PRACTICAL

Nhy take the risk? of damage to expensive

 transistors and integrated circuits, when soldering? Use Antex low-leakage soldering irons

The leakage current of the NEW $\times 25$ is only a few microamps and cannot harm the most delicate equipment even when soldered "live" Tested at 1500 v. A.C. This 25 watt iron with it's truly remarkable heat-capacity will easily "out-solder" any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages. Fitted long-life iron-coated bit $1 / 8^{\prime}$
2 other bits available $3 / 32^{\prime \prime}$ and $3 / 16^{\prime \prime}$.

Totally enclosed element in ceramic and steel shaft Bits do not "freeze" and can easily be removed

PRICE: £1.75 (rec. retail) Suitable for production work and as a general purpose iron

The 15 watt miniature model CCN also has negligible leakage. Test voltage 4000 v . A.C Totally enclosed element in ceramic shaft. Fitted long-life iron-coated bit 3/32' 4 other bits available $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime} 1 / 4^{\prime \prime}$ and $1 / 16^{\prime \prime}$ PRICE: $£ 1.80$ (rec. retall)
OR Fitted with triple-coated, (iron, nickel and
Chromium) bit $1 / 8^{\prime \prime}$
PRICE: $£ 1.95$ (rec. retail)

MODEL CN

Miniature 15 watt soldering iron fitted $3 / 32^{\prime \prime}$ ironcoated bit. Many other bits available from $1 / 16^{\prime \prime}$ to $3 / 16^{\prime \prime}$. Voltages $240,220,110,50$ or 24
PRICE: $£ 1.70$ (rec. retail)
MODEL CN2
Miniature 15 watt soldering iron fitted with nickel plated bit $3 / 32^{\prime \prime}$. Voltages 240 or 220 .
PRICE. $£ 1.70$ (rec. retail)

MODEL G

18 Watt miniature iron, fitted with long life ironcoated bit $3 / 32^{\prime \prime}$. Voltages 240,220 or 110 . PRICE. $£ 1.83$ (rec. retail)

OTHER SOLDERING EQUIPMENT.
MODEL
contains 15 Watt miniature iron fitted

MODEL SK. 2 KIT
contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$

From radio or electrical dealers, car accessory shops or, in case of difficulty direct from ANTEX LTD. FREEPOST (no stamp required) Plymouth

Please send the ANTEX colour catalogue
\square Please send the following

1 enciose cheque/P.O./Cash (Giro No. 2581000)

NAME

ADDRESS

NEW PRODUCTS

MOTOROLA a famous name for high quality and advanced technology.
Data and Applications information included in the price.
MC1303L@ £1.75
A dual stereo pre-amplifier. Featuring: large output voltage swing. Open loop voltage gain of 6000 min. 60 dB min. Channel separation at 10 kHz . Short circuit protection.
MC1305P@ $£ 2.80$
An FM multiplex stereo demodulator. Featuring: wide voltage range $8-14 v$. Total audio muting capability. Automatic switching from stereo-mono. Monoaural Squelch.
MC1307P@f1.65
An FM multiplex stereo demodulator. Featuring: Wide operating voltage range. Built-in stereo indicator lamp driver.

MC 1330P@ $\mathbf{f 0 . 8 0}$

A low level video detector. Featuring: Very linear characteristics, wide bandwidth design for colour and monochrome television receivers, replacing the third IF, detector, video buffer and the AFC buffer.
MC1352P@ £2.00
TV Video IF Amplifier with AGC and Keyer circuit. A monolithic IF amplifier with a complete gated
wide range AGC system for use as the 1 st and 2 nd IF stages and AGC keyer and amplifier in colour or monochrome TV receivers.
MC 4024P@£2.20
A dual voltage controlled multivibrator. Used in phase locked toops for digital frequency control. May also be used in some types of analogue to digital converters.
MC4044P@ £2.20
A phase frequency detector. This device contains two digital phase detectors and a charge pump circuit which converts, MTTL inputs to a de voltage level for use in frequency discrimination and phase - locked - loop applications.
MFC 6030 ©1.63
Voltage regulator. Featuring: Excellent line a nd load regulation, Current limit feature available.
MFC $8010 @$ f1.38
1 watt Audio Amplifier. 1 watt continuous Sine Wave power at $+55^{\circ} \mathrm{C}$. High gain. Low distortion (-1% (a) 1 watt typ.) Short circuit protected. No heat sink required.
MFC 9020 ($\mathbf{~ f 2 . 1 2 ~}$
2 watt Audio Amplifier. 2 watt continuous Sine Wave power. Short circuit protected. High gain. High input impedance.

DIL IC CIRCUIT BOARD
$4^{\prime \prime} \times 6^{\prime \prime}$ NOM with Circuit layout ready drilled. Accepts up to 25 DIL IC's. £1.10 each.

RESISTORS

$\frac{1}{4}$ watt Carbon Film.
Values: E. 12 series.
Range: 10 ohms - 1 Meg (5\%)
$1 \mathrm{Meg} .4 \cdot 7 \mathrm{Meg}(10 \%)$
Price: 1p each.
$\frac{1}{2}$ watt Carbon Fiim.
Values: E12 series.
Range: 10 ohms - 1 Meg (5\%) $1 \mathrm{Meg}-8.2 \mathrm{Meg}(10 \%)$
Price: 1p each.
E12 series indicates:-
$10,12,15,18,22,27,33,39,47,56$, 68, 82 ohms and their decades.

POLYSTYRENE CAPACITORS	
VALUE	PRICE
100 pf	$3 p$
150 pf	$3 p$
220 pf	$3 p$
330 pf	$3 p$
470 pf	$3 p$
560 pf	$3 p$
680 pf	$3 p$
820 pf	$3 p$
1000 pf	$3 p$
1500 pf	$3 p$
2200 pf	$3 p$
3300 pf	$3 p$
4700 pf	$3 p$
6800 pf	$3 p$
	$3 p$

If you have our mauve retail catalogue please read on:
The following lines have been discontinued to make way for new products.
All International Rectifier products from pages 16 and 17 of the mauve catalogue-SL. 1142 and TIL. 63 from page 15 -L14B from page 15 has been replaced by $2 N .5777$ at a new lower price-The Hardcastle Amplifier Kit from page 13 has been discontinued-Integrated circuit amplifier TH9013P from page 12 has been discontinued and the PA series General Electric I.C. amplifiers from page 12 have also been discontinued.

Varicaps from page 8 have been discontinued due to poor service from the manufacturers concerned. The range of zener diodes by Texas Instruments on page 8 have been replaced by the Mullard BZY88 series.

If you have any comments as to what you would like to see in our September catalogue please drop a line Attention Dick Bowell our Retail Manager. (He won't write back but your remarks will be read and discussed.) Now! 10\% Discount on all orders over $£ 4.00$.

PE1

ADS OF TEST EQUIPMENT BARGAINS!

3 digit plus polarity indicator. Its 17 positions allow it to measure in the following ranges: d.e. volts $100 \mu \mathrm{~V}$ to 999 V : a.c. volts $100 \mu \mathrm{~V}$ to 420 V : d.e. surrent $100 \mu A$: a.c. current $100 \mu \mathrm{~A}$. Resistance 0.1Ω to $999 \mathrm{k} \Omega$. Operates 12 V d.c. external.
2Vd.c. external.
Ory cells or Ni Cad batterics.
Original Price ©89. OUR PRICE
BRAND NEW DIGITAL PANEL VOLTMETERS 10 mV to 199 V . 199 measuring poincs. Inpus $Z=100 \mathrm{Ms}$ Auromatic zeroing. Dimensions $A \rightarrow 4$ PLUS $72 \mathrm{mmH} \quad 72 \mathrm{~mm}$ W 155 mmD Original Price 652 \qquad

5 MULLARD OC36 TRANSISTORS Mounted on plug in P.C. Board. Abso* lutely brand new unused. Size 6 in 5 .
Our price only $\mathbf{E} \mid \cdot \mathbf{2 5}$. P. \& P. inclusive
LUCAS CAR RELAYS $12 V$ heavy duty make. Suit able for spotlights, horns, over-
drives, ete Brand new. Only 37tp. Special price for quan. $37 \frac{1}{2} p$.
tities.

LUCAS POWER DIODES Type DD 716
P.I.V. 400 max. 35 A (gold plated) stud mounting. In sets of four scud mounting.
Only E2. P. \&

CUBES
Type LA4. Brand new boxed Price 95 p. P. \& P. inc.

MEGISTORS

Morganite high value glass enclosed resistors. Value 2.5 $10 \Omega \pm 101.25$ in ooxes of

AERIAL CHANGEOVER RELAYS

of current manufacture designed especially for mobile equipments, cof oltage 12 V , frequency up to 250 MHz at 50 W . Smal

ADVANCE AUDIO OSCILLATOR TYPE J.I.

15 Hz to 50 kHz in 3 ranges. Outdur $0-25 \mathrm{~V}$ into 600Ω. In good, serviceable condition. PRICEEP850. P. \& P. 500.

WE SPECIALISE IN SUPPLYING NEW AND USED TEST EQUIPMENT
co industry, educational establishments and private enthusiasts. Whatever your requirements: signal generators, audio oscillators, Trequency meters, oscilloscopes (by Tekeronix and other leading macers). high and low voltage power supply units, relays (simple or special). panel
P. F. RALFE

10 CHAPEL.STREET, LONDON, N.WI Tel. 01-723 8753

Are you alright for Jacks?

Ask for Rendar Jack plugs and sockets at your local stockist. They come in a wide variety of configurations, and in cases of difficulty can be ordered DIRECT from the Rendar factory
Standard, mini and sub-miniature sizes . . . plugs in both screened and unscreened versions . . socket bodies in high melting point thermoplastic... several unique features (some protected by UK and US Patents) .. Post Office and NATO specifications.
If you want to study all the facts and figures, all the ingenious con struction details, send for the Rendar Electronic Components Catalogue of technical data sheets covering their entire range of products.
The cost of the catalogue is $25 p$, including $P \& P$, and it's money very well spent!

RENDAR ${ }^{\circ}$

Rendar Instruments Ltd., Victoria Road Burgess Hill, Sussex. Tel. Burgess Hill 2642-4 Cables: Rendar, Burgess Hill

UHF-AERIALS

Suitable for colour and monochrome reception PLANAR folded dipoles + MESH reflectors

ILLUSTRATED UHF. 50
Aerial Arrays designed for fringe area reception UHF,50 $\mathbf{£ 3 . 9 0}$ UHF, $18 \quad £ 2.60$
Without alochrome process for loft/window sill mounting UHF,10 £1.95 chm Bkt \& 5^{\prime} angled mast $\mathbf{C , 5} \quad £ 1.50$ wall 8 kt \& 5° angled mast $\mathbf{W} .5 \quad \mathbf{f 1 . 0 0}$ (Available by mail order only when ordering UHF.50-UHF. 18 or FM Aerials)

VHF/FM AERIALS

Aerial Array single-dipole B,21	$\mathbf{f 1 . 3 0}$	
Aerial Array dipole-reflector	B,22	$\mathbf{f 1 . 6 5}$
CAR-AERIALS		

PRE-AMPLIFIERS

Suitable for colour and monochrome, freq coveraqe 40.860 MHZ. 1408 Gain Weather proof Pre-Amplifier $\mathrm{TI} \quad$ f5. 25 240V.A.C. Power IJnit T1/PU $£ 4.25$
Low-Loss co-axial cable sold in multiples of 5 meters at $\mathbf{4 0} \mathrm{p}$, nylon cable clips per 100 at 30 p . Aerial switches at 90 p Co -axial plugs at 8 p . P \& P. UHF \& VHF/FM Aerials 50 p, Car Aerials-Amps \& cable etc., 25 p. When ordering UHF Aerials, please state channel combination or transmitter lacation. S.A.E. with enquiries please. Terms P. O/Cheque with order. U.K. Mainland only.
AVEE (COMMUNICATIONS) LTD
Dept P.E.1. 96a Plains Avenue, Maidstone, Kent Telephone Maidstone 56962
like a "crystal set"! Complete with optional battery eliminator for both battery and mains use! We're almost giving them away at only $\mathbf{~} \mathbf{2 0} \mathbf{- 7 5}$-a mere fraction of even today's Russian miracle
price! $W e$ challenge you to compare performance and valu with chat of 680 radios! $*$ You can't lose, we'll refund instancly if you are not astounded! Elegant black a chrome finish fine Russian habulous Cabinet built case-constructed of fine Russian hardwood in beautiful Teak Veneer finishprevents vibration, onsures purer a sweeter tone than ever!
Volume controlled from a whisper to a roar that would fill a hall! Much wider band spread, for absolute "pin-point" station selection! Plus "MAGIC EYE" tuning level indicator for ulta perfect tuning sensitivity! Yes, the Russians have surpassed themselves, proving again their fantastic ability in the field of techniques in the field of spaceship and satellice communications. Yes, EVERY WAVEBAND instantly at your fingertips including Standard Long, Medium, Short and Ultra Short Waves to cover the four corners of the earth 24 hours a day in-
cluding all normal transmissions. VHF, AM, FM, MW. LW, USW, plus local \& new stations not yet operational and messages from all over the world! Expensive TURRET TUNER side control waveband selection unit (as used on ex pensive T.V.'s!). Every waveband ON/OFFvolume and separate Treble and Basse push-pull output perfection of reproduction and tone! Press-button dial illu mination! Take it anywhere-runs economically on standard batteries (obtainable everywhere) or direct through battery eliminator from $220 / 240 v$ AC mains supply. Internal ferrite rod 39ins approx. It's also fabulous CAR RADIO. Can also ABA
 be used ehrough extension amplofier, tape recorder or public address system, SIZE IAins x Otins x dins overall approx. Magnificently designed, made to give years of perfect service. (U.K. service acilities \& spares available for years \& years to come, if ever necessary!). With WRITTEN GUARANTEE manual with simple operating instructions \& circuit diagram. ONLY $£ \mathbf{2 0} \mathbf{7 5}$ (with mains/battery eliminator COMPUTERISED" WORID TUNING GUIDE (it enables you poime pinpoint \& ger transissions COMPUTERIDEN WORLD the whole world over-even a child can do it in a flash-it even lets youknow when to tune into the ultra sensitive earphone for personal listening. (Sorry- We cannot change these new radios for ultra sensitive earphone for personal listening.

FANTASTIC BANK BUSTING OFFER! ASTRONOMICAL RE DUCTION! Frustrated import order must beturned into cash! Brand New, from first-class makers-we must not mention name. Absolutely the ultimate in luxury car equipment. The sort of offer that you only dream abour, but THIS is true! Yes, for the incredible price of $\mathbf{E 1 2 . 9 7}$ carr, etc. 33p you can have this magnificent complete 8 -track Stereo Player. Beautifully made-so compact, overall size $6 \frac{1}{2}$ in $\times 6 \frac{1}{2}$ in $\times 2 \frac{t}{4}$ in approx. for easy mounting
(Runs off 12 V batrery.) Just "slap-in" your favourice recordings (obtainable everywhere) and you get hours of continuous playing and experiencerich erue-fidelity stereosound Autoplay, automatictrack-changer, plus manual programmeselector. Separate thumbwheel volume and treble/bass tone controls, sliding balance control. Outstanding $80-10,000 \mathrm{c} / \mathrm{s}$ frequency response! Circuit-10Tr OTL system! Playback system-B track. 4 channels! Speaker impedance- 4 - 8 ohms each
channel! Output power- 5 warts ($2 \cdot 5$ watrs per channel), plus all leads, connections, fitments, etc. Designed for with simple instructions \& WRITTEN GUARANTEE. BUT WAIT! For only 62.50 extra ($£ 125$ each) you get the option to buy TWO SUPERB YOU COMPLETE MAGNIFICENT 8 TRACKCAR STEREOSYSTEM! Everything for $£ 15.47$ carr. 33p. (SAVING YOU 624.50), bur please hurry We don't want to disappoint a single reader! Refund guarantee

SHOPBRTUNITIES LTD.

Shopertunities "thunder" ahead with an offer that's FANTASTIC (eve by our standards!) We've snapped up 500 magnificent machines. Latest sensation in the world of sound! First-class makers! Fabulous VHF, AM
FM Radio AND Cassette Tape Recorder \& Player combined \& it also FM Radio AND Cassette Tape Recorder \& Player combined \& it also cord.) Record and play back anything, anywhere! Even tape direct from the Radio as you fisten! RECOMMENDED RETAIL PRICE GEN UINELY £44! WE OFFER AT ALMOST HALF PRICE! Wonderful features * Press-button Keyboard Control Panel or latest MASTER SWITCH
 indicator or builtin automatic Leveller! t Separate ON/OFF and HI-LO volume controls!. \# Heavy duty built-in speaker! \star Earphone (for personal listening or "monitoring") and extension speaker sockets! \& Remote control microphone! 太 Built-in swivel telescopic extension ceria! (24in approx.)! Magnificenty made case with carry hande.
(DESIGNS VARY SLIGHTLY.) Takes standard 30,60 , 90 or 20 -minute (DESIGNS VARY SLIGHTLY.) Takes standard 30,60 , 90 or $20-m$ mute Philips Cassette Tapes obtainable everywhere, The amazing buit-in full
circuit VHF, AM/FM Radio gives you superb clarity of tone, incredible station selection. Unique rotating Station Selector Dial-get all local city and regional stations in every part of the country plus B,B.C. National, VHF. Picks up dozens of foreign stations. Fabulous in your car! You could pay \& \& $£$ morefor Car Rador Car Casserte player L. Not plete with simple instructions, remote woititen GUARANTEE. Send todoy or coll at either store

Dept. PE/19, 64 XBRIDGEROAD (facing Shepherds Bush Green) LONDON WI2 8AQ. (Thurs. I, Fri. 7). Also at $37 / 39$ HIGH HOLBORN (OPposite Chancery Lane), LONDON,W.C.i. (Thurs. 7 p.m.) BOTH

AqUMALETURN RIGTI opens a world of real stereo sound

VISCOUNT III AUDIO－f52 complete

SYSTEM I	Viscount III Ri0l amplifier $2 \times$ Duo Type II speakers Garrard SP25 Mk．III with MAG．cartridge，plinth and cover Total	$\begin{aligned} & f 22.00 \quad 90 \mathrm{pp} \mathrm{\& p} \\ & \mathrm{f} 4.00-12 \mathrm{p} \mathrm{\& p} \\ & £ 23.00-£ 1.50 \mathrm{p} \& \mathrm{p} \\ & \mathrm{f} 59.00 \end{aligned}$	SYSTEM 2	Viscount III RIOI amplifier $2 \times$ Duo Type III speakers Garrard SP25 Mk．III with MAG．cartridge．plinth and cover	$\begin{aligned} & £ 22.00+90 p p \& p \\ & £ 32.00+£ 3 p \& p \\ & £ 23.00-£ 1.50 p \& p \\ & £ 77.00 \end{aligned}$
Available complete for only $£ 52+£ 3.50 \mathrm{p} 8 \mathrm{p}$			Available complete for only $£ 69+¢ 4.00$ p\＆p		

$14 \mathrm{~W}+14 \mathrm{~W}$ per channel 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$
Total distortion at 10 watts at I kHz 0.1%
This is real value for money！We have designed 2 systems and the heart of them all is the Viscount III amplifier．A unit of great eye appeal with teak finished cabinet．FET＇s（Field effect transistors）are incorporated on the input stages，just like the top priced units．FET＇s give you more of the signal you want and almost none of the hiss you don＇t．Both units have output sockets for headphones and tape recorder．Filters and tone controls give a wide range of bass and treble adjustment．
For both systems we have chosen the famous Garrard SP25 Mk．III deck which comes complete with simulated teak plinth and dust cover．

The exclusive Duo loudspeaker systems are incomparable for quality within their price range．Large speakers in extremely substantial cabinets．There＇s a choice of the Duoll＇s for the smaller room or the big Duo Ill＇s for real bass response．

Check through the technical specification for convincing evidence of the true value and excellence of Viscount lll suites．
SPECIFICATION． 14 wates per channel into 3.4 ohms（suitable 3.15 ohms）．Total distortionat 10 W ，at $1 \mathrm{kHz}, 0 \cdot 1 \%$ ．P．U．I（for ceramic cartridges） 150 mV into 3 Meg．P．U． 2 （for magnetic cartridges）． 4 mV at 1 kHz into 47 K equalised within $\pm 1 \mathrm{~dB}$ R．I．A．A．Radio： 150 mV into 220 K ．（Sensitivities given at full power）．Tape out facilities；headphone socket，power out 250 mW per
channel．Tone controls and filter characteristics．Bass：+12 dB to -17 dB at channel．Tone controls and filter characteristics，Bass：+12 dB to -17 dB at
60 Hz ．Bass filter： 6 dB per octave cut．Treble control：treble +12 dB to -12 dB at 15 kHz ．Treble filter： 12 dB per octave．Signal to noise ratio： （all controls at max）P．U．I and radio－ 65 dB ．P．U． $2:-58 \mathrm{~dB}$ ．Crosstalk better than -35 dB on all inputs．Overload characteristics better than 26 dB on all inputs．Size：Approx． $13 \mathrm{fin} \times 9$ in $\times 3 \mathrm{zin}$ ．

SPEAKERS Duo Type II．Size：Approx． $17 \mathrm{in} \times 10 z_{i} \mathrm{in}$ 6zin．Drive unit： 13 in $\times 8$ in with parasitic tweeter．Max．power 10 watts， 8 ohms． Simulated teak cabinet．$£ 14$ pair $+£ 2$ p\＆p．
Duo Type III．Size：Approx． $23 \frac{1}{2}$ in $\times 11 \frac{1}{2}$ in $\times 9 \frac{1}{2} \mathrm{in}$ ．Drive unit $13 \frac{1}{2}$ in $\times 8 \frac{1}{4}$ in with H．F．speaker．Max．power， 20 watts at 3 ohms． Freq，range： 20 Hz to 20 kHz ．Teak veneer cabinet．$£ 32$ pair $-£ 3 \mathrm{p} \& \mathrm{p}$ ．

Radio \＆TV Components（Acton）Ltd．， 21 D High Street， Acton，London W3 6NG． 323 Edgware Road，London， W． 2.
Mail orders to Acton．Terms C．W．O．All enquiries S．A．E．

TOURIST

MARK 3
 CAR RADIO

ALL TRANSISTOR

Beautifully designed to blend with the interiors of all cars．Permeability tuning and long wave loading coils ensure excellent tracking．sensitivity and selectivity on both wave bands．RF．sensitivity at $1 M H x$ is better than of micro volts．Power output into 3 ohm speaker is 3 watts．Pre－aligned．． module and tuner together with comprekeive instructions guarante deef．SET OF PARTS Circuit diagram 13p，free with $59.30 \begin{gathered}\text { Plus P．\＆} P \text { ．} \\ 50 \mathrm{p}\end{gathered}$ parts Speaker，baffle and fixing kit Speaker postage free when
ordered with parts

DUETTO MK．II I．C．
STEREO AMPLIFIER
Sophisticated styling combined with up－to－date electronics means Hi－Fi．This is what the Duetto Mk．II offers at a realistic price．Mullard buitt stereo pre－amplifier tone control module and the highly efficient．C．monolithic oower chips ensure．reliabily．very fow distorcion the audio spectrum，ete

Inpues：

Outpues：
Controls：

Tone Controls
P．U． 150 mV iI 2.2 Meg （for cer．cartidge）．
Auxiliary 100 mV a 1 Meg．（for radio，tape，etc．）
5 watts rms per channel into $8-15 \Omega$ speakers．
Switched stereo headphone socket with power correction
Mono／stereo switch，selector switch，creble，bass，volume， balance and on／off switch．Neon indicator

Treble－ 14 dB a 15 kHz
Bass $\pm 14 \mathrm{~dB} 60 \mathrm{~Hz}$ ．
Power Bandwidth： $\pm 2 \mathrm{db} 20 \mathrm{~Hz}-25 \mathrm{kHz}$ ．
£11－50
plus P．\＆P．60p

RELIANT MK．IV
The Reliant Mk．IV provides a high standard of sound re－ production，with full mixing facilities．Its versatility makes
it suitable for：Discotheque， it suitable for：Discotheque．
＊Five Electronically Mixed inputs \quad＊Mixer employing F．E．T．（Field Effect ＊Threelndividual Mixing Controls \＆Separate bass and treble controls ransistor） common to all five inputs ＊Solid State Circuitry
＊Attractive Styling
1．Crystal Mie．or Guitar 9mV．2．Moving coil Mic．or Guitar 8mV．Inputs Tuner．Monitor．Organ，etc．）．All 250 mV sensitivity．
CONTROLS： 3 Volume controls．Bass control rang
$13 \mathrm{~dB} " 60 \mathrm{~Hz}$ ．Treble control range $\pm 12 \mathrm{~dB}$ 15 KHz Separate ON．OFF swicch．NS inco POWER OUTP Into 3 to 4 ohms speaker．
and 5 and 50 dB ：Better than -60 dB on inputs 3． 4 SUPPLY： 220 to 250 V A．C．Mains SIZE： $12 \frac{1}{2} \mathrm{in}^{2} \times \mathrm{in} \quad 3 \frac{1}{2} \mathrm{in}$ ．Mains

CONTINENTAL

4－TRACK，3－SPEED TAPE DECK
with high impedance heads R．C． 74 tape deck．Three speeds－7 7 3z and Plus 4．s．4－track erase head．Positive pressure pad system．Takes any tape spool up to and including 7 in ．The R．C． 74 is driven by a powerful 200／2SOV so－cycle a．c．motor．A heavy，accurately balanced flywheel brings wow and flutter levels down to approx． 0.3% total at 37 and $7 \frac{1}{2}$ i．p．s．Fast rewind in both directions． Controls couldn the but out tape loading
The R．C． 74 comes with an attractive moulded deck cover，which has positions for tone and volume controls．The unit is built into a rigid die－cast frame，and overall size of the whole unit is $12 \% \times 1 / \times$ in．Every single deck fully tested before dispatch．Spools nor supplied．\＆i5．Plus 75p P．\＆P

WOW! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

> Build as you learn with the exciting new TECHNATRON Outft I No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s Simplified Study Method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile'Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again. You LEARN-but it's as fascinating as a hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the spring board for a career in Radio and Electronics.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of Courses up to City and Guilds standards. New Specialist Booklet If you wish to make a career in Electronics, send for your FREE copy of "OPPORTUNITIES IN TELECOMMUNICATIONS / TV AND RADIO'. This brand new booklet-just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

Dept. BI2, ALDERMASTON COURT, READING RG7 4PF

POST THIS COUPONFOR FREEBOOK

To B.I.E.T. Dept. B12, Aldermaston Court, Reading RG7 4PF Please send books and full information - free and without obligation.

NAME
BLOCK CAPITALS PLEASE
ADDRESS.
AGE

SUBJECT OF INTEREST
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

for fast, easy reliable soldering
Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

IDEAL FOR HOME CONSTRUCTORS
 EASY-TO-USE DISPENSERS

Size 1 cartons all at 25 peach in 40/60, 60/40, or Savbit alloys in 7 gauges.

Size 5

(Savbit) 18swg,
18p (illustrated)
Size 19A
(60/40 alloy)
18swg. 18p
Size 15
(60/40 alloy)
22swg. 22p

BIB WIRE STRIPPER ANDCUTTER

Model 3A. Strips insulation from cable or flex without nicking wire. 4 different settings, $4 \& 6$ BAspanner ends, ground cuttingedges Price 32 p . Also available, de luxe Model 8. Price 58p.

From Electrical and Hardware Shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

LEAK AMPLIFIER BARGAINS

STEREO 70 Amp. (Cased). LASKY'S TS5.00 LIST PRICE $\mathbf{E 7 5} 00$
STEREO 30 plus Amp. LASKY'S $\mathbf{1 4 5 - 0 0}$
(Cased). LIST PRICE E62.50 PRICE
C\&PEI

LEAK TEAK CASES

Rosewood case for Stereo 30 or Stereo 70, please state which is required.
 £7.37 PRICE

PRICE
Teak case for Stereofetic tuner only.
LIST PRICE LASKY'S $\mathbf{E} \mathbf{2 . 5 0}$
${ }_{25 p}^{c}$
£7.37 PRICE
reo 30
Double case to hold Sereo 30 or Stereo 70 and stereofetic tuner in Teak
LIST PRICE
610.37
LASKY'S
PRICE
610.37

PRICE
LEAK
TRUSPEED
2-speed
belt drive furntable complete with plinth, cover and Shure cartridge.
LIST PRICE 669.50
LASKY'S
PRICE 147.50 $\underset{E 1.50}{\text { C\& }}$

SINCLAIR PHASE LOCK LOOP STEREO FM TUNER

Incorporates varicap diodes, printed circuit, coils. squelch
circuit I.C. Decoder etc.. supplied com: pletely built and tested and ready to be mounted into any cabinet you choose. It may be used with any High Fidelity Amplifier. Power requirements $25 / 30 \mathrm{~V} D C$.
$\begin{array}{lll}\text { LIST PRICE } & \text { LASKY'S } \mathbf{E 2 5 . 0 0} & \text { PRICE } \\ \text { PRI.95 } & \text { C\&P } \\ 25\end{array}$ £25.00 PRICE \qquad

NIVICO MCA-V7E

4-CHANNEL AMPLIFIER

USE IT AS A 4-CHANNEL AMP
USE IT AS A STEREO AMP
USE IT WITH SYNTHESISED
4-CHANNEL SOUND FROM
2-CHANNEL SOURCE
The MCA-V7E can be used as a true 4 -channel integrated amplifier from discreet 4 -channe source using four speakers or have synthesised 4 -channel sound using only two speakers. The MCA-V7E can also be used as a conventional stereo amplifier with two speakers only. Output $4 \times 12.5 \mathrm{~W}$ or $2 \times 25 \mathrm{~W}$
$\begin{array}{llll}\text { LIST PRICE } & \text { LASKY'S } & \mathbf{1 8 8 . 0 0} & \text { C\& \& } \\ \mathrm{E} \mid 15.00 & \text { PRICE } & & \end{array}$

BELTEK C5700 8 TRACK Stereocar
Starea
Accepts all standard pre-recorded 8 erack stereo cartridges. Features include automatic head cleaner. channel select and channel repeat push buttons. slider type volume and tone controls, channel
balance. Output 5 watts per channel, frequency balance. Output 5 watts per channe, orequency
response $50 \mathrm{~Hz}-10 \mathrm{kHz}$. Output imp. 4 ohms. size response $1 \frac{1}{2}(W) \times 11_{4}^{\ddagger}(H) \times 6 \frac{1}{4}(D)$ in. Operates on 12 V DC negative earth. Beautifully styled with black ivory and chrome trim.
BELTEK C5700 complete with mounting brackets and 8 track pre-recorded demonstration cartridge.
19.75 C \& P 30p

BELTEK R5310 FM TUNING ADAPTOR Matches the C5700, the ideal car stereo system.

> Add $£ 3.75$ to any BELTEK car player for pair of FANTAVOX K $\$ 701$ car speakers.
 List Price 693.65 AKAI 1720L
List Price 187.36
AKAI XI800SD
List Price § $^{162.79}$

AKAI TAPE RECORDER SCOOP !

(C \& P 75pon all Tape Decks.)

Lasky's Price $\mathbf{£ 6 1 . 5 0}$ Lasky's Price $\mathbf{£ 5 8 . 9 5}$ Lasky's Price $\mathbb{6} 111.50$ Lasky's Price $£ 106.50$
Lasky's Price $£ 15.95$ C \& P 50p
List Price $£ 157.93$
CSS-8 Speakers
List Price $\{25.00$

2 ADM $11 / 8$ mics. Suitable for use on all Akai tape recorders. List Price $\mathbf{f 1 1} 190$. Lasky's Price £7.50. C \& P15p.

MULLARD UNILEX KITS

CONTROL
Fitted with
vol. and bal-
ancecon-
wires fitted
for connec-
ting. Size 9 in
€ 2.25 .
EP 9001
PRE-AMP. Input imp. PU 2.2M, tuner IM. Sensitivity PU 320 mV , tuner 140 mV . Treble and bass control range -14 dB to 14 dB Treble at 16 KHz , bass at 60 Hz . Size 4 in $\times \sin x$ in. £2.40.
EP 9000 AMP. Output 4 W per channel into 12 ohms. Output imp. 12 15 ohms or 8 ohms with series resistors. Freq. resp. 50 Hz 16 KHz . Size $3 \frac{1}{4}$ in $\times 4 \mathrm{in} \times 1 \frac{3}{4} \mathrm{in}$. E 2.25 .
EP 9002 POWER SUPPLY. Use with control, EP9001 and $2 \times$ EP9000. For $220 / 250 \mathrm{~V}$ mains. 63.50. C \& P 15peach.

OUT NOW 1972

AUDIO TRONICS NEW REVISED EDITION
The great new 1972 edition of Lasky's famous Audio-Tronics catalogue is now available-FREE on post and inclusion on our regular mailing list.

DIGITAL
 CLOCK

EXCLUSIVELY
FROM LASKY'S
ures $57^{\circ}(\mathrm{W}) \times 21^{*}$
(H) $\times 3^{\prime \prime}$ (D) (over-
all from frons of
drum to back of switch). SPEC.: $210 / 240 \mathrm{~V}$ a.c. 50 Hz operation : switch rating $250 \mathrm{~V}, 3 \mathrm{~A}$. Complete with instructions. NOW WITH ILLUMINATED DIAL COMPLETE WITH KNOBS FEATURES: MAINS OPERATION O I2. HOUR ALARM OAUTO "SLEEP"SWITCH HOURS, MINUTES AND SECONDS TIMEADJUSTMENTESILENTOPERATION - SHOCK AND VIBRATION PROOF - BUILT IN ALARM BUZZER SPECIAL QUOTES LASKY'S 10.75 C\&P $^{25 p}$
FOR QUANTITIES PRICE

BSR TD8S

BTRACK STEREO
CARTRIDGE PLAYER
CARTRIDGE PLAYER
The TD8S is suitable for
use with most modern stereo amplifiers and delivers a
$\begin{array}{ll}\text { pre-amp output of } 125 \mathrm{~mW} \\ \text { Power } & 35 \mathrm{p} \\ \text { it }\end{array}$ response: 50 Hz -10 $\mathrm{KHz}^{2} 4$ pole dynamically balanced synchronous moror. Black and woodgrain plastic cabiner. Size: $8 \frac{1}{2}(\mathrm{~W}) \times 3 i(\mathrm{H}) \times 10 \frac{1}{2}(\mathrm{D})$
List
Price $£ 24 \cdot 20$
LASKY'S
PRICE

STEREOSOUND

SPEAKERS
Bookshelf

An attractive
speaker system with reak veneer finish. Imp. 8 ohms.
Max. Power $12 W$. Size $14 t(H) \times 9(W) \times 7$. LASKY'S PRICE (PAIR) EIS.75 C\&P25p

LEAK SPEAKERS

FANTASTIC VALUE WHARFEDALE
SCOOP!

BRONZE 8RS/DD $8 \mathrm{in}, 15 \mathrm{hms}$

SUPER IORS/DD $10 \mathrm{in}, 15 \mathrm{ohms}$
 613.50 PRICE TWO FOR $\{13.50$

Branches
 The Home of High fidelity

207 EDGWARE ROAD. LONDON, W. 2 Tel: 017233271
33 TOTTENHAM CT. RD. LONDON. WI. Tel: 01.6362605
Open oll doy. $90 . \mathrm{m} .6$. p ... Mondoy 10 Solurdoy
152/3 FLEET STREET. LONDON. E.C. T Tel: 01353 2833

42-45 TOTTENHAM CT. RD. LONDON WI Tel: 01:580 2573 Open old doy. $90 . \mathrm{m} .6 \mathrm{p}$ m. Mondoy to 5 Solvidoy
NEW CITY BRANCH NOW OPEN
109 FLEET STREET. LONDON. E.C. Tel: 01353 5812 Open alldoy Thursday eorly clasing I p.m. Solurdoy
ALL MAIL ORDERS AND CORRESPONDENCE TO: 3.15 CAVELI ST. TOWER HAMLETS. TONDON, E, Tel: 01-780 4821

FM TUNER

NELSON - JONES

Reduced prices

For components for this highly successful design which features $0.75 \mu \mathrm{~V}$ sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang cuning. $\frac{1}{2}$ V r.m.s. output tevel, suitable for phase-locked decoder, as below. Designer's own P.C.B.
SOLID STATE TUNING INDICATOR
This is the latest addition to our range of tuner accessory options (W.W. April' 72). Tuning is indicated by the balance of two light emitting diodes. The kit includes, LED's, high gain transistors, P.C.B., resistors, mounting kit and instruction booklet. Order TOAI.
Price $\mathbf{f 1} / 72$ plus P. \& P. 10p, with two LED's (or $\mathbf{E 1} 1.98$ with extra LED for "stereo" lamp-see decoder).
DIAL CHASSIS KIT
Now available-includes all dial drive components, dial plate, decoder mounting bracket, tuning scales, decoder-tuner tagstrips, etc., 4-way $2 / 3$ pole rotary switch and instruction booklet.

Price $\mathbf{2 2} 13$ plus P. \& P. 17p (Note: may be purchased without dial drive components.)
SAMPLE PRICES
Tuner parts with screening box
Tuner parts with screening box plus dial chassis kit
Less than $\mathbb{E} 12$
Less than $\mathbf{E} 14$
uner parts with screening box plus dial chassis kit and solid state tuning indicator
Less than $\mathbf{f} 16$
PHASE-LOCKED STEREO DECODER KIT

PORTUS AND HAYWOOD

Now with free LED 'stereo on " light complementing this superb decoder (W.W. Sept. '70) feacuring $40 d B$ separation up to 10 kHz . NO COILS. Negligible spurious tones (birdies). Simple setting up. Suitable for wide variety of tuners including the NELSON-JONES TUNER as above.

Reduced from $\mathbf{2 8 . 9 7}$ to $\mathbf{6 7 . 6 8}$ plus P. \& P. 16p
I.C. STABILISED POWER SUPPLY KIT

Featuring very low output ripple, short circuit and overload protection. Suitable for Nelson-Jones tuner plus decoder plus solidstate indicators Output current 100 mA at 12 V with 6 V rail. Price $\mathbf{6 3} \mathbf{5 5}$ plus P. \& P. 17p.
LIGHT EMITTING DIODES (RED)
Hewlett Packard panel or P.C.B. mounting with free mounting clip-clear or black. Order LEDI
Monsanto miniature P.C.B. mounting with radial leads. Order LED2.
Now only 39p each with connection data. Please add postage.

RESISTORS

IW 5% low noise carbon film. 10 ohms $4-7 \mathrm{~m}$ E12 $1-9 \mathrm{Ip} ., 10-99,0.9 \mathrm{p} \mathrm{each} .\mathrm{Please} \mathrm{add} \mathrm{postage}$.

INTEGREX LIMITED

P.O. BOX 45 DERBY DEI ITW Phone 0283893580

This unique all purpose vice is just like a 'third hand' countless uses for the electronics enthusiast -assembly, soldering, gluing, wiring, drilling, etc. Firm base, positive grip for all shapes of work, with independently adjustable twin jaws
Truly a precision made bargain.
Also single jaw model $£ 3.37$ (22p P. \& P.)
FREEBORN LTD. (Dept. PE8)
Beechfield House - West Bar Banbury - Oxon

is ABC'S OF ELECTRONIC

Is POWER

By Rufus P. Turner El-50
THE MANUAL OF CAR
Is ELECTRONICS
I By Rudolph F. Graf and
浣 George J. Whalen $\mathbf{5 3 . 5 0}$
99 WAYS TO IMPROVE YOUR HI-FI
By Len Buckwalter
$11 \cdot 50$
PRACTICAL DESIGN WITH TRANSISTORS
(Revised Edn.)
By M. Horowitz
$£ 2.40$
The Mazda Book of PAL RECEIVER SERVICING By D. J. Seal £3.50 (Publisined: Foulsham Tcelinical) INTRODUCTION TO VIDEO RECORDING By W. Oliver $\ldots 1.50$ (Published: Foulsham Teslinical)

FOULSHAM-SAMS TECHNICAL BOOKS (W.FOULSHAM \& CO.LTD.)

GEM PANEL MMETERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC. LOW COST OUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

NEW 'SEW'! DESIGNS! CLEAR PLASTIC METERS BAKELITEPANEL METERS				
	$\begin{aligned} & \text { TYPE SW. } 100 \\ & 100 \times 80 \mathrm{~mm} \end{aligned}$	TYPE S-80 80 mm square fronts	小i,	
		$\begin{aligned} & 50 \mu \mathrm{~A}, \ldots . . \\ & 50.0-\mathrm{z0} \mu \mathrm{~A} . . \\ & 88.20 \end{aligned}$	昭	
		$100 \mu \mathrm{~A}$ ….. 83.10		
	50 V d.c. \ldots. 88.10	1000-0.100 A A 88.00		
	300 V d.c. ..	300MA		
	1A d.c. \cdot... 88.10		1A	
50,0-50 $4 . .$.	\$A d.c. 88.10	${ }^{20 \mathrm{~V}}$ d.c. . . ${ }^{\text {20 }}$	jA d.c. \cdot	88.60
$\begin{array}{ll}100 \mu \mathrm{~A}\end{array} \ldots . . .88 .45$		50y d.c. ... 22.60	300У 8.c.	

"SEW" CLEAR PLASTIC METERS

Type Mr.85P. 41 in , 4 itin fronts.

-		50 V d.c.
		150 V d.c.
$50 \mu \mathrm{~A}$	2s.60	300 V d.c.
$50.0 .50 \mu \mathrm{~A}$	28.10	15 V a.c.
$100 \mu \mathrm{~A}$	${ }^{28} 10$	300 y a.c.
100-0-100 $\mu \mathrm{A}$	58.00	8 Meter
$200 \mu \mathrm{~A}$	28-00	1 mA
$500 \mu \mathrm{~A}$	22.90	VU Meter
500-0-ө00 $\mu \mathrm{A}$	28.80	1A a.c.*
1 mA	22.80	5A a.c.*
1-0-1mA	22.80	10A a.c.*
5 mA	22.80	20 A a,c.*
10 mA	28.80	30A a.c.*

Type Mr.52P. 2tin mquare fron			
$\overline{50 \mu} \mathrm{~A}$	28.10	20 y d.c.	
30-0-50 A	22.80		28
100μ	28.60		
100-0-100رа	28.50		
$500 \mu \mathrm{~A}$	28.30	300 V	
1 mA	22.00	S Meter	
5 m	22.00	1 m	
10 mA	28.00	VU Met	23.20
30 mA	22.00	1A a.c.*	
100 naA		ja a.c	28.0
500 m .4		10A	2-00
	${ }_{22.00}^{28.00}$	20A a.c.*	28.0
d.c.	82.00	30.A a.c.	

Type Ma.65P, $34 \mathrm{in} \times 81 \mathrm{in}$ Irontr.

 ${ }_{100-0-100 \mu}^{100 \mu} \ldots$ $200 \mu \mathrm{~A}$

$500 \mu \mathrm{~A}$ $500-0-5$ 1 mA ${ }^{5} 10 \mathrm{~mA}$ 10 mA 100 miA 1A. | 1 A |
| :--- |
| 5 A |
| 10 A | $10 \mathrm{~A} \ldots$

$15 \mathrm{~A} . .$.
$20 \mathrm{~A} . .$.
$30 \mathrm{~A} .$. $30 \mathrm{~A} . . . \mathrm{C}$
$50 \mathrm{~A} . .$. 5 V d.c.
10 V d.c.

TIE LAB TESTER 100,000 O.P.V 6fin scale buzzer Semaitivity: 100,000 OPVd.c. $5 / \mathrm{Yolta}$ a.c $10,50,250,1.000 \mathrm{~V}$ A.c. Volte: $3,10.50,250,500,1,000 \mathrm{~V}$.c. current: $10,100 \mu \mathrm{~A}, 10,100,500 \mathrm{~mA}$ 0 meg. 100 meg. Decibels: - 100 K + 494B. Plastic cese with carrying handle

NOUND SCALE TYPE

Completely portable, mimple to use pocke ized tenter- Rangen $0 / 3 / 30 / 300 \mathrm{~V}$ a.c. and d.c. at 2,000 o.p.s. Resist.

TME IODEL 117 F.E.T. ELECTRONIC VOLTMETER
 Battery ry Larginput. 46 ranges. size 4 in mirror scale.

 P-P. D.c. current 0.12 12MA. Resivtance 11 p to $\because, 000 \mathrm{M}$ ohm Decibels - 20 to +instructions. 217.50 . P. \& P. 40p.

TE-20D RF SIGNAL GENERATOR
 Aceurate wide range sig Hal kenerator co
$1: 0 \mathrm{~K}$ c/a- $\mathbf{2} 00 \mathrm{Mc} / \mathrm{s}$ 120Kc/y- $500 \mathrm{Mc} / \mathrm{y}$ ols
6 bands. Directly calibrated Variable R.F. attenuator, andio output. Xtal socket for calibration. $2=0 / 2401$ Brand new with instruc $\begin{array}{ll}\text { tions. } 815 . & \text { Carr. } 34 \mathrm{p} \text {. } \\ \text { Size } & 140 \times \geqslant 17 \times 170\end{array}$ mm.

TE-20RF SIGNAL GENERATOR Accurate wide range signal generator
 Directly brated varlable
R.F. attenuator. Operation 200] gsov a.c.
Brand new with P. \& P. 37!p.
240° WIDE ANGLE
1 mA METERS $\begin{array}{ll}\text { MW1-6 } & 60 \mathrm{~mm} \\ \text { square } \\ \text { s.ont. }\end{array}$ square $34-7$. P. \& P.

GUESY purposel

HIOKI MODEL 720 20,000 O.P.7.
verhead protection. $10.100 / 500 / 1000 \mathrm{~V}$ D.C $50 \mu \mathrm{~A} / 250 \mathrm{~mA} .20 \mathrm{~K} / 2 \mathrm{meg}$

MODEL PLs8s. 20k $\cap /$
Volt d.c. 8 k n/Volt a.c. Mirror acale. 0.6
$3 / 12 / 30 / 120 / 600 \mathrm{~V}$ d.c $3 / 30 / 120 / 600 \mathrm{~V}$ a.c.
$50 / 600 \mu \mathrm{~A} / 60 / 600 \mathrm{~mA}$ $10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10 \mathrm{meg}$ D. -20 to +46 dB.
28.97]. P. \& P. 12 p .

$\begin{array}{llr}\text { MODEL } & \text { s025. } & 57 \\ \text { ranges, } & \text { giant } & \text { jhtin }\end{array}$

sithity: $50 \mathrm{~K} / \mathrm{M}$ (int d.c.
$5 \mathrm{~K} / \mathrm{Volt}$ ach
fults: 0 125, $0 \cdot 2 \mathrm{z}, 1 \cdot 25,5,10,2 j, 50,125$ 50, $000,1,000 \mathrm{~V}$. A.e. Volts: $1 \cdot \bar{J}, 3,5,10$, , $50,125,250,500.1,000,1 . c$. current A. Resistance: $2 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{meg}$ 10 meg. Decibels: -20 to +8 and . 42.50 . P. \& P. 171 p .

HIOKI-MODEL 700X

 00,000 O.P.V. Overloa$3 / 6 / 1 \cdot 2 / 1 \cdot 5 / 3 / 6 / 1 \cdot / 30 / 60 /$ $120 / 300 / 600 / 1200 \mathrm{VDC}$ $1 \cdot 5 / 3 / 6 / 19 / 30 / 60 / 150 / 300 / 600 /$ $12 / 30 \mu \mathrm{~A} / 3 / 6 / 30 / 60 / 150$ 300 m
/12 AMP DC
2K/200K/2 Megi20 meg ohm
 18.50 P. \& P. 20

RUSBIAM 28 RAMGE MULTMETER Model 143710,000 $\underset{\text { versatile }}{\substack{\text { o.p.v } \\ \text { instrument }}}$ manulactured in U.S.S.R. highest standards. Kanges: $25 / 10 / 50 /$ $2.0 / 10 / 50 / 250 / 500$ / 1000 Y a.c. D.c. current $100 \mathrm{~mA} / \mathrm{l} / 10$ $100 \mathrm{H} \cdot \mathrm{H} / 1 \mathrm{~A}$. Resist ance 300 whus / 3/30: $300 \mathrm{~h} \Omega / 3 \mathrm{M}$ \& Complete with batteries, test leads, in structions and sturily stcel carrying case OUR PRICE E5-97. \qquad
TO-3 PORTABLE OSCILLOSCOPE

3nn lube. Y amp. Sensiti

 X amp. sensitivity 0.9 y - $\quad 00 \mathrm{KHz}$. Jnput imp. "
meg $\Omega=0 \mathrm{pr}$. Time base.) ranges $100 \mathrm{cps}-300 \mathrm{KHz}$. erinal. Illminated scale $140 \times 215 \times 330$ mb. Weight 1.74b"y0/240Va.c. Suppliet Carr. 70 p.

HONEYWELL DIGITAL
VOLTMETER VT. 100
 plug-in cards. \qquad digit. Resolution: 1mi. Nu. of digite: 3 plus fourth overrange digit. Overrange: 100° (11 p to 1.999). Input impedance: second. Adjustment: Automatic zeroing full scale adjustment against an internal reference voltage. Overload: to 100 V d.c. Input: Fully floating (3 poles). Input power: $110-230 \mathrm{~V}$ a.c. $50 / 60$ cycles. Overall size: AVAILABLE BRAND NEW AND FULLY GUARANTEED AT APPROX.
HALF PRICE. $49^{\circ} 97_{\frac{1}{2}}$ Carr. 50p
G. W. SMITH
\& CO (RADIO) LTD.
Also see next two pages

		2N345	208	2N5458	859	BC114	15 p	Brw90	22 p	KT219	80p
		2N3416	87p	$2 \mathrm{~N} \mathbf{4} 59$		BC115		BFW91	20 p	NKT243	27p
203	20 D	2N3417	37D	28102	250	BC116	150	HFX12	22p	NKT224	D
26302	20p	2N3439	130p	28103	250	BC118	15 D	BFX13	22p	NKT2 $2 \overline{\text { os }}$	22p
20303	20 p	2 N 3440	97 D	28104	25 p	HC119	80 p	BFX29	250	NKT229	300
$2 \mathrm{C306}$	42 D	2N3564	17p	28301	50 p	BC121	20D	BFX 30	250	NKT237	85p
26308	30 p	$2 \mathrm{~N} 3 \mathrm{ij6} \mathrm{\%}$	15 D	28302	50 p	BC122	20p	${ }_{\text {BFX }}{ }^{37}$	800	NKT238	850
$2 \mathrm{C309}$	30 p	2N3566	22p	28303	00p	BC125	159	BFX44	37 p	NKT240	87p
2e9371	15 p	2N 3．568	25 p	2，304	75p	BC126	20p	BFX68	87 D	NKT241	270
2 （4374	20p	2N3569	25p	2 Sa 51	32 p	BC194	12p	Brx84	25 D	NKT24	20p
26381	22 D	2 N 3570	125p	28502	35 p	BC135	12 p	BFX85	80 y	NKT243	88D
2 N 388 A	49 p	2N3572	97p	28503	27p	BC136	150	BFX85	25 p	NKT244	170
2 N 404	20 p	2 N 3605	27p	3N83	40 p	${ }^{\text {BC137 }}$	150	BrX^{87}	250	NKT24	800
2N696	15p	2 N 3606	27p	3 N 128	70 p	BC138	20 D	BFX88	201	NKT261	20 D
2N697	15 p	${ }^{2} \times 3607$	22p	3N140	77 p	ICC140	85 p	BFX89	82p	－ $\mathrm{KT} 26{ }^{\text {d }}$	30 D
2N695	${ }^{25 p}$	2ヘ3634	18p	3 N 141	72p	BC141	${ }^{35} \mathrm{y}$	BFX93A	70 p	NKTせ64	20 p
2N699	30 p	${ }_{2} \mathrm{~N}^{3634}{ }^{\text {a }}$ A	20p	3N142	55 p	BC147	10 p	BFY11	42p	NKT271	200
2N\％06	10 p	2 N 3641	18p	3N 143	67p	BC148	10 p	BFY＇18	25 p	NKT26：	20 D
2N706．	12p	2 N 3642	18 p	3N152	87 p	$\mathrm{BCl}^{\text {B9 }}$	12p	Bry 19	25 p	NKT274	20p
2N708	15p	2 N 3643	${ }^{20 p}$	40050	55 p	BC152	178	BFY41	48p	NKT275	20p
2 N 209	${ }^{625}$		25p	40250	${ }^{50 p}$	${ }^{\text {BCP153 }}$	20 p	BFY^{24}	45 p	NKT2z＊	25p
$2 \mathrm{~N} / 1 \mathrm{~N}$	${ }^{25}$	2 N 3645	25 p	40251	${ }^{32 \mathrm{p}}$	BC154	20 p	BFY 29	409	NKT281	27 D
2 N 718 A	${ }^{30 \mathrm{p}}$	2N3691	15 p	40309	88 p	BC_{157}	15p	BFY 30	40 p	NKT401	87 p
$\begin{aligned} & 2 \mathrm{~N} 746 \\ & 2 \mathrm{~N} 22 \mathrm{~F} \end{aligned}$	30 p 30 p	2N3692	${ }^{18 p}$	40310	45p	BC158	11 p	BFY41	509	NKT402	80 p
2N914	17 p	2N3694	18 p	40312	869 470	BC160	${ }^{12 p}$	BFY ${ }^{\text {BF }}$－	$\begin{aligned} & 62 \mathrm{p} \\ & \mathrm{gOn} \end{aligned}$	NKT403	75p
2N916	17p．	2N3702	10 p	40314	37p	BC167	11 p	BFY51	20 p		${ }^{555}$
2N914	30p	2N3703	10 p	40310	37p	BC168B	10 p	BFY02	20 p	NKT405	75p
$2 \mathrm{Na2} \mathrm{\%}^{3}$	$22 p$	2N3704	$11 p$	40316	47p	BC168C	11p	BFY 53	15p	NKT451	${ }^{62 \mathrm{p}}$
2N930	20 p	2N3705	10p	40317	87 g	BC169B	11p	BFY56a	57p	NKT4す！	62p
2N987	40 p	2N3706	8 p	40319	359	BC1690	${ }^{12} \mathrm{p}$	BFY76	42p	NKT453	47p
$\begin{aligned} & 2 N 1090 \\ & \text { 2N } 1091 \end{aligned}$	${ }_{22 \mathrm{p}}^{22}$		11 p	40320	47 38	${ }^{\text {BC170 }}$	$18 p$ 150	Bry7i	${ }^{575}$	NKTil3	20p
2 N 131	$25 p$	2N3709	90	40324	470	BC1\％	16 p	B8X 19		NKTi34	${ }_{270}$
2 N 1132	${ }^{25 p}$	2 N 3710	9 p	40326	875	BC175	22 p	B8X20	150	NKT736	35 p
2 N 1302	17p	－$\times 3711$	12 p	40329	80 p	${ }^{\mathrm{BCl}}{ }^{\text {BCit }}$	20 p	B8X21	20p	NKT73	25p
2N1303	${ }_{22 p}^{17}$	－2N3713	${ }^{1878}$	40344	275 570	${ }^{\mathrm{BC178}} \mathrm{BC174}$	${ }^{20 p}$	B8X26	45 p	NKT781	${ }^{30 \mathrm{p}}$
2 N 1305	22 p	2N 375	1235	40348	520	BC18：	$\begin{aligned} & 80 p \\ & 100 \end{aligned}$	BSX 21	32 p	OC16	50p 370
2N 1306	25 p	2N3716	180	40360	40 p	BC18：L	10 D	B8X60	82 p	$\mathrm{OC}^{2} 2$	㖪
2 N 1307	${ }^{25 p}$	2N3773	2400	40361	40 D	BC183	9 p	BSX 61	62p	OC2	50 p
${ }_{2} \mathrm{~N} 1308$	250	2N3791	208 p	4036.2	50 p	BC183L	9 p	B8X 76	15 p	Oc23	60 p
2 N 1613	20 p	2 N 3823	50 p	40407	50 p 40	${ }^{\text {RC1 }} 186$	${ }_{250}^{11 p}$	${ }^{\text {BSX }}$	25p	OC25	0
2 N 1631	350	$2 \mathrm{~N} 38 \overline{4}$	270	40408	52 D	BC187	27 p	B8Y25	15	－	00
2N1632	80 p	2 N 38.54 A	27 p	40409	55p	BC212L	12 y	B8Y26	170	04＂9	，
${ }^{2} \mathrm{~N} 1637$	30 p	2N3850	27 D	40410	62 p	BC213L	12p	BAY2T	15 p	Oc3．	50 p
2N1638	87p	2N385ja	80p	40412	50 p	$\mathrm{BCO}^{\text {c }} 14 \mathrm{~L}$	15 p	BSY ${ }^{28}$	17 p	OC36	80 D
$\begin{aligned} & \text { 2N } 1639 \\ & 2 \text { N1701 } \end{aligned}$	\％${ }^{278}$	2N38̄5	${ }^{30 \mathrm{p}}$	40467 A	57 p 35 p	BCY 10	278	B8Y ${ }^{\text {B }} 9$	175	O4． 4	228
2 2N1711	240，	${ }_{2}{ }^{2} 3888088$	250	40．228	${ }^{35 \mathrm{p}}$	${ }_{\text {1 }}{ }^{\text {BCY31 }}$	27 p 80 p	BSY 36	259	OC42	250
2 N 1889	88.	2 N 3858 A	80p	40600	57 p	BCY32	50 p	HSY37	250	OC4s	$12 p$
2 N 1893	87	2 N 3809	27 p	40603	${ }^{50 \mathrm{p}}$	1 CH 33	25 p	biy 38	${ }^{20}$	OC4i	159
${ }_{2}^{2 N} 2147$	78.	2 N 3859 A	${ }^{32 \mathrm{p}}$	${ }^{\text {AC }} 107$	30 p	BCY34	30 p	B8Y39	22 D	OC： 0	150
${ }^{2} \mathbf{2 N} 2160$	${ }^{570}$	2N3860	30p	Ac126	20 p	Bey38	40p	B8Y43	50 p	OCT1	129
2 N 2193 A	42p	2N3866	150 p	ACl2\％	24 p	BCY39	${ }^{80} \mathrm{p}$	B8Y 1	32p		2
2N2194	87D	－ 3837 \％	10p	AC	18p	13	150	B8942	32 D	OC73	300
2N2194A	30p	2N 3900	37p	AC152	22 p	BCY42	15 p	BSY64	40 p	OC75	22p
2 N 2217	25p	2 N 3900 A	40p	ACLis	22 p	BCY43	15p	BSY56	90 p	OC76	22p
2 N 2218	${ }^{20} \mathrm{p}$	2N 3901	97p	AC176	20 p	BCY54	32 p	B8Y79	45 p	OC77	30 D
2N2219	${ }^{20 p}$	2 N 3903	20 p	ACl^{87}	25 p	BCY58	22p	B8Y90	57p	OC78	20 p
	25p	2 N 3904	25p	AC188	255	BC＇Y59	22p	B8Y95．	12p	OC81	20p
2 N 2221 2 N 2222	${ }^{25 p}$	$2 \mathrm{~N} 390{ }^{\circ}$	30p	ACY1ī	27p	BC＇Y60	97 p	（424	15p	OC811	
2N 2 N 2292	20p	2×3906	25p	ACY18	24p	BCY\％	15p	C450	15p	OC82	25p
2 N 2297	${ }_{30 \mathrm{D}}$	$2 \mathrm{~N} 40{ }^{\text {a }}$	12p	ACY19	${ }^{240}$	3CY71	20p	GET102	30 D	OCx\％1	5p
2 N 2368	${ }_{15 \mathrm{p}}$	$2 \mathrm{~N} 40{ }^{\text {a }}$ 9 406	10p	ACY\％	${ }_{20 p}^{20 p}$	BCry	${ }^{150}$	GET1	20 p	$0 \mathrm{C83}$	255
2N2369	${ }^{15}$	2N4061	12p	ACY22	10p	ВСу79	30 p	GET118	20 p	${ }_{0}^{\text {OC84 }}$	p
2N2369A	15 p	2N 4062	12p	ACY28	17p	BCZ10	27p	CET120	25p	OC140	32p
2 N 2410	42p	2N 4244	47p	ACY39	47 D	BCZ11	40 p	GET873	12p	OC170	25 p
2N2483	${ }^{27} \mathrm{p}$	2N 4248	15p	ACY40	20 p	BD112	50p	GETA80	30 p	OC171	30 p
2N2484	${ }^{32}$ 2，	2 N 4249	15p	ACY41	150	BD116	112 p	GETS8－	${ }^{20} \mathrm{p}$	OC200	40p
2N2539	22p	2N4250	18D	ACY44	25p	BD121	65p	GET889	22 P	OC201	80 p
－2N2540	22p	2N 4254	42p	AD140	478	BDI23	80 p	GET890	22p	$\mathrm{OCH02}$	75p
－ 2 N 2613	${ }^{350}$	2N42うう	42 D	AD149	47p	BD124	60p	CET896	$22 p$	Ocen	40p
2N2711	250	86	17 p	AD16：	355	BDY10	125p	MAT100	25 p	$\mathrm{OC}^{\text {cos }}$	755
2 N 2712	${ }^{250}$	4287	178	AF＇109	45	BDY20	1059	MAT101	25p	－${ }^{\text {Oczat }}$	755
2 N 2713	870	2 N 4288	15 p	AF114	255	BDY61	1250	Matio	25 p	OCP\％1	42p
2 N 2714	80 p	2N 4289	178	AF＇115	255	BDY6：	100p	MAT121	25p	ORP12	50p
2N2904	${ }^{200}$	2N 4290	12p	AF116	255	BF115	250	MJ400	107 p	ORP60	40p
${ }_{2}{ }^{2} \mathrm{~N} 29004 \mathrm{~A}$	250 250	2 N 4291	15p	AF117	20 p	BF117	47 p	MJ420	80 p	ORP61	42p
${ }_{2 N} 2905 \mathrm{~A}$	${ }_{200}^{258}$	2N4292	180	AF118	60 p	BF152	280	MJ 42 1	80 p	P346A	22p
2 N 2906	808	2N4294	178	${ }^{\text {AFP12 }}$ A	20p		${ }_{160}$	MJ430	${ }^{102} 98$	ST140 ST141	${ }^{15 p}$
${ }_{2} \mathrm{~N} 2906 \mathrm{~A}$ A	${ }^{25}$	2N 4964	15p	AF125	190	BF159	865	M J 480	97 p	T1834	62
2 N 2907	28p	2N4965	18p	AF12f	19p	BF163	350	MJ481	125p	T1S43	40p
2 N 2923	150	2 N 5027	520	AF127	169	BF167	18 p	M J490	100 p	T1844	10 p
${ }^{2} \mathrm{~N} 29294$	150	2 N 5028	57p	AFI39	28p	BF170	389	MJ491	137 p	T1845	27 p
${ }_{2} \mathrm{~N}^{2} 9296 \mathrm{Ca}$	100	－ 5	${ }_{48}$	AFlis	429	${ }_{\text {BFP }}{ }_{\text {BFI }}$	${ }_{80 \mathrm{p}}^{108}$	MJE340	500	11846	1 p
29250	10 p	2Nうファ2	12 l	AF180	50 p	${ }_{\text {BF }}{ }^{\text {B }}$	${ }_{250}$	MJE371	80p	T1847	118 $12 p$
2 N 2926 Y	10 D	2xulit	52p	AF181	40p	BF17：	30 p	MJE520	80p	TLS49	12p
2 N 3011	20 p	2N5175	52 p	AF186	39 p	BF180	85	MJE $0^{\text {a }} 1$	70p	T1850	12 p
2 N 3014	82p	2Nō176	45p	AF239	30 p	BF181	32 p	MPF102	42p	TISさ1	10 p
2N3053	18 p	2N－23：A	30 D	AF279	47 D	BF182	30 p	MPF103	355	TIS52	11 p
2N3054	48 D	2N5240	45p	A F280	47p	BF184	20 p	M PFl04	370	T1953	22p
2N3055	${ }^{80} 9$	$2 \mathrm{~N} j 246$	42p	AF211	32p	BF185	20p	MPF＇105	878	X ClH^{2}	12p
2N3133	80 D	2N 3249	67p	Asye6	25 p	BF194	15p	MP93638	828	XC141	35 p
2N3134	${ }^{30 p}$	2N5263	825p	ASY27	300	BF19J	15 p	NKT124	48p	ZTX107	15 p
2N3135	${ }_{250}$	2N－30J	37 p	Asy\％	24p	BF196	15p	NKT125	27p	ZTX104	12p
2N3390	25p	2NJ306	40p	ASY29	27 D	BF197	15 p	NKT126	87	ZTX 109 ZTX 300	$15 p$
2N3391	20p	2 N 5308	87	ASY51	32 p	BF200	35p	NKT13ड	27p	ZTX 301	15p
2 N 3391 A	90p	2Nธ309	62p	ASYü	25 p	BF224	14 p	NKT137	32p	2 TX 302	20D
3392	17p	2N5310	42 p	ASY67	459	B F22 ${ }^{\text {¢ }}$	19 p	NKT210	${ }^{80 \mathrm{p}}$	ZTX 303	80p
2N3393	150	2N5354	27 P	A8Y 86	82p	B F237	22p	NKT＇U1	30p	2TX304	259
2N3394	150	2N5355	270	A8Z：1	51p	BF238	22p	Nкт212	${ }^{80} \mathrm{p}$	zTX500	$15 p$
2N3402	220	2N5356	32 p	aUYi0	150 D	BF244	28p	NKT213	30 p	ZTX501	150
2N3403	22p	N 5365	470	BC10：	109	BFW61	47p	N K＇T2 14	${ }^{20 p}$	ZTX 502	20p
2N3404	32 p	2N5366	88p	BC108	109	BFW87	25p	NKT215	2 2	ZTX 503	170
2N3405	450	2N5367	578	BC109	109	BFW88	28p	NKT216	36p	ZTX 504	400

 	以

teleton f. 8000 an/tia stereo TUEER AMPLIFIER

Probably the most popular budget Tuner/ Amp. and now offered at a ridiculoua low price so wattr r.m.A. per channe. Tape
Cer phono inpute. AFC/Built-in MPX OUR PRICE 228-25. Carr. 50p.

SUGGESTED SYSTEIS

F.2000, Garrard 2025T/C Changer fitted stereo cartridge, with plinth an | and pair of |
| :--- |
| OUR PRICE $252.95 . ~ C a r r . ~$ | .

¢ TRAN8I8TORI8ED F用 TUNER $\$$
 GIGTRANAISTOR TUNEL, ${ }^{\text {STALE }}$
 bouble tumed discriminator. Ample
output to feed nost output to feed nost
ampliffers. Operates e $88-108 \mathrm{MHz}$. Ready on 9 V battery. Coverage 8 -iontic value for

SINCLAIR 1C-12

 put selectur, stparate balance rolume, R.M.s. Inputs Mag, Tape, Xtal, Tuner Tape Out. 214.75. Carr. 37p.

BH.COI HEADSET

AND BOOM
MICROPHONE
Moving cuil. Ideal fur language teaching. communications. Headphone imp. 16 ohms. Microphone
 P. \& P. 15 p .

SKYWOOD C×203

Ranges $+2 \%$ Tl'RNS RATIO $1: 1 / 1000$
$1: 11100$. 6 Ranges $+10 \%$. Briclge voltage a $1,000 \mathrm{cps}$. Operated from 9 volts. I $00 \mu \mathrm{~A}$ Meter indication. Attractive ${ }^{2}$ tone me
case. Size $7 \times 5 \times 2$ in. $\mathbf{\$ 8 0}$. \mathbf{P}. \& \mathbf{P}. 25 p .

- - - - -

E.H.T. TESTER 0-3OKV

Complet ely
Belf-containell with built-in voltmeter. Hasy to read, very accurate, robust construction An essential for colour television servicing, etc. Size 36

HELICAL POTENTIOMETERS

SPECIAL OFFER! SINCLAIR PROJECT STEREO FM TUNER

The frst tuner in the world to une the phase lock loop principle-as used for receiving signale from space craft because of ite vatily improved signal to noise ratio. providea fantastic resulta even in difficult areas. Tuning range 87 , j to 108 MHz . Automatic range $t=00 \mathrm{KHz}$. Signal to noise ratio: range $\quad \pm$. Output roltage $2 \times 100 \mathrm{mV}$. Operating voltage $25-30$ Y I I.C. Size: $93 \quad 40 \quad 207 \mathrm{mn}$. REC. LIST PRICE 225 .
OUR PRICE $\leq 16.95 \mathrm{P}$. P.
ONLY Unrepeatable offer bay now and azeve over 88.

RP214 REGULATED POWER EUPPLI Solld state. Yariable output $0-24 \mathrm{~V}$ DC up to

PS.1000B REGULATED POWER sUPPLY
Bolid state. Outpu

or 12 volt DC amps. Meter to up to 3 current. Input $200 / 240 \mathrm{~V}$
AC
. Size 4 in $\times 32 \mathrm{Ln} \times$

UNR-30 RECEIVER
4 Bannly covering 550 KHz 30 MHz . B. F. O. Buit in Hpeaker $920 / 240 \mathrm{~V}$ a.c. Brand new

(ieneral coverage $150400 \mathrm{KHz}, 550 \mathrm{KHz}$ 30 MFz . FET front end. 2 mech. filteri, product detector, variable B.F.O., noise 15 in . 98 in Meter, Bandopread. $881 \mathrm{~b} .220 / 240 \mathrm{~V}$ a.c. or 1 IV d.c. Brand new with instruction
250. C'arr. 50p.

AUTO TRANSFORMERS

POWER RHEOSTATS

High quatity ceranice construction. Windings embedded in vitreous edamel. Heavy duty brush wiper. Continuous rating. Wide range

 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or 2,500 ohnis, $21 \cdot 65$. P. \& P. Tip.

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS Excellent quality . Low price . Immediate delivery							

Our bth edition gives full details of COMPrehensivers, TEST EQUIPMENT and COMMUNICATIONS EQUIPMENT. FREE DISCOUNT COUPONE VALUE 50 p . 272 pages, fully illuatrated and detailing thoutanda, of itemis at bargain prices.

SEND NOWSTILL ONLY

37 $\frac{1}{2} \mathrm{p}$

P.\& P. 10p

IHE ULTIMATE IN COMmunlcations Recelvers minn \pm TIME ZONE DIAL

Brings Instant world. WIDE RECEPTION at the press of a bation. Sensational scoop purchase of this fut-releavel momel enables us to offer at touly mhearil-of frice! (Similar models can coat 2120 or more!) The 8 WAVEBANDS enable you to cover the worlil at the mens of a button. You might even bick ip a worlh seump unt your world-wide receiver pick up Incal Radjustations (including new stations yet to be introluced). Prop Pirates. *ircraft (ematrol to pilet pilat to control). *Shipping. Taxis. *RAC. *A. *Fire and Ambulances Conlinental and 100 m more too mumerons tu livt, from Austatia, Africa, America, India,
 Enmope. Hon'll get hour after hour of enjoyable intenfig unt this suluerb receirer 24 hours a dayhe cxcitiniz cruss-talk bet ween contiol towers and irline pilotw fisten to the pogress of an ambuance merp-sea travler aptails thif-te-ship and shis-to-shore contersations. PLDS many more oxciting and absorbing Pablic Service Band tranmmissions we are not allowed to mention. Thia set has been manulactured by one ol the most advanced companies in radio and electronic communioa(ions and carties ineir FOLL WRITTEN GUARANTEE. Ittractively finighed in Leatherette and rtainleq4 atcel to and quality and dixtinctimitr any lising-room. ComHetely portable wing atandard batteries (obtainable anywhere)-or can be plugged hrectly intomains. $14 \mathrm{Transistorg}, \theta$ diodes, 1 thermistor, interaml ferrite rod antenna and external Telescopic Antenna. Tone, volume and tuaing controls. Very lateai keyboard puah-button waveband selecter. Dial light (enabling use in darincess). Special WORLD WIDE DIAL and WORLD MAP enables you to tell the correct time in any country of the wodn (evsential for wolld listening). Ili-fltelity earphome antomatically cuts out madr sheaker whell in use. Freqs.: Long Wave $150-350 \mathrm{Kcs}$. Medinm $53 \mathrm{~J}-160 \mathrm{Kkcs}$. Marine .b.f.Mcs. Short Wave $4 \cdot 12 \mathrm{Mcs}$. Short Wave $12-24 \mathrm{Mes}$. FM/VHF 88-108Mcs, AIRCRAFT 108-13FHCs. PUBLIC SERVICE BANDS $135-174 \mathrm{Mcs}$.
Note: Ministry of Posta and Telecommmatation state that a licence not generally avalable to the public is required for the reception of A irctaft, Fire-brigade, Whipping, etc THERE'S NO LICENCE NEEDED TO BUY
Send 3p for comprehensive brochure of specialised frequency radios
SCIENTIFIC AND TECHNICAL (PE8)
507-5II LONDON ROAD, WESTCLIFF, ESSEX

B.H. COMPONENT FACTORS LTD.

 DEPT. P.E., P.O. BOX 18, LUTON, BEDS. LUI ISUELECTROLYTIC CAPACITOR BARGAIN PACKS-80p EACH

Bl.p

 Par

COMPLETE TELEPHONES

ex. G.p.o. normal household type

ONLY 95p

(9) TELEPHONE DIALS
 Standard Post Office type. Guaranteed in working order.

ONLY 50p

H38 $30 \begin{aligned} & \text { Shore lead Transistors. } \\ & \text { NPN Silicon Planar } \\ & \text { Uppes }\end{aligned} \quad$ 50p
UNMARKED UNTESTED PACKS

B1 50 | Germanium Transistors |
| :--- |
| PNP, AF and RF | 50p

B66 $150 \begin{aligned} & \text { Germanium Diodes } \\ & \text { Min. glass type }\end{aligned} \quad 50 \mathrm{p}$
B83 $\mathbf{2 0 0} \begin{aligned} & \text { Trans. manufacturers' } \\ & \text { jects all types NPN, PNP, }\end{aligned}$
Bea $100 \frac{\left.\begin{array}{l}\text { Silicon Diodes DO-7 } \\ \text { Stass }\end{array}\right)}{\text { Squiy }}$
50 p

- N914 and IN916 cypes 50p

H16 8 Experimenters Pak of
Integrated Circuits. Data 50p
H17 203 amp. Silicon Stud Recti-
H20 $20 \begin{aligned} & \text { BYI26/7 Type Silicon Recti- } \\ & \text { fiers } 1 \text { amp plastic. Mixed }\end{aligned}$ volts
H34 15. Power Transistors, PNP. $\begin{gathered}\text { Germ. NPN Silicon TO-3 } \\ \text { G0p }\end{gathered}$ Can

MAKE A REV COUNTER FOR YOUR CAR The 'TACHO BLOCK'. This encapsulated block will turn any O-I mA meter into a linear and car with normal coil ignition car wit

F.E.T. PRICE

BREAKTHROUGH!!
This field effect transistor is the 2 N3823 in a plastic encapsulation. coded as 3823 E . It is also an excel. lent replacement for the 2 N 3819 . Data sheet supplied with device. $1-10$ 30p each, 10.50 25p each. $50+20 p$ each.

TRANSISTOR IGNITION!

AS USED BY RACING DRIVERS!
NOW we introduce a Transistorised Ignition that is NOT a Kit at LESS than Kit ignition that is NoT a Kit at LESS than Kit Mark II, are ready to go. Installation time10 minutes. They operate on a unique and newly discovered principle that drives a standard ignition coil with a fantastic peak of 400 V . The solid impact gives $45,000 \mathrm{~V}$ right to the sparking plug and gives cooler running. longer plug life, more m.p.g. and greater b.h.p. Contact breaker life is extended indefinitely The sircuitry is ail silicon solid state and is engineered for top dependable performance on any car with standard ignition coil. 4 and 6 cylinder. Every unie is tested before despatch and each carries a full guarantee. Gives a full spark at up to 8,000 r.p.m
Mighty Mini- $\mathbf{E 6 . 7 5 \quad \text { Super Spark- } £ 1 1 . 7 5 ~}$
TYPE '"E'" PNP Germanium AF or RF
FULLY TESTED AND MARKED SEMICONDUCTORS

RS			
	${ }_{0}^{6}$		${ }_{5}^{5}$
${ }^{\text {ACC }}$ A ${ }^{\text {a }}$	0.15	${ }^{\circ} \mathrm{OC171}$	${ }_{0} .23$
${ }_{\text {ACl }}{ }^{\text {A }}$	0.15	$\bigcirc \mathrm{OC201}$	0.25 0.25
ACl76	0.20	26301	0.13
${ }_{\text {AFP17 }}{ }_{\text {AF }}$	0.20 0.30	${ }_{26303}^{2011}$	- 0.13
${ }_{\text {AF1 }}$ AF6	0.30	2N:302-3	O. 15
AFI39	0.30	2 Ni 304 -5	0.17
BCIL BC107	0.20 0.10	${ }^{2} \mathrm{~N} / 306-7$	0.20
BC108	0.10	2 N 3 I IGET	0.45 0.45
BC109			
知194	5	Power	
${ }_{\text {BFF5 }}$	0.20	${ }^{\text {Transistors }}$	
BSY25	0.13	$\bigcirc \mathrm{O}^{\circ} 23$	0.30
(0.13 0.13	${ }^{\circ} \mathrm{C} 25$	0.25 0.25
BSY28	0.13	$\bigcirc{ }^{\circ} 28$	0.30
BSY95A	0.10	OC35	0.25 0.37
$\bigcirc \mathrm{C} 41$	0.15	AD149	0.30
OC4,	0.13	AUY10	1.25
-71	0.10	${ }_{\text {2SO34 }}^{2 \mathrm{~N} 3055}$	0.25 0.50
\bigcirc	0.10	2N3055	0.50
OC81	0.13	Diodes	
OC81D	0.13	${ }_{\text {Ofa }}$	0.10 0.09
OC83	0.18	OA79	0.09
OC139	0.13	oabi	0.09
C140	0.15	IN914	0.06

OUR VERY POPULAR $3 p$ TRANSISTORS
 TYPE ".A." PNP Silicon allop, TO-5 can.

Quantity INTEGRATED CIRCUITS 10 10-50 $50+$ $\begin{array}{llll}\text { Quantity } \\ \text { SL403D Audio Amp., 3-Warts } 2.00 & 1.95 & 1.80 \\ 250 & 20 p & 15 p\end{array}$ 709 C Linear Opo. Amp 25p 20p 15p
Gates, Faccory Marked and
Tested by A.E.I. 25p 22p 20p
J. K. Flip-Flops Factory.

Marked and Tesced by
N7490 Decade Counter $\quad \begin{array}{llll}40 \mathrm{p} & 35 \mathrm{p} & 30 \mathrm{p}\end{array}$

LOW COST DUAL INLINE I.C.
SOCKETS
14 pin type at 15p each
16 pin type at 16 p each
W. have a large solection of Reference and Technical Books in stock.
These are just two of our popular lines
B.P.I Transistor Equivalents and Substitutes:
This includes many thousands of British The Aliffe Radio Valve a. Transiseor
Data Book 9ch Edition:
Characteristics of 3000 va
75p
4.500 Transistors, Diodes, Rectifiers and integrated Circuits.
Send for lisis of these English publications.

BSR LATEST SUPERSLIM

 STEREO \＆MONO Plays 12^{*} ． $10^{\prime \prime}$ or 7^{*} records aulity unif backed by BgR reliability with 18 months＇ Fuarantee．AC 200／250v． gire $18 \frac{1}{2} \times 11 \mathrm{tin}$.Above motor board 3ing
below motor board 2tin．
with 8TEREO and MONO XTAL $\mathbf{S 8 . 7 5}$ Pont 25 p MONO－COMPATIBLE

\＆7．75 Post esp．

 Playsall recorde

RCS DE－LUXE 8 WATT AMPLIFIER．Ready made tented Printed circuit．Pentode valve EL84，${ }^{8}$ Watta output with two knobs，ontput tran eformer and high performance londapesker．

R．C．S．PORTABLE PLAYER CABINET

Realiy mart appearance with ipace for R．C．S．Amplifiers and mont modern antochangers．Size $18 \times 15 \cdot 8 i n$ Metal fittings．Carrying handle．Popular
Colours．Two－tone rexine coverad．

GARRARD DISCO DECK

TA Mk II

4 speeds．Plays all pole besyy duts motor．gin．steel torntable．Plug in

ateroo／mono osctridge．Adjustable stylas preasure．Anto－ stop．Brown and Cream finish．AC maini 110／240y Bane plate size $12 i n$ 8in．Operating area $14 \mathrm{in} . \times 12$ tin Above motor board 3in．below motor board
2！in．Ideal for Home Ei－Fi or Discotheque． 2lin．Ideal for Home Ei－Fi or Discotheque． Stereo Dismond and Mono Sapphire，model $1025 \mathrm{fl0}$ Model 8500 Stereo and Mono Antochanger 214 ．Post 25p． BSR JUNIOR SINGLE PLATER．Turatable． $\mathbf{4} 50$ 4－apeed motor and separate pick－up．

HI－FI PICK UP CARTRIDGES．Diamond LP／Stereo Sapphire Mono GP91 \＆1－50；Powerpoint LP／78 80p

E．M．I．WOORERAND

$£ 5.75{ }^{\text {pogit }}$

Compriaing a fine example of a Wooter 10i． 61 in．with a massive Ceramic Magnet，440z，Gauss 13,000 lines． Aluminjum Cone centre to improve middle and top reaponse．Aiso the E．M． Tweeter 3fin．square has a special lightwoight paper cone and magnet in Impedance Standard 8 ohma Ureful Response $\quad 35$ to $18,000 \mathrm{eps}$ Bast Resonance 45 cps SUITABLE ENCLOSURE $20 \times 13 \times 9 \mathrm{in}$ ． $\mathbf{C q}_{85 \mathrm{p}}^{\text {Post }}$
MODERN TEAK DESIGN

WEYRAD P50－TRANSISTOR COILS RA\＆W Ferrite Aerial． Oic．P50／1AC．．．．．．． I．T．P50／2CC $470 \mathrm{kc} / \mathrm{s}$ 3rd I．F．P50／8CC \begin{tabular}{l|l}
72p \& Spare Cores

83p \& Driver Trans．LFDT4

38 P \&

Printed Circuit

 38p Printed Circuit，PCA1 38p J．B．Tuning Gsag

.36 p \& Weyra

.36 p \& OPTI

\hline
\end{tabular} 3 p

58 p
58 p P51／1 or P51／2
 P50／8V VOLUMECONTROLS 800hm COax $4 p$ yd Lons pindles．Midget 8ize BRITISH AERIALITE

Bin．ELAC HI－FI SPEAKER

Dound．Lone plazticised roli sur－ $50-16,000 \mathrm{cps}$ ．Banir resonance 55 cps .8 ohm impedance． 10 watts $\quad \& 4 \cdot 80$

BLATK ALUMIHIUM CEASSIS． 18 sw．g．2！in．sides
 ALUMMIUM PANELS 18 s．w． $8.8 \times 4 \mathrm{ini} .9 \mathrm{p} ; 8 \times 6 \mathrm{in} .15 \mathrm{p}$ ： $14 \times 8 \mathrm{in} .16 \mathrm{p} ; 10 \times 7 \mathrm{in}, 19 \mathrm{p} ; 12 \times 8 \mathrm{in} .20 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p} ;$
$16 \times 6 \mathrm{in} .28 \mathrm{p} ; 14 \times 8 \mathrm{in} .34 \mathrm{p} ; 12 \times 12 \mathrm{in} .40 \mathrm{p} ; 16 \times 10 \mathrm{n} .50 \mathrm{p}$. 1 tinch DIA盖ETER WAVECEANGE 8WITCEES． 25 p ．
 TOGGLE \＆
＂THE IN8TANT＂BULK TAPE

ERA8ER \＆HEAD DEMAQNETI8ER S

HI－FI STOCKISTS
RETURN OF POST DESPATCH．

R．C．S．STABILISED POWER PACK KITS All parts and instructions with Zonor Diode，Printed Circait Eridge Rectifers and Donble Wound Mains Translormer
input $200 / 240 \mathrm{~V}$ a．c．Oatput voltares available 8 or 9 or 12 input 200／240V a．c．Output voltares available 8 or 9 or 12 or 15 or 18 or 20 V d．c．at 100 mA or leas

SPR Detail 8．A．E．Size $8!\times 1 \frac{1}{1} \times 1 \frac{1}{2}$ ． \qquad
R．C．S．GENERAL PURPOSE TRANSISTOR PRE－AMPLIFIER BRITISH MADE Ideal tor Mike，Tape，P．O．，Guitar，etc．Can be used with Battery $9-12 \mathrm{z}$ ．or H．T．line $200-300 \mathrm{~F}$ ．D．C．operation．Bise

NEW TUBULAR ELECTROLYTICS
 $50 / 50 \mathrm{~V}: 10 \mathrm{p} \quad 16+16 / 450 \mathrm{~V} 25 \mathrm{p} \quad 32+82+82 / 350 \mathrm{~V} 43$ $100 / 25 \mathrm{~V} . . \quad 10 \mathrm{p} \quad 32+32 / 350 \mathrm{~V} 25 \mathrm{p} \mid 100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$ LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$ ．
 $1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p}$ ；
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 2 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$ ．

CAN TYPES \begin{tabular}{ll|ll|ll}
$2 / 360 \mathrm{~V}$ \& 14 p \& $250 / 26 \mathrm{~V}$ \& 14 p \& $60+50 / 850 \mathrm{~V}$. \& 85

$4 / 350 \mathrm{~V}$ \& 14 p \& $500 / 25 \mathrm{~V}$ \& 20 D \& $60+100 / 350 \mathrm{~V}$ \& 58

$10 / 450 \mathrm{~V}$ \& 15 p \& $1000 / 50 \mathrm{~V}$ \& 47 p \& $32+82 / 250 \mathrm{~V} .$.

$82 / 450 \mathrm{~V}$ \& 20 p \& $8+8 / 450 \mathrm{~V}$ \& 18 p \& $32+82 / 50 \mathrm{~V}$.

\hline 28

$82 / 450 \mathrm{~V}$ \& 20 p \& $8+8 / 450 \mathrm{~V}$ \& 18 p \& $32+82 / 450 \mathrm{~V}$ \& 88 p

$25 / 25 \mathrm{~V}$ \& 10 p \& $8+16 / 450 \mathrm{~V}$ \& 20 p \& $350+50 / 825 \mathrm{~V}$ \& 50 p
\end{tabular} $2500 \mathrm{mF} 50 \mathrm{~V} 68 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V}$ 65p 5000 mF 6V $25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$.

CERAMMC， 1 pF to $0.01 \mathrm{mP}, 4 \mathrm{p}$ ．Silver Mics 2 to 5000 pF ，4p PAPER 350V－0．1 4p， 0.513 p ： 1 mF 15p； 8 mF 150 V 15 p. $500 \mathrm{~V}=0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$ ． SILVER MICA．Close tolerance 1\％．2－8－500pP 8p；580－ $8,200 \mathrm{pF} 10 \mathrm{p} ; 2,700-5,600 \mathrm{pF} 20 \mathrm{p} ; 6,800 \mathrm{pF}-0.01$ ，midd 80 p esch． TWIN GANG．＂0－0＂ $208 \mathrm{pF}+12 \mathrm{ppF}$ ； 85 p ；Blow motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{p} \mathrm{F}, 50 \mathrm{p}: 500 \mathrm{pF}$ tlow motion，standard 45p；small 3－gang 500 DF \＆1．60． SEORT WAYE SINGLE． $10 \mathrm{pF}, 30 \mathrm{D}, 25 \mathrm{pF}, 55 \mathrm{p}, 50 \mathrm{p}$ ， 55 p ．
 REGR STABILITY．${ }^{2}$ w． $2 \% \% 10$ ohms to 10Ω to 10 mes 10 p Ditto 50 ．Preferred values 10 ohms to 10 meg．， 4 p ．
WIRE－WOUND RESISTORS 5 watt 10 Fatt is 10 ohms to 100 K 10p each；2f watt， 1 ohm to 8.2 oh ms 10 p ．

DECCA DECCADEC GARRARD

 MOTOR UNIT Mk．IISingle piay Stereo
Mono Deram
trangeription head and arm． Tour speeds． 1012 in．turatable． Anti－rumble flter． Bias compensetion

METAL PLINTH AND PLASTIC COVER Cut out for most Garrard or B．8．R． Will play with cover in position leatherette．Antimagnetic WAX POLISHED FIMISH AT SAME PRICE

MAINS TRANSFDRMERS Alpont

$250-0-25080 \mathrm{~mA} .6 .3 \mathrm{\nabla} .4 \mathrm{smp}$ ．

 $350-0-35080 \mathrm{~mA}$ ． 8.3 マ． 3.5 a .8 .3 v． 1 a ，or 5 v． 5 z ． 28.50 MINIATUPE 200 mA．． 6.3 ₹． 4 \＆．C．T．； 6.3 ₹． 2 \＆． 23.25
 MINI－MAINS $20 \mathrm{v} .100 \mathrm{~mA} .1 \mathrm{~F} \times 1 \mathrm{i} \times 11 \mathrm{in}$. HEATER TRANS． 6.3 จ．3R．
 GENERAL PURPOSE LOW VOLTAGE．Tapped oulpat at 2 amp．，3，4， $5,6,8,9,10,12,15,18,24$ and 307 ． 28.25 $1 \mathrm{amp} ., 6,9,10,12,16,18,20,24,30,36,40,48,60.22 \cdot 25$
$2 \mathrm{amp} ., 6,8,10,12,16,18,20,24,30,36,40.48,60.28 .25$ 5 amp．， $6,8,10,12,16,18,20,24,30,36,40,48,60$ 28．75
 $150 \mathrm{w} . ~ £ 2 \cdot 25 ; 500 \mathrm{w}$ ． $8 \cdot 25 ; 750 \mathrm{w} .410 ; 1000 \mathrm{w} .214$
CHARGER TRANSFORMERS．Inppt $200 / 250 \mathrm{p}$
 FOLL WAVE BRIDGE CHARGER RECTIFIERS：

Teak Cabinet．8ize 16×10 ： 9 in ．Port 25p MINIMUM POST AND PACKING $15 p$ ．
SPECIALISTS

Pree

ALL MODELS＂BaEER apEAERE＂IS BTOCI Hi－Fi Enclosate Mannal containing 20 plana，crotsov

BAKER 12in MAJOR £9

30－14，500 c．p．f．t 18in． tweeter cone togeth with a BAKER coramie magret ansembly having a finx danelty of 14,00 gans Rnd a total inx o 145，000 Harwells．Bas resonance 40 c．p．e．Rated 15 ohm ．Poif Free．

Module kit，80－17，000 c．p．t Fith tweeter croseover， bafle and $\leq 1 / .50$ BAKER＂BIG－SOUND＂SPEAKERS | Group 25＇ | ＇Group 35＇ | ＇Group 50 |
| :--- | :--- | :--- |

 3 or 8 or 15 ohm 3 or 8 or 15 ohm

8 or 15 ohm
TEAK FI－FI SPEAKER CABINETS．Fluted wood front Yor 12in．dia．or 10in．spesicer $20 \times 13 \times$ gin． 29 Pont 289 Por $18 \times 8 \mathrm{in}$ ．or 8 in ．speaker $16 \times 10 \times 9 \mathrm{in}$ ． 25 Pont 26 p

GOODMANS $6 \frac{1}{2}$ in．HI－FI WOOFER 8 ohm， 10 watt．Large cerar pecial Cambric cone surroand cps．Idesa P．A．Columns． Hi－Fi Enclosure Syateme，etc

ELAC CONE TWEETER
The moving coil diaphragm gives a good radiation pattern to the higher frequencie from $1,000 \mathrm{cpi}$ to $18,000 \mathrm{cps}$ ．Size $8 \mathrm{~s}^{\mathrm{s}} x$ 34×2 in．deep．Rating 10 watt． 8 ohm or is ohm models． $\mathbb{E} \mid .90$ Post 10p

SPEAKER COVERING MATERIALS．Samplen Large B．A．E Horn Tweeters $2-16 \mathrm{Kc} / \mathrm{s}, 10 \mathrm{~W} 8 \mathrm{ohm}$ or 15 ohm 21.50 De Luxe Horn Tweeters 2－18 Kc／s， 15 W ， 15 ohm 88 TWO－WAY 3，000 c．p．s．CROB8OVER8 3 or 8 or 15 ohm $95 p$ SPECIAL OFFER！ 80 ohm． $21 \mathrm{in} .22 \mathrm{in}, 35 \mathrm{ohm}, 2 \mathrm{in} \cdot \mathrm{f} 8 \mathrm{in}$
 $3 \mathrm{ohm}, 2 \mathrm{in}, 3 \mathrm{in}, 5 \mathrm{in}, 5$ ， 3 in
 $8 \times 5 \mathrm{in}, 21-80 ; 8 \times 21 \mathrm{ln} .21 .50 ; 8 \mathrm{in} .21 \cdot 75 ; 10 \times 6 \mathrm{in} .21 \cdot 90$, 8 in ．dia． 4 watt； 10 in ．dia． $5 \mathrm{watt} ; 12 \mathrm{in}$ ，dia． 8 watt ，
8 or 8 or 15 ohm models 52 etch．Pont 16 p ．
VALVE OUTPUT TRANS．25p．MIKE TRANS． $50: 1$ 25p 5 WATT MULTI RATIO， 3,8 and 15 ohmi 80 p ．

BAKER IOO WATT
ALL PURPOSE
TRANSISTOR
AMPLIFIER

Responie $10-30,000 \mathrm{cps}$ Matcies
sil loudipeakers．A．C． 2001250 V ．
Separate Treble and Bars c
Guaranteed．Details S．A．E．
BARGAIN AM TUNER．Medinm
Transistor Superhet．Ferrite aerisl． 9 volt．
BARGAIM 4 CHANNEL TRANSISTOR MOKO MIXER．
Add masical highlights and sond effect to recording．
Will mix microphone，records，tape and tuner $\mathbf{\$ 3 0}$ With separate controls into sio．

BARGAIN FM TUNER 88－108 Mc／a Six Transistor． 9 volt． Printed Circuit．Calibrated slide dial taning．
Walnut Cabinet．Sive 7,5 \＆ 4 inch Walnut Cabinet．Size 5 se 4 inch £8．85
Chasis only，less cabinet．
BARGAIN 3 WATT AMPLIFIER． 4 Tranaistor
Pqush－pull Resiy built，with volume control． 97.50 COAXIAL PLUG 6p，PANEL SOCKETS 6p．LINE 18 p ． OUTLET BOXE BALARCED TWIN FEEDERS 5p Yd． 80 ohms or 800 ohms． JACK 80CKET Std．Open－circnit 14p；closed circit 88y；
Chrome Lesd 8ocket 45p．Fhono Plogs 5 p ．Phono 8ocket 5p． JACK PLUG8 8ta．Chrome $15 \mathrm{p}: 3.5 \mathrm{~mm}$ Chrome 14 p ．DIf JACK PLUG8 8td，Chrome

E．M．I．TAPE MOTORS．120\％，or 240% AC． 1,200 r．p．m． 4 pole 185 mA
8 pindle $0.187 \times 0.75 i n . ~ 8 i z e ~ s i t y ~$ $\begin{aligned} & 8 \text { pindle } 0.187 \times 0.75 i n . ~ 8 i z e ~ \\ & 81 \\ & 21 \times 2 \text { tin．（illutrated），Pont } 15 p\end{aligned} \leq 1.25$ GALFOUR GRAM．MOTORS 120 v ．or $240 \mathrm{v} . ~ A C, 1,200 \mathrm{r}, \mathrm{p}, \mathrm{m}, 4$ pole 50 mA .8 spindle $i \geqslant 3 / 20$ ．8ise． 850 $21 \times 2 i \times 1$ in．Post 15p 85 CUSTOMERS FREE CAR PARK．CALLERS WELCOME 337 WHITEHORSE ROAD，CROYDON

 As well as electronic components, this kit also contains 2 diamond-spun aluminium knobs, elegant matching front panel, dial, washers, screws and wire.

The Pullman PB is suitable for 12 volt working with both negative and positive earth. It covers the full medium and long wave bands. Four push-buttons for medium wave, one for long wave. It is permeability tuned and sturdily constructed. Output is a full 2.5 watts into an 8 ohm speaker. But the Pullman PB will operate into any loudspeaker from 8 to 15 ohms.
Power consumption is less than 1 amp.
\star Circuit diagram and comprehensive instructions 50 p , free with parts.
\star Car aerial $£ 1 \cdot 25$ post paid.
THE PULLMAN PB CAN BE MOUNTED IN AN IED THING

PRICE ONLY

 $£ 7.00+$ os. 800 , ans sand THE PULLMAN PO AND IT HAS AN II TUT. CHASSIS SIZE /S: SCALE FOR EASY READiNG AT NEXCLIDNG FRONT PANEL,IIK) $7^{\prime W}$ WIFE, 2"MGH ANDohm speaker, with bali le and fixing strips. \&1 50 post free if bought with the kit

RADIO \& TV COMPONENTS (ACTON) LTD. 21d High Street, Acton, London W3 6NG 323 Edgware Road, London, W. 2

Mail Orders to Acton. Terms C.W.O. All enquiries S.A.E. Goods not despatched outside

UK.

PCB'S \& KITS

For Designs Published in P.E
All PCB's Fibreglass, Drilled, Roller-Tinned
CALLERCORD - Designer Approved PCB Kit
Semiconductor set £4.80
R's, C's, Pots, Switches, Relays, Transformer, $£ 7.80$ PCB (4 in $\dot{x} 7 \nmid i n$), also holds edge connectors and relays, $£ 1.50$
AURORA - Multichannel Sound Controlled Lighting 8 Channel Set-Semiconductors incl. thyristors, $£ 10.95$ R's, C's, Pots, Ferrite Cores, $\mathbf{£ 1 0 . 9 5}$
4 Channel Set-Semiconductors incl, thyristors, $£ 5.95$ R's, C's, Pots, Ferrite Cores, $\mathbf{£ 5} .95$ Power Supply (will supply 8 channels), $£ 3.40$
PCB ($4 \frac{1}{2} \mathrm{in} \times 11 \mathrm{in}$) to hold Preamp, 4 control chan. incl. pots, $£ 1-80$
PCB (4 t in $\times 6$ tin) to hold PSU, Sync. Gen., 8 output $t /$ formers, and 8 thyristors or triacs. $£ 1.35$
PHOTOPRINT PROCESS CONTROL
Semiconductors incl. LDR and Thyristor, $\mathbf{£ 3 . 0 0}$
R's, C's, Pots, Relay, Switches, T/former, $£ 5 \cdot 40$
PCB (Bin $\times 5 \frac{1}{2}$ in) to hold circuit incl. pots, relay, keyswitch, 60p
GEMINI PREAMP
PCB (tin $\times 10$ it in) Stereo. Specially designed to also hold rotary or slider pots, and rotary switches, $£ 1-65$
R's, C's, Rotary pots and switches to match PCB (Stereo set), £7.90
CEMINI MAIN AMP. PCB (3tin . 5 tin) Stereo, £1.30 GEMINI POWER SUPPLY. PCB (in in), 60p
TAPE NOISE LIMITER
Semiconductors, R's, C's, Pot, £180 PCB (tin $\times 3$ in), 60p
DOOR BELL YODELLER
Semiconductors, R's, C's, Pots, $£ 3-90$
PCB (3 in $\times 3 \frac{1}{2} \mathrm{in}$), 60 p
OTHER CIRCUITS \& PCB's AVAILABLE-FREE LIST

PHONOSONICS

25 Kentish Road, Belvedere, Kent Mail order only

MCCIITROMISITD.

"GEMINI" FM STEREO TUNER

All components to build this outstanding phase lock easily aligned tuner as described in April/ May/June P.E. We are offering an optional chassis and solid wood sleeve in ready to assemble form. S.A.E. for details and itemised prices. Complete kit $£ 33 \cdot 90$.

SCORPIO ELECTRONIC IGNITION

Complete kit with comprehensive construction and fault finding data. £11. Post paid. Data 10p. Itemised prices, S.A.E. please.

[^0]
FOR RAPID SERVICE
 GARLAND BROS. LTD DEPITORD BROADWAY, LOWDOW, SE8 GGW

TRANSFORMERS

Miniature MM12 $12 \mathrm{~V} .250 \mathrm{~mA}+12 \mathrm{~V}, 250 \mathrm{~mA}$ MM20 $20 \mathrm{~V}, 150 \mathrm{~mA}+20 \mathrm{~V}, 150 \mathrm{~mA}$ L.T. ${ }^{6}$ LT26.3V $3 \mathrm{JA}-75 \mathrm{p}$ plus $18 \mathrm{P} P$ \& LT3 $12 \mathrm{~V}, 1.5 \mathrm{~A}-80 \mathrm{p}$ plus 26 PP . \& LT4 $12 \mathrm{~V}, 3 \mathrm{~A}-\mathrm{C} 1.32$ plus 30 D LT5 9-0-9V, 0.5A-75p plus $2 \mathrm{P}_{\mathrm{p}}^{\mathrm{p}}$ LT6 12-0-12V. 1A-95p plus 26 p LT7:30-0-30V, 1A-61.87 plus 30 P . Multi-tapped

MT30/2 0-12-15-20-24-30V, 2AMT60/1 0-5-20-30-40-60V. iA. | MT60/2 | \& 1.97 plus 30p |
| :--- | :--- | Charger

CT/01 1A-f1 plus 26p P. \&

Sectransformers
AT3 $30 \mathrm{~W}=6118$ plus $30 \mathrm{p} \mathrm{p}$. ATI $150150 \mathrm{~W}-\$ 2.55$ plus 34 p p. \& p AT $300300 \mathrm{~W}=\mathbf{E 4 . 7 5}$ plus $42 \mathrm{p} \mathrm{p}$. AT1000 $1000 \mathrm{~W}-68.90$ plus 62 D
All shrouded with terminal blocks AT30 0-110-240V. All others 0 -
$110-200-220-240 \mathrm{~V}$.
Speakerisolatinsformer
II: | ratio for $3-15 \Omega$, $2 \mathrm{~W}-86 \mathrm{p}$ plus $13 p$ p. \& p.
Speaker matching transforme Tapped 3, $8,16 \Omega$. Witl match almost any speakers to any amplifi
15 W max. 90 p plus 20 p p. \& p .

ALUMINIUM BOXES

Trpe	L.	W.	D. Pr	rice p	p. ${ }^{\text {a }}$ p.
G87*	5tin	2 lin	$1 \frac{1}{1}$ in	38p	
G88*	4 in	4 in	1 in	38p	
G89.	4 in	2lin	lim	38p	
G810*	5 in	4 in	$1 \frac{1}{1} \mathrm{in}$	44p	
GBII	4 in	2 tin	2in	38p	13 p
GB12	3 n	2 in	lin	33p	13p
G813	6 in	4 in	2 in	52p	18p
GB14	7 in	$5 i n$	2tin	63p	19p
G815	8 in	6 in	3 in	$81 p$	
GB16	10 in	7 in	3in		
			These	size	

EQUIPMENT CASES

 Plain aluminium Stove - enamelled
silver-grey hammer finished, 20 p

CONSOLE CASES

in plain aluminium, ideal for mixers Type W. A B C DPrice p. ep.
 $\begin{array}{llllllll}\mathrm{GB} 21 & 10 & 9 & 31 & 2 & 3 & 61.58 & 30 \mathrm{p} \\ \mathrm{GB} 22 & 12 & 9 & 3+2 & 3 & 61.72 & 30 \mathrm{p}\end{array}$

\qquad \square

VEROBOARD

ELECTROLYTICS

$1 \mu \mathrm{~F}$	450	19 p	1,000 1 F	25 V	
$2 \mu \mathrm{~F}$	500 V	20p	1,000 F	V	
$4 \mu \mathrm{~F}$	350 V	14p	2,000,	25 V	
8μ	450 V	16p		50	
$16 \mu \mathrm{~F}$	450 V	17 p	2,500	25 V	
$25 \mu \mathrm{~F}$,	7 p	2,500	50V	
$25 \mu \mathrm{~F}$	50 V	8 p	3,000	25 V	
$32 \mu \mathrm{~F}$	450 V	24p	5,000	25 V	
$50 \mu \mathrm{~F}$	50 V	10p	5,000	50 V	
100μ	25 V	10p	$8-8 \mu$	450 V	
$100 \mu \mathrm{~F}$	50 V	10p	$8-16 \mu \mathrm{~F}$	450 V	
$250 \mu \mathrm{~F}$	25 V	12p	$16-16 \mu \mathrm{~F}$	450 V	27
$250 \mu \mathrm{~F}$	50 V	17p	16-32 μ	450 V	
$500 \mu \mathrm{~F}$	25 V	18p	$32-32 \mu \mathrm{~F}$	450 V	
$500 \mu \mathrm{~F}$	50 V	25p	50-50 μ	350 V	38
MINIAT					
$1 \mu \mathrm{~F}$	63 V	6 D	10	64 V	
$2.2 \mu \mathrm{~F}$	63 V		16,	40 V	
$4 \mu \mathrm{~F}$	40 V	7p	30,1/1	15 V	
$4.7 \mu \mathrm{~F}$	63 V	6 p	47μ	16 V	
$8 \mu \mathrm{~F}$	15 V		$47 \mu \mathrm{~F}$	25 V	
	40 V		68	16 V	
$10 \mu \mathrm{~F}$	25 V	6 p	$100 \mu \mathrm{~F}$	10 V	
ENTIRE MULLARD 015/016/017 RANGEALSO STOCKED					
CASSETTE OWNERS!					
For Philips and similar cassette recorders. PUI2 Power unit for connection to $12 V+$ or - E car electrical systems, giving $7 \frac{1}{2} V$, stabilised $\mathbf{~} \mathbf{3} \mathbf{3} \mathbf{2} \mathbf{2}, ~$					
PUI4 As above but switched for $\mathbf{5 . 1 0}$ $6 \mathrm{~V}, 7 \mathrm{~V}$ or 9 V output.					
PP75 Mains power supply, output					

VARIABLE POWER SUPPLY

output: Switched 3, 4.5. 6, 7.5, $£ 4 \cdot 20$

BATTERY ELIMINATORS

suitable for transistor radios and similar lish PP6 inpue 240 V a.
PP9 Input 240 Va a.c. Output 9 V d.

NEW
 NEW
 ILLUSTRATED 1972-73 CATALOGUE

Post Free
15p

CONTROLS, Log. or Lin.
Single, less switch, $15{ }^{2}$
Single, D.P. switeh. 24 p
$5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$ $500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega$

SLIDER CONTROLS, 87 mm .
Single, 44p; Tandem, 55p. 10k $\Omega, 25 \mathrm{k} \Omega$ $50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ log or lin

RESISTORS

AlI 5%, high-stability. El2 values. $I W$, Ip WW,15p; 1W,4p; 2W, 6p
Wire-wound
5W, 10p; 10W, 12p

LOUDSPEAKERS

in $\times 4$ in, $3 \Omega-\{1.12,8 \Omega-61.12$
$15 \Omega-41.40$.
$\sin \times 1.85 .8 \Omega-61.77$
$25 \Omega-41.70$.
10 in $\times 6 i n, 32.32,8 \Omega-62.32$
$15 \Omega-E 2.32$.
Bin round, $3 \Omega-E 2.10,8 \Omega-62.50$
Adastra"Hi-Ten", 10 in , $10 \mathrm{~W}, 8$ or $15 \Omega-63.40$

The largest selection

NEW LOW PRICE TESTED S．C．R．＇s PIV

PIV	$\begin{gathered} \text { 1A } \\ \text { TO.5 } \end{gathered}$	$\begin{gathered} 3 A \\ \text { TO-66 } \end{gathered}$	$\begin{gathered} 7 \mathrm{~A} \\ \text { TO-66 } \end{gathered}$	10 A	$\begin{gathered} 16 \mathrm{~A} \\ \mathrm{TO}-48 \end{gathered}$	30 TO－4
	${ }^{2} \mathrm{P}$	\％	8 p	Ep	炜	2
50	0.28	0.25	0.47	0.50	0.58	$1 \cdot$
100	0.25	0.88	0.53	0.88	0.68	1.
200	0.85	0.37	0.57	0.61	$0.75{ }^{\circ}$	1
400	0.43	0.47	0.67	0.75	0.93	1.7
600	0.53	0.67	0.77	0.87	1.25	
800	0.83	0.70	0.90	1.20	1.50	4．

SIL．RECTS．TESTED

PIV 300 mA 750 m			
	Ip	Ep	p 2 p
50	0.04	0.05	$05 \quad 0.06$
100	0.04	0.08	$08 \quad 0.05$
200	0.05	0.09	$09 \quad 0.08$
400	0.08	0.18	$18 \quad 0.07$
600	0.07	0.16	$18 \quad 0.10$
800	$0 \cdot 10$	0.17	$17 \quad 0.13$
1000	0.11	0.25	． 0.15
1200		0.83	83
TRIACS			
VBOM ${ }^{\text {TO }}$	2 A	6A 1	10．A
	0.1 10	． 60 ＇10	10．88
TO	Ep	ep	$\mathrm{E}^{\mathbf{p}}$
00	30	60	76
00	50	80	90
00	70	751	1.10

GOR DIACS
FOR USE WITII
TRIACS
BR100 D32．

FREE

One 50p Pak of your own choice free with
orders valued 44 or over．

SPECIAL OFFER
 50 p .2 for
TO CLEAR.

CADMIUM CELLS ORP1243p

ORP60，ORP61 40p GENERAL PORPOSE TPN STLICON PURPOSE NPN SILICON SWITCH－ ING TRARS．TO TO－18 SIM．TO 2N708／8， devices no open or short devicults．ALSO AVAIL ABLE in PNP EIm． 10 $2 \times 2906, \mathrm{BCY} 70$ When ordering pleasc state | f_{p} | | |
| ---: | ---: | ---: |
| 20 | For | 0.50 |
| 50 | For | 1.00 |
| 100 | For | 1.75 |
| 000 | For | 7.60 |
| 1000 | For | 18.00 |

PHOTO TRANS．

OCPi1 Type．43p

8II．G．P．DIODES Ep $\begin{array}{lll}300 \mathrm{~mW} & 30 & 0.50 \\ 40 \mathrm{PIV}(\mathrm{Min}) & 100 & 1.50\end{array}$ $\begin{array}{ll}\text { OPIV（Min．）} & 100 \ldots \\ 300 & \mathbf{1 . 5 0} \\ \text { 3ub－Min．} & 300\end{array}$ | Fub－Min． | $500 \cdots 5 \cdot 00$ |
| :--- | ---: | Ideal for Organ Builders，

D1sD1 Silicon Onilateral switch 50 p each．
A sllicon Planar，mono－ having integrated clicuit trical characteristics，but with an anode gate and a built－In＂Zener＂dlode bulft－in Gener diode
between gate and
cathode．Full data and cathode．Full data and applicution circu

FULL RANGE OF ZOLER DIODES VOLTAGE ${ }^{2}$ RANGE 400 mV （DO－7 Case） 13 p ca． 1 ＋W（Top－ Case） 13 p ca． 1 W （Top－
ITat） $18 p$ ca． 10 W （ $\mathrm{So}-10$ Stud） $25 p$ ea．All fully tested $\sigma \%$ tol．and
marlsed．State voltage requlred．

10amp POTTED BRIDGE RECTIFIERS On heat sink． 100 PIV .90 p cach．

JUMBO COMPONENT

PAKS MIXED ELECTRONIC COMPONENTS Exceptionally good value Resistors，capacitory， pots，electrolstics and
coils plus many other naeful items．Approxi－ mately 31 bs in weigh
21.50 only

Plis your satisfaction
moreyl back guarater

BRAND NEW TEXA8 Coded and Guaranteed Pal

 $\begin{array}{llll}T 2 & 8 & \text { D1374 } & 0 \mathrm{OC7J} \\ \mathrm{~T}_{3} & 8 & \text { D1216 } & 0 \mathrm{C} 81 \mathrm{l}\end{array}$
 $\begin{array}{lll}8 & \text { D1216 } \\ 8 & 2 G 431 T & \text { OC81D }\end{array}$ 8 2G381T 8 2 CH 382 T $\begin{array}{ll}2 \mathrm{G382T} & \text { OC82 } \\ 2 \mathrm{G} 344 \mathrm{~B} & \text { OC44 }\end{array}$ $\begin{array}{llll}\text { T9 } & 8 & 2 \mathrm{G} 399 \mathrm{~A} & \text { 2N1302 }\end{array}$ T10 82 G 417 AF117 All 50 p cach mak

EN20BO NPN GIL．DUAL TRANS．CODE DI699 each．

120 VCB RIXIE DRIVER TRANSISTOR Sin． BSX21 \＆C407，2N1893 CODED ND120． $1-24$ 17 p each．TO．
2 J up 15 p each

Sil．trans．suitable for Eqvt．ZTX 300 bp each Any Qty．

NEW LINE PLABTIC ENCAPSU－ LATED 2 AMP BRIDGE RECTS．

Each 50 V RS 32p 100 V RMS 37p 400 V RS 46 p

KING OF THE PAK SUPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS

P
P
T
U

1200
-60 B
-18 60 Mixed germanium tranaistors $\mathrm{AF} / \mathrm{RF}$
TGermanium golld bonded diodes bim．OAJ̄，OA47 40 Germanium transiators like OC81，AC128 60200 mA sub－min．Sil．diodes
30 sillicon planar trankistors NPN Bim．BSY日9̈A，2N706 $1 \overline{6}$ Silicon rectiflers Top－Hat 750 mA up to $1,000 \mathrm{~V}$
50 sil．planar diales $2 \pi 0 \mathrm{rnA}$, OA／200／202
20 Mixed volts 1 watt 7ener diodes
05 PNP silicon planar transistors to－5 simı． 2 N 1132 30 PNP－NPN sil．transistors $0<200$ \＆ 28104
150 Mixed silicon and germanium diodes
25 NPN Silicon planar transistors TO－5 sim．en 69
103 Amp silicon rectiflers stud type un to 1000 PIN 30 Germanium PNP AF traniaiatory To－s like ACY $17 . \underline{2}$
86 －Amp eilicon rectifers IVYZ13 type up to 600 PLV $2 \overline{3}$ silicon NPN transistors like $\mathrm{BCl} 0 \overline{8}$
$121.5 \cdot \mathrm{Amp}$ silicon rectifters Top－Hat up to $1,000 \mathrm{Pt} \overline{\mathrm{P}}$
30 A．F．germanium alloy trannistors 2 G 300 series \＆OC 71
30 Madt＇s like MAT Reries PNP transintors
20 Germanium 1－Amp rectifers（JJM up to 300 PIV $25300 \mathrm{Mc} / \mathrm{A}$ NPN sillicon transistors 2N 08 ，13SY27． 30 Fast britching silicon dioden like IN914 micro－min 101 Amp SCR＇s TO． 5 can up to 600 PIV CRS $1 / 25.600$ 20 Bil．Planar NPN trans．low noise amp 2 N 3707
25 Zener dioles 400 mW D07 cane mixed volts，3－18
15 Plastic case 1 amp ailicon rectitiers IN 4000 werles
30 Sil．PNP alloy trans．TO－s LCY2f， $2 \mathrm{~s} 302 / 4$
$25 \overline{\mathrm{sin}}$ ．planar trans．$\overline{\mathrm{P} N P}$ TO－18 2 N 2906
25 Sil．planar NPN trans．TO－5 13 FY
30 sil．alloy trans．so－2 PNP，OC200 28322.
20 Fant switching sil，trans．NPN， $400 \mathrm{Mc} / \mathrm{s} 2 \mathrm{~N} 3011$
30 RF germ．PNP trans，2N1303／u TO－5
10 Dual trane． 6 lead To－5 $\overline{2 N} 2060$
$2 \overline{25 F}$ germ．trans．TO－1 OC45 NK T72
10 VHF germ．PNP trans，TO－1 NKT667 AF117．．． $2 \overline{5}$ 8il．trans．plastic TO－18 A．F．BC113／1 14
C44 20 sil．trans，plastic $\mathbf{T O}-$－ $\mathrm{BCl} 1 \mathrm{n} / \mathrm{I} 16$
Cule Now mentioned atove are given sa a guide to the type of device in
the Pak．The deviees themselves are normally unmarked

Pal Deacription

PRINTED CIRCUITS－EX－COMPUTER
Packed with serniconductors and components 10 boards give a guaranteed 30 trans and 30 diodes． Our price 10 boards，50p．Plus 10p P．\＆P． 100 Boards \＆s．P．\＆P．30p．

POWER TRANSISTOR BONANZA！

 YCBO ROV VCEO SOV VC $10 . \mathrm{S}^{\text {PT }} 30$ WATTA Hfe $30-170$
Plice

SHICON High Voltage 250 V MPH
TO．－3 case．A．P．Suitehing \＆Amplifier
TO－3 case．R．P．Switching of Ampliffer
Applications．Brand new Corled R 2400 Applications．Bramid new Corled R＂400
VCBO 250／VCEO 100／IC $6 A / 30$ Watts HFE type $20 / \mathrm{FT}$ JMHZ
OUR PRICE EACH．

OUR PRICE EACH：		
$1-24$	$2 \mathrm{~S}_{2} 99$	100 up
50 p	45 p	40 p

EX－8TOCK TYPE EACB AB PRICED
OC20 50p OC28 40p AD149 43p BD131 70p 13D13975p OC22 80p OC29 40p AL102 85p BD132 80p BD140 85p OC23 83D OC35 38p AL10385p BD135 70D 1PD10゙5 75p $\mathrm{OC}^{2} 24$ 45p OC36 40 p BD121 60p DB13680p BU105 23 OC25 85p AD14040p BD123 780 BD 13770 p 2 N 305445 p

243055

11S WATT SIL POWER FPT SOp EACH

RTL MICROLOGIC CLRCUTF8

Epoxy TO－j саве	1－24	2J－99	100 up
uL900 Buffer	36p	839	27p
uL914 Dual 2i／p gate	25p	2sp	27p
uL923 J．K flip－flop	50p	47p	46p
Data and Circuite Price 7p．	$\& \mathbf{B}$	et	I．C＇s

ADI62
M／P COMP
GERM TRANB OUR LOWEAT IRICE OF 55D PER PA1／

SILICON 50 WATTS

 MATCBED MPN／PNP BIP 19Plantic． BIP 20 PNI Brand
new．
VCBO $100 / \mathrm{CEO}$ IC 10A．Hl／E type OUR PRICE PER PAIR：

SILICON PHOTO TRATSISTOR
 NEW：Full data available．Fuly guaranteed．
$\begin{array}{llll}\text { Qty．} & 1-24 & 0.0-09 & 100 u_{1} \\ \text { Price each } & 45 p & 40 \mathrm{p} & 35 \mathrm{p}\end{array}$
FET＇S

NEW EDITION

TRAMSI8TOR EQUIVALENTS BOOK．A complete cross reference and equiralents book for European， American and Japanese Tranaib tors．Exclusive to BI－PAK 90p each．Red Cover Edition．
A LARGE RANGE OF TECH． NICAL AND DATA BOOKS ARE NOW AVAILABLE EX－ STOCK．SEND FOR FREE LIST．

OUR BTOCKS of inillvidual devices are now too mumerous to mention in for our liatiag of over 1.000 gemi－ conductors．All available Er－Stock

-the lowest prices!

74 Series T.T.L. I.C's down again in price

	Price	and	prices	BI-PAK	Price	d OLT	pricen	
Order No.	1-24	:j5-99	100 up	Order No.	$1-24$		00 11,	
	4 L	${ }^{\text {i }}$ 1	± 1		e	t ${ }^{\text {d }}$	tp	
$3 \mathrm{P} 00=8 \mathrm{E}=400$	0.15	$0 \cdot 14$	0.12	$11^{3} 86=8 N 7486$	0.32	0.30	0.28	
$13 P 01=8 \times 3401$	0.15	$0-14$	0.12	B1P $40=8 \times 1490$	0.67	0.84	0.58	
$13 P 0 \%=8 N 7402$	0.15	$0 \cdot 14$	0.12		0.87	0.84	0.78	
BP03 $=8 \mathrm{SN}$ \% 40.3	0.15	0.14	0.12		0.67	0.84	0.58	
HP04 $=4 \mathrm{ST} 404$	0.15	0.14	0.12	18P93 $=8 \mathrm{NT} 493$	0.67	0.64	0.58	
$\mathrm{BPOJ}=8 \mathrm{~N} 740 \mathrm{~J}$	0.15	0.14	0.12	HP94 $=8 \times 7494$	0.77	0.74	0.68	
BP07 $=$ SN 7407	0.18	0.17	0.18	$13 P 9.5=8 N 7495$	0.7%	0.74	0.68	
BP08 $=$ SN740x	0.18	0.17	0.18		$0 \cdot 77$	0.74	0.68	
BP09 = 9N7404	0.18	0.17	0.16	$\mathrm{BP} 100=\mathrm{SN} 7+100$	1.75	1.85	1.55	
\#P10 $=$ SNT410	0.15	0.14	0.12	BP104 $=$ SN:4104	0.97	0.94	0.88	
BP13=8N7413	0.28	0.28	0.24		0.97	0.94	0-88	
BP16=8Ni414	0.43	0.40	0.38	131107 $=$ SN74107	0.40	0.38	0.36	
	0.43	0.40	0.38	$13 \mathrm{P} 110=8 \mathrm{SN}+110$	0.55	0.53	0.50	
BP20 $=8 \mathrm{SN} 4 \geq 0$	0.15	0.14	$0 \cdot 12$	$\\| \mathrm{P} 111=\mathrm{SNT}+111$	1.25	1.15	1.00	
13P30 $=$ SN 7430	0.15	0.14	0.12	BP118 = NNTH118	1.00	0.95	$0 \cdot 80$	
3P40=8N7440	0.15	0.14	0.12	HP119 = SN- 4119	1.35	1.25	1.10	
$8 \mathrm{P} 41=8 \mathrm{ST} 4.1$	0.87	0.64	0.58	HP121 $=8 \times 12121$	0.67	0.84	0.58	
3P42-8N 74.4	0.87	0.84	0.58	BP141 SN7414	0.87	0.64	0.58	
$\mathrm{BP} 43=\mathrm{SN} \times 443$	1.95	1.85	1.75	BP140 $=8 \mathrm{~N} 14140$	1.50	1.40	1.30	
BP44 $=8 \mathrm{~S} 7444$	1.85	1.85	1.75	B1'50=SN74.50	1.80	1.70	1.60	
(3P45 = SN 3 44	1.95	1.85	1.75		1.00	0.95	0.90	
HP4b=8N7446	0.97	0.94	0.88	$13 \mathrm{PI} 53=\mathrm{SN} 7+1.53$	1.20	1.10	0.95	
	0.87	0.94	0.88		1.80	1.70	1.60	
$\mathrm{BP} 48=8 \mathrm{~S} 7448$	0.87	0.94	0.88	B1'15. $=$ SN74 15	1.40	1.30	1.20	
BPJO $=$ SN 7450	0.15	0.14	0.12		1.40	1.30	1.20	
	0.15	$0 \cdot 14$	0.12	13P160 = SNitico	1.80	1.70	$1 \cdot 60$	
ВP53 $=9 \mathrm{~N} 7453$	0.15	0.14	0.12	BP1til $=$ NN ${ }^{-7}+161$	1.80	1.70	1.60	
	0.15	0.14	0.12	$13 P 164=8574164$	2.00	1.90	1.80	
$\mathrm{BP} 60=8 \mathrm{~S} 7460$	0.15	0.14*	0.12	BP16\% = AN +16.9	2.00	1.80	1.80	
BP\%0=SN7470	0.29	0.26	0.24		2.75	2.80	2.40	
$\mathrm{BP7} 2=8 \mathrm{~S} 7472$	0.29	$0 \cdot 26$	0.24		0.97	0.94	0.88	
$1 \mathrm{PP73}=\mathrm{SN} 7473$	0.37	0.35	0.32	13P190 $=8 \mathrm{SN}+190$	3-50	3.25	3.00	
HP74 = 8N74 ${ }^{\text {a }}$	0.37	$0-35$	0.32	13P191=SNT+191	3 -50	$3 \cdot 25$	3.00	
BP75 $=$ SN 7475	0.47	0.45	0.42	$13 \mathrm{P} 102=8 \mathrm{NT}^{\text {+ }} 192$	2.10	1.95	1.75	
BP76 $=8 \mathrm{~N} 747 \mathrm{it}$	0.43	0.40	0.38	13P193 $=$ SNi +193	2.10	1.95	1.75	
BP80 $=8 \mathrm{~N}^{7} 480$	0.67	0.64	0.58	BP12.j = SN 7419.5	1.10	1.05	0.95	
$\because \mathrm{P81}=\mathrm{SN} 7481$	0.87	0.94	0.88	$13 P 146=8 N T 4196$	1.80	1.70	1.80	
BP82 $=$ SN 748.	0.97	0.94	0.88	BP197 131198 S S	1.80 $5-50$	1.70 5.00	1.80 4.00	
BP83 $=5 N 7483$	$1 \cdot 10$	1.05	0.85	13P199 = 8 \% 4194	5.50	5.00	4.00	
PRICE-MIX. levicen may be mixed lo wality fol drantits prices.								
PRICES for ghantities in excess of 000 preces thixen, whapplication.								

LINEAR I.C'S FULL SPEC.

Type No.
$2420-94100$
BP TOM GL-01C
BP 703C- $\mathrm{CL} 70: 4$
BP 702 - 2 ZTOL
BP 709-72709
3P 709r-
$\begin{array}{ll}\mathrm{BP} 710 & 72710\end{array}$
BP $741-72741$
1 A 703 C MA703C
TAA 56
TAA 293

3.(9.8 E 1000 29.89 170p 158p 150p
 NUMERICAL INDICATOR TUBES

MODFil.	Colit	(:R115	301.5 F	All indicatur $0.9+$ Decimal print: All side -iewing: Full data for all types a wailable on requat
Anode voltage (Fite)	170 min	175.414	Smin	
('athode current (m,)	$2 \cdot 3$	14	8	
Nunneral height (1um)	16	13	9	
Tulse height (min)	47	32	23	
Tube diameter (man)	19	13	12 wide	
I.C. Iriwer rec.	$\underset{1+1}{13 P+1} \text { or }$	$\begin{gathered} \mathrm{BP}^{4} 41 \text { or } \\ 141 \end{gathered}$	BP4 7	
Price each	\&1-70	¢1.55	\$1.90	

NOW OPEN

BI-PAK'S NEW COMPONENT SHOP
A wide range of all types of electronic components and equipment available at competitive price
I8 BALDOCK ST. (A|0) WARE, HERTS
OPEN 9.15-6 MONS. to SATS. FRIDAYS UNTIL 8 p.m.

BI-PAK DO IT AGAIN!
50W pk 25W (RMS)
0.1% DISTORTION!
HI-FI AUDIO AMPLIFIER
THE AL50
$\star \begin{aligned} & \text { Freguen } \\ & \\ & 100,000\end{aligned}$
ONLY

* pipiturt
£3.25p each

* supply volage 10 an rort.

Tailor made to the mont atringent mpecitications baing top fuality emponenter and incorporating the latest solid state circuitry and ALSO wa conceived to fill the need
for all your A.F amplification nedis. FULLY BDILT-TE8TED-GUARANTEED.

STABILISED POWER MODULE

AP80 in egpectaily degigned to power 2 of the ALjo Ampliners, up to lis watt (r.men, wer channel, simultaneourly. This module embodies the lateft componente and of the Mains Transformer MT80, the unit will provile outputa of up to $1 \cdot \mathrm{~J}$ anipa 35 volts. Slze $63 \mathrm{~mm} \times 10 \mathrm{~mm} \times 30 \mathrm{~mm}$.
These units enable son to buill Audio symtem of the highest quality at a hithertu unobtanabie price. Also ideal for many other applications including:- Disco Systems, F'ublic Address, Interchu I'nits, etc. Handhook avallable, 101

STABILISED POWER MODULE SPM80 £2.95
TRAN5FORMER BMT80 £1.95 p. \& p. 25p SPECIAL COMPLETE SET COMPRISING

2 ALSO's, 1 SPMBO \& 1 BMTBO. ONLY £ 11 FREEP. \& P.

DTL AND TTL INTEGRATED CIRCUITS

Sanniacturers" "Ftall outs"- out of spec, devices including functional whits and part function but classed as out of gper. from the mannfacturera' 'ers rigit specificaPak No.
$1 \mathrm{TC930}$
11693
1169
11093
1109
1109
1169
1169

All prices quioted in new pence Giro No. 388-7006
P̈loase send all orders direct to warehouse and despatch dopartmant

P.O. BOX 6, WARE HERTS

Postage and packing add 7 p . Overseas add extra for airmall. Minimum order 50 p. Gash with order please.
Guaranteed Satisfaction or Money Bach

9s pk
 quite simply - the best

RESISTORS

FULL RANGE OF ISKRA CARBON FILM RESISTORS

IW (range 4.7 ohms to 470K) WW and $\frac{1}{2} W$ (range 47 ohms to $10 \mathrm{Megs})$ \qquad Ip each $10 \mathrm{Meg})$ 2p each
10 Meg 1p Meg
lskra Miniature High Stability carbon Film Resistors with negligible noise factor.
All Resistors $=5$ per cent (except values over 4.7 Megs). These Resistors are even lower in price than most lo per cent

PRE-SET POTENTIOMETERS

Standard values of pre-sets from 100 ohms to 5 Meg -
Standard/miniature...... 7p each Sub-miniature.......... 5p each
SIEMENS PROFESSIONAL CAPACITORS

POLYCARBONATE AND POLYESTER			ELECTROLYTIC		
Voltage	Capacitance	Price	Voltage	Capacitance	Price
100V	$0.1 \mu \mathrm{~F}$	6p	IoV	$22 \mu \mathrm{~F}$	7p
100 V	$0.15 \mu \mathrm{~F}$	6p	IOV	$470 \mu \mathrm{~F}$	$11 p$
100 V	$0.22 \mu \mathrm{~F}$	6p	16 V	$47 \mu \mathrm{~F}$	$7 p$
100V	$0.33 \mu \mathrm{~F}$	9p	25 V	$10 \mu \mathrm{~F}$	7p
100 V	$0.47 \mu \mathrm{~F}$	$10 p$	25 V	$100 \mu \mathrm{~F}$	9p
100 V	$0.68 \mu \mathrm{~F}$	15p	25 V	$220 \mu \mathrm{~F}$	$11 p$
			25 V	470 $\mu \mathrm{F}$	14p
250 V	$0.01 \mu \mathrm{~F}$	5p	25 V	1,000 HF	22p
250 V	$0.015 \mu \mathrm{~F}$	$5 p$	$25 V$	2,200 1 F	42p
250 V	$0.022 \mu \mathrm{~F}$	5p	35 V	4.7 $\mu \mathrm{F}$	$7 p$
250 V	$0.033 \mu \mathrm{~F}$	6p	35 V	$220 \mu \mathrm{~F}$	$14 p$
250 V	$0.047 \mu \mathrm{~F}$	6 p	100 V	$10 \mu \mathrm{~F}$	${ }^{8 p}$
250 V	$0.068 \mu \mathrm{~F}$	$6 p$	100 V	$22 \mu \mathrm{~F}$	9 p
250 V	$0.1 \mu \mathrm{~F}$	6 p	100 V	$47 \mu \mathrm{~F}$	$14 p$

SPECIAL INTRODUCTORY OFFER

FREE
with all orders value 65 or free one GSPK P.C. Kit for making your own printed circuits (normal retail price $£ 1.95$).
 Hurry! Offer volid for limited period only.

SEMICONDUCTORS

NUMEROUS OTHER ITEMS AVAILABLE INCLUDE:
Switches, Comprehensive range of N.S.F. Toggle switches and Rotary Wafer switch kits (to enable you to make vour own switch to your own specifica-
\qquad Copper lami
Cirevit boards. Modulas.
Freezer and Cleaner aerosol sprays
Jack plugt and sockets.
Variety of speciality produces
All orders value 62 or over post free. Other orders please add 10 p P. \& P
We only sell new products-do not confuse with "seconds" or surplus stock. Because of our

To GSPK (Sales) Limited
Dept. P.E., Head Office, Hookstone Park, Marrogate, Yorkshire MG2 7BU ALL
CALIERS
WELCOME
Please fill in the coupon and send with 10 (refundable on ordering) for catalogue
Name
Address
MON. TO FRI
9.5 .00
P.E.

TRANSFORMERS

MAINS ISOLATING SERIES
Primary 200-250 Volte Secondary 140 Volts Centre
ALSO AVAILABLE WITH $115 / 120 V$ SEC. WINDING Ref. VA Weight size

TOTALLY ENCLOSED II5V AUTO TRANSFORMERS
mains lead and thall $115 V^{2}$
Also available a 20 Wate version. E1.67. P \& $\dot{P} 22 \mathrm{p}$.
LOW VOLTAGE SERIES (ISOLATED)
PhimAnr 200-250 VOLTS 12 AND/OR 24 VOLT RANGE Ref. Amps. Weight Size cm. Secondory Windings
 2131.
71
18
70
70
108
72
17
175
187
226

Ref.
No.
112
79
3
20
21
51
117
88
89
Ref. Amps. Weight
 c
1.01
1.35
2.01
2.48
2.94
3.66
4.36
5.64 P
p
22
36
36
42
52
52
52
67
67
30 VOLT RANGE

$p 0$
30
36
42
52
52
67
97
97
Ref.

125
123
120
122
Ref. Amps. Weight BATTERY CHARGER TYPES

Ref No. 45

No.
45
5
146
140
50

$$
\begin{aligned}
& 50 \quad 12.5 \text { II } 1413.3 \times 10.8 \times 121 \\
& \text { Alt ratings are continuous. Standard construction: open with solder } \\
& \text { tass and wax imoregnation. Fonelosed stylestion }
\end{aligned}
$$

npregnation. Enclosed styles to order

BC107/108/1099.0p each | 2N 3055 68p each AD 161/162 60ppair
$25+7 p$
$100+6.5 p$
$500+6 p$
Minimum order 10
pieces this range.

2N 3055 68p each	AD $161 / 162$ 60p pair
+ mica and bushes	+ mica and bushes
$25+55 p$	$25+55 p$
$100+45 p$	$100+550$
$500+40 p$	$500+$
	$1000+$
	$40 p$

AVOMETERS • MAINS KEYNECTOR ELECTROSIL RESISTORS

CARRIAGE VIA BRE
BABTiE alectronics
11 MOSCOW ROAD. QUEENSWAY LONDON W2 4AH Tel:01-229 6681/2
ne Arest tube stations bavswater, queenswar

Build yourselfa TRANSISTOR RADIO NEW! ROAMER 10 WITH VHF INCLUDING AIRCRAFT
 10 TRARSISTORS. 9 TURABLE WAVEBANDS, MW1, MWR, LW, SW1, SW2, SW3, TRAWLER BAND, VEF AND LOCAL STATIONS AND AIRCRAFT BAND.
 Built-in ferrite rod aerial for MW/LW, Retractable, chrome plated telegcopic aerial, for peak short wave and VHF listening. Push-pull output using 600 mW transistors. Car Aersal and tape record sockets. Switched earpiece socket complete with earpiece. 10 transistors plus 3 diodes. $8^{*} \times 22^{\prime *}$ speaker. Air spaced ganged tuning condenser with VHF section. Volume/on/off, wave clange and tone controls. Attractive case in black with silver blocking. Size $9 \mathrm{in} \times 7 \mathrm{in} \times 4 \mathrm{ir}$
 Easy to follow instructions and diagrams. Parts price list and casy tumbd tilans 30p (FREF with parts). SEVEN Mk. IV TUNABLE WAVEBANDS: MW1, MWQ, LW, SWI, SW2, 8W3 BAND. Extra BAND Luxembonrg, etc. provit-in ferriter rod aerial for MW and 1,W. Retractable 4 section 24 ial chrome plated telescopic aerial for $A W$. Socket for car aerial. Powerful push-pull ontput. $\overline{7}$ transistors and ${ }^{2}$ Itorlen. speaker. Air spaved ganged tuning condenser. folume/on/off, tuning and wave change controls. Folune/on/off, tuning and wave change controls. ittractive case with carrying handle. Size 9 in \times zin x Atractive cake with carrying handle. Size 9 in \times in \times tin anprov. Eawy to follow instruct ions and liagrama. Parts pride list and casy buidd Hans lop (FREEF with partg). Farpuce with plug and wwitched socket for
 BUILDING COSTS L- ${ }^{-1}$ (OYERSEAS
 total building costs
 P.P. \& INS. 50 p (OVERSEAS P. \& P. EI)
 ROAMER EIGHT
 Mk. I
 NOW WITH TONE
 CONTROL
 SWO SWB AND TBAWLED: MW1, MW2, LW, SW2. aerial for $M W$ and $L W$. Retractable chrome plated tele acopic actial for short waves. Push-pull output using 600mb transistors. (ar arerial and tape record aockrts. with ealpiece. 8 transistors glus a dioles. 8^{*} at tolumefon/onf, tumink. wave change and tone controls Attractive case in rich chestmut whade with kohl bloching. size gin $\times 7$ in \times din appron. Easy to follow ingtructions ath diagraus. Parts price list and eas TOTAL BUILDING COSTS $56-9\} \begin{aligned} & \text { P. P. \& (OVERSAS } \\ & \text { P. P. GI) }\end{aligned}$

TRANSONA FIVE
 5 TRANSISTORS AND 2 DIODES

3 TUNABLE WAVE BANDS: MW, LW AND TRAWLER BAND. $7^{\text {stage }}$ transistors and 2 dioden, ferrite hoving coil speaher. Attractive cantrol, fine tone spenker grille. Size $6 j_{12} \times 4 \frac{1}{1}$ in \times lifin. Easy build plans and parts price list 10 F (FRFE with parta). Earpiece with plug and switcherl sucket for private listening 30p extra.

TOTAL
OTAL $E ?$ ES \(\begin{aligned} \& P. P. EINS. 22
\& (OVERSEAS\end{aligned}\)
UILDING COSTS E 2 (P. P P. 63p)

POCKET FIVE

3 TUNABLE WAVE
TRAWLER
MW BAND FOR EASIER TUNING OF LUXEMBOURG, ETC. 7 Htakes $-\bar{z}$ transistors and 2 diodes. Bleaker. Attractive blach and gold case. Size is in x
 switchea socket for private listening 301 , extra.

TOTAL
BUILDING COSTS ㄷㄴㄴ
OVERSEAS 21 P. 8 P. 63p)

NEW! "EDU-KIT"

BUILD RADIOS. AMPLIFIERS, ETC., FROM EASY STAGE DIAGRAME. FIVE ONTTS INCLOD INGMASTER UNIT TO CONSTRUCT. Component include: Tuning Condenser: 2 Volume Controls: Slider Switches: 4 " 2 " Speaker: Terminal Strip Fersite Rod Aerial: 3 Mlugs and Sockets: Batter Clips: 4 Tag Boardid Balanced Armature Unit 10 Transistors: 4 Diodes: Resis Knobs. | Knobs. |
| :--- |
| Unita | Units once constructed are dethem to be atored for future use Ideal for Schools, Educational Authorities and all those intereated in

radio constriction

P.P. INS. 31 p (OVERSEAS P. PP. (1)

[^1]
RADIO EXCHANGE LTD

61 HIGH STREET, BEDFORD.
Tel. 023452367
I enclose $£ \quad$ please send items marked

ROAMER TEN	\square	ROAMER SEVEN	\square
ROAMER EIGHT	\square	TRANS EIGHT	\square
TRANSONA FIVE	\square	ROAMER SIX	\square
POCKET FIVE	\square	EDU-KIT	\square

Parts price list and plans for

Name
Address

IP
 I.L_ (Electronics) Ltd

THE HY41

The HY41 supersedes the popular HY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion (typically 0.05\% at 1 KHz into 8 ohms!) and is electronically and mechanically compatible with the HY 40.

With this important improvement the HV41 retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete power amplifier of extremely high performance sufficiently versatile to provide power not merely for $\mathrm{Hi}-\mathrm{Fi}$ but also for public address systems and industry

The free manual gives a full circuit diagram of the HY41 and its various applications including a complete stereo amplifier.

Like its predecessor the HY41 is based on conventional and proven circuit techniques developed over recent years.

OUTPUT POWER: British Rating 40 WATTS PEAK, 20 watts
R.M.S. continuous

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than 0.15\% (typical 0.05\%)
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{db}$.
SUPPLY VOLTAGE: +22.5 vol Is D.C.
SUPPLY CURRENT: 0.8 amps maximum
PrilCE: inc comprehensive manual, P.C. board, five extra components and P. \& P.:MONO: $£ 4.90$

UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid preamplifier to contain all feedback and equalization networks within an integrated pre-amplifier circuit.

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection.

Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing it to be run off any unregulated power supply from 16-50 Volts and a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo pre-amplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.

INPUTS
Magnetic Pick-up (within $\pm 1 \mathrm{db} R$ R AA curve) - $2 \mathrm{mV} .47 \mathrm{~K} \Omega$

Tape Replay Iexternal components to suit head). $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up (equalized and compen-
satable) $20-2000 \mathrm{mV}$. variabie.
Tuner (flat) 250 mV . $100 \mathrm{~K} \Omega$
Auxiliary 1250 mV . $47 \mathrm{~K} \Omega$
Auxiliary $22-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

OUTPUTS
Main Pre-amp output 500 mV . Direct tape output 120 mV .

ACTIVE TONE CONTROLS (Bexendall) Treble $\pm 12 \mathrm{db}$.
Bass + -12 db .
INTERNAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier.
SUPPLY VOLTAGE
16-50 volts
PRICE: MONO: $£ 3.60$
STEREO: $£ 7.20$

POWER SUPPLY PSU45

The versattle P.S.U. 45 is designed to supply your HY41's +HY5's in stereo or mono format.

Specification

input: 200-240 Volts
Output: ± 22.5 Volts at 2 amps
Overall Dimensions: L. $7^{\prime \prime}$; D. 3.8'; H. 3.1'
PRICE: $\mathbf{E 4 . 5 0}$ inc. P. \& P.

Editor F. E. BENNETT Assistant Editor M. A. COLWELL Editorial D. BARRINGTON G. GODBOLD S. R. LEWIS B.Sc. (Eng.)
Art Editor J. D. POUNTNEY Technical Illustrators J. A. HADLEY R. J. GOODMAN
Advertisement Manager D. W. B. TILLEARD

CONNOISSEURS AND CONSUMERS

DESPITE current technical progress, the past compels attention today, possibly more than ever before. It is significant that industrial archeology has developed into a popular study for young and old alike; while antique collecting extends beyond the fine art of painter and potter and embraces the more prosaic and practical works of engineer and craftsman as well.

Such nostalgia has not bypassed electronics. We know there are people who still cherish some early model radio, or gramophone. The characteristic materials of the 20 s and ${ }^{\circ} 30 \mathrm{~s}$, predominantly mahogany, ebonite, and brass, infused a sense of sturdy dignity and dependability into these early electronic products. Their obsolescence came about not because of any physical failure, but because technical progress passed them by.

Mass production, in all brañches of engineering, has spread benefits far and wide. But in the process, quality and substance has all too often been sacrificed. In a fast changing industry such as electronics, these effects are frequently all too apparent, especially in consumer products.

Designers of domestic entertainment equipments are without doubt fully conscious of the ephemeral nature of today's electronic circuits. This realisation coupled with strong commercial instincts makes certain that few radio and audio equipments of this decade will be around in 2000 to be proudly displayed as mementoes of the "late transistor-early i.c." period of electronic entertainment history. (Aluminium plus all the trimmings combined with teak wafers can give a cheaply splendid appearance, but not the durability of solid mahogany and brass. All this contrasts strangely with the inherent long life and reliability of most modern circuit components.)

Yet it is an inevitable result of rapid technological change that modern products should tend to have but a brief life. We are already being conditioned to accept that servicing is an uneconomical proposition for many of the cheaper "consumer products".

Small wonder therefore that in our more reflective moments we look back upon some of yesterday's technological achievements with an appreciative and even envious eye. Particularly where they well demonstrate the skills and meticulous care of some individual craftsman or engineer.

Fortunately, the craft tradition has survived mass production, and today is perpetuated in the electronics field by a host of individuals who design and build their own equipments. Who knows, posterity may well have cause to be grateful to such amateurs, and for tangible evidence of their enterprise, skill, and single minded devotion to a given task!

THIS MONTH

CONSTRUCTIONAL PROJECTS

CAMERA SHUTTER TESTER 640
I.C. OSCILLOSCOPE PRE-AMPLIFIER 654
P.E. DIGI-CAL-2 660
CALLERCORD 685
SPECIAL SERIES
ALPHA-NUMERIC DISPLAYS-6671
GENERAL FEATURES
INGENUITY UNLIMITED681
NEWS AND COMMENT
EDITORIAL 639
I.E.A. EXHIBITION 646
SPACEWATCH 650
STRICTLY INSTRUMENTAL 653
INDUSTRY NOTEBOOK 659
ELECTRONORAMA 668
PATENTS REVIEW 682
BOOK REVIEWS 691
Our September issue will be published on
Friday, August II

[^2]

WHEN an occasional shot taken with a camera turns out to be under or over exposed, this could be due to equipment error. Brand new professional cameras costing hundreds of pounds sometimes show exposure variations of as much as 30 per cent, and this figure tends to get much worse with age.

In most cases, the shutter is responsible for exposure errors. By comparison, the mechanism for setting the aperture is simpler and less prone to abuse.

MEASURING SHUTTER SPEED

Camera shutters are normally calibrated in fractions of a second, with the one omitted, thus $1 / 25$ second is shown as 25 and is equivalent to a decimal time of 40 milliseconds ($1.000 / 25$). Camera shutter testers are calibrated in milliseconds, matinly because this can easily be shown on a linear meter scale. and the operator quickly learns to convert the reading into fractions, or refers to a simple conversion chart. The rage of shutter speeds covered by most medium price cameras is 1 second to $1 / 1,000$ second.

To measure shutter speed, a light beam is shone through the camera lens on to a photocell positioned
close to the film plane, and at slow shutter speeds the output is a rectangular shaped pulse, Fig. la, which has a width identical to effective shutter speed.

At fast speeds, however, the time taken by the shutter to open and close becomes significant, giving the pulse a taper, as shown in Fig. Ib. As long as this fast pulse has a linear rise and fall, and is symmetrical, the mid-point pulse width will be a true measure of effective shutter speed, but shutters are far from linear, and sometimes take longer to open than to close, or vice versa.

PULSE SHAPE DISTORTION

A factor often overlooked is pulse shape distortion caused by the slow response and non-linearity of ordinary photodevices. A representative modern silicon phototransistor has a logarithmic type response to light intensity and a rise time of as much as 250 microseconds, which alters the true pulse shape to something like that shown in Fig. Ic.

On the other hand, if the phototransistor is operated so that it becomes saturated with light before the shutter is fully open, this could make pulse rise and fall times much steeper than they should be, as in Fig. Id.

At fast shutter speeds, therefore, considerable distortion of the shutter pulse shape can occur, and the accuracy of the shutter tester will then depend mainly on the characteristics and operating mode of the photodevice than on the timing circuit which follows it.

Of course, a film responds not to the width of the shutter pulse but to its area, and integrates the light on an intensity time basis, see Fig. 1e. A result quite close to true shutter speed can be obtained by just saturating a phototransistor so that rise and fall times are slightly steeper than they should be. and then measuring the area of the pulse above midpoint with an electronic integrator, Fig. If. This is the system used here, and it caters for slow as well as fast shutter pulses.

FOCAL PLANE SHUTTER MEASUREMENT

Yet another problem can occur in the measurement of focal plane shutter speeds, where a slit in a roller blind travels across the surface of the film. At fast speeds this slit may be more than one or two millimetres wide, and the time required to be checked is how long light shines on a microscopically small spot on the film, rather than how long it
remains on the larger sensitive area of a phototransistor.
If the width of the photosensitive area is the same as the width of the focal plane slit, the shutter tester will record a time of 50 per cent greater than the actual speed. The answer here is to place a slit of about 0.5 mm between the shutter and the phototransistor, exactly parallel to the slit in the blind. but this will, of course, reduce sensitivity.

Although some professional camera testing stations claim a measurement error of one or two per cent, with the aid of digital time meters, this is seldom realised in practice, certainly at fast shutter speeds, because of the problems outlined above. It was felt threfore that an error of ± 5 per cent for the timing circuit would be more than adequate.

BASIC CIRCUIT

The shutter tester uses an i.c. operational amplifier integrator to cover shutter speeds from 10 seconds to less than $1 / 1000$ second, and can be calibrated with nothing more than a stopwatch or clock with a sweep second hand.

Readout is with a moving coil meter calibrated $0-3$ and $0-10$, with full scale coverage of 10 seconds

Fig. 2. Basic circuit principles of the tester
to 3 milliseconds in eight steps, with an additional switch position for aligning a lamp with the phototransistor.

Fig. 2 shows the basic circuit of the shutter tester. Phototransistor TR1 develops a negative going pulse at its collector when the shutter is operated, and this is fed via diode D1 and input resistor R2 to the inverting input of the operational amplifier. Capacitor Cl charges linearly when TRI collector drops below 0 V ; the circuit therefore measures the area of that part of the pulse between 0 V and the combined saturation voltage of TR1 and D1 (about -7 V).

Diode D1 isolates the integrator input after an input pulse, leaving a charge on C1 which is proportional to shutter time. If C1 is made greater than, say, $10 \mu \mathrm{~F}$ the charge will be retained for many minutes, long enough for the voltmeter to "hold" its reading after the shutter has been operated.
The circuit in Fig. 2 can accommodate a wide range of shutter speeds by means of switched values of input resistor R2.

TIMING CIRCUIT

The complete timing circuit of the shutter tester is shown in Fig. 3. The light probe is connected via SK1, with R1 acting as the "collector" load resistor. Resistors R3 to R10 provide the integrator time ranges; switch position "B" places a feedback resistor R12 across integrating capacitor Cl , to convert the integrator to a linear amplifier with a gain of less than unity.
Resistor $\mathbf{R} 2$ is selected to give approximately half scale deflection of meter ME1 when the phototransistor is saturated with light. The diode D2 prevents a reverse voltage being developed across the meter in the absence of illumination. Thus, with SI in the " B " position, and the camera shutter held open, a lamp in front of the camera can be aligned so as just to saturate the phototransistor by observing the meter reading.
The integrated circuit IC1 is a type 741 operational amplifier with internal frequency compensa-

Fig. 4. The components assembled on 0.1 in matrix board with the copper strip side shown below

Fig. 5. The component assembly board (dotted) mounted in the box with the other controls and components

Rear view of front panel with circuit board mounted

COMPONENTS . . .

```
Resistors
\begin{tabular}{|c|c|c|c|}
\hline *R1 & \(1 \mathrm{k} \Omega\) & R8 & \(3.3 \mathrm{k} \Omega\) \\
\hline *R2 & \(47 \mathrm{k} \Omega\) & R9 & \(1 \mathrm{k} \Omega\) \\
\hline R3 & \(1 \mathrm{M} \Omega\) & R10 & \(330 \Omega\) \\
\hline R4 & \(330 \mathrm{k} \Omega\) & *R11 & 10kS \\
\hline R5 & \(100 \mathrm{k} \Omega\) & *R12 & 10k \(\Omega\) \\
\hline R6 & \(33 \mathrm{k} \Omega\) & *R13 & \(1 \mathrm{k} \Omega\) \\
\hline R7 & \(10 \mathrm{k} \Omega\) & *R14 & \(4.7 \mathrm{k} \Omega\) \\
\hline
\end{tabular}
All metal oxide types \(-2 \%, \frac{1}{2} \mathrm{~W}\) except where asterisk shown for carbon \(=10 \%, \frac{1}{4} W\)
```


Potentiometers

```
VR1 \(10 \mathrm{k} \Omega \mathrm{min}\) skeleton preset
VR2 \(100 \mathrm{k} \Omega \mathrm{min}\) skeleton preset
```


Capacitor

C1 $22 \mu \mathrm{~F}$ tantalum 16 V

Integrated circuit

IC1 741 OPA or equivalent 741 type
Transistors
TR1 P21 silicon phototransistor (Bi-Pak)
TR2 BC108
Diodes
D1, D2 OA202

Meter

ME1 100μ A moving coil

Switches

S1 Single-pole 12 way wafer
S2 Single-pole on-off miniature push button
S3 Double-pole changeover slide switch

Socket and plug

SK1, PL1 Non-reversible, two way

Batteries

B1, B2, PP3

Miscellaneous

Veroboard $2.5 \mathrm{in} \times 1.2 \mathrm{in}, 0.1$ in matrix Screw top container with extra tops Metal or plastics box $4 \mathrm{in} \times 4 \mathrm{in} \times 3$ in Single core insulated wire
Knob with pointer

tion and output short circuit protection. Offset compensation, to reduce drift when the circuit is "holding" a reading, is provided by VRI. The output potentiometer VR2 serves to calibrate the instrument by adjusting the sensitivity of MEI. The circuit is reset to zero when S 2 is closed so discharging Cl via R13.

LIGHT PROBE

The light probe circuit in Fig. 3 employs a silicon phototransistor in conjunction with an npn transistor to form a sensor of high sensitivity with rise time improved by the presence of R14. Photo-Darlington sensors of similar circuit configuration, but with both devices contained in a single package, unfortunately do not allow the use of a resistor between the base and emitter of TR2, and hence suffer from a slow rise time.

CONSTRUCTION

The shutter tester timing circuit can be housed in a small plastics box or instrument case measuring approximately 4 in $\times 4$ in $\times 3$ in deep. Components inside the dotted line in circuit Fig. 2 are mounted on a $2 \cdot \sin \times 1 \cdot 2$ in piece of $0 \cdot 1$ in matrix Veroboard. The layout in Fig. 4 shows that the board is small enough to be held in position and supported by its non-flexible wire leads.

Fig. 5 gives the layout and wiring of controls and meter, but this may differ depending on the shape
of the box and type and size of meter used. Batteries B1 and B2 can be held in position with metal clips or wide sticky tape.

The light probe has to be a snug and accurate fit, as close to the film plane as possible, on the back of cameras of widely differing formats; this was achieved with the prototype by housing light probe components in a cylindrical container such as a 35 mm film can provided with several screw tops, see Fig. 6. Each screw top has a slit cut with a fine sawblade, and is glued to an individual plate of laminated plastics or s.r.b.p.

The plate has a circular hole cut in its centre, slightly smaller than the screw top diameter, and is tailored to fit the film guide channels of a particular format. If it is desired to measure the shutter speeds of very small cameras, below 35 mm , then TR2 and R14 can be positioned beneath TRI inside, say, a cigar or pill container.

When gluing a screw top to a plate, care should be taken to align the slit at right angles to the film guides, to match the slit in the focal plane shutter. Orientation of the slit is unimportant with leaf shutters.

CALIBRATING THE SHUTTER TESTER

Connect the light probe to the timing circuit, set SI to "B" and switch on. Remove the light probe screw top and shine a torch on TRI lens, then adjust VR2 for approximately half scale deflection.

Light probe showing slit for use with focal plane shutters

Now place a camera on a table top, where it cannot slide about, and with the light probe attached to the back with rubber bands. Set the camera shutter to " B " and hold the shutter open with a cable relcase. The iris should be at full aperture.

With S! at "B." switch on the shutter tester and place a lighted torch on the table at about the same height as the camera lens. Move the torch around until the tester meter reads.

The correct torch position is where the meter just attains its maximum reading. This can be checked by closing down the camera aperture one or two stops. whereupon the meter reading should fall. Return the iris to full aperture.

With the torch still in position, the shutter tester can now be calibrated with the aid of a stop watch or clock with a large sweep second hand. Release the camera shutter and wind on, taking care not to move the camera, and set Sl to 10 seconds. Press S2 and adjust VRI for zero drift over one or two minutes.

Now open the shutter for exactly 10 seconds, and then adjust VR2 for a reading of 10 . If an oscilloscope is available. with single shot facility, this can be connected across SKI to verify timing at fast speeds, but the above procedure should serve for calibration if carried out with care.

To measure camera shutter speed, align the torch as above, set $S 1$ to the appropriate timing range, press S2, and operate the shutter. The meter will register shutter speed in milliseconds or seconds. $\quad \star$

Why wait weeks?
-ALL OUR ORDERS DISPATCHED BY RETURN OF POST!
Transistors, Diodes
and Integrated Circuits

POSTAGE AND PACKING
PLEASE ADD $10 p$ TO YOUR ORDER

Instruments Electronics Automation

IN last month's Industry Notebook, our contributor Nexus highlighted a trend towards smaller specialist exhibitions. Regular tourists of large scale exhibitions like the I.E.A. and the Components Show will welcome the trend, if only to reduce the route march of three halls to the convivial gathering of smaller select shows.

Another increasing trend is towards private shows mounted by individual companies in hotel suites simultaneous with a large exhibition elsewhere. One can look upon this as a snub to big exhibition organisers such as Industrial Exhibition L.td. (the organisers of I.E.A. among many others), but the hard facts are that people tire of aching feet, buying poor quality refreshment, and often steaming in the glasshouse of Olympia.
The lower attendance forecasted may have been the result of absentee companies or the aforemention observations. Whatever the reason, it is sad that the expanding publicity business is unable to lift the electronics industry out of an Olympian rut, although Evan Steadman and Co. did try in the right direction.

DEMISE OF THE TRANSISTOR IF...

Of the exhibits at I.E.A., we were promised great things; results of dormant research held up by economic climates; new innovations and techniques. There were several new items, or should we say variations of the old. One cannot expect miracles overnight but there were signs that electronics generally is entering a new phase forecasted about five years ago but it is painfully slow.
Mullard fast memory type F1-75 which has a cycle time of 750 ns and an access time of less than 300 ns

Under the current vogue umbrella title of "technology" we may see the demise of the transistor as a discrete component, but only if industry rationalises extensively its integrated circuit equipment design and manufacturing process.
Secondly, the foundation of modern electronics manufacturing, whether in i.c.s or discrete components, is the etched printed circuit assembly. This is the most significant product, which has been quietly growing up, to strike the electronics industry as a whole since the transistor was invented.

STANDARD PRINTED CIRCUIT SYSTEMS

The manufacturing of one-off or small batch p.c.b.s for development applications can be expensive because of the high cost of capital equipment, precision work, and the setting up of automated equipment for multi-hole drilling.

The bug-bear of the p.c.b. manufacturer is the constant retooling procedures for different designs. Standard hole arrangements on a regular matrix go a long way towards avoiding such problems and DIL i.c. type packages have proved to be ideal for this arrangement.
Some work has been done to standardise p.c.b.s for integrated circuits, but when looking at a cabinet of finished electronic equipment, the individual circuit cards are often tailored to the separate circuit designs. Although discrete components are still often necessary with the i.c.s the standardised i.c. printed circuit card so far available has been inadequate.

DIL PACKAGING

Considering now the dual-in-line packaging technique, the function of all semiconductors, resistors and capacitors can all be incorporated in identical small packages. Added to these we can now include the light-emitting diode display devices now in profusion, some already housed in DIL packages.
Almost all electronic circuits can be packaged in dual-in-line i.c. form (now even relays) mounted on a standardised d.i.p. printed circuit board with sufficient facility for, say, decoupling components, coils; and transformers, and an occasional preset potentiometer. We have such techniques now but there are limitations, seemingly because of the reluctance of many equipment manufacturers to depart from established methods.
Look at the photograph of the new Mullard fast memory type FI-75. This memory has a capacity of 4,180 bits. The control board below can control eight memories. There are several i.c.s scattered on
the two boards, but there are also several discrete components-a considerable assembly and wiring task.

INTEGRATED CIRCUITS

Mullard (among others) are still producing several new electrolytic capacitors, transistors and diodes and one wonders whether the possible range of semiconductor performance parameters must be fast approaching saturation point.

To their credit the new MSI series coded FJB9300 onward looks like a step in the right direction. This series contains 59 TTL circuits that have been selected to satisfy the future needs for medium-speed circuits with complex functions. This is fine for digital techniques, but the needs of linear circuit designers are much more diverse and could be satisfied given a similar approach.
Specially designed MOS integrated circuits are largely responsible for the reduction in size and cost of calculators to pocket proportions, such as that shown by Hewlett-Packard. One example is the Siemens picture showing an MOS i.c. before case moulding.
There is an apparent future in MOS techniques as illustrated by Siemens of West Germany who are planning large scale production of a further 50 circuit types in 1972. They are also producing the SAS560 and SAS570 switching amplifier i.c.s that will select television channels at the touch of a contact button. It is expected that these devices will bring the cost down for remote switching of common low price television receivers.
Mullard have also produced a 1024 -bit MOS random access memory; each bit is contained in a simple capacitor charge circuit with three transistor elements. These and the projected 4096 -bit version will make magnetic core memories totally redundant through cost effectiveness and size. It is confidently expected that the basic memory cell will be reduced to one capacitor element and one MOS transistor for each bit with an access time of 150 ns . Computer aided design techniques are used to produce these memories.
Current mode logic i.c.s combine high speed (around 2ns) with high fan-out capability (about 50); Mullard displayed the new GX series of gates, drivers, receivers, and latches, which could make conventional DTL and TTL gates obsolete.

HALL EFFECT RELAY

A new series of integrated circuits has been produced which is like a very fast operating relay. These devices depend on the proximity of an external magnet whose flux path is through a Hall Effect cell. The high speed switching effect operates an internal Schmitt trigger at up to 100 kHz . This breakthrough by Sprague eliminates the bounce and buffering problems of reed switches.
The output is of grounded emitter open-collector configuration for direct drive of DTL or TTL logic circuits, with current sinking of 20 mA . This device is coded ULN-3000 and is available in dual-in-line, flat-pack or single-ended package as shown in the photograph.

Whilst on the subject of DIL style packaging, reed relays are made in this form now, but a new line by $B \& R$ relays, known as the " G " range, follows 14-pin DIL connection dimensions although only two pins at each end are provided.

It is worth mentioning the very small pulse transformers Type 66 Z by Sprague that attempt to follow similar lines and are only about $\frac{5}{8}$ inch square by $\frac{3}{8}$ inch (see photograph). These transformers are available in a very wide range of lead styles, voltmicrosecond capability and turns ratio and complete specifications are available.
These are just a few areas where standardised component packages go a long way to simplify equipment design and cut manufacturing costs. We are bound to see further developments before the Components Show next May.

Almost completed MOS i.c. before encapsulation and lead trimming by Siemens

Magnetically operated Hall effect relay by Sprague

Two examples of the Sprague 66Z miniature puise transformers for printed circuit board assembly

B \& R Relays i.c.-style reed relay package

Prototype model of the Jermyn DIL i.c. clamping connector with the i.c. seated in position and shroud retainer poised ready to be fitted on the saddle

HARDWARE

Unlike the Components Show, I.E.A. does not usually display masses of hardware accessories. However, of the products on show, one of the most interesting and versatile was the Critchley 19 card frame system.
This racking or cabinet system is designed specifically for printed circuit cards which slot into plastics guide runners and plug into sockets at the rear. The essential advantage is the versatility of assembly arrangements to accept a wide range of card sizes. The assembly is very simple because the plastics guide runners can slide along a specially shaped cross-support rail.
Also on our list of hardware ideas is the Jermyn "no-socket" 14 -pin DIL contact mounting. Contact is made gently by sitting a 14 -pin DIL i.c. on the top and push-fitting a clamping shroud. By so doing the i.c. pins are gripped and contact effected through plated copper lands on the moulded plastics mounting saddle.

HIGH-DIELECTRIC CONSTANT CAPACITORS

A new material is being used by Siemens to manufacture capacitors with a dielectric constant of 50,000 . This material, titanate ceramic, will be a significant factor in reducing the bulk so far experienced for capacitors in a.f. circuits. Values up to 220 nF with base dimensions of $2.5 \mathrm{~mm} \times 5 \mathrm{~mm}$ are now available. Voltage ratings are usefully 40 V d.c.

BRITISH 'SCOPE TO CHALLENGE U.S.

A quick look round any well-equipped research or development laboratory will show the tremendous hold that America has on the instrumentation market. When it comes to high quality test equipment. particularly oscilloscopes, the first choice is often Tektronix or Hewlett-Packard, both American firms.

At long last a British firm now intends to launch a "direct attack on U.S. equipment" with the new Cossor Model 4100 oscilloscope.

With a bandwidth of 75 MHz , this model is aimed primarily at the computer and digital equipment service market. It has a bigger display than any other scope on the market-eight by ten centimetres.

The transformerless power supply type SSU 1050 from A.P.T. Electronic Industries

The cathode ray tube was speciaily chosen for its short length, Cossor being the first firm to use it.

The Sales Manager has high hopes for this instrument asserting that "with the price advantage Cossor has in this important market, there is very little that can compete directly"

GOOD DESIGN

One of the most noticeable features of modern electronic equipment is that a great deal of attention is paid to pleasing external appearance as well as to the technical efficiency of the internal apparatus.

Take, for example, the Wayne-Kerr automatic circuit tester shown in the photograph.

In its automatic mode this machine can test 30 points on a circuit board, indicating whether the voltage at each point is within preset limits or is high or low.

Although the instrument is designed to be used at the end of a production line, the case is of an extremely pleasing design. Controls are kept to the absolute minimum for ease of operation by unskilled staff, all, being brought to the neat, uncluttered control panel at the front of the instrument.

This was by no means the only example of good design in appearance as well as performance and it seems we are at the end of the era where the outer covering of apparatus is merely to keep the dust out of the works.

Automatic circuit tester type TM30 manufactured by Wayne-Kerr

TRANSFORMERLESS POWER SUPPLIES

A recent innovation which, no doubt, will soon be making its impact on the electronics industry is the transformerless power supply.

The SSU 1050 laboratory Supply Unit from A.P.T. Electronic Industries produces a fully variable output and affords the facility of either constantcurrent or constant-voltage output between 0-10 amps and 0-50 volts.

It operates by first full-wave rectifying the mains input to produce coarse d.c. then converting this into a.c. at 20 kHz . This, in turn, is full wave rectified and smoothed to give a d.c. voltage, the level of which is closely controlled by the duty cycle of the d.c. to a.c. inverter. There is a final series regulator which gives the low impedance, low ripple, stabilised d.c. output.

The elimination of the transformer means a reduction in both size and weight, and the increased performance and efficiency provides higher powers at a more economic cost.

COMPUTER AIDED GRAPHICS

The days when a company bought a computer and then looked around for something to do with it have long since passed. The modern company first employs a systems analyst to assess what type of computer, if any, is necessary to fulfil his needs then looks around for the computer best suited to his particular requirements. Manufacturers are thus confronted with building a computer system rather than just the computer itself; "software" is just as important, if not more so, than hardware.

One computer system designed to be used specifically for graphics is the CADMAC system from D-MAC. For graphics work, use of a large generalpurpose computer would mean delays which would cause unnecessary difficulties in design work. CADMAC is a fully interactive system enabling the designer to check for errors and make corrections virtually simultaneously.

The designer first makes a preliminary sketch then digitises salient coordinates on the drawing table, and enters descriptive data into the computer. The entered information is displayed simultaneously on a cathode ray tube for verification or amendment. The designer then selects which details he wants committed to permanent memory and which he

The CADMAC interactive graphics system showing drawing table with integral plotter, computer, teletype and display terminal

Practical Electronics August 1972
wants redrawn. He can then produce a hard copy of the finished drawing using the plotter which is an integral part of the drawing table.

Main areas of application for this system are in printed and integrated circuit design, civil engineering and architectural planning, plant layout, and aerospace and shipbuilding.

CASSETTE DATA HANDLING SYSTEM

Today's computers operate at such astronomical speeds that one of the biggest problems is feeding in the information at a rate sufficient to keep up with them. The standard way of entering data at the moment is through cumbersome "peripherals" which handle either punched cards or paper tape.

Now a new system has been developed which replaces these with magnetic tape contained in a compact cassette. One of these cassettes can store as much information as 2,000 punched cards and according to the makers, editing (i.e. amending a piece of information within the whole) and data retrieval are much easier. The only disadvantage of tape over punched cards would seem to be that it cannot be read without the aid of a machine as cards can. However the durability and speed of handling would seem to more than compensate for this.

The firm which developed the system, Computer Electronics Ltd., recognise that they will have a hard fight to get their product accepted since so many of the large computer firms have vested interests in mechanical data handling systems but they feel that users will see the great advantages of this low-cost, high performance cassette tape handling system.

CHANGES TO COME ?

Finally, although this year`s I.E.A. showed some trends to future electronics marketing ventures, there was a conspicuous shortage of revolutionary innovation in electronics designs, which are the usual fruits of pure research.

There was still a "Monday morning" feeling in the air after a very depressing period of financial squeeze over the past few years. Perhaps this stage of stock-taking will result more in organisational changes that would in future be better prepared to cope with credit restrictions.

The new cassette tape handling unit produced by Computer Electronics

SCIENTIFIC REWARD

A special hope of the moonquake team at Houston, Texas, was that there would be a major meteorite strike on the moon. This hope was realised on May 13, twenty-two days after the last of the four seismic stations was set up by the crew of Apollo 16.

The impact occurred at 09.49 G.M.T. and the effect of the meteorite was equal to an explosion of about 100 tons of high explosive. It should have made a crater the size of Trafalgar Square.
A meteorite of this size hits the Moon once in several years and scientists were resigned to the fact that the instruments may have ceased to work before an event took place. There was considerable excitement, therefore, at the monitoring station when the impact was recorded. It is the largest and longest impact recorded.

Information has been coming in continuously since the first station was set up by the crew of Apollo 11. This station has now ceased to function because the solar power unit no longer functions. However, the present stations continue because they have nuclear power units.

There are four such stations on the moon; one at the Ocean of Storms set up by the Apollo 12 mission; the next in the Fra Mauro area by the crew of Apollo 14; a third at the Hadley Rille by A pollo 15 ; and the fourth at the Descartes site by Apollo 16 on April 21. The Hadley Rille site is the most northern and the Descartes site the most eastern position. Because the other two sites are close together they are regarded as one.
The stations are set up in a triangular configuration with sides about one hundred kilometres in length. The sites of these stations allow accurate analysis of the data transmitted to Earth. Some of the impacts of small meteorites have been such that they have not been detected by more than one station.

APOLLO 17

The Apolio 17 moon mission is the sixth and last of the moon missions and is due to be launched on December 11, 1972. It is therefore not surprising that the choice of site has been chosen with great care. The landing site is some 20 miles south of the Taurus mountains in a valley known as Taurus Littrow. The name is derived from the Taurus mountains in the north and the Littrow crater to the south.

Observations, made by Apollo 15. show that this site is covered with cinder cones and volcanic ash. There are not many craters in the area. which indicates that those that are there are fairly recent in the 4,500 million years of the moon's existence.

BYYRANK W. HYDE

The crew for the Apollo 17 mission will be Ronald Evans, command module pilot, Eugene Cernan, mission commander and geologist Dr H. Schmitt, who will accompany the mission commander to the surface of the moon. The initial launch will take place at night and this will be the first time that astronauts have done this.

ISOTOPE POWER SOURCES

The report of the American Atomic Energy Commission contains details of progress made in the use of isotope power sources. The increasing use of these systems for experimental packs left on the moon and for future probes has brought the techniques to a high level of development.

The operation of these isotope generators makes use of the heat produced by decaying radio-isotopes. Thermo-couples, two dissimilar metals joined together, convert the heat into electricity, In these thermoelectric systems there are no moving parts and they are able to operate for long periods unattended.

Two Snap-27 isotope power sources were deployed on the moon during 1971. by the Apollo 14 and 15 missions. These two units, in addition to one placed on the moon in 1969 by A pollo /2, are providing the power for the network of scientific experiments at different locations.
The design life of each station is for one year. However, the Snap-27 set up by the Apolio 12 astronauts was still giving an output in excess of its design power of 63 watts after more than two years in operation.

Additional Snap-27 units were supplied for Apollos 16 and 17. The unit for Apollo 16 is already in operation on the moon.

Three other power units aboard vehicles launched during the 1960's continue to operate though at reduced levels of output. These are the Snap-3A, Snap-9A, and the Snap-19.

The Snap-3A is about the size of a grapefruit and was the first isotope generator to be sent into space. The other two units also have a long life; the Snap-9A launched in 1963 aboard a defence satellite, and the Snap-19 on the Nimbus /II weather satellite in April 1969.

Modified Snap-19 generators are to be used for the Jupiter fly-by in 1973. One is already operating successfully on the Pioneer fly-by launched in 1972. They will also be used in the Viking missions for the Mars landing, scheduled for 1975.

HEAT UNIT

The heat unit is a sphere of molybdenum covered plutoniumdioxide 238 particles. A cermet sphere of 1.6 inches diameter gives 100 watts. In the multi-hundred watt units a number of spheres are arranged in a cylinder with graphite lining and packing. These larger units which can reach powers of 1,000 watts are for use in the communication satellites.

Work is continuing on generators with different types of fuel, although plutonium continues to be the major choice for all future space applications. Variations of this fuel, such as plutonium-molybdenum cermet and pressed plutonium-oxide are being tested. For outputs at a slightly reduced level size for size, curium-244 is being studied as it is considerably cheaper.

SPACE REACTOR SYSTEMS

The practical approach to high power systems would seem to be by using reactors. There are two primary avenues being studied at the present time. These are the zirconium hydride reactor for powers up to 100 kW and the in-core thermionic reactor for power levels over 100 kW .

The zirconium reactor can be used with several conversion systems and is particularly useful for the units producing 30 to 40 kW . It can provide a system of an economic level that makes it well worth while for high powered unmanned satellites. A s:milar but more heavy system of reactor-thermoelectric type of unit will be considered for the manned missions of the 1980 's.
The thermionic reactor will be based on the use of fuel elements which convert heat to electricity within the reactor core. These are capable of long periods of operation and will be especially suitable for the missions to the other planets and the rendezvous with comets such as Halley's Comet. For this a launch would be required in 1983.

RST
VALVE MAIL ORDER CO. 16a WELLFIELD ROAD, LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE Express postage Ip per transistor, over ten
INTEGRATED CIRCUITS $5 p+1 p$ each added

	${ }^{19} 17$	AトZ1) ${ }^{\text {in }}$	\%vers		\%		\#y
1 N 21	0.17	AFZ12 1.00	НY\%10 0.8	$0 \mathrm{~A} \% 211$	0.82	28170	. 10
1N23	0.20	ASYO6 0.25	BYZII 0.32	OAZ222	0.45	28271	0.18
1N88	0.88	$\mathrm{ASY}^{\text {ASY }}$	BYZ1: 0.80	$0 \mathrm{AZ223}$	0.45	2,	0.25
$\begin{aligned} & \text { 1N253 } \\ & \text { IN266 } \end{aligned}$	0.60 0.60	$\begin{array}{ll}\text { ASY28 } & 0.25 \\ \text { ASY } 29 & 0.90\end{array}$	$\begin{array}{ll}\text { BYZ13 } & 0.25\end{array}$	OAZ224	0.45 0.28	2T43	0.25 0.25
1N645	0.25	AsY36 0.25	BYZİ 1.00	OAZes2	0.28	ZTX107	0.15
$1 N 726$ A	0.20	A8Y50 0.17	BYZ16 0.62	0 OR24 4	0.22	2TX108	0.12
1×914	0.07	ASY61 0.40	BYZR8C:3v3	OAZ240	0.28	2TX300	0.12
1N4007	0.20	489330	0.15	OAZ290	0.88	2TX304	0.25
18113	0.15	ASYO5 0.20	C111	0 OCl	0.50	ZTX304	0.18
$\begin{aligned} & 18130 \\ & 18131 \end{aligned}$	${ }_{0}^{0.18} 0$	$\begin{array}{ll}\text { A810 } & 0.25 \\ \text { A8Y6 } & 0.88\end{array}$	$\begin{array}{ll}\text { CRB1/02 } & 0.25 \\ \text { CRS1/40 } & 0.45\end{array}$	${ }_{\text {OC18T }}$	0.88 0.87	ZTX500 ZTX503	0.16 0.17
18202	0.28	$\begin{array}{ll}\text { AsZ21 } & 0.42\end{array}$	Cs+B ${ }^{\text {CR } 50}$	OCP^{2}	0.85	ZT×531	0.25
2G371	0.22	$\begin{array}{ll}\text { A } 4223 & 0.75\end{array}$	Cs103 8.18	$00^{2} 2$	0.50		
$2 \mathrm{GS81}$	0.25	AUY10 0.88	DD000 0.16	0 O 23	0.60	integ	ED
$2 \mathrm{Ca14}$	0.80	At101 1.60	${ }^{\text {DD0 }} 03016$	0 O 24	0.80	cIrc	
$2 \mathrm{G117}$	0.22	$\begin{array}{ll}\text { BC107 } & 0.10 \\ \text { BC104 }\end{array}$	DDowi 0.18	OC05	0.87	7400	
$\begin{aligned} & 2 N 404 \\ & 3 N 697 \end{aligned}$	0.20 0.15	BC 10 H 0.10 BC109 0.10	$\begin{array}{ll}\text { DD00' } & 0.40 \\ \text { DD00\% } & 0.88\end{array}$	Oc2	0.87 0.25	-401	0.20 0.20
2N698	0.40	13C113 0.15	$\begin{array}{ll}\text { GD3 } & 0.88\end{array}$	OC28	0.60	740	0.20
2N706	0.10	13C115 0-20	GDt 0.05	$0 \mathrm{CL}_{2} 3$	0.60	74033	0.20
2N708.	0.12	$\mathrm{BCl16} 00.25$	GD5 0.88	OC30	0.40	${ }^{\text {i }}$	0.20
2N708	0.15	BC16A 0.80	ad8 0.25	Oc35	0.40		0.20
${ }^{2} \mathbf{2 N 7 0 9}$	0.89 0.88	$\begin{array}{ll}\mathrm{BC118} \\ \mathrm{BC1} 181 & 0.25 \\ 0.20\end{array}$	${ }_{\text {aDI }}{ }_{\text {aET10\% }} 00.05$	OC35	0.50 0.80	- 7404	0.30 0.30
$\begin{aligned} & \text { 2N1091 } \\ & \text { 2N1131 } \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.25 \end{aligned}$	$\mathrm{BC121}$ 0.20 BC122 0.20 0	$\begin{array}{ll}\text { (EET103 } & 0.80 \\ \text { HET103 } & 0.82\end{array}$	0 C 36 0 C 41	0.80 0.25	1404 -404	0.30 0.20
2 NH 132	0.25	BC125 0.68	GET113 0.20	Oct	0.80	- 409	0.45
2N1302	0.18	BC126 0.6S	GETIL 0.15	0 C 4	0.40	74111	0.20
${ }^{2} \mathrm{~N} 1303$	0.18	BC140 0.65	(iET115 0.46	OC4 4	0.17	7411	0.28
2N1304	0.28	$\begin{array}{ll}\mathrm{BCC} 14 & 0.15\end{array}$	GET116 0-80	0 Cts	0.17	7413	0.42 0.30
2N1305	0.22	$\begin{array}{ll}\text { HC148 } & 0.13\end{array}$	(1ET120 0.25	0 Cls	0.12	7 713	0.30 0.30
${ }^{2} \mathbf{N 1 3 0 6}$	0.25	$\begin{array}{ll}\text { 13C149 } & 0.15\end{array}$	${ }_{\text {HET872 }}{ }^{\text {der }}$ 0.80	OC4\%	0.18	$7+14$ $7+12$	0.30 0.30
2N1307	0.25	3C157 0 0-16	${ }^{\text {GET875 }} 0.25$	0 Cts	0.87	7417	0.30
2N1308	0.25	$\begin{array}{ll}\text { BC158 } & 0.12\end{array}$	$\begin{array}{ll}\text { GET } 880 & 0.37\end{array}$	OC5 5	0.60	7420	20
2 N 2147	0.75	BC160 0.68	(EET881 0.25	OCu	0.80	74×2	0.48 0.48
2 N 2148	0.80	$\begin{array}{ll}\text { BClta9 } & 0.13\end{array}$	GET882 0.86	OC59	0.65	7423	0.98 0.48
${ }_{2}^{2 N} 2160$	0.60 0.20	$\begin{array}{ll}\text { 1]cy31 } & 0.85\end{array}$	GET885 GEX44 0.25	OC6	0.60	- 4×2	
${ }^{2} \mathrm{~N} 2218$	0.80	18CY3: 0.65	GEX44 0.08	OC70	$0 \cdot 12$	-10\%	0.42
$\begin{aligned} & 2 \mathrm{~N} 2219 \\ & 2 \mathrm{~N} 2369 \mathrm{~A} \end{aligned}$	0.20 0.15	$\begin{array}{ll}\text { BCY33 } & 0.25\end{array}$	GEX45/1 GEX 9.1 0.10 0.15	OC71	0.12	+10\%	0.80
2 N 2444	1.99	$\begin{array}{ll}\mathrm{BCY} 34 & 0.80\end{array}$	$\underset{\text { GJ3M }}{ }{ }_{\text {GEX }}{ }^{\text {a }}$	OCz	0.20	743:	0.48
2 N 2613	0.28	$\begin{array}{ll}\mathrm{BCY} 38 & 0.40\end{array}$	(1J4M 0.38	$0 \mathrm{C74}$	0.80	7433	0.70
2N2646	0.45	ВСе399 1.00	(1J5. 0.26	$0{ }^{0} 75$	0.85	7437	0.85
2 N 2904	0.20	BCY40 0.50	$\mathrm{CJTM}^{0.87}$	0076	0.25	743*	0.85
2N2904A	0.25	BCY42 0.25	Ha1006́ 0.50	0 C 78	0.40	74411	0.20
2N2906	0.80	BCY70 0.15	HS100.A 0.80	OCz	0.20	3411	0.78
2N2907	0.28	BCY71 0.20	Mat100 0.26	0c7y	0.82	74.4:	0.75
2 N 2924	0.88	HCZ10 0.85	M.at101 0.30	OC81	0.80	74.7)	20
2 N 2925	0.16	$\begin{array}{ll}\mathrm{BCZ} 11 & 0.50\end{array}$	Matleo 0.25	oc811)	0.20	74う1	0.20
2 N 29246	0.10	B12121 0.65	MaT121 0.80	Ocsim	0.20	74.8	0.20
2 N 3054	0.60	$\begin{array}{ll}\text { BD123 } & 0.80\end{array}$	MJEs20 0.87	OC81D.	0.18	24.44	0.20
2×3055	0.76	${ }^{\text {BDD124 }} 00.75$	MJE295. 1.87	OC817	0.40	7460	0.20
2 N 3702	0.10	BDY11 1.62	MJE3055 0.87	OC82	0.25	7470	0.30
2 N 3705	0.10	BF115 0	NKT128 0.35	OC821	0.20	747	0.80
2N3706	0.28	${ }^{\text {BF117 }} 00.50$	NKT129 0.80	0 C 83	0.26	7473	0.40
2N 3707	0.12	$\begin{array}{ll}\text { BF167 } & 0.25\end{array}$	NKT211 0.25	OC84	0.26	74i4	0.40
2N3709	0.10	BF173 0.25	NKT213 0.25	$0 \mathrm{Cl14}$	0.88	747.3	0.58
2N3710	0.10	BF181 0.85	NKT214 0.15	OC12:	0.80	$\underline{176}$	0.45
2N3711	0.10	BF184 0.80	$\begin{array}{lll}\text { NKT216 } & 0.37\end{array}$	OC123	0.85	-1800	0.80
2N3819	0.85	BF185 0.80	$\begin{array}{lll}\text { NKT217 } & 0.35\end{array}$	OC139	0.85	74030	0.87
2 N 6027	0.53	BF194 0.17	NKT218 1.18	OC140	0.85	7483	1.00
2 N 6088	0.83	BF195 0.15	NKT219 0 0.33	OC14	0.80	7484	0.80
28301	0.50	BF198 0.15	NKT222 0.20	0 Cl 69	0.20	788	0.46
28304	0.75	BF197 0.15	$\begin{array}{lll}\text { NKT224 } & 0.22\end{array}$	OClio	0.26	7490	0.75
28601	0.87	BFS6] 0.28	NKT201 0.24	OClis	0.80	7491.	1.00
29703	0.62	$\begin{array}{ll}\text { B18988 } & 0.28\end{array}$	$\begin{array}{lll}\text { NKT271 } & 0.25\end{array}$	0 C 200	0.40	7492	0.78
AA129	0.20	$\begin{array}{ll}\text { BFX12 } & 0.20\end{array}$	$\begin{array}{lll}\text { NKT } 272 & 0.25\end{array}$	OC201	0.70	7493	0.75
AAZ12	0.80	BFX13 0.26	NKT273 0.15	OC202	0.80	7494	0.80
AAZ13	0.12	BFX29 0.25	$\begin{array}{lll}\text { NKT274 } & 0.20\end{array}$	OC203	0.40	- 495	0.80
AC107	0.37	$\begin{array}{ll}\text { BFX } 30 & 0.25\end{array}$	$\begin{array}{lll}\text { NKT27a } & 0.25\end{array}$	OC204	0.40	7496	1.00
AC126	0.20	BFX 350.88	$\begin{array}{lll}\text { NKT277 } & 0.20\end{array}$	OC205	0.75	7497	8.25
AC127	0.25	BFX63 0.50	NKT278 0.26	OC206	0.90	74100	2.50
AC128	0.20	BFX84 0.25	$\begin{array}{lll}\text { NKT301 } & 0.40\end{array}$	$\mathrm{OC}^{2} 207$	0.90	T+10	0.50
AC187	0.25	BFX85 0.30	NKT304 0.75	0 C 460	0.20	$7+110$	0.80
AC188	0.25	BFX86 0.25	NKT403 0.76	OC470	0.80	74111	1.45
ACY17	0.80	BFX87 0.25	NKT404 0.55	0 CP 71	0.97	7418	1.00
ACY18	0.25	$\begin{array}{ll}\text { BFX } 88 & 0.20\end{array}$	NKT678 0.80	ORP12	0.50	T+119	1.90
ACY19	0.25	BFY10 $\quad 1.00$	NKT713 0.25	ORP60	0.40	74121	${ }_{0} 0.60$
ACY20	0.20	BFY11 1.25	$\begin{array}{lll}\text { NKT773 } & 0.25\end{array}$	ORP61	0.42	$7+120$	1.35
ACY21	0.20	BFY17 0.25	$\begin{array}{lll}\text { NKT77 } & 0.38\end{array}$	\$19T	0.30	74123	2.70
ACY22	0.10	BYF18 0.25	078B 0.88	SAC40	0.25	-4141	1.00
ACY27	0.25	13FY19 0.25	OA5 0.80	SFT308	0.38	74145	1.50
ACY28	0.17	BFY24 0.45	$\begin{array}{ll}\text { OAG } & 0.12\end{array}$	STz22	0.88	74150	8.36
ACY39	0.50	BFY44 1.00	OA47 0.10	ST7231	0.68	74151	1.10
ACY40	0.16	Bryso 0.82	OATO 0.10	SX68	0.20	74154	2.00
${ }_{\text {ACY4 }}$	0.15	$\begin{array}{ll}\text { BFYS1 } & 0.20 \\ \text { BFYE2 } & 0.82\end{array}$	$\begin{array}{ll}\text { OA71 } & 0.10 \\ 0.73 & 0.10\end{array}$	SX631 8×635	0.80 0.40	7415.	1.55 1.55
ADI40	0.50	$\begin{array}{ll}\text { BFY53 } & 0.17\end{array}$	OA74 0	8X635 $\mathbf{X X 6 4 0}$	0.40	7415	1.80
AD149	0.60	BFY64 0.42	OA78 0.10	5×641	0.55	74170	$4 \cdot 10$
AD161	0.87	BFY90 0.65	OA81 0.08	8X642	0.60	74174	2.00
AD162	0.87	H8X27 0.50	OA85 0.12	SX644	0.75	74175	1.85
AF106	0.80	BSX60 0.98	OA86 0.16	\$X645	0.76	7417in	1.60
AF114	0.26	B8X76 0.15	OA90 0.08	V15/30P	0.60	$7+190$	1.95
AF116	0.25	$\begin{array}{ll}\text { B9Y26 } & 0.18 \\ \text { BSY } & 0.17\end{array}$	$\begin{array}{ll}0.491 & 0.07 \\ 0.995 & 0.07\end{array}$	-30/201P	0.78	${ }_{-1+191}$	1.95
AF116	0.25	$\begin{array}{ll}\text { BSY27 } & 0.17 \\ \text { BYY61 } \\ 0.60\end{array}$	$\begin{array}{ll}0.95 & 0.07 \\ 0.200 & 0.07\end{array}$		0.50 0.75	74192 74193	2.00
AF118	0.62	BSY95A 0.12	0 A 20200	+60/201	0.10	74193 74194	2.00 2.50
AF119	0.20	B8Y95 0.12	OA210 0.25	X X 102	0.18	\% 419.9	1.85
AF124	0.25	500R	0.421100	XA151	0.15	- 4196	1.50
AF125	0.80	НTY4. $\begin{aligned} & 0.76 \\ & 0.98\end{aligned}$	$0.4 Z 20000.55$	Xalse	0.15	74197	1.50
AF126	0.17 0.17	${ }^{\text {HTY42 }} 13.008$	$\begin{array}{ll}\text { OAZ201 } & 0.50 \\ 0 . A Z 202 & 0.42\end{array}$	X X 161	0.25	7+198	1.60 4.60
AF139	0.80	0.75	$\begin{array}{ll}0.4 Z 203 & 0.42\end{array}$	XA162	0.25	7	4.60
AF178	0.55	BTY79/400R	OAZ204 $\quad 0.30$	X B101	0.48	Plug in socketw low profle 14pin DIL 0.15 1fingin bll 0.17	
AF178	0.85	$\mathrm{Y}^{1.25}$	0.AZ205 0.42	XB102	0.10		
AF180	0.58	HY100 0.15	$0 \mathrm{Az208} 0.42$	XB103			
AF181	0.42 0.40	$\begin{array}{ll}\text { BY126 } & 0.15 \\ \text { BY127 } & 0.17\end{array}$	$\begin{array}{ll}\text { OAZ207 } & 0.47 \\ \text { OAZ208 } & 0.32\end{array}$	X X 113	0.26 0.12		
AFY 19	1.18	$\begin{array}{ll}\text { BY } 182 & 0.85\end{array}$	$\begin{array}{ll}\text { OAZ209 } & 0.82\end{array}$	XB121	0.48		
AFZ11	0.60	$\begin{array}{ll}\text { BY213 } & 0.25\end{array}$	$\begin{array}{lll}0.4 Z 210 & 0.32\end{array}$	2R24	0.68		

[^3]TV'S 19" NOW N $£ 11 \cdot 95$
TWO YEARS' GUARANTEE ALL MODELS 405/625: 19" £25.95; 23" £35.95 Carr.fl.95 FREE CATALOGUE dally demonstrations for personal shoppers

COLOUR TV 19" $\mathbf{E 1 4 5}$ OR 25" $\mathbf{1} 185$ LIMITED SUPPLY. REGRET PERSONAL CALLERS ONLY

TV TUBES REBUILT GUARANTEED 2 YEARS

 Exchange Bowls carr. 55p.

RECORD PLAYER CABINETS 43.75. Designed for the modern autochang

PRESS BUTTON
SWITCHING UNITS
4 Banks 25p, 6 Banks 35p.
p.p. 5p

COMPONENTS

 MUST BECLEAREDTransistor Radio Cases: 25p
each. Size $9 \frac{1}{2}{ }^{*}$. $6 \frac{1}{2} \times 3 \frac{1}{\frac{1}{2}^{*}}$. Post 1Sp.
Spaakers: 35p. 2 $\frac{1}{2}$ - 8a. Brand new. Post 15p.
Precision Tape Motors: 11.95 200/250V. Famous German manufactu
Transistor Gang Condensers:
20p. Miniarure
Modern Gans Condensers: 30p. AM/FM or AM only 20p. Post 10p.
Radio 63.95. 8 Transistors LW/MW Free case, ear piece, battery. Post 20 p .
Valve Elle 80 50p.
Pots: 25p each. Post 5p. D/SW
$500 / 500 \mathrm{~K} \Omega$. D/SW 500 100 K . D/SW i meg. 1100 Ka. S/SW $500 / 500 \mathrm{~K} \Omega$. $5 / \mathrm{SW} 500 / \mathrm{i}$ meg.

Strictly

by K. Lenton-Smith

WHEN you think about it, the wheel has turned a full circle in this-now complex-subject of music electronics. Forty years back, when the electronic organ pioneers were getting their ideas assembled, the essential purpose was to imitate existing instruments, either electrically or by electronics.

Today, with the organ and synthesiser established as orchestral instruments in their own right, standard string, wind, and percussion instruments are being processed by means of "black boxes" and multitrack recording methods to produce sounds akin to the Moog!!

The plain fact is that much music today could not exist without the aid of electronics and, needless to say, this particularly applies to the field of "pop". The organ has long been established in light music, and more recently the synthesiser and electric piano have become accepted as quite normal musical instruments. Indeed, practically every traditional orchestral instrument can now be treated electronically, in some way or another.

BUGGED INSTRUMENTS

Because "electrified" instruments can overpower brass and reed instruments, controversy has arisen on whether or not it is proper to use "bugs". These are tiny pick-ups which can be fitted to saxophone or clarinet, for example, without defacing the instrument by boring extra holes, and they have a number ofadvantages over the standing microphone. Movement of the instrument does not affect the electrical output and, clipped to the bell of a trumpet, such a device can pick up all the natural overtones.

Once an electronic signal has been produced, this of course, can be further processed by standard frequency dividers. For example, the "Varitone", used by Sonny Stitt on tenor sax, blends the reed's sawtooth output with the square wave suboctaves tolerably well: even so, the Eccles-Jordan flavour comes through strongly.

Wah-Wah can be applied to brass or reed derived signals, though the advantages are somewhat dubious. Bizarre RSLP 2030 includes lan Underwood playing "Chunga's Revenge" on Electric Sax with WahWah, the result reminding one of Donald Duck having his tantrums!

Other than the guitar itself, the Electric Violin and Baritone Violectra are two examples of the electronic treatment of strings.

DEAFENING

The musical purist might query the advantages conferred on music by electronic technology, firstly by the inventions of Fleming, and later by the Bell Laboratories "transfer-resistor". All too often the only apparent result has been an increase in decibels: Grand Funk Railroad uses 7 kilowatt of power, while Frank Zappa uses 200 W for his guitar alone fed into a 16 channel stereo mixer.

These sound levels are well over 100 dB near the speakers and enough to permanently damage the ability to hear quiet sounds after a few seconds exposure. Could this be the reason for the constant need for higher amplification? Audiences could slowly be going deaf!

DELIBERATE DISTORTION

It is somewhat amusing to consider the care with which amplification equipment is carefully selected for minimum distortion, only to be negated by means of fuzz boxes, etc.! To get away from reality is one way of selling recordings, which is now very big business: there are enough "pop"' enthusiasts only too willing to spend their money. And so the deliberate introduction of distortion is a very much favoured way of creating "new sounds".

AN IDEAL MARRIAGE

If all this appears to criticise the marriage of music to electronics, we should acknowledge the fact that the tastes of a large section of the recording-buying public have influenced the application of electronic techniques. In principle, the marriage is ideal.

Many electronic sounds have no orchestral counterpart, and, apart from being new to listeners, can be beautiful and fascinating. To play a synthesiser well calls for special skills and basically requires a trained musician with a full grasp of the instrument's technicalities.

Dick Hyman and Walter Carlos can be singled out as experts in their
respective fields of light and classical music. The trumpet fanfares that Walter Carlos can coax out of his Moog are extremely lifelike; then he can change to percussion effects that are tasteful and suited to the seriousness of his music. Having originally collaborated with Robert Moog in 1966, it is hardly surprising that he has featured the instrument in "Switched on Bach", "The WellTempered Synthesiser'" and more recently in "Clockwork Orange".

HAMMOND ORGAN

The Hammond Organ was one of the very first successful ventures in electronic music, though Laurens Hammond always preferred to term it an "electric" organ because the generators were electro-mechanical. In recent years there has been a move away from tone wheels throughout because of the weight involved: the master generators are now tone wheels, but the other frequencies are derived from dividers.

From its inception, the Hammond has used harmonic drawbars which enable the player to obtain the required sound by (Fourier) synthesis. Many of the earlier organs had fixed stops similar to entertainment or church pipe organs, but the Hammond has always allowed the player to synthesise his sounds. Because of this fact and the fairly rapid attack (characterised by noticeable key clicks), it became a standard instrument in the field of lighter music.

According to the model, each manual may have between eight and eleven drawbars for harmonic mixing: in turn, each drawbar has eight settings, so that the permutations are almost unlimited.

The system has been copied by other manufacturers, thus proving the success of the idea. Like the synthesiser, it is important to have a good working knowledge of the principles to play a Hammond well.

TAPED

The tape recorder is a merciless critic, playback soon proving to be one of the greatest spurs to improving one's playing technique. With the ability to feed the output signal from the electronic instrument directly into a tape recorder, extraneous noises picked up by microphones are obviated. Any reader living near a busy airport will appreciate this point. Key clicks or transients will be accentuated by direct connection, but most rhythmic players wilf not object to this bonus.

Extend the sensitivity range of a low cost 'scope by adding this simple pre-amp

|nexpensive oscilloscopes. although having a reasonable bandwidth, usually suffer from the limitation of low sensitivity. The author's oscilloscope, for example, which has a bandwidth from 2 Hz to 3 MHz (3 dB points), has a maximum sensilivity of only 250 mV per cm on a three inch screen. A pre-amplifier giving a gain of, say, ten times would be a useful accessory for such an instrument, making possible investigation of much lower signal levels.

The specification of a suitable pre-amplifier can be quite involved, but the design criteria for the circuit described in this article have been limited to three points.
(i) Amplification of ten times (20 dB voltage gain)
(ii) Bandwidth in excess of oscilloscope's existing amplifier.
(iii) A high input impedance.

BOOTSTRAPPED DIFFERENTIAL AMPLIFIER

Positive feedback by the "bootstrapping" technique has often been used to increase the input impedance of transistor amplifiers-Fig. 1 shows a typical example. In Fig. 2 the technique is applied to a differential amplifier, several types of which are available in integrated form. Negative feedback is applied via R3 to the inverting input of the amplifier to reduce the overall gain to the required value, and positive feedback is applied via C1 and R1 to the non-inverting input.

The values of the circuit components are easily obtained from three equations which define the circuit characteristics and ensure minimum offset between the differential amplifier's inputs.
(a) The closed loop voltage gain A_{v} is given (approximately) by

$$
A_{\mathrm{v}}=\frac{R_{2}+R_{3}}{R_{2}}
$$

(b) For minimum offset the resistances of the two d.c. paths from the input terminals of the differential amplifier should be equal.

$$
\text { i.e. } R_{3}=R_{1}+R_{2}
$$

(c) The input impedance of the amplifier $\left(Z_{\mathrm{in}}\right)$ is given by

$$
Z_{\mathrm{in} 2}=\frac{A_{\mathrm{vo}}}{A_{\mathrm{v}}} \times R_{\mathrm{i}} / / R_{\mathrm{i}(\mathrm{diff})}
$$

where $A_{\text {vo }}$ is the open loop gain of the amplifier and $R_{1} / / R_{\text {(dire) }}$ is the parallel combination of R, and $R_{\mathrm{i}(\mathrm{diff})}$ (the differential input resistance of the amplifier).

$$
R_{1} / / R_{\mathrm{i}(\mathrm{diff})}=\frac{R_{1} \times \frac{R_{\mathrm{i}(\mathrm{diff})}}{R_{1}-+} R_{\mathrm{i}(\mathrm{diff})}}{}
$$

In choosing resistor values for a particular circuit it is best to select first a reasonable value for the feedback resistor R3. From (a), calculate R_{2} which gives the required gain; calculate R_{1} from (b); check that substituting the resistances into (c) gives an acceptable input impedance.
The capacitor is large enough to present negligible reactance at signal frequency, when compared with the resistances.

PRACTICAL CIRCUIT

The integrated circuit used in this design is the "A702C, which is readily available, has an adequate
gain and bandwidth, but is not prohibitively expensive. The base diagram of and connections to the i.c. are given in Fig. 3.

The practical circuit of the oscilloscope preamplifier is shown in Fig. 4, in which the basic circuit is easily identified. A preset potentiometer VR1 is connected in series with R3, allowing gain adjustment; the bootstrapping capacitor is formed by C2 and C3 connected back-to-back to form a non-polarised capacitor. With the component values given (gain 10) and a typical i.c. (input resistance 32 kilohms. open loop gain 3400) the pre-amplifier input impedance is 10 megohms. In the worst case (input resistance 10 kilohms, open loop gain 2000) the input impedance is 1.9 megohms.

The power supply is derived from an 18 V source applied to a potential divider (R 4 and R 5). The required voltages of +12 V and -6 V are obtained by selecting appropriate values for the resistors. It is necessary to bypass R5 with a large capacitor (C7) to give the signal a low impedance path to the negative rail. It is also advisable to decouple both supply lines to earth by 10 nF capacitors, which protect the i.c. against spikes that may occur on the supply lines, particularly at switch-on and switch-off. The capacitors should be disc ceramic and positioned as close as possible to the i.c.

Fig. 1. Basic arrangement of a bootstrapped input transistor amplifier

Fig. 2. The bootstrap principle applied to a differential amplifier

FREQUENCY COMPENSATION

The $\mu \mathrm{A} 702 \mathrm{C}$, like all early designs of integrated circuit high gain amplifiers, requires some form of external frequency compensation. This arises from the amplifiers wide bandwidth (useable gain up to 30 MHz) and its phase characteristic. The phase difference between the signal at the non-inverting input and that at the output increases with increasing frequency, until at about 14 MHz the phase shift is 180 degrees. Thus, at this frequency, any negative feedback becomes positive and if the overall loop gain of the circuit is greater than unity, instability and oscillation result. There are several methods of overcoming this problem. A number of these will now be described in turn and the reasons for their use, or non-use, explained.

The usual recommendation of the manufacturer is to connect a series resistor-capacitor network between the lag pin and ground. This severely limits the output voltage swing at high frequencies which, although acceptable in many circumstances, is not acceptable here.

An alternative recommendation is to connect a small capacitor between the lead and lag pins. This allows a good output voltage swing up to several megahertz and has been adopted in this circuit. A

[^4]Fig. 3. Wire connections of the $\mu \mathrm{A} 702 \mathrm{C}$ integrated circuit (TO-5 can) looking at the wire ends

Fig. 4. The oscilloscope pre-amplifier circuit in full

Fig. 5. Suggested printed circuit layout. Capacitor C4 is not shown. It is best mounted on the copper side of the board and connected to the pads as close to pin 1 and 4 of the i.c. as possible

COMPONENTS

Resistors

R1 $910 \mathrm{k} \Omega$
R2 $110 \mathrm{k} \Omega$
R3 $910 \mathrm{k} \Omega$
R4 $36 \mathrm{k} \Omega$
R5 $18 \mathrm{k} \Omega$
All $\pm 5 \%$, $\frac{1}{6}$ watt carbon

Potentiometer

VR1 $250 \mathrm{k} \Omega$ miniature skeleton preset

Capacitors

C 1	$0.1 \mu \mathrm{~F}$ mylar film
C 2	$22 \mu \mathrm{~F}$ tantalum 16 V
C 3	$22 \mu \mathrm{~F}$ tantalum 16 V
C 4	10 nF disc ceramic
C 5	47 pF ceramic
C 6	10 nF disc ceramic
C 7	$22 \mu \mathrm{~F}$ tantalum 16 V

Integrated Circuit

IC1 μ A 702C

Miscellaneous

Printed circuit board $2 \frac{3}{3}$ in $\times 1 \frac{1}{4}$ in
Power supply or battery B1 18 V
single capacitor, however, is often not sufficient to ensure stability under all circumstances.

Stability may be ensured by shunting the differential input of the amplifier with a series resistorcapacitor network. While reducing the amount of feedback at higher frequencies this also reduces the effective input impedance of the amplifier which is obviously not acceptable.

The arrangement finally adopted is to use the leadlag capacitor together with a high value of feedback resistor. This ensures that the overall loop gain of the circuit is less than unity at phase reversal frequency.

CONSTRUCTION AND USE

The pre-amplifier can be built into a very small volume and the actual housing may be left to the constructor. A suitable printed circuit pattern and component layout diagram are given in Fig. 5: Note that C_{4} is positioned on the foil side of the board. If the layout is to be changed substantially ensure that all component leads and interconnections are kept as short as possible and input and output are kept well apart to avoid instability and oscillation. The circuit is certainly small enough to be put inside the cabinet of an oscilloscope, but a better arrangement would be to build the preamplifier into a probe, thus avoiding the reduction of input impedance by shunting with capacitive input cables. In this case miniature electrolytic capacitors (tantalum bead) and resistors (1/8 watt) should be used, and R3 and VR1 replaced by a single 1 megohm resistor. A major problem in this arrangement is to provide a physically small power supply-it may be necessary to have the battery external to the probe.

The pre-amplifier is designed to be connected to an a.c. input of an oscilloscope. If the circuit is to be used with a d.c. instrument then a $0 \cdot 1 \mu \mathrm{~F}$ blocking capacitor should be connected between the output of the pre-amplifier and the input to the oscilloscope.

After calibration (setting the gain to exactly ten times by adjusting VR1) the pre-amplifier is quite straight-forward to use. There are however a couple of points worth noting in connection with the phase characteristic.
(i) The pre-amplifier is non-inverting (at low frequencies)-an important point to note when measuring phase angles by Lissajous figures.
(ii) The phase angle of the output, relative to the input, increases with increasing frequency. Typical values are 10 degrees at about $100 \mathrm{kHz}, 60$ degrees at about $1 \mathrm{MHz}, 100$ degrees at about 3 MHz . This should again be noted when measuring phase angles, and also when investigating signals which are a mixture of high and low frequencies.

500,000

NPN-PNP PLASTIC
METAL CAN TYPES
Clearance of manufacturers' seconds, selected in types and guaranteed no open or short circuit manufacturers, schools and colleges
TYPE STNI8. Silicon Planar Transistors npn TO-18 Metal Can. Types similar to: 2N706,
2N2220, BSY27-95A, BSX44-76-77. TYPE STPI8. Silicon Planar Transistors pnp TO-18 Metal Can. Types similar to: BCY70-72, $2 \mathrm{~N} 2906-7$, 2 N 2411 and $\mathrm{BC} 186-7$. Also used as Complementary to the above nDC type device type
STNIB. TYPESTN5, Silicon Planar Transistors npn TO-5 Metal Can. Types similar to: BFY50-51-52 and
2N2192-92. TYPE STPL. As above but in pnp and similar to types $2 N 5354-56,2 N 4058-2 N 4061$ and $2 N 3702-3$. Also used as complementary to the above npn devices type STNL.

Price: 500 © $7.50 ; 1,000 \in 13$ TYPE STNK. Silicon Planar Plastic Transistor npn with TO-18 pin circular lead configuration, $1 . C$. $200 \mathrm{~mA}, 300 \mathrm{~mW}$ and similar to BC107-8-9, BC

Price: 500 E9.50; 1,000 $£ 16$
When ordering, ple
STNK or STN18, etc.

200,000 я1tor

 TRANSISTORSClearance of pnp Silicon Transistors from the 25300 (TO-5) and 25320 (sO-2) range series. Ideal for Amateur Electranics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Approximate count by weight.
100 off- 75 p (plus p. \& p. 10p)
300 off- El .75 (plus p. $\&$ p. I5p 500 off- $\mathrm{E2} .50$ (plus p. \& p. $17 \frac{1}{\frac{1}{p} \text { p) }}$ 1.000 off- 64 (plus p. \& p. 25p)

10,000 of - 235 (plus p. a p. 5Sp)
EXPORT INQUIRIES WELCOME

DHOMRAK

 SALES POBOX 5,WARE,HERTS Full Money-Back GuaranteePOSTAGE \& PACKING Tf

10 MILLION DIODES

Silicon or Germanium

200	50 p	10,000	$£ 10.00$
1,000	$£ 2.00$	50,000	$£ 30.00$
5,000	$£ 7.00$	100,000	$£ 50.00$

2,000,000 SILICON PLANAR TRANSISTORS

OI8 P,N,P, 意 N,P,N, TYPES
State which when ordering

100	$£ 1.50$	10,000	$£ 90.00$
500	$£ 6.00$	50,000	$£ 400.00$
.000	$£ 10.00$	100,000	$£ 625.00$

LINEAR INTEGRATED CIRCUIT 709/PC S.G.S.

TO- 5 can 8 lead. Full specification high operational Amplifier

QUANTITY: 1-9, 10-24, 25-99, $100-999$ PRICE EACH: 37p, 34p, 30p, 25p.

BUILD 5 RADIO AND ELECTRONIC PROJECTS
 ONLY $£ 2 \cdot 45$
Anazing Radio Construction aet: Become a radio expert for Home Romplet Course. No ex.
perience needed. I'arts including each simple instructions for
deaign. Jhatrated funlapeater, persumal phone, all transistors, etc., all you neell. Presentation box 45p extarately) an wif requirell) (parts available e8.45 + 20p p d p .

SOOTHE YOUR NERVES
 reLax with this amazing
 RELAXATRON

CLTS OUT NOISE POLLITIONSOOTHES, YOLR NERYES: The belaXatron is basically a pink noise generator. Besides
being able to anask out extraneous unwanted sounds, it has other very interesting pro-
perties.
YO WORK IN NOISY

$8 \mathbf{O H}$

OR DISTRACTINGBLRHONNDINOA, IF YOC HAYE, TROTBLE CONCENTRATTNG, IF YOX FEEL TENSED, I'NABLE Relaxatron. Once used you will never want to be withont it-TAKEIT ANYWHERE. I'ses standard PP3 batterien (current uredi so small that battery life is almost shelf-life). CAM BE EASILY BULLT BY AFYONE OVEA 12 YEARS OF AGE using our unique, step-by-step. fully illustrated plans. No soldering necessary. All parts including
case, a pair of crystal phones Coupunent case. a pair of crystal phones, Components Send only is. $75+$ wire, etc., no soldering.

CONCORD ELECTRONICS LTD. (PE8U), 12 Archer Street, London, W.I. Callers Welcome 9 a.m. 5 . 30 p.m. inc. Sat.

Eavesdrop on the exciting world of Aircraft Communications-
V.H.F. AIRCRAFT BAND

CONVERTER ONLY $\mathbf{E 2 . 8 5}$
 cross dalk between pilots, pround
approach control airport tower apprath conirol, airpori lower.
Hear for yourself the disciplined Fonar for yourself the disciplined
voices hiding tenseness on talk downs. Be with them when they

FIMD BURED TREASURE!
Transistorised Treasure Locator

SLEEP INDUCER

€ 3.25

Do you vake

and can't got of to sleep again P Woald you like to be gently soothed ofr to satinflying sieep every night? Then bulld this ingenious
electronic sleep inducer. It puen stops by itself so you don't have to worry about it being on all night! The loudspeaker produces soothing autio-frequency sounds, continuously re. gradualty beconies legs and lens-until thes eventually cease altogether, the effect it has on people is amazingly very similar to hypnosis. All transiator. No knowledge of electronics or radio needed. Step-by-step instructions. No soldering necessary. Kit inclutes case, nuts, wire. screws, etc. SEND
$88.25+2 \bar{p} p$ p. (Parts available

(Dept. PE8) 124 Cricklewoor Broadway, London, N.W. 2
Tel. $01-450484$

radio engineer's POCKET BOOK
 revised by

H. W. Moorshead
\& $1 \cdot 20$
Postage 5p.
G.E. ELECTRONICS EXPERIMENTER'S CIRCUIT MANUAL. \&I. Postage 6 p .
RADIO TECHNICIAN'S BENCH MANUAL by H. W. Hellyer. 63. Postage 10p.
110 INTEGRATED CIRCUIT PRO. JECTS FOR THE HOME CON. STRUCTOR by R. M. Marston. EI. 20. Postage 6p.
THE PRACTICAL AERIAL HAND. BOOK by Gordon J. King. 62.70. Postage 20p.
COLOUR TELEVISION PICTURE FAULTS by K. J. Bohlman. $\mathbf{6 2} \mathbf{5 0}$. Postage 8 p .
THE HI-FI \& TAPE RECORDER HANDBOOK by Gordon J. King. E2. Postage 25p
1972 WORLD RADIO-TV HAND. BOOK. E2.80. Postage lop.
THE RADIO AMATEUR'S HANDBOOK 1972 by A.R.R.L. $£ 2 \cdot 70$. Postage 25 p.

THE MOODRN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-21 PRAED STREET LONDON W2 INP

Phone 01.723 4185
Closed Saturday I p.m.

Vary the strength of your lighting with a OLMMASTILH

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression:

600 Watt $63 \cdot 20$. Kit Form $\mathbf{£ 2 . 7 0}$
300 Watt- $\mathbf{6 2}$.70. Kit Form $\mathbf{E 2} 20$ All plus 10 p post and packing.
Please send C.W.O. to:

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel. 0244-25883 As supplied to H.M. Government Departments

D.F. SIXTY YEARS ON...

Sixty years ago the Marconi Company bought the Bellini-Tosi patents and put radio direction finding (r.d.f.) on the commercial map. It was only after the first world war, in 1920, that it was publicly revealed that it was British supremacy in the art of r.d.f. in 1916 that alerted the Admiralty to the fact that German warships were moving in the Wilhelmshaven area and resulted in the British Grand Fleet being ordered to sea and make for the German Bight. The following day the two fleets were engaged in the historic battle of Jutland.

The interesting point of this story is that Wilhelmshaven was 300 miles away from the British shorebased d.f. stations, well out of range, or so thought the Germans,

of British radio snoopers. The German ships in home waters were thus allowed to use low-power radio quite freely. But not only did the British observers note a sudden increase in radio traffic from a certain vessel but that during the afternoon it took up a new position some seven miles away.

Accuracy of the equipment was good enough to show a change of bearing of only $1-5$ degrees. It was deduced, rightly, that the German fleet was receiving sailing orders and were taking up start positions.

Now let's move on to today's equipment. At a well equipped airport control tower, the controller can see at a glance the bearing of any aircraft which calls up control. He can have either a digital readout or a compass-type display, sometimes both. And this was the sort of equipment that Guy Fernau was working on at STC's Radio Division up to May, 1970, when the decision came to close the Division down.

A new generation of solid state v.h.f./u.h.f. radio direction finding equipment for airport use was well on in development. STC had pioneered many developments inincluding wide-aperture aerial systems which minimise the effects of unwanted reflections from hills or hangars. It was a pity to see it all wasted so Fernau set up on his own, with STC blessing, to continue the development.

So was born Fernau Avionics Ltd., now installed in a country house with six acres of around (for free-space aerial experiments) at Potters Bar.

The British Ministry of Defence is evaluating the equipment for the Royal Navy and a lot of interest was generated at the international Airport Construction and Equipment Exhibition at Geneva in June.

Some estimates put the quantity of valve equipment still in airport service as high as 97 per cent. Fernau's solid state equipment of equivalent performance is only a quarter of the price so there is clearly a big replacement market as well as a market for new airports now under construction.

... C \& W 100 YEARS ON

Tuesday June 6 saw the 100th Anniversary of the formation of The Eastern Telegraph Company Ltd., an amalgamation of four existing companies. This, and dozens of other companies, eventually became the massive Cable \& Wireless l-td. in 1934.

The earliest C \& W company was actually formed in 1868 so the largest international telecommunications company in the world put down its first roots 104 vears ago. Today C \& W is still looking for expansion of business and I can reveal that one area being examined very seriously is airport services. Not only communications but all the electronics that goes into a modern airport, including navigational aids such as radar and ILS systems.

The company won the contract for equipping the new Seychelles International Airport, opened officially by Her Majesty the Queen earlier this year.

During the next five years equipment requirements for new or expanding airports are likely to exceed $£ 40$ million in value and another $£ 8$ million will be spent on updating old equipment. C \& W could well capture a fair percentage of the market, especially in the developing areas of Africa, Central and South America, and the Far East.

One of C \& W's strengths is the ability to train indigenous labour. Emergent countries like to have their own people running things. In Hong Kong, where C \& W manage all the general telecommunications as well as the airport
electronics, no less than 97 per cent of the staff of 1,650 are Chinese and the largest single sector is that of technicians and enaineers.

It would be foolhardy to predict what the pattern of events will be in the second century of C \& W's life but expansion in airport services looks like a good bet.

INTERNATIONAL OEM COMPONENT SUPPLY

And now for a really new company whose life is still measured in days. This is Neltronic (UK) Ltd., headed by John Williams who sees a big future in procuring components world-wide for Oriqinal Equipment Manufacture (OEM).
Williams has recently concluded a world tour during which he appointed purchasing agents in Japan, Hong Kong, Thailand, Singapore and Sweden. So Neltronic (UK) will be a big importer of overseas components for British manufacturers. But plans are also afoot for a two-way trade in which British components will be procured for overseas manufacturers.

Neltronic (UK) has been set up as part of the Auriema Group, American-based but operating in 17 countries and with the bulk of trade in Europe. So Williams has a flying slart with a multi-national group, albeit small (400 em. playees), behind him but with big opportunities for expansion. The Soviet bloc countries constitute a market in which Williams has good contacts. He also sees pood opportunities in Australia.

POST OFFICE PROMOTES DATA LINKS ON FILM

Keep an eye open for "Communicate to Live", a new Post Office film now coming on general release to your local cinema. It has won two major awards at film festivals, one in the U.S.A. and one in the U.K.

At the London preview I sat fascinated for the whole 23 minutes running time. Ronnie Whitehouse, who wrote and directed the film, has done a fine job on a diffizult subiect.

Real life applications of data transmission in the film included shots of youngsters at Monks Walk School, Welwyn Garden City, using a teletype computer terminal, students at Hatfield Polytechnic using computer visual displays, and a gruesome operating theatre sequence shot at St. Peter's Hospital, London.

Data transmission is the bigqest growth area for the Post Office. Whether this film will sell more of it may be debatable but as sugarcoated education the film is certainly a success.

BULK COMPONENT LIST

Below is the complete list of components used in Digi-Cal (excluding the power supply).

Individual component lists will, of course, be published with circuit diagrams as they appear.

The estimated total price for all components is £110, assuming bulk purchase.

Prices can be kept to a minimum by buying in large quantities and the
following firms have kindiy agreed to supply all digital integrated circuits and display devices at a reduced price, if bought as one package: Bi-Pak Semiconductors, Chromasonic Electronics, Electrovalue, Henry's Radio, L.S.T. Electronic Components, A. Marshali \& Son, G. W. Smith \& Co. (Radio), and Trampus Electronix. (For addresses see advertisements)

Integrated Circuits	Quantity SN7400
SN7401	11
SN7402	23
SN7404	1
SN7405	2
SN7408	6
SN7410	1
SN7413	7
SN7420	1
SN7440	1
SN7442	8
SN7445	3
SN7446	1
SN7450	1
SN7474	4
SN7475	21
SN7483	6
SN7486	3
SN7490	8
SN7493	12
SN7494	1
SN7496	8
SN74119	8
SN74121	1
SN74151	2
SN74154	1
SN74191	2
	1

Resistors	Quantity
47Ω	Qu
560 S	3
1.2 k ,	25
3.9 k (2	1
$5 \cdot 6 \mathrm{ks} 2$	26
15k!	
180k Ω	1
Capacitors	
$0.001 \mu \mathrm{~F}$	4
$0.01 \mu \mathrm{~F}$	1
$0.047 \mu \mathrm{~F}$	21
$0.1 \mu \mathrm{~F}$	7
$10 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.	17
$22 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.	2
$150 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.	1
Transistors	
E5200	9
E5201	10
Diodes	
Genera! purpose silicon (West Hyde type "red")	145

$\begin{array}{ll}\text { Plug-in Logic Cards } \\ \quad \text { Shirehall Dualine: } \\ \text { DL109/22 } & \\ \text { DL109/44 } & 5 \\ \text { DL107/44 (optional) } & 7\end{array}$

Edge Connectors
Shirehall DPK165
DL131 card guides

Seven Segment Indicators
Minitron 3015F
8

Key Switches
Bulgin type MP22 white 12
black

Lampholder
Bulgin type D22

Thumbwheel Switch
Birch-Stolec type
EB10N $1248+$ a pair of
end plates

ENTRIES AND ANSWERS ARE DISPLAYED ON EIGHT SEVEN-SEGMENT INDICATORS WITH an advanced Leading-EDGe Zero-suppression system

SIMPLE TO USE, PROBLEMS CAN BE ENTERED AS THEY WOULD BE WRITTEN DOWN

EMPLOYS READILY AVAILABLE TTL INTEGRATED CIRCUITS THROUGHOUT

PART2

By R.W.CDLES

CONSTRUCTION OF MAIN CHASSIS AND POWER SUPPLIES

AT THE VERY beginning of the design of Digi-Cal it was recognised that a simple and reliable system to house the logic circuitry would be required, and at the same time a pleasing appearance had to be guaranteed so that the completed calculator would not only behave in a professional way, but also look the part.

With the large number of i.c.s involved it was considered essential that as far as possible the individual sections of the calculator should be easily separated by means of plugs and sockets to allow component accessibility, and it was eventually decided that the best way of achieving this was to use a versatile plug-in card system.

Finding a case for the design which would allow the use of plug-in cards and also be easily modified to incorporate a keyboard was quite difficult but eventually the "Contil" Mod-2 type "0" was chosen as the only design type which would fit the bill at a reasonable price.

MAIN CHASSIS CONSTRUCTION

The case for Digi-Cal consists of a "Contil" Mod2 case with a sloping keyboard attached to the front. The case is supplied in seven sections; four blue panels which form two sides and the top and bottom; two grey panels forming the front and back; and an aluminium chassis plate. An extra grey panel is used to construct the keyboard.

CHASSIS PLATE

The large plate chassis which forms part of the Mod-2 case is a very important structural component of the design because it not only acts as a support for all the logic boards, but also forms a "groundplane" for the logic interconnections.

The plate is mounted "upside down", that is with the flanges uppermost, in the lowest of the available fixing positions, so as to give sufficient room above it for the plug-in cards.

A large cut-out is made to accommodate the 12 edge connectors used in the design, although, in fact, an extra edge connector position is fully provided for, making 13 in all, to allow for any extra logic circuitry which may be added at a later date (see Fig. 2.1).

Two aluminium sheets are mounted above the chassis to act as supports for the logic cards, the edges of which slide in small plastic guides which are press fitted to the aluminium. In the prototype these aluminium sheets were cut from an extra "Contil" chassis plate, thus removing the need to bend accurate flanges, which are, of course, part of the chassis construction (see Fig. 2.2).

This is a rather uneconomic way of producing these supports although it does yield four quickrelease fasteners which were put to good use in the prototype as fasteners for the display and programme Veroboard panels.

At the front of the plate two cuts are made into the aluminium, and the resulting flange is bent down at an angle. This is done to drop the fixing level of the display panel which is mounted in a sloping position to give easy readability from steep viewing angles.

PLUG-IN CARD SYSTEM

The plug-in cards used in the Digi-Cal are Shirehall Dualine type DL109. These are small boards with gold-plated edge connectors of 22 or 44 ways, each having positions for nine dual-in-line integrated circuits.

Integrated circuits with either 14 or 16 pins can be used and each pin position is provided with a printed three hole pad to facilitate wiring up with ordinary connecting wire. In addition to the printed pads, two power rails are incorporated which run past every i.c. position.

Some of the circuits used in Digi-Cal, namely the display, the keyboard, and the programme, did not lend themselves to the Dualine format, and in these cases special designs were made from 0.1 in Veroboard which, while requiring extra wiring and hole cutting, provides quite a neat base for the logic.

The edge connectors best suited to the Dualine cards are the type DPK 165 which have a full complement of 44 contacts.

The edge connectors are fixed under the chassis plate so that the cards plug in from above. For each socket two $\frac{3}{4}$ in 6B.A. bolts should be used, with two extra nuts and washers acting as spacers to bring the mouths of the sockets flush with the plate and allowing sufficient room for the cards above the chassis.

Fig. 2.1. Cutting and drilling details for the main chassis plate. The front is bent down about half an inch to bring the display panel (to be described in Part 3) in line with the front panel

Fig. 2.2. These two plates support the plastic card guides

Fig. 2.3. The rear grey panel drilling details viewed from the flange side. Note the semicircular cutouts in the upper flange to allow access to the potentiometers on the power supply board

FRONT AND BACK PANELS

The rear grey panel supports the complete power supply and the drilling is quite straightforward, as shown in Fig. 2.3.

A rectangular hole must be cut in the front panel through which to view the display and the cutting of this should be done carefully. A "nibbling" tool is ideal for this job but if care is taken, sawing and filing will produce satisfactory results (see Fig. 2.4).

OPTICAL FILTERS

The seven-segment incandescent readout devices used on the Digi-Cal display board give the familiar white light output and can be used with a contrast enhancing filter of any colour. The filter material used in the prototype was obtained from West Hyde Developments, the red being found the most appropriate.

Two sheets of filter material are required to give sufficient contrast, one mounted on the inside of the front panel, and the other attached to the front of the display devices themselves.

After the display cut-out has been made in the front panel, the sheet of filter can be glued to the inside with contact adhesive, care being taken not to get any of the adhesive on the visible surfaces, and also to keep the filter as bump free as possible.

If the finishing of the display cut-out has been done carefully there will be no need to use an escutcheon to decorate the outside edges, but a trim can be incorporated if desired.

KEYBOARD CONSTRUCTION

The sloping keyboard attached to the front of Digi-Cal is made from $\frac{3}{8}$ in plywood and an extra

A photograph of the power supply unit in the prototype (Note that the bridge rectifier and mains fuse were not included)
The main chassis plate can be seen in this photograph and also the method of mounting the card guide supports
"Contil" type " 0 " front panel. The cutting and drilling details for the keyboard are shown in the diagrams (Figs. 2.5 and 2.6) and thanks to the simple fixing method used by the 22 push keys, this potentially tedious task is made easy.

The wooden keyboard frame is fastened to the front panel of the case by means of four wood screws, and provides the necessary solid support for the keyboard proper which is only lightly attached to the frame by two more wood screws to permit its removal when required.
The individual keys are snapped home into the oblong slots in the aluminium, the edges of which may need bevelling to allow them to easily slot into the recesses in the switches.

The lettering and numerals on the key switches is done with Letraset and protected with clear varnish. some experimentation being needed in the number of coats to produce a really durable finish.

The hole for the "decimal point" thumbwheel switch is cut in the same way as the key slots but it is recommended that the holes for the fixing bolts be marked and drilled after the thumbwheel has been inserted as a guide.

VEROBOARD PANEL

Nearly all the panel interconnections are made under the chassis, and to facilitate this, and to provide spare space for possible additional circuitry, an 11 in $\times 3.7$ in sheet of 0.1 in Veroboard is mounted face up under the chassis alongside the edge connector array.
This panel is spaced from the chassis by two 6B.A. nuts on each of the supporting bolts, the proximity of the chassis being necessary to take full advantage of its ground plane properties.
A sheet of adhesive plastic stuck to the aluminium is advisable to prevent any short circuits when the panel is wired up.

POWER SUPPLY

The construction of the power supply is the first part of Digi-Cal which should be built since the plug-in cards to be constructed need reliable, well regulated power supplies.

The power requirements of Digi-Cal are straightforward: a well regulated five volt supply at 2.5 amps for the logic circuitry; and a 20 volt supply at 200 mA for the "Minitron" display devices.

The back panel acts as a support for the entire power supply assembly which is therefore a removable module, only three wires being necessary to connect it to the rest of Digi-Cal.

POWER SUPPLY COMPONENTS

The circuit of the power supplies is shown in Fig. 2.7 and as can be seen, two integrated circuit regulators form the heart of the design.

These devices are both cheaper to buy and simpler to use than their equivalent in discrete components; at about $£ 1 \cdot 25$ each they represent excellent value for money.

The mains input is applied to the fuse and transformer via a "rocker" on/off switch mounted in the extreme corner of the back panel. making operation from the front of the calculator a simple proposition, and retaining the integrity of the power supply "module".

Fig. 2.4. The front grey panel cutting details as seen from the front

Fig. 2.5. The cutting and drilling details of the keyboard panel which is made from an extra front panel. All flanges should be sawn off except one long edge which is bent as shown in the smaller diagram

The finished keyboard

Fig. 2.6. The keyboard supports are constructed from ${ }_{a}^{3}$ in plywood cut as shown

Fig. 2.7. Circuit diagram of the power supply. The internal circuit of the integrated circuits is shown in Fig. 2.8

The transformer itself provides all the necessary voltages and has an internal screen which, when earthed. prevents the capacitive coupling of highfrequency interference into the secondary.

The low voltage supply is rectified by a bridgerectifier module, which is heat-sinked to the back pancl. alongside the transformer.

The circuit diagram of the i.c. regulator is shown in Fig. 2.8. It is a 1 watt regulator, with variable output voltage and current-limiting in a package the size of a pea.

THE 20 VOLT SUPPLY

The 20 V supply uses the MFC6030a in its standard configuration. the 24 V supply being half wave rectified by diode D5. smoothed by C3 and applied to pin 2 of the i.c. where it is reduced to a stable 20 V by the emitter follower action of TRB and TRC

The base of this compound transistor is driven by the output of the error amplifier TRD and TRE. which compares a fraction of the output voltage provided by the potentiometer chain, R2. VRI and R3 with a stable reference voltage generated by a Zener and diode/transistor combination, DA. TRA. DB. (and D. Any difference detected by the error amplifier causes either more or less base current to be supplied to the compound transistor to bring the output voltage back to its preset level.

Current-limiting is provided by TRF working in conjunction with an external programming resistor, R1. which is chosen so that when the desired maximum current is reached, the voltage across the resistor is sufficient to turn on TRF and divert the drive current which would otherwise feed the base of TRB.

Capacitors C4 and C6 help to stabilise the regulator so that no high frequency oscillation can occur under transient conditions.

THE FIVE VOLT SUPPLY

The basic i.c. regulator can only supply a maximum of 200 mA to an external load. so with the five volt supply the output of the i.c. is used to drive the base of a 2 N 3055 power transistor, thus expanding the current handling capacity of the circuit up to the required 2.5 amps . The 2 N 3055 has to dissipate about 15 watts under operational conditions and is therefore mounted outside the case on a substantial heatsink.

The internal current limiting circuit cannot easily be used with an external power transistor, but by using a single npn transistor (TR2) current limiting can be retained.

In this supply variable current limiting is achieved by tapping off a variable fraction of the

Fig. 2.8. The internal circuit diagram of the Motorola MFC6030a regulator i.c.

Fig. 2.10. Interwiring diagram of the complete power supply unit
voltage dropped by the current limiting sense resistor R4, by means of the potentiometer VR2.

The other components used in the 5 V circuit perform similar functions to their counterparts in the 20 V regulator.

PRINTED CIRCUIT MAKING

The power supply components, with the exception of the 5 V series regulator transistor and transformer, are all mounted on a home-made printed circuit of simple design.

The use of a printed circuit is made necessary partly by the awkward shape of power supply components in general, and also by the high currents which are carried by some of the printed tracks.

The etching of the circuit is simply achieved by painting on the conductor pattern shown in Fig. 2.9 with quick drying paint, and then immersing the copper laminate in solution of 60° per cent ferric chloride, obtainable from good chemists.

COMPONENTS

CASE AND KEYBOARD

Contil Mod-2 type "0" case with extra front panel and either an extra type " 0 " chassis or a sheet of 18 s.w.g. aluminium (see text), 妾in plywood for the keyboard support

\section*{POWER SUPPLY MODULE
 Resistors
 | R1 | 2.7Ω | R4 $0.5 \Omega 3 \mathrm{~W}$ |
| :--- | :--- | :--- |
| R2 | $5.6 \mathrm{k} \Omega$ | R5 $2.2 \mathrm{k} \Omega$ |
| R3 | $1.5 \mathrm{k} \Omega$ | |
| All | $\pm 10 \%$ | $\frac{1}{2} \mathrm{~W}$ |
| carbon unless | otherwise stated | |}

Potentiometers
$\vee R 1 \quad 1 \mathrm{k} \Omega$ lin. preset
$\left.\begin{array}{ll}\text { VR2 } 100 \Omega \text { lin. preset } \\ \text { VR3 } & 1 \mathrm{k} \Omega \text { lin. preset }\end{array}\right\}$ All Bourn's "Trimpot"
VR3 $1 \mathrm{k} \Omega$ lin. preset
Capacitors
C1, C2 $5,000 \mu \mathrm{~F} 15 \mathrm{~V}$ elect. (see text) (2 off)
C3 $1,000 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C4, C5 $\quad 0.047 \mu \mathrm{~F}$ (2 off)
C6, C7 $0.1 \mu \mathrm{~F}$ (2 off)
Transformer
T1 Mains transformer, secondary 0-6-10-15-18302 A (West Hyde Developments type TRB)

Transistors
TR1 2N3055 TR2 E5201 (West Hyde)
Diodes
D1-4 5SB05 bridge rectifier (I.R.)
D5 1 N4002 or any 100 p.i.v. 1 A diode
Integrated Circuits
IC1, IC2 MFC6030a (2 off)
Switch
S1 On/off switch (Bulgin type S1B825)
Miscellaneous
FS1 2A fuse and holder (Belling Lee L575)
FS2 2.5A fuse and holder (Belling Lee L575)
Heatsink for TR1 (Marex type 10DN0200A300 or similar)
5 in $\times 3$ in copper clad laminate

When all the unpainted copper has been dissolved by the etchant (about half an hour) the circuit can be washed and the paint removed with scouring powder to reveal the bright copper conductors.

Hole drilling is best completed with a drill about 1 mm in diameter, after the hole pattern has been checked for accuracy with the actual components to be used, as some size variation of things like electrolytics and potentiometers is inevitable.

Smoothing of the low voltage supply is achieved by two $5,000 \mu \mathrm{~F}$ capacitors in parallel, the large total capacity being necessary because of the high currents involved. The precise total value is not critical, and anything larger than $6,500 \mu \mathrm{~F}$ will suffice; the most critical feature of these capacitors is their size, very little room being available on the printed circuit.

MOUNTING THE BOARD

The power supply printed board is mounted above the chassis line in the back panel by means of two 2B.A. bolts, spacing from the panel being achieved with two or three extra nuts. With this amount of spacing the potentiometers are not accessible from above, and it is necessary to file three semicircular cutouts in the back panel as shown in Fig. 2.3.

The heatsink used in the prototype was one of the type commonly used in audio amplifiers to mount two output transistors, this was cut in half and mounted on the outside of the back panel by means of four 6B.A. bolts. The actual heatsink used is not important provided that it has at least 30 square inches of surface area exposed. The 2N3055 must be insulated from the heatsink using the usual mica washer and bushes provided with the device when purchased.

Interwiring is carried out as shown in Fig. 2.10.

TESTING THE POWER SUPPLY

When the power supply module has been assembled it can be tested by plugging it into the mains supply and connecting a voltmeter to the output of each supply in turn. The potentiometers should all be set-to mid-travel before the mains is switched on, and the voltages measured should be fairly close to their required value, accurate setting being made with the appropriate potentiometer.

The current-limiting for the 20 V supply is preset and should not be tested by shorting out the supply, as it will only safely handle brief short circuits of the type which can occur accidentally whilst wiring up.

The current limiting of the 5 V supply is able to handle continuous short circuits, and the threshold value can be set by connecting an ammeter across the output terminals of the supply and adjusting the current limit potentiometer until a reading of 2.5 amps is obtained.

The 2.5 amp setting is required for the finished calculator, but if the supply is going to be used to check each separate board as it is completed the current limit can be set to suit each situation, thus avoiding any spectacular shorts!

It should be noted that several of the power supply components, including the 20 V regulator i.c., do get quite hot in operation: this is quite normal and constructors can rest assured that all components are operated well within their maximum ratings.
Next month : Construction of display panel

ELECTRONORAMA

TRANSISTORS FOR COMMUNICATIONS

The Post Office Research Department receives the award for the development and production of high performance silicon planar transistors for use in undersea communications cables.
During the last 10 years the research department at Dollis Hill has perfected the transistor so that they can work non-stop without failure for not less than 20 years, and they are now the key elements in the submerged repeaters of international and intercontinental submarine cable systems.

The electrical performances of the earliest 4A-type, of the 10A-type, and of the latest 40 -type all compare will with their commercial contemporaries but the most important innovation is the achievement of ultra-reliability. The submarine system will fail if a single amplifying transistor, in a total of more than 3,000 in the longest cable, fails, or if the mean gain change of all the transistors exceeds ± 3 per cent. In addition the gain change of a single transistor must not exceed ± 50 per cent

Today the most modern submarine cable systems carry more than 1,800 telephone conversations simultaneously compared with only 100 or so in the early 1960s. Cables of even greater capacity-carrying up to 4.000 conversations at once-are on the way.

The computer hall at Boadicea House
Reservation equipment at BOAC's London air terminal

Transistor "headers" being examined for tlaws

BOADICEA

THE 1972 award made to BOAC airlines management services department was for the design and setting up of a computer complex to handle all requirements for a worldwide airline.

Known as BOADICEA, British Overseas Airways Digital Information Computer for Electronic Automation, this is the first time that the Queen's Award has been bestowed for a computer system.

Technically, Boadicea represents the successful installation of probably the most advanced and varied reallime computer system in the world. More than 50 computers are linked together through a worldwide communications network, using lines at speeds ranging from 50 bauds to 9,600 bauds (a baud equals one bit per second), to serve over 200 BOAC and associated airline offices in 66 different countries.

The use of TV screen terminals operating in a conversational mode, direct computer to computer links, and the use of widely varying data transmission techniques necessitated by a worldwide coverage, were all in their infancy when the system was first conceived.

Of particular significance has been the high degree of integration achieved with Boadicea. A whole range of related applications all operate together in real-time sharing the same computers, the same communications networks and the same files. Integration of real-time activities poses very severe problems particularly when it comes to adding a further real-time application to those already operational. This is particularly crucial in BOAC's case because of the 24 hours a day nature of their activities.

The main advantage to the travelling public is the reservations system which uses cathode ray tube readout and solid state keyboards for operator's use. Reservation staff in the UK. Europe and North America have, at their fingertips, instant reservation information on all flights. Seat availability on any flight can be established within seconds and four flights are displayed on request to aid passengers' selection.

Seat reservations, hotel bookings, car hire and any special requirements can be made through the computer
system up to 10 months in advance.

The Ferranti Master Plotter
Four Relative Motion markers have been
 positioned on echoes considered to be collision risks. Some minutes after the markers were aligned with the echoes, it can be seen that two of the echoes have moved off their markers and are passing well clear The other two echoes are continuing to move along their markers and therefore are cellision risks

The Decca AC 626 Anti-Collision Radar installed in the M.V. Scotia

AUTOMATED DRAUGHTING

THE Scottish group of Ferranti Ltd. have won the award for their data processing range of automated draughting equipment developed and manufactured in Edinburgh.

The ADE system revolves around a computer and specialised peripheral equipment including a reader, micro-plotter and a master-plotter.

The reader is a digitiser with which an operator converts the information on a drawing into numerical form. The reader tape is used by the computer to generate a set of numerical data which defines the part and the computer programmes convert the stored data to control tapes for automatically controlling the manufacturing machines.

The ADE micro-plotter is a high speed plotter used to produce fully dimensioned, detailed drawings on microfilm and provides a processed microfilm aperture card. The input to the plotter can be in the form of paper tape or in the form of magnetic tape. Alternatively, the plotter can be connected directly on-line to a computer.

The master-plotter is a very accurate drawing machine for precision reproduction of graphical information from tape or computer input. Typical applications include printed circuit masters. graticules, templates, maps and lofted masters for ships, aircraft and automobiles.

ANTI-COLLISION RADAR

Probably one of the most consistent winners of the Queen's Award over the last few years has been Decca Radar. This year they received the award for technical application in their anti-collision radar system.

This was the first marine radar to show simultaneously on one display both the relative and true information required to assess a collision situation. The electronic techniques developed by Decca to do this have proved in service to be both effective and highly reliable.

Using the time-honoured principle whereby another ship is "deemed to be on a collision course" if two or more compass bearings of her remain constant, the anticollision radar employs up to five relative motion markers on a monitor screen. Any one of these markers may be placed with its far end on a suspect echo; the marker then remains at constant bearing and distance from its own ship, providing a relative motion reference. If the echo travels down the marker it is on a collision course, if it moves off to one side the ship concerned will pass ahead or astern as indicated.

Another company to receive an award in the field of radar was Cossor Electronics. Their system was for secondary surveillance radar for air traffic control.

At the time of going to press we had received no information from Cossor on their system.

EXPORT AWARDS

Awards for export achievement went to the following firms in the electronics industry:
Gunsons Sortex Ltd. Electronic colour sorting equipment.
Marconi International Marine Co. Ltd. Marine communications and navigational aids.
National Cash Register Co. Ltd. Cash registers, computers, accounting and adding machines.
Racal-Mobilcal Ltd. Portable radio transmitters/ receivers.

PE Hictrinull PIANO

 An electronic piano tailored for the modern home. Authentic piano sounds from an instrument a quarter the size of the conventional pianoforte. STAR FEATURESNILIUEE
\star Portability

* RVE octave plano méredadid from FO

ALSO:
 EXPERIMENTAL LOGIC UNIT

For constructors new to thyfecircuits, this article describes who the tod 6 a practical switching circuit; all the conventional logic functions

$\star \star \star \star \star$
 SQUARE WAVE GENERATOR

Audio frequency and transient responses are best measured with the help of a fast rise time square wave generator. This instrument provides four preset square wave frequencies to cover the pass bands in which the audio engineer is interested

* ALL IC. FREQUENCY DIVIDERS (FACILITY FOR 'PHONES)

מLPH IUMERIC DISPLRY5 manulase

Pructical L.E.D. Displays

LAST MONTH we looked at the exciting new Light Emitting Diode (L.E.D.) display devices and considered their basic characteristics and advantages. This month we shall be seeing how L.E.D. indicators can be incorporated into a practical readout system which could be used in digital clocks, counters, or voltmeters, and which is built using readily available
TTL logic.

MULTI-DIGIT DISPLAYS

The circuit arrangement for driving a single "seven-segment" L.E.D. display was shown last month, the same basic logic array of data-store/ decoder/indicator also being examined in the sections covering gas-filled and incandescent devices: there is therefore no need to spend any more time looking at this simple system, and we can continue on to a rather more complex circuit for use with the economic "multi-digit" L.E.D. packages.

As we mentioned last month, the price of L.E.D. readouts is fairly high at present, although it is dropping rapidly and the projected cost for a couple of years hence is very low indeed.

To take the fullest advantage of low L.E.D. prices an economic packaging system is essential, and the simplest way to achieve this is to put more than one digit in each moulded plastic package. This is readily done because of the small size of these devices and their similarity to integrated circuits, and the resultant readout is easier to use because of the reduced interconnections required.

At the time of writing, packages are available containing up to six "seven-segment" digits, and the number of digits will no doubt increase as demand grows and prices drop.

TIME-SHARING SYSTEMS

An individual L.E.D. indicator requires eight anode wires (seven segments plus decimal point) and one cathode wire, making nine in all. For a package with more than one digit the number of lead-outs required could be nine times N , where N is the number of digits, and such a large total is neither practical nor desirable.

To overcome this lead-out problem, multi-digit packages are internally wired to give eight common anode wires, to which corresponding segments of each digit are connected, and a separate cathode wire for each digit, giving a total pin-count of eight plus N, a much better state of affairs which allows up to six digits to be housed in a 14 pin dual in line pack.
The inevitable sacrifice which has to be made with this scheme is that it is not possible to "talk to" all of the digits all of the time, and the drive circuit has to work in a "time-shared", or multiplex, system where only one digit at a time is addressed and allowed to display its data.

This is not such a disadvantage as it may seem, since it also means that only one expensive sevensegment decoder is required for the whole display instead of one for each digit, and by making the scanning rate high enough the resultant readout is indistinguishable from a separately addressed scheme.

Six figures in one dual-in-line package illustrates the extreme miniaturisation that can be achieved using L.E.D. techniques. Producing yellow light, this device is intended for film annotation (Ferranti)

Fig. 6.1. Block diagram of display system using a single multi-digit L.E.D. package

Fig. 6.2. Waveforms produced by the commutator in Fig. 6.1

THE BASIC SYSTEM

The basic block diagram for a display system employing a single. multi-digit I..E.D. package is shown in Fig. 6.1.

With a "time-shared" system such as this only one of the four digits will be illuminated at any instant in time, each of the digits being turned on in succession by the output pulses from the commutator.

The fact that any particular digit is not continuously illuminated is not noticed by the human eye because the brain ignores flicker above a frequency of about 50 Hz . In practical display systems a refresh frequency of about 100 Hz is used. making the required clock frequency N times 100 Hz , or 400 Hz in the case of a four-digit display output. The waveforms from the commutator, which consists of a divide-by-four binary counter and a one-of-four decoder, are shown in Fig. 6.2

When a particular "digit-enable" strobe is present the cathode of its associated L.E.D. digit is grounded to allow the "segment enables" to turn the appropriate segments to display the data, which is simultaneously called up by the same strobe from the counter or store where it is held.

After its display period (of 2.5 ms) the first digit strobe disappears and the next digit in the sequence is enabled, new data being presented to the decoder at the same time.

DRIVE CURRENTS

Because each digit is only illuminated for a quarter of the total display time (in this particular case) it is necessary to increase the L.E.D. current during the "on" period to ensure the same brightness as a continuous display.

At first sight it might appear that the current needs to be increased by a factor of four to compensate for the fact that it is off for three-quarters of the time, but in fact another advantage is gained from time-shared operation in that this system gives an apparently brighter display for the same timeaveraged current.

Thus it turns out that the average current required by the $\frac{1}{3}$ in digits used in multi-digit displays is only about 3 mA per segment for operation in a timeshared system, whereas rather higher currents are required for static operation at the same apparent intensity. For the four-digit display, assuming an average current of 3 mA , the required drive current (for each segment) is four times 3 mA during the "on" period.

This calculator from Hewlett-Packard uses L.E.D. devices for its ten digit display

DATA-BUS SYSTEM

An important advantage of any multiplex display system is that all the data held in the store can be transmitted to the display system by only four wires, regardless of how many separate digits are to be displayed.

Needless to say this fact becomes increasingly useful as the number of digits increases: an eight digit display requires only four wires (plus a possible eight call-up wires) instead of 32 needed for a static display, and this is in addition to the fact that a saving of seven decoders is made.

The four wires used are called the "data-bus", a name derived from the omnibus characteristic of lines which carry all the data at one time or another, but only enough data to define one digit at any particular instant.

The information carried by the data-bus must of course be synchronised with the "digit strobes" which "enable" each readout device in turn, and there are several different ways of achieving this.

The simplest system is to connect each four bit group of B.C.D. data to the data-bus via four gates which can be enabled simultaneously when required. The corresponding bit outputs from each group of gates are then wired together to form each wire of the bus, as shown in Fig. 6.3.

SHIFT REGISTER STORE

An alternative way of achieving the same result is shown in Fig. 6.4. Here the data for display is stored in groups of four shift-register bistables with the corresponding bits of each digit being connected logether to form a serial shift-register.

Each of the flip-flops is clocked simultaneously which causes each four bit group to be propagated down the register, eventually re-entering from the left via the feedback loop. The data bus itself is taken from the extreme right-hand end, a new set of data appearing on it after each clock pulse.

With this system the character call-up lines are dispensed with and instead the commutator clock is used to clock the registers to ensure synchronism. This type of data-bus drive could be more economical if the source of data can also be used to form the shift register, but this is obviously not Fossible if the data comes from counters or switches. and in these cases the gating scheme is preferable.

A PRACTICAL SYSTEM

The chosen L.E.D. package for the system is the Data Lit 34, available from the Industrial Electronic Components Division of Guest International Ltd.

The DL34 contains four $\frac{1}{8}$ in digits, each with a right-hand decimal point, and is encased in a redepoxy package with outside dimensions of 0.74 in \times $0 \cdot 39$ in, as shown in Fig. 6.5.

The pin configuration of this device is the same as that of a conventional 14 pin D.I.L. pack, and a recommended way of mounting these components is to use a D.I.L. socket of the type which are now available at low cost through the suppliers advertising in this magazine.

The circuit in which the DL34 is used is shown in Fig. 6.6; eight i.c. packages are used in all, along with five transistors and 13 resistors.

The B.C.D. data on the data-bus is decoded by an SN7448 decoder which differs from the SN7446/

Fig. 6.3. The simplest "data-bus" system using groups of four gates "enabled" in turn for each digit

Fig. 6.4. Alternative system using a shift-register to present successive digits to the "data-bus"

Fig. 6.5. The DL34 L.E.D. package shown three times actual size

Fig. 6.6. A practical system using the DL34 in a "time-shared" mode

METER BARGAINS
MODEL GT 800 MULTIMETER

Ranges

MULTIMETER 20,000 O.P.V. MULTI METER

Ranges:
$100-500-1$

Ai
 ya y in Twin H. \&3
 SOLDER GUN Satem line and simplifies sohl.ring
 Two positions and service dept

Weller Marksman" Soldering Ir
Lightweight, ${ }^{\frac{1}{16} \text { in }}$, pencil bit,

PREMIER HI-FI OFFERS!
 Rogers Ravensbrook 11
 Stereo Amplifier teak
 Rogers Ravensbourne
 Stereo Amplifier teak
 Metrosound ST20E Stereo Amplifier teak
 Goldring GL'72 less cartridge
 Garrard SP25 111 with Goldring G800 cartridge

Garrard 2025 T C with Stereo Ceramic Cartridge Garrard 2025 TC with Stereo Ceramic Cartridge ready wired in teak plinth with cover
$£ 12 \cdot 45$
Carriage and Insurance 60 p extra any item.
CARTRIDGE BARGAINS!
GOLDRING

PREMIER 800 STEREO AMPLIFIER

 specification. compare the price. Output: $\overline{3}$ Wats per

 ${ }^{\text {chan }}$

HI-FI STEREO HEADPHONES Designed to the highest Un n Sleeker units with soft padded ear muffs. Adjustable hicatband. 8 ohm impedance. Conlee with fit leal and stereo jack plug.
$£ 2.47{ }^{\text {P }}$.
d.

VERITAS V-49 MIXER
"VERITONE" RECORDING TAPE SPECIALLY MANUFACTURED IN OSSA. FROM EXTRA STRONG PRE-STRETCHED MATERIAL THE QUALITY IS UNEQUALLED. TENSILISED to ensure the most permanent base. Highly resistant to break. age, moisture, heat, cot out ire audio range. Double wrapped at tractively boxed.

 $\begin{array}{lllllllll}\text { SPF } & 5^{\circ} & 600 & \text { ACETATE } & 50 \mathrm{p} & \text { LP 7 } & 7^{*} & 1800^{\prime} & \text { ACETATE } \\ \text { UPS } & 75 p \\ \text { DTS } & 5^{\circ} & 1200 & \text { POLYESTER } & 75 \mathrm{p} & \text { DT7 } & 7^{*} & 2400^{\prime} & \text { POLYESTER } \\ \text { il } 25\end{array}$ TAPE SPOOLS $3^{*} 5 p, 5^{*}, 5 y^{*}, 7^{*} 9 \mathrm{p}$. TR $7^{*} \quad 3600^{\prime}$ POLYESTER $\mathbf{5 2} \mathbf{2} 50$ TAPE SPOOLS $3^{*} 5 p, 5^{*}, 5 z^{*}, 7^{*} 9 p$.
Post and Packing $3^{*} 5 \mathrm{p}, 5^{*^{*}} 5 \frac{1}{*}^{*} 8 \mathrm{p}, 7^{*} 10 \mathrm{p}$. 3 reels and over Pout Free.)

YATES ELECTRONICS (FLITWICK) LTD.

 ELSTOW STORAGE DEPOT

 ELSTOW STORAGE DEPOT KEMPSTONHARDWICK KEMPSTONHARDWICK BEDFORD

 BEDFORD}
C.W.O. PLEASE. POST AND PACKING PLEASE ADD 10p TO ORDERS UNDER 42

Catalogue which contains data sheets for most of the components listed will be sent free on request. 1Op stamp appreciated.

OPEN ALL DAY SATURDAYS

RESISTORS

$\frac{1}{2}$ W Iskra high stability carbon film--very low noise-capless construction. W Mullard CR2S carbon film-very small body size $7 . \$ \times 2.5 \mathrm{~mm}$. 2% ELECTROSIL TR5

Quantity price applies for any selection. Ignore fractions on total order.
DEVELOPMENT PACK
$0-5$ watt $\$ \%$ Iskra resistors 5 off each value 4.7Ω to $1 M \Omega$.

POTENTIOMETERS

Carbon track $5 k \Omega$ to $2 M \Omega$, log or linear (log $\frac{1}{4} W$, lin $\frac{1}{2} W$).
single, 12p. Dual gang (stereo), 40p. Single D.P. switeh 24 p.

SKELETON PRESET POTENTIOMETERS

Linear: $100,250,500 \Omega$ and decades to $5 M \Omega$. Horizontal or vertical P.C mounting (0.1 matrix)
Sub-miniature $0.1 \mathrm{~W}, 5$ each. Miniature $0.25 \mathrm{~W}, 6 \mathrm{p}$ each.

TRANSISTORS

ACI07	15p	BC108	10	BF		OCP7 40p	2N3703	
ACI26	12p	BC109	10p	BFY52	22p	ORPI2 50p	2N3704	$13 p$
AC127	12p	BCI47	10p	BSY 56	32p	2N2369 16p	2N3705	12p
AC128	12p	BC148	13p	$\bigcirc{ }^{\circ} \mathrm{C} 26$	45p	2N2646 60p	2N3706	$11 p$
AC131	12p	BCl49	13p	OC2B	45p	2N2926R9p	2N3707	12p
ACl32	12p	BC157	13p	$\bigcirc \mathrm{C} 35$	45p	2N292609p	2N3708	10p
ADI 40	50p	BCI58	13p	$\bigcirc \mathrm{C} 42$	12p	2N2926V 90	2N3709	11p
ADI61	33p	BCI 59	13p	OC44	12p	2N2926G	$2 N 3710$	$11 p$
AD162	36p	BDI31	$75 p$	OC45	12p	p	2N3711	11p
AFII 4	20p	BDI32	75p	OC70	12p	2N3054 58p	2N4062	12p
AFIIS	20p	BFI79	32p	OC71	$12 p$	2N3055 60p	Z T×302	15p
AFII6	20p 20p	BFI81 BFI94	25p 15 p	OC72	12p	2N3442	Z TX500	16p
AFlis	38p	BF195	15p	OC81	12p	140p	Z TX503	16p
BC107	10p	BFY50	22p	OC82D	12p	2N3702 13p	40362	58p
ZENER DIODES $400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to $30 \mathrm{~V}, 15 \mathrm{p}$.				LINEAR I.C.'s (D.I.L.) 709 50p 741, 50p 710 50p 74B, 50p			DIL Socker 14 and 16 pin. 16p	

DIODES

BRUSHEDALUMINIUM PANELS
2in $\times 6 i n=25 p ; 12 i n \times 2 \frac{1}{2} i n=10 p ; 9 i n \times 2 i n=7 p$.

SLIDER POTENTIOMETERS

$6 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of track 59 mm
SINGLE $10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, 10 g or lin
DUAL GANG'IOk $\Omega+10 k \Omega$, etc, log or lin
Knob for above
20 gauge panel 12 in $4 i n$ with slots cut for use with slider pots
Grey or matt black finish, complete with fixings for 4 pots

MULLARD POLYESTER CAPACITORS C296 SERIES
400V: $0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.0 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p}, 0.22 \mu \mathrm{~F}, 71 \mathrm{p}$ $0.33 \mu \mathrm{~F}, 11 \mathrm{p} .0 \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F} 3 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F} 4 \frac{1}{2} \mathrm{p}$ $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} .0247 \mu \mathrm{~F}, 7 \frac{1}{2} p .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .10 \mu \mathrm{~F}, \mathrm{I} 3 \mathrm{p}$.
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$
 $1.5 \mu \mathrm{~F}, 20 \mathrm{p} .22 \mu \mathrm{~F}, 24 \mathrm{p}$.

MYLAR FILM CAPACITORS IOOV $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$, $2 \frac{1}{2} \mathrm{p} .004 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.06 \mathrm{~B}^{\prime} \mu \mathrm{F}, 01 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$.

CERAMIC DISC CAPACITORS 00pF to 10,000pF, 2p each

ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES

(μ F/V) $10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2.5,160 / 2.5,320 / 2.5,500 / 2.5$, el4 $400 / 4,6-4 / 6.4,25 / 6.4,50 / 6,4$. $100 / 6$. $200 / 6.4,5016 / 2,5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$, $200 / 102.5 / 16,10 / 16,20 / 16,100 / 64,200 / 64,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10,125 / 10$ $200 / 10,25 / 16,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16,1 \cdot 6 / 25,6 \cdot 4 / 25,125 / 25,25 / 25,50 / 25$

MULLARD C437 SERIES

$100 / 40,160 / 25,250 / 16,400 / 10,640 / 6 \cdot 4,800 / 4,1000 / 2 \cdot 5,9$ p. $100 / 64,160 / 40,250 / 25$ $400 / 16,640 / 10,1250 / 4.1000 / 6 \cdot 4,1600 / 2 \cdot 5,12 \mathrm{p} .160 / 64,250 / 40,400 / 2 \cdot 5,640 / 16$, 2000/4. 1000/10, 1600/6.4, 2500/2.5, 15p. 250/64, 400/40. 640/25, 3200/4. $1000 / 16$ $1600 / 10,2500 / 6 \cdot 4,4000 / 2.5,18 p$

ELECTROLYTIC CAPACITORS Miniature P.C. mounting
$(\mu F / V): 10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$

VEROBOARD

VEROB		
		0.1
		2p
		$24 p$
		27p
		75p
	$\times 3 \frac{3}{4}$	100p
	$\times 5$ (plain)	
	$\times 34$ (plain)	-
	$\times 2 \frac{1}{2}$ (plain)	-
	$\times 5$ (plain)	-
	$\times 3 \pm$ (plain)	
Pin insertion tool 52		
5 pot	face cutter	42
Pkt.	50 pins	20

JACK PLUGS AND SOCKETS

0.15	Standard screened	$18 p$	2.5 mm insulated	$8 p$
$16 p$	Standard insulated	$12 p$	3.5 mm insulated	$8 p$
24p	Stereo screened	$35 p$	3.5 mm screened	$13 p$
$\mathbf{2 4 p}$	Standard socket	$15 p$	2.5 mm socket	$8 p$
27p	5tereo socker	$18 p$	3.5 mm socket	$8 p$
$\mathbf{5 7} \frac{18}{10}$				

D.I.N. PLUGS AND SOCKETS

2 pin. 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin Plug 12p. Socket 8p.
4 way screened cable, 15 p/metre
6 way screened cable 22p/metre
BATTERY ELIMINATOR £I.50
$9 \vee$ mains power supply. 5ame size as PP9 battery.

THERMISTORS

VAIOS5S 15p;VA1066S 15p; VAl077 15p; R53 61.35,
COMPACT CASSETTES-IN PLASTIC LIBRARYBOX
C90 65p Cl20 85p.
LARGE (CAN) ELECTROLYTICS

$1600 \mu \mathrm{~F}$	64 V	74 p
$2500 \mu \mathrm{~F}$	40 V	$74 p$
$2500 \mu \mathrm{~F}$	50 V	$58 p$
$2500 \mu \mathrm{~F}$	64 V	$80 p$
$2800 \mu \mathrm{~F}$	100 V	63.00

$3200 \mu \mathrm{~F}$	16 V	50 p
$4500 \mu \mathrm{~F}$	16 V	$50 p$
$4500 \mu \mathrm{~F}$	25 V	61.68
$5000 \mu \mathrm{~F}$	50 V	fI 10

HIGH VOLTAGETUBULAR CAPACITORS- 1,000 VOLT

$0.01 \mu \mathrm{~F}$	10 p	$0.047 \mu \mathrm{~F}$	13 p	$0.22 \mu \mathrm{~F}$
$0.022 \mu \mathrm{~F}$	12 p	$0.1 \mu \mathrm{~F}$	20 p	

POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \frac{1}{2} \%$
IO 1 F to $1000 \mu \mathrm{FEI} 2$ 5eries Values 4 p each.

C.T. ELECTRONICS 267 Acton lane, London, w. 4 $01-9946275$

OUR RETAIL COMPONENT SHOP IS NOW OPEN FROM 9.30 a.m. - 6 p.m. MON.-SAT.

> FREE COMPONENT PRICE LISTS NOW AVAILABLE PLEASE SEND LARGE SAE

hUNDREDS OF SURPLUS BARGAINS FOR THE PERSONAL CALLER

P.E. ‘GEMINI’ STEREO AMPLIFIER

30 watts (R.M.S.) per Channel into 8 ohms! Total Harmonic Distortion 0.02% !
Frequency Response (-3 dB) $20 \mathrm{~Hz}-100 \mathrm{kHz}$!
This hish quality Stereo Amplifier for the Home Constructor was described in a seriess of articles in "P ractical Electronics", from November 1970 to March 1971. It is now recognised as practically the ultimate in High Fidelity and is certainly equal to anyching one can buy, no matter what the cost, but is well within the capabilities of the ambitious con wr CA
WE CAN NOW SUPPLY A REPRINT OF THE ARTICLES IN BOOKLET FORM, PRICE 55p, PLUS 4p POSTAGE, WITH FREE COMPLETE COMPONENT PRICE LIST
For free price list only, or a complete free specification, please send a roolscap size S.A.E.

ALL PARTS AVAILABLE SEPARATELY
ELECTRO SPARES
21 BROOKSIDE BAR
CHESTERFIELD, DERBYSHIRE

7447 types we have met up to now in that it gives "active high" outputs instead of "active low". This means that when a particular segment output is activated it is at a positive potential (normally $V_{(c)}$) rather than at ground. If it is not activated, then the opposite condition will apply.

The output impedance of the $\operatorname{SN} 7448$ in the high state is too high to supply the current required by the L.E.D.s directly so an emitter follower buffer stage has to be incorporated to reduce it. This need not mean a mass of discrete transistors and wiring however, since R.C.A. have kindly foreseen these requirements and packaged seven high-current npn transistors with a common-collector connection in a 14 pin D.I.L. pack called the CA3082.

CURRENT SETTING RESISTORS

The seven emitter outputs of the CA3082 are connected to the DL34 segment inputs (common anodes) via the necessary current setting resistors which determine the segment currents and therefore the brightness of the display.

The chosen drive current for this application is an average of 3 mA , time-sharing makes this 12 mA and with this value determined and the V, of the L.E.D.. the $V_{1,2}$ of the emitter follower and the $V_{\text {sat }}$ of the digit drivers all known, it is a simple matter to work out the resistance required by Ohm's law.

$$
\begin{gathered}
R_{\mathrm{x}}=\frac{V_{\mathrm{ru}}-\left(V_{\mathrm{lee}}+V_{\mathrm{f}}+V_{\mathrm{sat}}\right)}{I} \begin{array}{c}
\mathrm{k} \Omega \text { (where } I \text { is the } \\
\text { drive current in } \mathrm{mA})
\end{array} \\
=\frac{5-(0 \cdot 7+1 \cdot 7+0 \cdot 2)}{12} \mathrm{k} \mathrm{\Omega}
\end{gathered}
$$

$R_{\mathrm{x}}=200 \Omega$ (nearest preferred value is 220!?)

COMMUTATOR ACTION

The sequencing of the display is timed by a master clock square-wave input which should have a frequency of about 400 Hz to give the required 100 Hz refresh rate for each digit. This chock may be already available in many systems, but if it is not it can be simply generated in a number of ways, one example being shown in Fig. 6.7.

Note that the exact frequency of the clock is not critical, 400 Hz being a "nominal" value.

The clock is used to drive a simple two stage binary counter made by cascading the two J-K flipflops in an SN7476 (or similar) i.c. The outputs from the counter are decoded by a quad two input gate (SN7400) to give the necessary strobing pulses to drive the display, and these are then inverted by a further SN7400 to make them the right polarity to drive the rest of the system.

A gating, or multiplexing system has been chosen to provide the data-bus, and the output strobes from the SN7400 are used to enable this, one digit at a

Fig. 6.7. A simple method of generating clock pulses using half of an SN7413 i.c.

Fig. 6.8. A multiplexer for four digits using SN7401 i.c.s to present each digit in turn to the data-bus

The large L.E.D. devices used in this instrument are automatically varied in brightness by ambient light conditions (Dana)
time. The strobes are also used to control the digitdriver transistors via an SN7405 hex open-collector inverter which provides the necessary base drive.
The digit drive transistors are the economical E520! (West Hyde) or a similar npn switch with a gain of 40 or more and a current handling capability of about 200 mA .

DECIMAL POINT SELECTION

If a decimal point is to be used in the display it is necessary to add another emitter follower to drive it. The SN7405 package has a couple of spare inverters and one of these car be used as the interface between the emitter follower and the required decimal point decoder gate.

The decoder gate itself can be an SN7454 fourwide two-input and-or-invert gate, its purpose being to turn on the decimal point driver only when the correct digit is being displayed.

The decinal point information is fed to the display system on four wires, one for each point position: the level on the wire corresponding to the required point will be either an open circuit or a logic " 1 "; all others should be at earth or logic " 0 ". These inputs are gated with their respective strobes to ensure that the point only appears in its single correct position.
If a fixed decimal point is required. as for example in a digital clock. the $S N 7454$ can be left out and the inverter driven straight from the desired digit strobe.

Fig. 6.9. A suggested design for a probe with an integral display

Fig. 6.10. A time-shared system which would allow many clock displays to be driven from a single source

MULTIPLEXER

A suitable multiplexer for use with the display system described is shown in Fig. 6.8. It consists of four SN7401 quad two input open collector gates and four resistors and is driven by the digit-strobes from the display system proper.

Note that open collector gates are essential for this job, and that SN7400 gates are not suitable due to the fact that the outputs of several gates are connected directly together and used to perform the "wired-OR" logic operation.

Interconnection of outputs is not permitted with the basic TTL gate because of the "active pull-up" output stage. The SN7401 is a gate specially produced to allow wired-OR in TTL systems, and has no pull-up device incorporated.

APPLICATIONS

This particular display system can be used wherever the small digit size is acceptable, but there are two particular applications where it would be of outstanding usefulness.

It will be noticed that in the circuit of Fig. 6.6 some of the components are separated by being enclosed by a shaded box. This is about the best grouping for the minimum number of components to be mounted a long way from the mother unit, and if these are carefully assembled a very small display package can result.
This small unit can be mounted in the probe of say, a digital multimeter, and in this application would eliminate a good deal of the neck twisting associated so often with the traditional "front panel" display when measuring in some inaccessible corner. A possible probe design is shown in Fig. 6.9.

Another use for this display, again relying on the remote operation of the components in the box, is as one of a number of "slave displays" all showing the same information. The most likely information here would be the time, which would be derived from a single digital clock, with or without a built-in display.

A possible wiring scheme is shown in Fig. 6.10. With this latter scheme the fan-out of the devices in the master-unit would have to be considered, and a good solution is to use non-inverting buffer gates as drivers for the eight logic bus lines.

Next month : Other types of display

DRILL CONTROLLER
 NEW IKW MODEL npeed from a mately 10 revp. maximum. Full power a control. Kit inchinges all parta, case, everything and Cull instructions, s1:50 phas 13 p model also available. 28.26 [illu $13 p$ post and p

MAINS OPERATED CONTACTOR vith silent in operation. Closes a Extremely rated at 10 sumps. Extremely well made by a Overall alze $2!\times \times \times 2$,
 $\$ 1$ each.

NEED A SPECIAL SWITCH? Double Leal Contact. Very slight preseure closes each, 60p doz. Plastic pulsh.
rod suitable for operating,
$5 p$ each, 45p doz.
AUTO-ELECTRIC CAR AERIAL
with dashboard contrid switch-fully extendable to 40 in . or fully fetractable Suitable for 1?2 positive or negative earth. Supplied complete with fitting instruttions and reauly wired dawhboar

TOGGLE SWITCH
3 anp 2 jo (with flxing ring 7ip each, 75p loz MICRO SWITCH 5 bimp changeover contacts, op 10% each or 81.05 doz.

MINIATURE
WAFER SWITCHES
3 pole, 3 way-4 pole. 3 way- ${ }^{2}$ pole, 4 way-3 pole, 4 way- -3 pole
6 way- 1 pole, 12 way. All at 20 p each, 21 -80 for ten, your assortment

WATERPROOF HEATING
ELEMENT
26 yards length 70W. Self-regulating
tennerature control. S0p poat free.

15 AMP ELECTRICAL
PROGRAMMER

Haw radio playing and kettle boiling ax you awake, switch onlights to ward off intruders, have warm house to come home to, All
possible with electriamp onfoff rwitch. Switch on time can be get anywhere to stay on up to 6 hins intitul Price E1.95 + 90p p. of or with glass front chrome bezel $75 p$. extra.

TREASURE TRACER MARK II
Complete Kit (excclat wooden battens) to make the metal
detector similar to the circuit in Practical Wireless . August issue.
28.95 phes 20 p post and insuraner.

QUICK CUPPA

$00 / 104$ borm fleater, 3-0w $200 / \pm 40 \mathrm{Y}$ boils full elly in about tany holder. Have at bedside fot tea, baby" ant insuranc

SNAP ACTION SLIDE SWITCH
 vachuma, ete. 5 peach .10 for 45 p.

NUMICATOR TUBES
for iligital, instrmments
Limers, clocks, etc. Hi-va
Price 81.45 each. 10 for 213 .
Rrwar sub:Minatione MULTI-CORE CABLE
7.0076 copper cores each core F.N.C. innulated and of different colour. P. P.C. covered owerall and approx. $3 / 16 \mathrm{in}$, thick. Price 20 p jer yaril
 LIGHT CELL Amost zero remiatant in smalight increases to 10 K Ohms in dark or dull light, epoxy resin sealed. Size approx. 1 in . dia. by ¿in. thick. Alao ORP 12 light cell 45 p .

CAPACITOR DISCHARGE CAR IGNITION

This nystell which has proved to be amazingly elficient. We offer a kit of parta as PW circuit $25-96$
+20 p . De-luxe nodel with prepared circuit board $+30 p$. De-luxe model with prepared circuit boards
to.98. When ordering please atate whether for

EECTRONHC IGNTION

systems. plus 20 p . | HI . |
| :--- |
| 0 p. |
 RADIO STETHOSCOPE

Easient way to farlt And-traces signal frumatial
to speaker- Whell signal atop
fault. [se it on Radio, T anplitier, sulything-com plete bit comprises two special tranmistors and all parts inclu. ding probe tube alld erystal earpiece. es-twin stetho-
set insteal of earpiece 75p et instead of earpiece
extra-post and ing. 20 p

ROCKER SWITCHES
3 new 1 spes to offer this month, all shap in fxing into oblong holes. size approx. 1 if \times in. Made by Arrow electric (93
Arerien). Made by 18 p each. 10 for 21 . 08.
Trpe 2 D.P. on/off 10 amp 250 V with newn indicator in the lever.
Again Arrow 93 gerien. Price 85 p Again Arrow 03 merier. Price 25p each or 10 for 82.25 .
Type 8 Double pole change over spring return, made by the French
Russenberg Company. 8ize Russenberg Company.
approx. 1 in x in. Price 15 p eaprox. 10 for 21.35 .
Amplifer Ceso. Teak veneer on in ply, modern
 $4!$ in deep $\times 8!\mathrm{in}$. Limited

MULLARD AUDIO AMPLIFIER MODULE res 4 trangistors, and has an output of 300 mb into
 $\times 1$ inhigh. SPECIALANIP PRICE 60p each. 10 for 25 .

HORSTMANN "TIME \& SET" SWITCH

A 30 Aup Suitch.) Just the thing if you want to conve home to a warm houge without it costing you a fortnne. Yon ean delay the switel on time of your electric fires, etc., up to 14 hours froms setting time or you can use the suitch to contrul processing. Regular price probably around £s. Apecial snip price £1.50. Post nal ins. 23p.

THIS MONTH'S SNIP

THERMOSTAT WITHTHERMOMETER Made by Honeywell for normal air temperstures
$40-80^{\circ} \mathrm{E}$
$\left(\bar{u}-25^{\circ} \mathrm{C}\right)$. This is a precision instrument $40-80^{\circ} \mathrm{E}\left(\overline{\mathrm{s}}-\mathrm{s}^{-2} \boldsymbol{j}^{\circ} \mathrm{C}\right)$. This is a precision ingtrument
with a differential which can lse adjusted to better than $1 \cdot 0^{\circ} \mathrm{F}$. A mercury switch breaks on temp. rise-the *witch im operated by a coiled bi-nietal element and an adjustable heater is incorporated for heat anticipation. Elegantly at ylel and encased in an ivory plant ic case
with clear plast ic windows, thernoneter above snd wwitch setting scale below - size approx. $3.8 \mathrm{in} \times 3.2 \mathrm{in}$ $\times 14 \mathrm{in}$ leep-can be mounted on condnit box or
lirectly on wall. Price $\mathbf{2 1 . 2 5}$ eath or ten for $\mathbf{t 1 1} \cdot \mathbf{2 5}$.
(

24HOUR TIME SWITCH

Made by Smiths, these are AC' majnx urerated, NOT choc' WORK. Iteal fur mounting on rack or shelf ur cam be built inl", box with 13.4 nocket. Tuo com.

 luring theme periorm. $88-50$ powi
blititimal tine contacts 50 p pair.

INTEGRATED CIRCUIT BARGAIN

 thb-standard or seconds. It of the lis are vingle sillern whip isp amplittern. The ith is a monolithic NPN watchell pair. Hegular price of parcel well over th. Full circuit details of the le's are inchntet and in admition you will receive a

MULLARD I.F. MODULE

This in a fully sereened intermediate frequency motule for anpplification and detection of tim. signals at
10.7 MHz and a.m. siguale at 470 kHz . The first stage is unell as and i.f. ampliffer fur f.in. and a self-chatilating miser for a.m. operation, in conjunetion with an external uscillator coil. 75p each: 10 for $26.75: 100$ for $882 \cdot 50$. With connection lig.

Susic on Tape. A further buy enables us to offer these at an even lower price-namely 86 p each or 5 for $82-50$. Bent for list of titlea. we can't repest when suld out.
Pressure 8wltch. Made by Bailey anll Mackey Ltd., Type 108 R . Alljustable up to 1 Jlb per nq.in. (instructiong included). Set to trip at 81 b per Hq.in. Changeover switcll rated at samp tions in box with conduit entry. Price 21.50 each plus 20p post and insurance. 20 Watt Inverter. Amart anll Browil-For van standaril fluorescent tube from a 12 V car battery current approx. :A. Very well male unit using die cast chassis. 8 ize 113 in x in $x 11$ in. 26.50 complete with lamp holders and tube clipa EDUCATIONAL KITS

fffer once stocks are sold. Brifle to repeat this each kit is giren below and with 3 kita or more we give FREE an accurate 11 piece balance kit Price of kits 40 D each post paid. Special price for all $/$ kits $i 2.50$ with free balance kit. one concave lens one convex including candie frame, etc. Watch light rays bend as they pass
KA8 Weter Pump Kit. Thirtecn parts. Top of pump is transparent so that operating parts may be observed. Small parts are brightly coloured to be seen easily whilc working. Three
types of punip may be made: Lift pump, Force types of punip may be made: Lift pump, Fore KA4 Buzser Kit. Fileven parts. Transparent covers allow the operation of buzzer to be seen lliustrates and teaches how electromagnetisn with an antouratic switeh resulta in an operating buzzer.
KAB-8-Pole Motor Kit. Twenty-four parts, including enamel wire, armature and pole piece etc. Motor operates fromi 1 volt battery operates a motor. KA7 Electro-Magnet Kit. Fifteen parts, one with one layer of wire ant one with several layers or wire. Picks up tacks, nails and any small parts showing how magnetigm works. EA8 Current and Resistance Kit. Twenty-nine parts, including bench and light bulb. Conduc interesting anif educational privjects to learn the application on and see the dia types anll lengthan wire.
KA9 Bell Kit. Eight parts, including bell and pith button 4uitch. Buikl a complete electric the bell ring

PULSE GENERATORS

sectronic, mate ly Sniths. Operated by millgle I- B volt battery or trangfornies and rectifler. Twu mokela, "he gives 10 pulses per second the 2in a lin a itill deep. Price 22 eacti 10 for 218 AMPLIFIER IN CASE S SPEAKER' Marketed ly British Relay muler the name Luxistor. This is in a very neat looking cabinet and is ideal aromind the hone or in the workshop for troulite shouting ur for testing out a duich lash "p, size appros. control and auplifier may be powered by an internal av lattery or an external $110 \mathrm{~V}^{\circ}$ source Speaker is an $\mathrm{K} \cdot-1$ eliptical fin $\mathrm{x} 3 \mathrm{~B} \mathrm{~h} 10,000$
 231.50 . Post \& insurance 30 p .

MAINS TRANSFORMER SNIPS Maina Tranaformer. Primary 40 V , tapped ent. for 25.40 . Primary 30.240 V Seconkary Tranaformers. Primary with fittell primary screen 65p each or 10 for $\mathbf{2 5} 85$.

Where postage is not stated then orders over \&j are post free. Below \&j add 20 p . Semi-conductors auld jp post. Over el post free. S.A.E. with eliquiries please.

EIEGTROLILIE Electronic Component Specialists

Minitron
DIGITAL
INDICATOR
TYPE 3015F Seven neg-
ment indicator comment indicator com-
pstible with standard logic molules and power
supplies. Figs. $0-9$ from

well illuminated filament
aegments to give
character of 9 rim height pius decimal point.
Power requirement 8 mA from 5V d.c. per segment. A limited number of alphabetical
symbols also available. In if lead DIL ymbols alao available. In if lead DIL case
≤ 2

Suitable BCD decoder driver type
FLLIUTT $\mathbb{\|} \mathbf{\| 6}$
DIL Socket: 16 lead 80p. No. 30150 ehowing + or - and $\mathbf{t g} .1$ and decimal polat 22.

RIVLIN PRECISION RESISTORS
0.1% to 0.01% tolerance. Prices and delivery details on request. Examp
$100 \mathrm{k} \Omega$, between 21 and 22 .

SLIDE POTENTIOMETERS

Robuet construction, smooth silent action. In values froni $4 \mathrm{k} / \mathrm{i}$ to 1 Ma . linear or lo
28p esch. Escutcheon, light grev. 10 p . 28p osch. Escutcheon, light grev. 10p.
Knobs, flat, grip type, in black/ren/ge yellow/blue/lt. grey/dark grey or white. speach.

BAXANDALL SPEAKER

As designed by P. J. Baxandalland originally deacribed in "Wireless World". Completekit inc. spkr., equaliser and 10 watt RMB/ijn loading. Part cowt carr. in U.K. 80p. Net $£|3.8|$
Speaker unit and equaliser kit, net. Post free $\mathbf{2 4} 81$. Pack fat cabinet assembly (all cut to shape), natursit teak
flingh with instruction, $\& \theta$ net. Part cont carr. in U.K. 60p.

OARBON GXELETON PRE-SETS
Small high quality, type PR linear only: 1000,220 a $470 \mathrm{O}, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{K7}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}$, $470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{Ma}$. Vertical or horizontal mounting, 5 p each.
ZEFER DIODES $\bar{\sigma} \%$ full range, E 44 values: 400 mW 2.7 V to $36 \mathrm{~V}, 1 \mathrm{mp}$ onch; $1 \mathrm{~h}: 6.3 \mathrm{~V}$ to $82 \mathrm{~V}, 27 \mathrm{p}$ ench, $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $76 \mathrm{~V}, 48 \mathrm{pach}$.
Clip to increase 1 s'w rating to 3 watto (type 260F) 4 p.
MINIATURE TOGGLE SWITCRES
$2 \mathrm{~A} / 250 \mathrm{~V}, \quad \mathrm{DP} / \mathrm{DT}, 48 \mathrm{D}$
MAIFLITE AMPLIPIER KITS
70 watt power amp module kit, $112 \cdot 60$ net. Power supply kit, e8. 50 net. Matching pre-amp kit, 88.80 net.
(Above prices for mono.) stereo Eit. 2 power ampa (Above prices for mono.) sieroo Eit, power aupply kit and matched controis for building into your own cabinet. $288 \cdot 90$ net.
Q.E.D. HIGE QUALITY AMPLIFIER EYETEME, Built to your personal specifications. Enquirles invited. Please quote PE. 7

SIEMENS CAPACITORS

POLYCARBONATE 5% TOLERANCE
250 V up to $0 \cdot 1 \mu \mathrm{~F}: 100 \mathrm{~V} / 0 \cdot 1 \mu \mathrm{~F}$ and above
$0.01,0.012,0.015,0.018,0.022,0.027,0.033,0.047,0.056$, 8p oach.
$0.068,0 \cdot 082,0 \cdot 1,0 \cdot 13,0-10,4 \mathrm{p}$ each
0-18, $0.22,5 \mathrm{D}$ each.
0.27, 033. 6p; 0.39, 7p; 0.47, 8p; 0.56, 10p; 0.69, 11p; $1 \mu \mathrm{~F}, 13 \mathrm{p}$.
ELECTROLYTIC CAPACITORS
$0.47 / 100,1 / 100,2 \cdot 2 / 63,4.7 / 35,10 / 25,22 / 16,4 / 110,47 / 25$, $100 / 10,220 / 3,5 p$ tach.
$10 / 63,22 / 35,47 / 35,100 / 1 f, 100 / 25,220 / \kappa, 220 / 10,220 / 16$. $10 / 63,42 / 35,47 /$
47/50, 47/63, $100 / 35,470 / 10,7 \mathrm{p}$ each; $100 / 50,220 / 35$, OD each: $100 / 63,470 / 25,100 / 10,10 p$ nech; $220 / 63$, $470 / 35,1000 / 16,140$ each; 1000/25, 16p each; 470/63, $1000 / 35$. 10p asch: $2200 / 25,30 \mathrm{p}$ each; $1000 / 63,2200 / 35$, 4700/16, 33p each.
Tantalum and other capacitors, etc., ree latest 1972 catalogue-inalue No.

1972 ELECTROVALUE CATALOGUE (No. 6)

How enlarged to 86 pages plus cozer. Moro item, more information, more diagrama than ever. Post freein U.K. 10p.

We are official distributors for SOLDERSTAT SOLDER As appointed uistributors for well-knowil Elremico-
Wolf "Solderstat" irons, we offer this model HM8 in Wolf "Solderstat" irons, we offer this model H
15 or 24 watt, a.c, mains, net

INFINITELY VARIABLE TEMPERATURE
CONTROLLED SOLDER IRON
Designed essentially for microminiature and printed circuit board assemblles. Temperature is adjuat ed as
required by control on base and remaina constant required by control on asse and remains constant
whether fditig or on load. Although for working to very delicate standards, the iron is of rugged construction and is exceptionally reliable. Price, complete with base, net 29.20 .

DE-SOLDER BRAID
The efticient money-saving way to de-golder soldered joints, per 6 ft length, net 50 p .

PUBLICATIONS

Handbook of Tranaistor Equivalents, 40p. Handbook of Tested Transistor Circuits (H . Ness), 40 p Radio \&
Electronics. Colour codes llatall chart. 15p. Fingineers Reterence Handbook \& Tables, 20p. (Add 3p for postage on each of above if bought separately.)

SIEMENS

TTL INTEGRATED CIRCUITS

FLH101 (300)	20p	FLJ 121 (7473)	45p
FLH201 (7401)	20p	FLJ141 (74i4)	45p
FLH191 (7402)	20p	FLJ161 (7475)	45
FLH291 (7403)	20p	FLJ 131 (7476)	45
FLH211 (7404)	$25 p$	FLH221 (7480)	88p
FLH27l (705)	25p	FLH231 (\%482)	87 p
FLH381 (108)	25p	FLH241 (1883)	1.82
FLH391 (7409)	25p	FLH341 (7486)	33
FLH111 (710)	20 p	FLJ161 (7490)	80
FLH351 (743)	38 p		1.28
FLH121 (7420)	20 p	FLJIT1 (749\%)	188
FLH181 (7430)	20p	FLJlil (7492)	88
FLH141 (7440)	248	$1 \mathrm{LJJ181}$ (7493)	80p
FLL101 (${ }^{\text {4 }} 14$)	$1 \cdot 22$	FLJ231 (7494)	1.13
FLH281 (7442)	$1 \cdot 18$	FLJ191 (7495)	87
FLH361 (743)	1.45	FLJ261 (7496)	1.48
FLH371 (144)	1.45	FLJ301 (74100)	1.84
FLH15 1 (7450)	20p	FLJ281 (7 4104)	43
FLH161 (7451)	20p	FFLJ271 (it107)	58 p
PLH171 (7403)	20p	FLK101 (4121)	48
FLH 181 (7454)	20p	FLJ201 ('4190)	1.80
FLY101 (7468)	20p	FLJ211 (74191)	1.80
FLJ 101 (7470)	45p	FLJ24l (14192)	1.74
FLJ111 (7472)	32p	1 LJJ 251 (74193)	1.74

\section*{NEWMARKET LINEAR I.C.s} | $\mathrm{LIC} 709 \mathrm{C} / 14$ dual in line, 34p. | $709 \mathrm{C} / 5$, TO5 38p. |
| :--- | :--- |
| LIC $741 \mathrm{C} / 14$ dual in line. 40 p. | $741 \mathrm{C} / 5$, TOJ 42p. |

CARBON TRACK POTENTIOMETERS CARBON TRACK POTENTIONETERS, long npindles. Double wipers.
SLGLE GANG linear 100Ω to 22 Ma . 12p; Single
 th $2 \mathrm{M} \Omega, 42 \mathrm{p}$; Loglantilog, $10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$ only 42p; Dual antilog, 10 kg only, 48p. Any type with 2A D.P. Mains switch, 12p oxtra.
Oniy tecades of 10, 22 and 4i available in ranges
DUAL CONCENTRIC in any conbination of P. 20 values, 60p; with nwitch, 72p. Knobs, pair 24p.

DISCOUNTS

10% on orders $£ 5$ to $£ 15$. No disconn on iteme marked Net. Priees subject to alteration kithout notiee.

POSTAGE AND PACKING

 FREE, unless otherwise stated. Handling surcharge 10p on mail orders under $\$ 2$. Overseas orders: carr. and insurance charged at cont. U.S.A. CUSTOMERS are invitad to contet ELLECTROVALUE AMERICA, P.O Box 87, , Butrthmote, PA 10981ERGUIRIES FROM TRADE AND OTHER LARGE QUANTITY BUYERS EVITED.

A selection of readers' suggested circuits. It should be emphasised that these desions have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

QUIZ INDICATOR

|N a quiz where the first person to raise their hand has the right to answer, a dispute can arise as to who was actually first. The circuit shown in Fig. 1 is an extremely simple method that can resolve differences much faster than the human eye. When a competitor knows the answer to the quizmasters question he depresses his button, switching on his light and automatically barring his competitors from doing likewise.

A typical characteristic curve for a neon is shown in Fig. 2. It can be seen from the graph that before the neon will light up a flashing potential, typically 70 to 220 V must be applied. Thereafter, a potential of about 50 V is needed to sustain the light.

Fig. 1. Circuit diagram of the quiz indicator

It would seem at first that ordinary a.c. could be used, but if we remember that a.c. drops to zero twice a cycle, and once the voltage has dropped below the sustaining voltage we would require the flashing potential be applied again. Another competitor could supply this, thereby lighting their bulb and rendering the device useless.

This problem was overcome by using a smoothed rectified a.c. supply, see Fig. 1. A low current isolating transformer Tl is used for safety and the supply is smoothed by capacitor C1. The resistor R1 in parallel with the capacitor is used to discharge Cl when the supply is switched off.

The discharge law of $C 1$ is: $v=V_{s} e^{-t / C R}$
Thus after 1 second with RI at $2 \cdot 2 \mathrm{MII}$, the voltage on the capacitor is 0.37 of its original value and after 10 seconds it is 0.02 of its original value.

The resistor R 2 is used to load the lamp and once one lamp is on the resistor will conduct approximately ImA, sufficient for most neons to maintain illumination.

The components, apart from switches, neons and transformer, can be mounted on a tagboard, but the constructor should remember that he is working with high voltages, not the normal voltages used in transistor work.
M. Vlietstra,

South Africa.

Fig. 2. Typical characteristic curve for a neon tube

BATTERY HOLDER

In a recent article you recommend soldering the battery leads direct to the battery terminals. I found this unsatisfactory, in similar projects, and suggest the method shown in Fig. 1 be adopted.

The metal tube, with a plastics cap at one end, that a well-known solder manufacturer uses to dispense solder can be used to hold two $1 \frac{1}{2} \mathrm{~V}$ batteries. The positive and negative terminals are made up by inserting two screws in the ends of the dispenser, see Fig. 1.

Note that the 22 s.w.g. type solder tubes are required. It was found necessary to insert a rolled up piece of paper in the tube to avoid possible short circuits.
R. Dicken,

Plymouth.

Fig. 1. Constructional detail of a simple battery holder

FAST CYCLE CHARGER

THE British Patent 1256056 from Mattel Inc. of the USA not only details some useful techniques for successfully charging re-chargeable batteries but also provides a valuable clarification of the present state of this rapidly developing art.

The use of small non-aqueous re-chargeable batteries has snowballed over the past years. Many people now run their movie cameras, photo-flash units and portable radios off batteries which they re-charge when necessary, and with varying degrees of success.

Most re-chargeable "dry" batteries are nickel-cadmium, and these and other types can be damaged by incorrect charging. The main risk is of over-charging with the evolution of oxygen at the nickel electrode faster than it can be reacted at the cadmium electrode. The liberated gas causes over-heating and cell breakdown. Trickle-charging is sure but very slow.

The main difficulty is that to sense the difference between "charged" and "discharged" can be very tricky and Mattel have recognised that it is safer to be sure that all batteries to be charged really do need charging. Thus, their logical solution to fast charging without risk of overcharging is quite simply to initially discharge every battery.

As shown in Fig. 1 the battery to be charged is connected across a d.c. supply via a motorised rotary switch S1 which can sequentially switch the battery out of circuit, in circuit with a shorting resistor to discharge it, and finally in circuit across the charger.

In the case of a 1.2 V nickelcadmium cell the motor driven rotary switch S 1 first of all connects the cell aこross a 0.1 ohm 2 W resistor R2 to discharge it at a rate of 2 A for a period of approxi-
mately 40 seconds. Further rotation of the switch then cuts out the discharge resistor and allows a charge of 1A to be applied to the cell for 3.3 minutes.
In this way the cell can be charged in a matter of minutes without the risk of over-charging. Obviously a considerable advantace over some existing systems which require a very low charge rate for time periods of up to a day.

ANTL-FERPOELECTRIC REGULATION

THE United States Atomic T Energy Commission have patented some advances in the field of anti-ferroelectric voltage requation (BP 1253326).

Conventional voltage regulating equipment can take a variety of forms and these vary in factors such as reliability.
-The U.S.A.E.C. invention makes use of a range of materials which are in an initial anti-ferroelectric state (with randomly oriented domains) but become ferroelectric and assume a polarisation charge during the application of a bias field. They then return to the antiferroelectric state when the bias field is decreased or removed. The materials behave in this way with either a positive or negative charge and have a polarisation/ electric field hysteresis diagram or loop of the type shown in Fig. 1.

As the charge applied to the material rises from zero in either positive or negative direction, the material first exhibits a large and rapidly increasing voltage. Next the material exhibits a relatively small and slowly increasing voltage per unit change in applied charge. Thereafter, any increasing charge causes the voltage to increase more rapidly in a non-linear manner to saturation. Decreased charge first gives rapid voltage decrease and then slow linear decrease with a sudden drop to zero.

It has been found that such materials can be used to regulate voltages to a load within some parts of the slope, eneray being stored and returned to the circuit as the material discharges.

Examples of materials of this type are ceramics such as solid solutions of lead zirconate-lead titanate; many others are listed in the patent.

At the design stage a suitable material is selected which exhibits
the desired hysteresis loop characteristics and account is taken of the working temperatures and energy values to be stored. Where high voltages are to be handled and a thick piece of material is required, it is usually necessary to build up from a number of separate thin elements so as to avoid physical cracking. The sum of individual element thickness provides the same regulation characteristics as a single element of the same thickness.
Connection to the anti-ferroelectric material is made by silver or gold electrodes and Fiq. 2 shows a voltage regulator circuit including a current source, an anti-ferroelectric regulator of the type just described and a load.

The power source supplies a generally rectangular current pulse to the circuit and either the current pulse terminates before the antiferroelectric charge accumulation reaches saturation, or the load uses a charge low enough to prevent saturation being reached. The load voltage will then follow the characteristic curve shown in Fig. 3. By using selected curve portions either very narrow or more extended ranges of regulations can be obtained.

Devices of this type can be used not only to requlate pulse power supplies, but also to absorb and smooth out transients in either d.c. or a.c. lines. They can also be used for piezoelectric power supplies which may be capable of generating pulses of up to $160,000 \mathrm{~V}$. With such sources an anti-ferroelectric device can regulate a voltage pulse of 100 kV to $\pm 5 \mathrm{kV}$.

SUPERSOUND 13 HI-FI MONO AMPLIFIER

udio amplifer Btat new amplifier. Brand throughout. 5 silicon transintors plus power output transis tors in push-pull. Fu. wave rectification.
Output approx. $13 W$ output approx.
r.m.s. into 8 ohnı. Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz}+3 \mathrm{db}$. Fully integrated preseparate Volune, Bass buost and Treble cht controls. Suitable for 8-13 wha speakera. Iuput for ceraniof or crystal cartrifge. Sensithity approx. 40 mv for full oltput. supplied ready buit and tesed, with knobs, escutcheon panel, input and output ploga,
3 in high $\times 6 \mathrm{in}$ wide \times tin deep. A.C. $200 / 250 \mathrm{~V}$

PRICE $E 10.50$
P . \& P .

DE LUXE STEREO AMPLIFIER

 ${ }_{200-240}^{\substack{\text { traint } \\ \text { volts. }}}$ Using heary duty tully isointed inains transformer with
full wave rectification
iving adegiving ade-
quate smoothing
ith nerligible hum Valve line up:-2,
ECL86 Triode Pentoles. $\mathbf{I} \% \mathbf{E Z 8 0}$ as rectifier. Two dual potentiometers are provided for bass and treble control, giving bass and
treble boost and cut. A dual volume control is used. treble boost and cut. A dual volume control is used. Balance of the left and right hand channels can be
adjusted by means of a separate "Dalance" control fitted adjusted by means of a separate baince control fitted mately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per chanuel $(8$ watts mono), into 3 ohm speakere. Full negative feedback in a carefully calculated circuit allows high volume levels to be used with negligible distortion. Supplied completc with knobs, chassiasize 11 in . w 4 tin. Overall height includiog valves 5 in , Ready built and tested to a high standard. Price $\mathbf{8 8 . 9 2}$. P. \& P. 45p.

NEW! POWER SUPPLY UNIT
$200 / 240 \mathrm{~V}$ A.C. input. Four switcherl fully show hed D.C. continuous (1) ampinternittent
Fitted insulated output terminals and pilot laup in tical or.
 Guitable for Transistor Radios, Tape Remorders

BLACE ANODISED 16 g . ALUMDIUM EEAT SIHKS. For To3, complete with mica's and
3 in approx. 25 p pair. P. \& P. Dp .

HIGH GRADE COPPER LAMINATE BOARDS
$8 \operatorname{in} \times \sin \times$ in. FIVE for $50 p . \quad$ P. \& P. $13 p$
TRLEACOPIC AERLALS WITH SWIVEL JOLTT. Can be angled and rotated in any direction. 6 section Lacquered Brass. Extende from 6 in. to approx. 22 in. Maximum diameter \ddagger in. 25p each. P. \& P. 0 p.

BRAND YEW MULTH-RATLO MAITS TRA SFORMERS. Giving 13 aiternatives. Primary: 0-210-240V. Secon dary conibinations: $0 \cdot \overline{0}-10-15-20-2 \overline{0}-30-3 \mathrm{~J} \cdot 40-60 \mathrm{~V}$ halt wave at 1 amp or $10 \cdot 0 \cdot 10,20 \cdot 0 \cdot 20,30 \cdot 0 \cdot 30 \mathrm{~V}$, at 2 amps
full wave. $\operatorname{size} 3 \operatorname{inL} \mathrm{SinW} \times 3 \operatorname{inD} . \quad$ Price 81%. full ware.
$P . \& P .30 \mathrm{p}$.

MAIIS TRANSFORMER. For transistor power supplies, Pri. $200 / 240 \mathrm{~V}$. Sec. $9-0-9$ at 500 mA . Pri. 200/240V. Sec. 12-0-12 at 1 anny. 88p. P. \& P. 13p Pri. 200/240V. Sec. $10-0-10$ at 2 amp. $21 \cdot 38$, P. \& P. 30p

HANDBOOK OF TRANSISTOR EQUIVALENTS and SUBSTITUTES

A must for servicemen and home constructors. Including many 1000's of British, U.S.A., European and Japanese transistors. ONLY 40p. Post 5p.

4-SPEED RECORD PLAYER BARGAIMS Mains models. All brand new in maker' p paching.
LATEST B.S.R. C109/C129 4-SPEED ADTOCEANGER With latest nomo compatible cartrillge 86.97. Carr. 50 p With stereo cart ridge $27 \cdot 97$. Carr. 50 p .
PRECISION ENGINEERED PLINTHS Beautifully constructed in heayy gange "Colorcoat" plastic coated rteel. Resonance free. Designed to take Garrard 102u, 2000, $202 \mathrm{BTC}, 2000,3000,3200, \mathrm{~J} 100$, SP2J If and 111 , SLADB, AT6, ete., or B.S.R. C109 finh size lilin $\times 141$ in $\times 3$ in high (approx 71 ln high, iucluding rigid maved acrylic cover). Price f5.50

LATEST ACOS GP91/1SC Mono Compatible Cartridge witb 10 sty E1.50. P. \& I'. 8
SONOTONE GTAHC COMPATIBLE STEREO CARTRIDGE /O At yins. Diamonn stereo I. and mapphire ro. ONLY 8250. P. \& P. 10p. Also available fitco uith twil Diamond T/O stylus for Stereu LP.

LATEST RONETTE T/O Mono Compatible Cartridge for LATEST RONETTE T/O Mono Compatible Cartridge for EP/L.
\&1. 50

QUALITY RECORD PLAYER AMPLIFIER ME II top-quality record player amplifier employing heavy duty double wound mains transformer, ECC83, EL84. and rectifier. Separate Bass, Treble and Volume controls. Complete with output transformer matchen for 3 ohn
 PRICE \&3.76. P, w P. 40p. fransformer and speaker mounted on board with out put transformier and speakel
ready to fit cabinet beluw. PR1C'E \&4.88. P. \& P. 50p. DE LUXE QUALITY PORTABLE R/P CABINET ME IL neut mot or hoardsize 14t 2 im . clearance 2 in. Uelow fin. above. Win take an sher

SPECIAL OFFER!!

 HI-FI LOUDSPEAKER SYSTEM Beautifully made teak finish enclosure with most , 101in wide-5t" deep. Fitted with E.M.I. Ceramic Magnet $13 i n$. Sin bass unit, two H.F. tweeter unita and crossover. Power handling low:Available 3, 8 or 15 ohn impedance.
Our Price $\mathbf{E 8}^{\mathbf{4}} \mathbf{4 0}$ carr. sisp
ABINET AYA1L.IBLE MEPARATELS'

$$
\begin{aligned}
& \text { £4.50. Carr. 60p. } \\
& \text { II } \$ \text { ohm with EM }
\end{aligned}
$$

Aisu a ailable in 8 ohm with EMi 1 inn \times sin, bass

LOUDSPEAEER BARGAINS

in 3 ohm $£ 1.05$, P. \& P. $15 \mathrm{p}, 7 \times \operatorname{din} 3$ ohm $£ 1.16, P^{\prime} . \& P$ 20p. 10×6 in's or 15 ohm £1-90, P. \& P. 30p. E.M.I
 or 15 ohtn with two inbuilt tweeters and crossuler net work $24 \cdot 20$. P. \& P. $30 \mathrm{p} . \mathrm{E} . \mathrm{M} . \mathrm{I}_{.} 13^{*} 8^{*}$
(parastatic tweetei)
 Current production by well-known British maker. Now

 E.M.I. $3 \frac{1}{\text { in HEAVY DDTY T WEETERS. Power \& }}$. magnet. A vailable in 3,8 or 1 ToNE LOUDSPEAKER 0 watts peak handling. 3,8 or $1 \overline{1}$ ohm, $£ 2 \cdot 20$. P. \& 1 '. 30 p "POLY PLANAR" WAFER-TYPE, WIDE RANGE "POLY PLANAR", WAFER-TYPE, WIDE RANGE
ELECTRODYNAMIC SPEAKER
Size $11 \frac{1}{4}$ in $\times 14$ itin $\times 1 \frac{1}{3}$ in deep. Weight $190 z$. ower haniling $20 \mathrm{~m} . \mathrm{mis}$. (40 W jpak). tmpedance on ceilinga, walls, loors, inder tables, etc., and used with r without baftic. Senil s.i.E. for fill details. Only $25-75$ each. P. \& P. 20.p.
VYMAIR \& REXINE SPEAKERS \& CAEINET FABRICS pp. 54 in. wide. "sually $£ 1-5,5$ yll., our price $7 \mathrm{bp} y \mathrm{~d}$. length. P. \& P. 10 p (min. 1 yl.). S.A.E. for samples.

HI-FI STEREO HEADPHONES

Adjustabie headband with comfortable flexifoan car muffs. Wired and fitted with standard stereo tiu jack plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching eq-95. P. \& P. 15p. HIGH DMPEDAKCE CRYSTAL STICE WIKES. OUR PRICE $\mathbf{1 1 0 0 .} \mathrm{P}$. \& P. 8p
GENERAL PORPOSE HIGR STABILITY TRANSISTOR PRE-AMPLIFTER. For P. (1. Tape, Mike, Guitar, etc., and suitable for use with valve or
transistor equipment. $9 \ldots 18 \mathrm{~V}$. Battery or from H.T. transistor equipmient. $0-18 \mathrm{~V}$. Battery or from H .i. line 200300 V . Frequency response 26 dB . Solid encapalation size $1 \frac{1}{2} \times 1 \ddagger \times 1 \mathrm{i}$. Brand new-complete with ingtructions. Price
88p. P. \& P. 13p.

CENTRE ZERO MINLATURE MOVING COIL METER $100 \mu \mathrm{~A}$ for balance or tuning. Approx. size
3in. Limited number 75 p.
$\mathrm{P} . \& \mathrm{P} .10 \mathrm{p}$.

HARVERSONIC SUPER SOUND
$10+10$ STEREO AMPLIFIER KIT

NEW FURTHER IMPROVED EODEL WITH HIGHFR OUTPIT AND INCORPORATIN(HIGH QUALITY READY DRILLED FIBRE GLASS PRINTED CIRCUIT BOARD WITH COMPONENT IDENTIFICATION CLEARLY MARKED FOR EVEN EARIER CON STRIOTION

A really first-class Hi-Fi Ktereo Amplifier Kit. Uses 14 traneistors including \$ilicon Transistors in the firnt five atages on each channel resulting in even lower noise level with improved senitivity. integrated pre-amp with basa, Mreble ano use withity to nit magnetic cartridge-inatructions incluted). Output stage for any speakers from 5 to 15 inchlited). Output stage for any speakers
ohms. Compact design, all parts supplied including drilled metal work, high qually ready drilled fibre glasa printed circuit board, smart brushed anodised aluminiun front panel with matching knobs, wire, solder, nute, Lolts - no extras to buy. Simple atep by step instructions enable any constructor to bulld an amplifer to be proud of. Briet specification: Power output 14w $12-30,000 \mathrm{~Hz}$. Senaltivity better than 80 m . into 1 m 0 $12-30,000 \mathrm{~Hz}$. Serdifity better han 00 m . Basa boos Fuprox. to 12 dB . Treble cut approx. to -16 dB . approx. to ack 18 dB over main amp. Power requirementa $35 V^{\circ}$ at 1.0 amp . Overall size- $12^{\prime \prime}$ wide 8^{*} deep 2!* high. Fully detailed i-page construction manal and parte lint free with kit ar selid 18p plis large S.A.E.
PRICES AMPLIFIER KIT, \quad 10.50 P. \& I. 15 p (Magnetic input components 30p extra)
POWER PACK KIT. ES P. \& P. 30p. ('ABINET, ander realy built and tented sales
e20.50. Post Free
Note: The above amplifier is suituble for feeding two mono sonrces into impuls (e.g. wike, radio, twin record
decks, elc) and will then provide mixing and fading facilities for medium porered H i-Fi Discotheque use, etc.

3-VALVE AODIO
MPLIPIER HA34 ME II Designed for Hi-Fi reproduction of records. A.C. Mains
operation. Ready built on plated heavy gange metal chassis, nize 7 in 5 . 4 in. d. X 4 EIn. h. Incorporates ECC83, EL,84, EZ80 valves. Heary duty, double wounc maine
transformer and output transtransformer and output trane-
former matehed for 3 ohm Epeaker. Separate volume control and now with improved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output $4!$ wates. Front panel can be detaches and leads extended for remote mount ing of controls. Cotnplete with knobs, valves, ete., wired and tested for only 24.75 . P. \& P. 35p
HSL "FOUR" AMPLIFIER EIT. Similar in appearance to HA34 zbove but employs entirely different and advanced circuitry. Complete set of parts, etc. 88.98. P. \& P. 40 p .
HARVERSON'S SUPER MONO AMPLIFIER A super quality grann amplifier using a double wound fully pentode valve as audio amplifier and power output tage. pentode valace 3 ohmis. Output approx. $3 \cdot \bar{j}$ watts. Volume and tone coutrols. Chassis size only in . wide" 3 in . deep \% 6 in . high overall. AC mains $200 / 240 \mathrm{~V}$. Supplied absolutely Brand New, completely wired and testetl with good quality output transiornies.
OUR ROCE BOTTOM
BARGAIM PRICE
22.75 P. \& P.

10/14 WATT HI-FI AMPLIFIER KIT
A stsliahly Gnished
tronaural amplifier With an output o EL84a ta push-pull. Super reproduction of boech, with negligible hum. Separate inputs for mike and gram allow records and announcernents to follow each othe
Fuily shrouded
 Fuily shrouded section wound output trausformer to match $3-15 \Omega$ epeaker and 2 independent volume controls,
and separate bass and treble controls are provided giving and separate bass and treble controls a re provided giving
goodlift and eut. Valve line-up 2 EL L 24 , FUC83, EF86 and EZ80 rectiffer. Simple instruction booklet 13p (Free with

[^5]| DOUGLAS GDARANTEED12 or 24 Volt | | | |
| :---: | :---: | :---: | :---: |
| tput | V. A Amps. Ret | let | Pijce ${ }^{\text {P }}$, P. |
| 12V×2 | $250 \mathrm{~mA} \times 2$ MT11 | MT111 Cs* \dagger | |
| $2 \mathrm{~V} \times$ | 200 mitx - MT:1 | MT213 CT* \dagger | 40.97 13p |
| 120 $\times 1$ | 1Ax ${ }^{\text {a }}$ MT | MT $71.4 T$ * | c1-48 24 p |
| V× | $\because \mathrm{A} \times \mathrm{Z}$ MT 1 | MT 18 AT | 22.0430 p |
| 「×2 | $3 \mathrm{~A} \times 2 \quad$ MT 7 | MT 70 AT | 42.59 |
| $\times 2$ | 4Ax\% MT1 | MT 108 AT | 2.98 |
| - $\times 2$ | ЈA×2 MT ${ }^{\text {¢ }}$ | MT $72.4 T$ | 33 |
| 30 volts. All tapped at 0-12-15-20-24-30V | | | |
| Output | Ref. So. Price \mathbf{P} | $\begin{aligned} & \text { Orice P.P. Out-Re } \\ & \text { put } \end{aligned}$ | No. Pric |
| Amps. | | Amps. | |
| 500 nid | MT 112CT* 1.12 | 1.12 15p 3A MT 20 | AT ${ }^{2 \cdot 44}{ }^{32} \mathrm{p}$ |
| | MT 79 AT* 1.65 | 1.65 29p 4A MT -1 1 | AT 8.10 40p |
| | MT 3 AT 2.23 | 2.23 30p JA MT 5 | AT 4.8142 p |
| 50 volta. All tapped at 0-19-25-33-40-30 ${ }^{\circ}$ | | | |
| 00 ma | MT 102 AT $\ddagger 1.452$ | 1.45 24p 3A MT 100 | AT 8.0141 |
| | MT 103 AT 2.003 | 2.0032 p 4 A MT 106 | AT 5.06 41p |
| 60 Volts. All tapped at $0-24-30-40-48-60 \mathrm{~V}^{\text {c }}$ | | | |
| | | | |
| j00 mA MT 124 AT +1.4621 p 2 A MT 127 AT 8.1641 p | | | |
| | MT 126 AT 2.84? | 2.24 28p 3A MT 125 | AT 4.69 41p |
| AngUto-WOUND RAMGE | | | |
| output | | | |
| | | | |
| 75 V | | MT $64 \mathrm{~A}^{\text {T }}$ | |
| 50 VA | 20-240 | $20-240$ MT 4 AT | 22.15 31p |
| 00 VA | | MT $6 \mathrm{f}_{5} \mathrm{AT}$ | 88.0032 p |
| 400 V. Output at 50 HZ . Rel. IT8 AT | | | |
| C-D Igaltion system by R. M. Marston | | | |
| EQUIPMEAT RANGE | | | |
| | | | |
| 3.0.3 | 200 ma | MT 209 | |
| 0.97 | . $\quad 100 \mathrm{~mA}$ | MT 13 CS* | 0.91 |
| -0.12 | 50 mA | MT $210 \mathrm{CS}{ }^{\text {c }}$ | 80.01 8p |
| -0.20 | 30 mA | MT $211 \mathrm{CS}{ }^{*}$ | 40.9188 |
| 20×2 | 2300×2 | MT 214 CT* | 21.21 14p |
| $8.9 \times$ | 2500 max 2 | $\times 2 \mathrm{MT} 207 \mathrm{CT}^{*}$ | 21.48 20p |
| 15-20 | $\times 2 \quad 500 \mathrm{~mA} \times 2$ | $\times 2$ MT 205 AT* | 28.12 29p |
| $0 \cdot 15-27$ | $\times 2 \quad 000 \mathrm{~mA} \times 2$ | $\times 2 \mathrm{MT} 203 \mathrm{AT}$ * | 22.45 29p |
| -15.27 | $\times 214 \times 2$ | MT 204 AT* | 28.42 30p |
| 12-0 | -12-20 700 mA (d.c.) | (il.e.) MT 221 AT* | 21.11 25p |
| AT indicates open universal fixing with tags; CT is open U-clamp flxing with tags; CS is open U-clamp firing with P.C. spills; *with interwinding sereen; \uparrow untapped 240 S Primary: : Priniary tapped at $210-240 \mathrm{~N}$; other Primaries tapped at $200-220 \cdot 240 \mathrm{~V}$.
 Over 200 types in stock throngh agents or direct. Send for list. | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| DOUGLA8 ELECTROWICS INDUSTRIES LTD (Dapt. MO. S4), Thames Street. LOUTE, Lince. | | | |

(Dept. MO. B4), Thames Street. LOUTH, Lincs.

CALCULATOR CHIP

TEXAS 1802 One-Chip Calculator Circuit. Build yourself a low-power pocket calculator with 8 digit display (7-Segment) and all professional functions
Calculator Chip TMS I802NC $\quad £ 30.00$
Filament Display 3015F El.80
LED Displays One digit $\quad \mathbf{E 4 5 0}$
Four digits $\quad £ 17.00$
5×7 Dot Matrix $£ 12.50$
All displays 14 pin D.I.L. packages. CWO to

ELECTRONICS
181 ebberns road, hemel hempstead, herts.

NEW
 1511 ITIHITFi £375
 7 TRANSISTORS - GUARANTEED

 PRINTED CIRCUIT - TESTED PRINTED CIRCUII - TESIEDDESIGN BUILT - INSTRUCTIONS Agreat new 15 watt Hi-Fi amplifier is now availab at the fow cost of $\mathbf{6 3} 75$. Just look at the specifio cation-Power 15 Watts R.M.S. Frequency response $15 \mathrm{cs}-19000 \mathrm{cs}, \pm \mathrm{IdB}$ at all powers. Signal to noise ratio better than -70 dB . Harmonic distortion factors make the H Electronics Hi-Fi amplifier the best at its price-order now
HELECTRONICS.
105,Grange Road, London. S.E. 25
U.H.F. TV AERIALS

SUITABLE FOR COLOUR EONOCHROMERECEPTION

All U.H.F. aerials now fitted with tilting bracket and element reflector.
 LOFT MOUNTING

ARRAYS
7 element $\mathbf{6 2} 25$. I| element ©2.75. 14 element $\mathbf{6 3 . 2 5}$. 18 element $\mathbf{4 3} 75$.
WALL MOUNTING c/w WALL ARM AND BRACKET. 7 element $\mathbf{6 3}$.25. Ti element 63.75. 14 element ©4.25. 18 element 64.75. CHIMNEY MOUNTING ARRAYS c/w MAST AND LASHING KIT. 7 element 44 . 11 element $\mathbf{6 4} 50$. 14 element 44.75 . 18 element 55.25 .
MAST MOUNTING arrays only 7 element 62.25. II element 62.75. 14 element $\mathbf{6 3 . 2 5}$. 18 element 63.75 . Complete assembly ir:structions with every aerial. LOW LOSS coaxial cable 9p yd.
KING TELEBOOSTERS from ©3.75. LABGEAR all band V.H.F.-U.H.F.-F.M. radio mains operated pre-amps $\mathbf{6 7 5 0}$. State clearly channel aerials 500 aces 15 al orders. P. \& P. on all charge 25p.

BBC-ITV-FM AERIALS
BBC (band I) Wall S/D 4.2. LOFT inverted TY E1:25. EXTERNAL H' array only 33 . ITV (band 3) 5 element loft array 62.50. 7 element 63. COMBINED BBC-ITV Ioft $1+5$ G2.75. $\mathcal{L}+7{ }^{〔 3.50 .}$ WALL AND
CHIMNEY UNITS ALSO AVAILABLE. Pre-amps from $\mathbb{\$ 3} 75$.
COMEINED U.H.F.-V.H.F. aerials $1+5+9$ E4. $+5+14$ E450. $1+7+14$ 65. F.M. RADIO Standerd coaxial plugs $9 p$. Coaxial cable 5 . 4 e. Standerd coaxial plugs $9 p$. Coaxial cable 5 p yd. WO min. $\mathcal{O} O$ charge 25 pend 5 p 0 . fully illustrated lists: WELCOMED

OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS

40-4I Monarch Parade, London Rd. Mitcham, Surrey Telephone 01-648 4884

May we draw your attention

It's late at night but that doesn't stop our young electronics enthusiast from ordering some components. He just dialled 01-648 8422 and telephoned his requirements, knowing that our Answering Machine will store his message ready for us to deal with next morning. As a member of our Credit Account Service he is well aware of the advantages it brings him. He has, for instance, a free supply of our pre-paid envelopes and order forms, for use

when it suits him better to write his requirements rather than phone them. This alone saves him quite a bit. Not to mention his time spent in buying stamps and envelopes!
We have over 300 customers in our Credit Account Service, some sending us several orders a week, others just a few a year; but they all appreciate the fact that after being in the service for 12 months we send them updated Catalogues and Price Lists free of charge.
Now-if you have not already got a copy of our Components Catalogue send the coupon with a cheque or P.O. for 70p. More than 8,000 items clearly listed, over 1,500 of them illustrated. Moreover, with the catalogue you get 10 vouchers, each worth 5 p when used as instructed.
If you call at our shop (open 9 to 5.30 Monday to Saturday, except Wednesday 9 to 1) you can buy the catalogue for 50 p, thus saving the 20 p packing and postage. Details and entry forms for our Credit Account Service are included in each catalogue. Send today.

[^6]

THIS month, full constructional details and the setting up procedures for the Callercord are given.

BOARD CONSTRUCTION

Construction of the circuits is carried out on three Veroboards. The control circuitry is on one 0.1 matrix pitch (Fig. 4) and the relays on another (Fig. 5). Most of the power supply components are on 0.15 pitch board (Fig. 6) though it will be seen that the stabilising circuit is on the relay board as this was a later addition. The component layout on the boards is not critical and will depend on the size of the components used, though space should be left to allow for mounting. An aluminium sub-frame was used on the prototype for this purpose, but this can be dispensed with providing stand-off bushes are used with the board mounting screws.

After completion, bolt the three Veroboards and the five sockets to the metal framework, and solder on interconnecting wires, keeping these as short as possible.

MODIFICATION OF THE RECORDERS

To modify the tape recorders, remove both tape chassis from their casings, disconnect the batteries and battery housings and cut away the green wires, all of which are no longer needed. Cut away the blue wire from each amplifier panel, but leave connected to the motor. Disconnect the loudspeaker of one (Tape Recorder 1), but leave the speaker leads connected to the amplifier. Disconnect the microphone from the recorder to be used as Tape Recorder 2 by cutting through its lead about half way along.

Take one tape chassis and remove the rewind spool spindle, and the motor, complete with bracket.

The completed Callercord showing the two Parrot recorders in position. These are simply supported on angle strips. Note the siting of the neon display panel and call counter which occupy the space normally taken by the microphones

Fig. 4. Component mounting and interwiring details of control circuit board
 Generator board and motor rocking solenoid in position. The inset shows how the solenoid extension bar connects to the pivot plate which itself connects to the motor bracket tags. Both the bar and plate are made from $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium

The motor bracket has two curved tags that cause the motor to rock when the functions switch is turned; straighten these tags and drill a small hole in the end of each one, and bend them downwards so that when the motor is remounted they will protrude below the chassis.

Drill holes in the chassis to bolt on the solenoid, remount the motor, and bolt the pivot plate to the motor bracket as shown in the photograph and reconnect the rewind spindle. Connect the solenoid extension bar to the small right-angled bracket, loosely bolt this to the pivot plate and hook on a 2 in spring, one end going over the bolt that connects the pivot plate to the solenoid bar bracket, the other end going across the extended bar connected to the functions switch.

Adjust the position of the solenoid bar bracket so that when the solenoid is on, the motor will drive the tape forwards, and when off will allow the spring
to pull the motor back to the rewind position. Fine adjustment is best done with the chassis the correct way up. The bolts at all moving points should be left slightly slack to permit easy movement, using two nuts and a crinkle washer to hold the plates in adjustment.

Return both chassis to their casings, making sure that all leads project below the chassis without interfering with any mechanical function, and solder the leads to Veroboard strips, glued onto the chassis of the tape recorders. Connect colour coded extension leads to the strips, twist together, and terminate on an 8 -way connector plug. This is done for both recorders.

PLUG CONNECTIONS

Mount the monostable timing resistors directly onto the switch tags and bring the twisted leads to

Fig. 5. Relay and stabilised power supply board (P.S.U.2). Details of component mounting and relay interwiring are given

Fig. 6. Assembly details of small components making up P.S.U. 2
an 8 -way plug. Connection between the two parts of the Callercord is made via an octal plug and socket, the socket being mounted on the casing containing the control circuits, and the extension speaker leads from this octal socket are also brought to the third 8-way plug. All leads to LSI should be screened.

Twisted leads from the transformer secondary winding, speed control switch and counter are brought to another 8 -way plug. With the exception of an octal plug and socket, the other interconnecting sockets are Radiospares 8 -way edge connector sockets, and the 8 -way plugs are cut from 0.15 in matrix Veroboard.

SETTING UP

When everything has been wired up according to Fig. 7, check through very carefully. When satisfied, mount everything in the chassis, but make sure that the tape recorder chassis are electrically isolated from the main casing. Electrical checks can now be made.

Set the timing controls to mid-position, plug the machine into the mains and switch on. Immediately, the solenoid bolt will shoot home, the neons will probably all turn on, and both tape motors should start running. After a few seconds, one or two of the neons should go out, and in less than a minute the machine should stop, leaving only the gate neon (LP1) on.

Assuming that the machine does stop, check the correct sequence of events, setting the machine in motion by pressing the bell switch. The two main timing circuits can then be calibrated by continuously recycling the machine, each time resetting the delay switches. Remember though that the PBM switch (S3) should always be set for a time shorter than the main delay, and when tapes are in use, this must allow for the complete rewinding of the PBM tape.

USING THE MACHINE

After calibration, put a spool of tape onto each recorder, the ends of the tapes being secured to the take-up spools. This is best done by looping the end of the tape around a small piece of 5 A flex and sticking it with two layers of splicing tape to give greater strength. Do not use any other type of adhesive tape-it is not strong enough. It is also recommended that double or triple play tape should be used for the RCM tape, and standard play tape be used for the PBM tape. To avoid high rewind speeds for the PBM tape, the play-off spool should only be about one third to a half full.

Set Tape Recorder 1 function switch to "Record" and set the volume control to about half way. Set the PBM timing switch to give a time longer than the message length, press the bell switch, and when ready. speak into the microphone. As soon as the tape switches into reverse, set the functions switch to "Playback" otherwise the message will be erased. When the machine has cycled and stopped, set its time on the PBM timing controls and switch Tape Recorder 2 to "Record" with the volume set about half way and the speed control switch to "Slow". The Callercord is now ready for use.

For playing back messages from callers, set Tape Recorder 2 to "Rewind", the speed control to "Fast", and the main timing control to "Open". The machine will start automatically, and after playing

Interior layout of Callercord chassis. The tape recorders are mounted on the angle strips fixed to the chassis sides. For convenience, the subframe for the Veroboards and sockets can be dispensed with and these items connected directly to the chassis using suitable insulation bushes
back the PBM will rewind Tape Recorder 2. The motor of this will now remain on indefinitely with the "Open" setting. When it has rewound, switch the Recorder to "Playback", and put the speed control on "Slow". The RCM will now play back through the speaker.

After again rewinding, switch the timing control to its original setting, and when the machine has stopped, reset the function switch to "Record". Everything is again ready for the next caller. The best settings for the main timing control and the volume controls will eventually become obvious.

PIP GENERATOR

In practise, trouble was experienced with the effective timing of the PBM. The motors of the decks are non-synchronous and their speed varies with ambient temperature. If the room in which the machine is to be used is kept at a fairly constant temperature, this will not matter, but if not, then the PBM could cut out a couple of seconds too early or too late, depending on which way the temperature has changed. This can be compensated for by one of two ways.

CALLERCORD INTERWIRING

TAPE RECORDER
SUPPORT BRACKETS

Fig. 7. Complete interwiring details for the Callercord.

Fig. 8. Circuit diagram of "pip" generator. No assembly details are given of this as layout is not important

Recorder 2 could be made to start at the same time as Recorder 1, but this would result in excessive use of tape. A better answer is to wire in a small additional circuit. This consists of a "pip" generator that allows a series of pips to be switched in and recorded at end of the PBM with the instruction to the caller that he should start speaking only when he hears the pips stop, this only taking place when the machine switches over to Recorder 2. In use, the switch-over point would be timed to occur approximately 2 or 3 seconds after the end of the PBM speech to allow for early cut out, and the pips would last for 5 or 6 seconds to allow for late cut out.

The circuit takes the form of two astable multivibrator circuits coupled together-TR26/27 and TR29/30. Astable TR26/27 oscillates at only a few cycles per second, while TR29/30 runs at only a few thousand. The emitters of TR29/30 are taken to the collector of TR28 which has its emitter on the -3.3 V line and its base is connected to the output of TR27. Thus TR28 switches the power to TR29/30 on and off in sympathy with the output of TR27, so giving an output from TR30 that sounds similar to the STD pips from a call-box telephone. Fig. 8 shows the circuit and its simple connections.

INDEX

An Index for Volume Seven (January 1971 to December 1971) is now available price 10p inclusive of postage.

[^7] book REME

BASIC ELECTRONICS COURSE

By Norman H. Crowhurst
Published by Tab Books
368 pages, $8 \frac{1}{2}$ in $\times 5 \mathbf{5}$ in. Price $\$ 5.95$ paperback

BASIC electronics is, in fact, not the subject of this book. The word "basic" in the title refers to the course rather than the electronics. The fundamentals of electronics such as the nature of the electron are not covered at all.

This book takes an attitude well biased towards the engineering side of electronics rather than the science in that it provides practical rather than theoretical information. The reader is not bogged down with theory which, though it may be interesting in itself, does not really help the newcomer to electronics obtain a grasp of the significance of a particular component in the circuit situation.

Kirchoff's Laws and Thevenin's Theorem which are "extremely useful aids to circuit analysis but which are usually neglected in first course books are well explained. Magnetism and electromagnetism are comprehensively dealt with as are diodes, and transistors in both linear and switching applications.

Each chapter is rounded off with a set of questions, half of which are supplied with answers.

The book is easy to read and its thoroughly practical approach makes it a worthwhile introductory volume for students or technicians.
S.R.L.

INTEGRATED CIRCUIT POCKET BOOK

By R. G. Hibberd, B.Sc., C.Eng. Published by Newnes-Butterworths 274 pages, 7 in $\times 5 \frac{1}{4}$ in. Price $£ 2.50$

|F you want to know about integrated circuits, either digital or linear, then you would be well advised to get this book. Several books in the past have treated integrated circuits as an adjunct to general electronics theory. Now, at last, the subject is recognised in book form as a modern form of practical electronics that is now well passed the childhood stage.

To trainees and students, it seems best to jump straight into i.c. techniques, since here is the natural extension to transistor technology. How the integrated circuit is built up from basic silicon slices to complex circuits, requiring the utmost attention to electrical and physical parameters, makes interesting reading. The angle of approach is essentially industrial, since it is in industrial equipment that the greatest economies and task functions are needed.

The range of i.c. classes described is wide, but let it not be assumed that the full circuit descriptions are given-only the functions from a systems point of view. Of course, some previous electronics theory is required, although a glossary is provided in the appendix.
M.A.C.

Sinclair Project 60

Built and tested post free
£5.98

The value of an efficient filtering system cannot be over emphasized in these days of very high quality reproduction since there are so often occasions where its use can mean the difference between comfortable and uncomfortable listening. On the low pass side the Sinclair A.F.U. will effectively reduce hiss from radio or tape, cut out heterodyne whistles on A.M. reception, greatly reduce record surface noise and other imperfections; on the high-pass side it will cut out motor rumble and other spurious low frequency intrusion. The unit is for use between pre-amp (including tape pre-amps) and power amplifiers, and operates in two sections, both stereo. The cut-off frequencies are continuously variable, and since attenuation in the rejection band is rapid (12dB/octave) there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is as easy to mount as the stereo 60 pre-amp/control unit which it matches in styling, along with the Stereo FM Tuner.

SPECIFICATIONS

The A.F.U, employs two Sallen and Key type active filter stages. one rumble (high pass) and one scratch (low pass). The two stages use complementary transistors to minimise distortion.
Supply voltage: 15 to 35 volts. Current 3 mA maxtmum.
Gain at $1 \mathbf{k H z}$: Fitters flat $0.98(-0.2 \mathrm{~dB})$ HF cut off: (-3 dB) variable from 28 kHz to 5 kHz at $12 \mathrm{~dB} /$ octave.
LF cut off: (-3 dB) variable from 25 Hz to 100 Hz at 12 dB /octave.
Distortion: at 1 kHz (35 volt supply) 0.02% at rated output.

Super IC. 12

Integrated circuit

high fidelity amplifier

sistor circuit contained within a 16 lead DIL package, and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with the $Z .50$ and 2.30 amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). $6-8 \Omega$. Frequency Reaponse: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical 0.1%) at all output powers and frequencies in the audio band (28V). Load Impedance: 3 to 15 ohms. Input Impedance: 250 Kohms nominal. Power Gain: 90 dB ($1.000,000.000$ times) after feedback. Supply Voltage: 6 to 28 V . Quiescent current: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.
Manual avallable separately 15 p post free.
With FREE printed circuit board and 40 page manual.
$£ 2.98$ Post free

Sinclalr Radionics Ltd, London Road, St. Ives, Huntingdonshire PE17 4HJ. Tel: St. Ives 64311

the world's most advanced high fidelity modules

Z.30 \& Z.50 power amplifiers

The $Z .30$ anc $Z .50$ are of advanced design using silicon epitaxial planar transistors to provide unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at 15 w (8Ω) and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and are intended for use principaliy with other units in the Project 60 range. Their performance and design are such, however, that $Z .50$ s and $Z .30$ may be used in a far wider range of applications.
SPECIFICATIONS (2.50 units are interchangeable with $Z .30$ s in al/ app/ications). -- Power Outputs :
Z. 3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 3 ohms using 30 volts
$\mathbf{Z . 5 0} 40$ watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S. into 8 ohms using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Distortion: 0.02% into 8 ohms . Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms (for 15 w into 8Ω). For speakers from 3 to 15 ohms impedance, Size: $14 \times 80 \times 57 \mathrm{~mm}$.

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems, the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.

SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u. -up to 3 mV . Aux -up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz . BASS +12 to -12 dB at 100 Hz . Front panel : brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

Project 60 Stereo F.M. Tuner

Buit and tested. Postfree.

The phase lock loop princıple was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M tuner with fantastically good results. Other advanced features include varicap diode tuning, printed circuit colls, an I.C. in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range : 87.5 to 108 MHz . Sensitivity: $7 \mu \vee$ for lock-in over full deviation squelch level: Typically $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S maximum Operating voltage: $25-30 \mathrm{VDC}$. Indicators: Stereo on : tuning. Size : $93 \times 40 \times 207 \mathrm{~mm}$.

Power Supply Units

Designed specifically for use with the Project 60 system of your choice. Use PZ. 5 for normal Z.30 assemblies and PZ. 6 or PZ. 8 where a stabilised supply is essential.
Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control, etc.	£4.48
Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control. etc.	£9.45
12 W . RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } \\ & 60 ; \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P.U., F.M. Tuner, etc.	£23.90
25 W . RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } \\ & 60 ; \text { PZ.6 } \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner, Tape Deck, etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60 W . RMS into 8 ohms)	$2 \times 2.50 \mathrm{~s}$, Stereo 60; PZ.8, mains transformer	As above	£34.88
Indoor P.A	Z.50, PZ.8, mains transformer	Mic., guitar, speakers. etc.. controls	f19.43
F.M. Stereo Tuner ($\mathbf{2} \mathbf{5}$) \& A.F.U. ($\mathbf{£ 5 . 9 8}$) may be added as required.			

Guarantee

If, within 3 months of purchasing any product direct from Sinclair Radionics Ltd., you are dissatisfied with it your money will be refunded at once. Many Sinclair appointed Stockists also offer this same guarantee in co-operation with Stockists also offer this
Sinclair Radionics Ltd.

Each Project 60 module is tested before leaving our factory and is guaranteed to work perfectly. Should any defect arise in normal use. we will service it at once and without any charge to you, if it is returned within two years from the date of purchase. Outside this period of guarantee a small charge (typically f1.00) will be made No charge is made for postage by surface mall. Alr Mall is charged at cost.

SINCLAIR RADIONICS, STIVES, HUNTINGDONSHIRE PE17 4HJ
Please send
Ienclose cash/cheque/money order.
Name

Address

Guscgive

NEW COMPONENTS

Post and Package free for orders over £1.50. Include 10p P.P. for each single pack under $£ 1.50$.

200 Mixed Resistors, all types, $\mathbf{5 0 p}$.
100 Mixed Modern and Miniature Resistors, 50 p .
10 mF 64 V Electrolytic Caps, 5 for 25 p ; 12 for 50 p .
640 mF 16 V Electrolytic Caps, 3 for 30 p ; 7 for 60 p .
100 New Mixed Caps, 60p.
10 mF 63 V Wima non-Electrolytic, 15p each.

TRANSISTORS

Any 6 of the following 50p or 10p each. OC71, BFY50, 2N3702, CV8615 (BSY95A), NTG885.

THIS MONTH'S HI-FI BARGAINS

Quadraphonic cartridge player with slider controls plus 4 speakers. Cartridges available. List on application, our price $£ 100$.
GAR SP27 Mk. 3 £11.00; SONOTONE 9TAHCD £2.10; GOLDRING G800 £8.65; GOLDRING G850 £5.70; GOLDRING G101/PT/T UNIT £22.50.
ALL ABOVE POST FREE

EX COMPUTER CIRCUIT BOARDS

10 Boards 50p, P. \& P. 8p.
25 Boards £1, P. \& P. 18p.
2 Boards with 2 Power Transistors, i.e. $4 \times$ OC28 type, $50 p_{\text {I }}$ P. \& P. 7p.

LAWBAK ELECTRONICS
 18 Migh Road, Swaythling, SOUTMAMPTON Tel.: SOUTHAMPTON 58479

All callers welcome. $\mathrm{Hi}-\mathrm{Fi}$ and component specialists; J.V.C. Nivico, Sharp, Sanyo, Philips, Marconiphone, Teleton, Wharfedale, Goodmans, Eagle, Leak, Grundig, Sansui, Skandia, etc., etc.

NO HALF DAY CLOSING
Four channel specialists. Creditterms and discounts available.

EDGWARE ELECTRONICS CENTRE

194 EDGWARE ROAD, LONDON, W. 2
Phone 01-723 1465

EEC Product AC/DC Converter
Input 240 volts. Output $3 \mathrm{~V}, 4.5 \mathrm{~V}, 6 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}$, 12 V d.c. Current 500 mA .
Price $\mathbf{4} 4.47$ postage paid

EEC Car Adaptor

Input 12 volts. Output $6 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}$
Price $\mathbf{5} \mathbf{5} 10$ postage paid
MD 800 Sound Headphones with volume control $\$ 3.90$ Garrard 2025 with plinth cover and cartridge $\mathbf{\$ 1 2} 30$ Shira Car Radio MW/LW-

Manual $\mathbf{1 8 . 5 0}$
Twin Speaker $£ 8.95$
Push Button $£ 10.45$
Plinth and Cover suitable for Garrard SP25, $\mathbf{4 - 2 5}$
Headphones DHO25, £2.25
Siran Battery Chargers 6 V and $12 \mathrm{~V}, \mathbf{£ 2 . 8 5}$
Please send 25p for postage and packing
Quality Cassettes at cheapest prices
C60 35p plus 5p P. \& P.
C90 47p plus 5p P. \& P.
Cl2060p plus 5p P. \& P.
Mixed packet of resistors 25p postage paid
Pocket Transistor Radio AM with Battery, Magnetic Earphone and Carrying Case $\mathbb{1} 1.95$ postage paid

VARIABLE VOLTAGE TIAN	230V A.C. SOLENOID Extromely powerful with approx. mounting feet. Size: tin long, 2 tin wide, 3 in high. E2.00 incl. p \& p 230-250 VOLT A.C. SOLENOID Mance to above illustration). Approx. Itlb pull Feet size fin \times Itin. Price $85 p$ incl. P. \& P Size: O.A.L. 3 YOLT x D.C. SOLENO ID lib. approx. PRICE: 75pincl. P. \& P.	
TRANSFORMER		
		RELAAYS SIEMENS, PLESSEY, Eit.
	ata iunction Xenon Tube and instructions 26.30 , plus NEW INDUSTRIAL KIT	
	Neeally suitable for schools, laboratories, etce. Roller 	
$\frac{9.6 \text { and }}{220 / 240}$		
	HY-LYHT STREB MK	
		12 VOLT D.C. RELAY 140 ohm coil Three sets cio contacts rated at 5 amps 78 P includ
	(e)	
Case dia ${ }_{\text {cose }}$	THE 'SUPER' HY-LYGHT KIT Approx. four times the light outpur of our well proven Hy-Lyzht strobe. Incorporating:	ing P. \& P. (Similar to illustration below.) DIAMOND H 230 VOLT A.C. RELAYS (Unused) Three setsc/o contacts rated at 5 amps .
	- Heavy duty power supply. Reactor control circuit producing an intense	40 includin P. \& ${ }^{2} \mathrm{P}$)
	-	
	ATTRACTIVE, ROBUST, FULLY YENTSLATEDMETAL CASE specially desinged for the	Mindature latching Relar
	45p. Ideally suited for above Strobe kits. Price 53p. P. \& P. 13p or post paid with kits	manent latching in either direction. Coit tiso ohm,
	6 INCH COLOUR WHEEL 	-
CONSTANT SPEED. PRECISINN 2.750 ropm rmature, balliace bearing: 		
	ULATION TESTERS NEW!	Diete set of pars incucing tociker. oic.,
	ize L.8in, W. 4 in , H. 6 in , weight 61 l .辟	G.E.C. 12 WAY 15 AMP CONNECTORS
	carriage paid. $500 \mathrm{~V}, 500$ megohms, 28 incl. P. \& P.	Mrin dor. post
	36V 30 AMP. A.C. or D.C.VARIABLE	
	L.T. SUPPLY UNIT input	
arstabe ro yiderme		LIGHT SOURCE AND PHOTO CELL MOUNTING
	(e)	
	 	assembly and ventiated lamp
	VENNER ELECTRIC TIME SWITCH $200 / 250 \mathrm{~V}$ Ex. GPO. Tested. Manually set 2 on, 2 off every 24 h . Override switch: $15 A \& 3.25,20 \mathrm{~A} \$ 3.75$. P. \& P. 20 p . Also avaliabe we th solar dat Off dawn. price as above.	LIGHT SENSITIVE SWITCHES Kit includes ORP. 12 Photocell, Relay OReration. Price: 1150 plus 12 P P. \& P Mains transformer, rectifier, relay, I make 1 break H.D. contacts. price incl. circuit 42.65 . P. \& P. 20p.
control up to 600 W of all		Momponents and an sepaze instroftion teather Ctc. Price 67.73. P. \& P. 30 P .
	suited for machinery control, automation, etci, Also 	
	TRIAC 400 PIV. 10 AMP Now available EX sTock. Supplied with hull data 	D.C. AMMETERS NEW!
All Mail Orders- $C_{\text {allers }}$ Ample Parking Dept. PE8, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560	$\begin{gathered} \text { SERVICE } \\ \text { TRADINGCO. } \end{gathered}$	9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

Brunel
Technical College, Bristol

Ashley Down, Bristol BS7 9BU
Department of Marine and Aero-Electronics

Marine Radio and Electronic Officers

The Department offers the following Courses
a. For prospective Radio Officers in the Merchant Navy a Course of two years and one term leading to the MPT General Certificate in Radiocommunications and the DoTI Radar Maintenance Certificate. Commences September and January.
b. For qualified Marine Radio or Electronic Officers the MNTB Additional Certificate in Marine Electronics, in two modules of three months each
c. Short advanced technique Courses for serving Radio Officers. d. MPT R/T Licences

Licensed Aircraft Radio Engineers

The Department provides a 2-year Full-time Ccurse leading to a career in Civil Aviation. The Course is fully approved by the ARB so that successful students may obtain a full Category R Licence at the end of the Course. The Department's aircraft, workshops and laboratories cover:
12.1 Airborne Communication Systems
12.2 Airborne Na,rigation Systems
12.3 Airborne Pulse and FM Systems

Courses are also provided for Aeronautical R/T Licences and Category \times Compass Licences.
Courses commence each September.
For further information apply to Head of Department of Marine and Aero-Electronics, Brunel Technical College, Ashley Down, Bristol BS7 9BU. Tel. 41241

PRINTED CIRCUIT KIT

 Parts and TRAESistors trom your spares box
CONTENTE: (1) 2 Copper Laminate Boards $4 \frac{1}{2} \times 2 \frac{1}{2} h$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resiat. (5) Reaiat Bolvent. (6) Etchant. (7) Cleanser/Degreaser. (8) 16 -page Booklet Printed C ircuita for Amateurt. (9) 2 Ministure Redlo Dials SW/MW/LW. Also tree with each kil: (10) Essential Design Data, Circulta, Chasals Plang, etc. for 50 TRANBISTORIBED PROJECTS. A very comprehensive selection of circuits to suit everyone's requirements and
constructional ablity. Wany recently developed very efficient designs published for the sirst time, including 10 new elrcuits.

EXPERIMENTER'S printed circuit kit 60p
 Postage \& Pack. 10p (UK)

 Commonwealth SURFACE MAIL 15p AIR MAIL 60p Australia, New Zealand, South Africa, Canada(1) Crystal Bet with biased Detector. (2) Cryatal Set with voltage-quadrupler detector. (9) Cryatai Eet with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifièr. (5) Carrier Power Converslon Recelver. (6) Split-Load Neutratised Double Reflex. adjuting regeneration (Patent Pending). (9) Solar Battery Loudgpeater Radio adjuting regeneration (Patent Pending), (9) Solar Battery Loudspeaker Radio. The smalleat \mathbf{s} deabminiature Radio Receivers based on the "Triflexon" clrcuit. Let us know If you know of a smaller design publlahed anywhere. (10) Postage Stamp Radio. 8ize only $1.62 \mathrm{in} \times 0.95 \mathrm{in} \times 0.25 \ln$. (11) Wrigtwatch Radio $1.15 \mathrm{in} \times 0.80 \mathrm{in} \times 0.55 \mathrm{in}$. (12) Ring Radio $0.70 \mathrm{in} \times 0.70 \mathrm{in} \times 0.55 \mathrm{in}$. (13) Bacteris-powered Radio. Runs on sugar or bread. (14) Radio Control Tone Receiver. (15) Transistor P/P Amplifter. (18) Intercom. (17) 1-valve Amplifier. (18) Reliable Bupglar Alarm. (19) Light-Seeking Animal, Guided Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Human Body Radlation Detector. (24) Man/Woman Discriminator. Volume Intercom. (28) Remote Control of Models by Induction. (29) Inductive-Lont Transmitter. (30) Pocket Triple Beflex Radio. (31) Writwateh Transmitter/Wize-less Microphone. (32) Rain Alarm. (33) Ultragonic Swltch/Alarm. (34) Stereo Preamplifer. (35) Quality Stereo Push-Pull Amplifier. (36) Light-Beam Telephone "Photophone". (37) Light-Beam Tranamitter. (38) Bllent TV Bound Adaptor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Speed Controlier. Plus 10 Photoelectric Circuits, Simple Alarms, Long Range Alarms, Projector Modulators, etc.
YORK ELECTRICS, Mail Order Dept. 335 BATTERSEA PARK ROAD, LONDON, S.W. 11
Send a S.A.E. for full detaits and a brief description of all kits and Projects.

MARSHALL'S INTEGRATED CIRCUITS
 NEW LOW PRICES LARGEST RANGE BRAND NEW FULLY GUARANTED

MOTOROLA

We can now ofter a vast range of
Motorola IC's at Industrial distributor prices.

Example MC724P MC790P

 $\mathrm{MC790P}$$\mathrm{MC1303L}$
2p
0.66
1.24
2.70

Data glicela

FAIRCHIL	
L900	
L028	
Dota shicet 12 If	
LINEAR	
Op. Anpm.	
L702A	105
L.702C	TO5
L703C	TOS
L709C	'10's
L700C	DIL
L710C	LO5
L710C	DIL
L711C	TOS
L71IC	DIL
$L 710$	TOS
L723C	'1'05,
$L 739$	
L741C	'ros
L741C	DIL
LM741	DIL
SN7270	' DII.
$\begin{aligned} & \text { RCA } \\ & \text { COSMOS } \end{aligned}$	
CD4001.1E	
CD4000AE	
CD4011AE	
CD4013AE	
CD4015AF	
OD4017Al:	
CD4018AE	
CD4020AE	
CD 4024	

MULLARD

DTL

FCH101
FOH121
FOH201
FOH231
FOJ101
FOJ111
FOJ201
FOJ211
FCK101
FOY101 GEN
ELE
PA239
PA246
PA284
PA265
 NERAL EC

SIEMENS

		811	4.45
		Lp	TAB101
TAA151	0.88	TAD100	1.971
TAA435	0.78	TAD110	1.971

SGS

TAA601n 21-32	TAA700 28.50
TAA621 28.08	TBA651 21.89

All TTL IC's may be mixed to qualify for quantity tiscounte
8 Pin TO-5 I.C. Holders, 20.20
10 Pin TO-5 I.C. Holders, 80.25
8 Pin Dual-in-Line I.C. Holders, 20.20 16 Pin Dual-in-Line IC. Holders, 20.17

TTL LOGICS

$1-2425-99$	$1-2425-90$

$\begin{array}{llllll} & & & \text { ip } & \text { \&p } \\ \text { SN7400 } & 0.20 & 0.18 & \text { SNT403 } & 0.20 & 0.18\end{array}$ $\begin{array}{llllll}\text { SN7401 } & 0.20 & 0.18 & \text { SN7404 } & 0.22 & 0.20 \\ \text { SN7402 } & 0.20 & 0.18 & \text { SN7405 } & 0.02 & 0.20\end{array}$

8N749: SNT493
SNT494
SNT493 SNi49亏
BNT496
SN7
SNT
SNT
SNT
HY

SNi4121
SN 412
SN 4123
0

1-25 25-9日
$1-2525-89$
$2 p$
$2 p$ $\begin{array}{lll}0.80 & 0.75 \\ 0.80 & 0.75 \\ & 0.85\end{array}$ $\begin{array}{lll}0.80 & 0.75 \\ 0.85 \\ 0.78 \\ 0.85 & 0.78\end{array}$
$\begin{array}{lll} & \\ \text { HNT4123 } & 0.90 & 0.80 \\ \text { SNT } & 0.81+1 & 0.80 \\ 0.70\end{array}$
S_{N}
S_{N}
S_{N} SNG41J0
SNT4151
SNT4.33

8.40	
1	
1.8	
1	1.58

S_{5}
WNT 2
SNi
SNT4156
SNTH157
MNTH158
SNT 160SNT
SNT4
SNT
SNT4
BNT
SNT

SNT 7163
SN 4164

 $\begin{array}{llll}\text { SNT } 4167 \\ & 14.08 & 12.32 \\ \text { SN } 74170 & 4.38 & 3.83\end{array}$
$\begin{array}{lll}\text { SNTH154 } & 8.08 & 1.88 \\ \text { SNT } 4175 & 1.44 & 1.98\end{array}$

$\begin{array}{lll}\text { SN } 74178 & 1.80 & 1.55 \\ \text { SN } 74179 & 1.80 & 1.55\end{array}$
$\begin{array}{ll}\text { SNT } 4180 & 1.8 \\ \text { SN } 74181 & 5.50\end{array}$
$3 N T+18:$
$8 N^{\top}+190$

WARGEST STOCKS SEMICONDUCTORS \＆COMPONENTS

 26303
29808
20808
29308
$2 G 308$
29309
20371
29374
20381
26381
2 CN 404
2N404
2N668
2N697
2N697
2N698
2N706
$2 N 706 A$

2N706A
2N708
2N709

2N709
2N718
2N728
$2 N 727$
$2 N 01 /$
$2 N 016$
2N916
2N929
2NO80
2N1090

2
路

CO
教

ふた
 －

 ， जैद्य ＂̈

D．C．PANEL METERS

 0 O 2N3414
 18） 2 N 357 Z $10 \mathrm{D} \left\lvert\, \begin{aligned} & 2 \mathrm{~N} 3605\end{aligned}\right.$ 15 718
80
87
88
88 400 $1303-17$
> ${ }^{2}{ }^{2}$ ， 2 N 3606 $\begin{array}{ll}80 \% \\ 2 N 3704 \\ 20 p & 2 N 3703 \\ & 2 \mathrm{~N} 3704\end{array}$ $t^{2} \mid 2 \mathrm{~N} 370$ sp $\begin{aligned} & 2 \mathrm{~N} 370 \\ & \text { 2N37 }\end{aligned}$ \＆ 6 2 N 3819
2 N 3823
2 N 385 2 N 3854
2 N 3855
2 S 355 L

TRANSISTORS Maiching charge（audio transistors only），15p exia per pair．
Post \＆Packing 13p per order．Europe 25p．Commonwealth（Air）Letter $6 \overline{5}$ p（Min．）．Parcel $£ 1$－ 69 （Min．）

| 450311 |
| :--- | :--- | :--- | :--- |
| 40312 | ${ }^{4} \left\lvert\, \begin{aligned} & 40311 \\ & 40312\end{aligned}\right.$

MULLARD C280 M／FOILCAPACITORS

$0.01,0.022,0.033,0.047,8 p ; 0.068$ $0 \cdot 1,4 p$ each
$0 \cdot 15,0 \cdot 2 \cdot 2,0$

0．33．5p each

$0.15,0.29$,	$0.33 .5 p$ each．
0.47	$8 p$
0.68	$11 p$
$1 \mu F$	$14 p$
$1.5 \mu F$	$21 p$
$2.2 \mu F$	$25 p$

WIRE－WOUND RESISTORS
2.5 watt 5%（up to 270 ohms
only） 7% p．
5 watt 5% to $8 \cdot 2 \mathrm{k} \Omega$ only）， 8 p ．
10 watt 5%（up to $25 \mathrm{k} \Omega$ only），
10 p ．

wa 10 p ．

POTENTIOMETERS

Carbon：
Log．or Lin．，lesa awitch，16p．
Log．or Lin．，with switch，25p Wire－wound Pots（3W）．88p．Log．
Twin Gianged Stereo Pots，Log
and Lin．，40p．
PRESETS（CARBON）

PRESETS（CARBON）

SLIDER POTENTIOMETERS

LIN： $1 \mathrm{k}, 2 . j \mathrm{k}, \quad 20 \mathrm{k}, 25 \mathrm{k}, 100 \mathrm{k}$ $250 \mathrm{k}, 1 \mathrm{M}$ ．
$250 \mathrm{k}, 1 \mathrm{M}, 10 \mathrm{k}, 25 \mathrm{k}, 100 \mathrm{k}, 500 \mathrm{k}$ ，
$10 \mathrm{G}: 5 \mathrm{E}, 1 \mathrm{CH}$ ．

Practicul Electronics Classified Advertisemenis

RATES: 8 p per word (minimum 12 words). Box No. 10 p extra. Semi-Display $£ 6$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

MISGELLANEOU8

YOUNG SCIENTISTS

and not-so-young, whether beginner or advanced-we offer a range of over 35 SUPER projects.
Have you ever wanted to build A MACHINE THAT LEARNS? Or perhaps make a TEACHING DEVICE? Maybe Ycu FANTASY MACHINE? How about a "Thing" capable of REPRODUCING ITSELF? Whatever your electronic turn-of-mind, there's just GOT TO BE LOADS TO INTEREST YOU in the science-fictionworld of BOFFIN.
GET YOUR CATALOGUE - SEND JUST I5p NOW! (S.A.E. for details).

TO: BOFFIN PROJECTS

- CUNLIFFE ROAD

STONELEIGH, EWELL SURREY

Designs by GERRY BROWN and JOHN SALMON and presented on TV.

Build a PROJECT "X" SYNTHESISER using Dewtron*PROFESSIONAL MODULES

(RRecd. Trademark)

VOLTAGE CONTROL amplifiers, oscillators, filters and P-H-A-S-E.
MAN-SIZED PATCHBOARD, no cables.
CASH SAVINGS by buying sets of modules and components.
ALL MODULES available separately.
Send SAE for details or 15 p for full musical catalogue.
D.E.W. Itd., 254 Ringwood Rd., Ferndown, Dorset

GLASS FIBRE OPTIC

FLEXIBLE LIGHT PIPE, now available in any length. 200 + glass fibres with three times ower loss than plastic fibre. I mm dia. bundle heathed in P.V.C.

Used like wire but to convey light to remote or inaccessible positions for inspection. panel indicators, photo-electric and other appli60p; 5-19, 65p; 20-99, 50p. Send S.A.E. for literature.

FIBRE OPTIC SUPPLIERS

P.0. BOX 702, LONDON WIO 6SL

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turatables, electronic testmeters, calibration unlts, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M / C relays, components, etc. Lower Beeding 236 .

METER REPAIR8. Ammeters, voltmeters, muttl-range meters, etc. Send to METER REPAIRS, 39 Chesholm Road, London, N16 0DS.

CHROMABONIC ELECTRONIC8 is well and llving at 56 Fortis Green Road, Irondon, N10 3HN. 40 -page lllustrated catalogue 20p post free.

[^8]
COMPONENT CATALOGUE AND
 DISCOUNT VOUCHERS
 25p Post free (U.K.)
 W.E.C. LTD.
 high street, ripley, surrey

RECORD T.V. SOUND using our loudspeaker isolating transformer. Provides safe ronnection to recorder. Instructions included, \& 1 post fref. (iROWHOROUGH LLEC: Trontes (l. li.), lifidge Ruad, crowborongh, Sussex.

12 VOLT FLUORESCENT LIGHTS

 [as Hlustrated)

Beat power cuts. Be independent. Ideal for caravans, tents, emergency lighting, etc. Works anywhere where 12 v is available. Guaranteed for six months. Ready to use at
12 ins. 8 watt $£ 3 \cdot 60$ post paid
21 ins. 13 watt $£ 4 \cdot 60$ post paid
8ALOP ELECTRONIC8, 23 WYLE COP
SHREWSBURY, 8HROPSHIRE. Callers
welcome. For lists or enquiries, large,s.a,e.

> PROFESSIONAL CONTROL PANELS
> with FASCIA KIT
> MAKE YOUR OWN PANELSIN PERMANENT, ANODISED, SELF-ADHESIVE ALUMINIUM. NO SPECIAL EQUIPMENT NEEDED. CHOICE OF SILVER ON BLACK RED. BLUE, GREEN.
> TRIAL KIT $\mathbf{1 1 . 2 8}$ Carr. Paid No. 1 KIT $\ell 1.88$ Carr. Paid
No. 2 KIT $\in 2.39$ Carr. Paid
> M.P.E. Ltd., BRIDGE ST., CLAY CROSS, DERBYS.

AUTOMATIC CHORDS. Add then to your organ using our unit. S.A.E. details. MOLLOY, Elm Road, Tokers Green, lkeading, Berks.
P.E. GEMINI. Etched aluminium fascia panels as detailed in latest publication. Printed circuit boards and other items. S.A.E, details. RAMAR ('ONSTHUCTOR SERVICES, 29 Shelbomrne Road, stratford-on-Avon, Warwicks.

ENAMELLED COPPER WIRE
 S.W.G. 116 Reel Ilb Reel
 $10-14$ $15-19$
 $15-19$ $20-24$
 $20-24$ $25-29$ $30-34$
 $30-34$ $35-40$
 $\$ 1.15$ $\$ 1.15$
 $1 / 10$ Reel

 INDUSTRIAL SUPPLIES

102 Parrswood Rd., Withington, Manchester 20

DI8COTHEQUE SOUND MIXER with sliding controls and headphone monitor circuitry. All forms of somnd equipment supplied for static or inobile discotheques. Write enclosing static or mobile discotheques. Write enclosing
S.A.J. THOMPSON (FLECTIOONI('s) 17 S.A.E. THOMPSON (ELECTRONI('S), 17
Bailey's load, Southsea, Hants. Tel. 0705 28909.

[^9]NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE
because this GPO approved transmitter/receiver kit does not use R.F. and you can ger one easily. hey won't be heard by conlly SECRE since Actually it's TWO KITS IN ONE because youget all the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexibte design with quite an AMAZING RANGEANGUAGE IABORATORIES SCOUT CAMPS
tc.
GET YOURS! SEND $£ 5 \cdot 50$ NOW (S.A.E. for details)
TO: 'BOFFIN PROJECTS
DEPT. KE2OIO
4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY

CON8TRUCTION AID8. Fascia panels, dials, manreplates in etched aluminium to individual sperifleation. shect aluminium, printed cir-cuits-irafting tapes, negatives supplied, hoards manufactured, singles or small runs. Copper clad laminate supplied. Hardware for constructors. S.A.L. details. IRAMAR. (ONSTRIT'TOR SERVIC'Lis, 29 Shelbourne Road, Stratford-on-Avon, Warwks.

BUILD IT in a DEWBOX quality cabinet $2 i n \times 2 \frac{1}{2} i n \times$ any length. DEW LTD. Ringwood Road, Ferndown, Dorset, S.A.E for leaflet. Write now-riglit now

HI-FI EQUIPMENT

Prectrss

HI-FI LOUDSPEAKERS Acclaimed by the Experts MULTI-UNIT SYSTEMS IN KIT FORM MATCHING CABINET KITS ALSO AVAILABLE
Full details \& address of your local dealer from: P.F. A.R. Helme Led. (Dept. PE8), Summerbridge: Harrogate HG3 4DR Yorks. Tel. Darley 279 (STD 0423-72)

WANTED

CAsH PAID for New Valves. Payment by return. WILLOW VALA ELECTRONICS. 4 The Broadway, Hanwell, London. W.7. $01-5675400 / 2971$.

HIGHEST PO8sIBLE CA8H prices for Akai, B. \& O., lirenell, Ferrograph, Revox, Sanyo, Sony, Tandberg, ther, Vortexion, etc. 9.30 5.00, 01-242 7401.

TOP PRICES PAID

for new valves and components Popular T.V. and Radio types KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

HONS. DEGREE IN Electronic enginering

Two academic years in college, one year in industry and a final academic year in college.
HONS. DEGREE IN
ELECTRICAL ENGINEERING
Three years on a six-monthly
Polytechnic/Industry sandwich pattern followed by a final academic year in college.
H.N.D. IN

ElECTRICAL and ELECTRONIC ENGINEERING

Three year thin-sandwich course.
For full details apply to Head of Department of Electrical and Electronic Engineering, North Staffordshire Polytechnic, Beaconside, Stafford, or telephone him at Stafford 52331.
Please quote reference 772PE on both envelope and letter.

FOR SALE

SEEN MY CAT? 5,000 items. Mechanical and Electrical (iear, and materials. S.A.A. K. R WHISTON, Dept. PE, New Mills, Stockport.

CATALOGUE NO. 18, Electronic and Mechanical Components, new and manufacturers surplus. Credit vouchers value 50 p . Price 23p, including post. AR'l'HUR SALIIS RADIO CON'TROI, LTH., シ8 (ardner Strest Brighton, Sussex

MORSEMADEEASY!! VACT NOT FICMION. If you atart IbIGIIIT you will he reading amateur and conmercial Morge Using srientifically propared 3 -speed jecords automaticully learn to recognise the code RHYTilm without translating. You can't help it, it's as casy ite earning a tune. 18 W.P.M. in 4 weeks gnarintecd. Beginner's Section ouly $\mathbf{8 3} 30$, complete course 84.50 Overseas E] extra) detaila only, 4 p stamp, 01-680 2896 G3H8C (Box 19), 45 GREEN LANE, PURLEY, SURREY

FOUR OCTAVE elsetronic urgan with goldbonded diodes for sale. ('ost £135in Jan. 1969, (Offers. Tel. 021-706 2099.

8IXTY-8IX BACK COPIE8 nf l.E. From Vol. 1 No. 1 to Fol. 6 No. 12. Light missing from completts set. Any Offers. Box No. 42

50 WATT AMPLIFIER8 in strong metal case. 4 inputs, 2 with inmepement volume cont suits mieroplomes and guitars. Ready for use 830. SA.E for details to PETEIR HI'KMAN' 22 East Preston Ntreet, Eitiuburgh, EHN QQIr.
P.E. January 1968 to October 1971. Good condition, three binders. Offers please. THOMAS, Min-v-Nant, (ardiff C'f 6J K.

ENGINEER8-get a technical certificate. Postal courses in Engineering, Electronics Postal courses in Engineering, Electronics,
Radio, TV, computers, Dranghtsmanship, Radio, TV, ('omputers, braughtsinanship,
Building, ete. FREE book from: BIE' Building, ete. EREE book from: BIET'
(Dept. H.4), Adermaston ('ourt, Keading, R(r7 +1PF. Accredited by C'A(').

GET INTO Electronics-opportunities for trained men. Learn at home. Postal courses in RTEB, (ity \& Guilds, Radio. TV, Telecoms. etc. FRLE informative guide: ("HAMBERS COLLEGE (Dept. Ik.104), Abdermaston ©ourt, Reading, R(ai 4l'F.
etc. Expert coaching for:

* RADIO AMATEURS' EXAMINATION.
* C. \& G. RADIO SERVICING THEORY.

Now available, Colour T.V. Servicing.
Examination Students coached until successful. multi-meter. All under expert guidance. sent to you by return mail.
MEMBER OF THE ABCC

INTERNATIONAL
 CORRESPONDENCE
 SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

AGE

WHY NOT join a group of companies whose expansion is only limited by lack of Engineers probably like you-the "get up and go with probably ike you-the, get up and go with
practical common sense" type. We cover such practica common sense" type. We cover such
a wide range of engineering activities in the a wide range of enginpering activities in the
electronics feld, your skills may be just what we want, to give you maxinum job satisfaction. Send full details of what you can do to us or ring for an appoinement. sMYERUMSBY GROITPOF 'OMPANIWN, 123/124 Snargate Ntreet, Dover. Phone. Dover $11 x^{4}$. 1525 口г (йteway 2804.

Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary, direct-fromAmerica, course, you train as a Computer Operator in only 4 weeks! Pay prospects? $£ 2500+$ p.a.
After training, our exclusive appointments bureau-one of the world's leaders of its kind-introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.

London Computer Operators Training Centre E83, Oxford House 9-15, Oxford Street, W.1. Telephone: 01-734 2874 127, The Piazza, Dept. E82,
Piccadilly Piaza, Manchester 1 . Telephone: 061-236 2935

- \square TECHNICALTRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trainedman, Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers,

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES,
* GENERAL RADIOCOMMUNICATIONS CERTIFICATE,

NEW SELFFBUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator and
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be

ACCREDITED BY THE CACC

International Correspondence Schools (Dept. P.A.25), Intertext House, Stewarts Road, London SW8 4UJ

NAME Block Capitals Please
\qquad

PRACTICAL ELECTRONICS "SCORPIO" ELECTRONIC IGNITION SYSTEM

This Capacitor-Discharge Electronic Ignition system was described in the November and December issues of Practical Electronics. It is suitable for incorporating in any $12 V$ ignition system in cars, boats, go-karts, etc., of either
pos. or neg, earth and up to six cylinders. The original coil, plugs, points and contact-breaker capacitor firted in the vehicle are used. No extra or special components are required.
Helps to promote easier starting (even under sub-zero conditions), improved acceleration, better high-speed per. formance, quicker engine warm-up and excessive contact-breaker point burnins excessive contact-breaker point burning plug gaps with precision.
Construction of the unit can easily be completed in an evening and installation should take no longer than half an hour. A complete complement of components is supplied with each kit together with ready-drilled roller-tinned professional quality fibre-glass printed-circuit board, machined die-cast case. All com. machined die-cast case. All comsize 7 tin $\times 4 \frac{1}{2}$ in $\times 2$ in approx. Complete assembly and wiring manual 25p, refundable on purchase of kit.
Price: \& 10.50 plus 50 P P. \& P. S.A.E. with all enquiries.

PSYCHODELIC LIGHTING

 UNIT Mk. 3

This unit represents a natural progression from our phenomenally successful Mk. I and 2 Units. As before the drive voltage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency signals into a threecoloured light display; the colour depending on the frequency of the signal and the intensity on the loudness of the audio source.
The unit is constructed on professional fibre-glass printed-circuit board material and uses latest full-wave triac circuitry, There is a master-level control, together with independent sensitivity controls for each channel. The original minimum ambient light level controls have been redesigned permitting theif use as faders; allowing dimming from max. to zero at the turn of a knob. R.F.I. suppression is now incorporated as standard as well as provision for D.J. "Pulse-Flash"' controls. The choice of two inputs enables operation from both high and low power amplifiers. Max. power 1.5 kW per channel at 240 V a.c.
Complete assembly built and tested. Size 9 in $\times 7$ in \times 3in.
Price E25
carr. paid. S.A.E. with all inquiries.

DABAR ELECTRONIC PRODUCTS

98a LICHFIELD STREET, WALSALL STAFFS WS1 1UZ
WALSALL 34365
MAIL ORDER ONLY

MEM
NIPE B
$0: ~$NIP-E-BOARD PRINTED CIRCUIT SYSTEM for experimental circuits one-offs, batch production USE IT FOR P.E. PROJECTS

BOLT-DOWN OR PLUG-IN CARDS. SRBP or FIBREGLASS ETCHED. UNDRILLED or DRILLED. 0.1×0.15 for flexible layout schemes. COLD PLATED EDGE CONNECTORS.
NO NEED FOR MESSY ETCHING NO COPPER CUTTING - 1 'S EASY! Improved professional design peb for most transistors or i.c.s. ASK YOUR SUPPLIER NOWI P.C. cords from 16 p srbp. 19 p f glass Edge connectors 14-way E16S 35p 30-way E33S 68p
Handles with write-on labels 5p
Insulated stand-off pcb fixings from 3p
SPECIAL TRIAL OFFER pack only 50p
Sample card and details-srbp 16p
fibreglass 19p
Popular NIPPIBOARD Ranges A and
B available for published projects.
SAMPLE details 15p srbp, 18p f glass.
OEPT.ME/E

COMPUTER PANELS. 5 HC108, Diodes, etc.,
4 for 500 , post 10 p . AMERICAM PANELS, 4 for 4 for 50 p, post 10 p. Aimerical PANELS, 4 for
$55 p$, post $12 p$ ASBORTED PANELS, silicon and S5p, poat 12 PD . AgSORTED PAKELS, sillicon and
germanium transistors, 6 for 75 p , poat 20 p . Send germanium tranaistors, 6 for 75 p , poat 20 p . Bend
large A.A.E. for list of paneis, etc. large A.A.E. for list of paneis, etc.
DIVIDE BY 10 PASEL, with 10 thytintors 30 V DIVIDE BY 10 PAREL, with 10 thytiators
14,12 trangietors, 12 put cores, 40 diodes, etc.
 New, boxed, 30p, c.p. OMIT WITH 4 LA2 +11 equipt., $35 p$, c.p. 100 mixed polystyrene/polyester
 30, post 10 p each. RESETTABLE 5 PIGURE COUNTER, $18 / 22 \mathrm{~V}$, will work on $12 \mathrm{~V}, 81.75$, posi 15p. NEW COLL PACX, L.M.W. no dope, 50 , poat 20 p . PIANO KEY BWITCH,
 STYRERE CAPACITORG,
$220,270,330,390,560,680, ~$
820 $1,800,2,200,2,700,3,300,3,900, \quad 5,600,6,400$ $0.01,0.012,15 p$ dozen, post 10p. $0.010,0.018,0.022$ $0.027,0.033$ 24p dozen, post 10p.

ASSORTED M.C. METERS, 3 for 11.80 , f .p
ASSORTED COMPONENTS, $7 \mathrm{lb}, 81.80$, c. .
ASSORTED COMPUTER PAMELB, 2 lb , 21-30, c.p.
J. W. B. RADIO

76 HAYYTMLD ROAD, SALFORD 6, LAFCS.

PRINTED CIRCUIT BOARDS for P.E. PROJECTS
All boards drilled and roller tinned complete with layout drawing.
EXAMPLES
Waa-Waa pedal Vol. 4 No. 714 pea. Audio 5 ig. Gen. (Sine and square on one board) Vol, 5 No 1043 p ea.
NEW
NEW
Scorpio Ignition Nov./Dec.'71. Fibreglass 60p. Losical R/C Coder Dec. '7I. Fibreglass 44p P.H. ELECTRONICS LTD., Industrial

BRAND NEW COMPONENTS BY RETURN. Filectrolyties 15 or $25 \mathrm{~V} 1,2,5,10 \mathrm{mffs}-3 \frac{1}{2} \mathrm{p}$, $25,50-4 p$. $100-5 p$. Mylar Film 100 V , $0.001,0.002,0.005,0.01,0.02-2 p ; 0.04 .0 .05-$ $2 \frac{1}{2} p ; 0.068, \quad 0 \cdot 1-3 \mathrm{p}$. Mullard miniature carbon film resistors third watt Li. 12 series $1 \Omega-10 \mathrm{Ms}, 8$ for 5 p , insured postage 8p. The C.R. STPPLY CO., 12% ("hesterfield Rd., shetheld, so orn.

SOUND SUPPLIES
(Electronics) Co. Ltd
P.A. EQUIPMENT. Marshall amps, instruments and guitars, etc. TOA and Eagle amps and accessories, Reslo mics, etc.
COMPONENTS. Resistors
Cockets, cables, Resistors, capacitors, plugs, sockets, cables, audio leads, semiconductor
valves, vero board, etc., for the constructor. Power packs and car droppers for the cassette recorder or radio.
S.A.E. for hist and enquiries. P.A. list ISp.

12 Smarts Lane, Loughton, Essox
Tel, $01-5082715$
Closed all day Thursday
METER8, Motors. Relays, Valves, Electronics. At ROAERS FASClNATING ENTABLINHMENT, 31 Nelson Street, Nouthport.

Trgmpes alagironis

CAPACITORS 25 V $10 / 50 / 100 \mu \mathrm{~F}, 5 \mathrm{p}$ OISC: 22 pF to $1.01 \mu \mathrm{~F}$, 4p. 0.01 to RESISTORS $1 \mathrm{~W} \%$. iłp. ULTRASONIC transducer transmit/receive. 22. DIL SOCKETS, piastic for 74 N, etc, $14 * 16$ Pin, 12 p . J0V 1 A Bridge, 89p. 30V 1A Rect. 5p. 1 N914, 5p: 8C107, 8p; BC108,
8p; BC109, 8p; BCI77/9, 14p; 2N80S5, 40p; FET

 ME 4001, 12p; ME 4102, $11 \mathrm{p} ; 2 \mathrm{~N} ~ 3702 / 3 / 4 / 5 / 8 / 7$,
$11 \mathrm{p} ; 2 \mathrm{~N} 3708 / 9 / 10 / 11,9 \mathrm{p} ; \mathrm{AC} 12 \overline{2} / 6 / 7 / 8, \mathrm{AC} 127 / 8$, AF: 117 , all 18 p emch. TIS43, 28p; BFYち1, 16p 2N2926Y, 9p; 2N 30.53 , 19p; INTEGRATED CIRCUITS with lata. 741 to j , 29; dil., 38 p ; $709,{ }^{24 p} ;{ }^{710, ~ 44 p ; ~ 748, ~ 48 p \text {. AUDIO AMP }}$ 3.5W, Hi.Fi, etc., il-39. Stereo: Dual Pre-amp, 21-49. FM MPX Decoder, s1-49. 74月: Data
Booklet. 120; gates 7400 , etc., $15 \mathrm{p} . \quad 7441$, 83 p ; Booklet, 12p; gates 7400, etc., 15p. 7441, 83p
$7470 / 72$, 29p; $7473,89 p ; 7490,87 p ; 92,78 p$ T470/72, $29 p ; 7473,89 p ;$ 7490, 87p; 92, ${ }^{78 p}$. FREE: CATALIST S.A.F., DATA SHEETB, 6p $10+10 \%$. BOX 29, BRACKIELL, BERES.

EX COMPUTER PRIMTED CIRCUIT PANELS 2in $\times 4$ in packed with semi-conductors and top quailty resistors, capacitors, diodes, etc. Our price tobinipum of ${ }_{35}$ transistors a guarantranalstors Included
 SPECLAL BARGAIN PACK. 25 hoards for 21 , - P 18p. With a guarantced iminimula of 85 transiators. Data on transistors included.
 PANELS with 2 power transiators gimilar to OC 28 on each board -components $:$ boards (0C28) 50p, P. \& P. 6p.
 9 OAS, 3 OA10, 3 Jot Cores, 26 Resistors, 14 lapacitors, 3 (:E'1' 872,3 (tET $872 \mathrm{~B}, 1$ GET 875. All long leaded on pancels 13 in $\times 4$ in. 4 for 81 , P. \& 1'. 20p.
 709C OPERATIONAL AMPLIFIER TOS
 x lead I.C. $\quad 1$ off 50 p. 50 off 85 p. 100 of 20 p.
 250 MIXED RESISTORS 62p
 titwatt.
 I50 MIXED HI STABS
 62p
 QUARTZ HALOGEN BULBS
 With long leads. 12 V 55 W for car apot lights, projectors, etc. 50 p each. P. \& P. 5 p .
 GPO EXTENSION TELEPHONES
 with dial but without bell. 95peach. P. \& P. 30p. E1.75 for 2. P. \& P. 50p.
 BARGAIN RELAY OFFER
 Hingle pole change over sitver contact $25 \mathrm{~V}^{2}$ tu

KEYTRONICS mail order only 44 EARLS COURT ROAD
LONDON, W. 8
01.4788499

DRY REED INSERTS

Overall length $1.85^{\prime \prime}$ (Body length $1.1^{\prime \prime}$), Diameter $0.14^{\prime \prime}$ to switch up to 500 mA at up
 10,000. All carriage paid.
$40 / 42$ Portiand Road, Worthing, Suseex 080334897
AUDIO MIXER UNIT8 and Kits. Voice operated auto fade units. PARTRIDGE ELECTRONIC's, Jept. P. R.7, $21-25$ Hart Road, Thundersley, Rentleet, Essex. Tel. Nouth Benfleet (STD 037-45) 3256 . For more details see P.E. July issue

DIGITAL CLOCK P.C.B.
Complete circuit on one board
4 DECADE COUNTER P.C.B.
Drilled for counters and decoders
optional 7475 latches $\quad . \quad$. .
Wire ended number tubes for above
\& 1.50
Transformer $6 \mathrm{~V} / 180 \mathrm{~V}$ sec.
NED NORTHERN ELECTRONIC DESIGNS 180 CHAMBER ROAD, OLDHAM

RAPID SERVICE-GOOD VALUE

Money Back Guarantee
MICROCIRCUITS: 709 30p; 710 86p; 723 71p; 741 32p 74840 p ; PA230 90 p ; PA234 84p; PA237 21-45; 8LL 402 A
 $1181 \mathrm{p} ; 2016 \mathrm{p} ; 3018 \mathrm{p} ; 4016 \mathrm{p} ; \overline{51} 18 \mathrm{p} ; 72 \mathrm{30p} ; 7341 \mathrm{p}$ 74 33p; $7544 p ; 8641 \mathrm{p}: 9072 \mathrm{p}$; 91 11.21. RECTIFIERS $1 \mathrm{Amp}: 50 \mathrm{~V} 31 \mathrm{p} ; 100 \mathrm{~V} 4 \mathrm{p}$; $200 \mathrm{~V} 6 \mathrm{p} ; 400 \mathrm{~V} 6 \mathrm{p} ; 600 \mathrm{~V} 9 \mathrm{p}$ 800 V 12p; $1,000 \mathrm{~V} 14 \mathrm{p}$. TRANSISTORS: 2 N 29.26 Red 6p; Orange 7p; (ireen 8p; 2N3054 40p; 2N3055 43p $\begin{array}{lll}2 N 3819 & 88 p ; & 2 N 31728 p ;\end{array}$ BC107B 9p: BC109C 9p;
 040218 p ; $0404-2$ 16p; 0411 18p; 0412 19p; 0414 24p; 1002 10p; 1120 16p; 3001 16p; 4101 10p; 4102 11p; $410310 p ; 6001$ 18p; $600214 p ; 610114 p: 610214 p$ 8001 14p; 8003 16p; MEF104 42p; MP8111 32p MP811242p.

JEF ELECTRONICS (P,E,8)
YORK HOUSE, 12 YORK DRIVE, GRAPPENHALL WARRIWGTON WA4 2EJ.

Mail Order Only W.O. P. \& P. 9p per order. O/seas 85p

PRECISION POLYCARBONATE CAPACITORS

Fresh Stock - Fully tested
 $\begin{array}{lllllll}0.47 \mu \mathrm{~F}: & \pm 5 \% & 30 \mathrm{p}: & \pm 2 \% & 40 \mathrm{p}: & \pm 10 & 50 \\ 1 \cdot 0 \mu \mathrm{~F}: & \pm 5 \% & 40 \mathrm{p} ; & \pm 2 \% & 50 \mathrm{p} ; & \pm 1 \% & 60 \\ 2 \cdot 2 \mu \mathrm{~F}: & \pm 5 \% & 50 \mathrm{p}: & \pm 2 \% & 60 \mathrm{p} ; & \pm 1 \% & 75\end{array}$
 New!-Transistors. BC107, BC108 BC109 New!-Transistors. BC107, BC108, BCl09. new and marked. Full spec, devices Resistors. Carbon film $\frac{1}{2} W 5 \%$. Range from 2.2Ω to $2.2 \mathrm{Ma}_{\mathrm{a}}$ in E12 series. i.e. 10.12 .15 , 18 . $22,27,33,39,47,56,68,82$ and their decades High stability, low noise, All at $1 p$ each; 8 p for 10 of any one value; 70 p for 100 of any one value. Special development pack- 10 off each value 2.2Ω to $2.2 \mathrm{M} \Omega$ (220 resistors) CS
tin, 25 p each; $0-25 \mu \mathrm{~F}$, size $1 \frac{1}{6}$ in \times sing 30 p
 size 2 in \times tin, $45 p$ each; $2 \cdot 0$, F, size 2 in \times lin, 75 p each.
Light Dimmers. 440 V a.c. capacitors listed above are ideal for dimming filament bulbs (unsuitable for fluorescent lights). We suggest $1 \mu \mathrm{~F}$ for dimming $25 \mathrm{~W} 2 \mu \mathrm{~F}$ for 40 W or 60 W bulb. P.E.SCORPIO, I μ F 440 V a.c. capacitor listed above is recommended by the Author for use
in place of $2 \times 0.47 \mu \mathrm{~F}$ l000V d.c. discharge capacitors C6 and C7. Improved reliability Alternatively, $2 \times 0.47 \mu \mathrm{~F} 440 \mathrm{~V}$ a.c. may be supplied at 35 p each.
5p post and packing on all orders below 65 . V. ATTWOOD, DEPT. B3, P.O. BOX 8, ALRESFORD, HANTS

RECEIVER8 AND COMPONENT8

DIGITAL READOUT8. Printed circuits designed for four 5 V seven segment readouts (3015) with decoder-drivers. Suitable for electronic rlocks, connters, timers, pte. 68p each. Minitron 3015 , $\$ 1.95$ each. 7447 decoders $97 p$ earh. ('W.O. to A.C.E. ELFC'TRONIC'S, Wellington Honse, New Kealand A vanne Walton-on-Thames.

COMPONENTS \& KITS
CANNY SCOTS BUY FROM FORTRONIC (FIFE) LTD.WHY?
7400 series I/CS Gates from IIp; 7472 from 22p; 7474 from 30p BCl 109 and BCl 77 from 7p at $25+$

IN400| Diodes from 5p at $25+$
Power Trans in general to 2N3055 from 25 p at $25+$
Firebug Transistorised Ignition Kit, 66
Send S.A.E. for full component lists FORTRONIC (FIFE) LTD.
I 3 KNOWEHEAD ROAD, CROSSFORD, FIFE

A MINIATURE ELECTRONIC DICE
Based on unique circuit comprising: 3 D.I.L. I.C.'s, 6 transistors and 7 sub-miniature
tamps. Completed size (including lamps) lamps. Completed size (including lamps)
only 2 itin $\times 2$ in \times in, excluding 6 V battery and 2 miniarure switches. Kit of all parts needed to build this fascinating device including pre-cut circuit board, wire. solder. switches. etc. with circuit diagram and instructions.
$O N L Y \in 2.75$, post paid. Circuit and instructions if ordered separately 20p. Battery holder to suit $4 \times$ HPII's, 20p, post free if ordered with kit. Send S.A.E. for full parts and price list. C.W.O. Mail Orders to

17 RUTLAND ST., LEIGH. LANCASHIRE

OSMABET LTD.
We make transtormers
WAIMS TRANEPORMERS anlongst other thinge Prim. $200 / 240 \mathrm{~V}$ a,c, TXi, $4: 5-0-425 \mathrm{~S}, 500 \mathrm{Ma}$
 $6.3 \mathrm{~V}, 3 \mathrm{~A}, 27.50$; TX $2.20-0-050 \mathrm{~N}, 150 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}$ ${ }^{\text {CT, }} 0-5-6.3 V, 3 \mathrm{~A}, 24.08:$ TX $, 300-0-300 \mathrm{~V}, 120 \mathrm{~mA}$,

ADTO TRANSFORMERS
$0-110-200-240-240 \mathrm{y}$ a.e up or lown fully shrouded
 88.00; 300 W 25.25; 400 W 86.80 ; 500 W 27.50 ; 600W 88.25 ; 750 W 29.75: 1.000 W 212.75; $1,500 \mathrm{~W}$ 218; …000W 284.75; 3,000W 233 ; 4,000W 245. MULTIVOLT TRARSFORMERS
Prim. $2(\mathrm{~N} / \mathrm{E} 40 \mathrm{~N}$ ace OMT4/1 t:pped sec. u-60V 1A, e2.25; 0MT4 2 , dit to 2A. es.45; OMT3/1 tapped
 $25 V 2 \mathrm{~A}, 23 \cdot 60$
LOW VOLTAGE TRAHSFORMERS
Prim. 200/240 a.c., $6 \cdot 3 \mathrm{~N}, 1 \cdot 5 \mathrm{~A}, 85 \mathrm{p}$; 3.A, 21-13: 6 ACT
 $18 \mathrm{~V}, 1-5 \mathrm{~A}$ (T, $21.80 ; 24 \mathrm{~V}, 1.5 \mathrm{~A}$ CT, $51-80$: 3 A CT,

CDGGET RECTIFIER TRAR8FORMERS
For FW rect., size $11 \times 2 \times 1 \neq \mathrm{in}$, Prim. $200 / 240 \mathrm{~V}$ anc output. PPT1. $9-0-9 V, 0.3 \mathrm{~A}$, PPT $2.12-0-12 \mathrm{~V}, 0.25 \mathrm{~A}$,
 1A. MTV3. $90-0-20 \mathrm{~N}, 0 \cdot 75 \mathrm{~A}, 21 \cdot 20$ each
O/P TRAMGFORMERS FOR POWER AMPLIFIERS P.P. нec tapped $3-\overline{5} \cdot 5-15$ obms, A-A 6.6 k 0 , 30W (KT66, etc.), 54.05 ; $50 \mathrm{~W}, 3 \mathrm{kR}$, A-A, 26.76 ; 100 W 3 k ת, A-A. EL34 (K T88, etc.) $211 \cdot 40$ and to 400 W LOUDAPEAKERS FOR POWER AMPLIFIERS New, fannous makes, 15 W with tweeter, $24-99$: 25 W
 E.M.I. $131 \times \sin 10 \mathrm{~W}, 3$ or 8 or 15 ohms, 82.00 .
Ditto with t wo 1 weeters and Xover, $84.00 ;$ Horn Tweeters $2-16 \mathrm{k} H z 10 \mathrm{~W} 8$ or 16 ohms, $81 \cdot 50$. HI•FI 8×5 in 80 . $81.85 ; 10$ 6in 3 or 8 or 15Ω. 89.10 G.E.C. MANUAL OF POWER AMPLIFIERS Covering valve amplitiers of 30 to 400 watts, with price list of trans
$2 \mathrm{tn} 16 \Omega$. 24 in 25 の, 3 in 8 or 300 . 60 p each; 3 in 3 or $15 \Omega .4 \mathrm{in} 8$ or 15Ω. $\sin 3$, 15 or $25 \Omega, 5 \times 3 \mathrm{in}$ $\left.\begin{array}{l}3,8.15 \text { or } 25 \Omega .90 \mathrm{peach} ; 6 \times 4 \text { in } 8 \text { or } 25 \Omega, 7 \times 4 \text { in } 3 \Omega \\ 6 \text { in } 3 \Omega, 21.08 ; 8 \times 5 i n ~ 3, ~ 8, ~ \\ 6\end{array}\right)$ or $20 \Omega, 21.50 ;$ $6 \frac{1}{6} 3 \Omega, 21.08$;
GPEAKER AUTO MATCHIMG TRANBPORMER $12 W$ 3 to 8 or 15 ohms, up or down, 75p, P, \& P. $15 p$
$1 \times \frac{1}{2} \times$ in loz, with transpareat cover, 2 C.O. in 9 $15 ; 20$ or 30 V d.c. 60 p eac
BULE TAPE ERASERS
Instant erasure, tape apools and cassettes, demag netizea tape heads, a.c. $200 / 250 \mathrm{~V}, 22.40$ plus 24 p P. \& P PRINTRD CIRCUIT ETCHIAG KITS
Complete outflt ; solutions and equipment to make
your own P.C. boards instructions, $21 \cdot 40, F$. \& P. 21 p . your own P.C. boards instructions, 21
Extra p.c. Boards $8 \times 6 i n, 15 p$ each.
EXPR RECORDER MOTORS
A varjety of uses, Blowers, Fans, etc., new. 230/250 V a.c. 60 each. CONDENSERS
Paper: 0.01/2kV 124p; 0.1/1kV 123p; 0.22/1kV 20p; $0.22 / 800 \mathrm{~V}$ a.c. $25 \mathrm{p} ; 0.47 / 700 \mathrm{~V} 16 \mathrm{p} ; 0.47 / 1 \mathrm{kV} 25 \mathrm{p}$ $4 / 500 \mathrm{~V} 25 \mathrm{p}$. Electrolytics: $100+200 / \mathbf{2 7 5 V} 40 \mathrm{p} ; 100+$ $200 / 350 \mathrm{~V} 80 \mathrm{p} ; 100+60 / 450 \mathrm{~V}$ 25p; $350+50 / 325 \mathrm{~V}$ BATTERY ELIMIIATORS/POWER UHIT8
BATMERY ELIMINATORS/POWER UMIT8 $20 / 240 \mathrm{~V}$ To operate battery equipment from maina $200 / 240 \mathrm{~V}$
a.c. Outpute, $6 \mathrm{~V}, 21.50 ; 9 \mathrm{~V}, 21.50 ; 7.5 \mathrm{~V}$ (for cassettes), $82 \cdot 00 ; 12 \mathrm{~V} 1 \mathrm{~A}$, $28 \cdot 00 ; 40 \mathrm{~V} 1 \mathrm{~A}, 24 \cdot 60$.
I.A.E. IMQUIRIES-LIST8. MAIL ORDER ONLY

46 Koullworth Road, Edgware, Middx. HAB 8 YG Tel.01-958 9314

RECEIVERS AND COMPONENTS

100 WATT AMPLIFIER

Fully protected, transformerless, 9 transis tor circuit. input 500 mV . Output into 8 ohms. 0.1% distortion.
Printed circuit board and full instructions. 11.45 p +10 p P. \& P. S.a.e. for list of component bargains.
EDMUND8 COMPONENTS, 134 NORTH END ROAD, LONDON, W14. (Mail order only)

MINI MAINS PACK KIT. Safe doublewound mini transtormer, siliegn rectiflers, $1,000 \mu \mathrm{~F}$ smoothing, instrurtions. Buildable to size of PPf, etc. $9 \mathrm{~V}, 120 \mathrm{~mA}, 90 \mathrm{p} \mathrm{I}^{\prime}$. K . post 5 p . Mail order only. AMATRONiX I,T1)., 396 Relsdon Road, Sonth (royrlon, Surrey, CRe OIFE.

MINIATURE CARBON RESISTORB.

E12 serips, $2 \cdot 2 \Omega$ to $1 \mathrm{M} \Omega$. 10 for 7p, 50 for 30 p Mixed values to rour choice. Postage 5p. ELECTRONIC COMPONESTS, Lake Bargain Centre, il: Park Road. Inideot

AARVAKELECTRONIC8, Noumlight. ('onvertors 3 chanmel 1.2 kW E17, 3 kW E 25. Strobes, 1 Joule \&16, 4 Joule 225 . Mail or call. 74 Bedford Avenur, Barnet, Herts. Tel. $01-4491268$.

TV Line out-put Transformers Replacement types ex-stock
For "By-return"'service, contact London 01-948 3702
Tidman Mail Order Ltd.. Dept. PE, 236 Sandycombe Road, Richmond, Surrey TW9 2EQ
Valves, Tubes, Condensers, Resistors, Rectifiers and Frame out-put Transiormers also stocked. Callers welcome.

MUSICAL INSTRUMENTS

ELECTRONIC PIANO

Touch Sensitive Pedal Sustain Adjustable Decay

Plug-in unitsfor constructing 2, 4,6 octave ELECTRONIC PIANO. Also, Touch Sensitive Percussion Units for Keyboard Bass or add Piano Sound to existing organ. S.A.E. details of these and other.units.

TO: DIGICHORD
Duffryn Glywd House
Elm Road, Tokers Green
Reading, Berks.

SERYICE SHEETS

SERVICE 8HEET8 (1925-19;2) for Trlevisions. Radios, Transistors, Tape Recorders, Iecord Players, etc., by return post, with free FaultPlayes, etc, by return post, with free Fault-
Finding lidide. Prices fromi 5 p. Over 8,000 models availabile. ratalogne 13p. Please send S.A. li. with all orders/eng!irien. HAMMLTON RADMO. 54 London Road, Bexhill, Sussex. Telephoner, Bexhill 7096.

8ERVICE 8HEET8. Radio, TV, etc., 8,000 models. list 10p. S.A.E.enquiries. TELRAY, 11 Maudland Bank, Preston.

RADIO, TELEVI8ION AND TAPE RECORDERS. 50 mixed odd sheets 50p. Also large stock of ohsolete and current valves. JOHS (:IBEFRTVELEVISION, Ib Shepherds Bussh Roat1, landon. W. 6 (01-743 *44). S.A.L. emplifies

LADDERS

LADDER8. woft, 87.80 . (tallers Welcome. (arr. Nop. leatlet. (Dept. PEE), HOME shldis. Baldwin Road. Stonrport. Wores. Phone $02-493 \quad 2074 / 52 \leq 2.2$. Ansafone installed $52 z^{2}$. Open Smatay x -12 mon.

THE PICTURE BOOK METHOD OF LEARNING BASIC ELECTRICITY 5pts £4•50.BASIC ELECTRONICS 6pts $£ 5 \cdot 40$.BASIC TELEVISION 3pts $£ 3.50$
 The quickest and soundest method of gaining mastery over these subjects.
 The clear and concise illustrations make study a real pleasure. P. \& P. included Your Money Back Guaranteed. Free Illustrated Prospectus on request SELRAY BOOK CO., 60, HAYES HILL, BROMLEY BR2 7HP.

> $\frac{1}{2} W$ TRANSISTOR AMPLIFIER, $£ 1$; 10W £3•75, 1 W VALVE AMPLIFIER, £3. STEREO HEADPHONES, 8 ohm £1.95, with Volume Control, £6. HIGH IMPEDANCE (2,000 ohm), 80p. RECORDING TAPE, 5 in L.P. 900ft, 45p; $5 \frac{3}{3} \mathrm{in}$ L.P. $1,200 \mathrm{ft}, 60 \mathrm{p}$; 7in L.P. 1,800ft, 80 p . MICROPHONES: Lapel, 28p; ACOS Mic, $45,90 p$; Dual Impedance 600 ohm and $50 \mathrm{k} \Omega$, £4.50. ROTARY SWITCHES 250V 2A, 9p. PLUGS: Jack Standard, 10p; Screened, 13p; 2.5 mm and $3.5 \mathrm{~mm}, 6 p$; Screened, $8 p$. TUNING METERS, $500 \mu \mathrm{~A}, 38 \mathrm{p} .100 \mathrm{MIXED}$ RESISTORS, 45p. MINIATURE INDICATOR LAMPS (5 colours), 11p; 6 V or 12 V BULBS for above, 4 p . MAINS NEONS panel mounting (red, green, clear), 15p. TELEPHONE AMPLIFIERS, £2.62. INTERCOMS, 2 way, £2.50. CARTRIDGES: COMPATIBLE ACOS GP91-3SC, 90p ; STEREO GP93-1, $£ 1 \cdot 15$. CAPACITORS : $100 \mathrm{mF}, 25 \mathrm{~V}, 5 \mathrm{p}$; $0.047,630 \mathrm{~V}, 2 \frac{1}{2} \mathrm{p}$; $400-200-50-16 \mathrm{mF}, 300 \mathrm{~V}, 30 \mathrm{p}$. TRANSISTORS AND DIODES: AC107, 13p; AC126,11p; AC127,11p; AC128,15p; AC176, 11p; AD140, 39p; AD149, 39p; AD161, 35p; AD162, 35p; AF117, 18p; BC107, 10p; BC108, 10p; BC109, 10p; OC26, 25p; OC44, 11p; OC45,11p; OC71,11p; OC81,11p; OC35,39p; 2N2926G, 13p; 1N4004, 8p; 1N4006, 12p; OA81, 7p; SILICON BRIDGE RECTIFIER B40, C1500/1000, 33p.
> Special Prices for quantity quoted on request. Large S.A.E. for list. Add 10p for P. \& P. on orders under 15.
> M. DZIUBAS

> 158 Bradshawgate, Bolton, Lancs

PARKERS SHEET
METAL FOLDING

MACHINES

HEAVY VICE MODELS

With Bevelled Former Bars
No. 1. Capacity 18 gauge mild steel No.2. Capacity 18 gauge mild steel
No. 3. Capacity 16 gauge mild steel

$36 i n$. wide

Also new bench models. Capacities 36 in 18 in . wide... $£ 12$ Carriage free.

End folding attachments for radio chassis Tray and Box making for $36 i n$. model, $27 \frac{1}{2} p$ per ft . Other models $17 \frac{1}{2} \mathrm{p}$. The two smaller models will form flanges. As supplied to Government Departmencs, Universities. Hospitals.

One year's guarantee. Money refunded if not satisfied. Send for details.
A. B.PARKER. Folding Machine Works, Upper George St., Heckmondwike, Yorks. Heckmondwike 3997

GUNTON ELEGTRONIG IGNITION KIT
 C. ALL HIGH QUALITY COMPONENTS \star Capacitive discharge ignition is recognised as being the most efficient systemand will give you: Continual Peak Performance Upto 20% reduced fuel consumption Easier All-weather Starting Increased Acceleration and Top Speed Longer Spark Plug Life Increased Battery Life Elimination of Contact Breaker Burn Purer Exhaust Gas Emission 12 volt only- state pos. orneg. eart. Supplied with illustrated assembly and fitting instructions,
 with details for fitting all types of tachomerers Can be built in an evening and fitted in 15 minutes. Spare snap-on Can be built in an evening and fitted in 15 minutes. Spare snap-on connectors for coil, etc. Call in for a demonstration. S.A.E. all enquiries INVERTER TRANSFORMERS; Scorpio, $11-85+25 p$ P. \& P.: Fl/light 20 watt $£ 1.85+25 p$ P. \& P. Choke $85 p+15 p$ P. \& P.; B watt $£ 1.45+25 p$
 ELECTRONICS DESIGN ASSOCIATES 82 BATH STREET, WALSALL WSI 3DE

 EY ATES E EIHUS FAIRCHILD • FERRANTI • I．T．T．• MULLARD • NEWMARKET • PHILIPS • R．C．A．TEXAS

TRANSISTORS

a SELECTION FROM OUN LIST

 \begin{tabular}{ll|ll|}
\hline$A A Z 13$ \& 109 \& BD124 \& 80

AAZ15 \& 100 \& BD131 \& 75

\hline AA

AAZ15 \& 100 \& BD131 \& 75p

AAZ17
\end{tabular} AC

AC
AC
$\mathbf{A C}$

\section*{| ACl2 |
| :--- |
| ACL |
| ACl |}

AC
AC
$\mathbf{A C}$

AC $A C$ $A C$

AC AC AC

AC AC
 AC $A C$ $A C$ $A C$

$A C$
$A C$
$A D$
$A D$
AD14
AD18
AD
AF
AF
くでぐく
化々
《く究
AF
AF
AF
AF
AF
くくくく
A

ABy
\qquad

BAX 13
BAX18
BAX18
BAY
BI
BAY3
BC107
B
BC109
BC109C
$\underset{\mathrm{BCl}}{\mathrm{BCl}}$

BCC
BC
8

BC
BC
BC
BC
BC
BC
BC

BCY71	80p	OA95	$7 p$
OA200	$7 p$		
BCY72	15p	OA202	$10 p$

BRAND NEW FULL SPECIFICATION TTLIU SERIES
BRAND NEW FULL SPECIFICATION TTLIA SE

HENRY＇$S_{\text {cost }}^{\text {cos }}$ NTEGRATED GRGUITS

$\begin{array}{lc}\text { DEVICES MAY，BE MIXED TO Q } \\ \text { Moserijtiog } \\ \text { 7400 } & \text { Quadruple 2．Input NAND gatea } \\ 7401 & \text { Quad 2－Input open coliector NAND gate }\end{array}$
7401 Quad 2－Input open collector
7402 Quad 2．Input NOR paten
7404 Quad 2．Input Nof
7404 Qued 2－input open
7404
7405 Hex fnverters with
7410 Triple 3－input NAND getea
7418 Dual 4－input Sehmitt Crigger
7418 Dual 4－Input Schmitt triggern

740
740
Dual $4-$ input NAND buffer gaten
742 BCD－Decimal decoder（4－10－line）TTL OiP
7444 Exeens 3－Decimal decoder TTL outpute
747
BCD－Decimal 7 seg．decoder／ndicatior driver
7446 BCD－Decimal 7 neg，lecoder／driver TTL O／P
7450 Fxpand dual $2-\ln p u t A N D-O R-I N V E R T$ giten
745 Dupand dua 2 －input ande－input AND－OR－INVERT gatea
765 Quall2－input erpand AND－OR－INVERT
$\mathbf{7 6 4}$ 4－wide 2 －input AND．OR．INVERTgaten
7460 Dual 4－input eipanderx
747 Bingle J．K nip－nop（gated Inpute）
7478 Duid J•K Alp fop
744 Dual D Alp fop
7475 Quairuple blatable latc
7476 Dual J．K nip－Hopn with Preset and Clear
7480 Gated Full Adder
$\begin{array}{ll}7481 & 16 \text {－bit real／write memory } \\ 7489 & \text { 2－bit binary Full Adder }\end{array}$
$\begin{array}{ll}7489 & \text { 2－bit blnary Full Adiler } \\ 7483 & \text { 4－bit binary Fuil Adider }\end{array}$

7484 －bit binary Full Adider
7484
16 －bil RAN with gatei write inputa

7488 Quairuple 2－input Exclubive OR gaten
7490 BCD decale counter
7991 A－bit nhift reainter
7982 Iivide twelve counter
7498
7494
4－bit binary counter
7496
$\begin{array}{ll}7496 & \text { 4－bit up down mhitt reginter } \\ 7498 & 5 \text {－bit parallel／merial in }\end{array}$
7490 5－blt parallel／merial
74104 8－bit blatable latch
7118 Hextuple get－Renet latchen
74121 Monowtable multivibretore
74141 BCD －Decimal lecoder／Ninie iriver
74145 BCD －Decima）decoder（1－4－1／ne）TTL O／P 7415016 －btt disto melector／multiplexer
75151 8－bit datim melector／multiplexer
74158 Dual 4－1ine to 1 －line data selectin

74156 Dual 2 －line to 4－line decoler／demultiplexer
74190 Ryac decaile up－down counter，1－line mode
74191 gync 4－blt up－down counter．1－line mode
74192 Sync decede up－liown counter，2－line mode
74108 Bync 4－bit up－lown counter，2－line mote
7198
74197 Asynchronoun prenettable dechle counter
7
74197 Agyachronou premettable 4 －bit binary conuter
Texas A．C．Handbouk．Complete infornation on 100 is

IMTEGRA CIRCUI		PLESAET IITLGRATHD CIRCOIT \＆Wratt Ampliser
MFCs000P	650	8L403D
M F＇C4010P	60 p	Complote with s－mare
1 Cl 2	5250	bookiet，ctrealt
PAP4 ${ }^{\text {a }}$	11.60	and dats
TAD100	51.50	11．50
TAD110	81.50	
MC724P	800	
702 C （TO5）	750	zener oiobet
709C（TO5）	45 p	1－ 251000500
7090 （D．I．L．）	459	$24+$
723C（T05）	11.00	$400 \mathrm{~m} / \mathrm{w}$
741C（T03）	${ }^{80}$	BZI88 189 10－30 7\％
MC1303P	4e．00	series＊189 10，80 7\％6p
MC1304P	48.8	
8L403D	41.50	
741C（DIL）	769 400	
$914(\mathrm{TO} 5)$ $923(\mathrm{TO5})$	400 $40 y$	$1{ }^{815}$
TOSHIBA		
20 watt mimp．	44.4	All types are 5\％．Whre Ended＋theme
T08HIBA Preamp	11.30	stud．in voltages $3 \cdot 3-100$ volt in all atendiaril valuen． $3.3-93$ voit．

TRIACS			
Stud with mocemortes			
	P．I．	Current	1.11
Type	volts		
gC35A	， 109	3 amps	5
EC35 B	200	3 ampe	85\％
9035D	400	3 amp	90\％
BC40A	100	6 smpe	0
BC40B	200	6 ampe	12－06
8 C 40 D	400	6 ampe	1．00
BCASA	100	10 mmp	61．05
scus ${ }^{\text {a }}$	200	10 amps	41．15
8C4SD	400	10 smpa	81.26
gC50 A	100	15 mmpm	1185
8C60B	2001	15 ampe	11．45
EC50D	4001	15 ampe	t1 75
sctoe	500	6 ampe	31．25
$8 \mathrm{C46F}$	500	10 smps	81.45
8C60E	500	15 smpa	4．\％
DIACS	D2		26）

SILICOM RECTIFIERS
1 AITP GITLATORE PLAETIC WIRE ETDTD

QUANTITY FROM STOCK

OUR RANGE IS ALWAYS EXPANDING－Enquiries invited for new types arriving daily ADDITIONAL DISCOUNTS－ 10% 12＋： $15 \% 25+: 20 \% 100+-$ DELIVERY IS FROM STOCK

PRACTICAL ELECTRONICS specify CONTIL MOD- 2 CASES for housing the
F.E. DIGI-CAL HIGH 5PEED CALCULATOR, P.E. GEMINI STEREO TUNER, F.E. DIGI-CAL HIGIFE PE AURORALI CLOCK Also ayailable ready punched for Sinclair Project 60 with or without LOCK. Also available ready punched or sinclair Priace in, with or withour for use with 230 or $\mathbf{Z 5 0}$ at $\mathbb{\$ 1} 68$.
PVC COATED MATERIALS.
PVC's easy to clean surface is scuff resistant. PVCIALUMINIUM FOR FRONT AND BACK PANELS. PVC/STEEL FDR \$IDES, TOP AND BOTTOM. LOW cost.

	X Y Z I off \& D	\times Y Z loffp \&p
A	4.536 .52 .2018 p	N 4.57133 .40 28p
B	4.576 .52 .50 28p	O $4.510134 .4035 p$
C	4.5106 .53 .05 28p	P $\quad 9 \quad 3133.4028 \mathrm{p}$
D	$9 \quad 36.53 .0528 \mathrm{p}$	Q $\quad 971344035 \mathrm{p}$
E	976.53 .4028 p	R $\quad 910135.4035 \mathrm{p}$
F	9106.54 .0028 p	$5 \quad 13 \quad 31344035 p$
G	13 36.53.40 28p	T $13 \quad 7135.4035 p$
H	1376.54 .0028 p	$\cup 1310136.6045 p$
,	13106.54 .4035 p	$\checkmark \times 18 \quad 3135.4035 \mathrm{p}$
J	$18 \quad 36.54 .0028 p$	W 187136.40 45p
K	$18 \quad 76.55 .4035 p$	$\times \quad 18 \quad 101380045 p$
L	18.106 .56 .6045 p	G Woodgrain 4.00 28p
M	4.5313 2.50 28p	Sizes in inches

ATRON READOUT TUBES

As mentioned in the PRACTICAL ELECTRONICS article entitled ALPHA NUMERIC DISPLAYS

WEST HYDE DEVELOPMENTS LTD., MYEFIELD CNESCENT NOATHWOOD, MIDDX. HA6 INN

[^10]| | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AAI 19 | -p | BCIOA | $10 p$ | BCY42 30p | BY127 | p | OC75 | P |
| AAYII | 10. | BCIOAA | 100 | BCY70 15p | BY147 | 4.40 | -C170 | 23p |
| AAY30 | 10p | BCIOAC | 15p | BCY71 20p | BY164 | $35 p$ | R2008 | 63.5 |
| AAZ13 | 10p | BCl09 | 120 | BCY72 15p | BZY8s se | er 9 | R2009 | 0.5 |
| AC107 | 34 | $8 \mathrm{Cl13}$ | 15p | BCYe9 97p | | 5p | R2010 | 0.5 |
| ACI26 | 25p | 8Cl16 | 20p | 8 8 115 75p | BZY94s | $r 9$ | SP8385 | 4.10 |
| ACl27 | 25p | BCI 17 | 20p | BD124 50p | | 5p | TAA700 | 0.4 |
| ACl2 | 25 | $8 C 119$ | 30p | BDI31 75p | BR100 | 26. | TADI00 | <1.3 |
| ACIf1K | 25p | BC121 | 25p | BD132 80p | BRC4443 | 3 20p | TBA500 | 020 |
| $A C 142 K$ | ${ }^{18}$ | $8 \mathrm{BC1258}$ | 25p | 80135 75p | BRY39 | 30p | T84510 | 0.0 |
| ACI53 | 25p | BC136 | $20 p$ | 80175 4Pp | E1222 | 40p | TBA520 | 12.5 |
| ACI53K | 22p | 8 Cl 37 | 20p | BD181 90p | E5024 | 40p | TBA5200 | |
| ACI75K | 340 | $8 \mathrm{8C139}$ | 25p | B0184 1.3 | GET102 | 30p | | E2.5 |
| AC176 | 25p | BC142 | $21 p$ | 8F121 25p | GET103 | 25p | TBA530 | 41. |
| ACI76K | 20p | BC143 | 23p | BF123 30p | 15921 | 1p | | |
| AC187 | 25p | BC147 | $12 p$ | BFI25 25p | 15923 | 12p | | 41.8 |
| ACIs7K | 25p | BCI49 | 10p | BF127 30p | ME0404 | $11 p$ | TBA540 | 68.6 |
| ACI88K | 25p | BC149 | 12p | BFI53 20p | ME0412 | 15p | TBA550 | 43.6 |
| AC193K | 25p | BC152 | 20p | BF154 20p | ME0413 | 12p | TBA550 | |
| ACl94K | $27 p$ | BC153 | $20 p$ | BF160 23p | ME0462 | 19p | | 43.6 |
| ACY20 | 20p | BC157 | 15p | 8F161 45p | ME2002 | ep | TBA570 | |
| ACY21 | 20p | BC158 | 12p | BFI78 25p | ME4003 | 12p | | 41.2 |
| ACY22 | $12 p$ | 8 8C159 | 15 p | BFI79 30p | ME4102 | 10p | TBA750 | 41.4 |
| ADI43 | 45p | BC170 | 15p | BF180 35p | ME4104 | ${ }_{8} 8$ | TBA750 | |
| ADI61 | ${ }^{35}$ p | BC171 | 15p | BF184 20p | ME6002 | 12p | | 4.4 |
| ADI62 | 35p | BC171A | 17p | BF185 20p | ME6101 | 12p | TIC46 | 40p |
| AFIIS | $25 p$ | 8С177 | 20p | BF194 15p | ME6102 | $13 p$ | TIP29A | 50p |
| AF:17 | $20 p$ | BC177B | 23p | BF195 15p | ME8001 | 12p | TIS60M/6 | |
| AF: 21 | ${ }^{30} \mathrm{p}$ | BC1788 | 16p | BF196 15p | ME8003 | $13 p$ | | 37p |
| AFI24 | 25p | 8C179 | 20p | BF197 15p | MEFIO4 | 34 p | TIS61 | 20p |
| AF:26 | 20 p | BC182L | 10p | BF200 35p | MELII | 30p | T1591 | 17p |
| AF127 | 20p | BCI82LB | 10p | BF222 30p | MP8112 | 34p | 2N404 | 15p |
| AF139 | 30p | BC183 | 10p | BF224) 15p | MP8113 | 40p | 2N697 | 12p |
| AF170 | 25p | BCI83L BCI83LB | 10p | BF256L 30p | OA47 | 10p | 2 N706 | 9p |
| AF178 | 55p | BCI83LB | 10p | BF256LC 34p | OA81 | 10p | 2 N 706 | 12p |
| AF179 | 60p | BC184LC | 12p | BFS36A 37p | OA85 | 12p | 2 N 753 | 10p |
| AF239 | 40p | ${ }^{8 C 186}$ | 25p | BFWI7A | OA90 | ${ }^{8 p}$ | 2 N 919 | 45p |
| ASZ17 | 50p | BCl 87 | 25p | BFX37 41.22 | OA91 | 7 P | 2N920 | 42p |
| BA102 | 30p | BC208A | 14p | BFX37 30p | OA95 | 7 P | 2 N 1302 | 17p |
| BA145 | 15p | 8C212 | 10p | BFX84 23p | OA200 | 7p | 2 N 1304 | $21 p$ |
| BAl48 | 15p | 8C212L | 12p | BFX85 25p | OA202 | 10p | 2NI306 | 24p |
| BA154 | ${ }^{9 p}$ | BC2I2LA | 13 P | BFY50 20p | OAZ223 | $3{ }^{45} \mathrm{p}$ | 2 N 1307 | 24p |
| BAI 55 BA163 | 10p | $\mathrm{BC2I}^{\text {Cl }}$ | 12p | BFY51 20p | OAZ230 | 0 45p | 2NI300 | 24p |
| BA163 BAX12 | 90p | ${ }^{8 C 214}$ | $15 p$ | BFY52 20p | OC28 | 65p | 2N1309 | 24p |
| BANㅣㄴ $\text { BAW } 53$ | ${ }_{16 p}$ | | 15 p | BFY90 5pp | OC35 | 50p | 2NI309 | 24P |
| BAW65 | 36p | BC261 | 16p | BSX20 50p | OC44 | 65 | 2N3054 | 20p |
| BAW67 | 35p | BC268 | 11 p | BSX61 35p | OC45 | 5p | 2N3055 | 55p |
| 88105 | 37p | BC308A | 17p | | | | | |
| $8 B Y 20$ BC107 | 37p | $\mathrm{BC317}$ 8 CY 21 | 20p | B7106 BU105/02 | OC71 | 11p | IN914 in916 | 6p |
| BC1078 | 12p | BCY3I | 40p | BY126 15p | $0 \mathrm{C74}$ | 25p | IN4148 | 6p |

LATEST RELEASES

from R.S. Components Led. include these Printed Circuit type CAPACITORS. Electrolytic, low voltage, small size. Available in the following $\mu \mathrm{F} / \mathrm{V} .0 .47 / 63,1 / 63,2 \cdot 2 / 63,4 \cdot 7 / 40,10 / 63$, $22 / 40,100 / 10,7 p$ each; 47/40, $10 p$ each; 100/63, 220/40, 470/16,
13p each; $1,000 / 16$, i6p each. 13p each; $1,000 / 16$, 16p each.

Miniature Moulded Bridge Rectifiers for printed circuit mounting, REC 60,800 volt, 0.9 amp . 38p each; REC 65,
B00 volt, 1.3 amp, 450 each. 4ा B00 volt, i-3 amp, 45p each.

> Fixed Voltage Regulators, TO.3 case. MVR 5 volt, MVR 12 volt, MVR 15 volt, all at $\$ 1.500$ each. Low Voltage Transformers for the above Regulators. 9 volt for MVR 5 volt; 1555 volt for MVR 12 volt; 17.5 volt for MVR 14 volt, all at il. 60 each. All of the above and many, many other high grade components, are shown in our CATALOGUE, Price $25 p$ by return of post. All prices POST FREE in U.K. Minimum order 50 p. Dept. P.E., P.O. Box No. 1, Llantwit Major, Glamorgan CF6 9YN

BAKER I5in. AUDITORIUM

A high wattage loudspeaker of exceptional quality with a level response to above 8,000 cps. Ideal for Public Address, Discotheques, Electronicinstruments and the home.
Maximum Power
Bass Resonance
Flux Density
35 watts
35 c.p.s.
15,000 oauss
Yoice coil impedance Bor 15 ohms models
Useful response
20-14,000 c.p.s.
GUITAR MODEL "GROUP 50",
10 PLANS, CUBIC TABLES
CROSSOVER DATA AND
CATALOGUE 42p POST FREE
CATALOGUE OALY5p

Baker Reproducers Ltd

Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we.ll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn.

If you'd like to know how just a few hours a week of your spare time. doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier.' ${ }^{-}$Case History G/321
"In addition to having my salary doubled, my future is assured. "Case History $\mathrm{H} / 493$
"Completing your Course meant going from a job I detested to a job I love." Case History B/46I

FIND OUT FOR YOURSELF

These letters and there are many more on file at Aldermaston Court speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn vourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIIISH INSTIIUTEOF EmGINEFRING IECHKOLOGY

Dept B4, Aldermaston Court, Reading RG7 4PF.

POST THIS COUPON TODAY

[^0]: AMCEL, MAIL ORDER, 160 DRAKE ST., ROCHDALE

 Tel. 0706-46234

[^1]: FULL sales $\quad \star$ Callers side entrance Barratts Shoe Shop AFTER SALES SERVICE

[^2]: (C) IPC Magazines Limited 1972. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2 \cdot 65$.
 Practical Electronics, Fleetway House, Farringdon St., London. E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202
 Practical Electronics August 1972

[^3]: Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m. Valves, Tubes and Transistors - Closed Sat. I p.m.-3 p.m.
 Terms C.W.O. only
 Tel. 01-677 2424-7

[^4]: Ground
 inverting input
 Non-inverting input
 Negative supply voltage
 5 Lead $\}$ frequency compensation
 5 Lag
 7 Output
 Positive supply voltage

[^5]: Open 9-5.30 Monday

 ## to Saturday

 Early closing Wed. 1 p.m. ${ }_{T}^{4}$ Sube \min Stition

[^6]: The price of 70p applies only to catalogues purchased
 by customers in the UK and to BFPO addresses.

[^7]: Binders for P.E., with a special pocket for storing booklets and data sheets, are available price $f l$, including postage and packing. State Volume Number required.
 Orders for Indexes and Binders should be addressed to Binding Dept., IPC Magazines Ltd., 68, Great Queen Street, London, W.C. 2.

[^8]: CIRCUIT BOARD ETCHINE KITS, full instructions, $\boldsymbol{B}_{1.25}$, c.w.o. ARVIN SERVICE COMPANY, 12 Cambridge Road, St. Albans, ComP

[^9]: TAPE CA8sETTE8. Top quality C'-60 55p. C-90 65p. C-120 88p. All guaranteed. Post Free. K. DYE, 24 Tittle Eden, Peterlee, Co. Durham.

[^10]: Telephone: Northwood 24941/26732

