PRACTICAL

 pitutss elinial for endir and monobhrome:
ALSC INSIDE:

 IC.AUDONM, =
ADCOLA Solder Instruments add your efficiency THE NEW 'IN ADCOLA L. 646
 for Factory Bench Line Assembly
 A precision instrument-supplied with standard $3 / 16^{\prime \prime}(4.75 \mathrm{~mm})$ diameter, detachable copper chisel-face bit*
 Standard temp. 360 c at 23 watts.
 Special temps. from 250 c $410^{\circ} \mathrm{C}$.
 *Additional Stock Bits
 (illustrated) available
 COPPER

 LONG LIFE

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability. . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*

Write for price list and catalogue

All fully coded, all from well-known manufacturers and now available, while stocks last, at better than bulk-buyer's prices! Cash with order only.

THIS MONTH:
2N3391 Si NPN Hi Gain (250-500)
low noise transistor. 3 for 50p
2N5355 Si PNPHiGain, low noise,
near complement to above. 3 for 50 p
2N2923 25 V version of 2 N 2926 . 7 for 50 p
(orange)
1 N4148 Signal Diode. 18 for 50p
(1 N914)
2N3721 General purpose transistor 8 for 50 p
Post and packing 10p for 1 or 2 packs; 3 packs or more post free.
Order any quantity, till sold (but we regret packs cannot be subdivided).
P.O. or Cheque payable Jermyn Industries Vestry Estate, Sevenoaks, Kent.

Brand new 44in wide 16 in deep IGin high with legs. A superb piece of furniture. Carriage EI. WHILE
STOCKS LAST.
(1) Garrard SP25 Mk. II1: £11.50.
P.P. 50p.
12) Teak Plinth and Tinted Cover: 6495.
P.P. 35 p .
P.P. 35 p .
(3) Sonatone 9TAHC Diamond Cartridge:
,
1, 2,3 Bargain Package $£ 17.95$, P. P. 85p.

COMPONENTS MUST BE CLEARED

DUKE \& CO. (LONDON) LTD. 621/3 ROMFORD ROAD, MANOR PARK, E. 12 Phone 01-478 6001.2.3

TP M. P. (Electronics) Ltd

HY40
 POWER AMP
 PERFECTION

Lets face it — an immediate success, the HY40 is here to stay HY40 means Hybrid Power, power neatly locked away inside an Intregrated Circuit. Power the modern way, simply mount only five additional components on a priated circuit board (all of which are supplied with the HY40). Power not only for $\mathrm{Hi}-\mathrm{Fi}_{\text {, }}$ power for Groups, for public address, for industry, power for all.
HY40 is HI-FI POWER ILP are POWER PROUD

In addition to the P.C. board and manual supplied with the HY40 we now include the five remaining components, at minimal cost, needed to complete the assembly of a High Performance Power Amplifier.
By merely combining two HY40s with a Stereo Preamplifier ($2 \times \mathrm{HY}$) and simple Power Supply (PSU45), premium quality stereo may be obtained for a very modest outlay.
The free manual supplied with the HY40 gives clear, easy build instructions for Power Supply; volume, bass, treble and balance controls, together with inputs for Ceramic and Magnetic Pick-ups, Tape. Tuner and Auxiliary functions.
Internally the HY40 is based on conventional and proven circuit techniques developed over recent years.

OUTPUT POWER British Rating 40 WATTS PEAK, 20 watts RMS continuous.
LOAD IMPEDANCE 4-16 ohms INPUT IMPEDANCE 22 Kohms at 1 Khz .
INPUT SENSITIVITY 300 mV for maximum output.
VOLTAGE GAIN 30 db at 1 KHz . FREQUENCY RESPONSE 5 Hz $60 \mathrm{KHz} \pm 1 \mathrm{db}$.
TOTAL DISTORTION less than 1% (typical 0.1%) at all output powers.
SUPPLY VOLTAGE + 22.5 volts D.C.
SUPPLY CURRENT 0.8 amps maximum.
PRICE: including comprehensive manual, P.C. Board and FIVE EXTRA COMPONENTS:
MONO $£ 4-40$ STEREO $£ 8-80$ all post free.

A WORLDS FIRST TO JOIN THE WORLDS BEST

The HY5 is a unique and revolutionary concept in HighFidelity pre-amplifiers. Thanks to the latest techniques, all feedback and equalization networks are, for the first time, combined into an integrated pre-amplifier circuit.

Simply by adding volume, treble, bass potentiometers and only three stabilizing capacitors, which are supplied, your HY5 is complete and ready for use.

The HY5 provides equalization for almost every conceivable input. This years developments in equalization technique enables precise correction for both output voltage and frequency response for any crystal or ceramic cartridge. Yet another feature of the HY5 is its inbuilt stabilization circuit, allowing it to be run off any unregulated power amplifier supply.

The HY5 contains a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo preamplifier.

Specifically and critically designed to meet exacting $\mathrm{Hi}-\mathrm{Fi}$ standards, the HY 5 combines extremely low noise with a high overload capability. When used in conjunction with the HY40 and PSU45 forms a completely integrated system.

INPUTS
Magnetic Pick-up iwithin $\pm 1 \mathrm{db}$ RIAA curve) 2 mV .
Tape Replay (external components
to suit head). 4 mV
Microphone (flat) 10 mV
Ceramic Pick-up (equalized and compensatable) $\quad 20-2000 \mathrm{mV}$ variable.
Tuner (flat) 250 mV
Auxiliary 1250 mV
Auxiliary $22-20 \mathrm{mV}$
OUTPUTS
Main Pre-amp output 500 mV Direct tape output 120 mV .
ACTIVE TONE CONTROLS
Treble $\pm 12 \mathrm{db}$.
Bass $\mp 12 \mathrm{db}$.
INTERNAL STABILIZATION Enables the HY5 to share an unregulated supply with the Power Amplifier
SUPPLY VOLTAGE
15-25 volt
SUPPLY CURRENT
5m A approx.
OVERLOAD CAPABILITY
better than 28 db on most sensitive
input infinite on tuner and auxl.
OUTPUT NOISE VOLTAGE
0.5 mV .

PRICE
Mono $£ \mathbf{~} \mathbf{3 - 6 0}$ Stereo $£ \mathbf{7 - 2 0}$

POWER SUPPLY PSU45

The PSU45 is specifically designed to supply, simultaneously, your HY40 (in mono or stereo format) and one or two HY5s.

Spec.
PSU45 ± 22.5 volts, 2 amps simultaneously.

PRICE: $£ 4.50$ including Postage and Packing

CROSSLAND HOUSE •NACKINGTÖN•CANTERBURY•KENT TELEPHONE: CANTERBURY 63218

THE OUT OF SIGHT LIGHT

This kit consists of a high-pressure mercury discharge lamp enclosed in a deep blue-violer outer bulb. This absorbs all visible light given by the discharge but transmits the long-wave ultra-violet rays.
The unit performs in a similar fashion to the fluorescent tube The unit performs in a similar fashion to the fluorescent tube B.C. lamp fitted into a high intensity spot-fitting, with fully adjustable swivel bearing. The reflector is also fully adjustable and the unit may be mounted in any position and focused as desired.
White shirts and dresses glow "Whiter than white". Paint scenes on walls, etc., with our special fluorescent paint, focus the black-light from across the room and switch-on. The pictures blow brilliantly as if by magic!
Full kit inciudes lamp, reffector, control-gear, generous samples of five different colours of fluorescent paint and full instructions. Price $\mathbf{6} \mathbf{2 5}$ carr. paid. S.A.E. with all inquiries.

PRACTICAL

 ELECTRONICS "SCORPIO" ELECTRONIC IGNITION SYSTEMThis Capacitor-Discharge Electronic Ignition system was described in the November and December issues of Practical Electronics. It is suitable for incorporating in any 12 V ignition system in cars, boats, so-karts, etc., of either pos. or neg. earth and up to six cylinders. cone original coil, pluss, points and contact-breaker capacitor fitted in the components are required.
Helps to promote easier starting (even under sub-zero conditions), improved acceleration. better hish-speed performance, quicker engine warm-up and improved fuel economy. Eliminates excessive contact-breaker point burning and the need to adjust point and sparkplut eaps with precision.
Construction of the unit can easily be completed in an evening and installation should take no loneter than half an hour is supplied with each kit together with eady-drilled roller-tinned professiona quality fibre-glass printed-circuit board. custom-wound transformer and fullymachined die-cast case. All components are available separately. Case ize 7 in $\times 4$ in $\times 2$ in approx.
Complete assembly and wiring manual 25p, refundable on purchase of kit.
Price: $E 10.50$ plus 50 P P. \& P. S.A.E with all enquiries.

PSYCHODELIC LIGHTING

 UNIT Mk. 3

This unit represents a natural progression from our phenomenally successful Mk. I and 2 Units. As before the drive volrage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency signals into a threecoloured light display; the colour depending on the frequency of the signal and the intensity on the loudness of the audio source.
The unit is constructed on professional fibre-glass printed-circuit board material and uses latest full-wave triac circuitry. There is a mascer-level control, together with independent sensitivity controls for each channel. The original minimum ambient light level controls have been redesigned permitting their use as faders; allowing dimming from max. to zero at the turn of a knob. R.F.l. suppression is now incorporated as standard as well as now incorporated as standard.as well as The choice of two inputs enables The choice of two inputs enables
operation from both high and low operation from both high and low
poweramplifiers. Max. power 1.5 kW per power amplifiers. M
channel at 240 V a.c.
channel at 240 V a.c.
Complete assembly
Size 9 in $\times 7$ in 3 in buile and rested. Price c25 carr. paid. inquiries.

DABAR ELECTRONIC PRODUCTS
98a LICHFIELD STREET, WALSALL, STAFFS WS1 1UZ WALSALL 34365 MAIL ORDER ONLY

Safe, quick and secure it connects 2 -core and 3 -core bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago. Safebloc saves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open. Invaluable for testing and demonstrations in industry and shops, the work bench and the home.
Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer.
If ordering by post, send cash with order. PRICE $£ 2.60+10 p$ P.\&P. EACH
Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd., Victoria Road, Burgess Hill,Sussex.Tel. Burgess Hill2642

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 4.50$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE 38)
54 Dundonald Road, London SW19 3PH
FETS N CHANNEL FETS
FULLY TESTED AND MARKED

Type	BVgss (Min.)	Igss (Max.)	Vp (Max.)	IDss (Max.)	R on (Max.)	Case
GP25	20 V	$\ln \mathrm{~A}$	10 V	20 mA	-	TO72
GP71	20 V	$\ln \mathrm{~A}$	12 V	150 mA	190Ω	TO18

ANY 6 - 60p
PACKING AND POSTAGE FREE NO STAMP NEEDED ON ORDER SEND TO:

DURHAM ELECTRONICS

FREE POST - PETERLEE - CO. DURHAM BUSINESS ENQUIRIES WELCOME - MINIMUM ORDER VALUE 60p TERMS STRICTLY CASH WITH ORDER

PREMIER HI-FI OFFERS!

Philips 580 Stereo
Amplifer (List 229.00
Rogers Ravensbrook 11
Stereo Amplifler in teak case (List $552 \cdot 50$)
Rogers Ravensbourne
Stereo Amplifler in teak
case (List £64)
Metrosound ST20E
Stereo Amplifier in teak
case (List $\mathbf{1 3 9 - 5 0)}$
Goldring GL75
less cartridge (List 241.61)
Garrard SP25 111
less cartridge
Garrard SP25 111 with
Goldring G800 cartridge
(List $£ 28.35$)
Garrard AP76
ess cartridge

Garrard 3500
$\begin{aligned} & \text { With Sonotone 9TAHC } \\ & \text { witereo cartridge } \\ & \text { (List } £ 15.50)\end{aligned}$
$£ \mathbf{9 . 9 7}$
Garrard 2025 T/C with
Sonotone 9TAHC Diamond
Cartridge
Garrard 2025 T/C with
Sonotone 9TAHC Diamond Cartridge ready wired in teak plinth with cover
£9.97
£14.00
Carriage and Insurance 50p extra any item.

SP25 Mk III SPECIAL!

E.M.I. 13×8 in. HI-FI SPEAKERS

Fitted two 23 in tweeter and crossover retwork ,hm impedance. Handling capacity 10W. Brand £3.47 г. \& Р. 40

NEW LOW COST PREMIER 800 STEREO AMPLIFIER

A truly high quality sterco alunlitier-compare the
 Distortion: 1%. Output Imperlance 8 ohman nom. Inputs equalised to R.I.A.A.
 Tape 100 my . Tape out 1 जिOmV. Din socketa for input and outputs. Mono/stereos wwith. steren leadphome
socket. Attractive alim line design black leatherett cabinet with aluminium front panel. Size 12 !ifit x 63in $\times 2_{2}^{2} \mathrm{in}$.
ONLY £ 16.25

"Weller Marksman" Soldering Iron
Lightweight, $\begin{aligned} & \text { in } \\ & \& 1.50 \mathrm{P} . \& \mathrm{P} \text {. } 15 \mathrm{p}\end{aligned} \mathrm{l}$ hit, 25 watt. 240 volt A.C.
"VERITONE" RECORDING TAPE
SPECLALLY MANURACTURED IM U.8.A. FROM EITRA STRORG PRE-STRETCHED MATERIAL. THE QUALITY IS UDEQUALLED TENGILISED to enogre the most permanent base. Highly resistant to breakage, moisture, heat, cold of humidity. High polished aplice free finith. Smootb

 DT5 5* 1200° POLTESTER 250 DT7 $7^{\prime \prime} 8400^{\circ}$ POLYESTER $81 \cdot 20$

In these uncertain times one thing is certain: Wherever else redundancy strikes your future in the computer industry is secure.
With pay prospects of over $£ 40$ a week as a computer operator. Unlike computer programming no special educational qualifications are needed. Just a 4 week course with L.C.O.T.C.
Impossible? No. We are the only commercial computer school offering a revolutionary new course in computer operating. Direct from the U.S.A. A sensational new teaching technique that uses the latest audio-visual aids plus actual 'hands on' experience to familiarise you with the world's leading computers.
In the next five years alone, 144,000 new operators will be needed. You could be one of them - because the vast majority of people can become successful computer operators - trained the new L.C.O.T.C. way.
Telephone: (01) 7342874 NOW!
Or post the coupon today for full details FREE and without obligation.

[^0]Name

Address

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC. STOCK OTHER RANGES TO ORDER

'SEW" CLEAR PLASTIC METERS

Type MR.85P. $4 \frac{1}{2} \mathrm{n} \times 4 \mathrm{tin}$ Ironts.

 $50 \mu \mathrm{~A}2$ | $50-0-50 \mu \mathrm{~A}$ | .. | 28.60 | 50 V d.c. | \cdots |
| :---: | :---: | :---: | :---: | :---: |
| $100 \mu \mathrm{~A}$ | 28.00 | | | |
| $10 .$. | 82.60 | 300 V d.c. | \ldots | 82.00 |

$1000 \mu \mathrm{~A}$
lmA.
1 mA
${ }^{5} \mathrm{~mA}$.
50 mA
100 mA
IA....
5A.
$5 \mathrm{~A} . . .$.
10 V d.

Type MR.65P. $81 \mathrm{in} \times \mathbf{8} \mathbf{3}$ in fronts.			
$50 / \mathrm{LA}$	28.87	20 V d.c.	22.20
$50 \cdot 0 \cdot 50 \mu \mathrm{~A}$	48.75	50 V d.c.	42.20
$100 \mu \mathrm{~A}$	32.76	100 V d.c.	28.20
$100 \cdot 0 \cdot 100 \mu \mathrm{~A}$	28.65	300 V d.c.	22.20
$200 \mu \mathrm{~A}$	42.65	10 Y a.c.	42.80
$500 \mu \mathrm{~A}$	28.40	50 V a.c.	42.30
$500-0.500 \mu \mathrm{~A}$	28-20	150 V a.c.	88.80
1 mA	82.20	300 V a.c.	52.80
$\overline{\mathrm{m}} \mathrm{A}$ A	28.20	500 V a.c.	4280
10 mA	8280	8 Meter	
50 mA	88.20	1 mA	82987
100 mA	22-20	VU meter	88-37
500 ma	42-20	50 mA a.c.*	48.20
1A	42-20	100 mA a.c.**	28.20
J	82-20	200 mA a.c.*	28-20
10A	28.20	500 mA a.c.*	22-20
13A	42-20	1A a.c.*	28.20
20 A	28.20	JA a.c.	28-20
30 A	88.80	10A a.c.*	
$50 \mathrm{~A} . .$.	82.50	10A a a.c. ${ }^{\text {a }}$ *	$\begin{aligned} & 4820 \\ & 28.20 \end{aligned}$
- 10 V d.c.	228.20	20A s.c.*	82.20 48.20

* MOVING IRON ALL OTHERS MOVING COIL
"SEW" EDUCATIONAL METERS

meter movement is
in the following range
the following rangen: 1mA 8.40
1.0 .1 mA

IA d.c
10 V d.c.

20 V d.c....$\quad 44.40$

 50 V d.c... .24 .40 300 V d.c. .. 24.40 Dual range $500 \mathrm{~mA} / \overline{\mathrm{A} A}$ d.c. 24.65 Type ED. 107 . Sisovarall $100 \mathrm{~mm} \times$ $90 \mathrm{~mm} \times 108 \mathrm{~mm}$. A new range of high quality moving coil instruments Ideal ments and other bench applications $3^{\prime \prime}$ mirror ecale. The

ype MR.38P. 1 21/32in square fronte		
	150 m A	81.60
	200 ma	21.60
	300 mA	81.60
	500 mA	81.60
	750 mA	21.60
	1A	21.60
	\underline{A}	81.80
	ЈA	81.60
	10A	E1.60
	3 V d.c.	21.60
	10 V d.c.	21.60
50 $\mu \mathrm{A}$. 88.10	15 V d.c.	21.60
30-0-50/LA .. 81.90	20 V d.c.	21.60
	100 V d.c.	21.60
$100 \cdot 0.100 \mu \mathrm{~A}$ E1-75	150 V d.c.	81.60
$200 \mu \mathrm{~A}$ … 1.76	300 V d.c.	21.60
$500 \mu \mathrm{~A}$.... 21.65	500V d.c.	81.60
$500-0.500 \mu \mathrm{~A} \quad 21.60$	750 V d.c.	21.60
	15 V a.c.	21.70
$1-0-1 \mathrm{n} 1 \mathrm{~A}$.... 81.60	50 V a.c.	E1.70
2 mA $\$ 1.80$	150 V a.c.	81.70
5 mA 21.60	300V a.c.	21-70
10mA 81.80	j00V a.c.	21.70
20 ma A 81.60	S Meter	
50 mA 81.80	1 mA	21.70
100 mA 81.60	V' meter	42.10

Tjpe Mr.46P. Rin square Ironte.			
$30 \mu \mathrm{~A}$	22.25	10 V d.c.	11.50
$50-0-60 \mu \mathrm{~A}$	88.10	20 V d.c.	21.50
$100 \mu \mathrm{~A}$	28.10	20 V d.c.	21.50
$100-0-100 \mu \mathrm{~A}$	81.87	300 V d.c.	21.50
$200 \mu \mathrm{~A}$	81.87	15 V a.c.	11.80
$500 \mu \mathrm{~A}$	81.75	300 V a.c.	81.80
$500 \cdot 0 \cdot 500 \mu \mathrm{~A}$	21.70	S Meter	
1 mA	21.70	1 mA	81.85
5 mA	81.70	VU Meter	28.25
10 mA	21.70	1A a.c.*	21.70
50 mA	21.70	5A a.c.*	11.70
${ }_{500 \mathrm{~mA}}^{100}$	81.70 81.70	10A a.c.*	\&1.70
1A...	81.70	20A a.c.*	81.70
	21.70	30A a.c.*	81.70

"SEW" BAKELITE PANEL METERS

MULTIMETERS for EIVEPY purpose\%

ROUND SCALE TYPE PENCIL TESTER MODEL TS. 68

Conipletely portable, simple to use pocket sized tester. Ranger $0 / 3 / 30 / 300 \mathrm{~V}$
and DC
at
at
ata and DC at 2,000 o.p.F.
Resistance $0-20 \mathrm{~K}$ ONLY 81.97 P. \& P. 13p.

UM. 049 BULTDMETRE $-20,000$
protection.
$0 / 3 / 30 / 60 / 300 / 600 / 3000$
$0 / 6 / 60 / 120 / 600 / 1200$ V AC $0 / 60 \mu \mathrm{~A} / 1^{2} / 300 \mathrm{MA}$. DC $0 / 60 \mathrm{~K} / 6 \mathrm{MEG}$
$-20+63 \mathrm{db}$. MODEL TE18, 20,000 O.P.V. $0 / 0-6 / 30 / 120 / 600$. $1,200 / 3,000 / 6,000 \mathrm{~V}$ d.c $1 / 6 / 30 / 120 / 60 / 1,200$ N A.C.
$0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$ $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$ Megohm 50 PF .2 MFD 45.971. P. \& P. $17 \frac{1}{2} \mathrm{p}$.

TER MODEL TW-50K 48 ranges, mirror scale, $\mathrm{JOK} / \mathrm{Vol}$
$\mathrm{D.C}$
JK/Volt A.C. D.C.

E-2D.C. $5 K /$ Volt A.C. D.C. $25,50,125,500,1000 \mathrm{~V}, \mathrm{~A}, \mathrm{C}$.
 $200,500,1000 \mathrm{~V}, \mathrm{D} . \mathrm{C}$, Current $500 \mathrm{ma}, \stackrel{2}{2}, 10 \mathrm{amp}$. Resiatance $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{MES}, 10 \mathrm{MEGD}$. Decibels: -20 to $+81 \cdot \mathrm{adb}$.
$28-60$. $\mathrm{P} . \& \mathrm{P} .17 \frac{1}{2} \mathrm{p}$.

HTIOOB4 MULTLMETER

Features A. Ca current range
I 000000 op. V Mirror Scale
100,000 o.p.v. Mirror Scale $0 / 5 / 2 \cdot 5 / 10 / 50 / 250 / 500 / 1000$
D.C. 0/2.5/10/50/30/1000V A.C 10 Amp D.C 10 A $0 / 20 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{MEG} / 20 \mathrm{ME}$ $-20+122 \mathrm{db}$. $512.50, \mathrm{P} . \& \mathrm{~B}^{2} \mathrm{P}$.

RUSSIAN 22 RANGE MULITIETER
 ance 300 whins / $3 / 30 / 300 \mathrm{k} \Omega / 3 \mathrm{Ma}$.
Complete with batteries, test leads, inatructiona and sturily ateel carrying case.
OUR PRICE $85-97$

T0-8 PORTABLE OACLLLOSCOPE

GENI－GONDURTGE／VALVES ALL DEVICES ERAND NEW AND FULLY EUARANTEED

\begin{abstract}

Integrated Circuits	rJutul	$20 \mathrm{p}$	VALVES					
		SN74tiAN	$0.12$$0182$	$\begin{gathered} 385 \\ 450 \end{gathered}$	$\left\lvert\, \begin{aligned} & 25 \mathrm{Z4} \\ & 2525 \end{aligned}\right.$	$\begin{aligned} & 30 \mathrm{p} \\ & 40 \mathrm{p} \end{aligned}$	ELgjEMro	
CA3n00 180p	FJH131 25p	75p						$45 p$
CA3005 117p	FJH141 25p	SN7442 75	OZ4	30 p	258	65 p	EM81	
CA3007 282p	FJH151 25p	8N7446 100p	$1 \mathrm{L4}$	20 p	30 Cl 5	80 p	EM84	D
CA3011 750	FJH161 700	8N7447 135p	185	40 p	31417	80 p	EM85	00
CA3012 88p	FJH171 25p	8N744＊125p	185	30 p	30 cis	80 p	EM87	70p
CA3013 105p	FJH181 25p	SN7450 20p	IT4	25 p	3975	850	EY51	40p
CA3014 124p	FJH221 25p	－ N 7451	114	30 p	30 FLt	75p	EY86	40 p
CA301\％84p	FJH231 25p	s： 7453 20p	IUs	80 p	$30 \mathrm{FL1} 2$	120p	EY87	42p
	FJH241 25p	9N7454 20p	2 D 21	35p	3uFL14	95p	EZ40	55p
CA3018A ${ }_{110 \mathrm{p}}$	FJH251 25p	8N7460 20p	3 Q 4	50 D	30L15	85p	EZ 41	50 p
CA3019 84D	FJJ101 50p	3N7472 30p	384	35 p	30 L 17	${ }^{80}{ }^{\text {p }}$	EZ80	27p
	FJJlll 80 p	9，7473 40p	3 V 4	48p	30 P 12	80p	EZ81	29 p
	FJJ121 60p	SN7474 40p	5 R 4	75p	30 P 19	85p	（iZ32	48p
$\begin{aligned} & \text { CA3020 } 126 \mathrm{p} \\ & \text { CA } 3020 \mathrm{~A} \\ & 180 \mathrm{p} \end{aligned}$	FsJ131 60p	BN7475 45p	5 O 4	35p	30 PL	75 p	OZ34	p
CA3021 1560	FJJ141 125p	3N7476 45p	$5 \mathrm{~V}_{4}$	45p	30 PL 13	93 p	K T6t	05
	FJJ181 75p	SN7483 87p	5 Y 3	40 p	30 PLL 4	80 p	кт88	82.00
$\begin{array}{ll} \text { CA3023 } & 126 \mathrm{p} \\ \text { CA302 } & 100 \mathrm{p} \end{array}$	FJJ191 65p	SN7486 33p	5241；	40 p	$3{ }^{5} \mathrm{~L} 6$	50p	MU14	75 D
	F．J3211 125p	SN7490 87p	6／30L：	80 p	35 W 4	35p	PabC	40p
$\begin{aligned} & \text { CA3026 } 100 \mathrm{p} \\ & \text { CA3028A } 74 \mathrm{D} \end{aligned}$	FJJ251 125p	SN7492 87p	6．act	40 D	$3 \mathrm{ZZ4}$	35p	PCst	60D
$\begin{aligned} & \text { CA3028A 74D } \\ & \text { CA3028B } \end{aligned}$	FJLi01 125p	SN7493 87p	${ }_{6 \text { fat }}$	40 p	35 zs	50 p	Pens	0p
${ }_{3029}{ }^{1057 p}$	FJY101 25p	SN7495 87D	6aks	35p	эu¢	50 p	P¢97	45p
	1010 250p	sN7496 87p	6akt	60 p	50c：，	50 p	PC9\％	48p
	$1 \mathrm{Cl} 2 \mathrm{250p}$	SN74107 52d	galis	20 p		55 p	PCO 4	40p
CA3029．${ }_{165 p}$	L900 40p		6AM6	30 p	45.1	50 p	PCO_{4}	40 p
CA3030 137 p	L914 40p	140p	6.14 .5	38 p	80	50 p	Pcuss	650
	L923	8N74154	6^{6} ASt	40 p	162\％	50 p	PCC89	60p
CA 3036	MC724P ${ }^{\text {60p }}$	220p	8．AT6	35 p	5783	70 p	PCCls9	85
$\begin{array}{rr} \text { CA3039 } & 82 \mathrm{p} \\ \text { CA3041 } 109 \mathrm{p} \end{array}$	MC780P 247p	SN74160	bauti	25p	ti4	180	PCrso	0 D
	M ${ }^{\text {c788P }} 148 \mathrm{P}$	－N74161 ${ }^{180 \mathrm{p}}$	favi	${ }^{30 p}$	${ }_{\text {A } 231}$	55 p	PCFs＇	${ }^{340}$
$\begin{array}{ll} \text { CA3041 } & 109 \mathrm{p} \\ & \text { CA3042 } \\ \end{array}$	MC799P ${ }^{\text {M }}$ M ${ }^{\text {M }}$	260	6BA6 6 BEF	${ }_{30 \mathrm{p}}^{23 \mathrm{p}}$	cras	35 p 30 p	${ }_{\text {PCFP8 }}$	Op
CA3043 1370	MC799	SN74164	${ }_{6 B 146}$	75 p	Dat96	45 p	PCF800	80
	MC1303L	20	${ }_{6}^{6 B J 6}$	50 p	$1 \mathrm{~F}^{91}$	22p	PCProl	50 D
	${ }^{100} \mathrm{p}^{\text {1 }}$	SN74165	${ }_{6 B 47}$	40 p	DF913	45 p	PCF802	80p
$\begin{aligned} & \text { CA3046 } \\ & \text { CA3047p } \\ & \text { 8187p } \end{aligned}$	MC1304P	22	$6 \mathrm{BR7}$	90 D	Dк91	40 p	PCF805	B
		8N7＋192	613 RY	70 p	DK92	55p	PCFS06	寿
$\begin{aligned} & \text { CA3048 } 204 \mathrm{p} \\ & \text { CA3049 160p } \end{aligned}$	5	175	${ }_{6}^{6 B W 6}$	850	DK96	50 p	PCF808	D
$\begin{aligned} & \text { CA3050 185p } \\ & \text { СА } 3051 \quad 184 \mathrm{p} \end{aligned}$	M	3NT4193 ${ }_{1750}$	6867 61325	80 p	DL92	35 p	PCL82	p
		TAA241 ${ }^{175}$	${ }^{613285}$	40 p	${ }^{1} \mathrm{DL94}$	48 p	PCL83	45
$\begin{array}{ll} \text { CA305\% } & 185 \mathrm{p} \\ \text { CA3053 } & 48 \mathrm{p} \end{array}$	MCl 435 P	162p	604 6000%	33 p 185 p		45 4	${ }^{\text {PCLC84 }}$	${ }_{40 \mathrm{D}}^{45 \mathrm{D}}$
CA3054 109p	345p	TAAB42	6 CL ¢	50 p	DY46	32 p	PCL86	46D
	MC155\％${ }^{\text {a }}$	150p	0 CW	${ }^{658}$	DY87	33 p	PrL20	855
CA3059CA3064180p120p	481p	TAA243 150p	6 F 1	62p	Esbec	100 p	PL36	55D
	MC1709C：	TaA263 75p	${ }^{6 F 6 G}$	35 p	E180F	100p	PL81	60p
$\begin{aligned} & \text { FC1101 } 185 \mathrm{P} \\ & \text { FCH1111 } 105 \mathrm{p} \end{aligned}$		TAA293 97p	${ }_{6}^{6 \mathrm{~F}} 13$	45 p	EAbcxo	35 p	PL＊：	5p
	Mr	TAA300 175p	6 F 14	70.	EAF42	35p	PL43	45
		TAA310 ${ }_{\text {T }}$	${ }^{6615}$	${ }^{85} 5$	Eb91	200	${ }^{\text {PL84 }}$	408
		TAA320 72p	6_{619}	50 p	EbCd 1	55p	PL500	${ }^{750}$
FCH141 105p FCH151 1050	PA：30 140p	TaA350 175p	$6 \mathrm{~F}^{2} 3$	$85 p$	еbcha	30 p	PL504	80 D
FCH151 105p FCH161 50p		TAA435 147p	${ }_{6}^{6 \mathrm{H} 6}$	17 p	EBF80	40 p	PY32	${ }^{65}$
	Pras37 210 P	T AAspl 132p	6.34	50 p	EyFs3	40 p	PY33	8p
${ }_{\text {FCH }}$ FCH181 105p	PA．246 160p	TAA522 360p	60．	25p	Ebrby	32 p	PY\％0	40 p
	PA424 ${ }^{\text {Pas }}$	TAA530 495p	${ }^{6} \mathbf{3} 515$	30 D	Eblal	${ }_{60} 0$	PY81	80 D
	PAP264 190p	TAA811 445p	${ }_{6}^{6.56}$	20 p	ECss	60 p	PYRZ	85 p
FCH201 130p	PARE65 200D	TAB101 97p	${ }^{\text {fiJ7 }}$	45 p	ECxR	80 p	PY83	${ }^{380}$
	SN7400 200	TAD100 150 p	6 KBG	40 p	Eccio	${ }^{850}$	PY88	400
	SN7401	TAD110 150 p	6L6GT	45p	ECC84	80p	PY800	40
FCH231 150p	SN740：2 20 p	\＄14035） 150 p	6 LLD	50 p	ECC85	40 p	PY80	s0p
FC．FCJ101 180p1500	8N7403		647	40 p	Eccrs	40 p	U	0 p
	$\begin{array}{ll}8 \times 7404 \\ 8 \times 7405 & 20 \mathrm{p} \\ 80 \mathrm{p}\end{array}$		68.7 6867	40 4	Ectr80	85 p	U	40
F＇CJI31 2750	SN740日 800	UA703C 137p	${ }_{6817}$	40p	${ }_{\text {ECFP8 }}$	${ }_{65 p}^{35 D}$	U50	40p
$\begin{aligned} & \text { FCJIA1 } \\ & \text { FCJ:001 } \end{aligned}$	8N7408 20p	UA709C 1259	$6 \mathrm{KK7}$	40p	${ }_{\text {ECH21 }}$	570	${ }_{\text {V191 }}$	${ }_{750}$
	8N7409 20p	Ua710C 125 p	68 L 7	35p	ECH35	100 p	${ }^{1281}$	40 D
	8N7410 20 p	UA716 187 D	6sN7	35 p	ECH42	750	U 28.2	40 D
	8N7411 ${ }^{\text {S }}$	UA723C 182 p	6847	40 p	ECHA1	30 p	U301	0 p
FCY101 102p SN7420 20p UA74IC 87p			6 UT 4	65p	ECH83	459	UN01	21．80
			6 vga	25 p	ECL30	45 p	Uabeso	
BRIDGE ${ }^{\text {Bras }}$			6 6 60	${ }^{32} \mathrm{D}$	ECLb：	35 p	UaF42	85p
			6×4	35 p	ECL43	70 p	UBC41	80 p
plastic	200 PI	Y 4A 70p	${ }_{6}^{6 \times 565}$		ECL37	${ }^{40 \mathrm{P}}$	UBCK1 UBFPo	40 p
ENCAPSULATED600 PIVS0p	TED 400 PI	$\mathrm{V}^{4 \mathrm{~A}} 75 \mathrm{p}$	${ }^{6 \times 56}$	40 p	${ }^{\text {EFP37A }}$	120 p 50 p	［7BF89	${ }_{850}$
	50 p ． 50 PI	－6A 62p	${ }_{\text {lor }}^{10 \mathrm{c}} 1$	50p	Er＋4	${ }_{50 \mathrm{p}}^{50 \mathrm{p}}$	U8F89	85 D 49 p
50 PIV 2 A	550	V0．${ }^{0.45}$			EF＋1	65 p	UCCs5	40 p 40 p
${ }_{200}^{100 ~ P l V}$	809 650		10 Pl 4	¢1．10	EF42	${ }_{70 \mathrm{p}}{ }^{\text {p }}$	UCF80	${ }_{85}{ }^{\text {d }}$
			12.4 T0	$1{ }^{\text {a }}$	EFYO	25 p	WCH21	600
MINIATURE WIRE ENDED PLASTIC			${ }_{12 \text { AX }}$	30 p	EFPS	28p	UCL82	
			1：2AY\％	40 p	Eど9	30 p	UCL43	${ }_{80}$
SERIES sfries series			i2bati	40 p	EF9：	85 p	UF41	0 p
	1 AMP 1.5 AMP 3 AMP		1213 E 6	40 p	EFIR3	35 p	U F80	85 D
400130 Pr y	7 p	$8 \mathrm{p} \quad 18 \mathrm{p}$	121317	45p	El｜m4	35p	UFAS	40 D
$400 \cdot 2100 \mathrm{PIV}$	7 D	$\mathrm{pp}^{0} \quad 20 \mathrm{p}$	19AQs	${ }^{35 p}$	EH90	40 D	UF89	408
400320019	$8 \mathrm{p} \quad 10$	10 p 22p	20 Dl	50p	EL34	50p	TLL41	650
4004400 PI	$8 \mathrm{p} \quad 10$	D 25p	20F＇S	65p	ELL33	¢1．25	Ules，	40.
40056001 1 1	10 p	2p $\quad 26 \mathrm{p}$	20 LI	21.10	EL4	${ }^{60 p}$	UY4t	48 p
4005800 PlW	12 p	50 27p	20 P 1	50 p	EL4	85 p	UY83	400
400． $100+$ less $15 \% 100+$ less 20%			$20 \mathrm{P}^{3}$	${ }^{60 p}$	ELAI	55 p	VR105／3	
			20 P 4	$\mathrm{ELP}_{1} 10$	ELx4	25p	VR15013	3035 D
SILICON RECTIFIERS			20 P 5	11.20	EL85	43 p	－ 4 dd 12p	in 2
			25L6	［）p	L91	35p	Sor pinta	
100PIV	i． 10.1	175 A 35 A						
	45p	50p $81-22$	1 N 34 A	10p	BA154	12D	，J7x	87p
200 PIV	25p 50p	55p 81.42	iN914	7 p	bax13	12p	OA	25 p
400 PIV	${ }^{30} \mathrm{p}^{55 \mathrm{p}}$	$82 \mathrm{p} \quad 41.77$	1N916	10p	BAX16	7p	OA	12 D
600 PIV	32 p 60p	72 p ¢2．12	AA119	7 p	BAY31	7 p	OAl0	25 D
800 PIV	35p 75p	87p $\mathrm{EP2}^{47}$	AAL29	10 p	Bay38	15p	OA	10 p
			AAZ13	10 p	BY100	15p	0.447	10 D
			AAZ15	10 p	BY103	22 p	0A70	10 D
ZENER DIODES			BA100	15 p	BY122	37p	OA73	10D
			${ }_{\text {Bal }}{ }^{\text {che }}$	30 p	BY124	${ }^{15}{ }^{\text {p }}$	OA79	10 p
${ }_{3 \cdot 3-33} \mathrm{v}$	2．4－100	$3.9-100 \mathrm{~V}$	BAllo	${ }^{259}$	${ }^{\text {BY }} 126$	12 p	OA81	8 p
10 peach	25 p each	40p each	BA111	27 p	BY127	${ }_{570}$	${ }_{0} \mathrm{O}$	7 p 8 p
$25+1$ ess $15 \% 100+$ less 20%			BA1 112 BA1	70 p	BY164 BY 210	${ }^{57}{ }^{57}$	OA	8p
			BAlid	32 p	BYZ11	30 p	OA95	D
			BA142	32 p	BYZ12	30 p	Oateo	7 p
			BA14＋	12p｜	BYZ13	25 D	OA202	100
BAE FOR POLL Lists			明th	20p	В ${ }^{1} 16$	40 p		17p

 MPX. Cer/XTAL Input. Total List $\mathbf{8 0} \mathbf{5 0} 25$. OUR PRIGE E\&2.75. Carr. 62!p LAFAYETTE LA. 384 STEREO

OUR PriCE 284. Carr. $37 \pm \mathrm{p}$.

TELETOI BAO-806 $8 T$ gREO ATPLHILER

Lateat exciting releate. Beantlfurly styled 8 witched inputa for Mag, Xtal, aux, tape Incorporates volume, bsse, treble, sliding balance, scratch flter and loudness controls.

TELETON SPECIAL OFFER!

CRIOT AM/FM STEREO TUNER AMPLIFIER WITH MATCHING PAIR OF SPEAKEE SYSTEMS. Output 4 watts per Also available with Garrard $2025 \mathrm{~T} / \mathrm{C}$ cartridge. Ready wired $\mathbf{\$ 8 6 - 5 0}$. Carr. $\& 1$.

AMPLIFIER wat R.M.s. Tape Inputs. Excelient per: Cormance. Compares with to $£ 40$.

TAPE CASSETTES
Top quality in plastic library buxes. $\begin{array}{llll}\mathrm{CgO} & 60 \mathrm{~min} & 371 \mathrm{p}, & 3 \text { for } 81.05 \\ \mathrm{CGO} & 90 \mathrm{~min} & 800 & 3 \text { for } £ 1.65\end{array}$ $\begin{array}{lrrr}\text { C60 } & 90 \mathrm{~min} & 60 \mathrm{p}, & 3 \text { for } \varepsilon 1-65 \\ \text { C120 } & 120 \mathrm{~min} & 67 \mathrm{id}, & 3 \text { for } \varepsilon 1-80\end{array}$ Carsette Head Cleaner 58 p . Poal Extra

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges
$01 / 003 /-1 / j \cdot 3 / 1$ $3 / 10 / 30 / 100 / 300 \mathrm{~V}$
R.M.S.
$4 \mathrm{c} / \mathrm{s},-1 \cdot 2 \mathrm{Mc} / \mathrm{s}$
Decibels -40 to +50 dB
Supplied brand new
complete iestructions. Operation 230 V a.c. $817 \cdot 50$ Carr. 2.5 p . TMK MODEL VOLTMETER

Battery operated, 11 meg input. 26 ranges. Large 48 in mirror scale.
 300 V R.M.S. $8.0-800 \mathrm{~V}$ P-P. 1.c. current 0-1212 MA . Resistauce up to $2,000 \mathrm{M}$ ohm.
Decibels - 20 to $+\overline{0} 1 \mathrm{~dB}$. Complete with

NOW STILL ONLY 371 $\frac{1}{2}$ p P. \& P. 10p
our new oth edulon comprenenaiverange of HI-FIEQUIPMENT COMPONENTS, TEST EQUIPMENT and COMMUNICATIONS EQUIPMENT. EREE DIBCOUNT COUPONS VALUE 50p. thousends of items at

HOMER INTRACOMS

Ideal for home, ompe, stores. fac-
torjes, etc. Supplied complete with batteries, cable and Station 82.97 , P. \& P, 10p. 3 Station 25.25, P. \& P. 10 p .
4 Station $86.6 \mathrm{P}, \mathrm{P} . \& \mathrm{P} .17 \mathrm{p}$.

EMI LOUDSPEAKERS Model $350.13^{*} \times 8^{\prime \prime}$ with
single tweeter crobsover. aingle tweeter crobsover.
$20-20,000 \mathrm{~Hz}$. 15 watt RMS. Avallable 8 or $1 \bar{u}$
ohms. 87.50 each. P. $\& ~$ P. 37p. $13^{\circ} \times y^{0}$ with Mocin tweeters/crossover $5 j-13,000 \mathrm{~Hz}$. \& watt hMs. A vailable 8 or 15
ohms. 23.50 each. P. \&

TE 1018 DE-LUXE

 MONO HIGH IMPE Densitive HeADSET aljustable headhand. Magnetic, impedance
9,600 oh
 £1-97. P. \& P. 15p.

 Inp ceramic 100 m$)^{*}$ meg. Output Phons ceramic 100 K . 28.97 . P. \& P. 20 p .
HOISDEN DH-02S STEREO
HEADPHONES

Wonderful value and excellent perAdjustable headband. 8 ohms impedance. 20-12,000 cps. Complete with plug. ONLY $28-871$

1081 8T LISTENLNG

For balancing and gain selection of
loudspeakers with additional facility for stereo headphone switching.
n-of gain
slide
switch controls, speaker on-on slide switch, stereo headphone bockets.
2\&-25. P. \& P. IJp.

U4812 MULTURETER
Extremely study instrument for general electrics use, $6670, p, v, '$
$0 / 3 / 1 \cdot 5 / 7 \cdot v / 30 / 60 / 100 / 300 /$ $600 / 900$ VDC and 75 mV . $0 / 3 / 1 \cdot 5 / 7-\mathrm{J} / 30 / 60 / 150 / 300 /$
$60 / 900 \mathrm{YC}$ $600 / 900 \mathrm{Y}$
$0 / 300 \mathrm{uA} 1$ $600 \mathrm{MA} / 1 \cdot \mathrm{~J} / 6 \mathrm{AMP} / 1 \mathrm{~m} / 150 /$ $0 / 2 \cdot 5 / 6 / 15 / 60 / 150 / 600 \mathrm{MA}$ $1.5 / 6 \mathrm{AMP}$. AC,
$0 / 200 \mathrm{O} / 3 \mathrm{~K} / 30 \mathrm{~K}$ K Ω.
Enife edge pointer, mirror scale. Complete with sturdy metal carrying case, leads ad instructions. $\mathbf{x 9}$-50
 plus \mathbf{P} \& \mathbf{P}. 25 p .
PRS-2 PHOTO ELECTRIC RELAY ${ }_{\text {SYSTEM }}$
 Enciter unit has removable infra red fliter and A.C. outlet socket to operate beils,
counters, etc. 940 V A.C. Complete with cables and instructions. 20.97. P. \& P. 2Jp. UNR-30
RECEIVER
4 Bands covering $550 \mathrm{KHz}-30 \mathrm{MHz}$. B.F.O. Built in peaker $220 / 240 \mathrm{~V}$ a.c. Brand new
 15-75.Carr. $37 \pm \mathrm{p}$

(ieneral coverage $150-400 \mathrm{KHz}$, 550 KHz $30 M H z$. FET front end, 2 mech. Hiters, product detector, variable B.F.O., noise Imiter, 8 Meter, Bandspread. RF Gain $15 \mathrm{in} \hat{2} 9 \mathrm{in} \times 8$ in. $18 \mathrm{lb}, 220 / 240 \mathrm{~V}$ a.c. 245. Carr. 50p.

TO-2 PORTABLE OSCILLOSCOPE cost economy oscllloscope for everyday use. Y amp. Bandwidth $2 \mathrm{CPG}-1$ MHZ. Input imp. 2 meg Ω 20. P.F. tube. $11 \bar{J} \times 180 \times$ 230 mm . Weight 8 lb . 230/240V a.c. Supplied brand new with hand-
book. \&28-60.Carr. 50 p .
 TH-16A 8 Ignal Clenarator 5 ranges
 $400 \mathrm{kHz}-30 \mathrm{mHz}$. An inexpensive instrument for the handyman. Operates on 9 v battery. Wide, easy to read scale. $51 \times 57 \times 311$. Complete with instructlons and 20p. \$7.67t. P. \&

RUSSIAN CI-16 DOUBLE

 BEAM OSCILLOSCOPES flers. Calibrated trigger sweep from $0 \cdot 2 \mu \mathrm{sec}$ to $100 \mathrm{msec} / \mathrm{cm}$.Supplied complete with all accessorien and instructions. 887. Carr. paid

POWER RHEOSTATS

High quality ceranic construction. Windings embedded in vitreous enamel. Heavy duty brush Fiper. Cortinuous rating. Wide range
ex-stock Single hole fixing, tin. dia. shafte. Bulk quantities available. 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohms, 781 p . P. \& P. $7 \nmid \mathrm{p}$

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

Excellent quality - Low price. Immediate delivery

leads/instructions. 817.50. P. \& P. 20p.
 CYCLES RELAYS Brand New. 3 sets of changeover contacta at $\overline{3}$ amp rating. 50 p each. P. \& P. 10 p (100 lots e40). Quantities avail-
able.

THEEMGDSCOUNTHOUSE

TUANTABLES P.p. 80p

Garrard SP25 Mk. III
Garrard 2025 tc with Sonatone 9 TAHCD care Garrard A70 Mk. II (Transcription Deck)
Garrard SL65b
Garrard 401
Garrard SL72b
Garrard SL75b
Garrard SL95b
Garrard ZERO 100
B.R.S. McDonald Range in stock

Sonab 75s and 85s in stock.
Goldring GL85
Goldring GLa5
Goldring GLa5/
Goldring GL75
Goldring GL75/P
Goldring Plinth 75
Goldring LID75
Goldring GL72
Goidring GL72/D
Goldring Plinth 72
Goldring LiD72
Goldring 6.99
Goldring $C .99$
Goldring Ciol
Philips EA202
Philips GA160
Philips GA105
Philips GA300
Thorens TDI50AB
Thorens TDI50A
Thorens TX1
Thorens TDIO
Thorens TDi25AB
Thorens TX25
Connoisseur
${ }^{4}$
9.95
8.50
9.95 9.95
14.00 14.00
18.50
78.00 18.50
26.00
24.00

AUDIO SUPPLIES

Dept P.E.1, 50 STAMFORD HILL, LONDON N16
We are easy to find, 50 yds from Stoke Newington (BR) Station. 106.67.149.76, 73, 249.243.247Buses pass our door

BDERAL OFF=日
 FREE 10"LP for persona/callers buying a complete system Monday to Thursday

CARTRIDGES p.p. 15p
Goldring G. 850
Goldring G. 800
Goldring G.800/E
Goldring G.800/SE
Sonatone 9TAHCD
Sonatone 91
Shure M3D.
Shure M445/7
Shure M44/E
Shure M55/E
Shure M75E type il
Shure M75E III
Shure M756
Shure VIS II
Ortofon MFISE
Audio Technica AT66
Audio Technica ATb6
ADCIOE ॥
ADC26
${ }^{\text {ADCC2 }}{ }^{\text {AD }}$
ADC550×E
Empire 100ZE
Empire g99VE/X
Empire 999TE/X
Empire 9995E/X
Empire 999 E (X
Empire 909E/X
Empire 909/X
Empire 90EE/X

SPEAKER KITS priced per pair
p.p. (a) Cl . (b) $\mathrm{Cl} \cdot 50$

Wharfedale Unit 3
f_{p}
Wharfedale Unit 4
Wharfedale Unit 5
Richard Allan Triple Assembly
Richard Allan 5 uper Triple
KEF $\begin{aligned} & \text { Goodmans DiN } 20 \mathrm{Kit}\end{aligned}$
Peerless 20-2
Peerless 20-3
Peerless $43-12$

FULL RANGE OF SINCLAIR
 PRODUCTS IN STOCK

SEND A LARGE S.A.E. FOR OUR COMPLETE LISTING OF

ALL HI-FI EQUIPMENT

NEW AMSTRAD IC 2000 AMPLIFIER OUR PRICE £31, p.p. FREE
PERSONAL CALLERS WELCOME

OPEN			
Mon. to Wed. $9.30 \mathrm{am}-6 \mathrm{pm}$	Fri open until 8.00 pm		
Half day Thurs until 1.00 pm	Sat $9.30 \mathrm{am}-6 \mathrm{pm}$		

Personal callers plesse note that Cheques are only accepted if backed bya relevent bank cheque card. Payment by Barclaycard accepted by arrangement

An extra "Pair of hands" for those tricky jobs
ASSEMBLY-SOLDERING-GLUING-WIRING-DRILLING ETC.

- INDEPENDENT ADJUSTMENT OF THE TWO VICE HEADS TO ANY ANGLE WITH POSITIVE LOCKING.
- JAWS WILL FIRMLY GRIP, ROUND. FLAT, SQUARE, OR HEXAGONAL PARTS.
TWIN VICE: $\mathbf{t 5} 90$ (24 p P \& P) ALSO AVAILABLE
SINGLE VICE: $\mathbf{6 3} 37 \frac{1}{2}$ (20p P \& P)
COVENTRYMOVEMENT CO.LTD.
DEPT. PE6. BURNSALL ROAD
COVENTRY CV56BU STD 0203-74363

CN.240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated $3 / 32^{\prime \prime}$ bit and packed in transparent display box. Also available for 220 volts. Price $£ 1.70$ CN. 240 Miniature soldering iron 15 watt 240 volts, fitted with iron coated 3/32" bit. Up to 18 interchangeable spare bits obtainajle. This iron can also be supplied for 220 110,50 or 24 volts. Price $£ 1.70$
G. 240 Miniature soldering iron 18 watt 240 voits extensively ssed by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32$ " bit. Also available for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $\% 4^{\prime \prime}$ are obtainable. Price $£ 1.83$.

CCN. 240 New model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation $(4,000 \vee A . C$.$) . Will solder tive transistors in perfect$ safety: fitted with $3 / 32^{\prime \prime}$ iron coated bit. Spare bits $1 / 8^{\prime \prime}$ $3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ available. Can also be supplied for 220 volts Price $£ 1.80$
CCN.240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering The triple-coated bits are iron, nickel and chromium plated Price $£ 1.95$

E. 24020 watt 240 volts soldering iron fitted with "/4" iron coated bit. Spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 16^{\circ}$ available. Can also be supplied for 220 and 110 volts. Price $£ 1.80$.
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8$ iron coated bit and packed in a transparent display box Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price $£ 1.83$

SK. 2
 SOLDERING KIT

This kit contains a 15 watt 240 volts soldering iron fitted with a 3/16" bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$. a reei of solder. Heat Sink amp fuse and booklet Price $£ 2.40$ "How to Solder

MES. 12

A battery operated 12 volts 25 watt soldering iron complete with 15' lead, two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet. Price E1.95.

cut out this coupon and answer your solderine problems

from electrical, radio or car accessory shops or from Antex Ltd., Freepost (no stamp required) Plymouth
PL1 1BR Telephone $075267377 / 8$

1 enclose cheque/P.O./Cash (Giro No. 2581000)

Name
\qquad

Address

The Iargest selection

NEW LOW PRICE TESTED S.C.R.'s

PIV	1 A	3 A	${ }^{7 A}$	10A	16A
	T0.5	T0.66	T0.66		T0.48
	${ }^{2}$	${ }^{5}$	${ }^{4}$	EP_{5}	t
50	0.23	0.25	5		
100	0.25	0.33	0.53	0.68	0.83
200	0.85	0.37	0.57	0.61	0.75
400	0.43	0.47	0.67	0.75	0.93
600	0.63	0.57	0.77	0.87	1.25
800	0.68	0.70	0.90	1.20	1.50

SIL. RECTS. TESTED

PIV	300 ma	750 mA	- 1A	1.5A	3 A	10a	30 A
	2p	\& p	\&p	8 t	fp	\%	8 p
50	0.04	0.05	0.05	0.07	0.14	0.21	$0 \cdot 47$
100	0.04	0.08	0.05	0.13	0-16	0.23	0.75
200	0.05	0.09	0.68	0.14	0.20	0.24	1.00
400	0.06	0.13	0.07	0.20	0.27	0.37	1.25
600	0.07	0.16	0.10	0.23	0.34	0.45	1.85
800	$0 \cdot 10$	0.17	0.13	0.25	0.37	0.55	2.00
1000	0.11	0.25	0.15	0.30	0.48	0.83	2-50
1200	-	0.33		0.33	0.57	0.75	
	TRI	IACS			AS	10	
VBom	M 2 A	6A	10.4		ECTI	IERS	
	TO-1 T	T0-66 TO	T0-88	35 a	409	PI.V'	Stud
	Ep	\%	fp				
100	0.80	0.63	1.00		DIA		
200	0.70	0.90	1.25	FOR	Cs		ITH
				TRIA			
00	0.80	1.00	1.6	BR100	D3	37	

2A POTTED BRIDGE RECTIFIERS 200V 50p

 Equt. TIS43. BEN 3000 100 UP 20 p .

Npl shicon Planar BC107/8/9, 10 p each 8p each; 1,000 off. 7p each. Fully test
and coded TO.18 case

FREE

One 50p Palk of your own choice free with

AF239 1'NP GERB.

 SIEMENS THF TRAN: BIGTORS. RF MIXER PLACEMENT FOR AF13!-AF186 © 100 's
OF OTHER USES IN VHF. OUR SPHCLAL LOW PRICE:-1-2437p $100+30 \mathrm{p}$ each.

SPECIAL OFFER

 TO CLEAKCADMIUM CELLS ORP12 $43 p$
ORP60, ORPfil 40 p each

PHOTO TRANS.

OCP71 Type. 43p

8IL. G.P. DIODES \&p

 400 m (Min) 30 . 0.50 Sub-Min. 500 . 500 Full Tested $1,000 \ldots 9-00$ Ideal for Organ Builders.D13D1 Silicon Unilatera awitch 50 p asch.
A silicon Planar, monolithic integrated circuit having thyristor electrical characteristics, but with an anode gate and a built-in "Zener" tiode between gate and cathode. Full data and application circuite ayail able on request.

JUMBO COMPONENT PAKS MIXED ELECTRONIC COMPONENTS Exceptionally good value
Resistorn, capacitors, pots, electrolytics and
coils plus many other useful items. Approximately 3lbs in weight.
21.50 only Plus our xntizfaction
money bach guarntee

PULL RANGE OF

 FULL RANGE VOLTAGE RANGE 2-S3V. 400 ml (DANGE Case) 13p ea. 13W (TopMat) 18 p ea. 10 W (so-10 Stud) 25 pea All fully teatedmarked. marked.
required

BRAND NEW TEXA GERM. TRANSISTORS Coded and Guaranteed $\begin{array}{cc}\text { TR } \\ \text { T1 } \\ \text { TVG371B } & \text { OC71 }\end{array}$ T1 8 2G371H 0C71 $\begin{array}{llll}\mathrm{T} 3 & 8 & \mathrm{D} 1374 & \text { OC75 } \\ \mathrm{D} 121 \mathrm{f} & \text { OC81D }\end{array}$ $\begin{array}{lll}8 & 2 \mathrm{~F} 381 \mathrm{~T} & \text { OC81D } \\ 8 & \text { OC81 }\end{array}$ 8 2G382T OC82 8 2G344B OC44 8 204345 OC45 $82(3378$ OC78 | TG | 8 | 2 G 399 A |
| :--- | :--- | :--- |
| T10 | 8 GN 1302 | | All 50 p each pak

2N20G0 NPN SIL. DUAL TRANS. CODE D1698 each.
120 VCB MIXIE DRIVER
TRANSISTOR
 FULLY TESTEI AND 17p each. TO-5 2 u up 15p each

Bil. trans. suitable for P.E. Organ. Metal TO-18 Eqvi. ZTX 300 5p each

EX- *QUIPMEM EX-EQUIPME
MULLARD AFll7 transistors. Larg cant 4 leads type. Leads real value at 15 for 50 p .

KING OF THE PAKS Unequalled Value and Q CIIDED DAVC NEW BI-PAK UNTESTED

 SEMICONDUCTORSPak No
UR
120 Gilas bub-min. general purpose germanium liodes
60 Mixed germanium transistors AF/RF
Tò Germanium gold bonded diotes sim. OAZ. OA47
40 Cermanium transiatora like OC81. ACl28
$50 \div 00 \mathrm{ma}$ sub-min. Sil. diodes
30 silicon planar transistors NPN sim. BSY90』. $2 \mathbf{N} 706$
16 Silicon rectifiers Top-Hat 750 mA up to 1.000 V
50 sil y fanar dionten $250 \mathrm{~mA}, \mathrm{OA} / 200 / 202$
0 Mised volts 1 watt Fener ilioles.
30 PNP silicon planar transistory $\mathrm{TO}-\overline{5}$ sim, 2 N 1132
$30 \mathrm{PNP}-\mathrm{NPN}$ sil. transistors OC 200 \& $\quad \mathrm{g} 104$
50 Mixed silicon and germanium iliodes
25 NPN sllicon planar transistors TO-7 sim. 2 N 697
10 3-Amp silicon rectiflers stud type up to 1000 PI
30 (hermanium PNP AP transistors TO-í like ACY 17 8 f-Amp silicon rectifiers BYZl3 type up to 400 PIV 25 siticon NPN transistors like BCl08
$12 \mathrm{I}-\mathrm{v}$-Amp silicon rectitiers Top-Hat up to 1.000 PIV 30 A. ${ }^{\prime}$ germanium alloy transistors $2(300$ series \& OC7 30 Madt"s like MAT serjes I'NI transiators

0 (fermanium 1-Amp rectiflers GJM up to 300 PI $5300 \mathrm{Mc} / \mathrm{s}$ NP'N silicon transistors $\overline{2 N 708}$, BSYO7 30 Fast switching silicon dientes like 1Nill 4 micro-min U29 10 1-Amp BCR"s TO-5 can np to 600 PLV CRS1/2u-f00 U31 20 sil. Planar NPN trans. low noise amp 2N3707 U32 25 Zener dioden 400 mW D07 case mixed volts, $3-1 \mathrm{k}$ U33 15 llastic case $\overline{1 \mathrm{amp}}$ silicon rectitiers $15+000$ series 30 Sil . PNP alloy trans. TO-5 BCY26. 28302/4
25 Sil, planar trans. PNP TO-18 2 N 2906
 30 Sil. alloy trans. SO-2 PNP. OC:200 28382 $\because 0$ Fast su-itching sil. trans. NPN. $400 \mathrm{Me} / \mathrm{s} 2 \mathrm{~N} 301$ 30 RF' germ. PNP trans. 2N1303/5 TO-\% 10 Dual trans. is lead TO-5 $2 \mathrm{~N}: 0 \mathrm{Of} 0$ 2与 HF germ. trans. TO-I OC4. NKTī 10 :HF germ. PNP trans. TO-1 NKT667 AFI17 Sit. trans. plastic TO-18 A.F. BC113/114

20 Sil. trans, plast je TO-न $13 \mathrm{Cl} 1 \overline{2} / 11$ \$

NEW QUALTTY TESTED PAKS		
Pak	Description	Price
Q1	20 Red spot trans. PNP AF	
Q2	1fi White apot R.F. trans. PNP	0.50
Q3	40077 type trans.	
Q4	6 Matched trans. OC44/45/81/81D	
Q5	$40 \mathrm{OC} \mathrm{S}^{\text {a }}$ transistors	
Q ${ }^{3}$	$40 \mathrm{C72}$ tranaiators	
Q	4 ACl28 trans. PNP high gai	
Q8	4 AC126 trans. PNP	
Q9	7 Oc81 type trans.	
Q10	- OC7 1 type trant	
Q11	$\because \mathrm{ACl} 1 \mathrm{~S}^{7} 128$ comp.	
Q12	3 AFlis type trans.	
Q13	3 AFl17 type trans	
Q14	$30 \mathrm{OCl} 1 \mathrm{H} . \mathrm{F}$. type trans	
Q15	5) 2 N 2926 sil. epoxy trans.	
Q14	\underline{Y} GET880 low noise germ. trans.	
Q17	3 NPN 1 STI41 \& ${ }^{\text {a ST140 }}$	
Q18	4 Madt's 2 MAT 100 \& 2 MAT 120	
Q13	3 Marlt's '2 MAT 101 (MAT [2]	
Q20	40 Ca 4 germ. trans. A.F.	
Q21	3 AC127 NPN germ. trans.	
Q22:	20 NKT trana, i.F. R.F. coded	
Q23	$100 \mathrm{~A} 20{ }^{2}$ sil, diodes sub-min.	
Q24	8 OA81 diodes	
Q25	6 IN914 sil. لimieg 751 IV 7 mma	0.50
Q26	80490 germ. diodes sut-min. IN	
Q27	2104 B00PI ${ }^{\text {d }}$ bil. rects. IS45R	
Q28	2 Sil. power rects. BY713	
Q29	4 Sil. trans. $2 \times 2 N 696,1 \times 2 N$ $1 \times 2 N 698$.	
Q30	7 Bil. switch trans. 2 N 706 NPN	
Q31	6 Sil. 8 witch trans. 2 NTON NPN	
Q32	3 P'Nl $^{\text {sill. trans. }} \quad 2 \times 2 \times 2 \times$	
Q33	3 Bil . NPN trans, 3 N 1711	
Q34	$7811 . \mathrm{NPN}$ trank. $\mathrm{N} 2369.500 \mathrm{M117}$	
Q35	3 Sil. PNP TO.J $2 \times 2 \mathrm{~N} 2904$ \& $1 \times 290 ;$	
Q3is	7 2N 3646 TO.18 plastic 300 MH NPN	
Q37	3 2N30.J3 NPN mil. trame.	. 50
Q38	7 PNP trans. $4 \times 2 \mathrm{~N} 3703.3 \times 12 \mathrm{~N} 3702$. 5
Q39	T NPN trans. $4 \times 2 \mathrm{~N} 3704,3 \times 2 \mathrm{~N} 3705$	0.50
Q40	7 NPN amp, $4 \times 2 \mathrm{~N} 3707.3 \times 3 \times 3708$.	0.50
Q41	3 Plastic NPN TO-18 2N 3904	- 5
Q4:	6 NPN trans. ${ }^{\text {den }} 172$	0.5
Q43	7 [CC107 NPN trans.	
Q44	7 NPN trans. $4 \times$ BCl08, $3 \times$	
Q45	$3 \mathrm{HCl13}$ NPN TO-18 trans.	0.6
Q46	3 BC11: NPN TO-a trana.	0.50
Q45	6 NPN high gain $3 \times$ BC167, $3 \times$ [3C168	0.50
Q+A	4 LCY70 NPN trans. To-18	0.50
Q49		0-80
Qu0	7 BSY 28 NPN mwitch To-18	
Q51	$7 \mathrm{BSY95}$ A NPN trans. 300MH:	0.50
Q 52	8 BY 100 type sil. reet.	
Q 5	$2 \breve{3}$ Sil. \& germ. trans. mixed ail marked new	$1-80$

PRINTED CIRCUITS-EX-COMPUTER

Packed with semiconductors and componente 10 hoards give a guaranteed 30 trans and 30 dioden Our price 10 boarle. 50p. Plus 10p I. \& P 100 Boards \&8, P. \& P. 30 p)-

POWER TRANSISTOR BONANZA!
 GENERAL PURPOSE GERM. PNP
 POWER TRANSISTORS Comled GP100. RHAND NEW TO-3 CASE POSB.
 REPI,ACE:-OC.j-28-34-30-3.3-36. NKT $401-403$
 AD161 ADI62 pyp OP GERM. POWER TRANSIBTORS, OUR LOWEST PRICE OF

$\triangle P E C I F I C A T I O N$ VCBO 80 V VCEO 20 V IC 10 A PT. 30 WATTS Ife 30-170.
Plice $\quad 1-24100110$

Coded R2400.
VCBO-50/VCEOI00/IC 6A/30W
HFE type $20 /$ TT 5 MHz .
OUR PRICE
 Price 83p each 68p PER PAIR
SILICON 50 WATTS MATCHED NPN/PAP. MP19 npn TO-3 plastic
BIP:0 mo Brant new BPBO pht Brand ne
VCEO 1 C 10 A
$100 / \mathrm{tt} 3 \mathrm{mHZ}$
0 OUR PRICE PER PAIR $\begin{array}{ccc}1-24 & 25-94 & 100 \\ 11 r 8 . & \text { pre. } & \text { prs } \\ 80 p & & \end{array}$ 50p $\quad 50 \mathrm{p}$ GENERAL PURPOAE NPN SILICON SWITCHING TRAMS. TO-18 SIM. TO 2N706/8, BSYR7/28/95A. All usalle devices no open or ghort circuit. A LSO AVAILABLE in

OUR STOCKS of individual devices
are now too numerous to mention in this Advertibement. Send S.A.E. for our listing of over 1,000 gemiery competitive prices.

RTL HICROLOGIC CIRCDITS $\begin{array}{ll}\text { Epoxy TO. } \overline{3} \text { cake } & \text { Price each } \\ 20-25-99 \quad 100 ~ u p\end{array}$ LL900 Buffer $\quad 85 \mathrm{p} \quad 33 \mathrm{p} \quad 07 \mathrm{p}$ $\underset{\text { gate }}{\text { L914 Dual 21/p 35p 38p }}$
 Data and Circuite Booklet for I.C'

Dusl-in-Line Low Profle Socketa 14 and 16 Lead Sockets for use with Dual-in-Line Integrated Circuits

	Price each		
Order No.	$1-24$	$\underline{2 j-99}$	100 up
TSO 14 pin type	$30 p$	$27 p$	$25 p$
Tso $\mathbf{1 6}$ pintype	$35 p$	$32 p$	$30 p$

-the lowest prices:

74 series T.T.L. I.C's DOWN AGAIN IN PRICE

Oheck our 74 Series List before you buy ant

Full spec. guaranteed.
BI-PAR
Order
No
$\mathrm{BP00}=7400$
$\mathbf{B P 0 2}=7402$

BP05 $=7405$
BP10 $=7410$ $\mathrm{BP} 13=7413$ BP20 $=7420$ BP30 $=7430$ $B P 40=7440$ BP4 $42=7441$
$\mathrm{BP} 46=7446$
BP 47
$\mathrm{BP48}=7448$
$\mathrm{BP} 50=7450$
BP51 $=2451$
BP53 $=\mathbf{7 4 5 3}$
BP54 $=74,54$
$\mathrm{BP} 60=7460$
BP70 $=7470$
BP72 $=7472$
$\mathrm{BP} 72=7472$
$\mathrm{BP} 73=7473$
BP74 $=7474$
BP75 $=7475$
BP76 $=7476$
BP80 $=7480$
$\mathrm{BP8I}=7481$
$\mathrm{BP} 82=748^{2}$
$\mathrm{BP} 83=748$
BP83 $=7483$
BP86 $=7486$
BP86 $=7486$
BP90 $=7490$
BP90 $=7490$
BP91 $=7491$
$\mathrm{BP92}=7499$
$\mathbf{B P 9 3}=7493$
BP93 $=7493$
BP94 $=7494$
BP95 $=7495$
ВP96 $=7496$
BP100 $=74100$
BP105 $=74105$
BP107 $=74107$
BP110 $=74110$
BP118 $=74118$
BP119 = 741
$\underset{\mathrm{BP} 141=7412}{\mathrm{BP} 121}=74141$
BP145 $=7414$
BP150 $=74150$
BP151 = 741
BP153 $=74153$
BP154 $=74154$
BP155 $=74155$
BP156 $=74156$
$\mathrm{BP} 160=74160$
BP161 = 74161
BP190 $=74190$
$\mathrm{BP} 192=74192$ BP193 $=74193$

BP196 $=74196$
$\mathrm{BP197}=74197$
BP198 $=74198$
$\mathrm{BP} 199=74199$

Quad 2-imput NAND gat
Qued 2 -input pos. NAND gate Quad 2 -input pos. NOR gates Quad -input pos. AAND gates Hex Inverters
Hex Inverter (with open-collector output)
Tiple 3 input pos. NAND gate
Dual 4-input schnitt trigger
Dual 4-input pos. NAND gates 8 -input pos. NANI gates Dual 4 - input pos. NAND buffers BCD to decimal nixie driver
CD) to decinal decorler ($4-10$ lines. B of 10)
BCD-to-sev
BCD-seven-segment decoder/drivers
BCD-to-seven-segment decoder/driver Expandable dual o-input and-or invert
Dual 2 -uide \because-input and-or-invert gates.
Quad 2 input expandable and-or--wide w-input and-or-invert gater Dual 4 -input expander
Single-phase J-K flip-floy
Dual Master slave J-K flip-flop Dual D type flig-flop
Quad latch
Gated full adders
16-bit, read/write memory
-bit binary fult adders Quad full adder
Quar s-input exclusive NOR gates 8 -bit shift regialers
8-bit shift reggaters
Divide-by-twelve counter
4-bit binary counters
Dual entry 4 -bit shift register 4-bit up-down allift register s-bit parallel in parallel out shift register
8-bit bigtable latches
Single J-K flip-floy equivatent 0000 Slagle $\mathrm{J}-\mathrm{K}$ nip nop equivalent 900 ${ }^{\text {series }}$
Lasi Master 日lave flip-flops Diates marter-slave flip-Hops Dex set-reset latches
Hex set-reset latches. 24-pin
Monostable multivibrators BED-to-decimal decoder/idriver 16-bito-decimal decoder/iriver $0 / C$ b-bit data belector
Duat 4-line to l-line with strobe) 4 - to $16 \cdot$ line decoder Dual 2- to 4 -line decoler Dual 2 - to 4 -line decoder $0 / \mathrm{C}$ Sync. decade counter
Sync. 4-bit binary counter Sync. up-lown BCD counter Sync. binary uprdown counter (single Sync. up-dou
Sync tinary decade counter Sync, binary up-down counter (taw Pre-sctable 50 MHz decade counter Pre-setable 50 MHz binary counter 8-bit parallel L-R shift register
8-bit parallel access shift registe

Price and aty. prices $\begin{array}{ccc}1-24 & 25-99 & 100 \mathrm{uy} \\ \text { ip } & \text { \&p } & \text { ep }\end{array}$ $\begin{array}{lll}\text { ip } & \text { ep } & \text { ip } \\ 0.15 & 0.14 & 0.12\end{array}$ $\begin{array}{lll}0.15 & 0.14 & 0.12 \\ 0.15 & 0.14 & 0.12\end{array}$

0.15	0.14	0.12
0.15	0.14	0.12

0.15	0.14	0.12
0.15	0.14	0.12
0.29	0.26	0.24
0.15	0.14	0.12

0.12 2 0.12

0.15	0.14	0.12
0.67	0.64	0.58

ANOTHER BI-PAK FIRST!
THE NEW S.G.S. EA 1000
AUDIO AMPLIFIER
MODULE
GUARANTEED NOT LESS THAN 3 WATTS RMS

Especially designed by g.c.s. incorporating their

unlimited applications for the enthusiast in the col
truction of radios, record players, Audio and Btereo
nits. Also ideal for intercom systems, monitoring
applications and phone answering machines. OTHER
USES: porfable applications where supply raila as lon as $9 V^{\circ}$ ayp of prime inforfanct

- Sensitivity 40 mV for 1 watt VOLT

AGE GAN 40dB but can be varied Typical Total Hermonic distortion up to 730 B for some applications. - Sirnal to Noise Retio 8edB.

- Frequency response better tha

Norm to $25 \mathrm{KHz}^{2}$ for -3 dB .

- Surmale for $8-16$ OHM or arailable separately at 10 , each.

NOTE THESE PRICES!
 DTL 930 SERIES
 LOGIC

I.C's

Type			Price	
No.	Function	1-24	2.) 99	up
BP930	Expandable dual 4 -imput NAN1)	23p	20p	15p
18P93:	Expantable dual 4 -input NAND butter	25p	23p	20p
[$11^{2} 933$	Dual 4 -input expander	25 p	23p	20p
BP93J	Expantable Hex Inverter	25p	23p	20p
BP936	Hex Inverter	25p	23p	20p
BP944	Dual 4 -input $N(N i j$ expandable buffer w pull-1p	28p	23p	20p
BP94.)	Master-slave JK or Rst	35p	32p	20p
BP949	Quad, 2-input NAND	23p	20 p	15p
131948	Master-slave 3 K or RS	35p	32p	29p
BP931	Monostable	80p	85p	80D
BP96 ${ }^{\text {P }}$	Triple 3-input NAND	23p	20 p	15p
13 P 9093	Dual Master-slave. I K with separate clock	80 p	76p	700
BP9094	Dual Master-slave JK with separate clock	80 p	75p	70p
13 P 9097	Dual Master-slave JK with Common Ciock	80p	75 p	70 p
13P9099	I) ual Master-slave JK Common Clock	80p	75p	70p
Devices applicat	be mixed to qualify for quantity price (DTL 930 Ser ies only.)	qua	$y \mathrm{pr}$	

DTL AND TTL INTEGRATED CIRCUITS

Hanufacturets" "real onts"-out, of spec. Hevices including functional units anul
part fumetion but clansed as ont of spece from the manufacturers' very rigid specificafons. Ifeal for learning abont 1. "wand experimental work.

BRAND NEW LINEAR I.C's-FULL SPEC.
Data is available for the abuve series of $1 . \mathrm{C}$'s in booklet form. Price 13p. of any devices not listed above as it is mrobably now in stoch

Type Mo.	Case	Leadi	Detription			
BP 201C-SL20IC	To-	8	(P P. Amp	68p	53 p	46p
BP 701C-SL70IC	T0-5	8	OP Amp	88p	50 p	46p
BP 702C-8L702C	TO-5	8	OP Amp Direct OP	68 p	50p	45p
BP 702-72702	D.I.L.	14	G.P. OP Amp (Wide			
			.Bend)	53p	46p	40p
BP 709 - 72709	D.Y.L.	14	High OP Amp	53p	45p	40 p
BP 709P- 1 A709C	TO-5	8	High Gain OP Amp	53p	46p	40p
HP 710-72710	D.I.L.	14	Differentis: comparator	53p	45p	40p
BP 711- 4 A711	T0-5	10	Dual comparator	58p	\$0p	45p
BP 741 -72741	D.I.L.	14	High Gain OP Amp (Protected)	75 p	60p	50 p
$\mu \mathrm{A} 703 \mathrm{C}-\mu \mathrm{A703C}$	T0-5	6	R.F.-I.F. Amp	43p	35 p	270
TAA 263 -	T0-72	4	A.F. Amp	70p	60 p	55 p
TAA 298-	T0-74	10	G.P. Amp	90 D	75p	700
TAA 350	TO-5	8	Wide loud limiting			

Please send all orders direct to warehouse and despatch department

P.O. BOX 6, WARE - HERTS

Postage and packing add $7 p$. Ouerseas add extra for airmail. Minimum order 50 p . Gash with order ploase. Guaranteed Satisfaction or Money Back

Sony's elegancly designed digital afarm clock radio. The digital clock shows you the time minute by minute with matchless accuracy, and once set the Digimatic will wake you up at the same time every morning without having to be re-set. The radio section features Sony's unique sleep bution, you fall gently to sleep lulled by the sweet tone of the radio. which switches itself off at a predetermined tume. Available in either black or whice. Frequency range: $530-1,605 \mathrm{KHz}$ (AM): $87-108 \mathrm{MHz}$ (FM). Uses 8 transistors and 8 semi-conductors, built-in ferrite aerial and $3 \frac{1}{n}$ in loudspeaker Power requirements: 230 V a.c. 50 Hz . Dimensions: $12 \frac{3}{6}$ in 3音in 5\%in.

LIST PRICE LASKY'S $£ 28.94$ PRIC £16.75

 Post25p

OUT NOUI'72 AUDIO.TRONICS

wats:ng Aublo trienics 1972

P
Fansins Quoter honics 197

The great new 1972 edition of Lasky's famous AudioTronics Catalogue is now available FREE on request. The 44 newspaper size pages-many in fult colour-are packed with 1,000 's of items from the largest stocks in Great Britain of everything for the Radio and Hi - Fi enthusiast. Electronics hobbyist, Serviceman and Communications Ham. Over half the pages are devoted exclusively to every aspect of Hi -Fi (including Lasky's budget Stereo Systems and Package Deals). Tape recording and Audio accessories and don't miss LASKY'S AUDIO.TRONICS CREDIT CARD SCHEME offering holders one month's incerest free credit up to. $£ 50$ and the fantastic $£ 1,000$ plus colour TV competition. Send your name and address and 15p for post and inclusion on r regular mailing list.

MA from - - Cnskys

 CRITERION Mk. XBecause of the increasing demand for inexpensive, high quality bookshelf speakers, we have seen fit to introduce the Criterion Mk. X bookshelf system. The speaker is a sealed infinite bafte type enclosure using
5 in mid. range and $2 \frac{1}{2} i n$ tweeter. The compact cabinet is finished in oiled walnut and black woven speaker grille cloth. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz}$. Power handling capacity: Max. 20 watts. Impedance: 8 ohms. The Criterion is fitted with two types of speaker lead connections
terminal and phono. Size : $18 \frac{3}{7}$ in (H) $9{ }^{\frac{7}{6}}$ in (W) 97\% (D). Operational horizontally or vertically.

LASKY'S AMAZING PRICE

a sound firture

Lasky's Radio for over 38 years Great Britain's Leading Radio, High Fidelity, Tape Recorder and Electronics Specialists have vacancies in their West End and City Branches for both male and female Sales Assistants. We are seeking intelligent young men and women sales personnel to join our expanding organisation (already the largest in Europe) on a career basis with the finest prospects for early promotion and financial advancement. Working with our energetic sales teams in any of our six West End and City branches will bring you into contact with people from every walk of life including Pop Stars, film and television personalities, royalty and above all enthusiasts in every field of Audio, Hi-Fi and Electrohics-people who expect you to share their enthusiasm and interest.
Knowledge of $\mathrm{Hi}-\mathrm{Fi}$ and electronics is not essential although it will help-all that we require as the basic qualities needed for a successful application are willingness to learn and a common-sense approach to the business of selling. Salary ranges from $£ 850$ to $£ 1,850$ plus, three weeks' holiday after one year, and Incentive Bonus Schemes are added benefits of working in our progressive organisation. Holiday arrangements will be honoured. If you are interested in a career in Audio and Hi-Fi write at once to: Kenneth Lasky, Lasky's Radio Limited, 3-15 Cavell Street, London EI 2BN.

Interviews will be arranged to suit your convenience.

SUPER SPEAKER BARGAINS

WHARFEDALE DENTONS
A compace syscem sold in matched pairs for a perfectly balanced
stereo syscem, Each Dencon contains an 8 in bass unit with 3 in pressure unic, coupled by a Wharfedale crossover network. Rated input: 15 watts maximum. Frequencyresponse: $65-17,000 \mathrm{~Hz}$ Impedance: $4 / 8$ ohms. Cabinet 9ain lain $\begin{aligned} & \text { oiled teak finish and are small }\end{aligned}$ oiled teak finish and are small surroundings.

Post 50p

LIST PRICE £ 39.90

LASKY'S

WHARFEDALE TRITONS
A new and exciting addition to the system will satisfy the most ardent Hi-Fi enthusiast. Shelf or floor standing-hand finished in oiled teak. Frequency response: $55-22,000 \mathrm{~Hz}$. C.A.B. Dome pressure unic. Bass unit Bin. Mid-range unit 5 in . Treble unit 2 in . Impedance LIST PRICE $£ 59-90$
LASKY'S PRICE $\mathbf{£ 3 9 \cdot 0 0}$

Post 50p

EXCLUSIVE TM-I

MODEL TM-I MINI-TESTER

The first of Lasky's new-look top value meters, the TM-! is a really tiny pocket multimeter providing "big
meter accuracy and performance. Precision movement calibrated so 3 in of full scale. Click stop range selection switch. Beautifully designed and made impact resistant black case with white and mecallic red/green figuring. Ohms zero adjustment.
Size Only
$3 \frac{1}{4}$ in $\times 2$ in $\times 1 \operatorname{lin}$
$6 D C / V: 0-10-50-250-$
1.000 ar $1 k$ OPV

- AC/V: 0-10-50-250

1,000 at Ik OPV

- DC CURRENT: 0-ImA
- Resistance: 0-150k
- Decibels: - 10 d 8 to - 22 dB
leads, battery and leads, battery and

LASKY'S PRICE $£ 1.95$

POST 13p

TM-5
 5K ohms/V POCKET MULTIMETER

Another new look pocket multimeter from Lasky's providing top quality and value. The "slimline" impact resistant case, size 4 in $\times 2$ in $\times 1$ itin, fitted with extra large $2 t$ making this an excellent instrument for servicing transistorised equipment. Recessed click stop selection switch. Ohms zero adjustment. Buff finish with crystal clear meser cover.

- DCIV: 3-15-150-300-1,200 at 5k Resistance:0-10k/ohms, 0-1M/ohm ACIV: 6-30-300-600 at 25 k /OPV Complete - 10 dB to +16 dB - DC Current $0-300 \mu \mathrm{~A}, 0-300 \mathrm{~mA}$ - Complete with test leads, battery

LASKY'S PRICE $£ \mathbf{2 . 9 5}$
POST 13p
LASKY'S NEW "LOW NOISE" CASSETTES FROM the U.S.A.

Model	Singles	5	10	20
$C .60$	$32 p$	$£ 1.52$	$£ 2.96$	$£ 5.60$
$C .90$	$50 p$	$£ 2.37$	$£ 4.62$	$\mathbf{~ 8 . 7 5}$
C. 120	$69 p$	$£ 3.28$	$£ 6.38$	$£ 10.85$

Post Each 5p. 5-20p. 10-25p. 20-50p.
ITastiva's İvalio

Boontes
207 EDGWARE ROAD. LONDON. W. 2 Tel 017233271
33 TOTTENHAM CT. RD. LONDON. WI Tel: 01.6362695

152/3 FLEET STREET. LONDON. E.C. Tel: 00:353 2833 Open oll doy Yuus soy. oorly closing 1 p.. . Solurdoy
all mail orders and cörrespondence to: 3-15 Cavell st. tower hamlets, London, e. Tel.: 01.790 4821

manemensencems

 oenmenct

TRIO KA. 2002 PACKAGE DEALTOP VALUE

 TRIO KA. 2002 $\mathbf{£ 3 9 \cdot 5 0}$Pair Wharfedale Dentons . $£ 39 \cdot 90$ BSR MP60 £15.20
LASKY BASE \& COVER $£ 4.75$
AD76K CARTRIDGE $£ 4 \cdot 35$
Total list price $\overline{\mathbf{1 1 0 3 . 7 0}}$

PACKAGE PRICE $£ 79 \cdot 50$

ADD $£ 9$ if Wharfedale Trice preferred to Dentons

TMK MODEL 200 METER KIT
TMK offer the unique opportunity of building a really first-class precision multimeter at a worthwhile saving in cost. The cabinets are supplied with the meter seale quad throughout. Supplied complete with full constructional cireuit and operating instructions.
Specification
20,000 P.O.V. Multimeter. Features 24 measurement ranges with mirror scale accuracy. $D C / V$ and current:
2% A.c.:V: 3%. Resistance 3%. Special $0-6 \mathrm{~V}$ DC range for transiscor circuit measurements. ONLY
LASKY'S PRICE $£ 4.60$

DIGITAL CLOCK SCOOP

 EXCLUSIVELY FROM LASKY'S in chassis form for you co mount in any drum to back of switch). SPEC.: $210 / 240 \mathrm{~V}$ AC, 50 Hz operacion; switch rating 250V, 3 A. Complece with imstructions.
HUNDREDS OF APPLICATIONS. COMPLETE WITH KNOBS LASKY'S PRICE $£ 6.50$ POST 18p
SPECIAL QUOTATIONS FOR QUANTITIES
TRIO HS.I HS.2. STEREO HEADPHONE BARGAINS
Models HS.I and HS.2. Both these sets by TRIO offer really superb stereo reproduction in a lightweight, fully adjustable headset designed for optimum
comfort. Listening fatigue is unknown with TRIO headphones. Brief spec. both models: Input imp. 8 nominal (matching 4 to 8): max. input 0.5 W : frequency response $20-19 \mathrm{kHz}$: output sensitivity at 1 mW input; HS.I
$118 \mathrm{~dB}, \mathrm{HS} 2 \mathrm{IIIdB}$: weight 0.66 libs. Identical inappearance-both models are finished in ivory with contrasting foam-filled ear pads and head band. HS.I.
List Price $\leqslant 8.40$.
Lasky's $£ 5.00$ Lasky's Lasky
Price

Price 55.00 Price

VALVE MAIL ORDER CO．

 BLACKWOOD HALL16a WELLFIELD ROAD，LONDON SWI6．2BS SPECIAL EXPRESS MAIL ORDER SERVICE

Express postage Ip per transistor，over ten post free

1N21	$\begin{aligned} & 5_{p} \\ & 0.17 \end{aligned}$	ACl26	$\begin{aligned} & \text { ip }_{0} \\ & 0.20 \end{aligned}$	$\begin{array}{ll} & \text { Ep } \\ \text { BFIZ3 } & 0.25 \end{array}$	GiJ4M	$\begin{aligned} & \ln _{0} \\ & 0-88 \end{aligned}$	0 CL 3	$\begin{aligned} & 19 \\ & 0.40 \end{aligned}$
1N23	0.20	$\mathrm{ACl}^{2} 7$	0.25	BF181 0．85	（135M	0.25	OC44	0.17
1N85	0.88	AC128	0.20	BF184 0.20	GJ7M	0.87	OC44 ${ }^{\text {a }}$	0.17
1N253	0.60	ACl^{-}	0.25	BF185 0．80	HG100J	0.50	OC4s	0.12
1N206	0.50	AC188	0.25	BF19 0.17	lis 100 A	0.20	OC45M	0.18
1N645	0.25	ACY 17	0.30	BF195 0.15	Mati00	0.25	OC46	0.27
1N726A	0.80	ACY18	0.85	BF196 0.15	MAT101	0.30	OC5 ${ }^{\circ}$	0.60
1N914	0.07	ACY 19	0.25	BF197 0．15	MAT120	0．25	OC5	0.80
1N4007	0.80	ACY20	$0 \cdot 20$	BFS61 0.28	MATl2l	0.80	0 C 99	0.85
18021	0.80	ACy21	0.20	BFS96 0.28	MJE540	0.87	OC66	0.50
18113	0.15	ACY22	0.10	BFX12 0.20	MJE 2950	1.87	$0<70$	0.12
18130	0.18	ACY27	0.25	BFX13 0.25	MJE3055	0.87	Oc71	0.12
18131	0.18	ACY28	0.17	$\begin{array}{ll}\text { BFX } 29 & 0.25\end{array}$	NK T128	0.85	0 OCF	0.20
18202	0.28	ACY 39	0.50	BFX30 0．25	NKT129	0.80	0 C 73	0.80
20240	1.97	ACY40	$0-15$	BFX35 0.98	NKT211	0.25	0 O 74	0.80
$2 \mathrm{GS01}$	0.20	ACY41	0.15	BFX63 0.50	NKT213	0.25	$0<75$	0.85
2 Gs 02	0.82	ACY44	$0-25$	BFX84 0.25	NKT214	0.15	$0 \mathrm{OC76}$	0.85
29306	0.80	AD140	0.50	BFX 85	NKT216	0.37	OC7	0.40
$2 \mathrm{G371}$	0.22	AD149	． 0.50	BFX86 0.85	NKT21\％	0.35	OC78	0.20
29381	0.85	AD161	0.87	$\begin{array}{ll}\text { BFX } 87 & 0.25\end{array}$	NKT218	1.18	OC79	0.22
2 G 414	0.80	AD16	0.37	BFX88 0.20	NKT219	0.38	0 C 81	0.20
$2 \mathrm{G417}$	0.22	AF106	0.30	BFY10 1．00	NKT224	0.20	OC811）	0.20
2N214	0.48	AF114	$0 \cdot 25$	BFY11 1.25	NKT224	0.82	OC81M	0.20
2N247	0.85	AF115	0.25	$\begin{array}{ll}\text { BFY17 } & 0.26\end{array}$	NKT251	0.24	OC81DM	0.18
2N250	0.60	AF116	0.25	$\begin{array}{ll}\text { BYF18 } & 0.26\end{array}$	NKT271	0.25	$0 \mathrm{C817}$	0.40
2 N 404	0.20	AF117	0.25	BFY19 0.25	NKT272	0.25	OC82	0.25
2 N 697	0.15	AF118	0.62	BFY24 0.45	NK T273	0.15	OC821）	0.20
2N698	0.40	AF119	0.20	BFY4 1.00	NKTa゙ 4	0.20	$00^{0} 83$	0－25
2N706	0.10	AF124	0.25	BFY50 0.28	NKT275	0.25	0 O 84	0.25
2N706A	0.12	AF125	0.20	$\begin{array}{ll}\text { BFYJ1 } & 0.20\end{array}$	NKT9T7	0.80	OC114	0.88
2N708	0.15	AF126	0.17	$\begin{array}{ll}\text { BFY52 } & 0.22\end{array}$	NKT278	0.25	OC122	0.60
2N709	0.88	AF127	0.17	BFY53 0.17	NKT301	0.40	OC123	0.65
2N711	0.87	AF139	0.30	BFY64 0.42	NKT304	0.75	OC139	0.25
2N987	0.58	AF178	0.55	BFY90 0.85	NKT403	0.75	OC140	0.85
2N 1090	0.80	AF179	0.65	Bsx2 0.50	NKT404	0.55	OC141	0.60
2N1091	0.88	AF180	0.52	BSX60 0.98	NKT678	0.80	OC169	0.20
2N1131	0.25	AF181	0.42	BSX76 0.15	NKTil3	0.25	Oc170	0.25
2N1132	0.25	AF186	0.40	BSY 260.18	NKTi73	0.25	OC171	0.80
2N1302	0.18	AFY19	1.13	$\begin{array}{ll}\text { B8Y07 } & 0.17\end{array}$	NKTケT	0.88	OC200	0.40
2N1303	0.18	AFZ11	0.60	BSY51 0.50	07813	0.88	$0 \mathrm{CL}_{0} 1$	0.70
2N1304	0.22	AFZ12	1.00	HSY90． 0.12	OAS	0.80	OC202	0.80
2N1305	0.22	ASYO6	0.25	$\begin{array}{ll}\text { B4Y95 } & 0.12\end{array}$	OAG	0.12	0 CL 03	0.40
2N1308	0.25	ASY27	0.32	BT102／500R	OA47	0.10	OC204	0.40
2 N 1307	0.25	AsY28	0.25	0.75	OA70	0.10	OC205	0.75
2N1308	0.85	Asy 29	0.80	BTY42 0.92	OA71	0.10	OC206	0.90
2N1309	0.25	AsY36	0.25	ВTYT9／100R	OA73	0.10	OC20	0.90
2N1420	0.98	Asyoo	0.17	0.75	OAT4	0.10	OC460	0.20
2N1507	0.88	ABYOI	0.40	100R	0 A 79	$0 \cdot 10$	OC4\％	0.80
2N1526	0.88	AsY ${ }^{\text {S }}$	0.20	1.25	OA81	0.08	OCP71	0.97
2N1909	2.25	ASY55	0.20	HY100 0.15	OA85	0.18	OR1＇ly	0.50
2 N 2147	0.75	ASY 62	0.25	$\begin{array}{ll}\text { BY126 } & 0.16\end{array}$	OA86	0.15	ORP60	0.40
2 N 2148	0.80	ASY86	0.88	BY127 0.17	OA90	0.08	ORP61	0.42
2 N 2160	0.80	A8Z21	0.42	$\begin{array}{ll}\text { BY12\％} & 0.17 \\ \text { BY182 } & 0.85\end{array}$	OA91	0.07	\＄19T	0.80
${ }^{2} \mathrm{~N} 2218$	0.80	A8Z23	0.75	$\begin{array}{ll}\text { BY18：} & 0.85 \\ \text { BYals } & 0.25\end{array}$	OA9b	0.07	SAC40	0.25
2 N 2219	0.20	AUY10	0.98	$\begin{array}{ll}\text { BY213 } & 0.25 \\ \text { 14710 }\end{array}$	OA200	0.07	${ }_{\text {STT304 }}$	0.38
2N228	1.08	AU101	1.50	$\begin{array}{ll}\text { HYZ10 } & 0.85\end{array}$	OA202	0.10	ST722	0.88
2 N 2297	0.80	BCl^{7}	0.10	HYZ11 0.32	OA210	0.25	877231	0.68
2N2369A	A 0.15	BC108	0.10	BYZ12 0.80	OA211	0.30	SX 68	0.20
2 N 2444 － P	P on A	BC109	0.10	BYZ12 0.80	OAR200	0.55	8×631	0.30
2 N 2613	0.88	13C113	0.16	HYZ13 0.25	OAZ201	0.60	SX635	0.40
2 N2646	0.45	BC110	0.20	BYZls 1.00	OAZ202	0.42	8X640	0.50
2 N 2712	0.25	BCilt	0.25	BYZ16 0.82	OAZ203	0.42	9X641	0.55
2 N 2784	0.50	BC116A	0.30	13YZAs（3以3	OAZ204	0.30	8×642	0.60
2N2846	0.75	BC118	0.25	0.15	OAZ205	0.42	SX644	0.75
2 N 2848	0.42	BC121	0.20	C111 0.65	OAZ 206	0.42	${ }^{\text {S }}$（645	0.75
2 N 2904	0.20	BClig	0.20	CRSI／05 0.25	OAZ2O＇	0.47	Y15／301＇	0.50
2 N2904A	－ 0.85	BC^{125}	0－68	CRSI／41 0.47	OAZ208	0.32	－ $30 / 2011$	0.75
2 N2906	0.20	BC126	0.85	CS4B 2.60	OAZ209	0.82	Y60／201	0.50
$2 \mathrm{~N} 290 \%$	0.28	BCl40	0.55	CS10B $\quad 3.18$	OAZ210	0.32	$\checkmark 60 / 201{ }^{1}$	0.75
2N2924	0.88	BC147	0.15	DD000 0.15	OAZ211	0.82	XA101	0.10
2 N 2925	0.15	BC148	0.13	DL003 0.15	OAZ222	0.45	XA102	0－18
2N2926	0.10	BC149	0.15	$\begin{array}{ll}\text { DD006 } & 0.18\end{array}$	OAZ223	0.45	XA151	0.15
2 N 3054	0.80	BC157	0.15	$\mathrm{DDO0}^{\text {D }} 00.40$	OAZ224	0.45	XA15：	0.15
2 N 3035	0.75	HC158	0.12	DG00A 0.38	OAZ241	0.22	XA161	0.25
2N3702	0.10	BC160	0.68	$\begin{array}{ll}\text {（iD3 } & 0.33\end{array}$	OAZ2442	0.28	XA164＇	0.25
2 N 3705	0.10	BC169	0.13	$\begin{array}{ll}\text { Cil } \\ \text {（1）} & 0.05 \\ \end{array}$	9AZP44	0.82 0.29	XA102	0.25
2N3706 2N3707	0.88 0.12	BCY31	0.35	$\begin{array}{ll}\text {（11）5 } & 0.33 \\ \text { G118 } & 0.25\end{array}$	OAZ246 OAZ290	0.23 0.38	X 1101 X13102	0.28 0.10
2N3707	0.12 0.10	BCY3：	0.55	$\begin{array}{ll}\text { G108 } \\ \text {（1D1\％} & 0.25 \\ & 0.05\end{array}$	${ }^{0} \mathrm{Cl} 1690$	0.38 0.50	XB10＇s	0.10
2 N3710	0.10	BCY3\％	0.25	CET103 0.30	$0^{0 C 16 T}$	0.88	XB113	0.12
2 N 3711	0.10	BCY3	0.80	GET103 0．22	$0 \mathrm{OC19}$	0.87	XBI2I	0.48
2N3819	0.85	BCY 38	0.40	GET113 0－20	OCP^{20}	0.85	ZP\％4	0.88
2N3820	0.60	BCY 39	1.00	GFTT14 0.15	OC2：	0.50	ZR24	0.88
2 N 3823	0.75	BCY 40	0.50	GET115 0－45	OC23	0.60	ZS170	0.10
2 N 5027	0.58	BCY4：	0.85	GET116 0.50	OCu4	0.60	ZS2T1	0.18
2 N 6088	0.88	BCY ${ }^{\text {a }}$	0.15	OET120 0．25	OC2S	0.37	ZT以1	0.25
28005	$1{ }^{1.00}$	BCY71	0.80	$\begin{array}{ll}\text { GET872 } & 0.30 \\ \text { GET873 } & 0.25\end{array}$	OC26	0.25	ZT43	0.25
28178 28301	${ }^{1}$ on ${ }^{\text {a }}$（ ${ }^{\text {a }}$	BCZ10 BCZ11	0.35 0.50	$\begin{array}{ll}\text { GET875 } & 0.25 \\ \text { GET880 } & 0.87\end{array}$	OC24	0.80	ZTX107	0.15
28304	0.75	BDI21	0.65	$\begin{array}{ll}\text {（1ET881 } & 0.25\end{array}$	OC29	0.60	ZTX108	0.12
28501	0.37	BD123	0.80	GET882 0.25	OC30	0.40	ZTX300	0.12
28703	0.82	BD124	0.75	GET88̄̆ 0.25	${ }_{0} \mathrm{OC} 35$	0.50	ZTX304	0．25
AA129	0.20	BDY11	1.82	GEX44 0.08	OC36			
AAZIS	0.80	BF1I5	0.25	GEX GE 110.10	OC36	0.80 0.25	ZTX 5003	0.18
AAZ13	0.12	BF117	0.50	GEX941 0.15	OCl 4	0.25	ZTX503	0.17
ACl07	0.87	BFI67	0.25	GJ3M 0．25	OC42	0.80	ZTX531	0.25

SEMI－CONDUCTOR SET FOR
P．E．GEMINI AMPLIFIER $£ 12.95$
SEND S．A．E．FOR LIST OF 8，000 TYPES VALVES，TUBES AND TRANSISTORS
Open daily to callers：Mon．－Sat． 9 a．m．－5 p．m． Closed Sat．I． 30 p．m．－2．30 p．m．
Terms C．W．O．only
Tel．01－769 0199／1649

for fast，easy， reliable soldering
Contains 5 cores of non－corrosive flux，instantly cleaning heavily oxidised surfaces．No extra flux required．
SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR． Economically packed for

A RANGE OF SOLDERS IN HANDY DISPENSERS．

INVALUABLE FOR STRIPPING
FLEX，THE NEW AUTOMATIC OPENING BIE WIRE STRIPPER AND CUTTER，easify
 adjustable for all standard diameters．Plastic covered handles can also be used as wire cutter． Recommended retail price 50 p

From Electrical and Hardware shops．If unobtainable，write to： Multicore Solders Ltd．，Hemel Hempstead，Herts．

（I）YESI The ideal present for any electronics enthusiasc，so do not
（2）JUST TAKE THIS COUPON TO YOUR LOCAL $£ 2.38$ （3）$O R$ in case of difficulty send coupon and cash to：
s．d．c．electronics（SALES）LTD．， 34 arkwright road ASTMOOR INDUSTRIAL ESTATE，RUNCORN，CHESHIRE WAT INU
Name．
Address
（4）OHer closes January 31， 1972.

28 watts,r.m.s. 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$

 There are two stereo amplifiers-the R100 for ceramic cartridges, the R101 for magnetic and ceramic. Both incorporate FETs (FIELD EFFECT TRANSISTORS), just like top-priced units. FETs give you more of the signal you want, and almost none of the background hiss you don't. Both units have a jack socket to plug in headphones and there's a separate output for tape recorder. Filters (an unusual feature in this price range) and tone controls give a wide range of bass and treble adjustment which compensate for input deficiencies and domestic acoustic conditions.

PRICES SYSTEM 1
Viscount III R101 amplifier $£ 22+90$ p P.\&P. 2 Duo Type II speakers £14+£2 P.\&P. Garrard SP25 Mk. III with MAG. cartridge, plinth and cover $£ 23+£ 1.50$ P.\&P.

Total $£ 59$

Available complete for only $£ 52+£ \mathbf{3} \mathbf{5 0}$
P.\&P.

SYSTEM 2
V iscount III R101 amplifier $\quad £ 22+90 \mathrm{p}$ P.\&P.
$2 \times$ Duo Type III speakers $£ 32+£ 3$ P,\&P
Garrard SP25 Mh. III with
MAG. cartridge, plinth and cover
$£ 23+£ 1.50$ P. \& P
Total $£ 77$
Available complete for $\quad £ 69+£ 4 \quad$ P. \&P
SYSTEM 3
Viscount III R100 Amplifier $\quad £ 17+90 \mathrm{D}$ P.\&P. $2 \times$ Duo Type II speakers $£ 14+£ 2$ P.\&P. Garrard SP25 Mk. Ill with CER. diamond cartridge, plinth and cover $£ 21+£ 1.50$ P.\&P.

Total £52

Avallable complete for only $£ \mathbf{£ 9}+£ 3.50$

SPEAKERS Duo Type II
Size approx. 17in $\times 10_{\frac{3}{4}}^{3}$ in $\times 6 \frac{3}{4}$ in. Drive unit 13 in $\times 8$ in with parasitic tweeter. Max. power $10 \mathrm{~W}, 3$ ohms. Simulated Teak cabinet. £14 pair + £2 P. \& P. Duo Type III Size approx. $23 \frac{1}{2}$ in $\times 11 \frac{1}{2}$ in $\times 9 \frac{1}{2} \mathrm{in}$. Drive unit $13 \frac{1}{2}$ in $\times 8 \frac{1}{4}$ in with H.F. speaker. Max. power 20W at 3 ohms. Frequency range 20 Hz to 20 kHz . Teak veneer cabinet. £32 pair $+£ 3$ P. \& P.

SPECIFICATION R100/101

14 watts per channel into 3 to 4 ohms. Total distortion@10W@1kHz 0.1\%. P.U.1 (for ceramic cartridges) 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) 4 mV (a) 1 kHz into 47 K equalised within 1 dB R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power.) Tape out facilities; headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to -17dB@ 60 Hz . Bass filter: 6 dB per octave cut. Treble control: treble +12 dB to -12 dB @ 15 kHz . Treble filter: 12dB per octave. Signal to noise ratio: (all controls at max.) R101-P.U.1. and radio65 dB . P.U.2-58dB. R100 same as R101 but P.U. 2 (for crystal cartridges) 450 mV into 3 Meg. Cross talk better than -35 dB on all inputs. Overload characteristics better than 26 dB on all inputs. Size approx. $13 \frac{3}{4} \times 9$ in $\times 3 \frac{1}{4} \mathrm{in}$.

Radio and TV Components (Acton) Ltd. 21D High Street, Acton, London, W3 6 NG 323 Edgware Road, London, W.2. Mail orders to Acton. Terms C.W.O. All enquiries S.A.E.

Selecting new equipment. Finding out who makes it. Getting value for money. Picking up information on the audio scene Isn't that the kind of help you'd really like? Fill in the coupon and get your copy of the Hi-Fi Year Book, 1972 .	

MARK 3
CAR RADIO
ALL TRANSISTOR

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensure excellent tracking, sensitivisy and selectivity on both wave bands. R.F. sensitivity at $1 M H z$ is better than 8 micro volts. Power output inco 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees
success first time. 12 volts negative or positive earth. Size 7 in 2 in atin success first time. 12 volts negative or positive earth. Size in
deep.
SET OF PARTS

Output Power: 45 watts Frequency wave drive) Frequency response
-3 dB points 30 Hz at 18 KHz . Tota! distortion less than 2% at rated output Signal to noise ratio: better than 60 dB . Speaker Impedance: 3 8 or 15 ohms. Bass Control Range: 13 dB at
60 Hz . Treble Coneral 60 Hz . Treble Control
Range: 12 dB at 10 KHz . Inputs: 4 inputs at 5 mv into 470 K . Each pair of inpurs controlled by separate volume control. 2 inpurs
To protect the output valves, the incorporated fall safe circuit will enable the amplifier to be used at half power
SPEAKERS! Size 20in 20 in 10 in incorporating I 2 in heavy duty 25 wate high flux. quality loudspeaker with cast frame. Cabinets ateractively finished COMPLETE PE Plus or available separately
SYSTEM \& P. \& P. Amplifier: $£ 28.50$ plus $£ 1.50$ P. \& P. \& P

RELIANT MK.IV

The Reliant Mk.IV provides a high standard of sound reproduction, with full mixing facilities. Ies versatility makes t suitable for: Discotheque, * Five Electronically Mixed Inputs * Mixer employing F.E.T. (Field Effect * Threelndividual Mixing Concrols Transistor)

* Separate bass and treble controls * Solid State Circuitry

$$
4 \text { an }
$$ Tuner. Monitor

CONTROLS: 3 Volume concrols. Bass control range
$13 \mathrm{~dB} " 60 \mathrm{~Hz}$. Treble control range 12 dB la POWER OUTPUT: 12 Watts R.MS into 3 to 4 ohms speaker
SIGNAL/NOISE: Better than -60dB on inputs 3 SUPP and -S0dB an 1 and 2 SIZE: $12 \frac{1}{2} i n$ Gin 3 tin. Mains.

CONTINENTAL

 4-TRACK, 3-SPEED TAPE DECK
with high impedance heads

R.C. 74 tape deck. Three speeds- $7 \frac{1}{2}$,

 32 and 17 i.p.s. 4-track record/playback head. Plus 4-track erase head. Positive pressure pad system. Takes any tape spool up to and including 7in. The R.C. 74 is driven by a powerful 200/250V 50-cycle flywheel brings wow and fluterer levels do wn to approx 0.3% total at $3 z$ and Controls couldn't be simpler directions accidental tape damage. Efficient servo-action tons that interlock to cut out tape loadingThe R.C. 74 comes with an attractive moulded deck cover, which has positions for cone and volume concrols. The unit is built inco a rigid die-cast frame, and overall size of the whole unit is $121 \times 11 \frac{1}{2} \times 6 i n$. Every single deck fully tested before dispatch. Spools not suppliec. \&15. Plus 75p P. \& P.

WOW！A FAST EASY WAY TO LEARN BASIC RADIO \＆ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outfit！No mathe－ matics．No soldering－you learn the practical way．

Learn basic Radio and Electronics at home－the fast，modern way． Give yourself＇essential technical＂know－how＂－like reading circuits， assembling standard components，experimenting，building－quickly and without effort，and enjoy every moment．B．I．E．T．＇s Simplified Study Method and the remarkable TECHNATRON Self－Build Outfit take the mystery out of the subject，making learning easy and interesting．

Even if you don＇t know the first thing about Radio now． you＇ll build your own Radio set within a month or so！
and what＇s more，you will understand exactly what you are doing．The TECHNATRON Outfit contains everything you need，from tools to transistors－ even a versatile Multimeter which we teach you to use．All you need give is a little of your spare time and the surprisingly low fee， payable monthly if you wish． And the equipment remains yours， so you can use it again and again．
You LEARN—but it＇s as fascinating as a hobby．
Among many other interesting experiments，the Radio set you build－and it＇s a good one－is really a bonus．This is first and last a teaching course，but the training is as fascinating as any hobby and it could be the spring board for a carecr in Radio and Electronics．

A 14－year－old could understand and benefit from this Course－but it teaches the real thing．The easy to understand，practical projects－from a burglar－alarm to at sophisticated Radio set－help you master basic Radio and Elec． tronics－even if you are a＂non－ technical＂type．And，if you want to make it a career，B．I．E．T． has a fine range of Courses up to City and Guilds standards．
New Specialist Booklet
If you wish to make a career in Electronics，send for your FREE copy of＂OPPORTUNITIES IN TELECOMMUNICATIONS／TV AND RADIO＂．This brand new booklet－just out－tells you all about TECHNATRON and B．I．E．T．＇s full range of courses．

Dept．BI2，ALDERMASTON COURT，READING RG7 4PF

LST
FOR SIEMENS，NEWMARKET，IR，RCA MULLARD，TEXAS，FERRANTI，GE

《せくせ《せ4

 AD161AD162
AFI 106
AFI：A
AF： 15

$A C 127$
$A C 128$
$A C 151$
$A C 176$
$A C 187$
$A C 18 B$
$A C Y 17$
$A C Y 18$
$A C Y 19$
$A C Y 20$
$A C Y 21$
$A C Y 22$
$A C Y 40$
$A C Y 41$
$A D 140$
$A D 149$
$A D 161$
$A D 162$
$A F 106$
$A F 114$
$A F I 15$
$A F I 16$
$A F 117$
$A F I 18$
$A F 124$
AFI26
AFI 39
$A F I 86$
$A F 239$
$A S Y 16$
AF239
ASY26
ASY 27
ASY 28
ASY 29
ASY29
ASZ21
AUY 10
AU115
BC107
BC108
BC109
BC 147
BC 148
BC149
BC149
BC158
BC167
BC 167
BC 168
BC 169
BC169
BC169C
BCl
BCI
BCl
$8 C 182 L$
$B C 183$
BC183
BC18
BC 184
BC 184 L
$8 C 184$
$B_{C} C 12$
$B C 212 \mathrm{~L}$
BCY 30
BCY 30
BCY
BCY
$\mathrm{BCH3}$
$\mathrm{BCY3}$
BCY
BCY
BCY BCY 38 $\substack{\mathrm{BCC} \\ \mathrm{BCY} \\ \mathrm{BC} \\ \hline \\ \hline \\ \hline}$ BCY72
BDI21 Boi $\stackrel{\text { Bor }}{8}$
BD132
BDY 20
BF115
BF115
BFi63
BF163
BF167
BF 173
BFI 77

BFI 7
BFI
BFI

BFI80
BFIB1
BFIB1
BFI84
BF185
BF184
BFI85
BF194
BF184
BFI94
BF195
BF194
BF195
BF196
BF196
BF200
BF200
BFXI
BFX 13
$\mathrm{BF} \times 29$
BFX29
BFX84
$\mathrm{BF} \times 84$
$\mathrm{BF} \times 85$
BFX8S
BFX 86
$B F \times 87$
BFX86
BFX87
BFX 88
BFX88
BFY 50
BFY50
BFY51
BFY52
BFY 52
BFY 53
BFY 90
BFY 90
BSX 19
$\begin{array}{ll}\text { BSY } & \text { 16p } \\ B S \times 20 & 16 p \\ B S \times 21 & 37 p\end{array}$
XAMPLESOFO
25p
15p
20 p
15p $\begin{array}{llll}\text { BSY29 } & \text { 25p } & \text { NKT781 } & \text { 29p } \\ \text { BSY95A } & \text { 15p } & \text { NKT10339 } & \text { 25p } \\ \text { BY100 } & \text { 20p } & \text { NKT10419 } & 19 p \\ \text { BYX10 } & \text { 15p } & \text { NKT10439 } & \text { 27p } \\ \text { BYZ10 } & \text { 40p } & \text { NKT10519 } & \text { 22p }\end{array}$ $\begin{array}{ll}\text { IN4007 } & \text { 20p } \\ \text { IN4148 } & 7 p \\ \text { 2G302 } & 19 p\end{array}$
$37 p$
$25 p$
$25 p$ 2G302
$2 G 371$
$2 G 374$ 7p
$19 p$
$15 p$
$25 p$

BC107 \＆ 9 Siemens
$25+10 p ; 100+8 p$
1000 pcs $£ 6.20$ per 100
BCIO8 Siemens
$25+90 ; 100+7 p$ 000 pes $\notin 5 \cdot 80{ }^{7}$ per 100
2N3055 Siemens
$25+46 \mathrm{p} ; 100+43 \mathrm{p}$
$\begin{array}{cc}\text { AFI } 39 & \text { Siemens } \\ 25+25 p ; & 100+220\end{array}$

AF239 Siemens $25+28 p ; 100+24 p$ ORP12 （LDR03 Valvo） Cadmium Sulphide Cell $25+35 p ; 100+30 p$ BY127 Mullard $25+17 p ; 100+15 p ;$ $500+13 p$
$2 N 3819$ Texas Fet

2 N 3819 Texas Fet

PRICES：
AD161／2 Siemens
NPN－PNP Pair $25+50 p ; \quad 100+42 p$ per pair
AC176 Siemens
$25+13 p ; 100+11 p$ AC187／8 Siemens $25+32 p ; 100+27 p$ per pair BC147\＆9 Lockfits
$25+8 p ; 100+7 p ;$

BEST BUY IN TTL:

SIEMENS QUALITY PLUS BARGAIN PRICES PLUS LST SERVICE
A full design range of high quality TTL available from LST your Officially Appointed Siemens Distributors

Equal to	Descripsion P	Part No	o. 1-24	25.99	100 up	Equal to	Description Por	Port No	. 1.24	25.99	100 up	$\begin{aligned} & \text { Equal } \\ & \text { to } \end{aligned}$	Description	Port	24	25.99	up
7400	Quadruple 2-input NAND gate	$\begin{aligned} & \text { FLH } \\ & 101 \end{aligned}$	20p	$16 p$	14p	7444	Excess 3 gray to decimal decoder	371	\$1.45	<1-20	61.08	7486	Quadruple 2-input exclusive-OR				
7401	Quadruple 2-input NAND gate with open					7450	Expandable dual 2 -wide 2 -input AND.OR-INVERT						dement	341 161	$33 p$ $80 p$	$27 p$ $67 p$	$23 p$ $57 p$
	collector output	201	20p	16p	14p		gate	151	20p	16p	14p	$\begin{aligned} & 7490 \\ & 7491 A \end{aligned}$	Decade counter 8-bit shift register	$\begin{aligned} & 161 \\ & 221 \end{aligned}$	$\begin{array}{r} 80 p \\ \text { f1.28 } \end{array}$	$\begin{array}{r} 67 p \\ 61.07 \end{array}$	$57 p$ $92 p$
7402	Quadruple 2-input NOR gare	91	20p	16p	14p	745	Dual 2-wide 2-input AND-OR-INVERT					7492	Divide-by- 12 counte	er 171	$85 p$ $80 p$	$71 p$ $67 p$	$61 p$ $57 p$
7403	Quadruple 2-input						gate	161	20p	16p	14 p	7494	4-bit binary counter 4-bit shift register	r 181	80 p 61.13	67p	$57 p$ $81 p$
	NAND gate with					7453	Expandable 4-wide					7495	4-bit shift register	191	87 p	72 p	62 p
	open collestor output	291	20p		p		2-input AND-ORINVERT gate	-171	20p	16p	14p	7496 74100	5-bit shift register	261	< 1.48	\$1.22	41.05
7404	Hex inverter	211	25p	21 p	$18 p$	7454	4-wide 2-inpus						bistable latch	30	61.64	7	7
7405	Hex inverter with open collector output	1	25p	$21 p$	18p	7460	AND-OR-INVERT gate Dual 4 -input		20p	16p	$14 p$	74107	Dual J-K master-stav flip-flop with				
7408	Quad 2-inpur					7460	expander	101	20p	16p	$14 p$		preset and clear	$27 \mid$	52 p	43p	36p
	positive AND gate Tosem pole ourput		25p	$21 p$	18p	7470	J-K flip flop	FLJ 101	45p	37 p	32p	74141	vibrator BCD to decimal	101	48p	40p	34p
7409	Quad 2-input positive AND gat					7472	J-K master-slave flip-flop	111	32p	27 p	23 p		decoder and nuxie driver	$\begin{aligned} & \text { e } F L L \\ & 101 \end{aligned}$	41.22	61.02	87 p
7410	Triple 3 -input NAND	D^{39}	25p	p	8 p	747	Dual J-K masterslave flip-flop	121	45p	40p	$35 p$	74190	Synchronous up				
	schate	111	20p	18p	$14 p$	7474	Dual D-type edge						down 4-bic deca				
7413	Schmitt Trigger	351	35p	29p	25p		triggered flip-flop	141			33				61.80	61.48	\&1.27
7420	Dual 4-input NAND					7475	Quad bistable latch	151	45p	40p	37p		e contr		21.80	K1.48	\&1.27
	gate	121	20p	16p	$14 p$	7476	Dual J-K master.						Synchronous up				
7430	8-input NAND gate	131	20p	$16 p$	$14 p$		slave flip-flop with						down 4-bit binary				
7440	Dual 4-input NAND buffer	141	24p	20p	17p		preset and clear	$\begin{aligned} & 131 \\ & \text { FLH } \end{aligned}$	45p	40p	$36 p$		counter with one line mode control	211	61.80	¢1.48	¢1.27
7442	BCD to decimal					7480	Gated full adder	221	67p	56p	48p	74192	Synchronous up				
	decoder TTL			94 p	810	7482	2-bit binary fulladder	231	87 p	$7{ }^{\text {p }}$			down 4-bit decad councer	241	<1.74	41.45	£1.25
7443	Excess 3 to decimal					7483	Four-bit binar					74193	As above-binary				
	decoder	361	61.45	61.20	¢1.08		full adder	241	61.32	\& 1.16	61.00		counter	251	61.74	61.45	81.25

(d)NTHACT DRIDER PIRCES AND BELK QUANTITY PRICES QEOTEID ON REQUEST

*Give YOURSELF a Christmas present! Post this Coupon with Cheque or P.O. for 70p for a copy of our Components Catalogue.

To all customers-past, present and futureHome Radio send the Season's Greetings, hoping not only that you have a happy Christmas, but that the fun and satisfaction you get from radio and electronics will continue through the coming years.

Needless to say, we are confident that we can help to ensure the happy fulfilment of all your projects and plans. The service we offer to constructors and enthusiasts has won us a reputation second to none. Our famous catalogue is acknowledged as "the Bible of the components world" Have you an up-to-date copy?

The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

Editor F. E. BENNETT Assitant Editor M. A. COLWELL Editorial D. BARRINGTON G. GODBOLD S. R. LEWIS B.Se. (Eng.) Art Editor J. D. POUNTNEY Technical Illustrators J. A. HADLEY R. J. GOODMAN

Advertisement Manager D. W. B. TILLEARD

TRADE WINDS

FOR some time it has been clear that certain sections of the U.K. electronics industry will face a difficult. if not threatening, situation due to overseas competitors, chiefly Japan, in the coming years. For the home producers of television receivers, it seems the danger is quite imminent.

Shut out of the American market by recently imposed tariffs and debarred from Germany and Italy by the terms of the licensing agreement which allows them to manufacture television receivers for the PAL system. the Japanese look now to the large U.K. market as a main outlet for their huge output of colour receivers. And with 20 in models likely to retail at $£ 100$ against home products costing around $£ 180$. it is too much to expect patriotism to win against price. Anyhow precedents have already been provided by the watch and camera trades, and imported radio, audio, and measuring equipments are now taking over sections of the home electronics market.

There is, unfortunately, the possibility of an even more serious threat to the electronics industry in the next decade. The danger of an unimpeded flow of cheap products is not merely the worry of that part of the industry catering for the consumer market. Producers of industrial equipment may well have to face intense overseas competition in the coming years. Japan, for example, is reported to be making phenomenal progress in industrial electronics. She has already taken over the U.S.A. market for desk calculators; and as the largest ship building country in the world, she can be expected to exploit this situation fully, and to offer in time vessels fully equipped with communications, radar, and navigational equipment, as complete going concerns. This kind of development in world trade could be a serious blow to the capital equipment section of the U.K. electronics industry-the very section which has so far been the major exporter, in terms of value, of the whole U.K. electronics industry.

Can any measures be taken to avert the more serious consequences of this "cut price" competition from countries operating under quite different social and economic systems to our own? British industrialists no doubt look with envy to the U.S. and would welcome a similar initiative from our government. But tariffs and trade protection arouse no enthusiasm among customers at large. More likely our industry"s chief hope rests in the continuing expansion of world requirements for electronic products of all kinds. But frequent "priming of the pump" by the introduction of technical innovations that lead to further new and commercially valuable applications for electronic techniques seems now. more than ever, an imperative operation for the industry.

THIS MONTH

CONSTRUCTIONAL PROIECTS

PHOTO-PRINT PROCESS
CONTROL UNIT 22
LIE DETECTOR 33
I.C. AUDIO MIXER 43
LOGICAL RADIO CONTROL 48

SPECIAL SERIES

RADIO ASTRONOMY TECHNIQUES - 8

GENERAL FEATURES

METALS IN ELECTRONIC ENGINEERING

NEWS AND COMMENT

EDITORIAL 21
NEWS BRIEFS 31
INDUSTRY NOTEBOOK 39
BOOK REVIEWS 40
ELECTRONORAMA 46
PATENTS REVIEW 61
MARKET PLACE 62
ON THE FRINGE 71
Our February issue will be published on
Friday, January 14.

[^1]
Photo-Print Process By A.WOODROW

MANY amateur photographers like to do their own processing, and an increasing number are attempting colour printing. One of the more tedious tasks of processing is the printing of a roll of negatives. When printing monochrome, each negative requires that a test strip be made to determine the correct exposure needed, the test then being assessed and a final print then made

When a roll of 36 negatives is being printed, the amount of time and wasted materials involved can be quite considerable. When colour negatives are used, the problem is multiplied by the necessity of obtaining the correct colour balance as well as density. It is possible to waste a complete printing session without obtaining a single satisfactory colour print.

The unit to be described is designed to take most of the trial-and-error out of printing: in fact, prints are made almost automatically in the case of monochrome. The work involved in colour printing is a little greater than for black and white, but it is still possible to make a successful print at the first attempt

THREE FUNCTIONS

An exposure meter first assesses the negative, and the information obtained is transferred to a timer, which switches the enlarger lamp on for the required time to give a correctly exposed print. The exposure meter is also used for the comparison of a colour negative with a "standard" negative to obtain the correct colour balance.

One of the most important factors in successful photographic processing is consistency of conditions; temperatures, strength of solution, etc. must be constant if good results are to be obtained. One such factor which is often overlooked is mains voltage. If an enlarger lamp is operated at low mains.
its light will be more yellow than at nominal voltage. as well as giving a reduced light output. Conversely, at lamp operated at high voltage gives a bluer light.

The change in light output is serious enough in monochrome printing, but the additional variation in colour can cause chaos in colour printing; a change of two or three volts is sufficient to cause a noticeable shift in colour. With this in mind, the control unit includes a stabiliser unit to hold the lamp voltage constant against variations of mains

The control unit thus has three parts, intended to be used together, although any one or two sections could be constructed and used independently of the others. The unit will automatically assess and expose negatives over the range one second to one minute, and the stabiliser holds the lamp voltage constant for mains inputs between $220-250 \mathrm{~V}$. For nominal mains voltages other than 240 V , the stabiliser will operate over a correspondingly lower range.

EXPOSURE METER

If a light source of known brightness is projected through a negative, the amount of light allowed to pass by the negative is a measure of the density of it. and thus of the exposure required to make a print. In this case, the light source is the enlarger lamp, and the amount of light passed by the negative is measured at the enlarger baseboard by a light dependent resistor

This device, as its name implies, varies its resistance according to the amount of light falling on its sensitive surface. When the device is placed on the baseboard, its resistance depends on the amount of light transmitted by the negative, and thus on the required exposure.

A light dependent resistor, however, has no "memory"; when the illumination is removed, the information gained from the measurement is lost.

Control Unit

(3)

As this information is later needed by the timer. a further element must be added to store the reading. ready for transfer to the timer. A bridge is therefore used for the measurement, and the basic circuit is snown in Fig. 1.

BRIDGE CIRCUIT

The main property of this circuit is that when $R_{1} \times R_{4}=R_{2} \times R_{3}$ no current will pass through the meter. In this condition. the bridge is balanced. When the equation is not satisfied, a current flows in the meter. This current is of a magnitude dependent on the degree of unbalance and the voltage of the supply, but the point at which batance occurs is independent of applied voltage.

Fig. 1. Basic bridge circuit

Referring now to the main circuit in Fig. 2, the bridge is formed by VR1, VR2 and the light dependent resistor PCCI. Resistors RIO, RII and R15 are also included in the bridge, but serve only to limit the range of the controls, preventing any arm of the bridge from being snort-circuited. Potentiometer VRI forms two arms, either side of its wiper, this control being preset according to the type of printing paper in use.

The supply is 12 V a.c., taken from the mains transformer. The output from the bridge is rectified by D3, and then passed to TR4. This transistor is connected as an.emitter follower, i.e. a current amplifier, driving MEI, a ImA meter. Resistor RI4 limits the maximum current through the transistor, preventing the meter needle from wrapping itself around the endstop if the unit is switched on with the bridge well out of balance. C3 removes ripple, giving a steady meter reading, and R12 adds a small amount of forward bias to TR4.

The function switch S2 selects either "measure" or "expose" operations. When negative measurement is required, S2c and S2d switch the balance potentiometer into the bridge circuit. Closure of S2b applies voltage to the meter circuit, and also switches on the relay driver transistor TR3 via R8, thus energising the relay RLA and turning on the enlarger lamp for focussing and measurement purposes. The diode D2 prevents voltage surges from damaging TR3 when the relay is de-energised.

TIMER

With the function switch in the "expose" position. S2c and S2d transfer the information regarding the required exposure, contained in VR2, into the timer circuit. As $\$ 2 b$ is now open, the relay is de-energised. No supply voltage is yet applied to the timer, as RIAI and S2e contacts are open-circuit at this stage.

Contacts $S 2$ e are now closed to initiate the timing period. Resistors R2, R3 and R4 form a voltage divider, and TR2 hats a forward bias derived from the voltage developed across R4. This transistor is thus turned on, its collector volts now being close to the supply of 12 V .

The voltage dropped across R5 is applied via R6 to the base of TR3, energising the relay. The enlarger lamp is thus turned on via contacts RLA2, and contacts RLAI bypass. S2e which may now be released, as the supply voltage to the timer is now applied by the relay contacts.

THE NEED FOR AN F.E.T.

The heart of the timer is C1, VR2 and TRI. a ficld effect transistor. The main property of a field effect transistor in this application is its extremely high input resistance. The highest value of timing resistance which can be used in any timer circuit is determined by the resistance of any circuit connected to it.

If a bipolar transistor were used for TR1, the maximum input resistance obtainable would be only a few megohms. For the timing period to be determined by the timing resistance alone, as is required for accurate peformance, the maximum value of timing resistance must be about one tenth of the input resistance of TRI, i.e. a few hundred kilohms.

As the timing period is proportional to C1 \times VR2, and the timing resistance is low, CI must obviously be high. Large values of capacitance give rise to further problems, as they will have a relatively low leakage resistance, and this can also affect the accuracy of the timer. The field effect transistor, with an input resistance of several hundred megohms, allows a low value to be used for Cl , with a large value of VR2.

Fig. 2. Complete circuit diagram of the enlarger control unit

THE TIMING OPERATION

Returning to the operation of the complete timer. TRI has a small bias applied by the voltage drop across R2. Initially CI is discharged, so the gatte of TRI is at zero volts. When the supply is connected by S2e. CI begins to charge at a rate determined by the setting of VR2. previously determined by the exposure meter. As the gate voltage approaches the bias voltage of the source, TRI begins to conduct. The gate voltage thus becomes transferred to the source by the self-biasing action of the source current. Resistor R3 also applies the source voltage to the base of TR2

When TRI source voltage, and thus TR2 base voltage, reaches approximately $1 / \mathrm{V}, \mathrm{TR} 2$ switches off. this transistor being at pnp type. The collector voltage falls to zero, switching off TR3, and deenergising RLA. The enlarger lamp is turned off, and the supply is removed from the timer by contacts RIAI, S2e having been previously released.

The standing bias, derived from the potential divider R2-R3-R4, is removed from TR1, which now becomes forward biased by the charge remaining on Cl. The capacitor is discharged rapidly through the gate-source junction of TRI and $R 2$, resetting the timer ready for the next timing operation.

THE FUNCTION OF R1

The function of R1 is best explained by considering the circuit without this component. During the measurement operation. VR2 is disconnected from the gate of TRI. leaving Cl in a discharged condition. but voltage is applied to the timer via the contacts of RLAI which is energised.

When the function switch is changed to "expose", the timer begins a complete timing sequence, as Cl is now charged via the nowconnected VR2. The enlarger lamp will thus remain on until a complete timing sequence has elapsed. which is obviously inconvenient if the timer is set for more than a few seconds.

During measurement, RI is switched in, maintaining Cl in a fully charged condition. When the function switch is changed to the "expose" position, the timer is in the same state as at the end of at timing period, and the lamp is switched off.

The power supply for the exposure meter and timer is conventional. A full-wave bridge rectifier. D4 to D7, is fed from the mains transformer T , the resulting pulsed d.c. being smoothed by C4. The relay is then supplied via $R 9$, and the remainder of the circuits are fed from a 12 V rail stabilised by R7 and the Zener diode DI

LAMP STABILISER

The basic principle of the stabilised supply to the enlarger lamp is illustrated in Fig. 3a, which shows two cycles of the voltage across the lamp. Only part of each positive half-cycle is applied to the bulb, although the whole of each negative half-cycle is applied.

If the supply is fed to the lamp at point A, the result will be a higher r.m.s. voltage for the complete cycle than if the supply were not allowed to reach the lamp until point B.

Thus, a rise in mains voltage can be counteracted by delaying the point in the positive half-cycle at which the bulb is switched on. Conversely, a drop in mains voltage can be corrected by an earlier switch-on, allowing more of the half-cycle to reach the bulb.

Referring to Fig. 2, each negative half-cycle is fed to the lamp via D8. The positive half-cycles are controlled by the silicon controlled rectifier CSR1.

The silicon controlled rectifier, or thyristor, is an extension of the normal silicon diode. It will under no circumstances conduct when the cathode is positive with respect to the anode, and will also block when forward biased, until a third electrode, the gate, is made positive with respect to the cathode. The thyristor will then conduct until the forward voltage is reduced to zero, even though the gate voltage is removed.

Once the thyristor turns off, it will revert to its blocking state until it is again forward biased and a gate voltage is applied. Thus CSRI can be switched on at any point during the positive half-cycle as desired, by applying a gate voltage when required. The gate voltage is derived from TR6, a unijunction transistor.

THE UNIJUNCTION TRANSISTOR

The unijunction is a semiconductor device with two bases and an emitter. It acts as a pure resistance of 5 to 10 kilohnes with zero emitter voltage. This condition is maintained as the emitter voltage is increased, with only a few microamps of emitter current, until a criticall (peak point) level is reached.

At this point, the emitter-batse one junction breaks down, allowing a large emitter current to flow. If the emitter voltage is now removed, the device reverts to its original state, with very small ennitter current, and once more acts as a resistance between base one and base two.

TRIGGER CIRCUIT

Referring again to Fig. 2, the diode D10, TR 5 and the alssociated circuitry will initially be ignored.

At the beginning of the positive half-cycle, CSRI is not conducting. D8 is reverse biased, and is also blocking. Thus, the full mains voltage is developed across CSRI, and is applied via R22 to the trigger circuit formed by TR6.

Initially, D1l does not conduct, until the mains voltage reaches 18 V , when the Zener will clamp at this voltage. Thereafter, the supply to the trigger circuit will remain at 18 V . the surplus voltage being dropped across R22.

As soon as the supply begins to rise, C 6 starts to charge via R19. As the supply voltage is stabilised by D11, the capacitor will always charge at the satme rate. When the charge on C6 reaches the peak point voltage of the unijunction TR6, the emitter conducts, and C $C 6$ discharges through the emitter-base one junction. This current gives a positive voltage across R21, and this voltage is applied to the gate of CSRI, switching it on.

Once the trigger circuit has supplied the gate pulse. it is no longer required until the next positive half-cycle begins. As CSRI is in parallel with the supply to the trigger circuit, and as this component has a very small voltage drop when conducting. it is apparent that the trigger circuit will be inactive once it has turned on the thyristor, and will remain so during the negative half-cycle, when D8 is conducting.

Resistor R20 is included to stabilise the working conditions of TR6 against temperature variations.

CORRECTION OF FIRING POINT

Transistor TR 5 and the associated circuitry gives the correction of thyristor firing point necessary for stabilisation against mains variations. The matins voltage is monitored by R16, in series with the lamp and CSR1.

This resistor develops a voltage across it while CSRI is conducting, i.e. during the positive hallcycle. As this half-cycle is incomplete, being chopped to provide the correction in the lamp supply, it is obvious that the r.m.s. and average voltages across R16 will not provide a suitable reference. The peak voltage is thus used.
The waveform across R16 is applied via D9 10 C5. This capacitor is charged to the peak of the waveform, and will remain at that level unless
allowed to discharge. Three discharge paths are available. C5 cannot discharge back into the supply as it is prevented from doing so by D9.

The second path is into the base of TR5. By the use of a high gain transistor in this position, a relatively high input resistance is achieved, and C5 loses little of its charge this way.

The third possible path is through its own leakage resistance, but the loss this way is also small enough to be ignored. Thus, the voltage across C 5 is proportional to the peak voltage of the mains supply. This voltage is amplified by TR5, and a portion of the amplified voltage is tapped off from VR3, being passed by D 10 to give a standing charge on C6.

STABILISER OPERATION

Taking the action of the stabiliser unit in its entirety, and referring to Fig. 3 b , a voltage proportional to the peak of the mains supply appears across C5. This voltage is amplified by TR5, and tapped off from the slider of VR3, then applied to C6. This gives a voltage on C6 of V_{1}. C6 is also charged via R19, and its voltage increases until it reaches the peak point voltage of TR6, V_{p}. The thyristor is then turned on by the pulse across R21, and the remainder of the half-cycle is applied to the enlarger lamp.

If the mains voltage now rises, a larger voltage is developed by C 5 . This results in a reduced voltage at the collector of TR5, and a lower initial voltage on C6- V_{2} in Fig. 2b. Then C6 begins to charge via R19 at the same rate as before; as the starting voltage is lower than previously, C6 takes longer to achieve V_{p}. The thyristor is thus turned on later in the half-cycle, compensating for the rise of mains voltage.

The peak point voltage of unijunctions varies from sample to sample, and an adjustment is necessary to compensate for this. VR3 is therefore used to adjust the d.c. level fed to C6, this being the only control necessary to set up the stabiliser.

ALTERNATIVE SEMICONDUCTORS

Many of the components are uncritical, and alternatives can be used. This applies particularly to the semiconductors.

TRI must be an n-channel field effect transistor. The 2N5457 (also available under the number MPF103) has been selected because it has a lower range of characteristics compared with other types. Other f.e.t.s will work satisfactorily, but may not give the same range of times-this is not too important, as the only result will be a different setting of the paper speed control when the unit is calibrated.

TR2 is required to be a $p n p$ silicon transistor, and any such component will work satisfactorily. Similarly. TR 3 and TR4 are merely required to be $n p n$ silicon types, the only limitation being that TR3 must be able to handle the relay current -100 mA at most. TR 5 is a high gain npn silicon transistorBC109 or 2N3711 are two suitable alternatives. TR6 is a unijunction-2N2646, 2N2160 or BEN 3000 will work quite happily here. If alternatives are employed, the lead-outs must be checked, as the various types may differ from those specified.
Any Zener diodes of the required ratings are suitable. and D8 may be any silicon diode with a IA 400 V rating, or better. Similarly. CSR1 can be

COMPONENTS

Resistors

R1	$4 \cdot 7 \mathrm{k} \Omega$	R13	22Ω
R2	$6.8 \mathrm{k} \Omega$	R14	5.6k Ω
R3	15k Ω	R15	33k Ω
R4	10k Ω		3.3 22.5 W (for 150W lamp)
R5	10k Ω		$6.8 \Omega 2.5 \mathrm{~W}$ (for 75W lamp)
R6	10k Ω	R17	$1 \mathrm{k} \Omega$
R7	330Ω	R18	270Ω
R8	$4.7 \mathrm{k} \Omega$	R19	150k Ω
R9	120 S	R20	390Ω
R10	$1 \mathrm{k} \Omega$	R21	56Ω
R11	1 k ,	R22	8.2k $\Omega 5 \mathrm{~W}$
R12	10M Ω		

All resistors $\pm 10 \%, \frac{1}{4} \mathrm{~W}$ unless otherwise specified
Potentiometers
VR1 $25 \mathrm{k} \Omega$ lin
VR2 $2 \mathrm{M} \Omega \log$
VR3 $2.5 \mathrm{k} \Omega$ subminiature skeleton preset
Capacitors
C1 $10 \mu \mathrm{~F} 15 \mathrm{~V}$ tantalum
C2 $\quad 0.1 \mu \mathrm{~F} 250 \mathrm{~V}$ foil
C3 $50 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C4 $50 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C5 $25 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C6 $0.1 \mu \mathrm{~F} 250 \mathrm{~V}$ foil
Semiconductors
TR1 2N5457 (or MPF103)
TR2 2N3702
TR3 2N3704
TR4 2N3704
TR5 2N2696G
TR6 TIS43
CSR1 CRS1/40
Diodes

Diodes	12V 400 mW Zener
D1	OA200 (6 off $)$
D2-7	OA
D8	1N4004
D9, 10	OA200 (2 off)
D11	18 V 1 W Zener

Switches
S1 2-pole on-off, toggle
S2 P.O. type lever switch $4 \mathrm{CL} / 4 \mathrm{CN}$ (see text)
Relay
RLA 500 ohm coil, 2 make contacts (one heavy duty)

Transformer
T1 Miniature mains transformer, $2 \times 12 \mathrm{~V}$ secondaries (R.S. Components)

Miscellaneous

PCC1 ORP12
ME1 1 mA meter, type MR38P
Veroboard, 5 in $\times 3 \frac{3}{4}$ in, 0.15 in pitch, copper clad
Case, 8 in $\times 6 \mathrm{in} \times 6 \mathrm{in}$ sloping front
FS1 Fuse 5A and fuseholder
2 pointer knobs
3.5 mm jack plug and socket

4 rubber feet
Heat sink, TO5
Small plastic box
Audio screened lead
any type of adequate rating. IA 400 V . The rest of the silicon diodes, specified as OA200, may be any small signal types, such as OA202, IN914, IN916. SD19.

RELAY AND FUNCTION SWITCH

The specification of the relay and function switch gives the minimum requirements of these components. It may prove difficult to obtain exactly the contacts required.

The relay may have a different coil resistance from the 500 ohm type specified. Any resistance down to 200 ohms can be used in the circuit as it stands: relays down to 150 ohms may be accommodated by reducing R9 to 82 ohms. Two make contacts are needed; most relays will have two or more sets of changeovers, but the unwanted contacts can, of course be ignored. One set of the contacts at least must be capable of handling 1 A at 240 V .

The function switch is a P.O. type lever keyswiten. This has three positions; when the lever is pushed in one direction from the centre. the switch locks in this position; this section requires two changeovers and two make contacts. When the lever is pushed in the other direction from centre, the switch is spring-loaded, i.e. it will return to centre when released; this section requires one make contact. As with the relay, any spare contacts can be ignored.

A suitable switch, with four changeovers in each direction, is available from several suppliers, for example Home Radio. The older type of lever keyswitch, with a cylindrical knob is also suitable. As a last resort, the function switch may be separated into two parts; a four changeover wafer switch is used for tbe "measure" part, and a separate pushbutton of the press-to-make, release-to-break type initiates the timer.

OTHER COMPONENTS

Alternatives to the specified components must not be used in two positions. Cl must be a low leakage capacitor, tantalum being the most suitable type. Paper capacitors are available, but tend to be buiky and expensive. The more familiar aluminium electrolytic should not be used; in fact, the timer will fail to operate with such a component.

This unit requires a transformer with two separate secondaries. Most of the small mains transformers available have a single centre-tapped winding, i.z. $12 \mathrm{~V}-0-12 \mathrm{~V}$, but these should not be used. The transformer specified hats the necessary secondaries.

The value of R16 must be changed according to the size of the enlarger lamp. A 150 W bulb requires $3 \cdot 3$ ohms in this position; 6.8 ohms is used with a 75W lamp.

NEXT MONTH:
Full constructional. details and how to use the Photo-Print Process Control Unit

goffto
good
Start
Ignition Booster
Cold, damp weather usually means difficult starting particularly with an ageing battery. You can remove this nagging uncertainty with this ignition booster.

Oscilloscope beam splitter

This valuable aid to those experimenting with digital i.c. systems converts a single beam oscilloscope for viewing four digital waveforms simultaneously.

Fibre optic light guides

The transmission of optical information from one place to another, without having to rely on line-of-sight means, gives rise to some interesting applications that do not require electrical coupling to a sensor.

PRACTICAL
 ELECTRONICS

FEBRUARY ISSUE ON SALE JANUARY 14

Brerote
 IN EIECTRONIC ENEINEERING

By A. Freeman, B.Sc., A.R.I.C. (The Marconi Company lto)

AlThough, during the last two decades, the development of transistors and printed circuitry has led to considerable economy of space per equivalent circuit function, the requirement for more sophisticated apparatus has meant that electronic capital equipment now in use may occupy about the same volume as did the simpler systems of 20 years ago. Thus, the reduction in the consumption of metal by the electronic capital goods industry, that would have been expected as a result of the economy of space, has not taken place.

There has, however, been an increase in the use of aluminium alloy because of its lightness, workability, and better corrosion resistance than steel. For the chassis or cases in which circuits are built, cadmium plated steel is often used because of the difficulty of making solder joints in aluminium.

RADIO TELESCOPES

Radio astronomy and communication satellites have led to the erection of large steerable reflector "dishes." Such "dishes" are made from aluminium alloy or stainless steel and must be supported so that their profile is accurately maintained, even in galeforce winds.

Cable and Wireless satellite-communication earth terminal at Bahrain with $90 f$ diameter dish antenna

Thus, there has grown up a heavy constructional industry, ancillary to the electronics side of the business, using the techniques and materials of ship and bridge-building, but with the accuracy of light engineering.

When these devices are erected in climates where winter temperatures are appreciably below freezing point, girders made from ordinary mild steel cannot be used, because at these temperatures they become brittle; comparatively light mechanical shocks can result in fracture. Therefore special steels are used which retain their toughness in very cold conditions.

PRINTED CIRCUITS

Copper is still the most used electrical conductor, not only in the form of wire, but in increasing quantities on printed circuits, where the connections are made by etched foil on an insulating baseboard.

The copper foil for the manufacture of the clad laminates is made by electro-plating polished stainless steel strip and parting the two metals mechanically, which is not difficult because the electro-deposit has only poor adhesion to the polished surface. This method produces foil that is polished on one side and dull on the other.

Erection of the aerial for satellite communications on Ascension Island

The dull side is coated with resin and applied to the surface of the insulating laminate at the same time as fabricating the laminate. The roughness of the dull surface of the copper foil acts as an adhesion key.

Connections are made to the printed circuit either by soldering or, more generally, by sockets containing spring contacts which mate with circuit terminations on the edge of printed-circuit boards. The contacts and the circuit terminations are often goldplated to prevent tarnishing, which would otherwise lead to poor contact and "noise" in the circuit

THIN-FILM CIRCUITS

Thin-film devices are similar to printed circuits in that all interconnections are laid down, but they also contain resistors and capacitors as integral parts of the circuit. These devices are made by evaporation techniques. The substrates are glass or ceramic; the metal to be used is evaporated in a vacuum with the metallic vapours passing through a mask to condense in the required pattern on the substrate. The substrate must be kept perfestly clean.

The materials used in this process include gold for the circuit nichrome for resistors, and silicon monoxide as insulation. Capacitors are built up by successive layers of metal and silicon monoxide. As in the case of printed circuits, the manufacture of thin-film devices readily lends itself to automation.

WAVEGUIDES

Brass is used in the manufacture of waveguides. particularly those of large anerture, which are made from sheet as opposed to the smaller drawn tube. In areas where ferrous metals cannot be used because of electro-magnetic fields, brass screws are employed and springs are made in either phosphor-bronze or, for more severe duty. copper-beryllium.

Light alloys are widely used for waveguides, waveguide components and television camera bodies, especially the magnesium alloys N4 and N6 which have good corrosion resistance and good mechanical

Development stage of thin-film production

properties. They are very suitable for machining by methods such as routing, and N4 alloy can be welded without much difficulty.

Satisfactory brazing is really only possible with unalloyed aluminium but this has poor mechanical properties. As there is no perfectly satisfactory solder for use directly on aluminium or its alloys, the problem of the low temperature joining of aluminium alloys is generally overcome by copper-plating the alloy, tinning the areas to be soldered, removing the exposed copper chemically and finally sweating the tinned surfaces together.

When weight conservation is important, as in television camera bodies, magnesium-rich alloys are very attractive, having a density of 1.87 compared with 2.87 for the engineering alloys of aluminium. Unfortunately, these alloys readily corrode if left in an unpainted condition even in mild environments, so they are not suitable for the manufacture of items containing moving parts that cannot be painted.

STAINLESS STEELS

There are two main types of stainless steel, austenitic and martensitic. Austenitic stainless steel is relatively soft, non-magnetic and very resistant to corrosion. This type is often used for domestic items.

Martensitic stainless steel can be hardened, is magnetic and though much more resistant to corrosion than ordinary hard steel is not as resistant to staining as the austenitic type. Table knives are made of martensitic stainless steel.

Both of these types are widely used in the electronics industry but in small quantities. The austenitic steels are particularly useful because of their non-magnetic properties. especially in the fully annealed, or mildly cold-worked condition, when they have the mechanical properties of mild steel.
Some of the special austenitic stainless steels have found use in unusually arduous conditions, e.g. type EN58J is used for equipment that is to be immersed at such a depth in the sea that oxygenation is only very slight. (Oxygenation is necessary for the prevention of corrosion in most stainless steels.)

The assembly of an r.f. module for Skynet II on the left. A completed module, with the cross-welds necessary for weight-saving, on the right

WAVEGUIDE COMPONENTS

Waveguide components are often difficult or even impossible to make from the normal rectangular tube. In such cases, recourse is made to electroforming techniques, using stainless steel formers.

When the shape is such that a steel former could not be withdrawn at the end of the electroplating operation. a thermoplastic former of the desired shape is made. After electroforming, it is removed either by melting or by dissolving out with a suitable solvent. Electroforming methods are slow and a single component may take several days to build up to the required thickness for adequate rigidity.
A recent innovation is the production of simple waveguide components, for example. tapers. by metal spraying techniques. zinc or silver-tin being the metals most of ten used. A thin deposit about 0.010 in thick is applied to the mandrel that has previously been treated with a suitable release agent. Before removing the matndrel, the coating is strengthened with resin-glass cloth laminates wet-lad on to the sprayed metal.

In an increasing number of cases it is essential that the dimensions of waveguide components rematin constant in spite of varying temperature. This requirement is achieved by the use of alloys having a low coetficient of expansion, such as invar and nilo. The poor electrical conductivity of these alloys is overcome by electroplating with silver of sufficient thickness that all the radio frequency current is confined to the electro-deposit.

SOLDERABILITY

Alloys similar to invar are used for the leads of transistors and miniature valves in order to obtain the satisfactory glass-to-metal seals required by these components. This application gives rise to soldering problems. because these alloys are not solderable using non-corrosive resin-based fluxes.

In most cases the leads are gold-plated in the course of the transistor manufacturing process but, because the gold is readily soluble in soft solder. the joint is in fact made to the low expansion alloy.

Removing a high-power valve, weighing about 90lb, from a broadcast transmitter

A series of isolators for use in waveguides
free copper and nichel whilst their supports are of refractory metals such as molybdenum. tantalum or tungsten sheathed in platinum.

All the metals must be of a high purity, in particular being free from gaseous impurities. Valve manufacturers experience great difficulty in obtaining refractory metals of sufficiently high purity.

NEW APPLICATIONS

Investigation into the behaviour of metals and other substances at temperatures well removed from ambience has disclosed properties not normatly encountered, some of which are useful for specialised applications. Typical examples are the electrical super-conductivity of certain metals at temperatures near to absolute zero $\left(-273^{\circ} \mathrm{C}\right)$. It is possible that continuing research on these lines maty have repercussions on the types of metal used throughout the electronics industry

ACKNOWLEDGEMENI

The author wishes to thank the Technical Director of The Marconi Company Limited for permission to publish this article.

Marconi Mark VII colour television camera at the Leeds studios of Yorkshire Television

NEWS BRIEFS

MICRO-COMPUTER DEVELOPMENT

The US space agency NASA, has selected RCA to develop a test model of a space computer that would be 100 times smaller and lighter than equivalent commercial systems.

The microprocessor could be the forerunner of a system for future manned and unmanned space vehicles such as the Space Shuttle and the Earth Orbiting Space Station.
The shuttle is a reusable craft that will take off like a rocket and land like an aeroplane. The space station would be a permanent orbiting laboratory able to accommodate a contingent of scientists.
Heart of the computer under development by RCA will be 15 large-scale integrated (LSI) arrays-one-eighthinch square chips each containing up to 600 electronic elements. Although the computer will weigh just 10 pounds, occupy one-half cubic foot and require only 15 watts of power, it will be capable of processing functions equivalent to room-size commercial computers.

CHANNEL SURVEILLANCE SYSTEM

The first radar station to be ordered for the purpose of monitoring shipping movements in the Channel has been installed for the Department of Trade and Industry at H.M. Coastguard station at St Margaret's Bay, near Dover. A Decca 48 mile HR 729 system with two 16 in displays, a 9 ft scanner and 25 kW transceiver, it will range from Boulogne to Dunkirk and over a similar are of the Eastern approaches to the Dover Straits.

This is the direct outcome of the Government's concern for the accident rate in the Channel, which ied to the Nationa! Physical Laboratory with the assistance of Decca, carrying out two major traffic surveys based at Dungeness and St Margaret's Bay, for the Department of Trade and Industry.

The new radar is the first ever sold to H.M. Coastguard and will also be used for search and rescue of vessels in distress when occasions arise. Its choice follows successful trials at Deal of a smaller Decca radar which first caught the headlines when, in conditions of thick fog, the Deal Coastguard homed the Ramsgate lifeboat onto a yacht in distress and subsequently conned both back to Ramsgate Harbour.

EVENING LECTURES

A SHORT course of six evening lectures will be held at 6.30 to $9.0 \mathrm{p} . \mathrm{m}$. All enrolment enquiries should be made to the Polytechnic
January 12 M. Hughes General Introduction to D.I.Y. Electronics

January 19 A. Douglas
January 26 F. Hyde
February 2 A. J. Dunn
February 9 A. J. Dunn
February 16 M . Hughes

Electronic Music Synthesis (including ref: to the P.E. Organ) Radio Astronomy (building a simple radio telescope) Radio Control of Models Electronics for Automobiles Logic Demonstration

All the above are regular contributors to
Practical Electronics

WATER ON THE MOON

Till now, the examination of the rocks and dust brought back from the Moon by America and Russia, has indicated that the moon is entirely without water. Doubt is now thrown on these conclusions by Dr J. W. Freeman (chief Apollo programme investigator for the instruments) of Rice University, and a statement has been made about his reasons for deciding that there is water in pockets on the Moon.
The effiect that this will have on the future of moon stations is very considerable for it would mean that the crew would not have to bring water with them from earth, or manufacture it from chemicals or re-cycling processes.

Dr Freeman and his associate Dr Kent Hills base their statement on the fact that the instruments left on the moon by Apollos 12 and I4 detected a water cloud that was like a geyser in eruption. The vapour was very diffused and probably amounted to about a quart of water. The eruption was from a crack in the moon's surface and the event was recorded on instruments which are called suprathermal ion detectors.
The largest event that was detected covered an area of 10 square miles, and was in the region of the Sea of Storms. The accuracy of the exact position is not as good as could be hoped since there are only two instruments operating. However. the precise location can be established later.

One other point that supports the contention by Dr Freeman is that the geyser coincided with small moon quakes recorded by the seismographs left on the moon. The advent of cracks is therefore well supported.

Planetary scientists have always held that in the solar system planets all contain carbon dioxide and
water in their interiors; with the geyser like eruptions on the moon is the proof of the fact. It will of course require further supporting evidence before acceptance but no doubt this will be dealt with on the remaining two missions.

ROCK HARVEST

The geophysical harvest of the Apollo 15 mission has been excitedly acclaimed by scientists. It will take a great deal of time to examine fully and analyse the rock and dust samples amounting to about liolbs. They have a much wider variety of types and some 60 large pieces. The rocks which have been called Genesis are not as hoped the primeval lunar material.

One of the reasons for the choice of the Fra Mauro site on the Apollo. 15 mission was the hope that primitive finds would be made. However, the amount of information that will be obtained from the samples is very important.

HOT MOON

The moon is a hot body with the heat concentrated in the interior or alternatively in pockets of radioactive material. These pockets are perhaps around a hundred miles down from the surface.

This evidence of the heat gradient was obtained from the two probes which were put down to a depth of 6ft into the moon by the Apollo 15 astronauts. The heat flow measurements showed that the increase in temperature amounted to about one degree farenheit for each increase of one foot in depth.

Compared with the earth this is about one fifth of the escape flow. This would indicate that there are radio-active minerals inside the moon. If the abundance is evenly distributed in the body of the moon then there must be a molten core. Melting temperatures would appear at about 300 miles below the surface. If this is not the case then the radio-active materials must be in pockets at about 100 miles depth.

MOONQUAKES

There are now on the moon three seismic stations which were set up by the crews of Apolios 12, 14 and 15. The network has brought an immense amount of new knowledge of day to day happenings on and in the moon which were not even suspected. The happenings were disguised from previous observations because of the rigidity of the shell.

The power of some of the tremors would undoubtedly have made cracks in the earth's surface which is much less rigid than the moon. The major effects take place when the earth and the moon are near to each other each month. The forces that are set up due to the increased tidal pull and the effect
of the changing barycentre cause the tremors which are transmitted back to earth. One such record showed that the disturbance originated some 500 miles below the surface which may be even greater than those occurring on earth.

The moon then is a body that is convulsed internally without visible signs on the surface.

CORE SAMPLES

A $8 \frac{1}{2} \mathrm{ft}$ core sample was taken from the moon and this was found to contain some 57 layers of soil. This illustrates about 2.400 million years of the history of the moon. The layers are of varying thickness and range from half an inch to five inches. It is possible that each layer represents a different meteorite impact.

At the bottom of the sample core a $3 \frac{1}{2}$ in section was of much coarser material containing some chips up to $\frac{1}{2}$ in diameter. This could be basic rock which was overlaid by the rest of the material.

MYSTERIOUS MINIOUAKES

One of the mysteries of the seismic recordings of the moon are the swarms of minor disturbances quite unrelated to tidal effects.

The majority of the activity on the moon lies in a small area below the Ocean of Storms and this is where the deep tremors are recorded. These may be due to heat from the depths of the moon. The mini swarms however, cannot come from this source.

One suggestion is that they are triggered off by the mascons. . These are areas on the moon where there is a specially dense region. These cause an out of balance effect and it may be that this is the answer. Nothing definite can be said about this at the moment. If this should not prove to be the answer then there must be some other activity that has not yet been detected.

The swarms of mini-quakes over a period of two and a half days showed four swarms and thirty events.

SATELLITE TROUBLE

There has been some trouble with the ATS-3 satellite, whose full title is Applications Technology Satel-lite-3. It is in a synchronous orbit at 70 degrees West longitude 22,300 miles above Colombia.

Fitted on this vehicle is an aerial which should rotate at 100 $\mathrm{rev} / \mathrm{min}$. This is necessary to keep it pointed at the earth while the satellite spins. About the middle of July 1971 the aerial began to slow up and fell to $80 \mathrm{rev} / \mathrm{min}$ and sometimes stopped altogether and sometimes revolved at other speeds.

It would appear that this is due to the sun which when it is north of the equator heats up the satellite and causes the aerial to seize up. When the sun moves south of the equator all should be well again.

The block diagram, Fig. 1, shows how the huge range is encompassed in a single instrument without need for adjustment. The skin current is passed through a silicon diode which produces a voltage proportional to the logarithm of the current through it Thus equal percentage changes of current will produce equal increments of voltage, about \& millivolts for a 10 per cent change. The amplifier is in fact a differentiator below a few hertz so that an output appears only for a change of input.

HUM AND NOISE

Anyone who has put his finger on the input of a high gain amplifier will tell you that all you get out will be an almighty hum, and possibly some Radio I as well! For this reason components are included to provide 12 dB per octave roll-off above a few hertz.

THE READOUT

Various readouls are possible, perhaps the simplest being a voltmeter. The present instrument, however, uses a roitage controlled oscillator and a crystal microphone as a speaker, so that a lie registers as a note of rising pitch. This serves two purposes: most people can hear a small percentage change of pitch over a very wide range, so that greater sensitivity than with a meter is possible; and secondly a sort of positive feedback occurs-as the subject hears the accusing little squeak he responds by making it even worse. It is also possible to use an earpiece if the subject is to be kept unaware of his responses.

Fig. 1. Basic lie delector block diagram

Fig. 2. Circuit diagram of lie detector

PULSE MONITOR

A bonus offered by the circuit comes in the form of a pulse monitor. If a photoconductive cell is used in place of the finger clectrodes, and the subject's fingertip placed over it, his heartbeat can be heard in the form of frequency modulation of the output tone. The way it works is that the light passing through the finger is modulated in intensity by the blood pulsing through it.

THE 741 OPERATIONAL AMPLIFIER

If you have never used an operational amplifier before, or if you have fiddled for hours trying to get an earlier type to behave, only to find that it has succumbed to your ministrations and given up the ghost-take heart! The 741 is virtually indestructible. You can short the outputs to ground or to either supply and it doesn't mind. Even if you connect the battery the wrong way round the battery

Fig. 3. Non-inverting operational amplifier configuration
will be the first casualty (but don't try this with anything bigger than a PP3).

If you are not quite sure what an "op.amp." does it is simply this: the output goes positive if the "+" input is positive of the "-" input, and goes negative if the opposite is true. The input currents are tiny, usually less than a tenth of a microamp, and the output resistance is low, a few hundred ohms. The open loop gain-that is without feed-back-is tens of thousands as long as the inputs are not allowed to get a sniff of the output in high impedance circuits.

CIRCUIT DETAILS

Fig. 2 shows the complete circuit diagram. An integrated circuit, $\mathbf{I C} 1$, is used as an amplifier in the standard non-inverting configuration. Fig. 3 shows this in simplified form. The gain is simply

$$
\frac{R_{\mathrm{A}}+R_{\mathrm{B}}}{R_{\mathrm{A}}} \text { or if } R_{\mathrm{B}} \geqslant R_{\mathrm{A}}, \text { simply } \frac{R_{\mathrm{B}}}{R_{\mathrm{A}}} .
$$

In the actual circuit R_{B} is 2.2 megohms and R_{A} is 470 ohms so the gain is about 4,000 at around 1 Hz . The capacitor Cl starts reducing the gain below 1 Hz , and C 2 and C 3 reduce it above $3-4 \mathrm{~Hz}$.

COMPONENTS . . .

Resistors
R1 $2.2 \mathrm{k} \Omega 2$
R2 $5.6 \mathrm{k} \Omega$
R3 470 s.
R4 $2 \cdot 2 \mathrm{M}$ s
R5 2.2 M s
R6 68 k s
R7 33ks
R8 10ks)
R9 68ks
R10 10ks
R11 1ks
R12 2.2 k 』
R13 100k 12
R14 2.2 k S2
All $\pm 5 \%, \frac{1}{4} \mathrm{~W}$ carbon
Light Dependent Resistor
PCC1 ORP60 or U1100 Miniature CdS photocell

Capacitors

C1 $200 \mu \mathrm{~F}$ elect. 4 V
C2 $0.015 \mu \mathrm{~F}$
C3 $0.015 \mu \mathrm{~F}$
C4 $2.5 \mu \mathrm{~F}$ elect. 64 V
Integrated Circuits
IC1, IC2 LM741CN, SN72741 or 741-OPA (8-lead D.I.P.) (2 off)

Diodes
D1 6.2 V 400 mW Zener
D2 to D6 IN914 or any small silicon signal diode (5 off)

Speaker

TL1 Crystal mic. insert

Switch

S1 Double pole changeover slide switch

Jack plugs and sockets
JK1 3.5 mm Jack socket with break contact, and plug
JK2 2.5 mm Jack socket with break contact, and plug

Miscellaneous

Crystal earpiece (optional)
Plastic box 6 in $\times 4$ in
B1 9V Battery PP3
Sprung hair clips
Veroboard 0.1 in matrix, $5.7 \mathrm{in} \times 2.8 \mathrm{in}$ with copper strips
Battery connector
Capacitor clip (for mounting TL1)

The diodes D3 and D4 together with R6 to R9 reduce the gain as the output swings above zero and below -2 volts. These voltages are with reference to the positive end of the Zener. Their purpose is to reduce the time taken to recover from a very large input swing.

VOLTAGE CONTROLLED OSCILLATOR

Fig. 4 shows the essential components of the voltage controlled oscillator. The 100 kilohm and 1 kilohm resistors apply positive feedback so that small voltages at the input cause the output to swing to its limits (about +2 and -4 volts, with respect to the positive end of the Zener). One hundredth of the output appears at the " + " input by potential divider action.

Assuming the output has just switched to its upper $(+2 V)$ limit, diode D_{F} will be forward biased and the " + " input will be at +20 millivolts. Capacitor C_{T} will charge up through D_{F} and R_{F} until its voltage reaches the 20 millivolts on the " + " input when the output swings rapidly to -4 volts, taking the " + " input to -40 millivolts. Diode D_{F} is now reverse biased and C_{T} can only discharge through R_{T} at a rate dependent on the input voltage V_{1}, which is assumed to be at a negative potential. As soon as the "-" input reaches -40 millivolts, the output switches to +2 volts and the cycle starts again

Thus the output is a series of pulses of almost constant width but of repetition frequency determined by V_{c}.

Fig. 4. Voltage controlled oscillator circuit

THE SKIN ELECTRODES

The finger clips or skin electrodes are the only items unlikely to be found in the average constructor's inventory-they are in fact sprung hair curlers. Get the nickel-plated type rather than the aluminium ones which are difficult to solder. I got mine from Woolworths.

MANHATTEN LAYOUT

Layout of components and cuts in the copper strips are shown in Fig. 5. The form of Veroboard layout used will probably seem wasteful at first

1234567891011121314151617181920212223242526272829303133

Fig. 5. Component assembly and wiring details of Veroboard panel (Note that the copper strip should be cut at 19T)
glance. but it hats the advantage of being casy to implement and to check. All components are more or less parallel to the copper strips, while component side links run at right angles (like the streets of Manhatten). The battery slides into three 20 s.w.g. straps on the board which prevent it from moving about, but allow it to be replaced (see Fig. 6).

Apart from the battery clips only four wires connect to the board-input, output and positive and negative supplies. The negative supply is the common rail for input and output

The miniature jacks used for input and output are of the type which break a connection when the plug is inserted.

WARMING UP TIME

When you first turn the machine on, the large electrolytic, CI, may take a minute or so to polarise -that is, as well as taking a few seconds to charge up, and it can take considerably longer for the leakage current to reduce to its proper value. The piten of the oscillations should fall to a very low value,

Fig. 6. Wiring diagram and method of battery mounting

certainly less than a hundred hertz, before asking questions. A simple test to establish that the device is "in range" is to get the subject to take several deep breaths, this should elicit a full scale response.

OPERATION

Put the finger clips on the subject with soothing reassurances that he won't get electric shocks. Then proceed to shock him by proving that the gadget works. A simple demonstration is to ask him to think of a number, say between one and five, and then ask him about each number in turn. He must of course say no to each number so that he must lie once. Present the numbers in random order otherwise the reaction as his number approaches might be confused with the previous one.

WARNING

Don't try to operate the gadget from a mains supply, or battery eliminator, even small leakage currents can be felt, and larger ones could be dangerous.

 tion problems with this 4-Station Transistor Intercom system (1 master and 3 Subn), in de-luxe plastic cabinets for desk or wall mounting. Call/talkilisten from manter to 8ubs and gery, Schoole, Hospital, Office and Home. Operates on one 9 V battery. On/off gwitch. Volume control. Complete with 3 connecting wires each 66 ft . and other accessories. P. \& P. 40p.

MAINS INTERCOM
Mo batteries-no wires. Just plug in the mains for instant two-way, loud and clear connmunication. Price $214 \cdot 50 . \quad$ P. \& P. 55 p extra.

Same as 4.Station Iutercom for twous ing Same as t.Station Iutercom for two-way instant
communication. Ideal as Baby Alarm and Door Phone. Coniplete with ffift. connecting wire. Batters 14p. P. \& P. 25 p .

Transistor TELEPHOWE AMPLIFIER
ciency with this incredible De-Luxe Telephone Amplifier. Take down long telephone messages or converge without holding the handset. A useful office aid. On/ off switch. Volume control. Battery 14pextra. P. \& P.
22 p. Full price refunded if not satisfied in 7 days.

WEST LONDON DIRECT SUPPLIES (PE/1) 169 KENSINGTON HIGH 8TREET, LONDON, W. 8

THE RADIO SHOP

16 Cherry Lane, Bristol BSI 3NG Tel.: Bristol 421196. STD Code 0272

Your West Country shop for electronic omponents and solid state devices

2 METRE CONVERTER KIT
9 V Neg. earth feeding $28-30 \mathrm{MHz}$. Consisting of: RF BFI80, Fet. mixer, crystal osc. BFI80, and multiplier BFI80. Complete with all components, instructions and aluminium box. Not for beginners.

Price 64.75 P. \& P. 18p
TRANSISTOREQUIVALENT BOOK FEB 1971. 78 pages. 40p P. \& P. 3p

RADIO and TV VALVE and TUBE EQUIVALENTS BOOK
JULY 1971.60 pages, in
CVtypes. 40p P. \& P. 3p $\begin{array}{ll}\text { Series } 74 \mathrm{~N} \text {, Data booklet } & \text { 14p Post Paid } \\ 930 \text { Series, Data booklet } & 14 \mathrm{p} \\ \text { Post Paid }\end{array}$ 930 Series, Data booklet
$900,914,923$, Data booklet
$\mathbf{1 2 p}$ R.T.L. IC's $\mu \mathrm{L} 900$ Buffer, 40p: $\mu \mathrm{L}$ 914, 40p: $\mu \mathrm{L}$ 923, 45p. P. \& P. SP

LINEARIC'
造 703 45p (TO.5), $\angle A 709$ 50p (DIL). P. \& P. 5p
DUALIN LINE SKTS
14 pin, 25p; 16 pin, 30p. P. \& P. 3p
AIRCRAFT BAND CONVERTER
Circuit and instructions
and components. All you
need is a tobacco tin. $\& t .20$
P. \& P. 7p B.F.O. FOR ANY RADIO

Circuit and instructions
and components. All you
need is a tobacco tin Et.05 P. \& P. 5p
TAPE RECORDER LEVEL METERS,
500 micro amp. Size
in lin $\frac{1}{4}$ in $50 p$ P. \& P. 5p
WE STOCK Numicator Tubes XN3 and GR IO/MU
WE STOCK "Weco" Television Tubes CATALOGUE 5p POST FREE

BATTERY ELIMINATORS
The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: $6 v, 9 v, 12 v$, $18 v($ single output $) ~ \$ 2$ each. P. \& P. $15 p$. $9 v+9 v ; 6 v+6 v$; or $4 t v+4 t v$ (two separate outputs) $\mathbf{2} .50$ each. P. \& P. 15p. Please state completely isolated from mains by double wound transformer ensuring 100% safety.
R.C.S. PRODUCTS (RADIO) LTD
(Dept. P.E.), 31 Olivar Road, London, E. 17

OSMABET LTD.
 \section*{MAINS TRAN8FORMER}

We make transformers amongst other things
Prim. $200 / 240 \mathrm{~V}$ a.c. TX6, $42 \bar{j}-0-403 \mathrm{~V}, 500 \mathrm{Ma}$ $6 \cdot 3 V^{\circ} 6 \mathrm{~A}$ СT, 6.3 V 6A CT, $0 \cdot \bar{U}-6.3 V 3 A, £ 12.75: T X 1$, $42 \mathrm{~J}-0-425 \mathrm{~V}, 250 \mathrm{Ma}, 6 \cdot 3 \mathrm{~V} 4 \mathrm{ACT}, 6 \cdot 3 \mathrm{~V} 4 \mathrm{~A} \mathrm{CT} 0-5-$
 CT, $0-5-6 \cdot 3 \mathrm{~V}, 3 \mathrm{~A}$, £4.05; TXJ, $300-0-300 \mathrm{~V}, 120 \mathrm{~mA}$, $250 \mathrm{~V}, 6 \overline{\mathrm{JmA}}, 6 \cdot 3 \mathrm{~V}, 1 \cdot \mathrm{JA}, 2 \dot{2} \cdot 10 ; \mathrm{MTy}, 200 \mathrm{~V}, 30 \mathrm{~mA}$

 $110 / 240 \mathrm{~V}$, Sec. $250 \mathrm{~V}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}, 2 \mathrm{~A}, 28 \cdot 25$.
AUTO TRANSPORMERS
30 to 4000 watt ex stock, up to 1000 watt to order. MULTIVOLT TRAN8FORMERS
Prim. $300 / 240 \mathrm{~V}$ a.c. OMT4/1. One tapped sec, $5-20-30-$ $40-60 \mathrm{y}$ gixing $\bar{J}-10-1,0-20-2 \bar{u}-30-40-4 \bar{J}-\bar{u}-60,10-0-$ 10. 20-0-20; $30-0-30$ Ј a.c., 1A, 22.25 ; OMT4/2 ditto, 2A, 23.45 ; OMT 11 one tappeal sec, $40-50-60-80-90-$ Duo 0-10-40-25V 2A-0-10-20-2JV 2A 83-60. LOW VOLTAGE TRANSFORMERS
Prim. $200 / 240 \mathrm{~V}$ a.c. $6 \cdot 3 \mathrm{~V}, 1 \cdot \mathrm{AA}, 85 \mathrm{p} ; 3 \mathrm{~A}, 61-13 ; 6 \mathrm{ACT}$, (21-80; $12 \mathrm{~V}, 1 \cdot \mathrm{JA}, \varepsilon 1-13 ; 3 \mathrm{ACT}, ~ £ 1.80 ; 6 \mathrm{ACT}, £ 2.70$;
 MIDGET RECTIFIER TRANSFORMERS
For FW rect., size $17 \times 2 \times 11 \mathrm{in}$, Prim. $200 / 240 \mathrm{~V}$ a.c. out put, PPTㄹ 12-0-12V, 0.2JA, PPT3 20-0-20N, 0.15A, 21.20 each: ditto, size $2 \times 21 \times 1 \frac{1}{2} \mathrm{in}$ MTV1 $9-0-9 \mathrm{~V}$,
 O/P TRANSFORMERS FOR FOWER AMPLIFIERS P.P. sec, tapped $3-\overline{7}, j-1 \bar{y}$ ohus, A-A $6.6 \mathrm{k} \Omega, 30 \mathrm{~W}$
(KT66, ete.) $84.05 ; 50 \mathrm{~W}, 3 \mathrm{k} \Omega$, A-A $86.75,100 \mathrm{~W}$ (KT66, etc.), £4.05; J0w, 3k Ω, A-A, e8.75; 100 W , LOUDSPEAKERS FOR POWER AMPLIFIERS
 25.60; $35 \mathrm{~W}, 87.20 ; 50 \mathrm{~W}, 810-00 ; 100 \mathrm{~W}, 221.50$;
E.M.I. $13 ; \times \sin 10 \mathrm{~W}, 3$ or 8 or 15 ohnis, 28.25 . E.M.T. $13 \times \sin 10 \mathrm{~W}, 3$ or 8 or 15 ohnis, 28.85.
Ditto with two tweeters and Xover, $84 \cdot 00$ Horn Ditto with two tweeters and Xover, 84.00 ; Horn
Tweeters $2-16 \mathrm{kHz} 10 \mathrm{~W} 8$ or 16 ohms, 21.50 . HI-FI Tweeters $2-16 \mathrm{kHz} 10,8$ or 3 or $815,2.28 .10$. MANUAL OF POWER AMPLIFIERS
Covering valve amplifters of 30 ta 400 watts , with price list of trinsformers and diolea specifienl, 25 p. LOUDSPEAKERS
$2 \ln 35 \Omega, 2!$ in 8 or $80 \Omega, 21$ in $25 \Omega, 3 \mathrm{~m} 30 \Omega, 60 \mathrm{p}$ each $3 \frac{1}{2}$ in $3 \Omega, 4 \mathrm{in} 1 \overline{3} \Omega, \overline{3} \times 3 \mathrm{in} 3$ or 8 or 1 J or $2 \overline{2} \Omega, 90 \mathrm{p}$ each: 6×4 in 3 or 8 or $15 \Omega, 7 \times 4$ in 3 or 8 or $3 j \Omega$ $8 \times 23 \operatorname{in} 3 \Omega ; 61 \ln 3 \Omega$, $11.08 ; 8 \times \operatorname{jin} 3$ or 15 or 25Ω 21.85; 8in $3 \Omega, 21.85 ; 10 \operatorname{in} 3$ or $15 \Omega, 82.25$ SPEAKER AUTO MATCHING TRANSFORMER 12W 3 to 8 or 15 ohms, up or down, 75 p . P. \& P. 15 100 WATT POWER AMPLIRIER
4 inputs, rariable tone controls, mixing controls, guaranteed. S.A.E. details. 839.
BULK TAPE ERASERS
 netizes tape heads, a.c- $200 \% \mathrm{~L} 0 \mathrm{~V}$, e2
AIRCRAFT BAND CONVERTERS
Covers entire aircraft band, $110-135 \mathrm{MHz}$, fully tunable, works in proxinity of any a.m. receiver With battery, instructions, $44 \cdot 25$ plus 200 Y . \& P NEW TUXER-STEREO AMPLIFIER
SW per channel, P.U. input, output for tape recorter S. M.L. Wave coverage, complete with ail plugs an
leads. Stylish chassis, British manufacturer, $18 \times 8 \times 8$ 3 fin. Guaranteed $£ 23,50$. S.A.E. details. CONDENSERS
Paper: $0.01 / 2 \mathrm{kV}, 12 \frac{1}{2} \mathrm{p} ; 0.22 / 800 \mathrm{~V}$ a.c. $25 \mathrm{p} ; 0.47 / 700 \mathrm{~V}$ $15 \mathrm{p} ; 40 / 100 \mathrm{v}^{2}, 25 \mathrm{p}: 4 / 040 \mathrm{v} 25 \mathrm{p}$. Electrolytics: 6,000 $15 \mathrm{~V}, 10 \mathrm{p} ; 10,000 / 16 \mathrm{v}, 40 \mathrm{p} ; 100 \times 60 / 450 \mathrm{~V} 25 \mathrm{p} ; 350 \times$ $50 / 325 \mathrm{~V}, 25 \mathrm{p} ; 100 \times 400 / 275 \mathrm{~V}, 25 \mathrm{p} ; 6500 / \mathrm{f4V}, 50 \mathrm{p}$. P.E. SCORPIO IGNITION SYETEM

As apecifled. Transformer on Mitlard Put Core 83.45 Eddystone Dlecast Box $81.85,0.47$ mid 1000 V condeneer 25p,
S.A.E. INQULRIES-LISTS. :MAIL ORDER ONLY 48 Kenilworth Road, Edgware, Middx. HA8 8YG Tel, 01-958 9314

VISUAL MORSE MEMORY

Difficulty with memorising morse A new, ingenious, pictorial method enables you to remember eachleter and number in relation to its own particularcoding, Mental fumbling Basically simple, the code can be learnt extremely, rapidily, even within hours. The 'Modulator' costs only 18 p .

Mellt System
School Road, Gt. Barton, Suffolk

THE MAZDA BOOK OF PAL RECEIVER SERVICING

by D. J. Seal. £3.50. Postage $15 p$.

IIO INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR, by R. M. Marston. El-20. Postage lop.

GUIDE TO PRINTED CIRCUITS, by Gordon J. King. E2-50. Postage IOp.

RCA SOLID STATE HOBBY CIRCUITS MANUAL, by RCA.' $£ 1.05$. Postage 10p.

MULLARD TRANSISTOR AUDIO \& RADIO CIRCUITS, ©I.50. Postage 10p.

FOUNDATIONS OF WIRELESS \& ELECTRONICS, by M. G. Scroggie. Cl.80. Poscage 20p.

RADIO \& ELECTRONIC LABORA.
TORY HANDBOOK, by M. G. Scroggie. 44.75. Postage 20p.

MAKING TRANSISTOR RADIOS, A BEGINNER'S GUIDE, by R. H. Warring. Cl-10. Postage 10p.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-21 PRAED STREET LONDON W2 INP Phone: PADdington 4185 Closed Saturday I p.m.

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $\mathbf{2 0 0 - 2 5 0} \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression:

600 Watt - 63 -20. Kit Form $\mathbf{6 2} 70$
300 Watt-62.70. Kit Form $\mathbf{£ 2}-20$ All plus 10p post and packing.
Please send C.W.O. to:-

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel. 0244-25883
As supplied to H.M. Government Departments

State of the INDUSTRY

Official statistics necessarily trail events. It takes time for companies to make their returns to the Department of Trade and Industry and more time to analyse and collate them. So we had to wait until November 3 before getting the 1971 first half results on how the capital equipment sector is making out in these troubled times.

The figures were not as bad as some had feared. Compared with the first half of 1970 total output was up 5 per cent at £336.6 million. Radar was a bright feature, up 28 per cent, but slumps in broadcast equipment (-20 per cent), navigational aids (-11 per cent), and radio communications equipment (-10 per cent) eliminated the gains. Control equipment put on 22 per cent and nucleonic instruments a cracking 25 per cent, although the latter is such a small segment of the industry that the gain had little effect on the overall totals. Exports were down from 40 per cent to 36 per cent. Surprisingly, employment remained constant, this year being 150,000 people at the end of both the first and second quarters.

The red light is seen in the forward order book. The figure at June 30, 1970, was £648 million. On the same date in 1971 the figure had slumped to $£ 572$ million. The conclusion must be that the great days of 15 per cent growth every year are all but over.

LEANER AND TOUGHER

Squaring up to the commercial facts of life is no easy matter. Some people throw in the sponge as did RCA with computers. Since then the U.S. General Electric has pulled out of microcircuits. After

an investment of $£ 20$ million and four years of struggle.

Others persist by seeking economies and building better management structures. Plessey recently underwent a complete reorganisation converting a cumbersome operation into "businesses', each accountable directly to the main Plessey board.

Some details of how Mullard tackled their problem have been revealed by commercial director Jack Akerman. Mullard now has four divisions each responsible for a market sector. Thev are Consumer, Computer, Communications, and instrumentation and Control. The general manager of each division looks after his market sector not only from the sales point of view but also the Mullard manufacturing plant producing goods for his market area. Each is charged with making a profitable return on the capital employed which totals some $£ 90$ million right across the board.

Everyone is expected to work for the benefit of the whole com-pany-not just for his own division. Akerman regards the organisational change as a platform for growth in the '70s. Results after 6 months showed a reduction in stocks of over 10 per cent while providing a better service to the customer, reduction in the commercial staff and better morale.

SLIMMING DOWN

Another example of slimming down to better meet the future as well as today's problems is to be seen in SGS whose U.K. operations are based on a marketing unit at Aylesbury and a substantial manufacturing plant at Falkirk. Fears that the Falkirk plant would be closed entirely were recently allayed by a lightning visit from Milan by Giancarlo Maimone, newly appointed managing director, who had discussions with local MP Harry Ewing and union representatives. The outcome was that Falkirk appears to be saved, for the time being at least, but with a labour force pruned from a peak of 1,100 down to some 500-600.

The marketing team at Aylesbury has also been streamlined and it is possible that a joint marketing team with ATES (a company associated with SGS through the Italian holding company IRI) will be set up. Other SGS plants in Italy, France, Germany and Singapore are all reported to be working. well under capacity. Mr Maimone has some tough decisions ahead in relation to cut-backs elsewhere but, for the moment, SGS men in the U.K. are optimistic. "At least we now have a clean situation on which to build", was the opinion of marketing manager Roy Hood.

TELECOMMUNICATIONS BOOM

One sector of the industry which is flourishing is telecommunications which, with the introduction of PCM and electronic exchanges, is getting more and more electronic in character. The TXE 2 electronic exchange is now firmly established. Since the first was commissioned in Ambergate, Derbyshire, in 1966, some 150 have been installed and they are now coming into service at a rate of more than two every week.

The big TXE 4 with up to 40,000 lines (TXE 2 has only 2,000 lines) has now been finally ordered by the Post Office from Standard Telephones and Cables. The development of TXE 4 has not been without problems but these have now been resolved. First contract is worth $£ 15$ million and the first installation will be made in London at the beginning of 1975. Soon afterwards, TXE 4's will be in service in Manchester and Birmingham.

The TXE 2 has been a big success for Plessey who have supplied the bulk of them to the Post Office and have also been successful in selling them overseas.

But the biggest telecommunications boom area of all is data communications. Fifteen countries in Europe have now come together in sponsoring a year's study by PA International Management Consultants in London on the data communications requirements of Europe for the next 15 years. The study is planned to show future customer requirements, anticipated data traffic flow with Europe, and between Europe and other continents, and future developments in data processing systems.

BRITAIN IN SPACE

The biggest rocket to get airborne (but only just) on Guy Fawkes day was Europa 11 launched from Kouro in Equatorial French Guiana. Regrettably, it was the biggest flop of the year.

A few days earlier the British technology satellite Prospero (formerly X3) was successfully launched in orbit by a Black Arrow from Woomera and has been functioning well.

Prospero's. success, however, will not compensate us in prestige for the loss of Europa 11. We pulled out of the European Launcher Development Organisation (ELDO) in 1968. It was a controversial move which did not endear us to our continental partners. The Blue Streak rocket used on November 5 was sold to ELDO. One crumb of comfort was that Marconi's navigational guidance system was not at fault.

THE ARLINGTON DICTIONARY OF ELECTRONICS

Published by Arlington Books
171 pages， $8 \frac{1}{2}$ in $\times 7 \frac{1}{2}$ in．Price $£ 3$

THIS new book of American origin is well pro－ duced and attractively presented．The range of material covered is enormous，ranging from simple circuit theory to microwave engineering and quantum physics．Also included is some advanced maths including vector calculus．Digital computer fundamentals are also dealt with．Diagrams，though not profuse，are clear and well explained and the definitions are succinct and，wherever possible， assume only elementary knowledge．

My main criticism is not of this book itself but of the whole philosophy of presenting technical information in dictionary format．It is difficult to imagine when this type of book would be of use． In text books obscure terms are usually given lengthy explanations whilst a lay reader encountering technical terms would be unlikely to learn much from this type of book．

However．if this type of book appeals to you I can recommend it as an addition to library or personal book collection．

S．R．L．

110 INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR

By R．M．Marston
Published by lliffe
128 pages， $8 \frac{1}{2}$ in $\times 5 \frac{3}{3} \mathrm{in}$ ．Price $\mathbf{5 1} \mathbf{2 0}$

IN cramming 110 circuits into as many pages Mr．Marston has undoubtedly achieved quite a feat．The integrated circuits described range from the CA3018，which is simply．four transistors on one chip．to the PA246 five watt amplifier．There is also a section describing 35 RTL digital i．c．projects．

The general procedure used is that a description of the internal circuit of the i．c．is presented，then several projects are described so that the reader becomes familiar with the function of the unit． Many of the projects are useful and interesting and it is almost certain that everyone will find something of use in this book．

The presentation of the information is，however， not all that good．Each new project does not have a heading so one has to resort to the index to find a particular circuit．All the i．c．s，apart from the digital，are represented with the operational amplifier symbol of a triangle．For i．c．s such as the CA3018 this makes it very difficult to read circuit diagrams，and on some diagrams output signals seem to come out of inputs．

At one new penn y per circuit the book is certainly good value but a little more care in presentation would have helped．

QUESTIONS AND ANSWERS ON RADIO AND TELEVISION（3rd edition）

By H．W．Hellyer
 Published by Newnes－Butterworth 172 pages， $6 \frac{3}{4}$ in $\times 4 \frac{3}{4}$ in．Price 60 p

THis book is clearly aimed at people who would like to know how television and radio systems operate，but whose knowledge of electronics is slight． It takes the reader through the main principles of electronics and then goes on to explain，in simple terms，the basic features of electronic devices，includ－ ing the valve and the transistor．Some of the important circuits in radio and television are then described with many circuit diagrams to illustrate practical considerations．The final chapters deal with the functions of the television receiver，including tuning，synchronising and picture linearity control． Colour reception is not dealt with in any detail．

The sections on basic electronics are lengthy and， on the whole，they provide a useful introduction to the subject for a beginner．However，in a book with this title，I think that some of the questions and answers on semiconductor manufacture would have been better replaced by explanation of some practical points，such as the methods of correct biasing for transistors．The description of the field effect transistor，which is anyway complicated by the use of the term＂depletion layer＂without definition． seems superfluous to this kind of book．

Apart from these criticisms the book provides a lot of useful information on radio and television and would give the interested beginner plenty of food for thought． S．R．L．

RADIO AND TELEVISION YEAR BOOK 1971／72

Edited by Eric Ickinger
Published by IPC Electrical－Electronic Year Books Ltd
224 pages， $8 \frac{5}{⿱ 亠 䒑} \mathbf{i} i n \times 5 \frac{1}{2} \mathrm{in}$ ．Price $£ 1$

ACOMPLETE guide to radio and television broad－ cast stations，transmitting at v．h．f．and u．h．f．in the U．K．．，precedes the up－dated cataloguing of com－ mercial equipment under classifications：mono－ chrome television，colour television，radiograms， record players，table radios，portable radios，car radios，tape recorders，unit audio．

The format follows the usual style as a buyer＇s guide giving descriptions，brief specifications，and prices（November 1971）．Some illustrations are also included．

HI FI YEAR BOOK 1972

Edited by Colin Sproxton

Published by IPC Electrical－Electronic Year Books Ltd
$\mathbf{3 7 6}$ pages， $8 \frac{3}{4}$ in $\times \mathbf{6 i n}$ ．Price $\mathbf{£ 1} \mathbf{~} \mathbf{2 5}$

AMONG the preceding articles in this latest Hi Fi Year Book is an interesting outline of the Dolby noise reduction system that is now being increasingly incorporated in commercial equipment． Also included are： Hi Fi from FM radio；a short review of eighteen of the best recordings over the past year or so：the meaning and importance of pick－ up parameters；a glossary of terms associated with microphones；a list of common abbreviations and meanings．

The equipment descriptions and prices are up－ dated but do not include all new items that took their bow at the 1971 Audio Fair（see our Audio Fair report in this issue）．A complete list is given in the centre of this book of September 1971 list prices and new purchase tax rates．

Great new CFFFE From DROTSROA M

500,000

NPN-PNP PLASTIC
METAL CAN TYPES
Clearance of manufacturers' seconds, selected in types and guaranteed no open or short circuit manufacturers, schools and colleges.
TYPE STN18. Silicon Planar Transiscors npn TO-18 Meral Can. Types similar to: 2N706,
2N2220. BSY27-95A, BSX 44 - ${ }^{2} 6-77$. TYPE STPIB. Silicon Planar Transistors DMP
TO-IB Meral Can. Types similar to: BCY70-72, TO-18 Metal Can. Types similar to: BCY70-72, $2 \mathrm{~N} 2906-7$. 2 N 2411 and $\mathrm{BCI} 86-7$. Also used as
complementary to the above npn type device type complem
STNIB.

Price: 500 69; 1.000 E15
TYPE STN5. Silicon Planar Transistors non TO-5 Metal Can. Types similar to: BFY50-51-52 and
2N2192-92.
TYPE STPL. As above but in pnp and similar to types 2N5354-56, 2N4058-2N4061 and 2N3702-3. Also used as complementary to the above npn
devices type STNL. devices type STNL

Price: 500 E7.50; 1,000 $\mathbb{E 1 3}$ TYPE STNK. Silicon Planar Plastic Transistor npn with $10-18$ pin circular lead configuration, $1 . C$.
$200 \mathrm{~mA}, 300 \mathrm{~mW}$ and similar to BC107-8-9, BCITO. $200 \mathrm{~mA}, 300 \mathrm{~mW}$ and similar to BC1078-9,
BCI 173 , $\mathrm{BC} 182-184, \mathrm{BC} 257-8-9$ and $\mathrm{BC} 337-8$.
. When ordering, please state type required, i.e.,

NEW FULLY GUARANTEED DEVICES
$\begin{array}{ll}17 p \text { BC140 } & 35 p \\ 17 p & \text { BCY } \\ 17 \mathrm{BC} 141 & 35 p \\ \text { BCY } 32\end{array}$ $17 p$ BCI 12
$17 p$ BC142
30 BCl 43

45p
17C
17
BCY70
$12 p$
BCY72

80p EC403 15p ORP60 \begin{tabular}{lll|l|}
30p \& GET880 \& 15p \& ORP60

37p \& ORP61

 17p BF274 20p BF 308

\& 30p
\end{tabular}

 \begin{tabular}{l|ll|ll|l}
$15 p$ \& BFW 10 \& 55p \& MPF102 \& 43p \& V405A

20p \& BF 29 \& 27p \& MPFIO5 \& 43p \& V410A

205p \& BF $\times 29$ \& 27p \& MPF105 \& 43p \& V410A

85 \& BF 84 \& 20p \& OC19 \& 30p \& 2G30
\end{tabular}

 $\begin{array}{llllll}\text { 75p } & \text { BF } \times 86 & \text { 22p } & \text { OC22 } & \text { 30p } & 2 \mathrm{G} 302 \\ \text { 80p } & \text { BF } \times 87 & \text { 25p } & \text { OC23 } & 33 p & 2 \mathrm{G} 30\end{array}$

 $\begin{array}{lllll}\text { 22p BFY50 } & \text { 20p } & \text { OC25 } & \text { 25p } & 2 \mathrm{G} 308 \\ \text { 45p } & \text { BFY } & \text { 20p } & \text { OC26 } & \text { 25p } \\ \text { 2G } & \text { B }\end{array}$ | 45p | BFY52 |
| :--- | :--- |
| 60p | BFY 53 | $\begin{array}{ll}\text { 60p } & \text { BFY53 } \\ \text { 70p } & \text { BSX } \\ \text { 35p } & \text { BS }\end{array}$ 35p

35
35
35
BS
35p
45P
BSY26
25p

BSY28 | 20p | OC26 | 25p | $2 G 309$ |
| :--- | :--- | :--- | :--- |
| 20p | OC28 | $40 p$ | $2 G 339$ |
| 17p | OC 29 | $40 p$ | $2 G 330 \mathrm{~A}$ | $2 \mathrm{N918}$

Combines Mic or Tuner inputs into a single channel

By M. J. Bunce

THis article describes a simple three channel, audio mixer using an integrated circuit preamplifier. It has a substantially flat frequency response in the audio range, and is designed for use with both domestic and semi-professional tape recorders, particularly with regard to cine soundtrack recording.
The mixer can also be used by pop groups, using impedance matching transformers if low output impedánce transducers are used, such as dynamic or ribbon microphones.

CIRCUIT DESCRIPTION

The circuit of the mixer itself is given in Fig. 1 The input lines to the pre-amplifier are blocked to d.c. by capacitors $\mathrm{C} 1, \mathrm{C} 2$ and C3. This is necessary to prevent crackling and hiss caused by current flowing through the potentiometer wiper circuits.

The pre-amplifier is an integrated circuit operational amplifier contained in a standard eight-lead TO5 package. Such amplifiers are beginning to appear quite cheaply on the surplus market.

The circuit described was designed around an S.G.S. «A709, which has an open loop gain in the order of 50,000 at frequencies up to around 1 MHz .

The gain of the amplifier for a single channel is given by:

$$
\mathrm{G}=\frac{R_{\mathrm{F}}}{R_{\mathrm{I}}}
$$

where R_{F} is the value of feedback resistance R 5 in ohms and R_{1} is the value of input resistance. In this case :

$$
\text { Gain } G=\frac{1,000,000}{100,000}=10
$$

Thus the amplifier has an overall gain of ten.

CAPACITOR ROLES

To prevent the amplifier from amplifying stray radiation, picked up by the external connecting leads, the input is shunted by a resistor/capacitor network, consisting of R6 and C4. Similarly, generation of radio frequency parasitic oscillations within

Fig. 1. Circuit diagram of audio mixer

I.C. AUDIO MIXER

COMPONENTS . . .

Resistors
R1 $100 \mathrm{k} \Omega$
R2 $100 \mathrm{k} \Omega$
R3 100k Ω
R4 15k Ω
R5 $1 \mathrm{M} \Omega$
R6 $1.8 \mathrm{k} \Omega$
R7 68Ω
All $\pm 10 \%, \frac{1}{4} \mathrm{~W}$ carbon
Potentiometers
VR1 $1 \mathrm{M} \Omega$ carbon log.
VR2 1 M $\Omega 2$ carbon log.
VR3 $1 \mathrm{M} \Omega$ carbon log.

Capacitors

C1 $4 \mu \mathrm{~F}$ elect. 15 V
C2 $4 \mu \mathrm{~F}$ elect. 15 V
C3 $4 \mu \mathrm{~F}$ elect. 15 V
C4 22 pF polystyrene
C5 47pF polystyrene
C6 $4 \mu \mathrm{~F}$ elect. 15 V
C7 $4 \mu \mathrm{~F}$ elect. 25 V
C8 $4 \mu \mathrm{~F}$ elect. 25 V
Integrated Circuit
IC1 $\mu \mathrm{A} 709$ (S.G.S.) or equivalent

Sockets.

SK1-SK4 Standard type jack sockets (4 off)

Switch
S1 Double pole on/off switch

Batteries

BY1, BY2 9 volts type PP9 (2 off)

Miscellaneous

Aluminium panel 16 s.w.g. 11 in $\times 5$ in
Skirted control knobs numbered $0-10$ over 300 degrees
Veroboard 5 in $\times 2 \frac{1}{2}$ in 0.15 in matrix
Hardboard and wood as required

MAKE BREAKS TO COPPER AT:

4 A	4 P	9 F	17 F	30 C
4 B	5 F	11 H	18 M	30 N
4 C	5 H	14 G	22 G	300
4 N	5 L	14 H	30 A	30 P
4 O	8 H	161	30 B	32 G

Fig. 2. Component layout and interwiring of mixer

the amplifier is suppressed by capacitor C5 at the amplifier output.

The values of these components determines the upper frequency response limit of the amplifier; its lower limit is determined by the values of the input capacitors C1, C2 and C3, and also the output capacitor C6. For this mixer application, a fairly sharp roll-off is required above 25 kHz .

Any d.c. component in the amplifier output (e.g. that due to offset or drift within the i.c.) is blocked by capacitor C6, which also protects the amplifier against short-circuit fault conditions at the input stages of the equipment to which it is connected. It may seem at first that using the component values specified voltage offsets might easily occur. In practice, however, although offsets of up to $\pm 1 \mathrm{~V}$ can occur at the output of the amplifier, this is of no consequence since the output is d.c. blocked, and the output voltage swing never exceeds $\pm 0.5 \mathrm{~V}$.

INPUT INTERACTION

It would also appear that the inputs might interact (i.e. turning one input to minimum would cause a drop in gain of the remaining inputs). This is also not true, since the input of the i.c. is a virtual earth, and the inputs do not therefore have any effect whatsoever on each other.

As the power requirements of the amplifier are small, it was decided to use two 9 V batteries, particularly as the amplifier requires a centre-tapped

Fig. 3. Case assembly details
supply. The design of a suitable power unit for such a circuit could be disproportionately costly and complex. Besides, for the particular application of this mixer, portability is useful.
Earthing is not critical, although the fewer the number of separate earths, the better.

CONSTRUCTION

The unit is built around the front panel, thus avoiding numerous trailing wires, so that it may be fitted into the case as a complete module. Component assembly details on the front panel are shown in Fig. 2.

The electronic components are all mounted on a piece of Veroboard which is spaced from the panel by four 6BA spacers. The integrated circuit package is mounted on an i.c. socket to obviate the risk of damage when soldering the leads.

The layout of the components on the panel is not critical, however all unused whole copper strips should be electrically bonded to earth to avoid pickup of extraneous signals.

When laying out the front panel (see photograph), consideration was given to the ergonomic aspects of the design, particularly as the cine sound track operator could well be working outdoors in cold weather. As he could be wearing gloves under such conditions, plenty of room was left between the control knobs, which are of skirted type.

The case is of thin plywood, angled to provide a comfortable degree of rake to the front panel. Since each individual constructor may wish to design his own case to suit his requirements, only a simple perspective view of the prototype case is included (Fig. 3).

HUM SUPPRESSION

The inside of the case is lined with aluminium foil to prevent pick-up of external interference such as mains hum. The foil is earthed to the front panel at the chassis solder tag CH (Fig. 2).

The screws fitted to the front panel are all countersunk, with the exception of the four case securing screws, as this improves neatness and avoids any risk of fouling the skirt of at least one of the potentiometer knobs.

USING THE MIXER

In setting up the mixer each number on the control knobs represents a gain increase or decrease of approximately 1 dB with the input and feedback resistance values given in Fig. 1.

For amplifier gain variations the input resistors R1, R2 and R3 can be changed either singly or totally to suit individual requirements. Thus, with the 1 Megohm feedback resistance given and input resistors in channels 1, 2 and 3 having values of 1 Megohm, 100 kilohms and 10 kilohms respectively, these will provide suitable gains for an f.m. tuner, crystal microphone and dynamic or ribbon microphone providing the latter two are fitted with impedance matching transformers.
No master gain control is fitted since for its particular design application the tape-recorder input gain control is satisfactory. Monitoring is carried out in the normal way using the recorder facility.

- ELEGTRONORAM

Mowing by Moonlight

RICH. insomniac Americans can now while away the midnight hours by mowing the lawn. without fear of disturbing their neighbours.

The Elec-Trac is a quiet and compact electric tractor developed by General Electric for use in the garden. It can mow. till, blow away snow, or provide a mobile power source for electrical equipment.

A programmed starting system prevents the operator from applying too much speed too soon and when the controls are set to "full forward" a built-in safety circuit automatically accelerates the vehicle smoothly to the desired speed.

Six long-life batteries will provide eight to ten years of life under normal conditions.

The company predicts a great future for after dark lawn care. They say, "We know that from three years of testing at night that quiet mowing in the cool of the evening or early morning is a real pleasure."

Electronic Cash Register

To meet the need for faster check-out in supermarkets and stores. a new electronic system has been designed to replace the slow and cumbersome cash register. Pitney-Bowes call the new system "SPICE" (Sales Point Information Computing Equipment), and the unit which the customer sees is closer to a computer terminal than a cash register

By connecting all the units to a central in-store controller. all information concerning sales can be recorded on magnetic tape. This can later be processed by a computer and any facts and figures which are needed can be extracted for use by the store manager. As well as accurately recording sales, the terminals may be used to get immediate notification of a customer's credit standing. The terminals can also be used as calculators to work out quantity prices or discounts.
An optional extra to SPICE is "PEPPER" (Photo-Electric Portable Probe/Reader) which eliminates the need for the sales clerk to ring up the prices. All sales items are individually marked with specal tickets, on which the price is coded into a row of bars. The electronic "pen" is quickly passed over the ticket. instantly displaying price, item number, and department number on the terminal register. Speed and elimination of human error make this very attractive to both customer and seller.

For small stores or places where access to a central computer is not feasible, a self-contained system known as "SALT" (Stand Alone Terminal) is available which can be programmed to provide on-the-spot point-of-sale information.

A $\square \square \square \square \square$ ELECTRONC

A Sight for Sore Ears

When noise exceeds a certain level it is not only annoying. it can be positively dangerous! In an attempt to lessen the risk to hearing for people who live or work in noisy environments. the Noise Abatement Society is now marketing two new pieces of equipment: a survey meter which lights a lamp if sound exceeds the danger level and ear defenders for protection when it does.

Eye Movements Control Wheelchair

For patients who have lost the use of both arms and - leys. this wheelchair offers new hope. The only actions needed to start, steer or stop the wheelchair are movements of the eyes. The sight-guide steering mechanism used in the chair was developed originally for NASA, the U.S. space agency, which is seeking ways of freeing the hands of pilots and astronauts for other in-flight duties.

A prototype wheelchair controlled by eye movements is at present being tested at the Institute of Rehabilitation Medicine in New York. If it is eventually put into production, an estimated 100,000 quadriplegics (those with no use of arms or legs) could be made mobile.

Microstrip Production

$W^{\text {ith }}$ the increasing use of microwave communications. EMI's activities in microstrip circuitsminiature microwave devices-have rapidly expanded in the last year. Their range has grown to include doppler generators. Gunn effect power sources, aerials, amplifiers and switches.

These new microwave technioues are being applied in many areas including the development of an experimental digital radio link for the Post Office. This will be designed to transmit and receive digital signals at 120 million bits per second.

The photo shows part of the assembly process using a vacuum probe micro-manipulator.

Use integrated circuits to simplify control functions

LOGICAL ーーーーローーーーーー RADIO CONTROL
 By A．J．Dunn

PART TWO

CODER 2 is described in this article in two variants． Although more expensive to make than Coder 1 described last month，they are easier to assemble． Both variants use the same basic printed circuit pattern apart from a minor change to the circuitry involving IC7．

CODER 2A

Fig． 10 shows the circuit of Coder 2 A ．The grey panel area is the part which is altered to make Coder 2B．More about this later．

The particular advantage of Coder 2 is the flexi－ bility of timing since the timing resistance combina－ tion of RI－VRI can vary between 1.5 kilohms and about 40 kilohms（ $R 1$ is fixed at 1.5 kilohms）with any value for Cl ．There is no critical lower value for the minimum signal pulse length．

The integrated circuits IC1 to IC7（Type FJK101 or 74121）are monostable multivibrators，each trig－ gering the next in turn via the R－D－C network from pin 1 （ \bar{Q} output），providing the interval period of about 0.32 ms ．The resistors in these networks（ R 2 ， R4，etc．）should not exceed 200 ohms．The sync pulse

CODER 2A

CODER 2A

Resistors

R1	$1.5 \mathrm{k} \Omega$	R5	$1.5 \mathrm{k} \Omega$	R9	$1.5 \mathrm{k} \Omega$	R13	$22 \mathrm{k} \Omega$
R2	180Ω	R6	180s2	R10	180S	R14	180Ω
R3	$1.5 \mathrm{k} \Omega$	R7	$1.5 \mathrm{k} \Omega$	R11	$1.5 \mathrm{k} \Omega$		
R4	180Ω	R8	180 S 2	R12	180』		
All $\pm 10 \%$, $\frac{1}{8}$							

Capacitors

C1	$0.22 \mu \mathrm{~F}$	C 5	$0.22 \mu \mathrm{~F}$	C 9	$0.22 \mu \mathrm{~F}$	C 13	$1.0 \mu \mathrm{~F}$
C 2	$2.2 \mu \mathrm{~F}$	C 6	$2.2 \mu \mathrm{~F}$	C 10	$2.2 \mu \mathrm{~F}$	C 14	$2.2 \mu \mathrm{~F}$
C	$0.22 \mu \mathrm{~F}$	C 7	$0.22 \mu \mathrm{~F}$	C 11	$0.22 \mu \mathrm{~F}$		
C	$2.2 \mu \mathrm{~F}$	C 8	$2.2 \mu \mathrm{~F}$	C 12	$2.2 \mu \mathrm{~F}$		
All tantalum bead type							

Potentiometers

VR1 to VR6 $25 k \Omega$ linear carbon (6 off)

Integrated Circuits

IC1 to IC7* FJK101 or SN74121N (7 off)
IC8 FJH101 or SN7430N
D1 to D7 CG83 or OA10 (7 off)

Miscellaneous

Fibreglass base printed circuit board and etching kit

is taken from the $\overline{\mathrm{Q}}$ output of IC7, the pulse length being 0.7 CR or approximately 14 ms .

For timing capacitors ($\mathrm{Cl}, \mathrm{C} 3$, etc.) of $0.2 \mu \mathrm{~F}$ and control resistance of 25 kilohms in series with 1.5 kilohms, the corresponding maximum signal pulse length is approximately 5 ms .

One of the NAND gated inputs (pin 3) is connected to the common "earth" line except in the case of IC4 where an initiating switch is inserted to start the cycle of operation.
The output from the Coder is taken from IC8, a single eight-input positive logic NaND gate.

Fig. 10 (far left). Circuit diagram of Coder 2A. The area for modification to convert to Coder 2 B is indicated by the grey area

Fig. 11 (left). The printed circuit pattern (full size) for Coder 2A

Fig. 12. Component layout of Coder 2A. The area where modification is required to convert to Coder $2 B$ is shown in Fig. 16

Fig. 13 (below). Wire link connections on the copper side of the board

CODER 2A P.C. BOARD

The pattern for the printed circuit, which should be of fibreglass base, is shown full size in Fig. 11. As with Coder 1 described last month, it is worth providing an extra blank area of board at one end for mounting; this would add about $\frac{1}{2}$ in to the length of the working pattern.
Component layout is shown in Fig. 12, while details of wire link connections are in Fig. 13.
Orientation of the integrated circuits is important; if an error is made after soldering in situ it can prove a messy job to remove the i.c. unless a special desoldering tool is available.

CODER 2B

Coder 2B is similar to Coder 2A except it has a fixed cycle time. The integrated circuit IC7 is replaced by a dual four-input Nand gate (DTL type MC832 or 932) equipped with "node" inputs. The outputs from IC7 are capacitor coupled to the opposite "node" inputs, so forming a multivibrator, Fig. 14.
The output from pin 6 initiates the cycle for each period T (see last month). This period can be adjusted by altering the values of the coupling capacitors C16 and C17. For small variations a series resistor-potentiometer arrangement, as in the other stages, can be connected from pin 3 to the positive line and also from pin 11 to the positive line.

* MODIFICATIONS TO MAKE CODER 2B

Integrated Circuit
IC7 Change to MC832 or 932. DTL range

Diodes

D6 and D7 not required

Add Resistor

R15 $180 \Omega \frac{1}{6}$ watt carbon

Capacitors

C15, C16 $\quad 10 \mu \mathrm{~F}$ tantalum or electrolytic (2 off)

Fig. 14 (left). Modification of Coder 2A circuit from part of Fig. 10 to convert to Coder 2B

Fig. 15 (above). Printed circuit pattern (full size) for Coder 2B

Fig. 16 (right). Modified area of layout for Coder 2B

The modified printed circuit pattern is shown full size in Fig. 15, while the modified part of the component layout is shown in Fig. 16.

DECODER

A decoder is essentially a means of translating the information transmitted in pulse code to some form of sequential mode analogous to the operation of model functions.

In the decoder described here, three dual JK flipflops make up a shift register (Fig. 17) driven by a negative going pulse, derived by feeding the input signal through two paralleled Nand gates. A retriggeragle monostable is also used to detect the signal period.

The circuit shown in Fig. 17b is used to produce the negative going pulses required by the shift register inputs to 'clock' and 'clear': this should be considered in connection with the waveform diagram Fig. 18.

The input signal (Fig. 18a) is applied to two parallel NAND gates, each with a "fan-out" of eight, producing the requisite negative going signal (Fig. 18 b) adequate to drive the $6(\times 2)$ clock input loads.

The $0.1 \mu \mathrm{~F}$ capacitor is used to slow the fast edges slightly and prevent spurious ringing effects. This signal is applied to the input of the retriggerable monostable whose output (Q) is maintained high (Fig. 18c) till after the last trigger (pulse No. 6)

Finished decoder board
dependent upon Cl and $\mathrm{RI}(2 \cdot 2 \mu \mathrm{~F}$ and $20 \mathrm{k} \Omega)$ as pulse width $\tau \simeq 0.36 R_{1} C_{1}\left(1+\frac{0.7}{R}\right) R$ being in kilohms; C in pF ; and τ in nanoseconds.

CLEAR PULSE

The positive going' edge is differentiated by C 2 and R2 (Fig. 18c), the negative going spike turning off TRI whose output is a positive pulse situated in the middle of the sync period (Fig. 18d). This pulse

Fig. 17a. Interconnection of six JK flip-flops to form a shift register for decoding

Fig. 17b. Circuit of the "clock" and "clear" pulse generator on the decoder board

COMPONENTS . . .

```
Resistors
R1 \(4.7 \mathrm{k} \Omega\)
R2 \(33 k \Omega\)
R3 \(22 \mathrm{k} \Omega\)
All \(\pm 10 \%\), \(\frac{1}{8} W\) carbon
```


Capacitors

```
\begin{tabular}{ll}
C & \(0.1 \mu \mathrm{~F}\) ceramic disc \\
C 2 & \(2.2 \mu \mathrm{~F}\) tantalum \\
C & \(0.1 \mu \mathrm{~F}\) ceramic disc \\
C 4 & \(47 \mu \mathrm{~F}\) elect.
\end{tabular}
```


Integrated Circuits

IC1 MC846 or 946 quad 2-input gate (DTL)
IC2, IC3, IC4 FJJ121 or 7473N Dual JK (TTL) (3 off)
| IC5 F9601 retriggerable monostable
Transistor and Diode
TR1 2N3704
D1 OA202

Miscellaneous

Fibreglass printed circuit board and etching kit
is applied to two parallel Nand gates whose negative going output (Fig. 18e) drives the "clear" inputs of the register.

The action of the "clear" pulse is to set the outputs (Q) of all six flip-flops to " 0 " awaiting the arrival of the first signal pulse which causes the output of the first flip-flop to go high' (1) (since it takes an input from an inverted output (\mathbf{Q}) for the period of the pulse and the interval period. The second signal pulse causes the second output to change to " 1 " and the first output to revert to " 0 ".

Subsequent pulses appear individually as positive output pulses at the five flip-flop outputs.

The output from Q1 is shown at " B " in Fig. $19 b$.

SIXTH CHANNEL

The sixth channel output is obtained, if required, by the use of a further quadruple NAND gate wired as shown in Fig. 19a and if desired, associated with a servo unit. The positive going input signal at "A" is gated with the output of the flip-flop output Q1 to produce the signal shown in " C ". This is again gated with the input to produce a negative going pulse as at " D ". which is inverted, using another gate to produce the sixth positive going signal output at "E"

The shift register is formed by connecting the dual flip-flops in cascade as shown in Fig. 17a, it being noted that one interconnection pair is reversed to store the necessary " 1 ".

Fig. 20 shows the printed circuit layout, the components being assembled as shown in Fig. 21. Note again the orientation of the integrated circuits and polarity of the capacitors and diode.

When carefully soldered, thin insulated wire should be used to wire up the signal connection pads. the positive supply connections and the earth connections (Fig. 22).

DECODER VARIATIONS

The shift register can be extended for as many outputs (channels) as required provided that the "fan out" performance of parallel gates exceeds the number of loads-two per "clock" and "clear" input.

The present cost of SN7473N i.c.s invites the use of a cheaper gate to obtain the last output (Fig. 19) but a single flip-flop (FJJ111) could be used to store the " 1 ".

If Coder 2B (with positive sync pulse) is used the circuit in Fig. 17b is modified and the inverted ($\overline{\mathrm{Q}}$) output from pin 6 of IC5 is applied to the base of TR1 and an output is taken from its collector (collector load $5 \cdot 1 \mathrm{k} \Omega$) direct to the "clear" inputs.

The "clear" input signal (which overrides the action of "clock" pulses) is maintained to the end of the cycle.

A $1,000 \mathrm{pF}$ capacitor should be connected between the clock inputs and ground (0 V) to prevent spurjous ringing and the "extra" flip-flop method should be employed.

CONSTRUCTION NOTES

It cannot be over-emphasised that care should be taken with construction, particularly the soldering: if sound components are used and the circuit wired correctly, no difficulty may be expected; however, a simple solder bridge between copper pads can cause

Fig. 19a. Quad 2-input NAND gate is used to obtain the sixth channel from the Q1 output. Waveforms are given below

Fig. 19b. Waveforms at input and outputs of the gates
Fig. 18a. A typical input to first two NAND gates in IC1
Fig. 18b. Output of first two NAND gates fed into the clock line and into the signal period detector multivibrator IC5

Fig. 18c. Output Q from the resettable monostable multivibrator IC5

Fig. 18d. Output waveform from TR1 indicating the positive pulse in the middle of the sync period

Fig. 18e. The pulse in Fig. 18d is inverted by two more paralleled NAND gates to produce a sharp "clear" pulse
complete malfunction, necessitating the use of an oscilloscope to locate the fault.

The following notes may be of value:

1. The i.c.s should be obtained from a reliable source and properly identified. It is difficult to remove a "dud" and the copper printing may be stripped with excess heat.
2. The capacitors should be inspected for leaking and loose ends and then should be polarised before assembly. A "working" voltage should be applied from a battery via a current meter noting that the leakage current falls to a low value: the absence of an initial charging current indicates an open circuit capacitor and an unpolarised or short circuit capacitor will cause excess current causing i.c. failure. Tantalum capacitors or long life electrolytics are preferred.
3. The wire ends of the diodes should be carefully bent with wiring pliers to avoid fracture of the glass seals.
4. Soldering should not be attempted without a clean small bit.
5. The recommended technique for insulating wire connections is to bare the ends of an excess length of multi-stranded wire, twist up and solder the ends, causing the insulation to creep back beyond the point where baring took place. The ends are then cropped till in in of clean soldered wire is exposed: the iron is applied to the tinned copper pad until it runs freely; then the wire is applied.

TESTING

The components should be inserted on the board and wired up as indicated, noting and checking the
polarity of each component as fitted. Before any interconnecting wires are fitted the board should be held to the light and the component connections checked against the theoretical circuit. The variable resistors (coders) may be replaced by a selection of fixed resistors (as shown in photograph) within the VR range and the current supply voltage applied, noting the current to be less than 150 mA . If an oscilloscope is available the waveform can now be examined at the output, otherwise an audio test may be applied (capacitor and headphones) noting the output of the multivibrator, each stage and at final output. The coder can now be connected to the decoder as in Fig. 1 noting that the supply current to the decoder is less than 50 mA .

An oscilloscope triggered from the coder output should show the pulse train input and individual decoder output pulses.

A d.c. meter (of $20 \mathrm{k} \Omega \Omega$ per volt resistance or better) should indicate different voltages of the order of $\frac{1}{2}$ to $\frac{3}{4} \mathrm{~V}$ at each decoder output in accordance with the values of coder resistance used. The meter performing an integrating action on the 5 V pulses. being present, say, for 4 milliseconds every 30 or $4 / 30 \times 5 \mathrm{~V}$. The variable resistors may now be fitted and their action noted in changing the decoded pulse length or d.c. output.
Note: In Part 1 last month the following corrections are necessary:
Fig. 5. Capacitor C15 should be reversed
Fig. 7. The blob of ink at bottom centre is not part of the printed circuit pattern
Table 1. The quad 2-input NAND gate by STC-ITT should be MIC9465D

LOOK FOR THE FOLLOW-UP ARTICLE MODEL SERVO CONTROL

IN NEXT MONTH'S ISSUE

Fig. 20 (left). Printed circuit pattern for the decoder
Fig. 21. Component layout of the decoder board
Fig. 22 (below). Link wires are soldered on to the copper side for power supplies and signal lines

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

STABILISED SUPPLY WITH OVERLOAD PROTECTION

The circuit diagram Fig. I was designed to power a 12 watt stereo amplifier. It was found to be desirable to have a constant voltage regardless of power being delivered by the amplifier. The circuit in Fig. 1 was evolved to achieve these requirements.

The potential at point A is always a fixed fraction of V_{0} and is determined by R2 and R3. As R_{1}, is lowered V_{n} will lower causing the potential at A to decrease. As the base potential of TR1 is fixed by the Zener and VR1 so TRI's base-emitter diode D4 becomes more forward biased. Hence more current flows into the Darlington pair TR2 and TR3 which supplies R_{L} with a greater current, restoring the original output voltage.

Fig. 1. Circuit diagram of the stabilised supply overload protection

Components VR2, D2 and D3 provide a current limit which is set by adjustment of VR2. Diodes D2 and D3 should be silicon types and have turn-on voltages of 0.6 V each. Transistor TR3 is a germanium transistor and so $V_{\text {be }}$ will be about 0.2 V while $V_{\text {lee }}$ for TR2 will be about 0.6 V .

When a small current is being supplied to the load the voltage drop across D2 and D3 is not large enough to affect the circuit, but if R_{L} becomes very small the voltage drop across VR2 is arranged to bring D2 and D3 into conduction, preventing an excessive current through TR3. A sharper limiting action could be achieved by replacing D2 and D3 with a zener and increasing the value of VR2.

The output voltage is set to the required value by VR1. To obtain low voltages, say 10 V , a bleeder resistor should be inserted across the output as TR3 has a leakage current of about 4 mA . Capacitor Cl is included so that the output voltage rises slowly when the circuit is switched on. Diode D1 is included to protect TR1 when the circuit is switched off.

The output resistance of the circuit has been calculated and is given by:

$$
R_{\mathrm{o}}=\frac{\mathrm{R} 2+\mathrm{R} 3}{\mathrm{~h}_{\mathrm{FE}(\mathrm{TR} 2)} \times \mathrm{h}_{\mathrm{FE}(\mathrm{TR} 3)}}
$$

This is 3Ω at the worst and about 0.5Ω at the best.
J. Welch,

Northampton.

RESETTABLE COUNTER *

Fig. 1. Exploded view of the counter

1HAVE converted an ordinary electromagnetic counter into a resettable counter by removing the spindle that supports the number wheels, and replacing it by one about $\frac{1}{2}$ in longer. On the protruding end I fixed a small knob. A slot was cut in the metal cover to enable it to be slid over the protruding spindle, see Fig. 1. The counter may now be reset by turning the knob.

With some counters a second ratchet under the number wheels prevents them being reversed. A small lever may be fixed to the second ratchet to enable it to be disengaged when reversing the counter.

A. Hartley,
Bolton,
Lancs.

EAVESDROP ON THE EXCITIMG WORLD OF AIRCRAFT COMMUNICATIONS-JUST OUT V.H.F. AIRCRAFT BAND CONVERTER
 FIND BURIED TREASURE WITH THIS READY BUILT \& TESTED Treasure Locator Module
 Many thougnds of v.h.f. Aircratt Band Convertera now selling in U.B.A. Listen in to ALRLDHES, PRIVATE between pitots. ground approach rontrol, airport tower

bRamd hew fully trambigtoriged printedicircoit metal detector module. Ready buith and tested-just plug in a PP3 battery and phones and it's working. Put it in a case, acrew a handle on and YOU HAVE A PORTABLE TREABURE LOCATOR EABLY WORTH ABOUY LOCATES COINS, GOLD, SILVER, WATCEES, JEWELLERY, WOGGETS, MRTALIC ORE, HISTORICAL RELICS, BURIRD PIPES, KEYB, NATL-DI-TREES. ETC., ETC. BIgnala exact location by "beep" pitch increasing as you near buried metalife objects. PRIIT TRD CIRGUIT SEARCH COIL ${ }^{0}$ ay atable and tensitive if willdetect certain objects buried SEFERAL FEET EELOW OROUND! GIVES CLEAR SIGMAL ON ONE COII! You could even pay for your holidays with two or three days clectronic beacheombing-it's almont like having a licence to prind money/ Unclaimed treasure now exceeds the combined wealth of ail nations. ORDER ROW WHLE PRLA DOUS DEMALD EXPECTED AT THIS REMARKABLY LOW PRICE, DEMONSTRATION8 DALII.
 hear for youraelf the disciplined voices hiding lensenest on ippling decirions in emergencies-Tune into the inter hat unal distress 1 requency. Covers the sircraft frequenc
 This tantast ic fuily tranaistorised ingtrument can be buit Sy anyone nine to ninty in under two hours. (Our desig team built four-everyone worked firat time.) N knowledge of radio or electronics required. No solderio necespars. Fully illustrated simply worded instruction take you step-by-step. Uses standard PP3 battery. Siz $4 \times 1 \times$. All you do is extend rod acial place close tolay ordinary medium wave radio (even HERDED. I'se indoors of outdoors. THERE WILL B ENORMOUS DEMAND FOR THIS NEW DESIGN, 8END
HOW, ONLY $28.37(47 / 6)+23 \mathrm{p}(4 / 6) \mathrm{p}$. $\&$ p. for all parta, inciuding case nuts, screws wire etc., etc. (parts svail able separately).

FIND

BURIED TREASURE!

TREASURE LOCATOR

 TRANSISTORISEDHOW IT'S HERE AT LAST, after experimenting for four and a half monthe with a multitude of different circuits and carrying nut actual feld testa with prototgpes, our design team have come wator his real winner. This fully portable ransiecores mal exact location with loud audible nound (no phones used)-uses any transistor radio which fits insideSILVER. LOST COMS. JEWELLERY, KEY8, WAR GOUVENIRS, ARGEAEOLOGICAL PIECES, METALLIC ORE, doors. Extremely senaidive, will signal presence of certain objects buried several feet below ground! No knowledge of radio or electronics required. Can be built with ense in one short evening by anybody from nine $\begin{aligned} & \text { yoars of age upwards, } \\ & \text { with the wonderfully clear, easy to }\end{aligned}$ follow, atep-byertep tulls, easy to
 ONLY l'aes standard PP3 battery. คの, $\cap 7$ no moldering necessary. Elze f detector head $131^{\circ} \times 10^{\circ}$ $\times 21^{\prime \prime}$ Great domand axpecsed at thit romarkinbly low PIICe-ORDER WHILE
PRESENT LABT. All parts incase, nuts, screwr, wire, simple inst ructions, etc.,
etc. 0 NLY $29.87(47 / 6)$ $+\quad 27 \mathrm{p}(5 / 6) \mathrm{p}$ \& p . Sectional handl illnatrated 75 p (15/-
extra). Parte available eparately. Mad

BUILD 5 RADIO AND ELECTRONIC
 PROJECTS . (39/6) Amazing Ravlio Construction selt Become a radio expert Ior 21.97 (39/6). A complete Home Radio Courbe. North inrluding simple instructions for each denign. Hlustrated step-by-step oudspeaker, personal Presentation Box 87 p
 (tely) mo aldering neceasary. Send only $21 \cdot 97(39 / 6)+23 p$ (4/6) p \& p.

SHORTWAVE TRANSISTOR
 RADIO
 ONLY

Can be built in one evening

At last: Ater trying countless circulth masching for oasy billd, work firat-time ahort waver. Giving advanced world-wide perlormanct, we chose this "Sky Roma's Anyone from 9 years up can follow the atep-by-step, easy-as-ABC, fuliy illuatrated necesary. 76 stations logged on rod aerial in 30 mins - Rnasia, Africs, U8A, 8witserland, etc. Experience thrills of world wide news, sport, music, etc. Eaverdrod on

 cabinet, acrewa, inatructions, etc. (Parts available separately.)

SOOTHE YOUR NERVES, RELAX WITH

THIS

AMAZING

CUTS OUT NOIBE POLLUTION-SOOTHES YOUR NRRVRS: DOn't underestimate the uses of this fantastic new design-the RELAXATROF is bailcally a pink noise generator based on avalanche operated tranalators eery inter being able to mask out extraneous unwanted sounds, it has othe mysteriously relaxing, a large part of this feeling of well-being can be directly traced to the sound of talling raindropst-a well-known type of pink noise. A group of Dentists have experimented on patients with this
 pink noise - NO ANA ESTBETICS WERE USED! The nolise ostensibly created a moat definite reactionon these patients nervoun systems with the results that their pain systems were blocked. IF YOU WORK IN HOISY OR DIETRACTDG SDRROUNDINGS. IP YOU HAVE TROUBLE CONCENTRATHIG, IP YOU FERL TENSED, UNABLE TO RELAX-then
build this fantastic Relaxatron. Once used you will never want to be wlthout it-use this amazing pink noise generator build this fantastic Relaxatron. Once used you will never want to be without it-use this amazing pink noise generator
whenever you feel uneasy, can't relax or wish to concentrate. TAKE IT ARY WHERE, pocket aized Usea atandard PPa batteries (current used so small that battery life is almost ahelf-life). CAN BE EA8LLY BULLT BY ANYONE OVER 12 TEARS OF AGE using our unique, step-by-step, fully illustrated plans. No soldering necessary. All parts including cane, a pair of crystal phones, Components, Nuts, Bcrews, Wire, etc., etc. no soldering. Send only $42-25+25 \mathrm{p}$ ($45 /-$ $+5 /-$) p. \& p. (Parts available separately.)

GET A GOOD NIGHT'S SLEEP-EVERY NIGHT! INGENIOUS ELECTRONIC only

SLEEP INDUCER $£ 2.75$

(55/-)

CAN'T GLEEP AT MIGETSP DO YOU WAEE UP IN THE MIGHT AND GAMT GET OFP TO SLEEP AGAIF FOULD YOU LIKE TO BE GENTLY SOOTEED ORF TO SATISFYANG BLEEP EVERY MIGHT P Then build this ingenious elecsoothing audio-frequency sounds, continuously repeated -but as time goes on the sounds gradually become less and less -until they eventually cease altogether, the effect it has on people is amazingly very simitar to hypnosis. A control is provided for adjusting the length of times, etc., all transistor, can be built by anyone over 12 years of age in about two hourn. No knowledge of electronics or radio needed. Extremely slmple, easy-to-follow, atep-by-atep, fully itluatrated instruc hons included. No soldering neccssary. Works ofl standard batteries-extremely economical. size only $3^{\prime \prime} \times 41^{\prime \prime} \times$
 BE A GREAT DEMA
avallable separately).

REAL WORKING ELECTRONIC ORGAN

 cre mouih-organ sype reeds, itc. Elght months were spent in organ and testing this superb, revolutionary electronk contained loodepransistorised - no valves. Proper sols octaves-play the "Yellow Roze of Texas", play "Silent Night" play "Auld Lang Syne", play lots and lofs of similar tures on organ it's certainly no tiny thing, it messures $13!\times 10 \times 24^{\prime}$ You have the thrill and excitennent of building it together with the pleasure of playing a real, live, throbbing electronic organ Take it anywhere-play if anywhere. HO PREVIOUS K10W LEDGE OF ELECTRONICS NEEDED-NONE WHATEVEB No soldering necessary, it really is an simple as ABC to make. tep-by-stom nine reara upwards cen build it obsjly in one ahort ovening following the fully illustrated case, loudspeaker, traneistors, condensers, resistors, knobs, transformer, volume control, wire, nuts, acrews, simple (but uil) inatructions, etc., etc. Uses standard battery (parta avallable separately). Have all the pleasure of making it
courself, finigh with an exciting gift for someone.

Audio Fair

A brief look at some recent developments in the hif if industry By M. A. COLWELL

AUDIO by definition means pertaining to sounds, so perhaps one could be forgiven for expecting noises resembling several kinds of phenomena. And since the Audio Fair has been described as an exhibition of home entertainment, perhaps we could likewise expect to see an assortment of musical instruments, television and radio, or-dare we sug-gest-electronic games. However, television was strictly banned by the organisers on the day of opening, so how far should we define "home entertainment" in terms of electronics?

Today’s Audio Festival and Fair is a far cry from that high fidelity social function erstwhile held in luxury carpeted surroundings at the Hotel Russel and previously at the Waldorf.

LONDON OR BRIGHTON?

Because of overcrowding, the Audio Fair organisers were probably right in finding an alternative venue. Consequently in 1969 we heard some convincing arguments that Olympia was suitable; that acoustically treated demonstration rooms could be successful.

Give them their due, Rex Hassan and company tried hard amid tremendous criticism, but a great deal can be learned by closer examination of the Fair as a whole and its venue. and it is quite obvious that some more hard thinking must be done to rate this exhibition as near a success as can be achieved.

Now is the right time to take stock of such irritating discomforts as would not be tolerated in any hotel premises. Among these, I place catering at the head of the list, litter strewn gangways second, and poor ventilation third. And oh! that dreadful train service!

In the previous week I sampled the exhibition at Brighton called Inter/Nepcon and subsequently conclude that these premises must supersede Olympia by decades. Apart from the sweet ozone and spotless terraced houses nearby, the Metropole has every reason to be proud of its conference and exhibition centre and I recommend it wholeheartedly to organisers of such as the size of the Audio Fair.

BROAD RANGE

The range of exhibits at this year's Fair has broadened to include medium fi, low fi, and even (if it is possible) no fi at all. The extension of range to include electro-musical gimmicks, record and tape shops, nameplates, and the not-so-high-as-it-used-to-be-fi inevitably lowers the general image that we have become so accustomed to in the past.

The overall technical standard of equipment and products shown was generally interfered with by infiltration of medium fi, but well established high quality products were still to be found.

RANK INFLUENCE

One interesting point to emerge is the influence of big business on the market through an established small company name. I am referring in particular
to the Rank Organisation whose acquisition of Wharfedale and Leak has already been geared towards mass marketing.

Although Harold Leak (now retired) did produce most of the parts that make up a complete hi fi system. he did not market a transcription unit. Logical first step then for Rank was to fill this gap, but not from their own stable. They have contracted with the Lenco Company of Switzerland to sell transcription units that they call the "Delta". Believe it or not, these are identical to the established Goldring Lenco GL75.

At least Rank recognises quality when it comes to such deals but it is a smack in the eye for the reputation of the former all-British Leak company. A Shure M75 magnetic cartridge is fitted to the Lenco pick-up arm, which has the usual cueing.

NEW SPEAKER SYSTEMS

Another îrst timer from Ferrograph, who previously preferred to specialise mainly in the high quality tape recording field, is a loudspeaker system. It is a three-unit assembly designed in collaboration with a university acoustics team, and uses two Goodmans treble units and one KEF B139 woofer.

Ferrograph state that their sophisticated crossover network eliminates what little coloration exists outside the pass bands. From this we can deduce that bandpass cut-off is very sharp so that interaction between speaker units is minimal. They quote a "sensibly flat" response from 30 Hz to 15 kHz .

Metrosound Audio Products Ltd. also announces a new speaker, the Duplex 25, to match their new ST60 amplifier (or any other make). With one conventional cone type unit for the low frequency end, they have incorporated a new electrostatic unit based on a new patent specification. High frequency dispersion is said to be improved by mounting this behind a lenticular grille.

The Duplex 25 is $27 \frac{1}{2}$ in high and can handle 25 watts. Nominal impedance is 8 ohms and frequency range is quoted without reference level as 40 Hz to 18 kHz . Price at time of going to press $£ 52$.

HI FI IN KIT FORM

Looking for further outlets for their existing speaker kits, EMI Sound Products Ltd. are now marketing a range of enclosures in kit form from $£ 5.80$ for a compact bookshelf model to $£ 29.50$ for a large floor standing model. A hammer and screwdriver are the only tools needed to assemble these; the baffle-boards are already cut to suit the appropriate kits.

Heath (Gloucester) Ltd., who sell the famous Heathkits, announce a new tuner-amplifier kit, the AR-2000. The tuner processes a.m. (L.W., M.W., and S.W.) and f.m. mono and stereo broadcast signals, using up-to-date techniques, including f.e.t front end and integrated circuits for the f.m. i.f. and decoder stages. Ceramic filters are aiso used.

The kit price at $£ 89.90$ is competitive with equivalent commercial ready made units, but is still a little expensive for a kit.

Another well established name in hi fi circles is looking to expansion at a rapid rate. No less than eight new products were shown on the Goodmans stand.

Well known for its wide range of quality loudspeakers, they are competing forcefully with the likes of the Rank Organisation. The new items include an attractive a.m./f.m. tuner amplifier the Model One-Ten at $£ 135$; the Module 80 Compact, a combined f.m. stereo tuner amplifier of high performance with record player type GL75 at $£ 165$; the Dimen-sion-8 bi-directional speaker at $£ 69$ teak, $£ 75$ white finish.

Goodmans also introduced a speaker kit, the DIN20 incorporating an 8 in bass unit and an h.f. dome radiator with a crossover unit. This is a budget price kit of excellent quality for those with limited financial resources at $£ 12.54$ including purchase tax. Goodmans also expect to, release their new professional stereo tape recorder in 1972 at a price in the region of $£ 400$. The prototype shown at the Fair looks very impressive and uses slider controls, twin capstans, and switchable 2 -speed NAB or DIN equalisation.

Duplex 25 electrostatic and cone speaker from Metrosound

Metrosound ST60 amplifier

Heathkit tuner amplifier type AR-2000

BELT DRIVE

Past experiments on belt drive turn-tables have met with cynical comment, but progress to date is brought to fruition in the GL85 integrated transcription turntable unit and pick-up arm from Goldring.

The turntable is driven by a "non-stretch" flat belt from a low speed 16 -pole synchronous motor. Motor speed is accurately controlled by an electronic stabiliser circuit. Two speeds are available and an illuminated stroboscope indicates speed accuracy.

An electronic sensing device raises the pick-up arm at the end of the record and switches off the motor. This unit is expected to be available in January and is to be supplied complete with plinth for $£ 72.78$ including purchase tax.
The Connoisseur BD2 turntable at $£ 32$ now has push button speed change.

STEREO PHONES

Among headphones on show, which seem now io be a common occurrence for demonstration at the Fair, Koss were dominant with the excellent PRO4AA stereo phones popping up on several stands, not the least being our own. The first four-channel headphones were also demonstrated by Tape Music Distributors Ltd. the distributors for Koss. They are the $\mathrm{K}_{2}+2$, using four separate dynamic drivers, and are likely to sell for around $£ 45$.
A.K.G. introduced the K180 (at $£ 30$) high quality headset with balancing volume controls.

Wilmex were demonstrating the Japanese Stax SR3 electrostratic headset with their power driver switch-over unit type SRD5. At 420 grams these are comparatively lightweight. The SRD 5 will power two pairs of SR3 phones. A complete set of one pair of phones and one power unit costs $£ 45 \cdot 40$; a second pair of phones would cost $£ 31$. In spite of reassurances I don't particularly care for high voltages so close to my ears.

DEMONSTRATIONS

The Hi-Fi Theatre is an excellent way of getting to know people and several personalities in the world of audio engineering, with a selection of magazine writers, gave some fascinating demonstrations, albeit, we are pleased to record, without commercial prejudice.

This is an essential alternative to an otherwise biased demonstration that may be set up on manufacturers' stands. The range was very wide and we were pleased to note the "free-for-all" session on the Friday where various magazines collaborated to help the public audience with their hi fi problems. This session was later edited and broadcast on BBC Radio London in November.

WE WERE THERE

What of Practical Electronics? Judging by the sales of P.E. Gemini Amplifier reprints, especially at the exhibition, this project is still a very popular do-it-yourself amplifier design.

The amplifier, originally shown last year, was joined this year by its new companion the P.E. Gemini Tuner, a stereo f.m. tuner of compatible design, with integrated circuit phase lock loop decoder and high selectivity ceramic filters.

Full details of this new design will appear in Practical Electronics very soon.

Also represented on the P.E. stand was our new companion Everyday Electronics, which showed among other items, the integrated circuit record player, that appeared in the November issue.

Finally, a note for your new 1972 diary; the other London audio exhibition, Sonex at Skyway Hotel, near London Airport, will be open to the public March 24 to 26 inclusive, preceded by two "trade only" days.

LARGE STOCKS GOOD SERVICE ATTRACTIVE DISCOUNT

Satisfaction Guaranteed

EIEGTROVALIE Electronic Componen t Specialists

SEMI-CONDUCTORS
 Brand new, guaranteed to spec. No seconds or surplus.

1840 K 10	175p	2N3055		40	55p	24	24p	BCI84L	$11 p$	BFY90	104p	OA95	$6 p$
1 N 914	5p	2 N 3325	53 p	40362	68 p	AFI25	24p	BCI86	42p	B5 $\times 20$	16 p	OA200	p
1N316	10p	2 N 3405	60p	40406	75p	AFI26	22p	BC212L	$16 p$	BY164	45p	OA202	0 p
IN1763A	24p	2N3663	52p	40408	70p	AF127	22p	BC213L	16 p	BY238	18 p	OCI9	50p
IN3754	20p	2 N 3702	13p	40412	$67 p$	AF139	33 p	BC214L	$16 p$	BYX38.		$\bigcirc \mathrm{OC} 25$	42p
IN5399	$21 p$	2N3703	13 p	40430	140p	AF239	$36 p$	BC257	9 p	300	38p	OC28	70p
1 N 5402	28p	2N3704	13 p	40432	185p	AL102	77 p	BC258	8 p	BY×38-		OC29	76p
IN5407	45p	2N3705	$13 p$	40512	195p	ASY26	27p	BC259	9 p	300R	38p	OC35	60p
1544	9 p	2N3706	13 p	40602	52p	ASY27	$36 p$	BC267	17p	C407	17 p	OC36	65p
15940	5 p	2N3707	$13 p$	40669	140p	ASY28	27p	BC268	$15 p$	C762	19p	OC41	42p
2N696	17p	2 N 3708	10p	AC107	46p	ASY29	$36 p$	BC269	17 p	Cl 412	102p	OC_{2}	46p
$2 N 697$	$18 p$	2N3709	$11 p$	AC126	20p	AUll	97p	BC300	49p	E2512	164p	OC44	42p
2N706	12 p	$2 N 3710$	$13 p$	ACl27	20p	B30C250	24p	BC301	$37 p$	EA 403	10p	OC45	38p
2 N 930	29p	2N3711	$13 p$	ACl28	20p	B30C550/		BC303	60 p	EB383	10p	OC70	$21 p$
$2 \mathrm{NII31}$	29p	2N3731	120p	ACl41H	34p	300	34p	BCY30	60 p	EC401	18 p	OC71	38p
2N1132	29p	2N3794	15p	ACI4IHK	37p	B1912	66 p	BCY31	75p	EC402	17p	OC72	38p
2N1302	19p	$2 N 3819$	23p	AC142H	25p	85041	72p	BCY70	$18 p$	ER900	54 p	OC75	40p
2 N 1303	19p	2N3820	53 p	ACl42HK	29p	BA102	25p	BCY71	33p	MC140	25p	OC81	$25 p$
2 Nl 304	26p	$2 N 3904$	$35 p$	AC153K	22p	BA130	$22 p$	BCY72	15p	M1481	120p	OC8ID	25p
2N1305	26p	2N3906	${ }^{35}$	ACI76	$16 p$	BA145	27p	BD121	105p	MJ491	135p	OC83	$25 p$
2N1306	33 p	2N4036	55p	ACI76K	$17 p$	BAl55	15p	BD123	105p	M1371	108p	OC84	25p
2N1307	33 p	2N4058	13 p	AC187K	$17 p$	BAl56	13p	BDI24	100 p	MJE521	92p	P346A	26p
2N1308	$36 p$	2 N 4059	10p	ACI88K	23p	BAXI3	13 p	BDI30	50p	MJE2955	165p	S2CNI	10p
2N1309	$36 p$	2N4060	$11 p$	*ACI87K/		B8103/B	16 p	BDI31	79p	MJE3055	82p	SCI41D	187p
2N1596	102p	2 N 4061	$11 p$	188K	40p	BB103/G	16p	BD132	86p	MPF102	37p	SC146D	247p
2N1599	122p	$2 N 4062$	12p	$A C Y 17$	$31 p$	BC107	12 p	BD135	38p	MPS653!	$35 p$	SDI	10p
2 N 613	${ }^{23} \mathrm{p}$	2N4124	18 p	ACY18	19p	BC108	$11 p$	BDI36	44p	MPS6534	30 p	SD4	12p
2NI711	26p	2N4126	27p	ACYI9	23p	BC109	12p	BDI41	227p	NKT211	25p	$\checkmark 763$	28p
2 N 1893	54p	2N4284	$15 p$	ACY20	20p	BC122	$21 p$	BDY20	92p	NKT2:2	25p	W106BI	45p
2N2147	95p	2 N 4286	15 p	ACY21	$21 p$	BC. 125	15 p	BFII5	23 p	NKT213	25p	Wio6DI	83 p
2N2218	$34 p$	2N4289	$15 p$	ACY22	$21 p$	BC126	22p	BF167	18 p	NKT214	23p	WO2	40p
2 N 2218 A	44 p	2 N 4291	15p	ACY39	63 p	BC140	30p	BF173	19p	NKT217	50p	WPO2	95p
2N2219	38p	2N4292	15p	ACY40	17 F	BC147	10p	BF177	25p	NKT261	$21 p$	ZT×300	14p
2N2219A	53p	2N4410	24p	ACY4I	$18 p$	BC148	9 p	BF178	$31 p$	NKT271	18p	ZTX301	$16 p$
2 N 2270	62p	$2 \mathrm{~N}_{4} 443$	$111 p$	ACY44	$31 p$	BC149	10p	BF/94	14p	NKT274	18p	ZTX302	22p
2N2369A	19p	2N4906	305p	ADI40	63 p	BCI53	19p	BF195	15 p	NKT275	23p	$2 T \times 303$	22p
2 N 2483	35p	2N4915	215p	ADI42	50p	BC154	20p	BF244	30p	NKT403	65p	Z 7×304	27p
${ }_{2} \mathrm{~N}_{2} 484$	42p	2 N 4991	62p	ADI49	58p	BC157	12 p	BF254	14p	NKT404	$61 p$	2TX330	23p
2N2646	47 p	2N5062	$61 p$	ADI50	50p	BC158	$11 p$	BF255	15p	NKT405	79p	2TX331	27p
2 N 2904	38p	2N5088	38p	ADI61	33p	BC159	12 p	BFX18	90p	NKT603F	30p	ZTX500	18p
2N2904A	42p	2N5163	25p	ADI62	$36 p$	BC167	$11 p$	BF×29	$31 p$	NKT613F	30p	$2 \mathrm{~T} \times 501$	$21 p$
2 N 2905	44p	2N5172	18p	*AD161/		BC168	10p	BFX84	25p	NKT674F	24p	ZTX502	$25 p$
2N2905A	47 p	2 N 5192	125p	162	60p	BC169	$11 p$	BFX85	32p	NKT677F	22p	ZTX503	22p
2 N 2924	20p	2 N 5195	147p	AFII4	24p	BC177	$14 p$	$8 \mathrm{~F} \times 87$	29p	NKT713	30p	Z $T \times 504$	52 p
2 N 2925	22p	$2 N 5457$	49p	AFIIS	$24 p$	BC178	13 p	BFX88	26p	NKT773	25p	ZTX530	27p
2N2926 2N3053	$11 p$	2N5459	49p	AFII6	22 p	BC 179	$14 p$	BFX50	23p	OA47	8 p	ZTX531	33p
2N3054	27p	4025 4	71p 89	AFl17 AFII	22p	BC182L BCI83L	$11 p$ $10 p$	BFY5 BFY52	20p	OA90 OA91	6p	at	

CARBON TRACK POTENTIOMETERS
Single gang linear 100Ω to $22 \mathrm{M} . \Omega \mathrm{I} \mathrm{R}$; Single gang log, Single gang linear 100Ω to $22 \mathrm{M}, \Omega$ l2pi Single gang log,
$4.7 K \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$, $12 \mathrm{p} ; \mathrm{Dual}$ gang linear $47 \mathrm{~K} \Omega$ to $22 \mathrm{M} \Omega$. 42 p ; Dual gang log, $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$, 42 p ; Log/antilog, IOK, with 1 A D.P. mains switch antilog, lok only. 42 p Any type Only decades of 10,22 and 47 available in ranges quoted.

CARBON SKELETON PRE.SETS

Small high quality, type PR linear only: $100 \Omega, 220 \Omega, 470 \Omega$ $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}$
$5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5 p each.

COLVERN 3 watt Wire-wound Potentiometers, $10 \Omega, 15 \Omega$,
$25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega, 1 K, 15 K, 2.5 K, 5 K$, $10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{p}$ e each.

EQUIVALENTS HANDBOOK
40 p nett. (P \& $P 3 p$ if ordered alone.)

CAPACITORS

MULLARD polyaster C280 serie $\begin{array}{lllll}250 \mathrm{~V} & 20 \% & 0.01, & 0.222, & 0.033,\end{array} 0.047 \mathrm{3p}$ $5 p$. 10% and up to $22 \mu \mathrm{~F} 24$ p.

MULLARD SUB-MIN
ELECTROLYTICS
C426 range, axial lead $\ldots . .6 \mathrm{bp}$ each
Values $(\mu \mathrm{F} / \mathrm{V}): 0.64 / 64$: $1 / 40.6125: 2.5 / 16$ Values (μ F/V): $0.64 / 64 ; 1 / 40 ; 1.6 / 25 ; 2.5 / 16$; $\begin{array}{llllll}2.5 / 64 ; & 4 / 10 ; & 4 / 40 ; & 5 / 64 ; & 64 / 6 \cdot 4 ; & 64 / 25 ; \\ 8 / 4 ; 8 / 40, & 10 / 25 ; & 10 / 16 ; & 10 / 64: & 12 \cdot 5 / 25 ;\end{array}$ $16 / 10$;
$500 / 2$.

LARGE CAPACITORS
High ripple current types: 1000/25, 28p 1000/50, 4/p: 1000/100, 82p; 2000/25, 37p 77p; 2500/70.' 98p; 5000/25, 62p; 5000/50. E1.10; 5000/100, $\mathbf{E 2 . 9 1 ; 1 0 0 0 0 / 5 0 , ~} \mathbf{E 2 . 4 0 \text { . }}$ For full range see catalogue
Prices ore in pence each for same ohmic value and power roting. NOT mixed values. (Ignore

RESISTORS 10 \% - 5 \% - 2 \%

Code	Power	Tolerance	Range	Values available
C	$1 / 20 W$	5%	$8.2 \Omega-220 \mathrm{~K} \Omega$	$E 12$
C	$1 / 8 W$	5%	$4.7 \Omega-470 \mathrm{~K} \Omega$	$E 24$
C	$1 / 2 W$	10%	$47 \Omega-10 M \Omega$	$E 12$
C	$1 W$	5%	$47 \Omega-10 M \Omega$	$E 24$
C	$1 / 2 W$	10%	$47 \Omega-10 M \Omega$	$E 12$
$M O$	2%	$10 \Omega-1 M \Omega$	$E 24$	
$W W$	$1 W$	$10 \%+1 / 20 \%$	$022 \Omega-3.9 \Omega$	$E 12$
$W W$	$3 W$	5%	$12 \Omega-10 K \Omega$	$E 12$
$W W$	$7 W$	5%	$12 \Omega-10 K \Omega$	$E 12$

Appointed Distributors for SIEMENS

Capacicors, I. Cs, etc

SIEMENS 5\% TOLERANCE POLYCARBONATE CAPACITORS

250 V up to $0.1 \mathrm{mF}: 100 \mathrm{~V} 0.1 \mathrm{mF}$ and above $0.01,0.012,0.015,0.018,0.022,0.027 \ldots 5 p$ $0.033,0.039,0.045,0.056,0.068,0.082,0.1$, $0.12,0.15,0.18,0.22$
$0.27,7 p ; 0.33,0.39 .9 \mathrm{~d} ; 0.47,10 p ; 0.56$. 13p; 0.68, 15p.

MAIN LINE AMPLIFIER Power supply list, nett $\$ 12 \cdot 60$.
Matching pre-amp Kit.
(Mag. or Xeal input), nett $£ \mathbf{3 . 1 0}$.
2 or Stereo to build in your own cabinet, etc. controls, power unit, nete ©38.40.

VEROBOARD

 0.1 matrix: $2.5 \mathrm{in} \times 3.75 \operatorname{in} 23 \mathrm{p}$; $3.75 \times 375 \mathrm{in}$,
$\mathbf{2 6 p ; 2 . 5 i n} \times 5 \mathrm{in}, 26 \mathrm{p} ; 3.75 \mathrm{in} \times 5 \mathrm{in}, 29 \mathrm{p}$.
0.15 m $26 \mathrm{p} ; 2.5 \mathrm{in} \times 5 \mathrm{in}, 26 \mathrm{p} ; 3.75 \mathrm{in} \times 5 \mathrm{in}, 30 \mathrm{p}$.
0.2 in matrix $5 \mathrm{in} \times 3.4 \mathrm{in}, 37 \mathrm{p}$. 0.2 in matrix 5 in x $34 \mathrm{in}, 37 p$.

PEAK SOUND ENGLEFIELD 840A at NEW LOW PRICE
Uniquely designed amp. $20+20 \mathrm{~W}$ RMS inco Q head phonesocket,erc. In makers cart
new with full guarantee RRP $£ 49.50$.
Our Special Price, nect $\mathbf{\$ 3}$-75 (Carr. \& packing free in U.K.)

NUTS, SCREWS, WASHERS, ETC

THE ELECTROVALUECATALOGUE 64 pages and cover. Packed with bargains, information and useful lines Post free 10p.

DISCOUNTS

10% on orders for components for
15% on orders for components for \&15 or more.
Prices subject to alteration without prior notice

POSTAGE AND PACKING

FREE on orders over 62. Please add 10p if orders under 62

Overseas orders welcome: carriage and nsurance charged at cost
U.S.A. CUSTOMERS
U.S.A. Customers are recommended to get in touch with ELECTRO-VALUE AMERICA, P.O. Box 27, Swarthmore, PA 1908.

Codes: $\mathrm{C}=$ carbon film high stability low loise WW = wire-wound Plessey
Values:
E12 denotes series: $10,12,15,18,22,27,33,39,47,56,68,82$ and their decades.
$51,62,75,91$ and their decades.

ELECTROVALUE Dept. Pelr

28 St. Judes Road, Englefleld Green, EQHAM, Surrey Phone: Egham (0784-3) B533 and 4757. Telex 264475 Hours: 9-5.30 daily, I p.m. Saturday

CU600 Low cost power supplies
 Circuit Integration have used their experience in

 power supplies - and new enlarged production facilities to bring you CU600 Series.- Outputs from 0-60v.
- Output Impedance 0.05 ohm.
- Integrated Circuit Stabilized
- All Silicon Semiconductors
- Short Circuit Protection
- Use in Series or Parallel
- Compact Design
- Rugged Construction with provision for Slide-In Stacking

At present there are six units in the range, providing outputs as follows:-

TYPE	OUTPUT	CURRENT
CU600A	$0-12 \mathrm{~V}$	0.5 A
CU600B	$0-30 \mathrm{~V}$	0.25 A
CU600C	$0-60 \mathrm{~V}$	0.1 A
CU600D	$15-0-15 \mathrm{~V}$	0.25 A
CU600E	$30-0-30 \mathrm{~V}$	0.1 A
CU600F	0 and $2-12 \mathrm{~V}$	0.5 A
Outputs are continuouslyvariable, except CU600F with output in IV switched steps		

Prices start at $£ 12.00$ per unit, subject to educational

and quantity discounts.
\qquad

PNTENTI RESU|ETWoos.

IMPROVING AMPLIFIER PERFORMANCE

| N their new British Patent 1232 324, Redifon Limited discuss multistage transistor amplitiers of the push-pull lype, capable of operating over a wide frequency range with coupling of the stages directly and by an inductive device with a view to improving performance.

BP 1232324

Redifon explain that it is already known that a pair of transistors can be biased into class A conditions and coupled by way of a transformer so as to drive a further pair of transistors biased into class B conditions. It is also known that a pair of transistors can be biased into class B conditions and directly coupled to a further pair of transistors biased also into class B.

But, according to Redifon, in the transformer coupled arrangement there is difficulty in providing a driver transformer for the class B stage with a sufficiently low leakage reactance to transfer power over a wide frequency band with litile distortion.

Various ways round problems like these have been suggested, but Redifon claim they have a novel idea in suggesting an amplifier with a first stage in class A and a second stage in class B, using an inductive device with a pair of tapped windings, arranged so that an output electrode of a transistor in the first branch of the first stage is connected to one end of one of the tapped windings, and an output electrode of a transistor of the second branch of the first stage is connected to one end of the other of these windings.

An input of a transistor in the first branch of the second stage is
connected to the tapping of the first tapped winding and an input electrode of a transistor in the second branch of the second stage is connected to the tapping of the other one of the tapped windings.

The two windings of the inductive device are connected in a sense such that power for driving each transistor of the second stage is provided by both the transistors of the first stage.

Redifon give a circuit diagram for an amplifier of this type and the specification also carries some specific component values. Because of the load sharing by the transistors of the first stage, regulation is improved and distortion due to the effect of intermittent load imposed by each second stage transistor, is reduced.

SYNTHETIC ANIMAL SOUNDS

| N the name of Santa Rita Technology Inc. of California, BP 1228405 is particularly interesting because of its possible application to the projected airport at Foulness.

As is well known it is often necessary to rid airport runways of birds. This can be done by generating alarm signals, but, as Santa Rita explain, recording natural animal sounds and replaying them over a public address system is quite often only shortlived in its effect. The birds in
some strange way seem to get used to the recording and recognise it as phoney.
Their new invention is a system for producing synthetic animal sounds and in its simplest form it comprises a signal generator for generating carrier signals in the frequency range 500 Hz to $5,000 \mathrm{~Hz}$. The selected carrier is amplitude modulated by another tone in the range 50 Hz to 300 Hz and a straightforward electro-acoustic transducer is used to convert the modulated carrier signal into a sound signal.

The sound generator can be arranged to turn the modulated carrier signal on and off at a rate of one to five times per second either sharply or gradually. And it may also have a dither arrangement for dithering the frequency of the modulating means over a two-to-one range. Moreover, the carrier signal can also be dithered over a frequency range comparable to the frequency of modulation.

Consequently, it is apparently easy to vary the sound signal components and so avoid the birds getting used to any one signal.

The specification shows a block diagram of the basic layout. Some waveforms show how the "chirps" produced can be either in square wave or sinusoidal form.
Santa Rita claim special success in the diversion of red-winged blackbirds from a landing strip for jets with a $3,000 \mathrm{~Hz}$ carrier and a 100 Hz dithered random square wave amplitude modulation signal.

BP 1228405

market PLACE

leems mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

RECHARGEABLE BATTERIES

Although rechargeable nickel cadmium cells are now quite common. it is claimed that the latest range, type NCC, from Ever Ready can be recharged to half their nominal capacity in 60 seconds using standard HP2 cells.

Now available to the constructor, the prices vary according to capacity and quantity ordered. Typically a U2 replacement would cost in the region of $£ 2$ for a single cell but would be proportionately reduced for larger quantities.
Button cells are normally supplied for higher voltage work and typically a $4.8 \mathrm{~V} \quad 550 \mathrm{mAh}$ cell, as used in radio control, would cost approximately $£ 3 \cdot 30$.
Full technical details of the NCC range and stockists can be obtained from Ever Ready Company (Great Britain) Ltd, Special Battery Division. Hockley, Essex.

INVEST IN CATALOGUES

Time and again we get readers writing in asking where they can obtain certain items, ranging from resistors to infra-red emitting diodes. Apart from telling readers the source of supply we suggest that they should invest in some of the excellent components catalogues available from advertisers.

Typical of these are the latest component catalogues from such firms as: Electrovalue (64 pages, 10 p). Home Radio (Components) Led (315 pages, 50 p at shop or 70 p by post), Henry's Radio Lid. (350 pages, 40 p at shop. 55 p by post), LST Electronic Components Ltd (44 pages, no charge), and G. W. Smith and Co. (Radio) Ltd. (272 pages, $37 \frac{1}{2} \mathrm{p}$ at shop, $47 \frac{1}{2} \mathrm{p}$ by post).

The catalogues from Home Radio, Henry's and G. W. Smith contain special redeemable vouchers to help off-set the outlay for the catalogue.

The LST catalogue, available free, have added several new items to its opto-electronics section including inexpensive gallium arsenide light sources and planar silicon photo transistors.

Cell construction for the Ever Ready NCC range

There are many other interesting items listed in the LST catalogue including details of their data sheet service.

For our Midland readers, who often complain that they have to order from our London and Southern based advertisers. Hawnt \& Co. Ltd. publish an excellent components catalogue.

Their latest edition (122 pages) contains sections on semiconductors, integrated circuits, capacitors, resistors and ferrites. Further details can be obtained from Hawnt \& Co. Ltd., 112-114 Pritchett Street, Birmingham. B6 4EN.

VERSATILE PRINTED CIRCUIT BOARDS

The art of being able to pack a large number of circuit components on a small circuit board is a problem that plagues the professional as well as the amateur experimenter.

This problem has certainly been tackled, but whether conquered remains to be seen, by NIP Electronics with the introduction of a range of small printed circuit boards called "Nippiboards".

The board layout is based on the concept that transistor circuits follow common parameters for interconnection, with the addition of occasional requirements for feedback paths and cross-coupling. These paths are provided on the basic interconnection pattern, making it unnecessary to cut away the copper.

Link wires are kept to an absolute minimum and the board layout will, in most cases, follow closely the circuit diagram. This makes for easier circuit checking and servicing.

There are two ranges available: range " A " has an s.r.b.p. base and range " B " which has a fibreglass base. The s.r.b.p. base is cheaper and easy to work with, but the fibreglass base overcomes some of the problems of extreme atmospheric conditions. All boards are flux varnished to keep the copper clean and make soldering easier. Range " A " costs from 15p; range " B " from $18 p$ for one basic pattern.

Typical of the kind of circuits that can be built up on the boards are amplifiers, oscillators, tone circuits, switching circuits, timers, car and home electronic aids. One basic pattern will accommodate up to four transistor stages, whether they be pnp. npn., f.e.t. or u.j.t. devices. Multiple pattern boards are also available for more complex circuits.
To date, the range of boards is only designed for transistor work. But we understand that a range designed specially for integrated circuits will be launched in the near future.

Details of prices and complete range of "Nippiboards" can be obtained from NIP Electronics, P.O. Box 11. St. Albans, Herts.

Nippiboards from NIP Electronics

The Crab Nebula in the constellation of Taurus. Catalogue No. M1 (NGC 1952)

The remains of a nova observed by the Chinese in 1054 a.d.

It has been established that there are several pulsars and intense X-ray sources in the Crab Nebula. It is expanding at the rate of $1,100 \mathrm{~km}$ per second. The distance from the earth is about 3,500 light years

ASTRoNOMY IECHIIOUES

By F. W. Hyde

INN Part 3 the two aerial phase-switched interferometer was briefly described. It is now necessary to deal with this system in more detail since it is the next ste pin the project for those who have the space for it, as the same requirements as to base line apply here. The difference between the simple two-aerial system and the phase-switched system is the extra electronic units necessary and the aerial feeder modifications.

THE PHASE-SWITCHED INTERFEROMETER

When two aerials are spaced an exact number of wavelengths apart the aerial pattern will be such that the centre lobe will be at a maximum in the plane of symmetry. At this point the pattern is exactly the same as the simple interferometer, where the lengths of the feeders are exactly equal to each other. If now a length of cable equal to one half of a wavelength is introduced in one feeder line the pattern will change so that there is a displacement of the lobes. This displacement will bring the minimum point between lobes to the centre of the plane of symmetry, see Figs. 8.1a, b.

Fig. 8.1. The introduction of one half wavelength piece of cable irito one feeder line displaces the aerial pattern as shown in (b)

As the aerial is moved with the rotation of the earth the aerial pattern can be changed at a predetermined rate so that if there is a source of radiation in the aerial beam it can be scanned.- The alternate "putting in" and "taking out" of the half wave section which does the scanning can be done by using an electronic switching system.

PHASE SWITCHING SYSTEM

The number of times that the half wave section is switched in and out of circuit is largely a matter of choice, and to some extent depends on the purpose of the project under study. The circuits that will be given will have different speeds of switch operation, but the results on the recorder will not noticeably vary. The record that appears on the chart is an indication of the intensity of the radiation in terms of the modulation of that radiation at the switching frequency. If the switch frequency is, say, 900 Hz , then the radiation received by the aerial will have a component at 900 Hz superimposed upon it. This can be amplified and detected in the system and the result recorded on the charts as shown in Figs. $8.2 \mathrm{a}, \mathrm{b}, \mathrm{c}$. The pattern that appears is the result of the sequence through which the input to the receiver goes before being recorded. This sequence is as follows:

With the source of radiation in the centre of a lobe, that is at maximum sensitivity, the length of the paths will be equal and the aerials will each send to the receiver the same level of signal. The two levels will add together so that the receiver will receive twice the value of the signal. When the half wave section is added the paths now being unequal, the resultant signal will be zero. Therefore the actual amplitude of the signal reverses in phase with the adding and subtracting of the half wave section.

The switching frequency is controlled by a circuit which provides a square wave to operate the switch and at the same time to operate a synchronous detector which reverses the phase of the output in
unison with the switch. The block diagram Fig. 8:3 shows the individual units in which it will be seen that in addition to the units already in operation, there are four new ones.

The switch generator is a multivibrator of the usual type, and may be a part of the unit which includes the narrow band amplifier and the synchronous detector. The actual arrangement is left to the individual constructor.

Each unit will now be described separately, starting with the phase switch for the aerial. There are variations of this: one type being a hybrid junction used as a balanced network made up largely of coaxial cable, and a more simple diode switch unit. Both give similar results but the hybrid junction needs more skill to construct and has to be replaced as a whole when the frequency is changed.

Fig. 8.2. Chart recordings of the sun (a) quiet sun

(b) active sun, showing ionospheric effects at left side of recording

(c) very active sun at the time of a flare, again showing the effects of ionospheric disturbance

HYBRID JUNCTION PHASE SWITCH

, The hybrid junction phase switch consists of a network of coaxial cable with the switching diodes as part of the assembly, see Fig. 8.4. The action of this switch can be understood by following the diagram and remembering that a "short" looks like an open circuit when seen through a quarter wavelength of transmission line.

Fig. 8.3. Block diagram of the phase-switched interferometer. Units forming the original simple interferometer are shown in unshaded boxes

The switching frequency, which is provided by the switch frequency generator and its amplifier, is fed to the diodes via the choke and capacitor filter network. Suppose that the right-hand diode D2 is conducting, then at the junction of the quarter-wave section with the hybrid it will appear "open", the signal can therefore pass from the input via the first quarter-wave section through the three-quarter wave section to the output point and thence to the receiver.

At this time the left-hand diode D1 is non-conducting and therefore "open"; it appears as a short at the left-hand junction of the hybrid and no signal can pass. When the switch reverses then the left-hand side carries the signal and the right-hand side is blocked off.

Fig. 8.4. A hybrid junction phase switch circuit

telephone dials Standard Post Office type
Guaranteed in working order only 50p

8 RELAYS FOR EI

Various Concacts and Coil
Resistances. No individual
selection. Post \& Packing 25p

82	4	Photo Cells, Sun 8atteries. 0.3 to 0 5V. 0.5 to 2mA.	50p
B79	4	IN4007 Sit. Rec. diodes. 1,000 PIV lamp plastic	50p
B8t	10	Reed Switches. mixed cypes large and small	50p
B99	200	Mixed Capacitors. Approx quantity, counted by weight	50p
	250	Mixed Resistors Approx.	50p
$\mathrm{M7}$	40	Wirewound Resistors. Mixed types and values.	50p
H8	4		50p
H9	2	OCPTILight Sensitive Photo Transistor	50 p
Hi_{2}	50	NKTIS5/259 Germ. diodes, brand new stock clearance	50 p
His	10	oc71/75 uncoded black glass type PNP Germ	50p
Hi9	10	OC81/BID uncoded white glass type PNP Germ.	50p
H28	20	OC200/112/3 PNP Silicon uncoded TO-5 can	50p
$\overline{\mathrm{H}} \overline{2}^{9}$	20	OA47 ${ }^{\text {golc banded diodes }}$ coded MC52	50p

new unmarked untested packs

866	150	Germanium Diodes	50p
${ }^{883}$	200		50p
${ }^{884}$	100		50p
в36	50	Sil.	50p
日88	50	Sill Trans NPN PNP Eaulvio Ochoof	50p
B60	10		50p
H_{6}	40	250mW Zener Diodes	50p
H10	25		50p
HII	30	$\begin{aligned} & \text { Mat Series alloy " pnp } \\ & \text { Transistors } \end{aligned}$	50p
H/5	30	Top Hat silicon Recifiers,	50 p
H16	8	Experimenters Pak of Interated Circuits. Data supplied	50 p
H20	20		50p

MAKE A REY COUNTER FOR YOUR CAR The 'TACHO BLOCK'. This encapsulated block will turn any O-ImA meter into a linear and acturate rev. counter for any
car with normal coil ignition syscem.
$\mathcal{E 1}$ each

F.E.T. PRICE BREAKTHROUGH!!
This field effect transistor is the 2N3823 in a plastic encapsulation, coded as 3823 E . It is also an excel lent replacement for the 2 N 3819 Data sheet supplied with device 1.1030 p each, $10.50 \mathrm{25p}$ each, $50+20 p$ each.

BULK BUYING CORNER

NPN/PNP Silicon Planar Transistors. mixed, untesced similar to $2 N 706 / 6 A / 8, ~ B S Y 26-29.85 Y 95 A, ~ B C ~ Y 70, ~ e t c . ~$

Silicon Planar NPN Plastic Transistors, untested, simitar
silcon $2 \mathrm{~N} 3707-11$, etc., 64.25 per 500 : 68 per 1.000 .
Silicon Planar Diodes, DO-7 Glass, similar to OA200/202.
BAY $31-36, ~$ BAY31-36, 44.50 per 1,000 .

NPN/PNP Silicon Planar Transistors, Plastic TO-18,
similar to $\mathrm{BCI} 13 / 4 \mathrm{BCI} 53 / 4$ BF $153 / 160$ etc, 44.25 per 500: 68 per 1.000

OC44. OC5S Transistors fully marked and eested.
$500+$ at Bp_{p} each: $1,000+$ at Sp_{p} each
OC71 Transistors, fuily marked and tested, $500+$ at
6p each; $1,000+$ at $5 p$ each.
$3823 E$ Field efect Transistors. This is the 2 N 3823
Plastic Case, $500+11_{p}$ each; $i, 000+10 p$ each.
I amp Minizeure Plastic Diodes:
IN $4001,500+4 p$ each: $1.000+3 p$ each.
IN $4004: 500+$ at $5 p$ ash
IN4004, $500+$ at $5 p$ each. $1.000+$ at $5 p$ each,
IN4006, $500+$ at $6 p$ each. $1000+$ at $5 p$ each
IN $4006,500+$ at $8 p$ each. $1000+$ at $5 p$ each
in $4007.500+$ at $8 p$ each. $1,000+$ at $7 p$ each

FREE ${ }_{\text {cata }}^{\text {Cagus }}$ AND LISTS FOR
transistors, RECTIFIERS,
DIODES, INTEGRATED CIRCUITS, full pre-pak LISTS \& substitution Charts

CLEARANCE LINES

COLOURT.V. LINE OUTPUT TRANSFORMERS
Designed to give 25 kV when used with PL509 and PYSOO valves. As removed from colour receivers at the factory.

NOW ONLY 50p each
Quanticy
$\begin{array}{lllll}\text { Quannity } \\ \text { BBIOS Vapap Diodes } & 1-10 & 10-50 \quad 50\end{array}$
OC7I or 72 Fully Tesced
Unmarked
Matched Sets 1 -OC44 and 5p 5p 4p
2-OC45's. Per Sec. 25p 20p 15p
Matched Sets of OC45's ist
and 2 nd IF
Marked and Tested

- watt Zener Diodes 7.5 ,
- watt Zener Diodes 7.5
$24.27,30,36,43$ Volts

0 -wats Zener Diodes 5.1
$82,11,13,16,24,30$
$\begin{array}{lllll}100 \text { Voles } & & \text { 20p } & 17 p & 15 p \\ \text { Micro Switches, S/P, C/O } & \text { 25p } & \text { 20p } & 15 p\end{array}$
I-amp Bridge Rec's 25 -volt 25p 22p 20p
INTEGRATED CIRCUITS
SL403D Audio Amp.3. Watts 2.00 1.95 1.80
709 C Linear Opp. Amp. 50p 40p 35p
Gates. Factory Marked and
Tested A.E.I. 25p 20p
K. Flip-Flops Factor
A.E.I.

PA234 I-watt Audio Amp. $\quad \begin{array}{llll}40 p & 35 p & 30 \mathrm{p} \\ 1.00 & 90 \mathrm{p} & \mathbf{0 0}\end{array}$ $\begin{array}{llll}\text { UL914 Dual } 2 & \text { I/P Gate } & \text { 1.00 } & \text { 90p } \\ \text { 40p } & \text { 35p } & 30 p \\ 30 p\end{array}$

LOW COST DUAL INLINE I.C.
SOCKETS
14 pin cype at 15 p each
16 pin type at 16 p each.
pin type al 16p each.

BOOKS

We have a large selection of Reference and Technical Books in stock
These are fust two of our popular dine
B.P.I Transistor Equivalents and

This includes; many thousands of British 40p U.S.A.. European and C.V.equivalents. The lliffe Radio Valve \& Transistor
Data Book 9th Edition:
Characteristucs of 3.000 valves and tubes. 4.500 Transiscors. Diodes, Rectifiers and send for lists of these English publications.
 NAME.
adoress

MINIMUM ORDER SOP. CASH WITH ORDER PLEASE. Add 10 p post and packing per

techinical training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further yoür technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- Radio Amateurs' Examination
- Radio Operators' Certs.
- General Certificate of Education, etc.

Now available, Colour T.V. Servicing

Examination Students coached until successful NEW
 SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics Member of the ABCC

Accredited by the CACC

VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!
SETS $\begin{aligned} & 1 \mathrm{RL}, 185,1 \mathrm{~T} 4,384, \text { 3V4, DAF91, DF91, DK91, DL92, DL94. } \\ & \text { Set of } 4 \text { tor } £ 1.02 \text {. DAF96, DF96, DK96, DL96, } 4 \text { tor } 41.48 \text {. } . ~\end{aligned}$

1 R 5	-28	30 Cl	. 28	DY87	. 24	EL500	-62	Pcl82	-32	UABC80	. 32
185	-22	30 CL 5	. 58	DY802	. 35	EM80	. 41	PCL83	. 57	UAF42	. 51
1 T 4	-16	30 C 17	. 76	EABC80	. 32	EM81	.41	PCL84	. 84	CBC41	- 52
384	-26	$30 \mathrm{C18}$. 61	EAF42	. 50	EM84	. 32	PCL 85	. 38	UBF80	$\cdot 34$
3 V 4	$\cdot 37$	30 F 5	. 64	EB41	. 40	EM87	$\cdot 34$	PCL8	. 38	U B F'89	-32
5U49	. 31	30 FL 1	. 81	EB91	$\cdot 11$	EF51	-33	PCL88	. 65	UCC84	-33
5V4G	- 25	30 FL 12	.20	EBC33	. 40	FY86	,49	PCL800	$\cdot 75$	UCC85	-35
5Y3GT	. 28	30 FL 14	. 88	EBC41	. 54	EZ40	. 43	PENA4	. 77	UCF80	-38
524G	. 85	30LI	. 29	EBC90	. 22	EZ41	. 43	PEN 36 C	. 20	CCH42	-58
6/30L2	. 54	30 L 15	. 57	EbFro	. 22	EZZ80	-22	PF L200	$\cdot 53$	CCH81	- 38
6AL5	-11	30 L 17	. 67	EBF89	. 29	Ez81	23	PL36	. 49	UCL82	- 32
6AM6	-13	30 P 4	. 57	ECC81	-17	GZ30	. 35	Pl81	. 44	CCL83	- 55
6AQ5	. 22	30 P 12	. 72	ECC8 2	$\cdot 20$	(:Z32	. 40	PL8/A	. 48	CF41	. 56
6AT6	, 20	30 P 19	. 57	ECC83	. 35	O234	. 48	PL83	.31	CF89	- 30
6 A16	. 20	30 PL 1	. 83	ECC85	. 26	KT41	$\cdot 77$	PL83	- 3	CL41	. 57
6BA6	-20	30 PL 13	. 75	ECC804	-54	KT61	. 55	PLX4	$\cdot 30$	UL44	£1.00
68E6	. 21	$30 \mathrm{PL14}$. 65	ECF80	-27	KT66	$\cdot 78$	PL500	. 63	CL84	- 30
6BJ6	. 41	30 PL 15	. 80	ECF8:	-26	LN319	-63	PL504	. 68	${ }^{1} \mathrm{M} 184$	-22
6BW7	. 52	35L6GT	. 45	ECH3-	. 30	LN329	. 72	PM84	. 35	CY41	42
6CDAG	1.07	35 W 4	. 25	ECH42	. 81	LN339	.63	PX25	. 95	UY85	- 25
6 F 14	. 40	$35 Z 46 T$. 25	FCH81	. 29	N78	. 87	PY32	. 35	VP4B	-77
6 F 23	. 68	807	. 45	ECH83	. 40	P6il	. 40	PY33	. 55	Z77	-22
6 F 25	. 53	6043	. 82	ECH84	. 38	PABC80	$\cdot 34$	PY81	. 25	Tranmi	
6K7G	-12	$\mathrm{AC/YP2}$. 77	ECL80*	.30	PC86	47.	PY82	. 25	AC107	$\cdot 17$
6 KBG	$\cdot 17$	B349	. 65	ECL82	$\cdot 31$	PC88	. 47	PY83	. 28	AC127	-18
6Q7G	. 27	B729	. 62	ECL86	-35	PC96	$\cdot 42$	PY88	-33	A DI40	-37
68N7GT	. 30	CCH35	. 67	EF39	. 38	PC97	. 39	PY800	. 34	A F'115	- 20
$6 \mathrm{V6G}$. 23	CY31	. 30	EF41	-60	PC900	-31	PY801	$\cdot 34$	AF116	. 20
6V6Gt	. 31	DAF91	. 22	EF80	. 23	PCCR4	. 29	R19	. 30	AF117	- 20
6×4	-23	DAF96	. 38	EF85	-28	PCU85	. 25	R20	. 56	AF118	. 48
6X5GT	. 28	DF33	. 38	EP86	-30	PCess	. 40	(125	. 64	AF125	-17
787	. 33	DF91	. 16	EFr9	-26	PCC89	. 45	प'26	. 56	AF197	$\cdot 17$
10P13	. 58	DF96	. 36	EF91	$\cdot 13$	PCC'189	. 48	T47	. 84	OC26	-25
12AT7	$\cdot 17$	DH77	. 20	Er9\%	-65	PCC805	- 56	149	. 56	OC44	$\cdot 12$
12AL6	. 20	DK32	.33	EFIA3	. 28	PCF80	. 28	$1{ }^{+10}$	- 28	OC45	. 12
12AU7	. 20	DK91	. 28	EF184	. 31	PCF82	. 31	U5:	.31	OC71	. 12
12AX7	.22	DK93	. 38	EH90	$\cdot 35$	PCP'86	. 45	178	. 24	OC72	-12
19BG6G	-87	DK96	. 38	EL33	. 55	PCF800	. 58	V191	. 59	0 C 75	. 12
20F2	- 77	DL35	. 40	EL34	. 45	PCF801	. 28	1193	. 42	0 C 81	12
20 P 3	$\cdot 77$	DL92	. 26	EL41	. 54	PCr\% ${ }^{\text {P2 }}$. 40	y251	- 84	OC8ID	-12
20 P 4	. 92	DL94	. 37	EL84	. 23	PCP80́	. 81	V301	. 38	Ors?	- 12
25L6GT	-20	D L96	. 38	EL90	. 26	PCF806	. 56	L329	-86	OCP起	. 12
$25 \mathrm{C} 4 \times \mathrm{T}$. 57	DY86	. 24	EL95	. 33	PCF808	. 68	C801	. 80	OC170	22

READERS RADIO

85 TORQUAY GARDENS, REDERIDGE, ILFORD, ESSEX.

Postage on 1 value 5 p , on 2 or more valve 3 per valve extra.
Any parcel insured against damage in transit $3 p$ extra.

SPECIALIST ELECTRONIC CO.

Sinclair Project 60. Complete kit $£ 19.95$.
Haminex cassette tape recorder $£ 16.95$.
Transistors. OC44-OC45 20p.
Electrolytic Capacitors. 50uf/50v 5p; 500uf/25v 20p; 100uf/25v 10p; $1000 \mu \mathrm{f} / 25 \mathrm{v} 20 \mathrm{p} ; 22 \mu \mathrm{f} / 25 \mathrm{v} 9 \mathrm{p} ; 10 \mu \mathrm{f} / 64 \mathrm{v} 9 \mathrm{p} ; 5 \mu \mathrm{f} / 50 \mathrm{v} 8 \mathrm{p}$.
Polyester Capacitors. 20\% 250v/Erie 0.01 Mf 7p; 0.047 9p; $0.0033 \mu f / 500 v 7 p ; 0.0047 \mu f 7 p ; 0.0339 p ; 10^{\circ} ; 0.1400 v 8 p ; 0.47$ 400v 17p; 0.33 f 15p: 0.22/f 10p; 1 μ f 250v 22p.
Resistors. $\frac{1}{2}$ Watt, 5_{i}° all values $1 \frac{1}{2} p$ each, 10 or more Ip each.

24 KINGSWAY, WATERLOO, LIVERPOOL 22

Free Quotations-trade enquiries invited-mail order only

Fig. 8.5. A simple diode switch circuit

SIMPLE DIODE SWITCH

The simple diode switch consists of a network shown in Fig. 8.5 which uses diodes and a halfwavelength section for the frequency of operation. One advantage of this type of switch is that by having a number of half-wave sections, each for a different frequency, they can be conveniently plugged in to two aerial sockets thus making a very versatile assembly.

The sequence of operation in this switch is that the switching signal is fed into the points 1 and 2 via the filter network: in one direction a diode will conduct, say the left-hand side D1, at this time the other will be non-conducting so that the signal will pass via the conducting arm. When the switching voltage reverses, the diode on the right-hand side will conduct and the signal will pass via the halfwave section. When the switch is in operation the harlf-wave section will be alternately "in" and "out". The same conditions apply therefore as with the more complicated hybrid unit.

Fig. 8.6. Typical circuit for a switch frequency generator

THE SWITCH FREQUENCY GENERATOR

The switch frequency generator is basically an audio oscillator operating at the frequency chosen for the switch. In this case it is a multivibrator which delivers about 30 volts peak-to-peak with a square wave form, and the circuit is shown in Fig. 8.6. The voltage output is sufficient for the operation of the synchronous detector, but needs a driver amplifier for the phase switch. The reason for this is that the diodes in the phase switch need to pass a current of the order of 50 mA so that the power driver is necessary to accomplish this. The driver amplifier is shown in Fig. 8.7.

SYNCHRONOUS DETECTOR

As has been explained, the switching in and out of the half-wave section creates a condition where the receiver is fed with a signal which reverses in sign, hence the term phase switch. The reversal is in this case 180 degrees, so a system is required to follow this after the detection and amplification of the switch modulation. The diagram in Fig. 8.8

Fig. 8.9. Typical circuit for a narrow band amplifier set for switch frequency $900-1,000 \mathrm{~Hz}$
shows the details of the circuit for the synchronous detector, and this is fed from the narrow band amplifier and coupled direct to the d.c. amplifier.

NARROW BAND AMPLIFIER

The narrow band amplifier is an important part of the system because it passes the signal at switch frequency and attenuates those signals which are not required. Strong signals from interference and radio signals which break through from commercial stations are largely eliminated.

The circuit shown in Fig. 8.9 is suitable for the switch frequency adopted. There may be a certain amount of insertion loss due to this amplifier; if this is so and the amplifier has been fed from the second detector of the receiver, then an additional stage of amplification can be interposed between the detector and the narrow band amplifier.

CONNECTING UP THE SYSTEM

The whole system is now ready to be connected up. It may be that there will be some snags in getting things right straight away. This raises the important point as to the stability of power supplies. If the units are checked individually for operation

A solar radio telescope aerial working at 200 MHz
it should not be too difficult to get the system working satisfactorily. An oscilloscope would be a very useful adjunct in this connection, for all the systems catn then be visually checked. For example the square wave pulses must be of equal width and anmplitude. The phasing of the whole system can be more easily checked when an oscilloscope is used since each successive part of the system caln be dealt with in sequence and any trouble quickly found.

Another point that perhaps should be emphasised again is the importance of good jointing and efficient bonding. Poor earth bonding can lead to many troubles, not least of which is spurious noise and breakthrough. If the area is one where there is a great deal of commercial activity it could be that there will be blocking of the pre-amplifiers. In this case it will be necessary to use some sort of filtering at the aerial input to offset this. Transistor preamplifiers are particularly prone to this trouble.

ACKNOWLEDGEMENT

The photographs of chart recordings Fig. 8.2 were taken by J. C. Codling, Clare Secondary School.

In the next article some more sophisticated units for the phase-switching system will be described.

BACK NUMBERS WANTED

August to November 1968 inclusive. Mr. J. Rajgopaul, 74 Chatsworth Road, Umhlatuzana, Durban, Natal, S. Africa.

October 1970.
Major G. E. Moat, R.A.E.C., Education Branch, H.Q. Nearelf, Dhekelia, B.F.P.O. 53.

October 1967.
Mr. T. J. Dooley, 24 Shirley Road, Enfield, Middlesex.

November 1970.

Mr. R. Hayes, "Ferndale", South Barrow, Nr. Yeovil, Somerset. November 1974.
Mr. P. Arden, 1 Hallam Grange Rise, Fulwood, Sheffield, Sto 4BE.
March 1971.
Mr. J. Carrell, 7 Forester Avenue, Knutsford, Cheshire.
January, February 1970
Mr. S. Farrow, 62 Grange Road, Southport, Lancs. PR9 9AD.篓

December 1970-January, February,

 March 1971Mr. A. Cook, 189 Parsonage Leys, Harlow, Essex.

August 1971.
Mr. P. M. Sargent, Mulberry Cottage, 291 A Sheen Road, Richmond, Surrey.

August, September 1971.
Mr. R. Speed, 60 Garland Square, R.A.F. Tangmere, Chichester, Susșex.

electronics mastered!*

by our highly practical
 BUILD, SEE \& LEARN system

Step by step we take you through the apparent intricacies of electronics and show you how easily you can master the subject. Write for the brochure which shows, in full detail, how you can do it.

We provide a full range of components and subassemblies, with details of what they do, so that you learn to recognise all the 'bits and pieces'. Using some of these you are instructed in how to build this oscilloscope, simply and quickly.

You are shown how to read and understand circuit diagrams so that you can later build more advanced equipment or draw your own diagrams.

You can construct over 40 kits, including:-

- Valve experiments - Electronic switch
- Transistor experiments
- Amplifiers
- Simple transmitter
- Oscillators
- a.c. experiments
- Signal tracer
- Photo electric circuit
- Computer circuit
- d.c. experiments
- Simple counter
- Basic radio receiver
- Time delay circuit
- Servicing procedures

This course has been designed to help even those who are complete newcomers to electronics. No Maths needed!

RHYTHMETRON

As featured in Nuvember insue. Elfethulics parte kit, less case and knobs, but incluling ero panels. $24 \cdot 25$, plus $\because 0$ p post.

MULTI-SPEED MOTOR

 Rix spectla are avaliable $300,8.00$ and $100, \mathbf{r}-\mathrm{F}, \mathrm{Th}$. suld $\mathrm{s}, 000, \mathrm{I} 2,000$ lianeter and mproximately it th lung. $\because 30 \% 40 \mathrm{x}$. It 4 surati may be urther controlled with the ure of ur Thryrister controller. Very mumerful and useful motur size ppros. !in dia. x jiln long Price 88p

20 AMP

ELECTRICAL

 PROGRAMMER Harn in vour mleep: and kettle boiling as on awake-ywitch-ont lights to ward ofl intruders-have warm houre to come homet to. All these alld many other things yon can do if you inweat in an Electrical
Progranmer. Make by the fanoms Smitha Programmer. Make by The famess intially a $230 / 240 \mathrm{~V}$ maine operated ('loek and a 20 amp \$witch. the su jteh-,sff tibue of which can he delayed up to 1:- humrs (continuously ariable not stepped). Similarily the aritch-ort tiane call be delayert. This is a beautiful mit, size $3_{4}^{4} \times$
 postage amt insurance

RESETTABLE FUSE

How long does it take you to temen a fusc? Tille yousself when hext one
blome. Thet reckoning yout time at \&) ber hout see haw quickly our esettable fuse (antu circhit breaker) ell per wozen, supeify i. 10 or 1 is amp simply it it place of sinilich.

BLANKET SWITCH

Double pole with neen let
 plantic cane 30 p rach. 3 heat monlel 40 p .

2 $\frac{1}{2} \mathrm{~kW}$ FAN HEATER Three position switching to Wwiteh up for full heater (2 ' kW), suitch lown for half heat (llikW), switch central blown cold for summer coroling -atjustahle thermustat acts
 Post anll j114. $3 \mathrm{H}_{1}$).

COMPUTER TAPES

- 400 ft of the Best Magnefir Tapet manle with Viden arn sombt. Iin witle $\mathbf{2 1 - 4 5}$ plus 33 pe post anul insur
 and insurance vith 'assette. 'in wide 21 phas Dip pust and insurance with cangette. Spare spon, and cassettos-lin $\$ 1$. 7 in 85 p . $\mathrm{i}^{\mathrm{i}} \mathrm{it} 75 \mathrm{p}$ each plux 20p

SPARTAN Portable

 RADIOLong and medium wave 4in trigistor, aize 6 in x han 1 ,ill with larger thath usual epeaker giving vers gemal tone. built-jn ferrite aerial and tele-
ncopic aerial for dintant acopic aerial for distan
utations. A real largait complete with leather case, carry sling, earpluk anl case $83-76$ phu 20 p post and ins

EXTRACTOR FAN

 leans the air at the rate of 10,000 enbic ft per hour. Suitable far kitchens, bathroms, ete., its mo imlet it can hartly be heard. Compact. bin casing with bein fan hades. Kit cumprises notor. fan blalles. shect steel casing. pull ewitch, mainu connect or. and fixing brackets, e2 phas stip pust ald ins.
MAINS MOTOR

recision made $\overline{\text { in }}$ recos and tape recordersideal also for extractor lall, blower, heaters, etc. New anti perfect. Suip at 50 p . Postage luy for first olle then

CAPACITOR DISCHARGECARIGNITION This aystem which has proved to be aninzingly efficient and reliable was first described inthe Wire less World about a year ago. We can supply kit of parts for improved and even more efficient version. (P.W. June), price A.g6. When ordering please Plus 30p poent

RADIO STETHOSCOPE
Enaient way to fand find-traces signal from arerial to speaker - u hell rignal stops yourve found the Rult. Use it on Railio, TV ulete kit comprises twos special tranisistors and all parts incluHing probe tube ant crysta arplece. ato-twin stetlo et instead of earpiece 75 p cxtra-post and ins. $20 p$.

P. E. GEMINI

Dual purpose twin 30 watt terey amplifter for excepkit if parts leas case 845 or repint of data \& parts less 56 p

	Stamlaril size 1t wafer-silver-plated $5 \cdot a m p$ contact, 4tandard ;in apinile bin long-with locking washer and nit.								
Nos. of Polex	way	*ay	$\mathrm{N}^{\text {ay }}$	way	way	way	way	0 Hz	way
1 pole	40 p	40p	40p	40p	40p	400	40 p	40 p	40 p
2 poles	40 p	40p	407	40 D	10 p	40p	40p	70	700
3 poles	40D	40p	400	40p	70p	70 p	70 p	95p	95p
4 poles	40 p	40 p	407	700	700	700	70p	21.20	21.20
5 poles	40 p	40p	70p	70p	95P	95.	85 p	21.45	E1.45
6 poles	40p	70p	700	70D	$95 p$	850	95p	21.70	21.70
7 poles	70p	70 p	709	950	21.20	21.80	21.20	E1.05	21\%
${ }^{4}$ poles	70 p	70p	707	950	21-20	11.20	21.20	42-80	$28-20$
9 poles	70p	70p	95p	85p	\$1.45	21.45	21.45	82.45	28-45
10 poles	709	70 p	95D	21.20	¢1.45	\$1.45	21.45	E2.70	28.70
11 poler	70p	959	850	21.20	21.70	21.70	21.70	E8.95	E2.96
12 poles	70p	9.5p	880	\$1.20	11.70	21.70	21.70	28.20	20

15 WATT 12^{*} HI-FI SPEAKER

In undoubtedly one of the fineat lounmeakers that we hate wer offered, prodnced by one of the conntry's most fannus makers. It has a lie-cant metal frame and is atrongly recommended for Hi - Fi and public address Handling 1.3 W R.M.S.- Cone moulded fibre-Yrea,

 es.75 plus 30 p pust anfi ins.

TANGENTIAL HEATER UNITS

This heater unit is the very latest type. most ficient, and quiet rummag, in as ftted in Hover and blower lieaters costing its and more. We have few ony. Comprises motor, and 3 kW ans with thermal safety cut-ont. Can befitted into any metal tined case or cabinet. Only need control awitch. 28-50. 2 kW W. Model as above except: \because kikwatte 88.50 . Don't ming this. Control aritch 34p. P. \& P. 40p.

HONEYWELL PROGRAMMER
This is a drum type timing devsce, the rum heing calibrated in equal intion which are infinitely adilustable for posit They are also arranged to allow 2 operations per switch jer rotation. There are 1 J changeover micro switches each of 10 amp type operated hy the trips thus 15 circuits may
 he changed per revolntion. Drive motor is Hains operated 5 r.p.in. Some of the many
uses of this timer are Machinery enntrol, Boiler firing, Hispensing and Vending uses of this timer are Machinery control, Boiler firink, \quad manchines, Display lighting animated and signa, Signalling, etc. Price from makerg
 l)on't miss this terrific bargain.

INTEGRATED CIRCUIT BARGAIN

A parcel of integrated cirenits made by the famon Plenay y donpany, once-in-a-lifetine offer of Mirco-electronic devices well below cont of manufacture. The pa sel contains \bar{j} ICs all new and perfect, firat-grade device, definitely ne: whbatandard or neconds. 4 of the lCs are single slificon chip
GP ampliflet. The 5 th is a nonolithic npu matched pair. Regular price OP amplifielo. The jth is a monolithic npn matched pair. Regular price andition you will receive a list of thany different ICa available at hargain addition you will recenve a hist of thany diferent ida avainable at hargain
prices $0 . j p$ upwards with circuits and technical data of each. Complete parcel prices

DIGITAL COUNTER TIMER

Very stable and reliable crystal controlled circult. Capsble of work in excess of if MHz. Construction simplified by use with case 887.50 or construction diata and price liat 80 p .

70 THINGS YOU CAN MAKE

Send S.A.E. today for list of 70 constructor projects-instruments, alarms, counters, locks, radio etc. etc.

THERMOSTATS

Type " A " 10 amp, for controlling room heaters, greenhourea, airing cupboards. Has spindle fo pointer knobs. Quickly adjuasiable from $30-80$ F 40p. Calibrated clial 20p extra. Suitable box for wall mounting. 25p.
Type "B" 15 amp. This is a 17 in long rod type bade by the fanoms Sunvic Co. Spindle adjusts
this from $50-j J 0^{\circ} \mathrm{F}$, Internal screw this from $50-j 50^{\circ} \mathrm{F}$. Internal sorew
alters the setting so this could be adjumtable over 30° to $1000^{\circ} \mathrm{F}$. Suitable for controlling furnace, oven, kiln,immersion heater or to make tlame-stat or fre alarni. 48p plus $12 t p$ poat and insurance. Trpe "D" We call this the Ice-atat as it cuts in and unt at around freezing point. $2 / 3$ amps. Han many uses one of which would be tor klanket wire $\{16 \mathrm{yd}$. (0p) is wound round the pipes, 40p.
Type "E". This is standard refrigerator thermostat. Spindle adjustments cover normal refrigeraor temperature. 50p.
Type "F". Glass encasel for controlling the temp. of liquid-particularly those in glass tanke, vats or sinks-thermostat is held (halr submerged) by rubber sucker or wire clip-ideal for fish tanksdevelopers and chenical baths of all types. Adjustable over range
TREASURE TRACER

Complete Kit rexcept word battens) to make the metal detector as the circuit in Practical Wireless August lasue. 28.50 plus 20p post and insurance.

DRILL

CONTROLLER NEW IKW MODEL

Send 8.A.E. for

list of parta
HIGH ACCURACY THERMOSTAT Uses differential comparator I.C. with thermiater as probe. Designer chaim Comperature contron pack 5.50 .

AUTO-ELECTRIC CAR

AERIAL
with danhboard control switch-
fully extendable to 40 in or fully retractable. Suitable for 12v' positive or negative earth. Supplied complete with fitting inatructions and rearly wired dashboard switeh. 28 plus 25 p

AUTO-LITE
as circuit in this month's issue. Kit of parts 21.20 post paid. TOGGLE SWITCH
3 amp 2.00 with fixing ring 7ip each, 75p doz.
CAR ELECTRIC PLUG Fits in place of cigarette lighter. Uaeful method for making a quick connection into the car electrical

SWITCH
 ROCKER SWITCH

 13 amp self-fxing into an oblong hole. 10 for 54 p .

MAINS RELAY BARGAIN Special this month are some single, relays Contacts rated at 15 ampa operating coll wound for 240 V aic. (Hood British Make. Unused. gize approx. 1 lin $\times 1$ in.
Open construction
 BALANCED ARMATURE UNIT 500 ohm, operaten speaker or nitero-
phone, so useful in intercom or similar circuits, 38p each, 88.60 doz.

> Where puutage ib nut atatel then orders ouer es are pust free. Below to andil: 20p. Scmi-conductors and Jp post. Over el pust
> tree. S.A.E. with enquiries picase

Gerry Brown winfirnul

OLFACTRONICS

l've just heard that a Nipponese company are making claim to an invention which amounts to an electronic "nose."

Naturally, smell sensors are not unknown, the Americans developed a device which could smell-out the Vietcong a few years back; this was a kind of funnel-shaped thing containing a microphone which had its fixing adjacent to a thin membrane. The membrane carried a number of sensitive (un-fed) bed-bugs which reacted to the natural body-odours of the enemy in a way which really had to be seen! The "tattoo" which they beat-out on the skin resulted in a signal that could be amplified after the microphone.

The device from Nippon, however, is quite different to previous sensors. For one thing, it can apparently differentiate between a number of different odours, and for another, it is entirely solid-state.

Several compounds are employed in the fabrication of the new device. typica! of which are the oxides of tin, zinc, and the sesquioxide of iron. Whenever such gases as hydrogen, carbon dioxide, acetylene, or propane are applied to the sensor its conductivity decreases sufficiently to give an easily noticed indication, often without further amplification!

We can only hope that the art of olfactronics (my handle) will soon become sufficiently sophisticated to counter the current wave of destruction by detecting the smell of gelignite before it blows someone apart.

COOL GLOW

Right "out of the blue" (well, (probably nearer purple) someone has come up with a rather interesting way of making a draught. It all came about when Oscar Blomgren of Inter-Probe, Chicago, tried applying an electric field to the task
of diverting an oxy-acetylene flame away from the inside of a blowtorch to prevent its deterioration. Instead, he got a cooling effect!
The cooling results from that funny effect you'll probably remember from experimenting with the school physics lab Wimshurst machine, electric wind. This, as you may recall, has nothing to do with flatulence but is associated with the purply-blue corona discharge that appears around any sharp, or pointed, parts of the machine's electrodes.
The vortex columns of air produced by the discharge are employed by Blomgren to cool the air near any heated surfaces. So efficient is this method of cooling that a glowdischarge produced by a 30 kV potential, at only $200 \mu \mathrm{~A}$, is reported to have already reduced the temperature of an object from 1.675 degrees Fahrenheit to a mere 970 degrees Fahrenheit in a couple of seconds! An ideal device, one would think, where there was a special need for absence of motordriven fans with their attendant vibration. Such noiseless cool must be a real "blow" for fan-makers!

JABEER-JAMMER

It's quite on the cards that you can tolerate the majority of ambient noises like the intermittent tip-tap of the typewriter 1 am using right now, and the noise from a neighbour's transistor radio. Even so, the chances are that you will experience much more difficulty when attempting to concentrate on some abstruse problem when it is accompanied by the chatter of people in conversation nearby. How to overcome it is a perfectly reasonable question.
Just yesterday, I came to learn the answer to this, seemingly, difficult poser and Fig. I shows the easiest solution. The circuit comprises a simple audio oscillator connected direct to a hearing aid type earphone. The frequency of the device can be varied according to one's particular choice.

This done, it is then only necessary to bring the volume level up to a point which satisfies the compromise between being deafened by the oscillator, and going out of one's tiny mind as a result of the unwelcome intrusion into it by somebody's "yatter".

Fig. 1

CHILD CARE

The burning need for something that will protect (in particular) the very young from the sometimes malevolent intentions of childsnatchers is a problem that has been in the limelight recently. Even when no harm is intended, the resulting anguish can often, and quite understandably, be unbearable.

From time to time, like others before me, I have made several vain efforts to solve this very real threat to youngsters. Among the ideas have been some which relied upon a weight-sensing switch in the child's pram, or a simple switch arrangement attached to the pram harness. Limitations, unfortunately, exist in these ideas since no facility was provided which sensed movement of the carriage. Perhaps another switch associated with the brake would be the answer; so it goes on, until, ultimately, one is tempted to give the problem up. But, there are quite a few other ways of tackling this enigma.

Not unnaturally, it would be well on the way to meeting our requirements if the abduction alarm had, in addition to warning, ability, a fail-safe feature. It was in this vein that I chanced to come upon an idea that might just be the answer. If the child to be protected carried a low power radio control transmitter (complete with sewn-in antenna) in its coat, a signal would be transmitted, certainly to within the immediate locale of an interested parent.
It could be arranged that "mother" held, at home, a receiver tuned to the signal transmitted from the child and which operated a bell every time the transmitter went out of range. It would then be a simple matter to determine whenever junior was either in the course of being kidnapped, or had just plain toddled off somewhere. Who knows, it might just be better than sending up distress rockets!

Unfortunately, the Post Office is hardly likely to approve of this particular form of "model control"

SONY - LEAK - SIMCLAIR • TELETON • ARMSTRONG thorems - phulps - x.e.f. - teac - Rogers phoweer
SPECIAL OFFER
Garrard SP25 Mk. III
Teak plinth and
Ready wired for immediate use.
Please add $£ 1.25$ for post and
packing

Dept. (PES) 174 Pentonville Road, London, M1. Telephone 01-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue,

MARSHALL'S INTEGRATED CIRCUITS
 NEW LOW PRICES LARGEST RANGE BRAND NEW FULLY GUARANTEED

MOTOROLA					$1 \begin{aligned} & 12-2 i \\ & e_{p} \end{aligned}$		$1_{\mathbf{E D}_{p}} 12-24$		
We can now offer				SNi406	$0.800 .75$	SNT 493	. 870.84		
Motorola IC"s at industrial distributor				SN740	$0.200 .18$	8N7494	0.870 .84		
Examples		Data Sheets		SN7408	0.200 .18	8N7490	870.84		
MC724P	2.0.861.24	20.12\%		SN7409	0.200 .18	837496	0.877 0.84		
$\begin{aligned} & \mathrm{MC790P} \\ & \mathrm{MC1303L} \end{aligned}$				SNi410	$\begin{array}{lll}0.20 & 0.18 \\ 0.23 & 0.21\end{array}$	8Nitio 8N 41100	6.40 1.85 1.58 1.58		
		$\underset{\text { extra }}{20.121}$			0.480 .48	SN-4104			
FAIRCHILD (RTL)					0.40				
	1-5	6-11	$2+$	420	0.800 .18	8Nit111	1.571 .45		
${ }_{L}^{L} 900$	40 p	87p	${ }_{350}^{350}$	SN7423	$\begin{array}{lll}0.51 & 0.47\end{array}$	¢ $\mathrm{x}+1118$	1.301 .25		
${ }_{\text {L023 }}$	40 p	37 p	95p	8Ni425	0.480 .45	8×7419	1.98 1.80		
Data sheet $12 \ddagger \mathrm{p}$				SN742	0.480 .45	8×74121	0.50 1.44 1.85		
LINEAR				SN7430	0.23 0.15	9x74123	2.852 .70		
				9N7432	0.480 .42	8 Sa 4140	1.801 .76		
Ampe.		$11 \quad \begin{array}{ll}12-2\end{array}$		SN_{5433}	0.80 0.80 0.75	8N74150	3.52 1.40		
L702A		$0 \quad{ }^{\text {¢p }}$	${ }_{2}^{2 \cdot 60}$		0.64 0.64 0.60 0.60		1.40 1.40 1.858 1.858		
${ }_{\text {L } 702 \mathrm{C}} \mathrm{T}$ T05 0.75		$7 \quad 0.72$	0.87	SN7440	0.230 .21	AN74154	2.208 .10		
${ }_{\text {L709A }}$	TO5 0.62	0.57	0.62	8N7441:	Y 0.870 .83	8N4135	1.681 .60		
	TO5 1.25	1.20	1.15	SN744:	0.850 .81	Sx 74156	1.681 .60		
${ }_{\text {L7090 }}$	$\begin{array}{ll}\text { TOJ } & 0.47 \\ \text { DIL } & 0.45\end{array}$	0.42 0.40	1.87 0.35	SN7443	2.888 .2 .70	4N\%4157	${ }_{1}^{1.92} 1.80$		
L710C	TO5	0.42	0.37	SN744	2.50 2.40	- x - 4161	2.60 2.55		
L710C	DIL 0.45	0.40	0.35	SN7445	1.000 .85	$5 \mathrm{NTil2}$ -	4.28 4.10		
	TOJ 0.48	- 0.44	0.38	8N7447	1.000 .95	SN74163	4.264 .10		
${ }_{\text {LTl1C }}$	D1L 0.45	0.40	0.85 1.70	N 744	1.000 .95	SNT+16t	2.20 2.10		
	TOE 1.87	$7 \quad 1.75$	1.70	SN7449	1.000 .95	Sxit163	2.258 2.15		
$\underset{\mathrm{L} 741 \mathrm{C}}{\mathrm{~L} 23 \mathrm{C}}$	TOJ 0.90	0.85 0.75	0.80	8N7400	0.200 .18	SN 7116	4.454 .20		
	$\begin{array}{lll}\text { T0. } & 0.80 \\ \text { DlL } & 0.70\end{array}$	0	${ }_{0} 0.60$	SN74.	0.200 .18	- sX 74167	${ }^{6.40} 8.10$		
LM741CN DIL		$0 \quad 0.65$	$0 \cdot 60$	$8 \mathrm{ST454}$	0.200 .18	$\mathrm{sN} 7+174$	2.408 .80		
SN72709P DIL 0		$5 \quad 0.40$	0.35	8Ni460	0.200 .18	s×7417\%	1.681 .60		
				7470	0.400 .38	SNi+176	$2 \cdot 84{ }^{2.55}$		
MULLARD		PLESSEY		SN	$0.43{ }^{0.41}$	SN74180	2.138205		
				SN7474	0.430 .41	SN74181	9.839 .00		
TTL		SL403L	${ }_{8}{ }^{2} 12$	SNTitis	0.450 .44	MN7418:	2.031 .96		
1	0.87	SL6119	1.70		0.45 0.70 0.45	-	4.80 4.80 4.60		
FJH121	0.87	SL621C	2.60	¢N7481	1.401 .38	- $\mathrm{N} \boldsymbol{T}+190$	1.801 .70		
FJH141	0.87	SLialc	1.25	4NT480,	0.87 0.88	sNitig1	1.80 1.75 1.70 1.85		
171	0.91	Data sheets		-	0.87 2.80 1.85	\bigcirc	1.75 1.65		
FJH221	0.871			7485	3.623 .40	5N74194	2.672 .55		
FJJ101	1.372			SNT 486	0.330	- 9×74195	2.258 .10		
FJJ121	1.87			SN7490	$0.87{ }^{0.84}$	8N74196	2.642 .55		
PJJ141	${ }^{3 \cdot 12}$	TOSHIBA		SNT $491 . \mathrm{N}$	N1.21 1-10	8NT 198	5.95 5.65		
$\underset{\text { FJJJ251 }}{ }$	${ }_{8.12}^{1.87}$		£p	SNT 79	0.870 .84	SNT4199	5.95 5.85		
101	2.25	TH9013P	24.57						
101		20 WATT AM							
MULLARD DTL		TH9014P D.ITASHEETS 20.121		3 watt Audio Amplifier Motule 82.63 Data Sheets 10 p each					
-									
FCH121	1.05	MULLARD		RCA					
FOH201	1.921								
FOEP231	1.50	A		Type	1-24 25-99	Ty	24 25-99		
FCJ101	${ }^{1} 1.82 \pm$				$\varepsilon_{0} \mathrm{fp}^{2}$				
FCJ111	1.55 1.80	24	$1 \cdot 30$	CA3000	1.801 .60	C.A3033 ${ }^{\text {c }}$	4.288 .80 1.231 .10		
FCJ211	2.75	263		CA3001	2.692 .40	く, 3035)	1.231 .10		
FCK101	4.371	263	0.70	ca30015	2.692 .40	CA3036	0.730 .85		
	1.05	293	0.80	Ca3002	1.801 .60	C-33037	1.851 .47		
GENERAL		300	8.0.	CA3002	1.80180	ca3037.			
ELECTRIC		320			1.171 .05	C 43038	3.408.08		
			0.6	CA3006	2.802 .50	Са 3039	0.840 .75		
	2.70		2.73	CA 3007	2.63 2.34	C. 3040	2.40 2.14		
PA230	1.31			CA3008	1.801 .80	CA3041	1.090 .97		
PA234	0.88	521	0.57	CA3008A	2.888 .84	CA3042	1.090 .97		
PA237	1.11	523	1.13	CA3010	1.371 .23	Ca3043	1.371 .23		
PA239	2.21	530	4.95	CA3010A	2.582 .25	C. 13044	1.201.07		
${ }^{\text {PA2 }} 246$	1.54	570	2.60	CA3011	0.740 .85	Ca3044	1.201 .07		
PA264	1.76	811	4.45	CA3011P		C.1304J	1.281 .09		
	1.93	TAB101	0971	(A301:	0.8980 .78	$\mathrm{CA304}^{\text {cta }}$	1.371.28		
	1.76	TAD100	$1.97 \frac{1}{4}$	C 13012 l	0.89078	C. 130478	2.532 .25		
PA494	2.10	TAD110	$1.97 \frac{1}{1}$	CA3013	1.050 .94	C. 13048	2.041 .81		
				C.33014	1.241 .10	CA3049	1.601 .48		
				CA3015	2.091 .88	(a3051	1.341 .20		
SGSTAA661B $21.32 \quad$ TAA700 23.50		TAA700 23.50		CA3015a	3.403 .03	CA3052	1.651 .47		
		CA3016	2.462 .18	$\mathrm{C}^{\text {c. } 13053}$	0.480 .41				
				ca3016A	$3.73{ }^{3.33}$	${ }^{\text {c }} 133004$	1.090 .97		
All TTL IC's may be misel to dualityfor quantity discounts.				Clajol8A	$1.10{ }^{10.98}$	- АЗ005	1.201 .07		
				C13019	0.840 .75		3.198 .85		
				CA3020	1.261-13	C 13059	1.851 .48		
8 Pin TO-5 I.C. Holders, $\mathbf{2 0 . 2 0}$ 10 Pin TO-5 I.C. Holders, 20.25 12 Pin TO-5 I.C. Holders, 80.40 8 Pin Dual-in-Line I.C. Holders $\mathbf{5 0} \mathbf{2 0}$ 14 Pin Dual-in-Line I.C. Holders, 20.20				Ca3020.	1.801 .43	C. 33060	4.814 .87		
				C13021	1.561 .39	CA306\%	2.558 .87		
				CA3021)	.11581.39	CA306.	1.201 .07		
				C.1302\%	1.301 .16	Ca3065	${ }^{1} 2.2011 .07$		
				Ca 3023	1.281.13	${ }^{C 13066}$	2.111 .88		
16 Pln Dual-in-Line I.C. Holders, 20.25				CA3026 1.00090		CA306\%	2.181 .96		
TTL LOGICS					1.000 .90	са3070	1.70 1.51		
				CA 3028 A	0.740 .85	ca 3071	1.821 .44		
1-11,12-24				1-11 12-24		$\mathrm{CA}^{\text {c/ }} 3028 \mathrm{~B}$	1.05 0.87	Ca3072	1.861 .48 1.181 .00
	2p ${ }^{1}$		$\mathrm{F}_{5} \mathrm{id}^{24}$	${ }_{\text {CA }}$	0.87 1.651 .47	Ca3075	${ }^{1.18181 .16}$		
N7400	0.200 .18	SN7403 0.20	200.18	CA3030	1-37 1.23	CA3078	8.192 .85		
8N7401	0.200 .18	8N7404	20 0.18	cazo30a	2.53 2.25	Ca3080	0.780 .70		
BN7402	0.200 .18	7403	. 200.18	CA303	2.532.25	C'A3090Q	3.463 .08		

LARGEST STOCKS SEMICONDUCTORS \& COMPONENTS WIDEST RANGE

2 G302 $2 \mathrm{Cl303} \quad 20 \mathrm{p}$ 2N3414 $2 G 306$
$2 G 308$

2G374
$2 \mathrm{~N}_{1} \mathrm{~N}_{4}$
$2 \mathrm{~N} \mathrm{O}_{4}$
$2 \mathrm{~N} 69_{8}$
$2 \mathrm{~N} 69_{8}$
2 N
$\begin{array}{ll}\text { 2N697 } & \\ \text { 2N698 } & \\ \text { 2N706 } & \\ \text { 2N706A } & 1\end{array}$

ص\&W Super IC-12

Highfidelity Monolithic Integrated Circuit Amplifier

Two vears ago Sinclair Radionics announced the World's first monolithic integrated circuit $\mathrm{H}_{i}-\mathrm{Fl}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC. 12 . This 22 transistor unit has all the virtues of the origina! IC. 10 plus the following advantages

1. Higher power.
2. Fewer external components.
3. Lower quiescent consumption
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink No other heat sink needed.
6. Full output into 3, 4, 5 or 8 ohms.
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

SINCLAIR GENERAL GUARANTEE
Should you not be completely satisfield with your purchase when you recelve it from us, return the goods without delay and your money will be refunded in full, including cost of return postage. at once and without question. Full service facilities are avallable to all Sinclair customers.

Output power 6 watts RMS continuous (12 watts peak).

Frequency Response 5 Hz to $100 \mathrm{KH} \geq \pm$ 1 dB .
Total Harmonic Distortion Less than 1%. (Typical 0.1%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms .
Power Gain 90dB (1,000,000,000 times) after feedback

Supply Voltage 6 to 28 volts (Sinclair $\mathrm{PZ}-5$ or $\mathrm{PZ}-6$ power supplies ideal)

Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sınk.

Input Impedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts.

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitawle for use with pick-up. F.M. tuner etc. Alternatively. for more elaborate systems, modules in the Project-60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation.

Price, inc. FREE printed crrcuit board for mounting. $£ 2.98_{\text {tree }}^{\text {Post }}$

Sinclair Radionics Ltd, London Rd. St. Ives Huntingdonshire PE17 4HJ
Telephone St Ives (04806) 4311

Sinclair Project 60

The World's leading range of high fidelity modules

New!

Project 605

The easy way to buy and build Project 60

Sinclair Project 605

Project 605 is one pack containing: one PZ5. two Z30's, one Stereo 60 and one Masterlink This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat little chips to plug straight on to the modules Thus all soldering and hunting for the odd part is Thus all solderng all be able to further Proe eliminated. You will be able to add further Project 60 modules as they become avalable Complete Project 605 pack with
£29.95 comprehensive manual, post free
All you need for a superb 30 watt high fidelity stereo amplifier

Sinclar Radionics Limited, London Road, St. Ives, Huntingdonshire PE174HJ. Tel: St. Ives (04806) 4311

Project 60 offers more advantage to the constructor and user of high fidelity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile - using them you can have anything from a simple ecord player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplafier system. as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock oop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with all Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages. there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world. yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.

Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control	£4.48
Mains powered record plaver	Z.30, PZ.5	Crystal or ceramıc P.U volume control etc.	£9.45
$20+20$ W. stereo amplifier for most needs	$\begin{aligned} & 2 \times Z .30 \mathrm{~s} \text {, Stereo } 60, \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P.U., F.M. Tuner, etc.	£23.90
$20+20$ W. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times Z .30 \mathrm{~s} \text {, Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.F M. Tuner, Tape Deck, etc.	£26.90
$40+40$ W. R.M.S. de-luxe stereo amplifier	$2 \times 7.50 \mathrm{~s}$, Stereo 60 PZ.8, mains trsfrmr	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	MIC, guitar, speakers, etc. controls	£19.43

[^2]
from a simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02\% at full output and all lower outputs Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well. SPECIFICATIONS (2.50 units are interchangeable with $Z .30 \mathrm{~s}$ in allapplications).
Power Outputs
Z. 3015 watts R.M.S. into 8 ohms using 35 volts 20 watts R.M.S. into 3 ohms using 30 volts.
2.5040 watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S. Into 8 ohms using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 0.02% into 80 hms .
Signal to noise ratio: better than 70 dB unweighted.
Input sensitivity: 250 mV into 100 Kohms .
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$
2.30

Built, tested and guaranteed with circuits and instructions manual. $£ 4.48$
2.50

Bult, tested and guaranteed with circults and insiruc-
tuons manual. £5.48

Power

Supply

 UnitsDesigned special for use with the Project 60 system of your choice. Use PZ 5 for normal Z.30 assemblies and PZ. 6 where a stabilised supply is essential
PZ. 530 volts unstabiltsed $£ 4.98$ PZ. 635 volts stabilised $£ 7.98$ PZ. 845 volts stabilised
(less mans transformer) $£ 7.98$
PZ. 8 mains transformer $£ 5.98$

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclar have applied the principle to an F.M. tuner with fantastically good results. Other original features include varicap diode tuning. printed circuit coils, an I.C. In the specially designed stereo decoder and squelch circuit for silent tuning between stations Good reception is possible in difficult areas, and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range: 87.5 to 108 MHz . Capture ratio: 1.5 dB . Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting. $7 \mu \mathrm{~V}$ for lock-in over full deviation. Squelch level: 20μ V. A.F.C. range: $\pm 200 \mathrm{KHz}$. Signal to noise ratio $:>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. Operating voltage: $25-30 \mathrm{VDC}$ Indicators: Power on/tuning/stereo.

Size: $93 \times 40 \times 207 \mathrm{~mm}$.
Built anc tested. Post free.
£25

Stereo 60 Pre-amp/control unit -00

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again sllicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between charnels. Input selection is by means of push buttons and accurate equalisation is provided fcr all the usual inputs. SPECIFICATIONS-input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A A curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u. - up to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70dB. Channel matching: within 1 dB . Tone controls: TREBLE +15 to -15 dB at 10 KHz BASS +15 to -15 dB at 100 Hz
Front panel : brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$
Butt tested and guaranteed.
$£ 9.98$

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two 2.30 s or 2.50 s , and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current - 3 mA . H F. cut-off (-3 dB) varrable from 28 KHz to 5 KHz . L.F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply (0.02% at rated £5.98 output. Size: $66 \times 40 \times 90 \mathrm{~mm}$. Built testrad and guaranteed.
To: SINCLAIR RADIDNICS LTD LONDDN ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ

Please send		Name
	Address	
I enclose cash/cheque/money order.		

Sinclair Q16/Micromatic

Q16 High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design, technical journals have justly compared the 016 with much more expensive loudspeakers. Its shape enables the Q16 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audio frequencies without loss.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading: up to 14 watts RMS.
Input Impedance: 8 ohms.
Frequency response: From 60 to 16,000 Hz . confirmed by independently plotted B and K curve.
Driver unit: Special high compliance unit having massive ceramic magnet of 11,000 gauss, aluminium speech coil and special cone suspension for excellent transient response.
Size and styling: 93 in. square on face x $4 \frac{3}{4} \mathrm{in}$. deep with neat pedestal base. Black all over cellular foam front with natural solid teak surround.
Price £8.98.

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size. Powerful AGC counteracts fading from distant stations: bandspread at higher.frequencies makes reception of Radıo 1 easy. The plug-ın magnetic earpiece provided, matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteries is contaned within the minute attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested, you will find it as easy to take with you as your wrist watch, and dependable under the severest listening conditions.

Specifications:

Size: $36 \times 33 \times 13 \mathrm{~mm}(1.8 \times 1.3 \times 0.5 \mathrm{in}$.) Weight: including batteries, 28.4 gm (1 oz.)
Case: Black plastic with anodised aluminium front panel and spun aluminium dial.
Tuning: medium wave band with bandspread at higher frequencies (550 to $1,600 \mathrm{KHz}$).
Earpiece: Magnetic type.
On/off switching: By inserting and withdrawing earpiece plug.
Kit in pack with earpiece, case, instructions and solder $£ 2,48$.
Ready built, tested and guaranteed, with earpiece $\mathbf{£ 2 . 9 8}$.
Two Mallory Mercury batteries type RM675 required from radio shops, chemists, etc.

28 BURNT MTLL ELIzabeth way HARLOW ESSEX HARLOW 32947

Why wait weeks? - ALL OUR ORDERS DISPATCHED BY RETURN OF POST: Transistors, Diodes

A) DIODES	
RECTIFIERS	
IN 4001	7p
IN 4002	$8 p$
IN4003	$9 p$
IN4004	10p
IN4005	$12 p$
IN4006	$14 p$
IN4007	$20 p$

Compare
our prices

WOOS	$40 p$
WO1	$45 p$
WO4	$48 p$
WO6	$50 p$

B) TRANSISTORS
$\begin{array}{lll}\text { 2N696 } & \text { 15p } & \text { AF239 } \\ \text { AF239S } \\ \text { 2N930 } & \text { 25p } & \text { AL102 } \\ \text { 2N930A } & \text { 30p } & \text { AL103 } \\ \text { 2N1613 } & \text { 22p } & \text { AU103 }\end{array}$
$\begin{array}{lll}2 N 930 A & \text { 30p } & \text { AL } 103 \\ \text { 2N } 1613 & \text { 22p } & \text { AU } 103\end{array}$ $\begin{array}{ll}2 N 1711 & 25 \\ 2 N 2369 & 20\end{array}$ $\begin{array}{ll}2 N 2484 & 34 p \\ 2 N 2605 & 35 p\end{array}$ 2N2904
$2 N 2904 A$ 2 N 290 2N2905A $\begin{array}{ll}2 N 3053 & \text { 22p } \\ 2 N & \text { 70p }\end{array}$ 2N3055
2N3442 $2 N 3478$
$2 N 3636$ $\underset{2 N 3866}{〔} \quad \underset{~}{21.50}$ 2N4347
2N4356 $40411 \quad 22.50$ $\begin{array}{ll}\mathrm{ACl} 38 & 15 \\ \mathrm{ACl} 41 & 20\end{array}$ $\begin{array}{ll}\mathrm{ACl} 14 & 20 \mathrm{p} \\ \mathrm{ACl} 41 \mathrm{H} & 25 \mathrm{p} \\ & 15 \mathrm{p}\end{array}$ ACl 42 postage a
Component Discounts
and Integrated Circuits

SEND FOR

 BONUS VOUCHER fREE WITH EVERY £1 OROERSPECIAL 50p PACKS, ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONEFREE!!!!

RESISTORS. $1 / \frac{1}{2}$ watt $\begin{array}{rrr}\text { assorted } & & 100 \\ \text { Wire-wound } 1 \text { to } 3 \text { watt } & 20 \\ 5 & \text { to } 7 \text { watt } & 15 \\ & 10 \text { watts } & 10\end{array}$
Multi-tapped PAPER CONDENSERS Tvtypes $\begin{array}{ll}50 & 50 p \\ 100 & 50 p\end{array}$ LECTROLYTIC CONDENSERS ${ }^{50}$
Suitable for Mains
Transistor types
Mixed (both ty
POLYSTYRENE
MULLARD POLYESTER CONO.
SILVER MICA
NO 3-Watt
VOLUME CONTROLS
Assorred NUTS AND BOLTS. Mixed
length/type
8 B.A. 6 B.A.
4 B.A.
${ }_{2}$ B.A.
METAL SPEAKER GRILLES
$7 \frac{1}{2}$ in. $\times 3 \frac{1}{2}$ in.
No Plug
2.5 mm Plug
3.5 mm Plug

500 MICRO-AMP LEVEL
METERS
VEROBOARD. TRIAL PACK' 50p
5 BOARDS + CUTTER 50p

TRANSISTORS
P.N.P. Untested but mainly 50 50p
O.K.

$\begin{array}{ll}\text { O.K. } & 50 \\ \text { N.P.N. Untested but mainly } & 50 \mathrm{p} \\ \text { O.K. } & 50 \\ & 50 \mathrm{p}\end{array}$ $\begin{array}{lrl}\text { OCP } 7 \text { equivalent } & 50 & 50 \mathrm{p} \\ \text { OCP } & 5 & 50 \mathrm{p}\end{array}$ Light-sensitive Diodes 10 50p OC 44 Mullard Ist grade from ight) | OC44 Mullard Ist grade | 4 |
| :--- | :--- |
| OC4 | 50p |
| | 5 |

2G378 Output, Marked ASY 22. Marked
BY 127 Rectifiers
iN 4007 Rectifiers
(I200V peak) STC 3/4 Rectifiers OIODES (OA 818 OA 91) 40 WIRE
Solid Core. Insulated 100 yds . 50 p $\begin{array}{lr}\text { Stranded ditto } & \text { Soyds. 50p } \\ \text { SOLAR CELLS } \\ \text { Large Selenium } & 250 \mathrm{p}\end{array}$
$\underset{\text { (6 Sells will power a Micromatic }}{\text { Small }}$ (6 cells will power a Micromatic radio)
CO-AXIAL CABLE
Semi Air-spaced 15yds. 50p
CRYSTAL TAPE RECORDER MIKES
CRYSTAL EARPIECES 3.5 mm Plug

TRANSISTORISEO Signal Injector Kit TRANSISTORISEO Signal Tracer Kit
TRANSISTORISED CAR REV COUNTER KIT (Needs I ma meter as indicator) ${ }^{20 p}$

STOCKTAKING CLEARANCE! IMPOSSIBLE TO REPEAT:
We have huge numbers of components in quantities too small to advertise individually. In order to "clear the decks" we have made up parcels containing a mixture of carbon and wire-wound resistors, electrolytic and paper condensers, controls, transistors, diodes etc., for a tiny fraction of normal price. It is emphasised that these are mixed parcels only-contents cannot be stipulated! Sold only by weight.

Gross weight 2 lb.
Gross weight 5 lb.
11 (postage 20 p)
GR
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 15p.

Unrepeatable Offer! ! ! !
Surplus VEROBOARDS, $33^{\prime \prime} \times 2 \frac{1}{2} \frac{1}{\prime \prime}^{\prime} \times 15^{\prime \prime}$
Only 10p each or $\mathbf{£ 1 . 0 0}$ per dozen

TANTALUM CAPACITORS. COMPARE THE PRICE—ONLY IOp EACH ! ! ! !

NEW!, NEW: NEW! NEW:

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light-sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner.
Light sensitive aerosol spray
Developer spray

S.D.C. FESTIVE

(1) YES! The ideal present for any electronics enthusiast, so do not miss this great opportunity.
(2) JUST TAKE THIS COUPON TO YOUR LOCAL \&. 19
STOCKIST WHO WILL SUPPLY ONE S-DeC for only
(3) OR in case of difficulty send coupon and cash to:-
S.D.C. ELECTRONICS (SALES) LTD., 34 ARKWRIGHT ROAD ASTMOOR INDUSTRIAL ESTATE, RUNCORN, CHESHIRE WAT INU
Name
Address.

[^3]STEREO HEADPHONES, £1.95. 10 WATT TRANSISTOR AMPLIFIER, £3.45. SLIDE SWITCHES, 12 .or 18 tags, $9 \frac{1}{2}$ p. TELESCOPIC AERIALS 47in, 45p. RECORDING TAPE: 5 in LP, 45p; 5 iz in LP, 60p. MICROPHONES: Acos Mic 45, 92p; Mic 60, 94p; UD 130 Dual Impedance 600 ohm and $50 \mathrm{k} \Omega$, £4.50. CRYSTAL EARPIECES, 20p. 2 WAY INTERCOMS, Ohden, $£ 2.50$. $5 \mathrm{k} \Omega$ POTENTIOMETERS with switch, $\mathbf{1 6 p}$. CO-AX. SOCKETS on Isolation panel, 6p. PLUGS: Jack Standard, 10p; 3.5 mm , 7p. SOCKETS: Jack Standard 7p; $3.5 \mathrm{~mm}, 4 \mathrm{p}$. SWITCHES, Rotary D.P. 250 V 2 A , 9p. BALANCE and TUNING METERS $500 \mu \mathrm{~A}$, 38p. 100 MIXED RESISTORS, 45p. MINIATURE INDICATOR LAMPS, 11p; 5 V or 12 V BULBS for above, 4 p . COMPATIBLE CARTRIDGES: GP91-3SC, 90p; STEREO GP93-1, £1.15.

All items advertised in September issue of Practical Electronics still available. Special Prices for quantity.

Add 10 p for P. \& P. on orders under $£ 5$.
> M. DZIUBAS 158 Bradshawgate Bolton, Lancs.

SPECIAL PURCHASE ！

BRATD NEW FM Y ULTIPLEX STRRRO DRCODER
UHIT8．Manufactured by PHILIPK．size $\ddot{y y}^{\prime \prime} \times 3 t^{*}$ allgned Aransiator 24，at hma．Supplied pre detalls． 24 each．Post fre
LEAE ME I TRAMSCRIPTION PICK－DP ARMS． Using the world fumous gimbal pivot nystem．Com plete but less pick－up hcall．$£ 2.60$ ．P．\＆1＇．20p． IMPUT MATCHLTG TRAMSEORMRR．Beautifully made in heavy Mu－metal cylindrical case for nimi－ mum hum pick－up．size $1 ?^{*}$ high $\times 1 \frac{1}{2}^{\prime \prime}$ lia．Rat to 1包： 1 approx．Eapecially suitable for matching dynamic or ribhon mikes ur pick－up from low to
high impedance or vice versa． 760 each．Pust Free high impedance or vice versa．75D each．Post Free．
BLACX AMODISED 16 g ．ALDMIMIDM HEAT sINK8．For

HARVERSONIC SUPER SOUND 10 ＋ 10 STEREO AMPLIFIER KIT

HRW IMPROVED MODEL WITH HIGHER OUTPUT AND INCORPORATIN：HIGH CIRCUIT BOARY FOR EASY（＇ON STRUCTION

A really first－class Hi Fi Stereo Amplifter Kit，Cisea 14 translators including silicon Transistors in the first ave atages on each channel resulting in even．lower noise With Bass，Treble and two volume controls．Suitable for use with Ceramic or（＇rystal cartridges．Output stage for any speakers from 5 to 15 ohms．Compact design all parts supplied including drilled metal work，high quality ready drilled printed circuit board，attractive front panel，knobs，whe，solder，nuta，loilta－mo extras
to buy，simple step by step instructions enable any to buy．Simple step by step instructions enable any
constructor to buid an anplifier to be proud of．Brief constructor to build an amplifier to be proud of．Brie
 genaltivity better than somvinto $1 \vec{M} \Omega$ ．Fullpow＇er band－ width $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$ ．Bass woont apprux．to 12 dB Treble cut approx，to -16 dB ．Negative feelback 18 dB over main amp．Power requirements 35 V at 1.0 amp ，
Overall size－ 12^{*} wide 8^{*} deep 29 ＂high． Fully detalled 7 －page construction matual and paldelist free with kit or send 18 p plas large 9．A．E．
PRICES AMPLIFIER KIT．
PRICES AMPLIFIERKIT，
POWER P

 ales aervice also available ready huithe）．Fill adter sales service．Also available ready built and teated，
880.50 ．Post Fire Note：The above amp
mono sources into inputs is suitable for feeding two deeks，ele．）and will then provide miring and fading facilities for medium powered Mi－Fi Discotheque use，ete． PECCAL PURCHASE OF MAHUFACTURER＇S SUR－ PLDB！All Tranaistor F．M．tuner head with twin A．M．Gang iocorporated．Beautifully engineered with precision geared
reduction drive．F．M．R．F．Transistor oscillator／Mixer and frst I．F．stage（ $10.7 \mathrm{Mc} / \mathrm{s}$ output）with optional AFC connection．Built on printed circuit panel and fully screened．Extremely stable over range 88－ $108 \mathrm{Mc} / \mathrm{s}$ ．Brand new and nrealignell，size 2 hin H．$\%$ $1 \operatorname{lin}$ W．$\times 2!i n$ D．For bV D．C，${ }^{(m)}$
2.8 mA ．A．M．Gang fittel with trim－ mers which can he connected to circuits if required ind oscilator NUMBER．Only 49.25 post iree． Connection details supplied．
THLESCOPIC AERIALS WITH BWIVEL JOLNT．Can be angled and rotated in any direction．$\dot{5}$ section Lacquered Brass，Extends from 6 in ．to approw．
diameter tin．25p each．P．\＆P，5p．

BRAND HEW MULTI－RATIO MADS TRAMSFORMERS． Giving 13 alternatlves．Primary： $0-210-240 \mathrm{y}$ ，Secon－ dary combinations： $0-5-10-10-20-25-30-3 \bar{J}-40-60 \mathrm{~V}$ hall
wave at 1 amp or $10-0-10,20-0-20,30-0 \cdot 30 \mathrm{~V}$ ，at 2 anpa full wave． $\mathrm{Slze}^{2} 3 \mathrm{inL} \times 3 \mathrm{inW} \times 3 \mathrm{inD}$ ．Price 21.76 ． P．\＆P．30p．

MANF TRAMgEORMER．For transistor power supplies． Pri．200／240V．Sec． $9-0-9$ at 500 mA ． 70 p ．P．supplies． Pri． $200 / 240 \mathrm{~V}$ ．Sec． $9-0-9$ at 500 mA ．70p．P．\＆P． 13 p
Pri．200／240V．Sec． $12-0-12$ at 1 amp．88p．P．\＆P． 13 p Pri．200／240V．Sec．12－0－12 at 1 amp．88p．P．\＆P．13p． Tapped Primary $200-220-240 \mathrm{~V}$ ．Sec． $21 \cdot \mathrm{j} \mathrm{V}$ at 500 mA ． 68p．P．\＆P．13p．
4ATP BATTERY CHARGER TRAMSFORMER
Brand new．For 6 or $1 \underline{1} \mathrm{~V}$ ． 340 V Primary．Secondary iln $\times \operatorname{lin} \times 3$ in weight 31b Limited nize approx $2 \operatorname{in} \times 2 / 21 n \times 3 i n$ ．Weight 31b．Limited number at
i－35．P．\＆P．3jp．

Open 9－5．30 Monday

to Saturday

Early closing Wed． 1 p．m． A few minutes from South Wimbledon

SPECIAL OFFER！！ HI－FI LOUDSPEAKER SYSTEM

Beautifully made teak finish enclosure with must

 $\times 10 \mathrm{in}$ Thgan－Vynair front．size 16 jin high Ceramic Magnet 13 in \times \＆in base unit，two $\mathrm{H} F$ weeter unite and crossover．Power handling 10 WOur Price $£ 8.40$ CABINET AVA1LLBLE SEPARATELY
Also a vailable in 8 ohin with EMI 13 in $\times 8 \mathrm{in}$ ．bas apeaker with parasitic tweeter．28．50．（＇arr．65p．

LOUDSPEAKER BARGADE

$5 \sin 3$ hhm $80 \mathrm{p}, \mathrm{P} . \&$ P． $15 \mathrm{p} .7 \times 4 \mathrm{in} 3$ ohm 21.05 ， P ．\＆P．

 or 1；）chm with two inbuilt tweetery and crossover net rork $84 \cdot 20$ ．P．\＆P．30p．E．M．I． $13^{\prime \prime} \mathbf{~ 8 ~}^{\prime \prime}$ twin cone parastatic tweeter）＊ohmit 22.25 ．
BRAMD KEW． 12 in 15 H H／D Speakers， 3 or 15 obm． current production by well－known British maker．Now with Hiflux ceranic ferrobar magnet assembly $85-50$ Guitar morlels： 2 Jw 88－50．35w 88－50．P．\＆P．38p each． E．M．I．3！in HEAVY DUTY TWEETERS．Powerful解 P．\＆P． 13 p ．

12í＂RA＂TWIM CONE LOUDGPEAKER
 35 ohm SPEAKERS 3^{*} ．ONLY 68p．P．\＆P． 13 p ． YYMAIR \＆REXINE SPEAKERS \＆CABIMET FABRICS
 speaker cabinet bargain
Beantifully made all woolen const ruetion medium walnut Beantifnoly made alt woolet const ruetiont hedinm walnut
front，gold anodised expandfil aluminium grille and dark sides．Approx．uize werall 11 in high x 万in leep x $13!$ in wide at have．baffle cut out for 8 in speaker， Could accommotate amplifiel or radio together with
upeaker．FFW LEFT＇ONI．Y 21.38 pont free．

HI－FI STEREO HEADPHONES

Adjustable headband with comfortable flexifoam car－ muffs．Wired and fitted with standard stereo jin jack impedance $8-16$ ohms．Easily convertel for mono．PRICE 22．95．P．\＆P．lüp．
SINGLE HEADPHONE．With aluminium headband． Approx． 200 ohm．25p．P．\＆P．8p．
CRYBTAL MIKEs．High innp．for leak or hand use High sensitivitr 98p．P \＆P．
HIGH IMPEDAMCE CRYETAL STICK MIKES．OU＇R GRICEA1－06．P．\＆P．8p． GISTOR PRE－AMPLIFIER．For P．E．Tape，Mike， Guitar，etc．，and suitable for use with valve or
transistor equipment． $9-18 \mathrm{~V}$ ．Battery or from \mathbf{H} ．T． transistor equipment．9－18V．Battery or from H．T．
line $200 / 300 \mathrm{~V}$ ．Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$ ． line 2001300 V ．Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$ ．
Gain 26 dB ．Sold encapsulation size $1 \ddagger \times 1 \ddagger \times \$ \mathrm{in}$ ． Gain 26 dB ．Sold encapsulation size $1 \& \times 1+\times \neq \mathrm{in}$ ．
Brand new－complete with intructions．Price Brand new－con
88p．P．\＆P．13p．

BRAMD NEW E．M．I．LIGHTWEIGHT PICK－UP ARY WITH ARM REST．Fitted mono t／o atylum and cartridge or LP／i8，ONLY 21．P．\＆P．8p．
QUALITY RECORD PLAYER AMPLIPIER ME II A top－quality record player amplifier employing heavy
duty double wound mains fransformer．ECC83，EL84， duty double wound mains transformet．ECC83，EL84； Complete with output transformer matched for 3 ohm peaker．Size 7in．w．． 3 d ． 6 h ．Ready built and tested PR1CE 88．75．P．\＆P．40p．ALSO AVAILABLE mounted on board witi output transformer and speaker
ready to tit cabinet below．PRICE 84.88 ．P．\＆P． 50 p ． ready to fit cabinet belou．PRICE \＆4．88，P．se P．50p DE LUXE QUALITY PORTABLE R／P CABIMET ME II ncut motor board aize $4 t$ i2m．，clearance 2 in ．below GARRARD．Will take above amplifier and any B．S．R．of $\$ P 25$ ），Size $18 \times 15 \times 8$ in，PRICE 84.75, P．\＆P．50p

10／14 WATT HI－FI AMPLIFIER KIT
 Fully gbrouded eection wound output transforiner to match 3－15』 speaker and 2 independent volume controls， and separate bass and treble controls are provided giving good lift and cut．Valve line－up 2 ELE48．ECC83，EF86 and
EZ80 rectiffer．Sinple instruction booklet 18p（Free with
 parts）．All parts sold moparately．ONLY also available ready built anil teated complete with std． mput sockets 80.07 P P ． 55 teated complete with st

PAMTARTIC＂POLT PLAYAR＂WAFRR－TIPE WIDE RANGR ELECTRO－DYAAMIC SPEAKER Size only II in $\times 14 \mathrm{Hin} \times 1$ id in deep．Weight application and is particularly useful for those with mited space．Fxtremely rugged and shockproof Operating temperature $-\underline{2} 0^{\circ} \mathrm{F}$ to $+17.5^{\circ} \mathrm{F}$ ．Power handling 20W r，mis．$(40 \mathrm{~W}$ peak）．Impedance 8 ohm only．Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$ ．Can be
mounted on ceillngs，walls，doors，inder tables， mounted on ceilings，walls，doors，under tables，
etc．，and used with or without baffle．Send S．A．E． for full details．Only $\mathbf{2 6 - 7 5}$ each．P．\＆P． $6 \overline{\mathrm{u} p}$ ．

DE LUXE STEREO AMPLIFIER

\times EZ80 as ECL86 Trlode Pentoden． provided to rectiner．Two dual potentiometera are ereble boost and cut．A dual volume control fased． Balance of the lest and right hand channell can be at the rear means of a separate＂balance＂control fitted mately $300 \mathrm{~m} / \mathrm{v}$ for tull peak output of 4 wat （ 8 watts mono），into 3 ohn＇speakers．Full pegative feedback in a carefully calculated circuit，allows bigh volume ievels to be used with negligible diatortion Supplied completc with knobs，chassis size 11 in ．w $\times 4 \mathrm{in}$ ．I Overall height including valves 3 in ．Keady built and teated to a high standard．Price $88-92$. P．\＆P．45p．

4－SPEED RECORD PLAYRR BARGAIII

 Kains modela．All brand new in maker＇s packing： LATEST B．S．R．C109／A21 4－SPEED AUTOCRAIGER With latest mono conipatible cartridge $28 \cdot 97$ ．Carr． 50 p ． With stereo cartridge E7 97，Carr．50p．SUITABL \＆PLDTH UNIT POR ABOVE
SUITABLA PLIATH UNIT FOR ABOVE with rigld plastic
cover．\＆5 complete．P．\＆P，50p
LATEST GARRRED HODELS．All typen svailable 10es， 2025，8P25，800，AT60，etc．8．A．E．Ior Letest Pricen ！ $2000,3000,3500$ ，ete．With rigid transparent plaatle cover．Bpecial design enables above modele to be used With cover in position．Also suitable for housing AT60
and SP25．OUR PRICE； 85 complete．P．\＆P． 50 p ．
LATERT ACOS GP91／18C Mono Compatible Cartridge with ／o stylus for LP／EP／78，Universal mounting bracket SONOTONE OTAHC COMPATLBLE BTEREO CAETRIDGE tion stylus．
 LATEST ROMETTE T／O Stereo Comptiblo Cartridge for EP／LP／Gtereo／78． $41 \cdot 68$ P．\＆P．10p．
LATEET RONETTE T／O Mono Compatible Certridge for EP／LP／78 mono or sterer records on mono equipment．
1.50 ．P．\＆P． 10 p ． 1150．P．dP．Jp．s－VALVE ADDIO

AMPLIFIER HABA ME I Designed for Hi－Fi reproduc－ operatlon．Ready built on plated heavy gauge metal
 4inin，b．Incorporates ECC83，
EL84，EZ80 valves．Heavy ELS4，EZ80 Valves．Heavy
duty，double wound mains fransformer and output trans former matched for 3 ohm controls givlog bass and treble lift and cut．Negative feedback sine．Output 44 wattu．Fron panel can be detached and leads extended for remote mounting of controls．Complete with knobe，valven，etc． wired and tested for only $\& 4.75$ ．P．\＆P．35p．
HSL＂FOUR＂，AMPLIFIER RIT．Similar in appearance to HA34 above but employs entirely different and advanced
circuitry，Complete set of parts，etc． 88.98 ．P．\＆P． 40 p HARVERSON＇S SUPER MONO AMPLIFiER
A super quality gram arnplifer using a double wound fully isolated mains transformer，rectifier and ECL82 triode pentode valve as audio amplifier and power out put atage． Impedance 3 obms．Output approx． $3 \cdot \bar{o}$ watts．Volume and tone controls，Chassis size only 7 in．wide $\times 3$ in．deep \times
Gin．high overall．AC mains $200 / 240 \mathrm{~V}$ ．Supplied absolutely Gin．high overall．AC mains $200 / 240 \mathrm{~V}$ ．Aupplied absolutely
Brand New，completely wired and tested with good Brand New，completely wired and teate
quality output transformer．FEW ONLY．

BARGAIM PRICE
HANDBOOK OF TRAM8IBTOR EQUIVALENTE AND BUBSTITUTES
A nust for servicemen and home conatructors． 1971 edition including many 1000＇s of British，U．8．A．，
European and Japanese trangistors．ONL Y 40p．Post Jp．，

HIGH GRADE COPPRE LAMEATATE BOARDS
（Please write clearly）
please hote：p．e p．ceragaze
 CHARGED EXTIA．

Really amart appearance with apsee for R.C.S. Amplifier and most modern auto changers. Size $18 \times 15 \times$ 8in. Chrome fittinge. Carrying handie. Two tone rexine covered. Red
Grey or Motled Blae and

$$
4
$$ Grey or Wood Grain effect.

BSR C.I09 SUPERSLIM

STEREO \& MONO

 Anto or Manual. A high quality nnit backed by BSR reliability with 12 months'guarantee. AC 200/250v
Size 13!
Above motor board 3yim

with sTEREO and MONO XTAL $£ \mathbf{7 . 7 5}$ Post 25 p . GARRARD SINGLE PLAY TA Mk II.

Ideal Discotheque or Hi-Fi. Stereo/Mono

E.M.I. WOOEER AND

$£ 5.75{ }^{\text {Poss }}$

Comprising a fine exsmple of a Wooier with a massive Ceramic
Magnet, $440 z$, Gausg 13,000 lines. Alnminium Cone centre to improvc midde and top response. Aloo the E.M.I. Tweeter 3in. square has a special lightweight paper cone aud ,
mpedance Standard Maximum Dower Basi Resonance
8 ohms
12 watts Basi Resonance $\quad 45 \mathrm{cps}$

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial....65D Spare Cores.............3p

P51/1 or P51/2 P50/8V	$33 D$	Werr
33 D	OPT1	

Mrllard Ferrite Rod $8 \times$ in. $200.6 \times+i n .25 \mathrm{p}$
VOLUMECONTROLS 800hm Coax 4 yd.
Long apindles. Midget Size BRITISE AERIALITE 5 K ohms to 2 Meg. LOG or AERAXIAL-ALR 8PACED LIN. L/S $15 \mathrm{p} . \quad$ D.P. 25 p . $40 \mathrm{yd} . ~ £ 1.40 ; 60 \mathrm{yd} .29$
 VEROBOARD 0.15 MATRIX
$2 t \times 5$ in. $26 \mathrm{p} .24 \times 3$ in. $17 \mathrm{p} .32 \times 31 \mathrm{in} .26 \mathrm{p} .3{ }^{3} \times 6 \mathrm{in} .30 \mathrm{p}$ EDGE CONNECTORS 18 Way 25p; 24 way 88p. S.R.B.P. Board 0-15 MATRIX 2_{5} in wide 3 p per 1 in . 3 in. wide $4 p$ per 1 in . S Sin. Wide of per 1 in . (up to 17 in .)
8.R.B.P. undrilled 1 in . Board 10×8 in. 15 .
BLANK ALUMINIUM CEASSIS. 18 s.w.g. 2 iin. sides $6 \times 4 \mathrm{in}$. $48 \mathrm{p} ; 8 \times 6 \mathrm{in} .83 \mathrm{p} ; 10 \times 7 \mathrm{in} .65 \mathrm{p} ; 12$
$14 \times 91 \mathrm{n} .90 \mathrm{p}: 16 \times 6 \mathrm{in} .90 \mathrm{p} ; 12 \times 3 \mathrm{in} .50 \mathrm{p}$
 $14 \times 8 i n .16 \mathrm{p} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 12 \times 5 \mathrm{Sin} .20 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p} ;$
$18 \times 6 \mathrm{in} .28 \mathrm{p} ; 14 \times 9 \mathrm{in} .34 \mathrm{p} ; 12 \times 12 \mathrm{in} .40 \mathrm{p}$.
1tinch DIAMETER WAVECEANGE SWITCHES. 26p. 2 p. 2-way, or 2 p. 6-way, or 8 p. 4-way 25p each
TOGGLE SWITCEES, 1p. 14p; dp. 18p; dp. d\&. R3p.
"THE INSTANT" BULK TAPE ERABER AND HEAD DEMAGNETI8ER
200/250 7. A.C.
E2.35 RETURN OF POST DESPATCH

R.C.S. STABILISED POWER PACK KITS

All parta and instractiona with Zener Diode, Printed Cironlt, Bridge Bectifers and Double Wound Mains Translormer inpat $200 / 240 \mathrm{~V}$ a.c. Ontput voltages a vailable 6 or 8 or 12 or 15 or 18 or 20 V d.c. at 100 mA or lems Detaila S.A.E.
R.C.S. GENERAL PURPOSE TRANSISTOR

PRE-AMPLIFIER BRITISH MADE
Ideal for Mike, Tape, P.U., Guitar, etc. Can be used with Battery 8-12p. or B.T. line 800-8008. D.C. operation. Bize $1 t^{\prime \prime} \times 11^{\prime \prime} \times z^{\prime \prime}$. Response
For nso with valve or tranisitor equipment. Eall inatruction smpplied. Brand now. Gaaranteed. Details S.A.E. 90 p Po NEW TUBULAR ELIECTROLYTICS CAN TYPES $2 / 350 V^{2}$
$4 / 350 V^{2}$

$4 / 850 V$	\cdots	14 p	$500 / 25 \mathrm{~V}$	\cdots	20 p	$16+16 / 500 \mathrm{~V}$							
$8 / 450 \mathrm{~V}$	$50 / 850 \mathrm{~V}$							$8 / 450$	14 p	$1000 / 25 \mathrm{~V}$	36 p	$80+100 / 250 \mathrm{~V}$	58
:---	:---	:---	:---	:---	:---								
$16 / 450 \mathrm{~V}$	15 p	$1000 / 50 \mathrm{~V}$	47 p	$32+32 / 250 \mathrm{~V}$	18		$32 / 450 \mathrm{~V}$	20 p	$8+8 / 450 \mathrm{~V}$	18 p	$32+32 / 450 \mathrm{~V} .$.	38 p	
:---	:---	:---	:---	:---	:---		$25 / 25 V$	10 p	$8+16 / 450 \mathrm{~V}$	20 p	$350+50 / 825 \mathrm{~V}$	50 p	
:---	:---	:---	:---	:---	:---	:---							
$50 / 50 \mathrm{~V}$		10 p	$18+16 / 450 \mathrm{~V}$	95 p	$32+32+38 / 850 \mathrm{~V}$	43 p		$100 / 25 \mathrm{~V} .$.	10 p	$32+32 / 350 \mathrm{~V}$	25 p	$100+50+50 / 850 \mathrm{~V} 48 \mathrm{p}$	
:---	:---:	:---:	:---:	:---:	SUB-MIN. ELECTROLXTICS. 1, 2, 4, 5, 8, 16, 25, 30, 50, 100 $200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} ; 500,1000 \mathrm{mF} 12 \mathrm{~V} 18 \mathrm{p} ; 2000 \mathrm{mF} 25 \mathrm{~V} 42 \mathrm{p}$ CERAMIC, 1 pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mice 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$ PAPER 350V-0. $14 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$. $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{sp} ; 0.258 \mathrm{p} ; 0.47 \mathrm{25p}$. SILVER MICA. Cloae tolerance $1 \% \cdot 2 \cdot 2-500 \mathrm{pF} 8 \mathrm{p} ; 560$ $2,200 \mathrm{pF} 10 \mathrm{p} ; 2,700-5,600 \mathrm{pF} 20 \mathrm{p} ; 6,800 \mathrm{pF} 0.01, \mathrm{mld} 80 \mathrm{p}$ 6ach TWIN GANG. 200 , $208 \mathrm{pF}+10 \mathrm{pF}$, 50 p , 80 F mow drive $365 \mathrm{pF}+305 \mathrm{pF}$ with sindard 45p; small 3-gang 500 pF 51.60 . SHORT WAVE SLIGGLE. $10 \mathrm{pF}, 30 \mathrm{p}, 25 \mathrm{pF}, 55 \mathrm{p}, 80 \mathrm{pF}, 55 \mathrm{p}$ CHROME TELESCOPIC AERIALS E8in. Swivel base 20p. TUNING. Solid dielectric. $100 \mathrm{pF}, 500 \mathrm{pF}, 35 \mathrm{p}$ each. TRIMMERS. Compreation 30. 50, 70pF, 5p;								

$100 \mathrm{pF}, 150 \mathrm{pF}, 8 \mathrm{p} ; 260 \mathrm{pF}, 10 \mathrm{p} ; 600 \mathrm{pF}, 750 \mathrm{pF}, 10 \mathrm{p} ; 1250 \mathrm{pF} .10 \mathrm{p}$ SLICON REC. 40 -LUCAS $2 D 8500$ Bridge 70 v - 5 amp f RECTIFIERS CONTACT COOLED hall wave 60 mA 38p; 85 mA 48 p . SILICON BYZ13 30D; BY100 30p; BY127 30 Eull Wave Bridge Rectifers 75 mA 50 p ; 150 m .

$$
\begin{aligned}
& \text { EX-GOVT. RECTIFIERS } 250 \vee 200 \mathrm{~mA} \text { Bop. } \\
& \text { NEON PAN EL INDICATORS \&50V AC/DC Red }
\end{aligned}
$$

BESISTORS EIGE 8TABILITY. i w. $2 \% 10 \mathrm{ohmg}$ to $1 \mathrm{meg}, 10$ Ditto 5%. Preferred values 10 ohms to 10 meg., 4 p . WIRE-WOUND RESISTORS 5 watt, 10 Watt, 15 wath 10 ohms to 100 K 10 peach ; $2 \frac{1}{1}$ watt, 1 ohm to 8.2 ohml 10 p .

PHILIPS TRANSISTOR FM STEREO

 MULTIPLEX DECODER As used in LEAK Troughline Tnner. Brand Rew. Pre-sligned
with \quad gemiconductora. 24 V d.c. at $6 m A$. Complote with
 ${ }_{31}^{c} \times 2 \times 1 \mathrm{in}$.

MAINS TRANSFORMERS All post

 $250-0-25080 \mathrm{~mA} .6 .3$ v. 8.5 z .6 .3 v. 1 a, or S V. 2 a .
$350-0-350$
80 mA .8 .3
m .3 .5 a .6 .3 v. 1 a, or 5 v .2 a.
 MIDGET 220 ท. 45 mA ., 6.3 v. 2 a . $21 \times 24 \times 2 \mathrm{in} .$. P.E. AORORA TRANS. $12+12 v, 500 \mathrm{~mA}$ MINI-MAINS 20v. 100 mA . $1 \mathrm{H} \times 1 \mathrm{~B} \times 1$ in. HEATER TRANS. B.3 v. 3s.
Ditto tapped sec. 1.48. , $2,3,4,5,6.3$ v. 11 amp. GENERAL PURFOSE LOW VOLTAGE. Tapped outpat at 2 amp., 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 24 and 30 v 1 amp., $6,8,10,12,18,18,20,24,30,38,40,48,60$. 2 amp ${ }^{6,8,10,12,16,18,20,24,30,36,40,48,60}{ }^{43}$
AUTO TRANSFORMERS. $115 v$ to 230 v or 230 v to Inpnt/Output, 150 w . 22; 500 w . 25; 1000 w .112 CEARGER TRANSFORMERS. Inpnt $200 / 250 \mathrm{v}$.

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS With twin tweeters.
And crontover. 10 watt.
State 3 or 8 or 15 ohm. As illontrated With flared tweeter cone and ceramic E=2 Flar 10,000 ganait. Recommended Tesis Cabinot
Size $16 \times 10 \times 9$ gin. Poat 25 p.

IOW MINI-MODULE $£ 3.25$

LOUDSPEAKER KIT

Triple apeaker system combining on ready cut bafle. tin. chiphoard 15 in . 87 in . Separato Bate, Middle and Treble loudspeakers and croatover condenser. The heavy duty 5 in . Bass Wooter unit has a low resonance conv. to the middle register and the tweeter recreates the top end of the musical spectrom. Total response 20-15,000 cpe. Full instractions for 3 or 15 ohm. TEAK VENEERED BOOKSEELF ENCLOSURE. $16 \times 10 \times 9$ in. Modern denign, with
Flated Wood Front. Highly $\mathbf{\$ 5}$ Pont 25 p recommended.

RADIO COMPONEN

GOODMANS HI-F 6 in . WOOFER 8 ohm, 10 watt. Large ceram pecial Cambric cones arround requency P a cpe Ideal P.A. Colamns

ELAC CONE TWEETER

The moving coil diaphragm gives a sood radiation patiern to the higher irequancie from $1,000 \mathrm{cpi}$ to $18,000 \mathrm{cps}$. Size $8 \frac{1}{\mathrm{I}} \times$ $3 t \times 2 \mathrm{in}$. deep Rating 10 watt. 3 ohm or 15 ohm models. $\mathbf{E} 1.90$ Pont 10 D

Horn Twetters $2-16 \mathrm{Kc} / \mathrm{s}, 10 \mathrm{~W} 8$ ohm or 15 ohm 81.50 De Lure Horn Tweetert $2-18$ Kc/a, 16 W .8 ohm 88 TWO-WAY 3,000 c.p.l. CROSSOVERS 3 or 8 or 16 ohm 85 p
 $15 \mathrm{ohm}, 3$ tin. dia.; $7 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{in}$. 8 ohm, 6×4 in.; 3 ohm, 24 in, 3 in, $5 i n, 5 \times 3 i n, 7 \times 4 i n$. LOUDSPEAKERS P.M. 3 OHMS. $61 \mathrm{in} . ~ £ 1 \cdot 10 ; 8 \times$ Ein. $21-26$; $8 \times 2 \mathrm{in}, 90 \mathrm{p} ; 8 \mathrm{in}$. $21 \cdot 75 ; 10 \times 8 \mathrm{in}$. 21.90 .
51 n . WOOFER. 8 w. max. $20-10,000 \mathrm{cpa} .8$ or 15 ohm 21.80 ELAC 10 in . 10w. Twin Cone. De Lure Ceramic 8 ohm $\frac{1}{}$ 8 in . dia. 4 watt; 10 in . dis. 5 watt; 12 in . dia. 8 watt.
8 in. dia. 4 watt; 10 in. dis. 5 watt; 12 in. dia. 8 Wati,
3 or 8 or 15 ohm models $81 \cdot 85$ each. Post $15 p$.
OUTPUT TRAN8. EL84, etc. 95 . MIKE TEAN8. $50: 125 \mathrm{p}$ SPEAKER COVERING MATERIALB. SAmples Large S.A. GOODMANS OUTPUT TRANSFORMER 5 watt pugh pall for ralven EL84, otc., 3. 8 and 15 ohm 85 p . Post 20 p .

BAKER 100 WATT

ALL PURPOSE
POWER
AMPLIFIER
4 inpats speech and munic. Miring facilities all loudspeakeri. A.C. 200/250V Guaranteed. Detail! 8.A.E

ALL EAGLE PRODUCTS HLUSTRATED EAGLE CATALOGUE 20p. Poat free BARGADA AM TUNER. Medinm Wave.
BARGAMI 4 CHANREL TRANSISTOR HONO MIXER. Add mazical highlights and sonnd oflects to recordings.
Will mir Microphong recordg, tspe and tuner 8tereo verion of a bove.
£4.25
BARGADF FM TUFER 88-108 Mc/s 8ix Transiator. 9 volt.
 BARGAIN FM TUAER as above

BARGAIN 3 WATT AMPLIFIER. 4 Transistor $\mathbf{6 3 . 5 0}$ Puit-Pull Ready built, with volume control. 9v. COAXIAL PLUG 6p, PADEL SOCKETS 6p, L OUTLET BOXES. SURFACE OR FLU8R 25 p. 300 ohma. JACK SOCKET Std. open-circult $14 p$, closed circnit 28p; Chyome Lasd 8ocket 45 g . Phono Plngi 5 p . Phono 8ocket 5 p . JACK PLUGS 8td. Chrome $15 \mathrm{p} ; 3.5 \mathrm{~mm}$ Chrome 14p. DLI 80cKeTs Chanis 8-pin 10p; b-pin 10p. Din sockers Lead 3-pin 18p; S-pin 15p. DIN PLUGS 8-pin 18p; S-pin
25p. VALVE HOLDERS, 5p; CERAMIC 8p; CANB 5p.
E.M.F. TAPE MOTORS. 180v, or 2407 . AC. 1,200 r.p.m. ${ }^{4}$ pole 188 mA
Spindle $0.187 \times 0 \cdot 7 \sin$. \& $\times 2 \neq \mathrm{in}$. (illastrated). Yost 16 p . BALFOUR GRAM. MOTONS.
 $\$ \times 8 \times 1$ IID. Port 15 D . CUSTOMERS FREE CAR PARK. CALLERS WELCONE
337 WHITEHORSE ROAD, CROYDON Open 9-6 p.m. (Wednesdays 9-1 p.im., Saturdays 9-5 p.m.)

HENRY'S LOW GOR FIRT FIRST GRADE BRANO BRANDED GERMANIUM AMd SILICON TRANSISTORS, OIODES, RECTIFIERS BY ATES • EMHUS FAIRCHILD FERRANTI • I.T.T. • MULLARD • MEWMARKET • PHILIPS • R.C.A. . TEXAS

TRANSISTORS
A SELECTION FROM OUR LIST

\qquad 18

HENRY'S ${ }_{\text {dowis INTEGRATED }}$ greeuits

BRAND NEW FULL SPECIFICATION TTLT4 SERIES BRANDED FAIRCHILO, T.T.T AND

180.
 00 Quedruple o. In Dut NAerijdion

7401 Quad 2-input open collecto
7408 Quad 2 -ingut NOR gates
7408 Quad 2-Input NOR gates
7404 Hertuple invertera
7405 Hex invertern with open col
7410 Triple 3-input NAND gates
741 Dual 4-input Bchmitt trigger
7490 Dual 4 -input NAND gatem
7450 gingle 8 -input NAND gatem
7480 Single 8 -input NAND gaten
7440 Duad 4 -input NAND buffer geten
7440 Dual 4-Input NAND buffer gater
741 BCD-Decimal decoler/Nlrie driver
7441 BCD-Decinal decoder (4-10-1Ine) TTL O/P
74 Erceen 3-Decimsl iecoler TTL outputs
7447 BCD-Decimal 7 eg. decoder/indicator driver BCD-Decimal 7 seg. decoder/driver TTL O/P
Expand dual 2 -input AND-OR-INVERT gate
 Qued 2 -Input expand AND-OR-INVERT
t-wide. 2 -Input AND-OR-INVERT geten Dual 4-input expandera
Bingle J-K fip-fop (gatell Inputa) Single J-K sip fop
Duaj J.K tip top
7478 Dual J.K tip top
7474 Dual D flp flop
7775 Quarruple blatable latch
7476 Dual J. K flip-Hop
7 74. $16-b 1 t$ read/wrlter memor
$\begin{array}{ll}7482 & 9 \text {-bit binary Full Adder } \\ \text { 748 }\end{array}$
7489
7444 bithary Pull Aditer
16-bit RAN with gated write Inputa
7496 Quadruple 2-Input Exclualve OR Esten
7491 R-blt ehift regiater
7402 Divide twelve counter
7492 Divide twelve counter
7493 4-bit binary counter
7494 Dual entry 4 -blt ablet reaint
7486
7406
4-bit up-down shift repinter
5-blt parallel/merial in/out ahift reglater
74100 8-bit blatable latch
74118 Hextuple Bet-Remet Iatchen
74121 Monostabie multivibratorn
74141 BCD-Decimal decoder/Nixie driver

75150 18-bit data selector/multiplexer
74158 Dual 4-line to 1 - Ine data sele
74154 16-bit dronder/demultiplexer ...
74156 Dual 2 -line to 4.line decoler/demultiplexer
74156 Dual 2 -inne to 4 -ine decomle r/fiemultiplexer
74100
74100 Aync decaife up-down counter, 1-Ilne mode
74181 8ync 4 -bit up-down counter, i-line mode
74181 gync 4-bit up-down counter, 1-line mode
74192 gync decade up-down counter. 2 -line mode
74192 gync decade up-down counter. 2-Ine moil
74108 syne 4-bit up-down counter. 2-Ine mole
74108 Asynchronous preatiable decade counter
74197 Agynchronous prenetisble 4-bit blnary coun

INTEGRATED CIRCUITE

MFC4000P

MFC
IC12
$\mathrm{PA} \cdot 48$
1 Cl 2
PA 248
TAD100
TAD11
M02C
709C (TOS)
709C (TOS)
723 C (TO\&)
741 CTOS
741 CTOS
$\mathrm{MC1303P}$
MC1304P
MC
MCl 304 P
8L403D
8L403D
741 CDIL
914(TOS)
923(T05)
TO8HIBA
20 witt smp.
TOBH1BA
Pre amp
Pre amp

$100+$
14
14

FHOM STOCK

QUANTITY OFFERS: FROM STOCK

EYI27Mullard 15p

2N3055 Fairchild

OC2 Mullard 60p
$25+55_{p}$
$100+50 p$
$500+45 p$
$1000+40 p$

2N301s Texas 35:
$25+30 p$
$100+25 p$
$500+20 p$
$1000+17 p$

BClos and

$$
\begin{gathered}
\text { All Makes } \\
25+8 p \\
100+7 p \\
500+6 p \\
1000+5 p
\end{gathered}
$$

ADI61 ADI62 35p
$25+32 p$
$100+2 p p$
$500+25 p$
$1000+22 p$

303 EOGWARE RD. LONDON. W2 TEL $01.7231008 / 9$

Practical Electronics Classified Advertisemenls

RATES: 71p per word (minimum 12 words). Box No. $7 \frac{1}{2} p$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

MISCELLANEOUS

LOTS OF

Suppliers forget to tell you that their metal lacators won't function until you've first got a transistor radio With which to
beat the locators signal. The BOFFIN TREASURE PROBE, however, comes to your doorstep With PRINTED-CIRCUIT
BOARD all ELECTRONIC COMBOARD, all ELECTRONIC COMplus searchecoil and earphone. Think of the fun you'll have BEACHCOMBING with the sensitive TREASURE-PROBE, and the expeetancy of hearing its LOUD "BEEP" tell you "YOU'RE ON TO SOMETHING GET YO

BOFFIN PROJECTS

4 CUNLIFFE ROAD STONELEIGH EWELL SURREY
Designed by GERRY BROWN JOHN SALMON and presented on TV

12 VOLT FLUORESCENT LIGHTS

Beat Power Cuts, 12 ins 8 watt Tube, ideal for Caravan, Tent, Emergency Lighting, etc. Fully Transistorised, Low Battery Drain With ON/OFF Switch and 12 V Socket to run other Lights or 12 V Equipment.
Unbeatable at 83 "30
orinkit form $82=91$
SALOP ELECTRONICS Callers welcome
Shrewsbury, Shropshire S.A.E. for lists

SYNTHESISER MODULES

Send S.A.E. for details of voltagecontrolled modules for synthesiser construction to:

D.E.W. Ltd.

254 Ringwood Road, Ferndown, Dorset

DO.IT.YOURSELF we stock a large range
 of audio and electronic components at very competitive prices, e.g.: Chassisspeakers, crossover networks, hi-fi speaker kits (Wharfedale and Peerless), BAF sound absorbent, speaker Erille fabrics, inductors, resistors, electrolytics (reversible and polarised), transistors, etc. Send for FREE list. ($2 \times 3 p$ stamps for fabric samples). Mail order ONLY. No callers please.

GIRCUIT BOARD ETCHING KIT8, ful instructions, $1 \cdot 25$, c.w.o. ARVIN SERVICE COMPANY, 12 Cambridge Road, St. Albans, Herts.

BUILD IT in a DEWBOX quality cabinet $2 \ln \times 2$ in \times any length. DEW LTD. Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

MISCELLANEOU8 (continued)

TOPP TRALGSTIORS
 Brand New and Individually Tested Transistors supplied unmarked, but packed separately for indentification and guaranteed to be within their correct specification or money refunded. All at 9p. azch or
 Any 25 transistors for only Cl 1.90 $\begin{array}{llll}\mathrm{ACY} 22 & \mathrm{BFY51} & \text { OC72 } & 2 N 3702\end{array}$ $\begin{array}{llll}\text { BC108 } & \text { BFY52 } & \text { OC202 } & \text { 2N3703 } \\ \text { BC109 } & \text { BSY27 } & \text { ZTX300 } & \text { 2N3705 } \\ \text { BC168 } & \text { OC45 } & \text { 2N706 } & \text { 2N3706 }\end{array}$ $\begin{array}{llll}\text { BCl68 } & \text { OC45 } & \text { 2N706 } & \text { 2N3706 } \\ \text { BC169 } & \text { OC7! } & \text { 2N2926 } & \text { 2N3708 }\end{array}$ Money back guarantee. P. \& P. 10 p J. M. KING (T)
 17 Buckride, Portpool Lane, London, E.C.I

OUT OF

[3,000 TRANSELECTRIC USES THERE ARE THREE ORFOUR FOR YOU
The PORTABLE Battery/Mains TRANSELEC TRIC Detector adjusts to receive light beams of VARIABLE length and width from NATURAL ARTIFICIAL or REFLECTED sources. Breakins the beam triggers the INBUILT warning light hooter or counter. It also activates ANY electrical or mechanical output, for example: transmitter/recoivel dremoto control allsecurity controls and alarms, production line counter, personnal movement, rocket firing, amutements, vehicle and boat protection plum all the activations of your imagination and.
ALL TRANSELECTRIC EQUIPMENT AND INSTALLATIONS BY

LEETRON
5 Church St., London, N.W.8. 01-402 5277 RECOMMENDATIONS AND QUOTATIONS FOR all installations and uses

HOLIDAY8 FOR BOY8. $14 / 16$ years, Summer 1972. Tuition and practical work in electronics (and tape recording), engineering (Karting), photography. 11 days in Norfolk216. Write for free brochure. INTERSCHOOL CHRISTIAN FELLOWSHIP, c/o 1 , Hubbard Road, London, SE27 9PJ.

> PROFESSIONAL CONTROL PANELS with

> FASCIA KIT MAKE YOUR OWN PANELS IN PERMANENT, NO SPECIAL EQUIPMENT NEEDED easy to follow instructions CHOICE OF SILVER ON BLACK, RED. BLUE GREEN.
> TRIAL KIT kI. 28 Carr. Paid No. 1 KIT 1.88 Carr. Paid
> M.P.E. Ltd. (P.E.), BRIDGE ST., CLAY CROSS DERBYS.

NO NEED TO WORRY ABOUT

 A TRANSMITTING LICENCEbecause this GPO approved transmiter/receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means, Actually it's TWO KITS IN ONE because you get al the printed-cireuit boards and components for both the transmitter AND receiver. You're going to find EASYProject REALLY FUN-TO-FOLLOW instructions. An extremely EASY-TO-FOLLOW instructions An extremely flexible design with quite an AMAZING RANGELANGUAGE LABORATORIES, SCOUT CAMPS etc.

GET YOURS! SEND $55 \cdot 20$ NOW
TO: "BOFFIN PROJECTS
DEPT. KE2O10
STONELEIGH, EWELL, SURREY

MISCELLANEOU8 (continued)

PSYCHEDELIC LUMINOPHONICS

Or is this just another way of referring to FANTASY ? Either way, our Projects 24 and 1014 probably come within this category-THINK OF THE FUN
YOU WOULD HAVE WITH SOMETHING LIKE YOU WOULD HAVE WITH SOMETHING LIKE UNUSUAL PROJECTS TOO-how about an ELECTRONIC STETHOSCOPE for LISTENING THROUGH WALLS, etc., or a TRANSMITTER/ RECEIVER that doesn't use RF, SO LICENCE WORRIES ARE OVER! Then there's another project for a "LEARNING" MACHINE-imasine one of these in YOUR BACKROOM; YOUR
FRIENDS WOULD BE AMAZEDI If REALLY FRIENDS WOULD BE AMAZEDI If REALLY UNUSUAL projects interest you, then WE'VE GOT WHAT YOU WANT, In Ta few. days from now You Could BE IN TH
DON'T PUT IT OFF! SEND :5p for your list-NOW

BOFFIN PROJECTS

4 CUNLIFFE RD., STONELEIGH, EWELL, SURREY Designs by GERRY BROWN and JOHN SALMON and presented on TV

BRAIN CALCULATOR. Adds, subtracts, divides. Calculates figures, money, sums easily and quickly. Pocket size, with full instructions, 55p. CAMERA C'ENTRE, Fleetwood.

HARDWARE FOR CONBTRUCTOR8. Screws, nuts, brackets, spacers, etc. S.A.E. list. R. A. MARSH, 29 Shelbourne Road, Stratford-on-Avon, Warwicks.

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M/C relays, components, etc. Lower Beeding 236.

RECORD T.V. SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. Instructions included, 70p +10 p P. \& I. CROWBOROUGH ELECTRONICS (P.E.), Eridge Road, Crowborough, Sussex.

FASCIA PANELS, hi-fl equipment, etc., etched alumlnlum to Individual speclfications, S.A.E. details. R. MARSH, 29 Shelbourne Road, Stratford on Avon, Warwicks.

JOHN SAYS ... RING MODULATOR by Dewtron is professional, transformerless, 5-transistor, has adjustable FI/F2 rejection. Module or
Unit $\$ 8.90$. WAA-WAA Pedal kit or ali Unit 88.90. WAA-W
parts, including all mechanics and instructions parts, including all mechanics anyTHEM from Dewtron modules. Simple unit for waltz, foxDewtron. Costs under $k 20$ in modules. trot. etc. Costs miracles! Send 15P ror 254 Ringwood Road, Forndown, Dorsit

SERVICE SHEET8

8ERVICE 8HEET8 (1025-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFinding Guide. Prices from 5p. Over 8,000 models available. Catalogue 13p. Please send S.A.E. with all orders/enquiries. HAMMLTON RADIO, 54 London Road, Bexhill, Sussex. Telephone, Bexhill 7097.

8ERVICE sheets with Free Fault Finding Chart 35p, plus stamped addressed envelope. LESMAR, 15 Conholt Road, Andover, Hants.

EAQLE INTERNATIONAL require Audio Engineers. Jixcellent prospects. Must be fully conversant with Stereo Amplifiers, Tuners, Multiplex, etc. Contact MR. MORJOW 01.9030144 .

EDUGATIONAL

AM8E (Elec.), (ity d Guilds, RTEB Cert. Radio Amateurs (iert., etc, on wide range of Courses in Elec. bingineering, Design, Installation, Repairs, Refrigeration, Electronies, Radio and TV. etc. Send for full details and illustrated book-free. BIET (Dept H.5) Aldermaston Court, Reading, KG7 4PF
leal Components, new and manufacturers surplus. Credit vouchers value 50p. Price 23p, including post. AKTHUR SALIIS 23p ineluding post, ARTHUR SALIIS
RADIO CONTROL JTD., 28 Gardner Street, Brighton, Sussex.

MORSE MADE!!

FACT NOT FICTION, It you atart IRIGIIT within a month (normal progress to be expected) Morse Uuing scientilically prepared 3 -speed recori automatically lean to recognise the code RHYTHM without transtating. You can't help it, it's us easy as learning a tune. 18 W.P.M. in 4 weeks griaranteed. For detaits and course C.O.D. ring S.T.D. 01-660 2896 or send 4 p stamp for explanatory booklet to: G8HSO (Box 19), 45 GREEN LANE, PURLEY, SURREY
P.E.BACK NUMBER8. No. 1 (Nov. 64)-Vol. 2, No. 12 (Dec. 66). Offers please. MEREDITH, 2e Burgess Road, Southampton.

RADIO, TELEVIBION AND TAPE RECORDERs. 50 mixed odd sheets 50 p . Also large stock of obsolete and current valves. $J O H N$ HILBERT TELEVISION, 1b Shepherds Bush Road, London, W. 6 (01-743 8441). S.A.E. enquiries.

SERVICE 8HEET8. Radio, TV, etc., 8,000 models. List 10p. S.A.E. enquiries. TELRAY, 11 Maudland Mank, Preston.

FOR 8ALE

SEEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R. Whiston, Dept, PE, New Mills, Stockport.
cataloque no. 18, Electronic and Mechan-
PERFECT SPEAKERS EX TV 5^{*} round or $\mathrm{B}^{*} \times 2 \frac{1}{2} 12 \frac{1}{2} \mathrm{p}$ each, add $7 \frac{1}{2} \mathrm{p}$ per 100 SPEAKERS for \& 15 delivered TUNERE EX TV (Complete with Valve 62.50 each +50 pp . \& pkg
or 10 for K 23 post free
ThADE DISPOSALS (Dept. PE) Thormbury Roundabout, Leeds Road, Bradford
Telephone $\mathbf{6} 55670$ Telephone 685670

```
```

 PERFECT SPEAKERS EX TV
    ```
    PERFECT SPEAKERS EX TV
5* round or B* }\times2\mp@subsup{2}{}{*}12\frac{1}{2
5* round or B* }\times2\mp@subsup{2}{}{*}12\frac{1}{2
    $3peaker P. & Pkg.
    $3peaker P. & Pkg.
    200 SPEAKERS for }255\mathrm{ delivered
    200 SPEAKERS for }255\mathrm{ delivered
    UHF TONERg EX TV (Completo with Valves)
    UHF TONERg EX TV (Completo with Valves)
        22.50 each + 50p p.& pkg.
        22.50 each + 50p p.& pkg.
    THADE DISPOSALSSt(ree (Dept. PE
    THADE DISPOSALSSt(ree (Dept. PE
Thornbury Roundabout, Leeds Road, Bradford
Thornbury Roundabout, Leeds Road, Bradford
        Telephone }65567
```

 Telephone }65567
    ```
\[
3-2
\]

ENGINEER8-get a technical certificate. Exam and Certiffate lostal Courses in all branches of Eimineering, Electronim, Radio and TV, ('omputers, Draightr., Building, etc. Write for helpful Free Brok-Bili'T (Dept. H.4), Aldermaston (court, Reading, R(is \(4 \mathrm{P}^{\prime} \mathrm{F}\).

\section*{SITUATIONS VACANT}

\section*{CITY OF LONBON POLYTECHNIC SCHOOL OF NAVIGATION} TECRHICIAN
Applications are invitell for the post of Technician in the above School.
Applicants should po
Applicants should possess the C. \& A. Intermediate
Certificate irl either Electronic Certificate in either Electronic Rervicing or Radio and Television Servicing, or sil equivalent qualifica-
tion. The The successful candidate will be concerned with the
care and maintenance of electronic equipment including television and radar in the modern building on Tower Hill and aboard the radar training veasel "Bir John Cass", and with the audio-visual aid equipment of the school.
Salary bcale, according to age and qualifications, in the range \(£ 1.041-£ \mathrm{f}, 461\), phas \(£ 126\) London Weighting Allowance.
Apply in writing, giving details of relevant experience and quoting twu referees, to Lt.-Cdr. K. R. Alger, Head of Depariment, school of Navigation, City of London EC3N \(1 J Y\).

\section*{Success in the G.C.E.}

ICS have an outstanding record of successes in coaching for the G.C.E. Make sure of this vital passport to University, Industry, Commerce and the Professions.
Write today for details of our Commerce and the Professions.
Write today for details of our individual home study courses. Send now for free fully detailad booklet to:
INTERHATIONAL CORRESPONOENCE SCHOOLS
(Dept. 56I) Intertext House Stewarts Road, London SW8 4UJ Accredited by the CACC

J ,



First-class opportunities in Radio and Electronics await the ICS trained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:
* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
* RADIO AMATEURS' EXAMINATION.
* RADIO OPERATOR CERTIFICATES.

Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ABCC
ACCREDITED BY THE CACC



\section*{TELEVISION TRAINING}
(MONOCHROME AND COLOUR)
This private College provides theoretical and practical training in Radio and TV Servicing. Courses of 16 months' duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Marine Radiocommunication and Radar are also available. Write for prospectus to: London Electronics College, Dept. B/1, 20 Penywern Road, Earls Court, London SW5 9SU. Tel. 01-373 8721.

GET INTO ELECTRONIC8--big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. R.T.S.B., Gity \& Guilds, Radio, TV, Telecoms, etc. For free informative Guide, write CIIAMBERS COLLEGE (Dept. R103), Aldermaston Conrt, Reading, R(i7 4 PF.

\section*{LADDERS}

LADDER8. 20ft, \(\mathbf{2 7}\). Order C.O.D. Phone \(02-993\) 5222. HOME SALES, Baldwin Road, stourport, Worcs, Callers welcome.

\section*{WANTED}

CA8H PAID for New Valves. Payment by return. WLLLOW VALE ELECTRONICS, 4 The Broadway, Hanwell, Londou. W.7. 01-5675400/2971.

HIGHEST PO8sIBLE CA8H prices for Akal, B. \& O., Breneli, Ferrograph, Revox, Sanyo, Sony, Tandberg, ther, Yortexion, etc. 9.305.00. 01-242 7401

\section*{TOP PRICES PAID}
for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street

Bradford 8, Yorks.
WE PAY THE HIGHEST PRICE8 for new valves. Cash sent by return. A.D.A. MANU. FACTURING CO., 116 Alfretor Road, Nottingham.

WANTED. Complete volumes of back issues of Practical Wireless, Practical Electronics, (Practical) Television, Radio Constructor and Wireless World from 1960 onwards. Must be in good condition.
E. G. PAUL \& CO. LTD., 43 Thistle Street, Edinburgh 2, 031 .226 3407.

\section*{REGEIVERS AND COMPONENTS}

\section*{BUILD YOUR TRANSISTOR CIRCUIT}

\section*{on a nippibonrd}

Up to four transistors per pattern.
VERSATILE PRINTED WIRING BOARD
SRBP
\begin{tabular}{llll|llll}
\(1 A\) & \(15 p\) & \(2 A S\) & \(28 p\) & \(1 B\) & \(18 p\) & \(2 B S\) & \(34 p\)
\end{tabular}
\(\begin{array}{llllllll}2 \mathrm{~A} & 28 \mathrm{p} & 4 \mathrm{AS} & 44 \mathrm{p} & 2 \mathrm{~B} & 34 \mathrm{p} & 4 \mathrm{BS} & 52 \mathrm{p}\end{array}\)
3A 36p 6AS 60p 3 3B43p 6BS 72p
ALSO FIBREGLASS PRINTED CIRCUIT BOARD WITH COMPONENT LOCATION AND GRID REFS
for E.E. 3watt i.c Record Player
SL403D i.c. £1.99 (post 8 packino 90)
Depinb EVIIP Electronics POOBOX 11 ,ST ALBANS
BRAND NEW COMPONENTS BY RETURN. Electrolytics 15 or \(25 \mathrm{~V} 1,2,5,10 \mathrm{mfds}-3 \frac{1}{2} \mathrm{p}\). 25 , \(50-4 \mathrm{p} .100-5 \mathrm{p}\). Mylar Film 100 V ,' \(0.001,0.002,0.005,0.01,0.02-2 \mathrm{p} ; 0.04\). \(0.05-\) \(2 \frac{1}{2} ; \quad 0.068, \quad 0.1-3 \mathrm{p}\). Mullard miniature carbon fllm resistors third watt E. 12 series \(1 \Omega-10 \mathrm{M} \Omega, 8\) for 5 p , insured postage 8 p . The C.R. SUPPLY CO., 127 ('hesterfield Rd., sheffield, S8 ORN.

\section*{AUDIO MIXER UNITS \& KITS}

High quality MODULES and BOARDS for constructing complete mixers in mono and stereo or for amplifier front ends, etc., also complete custom built systems for high quality STUDIO, DISCO, and P.A. Installations at economical costs.

\section*{PARTRIDGE ELECTRONICS}

Dept. P.E. 1 . 21/25 Hart Road . Thundersley • Benfleet . Essex Tel.: South Benfleet 3256

\section*{PE GEMINI STEREO AMPLIFIER}
(Dual purpose, 30W per channel)
All the components to build this high quality amplifier, as featured in "Practical Electronics," Nov. 1970-Feb. 1971, are now available from one source.
ALL PARTS CAN BE PURCHASED SEPARATELY.
Please send foolscap size S.A.E. for free complete lists. Return post service.

MAIL ORDER ONLY
ElectroSpares 21 BROOKSIDE BAR CHESTERFIELD, DERBYSHIRE
QUALITY - VALUE - SERVICE

> COMPUTER PAMELS. 5-BC108 diodes, 15p, poat 5p, \(4-50 \mathrm{p}\), pont 10p. AMERICAN PANELS total at least 50 transistors, frst-grade components, 4-55p. Dos 10 p. Assorred plenty of components at least 60 midget boards, plenty of components at least 60 tranigtors. List of boards sent un receipt of 8.A.E. capacitors. £1-50, post 27 p . Singlea 18p c.p. New and boxed 30p c. P. COMPUTER RELAYS DPDT, 700 ohm coil, weigh toz, carry \({ }^{2}\) amp. 60 p c.p. Same weigh 1 loz ailver contacts, 85p c.p. ORP12 on panel ex equipt. 35p c.p. WIRE ENDED HEONS bank of 20 , 50 p . post 7 p . COPPER CLAD PAXOLIM single sided, \(8 \times 5,10 \mathrm{p}\), post 5 p each. \(10 \mathrm{t} \times 8,20 \mathrm{p}, 13 \times 11\)
POLYSTYREIE CAPACTTORS \(125 \mathrm{~V}, 150,180,220\)
\(\begin{array}{ll}330,390,560,680,820,1,200,1,500,1,800, & 2,200, \\ 0,\end{array}\)
\(2,700,3,300,3,900,5,600,6,800,8,200,0.01,0.012\),
\(0.015,15 \mathrm{p}\) dozen, post 10 p .
Agsorted twil aama variable capacl-
TORS, BRAND NEW, 5 FOR E1.25, C.P.

> J.W.B. RADIO
> 75 HAYFIELD ROAD, SALFORD 6, LAACS. MAIL ORDER ONLY

\section*{Trampus alarimain}

Brand new to spec. Fully guaranteed. Digrtal Rndicator Computer 3015 type 7 bar display 7447 driver 21.37 .
NIXIE 190 V type, side \(0-9\), leads 61.25 .
VLRD visible red emit diode 9 V 20 mA 87 p
TRANSISTORS, BC107, BC108 10p, BC109 11p. Fet 2N381938p. TIS43 unijunct. 37p. BCY70 16p. BFYEl 18p. 2N2926 oy 10p. 2N30-3 24p. 2N 3055 70p. Photo transiators TIL63 npn 67p. Econ. npn
39p, 2N5777 Pboto darlington amp. 67p. OCP7 175 p . 89p. 2N5777 Photo darlington amp. 67p. 400 V 10 p . IN914 7p. OA91 7p. THYRISTOR 400 V 3 A 67 p . INTRGRATRD CIRCUITE 7400N TTL. \(7400,1, \varrho, 3\), \(4,10,20,30,40,50,51,53,54,18 \mathrm{p}\). \(7413,70,72,74\),
 75p. \(41,141,42,95,95 \mathrm{p}\). \(81,82,21 \cdot 25 . \quad 709 \mathrm{IC}\) OP amp. TOE 8 lead 50p. 703 C rf, it amp. 55 p . PA2s7 af. amp. El.47. BIGNAL INJECTOR af. rf. E\&. POWRE SUPPLY regulated 6,9, 12V 1 A \&10.47. c. Mail order ouly. Data sheets 7 p each W.O. P.P. 8p. Europe 25p. Overseas

EX COMPUTER PRINTED CIRCUIT PANELS tin \(<4\) in packed with semi-conductors and top quality resistors, capacitors, diodes, etc. Our price 10 boards 50p. is Pransistors. Data on teed minimumi of
SPECIAL BARGAIN PACK. 25 boards for 21, P. \& P. 18p, With a guaranteed minimum of 85 ranaistors. Data on transistors lacluded.

PAMELS with 2 power transistors sinilar to C28 on each board -components 22 boards ( \(4 \times\) OC28) 50p. P. \& P. 6p

9 OAS, 3 OA10, 3 lot Cores, 26 Resistors, 14
 All long lealed on panely \(13 \mathrm{in} \times 4 \mathrm{in}\). 4 for K 1. P. \& P. 25 p .
700C OPERATIONAL AMPLIFIER TOS
\(\times\) lead I.C. \(\quad 1\) of \(50 \mathrm{p} . \quad 50\) off 35 p.

250 MIXED RESISTORS 62p
\(t \& \mid\) watt
150 MIXED HI STABS 62P
\&. \& 1 watt \(5 \%\) \& better

\section*{QUARTZ HALOGEN BULBS}

With long leads. 12 V 55 W for car spot lights, projectors, etc. 50 p each. P. \& P .5 p .

GPO EXTENSIOR TELEPHONES
with dial but without bell. 95 peach. P'. \& P. 30p. \(\mathbf{~} 1.75\) for 2. P. \& P. \(\mathbf{~} 0\) p.

\section*{BARGAIN RELAY OFFER}
lugle pole change nuer ailver contacta \(25 V^{\circ}\) t 50 V . \(2.5 \mathrm{k} \Omega\) coil. \& for 50 p . P. P P. 5 p .

KEYTRONICS mail order only 44 EARLS COURT ROAD
\[
\text { LONDON, W. } 8 \quad 01-4788499
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{NEW GUARANTEED DEVICES ORDER WITH CONFIDENCE} \\
\hline \multicolumn{6}{|l|}{MICROCIRCUITS} \\
\hline \multicolumn{6}{|l|}{SN76013 (like 1C12) fl 50 ; \(70936 \mathrm{p} ; 741\) 36p;} \\
\hline \multicolumn{6}{|l|}{PA230 90p; PA23486p; PA 237 \&1.55; SL402A} \\
\hline \multicolumn{6}{|l|}{FLOP'S 37p.} \\
\hline \multicolumn{6}{|l|}{TRANSISTOR} \\
\hline 2N3055 & 54p; & BC107B & & BCl08 & \\
\hline \multirow[t]{2}{*}{} & & & & BFX86 & \\
\hline & 21p; & ME0411 & & ME0412 & \\
\hline ME0402 & 15p; & ME1002 & 1 p ; & ME4101 & \\
\hline ME0413 & 12p; & ME6101 & 15p; & & \\
\hline ME8001 & & 11 & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
I AMP RECTIFIERS: \\
\(50 \mathrm{~V} 3 \mathrm{p} ; 100 \mathrm{~V} 4 \mathrm{p} ; 200 \mathrm{~V} 5 \mathrm{p} ; 400 \mathrm{~V} 6 \mathrm{p}\). \\
Bridges: \(50 \mathrm{~V} 30 \mathrm{p} ; 100 \mathrm{~V} 31 \mathrm{p} ; 400 \mathrm{~V} 33 \mathrm{p}\). \\
3 AMP RECTIFIERS: 400 V '12p; 200 V 10 p. \\
PRINTED CIRCUIT RESIST PEN BOP.
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{3}{|l|}{Discounts begin at 10 off.} & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
JEF ELECTRONICS (P.E.I) \\
York House, 12 York Drive, Grappenhall,
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Mail Order Only. C.W.O. P. \& P. 7p per order. Overseas 65 p . Money back if not}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{order. Overseas
satisfied.
List free on opplicomey} \\
\hline
\end{tabular}


\section*{74 Serien TTL. 7400, 1, 2, 3, 4, 5, 10, 20, 26, 30, , 50, 31, 53, \(54,60,17 \mathrm{p} ; 7413,74,40 \mathrm{p} ; 74121\) 70p; 25 others available, ask for details. LINEARS. 709 (TO99 or 14 lead 11LL). 40 p ; 723 (TO9b). 95 p ; 741 (TG99, 14 lead D1L and \(\dot{\text { R }}\) lead DIL), 60 p .
TRANSISTORS. \\ 
 DIODES. 1 A . \(100 \mathrm{~V}, 5 \mathrm{p} ; 1 \mathrm{~A} 400 \mathrm{~V}, 6 \mathrm{p} ; 3 \mathrm{~A} 600 \mathrm{~V} .15 \mathrm{p}\); 1A 400 V p.i.v. Fuli Wave bridge, \(40 \mathrm{p} ; 1 \mathrm{~N} 414 \mathrm{~s}, 4 \mathrm{p}\). CARBON FILM RESISTORS. IW \(5 \%\) E24 serien: \(1-49,1 \mathrm{p}: 50.99 .0 .9 \mathrm{p} ; 100+, 0.8 \mathrm{p}\). All prices for mixed values. \\ ELECTROLYTIC CAPACITORS. Axial leal. 205 \(0.0047,1,3 \cdot 3,4 \cdot 7,10,5 \mathrm{p} ; 33,47,7 \mathrm{p} ; 100,9.5 \mathrm{p}\); \(220,330,18 \mathrm{p} ; 470,23 \mathrm{p}\). Other voltages and rantial lead types available, ask for details.
POLYESTER CAPACITORS. 100 y \\ POLYESTER CAPACITORS. 100 \(10 \%\) : 0.001 , \(0.0022,0 \cdot 003,0 \cdot 0047,0 \cdot 0656,0 \cdot 01,3 p ; 0 \cdot 022,0.033\), DUAL IN LINE SOCXETS. It leat, \(25 p\) p \\ 30 p.
HEAT RADIATORS. TOGB anodised, 12.6p; To3 natural, 10p. \\ Let us quote for your "shoping list". Our min. order only \(£ 1\). Please auld 10 p for P . \& P. on orders 1p to 25. Mail Order only. Strictly (C.W.O. \\ KONTAX,ELECTRONICS \\ (Sheerness) Ltd. \\ 115 Barton Hill Drive, Minister-on-Sea, Sheerness, Kent}

AD161/AD162 POWER PAIR8, matched for Mullard amplifler circuits. Mint, 60p pair. U.K. post 5 p. S.A.E. list. AM. TTRONIX LTI)., 396 , Selsdon Rdi. A . ('roydon, surrey, rue ODE.

AARYAK ELECTRONICS, 3 chamnel soumllight convertors, 400 watts per channel, \&17; 1,000 watts per channel, 825 . Medium lower Strobes, \&16. 74 liedford Ave., Barnet, Herts. 31-449 1268.
PRINTED CIRCUIT BOARDS for P.E. PROJECTS
All boards drilled and roller tinned complete with layout drawing.
Marine Tachometer (May 1970) 25p ea. Musical 5 rave (May 1970) 40p ea
Waa-Waa pedal Vol. 4 No. 7 14p ea. Audio Sig Gen. (Sine and Square on one board) Vol. 5 No S.A.E. for Li
S.A.E.for List. Now available from:-HENRY'S R.H. ELECTRONICS, Industrial Estate, Sandwich, Kent. Tel 2517

\section*{ORYREEDINSERTS}

Overall length \(1.85^{\prime \prime}\) (Body length \(1.1^{*}\) ) Diameter \(0.14^{*}\) to switeh up to 500 mA at up to 250 v D.C. Gold clad contacts. 62声p per
doz.; \(£ 3.75\) per \(100 ; 627.50\) per 1,\(000 ; 6250\) per doz.; \(£ 3 \cdot 75\) per 100; \(627 \cdot 5\)
10,000 . All carriage paid.
G.W.M. RADIO LTD

40/42 Portland Road, Worthing, Sussex 090334897
\begin{tabular}{|c|}
\hline \multirow[t]{11}{*}{} \\
\hline \end{tabular}

HI-STABS Send S.A.E. for full list
\(\frac{1}{2}\) watt \(5 \%, 1 \mathrm{p}\); \(\frac{1}{2}\) watt \(2 \%\), 3p.
I wate 5\% 2.5p; 1 watt 2\%, 4p.
all Metal oxide. Pack of 100 assorted, 45p. AXIS SOUND EQUIPMENT (Components Department)
Rear of 14 Stourvale Road, Pokesdown Bournemouth, Hants Phone: Bournemouth 40460/48630
PROFE88IONAL POTENTIOMETER DISTRIBUTOR has a limited quantity of Potentiometers which were surplus at stocktaking. All popular values consisting of presets ant. tinindle types. 50 for 50 p plus 10 p P. di P (WO mixed values. BLORE-BARTON LIMITEJJ. Reedham House. Burnham, Buck
\begin{tabular}{|l}
\hline
\end{tabular}

\section*{ELECTRONIC SOUNDS \& MUSIC}

SOUND SOURCE I: Voltage-controlled square-wave oscillator, 4 octave range; built-in L.F pulse source for vibrato, trill and "yodel" effects. The most arnaxing melodic source you have ever heard; indispensable for electronic music P.C. assembly...............................6.90
SOUND SOURCE 2: 7 transistor sine oscillator; automatic amplitude control for minimal distortion; Zener regulated supply, line; your choice of range. An ideal "pure"" I-C RING MODULATOR : transformerless, integrated circuit design for superb stability and low distortion. Adjustable input rejection; Zener biasing for DC applications. Usable with oscillators, orkans, "bugged" woodwind, mics.,
etc. P.C. assembly
WHITE SOUND MACHINE: Build your own from our circuit assemblies- 7 boards needed for a superb sound-effects unit. 7 assemblies.
..........................................225-00
All printed circuit assemblies are supplied with constructional guide and block wiring chart. Add 10 p postage per circuit please.

\section*{MAIL ORDER ONLY.}

SENO IOP POSTAL ORDER FOR YOUR CTTALOGUE taylor electronic music devices tegid house, bala, merioneth

\section*{TRA NSFORMERS}
dovglas gotaranteed


MO. 50, Thames 8treet, LOUTH, Lincs


\section*{YATES ELIGTRONIGS (FLITWICK) LTD}

ELSTOW STORAGE DEPOT
KEMPSTON HARDWICK, BEDFORD
C.W.O, PLEASE, POST AND PACKING LEASE ADD IOp TO ORDERS UNDER 2 Caralogue which contains data sheets for most of the components listed will be sent free on request. 5 p stamp appreciated.
\(10 \%\) DISCOUNT TO ALL CALLERS ON SATURDAYS

\section*{MESISTORS}
\(\frac{1}{3}\) W Iskra high stability carbon film-very low noise-capless construction. W Mullard CR2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Power} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Range } \\
4 \cdot 7 \Omega-2 \cdot 2 M \Omega
\end{gathered}
\]} & \multirow[t]{2}{*}{Valves available} & \multicolumn{2}{|c|}{Price} \\
\hline Power & Tolerance & & & 1-99 & \(100+\) \\
\hline \(\frac{1}{2}\) & 5\% & & E24 & \(1.0 p\) & 0.8 p \\
\hline \(\frac{1}{2}\) & 10\% & \(3.3 \mathrm{M} \Omega-10 \mathrm{M} \Omega\) & E12 & \(1.0 p\) & 0.8p \\
\hline ? & 10\% & \(1 \Omega-398\) & E12 & \(1.0 p\) & 0.8p \\
\hline \(t\) & 5\% & \(4 \cdot 7 \Omega-1 M \Omega\) & E12 & 1.0p & 0.8p \\
\hline 4 & 10\% & \(1 \Omega-10 \Omega\) & El 2 & 6p & 5.5p \\
\hline
\end{tabular}

Quantity price applies for any
0.5 watt \(5 \%\) Iskra resistors 5 off each value \(4.7 \Omega\) to \(1 \mathrm{M} \Omega\).
0.5 watt \(5 \%\) Iskra resistors 5 off each value \(4.7 \Omega\) to \(1 \mathrm{M} \Omega\).
E12 pack 325 resistors \(£ 2.40\). E24 pack 650 resistors \(£ 4.70\).

\section*{POTENTIOMETERS}

Carbon track \(5 k \Omega\) to \(2 M \Omega\), log or linear ( \(\log \frac{1}{W}\), lin \(\frac{1}{2} W\) ).
Single, 12p. Dual gang (stereo), 40p. Single D.P. switch 24p
SKELETON PRESET POTENTIOMETERS
Linear: \(100,250,500 \Omega\) and decades to \(5 M \Omega\). Horizontal or vertical P.C mounting ( \(0 \cdot 1\) matrix).
Sub-miniature \(0.1 \mathrm{~W}, 5\) each. Miniature \(0.25 \mathrm{~W}, 6 \mathrm{p}\) each
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{SEMICONDUCTORS} \\
\hline ACl26 & 12 p & BFY52 & 22p & OC81 & 12p & 2N3055 & 72p \\
\hline AC127 & 12p & BSY56 & 30p & OC82 & 12p & 2N3702 & 15p \\
\hline AC128 & 12 p & B5×21 & 25p & ORPI2 & 48p & 2 N 3703 & 14p \\
\hline ADI 40 & 40p & BYI24 & 71 p & IN4001 & \(71 p\) & 2 N 3704 & \(17 \frac{1}{10}\) \\
\hline AFII5 & 20p & BYZ10 & 20p & 1N4002 & 10p & \(2 N 3705\) & 15p \\
\hline AFlif & 20p & BYZ13 & 20p & 1 N4003 & \(11 p\) & \(2 N 3706\) & 12p \\
\hline BC107 & 10 p & OABS & \(7 p\) & IN4004 & 12p & 2 N 3707 & \(18 \frac{1}{} 1\) \\
\hline BC108 & 10 p & OA91 & 5p & IN4005 & \(13 p\) & 2 N 3708 & 10p \\
\hline BC109 & 10p & OA202 & 7 p & IN4006 & 13 p & 2N3709 & \(11 p\) \\
\hline BFY50 & 22p & OC71 & 12p & 1 N4007 & \(13 p\) & 2 N 3710 & 12 p \\
\hline BFY5I & 22p & OC72 & 12p & 2N2926 & \(11 p\) & 2N3711 & 14p \\
\hline
\end{tabular}

ZENER DIODES
\(400 \mathrm{~mW} 5 \% 3.3 \mathrm{~V}\) to \(30 \mathrm{~V}, 15 \mathrm{p}\).

BRUSHED ALUMINIUM PANELS
\(12 \mathrm{in} \times 6 \mathrm{in}=25 \mathrm{p} ; 12 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}=10 \mathrm{p} ; 9 \mathrm{in} \times 2 \mathrm{in}=7 \mathrm{p}\)

MULLARD POLYESTER CAPACITORS C296 SERIES
\(0.0015 \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{p}\). \(0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}\) \(0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, ~ 0.15 \mu \mathrm{~F}, 6 \mathrm{p}, 0.22 \mu \mathrm{~F}, 7 \frac{1}{4} \mathrm{p}\) \(0.33 \mu \mathrm{~F}, 11 \mathrm{p} .0 .47 \mu \mathrm{~F}, 13 \mathrm{p} . \mathrm{m}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F} 3 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F} 4 \frac{1}{2} \mathrm{p}\) \(0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \frac{1}{3} \mathrm{p} .0 .68 \mu \mathrm{~F}, ~ 11 \mathrm{p}\). \(1.0 \mu \mathrm{~F}, 13 \mathrm{p}\).
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting To. \(01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}\). \(0.022 \mu \mathrm{~F}\) I \(0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mathrm{~F}\) \(31 \mathrm{p} .0 \cdot 1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 81 \mathrm{p}\). \(0.68 \mu \mathrm{~F}, 11 \mathrm{p}\). \(1.0 \mu \mathrm{~F}, 13 \mathrm{p}\). \(1.5 \mu \mathrm{~F}, 20 \mathrm{p}, 2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}\),


\section*{PHOTOELECTRIC KIT}
 transistor, Latching Relay.:- Transistors, :3 Dioles, Resistors, (iain Control, Terminal Block, Elegant Case, Screws, ete. In fact everything you need to build a steady-Light Photo-Switch/Counter/Bugla
modulated-light operation.


\section*{PHOTOELECTRIC KIT} £2.60
Postage athl Park, Iop (ll, K.) Conmmonwealth: SURFACE MAIL : 2 , Alt MA1Le Anstralia, New Zealanti.
Africa, Canada and U.S.A Africa, Canada and U.S.A. Also lissential Data Circuit 10 Alvanced Deaigns

INVISIBLE BEAM OPTICAL KIT
Everything needed (except plywood) for building: I 1 wiwhbe - Bran Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
 Commonwealth: Surface Mall \(20{ }_{\mathrm{p}} ;\); Air Mail 50 p .
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Trice the range of standard hit. Larger Lenses, Fitter, etc, Price 21.85, Postage and Pack. 1.9 (U.K.). Commonwealth: Surface Mail 20p; Ais Mail \(£ 1 \cdot \mathbf{1} \overline{0}\).
JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steady-light Phuto-switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
Opener, Connter, ete., for the Experimenter. Resistors, Screws, etc. Full Size Plans, Instructions, Data Sheet ' 10 Advanced Photo electric Designs'
Price 81.25 . Postage and Paw. 10 p (U.K.). Commonwealth \(20 \mu\) : Airmail iop. JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Infre-red Filter, Lamphulder, Bracket, Plans, ete, Everything (except plywood) to build 1 miniat ure in risible bean projector ant photocell receiver forcept use with Junior Photoelectric \(K\) it.
Price 75p. Post and Pack. 10p (U.K.). Commonwealth: surface Mail 20 p : Air Mall \(\mathbf{7 0 p}\)
YORK ELECTRICS Mail Order Dept.
335 BATTERSEA PARK ROAD, LONDON, S.W. 11 Send S.A.E. for full details, a brief description of all Kita and Projects

In 15 MINUTES YOU COULD HAVE CAPACITIVE DISCHARGE ELECTRONIC IGNITION FITTED TO YOUR CAR
Capacitive Discharge ignicion is recognised as being the most efficiengignition system and will give you
- Continual peak performance

UP TO \(20 \%\) REDUCED FUEL CONSUMPTION
EASIER ALL. WEATHER STARTING
INCREASED ACCELERATION \& TOP SPEED
LONGER SPARK PLUG LIFE
IMCREASED BATTERY LIFE
INCREASED BATTERYMINE
CONTACT BURN ELIMINATED
PURER EXHAUST GAS EMISSION
For all petral engines cars. RADIO INTERFERENCE SUPPRESSED boots etc. Guaronteed for 5 yrs Complete Installation Kit for 12 -volt vehicles \(\$ 12.95+45 p\) P. \& P. Srate earth polaricy of Kit also avaiable for the radio eleccronics constructor \(£ 9.95+45 p\) P. \& \(P\) The construcrion kit includes instructions and all components for wiring as positive or negative earth, and is complete with the stove enamelled steel case and aluminium base. Similar to PE published system. MF transforme: for PE system \(11.95+10\) p P. \& P
P.E. SCORPIO Components: Transformer and Mounting Kit \(£ 1.85+25 p\) P. \& P. Printed Circuit Board 60p + 10p P. \& P. Case and Hardware as above \(4.85+25 p\) P. \& \(P\)


\section*{BAKER ISin. AUDITORIUM}

A high wattage loudspeaker of exceptional quality with a level response to above \(8,000 \mathrm{cps}\). Ideal for Public Address, Discotheques, Electronic instruments and the home.
Maximum Power
35 walls
Bass Resonance
Flux Denslty
35 c.p.s. Voice coil impedance 8 or 15 ohms models Useful response 20.14,000 c.p.s.

Nett weight
15 lbs.
POST
FREE
GUITAR MODEL "GROUP 50" 50

\section*{Baker Reproducers Lid}

\footnotetext{
Bensham Manor Road Passage, Thornton Heath, Surrev.
}

\section*{In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...}

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we"ll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn

If you'd like to know how just a few hours a week of your spare time. doing something constructive and enjoyable, could put you out in front. post the coupon today. No obligation

\section*{Mechanicol}
A.M.s.b Meds

Inst of Enginedr
Mrehanical Eng.
Maintenance Eng.
Wuding
Gencral Disel Ene
Sheet Meral Work
Eng. Inspection
Ent. Mmallury
C. \(\mathcal{K}\) G Eng. Crafts
C. \(\mathbb{\&}\) G. 1abration

Draughtsmanship
A.M.1.E.1)
(ien. 1)raughtsmanship
Die S l'ress Inals
Elec. Dratehtomambip fig \& lool Design Dumen of Elec. Madnime liclnaial I raw ing
Building
Electrical \& Electroni
KMIS.E Rec
 Gumat lilee. Ing.
Intallations of Wirin Intalhtions \& Wiring ENectrical Maths Blewtical Science
(Amputer bilectronio Electronic Eing.

Radiod Telecomins. C. \& G. Tilecomms. C. \& G. Nadwo Serwemg Radio Amatcur' beam Rubio Operater, Curt Radio \& IV Engincering Radio Survicime Practical Teversion TV Scrical Tele Colour Scric
C", Colour 1"V
Practial kadio
litectronics with kit

Auto \& Aero
A.M.I.A.
M.1A MMI Diploma C. \& G. Auto Eng General Auto Eng Motor Mechanics
A.k.B. Certs. Gen. Acroling.

Management \&
Production
Computer Programming hast. of Marketing A.C.W.A.

Works lianasement
Work study.
Prodaction Eng.
Strarkwering
listimating 'ernomel Alanagoment Quality Control Elecronic 1)ata Cumbrialy Mammigu bineinet Satcrial llandlime Onctational Rescurar Operational
Mertication

\section*{Constructional}
A.MS.1: Civ
C. \& Ci. Structural

Road lingincerimg Buil Engincering Building
Air Conditioning llating \& Vontiating Carpentry \& Joinery Clerk of Works Building 1 mawing Surveying Painting and Decorating. Architecture Builders' Quantitics

Genera
C. I. I.

Petroleum Tech
Practical Maths
Refrigerator
Rubher I eclanology
Salde Enginew
Farm Stione
Agricultural ling
Goneral l'lastics
Guncral Certificate
of liducation
Choosi from + ?
'O' and 'A' Level
subjects inclualing
lintish
Chonhasty
(Foncal Sinnat
Gcolingy
Phusres
Muthumat
Tahmical Drawin,
Franhth
Cirman
Kiussiant
Spominst
Biolocy
B.1.IE7. and its
issociatid school
have razordid wll
Wior \(10,14 \%\) (i.C.LS
stracose's ar 'O' and
WE COVIR A WJDE RANGE OF TECHNICAI AND JROIEISSIONAI. IEXAMINATIONS,

Ower 3.000 of our Studerms have obrained City de Guild Crenificates. Thousands of

\section*{THEY DID ITSO COULD YOU}
"My income has almost trebled . . . my life is fuller and happier." - Case History G/321
"In addition to having my salary doubled, my future is assured." Case History H/493
- Completing your Course meant going from a job I detested to a iob I love." Case History B/461

\section*{FIND OUT FOR YOURSELF}

These letters and there are many more on file at Aldermaston Court speak of the rewards that come to the man who has given himself the specialised know-how employers seek There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

\section*{7ree!}

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn vourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We ll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

\section*{BRIISH IWSIIUIITOF EMGinefing icehnolog}

Dept B4, Aldermaston
Court, Reading RG7 4PF.

Accredited by the connal for the A, movitution
of Corrrepondryne (collirges

\section*{POST THIS COUPON TODAY}

(Write if you prefer not to cut this page)
B.IE.T-IN ASSOCIATION WITH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

HI-FI ELECTRONIC COMPONENTS

\section*{10th EDITION CATALOGUE}

55 (40p FOR C CALEERS) .

\section*{RUUS! FVE 10 P VOLCHERS FOR USE WITH PURCHASES}

Send to this address-Henry's Radio Ltd. (Dept. PE), 3 Albemarle Way, London, E.C.1 - íor catalogue by postonly. All other mail and callers to "303', see below

A NEW HENRY'S CATALOGUE IS
A MUST FOR ELECTRONICS TODAY!


HOME EQUIPMENT AFIO5 \(50 \mathrm{k} / \mathrm{V}\) multimeter (illus.) Price \(£ 8.50\), p.p. 20 p. Leather case \(£ 1.42\). \(200 \mathrm{H} 20 \mathrm{k} / \mathrm{V}\)
Price \(\mathbf{7 3 . 8 7}\) Price \(\not \mathbf{6 1 8 7}\), p.p. 20p. Case 62p \(50030 \mathrm{k} / \vee\) multimeter.
Price \(£ 8.87\), p.p. 20p. Case 62p Price \(£ 8.87\), p.p. 20p. Leather case \(£ 1.50\). THL \(332 \mathrm{k} / \mathrm{V}\).
Price \(£ 4.12\), p. 15 p. Leather case fl .15 . TE65 Valve voltmeter.
Price \(\mathbf{f 1 7 . 5 0 , ~ p . p ~} 40 p\) Price f 17.50, p.p \(40 p\)
SE250B Pocket pen SE250B Pocket pencit
signal injector. Price
i.75, 150 . SE500 Pocket El.75, p.p. 15 p .
encil signal tracer. Price EI 50, P.P. 15p. TE20D RF generator. Price \&15, p.p. 40 p. TE22D Matching audio generator. Price TEI'5 Grid dip meter. Price fl2.50, p.p. 40p. TO3 Scope 3 in tube Price 635.50 , p.p. 50 p .
 CI-5 Pulse Scope. 639.00 , p.p. 50 D \(\cup 4341\) A.C./D.C. Muttitester and transistor tester. A.C. and D.C. current. in steel case. Price \(£ 10.50\), p.p. \(15 p\). TMK500 30k \(\vee\) Multitester. Price \(£ 8.87\), p.p. 13 p . Leather case \(£ 1.98\).
LARGEST RANGE of Panel Meters, Edge Meters and Test Equipment of every sort. Full decails in latest cataloguesee above.
Carriage, etc., 50p each; 750 per pair for kits


POLISHED CABINETS FOR 150. 150 TC and \(450 \mathbf{6 4 . 5 0 .}\) Post 30p.

\section*{SPEAKER KITS} \(\begin{array}{lllll}\text { WHARFEDALE } & \text { 4-B ohms } & \text { PEERLESS } 8 \text { ohm } & \text { Systems } \\ \text { Unit 3. 8in } 15 W & £ 10.50 & 20-2 . & \text { Gin } 30 \mathrm{~W} & 611.25 \\ \text { Unit 4. } 121025 \mathrm{~W} & £ 14.25 & 20-3 . & \text { Bin } 40 \mathrm{~W} & £ 16.75\end{array}\) \(\begin{array}{llllll}\text { Unit 4. } & 12 \text { in } 25 \mathrm{~W} & f 14.25 & 20-3 & \operatorname{Bin} 40 \mathrm{~W} & £ 16.75 \\ \text { Unit } 5 & 12 \text { in } 35 \mathrm{~W} & £ 20.25 & 4-30 / 12 \text {. } 12 \mathrm{in} 40 \mathrm{~W} & \mathrm{f} 22.75\end{array}\) GOODMANS DIN \(20 \mathrm{KIT} 20 \mathrm{~W}, 4\) ohm. fll.75

STEREO HEADPHONES
With stereo
jack. Post 15p
Dulci SH650D
Rotel RH600 Rotel RH600
Akai ASE9S
Eal Akale SE30
Koss K711 Pioneer SE30
 \(£ 2.25\)
\(£ 4.67\)
\(£ 5.50\)
\(£ 5.97\)
\(£ 7.97\)
\(£ 9.45\)
\(£ 15.5\)

HI-FI TO SUIT


SAVE \(40^{\circ} \%\) ON LIST
UPTO PRICES UP TO Value \(£ 199\).
ROTA \(1500 \quad 5+5\) watts. Garrard 2025 TC with 9TAHC diamond ceramic. Plinth/Cover. \(15^{\prime \prime} \times 10^{\prime \prime} \times 7^{\prime \prime}\) 年 \(\underset{\text { S } 27}{ } \mathbf{~} 447.75 \underset{\text { C2 }}{\text { Carr }}\) TELETON "'206" Garrard
SP25 Mk. III, Goldring G800 Series Care Plinth/Cover. New 15 watt Quality SDLI Bookshelf Speaker Systems, all

TELETON F2000 Med. Wave, Stereo FM Tuner Amplifier, Garrard 2025 TC, 9 TAHC Diam., Plinth/Cover. New 15 watt
Speaker \(5 y s c e m s ~ a s ~ a b o v e, ~ a l l ~\) Speaker 5ystems as above. all
leads, etc. SAVE
E 36 \(\quad \mathbf{5 9 9 . 9 5} \underset{E 2}{\text { Carr }}\) or with \(z\) SAI2S Speakers £48.95
ROTA \(2200 \quad 10+10\) watt Garrard SP25 II/G800H. Plinth/ Cover. New 15 watt SDL 2 Twin
Speaker Systems, all leads, etc. SAVE E61.00 Carr.

Low prices plus 12 monehs. guarantee and demonstra-

FREE-Latest Special Price Stock List and Stereo Systems. Ref. 16/17.

\section*{FREE BROCHURES}
* P.A. DISCO and LIGHTING + TRANSISTORS,I.C.'sNo. 36 20 WATT I.C. AMPLIFIER Toshiba 20 watt Power Amplifier, \(£ 4.57\)
Toshiba Pre-Amplifier I.C. \(\neq 1.50\)
Data and suggested circuits SL403D 3 watt l.C. with 8 page data and circusts, E1.50
IC126 watt I.C., \(\mathbf{6 2 . 5 0}\)

\section*{NIXIE TUBES}
(post 15p per order) XN3 or XNI3 \(0-9\) side
with data sheet, 85 p each. GN4 end view \(0-9\) with socket and data, 61.75
All I.C.'s for Digital Clocks in stock HENRY'S CLOCK

BUILD THIS VHF FM TUNER
5 MULLARD TRANSISTORS 5 MULLARD TRANSISTORS \(300 \mathrm{kc} / \mathrm{s}\) BAND.WIDTH PRINTED
CIRCUIT, HIGH FIDELITY REPRODUCTION. MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it-VHF FM gives the REAL sound. All parts sold separately.
Free Leaflet No. \(3 \& 7\) TOTAL \(£ 6.97\) Free Leaflet No. 3 \& 7.
100 p. Decoder Kit \(£ 5.97\). TAL 66.97 , p.p. 20p Mains unit (optional) Model PS 900 £2.47.
Mains unit for Tuner and Decoder PSI200 \(£ 2.62\).
HIGH QUALITY SILICON AMPLIFIERS AND
 9ET \(9 / 4\) Mono or single channel. All racilities plus micro. phone. Mixing. Price \(\mathbb{1} 2.50\).
FET 154 Stereo with all racilities, magnetic cart. input, etc
SIILICON POWER AMPLIFIERS RMS OUTPUT
PA25 25 watts into 8 ohms, 67.50 . PA 5050 watts into 4 ohms PA25 25 watts into 8 ohms, 67.50 . PA50 50 Wattsinto 4 ohms,
69.50 . MU442 Power Supply for 1 or 2 PA25's or 1 only PA50, \&6. POSU 20 p . 25 ON REQUEST
NO SOLDERING-ALL UNITS INTERCONNECTING ON DEMONSTRATION AT " \(356^{\prime \prime}\)
TERRIFIC SAVINGS!
GARRARD - BSR - THORENS GOLDRING - PIONEER CONNOISSEUR

CHASSIS (P) ASSEMBLED (P) (less cartridge) \(\left.\quad \begin{array}{c}\text { (less cartridge. } \\ \text { with cover) }\end{array}\right)\). +AP76 619.97 MP60 (TDIP) E17.65 2025 TC/ 1 and C (11.90 Mp60 (TDIP) \(\mathbb{1 7 . 6 5 ~ 9 T A H C D ~} £ 13.95\) - MP60 \(\quad \& 11.30\) HT70 PC \(£ 24.00\) \(\begin{array}{llllll}\text { OMP610 } & £ 15.15 & \text { PL12AC } & 636.50 & 3-G 800 H & £ 18.95 \\ -H T 70 & £ 16.60 & G L 69 / 2 P C & £ 32.00 & A P 76-G 800 & 629.95\end{array}\)

 CHASSISIWITHCARTRIDGE (P) SPECIAL. PRICE WITH \(\begin{array}{lll}* 2025 T C / 9 T A H C D & 69.50 & \text { CARTRIDGE-ADD } \\ * 3000 / 9 \text { AHCD } & 69.98 & \text { All } \\ & \end{array}\) \(\begin{array}{lll}* 3000 / 9 T A H C D & 69.98 & \text { All magnetic - Recom- } \\ \text { TEAK } & * \text { PI/TI 5td. } & 63.00 \quad \text { mended Y940 ( }=\text { AD } 76 K \text { ) }\end{array}\) PLINTH.BNI Deluxe 88.00 mended \(\mathrm{E3.25}\); AT66 64.95 ; G850

 deck) BSR Deluxe \(\mathbf{E} 6.25\) 67.32

Post, etc.: Chassis 50 p , with Plinth/Cover 70p, Plinth/Cover Post, etc.: Chas
30 p . Carts. 15 p .
300 mW TRANSISTOR AMPLIFIER MODEL. 4-300 Fully assembled 4TR Amplifier.
Size \(5 \frac{1}{2} \times 1 \frac{1}{1}\) inn, \(1-10 \mathrm{mV}\) adjustable sensitivity, On adjustable sensitivity. Outpur
\(3-8\) ohms. Firted Vol. control \(3-8\) ohms. Fitted Vol. Control. uses plus tow cost. \(\in 1775\) p.p. \(15 p\) (or 2 for \(\mathbf{6 3 . 2 5 \text { p.p. 15p). }}\)

SINCLAIR PROJECT 60 PACKAGE DEALS SAVEPOUNDS


2 Z 30 amplifier. stereo 60 pre-amp. PZ5 power supply. E16.75. Carr, 40p. Or with PZ6 power supply \(£ 1825\). Carr, \(40 \mathrm{p}, 2 \quad\) Z50 amplifier. stereo 60 pre-amp, PZ8 power
 above with Active Filter unit add \(£ 4.75\) or with pair 016
 speakers add
Amplifier \(£ 24.50\), D.p. 50 p. 3000 Amplifier \(£ 31.50\). Also \(1 \mathrm{C} 12 \not 22.50\).
"BANDSPREAD" PORTABLETO BUILD Printed circuit all transistor design
 using Mullard RF/IF Module. Medium and Long Wave bands plus Medium
Wave Bandspread for exera selectivity. Also slow motion geared tuning, 600 mW push-pull output, fibre glass PVC covered cabinet, car aerial. Attractive appearance and perTOTALAR COST TO BUILD \(£ 7.98\). P.p. 32 (Batt. 22p). All parts sold separately-Leaflet No. 2 . . p.p. 35p from stock-Leaflet No.```


[^0]:    London Computer Operators Training Centre,
    E1, Oxford House, 9/15 Oxford Street, London, W. 1 Telephone (01) 7342874.
    127/131 The Piazza, Dept. E1, Piccadilly P|aza, Manchester 1 Telephone (061) 2362935.
    Please send me your free illustrated brochure on exclusive Eduputer "hands on" training for computer operating.

[^1]:    (C) IPC Magazines Limited 1972. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 22.65 ( 2213 s . Od).
    Practical Electronics, Fleetway House, Farringdon St., London. E.C.4. Phone: Editorial 01-634 4452 ; Advertisements $01-6344202$

[^2]:    F.M. Stereo Tuner (£25) \& A.F.U Filter Unit (£5.98) may be added as required.

[^3]:    (4) Offer closes January 31, 1972.

