PRACTICAL

F- =TRDNICE
 GEPTEMEAR 1972

Alsoin titsissure

(IP)
 1.L.P. (Electronics)Ltd

THE HY41

The HY41 supersedes the popular HYY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion Itypically 0.05% a 1 KHz into 8 ohms! and is electronically and mechanical!y compatible with the HY40.

With this important improvement the HY41 retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required io construct a complete mawer amplifier of extremely high performance sufficiently versatile to provide power not merely for Hi -Fi but also for public address systems and industry

The free manual gives a full circuit diagram of the HY41 and its various applications including a complete stereo amplitier

Like its predecessot the HY41 is based on conventional and proven circuit techniques developed over recent years.
OUTPUT POWER: British Rating 40 WATTS PEAK, 20 watts
R.M.S. continuous

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms at 1 KHz
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than 0.15\% (typical 0.05\%)
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz}+1 \mathrm{db}$.
SUPPLY VOLTAGE: + $22.5 v o l t s ~ D . C . ~$
SUPPLY CURRENT: $\overline{0} .8$ amps maximum.
PliICE: inc. comprehensive manual, P.C. board, five extra components and P. \& P.:MONO: $£ 4.90$ STEREO: $£ 9.80$

UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid pre-amplifier to contain all feedback and equalization networks within an integrated pre-amplifier circuit.

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection,

Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing it to be run off any unregulated power supply from $16-50$ Volts and a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo pre-amplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.

INPUTS
Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve) $2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Tape Replay lexternal components to suit head). $4 \mathrm{mV}, 47 \mathrm{~K}$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up (equalized and compen-
satable) $20-2000 \mathrm{mV}$. variabie.
Tuner (flat) $250 \mathrm{mV} .100 \mathrm{~K} \Omega$
Auxiliary 1250 mV . $47 \mathrm{~K} \Omega$
Auxiliary $22-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

OUTPUTS
Main Pre-amp output 500 mV
Direct tape output 120 mV
ACTIVE TONE CONTROLS (Bexendall) Treble $\pm 12 \mathrm{db}$.
Bass $\pm 12 \mathrm{db}$.
INTERNAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier
SUPPLY VOLTAGE
$16-50$ volts
PRICE: MONO: £3.60 STEREO: $£ 7.20$
6 mA approx.

SUPPLY CURRENT
OVERLOAD CAPABILITY
better than 26 db on most sensitive input infinite on tunet and auxl.
OUTPUT NOISE VOLTAGE: 0.5 mV

POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to supply your HY41's +HY5's in stereo or mono format.

Specification
Input: 200-240 Volts.
Output: ± 22.5 Volts at 2 amps
Overall Dimensions: L. $7^{\prime \prime}$; D. $3.8^{\prime \prime}$ H. 3.1"
PRICE. $\mathbf{f} 4.50$ inc. P. \& P.

This unique all purpose vice is just like a 'third hand' countless uses for the electronics enthusiast -assembly, soldering, gluing, wiring, drilling, etc. Firm base, positive grip for all shapes of work, with independently adjustable twin jaws.
Truly a precision made bargain.
Also single jaw model $£ 3.37$
(22p P. \& P.)
FREEBORN LTD. (Dept. PE9)
Beechfield House - West Bar Banbury - Oxon

The DIMMASWITCH is an attractive and effisient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{y}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression:

600 Watt $63 \cdot 20$. Kit Form 6270 300 Watt-E2.70. Kit Form E2.20 All plus 10 p post and packing. Please send C.W.O. to

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel. 0244-25883 As supplied to H.M. Government Departments

LEAK AMPLIFIER BARGAINS

STEREO 70 Amp. (Cased). LASKY'S $\mathbf{C S 5 . 0 0}$
STEREO 30 plus Amp. LASKY'S $\mathbf{\$ 5 5 0 0}$ (Cased). LIST PRICE C62 SO PRICE

C\&PCI

LEAK TEAK CASES

Rosewood case for Stereo 30 or Stereo 70, please state which is required.

Teak case for Stereofetic tuner only.
LIST PRICE
67.37
LASKY'S $\mathbf{~ P R I C E ~}$
2.50
25%
Double case to hold Stereo 30 or Stereo 70 and
Stereofetic tuner in Teak.

LEAK TRUSPEED

2-speed 45 and $33 \frac{1}{2}$ rpm complete with plinch, cover and Shure cartridge.
LIST PRICE 669.50 LASKY'S
PRICE

SINCLAIR PHASE LOCK

 LOOP STEREO FM TUNERIncorporates varicap diodes, printed cir cult, colls, squelch etc., supplied com pletely built and tested and ready to be mounted into any cabinet you choose. It may be used with any High fidelicy Amplifier. Power requirements $25 / 30 \mathrm{~V}$ DC.
LIST PRICE LASKY'S \& $\boldsymbol{*}$.95 C\&\&
625.00 PRICE

NIVICO MCA-V7E
4-CHANNEL AMPLIFIER

USE IT AS A 4-CHANNEL AMP
USE IT AS A STEREO AMP
USE IT WITH SYNTHESISED
4-CHANNEL SOUND FROM
2-CHANNEL SOURCE
The MCA-V7E can be used as a true 4 -channel integrated amplifier from discreet 4 -channel source using four speakers or have synthesised 4 -channel sound using only two speakers. The MCA-V7E can also be used as a conventional stereo amplifier with two speakers only. Outpu $4 \times 12.5 \mathrm{~W}$ or $2 \times 25 \mathrm{~W}$.
LIST PRICE LASKY'S $\mathbf{5 8 . 0 0}$ C\&P £ 11500 PRICE $2 / 8.00$ \&1.00

BELTEK C5700

 8 TRACKStereo car
Player
Accepts all standard pre-recorded 8 track stereo ear-
tridges. Features tridges. Features include automatic
head cleaner head cleaner,
channel select and hannel select and

tons, slider type volume and tone controls, channel balance. Output 5 watts per channel, frequency response $50 \mathrm{~Hz}-10 \mathrm{kHz}$. Output imp. 4 ohms, size $4(\mathrm{~W}) \times 1 \mathrm{H}(\mathrm{H}) \times 6 t(\mathrm{D})$ in. Operates on 12 V DC negative earth. Beautifully styled with black ivory and chrome trim
BELTEK C5700 complete with mounting brackets and 8 track pre-recorded demontration cartridge.
fl9.75 C\& F 30 P
BELTEK R53IO FM TUNING ADAPTOR Matches the C5700, the ideal car stereo system. LASKY'S PRICE EI8.95 C\&P2Sp

Add $\mathbf{\text { B. }} 75$ to any BELTEK car player for pair of FANTAVOX KS701 car speakers.

AKAI TAPE RECORDER SCOOP:

C \& P 75p on all
AKAI 4000D illustrated List Price 693.65 AKAI I720L
List Price $£ 87.36$
AKAI XI800SD
List Price $\mathbf{f} 162.79$
AKAI $\times 200 \mathrm{D}$
List Price $f 157.93$
CSS-8 Speaker
List Price $£ 25 \cdot 00$
Lasky's Price 661.50 Lasky's Price $\mathbf{£ 5 8 . 9 5}$ Lasky's Price $£ 111.50$ Lasky's Price $£ 106.50$

Lasky's Price $\mathbf{f 1 5 . 9 5}$ 2 ADM II/8 mics. Suitable for use on all Akar tape recorders. List Price $f 1190$. Lasky's Price 67.50. C \& P15p

MULLARD UNILEX KITS

CONTROL
Fitted with
bass, treble,
vol. and bal
ancecon-
trols All
wires fitted

ing Size 9 in
tig. Size lin
$\times 1 \mathrm{in}$.
$\notin 2.25$.
EP-9001
PRE-AMP. Input imp. PU 2.2 M , tuner IM Sensitivity PU 320 mV , tuner 140 mV . Treble and bass control range -14 dB to 14 dB Treble at 16 KHz , bass at 60 Hz . Size 4 in $\times 5$ in x in ©2.40.
EP 9000 AMP. Output 4 W per channel into 12 ohms. Output imp. 1215 ohms or 8 ohms with series resistors. Freq. resp. 50 Hz

EP 9002 POWER SUPPLY. Use with control EP9001 and $2 \times$ EP9000. For $220 / 250 \mathrm{~V}$ mains. €3.50. C \& P 15 peach.

OUT NOW 1972

AUDIO TRONICS NEW
REVISED EDITION
The greas new 1972 edition of Lasky's famous Audio-Tronies catalogue is now available-FREE on request. Send your name and address and 15p for

DIGITAL

 CLOCKEXCLUSIVELY FROMLASKY'
The clock meas

$(H) \times 3^{-}(D)$ (over-
alt from front of
drum to back of switch). SPEC.: $210 / 240 \mathrm{~V}$ a.c. 50 Hz operation: switch rating 2 SOV, $3 A$. Complete with DIAL COMPLETE WITLUMINATED FEATURES. MAINS OPERATION B HOUR ALARM AUTO "SLEEP" SWITCH - HOURS, MINUTES AND SECONDS READOFF' FORWARD AND BACKWARD TIMEADJUSTMENT SILENTOPERATION - SHOCK AND VIBRATION PROOF

- BUILTIN ALARM BUZZER

SPECIAL QUOTES LASKY'S
FOR QUANTITIES PRICE

BSR TD8S

B TRACK STEREO
The TDAS is suitable for
use with most modern
stereo amplifiers and delivers a C\& P
preamp output of 125 mW . 50 Hp
Power requirements: $210 / 250 \mathrm{VAC}, 50 \mathrm{~Hz}$. Frequency
response: $50 \mathrm{~Hz}-10 \mathrm{KHz}$, 4 pole dynamically balanced synchronous motor. Black and woodgrain plastic cabinet. Size: $8 \frac{1}{2}(W)$ - $37(H) / 10 \frac{1}{2}(\mathrm{D})$ i
Price $24.20 \quad$ LASKY'S $5 \boldsymbol{2} 7.95$
STEREOSOUND
SPEAKERS
Bookshelf

bookshelf
max. Power 12 W . Size $14 \frac{1}{2}(H) \times 9(W) \times 7 \frac{1}{2}$ ohms. Max. Power $12 W$. Sire $14 \frac{1}{2}(H) \times 9(W) \times 7 t(D)$ in. LASKY'S PRICE (PAIR) EH5.75 C\& P 25p

LEAK SPEAKERS

FANTASTIC VALUE WHARFEDALE
SCOOP!

BRONZE 8RS/DD $8 \mathrm{in}, 15$ ohms LIST PRICE $\underset{\text { PASKY'S }}{\text { L4.75 }} \mathbf{2 . 9 5}$ C\& ${ }_{20_{p}}$ TWO FOR 65.75
SUPER IORS/DD $10 \mathrm{in}, 15 \mathrm{ohms}$
LIST PRICE LASKY'S E6.95 CA ${ }^{2019}$ 613.50 PRICE

TWO FOR \& 13.50
i52/3 FLEET STREET. LONDON, E.C. TEl: 01353 2833
Open oll doy Thursdoy. earily losing lp.m. Solurdoy
42.45 TOTTENHAM CT. RD.. LŌNDON. W.I Tel: $01-5802573$ Open olldoy. 9 o.m.-6p.m. Mondoy to 5otudoy

NEW CITY BRANCH NOW OPEN

109 FLEET STREET, LONDON. EC. 4 Tel: 013535812
Open oll doy Thurs doy, soriy closing Ip.m. Soturidoy.

gspk

quite simply - the best

RESISTORS

FULL RANGE OF ISKRA CARBON FILM RESISTORS tW (range 4.7 ohms to 470 K) iskra Miniature High Stabitiry $1 W$ and $\frac{1}{2} W$ (range 4.7 ohms to carbon Film Re 10 Megs) Ip oach IW (range 47 ohms to 10 Meg) All Resistors ± 5 per cent (excepr values over 4.7 Megs). These Resistors are even lower in price than most 10 per cent and older carbon composition types

PRE-SET POTENTIOMETERS

Standard values of pre-sets from 100 ohms to 5 Meg -

SIEMENS PROFESSIONAL CAPACITORS

POLYCARBONATE AND POLYESTER			ELECTROLYTIC		
Voltage	Capacitance	Price	Voltage	Capacitance	Price
100V	$0.1 \mu \mathrm{~F}$	60	10 V	$22 \mu \mathrm{~F}$	7p
loov	$0.15 \mu \mathrm{~F}$	6 p	$10 \vee$	$470 \mu \mathrm{~F}$	$11 p$
100V	$0.22 \mu \mathrm{~F}$	6p	16 V	47AF	$7 p$
100 V	$0.33 \mu \mathrm{~F}$	$9 p$	25 V	$10 \mu \mathrm{~F}$	7p
100 V	$0.47 \mu \mathrm{~F}$	$10 p$	$25 \vee$	$100 \mu \mathrm{~F}$	9p
100 V	$0.68 \mu \mathrm{~F}$	150	25 V	$220 \mu \mathrm{~F}$	$11 p$
			$25 V$	$470 \mu \mathrm{~F}$	$14 p$
250 V	$0.01 \mu \mathrm{~F}$	50	25 V	$1.000 \mu \mathrm{~F}$	22 p
250 V	0.0154 F	5%	$25 V$	2,200 ${ }^{\text {F }}$ F	42p
250 V	0.02214 F	$5 p$	35 V	$4.7 \mu \mathrm{~F}$	$7{ }^{7}$
250 V	$0.033 \mu \mathrm{~F}$	6p	$35 \vee$	$220 \mu \mathrm{~F}$	140
250 V	$0.047 \mu \mathrm{~F}$	$6 p$	100 V	$10 \mu \mathrm{~F}$	8p
250 V	$0.068 \mu \mathrm{~F}$	$6 p$	100 V	2214 F	9p
250 V	$0.1 \mu \mathrm{~F}$	$6 p$	100 V	$47 \mu \mathrm{~F}$	14p

SPECIAL INTRODUCTORY OFFER
FREE with all orders value 55 or free one GSPK P.C. Kic for making your own printed
retail price £1.95)

SEMICONDUCTORS

Here are just a few examples of our LOW Semiconductor prices. Many more semicons available all at equally sensational prices

	$1+$	$25+$		It+	$25+$		+	$25+$
${ }^{A C 127}$	$24 p$	$22 p$	BZY88C	ries		$0 \mathrm{OC76}$	22p	$21 p$
${ }_{4}{ }^{\text {Cli }} 12$	$19 p$	16p	E12 (2.7V	0.0V)		OCl70	24p	$21 p$
ACI76	15p	13p		10 p	9p	iN4001	6 p	5p
ACYI8	18p	15p	NKT210	24p	19p	1 N4002	6p	$5 p$
AD161	27p	25p	NKT211	24p	19p	IN4003	7p	6 p
AD162	$27 p$	25p	NKT212	24p	19p	IN4004	8 p	7 p
AFI39	28p	26p	NKT213	24p	19p	IN4005	10 p	9 p
BC107	9 p	8p	NKT214	19p	17p	IN4006	12p	$11 p$
BCl08	8 p	7p	NKT218	24p	19p	1N4007	18 p	$16 p$
8 BCl 09	9 p	8 p	NKT219	24p	19 p	IN4:48	4p	3p
BC147	8 p	7p	NKT223	$26 p$	20p	2 N 1302	$16 p$	15p
$\mathrm{BC148}$	8 p	7p	NKT224	$21 p$	19p	2 N 1304	$21 p$	20p
BCI 49	8 p	7p	NKT242	140	12p	2 N 1613	14 p	$13 p$
BCY70	14 p	$13 p$	NKT243	51 p	44p	2 N 1711	15p	$14 p$
BCY7	20p	19p	NKT401	70p	56p	2 N 2904	29p	28p
BCY72	14p	12p	NKT402	75p	59p	2 N 2905	$24 p$	22p
BDY20	$91 p$	$73 p$	NKT403	64p	50p	2N2906	19p	$18 p$
BFX29	24p	23p	NKT453	$41 p$	33p	2N2907	22p	$21 p$
BFX30	$24 p$	$23 p$	OA47	$6 p$	5 p	2 N 3053	17p	$16 p$
BFY50	19p	18p	OA79	69	$5 p$	$2 N 3054$	49p	47p
BFYSI	18p	17p	OA90	5p	$4 p$	2N3055	57p	52p
BFY52	19p	18p	OC70	12p	120	(BD130)		

NUMEROUS OTHER ITEMS AVAILABLE INCLUDE:

Switches. Comprehensive range of N.S.F Toggle swicches and Rotary Wafer switch kits (to enable you to make your own switch to your own specificaCopper laminate and all materials avalable to make your own printed circuit boards.
Lamps and lampholders for every requirement. Ready Built Circuits and Modules.
Freexer and Cleaner aerosol sprays
Jack plugs and sockets.

All orders value 62 or over post free. Other orders please add 10 p P. \& P. We only sell new produces-do nor confuse with "seconds" or surplus stock. Because of our keen prices we regret the prices apply to U.K. and B.F.P.O

To GSPK (Sales) Limited
Dept. P.E., Head Office, Hookstone Park, Harrogate, Yorkshire HG2 7BU ALL Please fill in the coupon and send with lop (refundable on CALLERS ordering) for catalogue
WELCOME

MON. TO FRI
9.5 .00

Are you alright for Jacks?

Ask for Rendar Jack plugs and sockets at your local stockist. They come in a wide variety of configurations, and in cases of difficulty can be ordered DIRECT from the Rendar factory
Standard, mini and sub-miniature sizes plugs in both

screened and unscreened versions . . . socket bodies in high melting point thermoplastic... several unique features (some protected by UK and US Patents) ... Post Office and NATO specifications
If you want to study all the facts and figures, all the ingenious con struction details, send for the Rendar Electronic Components Catalogue of technical data sheets covering their entire range of products The cost of the catalogue is 25 p, including P \& P, and it's money very weil spent!

RENDAR

Rendar Instruments Ltd., Victoria Road Burgess Hill, Sussex. Tel. Burgess Hill 2642-4 Cables: Rendar, Burgess Hill

LOW COST BRIDGE RECTIFIERS

DCoutput	Type Nos.	
Amps	Volts	
	60	PM7A1
	125	PM7A2
	250	PM7A4
	375	PM7A6
	60	PM7A10
mounted	375	PM7A2O

AVAILABLEEX STOCK
AMP tags electrically isolated from mounting bracket. Mount them on a chassis, the equipment box, trans. former housing etc.

A A -
AEI Semiconductors Limited
Carholme Road Lincoln

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 450$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE 42)
54 Dundonald Road, London SW19 3PH

AqUARIERTURN RIGHIT ..opens a world of real stereo sound

Lent
VISCOUNT III AUDIO- $\mathbf{5} 5$ complete

\author{

SYSTEM I
 | Viscount III R101 amplifier | 622.00 90p p\&p |
| :---: | :---: |
| $2 \times$ Duo Type II speakers | ¢14.00-12 p\&p |
| Garrard SP25 Mk. III with MAG. cartridge, plinth and | |
| cover | |
| Total | 659.00 |
 Available complete for only $£ 52+£ 3.50$ p\&p

}
$14 \mathrm{~W}+14 \mathrm{~W}$ per channel 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$
Total distortion at 10 watts at $1 \mathbf{k H z} \quad 0.1 \%$
This is real value for money! We have designed 2 systems and the heart of them all is the Viscount III amplifier. A unit of great eye appeal with teak finished cabinet. FET's (Field effect transistors) are incorporated on the input stages, just like the top priced units. FET's give you more of the signal you want and almost none of the hiss you don't. Both units have output sockets for headphones and tape recorder. Filters and tone controls give a wide range of bass and treble adjustment.

For both systems we have chosen the famous Garrard SP25 Mk. III deck which comes complete with simulated teak plinth and dust cover.

The exclusive Duo loudspeaker systems are incomparable for quality within their price range, Large speakers in extremely substantial cabinets. There's a choice of the Duo ll's for the smaller room or the big Duo lll's for real bass response.

Check through the technical specification for convincing evidence of the true value and excellence of Viscount III suites.

SPECIFICATION. 14 watts per channel into $3-4$ ohms (suitable $3-15$ ohms). Total distortion at 10 W , at $1 \mathrm{kHz}, 0.1 \%$. P.U. (for ceramic cartridges): 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges). 4 mV at I kHz into 47 K
equalised within $\pm I \mathrm{~dB}$ R.I.A.A. Radio: 150 mV into 220 K . (Sensitivities given equalised within ${ }^{2}$ d full power). Tape out facilities; headphone socket, power out 250 mW per channel. Tone controls and fileer characteristics. Bass: +12 dB to -17 dB at 60 Hz . Bass filter: 6 dB per octave cut. Treble control: treble +12 dB to -12 dB at 15 kHz . Treble filter: 12 dB per octave. Signal to noise ratio: (all controls at max) P.U.I and radio $-65 \mathrm{~dB} . \mathrm{P} . \mathrm{U}_{2} 2 \mathrm{~S}-58 \mathrm{~dB}$. Crosstalk better than -35 dB on all inputs. Overload characteristics better than 26 dB
on all inputs. Size: Approx. $134 \mathrm{in} \times 9 \mathrm{in} \times 3 \frac{1}{2} \mathrm{in}$.

SYSTEM 2
 Viscount III RIOI amplifier xDuo Type lil speakers Garard SP2s Mk. With
 Total
 Arailable complete for only $£ 69+£ 4.00 \mathrm{p} \mathrm{\& p}$

SPEAKERS Duo Type II. Size: Approx. I7in $10 z i n \times 6$ in. Drive unit: 13 in $\times 8$ in with parasitic tweeter. Max. power 10 watts, 8 ohms. Simulated teak cabinet. $£ 14$ pair $+\kappa 2$ p\&p.
Duo Type III. Size: Approx. $23 \frac{1}{2}$ in $\times 11 \frac{1}{2}$ in $9 \frac{1}{2}$ in. Drive unit $13 \frac{1}{2}$ in $\times 8 \frac{1}{4}$ in with H.F. speaker. Max. power, 20 watts at 3 ohms. Freq. range: 20 Hz to 20 kHz . Teak veneer cabinet. $£ 32$ pair $+£ 3 \mathrm{p} \& \mathrm{p}$.

Radio \& TV Components (Acton) Ltd., 2ID High Street, Acton, London W3 6NG. 323 Edgware Road, London, W. 2 .

Mail orders to Acton. Terms C.W.O. All enquiries S.A.E.

TOURIST

MARK 3
CAR RADIO
ALL TRANSISTOR
Beausifully designed to blend wish the interions of all cars. Permeability tumin and long wave loading coils ensure excellent cracking, sensitivicy and selectivicy on both wave bands. R F. sensitivity at 1 MHz is berter than module and tuner together with comprehensive instructions guarances suceess first time 12 volts negative or positive eirch. Size 7in 2 in 4 in deef.

SET OF PARTS
 parts Speaker, baffle and fixing kit $\begin{aligned} & \text { Speaker postagefree when } \\ & \text { (1.25 extraplus P. \& P. } 25 \text { p }\end{aligned} \quad \begin{aligned} & \text { ordered with parts }\end{aligned}$
ordered with parts

DUETTO MK. II I.C.
STEREO AMPLIFIER
Sophisticated styling combined wh up-to-date electronics Duetso Mk. II offers at realistic price Mullard built stereo preamplifier tone control module and the highly efficient. I. C. monolithic power chips ensure: reliability, very low distortion
at all power levels, correct operation in all ambient temperatures. full power over the audio spectrum, etc.

Inputs	P.U. 150 mV fi $2 \cdot 2 \mathrm{Meg}$ (for cer. cartridge) Auxiliary 100 mV /̈ 1 Meg (for radio, tape, etc.)
Outputs:	5 wates rms per channel into $B \quad 15 \Omega$ speakers. Switched scereo headphone socket with power correction
Controls	Mono stereo swisch, selector switch, creble, bass, volume balance and on'off switch. Neon indicator.
Tone Controls:	$\text { Treble } 14 \mathrm{~dB} \text { " } 15 \mathrm{kHz}$ $\text { Bass } 14 \mathrm{dBn} 60 \mathrm{~Hz} \text {. }$
Power Bandwid	- $2 \mathrm{db} 20 \mathrm{~Hz}-25 \mathrm{kHz}$

\&11-50 plus P. \& P. 600
P. U. 150 mV , 2.2 Meg. (for cer. cartridge)
Auxiliary 100 mV . Meg. (for radio, cape. etc.)
S wates rms per channel into B 15 Ω speakers.
Switshed stereo headphone socket with power correction.
Manstere swideh, selector swich, treble. bass, volume
Treble 14 dB "15 15 kHz
Bass - 14dB. 60 Hz .
 prefer, you can buy the three modules - pre-amplifier power supply dual power mplifier, and control pane-by themselves for only £6-95. P. \& P. 50p extra. No soldering, just simply screw together with screwdriver supplied. Their overall specification is the same as shown for the complete Unisound console using the high efficient I.C. monolithic power chips to ensure very low distortion at all power levels, correct operation in all ambient temperatures. full power over the audio spectrum.

RELIANT MK.IV

The Reliant Mk.IV provides a high standard of sound reproduction. With full mixing facilities. Its versatility makes it suitable for Discotheque, * Five Electronically Mixed inpurs * Mixer employing F.E.T. IField Effect * Five Electronically Mixed Inpurs Separase bass and sreble Controls

Separace bass and treble controls $\quad \star$ Solid Stase Circuitry
common to all five inpuss \quad Aceracsive Styling
Crystal Mis. or Guitar 9mb 2. Moving coll Mic or Guitar 8 mV . Inpucs 3. and 5 are suitable for a wide range of medum oucpus equipmene Gram CONTROLS: 3 Volume controls. Bass concrol range
13 dB t 60 Hz . Treble control range 12 dB
PRICE
POWER OUTTPUT: 12 Watts R.M.S. into 3 to
SIGNALPNORESE: Betcer than -60dB on inpurs 3.4 and 5 and -50 dB in 1 and 2 .

CONTINENTAL 4-TRACK, 3-SPEED TAPE DECK

with high impedance heads
R.C. 74 rape deck. Three speeds-7: $3 \frac{1}{2}$ and 15 p.s. 4-rack record playback pressure pad system. Takes any tape spool up to and including 7in. The R,C 74 is driven by a powerful $200,250 \mathrm{~V}$ so-cycle a.c. mator. A heavy. accuracely balanced flywheel brings wow and flutter levels dow
 $7 \frac{1}{2}$ i.p.s. Fast rewind in both directions Conerols couldn't be simpler! Just five push buttons that incerlock co cut out accidental tape damage. Efficient servo-action lype braking Easy droo-in tape loading.
for cone and volume concrols. The unit is buile into a ricid die-cast frame and overall size of the whole unit is 12 i 116 in . Every single deck fully tested before dispatch. 5 pools not supplied. Lis. Plus 75 p P. \& P .

BUILD YOUR OWN ELECTRONIC ROBOT CONSTRUCTIONAL DETAILS BEGIN IN AUGUST ISSUE

CYCLOPS—A truly fascinating electronic project by L. C. Galitz

Cover Feature

The 'JUBILEE' 8 WATT AMPLIFIER Part 1 by J. R. Davies

Also featured DIRECT-READING CAPACITANCE METER
by F. Griffiths

MANY OTHER
CONSTRUCTIONAL

PROJECTS

ON SALE NOW-PRICE 20p

Copies may also be obtained direct from the Publishers, $26 p$ including postage. Published by Data Publications Ltd., 57 Maida Vale, London, W. 9
 forfast, easy
refiable soldering
Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

IDEALFOR HOME CONSTRUCTORS

Size 1 cartons all at 25 peach in 40/60, 60/40,
or Savbit alloys in 7 gauges.

EASY-TO-USE DISPENSERS

Size 5
(Savbit) 18swg, 18p (illustrated)
Size 19A
(60/40 alloy) 18swg. 18p Size 15 (60/40 alloy) 22swg. 22p

BlB WIBE STRIPPER ANDCUTTER

Model 3A. Strips insulation from cable or flex without nicking wire 4 different settings, 4\&6BAspanner ends, ground cutting edges Price 32 p . Also available, de luxe Model 8.

Price 58p
From Electrical and Hardware Shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.
UHF-AERIALS
Usuitable for colour and monochrome reception.
PLANAR folded dipoles + MESH retilectors

Precision instruments supplied with standard detachable copper chisel face bits. Standard temp. $360^{\circ} \mathrm{C}$ at $19 / 23 / 27$ watts. Special temps. from $250^{\circ} \mathrm{C} / 410^{\circ} \mathrm{C}$

For perfection in soldering

BIT SIZE $1 / 4$
6.34 mm Dia

27 watts
£2•18

L646
BIT SIZE 3/16
4.75 mm Dia

23 watts
£2•12
$\underset{\text { BiT SIZE }}{\mathrm{L} 706} \rightarrow$ 32 mm Dia 19 watts £1•96

"GEMINI" FM STEREO TUNER

All components to build this outstanding phase lock easily aligned tuner as described in April/ May/June P.E. We are offering an optional chassis and solid wood sleeve in ready to assemble form. S.A.E. for details and itemised prices. Complete kit $£ 33 \cdot \mathbf{9 0}$.

SCORPIO ELECTRONIC IGNITION

Complete kit with comprehensive construction and fault finding data, £11. Post paid. Data 10p Itemised prices, S.A.E. please.

AMCEL, MAIL ORDER, 160 DRAKE ST., ROCHDALE

Tel. 0706-46234

LATEST RELEASES

from R,S. Components Ltd. include these Printed Circuit type © CAPACITORS. Electrolytic, low voltage, small size. Available in the following $\mu F / V$. $0.47 / 63,1 / 63,2 \cdot 2 / 63,4.7 / 40,10 / 63$, 22/40, $100 / 10,7 p$ each; 47/40. 10p each; $100 / 63,220 / 40.470 / 16$.
$13 p$ each: $1,000 / 16,16 p$ each. (

Miniature Maulded Bridge Rectifiers for printed circuit mounting. REC 60,800 vole, 0.9 amp , 38p each; REC 65, 4ा 800 volt, $1.3 \mathrm{amp}, 45$ p each. 0.9 amp , 38p each; REC 65 ,

Fixed Voltage Regulators, TO. 3 case. MVR 5 volc, MVR 12 volt, MVR 15 volt, all at 41.50 each.
Low Voltage Transformers for the above Regulators. 9 volt for MVR 5 volt; 15.5 volt for MVR 12 volt; 17.5 volt for MVR 14 volt, all at All of eth.
shown in our CATA many, many other high grade components, are All prices POST FREE in U.K. By Minimum post
MAIL ORDER ONLY FROM
CELECTRON-E
Dept. P.E., P.O. Box No. 1, Llantwit Major, Glamortan CF6 9YN

COMPLETE TELEPHONES

EX. G.P.O. NORMAL HOUSEHOLD TYPE

ONLY 95p

TELEPHONE DIALS

ONLY 50p

MAKE A REV COUNTER FOR YOUR CAR
The 'TACHO BLOCK' This encapsulated block will rurn any accurate rev. counter for any car with normal coil ignition
£1 each

OUR VERY POPULAR $3 p$ TRANSISTORS
TYPE "AA"." PNP Silicon alloyp, TO-5 can TYPE "B", PNP Silicon, plastic encapsulation,
TYPE "E" PNP Germanium AF or RF. TYPE "E", PNP Germanium AF or RFF.

F.E.T. PRICE

This field effect transistor is the 2N3823 in a plastic encapsulation, coded as 3823 E . It is also an excellent replacement for the 2 N 3819 . Data sheet supplied with device 1.10 30p each, 10.50 25p each. $50+20 \mathrm{p}$ each

BREAKTHROUGH !!

TRANSISTOR IGNITION!
AS USED BY RACING DRIVERS !
NOW Weincroduce a Transistorised Ignition
that is NOT a Kit at LESS than Kit price! The Super Spark. Mark II, is ready to go, Installation time- 10 minutes. It operates on a
unique and newly discovered principle that unique and newly discovered principle that
drives a standard ignition coil with a fantastic drives a standard tgntion corp with a peak of V 隹 right to the sparking plug and gives cooler running, longer plug life, more M.P.G. and greacer B.H.P. Contact breaker life is excended indefinitely and no visible burning will ever take place. The circuitry is all silicon solid scate and is engineered for top dependable performance on any car with standard ignition coil. 4 and 6 cylinder. Every unit is tested before despatch and each
carries a full guarantee. Gives a full spark ac up carries a
to 10,000 r.p.m

```
    Please state n
        please state negative or positive earth on
```

 Please
 order.

SUPER SPARK. MARK II 69.95. P. \& P. 25 P
 LISTS

Sinclair Project 60

Project 60 Stereo FM Tuner

STEREO FM TUNER

with phase lock-loop principle

Amongst the many advanced electronic features to be found in this remarkable stereo tuner, use of the phase lock loop principle ensures standards of audio quality better than from any other method of detection yet used. Varicap diode tuning, accurately formed printed circuit coils, an I.C. in the special stereo decoder section and switchable squelch circuit for silent tuning between stations contribute to the unsurpassed performance of this tuner, irrespective of price consideration. But the Project 60 FM Stereo Tuner is far from expensive - indeed, it offers fantastic value for money and will bring the thrill of stereo radio to many who previously may not have been able to afford it. The tuner may be used with any good system as well as Project 60, but if you use it with other Project 60 modules, you will find the matching front panels particularly impressive in appearance as well as function.

SPECIFICIATIONS
Number oftransistors: 16 plus 20 in I.C
Tuning range: 87.5 to 108 MHz .
Sensitivity: $7 \mu \vee$ for lock-in over full de viation
Squelch level : typically $20 \mu \mathrm{~V}$
Signal to noise ratio : $\pm 65 \mathrm{~dB}$
Audio frequency rasponse: $10 \mathrm{~Hz}-15 \mathrm{Khz}$ ($\pm 1 \mathrm{~dB}$).
Total harmonic distortion: 0.15% for 30% modulation
Stereo decoder operating level: $2 \mu \mathrm{~V}$.
Cross talk: 40 dB
Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. max. (typically $2 \times 50 \mathrm{mV}$. stereo)
Operating voltage: $25-30 \mathrm{~V} D \mathrm{C}$ at 100 mA .
Indicators: Stereo on tuning
Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Super IC. 12
 Integrated circuit
 high fidelity amplifier

Having introduced Integrated Circuits to hi.fi constructors with the IC. 10 . the first time an IC had ever been made avatlable for such purposes. we have followed it with an even more efficient version, the Super IC. 12 . a most exciting advance over our oniginal unit. This needs very few external resistors and capacitors to make an astonishingly good high fidelity amplifier for use with pick-up. F.M. radic or small P A. set up, etc The free 40 page manual supplied. details many other applications which this remarkable IC. make possible. It is the equivalent of a 22 tran-
sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). 6-8 8 . Fraquency Rasponse: 5 Hz to $100 \mathrm{KHz}=1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical $0 \cdot 1 \%$) at all output powers and frequencies in the audio band (28V) Loed Impedance: 3 to 15 ohms. Input Impedance: 250 Kohms nominal Power Gain: 90dB (1.000.000,000 times) after feedback. Supply Voltege: 6 to 28 V Quiescent cur. Supply Voltage: 6 to 28 V . Quiescent cur-
rent: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ inrent: 8 mA at 28 V . Size:
cluding pins and heat sink.
Manualavalable separately 150 posi free
With FREE printed circuit board and 40 page manual.
$£ 2.98$ Post tree

Project 605

The easy way
to buy and
build
Project 60

Project 605 is one pack containing: one PZ5. two 230's. one Stereo 60 and one Masterlink This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat little clips to plug straight on to the modules. Thus all soldering and hunting for the odd part is eliminated. You will be able to add further Project 60 modules as they become available adapted to the Project 605 method of connecting
Complete Project 605 pack with comprehensive manual, post free
£29.95
Everything you need to assemble a superb 30 watt high fidelity stereo amplifier without having to solder.

Sinclalr Radionics Ltd, London Road, St. Ives, Huntingdonshire PE17 4HJ. Tel: St. Ives 64311

the world's most advanced high fidelity modules

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to provide unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at $15 \mathrm{w}(8 \Omega)$ and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference. but they are the same size and are intended for use principally with other units in the Project 60 range. Therr performance and design are such, however, that $Z .50$ s and $Z .30$ may be used in a far wider range of applications.
SPECIFICATIONS ($\mathbf{Z . 5 0}$ units are interchangeable with $\mathbf{Z . 3 0 s}$ in all applications).- Power Outputs : Z. 3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R M.S. into 30 hms using 30 volts.
Z. 5040 watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S into 8 ohms using 50 volts.

Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Distortion: 0.02% into 8 ohms. Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms (for 15 w into 8Ω). For speakers from 3 to 15 ohms impedance. Size: $14 \times 80 \times 57 \mathrm{~mm}$.

Stereo 60 Pre-amp/control unit

 Built. tested and guaranteed.Designed specifically for use on Project 60 systems. the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-norse ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount

SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. pu. 3 mV correct to R.I.A.A. curve t1dB 20 to $25,000 \mathrm{~Hz}$. Ceramic p u. - up to 3 mV Aux-up to 3 mV . Output: 250 mV Signal to noise ratio : better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz : BASS -12 to -12 dB at 100 Hz . Front panal : brushed aluminum with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two $Z .30$ s or $Z .50$ s. The unit is very easily mounted and is unique in that the cut-off frequencies are continuously variable. As attenuation in the rejected band is rapid (12dB/octave). there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. Is suitable for use with any other amplifier system. There are two filter sections - rumble (high pass) and scratch (low pass). H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply) 002% at rated output. Operating voltage from 15 to 35 V . Current 3 mA . Size: $66 \times 40 \times 90 \mathrm{~mm}$.

Power Supply Units

Designed specifically for use with the Project 60 system of your choice. Use PZ.5 for normal Z.30 assemblies and PZ. 6 or PZ.8 where a stabilised supply is essential.

P2. 530 volts unstabl/ised $£ 4.98$
PZ. 635 volts stabilised $£ 7.98$
PZ. 845 volts stabillsed (lessmains transformer) PZ.8 mains transformer

£7.98

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control, etc	£4.48
Mains powered record player	Z.30, PZ. 5	Crystal or ceramic P.U volume control. etc	£9.45
12 W . RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times \text { Z.30s. Stereo } \\ & 60 ; \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag PU.,F.M. Tuner, etc.	£23.90
25 W . RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \mathrm{~s}, \text { Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner, Tape Deck, etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms)	2×2.508, Stereo 60; PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers. etc. controls	£19.43
F.M. Stereo Tuner (£25) \& A.F.U. (£5.98) may be added as required.			

Guarantee

If. within 3 months of purchazing any product direct from Sinclair Radionics Ltd., you tore dissetisfied with it your money will be refunded at once. Many Sinclair appointed Stockiats aleo offer this same guarantee in co-operation with Sinclair Radionics Lid
Einclair Radionics Lid.
 in normal use, we will service it at once and without any charge to you, ifit is returned within two years from the date of purchase. Outaide this period of quarantes a amall charge (typically $f t, 00$) will be made. No charge it made for postage by surface mal. Air Mail is charged at coat.

SINCLAIR RADIONICS, ST IVES, HUNTINGDONSHIRE PE17 4HJ
Please send Ienclose cash/cheque/money order. Name

TRI-VOLT CAR SUPPLY

FM TUNER
 THOUSANDS
 NOW IN USE

NELSON-JONES Reduced prices
Approved parts for this outstanding design (W.W. April 1971). Featuring $0.75 \mu \mathrm{~V}$ sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning, $\frac{1}{2} V$ r.m.s. output level, suitable for phase locked decoder, as below. Designer's own P.C.B. NEW Solid State Tuning Indicator and Dial-Chassis Kit. Tuner parts
with box. Less than $£ 12$. S.A.E. please for lists.

PHASE LOCKED STEREO DECODER
 PORTUS AND HAYWOOD

Approved kit for this superb decoder (W.W. September 1970). Featuring 40 dB separation up to 10 kHz . NO COILS. Negligible spurious tones (birdies). Simple setting up. Suitable for wide varlety of tuners including the NELSON-JONES TUNER as above. Now with free LED 'stereo on' light. Complete kit reduced from $\boldsymbol{\Sigma 8 . 9 7}$ to $\boldsymbol{£} \mathbf{7 . 6 8} \mathbf{p . p . 1 6 p}$.
NEW IC Stabilised PSU. SC, overload protected, low ripple. £3.55 p.p. 19p.

LIGHT EMITTING DIODES (Red)
 Hewlett Packard panel or PCB mounting with free mounting

 clip - clear or black. Order LED1.Monsanto miniature PCB mounting with radial leads. Order LED2. Please add postage.
NOW ONLY 39p each with connection data.
RESISTORS. $\frac{1}{4}$ W 5% Low Noise Carbon Film,
10 ohms - 4.7M E12. 1-9 1p, 10-99 0.9p each. Please add postage.

INTEGREX LIMITED
P.O. BOX 45, DERBY DE1 1TW. Tel. 0283893580

PHOTOELECTRIC KIT

Contents. 2 P.c. Chamin Buandw, Chereicals, Eiching Manual, hifra Red Photo-

 modulated-light operation

Invisible beam optical kit

Everything needed (except plywomi) for Iruhlitug. I Iminible- Bealu Projector and 1 Photocell Receiver (as intustrated). Suitahle fur all Photmeletria Buralar . Harmas Counters, Door Openers, etc.
 jector lamp holder, buitiling plans, etc. Price 21-25. Postage and Pack. 10p (1.K.). Commonwealth: Surface Mail :3p; Air Mail jop.
LONG RANGE INYISIBLE BEAM OPTICAL KIT
 Mail \&1-15.
JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steally-light Photo-suitch, Burglar Alarm, Door Opener, Counter, etc, for the Experimenter.
Registors, Acrew's, etc. Full Size Plan4, Inatructions, Data Sheet " 10 A. IVanced Photoelectric Designs

JUNIOR OPTICAL KIT
CONTENTS: 2 Lensey, Infra-red Filter, Lamphohdet, Brachet, Plans, ete Everything (except plywood) to build 1 miniature invivible beall projector and phot weell receiver

YORK ELECTRICS Mail Order Dept. 335 BATTERSEA PARK ROAD, LONDON, S.W. 11 Send S.A.E. for full details, a brief description of all Kits and Projects

FOR
 RAPID SERVICE

GARLAND BROS. LTD DEPIFORD AROADWAY, LONDON, SEE GQW

TRANSFORMERS

Miniature

MM6 $6 \mathrm{~V}, 500 \mathrm{~mA}+6 \mathrm{~V}, 500 \mathrm{~mA}$ MM120 $20 \mathrm{~V}, 150 \mathrm{~mA}+20 \mathrm{~V}, 150 \mathrm{~mA}$ © 1.29 plus 13p p. \&
L.T.

 LT5 9-0-9V, 0.5A-75p plus $21 p$. LT6 $12-0-12 \mathrm{~V}, ~ \mid A-95 p$ plus 26 p . LT7 30-0-30V. |A-E1.87 plus 30 p Multi-tapped
MT $30 / 2$ 0-12-15-20-24-30V, 2A-
 MT60/2 $0-5-20-30-40-60 \mathrm{~V}$, P. \& A D Charger
CT/01 $1 \mathrm{~A}-\mathrm{f1}$ plus 26 p p. \&
CT/02 $2 \mathrm{~A}-\mathrm{fl} .25$ p CT/02 2A-E1. 25 plus 30p p. \& p Auto-transformers
AT30 $30 \mathrm{~W}-\mathrm{E} 1.18$ plus $30 \mathrm{p} p$ \& p ATI50 $150 \mathrm{~W}-E 2.55$ plus 34 p P . \&
 All shrouded with terminal biock AT30 0-110-240V. All others 0 Speater
Speaker isolating transformer $13 p p$ \& p.
Speaker matching transformer
 almpost any speakers to any amplifier
15 W max. 90 p plus 20 p . \&

ALUMINIUM BOXES

EQUIPMENT CASES
with sloping front panel

Stove. enamilled
silver-grey ham-
mer finished, 20p
CONSOLE CASES
oplain aluminum, ideal for mixers. instruments, ets C D Price p. \& p.

Type W. G820 | 1 |
| :---: | $\begin{array}{lllllll}\text { G821 } & 10 & 9 & 3 \frac{1}{2} 2 & 3 & 61.58 & 30 \mathrm{p} \\ \text { GB22 } & 12 & 9 & 3 \frac{1}{2} 2 & 3 & 61.72 & 30 \mathrm{p}\end{array}$

VEROBOARD

Size	matrix	matrix
3 lan	22p	16p
5 n	24p	25p
in 3tin	24p	25 p
in 5 in	${ }_{7}^{27}$ p	29p
17 in 2tin	75 p	57 p
17 in - 3 if	41	75 p

ELECTROLYTICS

$1 \mu \mathrm{~F}$	450 V	19p	$1.000 \mu \mathrm{~F}$	25 V	27p
$2 \mu \mathrm{~F}$	500 V	20p	$1,000 \mu \mathrm{~F}$	50 V	39 p
$4 \mu \mathrm{~F}$	350 V	$14 p$	2,000 ${ }^{\text {F }} \mathrm{F}$	25 V	36p
$8 \mu \mathrm{~F}$	450 V	16p	$2.000 \mu \mathrm{~F}$	50 V	53 p
$16 \mu \mathrm{~F}$	450 V	$17 p$	$2.500 \mu \mathrm{~F}$	25 V	15p
25/1F	25 V	7 P	$2,500 \mu \mathrm{~F}$	Sov	60 p
$25 \mu \mathrm{~F}$	50 V	8p	3,000 $/ \mathrm{F}$	25 V	48 p
$32 \mu \mathrm{~F}$	450 V	24p	$5,000 \mu \mathrm{~F}$	25 V	55
50, F	50 V	10p	$5,000 \mu \mathrm{~F}$	50 V	98
100\% F	25 V	10p	$8-8 \mu \mathrm{~F}$	450 V	18 p
$100 \mu \mathrm{~F}$	50 V	$10 p$	8-16,1F	450 V	20 D
250 $\mu \mathrm{F}$	25 V	12p	$16-16 \mu \mathrm{~F}$	450 V	27
$250 \mu \mathrm{~F}$	50 V	17 p	$16-32 \mu \mathrm{~F}$	450 V	63 P
$500 \mu \mathrm{~F}$	25 V	18p	32-32; F	450 V	49 P
$500 \mu \mathrm{~F}$	sov	25p	50-50 ${ }^{\text {F }}$ F	350 V	38p

MINIATURE ELECTROLYTICS

$1 \mu \mathrm{~F}$	$63 V$	$6 p$	$10 \mu \mathrm{~F}$	$64 V$	$7 p$
$2.2 \mu \mathrm{~F}$	$63 V$	$6 p$	$16 \mu \mathrm{~F}$	$40 V$	$7 p$
$4 \mu \mathrm{~F}$	$40 V$	$7 p$	$30 \mu \mathrm{~F}$	$15 V$	$7 p$
$4.7 \mu \mathrm{~F}$	$63 V$	$6 p$	$47 \mu \mathrm{~F}$	$16 V$	$7 p$
$8 \mu \mathrm{~F}$	$15 V$	$7 p$	$47 \mu \mathrm{~F}$	$25 V$	$6 p$
$8 \mu \mathrm{~F}$	$40 V$	$7 p$	$68 \mu \mathrm{~F}$	$16 V$	$6 p$
$10 \mu \mathrm{~F}$	$25 V$	$6 p$	$100 \mu \mathrm{~F}$	$10 V$	$6 p$
ENTIRE MULLARD	$015 / 016 / 017$ RANGE				

ENTIRE MULLARD 015,016/017 RANGE
CASSETTE OWNERS!
For Philips and simitar cassette reco
PU12 Power unit for connection to
$12 V+$ or E car electrical
systems, giving $7 \frac{1}{2} V$, stabilised $\mathbb{C 3 . 2 5}$
PU14 As above but switched for $\mathbf{£ 5} .10$
$6 \mathrm{~V}, 7 \mathrm{~V}$ or 9 V output.
 All units are complete with cable and plug.
VARIABLE POWER SUPPLY

BATTERY ELIMINATORS
current equipment
PP6 Inout $240 \mathrm{Vac.c}$
PPS Input 240 V a.c. Output 6 V d. c.

NEW

NEW

ILLUSTRATED 1972-73 CATALOGUE
Post Free
CONTROLS, Log. or Lin. single, less switch. 15 p
Single, D.P. switch. 24
Tandem, less switch, 40p
$5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$
SLIDER CONTROLS, 87 mm
Single, 44 p ; Tandem, 55 p . 10k $\Omega, 25 \mathrm{k} \Omega$ $50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, log. or 1 in

RESISTORS

All 5%, high-stability. $E \mid 2$ values. $\frac{1}{d} W, I p$ Wire-wound
$5 \mathrm{~W}, 10 \mathrm{p}$; $10 \mathrm{~W}, 12 \mathrm{p}$

LOUDSPEAKERS

$15 \Omega 2$, 10 , $1.12,8 \Omega-21.12$
$\mathrm{Bin} \times 5$ in, $3 \Omega-61.85,8 \Omega-61.77$
10 in Gin, $3 \Omega=\mathbf{6 2 . 3 2 , 8 \Omega - 6 2 . 3 2 .}$
Bin round, $3 \Omega-6210,8 \Omega-62.50$.
Adastra, "Hi-Ton" l0in, 10W 8 or 15Ω - $\mathbf{6 3 . 4 0}$
Please add $20 \mathrm{p} p$. \& p. to all speakers.
BONDED ACRYLIC FIBRE
ideal lining for speaker enclosures. 25 p per

MAIL ORDERS: Some items have a post and packine charge shown Against chein. Where p. Pep. is not shown

For Feranti semiconductorsfast

The full Ferranti range of semiconductor devices embracing diodes, rectifiers, transistors, opto-electronics and integrated circuits, including E-line transistors and the other components specified for the 'Practical Electronics' electronic piano, are available from our distributor in your area:

South
Edmondsons Electronics, London, SEI.
OI-237 0404
SDS Components Ltd.,
Portsmouth.
070565311
Semicomps, Wembley.
OI-903 316I
Swift-Hardman, Guildford.
048377348

Midlands

Coventry Factors, Coventry. 020321051
Swift-Hardman, Stoke-on-Trent. 078260011

North

Swift-Hardman, Rochdale. 0706474 I
Scotland
Semicomps Northern, Kelso.
Kelso 2366 and 2369

Colbert Pana-Vise WORK The required work position is POSITIONERS are specially firmly secured with a patented designed to quickly and easily ONE KNOB CONTROL, a unique achieve themost CONVENIENT, feature of COLBERT COMFORTABLE and TIME- POSITIONERS. SAVING work position.
Available with vacuum clamp or A series of special holders is screw-on base. They can be available for various types of ROTATED, TIPPED, TILTED, work.
ANGLED, ELEVATED,
LOWERED.
Full details available on request. Distributors
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 PICCADILLY, LONDON, W.1. Tel. 01-628 9556
Cables: SPECIPROD LONDON
(made in U.S.A.)

THE ULTIMATE IN COMMUNICATIONS RECEIVERS mainmisiditatis

Bring INSTANT WORLD-WIDE RECEPTION at the press of a button. Rensational scomp phtchate of thi-fuat-releavel monel enableq us to offer at truly adranced commumication* receiver at at perionals wherari-of price' (Similar models can cost $\$ 120$ or more:) The 8 WAVEBANDS +natim yell town the wordiat the preve of a button. Finmight even pick upa world woop on rour wollf-wide retoblet is well av all the matal BBC Programan you can pich no Lowal Rasion Stat mos (imelusing new stations yet 10 be introduced). POp Pirate - Dircraft contral 10 pilot pilot to contrab. *hipping.

倍veny

 CASH PRICE £29.50 deposit +50 p. \&p. and 8 monthly peyments of £4.40 'Total £33.90:
tions. PLUS many more exciting and absorbing
Public Service Band transmissions we are not allowed to mention. This set has been manutactured by one of the most adranced companies in radio and electronic communications and carries their FULL WRITTEN GUARANTEE. Attratt!rt firithed it

 directly intu waill. 14 Transistors θ diodes, 1 thermistor internal ferrite rod antenna and erternal Telescopic Antenos. Tone, volume and tuning controls. Very latest keyboard push-button waveband selector. Dial light (enabling use in darkness). Special WORLD-

Sote: Ministry of Fosts and I'elecommonicaloom- etate that a bewe wut kenerally avalanme to the jubliejs requirellor the reception of lircraft, Fit e-brigarde, Nhipping, etc. BUT THERE'S NO LICENCE NEEDED TO BOY:

Send 5p for comprehensive brochure of specialised frequency radios
SCIENTIFIC AND TECHNICAL (PE9) 507-5II LONDON ROAD, WESTCLIFF, ESSEX

PREMIER HI-FI STEREO SYSTEMS

SYSTEM "ONE"
 ecord player unit titted stereo/mono cartridge with diamond atylue and mountei Absulutely complete and supplied ready to plag in and play. The 800 amplitier has ant ontput of an watter per channel with inputy for ceramin and magnefic pick-It, tape ath tuner also tape out put nocket and headphoo sucket. Comtruls. Bass. Treble, Volme, Kalance. Power un/off. Black leatherette vimet with aluuinium. front vanel

PREMIER 800 STEREO AMPLIFIER

(As used in
Syetem "ONE"
A truly high quality stereo amplifier compare the spęciacation, compare the price: Output: \bar{f} watts lier channel. Frequency response: $30-20.0001 \mathrm{z} \pm \pm 2 \mathrm{Z}$.
Distortion: 1%, Output Impedance H ohms nom. Inputs Distortion: to R.I.A.A. Tape 100 mV . Tape out 1501 IV. Din sockets for inputa and outputs. Controls: Bass, Trelble, Volume, Balauce Selector. Mono/Btereo switch. Nitereo Headjhone socket. Attractive slim line design black leatherett
cabinet with aluminium frunt wancl. Size litin x
 Mk. Il Versiun available with Teak Finish Cahinet 216.25. Carr, 50 p .

METER BARGAINS

MODEL GT800 MOLTIMETER
heally made pocket sized test muter, circuits or electrumic appliancers. Nupplied Ranges - [) $(\because$ voltages: 0
 $10,50,100,1,000 \mathrm{~V}$ ($1,0000 . \mathrm{P} . \mathrm{F}_{2}$). 1P.C. 0.150 kohms. Decibels: -10 to $+22 d B$
(at A.C. 10 V range). $22-47$. I'. \& P. 25 p MULTIMETER 20.000 O.P.Y. MOLTIMETER
Features large tasy-tu-icad meter, wide choice of rangns. With twst leats, batteries Ranges: D.C. vultages: $0-5-25-50-950-$ 500-2,500
$500-2,50$
$100-500$
 0-6 meg ohlus (300 whms aud 30 kohms at centic seale). (apacity: 100 f t" Moluf, 00 Imf to 1 Iuf. Decibels: -20 to +2293 . 24.90. F. N P. 25p

"Weller Marksman" Soldering Iron

 for all tape users: Tape ranguet izel with cunstant use; this leals to background noise, that prevents perfect recordinge. Nimply applied to Cleans any tape head in seconds. 11.72 . P. \& P. 15 p .
E.M.I. $13 \times 8 \mathrm{in}$. HI-FI SPEAKERS

Fitted two 21 in tweeters and crossover network.
Available with R or 15 ohm impedaner. Hand. ling capacity l $\| \mathbf{W}$. Rrand
£3.47

SYSTEM
"TMO"
a* abure but with Garrard APré Mh. Ibl
£45

PREMIER HI-

Rogers Ravensbrook 11 Stereo Amplifier teak Rogers Ravensbourne Stereo Amplifier teak Metrosound ST20E Stereo Amplifier teak Goldring GL72 less cartridge
Garrard SP25 111 with Goldring G800 cartridge

GARRARD AP76 WITH G800, READY WIRED TO 5-PIN DIN IN PLINTH WITH COVER
Garrard AP76 $\quad f 18.80$ less cartridge
$\begin{array}{lc}\text { GARRARD 401 } \\ \text { TRANSCRIPTION UNIT } & \mathcal{L} 27.40\end{array}$
Garrard 2025 T C with Stereo Ceramic Cartridge Garrard 2025 T C with Stereo Ceramic Cartridge ready wired in teak
plinth with cover
Carriage and Insurance 60 pextra any item.
CARTRIDGE BARGAINS!
GOLDRIMG G800H 55.00 ; G800 $25 \cdot 50$; G800E $20 \cdot 50$ SHORE M3D
M $75 \mathrm{EII} \mathrm{E} 10 \cdot 00$.
"VERITONE" RECORDING TAPE BPECLALLY MANOPACTURED IN U.SA. FRRM EXTRA STRONG
PRE-GTRETCHED MATERIAL. THE QUALITI IS ONEQOALLED. TENSILISED to ensure the most permanent babe. Highly resistant to break.
age, moisture, heat, cold or humidity. High polished splice free finish. Smooth output througbout the entire audio range. Double wrapped --attractively boxed

${ }_{\mathrm{R}}^{\mathrm{G}}$
 $$
\mathrm{Go}
$$

 Steren $\mathbf{6 8 0 0}$ Magnetic in Teal Plinth with CoverTotal list Price wey ext.
Premier $£ 18.50$ PRICE

SYSTEM "THREE"

 Balance ('montroly. Inputs for Magnetic and (eramic prick-up, twner, tape in and out. Stereo healphont

 16_{1}^{2} in $\times 10!\mathrm{in} \times 9 \mathrm{~m}$ Altes F:M unity rom-
2857.75 Carr. $£ 1.75$
SPECIAL OFFER! manaur moin 13,300 AM/FM STEREO TUNER AMPLIFIER
 A falltantic all molid stale moteren remiber at a realistic.
 built-in sturnor multiplex decomer. luput for ceramic phone. Outpot ≥ 2 watts r.mis. per channel. Controls: Vohme, tone, laalance, tuning, AFC, atereo indicator,

ONLY 295 carr. 50p

	HI-FI STEREO HEADPHONES Designeal to the biakest possible standard. Fitted 2tin rweaker unitg with goft padded ear muffe. Adjustable beadband. A olam impedance. Complete with eft lead and stereo jack plug.

VERITAS V-49 MIXER

"VERITONE" CASSETTES

C60	90	C 20	
20p each (3 for 81p)	$\begin{gathered} 40 \mathrm{geach} \\ (3 \mathrm{log}+1 \cdot 11) \end{gathered}$	$\begin{gathered} 52 p \text { ench } \\ (3 \text { for } 21 \cdot 40) \end{gathered}$	$\begin{gathered} P \cdot P . \\ 15 p \end{gathered}$

The langest selection

NEW LOW PRICE TESTED S．C．R．＇s

SIL．RECTS．TESTED

UNIJUNCTION

 EqN：T1843．13EN3000 27 p each， $2 Ј-9925 \mathrm{p}$100 UP 20p．

NPN SILICON PLANAR BC107／108，10p eacli； $80-99.98 ; 100$ 8 p each： 1,000 oif
7 p each．Fully tested

FREE

One 50p Pak of your
Own choice free with 0 wh
orders valued E 4 or over．

\section*{SPECIAL OFFER 50 p ． $25 \mathrm{FO} \mathrm{£I}, \quad 20,000$ 50p． $2=$
 CADMIUM CELLS ORP00，ORPG1 40p each
 GENERAL PURPOSE NPN SILITON SWITCH ING TRANS．TO－18 BSY2\％28／95A．Allusable devices no open or short circuits．ALSO AVALL 2N 2906 ，BCY Sim．to ordering please stat
 | 20 | For | 0.50 |
| ---: | :--- | ---: |
| 50 | For | 1.00 |
| 100 | For | 1.75 |
| 500 | For | 7.50 |
| 1000 | For | 13.00 |}

PHOTO TRANS．
OCPII Type．43p

SIL．G．P．DIODES Ip 40PIS゙（Min） 100 ． 1.50 Full Tested 1，000 \quad| 5.00 |
| :--- |
| 8.00 | Ideal for Organ Builders．

D18D1 silicon Unilatera 1Filch 50p tach．
A silicon Planar，mono－ having thyristor elec trical characteristics，but with an anode gate and a built－In＂Zener＂diode cathode．Full dats and application circulte a vail
 Any Qty

PLABTIC ENCAPSU． ATED 2 AMP BRIDGE RECTS

Each j0V RMS 32p 100 V RM 37 p 100 V RMS 37p 400V RMS 46 p

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI－PAK UNTESTED SEMICONDUCTORS

Pak No．
0 Mixel germanium trand
if（ermanium gold bonded dionea sim．OAJ，OA4T 40 Germanimm transiatora like 0081，ACi：8
60200 m .4 sub－min．Sil．divdes
30 silicon planar transistore $\overline{\mathrm{N}} \mathrm{PN}$ gim．bSY Y
If Bilicon rectiflers Top－1lat $i 50 \mathrm{~mA}$ ， $1 p$ to $1,000 \mathrm{~s}$
50 sil ．planar diones $250 \mathrm{~mA}, 0 \mathrm{~A} / 20 \mathrm{~m} / 20$ ：
20 Mixed volts 1 watt Zener dionles
2J PNP silicont jlanar transistors TO－J sith，2N113： 30 ENP NPN sil，fransistors OC220 \＆2s 104
f0 Mixed ailicon and gernamilun diodes
5 NP N silicon pianar transistors TO－5 sim．2N697 0 3－Anp silicon rectitiers athitypue uq to 1000 P1 30 dimmaniun PNP AF tranastors To－5 like ACY 17 is Silicon NPN transistors like liClos

12 1－5－Anp silicon rectithers Top－ H at up to $1,000 \mathrm{PIV}$ 30 A．F．germanium alloy transistors danno seripg a OC7 30 Malt＇m like MATheriea $\overline{\mathrm{P}} \overline{\mathrm{N}} \overline{\mathrm{P}}$ tranaintors
20 （iermanium I－Amp rectiflers（iJM up to 300 PI $5300 \mathrm{Mc} / \mathrm{s} \mathrm{NPN}$ ailicon tranmiatora $\overline{2} \mathbf{N} \overline{0} 08$ ，BAY 27 Fast mitching silicon diodes like 1 Ni914 micro－nin 10 1－Amp SCR＇s TO． 20 Sil．Planar NPN trans．low nolse atup $2 \mathrm{~N}^{2} 370 \mathrm{~F}$ 25 Zener diules 400 mW D 07 （ase mixel volta，3－18 15 Plastic case 1 amps ailicon retitiers 154000 serjes 30 Sil．PNP alloy trans．TO－5 BCY 26 ， $28302 / 4$ 25 Sil．planar trans．P＇یP TO－18 2 N 290 t

 20 Fant awitching sil．trans．NPN． 400 Mc 10 Dual trans．fi leau TO－土 $\because \overline{\mathrm{N}} 20 \mathrm{tio}$ 2 Lif germ．irans．TO－1 OC45 NKT：

5 Sil trans plasic TO－18 A．F．BCl13／114

Cole Now，mentionel above are given as a guide to the type of device in the Pat．The devices themselsea are normally unnarked．

20 Red sput trans．P＇NPAF	0.8
lfi White apot R．F．Trama．PNP	0.
＋OCT＇type trans．	
6）Matched trans．OC $44 / 45 / 81 / 81 \mathrm{~L}$	
4 OCiz transistors	
4 （C）2 fransistors	
＋AC1s8 trans．PNP high gain	
4 AC126 trans．PNP	
OC81 type trans	
OC7l type trams．	
3 AFll6 typetrans．	
3 AF117 tgpetrana．	
$30 \mathrm{Cl} 17 \mathrm{H.F}$ ．fyre tianc．	
5 2 N 2926 sil．epoxy 1 rans	
2 （ET880 low noise serni．to	
3 NPN 1 ST141 \＆ 2 STI40	
4 Madt＇s：M．t 100 \＆：MAT $1: 0$	
＊Madt＇s $\mathrm{S}^{\text {M M }} 101$ \＆MAT 121	
40 CH 4 germ．rants．A．F	
20 NKT trans，AF．R，F゙，coll	
100.12023 sil dioules mub－hat	
$\times 0.481$ diondes	
80495 germ，diorles sub－tuin，1N6	
$\because 10 \mathrm{~A}$ 600PlV sil，rects．IS4i\％	
$\underline{2}$ Sil porer recta．BYZ13	
$1 \times 2 \times 698$	
7 Sil gwitch trans． 2 N 70 m NPN	
fi Sil．awiteh trans encos NPN	
3 PNP sil．trans． $2 \times 2 \mathrm{~N} 1131$.	
$1 \times 2 \mathrm{~N} 113 \mathrm{O}$	
3 Sil．NPN trans． 2 N 1711	
Sil．NPN trans． 2 N 2369 ， 500 MHZ	
$1 \times 2 \mathrm{Na} 90$	
72 N 3 ¢ 5 T0－18 plistic 300N12	
NPN	
3 2N30J3 N1PN sil trans．	
7 PNPtrans 4×2 Y 3 T03． $3 \times 2 \mathrm{~N} 3 \mathrm{CO}$	
7 NPN trans． 4×2 N3704． 3×2 N3T05	
［3 Plastic NPN TO－18 2 X 3404	
6 NPN trana ovilio	
7 BC ＇107 NPN trans．	
－NיN trans， $4 \times$［1C108． $3 \times \mathrm{HCL} 09$	
3 BCL 13 NPN TO－18 trank．	
3 HCLIS NPN TO－5trans	
\％NPN high gain $3 \times 13 \mathrm{Cl} 167,3 \times \mathrm{BC} 168$	
＋RCYTONPN trans．TO－18	
7 HSY 28 NPN switch TO－18	
7 BSY 95.1 MPN trans．300 M	
$8 \mathrm{BY1} 100$ trie sil．rect．	
5 Sil．\＆germ．trans．mixed all	
marked new	

PRINTED CIRCUITS—EX－COMPUTER

10 boards give a guarantect 30 trans and 30 diodes Our price 10 loards， 50 p ．Plus 10p P．\＆P 100 Boards EB ，P．\＆P． 30 p ．

POWER TRANSISTOR BONANZA！

RTL MICROLOGIC CIRCUITS
Epoxy TO－̃ case ore onch uL900 Hutier 35p 83p 27p uL914 Dual 21／p 36p 38p 27p uL923 J－K flip－flop 60p 47p 48p Data and Circuite Hooklet for I．C＇s
Price 7p．

DUAL IN－LINE BOCEETS 14 and 16 Lead Sockets for ure with DUAL． TWO Ranger Professional and NEW LOW COsT．

Prof．type No．	1－24	2J－ 90	100 \＃1，
Tsolt pin type	30 D	27p	25p
Tsolt	35 p	32p	301
Lon Cuat No．			
BPSI4	15p	18p	11p
BP8I6	16p	14p	12p

SLIICON PHOTO TRANSISTOR
 FEW．Full data available．F＇ully

FET＇S

FET＇S		
$2 \sqrt{3814}$	35D	－Nutus
2N38：0	50p	0 NJ 509
9x38：1	35 p	3FW10．
－N38	30p	MPF10

NEW EDITION

TRANSISTOR EQUIVALENTS BOOK．A complete cross reterence and equivalents book for Europead Arberican and Japasese Tranaio tors．Exclusive to BI－PAK 90p each．Red Cover Ellition．
A LARGE RANGE OF TECH－ NICAL AND DATA BOOKS ARE NOW AVAILABLE EX． STOCK．SEND FOR FREE LIST．

OUR STOCES of individual device are now too numerous to mentlon in this Advertisenent．Send S．A．E． conductore all aver $1,000 \mathrm{semj}$ conductors．All available Ex－8tocl

-the lowest prices!

74 Series T.T.L. I.C's DOWN AGAIN IN PRICE

Check our it Series List betore you by any L.c"~. Our prices a

BI-PAE				BI-PAK Order No	Price and oty prices			
Order No.						100		
	\& p	$\&$	4			sp	\& 1	む1
$\mathrm{BP}^{2} 00=3 \mathrm{~S}^{\text {- }} 400$	0.15	0.14	0.12		0.32	0.30	0.28	
$1 \mathrm{BPO1}=8 \mathrm{C} 7401$	0.15	0.14	0.12	B $\mathrm{P}^{2} 90=8 \mathrm{Na} 490$	0.67	0.64	0.58	
BP0\% = SN740:	0.15	0.14	0.12	BP91=9Nitalav	0.87	0.84	0.78	
$13 \mathrm{P} 03=8 \mathrm{~S} 703$	0.15	0.14	0.12	$13 \mathrm{FQ}=\mathrm{ANT} 49 \%$	0.67	0.64	0.58	
13P04 $=$ SN7404	$0 \cdot 15$	0.14	0.12		0.87	0.64	0.58	
$13 P 05=\mathrm{SN} 740{ }^{\circ}$	0.15	0.14	0.12	B194 $=8 \mathrm{SN} 494$	0.77	0.74	0.68	
BP07 $=$ SN 7407	0.18	$0 \cdot 17$	0.16		0.77	0.74	0.88	
$13 \mathrm{P} 08=8 \mathrm{ST} 408$	0.18	0.17	0.16	B196=8Ni496	0.77	0.74	0.88	
$4 \mathrm{P09}=\mathbf{8 N 7 4 0 4}$	$0 \cdot 18$	0.17	0.16	BP100 = SNitilot	1.75	1.65	1.55	
$3 \mathrm{Pl} 10=8 \mathrm{NC}+10$	0.15	0.14	0-12	BP104 $=$ SNitlot	0.97	0.94	0.88	
$13 \mathrm{P} 13=8 \mathrm{SN} 71: 3$	0.29	0.28	0.24	BP10. $=$ SNTH105	0.97	0.94	0.88	
$1 \mathrm{PP16}=\mathbf{8 N 7 + 1 t i}$	0.43	0.40	0.38	BP10\% = ¢Nitio	0.40	0.38	0.36	
$13 \mathrm{PLT}=8 \mathrm{SN} 717$	0.43	0.40	0.38	BP110=SN74110	0.55	0.63	0.50	
$13 \mathrm{P} 20=$ SN 7420	0.15	0.14	0-12	131111-8N74111	1.25	1.15	1.00	
BP30 $=8 \mathrm{SN} 7430$	$0 \cdot 15$	0.14	0.12	B1P18=SNT4118	1.00	0.95	0.90	
BP $40=8 \times 7440$	0.15	0.14	0.12	BP1!9=8N-4119	1.35	$1-25$	1.10	
$\mathrm{BP} 41=\mathrm{SN} 7441$	0.67	0.64	0.58	$\mathrm{BPI}=1=\mathrm{SN} 74 \mathrm{t}$ 2	0.87	0.64	0.58	
BP42 $=8 \mathrm{NT} 742$	0.87	0.84	0-58		0.67	0.84	0.58	
$\mathrm{BP} 43=\mathrm{SN} 7443$	1.95	1.85	1.75		1.50	$1-40$	1.30	
	1.95	1.85	1-75		1.80	1-70	1.60	
BP4j$=8 \mathrm{SN} 445$	1.95	1.85	1.75		1.00	0.95	0.80	
BP $40=8 \mathrm{NT} 444$	0.97	0.84	0.88		1.80	1-10	0.85	
BP4 ${ }^{\text {a }}=8 \mathrm{SN} 7448$	0.97	0.84	0.88	$13 P 154=8 \times 541.54$	1.80	1.70	1.80	
$\mathrm{BP} 4 \mathrm{~A}=\mathrm{SN} 7448$	0.87	0.94	0.88		1.40	$1 \cdot 30$	1.20	
HP'50 = SN 7450	0.15	0.14	0.12	$\mathrm{BP} 156=8 \mathrm{~N} 74150$	1.40	1.30	1-20	
13P51 = SN 7451	0.15	0.14	0.12	BP160 $=5 \times 14100$	1.80	1.70	1.60	
BP'53 = SN7453	0.15	0.14	0.12	BP18I $=$ SN 74161	1.80	1.70	1-60	
BP94 $=8 \mathrm{SN7454}$	0.15	0.14	0.12	13P164 $=$ SNTH14id	8.00	$1-80$	1.80	
BP60 = 8N 7460	0.15	0.14	$0 \cdot 12$	$\mathrm{BP} 16 \overline{\mathrm{~J}}=\mathrm{WN} \mathbf{7} 416.5$	2.00	1.80	1.80	
$18 \mathrm{PTO}=\mathrm{SN} 7470$	0.29	0.28	0.24	BP181 = KN-4181	8.75	2.80	2.40	
RP72 $=8 \times 1472$	0.29	0.86	0.24		0.97	0.94	0.88	
$\mathrm{BP73}=8 \mathrm{~N} 7473$	0.37	0.35	0.32	13 P190 $=8 \times 7+190$	3.50	3.85	3-00	
BP74 $=$ SN $74{ }^{-7}$	0.37	0.35	$0 \cdot 32$	BP19]=SN74191	3.50	3.25	3.00	
BP75 = SN-4is	0.47	0.45	0.42	13P192 = SN 74192	$2 \cdot 10$	1.95	1.75	
BP76 = 8N7476	0.43	0.40	0.38	13P193 = 8N 4193	$2 \cdot 10$	1.95	1.75	
BP90 $=8 \mathrm{~S} 7480$	0.67	0.64	0.58		$1 \cdot 10$	1.05	0.95	
$\mathrm{BP81}=\mathrm{SN} 7481$	0.97	0.94	0.88		1.80 1.80	1.70	1.60 1.80	
R1882 $=8 \times 748:$	0.87	0.94	0.88	13P198=8N7419k	5.50	5.00	4.00	
$\mathrm{BP83}=\mathrm{SN} 7483$	$1 \cdot 10$	1.05	0.85	BP199 $=$ SN 74194	5.50	5.00	4.00	
PRICE-MIX. Devices may he mivel to yualify fot juantity micen								
PRICES for duantities in excess of .j00 pieces mapd, (maplicalion.								

of any devices not listeal athure, as it ix prohaluly now in mock. WARE 344 .

NUMERICAL INDICATOR TUBES

id

MODE1.	CD6ti	(iRJlit	$301.5 \mathrm{~F}^{\circ}$	Al! indicatur: $04+$ Decimal point: All site viewing: Full data fur all tryee availabla. on request.
Anote voltage (Vic)	170 mar	175 min	is min	
Cathorle current (iIA)	$\because 3$	Is	8	
Numeral height (mu)	14i	13	9	
Tube height (mm)	47	$3{ }^{2}$	2,	
Tube liameter (mun)	19	13	123 wide	
I.C. driver rec.	$\underset{141}{\text { BP41 or }}$	$\begin{aligned} & \text { HP41 or } \\ & 141 \end{aligned}$	BP47	
Price eacla	21.70	21.55	11.90	

NOW OPEN

BI-PAK'S NEW COMPONENT SHOP
A wide range of all types of electronic components and equipment
18 BALDOCK ST. (AIO) WARE, HERTS. Tel. 61593
OPEN 9.15-6 MONS, to SATS. FRIDAYS UNTIL 8 p.m

BI-PAK DO IT AGAIN!
50W pk 25W (RMS)
0.1% DISTORTION!
HI-FI AUDIO AMPLIFIER

THE AL5O

* $\begin{gathered}\text { rrequen } \\ 100,000\end{gathered}$
- Luad -3, 4. 8 or 16 oshtis*
- Dintortjon better than
$1 \mathrm{k} \| \mathrm{f}$.

ONLY
£3•25p each
supply voltage 10-35

* Overall vize ti3ma $\times 10$ mm $\times 13$ ma for all vour A.F. anipification needs. FULLY BOILT-TESTED-GOARANTEED.

STABILISED POWER MODULE

 circuit techniques incorporating complete short circuit protection. With the addition of the Mans Transformer MT80, the unit will provide unt fut of up to $1 \cdot \overline{0}$ ampre at 30 volts. Slze: $63 \mathrm{~mm} \times 10 \mathrm{mmm} \times 30 \mathrm{~mm}$.
These unitm enable you to buill Audio Byntem of the higbest quality at a l therto unobtainable price. Also inleal for many other applications inclutha

STABILISED POWER MODULE SPM80 £2.95

TRANSFORMER BMTBO £1.95 p. \& p. 25p

SPECIAL COMPLETE SET COMPRISING

2 AL50's, 1 SPMBO \& 1 BMTBO. ONLY Ell FREEP. \& P.

DTL AND TTL INTEGRATED CIRCUITS

hamfacturers ant ons-out of spec. (devices moluding fometiohal unts and part function but classed as ont of spec. from the manufacturers* very rigill specificaPałNo. Pak No.

All grices quoted in new pence
Giro No, 388-7006
Please send all orders direct to ware house and despatch department

P.O. BOX 6, WARE - HERTS

Postage and packing add $7 p$. Overiseas add extra for airmail. Minimum order sop. Gash with order please: Guaranteed Satisfaction or Money Back

BUILD 5 RADIO AND ELECTRONIC PROJECTS

ONLY $\leqslant 2 \cdot 45$ Ahazing Radio Cunatruction mel! Becom railio expert for 22.45. A complete
Honse Radi Course. No ex artis including mple instructions for personal phone, alt transimetor, te., all vom neeit. Presentation bex 45 xira an intu. (if retuluret) (parta asailable $82 \cdot 45+201010$ \&

SOOTHE YOUR NERYES
reLax with this amazing
RELAXATRON

OR DISTRACTINGNIRROCNHNEA, IF YOI HAVE TROVBLE (ONCENTRAT TO RELAX then buill this fantastic Relaxatron. Onte used you will nes er want Cses wtandard PP3 batieries ANYWHERE on anall that battery life is anost thelf-life CAN BE EASLLY BULLT BY A YYOEE OYER 12 YEARS OF AGE using mur umique. ep-hy-step, fully illustrated plans aoldering mecessary. All parta incluthing case, a pair of erystal phones, component Send only $20.75+2.0$ p. in mohlering. available separately

ELECTRONIC ORGAN
 Nistorised. SELPCCONTADED FOlly tran SPEAKER. Fifteen separate keys apan fuc full irtares-play the "Yellow Rose of Texas", play "Silent Vight", play "Auld Lang Syne" fir. eff. You have the thrill and excitement
of building it together with the pleasure of of biniding it together with the pleasure of playing a real live, porlable electronic
organ. NO PREVIOUS EnOWLEDGE OF ELECTRONICS AEEDED. AO Aoldering necessars, simple as ABC to make. Anyone
oler nine years can build it pasily in one short ovening following the fully illustrated. slep-by-ztep, simple imatrurtions. ONLY
$83.25+35 p \mathrm{p}$ \& for kit, including case $23 \cdot 25+35 p$ p op for kit, including case,
nuts, screws, simple instructions, ete. 'ses utanulard batiery (parts available separately) Have all the pleasure of making it yourself finish with an exciting gift for someone. READY BUILT AND TESTED TREASURE LOCATOR MODULE 64.95
 PRINTED CIRCDIT METAT DETECTOR MODULE Krady buill and teated-jhast funt in a PP'3 Put it in a came, screw a hanulle on and YOD HAVE A PORTABLE TREASURE LOCATOR EASILY WORTH ABODT 800 : EXTREMEHY SENSITIVE-PENETRATEN EARTH, SAND, ROCK, WATER ETC EABILY
LOCATEA COINA, GOLD, SILEER, IEWELLERY HIGTORICAL RELICM HIRIED PIPES, ETG: So spasitite if ncill detect certain objects buried SEVERAL FEET BELOW GROUND: (IVES I'LEAR ALGNAL ONONE (OLN: $24.95+30 \mathrm{p}$ carr.

Eavesdrop on the exciting world of Aircraft CommunicationsV.H.F. AIRCRAFT BAND CONVERTER only $£ 2.85$
 Listen in to AIRLINES,
PRIVATE PLANES, JET-
PLANES. Eavesidop on exciling approach control, airport toveer. Hear for yourself the disciplined voites hiding lenseness on talk have to take nerve ripping decisions it distrens frequency. into the international requency band including HEATHROW. GATWICK, LUTON, RIRGWAY, PRESTWICK, ETC. ETC. CLEAR A8 A BELL. This fantastic fully transistoriaed inatrument can hours. No soltering necessary. Fully hlustrated mimple ingtructions take you All you do is exten Rtandard PP3 battery All you do is extend rol aerial, place cluse fin portables) No COHNECTIONS WHAT EVER NEEDED. SEND ONLY 59.85 + SLEMINDUS SLEEP INDUCER ONLY f3. 25
Do you wake up in the night and can't get of to sleep againp Would you like to be gently soothed off to satisfying sleep eiectronic sleep inducer. It eren afopa by itself so you don't have to corry about it bring on all night! The loudqueaker produces soothing audiofredmeney sounds. continmonsly re-peated-but as time koes on the mound gradnally becomes less and less-until they eventually cease altogether. the effert it has hypnosis. All transistor. Vo vory simiar electronics or radio needed. Step-bye a instructions. for soldering necpsary kit inclutes case, nuth, wire, acrews, etc. SEND 23-25. + ${ }^{25}$ P \& p. (Part4 available eparatel

FIMO BURED TREASURE!
Transistorised Treasure Locator

CONCORD ELECTRONICS LTD. (PE9U), 12 Archer Street, London, W.I

U.H.F. TV AERIALS

SUITABLEFOR COLOUR Z MONO-
All U.H.F. ae LOFT MOUNTING LOFTMOUNTING ARRAYS
AR element $\mathbf{6 2}$.25. 11 element
$\mathbf{6 2 . 7 5}$. 14 element $\mathbf{6 3 . 2 5}$. 18 element $\$ 3.75$. WALL MOUNTING C/W WALL ARM AND BRACKET. 7 element 63.25 . I I element \&3.75. 14 element $\mathbf{6 4 . 2 5}$. 18 element $\mathbf{4} \mathbf{4} 75$. CHIMNEY MOUNTING ARRAYS C/W
MASTAND LASHINGKIT. 7 element 4. MASTAND LASHING KIT. 7 element $\mathbb{C} 4$.
if element $\mathbf{~} 4.50$. 14 element 4.75 . 18 II element $\$ 4.50$ MAST MOU MAST MOUNTING arrays only 7 element 62.25. II element $\mathbf{6 2 . 7 5}$. 14 element $\mathbf{6 3 - 2 5 .}$ 18 element 63.75. Complete assembly ir.: structions with ev
coaxial cable 9p yd
KING TELEBOOSTERS from 63.75. LABGEAR all band V.H.F.-U.H.F.-F.M. radio mains operated pre-amps E7.50. State clearly channel number required on all orders. P. \& P. on all
aerials 50 p accs. ISp. C.W.O. min. C.O.D. aerials 50 p
charge 25 p.

> BBC-ITV-FM AERIALS

BBC (band I) Wall S/D ©2. LOFT inverted 'T' ${ }^{\prime}$ ' 25 . EXTERNAL 'H' array only 63. ITV (band 3) 5 element loft array $\mathbf{E 2} .50$. 7 element 63. COMBINED BBC-ITV Icfi
 Pre-amps from $\mathbb{C 3 . 7 5}$.
COMBINED U.H.F.-V.H.F. aerials I $+5+9$ E4, $1+5+14 \notin 4.50$. $1+7+14$ E5. F.M. RAD loft S/D $£ 1.3$ element $\mathbf{6 3 . 2 5 .} 4$ element $\mathbf{~} 3.50$.
Standard coaxial plugs 9 p . Coaxial cable 5p yd, Standard coaxial plugs 9 p . Coaxial cable 5 p yo,
Outlet box 30 p. P. \&P. all aerials 50 p , accs. 30 p . C.W.O. min. C.O.D. charge 25 p. Send 5 p for fully illustrated lists.

OPENLLERS WELCOMED
K.V.A. ELECTRONICS

40-41 Monarch Parade, London Rd. Mitcham, Surrey Telephone 01-648 4884

THE RADIO SHOP

16 Cherry Lane, Bristol BSI 3NG Tel.: Bristol 421196. STD Code 0272 Your West Country shop for electronic

2 METRE CONVERTER KIT

9 V Neg. earth feeding $28-30 \mathrm{MHz}$
Consisting of: RF BFI80. Fet. mixer crystal osc. BFI 80 and multiplier BFI 80 . Complete with all components, instructions and aluminium box.
Not for beginners. $£ 5$, post paid. 2 METRE PRE-AMPLIFIER
Single F.E.T. Pre-amp. neg, earth. Gain app. 12 dB . Circuit, Instructions and Components. All you need is a tobacco tin. $\quad \in 1 \cdot 20$, post paid. AIRCRAFT BAND CONVERTER Circuit, Instructions and Components. All you need is a tobacco tin. $\mathbf{6 1} \cdot \mathbf{2 7}$, p.p. TAPE RECORDER LEVEL

METERS

500μ A, size lin lin $\frac{3}{4}$ in. 55 p, p.p. LINEARIC'S
/AA 709 Op. amp. T05 or DIL
42p, P. \& P. 5p.
Transistor Equivalent Book 44p, post paid. Coil Design and Construction Manual 34p, post paid. Tested Transistor Circuits (1972) 44p, post paid. World's Short Wave, Medium Wave, FM and TV Listing. 40p, p.p. NUMICATORS
GNP-7AH, similar XN3, side reading clear. Send 5p for data. With data, 75p plus 10p P. \& P., 4 post free. WE STOCK "Weco" Television Tubes. 1972 CATALOGUE, 5p, Post Free

DRILL CONTROLLER

NEW IKW MODEL NEW IKW MODEL Electronically change
apeed from approxi mpeed from approxi
mately 10 revs. to mately 10 revs. to all speeda by finger-tip control. Kit includee all ull instructions. $\$ 1.60$ plue lisp post and inaurance.
be. $22-25$ plus 13 p poat and
MAINS OPERATED CONTACTOR $220 / 240 \mathrm{~V}$. so cycle solenoid With laminated core so very circuits eachrated at 10 amps. Extremely well made by a Oerman Electrical Company.

NEED A SPECIAL SWITCH?
Double Leal Codich. , ery Hight pressure clunps

AUTO-ELECTRIC CAR

AERIAL
with dashboard coutrol switch retractable. Suitable for 12 V positive or negative earth. Supplied complete with Hitting inatructhons and ready wired dashbrar

MAINS TRANSISTOR POWER

 PACKDesigned to operate transigtor nets and ampli flers. Adjuatable out put 6V, 9 V., 12 volta for up
to 500 mA (class B worting). Takea the place of to 500 mA (clasm B working). Takes the place of any of the following batteries: PP1, PP3, PP4,
${ }^{1} P^{\prime}$, PP7, PP9, and uthers. KIt compriser: maing transformer rectifler, snoothing and had resistor condensers and Instructions. Real maip at only
21 plus 18 p postage.

MICRO SWITCH

5 amp changeover contacte, op
each. 81 doz. 15 a
10 p each or 21.05

MINIATURE

WAFER SWITCHES
2 pole, 2 way-4 pole, ${ }^{2}$ way-9 polle, 4 way-3 pole, 4 way- 2 pole
6 way- 1 pole, 12 way. All at 80 p each, $\mathbf{2 1}-80$ for ten, your assortment.
MOTOR GENERATOR
Ex Admiralty-24 rond mput-240V50c.p.e. ontput. Admiralty rating 80 aratt but we have euitable to operate TV orinstrument. In case with metal cover-controle on front include voltmeter. Probably cost ex00 each to make. Our price only 325 each plus carriage. $t 2$ up to 200 millen, 24 up to 400 miles.

FLEX CABLE SNIP
3-core heavy circular T.R.R. waterproof flex, ideal fot running down the garden to pool or shed. carriage: $75 p$ up to 200 miles; 21300 miles $\$ 1.50500$ miles.
nUMICATOR TUBES
For digital instruments, counters, timers, clockn, etc. HI-vac XN.3. Price 89p each, 10 tor 29

12 WAY SUB-MINIATURE MULTI-CORE CABLE
7.0076 copper cores each core P.V.C. insulated and of ditferent colour. P.V.C. covered overall and approx. $3 / 16 \mathrm{In}$. thick. Price 20 p per yard
$1 \&$ STACK IMDUCTION MOTOR
plus 25 p P. \& P.

LIGHT CELL
Almost zero resivtant in munlight incrcases to 10 K ohm esin tes size sppror. 1 in dis. by tin thick Rated at 500 MW , wire ended. 48p with circuit. Also OKP12 light cell 45 sp .

TREASURE TRACER

Complete Kit (except rooden battens) to make the metal detector an the circult in Practical
Wireless, August iseuc. 88.98 plus 200 post and Insurance.

BAKELITE

INSTRUMENT CASE 8ize approx. 6!in $\times 3$ in \times tour corners and bakelite panel.
This is a very st rong case sulteble to Price 45 p each.
20 Amp Holalion 8 witch-With neon indicetor. Neat surface mounting switch. Bize only 2 in x
2 in \times in-lamp-10p.

MULLARD I.F. MODULE
This is a fully screened intermediate frequency mudule 10.7MHz and an and detection of $t \mathrm{~m}$. aignals at 10.7 MHz and a.m. aignals at 470 kHz . The firat atage in used at an i.f. amplifier for i.m. and a eelrooscilathak
 With connection dig.

STANDARD WAFER SWITCHES
 atandard size $1 \neq$ wafer-giver-plated 0 -amp contact btandard I^{\prime} mpindte $2^{\prime \prime}$ long - with locking washer and nut

No. of Puley	2 \#ay	3 way	10	5 way	40p	40D	way	10 way	way
1 pole	40p	40p	400	40D	400	40p	40p	40 p	40p
2 pole:	40p	409	40p	40D	40 p	400	40D	700	70p
3 poles	40p	40 D	40p	40p	70p	70p	70p	980	95p
4 polea	40 p	40p	40p	70 p	70p	700	70p	21.20	21.20
5 poler	40 D	40 p	70D	70 p	95p	95p	95p	21.45	21.45
6 puler	400	70D	70D	70p	95p	95p	950	11.70	11.70
7 poles	700	70 p	700	95p	21.20	21.20	11.20	21.96	21.88
x polen	70p	70p	70p	95p	11.20	81.20	$\underline{1.20}$	22.20	22-20
9 polea	700	70p	95.	950	81.45	\$1.45	81.45	22.45	28.45
10 mules	70D	70p	95]	21.20	\$1.45	11.45	21.45	82.70	E8-73
11 polea	700	95p	950	21-20	$\underline{1} 1.70$	21-70	\$1.70	28.85	22.05
12 poleq	70 D	95p	950	11.20	\$1.70	21.70	\&1.70	23.20	28.20

13 AMP TWIN GANG SOCKETS offered at leas than wholesate price your
opportunity to replace those dangerous upportwnity to replace thone dangerous
adaptors-brown bakelite flush monnting -adaptors-hrown bakelite furh monnting -
ntanlaril fting. I'nswitched 20 p earh, neparately nwitched 30 p each. Heparately separately awitched 30p each. Aeparately each. Lev4 10° a ten ur more $+{ }^{20}$ p pustagc it orler under E .

THIS MONTH'S SNIP

YOUR TIME is the most precious thing you have. 130 You waste it waiting fur the soldering fron to heat up? Soldering Gun which we offer at a specially keen price It is in fact this month's snip. A well marle light weight
 unit with flash lamp to thuminate the work. Han 100 watt double insulated mains Tranaformer and is huitt into a shockproot Thermo-plast c case. Suitable for 240 volt, 50 c.p.s. This comes complete with ธ ppare tips and is offered at
phus $20 p$ post and $i n s u r a n c e$.

CENTRIFUGAL FAN

Mains operated, turbo blower type. Pressed steel housing contains motor and Inpeller. Motar is $1 / 100 \mathrm{~h}$ h.p. giving considerame afin wide x wins dia. witlet iuto trunking

$10 \frac{1}{4} \times 1$ in. 84.95 phon $E 1$ Duat and insurance

THERMOSTATWITH THERMOMETER Made by Honeywell for normal air temperaturea $40-80^{\circ} F\left(5-0 J^{\circ}\left({ }^{\circ}\right)\right.$. This in a precision inatrument with a differential which can be adjunted to better than
I $5^{\circ} \mathrm{F}$. A mercury switch breaka un temp. rine-the awitch is operated by a coiled bi-metal plement and an adjuntable heater is incorporated for heat anticipation. adjuntable heater is incorporated fur heat anticipation.
Elegantly ntyled and encased in an ivory plastic cane with clear plantic windown, thernometer above and nwitch нetting scale below - mize approx. 3 -8in $\times 3$ - 2 in

MULLARD AUDIO AMPLIFIER MODULE

caes 4 transistora, and has an onf put of 700 n W into
ohms speakera. Input suitable for cryatal mic. or pick. 8 ohms apeakeru. Input suitable for cryatal mic. or pick. lin high.
MPECEAL
SPECIAL ANIP PRICE 80p each

DISTRIBUTION PANELS

Just what gon need for work bench or lab. . 13 amp nockets in metal able. Wired up ready to work, 22.25 lens plug; 22,50 with fitted 13 mmp plar: $88 \cdot 85$ with fitted It amp plur plus 23p \mathbf{P}. \& P.

I HOUR MINUTE TIMER

Made by Smiths. Complete with control knob and calibrated
dial. Thiamonth's apecial bargain at 50 p . E'seful in the kitchen,

ELECTRIC TIME SWITCH

Made by Smiths, these are AC mains operated. NOT CLOCKWOKK. I leal for mounting on rack or shelf or can be built into box with 13A socket. Two comchangeover contacts will switch circuit on or off during these periods. 22.60 post and ir.e. 23 p. Additional time contacts 50 p pair.

3000 WATT IMMERSION HEATER

a30-250 volta. Suitable all water tanks. Il in long, normal hole fixing complete with bakelite cover over connections. Thia is a ntandard Immersion Heater

ost, etc. 20p.

50 MICRO AMP METER square, panel mountiog type, es.
MAINS OPERATED MAINS RELAY BARGAIN SOLENOIDS Model 778-small
 but poweriul 1 in 11 in $\times 11$ in $\times 1$ inin. 60p. $1400 / 1$ hin pull.
Mize 21 in Size $21 \mathrm{in} \times 21 \mathrm{x} \times$
1/in, 7 sp . Model Tr10 $1 \frac{\mathrm{in}}{}$ pull, size $\operatorname{3in} \times 2 i \mathrm{in}$ $\times 2 \mathrm{ib}$, 21.80 plus 20 p post and insur.
special this month are orne single, double and treble pole changeover relays. Contact rated at 15 anps. for 240 V A.C. Good British Make. Unuaed Size approx. 1 in $\times 1 \mathrm{ln}$. Open
construction.
$\begin{array}{ll}\text { Bingle pole } 85 p \text { each } & 10 \text { tor } 89.25 \\ \text { Treble pole } 35 p \text { each } & 10 \text { for } 8.16\end{array}$

CAPACITOR DISCHARGE CAR 1GNITION
 This aystem which has proved to be
wemangly efticlent artn PW with reprepared circuit boards e6-95. When ordering pleane otate whether for positive or ignition aynterna for fiv vehicles. is.es plus 20 p

TRUVOX TAPE MECHANISMS

If you have a Truvor Tape Recopder (we under

 tand these are not now being pronluced) gou masy conalder it a good lidea to purchase one of these mechanian whint we have them. Tbey comprise the main mechanical and electrical part. tranafuriner-relay-solenoids-flywheel-rectifiera-transistors-and condensers, etc. Atex only. 44.50 each plun $6 \pi / p$ carriage and insurance.

CUADRAC. The lateat thing in varisble power controf. This is power thyrontor with bintion the $4000^{\circ} 5$ miny madel will circuit at only $\mathbf{2 1 \cdot 6 5}$.

22 POSITION SOLENOID OPERATED STUD

 SWITCMains operated, each current pulye to witch on to the next contact atud-rurrent to releane aulenuid brings back awitch arm to proition one Thene are ex-equipment but in good working order. Any not so would be replaced. Price 50 p each.
0.8 AMMETER

2 iu sumare fult viaing for thuth mounting. Moving iron inatrumeach. 10 for 25.40 .

PAPST MOTORS

 Fint. 1/40th h.p. Made but two of these work ideally togetber off our atandard 240 volt mannA really beautiful motor A really beautiful motor antremely revernible. \quad it. 50 and revernible. Pomtage, one 23y,

PRESSURE SWITCH

Containing a lis amp chankener
awitch operated by a diaphragm which in turn is operated by alr pressure throngh a small metal
tube. The operating premanre in tube. The operating premance in
adjustable but in set to a.ljustable but is set to operate in 4-4 pressure dericea and can in fart quite low aimply by bluwing into the inlet tube. Origina use was for wayhing rnachines tol turn of water when tut, has reached correct lesel but no toube has rnany wher applicationa
75 p each, 10 for 26.75 .

Tape Heads. Miniature nize, fromit in " x ic " depth i, male tor Truwox sind erave. : track 45p pair, 4 track 75 p

LEVER SWITCH REF. H. 52/4

 Thim is on the older pattern but int ill ldeal for intercom or similar. Pressing the lever dowitoperates 6 pairn of changeover contacts, preasing operates 6 pairn of cbangeover coutacts, pressing contacts. The awitch is apring loaded and normally retnrnat the off or centre polition. Size spprozi mately lifin long $\times 2$ ifin deep \times in thick. 40p each.

5 PUSH BUTTON SWITCHES
Maina, suitable for audio or R.F. Each awiteh rated at $2 u 0$, 15 amps. 1st (black push button closen 2 circuits. 2 nd (white push button) operate one changeover 4th (white push button) opena one circuit. Note: all depressed buttons remain down until cleared by the 5 th (red button). Further note:-It is a relatively eany job to alter the position of the Laga thus making the awitchen sult your circuit. Fitted with 3 white 1 red and 1 black button. 20 p each or 10 tor 28.70.

2 POSITION ROTARY MAINS

SWITCH

Rated 15 amp at 230 V . 4 circuits. Position $A-\mathrm{sl}$ circuita open. Position B-circuit 1 closed. Position C-circuit ciosed. Position D. circuita 2, 3 a
 circuite closed. 15 p each or 10 tor $\$ 1.86$.

EDGE CONNECTORS
32 way for 21.50 atrip boards. Gold plated con32 way for 21.50 atrip boards.
tacte. 50 p each or 10 for m_{4} - 50 .

VEROBOARD

Oflcuts- 10 pieces. $-1-10 \& 2$ matrix. All good useful sizes. Total not less than 1 an sq.ins. Very useful tor circuit building. Regular price value a least 48 . Price 21 the lot

Where portage la not stated then orders over $5 \mathbf{j}$ are post frce. Below E 5 s add 20 p . Semi-conductors add ip post. Over Cl 1 post free. S.A.E. Witb enquiries please.

Some things in life are just about inseparable-eggs and bacon, sausage and mash, Tweedle Dum and Tweedle Dee! Think of one and you think of the other. That's how thousands of radio and electronic enthusiasts think of Components and Home Radio Ltd. When they need the first they automatically contact the second. They simply flip through their Home Radio Catalogue, locate the items they need and telephone or post their order.
If you have not yet experienced the simplicity and satisfaction of linking Components and Home Radio, why not make a start now? First of all you'll need the catalogue . . . in its 315 pages are listed more than 8,000 components, over 1,500 of them illustrated. Every copy contains 10 vouchers, each worth 5 p when used as instructed. The catalogue costs 70 p including postage and packing. Drop us a line or use the coupon below.

It would help us considerably if we knew whether this was your first Home Radio Components Catalogue. If it is please place a tick in the box.

[^0]

PRACTICAL
 VOL. 8 No. 9
 September 1972

GULITY PARTY

THE use of technical devices to invade the privacy of the individual was one of the important matters considered by the Committee on Privacy whose report was presented to Parliament in July

The devices in question are described in this report as falling into two well-defined categories: electronic and optical extensions of the human senses. By way of illustration the Report lists examples brought to the Committee's notice of devices for visual surveillance (optical instruments) and devices for aural surveillance (audio, radio. and tape recording instruments).

Clearly, certain electronic devices for atural surveillance are highly sophisticated examples of modern microelectronic techniques and have been intentionally designed for ready concealment. Other devices which could be used for snooping purposes are commonplace and are generally in use for entirely legitimate purposes. The Report recognises this fact. and rules out the possibility of banning the use of such aural devices by law. because all such devices would have some legitimate use. The person who uses such devices for unethical purposes is the real guilty party. who must be singled out for detection and be prosecuted.

The report makes two important recommendations in this respect.
(1) That unlawful surveillance by surreptitious means should be made a criminal offence.
(2) That it should be an offence for anyone to advertise technical devices with reference to their aptness for surreptitious surveillance.

Following from this second recommendation regarding advertising, it would be logical to assume that it would likewise become an offence to publish design and constructional information relating to devices specially intended for such surreptitious surveillance. To such a proposal this magazine has no objection. so far as devices intended avowedly for surreptitious operations are concerned: P.E. has certainly never countenanced the building of snooping or bugging devices.

But again, caution is required. As anyone familiar with electronics will appreciate. many harmless and perfectly legitimate projects can be adapted for for simply put tol perverse uses. Electronics is no closed book. Components are freely obtainable. The determined snooper will always find ways and means to acquire devices or to modify existing equipment to meet his disreputable needs. So a complete clampdown on the publication of all technical information relating to designs potentially of value to a snooper is quite as impractical as the banning of all commercial devices that have some similar dangerous potentiality.
F.E.B.

CONSTRUCTIONAL PROJECTS

SQUARE WAVE GENERATOR

P.E. ELECTRONIC PIANO 733 LOGIC DEMONSTRATOR 750
P.E. DIGI-CAL-3 757

SPECIAL SERIES

GENERAL FEATURES

NEWS AND COMMENT

EDITORIAL

SPACEWATCH 732
BOOK REVIEWS 753
POINTS ARISING 753
ELECTRONORAMA 754
ON THE FRINGE 756
INDUSTRY NOTEBOOK 766
PATENTS REVIEW 769
MARKET PLACE 777
READOUT 778
Our October issue will be published on Friday, September 8

[^1]THIs article describes the construction and use of a transistorised square wave generator for providing four preset square wave frequencies selected to cover the three pass bands in which the audio engineer is most interested. This information enables the complete frequency and transient response of audio amplifiers to be determined by four simple measurements. The unit is completely portable, and self powered by two small 9 V batteries.

CIRCUIT DESCRIPTION

From Fig. 1 it will be seen that the basic circuit is a free running multivibrator producing the waveform shown in Fig. 2. Resistor R5 together with the "fine frequency" control. VRI and R3 and the selected capacitors on S1. form the $R C$ time constants which govern the repetition rate of the output square wave.
Simplified formulae, which are sufficiently accurate for practical purposes. give the time constant for C and R as

$$
\begin{aligned}
\text { Time constant } t_{1} & =0.7 \mathrm{CR} \\
\text { and } t_{2} & =0.7 \mathrm{CR}
\end{aligned}
$$

The values of C and R have been selected to give the four required time constants. These are

1. $10 \mathrm{kHzt}=100 \mu \mathrm{~s}$
2. $5 \mathrm{kHz} t=200 \mu \mathrm{~s}$
3. $1 \mathrm{kHz} t=1 \mathrm{~ms}$
4. $50 \mathrm{~Hz} t=20 \mathrm{~ms}$

There are selected by the two-pole 4 -way wafer switch, S 1 .

Large values of C, the coupling capacitors, are needed to provide the pulse duration necessary for the 50 Hz frequency. For this frequency the coupling capacitors are $0.22 \mu \mathrm{~F}$. If the circuit is required to generate 20 Hz the coupling capacitors should be changed to $0.68 \mu \mathrm{~F}$.

Fine frequency adjustment is by VRI and VR2 is the amplitude control with a two-pole switch attached.

The diodes clean up the waveform so that the wave shape is square. or more accurately. rectangular. Fig. 3a is a photograph of the 50 Hz wave. Fig. 3b shows a 10 kHz wave produced by the generator: Fig. 4 shows the 10 kHz wave after it has been fed through a high fidelity amplifier.

The trace was given by connecting an oscilloscope across a 4 ohm resistive load shunted by a 1 a capacitor on the output terminals of the amplifier.

ASSEMBLY

The component parts of the signal generator are assembled on a piece of perforated or plain s.r.b.p.

Fig. 1. The complete circuit of the square wave generator, with band selection switch S1a and S1b

Fig. 2. The ideal square wave showing the leading and trailing edges and mark/space ratio
sheet, measuring 4 in by $2 \cdot 5 \mathrm{in}$. Fig. 5 shows the component layout together with details of the switch wiring. The complete assembly is mounted in a die-cast metal box measuring $4 \frac{3}{8}$ in $\times 3 \frac{3}{\frac{1}{8}}$ in $\times 2 \frac{1}{8}$ in (outside dimensions), as shown in Fig. 6. The generator assembly board is fixed inside the lid on three $\frac{3}{8}$ in paxolin spacers. The amplitude control and the pulse frequency selection switch are fitted into the box as shown in the photograph. The fine frequency control is on the side.

The output lead of the generator is brought out through a rubber grommet on the opposite end; this is a 12 in length of screened cable with crocodile clip terminations. The screen of the cable is connected to the metal box at the generator end, as shown in Fig. 6.

The unit is powered by two small 9 V batteries connected in series, to give 18 volts. Since the current consumption is only between 4 and 6 mA , PP3 style batteries are suitable, although the generator will function on one PP3 but the wave shave is better with the higher voltage. The power, is switched on via a two-pole switch, which is attached to the gain or amplitude control.

OUTPUT

The output amplitude control adjusts the signal level suitable for the unit under test. The maximum amplitude is 8 volts peak to peak, and will be found to be constant over the four spot frequencies. The waveform has rise and fall times of 5 us .

APPLICATIONS

Square wave or step signals are frequently used in the production testing of audio equipment. The test engineer can see by the waveform reproduced on an oscilloscope screen, the following information.

The frequency pass band of the amplifier over a very wide range, depending upon how well the amplifier reproduces the wave shape as compared with the original input signal. A square wave comprises a fundamental frequency plus a series of odd harmonic overtones. i.e. $f_{1}=$ fundamental, $f_{3}=$ third harmonic, $f_{5}=$ fifth harmonic, $f_{7}=$ seventh harmonic and so on.

The squareness of the reproduced wave will depend upon the capability of the amplifier to respond to a wide pass band, and hence to the harmonic overtones. A'restricted high frequency pass band will filter off the higher harmonics resulting in a wave shape with slanting sides, indicating an increase in the rise time, as illustrated in Fig. 7.

Thus the rise time is related to $f_{\text {max }}$, the highest frequency in the square wave spectrum.

$$
f_{\text {max }} \text { is given by } \overline{2} \overline{\times} \text { rise time }
$$

Since the rise time of this square wave generator is $5 \mu \mathrm{~s}$, $f_{\text {max }}$ will extend to

$$
f_{\max }=\frac{1}{10 \times 10^{-6}}=100 \mathrm{kHz}
$$

Fourier analysis of a square wave shows it to have a continuous frequency spectrum extending from zero, or the d.c. value, to a very high odd harmonic frequency depending upon the steepness of the rise time.

Fig. 3a. Oscillogram of the 50 Hz wavetorm

Fig. 3b. Oscillogram of the 10 kHz waveform (timebase $50 / \mathrm{s}$)

Fig. 4. Oscillogram of the 10 kHz waveform across a 4 ohm load across the output of an amplifier

Resistors
R1 150k!
R2 10 k !
R3 47 k !
R4 68k!
R5 10 k !
R6 4.7 k !
R7 15k!2

Potentiometers

VR1 50kS linear carbon
VR2 $25 k!$! log. carbon with double pole on-off switch S2

Capacitors

C1 $0 \cdot 22_{\mu} \mathrm{F}$
C2 0.01 $\mathbf{u F}$
C3 $0.0022_{\mu} \mathrm{F}$
C4 0.001 $\mu \mathrm{F}$
C5 $0.22 \mu \mathrm{~F}$
C6 $0.01 \mu \mathrm{~F}$
C7 $0.0022 \mu \mathrm{~F}$
C8 $0.001 \mu \mathrm{~F}$
C9 $47 \mu \mathrm{~F}$ elect. 25 V
C10 100ıF elect. 25 V
Diodes
D1,2,3 1N914 (3 off)

Transistors

TR1, 2, 3 BFY51 or BC108 (3 off)

Switches

S1 2-bank, 2-pole, 4-way wafer S2 2-pole, on-off (mounted on VR2)

Miscellaneous

Die-cast box (see text)
Plain or perforated srbp sheet
Batteries 9V type PP3 (2 off)
Pointer knobs with skirts (3 off)
Battery connectors (2 off)

Fig. 5. Layout of components on plain s.r.b.p. sheet
The wave shape in Fig. 7 has been purposely drawn with exaggerated sides to illustrate the rise and fall times, but in a good square wave generator they should be almost vertical. The rise time is the time taken for the leading edge of the wave to rise from 10 per cent to 90 per cent of its final steady value. The fall time taken for the trailing edge to fall from 90 per cent to 10 fir cent of its final steady value, as shown in the sketch in Fig. 7.

Thus we may see that if the amplifier under test increases the rise time, this is an indication of a limitation in bandwidth response.

DISTORTION

Ideally the reproduced square wave as seen on a good oscilloscope should consist of the top and bottom horizontal lines only, the rise and fall times being so rapid as to be almost invisible. Fig. 8 shows the various distortions that may be introduced to the square wave signal, together with the information obtained from the wave forms shown.

The waveforms in Fig. 8 are observed by connecting a. oscilloscope to the output of the amplifier, across

Fig. 6. Assembly of board and controls in the box

Fig. 7. Exaggerated waveform illustrating rise time and fall time of a square wave

Fig. 8. Approximate wave shape distortions of a square wave with the causes of distortion
(a) The ideal waveform from the square wave generator into the amplifier test
(b) High frequency attenuation. The curvature in the wave shape may be varied by manipulation of the treble control
(c) Low frequency attenuation. The curvature may be varied by manipulation of the bass control
(d) This wave shape is produced by low frequency attenuation plus a leading phase shift. Severe forms of this produces differentiation in waveform
(e) A lagging phase shift at low frequencies produces this wave shape
(f) A leading phase shift at low frequencies produces this form
(g) Combined high frequency attenuation and low frequency phase shift produces a wave of this form
(h) Ringing or overshoot. A damped wave train oscillation, caused by transient instability, in the amplifier under test. This is also an indication of poor response to the attack or decay of the signal (i.e. poor transient response)

$\Omega \Omega$

a fixed load resistor corresponding in value to the loudspeaker impedance (see Fig. 9). This is usually shunted by a $1_{1} \mathrm{~F}$ capacitor which may cause the amplifier to oscillate if it has a tendency towards instability.

With the square wave generator connected to the input terminals, the wave shape on the scope screen should show no ringing. At frequencies of 1 kHz and 5 kHz there should be a good square wave shape with no rounded corners, and it should be practically identical with the input signal. At 10 kHz , one may observe a slight rounding of the corners on the leading edge of the wave, but there should be no overshoot or ringing.

Fig. 9 shows the test set-up for making the measurements shown above. The controls should be set initially in the flat position. The square wave generator gain control should be adjusted so that the input signal does not overload the input stages. Finally, set the amplifier volume control to give the signal level at which it is desired to make the square wave measurements. This is usually the full rated undistorted output power of the amplifier.

The square wave generator will cover three pass bands. low frequency band 50 Hz , middle range 1 kHz . high frequency 5 kHz and 10 kHz bands.

OSCILLOSCOPE

Fig. 9. Test set-up for checking an audio amplifier

TRAGEDY OF TD-1

The largest and most expensive venture by ESRO (European Space Research Organisation), the launching of the ultra-violet observatory $T D-I$ has suffered an instrumental failure which was quite unexpected. The main recorder can now only give real time data and therefore limits the amount of total data to 14 per cent.

Only while the satellite is visible to the ground station network can data be recovered. In an attempt to salvage as much data as possible the ground network has been extended so that about 25 per cent of the observations will be recovered.

The vehicle carried a back-up recorder but this failed quite early on in the mission due to an electrical fault. It is doubly tragic that this should have occurred because the first full orbit results were startlingly successful. Up till the time of breakdown the amount of data recovered was of great value and extensive in its implications and the team responsible for the collation of data do not consider that the mission is a loss.

The $T D-I$ cost $£ 8$ million to build and weighs about half a ton. Up to the end of April one third of the sky had been surveyed with the highly sophisticated ultra-violet telescope.

The principle object of this orbiting ultra-violet observatory was to study the young parts of the far out universe. The distribution of the young hot stars that radiate in the ultra-violet region has been determined and a great deal added to the knowledge of the chemical structure, abundance and size of these stars. Only from an observatory in space is it possible to make this investigation. The spacecraft has a planned life of six months.

PHOTOGRAPHS IN FAR ULTRA VIOLET

On the return journey from the Moon, the Apollo mission had some scheduled extra-vehicular activities. Part of this was devoted to taking more than 200 photographs in far illtra-violet light. These pictures are of immense value to astronomers because hydrogen emits very strongly at a frequency of 1,216 angströms (the Lyman alpha region), it is a valuable tool that can be used in space but not from the ground.

Pictures of the state of the geocorona of the earth were particularly interesting. The low density hydrogen halo that surrounds the earth was clearly visible and in areas of the tropics the additional ultra-violet radiation can be seen. Another interesting feature of these pictures was the presence of auroral activity over the south pole. In this case an immensely long streamer was seen radiating from the south magnetic pole.

A great achievement was the photographing of the Large Magellanic Cloud. This miniature galaxy which is part of our own galactic family is only 200.000 light years from the solar system. In the pictures large areas of hydrogen gas in which bright spots are prominent, indicate the formation of hot blue stars radiating very strongly in the far ultra-violet. Other bright areas indicate the regions where concentrations of hydrogen precede the birth of stars according to current thinking. This is the kind of data that will enable astronomers to establish the relation of interstellar distribution and the regions of star birth.

SHUTtLE CRAFT
 PROGRAMME UNDERWAY

The development phase in the space shuttle project has now been reached and the orbiter contract is under way. Some doubts have been expressed on the system chosen. This is partly because there are a number of unknowns to be considered.
Basically the orbiter will have a solid fuel booster, an external tank to be jettisoned and air breathing engines. The development contracts for these units will be given separately and the final models delivered to the orbiter contractor.

The booster system envisages two solid fuel rockets which are to be mounted on the opposite sides of the fuel tank which will be fitted to the underside of the orbiter. On lift-off the three engines of the orbiter using liquid fuel will fire simultaneously with the solid fuel engines of the boosters.

Some seven million pounds of thrust will be available and when the combined vehicle reaches a height of 25 miles (40 km) the boosters will be detached and splash down in the ocean. These
are re-usable so are to be recovered for repetitive use. The orbiter itself will continue on under its own power and later jettison the fuel tank.
If this system is to succeed then there must be near 100 per cent reliability. Thus back-up systems will be important. The reliability of the simple solid fuel rocket will contribute to this end in a large measure. All the control systems and ignition controls will have builtin redundancy. Guidance control and other essential systems will be on board the orbiter itself. A great deal of confidence is placed in X ray checking and strict quality control towards the standards required.

The re-usability of boosters has not so far been tried in an operational mission, though the Minuteman vehicles have had some testing. They have been fired, refuelled and then fired again. Structural testing of the units will be set at a higher standard after the first firing. Another point in favour of the solid fuel booster is that ocean recovery is easier and survival longer than liquid fuel rockets.

Each booster is expected to be of a high weight order around 100 tons each. In the preliminary designs an impact speed of about 50 ft per second was considered, but now it is set at somewhere between $75 / 100 \mathrm{ft}$ per second. The descent speed will be of the order of 1.000 miles per hour before the parachutes are deployed. Studies of recovery systems have used from three to nine parachutes. There have been free fall tests of Titan boosters (unstressed for recovery) which have survived and on examination found to be structurally satisfactory.

RUSSIAN SPACECRAFT STUDIES MARS

The temperature of Mars, the red planet, has provided some interesting data about the condition of its surface and up to half a metre below. There appear to be variations between the northern and southern latitudes. The temperature of minus $40^{\circ} \mathrm{C}$ in lower northern areas, is much higher than the southern part around latitude 60°, where it falls to minus $70^{\circ} \mathrm{C}$.
The Russian spacecraft Mars-3 is fitted with a small radiotelescope which operates on a frequency of approximately $9 \mathrm{GHz}(3.4 \mathrm{~cm})$. It is arranged in such a way that emission and polarisation of the radiation can be determined. It has a fixed aerial system of 60 cm diameter. It can establish the temperature down to a depth of half a metre.

Because the orbit of the probe is elongated, $1,500 \mathrm{~km}$ at perigee and $200,000 \mathrm{~km}$ at apogee, observations extent from latitude 60° south to 30° north.

ELECTRONIC PIANO

By A. J. Boothman B.Sc.

Authentic piano sounds from an instrument a quarter the size of a conventional pianoforte and at a fraction of the cost.

\author{

Musical Compass
 Five Octaves F to F-61 notes
 Frequency Compass
 Fundamental Frequency Range - $\mathbf{4 3} \mathbf{~ H z}$ to 1.4 kHz approx.
 Nominal Output Levels
 External Amplifier
 450 mV into $1 \mathrm{M} \Omega$
 200 mV into $10 \mathrm{k} \Omega$
 60 mV into $2 \mathrm{k} \Omega$
 Headphone or external loudspeaker 2.5 Watts into 8Ω
 Internal loudspeakers
 Approximately 3 Watts
 Mains Input
 200-250 Volts 50 Watts
 Sound Envelope (nominal times)
 | Attack Period | 30 ms |
| :--- | :--- |
| Decay Period | 300 ms |
| Keyboard Sustain | 3.5 s |
| Pedal Sustain | 3 s |

}

Tremolo Frequency Range
$\mathbf{5 H z - 1 0 H z}$

Physical Dimensions and Weight

Case when packed 42in $\times 21 \mathrm{in} \times 7.5 \mathrm{in}$
Height of legs 24in
Weight 60 lbs

Controls

Keyboard

1. Main Amplifier on/off Switch
2. Touch Control
3. Tremolo on/off Switch
4. Level Control

Foot Pedals

1. Sustain
2. Soft

Side Panels

1. Master Volume
2. Tremolo Rate
3. Tremolo Intensity
4. Mains on/off Switch

WHy design an electronic piano rather than a small portable electronic organ? Here the author must revert to personal prejudice, shared he believes by many musicians, in that the organ has a very dominant presence within any small (or large) group and impresses on the sound an overall characteristic tonal coloration which cannot be overcome.

Perhaps a more universally acceptable point would be that the percussive nature of the piano cannot be reproduced in any reasonably priced organ, and that this characteristic is extremely desireable in a large amount of modern popular music or jazz.

THE ELECTRONIC PIANO IN THE HOME

The traditional piano is large for the average modern home, and can be very restricting to furniture disposition. In recent years, because of the skilled techniques involved in the manufacture of such a product, the piano has also become expensive. The instrument described here can be built for a material cost of approximately $£ 100$ and is constructed in such a way that in addition to occupying a fairly small space in normal operation, it can actually be stored away, if necessary, within the space of two average suitcases.

Two other features which offer a bonus are the possibility of fitting a spare set of short legs for the use of children, and the obvious advantage in the use of head-phones for prolonged periods of practice.

SYSTEM DESCRIPTION

Referring first to the block diagram of Fig. 1 it can be seen that an output from the power supply
unit is taken to the touch control which is mounted at the side of the keyboard. One of five possible levels of attack is selected on this control which determines the d.c. level applied to the common connection side of the 61 switches operated by the keyboard. When a note is depressed this voltage is carried forward to the relevant envelope circuit (p.c.b.s) and triggers the commencement of a tone with the required degree of attack.

The decay characteristic is fixed for the period during which the key is depressed, and will in fact follow a similar pattern after the key is released provided that the sustain pedal is operated.

The outputs from the 13 boards are fed to a three stage pre-amplifier. Shunt modulator type tremolo is also included on the pre-amplifier printed circuit board. A high level output is available for driving an external amplifier, and an internal power amplifier drives small internal speakers, or external loudspeakers or headphones.

MAIN P.C.B.s

The functions carried out by one of the 13 main printed circuit boards (p.c.b.s) is shown in Fig. 2. The first 12 boards each give five octave separated outputs for pitches F to E, and the thirteenth board is greatly reduced in component content as it only has to provide one pitch (Top F).

The basic pitches are produced by Hartley oscillators, followed by integrated bistable dividers. Outputs at frequencies f to $f / 16$ are each fed to a separate transistor which mixes the signal with a fast attack, long decay envelope. Each mixer is followed by a tone forming circuit, and the five notes are then fed to a single stage amplifier which boosts the output from the board.

Fig. 1.1. Block diagram of electronic piano

Soft and sustain pedals are linked to the amplifier gain and the envelope circuits respectively.

KEYBOARD CONTROLS

Four keyboard controls are available to the pianist. The internal amplifier and tremolo circuit have simple on/off switches, whilst the touch control gives five optional degrees of attack, and the level control gives five alternative levels of volume. All knobs were chosen for quick flip operation whilst playing the instrument.

PHYSICAL DESCRIPTION

The piano is contained in a wooden case 42 in \times 21 in $\times 7.5$ in which includes a dual purpose lid acting as both the music stand, and the container for the legs during transport.

The keyboard is fixed to its own wooden subframe, complete with gold plated switch contacts and interwiring. The switches corresponding to each of the five octave keys of each pitch are wired to a single 6 -way connector strip, which includes a ter-
minal for the sustain connection. The connector strips are positioned such that each length lines up with the corresponding pitch board.

The 13 main printed circuit boards which hold the bulk of the electronic components are easily removed for test or repair purposes, along with the pre-amplifier and tremolo units. A control panel on the end of the instrument has the master volume, tremolo controls, and external amplifier output socket. The box containing the p.c.b.s can be removed from the piano independent of the keyboard subframe assembly.

The power supply unit is a separate sub-assembly within the main box, as is the internal power amplifier which is mounted along with the internal speakers on the front panel immeditely above the keyboard. This front panel can also be removed as a separate independent unit, thus completing the modular construction format.

The pedals are separate units which plug into the base of the piano, and are transported in the special accessory compartment which is also designed to accommodate the power lead.

Fig. 1,2. Block diagram of pitch p.c.b.

BULK
 COMPONENT LIST

To take advantage of any concessions offered by retailers for bulk purchases we include the following list which covers the majority of components used in the piano.
Individual component lists will appear as usual with circuit diagrams as they occur.

Resistors	Quantity
$68 \Omega 2$	15
270Ω	80
390Ω	14
$1 \mathrm{k} \Omega$	95
$1.8 \mathrm{k} \Omega$	95
$3.9 \mathrm{k} \Omega$	16
$5.6 \mathrm{k} \Omega$	130
$10 \mathrm{k} \Omega$	160
$27 \mathrm{k} \Omega$	135
$56 \mathrm{k} \Omega$	145
$100 \mathrm{k} \Omega$	22
$560 \mathrm{k} \Omega$	18
$820 \mathrm{k} \Omega$	130
All $5 \% \frac{1}{3}$ watt carbon	
270Ω	12
$5 \% 2.5$ watt wirewound	

Capacitors

$0.05 \mu \mathrm{~F}$ polyester 125 V
Quantity
$0.1 \mu \mathrm{~F}$ polyester 125 V
18
$0.2 \mu \mathrm{~F}$ polyester 125 V
16
$0.5 \mu \mathrm{~F}$ polyester $15 \mathrm{~V} \quad 30$
45
$1 \mu \mathrm{~F}$ elect. $15 \mathrm{~V} \quad 15$
$5 \mu \mathrm{~F}$ elect. 15 V
$10 \mu \mathrm{~F}$ elect. 15 V 62
$100 \mu \mathrm{~F}$ elect. $\quad 6.4 \mathrm{~V}$ 64
25
$100 \mu \mathrm{~F}$ elect. 15 V
Diodes
ZS170 (Ferranti)
Quantity
or any silicon planar diodes of 20 V P.I.V.
KS 047A $4.7 \mathrm{~V} \quad 400 \mathrm{~mW}$ zener diodes 14
Transistors
ZTX300
Integrated Circuits ZN7474E Quantity

Miscellaneous

SEI Feralex pot core VF723/739/P	13	
SEI Bobbin	MM733A	13
SEI Assembly	MM773	13
Main printed circuit boards	13	

Main printed circuit boards 13
The pot core assemblies and p.c.b.s can be obtained from Clef Products (Electronic Division), Yew Tree Lane, Poynton, Stockport, Cheshire.

COMPONENT PURCHASES

In a project of this nature it is essential that all components should be easily available, a fact which has been checked with some care. The cost suggested earlier assumes that all items are purchased from current advertisers within this magazine, with additional addresses given where necessary. The component content can be roughly broken down into the following three cost groups, and this should assist in the planning of the expenditure throughout the period of the project. These are.

1. Semiconductors, resistors and capacitors $£ 40$
2. Hardware (pot core assemblies, switches, p.c.b.s) £40
3. Keyboard and switch contacts ... \quad £ 20

Sources for the first two groups are well covered in the various parts lists which will be given during the project, but some general comments are made here on keyboard suppliers.

KEYBOARDS

Three keyboards have been investigated by the author, two of which were versions of the Morelli (Italian) keyboard, and the third of which was a Swedish keyboard. All keyboards as supplied were C-C and this therefore required modification work which was in fact carried out on one Italian and one Swedish board. Suppliers of both keyboards have stated that F-F boards could be supplied to order on a delivery of about six weeks, but details of the modifications are given later in case any constructor has easy access to a C-C board or prefers to buy from stock.

MORELLI A

The prototype piano has a Morelli A keyboard which can be obtained from Elvins Electronic Musical Instruments. It is characterised by a simple metal frame without end fixing points and without any form of mounting hinge. It is easy to modify to F-F by cutting the frame in order to remove the bottom C-E section which is then attached to the top end of the board

MORELLI B

This is the version of the Italian board submitted by Harmonics Limited, and is characterised by metal end fixing points and a rear hinge. Harmonics have stated that they will be able to supply an F-F board with the same mechanical outline, and this should prove a very convenient unit. The author has not actually attempted to modify the C-C version of this particular board but it should be possible to handle it in the same way as above. Later mechanical details will give method of mounting this keyboard.

SWEDISH KEYBOARD

A Swedish keyboard is supplied by Kimber-Allen and is notably lighter in weight than the other two boards. The author has successfully modified it to F-F. Again, details for doing this will be given later. Kimber-Allen have also stated that they will be able to supply F-F boards to order. The keyboard is slightly longer than the two Italian boards, but is easily accommodated within the console area.

The Morelli B keyboard

The Swedish keyboard with the lower C-E section removed prior to modification to an F-F keyboard

The keyswitch assembly for the Morelli A keyboard is manufactured by Clef Products. This switch assembly is suitable for all the aforementioned keyboards.

OTHER KEYBOARDS

The mechanical design of the piano is very simple and it should be possible to accommodate virtually any keyboard. The choice of F-F is based on a musical evaluation of the requirements of this sort
of instrument, and whilst it would make no difference to the electronics to cover $\mathrm{C}-\mathrm{C}$ (except in the choice of tuning capacitors) the author very strongly recommends that $\mathrm{F}-\mathrm{F}$ be considered as essential to the character of the instrument.

Next month, constructional details for the p.s.u. will be given together with pre-amplifier and tremolo circuitry and assembly

Details of interior of electronic piano

KEYBOARD SUPPLIERS

Elvins Electronic Musical Instrumenis 8 Putney Bridge Road, London S.W. 18.
Harmonics (Bromley) Ltd.
Clarion Works, Napier Road, Bromley, Kent.

Kimber-Allen Ltd.

Broomfield Works, London Road, Swanley, Kent BR8 8DF.

KEYSWITCH ASSEMBLY SUPPLIER

Clef Products (Electronics Division) Yew Tree Lane, Poynton, Stockport, Cheshire.

We at Heathkit do all the donkey-work - the rest is up to you. If you're handy with a soldering iron, pliers and screwdrivers you'll have no difficulty putting the bits and pieces together in a few hours. Even if you're not used to soldering you can still do it. Because we tell you how in an introductory booklet. And we give you bits and pieces to practise on before you take the plunge

Just think what you could
 make yourself this weekend How about building the world's first electronic calculator kit? It's easier than you think The new Heathkit IC-2008 desktop calculator adds, subtracts, multiplies and divides up to eight digits. Electronically You can multiply or divide a series of numbers by a preselected figure; fix the decimal point in one of eight positions or in a floating decimal mode. And a ninth display tube indicates overflow, It's smart.
highly sophisticated - and shows a big saving over the ready-built price.

Or you
could make
yourself an
IB-1101 frequency counter New from Heathkit, it has a range from 1 Hz to over 100 MHz - and an input frequency that'll accept levels from below 50 mV to over 2000 V . The decimal point is automatically placed with range selection. A truly professional piece of equipment

Maybe radio is more in your line. Well, you could make our new version of the successful Tiger transistor portable - the Tiger FM. Designed specifically for the high-quality sound of VHF broadcasts (BBC radio 2, 3, 4 and local stations), it's particularly easy to build. Ideal for beginners

And if you're bored with teak or walnut finishes on audio equipment, you'll be glad to know that we do Hi Fi in colour You can choose from snow white or sunshine orange, besides the usual teak or walnut. That goes

Please send me the FREE 1972 Heathikit catalogue
Name
Address
for our AAl4 30 watt stereo amp, AR14 tuner/amp, and Trent speakers.
if you want a demonstration of an f Heathkit equipment we'll be pleased to see you at either of our stiowrooms - 233 Tottenham Court Road, London W. 1 (open 9-6, six days a week), and 17-13 St. Martin's House, Bull Ring, Birmingham (open Tues-Sat, 9-6).

Like we said, you can make ther all as well as we can. But if, by any remote chance, you do manage to go wrong with your asse mbly, we 'll put you right again. In fact, that's a firm guarantee

You simply can't fail
Want to know more? Mail the coupon for our free cataIogue - it's packed with Heathkit goodies.

PE 09/72
HEATHKIT
Schlumberger
HEATH (Gloucester) Ltd., Gloucester GL2 6EE.
We won't let you fail

YATES ELECTRONICS (FLITWICK) LTD.
 ELSTOW STORAGE DEPOT KEMPSTON HARDWICK
 BEDFORD

C.W.O, PLEASE. POST AND PACKING PLEASE ADD IOp TO ORDERS UNDER 42.

Catalogue which contains data sheets for most of the components listed will be sent free on request. 10p stamp appreciated.

OPEN ALL DAY SATURDAYS

RESISTORS

tW iskra high stability carbon film-very low noise-capless construction tW Mullard CR25 carbon film-very small body size $7.5 \times 2.5 \mathrm{~mm}$. 2\% ELECTROSIL TRS

Quancity price applies for any selection. Ignore fractions on total order.
DEVELOPMENT PACK
0.5 watr 5% iskra resistors 5 off each value 4.7 D to IMO .

E12 pack 325 resistors $\$ 2.40$. E24 pack 650 resistors 44.70 .

POTENTIOMETERS

Carbon track 5 kg to $\mathbf{2 M 0}$, log or linear ($\log \pm W$, lin $\frac{1}{2} W$). Single. 12p. Dual gans (stereo), 40p. Single D.P. switch $\mathbf{2 4}$ p.

SKELETON PRESET POTENTIOMETENS

Linear: $100,250,5000$ and decades to 5 MO . Horizontal or vertical P.C mounting (0.1 matrix).
Sub-miniature $0.1 \mathrm{~W}, 5 p$ each. Miniature $0.25 \mathrm{~W}, 6 p$ each

TRANSISTORS

BRUSHEDALUMINIUM PANELS
$12 \mathrm{in} \times 6 \mathrm{in}=25 \mathrm{p} ; \quad 12 \mathrm{in} \times 2 \mathrm{fin}=10 \mathrm{p} ; 9 \mathrm{in} \times 2 \mathrm{in}=7 \mathrm{p}$.
SLIDER POTENTIOMETERS
$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of track 59 mm
SINGLE 10kG, 25k0, $50 \mathrm{~kg}, 100 \mathrm{kQ}$, log or lin
Knob ror above
FRONT PANEL
20 gauge panel $12 \mathrm{in} \times 4 \mathrm{in}$ with slots cut for use with slider pots.
Grey or matt black finish, complete with fixings for 4 pots.

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{p}, \quad 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu F, 0.022 \mu F, 0.033 \mu F, 3 p .0 .047 \mu F, 0.068 \mu F, 0.1 \mu F, 4 p, 0.15 \mu F, 6 p$. $0.22 \mu F, 7 \frac{1}{2} p$, $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F} 34 \mathrm{p}, 0.15 \mu \mathrm{~F}$ 4tp. $0-22 \mu \mathrm{~F}, \mathrm{5p}$. $0.33 \mu \mathrm{~F}, 6$ p. $0.47 \mu \mathrm{~F}, 71 \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p}$. $1.0 \mu \mathrm{~F}$, ifp.
MULLARD POLYESTER CAPACITORS C280 SEAIES
250 V P.C. mounsing: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.060 \mu \mathrm{~F}$,

MYLAR FILM CAPACITORS IONV $\begin{array}{llll}0.001 \mu \mathrm{~F}, & 0.002 \mu \mathrm{~F}, & 0.005 \mu \mathrm{~F}, & 0.01 \mu \mathrm{~F}, \\ 2 \mathrm{p}, & 0.02 \mu \mathrm{~F}, \\ 24 \mu \mathrm{~F}, & 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, & 31 \mathrm{p} .\end{array}$

CERAMIC DISC CAPACITORS $21 \mathrm{p}, 0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 31 \mathrm{p}$.

ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES
(μ F/V) $10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$. $400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10,125 / 10^{\circ}$ $200 / 10,2.5 / 16,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16,1 \cdot 6 / 25,6 \cdot 4 / 25,12 \cdot 5 / 25,25 / 25,50 / 25$, $80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0-64 / 64,25 / 64,5 / 64,10 / 64,20 / 64,32 / 64$.

MULLARD C437 SERIES
$100 / 40,160 / 25,250 / 16,400 / 10,640 / 6 \cdot 4,800 / 4,1000 / 2 \cdot 5,9$ p. $100 / 64,160 / 40,250 / 25$, 400/16, $640 / 10,1250 / 4,1000 / 6 \cdot 4,1600 / 2 \cdot 5,12 p, 160 / 64,1250 / 40,400 / 2 \cdot 5,640 / 16$, 2000/4. $1000 / 10,1600 / 6 \cdot 4,2500 / 2 \cdot 5,15 p .250 / 64,400 / 40,1640 / 25,3200 / 4,1000 / 16^{\prime}$ $1600 / 10,2500 / 6 \cdot 4,4000 / 2.5,18 \mathrm{p}$.

ELECTROLYTIC CAPACITORS Miniature P.C. mounting
$(\mu F / V): 10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.
5p each.

VEROBOARD

	0.1	0.15
$2 \frac{1}{2} \times 3 \frac{1}{4}$	22p	16p
24×5	24p	24p
3 \% $\times 34$	24p	24p
$3 \pm \times 5$	27p	27p
17×2	75p	57fp
$17 \times 3 \frac{3}{4}$	$100 p$	78p
17×5 (plain)		82p
$17 \times 3 z$ (plain)	-	60p
$17 \times 2 \frac{1}{1}$ (plain)	-	42p
21×5 (plain)	-	12p
21 \times 3t (plain)	-	$11 p$
Pin insertion tool	52p	52p
Spot face cutter	42p	42p
Pkt. 50 pins	20p	20p

JACK PLUGS AND SOCKETS

5 tandard screened $18 p \quad 2.5 \mathrm{~mm}$ insulated
Standard insulated 12p 3.5 mm insulated
Stereo screened $\quad 35 \mathrm{p} \quad 3.5 \mathrm{~mm}$ screened
$\begin{array}{lll}\text { Scandard socker } & 15 p & 2.5 \mathrm{~mm} \text { socket } \\ \text { Stereo socket } & 18 \mathrm{p} & 3.5 \mathrm{~mm} \text { socket }\end{array}$
Stereo socket $\quad 18 \mathrm{p} \quad 3.5 \mathrm{~mm}$ socket
D.I.N, PLUGS AND SOCKETS

2 pin, 3 pin, 5 pin $180^{\circ} .5$ pin $240^{\circ} .6$ pin
Plug'lip. Socket 8p,'
4 way screened cable, $15 p /$ mecre
6 way screened cable' 22p/metre
BATTERY ELIMINATOR
9 V mains power supply. Same size as PP9 battery.

THERMISTORS
VA105SS 15p; VA1066S 15p; VA1077 15p; RS3 \&1.35.
COMPACT CASSETTES—IN PLASTIC LIBRARY BOX
C90 65p Cl20 85p.
LARGE (CAN) ELECTROLYTICS

$1600 \mu \mathrm{~F}$	64 V	$74 p$
$2500 \mu \mathrm{~F}$	40 V	$74 p$
$2500 \mu \mathrm{~F}$	50 V	$58 p$
$2500 \mu \mathrm{~F}$	64 V	$80 p$
$2800 \mu \mathrm{~F}$	100 V	$\mathbf{6 3 . 0 0}$

$3200 \mu \mathrm{~F}$	16 V	50 p
$4500 \mu \mathrm{~F}$	16 V	50 p
$4500 \mu \mathrm{~F}$	25 V	F .68
$5000 \mu \mathrm{~F}$	50 V	$\epsilon F .10$

HIGH VOLTAGE TUBULAR CAPACITORS— 1,000 VOLT
$\begin{array}{llllll}0.01 \mu \mathrm{~F} & 10 \mathrm{p} & 0.047 \mu \mathrm{~F} & 13 \mathrm{p} & 0.22 \mu \mathrm{~F} & 20 \\ 0.022 \mu \mathrm{~F} & 12 \mathrm{p} & 0.1 \mu \mathrm{~F} & 13 \mathrm{p} & 0.47 \mu \mathrm{~F} & 22 \mathrm{p}\end{array}$
POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \frac{1}{2} \%$
10 pF

8p
8p
13p
$8 p$
$8 p$

pr to $1,00 \mathrm{pF}$ el 2 series alues tpeach.

C.T. ELECTRONICS

are holding an

ELECTRONICJUMBLESALE

to mark the opening of their

SURPLUS ELECTRONICS WAREHOUSE

20-24 BEAUMONT ROAD, LONDON, W. 4 (Ist floor) on Saturday, 2nd September

10 a.m.-6 p.m.

PUBLIC AND TRADE WELCOME
Thousands of bargains at ridiculous prices; oscilloscopes, oscillators, test meters, resistors, capacitors, components, etc., etc.
All onquiries: C.T. ELECTRONICS, 267. ACTON LANE, LONDON, W. 401.9946275

REED COILS

3,6,9, 12, $24 \vee$ Miniature Small Standard
P. \& P. 7p on all orders.

REED PUSH BUTTON

 SWITCHESMomentary Action

entary	
	E1.00
2 contacts	C1 25
Illuminated I contact	61.30
	61.55

27p
.

Illuminated I contact El. 30 Illuminated 2 contacts E1.55

REED SWITCHES

Popular types
E Small n/o
A Miniature $n / 0$

REED RELAYS

Many versions available, popular types: 3, 6, 9, 12, 24 V
Miniature I/A normally open 56 p

2/EE contact
2/EEE 3 contacts
STD $3 / \mathrm{B}$ change over

IO for 50p
24p each
40p each

REELS OF ENAMELLED COPPER WIRE

20 s.w.g. to 47 s.w.g. $50,100 \& 200$ grams, Send for prices
C.B.M. ELECTRONIC COMPONENTS LTD. 26 Avon Trading Estate, Avonmore Road, London, W. 14

PLASTIC PLANAR

TRANSISTORS

This article outlines the planar epitaxial process, and describes in detail the construction and assembly of one well known type of plastics encapsulated silicon transistor manufactured by Ferranti Ltd.

By F. BRIERLEY

COMPARED with their germanium counterparts, silicon semiconductors can operate at higher temperatures, have much lower leakage current figures and are much less affected by temperature changes.

The mass production of silicon semiconductors is made possible by a very sophisticated modern technology involving advanced photographic and chemical laboratory techniques, coupled with the use of high precision handling equipment and automatically controlled assembly machines. Many of the processing steps must take place in ultra-clean rooms with strictly controlled temperature and humidity levels.

The silicon used has an impurity content of less than ten parts in a thousand million and the chemicals and gasses used in processing are of high purity analytical laboratory standard. De-ionised water is used for the many washing operations which take place between processes.

PLANAR EPITAXIAL PROCESS

Most modern, high quality, silicon transistors, are manufactured by the planar epitaxial process. This process will be described briefly, followed by a description of the construction and assembly of one particular style called E-Line transistors, in plastics packages by the Ferranti Company.

The development of the planar process has made it possible to create thousands of transistors simultaneously on a thin slice of silicon. Planar transistors are extremely reliable and have very stable characteristics. They can be manufactured with operating frequencies of well over 2 GHz .

An important feature of the planar process is that the surface of the processed slice is covered by a layer of oxide, which protects the devices from contamination by moisture and impurities that may be encountered. This inherent protection is of great value both prior to and after the encapsulation process.

The planar epitaxial process is a modified form of the basic planar process. It was developed in order to manufacture transistors with high collector breakdown voltages and low saturation voltages. These apparently conflicting requirements are satisfied by means of a very thin high resistivity epitaxial layer, in which the emitter, base and collector regions are formed.

The thin, high resistivity collector layer gives the required high collector breakdown voltage characteristics. By making the substrate of low resistivity

Fig. 1. Sectional view of a silicon planar epitaxial transistor chip
silicon, the overall collector resistance is kept low and thus the transistor saturation voltage is also low.

The sketch (Fig. 1) shows, in simplified form, a sectional view through a planar epitaxial npn transistor; note how the junctions are protected by an oxide layer. The base and emitter contacts are made to metallised areas on the top of the silicon chip, the collector connection is usually taken from the underside of the chip via the metal header and the $\mathrm{N}+$ low resistivity substrate.

PULLING THE CRYSTAL

A principal route of manufacture begins with the pulling of a monocrystalline bar of silicon from refined polycrystalline silicon of known resistivity. Fig. 2 shows a crystal pulling furnace. The polycrystalline silicon, together with closely controlled amounts of boron, phosphorous or arsenic dopants, is loaded into a graphite crucible which is enclosed within a quartz chamber. Boron is used for p-type characteristics, arsenic and phosphorous for n-type.

The electrical resistivity of the crystal is determined by the quantity of dopant added. Heavily doped silicon exhibits low resistivity and is known as " $\mathrm{N}+$ " or " $\mathrm{P}+$ " according to the nature of the dopant.

A flow of inert gas is passed through the quartz chamber while the silicon is heated by an r.f. generator When the silicon has melted, a seed of monocrystalline silicon is lowered to the surface of the molten silicon. The temperature of the melt is then reduced to a value just above the melting point of silicon so that, as heat flows from the melt
to the cooler seed crystal, the silicon in the immediate neighbourhood solidifies on to the seed crystal. The seed crystal is rotated and slowly withdrawn from the melt. The silicon atoms orientate themselves into the same crystal lattice pattern as the seed and thus "t continuous single crystal is "pulled" from the melt

Crystal diameter is governed by the temperature of the melt and by the rate of pulling. both these factors must be controlled very precisely. In the early days of semiconductor manufacture. one-inch diameter crystals were considered large; now, diameters of two inches are quite usual and crystals of three or even four inches in diameter are not rare.

The bars of monocrystalline silicon are sawn into slices and then lapped, etched and polished to obtain an optically flat surface (see Figs. 3 and 4). The polished slices, now around 0.01 in thick. are cleaned in readiness for epitaxial deposition

EPITAXY

In the epitaxial process, a layer of silicon of high resistivity, and with the same orientation as the slice, is grown onto the low resistivity substrate. The slices are placed in a treated graphite carrier in a quartz tube and are heated to approximately $1,200 \mathrm{C}$ by an r.f. heating coil.

High purity hydrogen, to which silicon tetrachloride and a p or 1 dopant have been added. is passed over them and a thin layer of silicon grows onto the slices by vapour phase deposition. An atutomatic system controls gas and vapour flow rates and time of deposition. The resistivity and depth of the epitaxial layer are checked before slices are
passed to the next production stage. It is into this epitaxial layer that the junctions upon which the operation of the device depends, will be diffused.

OXIDATION AND PHOTOLITHOGRAPHY

After epitaxy, the cleaned and tested slices receive a protective oxide coating in an oxidising furnace and are then cleaned again in preparation for a series of photographic and chemical processes, known collectively as photolithography, by which a number of masks are used to define areas of the protective oxide which are to be etched away, in order to allow subsequent diffusion or metallising processes to take place.
The masks are derived from original master drawings with a scale of 250 times full size. Working in ultra clean conditions, a high resolution camera produces a reduced copy, ten times full size. A step and iepeat camera, working at a reduction of $10-1$, is then used to make a master photographic plate on which a full size imaige of the mask is repeated several thousand times across the plate, over an area

Fig. 3. A crystal sawing machine

nom

Fig. 4. Slice polishing machine

Fig. 5. Mask alignment
equivalent to the useful area of the silicon slice. The camera stepping accuracy is one quarter of a micron and four masks are generated simultaneously.

From the master plates, working masks are made by contact printing. The hazards to be contended with during mask making include, faults in photographic plates, accidental damage occurring in contact printing, and foreign bodies settling on the plates during processing. Emulsion type working mask plates have a relatively short life, necessitating regular inspection and frequent renewal in order to preserve a high yield of good devices. Chrome plates, introduced more recently, have a longer working life.

NUMBER OF MASKS

The number of different masks required for a particular transistor design depends upon the design complexity; for a relatively simple device, there may be one mask for the base, one for the emitter and one for the area to be metallised. Other designs may require five, or more, different masks.

Assuming that three masks are to be used, the cleaned, oxide covered slices are coated with a measured quantity of photo-resist emulsion which is distributed evenly over the slice by a centrifuging operation. Coated slice and the base mask are brought together in the alignment machines (Fig. 5) and a controlled exposure is made under ultra-violet light. The slice is then developed and the photoresist coating is dissolved away from the unexposed areas. An acid etch then removes the exposed oxide.

BASE DIFFUSION

After cleaning, the slice is ready for the base diffusion. This process takes place in a diffusion furnace, at a temperature in the range 1,000 to $1,280^{\circ} \mathrm{C}$, where the slices are exposed to an atmosphere of p or n doped nitrogen. The dopant diffuses into the silicon epitaxial layer, through the etched areas, to form the required collector/base junction.

Coincidentally with this, an oxide layer is formed over the silicon. The slices are then coated again with photo resist and the next masking operation takes place.

The development, etching and diffusion processes. which follow the second masking operation, form the base/emitter junction and a further oxide layer. The characteristics of the diffused junctions can be determined precisely by control of the processing conditions.

The oxide is etched away from defined regions in the base and emitter areas to permit contact to be made. A thin film of aluminium is then evaporated over the slice, making contact with the base and emitter: the unwanted areas of the aluminium are then etched away.

Each successive mask must be aligned very accurately with the pattern made on the slice by the previous mask and the alignment machines are capable of working to a tolerance of one micron in pattern position.

These processes take place in air-conditioned clean rooms fitted with laminar flow cabinets. A stream of continuously filtered air passes through these laminar flow cabinets in which the alignment machines and other equipment are housed.

QUALITY CONTROL

Inspection takes place at all production stages and completed slices are tested by automatic probe testing machines under computer control. The test probes of the machines locate, in turn, on the metallised contact areas of each transistor on the slice. Any transistor failing the test is marked, automatically, for removal at a later stage.

SEPARATION

The tested slices are separated into individual transistor chips by scribing between the patterns and cracking the slice along the scribed lines.

A method of expanding the cracked slice has been devised by Ferranti which enables all the chips to be spread out but preserved in their original arrangement with respect to each other, so that they can be picked up without difficulty by vacuum probes employed in the dice alloying operation. An expanded cracked slice is shown in Fig. 5.

CONSTRUCTION OF THE E-LINE STYLE

The basic processes that have been described are common to all planar epitaxial transistors.
It is in the processes of assembling the silicon chip to its header, the bonding of wires from the base and emitter electrodes to the pins, and in the encapsulation process, that plastics transistors differ from conventional metal can transistors.

The major proportion of the direct manufacturing cost of a conventional transistor is incurred in the assembly and encapsulation stages which, between them, employ the largest portion of the total labour force.

A high degree of automation of the assembly and encapsulation processes of the E-Line transistor has brought about a significant reduction in the cost of these operations and thus in the price of finished devices. Automatic machinery simplifies the task of the operator and makes high speed production possible.

The degree of skill required by the operator is minimised and the processing conditions are regulated automatically by the machines themselves so that a high yield of good devices and consistent product quality are obtained.

The reliability of the prodect is determined by the overall design, including the design of the production equipment. E-Line transistors make use of a strip nickel framework specifically designed for use with the automatic assembly machines. The framework, illustrated in Fig. 7, is provided with location holes along its edges, these holes are employed to transport the framework through the alloying and bonding machines.

Each strip of framework is made to carry 128 transistors. The collestor lead terminates in a depressed "flag" to which the silicon chip is alloyed. Investigation has shown that the main route by which moisture might reach the chip is alorig the interface between the lead wire and the plastic encapsulation; this path has been made as long a practicable in order to protect the transistor from adverse climatic environments.

Fig. 6. An expanded slice on a plastic backing
Fig. 7. The E-Line strip framework

Fig. 8. Alloying machine for E-Line transistors
Fig. 9. The banding operation

ATTRACTIVE DISCOUNTS ON ALMOST ALL ITEMS WHEN YOU BUY FROM US
 electrovalue Electronic Component Specialists

seguent
character of sum, height whs decinal point Puwer rermmenelt stan svmbols alsis arailalyle. In it lead bit, case
\qquad
ULI, Sucket jliteal 30p. No. 3015G showing + or - and fig. 1 and decimal point $£ 2$.

PRECISION

 COMPONENTSCatac

SLIDE POTENTIOMETERS

Kobuet cunstruction. showoth silent altions

 5p each.

BAXANDALL SPEAKER

SIEMENS CAPACITORS

POLYCARBONATE 5 TOLERANCE
 30 $01,0.01$
3p each.

018. 19? 5peach.
$1 \mu \mathrm{~F}, 13 \mathrm{p}$.
ELECTROLYTIC CAPACITORS
$100 / 10,2203,5 \mathrm{p}$ each.

$470 / 3$ 8p esch

 $1000 / 35,19 p$ each; 1040 , 30 peach : $1000 / 43,2.200 / 35$ $4500 / 15,33 \mathrm{peach}$.
 catalogue

1972 ELECTROVALUE

 CATALOGUE (No. 6)Now eniarged to 86 pages plas cozer. More items, more information, more diagrama than ever. Port Ireein U.K. 10%.

SOLDERSTAT SOLDER iRons

INFINITELY VARIABLE TEMPERATURE CONTROLLED SOLDER IRON E9. 20 DE-SOLDER BRAID

SIEMENS
TTL INTEGRATED CIRCUITS

NEWMARKET LINEAR I.C.s
CARBON TRACK POTENTIOMETERS carbon track potentiometers.
lem gang
,

DISCOUNTS

POSTAGE AND PACKING

 and ins to contact ELECTROVALUE AMERICA. P.O Bor 27, Swarthmore. PA 19081

ENQUIRIES FROM TRADE AND OTHER LARGE QUANTITY BUYER8 INVITED.
 As well as electronic components, this kit also contains 2 diamond-spun aluminium knobs, elegant matching front panel, dial, washers, screws and wire

The Pullman PB is suitable for 12 volt working on both negative and positive earth vehicles. It covers the full medium and long wave bands. Four pushbuttons for medium wave, one for long wave. It is permeability tuned and sturdily constructed. Output is a full 2.5 watts into an 8 ohm speaker. But the Pullman PB will operate into any loudspeaker from 8 to 15 ohms. Power consumption is less than 1 amp .

* Circuit diagram and comprehensive instructions 50p. free with parts.
* Car aerial £1 25 post paid.

PRICE ONLY
 $£ 7.00+{ }_{\text {pap } 500}$

THE PULLMAN PB CAN BE MOUNTED IN ANY STANOARD THE PULLMAN PE AND IT HAS AN ILLUMINATED TUNING SIZE OASH PANEL AN EADING AT NIGHT. CHASSIS SIZEIS.
SCAIE FOR EASY RELIUNG FRONT PAELET SCALE FOR EAS ANO $4^{\prime 5} / 16^{\prime \prime}$ OEEP (EXCLLIONG FRONT PANEL, ITR)

RADIO \& TV COMPONENTS (ACTON) LTD. 21d High Street, Acton, London W3 6NG 323 Edgware Road, London, W. 2

Mail Orders to Acton. Terms

\square C.W.O. All enquiries
Goods not despatched outside U.K.

Why wait weeks?

-ALL OUR ORDERS

 DISPATCHED BY RETURN OF POST!Transistors, Diodes and Integrated Circuits

A) DIODES \& RECTIFIERS		40411 ACI 38 ACl41	$\begin{gathered} 1.95 \\ 150 \\ 700 \end{gathered}$	$\begin{aligned} & \mathrm{BC} 107 \\ & \mathrm{BC} 108 \end{aligned}$	9p	$\begin{aligned} & \text { BF159 } \\ & \text { BF177 } \end{aligned}$	$\begin{aligned} & 35 p \\ & 25 p \end{aligned}$		
IN914	5		20p	BCIIJ	$14 p$	BFI79C	350		
\|N4148	$5 p$	${ }^{\text {ACl }}$	150	BCI	140	BFX86	25p		
1 N 4001	7p	ACI87K		B	140	EFX87	${ }^{27}$		
1 N4002	8	Cl89K		BCII6	$14 p$	BFX88	25p		
1 N4003	$9{ }^{9}$	艮硕		BCII7	109	BFY34	10p		
1 N4004	10 p		sop	BC125	10p	BFYS0	19p		
IN400S	120	C191	15 p	EC126	19p	BFY51	19p		
IN4006	14p	ACl92	150	8C132	20p	BFY52	-		
IN4007	20p	AC193	20p	BC134	20p	ME0404	P		
Compare our prices		$A C 193 K$		BC137	300	MEO404-2	100		
		BC142	35p	p					
		Matched		BC143	40p	ME1002			
		Pa	60	BCl44	35p	ME2001			
				C194	20p	BC145	10p	MEJ001	
WOOS 50 V IA Bridge		D142	S0p	BC147	9 p	ME3002			
		D143	50 p	BCI48	9 p	ME4001			
		D262	35p	BC149	Pp	ME4002	P		
WOI 100 V		D263	40 p			E6001	P		
(A Bride 4 p		106	25p	end 10p		E6002			
		AF109	$35 p$			E800	P		
WO4 400 V IA Bride		AF139	$31 p$	for Price		E8003			
		166	20p	List or free with order		E9001			
		F170	18			E900			
B) Thansistons		F200	25 p						
		201							
		AF239	40p	BC153	10p	EU21			
2N696	15p	AF2395	45p	$8 C 154$	$35 p$	-			
2N930	25p	ALIO2	$60 p$	${ }^{8 C 182 L}$	${ }^{\circ}$				
$2 \mathrm{Ni613}$	21p	ALIO3	50p	${ }^{\mathrm{BCl}} \mathrm{BCO}^{\text {L }}$	9	5			
2N1711	21p	AUl03	C1	BC184L	9 p				
2N2369	150					C)			
2N2484	100	Component Discounts							
$2 N 2904$ $2 N 2904 A$	$30 p$ $32 p$	10% on orders over 65				$\begin{aligned} & \text { CIRCuITs } \\ & 709 \mathrm{C} \text { (TO.5) } \end{aligned}$			
	34p								
2ri2905A	3p		95p	BC212L	$12 p$				
$2 N 3053$	17p	A $\cup 107$	70p	BC213L	12 p	709 C (DIP			
2N3054	45p	AU108	65p	BC214L	$12 p$				
$2 N 3055$	$5{ }^{\circ}$	AUIIO	11	BCY70	180	41 C (TO.5)			
2N3442	C1-50	AUIII	70p	BCY71	20p	41 C (DIL)			
2 N 3638	25p	AUY21A	600	CCY72	$17 p$				
2N3866	<1.50	AUY22A	70°	BF152	250	$\begin{gathered} \text { TBA800 } 5 \mathrm{~W} \\ \text { Audio } \mathbb{C} 1.50 \end{gathered}$			
2 N 434	C1.50	AUY35	45p	BF153	250				
2N4356	35p	AUY37	$60 p$	BFI58	25.				

POSTAGE AND PACKING
PLEASE ADD IOP TO YOUR ORDER

ALLOYING

Each collector flag of the framework is coated with gold and the framework is fed into the automatic alloying machine where the flag is heated to alloying temperature by a heated platform. The machine operator selects a transistor chip by adjusting a rotatable plinth on which the chips are laid and centring a chip under the cross wires of a microscope.

The selected chip is picked up automatically by a vacuum probe and placed onto the heated collector flag where, under pressure and vibration, a gold/silicon eutectic forms, alloying the ship firmly into position. The framework is automatically carried through the alloying and bonding machines by the feed mechanisms acting upon the location holes.

Accurate location of the chip and bond wires is necessary and the feed mechanisms and location holes ensure that the framework is positioned within the machines to a tolerance of 0.001 in . A close-up view of one of the automatic alloying machines is shown in Fig. 8.

BONDING

The framework, with 128 dice attached is passed from the alloying machine and fed into the bonding machine where the emitter and base connections will be made. As the framework is stepped through the machine, fine gold wires are ball bonded to the metallized base and emitter pads on the chip.

The operator views the operation through the microscope and ensures that the bonds are positioned centrally on the bonding pads. The machine automatically bonds the free ends of the base and emitter bond wires to the emitter leads on the framework. A photograph of the bonding operation is shown in Fig. 9.

ENCAPSULATION

An encapsulation, whatever form it may take, is intended to provide certain requirements. These are: protection from the environment. vibration and shock: ease of handling and mechanical protection; heat dissipation.

Since the encapsulation can determine the reliability of the device, many evaluation trials have been carried out in order to select a plastic encapsulant and a method of encapsulation that would satisfy performance requirements. The method which is currently being used involves the moulding of a non-hygroscopic plastics substance with the desired electrical and mechanical properties, employing a transfer moulding press.

After bonding has been completed, the 128 unit framework is cut into eight sections, each carrying 16 transistors. One edge of the framework is then removed and the sub-frame then appears as illustrated in stage 4 of Fig. 10. Two of these sub-frames are clamped into a moulding jig consisting of two halves held close together by a high pressure hydraulic system.

The plastics encapsulant is heated to $150^{\circ} \mathrm{C}$ and then, when its viscosity is similar to that of water, it is forced into the mould at a pressure of 90 pounds/sq in. The encapsulant flows freely around the chip and lead wires producing a mechanically strong, high density structure. The moulded subframes, now as shown in stage 5 of Fig. 10, are removed from the moulding jig and, after curing,

STAGE 1. Part of the 128 unit framework before alloying

STAGE 2. Transistor chips alloyed to the framework

STAGE 3. Emitter and base bonded to the leads by fine gold wires

STAGE 4. One stage of the framework removed

STAGE 6. Lead wire supports removed

STAGE 7. After tinning and separation

Fig. 10. Stages in the manufacture of E-Line transistors

Fig. 11. Variations of lead-out arrangement for printed circuit wiring: left-normal; centre-triangular TO-18 right-"flat-pack" mounting
the unwanted parts of the framework are removed.
Any moulding flash is then removed and the transistor leads are tinned. for ease of soldering. The devices are then ready for testing and type stamping.

The lead spacing is specifically designed to be compatible with the standard $0.050 \mathrm{in}(1.27 \mathrm{~mm})$ hole pitch for printed circuit boards and the devices are normally supplied with straight leads.

They can be supplied with leads preformed to the TO-5 or TO-18 configuration, or for flat mounting. and examples of three lead configurations (normal. TO-18 and "flat" mounting) are shown in Fig. 11.

TESTING

High-speed automatic testing machines carry out comprehensive tests on all of the E-Line transistors manufactured. The transistors are fed automatically into the machines and are fully tested according to the required specifications and automatically sorted into appropriate categories. Test programmes are held on punched cards and can be changed as desired for different device types

Random samples are taken from the production batches and subjected to mechanical and environmental tests in order to ensure that consistent product quality is being maintained. After testing, the type numbers are stamped on to the devices by automatic machinery according to the test figures attained.

RELIABILITY EVALUATION

The tests conducted include prolonged storage at low temperature, high temperature storage with normal voltage applied and current flowing, temperature cycling between -55 C and +175 C and accelerated ageing by storage at high temperature.

A long term moisture test, at 100 per cent humidity with a programmed temperature variation every 24 hours, has confirmed that the E-Line encapsulation resists the ingress of moisture extremely well.

Stability tests have shown these devices to be equivalent in performance to those mounted in conventional metal can encapsulations.

A measure of the reliability of plastics encapsulated transistors can be taken from the fact that the E-Line series are the first plastics encapsulated transistors to have been accepted for Defence Standard classification and meet the requirements of the BS9000 specifications.

Fig. 12. Dice alloyed and bonded to a Micro-E frame

Fig. 13. The framed dice are given a transter mould

Fig. 15. The leads are cropped releasing the finished
transistors

Fig. 14. The Micro-E frame is formed and trimmed and ine moulded dice separated by cutting

GLOSSARY OF TERMS

Some of the terms ased in the article may not be known to the general reader. This brief glossary is an attempt to define such terms in sufficient detail to make the article more readily understood.

CHIP or DICE

A small piece of silicon, containing one transistor element, obtained by scribing and cracking a processed slice, into individual devices.
FLASH (moulding)
Supertluous moulding material.

HEADER

The strueture, carrying the external leads, on to which the chip is secured and which forms the lower part of a conventional "metal can" encapsulation.

JUNCTION

A transition region between semiconducting regions of differing electrical properties.*

N TYPE SILICON
 P TYPE SILICON

A silicon atom has four electrons in its outer orbit. The atom has no charge because the total negative charge of all its electrons is balanced
by the positive charge of the nucleus. The outer electrons are called "Valence" electrons, hence, silicon, having four of them, is "tetravalent"

If an atom of a pentavalent element (having five outer electrons) such as Arsenic or Phosphorous, is introduced into the crystal lattice, there will be one surplus electron which will be free to act as a current carrier. The crystal charge remains zero because the negative charge due to the electrons of the added pentavalent atom is still balanced by the positive charge of the nucleus of that atom. Since the free current carriers resulting from the addition of pentavalent atoms are electrons (negative charges), the crystal is known as n-type.

Similarly, the addition of a trivalent element (having three outer electrons), e.g. boron. causes deficiencies of electrons (known as "holes") in the crystal lattice. The holes (positive charges) behave as free current carriers and the crystal is known as p-type.

PLANAR TECHNIQUE

The formation of p-type and/or n-type regions in a semiconductor crystal by diffusing impurity atoms into the crystal through holes in an oxide mask, which is on the surface. The latter is left to protect the junctions so formed against surface contamination.

* B.S. 204:1960

APPLICATIONS

Currently, there are some 50 different types in the E-Line range, catering for almost every application including popular general purpose types, switching transistors, and low noise u.h.f. types with minimum useful bandwidths of 1 GHz . A series of diode pairs, with either common anode or common cathodes completes the range.

MICRO-MINIATURE TYPES

A range of micro-miniature plastics encapsulated transistors and diode pairs (called Micro-E) has been developed specifically for hybrid integrated circuit applications. These devices are equally suitable for thick film or thin film circuits and also for conventional printed circuit boards.
Fig. 16. Micro-E transistors are suitable for mounting on thick film circuits. Notice the scale approximately $4 \frac{1}{2}$ times

Despite their small size, 0.085 in (2.16 mm) by $0.054 \mathrm{in}(1.38 \mathrm{~mm})$ by $0.055 \mathrm{in}(1.4 \mathrm{~mm}$ high), most of these devices can dissipate up to 350 mW and have an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$. The range includes $n p n$ and $p n p$ complementary transistors, low level and medium current amplifiers, high speed switches, zener diodes, photo transistors, v.h.f. and u.h.f. amplifiers and oscillators, and high speed diodes.

Micro-miniature plastics encapsulated transistors are especially suitable for use in implanted heart pacemakers. The photographs in Figs. 12 to 15 show stages in the manufacture of Micro-E devices. Fig. 16 shows a thick film circuit using these devices and a thin film circuit is shown in Fig. 17.

Fig. 17. Micro-E devices can also be mounted on thin film circuits. Scale approximately $5 \frac{1}{2}$ times

THE present trend in logic system design is towards the increasing use of microcircuits, and in its wake lie many associated problems of education. In this article the development of an experimental circuit is described, together with the reasons for it, in which all the conventional logic functions are generated by a simple switching sequence. Some elementary knowledge on switching logic is expected or can be acquired by reading text books on the subject.

DUAL FUNCTION

Many manufacturers of microcircuits offer logic gates under a name which suggests that each gate performs a dual function. For example. the uL914 is often referred to as a NOR/NAND gate. At first sight this can be very confusing, and unless the user has some knowledge of the meaning of logic signal levels (i.e. positive logic and negative logic), the difficulty may not be resolved!

In positive logic the more positive of the two switching voltages is logic " 1 ", and the lower is logic "0". In negative logic the more positive of the two voltages is taken as logic " 0 ", and the lower of the two logic " 1 ".

In both systems a positive potential is taken to be greater than a negative potential (irrespective of the numerical values). Thus, if the two voltage levels which exist in a logic system are +0.2 V and +3 V (typical of a $\mu \mathrm{L} 914$ system), then the +0.2 V signal corresponds to positive logic " 0 " (or negative logic "l"), whilst +3 V is equivalent to positive logic "l" (or negative logic "0").

It is evident that the two logic levels are the inverse of one another, that is
positive logic " 1 ". = NOT negative logic " 1 " positive logic " 0 " $=$ NOT negative logic " 0 "
or positive logic " 1 " $=$ negative logic " 0 " positive logic " 0 " $=$ negative logic " 1 "

Clearly a gate which performs a specific function in one system appears to perform another logic function in the opposite system. For example, the M914 gate can be used either as a positive logic Nor gate or as a negative logic Nand gate. Hence the meaning of the expression NOR / NAND.

LOGIC GATE DEFINITION

So far we have assumed that the logic signal levels applied to the input of the gate are operative at its output. There is no valid reason for this assumption. For instance. if positive logic levels are used at the input of the gate, and negative logic levels are used at the output, what then is the function performed by the gate? The solution to this problem has already been developed, and the results are in Table 1.

Thus a positive logic NOR gate (i.e. positive logic levels are employed at both input and output) perform the Nor function with input and output positive logic, and it generates the NaND function with input and output negative logic.
For a negative logic NOR gate (i.e. negative logic levels are employed at both input and output) the NOR function is performed and in the Nand function the input and output are positive logic.

INVERTERS

In an attempt to illustrate these functions, the
Table 1: INPUT/OUTPUT LOGIC DEFINITIONS

LOGIC LEVELS	FUNCTION	INVERTED OUTPUTS			
Input Output	Positive Logic Gate	Negative Logic Gate	Positive Logic Gate	Nogative Logic	
POS. POS.	NOR	NAND	OR	AND	
POS.	NEG.	OR	AND	NOR	NAND
NEG. POS.	AND	OR	NAND	NOR	
NEG. NEG.	NAND	NOR	AND	OR	

most satisfactory method would be to make up a demonstration unit using integrated circuits.

The basic experimental circuit, using positive logic NOR gates, allows all the required logic functions to be generated and is shown in Fig. 1. Gate G3 is the principal gate, while gates G1, G2, and G4 in conjunction with switches S1 and S2 act as logic level inverters. (The inverter is used to change an output of 1 to 0 and an output of 0 to 1.)

Let us assume for the moment that positive logic levels are being used throughout, so that the switches are in the position shown (note: the plus and minus signs on the switches merely indicate the logic signal levels 1 and 0 , and not the polarity of the voltage at that point). In this event, inputs X and Y are applied directly to G3, and the output is the positive logic NOR function of the inputs, otherwise expressed as $\bar{X}+\mathrm{Y}$.

If S 2 is switched to the minus position, gate G4 acts as a logic level inverter, and the output from the circuit is then the negative logic version of the signal from G3, i.e., output $=\overline{\overline{X+Y}}=X+Y$

It is seen that the function generated by a NOR gate which employs positive input logic and negative output logic is the or function of the inputs.

By switching SI to the minus position, the input logic levels to G3 are inverted, and the output is found to be the Nand function of the inputs. The AND function is generated by leaving $S I$ in the minus position, and S 2 in the plus position. Thus by a simple switching sequence it is possible to generate

the four basic logic functions, i.e. NOR, OR, AND and NAND.

All that now remains is to provide additional switching and logic circuitry to enable the input signals (X and Y) and the output signal to be inverted, so that all 16 configurations in Table 1 can be generated.

PRACTICAL CIRCUIT

The schematic diagram of the unit is shown in Fig. 2. A supply of about +15 V is used (anything between about 12 V and 16 V will do), the high voltage being necessary to energise the lamp drive unit which is described later. The total current drawn by the logic section in Fig. 2 is about 40 mA at a voltage of approximately 3.9 V , the supply being drawn from a simple Zener diode stabilised power supply (Fig. 4).

A resistor is included in the input circuit to match the output resistance of a $\mu \mathrm{L} 914$ gate. The input logic levels are selected by S2 (Fig. 2). In the upper position positive logic signal levels are applied to inputs X and Y, while negative logic levels are applied when the wipers of $S 2$ are in the lower position.

Fig. 2. Circuit diagram of the complete logic demonstrator

Fig. 3. Power supply and lamp drive unit

Switches S3 and S4 are used to select the appropriate input signals to lines X and Y , respectively; these lines are brought out to terminals on the front panel to allow the actual voltage levels to be monitored.

FOUR FUNCTIONS

Switch SI is a 5 -pole, 4 -way switch made up from a 2- or 3-bank wafer assembly, and allows four basic functions to be generated. These four connections
are arbitrarily designated $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , and the student has to determine the type of gate by truthtable tests.

Since positive logic nor gates are used, the positive logic functions generated by the respective positions of SI are

Position	Function	Position	Function
A	NOR	C	AND
B	OR	D	NAND

These functions are generated by gates Gl to G4 inclusive. Gate G5 is used as an inverter in conjunction with switch $S 5$ so that it is possible to select either positive or negative output logic levels.

The wiring of the integrated circuits is shown in

Fig. 3. The output from the logic network is taken to a terminal on the panel so that the voltage can be monitored, but for demonstration purposes it is desirable to have visual indication of the output.

LAMP DRIVE

The lamp drive circuit is shown in Fig. 4, and consists of a super-alpha pair of transistors with a suitable input attenuator (almost any low-cost transistors will do if they have the current and voltage rating). Due to the simplicity of the circuit, it lends itself to printed circuit board construction, and the completed unit is shown in Fig. 5.

By means of a series of truth table tests, the student can see quickly what function is generated at each setting of the function switch.

INTRODUCTION TO SEMICONDUCTOR DEVICES By F. J. Bailey
Published by George Allen \& Unwin
238 pages, $8 \frac{3}{4}$ in $\times 5 \frac{1}{2}$ in. Price $£ 3.95$ hardback, $£ 1.95$ paperback

LONG chapters on solid-state physics usually form a prelude to books on semiconductor devices but in this case the author has reduced all this to a purely qualitative description based on the concept of the atom as a planetary system with charged particles revolving round a nucleus. This simplistic concept would be inadequate to explain such things as light emitting diodes or Gunn diodes but seems perfectly adequate in describing the range of devices in this book.

All the most common devices are included : diodes, Zener diodes, bipolar transistors, junction and insulated gate f.e.t.s and thyristors. There is also a section on integrated circuit technology. Descriptions are clear and give information of real practical value.

The section on integrated circuits seems rather too extensive for an "introduction" and the omission of the unijunction transistor which is now so common is surprising.

For the engineer or student this is a well written and thought out book, requiring no extensive knowledge of mathematics.
S.R.L.

CECIL E. WATTS-PIONEER OF DIRECT DISC RECORDING

By Agnes Watts
Printed and produced for the authoress by William Clowes \& Sons Ltd.
150 pages, $9 \frac{1}{2} \mathrm{in} \times 6 \frac{1}{2}$ in. Price $£ 2.25$

Aman of unusual qualities was "Dust-Bug Cecil", as he became affectionately known; a warm generosity, a determination to achieve by any means what he set out to do. Cecil E. Watts was a perfectionist, and an idealist-even his love for the authoress (his wife) in the earlier years seems to take second place while producing sound recordings on
disc in poor accommodation. The First World War inflicted nauseating injury to his left leg and foot through a "pineapple" bomb. His selfless determination subsequently resulted in hospital treatments for respiratory and heart illness during the early years of MSS Recording Co.

From this platform, this biography builds a picture of the devotions of Cecil to his work and of his wife's unending tolerance of his determination and at times stubbornness. The Second World War laid restrictions on his activities to continue improving the standard of dise recording, until a renewed business obligation arrived in which he was requested to help the Post Office produce entertainment for H.M. Forces on disc. Through the MSS Recording Co. Ltd. and British Homophone, many of today's recording artists and engineers can indeed look upon Cecil as the co-founder of their livelihoods.

Although there is an unfortunate lack of chronology, this biography conveys much of the feelings of his wife and through her the character of Cecil and the history of disc recording techniques in England. There are abundant excellent photographs that enhance the story.
M.A.C.

CHARGER-POWER. UNIT (June 1972)
Page 511, Fig. 2 A connecting lead from the junction of D2 and D4 should be taken to socket SK2.

CALLERCORD (August 1972)

Page 688, Fig. 6. A connecting link from the junction of D15, C15 negative should be connected to the copper strip which has the supply lead " E " soldered at one end.

Page 690, Fig. 7. The diode D9 should be reversed.
-
P.E. GEMINI TUNER (April, May, June 1972) The authors ask us to point out that there have been reported cases of misconnecting the i.c. CA3075. Pins 6, 7, 11, 12, 13, 14 must be left unconnected and for this reason small areas of copper around these pins are etched away on the p.c.b. Soldering these pins to the earth copper pad causes excessive power dissipation and may damage the i.c. permanently, also preventing the CA3075 from operating.

ELEGTRONORAMA

New colour video display system

The Moore Reed colour video system consists of a single keyboard and electronics package used in conjunction with a standard 625 line TV monitor. A "stand alone" unit requiring no special interface, the VT 109 Display is designed to accept serial or parallel inputs from any one of the many computers in common industrial use. It may be readily added on to an existing computer control facility or used as an integral part of new systems

The use of colour adds considerable clarity to complex combinations of alphanumeric and graphic information. Displays which would otherwise appear cluttered and even unrecognisable in monochrome can be transformed by the addition of colour. Conversely a greater volume of information can be displayed
Individual characters. symbols. types of information and sections of diagrams can all be clearly picked out in different colours. Any four of seven colours are supplied as standard. Additional colours are available if required.
In addition to offering colour alphanumerics the VI 109 incorporates complete sets of graphic symbols

Vehicle identification

|ndividual vehicle identification and status can automatically be obtained with Motorola's new CD. 100 mobile radiotelephone system. Designed to operate in any of the land mobile v.h.f. or u.h.f. bands the system incorporates five tone sequential selective calling techniques. Manual or automatic response from the mobile equipment is decoded at the radio control centre, displayed and recorded individually on an alpha/numeric display or collectively on a cathode ray visual display
Manual updating of the mobile data equipment can provide status, location or other forms of information. dependent upon the way the system is pre-programmed.

Motorola have recently received contracts from several ambulance authorities for the CD. 100 system. which is particularly valuable to the medium to large fleet operators, and significantly reduces use of the frequency spectrum

New low temperature manpack

Seen in the environment for which it is specifically designed, the new Racal-Mobilcal TRA.921L manpack provides satisfactory working over a wide temparature range. With a 20 W output in the range $2-8 \mathrm{MHz}$, Syncal "L" offers 6,000 synthesizer-controlled channels at 1 kHz spacing.
Designed for simplicity of operation and maintenance, the all solid-state construction and the use of conservatively rated components ensure extremely reliable performance under the most demanding environmental $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$ and operational conditions. Racal Mobilcal manpacks are today in service in over 100 countries throughout the world.

Communication 72, an International Conference and Exhibition, was held recently at Brighton. Some of the electronic equipments displayed are pictured and described below.

Line scan recording oscilloscope

Oparticular interest among Honeywell test instruments on show was the new 1856 Line Scan Recording Oscilloscope which provides excellent resolution 10.1 mm spot diameter) with considerable versatility -up to $2 \mu \mathrm{~s}$ per $\mathrm{cm} X$ scan speeds and 250 $\mathrm{cm} / \mathrm{sec}$ paper drive speeds. A Y deflection capability permiis the printing of conventional wave forms (d.c. to 100 kHz) as well as providing simulated contour displays when combined with Z modulation-both in spectrum analysis and pictorial displays.

For use wherever line scanned information is transmitted, the Honeywell 1856 has high-speed picture build-up with near instantaneous print-out. Its flexibility in design provides also for spectrum analysis and conventional waveform recording.

Pocket pager

WDE area paging is now possible wilh Motorola's latest paging receiver. Pageboy 11 is a miniature pocket pager employing monolithic integrated circuitry throughout and has a unique built-in memory which can discreetly store a "page" to avoid embarrassment to the user

Weighing less than 4 ounces and occupying only 4.9 cubic inches, the Pageboy Il receiver houses a battery which provides up to 1,500 hours operation

Both "tone only" and "tone plus speech" models are available together with an extra loud version for use under high ambient noise conditions.

Motorola have recently installed citywide paging schemes in many major U.K. cities involving their Pageboy l equipment. The introduction of the super-sensitive Pageboy il unit makes county and nafionwide systems economically viable and already several potential large-scale users are evaluating the system.

P.c.b. digital tester

The Swift Digital Tester will be demonstrated during the exhibition. This low-cost portable ATE for use in the production, inspection and development testing of digital printed circuit board assemblies was introduced by Honeywell last year

The system performs one million tests per second and indicates either a pass or fail with diagnostic assistance being given by a visual indication of the outputs at which discrepancies exist. Pre-set high and low pulse voltage limits are selected by push-button so that in most cases a board can be tested under both high and low tolerance conditions within a few seconds.

Gerry Brown ONTHEFHNWGE

PSYCHO BLUES

Mark my words, noise is going to be a racket (if you'll forgive the cliché) that over the next couple of years or so will cost an awful lot in prevention.
Peter Walker, Minister for the Environment, has already publicly stated that this will be next on his list of pollutants to get the axe. So, I guess, industrial people and even discotheques will shortly be in hot water if they pay no heed to the accumulative deafness that they could be inflicting upon unwitting individuals.

But, laudable though Mr Walker's intentions may be to reduce the effects of noise, particularly its insidious ability at high levels to produce permanent surdity, there remains the additional, rarely considered (and in many ways more pernicious), bogey. Namely, the psychological effect.
What, after all, is noise? I once heard it referred to as unwanted sound, and no doubt any other definition would fall short of the truth. This being so, pretty well anything comes under criticism from neighbours' children yowling like terriers after their street football, to dawncalling dustbin-men over-zealous to get into fettle for "It's a Knockout!"

Of course, unwanted sound for one person is not necessarily unwanted for someone else, either from the psychological viewpoint, or, in the case of the already deaf, on the basis of intensity. Thus, it seriously looks as though hapless souls afflicted by psychological noise will have to resort to earmuffs if some kind of neurosis is to be avoided. It is highly unlikely that the offenders, basking in a euphoria of excess dB's, will tolerate being cajoled into attenuation, much less cessation!

HELP FOR THE OLD

With the sun brightly shining as we sit on a breakwater and idly dangle a toe or two in the briny, it is all too easy to forget the coming Winter and the terrors it can bring for many old folk.

During the cold months, aside from the consequences of slipping on ice and breaking a femur, there always
exists the strong possibility of developing a condition of hypothermia (very much lowered body temperature) resulting from poorly or unheated homes. This, if permitted to continue for long can ultimately result in unconsciousness and death. Not a very pleasing thought, particularly since most older folk do not notice temperature drops all that easily and may therefore be totally unaware of the danger at the time.

But this is just one problem. As I see it, the biggest threat to most senior-citizens is the difficulty of communicating any form of distress situation automatically to the outside world. One old chap I used to know thought up a manually-operated device that went part-way to beating the problem.
The device amounted to a lamp-box which flashed a "help!" notice to passers-by, provided it was first switched on; trouble was, one day he had a nasty fall and couldn't raise himself from the floor to reach the switch! Luckily for him, a caller was due and prevented what might have been a dodgy situation.
Some while later, he and I devised a set-up (see Fig, 1) which overcame most of the disadvantages of the earlier device. This arrangement is virtually fail-safe and relies upon a principle which requires the alarm to be reset from time-to-time to ensure that it doesn't go off.

Once the reset switch has been depressed, a long-duration timer runs down for, say, 12 hours, at the end of which its output operates a Schmitt trigger to set a 2 minute timer. This timer immediataly sets off a warning light (and buzzer, if required) which indicates that the reset switch must be again depressed. Provided, at this stage, the system is reset, no further warning will be given until another 12 hours have passed.
However, if during the 2 minute period no attempt is made to reset, as when an emergency exists, then the short-term timer will cause the Schmitt trigger to switch. In so doing, a pulse will set the flip-flop

Refinements like a temperature warning, and a "holiday switch" to override the system while the owner is away could be incorporated. Another improvement might be a standby battery to take over in the event of a power cut.

Why not design and build one for someone you know, or even someone you don't? It could save their life!

PSITRONICS

In an age when science appears just about able to achieve anything, short of effecting an improvement in the cost of living or in an understanding between nations, it is refreshing to notice what is rapidly appearing to be a revival in the "cult" to apply electronics to psi, or paranormal phenomena.
Among a number of P.E. readers this subject seems to have been reapproached following my discussion about "Occultaphonics" in this column a few months back. Indeed, Pete' Morton, who contacted me recently, has suggested that a group be formed to investigate various types of design for psitronic (his handle!) equipment. His letter (see Readout) says that he will be pleased to hear from other readers interested in the subject, or those who are actively working with any experimental gear in this field.

CONSTRUCTION OF THE DISPLAY PANEL

LASI month the construction of the main chassis was described. In this month's part the logic and construction of the display panel will be dealt with. The outputs from the power supply whose description also appeared last month will be used when it comes to the testing stage.

DISPLAY BOARD

Any calculator depends heavily on its display system not only because it is obviously necessary to register the answers to the problems being worked out, but also because it is required to display any data entered through the keyboard so that keying errors can be corrected immediately.

Digi-Cal has an entry capacity of six digits and an answer capacity of up to eight digits, making a display length of eight digits necessary. In addition to the display of numerical data the display is required to illuminate a decimal point in any one of four locations, the exact position being determined by the setting of the decimal point thumbwheel (for answers) and the contents of the decimal place counter (for entries).

The display format chosen for Digi-Cal is the "seven segment" system specified because of its simplicity and low cost.

With any display format, but particularly with the seven segment system, it multi-digit readout can look confusing if insignificant zeros are not blanked in some way to leave the significant digits uncluttered. For Digi-Cal a leading-edge ripple blanking circuit has been incorporated which produces a very easily interpreted display of the form normally used in written calculations.

DISPLAY DEVICES

When choosing the display devices three different types were considered, the gas-filled Nixie tube, the Light Emitting Diode (L.E.D.) and the incandescent filament.

Nixie tubes were rejected because of their bulkiness and high-voltage requirements and L.E.D.s because of their high cost. The device eventually selected was the Minitron type 3015 F which is an incandescent filament, seven-segment readout with a built in decimal point, housed in a package with the same pin configuration as a dual-in-line integrated circuit.

gLossary of terms used

CALL-UP bring data from a store or register ENABLE allow the inputs or outputs of a device to become active. Also the reverse DISABLE
DATA BUS a wire or group of wires used to carry data to or from a number of different locations (see TIME SHARING)
DUMMY INPUT a temporary input to a device used to simulate an input that could occur (Note that with TTL i.c.s. an input with no connections to it will be equivalent to a logic 1)
RIPPLE BLANKING or ZERO SUPPRESSION the method of improving readability by switching off, i.e. blanking, all display devices whose inputs are insignificant zeros.
DIODE MATRIX a two-dimensional array of diodes used for a variety of purposes such as decoding and read only memory
READ ONLY MEMORY a system whereby unalterable data is held in store to be called up when required
ONE-OF-EIGHT or ONE-OF-TEN DECODER a decoder which takes a binary number as its input and produces only one active output (out of eight or ten) as its output
DECADE COUNTER a system which has ten states each of which is produced in turn when clock pulses are present at its input
CLOCK a system which produces pulses of fixed duration at a fixed repetition rate
TIME SHARING or MULTIPLEXING the method of selecting data from a number of sources in turn and presenting them on a single wire or group of wires
STROBE PULSE a pulse which enables a system for a fixed period only

The small size and low current requirements, along with their ready availability made the Minitron indicators ideal for the display, and ensured that both the indicators and the drive electronics could be built on the same piece of Veroboard, eliminating all of the messy readout-to-board wiring required with most systems.

DRIVE ELECTRONICS

The Minitron indicators are used in Digi-Cal as part of a completely self-contained display board working in the "time shared" mode.
Time sharing, or multiplexing the indicators in a display system involves scanning each digit of the display in turn, and switching it on for only a fraction of the total display period.

The basic principles of time shared displays were laid out in last month's article in the Alpha Numeric Displays series, and for this reason we need only discuss them briefly here.

One of the advantages of a multiplex system is that only one seven-segment decoder is required, instead of one per digit as in a static system. The single decoder is connected to each digit of the display in turn by means of an electronic commutator which at the same time calls-up the data to be displayed in that digit position from its stored location.
The scanning rate is made high enough that no flicker is detected by the human eye, and the energising voltage of the indicators is increased from its nominal d.c. value to compensate for the fact that each indicator is on for only a short time compared with the time it is off.
Another advantage of time sharing is that since all the data for display is not required simultaneously, connections between the data store and the display can be made by means of a time shared "data bus" (see Alpha Numeric Displays, Pt. 6) consisting of only four wires in this case.

BLOCK DIAGRAM DETAILS

The skeleton block diagram of the display system is shown in Fig. 3.1.

The 1 kHz clock is used to drive a binary counter whose own outputs are fed to a decoder which produces a one-of-eight response to drive the electronic switches which connect the 20 volt line to the Minitron common terminals.
The one-of-eight output is also used to "call-up" each bit of the data in turn from the entry and the answer registers of the calculating unit. Both the entry and the answer data buses are routed to the display board where one of the two is selected for display by a gating arrangement controlled by the programme.

The selected data is fed to a seven segment decoder which produces as its output a series of "earth" connections corresponding to the segment pattern for that numeral.

The seven outputs from the decoder are wired to all the Minitron segment wires (via an isolating diode matrix) but since only one of the Minitrons will be connected to the 20 volt supply only that device will indicate the data on the bus. In the following time period of course, a different Minitron will be "enabled" and a different B.C.D. code will appear on the bus.

CIRCUIT OPERATION

The circuit of the display is shown in Fig. 3.2. and before going into a detailed guided-tour it would be useful to spend a while correlating the various components on the circuit with their counterparts in the block-diagram (but note that a few of the components cannot be found a home in this way).

In the detailed circuit the clock (Fig. 3.3) is used to drive an SN7490 (IC6) decade counter which has its D output connected to the reset input so that as soon as a count of eight appears the counter is reset to all zeros from which it starts to count up again.
The output from the SN7490 is decoded by an SN7442 one-of-ten decoder (IC5), which in this case is made into a one-of-eight version by connecting its D input to earth permanently.
The SN7442 outputs are "active low" which means that all outputs except the energised one will be in

Photographs of the two sides of the Veroboard panel in the prototype. Construction is complete except for one Minitron. Note the underside wiring from the diode matrix to the Minitrons

the "logic 1 " state. This is the wrong sense to drive the following circuits so two quad NAND gates ICI, IC2 (SN7400) are used as inverters to give a one-ofeight code which is "active high".

The eight lines so produced are used both to drive the eight electronic switches routing the 20 V supply to the selected Minitron, and to call-up the correct data from the remote storage registers.

ELECTRONIC SWITCH

The circuit of each of the eight 20 volt switches is shown in Fig. 3.4 along with one of the eight open-collector gates used to drive it.

The SN7401 gates also act as inverters so that the selected gate will have an "active low" output, or in other words, a low impedance earth connection, this earth connection being used to turn on the pnp switch via a resistor and Zener diode.

The Zener diode is used to protect the output transistor of the gate which has quite a low collector breakdown voltage of about 15 volts. The Zener actually employed in this position is the reverse biased base emitter junction of an $n p n$ transistor with a breakdown voltage of about 6.5 volts: using a transistor instead of a purpose-built Zener is actually cheaper where voltage tolerances are loose.

It is worth noting that the breakdown voltage of SN7401 gates is not guaranteed above seven volts by the manufacturers, but in tests these gates have nearly all shown breakdowns of 15 volts or more which is satisfactory for these purposes, and should a particularly poor device be found (this will be indicated by its digit being "on" permanently) the gate can be replaced.

DATA BUSES

Returning to the main circuit, the two data buses are fed to four and-OR-INVERT gates ICII, IC12 ($2 \times$ SN7450) which act as four single pole changeover switches with the extra feature that they also invert the data on the buses, a desirable feature in fact, since this data is in complement form to start with.

Selection of the required data bus is performed by two control wires which come from a bistable in the control programme, the selected bus being fed from the SN7450s to the SN7446 seven segment decoder inputs (ICIO).

Each of the SN7446 outputs corresponds to one of the display segments labelled "a" to "g", and these outputs are wired to all eight of the appropriate segment connections on the Minitrons via a diode matrix and current-limiting resistors.

The diode matrix is necessary to ensure isolation between the separate indicators, and consists of one diode for each segment of each Minitron, making 56 in all.

The current-limiting resistors are included to limit the high inrush ${ }^{3}$ of current to the outputs of the decoder possible when an indicator is first switched on and is cold. Since the output of the decoder is subject to continuous switching in a time shared system these resistors are vital.

DECIMAL POINT

The decimal point in the Minitron indicator is effectively an extra segment, one of its connections being made to the COMMON terminals, and the other being available for control purposes.

In the Digi-Cal system the control wire for the selected decimal point is grounded through a one-ofeight decoder, the filament being switched on along with the appropriate numeral segments when the correct digit-strobe is present and the COMMON terminal simultaneously connected to the 20 V supply.

The required position of the decimal point is defined by a three bit binary code which can originate in one of two places the appropriate one being selected in the keyboard circuit by the control programme.
The three wires bringing the code to the display carry it in inverted form so that 111 means "no decimal places" and 000 means "seven decimal places".

The three bit binary number is fully decoded to its one of eight equivalent by an SN7445 decoder (IC8) and the appropriate connections made via current-limiting resistors to the decimal point control lines on the Minitrons.

Eight separate decimal point positions are not required by the arithmetic section of Digi-Cal which as it stands can only cope with four separate decimal points.

The display unit is wired for eight positions, firstly to allow for improved calculating circuitry and secondly to make the display a self-contained system which can be used for any other purpose should this be required.

If desired by the constructor, the few extra wires redundant in Digi-Cal can be left out as well as Rl to R4.

RIPPLE BLANKING

Up to now the ripple blanking circuitry (IC9 and IC7) has been ignored, and this has been done because it is essentially an "add on extra" feature making it possible to leave it out altogether without affecting the operation of the rest of the circuit.

Despite the fact that it is optional, however, it must be said that the display readability is sadly reduced without it and its incorporation is highly recommended.

Fig. 3.3. Circuit diagram of the clock generator circuit

Fig. 3.4. Circuit diagram of the 20 V switching circuits, eight of which are required

Fig. 3.5. Component layout and copper strip breaks for the Veroboard display panel. Details of the construction of the clock, diode matrix and 20 V switches are shown in the smaller diagrams

In a time shared system the ripple blanking information has to be stored for future use with subsequent digits as they arrive on the data-bus, and in the Digi-Cal display this storage is effected by means of a "custom-designed" flip-flop in the form of an SN7402 quad two input nor gate, IC9.

The display strobing system operates from left to right across the display, the most significant digit being displayed first, and as each digit is decoded by the SN7446 an extra output is produced for use in the ripple blanking circuit.
This output is a "zero detect" output which will go low if the data at the input of the decoder is 0000. If this ripple blanking output is low at the start of a strobing run across the display then that first digit is blanked by a low input to the decoder's ripple blanking input and at the same time the fact that this digit is a zero is "remembered" by the SN7402 flip-flop.
If the next digit is also a zero it will be blanked in turn and so on until the first significant number appears at the decoder inputs at which time the flip-flop will be set by the corresponding high output on the ripple blanking output (RB0) pin.

From this point on, any digit, regardless of whether it is a zero will be displayed until the flipflop is reset by the strobe counter reset pulse at the end of a run.

DECIMAL POINT ZEROS

The system as just described performs the suppression of all leading edge zeros as required, but can give peculiar results in some conditions.

If the answer or entry to be displayed consists of all zeros for example then they will all be blanked to give a display consisting of nothing but a decimal point, an obviously unsatisfactory state of affairs, and one which can be corrected by arranging to have the ripple blanking flip-flop set by either the appearance of a significant digit or the appearance of the digit immediately preceding the decimal point even though it be a zero, whichever arrives first in cach display run.

With this proviso an eight digit answer consisting of all zeros would be displayed as 0.00 (two decimal places selected).

Arranging for the ripple blanking flip-flop to be set in this way is quite straightforward except for the fact that the decimal point position can be in any one of eight places, a complication which is overcome by the use of an SN74151 eight line to one line multiplexer (IC7).

This device operates in a similar manner to a one pole eight way switch, the switch position being determined by the three bit binary code input, which in this case is the decimal point position code.

The eight inputs are provided by the display strobes, only one of which will be selected by any particular code for transmission to the Z output. When the selected strobe appears it is routed straight to the flip-flop SEI input and it removes the blanking signal until the end of the display run when the flip-flop is reset and the process repeated.

CONSTRUCTION

The baseboard for the display consists of a single piece of Veroboard cut from a West Hyde type 122 board which has a matrix of 0.1 in.

DISPLAY PANEL

Resistors	
R1-15	47Ω (15 off)
R16	$180 \mathrm{k} \Omega$
R17	$3.9 \mathrm{k} \Omega$
R18	$5.6 \mathrm{k} \Omega$
R 19	$15 \mathrm{k} \Omega$
R20-36	$1 \cdot 2 \mathrm{k} \Omega$ (17 off
All \ddagger W	, $\pm 10 \%$ carbon
Capacitors	
C1	$0.01 \mu \mathrm{~F}$
C2	$150 \mu \mathrm{~F} 15 \mathrm{~V}$ elec
C3-5	$0.047 \mu \mathrm{~F}$ (3 off)
C6	$10 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.

Transistors
TR1 E5200 TR2, TR3 E5201 (2 off) TR4-11 E5200 (8 off) All West Hyde types TR12-21 E5201 (8 off)

Diodes
D1-D56 West Hyde type "red" (56 off)
Integrated Circuits

IC1, IC2	SN7400 (2 off)
IC3, IC4	SN7401 (2 off)
IC5	SN7442
IC6	SN7490
IC7	SN74151
IC8	SN745 (or SN74145 see text)
IC9	SN7402
IC10	SN746 (or SN7447 see text)
IC11, IC12	SN7450 (2 off)

Display Devices
LP1-8 Minitron 3015F (8 off)

Miscellaneous

0.1 in matrix Veroboard ($9.3 \mathrm{in} \times 3.3 \mathrm{in}$)

The dimensions of this board along with the copper strip break layout are given in Fig. 3.5.

The component layout is also shown in Fig. 3.5, and when wiring up this diagram should be used in close conjunction with Fig. 3.2.

With a circuit board of this complexity it is impossible to give a point to point wiring diagram, so all the pin numbers of the integrated circuits have been given on Fig. 3.2.

The best strategy to employ when wiring up is first to label all the i.c.s with sticky labels so as to correspond to the i.c. numbers in Fig. 3.2. Wiring should be carried out using thin single core wire and wherever a number of wires need to share the same i.c. pin a terminal pin can be used to make this easier.

The circuit should be built up in blocks, checking the functioning of each block before proceeding to the next. The first block should be the clock circuit, followed by the counter (IC6), the decoder (IC5), then one digit strobe gating circuit (one gate of IC2, the corresponding gate of IC4 and its associated 20 V switching circuit).
When wiring the integrated circuits it is a good idea to wire up all the power supply lines (5 V and 0V) before the logic gates themselves as this allows the functioning of the i.c. to be checked as its wiring is completed.
continued on page 776

NEW
 15 watt Hi Fi AMPLIFIERS

Frequency response 15 to $19,000 \mathrm{cs}$. Signal to noise $>70 \mathrm{db}$. Input sens 750 mv into 2 k . HELECTRONICS
105, GRANGE ROAD, LONDON S.E. 25.

CALCULATOR CHIP

TEXAS 1802 One-Chip Calculator Circuit. Build yourself a low-power pocket calculator with 8 digit display (7-Segment) and all professional functions.

Calculator Chip TMS I802NC $\quad £ 30.00$
RAPIDMAN 800 Calculat or $\quad \mathbf{E 3 9 . 5 0}$
LED Displays-One digit $£ 4.50$ Four digits $\quad £ 17.00$ -5×7 Dot Matrix $£ 12.50$
All displays 14 pin O.I.L. packages. CWO to

ELECTRONICS
181 EbBERNS ROAO, HEMEL HEMPSTEAD, HERTS. 044262757

Gives connection data and diagrams of a large number of the most commonly available types of linear and logic integrated circuits, with manufacturers' equivalents of common series.
This Wall Chart is a companion to the Semiconductor Lead-Out Identichart and measures 21 in . $\times 15 \frac{1}{2} \mathrm{in}$. It provides at-a-glance data for the workshop and laboratory on differential amplifiers, operational amplifiers, voltage regulators, transistor arrays, power amplifiers, DTL and TTL.

Designing with Integrated Circuils

An absorbing exercise in applying I.C. principles to experimental circuits that have several advantages over discrete circuit counterparts. This series of articles will open up the practical applications of l.C.'s and provide some inexpensive circuits using popular devices.
October issue on sale September 8

PRACTICAL

LASERS IN THE NEWS

A laser optical wideband transmission system is under development at the Signals Research and Development

Establishment (SRDE) at Christchurch. A single flexible glass fibre is used as the transmission medium and it can be laid just as any ordinary electrical conducting cable (i.e. round corners) and harnessed and laced with other cables. A gallium arsenide laser is used with a simple silicon photodetector at the other end. An alternative non-laser system also being investigated uses bundles of fibres and simple gallium arsenide lamps.

The advantage of the system is its high immunity against electromagnetic pick-up and it is therefore particularly valuable in environments which are electrically "noisy". The development is seen as one answer to the problem of

interference-free data transmission or voice communication in bad environments such as ships.

The German company Siemens is experimenting with lasers from an entirely different angle although still in communications. They like it for the astonishing number of communications channels available over a single laser beam but, of course, there is still the problem of atmospheric attenuation in free space.

An experimental installation has now been set up in Munich over a 5.4 kilometre path between the district of Obersendling and Giesing. A 5 W CO 2 laser is used, emitting an invisible infrared beam which, say Siemens' engineers, is less susceptible to atmospheric influence than the visible beam emitted by helium-neon lasers. It has been found that transmission
is still possible in heavy mist, moderate rain, fog and snow and, in fact, any atmospheric disturbance where deterioration of the signals is less than $8 \mathrm{~dB} /$ kilometre.

For high volume short-range traffic in cities, say between tower blocks, the system shows considerable promise especially for data transmission where, if there should be a temporary break in communications due, perhaps, to heavy rain, the data can be temporarily stored and then transmitted in high speed bursts when the channel is open.

Nobody has yet made a fortune from lasers but they could become big business in this sort of application when one considers that every major city could be using scores of such links in the 1980's merely because the local land-lines are already overloaded as, indeed, they will be.

CONTROLLING UPPER AIR SPACE

I was fortunate in being one of the very few journalists to be invited to inspect the new Eurocontrol air traffic control centre in Maastricht, Holland. The Centre has been designed to control the upper air space over Belgium, Holland and part of north west Germany. It has been built by a consortium of companies comprising Plessey Radar (UK), Thomson-CSF (France) and AEG. Telefunken (Germany).

It is a massive complex of sight computers, 140 cathode ray display units, and operating positions for 80 controllers and trainees. Now only in partial operation, it is in its final stages of development and should be in full operation by late 1973. The Centre is costing some $£ 5$ million and looks like being a good investment as it is clearly a pattern for similar centres elsewhere in Europe and, possibly, in other parts of the world. The Eurocontrol Commission of Ministers has already announced a further installation to be based on Karlsruhe.

Meanwhile there is uproar over the British ATC centre at West Drayton with much of the blame for its operational shortcominas allegedly being attributed to the Marconi computer system. J. W. Sutherland, chief of Marconi Radar Systems, is defending the computers and blaming constantly changing operational requirements which have resulted in computer capacity below that now required. Wherever the problem lies, the consequence is that larger and faster computers are now needed and are being ordered.

The only crumb of comfort is that the Americans have been in similar trouble and, surprisingly, Eurocontrol who should have
profited by the experience of America and Britain, having started much later, has already decided that three IBM 370/155 computers will be needed in place of the present $360 / 50$ complex as air traffic growth was underestimated, especially that of charter flights.

Mutual recriminations between specifiers and equipment suppliers may help injured pride but don't help the provision of quick solutions to problems. The successful implementation of very large integrated electronic systems is clearly much more difficult than was thought. It was refreshing to hear Eurocontrol administrators admit quite openly that a mistake had been made which would be speedily rectified.

MAKING THE GRADE

Giant GEC and medium-sized Racal have both announced record profits and growth during a period when business conditions have been anything but easy. Which just goes to show that well-managed companies can make progress in bad times as well as good.

The Unitech Group has recently acquired APT Electronics and might well be looking for further expansion through acquisition. One Unitech company to keep an eve on is Data Recognition Ltd., specialising in Optical Mark Reading (OMR) equipment for dataentry into computing systems. OMR is proving to be something more than the poor man's optical character recognition system. It is now taking off in a big way. fully justifying the faith of NRDC who backed Data Recognition's pioneering work and now see it coming to fruition with several large contracts in hand.

MICROWAVE 73

Europe's first full-scale Microwave International Exhibition and Conference, scheduled for next year, already looks like being a winner. A call for papers has been put out and I understand that the exhibition stand space has already been more than half sold.

The event is to be at the Metropole Hotel, Brighton, which is turning out to be something of an up-and-coming electronics centre. Communication 72 was a success which is to be repeated in 1974. The annual Internepcon show is now a "must" in everybody's diary and the Electro-Optics show is another big draw. And it's not just because Brighton is a jolly place to have a conference and exhibition, although it clearly must be a factor. More important is the organisation, the quality of the speakers, the technical standing of the delegates and the rigid exclusion of literature-snatchers.

230-250 VOLT A.C. SOLENOID Manufactured by illustration). Approx. $1 \frac{1}{2} 1 \mathrm{~b}$ pull, ance to above illestration). Approx. $1 \frac{1}{2} 1 \mathrm{~b}$
Feet size 1 if $\mathrm{in} \times$ Itin. Price $85 p$ incl. P. 8 P . $18-24$ YOLTD.C.SOLENOID Size: O.A.L. 3 ince: 75 pincl.P. \& P.
ilb. approx. PRICE

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon ing circuit. $230 / 250 \mathrm{~V}$ a.c.operation
Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijuncrion Xenon Tube and instructions 66.30, plus 25PP. \& INDUSTRIAL KIT
Ideally suitable for sehools, laboratories, ecc. Roller tin printed circuit. New trigger coil, plastic thyriseor. Speed adjustable -80 f.p.s. Price ©
HY-LYGHTSTROBE MK III HY-LYGHT STROBE MK IT Oesigned and produced for use in large rooms, hals printed circuit, also a special trigger coil. Speed adjustable $0-30$ f.P.S. Light output approx. 4 ioules.
EI2.00, \& 50 . SPECIALLY DESIGNED.
THE 'SUPER' HY-LYGHT KIT
Approx. four times the light output
proven Hy-Lyght strobe. Incorporating:

- Heavy dury power supply
- Variable speed from 1-23 flash per sec
ult producing an intense
Never before a Strobe Kit with so HIGH an output at so LOW a price ONLY 220 plus 75pP. \& P.
ATTRACTIVE, ROBUST, FULLY VENTILATED METAL CASE specially designed for the Super Hy-Lyght Kit including rellecror 45 .
4500
For Hy-Lyght Kit including reflector.
7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 53p, P. \& P. I3p or post paid with kits.

6 INCH COLOUR WHEEL
As used for disco lighting effects, etc. $\mathbf{6 5} \mathbf{7 5}$ incl. P. \& P. can be operated from our one r.p.m. synchronous motor price 75 p incl. P. \& P. Motor available with wheel.
INSULATION TESTERS NEW! Test to I.E.E. Spec. Rugged meta
construction, suitable for bench or construction, suitable for bench or
field work. constant speed cluteh Size L. Bin, W. Hin , H. 6 in, weight 61 b .
$1,000 \mathrm{~V}$, 1,000 megohms, $£ 34.00$
 N carriage paid.
$500 \mathrm{~V}, 500$ meg

36V 30 AMP.A.C. or D.C.VARIABLE

 L.T. SUPPLY UNITINPUT 220/240Va.c.
OUTPUT CONTINUOUSLY
OURTPUT CON
Furlable 0-36V
fully isolated. Firted in robust mal case with Voltmeter, Ammeter Parel Indicator and handies Input and output fully fused. Ideally suited for
Lab. or Industrial use. $E 68$ plus $£ 2 \mathrm{P}$. P .

VENNER ELECTRIC TIME

SWITCH 200/250V Ex. GPO.
Tested. Manually set 2 on, 2 off every G3.75. P. \& P. 20p. Also available with

Superior Quality Precision Made NEW POWER RHEOSTATS 100 WATT. 1 ohm, $10 \mathrm{~A} ; 5$ ohm,
4.7A; 10 ohm, $3 \mathrm{~A}, 25$ ohm, 2 A : 4.7A: 10 ohm, $3 \mathrm{~A}, 10 \mathrm{ohm}, 2 \mathrm{~A}$,
$50 \mathrm{ohm}, ~ 1.4 \mathrm{~A}: 100 \mathrm{hm}, ~ 1 \mathrm{~A}$ $250 \mathrm{ohm}, 0.7 \mathrm{~A} ; \quad 500 \mathrm{ohm}, 0.45 \mathrm{~A}$; $1 \mathrm{~kg}, 280 \mathrm{~mA}$; $25 \mathrm{k} \Omega, 230 \mathrm{~mA}$: $2.5 \mathrm{k} \Omega, 2 \mathrm{~A}: 3 \mathrm{~km}, 5 \mathrm{kn}, 140 \mathrm{~mA}$ Diameter shaft length fin, dia. 数in. All a £1.65 each. P. \& P. 7 立p.
50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$ All at $4 \cdot 15$ each. P. \& \& 71 P.
25 WATT. $10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 / 1 \cdot 5 / 25 / 3.5$ 5kn. All at 90peach. P. \& P. $7 \frac{1}{2} p$.
Black Silver Skirted knob calibrated in Nos. 1.9
RELAYS SIEMENS, PLESSEY, Etc.
miniature relays
Col. (1)
Coil (2)
Working
Working
d.c. volts
Col. 3
Contracts
Col. (4)
Price
HD
$\mathrm{HO}=$
Heavy duty
*lnel. Base

52
410
600
700
700
700
700
700
700
1.250
2.500
2.400
9.000
$15 k$

12 VOLT D.C. RELAY 140 ohm coil

Three sets cio concacts rated at 5 amps 78 p includ

 in P \& P (Similar to illustration below.) - OIAMOND H' 230 VOLT A.C. RELAYS (Unused) Threesetsc/ocontacts rated at 5 amps.PRICE: 50p. P. \& P. 10p. (100 lots e40 including P. \& P.)
 230 VOLT A.C, RELAYSMFG. KEY SWITCH One set c/o contacts rated at 7.5 amps. Boxed.
PRICE: 40 p. P. \& P. 5 p. (100 lots $\$ 32$ inc, P. \& P.) MINIATURE LATCHING RELAY Manufactured by Clare-Elliotr Lrd. Type F. 2 c/o per manent $15-30$ Volt $0 . C$. Size t^{*} high, "wide. "* thick Com

$\left\{\begin{array}{l}\text { ELECTRONIC } \\ \text { Easy to build. Solid State. Two full octaves }\end{array}\right.$

Easy to build. Solid State. Two full octaves Powered by two penlite $1 \frac{1}{2} V$ batteries. Com plete set of parts including speaker, ett.
together with full instructions and 10 tunes.
Prise $€ 9$. P. \& P. 22p.
50 in I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, special tools required. The kit includes Speaker, Meter, Relay, Transformer, plus a host of other components and a 56 -page instruction leaflet
Some examples of the 50 possible Projects are: Some examples of the 50 possible Projects are: G.E.C. 12 WAY 15 AMP CONNECTORS
 per doz. Post paid

LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered ligh
source with adjustable lens
 assembly and ventilated lamp
housing, to take MBC bulb. housing, to take MBC bulb. or similar cell. Both units are
Price per pair 22.75. P \& P. 18 p .
LIGHT SENSITIVE SWITCHES

$$
\begin{aligned}
& \text { Kit includes ORP. } 12 \text { Phorocell, Relay } \\
& \text { Transistor Circuit. For } 6 \text { or } 12 \mathrm{~V} \text { D. } .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Transistor Circuit. For } 6 \text { or } 12 \text { V } 0 . C \text {. } \\
& \text { operation. Price } \mathcal{E} 1-50 \text { plus } 12 \text { p P. \& P. }
\end{aligned}
$$

ORP. 12 and Circuit 63p pose paid.
$220 / 240 \mathrm{~V}$ A.C. MAINS MODEL
Mains transformer, rectifier, relay, I make 1 break
H.D. contacts. price incl. circuit $\mathbf{2} \mathbf{6 5}$. P. \& P. 20p.

Very special offer MICRO SWITCH

 $5 \mathrm{ampc} / 0$ contacts. Fitted with removable. Dush button
assembly. Ex. P.O. 20 for $£ 1$ ine.
D.C. AMMETERS NEW!

1A, 5 A, $15 \mathrm{~A}, 20 \mathrm{~A}, \mathrm{El} 1.75$. incl. P. \& P.

Personal callers only. Open Sat

Dept. PE9, 57 BRIDGMAN ROAD
 CHISWICK, LONDON W4 5BB Phone 0l-995 1560

Showroom open Mon.-Fri

9 LITTLE NEWPORT STREET LONDON WC2H 7JJ
 Phone 01-437 0576

techingal tratinde in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diplomà and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- Radio Amateurs' Examination
- General Radiocommunications Certificate
- C. \& G. Radio Servicing Theory
- General Certificate of Education, etc.

Now available, Colour T.V. Servicing

Examination Students coached until successful

 NEW
SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics Member of the ABCC

Accredited by the CACC

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. RB25, Intertext House, Stewarts Rd., London SW8 4UJ
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)
NAME
(Block Capicals Please)
AGE
ADDRESS

INTERMATIONAL CORBESPONOENCE SCHOOLS

PCB's and KITS

For Designs Published in P.E.
All PCB's Fibreglass, Drilled, Roller-Tinned
CALLERCORD-Designer Approved PCB and Kit Semiconductor set, $65 \cdot 20$
R's, C's, Pors, Switehes, Relays, Transformer, $\mathbf{6 7 . 7 5}$
PCB (4 in $\times 7$ Thin) also holds edge-con, and relays, $\mathbf{1 1 . 5 0}$
Pips Gen.-S/C's, R's, C's, PCB ($1 \neq \mathrm{in}$. $2 \frac{1}{2}$ in), $\mathbf{E} i \cdot 20$
AURORA-Multichannel Sound Controlled Lighting Designer Approved PCB's and Kit
4 Channel set - Semiconductors incl. thyristors, $\mathbf{£ 6 . 4 5}$ R's, C's, Pots, Ferrite Cores, $\mathbf{6 5 - 7 0}$ Power Supply (will supply 8 channels), $\mathbf{6 3 \cdot 2 0}$
PCB ($4 \frac{1}{2}$ in. I lin) holds Pre-amp and 4 chans. incl. pots, $£ 1.80$
 formers, and 8 thyristors or triacs, $£ 1.35$
PHOTO-PRINT PROCESS CONTROL UNIT
Semiconductors incl. thyristor and LDR, $£ 3.15$
R's, C's, Pots, Relay, Switches, Transformer, $\mathbf{£ 5} \mathbf{0 5}$
PCB (3in . $5 \frac{\mathrm{tin}}{}$) also holds pots, relay, keyswitch, 95 p
GEMINI PRE-AMP
PCB ($3 \frac{1}{2} \mathrm{in}, 10$ in) Stereo. Specially designed to also hold
rotary or slider pots, and rotary switches, $\$ 1.65$
R's, C's, Rotary pots and switches to match PCB (Stereo set), 69.30

GEMINI MAIN AMP
PCB ($3 \frac{1}{2}$ in $\cdot 5 \frac{1}{2} \mathrm{in}$) (Stereo), $£ 1.40$
R's, C's', pots to match PCB (Stereo set), $\mathbf{~} 4.25$ GEMINI POWER SUPPLY

PCB (2 in 4 in), 60p. R's. C's, pot to match PCB, $£ 3.20$ TAPE NOISE LIMITER

S/C's, R's, C's, Pot, $\mathbf{E} 1,45$. PCB ($1 \frac{1}{2}$ in $3 i n$), 60p DOOR BELL YODELLER

S/C's, R's, C's, Pots, $£ 4.65$. PCB (3in . $3 \frac{1}{2} \mathrm{in}$), 60p OTHER CIRCUITS AND PCB'S AVAILABLE-FREE LIST

PHONOSONICS

25 KENTISH ROAD, BELVEDERE, KENT. MAIL ORDER ONLY

GUNTON ELEGTRONIC IANITION KIT

Capacitive discharge ALE HIGH QUALITY COMPONENTS \star is recognised as being the most efficient system and will give you:

Upeo 20% reduced fuel conce
Easier All reduced fuel consumption
Increased Acceleration and Top Speed - Longer Spark Plug Life

- Inereased Battery Life
- Elimination of Contact Breaker Burn

12 Purar Exhaust Gas Emission
12 volt only-state pos. or neg, earth. Supplied
 with derails for fitting all types of tachomerers.
Can be buift in an evening and fitted in 15 mins.
neerors for coil an evening and firted in 15 minutes. Spare snap-on connectors for coll, etc. Call in for a demonstration. S.A.E. all enquiries
please. Ready built unit, guaranteed 5 years $-\mathbf{~} 9.95+35 \mathrm{p}$. \& P INVERTERTRANSFORMERS; Scorpio, $\mathbf{1} \cdot \mathbf{8 5}+25 \mathrm{p}$ P. \& P.: FI/light 20 watt ${ }^{\text {\& }} 1.85+25 p$ P. \& P. : Choke $85 p+15 p$. \& P. 8 watt $f 1.45+25 p$
P. \& Silver Hammer Case/alumin. base $+H$ isink $75 p+20 p$. \& P.
ELECTRONICS DESIGN ASSOCIATES 82 BATH STREET, WALSALL WSI 3DE

FERRANTI

SEMICONDUCTORS AT LOWEST PRICES All semiconductors brand new and fully guaranteed. ZTX107 Bp ZTX320 28p BFS61 18p ZSI76 21p KSO43A $\begin{array}{llllll}\text { ZTX108 } & 7 p & \text { ZTX330 } & 13 p & \text { BFS96 } & 13 p \\ \text { ZS }\end{array}$ ZTX109 10p ZTX331 14p BFS97 21p 25270 10p KS05A 17p ZTXII4 ZTX300 ZTX
ZTX
ZTOI $\mathrm{ZTX} \times 301$
ZTX 302 $\mathrm{ZT} \times 302$
$\mathrm{ZTX} \times 303$ ZTX303 ZTX
ZTX
ZT ZTX
ZT
$\mathrm{Z} \times 312$ $\begin{array}{ll} \\ 2 T \times 312 & 9 p \\ \text { ZTX313 }\end{array}$ ZTX
$\mathrm{ZT} \times 314$ $\begin{array}{lllllllll}118 p & B F 560 & 18 p \\ 25174 & 15 p & K 5039 A & 17 p & K S 180 A\end{array}$ MOTOROLA: MJE2955 EI.O6. MJE3055 65p. 2N4444 ©2.25
Postage \& packing 10p. Free above E . S. Send SAE for
DAYIAN ELECTRONICS, P.O. BOX 38, OLDHAM, LANCS

PRTENTIS RIECITHOO

CONMECTIMG UP SLAVE BATTERIES

In BP 1270799 Joseph Lucas (Industries) Limited suggest a simple answer to the irritations which can occur when a car battery is semi-flat or flat and a slave battery has to be connected in parallel with the flat one to start the vehicle.

Connection to the flat battery is by non-conventional crocodile clips. Each clip is formed from two halves in normal "clothes peg" -manner, but the two halves are insulated from each other to provide two separate "flat" terminals at each crocodile clip. As well as the double crocodile clips, X 1 and X2, a pair of conventional "slave" clips $\times 3$ and $X 4$ are used for connection to the slave battery.

One terminal of each "flat"' pair (11b, 12b) are connected together through diode D1 and relay coil RLA in series, a warning lamp LP1 being shunted across the relay coil. see Fig. 1.

BP 1270799

Fig. 1
The "slave" terminal X3 connects to fixed contact RLC1 of an electromagnetic relay of which another fixed contact RLC2 connects to "Flat" terminal X1a. The relay contacts are bridged by RLC relay wipers when the coil is energised. One end of RLC coil is connected to the "flat" terminal X2a and the other end to the slave terminal X3, via resistor. R1, con-

- tact RLA1 which is normally open (but can be closed by the relay coil) and diode D2.

The relay coil RLC, R1 and RLA1 contact is bridged by another warning lamp LP2. Finally the RLC wiper contacts are connected to both the terminals $12 a$ ("flat") and $\times 4$ ("slave'") through relay coil RLB1 which controls contact RLB1 bridging the resistor R1.

In use the terminals $X 1 a, b$ and $\mathrm{X} 2 \mathrm{a}, \mathrm{b}$, are connected to the flat battery and any useful current flows through the relay coil RLA to close RLA1 and lights up the lamp LP1.

The terminals X 3 and $\mathrm{X4}$ go to slave battery and the lamp LP2 lights up. If lamps LP1 or LP2 fails to light, the indication is that a connection has been made the wrong way round with the diodes blocking any discharge and so averting problems. Failure of lamp LP1 to light can also, of course, mean a totally flat battery.

The relay RLC is energised (so Iona as RLA contacts have closed) and the RLC wiper contacts link the RLC2 and RLC1 contacts together to provide a simple parallel connection of both batteries. Relay coil RLB also operates , to open RLB contacts and so limit the current through coil RLC. The circuit thus automatically provides various safety factors. If the battery is hopelessly flat, then there will be insufficient current through RLA coil to pull over the contact RLA1. If either battery is connected up the wrong way round, the diodes will block and prevent damaae. Also, if either clip is removed RLA coil will be "open circuit" and RLC wiper contacts will open.

FIBRE OPTIC IEMTIONS

ACLEVER use for light guides turns up in British Patent 1257 794. This is from the British firm Associated Engineering Ltd., and is for an optical system which controls ignition systems in internal combustion engines.

In its basic form the mechanical rotor arm arrangement is replaced with an equivalent optical arrangement, Fig. 1. A solid state source, such as a gallium arsenide diode, emits light continuously and is picked up by one end of a rotating L-shaped light guide. The other end of this light guide sweeps past a sequence of fixed light guideş: one for each of the engine cylinders. The light from each stationary guide is detected and passed to a pulse forming circuit. The output pulses are then fed to separate h.t. coils in series with each sparking plug.

In a more sophisticated arrangement the stationary light guides are in pairs for each cylinder of the engine, see Fig. 2. The gallium arsenide diode produces a continuous low level light output which is fed by the rotating quide to the first light guide of each pair and then to an associated photoelectric detector and pulse trigger circuit. A delay circuit is introduced between the detector and trigger circuit so that the triggering pulse may be varied in accordance with differing engine timing requirements.

The low level output from the gallium arsenide diode is sufficient to produce an output from the detector stage and this output is sufficient to trigger a high intensity light pulse from the diode. This high intensity light pulse is picked up by the second light guide of each pair and initiates sparking by feeding pulses to an h.t. coil in the same way as the basic circuit.

The delay which is introduced into the first circuit can be controlled by engine parameters such as r.p.m. or manifold pressure and allows advancing or retarding of the trigger pulses, and thus sparking. This way, engine timing can be optimised.

arpen numeric DISPLAY5

Other types of Display

rN this final part of the series we are going to have a look at some display technologies which are still on the fringe of amateur project usefulness. the first because it is relatively new, and the second because devices are not currently available from the usual suppliers.
It is readily apparent that today"s "fringe" device is tomorrow's best solution, and no discussion of the display scene would be complete without a mention of these two novel and useful techniques.

LIQUID CRYSTALS

Sounding like a contradiction in terms, these new display devices are expected to eventually share the bulk of the display market with L.E.D.s, complementing these devices because of their suitability for large area displays.

The operating principles are based on the utilisation of a class of organic materials which exhibit a regular crystal-like structure even when they have melted from the solid and become liquid. This effect occurs over a fairly restricted temperature range, and much of the development centering on these materials has been aimed at increasing their operating temperature range.

There are various types of liquid crystal structures, all of which are capable of useful employment in display devices, the most popular at the moment being the "nematic" type in which the cigar-shaped molecules are aligned with each other in a two dimensional sheet over the normal liquid crystal temperature range.

The liquid is normally transparent, but if it is subjected to a strong electric field ions move through it and disrupt the well-ordered crystal structure, causing the liquid to turn an opaque, milky colour. Removal of the applied field allows the crystal structure to reform and the material regains its transparency.

PRACTICAL LIQUID CRYSTAL DISPLAY

The basis of a useful display technique is inherent in the behaviour of the nematic molecules, and the way in which this is realised can be seen in Fig. 7.1 which shows an exploded view of a typical liquid crystal display "plaque".

The liquid crystal material is held in the centre cell of a glass sandwich, the inner surfaces of which are coated with a very thin conducting layer of tin oxide. which can be either transparent or reflective as required. The oxide coating on the front sheet of the indicator is etched to produce a seven (or more) segment pattern with fine interconnections to edge terminal pads, each of the segments being insulated from each other.
The voltage typically required to render the segments opaque is 30 V and this voltage can be applied in either sense, a fact which makes a.c. operation quite feasible, even desirable, because of the reduction of electrolytic transport, i.e. erosion of the electrodes and the consequent increase in life.

Fig. 7.1. Construction of a typical liquid crystal display. Sheet A is a glass sheet covered with a conductive layer (which can either be transparent or reflective), sheet B is a spacer to produce a cavity to contain the liquid crystal and sheet C is the front glass sheet which has a (transparent) conductive layer in the form of a seven-segment layout

SUPERSOUND 13 HI-FI MONO AMPLIFIER

andion amplither. Braml
ien comporienta transistors ulus power output transia wors in push-pull. Ful
wave rectincation Ontput approx. 13 W rim.s. int" ohm
Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz}=3 \mathrm{db}$
F'ully interated amplifter stage with separate Volutue, Hass boust and Treble cot controls Suitable for $\mathrm{H}-\mathrm{l}$ l, whon speakers. Input for ereramic or
crystal cartridge. Benuitivity appros. foms for full crystal cartridge. Senuitisity appros. fomit for full
output. Nupplied ready built and tested, with knobs, ontput. Nupplied ready built and tested, with knobs,
eacntchem panel, Input and ontgnt phags. Orerall size
 PRICE EIO.50 ${ }^{\mathrm{P}, \ldots \mathrm{p}} \mathrm{P}$

 provided for thass atrit trelik control. giving bass and treble boost and cut. I lual volutne control is used. Balance of the left abl pight hame rhannels can be adjusted by means of a separate "halance" cont rol fitted at the rear of the chassis. Input an nisitivity is approximately 300 m's for full peak output of 4 watts per chatinel (8 watts monos, into 3 ohm ppeahere. Full begative feedback in a carefully calculated circuit, allows high
 Supplied complete with knots. chassis size 11 in . w - 4 in . X
Overall height includiug valves sin. Ready built teatel to a high standarit. Price $\mathbf{8 . 9 2}$. P. \& P. 45 p .

NEW! POWER SUPPLY UNIT
 continuouq ($1 \frac{1}{2}$ anp intermittent)
Fitentuer nuish metal case, overall size fot larnp itulicato Hamtuer flish metal case, overall size
Suitable for Transistor Radion,
Suitable for Transistor Radios, Tape Recorclers
PRICE 14.50
BLACE ANODISED 18g. ALUMINIUM HEAT SINES. For TO3. complete u ith mica's and hushew. Size 23 in x HIGH GRADE COPPER LAMMATE BOARDS

LIMITED NUMBER! COILED SPRING BACK TELEPEONE CABLE Clowed approx. 10^{n}, extende to 36

SPECIAL OFFER! MADS TRANSFORMER 201240 A.C. input. 35 at $1 \frac{1}{5}$ allp AC. output. Overall size

BRAND NEW MULTI-RATIO MAIMS TRANSFORMERS Giving 13 alternatives. Primary: $0.210 \cdot ⿻ \mathbf{z} 40 \mathrm{~S}^{\circ}$, Secondary combinations: $0 \cdot 5 \cdot 10-15 \cdot 20-20-30 \cdot 3 \overline{3}-40-50 \mathrm{Y}$ halt Wave at $1 \operatorname{amp}$ or $10.0 \cdot 10,00 \cdot 0 \cdot 0,30.0 \cdot 30$, atice 81.75 P. \& P. 30p.

MAMS TRANSFORMER For traisitor power aup Pri. $200 / 240$ Y OR $9-0-9$ at 500 mAA . 70 p . P. \& P. 13 p .
 Pri. $200 / 240 \mathrm{~V}$. Sec. $12-0-12$ at 1 amp. 88p. P. \& P. 13p.
Pri. $200 / 240 \mathrm{~V}$. Sec. $10-10$ at 2 amp. E1-38. P. \& P. 30 p .

HANDBOOK OF TRANSISTOR EQUIVALENTS and SUBSTITUTES

A must for servicemen and home constructors. Including many 1000's of British, U.S.A., European and Japanese transistors. ONLY 40p. Post 5 p

4-Speed record player bargaiks
 With latest monn compatible cart ridge 86.97 . Carr 5 Hos?
 PRECISION ENGINEERED PLINTHS Heautifilly constructen in heary pauge "Colorecoat" plaxtic cugee stepl. Rewance yet. Designell tu take
 PIOQ, AD etc. i'hoice of hack leatherette or teak grain

LATEST ACOS GPe1/1SC Mono Compatible Cartridge aith ostylus for I.P. EP'TK. Iniversal mounting bracket
1 -50. P. A P. ©b. SONOTONE 日TABC COMPATIBLE STEREC CABTRIDGE

 H:P/LP/Btereo/f. \&1-63. P. \& P. 10 p . Latest ronette t/O Mono Compatible Cartridge LPTEST RONETGE T/O Mono Compation mona or stereo records on mono equipment. EP/LP/7R mong or steter records on mono equipment.
\&1.50. P. \& P. 10p. QUALITY RECORD PLAYER AMPLIFIER ME II A top-quality record player amplifier employing heavy duty double wound mains tranifformer, ECC83, ELA84. and rectifier. Separate Bass. Treble and Volunie controls.
Complete with output transformer matched for 3 ohm Complete with output transiormer matched $\quad 6 \mathrm{~h}$. Ready huilt and teated.
 mounted on board with out put transformer and speaker
 DE LULE QUALITY PORTABLE R/P CABINET MK II Fpcut motor hoard size 141 , 12 in. clearance 2 in . below Sin. above. Will take above amplifier and any B.S.F. or

SPECIAL OFFER!! HI-FI LOUDSPEAKER SYSTEM

 Beautifully made teak finigh enclogure with nostattractive Tygan-lynair front, Size $16 \frac{1}{2}$ bigh bigh s 101 in wide $5 f^{\prime \prime}$ deep, Fitted with E.M.I. Ceramic Magnet $13 i n, 8 i n$ bass unit, two H.F.
tweeter unitgand crossover. Power handling low.
ailable 3,8 or 15 ohm impedance
Our Price $\mathbf{E 8} \mathbf{4 0}$ Carr. 65 p . 'ABINET NYAILABLE AEPARATELY 84-50. Carr, 60p.
Algo available in on thin with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. bayn

LOUDSPEAKER BARGALNS

 $20 \mathrm{p} .10 \times 6 \mathrm{in}$ S ir 15 ohnt $£ 190$ P. \& P. 30p. F.M.I. t. M.I. $13 \frac{1}{x} \times$ sin 3 ohm with high fiux cerallic magnet $\$ 2.10$ (150 hm \$2-25). P. \& P. 30 p . E.M.I. $13 \times 8 \mathrm{in}, 3$ of 8 or 15 whth with two inbuilt tweeters and crussocer net*
work $\$ 4 \cdot 20$. $P^{\prime}, \&$ P. 30 . E.M.I. $13^{\prime \prime}<8^{\prime \prime}$ twitl cone work 44.20 . P, \& P. $30 \mathrm{p} . \mathrm{E}, \mathrm{M} .1 .13^{\prime \prime}<8^{\prime \prime}$ twitl cone
(paratatic tweeter) Rohm $22 \cdot 25 . \mathrm{P}, \& 1^{\prime} .303$. (parantatic tweeter) Chrrent production by well-knowin British maker. Sow
with Hillux ceramic ferrobar magnet assembly $\mathbf{8 6}$.25.
 E.MI. $3 \frac{1}{2} \mathrm{in}$ HEAVY DUTY TWEETERS. Pnwerfuceranic 12in "RA" TWIN COHE LOUDSPEAKER
 "POLY PLANAR" WAFER-TYPE, WIDE RANGE "POLY PLAMAR" WAFER-T
ELECTRO-DYAA
 4 ohm only. Hespenar $40 \mathrm{~Hz}-20 \mathrm{kHz}$. ('an be bounted
 or without baffle, send s.a.f. hor full detaik. Onty YYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in. หjde. Tbually ± 1.75 yd., our price 75p yd

HI-FI STEREO HEADPHONES

Adjutable headband with comfortable flexifoam eur muffa. Wired and fitted with standard atereo $\frac{1}{2}$ in jack plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching
 EIGE TMPEDAYCE CRYSTAL STICK MIKES. PRIEE \&1.05. P. \& P. M1
GEAERAL PORPOSE HIGH STABILITY TRAN-
SIRTOR PRE-AMPLIFIER,
Guitar, etc., and quitable for use with valve
transistor equipment. 9-18V. Battery or from H.T.
line $200 / 300 \mathrm{~V}$. Frequency reaponse $15 \mathrm{~Hz}-25 \mathrm{~K} \mathrm{Kz}$.
$\begin{aligned} & \text { Gain 26dB. Solid encapsulation size } 1 \frac{1}{2} 1 t \text { fin. } \\ & \text { Brand new -coniplete with instructions. Price }\end{aligned}$
88p. P. d P. 13 p .

CENTRE ZERO MINIATURE MOVING COIL METER. $100 \mu \mathrm{~A}$ for balance or tuning. Approx. siz
Limited number 75 p . P. \& P 10p.

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

MEW FURTEER IMPROVED MODEL WITH HIGHER OUTPIT AND JNCORPOHATISG HIGH QVALITY REABY BHILLED FIBRE GLANS PRINTED CIRCPIT BOAHD WITH OMFENE FOR FVES EATER COE M.ARKE.D
STR1'(TION

A really firsterlass $\mathrm{Hi}-\mathrm{FH}$ itereo Amplifer Kit. Uses 14 transistors incluting silicun Trameistors in the first Ave stages on each chanmel itesty with Bass Treble and two Volume fontrols. Suitable for use with Ceramic or Crystal cartridges. (Very simple to monlify to suit magnetic cartridge-instructions incluiteds. Output stage for any speakers from 5 to 15 ohms. Conpact design, all parta gupplied including drilled metal work, high quatity ready drilled flbre glass printed circuit board, rmart hrushed anodised aluminium front panel with matching knobs, wire, solder. nuts, bolto-no extras to buy. Nimple step by step ingtructions enable any constructur to build an anplifier to be proul of. Briet specification: Power ontpu -3 dB $12-30,000 \mathrm{~Hz}$ Senait twity betiter than 80 mb into 1 Mg . Full power bandwidth + 3d $1318-15,000 \mathrm{~Hz}$. Bass boost approx. to $: 12 \mathrm{~dB}$ Treble cut approx. to -16 dB . Negative feedback 18 dH over main amp. l'ower requirements 35 y at 1.0 anp. Oyerall size -12^{*} wide 8° deep , 21" high.
Fully detailed 7 -page conatruction manual and parta list Iree with kit or send 18p plus darge E.A.E.
PRICES AMPLIFIER KIT, 210.50 P. \& P. 15p.
 CABINET,
if all units purchased at same time). Fullafter (Post free A also available realy built and tested, 820.50 . Post

Note: The above amplifier is suitable for feeding two mono sources inta inputs (e.g. wike, radio, tein record decks, etr.) and will then provide maxing and fading facilifies for mefium nowered Mi - Fi Discotheque use,

AMPLIFIER HA34 ME II Gesignet for $\mathrm{Hi} \mathrm{-Fi}$ reproduc. tion of ifeords. A.C. Mains
operation. Ready built on
and plated heavy galuge metal chassis, size Jit in w. fin. d. 47 ill . H. Incorporates ECCB3, BLRA, LZZ80 alves. Heavy (ransfortuer and output trans. former matched for 3 ohm praker separate volume control and now with improved wide range tome controls giving bass and trehle lift and iill leads axtendeal for remote mountite if controls. Fomplete with knothe, valves, etc.

HSL "FOUR" AMPLTETER XTT
HSL "FOUR" AMPLIFIER XIK. similar in appearance to circuitry. Cumpiete set of parts, etc. E3.98, P. \& P. 40p. HARVERSON'S SUPER MONO AMPLIFIER A super cuarlity gram anmpifier using to double wound fully polatod vaine aublio amplitier and power output slage. lmpedance 3 uhma. Output atuprox 3 J watts. Volume and tone controls. ('hassis nize only 7in, wide 3un. deep 6 in . high overatl. AC mains $200 / 240 \mathrm{~V}$. Suppliet absolutely Brand New, completely wirm and tested with gond quality output transtormer
OUR ROCE BOTTOM
£2. $75^{\mathrm{P}_{35 \mathrm{P}^{\mathrm{p}}}{ }^{\mathrm{p}} .}$
10:14 WATT HI-FI AMPLIFIER KIT
A st ylishly Emsherl Timnaural amplifier ath ank output 14 watts from ${ }^{2}$ El.Sta in push-pull. of both music and speech. with neglicible hum, Separate inputs for mike and gram allow records and announcements dollow each other
 match $3-15 \Omega$ speaker and 2 independent volume controls, and separate hase EZZ80 rectifer, Simpe live-up 2 EL 49, ECC83, EF86 and EZZ80 rectifier. Simple instruction booklet 13p (Free with
parts). All parts mold separately. ON LY 87.97 . P. \& P. 55p

Open 9.5.30 Monday

 to SaturdayEarly closing Wed. 1 p.m. A feve minulen
Tube Siation

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. 01-540 3985 send stamped addressed envelope with all enquiries
(Please write clearly) PLEASE NOTE: P. \& P. CEARGES OVOTED APPLY TO C. M. OLLI.

TRANSFORMERS

MAINS ISOLATING SERIES
Primary 200-250 Volts Secondary 240 Volts Centre ALSO AVAILABLE WITH IIS/I20V SEC. WINDING
 $\begin{array}{rr}p & \& p \\ t & p \\ 1.61 & 30 \\ 2.39 & 36 \\ 2.62 & 52 \\ 4.39 & 52 \\ 5.80 & 67 \\ 7.77 & 82 \\ 11.20 & * \\ 10.63 & \\ 34.10 & \end{array}$

$$
\begin{aligned}
& \text { AUTO SERIES (N } \\
& \text { Ref. VA Weighe Size cm. } \\
& \text { No. (Wotts) lb oz }
\end{aligned}
$$

p
4^{p}
0.85
1.66
2.00
3.89
5.78
0.49
5.20
9.84
$\begin{array}{r}8 p \\ p \\ 22 \\ 30 \\ 36 \\ 52 \\ 67 \\ 82 \\ 1 \\ \hline\end{array}$
TOTALLY ENCLOSED IISV AUTO TRANSFORMERS mains lead and two llov outlet sockets, E7.87. P \& P 67p Also arailable a 20 Watt version. \&l.67. P \& P 22 p . PRIMARY $200-250$ VOLTS I2 AND (OR 24 VOLE Ref. Amps. Weight No. 12 V 24 V ib oz 111
213 $\begin{array}{rcrr}\text { Ref. } & \text { Amps. Weigh } \\ \text { No. } & \text { lo } & \text { oz } \\ 112 & 0.5 & 1 & 4 \\ 79 & 1.0 & 2 & 0 \\ 3 & 2.0 & 3 & 2 \\ 20 & 3.0 & 4 & 6 \\ 21 & 40 & 6 & 0 \\ 51 & 5.0 & 6 & 8 \\ 117 & 6.0 & 7 & 8 \\ 88 & 8.0 & 10 & 0 \\ 89 & 10.0 & 12 & 2\end{array}$ Size cm so VOLT RANGE $8.3 \times 3.7 \times 4.9$
$7.0 \times 6.4 \times 6.0$
$8.12 .15-20-24-30 \mathrm{~V}$ Ref. Amps. Weight
No. $8.9 \times 7.0 \times 7.6$
$10.2 \times 8.9 \times 8.6$
$10.2 \times 100 \times 8.6$
$12.1 \times 10.0 \times 8.6$
$12.1 \times 10.0 \times 10.2$
$14.0 \times 11.7 \times 10.0$
$14.0 \times 10.2 \times 11.4$

50 VOLT RANGE
size cm.

$$
\begin{array}{rrr}
7.0 \times 7.0 \times 5.7 & 0.19-25-33-40-50 \mathrm{~V} \\
8.3 \times 7.3 \times 70 & \because \\
10.2 \times 8.9 \times 8.6 &
\end{array}
$$

$$
\begin{array}{r}
P \& P \\
1.3330
\end{array}
$$

$$
\begin{array}{ll}
1.33 & 30 \\
1.94 & 36 \\
2.69 & 42
\end{array}
$$

$$
\begin{array}{ll}
2.69 & 42 \\
3.65 & 52 \\
4.83 & 52 \\
7.14 & 67
\end{array}
$$

> $\begin{array}{llll}\text { Ref. } & \text { Amps. } & \text { Weight } \\ \text { No. } & 16 & 0 z & \\ 124 & 0.5 & 10 & 4 \\ 126 & 1.0 & 3 & 0 \\ 127 & 20 & 5 & 6 \\ 120 \\ 125 & 3.0 & 8 & 8 \\ 123 & 4.0 & 10 & 6 \\ 120 & 6.0 & 16 & 12 \\ 122 & 10.0 & 23 & 2 \\ 12 & 16\end{array}$

Size cm . 6 Secondary Tops

$8.3 \times 9.5 \times 6.70-24.30-40-48.60 \mathrm{~V}$
8.9×7.6 $10.2 \times 8.9 \times 8.6$
$13.3 \times$
$16.5 \times$

$.6 \times 7.6$ $.9 \times 8.6$ $.5 \times 10.0$ $.5 \times 11.4$

D BATTEN
CMARGER TYPES
$\begin{array}{cccc}\text { Ref. } & \text { Amps. Weight } \\ \text { No. } & 16 & 02 \\ 45 & 1.5 & 1 & 9 \\ 5 & 40 & 3 & 11\end{array}$ \qquad $\begin{array}{lr}t & p \\ 1.34 & 30 \\ 2.03 & 42\end{array}$
 All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order

9C107/108/109 F0
 $100+6.5 p$
$500+6 p$ Minimum order 10 pieces this range.
 AVOMETERS - MAINS KEYNECTOR ELECTROSIL RESISTORS

CARRIAGE VIA BR8
$0.85 \quad 22$

$$
\begin{array}{r}
7.1467 \\
9.3297
\end{array}
$$

COMPARE OUR PRICES

Bearer Bargains

Microphone Eargaina
MC45" ACOS" netal came CM crystal hand
DX 166 Dynamic St ich
43 Dtramic, carsette-type
stick stick
MIC60"ACOS" ntick eryotal switch erystal
IM 160 Dynathic uni-thir,
UD $13050 \mathrm{~K} / 60$
ball meta!
TW209 Lesson dual :un
Gultar mike
Lapel type, cryatal
Postage 171, each
Cartridges-rith standarll fiting a
tCOs GP91/SC stereo compatible
ACOS GP94 stereo ceramic
ACOS GP95 stereo crystal
 ELECTRONICS

Msil Order Department P.O. Box 470 .

Manchester M60 480

ALL OUR MERCHANDISE IS FULLY GUARANTEED

VERSATILITY

One of the unique aspects of liquid crystal displays is that. like the printing on this page, they rely on ambient illumination and generate no light of their own. This means that liquid crystal readouts can be used in any situation where the printed word can be read. and the stronger the ambient lighting the better, a complete reversal of the general indicator trend where readability decreases as ambient light increases.

The liquid crystal usefulness does not end here, however, because if the rear electrode is made transparent instead of reflective then back illumination can be provided by a standard indicator lamp. rendering these devices equally suitable when ambient lighting is poor, see Fig. 7.2.

Extending back illumination a step further. by adding a lens arrangement, a projection system can be constructed which uses the liquid crystal plaque rather like the slide in a slide projector to give an enlarged image.

AVAILABILITY

Liquid crystal displays are potentially very cheap indeed but at present they are still fairly expensive because they are not being mass produced, though development is continuing apace.

The main researchers and potential suppliers in the U.K. appear to be the Marconi company, though no doubt interest from other firms will increase now that practical displays have been shown to be a sound proposition.

For the future. Marconi also have a display under development which uses a cholesteric molecular arrangement to give an indicator which changes from one colour to another as the field is varied, and it seems that a variety of colour combinations will be possible.

FLUORESCENT PHOSPHOR DEVICES

This high sounding technology is in fact one of the most widely used techniques in the industry and is the mechanism employed in both monochrome and colour television display tubes as well as the humble "magic-eye" tuning indicator, and the oscilloscope.

With such a long-standing application in the picture display field it is hardly surprising that the fluorescent phosphor principle should be used in the alpha-numeric readout field, and in fact a number of techniques have been employed.

Phosphor devices of all types employ an anode plate which is coated with phosphor material; when the phosphor is bombarded with high energy electrons from a cathode the energy in the electron stream is converted by the phosphor into light energy of a particular frequency which causes the coating to "fluoresce".

Different phosphor materials emit light of different frequencies (i.e. colours) and in the colour television tube for example, groups of three different phosphors (triads) emit red, green and blue light to form the picture required.
When electron bombardment is stopped the phosphor continues to fluoresce for a while until the stored energy is spent, and different types of phosphors can be obtained with varying persistence from a few milliseconds to several seconds. The tube for a slowly rotating radar display would need a long

Fig. 7.2. (a) Using front illumination, the "on" segments are opaque to reflect the light (b) with back illumination the "on" segments are transparent

Fig. 7.3. Typical drive circuit for a seven-segment fluorescent phosphor display tube
persistence phosphor and that of a high speed scan television tube a phosphor with a short persistence for example.

SEVEN SEGMENT TUBES

The circuit arrangement for a typical fluorescent segment tube is shown in Fig. 7.3. The cathode of these tubes are of the directly heated type familiar from the days of the 1.4 V filament battery valves once so widely used in portable radios.
The grid operates in the same way as that of a radio valve and is used to turn the whole tube on or off when a suitable bias is applied. This facility is used in time-shared systems when only one indicator at a time is turned on, and its incorporation saves a good deal of the electronics necessary to achieve time sharing with other systems.

The seven separate anodes are phosphor coated and generally employ a green phosphor because this is a colour much favoured by calculator manufacturers. Each segment anode is "enabled" by taking it about 20 V positive with respect to the cathode whereupon it is bombarded by electrons and begins to emit the desired green light.

The entire tube assembly is housed in a glass envelope of about half the size of a B7G valve, and usually connections are made via flying leads.

This type of tube has been championed in the United States and Japan, and is widely used in the small Japanese desk calculators now appearing on the market.

The drive requirements for these devices are rather complicated due to the voltages and polarities necessary, and they have never really caught on in Britain despite their low cost and suitability for use in long time-shared readouts. This is a pity since the numeral appearance and legibility is superior to the thread-like filament indicators and devices of this type could be put to good use in a variety of amateur projects.

CATHODE RAY TUBES

When displaying large quantities of alpha-numeric data the most common readout system employed is the familiar cathode ray tube which can handle anything from a few tens to a few hundreds of characters depending on size.

It is unlikely that amateur projects of today would require such capacity, but here again there are possible applications for amateur experimenters, and in these, potential users think that anything like a c.r.t. display would have to be too complex, a couple of simple but practical systems will be outlined.

DOT MATRIX

The simplest type of alpha-numeric display raster to "paint out" on a tube is a dot matrix which is generated by feeding synchronised staircase waveforms to the X and Y deflection amplifiers.

Fig. 7.4 shows how such a matrix can be generated on the screen of an oscilloscope, an oscilloscope being used since, firstly, it already contains X and Y amplifiers and power supplies, and, secondly, it is likely to be already part of the equipment of some experimenters.

The system shown in the diagram is intended to display only one matrix which can contain any one of 64 different characters depending on the input code, but of course the system can be expanded quite easily to write either one complete row of characters or several complete rows to make a "page".

The system is controlled by a clock which drives two counters in series. The outputs from the counters are used both to address a "read-onlymemory" and to drive a simple digital-to-analogue converter which. by means of binary weighted resistors, generates a staircase waveform to drive the X and Y reflection circuits of the oscilloscope.

The combination of these two deflections causes the spot to describe a 6 by 8 matrix of dots on the tube face, the dots appearing while the waveforms are horizontal and travel between dot positions occurring when they are vertical.

To actually write a letter or number in the matrix all that is required is to control the electron gun of the tube so that it only paints a dot where required in the matrix.

The control of the bright-up of an oscilloscope is usually called Z modulation and is achieved by switching the c.r.t. cathode on and off. Many

oscilloscopes have this facility brought out to a front panel socket, others can be easily modified.

READ ONLY MEMORY

The bright-up information for the 64 possible characters of the A.S.C.I.I. code (see Part 1) is contained in a factory programmed "read-only-memory" (r.o.m.), such as the Signetics type 2516, each character being allotted 6×8 separate storage locations which can hold either a logical "one" which means a dot is displayed in this position, or a logical "nought" which means a dot is not displayed in this position.

The 6×8 matrix holding the particular character required is selected by the input data and each of the six columns is selected in turn by the output from the divide-by-six counter, the data for each column appearing in parallel form on the eight output lines.

As the data is not required in parallel form it is serialised (a column at a time) by an eight input multiplexer controlled by the divide by eight counter. The serial train of ones and noughts at the output of the multiplexer is used to control the Z. input to the oscilloscope, in synchronism with the stepping deflection waveforms, and thus illuminates the dots corresponding to the desired character on the screen.

Dot matrix r.o.m. controlled character displays are becoming increasingly popular with computer
manufacturers and factory programmed r.o.m.s are available at low cost for a variety of raster formats besides the simple dot type. The most popular is the "TV scan" type which utilises conventional 625 -line television electronics for the display drive circuitry.

SEVEN SEGMENT SCAN

By cutting the character repertoire down to numerals only and accepting the more stylised format of the seven segment system, an even simpler oscilloscope character generator can be built, Fig. 7.5. This scheme uses only a handful of i.c.s and discrete components and can again be expanded to write more than one character quite simply. The scan and bright-up are again controlled by a clock driven counter which divides by eight.

Eight display periods are necessary rather than just seven because the scan has to cover the centre bar twice in order to return to the starting position.

The b.c.d. input code is converted into a segment controlling; parallel output in the seven-segment decoder, and this output is converted into a serial string of bright-up signals by a multiplexer controlled by the counter.

The counter is also decoded to give digital outputs corresponding to plus x (deflect spot to right) minus x (deflect spot to left), plus y (deflect spot up), and minus y (deflect spot down). The spot must stay

This display system developed at the Mullard Central Applications Laboratory can display up to 16 rows of 80 characters, each character being generated on a 7×5 dot matrix
where it is positioned until commanded to change position, and the simple deflection waveforms required are generated from the digital commands by two differential integrators which can utilise readily available operational amplifier i.c.s.

APPLICATIONS

There is a rather expensive oscilloscope on the market which uses a built in alpha-numeric character generator to write on the screen, alongside the waveform being examined, the settings of its important controls. This is a very useful feature, albeit a bit of a luxury, and using the techniques previously outlined a similar scheme could be built into a humbler oscilloscope if desired.

By substituting a "bare bones" deflection system for the oscilloscope a "built-in" display system for any type of instrument which requires to give an alpha-numeric readout could be arranged, though this would only be an economic proposition if several lines of data were to be displayed?

THE FUTURE

This series has attempted to show the variety and versatility of alpha-numeric display devices, ranging from the well-established cold cathode tubes to liquid crystal types which are still in a development stage.

An increasing proportion of the resources of the large electronics firms is being devoted to the development of cheaper and more efficient display devices since this is recognised to be an area with an immense potential market. No doubt during the time that this series has been running some, new technologies have been developed.

As with all integrated circuits the price of display devices is bound to come crashing down as soon as production is really underway and there seems little doubt that the days of the electromagnetic meter are well and truly numbered!

P.E. DIGI-CAL

 continued from page 762Following the construction of one digit strobe circuit, the seven segment decoder (IC10) and one group of matrix diodes (corresponding to the position of the previously wired digit strobe gate) can be wired in and the single digit display, tried out with dummy inputs to the SN7446.

TESTING ONE DIGIT

If this single digit operates correctly then the other. digits can be connected up one at a time and tested in the same way. When all digits are wired in then all of them will display the dummy input to IC10.
Wiring up the data bus selection gates IC11, IC12 can be carried out next and these can be checked by using dummy data on either the answer data inputs or the ENTRY data inputs the unwanted input being disabled by earthing its control wire.
Apart from using fixed earthing jumpers to provide the dummy inputs, it is possible to use the A , B, and C outputs of the SN7490 counter with the D input of IC10 shorted to earth. With this arrangement the displayed data counts in synchronism with the counter, the display showing 01234567. Removing the earth from the D input will give eight and nine in the first two positions of the display (the other six can be ignored) thus checking all possible inputs to the SN7446.
With the basic display system in operation the decimal point (IC8) and ripple blanking (IC9) can be added and tested.
Connections to the edge of the board were made with an edge connector socket in the prototype, but this is not necessary and connections can be made permanently via terminal pins if desired.

DIODE MATRIX

A second piece of Veroboard is used to provide the seven segment bus outputs from the decoder, this method of construction giving a very pleasing appearance and solid mechanical structure to the completed matrix.
The seemingly impossible task of lowering a piece of Veroboard down onto the protruding wires of 56 diodes all at once was eventually overcome by countersinking the holes in the Veroboard using a drill bit, thus providing a funnel which unerringly guided the wires into the correct holes.
It is of course necessary to arrange the diodes in neat ranks on the mother board, and to crop their leads to about $\frac{1}{4}$ in before lowering the matrix board.

VOLTAGE RATINGS

The SN7445 and SN7446 devices specified in the components list and circuit have a breakdown voltage of greater than 30 V which is more than adequate for thi's application, but as many constructors will have noticed there are devices which are logically identical but with 15 V breakdown ratings more freely available in the shape of the SN74145 and the SN7447 respectively.
The prototype employed the latter types with no ill effects, but if these types are chosen it must be realised that a certain amount of gambling is involved since you may purchase a device with one or more outputs which break down very close to the 15 V minimum quoted in the specification.

Next month: Keyboard logic and hardware

EXTENSION LEADS

To make life easier in the home. particularly as powered tools have increased in popularity and use. IXP Ltd., have designed two extension cable reels so that power can be supplied to practically any part of the home.

Ideal for the electrician. gardner and d.i.y, enthusiasts, as well as the caravan. car or boat owner the model A. 12 provides 100 ft of cable. The totally enclosed reel. hardly bigger than a medium size transistor radio. is made of high-impact plastics and measures $10 \frac{1}{2}$ in $\times 8 \frac{1}{2}$ in $\cdot \times 3$ in, including a shaped carrying handle.

Two 13A sockets are fitted to one side of the reel, giving the user the opportunity to use just one power line for more than one tool at once le.g., drill and inspection light. portable television and caravan/boat baltery charger, etc.). The cable is easily wound on and off the reel which limits the possibility of the cable kinking or knotting.

For the person who requires an extra long cable length. such as the electrician or industrial user, the model A. 13 has a cable length of 245 ft rated at 15 A . The 12 in diameter reel is of toughened insulating rubber mounted on an easy to carry metal frame.
A feature of the model A. 13 is a special brake and lock mechanism to control cat ${ }^{1}$ e rewind and lock the real when fully coiled. Two 13A sockets are also fitted to this model.

Both models should be obtainable through your local ironmonger, electrical shop or garden centre or from IXP Ltd., Henshaw Lane. Yeadon. Leeds. LSI9 7RZ. The recommended retail prices are $£ 5.60$ for model A. 12 and $£ 12.70$ for model A. 13.

LOW VOLTAGE IRON

To augment their Invader soldering iron range Adcola Products have introduced a low voltage iron to operate from a standard car battery.

Designed for use in situations where there is no access to normal mains supply, the battery model is intended to appeal to the d.i.y. enthusiasts, model makers, motorists and boat owners.

The new model features the same slim moulded plastics handie, weighs less than $20 z$ and features a simple replaceable plug-in element.

Two models, are available with soldering bit diameters of ${ }_{13}^{3}$; in and 4 in . rated at 23 and 27 watts respectively to provide an operating bit temperature of $360^{\circ} \mathrm{C}$. Crocodile clips are provided at the end of the 12 ft , cable for connection to the battery terminals.

The time taken to heat up to soldering temperature is dependent upon the condition of the battery

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct

Model A. 12 Extension Lead from IXP

Miniature Speaker marketed by B \& Y (Gates) Elec. tronic Develop-

Photentiomatic potentiometer marketed by Photain Controls
used as a power source, but will normally melt solder in a couple of minutes and will reach full operating temperature in less than five minutes.
The tool is supplied with a fire resistant tubular transit sleeve which fits over the element and bit, allowing the user to replace the iron in a tool box safely after use without having to wait for the tip to cool.

The Invader ${ }_{1}^{3}$ in diameter bit model BL646, retails at ± 2.37 and the larger model BL1076 for $£ 2.47$. A wide range of standard copper and iron plated long life bits are also available.

DIGJTAL VOLTMETER

A digital panel, meter card is announced by West Hyde Developments Ltd. Using their well known Atron numicator tubes. which can have filters of any required colour. the panel voltmeter can be powered from any 5 V source.

Designated the WH2.5. the cards are available in four ranges from 0.2 V to 200 V and there are options for bi-polar or a.c. types. The low cost means that middle range industrial instruments can now have digital displays giving clear readings from a single 5 V supply.

The glass epoxy board assembly has its own bias oscillator for the op-amps used and the standard unit can either use the internal sample rate of two per second or a manual external sample rate of up to 20 Hz .

On the bi-polar type the polarity indication is by a plus or minus sign and is fully automatic. The common mode rejection is claimed to be 100 dB at d.c. and the series mode rejection 30 dB at 50 Hz .

Full technical details and typical applications can be obtained from West Hyde Developments Ltd., Ryefield Crescent. Northwood Hills. Northwood. Middlesex. HA6 INN.

MINIATURE LOUDSPEAKER

A high quality miniature moving coil loudspeaker designed and developed for all-purpose uses and ideally suited for pocket pageing systems has just been marketed by B \& Y (Gates) Electronic Developments Litd.

The speaker has a power rating of 0.1 W ; a claimed frequency response of up to 5 kHz : an impedance of 15 ohms and measures 1.5 in diameter $\times 0.65$ in deep.

Full technical specifications together with a typical frequency response graph may be obtained from B \& Y (Gates) Electronic Developments Lid.. 26 Uxbridge Road, London, W5 2BP.

PHOTOPOTENTIOMETER

An interesting new device that may appeal to the constructor is announced by Photain Controls. Known as a "Photentiomatic" it is a potentiometer which is controlled by light.
It consists of a strip of either Cadmium Sulphide or Cadmium Selenide photoconductive material mounted on a ceramic strip, complete with connecting wires. When connected to a suitable input (up to 25 V d.c.) and subjected to a moving strip of light it provides an output voltage which is directly proportional to the position of the light on the strip of photoconductive material.

Details of its applications. characteristics and price is available from Photain Controls Lid., Randalls Road. Leatherhead, Surrey.

Redidart A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

Computer consiruclors needed

Sir-I would be pleased to hear from any of your readers who are interested in the formation of an Amateur Computer Constructors' Society.
M. R. Lord,

7 Dordells, Basildon, Essex.

The needs of youlh

Sir-As one of your younger readers (16) I would like to say that your magazine, although excellent, caters far too much for the older generation. I do not need a shaver inverter, a wash wipe controller, or an ultrasonic intruder alarm. What I need, and a few hundred others like me, is a reverberation unit and / or an echo unit. How about it?
Incidentally, why don't you construct a synthesiser. Before you say "this boy is a fool" (you would be quite right, but that is beside the point) you could start with a ring modulator then progress to voltage controlled oscillators and so on.

I know that you will say that all these projects are too hard for the average constructor but l'm sure they are not.-Please give them a thought.

Neville Powell, Chiswick, W.4.

Psitronics

Sir-l was very interested indeed to read your item under the heading "Occultaphonics" in On The Fringe, May edition, as for some months now 1 have been experimenting along the same lines using a white noise generator and recorder.

The idea that white noise could be described as a full saturated communication channel is, as you suggest, a very old one: several writers have allowed themselves to be hypnotised by the notion that white noise must in theory contain all possible information-all the correct answers (as well as all the incorrect ones!) to every question that ever will be asked.

Indeed, back in 1952 a science fiction writer Raymond Jones suggested in a story called "Noise Level" that the brain contains a pure noise generator, with associated filters to
permit only semantically meaningtul forms to emerge into consciousness. Creativity might then be defined as using mental disciplines to force open wider these filter gates which gradually narrow with the educative process.

For a long time I regarded this aspect of white noise as no more than a philosophical curiosity. My present experimental interest was sparked off by reading "Breakthrough" by Konstantin Raudive (English edition by Colin Smythe, 1971). The "Raudive voices". alleged messages from identifiable dead people recorded by several different methods onto magnetic tape, have caused quite a stir in psychical research circles.
The techniques used are quite elementary, and the test:monials in the Appendix to the book, many from reputable and hard-headed electronics engineers not obviously given to Spiritualist fantasies, demonstrate that Raudive can produce his phenomena on sealed tapes running through new recorders.

The "Raudive voices" intersect with your P.E. item over the question of white noise. In his book Raudive details three methods of producing the messages on tape. Direct microphone, in which the new voices appear between and sometimes in response to the comments and questions of those present; radio, when a recording is made of an unmodulated carrier from any radio-the voices then appear to modulate the carrier. And via a "diode", which appears to be, from the diagram published, no more than a crude broadband tuned circuit and detector. The messages then appear superimposed on the jumbled output from the tuned circuit.

All the messages, it is claimed, have the same characteristics whatever method is used.

It is fairly clear from the book that Raudive's training and interest in electronics are not large. In particular it seems obvious that his three methods are just different ways of producing white (or perhaps pink) noise. Nevertheless, we have here a field of immense interest for these experiments effectively circumvent the main objections to physical research: that is non-scientific, i.e. not quantifiable or recordable or repeatable.

I don't think we have to accept Raudive's thesis or post-mortem communication as the minimum working hypothesis for two reasons: the messages are mostly polylingual as is Raudive himself; and they give no information not available to himself. These factors make me suspect the answer lies in the telepathic modulation of (or poss:bly selection from) a white noise carrier wave. And this might equally be the explanation of Gerry Brown's R.A.F. phenomenon. A bored operator, his mind "idling": the literature of a parapsychology suggests this half-dreaming state is the ideal condition for psi activity whether telepathy, clairvoyance or spontaneous bodily projection.

Although 1 have a keen amateur interest in electronics 1 don't have the ability to design circuitry or devise fruitful channels of research without expert help. So what I am suggesting, if you think it worthwhile, is the setting up of a forum of readers interested in "Psitronics": physical researchers, technicians (the more sceptical the better), and "mediums" (perhaps publicity would throw up more of these). In any case, I'd be pleased to hear views on the points l've raised.

Peter R. Morton,
Thornaby, Teesside.

Good devices

Sir.-It has been brought to my attention that in the June issue of your magazine, in Points Arising. reference is made to the manufacturers of the 2 N 3055 transistor as used in the P.E. Scorpio Ignition System.

We feel that the observations made regarding satisfactory manufacturers are narrow and confining. and we ourselves have been supplying Solitron devices since the inauguration of this project. As far as we know we have had no failures due to manufacturing defects.
However, a number of our customers have written to us and are under the impression that we are selling sub-standard goods because we are not providing RCA or Ferranti devices. As a result. we have been put to some considerable effort to put people's mind at ease on this point.
J. A. Marshall,
A. Marshall \& Son (London) Ltd.

WINGS APPEAL $\overline{\text { sppr } 11 \mathrm{lin}-16 \mathrm{bin}}$

BSR LATEST SUPERSLIM STEREO \& MONO
Plays $12^{*}, 10$ " or $7^{\prime \prime}$ record
Auto or Manual. A high quality unit backed by BSR reliability with 12 month gusrantee. AC 200/250v. Size 18!
Above motor board 3 in.
below with STEREO and MONO XTAL
 MONO-COMPATIBLE 68.75 Post 250. Plays all records 67.75 Pott 25 p

RCS DE-L UXE 3 WATT AMPLIFIER. Ready made tested Printed circuit. Pentode valve EL84, 3 watts output.
Tone and volume controls. Metal rectifer. Complete Tone and volume controls. Metal rectich
with two knobs, output transiormer and wigh performance loudspesker. Response $50-12,000 \mathrm{cps}$. Sensitivity 200 mV

R.C.S. PORTABLE PLAYER CABINET

Really smart appearance with space for R.C.S. Amplifers and most modern autochangers. Size 18×15 8in Metal fittings. Carrsing handle. Popular
Colours. Two-tone rexine covered. $\quad \mathbf{\leq 4} \begin{aligned} & \text { Post } \\ & 25 p\end{aligned}$
GARRARD DISCO DECK TA Mk II
4 speeds. Plays alt pole beavy duty motor. Oin. steel turntable. Plug in
 head complete with stereo/mono caitridge. Adjustable stylus pressure. AutoBase plate size 12in 8in. Operating area 14in. <12 in
Bran Above motor board 3in. below motor board 10 Pos
 GARRARD ADTOCHANGERS with Sonotone Cartridges. Stereo Diamond and Mono Sapphire. Model $1025 £ 10$ Model 3500 Stereo and Mono Autochanger \&14. Post 25 p
 HI-FI PICK UP CARTRIDGES. Diamond LP Stereo. Sapphire Mono GP91 \&1 50; Powerpoint LP 78 в
E.M.I. WOOFER AND $£ 5 \cdot 75 \stackrel{\text { Poss }}{\substack{2.250}}$
Comprising a fine example of a Woofer 10 ${ }^{3}$ b'in. with a massive Cerami Magnet, 440z, Gauss 13,000 innes middle and top response. Also the E.M.I. Tweeter 3 jin. square has a specia lightweight paper cone and magnet fax
 10,000 lines. Crossover condenser supp. Impedance Standard 8 obms amimum power 12 watts $\begin{array}{ll}\text { Uselul Response } & 35 \text { watts } \\ \text { Bass Resonance } & \mathbf{3 5} \text { to } 18,000 \mathrm{cps}\end{array}$ Basa Resonance $\quad 45 \mathrm{cps}$

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial.. 72p Spare Cores One. P50/1AC rdif, P50/3CC ke,s rd 1,F, P50/3CC 33 p Driver Trans. LFDT4 38 Printed Circuit, PCA1 36p J.B. Tuning Gang P51/L or P51/2 ${ }_{\mathbf{3 6 p}}^{\mathbf{3 6 p}} \left\lvert\, \begin{aligned} & \text { OPT1 }\end{aligned}\right.$ | $36 p$ OPTl |
| :--- |
| $\times 1 \mathrm{in} .20 \mathrm{p} . \mathrm{B} \times \mathrm{in} .20 \mathrm{p}$ |

8in. ELAC

HI-FI SPEAKER

Dual cone plasticised roll surround. Large ceramic magnet. $0-16,000$ cps. Bass mpedance. 10 watts
€4.80

BLANK ALUMINIUM CHASSIS
. 18 g.w.g. 2 in. sides $6 \times 4 \mathrm{in} .45 \mathrm{p} ; 8 \times 6 \mathrm{in} .53 \mathrm{p} ; 10 \times 7 \mathrm{in} .85 \mathrm{p} ; 12 \times 8 \mathrm{in} .85 \mathrm{p} ;$ ALDMINIUM PANPLS $18 \mathrm{p} ; 12 \times 3 \mathrm{in} .50 \mathrm{p} ; 18 \times 10 \mathrm{in} .11$ ALUMNIUM PANELS 18 ..W.8. $\times 6$ $16 \times 6 \mathrm{in} .28 \mathrm{p} ; 14 \times 9 \mathrm{in} .34 \mathrm{p} ; 12 \times 12 \mathrm{in} .40 \mathrm{p} ; 16 \times 10 \mathrm{nn} .50 \mathrm{p}$.
14inch DIAMETER WAVECHANGE 8WITCHES. 25p.
$2 \mathrm{p} . \mathrm{R}$-why, or $2 \mathrm{p}, 6$-way, or $3 \mathrm{p}, 4$-way 25 p each.

"THE INSTANT"'BULK TAPE
ERASER \& HEAD DEMACNETISER
$\begin{array}{ll}\text { 200/250 v.A.C. } \\ \text { Lentlet 8.A.E. } & 22.35 \text { Post } \\ 15 p\end{array}$
HI-FI STOCKISTS.
RETURN OF POST DESPATCH.
R.C.S. STABILISED POWER PACK KITS

All parts and instructions with Zener Diode, Printed Circait. Bridge Rectmers and
input $200 / 240 \mathrm{~V}$ a.c. Ontpat voltages available 6 or 8 or 12 or 15 or 18 or 20 V d.c. at 100 mA or lest
 R,CS C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE

 For use with valve or transiltor equipment.
Fuil in intructions supplied.
Details
S.A.

NEW TUBULAR ELECTROL YTICS

2/350V	14p	250/25V	14p	$50+50 / 350 \mathrm{~V}$.	35p
4/350V	14p	500/25V	20p	$80+100 / 350 \mathrm{~V}$	
$8 / 450 \mathrm{~V}$	14p	$1000 / 25 \mathrm{~V}$	35p	$32+32 / 250 \mathrm{~V}$	18p
16/450V	15p	$1000 / 50 \mathrm{~V}$	47D	$32+32 / 450 \mathrm{~V}$	38D
32/450V	20p	$8+8 / 450 \mathrm{~V}$	18p	$350+80 / 325 \mathrm{~V}$	D
25/25V	10 p	$8+18 / 450 \mathrm{~V}$	20p	$350+80 / 325 \mathrm{~V}$	80p
$50 / 50 \mathrm{~V}$	10p	$16+16 / 450 \mathrm{~V}$	25p	$32+32+32 / 350$	
100/25V	10p	$32+82 / 350 \mathrm{~V}$	25p	$100+50+5035$	

$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
1000 mF 12 V 17p; 25V 35p; 50V 47p; 100V 70p.
2000 mF 6V 25p; $25 \mathrm{~V} 42 \mathrm{p} ; 30 \mathrm{~V} 57 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V}$ 65p
5000 mF 6V 25p; 12 V 42 p ; 25V 75p; 35V 85p; 50V 85p
CERAMIC, 1pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mica 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$ PAPER 350V-0.1 4p, 0.5 $13 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$. $500 \mathrm{~V}-0001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; \quad 0258 \mathrm{p} ; \quad 0.4725 \mathrm{p}$. SILVER MICA. Close tolerance 1 , 2-500pF 8p; 560 2,200pF 10p; 2,700-5,600pF 20p; $6,800 \mathrm{pF}-0.01$, mid 30 p each. TWIN GANG. "0-0" $208 \mathrm{pF}+176 \mathrm{pF}$, 65 p ; Slow motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$; 500 pF slow SHORT, ELandard 45p; 8 mall $3-\mathrm{gang} 500 \mathrm{pF}$. $£ 1 \cdot 60$. NEON PANEL INDICATORS 250 V AC $25 \mathrm{pF}, 55 \mathrm{p}, 50 \mathrm{pF}, 55 \mathrm{p}$. RESISTORS. \ddagger W., $4 w .1$ w. $20^{\circ}{ }_{n} 1 p ; 2 w .5 p$. 10Ω to 10 M HIGH STABILITY. w. w. $2 \% 10$ ohms to 1 meg., 10 p Ditto 5°.W. Preferred values 10 ohms to 10 meg., 4 p.
WIRE-WOUND RESISTORS 5 watt, 10 watt, is 10 ohms to 100 K 10p each; 21 watt. 1 oh m to $8 \cdot 2 \mathrm{olmg} 10 \mathrm{p}$.
DECCA DECCADEC GARRARD MOTOR UNIT Mk. II
Single piay Stereo
Mono Deram transcription Four speeds. Four speeds.
10:in. turntable. Anti-rumble filter. Bias compensation Laboratory motor.

METAL PLINTH AND PLASTIC COVER Cut out for most Garrard or B.S.R. Will play with cover in position. Latest Design. Covered in black leatherette. Antimagnetic.
 ALSO AVAILABLE IN SOLID NATURAL MAHOGANY WAX POLISHED FINISH AT SAME PRICE

MAINS TRANSFORMERS
All post
25 p each
 $250-0-25080 \mathrm{~mA} .6 .3$ v. 3.5 a. 6.3 ₹. 1 a, or 5 v. 2 a. $£ 2.50$ $300-0-300$ v. 120 mA ., 6.3 จ. 4 A. С.T.; 8.3 จ. 2 2. MINIATURE $200 \mathrm{v} .20 \mathrm{~mA}, 6,3 \mathrm{v}, 1 \mathrm{a} .2\} \times 24 \times 2 \mathrm{in}$.
 MINI-MAINS $20 \mathrm{v} .100 \mathrm{~mA} .1 i \times 1 \mathrm{i} \times 1 \mathrm{iln}$. HEATER TRANS
Ditto tapped sec. 1.4 Y., $2,3,4,5,6.3 \%$ i 1 amp. GENERAL PORPOSE LOW VOLTAGE. TADDed 80 p at $2 \mathrm{mmp} ., 3,4,5,6,8,9,10,12,15,18,24$ and 308 . 22.25 1 amp. $6,8,10,12,18,18,20,24,30,36,40,48,60.22 .25$
2 amp., $6,8,10,12,16,18,20,24,30,36,40,48,60$
AUTO TRANSFORMERS
S 11575 AUTOTRANSFORMERS. 115 F to 830 v or 280 v to 115 v
$150 \mathrm{w} . £ 2 \cdot 25 ; 500 \mathrm{w} . £ 6.25 ; \quad 750 \mathrm{w} . £ 10 ; 1000 \mathrm{w} .814$. 150w. $£ 2 \cdot 25 ; 500 \mathrm{w} .88 \cdot 25 ; 750 \mathrm{w}$. $£ 10 ; 1000 \mathrm{w} . £ 14$
CHARGER TRANSFORMERS.
 FULL WAVE BRIDGE CHARGER RECTIFIERS:

E.M.I. $13 \frac{1}{2} \times 8$ in. LOUDSPEAKERS With twin tweeter,
And eronswer. 10
watt. State $\$$ or 8 or 15 ohm. As illustrated. Pont 15p With fared tweeter cone and ceramic
 State 8 or 8 or 15 ohm

$£ 5$

 Hi-Fi Enclonure Manasl containing 20 plans, crossove data and cubic tables. 42p. Post Free.
BAKER 12in MAJOR £9

30-14,500 c.p.a, 12 in weeter cone together with B BAKER cersmic masnet asiembly bavide 1 fux denalts of 14,000 kans and a total fux of 145,000 Maxwells. Bass renonance $40 \mathrm{e} . \mathrm{p} . \mathrm{I}$. Rated 5 whm. Polts. Free.

Module kit, 30-17,000 e.p.s
 instructions.

BAKER " BIG-SOUND " SPEAKERS		
up 25'	-	
12 inch 47	12 iuch 49	6
25 wat 3 or 8 or 1	${ }_{3}^{35}$ watt ${ }_{3}$	8 or 15 ohm
TEAK HI-FI SPEAKER CABINETS. Fluted mood front.		
LOUDSPEAKER CABINET WADDING 18 in . Wide, 15 f it		

GOODMANS $6 \frac{1}{2}$ in. HI-FI WOOFER
8 ohm, 10 watt. Large ceram
Special Cambric cones surround. Frequency reaponse 30-12,000 cpa. Ideal P.A. Columns.

ELAC CONE TWEETER

The moving coil diaphragn gives a good radiation pattern to the higher Iregrenciea and a smooth extention of total response Irom $1,000 \mathrm{cps}$ to $18,000 \mathrm{cpa}$. $\$ 1 z e 31 \times$
$31 \times 2 \mathrm{in}$. deep. Rating 10 wats. 3 obm or 15 ohm models. El .90 post 10 p

SPEAKER COVERING MATERIALS. Samples Large 8.A. Horn Tweeters $2-16 \mathrm{Ke} / \mathrm{s}, 10 \mathrm{~W} 8$ ohm or 15 ohm 21.50. De Luxe Horn TWO-WAY 3,000 c.p.f. CRO8sovers 3 or 8 or 15 ohm 86 .

 $3 \mathrm{ohm}, 21 \mathrm{in}, 3 \mathrm{in}$. 5in. 5 . 3in.

 RICHARD ALLAN TWIN CONE LOU
8 in , dia. 4 watt: 10 in . dia. 5 watt; 12 in , dia. 8 watt,
3 or 8 or 15 ohm models f2 each. Poak 15 p .
VALVE OUTPUT TRANS. 25p. MIKE TRAN. $80: 125 \mathrm{p}$ VALVE OUTPUT TRANS. 25p. MIKE TRAN8.
5 WATT MULTI RATIO, 3,8 and 15 ohma 80 p .

BAKER 100 WA
ALL PURPOSE
TRANSISTOR

AMPLIFIER

4 inpots speech and

Response $10-30,000 \mathrm{eps}$. Matches
all loudspeakers. A.C. 200/250V
Separate Treble and Bass
Guaranteed. Detaila S.A.E
£39
BARGA1N AM TUNER. Medium Wave. $\mathbf{~} \mathbf{4} \mathbf{5 0}$
Transiftor Superhet. Ferrite aerial. 9 volt.
0 MIXER.
BARGAIN 4 CHANNEL TRANSISTOR MOHO MIXER. Add masical bighlights and mix Microphone, records, tape and tuner $\mathbf{~ W . 5 0}$ stereo veraion of above $\mathbf{2 4} 50$.

BARGAIN FM TUNER 88-108 Mc/a Six Transiator. 9 volt. Printed Circait. Calibrated slide disl tuniog. $\{12.50$ BARGAIN FM TUNEE as above. inch 68.85 Chassis only, leus cabinet.
 Push-Pall Ready built, with volume control. 88.

COAXIAL PLUG 6p, PANEL SOCKETS 6p. LINE 18p OUTLET BOXES. SURFACE OR FLUSH 20 D , IACK 8OCKET Std. open-circuit 14p, eloned circult 23p Chrome Lead Socket 45p, Phono Pluga 5p. Phono socket 5p. JACK PLUGS 8td. Chrome 15p; 3.5mm Chrome 14p. DLI 80CKETS Chastis 3-pin 10p; 5-pin 10p. DIN 80CKEry 25p. VALVE HOLDERS, 5p; CERAMIC 8p; CAN8 5p.
E.M.I. TAPE MOTORS. 120% or
 BALFOUR GRAM. MOTORS. 120 v . of $240 \mathrm{v}, \mathrm{AC}, 1,200 \mathrm{r}, \mathrm{p}, \mathrm{m}, 4$ pole
 CUSTOMERS FREE CAR PARK.

CALLERS WELCOME
CROYDON 337 WHITEHORSE ROAD,

LARGEST STOCKS SEMICONDUCTORS \& COMPONENTS

WIDEST RANGE

WOW! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outft! No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s Simplified Study Method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
.. and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.
You LEARN-but it's as fascinating as a hobby.
Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the spring board for a career in Radio and Electronics.

FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of Courses up to City and Guilds standards. New Specialist Booklet If you wish to make a career in Electronics, send for your FREE copy of "OPPORTUNITIES IN TELECOMMUNICATIONS / TV AND RADIO". This brand new booklet-just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

Dept. BI2, ALDERMASTON COURT, READING RG7 4PF

$\frac{1}{2} W$ TRANSISTOR AMPLIFIER, $£ 1$; 10 W , £3.75, 1 W VALVE AMPLIFIER, $£ 3$. STEREO HEADPHONES, 8 ohm $£ 1.95$, with Volume Control, £6. HIGH IMPEDANCE ($2,000 \mathrm{ohm}$), 80p. RECORDING TAPE, 5 in L.P. $900 \mathrm{ft}, 45 \mathrm{p}$; $5 \frac{3}{i} \mathrm{in}$ L.P. $1,200 \mathrm{ft}$, 60 p ; 7in L.P. 1,800ft, 80p. MICROPHONES: Lapel, 28p; ACOS Mic, 45, 90p; Dual Impedance 600 ohm and $50 \mathrm{k} \Omega$, £4.50. ROTARY SWITCHES 250V 2A, 9p. PLUGS: Jack Standard, 10p; Screened, 13p; 2.5 mm and $3.5 \mathrm{~mm}, 6 \mathrm{p}$; Screened, 8p. TUNING METERS, $500 \mu \mathrm{~A}, 38 \mathrm{p} .100$ MIXED RESISTORS, 45p. MINIATURE INDICATOR LAMPS (5 colours), 11 p ; 6 V or 12 V BULBS for above, $\mathbf{4 p}$. MAINS NEONS panel mounting (red, green, clear), 15p. TELEPHONE AMPLIFIERS, $£ 2 \cdot 62$. INTERCOMS, 2 way, $£ 250$. CARTRIDGES: COMPATIBLE ACOS GP91-3SC, 90p ; STEREO GP93-1, $£ 1 \cdot 15$. CAPACITORS: $100 \mathrm{mF}, 25 \mathrm{~V}, 5 \mathrm{p}$; $0.047,630 \mathrm{~V}, 2 \frac{1}{2} \mathrm{p}$; $400-200-50-16 \mathrm{mF}, 300 \mathrm{~V}, 30 \mathrm{p}$. TRANSISTORS AND DIODES: AC107, 13p; -AC126, 11p; AC127, 11p; AC128,-15p; AC176; 11p; AD140, 39p; AD149, 39p;•AD161, 35p; AD162, 35p; AF117, 18p; BC107, 10p; BC108, 10p; BC109, 10p; OC26, 25p; OC44, 11p; OC45, 11p; -OG74-1:prio 0 C81,11p; OC35, 39p; $2 \mathrm{~N} 2926 \mathrm{G}, 13 \mathrm{p}$; $1 \mathrm{~N} 4004,8 \mathrm{p}$; 1 N4006, 12 p . PO O 81 , 7 p ; SILICON BRIDGE RECTIFIER B40, C1500/1000, 33p.
Special Prices for quantity quoted on request. Large S.A.E. for list Add 10p for P. \& P. on orders under 65 .

M. DZIUBAS

158 Bradshawgate, Bolton, Lancs

B.H. COMPONENT FACTORS LTD.

 DEPT. P.E., P.O. BOX 18, LUTON, BEDS. LUI ISUELECTROLYTIC CAPACITOR BARGAIN PACKS-80p EACH

TERMS: Cash with order. P. \& P. please add 10 p for orders below f 5 . Overseas extra. Discount: f 10 - 10%. All goods carry our money back guarantee if not satisfied. We have many components not listed, enquiries welcome. List $5 p$ stamp. Trade enquiries welcome.

GEM PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.
LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

NEW '‘SEW"' DES\\|GNS! CLEAR PLASTIC METERS BAKELITEPANELMETERS							
		TYPE SW. 100 $100 \times 80 \mathrm{~mm}$		TYPE S-80 80 mm square fronts			
		${ }^{3} 0004 \mathrm{~A}$.	$\begin{aligned} & 28.20 \\ & 88.10 \end{aligned}$	$\underset{j 000-50 \mu i}{ }$	$\begin{aligned} & 23.20 \\ & 83.10 \end{aligned}$		
		00 V 50 C d.e.	23.10	${ }_{100}^{100 \mu \mathrm{~A}} 10 . .$.	23.10		
		300 V d.c.	28.10	$500 \mu \mathrm{~A}$ …			
50.4	83.60	1A dic.	23.10	1ma	22.60	1.4 d.e.	22.60
-	23.45	sadce	28.10	20N d.c.	22.80	d	
$100 \mu \mathrm{~A}$	28.45	300 V a.c.	28.10	50V d.c.	28.60	$300 \mathrm{Y}^{\text {a.e. }}$	29.60
100-0-100 H A	23.35	$\mathrm{vi}^{\text {c M }}$ Meter	23.75	300 V d.e.	28.00	ve Meter	7

Trpe Mr.85P. 4 tin 4 tin tronts.

32P. 21 in		
$50 \cdot 0.50 \mathrm{ma}$	82.60	
$100 \mu \mathrm{~A}$	22.60	3005
100.0-100 $\mu \mathrm{A}$	22.50	
$500 \mu \mathrm{~A}$	22.30	300 V
1 mA	28.00	s Meter
5 mA	22.00	1 mA
10 ms	82.00	$\mathrm{VI}^{\text {Meter }}$
50 mA	12.00	1A a
100ma	52.00	\%A a.c.*
500 mm	22.00	$10.4 \text { a.c.* }$
	82.00 82.00	20A a.c.*
10 V i.e.	22.00	30.A n.c

Type Mr. 65 P. 31 in <3itin Ironts
 50.0 .50 $100 \mu \mathrm{~A}$
$100 \cdot 0 \cdot 10$ $100 \cdot 0 \cdot 1$ $200 \mu \mathrm{~A}$
500 A $500-0.500 \mu \mathrm{~A}$

${ }_{5}^{1 \mathrm{~mA}}$

10 mA
50 mA
1000 miA
1500 m.
5A
10.
15 A
$15 \mathrm{~A} \ldots$
$20 \mathrm{~A} \ldots$
$30 \mathrm{~A} \ldots$
$50 \mathrm{~A} . . . \mathrm{c}$
$5 \mathrm{~d} . \mathrm{c}$
$10 \mathrm{~d} . \mathrm{c}$

* MOVING IRON ALL OTHERS MOVING COIL Please add postage

EDGEWISE METERS

MULTIMETERS for EVERY purposed

 \qquad $0 / 10 / 50 / 20 / 1000$ $0 / 1 / 100$ M.A. $0 / 150$
81.07.
P. \& P.

MODEL
O.P.V.
with $\quad \begin{array}{r}30,000 \\ \text { overlond }\end{array}$ protection, mirror ocerale $0 /-5 / 2 \cdot 5 /$ I $0 / 25 / 100 /$
$280 / 500 / 1.000$ d.e. $0 / 2.5 /$ $10 / 25 / 100 / 250 / 500$ 1.000 V. a.c. $0 / 50 \mu \mathrm{~A} / 5 / 50 /$ $\begin{array}{ll}500 \mathrm{niA} \\ 0 / 60 \mathrm{~K} / 6 & \mathrm{Meg} / 60 \\ \mathrm{Meg} \Omega \\ \mathrm{Me}\end{array}$ 88.87!, Puet pais.

TME LABTESTER 100,000 O.P.V 61 in scale buzzer
mhort circuit check Senaitivity: 100,000 OPV d.c. $5 /$ Volt a.c volta: $0.5 .2 \cdot 5$.c. volts: 3. $10,50,250,500,1.0005$ D.c. current: $10,100 \mu \mathrm{~A}, 10,100,500 \mathrm{~mA}$ $2 \cdot 5$. 10 A . Resistance: 1 K .10 K . 100 K 10 meg. 100 meg. Hecibela: - 10 to +49dB. Plastic case with earrying handle
ize 7 din $\times 6$ In $\times 3$ in. 218.90 . P. \& P. 25p

MOUND SCALE TYPE PENCIL
 \section*{TESTER MODEL T\$.68}

meg input. 3 range
Large 4inn mirtur scal size \quad sith x mirtur ncalc.
 P.P. D.c. current 0 - 19 becibels - 20 to +71 HH , "omplete with TE-20D RF SIGNAL GENERATOR

Mc/s on generato Directly bands. brated variable R.F. attenuator.
Operation
$200 /$ Operation $200 /$
$240 v$ a.c.
Bratruct instructions. 815 . P. \& P. 371p.
S. E for details.

240° WIDE ANGLE

1 mA METERS MW1.6 60 mm square
88.97t. MWI-8 80 mm 83.97!. MW1-8 80 mm
square $84-87 \mathrm{~F}$. F . P .

HIOKI MODEL 720X
$\mathbf{2 0 , 0 0 0} 0 . \mathrm{P} . \mathrm{V}$. 20,000 O.P. V. Orerhesd protection. $0 / 20 / 100 / 000 / 1000$ D $50 \mu \mathrm{~A} / 250 \mathrm{~mA} .20 \mathrm{~K} / 2 \mathrm{meg}$ t4.97. P. \& P. 15 p .

MODEL PL436. 20k $9 /$
holt Mi.c. 8k $\Omega /$ Yolt
a.c. Miror seale. $0.6 /$
$3 / 12 / 30 / 120 / 600 \mathrm{~V}$ d.c.
$3 / 30 / 120 / 600 \mathrm{~V}$ a.c.
$50 / 600 \mu \mathrm{~A} / 60 / 600 \mathrm{~mA}$.
$10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10 \mathrm{meq}$
$10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10 \mathrm{meq}$
$\mathrm{\Omega} .-20$ to +46 dB.
86.97i. P. \& P. 12 fp.

MODEL 5025.
ranges, giant otin
meter. polarity
reverse wnitch sen-
reverse woitch. 8 Ben-
sitivity: sitivity: sok/tolt d.c.
SK/Volt a.c. D.c.
 $20,50,125,250,500,1,000 \%$ v.e. current: $25,50 \mu \mathrm{~A}, 25.5,55,50,250,500 \mathrm{~mA}, 5$. 10 A . Resistance: $2 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{meg}$. 10 meg. Decibels: -20 in +8.51 B .212 .80 .

HIOKI MODEL 700X
100,000 O.P.Y. Overlua
protection. Mirror acale.
3/-0/1 2/ $1 \cdot 5 / 3 / 6 / 1 \cdot / 30 / 6$ $120 / 300 / 600 / 1=60 / 150 / 300 / 600$
$1 \cdot 5 / 3 / 6 / 12 / 30 / 60 / 10$ 1200 VAC
$15 / 30 / \mathrm{AA} / 3 / 6 / 30 / 60 / 150 /$ 300 mA 300 mA
$6 / 12 \mathrm{AMP}^{\prime} \mathrm{D}$
 -20 to +63 lth

$\$ 18.50$ P. \& P. 201

RUSSIAN ER RANGE MULTTMETER
 o.p.r.
versatile A tirst class
inatrument TTAnufactmred in
T.S.S.R. T.S.S.R.
highest highest
Hanges: Ranges: -5 landarils.
 1000 N a.c. D.c. current 100 ml complete with batteries, teat reads, in OUR PRICE E5-92 \qquad
TO-3 PORTABLE OSCILLOSCOPE

 mea $\Omega: 20 p 1:$ Time base. ranges $10 \mathrm{cps-300KHz}$.
synchrunication. Internal hinated scale $1.40 \times 25 \times 330$
 brand nery with hanthouk.
Carr. inn.

HONEYWELL DIGITA VOLTMETER VT. 100

 ('an be panelbebcll mounted Basje neasures can be used tis measure at milie range
of a.c. atut
 d.e. volt, cur

plug-in cards

 plus fourth overrange digit. Overrange: $100^{\circ}{ }_{0}$ (11p to 1.999). Input impedabce: $1000{ }^{\circ} \mathrm{Mgg}$ ohm. Measuring cycle: I per second. Adjustment: Autometic zeroing. full scale adjustrient against an internal reference voltage. Overinad: to 100 d.c.
Input: Fully floating (3 poles). Input power: $110-230 \mathrm{~V}$ a.c. $50 / 60$ cycles.
Overall size: 5 in. $\times 213 / 16 i n \times 83 / 16$ in
 FULLY GLCAlRANTEED AT APPROX HALF PRICE. $449-97 \frac{1}{2}$ Carr. 50p
\& CO (RADIO) LTD.
Also see next two pages

Transistors		2N3415	280		40	BC115	18	BFW90	22p	NKT219	${ }^{30 p}$	Integrated Circuits	FJH101 25p	25p，8N 7433	VALVES					
2 c 301	20 p	－ 2×3416	87 p 87 p	2NO459	400	$\underset{\mathrm{BCl}}{\mathrm{BCl}}$	${ }_{150}^{150}$	BFW91	20p	NKT223	27p		FJH111 700	SN7437 64p						
20302	20 p	2N3439	180p	28103	258	BC118	1	${ }_{\text {BFX }}{ }^{\text {a }}$	22 p	NKT22う		（18000 180								5p
20303	20 p	2 N 3440	970	28104	250	BC119	80	BFX29	250	NKT	30	Ca3000 1809	85	T441AN	OB2	45p	25Z5	42p	EM8	
2 G 306	48p	2N3564	17p	28301	80p	BCl^{1}	201	BFX30	$25 p$	NKT237	85 p	CA3007 262p	FJH141	－ 750	Z4	30		85，	EM81	
2 C 308	30 D	2 N 3365	15p	$2330 \cdot 2$	50p	BC122	20	BFX37	30 p	NKT238	25p		F3H161	750	1 LH		30 Cl		EM8	
2 G 309	80 p	2N3566	22p	28303	60 p	BC125	150	BFX 44	37 p	NKT240	27p	CA3012	FJH161 ${ }_{\text {FS }}$	8N7446 1000	${ }_{\text {185 }} 18$	40 p 30 p	${ }_{30 \mathrm{Cl} 18}^{30 \mathrm{C}}$	${ }_{80 \mathrm{p}}^{90}$	EM85	1009
2 C 371	150	2N356\％	25p	28304	20s	BC126	20 p	BFX68	67p	NKT241	27p	Ca3013	FJH181 25	SN7448 185	1T4	$25 p$	30 F 5	85p	EY51	${ }^{700}$
26374	20 p	2N3569	25p	28001	32 p	BC134	12 p	BPX^{84}	25p	NKT242	20 p	CA3014 124p	FJH221 25	8N7450 80p	11.4	${ }^{\text {a }}$ p	30 FL 1	75 p	EY\％	\％
2 C 381	280	2N3570	125y	28502	359	BC135	12 p	BFX85	30 p	NKT243	62p	CA3018 84p	FJH231 250	8N7451 20p	IL＇5	60 p	$30 \mathrm{FL1} 12$	120p	EY87	2p
${ }^{2} \mathrm{~N} 388 \mathrm{~A}$	49p	2N3572	97 y	28503	27 D	$\mathrm{BCl}^{\text {Bfi }}$	180	BFXA6	${ }^{255}$	NKT244	17p	CA3018A	FJH241 85p	SN7453 800	2 n 21	35 p	30 FL 14	959	EZ40	550
2 N 04	20 p	2N3605	27p	3N83	40 D	BC137	150	BFX87	25 p	NKT245	20p	10p	FJIt251 250	8N7454 20p	3 L 4	50 p	30 L 5	$85 p$	EZ41	60p
2N696	15 p	2N3606	27p	3N128	70 D	BC138	20 p	Bf＇X88	20 p	NKT261	20 p	CA3019 84p	FJJ101 60p	8N7460 200	384	35 p	30 L 17	80 p	EZ80	87p
2N697	150	$2 \times 360{ }^{-1}$	22 p	3 N 140	77	BC140	${ }^{365}$	BFX89	${ }^{68 p}$	NKT26：	${ }^{30 p}$	CA3020 120p	FJJlll 50p	SN7472 300	3 N 4	48p	30 P 12	80 p	EZ81	29 p
－ N 698	${ }^{250}$	2N3638	18p	3 N 141	78.	$\mathrm{BCl}^{\text {Bel }}$	${ }^{35}$	BFX93A	70 p	NKT264	20p	CA3020A	FJJ121 60	SN7473 400	5 R 4	75 p	30 P 19	85	cz3：	48p
－ N 699	30 D	2N3638．	200	3 N 142	SSO_{8}	BC147	10 D	BFY11	42p	NKT271	20p	180p	FJJ131 608	SN74T4 409	5 C 4	35 p	30 PL 1	75p	OZ34	80，
${ }^{2} \mathrm{~N} \boldsymbol{\mathrm { N }} \mathbf{2} \mathbf{0 6}$	${ }_{10 p}^{10 p}$		${ }^{18 p}$	3 N 143 3 N 152	878	BC148 RC149	100	${ }_{\text {BFY18 }}$	${ }^{25}$	NKT26\％	20p	CA3021 158p	FJJ141 125p	8 S 747545 y	$5{ }_{5} 4$	45p	30 PL 13	93p	KT66	205 y
$\begin{aligned} & 2 \times 706 ; \\ & 2 N 708 \end{aligned}$	$\begin{aligned} & 180 \\ & 10 p \end{aligned}$		${ }^{180}$	$\begin{aligned} & 3 N 152 \\ & 40050 \end{aligned}$	87	BC149 BC 152	${ }_{178}^{18}$	${ }_{\text {BFY }}{ }^{\text {BFY } 21}$	${ }_{48} 5$	NKT274	${ }_{200}^{200}$		FJJ181 75p	8N7476 45 y	5 Y 3	40 p	30 PL 14	90 p	KT88	200p
2 N 709	68 D	－N3644	25	40250	50 p	BC153	200	BFY24	45p	NKT27\％	25p			8N7483 ${ }^{878}$	5 5 418	40p	${ }^{3516}$	50p	MC14	76
2N714	25 D	2 N 3 345	25p	40251	32］	BC154	20 p	BFY＇29	40 p	NKT281	27p	CA3028A 74p	FJJ251 125p	8N7490 87p	$6 \mathrm{AC7}$	40 p	$35 \mathrm{Z4}$	$35 p$	PC	0p
2 N 718 A	80p	2 N 3691	15p	40309	82 D	BC157	15 D	BFY 30	40 p	NKT401	87p	B	FJL101 125p	8NT492 87D	$6 \mathrm{Af} \mathrm{\%}$	40p	$35 \mathrm{Z5}$	50 p	Pe＇8	Op
2 N 726	30 D	2N369：	18p	40310	5	BC＇158	110	BFY41	50 p	NKT402	90 p	105p	F＇Yiol 25	8N7493 87p	¢ак5	35 p	50 B 5	50 p	PC97	45
2 N 727	80 p	2N3693	15p	40311	350	BC159	12p	BFY43	${ }^{62} \mathrm{p}$	NKT403	${ }^{75 p}$	A3029 87p	$1 \mathrm{Cl} \mathrm{S}^{2}$ 180p	SN7493 870	8AK6	60 p	500	50 p	PC900	48p
$2 \mathrm{N914}$	17 D	2N3694	18p	40312	48	BC160	${ }^{35}$	BFY50	${ }^{20 p}$	NKT404	55p		L900 40p	8N7496 87D	6 AL 5	20 p		350	PCC84	40p
${ }^{2} \mathrm{NY} 916$	17 p	2N3702	10p	40314	37p	${ }^{\text {BCP167 }}$	11p	BFY51	200	NKT405	${ }^{75 p}$	${ }^{105 p}$	L914 40p	8N74107 58p	6AMt	30 p	85	50 p	PCC85	40p
${ }^{2} \mathrm{~N} 918$	${ }^{80}{ }^{0}$	2N3703	10p	40315	377	BC168B	100	BFY5\％	20 p	NKT406	${ }^{62 p}$	CA3030 137p	L923 40p	SNT4153	6AQ5	38 p	80%	500	PCCB8	35p
2 N 929	28 p	2 N 3704	11 p	40316	475	BC168C	$11 p$	Bry53	$15 p$	NKT451	62	CA3035 122p	LM380 21.20 p	185	${ }_{6 A S 6}$	40 p	1625	50 p	PCC	60 p
－ 2 N 930	${ }_{400} 20$	－ 2305	${ }_{90}^{100}$	40317 40319	37p	${ }^{\text {BCl169 }}$ B＇169 ${ }^{\text {ce }}$	118	${ }_{\text {Bry }}{ }^{\text {Bry }}$（ ${ }^{\text {a }}$	480	NKT452	${ }^{62 p}$	CA3035	$\mathrm{MC724P}^{60 \mathrm{P}}$	SN74154	6at6	35 p	5 F 63	70 p	Pecirs	55p
2N1090	28.	2N3707	115	40320	478	$\mathrm{BCl}^{\text {d }}$	12 D	Bry7	570	NKT473	${ }^{40 \mathrm{p}}$		MC780P 247 PD	8	$6 \mathrm{Al}^{6}$	25.	6144	160 p	PCF80	D
2 N 1091	22p	2N3708	7	40323	82 p	BC171	18.	BFY90	${ }^{655}$	NKT717	42p	CA3042 109p	$\mathrm{MC790P}^{124 \mathrm{p}}$	74161	${ }_{6}{ }_{6} \mathbf{A B A 6}$	25 p	${ }_{\text {Az31 }}$	${ }_{35 \mathrm{p}}$	${ }_{\text {PC＇F88 }}$	（0）
2 N1131	25D	2N3709	98	40324	47 p	BC172	${ }^{150}$	B8X 19	170	NKT734	27p	CA3043 137p	MC792P 66p	28	$6 \mathrm{BE6}$	30 D	Daf9	300	PCP86	0p
2N1132	$25 p$	2N3710	9	40326		BC175	280	BgX20	15 p	NKT736	35p	CA3044 120p	Mcr99P 88p	\％ 416	6 6H6	75 D	DaF96	45 p	PCF800	0p
－2N1302	17p	2N3711	18 p	40329	0 p	$\mathrm{BCl}^{\text {B }}$	200	B8X 21	${ }^{201}$	NKT7\％3	25p	CA3045 122p	MC1303L		$6 \mathrm{BJ6}$	509	DF91	28 D	PCF801	50 p
$\begin{aligned} & 2 N 1303 \\ & 2 N 1304 \end{aligned}$	$\begin{aligned} & 17 \mathrm{p} \\ & 000 \end{aligned}$	－ 2×3713	${ }_{2000}^{187}$	40344 40347	875 870	${ }_{\text {BC178 }}$	${ }_{80}^{20}$	H8X 26 B8 27	$45 p$ $47 p$	NKT	30 p 50 p	CA3046 818	g	N74165	${ }_{68 \mathrm{BP7}}^{6}$	40 p	DF96	450	PCF80：	60p
2 N 1305	22p	2N375	183 p	4034＊	88 D	Be182	10	Bsx 28	82 p	OC16	370	CA 3048 204p			${ }_{6}^{6 B R 7}$	90p	DK	40 D	PCF805	0
2N1306	25 D	2N3716	180p	40360	40 D	BC＇182L	10p	日8x 60	${ }^{82}$	OC20	75p	Ca3049 180p	C1305P	175p	6 GW	${ }_{85 p}$	DK96	$\begin{aligned} & 55 p \\ & 50 p \end{aligned}$	PCF8808	Op
2N1307	25 p	2N3773	240p	40361	40 D	BC183	9 p	H8X 61	62 p	OC 22	800	CA3050 185p	388p	SNT4193	6 B	d	DL9	$3{ }^{3} \mathrm{D}$	PCL82	5
2N1308	25 p	2N 3791	206 p	4036\％	50 D	BC183L	${ }^{9}$	B8X 76	15 p	OC23	80p	CA3051 134p	8P 849p	175p	6 B 2	409	DL94	48 D	PCL83	85
${ }^{2}$ N 1309	25 p	2N3819	84p	40370	38 D	BC＇184	11.	B8X 7	20.	OC24	60 D	CA3052 165p	25	A241	6 C 4	88 p	DL96	45	PCL84	45p
2N1507	17 p	－ 3820		${ }^{40406}$	570	BC184L	11.	HSX 78	25 p	Oce	40p	CA3053 48p	345p	182p	6 Cl	125 p	DM70	40 D	PCL85	40 p
2N1613	20p	2N 3823	50 p	40407	40 p	BC186	259	$188 \mathrm{Y}^{24}$	15	OC26	950	CA3054 109p		AA24：485p	6 CL	50 p	dY	32 D	PCL86	15 D
2 N 1631	35 p	2 N 38 y	27 D	40408	32.	BC187	27 D	B8Y25	15	OC28	60 p	CA 3055 240p	481］	TAA243 150p	6 cW	650	DY Y	83p	PFL2	65p
2 N1632	${ }^{30}$	2N3854A	270	40409	D	BC212L	189	H8Y26	17 p	OC：29	60	CA3059 165p	09 Cg	TAA263 750	$6{ }_{6} 1$	62p	E×8C	100 p	PL36	$5{ }^{\text {p }}$
$\begin{aligned} & 2 N 1637 \\ & \text { 2N1f3 } \end{aligned}$	$30 \mathrm{p}$	$2 \mathrm{~N} 3855$	${ }^{27 \mathrm{p}}$	40410 40412	${ }^{62}$		${ }_{150}^{12}$	B8Y27	15 p	OC3i	50p	CA3064 120p	94］	TAA293 87p	6 Fbe	35p	E180F	100p	PL81	60p
2N1639	27 p	2N3806	30 p	40467A	570	BCY10	275	H8Y29	170	OC4	${ }_{620}$	$1110185 p$ H111 1050		A300 1785	6 Fl	45	EA		PL	5p
2 N 1701	168 p	2 N 38.5 A	35p	40468A	${ }^{35}$	ВСY30	270	Н8Y32	250	OC	25p	CH 1211050		TAA320 72p	${ }_{6}^{6515}$	708		30		0p
2N1711	24D	2N3858	250	40528	78 p	BCY31	30 D	B8Y36	250	OC44	15p	FCH131 500	8N7401 20 D	TAA350 175p	6 F 15	50.	EBC＇41	55		70p
2N1889	88p	2N38JBA	30p	40600	57 p	BCY 32	508	BS Y 37	${ }^{25}$	Oc4 4	12p	FCH141 105p	SNT402 20 D	TAA435 1470	${ }_{6} \mathrm{~F}_{23}$	85	Ebersi	30 p	PL504	80 p
2 N 1893	87 p	2N 3859	279	${ }^{40603}$	50 p	BCY ${ }^{3}$	255	188938	${ }^{200}$	OC46	15 p	FCH151 105p	$\mathrm{SNT}^{\text {SN }} 40320 \mathrm{p}$	TAA52 1138 p	6 Hf	17 p	EBFAO	40 p	PY32	65 D
$\begin{aligned} & 2 \mathrm{~N} 2147 \\ & 2 \mathrm{~N} 2160 \end{aligned}$	$78 p$	2 N 3859 A	${ }^{38 \mathrm{p}}$	AC10 ${ }^{\text {AC126 }}$	${ }^{80 \mathrm{p}}$	$\begin{aligned} & \text { BC'Y4 } 34 \\ & \text { BC'Y } \end{aligned}$	${ }^{80} 9$		28p	OC\％	${ }_{180}^{150}$	FCH 171105	SN7404 20 p	TAA5L2 380 D	6 J 44	50 p	EBY83	40 p	$\mathrm{PY} 33^{\text {PY }}$	689
2N2193	40p	2N3866	150 p	Ac12－	24p	ВСу39	60 p	18Y\％1	32.	OC72	${ }_{12 p}$		SN 7405 SN 7406	A $830{ }^{4950} 485$	${ }_{6}^{65} 5$			38	PY	0p
2 N 2193 A	42D	2N 3477	400	$\mathrm{AC}^{\text {Cl2 }}$	20 p	BC＇Y40	50 p	B8Y52	32 p	OC73	30p	FCH201 130p	SN 740 K 20 p	TAB101 97p			EC8	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	${ }_{\text {PY8 }}$	5p
2N2194	27p	こn347TA	40p	Actiol	18．	BCY41	18.	B8Y53	37 D	OC74	30p	FCH21］130p	2N7409 20p	TAD100 150y	6 J 7	45 p	EC	${ }^{80}$	PY83	8p
2N2194A	${ }^{30} \mathrm{p}$	2N3900	37p	$\mathrm{ACLİ2}^{2}$	22p	BCY4？	15 p	B8Y54	${ }^{40}{ }^{\text {p }}$	Oc75	22p	FCH221 130p	SN7410 20p	TADI 10 150p	，	40 p	Ecrd	65.	PY88	40 p
2 N 2217	${ }^{25}$	2N 3900A	40p	$\mathrm{ACl}^{\text {a }}$	88 p	13 CY 43	15 p		900	Oc7b	22 p	FCH231 150p	SNT411 830	SL4035 1500	6L6	45°		30 p	PY8	40 p
${ }^{2} \mathrm{~N} 2218$	${ }^{20 p}$	2 N 3901	87p	ACliz	${ }^{20}{ }^{\text {p }}$	BCCY54	32p	BSY79	450	OC7\％	30 p	FCJ101 180p	SN741：48p	8L702C．1470	6 LL	50 p	Eccej	40 p	PYR	Op
$\begin{aligned} & 2 \mathbf{N} 2.19 \\ & 2 \mathbf{N} 2240 \end{aligned}$	2	2 N 3903	${ }^{209}$	AC18	250	BCY5	${ }^{229}$	B8 ${ }^{\text {B8990 }}$	570	Oc78	${ }^{20 p}$	FCJ11 150p	SN7413 30p	Uat02a 880d	647	40 p		40 p		80 p
2 N 2221	25 p	2 N 390.	30 p	ACY1：	27 p	BCY60	97 p	C424	150	OC81	${ }_{20 \mathrm{p}}$	1218	SN7416 84p	VA702C ${ }^{\text {rab }}$	68 A	${ }_{40 p}^{40 p}$	ECF	${ }^{350}$	${ }^{-26}$	0 p
2 N 2292	20 p	2N3906	$25 p$	Acyid	24p	BCY 90	15D	C450	150	OC82	25p	FCJ141 525p	$\begin{array}{ll}\text { SN7420 } & 20 p\end{array}$	UA709\％ 45	6 SJ 7	${ }_{40 p}$	ECH86	65		85p
2 N 222.2 A	$8{ }^{25}$	2N40う8	12p	ACY19	24 D	RCy：1	20 p	GET102	${ }^{30 \mathrm{p}}$	OC82	15p	FCJ201 100p	－NT423 510	CA7IOC 1250	6 SK ？	40 p	ECH2	57	（191	5p
2 N 2297	${ }^{30} \mathrm{p}$	2 N 4059	108	ACY20	20 p	bCy7\％	150	GET113	${ }^{20 p}$	OC83	250	FCJ211 275p	sN7427 48p	Vatl6 1870	68 Li	35 p	ECH35	100 D	－281	40 p
$\begin{aligned} & 2 \mathrm{~N} 2368 \\ & 2 \mathrm{~N} 2369 \end{aligned}$	${ }_{15 p}^{15 p}$	2N 4060	$12 p$	Ac＇Y21	20 p	RCY78	${ }_{80 \mathrm{p}}^{309}$	GET114	${ }_{20 \mathrm{p}}^{20 \mathrm{p}}$	OC8	${ }^{25 p}$	FCK101 430p，	4NT428 80p	Ca723C 1000	68 N 7	359	ECH42	${ }^{75}$		40 p
2 N 2369 A	15p	${ }_{2} \mathbf{N} 40612$	12 l		178	BCZ 10	27p	GET120	${ }_{25}^{20}$	OC140	32p	FCL101 230p	9n7430 20p	CA730C 1800	68 Ca $6 \mathrm{C4}$		ECH	${ }^{30 \mathrm{p}}$	U301	40p
2 N 2410	48p	2N 4244	470	ACY 39	47p	BCZ11	400	GET473	12p	OC170	25p						EC	450	FABC80	80p
2 N 2483	${ }^{27 \mathrm{p}}$	2N 4248	15p	ACY40	，	ED112	$1{ }^{\text {P }}$	GET880	300	OC171	30 p	bridae	${ }^{30}$	$4 \mathrm{~A} \quad 40 \mathrm{D}$	6 V 6 f	32 p	ECL82	85 p	UAF42	55 p
2N2484	${ }^{32} \mathrm{D}$		15D			HD116	118 D	GET887	${ }^{20 p}$	Oc200	400	CTIFIERS	100 PIV	$4 \mathrm{~A} \quad 50 \mathrm{p}$	6×4	35 p	ECL83	700	－ $\mathrm{BC}_{4} 1$	500
$\begin{aligned} & 2 \mathrm{~N} 2539 \\ & 2 \mathrm{~N} 2540 \end{aligned}$	22 D	2N 42520	18p ${ }_{4}$	ACY44	470	BD121	85p 80 p	GET889 GET890	${ }^{229}$	Oc201 $0<202$	60p 765	Lastic	200 PIV	4A ${ }^{4 \mathrm{~A}}$	，	30 p	ECL86	40．	UBC81	40 p
$2 \mathrm{Ni}_{2613}$	35 p	2N425\％	42p	AD149		BD124	${ }^{80}{ }^{\text {p }}$	GET89\％	28		40p	ERCAPStLat	TED ${ }_{600}^{400}$		${ }_{6}^{6 \times 50}$		${ }_{\text {EF3 }}^{\text {EF3 }}$	${ }^{1200}$	－${ }^{\text {CRF80 }}$	40 p
2 N 2614	30 p	2 N 4284	17 p	A1150	62.	BD131	${ }^{780}$	GETR97	22p	Oc204	40 p	600 PIV IA	50090 PI	6A 450	10F1		EF40	60 D	vec84	49p
${ }^{2} \mathrm{~N} 2646$	95	2N4285	17	AD161	35	BD132	105		250	OC205	75p	50PIV起	45 p 100PIV	\％A 55p	10P13	60 p	EF41	65	Ecces	40 p
${ }^{2} \mathbf{2 N} 2711$	${ }_{25 p}{ }^{25}$	${ }^{2} \mathbf{2 N 4 2 8 6}$	178	AD16＇ AF10	${ }_{45 p}$	BDY10	${ }_{1050}^{125}$	MAT100	${ }_{25 p}^{25 p}$	OC206	95p 750	10 PIV 2 A	50 D 200 PIV	6A 850	10P14	110 p	EF4：	70 p	CCFP0	55p
2 N 2713	27p	2N428\％	178	${ }_{\text {AFl14 }}$	855	BDY61	125p	Mati20	25p	OCP71	42p	200plV ${ }^{\text {a }}$		6A 75D	${ }_{12}^{12}$	300	${ }_{\text {EF80 }}$	${ }_{350}$	CCH2I	${ }_{700}$
2N2714	30p	2． 4289	17p	AF115	257	BDY 6.2	100p	MAT121	25p	ORP12	50 p				12 AC 7		EF86	300	VCH_{81}	400
2 N 2904	20.	2 424290	12p	AF116	${ }^{25 p}$	BF115	25 p	mJ 400	107 p	ORP60	40p	SILIC	COR RECTIFI		12 AX 7	30 p	EF89	28 p	CCls ${ }^{\text {a }}$	35 p
2N2904	25	20 ${ }^{2} 4291$	${ }^{15 p}$	${ }_{\text {AFli }}$	${ }_{80}^{20 p}$	BFI BF15	478	MJ420	80 p 80 p	ORP61	42p	imatu	IRE ERDED	${ }_{\text {cL }}^{\text {LAstic }}$	12AV6	40 p	EF91	30 p	UCL83	000
2 2900 ¢a	20 p	2N 4294	17p	AFl：	${ }^{30}{ }^{\text {p }}$	$\underset{\text { BF } 154}{ }$	20 p	${ }_{\text {MJ }}{ }^{\text {MJ3 }}$	802p		229		1 AMP 1.5 A	MP 3 AMP	12BA6	40 p	EF92：	${ }_{350}^{350}$	${ }_{\text {UF80 }}$	80 p
2 N 2906	20 p	2N4303	47	AF＇124	22p	BF159	150	MJ440	950	ST141	20 D	$400150 \mathrm{Pl} \mathrm{Y}^{4}$		P 19p	${ }_{12 \mathrm{BH}}^{12}$	${ }_{45 p}^{40 p}$	EF184	${ }_{35 \mathrm{p}}{ }^{3}$	${ }_{\text {TF8\％}}$	${ }_{40 \mathrm{p}}$
2 N 2906 A	${ }^{25}$	2 N 4964	15p	AF120	190	BF159	${ }^{85}$ p	M．J480	97p	T1834	82p	4002100 Pl		P 20p	19AQ5	$35 p$	EH90	40 p	LF89	40 p
2N2907	23p	2N4965	189	AFlen	198	$\mathrm{BF}^{\text {b }} 163$	18	M． 3481	125p	T1843	40p	4003 4004 P	8 p		20 D 1	50 p	EL34	50 p	Clat	85 p
2N 2923	$15 p$ $15 p$	［	52，	AF12\％ AF139 A	18 p 28 p	BF167 BF170	${ }_{88 p}^{18 p}$	M．J490	100p	T1844	10p 278	4004400 PIV 4005600 PIV	8 p 10 p	$\begin{array}{ll} 25 p \\ & 26 p \end{array}$	20 F 2	${ }^{650}$	EL4	${ }^{60 \mathrm{p}}$	UL84	40 p
2 N 2925	150	2N5029	478	AF17M	48 p	${ }_{\text {BF173 }}$	190	MJ E340	50p	TIS46	$11 p$	4006800 PlV	129 15	－ 270	${ }_{20 \mathrm{P}}^{20 \mathrm{~L}}$	${ }^{110 p}$	EL42	${ }^{659}$	${ }_{\text {Y Y Y }}$	${ }_{40 \mathrm{p}}$
2 N 29266	10 D	2 N 2030	429	$A^{\text {A }} 179$	45p	${ }^{\text {BFI }} 177$	30 p	MJE370	80 p	TIS47	11 p	4007 1000PIV	${ }_{15}^{15 p} 18$	$\mathrm{p}^{80}{ }^{80}$	${ }_{20 \mathrm{P} 3}$	${ }_{60 p}$	EL81	55 p	YR105／3	
2 N 2926	10 D	2N5172	12，	AF180	50 p	BF178	${ }^{25}$	MJE371	${ }^{80 p}$	T1848	12p	$50+$ les	ar $15 \% 100+$	1ess 20%	20 P 4，	110 p	ELR4	25 p	VR150／3	035p
${ }_{2}^{2 N} 292911$	${ }^{10} \mathrm{D}$	$2 \mathrm{2N174}$	589	AFIB1	40 D	${ }_{\text {BF }} \mathrm{BF} 179$	30 p	MJE521	${ }^{60 \mathrm{p}}$	TIS49	12p	1	CON RECTIPI	ERS	$20 \mathrm{P5}$	180 p	EL85	43p	Add 12p	
${ }_{2}{ }^{2} \mathrm{~N} 3014$	820 ${ }_{\text {820 }}$	2\％ $\mathrm{N} \mathbf{2} 176$	45	AF186 A F 239	30 p	BF180 BF181	329	MJEL21	70p	T1850	12 p 10 p		GD MOUKTI			50 p	EL91	35 p	for posta	
2 N 3053	180	2， 5232	30 p	A F279	475	BF182	30 p	MPF103	25p	T180：2	$11 p$				DIOO	5	RECTIF	ERS		
${ }^{2} \mathrm{~N} 3054$	460	2N0245	459	$\mathrm{AF}^{2} 880$	470	${ }_{\text {BF1 }}{ }^{\text {BF }} 18$	20 p	MPF104	37p	TIS53	22p	200PIS	25p ${ }^{\text {p }} 00 \mathrm{p}$	$\begin{array}{ll}550 \\ 585 & 21.42\end{array}$	1N34A	10 D	BA154	${ }^{12} \mathrm{p}$	GJTM	379
${ }^{2} \mathbf{2 N 3 0 5 5}$	${ }^{80}$	2 N 246	48p	AFZ11	329	${ }^{\text {BF }} 185$	${ }^{200}$			X B1122	128	400 PIV	300850	629 81.77			BAX13	12 p	OAS	$17 p$
－2N3133	${ }_{80 \mathrm{p}}^{80 \mathrm{p}}$	2N5249	87 p 825 p	AsY26	250p	BF194	$15 p$ $15 p$	MPS3638	38．	XC141 ZTX 107	$35 p$ $15 p$	600 PIV	38 c		1N916	${ }^{100} 7$	BAXIf BAY31	$7 \mathrm{7p}$	OAB	${ }_{10 p}^{18 p}$
2 N 3135	208	2N5305	37 D	A8Y28	845	BF196	15 p	NKT12J	27p	ZTX 108	129	800 PIV 1000PIV	$\begin{array}{ll}35 \mathrm{p} & 75 \mathrm{p} \\ 40 \mathrm{p} & 85 \mathrm{p}\end{array}$	$\begin{array}{cc}87 \mathrm{p} & 22.47 \\ 81.05 \\ 88.77\end{array}$	AA129	10 p	BAY3＊	$15 p$	O．al0	28p
2N3136	${ }^{\mathrm{R} 5} \mathrm{p}$	2N5306	40p	ASY 29	275	BF197	15 D	NKT126	87	ZTX109	150	O0		288 20%	AAZ13	10 p	B Y 100	15 p	OA47	8p
2 N 3390	${ }^{250}$	${ }^{2} \mathrm{~N} 5307$	37 D	A8Y50	255	BF198	15 p	NKT128	27 p	ZTx300	12p	：0＋	9810\％ $100+$	［88 20%	AAZ15	10 p	BY103	22 p	－A70	7 p
2 N 3391	200	2N5308	37p	ASY：1	82p	BF200	350	NKT135	87p	ZTX301	15p		ER DIODEs		BA100	${ }^{15 p}$	BY122	37 p	OAis	10p
${ }_{2}^{2 N 3} 39392$	${ }^{30 p}$	2 N 5309	628	A8Y54	250	BF224	14 p	NKT137	32p	ZTX302	20p				BA102		${ }_{\text {BY124 }}$		OA79	7p
${ }^{2} \mathbf{2 N 3 3 9 2}$	${ }_{1}^{175}$	2N5310	18p	A8Y67	$45 p$ $38 p$	$\begin{aligned} & \mathrm{BF} 25 \\ & \mathrm{BF} 23 \text { \% } \end{aligned}$	19 p 20p	NKT210	30p	ZTX 303	${ }_{\text {ctap }}^{20}$	$3 \cdot 3-335$	$2-4-100 \mathrm{y}$	$3.9-100 \mathrm{~V}$	BA110 BA111	27p	BY126	$12 p$ 150	OAA8 ${ }^{\text {OA }}$	$8 p$ 70
2N3394	15p	2 N 335 5	27p	A8Z：2	810	$\mathrm{BF}^{\text {B238 }}$	22 p	NKKT212	30p	ZTX 500	15p	10p earh $0.5+1$ es	$\int_{88} 25 \%$ each	$40 \mathrm{p} \text { each }$ 20%	BAM12	70 p	BY164	58 p	OA90	7 p
2 N 3402	829	2N5306	a2p	AUY10	150 D	BF244	28.	NKT213	30p	ZTx501	15p	2s＋	（1）	－	BA115	7 p	BY210	$35 p$	OA91	78
2 N 3403	$2{ }^{22}$	2 N 5365	47p	$\mathrm{BCl}^{\text {BC7 }}$	100	BFW61	478	NKT214	20 p	ZTX502	209	TRAISSIST	DISCOUFT	$12+10 \%$	BA141	32p	${ }^{13} \mathrm{YZ} 11$	30 p	OA9a	7 p
2N3404	388	2N 5366	32p	BC108	107	BFW87	$25 p$	NKT215	20	2TX503	17p	$25+15 \%$ ：	$100+20 \%$	y one type．	BA142	32p	BYZ12	${ }^{30 \mathrm{p}}$	OA：200	78
3405	45 D	2N5367	57p	BC109	10	RFW88	23 p	NKT216	85p	ZTX 504	40p	Poatage on all	1 Semi－Conduc	\％${ }^{\text {a }}$ extra．	BA144	12p	BYZ13	25 p	OA202	10p
3114	220	2N5457	30p	BC113	10	BFW89	20 D	NKT217	40	ZTX531	25p	S．A．E．FOR F	FULL Lists		B．${ }^{\text {d }} 45$	20p	BYZ16	40	0.4210	170

SAMS UP TO $33 \frac{1}{3} \%$ OR MORE SEND S.A.E. FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

RECORD DECK PACKAGES
Decks supplied with artridge ready wired in teak venecred plinth with cover.
 Garrard SP2J 111/G800 Garrard spo $11 /$ Miv Carrard speo $11 / \mathrm{mat}$
 Plinth and Cover) (iarrard AP76/M7.5. farrarl APi6/M55 iarrard A 1 T6/MTうミ. S8R McDunald MP60/ ITin oldring (LitejG800 oldring GLadG800
 244.15
Carriage 50 p any iten

SINCLAIR EQUIPMENT

Project 60.Package offers. $\times 730$ annulitit atereo 60 pre-amp. PZ5 power supply, 815.95. supply, $218 \cdot 00$. 'ars. $37 \neq p,!\times 250$ ampli

 pair ul Q 16 apeakfra, Project 60 FM Tuncr \&15.75, (arr, 37ip. Nins Irroject fins $\$ 20.97$. 21.80. P . $\mathrm{A} \mathrm{P} .10 \mathrm{p} . \quad 4.060$ amplifier. $\$ 23.50$ Cart. 34 ap. 3000 Amplifier, $230 \cdot 95$, ('arr.373p.

comprehensive range of HI-FI EQUIPMENT COMPONENTS, TEST EQULPMENT and COMMUNICATIONS EQUIPMENT:FREE DIBCOUNT COUPONS VALUE 50 p 272 pages, fully illustrated and detailing
thouando of itema at bargain prices.

TELETON T.2000 AM/FM STEREO TUNER AMPLIFIER

Probably the most popular budget Tuner Amp. and now offered at a ridiculous low Cer phono inputs. AFC/Built-in MPX OUR PRICE 228.25. ('arr, 50p.

NS-1,600W STEREO AMPLIFIER
 price amplifier. Al silicon transistor.
Handsome walnut Handsume walnut
case. switched in put selector. separate batance. volume R.M.s. Inputs Mas, Tape. Xtal. Tuner Tape Out. 214.75. L'arr, 37 p

BH.OOI HEADSET

 MND BOOMMoving coil. Ideal for language teaching. communications Teadphone int). 16 imp. 200 obms. $£ 4 \cdot 62$.
 P. \& P. 15 p .

COMMUYWOOD CX203

0000000.

Solicl state. Coverage un 5 Hando $300-4.10$ KHz and $0-\sigma \overline{0}$ to 30 MHz
 Banilspread. terial tunitg. BFO, AVe
ANL. speaker and phone sucket. Operation 220
240 V AC or 12 V DC. Size $325 \times 2650 \times 2$. 240 V AC or $1: 2 \mathrm{~V}$ DC. size $325 \times-264 \times$
150 mm . Complete aith instructions and fomm. Complete with instructions and

Model S-100TR MULTIMETER TRANSISTOR TESTER 100,000 O.p.V. MIRROR SCALE
/ $12 / \cdot 6 / 3 / 12 / 30 / 120 / 600$ VDC. $0 / 6 / 30 / 120 / 600$ VAC.
$0 / 12 / 600 \mathrm{uA} 12 / 300 \mathrm{MA} / \mathrm{l}^{2} 2$ O/12/600uA/12/ 300MA/12
AMP DC. 0/10K/1 MEG/ 100 MEG. -20 to +50 db . $0.01-2 \mathrm{MFD}$. Trangistor teater measures Alpha. Beta and Ico. Complete with batteries, inst ructions

and le
25 p .

BELCO AF-5A 8OLID 8TATE 8INE 8QUARE WAVE C.R. O8CILLATOR

$18-\mathbf{2 0 0 . 0 0 0} \mathrm{Hz}$
$18-50,000 \mathrm{~Hz}$

Output max
$+10 d \mathrm{~B}$

Operation
nternal
Attractive two-tone case 7hin 51 ll . 2 in
TRANSISTORISED L.C.R. A.C.

Kanges : Pou TTRNS RATIO 1:1/1000 1:11100.6 Ranges $1^{\circ}{ }_{0}$. Bridge woltage a 1.000 cps . Operated from 9 volte. $100 \mu \mathrm{~A}$ Meter indication. Attractive 2 tone met
case. Size $71 \times 5 \times 2$ in. 280, P,$~ P .25 \mathrm{p}$.

E.H.T. TESTER 0-30KV

HELICAL POTENTIOMETERS ITT MCPML POTENTIOMETERS

SPECIAL OFFER! SINCLAIR PROJECT STEREO FM TUNER

The frat tuner in the morld to use the phase lock loop principle-aq used for receiving ignals from space craft because of tis vatio improved Tuning range 81 - to 108 MHz . Automatic stereo indicator. Nensitivity: "מल. AFO range $\pm 200 \mathrm{KHz}$, signal to noise ratio: 6udib. Output voltage $2 \times 150 \mathrm{mV}$. Operating voltage $25-30$ O.C. 9ize: $93 \quad 40 \quad 207 \mathrm{mrn}$ REC. LIST PRICE 225.

OUR PRICE
ONLY
CIS.75 P. \&
\&
P Unrepeatable offer -buy now and ave over 48.

PS. 200 REGULATED POWER SUPPLY
Solitl state. Variable uutput
 $5-20$ volt D.C. up to 2 amp . Independent meters to monitur voltage and cur rent.
Output $220 / 240 \quad$ V. A.C. 214.87.P. d. P. 25 p PS. 1000 B REGULATED POWER SUPPLY
 Solid state. Ontput 6.9 amps. Meter to monitor amps. Meter to monitor $\mathrm{AC} . \mathrm{Size} 4 \mathrm{in} \times 311 \mathrm{x} \times$
61 in .111 .97 . P. \& $25 \mathrm{p} . \mathrm{P}$.

UNR-30 RECEIVER
4 Bainls covering $500 \mathrm{KHz} 30 \mathrm{MHz}, \mathrm{B}, \mathrm{F} . \mathrm{O}$. Bualt in speaker $\because: 0 / 240 \mathrm{~V}$ a.c. Brand new :15.75. Carr. 3! !

POWER RHEOSTATS

High quality cerame constiuction. Windings embedded in vitreous enamel. Heary duty brush wiper. Cuntinuous rating. Wide range
ex-stock Single hole fixing, tin. dia. shafte. Sulk quantities available.
ex'Btoch Single hole 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5.000 ohms. 90 p . P. \& p itp $\begin{array}{lll}25 \\ 50 \text { WATT. } & 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500 \text { or } 5.000 \text { ohms. } 90 p \text {. P. \& } \\ 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 2,500 \text { or } 5,000 \text { ohms, } \& 1 \cdot 15 \text {. P. \& P, fip. }\end{array}$ 100 WATT, $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or 2.500 ohms, $21 \cdot 65$. P. \& P. Tip.

RADIO ENGINEER'S POCKET BOOK
 revised by

H. W. Moorshead
\& $1 \cdot 20$
Postage 5p.
G.E. ELECTRONICS EXPERIMEN. TER'S CIRCUIT MANUAL. El. Postage 6 p.
RADIO TECHNICIAN'S BENCH MAN UAL by H. W. Hellyer. 63. Postage 10p.
110 INTEGRATED CIRCUIT PRO. JECTS FOR THE HOME CON. STRUCTOR by R. M. Marston. $£ \mathbf{I} \cdot \mathbf{2 0}$. STRUCTOR
Postage 6p.
THE PRACTICAL AERIAL HAND. BOOK by Gordon J. King. £2.70. Postage 20p.
COLOUR TELEVISION PICTURE FAULTS by K. J. Bohlman. $\mathbf{£ 2} \cdot 50$. Postage 8 p .
THE HI-FI \& TAPE RECORDER HANDBOOK by Gordon J, King. $\mathbf{£ 2}$. Postage 25p.
1972 WORLD RADIO-TV HAND. BOOK. £2.80. Postage 10 p .
THE RADIO AMATEUR'S HAND. BOOK 1972 by A.R.R.L. $\mathbf{~ 2 \%} 70$. Postage 25p.
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-2I PRAED STREET
LONDON W2 INP

Phone 01-723 4185
Closed Saturday I p.m

Nat

devised for storing small
parts and componenes
resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots removable space dividers. Build up any size eabinet for wall, bench or table top.

BUY AT TRADE PRICES!
SINGLE UNITS (ID) (5ins $\because 2 \frac{1}{2}$ ins 2kins). El. 35 DOZEN.
DOUBLE UNITS (2D) (5ins : $4 \frac{1}{i}$ ins 2łins) $£ 2.25$ DOZEN.
TREBLE (3D) $\mathbf{£ 2 . 3 5}$ for 8.
DOUBLE TREBLE 2 draws, in one outer case (6D2), $£ 3.65$ for 8, EXTRA LARGE SIZE (6Di) £3.30 for 8 .

PLUS QUANTITY DISCOUNTS :
Orders $£ 5$ and over DEDUCT 5% in the $£$ Orders $£ 10$ and over DEDUCT 71 $\%$ in the f
Orders 620 and over DEDUCT 10% in the f PACKING/POSTAGE/CARRIAGE: Add 35p to all orders under $£ 5$. Orders $£ 5$ and over, packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES
(Dept. PE9) 124 Cricklewood Troadway
Tel. $01-450$ 484d

PRACTICAL ELECTRONICS "SCORPIO" ELECTRONIC IGNITION SYSTEM

This CapacitoroDischarge Electronic Ignition system was described in the November and December issues of Practical Electronics. It is suitable for incorporating in any 12 V ignition system in cars. boats, go-karts, etc., of either pos, or neg.earth and up to six cylinders. The original coil, plugs, points and vehicle are used. No extra or special components are required.
Helps to promote easier starting (even under sub-zero conditions), improved acceleration, better high-speed performance, quicker engine warm-up and improved fuel economy. Eliminates excessive contact-breaker point burnin and the need to adjust point and spark
pluggaps with precision.
Construction of the unit can easily be
completed in an evening and installation should take no longer than half an hour. A complete complement of components is supplied with each kit together with readyodrilled roller-tinned professional quality fibre-glass printed-circuic board custom-wound transformer and fully. machined die-cast case. All com ponents are available separately
size $7 \frac{1}{4}$ in $\times 4 \frac{1}{2}$ in $\times 2$ in approx Complete assembly and wirin Complete assembly and wiring manual Price: $\mathcal{C l 0 . 5 0}$ plus 50 p P. \& P. S. A.E. with all enquiries.

PSYCHODELIC LIGHTING

 UNIT Mk. 3

This unit represents a natural progression from our phenomenally successful Mk. I and 2 Units. As before the drive voltage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency signals into a threecoloured light display; the colour depending on the frequency of the signal and the intensity on the loudness of the audio source.
The unit is constructed on professional fibre-glass printed-circuit board material and uses latest full-wave triac circuitry. There is a master-level control, together with independent sensitivity controls for each channel. The original minimum ambient light level controls have been redesigned permitting their use as faders; allowing dimming from max. to zero at the curn of 2 knob. R.F.I. suppression is now incorporated as standard as well as provision for D.J. "Pulse-Flash"' controls. The choice of two inputs enables operation fiom both high and low power amplifiers. Max, power 1.5kW per power amplifers,
channel at $240 \mathrm{Va.c}$.
Complete assembly built and rested. Complete assembly built and tested.
Size 9 in $\times 7 \mathrm{in} \times 3$ in. Size 9 in $\times 7 \mathrm{in} \times$ 3in.
Price 25 carr. paid. S.A.E. with all inquiries.

DABAR ELECTRONIC PRODUCTS
 98a LICHFIELD STREET, WALSALL STAFFS WS1 1UZ
 WALSALL 34365
 MAIL ORDER ONLY

NEW
 15 watt Hi Fi AMPLIFIERS

Frequency response 15 to $19,000 \mathrm{cs}$. Signal to noise $>70 \mathrm{db}$ Input sens. 750 mv into 2 k
HELECTRONICS
105. GRANGE ROAD, LONDON S.E. 25.

OSMABET LTD.
 We make trantormers

MAMS TRANSFORMERS

 2501 , $65 \mathrm{~mA}, 831,1 \cdot 3 ., 82 \cdot 10$; MT1, $200 \mathrm{~V}, 30 \mathrm{~mA}$ $6 \cdot 3 \mathrm{~V}, 1 \mathrm{~A}+21 \cdot 20 ; 3 \mathrm{~T}=430 \mathrm{~S}, 45 \mathrm{H}, 6 \cdot 3 \mathrm{~V}, 1 \cdot 5 \mathrm{~A}, 21.50$

AOTO TRAFSFORMERS
$0-110-200-120-2+601$ a.t. up or down fully shrouded flted insulated tirminal blochs. 30w $x 1.35$: , 0 W 21.80; T., $£ 2.10 ; 100 \mathrm{~W}$ £2.55; 130 W £3.15; 200 W 6300W: 28.25 . 55.25 ; 400 W \&8-30; 500 W 27.50
 MULTIVOLT TRANSFORMERS
 $1 \mathrm{~A}, \pm 2 \cdot 25$; OMT4 2 . ditto $2 \mathrm{~A}, 23.45$; ONT3, 1 tapped
 25V 24.8380.
LOW VOLTAGE TRANSFORMERS
Prim. $200 / 240 \mathrm{~V}$ a.c. $6 \cdot 3 \mathrm{~V}, 1.5 \mathrm{~A}, 85 \mathrm{p} ; 3 \mathrm{~A} .21 \cdot 13 ;+\mathrm{AACT}$ CT
 28.70; 5А, 23.75; NA. 2B; IथA, 29; 401, 3A (TT 83.45. MDGET RECTIFIER TRANSFORMERS
For FW rect., nize if $\times-\times 1$ inin, Prini. $200 / 240 \mathrm{~V}$ a.c. out put, PPT1. !1-0-95 1.3 A, PPT:2. 120-0-125, 0.25A
 1A. MTV3. $30-0-20 \mathrm{~V}, 0 \cdot 5 \mathrm{~F}, 21.20$ each
O/P TRARSFORMERS FOR POWER AMPLIFIERS
 3k 0. A-A. EL34 (KTr8, etc) 811.40 and to 400 W LOUDSPEAKERS FOR POWER AMPLIFIERS
 E.M.I. $131 \times \sin 10 \mathrm{~W}, 3$ or 8 or 15 ohnis, 22.00 . Ditto with two tweeters and Xover, e4.00; Horn Tweeters "16k Hz $10 W^{8} 8$ or 16 ohms. $21 \cdot 60$. HL-FI $8 \times 5 i n 8$. $81+85$: 10 6it 3 or 8 or 15 . 22.10
G.E.C. MANUAL OF POWER AMPLIFIERS

Covering valve amplifiers of 30 tu 400 watte, wit
price list of trans
$2 \neq 1 \mathrm{n} 16 \Omega, 2 \mathrm{in} 25 \Omega, 3 \mathrm{in}$, or 30 30 60p each; 3 in 3 or $15 \Omega, 4 \sin \kappa$ or 15Ω, 5 in 3,15 or $25 \Omega, 5 \times 3 i n$ 6 in 3Ω, $21.08 ; 8 \times 5$ in 3, 8,15 or 25Ω, 21.50 8 in 3 a, 81.85.
SPEAKER AUTO MATCHING TRANSFOREER 12W
3 to 8 or 15 ohms, up or down, 75 p . P. \& P. $15 p$.
MINIATURE RELAYS FOR MODELS, ETC.
$1 \times 1 \times 1$ in
doz,
with transparent cover, 2 C. 0. in 9
BULE T APE ERAGEPS
BULA TAPE EAKAERS
Thstant erasure, tape spools and cassetter, demag PRIMTED CIRCUIT ETCEING KITS
Complete outfit; solutions and equipment to make your own P.C. boards inst ructions, \&1-40, P. \& P. 21 p . Extra p.c. Boards 8 . Gin, 15 p each.
TAPE RECORDER MOTORS
A. varjety of uses, Blowers, Fans, etc., new. 230/250 V compensers
Paper: $0.01 / 2 k V 121 p: 0.1 / 1 \mathrm{kV} 12!p ; 0 \cdot 22 / 1 \mathrm{kV} 20 \mathrm{p}$; $0-22 / 800 \mathrm{~V}$ a.c. $25 \mathrm{p} ; 0.47 / 700 \mathrm{~V}$ 15p; 0.47/1k 25 p ; $4 / 500 \mathrm{~V} 25 \mathrm{p}$. Electrolytics: $100+2001275 \mathrm{~V} 40 \mathrm{p} ; 100+$
$200 / 350 \mathrm{~V} 50 \mathrm{p} ; 100+60 / 400 \mathrm{~V} 25 \mathrm{p} ; 350+50325 \mathrm{~V}$ $16 \mathrm{p} ; 100+409 / 25 \mathrm{~V}$ 20p $244 / 450 \mathrm{~V} 10 \mathrm{p} ; 2500 / 64 \mathrm{~V} 50 \mathrm{p}$ BATTERY ELIMINATORS/POWER UTITS
To operate battery equipment from maine $200 / 240 \mathrm{~V}$ a.c. Outputs, $6 \mathrm{~V}, 21-50 ; 9 \mathrm{~V}, 81-50 ; 7.5 \mathrm{~V}$ (for cas. (es), $22 \cdot 00 ; 12 \mathrm{~V} 1 \mathrm{~A}, 23 \cdot 00 ; 40 \mathrm{~V} 1 \mathrm{~A}, 44 \cdot 50$.
A.A.E. IMQUIRIEs-LISTS. MAIL ORDER ONLY
 Rond, Edgware,
Tel. 01.9589314

Please mention

PRACTICAL ELECTRONICS
when replying to
Advertisements

Why buy alternativos when you can buy the genuine article from us at
competitive prices from stock. COMP年 CHILD

INTEGRATED CIRCUITS

	/11 12/24 25/99		1/11 12/24 26/99	,	-
	$20 \quad 0.18 \quad 0.16$		6	SR74150	5
8N7402	$0 \cdot 200.180-16$	SN7453	$\begin{array}{llll}0.20 & 0.18 & 0.16\end{array}$	SN74151	$1.100 .95 \quad 0.90$
SN7403	$\begin{array}{llll}0.20 & 0 & 18 & 0.16\end{array}$	SN7454	$\begin{array}{llll}0.20 & 0.18 & 0.16\end{array}$	3N74153	$1 \cdot 351.271 .20$
SN7404	$\begin{array}{llllll}0.20 & 0.18 & 0.18\end{array}$	SN7460	$\begin{array}{llll}0.20 & 0.18 & 0.16\end{array}$	N74154	$2 \cdot 001$-75 1-55
8N7405	$\begin{array}{llll}0.20 & 0.18 & 0.16\end{array}$	SN7470	$\begin{array}{llll}0.30 & 0.27 & 0.25\end{array}$	SN74155	1.551 .471 .35
SN7406	$\begin{array}{llll}30 & 0.27 & 0.25\end{array}$	N747	$\begin{array}{llll}0.30 & 0.27 & 0.25\end{array}$	SN7415	
8N7407	$\begin{array}{llll}30 & 0.27 & 0.25\end{array}$	N747	$\begin{array}{llll}0.40 & 0.87 & 0.85\end{array}$	3N7415	$1.8011-701.50$
SN7408	0.200 .180 .18	N747	$0.400 .87 \quad 0.35$	8N7416	2.60 $2 \cdot 402.25$
SN7409	$\begin{array}{lllll}0.45 & 0.48 & 0.35\end{array}$	SN747	$\begin{array}{llll}0.55 & 0.52 & 0.50\end{array}$	8N7	$2 \cdot 602 \cdot 402.25$
SN 7	$\begin{array}{lllllll}0.20 & 0.18 & 0.18\end{array}$	SN7476	$\begin{array}{llll}45 & 0 & -42 & 0.89\end{array}$	SN74152	8-40 8-25 2.70
SN7411	$23 \quad 0.28 \quad 0.20$	8N7480	0.800 .750 .67	163	$3 \cdot 40$ 3.25 $2 \cdot 70$
SN7412	0.4200 .400 .85	速		7416	$\begin{array}{llll}2 \cdot 75 & 2 \cdot 30 & 2 \cdot 10\end{array}$
741	$\begin{array}{llll}30 & 0.87 & 0.85\end{array}$	N78	$\begin{array}{llll}0.87 & 0.80 & 0.70\end{array}$	N74165	4.008 .503 .00
SN7416	0.30-0.27 $0 \cdot 25$	N7483	$1.000 \cdot 000.85$	N74166	$4 \cdot 003 \cdot 508 \cdot 00$
741	0.800 .2780 .25	N7484	$\begin{array}{llll}0.90 & 0.85 & 0.80\end{array}$	N74167	$6.25 \quad 5 \cdot 605 \cdot 10$
SN7420	0.200 .180 .18	N7486	$\begin{array}{llll}0.45 & 0.41 & 0.38\end{array}$	74170	$4 \cdot 108.558 .05$
3N7422	0.480 .440 .40	SN7490	$\begin{array}{llll}0.75 & 0.70 & 0.85\end{array}$	gN7417	$2 \cdot 001$ 1-75 1-80
SN7423	0.480 .4400 .40	SN7491	$1.000 .95 \quad 0.80$	SN74175	1.3511 .271 .15
SN7425	0.480 .400 .85	N7492	$\begin{array}{llll}0.75 & 0.70 & 0.65\end{array}$	417	60 1-35 1-20
SN 7427	$\begin{array}{llll}0.42 & 0.39 & 0.35\end{array}$	493	$\begin{array}{llll}0.75 & 0.70 & 0.85\end{array}$	7417	1-601-35 1-20
SN7428	$\begin{array}{llllll}0.50 & 0.45 & 0.42\end{array}$	8N7494	$\begin{array}{llll}0.80 & 0.75 & 0.70\end{array}$	18	$1.551-80$ $1 \cdot 20$
SN7430	$\begin{array}{llll}0.20 & 0.18 & 0.16\end{array}$	SN7495	$\begin{array}{llll}80 & 0.75 & 0.70\end{array}$	gN74181	$7.0086 .005-50$
SN		SN7496	1.000 .970 .95	182	2.00 1.80 1.60
BN7433	$0.700 .81 \begin{array}{lll}0.44\end{array}$	gN7497	6.25 5.50 5.00	7418	$2.402 \cdot 00180$
37		9N74100	2.50 2.30 $2 \cdot 00$	N74185	$402 \cdot 001.80$
38	$\begin{array}{lllllllllllll}65 & 0 & 60 & 0.50\end{array}$	N7410	1.45 1.35 1. 20	SN74190	$\begin{array}{lllllllllll}1.95 & 1.85 & 1 & 75\end{array}$
440	$0.20 \quad 0.18 \quad 0.16$	N74105	$\begin{array}{lllllll}1-45 & 1 & 35 & 1.20\end{array}$	8N74191	1.951 .851 .75
411	$\begin{array}{llll} & 0.76 & 0.72 & 0.70\end{array}$	\$74107	$\begin{array}{llll}0.50 & 0.45 & 0.40\end{array}$	SN74192	2.001 .901 1-80
-	$\begin{array}{llll}0.75 & 0.78 & 0.70\end{array}$	4110	0.80 0.700 .80	SN74193	$2 \cdot 001.801 .80$
SN7443	$\begin{array}{lllll}1.00 & 0.95 & 0.90\end{array}$	N74118	1.000 .950 .80	SN74194	2.50 2-25 1-90
45	2.00 1.75 1.60	SN74119	1.90 0 1.781 .65	N74195	
446	$2 \cdot 001.751 .60$	121	$\begin{array}{lll}0.60 & 0.55 & 0.50 \\ 1.85 & 1.25 & 1.10\end{array}$	SN74197	50 1 40 1.30 50 1 40 1 80
47	1.751 .601 .45	8N74123	2-70 $2 \cdot 558.47$	SN74198	$4.603 \cdot 703$.
EN7448	1.75	SN74141	1.000 .950 .80	SN74199	-
PRICES OF 7400 SERIES ARE CALCULATED ON THE TOTAL NUMBER ORDERED REGARDLESS OF MIX LARGER QUANTITY PRICES PHONE (01) 4024891 TEXAS HANDBOOK NO. 2. I.C. 700 PAGES DATA 60p. POST 15p. HIGH POWER SN 74 HOO\} Now in stock-send LOW POWER SM 74 LOO for list No. 36					

SPECIAL OFFERS! SEMI-CONDUCTORS
BFY90

$1000 \mathrm{MC} / \mathrm{S}$	2 N 926 Colours
$25+20 p$	Al1 Col
$100+17 p$	$25+9 p$
$500+15 p$	$500+8 p$

A

 TRIACS STUD WITH ACCESSORIES

AFII7Mullard 25p | 2N3819 Texas 35p |
| :---: |
| $25+30 p$ |

NEW BRIDGE
RECTIFIERS
SMALL SIZE AND Low cost Type
${ }^{1}$

ZENER			HINEAR		
D1ODES			(O/P AMPS)		
$400 \mathrm{M} / \mathrm{W} 5 \%$			702C	T05	p
Miniature			709 C	T099	9 35p
BZY 88 Range			709 C	D.I.L	L. 36 p
			723 C	T099	9 \&1.00
All voltages			723C	D.I.L	L. $95 p$
10p each.			725 C	T099	294-50
			741 C	T099	$9{ }^{\text {5 5 p }}$
$25+\quad 9 p$			741 C	D.ILL	L. 550
$100+8 \mathrm{p}$			747 C	T099	\$ $\$ 1.10$
$500+\quad 050$			$747 \mathrm{C} \quad \text { D.I.L. }$		
$1000+5$					
			72741 P	P D.I.L	L. B0p
Any one type.			72748P D.I.L. 80p gINCLAIR		
1 Watt 6%			Toshiba ${ }_{\text {ICl2 }}$		
Wire Ends					
			20 W	ATT A]	
All voltages			84.47 POST PAID		
6.8-100 Volts			TH9014P Pre Amp		
20D each					
$25+$		18p	DATA AND CIRCUITS REF. 42 10p		
$100+$		18p			
$500+$		12p			
$1000+10 \mathrm{D}$			FREE WITH		
Any one type.			PURCHASES		
${ }^{3}$ Watt Plastic			TRANSIS-		
Wire Ends 5\%					
3EZ Rail	inge		TORS, IC's, TRIACS, BRIDGES, SCR's, LDR's		
All voltages 6.8-100 Volts 30p each.					
SILICON					
RECTIFIERS					
WIRE ENDED				Gewrs	3 mow
PLASTIC					
Type	P.I.Y.	1-11			
1 mmp m	ministu				
IN4001	50				
IN4002	100				
IN4003	200	8			
IN 4004	400	8			
IN 4005	600	10			
IN 4006	800	12			
IN 4007	1000	15			
1.5 amp	minia	ture			
PL4001	50	8			
PL4002	100	9	BOOK	LET	
PL4003	200	10			
PL4004	400	10	(No. 3		
PL4005	600	12	Over	1500 ty	types-
PL4006	800	15	Send	for	yours
PL4007	1000	16	today 1		

OC170 Mullard 25p $\begin{array}{r} 25+20 p \\ 100+18 p \\ 500+15 p \\ 1000+13 p \end{array}$	BC107, BC108, BC109 All Makes $\begin{array}{r} 25+8 p \\ 100+7 p \\ 500+6 p \\ 1000+5 p \end{array}$
$\begin{array}{r} 25+12 p \\ 100+10 p \\ 500+9 p \\ 1000+8 p \end{array}$	ADI61, AD162 35p each $\begin{array}{r} 25+32 p \\ 100+28 p \\ 500+25 p \end{array}$
$\frac{0 A 202}{25}+8 p^{10 p}$	2N3053S G.S. 20p
$\begin{array}{r} 25+8 p \\ 100+7 p \\ 500+6 p \\ 1000+5 p \end{array}$	$\begin{array}{r} 25+18 p \\ 100+15 p \\ 500+12 p \\ 1000+10 p \end{array}$
OC35 Mullard 50p	2N3055 ${ }^{\text {25 }}$ 55p
$\begin{array}{r} 25+45 p \\ 100+40 p \end{array}$	$\begin{array}{r} 25+50 p \\ 100+45 p \end{array}$
$\begin{aligned} & 100+40 p \\ & 500+35 p \end{aligned}$	$\begin{aligned} & 100+45 p \\ & 500+38 p \end{aligned}$
$1000+30 p$	$1000+33 p$

ONE AMP TUBULAR

W005

$$
\begin{aligned}
& \text { W02 } \\
& \text { W06 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { W06 } \\
& \text { TW0 AMPS }
\end{aligned}
$$

$$
\begin{aligned}
& x w \\
& \times \\
& 32 / 0
\end{aligned}
$$

$$
\left[\begin{array}{ll}
\hat{8} & 0^{n} \\
\hdashline & \vdots
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{B} 2 / 200 \\
& \mathrm{~B} 2 / 600 \\
& \mathrm{~B} 2 / 100
\end{aligned}
$$

$$
\begin{aligned}
& \text { BOUR AMP } \\
& \text { FOUR } \\
& \text { IH }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RECTIFIERS } \\
& \text { Type } \\
&
\end{aligned}
$$

ONE AMP
CRE RMP
CRE $1 / 05$ $\begin{array}{ll}\text { CRE } 1 / 20 & 200 \\ \text { CR 1/40 } & 200\end{array}$ CRA $1 / 40$
CRS $1 / 60$

$$
\begin{aligned}
& \text { CRE 1/60 } 600 \\
& \text { THREE AMP (TO48) } \\
& \text { CRE } 3 / 05 \\
& \hline 00
\end{aligned}
$$

CRE 3/10	100	3
CRE 3/20	200	8
CRE $3 / 40$	400	4
CRE $3 / 60$	600	8

FIVE AMP (TO68)
CRS $5 / 400$ 400
CRE $7 / 100 \quad 100$
CRS
$\begin{array}{ll}\text { CRS } 7 / 200 & 200 \\ \text { CRS } 7 / 400 & 400 \\ \text { CR } 7 / 600\end{array}$
CRS 7/600
SIXTEEN AMP
BCR $16 / 100$ 100
$\begin{array}{ll}\text { SCR } & 16 / 200200 \\ \text { SCR } 16 / 400400 \\ \text { SCR } & 18 / 800\end{array}$
1.11

T05

Practicul Electronics Classified Advertisements

RATES: 8p per word (minimum 12 words). Box No. 10 p extra. Semi-Display $£ 6$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

Please mention

PRACTICAL ELECTRONICS
when replying to
Advertisements

MISGELLANEOUS

12 VOLT FLUORESCENT LIGHTS
 (as illustrated)

Beat power cuts. Be independent. Ideal for caravans, tents, emergency lighting, etc. Works anywhere where 12 y is available. Guaranteed for six months. Ready to use ac:
12ins. 8 watt $£ 3.60$ post paid 21 ins. 13 watt $£ 4.60$ post paid sALOP ELECTRONICS, 23 WYLE COP GHREWREURY, \&HROPSHIRE, Callers welcome. For lists or enquiries, large,s.a.e.

> PROFESSIONAL CONTROL PANELS With MAKE YOUSC OWN PANELSIN PERMANENT, ANODISED SELF-ADHESIVE ALUMINIUM. NO SPECIAL EQUIPMENT ALEEDED. EASY TO FOLLOW INSTRUCTIONS. CHOICEOF SILVER ON BLACK, RED, BLUE, GREN. TRIAL KIT GI.28 Carr. Paid No. KIT 11.88 Carr. Paid No. 2 KIT E2.39 Carr. Paid M.P.E. Ltd., BRIDGE ST., CLAY CROSS, DERBYS.

NO NEED TO WORRY ABOUT

A TRANSMITTING LICENCE

because this GPO approved transmitter/receiver kit doos not use R.F, and you can zet one easily. rour transmissions will be virtually SECRET since Actually it's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmiteer AND receiver. You're soine to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely Aexible design with quite an AMAZING RANGEhas obvious applications for SCHOOL PROJECTS ANGUAGE ABORATORIES, SCOUT CAMPS GET YOURS! SEND $\mathbf{6 5} 50$ NOW (S.A.E. for details) TO: "BOFFIN PROJECTS'

DEPT. KE2OIO
4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY

8PECIAL OFFER. Tungsten Halogen projector lamps. ATLAS, 12V 100 W standard 2 pin fltting. Guaranteed brand new in makers cartons, 1.50. each, post 10p. 48-page catalogue of optical and scientific equipment free for $3 \frac{1}{2} p$ stamp. H. W. ENGLISH, 469 Rayleigh Road, Hutton, Hrentwood, Essex Tel. Brentwood 1685

NIP-E-BOARD PRINTED CIRCUIT SYSTEM for experimental circuits one-offs, batch production USE IT FOR P.E. PROJECTS

BOLT-DOWN OR PLUG-IN CARDS. SRBP or FIBREGLASS ETCHED. UNDRILLED or DRILLED. 0.1 . 015 for flexible layout schemes. COLD PLATED EDGE CONNECTORS.
NO NEED FOR MESSY ETCHING. NO COPPER CUTTING - IT'S EASY! Improved professional design pcb for most transistors or i.c.s. ASK YOUR SUPPLIER NOW! P.C. cords from 16p srbp. 19p f glass Edge connectors I4-way El4S 35p 30-way E30S 68p
Handles with write-3n labels 5p insulated stand-off peb fixings from 3p SPECIAL TRIAL OFFER pack only 50p Sample card and details-srbp 16p fibreglass 19p
PLUG-IN CARD FRAMES. New versatile guide system for N!P-E-BOARDS for case. cabinet or rack mounting. Guide and rail components available separately: $4 p$ stamp for details.
WE EXP
WEEXPORT. Agency inquiries invited. DEPT.ME/E

METER REPAIRS. Ammeters, voltimeters, multi-range metwrs, ete. Semd to IIETFil REPALRS. 39 cheshoim lkoad, Iamion, さ160J.

GHROMASONIC ELECTRONICS is weH and living it 56 Fortis freen loadd. landon. N10 3 HN . 40-page illustrated cataloghe 20 p post free.

GIRGUIT BOARD ETGHING KITS, fHIl instructions, $\mathbf{8 1} \cdot \mathbf{2 5}$, c.w.o. ARV]N NERVIGE (\%OMP.A. Y, 12 (ambitige Road, Nt. . Ithatm Herts.

component CATALOGUE AND
 DISCOUNT VOUCHERS
 25p Post free (U.K.) W.E.C. LTD.
 high street, ripley, surrey

RECORD T.V. SOUND usime our loudsperaker isolating transformer. Provides safe connection to recorder. Inst ruetions indluded, \&1 post free. (180WBOROPGII ELECTRONICS (P.E.), Eridge IRad, ('rowborongh sussex.

ENAMELLED COPPER WIRE

S.W.G.	116 Reel	$\pm 1 \mathrm{Reel}$
10-14	61.15	65p
15-19	61.15	65p
20-24	61.18	68 p
25-29	C1. 25	75p
30-34	c1.30	80p
35-40	C1.40	85p
The ab	er P. \& P	plied b

INDUSTRIAL SUPPLIES

 102 Parrswood Rd., Withington, Manchester 20 Telephone No. 061-224 3553CONSTRUCTION AIDS. Faseia panels, dials nameplates in etched aluminium to individual specification. Sheet aluminium, printed cir-cuits-drafting tapes, negatives supplied, boards manufactured, singles or small runs. Copper clad laminate supplied. Hardware Copper clad laminate supplied. Hardware for constructors. S.A.E details. RAMAR
CONSTRECTOR SERVICES, 29 Shelbourne Road, Strat ford-on-A von, Warwks.

YOUNG SCIENTISTS

and not-so-young, whether beginner or advanced - we offer a range of over 35 SUPER projects.
Have You ever wanted to build A
MACHINE THAT LEARNS? make a TEACHING DEVICE? Maybeyou fancy the idea of an ELECTRONIC FANTASY MACHINE? How about a "Thing" capabie of REPRODUCING ITSELF? Whatever your electronic turn-of-mind, there's siust GOT TO BE LOADS TO INTEREST YOU in the science-fiction

GET YOUR CATALOGUE - SEND JUST 15p NOW! (S.A.E. for details).

TO: BOFFIN PROJECTS

4 CUNLIFFEROAD STONELEIGH, EWELL SURREY
Designs by GERRY BROWN and JOHN SALMON and presented on TV.

Build a PROJECT "X" SYNTHESISER using Dewtron*PROFESSIONAL MODULES

(*Regd. Trademark)
VOLTAGE CONTROL amplifiers, oscillators, filters and $\mathrm{P}-\mathrm{H}-\mathrm{A}-\mathrm{S}-\mathrm{E}$.
MAN-SIZED PATCHBOARD, no cables.
CASH SAVINGS by buying sets of modules and components.
ALL MODULES available separately.
Send SAE for details or $15 p$ for full musical
D.E.W. Ltd., 254 Ringwood Rd., Ferndown, Dorset

OMNI-DETECTORS
 (Featured \star TV \star Radio \star National Presa)

Ancient art of Dowsing in Modern Guise. Experience thrill of the old days of Wireless in this overiooked aspect of the Electro-Magnetic Spectrum. A LABORATORY IN A SINGLE PACK. If you enjoy Tressure Hunting, use OMNI-DETECTORS to:-
\star Locate ANY buried substance. ANY depth

* Save hours of Iruitless searching-MAP-DOWSING pinpointa search area before you leave bome
* Analyse ground under your feet without even scratching the surtace.
* Limilless other uses involving health. lood. sex.

Send only $£ 2-80+15 p p \& p$ for unique pack of 4 dowsing instruments (non-electronic) and explicit 40 -page manual to sole suppliers:- Omni-Detector Co. (Dept. PE),
27 Lstham Road. Twickenhan, Middx. TWI IBN.

FERRIC CHLORIDE

ANHYDROUS TO MILSPEC. IN I lb. PACKS. 1 lb .40 p plus 15 p post. $10 \mathrm{lb} . £ 3 \cdot 50$ plus 50 p post.
GREENWELD (PEI) 24 Goodhart Way, West Wickham, Kent. 777 200I

MISCELLANEOUS (continued)

FIBRE OPTICS

FLEXIBLE LIGHT PIPE used to convey lisht to inaccessible positions for inspection, panel indicators, photo-eiectricand other applications. cond it 114 mm active dia, bundle shearhed in conduit 1.14 mm active dia. bunde sheathed 70p; 5.9, $55 \mathrm{p} ; 10+$, 40 p . 25 metres L per reel. CRÓON (Trade mark of Du Pont) Type 1610 plastic flexible light conduit now available 64 filaments. Active dia. 1.80 mm .
Prices per mecre: 104, \&1 20; 5-9, $\mathbf{4 1} ; 10+$, 00 p . 25 metres 116 per reel.
Send S. A.E. for full range of products, price list
and literature.

FIBRE OPTIC SUPPLIERS

P.O. BOX 702, LONDON-WIO 6SL

OLEARINQ LABORATORY, scopes, V.'I'.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testneters, calibration units, P.S.U.'s, pulse generators, 1).(C. nullpotentioneters, bridges, spectrum analysers, voltage regulators, sig-gens, M/C relays, components, etc. Lower Beeding 236.
P.E. EEMINI, Etcherd aluminintin fascia panels as detailed in latest publication. Printed circuit boards and other itelus S.A.E. details. RAMAK ('ONSTRI('TOI SERV1(CES, 29 Nhelbonrita Koad. Stratford-on-Avon, Warwicks

ELECTRICAL CLEANING AERO8OL suitable for cleaning and degreasing tap heads, rubbers, drive mechanisms. etc.. 5.75 oz, can Nom. 95 p . Switch Cleaner Aerosol cleans and protects switches, controls. contacts, etc. 5.75 oz . Nom. 80p. Pest free. C.W.O. A.E.N. SALEA, Jewry Lane. ('anterbury, Kent.

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ in \times any length. DEW LTJ., Kingwood Road, Ferndown, Dorset, S.A.E. for leatlet. Write now-right now.

MUSICAL INSTRUMENTS

ELECTRONIC PIANO

Touch Sensitive Pedal Sustain Adjustable Decay

Plug-in units for constructing 2, 4,6 octave ELECTRONIC PIANO. Also, Touch Sensitive Percussion Units for Keyboard Bass or add Piano Sound to existing organ. S.A.E. details of these and other units.

To: DIGICHORD
Duffryn Glywd House
Elm Road, Tokers Green
Reading, Berks.

AMPLIFIERS

AMPLIFIER8 UNTE8TED. Built-in own wood cubinet. Mains consisting 6 valves, two volume cont rols, bue tone control. Ire. amp switch, large jack plug socket, 3 outputs, tinputs with room for background deck. Ideal for sterey in pairs. 85 earch. A. BKOWN.
 62:302.

SITUATIONS VACANT

CITY OF LEEDS AND CARNEGIE COLLEGE Becket Park, Leeds LS6 3QS
SENIOR WORKSHOP TECHNICIAN (Audio Visual Aids)
T3, $£ 1,194-f 1,395$ (Additional allowances for approved qualifications)
To be responsible for closed circuit zelevision. Applicants should be able to operate and maintain the College T.V. system inciuding a distribution system, video tape recorders, a seudio and portable camera equipment.
Application forms from the Senior Administrative Officer at the College, to whom comas possible.

The only commercial computer school offering a revolutionary COMPUTER OPERATING course. You learn in 4 weeks. No special educational qualifications needed. And you can earn over £40 a week! JOBS GALORE: Free exclusive appointments bureau-over 300 firms have taken our graduates-introduces you to computer users. Find out more FREE, without obligation. Write or 'phone TODAY!

London Computer Operators Training Centre E84, Oxford House 9-15 Oxford Street, W.I Telephone 01-734 2874
127 The Piazza, Dept. E84
Piccadilly Plaza, Manchester 1 Telephone 061-236 2935

TEST ENGINEER

For production testing of portable electronic instruments containing transistors.
LEVELL ELECTRONICS LIMITED Moxon Street, Barnet 01-440 8686

HI-FI EQUIPMENT

Perrless HI-FI LOUDSPEAKERS Acclaimed by the Experts MULTI-UNIT SYSTEMS IN KIT FORM
 MATCHING CABINET KITS ALSO AVAILABLE
 Full details \& address of your local dealer from:
 P.F. \& A.R. Helme Letd. (Dept. PE8)। Summerbridge: Harrogate HG3 4DR Yorks. Tel. Darley 279 (STD 0423-72)

WANTED

OABH PAID for New Valves. Payment by return. WILLOW VALE ELECTRONICS, 4 The Broadway, Hanwell, London. W.7. 01-567 5400/2971.

HIOHEST POA\&IBLE CABM prices for Akai, B, \& O., Brenell, Ferrograph, Revox, Lanyo, Sony, Tandberg, Ther, Vortexion, etc. $9.30-$ 5.00. 01-2427401.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

1 1 TECHNICALTRAINING AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man. Let I CS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc. Expert coaching for:

* C. G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
* RADIO aMATEURS' EXAMINATION.
* general radiocommunications certificate.
* C. 日. RADIO SERVICING THEORY.

Now available, Colour T.V. Servicing.
Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONICCOURSES
Build your own 5-valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of IC S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ABCC
ACCREDITED BY THE CACC

CORRESPONDENCE

SCHOOLS

A WHOLE WORLD OF KNOWLEDGE

AWAITS YOU!

International Correspondence Schools
(Dept. R.A.25), Intertext House, Stewarts Road, London SW8 4UJ
NAME
Block Capizals Please
ADDRESS

AGE.
1

THE PICTURE BOOK METHOD OF LEARNING BASIC ELECTRICITY 5 pts $£ 4 \cdot 50$.BASIC ELECTRONICS 6 pts $£ 5 \cdot 40$.BASIC TELEVISION $3 p t s ~ £ 3 \cdot 50$
 The quickest and soundest method of gaining mastery over these subjects.

The clear and concise illustrations make study a real pleasure. P. \& P. included
Your Money Back Guaranteed. Free Illustrated Prospectus on request. SELRAY BOOK CO., 60, HAYES HILL, BROMLEY BR2 7HP.

EDUCATIONAL

TELEVISION TRAINING

(MONOCHROME AND COLOUR)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of 16 months' duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Next course commencing September 11th. Training courses in Marine Radiocommunication and Radar are also available. Write for prospectus to: London Electronics College, Dept. B/9, 20 Penywern Road, Earls Court, London SW5 9SU. Tel. 01 - $\mathbf{3 7 3} \mathbf{8 7 2 1 .}$

ENQINEER8-get a technical certificate Postal courses iu tingineering, Electronics, Radio, TV, ('omputers, Draughtsmanship Building, ebc. FREE book from: BIET (Dept. H.4), Aldermaston Court, Reading, RG7 iPF. Accredited by (Al'r.

QET INTO Electronics-opportunities for trained man. Learn at home. Postal courses in RTEB, CAty \& Guilds, Radio, TV, Telecoms., etc. FREE informative guide: ('HAMBERS' etc. FREE informative guide: (HAMBERS
COLLEAE (IDept: R.103), Adermaston Court, Reading, R(í 4 PF゙.

LADDERS

LADDER8. 20ft. $\mathbf{2 7}$-80. ('allers Welcome. Carr ${ }^{*} 0 \mathrm{p}$. Leaflet. (Dept. PEE), HOME SALES, Haldwin Road, Stourport. Worcs. Phone $02-9932574 / 5222$. Ansafone installed 5222 . Open Sunday x-12 noon.

FOR SALE

SEEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R WHISTON, Dept. PE, New Mills, Stockport.

CATALOQUE NO. 18, Electronic and Mechanical Components, new and manufacturers surplus. Credit vouchers value 50 p . Price ${ }^{23}$, including post. ARTHUR SALLIS RADIO CONTKOL I.TD., 28 Gardner Street, Brighton, Sussex.

MORSEMADEEASY!! FACT NOT FICTION. 11 you atart RIGHT you will be readiug amateur and commerclal Mora within a month (norimal progress to be expected). Ualng scient|fcally piepared 3 -speed records you automatically learn to recogaise zte code RHYTHM without tranalatlog. You can't help it, it's as easy as oarnigg a tune. 18 W.P.M. in 4 weeks guaranteed. Beginner's Section only 43.30 . complete course 84.50 GaHgC (Box 19). 45 GREEN LANE, PURLEY, BURREY

ALL IS8UEE "PRACTICAL ELECTRONICS" to date. Excellent condition. Best offer for majority secures. Box No, 43 .

SERVICE SHEETS

SERVICESHEETS (1925-19T2) for Tre visions, Radios, Transistors, Tape Recorders, Record Players, etc., by return pest, with free FaultFinding diuide. P'rices from 5p. Over $\mathrm{x}, 000$ models available. (natalogur 13p. Please send S.A.E. with all orders/enguiries. HAMHLTON kainio. 54 London Road, lexhill, Susex. Telephone, Bexhill 7097.

SERVICE 8HEET8. Radio, IV, ptc. . 8,000 models. List 10p. S.A.E. enquiries. TELRAY, 11 Maudiand Bank, Preston.

RADIO, TELEVIBION AND TAPE RECORDER8. 50 mixed ould shpets 50 . Also large stor of ohsolete and current valves. JOHN GHLBERT TELEVISION. 1b shepherds Bush Road, London, W. 6 (01-743 8441). S.A.E. enguiries.

RECEIVER8 AND COMPONENT8

2N404, VCB25, IC-200, HFE 40, 6p. P. C . pins, 40 for 10p. X1311:3-0(11 , 4 p . 470s, W 5 ", "10 jolythene packed, 10 for $5 p$. Antisurge fuses, 1$]^{\prime \prime}, 200-600$ MA- $2 \mathrm{~A}-2 \cdot 5 \mathrm{~A}, 5$ 5p postage' per order. S.A.E. lists. FREAR, 1 Newton streft, tiverston, Latics.

BRAND NEW COMPONENTS BY RETURN,

 Electrolytics 15 V or $25 \mathrm{~V}, 1,2 \cdot 2,4 \cdot-10$ mfds. $31 \mathrm{p} .22,4 \overline{4}, 4 \mathrm{p} .100,5 \mathrm{p} .50 \mathrm{~V},{ }_{2} 1 \mathrm{p}$ extra, Sibminiature beat-type tantaluns, $0 \cdot 1 / 35 \mathrm{~V}$. $0 \cdot 22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}$, $8 \mathrm{8p}$. Mylar Filn 100 V , 0.001, 0.002. 0.005. $0.01,0.02,2 p .0 .04,0.05,2 \frac{1}{2} \mathrm{p}$. $0.06 \mathrm{cx}, 0.1$, 3 3p. Polystyrene 63V, 10 p . ${ }^{2} 10$. 000 pf ., E12 series, 2p. Mullard miniature Carton Film Resistors, Lill series, third watt $1 \Omega 2-10$ M Ω. sis.

NEED RESISTORS? Let our resistor kit solve your problem. 160 high stability $5 \% 1 / 8-1$,
$1 / 3 W$ components (20 different selected values) $1 / 3 W$ components (20 different selected values),
only 81.95 post free. (i.L. LTD). (I.E.), 31 Cardigat close, Tonteg, Pontypridd, Glamorgan.

MINT, BRANDED BC168C super-gain low noise npn, 10p. AD161/AD162 complementary pairs, 60p. Mail order only, U.K. post 5 p . AMATRONIX LTD., 396 , Selsdon Road, south ('roydon, Surrey, CR2 01)E.

MINIATURE CARBON RESIBTORS. I watt, E12 series, $2 \cdot 2 \Omega$ to $1 \mathrm{M} \Omega$, 10 for 7 p , 50 for 30 p . E12 Series, $2 \cdot 2 \Omega$ to $1 \mathrm{M} \Omega$, 10 for $7 p_{p} 50$ for 30 p .
Mixed values to your choice. Postage 5 p . ELECTRONICCOMPONENTS, Lake Bargain Centre, 113 Park Road, Didcot.

PRECISION
 POLYCARBONATE CAPACITORS

Fresh Stock - Fully tested
Close tolerance. High stability. All 63 V d.c.

$2 \cdot 2 \mu \mathrm{~F}$:
${ }_{4.7 \mu \mathrm{~F}}$
$10 \mu \mathrm{~F}:$
$16 \mu \mathrm{~F}$:
$\pm 5 \% 11 \cdot 60 ; \pm 2 \% 82.10 ; \pm 1 \%$ 28-70 BC109.-TRANSISTORS, BC107, BCIO8. BC109. All at 9 p each; 6 for 50 ; 14 (or $\mathbb{C l}$. Ali
brand new and marked. Full spec. devices. May brand new and marked. Full spec. devi
be mixed to qualify for quantiry prices.
POPULAR DIODES. IN914, 7p each; 8 for 50p; I8 for ©1. IN916,9p each; 6 for 50 p ; 14 for ES. is 44 , 5p each; il for 50p; 24 for El. All brand new and marked
SPECIAL OFFER- 400 mW Zeners, Values available $6 \cdot 8,7 \cdot 5,8 \cdot 2,9 \cdot 1$, 10,11 , $12,13 \cdot 5$, 15 V . Tol. = $5^{\circ}{ }^{\circ}$ at 5 mA . All new and colour coded. Price 12 p each; 5 for 50 p ; 12 for El .
RESISTORS. Carbon film $\frac{1}{2} \mathbf{5} \%$, Range from $22,27,33,39,47,56,68,82$ and their decades. High stability, low noise. All at ip each; $\mathbf{8 p}_{\mathrm{p}}$ for 10 of any one value: 70 p for 100 of any one
value. Special development pack- 10 off each value. Special development pack-10 off each value $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ (730 resistors) 6.
440 V A.C. CAPACITORS. O. $1 \mu \mathrm{~F}$, size $1 \mathrm{in} x$ size lifin x tin, $35 p$; $1.0 \mu \mathrm{~F}$, size 2 in $~ X t i n, ~ 45 p ;$ $\mathbf{2 . 0 \mu F}$, size 2 in \times lin 75_{p}.
LIGHT DIMMERS. 440 V a.c. capacitors listed above are ideal for dimming filament bulbs (unsuitablefor fluorescent lights). We suggest P.E.SCORPIO. I $\mu \mathrm{F} 440 \mathrm{~V}$ a.c. capacitor listed above is recommended by the Author for use
in place of $2 \times 047 \mu \mathrm{~F}$ l 000 V de. discharge in place of $2 \times 0 \times 47 \mu \mathrm{~F}$ I 000 V d.c. discharge
capacitors C 6 and C 7 . Improved reliability. capacitors C6 and C 7 . Improved reliability.
Alternatively, $2 \times 0.47 \mu \mathrm{~F} 440 \mathrm{~V}$ a.c. may be Alternatively, $2 \times 0.47 \mu \mathrm{~F}$ 440V a.c. may
supplied at 35 p each. supplied at $35 p$ each.
Sp post and packing
V. ATTWOOD, DEPT. B4, P.O. BOX 8, ALRESFORD, HANTS

SOUND SUPPLIES
(Electronics) Co. Ltd.
P.A. EQUIPMENT. Marshall amps, instruments and guitars. etc. TOA and Eagle amps and accessories, Reslo mics, erc. COMPONENTS. Resistors, capacitors, plugs, sockets, cables, audio leads. semiconductors, valves, vero board, ete., for the constructor. Power packs and car droppers for the casserte recorder or radio.
S.A.E. for list and enquiries. P.A. list 15p. Tal. 01.508 2715 Closed all day Thursday

EX COMPUTER PRINTED CIRCUIT PANELS 2 in $\times 4$ in packed with semi-conductors and top quality resistors, capacitors, dindes, etc. Our price 10 boards sop, P. \& P'. 7 p . With a guaranteed minimum of 35 transistors. Data on transistors included.
SPECIAL BARGAIN PACK, 25 boartig for 21 , P. \& F. 18 g . With a guaranteed minimum of 85 transistors. Data on transistors included.
PANELS with 2 power transistors bimilar to OC28 on each board-componenta? hoarila (4: OC28) 50p. P. \& P. B_{L}.
9 OA5. 3 OA10, 3 lot Cores, 26 Resistora, 14 P. s. P. 250.
250 MIXED RESISTORS 62p
150 MIXED HI STABS 62p t, \& \& 1 watt $50_{0}^{\circ} \&$ better.
QUARTZ HALOGEN BULBS With long leads. leV 55 W for car spot lights, projectors, etc. 50p each. F. \& P. 5p.
GPO EXTENSION TELEPHONES with dial hut without bell. 95p each. P. \& P. 30p. ${ }^{2} 1.75$ for 2. P. \& P. 30 p .
KEYTRONICS mail órder only 44 EARLS COURT ROAD
LONDON, W. $8 \quad 01-4788499$

NEW GUARANTEED COMPONENTS Fairchild 9315 (equivalent SN7441) 57 P SN7495 65p SN7475 40p SN7476 36p
 Stemens fuli spec. 2 N 305546 p BC107/8/9 Yop Mecaloxide resistors al values, erie aluminium Foolscap S.A. E. plus 3D in stamps for lists. P. \& P. 7p. Mail Order Only.

AQUA-GEM ELECTRONICS
8 Pound Lane, Bowers Gifford, Basildon Essax

CANNY SCOTS BUY FROM

FORTRONIC (FIFE) LTD.WHY?
7400 series $1 / C S$ Gates from IIp; 7472 from 22p; 7474 from 30p
$\mathrm{BClO9}$ and BCl 77 from 7p at $25+$
IN400I Diodes from 5p at $25+$
Power Trans in general to 2 N 3055 from 25 p at $25+$
Firebug Transistorised Ignition Kit, c6
Send S.A.E. fo: full component lists
FORTRONIC (FIFE) LTD. 13 KNOWEHEAD ROAD, CROSSFORD, FIFE

AUDIO MIXER UNITS and kits. Voice operated auto fade units. PARTRIDGE operated auto fade units. PARTRIDGE
ELECTRONICS, Dept. P.E.s, $21-25$ Hart ELECTRONCS, Dept. PA.E. $\quad 21-25$ Hart
Road, Thundersley, Rentleet, Essex. Tel. South Bentleet (NTD 037-45) 3256. For mone details see [. W. July issue.

METERS, Motors, Relays, Valves, Elect ronics, At ROGERS FASCINATING ESTABLISHMENT, 31 Nelson Street, southport

REGEIVER8 AND COMPONENT8

COMPUTER PAKELS, \mathbf{j}-BC108, diodes, etc. 4 for $\$ 0 \mathrm{p}$, post 10 p . AMERICAN PAMELS, 4 for 50 p, post 12 p . Panel type $283 \mathrm{~B}, 12$ silicon trans.
$15 \mathrm{p} ; 219 \mathrm{H}, 21$ silicon trans., 80 p , poat 5 p each. For 16p; $219 \mathrm{~B}, 21$ silicon trans.. 30p, post op each. For UKIT WITH 4 LAS POT CORES . CAPS, 50 p . port 15p. LAU ex equipt., 20p. C.P. New and boxed 30p, C.P. ORP12 on panel ex equipt., 35p, C.P WIRE ENDED NEONS, fitted resistor for mains use 10 for $45 \mathrm{p}, 20$ for 75 p , post Sp_{p}. M.C. METERS. 2-3in, three asorted 41.05, post 29 p .
MIXED POLYBTYRENE/POLYESTER CAPS, 100 for $40 \mathrm{p}, \mathrm{C} . \mathrm{P}$. I.C.s. 7400 series on panel(s), 10 outs 100 (approx.) 18p C.P. RESETTABLE 5 outs 100 fappror.) 18p GR. RESETTABLE YIGURE COUNTE no dope. 50p, poat 20 p .
COPPER CLAD PAXOLIN, single mided, $12 \times 12 \mathrm{im}$ 30p, post 10p each: $8 \frac{1}{2} \times 5 j_{15}$. 0 p. post $4 p$ each $51 \times 5 \frac{1}{2},{ }^{6}$ for 30 p , pent 10 p .
A8sonTED COMPONENTS, 71 h .
ASSORTED COMPUTER PANELS, $21 \mathrm{~b}, 2130, \mathrm{C}, \mathrm{P}$ J.W.B. RADIO

75 HAYFIELD ROAD, SALFORD 6, LANCS. Mail Order only

Trintis ragitionin

100 WATT AMPLIFIER

Fully protected, transformerless, 9 transiscor circuit. Input 500 mV . Ouepur inco 8 ohms. 0.1% distortion.
Princed circuic board and full inseructions. fl-45p + 10p P. \& P. S.a.e. for list of component bargains
EDMUND8 COMPONENT8, 134 NORTHEND
ROAD, LONDON, W14. (Mail order only)

RAPID SERVICE-GOOD VALUE

Money Back Guarantee MICROCIRCUITS: 709 30p; 710 36p; 723 71p; 74132 p

 $16 \mathrm{p} ; 01-18 \mathrm{p} ; 02 \mathrm{pp} ; 0418 \mathrm{p} ; 0 \mathrm{p} 18 \mathrm{p} ; 1018 \mathrm{p} ; 1121 \mathrm{p}$
$4016 \mathrm{p} ; 3019 \mathrm{p} ; 4016 \mathrm{p} ; 5118 \mathrm{p} ; 7230 \mathrm{p} ; 7341 \mathrm{p} ; 7433 \mathrm{p}$ $7544 p ; 8641 p ; 9072 p ; 91$ El.21. RECTIFIERS 1 Anp
 12p; 1,000\% 145: TRANBISTORA:-2N2926, Red 6p;
 28p; 2Nof72 8p; BC107B 8p; BC109C 9p; BC179 18p BCY70 10p: BCY71 2po; BF115 20p; BFX86 15p BFY50/51/52 10p; OC71/72 12p. ME 8ERIES: 0401 10p 0402 18p; 0404-2 16p; 0411 18p: $041210 p ; 0414$ 94p $4103 \mathrm{10p} ; 6001 \mathrm{12p} ; 6002 \mathrm{14p} ; 6101 \mathrm{14p} ; 6102 \mathrm{lip}$ 8001 14p; 8003 15p; MEF104 42p; MP811188p; MP8112 48 p .

JEF ELECTRONICS (P.E.9)
YORE HOUSE, 12 YORE DRIVE, GRAPPENEALL WARRIMGTON WA4 2EJ.

Mail Order Only
C.W.O. P. \& P. 8 p per orler. O/seas 65p Discounte start at 10% tor $10+$

```
TV Line out-put Transformers
    Replacement types ex-stock.
    For "By-return'' service, contact London
        01-948 3702
        Tidman Mail Order Ltd., Dept. PE
        236 Sandycombe Road,
        Richmond, Surrey TW9 2EQ
Valves, Tubes, Condensers, Resistors, Rectifiers
and Frame out-put Transformers also stocked.
                                    Callers welcome.
```

AARVAKELECTRONIC8. ioundlight. (ont vertors 3 rhatmel $1-2 k W$ e17, 3 kW . 25. Strobes, 1 Jumle $\$ 16,4$ Jompe e2s. Mail or call, it Bedfuri Arroltr. Barmet, herts. Tel. $01-7441268$

FORTRONIC IS EXPANDING

I/C Patchboard Kit $\mathbf{\& 5}$ I/C Test Clips Extended range of 7400 Series I/Cs. Development Kits of Carbon Film Resistors.
Range of 6 v lamps and lampholders (4 different colours).
Neon instrument cases and cast zinc boxes.

Send s.a.e. for full lists
FORTRONIC (FIFE) LTD.
13 Knowehead, Crossford, 'Fife

TRANSFORMERS

dodglas gdaranteed

 12 of 24 Voltz| | | |
| :---: | :---: | :---: |
| 1×2250 | | |
| | | |
| | | |
| | | |
| | | |
| $\times 2$ | T 108 A | |
| $\times 2$ | MT 72 | |
| 30 rolta. All tapped at $0 \cdot 12 \cdot 15 \cdot 20 \cdot 24 \cdot 30$ | | |
| Out- | | |
| Ampe. | | |
| 00 mA MT 11! C'T; 1.12 | 1.12 15p 3A MT | |
| 1A MT-9AT: 1.55 | 55 29p 4A | AT |
| MT 3 AT 2.23 | 23 30p 5 A | |
| volts. All tapped at 0-19.25-33-40.5 | | |
| | | |
| 32 p | | |
| 2A MT 104 AT 9.103 | 32p | |
| 60 Voltr. All tapped at $0 \cdot 24 \cdot 30 \cdot 40-48 \cdot 60 \mathrm{~V}$
 | | |
| | | |
| | | |
| at R | | |
| | | |
| 20 Va | | |
| | | |
| 50 | | |
| 400 V. Outputaï 50 Hz̈, Ret. ITs AT Pric | | |
| | | |
| C-D Ignition system by R. M. Marst | | |
| T Ras | | |
| | | |
| C. Output (r.m.s.) | Ret. | |
| | T 209 | |
| 100 | 13 | |
| 0-12 $\quad 50 \mathrm{~mA}$ | T 210 | |
| | 1010 | |
| 202 $300 \times$ | MT 214 | |
| $500 \mathrm{max} \times$ | Ax: MT 207 | |
| $\times 2500 \mathrm{~mA} \times 2$ | メ2 MT 205 AT | |
| $27 \times 2000 \mathrm{~mA}$ | MT 203 | |
| $15-27 \times 2$ | MT $204{ }^{\text {a }}$ | |
| mA (d.c.) | (d.e.) | |
| AT indicates open universal fixing with tage; CT in open U-clamp fixing with tags: CS in open U-clamp fixing with P.C. spills: *with interwinding screen; + untapped 240V Primary; : Primary tapped at 210.240 V ; other Primaries tapped at $\mathbf{2 0 0 - 2 2 0 - 2 4 0 \mathrm { V }}$.
 Oras 200 types in atock through agents or direct. Send for list. | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| DOUGLAS ELECTRONICS MDDUSTRIES LTD. (Dept. M0. 57). Thames Street, LOUTE, Lincs. | | |

VALVE MAIL ORDER CO. 16a WELLFIELD ROAD, LONDON SW 16 28S SPECIAL EXPRESS MAIL ORDER SERVICE
Express postage I p per transistor, over ten
INTEGRATED CIRCUITS 5 p +1 p eaci added

[^2]

P.E. 'GEMINI' STEREO AMPLIFIER

30 watts (R.M.S.) per Channel into 8 ohms ! Total Harmonic Distortion 0.02%
Frequency Response (-3 dB) $\mathbf{2 0 H z}-100 \mathrm{kHz}$! This high quality Stereo Amplifier for the Home Constructor was 1970 to March 1971. It is now recognised as practically the ultimate in High Fidelity and is certainly equal to anything one can buy, no matter what the
structor.
WE CAN NOW SUPPLY AREPRINT OF THE ARTICLES IN BOOKLET FORM, PRICE \$\$p, PLUS 4p POSTAGE, WITH FREE COMPLETE COMPONENT PRICE LIST
For free price list only. or a complete free specification, please send a
foolscap size S.A.E.
\qquad ELECTRO SPARES 21 BROOKSIDE BAR
CHESTERFIELD, DERBYSHIRE
QUALITY

- SERVICE
-

VALUE

BAKER ISin. AUDITORIUM

A high wattage loudspeaker of exceptional quality with a level response to above $8,000 \mathrm{cps}$. Ideal for Public Address, Discotheques, Electronicinstruments and the home.
Maximum Power
Bass Resonance
Flux Density
Yoice coil impeda
Useful response
GUITAR MODEL "G00 44,000 c.p.s.
15 in. Heavy Outy. 50 watt $£ 19$
20 PLANS, CUBIC TABLES
CROSSOVER DATA AND
CATALOGUE 42p POST FREE
CATALOGUE ONLY 5p

Baker Reproducers Ltd

Bensham Manor Road Passage, Thornton Heath, Surrey

BUILD
THE

TEXAN

$20+20$ WATT INTEGRATED I.C. STEREO AMPLIFIER
\star FREE TEAK CASE
features: New slim design with 6 ICs. ic sockets, 10 silicon transistors. 4 rectifiers. 2 zeners.
Special Gardners low field slim line transformer. Fibreglass PC panel. Complete chassis work. HIGH QUALITY AND STABILITY ARE PREDOMINATE FEATORES-DEVELOPED SY TEXAS ENGINEERS FOR
PERFORMANCE, RELIABILITY AND EASE OF CONSTRUC. TION.
FACILITIES On/off switch indicator, headphone socker separate treble, bass, volume and balance controls, scratch and
rumble filters, monolstereo swich, input selector: Mag PU Radio Tuner Aux Can be attered for Mie. Tape. Tape head etc (Parts list Ref. 20 on request)
'Prastical Wireless'"
Moy to August 1972

LOW COST HI.FI SPEAKERS

TYPE 1506 watr, 3,8 or

 TYPE I50TC Tw n con sion 62.75. Pose 22p. TYPE 45010 or 15 ohms $\mathbf{3} .85$. Posi 25 . 8 and crossover, 8 wath 15 ohms.and 97.70 c7.70. Post 78 p
 POLISHED CABINETS ISO, 150TC, 450 \&4.60. POST 30 P

NEW MW/LW TUNER TO BUILD
ML-3 uses Mullard Module.

Slo

motio zuning.

zun
OV
O4

OTAL COST TO

ILD veralh Built-in

"BANDSPREAD" PORTABLE TO BUILD Printed circult
using Mullard RF
and Long Waye

If Mansts and Long Wave bands plus Medium Wave Bandspread for exira selectivity. 600 mW push-pull output, fibre glass Attractive covered cabpearanet, car aerial TOTAL COST TO BUILD $\in 7.98$, p.D
32 p (Bate. 22p). Ail parts sold $9 e p a r a$ 32p(Batt. 22p).
"7T" MEDIUM AND LONG WAVE PORTABLE (as previously
advertised) 66.98 . P. 35 from seock

CATALOGUE

Fully

detailed and
illustrated
covering every
coveringer
aspect or
Elt
Electronics

- Plus data
circuits and
information
10.000
Stock lines
at Special
Low Prices and
PRICE 55p (40p FOR CALLERS) PLUS! FIVE IOp VOUCHERS
Send to this address-Henry's Radio Ltd. (Dept. PE), 3 Albemarie Way, London, E.C. - ${ }^{\prime}$ or catalogue
other mail and calters to " $303^{\prime \prime}$, see below.

SPECIAL
KIT PRICE
£28.50

COMPLETE WITH FREE

TEAK CABINET
Designer approved kits only
available from Henry's!

TEST EQUIPMENT
SE250B Pocket Pencil Signal Injecior, $£ 190$ SE500 Pocket Pencil Signal Tracer, ©i 50
TEI5 Grid Dip Meter 440 KHz- 280 50030 K Volt Mulumecer 613.45 with leather case, flo 50
$200 \mathrm{H} 20 \mathrm{~K} / \mathrm{Vol}$ Multimeter. 44.20 : with case $\mathbf{E 4 . 9 5}$ 95 AFIO5 50K Vols Multmeter. 6850 SLIM DESIGN WITH SILVER TRIM

Overall chassis size 14: in $\times 6$ in $\times 2$ in higb

W4341 ACDC Multimeter with transisto

$$
\begin{aligned}
& \text { tester with steel case, } 11050 \\
& \text { TE20D RF Generator } 120 \mathrm{KHz}-500 \mathrm{MHz} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TE20D RF Generator } 120 \mathrm{KHz}-500 \mathrm{MHz} . \\
& \text { E15.95 Car } 35 \mathrm{p} \\
& \text { TE22D Audio Generator } 20 \mathrm{~Hz}-200 \mathrm{KHz} . \\
& \mathbf{6 1 7 . 5 0 \text { . Carr } 3 5 \mathrm { p }} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 617.50. Carr 35p } \\
& \text { T3 Jin Scope 11 Hz-1 } \mathrm{MHz} \text {. } \\
& \text { 63900. Carr. } 50 \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& 63900 \text { Carr. } 50 \mathrm{p} \\
& \mathrm{Cl} .53 \mathrm{n} \text { Puse Scope } 10 \mathrm{~Hz}-10 \mathrm{MHz} \text {. }
\end{aligned}
$$

$$
\text { \& } 39.00 \text {. }
$$

$$
\begin{aligned}
& \text { } 639.00 \text { Carr. } 50 \text { p } \\
& \text { TE65 Valve Voltmeter } 28 \text { ranges. } \\
& \text { E17.50. Carr. } 40 \text {. }
\end{aligned}
$$

BUILD THIS VHF FM TUNER 5 TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND-
WIDTH PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION FIDENO AND STEREO. A pOpular VHF FM Tuner for qualiey and reception of mono and sterce VHF FM gives the REAL

Free Leafiet No. 3 \& 7 TOTAL 65.97
Decoder Kit 6597 . Tuning mecer $\mathbf{9}$. 75 .
Mains unit (optional) Mode! P5900 62.47. Post 20 p
Mains unit for Tuner and Dec
PA-DISCO-LIGHTING
 DJ3OL 3 Channel sound io DJ40L 3 Channel Mic (Bui 3 kW . 637.50 D J70S 70 watt Disco amp/mixer, 649.75 DISCOAMP 100 wate Disco ampl DJI05s 30 watt Disco amp/mixer. $£ 31.00$ Anti-Feedback Qualisy Mic., Ell.50
SDL I2in 50 watt 8 ohm Full range SDLeaker, 81295
DECKS. Use MP60 or SP25/3 see above Matching cartridge SCSM. FIBRE OPTICS IBRE OPTI EFFECTS ECTORS SPOT DIMMERS MIXERS.
Everything PA -ighting FREE Stock
Ref. No. 18.
SINCLAIR PROJECT 60 MODULES -SAVE POUNDS Z $3063.57 \quad$ Z50 64.37 STEREO 60 C7.97 PZS
PZ6 66.37 PZ8 6477. PZ6 $£ 6.37$ PZ8 $£ 477$.
Transformer for PZ8 $£ 2.95$ Active Filter Unit 64.45 . Stereo FM Tuner $£ 16.95$ C|2 61.80 Ql6's E15 pair Post, etc 20p per izem.

PACKAGE DEALS Post 25p $2 \times Z 30$, Stereo $60, P Z 5 \quad \& 15.95$ $2 \times Z 30$, Stereo 60. PZ6 $£ 18 \cdot 00$ Transformer for PZ8 | ransiormer for PZ8 |
| :--- |
| NEW PROJECT 605 KIT |
| E 19.95 |

Mail Order, Industrial Sales and Special Eargain Shop $303=\mathrm{DRMAR} \mathrm{H}$ A AD. LBNDON, M.2. Tal: 01-72x 1003/1009

RECORD DECKS CHASSIS (POST SOD) SP2S/3. 610.75 HT70, 615.00 MP60, $£ 10.40$ MP6IO. EI4.15 WITH PLINTH/COVER
(Post 70p)
MP60, £17.20 TDI50AB, \&41.75 HT70, E21.60 PLI2AC, $£ 35.25$ HL(GL75). $\mathbf{6 3 5} 25$ BD2. $\mathbf{3 2} 2.25$ MP6IO, ELO 35
CART/PLINTH/COVER
(Post 70p)
(HL) AP76 G800/PC (HL) SP25-3/G800H/PC (HL) 2025 TC/9TAHCD
PC E13.50 $\begin{array}{ll}\text { (HL) GL75/G800E/PC } & \begin{array}{ll}17.25 \\ 644.15\end{array}\end{array}$ (HL) GL72,G800/PC

ULTRASONIC TRANSDUCERS
Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100 yds Ideal remoceswitching and
signalling. Complece with data and sircuits.
PRICEPERPAIR 6590. Postlop.

TEXAS PUBLICATIONS 1-100 watt Amplifiers an Preamplifier 77 pages layouts Data Book (No. 2) a HTTL IC ${ }^{-5}$ 60p. 420-page Transistor Data Data (No. 4) 60p. (Post, etc. 20p

POWER INTEGRATED CIRCUITS
Plessey SL403D-3 wa 8-page data, layouts and circuits 4p. Sinclair 1 C 12 p ; Heat Sink data and circuits $£ 180$ TH9013P-20 walk power Amp Module 64.57. TH9014P-iC Preamplifier fl. 50. Data/Circuits (No. 42) for above
10 p .
7 SEG \& NIXIE TUBES (Post iSp per 1 to 6) XN3, XNIJ, GN6
GNP-7. GNP.8 0-9 side view with decimal points and data,
301 SF 7 seg. 62 each. 67 per 4 with data. 12 and 24 hour clock
circuits for above. Ref. No 31 i5p.

MINIATURE AMPLIFIER transistor. 300 mW o/p control 9 vols operated.

QUALITY SLIDER CONTROLS 60 mm stroke singles and ganged. Complete with knobs.
$5 \mathrm{k} \Omega, \quad 0 \mathrm{k} \Omega, \quad 25 \mathrm{k} \Omega$. $100 \mathrm{k} \Omega$.
50. 500 ks I meg. Log and Lin 45 p each. $10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$, $50 \mathrm{k} \Omega$,
$100 \mathrm{k} \Omega$. Log and Lin ganged. $100 \mathrm{k} \Omega$. \log and Lin ganged
75 p each HI-FI AND TAPE

TRANSISTO
RECTIFIERS
RECTIFIERS
TRIACS, CUE
NEW FREE LISTS Ref. No. 36

[^0]:

[^1]: (IPC Magazines Limited 1972. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONiCS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subseription Rates including postage for one year, to any part of the world, $£ 2 \cdot 65$.
 Practical Electronics, Fleetway House, Farringdon St., London. E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202
 Practical Electronics September 1972

[^2]: Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m. Valves, Tubes and Transistors • Closed Sat. I p.m.-3 p.m.
 Terms C.W.O. only
 Tel. 01.677 2424-7

