

CN.240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated $3 / 32^{\prime \prime}$ bit and packed in transparent display box. Also available for 220 volts. Price $£ 1.70$

CN. 240 Miniature soldering iron 15 watt 240 volts, fitted with iron coated $3 / 32^{\prime \prime}$ bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220 , 110,50 or 24 volts. Price $£ 1.70$
G. 240 Miniature soldering iron 18 watt 240 volts extensively used by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ bit. Also available for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ are obtainable. Price $£ 1.83$.

CCN. 240 New model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation ($4,000 \vee$ A.C.). Will solder live transistors in perfect safety: fitted with $3 / 32^{\text {" }}$ iron coated bit. Spare bits $1 / 8$ $3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ available. Can also be supplied for 220 volts. Price $£ 1.80$
CCN.240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering The triple-coated bits are iron, nickel and chromium plated. Price $£ 1.95$

E. 240

20 watt 240 volts soldering iron fitted with $1 / 4^{\prime \prime}$ iron coated bit. Spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price $£ 1.80$.
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8$ iron coated bit Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$ available Can also be supplied for 220 and 110 volts. Price $£ 1.83$

SK. 1
SOLDERING KIT

The kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$. a reel of solder, heat sink cleaning pad, stand and booklet "How
Price $£ 2.75$ to Solder". Also available for 220 volts.

SK. 2

SOLDERING KIT
This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder. Heat Sink
Price 1 amp fuse and booklet £2.40. "How to Solder"

Name
Address \qquad

Please send the Antex colour catalogue.

Please send the following
\qquad
\qquad

MES. 12

A battery operated 12 volts 25 watt soldering iron complete with 15^{\prime} lead, two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet.
Price $£ 1.95$.

Now! From EMI precision speakers and enclosures in matched money-saving kits

EMI speakers are internationally recognised-used in the highest quality sound reproduction equipment. Because of this world-wide demand, EMI matched speaker kits are available to you at a really keen price.

And now, EMI introduce the commonsense costsaving approach to high quality speaker enclosures. Available in complete easily assembled kit form-all you need is a screwdriver-they form the ideal
combination of superb sound reproduction and good looks you'll be proud to have in your home.

There are eight kits-from compact book-shelf units to large floor standing enclcsures-all finished in selected wood veneer, with matched loudspeaker kits handling from 5-35 Watts.

Realise the full fidelity of your audio system at a fraction of the cost of comparable speaker assemblies. Contact your hi-fi dealer or send to EMI for full details

EMI Group of Comperies
International leadars in Electronics.
Records and Entertainment.

EMI

Perfection in Sound
EMI Sound Products Ltd., Hayes, Middlest x. Telephone:01-573 3888, Ext. 667
SYSTEM 12
STERE

\star COMPACT -
 EASY TO ASSEMBLE

BUDGET PRICED AT ONLY

* LATEST SOLID-STATE ELECTRONICS \star MONOLITHIC POWER AMPLIFIERS \star BRITISH BUILT * FULLY GUARANTEED * COMPREHENSIVE INSTRUCTIONS * DIRECT FROM MANUFACTURERS
The Bi-kits "SYSTEM 12 STEREO" is a kit form modular stereo amplifier system of modern design, providing an output of 12 watts peak (6 watts RMS minimum) from two remarkable amplifiers which have a frequency response from 20 Hz to 50 kHz . Assembled pre-amplifier and power supply module together with mains transformer plus two 8 in round twin-cone speakers matched to the system are included in the kit which also contains all the necessary connecting wire and such items as the silver anodised front panel and 4 matching control knobs. Inputs for tuner or tape recorder, ceramic or magnetic cartridges are provided. Stereo balance better than 2 dB , plus separate bass and treble controls are typical of the "SYSTEM 12 STEREO" specification.

> Plinths and covers, speaker cabinets and decks are easily available and your finished stereo system (built by you) will look like this.

ORDER NOW :

enclosing M.O./P.O./Cheque: Value $f \ldots$. to BI-KITS Dept. PE, 63a High Street Ware, Herts.
A Member of the BI-PAK Group

C.T. ELECTRONICS

FOR REAL SERVICE WITH THE LARGEST SELECTIONOF

ELECTRONIC COMPONENTS

 AND TEST EQUIPMENTYou must visit
C.T. ELECTRONICS

267 AGTON LANE, CHISWICK, LOWDON, W. 4
$9.30 \mathrm{a} . \mathrm{m} .-6$ p.m. . MONDAY - SATURDAY

WOW！A FAST EASY WAY TO LEARN BASIC RADIO \＆ELECTRONICS

Abstract

Build as you learn with the exciting new TECHNATRON Outfit！No mathe－ matics．No soldering－you learn the practical way．

Learn basic Radio and Electronics at home－the fast，modern way． Give yourself essential technical＂know－how＂－－like reading circuits， assembling standard components，experimenting，building－quickly and without effort，and enjoy every moment．B．I．E．T．＇s Simplified Study Method and the remarkable TECHNATRON Self－Build Outfit take the mystery out of the subject，making learning easy and interesting．

Even if you don＇t know the first thing about Radio now， you＇ll build your own Radio set within a month or so！
and what＇s more，you will understand exactly what you are doing．The TECHNATRON Outfit contains everything you need，from tools to transistors－ even a versatile Multimeter which we teach you to use．All you need give is a little of your spare time and the surprisingly low fee， payable monthly if you wish． And the equipment remains yours， so you can use it again and again．
You LEARN－but it＇s as fascinating as a hobby．
Among many other interesting experiments，the Radio set you build－and it＇s a good one－is really a bonus．This is first and last a teaching course，but the training is as fascinating as any hobby and it could be the spring－ board for a career in Radio and Electronics．

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Dept．BI2，ALDERMASTON COURT，READING RG7 4PF

A 14－year－old could understand and benefit from this Course－but it teaches the real thing．The easy to understand，practical projects－from a burglar－alarm to a sophisticated Radio set－heip you master basic Radio and Elec－ tronics－even if you are a＂non－ technical＂type．And，if you want to make it a career，B．I．E．T． has a fine range of Courses up to City and Guilds standards．
New Specialist Booklet
If you wish to make a career in Electronics，send for your FREE copy of＂OPPORTUNITIES IN TELECOMMUNICATIONS／TV AND RADIO＇．This brand new booklet－just out－tells you all about TECHNATRON and B．I．E．T．＇s full range of courses．

SIEMENS TIL EX STOCK！！

SIEMENS QUALITY PLUS BARGAIN PRICES PLUS LST SERVICE A full design range of high quality TTL available from LST your Officialiy Appointed Siemens Distributors

Part No．	Description	$\begin{gathered} \text { Equal } \\ \text { to } \end{gathered}$	1.24	25.99	100 up
7400	Quadruple 2－input NAND gate	$\begin{aligned} & \text { FLH } \\ & 101 \end{aligned}$	20p	16p	14p
7401	Quadruple 2 －input NAND gate with open collector output	201	20p	16p	$14 p$
7402	Quadruple 2－input NOR gate	191	20p	16p	$14 p$
7403	Quadruple 2 －input NAND gate with open collector output	291	20p	16p	14p
7404	Hex inverter	211	25p	$21 p$	18p
7405	Hex inverter with open collector output	271	25p	$21 p$	18 p
7408	Quad 2－input positive AND gate Totem pole output	381	25p	$21 p$	18p
7409	Quad 2 －input positive AND gate open collector	391	25p	$21 p$	18 p
7410	Triple 3－input NAND gate	111	20p	16p	14p
7413	Schmitt Trigger	351	35 p	29p	25p
7420	Dual 4 －input NAND gate	121	20p	16p	$14 p$
7430	8 －input NAND gate	131	20p	16p	14p
7440	Dual 4－input NAND buffer	141	24p	20p	17p
7442	BCD to decimal decoder TTL out－ put	281	± 1.16	94 p	$31 p$
7443	Excess 3 to decimal decoder	361	E．1．45	¢1．20	¢1．08
7444	Excess 3 gray to decimal decoder	371	¢1．45	f1． 20	¢1．08
7450	Expandable dual 2 －wide 2 －input AND－OR－INVERT gate	151	20p	16p	14p
7451	Dual 2－wide 2 －input AND－OR－ INVERT gate	161	20p	16p	14p
7453	Expandable 4 －wide 2 －input AND－ OR－INVERT gate	171	20p	16p	$14 p$
7454	4－wide 2 －input AND－OR－INV̈̈RT gate	181	20p	16p	14p
7460	Dual 4－input expander	$\begin{aligned} & \text { FLY } \\ & 101 \end{aligned}$	20p	16p	$14 p$
7470	J－K flip－flop	$\begin{aligned} & F L \\ & 101 \end{aligned}$	45p	37p	32p
7472	J－K master－slave flip－flop	111	32p	27p	23p
7473	Dual d－K master－slave flip－flop	121	45p	40p	35p
7474	Dual D－type edge triggered flip－ flop	141	46p	$38 p$	33p
7475	Quad bistable latch	151	45p	40p	37p
7476	Dual J－K master－slave flip－flop with preset and clear	131	45p	40p	36p
7480	Gated full adder	$\begin{aligned} & \text { FLH } \\ & 221 \end{aligned}$	$67 p$	56p	48p
7482	2－bit binary full－adder	231	87p	73p	62p
7483	Four－bit binary full adder	241	¢ 1.32	£1．16	£1．00
7486	Quadruple 2 －input exclusive－OR element	341	33 p	27p	23p
7490	Decade counter	$\begin{aligned} & \text { FLJ } \\ & 161 \end{aligned}$	80 p	67 p	57p
7491A	8－bit shift register	221	f1．28	¢ 1.07	92p
7492	Divide－by－12 counter	171	85p	$71 p$	$61 p$
7493	4－bit binary counter	181	80 p	$67 p$	57p
7494	4－bit shift register	231	6.1 .13	94p	$81 p$
7495	4－bit shift register	191	87 p	72p	62p
7496	5－bit shift register	261	61.48	¢1．22	± 1.05
74100	Dual quadruple bistable latch	301	f．1．64	61.37	61.17
74107	Dual J－K master－slave flip－flop with preset and clear	271	52p	43p	36p
74121	Monostable multivibrator	$\begin{aligned} & \text { FLK } \\ & 101 \end{aligned}$	48p	40p	34p
74141	$B C D$ to decimal decoder and nixie driver	$\begin{aligned} & F L L \\ & 101 \end{aligned}$	f． 1.22	¢ 1.02	87p
74190	Synchronous up down 4－bit decade counter with one line mode conerol	201	f1．80	¢1．48	¢1．27
74191	Synchronous up down 4－bit binary counter with one line mode control	211	¢1．80	¢1．48	¢ 1.27
74192	Synchronous up down 4－bit decade counter	241	¢1．74	¢ 1.45	61．25
74193	As above－binary counter	251	¢1．74	¢ 1.45	E1．25

DATA BOOKLET 20p
 CONTRACT DRIDER PRICES ANI FBUEK
 QUAN＇PTY PRICES QUOTED DN TREQUEST

EXIENDED MANGE AVAIMARIE TD TRATDE

LSTS PART OF OUR CATALOGUE RANGE:

Large range of Transistors by many major manufacturers, Zener Diodes, Thermistors, Varicap Diodes, Rectifiers, Thyristors, Triacs, ICAmplifiers, Unijunctions, Opto-electronics, Tunnel Diodes, Meters, etc., etc.

ULTRASONIC TRANSDUCERS

Operate at $40 \mathrm{kc} / \mathrm{s}$. Can be used for remote control systems without cables or electronic links. Type 1404 transducers can transmit and receive. PRICE PRICE
(Sold only in pairs)

WherecanIgetexclusive ROCHEEGiovics!

MCADEMY STERED CASSETTE
TAPE DECK, MOOEL CS-20000 No hi.fi system is complete without one hook it up to any ROC of ather goad qual ity amplifier. and the rasults are fantastit! The CS-20000 records and plays back. A big fasture is its easy-to-use piano-key controls.
Easy-to-get-al mic inputs are on Easy-to-gat-al mic inputs are on

254.55

inclualag twe pencil mierophonet and 311

Normal Price 565.00 Dual-channel recotding leval meter. Pop-up cassette ajection. Stereo/Mono bution. Tape counter. Pause control. Tapa speed 16 ins (475 cms). Frequency response $100-10,000 \mathrm{~Hz}$. Wow and flutiter bitter than 0.3%. Rewind time better than 60

sec with C 60 cassette. Enginesred throughout to the wiest alectical and machancal siandards. Siz
 O PEALISTIC 30 WATT STEAEO O. REALISTIC 30 WATI STEREO A supert hi-fi amplifier with all the festures 46.00 saving over 510.00 on £ $46 \cdot 00$. Saving ovet $\mathbf{1 0 . 0 0}$ on the normal
retait value. Up-to-the-minute slider controls for bass and treble. Soparate volume and balance controls. Headphone socket on Iront panel. Push-bution

2588.50
 FM-AM. RECEVER SYSTEM. MOOEL $12-694$
Brillionly designed tunariamplifier with two mulci
All three units in beatifully finished walnut cabinets with smart aluminium vertical trims. The tuning dial is frontad by unique Inclutias centerilitice 115.00
Hormal Price black glass. Figures light up behind it in grean whan the unit is Sonaratt easy-to-oparate Left and Right voluma controls. Hyicroswitch for on/off. Programme salactor. Saparate bass and trabla con trols. Guilt-in asiphone sockat on front panal for aasy access. Singla tuning knob for FM and AM, light. Each speaker has $8 \xi^{*}$ bass and $3^{\prime \prime}$ treble units. Output: 9 watts r.m.s. par chonnel into onms. Frequancy rasponse: 30 to 20.000 Hz . FM: frequency range $80-108 \mathrm{MHz}_{\text {, sens }}$ sitivity $2.5 \mu \mathrm{~V}$
 tareo separation 30 dB . imsge rejection 40 db . AM: frequency ange $530-1605 \mathrm{kHz}$, sensitivity $100 \mu \mathrm{~V}$ Sizes: speakers 8. wide. 12. high and 92. deap. recsiver appserance matches the excoliance of the spocificstion.
25-WATT 3-WAY CAYSLER
'LIVING AUDIO'
SPEAKER CE-5b
This high quality spatk.
ar has its own built in
er has its own built in
3 -way sound respense switch
giving you the ideal fraquancy response for
 hi-fi, natural or mood music listening. Iis
f39.95 each beautiful, heary. oiled walnut cabinet
incerporates iwo saparate speaker units an 8 " woofer, and a 5 mid-range with 2° concentric twester. Power handing capacity: 25 watts r . m.s into 8 ohms. Quarall írequency ras ponse: $35-20.000 \mathrm{~Hz}$. Cabinat size: $10 \frac{1}{4}^{*} \times 7 \frac{1}{2}^{\prime \prime} \times 81^{\prime \prime}$. Exactly right for matelying the most modern decor.

ROG PAICE

corporates Cartridge Tape Deck. Size $16^{\prime \prime}$ wide. $4^{\prime \prime}$ high. 9^{+}deep Cabinet in walnut. Including connecting leads

8-track home stereo cartridge player O MODEL EI
With this unit. you can play any standard 8 -track cartridge It gives market - at a fraction of the normal retail value B-ofim speakers. The frequency response is 50 to 10.000 -ohm speakers. The hedueviespar san't bettered Hz giving your this arice the 1 has separate a anythng hear his price. The Ehas separate lone balance and volume controls, giving you complete foe $3 \frac{3}{4}$ ips, and wow and flutter are both less than 03%. Size $3 \frac{1}{4} i p s$ and wow and flotter ar
115_{2}^{1} " wide, 5 " high, $11^{\text {" d deep. }}$
 the fantastic RP-1000ST. which has full record and playback facilities. Automatic track thange with manual overRight Mis so star button. Stereo headphone and Lef leve meter. and Left and Right volume controls. Built-in pre amp. Tape speed $33 \mathrm{ips}(9.5 \mathrm{cms})$. Frequency respanse playback $30-10.000 \mathrm{~Hz}$ recording playback $30-8.000 \mathrm{~Hz}$ Line output: fully variable 0.500 mV . The RP-1000ST in AOC PRICE
oudness push-buth control lor pertar sors.
20.55 .50 Left and right push-button on/off switches for speakers. Noise filtering and tape monitoring lacilities. T wo auxiliary AC outiots Frequency response 20 $20.000 \mathrm{~Hz}+1 \mathrm{db}$ at full power. If watts rms per channal. Walnut cabinet with
satin aluminium trims. Inguts phono 2.5 mV and 5 mV RIAA. tuner/aux 250 mV . Hum satin aluminium trims. Inputs: phono 2.5 mV and 5 mV RIAA : tuner/aux 250 mV . Hum
and noise: phono - 50 db ; uner $/ \mathrm{aux}-65 \mathrm{db}$. How's that for a specification! and noise: phono - 50db; luner/aux - 65 db . How's that for a spacification! Size $141^{* *}$ wide, $3 \frac{1}{3}$ "high. $10 \frac{1}{3}$ deep.

OLSON RA-310 AM/FM/MPX
STEREO TUNER
This ROC TUner is espacially de-
This ROC Tuner is espacially de-
signed to match the OIson AM- 395 Sterso Amplifier. In price and value, as well as it's good looking design! But of course it's also

839.95deal for use with ony other amplifier. The RA-310 costs $f 1000$ less than the normal retail value, and yet it is a highly sophisticated unit. incorpoating the latest solid state techniques. Operation is dritt free for suprome station-holding capability. You can connect this Tunser to a sterso amplifier to a tape deck or a tape recorder. And of coursa it covers all the stations in the AM and FM bands. FM: $87-108 \mathrm{MHz}$; AM: $525-1605 \mathrm{kHz}$.
vites: $F M, 3 \mu \mathrm{~N}$. AM, $250 \mu \mathrm{~V}$. Sterno soparation 30dB at 1 kHz , image rejection FM Sensitivites: $F M, 3 \mu V$. $A M .250 \mu V$. S
$60 d 8$. Size. $11 \frac{1}{16}$ " wide. 4^{-}high, $7 \frac{1}{2}^{*}$ dsep.

REALISTIC SA-1008 6-WATT O
SIEREO AMPLIEIEA STEREO AMPLIFIER Hore's fabulous, oxciting value in minaturu ol This high quality stereo
amplifier measures only 9 wide $\times 3^{-}$ amplifiet measures only 9 " wide $\times{ }^{2}$
high $\times 5 \mathbf{5}^{\prime \prime}$ deap. And yet it has sepato ganged volume, balance and tone con.
$0: 14.50$ Uner and power on/off shdide switches. Tha ends are oiled walnut, with matching ensme lled metal top. The front panel is satin aluminium and walnut -brown
ena mel. Frequency response is $501010.000 \mathrm{~Hz}+3 \mathrm{~dB}$. Output 3 walts r . $\mathrm{m} . \mathrm{s}$.
DEALISTIC TMAnnel int AM/FM/MPX STEREO TUNER

\&

 Here's another unit that gives You sabulous valus in muniature!Designad specifically 10 match the Realistic $S A \cdot 1008$ in both. appearance, size and perlormand $A M$ ranges - $F M$. 88.108 MHz . $A M$,
$F M 5 \mu V$. AM $250 \mu \mathrm{~V}$. Image rejection 50 B .

OLSONAM-395 4E-WAII STEREO An ideal unit for your new
stereo separate system It is more than f 10.00 below the normal retay
price! Making the AM-39 price! Making the AM-395
one of Britain's best hi- fI
O. R. 446 3-WAY MATCHEOSPEAKERS - A anly 17780 a pair her are eal walu for mor pocket. At anly f 17 : 80 a parr. they are seal value-tor-money Each cabinet is heavily lagged and leak finished. They
handle 16 watts rms 18 watis rms each). Each loudspeaker handre 16 watts rms (8 watls rms each). Each loudspeaker contains a targe dual cone base unit. plus a separat tweeter. Frequency range: 40 to $19,000 \mathrm{~Hz}$ Size 14 "high,
$g^{"}$ wide, 61 " deep.

OLSON AM-357 4-WATT STEAEO AMPLIFIER O Here's marvellous value for someone just starting to set thamselves up in audio: At only (10.50. you get a fine amplifier in a scratch resistant metal cabinet, with a smant brushed aluminium ront panel. It incorporates separate tone and volume controls for each channel. Inputs are provided for furntable (ceramic cartridge), funer and tape deck or recorder. Frequency response, $70-$ $20,000 \mathrm{~Hz}$ 3d8. Oulput: 2 watts r.m.s. per channelinto 8 ohms . Inputs: phono 80 mv : tuner/aux 80 mv . Size 8^{*} wide. 21^{-1} high,

PALACEAM/FM/MPX STEREOTUNER AMPLIFIER SSA-1B
This is one of the lowast priced stero tunar amplifiers on the marke:. It covers the full range of both AM and FM broadcast lights up whan a steren you're switchad io received - that's in indicalo switch to 'Stereo'! The SSA-16 has atl the facilities you'd en pect to find on tuners costing twics as much - separate vol ume, bass, treble balance and tuning controls Selector switch lor tape phono AM, FM slereo Jack socket on front penel for stereo. phono. AM, FM. sirro. Jack socks on for poni for 535.1605 kHz Frequency response $50.10 .000 \mathrm{~Hz}+3 \mathrm{~dB}$ Power Powar output: i watts total music powar into two ohm
spakers. Size: $16^{"}$ widn, $4 \mathrm{f}^{2}$ high, 8 " deep. ROC 7-WATT STER
CHASSIS SK-317 This exclusive
ROC Sterac Chassis is
complataly
self-contained. and
it costs $\mathbf{f 2} 25$ less
aif value! The
 compact unit measuring only $5 \frac{1}{3}^{*}$ wids. It high and 67 deep. It contains its own mains power supply, and has a ganged tone control and saparate volume convols for each channel. Specification. Frequancy response $40-17.000 \mathrm{~Hz}+3 \mathrm{~dB}$: output 3.5 watts music power per channel iato 8 ohms; input, phono. 600 mV .
signal-to-noise ratio better than 45 dB

818.25

LSON AM-372 16-WATT STEREOAMPLIFIEA
Hare sa ranly good amplifiter at a really down-to-earth prici - neariy f ess than tha normal retail value! Just look at what the AM- 372 will do for you - reproduce signals frem ceramic or crystal cartridgas. AM and FM tuners, and tape recordars. And it gives you outputa for two sats of speakers, hesdphones and tape recorders. Frequency rasponse is 30 to
$0.000 \mathrm{~Hz}+3 \mathrm{~dB}$. Output 8 watts r.m.s per channel music power into
\qquad

unitsat lowest prices?"..

Compare our prices with any other unit on the hi-fi market, and you'll find you won't beat ROC unit prices. No matter where you live, London or Land's End I
Take a good look at all these super audio equipment bargains. They're all on demonstration at our Shop from 9 to $6 \mathrm{p} . \mathrm{m}$. Monday to Saturday. late night Thursday until $7 \mathrm{p} . \mathrm{m}$. But don't worry if you can't get there yourself. Our Mail Order service is at your disposal. With the same ex
clusive ROC equipment clusive ROC equipment - and at the same super value-for-money prices 1
When you invest in ROC equipment, you're getting much more than an exclusive product You're getting value for money that is literally unbeatable. ROC units are bought direct from the manufacturer, and ALL the savings ROC derive from this are passed on to you! At ROC Electronics, we take extra everyihing before you do - and it's fully guaranteed whether you buy at the shop or by Mail Order.

ROC

TOP VALUE • TOP CUALITY ACGESSORIES THAT EVERY HI-FI ENTHUSIAST NEEDS TO COMPLETE HIS SYSTEM

1) A. 328 STEREO HEADPHONE If you're starting in hi-f1, and you discover the need for
pair of reatly goad stereo head phones. The R, 328 is ideal, at a price you can afford. They have and jack plug. Frequency range $30-15.000 \mathrm{~Hz}$ ROC PRICE 52.95

EAGLE SE-30 STERE 0

 HEADPHDNE This model is for the morediscriminating listener. For a 3tart the frequenty range excan adjust the volume ot And you can adjust the volume of each earpiece inde-
pendently. There's also a mano/stereo switch. For maximum comfort, the eat cushions ar

HERE'S A RANGE OF AUDIO SVSTEMS BUILT AROUND EXCLUSIVE ROC AMPLIFIERS AND TUNERS

Wow run your eye over the prices select the System nearest to your budget - and you've hit on the best value that your money can suy! Supplied with all necessat ieads and plugs. ready to use.

REALISTIC SA. 1008 SYSTEM Realistic SA-100B Stereo Amplilier. Garrard 2025TC Auto changer with Stereo ceramic cartridge, plinth and cover and a pair of ROC R. 446 Speakers Matching TM-100 Stereo Tune £23. 25 extra if required
Normal Price 563.98
ROCPRICE f47.60

Otson AM-395 Stereo Amplifiet Garrard SP25 Mk III Record Player with Eagle LCO7 Stereo Magnetic Cartridge, plinth and cover and a pair of Eagle DL. 67 Speakers. Matching RA. 310 Stereo Tuner £ 39.95 extra if required. Normal Price f 106 . 65 ROC PRICE $£ 92 \cdot 60$

OLSON AM-357SYSTEM OIson AM-357 Stereo Amplifier. Garrard 2025 T/C Autochanger with Stereo ceramic cartridge. plinth and cover and a pair of ROC R. 0884 watt Speake
Normal Price 545.28 ROC PRICE f36.70

PALACE SYSTEM
Palace SSA-16 Stereo Tuner Amplifier, Garrard 2025 T/C autochanger with stereo ceramic cart. ridge, plinth and cover and a pair of ROC R 446 Speakers
Normal Price $£ 84.98$ ROC PRICE E66.30

REALISTIC SA-500 SYSTEM Realistic \$A. 500 Stereo Amplifier. Garrard SP25 Mk III Single Record Player with Eagle LC. 07 Stereo Magnetic Cartridge. plinth and cover and a pair of Crysler CE-5b Speakers. Normal Price f157.95 ROC PRICE 124 . 00
 Realistic 12-694 Siereo Tuner Amplifier with matching speakers and Garrard SP25 Mk IH with Eagle LC. 07 Stereo Magnetic Cartridge and plinth and cover. Normal Price 114405 ROC PRICE f124.50

ROCE1 SYSTEM ROC E1 8 track Stereo Cartridge Player complete with a pair of ROC R. 0884 watt Speakers Normal Price 559.10 ROC PRICE f49. 45

EAGLE SE-8D STUDID
STEREO HEAOPHONE Complete with pick up arm
 R 186 STEREO HEAD eliminated the discomfort and strain Sy PHONE JUNCIION BOX associated with traditional headphone of headphones and loudspeakers, here's the ideal design. Eagle have designed and produced solution to the problem. All you do is conech a pair of headphonss which breaks with all it to your speakers and amplitier, plug in your previous concepts. Yau hear all the sounds crisp and clear. In fact, the repraduction is so.goed, that it compares favourably with the most expensive ti.fi speaker systems. Separate slider volume control an each earpiece. Impedance: 8 ohm per channel.

RDC PAICE E1490

Q

PHE HR-007
PHONE RADID
When you want to listen to the radia all by yoursolf. Then this will solve tha and tuming controls with easy-t0-use knobs. Frequency range is Maximum Maximum output is 300 mW .
Normal Price 59.45 ROC PRICE 57.65

EAGLE
E-TRACK
CAR
CAR
STEREO
Prive Player, cs 8 this fabulous 8 - Track Cartridge Player. It gives you superb tone and power to fill the car with stereo sound. Ideal for use with R. 151 or R. 152 speakers. Complete with all mounting accessories. For negative sarth siectrical systems only. Uutput; 2.5 watis per channel. frequency range: $70-10,000 \mathrm{~Hz}$. Wow and flutier: less than 0.3%. Tape speed: $3.5 \mathrm{~cm} / \mathrm{sec}$. Chamel selector. automatrs with manual over-ride. Mounting dimensions: 5 待 $^{*} \times 5 \frac{1}{2^{*}} \times$ 2H: ROC PRICE E27.20
"Walts"
RECOROCLEANERS The original "'Dust Bug'!
Automatic Aecord Cleaner keeps your records clean as
they play. fl 20 Watts Disc Preener Keet
then

Dew records like new R. 307 TRANSISTOR-

 R. 307 TRANSIIZEO STEAEO PRE-AMPLIFIEA
PRE-AMPLIFIEA
Now your amplifier
Now your amplifier
that could only reproduce
ceramic or crystal pick-up cartridges. can accept signals from moving-magnet car ridges! The A .307 steps up signals from
between $5-20 \mathrm{mV}$ to $200-800 \mathrm{mV}$ lngut between $5-20 \mathrm{mV}$ to $200-800 \mathrm{mV}$. Input
$5-20 \mathrm{mV}$. Equalisation: R1AA. Dutput $200-800 \mathrm{mV}$ flat. Frequency. Dutpur 22.000 Hz Dimensions : 3 !" $\times 11^{2} \times 2$) Supply: 240 VAC . ROC PRICE E4.92

> 15-FOOT STERED HEADPHONE
> EXIENSION CORDR. 362
> 3.tted with heavy duly
and a matching stereo socket at
 STEREO HEADPHONE $-4 .=$ ADAPTOR Frequency range: $40-16.000 \mathrm{~Hz}$ Flux R. $36 t$ Enables siagle socket. Finish: oiled wainut.

fitted with male plug and two female

EAGL ROC PRCE ET. 30 ROC PRICE 99.50 pair

EAGLE DL. 67 HIGH COMPLIANCE 3- WAY TEAK SPEAKER SYSTEM rom rich, deep. 35 Hz bass to above the limit of heman
earing - this fantastic response comes from such a smail siza
 inta the problems of full frequency response from smafl cabinets. The $\mathbf{D L} .67$
has a dual cone high compliance bass mid range unit, and a horn tweeter. The speakei on very expensive speaker syot to suit individial rooms - a feature normally only lound on very. Frequensive speaker $3 y s t$ ams. Power handing capacily: 10 watts rms, 20 watls

Vary the strength of your lighting with a DTMWRSMITH

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression:

600 Watt $\mathbf{6 3} \mathbf{2 0}$. Kit Form $\mathbf{2} 70$
300 Watt - $\mathbf{£ 2} \mathbf{2 7 0}$. Kit Form $\mathbf{6 2} \cdot 20$
All plus 10 p post and packing.
Please send C.W.O. to:

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel, 0244-25883 As supplied to H.M. Government Departments

(P) LLB (Electronics)Ltd

HY40 is
 POWER AMP
 PERFECTION

Lets face it - an ımmediate success, the HY40 is here to stay HY40 means Hybrid Power, power neatly locked away inside an Intregrated Circuit. Power the modern way, simply mount only five additional components on a printed circuit board (all of which are supplied with the HY40). Power not only for $\mathrm{Hi}-\mathrm{Fi}$, powerfor Groups, for public address, for industry, power for all.
HY40 is HI-FI POWER ILP are POWER PROUD

In addition to the P.C. board and manual supplied with the HY40 we now include the five remaining components, at minimal cost, needed to complete the assembly of a High Performance Power Amplifier.
By merely combining two HY40s with a Stereo Preamplifier $(2 \times$ HY5) and simple Power Supply (PSU45), premium quality stereo may be obrained for a very modest outlay.
The free manual supplied with the HY40 gives clear, easy build instructions for Power Supply; volume, bass, treble and balance controls, together with inputs for Ceramic and Magnetic Pick-ups, Tape, Tuner and Auxiliary functions.
Internally the HY40 is based on conventional and proven circuit techniques developed over recent years.

OUTPUT POWER British Rating 40 WATTS PEAK, 20 watts RMS continuous.
LOAD IMPEDANCE 4-16 ohms INPUT IMPEDANCE 22 Kohms at 1 Khz .
INPUT SENSITIVITY 300 mV for maximum output.
VOLTAGE GAIN 30 db at 1 KHz FREQUENCY RESPONSE 5 Hz $60 \mathrm{KHz}+1 \mathrm{db}$
TOTAL DISTORTION less than 1\% (typical 0.1%) at all output powers.
SUPPLY VOLTAGE + 22.5 volts DC.
SUPPLY CURRENT 0.8 amps maximum.
PRICE: including comprehensive manual, P.C. Board and FIVE EXTRA COMPONENTS:
MONO $£ 4-40$ STEREO $£ 8-80$ all post free.

A WORLDS FIRST TO JOIN THE WORLDS BEST

The HY5 is a unique and revolutionary concept in HighFidelity pre-amplifiers. Thanks to the latest techniques, all feedback and equalization networks are, for the first time. combined into an integrated pre-amplifier circuit.

Simply by adding volume, treble, bass potentiometers and only three stabilizing capacitors, which are supplied, your HY5 is complete and ready for use

The HY5 provides equal. ization for almost every conceivable input. This years developments in equalization technique enables precise correction for both output voltage and frequency response for any crystal or ceramic cartridge. Yet another feature of the HY5 is its inbuilt stabilization circuit, allowing it to be run off any unregulated power amplifier supply.

The HY5 contains a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo preamplifier.

Specifically and critically designed to meet exacting $\mathrm{Hi}-\mathrm{Fi}$ standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY40 and PSU45 forms a completely integrated system.

INPUTS

Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve) 2 mV
Tape Replay (external components
to suit head). 4 mV
Microphone (flat) 10 mV .
Ceramic Pick-up (equalızed and compensatable) $20-2000 \mathrm{mV}$ variable.
Tuner (flat) 250 mV
Auxiliary 1250 mV
Auxiliary 2 2-20mV.
OUTPUTS
Main Pre-amp output 500 mV Direct tape output 120 mV .
ACTIVE TONE CONTROLS
Treble +12 db
Bass $\mp 12 \mathrm{db}$
INTERNAL STABILIZATION
Enables the HY5 to share an unregulated supply with the Power Amplifier.
SUPPLY VOLTAGE
15-25 volt
SUPPLY CURRENT
$5 m$ A approx
OVERLOAD CAPABILITY
better than 28 db on most sensitive input infinite on tuner and aux
OUTPUT NOISE VOLTAGE
0.5 mV .

PRICE
Mono £360 Stereo $£ \mathbf{7}$-20

POWER SUPPLY PSU45

The PSU45 is specifically designed to supply, simultaneously, your HY40 (in mono or stereo format) and one or two HY5s.

Spec.
PSU45 + 22.5 volts, 2 amps simultaneously.

PRICE: $£ 4 \cdot 50$ including
Postage and Packing

CROSSLAND HOUSE • NACKINGTON•CANTERBURY•KENT TELEPHONE: CANTERBURY 63218

Dept. PE 10174 Pentonvilie Road, London, N1. Telephone 01-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue. IIford, Essex. Tel: 01-550 1086.

[^0]

All fully coded, all from well-known manufacturers and now available, while stocks last, at better than bulk-buyer's prices! Cash with order only. 1N4148 Signal Diode

18 for 50 p (=1N914)
1 N5060 1 Amp Rectifier 400 V (=A14D) avalanche protected
2N2923 NPN Silicon Transistor hfe 90-180 (25v)
2N2926 NPN Silicon Transistor
(Red) hfe 55-110 8 for 50p
2N3391A Si NPN Hi Gain (250-500)
low noise transistor 3 for 50p
2N3402 Medium power (driver)
C6U 900mw 25v Hfe 75-225 6 for 50p 1.6 amp general purpose $25 v$ SCR in T05 case

3 for 50p Post and packing 10p for 1 or 2 packs; 3 packs or more post free.
Order any quantity, till sold (but we regret packs

Keep thase Contacts CLEAN

by using a

DIACROM SPATULA

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification.

Manufactured in France
British Patents applied for

- Grain size 200, thickness $55 / 100 \mathrm{~mm}$.. boch faces diamonded For quick - Grain size 300 , thickness $55 / 100 \mathrm{~mm}$, both faces diamonded. For smaller - equipments. like relephone relays, computer relays, ece.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$. one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each octher can b

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (Distributors) LTD.
81 Piccadilly, London, W.I
Phone 01-6299556
Railwoys and the War Office, U.K.A.E.A., Electricity Generating Boards, British Rolwoys and other public outhorities; also to leading electronic and industrial users hroughout the United Kingdom

FANTASTIC:

WHARFEDALE

LASKY'S DIGITAL CLOCK

drum to back of switeh). SPEC.: $210 / 240 \mathrm{~V}$ a.c. with instructions. Hundreds of applications: operation 12-hour alarm Auto "sleep" switch Hours; minutes and seconds read-off - Forward and backward time adjustment - Silent operation Shock and vibration SPECIALQUOTES LASKY'S E6.50

BSR TD8S

8-TRACK STEREO
CARTRIDGE PLAYER and off by the insertion o

the cartridge. The TD8S is
amplifiers and delivers a pre-amp outpur of 125 mW . quency response: $50 \mathrm{~Hz}-10 \mathrm{kHz}$ \& pole dynamically balanced synchronous motor maintains unwavering Compact in size the TD8S is housed in black and lot (O) in. plascic cabinet. Size $8 \frac{1}{2}$ (WSKY's f 17.95

BELTEK C5700

8-TRACK
Stereo Car Player
Accepts all stan-
dardprevecorded
8-track stereo
cartridge
reatures include
cleaner, channel
repeat push buttons, slider
type volume and cind
control. Tech and cone controls, channel balance channel), Fech. spec. max. output 10 W (5 watts per imp. 4 ohms. Size $4 \frac{3}{4}(W)$ (W) (H) $6 \frac{1}{4}$ (D) in Otput ates on 12 V d.c. negative earth systems. Beautifully BELTEK C5700 com-| BELTEK C5700 wit plete with mounting pre-recorded demonstration cartridge.
£19:75
£24.95
Bultek SP24 speakers are available perfectly matching the C5700 in performance and finish-specially
designed for optimum performance in heavily damped
size:
front

Branches
207 EDGWARE ROAD. LONDON. W. 2 Tel: 017233271
33 TOTTENHAM CT. RD., LONDON. W.I Tel: 01-636 2605
33 TOTTENHAMCT. RD. LONDON.
$152 / 3$ FLEET STREET. LONDON.E.C. 4 Tel: 013532833
Open,0ll doy Ihu Is soly . eorly slosing I P .m. Soturdoy
ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL ST. TOWER HAMLETS, LONOON, E.ETEl: 01-790 4821

42-45 TOTTENHAM CT.RD. LONDON. W. Tel: 01. 5802573 Open olldoy. 9 o.m. 6 p . . Mondoy to Solurdoy

SONY TV SCOOP

Ancenna systemally. © System: 625 UHF. 300 and 75 ohm switchable. 23 transistors, 15 diodes, 3 thermistors. 1 EHT rectifier (selenium).
Power source: $A C 240 \mathrm{~V}, 50 \mathrm{~Hz} ; \mathrm{DC} 12 \mathrm{~V}$. sions: 9 in 9 itin. $11 \frac{1}{4} \mathrm{in}$. Weight: Blb 3oz. Accessories: Earphone; loop aerial
polishing cloch.

LASKY's

CAR RADIOS MODEL RN $214 / 15$
 FROM PHILIPS

The R
triumph
miniatur
compartsation.

mounted on its spindies
 anges: Medium wave: $185 \mathrm{~m}-586 \mathrm{~m}$ ($1622-512 \mathrm{kHz}$) Long wave: $1030 \mathrm{~m}-2000 \mathrm{~m}(290-150 \mathrm{kHz})$. 1 nter 3.6 in . EN8893/05 general purpose mounting kit

MODEL RN 314/15 The RN3l4 gives you
big sound because of big sound because of
the high sensitivity
 it can be mounted without any rear support, Spec.
Power supply: 12 V D.C. neg. earth only, Power output: 5 watts RMS. Wave ranges: Medium:
$185 \mathrm{~m}-585 \mathrm{~m}(1622-512 \mathrm{kHz})$: Long: $1030 \mathrm{~m}-2000 \mathrm{~m}$ ($290-150 \mathrm{kHz}$). Intermediate frequency: 470 kHz . purpose mounting kit with loudspeaker $\mathbf{6 2 7 0}$ extra.
List Price E25.25 PRICE

ARGAIN SCOOP

 W. CARRADIO High quality transistorised and any suitable MW (AM) Car Radio. Self-powered The model 2649 is simply connected to the radio age in 9 push-bution selected band spread ranges ($13,16,19,25,31,41,49,60 \& 90 \mathrm{M}$) combined with the normal radio tuning to give full cover from
$3.2 \mathrm{MHz}-21.75 \mathrm{MHz}$. On/off switch and by-pass switch for normal M.W. radio use. Complete with mounting bracket fitting and alignment instruction
Black hammer crackle finished case-size: $6(W)$ (If(H) $\times 3$ (D) in. Made to sell at approx. $\mathbf{E 2 0}$.

$$
\begin{aligned}
& \text { LASKY'S } \\
& \text { PRICE } \\
& \text { P'75 }
\end{aligned} \quad \text { C. \& P. 20p }
$$

OUT NOW: 1972

AUDIO-TRONICS NEW REVISED EDITION The great new 1972 edition of Lasky's famous
Audio-Troniescatalogue is now available-GREE on Audio-Tronics catalogue is now available-FREE on
request. The 44 newspaper size pages-many in request. The 44 newspaper size pages-many in
fulicolour-are packed with 1.000 's of items for th Radio and Hi.Fi enthusiast. Electronics hobbyist the pages are devoted exclusively to every aspect of Hi-Fi (including Lasky's budget Stereo Systems and Package Deals). Tape recording and Audio TRONICS CREDIT CARD SCHEME Offering holders one month's interest
free credit up to 650 . Send
free credit up to 650 . Send
your name and address and

EMI 2,400ft Professional Tape on 101 in metal NAB spools. Fully guaranteed brand new.
Today's value over $\mathbf{5} .00$ each

TM-I TEST METER
,000 ohms/volt
is a really tiny pocket multimeter providing "big" meter accuracy

Ohms zero adjustment. I,000's IN USE. SIZE 250-1000 at IK/ohms/V. AC/V: 0-10-50-25000 mA . Resistance: $0-150 \mathrm{~K} / \mathrm{ohms}$. Deci

TM-5 TEST METER

Another pocket multimeter
from Lasky's. The "slimline"' impact resistant case-size meter. Readability is superior on all low ranges, making this
an excellent instrument for crystal clear meter cover. $0-300 \mathrm{~mA}$. Resistance: DC Current: $0-300 / \mathrm{A}$ LASKr's £2.55

BSR McDONALD MP60

LASK PRICE

BSR MCDONALD UNITS \& PACKAGES and AD76K cartridge. D. Complete wired on MODEL MP60
HT70 510
510
310 $\begin{array}{lll}\text { MP60 TPD2 styrene base } & 17.50 & 21.00\end{array}$ FANTAVOX CAR RADIO

W1/700

MWILW
medium and long wavebands with slide switch wave dial with "easy to read" lining scale. Externalty adjustable aerial trimmer ensures maximum output through either one or two speakers. Operates on Standard size 61 in . (W) $4 z \mathrm{in}$. (D) 2 in (H) Biack with chrome trim. Complete with speaker Fully guaranteed.
LASKY'S £7.50
TAPE SCOOP
\&1.25 each 5 for $£ 5.00$

READY-BUILT? - OR D.I.Y? SAXON ENTERTAINMENTS HAVE IT!!

100 WATT FULL RANGE AMPLIFIER £48.50 carr. free

100 Watt RMS for all musical and P.A. applications * FOUR individually mixed high impedance inputs $20 \mathrm{~Hz}-20,000 \mathrm{~Hz}$ response

- FULLY short and open circuit proor
- 8ohm load for full outpue
* Four 15 amp output transistors-all silicon

IDEAL FOR GROUPS-DISCOTHEQUES-CLUBS, ETC.
FULL 12 MONTHS GUARANTEE.
50 WATT Identical to above but 50 Watt output VERSION
$\{37.75$
GOODMANS 12P 50W 8 or $150 h m$ $£ 12.37$ (rec. R.P.). Our Price $£ 10.90$ HUGE DISCOUNTS ON CRESCENDO'S SUPER HIGH EFFICIENCY 20,000 GAUSS MAGNET (state impedance required) (rec. R.P.) Our Price
12 in 100 Watt RMS $628.75 \quad$ E21.50
15in 100 Wate RMS E35.90 $\quad \mathbf{2 6 6 . 8 0}$
18in 150 Watt RMS $\mathbf{E 4 5} 90 \quad \mathbf{6 3 6} .75$
Larger discounts for quantities

100 WATT MODULE

* Fibre-glass p.c. board
* All silicon transistors
* Shorlopen circuit proof
* 8ohms load for 100 Watt

Needs only power supply components-input sensitivity 200 mV 10k.
£ $13.50+20$ p carr.
IDEAL FOR YOUR CUSTOM BUILT SYSTEM.
Or complete with power supply and transformer. $\quad 18.75+40 \mathrm{p}$ carr.

20 WATT INTEGRATED MODULE

- Two mixed inputs

* Fibre-glass p.c. board
* Baxandall treble and bass controls
* All pow

Excellent Value and Reliability for only $\mathbf{8 8 . 6 0}+\mathbf{2 0}$ p carr.
D.J's Fader unit with built-in Pre-fade listen and tone controls. This unit plus two decks makes an economical Disco-concrol panel $66.50+20 \mathrm{p}$ carr

SAXON ENTERTAINMENTS 327.331 WHITEHORSE ROAD WEST CROYDON CRO 2HS OI-694 6335

 connects 2 -core and 3 -core bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago. Safebloc saves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open. Invaluable for testing and demonstrations in industry and shops, the work bench and the home.
Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer If ordering by post, send cash with order. PRICE $£ 2.60+10 p$ P.\&P. EACH
Special bulk order wholesale andindustrial rates on application

Rendar Instruments Ltd. Victoria Road, Burgess Hill, Sussex.Tel. Burgess Hill2642

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 450$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE 40)
54 Dundonald Road, London SW19 3PH

EEM PANELMEIEMES

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.
LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

"SEW" CLEAR PLASTIC METERS
Type MR. 85 P . 4zin $\times 4$ in Ironte.
 500
$500-0.500 \mu$ 1 mA 5 mA 50 mA 100 mA 500 mA $14 .$.
5 A
10 A. $10 \mathrm{~A} .$.
20A.. 30A... 50 V d.c. ${ }^{510 v}$ d.c.c.

* MOVING IRON ALL OTHERS MOVING COIL Please add postage

"SEW"' EDUCATIONAL
 demonstrate internal working. Available in the following range

 10 V d.c.
 METERS
 Type ED.107. Sixe orerall $100 \mathrm{~mm} \times$ A new range of him quality moving cotl instruments ideal for school experi menta and other bench applications. $5 \mathrm{~V} / 50 \mathrm{~V}$ d.c.

1

EDGEWISE METERS

PE. $70817 / 2 \sin \times 115 /$ ariv $\times 2$ tin deep.
 $50-0-50 \mathrm{pA}$ $100 \mu \mathrm{~A}$ $100-0-100 \mu \mathrm{~A}$
2000
80

1 mA
300 V
a.c. 38.45
$38-45$ 8.45

ROUND SCALE TYPE PENCIL TESTER MODEL TS.68

Cumpletefy portable, simple to use pocket sized tester. Ranges DC : $0 / 3 / 30 / 300$ and DC at ${ }^{2,000}$ ONLY 21.97 . P. \& P. 13 p .
$\begin{array}{cc}50 \mathrm{~K} \Omega / \text { Volt. Mirror } \\ \text { acale } & \text { DC } \\ \text { Volts }\end{array}$ 0.6/3/12/30/300/600 AC volta $3 / 30 / 300 /$ 800, DC Current $20 \mathrm{uA} / 6 / 60 / 600 \mathrm{~mA}$. Reaistance $10 \mathrm{~K} / 1$
$\mathrm{K} / 1 \mathrm{Meg} / 10 \mathrm{Meg}$

TE22 SINE SQUARE WAVE AUDIO GENERATORS
(ion manual and leails. 217.50. Carr. 37ip.

TE-20D RF SIGNAL GENERATOR!,

TO-3 PORTABLE OSCILLOSCOPE

240° WIDE ANGLE

1 mA METERS $\begin{array}{ll}\text { MWl. } 6 & 60 \mathrm{~mm} \\ \text { \& } 8.97 \text {. } \\ \text { Mware }\end{array}$ square $24.971 . \quad$ P. $\& P$. extra.

TRANSISTORISED L.C.R. A.C
MEASURING BRIDGE
bridge oflering ex
 accuracy at low cost. Rangen: R. 6 Ranges $\pm 1 \%$.
L. $\mu \mathrm{H}-1$
HENRYS HENRYS 6 Ran-

H10YI MODFL 780X 20,000 0.P.V.
Overhesd protection. $10 / 50 / 250 / 1000 \mathrm{~V}$ A.C $50 \mu \mathrm{~A} / 230 \mathrm{~mA} . \quad \pm 0 \mathrm{~K} / 2 \mathrm{meg}$
 62 db .

Model S-IOQTA MULTIMETER
TRANSISTON TESTER 100,000 o.p.v. MIRROR SCALE OVERLOAD PROTECTION / $12 / \cdot 6 / 3 / 12 / 30 / 120 / 600$ DC. 0/6/30/1:0/600 VAC M $/ 600 \mathrm{UA} / 12 / 300 \mathrm{MA} / 12$ 100 MEG $100 / 50 \mathrm{db}$ 0.01 - \because MFD Transistor Men. Transistor Beta and Ico. Complet ith batteries, instruction and leads. 218.50. P. \& P
 25p.

TMK MODEL TW-50K 46 ranges, mirror scale, $50 \mathrm{~K} / \mathrm{Vol}$. Kolts $-125,-25,125,2 \cdot 5,5,10$ EVolte, $125,500,1000 \mathrm{~V}$, A.C. Volts: $1-\bar{v}, 3,5,10,2 \overline{0}, 50,12 \bar{J}$
$250,500,1000 \mathrm{~V}, \mathrm{D} . \mathrm{C}$. Current $2 \overline{\mathrm{~J}}, 50 \mu \mathrm{~A}, 2 \cdot \overline{0}, \overline{\mathrm{~J}}, 25,50,250$, $500 \mathrm{~mA}, 5,10 \mathrm{amp}$. Resigtance $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{MEG}, 10 \mathrm{MEG} \Omega$
 HT100B4 MULTDHETER Features A.C. current ranges. Overloal protection. $0 / 5 / 2 \cdot 5 / 10 / 50 / 250 / 500 / 1000 \mathrm{~S}$ D.C.
$0 / 2 \cdot 5 / 10 / 50 / 250 / 1000 \mathrm{~V}$ A.C. $0 / 10 / 250 \mu \mathrm{~A} / 2 \mathrm{D} / 25 / 250 \mathrm{MA}$ 10 Amp D.C. 10 Amp A.C.

RU89IAN 22 RATGE MULTIMETER Model U437 10,000 -erantile A first clasm nanufactured in U.S.S.R. to the bighest standards. Ranges: $2 \cdot 5 / 10 / 50 /$ $500 / 500 / 1000 \mathrm{~V}$ d.c. $-5 / 10 / 50 / 250 / 500 /$ 1000 V a.c. D.c. current $00 \mathrm{~mA} / 1 / 10 /$ ance 300 ohms / 3/30 / 300k Complete with bstteries, test leads, in tructions and sturdy steel carrying case. ODR PRICE 5 5.97.

HONEYWEEL DIGITAL VOLTMETER VT. 100

 1:11100. 6 Rangea $\pm 1 \%$. Bridge voltage at
$1,000 \mathrm{cps}$. Operated from 9 volta. $100 \mu \mathrm{~A}$. Meter indication. Attractive 2 tone metal case. Size $74 \times 5 \times 2 \mathrm{in}$. 280 . P. \& P. 25 p

Can be panel or bench mounted.
Basic
volt d.c. but
volt d.c. but
to measure
wide range plug-in cards. digit. Resolution: 1 mV . No. of aigita: 100% (up to 1.999). Input impedance : 1000 Meg ohm. Measuring cycle: 1 per econd. Adjustment: Automatic zeroing. full scale adjustment against an internal reference voltage. Overload: to 100 V d.e. Input: Fully foating (a poles). Input power: $110-230 \mathrm{~V}$ a.c. 50/60 cycles. Overall size: $\bar{d} \|$ in. $\times 2$ 13/16in. $\times 83 / 16$ n AVAILABLE BRAND NEW AND

HALF PRICE. (49-97 $\frac{1}{2}$ Carr. 50p

.

SEMIFONDUGTOGE/NALVES
 ALL DEVICES BRAND NEWAND FULLY GUARANTEED

HI－FI EQUITPMENT SAYE UPTO 333\％OR MORE SEND S．A．E．FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS！

RECORD DEC			
B．S．R．			
UAs0 Mono \ddagger	84.97		
C129	20．50		
MP60	$210-40$	GOLDEL	
610	214－07	GL69／2	18.97
510	211.50	GL69／2／P	224．20
310	$29 \cdot 40$	GL72	429．25
810	488．45	GL72／P	229.05
MP60 TPDI	217－12	GL75	129．05
MP60 TPD2	218.40	GL75P	484.95
610 TPDI	$280-85$	LID75	8.88
510 TPD1	£18．80	LIDT：	89.65
210 Package＊	89.55	699	18.80
HT70	214.99	GLas	248.50
HT70 Packag	21．80	GL8JP	554．80
GAREARD		LID8	24.80
$\underline{2025 T / C *}$	8．50	G101	
40 B	29.25	PIONEEE	
－ 300 ＊	58.50	PLleac	85.15
8P2ō Ill	110．50	PLIJC	250.25
SL65B	418.45	PLAEJ	262.85
AP76	118.85	THOREN	
AP76 wit		TD125	
G800＊	228.50	TDI2J．A	291．15
8L72B	228.25	TX29	6.40
$8 \mathrm{L75B}$	280．00	TDijo	427．90
8L93B	182.50	TDijoa 11	288－20
401	228－60	TD1j0AB II	887.80
ZERO 100A	241.65	TDij0 Plinth	48.47
ZERO 1008	110．70	TX11	28.85
\ddagger Mono cart．＊Stereo cart．All othera less cartridge．Carriage 30 p extra any momel．			
RECORD DECE PACEAGES			
Decks supplled with cartridge ready wired in teak vencered plinth with cover．			
Garrard 202STU／9TAHCD ．．．． 212.95			
Garrard SP＇う． 1	111／9TA	（1）	15.9
Garrard SPej Ili／G800 ．．． 18.80			
Garrard SP2J ILj／M7J．6 ．．．el9．50			
Garraril SPPJ	111／M44		280.85
Garrari SPej ILI／Mju－E			
Garrard BPeJ Illigion（Play onPlinth and Cover）．			
Plinth and C	Cover）		218．75
Garrard AP76／	／C800		288.50
Garrard Api6／MiJ－6 ．．． 230.25			
Garraril AP76／Mら．5E ．．． 882.95			
Garrard AP76／M75EJ 284.90			
Goidring GLTe	／G800		284.50
Goldring GL73／G800			
Goldring GL70／G800E Carrlage 50 p any item			

\footnotetext{
SINCLAIR EQUIPMENT

Project 60．Package offers． $2 \times$ Z30 amplifier stereo 60 pre－amp．PZ5 power supply sis．95．Carr 37ip．Or with PZ6 power
aupply，218．00．Carr． 37 p aupply， 218.00 ．Carr． $37 \mathrm{tp} .2 \times \mathrm{Z} 00$ ampli－
fler，atereo 60 pre－a 30.25 Carr． 37 tp ．Transformer for PZ8， 38.97 extra．Add to any of the above patr of Q16 speakers．Project 60 FM Tuner 10．95．Carr． 37 p ．New Project $60 \overline{5} \mathbf{2 8 0} \mathbf{8 7}$ ． Carr．37p．All sinclair products in stock．ICL $81 \cdot 80$ ．P．\＆P． 10 p ．2， 000 smplifier， $223 \cdot 50$ ． Carr． 37 Ip .3000 Amplitier， 230.85 ，Carr． 37 Ip $\frac{\text { Neoteric amplifier．} 48.95 \text { ．Carr．} 37 \text { I }}{\text { TAPE CASSETTES }}$

LATEST	CATALOGUE	
SEND		
Elmarmen tapmumets ${ }_{4}^{4}$ texter Cramayor		NO
		ST1
		ON
		$37 \frac{1}{2}$
［fictinom		P．
		$10 p$

Our new 6th edition gives fuli details of a COMPONENTS，TEST EQUIPMENT and COMMUNICATIONS EQUIPMENT．FREE DISCOUNT COUPONS VALUE SOp． ari2 paget，fully illutirated and detailing thouennds of items at bargala prices． on 9 V battery．Cuserage $86-108$ min for bullt ready for use．Fantastic
money． $8.87 \mathrm{f}, \mathrm{P}$ ．\＆P． 124 p ．
Gtereo multiplex adaptors 8.87 ．
E．B．T．TRSTER 0－80EV

Completely etc．Size 36
P．\＆P．Ajp．

TME MODEL

${ }^{\text {B }}$
 12 MA ．Resistance up to $2,000 \mathrm{M}$ ohm．
 able．

BOMER IMTERCOME

deal for home， tories，etc．Supplied tories，etc，supplied teries，cable and free inatructions．
Station A8－97，P．\＆P．15p．
3 Statlon A5－25，P．\＆P．15p
4 Station 慗－ 64, P．\＆P．17p

EII LOUDAPRAKPRS Model 350． $13^{\circ} \times 8^{\circ}$ with angle tweeter／croasover RMS．Avallable 8 or 15 obme．\＆7－50 each．P．\＆ P． 37 p ． $40.13^{\prime \prime} \times 8^{\prime \prime}$ with twin tweeters／crossover $55-13,000 \mathrm{~Hz}$ ． 8 watt
RMS．Available 8 or 15 RMS．Avajlable 8 or 15
ohrns． 13.50 each．P．\＆ P．25p．

Ts 1018 DRLUXA 10YO RIGE DIPE DAMCE HEADSET
Senaltive，soft earpais． anditive，soft earpacas Magnetic，impedance 2,600 ohms．
21－97，P．\＆P． 15 p ．

microphone in－
puts each with
individual gain controls enabling complete mixIng facilities．Battery operated．$\theta 1^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$ ． Inputs Mics： $3 \times 3 \mathrm{mV} 50 \mathrm{~K} ; 2 \times 3 \mathrm{mV}$ 600 ohms．Pbono meg． 4 mV 50 K ．Phono ceramic 100 mV l meg．output 520 mV
100 K ． 6.97. P．\＆P． 20 p ．

LOR1 STEREO gration
For balanelng and gin selection of loudspeakers with forstereoheadphone gwitching．\cong gatn
 stereo headphone aockets． $6^{\circ} \times 4^{\circ} \times 23^{\circ}$ ． 28－2．P．\＆P． 1 ü

－TRANBIBTORIBEO FW TUNER
 Double tuned dis． criminator．Ample
output to feed most amplifers．Operates
$88-108 \mathrm{MHz}$ Ready to read，rery accurate．robust construction． An essential for colour televiajon servicing，
etc．Size 360 mm long．$\quad \mathrm{O} 0 \mathrm{~nm}$ dia． 26.95.

Battery operated 11 meg input， 26 ranges． Girge 5 in mitror scale
gine 4 in x $2, i n$
$1,200 \mathrm{~V}$ ．D．c．volts $0-3-$
A．c．volte $3-$ 300 V R．M．S． $8 \cdot 0-800 \mathrm{~V}$ P．P．D．c．current 0.12 leads／instructions．17－50．P．\＆P．20p．

230 VOLT A．C． 50
CYCLES RELAYS Brand New． 3 gets of changeover contacts at 5 amp rating． 50 p each．
P．\＆P． $10 \mathrm{p}(100$ lote e40）．Quantities avail．

POWER RHEOSTATS

High quality ceramic construction．Windings embedded in vitreoum eammel．Heavy duty brush wiper．Continuous rating．Wide range ex－stocic single hole fixing，fin．dia．ahafta．Bulk quantities availabie

SPECIAL OFFER！ SINCLAIR PROJECT STEREO FM TUNER

The first tuner in the world to use the phase lock ioop principle－as used for recelving signals from apace craft because of ita vastly
tmproved signal to noise ratio．Providea fantantic reault to nen in difficult areas． Tunlag range $87 \cdot \mathrm{j}$ to 108 MHz ．Automatic stereo Indicator．Sensitivity：$\underline{2}_{\mu \mathrm{H}} \mathrm{V}$ ．AFC range $\pm 200 \mathrm{KHz}$ ．Signal to noibe ratio： 65 dB ．Output voltage $2 \times 150 \mathrm{mV}$ ．Operating voltage $25-30 \mathrm{~V}$ D．C．Size： $93 \times 40 \times 207 \mathrm{~mm}$ ． REC．LIST PRICE 826.

Unrapeaticble offer－buy now and ave over 28.
U4918 KULTMETER
Extremely sturdy inatrument for general $0 / 3 / 15 / 7 \cdot 5 / 30 / 60 / 150 / 300$ $600 / 900$ VDC and 75 mV ．
$0 / \cdot 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300$ $600 / 900$ VAC． $0 / 300 \mathrm{uA} / 1 \cdot 5 / 6 / 15 / 60 / 150$ 600MA／1－5／6 AMP．D．C． 0／1．5／8／15／60／150／600MA $0 / 200 \mathrm{O} / 3 \mathrm{~K} / 90 \mathrm{~K} \Omega$ ． 0／200 Q／3K／90K Ω ． Knule edge pointer，mirro scale．Complete with sturdy metal carrying case，leads
 plus P．\＆P．26p
 awltch for intermittent alarm operation Enciter unit has removable infra red filter and A．C．outlet aocket to operate belta counters，etc． 240 V A．C．Complete with cables and instructions．59－97．P．\＆P．25p

UR－LA SOLID STATE
COMUUICATION RECEIVER 4 Bands covering $\mathbf{J J K H z} 30 \mathrm{MHzl}$ EET，A Speaker．Bandepread．Senaltivity Control． $720 / 240 \mathrm{~V}$ a．c．or 12 V d．c． 12 in $\times 43$ in x 7in．Brend new with instructions．est．
Carr． 37 p ．

LAFAY是TTE HA－600 HECEIVER

General coverage $150-400 \mathrm{KBz}, 650 \mathrm{KHz}$ 30 MHz ．FET front end， 2 mech．filtera product detector，variable B．F．O．，nolse $15 \mathrm{in}: 94$ in $\times 8 \mathrm{tin}$ ． 18 lb ． $220 / 240 \mathrm{~V}$ a．c． or 12 V d．c．Brand new with intruction \＆50．Carr． 50 p ． 50 WaTM． $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohms， 721 p．P．\＆P．Tit

YAMABISHI＂VARIABLE VOLTAGE TRANSFONMERS
 Excellone quality．Low price．Immediate delivery

ALL MODELS
IIPUT 290 FOLTR，50／60 CYCLEA． frecial disconate for treatiot

28 BURNT MILL ELIZABETH WAY HARLOW ESSEX HARLOW 32947

Why wait weeks?

-ALL OUR ORDERS DISPATCHED BY RETURN OF POST!

Transistors, Diodes

and Integrated Circuits

postage and PLEASE ADD IOp	d PACKING to your order
	$\frac{30 A .150 \%}{\text { Bryso } 51.52}$

IHE ULTIMATE IN COMMUNICATIONS REEEVERS

Bringainstant world- WIDE RECEPTION st the press of a button. Serimatiomal ycoop purchame of this inst-released monirl enablew us to otfer a thily unheard-ul pric!: (Similar models can cost \{120 or more:) The 8 WAVEBANDS ellable you to covel the world at the press of a button Yulmight even bick up a world sconp on your wutd-wide recejver:
is well as all the usual bibe' fromratumes ron can joick up Local Rathintathme (including hew stations get th he intronhed). *P口l l'irates. "Aircraft

even EAvesdrop on bank raids If YoU're

 (1) tient, lons Alliralia, Jlica, Atherica. India,
 the "aviling "rostalh hetweell control thwel a and
 CASH £35.50 or sent for and 50 p p . \& p. and 8 monthly "aptain's whip-tw-ship and ship-th-shore "obversa and 50 p p. \& p. and 8 monthly tionu. PLUS many more exciting and absorbing Public service Band tranmissions we are not allowed to mention. Thit set has been manufactured by one of the most advanced companies in radio and electronic communications and carries their FULLY WRITTEN GUARANTEE. Ittractively fillulted Leatherette and stamend veel tor add quality and distinet inm to any living-thonn
directiy minulain. 14 Transistors. 9 diodes, 1 thermistor, internal ferrite rod antenna and external Telescopic Antenna. Tone, volume and tuning controls. Very latest kepboard puah-button waveband selector. Dial light (enabling use in darkness). Special WORLDWIDE DIAL and WORLD MAP enablen youl to tell the correct time jan ans cuntry of the world (estential for world jistenng). Hi-tinjelity earphote automatically cuts out math

 AIRCRAFT $10 \mathrm{~K}-13 . \mathrm{Hcs}$ PUBLIC SERVICE BANDS $13 \mathrm{~F} \cdot \mathrm{IT}$ (MCs

SCIENTIFIC AND TECHNICAL

(PE5), 507-5II LONDON ROAD, WESTCLIFF, ESSEX

for fast, easy
reliable soldering
Ersin. Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required:

IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons all at 25 peach in 40/60, 60/40.
or Savbit alloys in 7 gauges.

EASY-TO-USE DISPENSERS

Size 5
(Savbit) 18swg, 18 p (illustrated)
Size 19A
(60/40 alloy) 18swg. 18p
Size 15
(60/40 alloy)
22swg. 22p

BIB WIRE STRIPPER ANDCUTIER

Model 3A. Strips insulation from cable or flex without nicking wire 4 different settings, 4\&6BAspanner ends, ground cuttingedges Price 32p. Also available. de luxe Model 8

Price 58p
From Electrical and Hardware Shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

BUDGET HIGH-FIDELITY STEREO SYSTEMS

FREE
leads and plugs supplied with all systems

 with perapex cuter and twon matching teak finish foulspeake; syatemb. Absolutely complete and pupplied reaty to plug ins

METER BARGAINS

MODEL GT800 MOLTIMETER A preclsjon made pocket aized test meter,
ideally suited for testing electronic ideally suited fol testing electronic
circuits or electionic appliances. Supplied corcuite or electionic appletances. with test lead und batterics. complete with test lead und batteries
Rangea D.C. voltages: $10 . \quad 50, \quad 250$
$1,000 \mathrm{~V}$
(1,000
O.I.V.
 $10,50,250,1,000 \mathrm{v}(1,0000 . \mathrm{P}$. Y.) D.C.
current: 1 IisA. 100 miA Resitance:
 MOLTIMETER 20,000 O.P.V. MULTIMETER
Features large pasy-to-real meter, wide
choice of ranges. With leat leals, battelies and manual. Mize: $4!$ in 38 in 1 im .
 $100-500-1,001 \mathrm{M}$. C' current: $0-50 \mu \mathrm{~A}-$
$2.5 \mathrm{~A}-250 \mathrm{~mA}$. Resistance: $0-6,000$ ohmm, $0-6$ tueg ohins (300 ohurs and 30 hishme

 MODEL CT620 MULTITESTER Ranges: 1).C. voltages: 0, 5. 25,100 , $500 / 1,000 \mathrm{y}(20,000$ ohms/V). A.C. volt -
ages: $0.5,25,100.500,1,000)^{(10.000}$ ohms/V) NC, curient: $0,50 \mu \mathrm{~A}$. 0 mA , $6 \mathrm{k} \Omega, 600 \mathrm{ka}, 6 \mathrm{Ma}, 60 \mathrm{M} 32$. Decitele:

25.62. P. \& P. 25p

"WELLER EXPERT" SOLDER GUN	
saves time	and simplifies soldermg
in the home and service dept. Two position trigger gives ingtant dual heat $100 / 140$ watt. 240 volt A.C	
dual heat $100 / 140$ watt. 240 volt A.C.$£ 3.95 \quad \begin{array}{cc} 1 \\ 50_{\mathrm{p}} \end{array}$	

"Weller Marksman" Soldering Iron

VERITAS V-313 TAPE HEAD DEFLUXER Amust for all tajue users ! Titpe heads becone permanently magnetized with constant use :
this leadia to background noise recorilings. Simpty applied to that prevents perfect recorings. Cleans any tape head in seconls. 21.72. I, \& P. \$5p

PREMIER HI-FI OFFERS!
Rogers Ravensbrook 11
Stereo Amplifier in teak case (List 552.50
Rogers Ravensbourne
Stereo Amplifier in teak case (List $\mathbf{2} 64$) Metrosound ST20E
Stereo Amplifier in teak case (List $£ 39.50$
Thorens TD150A/11 Transcription unit with arm Garrard SP25 111 with Goldring G800 cartridge

(List $£ 28.35$)

Garrard SP25 Mk. III Single Gecord Player. Fitted Stereo Cartridge. Complete in Teak Plinth with Cover.

PREMIER
PREMIE
PRICE
£38.50
£49.00
£28.50
£31.00
£15•50

PRICE $\quad £ 18.90$
GARRARD AP 76 WITH G800, READY WIRED TO 5-PIN DIN IN PLINTH WITH COVER
£29.95
Garrard AP76
less cartridge
£19.50
GARRARD 401
TRANSCRIPTION UNIT (LIST $£ 40.15$)
Garrard 2025 T/C with Stereo Ceramic Cartridge Garrard 2025 T/C with Stereo Ceramic Cartridge ready wired in teak plinth with cover
£12.45
Carriage and Insurance 60p extra any item.

"VERITONE" RECORDING TAPE

 SPECLALLY MANOFACTURED IN U.SA. FROM EXTRA STRONG SPECLALLY MANUFACTURED IN U.S.A. FROM EETRA STRONGPRE-STRETCHED MATERIAL. THE QUALITY IS UREQUALLED TENSILISED to ensure the most permaneut base. Highly resiatant to break age, moisture, beat, cold or bumidity. High polished splice free finish. Smooth
output throughout the entire audio range. Double wrapped-attractiveby boxed. $\begin{array}{llll}\text { LP3 } & 3^{*} & 250 \\ \text { P.V.C. }\end{array}$
 DT3 3i* 600 POLYESTER 57 p TT6 5!" 2400 POLYESTER E1.87

 TAPE EPOOLS $3^{* *} 5 \mathrm{p}, 5^{*}, 51^{*}, 7^{*} 9 \mathrm{p}$. TT7 $7^{*} 3600^{\circ}$ POLYESTER 82.50
 ot 3pextra pach.

A truly high qrality eleren atmplifiel compare the
specilica innt, mamare the price Gutput. $\overline{3}$ watty per channel. Frerpetacy responsc: $30-20,000 \mathrm{~Hz} \pm 0 \mathrm{db}$

 and ont put M Controls. Bass, Treble. Solume. Balance.
selector. Monrstreer suitch. Ntern Headphone bucket, Attractive sim line degign black leatherette 5

HI-FI STEREO HEADPHONES Desirnell to the lighest possible standard. Fitted thin speaker units with
soft badderl ear muff yoft padderl car miffs
Adjustable headband
her 8 ohns inle heance. Com plete with 6 ft leal and stereo jack plug. $22.47{ }^{\mathrm{P}, \& \mathrm{I}^{-}}$ STEREO STRIHOACOPE SHT Low imp. 2l-25. MONO STETHO JCOPE AET Low imp. 52p. H . \& P.
E.M.I. $13 \times 8 \mathrm{in}$. HI-FI SPEAKERS
 Fitted two $2 \neq i n$ tweetera
and crossover network. Available with 8 or 15
ohnit impedance. Hand. new capacity 10 W . Brand $£ 3.47$ P. \& P. 50 p
VERITAS V-49 MIXER Batters operated 4-channel andio mixer providing four
 inierophone

TAPE CASSETTES
C60 (${ }_{\text {min }}^{60}$) $37 p_{81.05}^{3 \text { Ior }}$

 P. \& P.

FREE Casette Head Cleaner with every 10 cassettes All cassettes can be supplied with library cases

CONCORD ELECTRONICS LTD. (PESU), 8 Westbourne Grove, London, W.2. callers Welcome 9 a.m. 6 p.m. inc. Saturday

Eavesdrop on the exciting world of Aircraft Communications-
V.H.F. AIRCRAFT BAND

CONVERTER ONLY $£ 2.85$

Listen in to AIRLIMES, PRIVATE PLANES, JETPLARES. Eavesdrop on exciling cross talk between pilats, ground
approach contrul. airport tower. Hear for yourself the disciplined voices hiding tenseness on talkdoums. Be with them when they have to take nerve ripping decisions in
emergencies-Tune into the international distress frequency. Covers the aircraf frequency band including HRATHROW,
GATWICK, LUTON, RIIGWAX, PRESTWICE, ETC. ETC. CLEAR AS A BELLL. This fantast ic fully transistorised instrument can
be buill by anyone over nine ins umder too he bwill by anyone over nine in under tuo
hours. No soldering necessary. Fully illustrated simple instructions take youl
gtep-by-step. ['ses ntandard PP3 battery All yon do is extend roal aerial, place close to any ordinary medium wave radio (even tiny portables) NO CONFECTIONS WHATEVER NEEDED. SENTD ONLT E2.85 + 23_{3} p \& p for kit including case, nuts, screws,
wire, etc. etc. (Parta arailable separatelr.)

SLEEP INDUCER

 ONLYE3-25 Do you wake and can't get ofl to sleep again? Would you like to be gently soothed off to satinfying sleep every nighte Then build this ingenions
plectronic sleep, inducer. It even stops by itself so you don' have to worry about it being on all night! The loulspeaker promluces aoothing audio-frequency molunds, contimuously re-peated-but as time goes on the sound graduaily becomes less and less-unt il they eventualy cease altogether, the efferi it has on propla is amazingly very similar ta
hyp electronies or ransio needed. Step-by-step instructions. Fo soldering necessary. Kit $3.25+2$ jp, $\&$, (Parts available

FIND BURIED TREASURE
Transistorised Treasure Locator

BUILD 5 RADIO AND

 ELECTRONIC PROJECTS
ONLYE2.45

mazing H ytruction set! Become radio expert for 82.45. A complete Honte Radio
Course. No perience needed
oso Parts including ep-by-step plang, all thansistors loukpeaker, personal phone, knobs, screwn ete., all you meed. Presentation box 45p extra as illus. (if required) (partn available geparately) no soldering necessars. Send $\mathbf{2 2 . 4 5}+20 \mathrm{p} \boldsymbol{p} \& \mathrm{p}$.
SOOTHE YOUR NERYE RELAX WITH THIS AMAZING
RELAXATRON
CTTS OLT NOISE
POLLTT TON POLLTTJON-
ROOTHES YOIR NERVES: Th RELAXATKON is basically a pink noise baskenty a pink noise
Besides being able to mask out extraneous unwanted sound very it has other very interesting prowerties.
WORK WORK IN NoIBY
 62.75 OR DISTRACTING SIRROINDINGA, IF
YOU HAYE TROITBLE CONCNKTR IT ING HAVE TROVBLE CONCFETRAT TO RELAX-then bulif this fantastic Relavatron. Once nsed you will never want to be without it-TAKE IT ANYWHEIRE. les manularal PP3 batteries (current used sis gmall that battery life is almost shelf-life). CAN BE EASILX BUILT BY ANYONE OVER 12 YEARS OF AGE using our Hilque atep-by-step, fully illustrated plans. No soldering necessary: All parts including
case, a pair of crystal phones, Components case, a pair of crystal phones, componenta
 senailable separately.)

ELECTRONIC ORGAN
 reeds, cic. Fully tranNisturiset. SELE-CONTAINED LOUDSPEAKER. Fifteen separnte keys span tro frll octaves-play the "Yellone Rose of Texas'. play "Silent Night", play "Auld Lang Syne". ele. elc. You have the thrill and excitement of building it together with the pleasure of playing a real, live, portable electronic ELECTRONICS NEEDED. No soldering necessary, simple as $A B C$ to make soldering over nine years can build it catily in one short evening following the fully illuatrated. step-by-step. simple inalructions. ONLY
 nut, screws, simple instructions, ete. Cses Have all the pleasure of making it yourself. finish with an exciting gift for someone.
READY BUHLT AND TESTED TREASURE LOCATOR MODULE
© 4.95

PRINTED CIR-
CDIT METOR MODULE.
DETECTOR MODULE.
Resaly buill and tested- jnst plug in a PP3 Ready buill and tested-jnst plug in a PP3
hattery and 'phones and it'm working. Put it in a case, screw a handle on and YOU HAVEA PORTABLE TREABURE LOCATOR EASILY WORTH ABOUT 2RO! EXTREMEI.Y SENHITIYE-PENETRATES EARTH. GAND, ROCK, WATER, ETC. EASILY LOCATES COINB, GOLD, BLLER, JEWELLERY, HISTORICAL RELICS, BUTRIED PIPES, ETC. So senaitite it will
detect certain objects buried SEVERAL FERET BELOW GROOND SIGNAL ON ONE COIS! $84.95+30 \mathrm{p}$ carr.

TRANSFORMERS
dodglas gdaranteed

SUITABLE FOR COLOUR MONO-
 WALL MOUNTING C/W WALL ARM AND BRACKET. 7 element $£ 3.25$. II element
$\mathbf{E 3 . 7 5}$. 14 element $\$ 4.25$. 18 element $£ 4.75$. CHIMNEY MOUNTING ARRAYS CIW MAST AND LASHING KIT. 7 element E4. $_{14}$ element $\mathbf{E 5}-25$.
MAST MOUNTING arrays only 18 element $\mathbf{~ 6 3 . 7 5 . ~ C o m p l e t e ~ a s s e m b l y ~ i r : - ~}$
structions with every aerial. LOW Loss coaxial cable 9_{P} yd.
KING TELEBOOSTERS from 43.75 . LABGEAR all band V.H.F.-U.H.F.-F.M. radio mains number required on all orders. P, \& P. on all aerials 50 p aces. 15 p. C.W.O. min. CO.D rge 25 p

BBC-ITV-FM AERIALS BBC (band I) Wall S/D C2. LOFT inverted ITV (band 3) 5 element loft array 62.50 . $1+5$ 62.75. $1+7$ 63.50. WALL AND Pre-amps from $\{3.75$.
COMBINED U.H.F.-V.H.F. aerials $1+5+9$ £4. loft SID $£ 1$. 3 element $\{3.25$. 4 element $\{3.50$ Standard coaxial plugs 9 p . Coaxial cable 5 p yd C.W.O. min. C.O.D. charge 25p. Send 5 p for CALLERS WELCOMED
K.V.A. ELECTRONICS Mitcham, Surrey Telephone 01-6484884

THE RADIO SHOP

16 Cherry Lane, Bristol BSI 3NG Tel.: Bristol 421196. STD Code 0272

Your West Country shop for lectronic
METRE CONVERTER KIT 9V Neg. earth feeding $28-30 \mathrm{MHz}$, Consisting of: RF BFI80, Fet. mixer, crystal osc. BFI80, and multiplier BFI80. Complete with all components, instructions and aluminium box. Not for beginners

Price 64.75 P. \& P. 18p
TRANSISTOREQUIVALENT BOOK RADIO and TV VALVE and TUBE EOUIVALENTS BOOK
CY types. 60 pages, in 40 p P. \& P. 3p $\begin{array}{lll}\text { CV types. } \\ \text { Series } 74 \mathrm{~N}, \text {, Data booklet } \\ 930 & \text { 40p P. \& P. 3p } \\ \text { Op }\end{array}$ 930 Series, Data booklet 14 p Post Paid R.T.L. IC's
${ }_{\mu \mathrm{L}} \mathrm{L}$. 900 Buffer, $40 \mathrm{p} ; \mu \mathrm{L} 914,40 \mathrm{p} ; \mu \mathrm{L} 923,45 \mathrm{p}$. P. \& P. 5p

LINEARIC's
$\mu A 703$ 45p (TO.5), 4 A 709 50p (DIL). P. \& P. ${ }_{5}^{\mu}{ }^{\mu} \mathrm{A}$
DPUALIN LINE SKTS.
14 pin, 25p; 16 pin, 30 p. P. \& P. 3p
AIRCRAFT GAND CONVERTER
Circuit and inseruetions
and components. Alyou y
need is a tobacco tin. (1.20 P. \& P. 7p B.F.O. FOR ANYRADIO

Circuit and instructions
and components. Allyou
need is a tobaceo tin
\& 105
P. \& P. 5p
need is a tobaceo tin ES-05 P. \& P
TAPE RECORDER LEVEL. METERS
500 micro amp. Size
50p P. \& P. 5p
WE STOCK Numicatoc Tubes XN3 and
GR $10 / \mathrm{MU}$
WE STOCK "Weco'" Television Tubes. CATALOGUE 5p POST FREE

FOR RAPID
 GARLAND aros. (TD DEPTFORD AROADWAY, LONDOW, SE8 GQW

TRANSISTORS			
AC127	17p	BF×29	38 p
AC128	$18 p$	BF×84	25p
AC176	24p	BF×88	30p
AC187	28p	BFY50	$21 p$
ACI88	27p	BFYSI	$21 p$
ACYI9	23p	BFY52	22p
ADI49	47p	MATI00	25p
ADI61/162	72p	MATIO	29p
ADTI40	62p	MATI20	25p
AFII8	45p	MATI2!	29p
AFI24	22p	OC28	58p
AFI25	19p	OC35	48p
AFI26	20p	OC44	12p
AFI27	19p	OC45	12p
AFI78	67p	OC71	$11 p$
AFI79	66p	OC72	12p
AFI80	45p	OC75	20p
AF239	32p	OC200	27p
BC107	$11 p$	OC201	38p
BC108	$11 p$	OCP71	60p
BC109	$11 p$	STI40	15p
BC147	12p	STI41	23p
BC148	$12 p$	UT46	35p
BC149	$12 p$	2N696	15 p
BC157	$15 p$	2N706A	12p
BC158	14 p	2N2926G	14p
BC159	14p	2 N 2926 Y	13 p
BD131	75p	2N29260	12p
BDI 32	75p	2N3053	25p
BFII5	25p	2N3054	60p
BFI78	32p	2N3055	72p
BF179	56p	2N3702	$15 p$
BFI80	30p	2N3703	14 p
BFIBI	32p	2 N 3704	$15 p$
BFI84	30p	2N3705	14p
BFIP5	32p	2N3706	14p
BF194	14p	2N3711	14p
BFI95	14p	2N3819	$35 p$
BF196 BFI97	28p 15 p	2N4058	$17 p$
BFWIO	70 p	2N5459	$60 p$
DIODES			
AAl19	11p	OA202	10p
OA47	71 p	BY100	15p
OA90	7 P	BY127	$221 p$
OA91	$6 p$	BYZ12	22: p

ZENER DIODES

SILICON BRIDGE
RECTIFIERS
40 P.I.V.
200 P.I.V.,
20 A

FUSES AND HOLDERS
1tinglass-2ip
$50,100.150 .250,500.750 \mathrm{~mA}$ $1 \cdot 25,1 \cdot 5,2,2,5,3,5,75,10,15 \mathrm{amp}$ tin glass $=2 \frac{1}{2} \mathrm{P}$
$100,250,500 \mathrm{~mA}$
Antisurge mA: $1,2.5 \mathrm{amp}$
$250,500,750,850 \mathrm{~mA}$
amp.
A0, 125, 200, 315, 400, 500, 630 . $800 \mathrm{~mA}: 1.2 \mathrm{amp}$

PANEL FUSEHOLDERS
For 1 tin fuses
For 20 mm

CONTROLS, Log. or Lin.

Single. less switch. $15 p$
Single, D.P. switch, 24p
$5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k}!$
$250 \mathrm{k} \Omega .500 \mathrm{k} \Omega$. $1 \mathrm{M} \Omega .2 \mathrm{M} \Omega$

RESISTORS

Carbon
All 5%. high.stability, E12 values. AW, I 1 p p ; IW, 4p: 2W. $6 p$ Wire-wound
$5 \mathrm{~W}, 10 \mathrm{p}$: 10 W .12 p

ELECTROLYTICS

$1 \mu \mathrm{~F}$	450 V	19p	$1.000 \mu \mathrm{~F}$	25 V	27p
$2 \mu \mathrm{~F}$	500 V	20p	1,000 $\mu \mathrm{F}$	50 V	39p
$4,1 \mathrm{~F}$	350 V	14p	2.0001 F	25 V	36p
$8{ }_{\mu} \mathrm{F}$	450 V	16p	2,000 1 F	50 V	53p
$16 \mu \mathrm{~F}$	450 V	17p	$2.500 \mu \mathrm{~F}$	25V	45p
25 ¢ F	50 V	8p	2,500ıf	50 V	60p
$32 \mu \mathrm{~F}$	450 V	24p	$3.000 \mu \mathrm{~F}$	$25 V$	48p
50, i	50 V	10p	5,000 F	25 V	55p
$100 \mu \mathrm{~F}$	25 V	10p	5,000 F	50 V	98p
$100 \mu \mathrm{~F}$	50 V	10p	8-8/1F	450 V	18p
$250 \mu \mathrm{~F}$	25 V	12p	$8-16 \mu \mathrm{~F}$	450 V	20p
$250 \mu \mathrm{~F}$	50 V	17p	$16-16 \mu \mathrm{~F}$	450 V	27p
500 $\mu \mathrm{F}$	25 V	18p	16-32 $\mu \mathrm{LF}$	450 V	63p
$500 \mu \mathrm{~F}$	50 V	25p	$32-32 \mu \mathrm{~F}$	450 V	49p
			50-50 1 F	350 V	38p

MINIATURE ELECTROLYTICS

$1 \mu \mathrm{~F}$	25 V	$10 \mu \mathrm{~F}$	64 V	
$25 \mu \mathrm{~F}$	64 V	$16 \mu \mathrm{~F}$	40 V	
$4 \mu \mathrm{~F}$	40 V	$25 \mu \mathrm{~F}$	25 V	
$5 \mu \mu \mathrm{~F}$	64 V	$30 \mu \mathrm{~F}$	15 V	
$8 \mu \mu \mathrm{~F}$	15 V	$50 \mu \mathrm{~F}$	15 V	1
$80 \mu \mathrm{~F}$	40 V	$100 \mu \mathrm{~F}$	15 V	
$10 \mu \mathrm{~F}$	15 V			

ALUMINIUM BOXES with lids and screws

Type	Length	Width	Depth	Price
G87*	$2 \frac{10}{}$	5tin	$1 \frac{1}{3}$ in	38p
GB8*	4 in	4 in	$1 \frac{1}{2}$ in	38p
GB9*	4 in	$2 \pm$ n	$1 \frac{1}{1}$	38 p
GB10*	4 in	5tin	$1 \frac{1}{2}$ in	44p
GBII	4 in	$2 \frac{1}{2}$ in	2 in	$38 p$
GB12	3 in	2 in	I in	33p
GB13	6 in	4 in	2 in	52p
GB14	7 in	5 in	$2 \frac{1}{3} \mathrm{in}$	$63 p$
GB15	8 in	6 in	3 in	$81 p$
GB16	10 in	7 m	3 in	92p

VEROBOARD

VARIABLE POWER SUPPLY

CASSETTE OWNERS!

For Philips and similar cassette recorders, PUI2 Power unit for connection to $12 V+$ or iving $7 \frac{1}{2} V$, stabilised output. $\mathbf{~ 3 ~} \quad 25$

PP75 Mains power supply, output $\mathbf{1} \mathbf{1 . 9 5}$ Both units are complete with cable and 5 pin D.I.N. plug

BONDED ACRYLIC FIBRE

B.A.F. wadding, 18in wide, lin thick. The
ideal lining for speaker enclosures. 25p per yard

MISCELLANEOUS ITEMS
B9A valve bases. 2p
$5 \mathrm{k} \Omega$ edge control, fits most small,
mported radios. 7p
Ans volume control for $3 \Omega 2$ speakers, 20p
${ }_{61.70}$ An 7 , 15 miniature soldering iron.
Valve and Transistor Data book, 9th edition. $75 p$
Transistor equivalent book. BPI, 40p

LOW-OHM RESISTORS

$2 \frac{1}{2}$ watt wire-wound, $1 \Omega \Omega$
$1.8 \Omega, 2.7 \Omega, 3.3 \Omega, 3.9 \Omega, 4.7 \Omega$.
$1.8 \Omega, 2.7 \Omega, 3.3 \Omega$
$5.6 \Omega, 68 \Omega, 8.2 \Omega$

2. 2pF	500 V	$5 / \mathrm{M}$	71p	$0.0033 \mu \mathrm{~F}$	125 V	P.S.	6 p
3.3 pF	soov	S/M	$7 \frac{1}{19}$	$0.0033 \mu \mathrm{~F}$	500 V	Poly.	p
5pF	500 V	S/M	$7 \frac{1}{5}$	$0.0033 / 1 / \mathrm{F}$	1.000 V .	MDC	6 p
10 pF	125 V	P.S.	5p	$0.0036 \mu \mathrm{~F}$	500 V	S/M	$15 p$
10 p F	500 V	S/M	719	$00047 \mu \mathrm{~F}$	25 V	P.S.	9 p
15pF	125 V	P.S.	5p	0.004714 F	500 V	Poly.	6p
15 pF	500 V	Cer	${ }^{\text {P }}$	$0.0047 \mu \mathrm{~F}$	500 V	S/M	20p
18 p F	500 V	5/M	71p	$0.0047 \mu \mathrm{~F}$	1.000 V	MDC	$6 p$
22 pF	$125 \vee$	P.S.	${ }_{5 p}$	$0.005 \mu \mathrm{~F}$	100 V	Mylar	3 p
22p ${ }^{\text {F }}$	500 V	S/M	71p	$0.005 \mu \mathrm{~F}$	500 V		5p
25 pF	500 V	S/M	$7 \frac{1}{3} \mathrm{p}$	$0.0068{ }^{\prime \prime} \mathrm{F}$	125 V	P.S	$10 \frac{18}{}$
27pF	500 V	Cer.	4 p	$0.0068 \mu \mathrm{~F}$	500 V	S/M	30p
33 pF	125 V	P.S.	5 p	$0.0068 \mu \mathrm{~F}$	500 V	Poly	6 p
33pF	500 V	S/M	71p	$0.0082 \mu \mathrm{~F}$	125 V	P.S	10\% ${ }^{\text {P }}$
39pF	500 V	S/M	710	$0.0082 \mu \mathrm{~F}$	500 V	S/M	30 p
47pF	125 V	P.S.	5 p	$0.01 / 2 \mathrm{~F}$	12 V	Disc	4 p
47pF	500 V	Cer	4p	$0.01 \mu \mathrm{~F}$	125 V	P.S.	$10 \frac{1}{\text { P }}$
50pF	500 V	S/M	71 \%	$0.01 \mu \mathrm{~F}$	160 V	Poiy.	4 P
S6pF	500 V	S/M	719	$0.01 \mu \mathrm{~F}$	$250 \vee$	M.F.	3 P
68pF	125 V	P.S.	5p	$0.01 \mu \mathrm{~F}$	400 V	Poly.	3 p
68pF	$500 \vee$	S/M	719	$0.01 \mu \mathrm{~F}$	500 V	Cer	5 p
75pF	500 V	S/M	71 P	$0.01 \mu \mathrm{~F}$	500 V	S/M	30p
82 pF	500 V	S/M	7 ${ }_{\frac{1}{5} \text { p }}$	$0.01 \mu \mathrm{~F}$	600 V	MDC	7 p
100pF	125 V	P.S.	5p	$0.01{ }^{4} \mathrm{~F}$	1.000 V	MDC	9 p
100 pF	soov	S/M	7-p	$0015 \mu \mathrm{~F}$	160 V	Poly.	3 p
100 pF	500 V	Cer.	5p	$0.015 \mu \mathrm{~F}$	400 V	Poly.	3 p
120 p F	500 V	S/M	$7 \frac{1}{3} \mathrm{p}$	$0.02 \mu \mathrm{~F}$	100 V	Mylar	p
${ }_{150}{ }^{\text {P }}$ F	$125 \checkmark$	P.S.	5p	$0.022 \mu \mathrm{~F}$	18 V	Disc	5 p
150 p F	500 V	S/M	$7 \frac{1}{\text { p }}$	$0.022 \mu \mathrm{~F}$	250 V	M.F.	3 p
150 pF	500 V	Cer	5p	$0022 \mu \mathrm{~F}$	400 V	Poly	3 p
180 pF	500 V	5/M	71p	$0.022 \mu \mathrm{~F}$	600 V	MDC	1p
200 pF	500 V	S/M	$7 \frac{1}{2} p$	$0.022 \mu \mathrm{~F}$	1.000 V	MDC	P
220 pF	125 V	P.S.	5 p	$0.033 \mu \mathrm{~F}$	250 V	M.F	4 p
220 pF	500 V	Cer	5p	$0.033 \mu \mathrm{~F}$	400 V	Poly.	4 p
250pF	500 V	S/M	8 p	$0.047 \mu \mathrm{~F}$	12 V	Disc	6 D
270 pF	500 V	Cer	5 p	$0.047 \mu \mathrm{~F}$	160 V	Poly	3 p
300pF	500 V	5/M	8p	$0.047 \mu \mathrm{~F}$	250 V	M.F.	3 p
330 pF	125 V	P. 5.	5p	$0.047 \mu \mathrm{~F}$	400 V	Poly.	4 p
330 pF	500 V	S/M	8 p	$0047 \mu \mathrm{~F}$	600 V	MDC	${ }_{8 p}$
390 pF	500 V	S/M	8 p	0.047 $\mu \mathrm{F}$	1,000V	MDC	10 D
470 pF	125 V	P. S.	5 p	$0.1 \mu \mathrm{~F}$	30 V	Disc	6 p
470pF	750 V	Dise	5p	$0.1 \mu \mathrm{~F}$	250 V	M.F.	4p
500 pF	500 V	S/M	8 p	$01 \mu \mathrm{~F}$	400 V	Poly	5 p
560 pF	500 V	S/M	8 p	$0.1 \mu \mathrm{~F}$	600 V	MDC	10 D
$680 \mathrm{p} F$	125 V	P.S.	${ }^{6 p}$	$0.1 \mu \mathrm{~F}$	1.000 V	MDC	13 p
680 pF	500 V	S/M	$8^{\text {p }}$	$0.15 \mu \mathrm{~F}$	250 V	M.F.	5p
820 pF	$500 \vee$	S/M	8 p	$0.22 \mu \mathrm{~F}$	160 V	Poly	6 p
$001 \mu \mathrm{~F}$	100 V	Mylar	${ }^{1}$	$0.22 \mu \mathrm{~F}$	250 V	M.F.	5 p
. $01{ }_{\mu} \mathrm{F}$	125 V	P. S .	${ }^{6 p}$	$0.22 \mu \mathrm{~F}$	400 V	Foil	10 D
$001 / 1 \mathrm{~F}$	400 V	Poly	3p	$0.22 \mu \mathrm{~F}$	1,000V	MDC	15p
. $01 \mu \mathrm{~F}$	500 V	S/M	10 p	$0.33 \mu \mathrm{~F}$	250 V	M.F.	${ }_{8}$
$001 \mu \mathrm{~F}$	500 V	Cer	5 p	$0.47 \mu \mathrm{~F}$	250 V	Foil	8 D
. $01 \mu \mathrm{~F}$	1.000 V	MDC	6p	$0.47 \mu \mathrm{~F}$	400 V	Foil	15 p
. $0015 \mu \mathrm{~F}$	400 V	Poly	3p	$0.47 \mu \mathrm{~F}$	1.000 V	MDC	20 D
. $0015 \mu \mathrm{~F}$	500 V	S/M	10 p	$10^{\prime 2} \mathrm{~F}$	250 V	M.F.	$15 p$
. $0015 \mu \mathrm{~F}$	500 V	Cer	5p				
$0018 \mu \mathrm{~F}$	500 V	S/M	10p	Note S/M = silver mica 1% col. P.S. = polystyrene $2 \frac{1}{3} \%$ tol. MDC-a,c. rating $=300 \mathrm{~V}$. M.F. = Mullard min. foil. Cer. $=$ ceramic.			
.002 $\mu \mathrm{F}$	100 V	Mylar	3 p				
. $002 \mu \mathrm{~F}$	500 V		$5 p$				
.0022 $\mu \mathrm{F}$	125 V	P.S.	6 p				
. $0022 \mu \mathrm{~F}$	soov	S/M	10 p				
$0.0022 \mu \mathrm{~F}$	$1,000 \mathrm{~V}$	MDC	6 p				

CAPACITORS

CAPA	CITOR	RS		0.0027μ	500 V	C	5 p
$2 \cdot 2 \mathrm{FF}$	500 V	5/M	71p	$0.0033 \mu \mathrm{~F}$	125 V	P.S.	$6 p$
3.3 pF	soov	S/M	$7 \frac{1}{2} \mathrm{p}$	$0.0033 \mu \mathrm{~F}$	500 V	Poly.	6 p
5p F	500 V	S/M	$7 \frac{1}{51}$	$0.0033 / \mathrm{F}$	1.000 V .	MDC	6 p
10 pF	125 V	P.S.	${ }_{5 p}$	$0.0036 \mu \mathrm{~F}$	500 V	S/M	15p
$10 \mathrm{p}{ }^{\text {F }}$	500 V	S/M	719	$00047 \mu \mathrm{~F}$	25 V	P.S.	9 p
15 p F	125 V	P.S.	${ }_{5 p}$	$0.0047 / 4 \mathrm{~F}$	500 V	Poly	${ }_{6 p}$
15 pF	500V	Cer	4 p	$0.0047 \mu \mathrm{~F}$	500 V	S/M	20p
18 pF	500 V	5/M		$0.0047 /{ }^{\text {F }}$	1.000 V	MDC	60
22 pF	125 V	P. S.	${ }^{5 p}$	$0.005 \mu \mathrm{~F}$	100 V	Mylar	3 p
22pF	500 V	S/M	71 p	$0.005 \mu \mathrm{~F}$	500 V		5p
25 pF	500 V	S/M	$7 \frac{1}{1}$	$0.0068 \mu \mathrm{~F}$	125 V	P.S.	10ip
27 pF	500 V	Cer.	4 p	$0.0068 \mu \mathrm{~F}$	500 V	S/M	30p
33pF	125 V	P.S.	5 p	$0.0068 \mu \mathrm{~F}$	500 V	Poly.	6p
33 pF	$500 \vee$	S/M	${ }^{7}$ P	$0.0082 \mu \mathrm{~F}$	125 V	P.S	101p
39pF	500 V	S/M	$71 p$	$0.0082 \mu \mathrm{~F}$	500 V	S/M	30 p
47pF	125 V	P.S.	${ }_{5 p}$	$0.01 / 2 \mathrm{~F}$	12 V	Disc	4 p
47pF	500 V	Cer.	4 p	$0.01 \mu \mathrm{~F}$	125 V	P.S.	$10 \frac{1}{8}$
50pF	500 V	S/M	$7{ }^{1}$	$0.01 \mu \mathrm{~F}$	160 V	Poiy.	4 p
S6pF	500 V	S/M	7ip	$0.01 \mu \mathrm{~F}$	250 V	M.F.	3 p
68pF	125 V	P. S.	5 p	$0.01 \mu \mathrm{~F}$	400 V	Poly.	3 p
68pF	500 V	S/M	$71 p$	$0.01 \mu \mathrm{~F}$	500 V	Cer.	5 p
75pF	500 V	S/M	$7 \frac{1}{\text { P }}$ -	$0.01 \mu \mathrm{~F}$	500 V	S/M	30p
82 pF	500 V	S/M	$7 \frac{1}{3} p$	$0.01 \mu \mathrm{~F}$	600 V	MDC	7 p
100 pF	125 V	P. S.	5 p	$0.01{ }^{4} \mathrm{~F}$	1.000 V	MDC	9
100pF	soov	S/M	${ }^{\text {7 }}$ ¢ p	$0015 \mu \mathrm{~F}$	160 V	Poly.	3 p
100 pF	500 V	Cer	5 p	$0.015 \mu \mathrm{~F}$	400 V	Poly.	3 p
120 pF	500 V	S/M	$7 \frac{1}{3} \mathrm{P}$	$0.02 \mu \mathrm{~F}$	100 V	Mylar	3 p
150 pF	125 V	P.S.	5 p	$0.022 \mu \mathrm{~F}$	18 V	Disc	5p
150 pF	500 V	S/M	$7 \frac{1}{2}$	$0.022 \mu \mathrm{~F}$	250 V	M.F.	3 p
150 pF	500 V	Cer.	5 p	$0022 \mu \mathrm{~F}$	400 V	Poly.	3 p
180 pF	500 V	5/M	715	$0.022 \mu \mathrm{~F}$	600 V	MDC	的
200 pF	500 V	S/M	$7 \frac{1}{3} p$	$0.022 \mu \mathrm{~F}$	1.000 V	MDC	9 p
220pF	125 V	P.S.	5 sp	$0.033 \mu \mathrm{~F}$	250 V	M.F.	4 p
220pF	$500 \vee$	Cer.	5 p	$0.033 \mu \mathrm{~F}$	400 V	Poly.	4 p
250pF	500 V	S/M	8 p	$0.047 \mu \mathrm{~F}$	12 V	Disc	6 p
270 pF	500 V	Cer	5 p	$0.047 \mu \mathrm{~F}$	160 V	Poly.	3 p
300 pF	500 V	5/M	8 p	$0.047 \mu \mathrm{~F}$	250 V	M.F.	3 p
330 pF	125 V	P. 5.	5 p	$0.047 \mu \mathrm{~F}$	400 V	Poly.	4 p
330pF	500 V	S/M	8 p	$0047 \mu \mathrm{~F}$	600 V	MDC	8 p
390 pF	500 V	S/M	8 p	$0.047 \mu \mathrm{~F}$	1,000V	MDC	10 p
470pF	$125 \vee$	PS.	5 p	$0.1 \mu \mathrm{~F}$	30 V	Disc	6p
470pF	750 V	Dise	5 p	$0.1 \mu \mathrm{~F}$	250 V	M.F.	4p
500 pF	500 V	S/M	8 p	0 IMF	400 V	Poly.	5p
560pF	500 V	S/M	8 p	$0.1 \mu \mathrm{~F}$	600 V	MDC	10 p
680pF	125 V	P. S.	${ }_{6} \mathrm{p}$	$0.1 \mu \mathrm{~F}$	1.000 V	MDC	13 p
680pF	500 V	S/M	8 p	$0.15 \mu \mathrm{~F}$	250 V	M.F.	3p
820.pF	500 V	S/M	8 p	$0.22 \mu \mathrm{~F}$	160 V	Poly	6 p
$0.001 \mu \mathrm{~F}$	100 V	Mylar	3 p	$0.22 \mu \mathrm{~F}$	250 V	M.F.	5 p
$0.001 \mu \mathrm{~F}$	25 V	P.	${ }^{6 p}$	$0.22 \mu \mathrm{~F}$	400 V	Foil	10 p
$0.001 / 1 \mathrm{~F}$	400 V	Poly	${ }^{3 p}$	$0.22 \mu \mathrm{~F}$	1.000 V	MDC	15p
$0.001 \mu \mathrm{~F}$	500 V	S/M	10 p	$0.33 \mu \mathrm{~F}$	250 V	M.F.	8 p
$0.001 \mu \mathrm{~F}$	500 V	Cer	5p	$0.47 \mu \mathrm{~F}$	250 V	Foil	8 p
$0.001 \mu \mathrm{~F}$	1.000 V	MDC	6 \%	$0.47 \mu \mathrm{~F}$	400 V	Foil	5p
$0.0015 \mu \mathrm{~F}$	400 V	Poly	3 p	$0.47 \mu \mathrm{~F}$	1,000V	MDC	20p
$0.0015 \mu \mathrm{~F}$	500 V	S/M	10p	$10 \mu \mathrm{~F}$	250 V	M.F	$15 p$
$0.0015 \mu \mathrm{~F}$	500 V	Cer.	5p				
$0.0018 \mu \mathrm{~F}$	500 V	S/M	10p	Note			
$0.002 \mu \mathrm{~F}$	100 V	Mylar	${ }^{3 p}$	S/M $=$ sil	er mic	1\% 201	
$0.002 \mu \mathrm{~F}$	500 V		5 p	P.S. = pol	lystyren	($2 \frac{1}{\%}$	
$0.0022 \mu \mathrm{~F}$	125 V	P.S.	$6{ }^{60}$	MDC	c. ratin	,	
$0.0022 \mu \mathrm{~F}$	soov	S/M	10p	M.F. $=$ M	llard m	min. foil.	
$0.0022 \mu \mathrm{~F}$	1,000V	MDC	6 p	Cer. $=\mathbf{c}$	eramic.		

$\begin{array}{llll}0.0027 \mu \mathrm{~F} & 500 V & 5 / \mathrm{M} & 15 \mathrm{p} \\ 0.003 \mu \mathrm{~F} & 500 V & \mathrm{Cer} & 5 \mathrm{p} \\ 0.0033 \mu \mathrm{~F} & 125 \mathrm{~V} & \mathrm{PS} & 6 \mathrm{p}\end{array}$ $0.0033 \mu \mathrm{~F}$ $0.0033 \mu \mathrm{~F}$
$0.0036 \mu \mathrm{~F}$ $0004 \mu \mathrm{~F}$
$0.0047 \mu \mathrm{~F}$
$0.0047 \mu \mathrm{~F}$ $0.0047 \mu \mathrm{~F}$
$0.0047 \mu \mathrm{~F}$
0.005 F $0.005 \mu \mathrm{~F}$
$0.0068 \mu \mathrm{~F}$ $0.0068 \mu \mathrm{~F}$
$0.0068 \mu \mathrm{~F}$ 0.0068
0.0082μ
$0.0082 \mu \mathrm{~F}$
$0.01 \mu \mathrm{~F}$
$0.01 \mu \mathrm{~F}$
$0.01 \mu \mathrm{~F}$
$0.1 \mu \mathrm{~F}$
$0.01 \mu \mathrm{~F}$

2.2 FF	500 V	5/M	718	$0.0033 \mu \mathrm{~F}$	125 V	P.S.	6 p
3.3 pF	soov	SM	$7 \frac{1}{1} p$	$0.0033 \mu \mathrm{~F}$	500 V	Poly	${ }^{6 p}$
5 p F	500 V	S/M	$7 \frac{1}{5} \mathrm{p}$	$0.0033 / 4 \mathrm{~F}$	1.000V	MD	${ }^{60}$
10 pF	125 V	P.S.	5	$0.0036 \mu \mathrm{~F}$	500 V	S/M	$15 p$
10 p F	500 V	S/M	719	$00047 \mu \mathrm{~F}$	25 V	P.S.	9 p
15 pF	25 V	P.S.	$5 p$	$0 \cdot 0047 \mu \mathrm{~F}$	500 V	Poly.	6 p
15 p F	500 V	Cer	${ }^{4}$	$0.0047 \mu \mathrm{~F}$	500 V	S/M	20p
18 pF	500 V	5/M	715	$0.0047 \mu \mathrm{~F}$	1.000 V	MDC	$6 p$
22 pF	125 V	P.S.	5p	$0.005 \mu \mathrm{~F}$	100 V	Mylar	3p
22pF	500 V	S/M	71 p	$0.005 \mu \mathrm{~F}$	500 V	Cer	5p
$25 p \mathrm{~F}$	500 V	S/M	$7 \frac{1}{1} p$	$0.0068 \mu \mathrm{~F}$	125 V	P.S.	10! ${ }^{\text {P }}$
27pF	500 V	Cer.	4 p	$0.0068 \mu \mathrm{~F}$	500 V	S/M	30 p
33pF	125 V	P.S.	5 p	$0.0068 \mu \mathrm{~F}$	500 V	Poly	6p
33 pF	500 V	S/M	$7 \frac{1}{2}$	$0.0082 \mu \mathrm{~F}$	125 V	P.S	101p
39pF	500 V	S/M	$71 p$	$0.0082 \mu \mathrm{~F}$	500 V	S/M	30 p
47pF	125 V	P.S.	5 p	$0.01 \mu \mathrm{~F}$	12 V	Dise	${ }^{4} \mathrm{p}$
47pF	500 V	Cer	4 p	$0.01 \mu \mathrm{~F}$	125 V	P.S.	$10 \frac{1}{2}$
50 pF	500 V	S/M	$7{ }^{7}$	$0.01 \mu \mathrm{~F}$	160 V	Poiy.	4 p
S6pF	500 V	S/M	$7 \frac{1}{\frac{1}{5} p}$	$0.01 \mu \mathrm{~F}$	250 V	M.F.	3 p
68pF	125 V	P. S.	5 p	$0.01 \mu \mathrm{~F}$	400 V	Poly.	3p
68pF	500 V	S/M	$71 p$	$0.01 \mu \mathrm{~F}$	500 V	Cer.	5 p
75 pF	500 V	S/M	7 7p	$0.01 \mu \mathrm{~F}$	500 V	S/M	30
82 pF	$500 \vee$	S/M	$7 \frac{1}{3} p$	$0.01 \mu \mathrm{~F}$	600 V	MDC	$7 p$
100pF	125 V	P.S.	5p	$0.01 \mu \mathrm{~F}$	1.000 V	MDC	9 p
100pF	soov	S/M	$7{ }^{1}$	$0015 \mu \mathrm{~F}$	160 V	Poly.	3 p
100 pF	500 V	Cer	5p	$0.015 \mu \mathrm{~F}$	400 V	Poly.	3 p
120 pF	500 V	S/M	$7 \frac{1}{3}$	$0.02 \mu \mathrm{~F}$	100 V	Mylar	${ }^{3} \mathrm{p}$
150 pF	125 V	P.S.	5 p	$0.022 \mu \mathrm{~F}$	18 V	Disc	5p
150 pF	500 V	S/M	$7 \frac{1}{\text { P }}$	$0.022 \mu \mathrm{~F}$	250 V	M.F.	3p
150 pF	500 V	Cer.	5 p	$0022 \mu \mathrm{~F}$	400 V	Poly.	3 p
180 pF	500 V	5/M	$71 p$	$0.022 \mu \mathrm{~F}$	600 V	MDC	吅
200pF	500 V	S/M	$7 \frac{1}{5} p$	$0.022 \mu \mathrm{~F}$	1.000 V	MDC	9 p
220pF	125 V	P.S.	5	$0.033 \mu \mathrm{~F}$	250 V	M.F.	4p
220pF	500 V	Cer	5 p	$0.033 \mu \mathrm{~F}$	400 V	Poly.	4 p
250pF	500 V	S/M	8 p	$0.047 \mu \mathrm{~F}$	12 V	Disc	6 D
270 pF	500 V	Cer	5 p	$0.047 \mu \mathrm{~F}$	160 V	Poly	3 p
300pF	500 V	5/M	8 p	$0.047 \mu \mathrm{~F}$	250 V	M.F.	3 p
330 pF	125 V	P. 5.	5 p	$0.047 \mu \mathrm{~F}$	400 V	Poly.	4 p
330pF	500 V	S/M	8 p	$0047 \mu \mathrm{~F}$	600 V	MDC	8p
390p F	500 V	S/M	8 p	$0.047 \mu \mathrm{~F}$	1,000 V	MDC	10 p
470p F	$125 \vee$	PS.	5 p	$0.1 \mu \mathrm{~F}$	30 V	Disc	${ }_{6 p}$
470pF	750 V	Disc	5 p	$0.1 \mu \mathrm{~F}$	250 V	M.F.	4p
500 pF	500 V	S/M	8 p	0 I $\mu \mathrm{F}$	400 V	Poly.	5 p
560 pF	500 V	S/M	8 p	$0.1 \mu \mathrm{~F}$	600 V	MDC	10 p
680p F	125 V	P.S.	6 p	$0.1 \mu \mathrm{~F}$	1.000 V	MDC	13p
680pF	500 V	S/M	8 p	$0.15 \mu \mathrm{~F}$	250 V	M.F.	3p
820 pF	s00V	S/M	8 p	$0.22 \mu \mathrm{~F}$	160 V	Poly	6 p
$0.001 \mu \mathrm{~F}$	100 V	Mylar	3 p	$0.22 \mu \mathrm{~F}$	250 V	M.F.	5p
-001 ${ }^{4} \mathrm{~F}$	125 V	P.	6 p	$0.22 \mu \mathrm{~F}$	400 V	Foil	10 p
. $001 / 1 / \mathrm{F}$	400 V	Poly	${ }^{3} \mathrm{p}$	$0.22 \mu \mathrm{~F}$	1.000 V	MDC	15p
. $001 \mu \mathrm{~F}$	500 V	S/M	10p	$0.33 \mu \mathrm{~F}$	$250 \vee$	M.F.	8 p
. $001 \mu \mathrm{~F}$	500 V	Cer	5p	$0.47 \mu \mathrm{~F}$	250 V	Foil	${ }^{8 p}$
. $001 \mu \mathrm{~F}$	1.000 V	MDC	6 p	$0.47 \mu \mathrm{~F}$	400 V	Foil	5p
0.0015 $\mu \mathrm{F}$	400 V	Poly	3 p	$0.47 \mu \mathrm{~F}$	1,000V	MDC	20 p
$0.0015 \mu \mathrm{~F}$	500 V	S/M	10 p	$10 \mu \mathrm{~F}$	250 V	M. F	15p
$0.0015 \mu \mathrm{~F}$	500 V	Cer	5 p				
$0.0018 \mu \mathrm{~F}$	500 V	S/M	10p	Note S/M=silver mica 1% col. PS. = polystyrene $2 \frac{1}{2} \%$ tol. MDC-a.c. rating $=300 \mathrm{~V}$. M.F. = Mullard min. foil. Cer. =ceramic.			
-002 $\mu \mathrm{F}$	loov	Mylar	3 p				
. $002 \mu \mathrm{~F}$	500 V	Cer	${ }^{5 p}$				
.0022 F	125 V	P.S.	$6 p$				
$0.0022 \mu \mathrm{~F}$	soov	S/M	10 p				
$0.0022 \mu \mathrm{~F}$	$1,000 \mathrm{~V}$	MDC	6 p				

$500 V$	Ser	$15 p$
125 V	P.S.	$6 p$
500 p	Poly.	$6 p$
1.000 V	MDM	$6 p$
500 V	5 M	$15 p$

$6 p$
60
60

PLUGS

Car aerial
Co-axial
D.IN 2 pin (speaker)
DIN. 3 pir
D.IN 4 pin
D.IN. 5 pin, 180
D.IN 5 pin, 180
D.IN 5 pin. 240

DIN 5 Pin
lack, $2 \frac{1}{2} \mathrm{~mm}$ unscreened
Jack, $2 \frac{1}{3} \mathrm{~mm}$ screened Jack. $3 \frac{1}{2} \mathrm{~mm}$ unscreened Jack, $3 \frac{5}{2} \mathrm{~mm}$ screened Jack. $\frac{1}{2 n}$ unsereened Jack. stereo. unscreene Jack, stereo, screened Phono, plastic top Phono. plated meta Wander, red or black Banana 4 mm . red or black
LINE SOCKETS

Car aeria

D.I.N. 2 pin (speaker)
D.I.N. 3 pin
D.I.N 5 pin, 180
D. N. 5 pin. 24
jack, $3 \frac{1}{2} \mathrm{~mm}$ mated
ack, stereo, screened
Phono. plated metal
MAIL ORDERS: C.W.O. only. Please include
$10 p$ P. \& P. (Air mail extra). S.A.E. with all
enquiries please.

Telephone 01-692 4412

If you can use a soldering iron and follow simple instructions，you can assemble any of these high performance products in a fewhours．And save a lot of money．

Heathkit have the world＇s widest range of top quality electronic products designed specifically for home assembly

Of which we show just 4
above．
The ADllo is our new stereo cassette recorder．It gives

you cassette convenience， reel
performance and Heathkit quality．Designed to complement various other Heathkit Hi Fi products，it costs only $£ 74 \cdot 80$ † $£ 8.45$ for twin matched stereo mikes．
Another new product，the
Tiger transistor radio kit

エモEATエエエ゙イT

costs $£ 10 \cdot 90$ ．It gives long life from every large PP9 battery，weighs just 3 ibs，and gives really good reception on Long \＆Medium wavebands．

And，as you can see，it looks pretty good too．
Costing just $£ 18.45$ complete with speaker and aerial，the CRl car radio gives unsurpassed reception．A 6 transistor， 2 diode circuit gives 4 watts output，pre－ assembled and aligned tuning unit makes assembly easy，and push－button controls give instant selection．
The AAl4 30 watt stereo amplifier is an established
product，proven in use by thousands of satisfied customers．Featuring a 17 transistor， 6 diode circuit it costs $£ 30 \cdot 00$ less cabinet．
These products and all the others in the Heathkit range are easily assembled by anyone who can use a soldering iron and follow our superbly clear step－by－step instructions． Furthermore，in the unlikely event that you get stuck，we guarantee to help you out．
Find out more．Send for our free 1972 catalogue Now．

You can make it if you try．
Please send me the FREE New 1972 Heathkit catalogue．PWO5／72
Name
Address
HEATH（Gloucester）Litd．，Gloucester GL2 6EE

VOL. 8
 No. 5

Editor F. E. BENNETT Assistant Editor M. A. COLWELL Editorial D. BARRINGTON G. GODBOLD S. R. LEWIS b.Sc. (Eng.)

Art Editor J. D. POUNTNEY Technical Illustrators J. A. HADLEY R. J. GOODMAN
Advertisement Manager D. W. B. TILLEARD

ESSENTAL SERVICE

WIH commendable boldness and confidence in the future growth of telecommunications for domestic purposes, the Post Office is currently involved in the installation of a "communication main" system in the new city of Milton Keynes, now arising in Buckinghamshire. Every house in the new city will be linked to this communication system. The cables will, so far as possible, be laid in a communal trench, with the other essential services, water, gas, electricity, and drainage.

A standard telephone pair forms part of this " main ". This cable is accompanied throughout, right up to every front door, by a high performance coaxial cable. Besides being capable of carrying radio and television signals, this widebrand coaxial cable provides for the transmission of two-way signals such as could be employed to operate viewphones and computer data terminals, and permits the carrying out of other useful functions, like the remote reading of gas and electricity supply meters.

What happens in Milton Keynes may become the pattern for the future throughout the country. At any rate, this pioneer installation is worth noting and musing upon.

The advancement of computerised data techniques makes it fairly safe to conjecture that the day will come when every home will be able to have access to a wide range of data services, via sophisticated readout devices. But in the meanwhile, it would seem that further technical improvements are necessary, mainly to overcome the shortcomings of human operators, to make these advanced amenities fully acceptable to the general user.

At present, many people have a rather jaundiced view of computers, usually based upon their experience of incorrect statements of account issued by public supply authorities and other business concerns. The prevailing public mistrust of computerisation (however falsely based) does not provide the ideal climate for introducing more extensive and more complex computerised data systems; especially if these are to be linked directly with our homes to perform (above all!) such functions as the remote reading of domestic gas and electricity meters.

Elevation of the "communication main" to an essential domestic service status would certainly provide a great fillip to the electronics industry. It could herald another technological explosion making direct impact upon the domestic or "consumer" section. We don't doubt that fertile minds will seize eagerly the opportunity it promises for further imaginative and useful exploitation of electronics.

THIS MONTH

CONSTRUCTIONAL PROJECTS
ULTRASONIC TRANSMITTER- RECEIVER 374
SOLID STATE SNAP 392
FUZZ BOX 396
P.E. GEMINI STEREO TUNER 400
SPECIAL SERIES
ALPHA-NUMERIC DISPLAYS-3383
GENERAL FEATURES
SMALL POWER TRANSFORMERS 404
INGENUITY UNLIMITED 417
NEWS AND COMMENT
EDITORIAL 373
SPACEWATCH 382
BOOK REVIEWS 388
ON THE FRINGE 391
ELECTRONORAMA 398
NEW BRIEFS 399
INDUSTRY NOTEBOOK 413
MARKET PLACE 414
PATENTS REVIEW 418
READOUT 421

SPECIAL DATA SHEET

SEMICONDUCTOR LEAD-OUT IDENTICHART

[^1]

Lltrasonic waves of the same frequency are emitted through the small metal grille in the face of the transducer. If these waves fall on another transcucer, a 40 kHz electrical signal will be generated across the terminals of the second transducer. This signal may be amplified, rectified and used to operate a relay. The relay contacts can then be used to actuate any cother type of device.

THE TRANSMITTER
The circuit of a simple transmitter which will generate an ultrasonic beam is shown in Fig. 1. It consists of a simple astable multivibrator which employs two low current $n p n$ silicon transistors.

The preset potentiometer, VR1, can be used to adjust the frequency of oscillation of the circuit so that it matches the resonant frequency of the transducer; maximum power output is then obtained from the unit. Details of the adjustment of this potentiometer will be discussed later.

The circuit shown applies a rectangular waveform of about 8.5 V amplitude to the transducer. This is quite suitable for most applications, but the use of a higher surply voltage with suitable transistors in the same circuit will provide a greater power output

Fig. 1. Circuit diagram of the ultrasonic transmitter. The values of the components are those for a 40 kHz transducer

Fig. 2. Circuit diagram of the ultrasonic receiver. The values of the components marked with an asterisk can be altered if a reduced range is required
and therefore an increased range of operation. The maximum permissible voltage which can be applied to the " 808 " transducers is 20 V r.m.s. with continuous operation or 30 V r.m.s. under pulsed conditions.
The prototype took a current of 3.7 mA from a 9 V supply, but with an 18 V supply the current was 7.5 mA .

THE RECEIVER

The circuit of the receiver used in the prototype equipment is shown in Fig. 2. It is not necessary to employ a frequency selective amplifier, since the transducer itself will respond only to those ultrasonic frequencies which are near to its resonant frequency. The receiver is quite insensitive to loud audible noise.

The transducer converts the incoming energy into a signal which is amplified by transistors TR3 and TR4 in the first amplifier stage. The output from this circuit is coupled through C7 to a second similar amplifier stage containing TR5 and TR6. The output from TR6 is an alternating signal of the same frequency as the incoming ultrasonic waves. This signal is applied to the base of TR7 through C11.

Positive going parts of the signal drive TR7 into conduction and cause a current to pass through the reed relay coil in the collector circuit of this transistor. No bias is applied to TR7; the collector current of this transistor is therefore normally very small and it will be unaffected by negative going pulses applied to its base.
The circuit of TR7 thus acts as a rectifier or demodulator of the amplified 40 kHz signal. When ultrasonic energy falls on the receiver transducer, the rectified current passes through the relay coil and TR7. If the intensity of the ultrasonic waves exceeds a certain limiting value, this current is great enough to cause the relay to close. The value of the limiting intensity is set by the sensitivity of the transducer, the gain of the two amplifier stages, the current gain of TR7 and the relay sensitivity.

FEEDBACK RESISTORS

The gain of each amplifier stage is determined by the current gain of the two transistors used and by the value of the feedback resistor (R 11 or R 20). If a value of 82 kilohms is employed for each of these feedback resistors, the amplification obtained with high gain transistors will approach the maximum which can be obtained with stability.

Lower values, such as 27 kilohms, can be used if the transmitter and receiver are to be used with a maximum separation of some 10 to 15 feet. Indeed, if the units are to be placed fairly close together, a lower value of feedback resistor may be necessary to prevent the operation of the relay by stray scattered radiation from the transmitter.

When no ultrasonic energy was incident upon the transducer in the receiver, the first two stages of amplification (TR3 to TR6) consumed a total of 2.4 mA , whilst the current in the output transistor was very small. However, if the receiver transducer was placed very close to the transmitter transducer, the first two amplifier stages passed a total of 3.7 mA , whilst the total receiver current increased to about 10.5 mA .

COMPONENTS

Five $n p n$ and two $p n p$ small signal silicon transistors are required. All of the transistors used in the receiver should have a fairly high current gain (at least about 50 , but preferably over 100).
The npn transistors used in the prototype at first were the medium gain type 2 N 929 , but many other types (such as those shown in the components list) are equally suitable. Similarly two medium gain pnp transistors type V205 were employed in the prototype, but other possible type numbers are given in the components list.
The medium gain transistors were subsequently replaced with transistors of a far higher gain (the $n p n$ type 2 N 2484 and the $p n p$ type 2 N 2605) in order to carry out experiments on the maximum reliable
range of operation. The circuit worked well with both sets of transistors.
The two capacitors C1 and C2 in the transmitter may be mica or polystyrene types, but it is best to avoid the uses of ceramic types intended for decoupling applications in this position, since they may have a value of 50%, or more above their marked value.

THE REED RELAY

The reed relay used in the prototype is fully encapsulated in a moulded outer case for use in the temperature range 0 to $70^{\circ} \mathrm{C}$. The contacts close with 3.5 V or less across the coil, so one may take 4.5 V as being the minimum operating voltage in order to allow for tolerances or a low battery voltage.

It was found that the contacts of the CPRI/J closed at a current of 2.8 mA and re-opened when the current fell to 1.8 mA ; this difference prevents the relay "chattering" when minor fluctuations take place in the ultrasonic beam intensity.

The CPRI/J has one pair of normally open contacts which can switch up to 10 W of power to a device which does not require more than 200 V nor more than 0.5 A .

It should be noted that tungsten filament lamps have a much lower resistance when cold than when hot and therefore a relatively large current flows when they are first switched on. Thus relay contacts rated at 0.5 A maximum should not be used to switch on a lamp rated at more than about 0.05 to 0.1 A of normal running current unless a suitable thermistor is placed in series with the lamp to reduce the current surge at switch-on. Care should also be taken to suppress transient voltages or currents if the load is a reactive one. since the relay contacts may be damaged.

HIGHER POWER CONTROL

If it is necessary to control more power than the miniature reed relay in the receiver is capable of switching, it is only necessary to use the contacts of the reed relay to control the current to a larger relay in an auxiliary circuit. (It would also be possible to re-design the output stage of the receiver so that a suitable transistor is used to control a larger relay, but in this case more current would be taken from the receiver battery.)

CONSTRUCTION

The transmitter was constructed on a small piece of Veroboard as shown in Fig. 3.

In the case of the receiver board, see Fig. 4, it is obviously necessary to keep the input circuit well away from the output section, hence the layout follows the theoretical circuit fairly closely. The row of cuts down the centre of the board is to provide some isolation between the input and output stages.

It is not essential to place each of the units in metal boxes but some form of box will normally be used for convenience.

The transmitter was placed in a diecast box together with a large battery. This enables the transmitter to be used for long periods without frequent replacement of the battery. If the transmitter is to be used in remote control applications where it will only be on for a few minutes a day, then a small battery (say a PP3) and hence a smaller box (e.g. a plastic torch case) will be more convenient.

The transmitter and receiver boards with the transducers before installation in their cases

STRAY PICKUP BY RECEIVER

If the receiver is not placed in a metal enclosure it has been found that about 0.5 mA will pass through the relay even when the transmitter is not near. This is due to stray pickup by the high gain receiver circuit. Thus it is advisable to use a metal case with the negative line of the battery connected to the case. The quiescent current in the relay should then be very small. Incidentally the prototype receiver became unstable when the transducer was disconnected from the input even when a metal enclosure was used.

A flexible copper strip was used to hold the transducers in place. The holes in the lids of both units were made slightly smaller than the transducer so that some protection is given. Reasonable care should be taken when soldering to the transducers. It is important that the grounded pin of the transducer (shown by the adjacent metal tab) should be connected to the negative supply line; this is doubly important if a metal box is used as the transducer may be shorted out.

A small piece of foam rubber on the battery was found to be enough to hold the battery firmly when the lid is screwed down.

TESTING AND ADJUSTMENT

When the two units have been assembled, the system should be tested by placing the transducers in the two units face to face and close together. The relay in the receiver should close when both units are switched on. If it does not do so, the potentiometer VRI should be adjusted (fairly coarsely) until the relay closes. (An ohm-meter may be connected to the relay contacts to ascertain when they close.)

If the relay still will not operate, some tests of the following type may be carried out in order to localise the fault. The transmitter unit may be tested by disconnecting the output of the circuit from the transducer and feeding this output to an a.c. voltmeter (or, preferably, an oscilloscope).

If it is found that the transmitter circuit is working, the negative power supply lines of the two units may be joined and C11 disconnected from TR6. If the output from the collector of TR2 is fed to C1I
(and hence to TR7), the relay should close when both units are switched on; in this case the transmitter circuit and the output circuit of the receiver are satisfactory.

With the negative power supply lines still connected, the output from TR2 may be fed through a $0.01 \mu \mathrm{~F}$ capacitor to the junction of C7 and R16; if the relay closes, the circuits of TR 5. TR6 and TR 7 are probably satisfactory.

If the whole receiver is functioning, the relay will close if the in put wire is held between the fingers.

TRANSMITTER ADJUSTMENTS

The adjustment of the potentiometer in the transmitter is carried out more easily if a 0 to 10 mA meter is connected in series with the relay coil. The transmitter and receiver should be separated and/or the transducers placed at an angle to one another so that a reading of 1 to 3 mA is obtained. The potentiometer should then be adjusted so that the meter reading increases.

If necessary the units should be separated further to keep the meter current at 1 to 3 mA and the potentiometer again adjusted for maximum sensitivity. Finally the transmitter should be switched off and then on again to check that the oscillator starts to function at the chosen potentiometer setting. If it does not do so, a small adjustment of the potentiometer should be made towards a lower resistance value.

OPERATING RANGE

When medium gain transistors were employed in the prototype and the value of the feedback resistors were both 82 kilohms, it was found that the maximum distance for reliable operation was some 15 feet in the open air. However, this distance was increased to some 45 feet in the open when using transistors of higher gain.

If the equipment is used in a room or in a corridor, it is found that the range of reliable operation is considerably increased. This is mainly accounted for by reflections of ultrasonic energy from the walls towards the receiver, but effects due to wind are normally avoided inside a building and this reduces random fluctuations of the current in the relay coil.

The maximum range of reliable operation inside a building may easily be double that in the open air, but much depends on the arrangement of the objects in the building and of the ability of the walls, etc. to reflect ultrasonic energy.

Still greater ranges may be obtained by applying a higher power supply voltage to the transmitter circuit provided that the transistors used in the transmitter are suitable. For example, the writer has found that an operating range of up to about 60 feet can be obtained in the open by using an 18 V transmitter supply with the Fig. 1 circuit and transistors of moderately high gain in the receiver.

SHORT RANGE OPERATION

The writer has found that the first amplifier stage (TR3 and TR4) of the receiver may be omitted if the distance between the two units is to be very small. In this case C7 is disconnected from the base circuit of TR5 and the non-earthy lead of the transducer is connected to the junction of R15, R16 and the base of TR5. The decoupling components C6 and R14 can then also be omitted.

Fig. 3. Layout of the components on the transmitter board

COMPONENTS . . .

ULTRASONIC TRANSMITTER
Resistors
R1 $4.7 \mathrm{k} \Omega$
R2 $27 \mathrm{k} \Omega$
R3 $4.7 \mathrm{k} \Omega$
R4 $27 \mathrm{k} \Omega$
R5 $2.2 \mathrm{k} \Omega$
All $\pm 10 \%, \frac{1}{4}$ watt carbon

Potentiometers
VR1 $10 \mathrm{k} \Omega$ miniature skeleton preset

Capacitors

C1, C2 470 pF silver mica or polystyrene

Transistors

TR1, TR2 2 N 929 or any similar npn high gain, low current type (e.g. BC108, BC148, BC184L, BFY77, 2N2484, ZTX108, ZTX109) (2 off)

Transducer

LS1 808-40 type 40 kHz transducer (Hall Electronics, 48 Avondale Rd., Leyton, London, E.17) or Gulton type 1404 (from LST Components Ltd., Coptfold Road, Brentwood, Essex)

Miscellaneous

S1 Single pole on/off switch 0.1 in matrix Veroboard $2 \frac{1}{4}$ in $\times 1 \frac{1}{2}$ in 9 volt battery
$4 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in $\times 2$ in diecast metal box

RECEIVER

Fig. 4. Layout of the components on the receiver board

COMPONENTS . . .

ULTRASONIC RECEIVER

\section*{Resistors
 | R6 | $82 \mathrm{k} \Omega$ |
| :---: | :--- |
| R7 | $18 \mathrm{k} \Omega$ |
| R8 | $1.5 \mathrm{k} \Omega$ |
| R9 | $1.2 \mathrm{k} \Omega$ |
| R10 | 82Ω |
| R11 | $82 \mathrm{k} \Omega$ |
| R12 | $1 \mathrm{k} \Omega$ |
| R13 | $3.9 \mathrm{k} \Omega$ |
| R14 | $1.8 \mathrm{k} \Omega$ |}

All $\pm 10 \%, \frac{1}{4} \mathrm{~W}$ carbon

Capacitors

C3 to C5 $1 \mu \mathrm{~F}$ polyester (3 off)
C6 $16 \mu \mathrm{~F}$, electrolytic 10 V
C7 to C11 $1 \mu \mathrm{~F}$ polyester (5 off)
C12 $16 \mu \mathrm{~F}$ electrolytic 10 V

Transistors
TR3, TR5 2 NG29 or similar (see TR1, TR2 in transmitter) (2 off)
TR4, TR6 V205 or any similar $p n p$ high gain, low current type (e.g. BC158, BC214L, 2N2605, 2N3798, 2N3964, 2N4062, ZTX501, ZTX530) (2 off)
TR7 BFY77 or similar high gain, low current npn type

Transducer

MIC1 $808-40$ type 40 kHz transducer

Miscellaneous

RLA Reed relay close current 2.8 mA at 3.5 V .
Type CPR1/J (Alma Components)
S2 Single pole on/off switch
0.1 in matrix Veroboard $4.8 \mathrm{in} \times 1.8 \mathrm{in}$ 9 volt battery
$6 \frac{3}{4}$ in $\times 4 \frac{3}{4}$ in $\times 2 \frac{5}{32}$ in diecast metal box

It was found that the maximum working range with such a simplified receiver is about 9 inches with medium gain transistors in the receiver and about 2 to 3 feet with high gain transistors.

If an 18 V transmitter power supply is used, the maximum range is increased to 4 to 5 feet with the simplified receiver. It is assumed that readers will normally wish to construct the full receiver circuit of Fig. 2, since it is far more versatile than the simplified version.

Ultrasonic waves are much more directional than waves of audible sound, since they have a shorter wavelength. It has been found that if a receiver with high gain transistors is employed, the relay will close when a transmitter is placed almost anywhere in the same small room even if the two transducers are not facing one another. This is due to the reflection of waves from the walls of the room. When used in the open air, the transmitter and receiver can be placed quite close together without the relay closing, provided that the transducers do not face one another (nor nearly face one another).

TYPES OF TRANSDUCER

The circuits described in this article can also be used with the 1405 type of transducer for 40 kHz operation. in which case standard phone plugs will be required as connectors for each transducer. However, the 808-40 transducer was chosen for the prototype, since it is smaller and of more recent design than the 1404 and has a somewhat greater sensitivity (about 6db) when used as a receiver. Thus the 1404 should be used only when a plug-in transducer is required.

If it is desired to work at a lower frequency, the type $808-25$ transducers may be used for 25 kHz operation. This type is similar to the 808-40, but the value of each of the capacitors in the transmitter circuit must be increased to about 820 pF so that the oscillator can operate at the correct frequency. No other circuit changes are required for 25 k Hz operation. The beam is not so directional as a 40 kHz beam.

Fig. 5. The $808-40$ transducer. (a) The metal tab indicates the grounded side of the transducer; (b) The acoustic response of the 808-40; (c) The electrical response of the 808-40

The acoustic response (i.e. sensitivity as a receiver) of the 808-40 is shown in Fig. 5b, whilst the electrical response (i.e. output power when used as a transmitter) is shown in Fig. 5c. It can be seen that bandwidths of the order of 1 kHz can be obtained.

APPLICATIONS

Ultrasonic systems can operate over greater distances than most photoelectronic equipment and they have the advantage that their operation is unaffected by smoke or by dirt collecting on the transducers. In addition ultrasonic beams can detect transparent objects.

Although the range of ultrasonic equipment is less than that of radio control systems, no radio transmitting licence is required and the associated circuits are very simple. In general the ultrasonic beam will be found to be more directional than a radio beam but not so directional as the light or infra-red beam used in photoelectronic equipment.

INTRUDER ALARM

Ultrasonic waves do not pass through people. If the beam from a transmitter is directed onto the receiver, the relay in the latter will close. However, when a person's body interrupts the beam, the relay will open and this can be used to sound an alarm.

This type of alarm has the same advantage as that of an infra-red alarm, namely that the intruder cannot sense the radiation from the transmitter. Such a system will give a warning if the trarsmitter or receiver is moved appreciably by the intruder, if either unit is switched off or if either battery is disconnected.
In a practical intruder alarm of this type, the transmitter and receiver may be fairly close together. For example, the system may be used to monitor

a corridor. In such cases it may be necessary to use smaller values of the feedback resistors (R11 and R20) in the receiver circuit so that the sensitivity is insufficient for stray reflections from the walls to keep the relay closed when an intruder interrupts the main beam.

REMOTE CONTROL

In general the units described earlier can perform any remote switching operation over a distance within their operating range. The lazy man can use such a system to switch a radio or television receiver on and off without getting up from his chair.

The reed relay in the ultrasonic receiver can be used to operate a stepping switch which alternately switches the radio or television receiver on and off.

More complicated remote control applications can be devised for use in the home of the amateur experimenter. For example, one could have a receiver in a shed in the garden and use an ultrasonic beam to operate an aerial change over relay or any other device from the house.

A good practical man could mount a transmitter unit under the front bumper of his car and a receiver near to his garage door so that a pulse of the ultrasonic beam would cause the garage door to open automatically. When the motorist takes his car away next day, a similar pulse could be used to close the garage door after the car has been reversed out.

COMMUNICATION

If a morse key is connected in the power supply line of the transmitter, the equipment can be used for communication over short distances, for example, to a house across the other side of the road. The relay in the receiver could be used to control the current to an oscillator which produces the morse signal.

The bandwidth of the beam provided by the circuits described is too narrow for it to be possible to modulate this beam with speech, but it is presumably
possible to use more complex equipment operating at a high frequency to carry speech by means of an amplitude modulated ultrasonic wave. However, the range may be very limited.

RANGING

Ultrasonic systems can be used to measure the range of objects which are not too far away. The time taken for a pulse from the transmitter to travel to the object and to be reflected back to a second transducer near to the transmitter is a measure of the distance of the object. Ultrasonic beams are employed in this way in the aids used by blind people.

Although the prototype equipment has not been used for range finding, there appears to be no reason why the transmitter should not be pulsed with power and the time interval between the transmitted and reflected pulses measured with a digital counter.

LEAK TESTING

The simple transmitter and receiver described in this article can be used to detect holes or leaks in the rubber sealing of objects such as car bodies and refrigerators. The transmitter is placed in the object to be tested and the door is closed. A detector employing a milliammeter in series with the relay is moved around the edges of the doors, windows, ctc. to detect any leakage of ultrasonic energy.

INDUSTRIAL APPLICATIONS

The receiver of Fig. 2 can be used without any transmitter for the detection of leaks in either pressure or vacuum pipes, since such leaks generate ultrasonic waves. Leaks can be detected in this way even in the presence of the loud noise and vibration of ten found in industrial plant.

Ultrasonic beams can be used to detect the presence of an object, such as an item passing along a production line. Each item can be made to interrupt the beam to produce electrical pulses which can be counted. Alternatively the ultrasonic beam may be reflected off each object in turn. The circuits of Figs. 1 and 2 are very suitable for this application.

EDUCATIONAL APPLICATIONS

Numerous experiments can be carried out with ultrasonic waves which are suitable for educational use. For example, one may investigate the transmission and reflection of the waves by various materials.

The writer used the transmitter and receiver (at fairly low gain) on a bench top with the transducers facing each other and separated by a distance of about two feet. When an object such as one's hand was moved slowly towards the mid-point of the two transducers, a milliammeter connected in series with the relay coil of the receiver showed rapid fluctuations in its reading according to the position of the reflecting object.

This is due to interference between the waves travelling directly from the transmitter to the receiver and those taking the longer path to the reflecting object and then to the receiver. Maximum intensity occurs at the receiver when these two path lengths differ by a whole number of wavelengths. An experiment could be devised to measure the wavelength of the radiation.

SOVIET AND AMERICAN CO-OPERATION

As a result of the co-operation in the exchange of samples of moondust from Luna 16. for Apollo samples. a considerable amount of new data has been obtained. It would appear that the dust forming the regolith at the landing site of Luna 16 had not been disturbed for 3.000 million years. This site was in the Mare Fecunditatis and the dust shows an age (by radiation dating) nearly twice that of the dust recovered by Apollo 1/, Sorme mechanism must exist for the transportation of dust if these measurements are reliable.

The specimens from the Soviet mission were from depths of 8 cm and 28 to 32 cm . There is evidence to indicate that this is about the thickness of the moondust in this area. The different teams working on this dust have produced a large number of papers and all seem in close agreement on their findings.

It seems from the electron microscopy and electron diffraction examination, that the radiation bombardment at the Limia 16 site is very much greater than any of the material recovered from each of the Apollo missions.

One clue is that since the moon passes through the earth's magnetic tail for about four days every month, the right conditions could arise. The high energy efectrons are sufficient to cause considerable disturbance of small grains. From this it follows that the most intense bombardment by the solar wind and other radiation would show on the other side of the moon, and that it could be there, that there would be least disturbance. If this is so, then the most disturbed area which
has been noted for the Apollo sites offers new data about the earth's magnetic field and magnetosphere.

THE OTHER MOON

Little Toro, the earth's other moon, is in the limelight again. It will be making one of its near approaches in the next few years when it will come to within nine million miles from earth. Its period of orbit is some eight years.

It has been under close observation since it was discovered in 1964 and computers have been used to track its behaviour. Being only one mile in diameter it is not visible to the naked eye, even though it does reflect sunlight.
It could be very useful to astronomers if there was a possibility of examining its surface, Since it is not likely to attract meteoritic impact or collect cosmic debris because of its extremely low gravity, the surface should be little different from what it was early in the life of the solar system.
lt is possible to get such information by using a remote controlled spacecraft. Such a craft would take about six months to make the trip. Support for such a venture has come from Nobel Prizewinner Hannes Alfven and he has suggested to NASA that this is a worth while project. If this should become a mission it would be suitable for early 1975.

As an exercise, the computer used to study the behaviour of Little Toro has checked the orbital behaviour for 200 years ahead and this shows little possibility of the moonlet getting out of hand and crashing into the earth.

NEWS FROM MARS

The wealth of information now being returned from Mariner 9 has more than justified the project even though Mariner 8 was lost. Many conjectures and theories regarding the red planet have had to be adjusted as a result of the present studies.

With more than 4,000 pictures already returned, much new data is revealed.. The widely differing terrain is very apparent and consists of smooth craters and rough craters, large areas of furrowed and rugged surface, with many faults, channels and scarps. There are also signs of extensive and smooth lava flows.

The topography is such that it is difficult to explain the condition of branching channels which start in featureless areas, except by water erosion. It would seem that there is a continuing activity which suggests that the opinions of scientists based on the information of the previous Mariners have been radically revised.

After the results of 1969, Mars became of secondary interest to the
moon. However, now it is back in favour. Its cratered surface shows young volcanoes and lava flows which have overlayed existing craters both volcanic and impact.

The ultraviolet spectrometer and the radiometer measurements have indicated that carbon dioxide is the predominant gas in the upper atmosphere and that the south pole is too warm for there to be a solid cap of carbon dioxide. It is also clear that the north pole could be cold enough to support solid carbon dioxide clouds which might precipitate carbon dioxide snow. At the present time the north polar cap controls the atmosphere.

MARS IN ICE AGE?

There is little similarity between the Martian atmosphere and the atmosphere of the earth. There is some atomic oxygen and some atomic hydrogen. The whole planet is surrounded by a cloud of hydrogen extending for about 25,000 miles from the surface. At heights of 90 to 100 miles the temperature is much lower than that at the same heights on earth.

The hydrogen envelope surrounding the planet increases as solar activity becomes more intense and consequently the sun must draw some 100.000 gallons of water from Mars through photodissociation.

It is possible that the planet may be in an ice age and so would have large quantities of water stored in the form of permafrost. Certainly. there is much more information to be disclosed during the years that it will take to process the data so far acquired. It is to be hoped that this will spur on the missions of manned landings to round off the knowledge accumulated from remote sensing.

As Apolio 15 has demonstrated, in the final analysis it is the human direct observations which enable more precise conclusions to be drawn.

ORBITING SOLAR OBSERVATORY

The first photographs of a solar flare on the far side of the sun was recorded by OSO-7. The flare which was of type Class 2 projected some four million miles out from the sun. The photographs show the progress of the flare till its plasma clouds were sent into space à a speed of 600 miles a second.

Each cloud, more than 150,000 miles in extent causes havoc to communications and triggers off auroral displays and magnetic storms when directed toward the Earth.

Even though the event recorded was in the opposite direction, some of its effects spilled round and was observed by Soviet, Australian and Phillipine radio telescopes.

airy IUMERIT

 DISPLIUS manuulum

Intandestent Filament Displays

1IN the last two months we have seen how cold cathode tubes work and how their decoding and driving circuits are used. Whilst this type of tube has been the most widely used for many years, new technologies are now coming to the forefront of display systems design. Among these is the incandescent filament display. This type of display in its various forms is the subject of this month's article.

INCANDESCENT FILAMENT DEVICES

Many years of experience with incandescent filament bulbs, and the technology on which these are based, has lead, not surprisingly, to some very cheap and practical alpha-numeric readout systems, in a wide variety of ingenious designs.

Filament lamps have many advantages to fit them for display purposes: high brightness which can be controlled at will (unlike gas filled devices); long life (100,000 hours is now obtainable); and a wide

GROUND GLASS
display SCREEN

Fig. 3.1. A sectional view of a typical projection type indicator. Light from the selected bulb projects the image of the transparency onto the ground glass screen
range of working voltages making them simple to drive, especially important when i.c. drivers are contemplated.

Of course, there are a few disadvantages, of which heat generation is about the most serious, but all in all, filament lamps are so versatile and inexpensive that displays based on them are likely to continue in popularity for some time, despite competition from more advanced technologies.

As far as amateurs are concerned, there are already a fair number of device types avaitable, and attention will be concentrated on these as far as possible.

DISCRETE CHARACTER TYPES

The discrete character format is very suitable for use with individual miniature bulbs, and there are many variations available. This format is preferred because of its inherent legibility, but all indicators employing it are more complex in construction than those using other schemes, and are also restricted in the character set which can be displayed.

PROJECTION TYPE

Fig. 3.1 shows a sectioned view of a typical projection type indicator, which can display twelve separate letters, numerals or symbols, depending on the transparency employed. Transparencies can be easily changed, as can the bulb holder which contains twelve individual l.e.s. lamps, the voltage ratings of which can be selected to suit the application.

In operation the selected character is illuminated by its associated lamp which may be driven by relay contacts or transistors, the illuminated section is then projected onto a ground glass screen at the front of the device where it gives a well defined image of reasonable brightness which can be in colour if required.

The complete indicator is rather long, though its frontal dimensions are very compact, making it possible to assemble multi-digit readouts with the minimum of panel space.

A rear projection type display unit. This type gives 1 in characters using $6 \cdot 3 \mathrm{~V}$ pilot lamps. It will give all the numerals and a decimal point (supplied by Electronic Brokers Ltd.)

EDGE-LIT TYPE

Again using a battery of individual l.e.s. lamps, the edge-lit Perspex indicators really do seem clever. These indicators utilise the fact that Perspex can be made to act as a "light-pipe", transmitting the bulb illumination over quite long distances and round corners before directing it towards the observer.

Fig. 3.2 gives a rough idea of the layout of these devices, though only one Perspex sheet (and hence one character) is shown; the side view shows how the other sheets are arranged in their respective slots.

When the selected lamp is illuminated, some of the light is directed onto the edge of the high quality Perspex, and this is channelled over the top of the bulb holder block and down to the viewing area.

The light does not escape in any appreciable amount because of the difference in the refractive index between the Perspex and air, and because the angles of refraction inside the Perspex sheet are too shallow for much light to exceed the critical angle and escape.

The character to be displayed is formed on the Perspex sheet by etching a series of holes of the correct layout, and these discontinuities in the sheet cause the channelled light to be refracted out towards the observer at these points.

Note that a series of dots rather than a continuous figure must be used so that some of the channelled light can pass through the upper parts of the figure and be available to interact with the lower parts.

One noteworthy point is the obvious difference in path length between the front and the rear bulb slit, and its effect on the brightness of the rear sheet; this is neatly compensated by the fact that although the front bulb has to transmit over a short path in the Perspex, once it has been refracted at the dots it has to travel through ten or so other sheets to reach the observer; the long path length on the other hand does not travel through any other sheets after interacting with the dots.

A digital indicator using the Perspex light-guide technique as described in Fig. 3.2 (supplied by Electronic Brokers Ltd.)

These devices are similar in length to the projection type, but are rather taller, the display is reasonably bright and easily interpreted, but parallax problems restrict the viewing angle, a problem not shared by the previous type.

GENERAL ADVANTAGES

Both the discrete character types discussed have the advantage of almost unlimited life since if a lamp fails it can be speedily replaced, a factor

Fig. 3.2. An edge-lit indicator. Light from the selected bulb passes along the Perspex sheet and is refracted by the etched holes for viewing. The smaller drawing shows how the Perspex sheets are arranged

3/ CARRY OUT

OVER
40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :
valve experiments. transistor experiments amplifiers, oscillators. signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch. simple transmitter, a.c. experiments, d.c experiments simple counter, time delay circuit. servicing procedures.

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths. and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

- Large stocks GOOD SERVICE ATTRACTIVE DISCOUNT

Satisfaction Guaranteed

EIEGTROVALIE Electronic Component Specialists

SEM-SDMDTRTDB Brand new, guaranteed to spec.

1840 K 10	175p	2N3055	60 p	40361	5	AF124	24p	BCI84L	$11 p$	BFY90	104p	OA95	6p
1 N 914	5p	2N3325	53p	40362	68p	AFI25	24p	BCI86	42p	B5 $\times 20$	16p	OA 200	9 p
IN916	10p	2N3405	60p	40406	75p	AFI26	22p	BC212L	16p	BY164	45p	OA202	0p
INI763A	24p	2 N 3663	52p	40408	70p	AFI27	22p	8C213L	16p	BY238	18p	OC19	50 p
1N3754	20p	2N3702	13 p	40412	$67 p$	AF139	33p	BC214L	16p	BY×38.		OC25	42p
1N5399	$21 p$	2N3703	13 p	40430	140p	AF239	36p	BC257	9 p	300	38p	OC28	70p
1N5402	28p	2N3704	13 p	40432	185p	ALI02	77p	BC258	8 p	BY×38-		OC29	76p
1N5407	45p	2N3705	13 p	40512	195 p	A5Y26	27p	BC259	9 p	300R	38p	OC35	60p
1544	${ }^{9} \mathrm{p}$	2N3706	$13 p$	40602	52p	ASY27	36p	BC267	17 p	C407	17 p	OC36	65p
\$5940	5p	$2 N 3707$	$13 p$	40669	140 p	ASY28	27p	BC268	$15 p$	$C 762$	19p	0 OC 4	42p
2N696	17p	2N3708	10p	AC107	$46 p$	ASY29	36p	BC269	$17 p$	C1412	102p	$0 \mathrm{OC42}$	46p
2N697	18p	2N3709	$11 p$	AC 126	20p	AUII!	97p	BC300	49p	E2512	664p	$\bigcirc \mathrm{OC44}$	42 p
2 N 706	12p	2N3710	13 p	AC127	20p	B30C250	24p	BC301	$37 p$	EA403	10p	OC45	38p
2N930	$21 p$	2N3711	13 p	AC128	20p	B30C550		BC303	60p	E8383	10p	OC70	11 p
2NI 131	29p	2N3731	120p	AC141H	34p	300	34p	BCY30	60 p	EC401	18p	OC7	38p
2N1132	29p	2N3794	15 p	ACI4IHK	37p	B1912	66p	BCY31	75 p	EC402	17p	$\bigcirc{ }^{\circ} \mathrm{C7} 2$	38 p
2 N 1302	19p	2N3819	23 p	AC.142H	25p	B5041	72p	BCY70	18p	ER900	54p	OC75	40p
$2 \mathrm{Nl}^{2} 303$	19p	2N3820	53 p	ACl42HK	29P	BA 102	25p	BCY71	${ }^{33} \mathrm{p}$	MC140	$25 p$	$0 C 81$	15p
2 Nl 304	26p	2N3904	35p	AC153K	22p	BA 130	22p	BCY72	15p	M 481	120 p	OC810	$25 p$
2N1305	26p	2N3906	35p	AC176	16p	BA145	27p	BD121	105p	M1491	135p	OC83	25p
2N1306	33 p	2N4036	$55 p$	ACI76K	17p	BA15.5	15p	BD123	105p	MJ371	108p	OC84	25p
2N1307	33 p	$2 N 4058$	13 p	ACl87K	17 p	BA156	13 p	BD124	100 p	MJE521	92 p	P346A	26p
2N1308	36p	2N4059	10p	ACI日8K	23p	BAX13	13p	BD130	50p	MJEE2955	165p	S2CNI	10p
2N1309	36p	2N4060	$11 p$	*ACI87K!		BB103/B	16p	BDI31	79p	MJE 3055	82 p	SCIAID	187p
2N1596	102p	2N4061	$11 p$	188K	40p	8B103/G	16p	BD132	86p	MPF102	37p	SC1460	147p
2N1599	122p	2N4062	12 p	ACY17	$31 p$	BC107	12p	BD 135	38p	MPS6531	35p	SDI	10p
$2 N 1613$	${ }^{23} \mathrm{p}$	2 N 124	18p	ACYIB	19p	BC108	$11 p$	BDI36	44p	MPS6534	30 p	SD4	12p
2N17!	26p	$2 \mathrm{~N}^{2} 126$	27p	ACYI9	23p	BC109	12p	BDI41	227p	NKT211	25p	$\checkmark 763$	28p
2 N 1893	54p	2 N 4284	24p	ACY20	20p	BC122	$21 p$	BDY20	92p	NKT212	25p	W10681	$45 p$
2N2147	95p	2N4286	$15 p$	$A C Y 21$	$21 p$	BC 125	15p	BF115	23 p	NKT213	25p	W106DI	$83 p$
2 N 2218	34p	2N4289	$15 p$	ACY22	$21 p$	BC126	22p	BF167	18p	NKT214	23p	WO2	40p
2N2218A	44p	$2 N 4291$	15 p	ACY39	$63 p$	BC140	30p	BF173	19p	NKT217	50p	WPO2	95p
2N2219	38p	$2 N_{4292}$	$15 p$	ACY40	17p	BC147	10p	BF177	25p	NKT26!	$21 p$	ZTX 300	14p
2N2219A	53p	2N4410	24p	ACY4I	18p	8 8C148	$9 p$	BF178	$31 p$	NKT271	18p	$2 \mathrm{ZT} \times 301$	16p
2N2270	62p	$2 N 4443$	111p	ACY44	$31 p$	BC149	10p	BF194	14p	NKT274	18p	$2 \mathrm{~T} \times 302$	22p
2N2369A	${ }^{19} \mathrm{p}$	2 N 4906	305p	ADI40	63 p	$8 \mathrm{BC153}$	19p	BF195	$15 p$	NKT275	23p	$2 \mathrm{ZT} \times 303$	22p
2N2483	35p	2N4915	215p	ADI 42	50p	BC154	20p	BF244	30p	NKT403	65p	$2 \mathrm{ZT} \times 304$	27p
2N2484	42 p	2N4991	$62 p$	ADI49	58p	BC157	12p	BF254	14 p	NKT404	61 P	$2 T \times 330$	23p
2N2646	47p	2N5062	$61 p$	ADI50	50p	8 C 158	$11 p$	8F255	15p	NKT405	79p	$2 T \times 331$	27p
2N2904	38p	2N5088	38p	AD161	33p	8C159	12p	$8 \mathrm{BX18}$	90 p	NKT603F	30p	ZTX500	18p
2N2904A	42p	2N5163	25p	AD162	36p	BC167	$11 p$	8F×29	31 p	NKT613F	30p	$2 \mathrm{ZTX501}$	$21 p$
2N2905	44p	2N5172	18 p	*AD161/		8C168	10p	8FX84	25p	NKT674F	24p	$2 T \times 502$	25p
2N2905A	47p	2N5192	125p	162	60p	BC169	$11 p$	BFX85	32p	NKT677F	22p	ZTX503	22p
2N2924	20p	2N5195	147p	AFII4	249	BC177	14 p	BFX87	29p	NKT713	30p	ZTX504	52p
2N2925	22p	2N5457	49p	AFII5	24p	$8 \mathrm{8C178}$	13 p	BFXB8	26p	NKT773	25p	$2 \mathrm{~T} \times 530$	27p
2 N 2926	$11 p$	2N5459	49p	AFII6	22p	8C179	14p	BFY50	$23 p$		8 p	2TX531	33p
$2 N 3053$	27p	40250	71p	AFII7	22p	BC182L	$11 p$	BFY51	20p	OA90	6p		
2N3054	$60 p$	40251	89p	AFII8	82p	BC183L	10p	BFY52	23p	OA91	5p	Matched	pair

CARBON TRACK POTENTIOMETERS
Ling spindles. Double wiper ensures minimum noise level SINGLE GANG linear 100 n to $2.2 \mathrm{M}, 62 \mathrm{I2p}$; 5ingle ganglog $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$. 12 p ; DUAL GANG linear $4.7 \mathrm{~K} \Omega 2$ to $2.2 \mathrm{M} \Omega$ 42 p ; Dual gang log, $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \mathrm{\Omega}$, 42 p ; Log/antilog, 10K,
47 K ., IMg only 42p; Dual antilog, ioK only, 42 p Any type with $2 A \cap$ D.P. mains switch, 12 p extra.
Only decades of 10,22 and 47 available in ranges quoted
DUAL CONCENTRIC
in any combination of above values, 60p. With switch 72p.
CARBON SKELETON PRE-SETS
Small high quality, type PR linear only: $100 \Omega, 220 \Omega 470 \Omega$, 5 M , $10 \mathrm{M} \Omega$. Vertical or horizontal mounting. 5 p each.

SIEMENS 5° TOLERANCE POLYCARBONATE CAPACITORS 250 V ut to $0.1 \mathrm{mF}: 100 \mathrm{~V} 0.1 \mathrm{mF}$ and above: 0.01 $0.012,0.015,0.018,0.022,0.027$
$0.033,0.039,0.045,0.056,0.068,0.082,0.1,0.12,0.15,0.18,0.22$ $6 \mathrm{p} ; 0.27,7 \mathrm{p} ; 0.33,0.39,9 \mathrm{p} ; 0.47,10 \mathrm{p} ; 0.56,13 \mathrm{p} ; 0.68,15 \mathrm{p}$.

ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$
to 36 V , 15 p each; $1 \mathrm{~W}: 6 . \mathrm{BV}$ to $\mathrm{B2V}, \mathbf{2 7}$ each: $1.5 \mathrm{~W}: 4 \mathrm{~V}$ to 36 V . 15 p each
to 75 V 60 p
to 75 V 60 p each.
tilip to increase 1.5 W rating to 3 watts (type 266F) 4p

CAPACITORS

MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%$: $001,0022,0033,0.047 \quad 3 \mathrm{p}$ each; $0.068,0.1,4 p$ each; $0.15,4 p ; 0.22$,
$5 p .10 \% 0.33$
$7 p ;$ 0.47 8p; $0.6811 \mathrm{p} ; 1 \mu \mathrm{Fd}$ 5p. $10 \% 0.33$ 7p; $0.478 p ; 0.6811 p ; 1 \mu \mathrm{Fd}$
14p; $1.5 \mu 21 \mathrm{p} ; 2.2 / 1 \mathrm{~F} 24 \mathrm{p}$. MULLARD SUB-MIN
ELECTROLYTICS
C426 range, axial lead $6 p$ each
Values ($\mu \mathrm{F} / \mathrm{V}$) : $00.64 / 64: 1 / 40 ; 1.6 / 2.5: 2.5 / 16$;

 $\begin{array}{llllll}32 / 4 ; & 32 / 10 ; & 32 / 40 ; & 32 / 64 ; & 40 / 25 ; & 40 / 16 \\ 50 / 6 \cdot 4 ; & 50 / 25 ; & 50 / 40 ; & 64 / 4 ; & 64 / 10 ; & 80 / 2.5\end{array}$ 80/16: $80 / 25 ; 100 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5$ $320 / 6$: $4 ; 400 / 4 ; 500 / 25$

LARGE CAPACITORS

High ripple current types: 1000/25, 28p;
$1000 / 50$ 41p; $1000 / 100$ s2p; 2000/25 37 p 2000/50, 57p: 2000/100 $2 \mathrm{p} ; 12000 / 25,37 \mathrm{p}$ $77 \mathrm{p} ; 2500 / 70,98 \mathrm{p} ; 5000 / 25$. 62p; 5000/50 ¹. $10 ; 5000 / 100, £ 2.91 ; 10000 / 50$. $£ 2 \cdot 40$.

RESISTORS $10 \%-5 \%-2 \% \% \begin{aligned} & \text { Prices are in pence each for some ohmic value ond power } \\ & \text { rating, NOT mixed values. (ignore fractions of ip on total }\end{aligned}$

Code Power Tolerance Range Values order.)

			Range	of resistor Values			
Code	Power	Tolerance	Range	Values available	1 to	10 to 99	100 up
C	1/20W	5\%		E12	9	8	7
C	1/8W	5\%	$4.7 \Omega-470 \mathrm{~K} \Omega$	E24	1	0.8	0.7
C	1/4W	10\%	$47 \Omega-10 \mathrm{M} \Omega$	E12	1	0.8	0.7
C	1/2W	5\%	47 n -10M Ω	E24	$1 \cdot 2$	1	0.9
C	1 W	10\%	$4.7 \Omega-10 M \Omega$	E12	$2 \cdot 5$	2	1.9
MO	1/2W	2\%	$10 \Omega-1 M \Omega$	E24	4	$3 \cdot 5$	3
WW	IW	$10 \% \pm 1 / 200$	0.22 $n-3.9$ 析	E12	7	7	6
WW	3W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	E12	7	7	6
WW	7W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	El2	9	9	8

Minitron DIGITAL INDICATOR

Type 30 Ifs sever segment indicator compatible with standard logic modules and power supplies. Shows per seg.)

Suitable $B C D$ decoder driver FLL $1217 \quad £ 1.45$ Dil socket, 16 lead
TYPE 3015G
decimal point
62
SOLDERSTAT SOLDER

1972 Edn. Bigger and better than ever. More
lines, more bargains, more information more diagrams. Post free 10 p

BAXANDALL SPEAKER KIT As originally designed and deseribed by P. J
Baxandall in Wireless World. 10 watt/15 Ω with frequency equaliser. speaker unit and
special cabines (size approx. $18^{\prime \prime} 12^{\prime \prime} 10^{\prime \prime}$) in pack-flat form. Inc. carriage paid in U.K. $\mathbb{1} 3 \cdot 90$

PUBLICATIONS

The Book of Transistor Equivalents (BP.I) 40 p Handbook of Tested Transistor Circuits
by H. Ness $(B P .3)$ by H. Ness (BP.3)
Radio and Electronic Colour Code and
Data Wall Chart (BP.7) Data Wall Chart (BP.7)
Any of above ordered singly, add 3p P. \& P.

DISCOUNTS Not ollowed
10% on orders for components for
15\% on orders for components or
Prices subject to alteration without prior notice
Terms of business as published in cotalogue.

POSTAGEAND PACKING free

on orders over $\mathbf{1 2}$. Please add 10 p if orders under $£ 2$.

Overseas orders welcome: carriage and U.S.A. Customers should get in touch with ELECTROVALUE AMERICA, P.O. Box 27, Swarthmore, PA 19081.

Codes: $C=$ carbon film high stability low lois= MO $=$ metal oxide Electrosil TRS ulcra low noise

Values
E12 denotes series: $10,12,15,18,22,27,33,39,47,56,68,82$ E24 denotes series: as E12 plus $11,13,16,20,24,30,36,43$,
$51,62,75,91$ and their decades.

Dept. PE572, 28 St. Judes Rd., Englefield Green, EGHAM, Surrey TW2 OHB Phone: Egham (0784-3) 5533 and 4757. Telex 264475 Hours: $9-5.30$ daily. I p.m. Saturday
which in some applications makes up for the slightly higher cost compared with, say, cold cathode tubes.

These indicators are also more reliable than some of their incandescent cousins which involve moving parts, a technique widely used in the early days of display design, but no longer competitive, and therefore not treated here.

DOT MATRIX INDICATORS

Dot matrix indicators are the second type of format mentioned in the introductory article, and it is obviously possible to build this type of display with filament lamps. There are no commercially available display devices of this type, however, and in view of the problems of mechanical design (all those bulb holders!) and the more complex decoding required, such devices are not practical in miniature form.

The general principle is used however for large moving newsreel displays where the programming can be achieved simply by controlling the matrix with punched tape.

Further examples of large displays using this principle are the motorway traffic information boards, Guinness clocks, and sports scoreboards.

This is an area amenable to "do-it-yourself" techniques, the important points to remember being: keep it big, and keep the character set simple to ease decoding problems. Of course, if there is no objection to employing complex electronics such as commutators and read-only memories, then any desired character set can be built.

[^2]

A seven segment incandescent filament indicator tube. Almost any colour filter can be used unlike the cold cathode tubes which are either red or orange

BAR MATRIX DISPLAYS

The simple bar matrix display format, and in particular the "seven-segment" arrangement, is an ideal layout for use with incandescent device technology and a wide range of indicators have emerged using this combination, most of them championed in the U.S.A.
It is again possible to use individual lamps for each segment, but the real area where incandescent technology has come into its own is in the production of a complete seven segment indicator inside a single evacuated package.

These devices, often housed inside a valve type glass envelope, are capable of being mass produced, and large numbers are now being imported from Japan where most examples are manufactured.

This suitability for mass production combined with the inherent filament advantages quoted earlier and the availability of cheap decoder driver i.c.s will in future make these indicators the best choice for most amateur applications, such as digital clocks, counters, and calculators, a position held by the gas filled tubes at present.

OPERATION

A typical example of this type of device is shown in Fig. 3.3; this particular indicator has been chosen since it represents one of the types advertised for amateur use at present. Its type number is DA 133 (or DA 133D with decimal point) and it is available from West Hyde Developments under the trade name of Atron.

This indicator is housed in a glass envelope about half the size of a B7G valve, and produces characters 12 mm in height. The coiled filaments are supported by wire pegs protruding from a ceramic base, and these pegs are interconnected at the rear of the ceramic according to the wiring shown, the segment, common, and decimal point each have an individual leadout through the nine pin base.

Fig. 3.3. The internal construction of a seven segment incandescent filament tube (Atron, available from West Hyde Developments)

The filaments are made of an advanced long-life, high brightness, material which gives a typical life of 100,000 hours. Each segment consumes about 120 mW at the nominal supply voltage of 5 V , making i.c. drivers eminently suitable, another advantage being that only one supply rail (V_{cc}) is necessary in a system using DTL or TTL.

The colour of the illuminated filament is of course the white normally associated with incandescent lamps, and this means that a filter can be positioned in front of the indicator to select any desired colour.

A filter is necessary in any case to improve contrast, but the possibility of selecting any colour is an advantage over, say, cold cathode tubes where a red or orange filter is mandatory. Green, blue, red, daylight, and neutral are the colours specifically available for use with the Atron.
Next month: Decoding and driving circuits for incandescent filament displays

Seven segment incandescent filament indicators in dual-in-line packages (Minitron 3015F, available from A. Marshall \& Son)

GUIDE TO PRINTED CIRCUITS

By Gordon J. King
Published by Fountain Press
140 pages, $8 \frac{3}{4}$ in $\times 5 \frac{1}{2}$ in. Price $£ 2.50$

NOT only does this book give a guide to printed circuit making for the amateur, it also describes industrial manufacture, printed circuit substitutes (i.e. Veroboard, S-Dec, and similar arrangements), soldering techniques, the use of printed circuit methods in i.c. manufacture, and applications of i.c.s.

Whilst some of the information is interesting 1 can find very little of any real use to the amateur. The techniques of making printed circuits could easily be described in a few paragraphs and the rest of the book seems merely to fill out the space. Are the "enthusiastic amateurs," for whom Mr. King professes to be writing, really interested in a chapter on the construction of soldering irons and desoldering methods?

At $£ 2.50$ this book is by no means cheap and I do not feel the content warrants such an outlay by the average enthusiast.
S.R.L.

INTRODUCTION TO VIDEO RECORDING

By W. Oliver
 Published by W. Foulsham \& Co Lid
 109 pages, $8 \frac{3}{4}$ in $\times 5 \frac{3}{4}$ in. Price $£ 1 \cdot 50$

THE recording of events and entertainments, until fairly recently restricted to sound and cine film, promises great things for the future through the various media of electronic video processing. This book takes an outsider's view of the state of the art of video tape, disc, and hologram with ample reference to commercially exploited principles.

Although the author admits to taking a "semilayman"s" viewpoint he does describe in fundamental terms how the different systems work without becoming too embedded in technicalities. So much so that some of the earlier chapters could make rather boring reading to those already well informed on the principles of waveform propagation.

I, personally, found the section on video disc recording the most interesting as it seems that this is likely to become the commonly used technique for domestic applications-when all of the bugs have been ironed out. Tape is at present being used to a large extent, but as with sound recording, there are the attendant risks of erasure unless scrupulous precautions are taken. Bulk is also another commercial problem as is mass recording on tape.

This book is very readable but its price precludes its purchase value. Since it can be read in a couple of hours (there are many large illustrations) it is perhaps best suited to the lending and technical libraries.
M.A.C.

VARIABLE VOLTAGE TRANSFORMERS

COMPLETE NI. CAD. BATTERY OUTFIT (EX W.D.)

1.2 V 7 AH (12 V) batteries, atso $10 \times 1.2 \mathrm{~V}$ (40 batteries I Dual voltage, dual meter, thyristor controlled charging unit. Designed for charging the 7 AH and 22 AH batteries simultaneously. Input voltage can be adjusted between $100-250 \mathrm{~V}$ a.c. Built to ministry specification. Ideal power: supply for field work. batteries, I charging unit. The set \& 45, P. \& P. 61.50 . bit 220/240 VOLT A.C. CENTRIFUGAL FAN/BLOWER Smooth, balanced running unit. Two

i.85in Price only $\mathbf{E 2 . 9 5}$. P. \&
BODINE TYPE N.C.I. GEARED MOTOR
 Type 1) 71 r.p.m Torau
 h.p., 50 cycle. 0.38
(Type 2) 28 mp
r.p.m. Torque 201 b inch. Reversible. $/ 80 \mathrm{th}$ h.p
50 cycle, 0.28 amp 50 cycie, 0.28 amp. "As new
condition. Input voltage motor 115 V a.c. Supplied complece with cransforme plus $35 \mathrm{p} . \mathrm{P}$. \& P. or less transformer $\mathbf{2 7} 13$ plus
12 VOLT D.C. MOTOR Powerful I amp. REVERSIBLE
motor. Speed 3,750 r.p.m.
complete
(removable) with externa
icher 125 r.p.m. or 240 r.p.m. Size : $4 \frac{1}{2} \mathrm{in}$
230V/240V COMPACT
SYNCHRONOUS GEARED MOTORS
Manufactured by either Sangamo
Haydon or Smith. Built-in gearbox.
\qquad
2 r.p.h. cw.
3 r.p.h. a/cw
15 r
20 r
30
price. All at 75 p inclockwise.
200-250V A.C. NEON INDICATOR
Available in red or amber (Or in green at each. Or aras
32 each. Minimum order 3 units. P. \& P. Sp
MINIATURE UNISELECTOR
 homank
$24-36 \mathrm{~V}$ removed from equipment andy

UNISELECTOR SWITCHES NEW 4 Bank 25 Way a

All Mail Orders-Callers-Ample Parking
Dept. PE4, 57 BRIDGMAN ROAD LONDON W4 5BB Phone 01-995 1560

36V 30 AMP. A.C. or D.C. VARIABLE L.T. SUPPLY UNIT

INPUT $220 / 240 \mathrm{~V}$

 OUTPUTCONTINUOUSLY VARIABLE O-36Y
Fully isolated. Fitted

Fully isolated. Fitted in robust metal case with Input and Ammeter Panel Indicator and handles.
Int Lab. or Industrial use. 668 plus 62 P . \&

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon White light flash tube. Solid state timing and trigger
ing circuit. $230 / 250 \mathrm{~V}$ a.c. ing circuit, $230 / 250 \mathrm{~V}$ a.s. operation.
EXPERIMENTERS' ECONOMY KIT
Speed adjustable I to 36 Flash per sec. All electronic components including Veroboard. S.C.R. Unijunction Xenon Tube and instructions 66.30 , plus NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, ets. Roller tin printed circuit. New trigger coil. plasticthyristor
Speed adjustable $1-80$ f.p.s. Price 10.50 . P. \& P. 50p Speed adjustable
HY-LYGHTS.S. Price
This strobe has been designed and produced for use utilises rooms, halls and the photographic field and ancy. printed circuit for easy assembly, also a special trigger coil and output capacitor. Speed adjustable P. \& P. 50p. SPECIALLY DESIGNED. FULLY VENTILATED METAL CASE. For industrial or Hy-Lyght. Including reflector. $£ 4.00$ P. \& P. 45 p
Post paid with kit.
the 'sUPER' HY-LYGHT KIT Approx. four times the light output of our wel proven Hy-Lyght strobe. Incorporating

- Heavy duty power supply
- Variable speed from 1-23 flash per sec. white light.
Never before a Strobe Kit with so HIGH an output ATTRACTIVE, ROBUST, Flus 75PP. \& PENT ILATED METAL CASE specially designed for the Super Hy-Lyght Kit including reflector $\mathbf{4 7 . 0 0} \mathrm{P}$, \& P 7-ineh POLISHED REFLECTOR
Ideally suiced for above Strobe kits. Price 53p

6 INCH COLOUR WHEEL

As used for disco lighting effects, etc. 65.75 incl P. \& P. can be operated from our one r.p.m
synchronous motor price 75 p incl. P. \& P. INSULATION TESTERS NEW!
 carriage paid.

MOTOROLA MAC II/6 PLASTIC
Now available EX STOCK. Supplied with full data and applications sheer. Price $£ 1.05$. P. \& P. 7p 240 V A.C. SOLENOID FLUID VALYE Will handle liquids or gases up to
7 p.s.i. Forged brass body. stainless steel core and spring. $\frac{1}{2}$ in b.s.p British mfg. PRICE: 11.75 . P. \& P 20p. Special quotation for
(New in makers' carton)

PROGRAMME

 TIMERSMfg. by Magneric Devices
'Crouzet' motor. Drives 15 cams, each operating variable, allowing in numerable combinations. Ideally suited for machinery control, automation, ecc. Also in the field of entertainment. for chaser lights,
animated displays, etc. NEW PRICE E5.75. P. \& P. 25p.

230-250 VOLT A.C. SOLENOID Manufactured by Westool Lid. (similar in appear ance to above illustration). Approx. $1 \frac{1}{2} 1 \mathrm{~b}$ pull
Feet size 1 fin $1 \frac{1}{2}$ in. Price $85 p$ ind p. 18-24 VOLT D.C. SOLENOID
Size: O.A.L. 3inn $1 \frac{1}{2} \mathrm{in}$ lin. Max. push of at
116. approx. PRICE: 75 p incl. P. \& P.
SERVICE
TRADING CO

Superior Quality Precision Made NEW POWER RHEOSTATS

100 WATT. I ohm, $10 A_{;} 5$ ohm $4.7 \mathrm{~A}: 10$ ohm, 3 A : 25 ohm, 2 A
 250 oh m, $0.7 \mathrm{~A} ; 500$ ohm, $0.45 \mathrm{~A} ; 1 \mathrm{k} \Omega .280 \mathrm{~mA}$
$1.5 \mathrm{k} \Omega .230 \mathrm{~mA} ; 2.5 \mathrm{k} \Omega .2 \mathrm{~A} ; 5 \mathrm{k}, 140 \mathrm{~mA}$. 212 mete, $1.5 \mathrm{k} \Omega .230 \mathrm{~mA} ; 2.5 \mathrm{k} \Omega .2 \mathrm{~A} ; 5 \mathrm{k} \Omega, 140 \mathrm{~mA}$. Diameter
 50 WATT, $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$ 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 3 \cdot 5 / 5 \mathrm{k} \Omega$ All at 90p each. P. \& P. $7 \frac{1}{2} p$
lin. diabrass bush. Ideal for above Rheostats, I8p.
RELAYS SIEMENS, PLESSEY, Etc.
miniature relays
Col. (1)
Col. (2)
Working
d.c. volts

Col. (3)
Contrascs
Col. (4)
$\mathrm{HD}=$
Incl. Base

280	$9-12$	$2 \mathrm{c} / \mathrm{o}$
410	10-18	$4 \mathrm{c} / \mathrm{o}$
700	16-24	4M 28
700	16-24	$4 \mathrm{c} / \mathrm{o}$
700	12-24	$2 \mathrm{c} / \mathrm{o}$
700	15-35	$2 \mathrm{c} / \mathrm{OHD}$
700	16-24	6 M
1,250	24-36	$4 \mathrm{c} / \mathrm{O}$
2.500	36-45	6M
2.400	30-48	$4 \mathrm{c} / \mathrm{o}$
9.000	40-70	$2 \mathrm{c} / \mathrm{o}$
15k	85-110	6M

$73 p^{*}$
73p**
63p
$78 p^{*}$
63p**
$73 p^{*}$
$63 p^{*}$
$63 p^{*}$
$63 p^{*}$
$50 p^{*}$
$50 p^{*}$
$50 p^{*}$
12 VOLT D.C. RELAY
140 ohm coil
hree sets cio concacts rated at 5 amps. 78p includ DIAMOND H' 230 VOLT A.C. RELAYS (Unused)
Three sets c/o contacts rated at 5 amps . PRICE: 50p. P. \& P. 10 p . (100 lots including P. \& P
230 VOLT A.C. RELAYS MFG. KEY SWITCH ORI set co contacts rated at 7.5 amps. Boxed. PRICE: 40p. P. \& P. 5p. (100 lots $\& 32$ including P. \& P.

MINIATURE RELAYS size only lin in $\frac{1}{2}$ in. Price $38 p$ post paid $30-36 \mathrm{~V}$ d.c. operation. Two c/o 500 M . A. contacts.
3.200 ohm coil. Size only lin x in frin, 43 post paid.
VENNER Electric Time

Switch

$200 / 250 \mathrm{~V}$ Ex. GPO. Tested Manually switch: 10 A C2.75, $15 \mathrm{~A} \not \mathbf{6 3} \mathbf{2 5}$, $20 \mathrm{~A} \mathbf{4 3 . 7 5}$ N 20p. Also available with solar dia
G.E.C. I2 WAY 15 AMP CONNECTORS

LIGHT SOURCE AND PHOTO CELL MOUNTING
 Precision engineered
source with adjustable source, with adjustable lens
assembly and ventilated lamp
housing to Separare photo cell MBC bulb.

LIGHT SENSITIVE SWITCHES

Kit includes ORP. 12 Phorocell, Relay
Transistor Circuit. For 6 or 12 V D.C.
Operation. Price 11.50 plus 12 p P. \& P
ORP, 12 and Circuit 63ppost paid
$220 / 240 \mathrm{~V}$.C. MAINS MODEL
Mains ransformer NS MODEL
H.D. contaccs. price inct. circuic ©2.65. P. \& P break
"HONEYWELL"P PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBL Each bank comprises a c/o rated at
10 amps 240 V . A.C. Black knob lin. Fixing hole tin. ONE bank 30 p ; TWO bank 40 p ; THREE bank

'HONEYWELL'LEVER OPERATED
Is amps 250 volt A.C. c/o con-
PRICE: 10 for $f 1.90$ including.
D.C. AMMETERS

1A. 5A. 15A, 20A, (11.75, incl. P. \& P. Showroom open Mon.-Fri

Personal callers only. Open Sat
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

INTEGRATED CIRCUIT POCKET BOOK

by R. G. Hibberd
£2.50
Postage 10p.

RADIO TECHNICIAN'S BENCH MANUAL by H. W. Hellyer. 63. Postage 12p.
AUDIO TECHNICIAN'S BENCH MANUAL by John Earl. \&3. Postage 12p.
SERVICING TRANSISTOR RADIO RECEIVERS by F. R. Pettit. 75p. Postage 7 p .
1972 WORLD RADIO.TV HAND. BOOK. E2.80. Postage 15 p .
110 INTEGRATED CIRCUIT PRO. JECTS FOR THE HOME CONSTRUCTOR by R, M. Marston. El. 20 . Postage 10p.
PRACTICAL TRANSISTOR SERVICING by W. C. Caldwell. $\mathbf{E I} \cdot \mathbf{9 0}$. Postage $12 p$ RADIO DATA REFERENCE BOOK by G. R. Jessop. E1. Postage 12p.

THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal. 63.50. Postage 15 p.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday 1 p.m

GY-NORMOUS RADIO BARGAINS!

-3 types, all superhets with push-pull output to internal loudspeaker. Supplied complete with carrying case, earphone and batteries.
Type A-Very neat little set, still only $£ 1.50+$ p \& D 20p.
Typ s-Large battery operated model, full car. Complete with swivelling telescopic aerial, $\quad 5.80+\mathrm{p}$ \& p 45 p .
Type C-Large portable radio as sold nationally, A.M. ond F.M. coverage (Yes F.M.-88-
108 MHz). Horizontal pointer tuning sale. 108 MHz). Horizontal pointer tuning scale.
Operates from own dry batteries or a.c. mains from internal transformer isolated power pack, with provision for rechargeable cells (not upplied). $\mathbf{f 8}+\mathrm{p} \& \mathrm{p} 50 \mathrm{p}$.
All these sets are BRAND NEW and complete in manufacturers original cartons, but may require slight attention-hence bargain prices
CASSETTE PIAY
*CASSETTE PLAYERS-last few only-uses standard musicassettes-possible conversion to
full recorder. Deck alone worth our price of $68.99+p \& p 55 p$. - Cl20 Cassettes.

7tp.
'SAVE CEE's ON BATTERIES, run your transistor, etc., from the mains with our 9 V eliminator. \&i's0 + p \& p 15 p .
*LABGEAR "Magic Circle"' indoor UHF aerial only © $1.25+p$ \& p ISp.
T.V.'s T.V.'s T.V.'s T.V.'s T. V.'s T.V.'s sested, and in full working order. $£ 20$.
*lgin Slimlina, only requires UHF tuner for BBC2, untested, complete, $\mathbf{4 8}$.
*As above but with UHF tuner, cil.
*2 Channel (with 405/625 Timebase) 19 in 110° tube. untested, $f 5$.
(Carriage $\mathrm{fl} \cdot 50$ extra all models.)

SUMIKS

> 7 High Street Langley, Warley, Worcs. Callers Welcome

PRACTICAL ELECTRONICS

"SCORPIO"

 ELECTRONIC IGNITION SYSTEM

This Capacitor-Discharge Electronic Ignition system was described in the Practical Electronics. It is suitable for incorporating in any 12 V ignition system in cars, boats, go-karts, etc., of either pos. or neg. earth and up to six cylinders. The original coil, plugs, points and contact-breaker capacitor fitted in the vehicle are used. No ex
Helps to promote easier starting (even under sub-zero conditions), improved ander sub-zero conditions), improved acceleration, better high-speed perimproved fuel economy. Eliminates excessive contact-breaker point burning and the need to adjust point and sparkplug gaps with precision.
Construction of the unit can easily be completed in an evening and installation A complete complement of components is supplied with each kit together with is supplied with each kit together with quality fibre-glass printed-circuit board, custom-wound transformer and fullymachined die-cast case. All components are available separately. Case size 7 tin $\times 4 \frac{1}{2}$ in $\times 2$ in approx.
Complete assembly and wiring manual 25p, relundable on purchase of kit. with all enquiries.

PSYCHODELIC LIGHTING

UNIT Mk. 3

This unit represents a natural progression from our phenomenally successful Mk. I and 2 Units. As before the drive voltage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency signals into a threecoloured light display; the colour depend. ing on the frequency of the signal and the ing on the frequency of the signal and the
intensity on the loudness of the audio intensity
source.
The unit is constructed on professional fibre-glass printed-circuit board material and uses latest full-wave triac circuitry. There is a master-level control, together with independent sensitivity controls for each channel. The original minimum ambient light level controls have been redesigned permitting their use as faders; allowing dimming from max, to zero at the curn of a knob. R.F.I. suppression is turn of a knob. R.F.l. Suppression is
now incorporated as standard as well as now incorporated as standard ${ }^{2 s}$ well 25 The choice of two inputs enables operation from both high and low power amplifiers. Max. power 1.5 kW per channel at 240 Va a.c.
Complete assembly built and tested. Size 9 in $\times 7$ in $\times 3$ in.
Price 625 carr. paid, S.A.E. with all inquiries.

DABAR ELECTRONIC

 PRODUCTS98a LICHFIELD STREET, WALSALL STAFFS WSI IUZ WALSALL 34365
MAIL ORDER ONLY

OSMABET LTD.
We make transformers
MAINS TRANSFORMERS

AUTO TRANSFORMERS

 83.90; 300 W £5.25: 1010 W 86.30; 200 W 27.50; 600 W 28.25; 7.70 W 69.75; 1.000 W 212.75; 1,500W
 MULTIVOLT TRANSFORMERS
 A. $22 \cdot 25 ;$ OMT4*, ditto 2 A , 83.45 ; OMT5, 1 tapped

25 V 2. $83 \cdot 60$.
LOW VOLTAGE TRANSFORMERS $3,21 \cdot 13 ; 6 A$ CT

 MIDGET RECTIFIER TRANSFORMERS
For FW rect., size $13 \times 2 \times 1\} 11$, Prim. $200 / 240 \mathrm{~V}$ a.c.
 PT3. A. MTV3. 20-0-20V 0.75A, e1.20 each.

O/P TRANSFORMERS FOR POWER AMPLIFIERA KTtif, etc., $84.05 ;-50 \mathrm{~W}, 3 \mathrm{k} \Omega$, A-A $6 \cdot 6 \mathrm{k} \Omega$. 30 W $3 \mathrm{k} \Omega$, A-A, EL34 (KTRR, etc.) 211.40 and to 400 W LOUDSPEAKERS FOR POWER AMPLIFIERS
 E5.80; $35 \mathrm{~W}, 87-20$: $20 \mathrm{~W}, ~ 210 \cdot 50 ; 100 \mathrm{~W}$, 222.50 ;

 G.E.C. MANUAL OF POWER AMPLIFIERS Covering valve amplitiers of 30 to 400 watts, wi price list of transformers and chokes specifiet, 25p. LOUDSPEAKERE

 Bin 3 $\mathrm{SP}, \mathrm{EL} 85$. 3 to ${ }^{\text {R }}$ or 15 ohms, up or duwn, 75p. P. \& P. $15 p$
MINIATURE RELAYS FOR MODELS. ETC.
$1 \times 3 \times{ }_{3}^{3}$ in doz, with transparent cocer, 2 ($: 0$. in 9 ; $10 ; 00$ or $30 V^{\text {d.c. } 50 p \text { eath }}$
BULE TAPE ERASERS
Instant erasire, tape spouls and cas vettes, demag-
netizes tape heals, a.c. $200 / 250 \mathrm{~S}^{\prime}, 22.40$ plus 24 p . \& P . netizes tape lieals, a.c. $100 / 2505,28.4$
PRINTED CIRCDIT ETCHING KITS
PRINTED CIRCUIT ETCHING KITS
 Extra p.c. Boaris gin, 15 p each.
APE RECORDER MOTORS
variety of naes, Blowets, Fabs, tete., new. $230 / 250 \mathrm{~V}$ CONDENSERS
Paper: $0.01 / 2 \mathrm{kV} 12 \frac{1}{3} \mathrm{p} ; \quad 0.1 / \mathrm{hl} 12 \frac{1}{2} \mathrm{p} ; 0 \cdot 22 / \mathrm{kV} 20 \mathrm{p}$; $0.22 / 800 \mathrm{~V}$ a.c. $25 \mathrm{p}_{\mathrm{i}} \mathrm{p} 0.47 / 700 \mathrm{~V} 15 \mathrm{p} ; 0.47 / \mathrm{kV} 25 \mathrm{p} ;$ $4 / 500 \mathrm{~V} 25 \mathrm{p}$. Electrolytics: $100+200 / 2 \pi 5540 \mathrm{p} ; 100+$ $200 / 350 \mathrm{~V} 50 \mathrm{p}: 100+60 / 4.50 \mathrm{~V} 25 \mathrm{p} ; 330+50 / 325 \mathrm{~V}$ $16 \mathrm{p} ; 100+400 ; 275 V 20 \mathrm{p} ; 24 / 4.50 \mathrm{~V} 10 \mathrm{p}: 3500$ To nperate bat tery equipment from mains $200 / 240 \mathrm{~V}$ To nperate batery equipment from mains $200 / 240 \mathrm{~V}$
a.c. Outputs, 6 V , $£ 1.50 ; 9 \mathrm{~V}$, $21.50 ; 7.5 \mathrm{~V}$ (for cassetis'4l. $82 \cdot 00 ; 12 \mathrm{~V} 1 \mathrm{~A}, 83 \cdot 00 ; 40 \mathrm{~V}^{2} 1 \mathrm{~A}, ~ £ 4 \cdot 50$.
8.A.E. INQUIRIES-LISTS. MAIL ORDER ONLY

46 Kenilworth Road, Edgware, Middx. HA8 8YG Tel. $0 \mathrm{I}-9589314$

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: $6 \mathrm{~V}, 9 \mathrm{v}$.
I 8 v (single output) $\mathbf{2}$ each. P. \& P . Sp . l8v (single output) 22 each. P. ap. Sp.
$9 v+9 v ; 6 v+6 v ;$ or $4 i v+4 i v$ (two separate
 output required. All the above units are completely isolated from mains by double
wound transformer ensuring 100\% safety.
R.C.S. PRODUCTS (RADIO) LTD. (Dept. P.E.), il Oliver Road, London, E, 17

OCCULTAPHONICS

Stick your neck out, my old man used to say, and some willing cove will come along and lop it off. True to form, and human nature being the readily predictable thing it so often is, some willing cove very nearly succeeded a month or so back! Stuart White, at that time reporting for one of the big "Sundays", brought to the attention of the public his judgements about the efficacy of an unusual electronic device then available.

Somewhat embarrassingly, this device owed its very inception to me and, to boot, represented about the nearest thing to the "popular" definition of an electronic crystalball that you could wish to find!

Preparation for this mis-guided event began "yonks ago" while I was yet a callow youth in the RAF. One soon discovers at an air-base, however, what a monotonous business life in a control tower can be; particularly so when all the lads have nipped off on a sortie and the only remaining company are a couple of card-playing "a/c plonks" and the idle hiss from a temporarily inactive air-radio. It was this very hiss that had. at one time or another, given rise to an effect that had both interested and perplexed us all.

As I have said, you would be sitting there contemplating your next week-end off, or maybe the one just gone, when suddenly you would be aware that through the background hash from the radio there was a signal feebly breaking through. "Unidentified aircraft, say again," you would call back, but somehow you almost knew that there would be no response, other than the steady rushing sound from the receiver. Any number of operators had witnessed this effect and, indeed, some were convinced that the voices they heard were for real!

Obviously, we must preserve a meaningful perspective and it is probably true to say that since white noise (hiss) contains just about every sound that has ever been produced (but all at once) there's a fair chance that if you listen to it long enough you might ultimately hear speech too. But

Fig. 1
there are even technical reasons for disputing this, so, apart from that "old chestnut" imagination being the culprit, from where do these effects originate?

It was in November 1971 with many of these unsolved questions still uppermost in my mind, that I built a simple little set-up, Fig. 1, in an attempt to discover more. The results were relatively inconclusive, although sufficiently thought provoking for work to continue. The circuit is included for your interest only; its really nothing special, just a white-noise generator followed by an amplifier. Try it if you will.

Only days after White's report, I noticed that a sister newspaper, in direct contradiction to the apparent ethics of the one mentioned earlier, carried almost an entire page on Flying Saucers. Maybe there are "fairies at the bottom of their garden" after all!

STUDENT IC

There's an integrated circuit on the market at the moment which you can actually teach!' This MOS device is an adaptive-logic gate, MC901, produced by the Motorola Corporation and designed, primarily, for feature-extraction in patternrecognition applications.

In essence (Fig. 2) the MC901 comprises a 4 -bit binary to 1 -outof -16 decoder, plus sixteen individual flip-flop memories and associated output gating.
Each gate also has a common connection with a "teach" input such that if it is taken to logical

Fig. 2
"I" (for a brief moment during the time that the decoder input is present) the relevant gate will cause its asseciated flip-flop to change state. Since each flip-flop controls an output gate (which is also connected to the decoder) any subsequent application of the original 4-bit number will result in "recognition" and the output going to " 1 ". A " 0 " at the teach input resets the memory.

The MC901 additionally embodies an inhibit facility which allows several devices to be inter-linked and so accept expansion in the size of input word. An integrated circuit of this kind would, without doubt, obviate almost all the tedium associated with building a complete learning network; trouble is you'll need seven pounds to make the idea a going proposition.

GREEN FINGERS

It shouldn't be long before G. W. Millard of the Reddiglade Nurseries in Kent publishes his paper relating to the effects of manipulation of bio-potentials in trees.
Early in 1971 he was conducting some rather interesting experiments pointing to the fact that trees sometimes increase their rate of growth

when an electric current is passed through them. Of course, rate of growth is largely dependent on the rate at which the organisms' food supplies can reach the sites of actual growth. Since, however, the nutrients are abundant in molecules having electrical charges, an applied current could exert quite a profound influence on a tree's development.

Millard, as yet, has not announced the magnitude of the potentials which need to be applied; indeed workers in several parts of the world have had no luck in establishing the validity of his claims.

It is difficult to say whether the effect is a load of old nonsense or really genuine, nevertheless, I recall some years ago hearing about a sinilar effect involving the control of sap by electrical potential. At that time, the voltage used was about a couple of volts or so, with negative applied to the top of the tree and positive earth to make the sap rise.

Now don't quote me on this, but 1 heard a tale that someone who employed this scheme last year succeeded in bringing some simply beautiful Cox's Orange to maturity real early. Trouble was they got too cute and reversed the current. The "windfalls" made great cider!!

SOLID STATE

By J. S. GRICE b.a.

CNap is an unusual game in that mainly it tests speed of response; we have all played the game as children. There are two good reasons why the game is confined largely to children. One, it is not always eatsy to determine who did shout first, and two, the face of the turning card is not necessarily presented to both contestants simultaneously. For adults such uncertainty and imprecision spoil the game for serious contest.

The apparatus to be described here provides an electronic analogue of the game in which these deficiencies have been overcome. Essentially what is needed is a sudden signal presented simultaneously to the two contestants, and a mode of response such that the priority can be determined infallibly.

GENERAL DESCRIPTION
Snap consists of a small metal case, which contains the circuitry, mounted on a wooden baseboard. and two morse-keys (S1 and S2) also mounted on the baseboard-one on each side of the case. On the top panel of the case are an on/off switch (S4), the reset button (S3) and a centre-zero meter (M1). which indicates the winner.

The apparatus is switched on, the contestants take up their positions one to each key, and the reset button is pushed down and released. After a delay
of about ten seconds the machine emits a highpitched note, and the players respond by depressing their keys as quickly ats possible. The meter pointer swings over towards the key which was depressed first. It is only necessary to depress and release the reset button again to initiate another "round". Perhaps ten "rounds" may be taken to constitute a game.

DESIGN POINTS
An audible signal was chosen since there is no difficulty in ensuring that such a signal is presented to both players simultaneously; also the sound can be produced with due economy of current consumption. A delay of about ten second.s between the operation of the reset button and the sounding of the signal was found to be the most effective period.

Some safeguard is necessary against the inadvertent (or deliberate) premature depressing of a key. It is therefore arranged that if a key is depressed during the delay period the signal will not sound. Nevertheless the meter indicates which key was depressed, and it is suggested that in such circumstances the point is awarded to the other side.

A minor refinement is the automatic cessation of the signal note some ten seconds after a key has been legitimately depressed.

For simplicity of control, one push of the reset button resets and recycles everything; that is, stops the signal note if necessary, initiates the ten second delay, and re-centres the meter.

BLOCK DIAGRAM
The two bistables shown in the block diagram (Fig. I) are cross-coupled; the pulse required to reverse the condition of bistable one is obtained, via

a morse-key (S2), from bistable two; and the pulse required to reverse the condition of bistable two is obtained, via a second morse-key (SI), from bistable one. However, as soon as the initial condition of cither bistable is reversed it is unable to supply a pulse to reverse the condition of the other bistable. It is the two bistables then which determine which key was depressed first. The action is explained more fully in the next section.

Both bistables are linked with the Nor gate. The NOR gate produces an output voltage only when both inputs are zero. This is the case when both bistables are in their initial condition.
. Assuming that the bistables remain undisturbed in their initial condition for a while so that the NOR gate maintains its output voltage, then the delay capacitor will slowly charge up.

Fig. 2. Complete circuit diagram of the Electronic Snap

The slowly increasing voltage at the delay capacitor is passed to the trigger. The trigger has only two output states: a low voltage which prevents the astable from oscillating, and a high voltage which permits the astable to oscillate. When .the input voltage of the trigger rises to a certain level the output switches suddenly from the low voltage to the high voltage, thus producing the signal.

If a key is depressed before the input voltage of the trigger reaches this particular level, then the signal will not be produced. This is because depressing a key reverses the initial state of a bistable thereby causing an input voltage to the NOR gate and hence no output voltage from it, so that the delay capacitor will be discharged.

BISTABLES

Transistors TR1 and TR2 (Fig. 2) form bistable one; TR3 and TR4 form bistable two. The bistable is a familiar building-block in logic circuitry. Here it consists of two transistors, one fully conducting, the other cut-off. A pulse applied at an appropriate point reverses the roles of the transistors, and they remain reversed until another pulse is applied at an appropriate point.

When the apparatus is switched on the state of the bistables is indeterminate. The reset switch (S3) serves to establish the desired initial condition in each bistable. When S3a is temporarily closed the emitterbase junction of TR2 is shorted and this ensures that TR2 is the cut-off transistor in bistable one. Similarly the closing of S3b ensures that TR3 is the cut-off transistor in bistable two.

So, when the play cycle is initiated, in bistable one TR1 is fully conducting and TR2 is cut-off, and in bistable two TR3 is cut-off and TR4 is fully conducting. This means that the collectors of TR1 and TR4 are at near zero voltage, and the collectors of TR2 and TR3 are at approximately full supply voltage. The centre-zero meter M1 connected between the collectors of TR1 and TR4 will not register.

Now we can reverse the state of bistable one by supplying a positive pulse to the base of TR2 via S2 and R6. This will cause TR2 to become fully conducting and TRI cut-off. Once this is done, however, it is not possible to reverse the state of bistable two in a similar manner by depressing Si because the voltage at the collector of TR2 is now near zero. The meter pointer will swing to the left indicating that the collector voltage of TRI is at the supply

Showing the layout of components and tag boards mounted inside the case
voltage while the collector voltage of TR4 remains near zero.

Of course, had we depressed SI first, reversing the condition of bistable two, then the subsequent depressing of $S 2$ would have had no effect on bistable one, and the meter pointer would have swung to the right indicating the collector of TR4 is at the supply voltage.

The two bistables measure which key was depressed first, and since the switching time of the circuitry is much faster than human reaction times, the measurement is entirely reliable.

NOR GATE

The bistables have one subsidiary function. It will be seen that the state of the collectors of TRI and TR4 determines the state of the collector of TR5. When a play cycle is initiated the collectors of TRI and TR4 are at near zero volts, so that there is near zero voltage supply to the base of TR5. Consequently TR5 is cut-off and its collector is at full supply voltage. Should, however, the collector of cither TR1 or TR4 go positive, as happens when a key is depressed, then TR5 will become fully conducting and its collector voltage will drop to near zero. Transistor TR5 is then in effect a Nor gate, giving an output only when it has no input.

The purpose of this arrangement has already been explained. The delay capacitor (C1), which determines when the signal will sound, charges from the TR5 collector voltage. If this voltage is cut off during the build-up period, Cl starts to discharge and there is no signal. Thus the premature depressing of a key is detected. It will be noted, however, that the meter will still register in the usual way which key was depressed first.

Assuming no interruption, Cl will charge up in ten seconds to a voltage sufficient to fire the trigger.

TRIGGER

Transistors TR6 and TR7 comprise the trigger circuit. When a play cycle is initiated Cl is discharged completely by S3c so that there is zero voltage at the base of TR6; this means that TR6 is cut-off. The collector of TR6 is therefore at the supply voltage, and TR7 is fully driven via R20. Although TR7 is fully conducting, its collector is at approximately 3 V
because of the voltage drop across the emitter resistor, R19.
As the play cycle continues the voltage at Cl builds up until a point is reached where TR6 is conducting sufficiently for its collector voltage to fall to such a level that TR7 is less than fully driven. Then a very rapid regenerative switching action occurs so that TR6 becomes fully conducting and TR7 cut-off. The collector of TR7 is now at the supply voltage, and TR8 is driven via $\mathbf{R 2 2}$ so that the astable oscillates.

Depressing a key as already explained causes Cl to start discharging. When the voltage on Cl has fallen to such a level that TR6 is just less than fully driven, then another regenerative switching action occurs, and the trigger circuit reverts to its former state, so that the signal stops. The voltage on Cl which causes the trigger to switch off is considerably lower than the voltage on Cl which causes the trigger to switch on. It takes Cl approximately ten seconds to discharge from the higher to the lower voltage, so that there is a delay of about ten seconds between the depressing of a key and the cessation of the signal.

ASTABLE

The signal note is produced by a conventional astable multivibrator formed by TR8 and TR9. The only unusual feature is that the emitters are connected to the negative line through R24, which is bypassed for a.c. signals by C4. This establishes a voltage platform of 4.5 V above which the astable works. This is necessary because the base of TR8 must be held negative with respect to the emitter when the trigger is in its off condition if the astable is not to oscillate and, as has been shown, the trigger actually outputs 3 V in its off condition.

The collector load of TR9 is the transducer (XI) which produces the sound. This transducer is an earpiece from a pair of headphones-the d.c. resistance was measured at 700 ohms.

CONSTRUCTION

With this kind of circuitry there is nothing critical about component layout or wiring. The neat metal case, complete with hammer-grey finish and handle, can be obtained from Henry's Radio. All the components are mounted on the top panel except the

Fig. 3. Tag board wiring diagram

COMPONENTS

battery S1 and S2. With a total current requirement of about 18 milliamps it was found necessary to use a fairly large 9 V battery; a PP6 is the largest that can be accommodated. The battery can be cemented down inside the box, taking care that there is sufficient clearance for the top panel components.

Most of the circuitry is constructed on two tag strips, shown in Fig. 3, one for the bistables and NOR gate, the other for the trigger and astable. The one for the trigger and astable is mounted over XI and the two boards are wired to the remaining components as shown in the photograph.
A convenient small meter was found in the form of an edgewise-reading balance meter. This is all that is necessary since it is only the direction of the pointer swing that needs to be observed. The meter must have a 100-0-100 microamp movement. Keys S1 and S2 are mounted on the right and left sides of the box respectively. The case and the keys are screwed to a piece of $\frac{1}{2}$ inch thick wood that forms a solid base. The underside of the base can be covered with material to prevent it scratching polished surfaces.

CONCLUSION

Some people are naturally quicker in their responses than others. However, nobody is entirely consistent, and with most contestants quite a number of "rounds" are necessary before one begins to establish a definite superiority. Even with ill-matched contestants, the mismatch is not evident until put to the test.
With well-matched contestants games can be very tense. Concentration appears to be the key to success.
Overall then electronic snap is an exciting game, inheriting from its predecessor the unique property, among competitive games, of testing primarily speed of response.

THE effect of fuzz is to provide change in the tone produced of a guitar or other sound source so adding colour or interest to a particular musical statement.

The particular unit to be described uses cheap and readily available components and compares very favourably, both in cost and performance, with its commercial counterpart.

FUZZ PRODUCTION

In the fuzz unit circuit of Fig. 1 the pre-amplifier TRI magnifies the incoming signal via the socket JKI and this is passed in turn to a Schmitt trigger consisting of TR2 and TR3.

The action of this circuit is to amplify and square
up the signal thus adding distortion to give the characteristic fuzz sound.

To protect the base/emitter junction of TR2 from reverse bias breakdown a diode, D1, is connected.

TONAL VARIATIONS

To introduce some variation in tone a low pass filter C3 is connected to the negative line from C4. The function of this is to shunt some of the higher frequency components of the square wave and so the tone of the output depends upon its value.

In the prototype a $0 \cdot 22 \mu \mathrm{~F}$ capacitor was used to provide a fairly mellow tone. If the value of this is decreased to $0.1 \mu \mathrm{~F}$ or lower, the tone becomes harsher. Obviously, the choice here will depend on personal requirement.

CONSTRUCTION

Small circuit components are mounted and wired on a $3 \frac{3}{3}$ in $\times 2 \frac{1}{2}$ in piece of Veroboard as shown in Fig. 2.

It should be noted that input and output leads from the control panel sockets are screened so as to prevent hum pick-up which might cause unwanted triggering of the Schmitt circuit.

THE UNIT IN USE

When using the unit, it should be borne in mind that while the guitar volume control will not affect the level of fuzz produced, if it is set too low the Schmitt will not trigger and there will be no output to the amplifier at JK2 at all.

It is possible to make a lot of unpleasant noise with a fuzz unit. This can be avoided by never playing "fuzzed" chords or over indulging in the effect in musical passages where fuzz just does not fit in. \star

Fig. 1. Circuit diagram of Fuzz Box

COMPONENTS . . .

Resistors

R1	$1.5 \mathrm{M} \Omega$	R6	$1.5 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$	R7	$6.8 \mathrm{k} \Omega$
R3	$220 \mathrm{k} \Omega$	R8	$1.5 \mathrm{k} \Omega$
R4	$2.7 \mathrm{k} \Omega$	R9	$15 \mathrm{k} \Omega$
R5	$5.6 \mathrm{k} \Omega$		
All	10%	$\frac{1}{4}$ watt carbon	

Capacitors

C1 $5 \mu \mathrm{~F}$ elect. 25 V
C2 $0.1 \mu \mathrm{~F}$ polyester
C3* See text
C4 $5 \mu \mathrm{~F}$ elect. 25 V

Transistors

TR1 BC169C
TR2/TR3 2N2926 (G) (2 off)

Diodes

D1 DD000

Miscellaneous

JK1, JK2 Standard jack sockets (2 off) S1 On/off toggle switch. Control knobs Veroboard $3 \frac{3}{4}$ in $\times 2 \frac{1}{2}$ in 0.15 in matrix, $81-\mathrm{PP} 3$ 9 V battery. Battery connectors

Fig. 2. Veroboard component assembly details and control panel interwiring

ELECTRONORAMA

In Search of the Quark

Two or these 75 in flash tubes from the English Electric Valve Company are used at Leeds University to photograph the tracks of cosmic rays as they pass through a 100 cubic ft cloud chaniber. From these photographs it is hoped to identify minute particles of matter called "quarks"

Computer Helps Conservation

D
girlal Equipment Computers are being used by the Natural Environment Research Council in their fight io conserve British wildlife.
Installed at the Marlewood Research Station in Lancashire. the computer is used to process data, particularly in connection with research into soil chemistry. Dutch Elm Disease. and a nationside survey of woodland.

Atomic Pacemaker

Surgical care is needed in the assembly of electronic modules for a new heart pacemaker at the Raytheon Company. Powered by nuclear energy. the new pacemaker will have a life expectancy of ten years as compared with the two years of the present type powered by mercury batteries

Fluoridation Control

A New type of meter relay from Sifam is to A be used to control fluoridation by the South Derbyshire Water Board. The meter mentions the water flow and has two extra pointers which can be preset so that if the flow drops below the lower setting. fluoridation is stopped. When it again reaches the upper setting. fluoridation is resumed.

Electro-Optics International '72

A lthough this year's exhibition at Brighton brought no startling new breakthroughs, it did highlight the rapid developments going on in this relatively new field.
Present in profusion were GaAsP light enitting diodes (LEDs) reduced in size from the clumsy packaging of only a few years ago to their present size, no larger than a transistor.

LEDs are now finding applications particularly in the field of communications. ITT showed how LEDs could be combined with low-loss fibre-optic cable to provide an efficient information transmission system even in noisy environments such as an aeroplane.

LEDs also appeared in a wide variety of alphanumeric displays. ITT, Monsanto, Motorola and Ferranti all had their latest devices on show.

Liquid crystals are also being developed for alphanumeric displays and in the next few months they should emerge as strong competition to the LED displays.

Vacuum tubes are still holding their own in area of low-level light detection. Also on show were thermal inlaging devices which give a T.V. picture of the temperature distribution of the objects they are viewing. Useful both for medical diagnosis and night security.

Lasers also abounded in applications 100 numerous to mention. Solartron showed a novel use for them in the form of their Simfire system. The laser is used to simulate a gun providing accurate and safe determination of a marksmen's skill.

It was clear from the show that there can no longer be any clear dividing line between the two areas of optics and electronics, so readers should be prepared to find more light creeping into their future projects.

Exhibition Dates

I.E.A. (Instruments Electronics and Automation) will be held at Olympia, London, May 8 to 12

International Audio Festival and Fair will be held in the Grand Hall, Olympia, London, October 23 to 28 .

Fly Fishing

Anew RCA low-light level TV camera that can detect from an aircraft the dim glow of sea plankton being disturbed by fish is being used for night-time ocean surveys.
The camera, which employs an imaging tube similar to the one used in Apolio moon cameras. is being flown at altitudes up to 6,000 feet by the U.S. National Marine Fisheries Service in a new approach to the detection and assesment of ocean fish
Besides detecting fish from the plankton glow, the camera can record the outline of the school. By analysing the size and shape of the outline, scientists hope to be able to determine the species of the school.
The new method of detecting fish is expected to provide scientists with a means of tracking and analysing the distribution and abundance of many types of marine resources. If tests are successful, a commercial version of this camera could one day be used by the fishing industry. One aircraft equipped with such a device might guide a large fleet of boats to the most productive fishing grounds.

A versatile light effects unit for driving one lamp channel from one sound source; this unit adds an extra "strobe" dimensíon to dances, discos and parties. It will handle banks of lamps up to 750 watts in three modes using a thyristor controller.

2 TO 20 MINUTE PROCESS TIMER

This useful timer can be used for a multitude of timing operations where a 2 to 20 minute period is required. It can also be arranged to provide a delay of a preset period before switching on any apparatus.

ALSO a special feature on

STEREO RECEPTION

emanticat

DREGEMIN

PART TWO

LAst month complete circuit details were given with components list. This month the mechanical assembly of the case and tuning drive is given.

METALWORK

The Gemini Tuner is housed in a Contil Mod-2 case, size G; the front and rear grey panels should be cut and drilled as shown in Figs. 13a and 13b. Two extra panels, a dummy front panel and an inner front panel, are reauired and these should be cut from 18 s.w.g. aluminium as shown. Note that the slot in the dummy front panel is $\frac{1}{4}$ inch narrower and $\frac{1}{2}$ inch shorter than the slot in the case itself to facilitate the mounting of the Perspex tuning scale. ansenbly of the cane and tuning drive is given.

BY D.S.GIBES \& I.M.SHAW

This is glued to the back of the dummy front panel and protrudes through the hole in the case. When the holes have been cut the edges of the panel should be smoothed off and it can then either be rubbed with wire wool (using soap and water) to give a "brushed" finish or sand blasted to give a "satin" finish.

The aluminium inner front panel (Fig. 14) supports the tuning drive, the tuning meter and the stereo indicator lamp. The rectangular hole with the two fixing holes on either side are specifically for the type of tuning meter used in the prototype (Type MH-25B) and modifications will be necessary if a different tuning meter is used. The same applies to the is inch hole for the stereo indicator lamp. The prototype used a Thorn 6 V 60 mA miniature pilot lamp, but any similar lamp can be used if the mounting hole is changed to suit. A 12 V 40 mA lamp can be used if R32 is omitted. The finished panel should be cleaned and can then be sprayed black with matt black car aterosol paint. or alternatively, brush painted with blackboard paint. Don't forget to cover up the meter fixing screws with a dab of paint. The tuning meter is mounted with two countersink 8 B.A. screws. A piece of 2 inch wide matt black ahesive tape can be used instead of paint. if desired.

Two small brackets are required to hold the scate lamps in position and these should be cut from 18 s.w.g. aluminium as shown in Fig. 15.

The tuner head spindle should be cut down io 11 inches taking great care not to allow the filings to get into the tuner head assembly. The tuning drum should be positioned on the shaft so that the slot travels through the are shown in Fig. 16. The fixing screws on the drum should be facing the tuner head calse.

TUNING SCALE AND LABELLING

The scale is cut from a piece of inch clear Perspex and is labelled on the front with white Letraset or on the inside with "reverse lettering" Letraset, to contrast with the black background. The calibration is shown in Fig. 17. After lettering the scale should be protected by applying two ligh coats of Letracote

DRILL SIZES
D No. 34 drill
E $\frac{5}{8}$ in dia.
F $\frac{1}{2}$ in dia.
$\mathrm{G} \stackrel{\substack{\mathrm{s}}}{\mathrm{in}}$. dia.

Fig. 13a. Rear grey panel looking at inside

Fig. 13b. Front grey panel looking at inside

Fig. 13c. Front aluminium escutcheon plate

Fig. 13d. Blue base-plate looking at inside

Fig. 20. This screening plate (available with the case) is drilled as shown here

The finished tuning drive assembly

gloss spray. Do not use heavy coats or household varnish as this will cause unpleasant discolouration of the scale.
The dummy front panel should be carefully cleaned and given one coat of Letracote spray before applying the lettering. This gives the panel a smooth surface which the lettering can adhere to better than the bare aluminium. After applying the lettering the panel should be given two further light coats of spray to protect it.
(Letraset and Letracote spray are available from most shops specialising in artist's and drawing materials, and also from some stationers.)

DIAL DRIVE ASSEMBLY

The Perspex scale can now be glued to the rear of the dummy front panel with "Clear Bostik". Take great care not to allow the adhesive to show on the front face and place the scale so that it can pass through the hole in the case.

The scale lamps (l.e.s. with nylon holders) can now be fitted to the inside top of the front panel, using the existing perforated holes to fix the two brackets at each end of the slot. The two lamps are then wired in series, using a length of very thin $1(7 / 0076)$ twin twisted wire, ready for connection to the printed circuit board later.
The two pulleys for the drive cord should be fixed to the inner front panel as shown in Fig. 18 (note: do this before painting the panel) and then the tuning meter, cord drive spindle, and stereo indicator lamp should be fitted to the finished panel. This panel is mounted on five $\frac{3}{3}$ inch spacers to the rear of the front panel of the case, using 6 B.A. countersink screws. Make sure that the heads of the screws are properly recessed. otherwise they will interfere with the fitting of the dummy front panel. The dummy front panel can then be glued into position on the front of the case, taking great care to align the holes correctly. Use clear Bostik, Evostik, or double sided adhesive tape.
The mains transformer and capacitor C39 can now be mounted on the small internal chassis supplied with the case, and the sockets, fuse holder, and switch mounted on the rear and front panels of the case, as shown in the photographs. The box can then be assembled except for the two sides and the top.

POINTER

The Jackson type SL6 pointer is supplied straight, and to avoid parallax error it must be carefully cut and bent as shown in Fig. 19. After bending, fit it on to the inner front panel and make sure that it can slide along the top edge freely. Any fouling can be rectified at this stage by bending to suit. The pointer should be as close to the front
panel as possible without touching. This pointer is supplied with a white finish, but it can be made to stand out very brightly by giving it a coat of "Fire Orange" fluorescent paint.

CHASSIS PLATE

The chassis plate shown in Fig. 20 is supplied with the case and needs drilling. This plate is used to screen the a.c. power section from the rest of the tuner.

MORE ABOUT COMPONENTS

The slide pointer dial drive assembly is made up from components made by Jackson Bros. They are as follows:

Pointer type SL6. No. 4580
Drum $2 \frac{3}{3}$ in dial, No. 3955
Pulley assembly $\frac{1}{2}$ in dia. (2 off), Nos. 4534, 4879, 4880
Cord drive spindle. Type H. No. 5081
Spring for drum, No. 4587
Nylon cord
The Tuner Head is a pre-aligned unit which should never be altered or tampered with; it can be obtained from A.M.C. Electronics Ltd. The coil L2 and Vernitron transfilters are generally available through component suppliers including Home Radio. Neosid coil formers are also generally available through component specialists who advertise in this magazine.

We regret that due to space restrictions the full details of the component assembly and printed circuit board is held over to next month.

SMALL POWER

TRANSFORMERS

 How to design and construct

 How to design and construct
 By P. Duncan

ASMALL power transformer is constructed by winding a coil of insulated copper wire and assembling a treated iron laminated core into it.

The coil can be wound without the aid of a winding machine if certain simplified hand methods are adopted. Assembling the core is no trouble. Wire, core laminations, and other constructional material can be obtained either from clean discarded transformers or new from stockists.

It is feasible, therefore, for the electronics constructor to wind and assemble his own transformers, if the basic principles are grasped.

Before any winding is attempted, however, it is necessary to determine the number of turns, the gauge of wire, and the size of core. A method will be described in this article that reduces the electrical design of transformers to a few calculations.

It is also feasible, therefore, for the constructor to originate his own transformer designs. And when
he does theoretical work in addition to doing the winding, he has the deep satisfaction of completely creating at least one component in his equipment.

THE BOBBIN

The easiest coil winding method employs a flanged bobbin. Bobbins may be made from any stiff insulat ing material such as cardboard or s.r.b.p. The thickness of this material should not exceed $\frac{1}{10}$ in Six pieces of the material are cut, two large pieces for the cheeks, and four smaller pieces for the former. An assembled bobbin is shown in Fig. I Polystyrene cement or impact adhesive may be used to hold the bobbin together, but must not be allowed to come into contact with the enamel insulation on the copper wire.

Dimensions for the various bobbin pieces are given in Table 1. A slot should be cut, or a line of holes drilled, in each cheek before assembly to

Table 1. DIMENSIONS OF BOBBIN PARTS (inches)

Lamination	A	B	C	D	E	F
	Stack		Stack			Stack
4	+1.250	1.47	+0.187	1.094	0.906	+0.062
	Stack		Stack			Stack
${ }^{7}$	+1.500	1.72	+0.187	1.281	1.031	+0.062
	Stack		Stack			Stack
1	+1.625	1.97	-0.187	1.469	1.156	+0.062
	Stack		Stack			Stack
$1 \frac{1}{4}$	+2.000	2.47	+0.187	1.844	1.406	+0.062
	Stack		Stack			Stack
11/2	+2.375	2.97	+0.187	2.219	1.656	+0.062
	Stack		Stack			Stack
$1 \frac{3}{4}$	+2.750	$3 \cdot 47$	+0.187	2.594	1.906	+0.062

Fig. 1. The bobbin is made up from pieces cut from $\frac{1}{16}$ in s.r.b.p. sheet or thick cardboard and glued together. Slots or holes in the cheeks (3) are to allow lead-out wires to be passed out

Fig. 2. A winding jig is made up so that Parts 1 fit inside the bobbin and the Parts 2 prevent the cheeks bulging. Studding and nuts clamp the two ends onto the bobbin; both pairs of Parts 1 and 2 are glued together. Tightness is very important, without damaging the bobbin, to prevent the bobbin assembly slipping. Spigotted washers or key-ways would help

Fig. 3. Cross-section view of a transformer winding

Fig. 4. Method of terminating the winding wire with very thin flexible p.v.c. covered wire. Remove about $\frac{1}{4} \mathrm{in}$ of enamel from winding with very fine emery paper. Do not allow paper pad, lead wire, or soldered joint to slide from top end of winding down the side of the winding where it would take up vital space and prevent the E's from fitting over the sides of the completed coil

Fig. 5. Method of inserting laminations alternately. The insulating coating should face the same way throughout

Fig. 6. The finished winding and lamination assembly
allow the connecting leads (or taps) to be brought out from the windings. If a cardboard bobbin lacks rigidity it may be strengthened by brushing with varnish and allowing to dry. Any sharp corners on the former should be rounded with a fine file to avoid damage to wire insulation.

WINDING DEVICE

The bobbin may be wound with the help of a hand drill supported in a bench vice. The bobbin is held in the chuck by a piece of studding or a long bolt. The set up is shown in Fig. 2. The supporting cheeks shown in Fig. 2 are cut from plywood. Part 1 of each cheek should just fit inside the bobbin; part 2 of each supporting cheek is cut as large as the bobbin cheek but must have a notch adjacent to the lead-out slot. Parts 1 and 2 are glued together.

Keeping count of the number of turns during winding is simplified if only the revolutions of the drill handle are noted. The count must then be multiplied by the gear ratio of the drill to find the number of turns on the bobbin.

The number of turns need not be exact. Even professional manufacturers with automatic machines only work to a turns accuracy of $\pm 2 \frac{1}{2}$ per cent. That is, a winding that should have 1,500 turns is

Table 2. SIZES OF ENAMELLED WIRES AND INTERLEAVING PAPER THICKNESS

1 Area sq in	2 Dia. over Enamel	3 Layer Height	4 Paper Thickness	S. W.G.

Notes for use with Table 2.
All dimensions are in inches.
Column 1 gives the bare copper area for each wire gauge. Column 2 gives the overall diameter including the enamel covering.
Column 3 gives the combined layer height of one layer of the wire plus one layer of the suggested interleaving paper from Column 4.
Column 4 suggests the thickness of interleaving paper for use with the respective wire gauge.
considered satisfactory if it actually contains anything from 1,463 to 1,537 turns.

THE WINDING

The wire should be close wound on to the bobbin in flat even layers, each layer being filled out until the end turn of wire touches and is supported by the bobbin flange. After each layer of wire, a turn of paper the full width of the bobbin and 0.001 to 0.003 in thick is inserted. "Bank" grade typing paper is suitable. The paper should also touch the bobbin flanges at each side, and it should go round the coil $1 \frac{1}{4}$ times so that the overlap may be glued. A coil may therefore be built up from alternate layers of wire and paper. Pile winding and crossed turns of thick wire should be avoided if possible to prevent the risk of shorted turns. The secondary winding shown in Fig. 3 illustrates this method

The method of winding, however, depends on the gauge of wire. 1t is easy to wind 20 s.w.g. wire with every turn lying neatly alongside its neighbour, but it is not as easy to achieve this with a fine wire such as 30 s.w.g.

RANDOM WINDING

Fine wires may be random wound (Fig. 3). In random winding the wire is filled into the bobbin in much the same way that thread is filled into a sewing machine shuttle, except that it is essential not to allow hills and valleys to form on the surface of the winding, otherwise all the turns will not fit into the bobbin.

From insulation requirements a random winding must be divided into sections. There is a maximum number of turns that can be included in each section. Table 3, column 10, gives the maximum number of turns for each core size.

A section in a random winding is created by inserting a turn of the same thin interleaving paper (0.001 to 0003 in) that is used in layer winding. The interleaving paper thickness suggested for use with the various wire gauges in Table 2, column 4, should therefore be used whether the coil is to be layer or random wound. All thin wire windings start and finish with very thin flexible wire connections that are well insulated. Do not use self-adhesive clear tape for insulation or the enamel is likely to be corroded by the adhesive. Tapped windings should also be connected to terminating wire and insulated. Finely soldered joints are always recommended, the enamel being removed with fine emery paper.

LEADS

Transformer windings must be connected to the source of power and to the load circuit. This is best accomplished by flexible leads whether a terminating tag strip is used or not. Leads should provide a good electrical connection and should also be strong enough to withstand handling.

Winding wires of 25 s.w.g. and thicker are strong enough, yet flexible enough in themselves to form lead-out connections. Such a lead may, therefore. be made by extending the winding wire out through the slot in the cheek of the bobbin. This extension may then be covered with sleeving for extra protection. The sleeving should be passed back through the slot so that it becomes anchored within the winding.

If the winding wire is 26 s.w.g. or thinner, then an insulated flexible lead should be soldered on to the first and last turns of the winding. The method
of connection to the last turn is shown in Fig. 4. At the start of a winding, the lead is connected to the first turn of the winding wire in the same way, except that the pad of 0.006 in paper is placed over the joint. The soldered joint should have no sharp points or edges that would puncture the paper pad.

TAPS

If taps are required on a winding, the winding wire need not be cut. The wire should be scraped clean of enamel with fine emery paper for a short distance and a flexible lead soldered on. The insulating pad of paper must now be folded round the soldered joint so that it insulates the joint from the other turns in the winding both above and below.

It is not essential for a strinded flexible lead wire to have a total copper area equal to the copper area of the winding wire to which it is connected. As a general rule. a popular lead wire such as 7 i 36
(7/0076), that is, a lead built up from seven strands of 36 s.w.g. tinned copper wire, may be used with all thin winding wires.

THE HEIGHT CHECK

Design Table 3 gives, for each core size (assuming at in former). the wire gatuge and the number of turns for a 250 volt primary winding. This primary leaves a certain space in the bobbin into which the secondary must fit. Normally, if the bobbin is not overloaded, the secondary will indeed fit.

Unfortunately, for certain combinations of secondary volts and amperes. the secondary will not fit. The build up of winding height for the secondary should therefore be checked before a transformer is wound.

The method of checking the secondary build up is explained in Step 5 of the practical example that follows later.

Table 3. TRANSFORMER DESIGN TABLE, $50 \mathrm{~Hz}_{2}$

Notes for use with Table 3

All dimensions are in inches.
Column 1 is the maximum volt-amp rating for the core given in Columns 2 and 3.
Column 2 gives the size of the centre tongue of the required lamination. This is dimension " A " in the lamination table, Table 4.
Column 3 gives the stack of laminations required. The stack is shown in Fig. 6.
Columns 4 and 5 give the wire gauge (s.w.g.) and turns for a 250 V 50 Hz primary.
Column 6 gives the turns per volt for the secondary. The secondary voltage should not be greater than 500 V .
Column 7 gives the wire area in square inches per ampere for use with any secondary.
Columns 8 and 9 give the space that is available in the bobbin for the secondary winding after the given primary has been wound.
Column 10 gives the maximum number of turns that may be wound in a random section without the insertion of interleaving paper.
Column 11 gives the total weight of wire required for the transformer. The weight of wire required for either a primary or a secondary winding will be one half of this figure.

In calculating the build up, the layer height from Column 3, Table 2, should be used whether the secondary is to be layer or random wound. A layer wound secondary of, say, ten layers of 25 s.w.g. would have a total winding height of 10×0.0258 $=0.258 \mathrm{in}$. If the same winding were to be random wound then the same height calculation should be made.

Although the layer of paper that normally follows every layer of wire is omitted in a random winding, it is found that the build up of a random winding is approximately equal to the build up of a layer winding. A random winding has less paper in it, but it becomes untidy as the winding progresses and therefore uses space inefficiently compared to a neat layer winding.

In the case of a high current secondary it is permissible to wind with two or three wires in parallel, but when the height is checked it must be remembered that the winding consists of side by side turns of a multiple wire.

CORE ASSEMBLY

The core laminations are insulated one from the other to prevent the circulation of eddy currents that could overheat the core and damage the transformer.

The most common arrangement for transformer laminations is the pairing of " E " and "I" pieces. Table 4 lists the dimensions of typical EI laminations. For use on 50 Hz supplies the lamination thickness should be in the range 0.010 to 0.025 in.

Iaminations are usually referred to by the width of their centre tongue which passes through the bobbin. In Table 4, a lin lamination is the lamination with dimension " A " equal to 1 in.

When the winding is complete the core laminations are stacked into the bobbin by first inserting the Elamination then the I lamination alternately (Fig. 5). The insulated surface on all laminations must face the same way. The bobbin is filled with E's and I's until it is full, the last piece being a firm fit otherwise excessive hum will result when the transformer is energised. If necessary, the correct degree of tightness can be obtained by tapping a thin card wedge, or some other non-metallic packing material, in at the top of the stack as shown in Fig. 6.

It is necessary to hold the two outside I's in place with the mounting brackets or clamps.

With the E's and I's all in place, the core should be finally squared up by tapping on a flat surface with a small block of wood.

OVERSIZE COILS

It may be found that after a coil is wound the E laminations will not fit into the bobbin because the windings have built up until they bulge beyond the edge of the bobbin cheeks.
An oversize coil is either caused by there being too much wire and paper in the bobbin or it is caused by insufficient tension having been applied to the wire during winding. If the present design method is followed, an oversize coil due to excessive wire and paper should not occur.

Insufficient winding tension merely results in the coil being loose and spongy, and such a coil can be used if the winding is gently compressed before the insertion of the laminations. The vice method is shown in Fig. 5, but is not to be recommended unless extreme care is exercised to prevent the laminations chafing the winding. The best solution really is to strip and rewind the bobbin.

INSULATION

Enamelled winding wire should be used. The enamel, however, is usually only about 0.0005 in thick. Where two wires touch, therefore, the total thickness of insulation between them is 0.001 in (or one thou). The maximum working stress that can be placed on the insulation in a home constructed transformer is about 50 volts per 0.001 in . Hence the reason for splitting a random winding into sections. The sections ensure that not more than 50 volts will ever occur between adjacent wires.

A barrier of insulation 0.010 in thick should be wound on top of the primary winding before the secondary is started. It is usual to build up this barrier from three turns of 0.003 in paper (e.g. thickness of bond typing paper). Fig. 3 shows the location of the insulation barrier between a primary and a secondary winding.

The outer surface of the secondary winding may be protected by covering with one or two layers of insulating paper tape or, better still, cambric. The tape should be pulled tight so that it holds the windings firm within the bobbin.
There is a possibility of the sharp corners on the legs of the E laminations to cut into the surface of
the coil during assembly of the core. It is advisable, therefore, to fit stiff paper channels, 0.010 thick, on each side of the completed coil before inserting the E's. The channels can be seen in Fig. 6. There is no need to put adhesive on the channels; the first E will hold them in place.

Small quantities of electrical insulating paper are difficult to obtain and the enthusiast must improvise. Thin brown wrapping paper, clean writing paper, typewriter paper, office file covers, all are possible alternatives. A matt finish paper is better than a gloss paper because the wire beds into it better.

A dry unprotected transformer will give years of service in a domestic indoor location. But if a transformer is for use in portable equipment, or a damp location, then protection against the ingress of moisture is necessary. Such protection can be obtained by dipping the completed transformer in wax, or by brushing it with varnish. Before dipping or brushing, the transformer should be dried out by warming for two hours in a moderate oven set to $212^{\circ} \mathrm{F}$.

There is the possibility, particularly with mains and audio power transformers, for buzzing to occur. This is usually the wire or laminations vibrating in sympathy with the a.c. supply. The best cure is wax dipping using beeswax or paraffin wax.

SPECIFICATION

Before a transformer can be designed the following electrical parameters must be known: (a) the voltamp rating (VA); (b) the primary voltage; (c) the secondary voltage; (d) the secondary current; (e) the voltage of any taps that are required on either the primary or secondary.

For most small power transformer applications the VA rating of the transformer is equal to the rating of the load in watts.

DESIGN

By making use of Table 3, the design is reduced to the following six steps.

1. A core with a VA rating equal to or greater than the VA rating of the proposed transformer is chosen via column 1.
2. The wire size and the number of turns for the primary are copied from columns 4 and 5 .
3. The number of secondary turns is determined by multiplying the secondary voltage by the turns per volt figure from column 6 .
4. The area of wire required for the secondary is found by multiplying the secondary current by the current density from column 7. The first wire gauge with an area in excess of this calculated area is then chosen from column 1, Table 4.
5. A height check is made to ensure that all the secondary turns of the chosen wire gauge will fit into the bobbin. Columns 8 and 9 , Table 3, give the winding width and height that remains for the secondary winding.
6. If taps are to be included in the windings, the location of each tap is determined and space should be allowed for the extra bulk at terminations.

The complete design procedure is illustrated by the flow diagram in Fig. 7.

EXAMPLE

A transformer was required to power a piece of equipment that was rated at 115 volts, $50 / 60 \mathrm{~Hz}$,

70 watts from 250 V 50 Hz mains supply. The following specification was required:
Rating: 70VA.
Primary: 250 volts, 50 Hz , with taps at 210 volts and 230 volts.
Secondary: $115 \mathrm{~V}, 0.61 \mathrm{~A}$, with a tap at 110 volts. (Note: $0.61 \mathrm{amps}=70 \mathrm{VA} / 115$ volts)
The design went as follows.
Step 1. From columns 1, 2 and 3 of Table 3, the first core capable of delivering 70 VA is built up from a lin lamination with a stack of 2 in .
Step. 2. From columns 4 and 5 , the primary wire size is 30 s.w.g. and the primary turns are 765 .
Step 3. In column 6, the secondary turns per volt is 3.36. Therefore, for 115 volts, the number of secondary turns is $3.36 \times 115=386$.
Step 4. The required wire area for the secondary is found by multiplying 0.61 A by the current density in column 7. The wire area is therefore $0.61 \times$ $0.000380=0 \cdot 000232$ square inches. And from Table 2, a wire gauge of $27 \mathrm{~s} . \mathrm{w} . \mathrm{g}$, is required to meet this area.
Step 5. From column 8 of Table 3, the available winding width between the cheeks of the bobbin is 1.344 in (see dimension " A " Fig. 8). From column 2, Table 2, the overall diameter of $27 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. is 0.019 in . Therefore $1.344 / 0 \cdot 019 \simeq 70$, is the number of turns that may be wound in each layer of the secondary.
If 70 turns go on each layer, and if the total secondary turns are 386 , then $386 / 70=5 \cdot 5$ layers

Fig. 7. Flow diagram of design procedure using Table 3. If the winding height calculated for the secondary in Step 5 exceeds the available height given in column 9, Table 3, then the next larger core size should be chosen and the design procedure repeated by looping back to Step 2
are required to accommodate the secondary winding. But since 0.5 of a layer occupies the same build up in height as a whole layer, then the number of secondary layers must be considered as six.

From column 3. Table 2, the height of each layer of 27 gauge is 0.021 in , therefore $6 \times 0.021=$ $0 \cdot 126$ in will be the total build-up in height for the secondary winding. From column 9, Table 3, the height available for the secondary winding is 0.150 in (see dimension "B" Fig. 8). There should therefore be plenty of room for the secondary on top of the primary.

Fig. 8. Designing for optimum bobbin size. Dimension " A " is the available winding width between the flanges of the bobbin for both the primary and the secondary windings. The value of " A " for each core size can be found in column 8, Table 3. Dimension " B " is the winding height remaining for the secondary after the primary has been wound. The value of " B " for each core size can be found in column 9, Table 3

Fig. 9. Finished transformer with mounting clamps

Step 6. The location of a tap is determined by dividing the total number of turns in a winding by the full winding voltage and then multiplying the result by the voltage at which the tap is required.

In this design, the 230 volt primary tap must be made at $(765 / 250) \times 230=704$ turns. The primary 210 volt tap must be made at $(765 / 250) \times 210=$ 643 turns. And the secondary tap must be made at $(386 / 115) \times 110=369$ turns for 110 volts.

The final design was therefore:
Core: lin lamination with a 2 in stack.
Primary: 765 turns of 30 s.w.g. wire tapped at 704 and 643 turns.
Secondary: 386 turns of 27 s.w.g wire tapped at 369 turns.

CONSTRUCTION

The bobbin was made from ${ }^{1}$ isin cardboard. The primary was random wound in five sections, which required the insertion of a turn of interleaving paper every 153 turns (or every 41 st turn of the drill handle since the gear ratio of the hand drill used in the winding was $3 \cdot 73: 1$).

Interleaving paper was cut from sheets of new typewriter paper that was 0.0025 in thick. P.V.C. insulated lead wire, $7 / 36$, was used for all taps and also at the start and finish of both primary and secondary.

On completion of the primary winding the height remaining for the secondary measured 0.125 in. That is, dimension " B " Fig. 8, measured $0 \cdot 125 \mathrm{in}$. Column 9 , Table 3, states that there should be $0 \cdot 150 \mathrm{in}$ remaining for the secondary after the primary has been wound. The primary winding was therefore oversize and occupying more space than it should.

To reduce the excessive coil build up, the secondary was wound as tightly as possible in three random sections. The turns of interleaving paper being inserted at the 128th and at the 256th turn of wire.

On completion of the secondary winding the finished coil was oversize and the E laminations would not go in. The laminating method shown in Fig. 5, however, enabled the insertion of the E's and the core was successfully assembled.

The 0.001 in channels that protect the windings during the laminating operation were made from an office folder.

Four lengths of $\frac{1}{2}$ in steel strap are cut and shaped into mounting brackets. The brackets can be seen in Fig. 9, which shows the final appearance of the completed transformer. Before testing, wire up the primary winding to the 250 V a.c. supply via a 3 A fuse. Use a reliable meter for checking a.c. voltage tappings.

TESTING

On test, with 250 volts applied to the whole primary winding, the primary taps measured 232 and 211 volts. The open circuit secondary voltage measured 125 volts, with the tap at 119.5 volts.

After allowing two hours running to warm up, the secondary full load voltage measured 116 volts.

In the author's opinion the most exacting part of the construction is the making of the bobbin. The winding, which at first may be thought the major problem, proved easy, and only required about half an hour for each winding.

TELEPHONE DIALS

 Suandard Post Office type.Guaranteed in working order. ONLY 50p COMPLETE TELEPHONES
X. G.P.O. NORMAL household type

ONLY 95p
POST \& PACKING 35p EACH

NEW TESTED AND GUARANTEED PAKS			
01	4	Photo Cells, Sun Batceries. 0.3 to 0.5 V .0 .5 to 2 mA .	50p
B79	4	IN4007 Sil. Rec. diodes 1,000 PlV lamp plastic	50p
88	10	Reed 5 witches, mixed types larse and small	50p
B99	200	Mixed Capacitors. Approx. quantity, counted by weight	50p
Н4	250	Mixed Resistors. Approx. quantity counted by weight	50p
H7	40	Wirewound Resistors. Mixed rypes and values.	p
H8	4	BY127 Sil. Recs. 1000 PIV I amp. plastic	p
н\%	2	OCP7। Litht Sensitive Photo Transistor	50p
H/2	50	NKTI55/259 Germ diodes, brand new stock clearance	p
साठ	10	OC71/75 uncoded black glass typa PNP Germ.	p
H19	10	oc81/81D uncoded white glass type PNP Germ.	p
H28	20	OC200/1/2/3 PNP Silicon uncoded TO-5 can	50p
H29	20	OA47 zola bondea diodes coded MC52	50p

NEW UNMARKED UNTESTED PACKS

$$
\begin{aligned}
& \text { Bo6 } 150 \underset{\text { Min. alass type }}{\text { Gemanium Diodes }} \quad \text { 50p } \\
& \text { eas } 200 \begin{array}{c}
\text { Trans. manufacturefs' rejects } \\
\text { ail types NPN, PNP. sii. and }
\end{array} 50 \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bes } 50 \begin{array}{l}
\text { sil Diodes subimin. } \\
\text { ingla and ingictypes }
\end{array} \quad 50 \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ei } 50 \begin{array}{c}
\text { Germanium Transistors } \\
\text { PNP, } A F \\
\text { and } R F
\end{array} \quad \mathbf{5 0 p} \\
& \mathrm{H}_{6} 40 \begin{array}{l}
250 \mathrm{~mW} \text { Wener Diodes } \\
\mathrm{DO}-7 \mathrm{Min} \text { Glass Type }
\end{array} \quad \text { 50p } \\
& \text { Hio } 25 \begin{array}{c}
\text { Mixed volss. } \\
\text { Top hat eype }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { H15 } 30 \begin{array}{c}
\text { Top Hat silicon Rectifiers, } \\
750 \mathrm{~mA} \text {. Mixed volss }
\end{array} \quad \mathbf{5 0 p} \\
& \text { H16 } 8 \begin{array}{c}
\text { Experimenters }{ }^{2} \text { Pik of } \\
\text { Integrated Circuits. Dats } \\
\text { supplied }
\end{array} \quad 50 \mathrm{p}
\end{aligned}
$$

MAKE A REV COUNTER

 FOR YOUR CARThe 'TACHO BLOCK' This encapsulated block will zurn any o. 1 mA meter into a linear and accurate rev. counter for any car with

C1 each

FULLY TESTED AND MARKED SEMICONDUCTORS			
AC107	${ }_{0}^{6.15}$	OC170	${ }_{0}^{6}$
	0.15 0.17	${ }^{\circ} \mathrm{Cl} 171$	0.23 0.25 0.25
	0.15	- ${ }^{2} 201$	0.25 0.25
	0.20 0.20	${ }_{2}^{26301}$	0.13 0.13
A AF239	0.30	${ }_{2}{ }^{2} \mathrm{~N} 711$	${ }_{0}^{0.50}$
		2 N 1302.3	0.15
ACCI54	0.20	${ }_{2} \mathrm{~N}^{2} 306-7$	0.20
${ }_{\text {日Clog }}$	-19	${ }_{2}^{2 N / 308989.9}$	($\begin{aligned} & 0.22 \\ & 0.45\end{aligned}$
8C109	0.10		
8 BF 274	0.20	Power Transistors	
BEF50	0.15	$\bigcirc \mathrm{OC20}$	0.50
BSY26	0.13	\bigcirc	- 0.25
${ }_{\text {BSY28 }}$	0.13 0 0 13	- ${ }^{\circ} \mathrm{C} 26$	- 0.25
	0.13	- C^{35}	0.25
${ }^{\text {BSC41 }}$	O.15		0.37 0.30
OC44	$0 \cdot 13$	AUY10	1.25
	- 0.10	${ }_{\text {2SO34 }}^{2 N 3055}$	0.25 0.50
OC72	0.10		
OC81 OC810	0.13	Diodes	10
$\bigcirc{ }^{\circ} \mathrm{C} 3$	0.18		0.09
OC139	0.13		0.09 0.09
OC140	0.15	1N9114	0.07

F.E.T. PRICE

BREAKTHROUGH!!
This field effect transistor is th 2N3823 in a plastic encapsulation, coded as 3823 E . It is also an excellent replacement for the 2 N 3819 . Data sheet supplied with device. 1.10 30p each, $10.5025 p$ each, $50+20 p$ each.

FREE catalogue
 FOR

 transistors, RECTIFIERS, DIODES, integrated circuits. full pre-pak LISTS
8 reans VARIOUS TYPES \quad E P. \& P. 250

COLOURT.V. LINE OUTPUT TRANSFORMERS
Designed to give 25 kV when used with PL509 and PY500 valves. As removed from colour
receivers at the factory. NOW ONLY 50p each NOW ONLY 50p each
post and pocking $23 p$.

BBIO5 Varicap Diodes

OC71 or 72 Fully Tested
Unmarked 5p 5p 4p
Matched Sets I-OC44 and
2-OC45's. Per See 25 p 20p 15 p
2-OC45's. Per Set.
Manched Sets
OA47 Gold-8onded Diodes,
Marked and Tested 7.5
$24,27,30,36,43$ Volts
10 -watt Zener Oiodes 5 .
$8.2,11,13,16,24,30$,
100 Voles \quad 20p 17p 15p $\begin{array}{llll}\text { Micro Switches, S/P. C/O } & \text { 25p } & \text { 20p } & \text { 15p } \\ 1.2 \mathrm{mp} \text { Bridge Rec's } 25 \text {-volt } & \text { 25p } & \text { 22p } & \text { 20p }\end{array}$ INTEGRATED CIRCUITS Quantity $11010.5050+$ $\begin{array}{lllll}\text { SL403D Audio Amp. 3-Watss } & 2.00 & 1.95 & 1.80 \\ 709 C \text { Linear Opo. Amp. } & 25 p & 20 p & 15 p\end{array}$ $\begin{array}{llll}\text { Gates. Factory Marked and } & & 25 p & 20 p \\ 25 p & 22 p & 20 p\end{array}$ K. Fhip-Flops Fac

Marked and Testad by
A.E.I
$\begin{array}{llll} & \text { R.E. } & & \\ & \text { 40p } & 35 \mathrm{p} & 30 \mathrm{p}\end{array}$ $\begin{array}{llll}\text { Ul914 Dual } 21 / P \text { Gate } & \text { 50p } & 45 p & 40 \mathrm{p} \\ \text { 40p } & 35 \mathrm{p} & 30 \mathrm{p}\end{array}$

LOW COST DUAL INLINE I.C.
SOCKETS
14 pin type at 15p each
16 pin type at 16 p each.

BOOKS

BULK BUYING CORNER

We have a large selection
Reference and Technical Books in stock.
These are just two of our popular lines
Substitutes: 40 p
This includes many thousands of British U.S.A, European and C.V. equivalents. The lliffe Radio Valve ${ }^{\text {a }}$ Transistor Data Book 9th Edition:
Characteristics of 3.000 valves and rubes 4,500 Transistors. Diodes, Rectifiers and Integrated Circuits.
BAY31-36, 44.50 per 1,000 .
NPN/PNP Silicon Planar Transistors, Plastic TO.18, NPN/PNP Silicon Planar Transistors, plastic TO.18,
similar to BC13/4. BCI53/4, BFI53/160, etc., 44.25
per 500 ; ES per 1,000 .

OC44. OC5S Transistors fully marked and tested.

OC71 Transistors, fully marked and tested, $500+$ as
3623E Field effect Transistors. This is the 2N3823
Plastic Case, $500+13 \mathrm{p}$ each; $1.000+10 \mathrm{p}$ each.
1 amp Miniature Plastic Diodes:
IN $4001.500+$ at $4 \mathrm{p} \mathrm{each}: 1,000+$ as 3 p each
in 4000 F
IN4004, $500+$ at 50 each, $1000+$ at $4 p$ each.
IN4006. $500+$ at $6 p$ each, $1,000+$ at $5 p$ each.
in $4007.500+$ at $8 p$ each, $1,000+$ at $7 p$ each.

Send for lists of these English publications.

NAME
ADDRESS

MINIMUM ORDER 50p. CASH WITH ORDER PLEASE. Add 10p post and packing per order OVERSEAS ADD EXTRA FOR POSTAGE

BSR LATEST SUPERSLIM STEREO \& MONO
Play 12 , $10^{\prime \prime}$ or $7^{" r o c o r d s . ~}$ quality unit backed by BSR roliability with 12 monthe guarantee. AC 200/250v. Sise 18111 tin. Above motor board 3 inin.
below motor board 21 in . below motor board zin.
with STEREO and MONO XTAL $£ 8.75$ poat 25 pp . MORO-COMPATIBLE £7.75 Post 28p. Plays all recorda
 Playsall recordi
RCS DE-LUXE 3 WATT AMPLIFIER. Ready made tosted 2-stage triode pentode valve UCL82, 8 watts output. Tone and volume controls, Rectifer valve UY85. Knobs with
high periormance loudspeaker. high perlor mance loudspeaker
R.C.S. PORTABLE PLAYER CABINET

$£ 4$

POB
250

Really smart appearance with apace for R.C.S. Ampliflers and most modern autochangers. Size $18 \times 15,8$ in Metal fttings. Carrying handle. Popular Colours. Twotone rexine covered.
GARRARD SINGLE PLAY TA MEII. atereo/mono plug in head.
GARRARD AUTOCHANGERS with Sonotone Cartridges. Gorto Diamond and mono 8apphife. Hodel 8500 sterco BSR JUNIOR SINGLE PLAYER. Turntable. 64.50 4-speed motor and separate pick-up.
EMI PICR-UP ARM. With mono xtal and stylue $21-25$. Btereo/Mono 9TA E2.50: GP94 E2. 50 ; GPOB 29 Sapphire Mono GPO1 \&1.50; Powerpoint LP/78 80p

comprising a fine example of a Wooter
10! 6in. with a massive Ceramic Magnet, 4402 , Gauss 18,000 lines. Aluminium Cone centre to improve Gidde and top response. Also the E.M.I. hightweight paper cone and magnet finx
 10,000 lines

Impedance Standard

Maximum power
Useful Response
Basi Resonance
8 obms
35 to 18
SUITABLEENCLOSURE $20 \times 13 \times 9 \mathrm{in}$ c9. POST 25p.

WEYRAD P50 - TRANSISTOR COILS

 RA2W Ferrite Aerial... 72p Spare Cores \&rd I.F.P50/sCC kc Prd I.F. P50/8CC P51/1 or .38 p Printed Circuit, PCA Pullard ${ }^{38 \mathrm{p}}$ Weyrad Boote

38 p	Weyra
38 p	OPT1

$.8 p$ $.58 p$

 $.58 p$$.58 p$
 VOLUMECONTROLS ${ }^{80}{ }^{\circ \mathrm{omm}}$ Coax 4 p yd. Long spindles. Midget size BRITISH AERIALITE EK. ohma to 2 Meg . LOG or AERAXIAL-AIR SPACED STEREO L/S 55p. D.P. 75 p . FRINGE LOW LOSS 10 p Edge 5K. S.P. Trazaisior 25p, Ideal 825 and colour y

8in. ELAC

HI-FI SPEAKER

Dual cone plasticised roll surFound. Large coramic matnet. $50-1$ b,000 cps. Bass resonance
50 cpa.
5 ohm 50 ppi. 80 hm
impedsnce. 10 watt impodance. 10 watta $\$ 4-80 ~$
matic power.

BLANK ALUMLALUM CHASSIS. 18 s.w.g. 2!id. side $6 \times \operatorname{in} .45 \mathrm{p} ; 8 \times 6 \mathrm{in} .83 \mathrm{p} ; 10 \times 7 \mathrm{in} .65 \mathrm{p} ; 12 \times 8 \mathrm{in} .85 \mathrm{p}$,
$14 \times 81 \mathrm{n}, 80 \mathrm{p} ; 16 \times 6 \mathrm{id} .80 \mathrm{p} ; 12 \times 3 \mathrm{in} .50 \mathrm{p} ; 16 \times 10 \mathrm{in} .81$
 $14 \times 8 \mathrm{in} .16 \mathrm{p} ; 10 \times 7 \mathrm{in} .18 \mathrm{p} ; 12 \times 5 \mathrm{in} .20 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p}$
$10 \times 6 \mathrm{in} .28 \mathrm{p} ; 14 \times 9 \mathrm{in} .34 \mathrm{p} ; 12 \times 12 \mathrm{in} .40 \mathrm{p} ; 16 \times 10 \mathrm{in} .50 \mathrm{p}$. 1tinch DLAMETEER WAVECHANGE SWITCHES. 25p
8 p . 2-way, or 2 p .6 -wiy, or $3 \mathrm{p} .4-$ way 25 p each

"THE INSTANT" BULK TAPE
ERAER \& HEAD DEMARNETISER
2012507.A.C. 22.35 Pont

HI-FI STOCKISTS.

RETURN OF POST DESPATCH.
R.C.S. STABILISED POWER PACK KITS All parts and instructiong with Zener Diode, Printed Circuit, brigit $200 / 240 \mathrm{Y}$ a.c. Output voltages a vailable 6 or 8 or 18 or 15 or 18 or 20 V d.c. at 100 mA or less

R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal Lor Mike, Tape, P.U., Guitar, etc. Can be used with Battery 8-18v. or H.T. line 200-300v. D.C. operation. Size For use with' valve or transiator equipment. $90 p$ Pont For use with valve or transiator equipment.
Full inatructions supplied. Detaila S.A.E.

NEW TUBULAR ELECTROLYTICS

NEW	AR	ELECTRO	ICS	CAN TYPES	
2/350V	14p	$250 / 25 \mathrm{~V}$	14D	$50+50 / 350 \mathrm{~V}$.	
$4 / 350 \mathrm{~V}$	14]	500/25V	20D	60+100/350V	

$4 / 350 \mathrm{~V}$	\cdots	14 p	$500 / 25 \mathrm{~V}$	14 p	$50+80 / 350 \mathrm{~V}$	85 D							
$8 / 450 \mathrm{~V}$	14 p	$1000 / 25 \mathrm{~V}$	35 p	$60+100 / 350 \mathrm{~V}$	58 p			$8 / 450 \mathrm{~V}$	14 p	$1000 / 25 \mathrm{~V}$	35 p	$32+32 / 250 \mathrm{~V}$.	18 p
:---	:---	:---	:---	:---	:---								
$16 / 450 \mathrm{~V}$	15 p	$1000 / 50 \mathrm{~V}$	47 p	$32+32 / 450 \mathrm{~V}$.	33 p		$32 / 450 \mathrm{~V}$	20 p	$8+8 / 450 \mathrm{~V}$	18 p	$32+32 / 450 \mathrm{VV} \cdot$	38 p	
:---	:---	:---	:---	:---	:---								
$25 / 25 \mathrm{~V}$	10 p	$8+18 / 450 \mathrm{~V}$	20 p	$350+325 \mathrm{~V}$	50 p		$50 / 50 \mathrm{~V}$.-	10 p	$8+18 / 450 \mathrm{~V}$	20 p		
:---	:---	:---	:---	:---									
$16+18 / 450 \mathrm{~V}$	25 p	$32+32+32 / 350 \mathrm{~V} 4 \mathrm{p}$			$100 / 25 \mathrm{~V}$.. $10 \mathrm{p} \quad 32+82 / 350 \mathrm{~V} 25 \mathrm{p} \mid 100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$ LOW VOLTAGE ELECTROLYTICS.								

$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{D} ; 25 \mathrm{~V} 20 \mathrm{p}$; 50 V 30 p .
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
2000 mF 6V 25p; 25V 42p; 50 V 57 p.
2500 mF 50 V 82p; $3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 85 \mathrm{p}$. 5000 mF 6V $25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$.
CERAMIC, 1 pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mics 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$. PAPER $350 \mathrm{~V}-0.14 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$. $00 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; \quad 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$. $200 \mathrm{pF} 10 \mathrm{p} \cdot 2700-5,800 \mathrm{pF} 20 \mathrm{p} \cdot 6800 \mathrm{pF}-0.01$ pr 8 p ; $580-$ TWIN GANG " 0 -0" $208 \mathrm{PF}+178 \mathrm{pF}$ 85p drive $368 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}$, 50 p : 800 pF slow motion, standard 45p; small 3 -gang 500 pF $£ 1$. 80 . SHORT WAVE SINGLE. $10 \mathrm{pF}, 30 \mathrm{p}, 25 \mathrm{pF}, 55 \mathrm{p}, 50 \mathrm{pF}, 85 \mathrm{p}$. NEON PANEL INDICATORS 250 V ACDC Red or Amber 20 p .
 HIGH 8TABILITY. $\frac{1}{2}$. $2 \% 10$ ohms to 1 meg., 10 p . Ditto 6% Preferred values 10 ohms to 10 meg., 4 p . 10 ohms to 100 K 10peach; $2 \frac{1}{2}$ watt, 1 ohm to 8.2 ohm 10 p .

DECCA DECCADEC GARRARD MOTOR UNIT Mk. II Single piay Stereo Mono Deram transcription head and arm Four apeeds. 10 in turntable. Antiorumble fller. Bias compensation.

 $\stackrel{\mathrm{Pos}}{250}$

METAL PLINTH AND PLASTIC COVER Cut out ready for Garrard or B.S.R. Will play with cover in position. leatherette. Antimagnetic. blach 12 $\frac{1}{3}$ 14! $7 \frac{1}{3}$ in. high. \qquad ALSO AVAILABLE IN SOLID NATURAL MAHOGAN WAX POLISHED FINISH AT SAME PRICE

MAINS TRANSFORMERS
All poast
$250-0-25080 \mathrm{~mA} .6 .3$ v. 4 amp............. $350-0+35080 \mathrm{~mA} .8 .3$ v. 3.5 a. 6.3 v. 1 a, or 5 v. 2 a. $\mathbf{x 2} .50$
 MINIATURE 200 ч. $20 \mathrm{~mA}, \mathrm{~B}_{6} .3 \mathrm{q} .1 \mathrm{a}, 21 \times 24 \times 2 \mathrm{in}$. MDGET 220 マ. $45 \mathrm{~mA} ., 6.3$ จ. 2 a . $23 \times 2 \frac{1}{2} \times 2 \mathrm{in}$. MINL-MAINS 20 v .100 mA . $1 \mathrm{i} \times 1 \mathrm{I} \times 1 \mathrm{iln}$
HEATER TRANS. $6.3 \mathrm{\nabla} .3 \mathrm{a}$.
Ditto tapped sec. 1.4 q. $2,3,4,5,6.3$ p. $1 \frac{1}{2}$ amp.
GESERAL PURPOSE LOW VOLTAGE TADPed at $2 \mathrm{amp} ., 3,4,5,8,8,8,10$ VOLTAGE. Tapped outpate 1 amp., $6,8,10,12,16,18,20,24,30,36,40,48,80$. 22.25 $2 \mathrm{mmp} .16,8,10,12,16,18,20,24,30,38,40,48,60$. 83.25 5 amp. 6, 8. $10,12,16,18,20,24,30,36,40,48,60$ 28.75
AUTO TRANSFORMERS. 115 v to 230 vo 230 to 1160 . 150 w . $22 \cdot 25$; $500 \mathrm{w} .56 \cdot 25$; 750 w .110 ; 1000 w . 214 . CHARGER TRANEFORMERS. InDut $200 / 2500$.
 FDLL WAVE BRIDGE CHARGER RECTIFIERS:

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS With iwin tweeters.
And crossover. 10
watt. State 3 or 8 or 15 ohm . Asillastrated. Post 15p With fiared tweeter cone and ceramic $\left.\begin{array}{l}\text { magnet. } 10 \text { watt. } \\ \text { Bass rea. } 45-60 \mathrm{cps} . \\ \text { Flua } 10,000 \text { gangs. }\end{array}\right\}$ State 8 or 8 or 150 hm . Post 15p

Teak Cabinet. Sire $18 \therefore 10: 9 \mathrm{in}$, Pont 25p. 2
MINIMUM POST AND PACKING $15 p$.
SPECIALISTS

GOODMANS $6 \frac{1}{2} \mathrm{in}$. HI-FI WOOFER
8 ohm, 10 watt. Large cerami Special Cambric cone surround. Frequency response 30-12,000 cos. Ideal P.A. Columns.
Hi-Fi Enclosure Syatems, efc.

ELAC CONE TWEETER

The moving coil diaphragm gives a sood radiation pattern to the hizher Irequencies and a smooth extension of total response from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Sire 3 . 15 ohm models. ≤ 1.90 Post 10 p

Speaker covering materials. Samples Large S.A.E. Horn Tweeters $2-16 \mathrm{Kc} / \mathrm{s}, 10 \mathrm{~W} 8 \mathrm{ohm}$ or 16 ohm 21.50 De Luxe Horn Tweeters $2-18 \mathrm{Kc} / \mathrm{s}, 15 \mathrm{~F}, 15$ ohm 28
Two-way 3,000 c, p.s. CROssovers 3 or 8 or 15 ohm $95 p$. PPECIAL OFFER 90 . 2 . $25 \mathrm{hm}, 2 \mathrm{jin}$ diar 3 in. dia. $6,4 \mathrm{in} ; 8.5 \mathrm{in} . \mathrm{LI}$ EAOH $150 \mathrm{hm}, 3$ in
LOUDSPEAKERS P.M. 3 OHM8. 7 人 4 in . $£ 1-25$; $61 \mathrm{in} .41 \cdot 50$ $8 \times \operatorname{inn} . £ 1 \cdot 60 ; 8 \times 2+\mathrm{in}, 90 \mathrm{p} ; 8 \mathrm{in}$. $21.75 ; 10 \times 8 \mathrm{in}, 21 \cdot 90$. ELAC 10in. 10w. Twin Cone. De Loxe Ceramic 8 ohm is Rich dis 4 witt 10 in dia 5 watt 12 in dia 6 watt 8 in . dia. 4 watt; 10 in . dia. 5 watt; 12 in . dia, 6 wati, VALVE OUTPOT TRANS. 25p. MIKE TRANS. $50: 125 \mathrm{D}$. 5 WATT MULTI RATIO, 3, 8 and 16 ohms 80 p .

BAKER 100 WATT

 ALL PURPOSE
TRANSISTOR

AMPLIFIER
4 inputs speech and music. Mixing facilities
Response $10-30,000 \mathrm{cps}$. Matche Separate Treble and Bass controls. Guaranteed. Details S.A.E.

BARGAIN AM TUNER. Medium Wap
Transistor Superhet. Ferrite aerial. 9 volt.
£4.50

BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER. Add maxical highlights and sound effects to recording.
Will mix Microphone, records, tape and tuuer
$\mathbf{6 3 . 5 0}$ With meparate controls into single outpat. 9 volt
Stereo version ol a bove 44.50 .

BARGAIN FM TUNER 88-108 Mc/a Six Transistor. 9 volt. | Printed Circuit. Calibrated alide dial tuning. |
| :--- |
| Welnat Cabinet. Size $7,5,50$ | BARGAIN FM TUNER as above. Chassis only, less cabinet.

£8.85

BARGAIN 3 WATT AMPLIFIER. 4 Transiator $\mathbf{1 3 . 5 0}$ Push-Patl Ready built, with volume control. 8

COAXIAL PLUG 6p, PANEL SOCKETS 6p, LINE 18p. OUTLET BOXES. SURFACE OR FLU8H 25p. BALANCED TWIN FEEDERS Sp 5 d. 80 ohms or 300 ohms
JACK $\$ 0 C K E T$ Std. open-circuit 14 p , closed circuit 23p: JACK SOCKET Std. open-cirepit 14p, closed circuit 23p JACK PLUGS Std. Chrome 15p; 3.5 mm Chrome 14 p . DI sockets Chassig 3-pin 10p; s-pin 10p. DN sockets Lead 3-pin 18p; s-pin 15p. DN PLUGS 3-pin 18p; $8 * p i n$
25p. VALVE HOLDERS, 5p; CERAMIC 8p; CANS 5p.
 E.M.I. TAPE MOTORS. 120\%. of
 ost 15p. -2 BALFOUR GRAM. MOTORS. 120 v . or 240 v . AC. 1,200 r.p,m. 4 pole
 CUSTOMERS FREE CAR PARK.

CALLERS WELCOME 337 WHITEHORSE ROAD, CROYDON Open 9.6 p.m. (Wednesdays $9-1$ p.m., Saturdays $9-5 \mathrm{p} . \mathrm{m}$.)

ELECTRO-OPTICS

Early in 1971 Milton S. Kiver launched his first Electro-Optics exhibition and conference in the UK. It was a smash-hit. Everything was good about it. The venue at Brighton was popular, the technical conference was above suspicion with many world authorities speaking and listening, the turnout of trade exhibitors was firstclass, the attendance figures for such a specialised show were little short of fantastic.

This year we had a repeat performance and although the number of exhibitors was down the attendance seemed as good as ever. Laser Instrumentation Ltd wittily supplied a match with their hand-out literature with the invitation "Strike a match and read this!'"-an allusion, of course, to the aftermath of the miners' strike which was still causing problems although Kiver had seen to it that plenty of emergency power was available to keep the large number of live demonstrations ticking over.

What makes Kiver's shows so popular is the quality of the technical sessions. This year, as last, he won the co-operation of the SIRA Institute who acted as a technical filter for the 50 or so technical papers presented.

At a time of general misery and rising prices it was good to see Integrated Photomatrix Ltd announcing big price reductions at the show. IPL had only just celebrated their third birthday and what a lusty infant the company is. Peter Noble, managing director, told me that greatly increased production had enabled him to cut prices of some IPL light. activated switches by almost half in $100+$
quantities. But the highlight of IPL exhibits was a line scan camera incorporating up to 256 optical devices.

Low light TV systems were abundantly on view with exhibitors keen to show that their own systems were most sensitive. The big rush to sell these systems commercially came only after declassification of some military equipment last year. Apart from obvious applications like prison security, low light TV could penetrate into completely new fields.

Sad note at the closing of Electro-Optics ' 72 was that there will be no exhibition next year. In future it will take place every two years, the reason given by the organisers being that the rate of development of new technology is no longer such that an annual event is justified.

NEW HOME FOR "PHYSOC"

So we have seen the last of the Physics Exhibitions at Alexandra Palace, N. London. Next year it will be teaming up with the Laboratory Equipment Exhibition (Labex) at Earls Court. I welcome the change to a more central location and it will now be possible to take in two exhibitions in a single day-at least for those who are content with a quick spin-round.

A big disappointment this year was the failure of the Scandinavian countries to mount their own display. An invitation was extended but was declined, I understand, at comparatively short notice.

UNHAPPY IRISH

Ireland's electronics industry has been expanding nicely. In the past five years some high technology companies, mainly USbased, have become established and started making an increasing contribution to the country's exports as well as providing the foundation for training the first generation of home-grown Irish electronics engineers.

The Irish Government has been offering good incentive schemes for investment of foreign capital and a ten-year tax-holiday for all profits from exports. Everything was going fine-until the troubles.
I recently visited nine electronics plants in Ireland ranging in size from tiny Gow-Mac employing only ten people up to the 1,000 -strong Ecco Lid which is a wholly owned subsidiary of US General Electric turning out 200 million diodes, transistors and rectifiers a year.

Irish industrialists are worriedand they have good reason. Wageinflation has been high, eroding many of the advantages of operating in what used to be a comparatively low-cost labour area. Tourism, on which so much of the country's economic prosperity depends, will be very hard hit this year. And few industrialists are likely to be tempted to make any new investment until a greater level of stability has been achieved.

It is hard to see how any real growth in Irish electronics can be sustained this year although most manufacturers are putting a brave face on things and trying not to talk themselves into a depression. Most, too, would like to see an end to bitterness and a long period of tranquility in which Irish electronics can build its strength and play a leading role in bringing the country forward into our technological age.

BUILT-IN SERVICES

Two cheers for the Post Office for announcing that every house in the new town of Milton Keynes is to have piped-in services. We should have adopted such systems on the widest scale years ago. But better late than never.

Each house will have not only its own telephone pair but also a high-performance coaxial cable for piping in radio and TV services and, eventually, for piping out the data from your own computer terminal, your viewphone, even your North Sea gas meter readings.

Both v.h.f. and u.h.f. will be used on the system, the v.h.f. for trunk circuits and u.h.f. over local lines. Everything will be underground so there will be no need for forests of TV aerials and last-minute overhead telephone cables. The Post Office has already had some experience in other new towns but Milton Keynes is the biggest and the forecast is that over 2,000 houses will be wired in to the system in the next twelve months.

CHIPS HAVE EVERYTHING

Those single chip large scale integrated circuits (LSI) have certainly got going commercially in a big way. And they must be real cheap, too. Latest rock-bottom price I have heard of for an electronic desk calculator using a single Texas Instruments LSI and an eight digit readout is about $£ 36$ in the Japanese supermarkets.

The desk calculator market is one the Japanese have now sewn up so tightly that no-one else has a chance. Which product line is next on their list?

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

ELECTRONIC CALCULATOR

The time when housewives will soon be doing their shopping with the aid of an electronic pocket calculator is fast approaching; only price seems the deterrent.

The latest calculator to be marketed by West Hyde Developments under the trade name of Tobicom, measures only 7 in $\times 9 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in and costs only $£ 99$.

Weighing only $3 \frac{1}{2} \mathrm{lb}$, the calculator adds. subtracts, multiplies and divides. Also, the arithmetic can be mixed. i.e. $2+6-3 \times 5-6 \div$ $2+4 \cdot 5=14$. The decimal place can be set with 0 to 7 digits to the right and the machine automatically clears after the equals sign is pressed. Zero suppression is included to make easier reading.

Built around six MOS LSI (Large Scale integration) chips the calculator will give up to a 16 -digit answer for up to an 8 -digit entry. It will multiply a negative number by a positive number. As each entry is displayed it can be checked and cleared if incorrectly entered. Only the last entry is acted on.
The keys are in three colours and arranged in three groups for ease of operation. For repetitive multiplication or division a constant factor key is depressed.

A particular feature is the special meter scale, the lower end of which has been expanded so that $0-25$ per cent concentrations occupy approximately half the scale width and $25-100$ per cent the remainder. This is of special significance in locating a leak, because it allows accurate comparative measurements of very low gas concentrations in the early stages of a search; the higher end of the scale then being used to trace the leak to its source.
Additional information on the Gasmarker is available from Crowcon (Instruments) Ltd., The Common, Stokenchurch, Bucks.

AUDIO KITS

Just as someone had to be first to break the "sound barrier", it would seem that Radio and TV Components (Acton) Ltd, have broken the "price barrier" for home entertainment and the motorist. With the introduction of their Unisound system and the Tourist PB car radio they have certainly struck a blow for the reader.

At $£ 25$ the Unisound 505 must surely be the best value for money in the audio field, especially as their kit comes complete with turntable, stereo ceramic cartridge and a pair of EMI dual-cone eliptical loudspeakers. Also included in the kit is a simulated teak plinth, with a tinted cover, to house the amplifier and changer, plus two matching loudspeaker enclosures.
Based on the well known Mullard Unilex modules, the output stages have been modified and improved by the addition of integrated circuits which provide an output power of 5 watts per channel, ample for living rooms.

The pre-amplifier module has separate bass, treble controls and two separate volume controls.

The complete kit can be easily assembled, with a screwdriver, in approximately 40 minutes and R \&

TV claim that any novice or housewife who can wire up a three-pin plug can successfully assemble a Unisound 505 kit.

Once again the joy of sitting and listening to reproduction of good music has been achieved without prohibitive cost.

The new Tourist PB car radio kit is claimed to be the first in the UK to feature an integrated circuit combined with push-button station selection.
The radio covers both the medium and long wavebands and the five push-buttons can be tuned in the conventional manner or set to pre-selected stations. Four of the push-buttons operate on the medium waveband and the fifth selects stations on the long waves.

Permeability tuning and the inclusion of longwave coils ensure excellent tracking, sensitivity and selectivity on both wavebands. R.F. sensitivity at 1 MHz is claimed better than $15 \mu \mathrm{~V}$.

The power output of the car radio is 2.5 W into an 8 ohm loudspeaker.

Retailing at only $\mathfrak{f 7}$ the kit contains full step-by-step instructions and the company claims that anyone who can solder should be able to complete the kit in an evening.

Both the Unisound system and the Tourist PB car radio are backed by an excellent after sales service. For approximately $£ 2 R \quad \& ~ T V$ will undertake to "trouble shoot" any returned unit provided that a genuine attempt has been made to construct a unit following their instructions.

HEATSINKS

A new range of heatsinks which, it is claimed, will improve the performance and life of transistors is announced by J. W. Sales.

Further details and information can be obtained from J. W. Sales, 6 Russet Road, Cox Green, Maidenhead.

GAS DETECTOR

For some unexplained reason the reported number of accidents that have been attributed to gas leaks has been increasing over the last nine months.

For companies who rely on gas for producing their respective products the Gasmarker from Crowcon (Instruments) Ltd. would seem a reasonable investment. Perhaps. even private individuals may consider the investment a worth while one, since the unit is portable.
The Gasmarker sells for approximately $£ 25$ and operates on the thermal conductivity principle and gas detection is through a sintered bronze diffusion head. It can be supplied calibrated for "town" or natural gas (methane). Operation is by a single pushbutton, percentage gas by volume being indicated on a large-scale moving-coil meter.

500,000

SILICON PLANAR

NPN.PNP PLASTIC AND TRANSISTORS METAL CAN TYPES
Clearance of manufacturers' seconds, selected in types and guaranteed no open or short circuit
units.
Ideal cheap transistors for radio enthusiasts, manufacturers, schools and colleges.
TYPE STNI8. Silicon Planar Transistors npn 2N2220, BSY27-95A, BSX44-766-77. $\begin{aligned} & \text { Price: } 500 \text { E9; } 1,000 £ 15\end{aligned}$
TYPE STPI日. Silicon Planar Transistors
TO-18 Metal Can. Types similar to: BCY70-72, TO-18 Metal Can. Types similar to: BCY70-72,
$2 N 2906-7.2 N 241 \mid$ and BC $186-7$ Also used as complementary to the above npn type devise type STNIB.

TYPESTNS Silicon Planar Trancitors TYPESTNS. Silicon Planar Transistors npn TO-5 Metal $2 \mathrm{~N} 2192-92$.

[^3]BRAND NEW FULLY GUARANTEED DEVICES
17p BCI40
$17 p \mathrm{BCl} 40$
17 BCl
141 17 p
17 PC BC142
30 p
$\mathbf{B C l} 13$

$\mathbf{3 5 p}$	BCY31	22p	BF272	80p	EC403	15p	ORP60
$\mathbf{3 5 p}$	BCY32	25p	BF273	30p	GET880	27p	ORP61

15 p
BFW 10
20p 20
85
85
75 $85 p$
85
75
80

8080| 80 p |
| :--- |
| 8 BFX |
| 8 BF |
| 88 |
| 8 |

22
45
60

2
$2 N 918$

$2 N 929$40p10_{p} 2N929| 30p | $2 N 2714$ |
| :--- | :--- |
| 22p | $2 N 2904$ |
| 25p | 2N2904A |$\begin{array}{ll}\text { 22p } & 2 N 2904 \\ \text { 25p } & 2 N 2904 A\end{array}$

$15 p$
$12 p$ $15 p$
$12 p$
$12 p$ $2 N 930$
$2 N 1131$ 22p
45
BFY51
60p
BFY52
BFY53 $\begin{array}{ll}55 \mathrm{p} \text { MAT121 } & 17 \\ \text { 27p MPF102 } & 43 p \\ 20 p\end{array}$ 7p
5p
7p
STI 40
STI 41 p ST141 7p UT46
1p V405A 12p
17p
2NI
2N02 40p 2 N1303 $\begin{array}{ll}20 \mathrm{p} & 2 \mathrm{~N} 2904 \mathrm{~A} \\ 2 \mathrm{~N} 2905\end{array}$ $2 N 3704$
$2 N 370$ 705 60p
70p
35
35
B 519

B | 35p | BSX 20 |
| :--- | :--- |
| $35 p$ | BSY25 |
| 35p | BSY 26 | 45p

25SY27
25p
$35 Y 28$
$30 p$ $30 p$ BSY 29
$30 p$ BSY 38
$30 p$
$35 Y 39$ $30 p$
30p
BSY 38
35p
BSY 39
35p
BSY40 2p MPF105
20p OC19
27p OC20 $\begin{array}{ll}\text { 27p } & \text { 2N1304 } \\ \text { 25p } & 2 N 1305\end{array}$

1 \begin{tabular}{l|l}
$17 p$ \& $2 N 2905 A$

$17 p$ \& $2 N 2906$

\hline

 $\begin{array}{ll}\text { 17p } & \text { 2N2906 } \\ \text { 20p } & \text { 2N2907 }\end{array}$

20p \& 2N 2907

20p \& 2N 2907 A

21p \& 2N2923
\end{tabular} p 2 N 3706 $12 p$

$13 p$ $13 p$

$8 p$ $\begin{array}{ll}\text { p } & 2 N 3707 \\ 2 N 3708\end{array}$ | 5 p | $2 \mathrm{~N} \mid 305$ |
| :--- | :--- |
| $2 \mathrm{~N} \mid 306$ | | 2N3709 $2 N 3710$

$2 N 3711$	p
$2 N 3711$	
$2 N 3819$	$8 p$

$10 p$
$10 p$
$40 p$ 10p
40p
21p
27p
27p \qquad

08
19 D
$19 \mathrm{~N} / 2 \mathrm{~N} 1308$
$2 \mathrm{~N}_{1}$
$2 \mathrm{~N}_{1} 309$

21p $O \subset 24$
2 p p
10
p
2
1
:---
25p

$15_{\mathrm{p}} \mathrm{C} 29$30p 2 N 1613$\begin{array}{ll}15_{p} \\ 150 & 0.36 \\ 13_{0} & 30_{0} \\ 2 G_{3} 394\end{array}$

35° 2N181| 27p | $2 N_{2} 2926$ |
| :--- | :--- |
| 17 p | $\mathrm{G})$ |20p $2 N 2926$ (Y)Y) $111 p$$35^{p} 2 N 1889$

$15^{p} 2 N 1893$
$15_{p} 2 N 2160$
$15^{2} 2 N 2147$35p
3 p

$\mathbf{2 N} 2926(\mathrm{Y}$| $35 p$ | $2 N 29$ |
| :--- | :--- |
| $45 p$ | (O) || | 20p | $2 G 371$ | |
| :--- | :--- | :--- | :--- |
| $15 p$ | $O C 42$ | $22 p$ | $2 G 371 B$ |
| $15 p$ | $0 C 44$ | $15 p$ | $2 G 374$ |

35 p
$\mathbf{3 7}$ (O) 2 N 3010

10	
011	8
2053	2

$10_{\mathrm{p}} 2 \mathrm{~N}_{2} 192$| $75 p$ | $2 N 3053$ |
| :--- | :--- |
| $60 p$ | $2 N 3054$ |
| $30 p$ | $2 N 3055$ |

10p
80p
20p$\begin{array}{ll}p & 2 N 3820 \\ 2 N 3903\end{array}$$13^{\circ} \mathrm{p} 2 \mathrm{~N}_{2} 192$
$17 \mathrm{p} 2 \mathrm{~N}_{2} 192$
$2 N 3905$
$2 N 3906$
2N3906
$2 N 4058$
$2 N 4059$
$27 p$
$15 p$
$10 p$ $27 p$
$15 p$

$10 p$$\begin{array}{ll}\text { pp } & 2 N 4059 \\ 2 N 4060\end{array}$$\begin{array}{ll}17 p & 2 N 2194 \\ \text { 27p } & 2 N 2217\end{array}$| p | $2 N 4062$ |
| :--- | :--- |
| $2 N 5172$ | |
| $2 N 5459$ | |$\begin{array}{ll}2 & 12 \\ 2 & 12 \\ 9 & 43\end{array}$$12 p$

$12 p$

$43 p$| $60 p$ | $2 N 3054$ | $50 p$ | $2 N 545$ |
| :--- | :--- | :--- | :--- |
| $30 p$ | $2 N 3055$ | $63 p$ | 25034 || 30p | $2 N 3391$ |
| :--- | :--- |
| 27p | $2 N 3391 A$ |
| 20p | $2 N 3392$ |
| $\mathbf{2 5 p}$ | $2 N 3393$ || $63 p$ | 25034 |
| :--- | :--- |
| $17 p$ | 25301 |

15 p
15 N 2218
$1 \mathrm{~N}^{2} \mathrm{~N} 2218$
$\mathrm{~N}^{2} 219$

$3 N 2219$
$3 N^{\circ}$

$2 N 220$$\begin{array}{ll}\text { 30p } & 2 N 2220 \\ \text { 30p } & 2 N 2221 \\ \text { 25p } & 2 N 2222\end{array}$| 25p |
| :--- |
| $\mathbf{2 7 p}$ |
| $2 N 3393$ || 27p | 2N3394 |
| :--- | :--- |
| 22p | $2 N 3395$ |
| 22p | $2 N 3402$ |$25_{p} / 2 N 222$

$30_{D} / 2 N 232$
30_{0}

$3 N_{2} 368$| 50p | 2N2369 |
| :--- | :--- |
| 22p | 2N2369A |
30p	2N2411		22p	$2 N 3395$		
22p	$2 N 3402$	$\begin{array}{ll}12 p & 2 G 401 \\ 12 p & 2 G 414 \\ 15 & 2 G 417\end{array}A\begin{array}{llll}\text { 20p } & \text { BF } 165 & \text { 35 } & \text { BSY } \\ \text { 22p } & \text { BF } 167 & \text { 22p } & \text { BSY } \\ \text { 10p } & \text { BF } 173 & \text { 22p } \\ \text { 10p } & \text { BUIO5 } \\ \text { 10p } & \text { BF } 76 & \text { 35p } & \text { CIIIE }\end{array}$$\begin{array}{ll}\text { 30p } & 2 N 2411 \\ 55 p & 2 N 2412\end{array}$$\begin{array}{ll}27 p & 2 N 3402 \\ 2 N 3403\end{array}$$\begin{array}{ll}15 p & 2 N 3405 \\ 15 p & 2 N 3414 \\ 50 p & 2 N 3415 \\ 50 p & 2 N 3417\end{array}$$15 p ~ 2 N 404 A$$15 p$ 2N524	30p	2N2411	50p	2N3415
:---	:---	:---	:---			
55p	2N2412	50p	2N3417			
60p	2N2646	55p	2N3525			
12p	2N2711	22p	2N3702	25p		

22p
DIODES \& RECTIFIERS
$8 p$ AA 19
$12 p$ AA 12015p $2 N 699$24p
75
$8 p$
$8 p Y Z 11$

$8 p Y Z 12$| 8p | BYZ11 | $\mathbf{3 2 p}$ | OABI |
| ---: | ---: | ---: | ---: |
| 8p | BYZ12 | $\mathbf{3 0 p}$ | OA85 |
| 22p | BYZ 13 | $\mathbf{2 5 p}$ | OA90 || $15 p$ | $2 N 706 A$ |
| :--- | :--- |
| 25p | $2 N 708$ |
| 17p | $1 N 709$ |
| 27p | $2 N 711$ |12p AA 20

45p BAl 1622p BYZ12

22p BYZ13| $17 p$ | $\mathbf{2 5 3 0}$ |
| :--- | :--- |
| $\mathbf{5 P}$ | $\mathbf{2 5 3 0 3}$ |
| $\mathbf{5 p}$ | $\mathbf{2 5 3 0}$ |$45^{p} D$ BA 116

$40_{p} B A 126$
$12 p Y 100$
23p
24p

C720	24p	$C 722$
$30 p$	$C 740$	

25
35
35

17\begin{tabular}{l}
$\mathbf{3 5 p}$

$\mathbf{4 5 p}$

\hline $\mathbf{~ C 7 4 2 ~}$

45p \& $C 744$

$\mathbf{8 0 p}$ \& $C 760$

$\mathbf{8 0 p}$ \& $\subset 760$

$\mathbf{3 5 p}$ \& $\subset 762$

$\mathbf{2 5 p}$ \& $C 762$

C764
\end{tabular}$\begin{array}{ll}\text { EC } 401 & \text { 60p OCP71 } \\ & 15 p \text { ORP12 }\end{array}$$42 p$

20_{p}
30
2 p BY100SILICONALLOYTRANSISTORS
10 MILLION DIODESSilicon or Germanium
State which when ordering

200	50 p	10,000	$£ 10.00$
1,000	$£ 2.00$	50,000	$£ 30.00$
5,000	$£ 7.00$	100,000	$£ 50.00$

2,000,000 SILICON

 PLANAR TRANSISTORSTOI8 P.N.P. \& N.P.N. TYPES

Stote which when ordering			
100	$£ 1.50$	10,000	$£ 90.00$
500	$£ 6.00$	50,000	$£ 400.00$
1,000	$£ 10.00$	100,000	$£ 625.00$

LINEAR INTEGRATED CIRCUIT 709/PC S.G.S.

TO-5 can 8 lead. Full specification high gain Operational Amplifier data supplied, Lowest ever price.
QUANTITY: 1-9, 10-24, 25-99, $100-999$ PRICE EACH: 37p, 34p, 30p, 25p.

postage \& packing ip

TV'
 s 19" NOW
 £11.95

TWO YEARS' GUARANTEE ALL MODELS 405/625: 19" £25.95; 23" £35.95 free catalogue daily demonsirations for personal shoppers

COLOUR TV 19' 145 OR $25^{\prime \prime}$ £185
LIMITED SUPPLY. REGRET PERSONAL CALLERS ONLY

TV TUBES REBUILT GUARANTEED 2 YEARS

14 63 95; 17 \& 19 " 5595 ; 21 \& 23 E6 45.
Exchange Bowls carr. 55p
RECORD PLAYER CABINETS 63.75. Designed for the modern autochanger. Size $17^{\prime \prime} \times 15^{\prime \prime} \times 7!^{\prime \prime}$ p.p. 55p

PRESS BUTTON
SWITCHING UNITS
4 Banks 25p, 6 Banks 35p.
p.p. 5 p

DUKE \& CO. (LONDON) LTD.
621/3 ROMFORD ROAD, MANOR PARK, E. 12 Phone 01.478 8001-2-3

A selection of readers' suggested circults. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any Idea published will be awarded payment according to its merits.

IC DICE

Readers may be interested in a modification I have made to J. D. Croft's. "IC Digital Dice" published in the December 197I edition of P.E.

I had also been thinking along the same lines but decided against using an SN7492 $\div 12$ counter. The output " 000 " of the counter greatly increases the amount of decoding circuitry required.

The circuit design shown in Fig. 1 uses only four packages and requires no decoder. The counter was built from two dual JK flip-flops (SN7473). The gate Gl is used to set the counter back to the " 001 " state after a final count of " 110 ".
It can be seen from the truth table that if the lamps are connected directly to the counter outputs A, B, C and if the lamps are arranged as in Fig. 2, a suitable display will result. If the lamp drivers shown in the December article are used it may be necessary to use two to drive the four lamps LP4LP7. Alternatively, a higher power transistor could be used.
The major disadvantage of the circuit is the failure to use all packages completely: there remains a flipflop and a 3 -input NAND gate unused. The flip-flop might be incorporated as a "Head or Tails" device, or could be used to indicate a " + " or " - " sign on the display to give a forwards or backwards move. It could also be used to control a bulb lighting the iegend "Add Six" thus extending the dice throw to twelve. The latter will not, however, indicate doubles, for which purpose the unit must be duplicated.

No doubt readers will be able to think of other ingenious uses for the "left-overs".
A. J. Jacobs,

Beaconsfield,
Bucks.

Fig. 1. Circuit diagram for the modified i.c. digital dice. The truth table is shown on the right

Fig. 2. Suggested layout for the indicator lamps

BACK NUMBERS WANTED
Anyone who can supply the undermentioned are asked so communicate directly with the reader.

June to August 1968
Mr. R. Henderson, 79, Glencroft Road, Croftfoot, Glasgow, S.4.

December 1970

Mr. J. F. Glavin, North Lodge, Northlands, Salthill, Chichester, Sussex.

April, May 1968

Mr. M. Martin, 29, Hillingdon Road, Stretford, Manchester.

August 1968

Mr. L. H. Maul, 11, Shrublands Avenue, Croydon, CRO 8JD.

January 1965

Mr. T, Webster, 41, George Street, Great Yarmouth, Norfolk.

June 1971

Mr. T. F. Gillies, 247, Brownlow Drive, Rise Park, Bestwood, Nottingham.

April, May 1971

Mr. R. Barrett, The Midland Bank, Nailsworth, Stroud, Glos.
November, December 1967
Mr. C. J. Gummer, 31 Palace Road, Tulse Hill, London, SW2 3EA.

We regret that back numbers of Practical Electronics can no longer be supplied. We will try to publish announcements of readers' requirements (without a guaranteed date) free of charge.

ELECTRICAL DAMP COURSE

ACERTAIN degree of mystery surrounds the electrode methods for providing a dampproof course in buildings prone to rising damp. A new British patent originating from Rumania (BP 1248441) clears up some of this mystery.

In this field there are so-called "active" methods and "passive" methods.

In the passive methods, electrodes are fixed in the damp zone of the wall and then connected in groups to grounding electrodes. Usually, pairs of electrodes made of different metals are coupled together and then connected in groups to the grounding electrodes, the more electro-negative metal being in the lowest row. No external source of current is provided.

In a known active method a continuous current is provided in the circuit, the wall electrodes being connected to the positive pole and the grounding electrodes to the negative pole.

Humidity is removed through the electro-osmotic migration from the capillaries of the building into the soil where the grounding electrodes are placed. The disadvantages are that corrosion of the electrodes will take place over the years and that little moisture is removed directly by the air.

The Rumanian proposal is that in the active method the positive, as well as the negative, electrodes should be fixed in a horizontal row in the wall without any grounding electrodes. The positive electrodes are made of solid metallic bars and the negative electrodes are perforated metallic tubes. The interior of each tubular electrode is hollow and open to the air. The positive and negative electrodes are connected alternately as two separate circuits at a distance from the ground level equal to 0.86 of the distance between the electrodes.

By the use of tubular negative electrodes, humidity from the walls can escape direct into the air. To avoid corrosion the electrodes are formed of depolarising compositions appropriate to the nature of the wires associated with them.

The theory becomes a little clearer by reference to Fig. 1. Solid metallic positive electrodes and perforated metallic tube negative electrodes are fixed alternately in the building wall. No

Fig. 1
grounding electrodes are provided and the water migrates directly into the air with the assistance of the electro-osmotic current which drains it to the negative tubular electrodes. Experiments have shown that optimum drying is obtained when the quoted circumstance is met; namely when the height of the electrodes above ground level is equal to 0.86 of the distance between the electrodes.

The patent gives calculations to substantiate this and suggests suitable depolarising compositions for the electrodes. For instance for copper electrodes the depolarising mixture is 50 per cent clay powder. 20 per cent copper sulphate powder and 30 per cent Portland cement.

Readers interested in more of these and other details should refer to the patent specification.

LOUDSPEAKER DESIGN

T. HE diaphragm of a loudspeaker, outlined in a new patent (BP 1250640) by the Japanese firm of Nippon Gakki Seizo Kabushiki Kaisha, resembles a cross between an ordinance survey map and a ceiling tile.

It is known to use foamed plastics, such as polystyrene, as a loudspeaker diaphragm, but the usual principle of suspending a symmetrical cone or circular sheet of the polystyrene at its periphery has been shown to produce a nonlinear frequency response and attempts have been made to improve on it by using an asymmetrical diaphragm. One shape tried, for example, is similar to a grand piano, with a near conical area in the central region.

Kaisha now suggest that problems arise with asymmetrical diaphragms because strong resonances may be produced due to the relatively large flat portion which is formed between the asymmetric periphery and the outer lines of the conical portion.

The flat portion gives reduced flexural rigidity and this in lurn gives rise to excessive peaks and dips in the frequency response curve, especially in the middle and low frequency ranges.

The suggested answer is an asymmetrical diaphragm with an initially truly conical trumpet shaped central driven portion smoothly merging into an outer asymmetrical flat portion of uniform width all around the periphery of the diaphragm. The resultant diaphragm thus looks rather like a contour model of an asymmetric hill with a circular peak and a flat base surround region of uniform width. See Fig. 2. This uniform surround and absence of large flat lands apparently improves linearity quite dramatically.

TIMELY REMMDER

Now seems a timely point to remind readers of the points made in the introductory Patents Review published in the November 1971 issue-e.a. copies of all specifications are available at 25 p each from the British Patent Office in Southampton Buildings, Chancery Lane, London, E.C.4. (Back numbers of Practical Electronics are also available there for reference.)

Readers should always, of course, bear in mind the points made in the November issue on the legal aspect of the protection which a granted patent offers its owner against infringers.

BP 1250640

Fig. 2

Would YOU pay 50 pence fora components catalogue?
 You'll be glad you did when you get THIS one:

A components catalogue is so vital to any keen constructor that it simply does not pay to make do with less than the best. True, the best may cost a little more but it's the cheapest in the end. So invest in a Home Radio Components Catalogue, listing over 8,000 items, more than 1,500 of them illustrated. If you call at our shop the catalogue is yours for just 50 pence. If you order by post 70 pence, including postage and packing. You also get 10 Vouchers, each worth 5 pence when used as instructed so you can get the cost of the catalogue back in any case!
Send the coupon today with your cheque or P.O. for 70 p.

PRACTICAL

ELECTRONICS

Specify

PRACTICAL ELECTRONICS specify CONTIL MOD. 2 CASES for housing the PISPLAY SYSTEM. P E DIGITAL. GLOCK AMPLIFR, P.E. AUCY RA Lis OISPLAY SYSTEM, P,E. DIGITAL CLOCK. Also available ready punched for inclair pyse

PVC COATEO
MATERIALS. PVC's easy to clean surface is scuff resistanc. PVC/ALUMINIUM FOR FRONT ANO BACK PANELS. PVC/STEEL FOR SIDES, TOP AND BOTTOM. LOW COST.

ATRON READOUT TUBES

As mentioned in the PRACTICAL ELECTRONICS article entitled ALPHA NUMERIC DISPLAYS

5V 23 mA per segment $A C$ or $D C$
2. Large, bright 12 mm high display
3. Rompatible with I.C. decoder driver 7447

Rugged construction, sub-miniature size, cothpact design Ang ife expectancy (100,000 hour accelerated life test) Any desired colour with filters red, green, blue, daylight, neutral
7. Bribilicy curve ideally suiced to the human eye
8. Bright daylight viewing from any angle up to 140
9. Atron P. C. boards including I.C.'s available

ATROS

7447 E 1.50
$\left.\begin{array}{l}7490 \\ 7475\end{array}\right\}$ - 11.00
 each

Postage and Packing any quantity 5p

Minimum order Cl
WEST HYDE DEVELOPMENTS LTD., RYEFIELD CRESCENT NORTHWOOD, MIDDX. HA6 INN
Telephone: Northwood $24941 / 26732$ Telex 923231 WEST HYDE NTHWD
 BY ATES EMIMUS • FAIRCHILD FERRANTI I.T.T. MULLARD NEWMARKET • PHILIPB • R.E.A. TEXAS

TRANSISTORS

A SELECTION FROM OUR LIST

HENRY'S dows litegrated gireuits

BRAND NEW FULL SPECIFICATION TTLT4 SERIES BRANDED FAIRCHILD, I.T.T. AND TEXAS
Zo.
7400 Duseription
7401 Quad 2 -input open collector NAND gaten
402 Qued 2 -input NOR gates Qued 2 -input open
Hextuple Inverters
Hex laverters With open coll
Triple 3 -input NAND gates
Dual 4-input Behmitt trigger
Dual 4 -input NAND gatet
SIngle $8-\ln p u t$ NAND gaten
Dual 4-input NAND buffer gatem
741 BCD-Decinal decoder / Nixle driver
742 BCD.Dectmal decoiler (4-10-Ine) TTL O/P
744 Excesh 3-Decimal decoder TTL outputa
747
7445
7450
7451 Dunlí-wide 2 -Input AND-OR-INVERTgates
7459 Qual 2 -input expand AND-OR-INVERT gat
3464
7464
7460 Dual 4 -input expandern
7470 Single J.K Rip-fiop (gated Inputa)
748 Dual J.K fip fop
7476 Quarruple hlstable lateh
777 DualJ.K hip. Hope wlth Premet and (Clear
7490 Gateil Full Aditer
7482
2 2-bit binary Full mader
$\begin{array}{ll}7488 & \text { 4-bit binary Full Adder } \\ 7484 & 18 \text {-bit RAN With gated write Inputa }\end{array}$
7490 Quadruple 2 -Input Excluaive OR gate*
7490 BCD dectade counte
7491 R.bit mhlft realnter
7492 Diville twelve counter
749s
4404 bit binary counter
Dual entry 4 -blt phift re
$\begin{array}{ll}7496 & \text { 4-hit up-slown ahitit repiuter } \\ 7498 & 5 \cdot \text { bit parallel/merial in/out ahift regiter }\end{array}$
741008 -bit bimtable lateh
74118 Hextuple Aft-Remet latehen
74121 Monomable nultivjbratorn
7411 Bi'D-Derimial decoder/Nixie driver
7414 BCD-Decimal decoder ($1-4$ - Itne) TTL O/P
74150 16-bit data melector/multiplezer
701618 -bit data relector/nuitiplexer
74154 16-blt decomer/denultipleser
74185 Dual 3 -line to 4 -line decoler/demultiplexer 7415 Duad 2 -line to 4 -Ine decoler/demultiplexer 71100 Aync decale up-down counter, 74192 Bync decade up 1 own counter. 2-1lne mode 74188 gync 4 -bit up-down counter. 2-line mode 741 Asynchronous premettable lecsile counter Texas Asynchronoun preattable 4 - hit binary counter © 1 - 50

Complete dala on the aborer Integrated circuit sockets

INTEGRATED CIRCUITS	
MFCAOOOP	B5p
MFi4010P	${ }^{60} \mathrm{p}$
1-12	42.60
PAO46	S1. 50
TADIO	51.50
TADIIO	2150
M(724P	50p
7020 (T05)	75 p
709C (TO5)	45 p
7090 (D.I.L.)	45p
723C(T05)	81.00
741C(TO5)	80 p
MC1303P	\$200
MCl304P	22.85
RL403D	21.50
741C(I)1L)	76p
914(TO5)	40%
923 (TOS)	407
TOSHIBA	
20 watt amp.	448
TOBHIBA	
Pre amp	$\underline{\$ 150}$

TAIACS Itod with socomorive			
	P.I volts		
BC35A. 1	, 100	3 mm	
Bu35 B 200	200	3 mmp	
EC35 D 4	400	3 sm	
BC40A	100	6 мmpa	
8 CAOB 2	200	6 mmp	1.06
BC40D	400	6 amp	1.00
BC4SA 1	100	10 amp	06
BC40B 200	200	10 amps	11.15
8 CasD 4	400	10 amps	
BCSO A 1	100	$15 \times m p$	15
cond 2	200	15 amps	
SCSOD 4	4001	15 ampa	11.75
BC40E 5	500	6 mmpe	11.85
8 CHEE 5	5001	10 ampa	1.45
BCSOE 5	500	15 mm	
DIAC ED	D2		258

1 AMP BILICOM RECTIFIERS

 TYPE P.I.V. $1-49 \quad 50+100+800+1000+$
Riadont A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

Light guide

Sir-I have read with interest the article by Mr M. K. Titman on Fibre Optics published in your February edition. My Company is actively engaged in the field of fibre optics on behalf of JENAer Glaswerk Schott \& Gen., of Mainz, Western Germany, who are one of the major suppliers and manufacturers of fibre optics and are world renowned for the range of high quality optical glasses.

I would like to draw the author's attention to some minor inaccuracies in the paragraph headed "Present Limitations". Schott produce a vast range of fibres, some of which will cater for infra-red transmission and, more especially, for ultraviolet light transmission. In both cases, these fibres are not currently available from any other European source and, indeed, the ultra-violet light transmitting fibre optic is unique to Schott and is not available from any other manufacturer.

With regard to the author's comments on long distance communications, I would like to take this opportunity of informing you that Schott are actively engaged both with the Post Office Research and various other commercial telecommunication companies here in the United Kingdom on the use of fibre optic light guides for long distance communication systems.

Existing fibres are used in aircraft communication links, because these light guides are not subject to noise and other electronic interference and this makes them ideal as signal transmission mediums within the aircraft

The whole point II wish to make on this subject is really that the distance of 6 to 10 feet mentioned by Mr Titman in his article, would generally seem to indicate that this is the maximum length over which adequate signals can be transmitted, whereas signal lengths of 30 metres are quite normal.

One final item 1 would like to mention is the suggested use of fibre optics for the monitoring of vehicle lights. I wholeheartedly agree with him on this subject and believe that this positive signal indication is highly desirable for vehicles. I personally have had a
vehicle equipped and it has been running on the road for approximately two years now and I derive a great deal of satisfaction from being able to check from the driver's position that my lights are operating. The beauty of the fibre optic system is that it is fail-safe and will monitor all light conditions.

I sincerely hope that you find my comments of interest and I hope that they help to clarify one or two inaccuracies in the article mentioned.
A. Hardy,

Fibre Optics Division, H. V. Skan Ltd.. Solihull, Warks.
Long distance optical communication is indeed an exciting prospect for the future since the bandwidth using light is very wide. Indeed this system is the only practical arrangement for the introduction of domestic videophones.

At present fibre optics are not as acceptable as line of sight or mirrored circular waveguide systems, but development will reduce this gap. Bell Laboratories and ITT/STC in the U.S.A. are also actively working in this field using laser projectors with solid state photomultiplier detectors.

Present practical limitations on distance are governed primarily by the complexity of the projector/ detector system and the 6 to lOft 1 quoted assumed the simplest arrangement. As Mr Hardy points out, longer runs are feasible but care must be taken over projector/detector stability and sensitivity, or a modulated light system adopted.

I welcome the development of fibres for use in the infra-red and ultraviolet spectrum and also the low loss guides, and look forward to the widespread use of fibre optic guides in the future.-M.K.T.

Dogmatic

Sir,-With reference to the letter of Mr (or is it Mrs?) W. G. Jones (Abysmal Writing), published last month, I would like to make the following comments, partly in defence of a periodical to which I have subscribed since its inception,
and partly as a protest against the dogmatic criticism of a person entrusted with the education of tomorrow's technocrats.

To a person of such self claimed ability, the task of understanding and relating in his own words the underlying principles of Logical Radio Control should not have required such tremendous powers of concentration.

A dice is essentially a passive device and in itself "generates" nothing.
Hands do not "see".
When the counter is stopped the "numbers" cannot be in a random condition. Also, a previous statement made it clear that the count was cyclic from 1 to 6 , and therefore not random. The randomness is achieved only as a function of probability with respect to time.
It is worth noting that within industry all explanations accompanying new circuitry are not crystal clear and textbook fashion. It is therefore almost a pre-requisite that persons operating with the presented information must be capable of salvaging the salient features and reconstructing these into realistic representation of the phenomena in question.
As an educator of sixth form students, Mr Jones might well be better employed in preparing his charges for such eventualities, instead of composing uninteresting letters. If, however, he is bent on writing low-level semi-technical jottings, perhaps he would be good enough to iron out his own ambiguities and fantasy phrases before attacking professionals.
J. P. T. Travers,

Poole, Dorset.

Good vet needed

Sir,-I have just read Mr W. G. Jones' letter regarding the standard of writing in Practical Electronics. His general comments are, in my opinion, quite correct even though I would say the standard is slightly higher than the abysmal standard he gave it. The digital dice explanation of Mr Jones was definitely far easier to understand, but even then there was no reason given as to why it was necessary to run the digital dice at forty-six thousand times per second when the limit of visual observation is fifteen times per second even with the bulbs illuminated, which they are not in the digital dice.

May I therefore suggest that a standard instructional technique is employed as advocated by the D.E.S. in which each subject or project is divided into "Must Knows". "Should Knows" and "Could

Knows" and these are presented in a logical sequence. Obviously the circuit, components employed and method of construction are all "Must Knows" in order that the project can be completed but the internal functions of an integrated circuit are only a "Could Know" which could be omitted if, for example, space was short.

One further point on a similar path is that I am of the opinion that projects that are intended for use on a vehicle should be vetted by some good auto electricians.

Similarly, with ignition systems the authors appear to be quite unaware that the present h.t. lead is a bit of carbon string not copper wire and a capacitor discharge unit will give you an awful lot of trouble if you use the standard type h.t. lead.
May 1 suggest that future projects aimed specifically at car owners could be a Zenon tube timing light, an exhaust gas analyser, a dwell meter and how to connect a standard oscilloscope to a car along with the interpretation of the pattern. I know all these are commercially available but at $£ 1,200$ per set.
I trust that you will accept these comments as being constructive and if only part are incorporated in your excellent magazine 1 am sure you will find an ever increasing interest and increase in readership.
H. D. Briggs, Telford, Salop.

Baby ularm

Sir,-l have just read with interest the article "Child Care" in the Gerry Brown column On The Fringe, January 1972 issue, and would like to say that it is about time a device was available on the market to help prevent the abduction of babies from their prams. To this end my company has marketed a product which electronically senses a baby's weight, and sounds an alarm bell should the baby be removed from its pram. The complete unit does not need to be permanently attached to the pram in question, but remains free to be used in a carry-cot or push-chair.
I would, however, disagree that one needs to sense pram movement, since statistics have shown that only a small percentage of baby abductions actually involve the taking of the pram, and to manufacture a device that senses brake position is
difficult, in so much that every pram manufacturer seems to have his own idea on braking.

One method that can be used is to have a small magnet attached to one of the spokes of one wheel that operates a reed switch during the first revolution of the wheel. This pulse triggers a self-latching switch, preferably an electronic one, because of the current drain involved in relays, and the alarm is sounded.
B. Naylor,

Bournemouth,
Hants.

Mind travelling

Sir-I read with great interest Gerry Brown's piece on "Brainwave Reinforcement" in the March issue of P.E. Perhaps you could pass on to him the message that the arrangement he shows does not actually work, for the following reasons. Alpha rhythms (of $8-12 \mathrm{~Hz}$, which are present in all normal persons) are generated when the eyes are closed and the subject is resting with mind blank and no distractions. The rhythms disappear on falling asleep. Any attempt to visualise mental pictures or watch a flashing light, even with the eyes closed, will tend to break up the Alpha rhythm.
The system in vogue in America operates by sound, that is to say the subject listens to gentle white noise or a low audio tone which is modulated by his own Alpha waves. The trick is not to listen too intently, but let the sound lull one into a state akin to that commonly experienced just prior to falling asleep. With a certain amount of practice it is possible to attain a high Alpha output and thus enforce complete relaxation. In effect the gadget tells you when you are relaxed and when you are not.

A possibility I have not investigated with Gerry's set-up is that the equipment actually handles Beta waves from the front of the head $(18-25 \mathrm{~Hz})$ which result from minute motor movements of the eye during normal vision. It could be that the flashing light then interacts with eye movements and causes some kind of "way out" effect.

If Gerry wants an unusual experience though, he should try feeding the output from an audio oscillator to electrodes on his head. The oscillator must, of course, be battery powered otherwise he might find he is undergoing unwanted shock therapy! A mere $2-4 \mathrm{~V}$ r.m.s. at $5-20 \mathrm{~Hz}$ is sufficient to cause pronounced visual strobing in broad daylight and a wealth of coloured patterns when the eyes are closed.
D. Bollen,

Poor bunnies!

Sir-With reference to Mr D. Nunn's enquiry as to an electronic ferret tracker: no doubt such a device would be entirely feasible. However, I would suggest that if Mr Nunn is so intent on hunting poor little bunnies with his nasty little ferrets, he reads a book on electronics and designs one himself.

May it take him a long while. G. J. Rounce, Grays, Essex.

Collared

Sir-Reading the March Readout as promised, I noticed Mr D. Nunn's letter on ferret tracking. The Heath Co. Model GD-48 metal locator would be an excellent device for him. He could detect a piece of iron attached to the collar with good reliability from my experience.

Brice Ward. Kidsgrove,
Stoke-on-Trent.

Scorpio shake-up

Sir-May 1 suggest that any readers who are building the P.E. Scorpio car ignition might find it advisable to tie down capacitors C6 and C7 to the board as the leads could possibly fracture under the low frequency conditions in a car.
G. Boyd,

Basingstoke,
Hants.

Lost components

Sir-Some time ago, the question of availability of components was commented on by dealers and constructors in your magazine,

Since that time, several wellknown firms have closed down, merged with others, or reduced their range of products. I have to hand, two larger component suppliers' catalogues and various other smaller ones, yet not one of them lists items which were once easily obtainable.
Tne "Electroniques" (now defunct) $10 \mu \mathrm{H}$ to 10 mH range or r.f. chokes and the Painton encapsulated chokes; the temperature compensating ceramic capacitors in the NPO (zero change), N and P types (i.e. the popular N750) were once available for frequency stabilisation of r.f. oscillators against temperature drift. Where have these items gone?

Perhaps a dealer who can supply these items would contact us.
M. J. Shepherd, BRS 25625,

72 Westerland Avenue,
Canvey Island, Essex.

Build yourselfa TRANSISTOR RADIO

 NEW! ROAMER 10 WITH VHF INCLUDING AIRCRAFT10 TRANSISTORS. 9 TURABLE WAVEBANDS, MW1, MWR, LW, SW1, SW2, sW3, TEAWLER BAND, VHF AND LOCAL STATIONS AND AIRCRAFT BAND.
Built-in ferrlte rod aerial for MW/LW, Retractable, chrome plated telescopic aerial, for peak short wave and VHF listening. Push-pull output using 600 HW traisistors. Car Aerisl and tape record sockets. Switched earpiece socket complete with earpiece. 10 transistors plus 3 diodes. $8^{\prime \prime} \times 2!^{\prime \prime}$ speaker. Air spaced ganged tuning condenser with VHF section. Volume/on/off, wave clange and tone controls. Attractive case in black with ailver blocking. Size 9 in $\times 7$ in $\times 4$ in.
Easy to dollow instructions and diagramis. Parts pice list and easy butd plans 30p (FREE Njth parte).

7 TUNABLE WAVEBANDS: MW1, MWE. LW, SW1. SWR. SWB AND TRA FLER BAND. Built-in ferrite rod aerial for MW and LW. Retractable chrome plated tele. 600 mW transistors. Car aerial and tajue recoril sockete. Belectivity switch. Switcherl earpiece socket complete
 Volumefon/off, thning. wave change and tone controls Attractive case in rich chestmut shade with golt blocking. Size Sila $\times 7 \mathrm{in} \times 4 \mathrm{in}$ approx. Fiasy to follow build plans wip (FREF with partn). TOTAL BUILDING COSTS
 (20)
 BAND. Extra medimn wavehand provides easier tuning of Radio Luxembourg, etc. Built-in ferrite rod aerial for MW telescopic aerial for SW . Socket for car aerial. Powertelescopic aerial for 8W. Socket or car aerial. Power-
ful push-pull ont put. transistors and $\#$ diodes, inclunling micro-alloy R.F. tranmistors. $8^{*} \times 24^{\prime \prime}$ вpeaker. Air spaced ganged tuning condenser. Voluthe/on/otr. turing and wase change controls. Attractive case with carrying handle. Size $9 h_{11} x$ in x 4 in approx. Easy to follow instructions and diagrams. Parts price list and easy buidd plans 15p (FREE with parts). Earpiece with plug and switched sucket for
 BUILDING COSTS E- \bullet (OYERSEAS

TRANSONA FIVE
 5 TRANSISTORS AND 2 DIODES

3TUAABLE WAVE BANDS:MW,LWANDTRAWLER BAND. 7 stage - $\overline{0}$ transistors and z diodea, ferrite rof aerial, tuning condenser, volume contro!, fine tone focaker grille. Size 61 in $\times 4$ itin $\times 1 \frac{1}{2} \mathrm{n}$. Easy build plans and parts price list 10 F (FREE with parta). Earpiece with plig and switched sockel for private listening 30 p extra

TOTAL
BUILDING COSTS BUILDING COSTS = - \mathcal{H} (OVERSEAS
P. \&P. 63p)
P.P. \& INS. 50p (OVERSEAS P. \& P. El)

POCKET FIVE

3 TUNABLE WAVE-
BANDS: MW. LW.
WITH EXTENDED
MW BAED FOR EASIER TUNLAG OF LUXES DOURG, ETC. 7 atiages -J tranaistors and 2 diodes. speaker. Attractive black and gold case. Size a in i 1 in $\times 3$ in. Easy build plans and parta price list 10p (FREE with barto). Earpiece with phag amd
total BUILDING COSTS E $\quad\left\{\begin{array}{l}\text { P. P. BINS. } \\ \text { (OVERSEAS } \\ \text { P. \&P. 63p) }\end{array}\right.$

RADIO EXCHANGE LTD

TRANS EIGHT

8 TRANSISTORS AND 3 DIODES
6 TUFABLE
 TRAWLER
BASD. Sensitive ferrite rorl aerial for MW and LW Telencopic aerial for short wave日, 3 in speaker. B improved type transintora plus 3 diodes. Attractive case in black with red grille. dial and black knoba With Push-pull output. Battery economiser switch for extended battery life. Ample power to drive a larger speaker. Parta price list and easy build plans 200 FREE with parta). Larpiece with plug and awitched socket for private ligtening 30p extra.
TOTAL
BUI
| enclose $£$
please send items marked
ROAMER TEN
ROAMER EIGHT
TRANSONA FIVE POCKET FIVE

61 HIGH STREET, BEDFORD.
 Tel. 023452367

Parts price list and plans for
Name
Address

NEW! "EDU-KIT"

BDILD RADIOS, AMPLIPLBRS, ETC., FROM EASY STAGE DIAGRAM8, FIVE UNTTB IICLDDING MASTER DNIT TO CONSTRUCT. Component include: Tuning Condenser: 2 Volume Controls: ${ }^{2}$ Slider Switches: $4^{*} \times 3{ }^{3}$ " Speaker: Terminal Strip:
Ferrite Rod Aerial: 3 Plugs and Sockets: Battery clips: 4 Tar Boarda Balanced Armature Unit 10 Tranaistors: 4 Diodea: Reais10 Tranaistors: 4 Diodes: ReaisKnobs.
Units once constructed are detachable from Master Unit, enabling them to be stored for future use. Ideal for Schools, Educational
Authorities and all those interested in Authorlties and

ALL

CASE AND PLANS EG:S
P.P. AINS. $31 p$
(OVERSEASP. ${ }^{\text {I P. © }}$)

[^4]

The largest selection

NEW LOW PRICE TESTED S．C．R．＇s PIV

80
100
200
400
600
800

SUPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS

Fatisfac
120 Glass aub－min．general purpose germanimm diodea 60 Mixed germanium transistors AF／RF
To Germanium gold bonded dlodes sim．OAJ̃，OA47 40 Germanium transiators like OC81，AC128 60200 mA sub－min．Sil．diudes
30 silicon planar transistors NPN sim．H8Y95．， 2 N 706
16 Silicon rectifers Top．Hat 750 mA up to $1,000 \mathrm{t}$
50 sil．planar diodes $250 \mathrm{~mA}, \mathrm{OA} / 200 / 202$.
30 Mixed volte 1 watt Zener diodes
25 PNP silicon plansr transtators TO－j sin． 2 N 1132
30 PNP．NPN Bill transiators OC： 00 it 28104
150 Mired silicon and gernianium dlades
25 NPN Silicon planar transistors TO－5 sim．2N6！ 6
$103-\mathrm{Amp}$ silicon rectiflers athd type ni to 1000 PI
30 Germanium PNP AF transistors TO－5 like ACY 17－2
8 f．Anup siticon rectiflers BYZ13 type up to 600 PIV
25 Sllicon NPN translators like BC108
$12 \overline{1} \cdot 5$－Amp ailicon rectiflers Top．Hat up to $1,000 \mathrm{PIV}$ 30 A．F．germanium alloy transistors 2 （i300 serles \＆OC71 30 Malt＇s like MAT meries PNP tranaistors
20 Germaniuna I－Ainp rectiflers GJM up to 300 IV ．
$25300 \mathrm{Mc} / \mathrm{s}$ NPN silicon transistors $2 \mathrm{~N} 708, \mathrm{BSY} 27$
30 Fant mitching silicon liodea like IN914 micro－min 10 1－Amp SCR＇s TO． 5 can up to 600 PIV CRS1／25． 600 20 Sll．Planar NPN trans．low noise amp 2N 3707
$2 \bar{Z}$ Zener diodee 400 mW In0 case tuixed volts， $3-18$
15 Plantle case 1 amp silicon reetitiera an 4000 series
30 Sil．PN P alloy trank．TO－5 BCY $26, \overline{28302 / 4}$
25 Sil．planar trana．PNP TO－1\＆ 2 N 240 A

30 Sil．alloy tranh． 80.2 PNP，OC ${ }^{4} 0028322$
20 Fant awitching ail．trank．NPN， $400 \mathrm{Mc} / \mathrm{s} 0 \mathrm{~N} 3011$
30 KF germ．PNP trans． $2 \mathrm{~N} 1303 / \overline{5}$ TO－5
10 Dual trans． 6 lead TO－ 5 2NO0t0
25 RF germ，trans．TO－1 OC45 NKTi2
10 VHF germ．PNP trans．TO．1NKT667 AF117．
25 sil．trans．plantic TO－18 A．F．BC113／114
20 sil．trans．plastic TO．5 BCl15／116

BRAND NEW TEXAS GERM．TRANSISTOR | Coded Find Guranteed |
| :--- |
| Pak |
| T1 | $\begin{array}{lll} & & 81 \\ \text { T1 } & 820371 B & \text { OC71 } \\ \text { T2 } & 8 & \text { D1374 } \\ \text { OC73 }\end{array}$ $\begin{array}{llll}\text { T9 } & 8 & \text { D1374 } & \text { OC73 } \\ \text { T3 } & 8 & \text { D1210 } & \text { OC81D }\end{array}$ 8 2G381T OC81

$82 G 382 \mathrm{~T}$ $\begin{array}{lll}8 & 2 \mathrm{G} 382 \mathrm{~T} \\ 8 & \mathrm{OC} 34 \\ 8\end{array}$
 $82 \mathrm{~GB} \mathrm{~B}_{8}$ OC4 T9 8 2C399A 2N1302 T10 82 G 417 AF117 All 50 p cach pals

EN2000 NPN SIL，DUAL

 TRAN8．CODE D1699 TEXAS．Our price 25p ench，120 VCB NIXIE DRIVER TRANBISTOR．Sim． TRANBISTOR．Sim B8X21 \＆C407，2N1893 CODED ND120．1－2

[^5]17p each．TO－

25 up 15p ea

Sij．trans sultable P．E．Organ．Metal TO． 18 Equt．ZTX 300 Ep each Any Qty

NEW LINE
PLASTIC ENCAPSU－ RECTS．

30V RMS 32p

 100 V RMS 37p 400 V RMS 40p Blze $15 \mathrm{~mm} \times 6 \mathrm{~mm}$
7 3A ACR＇s TO－66 up to 600 Piv．

Comle Nos．mentioned above are given as a gulde to the type of device in

POWER TRANSISTOR BONANZA！

GEKERAL PURPOSE GERM，PKP Coded（iP＇ 00 BRAND NEW TO－3 CASE，POSA．	ADi6］NPs
REPLACE－OC2\％－28 29－30－35 36，NKT 401－403－404	
40j－406－430－4⿹勹－452 4j3，T1302\％－3028，2N 200 A ，	AD｜62 APN
VCBO 80 Y VCEO joV 1C 10．PT， 30 WatTs Hie	M／P COM
$30-170$.	QEPM TPANB
$P R I C E$ $1-24$ $2 \bar{v}-44$ 100 up 43p each 40 peach 36 p each	OUR LOWEST PIICE OF SEp PER PA／R
8ILICON High Voltage 250V SPM	
Appiditiour．Mrand new Coded R 2400	
VC30 2J0／VCEO 100／IC 6A／30 Watta 115 WATT SIL	MATCEED EPK／PMP
	BIP 19 NPN TO．3
OUR PRICE EACH：	Plastic．${ }_{\text {BIP }} 00 \mathrm{PND}$ Herad
$1-24$ $2 j-94$ 100 up POp EACH 50 p 45 p 40 p 50 l	BIP ${ }_{\text {new．}} 20 \mathrm{PNI}$ ．Brand
50p 45p 40p 10p EACH	VCBO 100／VCEO
EX－STOCK TYPE EACH AB PRICED ${ }^{\text {a }}$（C）10A．HFE type	
OC20 50p OC28 40p AD149 4Sp BD131 70p BD139 75p	$100 / \mathrm{ft} 3 \mathrm{mHZ}$ ．
OC22 30p OC29 40p AL102 85p HD132 80p BD140 85p	OUR PRICE PFR
OC23 33p OC35 38p AL103 85p BD135 70p BD155 75p	PAIR
OC23 46p OC36 40p BD1ツ160p DR136 80p BU10． 23	1－24 23－99 100
OC25 25p AD14040D BD123 75p BD $13770 \mathrm{p} 2 \mathrm{~N} 30 \mathrm{~J}^{4} 45 \mathrm{p}$	prs．prs．prs．
OC26 85p AD14240p BD124 70p HD13880p	60p 55p 50p

ETL MICROLOGIC CIRCUTTS
Epuy TO Price each $\begin{array}{lrrr}\text { Epoxy TO－u case } & 1-24 & 2 j-99 & 100 \text { u } \\ \text { uLgoo Buffer } & \text { 25p } & \text { 28p } & \text { 27p }\end{array}$ uL914 Dual 2i／p gate $\begin{array}{cccc}\text { gate } & 35 \mathrm{p} & 38 \mathrm{p} & 27 \mathrm{p} \\ \text { uL923 J．K flip－flop } & 50 \mathrm{p} & 47 \mathrm{p} & 45 \mathrm{p}\end{array}$ Data and Circuits Bookket for I．C＇a
Price 7p．

DUAL IN－LIHE SOCEETS
14 and 16 Leal Bocketa for use with DUAL
IN．LINE I．C． IN－LINE I．C＂A TWO Rangea PRofebsional and NEW Prof type Nio．

Prof．type No．	1－24	2う－9！	100 up
T8014 pin type	80 D	27p	25p
Ts016	85p	32p	30p
Low Cust No．			
BPS14	15p	18p	11p
BPS16	169	14p	12p

	Description
Q1	
Q2	16 White spot［f．F．trans．PNP
Q3	4 OCTI type trans．
Q4	6 Matched trane．OC44／45／81／81D
Q5	40 CTj transistors
Q6	4 OCTe transistors
Q7	4 AC128 trans．PNP high gain
Q8	4 ACl2titrans．PNP
Q9	7 OC81 type trans．
Q10	7 OCJl type trans．
Q11	2 AC127／128 comp．\｜airs PNP／NPN
Q1\％	3 AFIl6 tspe trans．
Q13	3 AFl17 type trans．
Q14	3 OCl 71 H．F．type trata．
Q15	$5 \geq \mathrm{N} 2926$ 8il．epoxy tralus．
Q16	\because aET880 low noise germ．trana．
Q17	3 NPN 1 ST141 \＆ 2 8T1t0
Q18	4 Madt＇s ${ }^{\text {a }}$ MAT 100 \＆ 2 Mat $1 \geqslant 0$
Q19	3 Mait＇s 2 MAT 101 \＆M MAT 121
Q20	4 OC44 gernm trans．A．F．
Q21	3 AC197 NPN gerni，trans．
Q22	20 NKT trans．A．F．R．F．coled
Q23	$100.420{ }^{\text {a }}$ sil．diodes sub－min．
Q24	80.881 diotes
Q25	
Q26	－ 0.195 gerim．liotea sub－min． 1 N 69.
Q27	210 A 600 PIV gil．rects．IS 45 R
Q28	4 Sil．porer rects．Byzi3
Q＇9	4 Sil．trans．${ }^{2} \times 2 \mathrm{~N} 69 \mathrm{ft}, 1 \times 2 \mathrm{~N} 697$ ， $1 \times 2 \mathrm{~N} 698$.
Q30	－Sil．switch trans． 2 N 706 NPN
Q31	（i）Sil．switch trans．2N708 NPN
Q3：	3 PNP $1 \times 2 \mathrm{Al}$, trans． $\times 2 \times 2 \times 1131$,
Q33	3 Sil．NPN trans．2N1711
Q34	7 Sil．NPN trans．2N2369， $000 \mathrm{MH} / \mathrm{Z}$
Q35	$\begin{aligned} & 3 \text { sil. PNP TO.5 } 2 \times 2 N 2904 ~ \\ & 1 \times 2 \text { N2905 } \end{aligned}$
Q3ti	7 N 23646 TO．18 plastic 300 M 132 NPN
Q 317	
Q38	7 PNP trans． $4 \times 2 \times 3703,3 \times 2 \mathrm{~N} 3702$
Q39	7 NPN trana． $4 \times 2 \mathrm{~N} 3704,3 \times 2 \mathrm{3} 3005$
Q40	7 SPN amp． $4 \times 2 \mathrm{~N} 3707.3 \times 3 N 3708$.
Q41	3 Plastic NPN TO－18 2N3904
Q 42	＋NPN trans． 0 N5172
Q 4.3	7 BCl 107 NPM trans．
Q44	7 NPS trans． $4 \times$ BC108， $3 \times 13 \mathrm{Cl} 00$
Q40	3 BC119 NPN TO－18 trane．
Q4t	3 BCllo NPN TO－j trans．
Q4	6 SPN high gain $3 \times$ BC16T， $3 \times 13 \mathrm{Cl} 68$
Q48	4 BCY70 NPN trans．TO－18 ．．．．．．
Q49	4 NPN tranm． 2×1 BFY51， $2 \times 1 \mathrm{FFY}$ 2
Q00	7 3SY28 SPN switel TO－18
Q51	7 BSY95A SPNtrans 300MH2
Q 52	8 BY100 type sil，rect．
Qis	0 Sil．\＆germ．trans．mixed all

PRINTED CIRCUITS—EX－COMPUTER Packed with semiconductors and components， Our price 10 hoarils， 500 ．Plus 10p P．\＆P． 100 Boards 43

SLIICON PHOTO TRAMSISTOR． TO． 18 Lens emel．NPN Sim，to NEW ．Full lata available．Fulls guar
Qty．

Qts	

FET＇S

2N3819	35p	2Nちゃ38	50 F
2×3820	80p	－ X 5459	40p
2 N 3821	35p	BFW10．	400
2N3823	30p	MPFIOJ	40p

NEW EDITION

TRANsISTOR EQUTVALEXT8

 BOOK．A complete cross reference and equivalents book for European， Ams En Japanese Trandis each．Red Cover Edition．A LARGE RANGE OF TECH－ NICAL AND DATA BOOKS ARE NOW AVAILABLE EX． STOCK．SEND FOR FREE LIST．

OUR STOCE8 of individual derjces are now too htme roun to mention in for our ligting of over I，000 semi－ conductors．All avallable Ex－8tock conductort．Alla a aliable Ex
at very competitive prices．

－the lowest prices！

74 Series T．T．L．I．C＇s DOWN AGAIN IN PRICE
${ }^{C}$
Check
them
BI－PAK

BI－PAE	Price and aty pricea 1－24：5－49 100 up			BI－PAK Order No．	Price aud ety．prices $1-2425-49100$ แ1		
Order Mo．							
	${ }^{1} 1$	ℓ_{p}	\＆		¢ 1	£	\＆
$\mathrm{Bl} \mathrm{P}^{\prime} 00=8 \mathrm{~S} 700$	0.15	0.14	0.12		0.32	0.30	0．28
$B P 01=8 N 7401$	0.15	0.14	0.12	$13190=8 \times 3490$	0.67	0.84	0.58
BPO2 $=$ SN7402	0.15	0.14	0.12	HP91－8N5491A	0.87	0.84	0.78
BP03 $=8 \mathrm{~N} 7403$	0.15	0.14	$0 \cdot 12$	BF9\％$=8 \mathrm{~N} 448$	0.67	0.84	0.58
$\mathrm{BPO4}=\mathrm{BNT} 404$	0.15	0.14	0.12	13P93 $=8$ N7493	0.67	0.84	0.58
BP05 $=$ SN740．	0.15	0.14	0.12	BP94＝85才494	0.77	0.74	$0 \cdot 68$
$13 \mathrm{P} 0{ }^{-1}=\mathrm{SNT} 40^{-}$	0.18	$0 \cdot 17$	0.16	B P90 $=8 \times 1490$	0.77	0.74	0.68
$13 \mathrm{P} 08=8 \mathrm{ST} 40 \mathrm{~N}$	$0 \cdot 18$	0.17	0.16		0.77	0.74	0.68
$\mathrm{BP} 09=8 \mathrm{NT} 404$	0.18	0.17	0.16		1.75	1.85	1.55
［3P10 $=8 \mathrm{SN}^{\text {S }}+10$	0.15	0.14	0.12	BP104 $=$ SN ${ }^{\text {c }}+104$	0.97	0.94	0.88
	0．29	0.28	0.24	$13 \mathrm{P} 10.0=8 \mathrm{Ni}+100$	0.87	0.94	0.88
BP16＝8Ni4 16	0.43	0.40	0.38	BP107 $=8 \mathrm{NT}+107$	0.40	0.88	0.36
$\mathrm{BP17}=\mathrm{SNT} 417$	0.43	0.40	0.38	B1＇110 $=8 \mathrm{NT}+110$	0.55	0.53	0.50
	0.15	0.14	0.12	13P111 $=$ SN－411］	1.25	1.15	1.00
BP30 $=$ SNT430	0.15	0.14	0.12	Bril8 $=8 \mathrm{SN}+118$	1.00	0.95	0.90
$13 \mathrm{P} 40=\mathrm{SNT} 440$	0.15	0.14	0.12	BF119 $=\times$ NT4119	1.35	1.25	1.10
BP41 $=8 \mathrm{NT} 741$	0.67	0.64	0.58		0.67	0.84	0－58
	0．87	0.84	0.58	BP141 8NTH141	0.67	0.84	0.58
$8 \mathrm{P}^{2} 43=9 \mathrm{~S} 7443$	1.95	1.85	1.76		1．50	1.40	1.30
BP44 $=8 \mathrm{ST} 444$	1.95	1.85	1.75	BP150 $=$ SN 74150	1.80	1.70	1.60
$\mathrm{BP} 45=8 \mathrm{~S} 5445$	1.95	1.85	1.75		1.00	0.95	0.90
$3 \mathrm{P} 4 \mathrm{t}=8 \mathrm{~N} 7446$	0.97	0.94	0.88	BP1さ3＝8N7413	1.20	1.10	0.95
BP4T＝SNT44	0.97	0.94	0.88		1.80	1.70	1.60
BP43 $=$ M 7 7448	0－87	0.84	0.88		1.40	1.30	1.20
1P50 $=8 \times 7450$	0.15	0.14	0.12		1.40	1.80	1.20
$13 \mathrm{Pal}=\mathrm{SN} 74 ⿹ 1$	0.15	0.14	$0 \cdot 12$	$\mathrm{BP160}=8 \times 74160$	1.80	1.70	1.60
	0.15	0.14	0.12	BP161 $=$ SN 74161	1.80	1.70	1.60
$\mathrm{BP} \overline{\mathrm{j}} 4=\mathrm{SN} 74 \overline{4} 4$	0.16	0.14	0.12	BP164 $=\mathrm{SN} 74164$	2.00	1.80	1.80
	0.15	0.14	0.12	$13 \mathrm{Pl} 6^{\circ}=8 \mathrm{~N} 7416^{\circ}$	2.00	1.90	1.80
13P70 ${ }^{\text {P }}$ 8N7470	0.29	0.26	0.24	BP181－SN74181	2.75	2.80	2.40
$13 \mathrm{P}^{7} \boldsymbol{3}=\mathbf{8 N} 7472$	0.29	0.26	0.24	BP182 $=8 \mathrm{NT}+18{ }^{\text {a }}$	0.97	0.94	$0 \cdot 88$
$\mathrm{BP} 73=8 \times 7+73$	0.37	0.35	0.32	$\mathrm{B} \vdash^{\prime} 190=8 \mathrm{~N} 74190$	3.50	3.25	3.00
$8 \mathrm{P} 74=\mathrm{SN} 7474$	0.37	0.85	0.32	131＇191－8N $7+191$	2.60	3.25	3.00
BPTJ＝SN74\％	0.47	0.45	0.42	BP192 $=$ SNT 4192	$2 \cdot 10$	1.95	1.75
BP76＝8N7476	0.43	0.40	0.38	BP193 $=$ BN74193	$2 \cdot 10$	1.95	1.75
$\mathrm{BPSO}=8 \times 7480$	0.87	0.84	0.58	$\mathrm{BP125}=8 \mathrm{~N} 7419$.	1.10	1.05	0.95
$\mathrm{Al}^{1} \mathrm{8} 1=\mathrm{SN} 7481$	0.97	0.94	0.88	13P196＝8N74196	1.80	1.70	1.80
BP82 $=3 \pm 748{ }^{\circ}$	0.97	0.94	0.88	$13 \mathrm{P} 197=8 N 7419 \%$ $\mathrm{BP} 198=8 \mathrm{~F}+198$	1．80	1.70 5.00	1.60 4.00
BP83 $=$ SN7483	1.10	1.05	0.95	13P199＝\＄N74149	5.50	8.00	4.00

PRICE－MIX．Devices may te mixell to qualify for quantity yricen．
PRICES for quantitiey in excesk of 500 pieces tuixell，on apphicalim．
Owing to the ever increayng range of TTL it serien，pleave check with nis fur supplies

BI－PAK DO IT AGAIN！
50W pk 25W（RMS）

0.1% DISTORTION！

HI－FI AUDIO AMPLIFIER

THE AL50

$100,000-1$
，
＊ \(\begin{gathered}Diatorti
lkliz．\end{gathered}\)
＊Nigual to thine ration sond

£3－25p each
 incorporatiog the latest solid atate circuitry abd A LBO was conceived to fll the need

STABILISED POWER MODULE

 per thannel．simultaneously．This morlule entodies the latest componenta and circult techniques incorporating complete short circult protection．With the addition of the Mains Tranaformer MT80，the unit will provide outputa of up to 1 万ampa at $3 \bar{u}$ volts．Slze： $63 \mathrm{~mm} \times 10 \mathrm{mmm} \times 30 \mathrm{~mm}$ ．
These units enable you to buill A uljo systena of the highest quality at a hitherto unobtainable price．Also ideal for many other applications including：－Dinco Systems，Public Adiress．Intercon linit，elc．Handbook availahle， 10 p

STABILISED POWER MODULE SPM80 E2．95
TRANSFORMER BMT80 £1．95 p．\＆p．25p
SPECIAL COMPLETE SET COMPRISING
2 ALSO＇s， 1 SPM80 \＆ 1 BMT8O．ONLY $E 11$ FREEP．\＆P．

DTL AND TTL INTEGRATED CIRCUITS

part fucturers pan outs out of shec．clevices including functional untry and part function but classed as out of epec，from the manufacturers＇very rigid npecifica Pak No．

Pak No．		o．	
U1C930 $=1 \div \times \mu \mathrm{A} 30$	50p	［11C948	
$1 \mathrm{IC932}=12 \times 14.4932$	50p	lic＇9j1	$5 \times \mu \mathrm{A} 951$.
$11 \mathrm{C} 933=12 \times 14.4933$	50 p	TIC961	$1 \stackrel{2}{2} \times \mu \mathrm{A} 961 \ldots 80 \mathrm{D}$
$116935=12 \times 4.4935$	50．	U109093＝	5 \times H．4 9093 －500
$1^{\prime} 1 \mathrm{C} 936=12 \times \mu \mathrm{A} 936$	50p	CIC9094 $=$	$\therefore \times \mu \mathrm{A} 9094$－ 60 p
	50p	U1C9097 $=$	二）\times ب．${ }^{\text {9 9097 }}$
$1 \mathrm{CC94}=8 \times \mu \mathrm{A} 4 \mathrm{u}$	509	［169099＝	$\therefore \times \mu \mathrm{A} 9099$－ 600
$110^{+1944}=12 \times 14.494 t$	50p	［ICX9 25 A	sorted 930 Series ． 21.50
paks cannot be split but Data llooklet available for	14P930 Beri	$\begin{aligned} & \text { ur mix } \\ & \text { RICE } \end{aligned}$	bice as
$11000=12 \times 7400 \mathrm{~N} 50 \mathrm{D}$	11C4	7446 N 50p	U1CAI $=5 \times 7481 \mathrm{~N} 50 \mathrm{p}$
UIC01 $=12 \times 7403 \mathrm{~N} 50 \mathrm{p}$	$1 \mathrm{lcti}=\bar{j}$	7447 N 50p	UIC82 $=\overline{5} \times 748.2 \mathrm{~N} 50 \mathrm{p}$
$11002=12 \times 7403 \mathrm{~N} 50 \mathrm{p}$	$11 \mathrm{C48}=$ \％x	T448N 50p	$1{ }^{1} \mathrm{IC} 83=\mathrm{j} \times 7483 \mathrm{~N} \mathrm{50p}$
U1C04 $=12 \times 5303 \mathrm{~N} 50 \mathrm{p}$	$11 \operatorname{Cos} 0=12 x$	74.00 N 50 p	${ }^{1} \mathrm{TC8} 0^{3}=5 \times 7486 \mathrm{~N}$ 60p
1 TIC04 $=12 \times 7404 \mathrm{~N} 50 \mathrm{p}$	$1{ }^{*}\left\|\mathrm{C}^{*}{ }^{\prime}\right\|=12 x$	7451 N 50 p	t＇IC90 $= \pm \times 7490 \mathrm{~N} \mathrm{60p}$
TLC0．$=12 \times 7405 \mathrm{~N}$ 50p	$11053=12 x$	74J3N 50p	［1C91 $=5 \times 3491 \mathrm{~N} 50 \mathrm{p}$
U1210 $=12 \times 7410 \mathrm{~N} 80 \mathrm{p}$	HICJ4 $=12 \times$	74．j4N 80p	（1C92 $=5 \times 7492 \mathrm{~N} \mathrm{80p}$
［IC13 $=N \times$＋413N 50p	UIC60 $=12 x$	7460 N 800	ITC93 $= \pm \times 3493 \mathrm{~N}$ 80p
$1 \mathrm{TCEO}=12 \times 7420 \mathrm{~N} 50 \mathrm{p}$	UIC70 $=8 \times$	7470 N 50 p	UIC94 $=5 \times 7494 \mathrm{Ns} 80 \mathrm{D}$
$11840=12 \times 7440 \mathrm{~N} 500$	UICt：$=8 \times$	74TON 50p	UIC9J $=\overline{7} \times 749 \mathrm{jN} \mathrm{50p}$
$1 \mathrm{CL} 41=5 \times 1441$ AN50p	$11073=8 \times$	7473 5 50p	TIC96 $=\overline{5} \times 7496 \mathrm{~N} 50 \mathrm{p}$
V1C42 $=5 \times 7442 \mathrm{~N} 50 \mathrm{D}$	UlC74 $=8 \times$	7474 N 80 p	UIC121 $=\mathrm{J} \times 74121 \mathrm{~N} 50 \mathrm{p}$
$11043=\therefore \times 743 \mathrm{~N} 50 \mathrm{p}$	1＇IC75 $=4 \times$	7470n 50p	$1 \mathrm{CXI}=2 \mathrm{~s} \times \mathrm{Asst}{ }^{\text {d }}$
$1 \mathrm{IC4}=5 \times 7444 \mathrm{~N} 50 \mathrm{p}$	1IC7A $=8 \times$	7476 N 50 D	． 50
	V1CH0 $=3 x$	7480 N 800	

[^6]

\footnotetext{
SPEAKERS
Duo TYpe II
Size approx. $17 \mathrm{in} 103 i n$ 6in. Drive unic
ISin gin with parasitic tweeter. Max. power
10 warts, 3 ohms. Simulated Teak cabinet.
$\ell 14$ pair $+\ell 2$ p\&p. Duo Type III

Size approx. $23!$ in 11 in 91 in. Drive unit I3, in 8 in with H.F. speaker. Max. power
watts at 3 ohms. Freq. range 20 Hz to 20 kHz . Teak
veneer cabinet. 632 pair 63 p\&p.

SPECIFICATION RIOI
14 watts per channel into 3 to 4 ohms. Total distor-

 ties given at full power). Tape our facilicies: head.
phone socket, power out 250 mW per channel.

 better than -35 dB on all inputs. Overlood chorocteristics better chan 26 dB on all inputs. Size approx
$13{ }_{4} \mathrm{in}$ '9in: 3 i in .

We'll give you the chance you didn't take at school.

'O level standard in Maths, and Science or English, or a good C.S.E. in selected subjects could get you a great career in today's Navy. We'll train you to be one of our top technicians, working on space-age equipment and earning over $£ 2,000$ a year. If you're $15 \frac{1}{2}-21$ send for our free book.

APPRENTICESHIPS

Name

Address

Date of birth
(Enquiries from U.K. residents only)
Royal Naval Careers Service (877QN2), Old Admiralty Bldg., Whitehall, London, SWrA 2BE. Please send me, without obligation, your free booklet, "Royal Navy Technician Apprenticeships"

TOURIST

MARK 3
CAR RADIO
ALL TRANSISTOR

Beausifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensure excellent tracking, sensisivity and
selectivity on both wave bands. R.F. sensitivity at $1 M H z$ is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tumer cogether with comprehensive instructions guarantecs success first time. 12 volts negative or positive earth. Size $7 \mathrm{in} 2 \mathrm{in} 4 \frac{1}{2}$ in decp. SET OF PARTS
 parts Speaker, baffle and fixing kit 4 1.25 extra plus P. P. 25p

Speaker postage free when
ordered with parts

DUETTO MK. II I.C.
STEREO AMPLIFIER
Sophisticated styling combined with up-to-date electronics means Mi-Fi. This is what the
Duetso Mk. If offers at a realistic price. Mullard bult stereo pre-mplifier tone control module and the highly efficient I.C. monolithic Dower chips ensure: reliability, very low distortion
at all power Jevels, correct operation in all ambient temperatures, full power over at all power $e v e l s$, correct operation in all ambient temperatures, full power over
the audio spectrum, ete.

Inputs:
Auxiliary 100 mV (ai Meg. (for radio, tape, etc.)
Wwatts rms per channel into 8 - $15 \$$ speakers
balanec and on/off switch. Neon indicator.
Tone Controls: Treble 14 dB w 15 kHz .
Power Bandwidth: $2 \mathrm{db} 20 \mathrm{~Hz}-25 \mathrm{kHz}$.

RELIANT MK.IV
The Reliant Mk,IV provides a high standard of sound reproduction, with full mixing facilities. Its versatility makes
it suitable for: Discotheque suitable for: Discotheque,
\star Five Electronically Mixed Inputs \star Mixer employing F.E.T. (Field Effect * Three Individual Mixing Controls - Separate bass and treble controls \star Solid State Circuitry
common to all five inputs Atractive Styling

1. Crystal Mic. or Guitar 9 mV . 2, Moving coil Mic. or Guitar 8mV. Inputs 3, 4 and 5 are suitable for a wide range of medium output equipment (Gram, CONTROLS: 3 Volume controls. Bass consitivity.
$13 \mathrm{~dB}, 60 \mathrm{~Hz}$. Treble contral range control range
15 KHz . Separate ON/OFF Switch. Neon Indicator POWER OUTPUT: 12 Watts RM.S into 3 to
SIGNAL/NOISE: Better than -60 dB on inputs 3,4 and 5 and -50 dB in 1 and 2 .

Plus P. \& P. 60p

CONTINENTAL

4-TRACK, 3-SPEED TAPE DECK
with high impedance heads
R.C. 74 tape deck. Three speeds- $7 \frac{1}{3}$ 34 and 17% i.p.s. 4.track record/playback head. Plus 4-track erase head. Positive pressure pad system. Takes any tape spool up to and including 7in. The R.C. 74 is driven by a powerful $200 / 250 \mathrm{~V}$ So-cycle flywheel brings wow and flutter levels do $7 \frac{1}{2}$ i.p.s. Fast rewind in both directions

$$
\begin{aligned}
& 7 \text { ipes. Fast rewind in both directions. } \\
& \text { Controls couldn't be simpler! fust five push buttons that interlock to cut out }
\end{aligned}
$$

 accidental tape damage. Efficient servo-action type braking. Easy drop-in tape loading.
The R.C. 74 comes with an attractive moulded deck cover, which has positions
for tone and volume controls. The unit is built into a rigid die-cast frame, and

TRANSFORMERS

Primary $200-250$ Volts Secondary 240 Volts Centre
50 Tapped (120 V) and Earth Shielded
ALSO AVAILABLE WITH $115 / 120 V$ SEC. WINDING ALSO AVAILABLE WITH
Ref. VA Weight Size cm
No. (Wotts) 1 boz $\begin{array}{rcrrrrr} \\ 07 & 20 & 1 & 11 & 7.0 \times & 6.0 \times 6.5 \\ 100 & 60 & 3 & 8 & 8.9 \times 8 \times 8 \times 7.7 \\ 61 & 100 & 5 & 12 & 10.2 \times 8.9 \times 8.3 \\ 30 & 200 & 9 & 8 & 12.0 \times 10.3 \times 10.0 \\ 62 & 250 & 12 & 4 & 9.5 \times 12.7 \times 11.4 \\ 55 & 350 & 15 & 0 & 14.0 \times 10.8 \times 12.4 \\ 63 & 500 & 27 & 0 & 17.1 \times 11.4 \times 15.9 \\ 92 & 1000 & 40 & 0 & 17.8 \times 17.1 \times 21.6 \\ 128 & 2000 & 63 & 0 & 24.1 \times 21.6 \times 15.2\end{array}$

Weight Size cm.
Ref. VA Weight Size cm.

\[

\]

4	150	3	0	
66	300	6	0	1
67	500	12	8	1
84	1000	16	0	1
93	1500	28	9	1
95	2000	40	0	1
73	3000	45	8	1

OTALLY ENCLOSED $115 V$ AUTO TRANSFORMERS mains lead and two 115 V outlet sockets, 67.87 . P \& P 67p.
 LOW VOLTAGE SERIES (ISOLATED)

$p \&$

 \checkmark n... ®ivincoño Ref. Amps. Weight No. 12 V 24 V 16 oz $\begin{array}{ll}1110.5 & 0.25 \\ 2131.0 & 0.5\end{array}$ 131.00 .5Weight
16 oz $\begin{array}{lllllllll} & 7.6 \times 5.7 \times & 4.4 & 0.12 \mathrm{~V} \text { at } 0.25 \mathrm{~A} \times 2 \\ 71 & 2 & 1 & 1 & 0 & 8.3 \times 5 & 5.1 \times & 5.1 & 0.12 \mathrm{~V} \text { at } 0.5 \mathrm{~A} \times 2 \\ 18 & 4 & 2 & 2 & 4 & 8.3 \times & 6.4 \times & 5.7 & 0.12 \mathrm{~V} \text { at } 1 \mathrm{~A} \times 2\end{array}$ $\begin{array}{ll}18 \\ 70 \\ 08 & \\ 72 & 10 \\ 17 \\ 115 \\ 187 \\ 226\end{array}$
 Size cm

 Ref.
No.
112
79
3
20
21
51
117
88
89

Amps	Weight lb oz	
0.5	1	4
1.0	2	0
$2 \cdot 0$	3	2
3.0	4	6
4.0	6	0
$5 \cdot 0$	6	8
6.0	7	8
$8 \cdot 0$	10	
10.0	12	2

$8.3 \times 3.7 \times 4.9$
$7.0 \times 6.4 \times 3.0$
$8.9 \times 7.0 \times 7.6$
$10.2 \times 8.9 \times 8.6$
$10.2 \times 10.0 \times 8.6$
$12.1 \times 10.0 \times 8.6$
$12.1 \times 10.0 \times 10.2$
$14.0 \times 11.7 \times 10.0$
$14.0 \times 10.2 \times 11.4$ 30 VOLT RANG 30 Secondary Tops 4.9
6.0
7.6
8.6
8.6
8.6
10.2
10.0
11.4

50 VOLT RANGE RAN
$s \quad P$
0.85
1.01
1.33
1.86
2.24
2.48
2.84
4.54
5.76
10.67
19.61 goununimunn on

Size cm.
$7.0 \times 7.0 \times 5.7$
$8.3 \times 7.3 \times 9.0$
$10.2 \times 8.9 \times 8.6$
$10.2 \times 10.2 \times 8.3$
$12.1 \times 11.4 \times 10.2$
$12.1 \times 11.1 \times 13.3$
$13.3 \times 13.3 \times 12.1$
$16.5 \times 11.4 \times 15.9$

Secondary Tops
Ref. Amps. Weight No.
102
> P
1.35
1.35
1.88
2.94
4.48
5.78
8.37
13.85 P
p
36
36
42
52
67
82

* LEAD ACID BATTERY CHARGER TYPES $\underset{\substack{1.54 \\ \text { and } \\ 3.07}}{\substack{1.02}}$ NiNNOO

```
                            60 VOLT RANGE
```

$$
\begin{aligned}
& \text { Ref. Amps. Weight } \\
& \text { No. }
\end{aligned}
$$

 $\begin{array}{ll}124 & 0.5 \\ 126 & 10 \\ 127 & 2.0 \\ 125 & 3.0 \\ 123 & 6.0 \\ 120 & 10 \\ 122 & \end{array}$

Alf ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order. TRANSISTORS FULL SPEC
8C107/108/109 9.0p each $\begin{aligned} & \text { 2N 3055 68p each } \\ & \text { with mica and }\end{aligned}$ $\left.25+7.3 p \quad \begin{aligned} & \text { with mica and } \\ & \text { wushes }\end{aligned} \right\rvert\, \begin{aligned} & \text { with mica and } \\ & \text { bushes }\end{aligned}$
$100+6.5 p$
Minimum order 10
bushes
$25+5$
$100+55 p$
AVOMETERS - MAINS KEYNECTOR ELECTROSIL RESISTORS

Carriage via BRS

RSI
VALVE MAIL ORDER CO. BLACKWOOD HALL
I6a WELLFIELD ROAD, LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE

Express postage Ip per transistor, over ten post free

1 N 21	$\begin{aligned} & \mathbf{f}^{2} \\ & 0.17 \end{aligned}$	ACl26	$\begin{aligned} & 19 \\ & 0.20 \end{aligned}$	$\begin{array}{ll} & \text { in } \\ \text { BF173 } & 0.25 \end{array}$	(1J4M	$\begin{aligned} & \log _{0.88} \end{aligned}$	0 C 43	$\begin{aligned} & 8 . \\ & 0.40 \end{aligned}$
1N23	0.20	AC127	0.25	BF181 0.85	OJ5M	0.85	OC4 4	0.17
1 N 85	0.88	${ }^{\text {A Cl2 }} 8$	0.20	BF184 0.20	G. $7 \mathrm{7M}$	0.87	OC44M	0.17
1N253	0.60	AC187	0.25	BF185 0.80	HG1005	0.50	0 C 45	0.12
1N256	0.60	AC188	0.25	BF194 0.17	HS100A	0.20	0C45M	0.18
1N645	0.25	ACY17	0.80	BF195 0.15	MAT100	0.25	0 C 46	0.87
1 N 725 A	0.20	ACY18	0.26	BF196 0.15	MAT101	0.80	0 C 5	0.60
1N914	0.07	ACY19	0.25	BF197 0.15	MAT120	0.25	OC58	0.60
1N4007	0.20	ACY20	0.20	BFS61 0.29	MAT121	$0+80$	0 C 09	0.65
18021	0.20	ACY21	0.20	BFS98 0.88	MJE520	0.87	OC66	0.60
19119	0.15	ACY22	0.10	BFX12 0+20	MJE2955	1.87	0 C 70	0.12
18130	0.18	ACY27	0.25	BFX13 0.26	MJ E305s	0.87	0C71	0.12
18191	0.18	ACY28	0.17	BFX29 0+25	NKT128	0.85	OC72	0.20
18202	0.28	ACY39	0.50	BFX30 0.25	NKT129	0.80	$0 \mathrm{C7} 3$	0.80
2 C 240	1.97	ACY40	0.16	BFX35 0.88	NKT211	0.25	OC74	0.80
$2 \mathrm{G301}$	0.20	ACY41	0.15	BFX 630	NKT213	0.25	OC7	$0 \cdot 25$
2 G 302	0.22	ACY44	0.25	BFX84 0.26	NKT214	0.15	$0 \mathrm{C7} 6$	0.25
2 G 306	0.80	AD140	0.50	BFX85 0.30	NKT216	0.37	$0 \mathrm{C7} 7$	0.40
$2 \mathrm{Cl371}$	0.22	AD149	0.60	BFX86 0.25	NRT217	0.85	0 C 78	0.20
2 G 381	0.26	AD161	0.87	BFX87 0.86	NKT218	1.13	OC79	0.28
$2 \mathrm{G414}$	0.80	AD162	0.87	BFX88 0	NKT219	0.88	OC81	0.20
$2 \mathrm{G417}$	0.88	AF106	0.80	BFY10 1.00	NKT222	0.20	0C811	0.80
2 N 214	0.48	AF114	0.25	BFY11 1.26	NKT224	0.28	$0 \mathrm{C81M}$	0.20
2N247	0.26	AF116	0.25	BFY17 0.26	NKT251	0.84	OC81DM	0.18
2N250	0.50	AF116	0.25	BYF18 0.26	NKT271	0.26	OC817.	0.40
2N404	0.20	AF117	0.25	BFY19 0.25	NKT25\%	0.85	$0 \mathrm{C82}$	0.25
2N697	0.16	AFl18	0.62	BFY24 0.46	NKT273	0.15	0 C 82 D	$0 \cdot 20$
$2 \mathrm{N698}$	0.40	AF119	0.20	BFY44 1.00	NKT274	0.20	$0 \mathrm{C83}$	0.85
2N706	0.10	AF124	0.25	BFY 00.22	NKT275	0.25	OC8	0.25
2N706A	0.12	AF125	0.20	BFY51 0.20	NKT2\%	0.80	$0 \mathrm{Cl14}$	0.88
2N708	0.16	AF126	0.17	BFY62 0.22	NKT278	0.25	OC122	0.60
2N709	0.63	AF127	0.17	BFY63 0.17	NKT301	0.40	$0 \mathrm{Cl23}$	0.68
2N711	0.87	AF139	0.80	BFY64 0.42	NKT304	0.75	0C139	0.25
2N987	0.58	AF178	0.55	BFY90 0.85	NKT403	0.75	OC140	0.85
2N1090	0.80	AF179	0.65	BgX27 0.60	NKT404	0.55	$0 \mathrm{Cl41}$	0.60
2N1091	0.88	AF180	0.62	BSX 6000.98	NKT678	0.30	OC169	0.20
2N1181	0.25	AF181	0.42	B8X78 0.15	NKT713	0.25	${ }_{0} 0 \mathrm{Cl} 70$	0.25
2N1132	0.26	AF186	0.40	BSY26 0.18	NKT773	0.85	0 Cl 71	0.80
2N1302	0.18	AFY19	1.18	BSY27 0.17	NKTiTi	0.88	OC200	0.40
$2 \mathrm{~N} 1903$	0.18	AFZ11	0.60	B8Y51 0.60	07813	0.88	OC20]	0.70
2N1304	0.22	AFZ12	1.00	B8Y95A 0.12	0 O5	0.20	OC20:	0.80
2N1905	0.22	ASY26	0.25	$\begin{array}{ll}\text { BSY95 } & 0.12\end{array}$	0 A 6	0.18	0 C 203	0.40
2N1306	0.25	AsY2 ${ }^{-1}$	0.82	BT102/500R	OA4-	0.10	OC204	0.40
2N1307	0.25	AgY 28	0.25	0.75	OA70	$0 \cdot 10$	OC205	0.76
2N1308	0.25	A8Y29	0.80	$\begin{array}{ll}\text { BTY42 } & 0.92\end{array}$	OA71	0.10	OC206	0.90
2N1309	0.25	A8Y 36	0.85	BTY79/100R	0 A 73	0.10	OC207	0.90
2 N 1420	0.98	AsY 50	0.17	- 0.75	OA74	0.10	OC460	0.20
2N1507	0.29	A8Y51	0.40	BTY'9/400R	0.79	$0 \cdot 10$	0 C 470	0.80
2N1526	0.88	ASY 3	0.20	1.25	OA81	0.08	OCP/1	0.97
2N1909	2.25	ASY 55	0.20	HY $100 \quad 0.15$	OA85	0.12	ORP12	0.60
2N2147	0.75	ASY 62	0.85	BY126 0.16	OAB6	0.15	ORP60	0.40
2N2148	0.60	ASY86	0.88	$\begin{array}{ll}\text { BY } 127 & 0.17\end{array}$	OA90	0.08	ORP61	0.42
2 N 2160	0.60	ASZ21	0.48	$\begin{array}{ll}\text { BY127 } & 0.17 \\ \text { BY184 } & 0.85\end{array}$	OA91	0.07	S19T	0.80
2N2218	0.20.	AsZ23	0.76	BY182 0.85	OA95́	0.07	SAC40	0.25
2N2219	0.20	AUY10	0.88	BY213 0.25	OA200	0.07	SFT308	0.38
2 N 2287	1.08	AU101	1.50	$\begin{array}{ll}\text { BYZ10 } & 0.85\end{array}$	0 A202	0.10	8T 722	0.88
2N2297	0.20	BC107	0.10	BYZ11 0.32	0.210	0.25	ST7231	0.63
2 N 2369 A	0.15	BCl0s	0.10	$\begin{array}{ll}\text { BYZ12 } & 0.80\end{array}$	OA211	0.30	SX68	0.20
2 N 2444	1.98	BC109	0.10	$\begin{array}{ll}\text { BYZ12 } & 0.80 \\ \text { BYZ13 } & 0.95\end{array}$	OAZ200	0.66	SX631	0.80
2N2613	0.29	BC113	0.16	BYZ13 0-25	OAZ201	0.50	8X635	0.40
2N2646	0.45	BC110	0.80	BYZ15 1.00	OAZ20:	0.42	SX640	0.50
2N2712	0.25	BC116	0.25	BYZ16 0.62	OAZ203	0.42	8X641	0.65
2 N 2784	0.50	BC116A	0.80	BYZ88C3V3	OAZ204	0.30	8X642	0.60
2N2846	0.75	BC118	0.85	0.15	OAZ205	0.42	SX644	0.76
2N2848	0.42	BC121	0.80	C111 0-65	OAZ206	0.48	\$X645	0.75
2N2904	0.80	BC129	0.20	CRSlios 0.26	OAZ20'	0.47	${ }^{\text {r }} 15 / 30 \mathrm{P}$	0.50
2N2904A	0.25	BC12J	0.68	CRS1/40 0 0.47	OAZ208	0.38	V30/201P	0.75
2N2906	0.20	BC126	0.65	Cs48 $\quad 2.50$	OAZ209	0-82	V60/20]	0.50
2 N 2907	0.28	BC140	0.65	C810日 3 -18	oaz210	0.82	V60/201P	0.75
2N2924	0.88	BC14\%	0.15	$\begin{array}{ll}\text { DD000 } & 0.16\end{array}$	OAZ211	0-32	XA101	0.10
2N2925	0.16	BC148	0.18	DD003 0-16	OAZ222	0.45	XA102	0.18
2 N 2926	$0 \cdot 10$	BC149	0.15	DD006 0.18	OAZ223	0.45	$\times \mathrm{XAl51}$	0.15
2N3054	0.50	BC157	0.15	$\begin{array}{ll}\text { DD007 } & 0.40\end{array}$	OAZ224	0.45	XA152	0.15
2N3055	0.75	BC158	0.12	$\begin{array}{ll}\text { DD } 008 & 0.88\end{array}$	OAZ241	0.22	XA161	0.26
${ }^{2} \mathrm{~N} 3702$	0.10 0.10	BC160	0.68	GD3 0	OAZ24.2	0.23	XA162	0.85
${ }^{2} \mathrm{~N} 3705$	0.10	BC169	0.18	$\begin{array}{ll}\text { GD } 4 & 0.06 \\ \text { GD5 } & 0.88\end{array}$	OAZ244	0.22	XA162 $\mathrm{XB101}$	0.26 0.48
2N3706	0.28	BCY31	0.85	GD5 0.88	0 OAZ246	0.28	XB101	0.48 0.10
2N3707	0.12 0.10	BCY 32	0.55	$\begin{array}{ll}\text { GD8 } & 0.26 \\ \text { GD12 } & 0.06\end{array}$	OAZ290	0.88 0.50	XB102 X B103	0.10 0.26
2N3710	0.10	BCY33	0.25	$\begin{array}{ll}\text { GET10: } & 0.80\end{array}$	${ }_{0} 0 \mathrm{Cl} 16 \mathrm{~T}$	0.38	XB103	0.26
2N3711	0.10	BCY34	0.80	GET103 0.22	OC19	0.87	XB113 X 121	0.12 0.48
${ }^{2} \mathrm{~N} 3819$	0.85	BCY 38	0.40	$\begin{array}{ll}\text { GET113 } & 0.20\end{array}$	OC20	0.85	XB121	0.48
2 N 3820	0.60	BCY39	1.00	GET114 0.15	OC22	0.50	ZR24	0.83
2N3823	0.75	BCY 40	0.50	GET115 0.45	0 C 23	0.60	Z\$170	0.10
2N5027	0.58	BCY42	0.25	GET116 $\quad 0.50$	OC24	0.60	Z8271	0.18
2N5088	0.88	BCY 70	0.15	GET120 0.26	OC25	0.87	ZTı1	0.25
28005	1.00	BCY71	$0 \cdot 20$	GET872 0.80	OC26	0.25	ZT43	0.26
28178	0.40	BCZ10	0.85	GET875 0.26	OC26	0.25	ZT43	0.25 0.15
28301	0.50	BCZ11	0.50	GET880 0 0.87	OC28	0.60	ZTX107	0.15
28304	0.76	BD121	$0 \cdot 65$	GET881 0.25	0C29	0.60	ZTX108	0.12
28501	0.87	BD 123	0.80	GET882 0.25	OC30	0.40	ZTX300	0.12
28703	0.62	BD124	0.75 1.80	OET885 0.26	OC35	0.50	ZTX304	0.25
AA129	0.80 0.80	${ }_{\text {BD }}$	1.82	$\begin{array}{ll}\text { GEX44 } & 0.08 \\ \text { GEX45/1 } & 0.10\end{array}$	OC36	0.60	ZTX 000	0.25 0.16
AAZ12	0.80 0.12	BFILI	0.26 0.50	$\begin{array}{lll}\text { GEX45/1 } & 0.10 \\ \text { OEX941 } & 0.16\end{array}$	OC41	0.85	ZTX503	0.16 0.17
ACl07	0.87	BF167	0.25	GJ3M 0.26	OC42	0.80	ZTX531	0.25

SEMI-CONDUCTOR SET FOR P. E. GEMINI AMPLIFIER $£ 13.95$

SEND S.A.E. FOR LIST OF 8,000 TYPES VALVES, TUBES AND TRANSISTORS
Open daily to callers: Mon.-Sat. 9 a.m.-5 p.m.
Closed Sat. I. 30 p.m. -2.30 p.m.
Terms C.W.O. only
Tel. 01-769 0199/1649

MULTI-SPEED MOTOR
Six apeeds are available $500,80^{0}$ and 100 T .p.m. and 8,$000 ; 12,000$ and $10,500 \mathrm{r}, \mathrm{p} . \mathrm{m}$. shaft is in tia. 230/240V. Its speed may be of our Thyrlator controller. Very powerful and naeful notor, size approx. tín dis. x üin long. Price 88p plus 23p postage and Price 88p
ingurance.

RESETTABLE FUSE

 How long does it take you to renew fuse? Time yourself when next one blows Then reckoning your time at \&1 per hour Ree how quickly our resettable fuse (antoelrcuit breaker) will pay for itself. Prico elrcuit breaker) will pay for itself. Pric only $\& 1$ each or $\mathrm{El1}$ per dozen. Specify
3,10 or 15 anp-simply fit in plane of 5, 10

MAINS TRANSISTOR POWER

 PACKDesignen to wherate tranalstor set and anmpifier Adjustable output $6 \mathrm{~V}, \mathrm{oN}, 12$ volts for up of the following batteries. PP PR PP3 PP4, PPd
 transformer rectifer, whothing and leval resistor, condengers and instri.
8sp, pluq 20 postage.

MICRO SWITCH

ach. 21 doz. 1.5 amp Miviel 10 p each or 21.05 loz.

EXTRACTOR FAN

Cleans the air at the rate of 10,000 cubic it. per hour
Suitable for kitubens batlisuitable for kithsens, balls
romm, factorips, changing ruoms, cte., it's so 'quitet it can hardly be heard. (compact, j!" casing with $\overline{2}]^{\prime \prime}$ fan blules,
Kit comprises motor, fan Kit comprises mutor, far
blanles, wheet steel casing, pull blailes, wheet steel casing, pull
switch, mains conmector, and switch, mains connectors. and
fixing lorackety, 22 plus 36 p post ant ins.

MAINS MOTOR

Precision male - as used in record dechs and tape extractor fan, blower $\begin{array}{cccc}\text { heaters, pec. New and } \\ \text { perfect. } & \text { Snip at } & 50 p\end{array}$ Postage 1up for first one orclereil. for each onc

THERMOSTAT
Continuously variable $30 \cdot 90{ }^{\circ} \mathrm{C}$. Has gensor bulb connected ly 33 ing of flexible On operation a $\begin{aligned} & \text { open on and in addition a }\end{aligned}$ plunger moves through approx in. This cuuld be used to open alve on ventilator, ete. 21.50

FLUORESCENT INVERTER
PE GEMINI AMPLIFIER
WIDE BAND SIGNAL INJECTOR FUZZ BOX
ULTRA-SONIC TRANSMITTER

RECEIVER

as featured this and last month Mend M.A.E. for parts list
Ve reserve the right to substitute component hould deliveries be protracted so as to avoid undue delay

MAINS OPERATED

SOLENOIDS
Model 772 -small but power $\times 1$ in $\times 1$ in $\times 60 \mathrm{p}$. Model $400 / 1-7 \mathrm{in}$ pull. Hiz Model TrIo 1 in pull. Size 3 in $\times 2$ in $\times 2!$ in 81.80 plus 20p pogt and insurance

TELESCOPIC AERIAL fur portable, car radic
r transmitter. Chrome plated six sections, extends from 7 it to
 60 p .
3 STAGE PERMEABILITY TUNER This Tuner is a precision instrument made by the famous "Cylkton"
Company for the equally fanous Company filor Car equaliy fanous medium wave tuner (but set of Iongwave coils available as an
extra if required) with a frequency extra if required) with a frequeney
coverage $\quad 1,620 \mathrm{kHz}-5.5 \mathrm{kHz}$ and coverage $1,620 \mathrm{kHz}-525 \mathrm{kHz}$ anc
intended to operate with an I.F intended to operate with an I.F.
value of 470 kHz . Extremely compact (size only $23 \times 2 \times \quad \times \quad$ in thick) with reductlon gear for fine tuning. Snip price this
month esp, with circult of front end suitable for car radio or an a gencral purpose tuner for use with Amplifier. Poot free.

CAPACITOR DISCHARGE CAR IGNITION

This system has proved to be annazingly 55.96 plus sop postage. De-lure modol with pre 25.95 plus 20p postage. De-lure model with pre-
pared circuit board 26.95 . When ordering please state whether for nomitive or negative aystems.

RADIO STETHOSCOPE

Eabiest way to fanlt find-traces signal from aeria to speaker-when signal stops you've found the tamplifier, anything amplifier, anything
whete kit comprises tw phete kit comprises two special
tranvistors and all partu incluling prolic tubre and crystal earpiece. $22-t$ win stetho-extra-post and ims. $20 p$.

STANDARD WAFER SWITCHES

 Standard yize 1 water-silver-plated j-amp contact,

Disl Thermometer. Reading from 200-525F used on Tricity and other cookers. This has a flange
and cant be mounted through a 1 it hole or
alternatively it can just be reated on the object alternatively it can just be reated on the object whose temperature it is required to measure. Size 2in x zin overall dia. Depth in below and tin above mounting panel. Price 80 p each or 10
for $\mathbf{2 7 . 2 0}$.

THIS MONTH'S SNIP

1 HOUR MINUTE TIMER. Made by Smith complete uith control knob anil caliorated lial. This month"s
special bargain at 50 p. Veful in the kitchen, office and
llatk-roum, etc. latk-rotom, etc.

THYRISTOR LIGHT DIMMER
For any lamp up to 1 kW . Mounted on switeh plate to fit in place of standard switch. Virtually no radio interferences. Price $£ 1.99$ plus $20 p$ post and ingurance.

MULLARD AUdIO AMPLIFIER MODULE
\because ges 4 transistors. and has an output of 700 mW into ohm spakers. Input suitable for crystal mic.
ir pick-up. 9 V battery operated. Nize 2 in lung ifin wide lin high.

POCKET CIRCUIT TESTER

Test continuity for any low resistance carcuit, house
Test continutity for any low resistance elrcuit, house
fiers. Also ideal size for conversion to signal injector (circuit supplied). 30p or 2 for 50 p . Post paid.
HONEYWELL PROGRAMMER
This is a drum type timing device, the
drum being calibrated in equal divisions drum being calibrated in equal divisions
for switch setting purpages with trips for switch setting purposes with trips
which are infinitely adjustable for position. which are infinitely adjustable for position
They are also arranged to allow 2 opera tions per switch per rotation. There are iJ
 changeover micro suritches cach of 10 anp
type operated by the trips thus 10 circuits may be changed per revolution. Ibrive motor is maina operated; r.p.n. Some of the many nachines, Display lighting animated and signa, Biring. Dispensing and Vending probably over \&10 each. Special snip price $\$ 5.75$ pling, etc. Price from nakera Don't misa this terrific bargain.

INTEGRATED CIRCUIT BARGAIN

A parcel of jutegrated circuits mavle by the famoun Plessey Company. A once-in-a-lifetime offer of Micro-electronic devices well below cost of manu definitely not aub-standaril or seconds. \& of the ICs are single silicon chip GP amplifiers. The sth is a monolithic npn matched pair. Regular price of parcel well over 25 . Full circuit detalls of the ICs are included and in addition you will receive a list of many different ICs available at bargain prices esp upwards with circuits and technical data of each. Complete parcel owly \&l post paid. DON'T.MISS THIS TERRIFIC BARGAIN.

BATTERY CONDITION TESTER

Made by Mallory but suitable for all batteries made by Ever Ready and others, most of which are zinc carbou and alkaline batteries may be tested. The tester puta a and alkaline batteries may be tested. The tester puta a the condition depenling upon which section the pointer reats. The section reads "replace" "weak" or "good". The test $\rho \mathrm{r}$ is complete in its case, size $34^{*} \times 61^{*} \times 2^{\prime \prime}$ with learls
and prods. Price $81+75$ plus 20 p postage.

Thermontat with Probe. Made by the famoun Ranco Thermostat Co. Covers the range from approx. $0^{\circ}-200^{\circ} \mathrm{C}$ varlable by a control apindle, and aensor tube approx 3 ft 6 in . These are ideal or ovens and as a ceneral purpose thermotat Price 50 each or 10 for $24-50$.
Smell Tuning Condonser an fitted to many Imported Japanese and Hong Kong radiony Two gang about $200 \mu \mathrm{~F}$ per gang. Size approx. 1 ln by In with a I In dis. spindle with dust cover. $\$ 55$ each or 10 for $\mathbf{A 8}$-25.
Het Sink. Small type as used with OC81, etc. $\begin{array}{lll}\text { Price } 5 p \text { each or } 10 \text { for } 45 \mathrm{~g} . & \\ \text { High Foltage Condenser. } 0 \cdot 265 \text { mfl } 1500 \mathrm{Y}^{\prime} \text { RMs }\end{array}$ High Foltage Condenser. $0 \cdot 26 \bar{j}$ mfl 1600 y RMs which rueans that these have a
$4,000 \mathrm{~V} .75 \mathrm{p}$ each or 10 for 88.75 .
1esw sterter. For 8ft fluorescent tubes. Mazda $125 W$ starter. For 8ft fluorescent tubes. Mazda
11 in canister 4 pin base. Price 20 p each or 10 lor canist
for 81.80 .
If Tramiormers. $465 \mathrm{K.C}$. double tuned and made for transiator circuits. 85p per set of 3. 10 seti for 88.15.
Spectacle Framen (No lenses). With built-in hearing aids. The amplifler and battery being housed in the arms. Although these are complete hearing aids we are selling them purely for the sub ninlature componenth they contain. We give no guarantee that they are in worklng order
also these may be mecondhand Price fe. 50 each Foot Switch. Twin levers each of which operates a. 10 A OHB change over awitch. Price sopeach ov Gram Unit. On unit plate with 33 -4J change lever, complete with turntable price 8.25 each. plus 20p post and insurance. 8 Way Plug and Socket. 16 tor 21-85.
Programmers, J r.p.m. Made by Magnetle Devices, Led. The contacts may be set to trigger anywhere around the shaft, ldeal for motlrated lighting displays, sequential switching, etc. Drive motors are $200-240 \mathrm{~V}$) 50 Hz . Model A han has 11 changeover contacts. Price 8 s.
Black Heat Elements. Copper clad fin tubular construction replacements in Tricity and mans other cookers also suitable if connected in series to heat alring cuphoards and for other low temperature application*. The following typen are available. 900W molel, lisin long x in wide. Made by Backer. Price 75D or 10 for 26.75 . $0,200 \mathrm{~W}$ niodel, W shaperl, $14!$ in long $x 9$ in wide. 85p each or 10 for 87.85 .
Radiant Cooker Ringe. As fitted to Tricity and many other popular cookers. We have two types. Both models having an external diameter of 64 in and the elements have been slightly flattened to increase radlation. Backer Type 7D1, 2,900W has a metal cover, size approx. 3 in $\times 1$ tin $\times 1+$ in a metal cover, size approx. 3in x in
over the element connections. So in addition to being a repiacement this could alao quickly be niade into a boiling ring as it only needs mounting on a simple iron frame. This element is rated $200-$ 210 V but it is perfectly safe on 240 V and ss these are usually simmerstat controlled the lower voltage rating is not all that important. Price 75p each or 10 tor $\mathbf{8 6}$-76. Aacker Model 7D1 MK. II again iement ends. Price 65 p each or 10 for 86.85 .
Tricity Cooker Elements. We have quite an Triclty Cooker Elements. We have quite an
agsortment of these and will deacribe then an fassortment of these and will describe then in future issues-but if in the nieantime yout are may have the exact one fn atock.
side 8 witch. "-pole changeover panel mountirg by two 6B.A. screws. Size approx. $1 \ln x i \ln$
 Sub Miniature slide 8witch. DPDT 19 mm (1 nn
appror, $)$ between firing centres. 1月p each or 10

Thermal. Trip. Bakelite encased called the Kliron' Current pasaes through the heater coll and bi-metal strip clicks the eircut open
ghould the current exced 3A. Quite small and whould the current exceed 3 AA . Quite manall and tranaformers or motora. Price 86 p each or 10 for 28.8.

Malas Tranaformer. Primary 240V tapped 220 V . Secondary $20 \mathrm{~V} \mid \mathrm{A}$. Price 60 p esch or 10 for 26. 40.

Trandormer. Primary 230-240V. Secondary $8 \cdot 6-0-6.5 \mathrm{~V} 1 \mathrm{~A}$. With itted primary ecreen. (6) each or 10 for 5.85.
small Croc. Clips. suitable for Inatrumenta, etc. 5 p each or 10 for 45 g .
Bell Tranatormer. Normal mains input 4, 6, $8 \sqrt{V}$ output, normal bakelite case with protective connections. 76p each.

24-HOUR TIME SWITCH
Made by Smith, these are AC malns operated, NOT
CLOCKWORK. Ideal for CLOCK WORK. Ideal for mounting on rack or shelf or
can be built into bor with can be buit into bor with adjustable time periods per 24 hours. JA changeover contacts whil awitch

[^7]
Sinclair Project60

Project 605

The easy way to buy and build Project 60

Project 605 is one pack containing one PZ5. two Z30's, one Stereo 60 and one Masterlink This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat littie clips to plug straight on to the modules Thus all soldering and hunting for the odd part is eliminated. You will be able to add further Project 60 modules as they become avallable adapted to 60 modules as they become avallable
the Project 605 method of connecting

Complete Project 605 pack with f 29.95
All you need for a superb 30 watt high fidelity stereo amplifier

Sinclair Radionics Ltd, London Road, St. Ives, Huntingdonshire PE17 4HJ. Tel : St. Ives 64311

Project 60 offers more advantage to the constructor and user of high fidelity equipment than any other system in the world
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile - using them you can have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier Either power amplifier can be used in a wide variety of applications as well as high fidelity The Stereo 60 pre-amplifier control unit may also be used with any other power amplifie system as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of audıo quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclar's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction
Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U. 12 V battery volume control. etc	£4.48
Mains powered record player	Z.30, PZ.5	Crystal or ceramic P U volume control etc.	£9.45
12 W. RMS contunuous sine wave stereo amp for average needs	$\begin{aligned} & 2 \times 2.30 s, \text { Stereo } 60, \\ & \text { PZ. } 5 \end{aligned}$	Crystal. ceramic ormag P U.FM Tuner etc	£23.90
25 W. RMS continuous sine wave stereo amp using low efficlency (high performance) speakers	$\begin{aligned} & 2 \times Z .30 \text { s, Stereo } 60 \text {, } \\ & \text { PZ.6 } \end{aligned}$	High quality ceramic or magnetic PU. F.M Tuner. Tape Deck. etc.	£26.90
80 W (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60 W . RMS into 8 ohms)	$\begin{aligned} & 2 \times 2.50 \mathrm{~s} \text {, Stereo } 60 \\ & \text { PZ.8, mains } \\ & \text { transformer } \end{aligned}$	As above	£34.88
Indoor PA.	Z.50, PZ.8, mains transformer	Mic. guitar. speakers. etc. controls	£19.43

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have appied the principle to an F.M. tuner with fantastically good resuits. Other original features include varicap diode tuning. printed circuit coils. an I.C. In the specially designed stereo decoder and squelch circuit for silent tuning between stations. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator highting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range: 87.5 to 108 MHz . Capture ratio: 1.5 dB . Sensitivity: $7 \mu \mathrm{~V}$ for lock 1 n over full deviation. Squelch level: $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation. Ștereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. modulation. Stereo decoder oper
Operating voltage: $25-30 \mathrm{VDC}$.
Indicators: Stereo on, tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$,

Stereo 60 Pre-amp/control unit

Designed for Project 60 range but suitable for use with any righ quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p. u - up to 3 mV : Aux - up to 3 mV . Output : 250 mV . Signal to noise ratio: bever than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to
-12 dB at $10 \mathrm{KHz}:$ BASS +12 to -12 dB at 100 Hz . Front panel : brushed aluminum with black knobs and controls. Size : $66 \times 40 \times 207 \mathrm{~mm}$.

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two 2.30 s or $Z .50$ s. and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current 3 mA . H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at $1 \mathrm{KHz}(35 \mathrm{~V}$. supply) 0.02% at rated output. Size $: 66 \times 40 \times 90 \mathrm{~mm}$.

Z. 30 \& Z.50 power amplifiers

Buih, tested and guaranteed with circuits andinstructions manual. $2.30 £ 4.48 \quad$ z.50 $£ 5.48$

The $Z .30$ and $Z 50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at $15 \mathrm{w}(8 \Omega)$ and all lower outputs. Whether you SPECIFICATIONS ($\mathbf{Z}, 50$ units are interchangeable Power Outputs
2.30 15 watts R.M.S. into 8 ohms using 35 volts. 20 watts R.M.S. into 3 ahms using 30 volts. z.50 40 watts R.M.S. into 3 ohins using 40 volts: 30 watts R.M.S. into 8 ohms using 50 volts. Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
use Z 30 or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same stze and may be used with other units in the Project 60 range equally well.
with 2.30 s in allapplications).
Distortion: 0.02% into 80 hms .
Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms (for 15 w into 8Ω i
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~min}$.

Power Supply Units

Designed special for use with the Project 60 system of your chorce. Use PZ. 5 for normal $Z .30$ assemblies and PZ 6 where a stabilised supply is essential.

PZ. 530 volts unstabilised $£ 4.98$
PZ. 635 volts stabilised $£ 7.98$
PZ. 845 volts stabilised
(less mains transformer) $£ 7.98$
PZ.8 mains transformer E5.98

Guarantee

If within 3 months of purchasing Projecr 60 modules directly from us. you are dissalisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that It is returned to us within 2 years of the purchase date. There . will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost.

Component Fuctors
 ALL GOODS NEW AND GUARANTEED BARGAIN PRICES

P.O. BOX No. 18 LUTON • BEDS. LUI ISU

SPECIAL RESISTOR OFFER
SPECIAL RESISTOR OFFER
Due to the enormous response to our last offer, here is another bargain 250 FOR 11
E24 Series $4-7 \Omega 10 M \Omega \neq W$ and $1 W, 5 \%$ and 10% mixed. Your selection. but subject to maximum of 20 different values, and no more than 50 of any
one value. If any value is our of stock the nearest will be sent. Note. No one value. if any value is
quantity discount allowed.

REEDS REEDS REEDS

We offer a comprehensive range of reed switch devices. These are not "seconds" or "iob lots", but genuine manufacturers stock lines. Send S.A.E. for full data and prices.

INTRODUCTORY OFFERS

Reed Relay type 2/E 3V
Miniature Reed Switches type A $\frac{1}{2}$ A 200 V
Reed Push Button Switches I contact
25p each

COILS
3,6,9, 12, 24 V Miniature Small

27p Standard

20p each
REED COILS

REED SWITCHES

Large range of many sizes, types and manufactures Popular types: E Small normally open .. 10 for 50 p A Miniature normally open .. 24p each B Standard change over 40p each

REED RELAYS

Many versions available, popular types:
$3,6,9,12,24 \mathrm{~V}$
Miniature I/A normally open
Small $2 / E 1$ contact
/EEE 3 contacts.
TD 3/B change over

REED PUSH BUTTON SWITCHES

REELS of ENAMELLED COPPER WIRE

 20 s.w.g. to 47 s.w.g.50,100 , and 200 grams. Send for prices
Packing and postage $7 p$ on all orders
C.B.M. ELECTRONIC COMPONENTS LTD.

26 Avon Trading Estate, Avonmore Road, London, W.l4

SUPERSOUND 13 HI-FI MONO AMPLIFIER

audio anuplifier surate new coniponents throughout. J silicon ransistors plus
power out put transig power output transis-
tors in puhh-pull. Full wave rectification Out put approx. 13 W
r.m.w. Frequency, response $12 \mathrm{~Hz}-30 \mathrm{KHz}+3 \mathrm{db}$ minplifinter stage pre. separate Viltur, Basa boom and Treble cut controla,
guitable for $8-15$ ohn speakers. Input for ceramis of Buitable for 8-15 ohm speakers. Input for ceramis or
crystal cartridge. Senaitivity approx. form for full crystal cartrige. Senaitivity approx. fornt for full
output. Supplied ready buill and tented, with knobs,
 PRICE $\mathcal{E} 10.50$ © \&

DE LUXE STEREO AMPLIFIER

BLACE AMODIBED 16 g . ALUMDIUM HEAT SINK8 Fin approx, 25 p pair. P. \& P. 5 p.

HIGZ GRADE COPPER LAMIGATE BOARDA
$\sin \times \operatorname{Gin} \times$ ing. FIVE for 50 p . P. \& P. 13
TRLEsCOPIC AERLALS WITH SWIVEL JOIKT, Can be angled and rotated in any direction. 6 section Lacquered Brass. Extends from 6in. to approx. 22tin. Maximum diameter tín. 25peach.

BRAND NEW HULTI-RATIO MADS TRANSFORMERS Giving 13 alternatirea. Primary: $0-210-240 \mathrm{y}$. Aecon dary combinations: $0-\bar{j}-10-15-20-4 \overline{5}-30-3 \overline{5}-40-60 \mathrm{~V}$ half wave at 1 amp or $10 \cdot 0 \cdot 10,20-0 \cdot 20,30 * 0-30 \mathrm{v}$, at 2 amps
full wave. Size $3 \mathrm{inL} \quad 3 \mathrm{inW} \times 3 \mathrm{inD}$. Price 21.75 .

MAIS TRANSFORMER. For transistor power supplies. Pri. 200/240V. Sec. 9-0-9 at 500 mA . 70p. P. \& P. 13p Pri. 200/240V. Sec. 12-0-12 at 1 amp. 88p. P. \& P. 13p.
 Tapped Prinary

4AMP BATTERY CHARGER TRANSFORMER Brand new. For 6 or 12V. $240 V^{\text {Primary. Secomalary }}$

HANDBOOK OF TRAF8ISTOR EQUIVALENTB A must for servicemen and bome conustructors. and Japanese tranaistors. ONLY 40p. Pont 5p.
4.speed becord player bargans
 With lateet numo conpatible cart ridge 26.87. Carr. 50p. WATE hereo cartridge 27.97. Carr. 50. 5 .E. for Latest Pricen: PRECISION ENGINEERED PLINTHS Beantifully constructed in heayy gange "Collorcoat"

 CiP4, A21, etc. Choite of black icat herette or teak graln
 high, inclutuing rigid smukell acrylic cower). Price $£ 5.50$

LATEST ACOS GP91/18C Mono Compatible Cartridge with t/o atylus for liP/EP/78. I'Niversal mounting bracket. t/o etylins for 1.1 P$)$
11.50 P . \& P .8 o
SONOTONE 日TABC COMPATIBLE STEREO CARTRIDGE ONOTONE OTAEC COMPATIBLE STEREOCARTRIDGE 42.50 . P.
 LATEST RONETTE T/O Stereo Compatible Cartridge for

LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/ik mono or steren recorla on tiono eqnipment. 21.50. P. \& P. 10p.

QUALITY RECORD PLAYER AMPLIFIER ME II A top-quality record player amplifier eniploying heavy duty double wound mains transiorner, ECC83. EL84, and rectifier. Separate Bass, Treble anm tolume controls. speaker. Size 7in.w. 3 f .6 h . Ready huilt and tested. PRICE Es.75. P. \& P. 40p. ALSO AVAILABLE mountell on boarl with cutput transformer and speaker ready to fit cabinet below. PRIC'E E4.88. P. \& P. 50p. DE LUXE QUALITY PORTABLE R/P CABINET $\mathrm{H} E \mathrm{II}$ Uncut motor board size 141 12in., clearance 2 in . below, bilin. abore. Wili tahe above amplifier and any B.S.R. or GAKRARD changer or single Player rexcept AT60 and
HP25). Size $18 \times 15 \times 8$ in. PRIC'E 24% P. \& P. 50 p .

SPECIAL OFFER!!

HI-FI LOUDSPEAKER SYSTEM

Beautifuly made teak haish encloonre with most attractive Tygan-vynair front. Size $16 \underline{1}$ in bigh Celolin wide: 5 n $^{\prime \prime}$ deep. Fitted with E.M.I. Ceranic Magnet 13in $\backslash 8$ in bass unit, two H.F.
tweeter unita and crossover. Power handling loW. vailable 3,8 or 15 ohm impedance

Qur Price $88 \cdot 40$
 VAILIBLE SEPARATELY

84.50. Carr. 601.

Alsus a vailable in 8 whin with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. bass Alseaker with parasitic tweeter. $28 \cdot 50$. Carr. 65p.

LOUDSPEAKER BARGANS

sin 3 nhtu 51 -05, P. \& P. 1 op. 5×4 in 3 olimit 16, P. \& P. $20 p_{\text {. }}$ IO $\times 6$ fin 3 or 15 ohn 21.90 , P. \& P. 30p, E.M.I. $8 \times$ Sin 3 ohm with high tlux magnet $21 \cdot 62$, P. \& P. 20p.
 H or 15 ohn with two inbuilt tweeters and crossover net Work 24.20. P. \& P. 30p. E.M.T. 13" $8^{* *}$ twin cone (parastatic twerter) 8 ohm $22 \cdot 25$. 1. \& P. 30p. BRAND NEW. Itin Jiw H/D gitakers, 3 or 15 ohm. Current production ly well-knowit British maker. Now with Hiflux ceramic ferrobar maguet assembly e6.25.
Guitar models: 25 w \& 8.50 . 3jw $£ 8 \cdot 50$. P. \& P. 38 j) each. Guitar models: $25 w$ 26.60. 3jw 88.50 . P'. \& P. 381 each.
E.M.I. 3kin REAVY DOTY TWEETERS. Powerful ceramic E.M.I. $3 \sharp$ in HEAVY DUTY TWEETERS. Powerful ceramic

12in "RA" TWW CONE LOUDSPEAKER 10 watts peak handling. $3, \mathrm{x}$ or 15 olm, $£ 2.20$. P. \& P . 30 p .
36 ohm SPEAKERS 3 . ON LY' 63 p . P. d P. 13p. 35 ohm SPEAKERS 3". ONLY" 63D. P. de P. 13p.
"POLY PLANAR" WAFER-TYPE, WIDE RANGE "POLY PLANAR", WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
gize 113 in $\times 1411$ in $\times 1$ in din deep. Weight $190 z$. Power handing 20 W r.m.s. (40W peak). Impedance
x ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. ('an be mounted 4 ohm only. Response $40 \mathrm{~Hz}-\mathrm{zokHz}$. ('an he mounted
on ceilings, walla, doors, under tabler, etc, and used with on ceilings, walls, doors, under tables, etc., and used with
or without baffle. Seud S.A.E. fur full details. Only or without baffle. hent
VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in . wide. Vsually $£ 1^{-75}$ yd., our price 75 p yd.
length. P. $\& \mathrm{P} .15 \mathrm{p}$ (min. 1 yd.). S.A.E. for samples.

HI-FI STEREO HEADPHONES

Adjustable headband with comfortable flexifoam ear-
muffe. Wired and fitted with standard atereo tin jack plug. Frequency responit $30-15,000 \mathrm{~Hz}$. Matching mpedance $k-16$ ohms. Fiaily converted for mono. PRICE 22.95. P. \& P. 15p.

HIOH DMPEDANCE CRYSTAL STICK MIEES. OUR
PRICE \&1-05. P. \& P. 8p.
GIHERAL PORPOBE HIGH STABILITY TRANSISTOR PRE-AMPLIFIER. For P.U. Tape, Mike, Guitar, etc., and suitable for use with valve or transiator equipment. $9-18 \mathrm{~V}$. Battery or from $\mathrm{H} . \mathrm{T}$, hae 20030 . Frequency response $15 \mathrm{Kz}-25 \mathrm{KHz}$. Gain 26 dB . Solid encapsulation size $1 \frac{1}{2} \times 1 \neq \frac{1 i n}{}$.
Brand new - complete with instructions. Price Brand new - com
$88 p . \quad$ P. \& P. 13 p .

CENTRE ZERO MDIATURE MOVING COIL METER $00 \mu A$ for balance or tuning. Approx. gize 1 in \times lin $100 \mu \mathrm{~A}$ for balance or tuning. Approx, gize
Lim, Limited number 75p. P. \& P. 10 p .

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

NEW FURTHER IMPROVED MODEL WITH HIGHER OUTPET AND INCORPORATIN HIGH QUALITY READY DRILLED FIBRE HILASS PRINTED CIRCIIT BOARD WITH MARKED FOR EVEN EASIER CON MARKED

A really firstelass Hi•Fi Stereo Amplifier Kit. Uses 14 transistors including silicon Transistors in the flrst ave stages on each channel resulting in eveli lower noibe level with improve 1 aenaitivity. Integrated pre-amp with Bass. Treble acd two Volume Controls. Suitable for use with Ceramic or Crgstal cartridges. Ontput stage for any speakers from 5 to 15 obms. Compaet design quality ready drilled printed circuit board, attractive front panel, knobs, wire, solder, puts, bolta- no extras to buy. Sinmple atep by step ingtructions enable any constructor to build an amplifier to be proud of. Brief speclecation: Power output 14 W r.m.s. per chandelinto 5 ohms. Frequency response $\pm 3 \mathrm{~dB} \quad 12-30,000 \mathrm{~Hz}$ Sensitivity better than 80 mV into $1 \mathrm{M} \Omega$. Full power band width $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$ Treble cut approx. to -l6dB. Negative feedback 18 dH over main amp. Power requiremente 35 at 1.0 amp. Overall size- 7 wide 8 deep ${ }^{\left[\frac{1}{2}\right.}$ high. Fully detailed 7-page construction manual and parts list PRICES AMPLIFIFR KIT, $810.60 \quad$ P. \& P. 16p. POWER PA KIT. CABINET,
\& P. \& P 30p
(Post F'ree if all units purchased at same time). Full after salea service. Also available ready bullt and tested, 280.60. Post F'ree.

Nole: The above anplifier is suitable for feediag two mono sources into inpuis (e.g. mike, radio, twin record decks, elc.) and will then provide mizing and fading

3-VALVE AUDIO AMPLIFIER HAB4 MK II Designed for $\mathrm{Hi}-\mathrm{Fi}$ reproduction of records. A.C. Main plated heavy gauge metal chassis, size 7 tin $w .4$ in.d 41 in . h. Incorporates ECC83. EL84, EZ80 valver. Heavy duty, double wound mains ransiormer and output trana--peaker. Separate volume control and now with improved widerange tone controls giving bass and treble lift and ut. Negative feedback line. Output $4 \frac{t}{\text { watts. Fron }}$ pauel can be detached and leads extended for remote wired and tested for only $\mathbf{1 4 \%}$. P. \& P. 35p.

HSL "FOUR" AMPLIPIER RIT. Sitnilar in appearance to circuitry. Complete set of parts, etc. 33.98. P. \& P. 40p.

HARVERSON'S SUPER MONO AMPLIFIER
A super quality gram amplifier using a double wound fully erlated maing trangformer rectifier and ECLs 2 triod pentode valve as audio amplifier and power output stage. impedance 3 ohms. Output approx. 3.5 watts. Volume and tone cont rols. Ctassia size only 7in. Wide $\gamma 3 \mathrm{in}$. deep $>$ 6 in. high overall. AC mains $200 / 240 \mathrm{~V}$. Supplied absolutely Brand New, completely wired and tested with good Auall youtruutranior mer. F2.75 P.

10/14 WATT HI-FI AMPLIFIER KIT

 A stylishly Gnished monaural amplifier 14 watta from EL84s in push-pull Super reproduction of both music and speech, with negli gible hum. Separate inputs for mike and gram allow recorde and announcements Fully ehrouded section is ik in ik match 3-150 speaker and 2 independent volume controls. and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL849, ECC83, EF86 and EZ80 rectifler. Simple instruction booklet 13p (Free with parts). All parta sold soparately. ONLY 57.97. P. \& P. 55p. Also available ready built and tested complete with ato input sockets, 29-97. P. \& P.55p.

Open 9-5.30 Monday to Salurday
Early closing Wed. 1 p.m. A few minwles from South Wimbledon
Twhe Station

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W.I9 Tel. 01.5403895
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEABE ROTE: P \& P. CHARGEA QUOTED APPLY TO D,K. ONLY. P. \&P. ON OVRRSE
CEARGED EETRA.

PHOTOELECTRIC KIT

CONTENTs. \#P.C. Chassis Buards. (Chemieal, Etching Manual, Infia-Rel Phototransigtor, Latehing Relay, :" Transistors, 3 Dinles, Rexixtors, (iain ("matrol, Termina Block, Elegant Cane, Serews, etc. In fact crepythig you nee, to huilil a Steadr-Ligh modulatel-lizht oncrathon.

INYISIBLE BEAM OPTICAL KIT
Everythin Photocell Receiver (as illustrater). Suitable for all l'lootoelectric" Burglar Alarnas CONTENTS:

LONG RANGE INVISIBLE BEAM OPTICAL KIT.
CONTENTS: As above. Twice the range of standaril hit. Latget Lethes, Filter, etc.
 Mail $\mathbf{E 1} 1 \mathrm{IJ}$.
JUNIOR PHOTOELECTRIC KIT
Versatile Invisible beam, Relay-less, Stearly-light Photo-Switch. Burglar Alarm, Door Coner, Counter, etc., for the Experimenter
CONTENTS: Infra-Ret Sensitive Phototransistor, 3 Transistorn, Chawsis, Plastic Case, Resiators, Screws, etc. Full Size Plans. Instructions, Data Sheet ' 10 Atlvanced Photn electric Designs

JUNIOR OPTICAL KIT

CONTENTS: 2 Lenges, Infa-red Filter, Lanmbohter, Isracket, Plans. etc. Everything (except plywood) to build 1 miniature invisible beann projector and photosell receiser for use with Junior Photoelectric Kll.

YORK ELECTRICS Mail Order Dept. 335 BATTERSEA PARK ROAD, LONDON, S.W. 11

Send S.A.E. fur full detatls, a brief descriptiont of all Kits and Projects

MC. Ilcirionsinin.

SCORPIO ELECTRONIC IGNITION

Complete kit of parts and comprehensive constructional data giving answers to most of the questions concerning operation, installation and fault finding.

KIT AS ABOVE—£11•25 post paid.
CONSTRUCTION DATA-10p.
COMPONENT PRICE LIST-S.A.E. Please.

GEMINI TUNER

Please ask to be put on our mailing list (U.K. only). Components available to date include Tuner Head, Drive Components, Dial, Front Panel, P.C.B., L1, L2, F1, F2, T1, sets of Resistors, Capacitors and Semiconductors.

AMCEL, MAIL ORDER, 160 DRAKE ST., ROCHDALE

TeI. 0706-46234

LARGEST STOCKS SEMICONDUCTORS \& COMPONENTS WIDEST RANGE

Pructical Electronics Classified Advertisements

RATES: $8 p$ per word (minimum 12 words). Box No. 10p extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

MISCELLANEOUS

NO NEED TO WORRY ABOUT

 A TRANSMITTING LICENCEpproved transmitter/receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means Actually it's TWO KITS IN ONE because youget all the printed-circuit boards and components for both the transmitter AND receiver. You're going to find EASY-TOJCT REALLY FUN-TO-BU instructions. An extremely flexible design with quire an AMAZING RANGEhexible design with quire an AMAZNG RANGELANGUAGE LABORATORIES, SCOUT CAMPS,

EET YOURS! SEND 65-50 NOW (S A E for details) TO: 'BOFFIN PROJECTS

DEPT. KE2010
STONELEIGH, EWELL, SURREY

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. mullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M/C relays, components, etc. Jower Beeding 236.

GHEAP FA8T LOGIC EX-ICT. $2,4,6$ 1)T gates per board, suit 100 ns elock (1 MHz rate) ircuits, write-ups 50p. Free with order 10 Boards $\mathbf{~ 1 . 5 0 . ~ (' J I A P L I N , ~} 14$ Warminster Koad, London, N. W.es5.

SOUND/LIGHT—POWER DIMMERS SPECIAL LIGHTING EFFECTS

Choose from our range of versatile units Decially designed
Prices range from $\mathbf{6} 6.50$ to $\mathbf{£ 2 2}$ per unit
Send for free catalogue to
D \& D ELECTRONICS (P.E.) 20 Lodge Road, Wallington, Surrey

12 VOLT FLUORESCENT LIGHTS

Beat Power Cuts, 12 ins 8 watt Tube, ideal for Caravan, Tent, Emergency Lighting, etc. Fully Transistorised, Low Battery Drain. With ON/OFF Switch and 12 V Socket to
run other Lights or 12 V Equipment.
Unbeatable at $83=30$
orinkit form 52:90
SALOP ELECTRONICS
post paid

23 Wyle Cop
Callers welcome
Shrewbury, Shropshire
S.A.E. for lists

CONSTRUCTION AIDS. Fascia panels, dials, nampplates in ptehed alumininen to individual specitication. Sheet aluminlum, printed cir-cuits-drafting tapes, negatives supplied, boards manufactured, singles or small runs. Copper clad laminate supplied. Hardware for constructors. S.A.E. detats. RAMAR
 load, stratford-on-Avon, Warwks.

RECORD T.V. SOUND using our loudspeaker isolating transformer. Jrovides safe connection to recorder. Instructions included, tipost free. ('ROWBOROM(iH ELEC' TRONI(S (P.E.), Lridge Rond, (rowborongh, Sussex.

PROFESSIONAL CONTROL PANELS
with FASCIAKIT
MAKE YOUR OWN PANELS IN PERMANENT,
ANODISED SELF-ADHESIVE ALUMINIUM:
NO SPECIAL EQUIPMENT NEEDED.
EASY TO FOLLOW INSTRUCTIONS.
CHOICE OF SILVER ON BLACK, RED, RIAL KIT, GREEN.
No. I KIT EI. 88 Carr. Paid No. 2 KIT $£ 2.39$ Carr. Paid
M.P.E. Ltd. (P.E.), BRIDGE ST., CLAY CROSS DERBYS.
 $1.1 \begin{aligned} & \text { in electronics, modelling, induscry } \\ & \text { Home and Workshop. Stamp }\end{aligned}$ collecting. Jewellers, Watchmaking and any fine work. $2 \frac{1}{2} \times$ magnificaton. $64.95+35 p$ P. \& P. Send $65 \cdot 30$. $3 \times$ model 50p extra. Siate model. TWIN-BEAM SPEC-LAMP-Worn just like a pair of spectacles. Two powerful spot lamps illuminate working area. Can be Worn with Binocular Magnifier.
Batt operated. Only $41.90+10 p$ P. \& P. Send $£ 2$. JOHN DUDLEX \& CO. LTD., Dept. PE. 3
301 Grickle wood Lane. Child's Hill, Londou. N.W. 2

BUILD IT in a DEWBOX quality cabinet 2in \times gtain \times any length. DEW LTID. Ringwood koad, Ferndown, lorset. S.A.E for leaflet. Write now-right now.

PROFE88IONAL BUILT 2 manual and pedal organ eonsole, $t 1$ note mannals with thumb pistons under pach, and shaped 30 note perdal board. R. H. MEREDH'TH, 104 Bournbrook Road, 13irmingham, 1329 - $3 t^{\circ}$

MAYFAIR ORGAN. 49 note, $16^{\circ}, x^{\prime}, 5 \frac{1}{\prime}^{\prime}, 4^{\circ}$ 11 tomes, vibrato, revert, $£ 55$ o.n.o. I, rivo 352 Dallow Road, Luton, Beds

METER REPAIR8. Ammeters, voltmeters, multi-range meters, ete, send to-METER IREPAIRs, 39 'heshotm Road, Landon, N14 ODS.
P.E. GEMINI. Etched aluminium fascia panpls as detailed in latest publication. Printed circuit boards and other items S.A.E. details. RAMAR CONSTRICTOR sERVIC'ES, 29 shelbourne Road, stratford-on-Avon, Warwicks.

[^8]
DON'T LOOK
 unless you really want to get the benefit from this collection of SUPER electronic projects. Have you ever wanted to build make TEACHING DEVICE? Maybe you fancy the idea of an ELECTRONIC FANTASY MACHINE? How about a 'Thing,' capable of REPRODUCING of-mind, there's just GOT TO BE LOADS TO INTEREST YOU in the science-fiction world of BOFF
 GET YOUR CATALOGUE - SEND JUST 15p NOW!
 TO: BOFFIN PROJECTS
 4 CUNLIFFE ROAD
 SURREY
 Designs by GERRY BROWN and $1 O H N$ SALMON and presented on TV.
 ELECTRONIC MUSIC
 Build your own units or even a complere sound machine from our circuit assemblies. amps, White Sound effects, auto Waa-Waa, an amazing $V-C$ oscillator, and many others. Send 10p for catalogue; mail order only.
 TAYLOR ELECTRONIC MUSIC DEYICES Greyfriars House, Chester

SWITCHES UNUSUAL

PRESSURE MAT-flexible, hard-wearing plastic mat containing 180 contacts. Con* cacts close when pressed, open when released. Rating $50 \mathrm{v}, 500 \mathrm{~mA}$. Size $30 \mathrm{in} \times 24 \mathrm{in}$ \&2 each
MINI MAT-size $24 i n \times$ 7in. $£ 1.50$ (Tailor made. Price on request). Suitable for burglar alarm, counter, foot switch, games. "Uses limited by imagination.'
PROXIMITY SWITCH - in moulded plastic case. Rating $250 \mathrm{v}, 600 \mathrm{~mA}$. $£ 1.10$ SWITCH PROBLEM? We have multirange, key operated, infra-red, solid state, etc., etc.

POSTAGE 15p PER ITEM. C.W.O.
ELECTRONIC SWITCHING DEVICES
P.O. Box 7, Aspley. P.D.O. Nottingham

For further details send s.a.e.
Guaranteed satisfaction or money back

DAILY UFO flight pattern, 38p. TFO wave pattern and prediction, 46p. TV notes on ("FO detection, 2 optical circuits, 50p. UFU
 TIONs, Highlants, Nepdham Market, suffolk

SERVICE SHEETS

8ERVICE 8HEET8 (1925-1972) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free faultFinaling tiaide. Prices from 5p. 0ver 8,000 models available. Catalogue 13p. Please send S.A.F. with all urders/enquiries. HAMILTON RADIO, 54 London Rend, Bexhill, Snssex. 'Lelephone, Bexhill 7097

SERVICE 8HEETS. Kadio, TV, ete., 8,000 models. List 10p. S.A.E. enquiries. TELRAS, 11. Maudland Bank, l'reston.

RADIO, TELEVISION AND TAPE

 RECORDER8. 50 mixed odd shepts 50 p . A lso large stock of obsolete and current valves. JOHN GHLBERT TLLEVIAION, 1b Shepherds 1hush Road, Londeni. W. 6 (01-743 8441). S.A.E. enquiries.困

TELEVISION TRAINING

(MONOCHROME AND COLOUR)
This private College provides theoretical and practical training in Radio and TV Servicing. Courses of 16 months' duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Next course commencing September 11th. Training courses in Marine Radiocommunication and Radar are also available. Write for prospectus to: London Electronics College, Dept. B/5, 20 Penywern Road, Earls Court, London SW5 9SU. Tel. 01-373 8721.

Am8E (Elec), City $\&$ Guilds, RTEB ('erts Radio Amatelurs (Cert. Study at home course. in all branches of Electrical Engineering, ete. Details and illustrated book-FREE-13IET (1)ept. H.5), Aldermaston Court, Keading R(x) 4 PF . Accredited by (AC('.

ENGINEER8-get a technical certiflate. Postal courses in Engincering, Electronics, Radio, TV, Computers, Draughtsmanship, Building, etc. FREL book from: BHET (Dept. H.4), Aldermisston Court, Reading,

GET INTO Electronics-opportunities for trained men. Learn at home. Postal courses in RTEB, City d fuilds. Radio, TV, Telecoms., etc. FRELE informative guide: (HAMBERS (OLLEEXE (Dept. R.103), Aldermaston Conrt, Reading, RGi th'F.

OPTICs. "How to use Lenses and Mirrors" 112F. 100 ills. Hardback. Best book on the market for the neweomer to opties. \&1 each on 14 days, approval aqainst cash. New and ex-Gov. optical equipment of all types. \& page illustrated catalogue free for 3 p stamp. II. W. ENGidsh, 469 Rayleigh Road, Hutton Brentwood, Essex. lepht. I'E.

FOR SALE

8EEN MY CAT? 5,000 items. Mechanicil and Electrical Gear, and materials. S.A.E. K. R. Whlston, Dept. PE, New Mills, Stockport.
catalogue no. 18, Electronic and Mechanical components, new and mannfacturers: surplus. ('redit rouchers value 50p), Price ${ }^{23} p_{1}$ incruding post. ARTMER SALLIS RADIO CONTROL LTD., 解 (barduer street, Brighton, sussex.

> PERFECT SPEAKEITS EX TV
> $\mathrm{a}^{n} \cdot 2 \mathrm{t}^{\prime}$ i I_{p} each, add lop per speaker P. \& Pkg. 100 SPEAKERS for C15 delivered 200 SPEAKERS for $\mathbf{C 2 5}$ delivered
> UHF TUNERS EXTV (Complete with Valvas) $\begin{aligned} & \mathbf{2 2 . 5 0 ~ e a c h ~} 4{ }^{50} \text { p. \& pkg } \\ & \text { or } 10 \text { for } \mathbf{~} 23 \text { post free }\end{aligned}$
> TRADE DISPOSALS (Dept. PE) Thernbury Roundabout, Leeds Road, Bradford Telephone 665870

[^9]
Send now for our :
 lllustrated Component
 Equipment Catalogue
 Slide and Rotary Lamp
 Dimmer Catalogue
 10p each-post Free
 YOUNG ELECTRONICS
 54 Lawford Road, London NW5 2LN 01-267 0201

BACK 188UE8. First Thirty l'.E. Any Offers? Bradley 01-64:3 42xk.

POTTED BRIDGE RECTIFIERS small size. 460 PIV ZA 65 pach, discount on quantity. Riug Y'ateley 8304 N .

PRACTICAL ELECTRONIC8. Vols. $1-5$, Mint. 11-504 3250 after

LADDERS

LADDER8. 20ft. 87.80. ('allers Welcome. Carr. 80p. Leaflet. (Dept. PEE), HOME saldes. Baldwin Road, Stourport, Wores. Phone (02-993 $2574 / 5223$. Ansaphone installed 52e2. O1en Sunday $\begin{gathered}\text {-12 } \\ \text { noon. }\end{gathered}$

SITUATIONS VACANT

MEN! ©350 p.w. can be yours

Now for the first time anybody (no special qualifications are needed) can train outside the computer industry for an exciting career as a computer operator in only 4 weeksand can earn $£ 2,500+$ p.a.
JOBS GALORE! 144,000 new computer personnel will be needed over the next 5 years alone! Write without obligation, for FREE details or telephone TODAY!

London Computer Operators Training Centre
E80, Oxford House, 9/15
Oxford Street, London, W.I Telephone 01-734 2874
127 The Piazza, Dept. E80
Piccadilly Plaza, Manchester 1 Telephone 061-236 2935

First-class opportunities in Radio and Electronics await the IC S trained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc. Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
* RADIO AMATEURS' EXAMINATION.
* GENERAL RADIOCOMMUNICATIONS CERTIFICATE.
* C. \& G. RADIO SERVICING THEORY.

Now available, Colour T.V. Servicing.
Examination Students coached until successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES

Build your own 5-valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how I CS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ABCC
ACCREDITED BY THE CACC

PICTURE BOOK WAY OF LEARNING

BASIC ELECTRICITY
5 Vols.
£4.50 post paid
BASIC ELECTRONICS
6 Vols.
65.40 post paid

SELRAY BOOK COMPANY, 60 Hayes Hill, Bromley BR2 7HP

OVER 1,000,000 PARTS ALREADY SOLD
Available on our 100\% Guarantee Money back if not completely satisfied

Illustrated Prospectus Free on Request

BASIC PRINCIPLES OF ELECTRONICS

by Jenkins and Jarvis- -Pergamon Vol. I: Thermionics, including theory and practicals to beyond A and S level; Vol II: Semiconductors. Many modern practicals; questions from recent examinations. Hard or limp. All booksellers.
This advertisement inserted by the authors.

WANTED

OAsH PAID for New Valves. layment by teturn. WHLLOW VALE RLLCTRONICS, 4 The Broadway, Hanwell, Londun. W.7. 01-5675400/2971.

HIOHEST PO8sIBLE CABH prices for Akai, 13. \& O., Brenell, Ferrograph, Revox, Sanyo. Nony, Tandberg, Wher, Vortexion, etc. 9.305.00. 01-242 7401.

TOP PRICES PAID

for new valyes and components
Popular T.V. and Radio types KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

GYRO's small pair of motor driven gyros wanted. Phone Kettering 3060.

RECEIVER8 AND COMPONENT8

New Branded Guaranteed Top Quality MICROCIRCUITS \& TRANSISTORS All Complete with Data
2N2926, Red and Orange 6 p, Green Ep, BC109C 10p, ME0412 i9p, ME4IO1 10p, MPBIII 33p Soldercon I.C. Pin'Sockets 0.7p per pin.
JEF ELECTRONICS (P.E.5)
York House, 12 York Drive, Grappenhall Warrington WA4 2EJ
Mail Order Only. C.W.O. P. \& P. 7p per order. Overseas 65p. Money back if not tisfied. Discounts begin at 10 off Lise free on application.

GROUP POWER AMPS

100 watt, 60 watt, Trany Sets suitable for EL34, KT88
60 Mains: Pri. 0-110-200-220-240V. Secy. I
$350 \mathrm{~V}-0-350 \mathrm{~V}$ at 350 MA . Secy 26.3 CY at $350 \mathrm{~V}-0-350 \mathrm{~V}$ at 350 MA . Secy. 26.3 CT . at $4 \mathrm{AM}_{4} 41 \mathrm{I}$.
60 O/P: Secy. imped. 2.75-7-15 ohms. A-A
60 Choke: I H at 350MA. 63.75.
100 Mains: Pri. $0-110-200-220-240 \mathrm{~V}$. Secy. 375 V at 400 MA ., Secy. 88 V CT. at 100 MA . Secy. 3.3 CT. 6 AMP. © 12 .
100 O/P. Secy, imped. $2.75-7-15$ ohms. A-A $100 \mathrm{O} / \mathrm{P}:$ Secy. imped. $2 \cdot 75-7-15$
$2 \mathrm{k} \Omega$ \& 11 .
100 Choke: IH at 500 MA . $\mathbf{4 3 . 7 5 .}$
IOO Choke: IH at 500 MA . 43.75 .
High quality material used throughout manu. High quality material used throughout manu-
facture. Fully shrouded. State upright or drop through mounting on mains. Post, packing free of charge.

Mail order only

> ROVAL AUDIO
> 43 PINNER ROAD SHEFFIELD SII BUG

WITWORTH TRANSFORMERS

TV Line out-put transformers
Manufacturers of the largest range in the country. All makes supplied.

Free catalogue. Modern
BAIRD, BUSH. GEC, PHILIPS
Replacement types ex-stock
For "By-return" service, contact London $01-9483702$
Tidman Mail Order Ltd., Dept. PE, 236 Sandycombe Road.
Richmond, Surrey TW9 2EQ
Valves, Tubes, Condensers, Resistors, Rectifiers and Frame out-put Transformers also stocked.
Callers welcame.

SOUND SUPPLIES (LOUGHTON) CO. LTD.
for Eagle Iuternational and International Rectifier Producta.
TOA P.A. Equipment and Mikes.
Capacitors, Resistora, Plugs, Bockets, Cables, Audio Leads, Semiconductors, Valves, Vero Board, etc., for the constructor.
Electronics Dept. Tel. 01-508 2715
12 smerts Lane, Lourhton. Enez

and Pri. $\begin{gathered}\text { C.80 s.m.al p.m., } \\ \text { Closed All Dey Thara. }\end{gathered}$
EX COMPUTER PRIGTED CIRCUIT PAKEL
atn $\times 4$ in packed with semi-conductors and top
quality resistora, capacitors, dioden, etc. Our
teed minitmum of 35 tranilstors. Data on
tranelators included.
bPrcial bargait pack. 25 boards for 11.
P. \& P. 18p. With a guaranteed minimum of 85
transistors. Data on transistors Included.
PANELS with 2 power transistora imilar to
PANELS with 2 power transistors imilar to
OC28) 50p. P. \& P. 6p.
9 OA5, 3 OAl0, 3 Pot Cores, 26 Resistore, 14
Capacitorn, 3 GET 872, 3 GET $872 \mathrm{~B}, 1$ GET 870
All long leaded on panely $13 \mathrm{in} \times 4 \mathrm{in}$. \& for $\$ 1$,
P. 4 P. 25p.
709C OPERATIONAL AMPLIFIER TOS
8 lead I.C. 1 of 50 p . 60 off 35 p
100 oft 20 p .

BRAND NEW copperclad fibreglass laminate printed circuit board, two 2×8 in or one 4×8 in. 19p. Add 10 p for double sided. C.W.O. plus P\& P. 10p. H.R. (IRCUITS, 44 Wattyhal Road, Wibsey, Bradford.

SHARPEN YOUR RESPON8E8 with Vernitron ceramic i.f. resonators. Set of four TF-04 442 455 kHz , with associated capacitors for bandwidth $2,4,5 \cdot 7,7 \cdot 5,10$ or 12 kHz (state which), \&1.85, U.K. post 5p. Mail order only AMATRONIX LTD., 306 Selsdon Road, South ('roydon, Surrey, ('R2 oDF.

LIGHT SENSITIVE
 INTEGRATED CIRCUIT ARE YOU STIL USING OTHER PHOTOCELLS! DIODES AND

RECEIVER8 AND COMPONENTS

PRECISION POLYCARBONATE CAPACITORS

Fresh Stock - Fully tested
Close tolerance capacitors by well-known manulacturer. Good stablity and very low leakage All 63V d.
$\begin{array}{lllllll}0.47 \mu \mathrm{~F}: & \pm 5 \% & 80 \mathrm{p} ; & \pm 2 \% & 40 \mathrm{p} ; & \pm 1 \% & 50 \mathrm{p} \\ 1.0 \mu \mathrm{~F}: & \pm 5 \% & 40 \mathrm{p} ; & \pm 2 \% & 50 \mathrm{p} ; & \pm 1 \% & 80 \mathrm{p}\end{array}$
1.0 $\mu \mathrm{F}$:
$2 \cdot 2 \mu \mathrm{~F}:$
10 $\mu \mathrm{F}$.
$10 \mu \mathrm{~F}$:
${ }_{1 \pm 1 \circ_{0}^{2}+22,0}$
P.E. SCORPIO IGNITION SYSTEM

Special $1 \mu \mathrm{~F} 440 \mathrm{~V}$ a.c. capacitor for use in place of two existing $0.47 \mu \mathrm{~F} 1,000 \mathrm{~V}$ d.c. units (C'6 and ('7). Does the job of hoth Size 2 in $\times \frac{3}{2}$ in. Price $-45 p$ each
Post and packing 5p on all orders
V. ATTWOOD, P.O. BOX 8, ALRESFORD, HANTS

> COMPUTER PANEL8 5-BC108, Diodes 15p, post 5 p ; 4 for 50 p , Post 10 p . Assorted PanELs, 6 for 78p, LA2 POT CORE8 20 hil ali box with 201% cavacitors 21.70, post 30p. DIIT WITH 4 LAR POT CORES plus 112% capacitors, 50 p , post 16 p . Singles 20 p c.p. New and buxed 800 c e.
> WIRE ERDED HEONS, bank of 2080 p . post 10 p . COPPER CLAD PAXOLIM single sided, $8 \times 5,10 \mathrm{p}$ poat 5p each. $13 \times 11 \frac{1}{2}, 30 \mathrm{p}$, post 10 p each. ORPI2 OH PAKRL ex equipt. 35p c.p. 22 PO8ITIOH $\begin{aligned} & \text { 8TEPPIHG SWITCH, Ac. maink operated with } \\ & \text { reset } 80 \text { p post lop. RESETTABLE }\end{aligned}$

> 16p. LODDSPEAKERS 24 in 25 ohms 80p c.p. UNIT WITH 25V D.C. MOTOR, 2 relaye, 2 ntotorised witches, mass of gears, etc. $\mathbf{4 1 , 7 5} \mathrm{c}$.p
> POLYETYRENE CAPACITORS 125V, $150,180,220$, $330,390,760,880,820,1,200,1,500,1,800,2,200$, ,700, $3,300,3,900,5,600,6,800,8,200,0.01,0.012$ 15 g dozen post $10 \mathrm{p} .0 .015,0.018,0.022,0.027$, Assorted Components
> AgBORTED COMPUTER PAYEL, 81.30 c.p
> 75 HAYPIELD ROAD. BALPORD B, LAXCS MAIL ORDER ONLY

Trampus alaationin

Brand New, Money Back Quarantee NUMERICAL INDICATORS
$3015 F^{-}$liar \bar{j} volt 8 ma bar
 Socket 35p. 744 driver, 81.23 NIXIE type 0-9DP 180V, 1123 . LIGHT EMITTING DIODES, Infra red $1 \cdot 3 \mathrm{~V}, \mathbf{2 1} 49$. Visible red 1.6 V $\frac{5}{1}$ in dia. panel clip, 67p. IC. Photo Detector and anplifter lens case, 44p.
SECTIPIERS. $50 \mathrm{~N}, \mathrm{Ap}: 400$
9p; LN914/916, 7p.
+00mw
to 30y, 12p.
TRAHSISTORS
BC107, 8p; BC108, 8p; BC109, 8p; BC177/8, 12p.
 ME0404-4. 18p; FETUN3819, 29p; TIS43; 28p; IN 3702/3/4/5/6/c, 11p. 2
Op Amps $709,31 p$ ant $741,34 p$; TAA263. 63p.
TAD 100 Receiver, 31.75 . $703 \mathrm{R}, \mathrm{F}$. allp., 65p. PLASTIC POWER GW -OOmA Darlington 67p.
FREE CATA.LINT BA.E., DATA BHEETA, 6p C.W.O. P. \& P. V.K. 6p. Diacount $10+10 \%$. P.O. BOX 29, BRACEMELL, BERES.

PRINTED CIRCUIJ BOARDS for P.E. PROJECTS All boards drilled and roller tinned complete with layout drawing.

EXAMPLES

Waa-Waa pedal Vol. 4 No. 7 14p ea. Audio Sig Gen. (Sine and Square on one board) Vol. 5 No NEW
Scorpiolgnition Nov./Dec.'71. Fibreglass 60p Logical R/C Coder Dea' 71. . Fibreglass 44p S.A.E. for List.
P.H. ELECTRONICS LTD., Industrial

Estate, Sandwich, Kent. Tel. 2517
BUILD YOUR OWN DI8CO/PA AMPLIFIER. Modules available include 50 and 70 W amps Mic, gram, tape pre-amps, tone control, Vi driver. headphone monitor, mixers and mic wer-ride. Mend s.A.E. for details to: 30 Compton Place. C'arpenters Park, Watford, Herts.

Mixed component parcels contain Togsle Wafer, Slide Switches, Plugs, Sockets, Electrolytic Capacitors, Valveholders, Tag.Strips, Transistors, Diodes, Potentiometers, Trimmers, plus a good selection of other components Save yourself E 's oh these well-salected parcels
616 nett weight, El . P. \& P. 40p.
Assorsed Capacitors (no rubbish), includes
Silver Mica, Ceramic Silver Mica, Ceramic and Polystyrene types.
100 for 50 p . P. P. 10 p . 100 for 50p. P. A. P. 10p.
Assorted brand new wire-wound Resistors,
$1-10$ watts. 100 for $\leqslant 1$, 1-10 watts. 100 for Cl , post free.
$3 . \mathrm{v.c}$. connecting wire, 10 different colours, Electrolytic Capaiters, 32, pF 500V.
Electrolytic Capacitors, $32 \mu \mathrm{~F}, 500 \mathrm{~V}, 25 \mathrm{p}$. Also $100 \mu \mathrm{~F}, 500 \mathrm{~V}$ (limited quantity), 35p.
Mixed wire-wound Potentiometers, sood
selection. 10 for 50 p . P. \& P. 10 p .
Mail Order only
XEROZA RADIO
1 EAST STREET
BISHOP'S TAWTON, DEVON

GHIOWASOWITC electronics
SL403D f1.50, SN76013 \&1.25, MFC4000 52p, AD161/162 pair 60p. A.M. Coil set with ferrite rod 11 (p. at p. 6p all orders). Carbon Track Fully illustrated 1972 C.
56 Fortis Green

If you have difficulty in obtaining

PRACTICAL ELECTRONICS

Please place a regular order with your newsagent or send I year's subscription ($£ 2 \cdot 65$) to Subscription Department, Practical Electronics, Tower House Southampton Street London WC2E 9QX

P.E. GEMINI STEREO AMPLIFIER
 (Dual purpose, 30W per channel)

 All the components to build this high quality amplifier, as featured in "Practical Electronics,' Nov. 1970-Feb, 1971, are now available from one source. ALL PARTS CAN BE PURCHASED SEPARATELY.Please send foolscap size S.A.E. for free complete lists. Reprint of articles available in booklet form, complete with free price list, 55p post free
ElectroSpares 21 BROOKSIDE BAR CHESTERFIELD, DERBYSHIRE
quality - value - service

BRAND NEW COMPONENTS BY RETURN. Diectrolytics 15 or 25 V 1, 2, $5,10 \mathrm{mfds}-1 \frac{1}{\mathrm{p}}$ $25,50-4 \mathrm{p} .100-5 \mathrm{p}$. Mylar Film 100 V $0.001,0.002,0 \cdot 005,0.01,0.02-2 p ; 0.04 .0 .05-$ 2tp; $0 \cdot 088, \quad 0 \cdot 1-3 p$. Mullard miniature carbon film resistors third watt E. 12 series $1 \Omega-10 \mathrm{MQ}, 8$ for $5 p$, insured postage 8 p . The C.R. SIPPLY (O)., 127 (hesterfleld Rd. Sheffield, ss oRN

New, At Last

HEATSINKS, a new range, never before available, gives decreased leakage current, onger cransistor life and greater circuit reliability ower
FAN, TOP TOS

Only ${ }^{\text {M }} 10 \mathrm{p}$ Only ${ }^{\prime \prime}$ 20p Onlỳ 35p Please include $5 p$. \& P, on all orders. AUDIO CAELE, graphite loaded thermoplastic screen gives flexibility, less noise, designed for all audio applications, ideal for DIN plug use. Price: 1 core, 5p; 2 core, include 10 p for loyd or less, 15 p over.
J. W. SALES, 6 Russet Road Cox Green, Maidenhead

NEW
 154 mithiri £3.75

7 TRANSISTORS - GUARANTEED PRINTED CIRCUIT - TESTED DESIGN BUILT - INSTRUCTIONS A great new 15 wate H_{1}-Fi amplifier is now availabl at the low cost of $\mathbf{6 3} \mathbf{7 5}$. Just look at the specifi-cation-Power 15 Watts R.M.S. Frequency response $15 \mathrm{cs}-19000 \mathrm{cs}, \mathrm{I}$. Id at all powers. Signal to noise ratio better than -70 dB . Harmonic distortion 0 "o. Input sensisivity 750 mv into 2 k . Thes factors make the H. Electronics Hi-Fi amplifier the
Helectronics.
105,Grange Road, London. S.E. 25

MAN-SIZED ROBUST PATCHBOARD
MAKE A "PATCH" AS IF YOU MEAN IT. 'K-L-O-N-K' and it's MADE!
No fiddling with fragile patch pins. No cables.
Countless possible combinations giving FULL
RANGE EFFECTS. Keyboards available for versatile "live" use.

VOLTAGE CONTROL

Voltage-controlled filters, oscillators, amplifiers and . . P-H-A-S-E.
Yes, Dewtron have perfected voltage-controlled phase in module form.

PROFESSIONAL MODULES

CASH SAVINGS

by buying modules and parts in bulk!
All modules are available separately:
Ring Modulator RM2, £7. Voltage-controlled Oscillator VC01, $\mathbf{£ 9 . 5 0}$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £12.50. White noise type WN1, £6. Voltagecontrolled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £12. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, $A F 1$, $£ 9$. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls $£ \mathbf{£ . 5 0}$.

With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to a leading group.
Send s.a.e. for synthesiser details or send 15p for full catalogue of our famous musical effects.

$$
D=E=F / D=254 \text { Ringwood Road, FERNDOWN, Dorset BH22 9AR }
$$

MULTIMETER IT12, 20,000 ohm/V, £4-20. 10W TRANSISTOR AMPLIFIER, £3.75. STEREO HEADPHONES, 8 ohm, £1.95. HIGH IMPEDANCE $(2,000$ ohm), 80p. TELESCOPIC AERIALS, 47in, 45p. RECORDING TAPE: 5 in L.P. 900 ft , 45p; $5 \frac{3}{4}$ in L.P. 1,200ft, 60p; 7 in L.P. 1,800ft, 80p; C60, 39p; C90, 60p. MICROPHONES: Lapel, 28p; ACOS Mic. 45, 90p; Mic. 60, 92p; Dual Impedance, 600 ohm and $50 \mathrm{k} \Omega, £ 4 \cdot 50$. $5 \mathrm{k} \Omega$ Potentiometers with Switch, 16p. Bridge Rectifiers, 40V, 1.5A, 36p. Rotary Switches, 250V, 2A, 9p. PLUGS: Jack Standard, 10p; SCREENED, 13p; 2.5 mm and 3.5 mm , 6p; SCREENED, 8p. BALANCE AND TUNING METER, $500 \mu \mathrm{~A}, 38 \mathrm{p} .100 \mathrm{MIXED}$ RESISTORS, 45p. MINIATURE INDICATOR LAMPS (5 colours), 11p; 6 V or 12 V BULBS for above, 4 p . CARTRIDGES: COMPATIBLE ACOS GP913SC, 90p; STEREO GP93-1, £1.15. MAINS NEONS panel mounting (red, green, clear), 13p. TELEPHONE AMPLIFIER, £2.62. MINIATURE SKELETON PRESETS, 6p. CAPACITORS: $400-200-50-16 \mathrm{mF}, 300 \mathrm{~V}, 30 \mathrm{p}$. A range of miniature CERAMICS 50 V and Miniature ELECTROLYTICS. FIBRE GLASS cut to size, $\frac{1}{2} p$ per sq. in.
Special prices for quantity. S.A.E. for list. Add $10 p$ for P. \& P, on orders under $£ 5$.
M. DZUUBS
158 Bradshawgate, BOLTON, Lancs

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn.
If you'd like to know how just a few hours a week of your spare time. doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured. "-Case History $\mathrm{H} / 493$.
"Completing your Course meant going from a job I detested to a job I love."- Case History B/461.

FIND OUT FDR YOURSELF

These letters - and there are many more on file at Aldermaston Court speak of the rewa-ds that come to the man who has given himself the specialised know-how employers scek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day s pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept B4, Aldermaston Court, Reading RG7 4PF.

Aceredited by the Council for the Aiereditulant
of Correspondener Colloges.

(Write if you prefer not to cut this page)

POST THIS COUPON TODAY

 Please send me book and details of your Courses in
B.IET-IN ASSOCIATION WITH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

[^10]
TENTHS FADO LIMED
 HENRIK RADIO ENGLAND'S LEADING ELECTRONIC CENTRES

MORE OF EVERYTHING AT LOW PRICES ALWAYS AT HENRY'S

 Send large S.A.E. wite list for parts quote for your circuit or get a Catalogue --its all in thereTEST EQUIPMENT

20 + 20 WATT I.C. STEREO AMPLIFIER (As featured by Practical Wireless May/June 1972) DEVELOPED BY "TEXAS" ENGINEERS FOR PERFORMANCE, RELIABILITY AND POWER
FEATURES INCLUDE: Low profile with specially designed Gardners Transformer. 6 I.C s. 10 Transistors, 4 Diodes, 2 Zeners
Fibreglass P.C. panel. Multi protection Stabilised supply. DiN Fibreglass P.C. Panel. Multi protection
input/output. Complete chassis work. FUNUT/Output. Complete chassis work. input selector. Mag. pu, Radio, Tape in and out. Headphone socket Sin put selector.
SCratch and rumble filters Mono stereo switch.
SLIM DESIGN WITH SILVER TRIM-Chassis size overall
 available july'August. TEXAS - HENRY Henry's are sole U K trade and retail sup
ENQUIRIES INVITED

Send to this address Henry's Radio Led. (Dept. PE), Albemarle Way, London, E.C.I for catalogue by

PUBLIC ADDRESS, LIGHTING AND DISCOTHEQUE EQUIPMENT
DJio5s 30 watt $r \mathrm{~ms}$ Amplifier. 4 inputs, master tone
and volume controls. etc. 8 ohm output. Cased portable
C33.50. Post 400 . DJ 70s 70 wale rms version. Cased DISCOAMP 100 watt rms so 8 ohms. 4 inputs, separate Back mounting. E67.50. Post 409.
McDONALD MP 60 fitted to plinth with cover PK fitted above amplifiers 617.25 . SPECIAL P』30LII 3 Channel light control unit for above amply. Disco Equipment. 111.50. Post 35p. DJ40L as 30 L plus micro- Complete EFFECTS PROJECTORS-
Coloured rotating light patterns.
DISCO COLT 150 W Tungsten 22.50 Licit $50-50$ watt $Q 1$. e 32.50 . List $150-150$ wats Q.I. 650 .

CHASSIS $5 P 25 / 3 \quad 610.50$ HT TO 1500 $\begin{array}{lll}\text { MPG } & \text { E1040 MP 610 E14.15 }\end{array}$ Kl 8.85 Zero loos 640.75 WITH PLINTH/COVER (Post 7 OP)
MP60 PC $£ 17.20$. MP60 PC $£ 17.20$.
$H T 70$ PC 621.60
$H 17 S$ PC $\$ 35.25$ HT VS PC $\not \subset 35.25$
HL TS GL72P 629.26. TD 50 AE XXII 640.75 PLI2AC 635.25 BD 2 632.25 CART/PLINTH/COVER (Post 70p). GL72PC/G800 634.50. (HL) AP 76/G800 $£ 29.95$
HT $70 P C$ GB OO $£ 27.00$. MP60 PC/SC5M $£ 17.25$ (HL) SP 25/3/G800H $\mathbb{1} 8.95$ (HL) SP25/3/G800H618.95.
(HL) $2025 \mathrm{TC/9TAHCDEI3.50}$.

ULTRASONIC
TRANSDUCERS
Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100 yds. Ideal remote switching. and signalling. Complete with data and circuits PRICE PER PAIR 65.90 . Post 10 p .

POWER INTEGRATED CIRCUITS SL403D-3 watt with 8-page data, layouts and circuits 150 PC. Board 60 p : Heat Sink 14p. circuits E250. Wart Power TOSHIBA -20 Amp Module 64.57 .
TOSHIBA -IC Preamplifier $£ 1.50$ TOSHIBA Data/Circuits Book No. 4210 p .

TEXAS PUBLICATIONS 1-100 wat Amplifiers and Preamplifier. Layouts and
datafl 25. (Free list No. 48A). 700 -page iC Data Book (No. 2) 700 -page ic Data Book (No. 2)
all TTL IC. 60 p.
420 -page Transistor Data (No. 3) 60p. 340 page Transistor Data (N o.4) 60 p Post, etc. . 20p each.)
7 SEE \& NIXIE TUBES (Post 15p per 1 to 6)
$\times N 3$, KNIT, GN6 $0-9$ side VIew with data. 85p. GNP-7, GNP-8 $0-9$ side view with decimal points and data
95 p . ${ }^{95 p}$ 3015F 7 seq. 67 per 4 with data

LOW COST HI-FI SPEAKERS
 EM.I.Size 13 in 8 in and Ger
TYPE 1506 Watt. 3 . 8 or 15
Ohms $£ 2.20$. Post $22 p$.
TYPE $150 T C$ Twin cone ven.
sion $£ 2.75$. Post 220 . TYPE $\mathbf{4 5 0} 10$ Past 22p. or 15 ohms. 63.85 . Post 25 p. PE 35020 watt with tweeter
and crossover, 8 and 15 ohms. and crossover, 8 ard
$£ 7.70$ Post 280 .
POLISHED CABINETS For $150,150 T C$ and 45064.60 Post 30 p

Electronic Components,
 Audio and Test Gear Centre
 356 EDGWARE ROAD.
 LONDON, W.2.
 Tel: 01-402 4736

High Fidelity Sales \& Demonstrations Centre 354 EDGWARE ROAD. LONDON, W.2. Tel: 01-402 5854

P. A. Disco \& Lighting Centre 309 EDCWARE ROAD. LONDON, W.2. Tel: 01 -723 5963

300 mW TRANSISTOR AMPLIFIER MODEL 4-300 Fully
Size
5
 ${ }^{3-8}$ ohms. Fitted Vol. Control 9 volt operated. Thousands of uses plus low cost. $11.75 \mathrm{p} \cdot \mathrm{p}$. 15 p (or 2 for 63.25 p .p. 15p)
 BUILD THIS VHF FM TUNER
5 TRANSISTORS $300 \mathrm{kC} / \mathrm{s}$ BAND-
WIDTH PRINTED CIRCUIT. HIGH WIDTH PRINTED CIRCUIT, HIGH
FIDELITY REPRODUCTION MONO AND STEREO A pOpular VHF Fit Tuner for quality and reception of mono and stereo There is no doubt about it
VHF FM gives the REAL sound. Alt parts sold separately
Free Leaflet No. $3 \& 7$. TOTAL 66.97 , php. 20p
Decoder Kit 65.97 . Tuning meter unit 6175 .
Mains unit (Optional) Model PS900 2.47. Post 20
Mains unit for Tuner and Decoder PS 1200 \$2.62. Pos: 20p.
SINCLAIR PROJECT 60 MODULES
-SAVEPOUNDS
$\begin{array}{llll}Z 30 & \mathbf{6 3 . 6 0} \quad \text { Z50 } & \mathbf{4 4 . 7 8}\end{array}$ STEREO $60 \quad 67.98$ PK 63.98

SLIDER CONTROLS - Top quality, 60 mm singles and ganged. Complete with knobs. 5 K . $10 \mathrm{~K}, 25 \mathrm{~K}, 100 \mathrm{~K}$. 500 K 1 meg, Log and Lin. $45 p$ each, $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$.
Lin ganged. $75 p$ each. Post $\mathrm{t}-5.15 \mathrm{p}$; 6 or more 20p.
25. SPECIAL!: Anti-Fecdback designed and made for Henry's for all PA amply. LIGHT GUIDE 64 fibres sheathed fl
E28.50. per yd. Mono (0.01 in) 61.50 per 25 metre New Digital clock circuit
Nil $\& 7 S E G$ Ref No 31150 TRANSISTORS. 1.C.'s etc TRANSISTORS. 1.C.'s et t
Free hist No. 36 on request. UIPMENT

ECIAL reel

Call. write or phone for details and lists.	Disco PA and
Lighting on	
display as	\(\quad \begin{aligned} \& HI-FI-LARGEST RANGE IN STOCK-

\& BIGGEST DISCOUNTS—FREE I2.PAGE\end{aligned}\)	Disco PA and
Lighting on	
display at	\(\quad \begin{aligned} \& HI-FI-LARGEST RANGE IN STOCK-

\& BIGGEST DISCOUNTS—FREE IZ.PAGE\end{aligned}\) STOCK LIST-Ref. 1617. $\begin{array}{llll}\mathrm{PZ6} & 66.38 \quad \mathrm{PZ8} \quad \mathbf{6 5 . 9 7}\end{array}$ Transformer for PZ8 62.95 . Active Filter Unit $\mathbf{6 4 . 4 5}$. Stereo FM Tuner 61695 . CI $2 f 180$ Q16's $f 15$ pair. $\begin{array}{cc}\text { ALSO IN STOCK } \\ 2000 \in 23.50 & 3000 £ 30.95\end{array}$ | | |
| :--- | :--- |
| | POSt SOp each. |

"BANDSPREAD" PORTABLE TO BUILD
 using Mallard RF MF Module Medium and Long Wave bands plus Medium Wave Bandspread for extra selectivity. Also slow motion geared tuning,
600 mW push-pull output, fibre glass 600 mW push-Dull output, fibre glass
PVC covered cabinet car aerial. Attractive appearance and per. TOTAL COST TO BUILD PD. ${ }^{32 p}$ (Bact 22p). All parts solid separately -Leaflet No. 2 der MEDIUM AND LONG WAVE PORTABLE (as previously
PACKAGE DEALS
2 Z 230 , Stereo 60, PZ5
$\begin{aligned} & 615.95 \text {. Post 25p. } \\ & 20 \text {. Stereo } 60 . ~ P Z 6\end{aligned}$
E1800. Post 25 p
20250 , Stereo 60, PZ8
62025 . Post 25 p
$\begin{aligned} & \text { E20 25. Post 25p. } \\ & \text { Transformer for PZ8 } \mathbf{E 2} 95 \text {. } \\ & \text { Post } 200 .\end{aligned}$
POSt 200 O NEIECT 605 KIT

ORAL COST TO BUILD E7.98 display as " 309 ".

[^0]: Open Monday to Saturday $9.30 \mathrm{a} . \mathrm{m}$. to
 6 p.m. LATE NIGNT FRIDAY 7 p.m. MAIL DRDERS. Ordar with contidence. Send Postal Order, Cheque. Monev Order. Bank Draft. Giro or Cash by Registored alffis: mbase note that cheques can only be acceptod together
 Mail. CALLf WS: Whase note that chec

[^1]: (c) IPC Magazines Limited 1972. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2 \cdot 65$ ($£ 2$ |3s. Od).
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

[^2]: A large display system using filament bulbs in a dot-matrix arrangement

[^3]: TYPE STPL: As above but in PNP and similar to types $2 \mathrm{~N} 5354-56,2 \mathrm{~N} 4058-2 \mathrm{~N} 4061$ and $2 \mathrm{~N} 3702-3$. devices type STNL. Price: $500 \mathrm{67.50} ; 1,000 \mathrm{Cl} 13$ TYPE STNK. Silicon Planar Plastic Transistor npn with TO-18 pin circular lead configuration.
 $200 \mathrm{~mA}, 300 \mathrm{~mW}$ and s.innlar to BC10-9-9, BC 170 , BC173, BC182-1 14, BC $237-8-9$ and BC 337-8. When ordering, please state type required, i.e. STNK or STNis, etc.

[^4]: FULL \mid Callers side entrance Barratts Shoe Shop
 AFTER SALES
 SERVICE

[^5]: $\begin{array}{rrr}\text { 8IL．G．P．DIODES } & \text { fp } \\ 300 \mathrm{~mW} & 30 \ldots & 0.50\end{array}$ $\begin{array}{lll}300 \mathrm{~mW} & 30 \ldots & 0.50 \\ 40 \mathrm{PIV} \text {（Min．）} & 100 & 1.50\end{array}$ 40 PIV （Min．） $100 \ldots 1.50$ $\begin{array}{ll}\text { Bub－Min．} & 500 \quad 8.00 \\ \text { Full Tested } 1,000 & 8.00\end{array}$ Full Tested $1,000 \quad 8.00$

 D13D1 Silicon Unilateral －witch 50p each． A Sillcon Planar，mono Hithic integrated circuit having thyristor elec－ trical characteristics，but with an anode gate and a
 bullt－in＂Zener＂diode bult－in Zener diode
 between gate and cathode．Fuli dats and application circults arail－ able on request．

[^6]: All prices quoted in new pence Giro No．388－7006
 Please send all orders direct to warchouse and despatch department

 P．O．BOX 6；WARE HERTS
 Postage and packing add 7p．Overseas add oxtra for airmail． Minimum order 50p．Cash with order please． Guaranteed Satisfaction or Money Back

[^7]: Where postage is not stated then orders over \&5 are post free. Below as add $90 p$. Semi-conductors add ip post. Over $£ 1$ post free. S.A.E. with enquiries please.

[^8]: GIRCUIT BOARD ETCHING KIT8, full instructions, \&1-25, c.w.o. ARVIN SERVIC1 COMPANY, 12 ('anbridge Roid, st. Albans, Merts.

[^9]: MORSE MADE EASY: FACT NOT FICTION. If you atart IRIGIII you will he reading annateur and commercial Morse within a month (normal progress to be expected). Using Bcientilleatly prepared 3 -speed records you automatically fearn to recognise the code RHYTHM without tribslating. You can't help it, it's as easy as earnilug a tune. 18 W.P.M. in 4 weeks guaranteed. complete Course $24.50(0$ rerseas $51 \cdot 01)$ extra) details Ms.
 G3HSC (Box 19). 45 GREEN LANE, PURLEY, SURREY

[^10]:

