PRACTICAL

MARCH 1972 (ap

ENGLAND'S LEADING EIECTRONIC CENTRES HI-FI ELECTRONIC COMPONENTS • TEST • PA. DISCOTHEQUE LIGHTING MAIL ORDER

PUUS'FVE 10 PVOUCHERS FOR USE WIIH PURCHASES

Send to this address Henry's Radio Ltd. (Dept. PE), 3 Albemarle Way, London, E.C.I - for catalogue by post only. All other mail and callers to " 303 ", see below. A NEW HENRY'S CATALOGUE IS A MUST FOR ELECTRONICS TODAY!

HOME EQUIPMENT

AFI05 $50 \mathrm{k} / \mathrm{V}$ multimeter (illus.). Price 68.50, p.p. 20p. Leather c
$200 \mathrm{H} 20 \mathrm{k} / \mathrm{J}$.
Price 63.87 p. 20 p . Case 62 p . Price E3.87, p.p. 20p.
$50030 \mathrm{k} / \mathrm{V}$ multimeter Price $£ 8.87$, p.p. 20p. Leather case fl 1.50 . Price EB .67 , p.p.
TH. $33.2 \mathrm{k} / \mathrm{p}$.
Price 64.12 , p.p. 15 p. Leather case 61.15 , Price $t 4 \cdot 12$, p.p.
TE65 Valve voltmeter Price $£ 17.50$, p.p. 40 p. SE250B signal injector.
if. 75 .
SE500 Pocket E1.75, p.p. 15p. Price
 TE20D RF generator. Price E15, p.p. 40 p. TE22D Matching audio generator. Price tif, p.p. 40 p.
TE15 Grid dip meter. Price $£ 12.50$, p.p. 40 p. TO3 Scope 3 in tube. Price 635.50 , p.p. 50 p. TE22 Audio Generator. Price $£ 17$, p.D
$\mathrm{Cl}-5$ Pulse Scope. $£ 39.00$, p.p. 50 p.
CI-5 Pulse Scope. $£ 39.00$, p.p. 50 p.
04341 A.C./D.C. Multitester and transistor tester A.G. and D.C. currenc. In steel case. Price 610.50 , p.p. $15 p$ p
TMK 50030 kV Multitester. Price 68.87 , p.p. i3p.

TMK 50030 kV Multitester. Price 68.87 , p.p. 13p. Leather case El 1.98 .
LARGEST RANGE of Panel Meters, Edge Meters and Test Equipment of every sort. Full details in latest cataloguesee above.

LOW COST HI-FI SPEAKERS

E.M.I. Size 13 tin $\times 8$ tin and Ceramic Magne Ohms $£ 2.20$. Post 22 p .
TYPE 150 TC . TYPE 5515 . POS 22p. TYPE 450 io Post 22p. tweeters and crossover 3 . Or 15 ohms. $\mathbf{E 3 . 8 5}$, Post 25 p . and crossover, 8 and 15 ohms.
and and crossover, 8 and
POLISH Post 30p.

SPEAKER KITS

WHARFEDALE $4-8$ ohms PEERLESS 8 ohm Systems	Unit 3. 8 in 15 W	$£ 10.20$	$20-2$.
Unin 30 W	$\epsilon 11.25$			
13.50	$20-3$	8 in 40 W	16.75	

 $\begin{array}{lll}\text { GOODMANS DIN } 20 \mathrm{KIT} & \text { 20W, } 4 \text { ohm. } \\ \text { GOM }\end{array}$

STEREO HEADPHONES

HI-FI TO SUIT
EVERY
POCKET

SAVE 40\% ON LIST PRICES PLUS FREE BIB GROOV-KLEEN Value $\mathrm{C1}$-99.
ROTA $1500 \quad 5+5$ watts. Garrard 2025 TC with 9TAHC diamond ceramic. Plinth/Cover.
Type 60 Compact Speakers. Size Type 60 Compact Speakers. Size

TELETON "206" Garrard SP25 Mk. III, Goldring G800 Series ${ }^{\text {Cew }}$ Cart.: Plinth/Cover;
New
watt Bookshelf Speaker Systems, all Seads, e
$530 \quad \mathbf{5 4 . 9 5}$ Carr

TELETON F2000 Med. Wave Stereo FM Tuner Amplifier. Garrard 2025TC, 9TAHC Diam., Plinth/Cover. Type 60 Speaker etc. | SAVE |
| :---: |
| E36 |
| |
| 566.95 |

£49.50

ROTA 2200 10 10 wat: Garrard SP25 III/G800H. Plinth Cover. New 15 watt SDL2 Twin SAVE $£ 65.50$ Carr

Low prices plus 12 months guarantee and demonstra tions
FREE-Latest Special Price Stock List and Stereo Systems, Ref. 16/17.

FREE BROCHURES

* P.A., DISCO and LIGHTING No. 18
* TRANSISTORS, I.C.'s No. 36

20 WATT I.C. AMPLIFIER
Toshiba 20 watt Power Amplifier, 64.57
Toshib
Data and suggested circuits No. 42, 10 p suggested $1 . C$ with 8 page SL403D 3 watt I.C. with 8 page data and circuits, $£ 1.50$
TEXAS PRE-AMPLIFIERS AND 1-100W AMPLIFIERS circuits, layouts
E1-25. Post paid.

NIXIE TUBES
 (post 15p per order)

XN3 or XN13 $0-9$ side
with data sheet, 85 p each.
GN4 end view 0-9 with socket
All I.C''s for Digital Clocks in All I.C.'s for Digital Clocks in
stock.
HENRY's CLOCK CIRCUIT No. 29/2, 15p

BUILD THIS VHF FM TUNER 5 MULLARD TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND.WIDTH PRINTED CIRCUIT, HIGH FIDELITY REPROA popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it-VHF FM gives the REAL

sound. All parts sold separately.
Free Leaflet No. 3 \& 7. TOTAL 66.97, p.p. 20p. Cabinet
100 p. Decoder Kit $\mathbf{8 5} .97$. Tuning meter \& 1.75 .
Mains unit (optional) Model PS900 £2-47.
Mains unit for Tuner and Decoder PSI200 £2.62.
HIGH QUALITY SILICON AMPLIFIER AND

 selectors, tape record/play, adjustable levels, drive up to
Mono or single channel. All facilities plus microphone. Mixing.

SPECIAL OFFER $210=50$
SILICON POWER AMPLIFIERS RMS OUTPUT
PA25 25 watts into 8 ohms, E7.50. PA50 50 watts into 4 ohms, c9.50. MU442 Power Supply for I or 2 PA25's or I only PA50, 66. Post 20p.
FREE BROCHURE NO. 25 ON REQUEST
NO SOLDERING-ALL UNITS INTERCONNECTING
ON DEMONSTRATION AT " 356 "

SINCLAIR PROJECT CKAGE DEA
2×230 amplifier, stereo 60 pre-amp, PZ5 power supply £16.75, Carr, 40p. Or with PZ6 power supply £18.25. Carr. $40 \mathrm{p}, 2 \times$ Z50 amplifier, stereo 60 pre-amp, PZ8 power supply $\mathbf{6 2 0 - 2 5}$. Carr. 40p. Transformer for PZ8 $£ 2.45$ extra. New! Project "605" stereo system $£ 21$. 50 . Any of the above with Active Filter unit add $\mathbb{6 4}$.75 or with pair 016 speakers add $£ 16$. Also $\mathbf{1} 00$ Amplifier 631.50 . Also Amplifier $\mathbf{2 2 3} 75$, D.D. 50 p. 3000 Amplifier £31.50. Also IC12 £2.50.
"BANDSPREAD" PORTABLE TO BUILD Printed circuit all transistor design
 using Mullard RF/IF Module. Medium and Long Wave bands plus Medium Wave Bandspread for extra selectivity. 600 mW push-pull output, fibre glass fVC covered cabinet, car aerial. Attractive appearance and perTOTAL COST TO BUILD E7.98, p.p. 32 p (Batt. 22p). All parts sold separately-Leaflet No. 2 . PORTABLE (as previously advertised) $\mathbf{6 6 . 9 8 , ~ p . p . 3 5 p}$ rom stock-Leaflet No. I
*Components in stock for most published designs-send
large SAE with list for parts quote for your circuit.

Electronic Components, Audio and Test Gear Centre 356 EDGWARE ROAD, LONDON, W.2. Tel: 01-402 4736

309: "354" \& '

High Fidelity Sales \&
Demonstrations Centre
354 EDGWARE ROAD,
354 EDGWARE
LONDON, W.2.
Tel: 01-402 5854
P. A. Disco
\& Lighting Centre
309 EDGWARE ROAD,
LONDON, W.2.
Tel: 01-723.6963

Now! From EMI precision speakers and enclosures in matched money-savingkits

EMI speakers are internationally recognised-used in the highest quality sound reproduction equipment. Because of this world-wide demand, EMI matched speaker kits aze available to you at a really keen price.

And now, EMI introduce the commonserse costsaving approach to high quality speaker enclosures. Available in complete easily assembled kit form-all you need is a screwdriver-they form the ideal
combination of superb sound reproduction and good looks you'll be proud to have in your home

There are eight kits-from compact book-shelf units to large floor standing enclosures-all finished in selected wood veneer, with matched loudspeaker kits handling from 5-35 Watts

Realise the full fidelity of your audio system at a fraction of the cost of comparable speaker assemblies. Contact your hi-fi dealer or send to EMI for full details
2×280
$22.15 k$

EMI

 FOR WORLD WIDE RECEPTION. ONY pUE inko production after incorporation of every conceivable possible uputo-date examined. So advanced it will probably make your present radio seem examined. So advanced it will probably make 6 -wave radio even they have produced! We're almost giving them away at $£ 9.97-\mathrm{m}$ mere fraction of even today's Russian miracle price! We challenge you to compare performance and value with that of 634 radios! "1nstant refund if you are not astounded! Purer and sweter tone than ever! Much wider band spread than hithertofor pin ability in electronics-brilliansly, reflecting their advanced micro-circuitr
techniques in the field of spaceship and satellite communications. YOU GET techniques in the field of spaceship and satellite communications. TRUE VALUE! Yes, 6 separate wavebands, including Standard Long Medium and Short Waves to cover the world! Uniqueside control wave of different transmissions and stations at your fingertips $\mathbf{2 4}$ hours a day even messages from all over the world! Superb, sweet tone-controlled Irom a whisper to a roar. Push-pull output! Separate ON/OFF volume and Treble Bass cone controls! Take it anywhere-runs economically on standard batteries Internal ferrite rod aerial plus buils-in telescopic aerial extending to full 33 sin length. It's also a fabulous CAR RADIO-any peed requires no additional aerial. UNIQUE! Elegant Black. White and Chrome fish case. SIze 10_{2} in 8in 3 tin, overall approx. Magnificenty designed. mace to give years of perfect service. Wh ONIY 69.97 , POST, ETC. 43 p , Standard batceries 25 p extra. Can also be used through extension amplifier, tape recorder batreries $25 p$ extra.
or public address.

SAFEBMOC of robust construction

Safe, quick and secure it connects 2 -core and 3-core bare-ended flexible leads to the mains (A.C. only)?"
The concept was pioneered by Rendar, eand iptroduced to the market 13 years ago. Safebloc så̀ves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open. Invaluable for testing and demonstrations in industry and shops, the work bench and the home.

Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer
If ordering by post, send cash with order.
PRICE E $2.60+10$ p P.\&P. EACH
Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd., Victoria Road, Burgess Hill, Sussex.Tel. Burgess Hill 2642

P.E. GEMINI

Pre-amplifier P.C.B. £1.95
Main Amplifier P.C.B.
Power Supply P.C.B.
Pre-amplifier Semiconductors
Main Amplifier Semiconductors £1.45

Power Supply Semiconductors £7. 25

All Semiconductors available separately.
Full range of Ferranti semiconductors available at low prices. Send S.A.E. for list.

DAVIAN ELECTRONICS
P.O. BOX 38 OLDHAM

LANCS

The most accurate pocket size GALCULATOR
 in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 4 \cdot 50$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE 39)
54 Dundonald Road, London SW19 3PH

D 1. W. (Electronics) Ltd

HY40
 POWER AMP PERFECTION

Lets face it - an immediate success, the HY40 is here to stay. HY40 means Hybrid Power, power neatly locked away inside an Intregrated Circuit. Power the modern way, simply mount only five additional components on a printed circuit board (all of which are supplied with the HY 40). Power not only for Hi-Fi, power for Groups, for public address, for industry, power for all.
HY40 is HI-FI POWER ILP are POWER PROUD
In addition to the P.C. board and manual supplied with the HY40 we now include the five remaining components, at minimal cost, needed to complete the assembly of a High Performance Power Amplifier
By merely combining two HY40s with a Stereo Preamplifier (2 $\times \mathrm{HY} 51$ and simple Power Supply (PSU45), premium quality stereo may be obtained for a very modest outlay.
The free manual supplied with the HY40 gives clear, easy build instructions for Power Supply; volume, bass treble and balance controls, together with inputs for Ceramic and Magnetic Pick-ups, Tape, Tuner and Auxiliary functions.
Internally the HY40 is based on conventional and proven circuit techniques developed over recent years.

OUTPUT POWER British Rating 40 WATTS PEAK, 20 watts RMS continuous.
LOAD IMPEDANCE 4-16 ohms INPUT IMPEDANCE 22Kohms at 1 Khz .
INPUT SENSITIVITY 300 mV for maximum output.
VOLTAGE GAIN 30 db at 1 KHz . FREQUENCY RESPONSE 5 Hz $60 \mathrm{KHz}+1 \mathrm{db}$.
TOTAL DISTORTION less than 1% (typical 0.1%) at afl output powers.
SUPPLY VOLTAGE ± 22.5 volts D.C.
SUPPLY CURRENT 0.8 amps maximum.
PRICE: including comprehensive manual, P.C. Board and FIVE EXTRA COMPONENTS:
MONO £4-40 STEREO £B-80 all post free.

A WORLDS FIRST TO JOIN THE WORLDS BEST

The HY5 is a unique and revolutionary concept in HighFidelity pre-amplifiers. Thanks to the latest techniques, all feedback and equalization networks are, for the first time, combined into an integrated pre-amplifier circuit.

Simply by adding volume, treble, bass potentiometers and only three stabilizing capacitors, which are supplied, your HY5 is complete and ready for use.

The HY5 provides equalization for almest every conceivable input. This years developments in equalization technique enables precise correction for both output voltage and frequency response for any crystal or ceramic cartridge. Yet another feature of the HY5 is its inbuilt stabilization circuit, allowing it to be run off any unregulated power amplifier supply.

The HY5 contains a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo preamplifier.

Specifically and critically designed to meet exacting $\mathrm{Hi}-\mathrm{Fi}$ standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY40 and PSU45 forms a completely integrated system.

INPUTS

Maqnetic Pick-up (within ± 1 db RIAA curve) 2 mV
Tape Replay fexternal components to suit head). 4 mV .
Microphone (flat) 10 mV
Ceramic Pick-up fequalized and compensatable) $2 \mathrm{C}-2000 \mathrm{mV}$ variable.
Tuner (flat) 250 mV .
Auxiliary 1250 mV .
Auxiliary $22-20 \mathrm{mV}$.
OUTPUTS
Main Pre-amp output 500 mV
Direct tape output 120 mV
ACTIVE TONE CONTROLS
Treble $\pm 12 \mathrm{db}$.
Bass $\mp 12 \mathrm{db}$.
INTERNAL STABILIZATION Enables the HY5 to share an unregulated supply with the Power Amplifier.
SUPPLY VOLTAGE
15-25 volt.
SUPPLY CURRENT
5 mA approx.
OVERLOAD CAPABILBTY
better than 28 db on most sensitive input infinite on tuner and auxl.
OUTPUT NOISE VOLTAGE
0.5 mV .

PRICE
Mono $£ \mathbf{£ 6 0} \quad$ Stereo $£ \mathbf{£ 7} \mathbf{- 2 0}$

POWER SUPPLY PSU45

The PSU45 is specifically designed to supply, simultaneously, your HY40 (in mono or stereo format) and one or two HY 鳥.

Spec.
PSU45 ± 22.5 volts, 2 amps simultaneously.

PRICE: $£ 4 \cdot 50$ including Postage and Packing

CROSSLAND HOUSE - NACKINGTON•CANTERBURY•KENT TELEPHONE: CANTERBURY 63218

The Iargest selection

NEW LOW PRICE TESTED S.C.R.'s

 PIV| PIV | 1A | 34 | 7 A | 10.4 | 16A | 30A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 7-1). 5 | T0-66 | 0. 66 | | T0.48 | TO. 48 |
| | 2p | 6) | 4 | to | \& | to |
| 50 | 0.23 | 7. 28 | 0.47 | 0.50 | 0.53 | 1.15 |
| 100 | 0.25 | U.25 | 0.63 | 0.58 | - 0.68 | 1.40 |
| 200 | 0.85 | 0.37 | 0.57 | 0.81 | 0.75 | 1.60 |
| 400 | 0.48 | 0.47 | 0.87 | 0.75 | 0.93 | 1.75 |
| 600 | 0.68 | 0.57 | 0.77 | 0.97 | 1.25 | |
| 800 | 0.63 | 0.70 | 0.60 | 1.20 | 1-50 | 4.00 |

KING OF THE PAKS Unequalled Value and CIIDED DAYC NEW BI-PAK UNTES SEMICONDUCTORS
 SUPER PAKS

SIL. RECTS. TESTED

VBOM 2 ARIACS

TO-1 TO-66 TO.88 $\begin{array}{cccc} & \text { ip } & \text { ip } & \text { Ep } \\ & 0.50 & 0.63 & 1.00\end{array}$ $\begin{array}{lll}200 & 0.70 & 0.80\end{array}$ $400 \quad 0.80 \quad 1.00$

 2A POTTED BRIDGE RECTIPIERS 200Y 50p URIJUNCTION OT48. FqVt. $2 \mathrm{E}^{2} 2646$,
Eqvt. TIS43. BEN 3000 27p each. 2j-99 25p 100 UP 20 p
 BC107/8, 10 p rach; 7 p eacli, Fully tented and coded TO-18 case.

FREE

One
OWn Pak
own
choice orders valued ef or over.

AF239 PNP QFRM GIEMENS VHF TRAN: SIBTORS. RF MIXER \& OSC. UP TO 900 MHZ. USE AS REPLACEMENT FOR
AF139-AF186 AF139.AF186 USES $100^{\prime} 8$
OF OTHER USES IN OF OTHER USES IN
VHF. OUR SPECLAL LOW PMICE: $=1.947_{p}$

WPECIAL OFFER 50p. $2 \overline{2}$ for 81 .

CADMIUM CFELS

PHOTO TRANS.
8IL. G.P. DIODES \&p 300 mW
40 PIV (Min.) $100 \ldots 1.50$
100 Bub-Min. ${ }^{500} \ldots 5.00$ Ideal for Organ Builders.

D13D1 Silicon Unilateral 13D1 silicon Unit A sillcon Planar, monouithic integrated circuip having thyristor elect trical characteristics, but with an anode gate and a built-1n "Zener" diodic between gate and cathode. Full data and application circuit

LUCAS SILICON an!, 400 P.I.V. Stud type. El .10 each

$$
\begin{array}{ll}
\text { DIACS } \\
\text { FOH WSE WITH }
\end{array}
$$

$$
\begin{aligned}
& \text { TRIACS } \\
& \text { BRIOO D } 3
\end{aligned}
$$

Satisfa
Pak N
UI
No.
120 Glass sub-min. general purpose germanium dioies 60 Mixed germanium transistors AF/RF 7 Germaniunt gold bonded diodes sim. OĀ, 0.147 40 Germanium transiators like $\mathrm{OC} 81, \mathrm{AC1} 28$
$60: 400$ in. sub-min, Sill. dioxles
30 Silicon planar transistors NPN aim. B8Y95A. 2Niof
16 silicon rectiffers Top-Hat 750 mA up $\mathbf{t} 1,000 \mathrm{~S}$
30 Eil planar diocles $2: 30 \mathrm{~mA}, 0 \mathrm{~A} / 20 \mathrm{O}=2$
20 Mixed volts 1 watt Zener Itixles.
30 PNP silicon planar tranisistura TO-in sim. 2 N 1132
U13 30 PNP-NPN sil, tranmistorn OCle 00 de 281114
U14 150 Mixed silicon and germanimm dionleg
Ulü 25 NPN Silicon planar transistors TO-j wim. 2N697 10 3-Amp sllicon rectifiers atud type up to 1000 PIV 30 Germaniun PNP AF transistors TO-\% like ACY 17 86-Amp ailicon rectifiers औY゙Z13 typue up to bon PI U19-2J sllicon NPN transistorn like 13 Cl 108
UV0 12 1- t -Amp silicon rectifiers Ton-Hat up to 1,000 PIV U21 $30 \mathrm{~A} . \mathrm{F}$. germanium alloy transistors 2 a :3n0 series \& $\mathrm{OC} \%$ 30 Madt s like MAT series PNP transiators C24 20 (iermanium 1-Amp, rectifiers GJM 11 to 300 PIV
$25300 \mathrm{Mc} / \mathrm{s}$ NPN silicon transistors 2 N 708 , $1 \mathrm{BSY} \geq 7$ 30 Foast switching silicon dioles like IN914 micro-min
 20 Bil. Planar NPN trans. low noise amy 2 N 3707 U32 25 Zener liodes 400 m W D07 case nixel volts, 318 U33 T? Plastic case $1 \overline{\mathrm{amy}}$ silicon rectitera $I \mathbb{N} 4000$ series

30 sil . PNI' alloy trans, TO- $\mathrm{F}, \mathrm{BCY} 96,28302 / 4$
25 sil. planar trans. PNP TO-18 $2 \mathrm{~N}, 900 \mathrm{t}$
(1in Bil. planar NPN trans. TO-J BFY $50 / 51 / 5:$
30 sil. alloy trans SO-2 PNP, OC200 2532 z
20 Fant awitching sil. trans. NPN+ $400 \mathrm{Mc} / \mathrm{s}$? 3011
C39 30 kF germ. PNP trana. .an 1303/5 TO-\%
U40 10 Dual trans. 6 lead TO-5 2 N 200 b 0
20 RF germ. trans. TO. 1 OC4.5 NKTz.
10 VHF' germ. PNP trans. TO. 1 NKT 567 AFII7.

JUMBO COMPONENT

PAKS

MIXED

 ELECTRONIC COMPONENTS Exceptionally Resiviors, capactiots, pots. electrolytics andcoils plus Hary other useful itemm. Approx
 E1.50 only पै43 2.5 8il. Trans. plantic TO-18 A.F. BCL13/114

?O Sil. trams. plastic TO." BCl $15 / 115$

73 A SCR's TO-lif up to ti00 Pi
a give to the
BRAND NEW TEXAB
GERM, TRANSIETORS
COded AG GERM, TRANSISTOR

Coded and Guaranteed Pak No. EQV $\begin{array}{lllll}\mathrm{T} 1 & 8 & 2 \mathrm{G3} 371 \mathrm{~B} & \text { OC71 } \\ \text { T2 } & 8 & \mathrm{D} 1374 & \mathrm{OC}_{1}\end{array}$ $\begin{array}{llll}\text { T2 } & 8 & \text { D1374 } & \text { OC7J } \\ \text { T3 } & 8 & \text { D1116 } & 0081 \mathrm{l}\end{array}$ $\begin{array}{llll}\text { T3 } & 8 & \text { D1316 } & \text { OC81D } \\ \text { T4 } & 8 & 2 \mathrm{G3} 31 \mathrm{~T} & 0 \mathrm{OC81}\end{array}$ $\begin{array}{ccc}\text { T. } & 8 \text { gG381T } & \text { OC81 } \\ \text { OG382T } & \text { OC8: }\end{array}$ $\begin{array}{llll}\text { T6 } & 8 & 2(3344 \mathrm{~B} & \mathrm{OC}^{2} 4 \\ \text { T7 } & 8 & 2 \mathrm{G} 34 \overline{5} \mathrm{~B} & \text { OC4 }\end{array}$ | T8 | 8 | $2 \mathrm{CBH7}$ |
| :---: | :---: | :---: |
| T 9 | 8 | $0 \mathrm{OC78}$ | Tro 896417 AF117

All sop each pak 2N2060 NPN SIL DUA
TRANS. CODE D169 TEANS. CODE D1699 120 VCB MIXIE DRIVER TRANSISTOR
 FULLY TESTED AND
CODED CODED ND120. 17 p eacti. TO.
25 up 45 p each.
Sil. trans. suivable for P.E. Organ. Mett TO-18 Any Qty.

[^0]OUR STOCES uf individual devices are now too numerous to mention in
this Advertisement. Send G.A.E. this Adverisement our listing of over $1,000 \mathrm{Semi}$ conductor!. All available Ex-stock at very competitive prices.

		Description	$\begin{gathered} \text { Price } \\ \text { ip } \end{gathered}$
	Q1	20 Redmpot trans. PNP AF	. 50
	Q2	16 White spot R.F. trans. PNP	60
	23	4 OC:7 type trans.	
0	44	${ }^{6}$ Matched trans. $\mathrm{OC4} 4 / 45 / 81 / 81 \mathrm{D}$	
0.50		40 O 75 transistors	
		4 Oc72 transistory	
0.50	Q7	4 AClog trans. PNP high	
0.50	Q8	4 AC126 trans. PNP	
	Q9	7 OC81 type trans.	
0.50	Q10	70071 type trans.	
0.50	Q11	$\because \mathrm{ACl27} / 128$ comp. pairy PNP/NPN	0.50
	Q12	3 AFll6 type trans.	0.80
0.50	Q13	3 AF117 type tranm.	0
	Q14	3 OCl7 Hipr. tspe tratu.	0.50
0.80	Q15	. 2 N29:2 sil. epoxy trans.	0.60
0.50	Q16	4 ceT880 low noise germ. trans.	0.60
0	Q17	3 NPN 1 ST141 \& 2 ST140	0.50
0.50	Q18	4 Madt's 2 Mat 100 \& 2 Mat 120	0.50
	Q14	: Mautes 2 Mas 101 d 1 MAT [21	0.50
0.50	Q20	$40 \mathrm{OC4}$ germ. trans. A.F.	0.50
0.50	Q21	3 AClo7 NPN germ, trans.	0.50
	Q2:	$\because 0$ NKT trans. A.F. R.F. coded	0.50
	Q23	10 OA202 sil, dlodes sub-ruin.	0.50
	Q24	SOA81 dionles	0.50
	Q25	T IN934 sil. dooles 75PIV 7önn.	0.50
	Q26	8 OA98 germi. dlodes sub-min. 1 N69	0.50
	Q2J	210 A 600 PIV sil. rects. 1845 R	0.50
	Q28	3 sil. power rects. $13 \mathrm{YZZ13}$	0.50
	229	4 sil. trans, $2 \times 2 N 696,1 \times 2 N 697$, $1 \times 2 N 698$	
	Q30	- Sil switch tramm. 2N7013 NPN	0.50
	Q31	ti Sil. 8witch trans. 2 N 708 NPN	0
50	Q32		0.50
	Q33	3 Sil. NPN trams. 2 N 1711	0.50
0.50	Q34	7 sil. NPN trans. $2 \mathrm{~N} 2369,500 \mathrm{MHZ}$.	0.50
0.50	Q3i		0.50
0-50	Q3i	$7 \times \mathrm{N} 364 \mathrm{i}$ T0-18 plastic $300 \mathrm{MH2}$	
1.00		NPN	
	Q33		0.50
$0-50$	Q38	7 PN1' trang. $4 \times 2 \mathrm{~N} 3703,3 \times 2 \mathrm{~N} 3702$	0-50
	Q39	7 NPN trans. $4 \times 2 \mathrm{~N} 3704,3 \times 2 \mathrm{~N} 3 \mathrm{O} 05$	-50
	040	7 NPN amp, $4 \times 2 \mathrm{~N} 3707.3 \times 3 \mathrm{~N} 3708$.	0.50
0.50	941	3 Plastic NPN TO. 18 2N3904	
-	Q4iz	6 NPN trans 2 N 5172	
	943	HC107 NPN trans. 7 NPN trans. $4 \times \mathrm{BC} 108,3 \times \mathrm{BC}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$
		${ }_{3} 3$ BC 113 NPN TO-18 trans. ...	0.50
0.50	Q4ts	3 BC115 NPN TO-5 trans.	0.50
	Q47	6 NPN high qain $3 \times$ RCl6 ${ }^{\text {a }} 3 \times 13 \mathrm{Cl} 168$	0.50
0.50	044	4 BCY 70 NPS trans. TO-18	0.50
0.50	mx9		0.50
	Qu1	7 BSY 28 NPN switch TO.18	$0 \cdot 50$
0.50	Q 51	7 B8Y9.n NPN trans. 300 MH	
	Q32	8 By lon type sil. rect	
		ousil. \& kerm. trans. mixet all tharked new	1.50

PRINTED CIRCUITS—EX-COMPUTER

 packed with semicotuluctors and components, 10 hoards give a guarant 50 hrans and 30 diodes. Our price 10 boardso (50n)100 [3oards \&3, P. \& P

PHOTO TRANS.
OCP71 Tywe. 43p

SHICON PHOTO TRANSISTOR.
GENERA PURPOSENPR SILICON SWITCHING TRAN8. TO-188LM. TO 2mpo/8, BSY87/28/95 Ah All usable devices no open or ahort circuits. ALSO ATATABLE in PNP Sim.

RTL MICROLOGIC CIRCOITS

 $\begin{array}{llll}\text { uL900 Bufter } & 35 \mathrm{p} & 33 \mathrm{p} & 100 \mathrm{u}\end{array}$ uL914 Dual $2 \mathrm{i} / \mathrm{p} \quad 35 \mathrm{p} \quad 33 \mathrm{p} \quad 27 \mathrm{p}$
 Data and Circuits Booklet for IC's Data and

Dual-in-Line Low Profle socketa 14 and 16 Leall Sockets for use with Dual-in-Line Jntegrated Circuits

	Price each	
Order No.	$1-44: 25-99$	100 up
Tso 14 pin type	30027 p	25 p
TSO 16 pin type	35p 32p	80p

-the lowest prices

74 Series T.T.L. I.C's DOWN AGAIN IN PRICE

Check our it Series List before you ty any L.C"n. Our prices are

$\begin{aligned} & \text { B1-PAK } \\ & \text { Order Mo. } \end{aligned}$	Price and oty. prices			BI-PAK Order Fo.	Price and gty		$\begin{aligned} & \text { prices } \\ & 100 \mathrm{up} \end{aligned}$
		kp	\& ${ }_{\text {d }}$		L_{1}	${ }_{\text {fp }}$	$\pm{ }_{\text {¢ }}$
BP00 $=8 \mathrm{~N} 7400$	0-15	$0 \cdot 14$	0.12	8P'86 $=8 \mathrm{SN} 7486$	0.82	0-80	0.88
BP01 $=$ SN7 701	4 ± 0	0.14	0-12	$13 P 90=8 N 7494$	0.87	$0-64$	0.58
BP02 = 8N 7402	0.15	0.14	$0 \cdot 12$	$13 \mathrm{P9}=8 \mathrm{~N} 7491 \mathrm{~N}$	0.87	0.84	0.78
$\mathrm{BPO}=8 \mathrm{C} 7403$	0.15	0.14	0-12	BP92 $=8 \mathrm{NF} 74 \mathrm{~L}$	0.67	0.64	0.58
BP04 = 8N7404	0.15	0.14	0-12	13P93 $=$ SN 7493	0.67	0.64	0.58
$\mathrm{BP} 0 \overline{\mathrm{~J}}=\mathrm{SN740.3}$	0.15	0.14	0.12	$\mathrm{HP94}=8 \mathrm{SN794}$	0.77	0.74	0.88
$\mathrm{BP} 07=8 \mathrm{PN740}$	0.18	0.17	0-16		0.77	0.74	0.88
BP08 = 8N7408	0.18	0.17	0-18	BP96-8N7436	0.77	0.74	0.88
BP09 $=8 \mathrm{8N} 7409$	0.18	0.17	0.18	$13 \mathrm{P} 100=8 \mathrm{~N} 74100$	1.75	1.85	1.55
$\mathrm{BP} 10=8 \mathrm{~N}^{\text {7 }} 410$	$0-15$	0.14	0.12	$1 \mathrm{SP104}=\mathrm{SN} 74104$	0.97	0.84	0.88
BP13 = 8N7413	$0 \cdot 29$	0.26	0.24	$\mathrm{BP} 10 \overline{0}=8 \mathbf{N} 7410 \overline{ }$	0-97	0.94	0.88
BP16=8N7416	0.43	$0-40$	0.38	$18 P 107=8 \times 74107$	0.40	0.88	0.36
$13 \mathrm{P} 17=$ SN 7417	0.43	0.40	0.38	$\mathrm{Bl}^{\prime} 110=8 \mathrm{~S} 7+110$	0.55	0.53	0.50
$\mathrm{BP} 20=8 N 74: 0$	0.15	0.14	0.12	BP111=SN74111	1.25	1.15	1.00
BP30 $=$ 8N 7430	0.15	$0 \cdot 14$	0.12	BP118 = M 74118	$1-00$	0.95	0.90
$\mathrm{BP40}=$ SN7440	0.15	0.14	0.12	BP119 = SN74119	1.35	1.25	1-10
BP41 $=$ SN7441	0.67	0.64	0.58	13P121 $=$ SN74101	$0 \cdot 67$	0.84	0.68
BP4: $=$ SN7442	0.87	0.64	0.58	BP14J = SN7414,	1.50	1.40	1-30
$\mathrm{BP} 43=8 \mathrm{C} 743$	1.95	1.85	1.75	BP150 $=$ SN 74150	1.80	1.70	1.60
BP44=8N7444	1.95	1.85	1.75	BP15I = SN7+151	1.00	0.85	0.90
$3 \mathrm{PP4⿹}=8 \mathrm{~S} 744.3$	1.95	1.85	1.75	BP15: = SN74103	1.20	1.10	0.95
BP46 $=$ 8N 7446	0.87	0.94	0.88	$13 P 1.54=9 \mathrm{~N}^{4} 41.54$	1.80	1.70	$1-60$
BP47 $=$ SN 7447	0.87	0.94	0.88	BP15.j $=\mathbf{8 N} 7+15$	1.40	1.30	1.20
$\mathrm{BP} 48=8 \mathrm{SN} 748$	0.97	0.94	0.88	$\mathrm{BP} 1 \mathrm{~L} \mathrm{f}=\mathrm{SN} 74136$	1.40	1.80	1.20
BPiOL $=$ ANT4J0	0.15	$0 \cdot 14$	0.12	BPI60 = SN74160	1.80	1.70	1-60
	0.15	0.14	0.12	BP1til $=\mathbf{8 N} 7+1+1$	1.80	1.70	1-60
¢Pã3 = 8N 7403	0.15	0.14	0.12	13P164 $=$ SN 741 F 4	2.00	1.90	1.80
$\mathrm{BP} \mathrm{SH}_{4}=8 \mathrm{~N} 7454$	0.15	0.14	0.12	BP165 $=$ SN $7416{ }^{\text {a }}$	$2-00$	1.90	$1-80$
$\mathrm{BPHO}=8 \mathrm{SN} 7460$	0.15	0.14	0.12	13P181 = SN74181	2.75	2.80	2.40
WP70 $=8$ N7470	0.29	0.28	0.24	BP182 $=$ SN 74182	0.97	0.94	0.88
	0.29	0.26	0.24	HPI90 $=$ SN 74190	3.50	3.26	3.00
BP73 $=8$ N7473	0.37	0.35	0.32	HP191-SN74101	3.80	3.26	3-00
BP74 $=8 \mathrm{EN7474}$	0.37	0.35	0.32		$2 \cdot 10$	1.95	1.75
BP7J $=8 N 7475$	0.47	0.45	0.42	BP193 $=\mathrm{AN}^{\text {7 }} 4193$	2.10	$1-95$	1.75
BP76 $=8 N 7476$	0.43	0.40	0.38	$\mathrm{HP1} 125=\mathrm{SN} 74145$	1.10	1.05	0.05
BP80 $=8 \mathrm{~N} 7480$	0.87	0.64	0.58	BP196 $=$ SN $7419{ }^{\text {c }}$	1.80	1.70	1.60
BP81 $=8 \times 7481$	0.97	0.94	0.88	BP197 $=$ SN74197	1.80	1.70	1.60
	0.97	0.84	0.88	BP198-8N74198	5.80	5.00	4.00
$\mathrm{BP} 83=8 \mathrm{~S} 7483$	1.10	1.05	0.85	$13 \mathrm{P199}=9 \times 74199$	5.50	5.00	4.00

PRICE-MIX. Devices may be mixed to sulalify for umantity prices.
PRICES for quantities in excess of $\mathbf{j 0 0}$ pieces mixed, in application
Owing to the ever increasing range of TTL it Beries, please check with in for suphlies any devices not listed above, as it is prohably now in stock. WARE 344

NUMERICAL INDICATOR TUBE Type MG-17G
 Cold ('athode gax-filled, wirle-sjewing untmerals (0-9) and Decintal COLOUR: Neol Hed.
 DATA: Anode supply soltage 180 min V il
 use in constructing ligital Clock
 Ideal for use in constructing lligital Clocks, Weak Calculaturs, etc., and many proxlucta tescribed in th BP41 or BPI 41 to trive this tube

PRICE: $1-5, £|\cdot 55 ; 6-25, £| \cdot 40$ ACTUAL

BRAND NEW LINEAR I.C's-FULL SPEC

TPp No.
BP 201C-SL201C
BP $701 \mathrm{C}-8 L 701 \mathrm{C}$
BP $702 \mathrm{C}-8 L 702 \mathrm{C}$ BP $702 \mathrm{C}-8 L 70 \%$ BP 709-72709
BP 709P- 4 A70t
BP $710-72710$ BP 710-72710

LA 703C- $\mu \mathrm{A} 703 \mathrm{C}$ TAA 263-
TAA $\mathbf{3 5 0}$

Case	Leads	Description
TO-5	8	G.P. Amp
TO-5	H	OP Amp
TO-j	8	OP A mp Direct OP
D.1.L.	14	(G.P. OP Arnp (Wide Band)
17.I.L.	14	High OP Amp
To.J	8	High Gairs OP Amp
17.I.L.	14	Differential comparatur
TO-5	10	Dual comparitor
D.I.L.	14	High (tain OP Amp (Protected)
T0-5	6	R.F.-I.F. Amp
TO-72	4	A.F. Amp
T0.74	10	G.P. Amp
TO-u	8	Wide loud

IImiting
mplifier

$1-24 \mathrm{p}$ 68 p

$$
\begin{aligned}
& 50 p \\
& \hline 5 p
\end{aligned}
$$

$$
45 \mathrm{p} \quad 40 \mathrm{p}
$$

$$
\begin{aligned}
& 40 \mathrm{p} \\
& 40 \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& 40 \mathrm{p} \\
& 40 \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& 40 p \\
& 45 \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& 60 p \\
& 87 p \\
& 80 p
\end{aligned}
$$

STOP PRESS! NOW OPEN

BI-PAK'S NEW COMPONENT SHOP
A wide range of alt types of electronic compunenta and equipment
 18 BALDOCK ST. (Al0) WARE, HERTS. Tel. 61593 OPEN 9.15-6 TUES. to SATS. FRIDAYS UNTIL 8 p.m

ANOTHER BI-PAK FIRST!

THE NEW S.G.S. EA 1000 AUDIO AMPLIFIER MODULE GUARANTEED NOT LESS THAN 3 WATTS RMS

Especially pesignel by S.6.S. incorperating the ir
proven Linear I.C. Audio Anp. T./finl providing mimited appllations for the enthusiast in the units luse ileal for ithercom, systerna and stereo
applications and phone snswering machines, OTMER
多. portable afplication* where supply rails 0 low as 91' are of prime importance

- Sensitivity 40 mV for 1 wats VOLT

AGE GAIN $40 d B$ but can be varied up to 73d8 lor come applications. - gignal to Noise Retio 80dB.

Frequency responge better than
50 Hz to 25 KHz Hormal gupply Voltage B-24y

- 8uitable for 8-16 0HM Lomds.
- Typical Total Harmonic distortion at 1 wett lese than 10 ó - Supply rollaze ($\left.\mathrm{V}^{\circ} \mathrm{s}\right)=2 \mathrm{aV} 15 \mathrm{hm}$ load. d and (ivaranteed Quantity $\quad 1-9 \quad 10-25$ Price each 19.63 eq. 28 ull hook up diagranos ami complete techmical data supplied free with each noplule or available separately at 10 p each

NOTE THESE PRICES!
I.C's DTL 930 SERIES

LOGIC

Type No.
 No.
 8 P 930 81989
 81939 $8 P 939$
 BP993
 BP935 BP936 AP946
 HP944
 BP94.,
 HP946
 13 P948 $18 P 941$
 BP951
 BP95:- HPYo9;
 HPYog:
 $\mathrm{BP9094}$ BP 9097 BP9097 BP!

\qquad
ixpanclabie dual 4 -input NAND
Expandable tual 4 -input NAND butfer
Expandable Hex Inverte
Hex Inverter
Dual 4 -inpu
Haster-slave $J k$ or Rs
Quad, 2-imput NANI
Manter-slave $J K$ or $\mathbf{R S}$
Monostable
Triple 3 -input NAND
Dual Manter-glave JK wit/r sejarate cloch
Dual Mater-alave JK with Gemate clock
Bual Master-slave J K Conmon Clock

Price		
[-24	-3-99	100 up
12p	11p	10p
13 p	12p	11 p
13p	18p	11p
13p	12p	11p
18D	12p	11p
13p	12p	11p
25 p	24 p	220
120	110	10p
20 p	24p	22p
65p	80 D	55
12p	11p	10p
400	38 p	35p
400	38 p	$35 p$
40 p	38 D	35p

evies may he mixed to quality for fuantity price. Larger quantity prices palication. (ITTL 930 Beries only

DTL AND TTL INTEGRATED CIRCUITS
Manufacturers "Fall unts"-out, of slee'. devices including finctional units aud part function but clasmed as out of spec. Irom the manufacturers' very rigin specifica

Pak No.
P1C
UIC
111
118
VIC
U11
U1
P

BUILD A PROJECT ' X '

PROFESSIONAL MODULES

MAN-SIZED ROBUST PATCHBOARD
MAKE A "PATCH" AS IF YOU MEAN IT. "K-L-O-N-K" and it's MADE!
No fiddling with fragile patch pins. No cables.
Countless possible combinations giving FULL RANGE EFFECTS.

VOLTAGE CONTROL

Voltage-controlled filters, oscillators, amplifiers and... P-H-A-S-E
Yes, Dewtron have perfected voltage-controlled phase in module form.

CASH SAVINGS

by buying modules and parts in bulk! All modules are available separately:
Ring Modulator RM2, £7. Voltage-controlled Oscillator VC01, £9.50, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £12.50. White noise type WN1, £6. Voltagecontrolled amplifier VCA1, £10. Voltage-controlied selective amplifier (filter for waa-waa, etc.) SA1, £12. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £9. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! (Joystick control optional.)
With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to a leading group.
Send s.a.e. for synthesiser details or send $15 p$ for full catalogue of our famous musical effects.

$$
D=\sqrt{E} \cdot \sqrt{\square}
$$

254 Ringwood Road, FERNDOWN, Dorset BH22 9AR

cleans

 hands Manufactured bydeb CHEMICAL PROPRIETARIES LIMITED, BELPER, DERBY, DE5 1JX

TELEPHONE DIALS
Standard Post Offic type.
Guaranceed in working order.

ONLY 50p

MAKE A REV COUNTER FOR YOUR CAR The 'TACHO BLOCK': This O-ImA meter inco a linear and accurate rev. counter for any car with

£1 each

OUR YERY POPULAR 3P TRANSISTORS
TYPE "A". PNP Silicon alloy, TO-5 can.

FULLY TESTED AND MARKED SEMICONDUCTORS

F.E.T. PRICE

BREAKTHROUGH !!
This field effect transistor is the $2 N 3823$ in a plastic encapsulation, coded as 3823 E . It is also an excellent replacement for the 2 N3819. Data sheet supplied with device 1. 10 30p each, 10-50 25p each,
$50+20 p$ each.

BULK BUYING CORNER

NPN/PNP Silicon Planar Transistors, mixed, untested, similar to $2 \mathrm{N706/6A/B}, 85 Y$
44.25 per 500 : 6 A per 1,000 .

Silicon Planar NPN Plastic Transiseors, uncested, similar to 2N3707-1, etc., 44-2S per Sol: Ea per 1,000

Siticon Planar Diodes, DO-7 Glass, similar to OA200/202,
BAY1-36. E4.50 per 1.000. NPN/PNP Silicon Planar Transistors, Plastic TO.18,
similar to $8 C 113 / 4,8 C 153 / 4$. BFi53/160, etc., $K 4-25$
per $500 ; 68$ per 1,000 . per 500; 88 per 1,000 .
OC44, OC55 Transistors fully marked and eested,
$500+$ at Bp_{p} each; $1,000+$ at $6 p$ each.
OC7i Transistors, fully marked and tested, $500+$ at 6p each: $1,000+$ at $5 p$ each.

3823 E Field effect Transistors. This is the 2NJ323
Plastic Case, $500+13 \mathrm{p}$ each; $1.000+10 \mathrm{p}$ each.
I amp Miniature Plastic Diodes:
IN $4001,500+$ at $4 p$ each; $1,000+$ at $3 p$ each.
iN $4004,500+$ at $3 p$ each, $1,000+$ at $5 p$ each. iN4006, $500+$ at $6 p$ each,, $000+$ at $5 p$ each
iN $4007,500+$ at 8 p each,
$4,000+$ at $7 p$ each.

FREE CATALOGUE AND LISTS FOR transistors, RECTIFIERS, DIODES, integrated CIRCUITS, FULL PRE-PAK LISTS 8 substitution CHARTS

CLEARANCE LINES

COLOURT.V. LINE OUTPUT
Designed to give 2SkV when used with PL509 Desizned to give $2 S k V$ when used with PL509
and PY500 valves. As removed from colour
receivers at the factory. NOW ONLY 50 p each

Quantity	1-10	10-50	
B8IO5 Varicap Diodes	10p	p	6 p
OC71 or 72 Fully Tested Unmarked			4p
Matched Sets 1-OC44 2-OC45's. Per Set.	$25 p$	20p	15 p
Matched Sect of OC45's Ist and 2 nd IF	15p	12p	10p
OA47 Gold-Bonded Diodes, Marked and Tested	3p	3 P	2 p
I-watt Zener Diodes 7.5, 24, 27, 30, 36, 43 Volts	, 5p	4p	3 P
10-watt Zener Diodes 5.1, 8.2, 11, 13, 16, 24, 30			
100 Voles	${ }^{20} \mathrm{p}$	$17 p$	15 p
vitch	25p	20p	15 p 20 p

$\begin{array}{lllll}\text { Micro Switches, 5/P, C/O } & \text { 25p } & \text { 20p } & \text { 15p } \\ \text { I-amp Bridge Rec's } & 25 \text {-volt } & \text { 25p } & \text { 22p } & \text { 20p }\end{array}$
INTEGRATED CIRCUITS
SL403D Audio Amp..3-Watts $2.09 \quad 1.95 \quad 1.80$ $\begin{array}{ll}709 \mathrm{C} \text { Linear Opp. Amp. } \\ \text { Gaces, Factory Marked and } & \text { 40p } \\ \text { 35p }\end{array}$ Gesced by A.E.L.
Marked and Tested by
A.E.l.

PA234 1-watt Audio Amp $\quad 1.00 \quad 90 \mathrm{p} \quad 30 \mathrm{p}$ $\begin{array}{lllll}\text { UL914 Dual } 21 / P G a t e & 40 p & 35 p & 30 p\end{array}$

LOW COST DUAL INLINE I.C.
SOCKETS
14 pin cype at 15 p each

BOOKS
We have a large selection of Reference and Technical Books in stock.
These are just two of our popular lines:
B.P. Transistor Equivments and 40p
Substitutes:

This includes many thousands of British
U.S.A., European and C.V. equivalents.

The lliffe Radio Valve a Transistor
Data Book 9th Edicion;
Characteristics of 3,000 valves and tubes 75 p 4,500 Transistors, Diodes, Rectifiers and
integrated Circuits.
Send for lists of these Englith publications.
Send for lists of these English publications.

\square

DEPT. A, 222-224 WEST ROAD, WESTCLIFF-OH-SEA, ESSEX
TELEPHONE. SOUTHEND (0702) 46344

system ever
system eve

paiss storing smalt
parts and components
resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations Transparent plastic drawers have label stots removable space dividers. Build up any size cabinet for wall, bench or table top

BUY AT TRADE PRICES :
SINGLE UNITS (ID) (5ins 2 ins 2fins). €1.35 DOZEN
DOUBLE UNITS (2D) (5ins 4inins 2 tins) $£ 2.25$ DOZEN
TREBLE (3D) $£ 2 \cdot 35$ for 8
DOUBLE TREBLE 2 draws, in one outer case (6D2), $£ 3.65$ for 8, EXTRA LARGE SIZE (6DI) $£ 3.30$ for 8 .

PLUS QUANTITY DISCOUNTS ! Orders $E 5$ and over DEDUCT 5% in the E Orders $£ 10$ and over DEDUCT 71% in the t Orders $E 20$ and over DEDUCT 10% in the E PACKING/PO5TAGE/CARRIAGE: Add 35p to all orders under $\mathbf{5 5}$. Orders $\mathbb{K} 5$ and over, packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES ALL PRICESTAXPAID
(Dept. PE3) 124 Cricklewood
Broadway, London, N.W. 2 Tel. $01-4504844$

LENGTH 8.5

WIDTH 1.5
Available from your Local Retailer
0.1 and 0.15 pitch Vero Strip is syitable for all applications where Tag Boards can be used.

VERO ELECTRONICS LTD. INDUSTRIALESTATE CHANDLERS FORD HANTS

Vary the strength of your lighting with a

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression

600 W att $-\mathbf{\$ 3} \mathbf{2 0}$. Kit Form $£ 2.70$
300 Watt $\pm 2 \cdot 70$. Kit Form $\mathbf{£ 2} 20$
All plus 10p post and packing.
Please send C.W.O. to

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH4 2AH Tel. 0244-25883 As supplied to H.M. Government Departments

\section*{WHARFEDALE SPEAKER BARGAINS DENTON 2 SAVE $£ 8.40$ Sold in matched pairs for a system. Each Denton consystem. Each Denton con-

tains an 8 in . bass unit with tains an 8 in. bass unit with
3 in pressure unit, coupled by a Wharfedale crossover network. Rated inpur:
18 watts maximum. Frequency response: 6517,000 Hx. Impedance: $4 / 8$ ohms. Cab
$14 \mathrm{in} \times$ 8tin.
 ALL SPEAKERS AVAILABLE IN TEAK OR WALNUT List Price LASKY'S

EXCLUSIVE TM-I

I,000 Ohms VoIt MINI-TESTER
The first of Lasky's new-look top value meters, the TM-1
is a really tiny pocket multimeter providing "big" meter accuracy and performance. Precision movement calibrated to 3in of full scale. Click stop range selection switch. Beautifully designed and made impact resistant
black case with white and metallic red/green figuring. Ohms zero adjustment
Size Onfy
$3 \operatorname{tin} \times 2 \operatorname{lin} \times 1 \operatorname{lin}$
1.000 at 1 k OPV

- ACIV: 0-10-50-250
- DCCURRENT: 0

\section*{-

-
 LASKY'S PRICE $\mathbf{£ 1} \mathbf{8 5}$

TM-5
 5K ohms/V POCKET MULTIMETER

Another new look pocket multimeter from Lasky's providing top quality and value. The "slimline" impact resistant case, size $4 \frac{1}{2} \times 2$ in x tin, ranges; making this an excellent instrument for servising transistorised equipment. Recessed click stop selection switch. Ohms zero adjustment. - DC/V: 3-15-150-300-1,200 at 5k ACIV. 630 . 200 Resistance: $0-10 \mathrm{k} /$ ohms,0-1 - AC/V:6-30-300-600 ar $2.5 \mathrm{k} / \mathrm{OPV}$ - Complere with test leads, battery LASKY'S PRICE $£ 2.75$

\section*{LASKY'S NEW "LOW NOISE" CASSETTES FROM the U.S.A.
 | Model | Singles | 5 | 10 | 20 |
| :--- | :---: | :---: | :---: | :---: |
| $C .60$ | $32 p$ | $£ 1.52$ | $£ 2.96$ | $£ 5.60$ |
| $C .90$ | $50 p$ | $£ 2.37$ | $£ 4.62$ | $£ 8.75$ |
| $C .120$ | $69 p$ | $£ 3.27$ | $£ 6.38$ | $£ 10.85$ |}

Post Each 7p. 5-25p. $10-40$ p. 20-65p
Inastia's IEsaclio Aronithes
207 EDGWARE ROAD. LONDON. W. 2 Tel: 01.7233271.
33 TOTTENHAM CT. RD. LONDON. W.I Tel: $01-6362605$
Smonstan
$152 / 3$ FlEET STREET. LONDON. E. C. 4 Tel: 01353 2833
 ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL ST, TOWER HAMIETS IDNDON, E. Tel: 01-790 4821

The Home of High fiderity
 42-95 TOTTENHAM CT. RD. LONDON. W. 1 Tel: 01.5802573

BARGAIN SCOOP !

PYE S.W. CAR RADIO CONVERTER MODEL 2649

High quality transistorised and ultra compact Shortwave Converter for use with any suitable MW (AM) Car Radio. Self powered for use on 12 V positive or negative earth systems. The model 2649 is simply connected to the radio via the aerial socket and provides shortwave covering in 9 push-button selected band spread ranges (13, 16, 19, 25, $31,41,49,60$ and 90 M) combined with the normal radio tuning to give full cover from $3.2 \mathrm{MHz}-21.75 \mathrm{MHz}$. On/off switch and by-pass switch for normal MW radio use. Complete with mounting bracket fitting for normal MW radio use. Complete with mounting bracket fitting $6(W) \times 1 \frac{1}{6}(H) \times 3 \frac{1}{6}(D)$ in
Made to sell
approx. $£ 20$ LASKY'S PRICE $18 \cdot 75$ C\&P20p

unitsatlowest prices？．．．

Compare our prices with any other unit on the hi－fismarket，and you＇ll thad you won＇t beat ROC unitiprices．No matter where you live，London or Land＇s End！
Take a good look at all these super audio equip ment bargains．They＇re all on demonstration at our Shop from 9 to 6 p．m．Monday to Saturday． late night Thursday until $7 \mathrm{p} . \mathrm{m}$ ．But don＇t worry if you can＇t get there yourself．Our Mail Order service is at your disposal．With the same ex－ clusive ROC equipment－and at the same super value－for－money prices 1
When you invest in ROC equipment，you＇re getting much more than an exclusive product． You＇re getting value for money that is literally unbeatable．ROC units are bought direct from the manufacturer，and ALL the savings ROC derive from this are passed on to you At ROC Electronics，we take extra care to select only the best buys．We check everything before you do－and it＇s fully guaranteed whether you buy at the shop or by Mail Order．

ROC

TOP VAIUE ：TOP CUALTY
 ACCESSORIES THAT EVERY HI－FI ENTHUSIAST NEEDS TO COMPLETE HIS SYSTEM

Every item shown here is the best of its kind within its price range．Buy them THORENSTD150A日／II A

 separately or at the same time as the other top－value audie products listed．Transcription Turntable．
：R． 328 Stereo headphone ho discener tin in hi－fi，and palr of really good stereo head－ phones．The R． 328 is ideal．at a
price you can afford They haye ded sar cushions a 6 ．They have and jack plug．Frequency range $30-15.000 \mathrm{~Hz}$ ． Impoianee 8 ohms pe chand． RDC PRICE E2． 95
eagle se－30 stereo headphone
This madel is for the more discriminating listenar．For a
 can adjust the valume of each earpiece inde． pendently．There＇s also a mono／stereo switch． For maximum comfort，the ear cushions are

HERE＇S A AANGE OF AUDIO SYSTEMS BUIL T AROUND， EXCLUSIVE ROC AMPLIFIERS AND TUNERS

ROC E 18 track Stereo Cartridge Player complete with a pair of ROC R． 0884 watt Speakers． Normal Price $£ 59.10$ ROC PRICE 49.45

REALISTIC 12－694 SYSTEM Realistic 12－694 Stereo Tuner Amplifier with matching speakers and Garrard SP25 Mk III with Eagle LC． 07 Stereo Magnetic Cartridge and plinth and cover Normal Price $\mathbf{f 1 4 4 - 0 5}$ ROC PRICE $\mathbf{E 1 2 4 . 5 0}$

ROC E1 SYSTEM

Now run your eye over the prices select the System nearest to your budget－and you＇ve hit on the best value that your money can buy！Supplied with all necessar leads and plugs，ready to use

OLSON AM－357 SYSTEM Olson AM－357 Stereo Amplifier Garrard 2025 T／C Autochanger with Slereo ceramic cartridge． plinth and cover and a pair of ROC R． 0884 watt Speaker Normal Price $[45.28$

PALACE SYSTEM
Palace SSA－16 Stereo Tuner Amplifier，Garrard 2025 T／C auto－ changer with stereo ceramic cart－ ridge．plinth and cover and a pair of ROC R． 446 Speakers Normal Price $£ 84.98$ ROC PRICE E66． 30

REALISTIC SA－500 SYSTEM Replistic SA－500 Stereo Amplifier． farrard SP25 Mk III Single Record Player with Eagle LC． 07 Stereo Magnetic Cartridge，plinth and cover and a pair of Crysler CE－5b Speakers．Normal Price $£ 157.95$ ROC PRICE 124.00

REALISTIC SA－100B SYSTEM Realistic SA－100B Stereo Ampli fier，Garrard 2025TC Auto changer with Stereo cerami cartridge，plinth and cover and a Matching TM－100 Steres Tune £23．25 extra if required． Normal Price 663.98 ROC PRICE E47－60

EAGLE SE．8O STUDIO STEREO HEADPHONE Here＇s the ultimate in head is fantastic ability to from dute all the frequencies from 20 （0） $20,000 \mathrm{~Hz}$ ，the SE－ 80 has eliminated the discomfort and shatin associated with traditional headphone解 you want easy．tingertip contral design．Eagle have designed and produced solution to the problem．Alt yous do is the idea previous headphones which braaks with all it to your speakers and amplifier，plug in your crisp and concepts．You hear all the sounds headphones－and you＇re ready to take over！At the crisp and clear．In fact，the reproduction is so－goad，that it compares favourably with the most expensive hifti speaker systems． Separate slider volume control on each earpuece．Impedance：B ohm per channsl．
ROC PRICE f 14.90

TEC HR－007 HEAD．
PHONE

 ROC PRICE E1－50 R． 151 STERED CAR SPEAKERS smart black，tougk．plastic cases，tach cantaining ohigh flux 110 mm diameter speaker Cartridge Player or any of to go with the CS． 8 Fitted with over thren yards of connecting cable Dimensions： $6 \mathrm{ta}^{2} \times 5 \mathrm{ft}^{+} \times 3 \mathbf{s}^{2}$ ．Impad－ ance： 8 ohms par speaker．Rating： 5 watts max 535 to 1605 kHz ．mequin wave band Maximum Normal Price C9． 45 ROC P
Normal Price 19.45 ROC PRICE $£ 7.65$ or speaker．RDC PRICE E3．72

－．tRACK

YER，CS B
Drive to the sound of music～with
this fabulous 8 －Track Cartridge Player It gives you superb tone and powes to fill the car with stereo seund．Ideal for use with R． 151 or h． 152 speakers．Com－ plete with mill moumbing accessories． For nagative earth sioctical sysitems only．Dutput： 2.5 watis per channel． Frequancy range： $70-10,000 \mathrm{~Hz}$ ．Waw and flutter：less than 0.3% ．Tape spred： $3.5 \mathrm{~cm} / \mathrm{sec}$ ．Chanmal solector automatic with manual over－ride． Mounting dimensions： 5 新＂$^{2} \times 5 \frac{1}{2}{ }^{2} \times$ 2H＊．ROC PRICE $\mathbf{2 7 . 2 0}$ ＇WATTS＂
aECORD CLEANERS
The original＂Dust Bug
Automatic Record Cleane
keeps your records clean as
they play $\mathrm{fl}-20$ walis Dise Pieener，Kees
for perfect record rew Lor perfect R． 307 TRANSIS
IZEO STEREO IEO STEREO PRE－AMPLIFIER that could only reproduce
 ceramic or crystal pick－up cartridges．can idges！The R． 307 steps up wignals cart－ ridges！The R．307 steps up signals Irom
between $5-20 \mathrm{mV}$ to $200-800 \mathrm{mV}$ Input－ between $5-20 \mathrm{mV}$ to $200-800 \mathrm{mV}$ Input： 200.800 my flat Frequency ranal $200-800 \mathrm{mV}$ flat．Frequency range：
22.000 Hz ．Dimensions： $31^{*} \times 1 z^{*} \times 2 \times 2{ }^{2}$ ． Supaly： 240 VAC ROC PRICE C 4
9 ？ Supply 240 VAC ROC PRICE E $\$ 92$ 15 EXTENSION CORDR． 362 1）EXTENSION CORD R． 362 R． 152 STEREO CAR R．SPEAKERS

These slop

peskers match the CS B Ca ther car sterso system．Fitted with high flux 10 mm diameter spesker unit．and over three yards of connacting cable．Dimensions： $6 \mathrm{H}^{-}$ ff $\times 3$ ．Impodance： 8 ohms par speake Rating： 5 walts max．per speaker
ROC PRICE C4．96
EAGLE LC． 05 STEREO MAGNETIC CARTRIOGE For fabulous repraduc cion at a very low price． 0.7 mil diamond stylus beat． 7 mil diamend stylus．D put： 6 mV per channel．Frequency rang Channal seogration． 20 dB ．Recommanded Channel asparation 2008．Recommanded $9 \times 10-6 \mathrm{~cm}$ dyne RDC PRICEE 75

to own your opportunity

 for the prianscription cartidge for the price of a ceramic！Is specially designed to to get the very best from lity tons arms．and 0.7 mil diamond stylus．Dulput． 7 mV per channal．Frequency ranga： $20 \cdot 21,000 \mathrm{~Hz}$ ． Channel balance：\pm IdB．Channal separa ROM． 2808 ．Complance： $12 \times 10.6 \mathrm{~cm} / \mathrm{dyne}$.
ROC PRICE 6.37 ont end and a matching ster eo socket at the other．RDC PAICE f1－30 STEREO HEADPHONE＂ \mathbf{Y}＂ADAPTOR R． 361 Enables yaul to use two sets of stereo headphones from a single socket． sockets．ROC PRICE $\mathbf{E} 130$
EAGLE OL．57 HIGH COMPLIANCE 3－WAY TEAK SPEAKER SYSTEM From a rich，deap． 35 Hz bass to shove the limit of human
ring－this fantastic responst comes from such a small size
Uniy $10^{-} \times 6^{*} \times 6 \frac{1}{2}$ ！The DL． 67 is the end product of several yearse effort to the problems of full frequency respanse from small cabinats．The DL． 67 has a dual cone high compliance bess mid range unit．wad horn wester．The speaker on vary expensive speaker systems．Power hendling capacity： 10 watts mms ， 20 wat peak．Fropuency range： $35-20,000 \mathrm{~Hz}$ ．Flux density： 11,000 gauss，Impudance： 8 whms

STEREO LOUD． SPEAKERS
 Hare＇s rea
value
complete with 10 －foot lead and phono plug．
and look raally smart．Power handling per Frequency watts 1 ms ． 8 watts prak． Frequency range： $40-16.000 \mathrm{~Hz}$ ．Flux Dimensiona：pauss．Impedance： 8 ohms Finish： ROC

Return－of－post mail order service Ovar f10 post fras （UX only）．Add $25 p$ forbsinto orde under f10
HP turms available
for callers

who wants aE2,000+p.a. opportunity in the dynamic new computer industry? Not as a Programmer but an Operator-No maths and no special education.
Now for the first time anybody can train outside the computer industry for a lucrative career as a computer operator, with actual experience on an Eduputer.
Who created Eduputer? The internationally famous company Programming Science International. They developed it to the specific requirements of the massive New York city training board and its practical results have been one amazing success story.
We are proud to have been selected as the only commercial training organisation permitted to use the Eduputer in the U.K. Thanks to Eduputer, nine out of every ten can learn to operate the most advanced computers in only four weeks. Unlike Computer Programming, no special educational qualifications and no maths required. Just you and the incredible Eduputer!
Jobs galore! The moment you qualify, our exclusive computer appointments bureau introduces you to computer users everywhere with good jobs to offef (up to £40 a week full-time, £50 a week as a temporary). More than enough to go round, toobecause 144,000 new data preparation personnel will be needed over the next five years alone.
This is your big opportunity to get out of a rut and into the world's fastest-growing industry. And remember--LCOT is the only commercial computer school to have Eduputer. It means a lot to employers.
Telephone: (01) 7342874 NOW!
Or post the coupon today for full details FREE and without obligation.

London Computer Operators Training Centre,
E2, Oxford House, 9/15 Oxford Street, London, W.1. Telephone (01) 7342874.
127/131 The Plazza, Dept. E2. Piccadilly Plaza, Manchester 1. Telephone (061) 2362935.
Please send me your free illustrated brochure on exclusive
Eduputer "hands on" training for computer operating.
Name

Address
Tel.:

佥

$\because: 82$

$$
\begin{array}{r|}
\hline 300 \mathrm{~V} \\
\mathrm{~s} \\
\mathrm{Met} \\
\mathrm{ln}
\end{array}
$$

客影
300ma．
IA a．c．
10.1 a．e
10.4 a．c

$$
0
$$$00-1)-1$

001

500111 ．．	21.90
1.1	21.90
5.1	21．00
15.1	\＄1．90
30.1.	12.90
70．1	$\underline{1.90}$
N dee．	21.90
10V＊．e．	21.90
－ 200 ＋i．e．	81.90
． 0 V －I．c．	11.90
1504 dic．	21.90
$300{ }^{-1 . d .}$	21.90
30\ a．c．＊	21.95
jnl a．co＊	21.85
bove are＊	81.95
300V a．c．＊	81.05
』01．is a．c．＊	21.95
1．1 n．c．＊	11.95
5inc．e．＊	21．05
10 A a．c．＊	11．95
－0．1 a．c．＊	21.95
30.1 a．c＊＊	11．95
50．t a．c．＊	\＄1．95
V1 mater	83．10

TE－20D RF SIGNAL GENERATOR

 lemate wille range sig．
nal generatur covering
in 1：20 hemerathr covering A bandm，birectly cali－ brated Variable R．F．at－
tennator，anilin int telnator，aniab mint．
Xtal＊orket for calibra．

BELCO DA－20 $80 L 1 D$ 8TATE DECADE AUDIO OSCILLATOR
 New high quality port－
able inatrunent．Sine
to 100 kzz to 100 kHz ．Square 20 Hz +10 dB （10knp）．Opera． tion ne0／240 ${ }^{\circ}$ a．c．Size $\frac{215 \mathrm{~mm}}{120 \mathrm{mn}} 150 \mathrm{H}$ 120 mm ． Price 827.80 OE ANGLE 1 mA METERS

 ED L．C．R． TRANSISTORISED L．C．R．
MEASURING BRIDGE A new portable bridge offering ex cellent range and
accuracy at low accuracy at Jow $\begin{array}{ll}\text { cost．Rangen：K．} \\ \text { 1日－111 } & \text { megQ } \\ 6 \text { Ranges } & \pm 1 \% .\end{array}$
$\begin{array}{ccc}\text { L．} 1 \text { AH } \\ \text { HENRY } & 1 & 1 \\ 1 & 1 \\ \text { Ran－}\end{array}$
 Hanges－ 2 o．TURNs RATIO $1: 1 / 1000-$ 1：11100．© Ranges 120 ．Bridge voltage at Meter indication．Attractive g tolle metal case．Size 7 ）$\times 5 \times 2$ in． 220 ，P．\＆P．25p．

UM． 049 MULTIMETER 20,000 o．
protret ind．
 $1 / 60 \mu$ v／1 $3 / 300$ MA．［ 1／$/ 60 \mathrm{~K} / \mathrm{ALIRG}$ ．

10DEL 1092 Testmeter 5，000 O．P．：．
 0／3／15／150／300／1：100N．A．C $0 / 300 \mu \mathrm{~A} / 300 \mathrm{MA}$ $0 / 10 \mathrm{~K} / 1$ theg A Decibels $-101_{1}+1$ bul eg 75 each $+101 \mathrm{P} . \| P$ ．
 HX MODEL TW－50K Nolts： $15,3, \overline{5}, 10,2 \bar{u}, ~, 50,125$, $1, j 0,300,1000 \mathrm{~V}, 1) \mathrm{C}$, Current： $25,20 \mu \mathrm{~A}, 25,5,25,50,250$ ． OOMA， 10 amp．Realstance： 10K，100K，MEC，MEAB． 28－50．P．\＆P． $17!\rho$ ．

ET100B4 MULTMETER

RUB8IAN 22 RAMGR MULTMETRER Moiel I＇4：17 10,000
O．p．s．Arst clask
versatile matrnment highest to the Ranges：$\because \sigma / 10 / 50 /$ $050 / 500 / 1000 \mathrm{~V}$ d．c．， $05 / 10 / 50 / 050 / 500$／ 1000 a．c．D．c．current $100 \mathrm{mind} 1 / 10$／ ance 300 ohms／ $3 / 30 / 300 \mathrm{k} \Omega / 3 \mathrm{Ma}$ ． Complete with batteries，test lewds，in－

TO－3 PORTABLE OSCILLOSCOPE

Sin tulse．Y amp．Benaiti－

 X amp．＊ensitirity 0.9 V
-y 00 KHz ．
，
 ranges $10 \mathrm{c} p+300 \mathrm{KHz}$ ． aternal．Ihmminaten quale $140 \times: 15 \times 330$
 brant new with hamblorok． $887-50$ ．

HONEYWELL DIGITAL

VOLTMETER VT， 100

t．c．volt，current and ohme with options plug－in cards．
 plus fourth werrange digit．Overrange： $100^{\circ} \%$（up to $1 \cdot 094$ ）．Input imperdance： 1000 Meg whu．Measuring cycte： 1 per second．Adjustment：Automatie seroing， full acale aljustinent against an internal Input：Fully tlosting（3 poles）．Input power：Filly inossing（3 poles）．Input Overall size： $\mathrm{b}^{8} \mathrm{in} . \times 213 / 16 \mathrm{in} . \times 83 / 16 \mathrm{in}$ AVAILABLE BRAND NEW AND FULLY GUARINTEED AT APPROX． HALF＇PRICE． $449 \cdot 97 \frac{1}{2}$ Carr．50p

G．W．SMITH
\＆CO（RADIO）LTD．
Also see next two pages

HI－FI EQUIPMENT SAVE UP TO 33 $\frac{1}{3} \%$ OR MORE SEND S．A．E．FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS！

\section*{RECORD DECKS
 | | | | |
| :---: | :---: | :---: | :---: |
| B．8．R． | | | |
| Mini Mumot | 24．97 | | |
| C129 | £6．70 | | |
| MP6\％ | 210.75 | | |
| 1810 | 21465 | | |
| 510 | 211．85 | AP＇ | 818.90 |
| 310 | 29.65 | SLis ${ }^{\text {a }}$ | £23．85 |
| 811 | 234.47 | SLids | £26．50 |
| MPio Tris！ | \＄17．65 | SL称 3 | 32.85 |
| MP60 TPIJE | $\underline{15} 8.85$ | 401 | ¢28．95 |
| 610 T．P．D．I． | 220．97 | RO loms | 5 |
| 310 T．P．D． | 218.75 | O Juns | 5 |
| 210 Yackage＊ | 48.85 | GOLDRING | |
| H．T． 70 | 215.55 | （1）kig／2 | \＄18．87 |
| 11．T． 70 l＇acka | ¢e | C1，${ }^{\text {cigr }}$ | £25．95 |
| | £22．50 | CLit | 223.25 |
| THOBENS | | （120） | £30．25 |
| TD 125 | 259.65 | （1LT， | 229.97 |
| ［D125A 3 | 294.25 | （1．15 ${ }^{\text {c }}$ | 238.50 |
| TX25 | 18．70 | L1Dt | \＄3．75 |
| TDi50． 11 | £34．50 | L1Dio | f． 95 |
| TV150A A If | £4025 | （iLsio | £49．50 |
| TX11 | 1377 | ＇iL8．${ }^{\text {a }}$ | ¢57．40 |
| GARRARD | | LID85 | £4．05 |
| 202\％T／${ }^{\text {c＊}}$ | £8．50 | （iLlal | ¢26 60 |
| $3500{ }^{*}$ | 1975 | 16.6 | ¢8187 |
| SP：3 111 | £10．50 | PIONEER | |
| 8L／うß | \＄13．45 | Plarac | 238．50 |
| ＊Мон | ＊t | ，Cartrial | |

All other mudels leys Cartidukt
Carriage mop extra aty moodel．

RECORD DECK

PACEAGES
wized mppized reaty
cover with thinth and
Garrard cartridge． 9 TAHCL 213.95

dirrard spoplll with ！T．．CH1）£15．95 tarrand APかt with（ichliting（i800 £20．95

 foldring riti－x with（dollring C8000．．£37．50 oldring（ilits with doldring 6800 \＆ 42.50

SINCLAIR EQUIPMENT

 oupply，£18．85．Carr，37bp， $4 \times 7 \overline{0} 0$ ampli－
 $\mathbf{2 8 . 9 7}$ extra．Add to any of the above
$\mathbf{\$ 4 . 8 7}$ for active fitter mat and $\mathbf{\$ 1 3} 90$ for pair of Q16 speakers．Project 10 IMs Tuner All sinclail brodmets in stock．IClolCid
 3000 Amplifier $£ 31$ ． 50 ．Carr． 3
amplitier $£ 43.95$ ．Carr． 37 b ．

TAPE CASSETTES

$\begin{array}{llll}\text { Top quality } & \text { in plant ic libraty boses } \\ \text { C90 } & 60 \mathrm{~min} & 371 \mathrm{p}, & 3 \text { for } £ 1.05 \\ \text { C60 } & 90 \mathrm{~min} & 60 \mathrm{p}, & 3 \text { for } £ 1.65\end{array}$ Ut？0 1：3 min $87 \frac{6}{8} \mathrm{p}$ ．

LATEST CATALOGUE

Our new 6th edition gives qull details of a Comprehensive range of HI－FIEQUIPMENT COMMUNICATIONS EQUIPMENT．FREE DISCOUNT COUPONS VALUE 50p． 272 pages，fully illustrated and detailing OIR FRICH £22－75． LAFAYETTE LA． 324 STEREO VOLTMETER

oftice，stores．face tories，etc．Supplied complete with bat teries，cable and
 Station $85 \cdot 25$, P．As \mathbf{I}^{2} ． 10 p ．
EMI LOODSPEAKERS
Model $3.50 .13^{*} \times 8^{*}$ wit
RMS．
ohms． 27.50 each
$\begin{aligned} & \text { P．} 37 \mathrm{p} \text { ．} \\ & \text { Model }\end{aligned}$
Model $450.13^{\prime \prime} \times 8^{*}$ with
$\begin{aligned} & \text { twin tweeters／crossover，} \\ & J J=13,000 \mathrm{~Hz} \text { ．} 8 \text { watt }\end{aligned}$
$\begin{aligned} & \text { RMS．Available } 8 \text { or th } \\ & \text { noms．} 53.50 \text { each．} P \text { ．}\end{aligned}$
（uhns． 23.50 each．P． Switched inputs for Mag，Xtal，aux，tape． incorporates volume，bass，treble，sliding Rec．List £3z 50．Our price £10．95．Carr．3\％p． TELETON SPECIAL OFFER！

CR10T AM／FM STEREO TUNER AMPLI－ FIER WITH MATCHING PAIR OF SPEAKER SYSTEMS．Output 4 watts per
 Hiso available with（iarrari 30 nos

TMK MODEL 117 ET
megery opersten． 11 meg input． 2 ranges．
Large 4_{n}^{*} in mirror seale，
 $1,200 \mathrm{~V}$ A．c．rolts ：1－
300 B
R．3．S． 8.0800 y
 Decibets -30 to＋J1dB．Complete with learfs／instructions．$£ 17.50$ ．1？，\＆ $1^{*}, 20 \mathrm{p}$ ．

HOMER INTERCOM
 SHET STEREO HEAD－ SET
Ontstanding value，suit earpads．Allinstable head
band．,-16 ithnis． 20 － hand， $8-16$ whns， $20-$
$20,000 \mathrm{~Hz}$ ．Complete with cable and stereo jack
pllng，$£ 1-87.1, \& P, 1 . p$ p

MCA 220 ATOMATIC VOLTAGE

AUTOMATIC put 88－1：．）V a．c．or

POWER RHEOSTATS

High quality ceramic eonstruction．Windings embedded in vitreous enamel．Heavy duty brush wiper．Continuous rating．Wide range
25 WATT． $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 3,500$ or 5.000 obmis．
50 WATT． $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 9.500$ or 5,000 ohme，$£ 1.05$ ．
100 WATT． $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or 2,500 ohme，$£ 1 \cdot 37!$ ，

U4812 MULTMETER
Extremely aturdy instrunent for genera $0 / 3 / 1+v / 7 \cdot 5 / 30 / 60 / 150 / 300 /$ 600900 vie ant 7 mmv ．－ $0 / 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 70 / 150 / 340$
$600 / 900 \mathrm{HC}$ $00 / 900 \mathrm{AC}$
$0 / 300 \mathrm{uA} / 1-5 / 6 / 1 \bar{v} / 60 / 1 \overline{0} 0 /$ 600 M A／1－5／6 AMP．1．C4
$0 / 1-5 / 6 / 5 / 60 / 150 / 600 \mathrm{M}$ $0 / 1.5 / 6 / 15 / 60 / 150 / 600 \mathrm{MA}$
$1.5 / 6 \mathrm{AMP} . \mathrm{AC}$. $1 \cdot 5 / 6 \mathrm{AMP}$ ．AC．
$0 / 200 \Omega / 3 \mathrm{~K} / 30 \mathrm{~K}$ $0 / 200 \Omega / 3 \mathrm{~K} / 30 \mathrm{~K}$ s
tecuracy DC 10 Knife edge pointer，mirror scale．Complete with sturdy metal carrying case，leads
 and instructions．$£ 450$

PRS－2 PBOTO ELECTRIC RELAY SYSTEM

switch for internsittent alarm operation． Enciter limit has removable infra red tilter comnters，etc． 40 l A．Ccomplete with cables and instruct ions．89．87．P．\＆P．：5p．

UR－LA SOLID STATE
COMMUNICATION RECEIVER
COMMUNICATION RECEIVER
4 Bands covering jos Hz－30Millzi FET，
 Bpeaker．Bandspread．Sensitivity Contrut in．l3rand new with instructions． 225 Carr． 37

Lafayette HA． 600

General coverage $150-400 \mathrm{KHz}, 550 \mathrm{KHz}$－ 30Mldz．FET front end．${ }^{2}$ mech，filters， pimiter，st Meter，Bandspread．RF siain 15 in ， 1 gin $8 \frac{1}{2} \mathrm{in}$ ． $18 / \mathrm{h}$ ， $9.40 j 240 \mathrm{~V}$ a．c． or 12V d．e．Brami new with instructions 245．Carr． $\mathbf{5 0 p}$ ．
TO－2 PORTABLE OSCILLOSCOPE

Sounin 72
 International

BLOOMSBURY CENTRE HOTEL, CORAM STREET, RUSSELL SQUARE, LONDON, W.C. 1.

 14th - 16th MARCH 1972 - 1000-1800hrs. DAILY (FINAL DAY 1000-1600hrs.)Sponsored by
The Association of Public Address Engineers

6 Conduit Street
London WIR 9TG
Telephone 01-493 5256
Tickets available to members (free of charge) from above address.
Non-members admitted by purchase of catalogue, price 15p, at door.

PUBLIC ADDRESS AND ALLIED EQUIPMENT

THE OUT OF \$IGHT LIGHT

This kit consises of a high-pressure mercury discharge lamp enclosed in a deep blue-violet outer bulb. This absorbs all visible light given by the discharge but transmits the long-wave ultra-violet rays.
The unit performs in a similar fashion to the fluorescent cube sype units in use in some discorheques bur insiead uses a 3-pin 8.C. lamp fitted into a high incensity spor-fitcing. with fully adjustable swivel bearing. The reflector is also fully adjuscable and the unit may be mounted in any position and focused as desired.
White shirts and dresses glow "Whiter than white". Paint scenes on walls, ecc., with our special fluorescent paine, focus the black-light from across the room and switch-on. The pictures glow brilliancly as if by magic!
Full kit includes lamp, reflector, concrol-gear, generous samples of five different colours of fluorescent paint and full inst ruccions. Price E25 carr. paid. S.A.E. with all inqui ies.

PRACTICAL ELECTRONICS "SCORPIO" ELECTRONIC IGNITION SYSTEM

This Capaciror-Discharge Electronic Ignition system was described in the November and December issues of Practical Electronics. It is suirable for incorporating in any $12 V$ ignition system pos. or neg. eareh and up to six cylinders. pos. or net.earthand upto six cylinders. conitact-breaker capacitor fitesed in she vehicle are used. No extra or special components are required.
Helps to promote easier starting (even under sub-zero conditions), improved acceleration, better highospeed performance, quicker entine warm-up and excessive contact-breaker poink burning and the need to adiust point and spark. plus gaps with precision.
Construction of the unit can easily be completed in an evening and installation should take no longer than half an hour. A complete complement of components is supplied with each kit together with ready-drilled roller-zinned professional quality fibre-glass printed-circuit board machined die-cast case. All components are available separately. Case pize 7 tin $>4 \frac{4}{2}$ in $\times 2$ in approx.
Complete assembly and wiring manual $\mathbf{2 5 p}^{5}$. refundable on purchase of kit. Price: Ci0.50 plus 50p P. \& P. S.A.E. with all enquiries.

PSYCHODELIC LIGHTING

UNIT Mk. 3

This unit represents a natural progression from our phenomenally successful Mk. I and 2 Uniss. As before the drive voltage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency signals into a threecoloured light display; the colour dependins on the frequency of the signal and the intensity on the loudness of the audio source.
The unit is constructed on professional fibre-glass printed-circuit board material and uses latest full-wave triac circuitry. There is a master-level control, cogecher with independent sensitivity concrols for with channel. The original minimum ambient light level contrals have been redesigned permitting their use as faders; allowing dimming from max. to zero at the curn of a knob. R.F.I. suppression is now incorporaced as scandard as well as provision for D.J. "Pulse-Flash"' controls. The choice of cwo inpucs enables operasion from both high and low power amplifiers. Max. power $1 \cdot 5 \mathrm{~kW}$ per channel at 240 V a.c.
Complete assembly built and tested.
Size 9in \times 7in $\times 3$ in. Price £25 cars. paid. S.A.E. with all inquiries.

DABAR ELECTRONIC PRODUCTS 98a LICHFIELD STREET, WALSALL, STAFFS WSI IUZ WALSALL 34365
MAIL ORDER ONLY

AKAP LEAK - SINCLAIB TELETON ARMSTRONG ROTEL tuORENSEPGILIPS GOLDRING ROGERS P PIONEER

SPECIAL OFFER
 $£ 18$

Garrard SP25 Mk. HI
Goldring G800H
Teak plinth and tinced cover.
Ready wired for immediate use
Please add $\mathbf{f 1 2 5}$ for post and pasking.

Please add 50p for P. \& P

*GARRARD 1025 T with cartridge
Garrard 5P25 Mk. II
Garrard 2025TC with
Garrard Zero 100-Auro
(New Product)
Glay (New Product) Garrard SL65B Garrard 401 BSR MP60 Pioneer PLI 2AC Thorens ISOAB Goldring GL/72/2 Goldring GL75 Goldring GL75

AMPITIERS

Please add 50 p for P. \& P.
Rotel RA 30

Sinclair PRO 60/2 + Z30 PZ5 Sinclair PRO $60 / 2+Z 30$ P
Sinclair PRO $60 / 2+Z 50$ PZ8/Trans
Sinclair AFU
Sinclair 605 (New Product) Goodmans Max. Amp. Teleton SAQ206B
(New Prod.)
Wharfedale
Sinclair IC 12 integrated circuit amplifier Eagle TSAI $497 w$ RMS
Eagle TSAI 51 I5w RMS

Pleate add 10 p for P. E P.
Goldring G850
Goldring G800
Goldring G800E
Goldring G800SE
Sonotone 9TAHC Diamond
Shure M3DM
Shure M445/7/C
Shure M55E
Shure M75E
Shure VIS Type 2
Shure M44E
Shure M3IE
Shure M32E
Audio Technica AT35
Audia Tec
632.75
649.80
621.50
629.75
229.75
615.75
*GCS 36
Priv TGE ECOMEES

422.95

12.70
620.50 37.95
17.95
1.05

TRANSFORMERS

PRIMARY 200/250V. SEC. 240 V . C.T. 120 V . \&
ALSO AVAILABLE WITH SHIELDED
Ref. VA Weight Size cm

No. (Watts)	
07	10
20	1
11	

PRIMARY 200/250V. SEC. 240 V .
$\begin{array}{lll}z & 7 \times 6 \times 6.5 \\ 11 & 10.2 \times 8.9 \times 8.3 \\ 4 & 9.5 \times 12.7 \times 11.1 \\ 0 & 17.1 \times 11.4 \times 15.9 \\ 0 & 17.8 \times 17.1 \times 21.6 \\ 0 & 24.1 \times 21.6 \times 15.2 \\ 0 & 21.6 \times 21.6 \times 20.3\end{array}$

| (Watts) | 16 | oz | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 1 | 11 | $7 \times 6 \times 6.5$ |
| 100 | 5 | 12 | $10.2 \times 8.9 \times 8.3$ |
| 250 | 12 | 4 | $9.5 \times 12.7 \times 11.1$ |
| 500 | 27 | 0 | $17.1 \times 11.4 \times 15.9$ |
| 1000 | 40 | 0 | $17.8 \times 17.1 \times 21.6$ |
| 2000 | 63 | 0 | $24.1 \times 21.6 \times 15.2$ |
| 3000 | 84 | 0 | $21.6 \times 21.6 \times 20.3$ |
| 6000 | 178 | 0 | $31.1 \times 35.8 \times 17.1$ |

AUTO SERIES (NOT ISOLATED)

$\begin{array}{lc} & P \& P \\ 0.74 & 20\end{array}$
240 $\begin{array}{ll}1.74 & 36 \\ \mathbf{3} .38 & 52 \\ 5.03 & 67 \\ 9.12 & 82\end{array}$ 13.22
17.26
73.47

TOTALLY ENCLOSED IISV AUTO TRÁNSFORMER 115V 500 Watt totally enclosed auto transformer, complete with mains lead and two IISV outlet sockets, $\mathbf{4} 6.85$. P \& P 67np.

LOW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-500$ VOLTS 12 AND/OR 24 VOLT RANGE $\begin{array}{ll}\text { Re. } & 12 V \\ \text { No. } & 4 \mathrm{~V} \\ 111 & 0.5 \\ 213 & 0.25\end{array}$
$\begin{array}{llll}111 & 0.5 & 0.25 \\ 213 & 1.0 & 0.5\end{array}$
$\begin{array}{ccc}13 & 1 . & 0.5 \\ 71 & 2 & 1 \\ 18 & 4 & 2\end{array}$

PRIMARY 200-250 VOLT
FOR CHARGING 6 OR 12 VOLT BATTERIES
Ref. Amps. Weight

All ratings are continuous. Standard construction: o
taggind
TRANSISTONS
TO MAN UFACTURERS FULLS SPECIFICATIONS

each
$100+7 p$
$100+6 p$
$100+6 p$
$500+5 p$
Minimum order 10
$25+60 p$
$180+45 p$
$500+40 p$
\star Quantity prices on application
Also stocked: SEMICONDUCTORS - VALVES MULTIMETERS MAINS KEYNECTOR
ELECTROSIL METAL OXIDE RESISTORS
BADidle ctectronfos
11 MOSCOW ROAD, QUEENSWAY LONDON W2 4AH Tel: 01-2296681/2
NEAREST TUBE STATIONS: BAYSWATER, QUEENSWAY

Alpha Highgate FA 400° Armstrong 521 (cased) Amstrad 8000 Mk . II Amstrad IC2000
Leak 30 Delta Range
(New Prod.)
Leak 70 Delta Range Leak 70 Delta Range
(New Prod.) Merrosound ST20E Philips R580 Pioneer SA600 Pioneer SA700 Pioneer SA900
Rogers R/brook Chassi
Rogers R/brook Cased

*£3.20

Plus 35p post and packing
Finished in real teak veneer with tinted dust cover. Ready to use (fully assembled). Suitable for $\begin{array}{ll}\text { Garrard SP25; 2025TC: } & 3000 \text {; } \\ \text { AT60; } & \text { 2000. }\end{array}$ 1025: SL65B: Also for BSR McDonald MP6O and others.

Dept. (PE7) 174 Pentonvilie Road, London, N1. I elephone 01-2781769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue, Ilford, Essex. Tel: 01-5501086

Open Monday to Saturday \quad G.m. LATE.NIGHT FRIDAY 7 p.m. Mal. CALLEFS Plóasenote that cheques can only be accepted together haqus carde (not Batrolgy Cmy
 \footnotetext{

}2 minutes from KING S CROSS EUSTON \& ST PANCRAS
on main road leading to the East and West Country

Rogers R/bourne Chassis
Rogers R/bourne Cased
Sansui AUIO:
Tripletone 800 Amp Series 3 628.50
Europhon $10+10$ E16.95
633.00 16.95 29.9 .
661.00
26.00
18.00
P/A
65.00
635.50
59.50
644.00
32.00
16.95
\qquad
$+$

Build yourselfa TRANSISTOR RADIO

 NEW! ROAMER 10 WITH VHF INCLUDING10 TRANEIfTORS. 9 TUNABLE WAVEBAND8, HW1, MW2, LW, 8W1, sW2, sW8 TRAWLER BAND, VHF AND LOCAL STATIONS AND AIRCRAFT BAND.
Huilt-in ferrite rod aerial for MW/LW. Retractable, chrome plated 7 section telescopic aerial, can be angled and rotated for peak short wave and VHF listening. Pushopull output using 600 mW transistors. Car Aeriad and tape record socket.s. Switched earpiece socket complete with earpiece. 10 transistora plus 3 diodes. $8^{\prime \prime} \times 2 i^{\prime \prime}$ apeaker. Air apaced ganged tuning condenser with VHF section. Volume/on/off, wave change and tone controls. Attractive case in black with wilver blocking. 8ize $9 \mathrm{in} \times 7 \ln \times 4 \mathrm{in}$. Easy to follow instructions and diagrams. Parts price list and easy build plans 30p (FREE with parts)
P.P. \& INS. 50p (OVERSEAS P. \& P. fl)

7 TUNABLE WAVEBANDS: MW1, MW\&, LW, SW1, 8W2, SW8 AND TRAWLER BAND. Built-in ferrite rod aerial for MW and LW. Retractable chrome plated teleacopic aerjal for short waves. Push-pall output using olect transistors. Car aerial and tape record kockele ith earpiece. ${ }^{\prime \prime}$ speaker. Air spaced ganged tuning condenser. Volume/on/off, tuning, wave change and tone controis. Attractive case in rich chestnut khade with gold blocking. Size gin $\times 7$ in $\times 4$ in approx. Easy to follon build plans 200 p (FREE with parta). TOTAL вuitum cosss $£ 6.98$ (OVERSEAS (OVERSEAS
P. \& P. $£ 1)$

POCKET

FIVE

3 TUNABLE WAVE-
BAKDS: NW, LW,
WITH EXTENDED
WH BAND FOR EASIER TUNING OF LUXEMBOURG, ETC. 7 stages-5 transistora and 2 diodea, supersensitive ferrite rod aerial, tine tone moving coil speaker. Attractive black and gold case. size Jin X 11 in $\times 31 \mathrm{in}$ Easy build plans and parts price list 10 p (Friee with parts). Earpiece with plug and gWitched socket tor private listening
TOTAL P. P. INS. 21 P

 medium waveband provider easier tuning of Radio Luxembourg, etc. Built-in ferrite rod aerial for MW
and LW. Retractable 4 section 24 in chrome plated and LW. Retractable 4 section $24 i n$, chrome plated
telescople aerial for $\$ W$. Socket for car aerial. Powerful push-pull output. $\overline{7}$ tranhistors and $\ddot{2}$ diodes. including micro-alloy R.F. transistors. $8^{* \prime} \times 2!$ speaker. Air apaced ganged tuning condenser Volume/on/off, tuning and wave change controls. Attractive case with carrying handle. Size 9 in $\times 7$ in \times 4 in approx. Easy to follow instructions and diagrams, Parts price list and easy build plans 15p (FREE with parts). Earpiece with plug and switched socket for
private listening, 30p extra. TOTAL BUILDING COSTS E5. 9
P.P. EINS. 41 P. \& P. \&1)

TRANSONA FIVE

NOW WITH

3in SPEAKER

3TUNABLE WAVEBANDS:MW,LW ANDTRAWLER BAND. 7 stage-5 transistors and 2 diodes, ferrite rod aerial, tuning condenser, volume contro!, the tone speaker grille. Sizeaker. Attractive case with red plans and parts price list 10 p (FREE with parts) Earpiece with plug and switched socket for privat listening 30p extra.
TOTAL P? FP. P. A INS. 22p BUILDING COSTS E OUS (OVERSEAS

ROAMER
TU\#ABLE
TU\#ABLE
WAVEBANDS:
MW, LW,
W1, 8W\%.

GAND PLUS AN EXTRA MW BAND FOR EASIER TUNING OF LUXEMBOURG, ETC. Sensitive ferrit rod aerial and telescopic aerial for short waves. 3 in peaker. 8 stages- 6 transistors and 2 diodes including nicro-alloy R.F. transistors, etc. Attractive black case with red grille, dial and black knobs with polished metal inserts. Size 9 in $\times 51 \mathrm{in} \times 21 \mathrm{in}$ spprox Easy build plans and parts price list 15p (FREE with parts). Earpiece with plug and switched socket fo
private listening 30p extra.
TOTAL
$£ 3.98$
P.P. \& INS. 26p

GAND. Sensitive ferritc rod aerial for MW and LW Telescopic aerial for short waves. 3in apeaker. 8 case in black with red grille, dial and black knobs with case inghlack with red grille, dial and inserts. Size 9 in $\times 5$ in $\times 2$ in in approx Push-pull output. Battery economiser switch for xtended battery life. Ample power to drlve a larger speaker. Parts price list and easy bulld plans 25 p (FREE with parts). Earpiece with plug and switched ocket for private listening 30 p extra.
$£ 4.48$ P. P. ANS. 31 p (OVERSEAS
P. EP. EI)

NEW! "EDU-KIT"

BULLD RADIOS, AMPLIFIERS, ETC., FROM EASY BTAGEDIAGRAMS. FIVE UNITS ITCLUDITG MASTER UFIT TO CORSTRUCT. Components include: Tuning Condenser: 2 Volume Controls: ${ }^{\text {S }}$ Ferrite Rod Aerial: 3 Pluge and Sockets: Battery Clipa: 4 Tag Boarda Balanced Armature Unit: 10 Transiatora: 4 Diodes: Resistors: Capacitors: Three tin Kunbs. Units once constructed are detachable from Master Unit, enabling them to be stored for future use. Ideal for Schools, Educational radio construction.

INCLUDING P.E P.P. \& INS. $31 p$
P.P. \&INS. 3 P
(OVERSEAS P. ${ }^{\text {\& }}$ P. $£ 1$)

```
FULL
SERVICE
```


RADIO EXCHANGE LTD

61 HIGH STREET, BEDFORD.
Tel. 023452367
I enclose £................... please send items marked

| ROAMER TEN | \square | ROAMER SEVEN |
| :--- | :--- | :--- | :--- |
| ROAMER EIGHT | \square | TRANS EIGHT |
| TRANSONA FIVE | \square | ROAMER SIX |
| TRACKET FIVE | \square | EDU-KIT |
| POCKEIGT | | |

Name

Address

GARLAND BROS. LTD. DEPTFORD AROADWAY, LOHDON, SEB GOW

CAPACITORS				$\begin{aligned} & 0.0027 \mu \mathrm{~F} \\ & 0.003 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & 500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & S / M \\ & \text { Cer. } \end{aligned}$	$\begin{array}{r} 15 p \\ 5 p \end{array}$
2-2pF	500 V	S/M	T 7	$0.0033 \mu \mathrm{~F}$	125 V	P 5.	6 p
$3.3 p F$	500 V	S/M	710	$0.0033 \mu \mathrm{~F}$	500 V	Poly.	$6 p$
5pF	500 V	S/m	7 P	$0.0033 \mu \mathrm{~F}$	1,000V	MDC	$6 p$
10 pF	125 V	P.S.	$5 p$	$0.0036 \mu \mathrm{~F}$	500 V	S/M	$15 p$
10pF	500%	S/M	7 fp	$0.0047 \mu \mathrm{~F}$	125 V	P.S.	9 p
15pF	1250	P.S.	5 p	$0.0047 \mu \mathrm{~F}$	500 V	Poly.	6p
15pF	500 V	Cer.	4p	$0.0047 \mu \mathrm{~F}$	500 V	S/M	20p
18pF	500 V	S/M	71 P	$0.0047 \mu \mathrm{~F}$	1,000V	MDC	$6 p$
22pF	125 V	P.S.	${ }^{5}$	$0.005 \mu \mathrm{~F}$	100 V	Mylar	3 p
22pF	500 V	S/M	71 p	$0.005 \mu \mathrm{~F}$	500 V	Cer.	\%
25pF	500 V	S/M	$71 p$	$0.0068 \mu \mathrm{~F}$	125 V	P.S.	10.5
27 pF	500 V	Cer.	4 p	$0.0068 \mu \mathrm{~F}$	500 V	S/M	30p
33 pF	125 V	P.S.	5p	$0.0068 \mu \mathrm{~F}$	500 V	Poly.	$6 p$
33 pF	500 V	S/M	7 P	$0.0082 \mu \mathrm{~F}$	125 V	P.S.	101p
39pF	500 V	S/M	7 p	$0.0082 \mu \mathrm{~F}$	500 V	SIM	30 p
47pF	125 V	P.S.	5	$0.01 \mu \mathrm{~F}$	12 V	Dise	4p
47pF	500 V	Cer.	4 p	$0.01 \mu \mathrm{~F}$	125 V	P.S.	1019
50pF	500 V	S/M	710	$0.01 \mu \mathrm{~F}$	160 V	Poly.	4p
56pF	500 V	S/M	7 p	$0.01 \mu \mathrm{~F}$	250 V	M.F.	$3 p$
68pF	125 V	P.S.	59	$0.01 \mu \mathrm{~F}$	400 V	Poly	3 p
68pF	500 V	SIM	71 P	$0.01 \mu \mathrm{~F}$	500 V	Cer.	5p
75pF	500 V	S/M	71 P	$0.01 \mu \mathrm{~F}$	500 V	S/M	30p
82pF	500 V	S/M	7 tP	$0.01 \mu \mathrm{~F}$	500 V	Paper	6 6p
100 pF	125 V	P.S.	5p	$0.01 \mu \mathrm{~F}$	1.000 V	MDC	9 9
100 pF	500 V	S/M	719	$0.015 \mu \mathrm{~F}$	160 V	Poly.	3 P
100 pF	500 V	Cer.	5p	$0.015 \mu \mathrm{~F}$	400 V	Poly.	3 p
120pF	500 V	S/M	7 ip	$0.02 \mu \mathrm{~F}$	100 V	Mylar	3 p
150 pF	125 V	P. 5 .	${ }^{\text {Sp }}$	$0.022 \mu \mathrm{~F}$	18V	Dise	5 p
150pF	500 V	S/M	7 p	$0.022 \mu \mathrm{~F}$	250 V	M.F.	3 p
150 pF	500 V	Cer.	5p	$0.022 \mu \mathrm{~F}$	400 V	Poly.	3p
180pF	500 V	S/M	$71 p$	$0.022 \mu \mathrm{~F}$	600 V	MDC	$71 p$
200pF	500 V	S/M	7 7p	$0.022 \mu \mathrm{~F}$	1.000 V	MDC	$\%_{p}$
220pF	125 V	P.S.	5	$0.033 \mu \mathrm{~F}$	250 V	M.F.	4 P
220pF	500 V	Cer.	5 p	$0.033 \mu \mathrm{~F}$	400V	Poly.	$4 p$
250pF	500 V	S/M	8 p	0.047 $\mu \mathrm{F}$	12 V	Disc	$6 p$
270pF	500 V	Cer.	5 p	$0.047 \mu \mathrm{~F}$	160 V	Poly.	3 p
300 pF	500 V	S/M	${ }^{8 p}$	$0.047 \mu \mathrm{~F}$	250 V	M.F.	30
330 pF	125 V	P.S.	5 p	$0.047 \mu \mathrm{~F}$	400 V	Poly.	${ }_{8}{ }^{\text {P }}$
330pF	500 V	S/M	8 p	0.047, F	500 V	Paper	8p
390 pF	500 V	S/M	8 p	$0.047 \mu \mathrm{~F}$	1.000 V	MDC	10p
470pF	125 V	P.S.	5 p	$0 \cdot 1 \mu \mathrm{~F}$	30 V	Dise	6p
470pF	750 V	Disc	5 p	$0.1 \mu \mathrm{~F}$	250 V	M.F.	4p
500pF	500 V	S/M	8 p	$0.1 \mu \mathrm{~F}$	400 V	Poly.	5p
560 pF	500 V	S/M	8 P	$0.1 \mu \mathrm{~F}$	600 V	MDO	10p
680pF	125 V	P.S.	6p	. $0.1 \mu \mathrm{~F}$	1.000 V	MOC	13p
680p	500 V	S / M	$8 p$	$0.15 \mu \mathrm{~F}$	250 V	M.F.	5p
820 pF	500 V	S/M	8 8p	$0.22 \mu \mathrm{~F}$	160 V	Poly.	6p
$0.001 \mu \mathrm{~F}$	100 V	Mylar	3p	$0.22 \mu \mathrm{~F}$	250 V	M.F.	5p
$0.001 \mu \mathrm{~F}$	125 V	P.S.	6 p	$0.22 \mu \mathrm{~F}$	400 V	Foil	10 p
$0.001 \mu \mathrm{~F}$	400 V	Poly.	3 P	022 2 F	1.000 V	MDC	15p
$0.001 \mu \mathrm{~F}$	500 V	S/M	TOP	$0.33 \mu \mathrm{~F}$	250 V	M.F.	8 8p
$0.001 \mu \mathrm{~F}$	500 V	Cer.	5p	$0.47 \mu \mathrm{~F}$	250 V	M.F.	8 P
$0.001 \mu \mathrm{~F}$	1,000V	MDC	6 p	$0.47 \mu \mathrm{~F}$	400 V	Foil	15p
$0.0015 \mu \mathrm{~F}$	400 V	Poly.	3p	0.47 $\mu \mathrm{F}$	1.000 V	MDC	20p
$0.0015 \mu \mathrm{~F}$	500 V	S / M	10 p	$1 \cdot 0 \mu \mathrm{~F}$	250 V	M.F.	15p
$0.0015 \mu \mathrm{~F}$	500 V	Cer.	5p				
$0.0018 \mu \mathrm{~F}$	500 V	S/M	10 p				
$0.002 \mu \mathrm{~F}$	100 V	Mylar	3p	Nore: S/M	= silve	mica	\%tol.
$0.002 \mu \mathrm{~F}$	500 V	Cer.	5p	P.	= poly	yrene	2\%tol.
$0.0022 \mu \mathrm{~F}$	125 V	P.S.	6p	M	C - a.c.	rating	$=300 \mathrm{~V}$.
$0.0022 \mu \mathrm{~F}$	500 V	S/M	10 p	M	= Mul	ard min	fail.
$0.0022 \mu \mathrm{~F}$	$1,000 \mathrm{~V}$	MDC	6 p		. $=$ cer	mic.	

TRANSISTORS

Miniature
ELECTROKYTICS

DIODES

28 watts,r.m.s. 40 Hz to $40 \mathrm{kHz} \pm 3 d B$

PRICES SYSTEM 1
Viscount III R101 amplifier $£ 22+90$ p P.\&P $2 \times$ Duo Type II speakers $£ 14+£ 2$ P.\&P. Garrard SP25 Mk. III with MAG. cartridge, plinth and cover
£23+£1.50 P.\&P.
Total $£ 59$
-
Available complete for only $£ 52+£ 3.50$
P.\&P.

SYSTEM 2

SPEAKERS Duo Type II

Size approx. 17in $\times 10 \frac{3}{4}$ in $\times 6 \frac{3}{4}$ in. Drive unit 13in $\times 8$ in with parasitic tweeter. Max. power 10W, 3 ohms. Simulated Teak cabinet. £14 pair + £2 P. \& P Duo Type III Size approx. $23 \frac{1}{2}$ in $\times 11 \frac{1}{2}$ in $\times 9 \frac{1}{2}$ in. Drive unit $13 \frac{1}{2}$ in $\times 8 \frac{1}{4}$ in with H.F. speaker. Max. power 20 W at 3 ohms. Frequency range 20 Hz to 20 kHz . Teak veneer cabinet. £32 pair $+£ 3$ P, \& P.

SPECIFICATION R100/101

14 watts per channel into 3 to 4 ohms. Total distortion @ 10W @ 1kHz 0.1\%. P.U.1 (for ceramic cartridges) 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) 4 mV @ 1 kHz into 47 K equalised within $\pm 1 \mathrm{~dB}$ R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power.) Tape out facilities; headphone socket, power out 250 mW pelichannel. Tone contro/s and filter characteristics. Bass: +12 dB to $-17 \mathrm{~dB} @ 60 \mathrm{~Hz}$. Bass filter: 6 dB per octave cut. Treble control: treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter: 12dB per octave. Signal to noise ratio: (all controls at max.) R101-P.U.1. and radio65 dB . P.U.2-58dB. R100 same as R101 but P.U. 2 (for crystal cartridges) 450 mV into 3 Meg. Cross talk better than -35 dB on all inputs. Overload characteristics better than 26 dB on all inputs. Size approx. $43 \mathrm{z} \times 9 \mathrm{in} \times 3 \mathrm{i} \mathrm{in}$.

CONCORD ELECTRONICS LTD. (P.E.27), 8 Westbourne Grove, London, W.2. Callers Welcome 9 a.m. 6 p.m. inc. Saturdar

FIND BURIED TREASURE
Transistorised Treasure Localor torised nietal tocator thatect and tracks lown buried meta objects it signals exact
location with Jonn andib locht io
sonnti uses nuy tranaistur which fits iffoldeGOLD, sILVER JEWELLERY, ARCHAEO PICCES, ETC. ETC

E2. 37
 tronics required ease in aire atort eveleting by axyberdy from afe tepreards with the cleat asy-torolow. step-by-Hlep, fully illustrateal
 o soluering necexsary, Kit incluses buts.

SHORTWAVE TRANSISTOR
 RAẼíO
only E2.25
Anyone from 4 years tup can follow the
step-hy-stew,
trated instructions. N
bogged in rom aerial in $30 \mathrm{minA}-$ Russia. Africa, USA, S witzerland, etc. Experience thrilts of world wide news broadcasts. Uses PPas battery on unusua $\sin \times 4$ xin $\times 1$ in. Only $82.25+17 \mathrm{p}$) Kit includes cabinet, acrews, instructions.

Eavesdrop on the exciting world of Aircraft Communications-
V.H.F. AIRCRAFT BAND CONVERTER ONLY $£ 2.37$
 Liatpu in AIRLINES
PRIVATE PLANES. JET. PRIVATE
PLANES. Crids talk hetupeen pilmat. groumed apprath
llear for yoursplf airport the disciplined moices hiding tenseners on talh doress. Be with the lu whell they emergencies Tume intus the international irequency hand including HEATHROW GATWICK, LUTON, RINGWAY, PRESTWICK, ETC. ETC. CLEAR AS A BELL. This the buftt by apyone uber illuatratei soldering neceasary: Fully step-hy-step Useq atandard PP: battery All yon to is extent rod aerial, place close tin any ordinary medium wave ractio (even EVER NEEDED. SERD ONLY $22 \cdot 37+-131$ p \& p for kit including case, nuts, screv'x.

SLEEPINDUCER

 ONLY$\mathbf{6 2 . 7 5}$

Do you wake
 sud can't get of like to be gently to sleep again? Would you every night? Then tuild this ing sleep electronic sleep inducer. /f even slops by ilself no you don't have to worry ahoud it being on all audio-frequency sounds, continuously re peated-hut as ime goes on the sur gravlually becones less and less-until they eventually cease altogether, the effert is has iom peaple is amazingly very similar in hypnosis. All transistor. No knowletlge of electronics or rastio needed. Step-hy-step inmtructions. Fo solderiny necessary. Kit
includey case. nuth, wire. kerews, etw: SEND $82.75+25 \mathrm{p}$;

ELECTRONIC ORGAN

 ± 2.75

BUILD 5 RADIO AND ELECTRONIC PROJECTS sistoristl. SELP-CONTAINED LOUD. SPEAKER. Fifteen separale keys span tew pll "efaves- play the "Yellow Roar of Texax etc. .fe. You have the thrill and excitement of bullding it together with the pleasure of blaying a real. live, frortable electronic
organ. NO PREVIOUS KNOWLEDGE OF ELECTRONICS NEEDED. to soldering necusary, simple as ABC to make. Ambum short ereming following the fully imugiraied e2.75 + 23p p k p for kit, including cerse. tandard battery (partasavactions, etc. Use Have all the pleannre of tuaking it yoursel READY BUILT AND TESTED
TREASURE LOCATOR

MODULE

E4.95

CUIT METAL
DETEGTOR MODULE
plug if a PP; handy buil and cested-just plug it a PP: Put it in a case, serew a handle on and You HAVE A PORTABLE TREASURE LOCATOR EASILY WORTH ABOUT \&20! EXTREME LYAENHITVIVE-PENETHAT RG EARTH SAND, ROCK, WATER, ETC: EASILY LOCATES COINS GOLD, SILVER. JEWELLERY, HISTORICAL RELICS BURIED PIPEA, ETC. So sensitive it will BELOW GROUND obla SEVERAL FEET H1GNAL ONONEDCOIN: $24.95+30$ DEAR

ONLY $£ 1.97$

Amazing Radio Cou structlon set! Becont 21.97. A complete Hone complete
Coura perience needed

arta including
 ondmpeater personal plans, all transistors, etc., all rou neell Presentation box 37p extra as illus, (ji required) (parts available separately) no solldering necessary. Send

SOOTHE YOUR NERVES reLax with this amazing RELAXATRON

Cl'TA OUT NOISE

 MOOTHESTIONNERYESt Th RELAXATRON in trasically a pink noisegenerstor.
Beside. generstor. Beaides
being able to mask out being able to mask ou
extraneous urumate sounts, it has other
very intereating pro very interesting pro-
perties. IF yol WORK IN NOI Yot HAYE TROVBLEROUNDISM, IF IN: $: 1 F$ YOU FEEL TENGED, UNABLE TO HELAX-then buila this fantastle Relaxatron. Once uaed you will never want Relaxatron. Once used You wil never want Tsem staniard PP3 batteries (current umel so small that battery life is almost shelf-life). CAN BE EASILT BULLT BY AFYONE OVER 12 YEARS OF AGE using olir tinique. atep-by-step, fully llhustrated plans. No sollering necessary. All parts includiug case, a pair of erystal phones, womponent Send only $82.25+$ eyp Send only 82.25
(P.E.27), 8 Westbourne Grove, London, W.2. Callers Welcome 9 a.m.-6 p.m. inc. Saturday

RELIANT MK.IV

high standard of sound reproduction, with full mixing Gacilities. Its versatility make苗 Three Individual Mixing Controls * Separate bass and treble controls \star Solid State Cir
common to all five inpurs \quad Atractive Styling

1. Crystal Mic. or Guitar 9 mV . 2. Moving coil Mic. or Guitar 8 mV . Inputs 3. 4 and 5 are suitable for a wide range of medium output equipment (Gram CONTROLS: 3 Volume control 25 ma sensitivity
13 dB \& 60 Hr . Treble control range $\pm 12 \mathrm{~dB}$ (an 15KHz. Separate ON/OFF Switch. Neon Indicator
 and 5 and -50 dB nn 1 and 2 SUPPLY: 220 to 250 V A.C. Mains.

CONTINENTAL

4-TRACK, 3-SPEED TAPE DECK
with high impedance heads R.C. 74 tape deck. Three speeds $-7 \frac{1}{2}$, 34 and $1 \frac{1}{6}$ i.p.s. 4 torack record/playback pressure pad system. Takes. Py tape spool up to and including 7in. The R.C. 74 is driven by a powerful $200 / 250 \mathrm{~V} 50$-cycle a.e. motor. A heavy, accurately balanced
 $7 \frac{1}{5}$ i.p.s. Fast rewind in both directions. Controls couldn't be simpler! Just five accidental tape damage. Efficient servosh butcons that interlock to cut out o-action type braking. Easy drop-in The R.C. 74
for tone and volume controls. The unit is built into a rizid die-cast frame, and overall size of the whole unit is $12 \pi \times 117 \times 6 \mathrm{in}$. Every single deck fully tested $\boldsymbol{\Omega}+\boldsymbol{\square}$ (AGTON) LIMTE

E. 24020 watt 240 volts soldering iron fitted with "/4' iron coated bit. Spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ availabe. Can also be supplied for 220 and 110 volts. Price $£ 1.80$.
ES. 24025 watt 240 volts soldering iron fitted with 1/8' iron coated bit and packed in a transparent display box. Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $y_{2}^{\prime \prime \prime}$ available. Can aliso be supplied for 220 and 110 volts. Price E1.83

CN. 240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated 3/32" bit and packed In transparent display box. Also available for 220 volts. Price $£ 1.70$
CN. 240 Miniature soldering iron 15 watt 240 volta, fitted with iron coated $3 / 32^{\prime \prime}$ bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220. 110,50 or 24 volts. Price $£ 1.70$
G. 240 Miniature soldering iron 18 watt 240 volts extensivery used by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ bit. Also available for 220 voltw. Spare blta $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $x^{\prime \prime}$ are obtainable. Price £1.83.

your solderins applance spectalists.

CCN. 240 Now model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation ($4,000 \vee$ A.C.). Will solder live transistors in perfect safety: fltted with $3 / 32^{\prime \prime}$ iron coated bit. Spare bits $1 / 8^{\prime \prime}$ 3/16" and $x^{\prime \prime \prime}$ avallable. Can also be supplied for 220 volts Price $£ 1.80$
CCN. 240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering The triple-coated bits are iron, nickel and chromium plated Price £1.95

SK. 2
 SOLDERING KIT

This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, Heat Sink. 1 amp fuse and booklet 'How to Solder'

MES. 12

A battery operated 12 volts 25 watt soldering iron complete with 15^{\prime} lead, two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet. Price £1.95.

SK. 1
 SOLDERING KIT

The kit contains a 15 watt 240 volts soldering iron
fitted with a $3 / 16^{\prime \prime}$ bit nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, heat sink
Price $£ 2.75$ cleaning pad, stand and booklet "How to Solder". Also available for 220 volts.

from electrical, radio or car accessory shops or from Antex Ltd., Freepost (no stamp required) Plymouth
PLI 1BR Telephone 0752 67377/8
\square Please send the Antex colour catalogue
Please send the following
enclose cheque/P.O./Cash
(Giro No. 2581000)

Name
Address

PRACTICAL

ELECTRONICS

Editor F. E. BENNETT Assistant Editor M. A. COLWELL Editorial D. BARRINGTON G. GODBOLD S. R. LEWIS B.Sc. (Eng.) Art Editor J. D. POUNTNEY Technical Illustrators J. A. HADLEY R. J. GOODMAN

Advertisement Manager D. W. B. TILLEARD

IN CHARACTER

THE requirement for direct readout of data at high operating speeds from a variety of equipments ranging from large computers to pocket size calculators, and from process counters to digital voltmeters, has provoked intense development work into opto-electronic devices. This month we commence an important new series dealing with alpha and numeric displays intended for such purposes.

The present day range of such devices is particularly interesting in that it includes representative examples based on all three traditional electronic processes: the glow discharge in a gas filled tube, the incandescent filament in a vacuum tube, and now the semiconductor light emitting diode. (An interesting parallel to the course of development of those fundamental active devices, the valve and semiconductor.) As for the future, this holds promise of further advancement in the form of plasma panels and liquid crystals. What has become known as optoelectronics is now perhaps the most important new frontier of advancing electronic technology.

Regarding character representation, it seems there often has to be a compromise between style and technical possibility. This is especially true in the case of the latest kind of display devices designed to operate from low voltage lines and to be driven directly from an i.c. Some ingenious arrangements have been devised in order to provide easily recognisable characters which are sufficiently bright for viewing under normal lighting conditions. But in the process, technical limitations have wrought some havoc with the graceful curved roman characters which have been long in general literary use. The resulting severely angular characters are less pleasing in an aesthetic sense, but as more and more digital instruments come into everyday use their general acceptance seems assured.

Maybe the ousting of the elegant cursive letter is somehow appropriate, in view of the reduced part now played by varying-amplitude sinusoidal waveforms. Sharp bursts of current are the prime movers in today's high speed circuits; and pulses are well typified by those partially dismembered characters built up from discrete spots or bars of light.

Sad but true, cursive copperplate writing, however beautiful to look at, belongs to the leisurely past; austere functional characters are the handwriting of this vigorous (some might say vicious) data acquiring and consuming age. If an artist had been commissioned to envoke the visual significance of digital techniques he could hardly have bettered this character style brought about through technical expedience and necessity. F.E.B.

THIS MONTH

CONSTRUCTIONAL PROJECTS

TREMOLO UNIT 206
PHOTOCELL THYRISTOR SWITCH 208
GENERAL PURPOSE AMPLIFIER - 214
MODEL SERVO CONTROL 230
SPECIAL SERIES
ALPHA-NUMERIC DISPLAYS - I 200
RADIO ASTRONOMY
TECHNIQUES - IO 221
GENERAL FEATURES
INGENUITY UNLIMITED 228
THE UNIJUNCTION TRANSISTOR 238
NEWS AND COMMENT
EDITORIAL 199
SPACEWATCH 213
POINTS ARISING 218
ELECTRONORAMA 226
PATENTS REVIEW 229
BOOK REVIEWS 234
ON THE FRINGE 237
INDUSTRY NOTEBOOK 246
READOUT 247

SPECIAL SUPPLEMENT

PICKUPS AND TURNTABLES

Our April issue will be published on
Friday, March 10.

[^1]
3
3
4

2

2
5

?

ПIPHA

By R.U.Coles

THE growth explosion in the electronic handling of numerical data has brought with it a great demand for simple systems to display the processed data in a readily understandable form for human interpretation. Electronic data handling in this context is a loose term which covers a wide variety of equipment from the mighty computer to the humble batch counter or digital clock, all of which have nced of a means of interfacing their data with people.
Amateur enthusiasts will have little need of the print-out facilities of the larger computers, some of which can print the results of their deliberations at the rate of several pages per second, but there is an increasing amateur application area for simple "Nixie" type displays for use in counters, measuring instruments, and, of course, clocks and calculators.

Alpha-numeric display devices available, or potentially available, to the amateur market are appearing in bewildering profusion, and now seems a good time to review the operation and application of the most useful types, along with some ideas on how to use them in complete display systems.

Six figure, seven segment L.E.D. display. Ferranti

Seven segment, L.E.D. display. Litronix (Guest International Ltd.)

Seven segment, filament indicator. Minitron, type 3015F (A. Marshall \& Son)

Cold cathode, neon filled numerical indicator Mullard, type ZM1020

Cold cathode, neon filled character indicator. Mullard, type ZM1263

Cold cathode, neon filled character indicator. Mullard

Seven segment, luminescent filament indicator. Atron (West Hyde Developments Ltd.)
(U.K. suppliers are shown in brackets)

DATA FORMATS

There are quite a large number of technologies employed to form the heart of display devices: cold cathode tubes, incandescent filaments, fluorescent phosphors, gallium arsenide light emitting diodes (L.E.D.s), being but a few examples. Before looking into the operation of these various displays it is as well to look at the data formats available, as these are common to all device technologies.

Every type of readout is based on one of threc basic data formats, the particular form employed being governed mainly by the variety of data to be displayed, the simpler types handling only the numerals, and generally costing less in consequence.

DISCRETE CHARACTERS

The simplest format available, and the one which potentially gives the most pleasing and casy to interpret display, employs a separate character for each display option. The character set to be displayed is "stored" in the device during manufacture. and may take the form of a set of shaped wire cathodes in a "Nixie" tube, or a set of tiny photographic transparencies to be projected onto a screen by an incandescent lamp in another type of indicator. In either case, a separate character is used for each symbol. The word symbol is used because with this system a device can be produced to display any type of alphabetic, numeric, or symbolic character, in any type of style, limited only by the designer's imagination.

While the flexibility and readability of this format are both excellent. in a practical device vocabulary is rather limited due to the space required to store the separate symbols, and for this reason this format is used only when a comparatively small repertoire is required, 0 to 9 , plus and minus or $\mathrm{kHz} / \mathrm{MHz}$ for example.

DOT MATRIX

By constructing a display device from a matrix of dots, which may be individually illuminated if required, a very versatile indicator is formed which does not have a limited repertoire like the discrete character type.

A dot matrix can be built from separate filament lamps, light emitting diodes, gas discharges. and others, and though the readability is perhaps slightly worse than the discrete types, the wide variety of characters which can be handled by each device more than compensates.

Fig. 1.1 shows 36 characters of the A.S.C.I.I. (American Standard Code for Intormation Interface) code, which can be displayed on a group of 35 dots arranged as a 7×5 matrix. A single plane readout with such an impressive character capability can be used to handle even the most sophisticated display tasks but the crunch comes with the decoding and driving electronics required to handle the matrix.

Taking the A.S.C.I.I. code as an example, each character is defined by a six bit binary word, and it is necessary to decode this information to a form which is suitable for driving the matrix directly, for example, telling the display to light up all of rows 3 and 5 to form an equals sign. In a nutshell, the decoder has to decode the binary code to its one-ol-sixty-four decimal equivalent, which is then used to determine the state of each of 35 dots. In these days of M.O.S. large scale integrated circuits this is not such a difficult or expensive task as it may appear at first sight.

BAR MATRIX

The two formats discussed so far represent opposite extremes of display versatility, and for some applications it is handy to have a system which bridges the gap between the two. This compromise is available in the form of bar matrix displays, which are obtainable with varying degrees of complexity, and hence a wide range of repertoires.

The simplest bar matrix display format is the "seven segment" type, which handles all the numerals, nine letters, and one or two symbols. This type of readout is competitive with the discrete

Fig. 1.1. The alphabetic and numeric characters available in the A.S.C.I.I. code from a 7×5 dot matrix

Some of the shapes and sizes of commercially available cold cathode tubes
character type, and is likely to prove more popular in the long run. Already seven segment displays are obtainable in incandescent, fluorescent, and L.E.D. technologies, and decoding/driving i.c.s are becoming very cheap, a definite area to watch for practical amateur requirements of the future.

Fig. 1.2 shows the "seven segment" format, and as can be seen, it is based on a stylised figure of eight made from seven individually illuminated bars. The character set available is quite extensive considering the simplicity of the format, though in general these devices are used only for numeric data. decoders being available for this task. The most obvious drawback of this system is that the characters are highly stylised, and not as we would normally write them, a problem which can be eased to some extent by using zero suppression to enhance readability of multi-digit arrays. We will be looking at the way zero suppression is achieved later on.

To overcome readability problems of the basic seven segment indicator, a version using a different bar format has been developed, and this type is shown in Fig. 1.3. To achicve this some of the versatility of the simple version is lost, and some may consider the numerals a bit "wonky" but in use this version gives a very easy to read display whilst retaining the simplicity of the parallel bar type, decoding being of the same nature.

Fig. 1.3. A modified seven segment display giving greater readability but no alphabetic characters

By increasing the number of bars used it is possible to build a device which will handle all the alphabet characters as well as the numerals, and in Fig. 1.4 a possible format using 14 separate bars is shown with its character set (several types of symbol or punctuation mark are also possible). With so many bars as this, the decoding/driving problem again rears its ugly head, resort being made to either M.O.S. arrays or to complex discrete gate decoders.

As we have seen, formats are available to readout manufacturers to enable them to produce a device at the right price and complexity to suit every application. Most of the technologies used can be incorporated into several of the formats, a situation which leads to the present (and very desirable) state where there are literally hundreds of devices to choose from.

COLD CATHODE DISPLAYS

Perhaps the most well-known type of alphanumeric display and one which has been featured in

Two cold cathode character indicator tubes

Fig. 1.4. Multi-segment display showing how numeric and all alphabetic characters can be generated

Fig. 1.5. Internal construction of a side-viewing cold-cathode numeric indicator tube

A top-viewing cold cathode tube

Fig. 1.6. Calculation of the limiting resistor and power supply
several articles in this magazine in the past, is the cold cathode numerical indicator tube called variously "Nixies". "Numicators" and "Numbertrons". These tubes use the same principle of operation as standard neon indicator jamps, that is the ionisation of neon gas by the application of a suitable voltage across them.

The standard type consist of a number of discrete character shaped cathodes, mounted one behind the other, viewed through a metal grid which forms the anode, all contained in a neon filled glass envelope similar to that used for valves. (Fig. 1.5). The cathodes are insulated from one another and spaced as closely as possible to make a compact assembly with a reasonable field of view.

In operation the anode is connected to a high positive voltage through a current limiting resistor. and the required cathode is grounded by the driving circuitry (which may consist of relays, valves, transistors or an i.c.). The voltage developed across the anode-cathode system causes the neon gas to ionise, and with careful physical design a uniform glow is produced round the cathode selected.

The glow colour is a mixture of blue and orange, and if the tube is used without a colour filter reflections from the other cathodes and the anode produce a rather indistinct blurred display. With a red filter positioned in front of the tube, either as an envelope lacquer or a window material common to several digits, background glow can be cut out completely, producing a very pleasing readout. The anode voltage required is not critical, in fact the higher the better, but there is a lower limit set at about 180 to 200 V below which some tubes will be very slow to ionise, and more difficult to control.

DRIVING CIRCUITRY

To consider the operation of these tubes in a simple circuit see Fig. 1.6. When the selected cathode is grounded by means of the switch the tube will strike, illuminating the required character. When the neon gas is ionised a current flows through it, limited
by the resistor $R_{: 1}$ and the voltage across the tube necessary to maintain conduction. If the anode voltage could fall below the maintaining value then conduction would ceatse, reducing the voltage drop across $R_{\text {: }}$ and causing the tube to strike again, in a sort of feedback action.

The operating conditions of the tube are thus set by the resistor $R_{i,}$, and the value required can cither be calculated precisely from manufacturers' data sheets, or in the absence of such information a very rough rule of thumb which suffices for the large majority of applications, can be employed. A good average value of operating current for these devices is 2 mA , this is the first assumption necessary to use the rule of thumb, and modifications to this figure can be made if desired on the grounds that a big tube will work better with a larger value, and a small one with less.

The next assumption needed concerns the anode to cathode maintaining voltage which will be present across the tube when it is struck, and a useful guess here is 150 V . Using these two figures and the known value of the H.T. voltage (V) to be used, the resistor value can be calculated thus:

$$
R_{\mathrm{a}}=\frac{\text { H.T. voltage }- \text { maintaining voltage }}{\text { cathode current }}
$$

Using the values mentioned above this works out as

$$
R_{\mathfrak{a}}=-\frac{200-}{2}-\frac{150}{2} \text { kilohms, }
$$

giving a value of 25 kilohms for R_{i}, and this is likely to be adequate for most medium sized tubes. and is within a few kilohms of the values worked out from extensive calculations dealing with particular. coded tubes. It should be stressed here that if data is available it is far better to perform the calculations which take into account manufacturing spreads, tube individualities, and the bias on other cathodes, but if data is not available (ats so of ten is the amateur's lot) the rule of thumb will get those tubes burning regardless.

Fig. 1.7. Construction of a dot matrix neon-filled cold cathode tube

A Mullard "Pandicon" fourteen numeral cold cathode tube

OTHER COLD CATHODE FORMATS

The standard Nixie is not the only format used with the cold cathode technology, and both bar and dot matrix versions are available. The bar types have cathodes which form the segments of the format, and operate in a similar fashion to the standard neon tube, identical supply voltages and drivers being required.

The dot type display uses a somewhat different physical construction, each dot in the matrix operates as an individual glow discharge light source. and the required dots are selected by an X / Y addressing array of transparent, thin film, metal lines (Fig. 1.7). Note that the address lines do not come into direct contact with the gas in the recesses, the ionising potential being applied capacitively as at.c. pulses. This type of display is a recent innovaltion, and promises to be a very useful technique for displaying several lines of data at a time when it will be cheaper than using separate tubes.

Despite these other formats availability, they are not yet an economical choice for the amateur, and in the notes on decoding and driving for cold cathode tubes, we will deal specifically with the discrete character type.

Next month: Driving and decoding circuits for cold cathode tubes

A cold cathode dot matrix display. In this type each dot can be individually illuminated (Mullard)

IITITREMOIOD

The first of three guitar effects units which will add new dimensions to the sounds produced. By A. Russell

MANY electric guitar players will have noted the high cost of commercially available sound effects units. The tremolo unit described here was designed around cheap, easily available components. It is simple to build and economical with battery power and it will provide a potent tremulant effect for a guitar input with controls available for both tremolo rate and depth of sound produced.

HOW IT WORKS

In the circuit diagram of Fig. 1, the multivibrator circuit comprising TR1, TR2, switches at a rate made variable by VR1, between 1 Hz and 10 Hz .

As the collector of TR2 rises and falls between 0 V and 8 V the capacitor C 3 will charge at a rate determined by the CR product of R5 and C3. As the voltage of C3 rises exponentially there comes a point when TR3 switches on. If a guitar is connected to JKI the output to JK2 which is normally developed

Fig. 1. Circuit diagram of Tremolo Unit
across VR2 and TR3 is suddenly very much reduced when TR3 does conduct. With the transistor switched off the guitar signal passes through the unit unchanged. As TR3 is being switched at a regular rate the output level will vary in depth to produce a tremolo effect.

COMPONENTS . . .

> Resistors
> R1 $6.8 \mathrm{k} \Omega$
> $\begin{array}{ll}\text { R2, R3 } & 47 \mathrm{k} \Omega \text { (2 off) } \\ \text { R4, R5 } 6.8 \mathrm{k} \Omega \text { (2 off) }\end{array}$
> All $\frac{1}{2}$ watt, 10% carbon
> Capacitors
> $\begin{aligned} & \mathrm{C} 1, \mathrm{C} 2 \quad 1 \mu \mathrm{~F} \text { elect. 12V (2 off) iGj } \\ & \mathrm{C} 3 \quad 50 \mu \mathrm{~F} \text { elect. } 12 \mathrm{~V}\end{aligned}$
> Transistors
> TR1, TR2 OC81 (2 off)
> TR3 AC128
> $\begin{aligned} & \text { VR1 } 500 \mathrm{k} \Omega \text { dual gang carbon linear } 24 p \\ & \text { VR2 } 100 \Omega \text { carbon linear }\end{aligned}$
> VR2 100Ω carbon linear 24 p.
> S1 on/off toggle 50 ;.
> SK1, SK2 Standard jack sockets (2 off)
> BY1-PP3 9 V
> Battery conniectors
> Veroboard 0.55 matrix 2 in $\times 2 \frac{1}{2}$ in
> Plastic angle (see text)
> Instrument case $6 \frac{1}{2}$ in $\times 4$ in $\times 4 i n$ (G. W. Smith) Control knobs (2 off)

Fig. 2. Component board layout and interwiring details

With VR2 a variable resistor the depth of effect can be altered but there is a point when multivibrator breakthrough is slightly apparent as a ticking noise. While this is not objectionable the unit can be switched off when the guitar is not being played, although if used in a group the ticking would not normally be noticeable above the other instruments.

Increasing the value of C3 may damp this a little, but there will be a maximum above which the tremolo effect will not be satisfactory.

CONSTRUCTION

The majority of components are assembled on a 2 in $\times 2 \frac{1}{2}$ in piece of Veroboard as in Fig. 2. Also shown are the connections of this to the control panel.

A piece of $\frac{1}{2}$ in plastics angle was Araldited to the board and drilled for screw mounting to the case. For ease of operation Sl can be replaced by a footswitch connected by way of a socket at the front panel.

TESTING

When the unit is completed the wiring st ould be checked ensuring that the electrolytic capacitors in the multivibrator are the right way round. Should the polarity of these be reversed the multivibrator will probably operate but at the wrong frequency.

Connect the unit to the amplifier and guitar and switch on. Check the operation of the rate and depth controls. If all is satisfactory the case panels can be assembled so completing the construction.

Some loss of signal should be expected when the tremolo unit is connected and if the gain of the amplitier is not sufficient to compensate for this a preamplifier may be necessary. If so, it should be* connected between the unit and the amplifier.

THE following circuit is for an automatic, lightoperated switch which offers reliability and high sensitivity to light variation but low sensitivity to component changes.

The electronic experimentalist constructing a lightoperated switch generally must contend with a variety of electronic and mechanical problems. This circuit is an all solid-state design employing a thyristor as the load current switch. Simplicity and economy are apparent with the design. The unit is either self-latching, remaining on after initial activation, or an on-off switch following light variations. The choice depends on whether the power supply is smoothed or simply half-wave rectified a.c., respectively. Load currents approaching 5 or 10 amps are allowed with a relatively inexpensive range of thyristors. In the off state, only a very low leakage current in the order of a few microamps is drawn.

SIGNAL INPUT

The cadmium sulphide photoresistive cell, PCCI, in Fig. 1 acts as a voltage divider in conjunction with the series pair of resistors R1 and VRI. In bright light conditions, the photoresistor has a nominal resistance of approximately 500 ohms.

Fig. 1. Circuit diagram of the photocell thyristor switch

This value will hold the base bias on transistor TR1 near zero volts which corresponds to the off or non-conducting state. In low light conditions, the base bias increases (negatively) as PCCl resistance increases in the voltage divider. TR1 becomes forward biased with emitter current increasing to some maximum value.

TRANSISTOR STAGES

The high gain transistor pair TRI and TR2 act as both voltage follower and current amplifier with respect to the photocell.

When TRI is biased off, the relative base-emitter bias of TR2 is zero. Thus negligible current will flow in the emitter-collector circuit of TR2. The direct connection between the emitter of TR1 and base of TR2 gives a high degree of current sensitivity at the collector of TR2 to variations in photocell resistance changes. Current through the voltage divider and in TR1 are in the order of microamps, whatever the state of the circuit.

As TR2 is biased on by conduction through the emitter of TR1, large current flow is possible through the circuit formed by the load, R4 and VR2 in TR2 emitter lead, and the thyristor gate-cathode junction in TR2 collector lead. Switching the thyristor on requires moderate current for approximately 50 microseconds after which the thyristor gate serves no purpose in maintaining anode to cathode conduction.
To prevent possibly destructive power dissipation in TR2, a self-biasing feature links TR2 and the thyristor.

THYRISTOR OPERATION

The device has a pnpn construction as shown in Fig. 2a. The p and n material of the terminal regions are the anode and cathode, respectively. A lead from the internal p-type semiconductor material serves as the gate for switching the thyristor from the off state to conduction. The gate requires a current of roughly 25 milliamps to trigger the device on.

| | Fig. 2a. Internal construction of the thyristor
 (left) |
| :--- | :--- | :--- | :--- |
| Fig. 2b. A typical external view of a power
 thyristor (right) | |

It is recommended that the gate-cathode junction never be reverse biased, i.e. the gate should not be allowed to become more negative than the cathode.

Thyristors act as diodes when supplied with an a.c. power supply. Note here that the gate should be protected by a series diode when supplied with a.c. voltage. Thyristors are self-latching to the on state after the gate signal has been applied, but when the supply voltage falls to zero as with an a.c. supply, the thyristor switches off and remains off unless a gate signal occurs during the next cycle.

Physically, high power thyristors are encased for mounting on a heat sink. The threaded stud on one end is the anode (leading to the positive end of a power supply for conduction). The opposite end contains two tags, the larger being the cathode and the smaller being the gate, see Fig. 2b.

SELF-BIASING ACTION

looking at the transients as the thyristor is switched on reveals an interesting circuit characteristic. As TR2 begins to conduct, current flows through the gate of the thyristor. So long as the current is insufficient to switch the thyristor on, the emitter of TR2 remains near zero volts. When the thyristor switches on, the full supply voltage rapidly appears across the load rather than the thyristor.

In the switching process, the emitter of TR2 swings to full negative potential while TR1 holds the base of TR2 at a positive voltage with respect to the negative rail. Thus TR2 is switched off by this reverse biasing process.

The sensitivity of TR1 and TR2 means that conduction to the thyristor gate occurs rapidly as the
light level crosses a threshold set by VR1. The variable resistor VR2 assists by holding small conduction currents below the gate threshold level. Once conduction begins at the thyristor, the otherwise wasted current in TR2 is limited to a duration of a few microseconds.

CONSTRUCTION

Due to the simplicity of this circuit, wiring details can be arranged to suit the reader's own requirements. A suggested layout is shown in Fig. 3. Obviously miniaturisation can easily be achieved. R1, VR1, R2 and R3 dissipate less than $\frac{1}{8}$ watt of power. Due to the short duration of power dissipation in R4 and VR2, these resistors can be $\frac{1}{4}$ watt.

Throughout the circuit, fixed resistance values are not critical so that any reasonably close resistor should be sufficient. RI and R4 are included as safety resistors to protect the circuit from accidental zeroing of VR1 or VR2 during the setting up procedure. They should not be omitted during construction.

The selection and mounting of a thyristor should be done with the care usually given to semiconductor components.

SETTING UP

After constructing and checking connections in the circuit, turn VR1 and VR2 to their maximum resistance setting. Set the photocell in the required light conditions for switching on, remembering that in bright light the circuit should be off. With the power on, bring the value of VR2 down until the circuit switches on. Next, adjust VR2 back to a

Fig. 3. Wiring details of the prototype
higher resistance so as to hold a test lamp off. The lead to the test lamp must be broken and re-made to switch the thyristor off (or the power supply switched off).

VR2 is a rougher control than VR1 for switching in relative darkness. They reverse their function in this respect when set to switch in brighter lighting.

Resistor RI may be increased toward 100k!? or 150 k ! ! if more sensitivity in dark conditions is needed, i.e. if the circuit is to differentiate between very dim lighting levels. These settings are moderattely sensitive to a shift in the supply voltage although the circuit was found to function readily over at $\pm 30 \%$ change from the stated 12 V supply voltage.

MODIFICATIONS

In its present state the circuit can actuate parking lights or various detection systems. The speed of switching is controlled by the slowest element in the circuit. In this case, the photocell is the slow link for the detection of a rapid variation between lighting shades. The response time is somewhere around 50 milliseconds.

If an external voltage pulse or photodiode is used at the base of TRI, the switching time drops to roughly 50 microseconds. This is better than a relay reaction time. The transistors, even if not those suggested in the circuit diagram, generally switch in a range of fractions of a microsecond to a few microseconds, which is a negligible time.

Other signal sources may be a photo-transistor, a piezoelectric crystal giving a pressure sensing switch. or capacitive or inductive reactance giving a frequency sensitive switch.

SUGGESTED APPLICATIONS

Applications of this simple circuit are closely related to the power rating of the thyristor selected by the constructor. The authors used in the prototype an unmarked thyristor of approximately 30 volts p.i.v. in a 5 amp case, as may be purchased from many electronics shops.

A 5 amp thyristor used with the test lamp at 2 watts was sufficient in the authors' application to switch on automobile lights which draw about 30 watts. This still represents only half the current rating of the thyristor.
The other rating to bear in mind is the peak inverse voltage which may be regarded as being roughly a measure of the forward voltage hold-off rating.
The maximum oltage is restricted to the maximum voltage allowed by the transistors.
With some imagination a voltage dropping resistor and Zener diode may be added to allow increased voltage on the thyristor, whilst the transistors are protected to below their limit values.

Besides finding convenient use of the switch for parking lights, the authors also found the circuit was ample to operate a small mechanical cycle counter. for which the input was generated by a rotating disc with al segment cut out, permitting light to fall onto the photocell. On this application full wave rectified voltage was supplied to the circuit, again referring to the thyristor, the part of each voltage cycle which dropped to zero ensured that the thyristor turned off as opposed to latching on as it is designed to do when constant d.c. voltage is the power source.

COMPONENTS...

Resistors

R1 $56 \mathrm{k} \Omega$
R2 $12 \mathrm{k} \Omega$
R3 $2.2 \mathrm{k} \Omega$
R4 $18 \Omega \frac{1}{4}$ watt
All resistors $\underset{\sim}{=} 10 \%, \frac{1}{6} \mathrm{~W}$ unless otherwise stated
Potentiometers
VR1 $100 \mathrm{k} \Omega$ carbon skeleton preset
VR2 500Ω wirewound linear slider
Transistors
TR1 OC71 or equivalent TR2 OC81 or equivalent

Thyristor
CSR1 5RC5 (International Rectifier Co.) 5 A 50 V p.i.v. (Gate triggers at 2 volts, 15 mA)

Light Dependent Resistor
PCC1 ORP12
Miscellaneous
Paxolin sheet or Veroboard $\operatorname{3in} \times 2$ in $\times \frac{1}{18}$ in M.E.S. Iamp and holder (see text)

A counter and parking light application have been . mentioned. The thyristor load may also be a burglar alarm set off by interrupting a light source.

The idea in each application is to replace the test lamp load with a working load. Then a thyristor is inserted which has the correct rating in terms of a sufficient value for the maximum current and voltage applied. Remember that the transistors are giving a high gain so that there appears to be a fair disparity betweeen the current drawn by the thyristor and by the rest of the circuit; a large thyristor current-say 10 amps-can be expected.

THYRISTOR SELECTION

Either latching or non-latching action is possible and a range of load voltages and currents are possible according to the type power source, whether d.c. or rectified a.c. respectively, and the selected value of the thyristor.
If a constant d.c. power source is used then the device will be latched on without regard to the photocell until the power source is removed.

To find the correct thyristor current rating either
(a) take the value of current given for your load, or
(b) divide rated wattage by the applied volts, or
(c) divide applied voltage by the rated load resistance.
Then select the next largest thyristor so that there is a factor of safety.

Further suggestions for the load which may be developed quickly are a d.c. solenoid coil, a relay coil-the relay poles doing multiple switching or H.T. switching - or a simple resistive load such as a light. If the photoresistor were sensitive to the light from a flame, the switch could be used for flame detection.

Other suggestions are left to the reader.

look
 !electronics really mastered

no previous knowledge no unnecessary theory no "maths"

RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the' various fields of electronics.

3/ CARRY OUT OVER
40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :
valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver. electronic switch, simple transmitter, a.c. experiments, d.c. experiments, simple counter, time delay circuit, servicing procedures

This new style course will enable anyone to really understand electromiss by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

HENRY'S LOWOR COST FIRST GRADE BRAND BRANDED GERMANIUM, ANA SLICON TRANSISTORS, DIODES, RECTIFIERS, EY ATES EMIHUS • FAIRCHILD • FERRANTI • I.T.T. MULLARD • NEWMARKET P PHILIPB • R.C.A. TEXAS

TRANSISTORS

A SELECTION FROM OUR LIST

Ho. 7400 7401 7402

HENRY'S ${ }_{\text {tows }}$ INtegrated chrauts

ERAND NEW FULL SPECIFICATION TTLTA SERIES
BRANDED FAIRCHILD, I.T.T, AND TEXAS
DEYICES MAY. BE MIXED TO OUALIFY FOR OUANTITY PRICING

Doecripdion 7400 Quadruple 9 -input NAND gate

7402 Quad 2-Input open collect
7404 Input Nor gatea
7404 Qued 2-Input open coliector NAND gatea
7404 Hextuple invertert
7405 Hex inverters with
10 Tex inverters with open collector output." 18 Dual 4 -Input gehmitt triegern 0 Dual 4-input NANDgates Duad 4-input NAND buffer gaten
BCD-Decimas lecoder/Nix ie driv BCD-Decima (ecoder/Nix le driver
BCD-Decimal decoster (4-10-line) TTL O/P
Excena 3-Decinal decoder TTL outputs Excena 3-Dectinal decoder TTL output BCD-Decitnal 7 ned. decoder/indicator driver
BCD-Decinal 7 se, decoder/driver TTL O/P
Expand dual 2-input AND-OR-INVERT gate Expand dual 2-input AND-OR-INVERT gate
Dualit-wide 2-input AND-OR-INVERT gaten
Oual 2 -input erpand AND-OR-INVERT gate Qual 2-input expand AN
4-wde 'input AND-OR-
Dual
Bingle J-K nip-Hop (gated Inputs)
Bingle J-K fip hop (gated inputw)
78 Duad J.K fip hop
7476 Quariruple blsLable latch
7476 Dual J.K flip.flopn with Premet and Clear
7480 Gated Full Adder
$\begin{array}{ll}7481 \\ 7489 \\ 7488 & \text { o-bit binary Full AdAler } \\ \text { 4-bit binary Full Alder }\end{array}$
$\begin{array}{ll}7488 & \text { 4-bit binary Full Aliler } \\ 7484 & \text { 16-bit. RAN with gated write Inputa... }\end{array}$
88 Qualruple 2-input Exclualis OR gaten
7490
RCD deccile counter
7491 R-bit anift reginter
7491 R-blt shift reginter
7492 Divide twelve counter
7498
t-blt binary counter
7494
Dual entry 4 -bit nhift
7494 Dual entry 4 -bit mhift reglater
7495 -bit up-down ahlit reglaier
$\begin{array}{ll}7485 & \text {-bit up-down ahift reginter } \\ 7490 & 5 \text {-bit parallel/aerial ln/out ahift regimter }\end{array}$
74100 - -bit biatable latch
74118 Hextuple get-Renet
74121 Monortable multivibratorn

7145 BCD -Decimal decoder (1-4.1ine)
74150 B -bit data melector/multiplezer
74158 Dual 4-line to 1 -fine iata mele
74154 lob-bit decoder/demultiplexer
74156 Dual 2 -line to 4 -line decoler/Aemultiplexer
71100 sync lecede up-tiown counter. I-line mole
74191 Bync 4-bit up-down counter, 1-line mode
74192 Bync lecale up-iown counter, 2-line mode
74192 Bync ilecale up-iown counter, 2-line mod
74198 Bync 4 -bit up.down counter, 2-line mode
74198 Bync 4 -bit up-down counter, 2 -line mode
74197 Asynchronous premettable 4 -bit binary counter Comp

INTEGRATED PLESSET ITITERATED

MFC\&OROP

PA24
TAD
MC724P
702 C (TO5)
709 C (TO5)
709 C (D.1.L.)
723 C (TO5)
$741($ TOOS
MCl303P
$\mathrm{MCl304P}$
8L403D
741C(DIL)
$914(\mathrm{TOS})$
$914(\mathrm{TOS})$
$923(\mathrm{TOS})$
TOBHIBA
20 watt amp
TOSHIBA
TOAHIB
Pre amp
BILICON TECTIFIERS
BILICON TECTIFIERS
GILATORE PLABTIC WIRE EIDED
Type P.I.
IN 4001

BCY40 800000 OA90 list available-

IN 4000

OUR RANGE IS ALWAYS EXPANDING - Entuiries invited for new types arriving daily
ADDITIONAL DISCOUNTS - 10%. $12+: 15 \% 25+: 20 \% 100+$ - DELIVERY IS FROM STOCK

303 gagware rd : LONDON. w2 tet: 01.723 1008/s
RA D 1 O. LTD. CALLERS 356 EDGWARE ROAD W2.

Hinkture Pottod BEE RECTIFIER
Type P.I.V. Tent $1-12$ Type P.I.V. Tent

Typ	P.I.	rent	1-12	Ty	P.I.	, rent	$1+11$
1002	100	2a	80p	4004	400	4	
2002	200	2.	859	6004	600	48	
4002	400	24	750	1008	100	88	
8002	100	28	800	2006	200		
1004	100	$4{ }^{\text {c }}$	86	4008	400		

QUANTITY OFFERS: FROM STOCK

B Y FRANK W. HYDE

HIGH POWER IN THE IONOSPHERE

There are a number of areas where man attempts to modify his environment to suit his needs and the latest of these would appear to have a possible future effect on communication systems.

The new experiments in this direction have been made using a radio telescope, with a 1.000 feet diameter dish. located at Arecibo. The very high powers that have been used with this radio telescope dish have resulted in the heating of the I-layer of the ionosphere.

The ialea that this might be possible has been talked about for a number of years. The writer was engaged in some of this work when the ITA television system was inaugurated. It was noticed then that when a high powered station was opened the tranemissions appeared to become reduced in intensity after about three months.

Although a few people accepted that this was due to ionospheric modification the work was not pursued for lack of support. Now in the intense beam that is obtained with this giant dish, it is possible to follow up carly ideas. particularly those put forward in 1970 by a team at Boulder, Colorado, using a very large aerial array.

The Arecibo dish has already established itself as a pioneer instrument. It confirmed beyond doubt the rotation period of Venus and also proved the correct rotation period of Mercury.

Since it is the largest dish in the world there have been many calls on its use by radio astronomers and the ionospheric teams have felt that they have been rather overshadowed by the astronomers. However, the dish may for a time at least revert to its original planned purpose which was the study of the ionosphere.

The ,r W. E. Gordon. .ed a preliminary report of what has been accomplished with the 100 kW transmitter, which operates in the 5 to 10 MHz band. The actual frequency of the experiments was 5.62 MHz . It is possible to use the radar equipment at the same time as the "heater" transmitter. It is, therefore, possible to observe the effects of the high power on the ionosphere.

When the transmitter is switched on the temperature of the F-layer increases and airglow appears together with infra-red activity. The variation in heating is measured at 430 MHz and a contour map plotted for changes of temperature. It is clear from these maps that plasma forms like a bubble some 100 km in length and 50 km across. Aligned with the magnetic field this rather cigar-shaped plasma shows a temperature rise of some $300^{\circ} \mathrm{C}$ over the normal temperature of the region which is of the order of $1.000^{\prime} \mathrm{C}$.

Naturally such an area has a direct effect on communications since the reflecting property is affected. It may become a useful tool in the propagation conditioning of the ionosphere.

MARTIAN MOONS

Much speculation has been made about the inner Martian moonlet Phobos in the past. including a
suggestion thiat it was hollow ou an artificial body, because of the low density that it appeared to have.

Since Marincr 9 went into orbit around Mars on November 13 a raging dust storm had obscured the surface features of the planet. So scientists directed its television cameras towards one, then the other of the two martian moons. Some scientists regard Phobos and is sister moon Deimos as even more attractive research targets than Mars.

Of all the moons in the solar system. Phobos is the only one moving around its planet faster than the rotation of its parent body and no one has yet suggested a reasonable explanation for this unique behaviour, reminiscent of man-made satellites.
Both the satellites of Mars have now been photographed and the pictures of Phobos show it to be a rather miserable irregular chunk of rock. It is crater marked, with at least one huge crater, and its size is approximately 15 miles by 13 miles. The natural conclusion must follow that it is a captured asteroid.

During the journey towards Mars the probe photographed Deimos from a distance of 5,300 miles. It was described in the preliminary reports as being potato shaped, about 8 miles across and have groove like markings. The irregular shape is compatible with its small size.

Rugged surface features of the irregularly shaped Martian moonlet Phobos are visible in this computer enhanced photo. The photograph was taken by Mariner 9 during the 34th orbit of Mars.

GHEREAI PUPROST AMPIIIIER

An experimenter's amplifier with input sensitivities to suit most bench requirements By F. C. JUDD

THE general purpose amplifier described in this article has inputs suitable for a wide variety of audio signal sources including those requiring special frequency correction such as magnetic pickup cartridges and tape heads. The amplifier can be split into two sections and operated (a) as a signal pre-amplifier and (b) as a small power amplifier, each being independently usable.

There are five input sockets and these can be used for the following signal sources:
(SK4) For all magnetic pick-up cartridges. Provides RIAA frequency response correction and has a nominal input sensitivity of 6 mV at 56 kilohms.
(SK3) For ceramic or crystal pick-up cartridges of high impedance and output signal. The high input impedance provides the necessary equalisation for record replay.
(JK1) Input sensitivity is approximately 2 mV . Suitable for microphones from 200 ohms impedance and upward.
(SK2) Suitable for radio tuners and/or tape record/replay units with linear output or any linear signal source of between 100 mV and 500 mV .
(SK1) Input sensitivity 5 mV . Suitable for direct connection from medium impedance tape heads and provides a compromise CCIR/NAB replay characteristic.

The sixth possible input is direct to the output amplifier via the volume control. This will permit connection of linear signal sources in excess of about 500 mV which would otherwise overload the preamplifier.

The power amplifier will deliver 3 watts r.m.s. power to any small loudspeaker of between 5 and 15 ohms and its input sensitivity via the direct input link to the volume control is 80 mV for 3 watts output. The pre-amplifier will deliver 80 mV from its link output terminal for the following input ratings:

Magnetic pick-up (SK4) 6 mV 56 kilohms
Ceramic pick-up (SK3) 100 mV 820 kilohms
Microphone (JK1) 2mV 100 kilohms
Radio (SK2) 100 mV 120 kilohms
Tape head (SK1) 5mV 100 kilohms

THE CIRCUIT

The circuit is shown in Fig. 1. The inputs are selected by S1a and where necessary taken through suitable attenuation networks to TR1 which, with TR2, forms a direct coupled pre-amplifier. Negative feedback is used to control gain and/or equalisation and is taken from TR2 collector via the networks. and S1b to the emitter of TR1.

The pre-amplifier output is taken to the link terminal strip and then by VR1 (volume control) to the output amplifier. When the link is uncoupled the pre-amplifier output can be used to drive any other external amplifier. Alternatively, signals may be taken directly to the output amplifier by way of VRI.

The output amplifier itself is a fairly simple driver and complementary pair output arrangement and providing the specified components are used and the heatsinks are to the dimensions given, it requires no special adjustment or protection against thermal runaway.

The power supply employs a transformer with a centre tapped secondary delivering 13 V either side. Note that only 13 V are ajplied to the rectifier, that

Resistors			
R1	120k Ω	-R15	$47 \mathrm{k} \Omega$
R2	12kS	\pm R16	10kS,
R3	820ks2	-R17	$3.2 \mathrm{k} \Omega$
R4	$220 \mathrm{k} \Omega$	- R18	3.9k ${ }^{\text {² }}$
R5	$56 \mathrm{k} \Omega$	R19	120k Ω.
$=$ R6	1.2 k /2	R20	$39 \mathrm{k} \Omega$
.-R7	220k Ω	R21	47 k S
$\cdots 88$	180k Ω	R22	390Ω
-R9	$180 \mathrm{k} \Omega$	R23	22Ω
R10	$12 \mathrm{k} \Omega$	R24	$2.2 \mathrm{k} \Omega$
-R11	1k!	R25	15Ω
-R12	1 kS 2	R26	560Ω
-R13	390ks	R27	$2.2 \Omega 2.5 \mathrm{~W}$
=R14	12kS	R28	$2 \cdot 2 \Omega 2.5 \mathrm{~W}$

All $\frac{10 \%}{}$ carbon except where otherwise stated

Capacitors

Transistors

TP1	BC109
TR2	BC108
TR3	BC108
TR4	AC128
TR5	AC176
TR6	AC128

Potentiometers

VR1 $10 \mathrm{k} \Omega$ carbon logarithimc

Fig. 1. Circuit diagram of amplifier and power supply

Switches

S1 Double pole 4-way switch
S2 Mains on/off toggle switch
Transformer
T1 Mains transformer, 13-0-13V secondaries type TS2/13 (Henry's Radio)

Sockets

SK1-SK4 Phono sockets (4 off)
JK1 Standard jack socket

Rectifier

D1-D4 Rectifier type LT119 (Henry's Radio)

Miscellaneous

Link terminals-4-way strip type TS64 fHAHry's Radio), 0.15 in matrix plain Veroboard $3 \frac{3}{4} \mathrm{in} \times 8 \mathrm{in},-$ heatsinks and copper transistor clips (3 off), 8 in \times $\frac{3}{8}$ in aluminium angle. Plywood for base boardpand cabinet.

Baseboard assembly of amplifier control panel, component board and power supply. Note the use of aluminium heat sinks for mounting the output stage transistors and aluminium screening for the underside of the components board
is only one half of the winding is used. This provides 25 V d.c. to the amplifier which falls to approximately 22 V when the power stage is delivering its full output.

CONSTRUCTION

The entire pre-amplifier and output stage can be assembled on a single circuit board as shown in Fig. 3. The input sockets, the selector switch SI , the link terminal strip and volume control, etc. are mounted on the control panel as in Fig. 2

The transistors TR4. TR5 and TR6 are mounted on aluminium heatsinks with copper transistor clips. Do not cut the transistor leads and place a piece of sleeving over each to prevent short circuits. The circuit board is plain s.r.b.p. ($0 \cdot 15$ in matrix) which is mounted on an aluminium screen by means of stand-off spacers and 6B.A. bolts. The complete assembly is attached to the base board on a length of aluminium angle. The control panel is also mounted on the baseboard by similar means.

The lead from the common of Sla to Cl must be screened with the screen grounded at the component board.

PERFORMANCE AND TESTING

Before connecting check the output patir and driver transistor circuitry in particular as both npn and $p n p$ transistors are used and it is quite easy to connect them wrongly with obvious results. It is

Fig. 2. Component layout and wiring of amplifier control panel. Apart from S2 all flying leads should be routed to the component board
also worth checking the power supply before connecting the positive line to the amplifier and make sure that 25 V only are available.

The quiescent current of the amplifier with no signal input should be approximately 22 mA . At maximum r.m.s. power output the current will rise to about 200 m A and the rail volts will fall to about 22 V . The amplifier is quite safe with the speaker disconnected but do not short circuit the speaker terminals whilst power is being developed.

Fig. 3. Board layout and wiring of pre-amplifier and output stage

The amplifier being used to check a record deck. One of the many bench applications of the unit

If possible the signal input sensitivities should be checked but providing the circuit has been correctly wired these should comply with the figures given.

The frequency response of the power stage is given in Fig. 4 but can be extended a little at the low frequency end by doubling the value of the output coupling capacitor C14, that is, making this $1,000 \mu \mathrm{~F}$. The same graph shows the response from

Fig. 4. Graphs of magnetic pick-up and frequency responses

Fig. 5. Tape head input frequency response
the magnetic pick-up input which is to RIAA characteristic. The response from the tape head input (Fig. 5) is between CCIR and NAB characteristics and provides a replay response more in line with that used on modern domestic tape recorders. It is suitable for tape speeds of $7 \frac{1}{2}$ and $3 \frac{3}{4}$ inches per second.
The combined response of the pre-amplifier and power amplifier for radio or microphone input is as shown in Fig. 4 although the response of the preamplifier by itself is considerably wider and extends down to 20 Hz and to well above $25,000 \mathrm{~Hz}$. The hum and noise level for the complete amplifier is better than -60 dB for all inputs.

A SUITABLE CABINET

The cabinet size or shape is not critical and it need be only large enough to accommodate the amplifier and a loudspeaker which may be any round or eliptical type capable of handling 3 to 4 watts of audio.

APPLICATIONS

The amplifier has many applications as a bench testing instrument for audio signal sources of all kinds and could be duplicated for stereo reproduction with the second chainnel run from the spare 13 V mains transformer secondary with an extra rectifier and smoothing capacitor. The circuit could also be used for a small record player in which case the switching and components for unwanted inputs need not be included. For example, for a mono record player with a ceramic or crystal pick-up the switch S1 is omitted, the collector of TR2 coupled back to the emitter of TRI via C6 and R15 and the input taken via R3 straight to C1 with R4 connected from R3 to earth as shown. The link terminals would not be necessary so C7 would be connected straight to the top of VR1.

One final point. It may be found worthwhile to place a screen (thin tinplate or aluminium) underneath the baseboard and connect this to common earth to prevent hum pick up particularly from bench mains wiring.

POINIS Dils.jnt

I.C. DIGITAL DICE (December 1971)

There should not be a connection between gate output G6 and common, that is P14 and P15 on the Veroboard layout.

P.E. SCORPIO IGNITION SYSTEM (November, December 1971)

See letter on Readout page 248
PHOTOPRINT PROCESS CONTROL
(January 1972)
Components List page 26. TR5 should be type 2N2926G.
Fig. 2 page 24. R16 is $3 \cdot 3$ ohms or 6.8 ohms as in the Components List.
FS1 could be a 1 A anti-surge fuse for better protection.

BUDGET HIGH-FIDELITY STEREO SYSTEMS

 FREE
 all leads and plugs supplied free with all
 systems

PREMIER HI-FI OFFERS!

Philiss 580 Stereo
Ampilier (List 29.000 Rogers Ravenasbrook 11 Stereo Ampliter in teak case (List $£ 52.50$)
Rogers Ravensbourne
Stereo Amplifter in teak case (List $\mathbf{f 6 4}$)
Metrosound ST20E
Stereo Amplifier in teak
case (List $£ 39-50$)
Goldring GL75
less cartridge (List $£ 41.61$) Garrard SP25 111 with Goldring G800 cartridge (List $£ 28 \cdot 35$)
Garrard AP7B
less cartridge
Garrard
Transcription
Und Transcription
(List $£ 40.15)$
$£ 29.00$
Garrard 2025 T/C with Sonotone 9TAHC Diamond Cartridge
Garrard $202 \mathrm{~T} / \mathrm{C}$ with Sonotone 9TAHC Diamond Cartridge ready wired in teak plinth with cover £23.00 £39.50 £49.00 £28.50 £29.00 £15.50 £19.50

Carriage and Insurance 50p extra any item.

TAPE CASSETTES

 P. \& P. 5 p

FREE Cametto Head Cleaner with every 10 cassette purchased
All cassetter can be supplied with library cases at $3 p$ extra each.

SP25 Mk III SPECIAL!

STEREO STETIOSCOPE SET Lew imp. \$1.26. MONO STETHOSCOPE SET LOW imp. 52p. P. \& P. 10p
E.M.I. $13 \times$ 8in. HI-FI SPEAKERS
 Fitted two 2 \&in tweeters and crossover network. Available with 8 or 15
ohm impedance. Handling capacity 10 W . Brand £3.47

NEW LOW COST PREMIER 800 STEREO AMPLIFIER

A truly high quality steren anplither-compare the specification, compare the price. Output: $\overline{3}$ watts per
chaunul. Frequency responae: $\quad 30-40,000 \mathrm{~Hz} \pm 23 \mathrm{~b}$ Dlatortion: 1%. Out put Impedance 8 ohms noms. Inputa equaliued to R.I.A.A.
Magretic tmV. Ceramic 100 mV . Tuner 100 mV Tape 100 mv . Tape out 1 comv. Din sockets for inmuts and outputs. Mono/Stered swlich. Sterer. Headphone
 Babinet $\times 2$ in
ONLY £ 16.25

"VERITONE" RECORDING TAPE

 EPECLALLY MANUFACTURED IR U.8A. FROM EXTRA STBOMG PRE-STRETCEED MATERIAL THE QUALITY IE UFEQUALLED TENSILISED to ensure the most pertnanent base. Eigbly resiatant to breakage, mointure, heat, cold or humidity. High pollshed aplice free finish, Smoothoutput throughout the entire audio rabge. Double wrapped-attractively bored. LP : 850° P.Y.C. 28 p LPE $51^{\circ} 1200^{\prime}$ P.V.C. ${ }^{\circ}$ 25D
 DT3 हit 800 POLYESTER EP5 5 600 P.V.C. $\begin{array}{llll}\text { LPS } & 5^{\prime \prime} & 200^{\circ} & \text { P.V.C. } \\ \text { DT5 } & 5^{\prime \prime} & 1200^{\prime} & \text { POLYETER } \\ 50 \mathrm{p} \\ 750\end{array}$

TT7 7 3600 POLYESTET 28.50
Pont and Packing $3^{\prime \prime} 5 \mathrm{p}, 5^{\prime \prime}, 54^{\prime \prime} 8 \mathrm{p}, 7^{*} 10 \mathrm{p}$. (3 reele and over Post Frec.

NEW from Goodmans for constructors

Din 20 Kit

20 watt, high fidelity loudspeaker kit contains all parts necessary to complete the system, except timber and other material for the cabinet itself, with detailed, illustrated instructions. Specification: 20 Watts DIN, 4 ohms impedance, 8 ins bass unit, dome HF radiator, crossover frequency $4,000 \mathrm{~Hz}$.

Axent 100
Dome HF Radiator with integral crossover. Capable of high frequency sound reproduction with negligible distortion in systems rated up to 30 Watts DIN, this 'state of the art' drive unit has an integral crossover which cuts frequencies below 3 kHz at a rate of 12dB/Octave.

Audiom 100

12 inch high fidelity bass loudspeaker.
For use as a bass unit in two-way systems, the sensitivity and high frequency roll-off of the Audiom 100 has been tailored to match the Axent 100.

Goodmans Sound reasoning.

THORN A member of the Thorn Group
Plaase send Free leaflets on Constructors Equipment
Name.
Address.

Goodmans Loudspeakers Ltd.,
Downley Road, Havant, Hampshire PO9 2NL

SAVE UPTO £10

 on the Boots Audio System now!

The amplifier is fitted with controls for treble, bass ond stereo balance and a special contour control. Power output 4 watts.
The deck made by Philips has autochange and single-play focility, with a manually
aperated pick-up lif, ceromic cortridge, diamond stylus and transparent dust cover.
The Mono Radia Tuner covers VHE Migh flux units.
The Mono Radia Tuner covers VHF, Medium and Long Wavebands. Mono but stereo convertible if required. Mains powered. (can be purchased separately).

This Unit Stereo and Mono Radio Tuner are the components of the popular Boots Audio System. - Now you can buy them both for only $£ 67.90$ insteod of $£ 77.90$ - Or seporately - The Unit Stereo normally $£ 52.90$ is now $£ 47.90$ a saving of $£ 5$. The Radio Tuner,
normally $£ 25$ is now $£ 20$, a soving of $£ 5$. And you can be sure you're getting good value for money. This superb Audio System is niormally great value at £77.90.
It has up-to-the-minute styling, using electronicallymatched components to provide outstanding performance.

Such an excellent bargain can be yours for just $£ 67.90$. And once you've come along to a Bools Audio and Record Department you'll find lots of interesting things to delight the music lover. But don't delay because the offer ends on March lith.

These special offers ore available fram Boots Audio and Record Departments, whilestocks last from Jon 31st to March lith

Connoisseur

S.A.U. 2 Pickup Arm

S.C.U. 1 Stereo Cartridge

Witether you are a hiff fanatic with an ultimate desire lo reproduce recordea sound at its very best, or just an average person who likes music around the house withcut being too particular about the techniques or finesse of the result, this supplement has been devised to explain some of the mare important points about pickups and turritasle units that mosi users may meef.
*
That equipment used to rotaite a recorded disc and detect the recorded signal is sometimes called ia) a record deck; (b) a transcription unit: (c) an autochanger; (d) turntable and pickup. A record deck is the eeneral term applied without any implications of auality. A transcription anit has by convention implied high quality ofielt with the firest perfarmance currently available. An autochanger is a record deck with exira mechanisms to change the disc at the end of replay and operate the pickuron and off the disc.
Whatever class of equipinent interests you, it is fairly certain that manujarturers' litetature with offel you some or all of the important technical [eztures that you will wish to know to assess the value-for-money factor ofyour interided purchase.

Philips GA308 record deck

BEFOFE going into : haracteristics indivicually let us first consider the equipment as a whote. The sensitive element, which translates information stored in, the disc groove is a transducar-frequenly called a cartridge, ts function is to generate electrical sigrals from vibraticns of a stylis caused Dy varying patterns 2 : meculation in the groove wall. The Frincipies are the same for mono (single channel) or stereo (dual channel;

Transcription turntable Thorens TD124 Series II and SME 3709 Series II pickup arm with rest, side thrust correction waight, counterbalance weight at the tear and tracking weight on the side
recordings: The sigrificant difference is the direction on which the stylus is vibrated and the relationship between the signals derived as will be explained later.
The cartudge is fitted 0 the underside of the pickup head, which mav cr may not be detachable from the pick-up arm. A modern cartridge usually carries two holes or slois in its mounting with a "standard" pitch of $0.5: n$ for securing to the head shell.

Garrard autochanger AT60 Mk /I

The motive power to rotate the disc is provided by a symzhronous motor driven turntable operated from an a.c. mains supply.

The trans ation of the recorded information :nto an electrical signal is loaded with meshanical and elecfrical probleras, although current encineering prastice has enatled the designer to master them. Extremely high quality reproduction from disc is now possible in two and fru: channels.

HOW THE STEREO PICKUP WORKS

As is well known, sound signals recorded monophonically or from a centre-stage sound source causes the replay stylus to vibrate laterally. See Fig. Ia.
In the case of two-channel stereo records, the two walls of a Vshaped groove are modulated independently (Fig, 1b). The wall nearest the centre of the disc carries the left channel information; the other carries the right channel information.
Depending on the phasing between the left and right signals, the replay stylus vibrates laterally when there is only mono or centre-of-stage . stereo information (Fig. 2d), indicating in-phase conditions; and towards the vertical when the stereo information is at a maximum (Fig. 2c), indicating antiphase conditions. Intermediate phase conditions result in different angles of vibration (Figs. 2a and 2b).
Some of the latest "four channel" or quadraphonic discs carry hall ambience effects in one or two rear channels by the phasing interplay between the front left and right channels, with the rear channels being derived from antiphase information. The four channels are matrixed into the two channels of the disc, so that when
four-channel replay is required a corresponding decoding matrix is adopted, the disc replaying in normal two-channel stereo.

Another scheme is based on the front two channels being recorded almost normally, with the two rear channels introduced by frequency modulated signals with sidebands extending to some 50 kHz . This is called the "discrete" system because the four channels are handled in isolation throughout.

At the time of writing there is no quadrophonic disc standard, but ideas on both methods exist, with variations of the former.

Compatibility is one key note, which refers to the ability of the four channel system to replay in stereo or, indeed, in mono with minimal loss.

Correctly balanced mono replay from stereo discs is achieved by using a mono cartridge or a stereo type with the two channels correctly phased in parallel or series into the single replay channel. However, the stylus assembly must be endowed with adequate vertical compliance to avoid the inertia of the whole pickup from trying to follow the vertical vibrations of the stylus!

Fig. 1a. Stylus tip in a mono recording groove; first half-cycle

Fig. 1b. Stylus tip in a mono recording groove; second half-cycle

Fig. 2. Modes of stylus vibration. (a) left channel, (b) right channel, (c) equal left and right in anti-phase, (d) equal left and right in-phase

Fig. 3. Elementary features of a piezoelectric stereo cartridge

PIEZOELECTRIC PICKUPS

The pickup transducer is most frequently an electromagnetic or piezoelectric generator, the latter using Rochelle salt or ceramic elements. Fig. 3 shows the essential features.

Rochelle salt crystal has the advantage of providing high output, having a high dielectric constant and hence high capacitance and relatively high compliance. Unfortunately it suffers the disadvantages of distortions due to moisture and temperature sensitivity.

Ceramic, on the other hand, is impervious to atmospheric conditions, is capable of a better frequency response than Rochelle salt, but has a smaller output.

Rochelle salt crystal pickups have now been largely superseded by ceramic types and are employed mostly in the mass market type of equipment. The high output, sometimes IV or more, can cut amplification costs, and in some low priced equipment the power amplifier stage is driven direct from the crystal pickup

Typical ceramic pickup output is 50 to 100 mV , and was used extensively at one time in budget price systems, but now that the better performance of magnetic pickups can be obtained for little more than the price of some ceramic types, the latter are tending to lose favour.

Since the output of a piezoelectric pickup is roughly proportional to the amplitude of moduiation, it can be used when correctly loaded without equalisation, which can reduce the cost of the amplifier.

Acos Crystal cartridge GP91-1SC for single channel (mono) replay of stereo or mono recordings

Audio-Technica AT-55 cartridge fitted into a headshell. Notice the mounting screw on the near side

The Goldring G800 induced field cartridge. Also uses the variable reluctance principle

Fig. 4. Moving magnet cartridge showing the stylus coupling

Fig. 5. Coil system of the Decca sum-and-difference pickup

Fig. 6. Showing how the left and right generators are independently operated by the $45 / 45$ stereo cut

Fig. 7. The V magnet system on the end of the cantilever corresponds to the $45 / 45$ stereo cut. This is from the AT35 Audio. Technica cartridge

Most magnetic cartridges are designed so that the stylus assembly can be removed from the main body for cleaning or replacement. This is the Audio Technica AT35

MAGNETIC PICKUPS

Magnetic pickups come in a diversity of types, although all of them exploit the basic electromagnetic principle (Fig. 4) Most common types are moving coil, moving magnet and variable reluctance, where a ferrous armature vibrates between "magnet" pole-pieces. Induced current can be excited in either a field coil (moving magnet) or armature coil (moving coil) by stylus vibrations

When the field is provided by a magnet which is not in contact with the pole-pieces, the term "induced magnet' is sometimes adopted, as
the field is coupled to the micromass armature

Magnetic pickups produce an output proportional to the velocity of the modulation. Since this modulation is recorded on a rising characteristic (i.e. bass cut and treble boost), corresponding approximately to constant amplitude characteristics, equalisation is required at the amplifier. This should be designed to correct the frequency response of the reproduced sound signal. Typical output is a little over lmV per cm s velocity.

SUM-AND-DIFFERENCE PICKUP

One type of magnetic pickup is based on the variable reluctance principle, but employs a set of three coils from which the two stereo signals are obtained. The coils of the Decca sum-anddifference pickup are shown in Fig. 5
Signal em.f. in the three coils is the same when there is modulation in one channel, but the phasing of the coils is such that the sum of the signals in right vertical coil 1 and the lateral coil appears across terminals C and R when the right channel is modulated. There is theoretically zero output from the left channel, between C and G, because the signal in vertical coil 2 is in phase opposition with that in the lateral coil, thus giving the difference function. In practice, however, a very small signal is obtained due to the crosstalk factor through leakage from other

OTHER PICKUPS

Other pickups include one based on the photoelectric principle where a small lamp is focused on photoelectric diodes and the stylus vibration is caused to modulate the light on the diodes. Another is based on the strain gauge principle. where d.c. is modulated by the vibrating stylus.
One uses ribbon instead of a moving coil, as in a ribbon microphone. This, as with the moving coil type, requires a booster amplifier or step-up transformer
Other transducer principles have been adopted, and there would appear to be an increasing interest in the electrostatic principle, resulting in the capacitor pickup.
coils.
When the other wall is modulated, the right channel is quiet and the signal in coil 1 is in phase opposition to that in the lateral coil. When both left and right are modulated together, the two stereo signals are delivered with minimal interaction between them. The Y terminal allows the lateral coil only to be used for mono replay. (Codings R, G, and Y usually refer to colours of the connecting lead, i.e red, green, yellow. Common C is the screen.)
Other cartridges employ a pair of generators with their motional axes in V formation to correspond to the 4545 stereo cut, where each channel is recorded 45 degrees to the surface of the disc and at rightangles to each other (Fig. 6). Sometimes the moving magnet is arranged in V formation, as shown in Fig. 7

Pickup head by Decca. This is based on the sum-and-difference principle

Audio Technica AT 1005/ll pickup arm

PICKUP CHARACTERISTICS

LOW FREQUENCY RESONANCE

One problem of arm/transducer matching is low frequency resonance (i.e. the natural tendency for vibration to be excited at a particular frequency related to the characteristics of the component). This results from the dynamic mass of the arm resonating with the compliance of the stylus assembly.

The electrical analogues of mass and compliance are inductance and capacitance, so not unnaturally the resonance frequency $\left(f_{0}\right)$ is equal to $1 /(2 \pi \sqrt{ } M C)$, where M is the mass and C the compliance. Thus the greater is M or C the lower will be f_{0}.

At resonance the vibrations tend to magnify, as also does the pickup output, while below f_{0} a high-pass filter effect occurs, in which the bass response tends to roll-off (Fig. 8).

Thus if the MC combination results in f_{0} being too high the bass response suffers, while a too low f_{0} encourages unstable tracking, the stylus tending to leave the groove when the resonance is excited by external vibration, such as someone walking across the room.
Moreover, if f_{0} corresponds to the

Fig. 8. Below bass resonance the output rolls off, an effect which is sometimes exploited for attenuating rumble
resonance of another connected component, such as a loudspeaker in a room, acoustic feedback can lead to howl build-up as the amplifier's volume control is advanced. If f_{0} falls near the slip frequency of the drive motor (22.5 Hz), turntable rumble could be aggravated. Thus it is seen that not all heads or cartridges will work with all arms without some problems arising.

Fortunately, hi fi cartridges and arms are to some extent designed for each other. Arm mass is being made as low as practicable, while stylus compliance is being made as
high as practicable. However, by going too far in these directions, other problems arise, such as inability to track properly; a proper balance between these two factors is very important.

It is known that at least one manufacturer reduced the compliance of a popular cartridge so that it could be used with budget auto-changers and decks. Consequently, high and low compliance models may be available to cater for high quality adjustable arms and medium class mass produced pickups.

In some cases l.f. resonances are tamed by arm decoupling (compliant couplings) and sometimes by viscous damping.

An f_{0} between 8 and 20 Hz is fairly safe, but calculation is not easy before purchase because the manufacturer's published specification rarely includes the effective mass. Mass is not the same as weight which is counterbalanced, with just sufficient turned on to the head end for tracking the groove. Nevertheless, the majority of hi fi arms will partner the best cartridges without trouble.

FREQUENCY RESPONSE

Fig. 9. Frequency response of topflight magnetic cartridge. The mild $5-6 \mathrm{kHz}$ droop is normal with magnetic types

Fig. 10. Cartridge with bad h.f. resonance, possibly due to the mass at the cantilever end removed from the tip resonating with the cantilever compliance

Specifications which merely give a frequency range without reference to a nominal power level deviation of undistorted signal should be treated with suspicion. Correct frequency response relates output to frequency over the audio spectrum and usually extends beyond aural sensitivity (Fig. 9). Both channels should match very closely at all frequencies for good steres listening quality. A good cartridge should be free from violent peaks in its characteristic which could signify undesirable resonances, particularly at the treble end.
One treble resonance is caused by the effective tip mass resonating with the compliance of the disc material (rather like a violin bow on a string), which has a value around $3 \times 10^{-8} \mathrm{~cm} / \mathrm{dyne}$. The lower the tip mass, therefore, the higher the resonant frequency.

A low tip mass is essential for good tracking of high acceleration modulation, and a mass of 1 mg or less would put the resonance outside the audio passband. However, the resonant frequency can be lower due to the mass at the end of the cantilever remote from the
stylus tip and the compliance of the stylus lever arm.
High frequency resonances yield significant energy which can damage the groove walls and hence the modulation; moreover, h.f. resonance also results in acute treble roll-off (Fig. 10). This characteristic is typical of the cheaper crystal pickups at one time common on mass produced equipment.
H.F. resonances also show up on the separation curves at close or corresponding frequencies. Internal damping reduces the mechanical Q factor and hence diminishes the peaks, thereby resulting in a 'smoother' ' frequency response, but the intrinsic faults remain.
Many magnetic cartridges, especially those of current variable reluctance and moving magnet design, exhibit the droop around 5 to 6 kHz (Figs. 9 and 10). The effect is not significant and can be tolerated since it is gradual and not a violent resonance.
Piezoelectric cartridges in general have less smooth frequency responses than magnetic cartridges.

AND PERFORMANCE

MEAN OUTPUT VOLTAGE

The output is related to velocity of modulation, usually at 1 or $5 \mathrm{~cm} / \mathrm{s}$ at 1 kHz . Each channel should yield the same output within 1 dB (even closer in top quality pickups). An average moving iron magnetic cartridge would be expected to produce about 6 mV from $5 \mathrm{~cm} / \mathrm{s}$, both r.m.s. values.
Moving coils and ribbon types will generate a mere $100 \mu \mathrm{~V}$, which is why a booster or step-up trans-
former is required. Due to this lower sensitivity and the limitations in the frequency response of small transformers, these latter types tend to lose favour.
Crystal cartridges can generate as much as IV r.m.s. from average modulation, but better class ceramic types settle for about 20 to 50 mV , with a smoother frequency response characteristic over the whole audio range.

STEREO SEPARATION

A stereo cartridge specification should give the channel separation at 1 kHz or at two other frequencies. Good magnetic types often have a ratio as high as 25 dB at midspectrum, falling possibly to 15 or 20 dB at 100 Hz and 10 kHz .

Maximum stereo impact occurs at mid-spectrum, so the separation here must be as high as possible, but lack of stereo image stability can result if the separation ratio changes too violently in the upper treble regions.

The separation curve of a good
magnetic cartridge is given in Fig. 11, where the mid-spectrum separation is better than 25 dB . Notice the mild "ripples' at the top treble end which signify well damped resonances.
It is difficult to check cartridges with separation better than 30 dB owing to the disc replay noise in the "non-speaking" channel approaching the level of the breakthrough signal.

Piezoelectric cartridges have less exacting separation characteristics than most magnetic cartridges.

LOADING

Correct cartridge loading is important for the best frequency response, and the optimum load is generally given in the specification. Most magnetic cartridges work best into about 47 kilohms, the treble lifting if the load impedance is too high and drooping if it is too low (Fig. 12).

Piezoelectric cartridges, on the other hand, are load sensitive at the bass end. This is because they are capacitive in source, a high pass filter effect thus occurring when the load is too low (Fig. 13).

Good ceramic types usually demand a load impedance of at least two megohms for extended bass response; to secure a reasonable overall frequency response from the RIAA recording characteristic inbuilt equalisation is ofter incorporated. The full-line curve in Fig. 14 approximates the RIAA.

recording characteristic, which is projected to the amplitude modulation characteristic in Fig. 15, this clearly revealing the need for piezoelectric type of equalisation.

A piezoelectric cartridge can be made to approximate velocity characteristics by loading with a low value resistor (about 33 kilohms), the output then being similar to that of a magnetic cartridge, allowing the normal magnetic equalisation to be used.

Care is necessary, though, to avoid the relatively high output from overloading the RIAA equalised preamplifiers and causing bad distortion on signal peaks. This is not the best way of using ceramics.

Capacitance in shunt with the load has virtually no affect on piezo cartridges, but it can affect the treble response of magnetic types, especially when the coil

An example of the parallel arm type of pickup, the Garrard Zero 100. The head is pivoted to both arms to maintain tangential tracking

Fig. 11. Separation characteristics of a good magnetic cartridge. The mild ripples at the treble end signify well controlled resonances.

Fig. 12. Effects of incorrect loading of a magnetic cartridge

Fig. 13. Effect of incorrect loading of peizoelectric cartridge
inductance (another parameter that might be specified) is high, and incite electrical resonance with the coils within the passband.

> Fig. 14 (far left). RIAA recording characteristic in full-line. The broken-line curve shows the equalisation required in the amplifier

Fig. 15 (left). The RIAA velocity recording characteristic projected in terms of amplitude. This shows the need for inbuilt equalisation of a piezoelectric cartridge.

Micro-Seiki MC 4100/5 cartridge with 0.5 thou radius diamond stylus

Artist's sectional view of the Audio and Design induced field cartridge

Magnetic cartridge which has a removable stylus assembly

BEARING FRICTION

The lower the vertical and lateral bearing frictions the better, and to reap the full advantage from a low tracking weight cartridge they should not exceed much more than the equivalent of 50 dynes force at the stylus tip, a value which is met by most hi fi arms.

EFFECTIVÉ ARM MASS

This is effectively the inertia reflected at the stylus after the weight of the arm and cartridge have been counterbalanced and the required tracking weight turned on; total value must include the cartridge and headshell.

When the arm is to be used with high compliance cartridges the total value should be as small as possible to avoid a too low a low frequency resonance (see under this heading).

COMPLIANCE

Most specifications give a figure for compliance which is expressed in terms of the distance in $10^{-6} \mathrm{~cm}$ the stylus is displaced by a 1 dyne force (roughly equivalent to a weight of lmg on Earth). Modern magnetic cartridges boast up to $20 \times 10^{-6} \mathrm{~cm}$ dyne or more

Static compliance is higher than the dynamic compliance, and confusion can thus arise in resonance calculations. Low frequency tracking is governed by the compliance and, since maximum recorded amplitudes are limited to about 0.005 cm , from the tracking point alone there is no need for the compliance to exceed $5 \times 10{ }^{\circ} \mathrm{cm}$ dyne at a tracking force of 1 gramme . However, there are other factors, including mechanical damping and tip mass, that are related to compliance as explained earlier under Resonance.

Obviously the compliance cannot be increased to the extent where there is inadequate restoring force for the stylus assembly. Vertical and lateral compliances often differ, so there could be two main low frequency resonance factors.

EFFECTIVE TIP MASS

The stylus is mechanically coupled to the transducer so the inertia of the mechanical assembly including the cantilever is reflected at the stylus tip, and is taken into account in determining the tip mass M_{1}. For adequate high frequency response and hence high acceleration tracking, M, has to be very small.
It is a difficult parameter to measure, which is why it is rarely found in published specifications. However, an approximation of performance can he found by calculating mass $M_{1} \simeq F /(2 \pi f V)$ where V is the velocity in $\mathrm{cm} \mathrm{s}, f$ the frequency in Hz and F is the tracking weight at the stylus for a condition of "just tracking properly". The modulus of acceleration is $2 \pi f \mathrm{~V}$.

A good frequency for estimating M_{1} is 10 kHz , and if $10 \mathrm{~cm} s$ velocity puts the tracking threshold at, say. 1.5 grammes, then M_{1} would equal approximately $2 \cdot 3 \mathrm{mgm}$.

The better cartridges tracking down to one or two grammes would have tip masses around 1 mg . A treble resonance well within the passband indicates a relatively high tip mass.

MECHANICAL RESISTANCE

In any electro-mechanical device some mechanical resistance to movement is inevitable, but in pickups it is deliberately employed in conjunction with compliance and tip mass to even the tracking and to damp resonances over the audio spectrum. It takes effect more over the middle part of the spectrum,
while compliance is important at the low end and tip mass at the high end.

Again it is not a parameter that is specified, nor easily measured, but if natural resonance occurs over mid-range, it is likely that the mechanical assembly of stylus and cantilever is at fault.

TRACKING PERFORMANCE

Few specifications carry meaningful information on the tracking performance, although Shure do give a parameter in terms of '"trackability", which indicates the ability of a cartridge to track recorded waveforms of high amplitude, velocity and acceleration at minimum tracking weights.

The information given under compliance and effective tip mass implies that given sufficient tracking weight any cartridge would track a given modulation. This is untrue, of course, because the groove wall would collapse. Tracking performance thus relates to tracking weight

Modern discs carry amplitude variations up to 0.005 cm , velocities up to 25 cm 's (sometimes more on heavily recorded "pop" discs) and accelerations sometimes exceeding $2,000 \mathrm{~g}$. Thus to track these at, say, l or even 2 grammes tracking weight, both the cartridge and
the arm must be of high quality.
In a more advanced specification the tracking performance might be given as a curve showing the mechanical impedance of the stylus tip over the spectrum in terms of $F V$, where F is the threshold tracking force in milligrammes and V the recorded velocity.

It is then possible to project a curve of maximum recorded velocities over the spectrum on to this curve as shown in Fig. 16 . From these curves the tracking weight required at any frequency can be determined. At 3 kHz , for example, the impedance is $50 \mathrm{mg} / \mathrm{cm} / \mathrm{s}$, while the maximum peak velocity is about 27 cm 's, which means that a tracking weight of a little under 1.4 grammes is required.

Very few impedance curves are as smooth as this illustration, and it is only the best cartridges which can boast a tip impedance of less than 50 ohms at 2 kHz .

TRACKING WEIGHT

All specifications should give a tracking weight or maximum/ minimum limits. The maximum merely indicates the force that the stylus assembly can handle before running into mechanical nonlinearity effects (or bottoming) while the minimum is usually a very optimistic value having no relationship to real tracking performance.

Tracking force of a specific amount is demanded, of course, to counter the reaction of the stylus in the modulated groove (see under Tracking Performance), but even
running at the maximum is no indication that the pickup will track maximum velocities accurately unless the weight refers to given levels of modulation over the spectrum (see Fig. 16).

The arm and side-thrust correction are tied in with this problem, and one way that the user can determine the approximate tracking performance of his pickup at a given tracking weight is by festing with a special record. Bands are provided on the HF69 test record for this purpose and for optimising the side-thrust correction.

VERTICAL TRACKING ANGLE

Discs are now being cut with a 15 degree vertical tracking angle, this value being given in the specification. If the angle deviates from 15 degrees there is a rise in harmonic distortion. The angle is defined in Fig. 17.

Fig. 17

LATERAL TRACKING ERROR

When a disc is cut, the cutter head follows a line of true radius of the disc, tracking along a radial rotating lathe screw. On replay the stylus follows an arc because the arm is pivoted at one point. Tracking error results because of the departure from exact tangential alignment of the replay stylus with the groove over the whole groove length.

As high harmonic distortion and disc and stylus wear result from this error, steps are taken in the arm design to correct it or at least significantly to reduce it. They consist of offsetting the axis of the cartridge from that of the arm and arranging for the stylus tip to overhang the turntable pivot at centre swing.

In Fig. $18, \phi_{2}$ is the offset angle and $d_{3}-d_{2}$ the overhang. The tracking error is thus equal to 90 minus ($\phi_{1}+\phi_{2}$), or is zero when $\phi_{1}+\phi_{2}=90$ degrees.

The following expression is useful for calculating the offset angle for zero error with overhang and effective arm length $\left(d_{3}\right)$ as parameters.
$\cos x=\frac{d_{1}^{2}-\left(d_{3}-d_{2}\right)^{2}+2 d_{3}\left(d_{3}-d_{2}\right)}{2 d_{3} d_{1}}$
whence ϕ_{2} for zero tracking error is $90-x$ degrees.

Clearly, many combinations of offset angle and overhang are possible for zero error, and it is the job of the designer to select that which yields minimum error at all arm positions relative to the effective length of the arm.

The overhang is commonly adjusted by the user with an alignment protractor for the least error at the inner groove diameter, since it is here, where the waveforms are compressed, where the distortion can be at its highest.

A well designed 8 in arm with an overhang of 0.55 in and an offset angle of 24 degrees would have zero error at $3 \frac{1}{2}$ in and Gin diameters and errors of about $2 \frac{1}{2}$ and 3 degrees at diameters of 9 in and 12 in . The maximum errors are less with longer arms, but then there is the disadvantage of extra arm inertia.

For optimum tracking conditions ϕ_{2} reduces as d_{3} increases, this making d_{4}, called the "linear offset', a constant. It has been determined that when d_{4} is 3.47 in , irrespective of arm length, the distortion due to tracking error is minimised over the swing of the disc after setting the overhang with an alignment protractor

Distortion is proportional to the ratios of tracking error/groove radius and recorded velocity/ turntable velocity. When calculations are made for the least distortion between the maximum and minimum groove diameters the parameters obtained differ slightly from those based on zero tracking error at the inner groove diameter.

Tangential arms which do not pivot in the usual way reduce the tracking error to a maximum of about $\frac{1}{2}$ degree by using a pantograph style arm with parallel arms for adjusting the offset angle during playback.

Fig. 16. Curves relating stylus tip impedance to recorded velocities

STYLUS

Modern discs have groove dimensions suitable for styli of 0.0005 in tip radius. Earlier LPs called for 0.001 in radius styli. A compromise dimension is 0.0007 in , suitable for early and recent discs, but for the best reproduction the smallest practicable active radius is desirable. This is because the recorded high frequency waveforms, particularly at inner groove diameters where they are more compressed, can only be defined by a tip of smaller dimension than themselves.

Tracing distortion, which is a harmonic distortion resulting from the recording cutter being chiselshaped while the replay stylus is spherical, reduces as the active tip radius is reduced

A hemi-spherical tip cannot be reduced to much less than 0.0005in for fear of it bottoming in the groove and causing excessive nolse.

This, however, is overcome by the semi-ellipsoid or biradial tip, whose active minor radius is 0.0003 in or sometimes less. The major radius which falls across the width of the groove is 0.0007 in , thereby preventing bottoming. Such a tip improves replay definition at inner grooves while also minimising tracing distortion.

Diamond is the only material suitable for a hi fi stylus, although sapphire is still used for mass market equipment. The life of a sapphire stylus is shorter, being a softer substance, often of a composite mixture.

Stylus replacement nowadays demands either the return of the cartridge to the maker or the replacement of the stylus assembly which sometimes pulls from the main body.

Fig. 18. Factors involved in lateral tracking

SIDE-THRUST CORRECTION

Fig. 19 shows that owing to the arm offset angle ϕ and the forward drag t of the stylus in the groove, a torque results at the arm pivot, which reflects as force F pulling the cartridge inwards.

Cancellation of this force at the arm is achieved by a dangling weight device spring or magnetism. Actual correction value cannot be calculated for the changing modulation conditions (e.g. changing drag) and a compromise correction
is usually established by using a suitable test record.
The previously held view that F diminishes with reducing stylus-togroove velocity (such as at the inner diameters) is currently under question, some authorities claiming that the drag due to components other than modulation remains substantially constant over the disc.

Accurately corrected side-thrust can reduce the required tracking weight by as much as 20 per cent.

Fig. 19. Illustrating side-thrust, where force F is equal to $f \sin \phi$ $\times \cos \phi$.

TURNTABLE REQUIREMENTS

Detail of the Goldring-Lenco continuously variable speed control

Belt drive can ease the problem of noise coupling from the motor. With both belt and idler wheel systems speed change is provided by stepped or continuously variable diameters on the motor drive shaft, with the idler, like the belt, acting as pure transmission, and not affecting the drive ratio.

An interesting arrangement is adopted by Leak and GoldringLenco transcription units ior continuously variable speed change, where the idler wheel is made to slide along a conical motor drive shaft (see photo) to its preset speed position.

Constant speed under all normal operating conditions including stylus drag and cleaning brush friction is essential to avoid wow and flutter. Large mass and dynamically balanced turntables help with this problem, so that the motor needs only to transmit a relatively small amount of energy to keep the turntable at constant velocity.

WOW AND FLUTTER

Wow, which is caused by turntable speed variations below 20 Hz , and flutter, which results from speed variations at a higher rate, are far more disturbing than consistent speed error.

The percentage wow and flutter is given as
wow and flutter

$$
\frac{\left(f_{\max }-f_{\min }\right) \times 100}{f_{\mathrm{av}}}
$$

per cent
where $f_{\text {max }}$ and $f_{\text {min }}$ are the maxi-
mum and mınımum frequencies and f_{av} is the average frequency, usually based on 3 kHz . Measurement is by a wow and flutter meter and the readout may be in peak or r.m.s. value.

The minimum DIN requirement is not greater than ± 0.2 per cent peak, but to be undetectable to acute hearing the wow must not be greater than 0.3 per cent and the futter not greater than 0.15 per cent.

Drive motors are mostly a.c. mains operated and of quasisynchronous nature. They are usually adequately decoupled from the turntable bearing by rubber buffers or springs. The whole motor board, too, may be decoupled from the plinth to reduce shock excitation of the pickup.

A fairly recent idea is the use of a Wien network oscillator for driving a synchronous motor, the motor speed thus being adjustable by varying the oscillator frequency, Servo controls have been mooted. but in general the a.c. motors and turntable units of today are well compatible with the associated components of the system and do not really justify such sophistication.

SPEED ERROR

The DIN minimum speed error tolerance of +1.5 per cent and -1 per cent is generally well met and is reasonable since an error of $0 \cdot 2$ per cent corresponds to a change in pitch of less than $1 / 30$ th of a semitone. Nevertheless, listeners blessed with perfect pitch should consider a unit with limited speed control.

RUMBLE

Rumble is quoted relative to a given level of modulation, the greater the level the greater the signal/rumble ratio. Rumble expressed as, say, 40 dB below $5 \mathrm{~cm} / \mathrm{s}$ at 1 kHz RIAA implies that the rumble is relative to a signal of that frequency and level, with the rumble itself being measured via RIAA equalisation.
Other filters may be incorporated in the readout to weight the disturbance and to eliminate high frequency noise. For meaningful comparisons the nature of the measurement must be known, and this is not always given in the specification.

T111s is the concluding article in the present series: it is mainly concerned with a project for the detection of the decametre radiation from the planet Jupiter. but also explains how al radio map of the sky may be produced.

RADIATION FROM JUPITER

In 1955 Burke and Franklyn in America were testing a large aerial system. With the team was F. Graham-Smith, one of the original team under Martin (now Sir Martin) Ryle at Cambridge. Graham Smith and the other members of the American team had noticed that there was a regular outburst of radiation which was very like the sun in some respects. Someone jokingly said perhaps it is Jupiter and in fact Jupiter was in the beam of the aerial when the radiation appeared. A check was made and it was indeed found that the planet was radiating on frequencies around 16 to 22 MHz .

When listening to these radiations the sound from the loudspeaker is very much like the sound of the ebb and flow of the sea on a shingle beach. It is quite distinctive and easily recognised in the midst of other radiation; it changes in level very rapidly and may vary by as much has a hundred times in the course of a few seconds.

As this particular part of the frequency band is full of activity, daytime observation is difficult even with an interferometer: thus the majority of observations of Jupiter are made at night. 'This particular problem has received a great deal of attention by Warwick and others in America but not much elsewhere, apart from the author's work in collaboration with Florida State University.

BY F.W.HYDE • PART 10

There are a number of observatories in America juvolved names associated with the work are (Alex) G Smithpand T. D. Carr at Florida University: and recently workers at Meudon Observatory in France have taken a new approach to the problem. It is not possible to do more than give a brief account of this phenomenon of the Jupiter radiations. Various theories have been proposed over the past several years.

Obviously, there is still much to be done in the way of observation, and as the aerials and receiving equipment needed are extremely simple, Jupiter is now a worthwhile project for the amateur. Indeed. work can now be done in the back garden, because of a simple type of aerial which the author has brought into use.

Formerly. a large corner reflector was required and remembering that at 18 MHz , one of the particular frequencies used. the wavelength in physical length is some 54 ft . a corner reflector is quite large even with a half-wave dipole-being some 40 ft high and 40 ft long cone of the author's large aerials is shown in the photograph).

EQUIPMENT REQUIRED

The requirements for the Jupiter project are a suitable yet simple aerial, a pre-amplifier, a communications receiver. a d.c. amplifier, and a recording system. The block layout is shown in Fig. 10.1

The simple aerial already alluded to is a loop which is nearly closed and it may be used in the normal way without a reflector, in which case it will have the usual figure of eight polar diagram. A reflector of mesh added gives an increase in gain

Fig. 10.1. Block diagram of Jupiter Receiving System

Fig. 10.2. A recording of radiations from Jupiter
with the loop facing the source of energy. This aterial is not unduly critical as to bandwidth so that an aerial designed for 20 MHz will operate quite well between 18 and 22 MHz . This is quite an important factor, because it may be that some radiations will appear in any part of this band. Also, if the band is somewhat crowded the tuning point can be changed to find a quiet spot.

Because of the nature of the Jupiter radiations the normal time constant of the communications receiver is used. If the pre-amplifier provides of the order of $20-30 \mathrm{~dB}$ gain, it will be possible to use the direct output from the receiver, or to feed the d.c. amplifier direct from the second detector, with no intermediate long time constant detector section.

Much of the professional work that has been done in the past has been with high-gain receiver frontends, and recordings made on low resistance recorders with an incorporated rectifier. If the recorder had no rectifier then a 1 mA bridge rectifier such as the Westinghouse meter rectifier was used. The results of such observations are shown in the recorded chart in Fig. 10.2.

Bearing in mind the description of the sound of this radiation, it will still need some practice, both aurally and visuaily, to determine that which is of Jovian origin, and that which is from man-made and extraterrestrial sources. More will be said about this at the end of this article.

AERIAL CONSTRUCTION

Details of the loop aerial are given in Fig. 10.3.
The best material for the aerial element is halfhard aluminium tube of about one half inch
diameter. The reflector should be of 1 in to $1 \frac{1}{2}$ in square mesh of $16 \mathrm{~s} . \mathrm{w} . g$. galvanised wire with welded joints. This is a readily available item in most hardware stores.

The frame can be of timber or metal according to choice. If metal is used then make sure that all parts of metal that touch are electrically bonded.

The mounting of the aerial can be left to choice, but this is an opportunity to make up an equatorial mounting, and the diagrams in Fig. 10.4 give some suggestions in this respect. The aerial and preamplifier should be mounted on the back of the reflector. It is suggested that another additional pre-amplifier be employed at the receiver.

PRE-AMPLIFIER

Two examples of suitable pre-amplifier circuits are shown in Fig. 10.5. The type of transistor can be changed to suit, provided the parameters are the same. Those shown are the types used in the original equipment and which have given reliable service.

A warning is perhaps advisable here about breakthrough. If attempts are made to use this radio telescope where there is much commercial operation, breakthrough may be troublesome and in some cases damaging. A check should be made with an aterial located at the receiver to observe the state of the band before connecting the main aerial and its pre-amplifier. Also, it is as well to have the aerial pre-amplifier switched off when not in use, for it too could suffer from overloading.

Fig. 10.3. Loop aerial constructional details

Fig. 10.4. Suggested mounting arrangement for loop aerial centred at 20 MHz . This provides for equatorial and altazimuth adjustment

Fig. 10.5a. A simple aerial pre-amplifier

Fig 10.5b. A two transistor aerial pre-amplifier

FORM OF OBSERVATION

After a few trial observations and recordings, it would be possible to let the system run without direct supervision. This is of course very simple in the case of the interferometer for most of the interference will be avoided. In the case of the simple oneaerial system, as just described, attendance of the observer is necessary to ensure acceptable observations and until sufficient experience has been gained in assessing the recordings obtained. If possible, the recordings should subsequently be examined by an observer who has this experience.

This is mentioned because to be useful the observations should be made over as long a period as possible, and it is not very convenient nor desirable to spend up to eight hours on direct observations.

The important times are in fact the two hours before and the two hours after the planet passes the meridian. There are special reasons why the earlier and later observations can be useful. For example: important information about the ionosphere after sunset can be obtained; and, after say 03.00 a.m., the rise of the dawn chorus can be recorded. This latter phenomenon is quite striking when first experienced, and the effect on the recording can be seen in the example given in Fig. 10.6.

MAKING A RADIO MAP OF THE SKY

The list of sources given in Part 7 is short and covers only the more powerful sources, though even some of these may be below the threshold of recording where the simple telescope is used. It is however a practical and useful exercise to make a radio map of the sky from the point of observation. There will be a considerable difference between the maps made in the northern hemisphere and those made in the southern hemisphere. Such maps could be useful where correlation of results is at intervals ranging over the two hemispheres.

The procedure for building up a useful map is simple and involves two requirements: (1) a setting in altitude; (2) a sufficiently spaced scanning programme. The altitude changes will depend on the beamwidth in the vertical direction and the value of the scans will depend on having a number of days at the same scanning position. This latter requirement is necessary in order to take care of the varying conditions of the ionosphere and other effects on the transmission of the radiation through the atmosphere. Usually a four to six day run at each altitude selected should give a reliable set of data. The sequence is then as follows:

Fig. 10.6. Example of a pen recording of the dawn chorus

Fig. 10.7. Radio map of sky at 200 MHz . Values in arbitrary units

Set the altitude; record the runs: carefully log the conditions; examine each day and compare it with the next: lay the records over each other with a bright light under to assess visually the changes.

Make careful notes of any unusual or odd items on the recording. From this it will be possible to learn the effects of satellites, man made interference, air radiation effects and, at the frequency chosen, the rain static effects.

As a normal programme, a month of scanning should yield sufficient data for a reasonably accurate map. When the man is completed it would look somewhat like that shown in Fig. 10.7. The contour lines are at the points of equal intensity, and the whole presents a kind of relief map of the part of the sky covered. The value of the lines are arbitrary in the case of this project. but there is a standard evaluation and this is given in the appendix for those who would like a little mathematical information.

POLARISATION

One point that should be mentioned here is that the energy that is received from extra terrestrial sources is polarised. Since the aerials in use are horizontally polarised, only half the energy from space is received in the horizontal mode. It might be thought reception should be set up in both planes. This is, in fact, frequently done and does offer a means of roughly determining the way in which the radiation is polarised. This might be left handed or right handed.

One reason for the more common practice of using horizontal receiving elements is that mechanically they are easier to construct but there is also another reason which relates to the electrical properties.

It is a fact that there appears to be less interference on the horizontal mode compared with the vertical mode. One reason for this is the amount of reflected radiation from the ground which also seems to carry a good deal of man-made interference.

With the corner reflector aerial there is protection from this type of reflection. If the aerial is turned so that the bottom edge of the reflector is near the ground the "spill-over" of the beam will mean that radiation from the ground is picked up. It is sometimes necessary to set another horizontal reflector to overcome this. Where the sensitivity of the system is low as in the first simple project described in this
series, the ground radiation (or temperature as it is described) will dominate in any case. The appendix also deals with this aspect.

IN CONCLUSION

If there is sufficient interest in the promotion of projects that have so far been described in this series, it could be possible to organise them on a group basis, and so make a worthwhile contribution to knowledge.

Those wishing to follow such a line of observation. whether it be solar noise and/or polarisation measurements, together with the study of the Jupiter radiations, should contact the editor. This would enable the author to arrange the correlation of data with a view to publication of the results and credits to those who take part. It could also result in an exchange of information between like minded readers.

APPENDIX

One method of assessing the intensity of the radiations received is based on Planck's law relating to the emission of electromagnetic energy at all frequencies from a "black body". This energy is related to the temperature of the body. For radio frequencies the Rayleigh-Jeans formula can be used and this is:

$$
B=\frac{2 K T}{\lambda^{2}}
$$

This gives the brightness of the source in terms of T which is the temperature in degrees Kelvin and the wavelength λ where K is Boltzman's constant and is equal to $1.38 \times 10-23$ in MKS units.

The temperature of the earth radiation is of the order of 100° Kelvin and this sets the lower limit of temperature that can be measured. This is one advantage of the large dish type aerial since the aperture can be trained away from the surface of the earth and so avoid these limiting factors.

Although there are not many books on Radio Astronomy there are sufficient in most libraries for the enthusiast to pursue these theoretical considerations.

This photo shows Chay Blyth at the chart table of the boat British Steel which uses Brooks and Gatehouse eleztronic instruments, including speed, depth and wind indicators; depth transducer selection switch is at bottom right of the panel. The instrument dials are ciften duplicated in a waterproof housing on the top of the cabin as shown on the 36 ft cruiser racer below

Mini computer using medium integration with seven-segment displays

ELECTRONORAMA

ANOTHER boat show-another year of marine electronic development. although quite often it is hard to find what has been developed by who. This is mainly due to the lack of organisation in the press office at the show and not the firms concerned.

Medium scale integration has now found its way into the sailing scene and is incorporated in a depth indicator with seven segment digital readout, by G. M. Systems Ltd. Having ranges from 0 to 99 feet and 0 to 99 metres the unit has no moving parts (except a range. on/off switch and a draught compensator control) and is very compact. Main disadvantages are: no facilities for remote readout and the possibility that it is more difficult to judge the rate of change of depth from a digital display than from a meter or graph readout.

The G1000-F chart recording echo sounder for inshore fishermen, yachtsmen and small coasters has been introduced by Ferrograph. The new sounder is unusual in that it uses a specially prepared paper that is marked electrically avoiding the need for a special pen and ink

Another new product is the 050 radar from Decca. Smaller than the 101 and less expensive this new radar should be of interest to many small boat owners. Decea tell us that no corners have been cut to get the price down.

Other developments in small boat radar were announced by Kelvin Hughes (Type 17 radar developments) and EMI (new version of the Electrascan); no price increases have been made on the developed sets by either of these firms.

Brookes and Gatehouse have this year come up with no less than five new developments, admittedly one of those is a skin fitting for the existing boat speed indicator, but the other four are significant developments in the small boat electronics field. Three new B and G equipments are a sailing performance computer to calculate speed made good to windward, a "single signal" df receiver-a development of the Homer K receiver.

The Decca 050 radar is suitable for small boats under 40 ft

The interior of the Decca 050 display unit showing all the display electronics mounted on one printed circuit board

ATTHE EHON

and a long-range echo sounder (100 fathoms). The fifth development is an improved distance-off-course computer. This computer uses a "new design" master compass which we believe has only recently been released for sale for non-military applications. This electronic polar locking (EPL) compass is also used in the "autopilots" made by Space Age Electronics. The main feature is that the bearing is unaffected by the movement of the boat however violent. The command pilot from Space Age Electronics shown on the facing page has EPL unit on the raised mounting and incorporates a remote hand held steering control unit -shown fixed to the pilot under the main control panel.

A new speedo/log that does not use an impeller or straingauge, merely a small transducer, and provides seven segment digital readout is now being offered by Detronic Ltd. The transducer is formed by an electrostrictive crystal transmitting an ultrasonic signal of 500 kHz . The unit works by measuring the frequency change of the signal reflected by the water (the signal is transmitted about 9 inches) due to the doppler effect. Hence a very accurate measurement can be made -0.1 of a knot from 0-9.9 knots and 1 knot from 10-99 knots.

The Baron Squire range is new this year, the main difference from their original range seems to be the housings and sealed indicators, some of which incorporate the electronics. They had an impressive display of units working under about a foot depth of water It is a pity that they do not improve their meter face design as this tends to be complicated and not very easy to read.

All in all plenty of new developments for the boat owner to consider and, with the advance of micro-electronics, perhaps some smaller, better equipments still to come.
The waterproof glass fibre radome houses the Decca 050 aerial and transceiver. This arrangement, fitted to a mast is most suitable to small motorised sailing boats where unshielded rotating scanners are unsuitable

Fairey Marine "Huntsman 31"

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea prublished will be awarded payment according to its merits.

UNIJUNCTION TIMER

Al.THOUGH it might be argued that a monostable could perform the same function as the circuit shown in Fig. I, it should be borne in mind that this is true for relatively short periods only. The circuit under consideration will perform happily for tens of minutes but to achieve the same time scale with a monostable would require enormously large electrolytic capacitors.

This particular circuit is also more straightforward in operation. To obtain the proper sequence from a monostable would necessitate the reversal of the initial states, i.e. the transistor which is initially off would have to be triggered initially on.

The purpose of the circuit is to manually switch on a power supply for a pre-determined period and leave it to switch itself off automatically. The power supply may be connected to a motor or some other piece of apparatus. In my project, it was used for a high-frequency transmitting oscillator.

When push switch S_{1} is pressed, TRI is brought into conduction via RI and the relay is energised. The operation of the relay closes contact RLAI across the switch to act as a self-hold. Capacitor CI begins to charge via R4.

When the voltage on Cl has risen to the triggering level of the unijunction TR3, CI discharges into R3 which produces a pulse of sufficient magnitude to turn TR2 on. The base-emitter junction of TRI now has the $V_{\text {rep }}$ saturation voltage of TR2 across it. This voltage is lower than the requisite turn-on voltage so TR! is turned off, the relay is de-energised and contact RLAI opens. The supply is thus switched off.

The main requirement in the project was to consume as little power as possible since the equipment was battery operated. An RS Components, type 15 , relay was therefore chosen because it requires only 60 mW operating power.

The unijunction transistor TR3 is the popular GEC type 2 N 2646 and the values of R2 and R3 are those recommended by the manufacturer. Capacitor C1 was chosen to be $1,000 \mu \mathrm{~F}$ so that $\mathrm{C} 1, \mathrm{R} 3$ has a time constant of 100 ms , which is twice the release time of the type 15 relay.

The value for R4 is only a guide since there is a variation in the value of η for the 2 N 2646 and electrolytic capacitors have such a wide tolerance. R4 will have to be finally chosen by trial and error. In the circuit which was constructed, a time delay of 5 minutes was achieved by using 100 k ! for R4.

The ballast resistance for the Zener diode may conveniently be a suitable indicator lamp. For example, with a supply voltage of 36 V one may employ an S6/8 type of lamp (RS Components) at $28 \mathrm{~V}, 0 \cdot 04 \mathrm{~A}$. A current of 40 mA through the Zener diode will provide good regulation since the greatest shunt path will be the 20 mA relay current.

Fig. 1. Circuit diagram of the unijunction timer. Terminals 1 and 2 go to equipment

RR.F. AMPLIFIER FOR CAR RADIO

By using a low noise transistor in the circuit shown in Fig. 1 the average car radio's performance is greatly enhanced and stations previously beneath noise level become reasonably clear.

The circuit, having a high output impedance. is effectively tuned by the input circuitry of the car radio.

The gain control VR1 should be advanced as far as possible consistent with absence of cross-modulation and car ignition interference.

Using a separate battery B1, eliminates earth loop problems, the need for elaborate decoupling and will last at least nine months with continuous use.
P. E. J. Lacey, Crediton, Devon.

Fig. 1. Circuit diagram of the r.f. amplifier for car radio

TONE GENERATORS

|N the new British Patent 1245714 Standard Telephones and Cables Ltd. (STC) discuss the problems inherent in constructing tone generators for telephone dialling.

Electrical oscillators can be used for this purpose but the problem in this case is that the associated switch is of necessity heavily used and its contacts may show early wear. A contact-less generator uses a reed of magnetised material which is set in vibration by plucking; but the vibration of the reed is not easily sustained and the plucking and plucked parts are also susceptible to wear.

STC have devised and patented a tone generator which uses a transducer (e.g. piezo electrical material) mounted on a reed coupled to a bowed leaf spring, Fig. 1. Once the transducer is excited a circuit keeps the reed vibrating, but this vibration is normally suppressed by a mechanical damper, see Fig. 2. As the reed is on a bowed spring, however, it can be snapped between one of two positions and it is only damped in one of these positions. In the other position it is free to vibrate and, what is more, this snapping motion serves to start the reed vibrating. Vibration is then maintained by the electric circuitry.

In Fig. 2 STC show such an arrangement in side view.
The leaf spring is snap controlled by a push button loaded by sprinas, and in its up-bowed position the leaf forces its reed and transducer aaainst a mechanical damping bar When the push button is pressed. the leaf snaps into its down-bowed position so that the transducer is brought well clear of the damper, the snapping motion mechanivally jolts the reed into vibration. This vibration is then maintained by an amplifier with two high qain transistors functionino as an oscillator by
virtue of a feedback loop, Fig. 3.
Usually the reed will be formed by a tongue cut out of the spring by a U-shaped incision and the transducer by a sandwich of piezoelectric material between metal electrode layers.

NeUTRRLISEO AMPIIFERS

|N BP 1241285 Mullard Ltd. out line the advantages and disadvantages to date of neutralised transistor amplifiers.

According to Mullard the advantages of neutralising the basecollector capacitance of a transistor in an amplifier (to minimise unwanted feedback due to such capacitance) are increased gain and stability. Such neutralisation can be achieved by a neutralising capacitor circuit.

However, as there is frequently a spread in the value of the basecollector capacitance and as a fixed value component is normally used for neutralisation, there is clearly a problem that under some circumstances the transistor may be over-neutralised and have a tendency to oscillate, while under other circumstances the transistor may be under-neutralised and have its gain seriously reduced. Ideally the neutralising capacitor would be matched to a particular transistor for the best possible compromise, but this is hardly practical for normal use.

The Mullard solution is to use a semiconductor body which has a transistor and a neutralising capacitor incorporated in the one case, the latter having a value appropriate for neutralising the capacitance of the base-collector junction.

The neutralising capacitor is formed from the same material as the transistor, but with opposite conductivity type regions as the base-collector junction. Usually this will be by the same diffusions.

Fig. 1

Fig. 2
The collector or base region of the transistor is connected to the region of corresponding conductivity type of the capacitor and the amplifier circuits so arranged that during operation there will always be a virtually complete cancellation of signals fed back to the base of the transistor via the two junctions.

By making the neutralising capacitor in the same semiconductor body as the transistor, it becomes possible to hold the ratio of their capacitances to within 5 per cent or better even though their actual capacitance values may vary by ± 30 per cent.

In Fig. 1 Mullard show how conventionally a neutralising capacitor C1 is connected between the base of a transistor and the side of a parallel LC tuned circuit away from the transistor collector. In Fig. 2 there is shown the manner in which the transistor and neutra. lising component C1 of Fig. 1 is realised as an integrated circuit.

The patent gives full details of the actual semiconductor bodies that can be used for realisation.

BP 1245714

Fig. 2

THE circuit of servo amplifier "B" is basically similar to that of servo amplifier " A " and with the exception of D1, C2, VR2, VR3, D2, C3 (Fig. 5) the action is the same. In this circuit TR1 is complementary to TR2 and $V_{\text {be }}$ voltage changes with temperature are therefore eliminated. TR 10 replaces the resistor R8 of the long-tailed pair in amplifier "A" and acts as a constant current source, bias being determined by R10, R8a and R9b. Note that reducing R8b increases the dead zone.
The use of a complementary emitter pair enables R2 to have a higher value and the input impedance is high. If large values of C1 and R1 are used, R2 (approximately $10 \times \mathrm{R} 1$) may be fitted to swamp the leakage effects of Cl .

DEAD ZONE OPERATION

The function of D1, C2, VR2 is as follows: if the input signal is increased, TR5 conducts more and TR3 and TR4 are turned on.

The collector of TR3 (bottomed) is approximately 0.2 V below the +6 V supply and, according to the setting, the wiper of VR2 may be at +4 V . The diode. D1 is therefore forward biased and C2 discharges to 52 V , there being a drop of 0.6 V across D1 and 0.2 V across TR3. This can be considered as being equivalent to connecting a $5 \cdot 2 \mathrm{~V}$ supply to the wiper of VR2 in place of +4 V ; the voltages associated with all sections of VRI are consequently increased.
If the input signal increase is not large the wiper of VR1 would have been initially not far from the

VR2 wiper is increased further, then another effect is involved.

If bottomed, TR3 and D1 discharge C2 relatively rapidly: thus in the example quoted, the motor is switched off prior to entering the "normal" position of the dead zone. On cut off, C2 is charged through VR2 relatively slowly; this time must elapse before the voltage at VRI is restored and the motor reverse should have traversed the dead zone.

The damping effect of C 2 can be tuned by means of VR2 to damp out persistent hunting. The components D2, C3 and VR3 have the complementary effect to D1, C2, VR2 and cause, by an amount set by VR3, the early cut-off of the motor in the reverse direction.

The fail safe operation is effected by changing the connection of R18 from 0 V when it has no significant effect to +6 V . This can be performed remotely, by using a relay. If R18 is less than R4 TR2 will cut off, and by selection the required torque unit setting can be obtained.

CONSTRUCTION AND TESTING

The components should be assembled on a printed circuit board, the pattern and layout being similar to that of Servo A (see Figs. 6 and 7). On completion VR2 and VR3 should be set to have no action.

If hunting takes place, when testing with the decoder for a given time constant for R1-C1, then VR2 and VR3 should be adjusted to damp out the hunting.

Fig. 5. Circuit diagram of servo amplifier " B ". The connection to R18 should be brought out separately if "fail safe" operation is contemplated

COMPONENTS . .

SERVO AMPLIFIER "B" (Fig. 5)

Resistors

*R1	10ks	*R10	9.1kS
R2	$100 \mathrm{k} \Omega$	R11	680,
*R3	22k to 82k』	R12	$2.2 \mathrm{k} \Omega$
R4	$4.7 \mathrm{k} \Omega$	R13	$10 \mathrm{k} \Omega$
R5	2.2k』2	R14	10ks
R6	10ks	R15	$2 \cdot 2 \mathrm{kS}$
R7	750s2	R16	18S2
*R8a	and b $2 \times 2 \cdot 2 k \Omega$	R17	18S
R9	750Ω	R18	$4.7 \mathrm{k} \Omega$
All	$\pm 10 \% \quad \frac{1}{6} \mathrm{~W}$ carb		

Potentiometers

VR1 500Ω linear, linked to servogeared motor VR2 1kS linear preset
VR3 1ks linear preset

Capacitors

C1 $47 \mu \mathrm{~F}$ tantalum
*C2 $47 \mu \mathrm{~F}$ tantalum

* C3 $47 \mu \mathrm{~F}$ tantalum

C4 $0.1 \mu \mathrm{~F}$ polyester (mounted on motor)
C5 $15 \mu \mathrm{~F}$ tantalum
C6 $0.1 \mu \mathrm{~F}$ disc ceramic
Transistors

TR2, TR5, TR6, TR8, TR10	Contained in IC1
	CA3046 (RCA)
TR1, TR3, TR7	2N3702
TR4 off)	
TR4	BFY51
TR9	OC84
Diodes	
D1, D2 OA202	(2 off)

Batteries
B1, B2 Two 6V dry batteries

Miscellaneous

Printed circuit board
Solder pins
*See text

Fig. 6. Printed circuit pattern (full size) for servo amplifier "B"

Fiq. 7. Component layout tor servo amplifier "B"

SERVO AMPLIFIER "C"

As shown in Fig. 8 the circuit is similar in form to servo amplifier " A " but fewer components are used. The unit is compact and may be mounted directly on the torque unit. TR1 and TR2 (not thermally coupled) operate as a long-tailed pair with R4 adjusted to define the current so that TR3 and TR4 cannot be on simultaneously.
Changes in temperature and supply voltages markedly change the width of the dead zone which should for safety be made approximately 15 per cent of the range
TR3 is operated directly from TRI which despite
a gain of 100 may turn on slowly in relation to TR5. The selection of component values follows as for Servo amplifier "A."

CONSTRUCTION AND TEST

The components should be assembled on a printed circuit board; the copper pattern is as in Fig. 9 and component layout Fig. 10
The unit should be tested as for servo amplifier "A" noting the absence of "fail-safe" circuitry and that the switching action of TR3 and TR5 in Fig. 8 is reversed with respect to the motor.

COMPONENTS . . .

SERVO AMPLIFIER "C" (Fig. 8)

Resistors

R1	$10 \mathrm{k} \Omega$	*R6	$4.7 \mathrm{k} \Omega$
R2	750Ω	R7	$10 \mathrm{k} \Omega$
R3	750Ω	R8	18Ω
R4	$6.2 \mathrm{k} \Omega$	R9	18Ω
R5	$2.2 \mathrm{k} \Omega$	*R10	100Ω

Potentiometer
VR1 500Ω linear, linked to servogeared motor

Capacitor

C1 $47 \mu \mathrm{~F}$ tantalum
Transistors

TR1, TR2	2N3702	(2 off)
TR3, TR4	2N3704	(2 off)
TR5	OC84	

Batteries
B1, B2 Two 6 V dry batteries
Miscellaneous
Printed circuit board
Solder pins
*See text

Fig. 8. Circuit diagram of servo amplifier "C"

Fig. 9. Printed circuit pattern (full size) for servo amplifier " C "

Fig. 10. Component lay" C " for servo amplifier "

FAIL SAFE SYSTEM

As shown in the servo amplifier circuits, a means is provided to preset the torque unit rotation in the event of a transmitter or system failure. This is effected by changing the connection of grouped servo amplifier leads by means of a lightweight relay.

As shown in Fig. 11, a decoder output pulse is also applied through R1 and D1 to the base of TR1. Capacitor CI charges rapidly during the period of the pulse, the source impedance being R1 and the collector resistance $R x$ of the logic unit used (approx. $4 \cdot 7$ kilohms).

Fig. 11. Circuit diagram of "fail safe" system

COMPONENTS . . .

FAIL SAFE CIRCUIT (Fig. 11)

Resistors

R1 $1 \mathrm{k} \Omega \quad$ R3 $2.2 \mathrm{k} \Omega$
R2 $390 \mathrm{k} \Omega$
Capacitor
R4 $10 \mathrm{k} \Omega$

C1 $47 \mu \mathrm{~F}$
Transistor
TR1 2N3702
TR2 2N697

Diodes

D1, D2, D3, D4 OA202 (4 off)
Relay
RLA 12 V 37 mA , two sets of change over contacts (minimum resistance 240 ohms)
Miscellaneous
Printed circuit board
Solder pins
Test lamp

CHARGE TIME CONSTANT

Diode D1 prevents discharge back through R1 and the discharge time constant is $\mathrm{C}_{1} \times \mathrm{R}_{2}$. Assuming a decoder pulse of 1 ms per cycle period of 40 ms this ratio of $40: 1$ makes an effective charging time constant which is still greater than the discharge time and C1 steadily charges. The base of TRI is 0.6 V $V_{\text {be }}+(2 \times 0.6 \mathrm{~V})(\mathrm{D} 2+\mathrm{D} 3)$ below the +6 V rail (i.e. approx. +4 V). When Cl is charged to this value TR1 cuts off and R4 ensures that the base of TR2 goes to -6 V cutting it off and allowing the relay RLA to release to the position indicated in Fig. 11 connecting the test lamp to 0 V .

Referring to servo amplifier B , this is the normal working state; the fail safe acts as inoperative and no current is drawn by the circuit shown.

PULSE FAILURE MODE

In the event of pulse failure, the charge on Cl falls relatively slowly to about +4 V when TR1 turns on. The base current would be $4 / R$, and, assuming a gain of 100 for TR1, the collector current is

$$
\frac{4 \times 100 \times 10^{3}}{390 \times 10^{3}} \mathrm{~mA}
$$

or approximately ImA base current for TR2.

Assuming a gain of 50 , the collector current of TR2 would be about 50 mA sufficient for a small relay of more than about 240 ohms. The diode D4 is normally reverse biased but conducts when the relay is switched off protecting TR2 from the inductive back e.m.f. pulse from RLA.

CONSTRUCTION AND TEST

The components should be assembled on a printed circuit board as shown in Figs. 12 and 13 with R1 fitted and a 6 V lamp connected for test, as shown. The copper strips retained under the relay must be arranged to suit the relay used.

With the $-6,+6$ and 0 V supply lines connected, the input should be connected to +4.5 V (from a battery or from a potentiometer across 0 V and $+6 \mathrm{~V})$. The time taken for the relay to operate and release on the application of +4.5 V should be noted. If the "make" time is slow and the "release" time less than half second, then Cl should be checked for excess leakage current.

The unit should then be tested in connection with the working decoder, it being noted that any output could be used, but it is preferable to use one with a defined pulse-to-cycle time ratio, such as the ungated complex one previously described.

The unused contacts may be wired for servo amplifier " A " or' used with any non-proportional model function. The resistor RI forms a means to protect the logic units from accidental shorts.

The positive going logic output is derived from Rx and in certain circumstances this may produce only about 4.2 V at C 1 .

A momentary interruption of pulses may therefore cause the fail safe device to operate after too short an interval. In this case RI should be connected as shown. In cases where an exceptionally long interval (+5 seconds) is required before fail safe operation, D2 and D3 should be replaced by a 3.5 V Zener diode.

Fig. 12. Printed circuit pattern (full size) for 'fail safe" system

Fig. 13. Component layout for "fail safe" system

© PGEMINI STEREOTUNER

- Integrated circuit phase lock loop stereo decoder with only one easily adjusted coil
- Pre-aligned high selectivity tuner head
- Integrated circuit limiter/discriminator with one simple coil
High selectivity ceramic filters
The P.E. Gemini Stereo Tuner is a perfect companion for the P.E. Gemini Amplifier or any other hi-fi amplifier.

I.C. SIGNAL INJECTOR

Build this rapid switching, low cost, square wave signal injector which has usable harmonics from audio to u.h.f. frequencies. Simple to make and to operate it is an ideal portable test instrument for the serviceman.

DOUBLE FLUORESCENT LAMP INVERTER

Full details are given for constructing a 12in fluorescent lamp driver which runs off a 12 V battery. It can light two 8W lamps or one at 13W. Provides a high light output for low running costs-a boon to all readers who enjoy camping whether in a caravan or tent. Also useful as an emergency light.

techingal trainng in radio television and electronics

Whether you are a newcomer to radio and elec－ tronics，or are engaged in the industry and wish to prepare for a recognized examination，ICS can further your technical knowledge and provide the specialized training so essential to success．ICS have helped thousands of ambitious men to move up into higher paid jobs－they can help you too！Why not fill in the coupon below and find out how？

Many diploma and examination courses available， including expert coaching for
＊＊＊
－C．\＆G．Telecommunication Techns＇．Certs．
－Radio Amateurs＇Examination
－General Radiocommunications Certificate
－C．\＆G．Radio Servicing Theory
－General Certificate of Education，etc．
Now available，Colour T．V．Servicing
Examination Students coached until successful NEW

SELF－BUILD RADIO COURSES Learn as you build．You can learn both the theory and practice of valve and transistor circuits，and servicing work while building your own 5 －valve receiver，transistor portable，and high－grade test instruments，all under expert tuition．Transistor Portable available as separate course

POST THIS COUPON TODAY

for full details of ICS courses in Radio，T．V．and Electronics Member of the $A B C C$

Accredited by the CACC －INTERNATIONAL CORRESFONDENCE SCHOOLS
Dept．FA25，Intertext House，Stewarts Rd．，London SW8 4UJ
Please send me the ICS prospectus－free and without obligation．
（state Subject or Exam．）
NAME
AGE
（Btock Capitals Please）
ADDRESS

INTERNATIONAL CORRESPONDENCE SCHOOLS

VALVES
 SAME DAY SERVICE NEW！TESTED！GUARANTEED！

1RJ	． 28	$30 \mathrm{Cl17}$	． 78	EAF42	． 50	EM81	41	PCLE 4	－34	UBC 41	
153	． 22	30C18	． 61	Fil341	． 40	EM84	． 32	PCL85	38	C－BF80	
1T4	－16	30F＇，	． 64	12391	$\cdot 10$	EM8 ${ }^{-1}$	． 34	PCL86	$\cdot 38$	UBF89	z
334	． 28	30 FL	． 61	1：BC3	． 40	EY．\％1	33	PCL88	． 65	UCC8．	32
3 V 4	． 37	$30 \mathrm{FL12}$	． 69	EBC41	． 54	EY86	． 28	PCL800	.75	Uccrs	35
JU44	． 31	30FL14	－68	$1213 C 90$	． 22	EZ 240	． 43	IENA4	． 77	UCF＇80	． 32
5V4G	． 35	30 LL	． 29	LiBF80	． 32	EZ 41	． 43	PriN36C	． 70	UCH4？	． 58
5Y3GT	． 26	30L1s	． 57	E13F89	． 29	EZ40	－ 22	PFL200	． 52	UC1181	． 32
$5 \mathrm{S4G}$	． 35	30 Ll 7	． 87	ECCB 1	$\cdot 17$	EZ81	23	PL36	－48	${ }^{\text {＇CLEP＇}}$	． 32
$6 / 30 \mathrm{~L}$ ： 2	． 54	30 P 4	57	ECC8．	． 20	GZ30	． 34	PL89	． 44	${ }^{1} \mathbf{C L} \mathbf{L}^{3}$	55
6ALJ	－11	30P12	． 72	ticess	． 35	GZ3：	40	PlSiA	47	－F41	56
BAM6	$\cdot 13$	$301^{*} 19$	． 57	ECC8．	． 34	（：Z34	． 48	PL8：	． 31	UF89	30
6AQJ	． 22	$30{ }^{1} \mathrm{~L} 1$	． 60	ECCP804	． 54	K 741	． 77	PL83	－33	1＋1．41	． 57
6AT6	． 20	30 PL13	89	ECF80	． 27	KT6］	． 55	PL84	－30	CL4．	12．00
6AL6	$\cdot 20$	30 PL14	． 65	ECF82	． 26	K Tati	． 78	$\mathrm{P}^{\text {L }}$－ 00	－63	UL84	． 30
6Ba6	． 20	3JLfiGT	45	FCOH30	－30	LN319	． 63	PL． 04	－63	UM84	－22
6BE6	． 21	35 W 4	25	WCH42	． 61	LN329	． 72	PM84	． 33	UY＋1	． 42
6 BJ 6	－41	35 Z 4 GT	25	LCH81	． 29	LN339	． 63	PXっJ	． 95	CY80	． 25
fbw7	． 52	807	45	HCH83	． 40	N78	87	P「32	－ 55	$11^{1}+13$	． 77
6 Fl 14	． 40	6063	62	HCH84	－36	P61	． 40	PY33	55	$\times 78$	£2．75
$6 \mathrm{FF}^{2} 3$	－68	AC／VP ${ }^{\prime}$	77	ECL80	$\cdot 30$	PABC80	． 34	PY8।	25	X79	12．75
$6 \mathrm{~F}^{2} 5$.53	13349	65	ECL82	.31	1 C 86	．47	PY8：	－25	777	． 22
$6 \mathrm{K7C}$	－17	187×9	． 82	FCLL86	－35	PC88	.47	PY83	． 28	Transi	tors
${ }^{61} 8 \mathrm{Cg}$	－17	CCH35	． 87	E ${ }^{\text {da }}$	38	PC96	． 42	PY88	－33	AC107	－17
6Q ${ }^{\text {6 }}$	． 35	CY31	． 30	EF41	． 60	${ }^{\mathrm{PC} 9} 7$.39	P＇800	． 34	AC127	． 18
68N7 ${ }^{\text {d }}$	－30	DAF゙91	． 22	EF80	－23	PC900	． 31	$\mathrm{P}^{\prime} \mathrm{F} 801$	． 34	A D140	． 37
6 ybo	－28	DAFGt	－38	EF85	． 28	PCC84	． 29	R19	30	－FFlあ	． 20
fybat	． 28	DF33	． 38	EF86	－30	PCC85	.25	120	． 56	AF116	． 20
6×4	． 23	DF91	－16	EF89	． 26	PCC88	． 40	U－	． 64	A以17	． 20
6 XJG ¢	－28	DF9r	－38	EF91	－ 13	PCC89	． 45	U96	． 56	AF118	． 48
10P13	． 58	DH7T	． 20	EP9？	． 30		． 48	U4	． 64	オドざす	－17
12ATY	－ 17	JK 32	． 33	EF98	． 65	1＇ccso．	－ 58	U44	． 56	－F1．27	． 17
12．AU6	． 20	LK91	． 28	EF183	． 28	P＇CF80	． 28	U50	26	OC26	． 25
12 AUT	． 20	DK92	－ 38	EF184	－31	PCF8\％	.31	Uず	． 31	OC4 4	12
12AX 7	． 22	DK96	－38	EH90	． 35	PCF8 ${ }^{\text {¢ }}$	． 45	U78	． 24	0 C 4	12
198G6（	． 87	DL3．	－ 40	HL33	55	PCF800	－58	U191	． 58	OC 71	． 12
2019	． 67	DL9：	． 26	EL34	． 45	PCF801	． 28	－193	.42	$0 \mathrm{C} \cdot$	12
$\because 0 \mathrm{P} 3$	$\cdot 77$	DLO4	． 37	EL＋4	． 54	PCF80：	40	บこう」	． 84	$0 \mathrm{CO}^{5}$	． 12
20 P 4	． 92	DLipd	－38	EL84	． 23	PCF80，	． 61	V301	． 38	OC81	12
25 LbET	． 20	D） 86	． 24	EL90	． 26	PCF＊06	． 58	U329	－68	OC811	12
	． 57	DY8 ${ }^{\circ}$	－24	EL995	－ 33	PCP808	－88	1801	． 80	OCs：	． 12
30 Cl	． 28	1980\％	．33	ELJ00	． 62	PCL8：	－32	UABC80	． 32	OC8？ 1	12
30C1ぁ	． 58	EABC80	．32	EM80	． 41	PCL83	． 57	UAF＋2	． 51	008	12

READERS RADIO

85 TORQUAY GARDENS，REDBRIDGE，ILFORD ESSEX．

Tel．01－550 7441
rost／packing on lyalve 6 p ，on 2 or here valves 3 p per valve cetra Any parcel finsured against damage in transit 3 p extra

LIGHT SENSITIVE

INTEGRATED CIRCUIT

ARE YOU STHL USING
OTHER PHOTOCELLS，DIODES AND
WE ARE
PHOTODETECTOR
AMPLIFIER
TRIGGER
CRIVER－AEIL IN A SINGLE 4 mm．DIA．
AWILL DAIVE RELAY OR TRIAC FOR
CONTROL B YRGLAR ALARM BEAM
PRICE ONLY 65p each $+3 p$ post and packing）with full operating instructions APOLGCONTRO
P．O．／CADCUES payable to DLBON and crossed
LTTE－IC，BLBON，SUMMDREIDID．THL GRDSCENT．WEST WITTERING．SUSS DX

P．E．SCORPIO

 IGNITION SYSTEMComplete kit of high quality components－£ $10 \cdot 75$ ．p．sp．50p All parts available separately send S．A．E．for list

AMC ELECTRONICS LTD．
160．DRAKE ST．，ROCHDALE，LANCS

ELECTROPSYCHEDELIA?

Flicker phenomena, discussed by many and at some length by Dr W. Grey Walter in his book "The Living Brain", is the effect which sometimes manifests itself as the result of the pulsating nature of the light from cine projectors, or the intermittent flashing of sunlight through roadside trees during a drive in the car. This phenomena is often exploited in such places as discotheques where strobed xenon lamps are employed.

The effect is difficult to describe in purely objective terms, but. for most observers, this generally seems to evidence itself as a form of pleasant swimming sensation or a feeling of moving through time. To a large extent the degree of influence appears to be related to the flicker rate of the lamp and, in this context, probably has the greatest effect when it is synchronous with the frequency of the "alpha" waveform produced by the brain.

The amplitude of this alpha rhythm seems, in most cases, to be very much suppressed so that for many individuals the phenomenon may be either just noticeable or entirely absent.

However, a method for selecting and, even, raising the intensity of the elusive rhythm has just been rediscovered. This has resulted in the brand-new craze which is currently sweeping through the U.S.A., previously called "photic" stimulation back in the 1950's, and now enjoying the title "bio-feedback".

In reality, the concept behind this bio-feedback lark is an attempt to help people teach themselves the art of controlling their brain rhythms, with the intention of encouraging an equivalent condition of that transcendental experience. only hitherto reached by masters of deep meditation!

Basic operation of a bio-feedback set-up will be seen from Fig. 1. Electrodes, dampened in saline

solution and attached to the subject's scalp, pick up the very much attenuated signals originating in the cortex of the brain. They are then amplified several hundred thousand times and, subsequently, filtered since the required signals are almost always buried deep in either noise, or unwanted signals of greater amplitude.

The resulting output is fed to a Schmitt trigger prior to operating a simple delay circuit which either flashes a lamp into the subject's eyes. or controls an audio oscillator. In this way the flash-rate and delay can be adjusted to achieve a constant positive feedback such that the lamp flashes at the most effective point in the brain's alpha waveform.

This, essentially, instant way of "mind-travelling" could have quite exciting possibilities and, although not a therapy worthy of recommendation to epileptics, may hold some of the keys to the more arcane aspects of psi phenomena.
I notice that this rather costly form of "everyman"s electroencephalography" is already beginning to catch on in this country. Anyone for back-pocket hypnosis?

FAST TALKER

For too long now the blind have been forced to contend with "talk-ing-books" which produce far fewer words per unit time than could be read visually. Up till quite recently, unless these people were prepared to tolerate a kind of "chipmunk" sound, the speed of playback could not be increased.
The visually handicapped are not

Fig. 2. Circuit diagram for varying speech rate

The new AR-2000 Tuner Amplifier

(Gloucester) LTD., GLOUCESTER GL2 6EE

Why not visit the Heathkit showrooms in London or Birmingham?
233 Tottenham Court Road London
17-18 St. Martin's House Birmingham

Please send the the Heathkit Catalogue

Name \qquad -

Address \qquad
\qquad

LARGE STOCKS GOOD SERVICE ATTRACTIVE DISCOUNT

Satisfaction Guaranteed

electrovaive Electronic Component Specialists

SEMI-GONDUGTORS $\begin{aligned} & \text { Brand new, guaranteed to spec. } \\ & \text { No seconds or surplus. }\end{aligned}$

Appointed Distributors for SIEMENS (UK) Ltd.

THYRISTORS, RECTIFIERS, ETC.

SIEMENS 5\% TOLERANCE

 POLYCARBONATE CAPACITORS250 V up to 0.1 mF : 100 V 0.1 mF and above $0.01,0.012,0.015,0.018,0.022,0.027$ 5p $0.033,0.039,0.045,0.056,0.068,0.082,01$
$0.12,0.15,0.18,0.22$ $0.27,7_{p} ; 0.33,0.39,9 \mathrm{~d} ; 0.47,10 \mathrm{p} ; 0.56$ 13p; 0.68, 15p.

BAXENDALL̇ SPEAKER KIT As originally designed and described by P.)
Baxendall in Wireless World. 10 wart 150 with frequency equaliser, speaker unit and
special cabiner (size approx. $18^{\prime \prime} \times 12^{\circ} \times 10^{\circ}$) in

MAIN LINE AMPLIFIER KITS Very poweriul 70 watt module, nett $£ 12.60$ Power supply list, nett E6.00.
Matching pre-amp Kit
(Mag. or Xtal input), nett $\mathbf{\text { F }} \mathbf{3 . 3 0}$.
For 5 tereo to build in your own cabinet, etc controls, power unit, nett $£ 38.40$.

VEROBOARD

 26p; $2.5 \mathrm{in} \times 5 \mathrm{in}, 26 \mathrm{p} ; 3.75 \mathrm{in} \times 5 \mathrm{in}, 29 \mathrm{p}$.
0.15 matrix: $2.5 \mathrm{in} \times 3.75 \mathrm{in}, 17 \mathrm{p} ; 3.75 \mathrm{in} \times 3.75$, $26 \mathrm{p} ; 2.5 \mathrm{in} \times 5 \mathrm{in}, 26 \mathrm{p} ; 3.75 \mathrm{in} \times$
$0-2 \mathrm{n}$ matrix $5 \mathrm{in} \times 3.4 \mathrm{in}, 37 \mathrm{p}$.
ZENER DIODES $5{ }^{\circ}$ full range E24 values:

ZENER DIODES $5^{\circ}{ }^{\circ}$ full range E24 Values:
$400 \mathrm{~mW}: 2.7 V$ to 30 V . 15 p each: $1 \mathrm{~W}: 6 \cdot 8 \mathrm{~V}$ to 400 mW : 2.7 V to 30 V . 15 p each; iW: 6.8 V to
$82 \mathrm{~V}, 27 \mathrm{each} ; 1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V 60 p each. Clip to increase 1.5 W rating to 3 watts (type 266F) 4p.

PUBLICATIONS

The Book of Transistor Equivalents (BP.1) 40p Handbook of Tested Transistor Circuits
by H. Ness (BP.3) Radio and Electronic Colour Code and
Data Wall Chart (BP.7) Data Wall Chart (BP.7)

DISCOUNTS

Not allowed
10% on orders for components for
15% on orders for components for 615 or more

Prices subject to alteration without prior notice Terms of business as published in cotalogue.

POSTAGE AND PACKING

FREE on orders over $£ 2$. Please add 10 p if orders under $£ 2$.
Overseas orders weicome: carriage and insurance charged at cost
U.S.A. Customers are recommended to get in touch with ELECTRO-VALUE PA 19081.

CAPACITORS

MULLARD polyester C280 series $250 \mathrm{~V} 20 \%: 0.01,0.222,0.033,0.047$ 3p each; $0.068,01,{ }^{4 p}$ each; $0.15,4 p ; 0.22$,
$5 \mathrm{p} .10 \%$ and up to 2.2μ 2 MULLARD SUB-M
ELECTROLYTICS
 2.5/64: $4 / 10 ; 4 / 40 ; 5 / 64 ; \quad 6.4 / 6.4 ; 6.4 / 25$ B/4; $8 / 40 ; 10 / 2.5 ; 10 / 15 ; 10 / 64 ; 125 / 25$; 500/2:5
LARGE CAPACITORS
High ripple current types: $1000 / 25$. 28p
$1000 / 50$. 10 . $1000 / 100$ 82p; 2000/25. 37p
 C1.10; $5000 / 100,62.90 ; 10000 / 50,52 \cdot 40$. For full range see catalogue. Ler Electrovalue suoply you with componehts for designs published by
See the Electrovalue 64 -page Catalozue $(100$ See the Electrovalue 64-page Catalogue (10p

Cod

Long spindles. Double wiper ensures mionimy noise level,
 $42 \mathrm{p} /$ Dual gang lac $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$ (42pi)Log/antilog, IOK 47K. Ma. only 42p; Dual Only decades of 10,22 and 2 p extr

CONCENTRIC

CARBON SKELETON PRESETS
 $5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting (sp egch.

COLVERN 3 watt Nire-wound Potentiometers. 10Ω, 15 n

INSULATED SCREW TERMATMALS
in range of seven colours, each 12p. Marching plugs. 2 mm 5p. $4 \mathrm{~mm} \mathrm{7p}$.

Prices are in pence each
rating. NOT mixed valu
value of resistor order.)

 Emabimed 185
Dept. PE372, 28 St. Judes Rd., Englefield Green, EGHAM, Surrey TW2tin B Phone: Egham (0784-3) 5533 and 4757. Telex 264475
Phone: Egham (0784-3) 5533 and 4757.
Hours: 9.5 .30 daily. I p.m. Saturday

Fig. 2a. Unijunction symbol and nomenclature

(b)

Fig. 2b. Equivalent circuit of UJT

Fig. 3. Static emitter characteristic of UJT

The parameter η is a constant and is termed the intrinsic stand-ofl ratio. It is that fraction of the interbase voltage which appears as part of the peak point voltage, this important parameter is a constant for a given device and the value lies between 0.51 and 0.82 . The equivalent diode emitter voltage (V_{I}) is in the order of 0.5 volts depending on the UJT and the temperature. With an increase of temperature V_{I} decreases, but it is possible to overcome this variation by making use of the positive temperature coefficient of R_{1315}. If a resistor R_{2} is used in series with base-two (see Fig. 2) the temperature variation of $R_{\text {及a }}$ will compensate for the original loss.

TYPES OF UJT

Fig. 4 a shows the conventional type (UJT) which is a single junction device having an emitter and two dissimilar bases.

Fig. $4 b$ is called a complementary type (CUJT) and works by applying opposite current and voltage polarities to those used in the conventional UJT. A greater circuit flexibility is now obtainable and can be comparable to $p / n p$ and $n p n$ transistors. The CUJT has shown better stability, improved uniformity and closer intrinsic standoff ratio. It is more reliable over the specified temperature range allowing less compensation control.

TABLE 1: UJT NOMENCLATURE

SYMEOL	DEFINITION
$I_{\text {E }}$	Emitter current
1 EO	Emitter reverse current
I_{P}	Peak point emitter currert. The total emitter current that can flow without
	permitting the UJT to go into the negative resistance region.
IV	Valley point emitter current. Represents the current flowing in the emitter when the UJT is biased to the valley
$R_{\text {B13 }}$	point. Interbase resistance. Tre resistance
Ras	measured between base-tmo and baseone at a specified interbase voltage.
$V_{\text {bi }}$	Voltage existing across base-two and base-one.
V_{p}	Peak point emitter voltage.
V_{D}	Forward voltage drop of the emitter junction.
V_{v}	Valley point emitter voltage.
	Intrinsic stand-off ratio.
$\alpha R_{B R}$	Interbase resistance temperature coefficient. Variation of resistance between B2 and B1 over the specified temperature range.

Fig. 4. Types of UJT. (a) conventional UJT; (b) complementary UJT; (c) programmable UJT (PUT)

Fig. 4 c illustrates a third configuration, termed a programmable type (PUT). The PUT is programmable in that a number of characteristics that are set in the conventional type (i.e. valley current, peak current and interbase resistance) can be adjusted accordingly or programmed into the PUT at the designer's discretion. With careful selection of additional resistors the designer can turn the device into any one of a large number of discrete UJT's.
The PUT is a planar passivated ponpn element and hence is not a true UJT, it is conventionally represented by a symbol similar to the SCR. The PUT's electrodes are known as the anode, gate and cathode, which cerrespond to emitter, base-two and base-one respectively.

FLEXIBILITY

The UJT is a unique device in that it can be used for any number of applications involving oscillation. timing circuits and triggering devices for turning-on thyristors.
UJT's offer the advantage of being excellent circuit simplifiers allowing the elimination of a number of components. For example, one UJT used in the bistable mode (sec Fig. 5) can provide the function that normally would require two transistors and the associated capacitors and resistors. Outputs can be taken from any of the three electrodes: an
approximation of a sawtooth waveform from the emitter; a positive pulse from base-one and a negative pulse from base-two. A high degree of frequency stability and accuracy can be obtained by the careful selection of the timing constants RC.

APPLICATIONS

A full-wave control circuit shown in Fig. 6a with Zener clipped rectified voltage Fig. 6b. The resistor R_{d} is chosen to limit the current through the diode D1 enabling this device to work within its rated specification

Fig. 7a shows a unijunction trigger circuit for a gated thyristor and its associated waveforms Fig. 7b. As capacitor Cl is being charged current (I_{FO}) flows through the interbase resistance (R_{BB}) of the unijunction. say of the order of $1 \mu \mathrm{~A}$. Resistance R_{B}, is included in the circuit to provide a path for this current and prevent an undesirable turn-on of the thyristor through its gate. $R_{\mathrm{R}_{3}}$ is calculated so that a maximum voltage developed across it will be less than 0.2 volt. For a typical UJT the resistance of R_{NB} lies between 4.7 kilohms and 9.1 kilohms, so with an applied operating voltage of 20 volts, the value of R_{B}, would be:

$$
R_{\mathrm{B}_{1}}=\frac{0.2 \times R_{\mathrm{BB}}(\mathrm{~min})}{V_{\mathrm{S}}}=\frac{0.2 \times 4.7 \mathrm{k} \Omega}{20}=47 \mathrm{ohms}
$$

Fig. 7. Relaxation oscillator trigger circuit and associated waveforms

BSR LATEST SUPERSLIM

 STEREO \＆MONOPlays $12^{\prime \prime} \mathbf{1 0}^{*}$ or $7^{\prime \prime}$ records． Anto or manaal．A high reliability with 12 months guarentee．AC 200／2508． Size 183 11 in．
Above motor board 3 in
tin
位 RC8 DE－LIUXE 3 WATT AMPLIFIER．Ready made tetted 2－stage with triode pentode ralve， 8 watis outpat．Tone and rolume controls．Lsolated maing trandormer．Knoba， loudspeaker，valves ECL88，EZ80／81．Response
$50-12,000 \mathrm{cps}$ ．Sensitivity 200 mV ．
R．C．S．PORTABLE PLAYER CABINET
 and most modern autochangers．Size 18×15 sin． Hetal fittings．Carrfing handie．Two tone
rexine covered．Popular Colours． $\quad \mathbb{\$ 4} \begin{aligned} & \text { Post } \\ & \text { 25p }\end{aligned}$ GARRARD SINGLE PLAY TA Mk II． $£ 10$ Ideal Discotheque or Hi－Fi．Stereo／Mono GARRARD PLAYERS with Sonotone 9TA Cartridges． Model 3500 Stereo and Mono Autochanger i 14 ．Post 25 p ． R．C．S．TEAKWOOD BASE．Ready cut out $£ 2.75$ or mountink（chat plase
$£ 2.75$ R．C．S．PLASTIC COVERS FOR ABOVE BASE． $\mathbb{\text { Durable tinted plastic，attractive appearance．} 2 5}$

EMI PICE－UP ARM．With mono xtal and stylua 21.25 ． HI－FI PICK UP CARTRIDGES，Diamond Stereo／Mono 9TA $22.50 ;$ GP94 £2．50；GP93 £2．00；Mono GP91 $21.50 ;$
ACOS ftandard fitting with L．P．stylus only 50 p ．

E．M．WOOFER AND

ET

Comprising a fine example of a Wooler 10］${ }^{63 \text { in．with a massive Ceramic }}$ Aluminium Core ceatre to 13,000 lines． middle and top response，Also the EMric midde and top responbe．Also the E，M．I． lightweight paper cone and magnet fux 10，000 inines．
Impedap ${ }^{\prime}$ ，Standard
Maximum power
Useful Repponse
Basz Reionance
8 ohms
35 to $18,000 \mathrm{cps}$

WEYRAD P50－TRANSISTOR COILS $\underset{\text { Rac．}}{\text { Of Forrite }}$

 ${ }_{\text {Prd }} 1$ P．P50／3CC． \begin{tabular}{l|l}
33p \& J．B．Tuning Gang

33p \& Weyrad Booklet．

50 p

50 p

\hline 0
\end{tabular} .50 p

.65 p
 VOLUME CONTROL 80 mm Coax 4 A yd Long spindles．Midget sife british aERIALITE 5 K ohms to 2 \＃eg．LOG F AERAXIAL－AIR SPACED

 WIRE－WOUND 3－WATT POTS．I WIRE－WOUND 3－WATT Small type with small knob．STANDARD SIZE POTS Values 104 to 25 K. VEROBOARD 0.15 MATRIX
$21 \times 5 \mathrm{in} .26 \mathrm{p} .24 \times 32 \mathrm{in} .17 \mathrm{p}, 38 \times 33 \mathrm{in} .26 \mathrm{p} .3 \frac{1}{2} \times 5 \mathrm{in} .30 \mathrm{p}$.
EDGE CONNECTORS 16 WHY $25 \mathrm{p} ; 24$ Way 38 p ．
PINS 38 per packet 21p．PACE．CUTTERS 38 p ． 8，R．B．P．Board 0.15 MATRIX 2tin wide 3 p pet 1 in

 $14 \times \operatorname{in} .45 \mathrm{p} ; 8 \times 6 \mathrm{in} .53 \mathrm{p} ; 10 \times 7 \mathrm{in} .85 \mathrm{p} ; 12 \times 8 \mathrm{in} .85 \mathrm{p}$

1 ininch DIAMETER WAVECHANGE SWITCHES． 25 p ． 2 p．2－way，or 2 p． 6 －way，or 3 p． 4 －way 25 p each． 1 p． 1 2－way，or 4 p．2－way，or 4 p． 3 －way 25 p ． TOGGLE SWITCHES，sp． $14 \mathrm{p} ; \mathrm{dp}$ ． 18 p ；dp．dt． 23 pp ． SHICOR REC．40－LUCAS 2DS500 Bridge 700.5 gmp ． 1 85 mA 48 p ．SILICON BYZ13 30p；BY100 30 p ；BY127 30 p
＂THE INSTANT＂BULK TAPE
ERASER \＆HEAD DEMAGNETISER \＆
Leaflet B．A．E．\quad 20．35 $\underset{15 \mathrm{p}}{\text { Post }}$
HI－FI STOCKISTS
RETURN OF POST DESPATCH

R．C．S．STABILISED POWER PACK KITS

All parts and instructions with Zener Diode，Printed Circuit input 200 R 隹位s and Double Wound Mains Transiormer or 15 or 18 or 20 V d．c．at 100 mA or less Post Detoite siate voltage required． 12 P

R．C．S．GENERAL PURPOSE TRANSISTOR PRE－AMPLIFIER BRITISH MADE Ideal for Mike，Tape，P．U．，Guitar，etc．Can be used with ${ }^{\text {Battery }}{ }^{\text {9 }}$－12v．or H．T．line 200－300\％．D．C．operation．Size For use with Resive or transistor equipment．90p Post
－

New tubular
2／350V ．．14p
4／350V ．．14p
$8 / 450 \mathrm{~V}$ ． 14 p
18／450V 15p
32／450V 20 p
25／25V ．．10p
50.50 Y

$250 / 25$

CAN TYPES
NEW

DOW VOLTAGE

$$
\begin{aligned}
& \text { Low VeETAGE ELECTROLYTINS } \\
& 1,2,4,5,16,25,3050,100,20 \mathrm{n}
\end{aligned}
$$

$1000 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70$
2000 mF 6V 25p； 25 V 42 p ； 50 V .5 yp

 CERAMIC， 1 FF to $0.01 \mathrm{mF}, 4 \mathrm{p}$ ．Silver Mice $265000 \mathrm{pF}, 4 \mathrm{p}$ ．

 $2,200 \mathrm{pF} 10 \mathrm{p} ; 2,700-5,600 \mathrm{pF} 20 \mathrm{p} ; 6,800 \mathrm{pF}-0.01$ ，mid 30 p each． TWIN GANG．＂ $0-0$＂ $208 \mathrm{pF}+17 \mathrm{bFF}$ ． 65 ；；slow motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}$ ， 50 p ： 500 pF glow motion，Itandard $45 \mathrm{p} ;$ turatip 3 －ang 500 pF ：$£ 1.60$ ． SHORT WAVE SINGLE MPF， 0 Op， $25 \mathrm{pF}, 55 \mathrm{p}, 50 \mathrm{pF}, 55 \mathrm{p}$ ． CHROME TELESCOPIC AENIALS $23 \mathrm{in}, \mathrm{SWivel}$ bebe 20 p ． NEON PANEL INDICATORS 250 V AgDC Red or Amber 20p HIGE STABILITY．W． 1 w． $20,1 \mathrm{p} ; 2 \mathrm{~F} .5 \mathrm{p} .10 \Omega$ to 10 M.
 10 ohms to 100 K 10 peach ； $2^{\text {？}}$ ？watt． 1 ohm to 8.2 ohms 10 p ．

SGOOP METAL PLINTH

Cut out ready for Garrard or B．S．R Will play with cover in position． Latest design．Covered in blac 12！ $14!$ 7！in．bigh．

Post 25p
MAINS TRANSFORMERS $\xlongequal{\text { All post }}$

 MIDGET 220 v $\boldsymbol{v}, 45 \mathrm{~mA},{ }^{6.3}$ v． $2 \mathrm{a} .21 \times 2 \frac{1}{2} \times 2 \mathrm{in}$ ． HEATER TRANS
 GENERAL PURPOSE LOW VOLTAGE，Tapped outputs
at 2 amp．， $3,4,5,6,8,9,10,12,15,18,24$ and 30∇ ． 22.25 a！ 2 amp．，3，4，5，6，8，9，10，12，15．18， 24 and 30 v．$£ 2.25$
1 amp．， $6,8,10,12.16,18,20.24,30,36,40.48,60 . ~ £ 2.25$ 1 amp．，6，8，10，12．16，18．20．24，30，36，40．48，60．$£ 2 \cdot 25$
$2 \mathrm{amp} .6 .8,10,12,16,18,20,24,30,36,40,48,60$ ．$£ 3.25$ 5 amp．， $6,8.10,12.16,18,20,24,30,36,40,48,80$ £8．75
 150w． 22.25 ；500w． $26 \cdot 25 ; 750 \mathrm{w}$ ． $210 ; 1000 \mathrm{w}$ ． 114
CHARGER TRANSFORMERS．Input 200／2500．
for 6 or $12 v, 1 \frac{1}{2}$ amp． $81-50 ; 2$ amp． $21.80 ; 4$ amp． 52.25 6 or 12 v ．outputs． $1 \frac{1}{2} \mathrm{amp} .40 \mathrm{p}$ ； $2 \mathrm{amp}, 55 \mathrm{p} ; 4 \mathrm{smp}$ ．85p All Transformers Poatage 25p each

E．M．I． $13 \frac{1}{2} \times 8 \mathrm{in}$ ． LOUDSPEAKERS

With twin tweeters．
And crossover． 10 ma
State 3 or 8 or 15 ohm ．
As illustrated． \qquad 144 With fiared tweeter cone and ceramic $\left.\begin{array}{l}\text { magnet．} 10 \text { watt．} \\ \text { Bass res．} 45-60 \mathrm{cps} .\end{array}\right) \quad>5$ Flux 10.000 gauat．$\rightarrow \leq-3$ State 3 or 8 or 15 ohm．Post 15p Recommended Teak Cabinet
Size $16 \cdot 10<9$ 9in． Post 25p．

IOW MINI－MODULE E3．25 LOUDSPEAKER KIT

Triple speaker system combining on ready cut baffe in，chipboard 15 in． $8 \frac{3}{3}$ ．Separate Bass，Middle and Treble loudspenkers and crossover condenser．The heavy duty 5 in，Bass Woofer unit has a low resonance cone．The Mid－Range unit is specially designed to add drive to the middle register and the tweeter recreates the top end of the musical spectrum．Total response $0-15,000$ eps．Fal instructions lor 3 or 15 ohm ． TEAK VENEERED BOOESHELF ENCLOSURE． $\underset{\text { Fluted }}{16 \times 10} \times \underset{\text { Wood Modern design，with }}{\text { Front．Highly }}$ \＆Pont 25 p Fluted Wood
recommended．

$30-14,500$ c．p．s．， 12 in weeter cone together with a BAKER ceramic magnet assembly having fax density of 14,000 45．000 a total hux o． 45，000 Haxwells．Bass 0 watts．State 3 or 8 or 5 watts．State 3 or

Module kit，30－17，000 c．p．s． vith twee baffer and \quad al｜．50 BAKER＂BIG－SOUND＂SPEAKERS Group 25＇＇Group 35＇＇Group 50＇ 12 inch $47 \quad 12$ inch 45 watt 15 inch 40 wati 4 3 or 8 or 15 ohm 3 or 8 or 15 ohm 8 or 15 ohm TEAK HI－TI SPEAKER CABINETS．Fluted wood front． For 12 in．dia，apeaker $20 \times 13 \times 9$ in．．．．．．．． 89 Post 25 p or 18×8 in．apeacer $18 \times 10 \times 8 \mathrm{in} . . .$. OUDSPEAKER CABINET WADDING 18 in ．wide， 15 p It

GOODMANS 6 $\frac{1}{2}$ in．HI－FI WOOFER
8 ohm， 10 watt．Large ceram
Special Cambric cone surround．
Frequency response 30－12，000
${ }_{\mathrm{H}}^{\mathrm{c} / \mathrm{F} . \mathrm{Fi} \text { Enclosure Systems，etc }}$

ELAC CONE TWEETER

The moving coil diaphragm gives a good radiation pattern to the bigher frequencie and a smooth extension of total response from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cpa}$ ．Size $3 \frac{1}{2}$ ， $3 \pm \times$ 2in，deep．Rating 10 watt． 3 ohm o
15 ohm model． 15 ohm models．\＆ 90 Post 10p

Horn Tweeters 2－16Kc／s， 10 W 8 ohm or 15 ohm 81.50 De Luxe Horn Tweeters $2-18$ Kc／s， $15 W$ ， 15 ohm 83 TWO－WAY $3,000 \mathrm{c}, \mathrm{p}, \mathrm{s}$ ．CROSSOVERS 3 or 8 or 15 ohm 95 p SPECIAL OFFER！ 80 obm． 21 in ，dia．； 35 ohm， $2 i n \cdot ; 3$ in

 LOUDSPEAKERS P．M． 3 OHMS． $6 \frac{1}{2}$ in．$£ 1-10 ; 8 \times 5$ in， 21.25 $8 \times 2 \pm$ in． 90 p； 8 in． $\mathrm{E1} .75 ; 10 \times 6 \mathrm{in}$ ． $\mathrm{E1} .90$ ．
5 in ．WOOFER． 8 w ．max． $20-10,000 \mathrm{cps} .8$ or $15 \mathrm{ohm} \mathrm{f1} \cdot 80$ ELAC 10in．10w．Twin Cone，De Luxe Ceramic 8 ohm 84 RICHARD ALLAN TWIN CONE LOUDSPEAKERS in．dia． 4 watt； 10 in ．dia． 5 watt； 12 in．dia． 6 watt， or 8 or 15 ohm models 81.95 each．Post 15 p ． OUTPUT TRANS，EL84，etc．25p．MIKE TRANS． $50: 1$ 25p PEAKER COVERING MATERIALS．Samples Large S．A．E OODMANS OUTPUT TRANSFORMER 5 watt push pull Io

BAKER 100 WATT
all purpose
POWER
AMPLIFIER
4 inputs speech and
music．Mixing facilities．
11 londe $10-30,000 \mathrm{cps}$ ．Matches
loudspeakers．A．C．200／250V
parate Treble and Bass controls．

ALL EAGLE PRODUCTS

BARGAIN AM TUNER．Medium Wave．\＆4
Transistor Superhet．Ferrite cerial． 9 volt．
BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER．
Add muaical highlights and sound effects to recording
Will mix Microphone，records，tape and tuner
With separate controls in
Stereo version of above．
$£ 4.25$
BARGAIN FM TUNER 88－108 Mc／a Six Transistor． 9 volt
Printed Circuit．Calibrated slide dial tuning．$\quad \leq 12$
Walnat Cabinet．Size 7 ． 5 ． 4 inch
Chassis only，less cabinet．
£7．50
BARGAIN 3 WATT AMPLIFIER． 4 Transistor $£ 3.50$ Push－Pall Ready built，with volume control．9v， 23.50
COAXIML PLUG ${ }^{-1}$ PANEL SOCKETS 8 p ，
BALARCED TWIN FEEDERS 5 p Yd． 80 ohms or 300 ohms BACK SOCKET Std．open－circuit 14p．closed circuit 23p； Chrome Lead Socket 45p．Phono Plugs 5p．Phono \＄ocket 5p． JACK PLUGS Std．Chrome 15p； 3.5 mm Chrome 14p．DIS SOCKETS Chasais 3－pin 10p；5－pin 10p．DIN SOCKETS Lead 3－pin 18p；5－pin 15p．DIN PLUGS 3－pin 18p；5－pin
25p．VALVE HOLDERS，5p；CERAMIC 8p；CANS 5p．

E．M．I．TAPE MOTORS．120v，or 240 v ．AC． 1.200 r．p．m． 4 pole 135 mA $2 \frac{1}{2} \times 24 i n$ ．（illustrated）．Post $15 p$ ．≤ 1.25 BALFOUR GRAM．MOTORS．
 $20 \mathrm{~mA} \times 2 \mathrm{x} \times 1 \mathrm{in}$ ．
CUSTOMERS FREE CAR PARK．
CALLERS WELCOME

To ensure the UJT remains stable during an increase of temperature an additional resistance $R_{\mathrm{n}_{2}}$ is connected in series with base-2.

A half-wave trigger circuit is shown in Fig. 8, where the thyristor is acting as a rectifier and power control device. No power is supplied to the load during the negative half cycle, but a variable power is supplied to the load during the positive half cycle.

During the positive half-cycle the gated thyristor is switched on by a time (phase angle) determined by the control current. The relative power in the load can be controlled by varying the phase angle when the thyristor is switched on.

SHUNT TRANSISTOR CONTROL OF UJT

Phase control can be obtained by use of a pnp or npn transistor connected to shunt with the emitter capacitor of the unijunction. The amount of current in the base of the transistor will control the effective charging current to the capacitor, and hence will control the trigger angle of the UJT and the SCR.
Fig. 9 shows a phase control circuit and functions as follows. Transistor TR1 shunts some of the charging current supplied to capacitor C 1 by resistor R1 in an amount dependent on the base drive of TR1. The more TR1 is turned-on, the later the UJT will trigger, consequently lowering the output of the SCR. Depending on the value of R1 and the base drive to TR1 the diversion of charging current from Cl will advance or retard the trigger angle accordingly.

WOW! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Abstract

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way, Give yourself' essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s Simplified Study Method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile'Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.
You LEARN—but it's as fascinating as a hobby.
Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the spring. board for a career in Radio and Electronics.

FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec. tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of Courses up to City and Guilds standards.

New Specialist Booklet

If you wish to make a career in Electronics, send for your FREE copy of "OPPORTUNITIES IN TELECOMMUNICATIONS / TV AND RADIO". This brand neu booklet-just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

Dept. BI2, ALDERMASTON COURT, READING RG7 4PF

> POST THIS COUPONFOR FRIEBBOOK
> To B.I.E.T. Dept. B12. Aldermaston Court, Reading RG7 4PF Please send books and full information - free and without obligation.

NAME.
block capitals pleabe
ADDRESS
AGE.................

ADDESS..
\square

SUBJECT OF INTEREST
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY A ccredited by the Council for the A cereditationt of Correnpondence Calleges.

YEAR BS9000?

It's been a long time coming but this could be Year BS9000. Just to refresh your memory, BS9000 was the outcome of the Burghard Report or, to give its full title, '"2nd Report of the Committee on Common Standards for Electronic Parts." The Report was published by H.M.S.O. in 1965.

The following year the Report was accepted. on behalt of the electronics industry by the conference of the Electronics Industry and the British Standards Institution was given the task of implementing the recommendations: Supervision of the operation on a practical day-to-day basis is the responsibility of the Electrical Quality Assurance Directorate of the Ministry of Defence.

The BS9000 scheme set out with the finest ideal and that was to formulate a new and up-to-date set of specifications for electronic components which would ultimately supersede the rag-bag of specifications originated in the United States and Europe over the years. Clearly this would be a major operation but few people, in my opinion, realised what a mammoth task it would become. The technical problem was big enough to begin with. Add to it the democratic process involving countless committees on which were representatives not only of BSI and the Ministries but also of manufacturers and users, all trying to reach a consensus, and you get some idea of why BS9000 has been so long on the runway, so to speak, without getting airborne. But movement is now in sight.

Mr John Hinchcliff, Assistant Director (Components), Electrical Quality Assurance Directorate, Ministry of Defence, is at the centre of BS9000. At a recent dinner
organised by component distributors he revealed a few facts and figures on progress to date.

All the basic BS9000 specifications and many supplementary specifications have now been published. Almost 200 component manufacturers, distributors and test houses have applied to join the scheme and over 80 have so far been fully approved to operate it. More than 100 components (or component families) have been or are being approved and this figure is doubling every six months. About 200 military semiconductor specifications have been brought into the system and military digital integrated circuits are soon to be included. Nevertheless, stated Hinchcliff, there is still an enormous way to go. Several thousand components will eventually be drawn in.

BS9000 has been a source of irritation to the Americans. They see it as a protectionist policy under which their long established military specifications and quality assurance procedures will become obsolete and will no longer be specified in British equipment to the detriment of American exports.

Meantime, the Europeans have not been idle. In 1967 they instituted their own Harmonised System of Quality Assessment for Electronic Components under the title CENEL 1. Britain joined CENEL 1 as a full member with France, Germany and Italy with an understanding that each country would mutually recognise standards, approvals. and methods of inspection as equal to their own. Other European countries are in process of joining.

To cap it all, the International Elestrotechnical Commission (IEC) is considering a similar system to operate on a world-wide basis. Clearly, world standards would be best of all but will take many more years to achieve leaving, as one disgruntled components man remarked to me, the fall guy in the middle hacking his way through a jungle of national and international specifications as best he can.

ABSENTEES

The British contingent at this year's Paris Components Show (April 6-11) will be one of the smallest on record, numbering little over 20 companies. Last year's show was both expensive and disappointing and this, I suspect, is why so many "regulars" of previous years have decided to stay at home this year despite our imminent entry into the Common Market.

But this doesn't explain why industry giants GEC and Plessey have decided to stay away from the big IEA Show at Olympia in May. Selectivity seems to be the answer. Publicity managers with restrizted
budgets have spent sleepless nights worrying over the optimum split of funds between direct mail shots, press advertising, exhibitions, and even the supply of book matches. And exhibitions seem to be losing out.

TOTAL CAPABILITY

Total capability, it's a hackneyed phrase but.it still means something when attached to Decca Radar, still proudly holding the Number One Spot as world suppliers of marine radar and determined as ever to stay there in what, by any standards, is a highly competitive business.

Deeca launched the biggest radar event of the year. Not half a dozen, nor even a dozen, but a dazzling two dozen new models on show for the first time, twenty of them for coastal and open sea use and four river radars. All the new radars owe a lot to the solid state RM914, introduced just a year ago and which won the Queen's Award for tezhnological innovation.

The RM914, already topping 3,000 sales, was a runaway success. Big features were a solid state local oscillator, solid state modulator, and wide use of integrated circuits. The same modules, or derivations of them, are in all the new models which come in a huge choice of display sizes, scanner sizes, transmitter powers and optional facilities.

Decca's competence in advancing the state of the art in marine radar is perhaps most convincingly demonstrated by one simple fact. The latest 25 kW radar with a 60 mile range consumes no more power than the 3 kW , 24 mile range D202 model which Decca introduced as the first commercial marine radar to use transistors in 1963.

DIVERSIFICATION

The high-powered "think-tank" at Frimley which we have known as E-A Space and Advanced Military Systems Ltd and more conveniently as EASAMS since 1962 has now officially become EASAMS Ltd.

Reason for the change of name is a change of emphasis although marketing manager R. M. French assures me that EASAMS still has plenty of military work. But the sort of systems analysis and engineering which made EASAMS famous is now being applied equally effectively in the civil field and not only in electronics. Examples are the design, construction and commissioning of new hospitals, the development of transport and distribution systems, and ports and harbour management.

At the same time there is plenty of electronic work such as studies for ESRO and on the MRCA project.

Readour A SEIECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

Abysmal writing

Sir-As a regular subscriber to your normally excellent magazine. I feel that I must protest at what has become its present standard of presentation. You have excellent news columns, excellent features, and many highly interesting projects. hut I have now become convinced that the standard of presentation of your projects has now fallen to a level where they are intelligible only to those who are experts in your pseudo-scientific jargon.
This situation was drawn to my attention about a year ago during the course of 6th Form Electronics that d teach. I use, for this, back copies of P.E. as source material for student projects, but increasingly I have been aware that these 17 - and 18 -year-old Grammar School pupils were just unable to understand what your projects were about. Often 1 am faced with the plaintive. "What on Earth are they trying to say." My initial reaction was to blame them. but now I realise that I have been quite unjust. some of what appears is quite unintelligible unless you have prior knowledge of what the project is about.

In your December 1971 issue your article about Logical Radio Control is the most abysmal example of semi-scientific writing I have seen in many years as a professional scientist. By pooling the resources of two physics graduates. two graduate electrical engineers, the 6th Form and myself, we have worked out how this system can be used to control six channels, but it has taken us two weeks to work it out. God help those who are less adept than ourselves-they will just move on disillusioned.
How much simpler it could have been if someone had taken the trouble to explain the significance of each pulse, the significance of each pulse length and the significance of the need to transmit pulse trains. If you search, some of this material is present. mixed up with the wonders of the technicalities. But most is absent.
In the same issue your article I.C. Digital Dice reduced some of my 6th Form to glassy eyed disbelief I offer the following paragraph as an example of how this article could
be made much more intelligible to a much wider public:
"A dice generates the numbers I to 6 in a random order. This device achieves this in the following manner. A signal generator produces a series of electrical pulses, which are then counted in binary form. The counter counts from 1 to 6 . and then returns to 1 . The sequence of numbers is repeated over and over again just as tiong as pulses are fed to the counter.

To make the dice random, and cheat proof, we must be able to stop the counter when we do not know what the count is, and we must make the rate of counting very high.

The dice described generates pulses at 4.800 per second, so that each number from 1 to 6 appears 800 times a second. and each time it appears for only $1 / 4.800$ second. This is too fast for the eye and hand to see, and so when ever the counter is stopped the numbers must be in a random order.

1 am prepared to admit that many readers would not require such a simple approach to a project, hut such an approach to presentation would take all the mystery out of electronics. If you or your staff are intent on producing working diagrams that are easy to follow. even
to the non-expert. surely it is more than worth while making the description of what a device is supposed to do. and the broad principles upon which it works as clear as possible.

In conclusion may 1 pass the opinion that the now defunct Beginners Columns. and your complimentary magazine, Eviryday Electronics also have the same problem. a pre-occupation with jargon, little thought being given to clarity.

I hope my comments are of interest and assistance.
W. G. Joncs.

Lancs.

Not logic

Sir-I have noticed with considerable interest your recent articles in P.E. on Logical Radio Conirol. It does however seem to me that you appear to have contradicted yourself on the shift-register section of the decoder.

You say that following the "clear" pulse the first signal pulse "turns on" the first flip-flop and the second signal pulse causes the second output to change to " 1 " and the first output to revert to "0" However, in Fig. 19b the waveform for the output (QI) of this flip-flop remains up for five of the signal pulses, not resetting to 0 after the first.

The way I see it is that following the clear pulse the first signal pulse will. as you say. set the first flipflop to "l". The second pulse will also set to "l" the second flip-flop. but since the input conditions to the first and sixth flip-flops have not changed neither will change state and the first flip-flop will remain in the "l" condition. So after six pulses all the flip-flops will be set which will not realfy work as a proportional system.

Ano:her point to note is that the master-slave type of flip-flop recommended triggers on the trailing edge of the clock-pulse: thus, assuming your circuit did work as you suggested. following the clear pulse the first flip-flop would not set until after the first pulse and would remain set for the interval plus the duration of the second pulse, thus the first channel would be "lost".

The enclosed circuit. Fig. 1. is my idea for the answer to the problem.

The clear pulse resets BSI, and sets BS2, the latter providing one input for Gl which. together with G2. forms an and gate. Thus the leading edge of the first pulse will enable G1 and G2, and hence set the first flip-flop in the shift register for the duration of the signal impulse. The trailing edge of the pulse will reset the first flip-flop. set the second, and will also indirectly (via the first flip-flop) se: BSI which. in turn. resets BS2. closing the AND gate, preventing the setting of the first flip-flop until the nexi clear pulse.

The second and subsequent flipflops in the chain will each set for the pulse length plus the interval. The clear pulse is applied to the first flip-flop in the register, to ensure correct triggering of BSI .

I hope my comments have been constructive, and look forward with great anticipation to your article on the Servo Motor Control. In fact. I was wondering whether, now you have gone so far, you might go the whole way and describe a suitable transmitter and receiver, possibly using integrated circuits as well?
M. C. Tiend. Chelmsford.

Triggered

Sir-First may 1 compliment A. J. Dunn for a very interesting series on Logical Radio Control. It has created a great deal of enthusiasm amongst myself and friends, but also some queries were raised.

One of these was with regard to Mr Dunn's circuit for sync detection using a retriggerable monostable, as the majority of constıuctors seem to prefer the Texas SN74 -range of TTL i.c.s and many suppliers do not stock retriggerable monostables.
To try to alleviate this problem I have designed the following circuit. It can be used to detect long "0" or "ll" pulses as required and uses
a 5 -bit shift register as counting timer (see Fig. 2).

As shown here the clear signal to JK flip flops is produced when a "I" has existed at the input for a time set by the frequency of the multivibrator. This could be made up from Nand gates (see Digital Dicc article. December P.E.) to make this circuit exclusively TTL.
To detect " 0 "s instead of " 1 "s merely invert the input.
L. Cook. Lancs.

P.E. Scorpio ignition system

TACHOMETERS

A large number of constructors have enquired about the possible effects of the ignition system on electronic impulse tachometers. Unfortunately none of the cars on which the system was tested were fitted with electronic tachometers and so we have no personal experience of these. As there are a large number of different types available. differing considerably in their requirements, we obviously could not make any positive recommendations without buying a sample of every available type, which would be impracticably expensive. There are. however, two basic types and we recommend that the constructor ascertains which type he has and experiments to obtain the best results.

CURRENT OPERATED

These contain a current transformer which is normally connected in series with the ignition coil, or else the SW lead is wrapped around a small magnetic pick-up on the tacho. It should be possible to operate this type with the Scorpio by connecting it into the lead from the coil to $\mathrm{C} 6 / 7$ (tag 5) as there is a 10 A current pulse through this lead

VOLTAGE OPERATED

These are normally connected between the contact breaker and earth and work either on the 12 V change of d.c. level when the contact points open or on the high voltage spike produced when the points open. With the Scorpio it should be possible to operate the low voltage type from the contact breaker, as normal, but the high voltage type should be connected to terminal 5 on the unit, or the tag on the ignition coil to which terminal 5 is connected.

CARS WITH MULTIPLE CONTACT BREAKERS

A number of constructors have asked about using the Scorpio with two-stroke, three-cylinder engines having a separate contact breaker and coil for each cylinder. Unfortunately as there is no distributor it would be necessary to use three separate units and in view of the high cost we cannot recommend the use of the Scorpio with this type of engine.
D. S. Gibbs \& I. M. Shaw

Ferret tracker

Sir-1 would be most grateful if any reader can offer any advice. I intend to start ferreting rabbits and previously I have used a ferret on a collar and line, digging up to the ferret by means of holes every 2 to 3 ft .

Would it be possible to attach a device to the ferret collar which can be tracked above ground level by some kind of electronic detector?

The ferret's collar is leather $\frac{8}{8}$ in wide. The average depth we dig is 18 in to 24 in deep, some odd holes 36 in deep.

If such equipment can be purchased would you be kind enough to forward on any details. it would be a tremendous asset.
D. Nunn, Suffolk.

Highfidelity Monolithic Integrated Circuit Amplifier
 Two years ago Sinclair Radionics an-
 Output power 6 watts RMS continuous
 With the addition of only a very few external

 nounced the World's first monolithic integrated circuit $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the 1C.10. Now we are delighted to be able to introduce its successor, the Super IC. 12. This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages1. Higher power
2. Fewer external components.
3. Lower quiescent consumption.
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink No other heat sink needed.
6. Full output into 3. 4. 5 or 8 ohms.
7. Works on any voltage from 6 to 28 voits without adjustment.
8. NEW 22 transistor circuit
(12 watts peak)

Frequency Response 5 Hz to $100 \mathrm{KHz} \pm$ 1 dB .
Total Harmonic Distortion Less than 1%. (Typical 0.1%) at all output powers and all frequencies in the audio band
Load Impedance 3 to 15 ohms
Input Impedance 250 Kohms nominal.
Power Gain 90dB (1.000.000.000 times) after feedback
Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal).
Quiescent current 8 mA at 28 volts: low enough to make the IC. 12 ideal also for battery operation.
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.
resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for usewith pick-up. F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project-60 range such as the Stereo 60 and A.F.U. may be added

FREE 44 page instruction manual now included with all units. Avalable free on request to present IC. 12 users. Gives full carcuit and wiring diagrams for many applications including car-radios. oscillators, etc.

Price, inc, FREE printed circuit board for mounting and manual.

$£ 2.98$
 Post free

[^2]
Sinclair Project 60

The World's leading range of high fidelity modules

New!

 Project 605The easy way to buy and build
Project 60

Project 605 is one pack contatning: one PZ5 two Z30's. one Stereo 60 and one Masterlink This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat little clips to plug straight on to the modules. Thus all soldering and hunting for the odd part is eliminated. You will be able to add further Project 60 modulas as they become avallable adapted to the Project 605 method of connecting
Complete Project 605 pack with
comprehensive manual, post free f 29.95
Alt you need for a superb 30 watt high fidelity stereo amplifier.

Sinclair Radionıcs Limited, London Road, St. Ives, Huntıngdonshire PE174HJ
Tel: St. Ives (04806) 4311

Project 60 offers more advantage to the constructor and user of high fidelity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size
Project 60 modules are more versatile - using them you can have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system, as can the AFU filter unt. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with all Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.

Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control	¢4.48
Maıns powered record player	2.30, PZ. 5	Crystal or ceramic P.U. volume control etc.	£9.45
$20+20 \mathrm{~W}$. stereo amplifier for most needs	$\begin{aligned} & 2 \times Z .30 \text { s, Stereo } 60, \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P U.. F.M. Tuner. etc.	£23.90
$20+20 \mathrm{~W}$. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quatity ceramic or magnetic P.U.. F.M. Tuner, Tape Deck. etc.	£26.90
$40+40$ W.R.M.S. de-luxe stereo amplifier	2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mıc., gutar, speakers, etc., controls	£19.43
F.M. Stereo Tuner (£25) \& A.F.U. Filter Unit (£5.98) may be added as required.			

from a simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z. 30 \& Z. 50
power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02\% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference. but they are the same size and may be used with other units in the Project 60 range equally well. SPECIFICATIONS (2.50 units are interchangeable with Z. 30 s in allapplications).
Power Outputs
Z.30 15 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 3 ohms using 30 volts.
$\mathbf{Z . 5 0} 40$ watts R.M.S. Into 3 ohms using 40 volts: 30 watts R.M.S. into 8 ohms using 50 volts.
Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms .
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$.
2.30

Built, tested and guaranteed with circuits and instructions manual.
£4.48
2.50

Built. tested and guaranteed with circuts and instructuons manual. $\quad \mathbf{5} .48$

Power Supply Units

Designed special for use with the Project 60 system of your chorce. Use PZ 5 for normal Z. 30 assemblies and PZ. 6 where a stabilised supply is essential.
PZ.530 volts unstabilised $£ 4.98$ PZ. 635 volts stabilised $£ 7.98$ PZ. 845 volts stabilised (less mains transformer) 07.98 PZ. 8 mains transformer $£ 5.98$

The Sinclair Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfect/y and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mal. Air-mall charged at cost.

Project 60 Stereo F.M. Tuner

First in the world to use the phase lock loop principle

The phase lock loop principle was used for receiving signals fom space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other original features include varicap diode tuning. printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Good reception is possible in difficult areas, and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tunercan also be used to advantage with ny other high fidelity system.
 Capture ratio: 1.5 dB . Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting: $7 \mu \mathrm{~V}$ for lock-1n over full deviation Squalch leval: 20μ V. A.F.C. range: $\pm 200 \mathrm{KHz}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. Operating voltage : 25-30 VDC. Indicators : Power on/tuning/stereo.

Size : $93 \times 40 \times 207 \mathrm{~mm}$.

Stereo 60 Pre-amp/control unit

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again stlicon epitaxıal planar transistors are used throughout. achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-Input sensitivities: Radıo - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p. u . - up to 3 mV : Aux -up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +15 to -15 dB at $10 \mathrm{KHz}: \mathrm{BASS}+15 \mathrm{to}-15 \mathrm{~dB}$ at 100 Hz . Front panel : brushed aluminum with black knobs and controls. Size : $66 \times 40 \times 207 \mathrm{~mm}$ Bult tested and guaranteed.
£9.98

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two $Z .30$ s or $Z .50$ s and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapic (12 dB /octave). there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V Current - 3mA. H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3 dB)
 output. Size: $66 \times 40 \times 90 \mathrm{~mm}$

Built tested and guaranteed.

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ
Please send
Name lenclose cash/cheque/money order. - Address

TV'S 19" NOW £11.95

two Years' guarantee all models
405/625: 19" £25.95; 23" £35.95
fref catalogue
DAIIY DEMONSTRATIONS FOR PERSONAI SHOPPERS

COLOUR TV 19'' $£ 145$ OR 25' 185
LIMITED SUPPLY. REGRET PERSONAL CALLERS ONLY

TV TUBES REBUILT

 GUARANTEED 2 YEARS

14" 53.95 ; 17" \& 19" 55.95 ; $21^{\prime \prime}$ \& 23" 56.45
Exchange Bowls carr. 55p.
UHF/625 AERIAL
E1.95 10 ELEMENT
p.p. 250

PRESS BUTTON
SWITCHING UNITS
4.BANKS 25P,6 BANKS 35P.
pip-5p
DUKE \& CO. (LONDON) LTD.
$621 / 3$ ROMFORD ROAD, MANOR PARK, E. 12 Phone 01.478 6001.2-3

REEDS REEDS REEDS

We offer a comprehensive range of reed switch devices. These are not "seconds" or "job lots", but genuine manufacturers stock lines. Send S.A.E. for full data and prices

INTRODUCTORY OFFERS

Reed Relay type 2/E 3V
Miniature Reed Switches type A $\frac{1}{3}$ A 200 V
Reed Push Button Switches I contact

REED COILS

3, 6, 9, 12, $24 \vee$ Miniature Small Standard

REED SWITCHES

Large range of many sizes, types and manufactures
Popular types: E Small normally open 10 for 50 p A Miniature normally open .. 24p each B Standard change over ...40p each

REED RELAYS

Many versions available, popular types

$$
3,5,9,12,24
$$

Miniature $1 /$ A normally open
Small 2/E contact

$$
\text { 2/EE } 2 \text { contacts }
$$

TD 3/B change ovar

REED PUSH BUTTON SWITCHES

Momentary Action
I contact ...
2 contacts
Illuminated I contact
$E 1.00$
$\in 1.25$
61.30
Nluminated I contact $\underset{6}{6} 1.55$ inc. P. Tax

REELS Of ENAMELLED COPPER WIRE

20 s.w.g. to 47 s.w.g.
250 grams and 500 grams
s.

Packing and postage $7 p$ on all orders.
C.B.M. ELECTRONIC COMPONENTS LTD.

26 Avon Trading Estate, Avonmore Road, London, W.14

SIEMENS TTLEX STOCK!!

SIEMENS QUALITY PLUS BARGAIN PRICES PLUS LST SERVICE
A full desion range of high quality TTL available from LST your Officially Appointed Siemens Distributors

Part No.	Description	Equal to	1-24	25-99	100 up
7400	Quadruple 2-input NAND gate	$\begin{aligned} & \text { FLH } \\ & 101 \end{aligned}$	$20 p$	16p	14p
7401	Quadruple 2 -input NAND gate with open collector output	201	$\left(\frac{p}{90 p}\right.$	16 p	14p
7402	Quadruple 2-input NOR gate	191	20p	$16 p$	14p
7403	Quadruple 2 -input NAND gate with open collector output	291	20p	16p	14p
7404	Hex inverter	211	25p	$21 p$	18p
7405	Hex inverter with open collector output	271	$25 p$	21p	18 p
7408	Quad 2 -input positive AND gate Totem pole output	381	25p	21p	18p
7409	Quad 2-input positive AND gate open sollector	391	25 p	$21 p$	18 p
7410	Triple 3-input NAND gate	111	20p	16p	14p
7413	Schmitt Trigger	351	(350)	29p	25p
7420	Dual 4 -input NAND gate	121	20p	16p	14p
7430	8 -input NAND gate	131	20p	16p	14 p
7440	Duai 4 -input NAND buffer	141	24p	20p	17p
7442	BCD to decimal decoder TTL output	281	37.15	94p	31 p
7443	Excess 3 to decimal decoder	361	21.45	¢1. 20	¢1.08
7444	Excess 3 gray to decimal decoder	371	61.45	¢1.20	E1.08
7450	Expandable dual 2 -wide 2 -input AND-OR-INVERT gate	151	20p	16p	14p
7451	Dual 2 -wide 2 -input AND-ORINVERT gate	161	20p	$16 p$	14p
7453	Expandable 4 -wide 2 -input AND. OR-INVERT gate	171	20p	16p	$14 p$
7454	4-wide 2 -input AND-OR-INVERT				
\checkmark	gate	$\begin{aligned} & 181 \\ & F L Y \end{aligned}$	20p	16 p	14p
7460	Dual 4-input expander	101	${ }^{20} \mathrm{p}$	16p	14 p
7470	J-K flip-flop	$\begin{aligned} & \text { FL } \\ & 101 \end{aligned}$	45p	37p	32p
7472	J-K master-slave flip-flop	111	32p	27p	23p
7473	Dual J-K master-slave flip-flop	121	45p	40p	35p
7474	Dual D-type edge triggered flip. flop	141	46p	38p	33p
7475	Quad bistable latch	151	45 p	40p	37p
7476	Dual J-K master-slave flip-flop with preset and clear	131	45p	40p	36p
7480	Gated full adder	$\begin{aligned} & \text { FLH } \\ & 221 \end{aligned}$	67p	56p	48p
7482	2-bit binary full-adder	231	87p	73p	62p
7483	Four-bit binary full adder	241	61.32	41.16	61.00
7486	Quadruple 2 -input exclusive-OR element	341	33p	27p	23p
7490	Decade counter	$\begin{aligned} & F L \\ & 161 \end{aligned}$	$80 \mathrm{p}$	67p	57p
7491A	8-bit shift register	221	दो. 28	\& 1.07	92 p
7492	Divide-by-12 counter	171	85p	$71 p$	$61 p$
7493	4-bit binary counter	181	$80 p$	$67 p$	57p
7494	1-bit shift register	231	61.13	94 p	81 p
7495	4-bit shift register	191	87p	72p	$62 p$
7496	5-bit shift register	261	¢1.48	C1. 22	41.05
74100	Dual quadruple bistable latch	301	61.64	[1.37	61.17
74107	Dual J-K master-slave flip-flop with preset and clear	271	$\stackrel{q}{i}$	43p	36p
74121	Monostable multivibrator	$\begin{aligned} & F L K^{\prime} \\ & 101 \end{aligned}$	48p	40p	34p
74141	$B C D$ to decimal decoder and nixie driver	$\begin{aligned} & \text { FLL } \\ & 101 \end{aligned}$	(1.22)	¢1.02	87p
74190	Synchronous up down 4 -bit decade counter with one line mode control	201	± 1.80	£1.48	41.27
74191	Synchronous up down 4-bit binary counter with one line mode control	211	C1.80	6. 1.48	6.1.27
74192	Synchronous up down 4-bit decade counter	241	61.74	¢1.45	61.25
74193	As above-binary counter	251	\&1.74	C1. 45	61.25

TYPES MAY BE MIXED TO QUALIFY FOR PRICE BREAKS

DATA BOOKLET 20p

CONTRACT DIRDER PIRICES ANID IBULK
QUANTITY PRICES QUOTED ON REQUEST
EXTENDED RANGE AVAILAIBEE TO TRADE

LST) PART OF OUR CATALOGUE RANGE:

Large range of Transistors by many major manufacturers, Zener Diodes, Thermistors, Varicap Diodes, Rectifiers, Thyristors, Triacs, ICAmplifiers, Unijunctions, Opto-electronics, Tunnel Diodes, Meters, etc., etc.

> 2N5777 PHOTO DARLINGTON NEW LOOWEST PRICE
FANTASTIC SENSITIVITY 45p

IF YOU HAVEN'T GOT OUR CATALOGUE WHY NOT ??! IT'S FREE!

ULTRASONIC TRANSDUCERS

perate at $40 \mathrm{kc} / \mathrm{s}$. Can be used for mote control systems without cable or electronic links. Type 1404 t
ducers can transmit and receive. FREE: With each pair our complete PRICE

7 SEGMENT INDICATOR 3015F

16DIL Case-0-9 plus decimal indication. 62 incl. data/circuits. FLLI2I Decoder Oriver $\mathbf{C 1 . 3 2}$ to suit.
LST are appointed distributors for the Minitron 3015 F quantity prices on request.

NEW PRODUCT ! !

LOW COST DIL SOCKETS 16 PIN DUAL IN LINE $\quad 14$ PIN DUAL IN LINE $\quad 17 p$
$15 p$ NEW LOW PRICE LINEARS!! LIC709C/5 (TOS LIC709C/14 (DIL) LIC723/5 (TOS) LIC723/14 (OIL) IC74IC/5 (TOS) LIC74IC/I4 (DIL) All above are the
MARKET Linear range LST are Official Diseribucors for Newmarket Transistors Ltd

Data and

TERMS.

Recail Mail order subject to 50p only.
Schools
Official order.
Trade: Account on application.
Postage: 10p inland; 25p Europe: lsewhere-send Guarantee: All goods carry Manufacturers' warranty.
Councer sales: Same address-open Saturdays.
Trade Enquiries only: Telephone
Brentwood 226470 .

NEW LOWER PRICES

QUALITY: LST are Official Franchised Distributors for the majority of our advertised products. Members of the Association of Franchised Distributors of Electronic Components.

Great new OFFER tram
 DIOTRANTRMTEISTDRS

BRAND NEW FULLY GUARANTEED DEVICES

500,000

NPN-PNP PLASTIC AND METAL CAN TYPES
Clearance of manufacturers' seconds, elected in types and guaranteed no open or short circuit units. Ideal cheap transistors for radio enthusiasts, manufacturers, schools and colleges.
TYPE STNI8. Silicon Planar Transistors npn TO-18 Metal Can. Types similar to: 2 N 706 2N2220, BSY27-95A, BSX44-76-77. TYPE STP18, Silicon Planar Transistors pnp
TO-18 Metal Can. Types similar to: BCY70-72, 2N2906-7, 2N241i and BCIB6-7. Atso used as complementary to the pbove npn type device type STN18.

Price: 500 £9; $1,000 £ 15$ TYPESTN5, Silicon Planar Transistors npn TO-5 Metal Can. Types similar to: BFY50-51-52 and
2N2192-92. 2N2192-92. types $2 \mathrm{~N} 5354-56$, $2 \mathrm{~N} 405 \mathrm{~B}-2 \mathrm{~N} 4061$ and $2 \mathrm{~N} 3702-3$. Also used as complementark co-the-above-mpn devices type STNL. Price: $500 £ 7.50 ; 1,000 £ 13$ TYPE STNX. Silicon Planar Plastic Trensistor npn with $\mathrm{TO}-18$ pin circular lead configuration, $1 . C$.
$200 \mathrm{~mA}, 300 \mathrm{~mW}$ and similar to BC107-8-9. BCI 70 BCI73, BC182-I84, BC237-8-9 and BC337-8. When ordertus, Please state type required, $500 £ 5 \cdot 50 ; 1,000 £ 16$ STNK or STNIB, etc

$200,000 \begin{gathered}\text { SILLILON } \\ \text { Allor }\end{gathered}$

 TRANSISTORS
Clearance of pnp Silicon Transistors from

 the $2 S 300$ (TO-5) and $2 S 320$ (SO-2) range and similar to the GC200-205 and BCY 30-34 series. Ideal for Amateur Electronics, Radio Homs and for experimental use in Schools, Colleges and Industry.Approximate count by weight:
100 off- 75 p (plus p. \& p. 10 p) 300 off-¢ 1.75 (plus p. \& p. 15p) 500 off- $\mathbf{6} \mathbf{2} 50$ (plus p. \& p. $17 \frac{1}{2} p$) 1,000 off-4 (plus p. \& p. 25p) 10,000 off $£ 35$ (plus p. \& p. 55p)

$$
\begin{aligned}
& \text { Larse quantities quoted for on requesc. } \\
& \text { EXPORT INQUIRIES WELCOME }
\end{aligned}
$$

DUOLPDAN SALES POBOX 5, WARE, HERTS Full Money-Back Guarantee
postact e packing pp

10 MILLION DIODES

2,000,000 SILICON

PLANAR TRANSISTORS

TOI8 P.N.P. \& N.P.N. TYPES
State which when ardering

100	$£ 1 \cdot 50$	10,000	$£ 90.00$
500	$£ 6 \cdot 00$	50,000	$£ 400.00$
1,000	$£ 10.00$	100,000	$£ 625 \cdot 00$

LINEAR INTEGRATED CIRCUIT 709/PC S.G.S.

TO-5 can 8 lead. Full specification high sain Operational Amplifier data supplied. Lowest ever price.

QUANTITY: 19, 40-24, 25-99, 100-999 PRICE EACH $37_{p} / 4_{p}, 30 p, 25 p$.

TELEPHONE HANDSET
Fix-li.P.o. Perfect order. 50p

SELECTOR SWITCHES

MAINS TRANSISTOR POWER PACK
Designed to operate trangist or sets and amplifiers. Adjustable ont put by, 9 y , $1 \because$ volts for up tu Noma (class th working). Takes the place of ans PP7 Pp's aud others. Kit contprises: mains transformer rectifier, smoothing and load resistor, condensers and fistinctions. Real whip) at only 83p, plus 18p postage.

vena swiTCH

"anal. changeover contacts. Op
each. $£ 1$ doz. 1 It amp. on/of
Model. 10 p each or 41.05 doz.

CAPACITOR DISCHARGE CAR IGNITION

 efficient anil reliable was first , described int he Win less World about a year ago. We call supply kit un
 .W. June), price 24.95. When or leering please

TANGENTIAL HEATER UNITS

This heater mint is the very latest type. most
whicient, and unset runtish. Is an fitted in Hoover and thlower hitters costing f is and more. We have few only. Comprises motor, impeller, th W
 he fitted into anim metalized case or cabinet. Only need wort rel switch. $83 \cdot 50$. 3 kW . Mole! as above witch 35 p . P . \& F .

THIS MONTHS SNIP MULLARD AUDIO AMPLIFIER MODULE R oh nus speakers. Lip hit suitable for crystal punic. or pick-up. x lin high
gprclat

POCKET CIRCUIT

TESTER

Test continuity for any lon resistance cinenat, hume

 tiers, Also ileal sizefor 50 . Post paid

HONEYWELL PROGRAMMER

This is a drimitype timing device, the arum being calibrated in equal divisions for switch netting purposes with trips Which are infinitely adjustable for posit io They arp also arranged to allow ${ }^{\underline{2}}$ opera Lions per switch per rotation. There are 1 changeover moro switches each if dian, type opera by the trips mus l, circuits
 maine operated uses of thin tines are Mactinuers control.

 Don't miss this terrific bargain.
pe "A" THERMOSTATS
recuhouses amp. Io r controlling row heaters, winter knob. airing cupboards. Has spindle for 40 p . Calibrated Ricky anhmatahe from $30-80^{\circ} \mathrm{F}$, wall mounting. $25 p$
Type "B" It'anp. This is a 1 tin long rod 1 yipe made by the fanon sunvic Co. Spindle adjust
this from so-idn In, Internal screw
alters the setting sin this could be
 alarm. 43 p plus 1:3! post and insurance Type "D" We call this the ler-stat as it, chit in and
 from freezing, if a length wi sur blanket wire (ifyud $50 \mathrm{p}\rangle$ is wonnal round the pipe- 40 p .
Type "E". This is standard refrigerator thermetat. Spindle adjustments cover horal refrigeraType "P". (lase encased ion controlling the temp of liduid-particularly those in glass tanks, tats or sinks-thermostat Is held (half submerged) bs rubber sucker or Wire clig-ileal for fish tanks developers and chemical baths of all types.
Adjustable over range 50 to $150 \mathrm{~F}^{*}$. Hr ice 80 p .

TREASURE TRACER
Complete kit (except wooden
batteja) to make the metal detector ar the crinum is 89.95 plus up post anil insurance. DRILL CONTROLLER NEW IKW MODEL Electronically changes
speed from approxi-
 lately 10 revs to
maximum. Full porer at maxminnt. Full porer at
all speeds by tinger-tis, control. Kit includes all fill instructions. 21.50 plus
$13 \mathrm{p}, \mathrm{post}$ and insurance.
Made mp motel also available, $\mathbf{2 2} \cdot 25$ plus tel 13 , post a vail-

HIGH ACCURACY THERMOSTAT
Uses differential comparator 1.C. with thermistor as probe. Designer claims temperature control to thin 1/ith of a degree. Complete kit with power

AUTO-ELECTRIC CAR
AERIAL
with dashboard control switch retractable. Suitable for $12 \ell^{\prime \prime}$ positive or negative earth. Supplied complete with rifting instructions and ready red dashboard switch. $\mathbf{2 5 . 7 5}$ plans

AUTO-LITE

TOGGLE SWITCH

CAR ELECTRIC PLUG connection into the ear electrical ROCKER SWITCH

MAINS RELAY BARGAIN Special this month are wonk e single, relays. Contacts rated
Operating coil wound
Good British Hake.
apples. It in x lin
Opens contratrection.

BALANCED ARMATURE UNIT
500 oh
phone.
wirenits.

BATTERY CONDITION TESTER
Man le by Mallory but suitable for all batteries male by
Vier Real and others, most of which are situ: carbon types but also, mercury manganese nicer silver oxide annul alkaline leateries may be tested. The to ter units a Shanty load un the battery and the neuter sole indicates rests. The set ion reals "replace". weak" or the pol". The
 leads and proms. Price $21-75$ phis 20 p postage.

2' kW FAN HEATER

Three position switching to suit changes it the weather Switch up for full heater (al kW), switch down for half heat (t kW), switch central
blows cold for summer cooling bows cold for summer cooling
arljugtable thermostat acts an auto control and safety cut as ante control and safety cut
out. Complete init ± 3.95 Post and ins. 38 p

$1.88 \quad 48=13.26$

STEREO HEADSET

5 I tranaistor ampliter complet
with volume control, so nuitable for 9 V d.c. and a.c. supplies. Will gi
With high IMP input this anlpllfier will work as a record pla
fler

EMI LOUDSPEAKER 45
 tweeters atul crisa, iver. All wirell
and ready for use. This exel.

7"x4"LOUDSPEAKER 4 here quality speaker ideal Where Bmall size is important. Manuzactured
by E.M. H (or a well known
 28; 3in $1_{15} \mathrm{~J}$, than: Impeelance
 Quantity price applies for any
0.5 watt 5% iskra resistocs 5 off each value 4.7Ω to $1 M \Omega$

E12 pack 325 resistors $\mathbf{1 2} \mathbf{2 0}$. 124 pack 650 resistors $\mathbf{~} 4.70$.

POTENTIOMETERS

Carbon track $5 k n$ to 2Mn, log or linear (log tW, lin $4 W$).
Singie, 12p. Dual gang (stereo), 40 p. Single D.P. switeh 24p
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P mounting (0.1 matrix

BRUSHED ALUMINIUM PANELS
12 in $\times 6$ in $=25 p ; 12$ in $\times 2 \frac{1}{f}$ in $=10 p ; 9$ in $\times 2$ in $=7 p$.

ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK. BEDFORD
C.W.O. PLEASE. POST AND PACKING

Catalogue which contains data sheets for most of the components listed will be sent free on request 5p stamp appreciated.
10°., DISCOUNT TO ALL CALLERS ON SATURDAYS
MULLARD POLYESTER CAPACITORS C296 SERIES
$\begin{array}{llll}400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, & 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{p}, & 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, \\ 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, & 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0 .\end{array}$

 24LF, 5 p. $0.33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 7$ 1p. $0.68 \mu \mathrm{~F}$, $11 \mathrm{p} .10 \mu \mathrm{~F}$, 13 p
MULLARD POLYESTER CAPACITORS C280 SERIES

Mr
$\begin{array}{ll}\text { FILM } \\ 0.001 \mu F, & \text { CAPACITORS } 100 \mathrm{~V} \\ 0.002 \mu \mathrm{~F}, & 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}\end{array}$
CERAMIC DISC CAPACITORS 100pryto $10,000 \mathrm{pF}$, 2p each.

ELECTROLYTIC CAPACITORS, MULLARD C426 SERIES,
$(\mu F / V) 10 / 2 \cdot 5,40 / 2,5,80 / 2 \cdot 5,160 / 2,5,320 / 2.5,500 / 2.5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$, $(\mu F / 4,6 \cdot 12 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4.250 / 4$, $200 / 10,2 \cdot 5 / 16,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16,1 \cdot 6 / 25,6 \cdot 4 / 25,12 \cdot 5 / 25,25 / 25$, $50 / 21$ $80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,064 / 64,2 \cdot 5 / 64,5 / 64,10 / 64,20 / 64,32 / 64$.

ELECTROLYTIC CAPACITORS-MULLARD C437
ELECTROLYTIC CAPACITORS—MULLARD C437. $400 / 16,640 / 10,1000 / 6 \cdot 4,1250 / 4,1600 / 2 \cdot 5$, 12p. $160 / 64,250 / 40,400 / 25,1+116,1000 / 10$ $3200 / 4,4000 / 2 \cdot 5$, 18 p .
ELECTROLYTIC CAPACITORS Minizture P.C. mountinE \quad 5p each.
ELE/V: $10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.

VEnOROARD

JACK PLUGS AND SOCKETS

Standard screened	$18 p$	2.5 mm insulated	ap
Standard insulated	12 p	3.5 mm insulated	8 p
Stereo screened	$\mathbf{3 5 p}$	3.5 mm screened	13 p
Standardsocket	15 p	2.5 mm socket	8 p
Stereo socker	18 p	3.5 mm socket	$\mathbf{8 p}$

D.I.N. PLUGS AND SOCKETS

2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin
plug 12 p . Socket 8 p.
\qquad
BATTERY ELIMINATON
OV mains power supply. Same size as pPg bat elery.

SUPERSOUND IB HI-FI MONO AMPLIFIER

Auliope polld satu new components transist ors plus power gutput iransis

tors in bush pull. Fult tors in push-pull. Ful
wave
rectification wave
Outpun approx. $13 W$ r.m. In into 8 ohm
Frequertoy response rrequency response
$12 \Sigma_{2}-30 \mathrm{KHz} \pm 3 \mathrm{db}$.
Fviv integrated separate Volume, Hass boost and/Trilfler stage with crymel cartridge. Senaltivity mpprox . 40 m v ceranic or outpuo suppled ready built and tested, with knob escutchera panel, input and output pluge. Overall size

PRTCE 810.50
DE LUXE STEREO AMPLIFIER
 200-240 volts. Using heavy duty fully mains transformer with
full wave rectification
giving ade Valve line up:-2
tecl86 $\operatorname{Triode} \quad$ Pcntable hum as rectlfier. Two dual potentiometers are provided for basg and treble control, giving bass and Balance of the left and right hand channela can be adjusted by meams of a separate "balance" control fitted mately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watta per apmoxi (8 watts mono), into 3 ohm speakers. lutl negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligitile distortion supplied complete with knobs, chassis slze 11 in . w $\times 4 \mathrm{in} . \mathrm{x}$ Overall helght including valvea sin. Rendy bullt and tested to a high standard. Price 48-92. P. dz P. 45p. SPECLAL PUROHASE OF MANUPACTURER'S SUR PLOB: All Trawsistor F. M. tuner head with twin A.M. Ganc reduction drive. F.M. R.F. Tranalator, necillator/Mixe and first I.F. stage ($\mathbf{1 0 . 7} \mathbf{~ M c / s}$ output) with optional AFC comnection. Built on printed circuit
panel and fully acreened. Extremely panel and fully screened. Extremely
stable over range $88-108 \mathrm{Mc} / \mathrm{B}$. Brand stable over range $88-108 \mathrm{Mc} / \mathrm{G}$. Brand
new and prealligned. Size 2 i in H. new and prenaligned. Size $2 \operatorname{lin} \mathrm{H}$.
$1 \mathrm{in} \mathrm{W}, \times 2 \geqslant 1 \mathrm{DD}$. For 6 V D.C. 2.8mA. A.M. Gnng fitted with trim mers which can be connected to clrculte if required. LIMITED NUMBER. Only 22.25 post free.
Connectlon detailis supplied.

SPECIAL PURCHASE

ERATD FEW FH HULTIPLEX BTEREO DECODER Uirisg. Manufactured by PHILIPS. Slze $2 \ln \times 31 \mathrm{in}$ 0 emeh.
ITPUT DATCELG TRAM8PORMER. Besuthully made in heavy Mu-metal cyllndrical case for minimum hum pick-up. Size 1 ifin high $\times 1$ lin dia. Ratio 150 :
approx. Eapeclally suitable for matching dynanice ribbon mikes or plick-up from low to high impeantice or
vice versa.
 For TO3, complete with mica's and
Sin approx. 20 p palr. $\mathbf{P} . \& \mathrm{P}$. zp .

 Brass. Extended in any direction. 6in. to approx. aplion Lacquered diameter 1 Hn . 2 Fp each. P . dyprox.
dis.

GMP An TREX CHAR QRR THM NGMEEMER

4-SPEED RECORD PLAYBR BARGADI Maing modelf, Al brand new in maker's packing. With latest mono compatlble cartridge 26.97 . Carr. 50 p . With stereo cartridge 77.97 . Carr. 50 p .
PRECISION ENGINEERED PLINTHS Beautifully constructed in heavy gauge 'Colorcoat' Glastic eoard $1025,2000,2025 \mathrm{TC}, 2500,3000,3500,5100$ SP25 II and III, 8165 B, AT60, etc., or B.8.R. C109 29, A21, ete. Chole or black lestherette or terk 8 ral finish. Size $12 \operatorname{lin} \times 141 \mathrm{n} \times 31 \mathrm{In}$ high (approx. 71 in
high, including rigid mnoked acrylic cover). Price $\mathbf{5} 5.50$

LATEST ACOS GP91/180 Tono Compatible Cartridge with or LP/EP/78. Universal mounting bracket 1150. P. \& P. 80

SONOTONE QTARC COMPATLBLE STHREO CAETRIDGE /O styhs. Dinmon 8.50. P. \& P. 10p. Also available fitted with $t w i n$ Diamond T/O atylus for Stereo LP. 28. P. de. P. 10 p .
LATEST BONETIE T/O Stereo Compadilo Cartride for LATEST BONETYE T/O Stereo Compatib
EP/LP/Stereo/78. E1.68. P. \& P. 10 p . EP/LP/Stereo/78. \&1.68. P. \& P. 10p.
LATEST ROEETTE T/O Mono Compatible Cartridge for P/LPi/b mono or 1.50. P. \& P. 10

QUALITY RBCORD PLAYER AMPLIFIER MK II duty double wound mains transformer. ECC83, EL84, and rectifer. Separate Bass, Treble and Volume controis. Complete with output transformer matched for 3 ohm penker. Size 7 in . w. $3 \mathrm{~d} . \therefore 6 \mathrm{~h}$. Ready built and tested. PRICE \&8.75. P. \& P. 40p. ALSO AVAILABLE hounted on begril with output transtormer and speaker DE LUXE QUALITY PORTABLE R/P CABIIET MK II Uncut motor board size $141: 12$ in., clearance 2 in. below, IfD. above. Will take above amplifier and any B.8.R. or GARRARD changer or Single Player (except AT60 and
GP: -5). Size $18 \times 15 \times 8$ in. PRICE 84.75 . P. \& P. 50 p .

SPECIAL OFFER!! HI-FI LOUDSPEAKER SYSTEM

 Benutifully made teak finish enclosure with most attractive Tygan-Vynair front. Size $16 \frac{1}{2}$ in high $\times 10$ in wle $\times 5{ }^{2}$ deep. Fitted with E.M.I. Ceramic magnet cian and crossover. Power handling 10W
Our Price $\mathbf{8 8} \cdot \mathbf{4 0}$

Cur Carr. 65p

CABINET AVAILABLE GEPARATELY 4.50. Carr. 60p.

Also available in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. basis
speaker with parasitic tweeter. 86-50. Carr. 65p.

LOUDSPEAKER BARGAITS

 Ax oin 3 ohm with high flux magnet \&1-6\&, P. \& P. 20p. E.M.I. 13 . $\times 8 \mathrm{in} 3$ ohm with high flux ceramic magnet
\&. 10 (15 ohm 48.25). P. \& P. 30p. E.M.I. $13 \times 8 \mathrm{in}, 3$ or
 8 or 15 ohm with two inbuilt tweeters and crossover net-
work eA-20. P. \& P. 30 p . E.M.T. $13^{\circ} i 88^{\prime \prime}$ twin cone (parastatic tweeter) 8 ohm 28 -28, P. d P. 30p
BRAMD NEW. 12in 1Jw H/D Apeakers, 3 or 15 ohm, Current production by well-known Britlsh maker. Now
 E.M.I. $3 \frac{1}{1}$ In HEAVY DUTY TW ETERS. Powerful ceramic magnet. Available in 3, 8 or 10 ohm 88 peach. P. 8.13 p. 12in "RA" TWIR CONE LOUDBPEAKER
0 watta peak handling. 3,8 or 15 ohm, $2 R-20$.
 "POLY PLANAR" WAFER-TYPE, WIDE RAYGE "POLY PLAKAR", WAFER-T
ELECTRO-DYAAIC BPRAKER Bize $113 \ln \times 14 \mathrm{jln} \times 1$ Thin
Power 8 phr handing 20W r.m.s. (40W peak). Impedance ceilinga, walls, doors, under tables, etc., and uad with without baffle. Send \$.A.E. for full 'detaila. Only 25.75 each. P. de P. Dop.

VYEAN \& RRXINE BPEAKIRR \& CABIMET PABRIC

HI-FI STEREO HEADPHONES

Adjustable headband with comfortable flexifoam far-

 muffe. Wired and fitted with standard stereo In hackplug. Frequency response. $30-15,000 \mathrm{~Hz}$. Matchlog plug. Frequency reaponse $30-15,000 \mathrm{Bz}$. Matchlog
impedance $8-16$ ohms. Fianily converted for mono. PRI F . 48.95, P. \& P. 15p. HIGR TPPEDALCE CRYBTAL STICE MIEES. OUR PRICE 21.06. P. d: P. 8p.

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi stereo Ampllfier Kit. Ubes 14 transistors including sllicon Transletors In the first Ave stages on each channel result. level with Improved seasitivity. Integrated pre-amp use with Ceramle or Crystai cartrldges. Output stare use why speakers trom 5 to 15 ohms. Compact dealgn sll parts supplied including drilled metal work, high quality ready drllled printed circult board, attractive front panel, knobs, wlre, solder, nuts, bolts-no extras to buy. Simple step by step instructlons enable any constructor to build an ampllfier to be proud of. Briei specication: Power output 14W r.m.s. per channelint 5 ohms. Frequency response $\pm 3 \mathrm{~dB} \quad 12-30,000 \mathrm{~Hz}$ Senaitivlty better than 80 mV into $1 \mathrm{M} \Omega$. Full power band width $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Bas boost approx. to $\pm 12 \mathrm{~dB}$ Treble cut approx. to -16 dB . Negative leedback 18 dB
over mala amp. Power requirements 35 V at 1.0 amp Overall size-12" wide. $8^{* \prime}$ deep $\times 23^{\prime \prime}$ hich Overall size-12 wide 8° deep $\times 2$ high.
Fully detailed 7 -page construction manual and Fully detalled 7 -page construction manual and parts list PRICES AMPLIFIFR KIT

POWER PACK KIT, $\quad \$ 310-60$ P. \& $\mathbf{P} .40 \mathrm{P}$. 10 p .	CABINET,	s.
$\mathbf{P} . \& \mathbf{P}$		
\mathbf{P}	30 p	(Post l'ree if all units purchased at same time). Full after asles bervice. Also available realy bulit and teated

So 50 . Post Free 280.60 . Post Free. Note: The abote amplifier is suitable for feeding two
mono sources into inpuls (e p onike radio twin recor mono sources into inputy (e.g. mike. radlo, twin record

 Deaigned for HI-Fi reproduc thon of records. A.C. Mains plated heavy gauge metal plated heavy gauge met
ehassis, size 7 in $\mathrm{F} . \times 4 \ln$. d . enassis, size 7 in w. $\times 4$ in. d.
4in. h . Incorporates ECC8 EL84, EZ80 valves. Heavy duty, double wound mains transformer and output transformer matched for 3 ohm
 speaker. Separate volume control and now with improved
wide range tone controls giving bass and treble lift and wide range tone controls giving bas and treble feedback line. Output 4 tita. Front mounsing of controls. Complete with knobs ralvé etc wired anitesad tor oniv $\mathrm{Al}_{2} \mathrm{~F}$,
 EA34 above but employs entirely diferent and ad vanced
clrcuitry. Complete set of part, ete. 28.98 . P. . . . 0 _0p. HARYERSON'S SUPER MONO AMPLIFIER A suger quality gram amplifier using a double wound fully wolafed mains trangformer, rectifer and ECL82 triode penyode valve as audio amplifier and power output stage. impedance 3 ohms. Output approx. $3 \cdot 5$ watts. Volume 6 ang high overall. Charasis bize only 7 in . Wide $\%$ 3in. deep $\%$ Frand New, completely wired and tepted with good,

to Salurday
Early closing Wed. 1 p.m. Tube Station

170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. 01.5403985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

PLEASE HOTE: P. P. CEAEGEt , P. OM OVRESEAS ORDER CHABGED EXTEA.

KONTAKT 60
FOR INACCESSIBLE CONTACTS-More than just a cleaner. KONTAKT 60 guarantees perfect cleaning of contacts chemically in accordance with today's technology. KONTAKT offers the following ad-vantages:-

1. Dissolves oxides and sulphides the safe way without attacking contact substances.
2. Contains carefully selected solvents which do not attack plastics whereas they do dissolve resinified contact greases and dirt.
3. Contains no silicone.
4. Contains a light lubricant in order to avoid the contact paths being corroded.
5. Prevents further oxidation setting in.
6. Prevents "creep" currents.

Because of these outstanding properties KONTAKT 60 is one of the best and most popular contact cleansing agents in the world.
Users include: Rolls Royce Led., C.E.G.B., South of Scotland Electricity Board, Trinity House Workshops, Kolster Brandes, Mullard, Plessey Cos., etc
OTHER KONTAKT PRODUCTS ARE:
70 Protective Lacquer
80 Special Siliconized Polish
72 Insulating Spray
100 Antistatic Agent For Plastics 75 Cold Spray For Fault Location 101 Dehydration Fluid

SPECIAL PRODUCTS DISTRIBUTORS LIMITED
8 I Piccadilly, London, W.I
01-6299556

IN 15 MINUTES YOU COULD HAVE GUNTON ELECTRONIC
IGNITION FITTED TO YOUR CAR
Capsem and will give you:

- CONTINUAL PEAK PERFORMANCE

8 UP TO $\mathbf{2 0 \%}$ REDUCED FUEL CONSUMPTION
EASIER ALL.WEATHER STARTING
INCREASED ACCELERATION \& TOP SPEED
LONGER SPARK PLUG LIFE

- LNCREASED BATTERY LIFE
- CONTACT BURN ELIMINATED

PURER EXHAUST GAS EMISSION
RADIO INTERFERENCE SUPPRESSED boats, foll petrol engines-cars, Complete Installation Kit for 12 -volt vehicles $\mathbf{~} 12.95+45 \mathrm{p}$ P. \& P. State earth polarity of vehicle POSITIVE or NEGATIVE earth. Unit Construction Kit also available for the radio electronics constructor $\mathbf{~} 9.95$. + . 45 p P. \& P The construction kit includes instructions and all components for wiring as
positive or negative earth, and is complete with the stove enamelled steel case positive or negative
and aluminium base.
Money back guarantee. S.A.E. for leaflet
P.E. SCORPIO Components: Transformer and Mounting Kit $£ 1.85+25 p$ P. \& P. Printed Circuit Board $60 p+10 \mathrm{p}$ P. \& P. Case and Hardware as above
\&i. $85+25 \mathrm{p}$ P. \& P .

ELECTRONICS DESIGN ASSOCIATES 82 BATH STREET,
WALSALL WSI 3DE

If you have difficulty in obtaining

PRACTICAL ELECTRONICS

Please place a regular order with your newsagent or send \boldsymbol{l} year's subscription ($£ 265$) to Subscription Department, Practical Electronics, Fleetway House, Farringdon St., London, E.C.4.

MARSHALL'S INTEGRATED CIRCUITS
 NEW LOW PRICES LARGEST RANGE BRAND NEW FULLY GUARANTEED

LARGEST STOCKS SEMICONDUCTORS \& COMPONENTS

BRAND NEW

 GUARANTEED
Pructical Electronics Classified Advertisements

RATES: 8p per word (minimum 12 words). Box No. 10p extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

MISCELLANEOU8

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE
because this GPO approved transmitter/receiver kit does not use R.F. and you can get one easily Your transmissions will be virtually SECRET since Acrually it's TWO KITS IN ONE because youget all the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely floxible design with quite an AMAZING RANGEhas obvious applications for SCHOOL PROJECTS LANGUAGE LABORATORIES, SCOUT CAMPS, etc.
GET YOURS! SENO ES. 50 NOW (S.A.E. for details) TO: 'BOFFIN PROJECTS

DEPT. KE2OIO
STONELEIGH EWE
TONELEIGH EWELL SURREY

RECORD T.V. SOUND using our loudspeaker isolating transformer. lrovides safe connection to recorder. Instructions inchuded,
 Sussex
solid State C.ds. Exposure Meter--saye poumbs! assemble our meter. all parts and simple instructions for your rase. 1lhoto-logie module ensures accuracy over is light values. £3.47 or details-TRAXIX, 18 Wroxham close, Shelton Lock, Derby.

12 VOLT FLUORESCENT LIGHTS

Beat Power Cuts, 12 ins 8 watt Tube, idea for Caravan, Tent, Emergency Lighting, ete Fully Transistorised, Low Battery Drain Trun other Lights or 12 V Equipment.
$\begin{array}{ll}\text { Unbeatable at } & \mathbf{8 3 . 3 0} \\ \text { rinkit form } & \mathbf{~ 2 . 9 0}\end{array}$
orinkit form £2:90
post ${ }^{\text {paid }}$
SALOP ELECTRONICS Callers welcome
 S.A.E. for lists

GIRCUIT BOARD ETCHING KITS, full instructions, $£ 1-25$, c.w.o. ARVIN SEIRVICL COMPANY, 12 Cambridge Road, St. Albans, THerts.

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2 \frac{1}{2}$ in \times any length. DEW LTD. Ringwood Road, Ferndown, Dorset. S.A.E. for leattet. Write now-right now.

MISCELLANEOUS (continued)

TOP TRALSISTIOSS

Brand New and Individually Tested Transintars supplied unmarked, but packed eparatelyfor indentification and guaranteed to be within their correct specification or money refunded. All at 9p. each or Any 25 tranaistors for only $\mathbb{C l} 90$

ORGAN CONSTRUCTORS

A wealth of components for the home enthusiast. Many BlRD ORGAN parts. S.A.E. for lists.

BARRY M. CHILDE 24 WORTHINGTON CRESCENT POOLE, DOAGET BHIA BBW

CLEATIGG LABORATORY, scopes, V.T.Y.M's, Y.OM's, H.S. recorders, transeription turntables, electronic testnueters, calibration units, 1.S.U.'s, pulse generators, 1.C. nullpotentioniteters, bridges, spectrum analysers, voltage regulators, sig-gens, M / C relays, components, etc. Lower Beeding 236 .

PROFESSIONAL CONTROL PANELS

With FASCLA KIT
MAKE YOUR OWN PANELSTN PERMANENT NO SPECIAL EQUIPMENT NEEDED. NO SPECIAL EQUW TO FOLLOW INSTRUCTIONS CHOICE OF SILVER ON BLACK, RED.

No. 1 KIT E1.88 Carr. Paid No. 1 KIT 61.88 Carr. Paid M.P.E. Ltd. (P.E.), BRIDGEST., CLAY CROSS DERBYS.

LOTS OF'

Suppliers forget to tell you that their metal locators won't function Intil you've first got a transistor radio with which to TREASURE PROBE. however, comes to your doorstep with PRINTED-CIRCUIT BOARD, all ELECTRONIC COMPONENTS, a ready-drilled box to put it in plus search-coil and earphone. Think of the fun you'd have BEACHCOMBING with the sensitive TREASURE-PROBE, and the expectancy of hearing its LOUD THING" GET YOUR TREASURE-PROBE SEND E6.59 NOW! (S.A.E. (or decails). BOFFIN PROJECTS 4 CUNLIFFE ROAD STONELEIGH, EWELL SURREY

Designed by GERRY BROWN \& JOHN SALMON and presented on TV

MISCELLANEOUS (continued)

DON'T LOOK
 unless you really want to get the benefit (r.om this collection of SUPER electronic proiects. Have You ever wanted to build AMACHINE THATLEARNS? Or perhaps A MACHINE THAT LEARNS? Or perhaps make TEACHING DEVICE? Maybe Ycu lancy the idea of an ELECTRONIC FANTASY MACHINE? How about a EANTASY MACHINE? How about a TTSELF: Whatever of REPRODUCING of-mind, there's just GOT TO BE LOADS Of-mind, there's just Git siencerictionworld of BOFFIN. Find out more that interests YOU!,
 get your cataiogue- seno just 20 Nowt (s.A. (ior details).
 TO: BOFFIN PROJECTS
 4 CUNLIFFEROAD STONELEIGH, EWELL SURREY
 Designs by GERRY BROWN and JOHN SALTMON and presented on TV.

SWITCHES UNUSUAL

PRESSURE MAT-flexible, hard-wearing plastic, mat containing 180 contacts. Contacts close when pressed, open when released. Rating $50 \mathrm{v}, 500 \mathrm{~mA}$. Size $30 \mathrm{in} \times 24 \mathrm{in}$

22 each
MINI MAT-size $24 i n \times$ in. E1. 5 O (Tailor made. Price on request). Syitable for burglar alarm, counter, foot sxitch, games. "Uses limited by imagination." PROXIMITY SWITCH - in moulded plastic case. Rating $250 \mathrm{v}, 600 \mathrm{~mA}$. $£ 1.10$ SWITCH PROBLEM? We have mulcirange, key operated, infra-red, solid state,

POSTAGE FREE IN U.K. C.W.O.
ELEGTRONIC SWITCHING DEVICES
P.O. Box 7, Aspley. P.D.O. Nottingham

For further details send s.a.e.
Guaranteed satisfaction or money back

HARDWARE FOR CONSTRUCTORS. Screws, nuts, brackets, spacers, etc. S.A.E. list. IR. A. MARsH, 29 shelbourne Road, Stratford-on-Avon, Warwicks.

BRAIN CALCULATOR. Adds, subtracts, divides Calculates figures, money, sums easily and quickly. Pocket size, with full instructions, 55 p . CAMERA CENTRE, Fleetwood.

FASCIA PANELs, hi-fl equipment, etc., etched aluminium to individual specifications, S.A.E. details. R, MARSH, 29 Shelbourne Road, Stratford on Avon, Warwicks.

GtASS FIBRE OPTIG
 FLEXIBLE LIGHT PIPE, now available in any length. $150+$ alass fibres with three times length. $150+$ glass fibres with three times lower foss than plastic fibre. P.V.C. sheath 0.080 in. dia.
 Used like wire but to convey light to remote or inaccessible positions for inspection, panei ndicators, photo-electric and other applications. Prices per ft. (post free): I-9, 25p;
 $0-49,20 p ; 50-249,15 p$. Enquiries S.A.E. FIBRE OPTIC SUPPIIERS P. BOX 702, LONDON WIO 6SL

FOR SALE

SEEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R. Whiston, Dept. PE, New Mills, Stockport.

CATALOGUE NO. 18, Electronic and Mechanical Components, new and manufacturers' surplus. Credit vouchers value 50p. P'rice $\mathbf{2 3 p}$ including post. ARTHUR SALLIS RADIO GONTRÓnitidna 28 Gardner strect

MORSE MADEEASY!! FACT NOT FICTION. If you atart RIGITT withla a month (normal progress to be expected). Morto Uning mellentifically progared 3 -gpeed recori automatleally learn to recognise the code RHYTHM without translating. You can't belp it, it's us ensy as learning a tune. 18 W.P.M. in 4 weeks guarantced. Complete Course $24 \cdot 50$ (Overseas $£ 1.00$ extra) details
nly, 4 p stamp. 01.6602896 .
GaHsC (Boy 18), 45 GREET LANE, PURLEY, surREy

LADDERS

LADDER8. 20ft, E7. Order C.O.D. Phone $02-993$ 5222. HOME SALES (Dept. PEE), Baldwin Road, Stourport, Worcs. Callers welcome.

WANTED

PRACTIGAL ELECTRONIC8 wanted May June 1969. state Price for pair. Box No. 39.

CASH PAID for New Valves. Payment by roturn. WILLOW VALE EILECTHONICS, 4 The lroadway, Hanwell, London, W.7. 01-5675400/2071.

HIGHEST PO8sIBLE CA8H prices for Akai, 13. \& O., Brenell, Ferrograph, Revox, Sanyo, Sony, Tandberg, Ther, Yortexion, etc. 9.30 5.00. 01-242 7401.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

SERVICE SHEETS

8ERVIGE 8HEETS (1925-1971) for Tolevisions, Radios, Transistors, Tale Recorders. Record Players, etco, by return post, with free FaultFinding (suide. Pries from 5p. (Wer x,000 models available. Catalogue 13 p . Please send S.A.E. with all orders/enquirips. HAMILTON RADIO, 54 London latad, Bexhill, Sussex. Telephone, Bexhill $\quad 09$ -

SERVIGE 8HEET8. Radio, TV, etc., 8,000 models. Jist 10p. S.A.E. enguiries. TELLAY, 11 MandIand Bank, I'reston

SERVICE SHEETS (continued)

RADIO, TELEVISION AND TAPE RECORDERS. 50 mixed odd sheets 80 p . Also large stock of obsolete and current valves. JOHN GILBERT TELEVISION, 1b shepherds Bush Road, London, W. 0 (01-743 8441). S.A.E. enguiries.

EDUCATIONAL

MEN! You can earn 550 p.w. 1, earn computer operating. send for FREE brochureLONDON COMPUTER OPERATORS TRANING (ENTRLE E4T Oxford House $9-150 x$ ford street, London, W.1.

GET INTO Electronics-opportunities for trained men. Learn at home. D'ostal courses in RTEB, city $\&$ cruilds, Radio, TV. Telecoms. etc. FREE informative guide: ('HAMBER ('OLLECE (Dept. R.103), Aldermaston court, Reading, RG: 4PF

Amse (Elec), (ity © Guilds, RTEB cert. Radio Amateurs ("ert. Study at home courses in all branches of Electrical Engineering, etc betails and illustrated book-FREE-BIET Dept. 1I.5), Aldermaston ('ourt, Realing $\mathrm{Rtif}+\mathrm{PF}$. Accrediterl by CAC('.

ENGINEER8-get a technical pertiflcate Postal courses in Engineering, Electronics Badio, TV, (omputers, 1)ranghtsmanship Hoblding, ete. FREE book from: IIIET (I)ept H.4), Aldermaston Court, Reading, RGi 41) Accredited by ('AC'

SITUATIONS VACANT

 Eseablished |89

First-class opportunities in Radio and Electronics await the I C S trained man. Let I CS train YOU for a well-paid post in mis expanding field
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servieing, Colour TV Servieing, also Electronics, Computers, etc. Expert coaching for:

* C. \& g. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
* radio amateurs' examination.
* general radiocommunications certificate.
* C. \& G. RADIO SERVICING THEORY.

Now a vailable, Colour T.V. Servicing.

- Examination Students coached until successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.

POST THIS COUPON TODAY and find out how I C 5 can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ABCC
ACCREDITED BY THE CACC

TELEVISION TRAINING
 (MONOCHROME AND COLOUR)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses 16 months' duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Marine Radiocommunication and Radar are also available. Write for prospectus to: London Electronics Callege, Dept. B/3, 20 Penywern Road, Earls Court, London SW5 9SU. Tel. 01-373 8721.

RECEIVERS AND COMPONENTS

nippibonrd

MULTi-PURPOSE PRINTED WIRING BOARD FOR PE TRANSISTOR CIRCUITS.

Photo-print Process Control Unit	SRBP	fibregass
	$\begin{aligned} & { }_{2 A}^{4 A S} \end{aligned}$	B
Lift Note Genet ator (figenuly) (Nov)	${ }_{2}^{2 A}$	$2 \mathrm{2B}$
Chart Recorder (OCt)	2 A	28
Engine Temperature Controller (Oct)		18
(e) Rain or Water Level Alarm (Oat)	${ }_{2}^{1} A$	${ }_{28}^{18}$
A. ${ }^{\text {a }}$		

FREE NIPPIBOARD TYPE IA when you buy SL4Q3 SOSHORI CIRCUIT PROOF I.C.AMR. as sperified for EE RECDAD PLAYER NIP ELECTRONICS ${ }^{\text {dept }} \mathrm{N} / \mathrm{E}$
P.O. BOX 11, ST. Albans, Herts, England.

ASSORTED BRAND NEW WIRE. WOUND RESISTORS, I-10 watts ($5 \times$ 10 different values), 50 for 60 p, P. \& P. 10p
PLESSEY 50 K + SOK GATHED LOG POTENTIOMETERS, 25p, P. \& P. 5p PEESSK ELECFRQLYTIC CAPAGI. TORS $200 \mu \mathrm{~F}, 350 \mathrm{~V} 35 \mathrm{p}$, F $\& R$ R P ; $200 \mu \mathrm{~F}$ 500 V (1 miced quantity) 50p, P. \& P. KOp. PLESSEY LOUDSPEAKERS, 3in JS ohras, 50p, P. \& P. 10p.
ASSORTEDEAFACITORS (no rubbish), includes Silver Mica, Ceramic and Poly styrene types, 100 for 50p, P. \& P. 10p.

MAIL ORDER ONLY

```
XEROZA RADIO
I EAST STREET BISHOP'S TAWTON DEVON
```


ORY REED INSERTS

Overall length $1.85^{\prime \prime}$ (Body length $1.1{ }^{\prime \prime}$), Diameter 0.14^{*} to switch up to 500 mA at up to 250 V D.C. Gold clad contacts. $62 \pm$ per per doz.i $: 3.75$ per $100 ; 627.50$
10,000 . All carriage paid.
G.W.M. RADIO LTD.

40/42 Portland Road, Worthing, Sussex 090334897

P.E. GEMINI

STEREO AMPLIFIER

(Dual purpose, JoW per channel) All the components to build this high quality amplifier, as featured in "Practical Electronics," Nov. 1970-Feb. 1971, are now available from one source. ALL PARTS CAN BE PURCHASED SEPARATELY
Please send foolscap size S.A.E. for free complete lists. Reprine of articles available in booklet form, complete with free price list, 55p post free

Mail Order Only
ElectroSpares 21 BROOKSIDE BAR CHESTERFIELD, DERBYSHIRE Quality - Value - SERVICE
I.C. STEREO AMPLIFIER (Plessey Design) 3W per channel into 8 ohms. Includes preSL403D I.C. Amplifier only, 62.20 each.
HEAT SINKS Plain, finned.
SDN Undrilled $4 \mathrm{in} \times 4$ in x in, 28 p each 5DN Drilled $2 \times$ TO3 (OC28, etc.), 33p each 10DN Drilled $2 \times$ TO3 (OC2B, OC35, etc.). 38 p each. Mica washers and Insulators TO3, SOP5, 5p per set.
VEROBOARD State 0.1 in or 0.15 in matrix $2 \mathrm{tin} \times 5 \sin , 22 \mathrm{p}_{\mathrm{p}} .2 \mathrm{tin} \times 3 \neq \mathrm{in}, 20 \mathrm{p}$. $3 \neq \mathrm{in} \times 5$ in 24p. 3 in $\times 3$ in, 22 p . 17 in $\times 2$ 2tin $\times 0.15$ in matrix, 35 p . in or $0.15 \mathrm{in}, 50$ for 20 p .
Veropins 0.10
ALUMINIUM BOXES. Ideal for housing

 with lid and fixing screws. P. \& P P. 10 p for all wither
orders under E2. S.A.E. for list.

SEPTUN ELECTRONICS

P.O. BOX I5, ALDERSHOT, HANTS

AARVAK ELECTRONIC8, 3 chamel soumd light convertors: 1,200 watts, $£ 17$; 3,000 watts £25; Medium Power Strobes $£ 16$. 74 Bedford Avenue, Barnet, Herts. 01-449 1268

KEYTRONICS mail order only 44 EARLS COURT ROAD
LONDON, W. 8
01-4788499

WITWORTH TRANSFORMERS

TV Line out-put transformers Manufacturers of the largest range in the country. All makes supplied.

Free catalogue. Modern
BAIRD, BUSH, GEC, PHILIPS
Replacement types ex-stock.
For "By-return" service, contact London 01-948 3702
Tidman Mai! Order Ltd., Dept. PE, 236 Sandycombe Road, Richmond, Surrey.
Valves, Tubes, Condensers. Resistors, Rectifiers and Frame out-put Transformers also stocked.
Callers welsome.
GIEW COMPONENTS - LOW PRICES Pairchild 9315 (equivalent SN7441), 55p. $\begin{array}{lll}\text { SNS476, 35p. } & \text { SN7475, 35p. } & \text { SN7495, 55p. } \\ \text { SN7403, 18p. } & \text { SN7410 } 180 . & \text { SN7400, 180. }\end{array}$ $\begin{array}{ll}\text { SN7403, 18p. } & \text { SN7410, } 18 \mathrm{p} . \\ \text { SN7490, } 66 \mathrm{p} . \\ \text { SN7492, } 66 \mathrm{p} .\end{array}$ Numerical indicat TMbes. Necimal points, 61.30 . Tubes side view with values from 3-p each. Er Oxide Resistors all trolytic Capacitors from Erie Aluminium Each. Metallised polyester capacitors resin moulded from 9 each. Foolscap S. A.E. plus 3 pin stamps for lists. P\&P7p AQUA-GEM ELECTRONICS, \& Pound Lane Bowers Gifford, Basildon, Essex. Mailo Onder Only

MALMS TRANSFORMERS

Primi $200 / 240 \mathrm{~V}$ a.c. TX6, $425-0-425 \mathrm{~V}, 500 \mathrm{Ma}$, ${ }_{4}^{63 V} 6 A$ CT, $6 \cdot 3 \mathrm{~V}$ 6A CT, $0-5-6.3 V 3 \mathrm{a}, 212.75$; TXI, $6.3 \mathrm{~V}, 4 \mathrm{~A}, 27.50$, TX 6.3 V 4 A CT, $6-3 \mathrm{~V} 4 \mathrm{~A}$ CT 0-5CT, $0-5-6.3 \mathrm{~V}, 3 \mathrm{~A}, 24 \cdot 05 ; \mathrm{TX}, 300-150 \mathrm{~mA}, 63 \mathrm{YAA}$ $6 \cdot 3 \mathrm{~V} 2 \mathrm{~A}$ СТ, 6.3 Y , $6.3 \mathrm{~V}, 14-05$, TX 2 , 0 ,
 $6.3 \mathrm{Y}, 1 \mathrm{~A}, \mathrm{E1.20}$; MT2, $230 \mathrm{~V}, 45 \mathrm{niA}, 6.3 \mathrm{~V}, 1.5 \mathrm{~A}, 11.60$.
 $110 / 240 \mathrm{~V}$, Sec. $250 \mathrm{~V}, 100 \mathrm{~mA}, 63 \mathrm{~V}, 2 \mathrm{~A}, 22.25 . \rightarrow$ AUTO TRANGFORMERS
$0-110-200-200$ 240F a.c. 11p or doun fully shronded fitter insulated terninal blocks, 30W 81.35 ; 50 W £1.80; 75W 22.10; 100W 22.55; 1.10W 28.15; 200W 43.90; $300 \mathrm{~W} \quad £ 5.25 ; 400 \mathrm{~W}$ £0.30; 700 W 27.60; 600 W £8.25; 750 W E9.75; $1,000 \mathrm{WW} 212.75 ; 1,500 \mathrm{~W}$

LOW VOLTAGE TRANSFORMERS

 £2.70; 5A, £3.75; 84, £日; 10A, $£ 8 ; 40 \mathrm{~V}, 3 \mathrm{~A}$ ('T, 28.46 MIDGET RECTIFIER TRANSFORMERS
For FW rect., size $1 \frac{1}{2} \times 1+1 \mathrm{in}$, Prim. 200/240v a.c. output, PPT1. 9-0-9Y, 0.3A, PPT2. 12-0-12V, 0.25A PlTS. 90-0-205, 015 A , £1,20 rach; ditto, size 2×2
 1A, MTS
O/P TRANSFORMERS FOR POWER AMPLIFIERS P.P ser. tapped 3-7 $5-1$ t, ohnis, A-A 6.6k $\Omega, 30 \mathrm{~W}$ $3 \mathrm{k} \Omega$. A-A, EL. 44 (K T\&8, etc.) Ell. 40 and to 400 W . LOUDSPEAKERS FOR POWER AMPLIFIERS
 E.M.L. $13 \ddagger \times 8 \mathrm{ill} 10 \mathrm{~W}, 3$ or 8 or 15 ohms, 22.86 . Dittu with two twetters and Xover, es.00; Horn T'weeters $2-16 \mathrm{hHz} 10 \mathrm{~W} 8$ or 16 ohuls, $£ 1 \cdot 50$. $1 \mathrm{Hl}-\mathrm{FI}$ G.E.C. MANUAL OF POWER AMPLIFIERS G.EC. MANUAL OF POWER AMPLIFIERS Covering valve atmplifiers of 30 to 400 watts, with
price lint uf transfurmers and chokes specitied price
LOUDSPEAKERS
 $6 \times \operatorname{tin} x \Omega: 7 \times 4 \operatorname{in} 3 \Omega ; 1 i n$ in $3 \Omega, 21.08 ; 8 \times \pi$ in 3 or 15 or $25 \Omega, 21 \cdot 35$; 8 in 3Ω, $£ 1-85$.
SPEAKER AUTO MATCHING TRANSFORMER 3 to 8 or 1.5 ohnis, up or down, 75 p. P. \& P. 15p.
MIMIATURE MODEL RELAYS 1×3 anir joz, with transpar

BULK TAPE ERASERS

Instant erasure. tape spools and cassettes
 netizes tape heads, a.c.
AIRCRAFT BAND CONVERTERS
Covers ettire aireraft batd, $110-135 \mathrm{MHz}$, fully
 PRINTED CIRCUIT ETCHING KITS
Comprehatisive outtit: solutious and equipnient to
matke sour on in P.C. boards, instructions, $£ 1 \cdot 36$, extra pe. Roarcta $8 \times$ 6in, 15p.
A variet of user, Bloners, Funs, etc., new 110 V he $25 p: \operatorname{y30} / \because 50 V$
CONDENSERS
Paper: 0.01/2kV 12; p; 0.22/800V a.c. 25p; 0.47/700V

 BATSTERY ELIMINATORS
BATTERY ELIMINATORS
(get rid of your batteries) for your tranaistor radio. ac. fully insulated, conpact. Outputs: $618200 / 240$ \$1.50; 7) \&1.50.

SAEE INQUIRIES-LISTS. MAIL ORDER ONLY
46 Kenilworth Road, Edgware, M
Tel. 0f. 9589314

U.H.F. TV AERIALS

SUITABLE FOR COLOUR \& MONO. HROME RECEPTION

WALL MOUNTING c/w WALL ARM AND BRACKET. 7 element 63.25 . II element CHIMNEY MOUNTING ARRAYS CHIMNEY MOUNTING ARRAYS c/w MAST AND LASHINGKI. 7 element E_{4} element 65.25.
MAST MOUNTING arrays only 7 elemen 62.25. II element $\mathbf{6 2 . 7 5}$. 14 element $\mathbf{i 3} 25$. 18 element $\mathbf{6 3 . 7 5}$. Complete assembly ir:structions with every aerial. LOW LOSS coaxial cable 9p yd.
KING TELEBOOSTERS from 63.75. LABGEAR all band V.H.F.-U.H.F.-F.M. radio mains operated pre-amps 67.50. State clearly channel number required on all orders. P. \& P. on all
aerials 50 p accs. $15 p$. C.W.O. min. C.O.D. aerials $50 p$
charge 25 p .

BBC-ITV-FM AERIALS
BBC (band 1) Wall S/D A. L. LOFT inverted T' 41.25 . EXTERNAL 'H' array only 63 .
 element c3. COMBINED BBC-ITY Lict CHIMNEY UNITS ALSO AVAILABLE. Preamps from 63.75 .
COMEINED U.H.F.-V.H.F. aerials $1+5+9$ f4. $1+5+14$ 64.50. $1+7+14$ 65. F.M.RADIO loft $5 / \mathrm{O} \mathrm{Cl}$. 3 element $\mathbf{6 3 . 2 5}$. 4 element $\mathbf{8 3 . 5 0}$. Standard coaxial plugs $9 p$. Coaxial cable 5 p yd Standard coaxial plugs 9 pi Coaxial cable 5 p yd
ourler box 30 p. P. \& P. all aerials 50 p . accs. 30 p W. W.O. min. C.O.D. charge 25p. Send 5 p for ully illustrated ists.

CALLERS WELCOMED
 K.V.A. ELECTRONICS

40-41 Monarch Parade, London Rd. Mitcham, Surrey Telephone 01-648 4884

NEW
 £375 (\%

7 TRANSISTORS - GUARANTEED

 PRINTED CIRCUIT - TESTED DESIGN BUILT - INSTRUCTIONS A great new 15 watt Hi-Fi amplifier is now available at the low cost of 63,75. Just look at the specifi-cation-Power 15 Watts R.M.S. Frequency response $1)^{\text {cs }} 19000 \mathrm{cs}$. -1 dB at all powers. Signal to noise ratio better than -70 dB . Harmonic distortion 0.1 \%. Input sensitivity 750 mv into $\mathbf{2 k}$. These factors make the H . Electronics $\mathrm{Hi}_{\mathrm{i}}-\mathrm{Fi}_{\mathrm{i}}$ amplifier theHELECTRONICS.
105,Grange Road, London . S.E. 25
Electrolytic 10 or 25 V 5,10 nifil 31 p 25. $50-4 \mathrm{p}$. $100-5 \mathrm{p}$. Mylar Film 100 V $0.001,0.002,0.005,0.01,0.02-2 p ; 0.04 .0 .05-$ 2tp; 0.068, 0.1-3p. Mulard miniature carbon film resistors third watt E. 12 series O.R. SUPILY CO., 127 (hesterfield Rd. C.R. SUPPLY C
Sheffield,
S8 ORN.

GINI MAIN8 PACK KIT. Safe double-wound mini tr "sformer, silicon rectifiers, $1,000 \mu_{\mu} \mathrm{F}$ mini tr "sformer, silicon rectifiers, $1,000 p \mathrm{p}$
smoothing, instructions. Buildable to size
 Mail order only. AMATRONIX LTD., 396 Selsdon Road, Sunth Croydon, Surres,
CR2 0IDE.

P.E. RHYTHM GENERATOR PARTS. P.C' board, built switch. Tratsistors diodes resistors, ete. Instructions, S. IFGO, 352 Dallow Road, Luton, Beds.

Why wait weeks?

-ALL OUR ORDERS

 DISPATCHED BY RETURN OF POST!Transistors, Diodes and Integrated Circuits

POSTAGE AND PACKING PLEASE ADD 10 p TO YOUR ORDER

2N3055 115 W 15A	59p	AD, 142 80 V 10A TO-3	50p
$\begin{aligned} & 2 N 3053 \\ & \text { 1ATO-5 } \end{aligned}$	17p	AU103$155 \mathrm{~V}, 10 \mathrm{~A} \mathrm{TO}-3$	4
$\begin{aligned} & \mathrm{BC107} \\ & \text { also BCIO8 and BC109 } \end{aligned}$	9 p		
		BCI $47 / 8 / 9$High gain LOCKFIT	9p
AF239 UHF: 5DB Noise factor at	40p		
800 MHz		40411	4.95
WOI	45p	$30 \mathrm{~A}, 150 \mathrm{~V}$	
1A, 100 V Bridge Rectifier		BFY50, 51, 52	19p
AD262 PNP Matched BD162 SNPN Pair IOW. Audio output pair	80 p	NEW! TBA800 5W Audio IC	¢1.50

for fast, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

SAVBIT ALLOY ALSO REDUCES

 COPPER BIT WEAR. Economically packed for general electrical and electronic soldering. 75 ft . 18 gauge on plastic reel. Recommended retail price 75p Size 12
A RANGE OF SOLDERS IN HANDY DISPENSERS.

REF. ALLOY SWG 19A 60/40 18 18p* Savbit 18 18p* (Size 5 illustrated) 15 60/40 22 22p* * Recommended Price

THIN GAUGE

SOLDER,
ESSENTIAL FOR
soldering small components and thin wires. High tin content, low melting point. 60/40 alloy, 170 ft . 22 gauge on plastic reel. Recommended retall price 75p Size 10

INVALUABLE FOR STRIPPING

 FLEX, THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER AND CUTTER, easily adjustable for all standard diameters. Plastic covered handles, can also be used as wire cutter. Recommended retail price 50pFrom Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

C.T. ELECTRONICS

FOR REAL SERVICE WITH THE LARGEST SELECTION OF
ELECTRONIC COMPONENTS AND TEST EQUIPMENT

You must visit
C.T. ELECTRONICS

267 ACTON LANE, GHISWICK, LONDON, W. 4
$9.30 \mathrm{a} . \mathrm{m} .6 \mathrm{p} . \mathrm{m}$. MONDAY SATURDAY

BAKER 15 in. AUDITORIUM

A high wattage loudspeaker of exceptional quality with a level response to above $8,000 \mathrm{cps}$. Ideal for Public Address, Discotheques, Electronic instruments and the home.
Maximum Power
Bass Resonance
Flux Density
35 watts
15,000 pauss
Voice coil impedance 8 or 15 ohms models
Useful response
20-14,000 c.p.s.
Hett weight
15 lbs.
Lotest cotalogue $5 p$ with enclosure plons

Baker Reproducers Ltd
Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn.

If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical

A.M.S.E. (Mech.) Inst. of Engineers Mechanical Eng. Maintenance Eng. Welding
General Diesel Eng.
Shect Metal Work
Eng. Inspection
Eng. Mctallurgy
C. \& G. Eng. Crafts
C. \&G. Fabrication

Draughtṡmanship A.M.I.E.D.

Gen. Draughtsmanship Dic \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elec. Eng. Gencral Elec. Eng. Installations \& Wiring Electrical Maths. Electrical Science Computer Electronics Electronic Eng.

Radio \& Telecomms. C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amateurs' Exam. Radio Operators' Cert. Radio \& TV Engincering Radio Servicing Practical Tclevision TV Servicing Colour TV
Practical Radio \&
Electronics (with kit)

Auto \& Aero A.M.I.M.I. MAA/IMI Diploma C. \& G. Auto Eng. General Auto Eng. Motor Mechanics
A.R.B. Certs.

Gen. Acro Eng.
Management \& Production Computer Programming Inst. of Markcting A.C.W.A. Works Management Work Study Production Eng. Storckceping Estimating Personnel Management Quality Control Electronic Data Processing Numecrical Contrul Numerical Control
Planning Engincoring Matcrials Handling Opcrational Rescarch Metrication Sales Management Constructional A.M.S.E. (Civ.) C. \& G. Structural Road Engincering Civil Engincering Building Air Conditioning Heating \& Ventilating Carpentry \& Joinery Clerk of Works Building Drawing Surveying Painting and Decorating. Architecture
Builders' Quantities

General

C.E.I.

Petroleum Tech
Practical Maths.
Refrigerator
Servicing.
Rubber Technology
Sales Engineer
Timber Trade
Farm Science
Agricultural Eng. Agricultural Eng.
General Plastics

General Certificate of Education
Choose from 42
' O ' and ' A ' Level
subjects including:
English
Chemistry
Gencral Scionce
Geology
Physics
Mathematics
Tcchnical Drat:ing
French
Gcrman
Russian
Spanish
Biolocy
Biolocy
B.I.E.T. and its
associated schools have recorded recll over 10,000 G.C.E. successes at ' O ' and 'A' level.
WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL. EXAMINATIONS.
Over 3,000 of our Students have obtained City \& Guilds Certificates. Thousands of other exam successes.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured." -Case History H/493.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIIISH IWSIIUITEO ENGIIEERING TECHNOLCAY

Dept B4, Aldermaston
Court, Reading RG7 4PF.

POST THIS COUPON TODAY

(Write if you prefer not to cut this page)

BIIE.T-IN ASSOCIATION WITH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

IICOCL:A Suluering Instruments add to your efficiency - THE NEW 'INVADER'

 ADCOLA L. 646for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{c}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.
*Additional Stock Bits
(illustrated) available
COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

J=GMYN
 All fully coded, all from well-known manufacturers

 and now available, while stocks last, at better than bulk-buyer's prices! Cash with order only.1 N4148
Signal Diode
18 for 50 p
(=1N914)
1 N5060 1 Amp Rectifier 400V
(=A14D) avalanche protected
7 for $50 p$
2N2923 NPN Silicon Transistor hfe 90-180 (25v)

7 for 50p
2N2926 NPN Silicon Transistor
(Red)
hfe 55-110
8 for 50 p
2N3391A Si NPN Hi Gain (250-500)
low noise transistor
3 for 50p
2N3402
C6U Medium power (driver) 900 mw 25 v Hfe 75-225 6 for 50 p 1.6 amp general purpose 25 v SCR in T05 case

3 for 50p
Post and packing 10p for 1 or 2 packs; 3 packs or more post free.
Order any quantity, till sold (but we regret packs cannot be subdivided).

PHOTOELECTRIC KIT

CONTENTS. 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra- Red Phototransistor, Latching Relay, -2 Transistors, 3 Diodes, Resistors, Gain Control, Terminal Block, Elegant Case, Screws, etc. In fact everything you need to build a Steady-Light Photo-Switch/Counter/Burglar Alarm, ete. (Project No. 1) which can be modified for modulated-light operation.

INVISIBLE BEAM OPTICAL KIT
Everything needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Buitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mirrors, $24 \bar{j}$-legree wooden blocks. Infra-red filter, projector lamp holder, building plans, etc. Price $£ 1$-25. Postage and Pack. 10 p (U.K.). Commonwealth: Surface Mail 20p; Air Mail 50 p .
LONG RANGE INYISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard kit, Larger Lenses, Filter, ete. Price \&1-85. Postage and Pack, 15p (U,K.). Commonwealth: Surface Mail 20p; Air Price $21 \cdot 85$.
Mail $E 1 \cdot 1 \overline{0}$.

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter,
CONTENTS: Infra-Red Sensitive Phototransistor, 3 Transistors, Chassis, Plastic Case, Resistors, Screws, ete. Full Slize Plans, Instructions, Data Sheet " 10 Advanced Photo-
electric Designs
Price $£ 1 \cdot 25$. Postage and Pack. 10 p (U.K.). Commonwealth 20 p ; Airmail 50 p .
JUNIOR OPTICAL KIT
CONTENTB: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to bulld 1 miniature invisible beam projector and photocell receirer for use with Junior Photoelectric Kit.
Price 75p. Post and Pack. 10p (U.K.). Commonwealth: 8urface Mail 20p; Air Mail 50 p .
YORK ELECTRICS Mail Order Dept.
335 BATTERSEA PARK ROAD, LONDON, S.W. 11
Send S.A.E. for full details, a brief description of all Kits and Projects

[^0]: HE-EQUIPMPNI MULLARD
 AF1I7 tranaistors. Large
 can 4 leads type. Leads can 4 leads type. Leads cut shórt but at ill usable,
 real value at 15 for 50 p.

[^1]: (C) IPC Magazines Limited 1972. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2.65$ ($£ 2 \mathrm{l} 3 \mathrm{~s}$. Od).
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

[^2]: SINCLAIR GENERAL GUARANTEE
 Should you not be completely satisfied with your purchase when you recelve it from us, return the goods without delay and your money will be retunded in full, including cost of return posiage, at cond without auestion Full service fachites are once and without question Full service facilities are avalable to all Sinclair customers

