAY

${ }_{\text {PRICE }}^{\text {POUR }} £ 28.95$

Tune into the world with this amazing communications recelver. A truly evceptional with Stainless steel trim. Lowhs good anywhere. Trin. Lowhs good any-
wither ay it portable with standaral batteriex or plug it directly into $230-240$ domestic
mains diodes: 1 themmistur. Internal aerial. Feparate tonc, vohmue and thing controls with push-lutton selectots for the 8 WAVEBANDS. complete with Hifri earphone for personal liatening. lirequeney
 Short Wave $1 \%-24$ 11H\% FM/VEF 88-108 SERVICE BANDS 10% M MHz POBLIC guaranteed.
-18. The Minustry of Perst d Teiecommuntications has pointed wht that a licence not generally amailable to the public) is regnired for reception of transmisainas
ARHTYME
(Dept. PE6), 372 EDGWARE ROAD LONDON, W.2. Tel. 01.7230094 Callers welcome Mon. to Sat. a.m.-8 p.m.

TESL (ELECTRONICS)
 37 TALGARTH ROAD, LONDON, W.I4

MAIL ORDER ONLY
THE ONLY "SPEC" OF DIFFERENCE IS THE LOWER PRICE
BRAND NEW FULLY GUARANTEED
RESISTORS
Full range of ISKRA carbon film resistors. All 5\% (except values over 4.7MS2) high stability-very low noise-EI2 values. $\frac{1}{4} W$, $\frac{1}{2}$ W Ip; IW 2p.

POTENTIOMETERS

Carbon track $5 K 11$ to $2 M \Omega 2$ log or linear
Single IIp; Dual gang (stereo) 38p; Single D.P. switch 23p.
SLIDER POTENTIOMETERS
Overall length 86.6 mm . Fixing centres 80 mm
Single $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$, 35 p each
Dual gang dual values as above, 50 p each
Knob for above,

\[

\]

OIODES
ZENER-400mW 5\% 3.3V to 30V, 12p each
LINEARICsTO99 709 C 25p each RECTIFIER-IN4001, 4p; IN $4004,7 p$ 723. 51p each

Terms: C.W.O. please. P. \& P. please add 10 p for orders below E 2 . Discount $7 \frac{1}{2} \%$ for orders above $f 10$.
Full Catalogue on request. S.A.E. appreciated

Contents

BOX OF SOLDER
TWO SPARE BITS
HINTS ON SOLDERING
686 SOLDERING STAND
646 INVADER SOLDERING TOOL

NAME G ADDRESS

PLEASE SEND ME THE FOLLOWING ITEMS
\qquad

1686 SOLDERING INSTRUMENT STAND

THE FABULOUS

 RINVADERSSOLDERING INSTRUMENTS
The number one accepted soldering instrument used by the professional in OFFER TO YOU.

L 706 19watts f1-96
L646 23 watts $\mathrm{f} 2 \cdot 12$
L1076 27 watts $£ 2 \cdot 18$
The perfect instrument stand for your 'Invader f171

MULTI-CHANNELLED SOLDER

Pre fluxed solder 'READY TO USE'
produced to B.S.I. 441 IN HANDY SIZES. f 0.41 and $\mathrm{f} 1 \cdot 16$

INVADER SOLDERING KIT \qquad 1076 'INVADER'
646 'INVADER' 706 'INVADER' \qquad 686 SOLDERING STATION $\frac{1}{2} \mathrm{~kg}$ SOLDER REEL SMALL SOLDER REEL Postage \& packing add 10p. free over f 2 Enclosing $\mathrm{P} / 0$ and cheque

315 EDGWARE ROAD, LONDON W2. TeI. 01-262 2251. Open 9 a.m.-6 p.m. MON to SAT

Vary the strength of your lighting with a $\square \mathcal{A}$ M

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mouncing plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression:

600 Watt 63.20 . Kit form $\mathbf{6 2 . 7 0}$
$\mathbf{3 0 0}$ Watt- $\mathbf{6 2 . 7 0}$. Kit Form $\mathbf{6 2} \mathbf{2 0}$
All plus 10 p post and packing.
Please send C.W.O. to

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel. 0244-25883
As supplied to H.M. Government Departments

TONE TESTER

The Tone Tester is a solid-state dual impedance continuity tester with tone injection.

Applications: Wiring. Cable installation Production line testing. Damage free testing of solid-state assemblies

Power supply: integral 1.5 v battery. Continuity test: impedance-low 0-10 ohms high 0-50k ohms.
Tone injection: $1.4 \mathrm{Vp}-\mathrm{p}$ up to 300 ohms D.C. loop. Tone injection on HTD only.

HTD dual impedance with tone injection £5.80. HTL low impedance only $£ 4.84$. HTH high impedance only £4-96.

Highams Electronic Communications Ltd Dept E 58-60 Redchurch St London E2

COMPLETE TELEPHONES

EX．G．P．O．NORMAL HOUSEHOLD TYPE

ONLY 95p
POST 4 PACKING 35D EACH

TELEPHONE DIALS

Sundard Post Office typa．
Guaranteed in working ordar．
ONLY 50p
POST \＆PACKING 15p

TESTED AND GUARANTEED PAKS

| $\quad 4 \begin{array}{l}\text { Photo Cellis，Sun Batzeries．} \\ 0.3 \text { to } 0.5 \mathrm{~V}, 0.5 \text { to } 2 \mathrm{~mA}\end{array} \quad 50 \mathrm{p}$ |
| :--- | B79 $4 \underset{1}{\text { IN } 40.07 \text { Sil }} 1.000$ PIV Rec ．diodes． B81 $10 \begin{aligned} & \text { Reed Switches，mixed types } 50 \mathrm{p} \\ & \text { large and small }\end{aligned}$ $899200 \begin{aligned} & \text { Mixed Capacitors．Approx．} \\ & \text { quantity counted by weight }\end{aligned} 50 \mathrm{p}$ H4 $250 \begin{gathered}\text { Mixed Resistors．Approx．} \\ \text { quantity counted by weig }\end{gathered}$ Mixed Resistors．Approx．

quantity counted by weight 50p H7 $\left.40 \begin{array}{l}\text { Wirewound Resistors．Mixed } \\ \text { types and values }\end{array}\right)$ $\begin{array}{ll}\text { H8 } & 4 \text { BY127 Sil Recs．} \\ \text { loop plV } \\ \end{array}$ H9 2 OCP71 Light Sensitive $\begin{gathered}\text { Photo Transistor } \\ \text { 50p }\end{gathered}$
H28 20 OC200／1／2／3 PNP Silicon
H30 $20 \begin{aligned} & \text { i Watt Zener Diodes，} \\ & \text { Mixed Voltages } 6 \cdot 8-43 V\end{aligned}$
50p

H35 $100 \begin{aligned} & \text { Mixed Diodes，Germ，Gold } \\ & \text { bonded，ert．Marked and }\end{aligned}$ 50p Onded，et
H38 $30 \begin{aligned} & \text { Short lead Transistors，} \\ & \text { NPN Silicon Planar types }\end{aligned}$ 50p
 UNMARKED UNTESTED PACKS
B1 $50 \begin{aligned} & \text { Germanium Transistors } \\ & \text { PNP，AF and RF } \\ & \text { 50p }\end{aligned}$
B66 150 Germanium Diodes
B83 200 Trans．manufacturers＇re－ lects all types
Sil．and Germ．
B84 100 Silicon Diodes DO－7 glass
B86． 50 Sil．Diodes sub min．$_{\text {IN9I }}$ and IN9 16 types
50p
$888 \mathbf{5 0}$ Sil．Trans．NPN，PNP equir． 10 OC200／1
$2 N 706 A, ~ B S Y 95 A$.

50p
H6 $40 \begin{aligned} & 250 \mathrm{~mW} \text { W．Zener Diodes } \\ & \text { DO－7 Min．Glass Type }\end{aligned}$
HIS 30 Top Hat Silicon Rectifiers，
$50 p$
H16 15 Experimenters ${ }^{\circ}$ Pak of nupplied
HT7 $20 \begin{aligned} & 3 \\ & \text { fiers，mixed volts }\end{aligned}$ Silicon Stud Recti－ $50 p$

H34 15 Power Transistors，PNP． Germ

MAKE A REY COUNTER FOR YOUR CAR
The＇TACHO BLOCK＇This encapsulated block will rurn any a－1mA meter into a linear and
accurate rev．councer for any car with normal coil ignition system．

OUR VERY POPULAR $3 p$ TRANSISTORS
TYPE＂A＂，PNP silicon alloy．TO－5 can． TYPE＂B＂．PNP Silicon，plasticencapsut

FULLY TESTED AND MARKED SEMICONDUCTORS

> | $\mathrm{ACl} \mathrm{A}^{2}$ |
| :---: |
| ACl |
| 126 |

 \begin{tabular}{l|l}
0.15 \& OC170

0.15 \& OC171

0.17 \& $0 C 200$

0.17 \& $\mathrm{OC}_{2} 200$

0.15 \& OC_{2}

0.20 \& $2 N 1502-3$

0.20 \& $2 N 1304-5$
\end{tabular} 20

$2 N 1304-5$

$2 N 1306-7$ | 30 | $2 N 1306-7$ |
| :--- | :--- |
| 20 | $2 N 1308-9$ | 20

$2 N 1308-9$
$2 N 3819 F E T$ $\begin{array}{lll}0.10 & \text { 2N3819FET } \\ 0.20 & 2 N 4416 F E T\end{array}$

FULLY TESTED AND MARKED SEMICONDUCTORS			
	${ }_{0}^{4}$		$6_{0.23}$
$\begin{aligned} & \mathrm{ACl} \\ & \mathrm{ACl} \end{aligned}$	0.15	OCl71	0.23
Acliz	0.17	－C200	0.25
${ }_{\text {ACl28 }}$	0.13	$\bigcirc \mathrm{C} 201$	0.25
AClif6	0.20	2N1302－3	0.15
ACYI7	0.20	2NI304－5	0.17
AF239	0.30	2N1306－7	0.20
AFIE6	0.20	2N1308－9	0.22
BC148	0.10	2N3819FET	0.40
BC154	0.20	2N4416FET	0.33
${ }_{8}{ }^{\text {c }} 107$	0.10		
8C108	0.10	Powar	
BC109	0.10	Transistor＊	
8C169	0.12	OC20	0.40
BFI94	0.13	OC23	0.25
BF274	0.20	OC25	0.25
BFY50	0.13	OC26	0.25
BSY25	0.13	OC28	0.35
BSY26	0.13	OC35	0.25
BSY27	0.13	OC36	0.37
BSY28	0.13	AD149	0.35
BSY29	0.13	AUY10	0.75
BSY95A	0.10	25034	0.25
0 O 41	0.13	2N3055	0.40
OC44	0.13		
$0 \mathrm{OC45}$	0.10	Diodes	
$\bigcirc \mathrm{OCl}$	0.10	AAY42	0.10
$0 \mathrm{OC7}^{2}$	0.10	OA95	0.07
$0 \mathrm{OC81}$	0.13	OA79	0.07
OC810	0.13 0.18	OABI	0.07
${ }^{\mathrm{OC8}} \mathrm{O} \mathrm{Cl} 39$	0.18 0.13	OA95	0.07
C140	0.15	1N914	0.06

POWER TRANSISTOR
PRICE BREAKTHROUGH！
Plastic Cased Silicon Power Transistors of
 PNP and NPN types．All types available
at the most shatreringly low prices at the most shatteringly low prices
of ail time．All are fully tested． of ail time All are
marked and guaranteed！

\section*{| | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 40W | |
| NPN | 20 | $\begin{array}{llll}40 W & \text { PNP } & 210 \\ 90\end{array}$ OW PNP
 PAK5 of max}

MP40 marched pair
MP90 $90 \mathrm{~W}+90 \mathrm{~W}$

A CROSS HATCH GENERATOR FOR $\mathbf{E 3} 50$ ： 81

YES，a complete kit of parts including Printed Circuit Board．A four position switch gives X－hatch，Dots，Vertical or Horizoncal lines． Integrated Circuit design for easy conscruction and reliability．This is a project in the Septembe edition of
This complete kit of parts costs E3．50，post paid．
A MUST for Colour T．V．Alignment．
Our famous PI Pak is still leading in value for money．
Full of Short Lead Semiconductors Electronic Components，approx．170．We guarantee at least 30 really high quality factory marked
Transistors PNP \＆NPN，and a host of Diodes Transistors PNP \＆NPN and a host of Diodes
a Rectifiers mounced on Printed Circuit Panels． 8．Rectifiers mounted on Printed Circuit Panels． identification Chart supplice
information on the Transistors．

Please ask for Pak P．I．Only 50p．
10 P P \＆P on this Pak

FREE catalogue
 FOR

transistors， RECTIFIERS， DIODES， integrated circuits． FULL PRE．PAK usts

INTEGRATED CIRCUITS

\section*{Clocked Flip Flod，BMC931 | $1-12$ | $13-25$ |
| ---: | :--- |
| 20 p | $\mathbf{1 8} \mathbf{2 6 - 5 0}$ |
| 160 | |} Ex．2／4－input Buffer，BMC932 12p ilp 10p 2／4－input Expander，BMC933 12 p 11p i0p Hex．Inverter，BMC934 Hex．Inverter，BMC935 Hex．Inverter，BMC936

Decade Counter．BMC938 Decade Counter．BMC938 Hex．Inverter，BMC940 Hex．Inverter，BMC941 Type D Flip Fiop，BMC942 Ex．2／4－input Power，BMC944
Clocked Flip Flop，BMC945 Quad Inverter．BMC946 locked Flip Flop，BMC948 Quad Inverter，BMC949 950 Monostable Multivib．BMC95 Monostable Multivib．BMC95 Dual J／K Flip Flop，BMC955 Dual J／K Fip Flod，BMC956 Quad．2－input Power，BMC958 20p 18p 16p 2／4－inpur Gare，BMC961 12p ilp 10p 3／3－input NAND Gate，BMC962 11p iop 9 p ／3－inpur NAND Gare．BMC963 12p $11 p$ 10p Audio Amp． 3 －watts． $6150 \mathrm{fl} .40 \leq 1.36$
Linear Op．Amp． 709 C
$\begin{array}{ll}\text { Decade Counter．SM7490 } & \text { 25p 20p．13p } \\ \text { 65p } 00 \text { p } 5 \text { p }\end{array}$
LOW COST DUAL IN LINE I．C．
OCKETS
14 pin type at $\$ 5$ peach ．Now new low
6 pintype at $16 p$ each profile type．

BOOKS

W．have a large selection of Reference and Tachnical Books in stock．
These are just two of our popular lines：
A．P．I Transistor Equivalent and
Substitutes；
This includes many thousands of British U．S．A．European and C．V．Quivalents． The ilife Radio Yalve Transistor Data Book 9th Edition；
Characteristics of 3,000 valvas and tubes， 4，500 Transistors．Dioder，Rectifierr and integrated Circuits．
Send for lists of these English publications．
40p

晹
票票置

DEPT，A．222－224 WEST ROAD，WESTCLIFF－OW－SEAJ ESSĖX
TELEPHOME：SOUTHEND（0702） 4634

Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue,
Ilford, Essex. Tel: 01-550 1086

Open Moriday to Saturday 9.30 a.m. to

6 p.m. LATE NIGMT FRIDAY 7 p.m. MAIL DRDERS: Order with eonlidence. Send Postal Order, Creque. Mail. Callens: please note that cheques can only be accepted togetnor

PHOTOELECTRIC KIT

CONTENTS, OPC. Chaswix Buand, (hemicabs, Btching Mannal, Infia-Red Phuto

 molulated-lizht operationt

invisible beam optical kit
Everything needed (except plywooi) ior buiduag I Invinible-Beam Plolector ani I Counters, Door Openers, etc. CONTENTS: 2 cinsfas. 2 luit
 LONG RANGE INYISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard hit Larget Lenmen, Filter, eto
 JUNIOR PHOTOELECTRIC KIT
Versatile Invisible beam, Relay-less, Steady-light I'hote-Switch, Buaghar Alarim, Door
Opener, Counter, etc., for the Experinenter Opener, Comiter, etc., for the Experimenter.
 Resitontrio Plectric Design

JUNIOR OPTICAL KIT
CONTENTA: © Lenses, Infra-rel f'ilter. Lampholler, Backet, lians, etc. Eserything (except plywood) to build I miniature insisible hean projector and photoce!f receiver Price 75p. Post and Pack. 10 p (U.K.). C

YORK ELECTRICS Mail Order Dept. 335 BATTERSEA PARK ROAD, LONDON, S.W. 11 Send S.A.E. for full details, a brief description if all Kits and Prijects

[^0]
FOR RAPID SERVICE

GARLAND BROS．LTD DEPTFORD AROADWAY，LONDON，SE8 GQN

TRANSFORMERS
all with $0-250$ Volt primaries
Miniature
MM6 $6 \mathrm{~V}, 500 \mathrm{~mA}+6 \mathrm{~V}, 500 \mathrm{~mA}$
MM12 $12 \mathrm{~V}, 250 \mathrm{~mA}+12 \mathrm{~V}, 250 \mathrm{~m}$
MM
MM $212 \mathrm{~V}, 250 \mathrm{~mA}+12 \mathrm{~V}, 250 \mathrm{~mA}$
$M M 2020 \mathrm{~V}, 150 \mathrm{~mA}+20 \mathrm{~V}, 150 \mathrm{~mA}$ fl．29 plus 13p p．\＆p．
LTI 6．3V． $1 \cdot 5 \mathrm{~A}-75 \mathrm{p}$ plus 18 pp \＆ p LT2 6．3V，3A－80p plus $26 p$ p．\＆ p ．
LT3 $12 \mathrm{~V}, \mathrm{I} .5 \mathrm{~A}-80 \mathrm{p}$ plus 26p p．\＆ LT3 $12 \mathrm{~V}, \mathrm{I} \cdot 5 \mathrm{~A}-80 \mathrm{p}$ plus $26 \mathrm{p} p$ ．\＆p ．
LT4 12 V ， $3 \mathrm{~A}-81.32$ plus 30 p LT5 $9-0-9 \mathrm{~V}, 0.5 \mathrm{~A}-75 \mathrm{p}$ plus $2 \mathrm{t} p$ LT6 12－0－12V，｜A－95p plus 26 p LT7 30－0－30V，｜A－£1．87 plus 30 p Multi－tapped
MT30／2 $0-12-15-20-24-30 \mathrm{~V}, 2 \mathrm{~A}-$
El．95 plus 30 p p．\＆ p
 $\begin{array}{lr}\text { MT60／2 } & \text { \＆} 1.97 \text { plus } 30 \text { p P．\＆P．} 20-30-40-60 \mathrm{~V},\end{array}$ Charger
CT／OI 1 A－ 1 plus 26p $D . \&$ P．
 CT／03 4A－E1．50 plus 30 p p．\＆ p ．
5econdaries－ $0-5-11-17 \mathrm{~V}$ ．

SEMICONDUCTORS，etc． Zeners－400mW，15p ； $1.5 \mathrm{~W}, 22 \frac{1}{2} \mathrm{p}$ L．D．R．－ORP12，56p
S．C．R．－400PIV．， $3.0 \mathrm{~A}, 57 \mathrm{p}$
S．C．R．－ 400 P．I．V．， $3.0 \mathrm{~A}, 57 \mathrm{P}$
Bridge rectifier－ 40 P．I．V．，
50 p
Bridge rectifier－ 200 P．I．V．， 2.0 AA
50p
Bridge rectifier－200
50p
Transistor sockers－ $6 p$
Transistor sockers－6p
D．I．L．I．C．sockets－14 pin．20p

IN4002－100 P．I．V．，1．0A，${ }^{\text {Ip }}$
IN4003－200 P．IV．， 1 OA，8p
IN4004－400 P．I．V．，I OA，9p
IN4005－600 P．IV．，I OA，I2p

ALUMINIUM BOXES

with lids and screws
Type．Price $\mathrm{L} . \frac{8}{8} \mathrm{p}$
GB7．
 $\begin{array}{ll}\text { GB8＊} 4 \text { in } 4 \text { in } 1 \frac{1}{2} \text { in 38p } & 15 p \\ \text { GB9：} 4 \text { in } 2 \mathrm{zin} & 1 \frac{1}{2} \text { 38p } \\ \text { GB10 }\end{array}$
 $\begin{array}{llllll}\text { GB12 } & 3 \text { in } & 2 \text { in } & \text { in } & \text { in } & 38 p \\ \text { 3 } & 13 p \\ \text { GB13 } & 6 i n & \text { in } & \text { in } & 52 \mathrm{p} & 18 \mathrm{p}\end{array}$

GBI6 loin 7in 3 in 92 p 26p
GBin

EQUIPMENT CASES
with sloping front panel
Type H ．Wrice p．\＆
SFI
SFI
 SFJ 2 in 9tin 4 $\frac{1}{2}$ in 75p 19p Plain aluminium．
Stove－enamelled silver－grey ham－
mer finished，20p
mer fin
extra．

CONSOLE CASES

inplain aluminium，ideal for mixers
instruments，etc．
Type W．A B C Dice p．\＆p.

VEROBOARD

Size	${ }_{\text {matrix }}^{0.1}$	${ }_{\text {matrix }}^{0.15}$
21 in $\times 3$ in	${ }_{22 \mathrm{p}}$	$16 p$
$2 \operatorname{lin} \times \sin$	24p	25p
$3 \mathrm{zin} \times 3$ in	24p	25p
$3 \mathrm{in} \times 5 \mathrm{sin}$	27p	${ }^{29 p}$
$17 \mathrm{in} \times 2 \frac{1}{1} \mathrm{in}$	75p	57 p
$17 \mathrm{in} \times 3 \mathrm{zin}$	41	$75 p$

ELECTROLYTICS

$1, \mu \mathrm{~F}$	450 V	19p
$2 \mu \mathrm{~F}$	450 V	20p
$4 \mu \mathrm{~F}$	350 V	14p
$8 \mu \mathrm{~F}$	450 V	16p
$16 \mu \mathrm{~F}$	450 V	17p
$25 \mu \mathrm{~F}$	25 V	7 p
$25 \mu \mathrm{~F}$	50 V	8 p
32，4F	450 V	24p
50 $\mu \mathrm{F}$	50 V	10p
$100 \mu \mathrm{~F}$	25 V	100
$100 \mu \mathrm{~F}$	50 V	10p
$250 \mu \mathrm{~F}$	25 V	12p
$250 \mu \mathrm{~F}$	50 V	17p
$500 \mu \mathrm{~F}$	25V	18 p
$500 \mu \mathrm{~F}$	50 V	25p

$1,000 \mu \mathrm{~F}$
$1,000 \mu \mathrm{~F}$
$2,000 \mu \mathrm{~F}$
$2,000 \mu \mathrm{~F}$
$2,500 \mu \mathrm{~F}$
$2,500 \mu \mathrm{~F}$
$3.000 \mu \mathrm{~F}$
$5.000 \mu \mathrm{~F}$
$5,000 \mu \mathrm{~F}$
$8-8 \mu \mathrm{~F}$
$8-16 \mu \mathrm{~F}$
$16-16 / \mathrm{F}$
$16-32 \mu \mathrm{~F}$
$32-32 \mu \mathrm{~F}$

出出出出 ＜ $0 \lll<$

27p
39p
36p
53p
45p
60p
$48 p$
55p
98p
$18 p$
$20 p$
$27 p$
$63 p$
$49 p$
$38 p$
MINIATURE ELECTROLYTICS $\begin{array}{lll}1 \mu \mathrm{~F} & 63 \mathrm{~V} & 6 \mathrm{p} \\ 2.2 \mu \mathrm{~F} & 63 \mathrm{~V} & 6 \mathrm{p}\end{array}$
$\begin{array}{lll}2.2 \mu \mathrm{~F} & 63 \mathrm{~V} & 6 \mathrm{p} \\ 3.3 \mu \mathrm{~F} & 63 \mathrm{~V} & 6 \mathrm{p}\end{array}$
$\begin{array}{rll}3.3 \mu \mathrm{~F} & 63 V & 6 p \\ 4.7 \mu \mathrm{~F} & 63 V & 6 \mathrm{p} \\ 8 \mu \mathrm{~F} & 40 V & 7 p \\ 10 \mu \mathrm{~F} & 25 V & 6 \mathrm{p} \\ 10 \mu \mathrm{~F} & 64 V & 7 p \\ 16 \mu \mathrm{~F} & 40 \vee & 7 p\end{array}$

$47 \mu \mathrm{~F}$	$16 V$	$7 p$
$47 \mu \mathrm{~F}$	$25 V$	6 p
$68 \mu \mathrm{~F}$	$16 \vee$	6 p
$100 \mu \mathrm{~F}$	$10 \vee$	6 p
$220 \mu \mathrm{~F}$	$16 V$	7 p
$330 \mu \mathrm{~F}$	$16 \vee$	11 p
$470 \mu \mathrm{~F}$	$10 \vee$	11 p
$1000 \mu \mathrm{~F}$	$16 \vee$	19 p
$1,500 \mu \mathrm{~F}$	$16 \vee$	23 p

CASSETTE OWNERS！
For Phitips and similar cassette recorders
PUI2 Power unit for connection to
12V＋or－ E car electrical
systems，giving $7 \frac{1}{2} V$ ，stabilised $£ \mathbf{3 . 2 5}$ PUI4 As above but switched for $\mathbf{5} \mathbf{5} 10$ PP75 Mains power supply，
11.95

VARIABLE POWER SUPPLY nput： 240 ，a．c．
Output switched $3,45,6,75, ~$
9,12 volts d．c．at 500 mA

BATTERY ELIMINATORS

 current equipment PP6 Input 240 V a Price $£ 1.50$ plus 12 p ． A ．
NEW
 ILLUSTRATED 1972－73 CATALOGUE

Post Free
15p

CONTROLS，Log．or Lin．
Single，less switch， 15 p
Single，D．P．switch， 24 p
Single．D．P．switch，${ }^{14 p_{0}}$
$5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega .25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$ ，
$1 \mathrm{M} \Omega, 2 \mathrm{Ms} 2$
SLIDER CONTROLS, 87 mm Single，44p；Tandem．55p．10k $\Omega, 25 \mathrm{k} \Omega$

RESISTORS

All 5% ，high－stability，E12 values $t W, 1 p$
黄W．1ip；iW，4p；2W，6p
SW， 10 p ； $10 \mathrm{~W}, 12 \mathrm{p}$
LOUDSPEAKERS
in 4 in， 3Ω－ $61 \cdot 12,8 \Omega 2$－ $61 \cdot 12$
$15 \Omega-61.40$
$\sin \times \sin , 3 \Omega-61.85 .8 \Omega-61.77$
$15 \Omega-61.70$.
$10 \mathrm{in} \times 6 \mathrm{in}, 3 \Omega-62.32,8 \Omega-62.32$
$15 \Omega-62.32$ ．
Birn round 3.12 － $152.10,8 \Omega-£ 2.65$
Adastra＂Hi－Ten＂， 10 in ， $10 \mathrm{~W}, 8$ or $15 \Omega-63.40$
BONDED ACRYLIC FIBRE
B．A．F．wadding， 1 Bin wide，lin thick
B．A．F．Wadding．18in wide，lin thick．The
ideal lining for speaker enclosures．25p per

PLUGS

Caraerial
Co－axial
DI．N． 2 nn
DIN 3 pin
DIN．${ }^{4}$ pin 180
DIN 5 pin， 180
DIN 6 pin， 240
D．I．N． 6 pin
Jack， $2 \frac{1}{2} \mathrm{~mm}$ unscreene
Jack． $2 \frac{1}{2} \mathrm{~mm}$ screened
Jack， $3 \frac{1}{2} \mathrm{~mm}$ unscreene
Jack， $3 \frac{1}{2} \mathrm{~mm}$ screened
Jack，$\frac{1}{2} \mathrm{~mm}$ screened
Jack，$\frac{1}{d}$ in unscreened Jack，$\frac{1}{4}$ in screened
Jack，stereo，unscreened
Phono，plassic cop
Phono，plated metal
Phono，fitted 4 ft lead Phono，fitted 4 ft lead
Wander，red or black Wander，red or black
Banana 4 mm ，red or black 6 p
LINE SOCKETS
Car aerial
Co－axial
D．I．N． 2 pin（speaker）
D．I．N． 5 pin， 180
D．IN． 5 pin． 240
Jack， $3 \frac{1}{2} \mathrm{~mm}$
Jack，$\frac{1}{4}$ in screened
Jack，stereo，screened
Jack，stereo，screene
Phono，plated metal
 \section*{}
 \section*{}

CAPACITORS

－

2
3

2

2.2 pF 3.3 pF

BSR LATEST SUPERSLIM STEREO \& MONO Plays $12^{\circ}{ }^{10^{\circ}}$ or ${ }^{-7}$ records
Auto or Manual. A bigh Aato or Menual. A hig
quality onit backed by BSR reliability with 12 months Sire 131 it 11 in
Above motor board below motor board 24 in.
 with STEREO and MONO XTAL $\leqslant 8.75$ Post $85 p$. MONO-COMPATIBLE Plays all records 67:75 Post 25p. RCS DE-LUXE 3 WATT AMPLIFIER. Ready made, tested. Printed circuit. 3 watts output. Tone and volume knobs, and high perlormance loudapeaker. Double wound fully isolated mains translormer. A.C mains $200 / 250 \mathrm{~V}$ Response $50-12.000 \mathrm{cps}$. Sensitivity 300 mV . $\quad \mathbf{S 4} \mathbf{P o s}_{25 \mathrm{p}}^{\text {Po }}$

GARRARD DISCO DECK

 El0 Port free 4 speeds. Plays all sizes of records. pole bervy dutymotor. gin. ateel turntable. Plug in
 stereo/mono castridge. Adjuntable stylus pressure. Auto atop. Brown and Cream finish. AC mains $110 / 240 \mathrm{y}$ Base plate size 12 in 8 in . Operating area 14in. 12 in Above motor board 3in., be low motor board 2 ? in Ideal for Home Hi-Fi or Discotheque.
GARRARD AUTOCHANGERS with Sonotone Cartridges Stereo Diamond and Mono Sapphire. Model 1025 \&10. Model 3500 Stereo and Mono Autochanger 214. Pont 25 p .

BSR JUNIOR SINGLE PLAYER

Hesvy duty 4-speed motor with separate pick-up arm fitte LP/78 turnover mono $\subset 4 \cdot 50$
cartridge

EI-FI PICK UP CARTRIDGES. Diamond LP Stereo Stereo/Mono 9TA £2 50; GP94 £2 50; GP93 £2.
Sapphire Mono GPG1 £1.50; Powerpoint LP/78 bo
GARRARD DECCADEC SP25 Mk. II RECORD PLAYER Single piay Stereo Mono Deram transcription head and arm. Four speeds. 10현 turntable Anti-rumble filter Bias compensation

METAL PLINTH AND PLASTIC COVER Cut out lor most Garrard or B.S.R. Most will play with cover in positio leatherette. Antimaknetic. £5.50
 ALSO AVAILABLE IN SOLID NATURAL MAHOGANY

COAXIAL PLUG 6p, PANEL SOCKETS 6p. LINE 18p OUTLET BOXES. SURFACE OR FLUSH 25p
BALANCED TWIN RIBBON FEEDER 300 ohms. 5p yd JACK SOCKET Std. open-circuit 14p. closed circuit 23 p Chrome Lead Socket 45p. Phono Plugs 5p. Phono Socket 5p. JACK PLUGS Std. Chrome 15p: 3.5 mm Chrome 14p. DIN SOCKETS Chassis 3-pin 10p; 5-pin 10p. DIN SOCKETS Les 3-pin 18p; ${ }^{5-p i n ~ 15 p . ~ D I N ~ P L U G S ~ 3-p i n ~ 18 p: ~ 5-p i n ~ 25 p ~}$
VALVE HOLDERS, 5p; CERAMIC 8p; CANS 5p.

BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2!in. sidet $6 \times 4 \mathrm{in} .45 \mathrm{p} ; 8 \times 6 \mathrm{in} .53 \mathrm{p} ; 10 \times 7 \mathrm{in} .65 \mathrm{p} ; 12 \times 8 \mathrm{in} .85 \mathrm{p}$ 14×9 in. $80 \mathrm{p}: 18 \times 8 \mathrm{in}$. $80 \mathrm{p} ; 12 \times 3 \mathrm{in} .50 \mathrm{p} ; 18 \times 10 \mathrm{in} .12$
 $18 \times 8 \mathrm{in} .28 \mathrm{p} ; 14 \times 8 \mathrm{in} .34 \mathrm{p} ; 12 \times 12 \mathrm{in}, 40 \mathrm{p} ; 16.10 \mathrm{mn} .45 \mathrm{p} ;$

RADIO BOOKS (Post Paid)

Handbook of transiator equivalents
Redio valve guide, Book 1, 2, 3, 4, 5 (each)
Master colour code folder
Diveral gram motor speed indiple circuits
High fidelity loudspeaker enclosures
Practical Stereo bandbook
Transistor superhet receivers
Coil design and construction manusl Radio, TV and electronics data book Tranaistor circuits manual, fo. 4
Practical tranaiki audio amplifier Book
Manall of trangistor andio amplife
Resistor colour code diac ealculator Book 2 Engineers' relerence tables
TV tault finding

R.C.S. STABILISED POWER PACK KITS

All patts and instructions with Zener Diode, Printed Circuit. Bridge Rectifers and Double Wound Mains Traniforme or 15 or 18 or 20 V dic. at voltages a vailable 100 mA or or PLEASE STATE VOLTAGE REQUIRED. $1 \angle \mathrm{~F}$
R.C.S. GENERAL PURPOSE TRANSISTOR PREAMPLIFIER BRITISH MADE Ideal for Mike. Tape, P. D.. Guitar, etc. Can be used with Battery 8-12\%. Or H. T. hine 200-300, D.C. operation. Siz For use with valve or transistor equipment. 90p Pos Full instructions supplied. Details S.A.E. 10

8
8
8

8

8
TUBOLAR ELECTROLYTICS
$4 / 350 \mathrm{~V} \cdot 14 \mathrm{p}+250 / 25 \mathrm{~V} \quad 14 \mathrm{p} \mid 50+50 / 350 \mathrm{~V}$

$8 / 450 \mathrm{~V}$	14 p	$500 / 25 \mathrm{~V}$	20 p	$50+50 / 350 \mathrm{~V}$

$18 / 450 \mathrm{~V}$	14 p	$1000,25 \mathrm{~V}$	35 p	$32+32 / 250 \mathrm{~V}$

$32 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V}$
$50 / 50 \mathrm{~V}$

	10 p	$8+16 / 450 \mathrm{~V}$	20 p
$100 / 25 \mathrm{~V} .$.	10 p	$18+18 / 450 \mathrm{~V}$	25 p

LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
2000 mF VV $25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
$5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p}$
5000 mF 6V 25p; 12V 42p; 25V 75p; 35V 85p; 50V 95p
CERAMIC, 1 pF to $0-01 \mathrm{mF} .4 \mathrm{p}$. Silver Mica 2 to 5000 pF , 4 p PAPER 350V-0 $14 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$. 500V-0 001 to $0054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$.
 TWIN GANG. "00," $208 \mathrm{pF}+176 \mathrm{pF}, 65 \mathrm{p}$; Slow motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$; 500 pF slow motion, standard 45 p ; small $3-\mathrm{gang} 500 \mathrm{pF}$ el.60. SHORT WAVE SINGLE. $10 \mathrm{pF}, 30 \mathrm{p}, 25 \mathrm{pF}, 55 \mathrm{p}, 50 \mathrm{pF}, 55 \mathrm{p}$.

SHORT WAVE SINGLE GANG. Precision Silver Pleted Gangable Tuning Condensers. Values up to 100 pF . Section Couplers supplied FREE with two or more gang

NEON PANEL INDICATORS 250V ACIDC Amber 20p RESISTORS. $\frac{1}{3}$ W. ${ }^{1}$ W., 1 w., $20!1 \mathrm{p} ; 2 \mathrm{w} .5 \mathrm{p} .10 \Omega$ to 10 m Ditto 5° Preferred values 10° hms to 10 to 1 meg., 10p WIRE-WOUND RESISTORS 5 watt, 10 meg., 4 p . 10 ohms to $100 \mathrm{~K} 10 \mathrm{peach} ; 2!$ watt, 1 ohm to 8.2 ohms 10 p .

MAINS TRANSFORMERS
 All post 25 p each

$250-0-25080 \mathrm{~mA} .6 .3 \quad$ r. 4 amp.
$250-0-25080 \mathrm{~mA} .6 .3$ v. 3.5 a.
$250-0-25080 \mathrm{~mA} .6 .3$ v. 3.5 a. 8.3 v. 1 a, or 5 v. 2 a. $£ 2.50$ $350-0-35080 \mathrm{~m}$ А. B. 3 v. 3.5 a. 6.3 v. 1 a, or 5 v .2 z . 83
 MIDGET 220 v. $45 \mathrm{~mA}, 6.3$ v. $2 \mathrm{a} .21 \times 25 \times 2 \mathrm{in}$. MINI-MAINS 20 v .100 mA . 1 , $1 \mathrm{~g} \times 1 \mathrm{in}$.
HEATER TRANS. $6.3 \mathrm{v} . \mathrm{Ja}_{\mathrm{a}}$
Ditto tapped aec. 1.4 v., $2,3,4,5,8.3 \mathrm{~F}$. 1 amp . ENERAL PURPOSE LOW VOLTAGE. Tapped oulputs at 2 amp., 3, 4. 5, 6, 8. $, 10,12,15,18,24$ and 30 v . 22.25 $1 \mathrm{amp} .6,8,10,12,16,18,20.24,30,36,40,48,60$.
$2 \mathrm{amp} .6,8,10.12,16,18.20,24,30,36,40,48,60$. 5 amp., $6,8,10,12,16,18,20.24,30,36,40,48,80$ 5 amp. 5, 8 and 13 V
3 amp. 3. 5. 8, 10,13 and 5 -0-5V
$5 \mathrm{amp} .3,5,8,10,13$ and $5-0-5 \mathrm{~V}$
AUTO TRANSFORMERS. $115 v$ to 230 y or 230 . 1150 $150 \mathrm{w} . ~ £ 2 \cdot 25 ; 500 \mathrm{w} . £ 6 \cdot 25 ; 750 \mathrm{w} . £ 10 ; 1000 \mathrm{w}$. £14
CHARGER TRANSFORMERS. CHARGER TRANSFORMERS. Input $200 / 250 \mathrm{v}$.
 FULL WAVE BRIDGE CHARGER RECTIFIERS: 6 or 12v, outpuis. 1! amp. $40 \mathrm{p}: 2 \mathrm{amp} .55 \mathrm{p} ; 4 \mathrm{amp} .85 \mathrm{p}$.
LUCAS 2 DS 500 Bridge 70 v . 5 amp ml .

MAINS ISOLATING TRANSFORMER

 Primary 0-110-240v. Secondiry 0-240v, 3 amps, 720watts. Insulated terminals. Varnisa impregnated. Fully enclosed in steel case with fixing feet.
Famous make. BARGAINIOFFER $\quad 10 \begin{gathered}\text { Carriage } \\ 50 p\end{gathered}$

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial... 72p Spare Cores . . 3 . Osc. P50/1AC,....$\quad 33 \mathrm{p} \quad$ Driver Trans. LFDTA \quad. 3rd I.F. P50/3CC.... . 36p Printed Circuit. PCAI . 58 P51/1 or P51/2...38p Weyrad Bookle Mullard Ferrite Rod $8 \times 3 \mathrm{sp}$ | OPT1
20.... 58 p

Mullard Ferrite Rod $8 \times$ in. $20 \mathrm{p}, 6 \times$ vin. 20 D
VOLUME CONTROLS ${ }^{80 \mathrm{omm}}$ Coax $4_{p \text { pd }}$ Long spindles. Midget Size BRITISH AERIALITE LIN. L/S 15 2 Meg . LOG or AERAXIAL-AIR SPACED STEREO L/8 55p. D.P. ${ }^{55 p}$ FRINGE LOW LOSS Edge 5K. S.P. Trangistor 25p. Ideal 625 and colour 10 p
linch DIAMETER WAVECHANGE SWITCHES. 25 p. 2 p .2 -way, or 2 p. 8 -way, or 3 p. 4 -way 25 p each 1 p. 12 -way, or 4 p . 2-way, or 4 p .3 -way 25 p
TOGGLE \&WITCHES, sp .14 p ; dp. 18p; dp. dt. 23 p.

E.M.I. $13 \frac{1}{2} \times 8$ in.

SPEAKER SALE!
 Watt. State 3 or 8 or
15 ohm. As jllustrated. Poat $25 p$ $\frac{15 \mathrm{ohm} . \text { As illastrated. Poat } 25 \mathrm{p}}{\text { With fared tweeter cone and ceramic }}$ With fiared tweeter cone sud ceramic
magnet. 10 watt.
Bass rel. $45-60 \mathrm{cps}$. Flax 10,000 gadas.
Staie 3 or 8 or 15 ohm, Post 25 p

ELAC CONE TWEETER
The moving coil diaphragm pives a good radiation pattern to the higher frequenciel and a smooth extenion of total relpponse from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size $3 \frac{1}{2} \times$ 3' $x: 2$ in. deep. Rating 10 watt. 3 ohm or
i5 ohm models. $\& 1.90$ Poat (1.90 Post 10p

GOODMANS

 8 in WOOFER8 ohm 12 watt. Deep cone. Heavy ceramic magnet. Bass responge $30-8,000 \mathrm{cps}$
£4.50

SPECIAL OFFER: 80 ohm. 2tin. $23 \mathrm{in} .35 \mathrm{ohm}, 2 i n ; 3 \mathrm{in}$. $25 \mathrm{obm}, 2$ in. dia.; 3 in . dia. $6 \% 4 \mathrm{in} ; 8$ 5in. $C \mid$ EACH $30 \mathrm{hm}, 3 \mathrm{in}, \mathrm{dia}, 6$ in $3 \mathrm{in}, 5 \mathrm{in}$ dia.
LOUDSPEAKERS P.M. 3 OHMS. 7 4in. $21-25$; $61 \mathrm{in}. \mathrm{E1} 50$; LOUDSPEAKERSP.M. OHM8. $4 \mathrm{in} .21 .25 ; 61 \mathrm{in}$. 81 RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in . dia. 4 watt; 10 in , dia. 5 watt ; 12 in. dia. 6 watt

SPEAKER COVERING MATERIALS. Samples Large S.A.E. Horn Tweeters $2-18 \mathrm{Kc} / \mathrm{s}, 10 \mathrm{~W} 8$ ohm or 15 ohm 21.50 . De Luxe Horn Tweeters R-18 Kc/a, 15 W , 15 ohm 88.
TWO-WAY 3,000 c.p.s. CROSSOVERS 3 or 8 or 15 ohm 05 p .

TWO-WAY CROSSOVER NETWORK $3,000 \mathrm{c} / \mathrm{s}$ With variable tweeter attenuator giving accurate high/low frequency balance. Mounted on panel 5 !in. $\times 4$ in, with

VALVE OUTPUT TRANS. 25p. MIKE TRANS. $50: 1$ 25p. 5 WATT MULTI RATIO, 3, 8 and 15 ohms 80 p . HEAVY DUTY PUSH-PULL OUTPOT TRANSFORMERS. 50 watt 89.50 100 watt 812 -50
STEREO/MONO HEADPHONES
 Model 6000 with new type slider volume controls. Stereo/Mono High Quality with volume controls. 8 ohm. \&7. Budget Model. 8 obm. 23 -25. Stereo Stethoscope 8 ohm el.98.
HEADPHONE JUNCTION BOX with switch $\$ 1.50$. ACOS H.R. 1000 ohms. 53p. Mono Stethoscope 8 ohms. 53 p . EAR PIECES. Crystal 25p. Magnetic 250 ohms. 23 p.

BRITISH MADE STEREO MULTIPLEX DECODER
Brand New. 7 transistors plus integrated circuit. Fibre glass printed circuit board Size $2, \times 6, \times$ in. Pre-aligned. Comd.c. operation. 400 mV output for $100 \mu \mathrm{~V}$ input. Full instructions for any FM Tuner. Some technical experience $\mathbf{6 6 0}$ essential.
DIPOLE LOFT AERIAL
\&1. 50. DIPOLE LOFT 4 p yard.

AM-FM/VHF TUNING GANG

Super quality mall size $1!\times 1!\times$ $1!$ in., plus spindle $1!\times 1 \mathrm{in} .365+$ 365 pF with $25+25 \mathrm{pF}$. Britith made. Geared slow motion drive 8:1. Plastic dust cover. 6BA tapped front fixing. Cast aluminium frame. 50p Post free
hi-fi stockists. return of post despatch. GINIMUM POST AND PACKING 15p.

$£ 5.75{ }^{\text {rosici }}$
 omprising Ω fine example of a Woofer 109×6 in. with a messive Ceramic Hagnet, 440z, Ganas 13,000 lines. alominium Cone centre to improve middle and top reaponse. Also the E.M. Tweeter 3 in. quare has a specia 0.000 lines With Crossover condener Impedance Standard 80 hms Unelul Response $\quad 35$ to $18,000 \mathrm{cps}$ Ban Resonance 45 cps
 SUITABLE ENCLOSURE $20 \times 13 \times 9 \mathrm{in} . \quad\left\{9 \begin{array}{l}\text { Pos } \\ 25 p\end{array}\right.$

BAKER 12in MAJOR £9
$30-14.500$ c.p.s.s. 12in. donbie cone, woofer and tweter cone together with a BAKER ceramic
magnet asiembly having a flax density of 14,000 gacas and 3 total finx of 145,000 Maxwelis. Bass resonance 40 c.p.1. Rated
20 watts. State 3 or 8 or 15 ohyI Pott Free

Module kit, $30-17.000$ c.p.s. with iweeter, crossover bame and $4 \| .50$

BAKER "BIG-SOUND" SPEAKERS

Robustly constructed to stand up to long periods of electronic power. As used by leading groups Useful response $30-13,000 \mathrm{cps}$. Bass Resonance 55 cps .
GROUP "25"
12in. 25 watt
3.8 or 15 ohms.

GROUP "35"
12in. 35 watt
3.8 or 15 ohms.

GROUP "50"
15 in .50 watt
3.8 or 15 ohme

TRANSISTOR CHANNO MIXER. Add musical higblight and sound effect to recordinga. Will mix Microphoae, records, tape and tuner with separate controls into single output 9 volt. battery
83.50

STEREO VERSION OF ABOVE $£ 4.50$.
BARGAIN FM TUNER
88-108 Mc/s Six Trancistor. 9 volt. Prisited disitunjng. Walnut Cabine Size $7 \times 5 \times 4$ in. ≤ 12.50

BARGAIN
al above lear cabinet $\quad \mathbf{~ T U N E R} \mathbf{8 5}$
BARGAIN 3 WATT AMPLIFIER. 4 Transistor pagh-Pall Ready built, with volume conirol. 9 voil battery operated

THE "INSTANT", BULK TAPE
ERASER \& HEAD DEMAGNETISER
Suitable for cassetten, and all
Leaflet 8.E.E.
WAFER HEATING ELEMENTS
OFFERIMG 1001 USES for every type of heating and drying applications in the home, garage, greenhouse
 250 watta approx. Printed circuit element enclosed in asbestos fitted with connecting wires. Completely flexible providing safe Black heat. British-made for use in photocoplers and print drying.
Ideal for home handymen and experimenters. Suitable Ior Heating Pads, Food Warmers, Convector Heaters, etc. Mult be clamped between two theets of metal, etc., to make efficient clothea dryers, towed rails-ideal for airing preventing frozen radiatora or acting as oil sump heater. Use in the greenhouse for seedraising and plant protection. Invalaable aid lor bird houses, incubstors, etc., etc. Can be used in series or parallel.
ONLY 40 EACH (FOUR FOR $£ 1 \cdot 50$) ALL POST PAID-Discounts for quantity.

3,8 or 15 ohms.
Post Free
BAKER IOO WATT
ALL PURPOSE
TRANSISTOR
AMPLIFIER
4 inputs speech and
music. Mixing facilities
Response 10-30,000 cps. Matches
all loudapeakers. A.C. 200250V.
Separate Treble and Bass controls.
Guaranteed. Details S.A.E.

CALLERS ONLY' DE-LUXE 100 WATT AMPLIFIER CHASSIS. 7 Valve version, 4 inputs, 10 wide range $\mathbf{4 5 5}$ controls. Limited number:

A die, punch and Allen Screw			
nin. Round	68p	lin. Round 98p	Key "B" for
Ifin. Round	750	lin. Round 98p	above. 8p
Key "T" for		1 id in. Round 98p	2 in . Round $\mathrm{E2-05}^{\text {2 }}$
above	5 p	1 1in. Round 98p	$23_{2} \mathrm{in}$. Round $\mathbf{5 2} \mathbf{2} 30$
!in. Round	83p	$1{ }_{1}{ }^{\prime} \mathrm{in}$. Round El 1.05	Key "C" for
is in. Round	83p	$1^{7}{ }^{7}$ in. Round $£ 1.05$	above 12p
in. Round	83 p	1 lin. Round $£ 1.05$	2 in . Round ${ }^{\text {d }} 4.10$
: in. Round	88 p	1 \% in. Round $£ 1.10$	2:in. Round $\mathbf{5 5} 5.25$
fin. Round	88 p	1 1in. Round $£ 1.10$	3in. Round ¢8.10
it in. Round	90p	1 !in. Round $£ 1.25$	Key "E" for 180
Key "A"for	80p	13 jo . Round $£ 1.43$	above ... 18p lin. Square
above	5 p	1 !in. Round ± 1.50	with key £1-93

SLIDER

VOLUME CONTROLS

pailable in both LOG and LINEAR type.
size $3{ }^{10} \times{ }^{3} \times{ }^{\top}$ in. with knobs.
$5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K} .50 \mathrm{~K}, 100 \mathrm{~K}$.
65p EACH

E.M.I, TAPE MOTORS. 120v. or 2407. AC. 1.200 .p.m. 4 pole 135 mA Spindle $0.187,0.75 i n . ~ S i z e ~ 3 t, ~$
212125
BALFOUR GRAM. MOTORS 120 v . or $240 \mathrm{v} . \mathrm{AC} .1,200$ r.p.m. 4 pole
 E.M.I. GRAM MOTORS. 120V or 240 V a.c.
(Export: Remit cash and extra postage.)

BAKER HI-FI SPEAKERS
HIGH QUALITY - BRITISH MADF

REGENT

I2in. 15 watts
An inexpensive unit for the beginner in high fldelity and for general purposes. May be used to advantage with any Radio. Amplifer or TeleGision receiver.
Basa Resonance 45 cps Flux Density 12,000gaus Useful response $45-13,000 \mathrm{cpa}$ 3 or 8 or 15 obm models
£8 ${ }^{\text {bim }}$
DE-LUXE Mk II
12in. 15 watts
Especially designed to provide full range reproduction at an use with any bigh fidelity syatem. Built-in concentric weeter cone.
Basi Resonance \quad 30cpa $\begin{array}{ll}\text { Flux Density } & 14,000 \mathrm{gausi}\end{array}$ Useful response $25-16,000 \mathrm{cps}$ 8 or 15 ohms models

$€ 10$ 筑

SUPERB

I2in. 20 watts
A high quality loudspeaker. its remarkable low cone resonance ensures clear reproduction of the deepest bass. Fiited with a special copper cone resulting in full range eproduction with remarkable flaciency in the upper register.
Bass Resonance $\quad 25 \mathrm{cpa}$ Flux Density 16,500gauss Useful response $20-17,000 \mathrm{cps}$ 8 or 15 ohms models

€ 15 ?

AUDITORIUM

I2in. 25 watts
A full range reproducer for aigh power. Electronic Gusspeaker systems, electronic organs. Idea! lor $\mathrm{H}-\mathrm{Fi}$ and Discotheques. Bass Resonance
Flux Density 15,000gauss Uselul response $25-16,000 \mathrm{cps}$ 8 or 15 ohms models

$$
\mathfrak{E} 4\{
$$

AUDITORIUM

ISin. 35 watts
A high wattage loudspeaker of exceptional quality with a level response to above 8.000 cps. Dideal for Public Address, instruments and the tronic
Bass Resonance 35cps Flux Density $15,000 \mathrm{ga}$ uss Uselul reaponse 20-14,000cps 8 or 15 ohma modela

$\in 20$ 를

Hi-Fi Enclozure Manugl containing 80
data and cubic tables. 42p. Post Free.

337 WHITEHORSE ROAD - CROYDON
OPEN 9.6 p.m. (WEDNESDAYS 9-I p.m., SATURDAYS $9-5$ p.m.)
Buses 50, 68, 159. Rail Selhurst
Telephone 01-684-1665

The COTEan' CONQUEROR

An outstandingly simple and efficient new soldering tool, featuring a fully enclosed element and slip-on bits which can't seize. Five tip sizes available, $\frac{1}{16} \mathrm{in}$ to $\frac{1}{4} \mathrm{in}$, covering most work with one iron only. Lighter and slimmer than comparable irons, and with better performance. A pleasure to use and excellent value. Mains or low voltages. Conqueror spring stand gives complete safety and convenience, and holds spare bits.

Note that we are now supplying a range of small pliers, cutters, soldering aids and other small tools for use in Electronics. Please ask for leaflet.

Please ask for leaflet 37/1016.

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road - Croydon CR9 2LL

B.H. COMPONENT FACTORS LIMITED

- POLYESTER CAPACITORS MULLARD C280 250V HF:0.01, 0.015, 0.022,0.033,0.047,3p each; 0.068, 0.1, 0.15, 4p each; $0.22,5 p$ 160V. MULLARD POLYESTER CAPACITORS C296 SERIES $160 \mathrm{~V} ;(\mu \mathrm{F}) 0.01 .0 .015,0.022,2 p ; 0.047,0.068 .3 p ; 015,0-22,4 p ; 0.33,5 p$;
$0.47,6 p ; 0.68,1,0,10 p$;
$400 \mathrm{~V} ;(\mu \mathrm{F}) 0.001,00015,00022,00033,0.01,2 p ; 0.015,0.033,3 p ; 0.068,4 p$. MINIATURE ELECTROLYTIC MULLARD C426 SERIES (5p each) (μ F/V) $0.64 / 64,1 \cdot 6 / 25,4 / 49,8 / 40,10 / 40,10 / 64,16 / 40,20 / 64,25 / 25,32 / 10$, $40 / 16,64 / 10,80 / 16,80 / 25,100 / 6 \cdot 4,125 / 16,200 / 6 \cdot 4,200 / 10,320 / 64$
MULLARD C437: (μ F'V) 64/64, 9p; 160/25, 9p; 160/40, 11 p ; 640/6.4,9p; $1600 / 6 \cdot 4,14 \mathrm{p}$.

ELECTROLYTIC CAPACITORS. Tubular and Iarge can (1 F/V) $2.5 / 50,3 p ; 4 / 10,64 / 50,16 / 15,20 / 25,25 / 15,25 / 25,40 / 6,64 / 10,200 / 6$

$1,000 / 50,35 p ; 2,000 / 25,25 p ; 2,500 / 25,30 p ; 3,000 / 50,65 p ; 5,000 / 50,85 \mathrm{p} .15 \mathrm{p}$

CERAMIC PLATE CAPACITORS
$750 \mathrm{~V}:(\mathrm{pF}) 5,10,25,40,70,100,220,2 \frac{1}{2} \mathrm{p} ; 22 \mathrm{pF} 50 \mathrm{~V}, 21 \mathrm{p} .(\mu \mathrm{F} / \mathrm{V}) 0001 / 50$, $0.0047 / 30,0.01 / 50,0.01 / 350, \mathbf{1 p}_{2} ; 0.022 / 50,2 \frac{1}{2} p ; 0047 / 30,3 p ; 01 / 30,4 p ;$ $0-1 / 100,5 p$.
CARBON FILM RESISTORS $\frac{1}{4} W 5 \%, 10$ ohms-IM, Ip each, or 100 for
55P. SPECIAL RESISTOR KITS (\%W 5\% CARBON FILM)
IOE 12 Kit: 10 of each EI 2 value, 10 ohms-IM. a total of 610 , 62.80 net 25E12 Kit: 25 of each El2 value, 10 ohms-IM, a total of $1,525,66.50$ net

GUNTON ELEGTRONIG GANITION KIT
 87.95 ; in

Capacitive discharge ignition is recognised as being the most efficient system and will give you
Continual Peak Performance

- Ensier All reduced fuel consumption
- Encrer All-weather Starting
- Longer Spark Plug Life
- Increased Battery Life
- Elimination of Contact Breaker Burn
- Purer Exhaust Gas Emission

12 volt only-state pos. or neg. earth. Supplied
withillustrated assembly and fitting instructions,
With detais for fitting all types of tachometers.
Can be builtin an evening and fitted in 15 minutes. Spare snap-on conplease. Ready built unit, guaranteed 5 years - $49.95+35$ p P a P Pies "SCORPIO" COMPONENTS: Transformer CI. $85+25 p$ P. \& P. Fibre glass printed circuit board $65 p+10 p$. $\&$. P. Silver-grey stove enamelled
steel and aluminium case with heat sink $75 p+20 p P$. \& p.
ELECTRONICS DESICN ASSOCIATES 82. BATH STREET, WALSALL WSI 3DE

RADIO EXCHANGE LTD

61 HIGH STREET, BEDFORD.
Tel. 023452367
I enclose £
please send items marked

ROAMER TEN	
ROAMER EIGHT	
TRANSONA FIVE	
POCKET FIVE	\square

ROAMER SEVEN	\square
TRANS EIGHT	\square
ROAMER SIX	\square
EDU-KIT	\square

Parts price list and plans for
Name
Address

S.C.S. COMPONENTS

P.O. BOX No. 26 - WEMBLEY - MIDDLESEX HAO IYY
the "PROFESSIONAL" amateur supplier

NEW

SIGNETICS DATA BOOK $f 1$ each postage and packing lop. Book one digital bipolar circuits-
contains full Data Sheets and Application notes on complete Signetics range of Digital devices. 596 pages.
Book two covers full rangesignetics
linear devices including Audio Amplifiers and preamplifiers. 240 pages.

SPECIAL MELI2	OFFERS 50p	
EM401	8 p	
TT3643	30p	
MA741	34p	
2N3648	fl 10	
\|N9	4	6p
BC107	10 p	
C106Y:	50p	
UA709	31 p	UA709 $31 p$

MaTrimpots
Com 20 watt Stereo

* 2 N3055 Si NP
TX 115 wa TX 115 wat
parts for any E.T.I. consict of all
parts fo

SIGNETICS NES5SV Timer Feotures

- Timing from mieroseconds through i Hr .
- Can either free run or hatch
- Adiustable duey cycle.
- Time delays can be resect.
- Temperature stability 0.005% per C.
- Operates from a to 15 voltes for 1% change in timing.
- Timing can be changed $10-1$ with conerol voltage
- Oucpur can source or sink 100 M.A
- 8 pin plastic D.1.L. package plus

SEMICONDUCTORS

AA119	9p	8C137	20p	BFI	30p	OA91	7p
AAY11	10p	BC139	25p	BFI80	35p	OA95	7p
AAY 30	10p	BC142	$21 p$	BFI84	$2^{20} \mathrm{p}$	OA200	7p
AAZ13	10 p	BC143	23 p	BFIB5	20p	OA202	10p
$A C 107$	34p	BC147	12p	BFI94	$15 p$	OAZ223	45p
ACl 26	25p	BC148	10p	BF195	15p	OAZ230	45p
AC127	25p	BC149	12p	BF196	$15 p$	OC28	$65 p$
AC128	25p	BC152	20p	BF197	15p	OC35	50p
ACI41K	25p	BCI53	20p	BF200	$35 p$	OC36	$65 p$
AC142K	18p	BC157	15p	BF222	30p	OC44	15p
AC153	25p	BC158	12p	BF224」	15p	$\bigcirc \mathrm{OC} 45$	15p
ACI53K	22p	BC159	15 p	BF256L	30p	OC70	$15 p$
ACl75K	36p	BC170	15p	BF256LC	34 p	OC71	$11 p$
ACI76	25p	BC171	$15 p$	BFS36A	37 p	OC74	25p
ACli ${ }^{\text {A }}$	20p	BC171A	17p	BFWI7A	61.22	OC75	23p
AC 187	25p	BC177	20p	BF× 37	30p	OC170	$23 p$
AC1B7K	25p	BCI778	23p	BFX84	$23 p$	R2008	63.5
ACl88K	25p	8C1788	16p	BFX85	$25 p$	R2009	62.5
AC193K	25p	BC179	20p	BFY50	20p	R2010	62.5
ACl94K	27p	BC182L	10p	BFYSI	20p	SP8385	61.0
ACY20	20p	BC182LB	10p	BFY52	20p	TAA700	62.4
ACY21	20p	BC183	10p	BFY90	59p	TAD100	61.3
ACY22	12p	BC183L	10p	BS $\times 20$	$15 p$	TBA500	62.0
ADI43	45p	BC183LB	10p	85×60	50p	TBA510	62.0
ADI61	35p	BC184LC	12p	BS $\times 61$	35 p	TBA520	62.5
AD162	$35 p$	$8 \mathrm{BC186}$	25p	BT106	85 p	TBA520Q	62.5
AFIIS	25p	8 Cl 187	$25 p$	BU105/02	E2	TBA530	$¢ 1.8$ 61.8
AF117	20p	BC208A	14 p	EYI26	$15 p$	TBA530Q	61.8
AFI21	30p	BC 212	10p	BYI27	15p	TBA540	¢2.0
AFI 24	25p	BC212L	12 p	EY147	41.04	TBA550	63.0 63.0
AF126	20p	BC212LA	13p	BY164	35p	TBAS50Q	¢ 30 E1.2
AF127	20p	$\mathrm{BC213L}$	${ }^{12} \mathrm{p}$	BZY88 ser	9.50 $9.5 p$	TBA5700	61.2 $f 1.4$
AF139	30p	BC^{814}	15p	BZY94 ser	$9.5 p$ $.26 p$	TBA750	f1.4 ¢ 1.4
AFI79	25p	BC214L	15p	BR 100	26p	TBA750Q	¢10p
AFI78	55p	BC250B	14p	BRC4443	$90 p$	TIC46	40p
AFI70	$60 p$	BC261	16p	8RY39	30p	TIP29A	50p
AF239	40p	BC268	110	E1222	40 p	Ti560M/61M	37p
ASZ17	50p	BC308A	$17 p$	E5024	40p	TIS61	20p
BA102	30p	BC317	20p	GETIO2	39p	T1591	$17 p$
BA145	15 p	BCY21	$96 p$	GET103	25p	2N 404	15 p
BA148	$15 p$	$\mathrm{BCY}^{\text {Cl }}$	40p	15921	8p	2 N 697	12p
BA154	9p	BCY42	30p	15923	12 p	2N706	9 p
BAI55	10p	BCY70	15p	ME0404	$11 p$	2N708	12 p
BA163	90 p	BCY71	20p	ME0412	$15 p$	2N753	10p
BAX12	12 p	$\mathrm{BCY72}$	15p	ME0413	12p	2 N 919	45p
BAW63	36p	BCY89	97 p	ME0462	19 p	2 N 920	42p
BAW65	36p	BDIIS	75p	ME2002	8 p	2 N 1302	$17 p$
BAW67	35p	BDI24	80 p	ME4003	12 p	2 N 1304	$21 p$
B8105	37p	BD131	75p	ME4102	10 p	2N1306	249
BBY20	$37 p$	BD132	${ }^{80} \mathrm{p}$	ME4104	8 p	2 N 1307	$24 p$
BCl07	10p	BD 135	75p	ME6002	12p	NN1308 2 N 1309	14p
BC107B	12p	ED175	44p	ME6101	12 p	2N1309 2 N 3053	$24 p$
BCl08	10p	BD181	90%	ME6102	$13 p$	2N3053 $2 N 3054$	
BC108A	10p	BD184	± 1.3	ME800	$12 p$	$2 N 3054$ $2 N 3055$	50p
BCIOBC	15p	BF121	25p	ME8003	$13 p$	2N3055 IN914	55p
BC109	12 p	BFI23	$3{ }^{35} \mathrm{p}$	MEFIO4	$34 p$ $30 p$	N914 IN916	6p $10 p$
BC113	15 p	BF125	$25 p$	MELII	30p	\|N916 ${ }^{\text {\| }}$ (18	10p
BCII6	20p	BF 127	30p	MPS MPS M	34p		6 P
BC117	20p	BF153	20p	$\mathrm{MPB}_{\mathrm{OA} 47}$	$40 p$ $10 p$		
BCII9	30p	BFIS4	20p	OA47	10 p		
BCI21	25p	BF160	25p	OABI	10 p		
BC:125B	25p	BF161	45p	OABS	120		
BCI 136	20p	BF178	25p	OA90	8 p		

TERMS. Retail mail order subject to £1 minimum order. Cash with order only. Trade and educational establishments M/AC on application (minimum £5). Postage 10p inland, 25p Europe GUARANTEE. All goods carry full manufacturer's warranty. Special Enquiries, etc. Please enclose stamped addressed envelope.

ELECTROKII

Now available from one company are complete kits for many of the articles published in the Electronics, Radio and TV Journals. Examples of our range are

SCORPIO IGNITION SYSTEMS (P.E. Nov. 1971), © 10.50 , including P. \& P. This kit includes all the parts for the assembly of this popular and reliable system. The hardware and instruction data are included

ELECTRONIC PIANO (P.E. Sept. 1972), price £41, including P. \& P. This kit consists of all the resistors, capacitors, presets and semiconductors to complete this project. The hardware and keyboard are not included in the kit.

DRILL SPEED CONTROLLER (E.E. Aug. 1972). Kit consists of resistors, rectifiers, thyristor and tag board as specified in the article, price $£ 1.05$, including P. \& P. Kit with M.K. box, plate and switch, price 62.05 , including P. \& P. We shall also be offering kits for most articles published in the P.E. and other popular electronics magazines and will be pleased to quote prices.

Send for details of Light Dimmer and WindscreenWiper Delay Kits (please enclose S.A.E.). At present we can only accept orders by post but if you have any inquiries please phone 01-286 5282.

ELECTROKIT

126 Headstone Road • Harrow • Middlesex


```
8 WAVEBANDS
The most exciting radio
```

Picks up ALL THE USUAL BBC Programmes All the new local radio tations Continental \star World-wide transmissions \star Pop Pirates

THE BEST PORTABLE RADIO EVER MADE! We think so. What radio priced at under f 120 gives you such a varied choice of transmissions? As well as the standard long and medium wavebands it has three short wave bands (includ BANDS, cruly a complete WORLD-WIDE communications Receiver. JUST THINK! one minute you can be listening to your favourite BBC programme and then-at the flick of a switch you can tune into the control cower and hear a "erippled airliner" being talked down to safety. Or listen to the trawlers and ocean-going liners-Eavesdrop on the taxi-cabs, fire brigades, ambuances shortwave coverage can give you Australia. Pakistan. Luxembourg, North America. Far East, etc., etc., you name it-it gets it! Manufactured by one of the world's leading specialists in communications and TV equipment, each set carries a Wood and Stainless Steel-will add distinction to any living-room. Completely portable $12 \mathrm{in} \times 9$ in 4 in , using standard batteries-or can be 14 transistors, 6 diodes, 1 thermistor, internal ferrite rod aerial PLUS two external-telescopic antenna-with sockets for additional aerials. Complete with beat frequency oscillator for the real enthusiast of Hiafidelity earphone for private listening. local DX switch. FREQUENCIES Long W $150-350$ Kcs. Medium W $540-1605 \mathrm{Kcs}$. Marine $16-4$ Mcs. Short W $3.7-9$ Mcs. Short W2 9-22 Mcs. FM (VHF) 88-108 Mcs. Aircraft (VHF) 108-136
Mcs Public Service (VHF) $148-174$ Mcs. THE ULTMATE in communications Mcs. Public Service (VHF) 148-174 Mcs. THE ULTIMATE in communications INSTANT CASH REFUND if not overwhelmed by the superb tone clarity and performance range

SCIENTIFIC AND TECHNICAL (PEII) 507-5II LONDON ROAD, WESTCLIFF, ESSEX

THIS IS THE FIRST PAGE OF THE GREAT BI-PAK SECTION

BRAND NEW FULLY GUARANTEED DEVICES

$1 \mathrm{C107}$	0.20	$\begin{array}{ll}\text { A D16'2 } & 0.83\end{array}$	BC148	$0 \cdot 10$	BD137	$0 \cdot 45$	B F188											
10113 1 C115	0.20 0.23	AD161 ${ }^{\text {a }}$	BC149	0.12	HD138	0.80	BF194	${ }_{0}^{0.12}$	OC19	0.35 0.63	2G:371	0.18 0.12	2N2219	0.20 0.22	${ }_{2} 2 \mathrm{~N} 3054$	0.48	2N4059	010
$1 \mathrm{Cl15}$	0.23	AD162 (MP)	BC150	$0 \cdot 18$	BD139	0.55	BF195	$0 \cdot 12$	${ }^{0} \mathrm{OC2}$	0.83 0.88	29371H	0.12 0.17	2N2+20	0.22 0.20	2N3055	0.50	2N4060	0.12
$1 \mathrm{Cl17K}$	0.20	0.55	BC151	$0 \cdot 20$	BD140	0.80	BF196	$0 \cdot 14$	0 C 23	0.83 0.42	2(3) 2 273	0.17 0.17	2N2221	0.20 0.20	${ }_{2}^{2 N 3391}$	0.14	2N4061	0.12
${ }^{1} \mathrm{Cl22}$	012	ADT140 0.50	BC152	$0 \cdot 17$	BD155	0.80	BF197	$0 \cdot 14$	0 C 24	- 0.56	29374 29377	0.317	2N22212	0.20 0.17	${ }_{2}{ }_{2} \mathrm{~N} 33992 \mathrm{~A}$	0.16 0.14	2N4062	0.12 0.17
${ }_{4} \mathrm{Cl25}$	0.17	AP114 0.24	HCl53	0.28	BD175	0.60	BFLOO	0.45	OC25	0.38	29378	0 18	2N 23369	0.14	$2 N 3392$ 2 N 3493	0.14 0.14	$2 N 4284$ 2×1285	0.17 0.17
AC126 ACl27	0.17	AF115 0.84	BCls	0.80	13D176	0.80	BF222	0.95	0 C 26	0.25	2 G 381	$0 \cdot 16$	2 N 2360 A	+ 0.14	${ }_{2 N 3}$	0.14	2N4285	0.17 0.17
ACl27 ACf28	0.17 0.17	$\begin{array}{ll}\text { AF116 } \\ \text { AF117 } & 0.24 \\ & 0.24\end{array}$	${ }_{\text {BC15 }}$	0.18	BD177	0.65	$\mathrm{BP}^{2} 257$	0.45	OC28	0.50	2G382	0.18	2 N 2411	0.24	2N3395	0.17	$2 N 4286$ 2 N 4287	0.17 0.17
ACL^{2}	$0 \cdot 14$	$\begin{array}{ll}\text { AFl18 } & 0.35\end{array}$	BC159	0.12	BD178	85	BF258	0.60	OC29	0.50	2 Cl 401	0.30	2N2412	0.24	2 N 3402	0.21	2N4288	0.17
4 Cl 34	$0 \cdot 14$	AFl24 0.30	BC160	0.45	BD180	0.70	$\mathrm{Br}^{\text {B62 }} 2$	0.85 0.55	$0 \mathrm{OC35}$	0.42	$2 \mathrm{Cal4}$	0.30	2N2646	0.47	2 N 3403	0.21	2N4289	$0 \cdot 17$
${ }^{\mathrm{A}} \mathrm{Cl} 37$	$0 \cdot 14$	A F125	[13C161	0.80	BD185	0.65	BF263	0.55	OC31	0.50	2G417	0.25	2N2711	021	2N3404	0.28	2 N 4290	0.17
ACld	014	AF126 O. O	HC167	0.12	B D186	0.65	BF270	0.35	${ }^{\text {OC4 }} 2$	0.20	2N388	0.85	2 N 2712	0.21	2N3405	0.42	2N4291.	0.17
1C1415	0.17	AF127 0.28	BC168	0.12	BD187	0.70	BF271	0.80	$0 \mathrm{OC4} 4$	0.24	2N388A	0.55	2N2714	$0 \cdot 21$	2 N 3414	0.15	2 N 4292	$0 \cdot 17$
1 Cl 42	0.14	AF139 0.30	BC169	$0 \cdot 12$	BD188	$0 \cdot 70$	BF272	0.80	$\mathrm{OC4}_{5}$	0.12	2N404	$0 \cdot 20$	2 N 2904	0.17	2 N 3415	0.15	2 N 4293	0.17
4 Cl 14 K	0.17	A F178 0.50	BC170	0.12	BD189	0.75	BF273	0.35	0 C 70	0.10	2N404A	$0 \cdot 28$	$2 \mathrm{~N}^{2} 9904 \mathrm{~A}$	- 0.21	2N3416	0.28	2 N 51 T	$0 \cdot 12$
CCl^{15}	0.15	AF179 0.50	HC171	0.14	BD190	0.75	BF274	0.35	0 O 71	0.10	2N527	0.42	2 N 2905	0.21	2N3417	0.28	2 N 5457	032
${ }^{4} \mathrm{C} 154$	0.20	AF180 0.50	BC172	0.14	R D195	0.85	BFW10	0.60	0 C 72	0.14	2 N 527	0.48	2 N 2905.4	- 0.21	2 N 3525	0.75	2N5458	032
AC155	0.20	AF'181 0.45	BC173	0.14	BD196	0.85	BFX29	0.27	0 C 74	0.14	2N549	0.42	2 N 2906	$0 \cdot 15$	2N3ti46	0.09	2N5459	0.40
AC15 ${ }^{\text {d }}$	$0 \cdot 20$	AF186 0.45	13 C 174	0.14	BD197	0.90	BFX84	0.22	0 C 75	0.15	2 N 696	0.45	2 N 2906 A	- 0.18	${ }^{2} \mathrm{~N} 3702$	$0 \cdot 10$	28301	0.50
$\mathrm{ACL5}^{\text {c }}$	$0 \cdot 24$	A F239 0.37	BC175	$0 \cdot 22$	BD198	0.90	BFX85	0.30	0 C 76	0.15	2N697	0.13	2 N 2907	- 0.20	2N3703	0.10	28302 A	0.42
${ }^{\text {ACl65 }}$	0.20	ALl02 0.65	RC177	$0 \cdot 19$	BD199	0.95	HFX86	0.22	0 C 77	0.25	2 N 698	0.24	2N290]	- 0.22	2 N 3704	0.11	28302	0.42
10166	0.20	AL103 0.65	BC178	$0 \cdot 18$	BD200	0.95	BF゙X87	0.24	$0 \mathrm{C8}$ I	$0 \cdot 15$	2 N699	0.35	2N2924	0.14	2N3705	$0 \cdot 10$	28303	0. 55
ACl67	0.20	ASY26 0.25	BC179	0.19	BD205	0.80	BFX88	0.22	OC81D	0.15	2N706	0.08	2 N 2925	O. 0.14	2 N 3706	0.09	28304	0.70
AC168	0.24	AEY27 0.80	BC18n	$0 \cdot 24$	BD206	0.80	BFY50	0.20	OC8:	0.15	2N706A	$0 \cdot 09$		(c) ${ }^{0} 14$	2×3707	$0 \cdot 11$	2×305	0.84
1 Cl 69	0.14	ASY28 0.25	BC181	0.24	BD207	0.95	BFY51	020	0 CB 2 D	0.15	2N708	$0 \cdot 12$	2 N 26	(\%)	9N3708	0.07	28306	0.84
	$0 \cdot 20$	A8Y29 0.25	BC182	$0 \cdot 10$	BD208	0.95	BFY5	$0 \cdot 20$	$0 \mathrm{C83}$	0.20	2N711	0.30	2N2926	(i)	${ }^{2} \mathrm{~N} 3709$	0.09	28307	0.84
${ }^{\text {A Cl }} 178$	0.24	ASY50 0.25	BC182L	$0 \cdot 10$	Bbreo	1.00	BFY53	$0 \cdot 17$	0 O 84	020	2N717	0.35		0.11	${ }_{2}{ }_{2} \mathrm{~N} 3710$	0.09	2832!	0. 56
AC178	0.28	ASY51 0.26	18183	$0 \cdot 10$	BF115	0.24	BPX25	0.85	OC139	0.20	2ヘ718	0.24	2 N		2N3711	0.09 0.28	28324	0.42 0.42
ACl79	0.28	ASY52 0.25	FC183L	$0 \cdot 10$	BF117	0.45	B8X19	0.15	0 Cl 40	0.20	2N718A	0.50		$0 \cdot 10$	2N3819	0.28 0.50	28332.	0.42 0.58
AC180	0.17	A8Y54 0.25	BC184	$0 \cdot 12$	BF118	0.70	[88 $\times 20$	0.15	0 O 169	0.25	2 N 726	0.28		$0 \cdot 10$	2N3820	$0 \cdot 50$	28323	$0 \cdot 56$
AC180K	0.20	ASY55 025	BC184L	012	BF119	0.70	B8Y25	0.15	0 O 170	0.25	2 N 727	0.28			2 N 3821	0.35	2832.4	0.70
${ }^{4} \mathrm{C} 181$	0.17	A8Y56 0.25	BCl86	0.28	BF121	0.45	BS8:26	$0 \cdot 15$	0 Cl 17	0.25	9 N 743	0.28 0.20		0.10	2 N 3823	$0 \cdot 28$	28325	0.70
AC181 K	0.26	A YY57 0.25	HC187	0.28	BF123	0.50	BSY27	$0 \cdot 15$	OC200	0.25	2 N 744	0.20	2N2926		2 N 3903	0.28	28326	0.70
AC187	0.22	ASY58 0.25	HC207	0.11	BF125	0.45	18Y'28	0.15	$0 \mathrm{CL}^{2} 01$	0.28	2 N 914	0.20 0.14		0.10	2 N 3904	0. 30	29327	0.70
1 Cl 187 K	$0 \cdot 20$	$\begin{array}{ll}\text { AsZ21 } & 0.40\end{array}$	BC208	0-11	BF127	0.50	B8Y29	0.15	$\mathrm{OC202}^{2}$	0.28	2N918	0.30	2 N 3011	070	2 N 3905	0.28	28701	0.42
${ }^{1} \mathrm{Cl} 188$	0.22	BCl07 0.09	BC209	$0 \cdot 12$	BF152	0.55	BSY 38	0.18	OC203	0.25	2N929	0.81	2N3053	$0 \cdot 14$	2 N 3905	$0 \cdot 27$	40361	0.40
$\wedge \mathrm{Cl} 88 \mathrm{~K}$	020	BCl 08	BC212L	011	BF153	0.45	B8Y39	$0 \cdot 18$	$0 \mathrm{CO}_{2} 04$	0.25	2N930	0.21	2N3053	$0 \cdot 17$	2N4008	$0 \cdot 12$	40362	$0 \cdot 45$
ACY17	0.25	13C109 010	BC213L	0.11	BF154	0.45	B8Y +0	0.28	$0 \mathrm{C}_{2} 25$	0.35	2N1131	0.20						
ACY19	$0 \cdot 20$	$\begin{array}{ll}\mathrm{BCl} 13 & 0.10\end{array}$	BC214L	$0 \cdot 14$	BFI55	$0 \cdot 70$	BSY41	0.28	0 C 309	0.40	2N1132	$0 \cdot 22$						
ACY19	0.20	BC114 0.15	13C225	0.25	BF156	0.48	BSY95	- -12	P34fa	0.20	2N1302	0.22		DIO	ES AND R	ECT	IERS	
ACY20	0. 20	BC115 0.15	BC226	0. 35	BF157	0. 35	B8Y95A	0.12	P397	042	2 N 1303	${ }^{0.14}$						
$\mathrm{ACY2}^{1}$	0. 20	BCl 8	BCY30	0.84	BFic8	0.65	Bu105	$2 \cdot 00$	OCPis	0.48	2N1304	$0 \cdot 14$	AA119	0.08	B Y 133	0.21	OA10	0.35
tcre2	0.16	$\mathrm{BC117} \quad 0.15$	RCY31	0.28	BF159	0.60	Clile	0.60	ORP12	0.43	2N1305	0.17	AA120	0.08	HY164	$0 \cdot 50$	OA47	$0 \cdot 07$
$1 \mathrm{Cr}^{2} 27$	0.18	BCl 18	BCY 32	0.80	BF160	$0 \cdot 40$	C400	$0 \cdot 30$	ORJfo	0.40	2§1306	0.17	AA129	0.08	BYX38/30		0.70	0.07
4 Cy 28	0.19	$13 \mathrm{Cl19} \quad 0.80$	ВС Y 33	0. 28	BF162	0.40	$\mathrm{C4} 07$	$0 \cdot 25$	ORP61	0.40	?N1307	0.21	A ¢ 30	$0 \cdot 09$		0.42	0×79	0.07
4CY29	0.85	EC120 0.80	BCY34	$0 \cdot 25$	BFlf3	0.40	C424	0.20	ET140	0.12	2 N 1308	0.23	AA7, ${ }^{\text {a }}$	0.10	BYZ10	035	0.881	0.07
4 CY 30	0.28	BC125 0.12	BCY70	$0 \cdot 14$	BF164	0.40	C425	0.50	ST141	0.17	2N1309	0.23	BAT00	$0 \cdot 10$	BYZ11	030	0485	0.09
1 CY 31	0.28	RC126	BCY71	0-18	BF165	0.40	C426	0.85	TIS43	0.30	2N1613	0.20	BA126	0.21 0.22	BYZ12	0.30	0.490	0.06
HCY34	0.21	$\begin{array}{ll}3 \mathrm{Cl} 32 & 0.12\end{array}$	BCY72	014	BF167	$0 \cdot 22$	C428	0.20	UT4t	0.27	2N1711	0.20	BA148	0.22 0.14	HY213 HYZ16		OA91	0.08
ACY35	$0 \cdot 21$	$\begin{array}{ll}\text { BC134 } & 0.18\end{array}$	BCZ10	0.20	BF173	0.82	C441	$0 \cdot 30$	2 G 301	0.09	2N1889		BA15.	0.12	${ }^{\text {BYZ }}$ B ${ }^{\text {P }}$		0 A 95	0.07
1CY36	0.28	$\begin{array}{ll}\text { RC135 } & 0.12\end{array}$	BC211	0.85	HF176	0.35	C442	$0 \cdot 30$	2 G 302	0.19	2 N 1890		BA154		B) ${ }^{\text {B }} 17$		OA200	0.06
1 CY 40	0.17	$\mathrm{BC1} 36$	BC212	0.25	BFIT7	0.35	C 444	0.35	2G303	0.19	3 N 1893				ByZ		OA202	0.07
4 CY 41	0.18	BC137 0.15	3D121	$0 \cdot 60$	BF178	$0 \cdot 30$	C450	$0 \cdot 28$	2 Cl 304	0.24	2N2147		BY100		BYZ		$8 \mathrm{SD10}$	0.05
4CY44	0.36	BC139	3D123	0.65	BF179	0.30	MAT100	0.18	2 i 306	0.40	2 N 2148				${ }_{\text {Cf6 }}$ (E) 0.491		SD19	0.05
4.13130	0.38	BC140 $0 \cdot 30$	BD 124	0.60	BF180	0.30	MAT101	$0 \cdot 20$	2G308	0.35	2N2160		BY101	0.12	(Eg) 0.491		1N34	0.07
AD140	0.48	BC141 080	BD) 131	$0 \cdot 50$	13 Fl 181	$0 \cdot 80$	MAT120	0.19	2G309			0. 60	BY 105	017		0.05	1N34A	0.07
AD142	0.48	nCl	BD132	$0 \cdot 60$	BF182	$0 \cdot 40$	Mat121	0.20	2 Ci 339	0.20	ON 219		BY114	0.12	C6651		1 NOH	0.08
AD143	0 - 88	BCl 13	BDI33	0.65	BF183	0.40	MPF102	0.42	2G339 A	0.18	2 N 2194		13 l 126	$0 \cdot 14$	(Pig) OAT0		1NG1\%	$0 \cdot 06$
AD149	050	$\mathrm{BCl} 45 \quad 0.45$	BD135	0.40	13F184	0.25	M ${ }^{\text {Pr }}$ P104	0.87	2 G 344	0.18	- N 2217	0.85 0.29	${ }^{1} \mathrm{BY}$	15	OAT9		IN414B	0.08
AD161	$0 \cdot 33$	HCl 17 0.10	13D136	0.40	HF185	$0 \cdot 30$	MPF105	$0 \cdot 37$	$2 \mathrm{G345}$	0.16	2N2218	0.20	BY130	$0 \cdot 16$	0.515 L	0.21	18951	

NEW COMPONENT PAK BARGAINS

$\stackrel{\substack{\text { Pack } \\ \text { No. }}}{\substack{\text { N }}}$
$\begin{array}{lll}\text { C } 1 & 250 & \text { Resistors mixed ralues approx. count by weight }\end{array}$
Price
Capacitors mixed values approx. count by wenght
Precision Resintors $\cdot 1 \%, \cdot 01 \%$ mixed valu
fth W Resiators mixed preferred values
Pieces assorted Ferrite Hods
Tuning Gangs, MW/LW VHF
Pack Wire 50 metres assorted colours
10 Keed Switchen
Micro Suitches
Asqorted Pots \& Pre-Sets
Jack Sockete $3 \times 3.5 \mathrm{~m} 2 \times$ Standard Switch Typee
l'sper Condensers preferred types mixed waiues
Electrolytics Trans types
Pack assorted Hardware-Nuts/Bolte, Grommeta etc. Mains Toggle Switches, 2 Amp D/1'
Assorted Tag Stripa \& Panela
Aesorted Control Knobs
Rotary Wave Change switches
Relays $6-24 \mathrm{~V}$ Operating
Sheets Copper Laminate approx
Please add 10 y post and packing on all component packs, plus a further 10 p

PLUS-MUCH MORESEND NOW FOR THE

BI-PAK "Component Catalogue"

JUMBO COMPONENT PAKS MIXED ELECTHONICCOM PONENTS Exceptionally yood calue
Resistors, capacitors, pots, electrolytics
and coils plus many nther usetul And coils plus many other useful items.
Approximately $31 b s$ in weight. Price incl. P. \& P. 81.50 only.

BRAND NEW POST OFFICE TYPE TELEPHONE DIALS ONLY 75p each

THE NEW S.G.S. EA 1000 AUDIO AMP MODULE * Guarantee
3 Watts
R.M.S.

ONLY
£2'63 each
Modual Tested and Guaranteen quantities quoted on request. Full hook-up diagrathis and complete technical data supplied free with each molual or available separately at 10 p each

SYSTEM 12 STEREO

Each Kit contains two Amplifier Modules, 3 watts RMS, two loudspeakers 15 ohms, the pre-amplifier, transformer, power supply module, front panel and other accessories, as well as an illustrated stage-by-stage instruction booklet designed for the beginner.
Further details available on request.

ONLY ? $\}=0$ FREE

The largest selection

NEW LOW PRICE TESTED S．C．R．＇s
TOS TO66TOA6 TO\＆4 TO48 TO48 TO49TO48 $\begin{array}{rrrrrrrrrr}50 & 0.23 & 0.25 & 0.35 & 0.35 & 0.47 & 0 & 50 & 0.53 & 1 \cdot 15 \\ 100 & 0.25 & 0 & 33 & 0.47 & 0.47 & 0.50 & 0.58 & 0.63 & 1.40\end{array}$ $\begin{array}{llllllllllll}200 & 0.35 & 0.37 & 0.49 & 0.49 & 0 & 57 & 0 & 61 & 0.75 & 1 & -60 \\ 400 & 0.43 & 0.47 & 0.56 & 0.59 & 0.67 & 0.75 & 0.93 & 1.75\end{array}$ $\begin{array}{llllllll}600 & 0.53 & 0.57 & 0.68 & 0.68 & 0.77 & 0.97 & 1.25\end{array}$ $\begin{array}{lllllllllllll}800 & 0.65 & 0.70 & 0.80 & 0.80 & 0.90 & 1 & 20 & 1.50 & 4.00\end{array}$

SIL．RECTS．TESTED

vBOM 2A 6A 6 10A TO－1 TO－66 TO－88
$\begin{array}{llll} & \text { ep } & \text { 分 } & \text { ep } \\ & 80 & 60 & 76 \\ 0 & 60 & 60 & 80\end{array}$

200	60	60	90
400	70	76	$1-10$

POR DIACS WITH

FREE

ordort valued 24 or over
BRAND NEW TEXAS GERM．TRANSISIORS Coded and Guarantend

$$
\begin{array}{lll}
\text { Pak No. } & \text { EQVT } \\
\text { T1 } 82033713 & \text { OC71 } \\
\text { T2 } & 8 \text { D1374 } & \text { OC75 }
\end{array}
$$ Pak No．

$$
\begin{array}{llll}
\text { T1 } & 8203713 & \text { OC71 } \\
\text { T2 } & 8 & \text { D13374 } & \text { OC75 } \\
\text { T3 } & 8 & \text { D1216 } & \text { OC81D }
\end{array}
$$

$$
\begin{aligned}
& \mathrm{T} 1 \\
& \mathrm{~T} 2 \\
& \mathrm{~T} 3 \\
& \mathrm{~T} 4 \\
& \mathrm{~T} 5 \\
& \mathrm{~T} 6 \\
& \mathrm{~T} 7 \\
& \mathrm{~T} 8 \\
& \mathrm{~T} 9 \\
& \mathrm{~T}
\end{aligned}
$$

$$
\begin{array}{llll}
\text { T2 } & 8 & \text { D1374 } & 0 C 75 \\
\text { T3 } & 8 & \text { D1216 } & \text { OC81D } \\
\text { T } & 8 & \text { D1281T } & 0 C 81
\end{array}
$$

$$
\begin{array}{llll}
\text { T3 } & 8 & \text { D1216 } & \text { OC81D } \\
\text { T4 } & 8 & 2 G 381 T & 0 \mathrm{OC81} \\
\text { T5 } & 8 & 2 G 382 \mathrm{~T} & 0 \mathrm{C} 82
\end{array}
$$

$$
\begin{array}{lll}
\mathrm{T} & 8263882 \mathrm{~T} & 0 \mathrm{C} 81 \\
\mathrm{~T} 6 & 8 & 2 \mathrm{G3} 2 \mathrm{~T} \\
\mathrm{~T} 6 & 82 \mathrm{C} 344 \mathrm{~B} & 0 \mathrm{C} 44
\end{array}
$$

$$
\begin{array}{llll}
\text { T9 } & 8 & 2 \mathrm{G} 3999 \mathrm{AN} & \text { 2N } 1302 \\
\text { T10 } & 8 & 2 \mathrm{G4L7} & \text { AF117 }
\end{array}
$$

All 50p each pak

RN2060 NPN SIL．DUAL TRANS．CODE DI699 each．

120 VCR MIXIE DRIVER

 TRANSISTOR．18A21 \＆C407，2N1893
FOLY TESTED AND
CODED ND $120.1-24$
17 D each．TO．5 N．P．N
25 up 15 p each．
Ail．trans．Ruitable tor
P．E．Organ．Metal TO－18
P．F．Organ．Metal TO－18
Eqvt．ZTX $300 \mathrm{sp}_{\mathrm{p}}$ each．
Any Qty

POWER
 TRANS
 BONANZA！

KING OF THE PAKS

SUPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS
gatigfaction GUARANTEED in Every Pak，or money back．
Pay
O． 120 Glass Sub－Min．Genersi Purjose Germantum Diodes
U 260 Mixed Germanium Transistors AF／RF
U 375 Germanium Gold Bonded 8ub－Min．Itke OAD，OA47．．．
U $4 \quad 40$（termanium Tranaistora like OC81，AC128
$5 \quad 60200 \mathrm{~m} 4$ Anb－Min．Sliticon Dlodez

16 8il．Rectiflers TOP－HAT 750mA VLTG．KANGE uy to $10000 \cdot 50$
U8 80 Sil．Planar Dlotes DO－7 Glass 250 m A like OA200／202．．
U 9 20 Mixe 1 Voltages， 1 Watt Zener Dlowes
U10 20 BAY゙50 charge storage Diodes DO－7 Glass

T12 12 8illeon Rectifters Epory 500 mA up to 800 PIV
U13 30 PNP．NPN 8il．Transistors OC200 \＆ 28104 U14 150 Mixed Bllicon and Germanium Diotes
U15 $\quad 25$ NPM \＄ii．Planar Tranf．TO－5 like BFY51，2N697 U16 $\quad 103 \mathrm{Amp}$ Silicon Rectiflera 8tud Type up to 1000 PIV U17 30 Germanitum PNP AF Translators TO－5 like ACY 17－22
U18 8 A Amp silicon Rectlfers BYZJ3 Type up to 600 PIV ． U19 25 gilicon NPN Trarushetora like BCl 08

$$
\begin{array}{lll}
\mathrm{U} 20 & 12 & 1.5 \mathrm{Amp} \text { Silicon Rectlfers Top Hat up to } 1000 \mathrm{PIV} \\
\mathrm{U} 21 & 30 \mathrm{AF} \text {. Germanlum Alloy Tranglators 2G300 Series } \& \text { OC7 }
\end{array}
$$

$$
30 \text { AF. Germanlum Alloy Tranglntors } 2 \mathrm{G3} 300 \text { Series d OC71 }
$$

$$
30 \text { MADT's like MHz Gerice PNI Translators }
$$

U24 20 Germanium I Amp Rectiflera GJM Berlea up to 300 PIV
 $\begin{array}{ll}\text { U26 } & 30 \text { Fast．} 8 \text { witching Silicon Diodes like IN914 Micro－Min } \\ \text { U27 } & 12 \text { NPN Germanium AF Transiators T0－1 like ACl27 }\end{array}$ U29 10 I AmD SCR＇TO－5 can，up to 600 PIV CR8I／25．600 U30 15 Plastic Sllicon Pianar Trans．NPN 2N2026

\section*{U31 20 Silicon Planar Plastic NPN Trans．Low Noise Any．2N3707 0.50} U32 25 Zener Dlodes 400 mW DO． 7 case $3-18$ volta mixed U33 15 Plastle Case 1 Ampr Silicon Rectifers IN 4000 Reries U34 30 8ilicon PNP Alloy Trans．TO－5 BCY26 28302／4 U35 25 Sillcon Planar Tranaistore PNP TO－18 2N2906 U3f 25 Silicon Plenar NPN Transistore TO． 5 BFY50／51／52 U37 30 Aillcon Alloy Transistora 80 －2 PNP OC200， 28322 T38 20 F＇ast SwitchIng silicon Trank．Nl＇N 400 MHz 2 N 3011 U39 30 RF．Germ．PNP Transiators 2N 1303／5 TO－5 U40 10 Dual Transiatore 6 lead TO－5 2N2060 | U41 25 RF Germaniun Translators TO－5，OC45，NKT72 | $\ldots .$. | 0.50 |
| :--- | :--- | :--- | :--- | :--- | U42 10 VHF Germanium PNP Transistors TO－1 NKT667．AF 117 0．50 U43 25 sil．Trans．Plastic TO－18 A．17．BCila／114 U44 20 sil．Trans．Plantic TO－5 BCl 15／NPN U45 7 3A ACR．TO66 up to B00PIV

GENERAL PURPOSE GERM．PNP

Coded GP100．BRAND NEW TO－3 CASE POSS RFPPLACE ：－OC＂25 28－29－30－35－36．NKT $401-403-$
$404-405-406-430-451-452-453$ ．T13027－3028， 2 N250A $2 \mathrm{~N} 456 \mathrm{~A}-457 \mathrm{~A}-458 \mathrm{~A}$ ． 2 N 511 A \＆ B ． 26

 BILICON High Voltage 250V KPN
TO．3 care．G．p ．Switching \＆Amplife Applications．Hrand new Coded H 2400 VCBO 250／VCEO 100／IC 6A／30 Watts． HFE type $20 / \mathrm{fT} 5 \mathrm{MHZ}$ ．
OUR PRICE EACH
$1-24$
50 p
AD161／162
M／P COMP GERM TRANS
OUR LOWEST PRICE OF
65 PER PAIR

2N3055

115 WATT SIL POWER NPN

SHICON 50 WATTS EATCEED NPN／PNP
BIP 19 NPN TO－3 Platic．BIP 20 PNP．Brand new OUR PRICE $1-24$ prs．60p $\quad 25-99$ prs．55p 100 prs． 60 D
integrated circuit paks

Abstract

Manufacturers＂Fall Onts＂which Include Functional and Part－Functional Units． These are classed as＇out－of－spec＇from the maker＇s very rigid speciffcations，but有 | UIC03 $=12 \times 7403$ | 0.60 | UIC $50=12 \times 7450$ | 0.50 | UIC9 $2=5 \times 7492$ | 0.50 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| UIC0 $=12 \times 7404$ | 0.60 | UIC5 $1=12 \times 7451$ | 0.50 | UIC $93=5 \times 7493$ | 0.50 | $\begin{array}{llll}\text { U1C0 }=12 \times 7405 & 0.50 & \text { UIC53 }=12 \times 7453 & 0.50 \\ \text { UIC06 }=8 \times 7406 & 0.80 & \text { UIC5 }=12 \times 7454 & 0.50\end{array}$ U1C U1C UIC

\section*{$\begin{array}{ll}\mathrm{U} 1 \mathrm{ClO}=8 \times 7407 & 0.50 \\ \text { UIC1 } 8=8 \times 7410 & 0.60 \\ & \end{array}$} | IIC44 $=5 \times 7444$ | 0.50 | UIC8 $=5 \times 7481$ | 0.50 | |
| :--- | :--- | :--- | :--- |
| UIC45 $=5 \times 7445$ | 0.50 | UIC82 $=5 \times 7482$ | 0.50 | UICXI $=25$ Assorted |
| UIC83 $=5 \times 7483$ | 0.50 | | | | Packs cannot be apfit，hut 25 assorted piecen（our mix）is available as PAK UIC Xi． BI－PAES NEW COMPONENT SHOP NOW OPEN WITH A WIDE RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT COMPETITIVE PRICES 18 BALDOCK STREET（A｜0），WARE，HERTS． TEL．（STD 0920） 61593. All mail orders please add 10 p pont and packing．Send all arders to BI．P．AK P．O．Boz A， HARE，HERTS． All mail orders pleste add 10 p post and packing． Send all orders to BI－PAK P．O．BOX 6．WARE，BERTS

NEW EDITION｜97｜ TRANSISTOR EQUIVALENTS BOOK．A complete cross reference and equivalents book for European， tors．Exclusive to BI．PAK 90 p each．

A I／ARGE RAAGE OF TECENICAL A\＆D DATA BOORS ARE HOW AYATLABLE EX STOCK NOW AVAILABLE EX．STOCK SEND FOR FREE LIST．

F．E．T．＇S

$\begin{array}{lll}\text { 2N3819 } & 85 p & \text { 2N5458 } \\ \text { 2N3820 } & 30 \mathrm{D} & \text { 2N5459 } \\ \text { 2N3821 } & 85 p & \text { BFW10 }\end{array}$
$\begin{array}{llll}2 N 3823 & 850 & \text { BFW10 } & 40 \mathrm{p} \\ 2 \mathrm{~N} 3823 & 80 \mathrm{D} & \text { MPF105 } & 40 \mathrm{p}\end{array}$
quality tested bencondoctors Pak Ro．

Q20 4 OC 44 Germanlum tranaistors A．F
Q21 4 AC 127 NPN Germanium tranaistors Q22 20 NKT iransistors A．F．R．F．coded 8 OA 81 diotes
oa95 Germanium diodes anb－min
INtis Gernanium diotes anb－min Nb：
Q27 10 10A PIV AHicon rectiflers IS425R． $\begin{array}{lllll}\text { Q28 } & 2 & \text { Silicon power rectiflerg BYZ } 13 \ldots . & 0.50 \\ \text { Q29 } & 4 \text { Bilicon transistors } & 2 & \times & 2 N 696\end{array}$
 silicon switch transistors $2 N 70$ NPN
6 8licon switch transistors 2 N708
NPN
3 PNP gilicon trangibtors 2×2 Niiai，
$1 \times 2 N 1132$ ．．．．．．．．．．．．．．．．．．．．． 50
 7 Shicon NPN tranaistors 2 N 2369 ，
500MHz（conle P397）． 3 Silicon PNP TO－5． 2 $1 \times 2 \mathrm{~A} 290 \mathrm{~K}$ ． 32 N 3053 NP Pllicon trangist ors NPN transistors $4 \times 2 \mathrm{~N} 3703, \ddagger$ 2N3702

ELECTRORIC SLIDE－RULE

The MK slide Rule．designed to simplity Elec－ tronic calculations features the following scales：－ Calculation of L ，frequency to of Tuned Circuits． Reactance and Seli Inductance．Area of Circles． Yolnme of Cylinders．Resistance of Conductors． Weight of Conductors．Decibel Calculations． Apicle Functions．Natural Logs and＇e＇Fuisctions． Multiplication and Division．Byuaring，Cubing and Square Ronts．Conversion of kW and Hp ． ast．Size： $2 \mathrm{~cm} \times 4 \mathrm{~cm}$ ．Complete with case and instructions．
Price each： 23.35

- the lowest pricesb

74 Series T.T.L. I.C's BI-PAK STILL LOWEST IN PRICE. FULL SPECIFICATION GUARANTEED. ALL FAMOUS MANUFACTUREBS

LL FAMOO						
1	25	$100+$			111	
BN7400 0.15	$0 \cdot 14$	$0 \cdot 12$				
8N7401 0.15	0.14	$0 \cdot 12$		1	25	$100+$
8N7402 0.15	C-14	$0 \cdot 12$	9N-472	$0 \cdot 29$	$0 \cdot 26$	$0 \cdot 24$
gN7403 0.15	0.14	$0 \cdot 12$	8N7473	$0 \cdot 87$	0.35	$0 \cdot 32$
EN7404 0.15	0.14	$0 \cdot 12$	SN7474	0.37	0.35	$0 \cdot 32$
SN7405 0.15	0.14	$0 \cdot 12$	SN7475	0.45	0.43	0.42
GN7406 0.35	0.31	0.28	SN7476	0.40	0.39	0.38
8N7407 0.35	0.31	0.28	gNT480	$0 \cdot 67$	0.64	0. 58
8N7408 0.18	$0 \cdot 17$	$0 \cdot 16$	8N7481	£1.20	£1-15	£1.10
SN7409 0.18	0.17	0.18	EN7482	0.87	0.88	0.85
8N7410 0.15	0.14	$0 \cdot 12$	gN7483	21.10	£1.05	0.85
8N7411 0.25	0.24	0.23	gN7484	21.00	0.95	0.90
GN7412 0.35	0.81	$0 \cdot 28$	EN7485	28. 80	43.50	£3.40
SN7413 0.29	$0 \cdot 26$	0.24	8N7486	0.32	0.81	$0 \cdot 30$
SN7416	0.40	0.88	8N7489	E5. 50	£5. 25	\&5. 00
8N7417 $\quad 0.43$	0.40	$0 \cdot 38$	SNT490	0.67	0.64	0. 58
gN7420 0.15	$0 \cdot 14$	$0 \cdot 12$	gNT491	21.00	0.95	0.90
SN7422 0.50	0.48	0.45	8N7492	0.67	0.64	0. 58
SN7423 0.50	0.48	0.45	SN7493	0.67	0.64	0. 58
SN7425 0.50	0.48	0.45	EN7494	0.77	0.74	0.68
SN7427 0.45	0.42	0.40	GNT495	0.77	0.74	0.68
gN7428 $\quad 0.70$	0.65	$0 \cdot 60$	SN7496	0.87	0.84	0.78
SN74i30 0.15	0.14	$0 \cdot 12$	8N74100	\&1.65	21.60	£1.55
SN7432 0.45	0.42	0.40	8N74104	$0 \cdot 87$	0.94	0. 38
8NT433 0.80	0.75	0.70	gN74105	0.97	0.94	0.88
$\begin{array}{ll}\text { SN7437 } & 0.64\end{array}$	$0 \cdot 62$	$0 \cdot 60$	SN74107	0.40	$0 \cdot 38$	0. 38
SN7438 0.84	0.82	0.60	gN74110	0.55	0.53	0. 50
SN7440 0.15	$0 \cdot 14$	0.12	SN74111	21.25	21.15	21. 10
SN7441 0.67	$0 \cdot 64$	0.58	EN74118	21.00	0.95	$0 \cdot 80$
EN7442 0.87	0.64	0.58	9N74119	81.85	81.25	$21 \cdot 10$
gN7443 \quad E1-30	21. 25	81.20	8N74121	0.40	$0 \cdot 37$	0. 34
SN7444 $\mathrm{E1} \cdot 30$	21. 25	21.20	SN74122	21.40	: 21.30	$81 \cdot 10$
SN7445 81.80	21.77	21.75	8 NT 4123	22.80	£2.70	£2.80
SN7448 0.97	0.94	0.88	8N74141	0.67	0.64	0.58
SN7447 \&1.00	0.97	0.95	gN7445	\$1.50	21 40	\$1.30
SN7448 $\quad 21.00$	0.87	0. 95	SN74150	83.00	52.70	£2.50
SN7450 0.15	0.14	$0 \cdot 12$	8N74151	21.00	0.85	0.90
SN7451 0.15	0.14	$0 \cdot 12$	8N74153	21.20	21.10	0.95
SN7453 0.15	0.14	0.12	SN74154	81.80	21.70	£1.60
gN7454 0.15	$0 \cdot 14$	$0 \cdot 12$	GN74155	21.40	¢1. 30	21.20
BN7460 0.15	0.14	$0 \cdot 12$	SN74166	21.40	£1.30	$81 \cdot 20$
SN7470 0.29	0.26	$0 \cdot 24$	8N74157	21.90	$81 \cdot 80$	81.70
			ROCK LOGIC	$\begin{array}{r} \text { TOM } \\ -930 \mathrm{~S} \end{array}$	PRIC aries	E^{\prime}
LINEAR I.C's-FULL SPEC.			Trpe	Price		
	Price		No.	1-24 25-99 100 up		
Type No. 1-24	25-99	100 up	BP930		D 11	p 10p
BP 201C-SL201C 88p	68p	450	$\underset{\mathrm{BP932}}{ }$		- 12	p 11p
BP701C-SL701C 63p	60 p	45 D	AP933 R1935		D 12	p 11 p
BP 702C-8L7020 63p	60p	45 p	BP935 BP936		p 12	p 11p
BP 702-72702 530	48p	400	$\underset{\text { BP944 }}{ }$		p 12	p 11p
BP709-72709 BP - -	84 p	80 p 30 p	BP945		P 24	p 22 p
BP $709 \mathrm{P}-\mu \mathrm{A} 709 \mathrm{C}$ BP $710-72710$	84p 48 p	30 p	RP946		p 11	p 100
	48p	40 p	BP948		D 24	p 22 p
	48p	400 500	BP951		p 60	D 65p
	68p	24p	BP982		p 11	D 10p
TAA 263- 70p	60 D	55p	BP9093		p 88	- 35p
TAA 293- 90p	75 p	70 p	BP9094		p 88	p 86
TAA 350 170p	158 p	150p	BP9097		p 88	P 85p
B.G.8. EA1000 $2 \cdot 68$			Devices may be mired to qualify for quantity price. Larger quantity prices on application. (DTL 930 Series only).			

[^1]
BI-PAK DO IT AGAIN! 50W pk 25w (RMS)

0.1% DISTORTION! HI-FI AUDIO AMPLIFIER
 THE AL50

\star Frequency Response 15 Hz to ONLY $100,000-1 \mathrm{~dB}$.
* Load-3, 4, 8 or 16 ohms.
$£ 3.25 p$ each
* Supply voltage 10-35 Volts.
* Overall size 63 mm $105 \mathrm{~mm} \times 13 \mathrm{~mm}$.
\star Signal to noise ratio 80 dB .

Tailor made to the mont stringent speclfactlons using top quality components and incorporating the latest anid atate circuitry and ALBO was concelved to fill the need for all your A.F, ampllication needs.
FULLY BUILT - TESTED - GUARANTEED.

STABILISED POWER MODULE SPM80

APO is especially designed to power 2 of the AT. Amplifiers, up to 15 watt (r.m.s.) per channel simultaneousif. This module emborles the latest components and circuit techulques incorporating complete short circuit protection. With the addition of the Mains Transformer MT80, the unit will provide outputs of up to ampe at 35 volts. $8 i z e: 63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$ These units enabie gou to bulin Audio systerns of the highest quality at a hitherto unobtainable price. Also ideal for many Intercom Unlts, etc. Handbook available, 10p PRICE £2.95

TRANSFORMER BMT80 £1-95 p. \& p. 25p.

STEREO PRE-AMPLIFIER TYPE PA100

Bulit to a apecffacation and NOT a price, and yet atill the greateat value on the market the PA100 stereo prearnplifier has been conceived from the latest circult tecbniques. no less than elght silicon plans transistors, two of these qua spelalls aelected low NPN devices for use in the input atages.
Three su-itched stereo inputs, and rumble and acratch filters are features of the PA100 which also has a ATEREO/MONO Bwitch, volume, balance and continuously variabi base and treble controls.

SPECIFICATION
Frequency liespoose Inputs: 1. Rape Io Tun

硅 1 dB
better than 0.1%
1.25 mV into $50 \mathrm{~K} \Omega$
.5 mV into $50 \mathrm{~K} \Omega$
All input voltages are for an output of 250 mV . Tape and P.U. inpu equalised to RIAA curve within $\pm 1 \mathrm{~dB}$. from 20 Hz to 20 KHz
Bass Control $\pm 15 \mathrm{~dB}$ at 20 Hz
Treble Control $\quad \underset{1}{100 \mathrm{~Hz}}$ at 20 KH
$\begin{array}{ll}\text { Filters : Rumble (High Psss) } & 100 \mathrm{~Hz} \\ \text { Scratch (Low Pass) } & 8 \mathrm{KHz}\end{array}$
Signal/Nolse Ratio
Input overload
Supply
Dimensions
better than - 65 dB
$+26 d B$
+35 volts at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £11.95
SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1 SPM80, 1 BMT80 \& 1 PA100 ONLY £23•00 FREE p. \& p.

[^2]
FERRANTI
 PROFESSIONAL GRADE SEMICONDUCTORS New Low Prices!

All devices Top grade. Brand new, fully guaranteed

| BFS59 | 13p | ZTX30419p | ZTX503 12p | ZSI42 | 30p | KSO36A 17p |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BFS60 | 18p | ZTX310 8p | ZTX504 39p | ZSI70 | 9p | KSO |

GEMINI AMPLIFIER

65.60
61.55

C2.15
C1.45
61.95
60.60
66.60
P. E. ELECTRONIC PIANO

24 ZN7474E $£ 14.40 \quad 14$ KS047A $£ 2.30$

Postage \& packing 10 p . Free over E 2 . Send SAE for Ferranti data. WE CAN SUPPLY ANY FERRANTI DEVICE. Send SAE for quotation.

DAVIAN ELECTRONICS, PO BOX 38 , OLDHAM LANCS

UHF-AERIALS
Suitable for colour and monochrome reception.
PLANAR folded dipoles + MESH reflectors

ILLUSTRATED UHF. 50
Aerial Arrays designed for fringe area reception UHF,50 £3.90 UHF, $18 \quad \mathbf{E 2 . 6 0}$
Without aloclirome process for loft/window sill mounting UHF. $10 \quad \mathbf{~} 1.95$ chm Bkt \& 55^{\prime} angled mast $\mathbf{C , 5} \quad \mathbf{£ 1} \cdot \mathbf{5 0}$ wall Bkt \& 5° angled mast W. $5 \quad £ 1.00$ (Available by mail order only when ordering UHF.50-UHF. 18 or FM Aerials)

VHF/FM AERIALS

Aerial Array single-dipole B,21 \quad £1-30 Aerial Array dipole-reflector B,22 $\quad \mathbf{~} 1.65$ CAR-AERIALS
Wing mounting spring Aerial 3 -section extends to $48 \frac{1^{\prime \prime}}{} \quad$ A. 6
Motorised electric Aerial complete with details \& switch. 12 V poss or neg. 5 -section extends to $40^{\prime \prime}$ A, 7 A. $7 \quad \mathbf{f 6 . 0 0}$

PRE-AMPLIFIERS

Suitable for colour and monochrome, treq coverage 40-860 MHZ-14d8 Gain Weather proof Pre-Amplifier $11 \quad \mathbf{E} .25$ 240V.A.C. Power IJnit T1/PU $\quad \mathbf{4 . 2 5}$

Low-Loss co-axial cable sold in multiples of 5 meters at $\mathbf{4 0 p}$, nylon cable clips per 100 at 30 p . Aerial switches at 90 p Co-axial plugs at Bp .
P \& P. UHF \& VHF/FM Aerials 50p. Car Aerials-Amps \& cable etc., 25p. When ordering UHF Aerials, please state channel combination or transmitter location. S.A.E. with enquiries please.
Terms P.O/Cheque with order. U.K. Mainland only.

AVEE (COMMUNICATIONS) LTD

Dept P.E.1. 96a Plains Avenue, Maidstone, Kent Telephone Maidstone 56962

BUILD YOUR OWN

 LIQUID OIL WHEEL PROJECTOR SUITABLE FOR DISCO OR HOME ENJOYMENT TOP QUALITY6 inch dia. MULTICOLOURED OIL WHEEL plus
I R.P.M. MINIATURE GEARED MOTOR Complete Kit $£ 6 \mathbf{5 0}$ inc. postage

C.T. ELECTRONICS

267 ACTON LANE, LONDON, W. 4 01-994 6275 SURPLUS ELECTRONICS WAREHOUSE NOW OPEN AT 20-24 BEAUMONT ROAD, LONDON, W. 4
Thousands of component and equipment bargains

STEREO IC DEcOder

HIGH PERFORMANCE PHASE LOCKED LOOP (as in 'W.W.' July '72) MOTOROLA MCI3IOP

EX STOCK DELIVERY
Specn. Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$. Distortion: 0.3%. I/P level 560 mV rms. O / P level: 485 mV rms per channel. Input impedance: 50k. Power requirements : 8-12V (a 16 mA . Will drive up to 75 mA stereo 'on' lamp or LED.
KIT COMPRISES FIBREGLASS PCB
(Printed and tinned), Resistors, I.C., Capacitors, Preset Potm. \& Instructions. Only $\mathbf{3} \mathbf{5 0}$ post free.
LIGHT EMITTING DIODE (Red)
Suitable as stereo 'on' indicator. For above with panel mounting clip and instructions. Only 35p +p.p.
MCl31OP only $\mathbf{6 2} \cdot 77+$ p.p. ${ }^{6 p}$
IN 400150 V IA RECT. DIODES. Full Specification Devices. ONLY 5p each 709^{\prime} DIL 14 PIN OP AMPS. Full Specification Devices. ONLY 34p each

Fi-Comp Electronics
BURTON ROAD, EGGINTON, DERBY DE6 6GY

JUST PUBLISHED '73 AUDIO-TRONICS

The great new 1973 edition of Lasky's famous Audio-Tronies catalogue is now available-FREE on request. The 48 newspaper size pages-many in
full colour-are packed with 1,000 's of items from the largest stocks in Great Britain of everyching for the Radio and Hi.Fienthusiast. Electronics hobbyist Serviceman and Communication's Ham. Over hal the pages are devoted exclusively to every aspect
of Hi-Fi (including Lasky's budget Stereo Systems and Package Deals). Tape recording and Audio Accessories, see the great new Lasky's Credit Plan Scheme-enabling you to buy your ideal choice of equipment on easy terms. Send your name and address and $15 p$ for post and inclusion on our

LEAK TEAK CASES

Teak or Walnut sase for Stereofetic tuner only LIST PRICE LASKY'S ± 2.50 CRP C7.37 PRICE $25 p$
Double case to hold Stereo 30 or Stereo 70 and Stereofetic tuner in Teak or Walnut LIST PRICE LASKY'S 54.95 <10.37 PRICE

LEAK
 TRUSPEED

-speed 45 and $33 \frac{1}{2}$ rpm
ele drive turneable omplete with plinth, cover LIST PRICE 669.50
LASKY'S 147.50
PRICE
$C 1$
6.50
SINCLAIR PHASE LOCK LOOP STEREO FM TUNER

incorporates varicap diodes, printed circuit, coils, squelch
circuit I.C. Decoder, etc., supplied com pletely built and tested and ready to be mounted into any cabinet you choose. It may be used with any High Fidelity Amplifier Power requirements $25 / 30 \mathrm{~V}$ DC
LIST PRICE LASKY'S EIS.75
$\mathbf{6 2 5} \cdot 00$ PRICE

BSR TD2

FANTASTIC VALUE, ONLY Lasky's can offer you a tape deck at such an amazing price. The BSR TD2 tape deck operates by a simple reliable mechanism using the minimum of controls
With $\frac{1}{\frac{1}{2}}$ track mono heads. Incorporates fast wind and fast rewind, records at $3 \frac{1}{4}$ ips. giving up to 3 hrs playing time, takes up to $5 \frac{1}{\text { in }}$ in spools. Size 13 in . $8 \frac{1}{2} \mathrm{in}$. front to rear, 2 觡 in below plate, latin. above plate.
ALSO SUITABLE FOR USE AS A TAPE TRANSPORTER
LASKY'S $; 8 \cdot 95$
PRICE

BELTEK C5700 8 TRACK

Stereo ca
 Player

Accepts all standard pre-recorded otrack stereocarinclude automatic head cleaner channel select and hennel repeat tons, slider type volume and tone controls, channel balance. Output 5 wates per channel, frequency response $50 \mathrm{~Hz}-10 \mathrm{kHz}$. Output imp. 4 ohms. size $41(\mathrm{~W}) \times 1 \mathrm{fi}(\mathrm{H}) \approx 6 \frac{1}{2}(\mathrm{D}) \mathrm{in}$. Operates on 12 V DC negative earth. Beautifully styled with black ivory and chrome trim
BELTEK C5700 complete with mounting brackets and 8 track pre-recorded demon
£ 19.75 C\& P 30 P
BELTEK R5310 FM TUNING ADAPTOR Matches the C5700, the ideal car stereo system LASKY'S PRICE $f 18.95$

> Add $£ 3.75$ to any BELTEK car player for pair of FANTAVOX KS701 car soeakers.

AKAI TAPE RECORDER SCOOP:

(C \& P 75p on Tape Decks.)

AKAI 4000D illustrated List Price 693.65

Lasky's Price 661.50 AKAI 1720L
List Price $£ 87.36$
Lasky's Price $\mathbf{5 5 0 - 9 5}$ List Price $\{162.79$ AKAI X200D
List Price $£ 157.93$.. Lasky's Price $£ 106.50$ 2 CSS-8 Speakers List Price $£ 25.00$ (pair) Lasky's Price $£ \mathbf{1 5} .95$ 2 ADM $11 / 8$ mics. Suitable for use on all Akai tape recorders. List Price $£ 11.90$
Lasky's Price (pair) 67.50 . C \& P 15p.

NEW

 WELLER MINI
WORKSHOP KIT

 MODEL 600KPowered by a $25.000 \mathrm{rpm}, 115 \mathrm{~V}, 75 \mathrm{~A}$ Universal motor. This small versatile, easy to handle, power sionals. The wide selection of bits helps you grind. sharpen, drill. rout, cut, ete. Perfect for delicate work and hard to reach places. The complete MINI-WORKSHOP is housed in a strong plastic carrying case. For 240 V a.c. mannsoperation.
MODEL 600 K place Kit contains: Model 600 Power Unit Accessory Caddy - 8 Grinding Sharpening Bits Acressory 3 polishing Wheels 4 Cleaning Bits 8 Abrasive Discs 3 Abrasive Bands e Ex. panding Drum Drill Bit Mandrell Chuck Wrench Dressing Stone Plastic polish - Jewellers Rouge Complece withowners' manual

LEAK SPEAKERS

DIGITAL CLOCK
EXCLUSIVELY
FROMLASKY'S
The clock meas
ures $57^{\prime \prime}(W) \times 21$
(H) $\times 3^{\prime \prime}(\mathrm{D})$ (over
all from front of
drum to back of switch). SPEC. 2101240 V ac. 50 Hz
operation; switch rating $250 \mathrm{~V}, 3 \mathrm{~A}$ Complece with operation; switch rating $250 \mathrm{~V},{ }^{3 A}$. Complece With
 FEATURES: MAINS OPERATION I2. FEATURES: MAINS OPERATION OIZHO HOURARMINUTES AND SECONDS READ-OFF FORWARD ANDBACKWARD TIMEADJUSTMENT SILENTOPERATION - SHOCK AND VIBRATION PROOF - BUILT IN ALARM BUZZER

BSR TD8S

8 TRACK STEREO
CARTRIDGE PLAYER
use with most modern
stereo amplifiers and delivers a C \& P
pre-amp outpur of 125 mW . 50 Hz 35p
Fower requirements: $210 / 250 \mathrm{VAC}, 50 \mathrm{~Hz}$. Frequency response: $50 \mathrm{~Hz}-10 \mathrm{KHz}$. ${ }^{4}$ pole dynamically balanced
synchronous motor. Black and woodgrain plastic synchronous motor. Black and woodgrain plastic
cabinet. Size: $\mathrm{B}_{\frac{1}{2}}(\mathrm{~W}) .3(\mathrm{H}) 10 \mathrm{f}(\mathrm{D})$ in.
$\begin{array}{ll}\text { List } & \text { LASKY'S } \\ \text { Price } £ 24.20 & \text { PRICE }\end{array}$
Garrard Record Players

SP25 Mk. III
Deck Only

SP25 Mk III
AP76
$£ 18.75$
$£ 32.50$
SL95B
SL95B on base with 9TA cart. ... $\mathbf{4 4 . 0 0}$
SL728
83.95

401
£28.95
40B
49.50
67.95
639.95

Zero 100
¢37.50

NEW RECORD PLA YER MODULES

These new "Module" systems from Garrard and Lasky's enable you to buy your record player complete with attractive wood plinth, tinted acrylic dust cover and high quality compatiblestereo magnetic cartridge together offering optimum performance and appearance.
GARRARD MODULES
Garrard SP25 Mk. III
Shure M75/6 cartridge
$C 23.95$
Gerrard AP76
M75/6 careridge
M 56 cartridge with Shure version of SL95B)
Garrard Zero 1005
Shure M93/E cartridge

LASKY MODULES
Lasky's (Garrard) SP25 Mk. IIt turn-
table with Goldring G800 cartridge
Lasky's (Garrard) AP76 turntable with
Goldring G800 cartridge
Lasky s (Goldring) GL75 t
Goldring G800 cartridge
with Goldring G800/e carridgentable
C. \& P. 75 p .
633.95
638.75
652.75
c20. 50
± 10.50
$\$ 45.00$
645.00
649.30

MAIL ORDERS AND CORRESPONDENCE $3-15$ CAVELL SIREG
LONDON G12BN

West End and City Branches
42.45 TOTTENHAM CT. RD. LONDON. W.I Tel. 01- 6360845 207 EDGWARE ROAD. LONDON. W.2. Tel: 01.7233271
33 TOTTENHAM CT. RD.: LONDON, W1. Tel: 01• 5362605 Open oll. doy $90 . m$. - 6 p.m. Monday to Soturday:
109 FLEET STREET, LONDON. E.C. 4 Tel: 01-353 5812
Open oil day Thursdoy. early closing Ip.m. Soturdoy

9
 quite simply - the best

RESISTORS

 10 Megs) W (ran \qquad 20 each 2 W (range 47 ohms to 10 Meg 3peach

PRE-SET POTENTIOMETERS
Scandard values of pre-sets from 100 ohms 205 Meg-
Standard/miniature...... 7p each Sub-miniature........... 5p each
SIEMENS PROFESSIONAL CAPACITORS

POLYCARBONATE AND POLYESTER			ELECTROLYTIC		
Voltage	Capacitance	Price	Voltage	Capacitance	Price
100 V	$0.1 \mu \mathrm{~F}$	6p	IOV	$22 \mu \mathrm{~F}$	7p
loov	$0.15 \mu \mathrm{~F}$	6p	OV	470 $\mu \mathrm{F}$	$11 p$
100V	$0.22 \mu \mathrm{~F}$	6 p	16 V	$47 \mu \mathrm{~F}$	7 p
100 V	$0.33 \mu \mathrm{~F}$	9 p	25 V	$10 \mu \mathrm{~F}$	7p
100 V	$0.47 \mu \mathrm{~F}$	10 p	25 V	$100 \mu \mathrm{~F}$	$9 p$
1008	$0.68 \mu \mathrm{~F}$	$15 p$	25 V	$220 \mu \mathrm{~F}$	$11 p$
			25 V	470 HF	14p
250 V	$0.01 \mu \mathrm{~F}$	5p	25 V	1, $000 \mu \mathrm{~F}$	22 p
250 V	$0.015 \mu \mathrm{~F}$	5 p	25 V	2,200 FF	$42 p$
250 V	$0.022 \mu \mathrm{~F}$	5p	35 V	${ }_{2}^{4.7 \mu} \mathrm{~F}$	7p
250 V	$0.033 \mu \mathrm{~F}$	$6 p$	35 V	$220 \mu \mathrm{~F}$	14p
250 V	$0.047 \mu \mathrm{~F}$	$6 p$	100 V	$10 \mu \mathrm{~F}$	8 p
250 V	$0.068 \mu \mathrm{~F}$	6 p	100 V	$22 \mu \mathrm{~F}$	$9 p$
250 V	$0.1 \mu \mathrm{~F}$	$6 p$	100 V	$47 \mu \mathrm{~F}$	14p

SPECIAL OFFER

Bumper Bundle of power transistors, capacitors and diodes. Retail value $£ 5$. Yours for only ©l 50 . Offer valid for limited period only.

SEMICONDUCTORS

Here are just a few examples of our LOW Semiconductor prices
more semicons avaitable all at equally sensational prices. NOW

菏	

NUMEROUS OTHER ITEMS AVAILABLE INCLUDE:

Switches. Comprehensive range of N.S.F. Toggle switches and Rotary Wafer switch kits (to enable you to make your own switch to your own specifica-
Copper lami
Lamps and
amps and lampholders for every requirement. Ready Built Circuits and
Modules.
Freezer and Cleaner aerosol sprays.
Jack plugs and sockets.
Recording Tape.
All orders value $\mathbf{E 2}$ or over post free. Other orders please add $10 \mathrm{P} P$. \& P We only sell new products-do not confuse with "seconds" or surplus stock. Because of our keen prices we regret the prices apply to U.K. and B.F.P.O addresses only

To GSPK (Sales) Limited
Dept. P.E., Head Office, Hookstone Park, Harrogate, Yorkshire HG2 7BU

PCB's and KITS

For Designs Published in P.E

All PCB's Fibreglass, Drilled, Roller-Tinned
(Circuit and assembly notes free with each PCB)
AURORA-Multichannel Sound Controlled Light

R's, C's, Pots, Ferrite Cores, 8 Ch., $\ell 10.00$; 4 Ch., $\mathbf{5 5 . 5 0}$
Power supply (will supply B Channels), $\mathbf{2} \cdot 85$
PC8 (4 tin 1 lin) holds Pre-amp and 4 chans.. inel. pots, $\mathbf{E 2} 35$ CALIERCORD $\frac{1}{2}, n$ holds PSU, Sync Gen. 8 cores, 8 SCR's, $f 1.35$ ALLERCORD-Automatic Answering Machine
Designer Approved PCB and Ki
PCB (4in 7 , 12
Relays, Thd relays, $£ 1.50$
Parrot cape recorder, 66.95
DOOR BELL YODELLER

GEMINI PRE-AMP
Semiconductor set (stereo), $£ 1.90$
R's. C's, Rotary pots and Sw's to fit PCB (Stereo) 48.85
PCB ($3 \frac{1}{2}$ in $10 \frac{2}{2 n}$) Stereo. Also hold pets and Switehes, $£ 210$
GEMINI MAIN AMPLIFIER (30 W
PCB ($3 \frac{1}{2}$ in
$5 \frac{1}{2} \mathrm{in}$) Stereo, $\mathrm{f} \mid 40$; R's, C's. Pots (stereo) $\mathbf{~} \mathbf{4} \cdot 30$
GEMINI POWER SUPPLY C ' Pot $£ 3.70$
GEMINISTEREOTUNER
PCB (4tin $\times 10, n$) as published, $\neq 1.80$
LOGICAL RADIO CONTROL-All PCB's--details on request
MICROPHONE MIXER-APRIL 1969
 MODEL SERVO CONTROL-AIIPCB's-details on request.
PHOTOPRINT PROCESS UNIT Relay. Sw's, T/former, $\mathbf{~} \mathbf{7 . 9 0}$
$S / C ' s, S C R$, LDR, R's, C's, Pots. Relay. Sw's, T/former, $£ 7.90$
$P C B\left(3 \frac{1}{2}\right.$ in $x \quad 5 \frac{1}{2}$ in) also hold pots, relay, keyswitch, $£ 120$
TAPENOISE LIMITER
VERSATILE LIG'HT EFFECTS UNIT-Single Channel Sound
Controlled Light
S/C's. (exel.SCR) R's, C's, Poes, T/formers, Keyswitch, $£ 8.85$
PCB (5tin Stin) also hold pots, Sw, T/former (T/T7). $£ 1.50$
$\mathrm{PCB}\left(5 \frac{1}{4}\right.$ in $\times 5 \frac{1}{4} \mathrm{in}$) also hold pots, Sw. T/former (T/T7). El.50
Orders 10 p P. \& P. Other Designs Available. S.A.E. for list.
PHONOSONICS
DEPT. P.E.II, 25 KENTISH ROAD, BELYEDERE, KENT

Introduction to Field Effect Tiansistors

by J. Watson Ph.D
University of Wales
128 pages about the theory and applications of field effect transistors: - Introduction to the field effect transistor

- Characteristics, parameters and tolerances of the field effect transistor • Biasing and audiofrequency amplification • Voltage controlled resistors, current-limiters and d c. amplifiers \bullet High frequency amplifiers and mixers - FET switches, choopers and analogue gates. Integrated circuits - Miscellaneous devices and applicatıons

SLICONIX LTD.
Sketry. Swansea. Sazgea Tel:Swansea[0rye] ereel

Please send copy copies of
"an Introduction to Field Effect Transistors
for which I enclose cheque/PO. No
to the value of E

Company
Address

FEEM PANEEL MEETERS

USED EXTENSIVELY BY INDUSTRY，GOVERNMENT DEPARTMENTS，EDUCATIONAL AUTHORITIES，ETC．

OST QUICK DELIVERY OVER 200 R
STOCK OTHER RANGES TO ORDER

＂SEW＂CLEAR PLASTIC METERS

，

－＊＊＊		150 V
$\overline{50} \mu \mathrm{~A}$	83.95	300 V d．c．
$50.0 \cdot 50 \mu \mathrm{~A}$	\＄3－40	159 a．c．
$100 \mu \mathrm{~A}$	23.40	300 V a．c．
$100-0 \cdot 100 \mu \mathrm{~A}$	E3－30	8 Meter
200μ	48－30	1 n A
$500 \mu \mathrm{~A}$	£3．20	$V{ }^{\prime} \mathrm{M}$ Meter
$500-0-500 \mu \mathrm{~A}$	£3．10	1A a．c．＊
1 mA	£3－10	JAa．c
$1-0.1 \mathrm{ma}$	£3－10	10A a．c．＊
5 mA	\＆3－10	20 A a．c．＊
10 m .1	£3．10	30А a．c．＊

Type Mr．52P．2tin nquare fronts

$50 \mu \mathrm{~A}$	13．40	20以 d．c．
50－0－50 $\mu \mathrm{A}$	22．85	50V d．c．
$100 \mu \mathrm{~A}$	12－85	300V d．c．
$100-0-100 \mu \mathrm{~A}$	E2．75	15 V a．c．
$500 \mu \mathrm{~A}$	¢2－55	300 V a．c．
1 ma	22－20	5 Meter
$\operatorname{Tr} \mathrm{m}^{\text {a }}$	£2－20	1 mA
10 mA	£2．20	V1．Meter
50 mA	£2．20	1A a．c．＊
100 ma	22－20	jA a．c．＊
500mA	£2．20	，${ }^{\text {as．c．＊＊}}$
1 A	£2－20	10A a．c．＊
6 A	£2．20	20．a．c．＊
10v d．c．	\＄2－20	30．A a．c．＊

Type MR．65P．3lin－ 3 inin fronts
 $100 \mu \mathrm{~A}$ $100-0-10$ $500 \mu \mathrm{~A}$ $500 \cdot 0-50$ 1 mA

10 mA
50 mA
10 m

100 mA
500 mA 10 m
$1 \mathrm{~A} \ldots$
$5 \mathrm{~A} \cdots$
$5 \mathrm{~A} \ldots$
$10 \mathrm{~A} \ldots$
15 A.
10 A.
15 A
20 A
30 A
30 A
30 A
30A．

Type MR． 653 hin square fronts．

＊MOVING IRON－ Please add postage

Completely purtable，simple to use pocket sized tester．Kanges $0 / 3 / 30 / 300 \mathrm{~V}$ a．c．and A．c．at 2,000 o．p．．Resistance $0-20 \mathrm{k} \Omega$ ．
ONLY $\mathbf{2 1 . 9 7}$ ．P．\＆ $\mathrm{F}^{2} .13 \mathrm{p}$ ．

TME MODEL 117 F．E．T．ELECTRONIC

Battery operated， 11
meg Lhput．
26 ranges
Large 41 in mirror range
 $1,200 \mathrm{~s}^{\prime}$ A．c．volta $3-$
$300 \mathrm{~V}^{\text {R．M．S．} 8-0-800 \mathrm{~V}}$ $\mathrm{P}-\mathrm{P}$. B．c．current 0 12 12MA．Resistance up to $2,000 \mathrm{M}$ ohm eada／instructions $517 \cdot 50$ ．P \＆P 20 p

> Model S-100TR MULTIMETER TRANSISTOR TESTER 100,000 O.P.V.MIRRORSCALE OVERLOAD PROTECTION －12／67，3／12／n0／120／600
 MP BC：0／10K／l MEd／
 tester measures Trangiver Betar matl Ico．Comphat． with batheries，instrumptions and leads．£13－50． P^{2} ．d P ．

HIOKI MODEL 720X 20，000 O．P．V．
Oyerhead protectiuls． 10／50／25010005
 4hm． 2 meg
$6: 4 \mathrm{~b}$. TME MODEL MD． 120
 $60 / 300 / 600 / 3,000$ 120／1，200V a．c． 300 mA a $\mu \mathrm{A} / 0-12 \mathrm{j} 0$ -20 to $+63 \mathrm{~dB}, \quad 24.621$

MODEL $500.30,000$ protection，mirror overload 0／．5／2．5／10／25 5100 ！ $10 / 25 / 100 / 250 / 5001$ 1,000 V．a．e． $0 / 50 \mu \mathrm{~A} / 5 / 50^{\circ}$ 00 mas 12 amp fle． $0 / 60 \mathrm{~K} / 6 \mathrm{Meg} / 60 \mathrm{Meg} \mathrm{\Omega}$ ． £8．87！．T＂ost paid．
 －

TE－20RF SIGNAL GENERATOR

MODEL PL486．20k0／ Volt d．c． $8 \mathrm{~K} 0 / \mathrm{Vols}$
a．c．Mirror cale $0.6 /$ a．c．Mirror scale． 0.6 j
$3 / 12 / 30 / 120 / 800 \mathrm{~V}$ d．c． $3 / 12 / 30 / 120 / 800 V$
$3 / 30 / 120 / 600 \mathrm{~V}$
$5 . c$. $50 / 600 \mu \mathrm{~A} / 60 / 600 \mathrm{~mA}$ ． $50 / 600 \mu \mathrm{~A} / 60 / 600 \mathrm{~mA}$.
$10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10 \mathrm{meg}$ $10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10 \mathrm{mez}$
$\Omega .80 \mathrm{to}+46 \mathrm{~dB}$.

等

 $\begin{array}{llr}\text { MODEL } & 5025 . & 54 \\ \text { ranges，} & \text { giant } & 5 \frac{1}{2} \text { in }\end{array}$ meter，reversis molth．polarity reverst mbitch．Sen－
 5， $50,1 \cdots, \because 50,500,1.000 \%$ ．1．e．current： 10 A ．Resistance： $2 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$, I

HIOKI MODEL 700X 100,000 O．P．V
otection．Mirror acale．
$3 / 6 / 1 \cdot 2 / 1 \cdot 5 / 3 / 6 / 12 / 30 / 60$ 120／300／600／1200VDC
1200 VAL 00 mA
300 mA
$6 / 12 \mathrm{AMP}$ 1）
2K／200K $/ 2 \mathrm{Meg}_{2}$

$213 \cdot 50$ P．\＆1．： 20 p
RUSSIAN 22 RANGE MULTIMETER Model 「8．37 10,000
$0 . j 1.1$. v．pas．A tirut class
versatle matimment manufacturtil in highest atandards． kanges：－－／ $10 /$／an／ $2.00 / 500 / 100015$ ， 1 c．． $000 \mathrm{~s}^{2} / \mathrm{0} / 250 / 500$ ． $100 \mathrm{man}, ~ 1 / 10$

 omflians and sturly stecl carrving cage． OUR PRICE 25.97

HONEYWELL DIGITAL VOLTMETER VT． 100

hagit．Rex＋lntton：lim：An，whight： 3
 1004 ＂Mok wha．Measurimg cyedr：I per

 pumet $116 \cdot \because 30 \mathrm{Cl}$ ace $\because 1 / 60$ vcles．

¢35．50 Carr．50p	

GAMRCONDUGTRE／VALVES

ALL DEVICES BRAND NEWAND FULLY GUARANTEED

Tranatst		2 N 3415 2N3416	879	2N54 2NJ4	40	$\begin{aligned} & \mathrm{BC} 114 \\ & \mathrm{BC} 15 \end{aligned}$					70	Incegrated	PJH ${ }^{\text {FJH11 }}$	8N7439						
20	20%	2N3417	279	28102	4	BC116	16	BFX12		NKT224	\％		FJH121		OAL					
2 Cas	205	2N3439	130	${ }^{21} 103$	25）	BC118	16	BFXI3	20	NK T225		CA8000	FJH131	1 AN	OB		262	4，	EM	
$2 \mathrm{C303}$	203	2N3440	079	28104	240	BC119	0	BFX29	85	NK T229		Cas005 11	FJH141 69	759	OZ2	10	${ }_{2086}^{2086}$	65	EM 81	
${ }_{2} 2 \mathrm{G} 306$	42	2N 3364	17 p	28301	50	${ }_{8 C 121}^{\text {BC12 }}$	00	BFX 30	5	NKT237	${ }^{85}$	CA9007	FJE1s1 20	8N7442 ${ }^{\text {76p }}$	IL4		3 Cl İ	，	EM84	
$2 \mathrm{Ca308}$	20	${ }^{2} \mathrm{~N} 356$	150	${ }^{283002}$	50	${ }^{8 C 122}$	00	BFX ${ }^{37}$	208	NK T238	5	CA3011	FJH161 709	8N7448 100	IRS	40	30 Cl 17		EM85	
20309	80 p	2N3566	29	28903	0	${ }^{\mathrm{BC}} \mathrm{BCl}^{25}$	159	BFX44	\％10	NKT240	870	CA3012	PJH171 85	8N7447 136p	185	30%	${ }^{30 C 18}$	80 p	EM 87	
${ }^{2} 20371$	16	${ }_{2}^{2 N 356}$	25，	${ }^{28304}$	$7{ }^{78}$	$\underset{8 C 134}{\text { BC126 }}$	80	BFX68	67	NKT241	87p	CAs018	FJH181 25	8N7448 125p	IT4	$5{ }^{2}$	30 Fs	85	EY51	
29381	2	2N3570	188	28502	25p	${ }_{\text {BC1 }}{ }^{\text {8C13 }}$	15）	${ }_{\text {BF }}{ }^{\text {Br }} 85$	${ }_{203}$	NKT242	60	CA3014 ${ }_{\text {CA3018 }}{ }^{\text {cha }}$	FJH221 ${ }_{\text {FJH291 }}$	8N7450	1U4	30	${ }_{30 \mathrm{FLl}}^{30}$	750	EY88	
${ }^{2} \mathrm{~N} 388$	49	2 N 3572	07p	28503	27p	BC13a	15	BFX86		NKT244	170	CA3018A	FJH241 ${ }^{\text {\％}}$	8N7453 209	2 D 21	8	${ }_{30 \mathrm{FL} 14}$		EY87	
2N404	20	2 N 360	27p	3N83	400	BC137	150	BFX87		NK T245	20p	P	FJH251 250	8N7434	3Q4	sop	30 L 15	85	E241	
2N696	158	2N36	27 p	3N128	70	BCl^{38}	20 D	BFX 88	${ }^{2}$	NKT261	80p	CA3010 84p	FJJ101 0	BN7460	384	35 p	30 L 17	30	E280	7
2 N 697	150	$2 \mathrm{~N} 360{ }^{-}$	28	3N140	77	BC140	45	BFX 89	88	NKT26：	${ }^{20 p}$	CA3020 180	FJJl11 80y	BN7472 800	314	48	30P12		E281	9
2N698	20	2N3638	18p	3N141	硣	${ }^{\mathrm{BC}} 141$	${ }^{35}$	BFX93A	70	NK T264	203		FJJ121 009	8N7473 40D	5 R 4	76	$30 \mathrm{P19}$	85	O232	b
2N699	80	2 N 3638 A	800	3 N 142	5	${ }^{\text {BC147 }}$	100	bry11	（8）	NKT271	${ }^{80 p}$	180	FJJ131	ON7474	${ }^{\text {6U4 }} 4$	${ }^{35}$	30 PL 1	75	O234	
2 N 706	10	2 N 364	18 p	3N153	$\begin{aligned} & 87 p \\ & 87 p \end{aligned}$	${ }_{\text {BC14 }}$	10 p	BFY18	${ }^{\circ 5}$	NK T282	80p	CA3021	FJJ141 198	8N7475 45p	${ }^{5154}$	45	30PL13	939	KT66	5
－ N 709	681	2N3644	25p	40250	80 p	${ }_{\text {BCl }} 53$	20%	BFY24	45	NKT275	200	CA3028 100	FJJ191 6 FJJ	8N7483	Z40		35L6			
2 N 718	25 p	2 N 364	250	40251	22	BC154	8	BFY29	400	NK T281	7	CAsO28A 74．	FJJ251 125p	8N7490 87p	68	${ }^{80}{ }^{10 p}$	${ }^{3524}$	5 p	P	
2N718A	300	2N3691	16 D	40309	229	BC157	15	BFY 30	400	NKT401	87	8B	PJL101 1259	8N7492 87	6AG7		3525	0	PC8	
$2 \mathrm{N7} 26$	${ }^{30}$	2 N 3692	18）	40310	450	${ }^{8 C 158}$	11.	BFY41	50 p	NKT402	90p	10	FJY101 50	8N7493 878	6AK5	35p	50 B 5	－	PC8	5
Nitit	80	2N3693	15p	40311	85p	BC159		BFY43		NKT403	75p	CA3029 87p	$1 \mathrm{Cl2} 180 \mathrm{p}$	8N7493 87p	6AK8	800	50 Ca	50 p	PC900	1
2 N 914	17	${ }_{2} \mathrm{~N} 369$	18 p	40312	47 p	${ }^{\mathrm{BC}} \mathbf{8 C 1 6 0}$	8	BFY50	20	NKT404	66p	CA3029A	L900 409	8N7496 870	bals	200		P	PCC84	\％
$\begin{aligned} & \text { 2N916 } \\ & \text { ¿N918 } \end{aligned}$	$\begin{aligned} & 177 \\ & 800 \end{aligned}$	$\begin{aligned} & 2 \mathrm{~N} 3702 \\ & 2 \mathrm{~N} 3703 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 40314 \\ & 40315 \end{aligned}$	$\left.\begin{aligned} & 87 \mathrm{p} \\ & 87 \mathrm{p} \end{aligned} \right\rvert\,$	BC167 BC1688	${ }_{10}^{11}$	${ }_{\text {BFY }}{ }^{\text {BFY }}$（	00	NKT405	${ }^{75 p}$	CAsoso ${ }^{1650}$	L914 40p	${ }^{\text {BN74 }}$（107 587	6AM6	800	85	50 p	PCC85	\％
－ 9229	22 D	2N 3704	11p	40316	（7）	BC168	$11 p$	BFY53	160	NKT451	68p	CA3035 12\％			6 A					5
2 N 930	200	2N3705	109	40317	878	BC169	11p	HFY56A	578	NK T4J̌	687	CA3036	MC724P 00 p	8N74154	6at6	35	5763	${ }_{70 \mathrm{p}}$	${ }_{\text {PCC } 189}$	
2 N 987	40 D	2 N 3706	9	40319	56 p	BC169C	15p	BFY76	4.2	NKT453	47	CA3039	MC780P 247p		6ave	25p	6146	1600	PCF80	\％
2 N 1090	2	$2 \mathrm{~N}^{3707}$	11p	4032	17p	BC170	18p	BFY78	573	NKT713	80p	CA3041 109	MC788P 146 p	180 p	6AY6	800	$A^{\text {Z }} 31$	56 p	PCF82	p
$\stackrel{2 N 1091}{2 N 1131}$	2	${ }^{2} \mathrm{~N}^{3} 708$	7 p	40323	329	$\mathrm{BCl}^{\mathrm{BC} 17}$	159	BFY90	csp	NKT717	4080	CA3042	MC790P 124p	BN74161	6BA6	${ }^{5}$	CY31	${ }^{25}$	PCF84	）
$\begin{aligned} & 2 \mathrm{~N} 1131 \\ & 2 \mathrm{~N} 113^{2} \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	2N3709	$9 p$ $9 p$	40324 40326	4	－${ }_{\text {BC172 }}^{\text {BC17 }}$	159	B8X19	178	${ }_{\text {NKT734 }}$	87	CA3043 1970	MC782P 68	8N－4184 ${ }^{860}$	${ }^{\text {6BE6 }}$	300	DAF8	308	PCF88	0
2 N 1302	17b	2N3711	120	40329	800	BC177	20	BEX21	\％	NKT	${ }_{80}$	CA3045 128p			${ }_{6}^{68 \mathrm{BH}}$	75	DF9	4	PCF8	T
${ }_{2}^{2} \mathrm{~N}^{2} 130^{3}$	17p	2N3713	187\％	40344	87 p	$\mathrm{BCl}^{\mathrm{BC}} 78$	20	B8X26	45	NKT7	80 p	CA3046 81P	200p		6 BQ	40 D	DF96	45	PCF	0 p
${ }_{2} \mathrm{NN}^{\text {N }} 1304$	225	2N3714		40347		BC179	209	${ }^{\text {B8X }} 27$			50 P	CA3047 137p	4		$6 \mathrm{BR7}$	909	DK91	40 p	PCF805	0
${ }^{2} \mathrm{~N} 1305$	${ }^{208}$	2N3715	${ }_{18}^{189}$	40348 40360	48	${ }_{\text {BC1822 }}$	109		8	OC19	87	CA3048 804p	${ }^{\text {220．}}$	8N7	6BR8	70	DK92	56	PC	0
$\begin{aligned} & \text { 2N1306 } \\ & \text { 2N } 1307 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	2N3716	$180 \mathrm{p}$	$\begin{aligned} & 40360 \\ & 40361 \end{aligned}$	$\begin{aligned} & 40 \mathrm{p} \\ & 40 \mathrm{p} \end{aligned}$	BC182L BC183.	109 9	$\left\lvert\, \begin{aligned} & \text { B8X60 } \\ & \text { B8x61 } \end{aligned}\right.$	887	${ }^{\text {OC22 }}$	75	04916	MC1305P		${ }^{68 W}$	${ }^{85}$	DK96	80	PCF8	75
2 N 1308	25	2N3791	8	40362	50 p	BC183	0	B8X 76	159	${ }_{0} \mathrm{C} 23$	000	CA3051 184	MC838P ${ }^{\text {H2P }}$				DL94	${ }^{36 p}$	PCL	5
2N1309	250	2N3819	84D	40970	82p	BC184	11 p	B8X 77		OC24	80\％	CA3052 165p	MC143P	TAA241	6 C 4	8.9	DL96	46 p	PCL84	
2N1507	170	2N3820	35	40406	${ }^{57}$	BC184L	119	B8X 78	85	0c25	1	СА 3053 48p	845p	168p	8 CD	125	DM70	40	PCL85	O
$2{ }^{2} 1613$	20	$2 \mathrm{~N}^{382} 2$	50 p	40407	40 p	BC186	2b］	B8Y24	150	OC26	85	CA 3054109	MC15596	TAAZ42 425	6CL	50	DY 86	$32 p$	PCL	5p
2N1631	850	$2 \mathrm{~N}^{3854}$	27 p	40408	P	BC187	27 p	B8Y25	$16 p$	Oc28	0	CA3055	461．	TAA243 150］	${ }_{8} \mathrm{CW}$	65 p	DY8\％	38 p	PFL2	\％
$\begin{aligned} & 2 N 1632 \\ & 2 N 1637 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	${ }^{2} \mathbf{N} 3854 \mathrm{~A}$	27D	40409		${ }^{\text {BC2 }}$ B212L	$12 p$	B8Y26	178	OC29	0	CA3059 165	09 CG	TAA263 75p	${ }_{6} 6 \mathrm{Fl}$	68	E88C	100	PL36	D
1638	870	${ }_{2 N 3855 A}$	80 D	40412	809	BC214L	15 D	B8Y28	17 p	OC36	809 80 p	10185	MPC4000 ${ }^{\text {94 }}$	TAA293 ${ }^{\text {97 }}$	8F	45	E188	100		O
1639	278	2N3856	80p	40467 A	57	BCY 10	27 p	B8Y29	17	0 C 41	20	FCH111 105	85	TAA310 125p	6 6F14	70	EAF42	36	${ }_{\text {PL83 }}$	5
${ }^{2} \mathrm{~N} 1701$	168	2 N 38.3 Aa	5 D	40468	${ }^{50}$	BCY 30	27	B8Y 32		OC42	85	FCH121 105p	8N7400 20p	TAA320 78y	3F15	65	EB91	20 p	PL84	O
${ }_{-2 \text { 2N1711 }}$	88	2 N 38 j 8	259	40528 40800	570	BCY 31	809	B8Y36	${ }^{5} 5$	OC44	150	PCH 191	8N7401 20 p	TAA3501759	6 F 18	60	EBCA1	56	PL500	\％
2N2147	72p	2N3859A	829	AC107	80 p	BCY 34	80 p	BEY 39	28p	OC70	15	FCH171	BN7403 BN7404 $20 p$ $80 p$	TAA522 ${ }^{\text {T }}$	H6	17 p			P3	
2N2160	678	2 N 3860	80 p	AC126	800	BCY38	400	B8Y43	50	0×71	189	FCH181 105	EN7405 20 p	TAA530 ${ }^{\text {4\％}}$	${ }_{655}$	25	EBF89		PY	P
2 N 2193	40p	2 N 3806	150 p	AC127	24 P	BCY 39	${ }^{60 p}$	BSY 51	88	OC72	183	PCH191 105p	8N7406 80p	TaA811469	6 J 5	${ }^{2}$	Ebl	60 p	PY81	\％
2 N 2193 A A	42	2N3877	10 p	AC128	$20 p$	BCY40	80	B8 Y5	82	OC73	80	PCH201 190	8N7408 20p	TAB101 970	\％		EC86	60 p	PY82	p
${ }_{2}^{2 N 2194}$	27p	2N3877A	40p	AC151	18 p	BCY41	$15 p$	$\mathrm{B8}^{8853}$	87	0 O 74	30	PCH211 180	BN7409 20p	TAD100 150p	6 J 7	45 p	EC8	${ }^{60} \mathrm{p}$	PY83	5
$\begin{aligned} & \text { 2N2194A } \\ & \text { 2N2217 } \end{aligned}$	$\begin{array}{r} 80 \\ 80 \end{array}$	2N3900	$37 p$ $10 p$	$\mathrm{AC152}$ $\mathrm{AClos4}$	28	BCY ${ }^{\text {B }}$ 8	58	昂Y554	400 90	－${ }^{0075}$	\％		SN7410	TAD110 1500	${ }_{6} 6$	40 p	ECC	${ }^{65}$	PY88	0
${ }^{2} 2218$	208	2 N 3901	97p	AC176	80 p	BCY54	820	B8Y79	90	OC77	$80 p$	Fcr	6N7411	8L702C 1470	6 L	50p	ECC85	30	PY8	O
N2219	20	2 N 3903	20p	AC187	，	BCY58	28	B8Y90	575	0c78	20	FCJ111 15	8N7413 ${ }^{\text {BNO }}$	UA702A	6 Q	40	EC	40	25	D
2 N 2220	${ }^{25}$	2N3904	0	AC188	25 D	BCY59	28	B8Y95	189	OC81	803	FCJ121 275	8N7416 84D	UA702C 770	68 A 7	40 p	ECF80	36 p	U26	P
${ }^{2} \mathbf{2 N 2 2 1}$	250	2 N 3905	300	ACY17	27 p	BCY60	${ }^{97}$	${ }^{\text {C424 }}$	${ }_{15 p}$	$0 \mathrm{Oc81}$	800	FCJ131 875p	GN7417 8 8p	UA703C 187p	$68 \mathrm{G7}$	40 p	ECF82	${ }^{36}$	U50	P
$\begin{aligned} & 2 \mathrm{~N} 222 \mathrm{n} \\ & 2 \mathrm{~N} 2242 \mathrm{~A} \end{aligned}$	20	2N 3906	$20 p$ $18 p$	${ }_{\text {ACY }}{ }^{\text {A }} 18$	84	$\underset{\text { BCY71 }}{ }$	200	C450 OET	0	OC82	${ }_{16 p}$	${ }^{\text {FCJ }}$ P 41415	GN7420	UA709C 459	6BJ7	40	EGF	65p	52	p
2 N 2297	800	2N 4059	10 p	ACY：0	200	BCY72	153	GET113	20	OC83	200	${ }^{\text {FCJ201 }}$ FCJ211 875	SN7423 SN7427 48p	UA710C 1809	B8L	20p	${ }_{\text {ECH2 }}$		1	
${ }_{2} \mathrm{~N}^{2} 23688$	15p	2 N 4060	12p	ACY21	80 p	BCY78	309	GET114	20 p	OC84	88	FCK 1014300	gN7428 80 p	UA723C 100	68N	85p	ECH49	75	282	p
${ }_{2 N}{ }_{2} \mathbf{N} 236989$ A	15 p	2 N 4061	12p	ACY^{2}	109	BCY79	3	GET118	${ }^{20 p}$	OC139	25	FCL101 2109	SN7430 209	UA730C 160\％	6897	40p	ECH81	30	U301	Op
$\begin{aligned} & 2 \mathrm{~N} 2369 \mathrm{~A} \\ & 2 \mathrm{~N} 2410 \end{aligned}$	159 429	2 N 4062	12p	ACY28	179．	BCZ10 BCZ 11	D	${ }_{\text {GET }}^{\text {GET873 }}$	2bp			FCY101 102\％		UA741C 809	$8 \mathrm{B4}$	85	ECH83	4	U801	1809
2 N 2483	27D	2 N 4248	15p	ACY40	20 p	BD112	，	GET880	301	OC171	8	2109			88	${ }^{2}$	ECL80	859	UABC80	10
2 N 2484	88 y	2 N 4249	15p	ACY41	15p	BD116	$118 p$	GET887	200	OC200	．	2CTIPRES	00PIV	A	6×4	85 p	ECL83	70	UBC4	
N2539	2	2N4250	18p	ACY44	4	BD121	\％	GET88	28p	$\mathrm{OCO}^{0} 1$	${ }^{60}$	Lastic	200 PIV	4A 55p	6×5	30%	ECL86		UBC81	\％
2N2540	28	2N42u4	429	AD140	47	BD123	809	GET89		OC202	78		400 PI	4 A	6×50	409	EF37A	20 p	UBF8a	40
2N2613	807		17p	AD149	689	BD124 BD13！	，	OET896	28p	OC203 OC 204 0			600 PIV	${ }_{\text {A }}$	10 C 2	500	EF39	${ }^{60 p}$	UBF89	53
2N2646		${ }_{2} \mathrm{~N}^{2} 285$	17 p	AD161	20p	BD132	\％	GET898	2t	0 C 205	75	80PIV 2A		${ }_{6 A}^{6 A}$	10 F	${ }_{60} 6$	EF		UC	49p
2N2711	2	${ }^{2} \mathrm{~N} 4286$	17 p	${ }^{\text {AD162 }}$	859	BDY 10	125	matiot	25	OC206	960	00PIV 2A	50 p 200 PI	${ }_{\text {BA }}{ }^{\text {65 }}$	10P14	1100	EF42	70	UCF80	P
2 N 2712	20	2N4287	17p	AF109	45	BDY20	105 p	MAT101	${ }^{25}$	Oc207	759	200 PIV 2 A	55 p 400PIV	6A 76\％	12AT6	$80 p$	EFP0	85	UCH21	\％
2N 2 2 2713	8	${ }^{2} \mathbf{N} 4288$	169	AF114	b	BDY61	185	matl20	55	OCP71	A	400 PIV 2 A	60 p 1800 P	8A 865	12AT7	800	EF85	$35 p$	UCH42	700
2N2714	200	2N4289	${ }_{18 p}^{17 p}$	AFl15	25 p	BPY62	1009	MAT121	${ }_{1075}^{251}$	ORP19	409		${ }^{\text {ec }}$		$12 \mathrm{AU7}$	300	EF86	0.	VCH81	408
2 N 2904 A	2 D	${ }_{2} \mathrm{~N}^{2} 291$	169	AF117	20 y	BF117	478	MJ420	${ }^{800}$	ORP61	429	mintuk	HRE EIDED	PLABtIC	12AXV	${ }_{30} 8$	EF99	300	UCL83	80
${ }^{2} \mathrm{~N} 2900$	25	2 N 4292	15p	AF118	009	${ }_{\text {BF }}{ }^{\text {P2 }}$	88	MJ421	80	P346A	25			HP 8	12BA6	400	EF92	35	UF41	）
${ }^{2} \mathrm{~N} 2900 \mathrm{Ja}$	20	2 N 4294	17 D	AF121	\％	BF154	100		10\％9	ST140	155				12BE6	408	EF183	35	UF80	45
2N 2 2906	20	2N4303	47 p	AF124	28p		$15 p$	MJ440	96	¢T161	300	100PIV	$\begin{array}{ll} 7 p & 81 \\ 7 p \end{array}$		12BH7	45	EF184	${ }^{35 p}$	UF85	403
2 N 2907	23	${ }_{2} \mathrm{~N}^{\mathrm{N}} 496 \mathrm{~S}$	18p	AF126	100	－${ }^{\text {BFI }} 163$	85	MJ481	126p	TI843	40	003200 PIV	8		190．${ }^{\text {di }}$	${ }_{50}$	${ }_{\text {EL }}$ E4 ${ }^{\text {a }}$		UF69	）
2 N 2923	15p	$2 \mathrm{~N} \mathbf{3} 027$	58p	AF127	16p	BF167	189	MJ490	1000	T1844	100	004 400PIV	8 D 10	－${ }^{85 p}$	${ }_{20 \mathrm{~F} 2}^{20 \mathrm{l}}$	${ }_{65} 5$	EL41	60	UL84	
2N ${ }^{\text {2N }} 29294$	15p	$2 \mathrm{~N} \dot{0} 028$	${ }^{578}$	AF199	${ }^{\text {csi }}$	BF170	83	MJ491	187 p	TIS45	87	05600 PIV	109	88	$20 \mathrm{L1}$	1100	EL	659	UY41	）
${ }_{-2 \mathrm{~N} 2926}$	15p	2 N 5029	47 p	AF178	4	日F173	190	MJE340	${ }^{60}$	TI	118	1000PI	－15p 16	8	20P1	80p	EL8		UY85	40）
${ }_{2} \mathbf{2 N} 292960$	100	2N3030	129	AF179	559	${ }_{\text {BF }}^{\text {BF } 178}$	309	MJE370	$8{ }^{8}$		${ }_{18}$	50＋	es $15 \% 100+1$	ese 20%	${ }_{20 \mathrm{P}}^{20}$	609	EL84	26p	VR10	
2 N 29261	－	2Nう174	68p	AF181	4	BF179	200	MJE520	0	TI849	$18 p$		T001 PECTIT1	E88	${ }_{20 \mathrm{P}}^{20} 5$	180	EL85	43 p		
2N3011	200	2 N 5175	88	AF186	380	BF180	45	MJE521	70	T1850	120		TUD MOUFTI		5 L	120		5		
2 N 3014	28p	2 N 5176	469	AF239	80 p	BF181	38	MPP102	40	T1851	100		6 A 10A		dol					
${ }_{2} 2 \mathrm{~N} 3053$	189	${ }_{2} \mathrm{NJ} 5242 \mathrm{~A}$	20p	$\mathrm{AF}^{\text {AF298 }}$	479	${ }_{\text {BF1 }}{ }^{\text {BF }} 182$	300			T1882	115			600 12．98						
－2N3054	${ }_{60} 0$	2N5245	45p	AF280	878	BF184	800	MPFF104	${ }^{779}$	T1853 $\times 8112$	15	200 PIV	$8{ }^{5}$		1N34A	109	${ }_{\text {BAX }}^{\text {BA }}$	129	${ }_{\text {OA5 }}^{\text {O．JM }}$	878 178
2 N 3133	\％0p	2 N 5249	67 p	ASY26	25 p	BF194	150	MP83638	8	XC141	25\％	00PIV	30	${ }_{729}^{685}$	1 N916	109	BAX16	7 p	OA	185
2N3134	${ }^{20 p}$	${ }^{2} \mathrm{No} 265$	225	A8Y27	${ }^{20 p}$	BF195	15	NKT124	48	ZTX107	15	00PPIY	4	877	Al19	78	BAY31	79	0as	100
${ }_{2 \text { N }}$ N135	\％	${ }_{2} \mathrm{~N} 5305$	${ }^{379}$	A8Y28	47	BF196	1	NKT123	71	ZTX108	12				AA129	10 p	BA Y 38		OA10 OA47	\％
2N3136	25p	2Na3306	109	A8Y29	27	BF197	15）	NKT126	77	ZTX109	$1{ }^{1}$	50＋lea	15\％ $100+1$	20%	AAZ13	109	BY100	15 p	0A47	3
2N3390	25	2N5307	37	ASY50	25p	BF198	15p	NKT128	77	2TX300	180	＋	－15\％ $100+1$		AAZ15	10 p	BY103	28p	0A70	7
2 N 3391	8	2N5308	37 p	A8Y51	38	$\mathrm{BF}^{\mathrm{BF} 200}$	85）	NKT135	7	ZTX301	15		I2x DIODE		BA100	15 p	BY122	87 p	OA73	10
${ }_{2}^{2 N} \mathbf{2 N 3 9 1 4}$	${ }^{30}$	2N 3309	68	A8Y04	25	BF224	14 p	NKT137	－	ZTX302	30		$1.5 \text { WATT }$		BA102					7
${ }^{2} \mathbf{2 N 3 3 9 2}$	179 159	2N5910	48p	A8Y67 ABY86	4	BF225	193	NKT210	20	ZTX303		$3 \cdot 8-38 \mathrm{y}$	$24-100 \mathrm{~V}$	$3 \cdot 9-100 \mathrm{~V}$	Ballo	870	BY126	15	OA81	0
2N3394	$15 p$	2N ${ }^{\text {2N3\％ü }}$	278	A8Y86	810	${ }_{\text {BF238 }}$	\％	NKT212	80	ZTX 600	15	$10 p$ each $26+10$	85 each	10．each	BA112	$70 p$	BY164	68	oaso	7
2 N 3402	23p	2N53＂8	2	AUY10	150	BF24	285	NKT213		2TX601	16		（10\％ $100+$	2\％	BA115	7	8Y210	36	OA91	7
2 N 3403	2ti	2 N 33 Bb	47 D	BC107	10p	BFW61	47	NKT214		2TX502	\％	TRAIEIETO	Dreount	$12+10 \%$ ；	BA141	38 p	BYZ11	03	OA93	78
	，	2N5366	$28)$	BC108	100	BFW87	，	NKT215		2TX603	17	$25+15 \%$ ；	$100+20 \%$	y one type．	BA142	$8{ }^{2}$	BYZ12	03	OA200	7
3N3405	45	2N6367	57.	BC109	10	BFW88 BFW89	9	NET216	25	ZTx 604	4	Pontase on al	11 Semi－Conduc	7p extra．	8A144 BA165		${ }_{\text {BYZ18 }}^{\text {BYZ }}$	${ }_{4} 8_{9}$	OA202	17

 RECORD DECKS B.S.R. Mono \ddagger

TELETON F. 2000 AM/FM STEREO TUNER AMPLIFIER $£ 12.95$
$£ 16.95$
$£ 18-50$ $£ 18-50$
$£ 18.50$ $18 \cdot 50$
19.75 £20.95 £22-40 iarrard AP76/G800E
Garrard A P'70/M75EI) B8K MeDonald MP50/M44-7 BSR McDonall MF60/M44-K

 moldring (: LT:0/tixool:

SINCLAIR EQUIPMENT

ge ofters. $\times 2.30$ amphtier
 4upply, £18.00. Carr. 37tp. $2 \times$ Zhil ampli£20.25 Carr. 37 tit. Transformer for PZ8, 82.97 ertra. Add to any of the above
84.45 for antive filler unit and $£ 13.80$ for pair of Q16 sucakers. Project fiof F2I Tumer £15.75. (arr. 37 6 p . New Proiect 60 £20.97.
 Carr. 37 tp. 3000 A e43.05 (arr 37 ! -- $\frac{\text { LATEST CATALOGUE }}{\text { CATMPI }}$ Our 7th edition given fuli detaids of
comprehensive range of $\operatorname{CI}-\mathrm{FI}$ EQUIPMEN COMPONENTS. TEST EQUIPMENT and DISCOUNT COUPONS $\$ 20$ pages, fully i lustrated and detailing housands of iteme at hargain prices.

Practical Electronics

SEND
NOWONLY
40p
P. \& P.

10p
 price. 5 watts r.m.s. per channel. Tape/
Cer phono inputs. AFC/Built-in MPX OUR PRICE £28.25. Carr. 50

SINGLAR IC-12

TAPE CASSETTES Pop quality Hi Fr lum		
C60 3 for 75p	10 for 22.35	$\mathbf{P} . \boldsymbol{*} \mathbf{P}$.
C90 is for 81.05	10 for $£ 3.30$	
(1120 3 fur $\mathbf{2 1 . 3 5}$	$11 \% \mathrm{forem} \times 20$	extra
Tapee Head ¢'leanm	30p each	
NS-1,600W ST	EO AM	

tre

Exceptional budget
price amplifier. AH

AH.OOI HEADSET

Wharfedale mid-range hi-fi dnits As used in world famous
systen. $5^{\prime \prime}$ dla. Impe. dance $4 / 8$ ohme. High ${ }_{20}$ fux watta rme. Brand

MCA. 220 AUTOMATIC VOLTAGE STABILISER Input 88-125 VAC. Output
1un VAC or 176-250 output 240 Vac. 200 VA
rathg. 811.97 (93rt. 50 p .

BELCO AF-5A 8OLID 8TATE SINE SQUARE WAVE C.R. OSCILLATOR
 $18-200,000 \mathrm{~Hz}$ Square
$18-50,000$ $18-50,000 \mathrm{~Hz}$.
Output max $+10 \mathrm{~dB} \quad 10 \mathrm{k} \Omega$ Operation batteries.
Altractave two-tone case ilin $>51 \mathrm{n}$
Price 817.50 . Carr. 17 tp .

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

bridge offering ex cellent range and cost. Kanges: R. Kauges
L. $1 \mu \mathrm{H}-1 \%$
1% $\begin{array}{cccc}\text { L. } \\ \text { HENRYS } & 1 & 1 & 1 \\ 6 & \text { Ran. }\end{array}$
 1:11100. 6 Ranges $+1^{\circ}{ }_{0}$. Bridge voltage at Meter indicataon. Attractive \because tone metal

UNR-30 RECEIVER
4 Bamls envering $50 \mathrm{KHz}_{2}-30 \mathrm{MHz}$ B.F.O.

30 MHz . FLT: fore $150-400 \mathrm{KHz}, 550 \mathrm{KHz}$ product fetector end. 2 mech. filters. product metector. variable B.F.O., noise
limiter, s Meter. Bandspread. RF Gain.
 £50. Varr. 50 p .
O/15/230v. step up or otep down. Fully sbrouded
240° WIDE ANGLE

1 mA METERS
$\begin{array}{ll}\text { MW1-6 } & \text { 60mm square } \\ \text { E3.97!. } & \text { MW'l- } \\ \text { somm }\end{array}$
square £4-97t. P. \& r^{2} MICROPHONE Moving coil. Ideal for language teaching Communications.
whms. Microphone

COMMUYWOOD CX203

0000000 .
Solid state. ©uverage 1015 band 200-420 l\|uminated slide sule diad
Bumispreal serial tial.
ANL. 'S' moter am/CWise BHO. AVC. speaker and phone socket. Operation 2 ± 01
240 V AC or 12 V DC. Size $325 \times 966 \times$ 150mm. Complete with instructions and
circuit. 228.50 . Carr. 50 .

SPECIAL OFFER! SINCLAIR PROJECT STEREO FM TUNER而

The firat tuner in the world to use the phace lock loop princlple-a used for recelving aignals from space craft because of its vantly rantastic regults even in diffeult areas. Tuning range 87.5 to 108 M 1 I z. Automatlc stereo indicator. Hensitivity: $2 \mu \mathrm{~F}$. AFC range $\pm 200 \mathrm{Kilz}$. Signal to noise ratlo: 65dB. Out put voltage $2 \times 150 \mathrm{mV}$. Operating
voltage $25.30 \mathrm{v}^{\circ}$ D.C. Size: $93 \quad 40 \times 20$ imm. REC. LIST PRIC' $£ 25$.

$$
\underset{\text { ONLY }}{\underset{\text { OUR PRICE }}{ }} \mathbf{\& | 5 \cdot 7 5} \quad \text { P. } \underbrace{s p}_{25 p}
$$

Unrepeatable offer-buy now and save over to
PS. 200 REGULATED POWER
SUPPLY
tolids state. Variable output $5-20$ volt D.C'. up towamp.
Independent
meters to monitor voltage and current.

PS 10008 REGULATED POWER SUPPLY
 Solid state Output 6, 9 or 12 volt DC up to 3
amps. Mcter to monitor current. Input $220 / 240 \mathrm{~V}$ 6hin 811.97 . P. \& P. 25p.

POWER RHEOSTATS

enamel. Heavy duty brush piper. Continuous rating. Wide range ex-stock Single hole fixng, tin. dia. shaits. Bulk quantities avaitable. 25 WATT. 10/25/50/100/250/500/1,000/1.500/2.500 or 5.000 ohms. 90p. P. \& F. 7tp.

From a recent copy of "Everyday Electronics"

The advantages of this unique chassis are:

1. From stock, we can offer you a choice of 188 sizes, ranging from 3×3 : 1 in . to $14 \times 14 \cdot 4 i n$.
2. All parts are sold separately, so that a spoiled plate can be quickly and cheaply replaced. This is invaluable to the experimenter, who can use the same sides over and over again.
3. By fitting a plate to the bottom, a whole range of small metal cabinets, complete with handles if required, can be assembled.

This unique UVIVERSAL CHASSIS is obtainable ONIX from Home Radio (Components)Ltd.

A full list of plate sizes, together with reference numbers for ordering, is given in our Components Catalogue. This famous "Constructor's Bible" lists over 8,000 components, over 1,500 of them illustrated. It provides the quick, simple means of ordering all your component needs. Every catalogue contains 10 vouchers, each worth $5 p$ when used as instructed. The Catalogue costs $70 p$, including postage and packing. Drop us a line or use this coupon.

Problems and deal with some Now to try and deal have had a of the problems. We reader's asking where number of readerassis parts that the universal chassif for some prowe have specified for answer is jects Radio Components Lid
Home Rat who advertise their catalogue in our pages regularly.

Editorial extract reproduced by kind permission of the Editor
of "Everyday Electronics'
Our famous Universal Chassis, which for many years has formed the basis of thousands of radio and electronic projects, consists of a top and four separate sides. The five parts, which are made of 18 S.W.G. aluminium, can be quickly assembled with the screws provided to form a chassis even more rigid than the standard type.

POST THIS COUPON with your cheque or postal order for 70 pence

It would help us considerably if we knew whether this was your first Home Radio Components Catalogue. If it is please place a tick in the box.

Ring 01-648 8422

Ask for details of our Credit Account Service

The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

This is my first H.R. Components Cotalogue \square Name. Address.

HOME RADIO (Components) LTD.
Dept. PE, 234-240 London Road, Mitcham CR4 3HD

OUR BUSNESS

This magazine has its own established editorial conventions relating to constructional projects. These have remained unaltered since we started business and we have no plans to depart from these well proven conventions in the future. Perhaps these conventions should be clarified for the benefit of our readers.

Firstly, let us deal with the "exceptional". From time to time a constructional project appears with the prefix "Practical Electronics" incorporated in its title. This distinction is not awarded haphazardly. Our name is attached to selected projects only when the following conditions are fulfilled: the project is unique, in that it offers the home constructor something not previously available in a detailed comprehensive form, and it represents a significant or important new application of electronic circuitry. The original concept for the project may have come from the staff of this magazine: or may be the result of consultation with an outside designer. In either case, the actual development and production of the first model is put in the hands of a specialist contributor.

Apart from such commissioned designs, there are examples where a completed project has been offered to us in the normal way (without prior collaboration in the initial planning stage) and upon examination the project proves to "qualify" in the terms stated above. In such an event it may be decided to "adopt" this design to bring it into a special, close relationship with this magazine. This is subject to the agreement of the contributor naturally-but none so far has raised any objections to an adoption proposal!

We are certain that every one of the selected designs published under the P.E. insignia has been a credit to the designer concerned; furthermore we believe these designs stand out as notable landmarks in the eventful story of home constructed electronics, an activity which has progressed and expanded so dramatically over the recent years.

This special singling out of certain projects in no way diminishes the merit of the other projects published in these pages. All designs are rigorously vetted before acceptance and many of these do indeed indicate a very high degree of technical inventiveness and skilful workmanship on the part of the individuals responsible for their conception and subsequent execution.

Constructional projects are obviously the life blood of this magazine. Only projects designed and built expressly for the home constructor (the designer may himself be either a professional or an amateur in the electronics sense) are considered for inclusion under this
continued on page 922

THIS MONTH

CONSTRUCTIONAL PROJECTS

A.F. SIGNAL GENERATOR 918
P.E. ELECTRONIC PIANO-3 924
SIMPLE C-R BRIDGE 934
P.E. DIGI-CAL-5 940
SPECIAL SERIES
DESIGNING WITH I.C.s-2 961
GENERAL FEATURES
INGENUITY UNLIMITED 953
NEWS AND COMMENT
EDITORIAL 917
POINTS ARISING 922
SPACEWATCH 923
P.E. AT THE AUDIO FAIR 933
INDUSTRY NOTEBOOK 938
NEWS BRIEFS 948
PATENTS REVIEW 949
ON THE FRINGE 9.50
READOUT 954
SPECIAL SUPPLEMENT
ELECTRONIC MUSICAL INSTRUMENTS
Our December issue will be published on
Friday, November 10

[^3]

frequency (low resistance) end of each range, otherwise there is a tendency for the output level to dip beyond the auto-control circuit. VR2 can be omitted and the values of R1 and R2 set by trial. For example, in the prototype the values of R1 and R2 were 4.7 and 5.1 kilohms respectively.
The capacitors C1 to C8 determine the frequency ranges as follows:

Capacitors	Nominal Value	Frequency Range
$\mathrm{C} 1, \mathrm{C} 2$	120 pF	19 kHz to 200 kHz
$\mathrm{C} 3, \mathrm{C} 4$	$1,500 \mathrm{pF}$	1.9 kHz to 20 kHz
$\mathrm{C} 5, \mathrm{C} 6$	$0.015 \mu \mathrm{~F}$	190 Hz to 2 kHz
$\mathrm{C} 7, \mathrm{C} 8$	$0.15 \mu \mathrm{~F}$	19 Hz to 200 Hz

It will be noticed that Cl and C 2 are made less than the expected 150 pF , due to the effect of stray capacitances. To ensure accurate range multiplication each of these capacitors may consist of a 100 pF silver mica fixed capacitor in parallel with a 30 pF air spaced trimmer which is adjusted during calibration. In the prototype it was found that single fixed 120 pF capacitors of close tolerance provided sufficient accuracy.

POSITIVE FEEDBACK

The amount of positive feedback in the oscillator is critical. It must be sufficient to sustain oscillation without being so large that it drives the transistors off the linear part of their characteristic and produces unwanted harmonic distortion.

Unfortunately the changing characteristics of the load, power supply, and frequency selective network, tend to cause large variations in signal level which can only be overcome by using some form of automatic level control. Changes in level due to range
switching can be countered by switching in different series resistors (VR3 to VR6), but this is insufficient when, as in this case, the frequency swing on each range is in the order of $10: 1$, consequently a more sophisticated arrangement is employed.

The usual method of solving this problem is to use sensitive thermistors which are both fragile, and costly. The circuit in Fig. 1 achieves the same result by using a 6 volt 40 mA lamp. The lamp in series with a 1502 resistor is connected across the oscillator output.

As the output voltage increases, so does the current through the lamp, heating the filament and causing the lamp resistance to rise. This has the effect of reducing the voltage appearing at the junction of the lamp with the resistor, and thus the positive feedback. With careful design, the circuit becomes self balancing, and the output level stable.

It will be noticed that the lamp normally runs just below the level where it produces light, although under certain conditions a glow can just be seen. The nominal current through the lamp is in the order of 20 mA .

The output of the oscillator is taken direct from the emitter of TR2 as a sine wave, or via TR3 and TR4 as a pulse or square wave. TR3 is a grounded emitter amplifier with a high value collector load resistor. Squaring occurs because the input signal is sufficient to bottom the base and collector characteristics on alternate half cycles.

Resistor R8 isolates the input circuit of TR3 from the output of TR2, thus preserving the sine wave output, and with R9, regulates the input to TR3 to ensure a square wave mark space ratio of $1: 1$. Adjustment of these resistors provides a convenient

Fig. 1. The circuit diagram of the complete a.f. signal generator

Fig. 2. The front panel drilling details to take the controls and sockets. The component board is bolted to this panel before the panel is covered with adhesive plastics sheet

Fig. 3. The components are assembled on a tag board attached to the front panel

method of tailoring the mark space ratio to individual requirements.

Capacitor C12 provides a degree of high frequency compensation. Transistor TR4 matches the high load resistance of TR3 to the comparatively low impedance output circuit.

OUTPUT TERMINALS

Selection of sine wave or pulse is by switch S2a, which is ganged to S 2 b and S 2 c in series with the battery to put the unit to "off" in the centre switch position.

The standing d.c. potentials at the emitters of TR2 and TR4 are blocked from the output by capacitor C11, which must be of sufficiently large capacitance to pass the lowest frequency without significant attenuation.

The output control VR7 can be reliably calibrated down to 100 mV , but for many applications, such
as testing pre-amplifiers, this is too high; nence the alternative output attenuated by network R10 and R11 which enables an output level of 10 mV to be selected. Separate output sockets are preferred to a switched attenuator, as they facilitate simultaneous connection to two circuits, e.g. a test load and a monitor.

Terminals connected across the battery and brought out to the front panel facilitate battery checking, and may perhaps be useful in providing a power source for some other item of equipment but should not be allowed to interfere with the oscillator stability. The normal voltage across these terminals will be from 7.8 to 9 volts depending on the state of the battery. The battery should be replaced when the voltage falls below 7.8 V on load.

CONSTRUCTION

The aluminium case was purchased ready made and consists of two "chassis" type box trays with butting corners. The shallow tray acts as a lid and becomes the front panel. All of the components are mounted on it including the battery, as shown in the photograph.

The frequency control VR1 dominates the front panel with sufficient space around it to accommodate a large pointer knob and associated calibration. It is positioned off-centre in order to provide accommodation for the battery which is mounted alongside VRI, and retained by spring curtain wire stretched between two 4B.A. bolts.

Switches S1 and S2, and the output control VR7, are mounted in line across the lower part of the panel. Their fixing also retains the tagboard on which all the other components including the transistors and preset controls are mounted. This arrangement facilitates wiring, which is kept as short as possible to minimise stray capacitance effects.

The holder for lamp LP1 is also wired on to the tagboard between S1 and S2. The output jacks and battery test terminals are fitted at opposite ends of the front panel in line with VR1.

In order to provide a suitable background for the calibration marking and switch legends the front panel is covered in self adhesive plastics sheet. The same material is used on the underside to insulate the tagboard. The panel is covered after it has been drilled and before the components were finally mounted.

A single sheet covered the whole panel including the holes, and unwanted parts were removed with a half round file. The covering will take instant lettering transfers, typewriter ink, or ball pen markings, which are then made permanent by a coating of clear varnish. Fingernail varnish is ideal. Without this protection the marks are easily removed using a clean cloth.

All the required words and figures can be typed on to a single sheet of plastics which is then varnished. It is a simple matter to cut out the appropriate word or figure as a label and attach it in the required position on the panel during the test and calibration process.

TESTING

After carefully checking the wiring, and correctly connecting the battery, switch the unit on to sine waves. For this first test a current meter was inserted in series with the battery to monitor the
current, which should not exceed 25 mA . With the output connected to an oscilloscope, the appropriate positive feedback preset potentiometers VR3 to VR6 were adjusted for each range so that the level at the output remained sensibly constant over the entire sweep of the frequency control without there being any apparent distortion. The aim is to produce a clean sine wave with minimum harmonic content.

Due to the thermal lag of the lamp LPI, the level tends to "bounce" if the frequency control is adjusted too rapidly. A tendancy for the change in level between the low and high frequency ends of the frequency control to be outside the control circuit was corrected by adjustment of VR2.

Having established that the sine wave generator was operating satisfactorily, the unit is switched to square wates, which should be good up to 20 kHz . but thereafter deteriorate as the frequency is increased.

As an alternative to an oscilloscope, headphones or an amplifier and loudspeaker could be used for audible testing of the unit over the three lower ranges. The higher frequencies are of course outside audibility. The positive feedback preset potentiometers should be adjusted to the point where oscillation is sustained over the entire range. Remember that too much feedback will produce a distorted waveform. On sine waves the tone is clear and pure. On square waves the harmonics become noticeable. the tone harsh, and apparently louder.

CALIBRATION

Frequency calibration is most easily done using a counter. The writer used an oscilloscope to compare the low frequency end of the output against the 50 Hz mains supply (via a suitable low voltage isolating transformer), and the high frequency end against a separate 100 kHz oscillator beating against the carrier frequency of the transmission (BBC Radio-2 Long Wave 200 kHz 1.500 metres) for the high frequencies.

An alternative method would be to compare the note heard through headphones with that from at well tuned piano. Piano keyboard frequencies based on orchestral pitch ($\mathrm{A}=440 \mathrm{~Hz}$) are given in various reference books and cover the range 27.5 Hz (bottom A) to 4.186 Hz (top C).

The output control was calibritted in volts peak to peak becaluse this value is meaningful for square waves as well as sine waves. Again an oscilloscope was used. An uncalibrated oscilloscope could be used for this purpose with reasonable accuracy by setting it up against the a.c. voltage range of a multimeter fed by the unit switched to sine waves at about 50 to 100 Hz . One volt r.m.s. on the meter is $1 \times 2 v^{2} 228$ volts peak to peatk.

Suppose that the oscilloscope is adjusted so that 2.8 V peak to peak produces a deflection of 5.6 cm . then the oscilloscope sensitivity is 5.6/2.8 = $2 \mathrm{~cm} /$ volt, and so 500 mV peak to peak would produce a 1 cm deflection. Lower values can be measured by expanding the trace. For example, with 500 mV peak to peak producing a deflection of $5 \mathrm{~cm}, 100 \mathrm{mV}$ peak to peak would produce a 1 cm deflection.

The values of the fixed attenuator network R10 and RIl are nominal preferred values and were selected on test to reduce the output to one-tenth using the methods of measurement just described.

OUR BUSINESS continued from page 917

heading. We do not include commercial kits in this category. Not that we have anything against kits. Some of our best advertisers are in this business, and for the man in a hurry, there's a lot to be said in their favour. But we feel it would be a mis-use of our editorial pages to describe in detail how to assemble some such kit. Provision of this kind of information is the business of the kit suppliers.

We know our business: encouraging genuine enthusiasts to build and learn; and encouraging individual circuit designers and application innovators to produce novel and practical projects to sustain this absorbing hobby. The steady expansion of our wide ranging readership at home and overseas convinces us that this policy is the right one. The almost insatiable demand for original designs is a challenge, but one our contributors and ourselves eagerly and willingly accept.

As stated in the opening paragraph, no changes are contemplated. (Why interfere with a successful formula? Practical Electronics will continue as an unrivalled source of original design and construction information conceived and planned throughout with the private constructor first and foremost in mind.
F.E.B.

POInIS Bilsing

NOUGHTS AND CROSSES GAME (Oct. 1972)

In Fig. 6 p. 834 (caption omitted), all contacts on wafer Sle should be blank except for a "1" against position 5 Instead of position 6 as shown.

The 10 -pole 10 -way switch can be made from "Makaswitch" components but if a ready made switch is purchased, all wafers being make-before-break, then one wafer can be converted to break-before-make as required by carefully trimming the wiper contact until it does not short two contacts as the position is changed.

COMBINATION LOCK (/ngenuity Unlimited Oct. 1972)
The transistors can be almost any low power pno switching types or general purpose types, so long as they are all the same.

TTL EQUIVALENCE GATE (Ingenuity Unlimited Oct.

 1972)In the diagram the last gate before the output has two inputs. These inputs are connected to the outputs of the preceding pair of gates respectively; they should not be joined together.

In the truth table, both "difference" conditions should have a " 1 " output.

TRANSELECTOR (July 1972)
The value of R 6 is $2 \cdot 2 \mathrm{k} \Omega$.

WHO'S WHO

I.C. INTERCOM in the October 1972 issue has been accredited to the wrong author. The author of this article is J. LEWIS, to whom we offer our sincerest apologies. We regret any inconvenience which may have occurred to Mr Lewis and to Mr R. A. Penfold, who is the real author of the CR Bridge in this issue.

BY FRANK W. HYDE

ORBITING OBSERVATORY

The largest telescope that has ever been put into space is carried aboard the newest orbiting observatory $O A O-C$. It is to be named Copernicus in a tribute to Nicklaus Copernicus as the father of modern astronomy. This forms a fitting part of the celebration of the 500 th anniversary of his birth.
The observatory weighs some $4,900 \mathrm{lb}$ and orbits at 460 miles altitude. The spacecraft is about ten feet long and the 32 -inch reflecting telescope occupies the centre of the vehicle.
In an effort to save weight the mirror is made of fused quartz and has been reduced in thickness to save 2501 b . The actual weight is 1051b as against a normal reflecting mirror which would amount to about $350 / 3601 \mathrm{l}$.
To achieve the necessary rigidity and constant figure the thin main disc is supported by quartz ribs and since gravity is reduced there is a further safeguard by carrying the telescope in space. This type of construction has been put into operation before by amateurs in an effort to reduce costs using the normal glass.

The 32 -inch primary mirror collects the light rays and directs them to a smaller mirror 3.9 inches in diameter and thence to a spectrometer. The received data is then telemetred to earth.

This telescope is designed for the observation of ultra-violet light which is absorbed in the atmosphere. By working at a level where the atmospheric effects are minimal very valuable observations can be made. This type of work has been continuing for some time but with much smaller telescopes.

In addition to the large telescope there are three smaller telescopes on board the main purpose of which
is the X-ray observations that are to be made. These telescopes are part of the equipment provided by University College, London.

Work on the detection of X-ray sources has been going on for some time and to date some 200 sources have been identified.

In the early days X-ray studies were made with the sounding rockets and later with the famous Explorer 42 perhaps better known as UHURU which was launched in December 1970. The observations confirmed that there were X-radiations from distant sources very much greater in amount than those from the sun. It is believed that these may come from the far distant parts of the universe.

The record of these orbiting observatories has been an extremely good one. Apart from the unfortunate accidents during the early stages of the series, with the first one failing three days after launch in April 1966, and the third one failing to attain orbit because of the malfunction of the shroud jettison mechanism, the programme for the four observatories in this project has had its rewards. Some 10,000 observations of celestial objects have been made including major observations of comets and in May 1972 the event of a supernova.

On board the OAO-C observatory will be a computer capable of storing about 1,024 commands from the ground. This gives comprehensive and fully automatic operation while within range of the ground station at Rosman, North Carolina.
Any information obtained by the Copernicus observatory will be freely available to researchers all over the world.

LAST OF THE APOLLO'S

The Apollo 17 spacecraft left its berth at vehicle assembly Cape Kennedy, Florida on August 28. 1972. This spacecraft, the last of the Apollo series will carry the sixth team to a landing on the moon.

This last mission for this period will commence on Wednesday, December 6 at 21.53 EST 102.53 GMT Thursday) for the 12 -day round trip to the moon. Three days will be spent on the surface of the moon.

Making his first space flight will be 37 -year-old Harrison H. Schmitt, Ph.D., who is the first geologist to take part in an Apollo mission. His companion on the lunar surface will be 40 -year-old Eugene A. Cernan, a veteran of some 264 hours of space flight and one of which took him to within 8 miles of the moon. Cernan will also undertake specially selected tasks during the mission.

The two astronauts will set up the fifth automatic station on the moon. The instruments to be set
up are varied and one of these is the tidal gravimeter or lunar surface gravimeter. This instrument has been under development since 1964 and will be used to test the theory of gravity waves. This is at the moment a most important point in understanding the nature of the forces which celestial objects exert on each other.

Another type of gravimeter named the traverse gravimeter will be carried on the lunar rover. With this instrument the astronauts will record the changes in the gravity that take place over the lunar terrain. Thus, the anomalies will enable comparisons to be made with earth gravity changes.

Explosive measurements with seismic instruments will show the profile which will help determine the physical structure of the moon. Also operating will be instruments to check the cosmic dust and meteoritic fall-out, to see what are the effects of erosion on the moon.

The spacecraft will be launched on a Saturn V rocket and will be the first to be launched after dusk.

THE EXPLODED PLANET

Many people have explained the asteroid belt, the multitude of small bodies from less than egg size to chunks large enough for a space probe to land on, by the theory that there was a planet which was disrupted by the tremendous forces that exist in the solar system. This belt which lies between the orbits of Mars and Jupiter is being traversed by the Jupiter probe which may take photograptis of some of them. In terms of proximity, of course. there is not likely to be many of these fragments near each other.

The problem of this debris is highlighted by the recent work of Michael Ovenden. Formerly of London and Edinburgh, Professor Ovendon is now at the University of British Columbia. He has been seeking a solution to certain celestial problems and his latest theory seems to be a satisfactory way of explaining the asteroid belt.

The various bodies which all interact with each other tend to settle to a minimum attraction position. Ovenden has checked this on such systems as Barnard's star which has planets. He has been able to get to an accuracy of 99 per cent with his theory.

To get the sums right for the earth and the rest of the solar system a planet 90 times heavier than the earth would be needed. It seems that the asteroid belt formed into a planet would be needed. It seems that the asteroid belt formed into a planet would satisfy this criterian. So he has called this planet Aztex. Though its real existence cannot yet be proved it is a good point from which to proceed.

ELECTRONIC

Part 3

By A. J. Boothman B.Sc.

THIS part of the series is devoted solely to the main circuit boards of which there are 13 containing 90 per cent of the electronic components involved in the project. For convenient reference this board has been called the pitch board.

The function of the board, as described previously, is to generate a basic pitch and sub-harmonics of the same, followed by attack, decay, mixing, and tone circuits.

PITCH OSCILLATOR

The important requirements of the pitch oscillator is that it should have good long term frequency stability, good stability under varying ambient temperatures, and that it should present a suitable waveform which will reliably drive the frequency divider circuits. The circuit used is given in Fig. 3.1 which shows the various circuit elements that go to make up a complete pitch board.

The frequency of operation is determined by the tank circuit components C48 and L1. The inductance L1 is variable and is wound on a bobbin set in a ferrite core. After initial setting up C48 is fixed and comprises a number of capacitors in parallel dependent on the pitch concerned.

The oscillator transistor (TR16) is followed by a high gain buffer stage (TR17) which squares the waveform to give sufficiently fast edges at the collector to drive the first divider IC2. The cathode of diode D34 is returned to the divider supply rail in order to limit the positive excursion of the output waveform from TR17 ensuring that the maximum voltage presented to the divider input is approximately $5 \cdot 3$ volts.

PITCH DIVIDERS

In order to produce sufficient tones to cover the five octaves the fundamental frequency from the
buffer transistor is used for the top octave, whilst the other notes are produced at the outputs of four integrated circuit dividers which are packaged in pairs.

With the increase in availability of certain integrated circuits, the cost of these devices has dropped considerably, and to such an extent that in addition to circuit board area saving and ease of assembly, the incorporation of integrated circuits results in a significant cost reduction when compared with equivalent discrete circuitry.

The divider circuits (IC2, IC3) are dual-in-line 14 lead packages each containing two flip-flops. The type of element used is described as a D-type edge triggered JK flip-flop. From its description it follows that the input waveform must have clean fast edges for reliable operation. For second, third and fourth stages this is provided by the previous flipflop, but for the first stage it is important that the output from TR17 should have fast edges. To ensure that this condition is met R119 is kept deliberately low.

FLIP-FLOP ACTION

The D-type flip-flop element (Fig. 3.1) operates in such a way that when a leading (positive going) edge appears at the clock input (CP) then the output at Q takes up the same state as that present at the D input immediately prior to the appearance of the clock pulse. Thus, if D was at a high voltage before the input signal rises then Q will take up the high voltage state and remain there after the input voltage falls again. If the input at D is then changed to a low voltage then Q will change to a low voltage as soon as the input waveform rises.

The state of the D input is controlled by externally connecting the \bar{Q} output to the D input. By definition Q is the complement of Q and so it can be seen that when the clock input is low D is always

Fig. 3.1. Circuit diagram of a pitch p.c.b.
the opposite to Q , such that when the clock input rises Q will always change state, and remain in the new state until the clock has both fallen and risen again, at which point Q will again change state.

Since the clock input signal from the pitch generator is a square wave signal f, the Q output from the first flip-flop will be another square wave signal at half the frequency, $f / 2$.

The other sub-harmonics are similarly generated by routing appropriate Q outputs to succeeding flipflops.

ATTACK AND DECAY ENVELOPE

The most important area in determining the character of this instrument is that concerned with the envelope, or attack and decay characteristic.

In order to obtain a percussive effect a fast rate of rise is required on the leading edge, followed by a rapid decay to a medium level of sound, and further followed by a relatively slow decay. On releasing the key the decay of sound should be fast but in the case of a piano this does take a finite time.
A string piano is activated by a hammer system where the level of attack is determined by the impact velocity of the hammer on the string, which is proportional to the rate of acceleration of the finger placed on the key. In the case of the electronic piano, in addition to a simulation of the hammer velocity action on each key, the maximum level of attack is determined by a five position touch switch which presets the key voltage supply.

Fig. 3.2(a). Envelope circuit output characteristic in the non sustain mode with key released after 0.3 seconds. (b) Envelope circuit output characteristic with (1) key held depressed in the system or non sustain mode; (2) key released after $0 \cdot 3$ seconds in the sustain mode

The influencing factors involved are listed as follows:
(a) The rate of rise of the leading edge of the envelope (attack).
(b) The height of the leading edge.
(c) The amount of rapid fall following the attack.
(d) The length of decay when a key remains depressed.
(e) The length of decay after the key is released (non-sustained).
(f) The length of decay after the key is released with the sustain pedal on.
It is of course possible to display the output waveform of a string piano on an oscilloscope, and this could be followed by a point by point attempt at electronically simulating the envelope. In experimenting in this way, combined with straightforward comparative ear tests, the author noted certain features of the electronic equivalent which made it desireable to depart from an identical copy of the string piano envelope.

SLOW DECAY ENVELOPE

The curve shown in Fig. 3.2a indicates the envelope required under non-sustaining conditions, i.e. when a key is depressed and released fairly quickly without use of the sustain pedal.

The level of initial attack on a string piano, when compared with the mean level of sound output, is very high, and a similar ratio is difficult to reproduce electronically if economical amplifier and loudspeaker capacities are to be used. This is the first point of compromise which has to be considered. Having recognised the need for a clear pip at the commencement of the envelope it is then necessary to consider the rate of decay in the medium level of sound region mentioned above. This is clearly coupled with the full decay period and again due to peak/mean power considerations it is somewhat slower than on a string piano.

Finally, when the key is released on a string piano a damper comes into operation immediately and quickly kills the vibration of the string. This action is reproduced realistically by an analogous electronic circuit.

LONG DECAY ENVELOPE

The curve shown in Fig. 3.2b indicates the other two possible conditions.

1. When the key is held depressed for a considerable time.
2. When the key is released quickly, but the sustain pedal is depressed.
In both cases the first part of the envelope is

A completely assembled pitch p.c.b.
aquired to be exactly the same as in Fig. 3.2a. If the key remains depressed then the output decays slowly to zero in a time that is easily varied by the suitable choice of one resistor value in each envelope circuit. In the prototype this provides a decay of approximately 3.5 seconds, which is somewhat larger than for a string piano.
In the key released, sustain pedal on condition, it is more important to have a large amount of rapid fall following the attack in order to retain the percussive characteristic of the instrument when repeatedly playing the same note at a fast rate. As mentioned earlier a string piano has a very high peak capability and a fast initial decay. This allows fast repetition of one note whilst, even under sustain conditions, maintaining the discrete identity of each impact via its attack characteristic.

The attack characteristic of the first curve in Fig. 3.2a is insufficient to reveal differentiation between consecutive notes in the sustain condition, and a second characteristic is therefore introduced whereby a second fall in level occurs as the key is released, followed by a shorter decay time of approximately 3 seconds.

THE ENVELOPE CIRCUIT

Each of the d.c. key inputs in Fig. 3.1 are shaped by envelope circuits. As can be seen there are five duplicated circuits that precede the mixers to fulfil this function. To understand the action of these let us look at the topmost shaper of Fig. 3.1.
A note is initiated when a d.c. level of between 11 and 18 volts, depending on the touch setting, is applied to the input of the circuit via the keyboard. Capacitor C33 is charged via R44 and C28, with R44 providing some slight slowing of the rise time in order to protect against key noise, and also being a factor in determining the height of the attack pip.

Following the relatively quick charging of C33, C28 is charged which means that point " X " falls towards ground potential. The presence of D10 isolates the input circuitry from C33 and there is no further interaction between the two circuits. Removal of the key voltage results in the discharge of C28 via the diode DII and resistor R45.

It is important that R54 should be sufficiently low to provide fairly rapid charging of C28, and
that R45 should be sufficiently low to allow complete discharge of C28 before the next key voltage is applied. However, both resistors are involved in determining the voltage applied to C33 during attack (voltage sharing with R44), and all values are therefore both important and interrelated.

TOUCH SENSITIVITY

In order to give touch sensitivity R45 can be replaced by a grounded switch contact in the keyswitch action which becomes a double throw switch between a zero volt potential and the supply voltage on the second pole.

During the interval when the switch is changing over, C28 is charged by a bleed resistor between rail voltage and the centre contact of the changeover switch. This reduces the attack voltage excursion at the point when the changeover is complete, by an amount dependent on the time taken over the movement between the two poles. Further details on this will be given later.

SUSTAIN AND DAMPING

Now, ignoring the input circuit, we can consider the sustain and damper portion of the envelope. The keying operation had charged C33 to approximately 5 volts, and whilst the key remains depressed point " Y " is held at approximately 14 volts, thus isolated from the output line by diode D28.
In this condition C33 is slowly discharged by the combined effect of R59 and the load placed across the output. If at any point during this decay the key should be released then D28 and R64 would appear across the output, and since R64 is made very low compared to R 59 this provides the damper action.

When the sustain pedal is in operation D8 is held at approximately 4.5 volts which causes a quick drop in the output voltage on release of the key, but then holds off the action of R64 during the remaining part of the sustain period.

TONE FORMING

Tone forming in the system is very simple and consists only of a low pass capacitive filter after each transistor. The complete circuit of the combined envelope and tone forming section is shown in Fig. 3.1.

As stated in the first article the prime purpose of the project is to provide a reliable portable keyboard instrument with a percussive characteristic similar to that of the piano. The tone of a piano is of course extremely variable from one instrument to another, and whilst it is possible to incorporate involved tone circuits to match one particular piano colouring, the author decided that the simple filter above produced a sound which is completely acceptable for both the home and band applications.

TONAL CHARACTERISTICS

It is difficult for the author to give an objective description of the sound produced by the instrument, but generally the piano type characteristics are most noticeable above middle C, and the attack becomes less apparent in the lower registers, where a fuller more organ like sound is evident.

When driving an external amplifier of course, using the appropriate output socket, the tonal

Fig. 3.3. Etching details for pitch p.c.b. This is full size

Fig. 3.4. Component layout for pitch p.c.b.
characteristics can be varied over a wide range by variation of the tone control settings on the external amplifiers.

The piano has been used in this manner on a number of occasions and exhibits the characteristics of piano, vibraphone and electric guitar depending on the chosen bass and treble positions, and the way in which it is played.

PITCH AMPLIFIER

Each printed circuit board contains five envelope circuits which are then fed into a pitch amplifier which in turn is followed by the pre-amplifier described last month

The values of C49, R121 and C50 are important, as up to this point all coupling has been direct, and
it is necessary in the amplifier to filter out the large very low frequency excursions due to the keying action.

ETCHING DETAILS OF PITCH P.C.B.

The 8 in $\times 5 \frac{3}{8} \mathrm{in}$ printed circuit board is etched according to the pattern of Fig. 3.3. Thirteen such boards are required. Fig. 3.4 shows the component layout for the boards.

COMPONENTS

All transistors specified are Ferranti type ZTX300. It is of course possible that other equivalent transistors could perform the same functions, but no work has been carried out to prove this. The diodes contained in the prototype were a mixed batch of

coMPOUENTS

PITCH BOARD

(12 are required with a full component complement as listed.
The thirteenth requires components as shown asterisked)

Resistors	
R44*	1ks2
R45*	$1.8 \mathrm{k} \Omega$
R46	1kS2
R47	$1.8 \mathrm{k} \Omega$
R48	1 k S
R49	$1.8 \mathrm{k} \Omega$
R50	1 k S
R51	$1.8 \mathrm{k} \Omega$
R52	1 k S
R53	$1.8 \mathrm{k} \Omega$
R54*-R58	$5 \cdot 6 \mathrm{k} \Omega$ (5 off)
R59*-R63	$820 \mathrm{k} \Omega$ (50ff)
R64*-R68	$27 \mathrm{k} \Omega$ (5 off)
R69*-R73	$820 \mathrm{k} \Omega$ (5 off)
R74*-R78	$5.6 \mathrm{k} \Omega$ (5 off)
R79*-R83	$56 \mathrm{k} \Omega$ (5 off)
R84*-R88	$27 \mathrm{k} \Omega$ (5 off)
R89*	27k Ω
R90*	10 k S
R91*	270s2
R92	27ks2
R93	270 S
R94	10ks,
R95	27k Ω
R96	10kS2
R97	270Ω
R98	27ks
R99	270s:
R100	10ks
R101	27ks
R102	270s
R103	10k Ω
R104*-R108	$10 \mathrm{k} \Omega$ (5 off)
R109*	$1 \mathrm{k} \Omega$
R110	220s2 3W
R111**	390Ω
R112*	$56 \mathrm{k} \Omega$
R113*	270S2
R114**	1.8ks
R115*	10ks)
R116*	1 kS
R117*	56 k ,

R118*	$560 \mathrm{k} \Omega$
R119*	$1.8 \mathrm{k} \Omega$
R120"	$3.9 \mathrm{k} \Omega$
R121*	$10 \mathrm{k} \Omega$
R122*	68Ω
All resistors	$\pm 5 \%$
Al	$\frac{1}{4} \mathrm{~W}$ carbon except where other-

Capacitors

Capacitors	
C28*-C32	$10 \mu \mathrm{~F}$ elect. 15 V (5 off)
C33**-C37	$5 \mu \mathrm{~F}$ elect. 15 V (5 off)
C38**	$0.05 \mu \mathrm{~F}$
C39	$0.1 \mu \mathrm{~F}$
C40	$0.2 \mu \mathrm{~F}$
C41	$0.5 \mu \mathrm{~F}$ elect. 15 V
C42	$1 \mu \mathrm{~F}$ elect. 15 V
C43*	$100 \mu \mathrm{~F}$ elect. 15 V
C44	$100 \mu \mathrm{~F}$ elect. 15 V
C45	$100 \mu \mathrm{~F}$ elect. 15 V
C46**	$100 \mu \mathrm{~F}$ elect. 15 V
C47*	$0.2 \mu \mathrm{~F}$
C48*	See text
C49*	$0.2 \mu \mathrm{~F}$
C50*	$0.5 \mu \mathrm{~F}$

Transistors
TR11-TR18 ZTX300 (8 off)
(4 required for p.c.b. 13)
Diodes
D8-D32 ZS170 (25 off) (see text)
(6 required for p.c.b. 13)
D33-KS047A 4.7 V 400 mW Zener (or equiv. alent)

Integrated Circuits
IC2-IC3 27474E (2 off)

Inductor

L1-260 +260 turns of 36 s.w.g. enamelled copper wire. S.E.I. pot core assembly for this can be obtained from Clef Products (Electronics Division), Yew Tree Lane, Poynton, Stockport, Cheshire

17143

*Information on our sophisticated but low-cost kits ...
*New 1214 Audio Range. Build your system in a few evenings.
*New loudspeaker range.
*Unbeatable quality and specifications.
*Incredibly good value for your money.
*New continuous credit and nodeposit terms. Even includes instruments.
*Over 30 new models.
*Over 130 models in range.
*Packed full of invaluable information about the world's finest electronics. . .

It's New. It's the biggest Audio/ Instrument kit catalogue in the U.K. And it's absolutely FREE.

Our new jumbo size Heathkit catalogue is full of good things : low-cost Testers and Instruments, Metal Detectors, Electronic Calculator, Intercoms, Amplifiers, Tuner/Amplifiers, Tuners and Loudspeakers - there's even a Battery Charger

You name it, Heathkit can supply. What's more, you can build everything yourself. Heathkit help you each step of the way. Simply follow the Heathkit step-by-step construction manual. It's like painting by numbers but with something unique at the end of it. Fantastically satisfying, and less expensive than buying readymade. Our products are advanced in specification and performance. And they're regularly reviewed by leading journals. You have to be good to merit that sort of treatment.

We guarantee that by using the Heathkit step-bystep construction method you can build a piece of electronic equipment without needing to know the first thing about electronics.

Mail the coupon today for your copy of the free Heathkit catalogue. The kits shown take just one or two evenings, and we promise that whichever kit you choose it'll be more rewarding than washing the car or watching television.

Why not visit your Heathkit Electronics Centres . . . and see our Instruments and Testers.
London 233 Tottenham Court Road. Telephone: $01636 \grave{1} 349$ Open hours: Monday - Saturday $9-6.00 \mathrm{p} . \mathrm{m}$.
Birmingham 17-18 St. Martin's House, Bull Ring.
Telephone 0216434386 Open hours Friday - Saturday $10-5.30$ p.m
Gloucester Cole Avenue Roundabout, Bristol Road.
Telephone 045229451 Open hours: Monday - Friday 9-5.00 p.m. Saturday $9-12.30$ p.m.

Want to know more?
Mail the coupon for a FREE CATALOGUE.
Don't forget... This includes
Instruments and low cost Testers.

CENATS YOw com
 Why buy alternatives when you can buy the genuine article from us at CHILD

xipprim

Type

 $\begin{array}{llll}8.7400 & 0.20 & 0.18 & \text { P品 } \\ 8\end{array}$ -20.18 0.16 GN7404 BN7405 GN7408 SN7409SN7410 SN7411 N7413
$\times 7416$ SN7417
N 7420 SN7420 SN7428 SN7440 $\begin{array}{ll}8 N & 2.001 \\ 8 & 2.751 .60\end{array}$ SN7447 1.751.751 60

Type

 $\begin{array}{ccccc} & 111 & 12 / 24 & 25 / 99 \\ \text { SN7450 } & \mathrm{p} & \mathrm{p} & \mathrm{p}\end{array}$

8N 8N

 \begin{tabular}{l|l}6 \& SN7

6 \& SN7

8 \& SN7

8 \& SN
\end{tabular}

8N
SN7
8N

$\begin{array}{llll}1 & 0.20 & 0.18 & 0.18 \\ 3 & 0.20 & 0.18 & 0.18\end{array}$

199
\mathbf{p}

$\mathbf{8 0}$| p |
| :--- |
| p_{6} |${ }^{1}$

$400 \mathrm{M} / \mathrm{W}$ Minlature

TEXAS HANDBOOK NO. 2. I.C. 700 PAGES DATA 60p. POST 20p. HIGH POWER SN 74 HOO

A SELECTION OF SEMI-CONDUCTORS FROM STOCK

All voltages
$33-33$ Volt
$10 p$ each.

BZY 88 Range	
All voltages	
33-3	
10p ea	
$25+$	9p
$100+$	8p
$500+$	$6.6 p$
$1000+$	5p

The thirteen pitch boards mounted in a wooden sub-frame
rejects from the Ferranti ZS 170 and $\mathrm{ZS100}$ series production lines. Reject devices are not available from the manufacturer, but similar diodes are available from a number of suppliers.

The specification required is that all diodes should have a breakdown in excess of 20 volts, and be reasonable low leakage, which should be adequately covered by the use of silicon types.

The $4 \cdot 7$ volt Zener diodes were Ferranti type KSO47A, but again a number of equivalents should also be available.

PITCH BOARD LAYOUT

In arranging a component layout for the pitch board an attempt was made to match the physical to the circuit arrangement. This can be seen by comparing Figs. 3.1 and 3.4.
Thirteen boards are required in total. Of these 12 are required containing the full circuitry and they cover bottom F to top E.

It must be obvious, however, that in a five octave 61 key system a single note generator is required to produce top F . In general the only requirements for the thirteenth board are an oscillator, single envelope circuit, mixer and pre-amplifier. No divider circuitry is required.

The components required for this particular board are marked with an asterisk in the components list.

WINDING THE TUNING COIL

To make up the tuning inductors for the oscillators, simply pile wind 260 turns of 36 s.w.g. enamelled copper wire onto the bobbin. With even layers this works out at about 33 turns/layer. When this is done bring the wire end out through one of the slots on the bobbin on the same face as entry. Doubling the wire back, continue to wind on an additional 260 turns. The point where the wire is doubled is, of course, the centre tap and this and the two ends should be cleaned prior to tag soldering.

To hold the coil in place on the bobbin, wrap round a piece of insulation tape. With the pot core clamped round the bobbin and lead outs soldered to the tag board the inductor can be assembled to the p.c.b.

Details on the tuning process and choice of capacitor will be provided later.

Note: All enquiries for Kimber-Allen keyboard should be directed to Alan Douglas, 4 Lees Barn Road, Radcliffe-on-Trent, Notts.

aUDIO FESTIUALAMD FAIR

FOR the fourth consecutive year Practical ElecTRONICS is exhibiting at the International Audio Festival and Fair, held at Olympia, London from October 24 to 28,1972 . Equipment on display on Stand 19 includes the P.E. Electronic Piano (currently being described in the magazine) and a number of other exciting projects to be published in the coming months; these are:

Sound Synthesiser

The P.E. Music Synthesiser is a completely selfcontained sound effects unit whose composition possibilities extend as far as the user's imagination. The modular construction of the various electronic subassemblies means that the synthesiser can provide a limited facility for sound source production and treatnients even in early stages of construction. This, of course, offsets the total production cost and enables the constructor to build, test and play with the separate modules according to his effects requirement.

A fascinating feature is that the synthesiser can be programmed to play by itself for as long as the listener wishes. (See Lecture-Demonstration below.)

Rhythm Generator

This variable-tempo rhythm generator can be programmed to any required rhythm to accompany a piano, organ or other musical instruments.

The percussive effects available are bass drum, high and low bongos, blocks, snare drum, cymbals and long and short brushes. Besides the programmed facility a selector switch provides a choice of a number of popular rhythms.

High Quality Tape Link

Forthcoming articles will describe how to build new stereophonic electronics for an existing tape transport deck or for a complete recorder.
The Tape Link employs separate record and replay amplifiers, the latter being driven via an extremely low current bias f.e.t. stage from a low impedance head; consequently noise and distortion figures are kept to a very low level. Replay equalisation is achieved with an integrated circuit operational amplifier, which also provides frequency compensation for circuit stability and output short circuit protection. Power amplifiers are not included. Tape speeds catered for are $1 \frac{7}{8}, 3 \frac{3}{4}, 7 \frac{1}{2}$ inches per second.

Lecture-Demonstration

Visitors to the Audio Fair should note the P.E. Sound Synthesiser is being demonstrated during a special lecture entitled "Sound Synthesis for the Amateur', presented in the exhibition lecture theatre on Tuesday, October 24 and again on Saturday, October 28, at 2 p.m.

We welcome all readers in London in October to see our exclusive designs in the flesh. Only at Olympia, October 24 to $28,1972$.

SINCE few component manufacturers use really indelible identification markings on their components, it is inevitable that sooner or later the home constructor will require a piece of equipment, which will enable him to measure the value of a component from which these markings have been erased. Such a unit is also extremely useful when trying to locate a faulty component, or when trying to identify one with an unfamiliar colour coding. The bridge described in this article will fulfil all these functions.

CIRCUIT DESCRIPTION

An extremely simple circuit with only three transistors is used. Ranges of the bridge cover capacitance from 100 pF to $10 \mu \mathrm{~F}$ and resistance up to 100 kilohms, in five ranges of capacitance, and five ranges of resistance.

These ranges are as follows:		
Range	Capacitance	Resistance
1	$100 \mathrm{pf}-1000 \mathrm{pf}$	$0-10 \Omega$
2	$1000 \mathrm{pf}-0 \cdot 01 \mu \mathrm{~F}$	$0-100 \Omega$
3	$0 \cdot 01 \mu \mathrm{~F}-0 \cdot 1 \mu \mathrm{~F}$	$0-1 \mathrm{k} \Omega$
4	$0 \cdot 1 \mu \mathrm{~F}-1 \mu \mathrm{~F}$	$0-10 \mathrm{k} \Omega$
5	$1 \mu \mathrm{~F}-10 \mu \mathrm{~F}$	$0-100 \mathrm{k} \Omega$

THE WHEATSTONE BRIDGE

The circuit is based on the Wheatstone Bridge, and a short explanation of the operation of this will be given.

The circuit of a basic Wheatstone Bridge is given in Fig. 1. It will be seen that the bridge consists of four resistors and a meter. There will be no indication on the meter when the circuit is balanced, that

Fig. 1. The basic Wheatstone Bridge circuit (left)
Fig. 2. A modification of the Wheatsone Bridge circuit normally used for resistance measurement (right)

Fig. 3. An improvement of the previous circuit which produces a linear scale (left)

Fig. 4. A modification of the basic bridge circuit used to measure capacitance. This system does not produce a linear scale (right)

Simple C•R BRIDEF

By R. A. PENFOLD

is, when there is the same voltage at the junction of the 1 kilohm and the 10 kilohm resistors as there is at the junction of the 10 ohm and 100 ohm resistors.

The meter will read the difference between the two potentials at these points. As there is one volt across both points, there is no difference in potential, and there can be no deflection on the meter.

Should one of these resistors be altered in value, even very slightly, then there would be an indication on the meter. If R_{1} and R_{2} were replaced by a potentiometer, as in Fig. 2, then it would be possible to adjust this component so that the circuit was once again balanced.

The voltage on the slider of the potentiometer would be variable from zero to the supply voltage. and could therefore be adjusted for zero reading on the meter, whatever the ratio of R_{1} to R_{2}.

If the variable resistor is fitted with a suitable scale, then when this component is adjusted for a null on the meter, the value of the resistor under test may then be read off the scale.

This is of course only possible if R_{1} is a fixed, and known value, or a series of resistors of known value. Whatever the value given to R_{1}, the same value will appear at the centre of the scale of $V R_{1}$

IMPROVED METHOD

Theoretically the circuit is capable of measuring any resistance from zero to infinity, but in practise, the scale would become so cramped at the ends, that it would be impossible to use.
Therefore if R_{1} is made of several switchable resistors, then the resistor to be tested can be measured near the centre of the scale, where it is less cramped.

An improved arrangement is shown in Fig. 3. This will measure resistance from zero to the value of R_{3} with a linear scale. There is no cramping of the
scale, which covers a far smaller range than the arrangement of Fig. 2.
This arrangement is also different in that the d.c. source has been replaced by an a.c. source, and the meter has been replaced by an audio amplifier, which would be connected to an earpiece.
Using an a.c. source enables capacitance to be measured by changing the resistor, R_{2}, for a capacitor. Fig. 4 shows the arrangement for the measurement of capacitance.
Unfortunately, when measuring capacitance a linear scale is not obtained. This is due to reactance (resistance to an a.c. flow) decreasing as capacitance increases.
This means that the bridge will measure from the value of C_{1} to infinity, with a centre scale of double the value of C_{1}. The scale does become rather cramped at the high value end, but this is far less so than the arrangement of Fig. 2.

THE PRACTICAL CIRCUIT

A circuit diagram of the complete C-R Bridge is given in Fig. 5.

A multivibrator using two BSY95A transistors is used to provide the a.c. source. The audio amplifier uses a single type 2 N 2926 transistor, which feeds into a high impedance crystal or magnetic earpiece.

The range switch is a two-pole five-way wafer switch which selects one of five resistors from 10 ohms to 100 kilohms and one of five capacitors from 100 pF to $1 \mu \mathrm{~F}$. A second switch is used to select either resistance or capacitance.
Separate power supplies have to be used for the amplifier and the multivibrator, to prevent the amplifier from picking up the output from the multivibrator through the supply lines. This also makes the coupling between the bridge, and the oscillator and amplifier much simpler.

Two torch batteries are used to supply the power.

Fig. 5. Circuit diagram of the complete unit with the oscillator, bridge and amplifier

Resistors	
R1	$5 \cdot 6 \mathrm{k} \Omega$
R2	$100 \mathrm{k} \Omega$
R3	$100 \mathrm{k} \Omega$
R4	$5 \cdot 6 \mathrm{k} \Omega$
R5	$1 \mathrm{k} \Omega 2 \%$
R6	$220 \mathrm{k} \Omega$
R7	10Ω
R8	100Ω
R9	$1 \mathrm{k} \Omega$
R10	$10 \mathrm{k} \Omega$
R11	$100 \mathrm{k} \Omega$
All $\pm 10 \%$	

Potentiometers
VR1 $1 \mathrm{k} \Omega$ linear wirewound
VR2 $1 \mathrm{k} \Omega$ miniature skeleton preset
Capacitors
C1, C2 $0.01 \mu \mathrm{~F}$ ceramic (2 off)
C3, C4 $0.1 \mu \mathrm{~F}$ ceramic (2 off)
$\begin{array}{ll}\text { C5 } & 1 \mu \mathrm{~F} \\ \mathrm{C} 6 & 0.1 \mu \mathrm{~F}\end{array}$
C7 $\quad 0.01 \mu \mathrm{~F}\} 5 \%$ or better
$\begin{array}{ll}\text { C8 } & 1000 \mathrm{pF} \\ \mathrm{C} 9 & 100 \mathrm{pF}\end{array}$
C10 $\quad 0.47 \mu \mathrm{~F}$
Transistors
$\begin{array}{ll}\text { TR1, TR2 } & \text { BSY95A or similar (2 off) } \\ \text { TR3 } & 2 N 2926\end{array}$
Switches
S1 2 pole on/off slide
S2 2 pole 5 -way rotary
S3 1 pole changeover slide
Miscellaneous
PL1, PL2 and SK1, SK2 Miniature jack plugs and sockets (2 off)
LS1 High impedance earpiece B1, B2 3V torch batteries (2 off) $3 \frac{3}{4}$ in $\times 1 \frac{3}{4} \mathrm{in} 0.15 i n$ matrix Veroboard Aluminium case, battery clips, crocodile clips

COMPONENTS

As the sensitivity of the earpiece may vary according to which particular type is used, a one kilohm preset potentiometer is incorporated, so that the output may be reduced, should it be found to be excessive. The circuit is unsuitable for use with a low impedance earphone.

Although adequate results may be obtained using a carbon potentiometer for VR1, better results will almost certainly be obtained using a wirewound type. Other components for the bridge should preferably be one or two per cent tolerance types, with a high stability, if a reasonable accuracy is to be attained.

Transistors other than the types specified have been found to work in the circuit, and it would operate using almost any transistors.

CONSTRUCTION

The prototype was built in an aluminium case, measuring $6 \frac{3}{3}$ in $\times 4 \frac{3}{4}$ in $\times 2 \frac{5}{2}$ in, but almost any case of about these dimensions could be used, although the unit could not easily be made much smaller than this.

If a metal case is used, neither the oscillator or the amplifier should be earthed to it as this would encourage oscillator breakthrough.

A small piece of Veroboard (0.15 in matrix) $21 \times$ 7 holes, was used as a basis on which to construct the main circuit. A wiring diagram for this is given in Fig. 6.

The best method for connecting the component under test into circuit was found to be a lead with a jack plug one end, and a couple of crocodile clips the other end.

The jack plug may be plugged into the bridge, while the crocodile clips connect to the leads of the component under test.

INTERWIRING

All wiring associated with VR1, switches S1 and S2, and the two crocodile clip leads, should be as short as possible otherwise breakthrough of oscillations may make it impossible to locate a proper null point on some ranges, and capacitance in the wiring could make capacitance Range l wildly inaccurate.

Both the earphone socket and the test lead socket have to be insulated from the front panel to prevent them from being electrically connected, and to prevent breakthrough. This may be achieved by drilling the mounting holes slightly too large, and then fitting bakelite washers either side of the panel.

Capacitor C10 is only required if the bridge is to be used with a magnetic earpiece. If a crystal type is used, C10 may be omitted, and the earpiece connected directly to the slider of VR2.

CALIBRATION ACCURACY

Although both the resistance and the capacitance scales can be calculated mathematically this is unnecessarily complicated, and is unlikely to be as accurate as the following method. This method is to calibrate the scale against a number of close tolerance components of suitable values.

An individual scale is required for each range. The resistance scales will read in the opposite direction to the capacitance scales. They should be marked in preferred values, from 10 to 100 . At the end of each scale there should be added a multiplier. For example. On Range 4 resistance $\times 100$ should be added at the end of the scale, so that if

Rear view of the unit showing the disposition of the batteries, component board and switches

ELECTRONIC ORGANS

We begin with electronic organs, because these instruments represent the most ingenious combination of mechanics and electronics, can often be built at home, and are capable of endless development. All such instruments are played from keyboards and the controls follow internationally recognised methods to a great extent, but certainly not exclusively. The whole concept of organs has changed in the last 20 years. There is now no resemblance (in the popular mind) to the conventional organ with pipes. Yet, incredibly, the same conventional names for the sounds appear on the stops!

Harking back to the days when valve circuits tended to be unstable, mechanical systems with transducers seemed the best answer; of these, two survive today, Hammond and Compton. Such organs are permanently in tune but require complex circuitry and switching devices. With the increasing cost of manufacture it seems probable that they will disappear in time. Already solid state circuitry is taking the place of mechanical switching in pipe organs, although slowly, but for other kinds of electronic organ, semiconductors are paramount.

It is easier to start from the top and work downwards, so we give an example of an imitative organ by Conn as representing the "real thing''. Fig. 1 illustrates a church or concert organ having tonal and control properties exactly corresponding with pipes.

This instrument has independently tuned oscillators for each note and these can give at least three different waveforms for tonal synthesis. As the sound in a pipe organ comes from a widely dispersed source, so this class of electronic organ requires many channels of amplification and many loudspeakers-a minimum of perhaps 25.
Multiple oscillators are never exactly in tune, but perhaps more important is the fact that there are trifling differences in the harmonic content of each oscillator. This gives a close resemblance to organ pipes, which have the same properties. The sound is full and rich, excellent for a real organ, but quite useless for pop or jazz.
Nine out of ten organs of the popular domestic type which can be seen in any music shop use a quite different generating system. The 12 top notes are produced by tuned master oscillators, but all
other pitches downwards are obtained by frequency division. Since the octave is an exact doubling or halving of any frequency, $2: 1$ bistables or flip-flop circuits serve admirably. Readers will recall that this was the method used in the P.E. organ. It lends itself to mass production especially now that i.c.s are becoming so cheap; and with diode or transistor keying, cheap single contacts per key suffice.

If properly designed, this kind of organ can be very satisfying more especially at the low output levels demanded in the home. Unfortunately it is commonly found in forms which have neither the proper playing facilities of imitative organs, or the "new" sounds associated with rhythmic organs. Excessive amplification makes these organs lose what character they possess, and underlines the old saying that you can't get a quart out of a pint pot.

However, the prompt attack and the easy application of rhythm units to this kind of instrument makes them eminently suitable for pop groups and this has led to a form of tonal synthesis which contrasts well with guitar or voice. To a great extent they must be treated

Fig. 1. The three manual Conn Cusfom organ has independently tuned oscillators for each note. These can provide at least three different waveforms for tonal synthesis of a church or concert pipe organ.

The Kentucky Challenger with string, flute and woodwind voicing available via the 4 -octave solo and accompaniment manuals.

The effects include solo manual and pedal sustain, variable attack, reverberation, vibrato and Hawaiian glide.

- SUUTIELGTIVE EOTMTIT from 4 SPEGBIISED DISEO STUNIOS

HIGH POWER SPEAKER SYSTEMS
strong leather cloth Anish 1^{7} board, full: lagged. Fitted bigh efficiency 8 or 1 if ohn «peakers.
 CONSORT. 100 watt rum. 2-12" ypeaker. MAJESTIC. 100 watt rms. 15° Crescendo. size $38 \times \times 4 \times 15$.
sovereign. 100 watt rms. 18" Bass. $1 \stackrel{*}{*}$ Full FULL RANGE OF MICROPHONES, STANDS, ETC. ALWAYS IN STOCK

SOUND CONTROLLED AND SOUND TO LIGHT UNITS

Hid, Treble amd Bass Chanfiels. up tos 1 kw DJ80L. Snuns to light. Takes output from nost amplifires. Adjustable levels.
DJ40L. Sound controlled version. Built microphane. III emmectiona require

ASSEMBLED DISCOTHEQUES DISCO-PLINTH. Conajsts of \geq turntables hited with bigh quality ceramuc cartridgen. The unit has a built in cross-fade rotary control for transferring the sound from left to right decks. The unit has no amplification built in and must be uned with anpliflers such $14!^{\circ} \times 7^{2}$ (incl. lid). $\$ 55.00$
DISCO-IMP. The latest aldition to the Discoand more compact than the Disco-Mini, I contains all the necessary features for the smooth ruming of a mobile unit. Size 29° 18ト"× $7^{\prime \prime}$. 279.00
DISCO-MinI. Complete portable Disco with built in futl function preamplifler/mixer. Fo:
 DISCO-STANDARD. Has all the facilities he Disco-Mini with the aldition of a built-in 100 watt yower amplifier making it a contpletely self contained disco unit. A V.L. nieter gives risual indication of output levels. Size $32^{\prime \prime} \times 27^{\prime \prime} \times 71^{\prime \prime} .8180 \cdot 00$
DISCO-SUPER. A Rlightly larger version of the
Disco-Ntandari Fitted indiver Disco-standard. Fitted individual controls for or deck to leck transfer. A built in P.Fi cueing system, mic. over-ride, also a V.V. meter givea visual indication of output levels, DJ. $30 \mathrm{~L}(3000 \mathrm{w}$) 3-channel paychedelic light unlt is a standard fitting. Deck cut out switches are also featured for ease of cuping. Size $38^{\circ} \times 27^{\prime \prime} \times 10^{\circ}$. 2824.00
DISCO-SUPREME. All facilities of the DisenSuper plus a third turtitable which can be he main deck systenı. Flexi lights are aluc tted. Size $50^{*} \times 27^{\prime \prime} \times 10^{*} .5261=00$

PA-DISCO AMPLIFIERS

DISCO-AMP. 100 walt rms. output for 8 -16 ohms, 4 channel inputs, 2 -mic, 2 decks. Separate volume control plus masters. Response 30 Hz -30 KHz , distortion less than 1%. Treble/Bass/ PFL/Mic over-ride etc. Panel size $16 \frac{1}{\prime \prime}^{\prime \prime} \times 7^{\prime \prime}$.

DJ. 70 S MIXER/AMPLIFIER. 70 watt rms. output for 8-16 ohms. 2-mic, 2-aux/decks. Master volume/Bass/ Treble. Size $15 \frac{1}{2}^{\prime \prime} \times 5^{\prime \prime} \times 6^{\prime \prime}$.
DJ.105S. 30 watt rms. version. Size $113^{\prime \prime}-5^{\prime \prime} \times 6^{\prime \prime}$. DISCMASTER SLAVE AMPLIFIER. 100 watt rms or 8 -16 ohms. $\mathbf{5 5 9 . 5 0}$

NEW D.J. 500 SERIES P.A. AMPLIFIERS 50 WATT, 70 WATT \& 100 WATTMODELS This new range incorporates many features that nake them fideal for the profenginnal user, clubs, discotheques, factories etc. Fibre glass high stability resietora throughoul wifh low hoise sily rand hand w assembly to ensurt
relisbility and guality

* Exclusive "Fail Safe
Protection circuit - Fault Condition
$\star \underset{\text { warning lamp. }}{ }$
Warning lamp.
below 30 Hz
* 4 channel mixer with slider contrul

All three amplifers have a huilt in emitter follower output sucket for contrecting a alave amplifier to enable the power out put to he increavel!
up to 1000 watts or more if required. A matching ratige of siave powe amplifers and a separate natching 100v line transformer in available specification
Frequency Reaponse $\quad 50 \cdot 20,000 \mathrm{~Hz} \pm 3 \mathrm{db}$ (10dB Bass Boost at Signal/Noise Ratio better than $=50 \mathrm{dh}$ Harnionic Distortion less than 1%
Speaker Impedance
Inputs: Mic 1 \&
5 mV at 50 K ohms (50 or 600 ohm to oriker nomb at 1 nieg ohnt.
Size (all numelels) $15 \mathbf{1}^{*} \times$
Power Output: Model D.J.500 - 50 watts R.M.S. 556.25 (at 8 ohms) Model D.J. $700 \quad-\quad 70$ watts R.M.S. $\quad 887.50$

DISCO MINI Hardly larger than a aulcase yet contain all the necessary leature ile unit. The pre-amp has separate tone comand each input has its ows.

and each input has its ow il itdi-
plus the addition controls and inputs.
buitt in P.F. L. re mtandaril on all units. Reaponse $20-20000 \mathrm{~Hz}$. Mic ride tacilit

McDonald M.P. 60 Turntables wre used with high quality ceramic cartridges, and each deck has its own individual cut out switeh fitted. This unit is suitable for Discos or Clubs having a power amplifer, or or use with the -Disenaster' 100 watt power amplifier as above

EFEECTS PROJECTORS

DISCO COLT. 150 watt
LIQUIMATIC MINI, 50 watt QI with h^{*} whee DISCOWHEEL, 50 watt Q1 with quick chang GNOME 150, 150 watt Q1 with Cassette. LIqUMMATIC, 150 watt $Q 1$ with 6^{*} wheel PLUTO TUTOR TUTOR-2, wi Kande, with Liquisplote Tank Liquid Wheel and Crystal Wheet Lur ${ }^{\text {Lid }}$ Cassette and Moire (24 different typen chouse from). Portable Hi -Power \$trobes. YOU WILL BE SURPRISED BY THE LOW PRICES \& PEREORMANCE

SDL POWER SPEAKERS

High efficiency 122^{*} speakers. Ferrite magnet and Group us
12* 50 watt rms. 8 ohm Full range.
12* 25 watt rms. 15 ohm Mid-Treble
15" 50 watt rms. 15 ohm. Full range.
18-100 watt rms. 15 ohm Bas.
DISCO SPOT BANK

Designed to take three Ei/S Type shot ir colour buibs to to 150 watts each. The unit i af all metat construction and has one 3 -pit mains input socket plus one 3 -pin main output socket for connecting more than one hank together if required. The unit can b left free-standing or wall monuted it needel black crackle finish gives the unit a vers protessional appearance.
size $1 R^{*} \times 6^{*} \times 7$ (excluding lualbes)
Also in stock: Ultra Violet Spot Lamps and Finorescent Lamps, Standard and Colour Spot Lamps and Fittings. Rotating Colour Displays. Flerilights, Fibre Optics, Dimmers, Flashers Effects Foils, ete. Your enquiries invited

MIXER UNITS

DJ.101. Battery powered, 6-chamel, varial, fevels, $3 \times 50 \mathrm{k}$ mic., $1 \times 100 \mathrm{~m}$ V. aux., ? $100 \mathrm{~m} V$ p.u. Output 250 m
DJ.102. Mains operated. 4-channel. variablr evela, $2 \times 50 \mathrm{k}$ mir ${ }^{2} \times 100 \mathrm{mV}$ pu PFI control, master volunie, mue. over-ride, nutput variable 0.500 m
DISCO 40. Pre amp part of Diaco amp (ne4 above). All facilities. Output will drive up ten 100 watt amplifers.

536, Sutton Road, Southend, Essex. (0702) 611577

Discosound
122, Balls Pond Road, London, N. 1 (01) 2545779

494, Bristol Road, Selly Oak, B'ham 29
(021) 4721141

309, Edgware Road, London, W.2. (01) 7236963

Go Hi-Fi yourself!

New Goodmans Din 20

 loudspeaker kit-specially designed to give the D.I.Y. enthusiast excellent hi-fi reproduction at moderate cost.This system has been thoroughly tested to Goodmans high standards. It will provide extremely satisfactory listening levels from amplifiers rated at 10 watts (per channel, in the case of stereo equipment) but it may also be operated from amplifiers of higher power.

The kit contains all parts needed to complete the system (except timber and other material for the cabinet itself) and has detailed, illustrated assembly instructions.

Contents

1. Bass unit $204 \mathrm{~mm}(8 \mathrm{in})$ diameter
2. Dome HF radiator 25.4 mm (1in) diameter
3. Port tube
4. Crossover panel with colour coded leads
5. Terminal board
6. Foam gasket
7. Input lead complete with DIN plug and spade terminals Acoustic wadding foam pad
Fixing screws and hardware
Cabinet template (on bottom of box)

Specification:

20 watts DIN, 4 ohms impedance, 8 in bass unit, dome HF radiator, crossover frequency $4,000 \mathrm{~Hz}$

For further details and the name of your Goodmans dealer, send the coupon now

Sound reasoning.
THORN A member of The Thorn Grout
Name

To: Goodmans Loudspeakers Ltd., Downley Road, Havant, Hampshire
Please send me free leaflets on Constructors' equipment and the name of my Goodmans dealer

Address

See us at the Audio Festival and Fair

Ferranti Limited, IC Marketing, Electronic Components Division, Gem Mill, Chadderton, Oldham, Lancs. OL9 8NP
Telephone: 061-624 6661
FERRANTI
as new sound devices and we show one of the most modern and effective examples in Fig. 2. This is made by Jennings Electronic Instruments, and bristles with ingenious features.

In this organ, the emphasis is on facilities for rhythmic playing rather than on simulation of conventional organ tonecolours; a special training and a special mentality is required to conform to the needs of a purely rhythmic group, and this is an excellent example of an instrument specially designed to this end.

The foregoing organs have all had tuned oscillators for each primary function and once these are adjusted, it is not possible to alter them easily. But now, it is possible to design and make an organ having only one master oscillator from which all pitches are derived. One great advantaqe is clearly that transposing is easily carried out-i.e., if one presses just one key, the pitch can be changed by a single adiustment so
that one passes through a succession of keys. The player who can only use the white keys can now accompany say, a B flat clarinet whilst still using his white kevs.

There are several ways of doing all this, mostly very complex, and all a tribute to microminiature circuits; for without these it would be quite impossible to build such an organ within any console or case. Modern i.c. component density can reach 2,000 elements in a chip only $\frac{1}{8}$ in square and so the very complex circuitry required to steer and smooth the pulses of such a system can be made quite small. Two of the present methods for generating the frequency spectrum from a single source have been described in Practical Electronics for July 1972 but in the picture of the Philips generator the actual size was not obvious; in Fig. 3 you can see the relative size of this unit.

An organ built from half a dozen of these units would have amazing powers of synthesis.

Fic. 3. Demonstrating the small size of the N.V. Philips' digital o.gan generator.

Fig. 2. The three manual, portable, Jennings J. 71 with drawbar control of harmonics from 16^{\prime} to 1^{\prime} pitch and percussive attack. This, with the provision of dual waveforms, enables the organist to reproduce any mixture of sound required.

Other features include separate by-pass tabs for Theatre and Baroque organ. The top manual covers three octave providing 16^{\prime} '-8'- and 2^{\prime} pitch with controls for tonal effects which include vibraharp, piano, string, percussion and sustain.

One of Hammond's new models, the Concorde, incorporates custom buill LSI packages. This harmonic tone-bar organ has iwo 61 note keyboards and such features as polysyntaesis percussicn, manual and pedal sustain, automatic accompanimert and automatic rhythm, lower manual to pedal couples and cassette recorder.

Talking about synthesis, we find small keyboard controlled devices mounted in the Wurlitzer organs on which many effects not obtainable with any ordinary organ circuits can be produced. For instance, gliding tones, wah-wah, touch sensitive vibrato, extended pitch range and other effects are some of the attributes of the Orbit synthesisers on this organ. Certainly it is time that double touch was more used on organs, especially since it was an integral fitment of all cinema organs since the 1920s. So many things can be done with a second touch.

Now we have seen three kinds of tone generating systems for organs of a more or less conventional kind. But for the beginner, or one who does not wish to lav out much money on a single-purpose instrument, there are other ways of making musical sounds. Perhaps the simplest device is the
stylophone, shown in Fig. 4. This is a simple multivibrator, plaved by using a metallic stylus to make the connection for changing the pitch. It is a continuously re-tuned system, capable of only one note at a time, but having a vibrato circuit which relieves the monotony. Constructional articles for something of this kind have appeared in various journals and it is a nice project for the beginner.

A more sophisticated device is the Pianomate. This assumes ownership of a piano, although it could be energised by a separate keyboard. It can be seen in Fig. 5 lying over the keys of a piano. Again, it is a simple generator, but chords can be played with care. The system uses one generator for every three notes, but if played with the piano, which of course is fully polyphonic, it appears that the organesque sounds from the generator are also fully poly. phonic.

A small mains unit which stands on the floor contains all the electronics and allows changes of tonecolour; a volume control dedal is also available. Incidentally, as the contact unit for the four octaves of keys only rests on the back of the piano keyboard, it can be removed or placed on another make of piano in a moment and cannot damage the woodwork.

We find many people interested in playing music who are not satisfied with synthetic tone colours; certainly many organs become verv trying to listen to for long and relv heavily on vibrato to break up the lifeless sounds. Many attempts have been made to bring the actual sounds from organ pipes or orchestral instruments to the keyboard, culminating in the Mellotron. Oriainallv this instrument was much more complex but the present version is easily portable and just as accurate tonally.

Fig. 4. The Dubreq Stylophone has a reedy voice, derived from a multivibrator circuit. To this vibrato can be added if desired. This instrument is only capable of producing one note at a time, each being selected with a metal stylus which constitutes part of the electronic circuit. In concert the sound produced can be very pleasant.

Fig. 5. The Dubreq Pianomate in position on a conventional pianoforte keyboard. This consists of two double octave unit whose contacts move with the piano key to augment the piano sounds with organesque tone colours. A tone selector switch provides three different colours: flute, church organ and jazz buzz. A two speed vibrato is also included. The Pianomate is completely tuneable via a single control for pianos which may be out of pitch by as much as a semitone

The system uses pre-recorded tapes but these are not in the form of loops as might be thought; the ingenious mechanism is too complex to describe here, but in essence when a key is pressed, a tape head is brought into contact with a record of the selected sound and continues to sound (so long as the key is held down) for up to 8 seconds. The tape then rewinds at once and is ready again. All the sounds provided are of course as authentic as the fidelity of the reproducer, all can be mixed, and many effects sounds can be brought in on other tapes; indeed, the Mellotron is popular as a pure effects machine, from which every conceivable noise can be obtained at will. Fig. 6 illustrates the action of this instrument.

Fig. 6 A pure effects machine, the Mellotron is a source for every conceivable noise. The system uses prerecorded tapes of other instrumental sounds or special effects which can be mixed at will by the performer making him, in effect, a one man band. The action of the Mellotron can be understood by referring to the profile drawing of the key and tape transport system; when the key is depressed the idler engages with the capstan pulling the tape into the storage box; the tape is kept in tension by the rising pulleys; with the key released the tape is made ready for replay as the tension spring returns to its original position pulling the stored tape with it.

The RIHA Largo, besides having the normal footages in the upper and lower manual, has fractional number stops to provide more colourful registration. Playing features include a two-speed Leslie tremulant (a spatial effect achieved by feeding the loudspeaker output into a rotatable drum), vibrato delay, which provides a much more natural vibrato sound and solo percussion which gives the choice of many effects such as banjo and Hawaiian guitar.

The sustain feature on the pedals provides a stringbass effect on the pedal 8^{\prime} stops so giving rhythmic support to melody on the manuals. The sustain can also be used to play legato on the 13 note pedalboard.

The Harmonics Solette organ with a specification designed to cover all aspects of organ music from the classics to pop. It has a full size 61 note keyboard and a total of 19 registers.

Now that you've got Audio You've never heard it so good!

It had to happen ... and it has. Audio is the new-style magazine that brings excitement and vitality to the interests of music and hi-fi.
Written and designed by an expert editorial team, Audio is about the latest advances in equipment, its installation, its operation. Radio and television in the home... tape or disc... film or video . . . car stereo, slot or cassette. Audio takes it all in; reports on all important developments.
Audio is about the music made . . . the places where the making is done . . . the reason it's done the way it is ... the artists and composers you most enjoy. Performance test on the latest Nivico Tape Recorder
David Burnett James writes on the new Wharfedale Isodynamic Headphones.
Christopher Headington writes about a notable anniversary in Solti is Sixty...
Other contributors include: Katie Boyle Colin Wilson . . . Richard Williams ...

Top-name contributors . . . outstanding features and illustrations special technical and record reviews.

FREE: unique $7^{\prime \prime}$ flexible record Audio past dresent and fulure RICHIRD BAYER 33 stero

Audio

for your greater enjoyment of leisure listening - Monthly $20 p$ ISSUE ONE(NOVEMBER) OUT OCT 19

INSTRUMENT TRANSDUCERS

Electric guitar pick ups have been with us for a long time; more recently the use of transducers has spread to other instruments such as clarinets, saxophones, violins and accordions. The aim of these methods is twofold; to amplify the original sound, and to be able to alter the waveform of the sound by electronic means, e.g. to remove harmonics or to add extra octaves by frequency division; or to modify the steady tone in some other way. But firstly let us look at how the guitar operates.

The diameter of a string is so small compared with the wavelength of any frequency within the range of that string that the back wave from the vibration would at once neutralise the front wave and nothing would be heard; the string produces no sound, it drives the belly or resonating body of the guitar and this couples with sufficient air to make the resultant vibrations audible as sound. However, it is costly to make a good acoustic guitar and the resulting sound is not loud enough to compete with other sounds in a modern group; the acoustic guitar is therefore reserved for the classical player, since it is many times more sensitive to fingering than its electrical counterpart, and the tone is not coloured by amplifiers or loudspeakers.

For the pop scene, it is desirable to convert all sounds into electrical waveforms and hence have complete control over them. So all we need is the vibrating string with suitable pick-ups. This means a simpler instrument in theory, but by the time that electronic controls and perhaps multiple pick-ups are fitted, it may well be more complex. Constructional data for pick-ups has been published and it is very easy to amplify this sound; one can then add simple tone controls and so alter the effect. If, therefore, it is possible to use steel strings or strings wrapped with steel wire over the pick-up location, magnetic pick ups are easily applied to any stringed instrument.

Note that the string pick-up is to be preferred to any form of microphone attachment; because the latter is sensitive to air pressure waves as well, and can pick up breathing and scratching noises from fingering the string. But when one comes to other instruments, in which the same amount of energy is not required of the player (or in a different form, such as blowing a clarinet), then it is possible to use noise cancelling types of microphone to amplify the tone. Certainly this has advantages if only because the waveform of the generated sound can be changed
and one may get the effect of several different kinds of instrument from the one. An excellent example of this is the electric mouth organ or harmonica.
There are examples of amplified accordions and a number of purely electronic ones, using the circuitry of a miniature organ and connected to external amplifiers and loudspeakers. Then again, it is possible to obtain an electronic strina bass unit, buttons producing all the effects from normal bowing to pizzicato or col legno (Dlayina with the back of the bow). This is made by Hohner.

Many of these existing tone qualities can be completely transformed by, say, a percussion unit; this enables some sound which would normally be smooth and sonorous to be made aggressive and staccato. This kind of percussion unit can be wired in anywhere between a pick-up and its amplifier. It is not to be confused with a rhythm unit, which is a quite independent source of percussive sounds acting as rhythm markers and non-musical in effect. Many such rhythm boxes are on the market now, nearly every large domestic organ has one as an integral part and many can be bought to add to whatever sound source would benefit.

Farfissa Transicord electric accordion with seven voices, sustain and vibrato tabs. A rhythm section can be used in conjunction with a bass-chord facility. It has a 41 -note key and 120 bass buttons. A mains supply and pre-amplifier are contained in the separate module

Hornby-Skewes accordion micro. phone is connected to the side of the accordion and picks up sound for feeding to an amplifier

Magnetic type contact pick-up with fingertip control. Suitable for nylon string guitar.

Six magnet pick-up for flat top guitars.

The Farfisa Super Piano with keyboard and decay as on the conventional piano. The effects which can be obtained on the first 24 notes are, for the bass: bass, string bass and bass guitar. For the chords: piano. forte, guitar and banjo. Also available is automatic bass and chord rhythms. Output available is $\mathbf{2 5}$ watts.

A Yamaha electric guitar.

The Harmony Baroque electric mandoline with a body shape that departs from the classical for ease of playing.

The Jennings Winchester "Riffe" guitar with a body which is constructed entirely of metal providing a crisp, pure tone. Apart from the normal guitar sound this instrument has internal electronics to provide bass, treble, fuyz, presence and repeat.

Typical reverberation unit from the Laney Sound Supergroup Series.

"Fuzz-face" distortion unit with separate volume and fuzz controls.

SPECIAL EFFECTS

The continual search for new effects has led to the electronic controls known as wah-wah, growl, glide, etc. All of these do something not normally expected from the instrument to which they are attached. Once associated solely with the guitar, they are now found on electronic organs and other complex devices. Readers will be familiar with the effects on the tone, and constructional details for most have been described in the press.

The wah-wah is a tuned circuit, the resonance of which can be altered at will; some band of frequencies is then accentuated and moves progressively to another band by the manipulation of a foot control. The growl is almost identical, but operates at lower frequencies. A glide circuit is found on some organs, usually it provides a limited frequency shift by altering the base biasing of a transistor oscillator through a voltage control; again the foot is used to move a variable resistor of some form.

Since some of these effects may be needed at short notice, it is possible to combine the controls on a single foot pedestal where the toe selects the function, whilst the heel operates a rotary volume or similar control. A commercial
multiple control unit is shown in Fig. 7. There is clearly a limit to the number of controls which can be used by someone who is usually playing an instrument at the same time.

The vibrato produced by a violinist, which is an important part of his technique, may be imparted by a mechanism which alters the tension of the guitar strings by a lever; but it can also be done by an electronic circuit-commonly a form of adjustable speed multivibrator. This again can be inserted between the pick-up and the amplifier but naturally it is not so expressive or controllable as manipulation of the strings. However, plaving finesse is not so important with groups.

Since power is such an essential ingredient with today's performers, we find large amplifiers which are now sophisticated in that they have mixing and vibrato circuits incorporated; however, we shall not discuss these or loudspeakers at this time. Suffice it to say that many groups prefer valves, since they stand such overloads and misuse.

There is room for improvement in the means for connecting units together, there still are casualties from time to time and it is diffi-
cult to understand why Ministry of Defence or Home Office approved connectors are not compulsory.

One final piece of apparatus which has effects uses is the ring modulator. This is a circuit artifice whereby two applied signals are combined to form sum and difference frequencies, one of which is extracted and used as a final sianal. For this reason the device should be fed from sine waves, but since these do not exist outside the laboratory, some very peculiar sounds result-always discordant.

The ring modulator is often fed from a musical source, a singing voice via a microphone, a pick-up from a saxophone, etc. Many intriguing effects are possible with care, certainly all are novel and often incapable of analysis by the hearing system yet of too short a duration to give rise to irritation. It is in fact interesting to note that distortion is deliberately sought, so intense is the search for novelty. The clipping amplifier or fuzz box is a good example of such techniques. Of course, as the ambient noise level around us increases, discomfort arising from other noises has less effect and we come to accept it.

Fig. 7. The Jennings Scrambler is a complete remote foot control of effects associated with amplification. Besides the quadrant of foot switches the Scrambler has two rotary turntable controls for intensity volume and wah-wah.

A quartet of effects units that can be used with almost any kind of electronic musical instrument.

SYNTHESISERS

The idea of compounding sounds from their bare ingredients is far from new; indeed, one of the most successful synthesisers was built 20 years ago; but, it occupies a whole room! So for a more general acceptance of these devices, we had once again to wait for the semiconductor.

Now a synthesiser is nothing more than a number of units which represent the basic parameters of sounds, so organised that they are easily controlled by the operator and of such a nature that the absolute values of these parameters can be set up again and again with accuracy; in other words, so far as is possible, the elements are calibrated.

One can compose music with a range of tonal qualities, but can-
not write this down in conventional musical notation, although it can be written in terms of instrument settings. It was never possible to write the composition of, say, a trumpet sound on a conventional music score, but one can write this electronically in terms of the values of the constituents; so in this way, the actual nature of a sound can be put in black and white so that someone else can pecreate the same sound and this has never before been possible.

Clearly the facilities of a synthesiser relate to its use. An amateur experimenter may not need the many duplicated oscillators, noise sources, amplifiers and treatments which are called for by a professional musician or composer. So it is useful that simple modules can

The Synthi 100 synthesiser made by EMS of London has almost unlimited facilities for sound synthesis and serious composition. It has provision for storage and immediate recall of sounds devised. Compare the elaborate patch panels with that of the VCS3 synthesiser.
be made or bought and added to as required. One must have at least one good tape recorder for the weakness of all synthesisers of low cost is that they have no storage facilities; all work involves short-term events and constant rerecording.

Most if not all modern synthesisers are voltage controlled; tha: is, the conduction properties of the transistors are set by applied d.c. voltages; in this way, several advantages follow at once, the principal ones being linearity of signal with applied voltage change; low impedance of control circuits; and complete absence of hum pick up because one does not trail base (or grid) circuits out from the main apparatus. Hundreds of feet of signal control cable can in this way be run out.

Voltage control is also convenient for a keyboard, since at no time would the voltage across any part of the system exceed about 30 V . By controlling the frequency

STANDARD and CUSTOM-BUILT AUDIO and ELECTRONIC EQUIPMENT NEW and SECONDHAND MUSICAL INSTRUMENTS. MAINDISTRIBUTORS FOR A.G.K. HIGH QUALITY MICROPHONES

SA25-SA35-SA100

OTHER SAXON PRODUCTS . . .

LOW-PRICED AUDIO MODULES FOR DOMESTIC and COMMERCIAL USE

THESE THREE MODULES have ENIOYED UN PARALLELED SUCCESS DURING THE FIRST FEW MONTHS OF THER BEING MADE AVAILABLE TO THE GENERAL PUBLIC. WE ARE PLEASED TO ANNOUNCE THAT WE CAN NOW OFFER FAST DISPATCH ON MOST OF OUR ADVERTISED ITEMS. INCLUDING THESE THREE MODULES.
SA25 $82 \cdot 95 \%$ 25 WATTS R.M.S. 7 transistors, 7 diodes.
SA35 24.45 35 WATTS R.M.S. 7 eransistors, 7 diodès
SA100 810-90 태
100 WATTS R.M.S. II transistors, 6 diodes
ALL THREE MODULES HAVE OPEN AND SHORT CIRCUIT PROTECTION, AND THE SAIOO IS PROOF AGANST OVER-DISSIPATION AND FAULTY INAGANST OVER-
ONLY ADVANCED DESIGN TECHNIQUES MAKE THESE EXTRAORDINARILY LOW PRICES POSSIBLE.

BRIEF SPEC. FOR ALL THREE MODULES
Freq. response $\quad 1540,000 \mathrm{~Hz}_{\mathrm{z}} \pm 1 \mathrm{~dB}$
Distortion $\quad 0.2 \%$ at 1 kHz
Loads 4 to 16 ohms
Quiescent current
Noise
15 mA
Supply voltage
Better than -75 dB
25-45V, SA25/35
$40-70 \mathrm{~V}$, SA 100
$4 \frac{1}{2}$ in 4 in $\times \operatorname{lin}(S A 100)$
$4 \mathrm{in} 3 \mathrm{in} \operatorname{lin}$ (SA25, SA35)
Circuits, connecting instructions and application data are supplied free with all modules.

POWER SUPPLIES FOR THE S'A25/35 and SA100 AUDIO MODULES
PS45 Scabilised module for 2 SA25's or two SA 35 's, £35.0, carr. free
MT45 Transformer for above, heavy ducy, £2.85, carr. 20p
MT30 Transformer for unstabilised supply complete with rectifier diodes mounted, $£ 3.50$, carr. 20p
PU70 Unstabilised supply for one or two SAI00, £6.75, carr. 40p
PS70 Stabilised supply module for one or two MT70 Transformer for PS70, £4.90, carr. 40p
all modules are built on glass fibre p.c. BOARD

I20 WATT HEAVY DUTY MODULE Featuring a rugged class A driver stage. this module will run from all our mixers etc., and most other makes of mixer. It delivers 120 W inco an eight ohm load and employs $4 \mathrm{TO}_{3}$ can (II5W) output transistors. SPECIFICATION Power output Freq. response
input sensitivity Conseruction size
8 in $\quad 4$ in $\times 4$ in (5 in with supply)
Size
Low distortion parallel push-pull output stage.
120 W into 8 ohms
$30-30,000 \mathrm{~Hz} \neq 2 \mathrm{~dB}$
Fibreglass board

SINGLE CHANNEL SOUND/LIGHT CONVERTER

This compact and reliable unit operates from amplifiers with outputs from $5-100 \mathrm{~W}$. Does not impose a heavy load on the amplifier, or, if connected in the wrong polarity, cause any damage. as with some units

Operation is simplicity itself and the unit is fully fused. The unit is supplied to function from bass notes but may easily be converted to respond only to treble or mid-range notes by the addition of components costing less than 5 p .
£ $13.90+20 p$ carr. or with supply $618.95+40$ p carr

THREE CHANNEL SOUND TO LIGHT UNIT

Handling the total of $3.000 \mathrm{~W}(3 \mathrm{~kW})$ this unit is unique for its price in that not only bass middle and treble but also master controls are provided. Two amplifier sockets eliminate the need for
split leads, etc. Supplied in tough white steel case with a blue split leads, etc. Supplied in tough white steel case with a blue eq9-75 carr
stelevtite hooded cover. Fully guaranteed.

SAXON STEREO CONTROL UNIT

£15•80 ${ }^{\text {carr }}$

MONO VERSION t6.50, carr. 20p
(As illustrated left. S.A.E details. $9 \vee$ operation) OUTPUTS UP TO IV RMS Two decks, and full headphone monitoring. The unit is mains operated and measures 17 kin . 3 in x 4in deep and is finished with a smart white on black facia. The controls are: Left/Right deck mains on/off. THIS IS A MUST FOR THE HOME BUILT HIGH QUALITY DISCO THEQUEAND IS COMPARABLETO UNITS AT OVERTWICE THEPRICE.

COMPLETE AMPLIFIERS

THE CS $100 . ~ £ 34.90$ carr. free
This versatile unit is now available in a black vynide case and so represents even better value than ever, R.M.S. and continuous sine wave outputs of 70 W .
 Two individually controlled inputs with wide range The SAXON 100 . $£ 48 \cdot 50$, carr. Iree.

Wich an R.M.S. output of 120 W speech and music 100 W continuous power, four individually controlled F.E.T. input stages and wide range bass and treble Fontrols, this amplifier has established itself as a unit offering quality and reliabilicy at low cost.

LOUDSPEAKERS British made bargains ! !

12in 25 W 8/15 ohms 65.95. carr. 30p. 15in 50W $9 / 15$ ohm, 144.50 , carr, 50 p . 12 in $40 \mathrm{~W} 15,000$ gauss magnet system $8 / 15$ ohm, $\mathbf{K 1 1 . 5 0 , ~ c a r r . ~ 4 0 p ~}$ A.K.G. microphones suitable for disco, group or general P.A. Use DHOHL r.r.p.fll. our price $\mathbf{6} 9.45$ post free. D190C High Z r.r.p. $\mathbb{6 1 1} 50$, our price $\mathbf{K} 17.45$ post free. D 1000 C 24 ct . gold plate r.r.p. 637 . our price 632 post free.

SEND S.A.E. FOR OUR A.K.G. PRICE LIST. DISCOUNTS ON ALL MICS.

| CALLERS AND MAIL ORDER:
 327-331 Whitehorse Rd., West Croydon, Surrey CRO 2HS Tel. 01-6846385 | CALLERS ONLY: Ga Delco Rd., Rochester, Kent. Tel. Medway 404199 | BUSINESS HOURS:
 $9.30 \mathrm{a} . \mathrm{m}$. to 5.30 p.m. | TERMS OF BUSINESS: C.W.O. or C.O.D. (35p extra). All cash in regd. envelopes please! Telephone orders to our CROYDON BRANCH. TRADE AND EXPORT ENQUIRIES INVITED |
| :---: | :---: | :---: | :---: |
 \section*{BUIIID A

Voluye CContruled
STTHESISER
 \section*{BUIIID A
Voluye CContruled
STTHESISER

 BUIIID A
Voluye CContuled
STTHESISER

 using

 using

 using Dewtron Dewtron Dewtron

 Professional Modules

 Professional Modules

 ent}

 ent}

 ent}

These modules are as used in our synthesiser which was recently on demonstration at the British Musical Instrument Trade Fair.
For details see our PROJECT X advert. on page 982 of this issue Practical Electronics

> U r

of an osciltator by adjustment of the base voltage from a resistor chain contacted by playing kevs, intervals other than those of the equally tempered scale can be produced. This is very useful for exploring the possibilities of the quarter or tenth tone scale-or other subdivisions. This is an approach to the continuous or gliding scale, available on certain instruments like the violin or trombone, but only to a very limited extent; there is no limit to electronic glissando.
Synthesisers have envelope controls; the overall shape of a waveform is called its envelope. By altering the rate at which the wave starts, or stops, or both, profound changes in the character of the sound emerge. One could thus determine, for instance, if it would be a good thing to make the attack of a 'cello longer or shorter, by simply feeding the pick up on the
cello into the envelope shaper circuit. These methods have been used on the continent to try to improve the properties and characteristics of some instruments of the orchestra.

Then there are noise generators. Electronic noise is very controllable and can be useful to augment the impact of certain musical effects. It is also valuable to imitate storm, rain or wind and for this latter purpose can be coloured by a tone superimposed, rather like the sound of wind in telegraph wires. In short, if the synthesiser has enough parameters, almost any musical or abstract array of waveforms can be achieved and recorded; and there are commercial examples of disc records based on purely electronic sound.

Today there are many synthesisers on the market; most have similar parameter facilities, but some are much easier to patch or
cross-connect than others. As experience was gained in their use. controls became simpler and more accurate. The one time room full of gear became a table-top unit as we can see in the illustration of the EMS portable synthesiser.

The ultimate in versatility is the Synthi 100, as used by the BBC and other broadcasting authorities, and made by EMS of London. it has storage facilities and quite elaborate compositions can be realised and performed on it. There is provision to call up anything previously recorded, erase or add to it, and play it at any time. In short, it has all the facilities one could reasonably demand.

Supplement cover picture by courtesy of St . Giles Music Centre.

The Dewtron synthesiser which combines a whole range of effects in a simplified unit.

The VCS3 electronic music synthesiser produced by EMS (London) Ltd. This small scale voltage controlled studio is capable of producing a great many sound effects by treatment of three oscillatory sources. Signal sources and treatments are labelled down the left-hand side of the patch board. These may be connected in any permutation to the signal input and control input listed along the top by simple jack plugs. Effects produced can then be applied to the keyboard if required.

TP 1R P (Electronics) Litd

THE HY41

The HY41 supersedes the popular HY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion ftypically 0.05\% at 1 KHz into 8 ohms') and is eiectronically and mechanicaliy compatible with the HY40

With this important improvement the HY41 retarns all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete power amplifier of extremely high performance sufficiently versatile to provide power not merely for Hi.Ft but also for public address systems and industry.

The free manual gives a full circuit diagram of the HY41 and its vartous applications including a complete stereo amplifier.

Like its predecessor the HY41 is based on conventional and proven circuit technques developed over recent years.
OUTPUT POWER: British Ratıng 40 WATTS PEAK, 20 watts
R.M.S. continuous.

LOAD IMPEDANCE: 4-16 ohms,
INPUT IMPEDANCE: 30 K ohms at 1 KHz VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than 0.15% (typical 0.05%)
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{db}$.
SUPPLY VOLTAGE: +22.5 volts D.C
SUPPLY CURRENT: $\overline{0} .8 \mathrm{amps}$ maximum.
PFICE: inc. comprehensive manual, P.C. board, five extra components and P. \& P.-MONO: $£ 4.90$

STEREO: £9.80

UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidy established a position in the WORLD as the sole hybrid pre-amplifier to contain all feedback and equalization networks within an integrated preamplifier circuit

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection,

Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing it to be run off any unregulated power supply from 16-25 Volts and a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo pre-amplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.

INPUTS
Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve) $2 \mathrm{mV} 47 \mathrm{~K} \Omega$
Tape Replay lexternal components to suit head) $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up (equalized and compen-
satabte) $20-2000 \mathrm{mV}$. variable.
Tuner (flat) $250 \mathrm{mV} .100 \mathrm{~K} \Omega$
Tuner (flat) $250 \mathrm{mV} .100 \mathrm{~K} \Omega$
Auxiliary $1250 \mathrm{mV} .47 \mathrm{~K} \Omega$
$\begin{array}{ll}\text { Auxiliary } \\ \text { Auxiliary } 2 & 250 \mathrm{mV} \\ 20 \mathrm{mV} . & 100 \mathrm{~K} \Omega\end{array}$

OUTPUTS
Main Pre-amp output 500 mV
Direct tape output 120 mV .
ACTIVE TONE CONTROLS (Bexendall)
Treble $\pm 12 \mathrm{db}$.
Bass $+{ }^{-1} 2 \mathrm{db}$.
INTER̈NAL STABILIZATION
Enables the HY5 to share an unregulated supply with the Power Amplifier
SUPPLY VOLTAGE

16-25 volts

MONO: $£ 3.60$
STEREO: $£ 7.20$

POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to suppiy your HY 41 's + HY 5 's in stereo or mono format.

Specification

Input: 200-240 Volts
Output: ± 22.5 Volts at 2 amps
Overall Dimensions: L. $7^{\prime \prime}$; D. $3.8^{\prime \prime} ; \mathrm{H} .3 .1^{\prime}$
PRICE $£ 4.50$ inc. P. \& P.

Fig. 6. Layout of the components on the Veroboard

82 is read off the scale, this multiplied by 100 to give 8200 , which is the value in ohms of the resistor under test.

MARKING THE SCALE

The procedure for calibrating the unit is as follows. With the unit switched to resistance, a resistor of the same value as that switched in by S2 should be connected across the test leads. The control knob of VRI should be swung towards the high value of the scale until the bridge balances, and then the scale should be marked 100 at this point.

A resistor one tenth of the value of that switched in by S 2 should then be connected across the test leads. The knob of VR1 should then be swung to the low value end of the scale until the bridge balances, and the scale marked 10 at this point.

A full range of components should then be used to fill in all the numbers of preferred values between these two points. The same procedure should be used for all five resistance ranges.

CAPACITANCE RANGES

Suitable scales for the capacitance ranges may then be marked by the same method, except the

The completed C-R Bridge showing the scale fixed to the front panel and calibrated
components required to mark the ends of the scales will have to be ten times the value, and the same value as that switched in by S2.

The accuracy of the unit will depend almost entirely on the tolerance of the components used in its calibration. The only other factors affecting this, being, the stability of the components used in the bridge, and the care taken when marking the scales.

Most potentiometers have fairly large tolerances, and it is possible that this could cause the unit to be unable to cover the full ranges quoted. If this should occur, it may be corrected by reducing the value of R5 to 910 ohms, or if full coverage is still not obtained, 820 ohms.

USING THE BRIDGE

Adjustment of VR2 has to be made before the unit may be used. The range switch should be switched to resistance Range 1, and the earphone plugged in. VRI should then be adjusted for maximum output in the earphone. VR2 is then adjusted so that the volume is fairly loud, but not excessively so.

To measure the value of a component it is merely connected to the two crocodile clips, and then the bridge switched to read resistance or capacitance as appropriate. If the component under test is wired into a circuit, one of its leads must be disconnected, to prevent other components in the circuit from affecting the reading.

If the value of the component is known, and it is merely to be checked, then the bridge should be switched to the appropriate range, and then balanced (VR1 set for minimum output in the earphone).

COMPONENTS OF UNKNOWN VALUE

If a component of an unknown value is to be measured, then the bridge should be switched to a middle range such as Range 3, and then balanced if possible.

Should the bridge balance with the pointer of VRI on the scale, then a reading may be taken. If the bridge will not balance and it is a capacitor under test, then a lower range should be tried.

Should this occur when a resistor is under test, then a higher range should be tried. If the bridge balances, but is off the scale, then either a higher range of capacitance, or a lower range of resistance is required.

THE BIG INDUSTRIAL "TRANSFER" MARKET

THE past few weeks have seen a spate of activity in takeovers and mergers

As forecast in this column in the July issue, Racal were in fact in negotiation at the time and the result was the acquisition of the communications division of S . G. Brown Ltd. from the Hawker Siddeley Group for a reported cash sum of about $£ 1$ million.

Unitech Group have acquired APT Electronics from the Bonochord Group. APT's range of

power supplies will now complement those already manufactured by the Unitech subsidiary, Coutant, although I understand that APT and Coutant will continue to operate as separate companies. Having hived off APT, the Bonochord Group then acquired Livingston Hire and its subsidiary companies for a sum in excess of $£ 1$ million.

RATIONALISATION

The old-established Dubilier, itself only acquired a few months ago by a consortium headed by Hambro's Bank and Slater Walker Securities, has now acquired Greenpar Engineering and Kenneth E. Beswick. Greenpar was acquired by Thorn Group not all that number of years back-was it two or three?-and Beswick, who has been in the fuse business for fifty years was a subsidiary of Tremletts.

Then there was the merger of Gresham Recording Heads with Information Magnetics Corporation of California, a company little known in the U.K. but wellesteemed in the U.S.A. even though it has been in business only since 1969 manufacturing disc recording heads in competition with IBM and other U.S. giants.

All this flurry of activity (and the examples I have given are by no means all) shows a general trend towards re-grouping in the face of increasing competition and the need to decide which market sector is appropriate to the business you think you are in.

CALCULATED RISK

Advance Electronics has gone the whole hog in the competitive electronic calculator market by following up the Executive 8, announced at this year's I.E.A. exhibition, with a further five models including a pocket machine which sells at $£ 52.50$ for which Advance expect sales of at least 25,000 .

It has been generally thought that the Japanese had the bulk of the world market for electronic calculators nicely sewn up. Not so. See what has happened in the United States when some of the more enterprising manufacturers decided to take the plunge in the low-price consumer field. They are choc-a-bloc with orders. So much so that they are now in trouble.
Computer Design Corporation, one of the entrepreneurs, has been complaining that the semiconductor manufacturers have let them down on the supply of the LSI MOS chips which are the heart of the machines. Computer Design has been reported as having over 4,000 machines on the shelf waiting for components. Computer Design has three suppliers of LSI memory circuits to be on the safe side but delivery dates have been seriously under-estimated, in some cases it is reported the delay is six months.

Another U.S. manufacturer of calculators is complaining not only of late delivery of circuits but also that rejects were as high as 70 per cent although the figure has now improved to 10 per cent.
Nobody has extolled the virtues of LSI more than the semiconductor manufacturers. Now they find they can't cope with the demand. The supply of LSI chips is in the hands of a very few multinational manufacturers who can dictate where available supplies should go. Such is their power that they could make or break a calculator manufacturer if they so wished.

ELECTRO-OPTICS

In our September issue I wrote that nobody has yet made a fortune out of lasers, but they could
become big business. I now record that the enterprising Munich Trade Fair Company is promoting a Laser '73 exhibition in their city next September with the forecast that this no-longer novel technology (the laser was first demonstrated in 1960 by Theodore H . Maiman in Hughes Research Laboratories) will have a civil market alone worth billions of dollars. Be that as it may, the exhibition should itself prove a profitable affair because despite its title it will cover the whole field of electro-optics which is about the fastest growing sector of electronics.

. . . AND MICROWAVES

If electro-optics is a booming industry so is microwaves judging from the response to the Microwave '73 international exhibition and conference scheduled to be held at Brighton next June. Stand area has just been increased by 40 per cent to cope with the demand for space. So far, nearly 80 companies from U.S.A. and Europe have booked space as exhibitors and the accompanying conference, I understand, will be heavily slanted towards applications of microwave technology rather than theory.

"FAX" MARKET OPENS UP

Facsimile transmission was first demonstrated-at least in prin-ciple-by Alexander Bain, a Scottish clockmaker, way back in 1842. Now, 130 years later it is really beginning to be big business and the high-powered companies are already moving in.

Plessey is one of the recent entrants with an American designed machine built in Japan. Plessey did a test marketing operation last year before deciding to go ahead. The operation is already swinging and Plessey expect to be selling over 5,000 a year by 1976.

Most unusual use for the Plessey "Remotecopier" was in "British Steel" during the recent singlehanded transatlantic yacht race when skipper Brian Cooke had one aboard for reception of weather charts from which he was able to predict wind changes several hours ahead of his competitors. But the big market is in offices where it is being promoted as "business tool'

But, as the market opens up, so the competition increases. There are seven major manufacturers in the field. In the U.K., latest entry is EMI who is marketing EMIfax machines through its subsidiary company SE Computer Peripherals. The machine is produced by the German company Rudolph Hell which happens to be a subsidiary of Siemens.

TWO SPEEAL CGNS TRUCTIENAL PRGUE CTS FGR THIE PARTY SEASON

ranis diring GAME

Five different "cars" participate in a competition of "driving"s skill. Which driver can keep his car on the road, under optimum acceleration and braking conditions, depends on the acquired skill of simulating his driving conditions on a control panel, bearing in mind the type of car he is driving.

HOOTING C)1/

Leave the hooting owl in a conspicuous place in your lounge and someone is bound to pick it up to take a closer look.
He arouses curiosity, he is a pet for the children; he just likes to sit and gaze into space. He feeds on small gaztferies (about twice a year when contented). But if he is frequently handled, his appetite goes up to help him hoot.

ENTRY REGISTER LOGIC AND HARDWARE

LAST month we dealt with the construction of the keyboard logic panel which has the function of converting each key depression into suitable logic signals for entry and control of data.

As stated in the first part, entries of up to six digits can be made. The subject of this month's part is the Entry register and associated logic which has the function of storing these six entered digits in their correct order for use in calculation to come. A six digit number can also be placed in a memory for use at any number of times during the calculation.

This part also discusses the possibility of a "fixed constant" key whereby a single depression of an extra key causes a chosen number (such as π) to be entered into the entry register.

ENTRY REGISTER LOGIC

A block diagram of the ENTRY register complex is shown in Fig. 5.1. which is an expansion of the ENTRY register section of the overall arithmetic section block diagram from Part 1 (Fig. 1.3).

The operation of the ENTRY register and its associated constant store and display multiplexer is relatively straightforward, each of the possible six decimal entry figures being stored as a four-bit parallel B.C.D. code, requiring a total of 6×4 $(=24)$ separate storage bistables.

The 24 bistables or flip-flops are arranged as a shift register six decimal digits long and four B.C.D. digits wide, so that with each clock pulse a complete B.C.D. group (i.e. one decimal digit) is shifted into, or down, the register.

Each time a number key is pressed, the keyboard circuits (which were described last month) staticise the corresponding B.C.D. code and generate a single
clock pulse. which is used to clock the four bit code into the ENTRY register.

Pressing a second or subsequent number key causes the first group to shift down the register to the "left." its place being taken by the new entry. This process can continue until the first entered number ends up in the extreme left-hand location of the register, after which any further entries will cause that first number to be destroyed by being shifted out of the end of the register.

Fig. 5.1. Block diagram of the Entry Register complex showing the inputs and outputs

Note that the ENTRY register accepts the most significant digit of the complete figure entry first, just as we write figures ourselves. This makes the ENTRY register a "left-shift" register and distinguishes it from the other registers which normally accept the least significant digit (L.S.D.) first, and are thus termed "right-shift" registers.

CIRCUIT PARTITIONING

The ENTRY register and associated constant store and multiplexer, are built on three separate plug-in cards. The way in which the circuit is divided among the four cards is shown in Fig. 5.2., where it is immediately apparent that three of the cards are identical.

In effect partitioning the circuit in this way results in three independent shift-registers, each two decimal digits long and four B.C.D. digits wide, and each having a proportionate amount of constant storage.

In use these small units are connected in series, via the edge connector wiring, but because each card is identical they can be freely interchanged and this is a great help in tracing any faults which may occur.

The display multiplexer is built on a separate card with a 44 -way edge contact instead of the 22 way type used for the other three cards, and although not shown on the block diagram, this card also houses two SN7440 buffer gate packages used to drive the clock and clear lines of the register.

Fig. 5.2. Partitioning of the entry Register onto the four boards. Boards E1, E2. E3 are identical and each contain two digits of the entry and two digits of the stored constant. Board ED contains the multiplexer

Fig. 5.3. Circuit of the Entry Register board E1. Boards E2 and E3 are identical to this. The dotted line encloses the constant store which may be omitted if not needed

REGISTER CIRCUIT

The full circuit diagram of an individual register board is shown in Fig. 5.3, three of these sections being required to form the complete register.

The circuit splits horizontally into two logical sections, the upper four i.c.s forming the shift register proper, and the lower four forming the constant store.
The components forming the constant store are enclosed in a dotted box for easy identification, and it is these i.c.s which may be left out if required, along with their associated wiring.

The eight bistables which comprise the shift register itself are SN7474 dual D-type elements, chosen because of their flexibility and low power dissipation.

Both of the two bistables in each package have independent clock, data. preset and clear inputs, together with true and inverted outputs. D-type flip-flops are more suitable than the J-K types for shift register application because they only require a single data (D) input which has the effect of reducing wire interconnections and leaving pins available for the independent preset function without recourse to the more expensive 16 -pin package.

To form the register the flip-flops are connected in series pairs, there being four such pairs on each board to cater for the four separate digits (A, B, C, D) of the B.C.D. code.

Each vertical group will contain four binary digits which, taken together, represent one of the decimal numbers zero to nine.

The clock input to the register has to drive all of the flip-flop clock inputs in parallel so that after each pulse the datia in a particular four bit group move one place to the left. and are themselves replaced by new data.
It is necessary to clear all the data from the ENTRY register simultaneously when required by the programme, and to this end all the clear inputs are connected together to a common input, a low level, or "ground" condition on this input will set the Q outputs of all the flip-flops to zero, and the \bar{Q} outputs to one.

CLEARING OPERATION

The contents of the ENTRY register are transferred in parallel to the z register early in the arithmetic programme. except during multiply, when they remain to be compared with the contents of the counter.

When the register contents are finished with the ENTRY register is cleared by a signal from the programme. ready for subsequent entries to be made by the operator.
Any errors made during figure entry (e.g. pressing "8" instead of "6") can be corrected by pressing the CLEAR ENTRY key which also has the effect of clearing the contents of the register ready for new data.

CONSTANT STORE

The constant store is shown bencath the entry register, and is of the same 24 position capacity, so that any entry made can be stored for further use in a calculation.
This store is not essential to the correct operation of Digi-Cal and can be left out permanently or temporarily if desired, without the need for any modification to the rest of the circuit.

In operation, with the desired constant entered in the usual way into the ENTRY register, the ENTER K (EK) key is pressed, which duplicates the contents of the entry register in the constant store by means of a single, parallel, 24 bit transfer.

Constants stored in this way remain available until they are either replaced by a new number or the machine is switched off, there being no requirement or provision for clearing this store, other than by entering a constant which consists of all zeros.
Constant recall is carried out by pressing the k key in the numeral section of the keyboard whereupon a reverse transfer occurs, in parallel, from the constant store to the ENTRY register. This operation does not destroy the contents of the store so that any constant can be used as many times as required in a calculation.

The constant store need not be used simply for storing constants in the accepted sense, since it will act as a memory of any result or intermediate answer if required, provided these numbers are entered through the keyboard in the usual way.

This mode of operation really acts as a substitute for pencil and paper, and can be most useful at times in long calculations.

DISPLAY MULTIPLEXER

The display board, described in Part 3, will display either entries or answers depending on a signal from the programme, entry and answer data being routed to the display via two four-line "buses."

Timing signals, in the shape of "character call-up" strobes are produced by the display board to enable the four line buses to carry all the data in their associated register to the display in a time-shared sequence, the sequence being produced in a multiplexer circuit.
There are two multiplexers in Digi-Cal, one for the eight digit answer and the other, which we are interested in here, to handle the six digit entries.

Only strobes three to eight inclusive are used by the entry multiplexer, each of these allowing only one four-bit B.C.D. digit on to the bus at any instant in time, the strobe direction being from most to least significant digit (M.S.D. to L.S.D.).

CONSTANT CIRCUIT

Simpler storage elements cạn be used for the constant store since there is no requirement for PRESET or clear inputs, and the devices chosen to fulfil this function are the SN7475 four bit latches.

Like the SN7474s these quad latches require only single " D " inputs, the data to be stored being of course the outputs from the shift register flip-flops.
Clocking is controlled by the ENTER K key, via a buffer gate mounted off the board. There is no need to "debounce" the output of this switch because of the simple "gated latch" operation of the. SN7475 flip-flops and the static nature of the inputs during the entry operation.
Stored constants are returned to the shift register via the SN7474 preset inputs, transfer being controlled by the SN7401 quad NAND gates, which have a common input enabled by the recall k key, via a buffer gate. The PRESET inputs of the SN7474s are "active low," i.e. they set the Q output to " I " when an " 0 " input is present, and so require inverted data from the constant store. This inversion is provided by the SN740I gates.

Fig. 5.4. Circuit of the Entry Register Board ED. The two SN7440 i.c.s are simply buffers and only placed on this board for convenience

MULTIPLEXER CIRCUIT

The circuit of the display multiplexer, Fig. 5.4, is quite straightforward, it being formed only from gates and resistors. Each SN7401 gate package has its four inputs wired to the corresponding four B.C.D. output pins on the appropriate register board, there being a separate gate i.c. for each decimal digit.

The common input to the four gates in each i.c. is driven by the "character call-up" strobe appropriate to that digit.

All the " A " outputs from the gate packages are wired together, as are the B, C, and D outputs, to form the four line display bus, which is referenced to the 5 V line by the four 1.2 kilohm resistors.

Note that SN7401 open collector gates are essential for this circuit, SN 7400 gates being unsuitable due to the fact that several gate outputs are connected directly together to provide the "Wired or" function.

Interconnection of outputs is not permitted with the basic TTL gate because of the "active pull-up"

Fig. 5.5. Layouts of the comfonents on the register board ED and functions of edge contacts

Fig. £.6. Layout of the components on the Entry Register Boards E1, E2, and E3 and functions of exge contacts whicl only appear on the underside

electronics really mastered

no previous knowledge no unnecessary theory no "maths"

RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT OVER

 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including:valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch. simple transmitter, a.c. experiments, d.c. experi ments, simple counter, time delay circuit servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

COWPOUENTS

REGISTER BOARDS E1, E2, E3
Resistors
R39-R62 $5 \cdot 6 \mathrm{k} \Omega \pm 10 \% \underset{ }{+} \mathrm{W}$ carbon (24 off)
Capacitors
C14, C16, C18 $10 \mu \mathrm{~F} 15 \mathrm{~V}$ elect. (3 off)
C15, C17, C19 $0.047 \mu \mathrm{~F}$ (3 off)
Integrated Circuits
IC29-IC32, IC37-IC40, IC45-IC48 SN7474 (12 off)
IC33, 35, 41, 43, 49, $51 \quad$ SN7475 (6 off)
IC34, 36, 42, 44, 50, 52 SN7401 (6 off)
Printed circuit boards and sockets
Type DL109/22 (3 off) (Available from Shirehall Electronics Ltd., Station Yd., Borough Gn., Sevenoaks, Kent)
SK2-4 DPK165 edge connectors (Shirehall) (3 off)
(Note that the three boards are identical, each board taking one third of each group of components shown above)

```
                                    REGISTER BOARD ED
Resistors
    R63-R66 1.2k \Omega : 10% +W carbon(4 off)
Capacitors
    C20 10\muF 15V elect.
    C21 0.047\muF
Integrated Circuits
    IC53-IC58 SN7401 (6 off)
    IC59, IC60 SN7440 (2 off)
Printed circuit board and socket
    Type DL109/44 (Shirehall)
    SK1 DPK165 edge connector (Shirehall)
```

output stage. The SN740I is a gate specially produced to allow "Wired or" function in TTL systems, and has no pull-up device incorporated.

The two SN 7440 buffer gates are positioned on the multiplexer board but have no direct connection with the multiplexer circuit. The two buffers in each package are wired in parallel to give sufficient drive capability (or "fan-out") to handle the large load represented by the entry register clock and clear lines (48 loads and 72 loads respectively).

CONSTRUCTION

Wiring up is carried out in the same fashion as the display board described last month, though the plug-in cards are much easier to work with because of the pre-tinned finish and the ready formed i.c. pads which obviate the need for "spot face" cuts.

By referring to the appropriate circuit diagram and the i.c. layouts shown in Fig. 5.5 and Fig. 5.6 wiring is quite straightforward, the only points to remember being the need for links from the power buses to each i.c. and from these power buses to the appropriate edge contacts, along with the need to orientate the i.c.s correctly before soldering into circuit.

All wiring up is carried out on the blank side of the boards, using single core wire.

The best order to complete the construction of the boards is as follows: ED board (display multiplexer) including the buffer gates, on a Shirehall DL109/44; then the register section (SN7474s) of boards El, 2, 3. on Shirehall DL109/22 cards; and finally when the above sections are operating correctly, the constant store and if required, the fixed constant option, may be added.

Fig. 5.7. Interwiring of the four entry register boards is carried out using the edge connectors fitted in the large hole cut in the chassis plate. The edge connectors are fitted so that the boards plug in from above. Destinations of wires are shown next to each contact (e.g. contact 30 on socket E1 should be wired to contact 10, board ED, and contact 40, board E2)

Fig. 5.8. Extra wiring to allow for a fixed constant key in addition to the K key. The diodes shown allow for the number - or a close approximation, to be placed in the entry register when a single key is depressed. The SN7442 is an extra i.c.. space for which can be found on the Keyboard panel

INTERCONNECTION AND TESTING

Under chassis edge connector wiring can be started early in the construction sequence to allow operational testing to be carried out as necessary, and this task can be readily completed by referring to the edge connector layout and wiring tables (Fig. 5.7).

The tables are easier to use than wiring diagrams
their instructions being implemented by simply wiring the edge connector pin required to all (or any part as required) of the destination listed.
When the register section of one or more of the boards is completed, keyboard entries should be possible by pressing a sequence of number keys. provided of course that the display and keyboard are already functioning, and that the required clock, clear, and data interconnections have been made.

Table 5.1 EXAMPLE OF FIXED CONSTANT KEY DIODE PLACING

Dec. pt setting	Required Board E3 Decimal digit identification Board E2 E3 Board Bor				
1	$3 \cdot 1$			$\begin{array}{ll} x & x \\ x & \end{array}$	$\begin{aligned} & D \\ & C \\ & B \\ & A \end{aligned}$
2	$3 \cdot 14$		$\begin{aligned} & x \\ & x \end{aligned}$	X	$\begin{aligned} & D \\ & C \\ & B \\ & A \end{aligned}$
3	$3 \cdot 142$		$\begin{array}{ll}x \\ x & \\ \end{array}$	x	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$
4	$3 \cdot 1416$	$\begin{aligned} & x \\ & x \end{aligned}$	X \times	x \times	$\begin{aligned} & D \\ & C \\ & B \\ & A \end{aligned}$

The only temporary test connection required to render the circuit operational is a ground connection to the clear buffer gate input to prevent a permanent Clear signal being produced.

FIXED CONSTANT OPTION

SN7401 open collector gates are used in the RECALL K path in preference to SN7400 gates because they can be used to perform the "Wired or" function at their outputs. In practical terms this means that it is possible to "get at" the SN7474 preset inputs for use with other data sources than the constant register without altering existing logic.

This possibility opens the door to all sorts of custom modifications to enhance the usefulness of Digi-Cal, and to show how simple some improvements can be, let us consider a scheme for entering a constant which is very commonly used, without taking up space in the constant store itself.

The constant is the ubiquitous $\mathrm{Pi}(\pi)$, but in fact any constant which is likely to be often used is suitable for our purposes, the object being to have the chosen constant always available at the press of its own separcte key, without interfering with the operation of the constant store which remains available for routine use.

This modification requires only the incorporation of a number of diodes into the ENTRY register boards and the addition of an extra "pl" key on the keyboard with a single extra i.c. The circuit for such a scheme is shown in Fig. 5.8.

An extra diode must be connected to the keyboard logic panel (Fig. 4.2), between the top of the "K" switch S19 and pin 5 on IC17, the previous direct connection being broken. This diode, marked DA in Fig. 5.8, together with diode DB forms an OR gate so that pressing either key " K " or " π " causes the automatic normalisation to be inhibited.

OPERATION OF CONSTANT FACILITY

The principle of operation is that when the "PI" key is pressed one of the outputs of the SN7442 decoder will go low, depending on the setting of the decimal point switch.

The energised output is used to preset a number into the ENTRY register via diodes wired in wherever a " l " is required. The diodes are connected to the Preset inputs at the points marked in Fig. 5.3. and perform the "Wired or" function with the SN7401 outputs.
The whole circuit acts as a diode "Read Only Memory," where the contents of the memory are programmed at the construction stage by wiring in diodes where required.

The memory contains four separate numbers to allow for the four possible decimal place selections. Table 5.1 shows how the placing of the diodes is determined, a cross marking the position of each.

This circuit can be very useful if Digi-Cal is to be used for calculations containing an often used constant, and can be substituted for the constant store or used to complement it. If this option is never likely to be taken up it would be possible to use SN7400 gates in the recall path instead of the SN7401s and resistors, but note that the pin connections for the SN7400s are different.

Next month : Logic and construction of A and Z registers.

NEWS BRIEFS

New Data Transmission Technique

A
New technique of data transmission is to be tested in a forthcoming experiment involving the Post Office and computer manufacturers and users. The system is known as "packet switching" and is basically the transmission of computer data in self-contained, addressed blocks like a series of high speed telegrams.

The user of such a system sends out the data together with the address of its destination and the data is automatically routed to that destination by the system. The need to set up a direct link between sender and receiver before transmission is thus eliminated

Circuits connecting packet switching exchanges can be used for carrying packets sent by other customers in the time intervals between packets in a series making up a complete message. Because many signals travel on the same wire a large number of low capacity connections to a multi-access computer can be replaced by a single high capacity connection.

The system has the advantage of lower error rates than conventional systems and enables two terminals with different data transmission rates to be connected

New Range of Calculators

Arange of five new electronic calculators has just been announced by the British firm Advance Electronics Ltd

Because of large scale integration whereby all the electronics can be placed in a handful of discrete packages, assembly costs of complex instruments have been reduced drastically. The features which Advance are promoting are reliability and value for money rather than such dubious advantages as extreme miniaturisation.

The new range consists of four desk-top calculators known as the Executive 16 range and a pocket-sized calculator known as the Executive.
The Executive 16 range all feature 16 digit capability and a keyboard specially designed for high speed work. The keyboard allows a key to be pressed even when another has already been pressed providing that they are released in the correct order.

The basic model (retailing at $£ 95$) has the four basic arithmetic operations as well as a "o\%" key
The $16+1$ (at $£ 115$) has a versatile memory with full 16 digit capacity which can also function as an accumulator for automatic list totalling
The $16+2$ (at $£ 145$) is specially suitable for V.A.T calculations featuring two memories.

The 16 R (at f 175) has all the features of the $16+2$ but also includes a square root key.

The fifth member of the range is an eight-digit portable (at $£ 52.50$) with a plinth for desk use and mains power supply option extras.

Shown here is the Executive 16R which is the most versatile of the Executive 16 range

PRIENTI RESTETMO

AUDIO FREQUENCY ANALYSIS

THE analysis of audio frequencies by separating a selected frequency component from a complex signal can be useful for any number of purposes. In BP 1282 487 The Standard-Triumph Motor Company Limited describe an analysis system which they have found particularly suitable for checking the audible noise from a gear box to isolate gears which are unduly noisy.

Past practice, directed at separating the noise of the gear in question from the overall gear noise, has been to compute the main frequency of sound produced by any two gear wheels by considering their teeth number and speed. With the main frequency
component thus known it is isolated by applying a reference signal (from a tone wheel) to "beat" with the selected frequency.

A simple bridge and capacitor arrangement is used to measure the amplitude. But the snag has been poor low frequency response and confusion due to ripple in the output waveform due to the presence of rectified a.c.

In the new invention a tone wheel produces an audio frequency signal which is fed to the tone input. The noise signal to be analysed is applied to the noise input and the tone and noise signals are respectively amplified and applied to three transformers which constitute a balanced modulator.

The secondary of one transformer is applied to the primary of another via a ring modulator. The secondary of the latter is fed
to a 100 Hz low-pass filter which passes the beat signal only and blocks all other residual signals (reference and noise).

The filter output is amplified, rectified and fed to a voltage comparator. Two gate drive transistors control a gate, which is opened once every half cycle, allowing a storage capacitor to sample the smoothed beat signal voltage available when the gate is open.

The criterion of the invention is the feature whereby the storaqe capacitor mentioned above is connected after the gate so that it can only sample the smoothed voltage available when the gate is open. Previously the storaqe capacitor would have been connected across the output of the rectifier and so responded to a low frequency ripple. This will of course confuse the true response.

ELECTRONIC CONTROL OF SORTING

INN BP 1279134 Gunson's Sortex Limited of London E3, describe a fairly simple method of detecting the difference between mixed objects to be sorted, e.g. between scrap polyethylene and scrap copper. They claim that if modified their device can also be used to sort objects made from different types of plastics material.

The basic feature is that the mixed objects falling down a chute pass through a coil (in Fig. 1) with a small number of turns. This coil is part of a tuned circuit connected into an oscillator circuit.

The output of the oscillator is used to control a sorting deflector which pneumatically deflects objects of one type.

The circuit (Fig. 2) shows the coil together with the tuning capacitors and transistor functioning as a Colpitts oscillator. The frequency produced is usually within the range 200 to 300 MHz .

When an object passes through the coil a positive going change occurs in the output signal from the oscillator. The change in output signal is amplified and fed to a magnitude detector stage. This transistor amplifies and inverts to provide a negative-going signal which can be used to drive a power amplifier for controlling the deflector mechanism.

Fig. 2. Basic amplifier and switching circuit

To distinguish between different objects of similar material, the detector transistor switches according to the signal rate of change. Fig. 3 . shows an arrangement whereby an "object presence" sensor makes sure that the deflector operates only when required by one object.

Fig. 1.

Fig. 3. Gating for one object at a time.

Gerry Brown wiffinit

CHARGE

Back in Queen Anne's time, the superstitious held that "air electricity" could have a profound influence on both behaviour and on general disposition. Indeed, such expressions as, "he has the wind in his tail" probably originated this long ago, since it was common practice in European courts to treat felonies with more tolerance whenever the ldes of March were blowing.

In common with many old beliefs which have subsequently become contemporary facts, air electricity is no exception. Apparently it is ions which are responsible for this effect on people. Ions are atoms (more likely, in this case, molecules) which have either lost or gained a number of electrons; those with extra electrons become negative ions, and those losing electrons. positive ions. For some obscure reason the positive ions make us feel tired and lower our capacity for work, while negative ions produce just the reverse; as when, for example, a thunderstorm has just passed.

Prior to a storm it has been noticed, though, that the air charge is predominantly positive so if the theory is right this would correlate with feeling "lifeless" and "headachey" at such times.

Thunder and lightning aside, in spite of our technical enlightenment we probably do more to make our lives uncomfortable than the "superstitious" people of yesterday.

Consider what we wear. Nearly all our clothing is prepared from synthetic material; shirts and dresses are made from nylon, rayon, or similar fibre, while the soles of our shoes are generally fashioned from some form of man-made "leather", all of which cause us to acquire a relatively permanent high-voltage charge.
This charge is positive and. what's more, according to some researchers causes most of the fatigue and general debility experienced these days. The question is, should we drag around discharging chains in order to maintain equilibrium, or would we be better off minimising "droop" under a d.c. version of the National Grid?

FIRE WITHOUT SMOKE

Since we have had every opportunity to become fully hyperconscious about pollution and its effects, it is staggering to think that most of us are quite uncritical of the quantity of such belched into the atmosphere during that evening

on November the 5th. This is particularly hard to bear when one considers that fireworks have advanced little, technically, for the thousand or so years since the Chinese began using them; albeit, the bangers were likely better then!
So, since this burning sense of fun remains with us to relive the next year, and generally costs more per shower of sparks than it did the year previously, a nagging feeling is left that perhaps the time has now come to rethink the Guy Fawkes night phenomenon. And who could be more fortunate than us to enjoy a relatively luxurious imagination in this respect. While there's still a little time left before this year's "big burn", and before Dad sets light to the poplars again, let's see how realistic a smokeless 5 th might be.

For starters, we could do-away with the conventional Catherine wheel and substitute it for a spin ning frame of lights, faded electronically in sequence from the centre, and fed via slip rings on the drive shaft. Then add a bit of novelty to roman candles by employing solenoid-released, springejected, miniature mercury cell
powered micro-lamps. Or what about capacitor discharge "canon crashers" with extra large xenon flash tubes for realistic back-up?

Occasional bursts of envelope shaped white noise would not come amiss, particularly in synchronism with periodically operated, brightly lit water fountains. Realistic smoke would be produced with solid CO_{3}.

With a philosophy like this fireworks could be arranged to have a virtually indefinite "burning time". and would hardly ever wear out. Honestly, when you consider just how much electrical power is available for the really enthusiastic, it's a wonder someone hasn't done a back-garden Son et Lumière already!

EYE-AYE!

Sensory deprivation still remains a bit of an enigma; indeed, the discovery of every new effect has raised an even greater number of questions about its possible mechanism.

Many of the problems associated with experiments up until now could well have been attributed to the rather general nature of the experiments, and further complicated by interaction (or lack of it) between large numbers of unstimulated areas in the brain.

Although the days are not yet past when experimental volunteers need be suspended in tanks of warm water for hours at a time, there does appear to be a modest breakaway toward more systematic examination by limited deprivation of inputs to individual senses.

Employing this technique, two workers at the University of Manitoba have recently discovered an effect very similar to that which occurs following actual severence of sensory nerves. For their experiment each of 15 students were asked to wear a light-blocking patch over one eye during a working day on the campus. The uncovered eye was checked periodically for sensitivity to flickering. rather than continuous light.

On aggregate, uncovered eyes were intially less sensitive, but. given several hours. subsequently began to increase in sensitivity. eventually exceeding even the normal level. In some instances students reported that this hypersensitivity lasted for days afterwards.

These odd happenings could, by implication, be no mere trifle, especially in the context of stimulus withdrawal for any great length of time. Paradoxically, though, an additional effect was that the covered eye maintained normal sensitivity throughout the tests. Perhaps Nelson, bless his heart. really didn't see any ships after all!

You can see why we sell a lot of multimeters.

Ours areso much easierto read
The Eagle K1400,for instance, has a big openface and a beautifullylaid-out mirrorscale.

Decibels and AC Voltage are picked out in red, and the others in black. Which makesitall crystal clear

The K1400 is easier to use, too. There are two knobs: the leftforfunctions, the rightfor range limits.

Agaın, you can't go wrong. Everything's clearly marked, including the 'Off' position which protects the meter movement againstknocks and bangs.

And, of course, Eagle's
exclusive overload protection circuit is builtin.

All Eagle testequipment is like this. Simple to use. Reliable.Backed by afull two year guarantee.

And likeH.W. Hellyer, one of the country's leading technical expertssaid, "Notbyany means expensive: it is well worth what it costs".

Ifyou send us the coupon, we'll send you our catalogue.
-RER-September, 1971

SPECIFICATION RangesimK1400

D.C. Volts: $0-0.25,1,2.5,10,50,250,1,000$ and 5,000 volts.

Inputresistance : 20,000 ohms/volt.
Accuracy: better than $+3 \%$ full scale
A.C. Volts : $0-5,000$ volts in $s i x$ ranges, steps similar to above

Inputresistance: 5,000 ohms/volt.
Accuracy: better than $\pm 4 \%$ full scale.
D.C. Amps: 0.50 microamps, $1 \mathrm{~mA}, 10,100,500 \mathrm{~mA}$ and 10 amps .

Accuracy: better than $\mathrm{t} 3 \%$ full scale.
A.C. Amps: $0-10 \mathrm{~A}$ in 4 ranges, steps as before

Accuracy: better than $+4 \%$ tull scale.
Resistance: $0-20 \mathrm{M}$ ohms in 3 ranges
Accuracy: better than $\pm 3 \%$ of scale length.
Decibelscale: -20 to +50 dB .
Standard level: $0 \mathrm{~dB}=1 \mathrm{~mW}, 600 \mathrm{hms}$ load.
Frequency Response : $10-100,000 \mathrm{~Hz}$ for $2.5 \mathrm{~V}, 10 \mathrm{~V}$ and $50 \mathrm{~V} \div 0.5 \mathrm{~dB}$. Size: $6 \frac{3}{8} \times 8 \times 3$ 角 1 n . Weight: $3 \frac{3}{4} 1 \mathrm{~b}$.
Rec. Retail Price : $£ 28.00$

Eagle International ${ }^{\circ}$
Eagle International Precision Centre Heather Park Drive Wembley HAO ISU Telephone 01-9030144

PRACTICAL ELECTRONICS "SCORPIO" ELECTRONIC IGNITION SYSTEM

This Capacitor-Discharge Electronic ignition system was described in the
November and December issues of Practical Electronies. It is suitable for incorporating in any 12 V ignition system in cars, boats, go-karts, etc, of either
pos. or neg. earthand up to six cylinders pos. orneg. earthand up to sixcylinders.
The original coil, plugs, points and The original coil, plugs, points and
contact-breaker capacitor fitted in the contact-breaker capacitor fitted in the
vehicle are used. No extra or special vehicle are used. No ex
components are required
Helps to promote easier starting (even under sub-zero conditions), improved under sub-zero conditions), improved
acceleration, becter high-speed performance, quicker engine warm-up and improved fuel economy. Eliminates excessive contact-breaker point burning and the need to adjust point and sparkplug gaps with precision.
Construction of the unit can easily be completed in an evening and installation should take no onger than haf an hour. is supplied with each kit together with is supplied with each kit together with
ready-drilled roller-tinned professional quality fibre-glass printed-circuit board, custom-wound eransformer and fullymachined die-cast case. All components are available separately. Case size $7 \frac{1}{2}$ in $4 \frac{1}{2}$ in 2 in approx. $\mathbf{2 5 p}$. refundable on purchase of kit Price: $£ 10.50$ plus 50 p P. \& P

DABBR IGGHIIIGG EFFCIS
NEW! NEW! NEW! NEW! NEW! NEW!

single channel
SOUND TO
LIGHT UNIT
STL/I
Single channel " Sound to Light unit with slider fader controls for oad timger level and background Switchable for
Mid and Low frequency audio inpur signals, selected by fascia conerol fitted Pulse-Flash push butcon of lampload. Neon load indicaror fieted loac. Neon load indicato Const
constructed on glassfibre printed black anodised with attractive input and load connections via Cinch printed circuit connector. Maximum Load 1 kW at 250 V 50 Hz .
R.F.I. filtered

Price: $\mathbf{f 1 3}$ each post free U.K.
S.A.E. All Enquiries please

Three channel
SOUND TO LIGHT UNIT STL/3
Three channel " Sound to Light unit with slider fader controls for audio rrigger level and background load dimmer.
An attractive unit with independent control of High, Mid and Low Slider Simer lader background or dimmer controls on each channel. each Pulse-Flash push buttons on each channel together with neon load indicators
Constructed on glassfibre printed black anodised fascia panel Input and load connections at rear so unit is ideally suited for mounting into disco-console. Maximum Load 1.5 kW per channel at 250 V 50 Hz .
Price: $€ 38.50$ each post free U.K.
Trade enquiries Welcome

PSYCHODELIC LIGHTING UNIT Mk. 3

This unit represents a natural progression from our phenomenally successful Mk. I and 2 Units. As before the drive voltage is or across the speakers. The unit converts the audio frequency signals inco a threecoloured light display; the colour depend. ing on the frequency of the signal and the intensity on the loudness of the audio source.
The unit is constructed on professional fibre-glass printed-circuit board material and uses latest full-wave triac circuitry. with independent sensitivity controls for each channel. The original minimum ambient light level controls have been redesigned permitting their use as faders; allowing dimming from max. to zero at the curn of a knob. R.F.I. suppression is now incorporated as standard as well as provision for D.J. "Pulse-Flash" concrols. operation from both high inputs enabies amplifiers Mix power 1.5 kW per channel at 240 V a.s. Complete assembly built and tested. Size 9in $\times 7$ in $\times 3$ in. Price $\mathbf{4} 25$ carr. paid.

DABARELECTRONICPRODUCTS 98a Lichfield Street, Walsall Stafts. WSI IUZ TELEPHONE: WALSALL 34365
 TELECRAMS: DABELEC Walsall Stafts.

THE RADIO SHOP

16 Cherry Lane, Bristol BSI 3NG Tel.: Bristol 421196. STD Code 0272 Your West Country shop for electron 2 METRE CONVERTER KIT 9 V Neg. earth feeding 28.30 MHz . Consisting of: RF BFI80. Fet. mixer crystalosc. BFI80 and multiplier BFI80 Complete with all components, instructions and aluminium box.
Not for beginners. $\mathbf{6 5}$, post paid. 2 METRE PRE-AMPLIFIER
Single F.E.T. Pre-amp. neg. earth. Gain app. 12 dB. Circuit, Instructions and Components. All you need is a tobacco tin. $\boldsymbol{\epsilon} \mid \cdot \mathbf{2 0}$, post paid. AIRCRAFT BAND CONVERTER Circuit, Instructions and Components. All you need is a tobacco tin. $£ 1 \cdot 27$, p.p. TAPE RECORDER LEVEL

METERS

500% A, size lin $\times \operatorname{lin} \times \frac{3}{4} \mathrm{in} .55$ p, p.p LINEARIC'S
"A 709 Op. amp. T05 or DIL
42p, P. \& P. 5p
Transistor Equivalent Book
44p, post paid Coil Design and Construction Manual

34p, post paid
Tested Transistor Circuits (1972)
44p, post paid.
World's Short Wave, Medium Wave, FM and TV Listing. 40p, p.p. NUMICATORS
GNP-7AH, similar XN3, side reading clear. Send 5p for data. With data, 75p plus 10p P. \& P., 4 post free. WE STOCK "Weco" Television Tubes. 1972 CATALOGUE, 5p, Post Free

BASIC TELEVISION

3 Vols. combined edition ©3.50. Postage 25p.

A HEW PICTURE book manual
IH THE COMMON CORE SERES

PRACTICAL TRANSISTOR NOVELTY CIRCUITS, by H. Ness. 40p. Postage 5p.
ELECTRONICS EXPERIMENTERS CIRCUIT MAN UAL, by General Electric. GI. Postage 10 p.
DIGITAL LOGIC BASIC THEORY AND PRACTICE, by J. H. Smith. $£ 1.50$. Postage 10 p .
FOUNDATIONS OF WIRELESS AND ELECTRONICS, by M. G. Scroggie. € 1.80 . Postage 20p.
THE MAZDA BOOK OF PAL RECEIVER SERVICING, by D. J. Seal. 63.50. Postage 20p.

TRANSISTOR POCKET BOOK, by R. G. Hibberd. El-40. Postage 10p.

MAKING AND REPAIRING TRAN. SISTOR RADIOS, by W. Oliver. 6 I. Postage 10p.
RADIO VALVE AND TRANSISTOR DATA, by A. M. Ball. 75p. Postage 10p.

THE MOOERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 INP

Phore 01.723 4185 Closed Saturday I p.m.

6 WATT STEREO AMPLIFIERS

High quality amplifiers giving $3 \mathrm{~W} /$ channel
RMS
With low distortion (0.2%). The RMS. With low distortion (0.2%). The circuit is designed around the
Incegrated Circuit Type SL403D.
Integrated Circuit Type SL403D.
There is a single and a two-tone control There is a single and a twotone control
model each designed to accept a crystal Model each designed to accept a crystal pick upi Giving a requency response
50 to $i 5 \mathrm{kHZ}$ with a load of 8 ohm impedance $3 \mathrm{~W} / \mathrm{ch}$ annel.
Transformers for above
amplifiers
98p
Oual Tone Controls $\quad 64.95$ each

LOUDSPEAKER ENCLOSURE
 Incorporating 6×4 in
Fane speaker 10,000 Fane speaker 10,000 Gauss. Voice coil mpedance 8
With 6 oht of
Wheal Teak Vinyl covered enclosure with slotenclosure Scandinavian type
$124 \times 7!\times 3$ fint. Sideal for extension speakers.
$\{3.60$ each.
Plessey I.C.'s Type SL403D complete with sircuit diagram, 21.25 each.
20 por 2 paties invited. Post and packing
CIRTEC PRINTED CIRCUITS LTD HIXON INDUSTRIAL ESTATE, HIXON STAFFORD

Fig. 1. Final circuit for adding a one shot facility to an oscilloscope

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

HAving a double beam oscilloscope which does not have an integral single shot facility, it was felt that single shot operation would be useful in photographing traces. Inspection of the circuit diagram of the scope had shown that with a judicious choice in the setting of the trigger level and stability controls together with the application of external triggek pulses, a very simple system could be used to initiate single sweeps.

The external input to the trigger circuit of my scope (D51) can be a positive or negative going waveform of amplitude greater than three volts. The current required was small, so an old PP3 battery could be used until corrosion rendered it useless.
All that was thus required was a battery and a push on/release off switch connected in series with the external trigger socket of the scope.
It was realised that the switch could be replaced by the flash contacts of a camera. Use of a slow shutter speed and X (or electronic flash) synchronisation allows the trace to be recorded on film even under fairly high levels of ambient illumination.
The final circuit is shown in Fig. 1, the flash contacts being wired in parallel with the push on/ release off switch to allow setting up and single shot operation without unnecessary wastage of film.

To set the equipment up, turn the trigger selector to external. Next turn the stability control from the free-run portion of its range until the trace just disappears. Turning the trigger level control from "auto" through the set level area of its range should at some point produce one trace. With the control in this position apply the external trigger pulses and optimise the settings of the stability and trigger level controls for reliable single shot triggering. The scope is then set up.
R. A. Shackleford,

Glasgow.

SENSITIVE LIGHT SWITCH

Ienclose a circuit diagram, Fig. 1, of a very sensitive light operated switch which may be of interest to readers.
When the light dependent resistor PCCI is illuminated its resistance is low making the inverting input of the i.c. positive with respect to the noninverting (the potentiometer VRI is adjusted to ensure this) so the output will be at 0 V and the transistor TRI will be cut off. As the light level falls the l.d.r.'s resistance increases until the inverting input is more negative than the non-inverting. This causes the amplifier to saturate and the output rises to +12 V , which switches on TRI and operates the relay.

The point at which the relay operates is controlled by VRI. and is really stable as supply voltage variations have small effect because both voltages vary together (I.d.r. junction and VRI wiper).

If the reverse operation is required (i.e. relay operates as light increases) connect the 1.d.r. to 0 V and resistor RI to +12 V .

R. S. Girdwood, Norwich.

Fig. 1. Circuit diagram for a very sensitive light switch

Rerdaot A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magaxine. Technical queries cannot be dealt with on the telephone.

True values

Sir-Messrs. Bobker, Harrison. and Barrett have a rather strange sense of values (Readout-Oct. 1972). They seem to have been caught by the general malaise that is creeping over many sections of society that if you cannot make something for a "profit" then its not worth bothering. They seem to have blinded themselves with the financial matters of the subject and have forgotten that your magazine is not designed with commercial interests in mind but to offer amateur enthusiasts a source of up to-date knowledge on all aspects of electronics coupled with instructions on how to make equipment.

You cater for amateur hobby interests and the value of a hobby is beyond price if you are sufficiently interested in the subject The price it costs to make something and learn from it is irrelevant
provided one can actually afford the expenditure. If one cannot afford the price of making something then one can still get a high degree of satisfaction out of reading and understanding. in a very practical sense, the workings of a sophisticated piece of equipment.

Digi-Cal is the first publicly issued inside story of the workings of a desk calculator and as such is a long waited for event on the amateur front; the three correspondents named above should be thankful that at last someone has gone to the trouble of designing such a piece of equipment and is also cap. able of explaining its workings in a clear and straightforward manner.

Your correspondents have got the wrong end of the stick. If they want something cheap then they should buy it. If they want real value for money then they should make an effort to scrape together the money to do something worthwhile. Just for a moment let's consider whether they have their commercial facts right. Let's assume they have bought their cheap commercial instrument; something goes wrong with it that is outside the guarantee. What do they do lassuming no inside information re. garding Digi-Cal)?

Of course they have to lay out more money to get the equipment repaired. If they had dropped or crushed their pocket sized instrument it is quite likely that they will have cracked the single i.c. element. How much does this cost to replace?-probably in the order of $\$ 24$ to $\{40$ depending on the type. How much would it cost if a similar thing happened to Digi-Cal? Certainly a lot of time sorting out the fault-but in material costs probably not more than a few pence!

I'm afraid I do not agree with the last paragraph of your editorial. Digi-Cal is NOT "priced out"-if anything it is absurdly cheap. An annual subscription to P.E. costs $\pm 2 \cdot 65$; the electronics. mathematical knowledge. and logic experience that can be gained from a series such as this is far beyond the learning one can gain in a whole year of university work in the same field.

My interest is in the field of digital electronics. but 1 know very little about calculators. This hole in my knowledge is now being filled. 1 would like to congratulate Mr. Coles for making such an effort in designing a topical, useful and educative project. and I measure that most enthusiastic readers would agree with me

Michael J. Hughes. Westerham. Kent.

Raudive voices

Sir-Mr Morton (September, ${ }^{7} 72$) would appear not to have read "Breakthrough" as well as he might have. I quote, "Scientific tests have shown (in a Faraday cage, for example) that these voices originate outside the experimenter and are not subject to auto-suggestion or telepathy." Also, "They are twice the speed of human speech and of a peculiar rhythm which is identical in the 72,000 examples so far examined." Would different experimenters all have the same style of modulation?

There is the possibility that the tape irregularities themselves, when
passed through a high-gain amplifier, might sound like words to anyone who expected (however unconsciously) words to be there. However it sounds unlikely, but, until we know more, it must be an open question.

Michael Fleming, Solihull, Warwicks

Michael Fleming raises three issues: one trivial and two worth a closer look. I will try to deal with them in turn.

First, the "tape irregularity" explanation, which is in fact a politer way of saying "imagination" or even "fraud". Can we doubt that a phenomenon so seemingly preposterous as the Raudive voices would have been examined by reputable technicians well used to the vagaries of magnetic tape? If we are going to accuse Raudive of trickery then let's do so openly -and be ready to say how it is done-without invoking explanations which don't explain.

Secondly, the two quotations Mr Fleming gives certainly do not deal a deathblow to the psychic/electronic interaction hypothesis I pro posed. Admittedly we have little real knowledge of the laws behind parapsychological activity: but al the evidence says that neither telepathy nor telekinesis are electromagnetic radiation; do not obey the known principles of propagation and cannot be blocked by any shielding. Therefore the fact that Raudive voices appear on recordings made inside a Faraday cage is quite irrelevant to the present argument.

I will not try to answer the point about the "identical peculiar rhythm" of the recordings because | believe little sense can be said without more facts to go on. But would point out that brains are not so dissimilar in some of their manifestations as Mr Fleming suggests; for example the alpha rhythms in most normal brains are too alike for it to be possible to distinguish between them by these traces alone; and one of the important things about psychical research is that its evidence suggests all minds are linked "under the surface" in a way we don't understand. Therefore it's not too surprising if all brains react with electronic circuitry in much the same way: or at least seem to with our relatively crude equipment. In any case, if Raudive is to be believed the voices are quite distinctive in pitch and timbre. This is not to say that because the voices are recognised, they may therefore be taken to be those of dead people I hate to think of any of my dead relatives being forced to utter the kind of imbecilities we have immortalised in "Breakthrough". We do know from research into mediums and their activities that

MAINS MOTOR
Precision made-as used in ders-ideal alion tor extractorfan, blower, heaters, etc. New and perfect. Snip at 65p, and perfect. Snip at 65p.
Postage 20p for first one then 10 p for each one ordered.

minIATURE
WAFER SWITCHES 3 pole, 3 way- 4 pole pule, 4 way-3 pule, 4 way- 2 pole
6 way-1 pole, 12 way. All at 20 p each, 21.80 for ten, your assortment.

SPARTAN Portable

RADIO

ELECTRIC CLOCK WITH 20AMP SWITCH
These units are as fitted to minny top quality cookers to control the oven. The clock is mains driven and irequency. ontrolled so it is ex. wo amall dials enable

COMPUTER TAPE

${ }^{\circ}$

We demonstrate thewe tuily and aluost always a sale remulta: it really is a cracking amplitier. Only Mullar! with their know how could have made it possible at this low price. SPEC: - Mains operatel. 4 watts music or speech per channel. Donble wired power supply eliminates cross talk. Harmonic distortion lun for pick-up tuner or m
portage and insuratice.
, sooft of the Best Magnetie Tape money can buy - users claim
good results with Video and sonnd. lin. wile $£ 1.00$ pius 33 pont
 insurance with cassette, $\frac{1}{2}$ in. wide 85 p phas inp post and insmance
with cassette. Spare apools and cewsettex- lin. 75 p . $\frac{1}{\mathrm{i}} \mathrm{in}$. 76 p each plus zop post and insurance

TANGENTIAL HEATER UNIT
This heater unit is the very latest type, most etticient, and quiet ruming. In as fitt ed in Hoover and blowet heaters cistingeto and more. We have a fen only. Compriges motor, impeller, 2 kW ,
element and 1 kW element allowhig switching 1 , element and 1 kW element allowing awitching 1 , be fitted into any metal lime case or cabinet. Only be fittel into amy ine dat lime case or cabinet. Onty except \because kilowatts $£ 2 \cdot 50$. Don't mise thix. Control HONEYWELL PROGRAMMER This in a drum type timing device, the
drum being catibrated in equal divisions for switch setting purpowes with trips which are intinitely arljustable for jowition. They are also arranged to allou $\because \frac{1}{\text { opera- }}$ ions per switch per rotation. There are 1.5 thangeover miers, whitches earh of 10 amp type operated by the trips this 15 cincuite may
 be changel per revolutinn. Drive motor in mains
operaterl 5 rever per min. Some of the many nses of
operated J reve per min. Some of the many nses of
thistiner are Machimery control. Builer firing, Dispensing anl Vemding tuachines
 Diaplay lighting animaled and signa, Signalling, etc. Price from thakert pro
bably over t'10 each. Special snip price e5.75 plus 25p post and insurance. Don't mise thin territic bargain.

THIS MONTH'S SNIP

TIMAC 24 hour 15 amp Clock 8witch. Nelf-contained unit for tlex connection to the mains. Cluck swit hes a on/offs per 24 hours,
Operates a 15 anm Operates a 15 amp uwit.h. All neatly manle up in an ivory
moulded cane with witlot moket. The only suag is that the moulded cane with witlet mosket. The only suag is that the
ont let socket is the cont inerital fype. Plugs for these cin be brought in this comutry alternatively you coudid fit a commector $4^{*} \times 24^{*}$ place of the outlet nocket Overall size of this unit is tasily removable for reprogramming. Ifeal for blanket controller, ete. Price 22.75 each.

THYRISTOR LIGHT DIMMER
For any lamp up to lkw. Mounted on wwitch plate to tht Price $22-85$, phrs:0p post and insurance.

DIGITAL COUNTER TIMER Very stable and reliable erystal con-
irolled circuit. Capable of work in excens irol
of 15
Mircuit. Capable of work int excens use of 15 integrated circuitx. Complete
kit with case $888 \cdot 50$ or emnst ruct iom data and prive list 50 p .
MULLARD AUDIO AMPLIFIER MODULE x ohms npeakers. hupht suitable for erystal mac. or

3 STAGE PERMEABILITY TUNER

Made originally for Radiomobile cal ladion. This is a medimu

IMMERSION HEATERS BY REMPLOY

Standaril titting for domestic water lanks,
made by the famons Remploy Company.
complete with sealing washers suitabile

13 AMP TWIN GANG SOCKETS oftered at lesy that wholesale pire your uppor
tunity to reptace thowe tangerous adaptors brown bakelite thush mount ing-standard fitting Tiswitched 20p rach, separately awitehed 30 p
 indieators 45p each. Lens.
pestage if order under as.

POCKET CIRCUIT TESTER

Test continuity of any low resistance circuit, house wiring, car electrics. Tents polarity of diodes and recconversion to signal infector (circuit supplied). 80p or 2 for

sop post paid.

AMPLIFIER

SPEAKER

Marketed by Britioh Relay unter the name Luxistor. This is in a very neat looking cabinet and trouble shooting or for test ing out a quick lash up. trouble shooting or for testing out a quick lash up
Size approx. $98^{\prime \prime} \times 61^{\circ} \times 3^{*}$ deep. Input is via Size approx. $98^{*} \times 6 \underline{2}^{*} \times 3 z^{*}$ deep. Input is via
a matching transformer and volume control and a matching transiormer and volume control and battery or an external 110 y source. Speaker is an $\mathbf{R} \cdot \mathrm{A}$ eliptical $6^{\prime \prime} \times 3_{\frac{1}{2}} 10,000$ gauss. The amplifte proper is a Newmarket model ret. P.C.4. Price 33.50 each, 10 for 881.50 . Post anul insurance 30 p

BAKELITE INSTRUMENT CASE
Size approx. $61^{-} \times 31^{-} \times 2^{*}$ reep and bakelite panel. Thi wirners and bakelite panel. This
a very strong case suitable to house instruments and special rigs,

TELEPHONES

Complete an illontrated. Save

your legs, time and temper, simply by putting in some telephones. Ex-G.P.O., not new-but guaranteed in good condition and serviceable
Supplied with diagram and Supplied with diagram and instructions showing how
connect. Price 75 p each +30 p post or 2 for $£ 2$ post paid. 50p each +20 p post

ROCKER SWITCH
13 amp self-fixing into an oblong hole. size approximately $1^{*} \times 1^{*} 6 p$ each,
10 for $54 p$ 10 for 54 p .

STM: SLIDE SWITCHES

1. Slide 8witeh. 2 -pole changeover panel hin $=\mathrm{D}$ mounting by two 6B.A. screw. Bize Foprox. 8 p each, 10 for 54 p .100 for $25 \cdot 10$. $\mathbf{5 0 0}$
for 884 . Ditto as above but for printed circult 5 p each. 10 for 45 p . 100 for $24-25$ Sub Winiatare 8lide 8 witoh, DPDT 19 mn (1f1. spprox.), between fixing centres. 18p each or
10 for $21-08$.
EDUCATIONAL KITS - all with pictorial instructions

THISBALANCE

K1T FREM Eagle educational made these are excellent value
for money. We for money: We
do not expect
to be sble to repeat this offer once utocks are sold. Brief deseription of each kit is given below and with 3 kit balance kit. Prtce of kitas 40 p each post paid Special priceforali 8 kita 28 with free balance kit KA2 Leaz Eit. Eleven parth, including candle one concave lens, one convex lens, stage and slit frame, etc. Wateh light rays bend as they pas through difterent lenses
KAs Water Pump Kit. Thirteen parts. Top of purnp is tranaparent so that operating parts may be seen easily while working. Three types of punp may be made: Lift pump. Force Pump and Force Pump with reservoir and nozzle. KA4 Burner Kit. Eleven parta. Transparent covere allow the operation of buzzer to be seen. Illustrates and teaches how electromagnetism with an KAB \quad aric awitch resilhs in an opersting buzzer KA6 2-Pole Motor Kit. Twenty-four parta inchuding enamel wire, armature and pole plece. trates and teaches how electro.nagnetiam operate a mpotor.
SP Change over spring return 250 , 1 amp 10 p . KA7 Electro-Magnet Kit. Fifteen parta, includea compass. Makes two electro-magnets, one with
one layer of wire and one with geveral layers of wire. Picks up tacks, nails and any mmall parts hhowing how magnetism works.
KA8 Current and Retistance Kit. Twenty-nine parts, including bench and light huth. Conduct application of "OHMS LAW" and see the differ ence in current and resintance with different types and lengths of wire.
KAg Bell Kit. Eight parta, inchading bell and push button switch. Muild a complete electrle bell anil aee how the hatmmer is triggered to make the bell ring.
KA10 Morse Key irigger and bell kit. 25 part kit
easy to const ruct, ninple to operate.

[^4]
YATES ELECTRONICS （FLITWICK）LTD．
 ELSTOW STORAGE DEPOT KEMPSTONHAROWICK

c．w．o．please．post and packing PLEASE ADD IOp TO ORDERS UNDER 62.
Catalogue which contains data sheets for most of the components listed will be sent free on request． Op stamp appreciated．

OPEN ALL DAY SATURDAYS

RESISTORS
W lakra high stability carbon film－very low noise－capless construction W Mullard CR25 carbon film－very small body size $7.5 \times 2.5 \mathrm{~mm}$ 2% ELECTROSIL TRS

DEVELOPMENT PACK

0.5 watt 5% tskra resistors 5 off each value 4.7 n to IMg ．

POTENTIOMETERS

Carbon track 5 kn to 2 Mn ．log or linear（log 1 W ．lin 1 W ）． Single，12p．Dual gans（stereo），40p．Single D．P．switch 24p．

SKELETON PRESET POTENTIOMETERS

Linear：100，250，500n and decades to 5Mn．Horizontal or vertical P．C
mounting（ 0.1 matrix）．
Sub－miniature $0.1 \mathrm{~W}, 5 p$ each．Miniature 0.25 W ，op each．

ERUSHED ALUMINIUM PANELS

$12 i n \times \sin =25 p ; 12 i n \times 2$ in $=10 p ; 9 i n \times 2 i n=7 p$ ．

SLIDER POTENTIOMETERS

$6 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$ ，length of track 59 mm
DUAL GANG＇ 10 ．+ lok＇ers，los or lin

Knob for above
FRONT PANEL
20 gauge panel 12 in $\times 4$ in with slots cut for use with slider pots Grey or matt black finish，complete with fixings for 4 pots

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 24 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ ， $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \$ \mathrm{p}$ ． $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F}$ 3 $\frac{1}{3} \mathrm{p} .0 .15 \mu \mathrm{~F}$ 4 $\frac{1}{2} \mathrm{p}$ ．

MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P．C．mounting： $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}$ ． $0.033 \mu \mathrm{~F}, 0.04 \% \mathrm{~F}, 0.068 \mu \mathrm{~F}$ ， 3 ip． $0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, \mathrm{~S}_{\mathrm{p}} .0 .33 \mu \mathrm{~F}, 61 \mathrm{p}, 0.47 \mu \mathrm{~F}, 81 \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p}, \mathrm{i} .0 \mu \mathrm{~F}, 13 \mathrm{p}$ ． $1.5 \mu \mathrm{~F}, 20 \mathrm{p}, 2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$ ．

MYLAR FILM CAPACITORS 100 V $0.001 \mu F, 0.002 \mu F, 0.005 \mu F, 0.01 \mu F, 0.02 \mu F$ ， 2\＄p． $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3\} \mathrm{p}$ ．

CERAMIC DISC CAPACITORS 100 pF to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each．

ELECTROLYTIC CAPACITORS－MULLARD C426 SERIES

（ $\mu F / V$ ） $10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4$ p each． $400 / 4,6 \cdot 4 / 6$－4，25／6．，50／2， $10016,20016,3016,10,314,64 / 4,125 / 4,250 / 4$ ． $400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6.4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10,125 / 110$,
$200 / 10,2 \cdot 5 / 16,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16,1.6 / 25,6.4 / 25,12 \cdot 5 / 25,25 / 25,50 / 25$, $20 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,064 / 64,2 \cdot 5 / 64,5 / 64,10 / 64,20 / 64,32 / 64$.

MULLARD C437 SERIES

$100 / 40,160 / 25,250 / 16,400 / 10,640 / 6 \cdot 4,800 / 4,1000 / 2 \cdot 5,9$ p． $100 / 64,160 / 40,250 / 25$ ， $400 / 16,640 / 10,1250 / 4,1000 / 6 \cdot 4,1600 / 2 \cdot 5,12 p .160 / 64,250 / 40,400 / 2 \cdot 5,640 / 16$ $2000 / 4,1000 / 10,1600 / 6 \cdot 4,2500 / 2 \cdot 5,15 p .250 / 64,400 / 40,640 / 25,3200 / 4,1000 / 16$ ， $1600 / 10,2500 / 6 \cdot 4,4000 / 2.5,18 p$ ．

ELECTROUYTIC CAPACITORS Mi． ELECTROLYTIC CAPACITORS Miniature P．C．mounting
$(\mu F / V) ; 10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.

VEROBOARD

ーラニラーいんNN

Pkt． 50 cinster 42

THERMISTORS
VA1055S 15p；VAl066S 15p；VA1077 15p；R53 \＆1．35．
COMPACT CASSETTES－IN PLASTIC LIBRARY BOX
C90 65p C120 B5p．
LARGE（CAN）ELECTROLYTICS

$1600 \mu F$	$64 V$	$74 p$
$2500 \mu F$	$40 V$	$74 p$
$2500 \mu F$	$50 V$	$58 p$
$2500 \mu F$	$64 V$	$80 p$
$2800 \mu F$	$100 V$	

$50 p$
41.68
61.10 64 V

JACK PLUGS AND SOCKETS

Standard screened $18 \mathrm{p} \quad 2.5 \mathrm{~mm}$ insulated Standard insulated $12 \mathrm{p} \quad 3.5 \mathrm{~mm}$ insulated Stereo screened $\quad 35 p \quad 3.5 \mathrm{~mm}$ screened Standard socket $\quad 15 \mathrm{p} \quad 2.5 \mathrm{~mm}$ socket Stereo socker $\quad 16 \mathrm{p} 3.5 \mathrm{~mm}$ socke

D，I，N．PLUGS AND SOCKETS
2 pin， 3 pin， 5 pin $180^{\circ}, 5$ pin $240^{\circ} .6$ pin
Plug 12p．Socket 8p．

BATTERY ELIMINATOR
BATTERY ELIMINATOR \quad CI． 50
9V mains power supply．Same size as PP9 battery．

$$
\begin{array}{l|l}
42 p & 4 \text { way screened cable, isp/metre } \\
\text { 12p } & 6 \text { way screened cable 22p/metre } \\
110
\end{array}
$$

$\times 5$（plain）
$\times 34$（plain）
in insertion tool
52p
42p
20p

HIGH VOLTAGE TUBULAR CAPACITORS－ 1,000 VOLT $0.01 \mu \mathrm{~F} \quad 10 \mathrm{p}$ $\begin{array}{lll}\text { CAPACITORS－} 1,000 \text { VOLT } \\ 0.047 \mu F & 13 p & 0.22 \mu F \\ 0.1 \mu F & 13 p & 0.47 \mu F\end{array}$ 20p
22p

POLYSTYRENE CAPACITORS $160 V 2 \frac{1}{2} \%$
10 pF to 1.000 pFEI 2 Series Values 4 p each

SOKSOL DE－SOLDER KIT：Here is a kit that is must for every service engineer and electronic project constructor．You make it up to your own exacting requirements． wrap－round solder toints on switches，potenciometers，transformers，
etc．，etc．Simple to use．you just drop special braid in the supplied chemical solution，pull out and allow to dry．When ready to use just simply place braid on device to be desoldered，apply soldering iron to braid and the rest is sheer magic as all solder is soaked up in seconds The kit includes 20 ft，of special braid，chemical solution and full instrue tions， 61 ，pose 15p．Money back guarantee if dissatisfied．
and ain component parcels includes resistors，siver mica，polystyren panels plus a generous selection of other components．Guaranteed to be the best mixed parcel on offer or your money back． 4 lb ．nett weight，$f 1$ post 40p．
Assorted computer panels contain l．C．s，thyristors，transistors，diodes， trim
20p．
Assorted silver mica，polystyrene and ceramic capacitors，extra good selection， 100 for 50 p, post 10 p ．

ELEKON ENTERPRISES

224A ST．PAUL＇S ROAD，HIGHBURY CORNER LONDON，N．I

the subconscious mind is capable of generating all kinds of personas (synthetic personalities) to give substance to its longings, hopes hatreds, etc. That these figments should then escape into the "mental ether' and come to react with electronic equipment | find quite plausible, especially when supported by other experimental evidence.

And there is experimental evidence. If any readers are ready to jib at the notion of mere thoughts directly affecting electronic circuitry I would direct them to the work of Helmut Schmidt, a physicist of international repute. He has devised an apparatus on which trained subjects can both predict and control random events at the sub-atomic level (the decay of Strontium-90 nuclei) at a high level of probability by willing alone. There is a good summary of his work in Arthur Koestler's "The Roots of Coincidence'. 1972.

- Peter R. Morton

Amongst the white noise

Sir-After reading Mr Peter Moreton's letter in the September edition of P.E. on "Psi-Tronics". I wondered if your readers would be interested in similar experiences of my own?

I have a temperamental (!) v.h.f receiver which 1 use in a radiotelescope aerial system, and during tuning up of this receiver and its associated preamp to the required band, it was left switched on for long periods producing nothing but what has become to be known as "white noise". The preamp being very difficult to align, I was often switching the signal generator off and on, making adjustments, and trying again. On many occasions, during range testing of my aerial. I am sure I heard the signal generator whilst it was switched off, i.e. all the radio was receiving was the usual v.h.f. spurious noise. This happened so frequently that I had to keep checking that the signal generator was switched off, before 1 tried to properly "tune in" this figment of my imagination!

I put it to Mr Brown and Mr Morton that the mind has some mechanism whereby it hears amongst the white noise what it wants or expects to hear, and that
this explains the phenomena, since in my case, the familiar note of my signal generator is unmistakable. and I certainly was fully conscious of the fact I was hearing something that couldn't be there!

I must confess to being still sceptical about such things as the "Raudive Voices", but when it happens to you personally, it's something quite different!
L. M. Newell,

Woodbridge, Suffolk.
in this area, and perhaps with other senses. (Is there any capacity to project visual images when in an environment of completely white light for example) perhaps even ending up with "White taste" and "White smell".

I would, of course, be interested to hear other people's interpretations and experiences in this area.
K. Willson, B.Sc.,

London S.W. 16

Rond choir!

Sir-ln connection with the recent interest shown in "Raudive voices" I should like to give an example of my own subjective interpretation of white noise.

Some years ago, while riding on the cab of a noisy long-distance lorry I was enveloped by the sound of the engine, the sound of other cars on the road and the various vibrations and rattles from parts of the lorry, i.e. a broad band frequency spectrum somewhat resembling white noise. I hummed a pop tune to myself and to my surprise I heard the pop song coming from somewhere inside the cab sung, as it seemed to me, by a choir of out-of-tune voices. There was no radio in the cab and it seems that the voices were a purely subjective interpretation of the random noise spectrum reaching my ears. With practice it was possible to hear the voices "sing" any tune at will, there being a period of some seconds between conceiving a tune and actually "hearing" it. Since that time I have met one or two people who have had the same experience. The moral seems to be that if it is possible for some people to hear pop songs in white noise, then it is equally possible for others to hear voices from the dead if they so wish.

An explanation may be as follows. When a memory comes to mind the brain cells that correspond to the sensual experience of that memory become active. If (when the memory is of a noise) the ears perceive white noise simultaneously, then the same mechanism that allows concentration on one conversation when several may be going on will come into effect, only allowing the memory of the noise to come into consciousness. This memory will, however, appear to come directly from the senses since the white noise components corresponding to the noise will be allowed to pass by the brain's "filters".
It may be interesting for psychologists to carry out experiments

Unconvinced

Sir-I was interested to read in the September issue that the phenomenon of "Raudive Voices" had cropped up again under the general heading of Psitronics. The hypothesis on the origin of this phenomenon suggested by your correspondent, Peter Morton, is most ingenious but is open to criticism on one simple count.

It is now generally recognised that the operation of the brain is related to a measurable form of electrical activity. Thus it is reasonable to assume that telepathic communication is. ipso facto, electrical in origin also. If this assumption is accepted as being substantially correct it becomes increasingly difficult to explain the positive results from experiments into the phenomenon which were conducted with the recording apparatus sealed within a Faraday Cage.

If we accept that the phenomenon exists, and there appears to be plenty of evidence that it does, then it seems that we must resort to the explanation tendered by one of Raudive's original witnesses-"that it transcended the known laws of Physics'. All of which leaves a wide open field for future experimenters.

Having read "Breakthrough" shortly after its publication a friend and I decided to carry out a number of experiments to prove the existance of the phenomenon for ourselves. My colleague in this, besides being a highly qualified electronics engineer, has had a genuine "feel" for what might be termed supranormal phenomena all his life, and thus felt that everything was on our side.

We built two forms of each type of detector described in the book and combined these, in turn, with six types/models of tape recorder. In addition we tried the microphone and radio methods of recording, but after many hours and several miles of tape had recorded only one voice which could not be directly attributable to spurious " E " propagation or something similar. Our prize voice resisted all attempts of filtration and re-amplification to

become intelligible so we decided to retire unconvinced.

I too would be interested to learn of the experiences of others in this field.

Douglas Shaw, Eaton Socon, Hunts.
Authoritative opinion appears to be opposed to the view that telepathy is a form of electromag. netic radiation. Dr Grey Walter in his book, "The Living Brain" (1961) states: "if we consider the largest rhythms of the brain as casual radio signals, we can calculate that they would fall below noise level within a few millimetres from the surface of the head".

There is evidently much general interest in this topic. Many readers have written describing their own experiences and experiments, but no one has reported a success in recording "Raudive voices".

Retorl from Australia

Sir-l read with great interest the article Report from Australia and 1 am sure that the article was written with the best of intentions in the world. However, the Australians in general tend to gloss over many things, and literally hate comparisons when it comes down to earth. i.e. hard cash! This particularly so in the radio field.

1 go green with envy when 1 read the cost of components. transistors and integrated circuits in the U.K, and I compare them with those available here. For example.
take the BC108 listed in P.E. at 10p or 20 cents Australian, the BC108 here is 45 cents and on top of that there is up to 27% sales tax, depending on the State in which you live. This tax is very crippling when you come to build any of the available projects. So my advice to any intending migrant is to do two things: forget most of what the brochures from Australia House tell you, and if you still intend to come, take things as they are and you'll make out. The second thing is to bring out as much gear as you possibly can.
This is a mighty big country, so its a little unfair to classify most radio sets as made for local station reception. There are areas (fewer now than they used to be) of poor reception in the U.K. Well England from top to bottom is approx. 560 miles. Folks here often drive this distance, and more, just to visit friends at a weekend. It has to be a really good quality radio set to pull in inter-state radio stations during the day. At night of course it's not so bad. In the more thickly populated areas this situation may not arise as transmitters are closer together, but it is certainly true of South Australia.

It's all very well to say that Australia is as technically advanced as its contemporaries, but 1 have found that when dealing with i.c.'s the manufacturers’ applications notes are so technical that they are for boffins only-and I include all American manufacturers - so 1 am indebted to your magazine for Making The Most Of Logic and subsequent articles on i.c.'s and most important the way these articles have been presented.

Talking of f.m. I bought a German radiogram in Singapore in 1959. I arrived in this country in 1966. F.M. was. as it is now, being
talked about but IIl believe it when I see it! I am told they had a few f.m. stations in the Sydney area of N.S.W., but they died through lack of interest as far back as 1966.
Well, this letter was prompted for two reasons, my personal dislike of half truths. and the fact that I'm in the radio field and I did migrate to Australia. So if this does anything to put the record straight 'l'll be happy.
P. Hickman. Greenacres. South Australia.

Musician's ambition

Sir-As another of your younger readers I fully agree with Neville Powell's letter in your September issue. It would be nice to see designs for transistorised sound effects apart from the more common tremolo and fuzz, etc. These things are fairly easy for the average constructor to design whereas more complicated effects such as echo, reverb, and waa-waa are harder to design and build

It is every musician's ambition (I am no exception!) to own a synthesiser, but the prices of commercially made instruments are out of this world! I am sure it would be possible to make a synthesiser using cheap and easily obtained i.c.'s.

Hoping to see something of this kind in the future issues of Practical Electronics.

Andrew Copsey, Gildersome. Nr. Leeds.
You will! The P.E. Synthesiser will be on display at the Audio Fair, Olympia, London, October 24-28.

All of the sound effects mentioned in your first paragraph have been covered as constructional projects in past issues of this magazine.

BACK NUMBERS WANTED

We regret that back numbers of Practical Electronics can no longer be supplied. We will try to publish announcements of readers' requirements (without a guaranteed date) free of charge.
Anyone who can supply the undermentioned are asked to communicate directly with the reader.

Any Back Numbers
Mr. E. N. Elia, P.O. Box 297,
Baghdad, Iraq.
December 1968
Mr. D. W. Jones, Hefindre, Llangefni, Anglesey.

March, April, June 1972
Mr. G. A. Herd, 4, Graig Lwyd, Radyr, Cardiff.

October 1971
Mr. T. Svenell, Ostra Farmvägen 40B, S-2l441 Malmö, Sweden.

February 1969

Mr. G. Paine, 21, Estridge Way, Tonbridge, Kent.

March 1966

Mr. B. L. Codd, 46, Woodrows, Woodside, Telford, Shropshire.

April 1970

Mr. M. Dowding, 89, Beresford Road, Lowestoft, Suffolk.

February 1971

Mr. B. Whiting, Fellands Gate, Old Leake, Boston, Lincs.

November 1964 to March 1965; October to December 1970, February and March 1972 Mr. P. U. Sukhadia, 1-16, Shantinath Bhuvan, 427, Sion Road, Matunga, C.Rly. Bombay19, India.

May 1969 to March 1970
Mr. V. T. Brown, 242, Little Wakering Road, Wakering, Southend SS3 OJN.

March 1968, January 1971, April 1971, June and July 1972
Urs Bachofner, Wulflingerstrasse 92, $\mathrm{CH}-8400$ Winterthur, Switzerland.

August 1969

Mr. M. Latter, 45, Wortley Road, W. Croydon, Surrey.

April-May 1972

Mr. G. Slack, 87, Upham Road, Swindon, Wiltshire.

ATTRACTIVE DISCOUNTS ON VERY MANY ITEMS WHEN YOU BUY FROM US

 ELEGTROVALUE

 ELEGTROVALUE Electronic Component Electronic Component Speciclists

 Speciclists}TRANSISTORS quality and reliability

IN4148
IN5399
$2 \mathrm{~N}_{26} 646$
2N300
N3702
N3703
N3704 N38 19
N3819
N 4286 N 4289
N 4443
N 4443 N 5062
N 0088
2 N 5192 2 N 5195
No457
0361
40362 40432
0514
40669 $\mathrm{AC1} 28$
AC128 AD140
AD14: AD1 49
ADl49
AD162

©

RESISTORS 10\%-5\%-2\%
Code Power Tolerance Range Values 1 to 910 to 89100 up

			in ohms	相		not	4)
C	1/20W	5\%	$82-220 \mathrm{~K}$	E12	4	8	i
C	1/8w	5\%	$4.7-470 \mathrm{~K}$	E24	1	0.8	$0 \cdot 7$
C	1/4W	10\%	4.7-10M	E12	1	0.8	$0 \cdot 7$
C	1/2w	5\%	4.7-10M	E23	1.1	1	0.9
C	IW	5\%	4.7-10M	El2	$2 \cdot 3$	$\underline{1}$	1.9
MO	1/2W	2\%	$10-1 \mathrm{M}$	E24		3	2 net
WW	IW	$\begin{aligned} & 10 \% \\ & \pm 1 / 20 \Omega \end{aligned}$	0.22-3.9	E12	7	7	6
WW	3W	5\%	1-10K	E12	7	7	¢
WW	7W	5\%	1-10K	E12	9	9	8
Coden: $\mathbf{C}=$ carbon flom high stability MO = metal oxide Electronil T $\mathbf{W W}=$ wire wound Plengey							

Velues:
E12 denotes series: $10,12,1 \bar{u}, 18,22,27,33,39,47,56,68,82$ and the and their decades. Prices are in pence each for sa, 12 , $12,62,72,91$ poner rating, vot mired values. (Ignore fractions of 1 pic talue and of resistor order.)

BAXANDALL SPEAKER

As dealgned by P. J. Baxanclalland originally described it "Wireless World"- Complete kit inc. spkr., equaliser and 10 watt RMS/L5 Ω loading. Part cost carr, in U. K. 60 . ± 13.81
peaner unit and equaliser kit, net Pent frec ex.81
Pack flat cathinet assembly (all cut to chape), natural teak finsh with instruet ioun. 4θ net. l'art cost carr. in U.K. fop.

SIEMENS THYRISTORS

$0 \cdot \mathrm{RA}-400 \mathrm{~V}, 58 \mathrm{p}, 600 \mathrm{~V}, 70 \mathrm{p}$
$3 \mathrm{~A}-400 \mathrm{~V}, 80 \mathrm{p} .500 \mathrm{v}, 88 \mathrm{p}$
CARBON SEELETON PRE-SETS
Anail high quality, type Pli linear unly: 1000 , won $470 \mathrm{G}, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}$. $470 \mathrm{H}, \mathrm{M}_{\mathrm{M}}, 2 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{M} \Omega$. Certical or horizontal mounting, sp osch
ZENER DIODES 5% full range, ED values: 400 mW 2 F (1) 7 to 70, 48p each.

MINIATURE TOGQLE SWITCEE
2A/260V. BP/DT, 48p
MAINLINE AMPLIFIER KITS
70 watt power ainp module kit, 212.60 net. Pourer
Q.E.D. HIGE QUALITY AMPLIFIER 8Ystems Buil do bour Rersonal spectity AMPLIFIER 8YSTEMS. Built quote PE. 7 .

SIEMENS CAPACITORS

POLYCARBONATE - $\%$ TOLERAHCE
$2 \overline{0}$ up to $0.1 \mu \mathrm{~F}: 100 \mathrm{~V} / 0 \cdot 1 \mu \mathrm{~F}$ and ab
$01,0.012,0.015,0.018,0.022,0.027 .0 .033,0.045,0.05 \hbar$ pench.
$068,0.08: 0 \cdot 1,0 \cdot 12,0 \cdot 15,4 \mathrm{D}$ each.
$018,0 \cdot 03,5 \mathrm{p}$ each.
027, 0.33, 6p; 0.39.7p: 0.47.8p; 0-3t; 10p; 068. 11p; $1 \mu \mathrm{~F}, 18 \mathrm{p}$.
ELECTROLYTIC CAPACITORS
$0.47 / 100,1 / 100,2 \cdot 2 / 63$, $417 / 35,10 / 25$ 100/10, $220 / 3,7 \mathrm{pesch}$.
/63, 22/30, 47/35, $100 / 16,100 / 25,200 / 6,220 / 10,2 \div 0 / 16$ 1073. Tp each

100 each. $100 / 63,35,220 \mathrm{1p}, 8 \mathrm{p}$ each; $100 / 00,220 / 35$ 470/35, $1000 / 16,17 \mathrm{p}$ each: $100010,12 \mathrm{p}$ each; $220 / 63$ $1000 / 3 \mathrm{~s}, 83 \mathrm{p}$ each; $20045,36 \mathrm{p}$ each; $1000 / 63,2200 / 3 \mathrm{j}$ 4700/16, 400 each.
Tantalum and other capacitore, etc., see latent 1973 catalogue-issue No

1972 ELECTROVALUE CATALOGUE (No. 6)

Third printing with iatest price and information delaila. Contains 96 pages plus cover. More items, more
information, more diagrams thanever. Pont freein U.K. 10 .

SOLDERSTAT SOLDER IRONS

As appointed distributors for Hell-kthown Elremco 16 or 24 watt, a.c. maine, net $£ \mid .87$

INFINITELY VARIABLE TEMPERATURE CONTROLLED SOLDER IRON E9:20 DE-SOLDER BRAID
Per fift length, net 50 p .

SIEMENS TTL				
INTEGRATED CIRCUITS			These prices are mett.	
FLH 101 (3400)	20p	PLJ121	(i473)	450
FLH201 (7401)	20 p	FLJ141	$(\overline{1} 474)$	8
FLH 191 (7402)	20p	Flut 151	(7475)	48
FLH291 (7 403)	${ }^{20} \mathrm{p}$	FLJ131	(7476)	45.
FLHE11 (7404)	$25 p$	FLH221	(7480)	88D
FLH ${ }^{\text {a }} 1(7405$)	25p	FLH231	(7482)	875
FLH381 (7 408)	25p	$F \mathrm{~L} 112 \mathrm{l}$	(7483)	1.85
FLH391 (7408)	$25 p$	HLH341	(7486)	88
FLH111 (it10)	20 p	FLJ 161	(7490)	809
FLH351 (7413) FLH 1.21 (74.30)	350 200	FLJ2el	(74914)	1.28
FLH 181 (7430)	20p	FLJ 171	(7492)	85
FLH141 (7440)	840	FLJ 181	(7493)	80 g
FLL101 (7 414)	1.22	FLJ231	(7494)	$1 \cdot 18$
FLH281 (7442)	1.16	FLJ 191	(7495)	875
FLH361 (7443)	1.45	FLJ261	(7498)	1.48
FLH371 (7444)	1.45	FLJ30]	(14100)	1.64
FLH151 (7 +50)	20p	FLJ:281	(\%4104)	489
FLH161 (7451)	200	FLJ2\%1	(74107)	52p
PLH171 (7453)	20p	FLK101	(74121)	18D
FLH181 (7454)	200	FLejel	(74190)	180
FLY 101 (7466)	20p	FLJ211	(74191)	1.80
FLJ101 (7470)	450	F'LJ241	(74192)	1.74
FLJJ111 (7472)	32p	FLJ251	(74193)	1.74

\section*{NEWMARKET LINEAR I.C.s} | LIC $709 \mathrm{C} / 14$ dual in line, 34p. | $709 \mathrm{C} / 5$, TO5 39p |
| :--- | :--- |
| LIC $741 \mathrm{C} / 14$ dual in line. 40 p. | $741 \mathrm{C} / 5$, TOJ 42 p. |

CARBON TRACK POTENTIOMETERS
ARBON TRACK POTENTIOMETERS, long spindles BIMGIE GAH
BINGLE GANG linear 100 n ta $2 \cdot 2 \mathrm{Ma}$ a, 12p; Single gang log, $4 \cdot 7 \mathrm{k} \Omega$ to $\frac{3}{2} \Omega$, 12 p ; Dual gang linear
 only 42p; Dual antilog, $10 \mathrm{k} \Omega$ onlv, 42p. Any type with $2 A$ D.P. mains aritch, $12 p$ ertra. Only decades of $10,2 \cup$ and

DOAL CONCENTRIC
alues. 60 p : with swite 720 combination of P.20

DISCOUNTS

10\% un ortiers fa to \& 15
ia Pricers over $\$ 15$. Nio diteulint on items marked

POSTAGE AND PACKING

are, hriess otheruise stated. Handing surcharge 10p on mail orders uniler x°. Overseas orders: carr. and ingurance charged at cost. U.S.A. CUSTOMERS are neited to contsct ELECTROVALUE AMERICA, P.O. Box 87, Swarthmore, PA 10081

ENQUIRIES PROM TRADE AND OTEER LARGE QUANTITY BUYERS IHVITED

JAMES

aUTOMATIC CVCLER UNIT
This unit penerates stepping pulses (50 Va c) at intervals of 6 pulses per min to 120 puises per min -continuously verriable Can os used tor Automstic
Stepping of ons or moro uniselector swithes shown above NE WMARKET PACKAGED AUDIO AMPLIFIER
PC1 150 mW Audio Amplitier
Price 51 do each P \& P \&o 10

We have a large range of capacitors AND RESSTOAS. PLEASE SEND ASTAMPED and adoressed foolscap envelope for your catalogue

POST \& PACXIMG OVER D-FREE. OVER
 UNLESS SPECIFCCALIY MENTIONED P. © P. U.K. ONLY

JAMES SCOTT (ELECTRONIC ENGINEERING) LIMITED CARNTYNE INDUSTRIAL ESTATE, GLASGOW G32 6AB TEL: 041-778 4206

COMPARE OUR PRICES

8 8paker Bargaina
E.M.I. 13
plain
wilth tweeter
$\sin \times \sin 3,8 \& 15$ ohms
$\sin \times \sin 3,8 \& 15$ ohn
$7 \mathrm{in} \times 4 \operatorname{in} 3 \& 8$ ohins
FANE Bin 8 ohm, dual cone
CELESTION Bin 15 ohn
GOODMANS 10 in $\times 61 \mathrm{n} 3$ ohm BAKER (IROUP 2512 n 25 W
8 or lis ohis
Pontage 25 p per speaker
2 in 8 or 64 ohm P.P. 111
$2 f \operatorname{in} 8$ or 64 ohm P.P. 11111
Kit-torm cabinets, teak
$(17 \mathrm{in} \times 10 \mathrm{in} \times \mathrm{in})$
$(17 \mathrm{in} \times 10 \mathrm{in} \times$ tim $) \quad 2.75$
with a 13 in \times gin or win cut out

Sin or 8in cut out.
Aht 35 p per cabinet fur phat st packing
Microphone Bargaing
MIC45"ACOS" metal caste
CM 20 Crystal Hand
DX 166 Dynauic Stick
DX143 Dynamic, cassette-type
atlch
MIC60 "Acos' atick erystal
CM70 PLANET 日tick metal,
switch crystal
DM160 Dynarisic uni-dir,
ball metal
UD $13050 \mathrm{~K} /$ goo ohn untolir,
Wbl $13060 \mathrm{~K} / 800$ ohn uni-tir,
ball mietal
TW209 Lesson dual imp liall metal uni-di
Lapel type, crystal
Poatage 17 p each
THIS MONTHS' SPECIAL OFFER Solid state stereo amplifier tt -200, 10 wattu/ chamnel r.1th. 4.8 ohth ont put inmp.
Delux Walnut Cabinet, br ushed aluminium front. Hwitches for tape, tuner, cryatal/mag. cartridge. Stereo revers
\&p
2.00
left and right channel. source and monitor, independent bass and trehle control for rach challiel. Headphone socket.
ONLY \& 21 Whist stocks last. P. \& P. El.
Cartridgen-with ntandaril fittings ep ACOS GP91/2sc or (iP91/3sc'ntereo compatjble 1.05 $\begin{array}{ll}\text { Achs Gip94 stereo ceramic } & 1.80 \\ \text { ACOS (ip95stereo crystal } & 1.88\end{array}$
9THAC sonotone stereo ceranic
(diamond) ACOS (GP67/2C mono crystal ACOS nP101 compatible cryatal
$19 . \mathrm{TI}$ somutone stereo crystal
80p Postage op per cartridge

Multitesters	2 p
1,000 ohtis/ruhts	28.50
2,000 ohmis/wita	28.78
10,000 ohms/volts	28.00
30,000 obris/solts	210.00

RIVERSDALE ELECTRONICS
 ALL OUR MERCHANDISE IS FULLY GUARANTEED

REED COILS
3, 6, 9, 12, 24 V Miniature Small Standard

P. \& P, 7P on all orders.

REED PUSH BUTTON SWITCHES
Momentary Action

Momentary Action	61.00
1 contate	
2 contacts	61.25
Illuminated I contact	61.30
Illuminated 2 contacts	61.55

llluminated 2 contacts el. 55

REED SWITCHES

27p Large range of many sizes, types 27p and manufacture

Popular types:
E Small n/o $\quad 10$ for 50 p
A Miniature n/o 24p each

REED RELAYS

Many versions available, popular types: $3,6,9,12,24 \mathrm{~V}$
Miniature l/A normally open 56p

REELS OF ENAMELLED COPPER WIRE

20 s.w.g. to 47 s.w.g, $50,100 \& 200 \mathrm{grams}$, Send for prices C.B.M. ELECTRONIC COMPONENTS LTD. 26 Avon Trading Estate, Avonmore Road, London, W. 14

P.E. 'GEMINI' STEREO AMPLIFIER

30 watts (R.M.S.) per Channel into 8 ohms! Total Harmonic Distortion 0.02\%!
Frequency Response (-3 dB) $20 \mathrm{~Hz}-100 \mathrm{kHz}$!
This high quality Stereo Amplifiér for the Home Constructor was described in a series of articles in "Practical Electronics". 'rom November High Fidelity and is certainly equal to anyehing one can buy, no marter what the cost, but is well within the capabilities of the ambitious con. structor
WE CAN NOW SUPPLY AREPRINT OF THE ARTICLES IN BOOKLET FORM, PRICE 55p, PLUS 4p POSTAGE, WITH FREE COMPLETE COMPONENT PRICE LIST.
For free price lisi only, or a complete free specification, please send a
foolscap size S. A.E.

ELECTRO SPARES
21 BROOKSIDE BAR CHESTERFIELD, DERBYSHIRE
QUALITY - SERVICE • VALUE

Designing with

Integrated circuits BY A.FOORD

 A new series designed to help theexperimenter to use l.C.s in
practical applications. The circuits
provided are not intended as
definitive designs, but rather as a
basis on which to experiment
further.

Digital I.C. Gates

Abinary intormation signal in logic i.c.s has only two possible states: a logic level 1 of about 4 volts and a logic level 0 of about 0 volts. Each logic circuit produces an output logic level that is a logical function of the input logic levels. These levels are not critical provided that they are clearly recognised as 0 or I. and small changes in levels cannot accumulate to cause loss of accuracy.

Simple logic functions are achieved by using gates while more complex functions use specifically designed circuits, which may include gates but not necessarily so.

TTL SERIES

Several classes of integrated circuit logic are available, including RTL, DTL, TTL and ECL. However, now that TTL logic is available in a variety of speeds and a considerable range of functions, no other type need be considered for general use in this series of articles.

The Series 74 integrated circuits available from many sources are designed and characterised for general purpose high speed digital applications where a high d.c. noise margin and medium power dissipation are important. The series includes gates, bistables, complex logic functions, and many other circuits.

Four compatible TTL families are available to allow switching speed (and hence power dissipation) to be chosen according to the system requirements. The largest and most widely used family is the SN7400 series which has a 10 ns propagation delay per gate. (Alternative types are made by various manufacturers and details of equivalents were given in the P.E. I.C. Identichart last month.)

The 74 H 00 or 74 S 00 series can be used for minimal propagation delay times, with the 74 L 00 series reserved tor low speeds. A comparison between these familes is shown in Table 2.1.

The speed differences over the range are not a matter of selection as the circuits differ, although the logic

Table 2.1

Series Code	Power Dissipation	Propaga- tion Delay	Approx. Relative Price Factor
SN74L00	1 mW per gate	33ns delay	1.8
SN7400	10 mW per gate	10ns delay	1.0
SN74H00	23 mW per gate	6ns delay	2.4
SN74S00	19 mW per gate	3ns delay	6.7

functions and levels are compatible. The SN74S00 series, for example, have Schottky barrier-diode clamping to achieve ultra high speeds with the best speedpower product of any high speed logic family.

The Schottky barrier-diode clamping prevents the transistors from going into saturation and eliminates the effect of excess charge storage and subsequent recovery times. These recovery times contribute significantly to the overall propagation delays obtained with conventional saturated TTL circuits.

GUIDELINES WHEN USING TTL

Power Supplies. Ripple and spikes should be kept to 5 per cent or less and regulation should be maintained to better than 5 per cent. Every five to ten packages should be bypassed to r.f. with ceramic capacitors of 0.1 to $0.01 \mu \mathrm{~F}$.

A ground planc is desirable especially in large systems, or make the earth line as wide as possible on a printed circuit board and return both ends of long ground wires to a common point.

Gates. Gates should preferably be driven from a low impedance source. If the source impedance is greater than 100 ohms (for example, non TTL circuits) then the input rise and fall times should be less than l/es to avoid instability and oscillation occurring when the gate goes through its active region of operation. Data pulse widths should be 30 ns or more.

The unused inputs of AND and NANID gates and unused presets and clears of bistables can be treated as follows:
(a) They can be tied directly to $+V_{c e}$ where $V_{r e}$ is guaranteed to be always equal to or less than 5.5 V .
(b) Connected to $+V_{\mathrm{er}}$ through a resistor of 1 kilohm which protects the input if the supply exceeds 5.5 V . Up to 25 unused inputs can be connected to one resistor.
(c) Connected to an independent supply of between 2.4 and 3.5 V .
(d) Connected in parallel with a used input of the same gate if the maximum fan-out of the driving output will not be exceeded. Each input presents a full load in the logical 1 state to the driving stage.
Completely unused gates can be taken to ground for the lowest power dissipation, or left floating (unconnected).

Unused inputs of NOR gates can be tied to the used input of the same gate (if the maximum fan-out of the driving gate is not required) or returned to ground.

Bistables. If a clock pulse is present maintain the preset or clear pulse until the clock goes low. Rise and fall tinnes of the clock pulse should be less than 150 ns to aid noise immunity.

In general the input data of a master/slave JK bistable should not be changed while the clock pulse is high, but exceptions are given in manufacturers' data sheets.

BASIC GATES

Five logic functions are summarised in Table 2.2. Their interrelationship can be seen by comparing the

c. OSSAR

BUFFER An integrated circuit with a higher fan-out than usual, for driving heavy loads.
CHARGE STORAGE Energy stored in a transistor when it is heavily saturated.
DTL A logic circuit using diodes for the input coupling to a common emitter amplifier.
ECL A logic circuit consisting of an non current mode switch.
FAN-OUT The number of inputs which can be driven by the output of a logic gate.
NOISE IMMUNITY A measure of the ability of a logic gate to reject noise pulses. It is the smallest 1 level output voltage minus the minimum effective 1 level input voltage, or the minimum effective 1 level input voltage minus the maximum 0 level output, whichever is the smaller.
PROPAGATION DELAY A measure of the time taken for a change in logic level to be transmitted through an element.
RTL A logic circuit using resistors for the input coupling to a common emitter amplifier.
TTL A logic circuit having all inputs connected to the multiple emitters of a single, common base connected transistor.

Table 2.2: The basic logic functions IN-

OUTPUTS PUTS
$\begin{array}{ccc}\text { AND } & \text { NAND OR } \\ A . B & \frac{\text { NOR }}{A \cdot B} \quad A+B & \text { EXCLUSIVE-OR } \\ A+B & A \oplus B\end{array}$

\mathbf{A}	\mathbf{B}	$\mathbf{A} . \mathrm{B}$	$\bar{A} . \mathbf{B}$	$\mathbf{A}+\mathbf{B}$	$\mathbf{A}+\overline{\mathbf{B}}$	$\mathbf{A} \oplus \mathbf{B}$
0	0	0	1	0	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	0	1	0	0

Fig. 2.1. Some logic functions obtained by using only NAND gates

Fig. 2.2. The circuit for a 3 input NAND gate

Fig. 2.3. Static tests on a 2 input NAND gate

Fig. 2.4. An EXCLUSIVE-OR circuit realised with NAND gates. $V_{c c}=+5 \mathrm{~V}$

Table 2.4:
Package details and parameters for the SN7400N

Packace detalls for sm7400n
(TOP VIEW)

Supply Voltage V.,	5 V	0.25 V
Fan-out from each output	10	
Logical 1 input voltage required	2 V min.	
Logical 0 input voltage reouired	0.8 V max.	
Logical 1 output voltage	3.3 V typical	
Logical o output voltage	0.4 V max.	
Propagation delay time to logical 0 level	7 ns typical	
Propagation delay time to logical 1 level 11 ns typical		

output columns. The NaND is obtained by inverting the AND output, while the OR function is the NaND column upside down and can be obtained by inverting the A and B inputs.

It can be seen that the and function gives a 1 when both A and B are at 1 , and so on. The exclusive-or function has a symmetry of its own and is sometimes considered as a separate basic logic function.

Most of the logic functions can be achieved by using only NAND or only NOR gates at the expense of speed and package count, so that for experimental work it is not necessary to maintain a complete stock of all types. This is shown in Fig. 2.1.

NAND GATES

The internal circuit for a three-input TTL Nand gate is shown in Fig. 2.2. TRI is a multiple emitter transistor. If one or more emitters are grounded the transistor is forward biased, the collector is at a low potential, and TR2 is turned off. This allows TR3 to turn off and TR4 to conduct, resulting in a logic 1 output level.

If, however, all inputs are high the base-collector junction of TR1 will conduct, forward biasing TR2. This turns TR4 off and TR3 on, giving a logic 0 at the output.

The standard TTL gate has a 10 ns propagation delay time, a fan-out of about 10 and a noise immunity of at least IV, making it suitable for most applications. Table 2.3 lists some of the common Nand gates available.

The SN7400 is a quadruple two-input positive NAND gate, package details and parameters are shown in Table 2.4. Although the logic functions can be worhed out from the circuit in this case, for more complex packages the corresponding truth table would have to be used.

EXPERIMENT TO VERIFY THE NAND FUNCTION

For experimental work it is convenient to wire several dual-in-line type i.c. holders to pins on a patch board or experimental wiring board; six holders would be enough for many applications and facilitates replacing i.c. packages for other purposes.

The circuit in Fig. 2.3 could be made up to confirm the truth table, the meter indicating go or no-go conditions (or 1 and 0).

EXPERIMENT TO VERIFY THE EXCLUSIVE-OR FUNCTION

The circuit is shown in Fig. 2.4. This function gives an output when A and B are not equal. If one input is inverted the overall function will give an output when A and B are equal. Both arrangements are similar to the upstairs-downstairs light switching found in many homes where a lamp can be switched on or off from either of two places.

Although in this case an exclusive-or package is available (the SN7486) the circuit shows how a simple logic function can be obtained using NAND gates when a suitable package is not to hand.

This article has concluded with two experiments illustrating the static characteristics of the va\d gates. Future articles will deal with further applications of the TTL logic families.
Next month: Basic operational amplifiers

THE MIDLAND national AMATEUR RADIO $\boldsymbol{\delta}$ ELECTRONICS EXHIBITION AT THE
 GRANBY HALLS, LEICESTER OCTOBER 26th to 28th, 1972
 SPONSORED BY
 THE AMATEUR RADIO RETAILERS' ASSOCIATION
 COME AND SEE THE LATEST DEVELOPMENTS IN RADIO COMMUNICATIONS AND ELECTRONICS WORLD-WIDE CONTACTS FROM THE EXHIBITION LARGE CAR PARKS EASY ACCESS FROM M1 MOTORWAY ADMISSION 20p
 THIS INCLUDES A CHANCE TO WIN A PIECE OF THE BEST IN RADIO EQUIPMENT
 OPENING TIMES:
 THURSDAY 26th and FRIDAY 27th - 12 noon to 9 p.m. SATURDAY 28th - 10 a.m. to $7 \mathrm{p} . \mathrm{m}$. OVERSEAS VISITORS FROM PARIS FRANKFURT, AMSTERDAM AND BRUSSELS PLEASE CONTACT:
 MIDAWAY LTD., 40a HILLSIDE, CASTLE DONNINGTON, nr. DERBY, FOR INFORMATION REGARDING INCLUSIVE AIR CHARTER FLIGHTS TO AND FROM THE SHOW

SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid atate audio amplifier. Brand new component traneistors plus power output transis tors in push-pull. Ful Wave rectifleation Output approx. 13W
Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$ Fully integrated pre
amplificr atage with eitabe for 8 , Bass boost anll Treble eut controls crystal cartridge. Sensitivity approx. 40 m (for fill output. Supplied ready built and teated, with knobs escutcheon panel, input and output plugs. Overall size

PRICE 110.50

DE LUXE STEREO AMPLIFIER

$200-240$ valts Using heavy duty fully imains transformer with
full wave rectification quate smoothing ECL86 Triode Pcritodes 1. ER80 as rectitier. Two dual potentioneters are treble boost and cut. A dual volunie control is uned. Halance of the left and right hand channels can be adjusted by means of a separate "balance" control fltted at the rear of the chassis. liput nensitivity is approxi
mately $300 \mathrm{~m} / v$ for full peak output of 4 watts per channel (8 watts mono), iuto 3 ohrs speakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion Supplied complete with knobs, chassia size 11 in . w $\times 4 \mathrm{in}$. x Overall height including valves 5in. Ready built and tested to a high standard. Price ©8.92. P. \& P. 45p

NEW! POWER SUPPLY UNIT $200 / 240 \mathrm{~V}$ A.C. input. Four switehed fully smoothed D.C,
outputa giving 6 V and 7 F and 9 V and I 2 F at 1 amp continuous ($1 \frac{1}{2}$ amp intermittent)
Fitted insulated out put terminals and pilot lamp indicat or Hammer finish metal case, overall aize $6^{\prime \prime} \cdot 3 \xi^{*} \cdot 2 t$ Sultable for Tranaistor Radios, Tape
Ampliflers, etc., ptc. Ready builtanal teated

PRICE $£ 4.50 \underset{\substack{\text { P. } \\ \mathrm{B}_{5 \mathrm{p}} \mathrm{P}}}{\substack{\text { P }}}$
BLACK ANODISED 16g. ALUMINIUM HEAT SINES. or TO3, complete with mica's and bushes Size 2 l in x 3 in approx. 25p pair. P. \& P. 5 p

HIGH GRADE COPPER LAMINATE BOARDS
$\sin \times$ Gin \times ain. FIVE for 50 p . P. \& $P .13 \mathrm{p}$
LHITED NUMEER! COHED SPRING BACK TELE PHONE CABLE. Closed approx. 10^{*}, extends to 36^{*} 4 core or 6 core. 25p each. P. \& P. 5p. 5 or more post free A.C. input. 35V at li amp A.C. output. Overall size

BRAND NEW MULTI-RATIO MALIS TRANSFORMERS. Glving 13 alternatives. Primary: 0-210-240 . secon dary combinations: 0-0-10-15-20-45-30-35-40-605 hal
 P. \& P. 30p

MADIS TRANSFORMER. For transibtor power aupplies Pri. $200 / 240 \mathrm{~V}$. Sec. $9-0-9$ at 500 mA . 70 p . P. \& P. 13 p Pri. $200 / 240$. Sec. $9-0-9$ at 500 mA . 70p. P. \& P. 13 p .
Pri. $200 / 240 \mathrm{~V}$. Sec. $12-0-12$ at 1 amp .88 p . P. \& P. 13 p .
GKNERAL PURPOSE HIGE STABILITY TRAN=
SISTOR PRE-AMPLIFIER. For P.I'. Tape, Mike.
$\begin{aligned} & \text { Guitar, etc., and suitable for use with valve or } \\ & \text { transigior equipment. } 9-18 \mathrm{~V} \text {. Battery or from } \mathrm{H} \text {.T. }\end{aligned}$
transigior equipment. $9-18 \mathrm{~V}$. Battery or from H.T.
Gain 26 dB . Solid encapalation size $1 \% \times 1 \frac{1}{2} \mathrm{in}$.
Brand new. complete with instructions. Price
880. P. \& P. 13p.

HANDBOOK OF TRANSISTOR EQUIVALENTS and SUBSTITUTES A must for servicemen and home constructors. Including many 1000's of British, U.S.A., European and Japanese transistors. ONLY 40p. Post 5p.

1-SPEED RECORD PLAYER BARGAIK: Maine models. All brand mew in maker's pecking. LATBST B.8.R. ClO9/C1R9 4-BPERD AUTOCHANGER.
With lategt mono compatible cartridge 86.97 . Carr. 50p. With lateat mono compatible cartrid LATEST GAREARD MODELS. B.A.E. for Lateat Prices: PRECISION ENGINEERED PLINTHS Beautifully constructed in heayy gauge "Colorcost" plastic coated steel. Resonance free. Designed to tak SP25 II and III, BL 65 B, AT 50 , ete., or B.S.R. C109 C129, AO1, ete. Choice of black leatherette or teak grai
 high, including rigid moked acrylic cover). Price $\mathbf{P} 5.50$
$P . \&$. 60 p.

LATEST ACOS GP91/18C Kono Compatible Certridge with t/o atylus for LP/EP/78. E'nlveraal mounting bracket. 81.80. P. \& P. 80

SONOTOHE 9TAHC COMPATIBLE STEREO CARTRIDGE T/O stylus. Diainond Stereo LP and Mapphire 78 . ONLY 22.50. P P 10p also available fitted with t wi Diamont T/O atylus for stereo LP. \&3. P. \& P. 10p. EP/LP/Stereo/i8. E1.88. P. de P. 10 p .
LATEST RONETTE T/O Mono Compatible Cartridge for EFflefr mono tor stero recoris on mono eqnipment. \&1-50, P. \& P. 10 p

QUALITY RECORD PLAYER AMPLIFIER ME II A top-quality record player amplifier employing heary duty double wound mains tranaformer, ECC83, EL84 Complete with output trainformer matched for 3 ohm Coseaker size 7ion. 311.6 h . Ready built and tested | apeaker. Size |
| :--- |
| PRICE |
| E3. $75 . ~ P . ~ \& ~$ | mounted on board with output transformer and speaker ready to tht cabinet below. PRICE 8488 . P. \& P. 50p. DE LUXE QUALITY PORTABLE R/P CABINET MK II Uacut motor board size 14t • 12 in ., clearance 2 in . below 5 in. above. Will take above amplifier and any B.S.R. of bid. above. Wintake above amplifer and any B.S.R. Of

GARRARD changer or Single Player (except ATGO and GAREARD changer or Single Player (except AT60 and
SPG5). Size $18 \times 15 \times 8$ in. PRICE $44.75 . \quad$ P. \& P. 50 p .

SPECIAL OFFER!!

HI-FI LOUDSPEAKER SYSTEM

 Ceramic Magnet $13 \mathrm{in} \times 8 \mathrm{Bin}$ base unit, two H.F
tweeter unita antl cransover. Power handing 10 W Our Price $\mathbf{1 8 . 4 0 ~ c a r r . ~ 6 5 . ~}$
CABINET AVAILABLE SEPARATELY

Also available in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. bass
apeaker with parasitic tweeter. $\mathbf{8 6} 50$. Carr. 65 p

LOUDSPEAEER BARGAMS

$\sin 3 \mathrm{ohm}$ e1-0.s, P. \& P. 15 p . $8 \times \sin 3 \mathrm{ohm}$ \&1.15. P. \& P

 E.M.I. $13 \sharp \times 8$ Bin with high huy ceramic magnet 3 , 8 ,
or 15 ohsu $\mathbf{e} 3.20$. P. \& P. 30p. E.M.I. 13×8 in, 3 or
 work $84 \cdot 20$. P. \& P. 30p. E.M.I. $13^{*}<8^{*}$ twin cone woris $84 \cdot 20$. P. P P. 30p. E.M.I. $13^{*}<8^{*}$ t
(paratatic tweeter) 8 ohm $22 \cdot 25$. P. \& P. 30p.
(paratatic tweeter) 8 ohtri 28.25. P. \& P. 30p.
BRAND NEW. 12in $15 w / \mathrm{H} / \mathrm{D}$ Speakers, 3 or 15 ohn BRAND KEW. 12in low H/D Speakers, 3 or 15 uhm,
Current production by well-known British maker. Now with Hiflux ceramic ferrobar magnet asgembly es.75,
fuitar models: $25 w 26.76$. 35 w \& 8.50 . P. \& P. 38 p each.

SPECIAL OFFER!

LDMITED NUMBER OF BRAND NEW ELAC 10" TWH CONE LOUDSPEAKERS. With large ceramie maynet and plasticise 83.75.

1Rin "RA" TWIN CONE LOUDSPEAKER 10 watts peak handing. 3 , 8 or 15 ohm, 28-20. P. \& P. 30 p 35 ohm SPEAEER\& 3^{*}. ONLY 63p. P. \& P. 13p. "PPOLY PLAFAR" WAPER-TYPE, WIDE RANGE ELECTRO-DYMAMIC BPEAEER
Slze $11 \frac{1}{2} \mathrm{in} \times 1414 \mathrm{in} \times 1 \frac{1}{6}$ in deep. Weight $190 z$ Power handling zow r.m.e. (40 W geak). Impedance 8 ohm onis. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with or without beffre. Send
VYNAIR \& REXIME SPEAKERS \& CABLNET FABRICS VYAAIR o REXIKE SPEAKERS \&CABLNET FABRIC8
app. 54 in. wide. Ubually 41.75 yd. our price 75 p vi

HI-FI STEREO HEADPHONES

Adjustable headband with comfortable flexifoam carmuffe. Wired and fitted with standard stereo zill jack impedance $\mathrm{B}-16$ ohnis. Easily converted for mono. PRICE 22 95. P. \& P. 15p.
HIGH IMPEDANCE CRYSTAL STICE MIKES. OI'R PRICE $81 \cdot 05$, P. \& P. Bp
CENTRE ZERO MIMIATURE MOVING COIL METER $100 \mu \mathrm{~A}$ for balance or tuning. Approx. 8ize 1 in lin
sin, Limited number 75p. P . \& P 10 p .

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

KEW PURTHER IMPROVED MODEL WITH HIGHER OUTPL'T AND INCORPORATINE HIGH QUALITY READY DRIELED FIBRE GLABS PRINTED CIRCUIT BOARD WITH COMPONENT IDENTIFICATION CLEARLY
MARKED FOR FVEN FASIFR CON MARKED
STRCCTION

A really firat-class Hi-Fi steren Amplifler Kit. Use 14 transistors including silicon Transistors in the firat flve stages on each channel reaulting in even lower noise with Bass, Treble and two Volunic Controls. Suitable for use with Ceralnic or Crytal cartridges (Yers simple use with Ceratise or Cryatal cartridged. (tery simple included). Output stage for any apeakers from 5 to 10 ohms. Compact design, all parta supplied ineluding drilled metal work, high quality ready drilled flbre glass printed circuit board, annart brushed thodised aluniniutn front panel with matching knols, wire, solder nuts, bolte-no extras to buy. Simple step by atep nstructions enable any constructor to build an amplifer to be proud of. Briel specification. Power output 14 W $12-30.000 \mathrm{~Hz}$. Senaitivity better than 80 mV into MO Full power bandwidth $+3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Hass boost approx, to $\perp 12 \mathrm{~dB}$. Treble cut approx to -16 dB Negative feedback $18 d \mathrm{~B}$ over main amp. Power requiremente 35 V at 1.0 amp. Overall size - $12^{\prime \prime}$ wide $8^{\prime \prime}$ deep $2 \mathbf{z}^{\prime \prime}$ high.
Fully detailed 7 -page conatruction manual and parte liat ree with kit or aend ixp plus large s.A.L.
PRICRS AMPLIFIER KIT. $810.50 \quad$ P. \& 1'. $15 p$ (Magnetic input conıpolenta 30p extra)
POWFR PA('K KIT. \&8 P. AP. 30 p,
Poat Free if all units purchased at same time). Fullafter ales 220.50. Post Fizee.

Note: The above amplifier is suitable for feeding two mono sources into inputs (e.g. mike, radio, twin record decks, etc.) and will then provide mixing and fading facilities for medism potered Hi-Fi Discotheque use, etc.

3-VALVE AUDIO

AMPLIFIER HA34 MX II Deaigned for $\mathrm{Hi}-\mathrm{Fi}$ reproduction of records. A.C. Maina plated heavy gauge metal chassig, size 7 in w. . 4 in . $\mathrm{d}_{4} \alpha^{\alpha}$ ELin. h . Incorporates ECC83, duty, Ezouble wound maine transforiner and output trans-- former inatehed for 3 ohrri wide . Sepurate volme coiving bass and treble lift and ut. Nege feedback line. Output if watta. Front panel can be detached and leads extended for remote mountiag of controls. Complete with knoba, talves, ete. wired and tested for only 84.7
HEL "FOUR" AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely different and advanced circuitry. Completeset of parts, etc. \&3.98. P. \& P. 40p HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifier using a double wound fully pentode valve as audio amplifier and power outpot stage. Impedance 3 ohma. Output approx 3.5 watts. Volume and tone controls. Chassis size only 7in. wide - 3in. deep ${ }^{*}$ 6 in. high overall. AC mains $200 / 240 \mathrm{~V}$. Supplied absolutely Brand New. completely wired and tested with good OUR BOCE BOTTO
OUR ROCE BOTTOM
BARGAM PRIOE $£ 2.75 \quad$ P. $\&$ P

10:14 WATT HI-FI AMPLIFIER KIT

A atylishly tinished monaural amplifier With an output of
14
watts irom EL84s in push-pulí. Super reproduction of both music and apeech. with neghigible hurn. Separate inputs for mike and and announcemente to follow each other Fully ahrouded section woum ontput tausformer to mateh $3-15 \Omega$ speakes and 2 independent volume controls. and separate bass and treble controls are provided giving goodlift and cut. Valve line-up 2 ELP4s. ECCAS. EF86 and EZ80 rectifier. simple instruction booklet 18p (Free with
parts). All parts sold separately. ONLY \&7-97. P. \& P. 55 p .

Open 9-5.30 Monday

to Saturday

Early closing Wed. 1 p.m.
${ }_{T}^{A}$ few minute Slation South Wimbledon Tube Station

HARVERSON SURPLUS CO. LTD.
I70 HIGH ST., MERTON, LONDON, S.W. 19 Tel. 01-540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE FOTE: P. \& PCHARGRE QUOTED APPLY TO U.I. ONLY. CHARGED EITRA.

Sinclair Project 60

The value of an efficient filtering system cannot be over emphasized in these days of very high quality reproduction since there are so often occasions where its use can mean the difference between comfortable and uncomfortable listening. On the low pass side the Sinclair A.F.U. will effectively reduce hiss from radio or tape, cut out heterodyne whistles on A.M. reception, greatly reduce record surface noise and other imperfections; on the high-pass side it will cut out motor rumble and other spurious low frequency intrusion. The unit is for use between pre-amp (including tape pre-amps) and power amplifiers, and operates in two sections, both stereo. The cut-off frequencies are continuously variable, and since attenuation in the rejection band is rapid (12 dB /octave) there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is as easy to mount as the stereo 60 pre-amp/control unit which it matches in styling, along with the Stereo FM Tuner.

SPECIFICATIONS

The A.F.U. employs two Sallen and Key type active fiter stages, one rumble (high pass) and one scratch (low pass). The two stages use complementary transistors to minimise distortion
Supply voltage: 15 to 35 volts. Current 3mA maximum
Gain at 1 kHz : Filters flat $098(-02 \mathrm{~dB})$
HF cut off: $(-3 \mathrm{~dB})$ variable from 28 kHz to 5 kHz at $12 \mathrm{~dB} / 0 \mathrm{ctave}$.
LF cut off: (-3 dB) variable from 25 Hz to 100 Hz at 12 dB /octave.
Distortion: at 1 kHz (35 volt supply) 0.02% at rated output.

Super IC. 12

Integrated circuit
high fidelity amplifier

Having introduced Integrated Circuits to hi-fi constructors with the IC. 10 , the first time an IC had ever been made available for such purposes had evere been made availabie for such purposes we have followed it with an even more efficient version, the Super IC. 12, a most exciting advance over our original unit. This needs very few external resistors and capacitors to make an astonishingly good high fidelity amplifier for use with pick-up. F.M. radio or small P.A. set up, etc The free 40 page manual supplied, details many other applications which this remarkable IC. make possible. It is the equivalent of a 22 tran-
sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). 6-8.2. Frequency Response: 5 Hz $10100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion Less than 1%. (Typical 0.1%) at all output powers and frequencies in the audio band (28V) Load Impedance: 3 to 15 ohms. Input Impedance: 250 Kohms nominal. Power Gain 90 dB (1,000,000,000 times) after feedback Supply Voltage: 6 to 28 V . Quiescent current: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ inrent: 8 mA at 28 V . Size
cluding pins and heat sink
Manual avalable separately 15 p post free.
With FREE printed circuit board and 40 page manual
£2.98
post fiee

Project 605

The easy way to buy and build

Project 60
Project 605 is one pack containing: one PZ5 two Z30's, one Stereo 60 and one Masterlink. This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat little clips to plug straight on to the modules. Thus all soldering and hunting for the odd part is eliminated. You will be able to add further Project 60 modules as they become available adapted to the Project 605 method of connecting.
Complete Project 605 pack with comprehensive manual, post free
£29.95 Everything you need to assemble a superb 30 watt high fidelity stereo amplifier without having to solder.

the world's most advanced high fidelity modules

Z. 30 \& Z.50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to provide unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at $15 \mathrm{w}(8 \Omega)$ and all lower outputs. Whether you use $Z 30$ or $Z 50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and are intended for use principally with other units in the Project 60 range. Therr performance and design are such, however, that $Z .50$ s and $Z .30$ may be used in a far wider range of applications.
SPECIFICATIONS ($\mathbf{Z . 5 0}$ units are interchangeable with $Z .30 \mathrm{~s}$ in all applications), - Power Outputs : $\mathbf{Z . 3 0} 15$ watts R M. S. into 8 ohms using 35 volts: 20 watts R.M. S. Into 3 ohms using 30 volts.
$Z .5040$ watts R.M.S into 3 ohms using 40 volts 30 watts R.M S into 8 ohms using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz}=\hat{\mathrm{dB}}$. Distortion: 002% into 8 ohms. Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms (for 15 w into 8Ω). For speakers from 3 to 15 ohms impedance Size: $14 \times 80 \times 57 \mathrm{~mm}$

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems. the Stereo 60 is equally suitable for use with any high quality power amplifer. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. pu. 3 mV correct to R.I A.A. curve $\pm 1 \mathrm{~dB} 20$ to $25,000 \mathrm{~Hz}$ Ceramic $p u$-up to 3 mV Aux-up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching; within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz . BASS +12 10 -12 dB at 100 Hz Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio Now. Sinclair have applied the principle to an F.M. tuner with tantastically good results. Other advanced features include varicap diode tuning, printed circuit coils, an I.C. In the specially designed stero decoder and switchable squelch circuit for silent tuning between stations In terms of high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator tighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems. SPECIFICATIONS—Number of transistors: 16 plus 20 in I.C Tuning range: 87510108 MHz . Sensitivity: $7 \mu \vee$ for lock-in over fuil deviation Squelch level: Typically $20 \mu \vee$ Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ (t 1dB). Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R M S maximum Operating voltage: $25-30 \mathrm{VDC}$ Indicators: Stereo on. tuning Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Power Supply Units

Designed specifically for use with the Project 60 system of your choice. Use PZ. 5 for normal Z.30 assemblies and PZ. 6 or PZ. 8 where a stabilised supply is essential.
Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control, etc.	£4.48
Mains powered record player	Z.30, PZ. 5	Crystal or cerame P U. volume control. etc.	£9.45
$12 \mathrm{~W} . \mathrm{RM}$ S contınuous sine wave stereo amp for average needs	$2 \times Z .30$ s, Stereo 60; PZ. 5	Crystal. ceramic or mag. P U., F.M. Tuner, etc	£23.90
25W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck. etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms)	$2 \times Z .50$ s, Stereo 60; PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic. gultar, speakers. etc. controls	£19.43

[^5]

P2. 530 volts unstabilised $£ 4.98$ PZ. 635 volts stabilised $£ 7.98$ P2.8 45 volts stabilised (less mans iransformer) P2. 8 mains ransformer $£ 7.98$

now you can CATCH SHOALS OF BIG FISH with new electronic miracle

Firat time markoted in England, thin exciting electronic instrument the "lrecoytronic" is the one respormible for atarting the electronic fish-lure rage in the I.S.A. just recently. f'ses ingenious double-action method of attracting all kinds of fish from thmalreals and humireds of feet away . . . saltwater or freshwater. Why this device is so fantantically successful is because it actually imitates the sound of wel insects milting about the surface. These whilm waves spread out hundreds of feet in all tirections. Aithongh this pectilar monic frequency won't sount like much to you-to all the flah in the area it's their dinner bell! But that's not all. . electroluminescence netm tubes cummingly ficker infrrmillemily, petsetrating the area for hundreds of feet around, at a frequeney tials are nuable toreuint. The fiwh minake this Hickering glinmer for the woft phosphoremence glow givell off by Planktont . . a a favourite delicacy of most nab! All you do is switch on, lower into the uater (it's completely water resistant) allow arombl is minutes-then start rusing 'ull in. Well bet you wh't be a reel em in fast entugh. Self-contained batteries last ager-bost pence. Kit of all parts

BUILD 5 RADIO AND ELECTRONIC PROJECTS

ELECTRONIC ORGAN

 sistorised. SELP-CONTAINED LOUDSPEAKER. Fiftephe sepurat heys span one play"Silent Night"' play" ', 1 uld Lang Synf ofe. or. Youl have the thrill and excimment playing a real, livi, portable electronic organ. NO PREVIOUS KNOWLEDGE OF
ELECTRONICS NEEDED. necessary, simple as ABC'to make. Anyone
ourr nine years can build it pasily in one $28.75+2 . \overline{2}$
reparately).

amazing MAGIC MUSIC BOX make electronic music waving your hands about ONLY £2.75 $\begin{gathered}\text { Everyone's hearl the weird, womle efnl, but } \\ \text { beant inn music used in Soience Fict ion Pillur, }\end{gathered}$ Horrcer Fillux, etc, alaw un Radio \& Tele ision. This uneartaly. eerie music is almost always proctuced by a little Known elect tonie de vice meanuring onty a few thehes. ..alled type will do) sud place the Theremin clowe by, Suitch wh the
Theremin and proced to wase your hands mysteriunsly in the sit like a magician The mowt fantantje musical wnis in the at prodnced, and with a little practice people ran learn to play all the hell knuwn tumes. Apart

 circuit, though fairly adrancert is simple to build with our pictorial step-by-utcp phan. soldering necensary. Eavily built in an hour or so bxalg our special forminal hadal (Pat. available 4eparately
ingenous electronlc singing \& warbling canary ! only $\mathbf{~} 4.50$

 Jeave it whistling lown wale for wher yequotw, mhditenly brak ink hito:

spece
offer

The amaxing SOUND OPERATED FLASH
Phe A chanpagne cork leaving the boltle. The split secontl a hanmuer A rikes a tight bult. The mind boggles at the persaibitities of the "Photetron". .. the onty limif is your imayination. Now that inevpensive thash guns are on the market in unantity, It has made possuble, with the help of electronice the prontuction of a wide variety of exciting phatompaphy effects. once at rictly limited to the professiouals. The durat fun of an electronicaly prodncen diakt is ss left upen in a dark or sululned light, it is the timing of the tlask that determines what is imprinted on the fim- not necessarily ansthing done by the c"amera. As electronic Hawh gunt are fired by making a suitched connection then it becomes obvions that one of the latest Silicon Controlled Relay's ean be used. If we natae this s.d.l. uprrate by summ (with
 can he capturet forever on film. Easily built in a couple of hours or so, the "Phototron" is
 terminal board (Pat, applied for). All parts inchalitug epechal petorial ktop-lystep plans

Eavesdrop on the exciting world of Aircraft Communications-

V.H.F. AIRCRAFT BAND

ONVERTER ONLY $£ 2$	

step-by-xtep. Aimple inxtructionk. ONLY $83.25+255 p$ o p for kit. includituceate. standard battery (parts available separately).
Have all the pleasmre of making it yourself. fuish with an exeiting gift fnr somenne.
INGENIOUS ELECTRONIC SLEEP INDUCER
 sleep again? Would you like to be gently soothed of to satisfying sleep every night? Then buid this ingenions electronic vleep
inducer. It even stops by itself so yout lon't have to worry about it beimg on all night! Tlse loulspeaker produces soothing andio-frequency sonthin, continuonsly gradually beconte less and less-mutil thes eventually cease altogether, the effect it has on people is amazingly very vimilar to hyphosis. A control is provited for aljunting the length of times. etc.. all transistur, can be built by anyone over 1? years of ag in about two hours. No knowlealge electronies ur radio needed. Extremely simple, easy-to-follow- step-hy-step, fully ing necebsary. Wurks oft standard batterinw extremely economical. Size unly $\operatorname{Bin} \times 4^{3} \mathrm{n}$ in x sin-take it anywhere. Kit inctuites

FIND BUREE TREASURE!

Transistrorised Treasire loator

TREASURE LOCATOR

screw a hamble oh Arnd Yol HAVE:
 sensitive - pentrater throngh earth, mand,
 HESTURICAL LRELICS, BTRIED PIPEA, ETC. Ros sersitive it Hill deteet 'ertain
wbjects buried AEVERAL FERT BFLOWW ©ROIND! (:IVES CLEAR NIFDAS, UN
 (High quality Danish stetho
phowe 82.75 wina $i f$ teguirel.)

UNIQUE RADIO FOR BEDROOM OR

 OFFICE Nobaterices, no elecerricicy. ONLY $£ 1 \cdot 70$
 evolsed from Watimu rablar, Seser buy a battory, Never use

 ate upwarts. SPECIAL PRICE TO CLEAR STOCKS OF COMPONENTS, ONLY E1-70 $+20 \mu$
 separatedy).
"READ PEOPLE'S MINDS"_-TEST THEIR NERVES-BEAT THEM AT CARDS, ETC. WITH THIS ASTONISHING ELECTRONIC BRAIN BOX only $£ 2.87$

 "pnck they thensflips shumed. THE ELECTRONICS NERVES

 TIONS WITH EACH OF THE PROJECTS.

Have fun with electronics...

 Construction Kits
NO SOLDERING BATTERY OPERATED

Build your own radio receiver and many exciting experiments with the unique printed circuit board and mounted components. Easy to build, no soldering, battery operated, plus a fully illustrated instruction manual giving precise directions for each experiment. Ideally suitable for both the experimenter and beginner

Radionic Products Limited

St Lawrence House, Broad Street, Bristol BS 1 2HF Tel. 02722535 ?

Amember of the ESL BRISTOL Group of Companies

AMCIITROMSSID.

"GEMINI"' FM STEREO TUNER

All components to build this outstanding phase lock easily aligned tuner as described in April/ May/June P.E. We are offering an optional chassis and solid wood sleeve in ready to assemble form. S.A.E. for details and itemised prices. Complete kit $£ 33 \cdot 90$

SCORPIO ELECTRONIC IGNITION

Complete kit with comprehensive construction and fault finding data. £11. Post paid. Data 10p. Itemised prices, S.A.E. please.

[^6]
WOW! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s Simplified Study Method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

Abstract

and what's more, you will

 understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile` Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.You LEARN-but it's as fascinating as a hobby.
Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the springboard for a career in Radio and Electronics.

FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of Courses up to City and Guilds standards.
Specialist Booklet
If you wish to make a career in Electronics, send for your FREE Electronics, send for your FREE
copy of "NEW OPPORTUNIcopy of "NEW OPPORTUNI--just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

Dept. B12, aldermaston COURT, READING RG7 4PF

MARSHALL'S INTEGRATED CIRCUITS

 NEW LOW PRICES LARGEST RANGE BRAND NEW FULLY GUARANTEED

LARGEST STOCKS SEMICONDUCTORS \& COMPONENTS WIDEST RANGE

BRAND NEW GUARANTEED

introducing

"Service the way it ought to be!"

an associate Company of LST ELECTRONIC COMPONENTS LTD

When it comes to retail distribution wo're head and shoulders above the rest!

We re a new Company but our experience and ability in electronic components goes back a long way
Here at Arrow Electronics fast, reliable service is lawl

We offer a rapid, same day turn round on all mail received up to 3 pm on any given weekday.

What's more, when we promise to clear all orders on receipt, we really mean it!

Our no fuss, no bother ordering system is a joy to behold. We'll give you all the forms and envelopes you could possibly nead. Combine them with our simple Catalogue Coding and hey presto, you can order and order, time and time again without the sfightest error of mistake.

You'll always be up to date with us-we're continuatly adding to our high quality stock range and always up dating our catalogue.

Arrow Electronics Limited
Dept. PE3.
7 Coptfold Road
Brentwood Essex
Tel: Brentwood 219435

Get to know us and you'll soon raise your hat to our customer discount-it's tops with a total order value discount of 10% on orders exceading $£ 4.00$
Now's your chance to get to know us better. Our brand new Catalogue is now awaiting you, hot from the presses!
The New Arrow catalogue features the following:

Extended Ranges of Bridge Rectifiers
Capacitors
Interference Suppression Kits
Low Cost Integrated Circuit Mounting Pins Knobs
Light Emitting Diodes
A Novel Logic Testing instrument gibing immediate visual indication
Magneto Resistors
Optically Coupled Isolators
Extended Range of Potentionseters
Medium current and High current Rectifiers Temperature controlled Soidering Irons
Extended Range of Thyristors
and many other items of great interest to the home constructor.

RST
VALVE MAIL ORDER CO． 16a WELLFIELD ROAD，LONDON SWI6 2BS special express mail order service Express postage lp per transistor，over ten post free INTEGRATED CIRCUITS $5 p+1 p$ each added

1N2！	$\operatorname{lp}_{0.17}$		$\begin{array}{cc} & \ell_{p} \\ 0.85 \\ 0.850 \end{array}$	$\begin{array}{ll}0.28211 & 80.82 \\ 0.8\end{array}$	28170	$\begin{aligned} & 49 \\ & 0.10 \end{aligned}$
1 N 23	0.20	AsY： 0.86	BYZ11 0.32	$0 \mathrm{AZ220} 00.45$	2－1271	0.18
IN85	0.88	Asyer 0.32	$B Y Z 1: 2000$ 0.80	$0.32223{ }^{0.45}$	2T： 1	0.25
IN263	0.50		$13 \% 7130$	$\begin{array}{ll}0.4 Z 224 & 0.45 \\ 0.2724\end{array}$	7T43	0.25
1N256	0.50	ASYY\％ 0.80	$\begin{array}{ll}\text { HYZ } \\ \text { Hys } & 1.00\end{array}$	0 OZ241 0.22	zTX10	0.16
1N645	0.25	158300.25	BYZ1： 1.00	OAR2942 0．28	zTx10：	0.16
IN726A	0.20	18Y50 0.17	BYZ18 0.62	$0.82244 \quad 0.22$	\％TX108	0.12
1 N 914	0.07	AsY51 0.40	BYZRN4 313	$0 \mathrm{AZ24} \quad 0.23$	7TX300	0.12
1N4007	0.20	－8963 0.20	0.15	0.822900	7TX304	0.25
18113	0.15	ASYO5 0．20	（111	$0 \mathrm{Cl} 16 \quad 0.50$	\％TX 500	0.18
18130	0.18	AsY6\％ 0.88	CRH1， 10 0．25	$0 \mathrm{Cl6} \mathrm{\%} \quad 0.38$		
18131	0.18	ASY6 0.38		$\begin{array}{ll}0 C 19 & 0.87 \\ 00.089\end{array}$	${ }_{7 T}{ }_{\text {\％}}$	0.17 0.25
18202	0.28	HSZ：1 0．42	（SAB ${ }^{2} 50$	$00^{0} 200.85$	7TX031	0.25
$2 \mathrm{Ca371}$	0.28	AsZ：3 0．75	${ }^{\text {（191011 }}{ }^{3.18}$	0 Ca 20.50	INTEGRATED CIRCUITS	
20381	0.85	18Y14 0－98	DD004 0.16	$00^{23} \quad 0.80$		
$2 \mathrm{Cl4}$	0.80	At＇lal 1.60	${ }^{\text {PD }} 00330.15$	$00^{3} 40.80$		
20417	$0 \cdot 28$	BCL107 $\quad 0.10$	DDOOt 0.18	0 O以5 0.37	T4111	0.20
2 N 04	0.20	BClios 0.10	DD007 0.40	$00^{(2024} 00.25$	$7+101$	0.20
$2 \mathrm{~N}^{69}$	0.15	BC109 0.10	DD00\％ 0.88	$\begin{array}{ll}0.24 & 0.60 \\ 0.20\end{array}$	Tur	0.20
2N698	0.40	$\mathrm{nCll}^{0.15}$	（in3 0.98		7408	0.20
2N706	0.10	HClİ 0.20	（1D4 0.05	Oces 0.60	$7+14$	0.20
2 N 708 A	0.12	13C116 0．25	（iDs 0.88	0030 $\quad 0.40$	740	0.20
2N708	0.15	HC116． 0.80	GDE 0.85	00350	7 taj	0.30
${ }^{2} \mathrm{~N} 709$	0.63	BC118 0.25	（iD12 0.08	$0{ }^{0} 36150.60$	7410	0.30
${ }^{2 N 1091}$	0.33 0.25	$\begin{array}{ll}\text { BC12 } & 0.20 \\ \text { BC12 } & 0.80\end{array}$	$\begin{array}{ll}\text { a ETIU：} \\ \text {（EET103 } & 0.80 \\ 0.22\end{array}$	$\begin{array}{ll}0 C+1 & 0.25\end{array}$	740	0.20
	0.25	$\begin{array}{ll}\text { BC12 } \\ \text { BC＇125 } & 0.20 \\ 0.68\end{array}$	$\begin{array}{lll}\text { GET103 } & 0.22 \\ \text { GET113 } & 0.20\end{array}$	$\begin{array}{ll}0 ¢+1 & 0.25 \\ 0.42 & 0.30\end{array}$	7 T	0.45 0.20
2N1302	0.18	вC＇12\％ 0.65	（iFT114 0．15	$0 \mathrm{Cl} 3 \quad 0.40$	T＋1	0.23
2N1303	0.18	BC140 0．65		$0 \mathrm{C} 44 \quad 0.17$	i＋1\％	0.42
2 N 1304	0.22	BCl4a 0.15	（EET11\％0．60	$0 \mathrm{CH4N} \quad 0.17$	T113	0.30
2 N 1305	0.22	13＇14， 0.18	（EET124 0－26	0C45 0.12	7116	0.30
2 N 1306	0.25	BC14\％ 0.15	${ }^{\text {GET872 }}$（1） 0.30	）ctiom 0.18	7417	0.30
2 N 1307	0.25	13C157 0．15	GET875 0．25	$\begin{array}{ll}0.6515 & 0.27\end{array}$	－4．0	0.20
2N1308	0.25	BC15 0.12	${ }^{\text {（iE1880 }} 0.37$	$\mathrm{x}^{6} \mathrm{~F}$	94．	0.48
2 N 2147	0.75	BC160 0．88	（1ETM81 0．25	$0{ }^{0} \mathrm{COM} \quad 0.60$	142	0.48
2 N 2148	$0 \cdot 80$	13 169 0.13	（1ET882 0.25	00590.68	＋1：	0.48
2 N 2160	0.60	以皆31 0.35	$\begin{array}{ll}\text { GET88\％} \\ \text { GEXt4 } & 0.25\end{array}$	$\begin{array}{ll}0 ¢ 65 \\ 0 ¢ 70 & 0.80 \\ 0.12\end{array}$	74.7	0.42
${ }_{2} \mathrm{~N}^{2} 2218$	0.20	$\begin{array}{ll}\text { 15CY32 } & 0.55\end{array}$	aEX GEX G		－410	0.50
2N2219	0.20 0.15		$\begin{array}{lll}\text { GEX } 45 / 1 & 0.10 \\ \text { GEX941 } & 0.18\end{array}$	$\begin{array}{ll}0071 & 0.12 \\ 0072 & 0.20\end{array}$	5 +30	0.20 0.48
2N2444	1.99	$\begin{array}{ll}\text { BCy } 34 & 0.80\end{array}$	GJ3m 0．8b	$0 \mathrm{OC3} \quad 0.30$	$\begin{array}{r}743 \\ 783 \\ \hline 183\end{array}$	0.42 0.70
2N2613	0.28	13CY38 $\quad 0.40$	（i．j4M 0.88	$0{ }^{(74} \quad 0.30$	－133	${ }_{0}^{0.75}$
2N2946	0.45	BCx39 1．00	（ijsw 0.85	$00^{78} 00.25$	7434	${ }_{0.65}$
2N2904	0.20	HCY40 0.50	${ }^{\text {（1J7M }} \quad 0.87$	$\begin{array}{ll}0076 & 0.25 \\ 0.75\end{array}$	14	－8．20
$2 \mathrm{~N}^{2904} 4$	0.25	BCY4： 0.25	Hallous 0.30		T－1．	0.75
2 N 2906	0.20	HCY70 0.15	11s100A 0.20	$\begin{array}{ll}0<7 \times & 0.20\end{array}$	－	${ }_{0} 0.75$
2N 2907	0.23	18CYTI 0.20	Mation 0.25	$0 \mathrm{Cly}^{0} 00.22$	－40\％	0.20
2 N 2924	0.28		MAT101 0－30	0 cyl 0．90	T4．51	0.20
2N2925	0.15	1cCZ11 0.50	$\begin{array}{ll}\text { M．T100 } & 0.25\end{array}$	$0 \mathrm{Cl}^{11} \quad 0.20$	74.5	0.20
$2 \mathrm{~N}^{2929}$	0.10	13D121 0．65	MATE1 0.30	$0 \mathrm{C81M} 0.90$	74，4	0.20 0.20
2N3054	0.50	$\begin{array}{ll}\text { Bbly } & 0.80\end{array}$	MJE520 0．87	Ocbid． 0.18	－ 46	0.20
2 N 3055	0.76	B112． 40.75	MJE2950 1.97	OC81\％ 0.40	－460	0.80
2N370：	0.10	13DY11 1.62	M3E E3055 0.87	$0 \mathrm{CBP}^{2} \quad 0.25$	\％	
2 N 3705	0.10	BFILS 0.25	NKT198 0.36	00832110.20	隹	0.40
2 N 3706	0.23	$\begin{array}{ll}\text { BF117 } & 0.50\end{array}$	NKT199 0.30	Oc83 0.95	－ 414	0.40 0.40
2 N 3707	0.12	BF167 0．25	NKT．211 0.25	$0 \mathrm{CB4} \quad 0.85$	－17．5	0.55
2N3709	0.10	BF173 0.25	NKT213 0.85	$0 \mathrm{Cl14} \quad 0.38$	－	0.58 0.48
2N3710	0.10	BF181 0．85	NKT214 0.15	$00^{0.124} 00.60$	－	0.48 0.80
2N3711	0.10	BFI84 0.20	NKT216 0.37	$0 \mathrm{C123} \quad 0.85$		0.80 0.87
2N3819	0.85	BF185 0．20	NKT217 N	$0 \mathrm{Cl} 39{ }^{0.25}$	74420	0.87 1.00
2N5027	0.58	BF194 0．17	NKT214 1.13	$0 \mathrm{Cl140} \quad 0.85$	7433	1.00
2N5088	0.83	BF195 0．15	NKT219 0.88	$0 \mathrm{Cl} 41 \quad 0.60$	－494	0.90
28301	0.60	BF 198 0.15	NKT22\％ 0.20	0Cliby 0.20	－ 4818	
28304	0.75	BF19 ${ }^{\text {a }} 0.15$	NK T224 0.28	0c17\％0－26	7 490	1.75
28601	0 －87	BFS61 0.28	NKT251 0.24	$0 \mathrm{Cl} 171 \quad 0.30$	T $491 \pm$	00
28703	0.62	13F998 0.28	NKT2i1 0.25	Occoo 0.40		0．75
AA129	0.20	13FX1： 0.20	NKT27\％0．25	$00^{001} 0.70$	7493	0.75
AAZ12	0.80	$1 \mathrm{BFX13} 0$	NKT073 0.15	$\mathrm{OCL}^{202} \quad 0.80$	7494	
AAZ13	0.12	BFX29 0.25	NKT274 0.20	$0{ }^{0} 2030.40$	719．7	0.80
AC107	0.87	BFX30 0．25	NKT475 0.25	$1{ }^{10204} \quad 0.40$		
AC126	0.20	BFX35 0.88	NKT275 0.20	0c：05 0.76	7497	6.25
AC127	0.25	BFX63 0.80	NKT278 0．25	OC206 00.90	74100	$2 \cdot 60$
AC128	0.20	BFX84 0.25	NKT301 0.40	$\mathrm{OC2}^{-7} \quad 0.90$	74107	0.50
AC187	0.25	BFX85 0.30	NKT304 0.75	OC460 0．20	74110	0.80
AC188	0.25	BFX86 0.25	NKT403 0.75	OC4TO 0.80	74111	1.45
ACY17	0.80	BFX87 0．25	NKT404 0.55	OCPT 0.97	74118	1.00
ACYİ	0.25	BFX8 0.20	NKT67\％ 0.30	vRP12 0.50		1.80
ACYI9	0.25	BFY10 1.00	NKTIA3 0.25	ORP60 0.40	7412	0.60 1.35
ACY20	0.20	13FY11 1.25	NKT733 0.95	ORP61 0.42	7412	1.35
ACY21	0.20	$\begin{array}{ll}13 F Y 17 & 0.25\end{array}$	$\begin{array}{ll}\text { NKTi̇i } & 0.38 \\ 0.38\end{array}$	HI9T 0.80	7123	2.70
ACY22	0.10	BYF14 0.25	07813	SACL0 0.25	7141	1.00
ACY_{27}	0.25	13FY19 0－25	OA5 $\quad 0.20$	SFT30\％ 0.88	7114，	1.50
ACY28	$0 \cdot 17$	BFY24 0.45	OAG $\quad 0.12$	$\begin{array}{ll}\text { STTS2 } & 0.88\end{array}$	74150	3.38
ACY 39	0.50	BFY44 1.00	OA4i 0.10	$\mathrm{STj}^{531} 0.68$	－71． 1	1.10
ACY40	0.15	AFY50 0．22	OAEO 0.10	$5 \times 68 \quad 0.80$	－ 4154	2.00
ACY41	0.15	3FY51 0.20	O．${ }^{\text {ati }} \quad 0.10$	$\begin{array}{ll}\text { HX } 631 & 0.80\end{array}$	－ 110.0	1.55
ACY44	0.25	${ }^{\text {BFYO2 }} 0$	OA73 $\quad 0.10$	8×6350	74156	1.55
ADI40	0.50	BFY53 0.17	OATt 0.10	sX640 0.50	74157	1.80
AD149	0.50	BFY64 0.42	OA79 0.10	$5 \times 641 \quad 0.55$	74170	$4 \cdot 10$
AD161	0.87	BFY90 0.65	0.8810 .08	SX642 0.60	74174	2.00
AD16：2	0.37	BSX27 0.50	OA8S 0.12	5X644 0.78	74170	1.35
AF106	0.80	BSX60 0.98	OA86 0.15	4×645 0.75	74176	1.60
AF114	0.25	B8x 760.15	04900008	115／301 0.60	74190	1.95
AFlld	0.25	$\mathrm{BSy}^{\text {B4\％}} 00.18$	$0491 \quad 0.07$	Y $30,2011 \times 0.78$	74191	1.98
AF116	0.25	BSY47 0.17	0.99500 .07	$\checkmark 60 / 20100.50$	7.192	2.00
AF117	0.25	HsYb 0.50	0 A 20000.07	\＄60／2011 0.75	$7+193$	2.00
AF118	0.62	BSY95．A 0.12	OA201 0.10	X 110100.10	$7+194$	2.50
AF119	0.20	BT102／500R	OAP10 0.28	$\begin{array}{ll}\mathrm{X} & 1102 \\ 0.18\end{array}$	－$+19 \%$	1 －85
AF124	0.25		$\begin{array}{ll}0.211 & 0.30 \\ 0.850\end{array}$	X 415100.16	T 719%	1.50
AF125	0.20	0.75	$\begin{array}{ll}04 Z 2000 & 0.65 \\ 04201 & 0.60\end{array}$	X． 115200.16	74197	1.50
AF129	0.17	BTY42 0.02	$\begin{array}{ll}\text { OAZ201 } & 0.50 \\ 0 A Z 202 & 0.42\end{array}$	$\begin{array}{ll}\text { XAliti } & 0.25\end{array}$	74198	4.60
AF127	0.17	BTY\％91100 ${ }^{\text {P }}$	$\begin{array}{ll}\text { OAZ202 } & 0.42 \\ \text { OAZ203 } & 0.42\end{array}$		7＋199 $\quad 4.80$	
AF139	0.80		$\begin{array}{ll}\text { OAZ203 } & 0.42 \\ 0 A Z 204 & 0.30\end{array}$	$\begin{array}{ll}\text { X．1162 } & 0.26 \\ \mathrm{XBl} 1 & 0.48\end{array}$		
${ }_{4}{ }^{\text {a }} 1788$	0.55 0.85		$\begin{array}{ll}0 A Z 204 & 0.30 \\ 0.28205 & 0.42\end{array}$	$\begin{array}{ll}\text { XB101 } & 0.48 \\ \mathrm{X} 3102 & 0.10\end{array}$		
AF178 AF180	0.85 0.62		$\begin{array}{ll}\text { OAZ206 } & 0.42\end{array}$	$\begin{array}{ll}\mathrm{X} 3102 & 0.10 \\ \times \mathrm{B} 103 & 0.25\end{array}$		
AF181	0.48	BY124 0.16	${ }^{\text {OAZ207 }} \quad 0.47$	$\begin{array}{ll}\mathrm{XB103} & 0.25 \\ \mathrm{X} 18113 & 0.12\end{array}$		
AF180	0.40	BY127 0.17	0.08208080	$\begin{array}{ll}\mathrm{X} 3113 & 0.12 \\ \mathrm{X} 18121 & 0.48\end{array}$		
AFY19	1.18	BY 18200.88	OAZ209 0.82	$\begin{array}{ll}\mathrm{XB121} & 0.48\end{array}$		
AFZ1！	0.80	BY213 0.25	0 Az210 0－82	2R24 0.68		

Open daily to callers：Mon．－Fri， 9 a．m．-5 p．m． Valves，Tubes and Transistors．Closed Sat．I p．m． $\mathbf{3}$ p．m． Terms C．W．O．only Tel．01－677 2424－7

POTENTIOMETERS Lin or Log，12p；with DP switch， 23p；Dual ganged，36p；Special offer 5 K with DP switch， 15p；WAVECHANGE SWITCHES，22p；Special offer miniature，4p，3W 16p．AMPLIFIERS： 1 Valve（EL84）， $\mathfrak{e 3}$ ； $\frac{1}{2} W$ Transistorised，$£ 1$ ；10W Transistorised，£3．75．JB3 Junction Box，£1．20．5in Plastic Library Cases，10p． $500 \mu \mathrm{~A}$ TUNING METERS，50p．CARTRIDGES：Compatible ACOS GP91－3SC，90p；Stereo GP93－1，£1－15；Ceramic with Diamond Stylus， $\mathbf{£ 1}^{180}$ ．CAPACITORS： $100 \mathrm{mF} 25 \mathrm{~V}, 5 \mathrm{p}$ ； $220 \mathrm{mF} 25 \mathrm{~V}, 5 \mathrm{p}$ ； $400-200-50-16 \mathrm{mF} 300 \mathrm{~V}, 30 \mathrm{p}$ ； 0.1500 V D．C． 300 V a．c．， $3 \frac{1}{1} \mathrm{p}$ ．

MINIATURE INDICATOR LAMPS（ 5 colours），11p； 6 V or 12 V Bulbs for above，4p．MAINS NEONS panel mounting （red，green，clear），15p． 100 MIXED RESISTORS，45p． ROTARY SWITCHES（on／off）250V 2A，10p．PLUGS： Jack Standard，10p；Screened，13p； 2.5 mm and $3.5 \mathrm{~mm}, 6 \mathrm{p}$ ； Screened，8p．HEADPHONES：High Impedance（2，000 ohm），90p；STEREO， 8 ohm．£1．95；STEREO $8 / 16$ ohm £2．10．

MICROPHONES：Lapel 28p；ACOS MIC．45，90p；Dual Impedance，Dynamic 600 ohm and $50 \mathrm{k}, \mathfrak{£ 4 . 5 0}$ ．RECORDING TAPE： 5 in LP $900 \mathrm{ft}, 45 \mathrm{p}$ ； $5 \frac{\mathrm{z}}{\mathrm{in}} \mathrm{L} . \mathrm{P} .1,200 \mathrm{ft}, 60 \mathrm{p}$ ； 7 in L．P． $1,800 \mathrm{ft}, \mathbf{8 1}$ p．RESISTORS carbon film $5 \%, 1 \frac{1}{2} \mathrm{p}$ ．ALUMINIUM CHASSIS from $6 \mathrm{in} \times 3$ in to $16 \mathrm{in} \times 10 \mathrm{in}$ all $2 \frac{1}{2}$ in deep． Transistors，Rectifiers，etc．

Large S．A．E．for list No．4．Special Prices for quantity quoted on request．Add 10 p for $\mathrm{P} . \& \mathrm{P}$ ．on orders under $£ 5$ ．

M．DZIUBAS

158 Bradshawgate，Bolton，Lancs．BL2 1BA．

THOUSANDS NOW IN USE
Reduced prices
Approved parts of this outstanding design（W．W．April 1971）． Featuring $0.75 \mu \vee$ sensitivity．Mosfet front end．Ceramicl．F． strip．Triple gang tuning，$\frac{1}{2} V r . m . s$ ．output level，suitable for phase locked decoder，as below．Designer＇s own P．C．B．
phase locked Solid State Tuning Indicator and Dial－Chassis Kit．
Tuner parts with box．Less than $£ 12$ ．S．A．E．please for lists．
High Performance Decoder also available．
NEW IC Stabilised PSU．SC，overload protected，low ripple． €3．55 p．p．19p．

ELECTRONIC CALCULATOR RAPIDMAN 800
 Pocket Size

MOS LSI Calculating Chip with 8 Digit Led Display，Overflow and Negative Number Indicators．Leading Zero Suppression．
Full 4 Function－will perform Addition，Subtraction，Multiplication and Division including Chain or Mixed Multiplication or Division as well as true credit balance up to ten digits
Calculator dimensions： $5.4 \mathrm{in} \times 3.1 \mathrm{in} \times 0.9$ in
Weight：7or．
THE RAPIDMAN 800 IS FULLY ASSEMBLED，TESTED AND
GUARANTEED FOR 12 MONTHS，AND IS SUPPLIED COMPLETE WITH BATTERY AND FULL OPERATING INSTRUCTIONS．
PRICE ONLY $£ 39.50$
（POST FREE）
A．C．／D．C．Adaptor only $\mathbf{£ 2}$ p．p．15p（or free with calc．）．
Leather Carrying case only $\mathrm{£l} .45 \mathrm{p} . \mathrm{p}$ ． 10 p （or free with calc．）．

LIGHT EMITTING DIODES（Red）

Improved Type panel or PCB mounting with free mounting clip－ clear or black．Order LEDIA．
Monsanto miniature PCB mounting with radial leads．Order LED2．Please add postage．
NOW ONLY 35p each with connection data．
RESISTORS．IW 5% Low Noise Carbon Film，
10 ohms -4.7 M E12．I－9 Ip，10－99 0．9p each．Please add postage．
INTEGREX LIMITED
P．O．BOX 45，DERBY DEI ITW．Tel． 0283893580

Se voltace		
		power rheostats
L.T. TRANSFORMERS		
	 	RELAYS SIEMENS, plesser, Etc. miniature relays
DOUBLE ENDED BLOWER UNIT 		
\qquad	Approx. Tour times the light output of our well - Heavy duty power supply. - Variable speed from 1.23 flash per see	12 VOLT D.C. RELAY 140 ohm coil
	ATTRACTIVE ROBUST, FULLY YENTI ,	
		为 (\%)
		miniaturelatching relay manenc latching in either direction. Coiil i 50 ohm
Position or dive spinde		
	INSULATION TESTERS NEW!	Lectertax $\begin{gathered}\text { ELECTRONIC } \\ \text { ORGAN KIT }\end{gathered}$
Parvalux Type: SDl.s,		Sose
	UNISELECTOR SWITCHES	
		36V 30 AMP.A.C. or D.C.VARIABLE
PARVALUX TYPE SD2. $200 / 250$ VOLT A.C.D.C. HIGH SPEED MOTOR		
		36 V 30 AMP. A.C. or D.C. VARIABLE L.T. SUPPLY UNIT
		INPUT 2201240Vaisisously de yariable o-3bV
		Fully isolated. Fitited in obust metal case with
		HONEYWEL"PUSH BUTTON PANEL
24-HOUR TIMER Can be adjusted to rive a swicching delay of between $\frac{1}{2}$ hr. to 24 hrs motor. 15 amp ciocontacts \qquad \qquad		
		MONEFWELL'LEVER OPERATED
		tacts. Tyees N39, N95. Nion NROM NEW Makers carton
	Crowzet 15 r.p.m 240V. A.C. motor. drives 2 indivi dually adjustable carns. Each cam operates 2 c	Very special offer MICRO SWITCH
Dept. PEII, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560	$\begin{gathered} \text { SERVICE } \\ \text { TRADINGCO. } \end{gathered}$	9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone $01-4370576$

4-8tation Tranaiator Intercom system (1 mastor and S 8ubs), in de-luxe plastic cabinets for teak or wall mounting. Call'talk/listen from Master to Subs and Suby to Master. Ideally suitable for Buainess, Surgery, Schools, Hospital, Office and Home. Operatea on one 9 l battery. On on whith. Solme bett and Complete with 3 connecting

MAINS INTERCOM
Mo batteries-no wires. Just plug in the mains fur instant two-way. loud and clear communication. Onjoff switch and volume control with lock gystemt
Price 212.40 . P. \& P. Jop extra.

£3.35 Same as 4 -statiun Interevin fur twoway instant communication. Weal as Baby Alarm and Door Phone.
Batters $14 \mathrm{p} . ~ P . ~ \& ~ P . ~$
$25 p$.
 fer. Take down long telephonc messages or converse without holding the handset. A useful office aid. On, on aritch. Volume control. Hattery 14pextra. P' \& 1 22p. Full price refunded if not satisfied in 7 day WEST LOMDON DIRECT 8UPPLIES (PE/1)
69 KENMMGTON HIGE STREET, LONDON.

AN EXCITING MAGAZINE BRINGING A FASCINATING HOBBY TO EVERYONE

Projects easy to construct Theory simply explained EVERYDAY ELECTRONICS

Yes, this exciting magazine will give you all the know how needed to make electronic gadgets for your home, car and other hobby applications. Just follow the easy, step-by-step illustrated constructional details and articles on techniques and theory!

ONLY I5p MONTHLY Place a regular order now!

Practical Electronics Classilied Advertisemenls

RATES: 8p per word (minimum 12 words). Box No. 10 p extra. Semi-Display $£ 6$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fieetway House,

Farringdon Street, London EC4A 4AD
BOOKS AND PUBLICATIONS

THE PICTURE BOOK METHOD OF LEARNING BASIC ELECTRICITY 5pts £4•50.BASIC ELECTRONICS 6pts $£ 5 \cdot 40$.BASIC TELEVISION 3 pts $£ 3 \cdot 50$

The quickest and soundest method of gaining mastery over these subjects
The clear and concise illustrations make study a real pleasure. P. \& P. included Your Money Back Guaranteed. Free Illustrated Prospectus on request. SELRAY BOOK CO., 60, HAYES HILL, BROMLEY BR2 7HP.

FOR SALE
8EEN MY CAT ? 5,000 items. Mechanical and Electrical (iear, and materials. S.A.E. K. R Whiston, Dept. PE, New Mills. Stockport.

CATALOGUE NO. 18, Electronic and Mechanical components. new and manufacturers surplus. (redit vourhers value 50p. Price surplas. incluting post. ARTHTR AALASA
 Brighton. Sussex.

[^7]8MALL QUANTITEE. (ompoments at large phantity priers. \& (Gakington Manor l)rist. Wenhley. 01-90 33300 .

QUAD 303 sterer amplifier, excellent rondition.

SITUATIONS VACANT

ELEGTRIC SALE8MAN mbedtad in N.W. 1. E2, \quad / \mathbf{W} plus commission and Protit sharing to the riglit man. Aue over ge vears, with
 2501231

H2EDM Crirer purinisweak?

Yes. That's all the time it takes ACT to turn a person with the aptitude into a qualified Connputer aptitude into a qualified Computer Programmer. Able to hold down a
responsible, well-paid job in the responsible, well-paid job in the
world of computers. And our own exclusive appointments agency wil! introduce you to all the right connections. FREE. We've already trained vast numbers of people: pointed them in the direction of success and life-Iong security. Write or phone TODAY for FREE details without obligation. ACADEMY OF COMPUTER TRAINING
E81. Oxford House
9-15, Oxford Street, W. 1
Telephone: 01-734 2874
127, The Piazza, Dept. E81, Piccadilly Plaza, Manchester 1

Telephone: 061-236 2935

SERVICE SHEETS

MUSICAL INSTRUMENTS

ELECTRONIC PIANO

Touch Sensitive Pedal Sustain Adjustable Decay
Plug-in units for constructing 2, 4, 6 octave ELECTRONIC PIANO. Also, Touch Sensitive Percussion Units for Keyboard Bass or add Piano Sound to existing organ. S.A.E. details of these and other units.

TO: DIGICHORD
Duffryn Glywd House
Elm Road, Tokers Green
Reading, Berks.

HI-FI EQUIPMENT

[^8]service 8HEET8 for Televisions, Radıos, Transistors, Tape Recorders, Record Players, te., from 5p with free Fandt-Finding Guide S.A.E. orders/inquiries C'atalogue 15p
HAMISTON RADIO, 4 Bohemia Road, it Leonarth, Sussex. Telephone Hastimgs 29066

CA8H PAID far New Valvom. layment hy return. WILLOW VALE EiLEC'TRONH's 4 The Broadway, Hanwell. london. W.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

LADDERS

DISCOTHEQUE AND THEATRE EQUIPWENT. Custom built to $1,000 \mathrm{~W}$ audio and 100 kW lighting control. Made to measure design service. Inquiries to Box No. 44 .

RECEIVERS AND COMPONENTS

MINI MAINS TRANSFORMER MT7， $30 \times 30 \times$ $37 \mathrm{~mm}, 7-0-7 \mathrm{~V}$ rms， 120 mA ．for 9 V rectifled 1．e．Top quality component with really com－ prehensive data．70p，1．K．pest 5p．Mail order only．AMATRONIX LTH．， 396 selsdon Road，south G＇roydon，surrey，CR2 ODE．

POLYSTYRERE CAPACITORS， $1 \cdot 5 \mathrm{~V}-100,1 \because 0$,
$150,180,220,270,330,390,560,680,820,1,200$, $1 \overline{0} 0,180,220,270,330,390,560,680,820,1,200$,
$1,500,1,800,2,200,2,700,3,300,3,900,5,600,6,800$, 8，200，0．01，0．012，15p doz．，post 10p．0．015，0．018， U．029，0．0．27， $0.033,24 \mathrm{p}$ doz．，post 10 p ．
COMPUTER PANELS，J－He＇108，lichles，ete．，4－ 50 p ，post 10 p ，American panels， $4-55 \mathrm{p}$ ．post $1 \ddot{10} \mathrm{p}$ ． Panel type $773 \mathrm{~B}, 8$ silicon transistors， 40 dionles， 20p： $011,{ }^{6}$ silicon transistors， 16 tiofes，12p，
post 5 p each．For lists of other types and ponents send large S．A．E．other types and UNIT WITH， 4 LAR POT＇CORES＋CAPS， 50 p ．post 15p．LAE ex．equipt ，20p，new and hoxed，30p，C．P．
ORP12 ON PANEL EX．EQUIPT．，35p，C．P．M．C． METERS 2 and 3 in，three ass， 21.05, post $2 J 1$, WIRE ENDED NEONS， $10-45 \mathrm{p}, 20-75 \mathrm{p}$ ，pust Ap ， BANK OF FIVE WITH RIVE C407 DRIVER TRAN－ SISTORS， $45 \mathrm{p}, \mathrm{C} . \mathrm{P}$ ．llank of 30 with 30 transistore \＆2．15，C．P．NEW 48 WAY STEPPING SWITCH WITH RESET for mains operation， $\mathbf{~ 1 1 . 2 5 , ~ p o s t ~} 25 j$ ．
CROUZET GEARED SYM，MOTOR， CROUZET GEARED SYN．MOTOR，mains operation UNIT 7 m．a．c．Hire． 5 p ，post 1， 1 ．VELODYNE 10p．IC． 7400 8ERIES on panel（8）， $10-75 \mathrm{p}$ ．post dope，50，CORT PACK COPPER CLAD PAXOLIN single sidetl，$\overline{3} \times \overline{3}$ ．
ASSORTED COMPONENTS， $7 \mathrm{lb}, ~ £ 1.30$ ，（C．
ASSORTED COMPUTER PANELS，？lb， $1130, \mathrm{c}, \mathrm{l}$ ． MIXED POLYSTYRENE，S／MICA CAPS， $100-40 \mathrm{p}$ ， MIXED TRANSISTOR AND I．C．FALL OUTS， 100

J．W．B．RADIO
is HAYFIELI ROAD，SALFO
Hail Order mity
AARVAK ELECTRONICE．soundlight（＇on vertors． 3 channel $1 \cdots \mathrm{~kW}$ 817， 3 kW 525. it bedford Anmule Jarmet，Harts or ral $01-4491268$ ．

METER8，Motors．Relays，Valves，lilectroniss At ROMERS FASCINATINi HSTAJBISH MEST， 31 Nelson street，southport

EAST HANNINGFIELD INDUSTRIAL
ESTATE，Near CHELMSFORD，ESSEX Telephone：Hanningfield 700
EX COMPUTER COMPONENTS 5 mult contact relays 2.5 K ohm coil， 50 p ．P．\＆P P． 10 p .8 micro switches．mixed， 50 p, P．\＆P． 10 p ． 240 V motor with governor and slipping clutch 90p each．P．\＆P．20p．2．5A meters $3 \mathrm{in} \times 3 \frac{1}{2} \mathrm{in}$ ， 75p each P．\＆P．10p． 5 printed circuits 4 in $\times 4 \mathrm{in}$ ． approx． 100 semiconductors， 50 p．P．\＆P． 10 p ． Memory core stores ferrite cores 25×50 f1．50 each， 30×30 \＆ 1.00 each．P． 2 P．30p

[^9]8PECIAL OFFER． 100 mixed resistors．Pru ferred Values $\frac{1}{6} W$ and $\frac{1}{2} W$ \＆ $1=25$ ，including postage， $2 \cdot 2 m \mathrm{~F}^{2} 250 \mathrm{Y}$ WKG10p each，ineluding P／P．AIEXANDERK， 16 Inverness strent London，N．W． 1 ．TeI． 4855322.

100 WATT AMPLIFIER

Fully protected，transformerless， 9 transis tor circuit．Input 500 mV ．Output into 8 ohms． 0.1% distortion．
Printed circuit board and full instructions \＆1．45p +10 P P．\＆P．S．a．e．for list o component bargains．
EDMUND8 COMPONENT8， 134 NORTH END ROAD，LONDON，W14．（Mail order only

SURPLUS STOCK
 AT REDUCED PRICES

Cs ．Rs ．TRANSISTORS ．SMALL 3 V ELECTRIC MOTORS RELAYS ．TRANSFORMERS PLUGS ．SOCKETS，ETC．，ETC． SEND S．A．E．FOR LIST W．E．C．LTD．
High Street • Ripley • Surrey
5－N－Channel FETs 3819E—EI
Full specification devices complete with circuit
details for building volcmeter，timer，ohm－ details for building volmeter，timer，ohm－ meter，etc．
Send 5 p for full list of field effect transistors and other top quality transistors available at bar－

45 Station Road，Gerrards LTD．
45 Station Road，Gerrards Cross，Bucks， MAIL ORDER ONLY

BRAND NEW COMPONENTS BY RETURN $31 \mathrm{p} .22 .47,4 \mathrm{p}$ ． $100,5 \mathrm{p}$ ．50V，$\frac{1}{2} \mathrm{p}$ extr． subminiature beaditype tantalums： 0 （1／3．5
 $8 p$ Mylar Film 100V， 0.001 ，0．002， 0.010 .3
 series．2p．Mulard miniater，（＇arton Pila kesistors，E12 series，third watt is $2-10 \quad 11 \mathrm{~s}$ \therefore for 5p．Tnsureal portage sp．THE 1：K atora（

Modern Computer Panels．with TO5 and plastic transistors， 6 for CI ， 15p p．\＆p．
P／C Board S／S $5 \frac{1}{2}$ in $5 \frac{1}{2} \mathrm{in} .10$ for 50p +15 p p．\＆p．Panel with 8 OC43 +24 OA81，35p．p．p．
Transformers， $7.5-7.5 \mathrm{~V}$ a．pp．$\frac{1}{2} \mathrm{~A}$ ， 60 p, p．p． $18-0-18 \mathrm{~V} 200 \mathrm{~mA}-24 \mathrm{~V}$ $40 \mathrm{~mA} 70 \mathrm{p}, \mathrm{p} . \mathrm{p}$ ．
Brand New Min Jones Plugs and Sockets， $6 \mathrm{~W}, 30 \mathrm{p} ; 8 \mathrm{~W}, 40 \mathrm{p}$ ； 12 W ， 50p；18W，60p；24W，75p．All pairs p．p． $700 \mathrm{~m} /$ watt amp， $9 \mathrm{~V} .8 \Omega$ output， \＆1，p．p．，with connections
Transformers，52－0－52V IA $+22-0-$
22 V 0.2 A, £2，p．p． $34-0-34 \mathrm{~V}$ 2A $22-0-22 \mathrm{~V}-2 \mathrm{~A}, £ 2$ ，p．p．
3EGI Scope Tube，new， 61.75 ，p．p． UHF Tuners，transistorised，$£ \mid \cdot 50$ ， p．p．
Veroboard 0.14 in ．$\times 2 \frac{1}{2} \mathrm{in}$ ． 10 for $\& 1$ 15p p．\＆p．
R．T．SERVICES（Mail order only） 77 Hayfield Road，Salford 6

Trompus eleatronis

 ＊digit． 4 regper sturage，Ros and KAM memory． ：24 pin LHLL， 129 ，data 85p．LED DISPLAYS to suit． H11 caye．£17．49．KEYBOARD． ヶwitch，£14．97． INTEGRATED CIRCUITS：with data． PHOTO DETECTOR \＆AMPLIFIER．leנl case．44p． Preathy，£1－49，FFM MPX Decester．\＆1－48．74K： SOCKETS lun prutile $1 \frac{1}{2}$ 川 ltipu．13p． TRANSISTORS： 2N3055，39p．BC107，8p．BC108，7p．BC109．8p． DIODES： ZENERS：BZYMQ＋6Пmw，12p：$\therefore 1 \mathrm{~N} / 10 \mathrm{~W}, 20 \mathrm{p}$ ． CAPACITORS： 2.530 B Electrolyti－ RESKTURS W ；＂u 1p．PIRESFTS 0．！SW，5p， Kteren＇my it vire．ell4．Light bimmer，e4． FREF（ATAI，UG：E，A．A．E．．H．ATA SHEPTA， P．O．BOX 29，BRACKNELL，BERKS．

```
Professional quafity at budget prices!
using Range 500 mixer modules.
m.510 Microphone amplifier (600{2), &4
m.511 Equaliser (Bas5 & Treble), &4; m.5I2
Ceramic amplifier, 63.80; m.513 Line amplifier
3.80; m.514 Buffer amplifier, {3.60; E.400
Phase amplifier, E3.30; B.30 Booklet on mixing
Circuits, 30p
2% P. & P. Above 5 units free, above 10 units
Mixers and Effects equipment built
    54 Charles Sereet, Herne Bay, Kent
```

NEW FULL SPEC． DEVICES BY RETURN MONEY BACK GUARANTEE
MICROCIRCUITS： $70+30 p ; 71036 p$ ；-23 71p；i＋1 $32 p$ p

 1．f11 18p；0412 19p；141；14p：1012 10p；41111 10p

 FIERS：28p： $3 \frac{1}{2} p$ ； 1 （91） 42 p ；M1H1：44p． 1 AMP RECTI
 a， 1 ， 10 and 12 volt， 11 p cach．
促 5 p ： 11000 7p：OAS 17 p LAMP 45p．SOLDE pil any lenkit PC RESIST PEN 80p． 14 PIN DIL SOCKETS 14p．MICROHM Resinturs $4 \frac{1}{2} \mathrm{p}$ ．

JEF ELECTRONICS（P．E．II）

YORK HOUSE， 12 YORK DRIVE，GRAPPENHALL WARRINGTON，WA4 2EJ．Mail Oriber Oily，C＇，M． （ir $10+$

SOUND SUPPLIES
 Electronics）Co．Led

P．A．EQUIPMENT．Marshall amps，instruments and guitars，etc．TOA and Eagle amps and accessories，Resso mics，etc．
COMPONENTS．Resistors．
sockers，cables，audio leads，semicond，plugs， valves，vero board，etc．，for the constructor． Power packs and car droppers for the cassette recorder or radio．
S．A．E．for list and enquirics．P．A．list 150 ．
Tel．O1－508 2715 Line，Loughton，Essex

TAPE AMPLIFIERS

2 - ECC63, EL84, EZ80. $20 \mu \mathrm{VI} / \mathrm{P}$ sensitivity, 2 watts O/P into 7" 4*3 ohm speaker. All contained in polished cabinet with nonstandard single motor deck. Supplied complete with circuit. $£ 3+\lfloor 1$ carr.
GREENWELD ELECTRONICS (PE2) 24 Goodhart Way, W. Wick ham, Kent
S.a.e. circuit and details

PRECISION polycarbonate capacitors

Fresh Stock - Fully tested

 TANTALUM BEAD CAPACITORS. Values available $0.22,0.47,1 \cdot 0,2.2,4.7,6.8 \mu \mathrm{~F}$ at 35 V, $10 \mu \mathrm{~F} 25 \mathrm{~V}, 15 \mu \mathrm{~F} \quad 20 \mathrm{~V}, 22 \mu \mathrm{~F}$ 15V, $33 \mu \mathrm{~F} 10 \mathrm{~V}$ $47 \mu \mathrm{~F} 6 \mathrm{~V}, 100 \mu \mathrm{~F} ~ 3 \mathrm{~V}$-all 2 It 9 p each; 6 for 50 p ; 14 for Cl . $\$$ P.
NEW I-TRANSISTORS. BCIO7, BCIOB, BCl09. All at $9 p$ each; 6 for $50 p$; 14 for El . All brand new and marked. Full spec. devi
be mixed to qualify for quantity prices.
POPULAR DIODES. INQI4, 7p each; g for 50p; 18 for 61 . IN916, 9p each; 6 for 50p; 14 for fi. IS44, 5p each; II
brand new and marked.
NEW LOW PRICE -400 mW Zeners Values available $4 \cdot 7,6 \cdot 8,7 \cdot 5,8 \cdot 2,9 \cdot 1,10,11,12$

RESISTORS. Carbon film $\frac{1}{} W 5 \%$. Range lrom $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{MQ}$ in E12 series, i.e. $10,12,15$, 18 , 22, 27, 33, 39, 47, 56, 68, 82 and their decades. hor 10 of any one value: $70 p$ for 100 of any one
for hor 10 of any one value: 70p for

440V A.C. CAPACITORS. $0 \cdot 1 \mu F$ size 1 in \times
 45p; 2 -0 $\mu \mathrm{F}$, size 2 in \times in 75p.
SILICON PLASTIC RECTIFIERS I.5ABrand new wire-ended OO27. l00PIV at 8p each or 4 for $30 p ; 400$ piv at $9 p$ each
34 p ; 800 piv at 14 p each or 4 for 50 p .
V. ATTWOOD, DEPT. B6, P.O. BOX 8, ALRESFORD, HANTS

TV Line out-put Transformers

 Replacement types ex-stockFor "By-return" service, contact London $01-9483702$
Tidman Mail Order Ltd, Dept. PE 236 Sandycombe Road,
Richmond, Surrey TW9 2 F Richmond, Surrey TW9 2EQ
Valves, Tubes. Condensers, Resistors, Rectifiers and Frame out-put Transformers also stocked Callers welcome.

COMPUTER PANELS

Panel contains $2 \times$ Mullard OC23 Transistors and 5 other Transistors, etc. 2 panels 50 p p.p. 15p. $2 \times B C Y 34$, erc. 2 panels 50 p p.p. 15 p
2XBCY34, etc. 2 panels $50 p$ p.p. 15p. ussoful Transistors, Diodes, Trim Pots, etc 4 Panels for $\& 1$ post free.
Assorted Panels contain minimum of 10 integrated circuits, also Transistors, Diodes, etc. 11 p.p. 15p.
Electrolytic Capacitors UF/V, 2,000/35, 10,000/ $15,10,000 / 25,12.500 / 35$. All at 30 peach p.p. 6p $2,000 / 50,2,500 / 50,5,000 / 50,10,000 / 50$
$50,50,000 / 15$ all at 40 p each p.p. 10 p .
50, $50,000 / 15$ all at 40 p each p.p. 10p. also block paper, etc. Send your exact requirements. Assorted miniature and subminiature ElectroIytic Capacitors, 100 for $\mathbf{6 1 - 2 0}$ p.p. 15p

Mail Order only

XEROZA RADIO

I East Street, Bishop's Tawton, Devon

KITS ! KITS ! KITS !

A new range of audie kits for discotheques, groups, musicians, etc. All parts guaranteed and full assembly instructions supplied.
REVERBERATION UNIT KIT
4 input 2 channel mix plus reverberation level control, etc. Battery operated. $£ 10.50+50 \mathrm{p}$
100 WATT SLAVE AMPLIFIER KIT
A mains operated solid-state power amplifier for P.A. applications. Delivers 110 watrs into 6 ohm load. $\mathbf{E 2 0}+\dot{\text { il P. \& P. }}$ 100 WATT INSTRUMENT/P.A. AMPLIFIER KIT
A professional amplifier using plug-in printed circuit boards. 4 input 2 channel mix with high-lift treble and bass controls on each channel. Separate master volume, etc. $\mathbf{6 3 0}+\mathrm{EPP}$. \& P.
FUZZ BOX KIT A compact battery operated unit with pre-set fuzz/volume level controls and changeover SOUNCh ROTO-LIGHT RIT
An effects lighting control unit featuring built-in amplifier and microphone. Modulates up to 1500 watts of lamps. Sensitivity fully variable. $68.50+50 \mathrm{p}$ P. \& P.
The above kits are also available fully built and
tested. S. A.E. for full details. Mail order to
REID ELECTRONICS
43 Healon Grove, Newcastle upon Tyne NE6 5NP

MISCELLANEOUS

CIRCUIT BOARD ETCHING KIT8, full instructions. $£ 1.25$, ('. W.o. ARVIN SERVII COMPANV, $1:$ ('ambridge Romat, st. Albans, Herts.

CLEARING LABORATORY, Scopes, V.T.V.M's V.O.M's, H.S. recorders, transeription turntables, rlectronic testmeters, calibration nonits P.S.U.'s. pulse generators, 1).('. null potentiometers, bridges, spectrum analysers voltage regulators, sigegens, M/G relags components, ete. Jower beeding 236 .

8URPLUS ELECTRIC CABLE. 3-core rubbe covered $28 / 0076$ (100 yd coils), 24 per roll 50 p postage. 3 -core rubber covered $2 \mathrm{z} / 0076$ (50)yd coils), $\mathbf{\$ 1 5} 50$ per roll. Free, 3-core PV(Black $14 / 0076$ (100 yd coils), $\mathbf{8 3} 50$ per roll
 coils), $60 p$ per roll, 10p. 3-core PV(C 13lack flat $2 \times / 0076$ (100 yd coils), $\$ 3.50$ per roll, „5p. Single core PV' Black $14 / 313$ (100yd coils), 50 p per roll, 10 I , Instrument (ase
 Strap, sin wide nylon black (100yd coils),
$50 p$ per roll. 10 . New $1 / \% 0$ H.P. Fracmo 50p per roll. 10p. New $1 / 20$ H. P. Fracmo
84.50. JROXBOI R NE EST. ('O., Salishury Road, Hoddeston, Herts. Telephone, Hodiesdon 6:3666

METER REPAIR8. Ammeters, voltmeters, multi-range meters, etc. sond to METER REPAIRS, 39 ('hesholm Road, London REPALR
NOODS.

CHROMASONIC ELECTRONIC8 is well and living at 56 Fortis Green Road, London N10 3llN. 40 -page illustrated catalogue 20 p post free.

FIBRE OPTICS

FLEXIBLE LIGHT PIPE used to convey light to inaccessible positions for inspection, panel indicators, photo-electric and other applications FIBROFLEX Type I glass fibre flexible light conduit 1.14 mm active dia. bundle sheathed in 70p; 5-9, 55p: $10+, 40$ p. 25 metres 66 per reel. 70p; 5-9, 55p; $10+$, 40 p. 25 metres 66 per reel.
CROFON (Trade mark of Du Pont) Type 1610 plastic flexible tight conduit now available. 64 filaments. Active dia. 1.80 mm .
Prices per metre: $1-4, \mathbb{C 1 - 2 0 ; 5 - 9}, 61 ; 10+, 80$ p. 25 metres $f 16$ per reel.
Send $\$. A . E$. for full range of products, price list and literature

FIBRE OPTIC SUPPLIERS P.O. BOX 702, LONDON WIO 6SL

YOUNG SCIENTISTS
and not-so-young, whether beginner or advanced Towe

Have you ever wanted, to build A MACHINE THAT LEARNS? Or perhap make a The idea of an ELECTRONIC FANTASY MACHINE? How about "Thing" capable of REPRODUCING ITSELF? Whatever your electronic turn-of-mind, there's iust GOT TO BE LOADS TO INTEREST YOU in the science-fictionworld of BOFFIN.
GET YOUR CATALOGUE - SEND JUST 15p NOW! (S.A.E. for details).

TO: BOFFIN PROJECTS
4 CUNLIFFE ROAD
STONELEIGH, EWELL SURREY
Designs by GERRY BROWN and JOHN SALMON and presenced on TV.

CON8TRUCTION AIDS. Fascia panels, dial nameplates in etched aluminimm to individua specifleation. Sheet aluminimm, printed cir rnits-drafting tapes, negatives supplied boards manufuctured, singles or small runs Copper clad laminate supplied. Hardware copper ctad laminate supplied, Hardware
for constructors. S.A.F. details. RAMAR
 Road, strafford-on-Avon, Warwks

FOR ALL your Eifectronic Component requiry ments, Send for free list to B.C. ELECTRONI s「PPLIES, 7 Regent Road. Huddersflek. H1H 4 NR .

PROFESSIONAL CONTROL PANELS
 with FASCIA KIT
 MAKE YOUR OWN PANELS IN PERMANENT

 ANODISED, SELF-ADHESIVE ALUMINIUM NO SPECIAL EQUIPMENT NEEDED CHOICE OF SILVER ON BLACK RED BLUE, GREEN.TRIAL KIT $\mathbf{f 1} 28$ Carr. Paid
No. 1 KIT $£ 1.88$ Carr. Paid
No. 1 KIT 81.88 Carr. Paid
No. 2 KIT E2.39 Carr. Paid
M.P.E. Ltd., BRIDGE ST., CLAY CROSS, DERBYS.

DIMMIT

range of light dimmers
standard wall mounting models
Rotary: 400W $63 \cdot 10$ IKW $£ 3.95$ module only: $400 \mathrm{~W} £ 2.80$ IKW $£ 3.60$ Slider: 400 W £4.35 IKW $£ 4.95$ module only: $400 \mathrm{~W} £ 3.50 \mathrm{IKW} £ 4.05$
2 kW Slider module now available Send 10 p for complete catalogue of Dimmits. Orders: add 10plP. \& P. for, each dimmer.
YOUNG ELECTRONICS
S4 Lawford Rd., London NW5 2LN 01-267 0201

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE
because this GPO approved transmitter/receiver kit does not use R.F. and you can get one easily Your transmissions will be virtually SECRET since
they won't be heard by conventional means Actually it's TWO KITS IN ONE because you get the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGEhas obvious applications for SCHOOL PROIECTS LANGUAGE LABORATORIES. SCOUT CAMPS etc
GET YOURS! SEND 65.50 NOW (S.A.E. for details) TO: : BOFFIN PROJECTS DEPT, KE2010
4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY
P.E. GEMINI. Etched aluminium fascia panels as detailed in latest phblication A lit derails boards and other items SliRVIC bes. 29 ,holbourne Road, Stratford on-Avon WHuwick

CALCULATOR CHIP

TEXAS 1802 One-Chip Calculator Circuit Build yourself a low-power pocket calculator with 8 digit display (7-Segment) and all professional functions
Calculator Chip TMS 1802NC $£ 30.00$
RAPIDMAN 800 Calculat or $\mathbf{E 3 9} 50$
LED Displays One digit
C4.50
617.00 $\begin{array}{ll}\text { Four digits } \\ 5 \times 7 \text { Dot Matrix } & E 12.50\end{array}$
All displays 14 pin DI.L. packages. CWO to

ELECTRONICS
181 EbBERNS ROAD, HEMEL HEMPSTEAD, HERTS. 044262757

BEST EVER-INTERNATIONAL 230 VOLT A.C. "MAINS" PERFORMANCE from 12 volt car battery R.C.A. INTERNATIONAL 230 volt A.C. POWER UNIT. Wonderful 230 volt a.c. performance with low battery drain. Marvellous for A.C FLUORESCENT LIGHTING and hundreds of makes and types of 200/240 volt A.C. and UNIVERSAL A.C./D.C. APPLIANCES. Can be used for re charging battery by using an ordinary motorist's 4 amp battery charger
Total weight of unit 21 lbs Price Otal weight of unit 21 los. Price back if not delighted. C.O.D. with pleasure.
Dent. PE, broadway distributors, The Benerator Centre, House of Time, 273 Broadway, Rossall, Fylde, Lancs.

ELECTRONIC MUSIC

CIRCUIT ASSEMBLIES for all your music projects, ready-to-use modules ideal for Syn-
thesisers. Sound Effects, Organs. Instrument thesisers.
modifiers.
CHOOSE from over 25 circuits, including our new range of I-C designs for Synthesiser work OUR CATALOGUE contains full technical details, explanations and definitions, suggestions OO projects, and discount price details. OUR PRICES are the lowest in this field and Send only 20 p for our latest catalogue.

TAYLOR ELECTRONIC MUSIC DEVICES GREYFRIARSHOUSE - CHESTER

RECORD T.Y. SOUND using onr louflspeaker isolating transformer. Provides safe con nection to pecorder. Instructions included e1 post free. (ROWBOROICIH ELEA TRONI('S (P.E.), Eridge Road. Crowboromoth fisse

Versatile
10 in ONE

MINI-LAB
Comprising.

- AC and DC Voltmeter - Audio Generator - Ohm Meter - Resistance Substitution - Capacitance Substitution • DC Ammeter - Battery Supply - RF Signal Generator - RF Field

Strength Indicator.
This new, unique instru- 11.25 ment combines all you
plus 25p p.\&p. need for testing. Guaranteed, money back if not satisfied. Cash with order or write for illustrated data sheet to
R.S.L. COMPONENTS (Dept. PE) Cricketfield Lane, Bishop's Stortford, Herts

EDUCATIONAL

GET INTO Eleatronics oppratunities for tramed men. Learn at home. Postal fourses in RTEB, ('ity © Guilds. Radio. TV. Telecoms He. FREL: informative guide: (JAMBFRS COLLEGE (Dept. R, 103), Aldamaston ('onyt

ENGINEER8
Let a terohnical certiticate. Postal rourses in Engineering, Electronick Radio, TV, Computers. Draughtsmanship. Building. pre. FleEF, book from: BIET

TELEVISION TRAINING

(MONOCHROME AND COLOUR)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of 16 months' duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Next course commences January 1st. Training courses in Marine Radiocommunication and Radar are also available. Write for prospectus to: London Electronics College, Dept. B/11, 20 Penywern Road, Earls Court, London SW5 9SU. Tel. 01-373 8721.

BUILD A

PROJECT 'X' SYNTHESISER

....Dewtion
 (Regd. Trademark)

PROFESSIONAL MODULES

CASH SAVINGS

by buying modules and parts in bulk! All modules are available separately:
Ring Modulator RM2, £7. Voltage-controlled Oscillator VC01, £9.50, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £12.50. White noise type WN1, £6. Voltagecontrolled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £12. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £9. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls $\mathbf{£ 4 . 5 0}$.

MAN-SIZED ROBUST PATCHBOARD

MAKE A "PATCH" AS IF YOU MEAN IT. "K-L-O-N-K'" and it's MADE!
No fiddling with fragile patch pins. No cables.
Countless possible combinations giving FULL
RANGE EFFECTS. Keyboards available for versatile
"live" use.

NEW BREAKTHROUGH

VCO-2 gives SINE, TRIANGULAR and SQUARE outputs, and is stable! 1 volt/octave control. Single $£ 20$ each. Matched and tracked $\mathbf{f} 23$ each.
SHE-1 SAMPLE, HOLD and ENVELOPE module gives sustain and variable nv. to VCO signal. £11-50.
With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to a leading group. Our modules are used in professional equipment!
Send s.a.e. for synthesiser details or send 15 p for full catalogue of our famous musical effects.

TRANSFORMERS

MINIATURE PUSHBUTTON SWITCHES

4 pole changeover, 250 V . switching 0.1 A and carrying $\overline{\mathrm{JA}}$. 12.7 mm pitch. Total depth 64 mm . Available in banks of 1,3 or \bar{J}. Actions available: independent, normal interlock, or momentary. Price per switch unit 40p. Mains switch $2 \overline{0} 0 \mathrm{~V}$ amp can be fitted separately or on same frame as above: l pole changeover
$70 \mathrm{p} ; 2$ pole changeover, $81 \cdot 10$.
Illumination for above (12V lamp, holder button) 70p. The Main Switch above with 12 mm threaded
bush and nut for panel mounting: 1 pole changeover, 90p; 2 pole changeover, $81-30$.
MEON in amber lens and holder with resistance for 250 V operation, 16 p .
MINIATURE SLIDER SWITCH $\overline{2}$ pole changeover. Outside sizes $25 \mathrm{~mm} \times 8 \mathrm{~mm}$ switching 0.3 A and carrying 1 A 15 p .
MINI MOTOR BOOBTER (P.E. July -197%). Compete kit of parts excepting motor, 22.25, or bu it All components supplied separately.

P. \& P. up to EBO_{3}-10p, Over 23 -free-Portal only. BORDER ELECTRONICS
(Supplies and Manufacture) 8 Broompark, KELSO, Roxburghshire Tel.: Kelso 2864

TD 7SN

U.H.F. TV AERIALS

SUITABLE FOR COLOUR \& MONO. HROME RECEPTION

All U.H.F. aerials now fitted with tilting bracket and PUNTING
LOFT M
ARRAYS 7 element 62.25 . II element 62.75. 14 elem

WALL MOUNTING C/W WALL ARM AND BRACKET. 7 element 63-25. II element 63.75. 14 element 64.25 . 18 element 44 -75. CHIMNEY MOUNTING ARRAYS C/W MASTANDLASHING KIT. 7 element 44. if element $\mathbf{4} \mathbf{4} 50$. 14 element 44.75 . 18 element $\mathbf{5 5} \mathbf{2 5}$.
MAST MOUNTING arrays only 7 element 62.25. II element 22.75 . 14 element 63.25. I8 element 63.75. Complete assembly ir. structions with eve
coaxial cable $9 p$ yd.
KING TELEBOOSTERS from 63.75. LABGEAR all band V.H.F.-U.H.F.-F.M. radio mains operated pre-amps 67.50. State clearly channel number required on all orders. P. \& P. on al aerials 50 p acts. 15 p . C.W.O. min. C.O.D. charge 25 p .

BBC-ITV-FM AERIALS
BBC (band I) Wall S/D 62. LOFT inverted ITV (band 3) 5 element loft array 62.50.
 $1+5$ E2.75. $1+7$ £3.50. WALL AND CHIMNEY UNITS ALSO AVAILABLE. Pre-amps from $\mathbf{6 3 . 7 5}$.
COMBINED U.H.F.-V.H.F. aerials I $+5+9$ Ci. $1+5+14$ \&4.30. $1+7+14$ GS. F.M. RADIO loft S/D E1. 3 element 63-25. 4 element 53.50 . Standard coaxial plugs 9 p . Coaxial cable 5 p yd. Outlier box 30p. P. \& P. all aerials 50p, aces. 30p C.W.O. min. C.O.O. charge 25p. Send Sp for fully illustrated lists.

OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS

40-41 Monarch Parade, London Rd. Mitcham, Surrey Telephone 01-648 4884

G. F. MILWARD

ELECTRONIC COMPONENTS

INDUSTRIAL USERS!

We have access to some of the largest stocks of transistors and I. C.s in Europe. Some sample prices are given below
Regret that it is not possible to supply less than 100 of any one type at these prices. All marked and to full specificarion Regret that it is not possible to supply less than 100 of any one type at these prices. All marked and to full specification Please phone or write for immediate quote should types you require not be listed.

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit borh simply and quickly.
Method: Spray copper laminate board with light-sensitive spray Cover with transparent film upon which circuit has been drawn Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner.
Light-sensitive aerosol spray
Developer and Etchant
50p postage

NEWER THAN NEW!!!!

thick

I sq. foot
th

VEROBOARD

2 考in \times in $\times 0.15$ in

ERIE MONOLITHIC CERAMIC CAPACITORS

3p ea	20p	en; ≤ 1.7	er 100
10pf	330pf	4,700pi	33,000pf
I5pf	470pf	6,800pf	47,000pf
22pf	560pi	8,200pf	68,000pf
33 pf	620pi	8,500pi	-1/if
39pf	680pf	$10,000 \mathrm{pf}$	- $15 \mu \mathrm{f}$
47pf	I,000pf	15,000pf	- $18 \mu \mathrm{f}$
68pt	1,500pf	19,000pf	-22 $\mu \mathrm{f}$
100pf	2,200 pf	22,000 pf	. 47 / ff
150pf	2,700 pf	27,000pf	1.54if
220pi	3,300pf		

RECTIFIERS
IN4007 1200 peak volts, 30 amps peak current, 1 amp mean current 100 for $£ 7.50$ 1,000 for £50

Special Offer Pack consisting of $52 \frac{1}{2}$ in \times I in boards and a Spot Face Curter
50p. "ODDS \& ENDS"-Ip sq. in.

TANTALUM CAPACITORS

Special offer to clear!- 5p each; 50p dozen; $\mathbf{6 3} \mathbf{5 0}$ per 100

$0.47 \mu \mathrm{f} 20 \mathrm{~V}$	$0.22 \mu \mathrm{f} 50 \mathrm{~V}$	$2.7 \mu \mathrm{f} 0 \mathrm{~V}$	$6.8 \mu \mathrm{f} 60 \mathrm{~V}$	$47 \mu \mathrm{f} 50 \mathrm{~V}$
$0.056 \mu \mathrm{f} 50 \mathrm{~V}$	0.33 /f 50 V	$3.0 \mu \mathrm{ff} 12 \mathrm{~V}$	$12 \mu \mathrm{f} 50 \mathrm{~V}$	$56 \mu \mathrm{fl} 16 \mathrm{~V}$
$0.033 \mu \mathrm{f} 20 \mathrm{~V}$	$0.39 \mu \mathrm{f} 35 \mathrm{~V}$	$3 \cdot 3 \mu \mathrm{fl} 5 \mathrm{~V}$	$12 \mu \mathrm{f} 35 \mathrm{~V}$	$56 \mu \mathrm{f} 20 \mathrm{~V}$
$0.056 \mu \mathrm{I} 50 \mathrm{~V}$	0.47μ f 50 V	4.7 ff 35 V	$15 \mu \mathrm{f} 20 \mathrm{~V}$	82 /f 20 V
$0.068 \mu \mathrm{f} 35 \mathrm{~V}$	0.68 нf 35 V	$5.6 \mu \mathrm{ff} 6 \mathrm{~V}$	22, 115 V	$150 \mu \mathrm{f} 6 \mathrm{~V}$
0.068 uf 50 V	0.68 /ff 50 V	$5 \cdot 6 \mu \mathrm{fl} 3 \mathrm{~V}$	$22 \mu \mathrm{f} 75 \mathrm{~V}$	$180 \mu \mathrm{fl} 10 \mathrm{~V}$
0.07 /f 20V	$1.5 \mu \mathrm{f} 20 \mathrm{~V}$	$5 \cdot 6.1450 \mathrm{~V}$	$18 \mu \mathrm{f} 35 \mathrm{~V}$	270/f 6 V
$0.12 \mu \mathrm{f} 35 \mathrm{~V}$	$2.7 \mu \mathrm{f} 15 \mathrm{~V}$	6.84 ff 20 V	27/ff 20 V	27 N
$0 \cdot 15 \mu \mathrm{f} 35 \mathrm{~V}$	$2.7 \mu \mathrm{f} 35 \mathrm{~V}$	$6.81 / 150 \mathrm{~V}$	$27 \mu \mathrm{f} 35 \mathrm{~V}$	

ELECTROLYTIC
 CAPACITORS

2,000 $\mu \mathrm{F} 25 \mathrm{~V}$ Rev

1,000 1 F 70 V
$10,000 \mu \mathrm{~F} 35 \mathrm{~V}$
$60 \mu 1+200 \mu \mathrm{~F} 300 \mathrm{~V}$
$10 \mu \mathrm{f} \quad 6 \mathrm{~V}$
$10 \mu \mathrm{f} 25 \mathrm{~V}$
$16 \mu f 250 V$
$\begin{array}{lll}32 \mu f 275 V & \cdots & \cdots \\ \text { Miniature type. } & \text { Both wires same }\end{array}$ end. $5 \mu \mathrm{f} 10 \mathrm{~V}$
30hf IOV
$50 \mu 110 \mathrm{~V}$
$220 \mu \mathrm{f} 25 \mathrm{~V}$.
RECORD PLAYER CARTRIDGES. Well below norma! prices! GOLDRING G850 Magnetic Stereo Cartridges, Diamond Needle, E4.75. ACOS GP $67 / 2$ (Mono, Crystal) 75p. ACOS GP $9 / 3$ (Compatible, Crystal) £1. ACOS GP 93/I (Stereo, Crystal, Sapphire) $\mathbf{\text { fli25. ACOS GP } 9 3 / 1 D}$ (Stereo, Crystal, Diamond) El-63. ACOS GP94/I (Stereo, Ceramic, Sapphire) El-50. ACOS GP 94/ID (Stereo, Ceramic, Diamond) $\mathbf{1 1 . 8 8 .}$ ACOS GP 95/I (Stereo, Crystal with two L.P./Stereo needles) \&l. 25 .

\section*{AXIAL LEADS $250 \mu \mathrm{H} 25 \mathrm{~V} \quad . \quad . \quad . \quad 10 \mathrm{p}$

 $\begin{array}{lllll}250 \mu \mathrm{f} 25 \mathrm{~V} & \cdots & \cdots & \cdots & 10 \mathrm{p} \\ 500 \mu \mathrm{~V} 25 \mathrm{~V} & & \cdots & \cdots & 13 \mathrm{p} \\ 1000 \mu \mathrm{f} 25 \mathrm{~V} & & & & 16 \mathrm{p}\end{array}$}G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order $15 p$

BEDFORD ELEGTRONIGS 2 GROVE PLACE, BEDFORD (continuation of Lurke Street)

MULLARD C296 POLYESTER FILM CAPACITORS $400 \mathrm{~V}: 0.001,0.0015,0.0022,0.0033,0.0047,2 \frac{1}{2} p .0 .0068,0.01,0.015,0.022$

 $41 \mathrm{p} . \quad 0.33,5 \frac{1}{2} \mathrm{P} . \quad 047,7 \mathrm{p} .068,10 \mathrm{p} .1 \cdot 0$, 12p.

MULLARD C280 METALLISED FILM CAPACITORS 250 V $0.01,0.015,0.022,3 \mathrm{p} .0 .033,0.047,0.068,3 \frac{1}{1} \mathrm{p} .0 .1,4 \mathrm{p} .0 .15,0.22,4 \frac{1}{\mathrm{p}} \mathrm{p}$

CERAMIC CAPACITORS $50 V$ (Square plaquette body)
EI2 Series 22pF.1.000pF, I1 $2 \mathrm{p} .0 .0015-0.01,2 \mathrm{p} .0 .015-0.047,21 \mathrm{p}$.
HIGH VOLTAGE CAPACITORS 1000 V d.c. (300V a.c.)
 $0.001,0.0022,0.0033$,
$0.22,20 p, 0.47,22 \mathrm{p}$.

ISKRA POLYSTYRENE CAPACITORS $160 \mathrm{~V}, 21 \%$
Values in PF: $5,10,15,22,33,47,56,68,100,150,220,330,470,560,680,820$ Values in p
$1000,3 \frac{1}{2}$ p.

SOLID TANTALUM RESIN DIPPED BEAD CAPACITORS SOIV: $0.1 / 35,0.22 / 35,0.47 / 35,1 \cdot 0 / 35,2 \cdot 2 / 35,4 \cdot 7 / 35,10 / 6 \cdot 3,10 / 16.10 / 25$ 22/16, 47/6.3, 100/3, 15p.

MULLARD 015/016/017 ELECTROLYTICS (Replaces C426/C437)
$\mu F / V: 1 / 63,1.5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4.7 / 63,6.8 / 63,10 / 25,10 / 63,15 / 10,15 / 63$, $\begin{array}{ll}\mu \mathrm{F} / \mathrm{l} \\ 22 / 25,22 / 63,33 / 16,33 / 40,47 / 10,68 / 16,100 / 4,100 / 10,100 / 25,150 / 16, & 220 / 16, \\ 5 \mathrm{p}\end{array}$
 $1500 / 16,2200 / 10,3300 / 6 \cdot 3,18 \mathrm{p}$.

RESISTORS

STORS	Tolerance	Range	Values	each
ISKRA H/2W	5\%	4R7-2M2	E24	Ip
ISKRA I/2W	10\%	$3 \mathrm{M3}-10 \mathrm{M}$	E12	1p
MULLARD 1/3W	10\%	IR-3R9	E12	Ip
ISKRA 1/5W	5\%	4R7-1M	E24	Ip
WIREWOUND 2.5 W	10\%	R22-R47	El2	9p
WIREWOUND 2.5 W	5\%	IR-270R	E12	7 p
PRESETS 100R, 250R,	nd De	to 5M,	5 p .	V. 6p.

Post and packing 10p on ordara under $£ 2$.
FULL CATALOGUE ON REQUEST.

COLOUR T. V.

19" Tube £125 - 25" Tube £160
COMPLETELY OVERHAULED - SIX MONTHS' GUARANTEE - VARIETY OF MAKES AND MODELS

FABULOUS WINTER VIEWING MONOCHROME
UHF - SINGLE STANDARD - PUSH BUTTON TUNER 20" Tube $\mathbf{6 3 4 . 9 5}$ - 24" Tube £44.95
Carr. + ins. 12.50 . Famous make D/5 chassis- Thoroughly overhauled-Fitted with "Square Screen" tube-Transistorised "Push Button" tuner-Fitted in
an attractive cabinet, refinished in a choice of teak, walnut, or mahogany an attractive cabinet, refinishec (state 1st and 2nd choice)
12 month written guarantee with every set-Leaflet and copy guarantee sent on receipt of your stamped, self addressed envelope.
The above models can be seen working in our Langley showroom.

SUMIKS (P.E.), 7 HIGH STREET LANGLEY, WARLEY, WORCS.

BAKER I5in. AUDITORIUM

A high wattage loudspeaker of exceptional quality with a level response to above 6,000 cps. Ideal for Public Address, Discotheques, Electronic instruments and the home.
Maximum Power
Bass Resonance
Flux Density Voice coil impedance 8 or 15 ohms models Usaful response

20-14,000 c.p.s. GUITAR MODEL "GROUP 50 "
15 in. Heavy Duty. 50 watt 220 20 PLANS, CUBIC TABLES,
CROSSOVER DATA AND
CATALOGUE 42p POST FREE
catalogue only sp

Baker Reproducers Ltd

Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665
 \section*{Over 150 ways.
 \section*{Over 150 ways. to engineer a} better future HIGHER PAY ABETIER JOB
SECURITY
find out how
in just 2 minutes
That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast-makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn. Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you . . . but it could be the best thing you ever did.
Others have done it, so can you
"Yesterday I received a letter from the Institution informing that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have ever obtained - a view echoed by two colleagues who recently commenced the course".-Student D.I.B., Yorks.
"Completing your course, meant going from a job 1 detested to a job that I love, with unlimited prospects".--Student J.A.O. Bublin.
"My training with B.I.E.T. quickly changed ny earning capacity and, in the next few years, my earnings increased fourfold". -Student C.C.P., Bucks.

FINO OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way cf getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to B.I.E.T. Dept, B38,
Aldermaston Court, Reading RG7'4PF

[^10]
U.K's LARGEST ELECTRONICS CENTRES!

HLTRIP'S RIDD LID. edgwabe road, london, w. 2
M 404-406 ELECTRONIC COMPONENTS \& EOUIPMENT 01-402 8381

\section*{BUILD
 THE
 $20+20$ WATT INTEGRATED I.C. STEREO AMPLIFIER
 * FREE TEAK CASE with | with |
| :---: |
| compe kits |}

FEATUAES: New slim design with 6 ICs, IC
sockets, 10 silicon transistors, 4 rectifiers, 2 zeners.
Special Gardners low field slim line transformer. Special Gardners low field slim line transfor
Fibreglass PC panel. Complete chassis work.
HIGH QUALITY \& STABILITY ARE PREDOMINATE FEA TURES -DEVELOPED BY TEXAS ENGINEERS FOR PERFORMANCE,
RELIABILITY AND EASE OF CONSTRUCTION. RELIABILITY AND EASE OF CONSTRUCTION.
FACILITIES: On/of switch indicator, headphone socket, separate treble, bass, volume and balance controls, seratch and rumble filters, mono/stereo switch, Input selector: Mag. P.U. Radio Tuner. Aux. Can be altered for Mic. Tape. Tape head etc.
(Parts list Ref. 20 on request). Constructional Details Ref. No. (Parts list
21. 30 p.

LOW COST HI-FI SPEAKERS

POLISHED CABINETS 150 , 150TC, $450 £ 4 \cdot 60$. Post 30p ASSEMBLED IN POLISHED CABINETS (8 OHM) SERIES 6 (Assembled 150 TC) per pair © $16 \cdot 50$. Post 70 p.
SERIES 8 (Assembled 450) per pair © 18.95 . Post 70 p.
 ML3 MW/LW TUNER TO BUILD
Uses Mullard Module. Slow motion Muniard Module
 All parts sold separately-Leafler No. 6.
"BANDSPREAD" PORTABLE TO BUILD
 Printed circuit all transistor design
using Mullard RFIIF Module. Medium and Long Wave bands plus Medium Wave Bandspread for extra selectivity. 600 mW push-pull output, fibre glass PVC covered cabinet, car aerial. Actractive appearance and performance.
TOTAL COST TO BUILD $67 \cdot 98$, p.p. 32 p (Batt. 22p). All parts sold separately
-Leaflet No.

CATALOGUE

Fully detaited and
illustrated coverin
Mustrated covering every aspector
plus data, circtruits and information.
10,000 Stock lines at
Special Low Prices Special Low Prices and
Fully Guaranteed.
PRICE 55p
(40p FOR CALLERS)
PLUS! FIVE IOp VOUCHERS
Send to this address-
Henry's Radio Ltd. (Dep PE). 3 Albemarle Way. London, E.C. - - for catalogue by gost only.
All. ${ }^{\text {ather mail and caliers }}$ MORE OF EVERYTHING ALWAYS

SPECIAL
 KIT PRICE
 $\AA 28.50$

SLIM DESIGN

 WITHSILVER TRIM
Overall chassis sise

COMPLETE WITH FREE TEAK CABINET
Designer appraved kits distributed by Henry's!

Free Leaflet No. $3 \& 7$. TOTAL $£ 6.97$, p.p. 20p.
Free Leaflet No. ${ }^{\text {Decoder Kit } 65.97 \text {. Tuning meter unit } 1 \text { il } 75 .} 20 \mathrm{p}$. Mains unit (optional) Model PS900 62.47. Post 20p.
Mains unit for Tuner and Decoder PSI200 E2.62. Post 20p.
PA-DISCO-LIGHTING
UK's Largest Range-Write
phone or call in. Details and phone or call in. Detals and DJ30L 3 Channel sound to DJight unit, 3 kW Che 629.75 3 kWW 638.75
DJ70S 70 watt Disco amplaiser, 49.0 DISCOAMP 100 watt Disco $\mathbf{4 9 . 9 5}$ mixer, 667.95
Dfloss 30 watt Disco amp/mixer, €32.75 Anti-Feedback Quality Mic., $£ 11.50$
DJ500 50 watt PA amplifier, 656.25
DJer 699.50 watt rms Group Valve ampli*

- Portablediscos-details on request FREE Stock List

Credit terms for callers
SINCLAIR PROJECT 60 MODULES -SAVE POUNDS

 PZ6 66.37 PZ8 44.77.
Transformer for PZ8 $\mathbf{E 2} 95$.
Active Filter Unit $\mathbf{6 4 . 4 5}$. Stereo FM Tuner ©16.95. 1C12 \&1.80 Q16's 615 pair.

PACKAGE DEALS Post 25p $2 \times$ Z30. Stereo 60, PZ5 $£ 15.95$
$2 \times Z 30$. Stereo 60, PZ6 $\$ 18.00$ Posr erc 20p per item. pair $\begin{array}{ll}\text { Transformer for PZ8 } & \mathbf{6 2 0 . 2 5} \\ \text { PROJECT } 605 \mathrm{KIT} & \mathbf{~} 19.95\end{array}$ PROJECT 605 KIT AT HENRY'S TRANSISTORSTMIC's - SCR's Prices subiect to change without notice. E. \& O.E.

[^0]: From Electrical and Hardware Shops. If unobtainable, write to Multicore Solders Ltd., Hemel Hempstead, Herts

[^1]: NUMERICAL INDICATOR TUBES 0

 | MODEL | CD66 | QR116 | $\begin{gathered} 3015 F \\ \text { Minltron } \end{gathered}$ |
 | :---: | :---: | :---: | :---: |
 | Anode voltage (Vdc) | 170 min | 175min | 5 |
 | Cathode Current (mA) | $2 \cdot 3$ | 14 | 8 |
 | Numerical Height (mm) | 16 | 13 | 9 |
 | Tube Height (mm) | 47 | 32 | 22 |
 | Tube Diameter (mm) | 19 | 13 | 12 wide |
 | I.C. Driver Rec. | $\underset{141}{\mathrm{BP} 41} \text { or }$ | $\begin{aligned} & \text { BP41 } \\ & 141 \end{aligned}$ | BP47 |
 | PRICE EACH | 81.70 | 81.65 | 1.90 |

 RTL MICROLOGIC CIRCUITS
 Epory TO-5 case 1-24 25-99 100 up aL900 Buffer 85p 93p 27p al914 Dual 21/p
 gate 85p 83p 27p uL923 J-E filp-flop 50p 47p 45p Date and Circalts Booklet for IC' Price 7p.
 DUAL IN LINE SOCKETS. 14 \& 16 Lesd Sockete for use with DUAL-IN-LINE I.C's. TWO Range PROFERSIONAL \& NEW LOW COST PROF. TYPE No. 1-24 25-99 100up TBO 16 LOW Cost No.
 BPR 14
 BPE 16
 $\begin{array}{lll}\text { 16p } & \text { 18p } & 11 p \\ \text { 16p } & \text { 14p } & 18 p\end{array}$

[^2]: Aly ${ }^{2}$ All prices quoted in new pence Giro No. 388-7006 Please send all orders direct to warehouse and despatch department

 P.O. BOX 6, WARE • HERTS Postage and packing add 7p. Gverseas addextra for airmaih. Minimum order 50p. Gash with order please. Guaranteed Satisfaction or Money Back

[^3]: © IPC Magazines Limited 1972. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2.65$.
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone; Editorial 01-634 4452; Advertisements 01-634 4202

[^4]: Where poatage is not stated then orders over et are post free. Below e.t alld 20 p . Semi-combluctors add j p post. Over $\mathbf{£} 1$ poxt free. S.A.E. with enquiries please.

[^5]: F.M. Stereo Tuner (£25) \& A.F.U. (E5.98) may be added as required.

[^6]: AMCEL, MAIL ORDER, 160 DRAKE ST., ROCHDALE

 Tel. 0706-46234

[^7]: MORSEMADEEASY!! FACH NOTV FICTHON. If you start IBIGEI yot will be reading innateur inni comanercial Morse Within at month (normad progiess to he expected). Using brientificalty prepared 3 -speed lecong yom
 atutomatically leatn to recognise the code AHY:
 dearning at tume. I8W.P.M. in 4 weeks guaranterd. Bexinner's section only es.80, complete course 24.50 (Overseas il extra) details only, $4 p$ stanp. 01-660 2888 G3HSC (Box 19), 45 GREEN LANE, PURLEY, SURREY

 COMPLETE 8ET P.E. For sale. Offers Please R. Kerrr, 4 Lothian strept, Bonnyrigg, Mid lothian, scotland

 TRAN818TOR 8ALE Trsted l'NP T'ransistors 20 for $50 p, 45$ for $£ 1$. Free 3 piecps af $10^{\prime} 5$ heat sink with rach florder. l'N N. 15p witra B. HYAME. IG Westeott Plate. Swindon, Wilts.

[^8]: LADDER8. 2oft. 27.80. (allers Welcomt. (arr. Nop. Leatlet (Dept. PEE), HOME SAILEs, Baldwin Road, Sitourport, Wores. Phone $02-903$ wit Road, Stourport, Hores. Phone $02-903254 / 5222$ Ansafone installed
 5222 . Open sunday \&-12 nomn.

[^9]: 300 mixed resistors／capacitors as new，65p． P．\＆P．5p．Cable 14／0076 600V． 100 yds ，65p． P．\＆P．10p．Instrument cases， 8 in $\times 6$ in $\times 6$ in blue with white front panel，$£ 1 \cdot 60$ ．P．\＆．P． 25p．

[^10]:

