PRACTICAL

DECEMBER 1971

SPECIAL SUPPLEMENT: Digital and Linear Integrated Circuits... Survey of Available Types

ADCOLA Soldering Instruments add to your efficiency THE NEW 'INVADER'

 ADCOLA L. 646for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}(4.75 \mathrm{~mm})$ diameter, detachable copper chisel-face bit*
Standard temp. 360 c at 23 watts
Special temps. from $250{ }^{\circ} \mathrm{c}$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits

(illustrated) available
COPPER

Don't take chances. We don't All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

* Write for price list and catalogue
ADCOLA PRODUCTS LTD.
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W. 4 Telephone: 0i-6220291/3 - Telegrams: Soljoift London Telex • Telen: Adcola London 2185

SAFEBLOC of robust construction

Safe, quick and secure it connects 2 -core and 3-core bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago. Safebloc saves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open. Invaluable for testing and demonstrations in industry and shops, the work bench and the home.

Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer. If ordering by post, send cash with order PRICE $£ 2.60+10$ p P.\&P. EACH
Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd. Victoria Road, Burgess Hill, Sussex.Tel. Burgess Hill 2642

PRINTED CIRCUIT KIT

EUILD 50 INTERESTLNG PROJECTS on a PRINTED CLRCOIT CEASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Copper Laminate Boards 41 in $\times 1!i n$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent. (6) Etchant. (7) Cleanser/Degreaser. (8) 16 -page Booklet Printed Circuita for Amateurs. Defign Data, Circuits, Chassie Plans, etc. for 50 TRANSISTORISED PROJECTS A very comprehensive selection of circuits to suit everyone's requirements and constructlonal ability. Many recently developed very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S
PRINTED CIRCUIT KIT 60p
Postage \& Pack. 10 p (UK) Commonwealth:
SURFACE MAIL 15p AIR MAIL 60D
Australia, New Zealand,
South Africa, Canada

1) Crystal Sct with biased Detector. (2) Crystal Set with roltage-quadrupler detector (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Aniplifer. (5) Carrier Power Conversion Receiver. (6) Split Load Neutralised Double Reqex. adjusting or Photocell kadio. (8) Triple Rellex with seltThe smallest 3 degigns yet offered to the Home Constructor answhere in the world 3 Bubminiature Radio Receivers based on the "Tritlexon" circuit. Let us know if you know of a smaller design published anywhere, (10) Postage Stamp Redio Size only $1.62 \mathrm{in} \times 0.95 \mathrm{in} \times 0.25 \mathrm{in}$. (11) Wristwatch Radio $1.1 \mathrm{jin} \times 0.80 \mathrm{in} \times 0.55 \mathrm{in}$, (12) Ring Radio $0.70 \mathrm{in} \times 0.70 \mathrm{in} \times 0.55 \mathrm{in}$. (13) Bacteria-powered Radio. Runs on sugar or bread. (14) Radio Control Tone Heceiver, (15) Transistor P/P Amplifier. (16) Intercom. (17) 1 -Yalve Amphifier. (18) Reliable Burglar Alarm. (19) Light-seeking Animai, Guided Missile. (20) Kerpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Fuman Hody Radiation Detector. (24) Man/Woman Discriminator. Volume intercomer (28) Rocket Transceiver (Licence required). (27) Constant Transmitter. (30) Pocket Triple Refpx Radio (31) wrist Microphone. (32) Rain Alarm, (33) Ultrasonic Switch/4larm (34) Stereo Preamplifer. (35) Quality Btereo Push-Pull Amplifter. (36) Light-Beam Telephone 'Photophone'", (37) Light-Beam Transmitter. (38) Silent TV Bound Allaptor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Speed Controlfer. Plus I0 Photoelectric Circuits, Simple Alarins, Long Range Alarms. Projector Modulators, etc
YORK ELECTRICS, Mail Order Dept. 335 battersea park road, LONDON, S.W. 11
Send a S.A.E. for full details and a brief description of all kits and Projects.

CASTMS SCOOP HI-fI BARGAIN OF THE CENTURY save up to 35% on LEAK recommended lift prices!

As the United Kingdom's leading High-Fidelity Retailers, we are proud to offer you the "Scoop of the Century", Leak Hi-Fi Amplifiers, tuners, turntables and speakers at fantastic prices. Each piece of equipment is brand new and covered by Leak's full guarantee. Leak have been the U.K.'s leading Manufacturer since the birth of High-Fidelity-their quality has always been used as a yardstick for true High-Fidelity.

Leak Stereo 70 amplifier (cased only) Power output (boch channels linewave driven): 35 watcs r.m.s. each channel into 8 ohm loudspeakers. Total harmonic discortion: 0.1% for all power levels up to 25 watcs r.m.s. each channel at 1 KHz into 8 ohm loudspeakers. Crosscalk: Berween left and right channels 50 dB up co 1 KHz and 30 dB at 10 KHz . Dimensions: $13 \mathrm{in}\left(\mathrm{W}\right.$) , 4lin (H) $9 \frac{1}{4} \mathrm{in}$ (D) LIST PRICE $\mathbf{£ 7 5 \cdot 0 0}$ LASKY'S PRICE $\mathbf{5 5} .00$ corrioge ond pocking $\mathbb{E} 1.00$.

Leak Stereofetic FM tuner-Frequency range: 87108 mHz . Frequency response: $\neq 1 \mathrm{~dB}$ 3 dB signal/noise. Outpur impedance. 200 ohms 25 KHz withour A.F.C. Sensicivity: $2 \frac{1}{3}$ microvolts for 3dB signal/noise. Output impedance: 200 ohms. Distortion: Less than 0.5% for full deviation, i.e. less than $\frac{1}{4} \%$ for average modulation. Signal/Noise: 60 dB A.M. suppression: 50 dB . Dimensions (cased) $12 \mathrm{in}(W) \times 4 \frac{3}{4}$ in (H) $\times 9 \frac{1}{4}$ in (D) (Chassis) $11 \frac{1}{2}$ in $(W) \times 4 \frac{1}{4}$ in (H) $\times 7 \frac{3}{4}$ in (D).
CASED LIST PRICE $£ 69.80$ LASSY'SPRICE $£ 4500$
CASED LIST PRICE $£ 69.80$ LASKY'S PRICE $£ 4500$.
CHASSIS LIST PRICE 664.03 LASKY'S PRICE $\mathbf{\$ 3 9 . 5 0}$ carriage and packing 61.00 on chossis or cosed model.
Leak Stereo 30 Plus amplifier (cased only) Power outputs (both channels sinewave driven) 15 watts r.m.s. each channel into 8 ohms loudspeakers. Music power outputs 20 watts r.m.s. each channel into 8 ohm loudspeakers. Tocal harmonic discortion 0.1% for all power levels up to 10 watts r.m.s. each channel at 1 KHz into 8 ohm loudspeakers. Crosstalk: Becween left and right

Leak Truspeed Transcription Turntable Mk. Ill A low speed (250 r.p.m.) synchronous 12-pole hysteresis motor $(\| 00-130 \mathrm{~V}$, or 200-250V. 15 mwA$)$, gives constanc curntable speed independent of mains voltage fluctuaticns. Speeds: $33 \frac{1}{2}$ r.p.m. and 45 r.p.m. Wow: Less than 0.15%. Flutcer: Less than 0.02%. Frequency ranges: 20 Hz 20 KHz . Stereo separation: Better than 25 dB at 1 KHz . Dimensions: $12 \frac{5}{3} \mathrm{in}$ 15 $\frac{1}{8} \mathrm{in}$ 7 $\frac{1}{2} \mathrm{in}$ inc. cover. Complete wich arm teak base and cinted perspex cover and Shure M75/6 cartridge. Made to sell for $\mathbf{C 6 9} 50$ LASKY'S PRICE $£ 47.50 \mathrm{C}$ \& P. EI. 50.

Leak 200 speaker system-A Leak 200 speaker system-A
Stainless Steel woven mesh grille Stainless Steel woven mesh grile
cloth for maximum acoustic cransparency and an atrractive ceak cabinet finished off with aluminium crim all round housing a 3 speaker system worthy of LEAK's name. Impedance 8 ahms, nominal. Frequency response : 60 Hz to 18 KHz . Power handling capacicy 18 watcs r.m.s. Resonance of bass unit (free air): 45 Hz . Firish: Teak. Dimensions: $15 \frac{1}{2}$ in
L 49.90 LIn $8 \frac{1}{4}$ in LIST PRICE (pair) C. \& P. $\subset 2 \cdot 00$.

fantastic LEAK packages

Package I	Package E
Stereo 30 Plus (cased) $\mathbf{6 6 2 . 5 0}$	LEAK ST30 Plus (cased) $\mathbf{6 6 2 . 5 0}$
Stereofetic (chassis) 664.03	Wharledale Denton Spks. (pr). $\mathbf{6 9 9 9}$
Total Rec. Recail Price. $\mathbb{1 1 2 6 . 5 3}$	BSR McDonald MP60 $\leqslant 15.20$
LASKY'S PRICE £84 C. \& P. $¢ 1.50$	Lasky's base and cover AD76K magnetic cartridge
Package 2	Total Rec. Retall Price $£ \mathbb{1 6 6 7 0}$
	LASKY'S PRICE 692 C \& P. $£ 2.00$
Total Rec. Retail Price $\mathbf{4 1 3 9 . 0 3}$	Package F
LASKY'S PRICE C94 C. \& P. EI So	LEAK ST70 (cased) Wharfedale Triton Spks (pr) $\quad 675.00$ 659.90 Garrard AP76
Package A	Garrard AP76 Garrard base and cover $\mathbf{6 2 7 . 8 5}$ 9.75
LEAK \$T30 Plus (cased) $6 \mathbf{6 2 . 5 0}$	Shure M44/E magnetic eart .. 611.63
LEAK 200 Spks (pr) $\mathbf{6 4 9 . 9 0}$	Rec. Retail Price $\mathbf{E 1 8 4 1 3}$
LEAK TruspeedT T syscem .. 669.50	LASKY'S PRICE ©129 C. \& P ¢3.00
Total Rec. Retail Price ¢181.90	
LASKY'S PRICE 1120 post $£ 200$	Package G
	LEAK ST 30 Plus (cased) $6 \mathbf{6 2 . 5 0}$
Package B	Lasky's Cricerion Mk. X Spks. $\quad \mathbf{2 5 0 0}$
LEAK \$T70 (cased) $\mathbf{6 7 5 0 0}$	BSR McDonald MP60 $\quad \mathbf{1 5 . 2 0}$
LEAK 200 Spks (pr) $\mathbf{4 4 9 . 9 0}$	Lasky's base and cover........ $\mathbf{C 4}^{\text {a }} \mathbf{7 5}$
LEAK Truspeed T/T system .	AD76K magnetic cartridge \quad ¢4.35
Total Rec. Retail Price 194.40	Rec. Retail Price $\mathbb{1 1 1 . 8 0}$
LASKY'S PRICE ©130 C. \& P. 6200	LASKY'S PRICE 885 C. \& P. $£ 2.00$
Package C	Package H
LEAK ST30 Pius (cased) $66 \mathbf{2 . 5 0}$	
LEAK Stereoferic (cased) $\mathbf{6 9 9 8 0}$	
LEAK 200 spks (pr) $\mathbf{6 4 9 . 9 0}$	LEAK 600 splks. (pr)
LEAK Truspeed,T/T system.... $\frac{\mathbf{6 6 9 . 5 0}}{\mathbf{6 5 1} 70}$ Total Rec. Retail Price	Rec. Retail Price $\frac{\mathbf{3 1 3 . 3 0}}{\text { 3 }}$
LASKY'S PRICE \&160 C. \& P. 63.00	LASKY'S PRICE 6225 C \& P. E4:00
Package D	These are only a few of our pack-
LEAK ST70 (cased) 675.00	age bargains incorporating LEAK
LEAK Stereofetic (cased) $\quad \mathbf{6 9 8 8 0}$	equipment, many more can be
LEAK 200 5pks (pr) $\quad \mathbf{¢ 4 9 . 9 0}$	arranged. If none of the packages
LEAK Truspeed T/T system... $\mathbf{6 6 9 . 5 0}$	here suit you please send us
Total Rec. Retail Price	details of your requirements and
LASKY'S PRICECI70 C. \& P. 63.00	we will be pleased to quote.

clock shows you accuracy, and once set the Digimatic will wake you up at the same time every morning without having to be re-set. The radio section features Sony's unique sleep butcon, you fali gently to sleep lulled by the sweet cone of the radio. Which switches itselt of at a prerange: $530-1,605 \mathrm{KHz}$ (AM): $87-108 \mathrm{MHz}$ (FM). Uses 8 transistors and 8 semi-conductors, built-in ferrite aerial and 3 in loudspeaker Power requirements: 230 V ac. 50 Hz . Dimensions: $12 \frac{3}{\mathrm{~s} i n}$ $3 \frac{7}{6}$ in $5 \frac{1}{6}$ in.

OUT \cap OU,'72 AUPIO.TRONICS

cserest? fuburthoncs 9972

1

The great new 1972 edition

 of Lasky's famous AudioTronics Catalogue is now available FREE on request. The 44 newspaper size pages-many in full colour-are packed with 1,000 's of items from the largest stocks in Great Britain of everything for the Radio and $\mathrm{Hi}-\mathrm{Fi}$ enthusiast. Electronics hobbyist, Serviceman and Communications Ham. Over half the pages are devored exclusively to every aspect of Hi -Fi (including Lasky's budget Stereo Systems and Package Deals). Tape recording and Audio accessories anddon't miss LASKY'S AUDIO.TRONICS CREDIT CARD SCHEME offering holders one month's interest free credit up to 450 and the fantastic $\mathrm{E} 1,000$ plus colour TV competition. Send your name and address and 15 p for post and inclusion on our regular mailing list.

NEN Erom
CRITERION Mk. X

Because of the increasing demand for inexpensive, high quality bookshelf speakers, we have seen fit to introduce the Criterion Mk. X bookshelf system. The speaker is a sealed infinite baffle type enclosure using 8in wooler, a Sin mid. range and $2 \frac{1}{2}$ in tweeter. The compact cabinet is finished in oiled walnut and black woven speaker grille cloth. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz}$. Power handling capacity: Max. 20 watts. Impedance: 8 ohms. The Criterion is ficted with two types of speaker lead connections speaker lead terminal and phono. Size $18 \frac{3}{3}$ in $(\mathrm{H}) \quad 9 \frac{7}{8}$ in (W) $18 \operatorname{tin}(H) \quad 9 \frac{7}{8}$ in (W)
$9 \frac{7}{\text { in }}$ (D). Operational horizontally or vertically

LASKY'S AMAZING PRICE

$\notin 25$

a sound future

Lasky's Radio for over 38 years Great Britain's Leading Radio, High Fidelity. Tape Recorder and Electronics Specialists have vacancies in their West End and City Branches for both male and female Sales Assistants. We are seeking intelligent young men and women sales personnel to join our expanding organisation (already the largest in Europe) on a career basis with the finest prospects for early promotion and financial advancement. Working with our energetic sales teams in any of our six West End and City branches will bring you into contact with people from every walk of life including Pop Stars, film and television personalities, royalty and above all enthusiasts in every field of Audio. Hi-Fi and Electrohics-people who expect you to share their enthusiasm and interest.
Knowledge of $\mathrm{Hi}-\mathrm{Fi}$ and electronics is not essential although it will help-all that we require as the basic qualities needed for a successful application are willingness to learn and a common-sense approach to the business of selling. Salary ranges from $£ 850$ to $£ 1,850$ plus, three weeks' holiday after one year, and Incentive Bonus Schemes are added benefits of working in our progressive organisation. Holiday arrangements will be honoured. If you are interested in a career in Audio and Hi -Fi write at once to: Kenneth Lasky, Lasky's Radio Limited, 3-15 Cavell Street, London EI 2BN.

SUPER SPEAKER BARGAINS

WHARFEDALE DENTONS A compact system sold in matched stereo system. Each Denton contains an 8 in bass unit with 3 in pressure unit, coupled by a Wharfedale crossover network. Rated input: 15 watts maximum. Frequencyresponse: $65-17,000 \mathrm{~Hz}$. Impedance: $4 / 8$ ohms. Cabiner
9itin $14 \mathrm{in} \times 8$ in. Available in oiln teak finish and are small enough to blend in with most surroundings.

LIST PRICE $639 \cdot 90$ LASKY'S PRICE $\mathbf{£ 2 9 . 0 0}$ WHARFEDALE TRITONS

A new and exciting addition to the Wharfedale range, this three-speaker enthusiast. Shelf or floor standing-hand finished in oiled reak. Frequency response: $55-22,000 \mathrm{~Hz}$. C.A.B. Dome pressure unit. Bass unit 8in. Mid-range 8 unit Sin. Treble unit 2 in . Impedance LIST PRICE 659.90
LASKY'S PRICE $\mathbf{\& 3 9 \cdot 0 0}$

Post 50 p

EXCLUSIVE TM-I

MODEL TM-I MINI-TESTER

The first of Lasky's new-look top value meters, the TM. is a really tiny pocket multimeter providing "big meter accuracy and periormance. Precision movement switch. Beautifully designed and made impact resistant black case with white and metallic red/green figuring. Ohms zero adjustment.
Size Only
3tin $\mathrm{DC/V}$: 0 0-10-50-250-
1,000 at 1 k OPV

- ACJV: 0-10-50-250-
- DC CURRENT: 0-1ma.
- Resistance: 0-150k
- Decibels: - 10 dB to

22 dB

- Complete with test instructions LASKY'S PRICE $\mathbf{f l} \cdot 95$

POST 13p

5K ohms/V POCKET MULTIMETER

TRIO KA. 2002 PACKAGE DEALTOP VALUE

 TRIO KA. 2002 $\mathbf{£ 3 9 \cdot 5 0}$Pair Wharfedale Dentons . . $£ 39 \cdot 90$ BSR MP60 £ $15 \cdot 20$
LASKY BASE \& COVER $£ 475$
AD76K CARTRIDGE £4.35
Total list price $\overline{\mathbf{E 1 0 3 . 7 0}}$

PACKAGE PRICE $£ \mathbf{7 9} \mathbf{5 0}$

ADD $£ 9$ if Wharfedale TRITONS are preferred to Dentons

TMK MODEL 200 METER KIT

TMK offer the unique opportunity of building a really first-class precision mulcimeter at a worthwhile saving and movement mounted in position. The highest quality components and 1% tolerance resistors are used throughout. Supplied complete with full constructional circuit and operating instructions.
Specification
20,000 P.O.V. Multimeter. Features 24 measurement ranges with mirror scale accuracy. $D C / V$ and current:
2%. A.c.:V: 3%. Resistance 3% Special $0-6 \mathrm{~V}$ DC range for transistor circuit measurements. ONLY

LASKY'S PRICE $£ 4 \cdot 60$

POST I 3p

DIGITAL CLOCK SCOOP

EXCLUSIVELY FROM LASKY'S in chassis form for you to mount in any housing. The clock measures $4 \nexists \mathrm{~W} \times 17 \mathrm{H} \times 3 \not \mathrm{D}$ (overall from front of
drum to back of switch). SPEC: $210 / 240 \mathrm{~V}, 50 \mathrm{~Hz}$ operation; switch rating $250 \mathrm{~V}, 3 \mathrm{~A}$. Complete with instruetions. HUNDREDS OF APPLICATIONS. COMPLETE WITH KNOBS LASKY'S PRICE $£ 6.50$ post isp
SPECIAL QUOTATIONS FOR QUANTITIES
TRIO HS.I HS.2. STEREO HEADPHONE BARGAINS
Models HS. 1 and HS.2. Both these sets by TRIO offer really superb stereo reproduction in a lightweight, fully adjustable headset designed for optimum comfort. Listening fatigue is unknown
 both models: Input imp. 8 nominal (matching 4 to 8) : max. input 0-5W frequency response $20-19 \mathrm{kHz}$: output sensitivity at 1 mW input; HS.I IIBdB, HS. 2 IIIdB: weight 0.66 Ilbs. Identical inappearance-both models are finished in ivory with contrasting foam-filled ear pads and head band. HS.1. Lasky's $\mathrm{E5-00}$ Lasky's
Price £4.00 Post 180 E4.00

IHE ULTIMATE IN COMMUNICATIONS RECEIVERS

midnargid8 WAVE BANDS
HOORE BAPDS
HMEZONE DAAL

Brings instant World Wide Reception at the touch of a button.
The five continents to your armchair. What can we say about this superb radio-it gets everything! 2 short waves to cover the world! America-India-Africa-You name itit gets it!
MARINE BAND ($1.6-4 \mathrm{mcs}$) Medium Wave 5351605 kcs p. \& p. \& 6 monthly
 FM-VHF 88-108mes for B.B.C., Local Radio Stations. AIRCRAFT $108-135 \mathrm{mcs}$. The complete aircraft band, hear the pilots talking to control. Police and Public Service Bands. $135-175 \mathrm{mcs}$. Hundreds of shipping, "Private", RT calls, ambulances, taxis, gas boards, Radio Hams, etc. etc.
Battery/or Mains with A.F.C., tone control, volume control, internal and external aerials. Finished in black leatherette and stainless steel.
TRULY A COMPLETE COMMUNICATIONS RECEIVER

 + THE ORDINARY MEDIUM BANDSYes, this is it-THE SUPER SNOOPER of all Radios! GETS all the usual BBC and Continental stations PLUS-AIRCRAFT. (Civil and Military), TAXIS, FIRE BRIGADES, A.A., R.A.C., SHIPPING, LIFEBOATS, GAS BOARDS, ELECTRICITY BOARDS, RADIO HAMS, AMATEURS, AMBULANCES, "PRIVATE CON' VERSATIONS"' even TV SOUND and hundreds of other PUBLIC SERVICE TRANSMISSIONS - some we're not allowed to mention! Picks up all the Pop-pirates, Local Radio stations (those already Pop-pirates, Local Radio stations (those already
transmitting and those planned for the future) both transmitting and thos
BBC and Commercial.
BBC and Commercial.
Hours and hours of endess enjoyment-a complete Hours and hours of endless enjoyment-a complete
hobby in itsilf. One minute you can be listening to your favourite programme on BBC and then-at the flick of a switch-you can hear a crippled airliner being talked down to safety. YES! You can actually eavesdrop on the exciting conversations between pilot and control. MAKES A SMASHING CAR RADIO:
 VHF $108-136 \mathrm{~m} / \mathrm{cs}$. PUBLIC SERVICE BANDS-VHF $136-175 \mathrm{~m} / \mathrm{cs}$, Automatic Frequency Control to pinpoint station-locks on and completely eliminates drift. 16 Transistors, 7 diodes, 1 thermistor, TWO AERIALS one internal ferrite rod and one external telescopic antenna. Uses standard batteries. Beautifully finished in black grained leatherette with the latest push-button controls and slide rule tuning dials. Complete with hi-fidelity earphone and full written guarantee-spares always available. Size $10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}$. instant cash refund if not satisfied.
Also available Battery/or mains Super de Luxe upright model.
Same frequencies-but with built-in mains adaptor and battery re-charger (no need to buy batteries again!)
ONLY £ 18 POST FREE

SCIENTIFIC \& TECHNICAL (PE1), 507-511 london road • westcliff • essex

TV'S 19" NOW £11.95

TWO YEARS' GUARANTEE ALL MODELS
405/625: 19" £25.95; 23" £35.95
FREE CATALOGUE
dally demonstrations for personal shoppers

TEAK HI-FI STEREO CABINETS £ 14.95

HI-FI VALUE

(2) Takk Plinth and Tinted Cover: 84.95.
P.P. S5p.
(3) Sonatone 9 TAHC Diamond Cartridge:
E2.50. E2.50.
1,2,3 Bargain Package . $£ 17$-95. P.P. 85p.
Brand new 44 in wide $\times 16$ in deep \times 18 in high with legs. A superb piece of furniture. Carriage KI. WHILE
STOCKS LAST.

COMPONENTS MUST BE CLEARED

Transistor Radio Cases: 25p each. Size $9 \frac{1}{2}$ in $\times 6 \frac{1}{2}$ in $\times 3 \frac{1}{2} \mathrm{in}$. Post 15p. Speakers: 35p. 2tin 8 8 . Brand new. Post 15p.
VHF/FM Tuners: 95p. 88-108 megs. takes EEC85 valve (extra). Post 15 p .
Potz: 25p each. Post 5p, D/SW $500 / 500 \mathrm{KQ}$. D/SW $500 / 100 \mathrm{Ka}$ $500 / 500 \mathrm{~K} \Omega$. $\mathrm{S} / 5 \mathrm{~W} 500 / \mathrm{l}$ meg.

Precision Tape Motors: $£ 1.95$ $200 / 250 \mathrm{~V}$. Famous German manufacturer. Post 20p.
Transistor Gang Condensers: 20p. Miniature AM. Post free. Modern Gang Condensers: 30p. AM/FM or AM only 20p. Post 10 p . Transistors 15 each, Post free. OC 0 , OC71, OC81, OC8ID. Valve ELLEO 50p. Only stock in the country.

DUKE \& CO. (LONDON) LTD.
621/3 ROMFORD ROAD, MANOR PARK, E.12 Phone 01-478 6001-2-3

PARKERS SHEET

METAL FOLDING

MACHINES

heavy vice

MODELS

With Bevelled Former Bars

No. I. Capacity 18 gauge mild steel
No. 2. Capacity 18 gauge mid steel 24 i. wide 415
$\begin{array}{lllllll}\text { No. 3. Capacity } 16 \text { gage mild steel . . 18in. wide } & . . & . . & . & \text { \& } 10 \\ \text { No. }\end{array}$
Also new bench models. Capacities 36 in . : 18 gauge 630.24 in .. 16 gauge $E 29$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36in. model, $27 \frac{1}{1} \mathrm{p}$ per fit. Other models 17! f . The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One year's guarontee. Money refunded if not satisfied. Send for details.
A. B. PARKER. Folding Machine Works, Upper George St., Heckmondwike, Yorks. Heckmondwike 3997

FETS N CHANNEL FETS FULLY TESTED AND MARKED

Type	BVgss (Min.)	Igss (Max.)	V_{p} (Max.)	IDss (Max.)	R on (Max.)	Case
GP25*	20 V	InA	10 V	20 mA	-	TO72
GP7I	20 V	InA	12 V	150 mA	190Ω	TOI8

* Similar to 2N3819

ANY 6 - 60p
PACKING AND POSTAGE FREE SEND TO:
DURHAM ELECTRONICS
FREE POST - PETERLEE - CO. DURHAM BUSINESS ENQUIRIES WELCOME . MINIMUM ORDER VALUE 60p TERMS STRICTLY CASH WITH ORDER
B) TRANSISTORS

		AF239	$40 p$
$2 N 696$	$15 p$	AF239S	$45 p$
2N930	$25 p$	AL102	$60 p$
2N930A	$30 p$	AL103	$50 p$
2NC	E1		

$\begin{array}{lll}2 N 930 A & 30 p & \text { ALl } 103 \\ 2 N 93 & 22 p & \text { AU } 103\end{array}$
$2 N 1711$
2 N 2369
$2 N 2484 \quad 30$
2N2904 2 N 2905 2N2905A $2 N 3053$
$2 N 3055$
$2 N 3442$ $2 N 344$ $2 N 3866$ $2 N 4347$

$2 N 4356$ 40411 AC138 | ACl |
| :--- |
| ACl |
| |
| 141 H | ACl

ACl
42

$$
\begin{array}{llll}
A C 141 H & 25 p & \text { BCIOB IIP BFI79 } \\
\text { ACI42 } & 15 \mathrm{P} \\
\text { POSTAGE \& PACKING PLEASEADD 10P TO YOUR ORDER }
\end{array}
$$ and Integrated Circuits

SEND FOR

 BONUS VOUCHER FREE WITH EVERY £1 ORDER
who wants af2,000+p,a. opportunity in the dynamic new computer industry?
Not as a Programmer but an
Operator-No maths and no special education.
Now for the first time anybody can train outside the computer industry for a lucrative career as a computer operator, with actual experience on an Eduputer.
Who created Eduputer? The internationally famous company Programming Science International. They developed it to the specific requirements of the massive New York city training board and its practical results have been one amazing success story.
We are proud to have been selected as the only commercial training organisation permitted to use the Eduputer in the U.K. Thanks to Eduputer, nine out of every ten can learn to operate the most advanced computers in only four weeks. Unlike Computer Programming, no special educational qualifications and no maths required. Just you and the incredible Eduputer!
Jobs galore! The moment you qualify, our exclusive computer appointments bureau introduces you to computer users everywhere with good jobs to offer (up to $£ 40$ a week full-time, $£ 50$ a week as a temporary). More than enough to go round, toobecause 144,000 new operators will be needed over the next five years alone.
This is your big opportunity to get out of a rut and into the world's fastest-growing industry. And remember-LCOT is the only commercial computer school to have Eduputer. It means a lot to employers.
Telephone: (01) 7342874 NOW!
Or post the coupon today for full details FREE and without obllgation.

London Computer Operators Training Centre,
C28, Oxford House, 9/15 Oxford Street, London, W.1.
Telophone (01) 7342874.
127/131 The P:azza, Dept. C28, Piccadilly Plaza, Manchester 1. Telephone (061) 2362935.
Please send me your free illustrated brochure on exclusive
Eduputer "hands on" training for computer operating.
Name

Address
Tel.:

LARGEST STOCKS SEMICONDUCTORS \& COMPONENTS WIDEST RANGE
 BRAND NEW GUARANTEED

ARST STEP TD STEREO!

5-Watt Transistor Stereo Amplifier Chassis R. 123
Completely self-contained,fully transistorised,mains-powered (240 vAC) amplifier, needing only cabinet and knobs.Ideal for adapting mono players to stereo. Frequency response:40$17,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$.Output: 2.5 watts per channel @ 8 ohms.Input

World widereception

Professional Solid-state, Four-band Communications Receiver R. 135
Fully transistorised with continuous coverage from 555 K Hz to 30 M Hz in four bands (with illuminated bandspread for 160-10 metres). Incorporates internal speaker, automatic noise limiter, SSB/AM/CW switch, AVC switch,S Meter,Receive and Standby switch,external socket for headphone or speaker,bandspread control,BFO control,on/of/AF gain, band selector, antenna trimmer and RF gain. Runs off $240 \vee \mathrm{AC}$, batteries or any $12 \vee D C$ negative ground source.Frequency ranges (in mHz): Band A, $535-1 \cdot 6 ; B, 1 \cdot 55-4 \cdot 5 ; C, 4 \cdot 5-13 ; D, 13-30$. Sensitivity $: 0.5 \mu \vee @ 30 \mathrm{mHz}$ Bandspread:10-160 metres.

Normal
retail price
£65.00

ROC
price:
£45.00

AMZ2NGOPFEE!

Stereo
Cassette
Tape
Unit R. 142

Complete stereo record and playback unit with line and microphone inputs. Fitted with tape counter, separate pause control, recording level metres for each channel,pop-up cassette ejection. Supplied complete with two pencil microphones. Wow \& flutter better than 0.3%, frequency response $100-10,000 \mathrm{~Hz}$. Tape speed:17 IPS, 4.75 CMS. Rewind time: Better than 60 sec (C. 60 cassette). Normal retail price : $£ 65.00$

We don't want you to

Every piece of electronic or audio-equipment we sell is built to our specifications. It comes complete with a Guarantee. And it's tested before itleaves us.
We bend over backwards in our advertising to make sure everything we say is factually accurate. But,buying mail-ordèr,even though you're buying from us, we accept you could still end up with a piece of equipment that's not exactly what you wanted. And we think that's unfair.

FANTASTCBARGAN

Normal retail price ; $£ 9 \cdot 40$
Headphone Radio R. 143

For completely private listening without the distortion of the ordinary earphone adaptor.Battery operated; PP3. Fully transistorised. Frequency range: $535-1600 \mathrm{~K} \mathrm{~Hz}$, Medium Wave Band. Maximum output: 300 mW .

price
 Matched Stereo Speakers R. 446

Heavily lagged teak finish cabinets each with large dual cone base unit and separate tweeter. Power handling:10 watts peak; frequency range : $40-18,000 \mathrm{~Hz}$,impedance: 8 ohms. Size: $14 \times 8 \frac{3}{4} \times 6 \frac{1}{4}$.

Normal retail price : £19.60

pay for your mistakes

So we've got a proposition for you.
If you buy a piece of Roc equipment, and it's not quite what you expected, send it back within seven days, and as long as it's as good as new we'll give you your money back. O.K?
Return of post mail-order service;orders over £10 post free, (U.K. only) add $25 p$ for $p \& p$ to orders under $£ 10$.HP terms available.
ROC ELECTADNICS LIMITED
193 B Edgware Road,Loridon W2 1ET.Phone :01-7236211.
Callers at Shop weicome 9-6 Mon to Sat (Thurs 1 pm)

Siticicivadures

 $\operatorname{cim}_{t 240}$ Light and comfortable with a frequency response of $30-15,000 \mathrm{~Hz}$ for real listening pleasure.Complete with jack plug.Impedance 8-16 ohms Normal retail price : $£ 2.95$

Dont read this!

10-watt Transistor Stereo Amplifier R. 136

Ganged volume,balance and tone controlls. Inputs for turntable(ceramic cartridge), tuner(see R.134)or tape. Oiled walnut case with satin finish aluminium front panel. Frequency response $50-10,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Output: 5 watts per channel (a) $80 h \mathrm{~ms}$. Inputs: Phono 100 mV , tuner/aux 100 mV .

0
0

retail price
£20-40 E14.00

THEBIGDISCOUNTHOUSE

TURNTABLES p.p. 80p

Garrard SP25 Mk. Ilt
Garrard 2025 tc with Sonatone 9 TAHCO car Garrard A70 Mk. II (Transcription Deck) Garrard 5L65b
Garrard AP76
Garrard 401
Garrard SL72b
Garrard SL95b
Garrard ZERO 100
B.R.S. MeDonald Range in stock
S.R. 85 and $85 s$ in stock.
STanscriptors range in stock.

Goldring GL85
Goldring GL85/P
Goldring LiD85
Goldring GL75
Goldring GL75/P
Goldring Plinth 75
Goldring LID75
Goldring Gl7
Goldring Plinth 72
Goldring LiD72
Goldring GID $G .99$
Goldring C. 99
Goldring G101/p
Philips GA202
Philips GA160
Philips GA105
Philips GA 308
Thorens TDIS0AB
Thorens TXII
Thorens TDI50
Thorens TDI25
Thorens TDI25AB
Thorens TX25
Connoisseur

GDECIAM DFFEE
 FREE 10"LP forpersonalcallers
 buying a complete system
 Monday to Thursday

CARTRIDGES p.p. 15p

Goldring G.850
Goldring G. 800
Goldring G.800/E
Goldring G.800/SE
Sonatone 9TAHCD
Shure M3D.
Shure M44 5/7
Shure M44/E
Shure M55/E
Shure M75E type il
Shure M75E ty
Shure M75EJII
Shure M756
Shure M756
Ortofon MFISE
Audio Technica AT6G
Audio Technica AT55
ADCIOE II
ADC26
ADC27
ADC550×E
Empire 100 ZE
Empire 999VE/X
Empire 999TE/X
Empire 999E/X
Empire 999/X
Empire 909E/X
Empire 909/X
Empire 90EE/X
4.10
6.75
11.75
17.00 7.00
1.65 1.65
4.95 4.95
6.75 6.75
7.95 7.95
8.75 8.75
14.00 14.00
13.50 13.50
0.50 0.50
27.25 27.25
8.75 21.00
47.00 39.00 14.00 50.00 20.75 6.75
1.50 2.50
0.00
9.75
7.70
9.75
7.60
7.70

SPEAKER KITS priced per pair

p.p. (a) $£ 1$. (b) $£ 1$ - so

 Wharfedale Unit 3fo Wharfedale Unit Wharfedale Unit
Richard Allan Twin Assembly
Richard Allan Triple Assembly
Richard Allan Super Tripl
KEF
Goodmans DIN 20 Kir
Peerless 20-2
Peerless 43-12

FULL RANGE OF

SINCLAIR

PRODUCTS IN STOCK
SEND A LARGE S.A.E. FOR OUR COMPLETE LISTING OF ALL HI-FI EQUIPMENT

CREDIT FACILITIES AVAILABLE
SEND STAMPED ADDRESSED ENVELOPE FOR FURTHER INFORMATION

PERSONAL CALLERS WELCOME
20.00 a
27.00 a
27.00 b
18.00 a
27.50 a
27.50 b
35.00 b
p.0.a.
19.95 a
19.95 a
22.00 a
22.00 a
31.00 b
31.00 b
38.00 b

AUDIO SUPPLIES

Dept PE12, 50 STAMFORD HILL, LONDON N16

OPEN
Mon. to Wed. $9.30 \mathrm{am}-6 \mathrm{pm}$ Fri open until 8.00 pm Half day Thurs, until 1.00 pm Sat. $9.30 \mathrm{am}-6 \mathrm{pm}$

Give us six months, and well furn your hobby into a career:

You have a hobby for a very good reason. It gives you a lot of pleasure.

So if you can find a job that involves your hobby, chances are you'll enjoy your work more, and you'll do better work.

Now CDI can help you find such a job. A job where you'll be responsible for the maintenance of a computer installation. A job that pays well too. If you're interested in mechanics or electronics (without necessarily being a
mathematical genius), have a clear, logical mind and a will to work, then we can train you to be a Computer Engineer inside six months.
So give us a call. CDI. We're the Education Division of one of the world's largest computer manufacturers. And we have the experience to know if you can make it. A ten minute talk with us, and you could be on the way to spending the rest of your life with your hobby.

Ring

between 9 a.m. and 9 p.m. and ask for Mr Potter

> It's quicker and easier to phone, but if you prefer, send this coupon to: Control Data Institute, Wells House, 77 Wells Street, London, W.I.
> Please give me further information.
> Name
> Address

> Age Phone
> 4L1
> CONTROL DATA INSTITUTE

> CONTROL DATA LIMITED

> The Education Division of one of the world's largest Computer manufacturers.

CLEARANCE LINES

COLOUR T.V. LINE OUTPUT TRANS. FORMERS. Designed to give 25 KV when used colour receivers at the factory. NOW ONLY 50p each. Post and Packing 25p.

1 Amp. Plastic Rectifiers. These are voltage, reverse polarity and other reiects from the
BY|27 range. Ideal for low voltage Power Units, etc. Price: \&i per 100.

BBl05 Varicap Diodes

OC71 or 72 Fully tested
Unmarked
Matched sets, 1-OC44 \& 2-OC45's. Per Set 1st \& 2nd IF
A47 Gold Bonded Diodes, Marked \& tested
2427,30 Eener Diodes 7.5. 10 W, Wart 36,43 , Volts

$$
\begin{aligned}
& 0 \text { Watt Zener Diodes } 511, \\
& 8-2,11,13,16,24,20, \\
& 100 y .
\end{aligned}
$$

Micro Switches, S/P, C/O.
Amp. Bridge Rect 25y

INTEGRATED CIRCUITS

SL403D Audio Amp. 3
709 C Linear Opp. Amp.
Gates Factory Marked \& Gates Factory Marked \& K. Flip A.E.I.

Flip Flops Factory Marked \& Tested, A.E.I. PA234 I Watt Audio Amp. $\begin{array}{lll}2.00 & 1.95 & 1.80 \\ 50 & & \end{array}$ $\begin{array}{lll} & 22 & 20 \\ 40 & 35 & 30 \\ 1.00 & 90 & 80 \\ 40 & 35 & 30\end{array}$

OUR VERY POPULAR 3p TRANSISTORS
FULLY TESTED \& GUARANTEED
TYPE " A "PNP Silicon alloy, metal TO-5 can. 25300 type, direct replacement for the OC200/203 range. TYPE "B " PNP Silicon, plastic encapsulation, low voltage but good gain, these are of the $2 \mathrm{~N} 3702 / 3$ and $2 \mathrm{~N} 4059 / 62$ range.

TYPE "E " PNP Germanium AF or RF—please state on order. Fully marked and tested.
TYPE "F" NPN Silicon plastic encapsulation, low noise amplifier of the 2N3708, 9, 10, 11 .

BULK BUYING CORNER
 NPN/PNP Silicon Planar Transistors, mixed, untested, similar to $2 \mathrm{~N} 706 / 6 \mathrm{~A} / \mathrm{B}, \mathrm{BSY} 26-29, \mathrm{BS}$ BCY 7 O, etc. $£ 4.25$ per 500 ; $\& 8$ per $1,000$.
 Silicon Planar NPN Plastic Transistors, untested simifar to 2 N 3707.11 , etc., $£ 4.25$ per SOO; $£ B$ per 1,000.
 Silicon Planar Diodes, DO-7 Glass, similar to OA200/202, BAY31-36, $\mathbf{E 4} \cdot 50$ per 1,000
 NPN/PNP Silicon Planar Transistors, Plastic TO-18, 64.25 per 500 : 68 per 1.000
 OC44, OCS5 Transistors futly marked and tested, $500+$ at 8 p each; $1.000+$ at $6 p$ each.
 OC7I Transistors, fully marked and tested, $500+$ at $6 p$ each; $1,000+$ at $5 p$ each.
 $3823 E$ Field effect Transistors. This is the 2 N 3823 in Plastic Case, $500+13 \mathrm{p}$ each; $1,000+10 \mathrm{p}$ each.
 I amp Miniature Plastic Diodes
 IN $4001,500+3 p$ each; $1,000+3 p$ each
 in $4004,500+$ at $5 p$ each, $1,000+$ at $4 p$ each
 iN 4006, $500+$ at $6 p$ each, $1,000+$ at $5 p$ each.
 iN 4007, $500+$ at $8 p$ each, $1,000+$ at $7 p$ each.

NEW TESTED AND GUARANTEED PAKS

	B2	4	Photo Cells, Sun Batreries. 0.3 to $0.5 \mathrm{~V}, 0.5$ to 2 mA .	50p

$\overline{879}$	4	

B81 $\quad 10$| Reed Switches. |
| :--- |
| large and smali | mixed types \quad 50p

B99 $200 \begin{gathered}\text { Mixed Capacitor s. Postage } 13 \text { p. } \\ \text { Approx. quantity, counted by }\end{gathered} \mathbf{5 0 p}$
H4 $\mathbf{2 5 0} \begin{gathered}\text { Mixed Resistors. } \\ \text { Aprostage } \\ \text { Pap. auntity, counted by }\end{gathered} \mathbf{5 0 p}$

H12 $50 \begin{gathered}\text { NKTI } 55 / 259 \text { Germ. diodes. } \\ \text { brand new stock clearance }\end{gathered} \quad 50 \mathrm{p}$
HI8 $10 \begin{gathered}\text { och1/75 uncoded black glass } \\ \text { iype PNP Germ. }\end{gathered}$
HI9 $10 \begin{gathered}\text { OC81/BID uncoded white } \\ \text { Glass type PNP Germ. }\end{gathered}$

H29 $20 \begin{gathered}\text { oA47 sold bonded diodes } \\ \text { coded } M C S 2\end{gathered} \quad$ 50p
F.E.T. PRICE BREAKTHROUGH ! ! !

This field effect transistor is the 2N3823 in a plastic encapsulation, coded as 3823 E . It is also an excellent replacement for the 2 N 3819 .
Data sheet supplied with device.
$1-10$ 30p each, $10.50 \mathbf{2 5 p}$ each, $50+$ 20p each.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.
counter for any car.

each

FREE CATALOGUE AND LISTS
 for:-
 TRANSISTORS, RECTIFIERS, DIODES, INTEGRATED CIRCUITS,
 FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10p post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

8 RELAYS for \&1

Various Contacts and Coil
Resistances. No individual selection. Post and Packing 25p

YATES ELECTRONICS

FLITWICK) LTD

RESISTORS					
W Iskra high stability carbon film-very low noise-capless construction. WW Mullard CR25 carbon film-very small body size $7.5 \times 2.5 \mathrm{~mm}$. 4 W Erie wire wound.					
Powerwatts	lera		Valves	Price	
		Range	available	1-99	$100+$
t	5\%	4-7n-2.2Mn	E24	$1.0 p$	0.8p
$\frac{1}{1}$	10\%	3.3Mn-10Mn	E12	1.0 p	0.8 p
1	10\%	1旺 3.9n	El2	$1.0 p$	$0.8 p$
1	5\%	$4 \cdot 7 \Omega-1 M \Omega$	E12	1.0p	$0.8 p$
4	10\%	$1 \mathrm{n}-10 \mathrm{n}$	E12	6p	5.5p
Quantity	rice appli	y selection.	frac	-	

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value 4.7Ω to 1 Ma.

E12 pack 325 resistors $\mathbf{E 2} \mathbf{4 0}$. E24 pack 650 resistors $\mathbf{4 4} 70$.

POTENTIOMETERS

Carbon track $5 k \Omega$ to $2 M \Omega$, log or linear ($\log +W$, lin $t W)$.
Single, 12p. Dual gang (stereo), 40p. Single D.P. switch 24p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix)
Sub-miniature 0.1W, 5p each. Miniature 0.25W, 6p each.

SEMICONDUCTORS.							
AC126	12p	BFY52	22p	OC81	12p	2N3055	72p
ACl 27	12p	BSY56	30p	OC82	$12 p$	2N3702	$15 p$
ACl2B	12p	BS $\times 21$	25p	ORP12	48p	2N3703	14 p
ADI40	40p	BY124	7 P	1 N 400 I	$71 p$	2 N 3704	$17 \frac{1}{1}$
AFl15	20p	BYZ10	20p	1 N 4002	10p	2N3705	$1{ }^{15}$
AFI 17	20p	BYZ13	20p	IN4003	$11 p$	2N3706	12p
BC107	10p	OA85	7p	1 N4004	12p	2N3707	181p
BC108	10p	OA91	5p	IN4005	13p	2N3708	10 p
BC109	10p	OA202	7p	IN4006	13 p	2N3709	$11 p$
BFY50	22p	OC71	12p	IN4007	13 p	2 N 3710	12 p
BFY5I	22p	OC72	12p	2N2926	lip	2N3711	$14 p$
ZENER DIODES $400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to $30 \mathrm{~V}, 15 \mathrm{p}$.				ROTARY SWITCHES 2P2W. IP12W, 2P6W, 4P3W, 23p.			3P4W,
BRUSHED ALUMINIUM PANELS							
$12 \mathrm{in} \times$	25p	in $\times 2$	10	9 in $\times 2$ in	7p.		

ELSTOW STORAGE DEPOT,
KEMPSTON HARDWICK, BEDFORD
C.WO. PLEASE. POST AND PACKING
PLEASE ADD IOP TO ORDERS UNDER E2. Catalogue which contains data sheets for most of the components listed will be sent free on request. 5p stamp appreciated.
10% DISCOUNT TO ALL CALLERS ON SATURDAYS

MULLARD POLYESTER CAPACITORS C296 SERIES

400V: $0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2$ i P . $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \mathrm{p}$ p. $0.33 \mu F_{+} 11 P .0 .47 \mu F_{1}, 3 P^{2}$ $160 \mathrm{~V}: 0.01 \mu \mathrm{FF}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F} 3 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F} 4 \mathrm{t} \mathrm{p}$.
$0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 74 \mathrm{p} .0 .68 \mu \mathrm{~F}$ $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 73 \mathrm{p} .0 .68 \mu \mathrm{~F}$, IIp. $1.0 \mu \mathrm{~F}$, I3p.
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{P}$. $0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$, $1.5 \mu \mathrm{FF}, 20 \mathrm{p}, 2 \mathrm{p} .2 \mu \mathrm{~F}, 24 \mathrm{p}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \frac{1}{3} \mathrm{p} .0 .47 \mu \mathrm{~F}, 8 \frac{1}{2} \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$.

$$
\therefore \alpha p \cdot 2 \alpha r, 2+p
$$

MYLAR FILM CAPACITORS 100 V $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$, 2立p. $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$, 31 P .

CERAMIC DISC CAPACITORS 100 pF to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each.

CAPACITOR DEVELOPMENT PACK

Selection of 100 ceramic and polyester capacitors, 100 pF to $1.0 \mu \mathrm{~F}, \mathbf{6 2 . 9 0}$.

ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES

\qquad
$(\mu F / V) 10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$, $400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10,125 / 10$,
$200 / 10,2 \cdot 5 / 16,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16,1.6 / 25,6.4 / 25,12.5 / 25,25 / 2550 / 25$ $20 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0.64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64,20 / 64,32 / 64$.

ELECTROLYTIC CAPACITORS Miniature P.C. mounting (μ F/V): $10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.				
VEROBOARD		JACK PLUGS AND SOCKETS		
	0.15	Standard screened		
	$16 p$ $24 p$	Standard insulated	12 p 3.5 m	p
$3 \mathrm{l} \times 34$ 24p	$24 p$	Stereo screened	$35 \mathrm{p} \quad 3.5 \mathrm{~m}$	13 p
37×5	27p	Standard socket	15p 2.5r	8 p
$17 \times 2 \frac{1}{1}$	57\%	Stereo socket	18p 3.5	8 P
17×381000	78p			
17×5 (plain) -	82p	D.I.N. PLUGS A	ID SOCK	
$\begin{array}{r}17 \times 31 \\ 17 \times 24 \\ \hline 1\end{array}$	60p	2 pin, 3 pin, 5 pin 1	$0^{\circ}, 5$ pin	
17 $\times 2 \frac{1}{2}$ (plain)	12p	Plug 12p. Socke	Ap. 5 pin	
$2 \frac{1}{\frac{1}{2} \times 3 \frac{1}{4} \text { (plain) }{ }^{\text {a }} \text {) }{ }^{\text {a }} \text { (plar }}$	$11 p$			
Pin insertion tool 52p	52p			
Spot face cutter 42p	42p	BATTERY ELIM	NATOR	¢1.50
Pkt. 50 pins 20p	20p	9 V mains power sup	ply. Same	battery.

MERLIN SUPPIY CO.

Depr. PEI2D, Nailsea, Bristol BSI9 2LP

\cdots P.E. SCORPIO IGNITION SYSTEM

Complete kit of high quality

components - $£ 10 \cdot 75$. p.sp. 50p
All parts available seperately send S.A.E. for list
AMC ELECTRONICS LTD.
160. DRAKE ST., ROCHDALE, LANCS.

FIND
 BURIED TREASURE!

TREASURE LOCATOR TRANSISTORISED
NOW IT'S HERE AT LABT, alter experimenting for four and a half months with a multit ude of different circuits and carrying
out actual fleld teats with prototypes, our deaign team have cone up with this real winner. This fully portable transistorised metal lucator detects and tracks down buried metal objects-it signale exact lecation with loud audible sound (no phones used)-uses
any transistor radio which fits inside-
 no connections needed. FLIDA dOLD,
SHLFR, LO\&T CODIS, JEWHLLRRY KRYB, WAR SOUVEHIRS, ARCHAEOLOGICAL PIECEB, METALLIC ORE, TUGGETS, ETC. ETC. Outdoors or in: doors. Extremely sensitite, will aignal presence of certain ebjects bwhied several
feet below ground: No knowledge of radio or electronics required. Can be buill wilh eatre in one shor evening by
anybody from nime years of age wpwards, anybody from nine years of age mpwards,
with the wonderfully elear, easy to follow, step-by-step, fully illustrated instructions-it really is easy as ABC. ONLY Ubes standard PP3 baltery. (1).17 $\begin{aligned} & \text { No soldering necessary. Slze } \\ & \text { of detector head } 189^{7} \times 10^{\prime}\end{aligned}$ H\& 1 x $!^{\prime \prime}$. Great demand expected at this remarkebly low
price-ORDER WHME
PRESENT 8TOCK LAST. All parts including retector head case, nuts, acrews, wire etc. 0nLY 88.87 ($47 / 6$) $+\quad 97 p$
(Sectional
(v/6)
handle illustrated 75p (15/extra). Parta available separately, Made up looks worth e10!

REAL WORKING ELECTRONIC ORGAN

 over mowfh-organ type reeds, elc. Eight months were spent in creating and testing this superb, revolut lonary electronic organ. Fully transhstorlsed - no valves. Proper selfcontained loudepesker. Fijleen separate keys span two full play "Auld Lang Syne", play fofs and lots of similar tures on this real working electronic organ. Although it's no theatre organ it's certainly no tiny thing. It measurea $13^{3} \times 10 \times 21 \times$ You have the thrill and excitement of bultding it together with the pleasure of playing a real, live, throbblng electronic organ. Take it axywhere-play it anywhere. NO PREVIODS KNOWLEDGE OF ELPCTRONICS NEEDED-NONE WHATEVER No soldering necessary, it really is as simple as ABC to miake Anyone from nine jears upwarda can build it easily in one ibort evoning following the fully illustrated
 MENT at our low, low bullding price. OnLY 22.75 ($50 /-1+23 \mathrm{p}$ (4/B) p. \% p. for all parts, including
 Fourself, finish with an exciting Christmas gift for someone

GET A GOOD NIGHT'S SLEEP-EVERY NIGHT! INGENIOUS ELECTRONIC

Xeal
Gift
only £2.75 (55/-)

 YOU LIE TO BE GENTLY SOOFHRD OFF TO SATIBFYLC SLEEP EVERY AIGET 9 Then build this ingenious electronic sleep inducer. It pten slops by ifself so you don'thabe fo worry abow it being on all might The loudspeaker proaluces soothing audlo-frequency sounds, continuously repeated-but as time goes on the sounds gradualiy beconle less and less -until they eventualy cease altogether, the effect it has on people is amazimply very similar lo hypnozir. A control ls proVided for adjusting the length of times, etc., all transistor, can be bult by anyone over 12 years of age in about two hours. No knowledge of electronica or railio needed. Extremely simple. easy-to-follow, step-by-step, fully flustrated instruc tions included. No soldering necestary. Works off atandard batteries-extrently economical. Bize only $3^{\prime \prime} \times 47^{\prime \prime} \times$ Be A GREAT DR1 avallable separately)

ONLY $\leftrightarrows / 9 \%$

SHORTWAVE TRANSISTOR RADIO

Can be built in one evening
At hast: Atter trying conntlean circuita rearching for easy build, work arat-dme abort waver. Giving advanced world-wide performance, we chose easy-as-A BC, fully illutrated instructions. (We built ten prototypes and every one worked first time), no soldering necesaary. 76 utations logged on rod Aerial in 30 mins.-Rutaile, Atries, UgA, 8witsorland, otc. Experience thrills of world wide news, sport, music, etc. Eavesdrop on unusual broadcasts. Uses PP3 battery. Transistorised (no valves). Size only $3^{\prime \prime} \times 4^{1}$ $\times 1{ }^{3 *}$. As tremendous demand anticipated price held to only 58-85 ($45 /-$)
+170 (3/6) p. $+17 p$ (3/6) p.
(Partit available separately).

SOOTHE YOUR NERVES, RELAX WITH THIS RELAXATRON
 AMAZING

CUTS OUT JOISE POLLUTION- OOTHES YOUR HERVES: DON't undercatimate the uses of this fantastic new design - the RELAXATRON is basically a pink noise generator based on avalanche operated transiators. very interesting properties. For instance, many pcople find it rasingtorn mysteriously retaxing, a large part of this feeling of well-being can be directly traced to the sound of falling raindropa!-a well-known type of

Ideal Xmas Gift

Will make an exciting
Christmas present PROJECTS suitic $£ 1 \cdot 97$
(39/6) Atuazing Riulio Construction Ret Heconic a radio expert Honie Radio Course. No ex perience needed. Parts ineach instructions for each destgn. Illusrated step-by-step
loudspeaker, persona plans, all transistors, plans, all transimtors,
Presentation Box 87 p (7/6) extra as illus. (if required) (extra parts available separ tely) no soldering necessary. Rend only $21.97(39 / 6)+23 p$ (4/6) p. \& p.

EAVESDROP ON THE EXCITING WORLD OF aircraft communications-just out V.H.F. AIRCRAFT BAND Makes a CONVERTER

 thrilling Christmaspresent

ONLY

7/6)

Many thousande of v.h.f. Aircralt Band Convertera now polling in U.8.A. Listen in to ARLDES, PRIVATE between pilots, ground approach control, airport tower. Hear for yourself the disciplined voices hiding tentemess on talk dotens. Be with them when they have to take nerve rippling decisions in emergencies-Tune into the international distress irequency. Covers the sircraft frequency band inciuding HEATHROW, GATWICK, LUTON, RLIGWAY, PRESTWICX ETC., RTC, CLEAR As A BELL. This fantast ic fully transistorised instrument can be built by anyone nine turinely in under two hours. (Our design
team built four everyone worked Arst time.) No team buit four everyone worked irst time.) No
hnowe of radio or electronics required. No soldering necessary. Fully illustrated simply worded instructions take you step-by-step. Usen standard PP3 battery. Size only $4 \mathrm{~m}^{4} \times 3^{+} \times 1 \mathrm{~B}^{\circ}$. All you do is extend rod aerial. place close to any ordinary medium-wave radlo (even tiny portables) HO CONHECTIONS WHATEVER FREDED. Use indoors or outdoors. THERE WILL BE
CHORMOUS DEMASD FOR THIS CHORMOUS DEMAND FOR THIS KEW DESIGM, BERD COW, OnLY $28.87(47 / 6)+23 \mathrm{p}(4 / 6) \mathrm{p}$. os p. for ail parts,
including case, nuts, screwa, wire, etc., etc. (parts avail. able separately).

Ideal Xmas Gift
 only
 £2-25
 (45/-)

nervous -1 and
 build this fantast ic Relacatron, Once used you will never want to be without TRE8ED, UNABLE TO RELAX-then felaxatron, Once used you will never want to be without it-uae this amiazing pink noise generator Whenever you feel uneasy, can't relax or wish to concentrate. TAKE TT ARYWHERE, pocket alzed.
Uses standard PP3 batterles (current usel so mmall that battery life is aimost shelf-life). CAB BE Cses siandard PPG Batteries (current user go minal that batery life is aimost gheli-life). CAI BE KABILY BUILT BY AMYONE OVRR 12 YRARS OF AGE uaing our uniquc, atep-by-step, fully
illustrated plans. No soldering neceseary. All parts including case, a pair of cryatal phones, Componenth, Nuts, Screws, Wire, etc., etc. no soldering. Send only $22.25+25 \mathrm{p}(45 /-+5 /-)$ p. \& p. (Parta avallable separately.)

FIND BURIED TREASURE WITH THIS READY BUILT \& TESTED
Treasure Locator Module

Only
£4-95
(99/-)
Makes an
exceptional
BRAYD MEW FULLY TRANBLSTORISED PRINTED CIRCUTT METAL DETECTOR MODULE. Ready built and lested-just plug in a PP3 battery and "phonea and it'a working. Put it in a case, 220! Extremely genaltive-penetrates through Tarth LOCATE COLB, $10 L D$, SILVER, WATGHER, JEWRLLERY, FUGGETS, METALLIC ORE, HISTORICAL RELICA, BURIED PIPES, KEYS, MAIL-IH-TREES, ETC., ETC. Signals exact location by "beep" pltch increasing as you near buried metallc objects. PRIITED CIRCUIT sEARCE COIL so stable and sen ilitve it will deted certain objects buried SEVERAL FEET BELOW GROUND: GIVES CLEAR BIGMAL OD ONE COIN! You could even pay for your holidaya with tro or three days elec. tronic beacheombing - i's almost like having a licence to print monev! Unclaimed treanure now exceeda the combined wealth of all nations, ORDER NO W WHHL PREBENT STOCES LABT-TREMEA-

28 watts,r.m.s. 40 Hz to $40 \mathrm{kHz}=3 \mathrm{~dB}$

 There are two stereo amplifiers-the R100 for ceramic cartridges, the R101 for magnetic and ceramic. Both incorporate FETs (FIELD EFFECT TRANSISTORS), just like top-priced units. FETs give you more of the signal you want, and almost none of the background hiss you don't. Both units have a jack socket to plug in headphones and there's a separate output for tape recorder. Filters (an unusual feature in this price range) and tone controls give a wide range of bass and treble adjustment which compensate for input deficiencies and domestic acoustic conditions.

SPEAKERS Duo Type II

PRICES SYSTEM 1

SYSTEM 2

Size approx. 17in $\times 10 \frac{3}{4}$ in $\times 6 \frac{3}{4} \mathrm{in}$. Drive unit 13 in $\times \sin$ with parasitic tweeter. Max. power 10W, 3 ohms. Simulated Teak cabinet. £14 pair $+£ 2 \mathrm{P} . \& \mathrm{P}$. Duo Type III Size approx. $23 \frac{1}{2}$ in $\times 11 \frac{1}{2}$ in $\times 9 \frac{1}{2} \mathrm{in}$. Drive unit $13 \frac{1}{2}$ in $\times 8 \frac{1}{4}$ in with H.F. speaker. Max. power 20 W at 3 ohms. Frequency range 20 Hz to 20 kHz . Teak veneer cabinet. £32 pair $+£ 3$ P. \& P.

SPECIFICATION R100/101

14 watts per channel into 3 to 4 ohms. Total distortion@10W@1kHz 0.1\%. P.U.1 (for ceramic cartridges) 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) 4 mV @ 1 kHz into 47 K equalised within $\pm 1 \mathrm{~dB}$ R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power.) Tape out facilities; headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to $-17 \mathrm{~dB} @ 60 \mathrm{~Hz}$. Bass filter: 6 dB per octave cut. Treble control: treble +12 dB to -12 dB @ 15 kHz . Treble filter: 12dB per octave. Signal to noise ratio: (all controls at max.) R101-P.U.1. and radio65 dB . P.U.2-58dB. R100 same as R101 but P.U. 2 (for crystal cartridges) 450 mV into 3 Meg. Cross talk better than -35dB on all inputs. Overload characteristics better than 26 dB on all inputs. Size approx. $13 \mathrm{z} \times 9 \mathrm{in} \times 3 \mathrm{i} \mathrm{in}$.

TOURIST

MARK 3
CAR RADIO
ALL TRANSSTOR

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensure excellent tracking, sensitivity and
selectivity on both wave bands. R.F sensitivity at 1 MHz is better than 8 selectivity on both wave bands. R.F, sensitivity at 1 MHz is micro volts. Power output into 3 ohm speaker is 3 watts. Prealigned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size $7 \mathrm{in} 2 \mathrm{in} 4 \frac{1}{2} \mathrm{in}$ deep. SET OF PARTS Circuit diagram 13 p , free with
parts Speaker, baffleandfixing kit
Speaker postagefree when
Y 1.25 extra flus P. \& P, 25p SOUND 50 50 WATT AMPLIFIER \& SPEAKER SYSTEM

Output Power: 45 watts Frequency response -3 dB points 30 Hz at 18 KHz . Total distortion: output. Signal to noise ratio: better than 60 dB . Speaker Impedance: 8 or 15 ohms. Bass Control Range: $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble Conerol Range : $\pm 12 \mathrm{~dB}$ at 10 KHz . Inputs: $\frac{1}{4}$ inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control. inputs at 200 mV inc
470 K . To protect the cutput vaives, the incorporated fail safe circuit will enable the amplifier to be used at half power
SPEAKERS! Size $20 \mathrm{in} \times 20 \mathrm{in} \times 10 \mathrm{in}$ incorporating. 12 in heavy dury 25 watt high flux. quality loudspeaker with cast frame. Cabinets attractively finished COMPLETE Q Plus or available separately

RELIANT MK.IV

The Reliant Mk.IV provides a high standard of sound reproduction, with full mixing it suitab. Is versatily makes it suitable for: Discotheque, Home Entertainment Applications, etc.
\star Mixer employing F.E.T. (Field Effect Transistor)
olid State Ci
\star Five Electronically Mixed Inpurs * Three Individual Mixing Controls

* Solid State Circuitry
common to all five inputs

1. Crystal Mic or Guitar 9mV. 2. Moving coil Mic. or Guitar 8mV. Inputs 3, 4 and S are suitable for a wide range of medium output equipment (Gram, CON Monitor, Organ, etc.). All 250 mV sensitivity.
13 dB OLS: 3 Volume controls. Bass control range
PRICE ISKHz, Separate ON/OFF Swirch. Neon Indicator.
POWER OUTPUT: 12 Watts RM.S. into 3 to POWER OUTPUT: 12 Watts R.M.S into 3 to 4ohms Speaker:
SIGNAL/NOISE: Better than $-60 d B$ on inputs 3.4
and 5 and $-50 d B$ on I and 2 . and 5 and -50 dB on 1 and 2 .
SIZE: 12 in \times Gin $\times 3$ in. Mains.

CONTINENTAL 4-TRACK, 3-SPEED TAPE DECK

with high impedance hedads

R.C. 74 tape deck. Three speeds- $7 \frac{1}{2}$ 3i and 17 i.p.s. 4track record/playback head. Plus 4-track erase head. Positive pressure pad system, Takes any cape is driven by a powerful $200 / 250 \mathrm{~V} 50$-cycle a.c. motor. A heavy, accurately balanced flywheel brings wow and flutter levels do
$7 \frac{1}{2}$ i.p.s. Fast rewind in both directions.
Controls couldn't be simpler! Just five push but accidental tape but out tape loading.
for for tone and volume controls. The unit is built into a rigid die-cast frame, and
overall size of the whole unit is $12 t \times 11 \times 6 i n$. Every single deck fully tested before dispatch. 5pools not supplied. Price complete fi5. Plus 75p P. \& P

Music at

 mionight

Mionight is a time for listening. Let the music be as late and as loud as you like; with headphones, it disturbs no one. Let the headphones be A.K.G. and you will find the quality staggeringly good. Made by a company whose protessional microphones are known throughout the world and much used in this country, A.K.G. stereo headphones reflect the same fine quality of design and meticulous manufacture. They are just about as good as anything you can buy at any price. Go to the deater displaying the A.K.G. Superhead and hear for yourself, without obligation. Shown here, Model K. 60 R.R.P. $£ 15.00$

λ

A.K.G. Equipmênt Lidd

Eacdley House
18F-184 Campden Hill Rd. W8 7AS

Brought to you for your listening enjoyment from the

Connuisseur ${ }^{\circ}$
 PRECISION IN SOUNO COLLECTION

B.D.1. TURNTABLE KIT

The famous B.D. 1 turntable which operates at $33 \frac{1}{2}$ or 45 r.p.m. incorporates a flexible belt drive system, virtually eliminating vibration and transmission noise - AND IS NOW AVAILABLE IN KIT FORM! So simple to construct

- such a beautiful
performance, and
now it's so easy to own the best!

Price list and illustrated literature on request to
A. R. SUGDEN \& CO. (Engineers) LTD.

Market Street, Brighouse HD6 1DX, Yorkshire.
Tel. 2142

SIEREO-
 now roucan Bulb rourown

Mullard Unilex modules need no soldering, no knowledge of electronics. They make the stereo amplifier so simple that anyone can build it in an hour, for around $£ 16$.

Conneet the record deck and speakers and you've built your stereo system. For the comprehensive instruction book 'Do-it-yourself Stereo' and stockist list post this coupon today with a 25p P.O.

Mullard
 UNILEX
 Room 512
 Mullard House,
 Torrington Place,
 London WC1E 7HD

Name
Address

CN. 240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated $3 / 32^{\prime \prime}$ bit and packed in transparent display box. Also available for 220 volts. Price $£ 1.70$

CN. 240 Miniature soldering iron 15 watt 240 volts, fitted with iron coated $3 / 32^{\prime \prime}$ bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220 110,50 or 24 volts. Price $£ 1.70$
G. 240 Miniature soldering iron 18 watt 240 volts extensively used by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ bit. Also available for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $14^{\prime \prime}$ are obtainable. Price $£ 1.83$.

E. 24020 watt 240 volts soldering iron fitted with $1 / 4^{\prime \prime}$ iron coated bit. Spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts Price f 1.80 .
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8$ ron coated bit and packed in a transparent display box Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$ available. Can also be supplied for 220 and 110 volts. Price $£ 1.83$

CCN 240 New model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation $(4,000 \vee$ A.C.). Will solder live transistors in perfect safety; fitted with $3 / 32^{\prime \prime}$ iron coated bit. Spare bits $1 / 8^{\prime \prime}$ $3 / 16^{\prime \prime}$ and $1 / a^{\prime \prime}$ available. Can also be supplied for 220 volts Price $£ 1.80$

CCN.240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering The triple coatedbits are iron, nickel and chromium plated Price $£ 1.95$

SK. 2

SOLDERING KIT
This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder. Heat Sink 1 amp fuse and booklet
Price $£ 2.40$ How to Solder

MES. 12

A battery operated 12 volts 25 watt soldering iron complete with 15^{\prime} lead, two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet. Price $£ 1.95$.

cut out this coupon and answer your solderina problems

from electrical, radio or car accessory shops or from Antex Ltd., Freepost (no stamp required) Plymouth
PL1 1BR Telephone 0752 67377/8
\square Please send the Antex colour catalogue
Please send the following
enclose cheque/P.O./Cash (Giro No. 2581000)

Name

Address \qquad

The largest selecition

PIV	1A	3A	7 A	10.3	16 A	30
	T0. 5	T0.66	T0-66		T0.48	TO.
	4 p	2p	20	Ep	fo	
50	0.28	0.25	0.47	0.50	0.63	
100	0.25	$0-33$	0.53	0.58	0.63	
200	0.35	0.37	0.57	0.61	0.75	
400	0.48	0.47	0.87	0.75	0.93	
600	0.58	0.57	0.77	0.97	1-25	
800	0.68	0-70	0.90	1.20	$1-50$	

SIL. RECTS. TESTED

PIV	300 mA	T5011A	A 1A	1-t	3.4	10 A	30A
	\& ${ }^{\text {d }}$	2D	ED	£0	£	£p	£p
50	0.04	0.05	0.05	0.07	0.14	0.21	0.47
100	0.04	0.08	0.05	0.13	0.16	0.23	0.75
200	0.05	0.09	0.08	0.14	0.20	0.24	1.00
400	0.08	0.13	0.07	0-20	0.27	0.37	1.25
600	0.07	0.16	0.10	0.23	0.34	0.45	1.85
800	$0 \cdot 10$	0.17	0.13	0.25	0.37	0.55	2.00
1000	$0 \cdot 11$	0.25	0.15	0.30	0.48	0.63	$2 \cdot 50$
1200		0.33		0.33	0.57	0.75	
	TRI	IACS			CAS	ILIC	
VBOM	M 2 A	6A	10.A		ECTI	E	
	To.1 T	TO-bit T	TO. 88	35 amp	1. 400	P.I.Y.	Stul
	ep	Ep	1p	type	. 10	ch	
100	0.50	0.63	1.00		DIA		
200	0.70	0.90	1.25	KOR	US		IT
400	0.90	1-00	1.80	BR100		37p	each

2A POTTED BRIDGE RECTIFIERS 200V 50p
UT46. EqIJUNCTION Equt. Tis43. BEN3000 270 each, 25-59 250 100 UP 20 p .

HPN SLLICON PLANAR BC107/8/9, 10p each; $50-99$,
80 each: $\quad 100$
up,
1,000
off, 7 p each. Fully tested 7 m each. Fully tested

FREE

One SOD Pak of your own cholce Iree with orders valued $£ 4$ or over AF239 PNP GERM, GI8TORG PF MIX SI8TORS. RF MIXER MHZ. USE AS RE 900 PLACEMENT FOR AF139-AF186 \& 100 's OF OTHER USES IN VHF. OUR EPECIAL LOW PRICE: - 1-2437p each. $25-9934$
$100+30 \mathrm{e}$ each.

	GERM. TRANSISTORS Coded and Guaranteed
	rak No. EQVT
3819	T2 82 G
20	T3
MPF10 ${ }^{3}$	T4 8 2G381
	Tü 8 2G382T OC8
	T6 $82.1344 A \quad$ OC44
CADMIUM CELLS	T7 888 g 345 A OC4 4
ORP12 43p ORP60, ORP61 40p each	T8 8 8 29378
	T9 8 2 G 399 A 2N1302 T10 8 2G417 AF117
	All 50D each
PHOTO TRANS. OCP71 Type. 48p	
	texas. Out price 25p each.
$\sin _{00 \mathrm{~mW}} \text { G.P. DIODES }$	
40 PIV (Min.) 100	120 VCE NIXIE DRIVER
Sub-Min. 500 . 5.00	
Fuli Tested 1,000 . 8.00	TRARSISTOR
Ideal for Organ Puikiers.	BEX2T C407, 2N1893 FULIY TESTED AND
	CODED NDI20. 1-24
D13D1 Silicon Unilateral switch 50p each.	17p each. TO-5 N.P.N. 25 up 15 p each.
A Silicon Planar, monolithic integrated circuit	Sil. trans. suitable for
	P.E. Organ. Metal TO-18
ving thyristor elec-	Any Qty.
trical characteristics, hut with an anode gate and a	
	-
and	
an	AF117 transistors.
	can 4 leads type. Leads
	value at 15 for 50 D

BRAND

BRAND NEW TEXAS GERM. TRANSISTORS Coded
lak Go. Guaranteed
TaVT $\begin{array}{llll}\mathrm{T} & 8 & 2 G 374 & \text { OCT5 } \\ \text { T } 3 & 8 & 2 \mathrm{GB744} & \text { OC81D }\end{array}$ $\begin{array}{llll}\text { T4 } & 8 & \text { 2G381A } & \text { OC81 } \\ \text { TU } & 8 & 2 \mathrm{G} 382 \mathrm{~T} & \text { OC82 }\end{array}$ $\begin{array}{cccc}\text { T7 } & 8 & 2 G 345 A & \text { OC } 4 \bar{y} \\ \text { T8 } & 8 & 2 \mathrm{G} 378 & \text { OC } 8\end{array}$ $\begin{array}{llll}\text { T9 } & 8 & 2 G 399 A & 2 N 1302 \\ \text { T10 } 8 & 2 \mathrm{~g} 417 & \text { AF117 }\end{array}$

2N2060 NPN SIL. DUAL
TRANS. CODE D1693 TEXAS. Our price 25 p

120 VCB NIXIE DRIVER TRANSISTOR. Sim BSX2T \& C407, 2N 1893
FUELY TESTED AND CODED ND120. $1-24$
$17 p$ each. TO-5 N.P.N. 25 up 15 p each. Equt RTX Metal To-18

EX-EQUIPMEN AF117 transistors. Large cut ahort but atill usable
real value at 15 for 500 .

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS
 NEW BI-PAK UNTESTED SEMICONDUCTORS

\qquad Pak No. 20 Glass sub-min. general purpose germanium diodes 60 Mixed germanium transistors AF/RF
75 Germanium gokl bonded diodes sim. OA5, OA47 40 Germanium tranaistors like OC81, ACles
60200 mi a sulb-min. Sil dioles
30 silicon planar transistors $\overline{\mathrm{NP}} \mathrm{N}$ sim. $188 \mathrm{Y} 9 \mathrm{JA}, 2 \mathrm{NiOt}$
if Silicon rectiflers Top-Hat 750 HA up to $1,000 \mathrm{~V}$
50 Bil . planar diolles 250 mA . O $\mathrm{a} / 200 / 202$
20 Mixed volts 1 watt Zener diodes
30 PNP gilicon planar transistors $\mathrm{TO}-5$ aim. 2N1132 30 I'NP. NPN sil. transistors OC200 $\& 2 \$ 104$ I50 Mixed silicon atd germanium dioles $\because \overline{5}$ NPN sillicon planar transistors TO-5 sim. 2×697 103 Amp silicon rectifiers atul fype up to 1000 I 1 l 30 Germaniuni PNP AF tratisistors TO 5 like ACY 17-22 86 -Amp silicon rectifiers BYZ13 type up to 600 PIV ${ }_{2} 5$ silicon NPN transistors like hClos

121 15-Amp sillicon rectifters Top-Hat up to $1,000 \mathrm{FIV}$ 30 A.F. germanium alloy transixtors $2 \mathbf{G} 300$ series \& $\mathrm{OC}_{7} 1$

30 Madt's like MAT series PNP transistors 20 (iermanium 1-Amp rectifiers GJM up to 300 PI
 30 Fast switching silicon diodes like IN914 micromin Experimentera' assortment of integrated circuits, untested Gates, flip-flops, regiaters, etc., 8 assorted pieces
Ư29 101 -Amp SCR's TO-5 can up to 600 P1V Crs $1 / 25-600$
U31 wo Sil. Pianar NPN trans. low noise amp 2N3707
25 Zener diodes 400 mW D07 case nixed volts, 3-18
15 Plastic case 1 amp silicon rectiffers $1 \mathrm{~N}+000$ series 30 Sil. P'NP alloy trans. TO-5 BCY2e, $29302 / 4$ 05 Sil. planar trans. PNP TO-18 $2 \mathbf{N S}_{2} 2906$ $2 \overline{5}$ Sil planar NPN trans. TO-5 13FY50/51/52 30 sil. alloy trans. $80-2$ PN1, OC 20028322 20 Fant switching sil. trans. NPN, $400 \mathrm{Mc} / \mathrm{s} 2 \mathrm{~N} 30 \mathrm{II}$ 30 RF germ. PNP trans. $2 \mathrm{~N} 1303 / \mathrm{J}$ TO-5 10 Dual trans. 6 lead T0.5 2N2060 25 KF germ. trans. $\mathbf{T O}-1 \mathrm{OC} 45 \mathrm{NKT} 72$ Case) 13 p ea. 14 W (Top. rat) 18p ea. 10 W (80-10 Stud) 25 D ea. All lully marked.
ADI61 NPN ADI62 PNI
MATCLIED COMPLEMENTARY PAKRS TRANSISTORS. For mains firiven out and Radio receivers. OF 63p PER P.AIR

2N3055 115 WATT SIL. OUR PRICE 630 EACI

FULL RANGE
PULL RANGE
VOLTAGE RAMGE $2-38 \mathrm{~V}$. 400 mV (DO-7

Code Nos. mentioned above are given as a gulife to the type of device i
GENERAL PURPOSE GERM. PNP
POWER TRANSISTORS
Coded (il100. BRAND NEW TO-3 CASE. POSS
REPLACEMENTAFOR:-OCD $-28-29-30-30-31$, NKT

> SPECIFICATION
> VChO 80V LCEO 50L IC 10A I'T. 30 WATTS Hfe $\begin{aligned} & \text { 30-170. } \\ & \text { PRICE }\end{aligned}$
> $4 \begin{gathered}\text { 43p each }-24 \\ 40 \mathrm{p} \text { each }\end{gathered}$
> $\begin{aligned} & 100 \text { ug } \\ & 36 \mathrm{p} \text { each }\end{aligned}$
> POWER TRANSISTORS

> REPLACEMENT FOR: $2 N 30 \bar{\pi}, 3$, BDY20, HIYYII. Sl'ECIFICATION YCBO 100 V , VCEO HOV . IC 15 AMPs, PT. JI5 WATTS. Hfe 20-100. FTI MHZ PRICE | 5Sp each |
| :---: |
| $1-24$ |
| 1 | ${ }_{\text {sop each }}^{20-99}$ $\begin{gathered}100 \mathrm{up} \\ 47 \mathrm{p} \text { each }\end{gathered}$

COMPMBO PAKS

MIXED

ELECTRONIC

COMPONENTS

Exceptionally

good value
(no rubbish)
Resistors, capacitors, pots, electrolyties anis usetul items. Approxinately 3 iba in weig Price incl. P, \mathbb{F}
61.50 only

Phw our satisfaction or
money back guarantep.

GENERAL PURPOSE NPN SILICON SWITCHING TRANS. TO-18 SIM. TO 2N706/8, BSY27/28/98A. All usable devices no open or short circnits. ALSO AVAILABLE in PNP Sim, to 2 N 290 ni , BCY 70 . Wher ordering phease state preference NPN or PNP.

SILICON PHOTO TRANSISTOR. TO-18 Lens end NPN Sim. to $\mathrm{HP} \times 25$ and P 21 BRAND NEW: Full data available. Fully guaranted

Qty. $\quad 1-24$ c5-99 100 up
Price each 45p 40p 35D

RTL MICROLOGIC CIRCUITS
Epoxy To. 5 case $1-24 \quad 2 \overline{\mathrm{j}}-99 \quad 100$ up ul900 Buffer 35p 33p 27p uL914 Dial 21
 uL923 J.K flip-flop 500 47 p 45 p
Data and Circuits Hooklet for

Pek Description

PRINTED CIRCUITS—EX-COMPUTER

Packed with nemiconductors and components,

 10 boards give a guaranteed 30 trans and 30 dioles. Our price 10 hoarts, 50p. Plus 10p P. \& P 100 Boards \&3, P. \& P. 30 p.NEW EDITION 1971 TRANSISTOR EqUIVALEATS EANSISHR EQUIVALEATS OOK. A complete crobs referanc and equivalents book for European American and Japanese Transis tors. Exclusive to BI-PAK 90D each.

GERM. POWER TRANS.

Type	l'rice each	Type	Price each
OC20	50 p	OC29	40 p
OC22	30 p	OC35	33 p
OC23	33 p	OC36	40 p
OC25	25 p	AD140	40 p
OC26	25 p	AD142	40 p
OC28	40 p	AD149	43 p

OUR STOCES of individual device re now toonumerous to mention in this Advertisement. Send S.A.E for our listing of over 1,000 Smiconductors. All arailable Ex Stock at very competitive prices.

Dnal-in-Line Low Profle Socketa 14 and 16 Lead Sockets for us
Dual-in-Line Integrated Circuits

[^0]
-the lowest prices

74 series T.T.L. I.C's

DOWN AGAIN IN PRICE

Check our 74 Series List before you buy any I.C's. Our prices are the loweat possible. All revicen ex-atock.

Price and aty. prices $\begin{array}{ccc}\text { Price } & \text { and } & \text { Qty. } \\ 1-24 & \text { prices } \\ 105-99 & 100 \mathrm{ny} \\ 3 \mathrm{p} & 2 . & 80 \\ 0.15 & 0.14 & 0.18\end{array}$
$\begin{array}{lll}0.15 & 0.14 & 0.12 \\ 0.15 & 0.14 & 0.12\end{array}$
$\begin{array}{lll}0.16 & 0.14 & 0.18 \\ 0.16 & 0.14 & 0.18\end{array}$ $\begin{array}{lll}0.15 & 0.14 & 0.12 \\ 0.18 & 0.14 & 0.12 \\ 0.09 & 0.98 & 0.91\end{array}$ $\begin{array}{lll}0.29 & 0.28 & 0.84 \\ 0.15 & 0.14 & 0.18\end{array}$ $\begin{array}{lll}0.18 & 0.14 & 0.12 \\ 0.15 & 0.14 & 0.12\end{array}$ $0.87 \quad 0.84 \quad 0.88$ $\begin{array}{lll}0.97 & 0.84 & 0.88\end{array}$ $\begin{array}{lll}0.15 & 0.14 & 0.12\end{array}$ $\begin{array}{lll}0.15 & 0.14 & 0.12\end{array}$ $\begin{array}{lll}0.15 & 0.14 & 0.12 \\ 0.15 & 0.14 & 0.12\end{array}$ $\begin{array}{lll}0.16 & 0.14 & 0.12 \\ 0.15 & 0.14 & 0.12 \\ 0.29 & 0.86 & 0.94\end{array}$ $\begin{array}{lll}0.29 & 0.26 & 0.24 \\ 0.29 & 0.26 & 0.24 \\ 0.37 & 0.35 & 0.38\end{array}$

ANOTHER BI-PAK FIRST!

THE NEW S.G.S.

EA 1000 AUDIO AMPLIFIER MODULE
*GUARANTEED NOT LESS THAN 3 WATTS RMS
Especially designed by S.G.S. incorporating their proven Linear I.C. Audio Amp. TA/621 providing unlimited applications for the enthusiast in the construction of radios, record players, Audio and Stereo units. Also ideal for intercom systems, monitoring applications and phone answering machines. OTHER USES : portable applications where supply rails as low as $9 V$ are of prime importance.

BI-PAE

$B P 00=7400$
BP01 $=7401$
$\mathrm{BPO2}=7402$
BPO4 $=7404$
$B P O 4=7404$
$B P O S=7405$

BP10
BP13
$=7410$

$\mathrm{BP} 13=7413$
$\mathrm{BP} 20=7420$
$B P 30=7430$
$B P 40=7440$
BP41 $=7441$
BP42 $=7442$
BP46 $=7444$
BP47 = 7447
$\mathrm{BP} 4=7448$
$\mathrm{BP} 50=7450$
HP51 $=\mathbf{7 4 5 1}$
BP53 $=7453$
$\mathrm{BPG4}=74.34$
$B P 60=7460$
BP70 $=7470$
$\mathrm{BP72}=7472$
$\mathrm{BP} 73=7473$
BP73 $=7473$
BP74 $=7474$
BP75=7475
BP76 $=7476$
$\mathrm{BP} 80=7480$
$\mathrm{BP} 81=7481$
$\mathrm{BP} 82=748{ }^{\circ} 2$
$\mathrm{HP} 83=7483$
$\mathrm{BP} 86=7486$
BP90 $=7490$
BP91
$=7491$
$\mathrm{BP91}=7491$
BP 92
$\mathrm{BP92}=7492$
Br 93
$=7493$
$\mathrm{BP94}=7494$
$\mathrm{BP95}=7495$
$\mathrm{HF96}=7496$
$\mathrm{BP100}=74100$ BPIO4 $=74104$
$\mathrm{BP105}=74105$
BP107 $=74107$
$\mathrm{BP110}=74110$
BPI11 = 74111
BP118 $=74114$
BP119 = 74119
$\mathrm{BP121}=74121$
BP145 $=74141$
BP150 $=74150$
BP151 $=74151$
BP153 $=74153$
BPI54 $=74154$
BP155 $=74105$
BP156 $=74156$
BP160 $=74160$
BP161
BP190
$=74181$
$=7140$
BP191 $=74191$
$B P 192=74193$
HP193 $=74193$
$\mathrm{BP} 196=74196$ BP197 $=74197$ BP198 $=74198$
BP190 BP199 $=74199$ epiced to application (TTL 74 Series only)
$\begin{array}{ll}\text { BP197 }=74197 & \text { Presctable } 0 \text { 0MHz binary counter } \\ \text { BP198 }=74198 & \text { 8-bit parallel L-R Ehilt register } \\ \text { BP199 }=74109 & \text { 8-bit parallel access shift register }\end{array}$
 (15V outputs) decmer/arive (15V outputs) Expandable dual decoder/drive invert .. -input and-or Dual 2 -wide $\underline{0}$-input and-or-invert Quader 2 -input. expandable and-orinvert -wide 2 -input and-or-invert gates Single-phase J.K flip.flo Master slave J-K fivnop Dual Master slave J-K flipDual D type flip-flop Qusd lateh fated full adders
l6-bit read/urite memory 2 bit bloary full aiders Quad full adder Quail 2 -input exclusive NOR gates 8-bit shift registers
Divide.by-twelve
-bit binary counters
Dual entry 4 -bit shift
4-1,it un-down ahift register -bit parallel in parallel out whift 8 -bit bistable latches Single J•K Hip-flop equivalent 9000 single
Single J.K flip flop equivalent, 900 Dual Master slave flip-flopa Hates master-slave tlip-flops Dual data lock-out flip frop Hex ret-reset tatehes Hex set-reset latehes. 24 -pin Monostable multivibrators BCD-to-decimal decoder/driver 6-bit data selector
-bit data selectors (with strole) ulal 4-line-to-l-line tata - to 2 . to 4.line deco Dual 2 - to 4 -line decoder 0 Sync. lecade counter ync. Nync. binary uperlow counter clock line) (apiow counter (single lock mp-do
syc. binary up dowe counte counter (tow Pre-setable 50 MHz slecade counter -bit parallel access shift register
$\begin{array}{lll}0.37 & 0.35 & 0.32 \\ 0.47 & 0.45 & 0.42\end{array}$
$\begin{array}{lll}0.48 & 0.40 & 0.38 \\ 0.87 & 0.64 & 0.58\end{array}$
$\begin{array}{lll}0.87 & 0.64 & 0.58 \\ 0.97 & 0.94 & 0.88 \\ 0.97 & 0.94 & 0.88\end{array}$

Sensitivity 40 mV for 1 watt VOLTAGE GAIN 40dB but can be varied up to 73 dB for some applications.
Signal to Noise Ratio 86dB.

* Frequency response better than 50 Hz to 25 KHz for $-\mathbf{3 d B}$.
- Normal supply Voltage 9-24V.

Suitable for 8-16 OHM Loads.

- Overall Size $\mathbf{2}^{\prime \prime} \times \mathbf{3}^{\prime \prime} \times \mathbf{1}^{n}$.
- Typical Total Harmonic distortion at 1 watt less than 1%.
*Supply voltage $\quad\left(V_{s}\right)=24 \mathrm{~V}$ ISohm load.
Module Tested and Guaranteed $\begin{array}{lll}\text { Quantity } & 1-9 & 10-25\end{array}$ Price each $£ 2.63 \quad £ 2.28$ Larger quantities quoted on request
Full hook-up diagrams and complete technical data supplied free with each module or available separately at 10 p each.

ROCK BOTTOM PRICES-CAN'T BE BEATEN!

Devices may the mixed to qualify for quantity price. Larger quantity prices on applfeation. (DTL 930 Series only).

BRAND NEW LINEAR I.C's-FULL SPEC

				Price		
Trpe No.	Case	Lesda	Defeription	1-24	25-99	00 up
BP 201C-SL201C	T0.5	8	G.P. Amp	63p	88.	45p
BP 701C-SL701C	T0.5	8	OP Amp	63 p	60 p	45p
HP 702C-SL702C	TO-5	8	OP Amp Direct OP	63	50 D	45p
13P 702-72702	D.1.L.	14	G.P. OP Amp (Wide Band)	63p	480	40p
BP 709 - 72709	D.I.L.	14	High OP Amp	53p	46p	40p
BP 709P- ${ }^{\text {- }}$ (709C	TO. 5	8	High Gain OP Amp	83p	45D	40p
BP 711-HA711	TO-5	10	Dual comparator	58p	800	450
BP $741-72741$	D.I.L.	14	High Gain OP Amp (P'rotected)	78 p	60D	50p
$\mu \mathrm{A} \mathrm{703C-} \mathrm{\mu A703C}$	T0-5	6	R.F.-I.F. Amp	42 p	35 D	27p
TAA $263-$	T0-72	4	A.F. Amp	70 D	60 p	55p
TAA $293-$	TO.74	10	(1.P. Amp	90p	750	70p

TTL INTEGRATED CIRCUITS

 Manufacturers' "Fall outs" -out of spec. devices including functional units andpart function but classed as out of spec. from the manufacturers" very rigid specifications. Ideal for icarning albout I.C's and experimental work.
PAK Ho.
UIC00 $=10 \times 7400 \mathrm{~N} \quad 50 \mathrm{p}$ UAE KIO. $5 \times 7450 \mathrm{~N} \quad 50 \mathrm{p}$ PAK No. $5 \times 5480 \mathrm{~N} 50 \mathrm{p}$
 UICO2 $=12 \times 7402 \mathrm{~N} \quad 50 \mathrm{p}$ UIC $51=1 \mathrm{~N} \times 7451 \mathrm{~N} \quad 50 \mathrm{p}$ UIC83 $=5 \times 7483 \mathrm{~N} 50 \mathrm{p}$

 UIC120 $=12 \times 7420 \mathrm{~N} 50 \mathrm{p}$ UIC74 $=8 \times 7474 \mathrm{~N} 50 \mathrm{p}$ UIC94 $=5 \times 7493 \mathrm{~N} 50 \mathrm{p}$ UIC40 $=12 \times 7440 \mathrm{~N} 50 \mathrm{D}$ UIC7 $=8 \times 7475 \mathrm{~N} \quad 50 \mathrm{p}$ UIC95 $=5 \times 7495 \mathrm{~N} 50 \mathrm{p}$ UIC41 $=5 \times 7441 \mathrm{AN} \mathrm{50p} \mathrm{UIC76}=8 \times 7476 \mathrm{~N} \quad 50 \mathrm{D}$ UIC $3 \times 5=5 \times 7496 \mathrm{~N} 50 \mathrm{p}$ UICX1 $=2 \bar{J} \times$ Asst'd $74 . \mathrm{s}$ \&1.50
Paks cannot be spht but zo assortcd pieces (our mix) is available as PAK U1CXI Erety PAK carries out BI-PAK satisfaction or money back (iUARANTEE

All prices quotad in new pence Giro No. 388-700s Please send all orders direct to warehouse and despatch department
> P.O. BOX 6, WARE - HERTS

> Postage and packing add 7p. Overseas add oxtra for airmail,
Minimum order 50 . Gash with order please. Minimum order 50 . Gash with order please.
> Guaranteed Satisfaction or Money Back

Some things in life are just about inseparable-eggs and bacon, sausage and mash, Tweedle Dum and Tweedle Dee! Think of one and you think of the other. That's how thousands of radio and electronic enthusiasts think of Components and Home Radio Ltd. When they need the first they automatically contact the second. They simply flip through their Home Radio Catalogue, locate the items they need and telephone or post their order.
If you have not yet experienced the simplicity and satisfaction of linking Components and Home Radio, why not make a start now? First of all you'll need the catalogue . . . in its 315 pages are listed more than 8,000 components, over 1,500 of them illustrated. Every copy contains 10 vouchers, each worth 5 p when used as instructed. The catalogue costs 70 p including postage and packing. Drop us a line or use the coupon below.

Phone

24-hour
Phone Service. Ring 01-648 8422

Ask for details of our Credit Account Service.

VOL. 7
 No. 12
 December

Editor F. E. BENNETT Assistant Editor M. A. COLWELL Editorial Assistants D. BARRINGTON G. GODBOLD M. KENWARD Art Editor J. D. POUNTNEY Technical Illustrators J. A. HADLEY P. A, LOATES Advertisement Manager D. W. B. TILLEARD

TODAY'S ICs AND TOMORROW'S

THE profusion of integrated circuit devices on the retail market offers great opportunities for equipment designing and building. Yet the formidable lists of type numbers must be daunting to many a reader as he peruses those advertisements featuring i.c.s. Clearly there is a requirement for a guide that identifies the more common types, indicates function and provides basic application data. This need we have attempted to meet in the Linear and Logic IC Survey which is the subject of this month's special supplement.

It will be appreciated that this Survey is not, and indeed could not be, exhaustive. Only those types of integrated circuit known currently to be available via retailers are included. This in fact makes the Survey all the more valuable, since no reader is likely to be sent on a wild goose chase after some rare device that cannot be obtained, unless one has special connections within the industry.

$$
\star \quad \star
$$

Having (hopefully) clarified the current i.c. situation to some extent and produced two separate lists, one for linear, the other for logic devices, we learn that this orderly and simple segregation into just two clearly defined categories may not always be possible in the years to come. By strange chance, just as our Survey was completed news was released of what is claimed to be a revolutionary development in i.c. design and manufacture by a British firm. The Collector Diffusion Isolation (CDI) method now perfected by Ferranti permits both digital and linear circuits to be formed on the same monolithic chip; it combines the linear high performance and digital high speed capability of the bipolar method with the high circuit density capability offered by the MOS technique.

The developers of CDI have suggested that this new bipolar process will cause a general widening of MSI and LSI applications particularly in areas involving analogue-digital techniques; they have mentioned, specifically, desk calculators, fuel injection systems, washing machine controls, and model control as examples where CDI will have great impact.

It is good to hear of a UK firm making an outstanding contribution to the development of new i.c. techniques. Just how important and significant the CDI method actually is, time will tell. But there are already two American contenders in the field. Both Fairchild ard Raytheon have developed their own methods for increasing the component density on a single chip. Are we about to witness another price war? With mammoth production runs, technical considerations tend to play a minor role-the more economical process usually wins the day.
CONSTRUCTIONAL PROJECTS
LOGICAL RADIO CONTROL 982
P.E. SCORPIO 998
I.C. DIGITAL DICE 1004
LABPACK POWER SUPPLY 1018
SPECIAL SERIES
RADIO ASTRONOMY TECHNIQUES - 71009
GENERAL FEATURES
ELECTROLUMINESCENCE 989
SUBSTITUTES FOR ZENERS 1030
NEWS AND COMMENT
EDITORIAL 981
PATENTS REVIEW 986
NEWS BRIEFS 1012
INDUSTRY NOTEBOOK 1015
ELECTRONORAMA 1016
SPACEWATCH 1029
MARKET PLACE 1038

SPECIAL SUPPLEMENT

LINEAR AND LOGIC IC SURVEY

Our January issue will be published on

 Friday, December 10.[^1]

The vast number of integrated circuits now on the market has lowered the cost to levels whereby they can be used for many applications Although the circuitry for the system described would be possible with discrete components, the complexity would be such as to deter many from contemplating a sophisticated system, whereas with integrated circuits, the modules are simple and easy to build.

This article deals with the coder and decoder sections only; a block diagram of a typical system is shown in Fig. la. These may be built and tested against each other (Fig. 1b) the interface or coupling units being simple stages allowing, for example, a transmitter with a -12 V supply to be used with the coder which requires $+5 \cdot 2$ to $5 \cdot 7 \mathrm{~V}$.

The system is described for six channels although it can easily be varied for three to nine channels. It is not economic to have less than three channels; for more than nine channels some compromise is necessary with regard to proportionality and the time rate of control.

Printed circuit boards are necessary for this project and care should be taken to make these of a high standard since one interconnection short can cause complete malfunction and may be hard to trace; time taken wiring up is amply repaid.

Alternative forms of coder are described and it is not advisable to attempt construction without considering the corresponding decoder. Positive logic (output high $=1$, low $=0$) is used throughout

PULSE CONTROL TECHNIQUES
The control system involves the production of a train of (positive going) pulses, each pulse corresponding to a channel and being independently and proportionally variable in length from about 0.5 to 4 ms .

As shown in Fig. 2a, the pulses occur sequentially but their position relevant to the start of the train is determined by the length of the other pulses and the interval time between pulses $-\frac{1}{3} \mathrm{~ms}$.

The pulse train is repeated at intervals τ, of 25 to 50 ms or 20 to 40 times a second. This is the rate at which the pulse lengths are measured and changes detected. Allowing five measurements (but preferably ten) for the detection of a small change and servo initiation, this gives a system response time of about $\frac{1}{8}$ to $\frac{1}{4}$ second.

Due to the inertia of the motor and load, the servo has a response time which must be added to the above; a model aircraft flying at 60 m.p.h. would move 22 ft in $\frac{1}{4}$ second before, say, the rudder servo started operating.

PULSE LENGTH
The pulse train repetition time τ, for n channels is made up of $(n-1) \times \frac{1}{3} \mathrm{~ms}$ intervals, n pulses of maximum length $\tau_{a} \mathrm{~ms}$ and a synchronising period τ_{2} used in the decoder to determine the start of the pulse train. This synchronising period τ_{2} must be $1 \frac{1}{2} \times \tau_{3}$ or preferably $3 \times \tau_{3}$.

A four-channel system with a maximum pulse length $\left(\tau_{3}\right)$ of say 4 ms would therefore give as a minimum $(4 \times 4)+\left(3 \times \frac{1}{3}\right)+\left(1 \frac{1}{2} \times 4\right)=23$ milliseconds.

The sharp-edged pulses used in the coder and decoder are "softened" to approximately sine wave shape, before actual transmission and reception (as shown in Fig. 3), the pulse interval period being then approximately 0.5 ms wide corresponding to a 2 kHz tone. This allows a factor of approximately two for the bandwidth performance of any existing receiver, it being equally convenient to use a tone modulator transmitter or to use the i.c.w. mode and to detect the 27 MHz carrier only in the receiver.

The maximum pulse length $\left(\tau_{3}\right)$ is determined as a reasonable relationship with regard to the interval time, being restricted to contain τ_{1} to less than 50 ms . If a slower system response time can be tolerated, as in the case of a scale model boat, the maximum pulse length could be increased to 10 ms or alternatively more channels could be used.

Fig. I. Block diagram of a typical radio control installation

Fig. 2. Variable pulse lengths for proportional control

Fig. 3. The coder pulses are "softened" to almost sine wave shape for transmission to avoid troubles with short propagation times of square wave pulses

If only one channel, e.g. rudder, was required for maximum sensitivity, the corresponding maximum pulse length could be increased provided that the other channels in use were restricted operationally to prevent all the pulses being at maximum length, hence encroaching into the sync period $-\ldots$.

CODER VARIANTS

Three variants of coder are described: ceders 1 and 2A are similar in form providing alternative construction dependent upon the use of components that may be to hand. The cost of the timing capacitors becomes comparable with that of the "active" components. In these cases, the period τ_{1} is fixed by using a multivibrator.

The coder 2B simply uses a longer positive-going pulse to provide the synchronising period shown as τ_{n} in Fig. 2b; the channels are no longer being completely independent, τ_{1} not being fixed. In this case the end of the synchronising pulse τ_{5} is used to initiate the next pulse train.

The particular advantage is that, with some of the channel controls at minimum, a shorter system response time is possible. The disadvantage is that. operating any control, the corresponding pulse length is changed, in turn changing the total cycle time, and hence changing the measurement rate of the other pulses and their corresponding output.

Considering the case of a six-channel coder with all controls in the mid-position a pulse length of 2 ms cycle time $=(6 \times 2)+\left(6 \times \frac{1}{2}\right)+6$ (synchro pulse) $=20 \mathrm{~ms}$. If one control is changed to maximum and its corresponding pulse length to 4 ms , then the cycle time becomes 22 ms .
The output signal derived from these pulses changes in the ratio $\frac{2}{20}: \frac{4}{22}$ not $2: 4$ and the other channels outputs change by $20: 22$.

The greater the number of channels used, the less marked the loss of complete channel independence, and the greater the gain with respect to cycle and system response time.

Table I: MAKERS LOGIC I.C. TYPE NUMBERS

Description	Logic type	Ferranti	Motorola	Mullard	SGS	Signetics	S.T.C.-I.T.T.
Quad 2-input	TTL	ZN7400E	MC7400P	FJHI3I	6900259		
NAND gate	DTL	ZN346E	MC846				
8-input NAND	TTL	ZN7430E	MC7430P	FJHIOI		MIC9495D	
gate					N7430A		
Dual JK flip-flop	TTL	ZN7473E	MC7473P	FJJI21		N7473A	
Monostable	TTL	ZN7470E		FJIOI	9601	N7470A	
Retriggerable	TTL				TII8		
Monostable	DTL			693059		MIC9305D	
Dual 4-input	DTL	ZN330E	MC830P				
NAND gate							
with node							

DECODER

The decoder consists of two parts, the sync separator using a retriggerable monostable, and a shift register formed from a chain of JK flip-flops.

The received positive-going pulses repeatedly trigger the special monostable which has a full back-off time of at least $1 \frac{1}{2} \times$ the maximum signal pulse length. It can change state therefore only during the sync period, this change of state being used to produce a special pulse which is applied to all the "clear" inputs of the JK flip-flops.

During the sync period the outputs of the flipflops are set to "0", awaiting the train of signal pulses which are applied to all the "clock" inputs. One flip-flop is used to store a "l" which is successively moved down the chain (shift register) in steps coincident with the signal pulses.

The final individual output pulses from each flipflop output is equal to the period of the signal pulse together with the following interval ($\frac{1}{2} \mathrm{~ms}$). Either one more flip-flop than the number of channels is used (to store a "l") or the last output is gated out as shown, the gating being associated with the decoder or one servo unit as desired.

Fig. 4. The pulse lengths are determined and set by the potentiometers in the timing circuits. NAND gates are used to determine the timed sequence of pulses being fed to the master control gate GI3

Fig. 5. Triggering is dependent on coincidence of an incoming clock pulse from this multivibrator and trigger circuit

COMPONENTS . . .
CODER I (Figs. 4, 5, and 8)
Resistors

Potentiometers

VRI to VR6 $2.5 \mathrm{k} \Omega$ for pre-selection of values, then replacement by fixed resistors (see text)

Capacitors
$\mathrm{Cl}, \mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 9, \mathrm{ClI} 10 \mu \mathrm{~F}$ tantalum or elect. 20 V (6 off)
$\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 6, \mathrm{C} 8, \mathrm{C} 102 \mu \mathrm{~F}$ polarised tantalum or elect. 25 V (5 off)

Fig. 6. The waveforms appearing at (a) TRI collector, (b) TR2 collector, (c) TR3 base, (d) TR3 collector

Fig. 7. The whole of "Coder I'' and clock pulse generator is mode up on fibreglass printed circuit board; the pattern here is reproduced full size
$\mathrm{Cl} 2, \mathrm{Cl} 3 \quad 1.5 \mu \mathrm{~F}$ elect.
Cl $4 \quad 0.01 \mu \mathrm{~F}$ disc ceramic
$\mathrm{Cl} 5 \quad 50 \mu \mathrm{~F}$ elect. 15 V
$\mathrm{C} 16, \mathrm{Cl} \quad 0.1 \mu \mathrm{~F}$ disc
ceramic (2 off)
Intergrated circuits
IC1, IC2, IC3 SN7400 quad 2-input NAND gate (3 off) IC4 SN7430 8-input NAND gate

Transistors
TRI, TR2 2N37II
npn silicon
TR3 2N3702 pnp silicon

Diode
DI OA8I or any 100 mA signal diode

Miscellaneous
Fibreglass printed circuit board (see Fig. 7)

PATENTE PEWIEMO

IWFLAMMABLE LIOUID LEVEL MONITOR

AN interesting new use of fibre loptics occurs in BP 1223769 which is in the name of Maria and Giuseppe Panerai. Their Patent Specification is predominantly concerned with gauging the level of liquids in tanks.

Reading between the lines their main interest is in sensing the level of highly inflammable liquids such as petroleum where it is obviously far from ideal to use any electrical system in contact with the liquid. Of course, simple mechanical systems tend to be unreliable, especially if they are gravity dependent

What these Italian inventors suggest is to arrange a sequence of prisms or equivalents in a vertical line, up from the base of the liquid tank, so that as the tank fills more and more prisms are submerged.

The prisms protrude from a removable pipe, each one backing onto a photosensitive cell. A lamp is fixed to the top of the tank so as to illuminate the interior. It is quite easy to see that, as the liquid level goes down, so more and more prisms will be exposed and illuminated and more and more photocells activated. The cells can be linked to any simple electronic circuitry outside the tank by wires with a consequent minimal risk of sparking and explosion.

- But none of this concerns fibre optics so far. It turns up almost as an afterthought in one of the

BP 1223769

examples given in the specification where it is suggested that instead of putting the photocells directly behind the prisms, i.e. in the pipe which is submerged in the liquid, the photocells can be arranged elsewhere and the light from the prisms taken to them by light pipes or optic fibres.

AUTOMATIC FIMGERPRINT IDENTITY

THE North American Rockwell Corporation have a new British Patent BP 1225083 which applies to the automation of fingerprint
straightforward "off-the-shelf" electronics to provide means for scanning the fingerprint area. The major scan pattern has a minor scan pattern repeatedly superimposed over it.
The major scan pattern is a pre-determined linear pattern, which scans through a succession of relatively small area portions, and the minor pattern scans over each of these portions in a polar mode. This minor scan produces signals indicative of the pattern at that portion and these are stored in a bank of storage elements. The states of selected signals in these

BP 1225083

checking. Rockwell start their specification with some sobering tacts.

For instance, the FBJ in America has a fingerprint file of over 182 million fingerprint cards, each having ten prints on it. So, if checking a suspect's prints against the records is to be finished in his lifetime, sophisticated automation is obviously necessary. What's more, with lost or stolen credit cards being an escalating problem, it may well be necessary one day to identify a legitimate card-holder by his fingerprints at the time of purchase.

Rockwell remind us that recognising the minutiae of a fingerprint is basically a problem in pattern recognition, which is complicated by the obvious fact that the minutiae occur at arbitrary orientations.

Whereas others have tended to concentrate on new techniques such as holography (matching prints with known masks), Rockwell propose a system which uses
storage elements are then sensed.
In more detail, Rockwell suggest the use of a flying spot scanner to derive an electrical analogue signal indicative of the fingerprint pattern at each small portion. This analogue signal is converted into digital form for storage and there is constant circulation of the signal in the memory through each of the storage elements so as to help the recognition of minutiae regardless of angular orientation.
An automatic contrast control circuit adjusts the detection process as a function of the general overall fingerprint image so that characteristics like ridge endings will produce distinctive light and dark areas to be encountered by the flying spot scanner moving in the orbits suggested.
Rockwell give plenty of details on suitable scanning techniques giving a total of 300,000 individual locations scanned on a single print. For present purposes, their block diagram gives the general picture.

Important! This latest 1971 model incorporates all the latest cechnological
improvements and supersedes all earlier models! Yes! DESIGNED FOR
WORLD WIOE RECEPTION Wit'll Probably WORLD WIDE, RECEPTION-it'll probably make your present radio seem like a crystal set"! It even incorporates a special MARINE Wrest radio seem
receive spoken communications from ship-to-shore! WE'r away at only 113.97 -a mere fraction of even today's Russian miracle them sweeter tone chan ever!! Wider band spread Rer if not astounded! Purer and The Russians have really surpassed themselves this timee proving again
ability in the field of sace communications. Yes, 8 separate wavebands, inct
Standard Long, Medium Standard Long; Medium and Short waves to cover the wavebands, including ship-to-shore" MARINE BAND! Thousands of different world, PLUS special strionsat your fingercips 24 hours a day, including ships at sea, ect., and messages
from all over world-truly nothing is secrect Superb, sweet tone-controlled from a whisper to a roar! Push-oull oue it! illumination! Take it anywhere-runs economically trols! Press-bucton dial through battery eliminator from $220 / 240 \mathrm{~V}$ a.c. mains. Incerndard batteries or
 with WRITTEN GUARANTEE, manual withsimple operating instructions.ete
circuit diagram. ONLY EIJ.
 amplifier, tape recorder or public address syscem. Send today or call. (SORRY
we cannot change these new
\qquad

MAKE NO MISTAKE-this is the EXPENSIVE model with "PIANO LEVEL! SAVE CI3.98: Due to price we cannor mention RECORDING name-but rest assured you're getting one of the BEST! 1971 maker's off you go! (takes $30-, 60$-, and 90 tape and reels, iust "slap in"' a cassette and able everywhere). Amaxing performance ensures Perfect Cassette tapes obtainreproduction! Remote control microphone. Separate volume control! superb rewind! Beausiful tone from a whisper to a roar! Completely self-col! Rapid 9in x 4tin where. Separate jacks for remote control microphone, handle. With WRITTEN G'JEE and instructions. Ongly With carry 30p. ALSO AVAILABLE: SPECIAL BATTERY/MAINS AC/DC MODES customer: Cassette tape, set of required. Refund g'ree. BONUS one per
 Dept. PE/F/II, 164 U XBRIDGERD. (facing BhepherdH Bush Green). LONDON
Wi2 8AQ. (Thurs. I, Fri. 7). AIso $37 / 39$ HIGH HOLBORN Chancery Lare). LONDON, W.C.I. (Thursday 7 pm . ${ }^{3}$). HOLBORN (opposite

FANTASTIC (even by our standards!) Brand new-che latest sensation Radio AND Cassette Tape Recorder and Playy fasulous VHF AM/FM runs off standard batteries or mains (simply plug in the built-in, but it also even tape direct from the Radio as you listen! anything, anywhere! fou can Just look ar hNELY 644 YET WE OFFER AT ALMOST HALFPRICE panel! "New "pop-up" Cassette ejection "Press-button Keyboard Control Battery check/recording level indicator! "Sem! *"MAGPCEYE COntrol phone (for personal listening controls! Heavy duty built-in speaker: volume "Remote control microphone! "Built in and extension speaker sockets! aerial (24in approx)! Magnificently mad swivel telescopic extension overall approx., with "pull-out"carry handle. Takes szandard 30, 60, 90 or built-in full circuit VHF AM/FM Radio gives rere. But wait, the amazing alocal incredible station selection-Unique rotacing Station Selector Dial-get all Picks up dozens of foreign stations and of the country plus BBC National fabulous in your car! You could pay fif's more for a Car Car Radio
Cassette Player. $\mathbf{3 5 p}$. Complete with simple instructionspICE, ONLY $£ 23.75 \mathrm{carr}$, et remote control microphone with onlofs, personal istening earphone WITH WRITTEN GUARANTEE. BONUS OFFER-Standard Batteries and Cassette Tape $\mathbf{2 5 p}$ extra. Refund guaranteed

after incorporation of every conceivable posuction

 So advement had been carefully considered e up-to-date technological sotadvanced it will probably make your present radio seem lik examined. value we've ever offered! We're almost giving they have produced! Finest fraction of even today's Russian miracleprice! them away at 69.97 -a mere astounded! Purer value with that of 134 radios! \# Instant refund if you are no than hitherto for "pin-point" sone than ever! Much wider band spread have proved their faninpoint station selection. Once again the Russian advanced misro-circuitry techniques in the fold of briliantly reflecting their munications. YOU GET THIS AMAZING SET FROM US AT A PRICE THAT including Standard Long. Medium and Short W separate wavebands Unique side control waveband selection unit gives incredible world your fingertips 24 housands of different transmissions and stations of world-nothing is secret! a day, even ships at sea and messages from all over Superb, sweet tone-controlled from enthusiast has the world in his hand? Separate ON/OFF volume and Treble Bass tone controls! roar. Push-pull outpur! runs economically on standard batteries. Internal ferrite rod aerianywhere--any speed, requires no additional aerial Itso fabulous CARRADIO White and Chrome finish case. SIZE $10 \frac{1^{\prime \prime}}{} \times 8^{\circ} \times 34^{\prime}$ overall approx Black. ficently designed, made to give years of perfect service. With WRITTEN ONLY 69.97 , POST ETC. 43 p. Standard batterios 25 and circuit diagram used through extension amplifier, tape recorder or public addressA VISIT TO SHOPERTUNITIES COULD SAYE YOU Eff's

WOW! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way. Give yourselt' essential technical "know-how"-like reading circuits. assembling standard components, experimenting, building quickly and without effort, and enjoy every moment. B.I.E.T.'s Simplified Study Method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
\therefore and what's more, yon will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours. so you can use it again and again.
You LEARN—but it's as fascinating as a hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the springboard for a carcer in Radio and Electronics.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Electronics - even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of Courses up to City and Guilds standards.
New Specialist Booklet
If you wish to make a career in Electronics, send for your FREE copy of "OPPORTUNITIES IN TELECOMMUNICATIONS / TV AND RADIO". This brand new booklet-just out-tells you all about TECHNATRON and B.I.E.T.s full range of courses.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Dept. BI2, ALDERMASTON COURT, READING RG7 4PF

POST THIS COUPONFOR FREEBOOK

To B.I.E.T. Dept. B12. Aldermaston Court, Reading RG7 4PF Please send books and full information - free and without - obligation.

TRANSFORMERS

PRIMARY $200 / 250 \mathrm{~V}$. SEC
PRIMARY $200 / 250$ V. SEC. 240 V . C.T. 120 V . \&
ALSO AVAILABLE WITH $115 / 120 V$. SEC. WINDINGS
Ref. VA Weight
No. (Wotts) 16 or
$\begin{array}{lr} & P \& P \\ \& & \text { \& } \\ 2.28 & 52\end{array}$
$\begin{array}{lrrrr}\text { No. (Wotts) } & 16 \mathrm{oz} & & \\ 61 & 100 & 5 & 12 & 10.2 \times 8.9\end{array}$
8.3

TOTALLY ENCLOSED $115 V$ AUTO TRANSFORMER mains lead and two 115 V outlet sockets, $£ 6.85$. P \& P 67 mp
mot
PRIMARY LOW VOLTAGE SERIES (ISOLATED) PRIMARY 200-500 VOLTS 12 ANDIOR 24 VOLT RANGE
Ref. Amps. Weight Size cm. Secondory Windings
No. Inv
 $\& P$
$N p$
20
30
36
52
67
82
:

All ratings are continuous. Standard construction: o
cags and wax impregnation. Enclosed styles co order.
FULL SPEC. SEMICONDUCTOR DEVICES
AD $161 / 162$ Output dair, with mica \& bushes. 63 np pait
ZN 3055 with mica \& bustes. 68 np each
BC 107 BC 108 BC 109 all 9 np each.
Below 10 pieces BC range add 10 no
\star Ex stock items same day service
\star Quantity prices on application
Also stocked: SENICONDUCTORS VALVES MULTIMETERS - MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

BABRIIE electronics

11 MOSCOW ROAD, QUEENSWAY LONDON W2 4AH Tel:01-229 6681/2
nearest tube stations: bayswater, queensway

By K. J. Matthews
 M.Sc.

LUMINESCENCE is the general term which is applied to the production of light, either visible or infrared, by the direct conversion of some other form of energy. The general term is then subdivided to denote the particular energy conversion involved.

Therefore, the production of light from heat, an effect which has been known for some considerable time, is designated thermoluminescence. A more modern, but very popular effect, is cathodoluminescence. This is light from kinetic energy or particle bombardment and keeps millions of T.V. screens active.

ELECTROLUMINESCENCE

Other forms include chemiluminescence, and bioluminescence, which is a division of chemiluminescence and occurs in some deep sea fish and in glowworms. Photoluminescence is a special case as it involves a light to light conversion, the emitted light differing from the stimulating radiation in frequency.

Finally, electroluminescence is the emission of light by direct conversion of electrical energy. The standard abbreviation for the effect is written EL. This process is not to be confused with the ordinary tungsten filament bulb, where there is an intermediate stage of heat making the process thermoluminescent.

A few EL devices are now avalable to the public. Unfortunately these are as yet only infra-red emitters, but visible light devices do exist and are certain to become available in the near future.

USES

Uses for these devices are self evident. In most cases they can be substituted wherever small panel lamps are employed, and their higher efficiency will
make them suitable for use with battery powered equipment. Numerical displays have been fabricated and because conventional read-out tubes require high voltages, EL devices of this type are likely to become very popular.

At the present stage in the development of EL devices, their use for general lighting seems a little remote. They cannot compete with fluorescent lighting for efficiency and only give monochromatic light.

It is not the aim of this article to describe practical applications but to give some insight into the mechanism of EL and of trends in present day research.

SEMICONDUCTOR BAND STRUCTURE

Some knowledge of semiconductor band theory is necessary before any understanding of electroluminescence is possible. Unfortunately this can be very complex and it is only possible to seratch the surface of the topic.

Fig. I depicts a semiconductor in energy band form. It consists of two bands, the conduction band and the valence band with an energy gap separating them. Electrons cannot exist with energies within this gap, and for this reason it is known as the forbidden gap or region.

For an electron to move from a valence band to a conduction band, it must "jump" the energy gap. A gradual transition is not allowed.

If the semiconductor has no energy, the conduction band will be void of electrons and the valence band full. In this state it is electrically inert-an insulator. However, a semiconductor always has some energy by virtue of its temperature, and this causes electrons to be propelled across the gap into the conduction band.

Fig. I. Simple energy band diagram of a semiconductor

Fig. 2. The excitation process

Fig. 3. Radiative recombination

To do this it is necessary that an electron receives an amount of energy at least equal to the energy represented by the width of the forbidden gap to enable it to make the jump. If it receives less it will not be able to do so. As we will see later, the size of the gap is constant for a particular semiconductor and is measured in terms of energy, in elec-tron-volts (eV).

EXCITATION

When an electron receives sufficient energy to jump the gap to the conduction band, it leaves behind in the valence band a vacancy known as a "hole." See Fig. 2. It is convenient to think of these holes as positive electrons, but with reduced mobility.

Fig. 4. Wavelength to energy conversion chart
If energy is now injected into the semiconductor for a short time and then removed, the internal equilibrium of the semiconductor is upset. There will be too many electrons in the conduction band and the semiconductor is said to be in an excited state.

There are many ways in which equilibrium may be restored. Here are three of the more important processes:
(1) the slectrons may be ejected from the material entirely-similar to thermionic emission.
(2) the electrons may impart their energy to the crystal lattice of the semiconductor causing its atoms to vibrate. These vibrations are known as phonons.
(3) the electrons may fall back across the gap to occupy holes in the valence band, emitting as it does so, quanta of electromagnetic radiation, the frequency of which is determined by the width of the forbidden gap. This process, known as elec-tron-hole recombination, is illustrated in Fig. 3.

These three processes, and others unmentioned, all occur in any semiconducting material simultaneously competing with each other. It is obviously the latter radiative process which is of interest to

EL, and it is desired that this be the main process if good light emitting efficiencies are to be obtained.

CRITERIA FOR ELECTROLUMINESCENT MATERIAL

In some semiconducting materials a radiative transition can only be achieved after a process of the phonon type has occurred. This is a characteristic of the material and cannot be altered. As this process is a two stage one, the energy gap of the semiconductor is known as indirect, or the material is called an indirect semiconductor.

In other materials, known consequently as direct semiconductors, the radiative transition occurs singly. Other processes still compete but these are minor compared to the serious drawback of an indirect energy gap. They can in any case often be minimised by reducing the temperature of operation of the semiconductor if super-efficiency is required.

Clearly then, the first criterion for an electroluminescent material is that it be direct. The second is the width of the energy gap, as this determines the frequency of the emitted light.

According to quantum physics, energy and frequency of light are related by the equation.

$$
\text { Energy }=\mathrm{h} \times \text { frequency }
$$

where h is Planks constant $=6.62 \times 10^{-24}$

$$
\text { Since frequency }=\frac{\text { velocity }}{\text { wavelength }}
$$

the energy equation becomes

$$
\text { Energy }=\frac{h \times \text { velocity of light }}{\text { wavelength of light }}
$$

Substituting for h and velocity of light and converting to convenient units yields

Wavelength in angstrom units $(\AA)=12,400$
Energy in electron volts (eV)
The visible spectrum runs from $8,000 \AA$ (red) to $4,000 \AA$ (blue) which on conversion gives red as equivalent to 1.55 eV and blue to 3.0 eV .

To recapitulate, the semiconductor must have a direct gap, and this must lie within the range, 1.55 to 3.00 eV for visible light emission. If the gap is narrower than 1.55 eV , infra-red emission will be obtained. See Fig. 4.

DEVICES

Before investigating the available EL materials consideration must be given to the method of its use in the production of a useful device.

As we have seen the trick lies in the method by which non-equilibrium conditions are set up in the semiconducting material. This can be done by any form of energy input, but for EL it must obviously be brought about by electrical energy. There are two known ways of doing this, and this causes a split in the research into EL devices as the resulting products are so unalike.

The older method is the electroluminescent panel in which excitation is brought about by a high electric field although the full theory is not understood.

Size $18 \times 15,{ }^{7} 3 \mathrm{in}$. Cut for BSR UA12/14/15/16/25 dech Amplifier apace $14 \times 5 \times 3$ in. Satin aluminium fron grille. Really smart appearance
Black White. Cbrome fittings.
BSR C.I09 SUPERSLIM STEREO \& MONO Plays 12 ", 10 o or ${ }^{\text {7" }}$ "records.
Auto or Manual. A hirb Auto or Manual. A higb reliability with 12 months' reliability with 12 months Size 13 k . 11 tin. Above motor board 3jin
 with STEREO and MONO XTAL $\mathbf{£ 7 . 7 5}$ Pobt 25 p . GARRARD SINGLE PLAY TA MK II GARRARD PLAYERS with Sonotone 9TA Cartridges. Stereo Diamond and Mono Sapphire. SP25 Mk II 115. RECORD PLAYER PORTABLE CABINET $\mathbb{Z 3 . 7 5}$ modern autochangers. Two-tone rexine covered. Post 25 p . RCS DB-LUXE 3 WATT AMPLIFIER. Ready made tested. 2-stage with triode pentode valve, 3 watts output. Tone and volume controls. Isolated mains transiormer. Knobs loudspeaker, valves EcLit, E280. Response
$50-12,000 \mathrm{cps}$. Sensitivity 200 m . Post 25 p . R.C.S. TEAKWOOD BASE. Ready cut out or mounung (stale player make and model).
± 2.75 R.C.S. PLASTIC COVERS FOR ABOVE BASE Ł2.75 EMI PICK-UP ARM. With mono xtal and stylus $£ 1.25$. 9TA 52.50; GP94 5250, 0 P93 52.00; Mo GP01 M150 ac8 E1.25; ACOS L.P. only 50p.

AM—FM/VHF GANG

 with $25+25$ pF. Britigh made. Geared
slow motion drive $8: 1$. Plastic dus: $\xrightarrow{+}$

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial
Oac. P50/1AC
1.F. PSO/2CC 470 kc s ${ }^{3}$ rd I.F. P50/3CC P51/1 or P51/2 P50/3V
Mullard Ferrite Rod 8
VOLUME CONTROLS 800hm Coax 4 p yd Long spindies. Midget Size British aerialite
 STEREO L/S 55 L. D.P. $\mathbf{P} .{ }^{755}$. FRINGE LOW LOSS

WIRE-WOUND 3-WATT POTS. Small type with small knob.

WIRE-WOUND 3-WATT Values 10ς to $30 \mathrm{~K} .$,
carbon 30 K to 2 meg. $\mathbf{2 5 p}$

STANDARD SIZE POTS LONG SPINDLE
100 HMS to 100 K . 40 p

VEROBOARD 0.15 MATRIX

in. $18 \mathrm{p} .2 \times 33 \mathrm{in} .16 \mathrm{p} .3 \times 3 \mathrm{in} .19 \mathrm{p} .33 \times 5 \mathrm{in} .26 \mathrm{p}$.
EINS 36 per packet 17p. FACE CUTTERS 38 p .
S.R.B.P. Board 0.15 MATRIX 2 in. wide 3 p per 1 in .
 BLANK ALUMINIUM CHASSIS.

 $16 \times 8 \mathrm{in}$. 28 p ; $14 \times 9 \mathrm{in} .34 \mathrm{p} ; 12 \times 12 \mathrm{jn}$. . 40 p .
1 itinch DIAMETER WAVECHANGE SWITCHES. 25

Minimum Post and Packing 15p.
RADIO COM
R.C.S. STABILISED POWER PACK KIT All parts and instructions with Zene r Diode, Printed Circuit. Bridge Rectifers and Double Wound Mains Transformer
input $200 / 240 \mathrm{~V}$ OF 15 or 18 or 20V d.c. at 100 ma or jess LLEASE STATE VOLTAGE REQUIRED Details S.A.E
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal for Mike, Tape, P.U., Guitar, etc. Can be used with
 For use with valve or transistor equipment Full instructions gupplied. Brand new,

Guaranfeed. Details S.A.E. NEW TUBULAR ELECTROLYTICS CAN TYPES $2 / 350 \mathrm{~V} \cdots 14 \mathrm{p}|250 / 25 \mathrm{~V} \cdots \quad 14 \mathrm{p}| 16+16 / 500 \mathrm{~V} .$. \begin{tabular}{ll|ll|ll}
$4 / 350 \mathrm{~V}$ \& 14 p \& $500 / 25 \mathrm{~V}$ \& 20 p \& $50+50 / 350 \mathrm{~V}$ \& 35 p

$8 / 450 \mathrm{~V}$ \& 14 p \& $1000 / 25 \mathrm{~V}$ \& 35 p \& $60+100 / 350 \mathrm{~V}$ \& 58 p

$16 / 450 \mathrm{~V}$ \& 15 p \& $1000 / 50 \mathrm{~V}$ \& 47 p \& $32+32 / 250 \mathrm{~V} .$. \& 18 p

$32 / 450 \mathrm{~V}$ \& 20 p \& $8+8 / 450 \mathrm{~V}$ \& 18 p \& $32+32 / 450 \mathrm{~V}$. \& 33 p

$25 / 25 \mathrm{~V}$ \& \& 10 p \& $8+18 / 450 \mathrm{~V}$ \& 20 p \& $350+50 / 325 \mathrm{~V}$ \& $\mathbf{3 0 p}$

$50 / 50 \mathrm{~V}$ \& \cdots \& 10 p \& $16+16 / 450 \mathrm{~V}$ \& 25 p \& $32+32+32 / 350 \mathrm{~V}$ \& 43 p

$50 / 5 / 25 \mathrm{~V} .$. \& 10 p \& $16+16 / 450 \mathrm{~V} 25 \mathrm{p}$ \& $32+32+32 / 350 \mathrm{~V} 43 \mathrm{p}$

$100 / 32 / 350 \mathrm{~V} 25 \mathrm{p}$ \& $100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$
\end{tabular} SUB-MIN. ELECTROLYTICS. 1, 2, 4, 5, 8, 16, 25, 30, 50, 100 . $200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} ; 500,1000 \mathrm{mF} 12 \mathrm{~V} 18 \mathrm{p} ; 2000 \mathrm{mF} 25 \mathrm{~V} 85 \mathrm{p}$. CERAMIC, 1 pF to 0.01 mF , 4 p . Silver Mica 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$. PAPER 350V-0 $14 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p}$; 2 mF 150 V 15 p . $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$. SILVER MICA. Close tolersnce 1 . $2 \cdot 2-500 \mathrm{pF} 8 \mathrm{p}$; $560-$ 2,200pF 10p;2,700-5,600pF 20p; $6,800 \mathrm{pF}-0 \cdot 01, \mathrm{mld} 30 \mathrm{p} \mathrm{each}$. drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}$, 50 p : Slow motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p} ; 500 \mathrm{pF}$ slow SHORT WAVE SINGLE. $25 \mathrm{pF}, 50 \mathrm{pF}, 55 \mathrm{p}$

CHROME TELESCOPIC 2 PpIAL
TUNING. Solid dielectric. $100 \mathrm{pF}, 500 \mathrm{pF}$. 35 pel base 20 p . TRIMMERS. Compression $30,50,70 \mathrm{pF}, 5 \mathrm{p}$;
$100 \mathrm{pF}, 150 \mathrm{pF}, 8 \mathrm{p} ; 250 \mathrm{pF}, 10 \mathrm{p} ; 600 \mathrm{pF}, 750 \mathrm{pF}, 10 \mathrm{p} ; 1250 \mathrm{pF}, 10 \mathrm{p}$. SILICON REC. 40-LUCAS 2DS500 Bridge 707. 5 amp fl RECTIFIERS CONTACT COOLED half wave 60 mA 38 p : FumA 48 p. SILICON BYZ13 30p: BY 10030 p ; BY12730p Full wave Bridge Rectifiers 75mA 50p; 150mA 98 p EX-GOVT. RECTIFIERS 250 V 200 mA 30 p .
NEON PANEL INDICATORS 250V AC/DC Red or Amber 20p RESISTORS. W., $\mathrm{W} ., 1$ w., $20{ }^{\circ} 1 \mathrm{p} ; 2 \mathrm{w} .5 \mathrm{p} .10 \Omega$ to 10 p Ditto $5{ }^{\prime \prime}$. Preferred values 10 ohms to 10 meg meg., 10 Ditto 5-o. Preferred values 10 ohms to 10 meg., 4p.

PHILIPS TRANSISTOR FM STEREO MULTIPLEX DECODER
 As used in LEAK Troughline with 9 srand New. Pre-aligned d.c. at 6 mA . Complete with connection details

E4 Post
Free

MAINS TRANSFORMERS

 All post25p each 250-0-250 80 mA .6 .3 v. 4 amp. $£ 1 \cdot 40$ $350-0-35080 \mathrm{~m}$
$300-0-300$ 下
MINIATURE 200 mA ., 6.3 v. 4 a. C.T.; 6.3 v. 2 a. $£ 2.50$ MIDGET 220 v. $45 \mathrm{~mA} ., 8.3$ v. 2 a. 2$\} \times 2 \frac{1}{2} \times 2 \mathrm{in}$. F.E. AURORA TRANS. $12+12 \nabla .500 \mathrm{~mA}$ MINI-MAINS $20 \mathrm{~g} .100 \mathrm{~mA} .1 \mathrm{~h} \times 1 \mathrm{~g}=1$ in Ditto tapped sec. Ditto tapped sec. 1.4 D., 2, 3, 4, 5, 6.3 \quad. 1/amp. $t 2 \mathrm{smp}, 3,4,8,8,10,1915$, Tapped outputs amp., $6,8,10,12,16,18,20,24,30,38,40,48, ~ 60$ $2 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$. 23 AUTO TRANSFORMERS. 115 t to 230 v or 230 D to 115 v . Input/Output, 150 w . $£ 2 ; 500 \mathrm{w}$. $£ 5 ; 1000 \mathrm{w}$, $£ 12$ HARRGER TRANSFORMERS. Input 200/250\%. Ior 6 or $12 \mathrm{~F}, 1 \frac{1}{2} \mathrm{amp} . \mathrm{f1} \cdot 20 ; 2 \mathrm{amp}$ f1 $50 ; 4 \mathrm{amp}$.
FULL WAVE BRIDGE CHARGER RECTIFIERS: 6 or 12 v . outputs. 11 smp .40 p ; $2 \mathrm{amp} .55 \mathrm{p} ; 4 \mathrm{amp} .85 \mathrm{p}$

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS

 With twin tweeter And crossover. 10 watt. 4 Aster illustrated. Post 15 ohm. With flared tweeter cone and cerami magnet. 10 watt. $45-60 \mathrm{cps} .4<7$ Flny 10,000 gauss State 3 or 8 or 15 ohm . Post 15 p Recommended Teak Cabinet $€ 5$
IOW MINI-MODULE $£ 3.25$ LOUDSPEAKER KIT

Triple speaker system combining on ready cut bafle. in. chipboard $15 \mathrm{in} . \quad 81 \mathrm{in}$. Separate Bass, Middle and Treble loudspeakers and crossover condenser. The heavy duty 5 in. Bass Woofer unit has a low resonance cone. The Mid-Range unit is specially designed to add drive to the middle register and the tweeter recreates the top end of the musical apectrum. Total response $20-15,000 \mathrm{cps}$. Full instructions for 3 or 15 ohm, TEAK VENEERED BOOKSHELF ENCLOSURE. $161 \times 10 i \times$ bin. Modern detign, dark $£ 5$ Post 25 p grey Tygan covered bafe. Or wit
Flated Wood Front. $16: 10 \times 9$ in

ALL MODELS "BAKER SPEAEERS" IN STOCK
BAKER 12in MAJOR $£ 9$

30-14,500 c.p.s., 12in weeter cone together with a BAKER ceramic fagner assembly having flux density of 14,000 45,000 Maxwells. Bass 45,000 Maxwelis. Baas 20 watts. State 3 or 8 or 5 ohm. Post Free.

Module kit. 30-17.000 c.p.s. bsfle and
inatructions. EII.50

KERS

BAKER " BIG-SOUND" SPEAKERS		
'Group 25'	${ }^{\text {c Group }} 35$	'Group 50'
$12 \text { inch } \in 7$		15 inch ≤ 19
3 or 8 or 15 ohm	3 or 8 or 15 obm	8 or 15 obm
TEAK HI-FI SPEAKER CABINETS. Fluted wood front.		
For $13 \times 8 \mathrm{in}$. speaker $18 \times 10 \times$ gin. $\ldots . .$. . 25 Post 25 p		
For 10×6 in, speaker $16 \times 8 \times 6 \mathrm{in}$. $\cdots \cdots .24$ Post 25 p,		
LOUDSPE	INET WADDIN	18in. wide, 15p ti

GOODMANS HI-FI 6in. WOOFER
8 ohm, 10 watt. Large cersmic Special Csmbrio cone $\begin{aligned} & \text { nurround. }\end{aligned}$ requency response 30-12,000
Hi-Fi Enclosure Systems, etc

ELAC CONE TWEETER

The moving, coil diaphragm givea a good radsation pattern to the bigher frequencie: and a smooth extension of total response from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size $3 \frac{1}{2} \times$ $3 \frac{1}{>}$ 2in. deep. Rating 10 watt. 3 ohm or
15 ohm models. Li- 90 Post 10 p

Horn Tweeters $2-16 \mathrm{Kc} / \mathrm{s}, 10 \mathrm{~W} 8 \mathrm{ohm}$ or 15 ohm $£ 1.50$. De Luxe Horn Tweeters $2-18$ Kc/s, 15 W , 8 ohm 83. TWO-WAY 3,000 c.p.s. CROSSOVERS 3 or 8 or 15 obm 95p. SPECIAL OFFER! 80 obm. 27 in. dia.; 35 ohm, 2 in ; 3 in .
 8 ohm, $6 \times 4 \mathrm{in} . ; 3 \mathrm{ohm}, 2$ in. 3in. 5ia, 5 3in, $7 \times 4 \mathrm{in}$. 8×2 in. 90 p; $8 \mathrm{in} . ~ £ 1.75 ; 10 \times 6 \mathrm{in}, ~ £ 1.90$.
8×2 in. 90 p ; 8 in . $£ 175 ; 10 \times 6 \mathrm{in}$. 21.90 . 15 hm ml .80 Sin. WOOFER. 8 w . max. $20-10,000 \mathrm{cps} .8$ or $15 \mathrm{ohm} \mathrm{fl}-80$.
ELAC 10 in .10 w . Twin Cone. De Lure Ceramic 8 ohm $\mathrm{E4}$. ELAC 10in. 10w. Twin Cone. De Lure Ceramic 8 ohm ex.
RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in . dia. 4 watt: 10 in . dia. 5 watt; 12 in . dia. 6 watt, 3 or 8 or 15 ohm models 11.95 each. Post $15 p$. OUTPOT TRANS. ELS4, etc. 25p. MIKE TRANS. $50: 125 \mathrm{p}$. SPEAKER COVERING MATERIALS. Sampley Large S.A,E GOODMANS OUTPUT TRANSFORMER 5 watt push pull fo alves EL84, etc., 3,8 and 15 ohms 85 p. Post 20 p .

BAKER 100 WATT

ALL PURPOSE
POWER
AMPLIFIER
4 inputs speech and music. Mixing facilitios.
Response $10-30,000 \mathrm{cps}$. Matcheg ll loudspeakers. A.C. 200/250
Guaranteed. Details S.A.E.

ALL EAGLE PRODUCTS

 SUPPLIED AT LOWEST PRICESILLUSTRATED EAGLE CATALOGUE 20p. Post tree BARGAIN AM TUNER. Medium Wave
Transistor Superhet. Ferrite aerial. 9 volt. BARGAIN 4 CHANNEL TRANSISTOR MIXER.
Add musical highlights and sound eftects to recordings. With separate controls into single output. 9 volt. $£ 3$ BARGAIN FM TUNER 88-108 Mc/s Siy Transistor Printed Circuit. Calibrated slide dial tuning. 9 volt. Walnut Cabinet. Size 7 - 54 itheh BARGAIN FM TUNER as above, 10 Chassis only, less cabinet.
BARGAIN 3 WATT AMPLIFIER. 4 Transistor $£ 3.50$ COAXIAL PLUG Bp, PANEL SOCKETS 6p. LINE 18p. OUTLET BOXES. SURFACE OR FLUSH 25p. BALANCED TWIN FEEDERS 5p yd. 80 ohms or 300 ohms. Chrome Lead Socket 45 p . Phono Flugs 5 p . Phono Socket 5 p . JACK PLUGS Std. Cbrome 15p; 3.5 mm Chrome 14 p . DIN SOCKETS Chassis 3 -pin 10p: 5 -pin 10p. DIN SOCKETS Lead 3-pin 18p; ${ }^{5-p i n ~ 15 p . ~ D I N ~ P L U G S ~ 3-p i n ~ 18 p ; ~ 5-p i n ~}$
25p. VALVE HOLDERS, 5p; CERAMIC 8p; CANS 5p.

E.M.I. TAPE MOTORS. 120\%. or 240 v . AC. 1,200 r.p.m. ${ }^{4}$ pole $135 \mathrm{~m} A$
 BALFOUR GRAM. MOTORS.
 $2 t \times 21$ CUSTOMERS FREE CAR PARK. CALLERS WELCOME
37 WHITEHORSE ROAD, CROYDON 337 WHITEHORSE ROAD, CROYDON

BODINE TYPE N.C.I. GEARED MOTOR \| VARIABLE VOLTAGE TRANSFORMERS
 Type
Torque Reversible, $\quad 1 / 70 \mathrm{th}$ inch. 50 cycle, 0 38 amp. (Typez) 28 r.p.m. Torque 20ib. All T inch. Reversible. $1 / 80 \mathrm{th}$. from to (and Spares) h.p., 50 cycle, 0.28 amp.
input volcage of motor
ISHROUDED TYPE "As new" condition. Inpur voluage of motor 115 V a.c. Supplied complete with trans-
former for $230 / 240 \mathrm{~V}$ a.c. input. Price, either former $£ 2.13$ plus $27 p \dot{P}$. \& P.

12 VOLT DC MOTOR

 Powerful I amp. REVERSIBLE motor.Speed 3.750 RPM complete with external gear train (removable) giving final speed of 125 RPM. Size: $4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \quad 2 \frac{1}{2}^{\prime \prime}$ dia. Price 95 p inc. post. $230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS Smith. Built-in gearbox

$$
\begin{aligned}
& \text { I rev. per hour. Clockwise rotation. } \\
& \text { I rev. per hour. Anti-clockwise rotati }
\end{aligned}
$$

MICRO SWITCH

5itted with contacts.

ush bution assembly.

amp, $E 11.75$

$10 \mathrm{amp}, 622.50$ $15 \mathrm{amp}, \underset{22}{ } .50$. $20 \mathrm{amp}, \mathrm{E} 49 \cdot 00$.

OPEN TYPE (Panel Mounting) $\frac{1}{2}$ amp, 64.75.
 1 amp 67.00 ,

Superior quality Precison Made IEW POWER RIEOSTATS
 Superior quality Procison Made HEW POWER RUEOSTATS 100 WATT. $10 \mathrm{hm}, 10 \mathrm{~A} ; 50 \mathrm{hm}, 4 \mathrm{TA}$ $100 \mathrm{omm}, 1 \mathrm{~A}: 250 \mathrm{ohm}, 0.7 \mathrm{~A}: 500 \mathrm{hm} .1 .4 \mathrm{~A}$

 $0.45 \mathrm{~A} ; 1 \mathrm{k} \Omega, 280 \mathrm{~mA} ; 1.5 \mathrm{k} \Omega, 230 \mathrm{~mA} ; 2.5 \mathrm{k} \Omega, 2 \mathrm{~A}: 5 \mathrm{~kg}, 140$
 50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 4 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$. All at \&1.12 each. P. \& P P 151 P . $0 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 3 \cdot 5 / 5 \mathrm{k} \Omega$. All at 78p each. P . P /5p $100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 3 \cdot 5 / 5 \mathrm{k} \Omega$. All at

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering EXPERIMENTERS' ECONOMY KIT Speed adjustable I to 36 Flash per sec. All electronic
components including Veroboard 5.C.R. Unijunction components including Veroboard 5.C.R. Unijunetion NEW INDUSTRIAL KIT $\mathbf{3 0}$ plus 25p P. \& P. NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger col, plastic thyristo
Speed adjustable I-80 f.p.s. Price $£ 10-50$. P. \& P. 50p. HY-LYGHT STROBE MK III
This strobe has been designed and produced for use in large rooms, halls and the photographic field, and utimes a silica plug-in tube for longer life expectancy,
printed circuir for easy assembly, also a special trigger priled circuit for easy assembly, also a special trigger
coil and output capacitor. Speed adjustable $0-30$ f.p.s. Light output approx. 4 ioules. E 12.00 . P. \& P. 50p SPECIALLY DESIGNED, FULLY VENTILATED METAL CASE. Including reflector. $£ 4,00$ P. \& P. 45p.

AND NOW!

THE 'SUPER' HY-LYGHT KIT

Approx. four times the light output of our well proven

 Hy-Lyght strobe. Incorporating- Heavy duty power supply. - Fantastic Octal based tube with massive electrodes - Reactor control circuit producing an intense white light The brilliant light output of the "SUPER"
gives fabulous effects with colour filters.
Never before erects with olour High Never before a Strobe Kit with so HIGH ATTRACTIVE ROBUST FULLY VENTILATED METAL CASE specially designed for the Ser METAL CASE specially designed for the Super 7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 53p. P. \& P

RELAYS SIEMENS, PLESSEY, Etc. MINIATURE RELAYS . COMPETITIVE PRICES
45
185
230
280
600
700
700
700

6-9	2 HD M	50p	700	15-35	$2 \mathrm{c} / \mathrm{OHD}$	73p*
6-12	$4 \mathrm{c} / \mathrm{o}$	73p*	700	16-24	5M	$63 p^{*}$
$9-12$	$4 \mathrm{c} / \mathrm{o}$	${ }^{1} 78{ }^{\text {p }}$ *	1,250	24-36	$4 \mathrm{c} / \mathrm{o}$	63p*
$9-12$	$2 \mathrm{c} / \mathrm{o}$	73p*	2,500	'36-45	6 M	63p*
18-32	$4 \mathrm{c} / \mathrm{O}$	78p*	2,400	30-48	$4 \mathrm{c} / \mathrm{o}$	50p
16-24	4M2B	63p*	5,800	40-70	$4 \mathrm{c} / \mathrm{o}$	63p*
16-24	4 cjo	78p*	9.000	40-70	$2 \mathrm{c} / \mathrm{o}$	50p*
12-24	$2 \mathrm{c} / \mathrm{O}$	63 p *	15k	85-110	6M	50p*
Coil ohms: (2) Working d.c.volts: (3) Contacts; (4) Price D) Heavy Duty. All Post Paid.						
AINS RELAY $10 \mathrm{ampa.c.contacts}, \mathrm{50p} \mathrm{plus} \mathrm{8p} \mathrm{P}$.						

VENNER Electric Time Switch

200/250V Ex GPO. Tested. Manually

 set 2 on, 2 off every 24 h . Overridewitch: $10 \mathrm{~A} \pm 2.75,15 \mathrm{~A}$ E325, 20A 63.75 . P. \& P. 20p. A1so available with solar dial
OFF dawn. Price as above.

230v AC SOLENOID

 Extremely powerful with approx. 4 ib. pull, 1 trave Size: $4^{\prime \prime}$ long mounting feet Size: $4^{\prime \prime}$ long, 2 音 wide,high. $£ 2 \cdot 00$ incl. P. \& P.

ELECTRONIC

 ORGAN KITEasy to build, Solid State. Two full octave (less sharps and flats). Fitted penlite $1 \frac{1}{2} V$ batteries. Complete set together with full instructions and 10 50 in I ELECTRONIC PROJECT 50 easy to build Projects ing, no special tools required The kit includes Speaker. Meter, Relay, components and a 56 -page instruction leaflet. Some examples of the 50 possible Projects are: Sound Level
Meter. 2 Transistor Radio. Amplifier etc. Price 67.75 . P. \& P. 30p.
CRYSTAL RADIO KIT
 Chassis, and Personal Ear Piece. No soldering, easy to build, full step by
scep instructions. $£ 1.75$ inc. post

PROXIMITY SWITCH (NEW)
Containing, One 2 V LT transformer, three OCI70, one ACI28, one AFI86, one 38.334 MHz crystal, mains neon, S.P. toggle, miniature fuse holder pots, etc., etc. Sold for component value only, we have no details regarding usage or circuits. Bargain price ONLY 80p $+30 p$ P. \& P

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON W4 5BB Phone 01.9951560 SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Open Sat 9 LITTLE NEWPORT ST. LONDON WC2H 7JJ 01-4370576

 Finlell it your woir
0.1 and $0.15 " p i t c h$, phin ant coppar clat universal circult hards. AVAILABLE FROM YOUR LOCAL RETAILER.

4STATION INTERCOM

-Station Transistor Intercom system (1 master and Subs), in de-luse plastic cabinets for (lesk ur wall nountine. Callitalk,isten from Magter to Suba and Subs to Master. Ideally suitable for Business, Sur gery, Schools, Hospital, Office and Home. Operates omple with 3 . On/off switen. Volume control Complete with

MAINS INTERCOM
No batteries-no wires. Juat plug in the mains for rostant lwo-way, rou and clear communication Onjou swith ang wock systen.

Same as 4-Station Iutercom for two-way instan communication. Ideal ${ }^{29}$ Baby Alarm and Door Phone. Complete 14 p . I .25 p .
 iency with this incredible De-Luxe Telephone Amplider. Take down long telephone messages or convers ithout holding the handset. A useful oxce a. P. \& P. and WEST LONDON DIRECT SUPPLIES (PE/12) 169 KENEINGTON HIGH STREET, LONDON, W. 8

This method has been known for some time but modern materials research has improved the EL panel vastly, making d.c. operation feasible where before only a.c. was possible.

STRUCTURE OF PANEL

The basic construction of a panel is simple, see Fig. 5, although more complicated, and more efficient geometries have been produced. In a d.c. display, the backing electrode which is the cathode is made of aluminium.

The anode, through which the light must pass, is of glass treated in such a way as to make it conductive. This is accomplished by placing a very thin coating of tin oxide on its surface, by vacuum evaporation or by a chemical method, so that it remains transparent.

Fig. 5. Structure for a simple type of EL panel
The electroluminscent material is then mixed with a binding agent and spread very thinly between these electrodes, so that a high field is produced by a comparatively low voltage, typically 50 microns for 20 to 30 volt operation.

A newer method of stimulating EL and one which has been causing a great deal of interest, is based on the pn junction. The theory of this method of operation is better understood than the EL panel which still presents large areas of mystery.

If we suppose that a suitable material is available in both forms, i.e. p - and n-type, then a pn junction may be formed to make a diode.
In any junction diode, recombination of electrons and holes occurs at the junction when the diode is conducting in the forward direction as this is basic to its operation. If the semiconductor favours radiative recombination then the result will be light emission from the junction, produced directly by the passage of electric current through the diode.
To enable the light to escape the device, special geometries have to be employed in the manufacture of a crystal lamp if the bulk of the material is not to re-absorb it. Basically this means making a large area junction and arranging the emitting surface so that total internal reflection does not occur, which is by no means an easy $\mathrm{j} \circ \mathrm{b}$ with the high refractive indices of most semiconductors. One type of arrangement is shown in Fig. 6.

MATERIALS FOR ELECTROLUMINESCENCE

How many materials are useful or potentially useful semiconductors? Germanium and silicon certainly and gallium arsenide is by now fairly well
known, but the list doesn't stop there. Hundreds more are possible of which only a few as yet have been investigated. It would seem therefore that suitable EL materials would be commonplace but, unfortunately, this does not appear to be the case.
In the crystal lamp field if not in EL panels there is a desperate need for a good semiconductor. This shortage has led to the employment of one or two sophisticated tricks but the problem is by no means satisfactorily solved.
Consider the common semiconductors to see how they conform to the criterion laid down earlier. Germanium-indirect gap of 0.66 eV , siliconindirect gap of 1.08 eV , both clearly of little use being so far in the infra-red as to make them inconvenient even if they were direct.
Gallium arsenide however is clearly much more

Fig. 6. Hemispherical structure of crystal lamp
promising, having a direct gap of 1.5 eV , tantalisingly close to visible. The available devices, 56CAY, MGA 100 , are made from gallium arsenide.

PERIODIC TABLE

Why is gallium arsenide a semiconductor? A glance at a section of the periodic table of the elements. Fig. 7, throws some light on this question and indicates where we may look for additional material.
We see that germanium and silicon lie in group IV as do tin and carbon. As diamond can be regarded as a semiconductor and so, under certain

An array of 35 gallium phosphide lamps within a package overall size $\frac{1}{4}$ in $x \frac{1}{4}$ in approximately. In this photograph, the lamps have been illuminated to form the initial letter of the maker's name, Ferranti

Plastic encapsulated gallium arsenide phosphide red light emitting diodes made by Hewlett-Packard. These solid state lamps are designed for panel mounting or for printed circuit board mounting
conditions, can tin, there seems to be something about group IV elements which have some connection with semiconducting properties.

If one element from group III is combined with one from group. V , this also produces a semiconductor. These are known as compound semiconductors or compounds and gallium arsenide falls into this class.

III	III	II	Y	III
	B	C	N	0
	Al	Si	P	S
Zn	Ga	Ce	As_{s}	Se
Cd	In	Sn	Sb	Te
Hg	Tl	Pb	Bi	Po

Fig. 7. Section of the Periodic table of the elements
In a similar fashion II-VI compounds are possible. Thus many semiconducting materials are possible and the more well known ones are listed in Table I. with their relevant parameters.

Confining ourselves to direct gap materials restricts the field considerably. All of the group IV elements are excluded, as well as three of the III-V compounds, the potentially useful three moreover. This leaves gallium arsenide as the compound with the largest direct gap, but this as we have seen is not good enough for visible EL.

At first sight the II-VI compounds are much more promising, zinc and cadmium sulphides both seem ideal, and indeed they are employed in the EL panel form of device. These materials, however, resist all attempts to grow them in both p and n-type forms and therefore crystal lamps cannot be constructed from them.

DOPING

The position for visible light crystal lamps would appear then to be hopeless, but two tricks are possible which partially solve the problem. Firstly, an indirect gap material with a larger than necessary gap can be used. Doping agents can be added to them which will create energy levels in the forbidden gap, effectively reducing it in size and giving it the characteristics of a direct gap.

Gallium phosphide doping in this way with zinc and oxygen will give a red emitting diode and the highest efficiency that has recently been obtained is in the order of 7 per cent. Inefficient green luminescence may also be produced from gallium phosphide, of approximately 0.1 per cent but this is
stretching the material's capabilities. Gallium phosphide of the high quality needed cannot, as yet, be consistently produced.

MIXED CRYSTALS

The second trick consists of the formation of a mixed crystal. Most of the III-V compounds are intermixable, that is, they can be grown together as a single, homogenous crystal. If in the growing of gallium arsenide for example, a proportion of phosphorus is added to the molten material, the resultant crystal contains a percentage of gallium phosphide.

This is a mixed crystal and should not be considered to be a mixture of gallium arsenide and gallium phosphide, but as a crystal of gallium arsenide phosphide, written $G a \mathrm{As}_{\mathrm{x}} \mathrm{P}_{1-x}$, the x indicating a whole range of compositions from pure gallium arsenide to pure gallium phosphide.

As gallium arsenide is direct and gallium phosphide is indirect, somewhere in the mixed crystal composition there must be a change over from the one type of de-excitation to the other, and it is possible to increase the energy gap for a considerable way before it becomes indirect.

Red emitting lamps from gallium arsenide phosphide are possible if the crystal is grown with the correct composition. These lamps are becoming quite common in professional areas and it must only be a mater of time before they are generally available.

This is the state of the art at present as regards the crystal lamp field. Several other mixed systems have been tried and are workable propositions but they still only produce red light diodes. Present research is searching, rather desperately, for an efficient green emitter.

Table I: PROPERTIES OF THE BETTER KNOWN SEMICONDUCTORS				
				De-Excitation

ATIRACTIVE DISCOUNTS!

EIEGTROVILIE Electronic Component Specialists

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS

many at new reduced prices - all power types with free insulating sets

40361	55p	2N2905	44p	2N4291	15p	BCl 48	$9 p$	BFX87	29p
40362	68p	2N2905A	47p	2 N 4292	$15 p$	BCl49	10p	BFX88	26p
2N696	17 p	2N2924	20p	AC107	46p	BC153	19p	BFY50	$23 p$
2 N697	18 p	2N2925	22p	AC126	20p	BC154	20p	BFY51	20p
2N706	12p	2N2926	$11 p$	ACI 27	20p	BC157	12p	BFY52	23p
2N930	29p	$2 N 3053$	27p	ACl28	20p	BCI 58	$11 p$	BS $\times 20$	16p
2N1131	29p	$2 N 3055$	60p	AC153K	22p	BC159	12 p	C407	17p
2Nil32	29p	2 N 3702	13p	ACI76	$16 p$	BC167	$11 p$	MCI 40	25p
2 N 1302	19p	2 N 3703	$13 p$	ACY20	20p	BC168	10p	MPS6531	35p
$2 \mathrm{Ni303}$	19p	$2 N 3704$	13p	ACY22	16p	BC169	$11 p$	MPS6534	30p
2 N 1304	26p	2 N 3705	$13 p$	ADI40	63 p	BC177	14p	NKT211	25p
2 N 1305	26p	2 N 3706	$13 p$	ADI42	50 p	BC178	$13 p$	NKT212	25p
2N1306	33p	2N3707	13p	ADI49	58p	BC179	14p	NKT214	23p
$2 \mathrm{~N} \mid 307$	33p	2N3708	10p	AD161	33p	BC182L	$11 p$	NKT274	18p
2N1308	36p	2N3709	$11 p$	AD162	$36 p$	BC183L	10 p	NKT403	69p
2N1309	36p	2N3710	13p	AFII 14	24p	BC184L	$11 p$	NKT405	79p
2 N 1613	23p	$2 N 3711$	13p	AFII 5	24p	$\mathrm{BC}_{2} 12 \mathrm{~L}$	16 p	0 O 71	38p
2N1711	26p	$2 N 3819$	23p	AFII 17	22p	BC213L	16p	$\bigcirc \mathrm{OC81}$	25p
2 N 1893	54p	2 N 3904	35p	AFl 24	$24 p$	BC_{214}	$16 p$	OC810	25p
2N2147	95p	$2 N 3906$	35p	AFI 27	22p	BCY70	18p	ZTX300	14p
2 N 2218	34p	2 N 4058	13p	AFI 39	33p	BCY71	33 p	ZTX301	16p
2N2218A	44p	2 N 4059	10p	AF239	36p	BCY72	15 p	ZTX302	22p
2N2219	38p	$2 N 4060$	$11 p$	ASY26	27p	BFI 15	23p	Z $\times 1 \times 303$	22p
2 N 2219 A	53 p	2 N 4061	$11 p$	ASY28	27p	BF167	18p	ZTX304	27p
2 N 2270	62p	$2 N 4062$	$12 p$	BC107	12 p	BF173	19p	ZTX500	18 p
2N2369A	19p	2 N 4124	18 p	BCl 08	$11 p$	BF194	14p	ZTX501	$21 p$
2 N 2483	35p	2 N 4126	${ }^{27} \mathrm{p}$	BC109	12 p	BF195	15p	ZTX502	250
2N2484	42p	2N4284	15p	$\mathrm{BCl}^{8} 25$	15p	BFX29	$31 p$	ZTX	$25 p$
2N2646	$47 p$	2N4286	15p	BC126	22p	BFX84	25p	ZTX503	22p
2N2904A	42p	2N4289	15p	BC147	10p	BFX85	52p	ZTX504	52p

RESISTORS

Code	Power	Tolerance	Range	Values ovoilable		10 to 99 below)	100 up
C	1/20W	5\%	82, $220 \mathrm{~K} \Omega$	E12	9	8	7
c	1/8W	5\%	$47 \Omega-470 \mathrm{~K} \Omega$	E24	1	0.8	0.7
C	1/4W	10\%	$4.7 n-10 \mathrm{M} \Omega$	E12	1	0.8	0.7
C	1/2W	5\%	$4.78-10 \mathrm{Ma}$	E24	1.2	1	0.9
C	IW	10\%	$4.70-10 \mathrm{Ma}$	E12	2.5	2	1.9
MO	1/2W	2\%	10a-1Ma	E24	4	3.5	3
WW	IW	$10 \% \pm 1 / 20 n$	$0 \cdot 22 \Omega-3.9 n$	El2	7	7	6
WW	3 W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	E12	7	7	6
WW	7W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	El2	9	9	8

Codes: $C=$ carbon film, high stability, low noise. Prices are in pence each for quantities of the MO = metal oxide. Electrosil TR5, ultra low noise. same ohmic value and power rating. NOT WW = wire wound, Plessey.

Values:
E12 denotes series: $10,12,15,18,22,27,33,39,47$ E24 dis 82 and their decades.
$36,43,51,62,75,91$ and their decades $20,24,30$

ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , 15 p ach; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to 82 V 27p each; 1.5 W : 4.7 V to $75 \mathrm{~V}, 60 \mathrm{p}$ each.
Clip to increase $1 \cdot 5 \mathrm{~W}$ rating to 3 watts (type 266 F). 4p.

CARBON TRACK POTENTIOMETERS, long spindies. Double wiper ensures minimum nois level.
Singlogang linear 100Ω to $2.2 \mathrm{Mn}, 12 \mathrm{p}$; Single gang
log. $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{Mn}, 12 \mathrm{p} ; \mathrm{Dual} \mathrm{gmeng}$ linear 4.7 Kn $\log _{4} 4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 12 \mathrm{p} ; \mathrm{Dual}$ gang linear $4.7 \mathrm{~K} \Omega$
to $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$; Dual gang log, $4 \cdot 7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$,
 42p; Log/antilog, 10 K . 47 K, M M only 42 p ; Dual
antilog, IoK only, 42 p . Any type with $\frac{1}{2} \mathrm{~A}$ D.P. mains switch, 12p extra, 10,22 and 47 available in ranges quoted.

CARBON SKELETON PRE-SETS

mall high quality type PR, linear only, 1000,2200 470』. IK, 2K2, 4K7, 10K, $22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}$ $470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M2}, 4 \mathrm{M} 7$, IOMQ. Vertical or horizonta mounting, 5p aseh.

COLVERN 3 watt Wire-wound Potentiometers $1.5 \mathrm{~K}, 2 \cdot 5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{p}$ each.

Handbook of tranzistor equivalent and zubstitutes, 40p. (Postage 3p if ordered alone).
same ohmic value and power rating. NOU
mixed values. (Ignore fractions on total value
of resistor order.)

MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.0473 p$ each; 0.068 , $0.1 ; 4 p$ each; 0.15, 4p; 0.22, 5p, 10\%: 0.33, 7p MULIARD SUB-MIN EIECTROIYTICS MULLARD SUB-MIN. ELECTROLYTICS C246 range, axialiead
$6 p$ each
$2.5 / 64$ $4 / 10 ; 4 / 40$: $5 / 64$: $6.4 / 6 \cdot 4: 6.4 / 25: 8 / 4: 8 / 40: 10 / 2 \cdot 5$ 10/16;10/64; 12.5/25; 16/40; 20/16; 20/64; 25/6.4; $25 / 25 ; 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ;$ 40/16; $40 / 2 \cdot 5$ 50/6.4; $50 / 25: 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 25 ; 80 / 16$ 80/25; $100 / 6 \cdot 4 ; 125 / 4 ; 125 / 10$; $125 / 16$; $160 / 2.5$; 200/6.4; 200/10; 250/4; 320/2.5; 320/6.4; 400/4 500/2.5.

LARGE CAPACITORS

High ripple current types: 1000/25, 28p; 1000/50, 2000/100, 61-44; 2500/64, 77p; 2500/70, 98p:5000/25 62p: 5000/50, c1.10; 5000/100, 62.91: $10000 / 50$ K2.40.

- COMPONENT DISCOUNTS
15% on orders for componente for 65 or more. 15% on orders for components for 415 or more (No discount on nett items,)
POSTAGE AND PACKING
Free on orders over 62. Please add 10p if orders under E 2
charged at cost. Prices subject to alteration withou notice. U.S.A. CUSTOMENS
U.S.A. orderscharged at special prices as advertised
by ELECTROVALUE AMERICA, P.O. Box 27, Swarthmore, PA 19081.

Appointed distributors for SIEMENS (U.K.) LTD.
Appointec stockists
NEWMARKET TRANSISTORS RADIOHM POTENTIOMETERS

SAYE Eb^{-25} ON THE NEW ENGLEFIELD 840 AMPLIFIER

This latest Peak Sound high fidelity amplifier in corporates many strikingly original features including facility for adding in stereo FM tuner. Superb per formance characteristics and luxurious styling Electrovalue choice of simulated sort leather covering in black, blue, red or darkgreen. As now
advertised at $\mathbf{C 4 9} 50$. Our price, nett

MAINLINE AMPLIFIER KITS
70W. power amplifier. $\mathbf{1} 12.60$ nett.
30 WATT BAHLEY AMPLIFER PARTS
Transistors and PCB for one channel $\mathbf{6 6 . 4 6}$ Capacitors, resistors (metal oxide), and transistors Complete unrezulated power supply pack. ©4.75 Suitable heatsink 100 N 400 C . 55p

SIEMENS TTL INTEGRATED CIRCUITS

We stock a largerange of all Siemens eypes for avery wide range of ap

S-DeC RANGE
 65.94

Accessory prices increased by approx. 20\% (pp. 51-53 in our catologue). Guide prices unchanged.

INDICATOR LAMPS

NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A, 24p; chrome bezel, round clear NR/C, 24p. Neon, square red cype LSSC/C. 18p. All above are for 240 V ; mains operation. Filament types: $6 \mathrm{~V}, 0.04 \mathrm{~A}$ squarered type LS5C/R-6V, 30p; 6V, 0.04 A amber type LS5C/A-6V 30 p ; 6 V 0.04 A clear type LS5C.C.6V, $30 \mathrm{p} ; 6 \mathrm{~V}$ $0.04 A$
LSSC/R-12V type LS5C/G-6V, 30p; 12 V O.04A

SIEMENS 5\% TOLERANCE

 POLYCARBONATE CAPACITORS250 V up to $0.1 \mathrm{mF}: 100 \mathrm{VO.1mF}$ and above
$0.01,0.012,0.015,0.018,0.022,0.027 \ldots$ $0.033,0.039,0.047,0056,0068,0.082,01,0.12$, $0.15,0.18,0.22$
$0.27,7_{p} ; 0.33,9 p ; 0.39,9_{p} ; \quad 0.47,10 p ; 0.56,13 p ;$ 0.68, isp.

DIN CONNECTORS

HAD YOUR COPY YET?
ELECTROVALUE CATALOGUE
64 pages plus covers. Thousands of items plus
classified information and illustrations.
Post free

 standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. tvpe drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in raining mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"EXCELLENT PUBLICATION"

Thank you for the excellent publication: the best in form and type I have ever come across.
T.L.O., Shanklin
"READABLE AND INTERESTING"
The Manuals are so readable and interesting that I do not think this magazire does full justice to the wonderful contents.
S.T.P., Bangor
"REAL HELP"
I find the Basic Manuais the best in their class and a real help in my work in phototype electronics.

To The Selray boox co., 60 hayes hill, hayes, bromley, kent br2 7hp Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY E4:50. Cash Price on Down Payment of fI followed by 4 fortnightly payments of ci each (Total 65). BASIC ELECTRONICS E540. Cash Price or Down Payment of fi followed by 5 fortnightly payments of fi each (Total 6). This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

Tick Set required (Only one set allowed on free trial) BASIC ELECTRICITY

BASIC ELECTRONICS
Prices include Postage and Packing
Signature
(If under 18 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

A data display developed by Marconi. Tiny slices of glass ceramic each carry a 7×5 matrix of gallium arsenide phosphide light emitting diodes; can be switched on to provide a pattern of high contrast letters, numbers, or symbols. The complete five letter words shown occupies only 32.5 mm by 8.5 mm

The crystal systems $\ln _{x} \mathrm{Ga}_{1-x} \mathrm{P}$ and $\operatorname{In}_{\mathrm{x}} \mathrm{A} 11_{1-\mathrm{x}} \mathrm{P}$ are the most promising materials as yet investigated as they can provide direct energy gaps of the order of $2 \cdot 2 \mathrm{eV}$. These materials are exceptionally difficult to grow, however, and while $\operatorname{InP}-G a P$ can be grown to the right composition. InP-AlP has not yet been produced.

Even if these materials were available, they only give green, what do we do to obtain blue? At this stage we enter the realms of conjecture, the nitrogen III-V compounds, largly unknown, appear to hold out some promise although they have a different crystal structure to all of the other semiconductors mentioned here. Aluminium nitride and gallium nitride appear to be the favourites for investigation.

FOR THE FUTURE

With their limitations therefore, both crystal lamps and EL panels are working propositions. The red crystal lamp is quite well established and will undoubtedly become a part of the vast range of common semiconducting devices, but the EL panel is held up by one snag-its short working lifetime. This is catused by impurities slowly diffusing into the luminescent material and is a major problem, which until it can be overcome, will limit its usefulness seriously.

The "flat" television screen seems to be a very long term project indeed. A panel's electrodes can be patterned so that any particular part of the screen may be addressed in a similar manner to a computer memory matrix, but the definition possible by this method is severely limited and in any case only one colour is possible.

When green and blue crystal lamps are available perhaps this will provide the answer, but the interconnection problems with such a vast number of individual elements is enough to make even the bravest engineer apprehensive.

However, these problems are not insurmountable since the Sony Corporation have shown, by presenting fall colour TV on a large screen consisting of a vast array of red, green and blue light bulbs. It remains therefore to obtain the devices and then await the consequences.

photo-prilit pricifs controu UNIIT..

If you do your own photo printing; in colour or monochrome, this three-in-one unit will go a long way towards ensuring reliable results. It combines the assessment of tonal balance with stabilised lamp voltage and accurate timing to produce first-class prints from your best negatives

I.C. AUDIO MIXER

Any-easy-to-build three channel mixer that combines microphone or tuner inputs into a single channel. Ideal for multiple recording on a single tape recorder track

PART 2 LOGICAL RADIO CONTROL

Further details on making two more coders and a decoder

ALL INCLUDED IN THE JANUARY ISSUE OF

PQACTICAL

ELECTRONICS

PLUS ALL THE REGULAR FEATURES!

ON SALE FRIDAY, DECEMBER 10

!N this the second and final part, constructional details for the electronic ignition system are given together with installation instructions and testing procedures, for both positive and negative earth cars.

CONSTRUCTION

The prototype system was housed in a $7 \frac{1}{4}$ in \times $4 \frac{1}{2}$ in $\times 2$ in Eddystone die-cast box. All the components are mounted on the printed circuit board (Fig. 11) with the exception of the transformer, TR4, TR5 and the thyristor. These are bolted to the case which acts as a heatsink.

PRINTED CIRCUIT BOARD

It is strongly recommended that turret tags be used to make connection to the printed circuit board and these should be inserted and soldered before any of the components are mounted. Fig. 12 shows the component locations.

INVERTER TRANSFORMER

The inverter transformer TI is wound on a Mullard FX2243 pot core with a DT2206 bobbin and should preferably be impregnated when finished to keep out moisture which could cause leakage or damage to the windings of the transformer.
The first job is to wind on 400 turns of $34 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled wire in eight neat layers of fifty turns. with thin insulation between each layer. Take great care not to cross adjacent turns. This high voltage winding is now insulated from the others with about four layers of insulation tape.

Now wind on 12 turns of 20 s.w.g. bifilar (i.e. two wires wound together) in two layers, and lastly the three turns of 30 s.w.g. bifilar feedback winding. The wires should be colour coded with sleeves as shown in Fig. 13 and another layer of insulation tape wrapped around the bobbin. Try to ensure that the sleeves go as far as possible into the bobbin so. that when it is placed inside the ferrite cups the enamel insulation is not scratched by the core.
If the core cannot be impregnated then it is recommended that the faces are firmly joined with a thin layer of Araldite or the transformer may shriek objectionably. This does not happen of course if the transformer is impregnated.

The reliability of the whole system depends on the care with which the transformer is made.

UNIT ASSEMBLY

The box should be drilled as shown in Fig. 14 and the holes deburred with larger drills, taking care to remove any roughness where the mica washers are to be placed for TR4, TR5 and the thyristor.

All the components can now be assembled in the box ready for the final wiring. Cadmium plated nuts and bolts should be used, with the exception of the bolt securing the thyristor, since steel ones will soon rust.

Interwiring details for the ignition system are given in Fig. 15.

The thyristor should be mounted with a nylon bolt to remove the possibility of any flash over at this point due to the high voltages. The transistors

By D. S. GIBBS and I. M. SHAW (Forrenti Ldd)

Fig. II. Printed circuit board for ignition system, shown full size

Fig. 12. Component layout and wiring for printed circuit board

Fig. 13. Winding details, for inverter transformer

Fig. 14. Drilling details for die-cast box

Fig. 16. (a) Mounting details for thyristor. (b) mounting details for inverter transistors

Plastic covers are fitted over the inverter transistors to prevent accidental short circuits

TR4 and TR5, and the thyristor, must be mounted on mica insulating washers as indicated in Fig. 16 with solder tags on the lower two transistor fixing screws for the collector connections. Plastic covers should be fixed to the transistors to prevent accidental short circuits when the unit is installed in the car.

The printed circuit board is mounted on spacers of about $\frac{1}{4}$ in in length. Use a spring washer between the transformer mounting bolt and the core so that the transformer can be secured firmly without danger of cracking the ferrite core.

The unit can now be wired with $14 / .0076$ wire in assorted colours for identification. Care must be taken to connect the transformer windings correctly or the inverter will not oscillate.

The wires to the six-way connector block are brought out via two grommets just below it.

CHECKING THE UNIT

After checking the wiring carefully some simple checks should be performed before installation, if the constructor does not have facilities to fully test the operation of the unit.

If the construction has been carried out as described using only good quality components the only check necessary is that the inverter transformer windings have been correctly connected and that it delivers the correct output voltage.

To do this connect the car battery between (E) and (F) on the connector block. The transformer should be heard to "sing" immediately and approximately 500 volts d.c. can be measured between tags 1 and 4 on the printed circuit board (positive on tag 1). If this is not correct then the phases of the transformer windings will have to be examined and corrected before installation.

The current taken from the battery is approximately 500 mA when the inverter is operating correctly.

INSTALLATION

All connections from the car for both positive and negative earth are made to the connector block, but since there are some differences they will be explained separately.

First, a suitable place in the engine compartment should be found to mount the unit so that the wires can be cut to the correct lengths. In both systems the wire connecting the ignition coil to the contact breaker must be removed but kept, so that the car can be reconstructed to the conventional system if necessary at any time.

POSITIVE EARTH CARS

The wire or wires connected to the SW or negative terminal of the ignition coil for positive earth systems, must be connected instead to the negative supply input to the unit (F) since this supply is via the ignition switch.

The two connections between the unit and the coil are made next; SW or negative to (A) and CB or positive to (B). These must be the only connections to the coil terminals.

The contact breaker is connected to (C) and good earth from the car chassis or positive battery terminal to (E). There are a total of five wires to the unit for positive earth cars with contact (D) left disconnected.

NEGATIVE EARTH CARS

The connections for negative earth cars are somewhat simpler since the wires to the positive terminal of the coil can be left connected and the positive supply terminal of the unit (E) connected to it.

The contact breaker is connected to (D) and the negative coil terminal to (B). Contact (F) is earthed making a total of four wires to the unit with contacts (A) and (C) left unconnected.

The astute reader will deduce that the first half cycle of the spark in the negative earth system is positive and not negative as is usually recommended. This can be corrected by reversing the connections to the coil. In some cases this may be inconvenient as the positive terminal is sometimes used as a junction point for leads from other equipment and the coil is supplied with more than one tag on the positive side to accommodate them. It is not really necessary to go to the trouble of reversing the initial spark polarity since the unit generates a dual polarity spark (Fig. 6a, Part One).

The unit can now be fitted to a convenient place in the engine compartment by drilling at least two suitable holes in the bottom of the box, and the car, and screwing the unit in place with self tapping screws.

COLD START COILS

Some cars are fitted with a "cold start" soil, which is a low voltage coil with a series ballast resistor that is shorted out when starting, to give an increased spark voltage under cold starting conditions. The ballast resistor is usually attached to one of the terminals of the coil but it may take the form of a resistance cable between the ignition switch and the coil.

It does not actually make any significant difference to the spark produced by the unit whether the resistor is left in series with the coil or not, but the resistance cable should not be used to supply power to the unit as there will be a considerable loss of voltage along it. In this case it is best to remove the resistance cable and replace it with a length of wire. In all cases the connection between the coil and the starter solenoid must be removed.

PRECAUTIONS

Because of the high open circuit voltage produced by this unit never attempt to remove the spark plug leads whilst the engine is running, since not only is there a danger of breaking down the insulation of the coil but the experimenter stands a good chance of getting a nasty shock.

In addition the thyristor can be exposed to transient voltages of up to $1,000 \mathrm{~V}$ under these conditions and may be destroyed.

PERFORMANCE

In most capacitor discharge ignition systems the usual fault is for the thyristor to "latch on" with the short circuit current available from the inverter, especially when an iron cored transformer is used. This cannot occur in the system described here as explained in Part One.

The spark gap of the plugs may be increased with advantage for smoother idling, but not above 0.04 in or the insulation of the ignition coil will be unduly taxed, especially in cars with high compression engines $:>10: 1)$.

The unit will perform satisfactorily down to at least 8 volts thus giving a good spark at the plugs even under very cold starting conditions when the battery is at its lowest capacity.

The points and timing should be checked when installing the unit since from now on they can be left for many thousands of miles. Cars fitted with this unit can be expected to operate more economically since the car is kept in "peak tune" all the time. This is because the points do not wear and the timing and dwell angle do not change with time, except for the very slight wear on the heel of the contact breaker.

Four units as described in this article have been Huilt and tested in various types of British car under different driving conditions and it can be stated that "P.E. Scorpio" is without doubt an effective transistor ignition system achieving improved performance.

Brake horse power has been measured on a "rolling road" and has shown to be about 5 per cent higher with a subsequent improvement in the "liveliness" of the car. One particular feature is the more consistent performance of the car after tuning has occurred from thousands of miles of driving.

LOGICAL RADIO CONTROL continued from page 985

TIMING COMPONENTS

The interval timing resistors R1 to R5 have a maximum value of approximately 490 ohms due to the input threshold of the gates; lower values may be used with a corresponding change (increase) in the capacitors $\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 6, \mathrm{C} 8, \mathrm{C} 10$ but the CR product must remain the same.

The signal pulse timing potentiometers VRI to VR6 will provide a maximum and minimum value. The minimum value of approximately 200 ohms corresponding to a pulse length of approximately 0.5 ms and the point at which the following gate will just open. The maximum value is given as 1.2 kilohms. With $10, \mathrm{~F}$ capacitors for $\mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 7$, C9, C11, a pulse of 2 ms will be given, while 800 ohms setting for the potentiometers will provide 6 ms pulses.

The recommended arrangement is 240Ω in series with a 50082 potentiometer to ground. The cycle time is derived from the trigger circuit (Fig. 5) in which TR1 and TR2 form a multivibrator, the period of which is approximately $1 \cdot 4 C R$. If C 12 is $1 \cdot 5 \mu \mathrm{~F}$ and R 6 and R 8 are both 15 kilohms, the pulse time will be approximately 18 ms (Fig. 6).

The positive going edges at the collector of TRI are slowed by the action of the timing capacitors, so the output is taken from TR2. Diode D1 and R10 form an isolation circuit so that C13 will not discharge through the trigger circuit. The output waveform is differentiated by C14 and R1I to give a positive pulse of time constant approxinately 0.3 ms (Fig. 6c). The trigger transistor TR3 switches off producing the sharp-edged negative going pulse (Fig. 6d) to the trigger output every 36 ms .

LAYOUT

Fig. 7. shows the printed circuit layout full size; it is recommended that extra space along one side is provided for mounting purposes. All holes should be drilled clean and vertical from the copperside with an HSS or tungsten carbide rumber 58 drill, and a small clean tipped soldering iron used.

Fig. 8 shows component layout, the i.c.s being inserted and soldered in first, followed by the fixed resistors and capacitors. Using thin flexible covered wire the four final interconnections to IC7 should be made as shown in Fig. 9, together with the trigger connections, supply leads and six various coloured wire leads which go to the control panel for connection to VR1 to VR6.
Next month: Two more coders and a decoder

Fig. 9. Potentiometer connections to Coder I

THIS circuit is a revised version of the circuit published in "Ingenuity Unlimited," April 1971, now using integrated circuits.

When re-designing the circuit to use integrated circuits it was found that not only is the finished dice smaller and neater, but by using the low price i.c.s. now available, it is also cheaper to build.

THEORY

The logic diagram of this dice is shown in Fig. 1.
The circuit is basically a divide-by-six counter driven via the control gate Gll by a $4 \cdot 8 \mathrm{kHz}$ clock pulse.

The count is stopped by the control gate when the player presses the play button, and the binary output of the counter is decoded by gates one to nine to light lamps LPI-LP7 set in the usual dice pattern.

The binary output is decoded into four lamp outputs, the first of which decides "even or odd." If the count is odd, the centre lamp, LP3, lights. Next, gate GI decides "NOT 1" which lights two diagonally opposite lamps LP6 and LP7-except during a " 1. "

A third gated output, gates G5, G6 and G7 decide 4. 5 , or 6 and lights the two remaining diagonally opposite lamps, LP4 and LPS on these counts. The last output, gates G8 and G9, decide " 6 " and lights the two remaining lamps on this count. A little thought will show that these combinations will automatically light the correct number of bulbs in the correct patter for each dice position.

Player intervention is prevented in two ways. Firstly, by extinguishing the display lights while the counter is operating, and secondly, by the high clock pulse speed adopted which is far higher than any human reflex.

CIRCUIT CONSTRUCTION

The circuit is built on a piece of Veroboard ($0 \cdot 1$ in matrix) as shown in Fig. 2. The board should be cut to size and some strips cut as shown in Fig. 3. before the integrated circuits are fitted.

It is recommended to leave the soldering of the i.c.s. until all the other components and straps have been fitted as it is almost impossible to remove them should they be soldered in the wrong position.

When soldering on $0 \cdot 1$ in matrix Veroboard great care should be taken as the solder easily bridges the closely spaced strips, and if the strips are overheated they could come adrift from the laminate causing intermittent faults.

COMPONENTS . . .

Resistors

R1. R2, R3, R4 $4.7 \mathrm{k} \Omega$ (4 off)
R5 47Ω
R6 100Ω
All $5 \%, \frac{1}{4} \mathrm{~W}$ carbon
Capacitors
C1, C2 $0.1 \mu \mathrm{~F} 15 \mathrm{~V}$ (2 off)
Semiconductors
TRI, TR2, TR3, TR4 2N3704 (4 off)
DI, D2 OA91 (2 off)
Integrated circuits
ICI, IC3, IC4 SN7400 (BPOO) Quad 2-input gates (3 off)
IC2 SN7492 (BP92) $\div 12$ counter
IC5 SN7410 (BPIO) triple 3-input gate

Switches

SI Single pole on/off toggle
S2 Single pole push button

Lamps

LPI-7. $6 \mathrm{~V} \quad 0.3 \mathrm{~N}$ l.e.s. type (7 off)

Miscellaneous

Lampholders for lamps (7 off)
Vercocard, $2 \frac{1}{2}$ in $\times 2$ it ($0 \cdot 1$ in matrix)
Battery $6 \mathrm{~V}(4 \times 1.5 \mathrm{~V}$ in series, type HP7)

CASE

The dice case may be varied to suit individual requirements and materials available. The case in the suggested design is a standard M.E.M. plastics box for mounting a double mains socket, fitted with the appropriate blanking plate. This will make a neat, strong case, which will accommodate the circuit board and lamp display and also four penlight cells in a four-cell battery holder.

If due to anticipated prolonged use a larger battery or 6 V mains power unit is required, a larger case should be used which can be constructed from wood or Perspex.

The lamp display in the author's unit was wired for miniature 6 V l.e.s. lamps and lampholders held in position by using stout copper wire, which acts as both support and electrical common positive bus bar. If required the lampholders could be secured in their correct position by using Araldite.

Fig. I. Circuit diagram of the electronic dice with the logic gates "taken out" of the integrated circuit packs. Circuitry within the grey orea is mounted on the 0 - Iin matrix Veroboard

Fig. 2. Wiring and layout of the logic integrated circuits and lamp drivers

Fig. 3. View of the underside of the Veroboard showing the copper regions that must be removed

DISPLAY PANEL

The holes for the display are covered by a piece of $\frac{1}{5}$ in translucent Perspex to hide the non-illuminated holes.

This Perspex should be chosen with care, as some colours tend to diffuse the light spots making reading of the display panel difficult.

The Perspex may be selected by holding a sample against a piece of cardboard with a small hole in it and viewing it against background illumination to check that a cleanedged spot can be seen. A blue or violet Perspex was found to be best.

CHECKING

After assembling the dice, the connections should be rechecked before fitting the batteries since a single wrong strap could easily permanently damage an integrated circuit.

If desired the correct working of the dice can be verified in the following manner.

CLOCK CHECK

The clock output can be checked by connecting an oscilloscope between holes 8 C and 8 A on the Veroboard where a $4 \cdot 8 \mathrm{kHZ}$ square wave should be observed. In the absence of an

Fig. 4 (a). The lamp driver circuit that amplifies the output from the 4 decoders to light the lamps; (b) Pictorial view of the transistor used in this circuit showing base connections

Fig. 5. Wiring of the SN7400N Quad 2-input nand gate to give a 4.8 kHz multivibrator for use as clock

Fig. 6. Use of half a SN7400N to provide test input signals to the counter

oscilloscope, a pair of high resistance headphones in series with an $0.1 \mu \mathrm{~F}$ capacitor may be used to detect the output from the clock which will be observed as a high pitch whistle.

TESTING COUNTER AND DECODER

The counter and decoding gates may be checked by injecting test signals into the counter.
This is done by the use of a microswitch buffered by a bistable to remove switching transients. The bistable is constructed from half a SN7400N quad 2 -input gate i.c. connected as shown in Fig. 8. This circuit is worth building as a permanent unit as it is invaluable in all testing work on TTL and DTL circuits.

The output from the bistable should be connected to hole $7 P$ on the Veroboard with the wire to $13 T$ temporarily removed. On operating the microswitch the display should be found to advance one count for every two depressions of the microswitch. The reason why two pulses are required to step the display by one count is that the SN7492N is a divide-by-twelve counter, and in the present application the "A" stage output is not used. The reset line of the counter SN7492N is disabled by applying a permanent "O" on pin 7 of the reset gate, which is the $\mathrm{R}_{\text {。 }}$ gate in this package.

SWITCHING TRANSIENTS

If any trouble is experienced due to an uneven count, noise on the supply line may be the cause, in which case this is rectified by connecting $0 \cdot 1 \mu \mathrm{~F}$ capacitors between the negative and positive supply lines as near to the i.c.s as possible. This should remove the sharp fronts of any switching transients transmitted on to the supply lines.
This expedient should not be required if the unit is powered by batteries but may be required if the unit incorporates a mains power supply.
As the i.c.s are already working at 0.75 volts over the manufacturers' recommended working voltage, on no account must the supply voltage be raised above six volts.
Providing this value is not exceeded, no damage to the i.c.s should occur.

Lets face it - an immediate success, the HY40 is here to stay HY40 means Hybrid Power, power neatly locked away inside an Intregrated Circuit. Power the modern way, simply mount only five additional components on a printed circuit board (all of which are supplied with the HY40). Power not only for Hi-Fi, power for Groups, for public address, for industry, power for all.
HY40 is HI-FI POWER ILP are POWER PROUD

In addition to the P.C. board and manual supplied with the HY40 we now include the five temaining components, at minimal cost, needed to complete the assembly of a High Performance Power Amplifier.

By merely combining two HY40s with a Stereo Preamplifier (2 $\times \mathrm{HY} 5$) and simple Power Supply (PSU45), premium quality stereo may be obtained for a very modest autlay
The free manual supplied with the HY40 gives clear, easy build anstructions for Power Supply, volume, bass, treble and balance controls, together with inputs for Ceramic and Magnetic Pick-ups, Tape, Tuner and Auxiliary functions.
Internally the HY40 is based on conventional and proven circuit techniques developed over recent years.

OUTPUT POWER British Rating 40 WATTS PEAK, 20 watts RMS continuous.
LOAD IMPEDANCE 4-16 ohms INPUT IMPEDANCE 22Kohms at 1 Khz .
INPUT SENSITIVITY 300 mV for maximum output
VOLTAGE GAIN 30 db at 1 KHz . FREQUENCY RESPONSE $5 \mathrm{~Hz}_{\mathbf{z}}$ $60 \mathrm{KHz}+1 \mathrm{db}$
TOTAL DISTORTION less than 1% (typical 0.1%) at all output powers.
SUPPLY VOLTAGE +22.5 volts D.C
SUPPLY CURRENT 0.8 amps maximum.
PRICE: including comprehensive manual, P.C. Board and FIVE EXTRA COMPONENTS
MONO $£ 4-40$ STEREO $£ 880$ all post free.

A WORLDS FIRST TO JOIN THE WORLDS BEST

The HY5 is a unique and revolutionary concept in HighFidelity pre-amplifiers. Thanks to the latest techniques, all feedback and equalization networks are, for the first time, combined into an integrated pre-amplifier circuit

Simply by adding volume, treble, bass potentiometers and only three stabilizing capacitors, which are supplied, your HY5 is complete and ready for use.

The HY5 provides equal ization for almost every con. ceivable input. This years developments in equalization technique enables precise correction for both output voltage and frequency res ponse for any crystal or ceramic cartridge. Yet another feature of the HY5 is its inbuilt stabilization circuit, allowing it to be run off any unregulated power amplifier supply.

The HY5 contains a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo preamplifier.

Specifically and critically designed to meet exacting $\mathrm{Hi} \cdot \mathrm{Fi}$ standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY40 and PSU45 forms a completely integrated system.

INPUTS
Maqnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curvel 2 mV .
Tape Replay (external components
to suit head). 4 mV
Microphone (flat) 10 mV .
Ceramic Pick-up (equalized and compensatable) $20-2000 \mathrm{mV}$ variable.
Tuner iflat) 250 mV
Auxiliary 1250 mV .
Auxiliary $2 \quad 2-20 \mathrm{mv}$
OUTPUTS
Main Pre-amp output 500 mV Direct tape output 120 mV
ACTIVE TONE CONTROLS
Treble +12 db .
Bass $\mp 12 \mathrm{db}$
INTERNAL STABILIZATION Enables the HY5 to share an unregulated supply with the Power Amplifier.
SUPPLYVOLTAGミ
15-25 volt.
SUPPLY CURRENT
5mA approx.
OVERLOAD CAPABILITY
better than 28 d o on most sensitive input infinite on turier and auxl.
OUTPUT NOISE VOLTAGE 0.5 mV .

PRICE
Mono $£ 3-60 \quad$ Stereo $£ 7-20$

POWER SUPPLY PSU45

The PSU45 is specifically designed to supply, simultaneously, your HY40 (in mono or stereo format) and one or two HY5s.

Spec.
PSU45 +22.5 volts, 2 amps simultaneously.

PRICE: £4.50 including Postage and Packing

CROSSLAND HOUSE•NACKINGTON•CANTERBURY•KENT TELEPHONE: CANTERBURY 63218

Soshiba
 20 WATT Amplifier KITS

OShblal-TH9013P 20 watt

Hi-Fi Power Amplifier $£ 4.57$ each. OShba --TH9014P. Pre-Amplifier. Voltage gain 75dB (typical). Output noise voltage 0.1 mV (typical) $£ 1.50$ each.

SPECIAL OFFER

COMPLETE KIT OF ALL RESISTORS, CAPACITORS, AND POTENTIOMETERS (GANGED FOR STEREO) TO MANUFACTURERS' CIRCUIT, WHEN ORDERED WITH AMPLIFIER AND PREAMPLIFIER AS ABOVE.

> STEREO - £6.95

All prices include full post and packing charges (UK only).
Send s.a.e. for full manufacturers' data
TOO LATE TO GO TO PRESS
P.C. Board now available

OFFICIALLY APPOINTED DISTRIBUTORS FOR ERIE, MULLARD, Etc.

Hawnt and Co. Ltd. Dept. PEI

||2-1|4 Pritchett Street Birmingham B6 4EN

Telephone 021-3594301

READERS RADIO

85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

Tel. 01-550 7441.
Postage on 1 valve 5p, on 2 or more valves 3 p per valve extra. Any parcel insured against damage in transit $3 p$ extra.

INEARE LICGICI.E SURVEY
 A look at most of the linear and logic integrated

 circuits now readily available to experimenters, private constructors and designers. More detailed technical information and pin connection diagrams are usually to be found in manufacturers' literature, often available from i.c. suppliers. Devices shown as being in TO5 pąckages may also be in similar packages (e.g. TO99, TO100, etc.) but with a different number of lead-outs. PART 1 LINEAR I.CsTHE first linear integrated circuits to be produced were operational amplifiers designed for instrumentation and similar applications. Introduced by Fairchild in 1963 the "A702 gave a performance equal to or better than the available discrete component amplifiers at a similar cost. The first "high performance operational amplifier was the A709 which Fairchild introduced in 1965. It had more gain, a reduction of input offset current, and allowed a higher output level.

While all operational amplifiers have many characteristics in common, some conditions peculiar to individual amplifiers may be found For example, the A702 has a limited input voltage range of +1.5 V to -6.0 V indicating the possibility of "latch-up" if this is exceeded

The a A 709 output stage uses complementary emitter followers with no bias between the iwo bases. This produces a dead zone which can cause an excessive distortion of the output signal when only a small amount of overall negative feedback is used.

The first of the "second generation" amplifiers was the "A.741. This has built-in frequency compensation, short-circuit protection, no crossover distortion, an offset voltage null capability, low power consumption, no latch-up, and a large common-mode and differential voltage range.

At first sight this built-in frequency compensation appears to solve the problems of operating down to an overall gain of unity, without instability occurring and without using external components. However, it means that the frequency compensation is NOT optimum for overall gains greater than unity.

For a 40 dB gain the 741 has a bandwidth of 10 kHz compared with the 1 MHz bandwidth obtainable with the 709 and recommended compensation.

FERRANTI

A.C. AMPLIFIERS

TYPE FUNCTION CASE
ZLA10 Wideband linear amplifier for video and i.f. stages

ZLAI5 Wideband linear amplifier, improved version of ZLA1O
D.C. AMPLIFIERS
D.C. AMPLIFIERS
ZLD2S/T/U Differential d.c. amplifiers
ZLDI2C/D Complementary output stages for ZLD2

ZLD7096 Operational amplifier
T05
$\begin{array}{ll}\text { ZLD709C } & \text { Operational amplifier } \\ \text { ZLD709CE } & \text { Operational amplifier }\end{array}$
T05

ZLD741C Operational amplifier
ZLD74ICE Operational amplifier

OTHER CIRCUITS

ZN400E
ZN402E
ZN403E

Analogue switch
Gated operational amplifier
Servo amplifier

A.C. AMPLIFIERS

CASE	TYPE	TYPE	FUNGTION
	Old Number	New Number	
T05	PA222	GEL222FI	800 mW audio amplifier. 22Ω load
T05	PA230	GEL230FI	Low level audio preampli fier. 72db gain
	PA234	GEL234FI	I W audio amplifier. 22Ω load
	PA237	GEL237FI	2 W audio amplifier. 16Ω load
T05	PA239	GEL239FI	Stereo version of PA230
	PA245	GEL246SI	5 W audio amplifier. 16Ω load
T05	PA263	GEL263SI	3.5 W audio amplifier
T05	PA266	GEL266FI	1.6 W audio amplifier
DIL		OTHER	CIRCUITS
	TYPE	TYPE	FUNCTION
	PA264	GEL264SI	Voltage regulator
	PA265	GEL265S	Voltage regulator
	PA424	GEL300FI	Zero voltage switch
DIL	PA436	GEL301FI	Phase controller for SCR
DIL	PA494	GEL304AI	Threshold detector
DIL	All the abo	devices have	a special package

MOTOROLA

A.C. AMPLIFIERS

TYPE
MCI303L
Stereo pre-amplifier. 68 dB gain. 60dB separation
Stereo demodulator for f.m.
Stereo demodulator for f.m.
Complementary amplifier and preamplifier
Stereo demodulator for f.m. No audio mute
Low level video detector
I.F. amplifier with a.g.c.

Wideband amplifier circuits 16 dB gain
F.M./I.F. differential amplifier 40 dB gain at 10 MHz
Dual differential amplifiers designed for input stage of stereo power amplifiers
IW audio amplifier and preamp
Class B driver
Flexible differential amplifier, 32dB gain
Audio preamp 3dB noise, 80 dB gain
$4 . W$ audio amplifier and preamp
2W audio amplifier and preamp

MCI 304P
MCI305P
MCI306P
MCI307P
MCI330P MCI350P MC1445L

MFC6010
MFC8000
MFC8001
MFC8002
MFC8010
MFC8020
MFC8030
MFC8040
MFC9000
MFC9010

FUNCTION

S Special package

* 9-lead small power transistor case

CASE

CASE	TYPE
	MCI430P
DIL	MCI433G
DIL	MCl435G
DIL	MC1435L
DIL	MCI435P
	MC1437L
DIL	MCI439G
DIL	MCI709CP
DIL	MC1710CP
	DIL
	MC1712CP
	MCI741CP

TYPE

D.C. AMPLIFIERS

FUNCTION	CASE
Operational amplifier 69dB gain	DIL
Operational amplifier 89dB gain	TO5
Dual operational amplifiers of 7IdB	
gain	TO5
Dual operational amplifiers	DIL
Dual operational amplifiers	DIL
Dual MCI709	DIL
Internally compensated operational	T05
ampififer of 84dB gain	DIL
Operational amplifier	DIL
Differential comparator	DIL
Operational amplifier	DIL
Fully compensated op. amplifier	

OTHER CIRCUITS

TYPE FUNCTION CASE
MCI460G $\begin{gathered}\text { Voltage } \\ 250 \mathrm{~mA}\end{gathered}$ regulator 2.5 to 17 V T05
$\begin{array}{lllll}\text { MCl46IG } & \begin{array}{c}250 \mathrm{~mA} \\ \text { Voltage } \\ 250 \mathrm{~mA}\end{array} \\ \text { regulator }\end{array} 25$ to $32 \mathrm{~V} \quad \begin{array}{lll}\text { T05 }\end{array}$
MCI4.63G Voltage regulator 3.8 to 32 V 250 mA

T05
MCI466L Wide range voltage and current regulator

DIL
Voltage regulator 2.5 to 32 volts *
600 mA
$\begin{array}{ll}\text { Regulator } 4 V 200 \mathrm{~mA} & \mathrm{~S} \\ \text { Regulator } 4 \mathrm{~V} 200 \mathrm{~m} A & \mathrm{~S}\end{array}$
Electronic attenuator

CASE

DIL $T 05$

T05
DIL
DIL
DIL
T05
DIL
DIL
DIL

MCI4.59R
MFC4060
MFC6030
MFC6040

NATIONAL SEMICONDUCTOR \& SILICON GENERAL

D.C
TYPE
LM709CN/SG709CN
LM710CN/SG710CN
LM71ICN/SG7IICN
LM74IC/SG74ICT
LM748C/SG748CT
D.C. AMPLIFIERS

FUNCTION
Operational amplifier
Differential comparator
Core memory sense amplifier
Fully compensated operational amplifier
As LM74IC without compensation

T05

OTHER CIRCUITS

TYPE
LMIO3*
LM305/SG305T
LM309/SG309T
LM309K/SG309K

FUNCTION

Voltage regulator 1.8 V to 5.6 V available

Positive voltage regulator 4.5 to 30 V 20 mA

Voltage regulator 5 V 200 mA . No external components Voltage regulator 5 V IA. No external components

CASE
T046

[^2]
MULLARD

	A.C. AMPLIFIERS
TYPE	FUNCTION
TAA263	Three stage cascade amplifier
TAA293	Medium frequency, general purpose amplifier
TAA300	Audio amplifier. I watt into 80hms
TAA310	Low noise audio preamplifier for tape recorders
TAA320	Metal oxide silicon I.f. preamplifier
TAA350	Wideband limiting f.m./l.f. amplifier
TAA570	Limiter-amplifier with f.m detector
TAA960	Three stage active filter amplifier. 39dB gain per stage
TAA970	Microphone amplifier
TABIOI	Four transistor ring modulator demodulator
TADI00	A.M. receiver circuit
TADIIO	A.M./F.M. i.f. amplifiers, three gain blocks

CASE	TYPE	FUNCTION	CASE
T072	TAA241	Operational amplifier (702C)	T05
	TAA242	Operational amplifier (702)	T05
T074.	TAA52I	Operational amplifier (7090)	T05
T074	TAABII	Operational amplifier (74.1C without compensation)	T05
$\begin{aligned} & \text { T074 } \\ & \text { T018 } \end{aligned}$	TBA22I	Fully compensated operational amplifier (74IC)	T05
T074	TBA222	Fully compensated operational amplifier (74।)	T05
T05			
T074		OTHER CIRCUITS	
T074	TYPE	FUNCTION	CASE
T074	TBA281	Voltage regulator 2 to 37 V 150 mA	TO74
DIL	TBA673	Modulator/demodulator. Ring of four transistors	T074
DIL	TBA750	Limiter amplifier	1601L

PLESSEY

A.C. AMPLIFIERS

R.C.A.
A.C. AND D.C. AMPLIFIERS

TYPE
CA3000
CA3001
CA3002
CA3005
CA3007
CA3010
CA301I
CA3012
CA3013
CA3O14
CA30I5
CA3018

fferential amplifier gain 28d BW 650 kHz fferential amplifier gain 16 d BW 16 MHz F./I.F. amplifier gain 19d BW 11 MHz F./I.F. differential amplifier ga 16 dB BW 120 MHz fferential audio amplifier ga 20dB BW 20k Hz perational amplifier gain 57 BW 200 kHz ideband amplifier gain 65dB B 20 MHz ideband amplifier gain 65 dB B 20 MHz ideband amplifier gain 65dB B 20 MHz ideband amplifier gain 65 dB B 20 MHz erational amplifier gain 66d BW 200 kHz

CASE TYPE
TO5 CA3020

T05 CA302I
T05 CA3022

D.C. AMPLIFIERS

Operational amplifier (702C) T05
Operational amplifier (702) T05
T05
T05
T05
T05

CASE

6

SSB a.g.c. generator used with SL6/0/11/12 crophone/headphone amplifier Double balancer
Receiver mixer, double balanced modulator

TEXAS

 amplifier circuits (702, etc.)SN76013N 4W audio amplifier similar to Sinclair ICI2

TYPE
CA3040
CA304I
CA3042
CA3043
CA3044
CA3045
CA3046
CA3047
CA3048
CA3049
CA3050
CA305I
CA3052
CA3053
CA3054

Wideband amplifier gain 34dB BW 40 MHz
Wideband amplifier/f.m. detector/ a.f. preamp

Wideband amplifier/f.m. detector/ a.f. preamp
I.F. amplifier/limiter/f.m. detector/ audio preamp
Wideband amplifier/phase detector, for a.f.c. systems
Five transistors $h_{\text {FE }} 110 f_{T} 300 \mathrm{MHz}$
Five transistors $h_{F E} 110 \mathrm{f}_{\mathrm{T}} 300 \mathrm{MHz}$
Operational amplifier gain 84JB BW 20 kHz
Audio amplifier 53dB gain BW 250 kHz
Six npn transistors $f_{T} 1 \cdot 3 \mathrm{GHz}$
Two darlington differential amplifiers $f_{T} 600 \mathrm{MHz}$
Two darlington differential amplifiers $f_{T} 600 \mathrm{MHz}$
Audio amplifier gain 53dB BW 300 kHz
R.F./I.F. differential amplifier gain 35dB BW 5 MHz
Differential amplifier gain 32dB

T05

CA3075
CA3078

TYPE
CA3055
Operational amplifier gain 86 dB (741C)

CASE
FUNCTION

CA3059 Zero voltage switch for thyristor control 105 mA
CA3060 Operational amplifier, characteristics can be varied by user
CA3062 Photo detector and power amplifier
CA3065 I.F. amplifier, limiter, f.m. detector, audio driver
CA3070 Television chroma system, chroma signal processor
Television chroma system, chroma amplifier
CA3072 Television chroma system, chroma demodulator
F.M./I.F. amplifier, limiter, detector, audio preamplifier BW 20 MHz

S.G.S. A.C. AMPLIFIERS

TYPE
TAAGIIB
TAAGIIC
TAA62I
TAA62IA
TAA66IB
TBA23I
TBA27I
TBA3II
TBA58I
TBA59I
TBA64IA
TBA64IB
TBA65I
TBA63I
$\mu A 710 C$
${ }_{\mu}$ A702C
$\mu \mathrm{A} 709 \mathrm{C}$
$\mu A 74$ IC

FUNCTION
$2 W$ audio amplifier
3W audio amplifier
$3 W$ audio amplifier
4 W audio amplifier
F.M. I.F. amplifier and detector

Dual low noise operational amplifier gain 70dB
Voltage stabiliser for varicap diode
Television signal processing
I.F./F.M. amplifier, detector, preamp
I.F./F.M. amplifier, detector, preamp
2.5W audio amplifier

4 W audio amplifier
A.M. receiver circuit

Television sound circuit
D.C. AMPLIFIERS

High speed differential comparator General purpose operational amplifier High performance op.- amplifier Fully compensated op.amplifier

TAA141 Three stage audio amplifier $70 d B$ gain 20 kHz BW

CASE

TAAI5I Three stage audio amplifier 70dB gain 600 kHz BW
TAA420 Low noise five stage amplifier 70dB gain 20 kHz BW

TOIOO
TAA435 TOIOO
TBAI20 F.M./I.F. amplifier and demodulator 60dB gain

TOIOO
TBA400
Broadband amplifier r.f./i.f. 75dB power gain at 35 MHz
A.M./F.M. i.f. I.f. amplifier

TYPE FUNCTION CASE
TAA521 Operational amplifier (709C) TO5
TAA522
Operational amplifier (709) T05
TAA861 Operational amplifier 70 mA output current 90dB gain

T078
S Special package

APPLICATIONS OF LINEAR I.C.s

Both the 709 and 702 require several external components to frequency-compensate the amplifier so that it is stable under closed-loop conditions and cannot oscillate. The 702, 709 and the 710 comparator were the "first generation" amplifiers.

Although fully compensated, operational amplifiers can be used in any feedback circuit without instability occurring, and without external compensation components, bandwidth and slew rate are reduced. The $710,702,709,741$ are produced by many manufacturers. A "C" suffix (for example 702C) has a slightly reduced temperature range and specification over the version without the suffix.

SERIES 741C OPERATIONAL AMPLIFIER

Although operational amplifiers are perhaps the most useful of the vast range of available linear integrated circuits, with varied applications from multivibrators to active filters, many circuits are designed for specific applications. A glance at this survey will reveal a small part of the range available to commercial and industrial organisations. Most of those listed are also readily available to the home constructor.

UNITY GAIN VOLTAGE FOLLOWER

$\begin{array}{ll}\text { Input impedance } & 400 \mathrm{Ms} 2 \\ \text { Output impedance } & 1 \$ 2\end{array}$ Output impedance IS

INVERTING AMPLIFIER

Gain RI R2 BW

Gain	RI	R2	BW
1	10ks2	10 ks 2	I MHz
10	1k!2	10 ks 2	100kHz
100	1ki2	100ks2	l0kHz
1000	100s2	100 ks	1 kHz
R_{11}	10 ks 2		

NON-INVERTING AMPLIFIER
Gain RI R2 BW $\begin{array}{llll}10 & 1 \mathrm{k} \Omega & 9 \mathrm{k} \Omega & 100 \mathrm{kHz} \\ 100 & 100 \Omega & 9.9 \mathrm{k} \Omega & 10 \mathrm{kHz}\end{array}$ 1000 100s 99.9 ks I kHz $\mathrm{R}_{\mathrm{in}}>50 \mathrm{Ms} 2$

Logic integrated circuits have opened up a whole new science in systems design that does not necessitate deep technical knowledge of the circuit inside the package. Given a basic set of parameters, logic i.c.s can be built into large systems with little difficulty.

REPRESENTING almost unbelievable value for money in terms of components per penny (the 7400 TTL gate, for example, can be purchased for as little as $15 p$ and contains sixteen transistors, sixteen resistors and four diodes), the logic i.c. families are now available to the amateur from many suppliers who stock an incredibly wide range of types.
To those readers put off by such mystic terms as fan-out", "flip-flop" and "truth-table", take heart, almost anything that can be built with logic i.c.s can also be built (mentally at least) using relays. Logic gates are simply switches with an "on" and
'off" state, and all the more complicated devices, such as bistables, can be built with gates. Loaic really is easy to pick up and after a start has been made, the subtleties can be appreciated one by one.

For those who have always wanted to desian something electronic, but have been put off by simultaneous equations and slide rules, this is the scene for you; after a comprehension of the principles is obtained. all you need to start designing is common sense; all the maths has been done by the manufacturers

LOGIC FAMILIES

The three main families are RTL, DTL, and TTL while MSI (medium scale integration) uses TTL methods and incorporates several TTL circuits in each package to give a complex function, for example, a counter.

The tables given here are far from exhaustive because of the several manufacturers' different type numbers, but they do represent the majority of devices available through retail outlets.

RTL is gradually losing favour because of the competitive lowering of prices of the DTL and TTL.

In the DTL range, although a common coding can be found among many manufacturers, it is also worth obtaining the leaflets and handbooks on other types. Mullard and Siemens operate Pro Electron codings

n but they are not always interchangeable equivalents in all cases. Ferranti use different codings again for their Micronor series, prefixed ZS , which is divided into a 20ns range, medium speed range (15ns), and a high speed range (9ns).

Readily available types in the DTL range are mostly given a coding which includes digits 930 and 9090 upwards, other letters and figures being added according to manufacturers' choice. The Mullard range uses Pro Electron numbering prefixed by FC.

The widest range is TTL which extends into medium scale integration MSI. Again because of space limitations we have listed the most common in the 74 series, various manufacturers adding their own personal identity prefix. It is worth pointing out here that although many of the Mullard and Siemens TTL types (prefix FJ) are similar to the 74 series, they are not all identical.

FAIRCHILD	FERRANTI	ITT	MOTOROLA	MULLARD	NATIONAL	SIEMEN8	TEXAS
9002	ZN7400E	9002	MC7400P MC7401P MC7402P	FJHI3I FJH23I FJH22I FJH29I	DM8000N	FLHIOI	SN7400N
	ZN7401E				DM8001N	FLH201	SN7401N
	ZN7402E				DM8002N	FLHI9I	SN7402N
					DM8003N		SN7403N
	ZN7404E	9016	MC7404P	FJH24I	DM8004N		SN7404N
9003	ZN7410E	9003	MC7410P	FJHI21	DM8010N	FLHIII	SN7410N
9004	ZN7420E	9004	MC74.20P		DM8020N	FLH:21	SN7420N
	ZN7430E		MC7430P	FJHIOI	DM8030N	FLHI31 FLHISI	SN7430N
9009	ZN7440E	9009	MC7440P	FJHI4,	DM8040N		SN7440N
	ZN7441E			FJLIOI	DM8840N		SN744.1AN
				FJH26I	DM8842N		SN7442N
9005	ZN7450E	9005	MC7450P	FJHI5I	DM8050N	FLHI5I	SN7450N
	ZN7451E		MC745IP	FJHI6I	DM805IN	FLHI6I	SN74.51N
	ZN7453E	9008	MC7453P	FJH171	DM8053N	FLHI71	SN7453N
	ZN7454.E		MC7454P	FJHI8I FJYIOI	DM8054.N	FLHI8I	SN7454N
9006	ZN7460E	9006	MC7460P MC7472P MC7473P MC7474P MC7475P MC7476P		DM8060N DM8540N DM8501N DM8510N DM8550N DM8500N DM8530N DM8532N DM8533N	FLYIOI FLJII FLJI2I FLJI4 FLJI5I FLJI3I FLJI6I	SN7460N SN7472N SN7473N
	ZN7472E			FJYIOI FJJill FJJI2I FJJI3I FJJ181 FJJI91 FJJ141 FJJ25! FJJ2II			
	ZN7473E						
	ZN7474E						SN7474N
	ZN7475E						SN7475N
	ZN7476E						SN7476N
							SN7490N
							SN7492N
			MC7493P				SN7493N

RESISTOR TRANSISTOR LOGIC

General Characteristics
Gate speed 30 ns , power 20 mW
Supply - Vcc 3.6V $10^{\circ}{ }^{\circ}$
Frequency range 8 MHz
Noise immunity $0 \cdot 3 \mathrm{~V}$
These RTL circuits are suitable for many simple switching operations where relatively medium speed operation is acceptable, for example, as an electronic relay.

FAIRCHILD

$\mu \mathrm{L} 910$	Single inverter/driver	T05
$\mu \mathrm{L} 914$	Dual 2-input gate, positive NOR,	
	negative NAND	T05
$\mu \mathrm{L} 923$	Single JK flip-flop with preset and clear	T05

MOTOROLA

MC71IG MC714G MC7I5P MC717P MC718P MC7I9P MC722P MC723P MC724P MC726P MC7269 MC778P

Q-input OR/NOR gate Dual 2-input NOR gate Dual 3-input NOR gate
MC8I7P Quad 2-input NOR gate Dual 3-input NOR gate
MC8I9P Dual 4 -input NOR gate JK flip-flop JK flip-flop
MC824P Quad 2-input NOR gate JK flip.flop JK flip-flop Dual D-type flip-flop

MC780P
MC785P
MC787P
MC788P
MC789P
MC790P
MC791P
MC792P
MC793P
MC799P

	Decade counter Ouad 2-infut expander I JK flip flop, I inverter, 2 buffers
	Dual 3-input buffer, non-inverting

Quad 2-input expander
I JK flip-flop, I inverter, 2 buffers
Dual 3 -input buffer, non-inverting
Hex inverter
Dual JK flip-flop
Bual JK flip-flop
Triple 3-input NOR gate
Dual buffer
Dual 4 -input NOR gate

Suffix G $=\mathbf{T 0 5}$
P_plastic DIL
MC700 Series +15 C to +55 C
MC800 Series 0 to 75 C

DIODE TRANSISTOR LOGIC

General Characteristics
The following type characteristics apply to all manufacturers' DTL i.c.s using the coding given in the DTL tables.

Gate speed 25ns, power 5 mW
Supply Vcc $5 \mathrm{~V} \quad 5^{\prime \prime}$,
Frequency range 20 MHz
Input forward current - 10 mA
Input reverse current ImA
Noise immunity 0.7V at 25 C
Temperature range 0 C to 75 C
Case outline DIL
DTL is suitable for most medium speed applications and is compatible with TTL. Positive logic usually applies to DTL circuit descriptions.

MC830P Expandable dual 4 -input NAND gate MC83IP Clocked flip.flop
MC833P Dual 4-input expander
MC836P
MC84.6P
MC848P
MC84.9P
MC85IP
MC856P
MC862P
MC886P

Hex inverter

Quad 2-input NAND gate
Clocked flip-flop
Quad 2-input NAND gate
Monostable multivibrator
Dual JK flip.flop
Dual 2-input NAND gate and inverter
Dual 4 -input expander

Temperature range $-\mathbf{5 5}^{\circ} \mathrm{C}$ to 125 C
Common Code Digits
930 Dual 4-input NAND gate (expandable) fan-out 8
932 Dual 4-input NAND driver gate (exp) fan-out 25
933 Dual 4 -input expander
935 Hex inverter (expandable)
936 Hex inverter fan-out 8
984 Dual 4 -input NAND with open collector, lamp/ relay driver fan-out 27
945 RS flip-flop with preset and clear (master/slave) fan-out 14
945 Quad 2-input NAND gate fan-out 8
948 RS flip-flop with preset and clear (master/slave) fan-out 13
951 Monostable multivibrator fan-out 10
962 Triple 3 -input NAND gate fan-out 8
9093 Dual JK flip-flops with preset inputs
9094 Dual JK flip-flops with preset inputs
9097 Dual JK with preset inputs and common clear
9099 Dual JK with preset inputs and common clear

CASE OUTLINES (view from above case)
A - T05 - RTL μ L900
B-T05—RTL $\mu \mathrm{L} 914$
C - T05 - RTL μ L923
D - Flat-pack - 14 leads
E - Dual-in-line - 14 leads
F - Dual-in-line - 16 leads
G - Dual-in-line - 24 leads

WHITE SPOT

RED SPOT

GREEN SPOT
(E)

s

(D)

TRANSISTOR TRANSISTOR LOGIC

General Characteristics
The following type characteristics apply to all manufacturers' TTL i.c.s using the 74 series coding given in the TTL table.

Gate speed 10 ns , power 10 mW
Fan-out 10
Supply - I'ce5V 5".
Frequency range 10 MHz
Input forward current - 1.6 mA (logic 0)
Input reverse current ImA
Noise immunity IV
Temperature range (74 series) 0 C to $+70^{\circ} \mathrm{C}$
Temperature range (54 series) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Case outlines: mainly DIL (suffix N), flat pack, TO5 can. TTL is the most comprehensive range of logic i.c.s. It is used in high speed low power applications, where very short connecting lines (12in) can be used to avoid unwanted triggering from noise spikes. Positive logic applies to TTL circuit descriptions. TTL is compatible with DTL, ECL, MSI, using current sinking logic.

Suffix H indicates high speed (6ns) series, 22 mW per gate, and fan-out of 8. Suffix L indicates low power (1 mW) series, low speed (33ns), high fan-out 40.

Suffix N indicates a dual-in-line package although not shown in this list. Some suppliers omit the N in their lists so check before buying whether DIL or flat-pack is available: DIL is usually cheaper and easier to use. DIL package holders are recommended for easy insertion and removal of the i.c.

TTL GATES, BUFFERS, DRIVERS

7400 Quad 2-input positive NAND
7401 As 7490 but with open collector outputs
7402 Quad 2-input positive NOR
7403 As 7401 but pin connections as in 7400
7404 Hex inverters
7405 Hex inverters, open collector outputs
7406 Hex inverters, open collector buffer/drivers
7407 Hex buffers/drivers, open collector outputs
7408 Quad 2-input positive AND gates
7409 As 7498 but with open collector outputs
74.10 Triple 3-input positive NAND gates

7413 Dual 4 -input Schmitt triggered positive NAND gates
7420 Dual 4 -input positive NAND gates
7430 Single 8 -input positive NAND gate
7440 Dual 4 -input positive NAND buffer
7450 Dual two-wide, 2 -input AND-OR-INVERT (expandable)
7451 As 7450 but not expandable
7453 Single four-wide, 2-input AND-OR-INVERT (expandable)
7454 As 7453 but not expandable
7460 Dual 4 -input expander for 7450 or 7453
7486 Quad 2 -input exclusive-OR gates
74.107 Dual JK master/slave flip-flops as 74.73, different connections
74118 Hex set/reset latch with common reset
74.119 Hex sel/reset latch with common and separate reset
74121 Gated or d.c. triggerable monostable multivibrator

TTL
 MEDIUM SCALE INTEGRATION

744।A BCD to decimal decoder/drivers
7442 BCD to decimal decoders
7445 BCD to decimal decoder drivers high power 30V output
7445 BCD to seven segment display decoder/drivers open collector outputs 30 V

7484 As 7481 but with gated write-amplifier inputs
7488 256-bit read-only memory
7490 Decade ripple counter with reset and preset to 9
7491A Eight-bit shift register (serial-in, serial-out)
7492 Divide-by-two and divide-by-six counter (\div 12) with reset
Four-bit binary counter with reset (-16)
Four-bit shift register, dual entry parallel-in, serial-out
Four-bit right-shift left-shift register
Five-bit shift register, parallel-in, parallel-out Eight-bit bistable latches
Improved version of 7441 to minimise switching transients
Four-line to ten-line decoder, open collector outputs
16-bit multiplexer with strobe input
8 -bit multiplexer with strobe input
Dual 4-bit multiplexer with strobe inputs
Four-line to sixteen-line decoder with strobe input Dual two-line to four-line decoder with strobe inputs
74156 As 74155 but with open collector outputs
74160 Synchronous decade counter with parallel inputs
74161 Synchronous binary counter with parallel inputs
74190 Synchronous up/down decade counter
74191 Synchronous up/down binary counter
74192 Synchronous up/down BCD counter
74193 Synchronous up/down 4-bit binary counter

APPLICATIONS

OF

LOGIC I.C.s

Fig. 1 shows a simple double puise detector using a couple of DTL devices, especially handy for detecfing index marks in position sensing equipment. If the input trigger pulses are derived from slowly
changing sources a couple of gates will be required ahead of the circuit shown to speed up the edges ready to fire the monostable (these are available anyway in the 946 range of DTL).

Fig. 2 shows a scheme for a solid state stepping switch which could be useful for example for channel selection in a radio or television receiver.

The operation is simple, the single push-button control is pushed an appropriate number of times until the required channel number is displayed on the readout. At this point the selected output of the 74145 is low, and can be used to drive a wide variety of external circuitry.

Many variations of this circuit are possible, and the whole thing can be made little larger than a cigarette packet. This example illustrates an interesting substitute for a wafer switch for some applications.

Fig. 1

DOUBLE LINE PULSE DETECTOR

Gives an output pulse when a double pulse occurs. Monostable triggers on negative edge of input pulse. One application is to detect a double slot in rotating discs using a photo-electric cell

Fig. 2
SOLID STATE STEPPING SWITCH
This switch uses four TTL/MSI inte. grated circuits and provides seven seg. ment digital readout for ten position channel selection

I.C. SUPPLIERS

The following advertisers in this magazine specialise in the supply of integrated circuits to readers:
A. Marshall \& Son (London) Ltd

Henry's Radio Ltd
G. W. Smith \& Co (Radio) Ltd

Bi-Pak
Distronic Ltd

Distributors for Newmarket Transistors Ltd Diotran Sales
Electrovalue
Bi-Pre-Pak Ltd
LST Electronic Components Ltd
Sinclair Radionics Ltd
Chromasonic Electronics Ltd
Distributors for Ferranti Ltd

Having now had some experience in the operation of the simple radio telescope, the "feel" of the subject will no doubt have been acquired. After the experience of sorting out what is interference, what is random noise, and what is the real signal to be acquired, the limitations of the simple unit will be apparent. However, although this article will begin the description of interferometers and details of their construction, it is recommended that the observer should continue with the programme of the first project for two reasons.

The first reason is that it takes some time to become facile at recognition of the many different forms of interference, some of which will be manmade and some random signals due to odd reflections from the upper atmosphere. The second reason is that the data acquired and entered in the \log will be of considerable importance when compared with the measurements made with the interferometer.

Of course, some constructors will not have the space to set up an interferometer and so must in any case continue with the single aerial unit. Bearing this in mind, some suggestions that may help these people will be given in the last article of this series.

IDENTIFICATION OF SPACE SIGNALS

If the unit has been used during the night with the aerial pointed upwards, it is certain that there will be some signs of the radiation from the sources in Cygnus and Andromeda, and also the Crab Nebula. Also, the general rise in level of the recording at different times during each successive day and night will enable the positive identification of extra terrestrial radiation.

This was, in fact, the way in which the original pioneer Karl Guthe Jansky identified the existence of signals or radiation from space. To quote from his original paper, "In conclusion data have been presented which show the existence of electromagnetic waves in the Earth's atmosphere which apparently come from a direction that is fixed in

ASTROMOMY tichiniouis

By F. W. Hyde

paRT 7

An example of a complex group of sunspots. This was an extremely active area on the sun which lasted for several days. The small spot below the main group is about the size of the earth. The magnitude of the group is apparent from this comparison.
space. The data obtained give for the coordinates of this direction a right ascension of 18.00 hours and a declination of -10°."

Bearing in mind that the width of the aerial beam is quite wide in the vertical direction, tip the aerial so that the dipoles are directed at the Milky Way. Let the system run for a week every night or every three nights if this is more convenient. After the run compare the recordings by laying them side by side with the time marks aligned so that the same time is shown. Examine them for some significant event and check the difference in time that has elapsed. There should be a change of some 15 minutes in three days and some 30 minutes in a week. The exact times can be checked from the charts and the figures given are for the purpose of guidance only.

If it is possible obtain a copy of the Ephemeris issued by the Nautical Almanack Office. This may be available from the library or it can be obtained from the Stationery Office Bookshop in Holborn, London.

Table 7.1 indicates some of the radio sources that should be detectable quite easily on the simple radio telescope. Since there are bound to be satellites recorded, it will be quite clear from the table which these are, because they can be compared with the tracings shown in Part 6 of this series.

SIDEREAL TIME

The table gives the usual astronomical coordinates of hour angle and declination. This involves certain corrections on the part of the observer for the hour angle or right ascension. This hour angle is in Sidereal Time which differs from ordinary astronomical time by an acceleration of 10 seconds in each hour, or approximately four minutes per day. The time is reckoned from the entry of the first point of ARIES which occurs between the twenty-first and twentythird of March each year. This is the Vernal Equinox, 00.00 hours right ascension. All of this may appear a little complicated but it can be reduced to fairly simple terms for the purpose of the project.

In Table 7.2 a summary is given of the sidereal time for noon G.M.T. for each day of the year. This is approximate, but will not vary by more than about five minutes for each day and this error is insignificant with the system being used. In any case the source will be well within the beam of the aerial.

SIMPLE INTERFEROMETER

The simple two-aerial interferometer was briefly described in Part 2 of this series, and the modification required to convert the existing simple telescope is really one of addition. Firstly the existing aerial must be duplicated, together with the preamplifier if this is located at the aerial. The two aerials should be set up preferably on an east to west baseline. Within certain limits this is not an absolute requirement, but this will be dealt with later in this article. The distance between the aerial centres should be, if possible, at least five wavelengths. At the frequency that has been adopted this will mean a distance of 36 feet.
It is necessary to connect the aerials together. This may be done at the observing point, or if this distance is greater or about the same length as the distance between the aerials, then the following alternative arrangement is possible.

Having set up the aerials, cut two lengths of cable which will leave sufficient slack for the aerials to be moved further apart and to facilitate stowage. These

Fig. 7.1. Coupling two aerials together as a simple in terferometer
two lengths of cable must be exact to within about one half inch, and of the same type of cable. These two points are very important. As both ends of the cables will terminate in coaxial plugs the equality of length includes the plugs. At the junction of the two aerial cables there will be a connection box as shown in Fig. 4.6 of Part 4. The outlet from this box will go to the converter in the same way as for the simple telescope, that is, with the matching section of 50 ohm cable followed by the 75 ohm cable. The diagram in Fig. 7.1 gives the layout.

The importance of the length of the cables has been stressed because the operation of the two aerial system depends on the combining of the signals which are alternately in phase and out of phase with the other.

TABLE 7.I. LIST OF RADIO SOURCES

Fig. 7.2a. The effects of differing aerial parameters. (1) Single aerial pattern. (2) Two aerial pattern. (3) Interferometer pattern (point source)

When using an interferometer it is usual to have the arials aligned and fixed in azimuth facing south in the northern hemisphere and north in the southern hemisphere. The altitude will depend on the section of sky to be observed, but each will normally be at the same angle of altitude. This will apply to each sweep of the sky. The sweeping will be done by the rotation of the earth so that in the course of 24 hours the whole 360 degrees of sky, as seen from the earth, will be scanned by the width of the aerial beam.

RESOLUTION

The resolution or ability to distinguish between sources will be dependent on two parameters. One is the distance between the aerials, for this governs the width of the fringes, and the width of at fringe

Fig. 7.2b. (1) Point source pattern. (2) Uniform extended source comparable but smaller than lobe spacing. (3) Uniform extended source equal to or greater than lobe spacing
determines the size of the smallest source that can be recognised. The diagrams in Fig. 7.2a and b illustrate the effects of these varying conditions.

It is essential that the beginner goes through this step of the simple interferometer in order to make practical observations and again have experience of the working conditions.

FRINGE WIDTH

Before moving on to the more complicated phaseswitched interferometer there are one or two points which need to be covered. Firstly, the simple calculation to be made to determine the fringe width. The relationship between the fringes and the distance between the two aerials is in this form. The beam width between first null points (the fringe spacing) is $I / D \lambda$ radians which equals $57 \cdot 3 \% / D \lambda$.

TABLE 7.2

DAY	JAN.	FEB.	MAR.	APR.	MAY	MONTH JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.
1	1840	2043	2233	0035	0233	0436	0634	0836	1038	1237	1439	1637
2	44	46	37	39	37	40	38	40	42	41	43	41
3	48	50	41	43	41	43	42	44	46	44	47	45
4	52	54	45	47	45	47	46	48	50	48	51	49
5	56	58	49	51	49	51	50	52	54	52	55	53
6	1900	2102	53	55	53	55	54	56	58	56	59	57
7	04	06	57	59	57	59	58	0900	1102	1300	1502	1701
8	08	10	2300	0103	0301	0503	0701	04	06	04	06	05
9	12	14	04	07	05	07	05	08	10	08	10	09
10	16	18	08	11	09	11	09	12	14	12	14	13
11	20	22	12	15	13	15	13	16	18	16	18	17
12	24	26	16	18	17	19	17	19	22	20	22	20
13	28	30	20	22	21	23	21	23	26	24	26	24
14	32	34	24	26	25	27	25	27	30	28	30	28
15	35	38	28	30	29	31	29	31	34	32	34	32
16	39	42	32	34	33	35	33	35	37	36	38	36
17	43	46	36	38	36	39	37	39	41	40	42	40
18	47	50	40	42	40	43	41	43	45	44	46	44
19	51	53	44	46	44	47	45	47	49	48	50	48
20	55	57	48	50	48	51	49	51	53	52	54	52
21	59	2201	52	54	52	54	53	55	57	55	58	56
22	2003	05	56	58	56	58	57	59	1201	59	1502	1800
23	07	09	2400	0202	0400	0602	0801	1003	05	1403	06	04
24	11	13	04	06	04	06	05	07	09	07	10	08
25	15	17	08	10	08	10	09	11	13	11	13	12
26	19	21	11	14	12	14	12	15	17	15	17	16
27	23	25	15	17	16	18	16	19	21	19	21	20
28	27	29	19	22	20	22	20	23	25	23	25	24
29	31		23	26	24	26	24	27	29	27	29	28
30	35		27	29	28	30	28	30	33	31	33	31
31	39		31		32		32	34		35		35

Using three examples of spacing, the first five wavelengths, the second 10 wavelengths, and a third 20 wavelengths, the approximate figures are 11.5 degrees, 5.73 degrees, and 2.86 degrees respectively. Since this is the point of the nulls the actual fringe width is half each value given at the half power points. The half power points were explained in Part 1 and illustrated in Fig. I.4.

CHART SPEED

The second point to be noted is the appropriate speed of the chart on the pen recorder consistent with obtaining a useful trace.
Taking the case of the least spacing 11.5 degrees, it will take 46 minutes for passing from the one null to the next, since it takes about four minutes of time for the earth to move 1.0 degree of arc. Therefore in this instance it will be wise to choose a slow speed for the recorder in order that the fringes may be clearly visible. A preferred speed would be 0.5 inches per hour, though 1.0 inch per hour would
be permissible. For the widest spacing quoted a speed of 3.0 inches per hour would give best results. It will be clear from this that the greater spacing offers a better chance of detecting sources than the lesser spacing.

THE BASE LINE

Finally the setting up of the base line must be considered-for those who have the space to accommodate the interferometer. It is not sufficient to set up the south point using a compass, though this is a first step. The south point required is yeographical south and this differs by several degrees. The exact amount of difference is obtainable for each year from ordnance survey maps. It was 8 degrees 40 minutes West in 1948, and decreasing by about 8 minutes annually.

Next month's article will be concerned with the phaseswitched interferometer.

NEWS BRIEFS

TRAFFIC SPEED METER

A completely new road traffic speed measurement system is being developed by GEC-Marconi Electronics, under contract to the Director of Telecommunications. Home Office.
The new system uses an optical method of measurement and the complete system can be contained in a single unit which can be placed at the side of the road. The unit looks at right angles to the traffic flow and as soon as a vehicle passes, and comes within the field of view of the optical system, its speed will be measured almost instantaneously, and shown on a three-digit display. probably using a liquid crystal system.

The image of the vehicle is split into a succession of vertical strips., which are viewed by a photodiode. Any irregularities in the image, whether bright spots or shadow, will move across the slits of the "virtual" grating and produce a fluctuation of the light falling on the diode. The frequency of this fluctuation is measured and, from it, solid-state micrologic circuitry calculates the speed of the vehicle.

EUROPE'S FIRST FULLY AUTOMATIC NAVIIGATIONAL BUOY

|n almost every field nowadays man is rapidly being replaced by electronic equipment. This is the case at Portland Bill, Dorset, where a fully automatic navieational buoy has recently replaced the manned Shambles lightship.

The 84 ton buoy, made by Hawker Siddeley Dynamics and named Lanby (Large Automatic Navigational Buoy) has a $40 f \mathrm{ft}$ lattice mast topped with a main light beacon giving a luminous range of 16 miles. Also on board is a powerful fog signalling device. with an audible range of more than 3 miles.

The buoy is monitored every 30 minutes by a shore control station using a radio telemetry link. Should any failure occur. standby services operate automatically, and the nature of the fault is relayed to the control station.
The buoy can be moored in depths from 30 to 300 ft , and can withstand winds up to 100 mph , waves up to 40 ft and tidal currents up to seven knots.

UNDERWATER TELEVISION EQUIPMEMT

THE present system of searching for and locating underwater wreckage, such as crashed aircraft and sunken ships by use of drag lines towed by surface craft seems soon to be superseded by a more efficient electronic method. This is evident following recent trials carried out by EMI Systems \& Weapons Division, Middlesex, with their newly developed "low light" television equipment.

The television camera can quickly scan large underwater areas where visibility is poor and transmit clear pictures of the sea bed to a mother ship on the surface where they can be viewed and recorded. The television equipment will be housed in a midget submarine capable of depths down to $3,000 \mathrm{ft}$.

The "low light" television camera used in the trial is claimed to be the smallest in Britain. measuring 128 $\times 128 \times 152 \mathrm{~mm}$. Its ability to obtain clear pictures in very low lighting conditions is provided by an E.M.I. Ebitron tube. This intensifier-vidicon is 300 times more sensitive than a normal 26 mm vidicon tube.

COMPUTER NURSE

THE United Birmingham Hospitals have received approval from the Department of Health and Social Security to proceed with the purchase of a UNIVAC $418-111$ computer as part of the Department's experimental programme in hospital computing. Delivery will be made early in 1972 and specially designed accommodation to house it is nearing completion at the Queen Elizabeth Medical Centre. The first real-time application is expected to go live early in 1973.

The initial configuration will provide for complete patient administration and laboratory reporting systems for the Queen Elizabeth Hospital. It is planned to introduce other experimental systems such as laboratory requesting, drug prescribing, nursing records, physical examination of the patients and other medical applications at later stages in the project.

NORTH MIDLANDS READERS Please note

A short course of six evening leccures entitled "Practical Electronics" will be held at North Staffordshire Polytechnic, College Road, Stoke-onTrent, commencing Wednesday, January 12. The lecturers include well-known contributors to this Magazine.
Further details will be given next month.

SPECIAL PURCHASE !

BRAND NEW FM MULTIPLEX 8TEREO DECODER OMITS. Manufactured by PHJLIPS. Size $\mathbf{v}^{\prime \prime} \cdot 32^{*}$
 details, $i 4$ eiach. Post free.
LEAE MK I TRANSCRIPTION PICK-UP ARMS. Using the worlil fanous gimbal pivot system. ConnIEPUT MATCHING TRANSFORMER. Beautifully made in heavy Mu-tuetal cylindrical case for mini-
mun hum pick-up. Nize mum hum pick-up. Nize $1!^{*}$ higl $\times 11^{* \prime}$ "lia. Ratio
1J0: 1 approx. Especially suitable for matching dynanite or ribbon mikes or piek-up from low to high impedance or vice versil. 75p each. Pust Frce. gIFES. For TO3, conplete with mica's allil hushe's size $2 \mathrm{~g}^{2} \times 3^{*}$ approx. $25 p$ ןair.

HARVERSONIC SUPER SOUND $10+10$ STEREO AMPLIFIER KIT

 OUTPUT AND INCORIORATING HIGH QUALITY READY GRILIEL PRINTED
CIRCUIT BOARD FOR EANV (ON. CIRCUIT
STRUCTION

A really first-class Hi-Fi steren Amplifier Kit. I'ses 14 transistors including silicon Transistors in the first five stages on each channel resulting in evelt lower noise
level with improved sensitivity. Integrated pre amp with Bass, Treble and two Colume Controls. Huitable for use with Ceramic or Crystal enrtridges. Output stage
for any speakers from 5 to 15 ohms. (ompatet design. for any speakers from 5 to 15 nhms. Compatet design. all parts aupplief inchuling driliet metal work, high quality ready irilled frinted circuit bmarel, attlactive to buy. Simple otep by step instructions miable any
constructor to build in aniplifier to te prond of. Brief constructor to build an amplitier to be proud of. Briet 5 ohms. Frequeney response $-\frac{1}{4} 11112-30,000 \mathrm{~Hz}$. Senaltivity better than somvintu $1 \mathrm{M} \Omega$. F'ullpower bandWidth $\pm 34 \mathrm{~B} 12-15,000 \mathrm{~Hz}$. Bass loost approx. $10: 131 \mathrm{~B}$. Treble eut approx. to -3 tidB. Negative feedback 18 dB
 Overall bize- $12 "$ wide $8^{\prime \prime}$ decp $2 q^{*}$ high.
Fully detailed 7 -page construction mamal ant parts list

 CABINET, \& P. P P P 30 (Post Free if all units purehaseslat same time). Fullafter galea ecrvice. Also available reauly built ant tested.
efo. 50 Post Free. Note: The abore amplifier is suituble for feeding two
mono sources into inpug: (e.g. mike, radio, huin record mono sources into inpuis (e.g. mike, radoo, win record
deck, etc.) and will then provide mixing and fading decks, etc.) and will then provide mixhy anu fadting
facilities for nedinm pourered Mi-Fi Discotheque use, etc. SPECIAL PURCHASE OF MANUFACTURER'S SURPLU8! All Transistor F.M. tuner heall with twin A.M. Gang incorporated. Beantifully engineered with precision geared reduction drive. F.M. R.F. Transistor. oscillator/Mixer
and first I.F. At age ($10.7 \mathrm{Me} / \mathrm{s}$ out pht) with optional AFC
 connection. Built oll printed circuit panel and fully screened. Extremely
stahle over ratuge $88-108 \mathrm{Mc} / \mathrm{s}$. Rrand new and pre-aligned. size 2tin H. .:
 mers which can be conncted standard A.M. aterial and uscillator
circuita if required. circuith if required. NUMBER. Only $22 \cdot 25$ po
Connection details supplied.
TELESCOPIC AERIALS WITH SWIVEL JOINT. Can be angled and rotated in any direction. is section Lacquered Brass. Extends from 6in. to approx.
diameter $\frac{1}{2}$ in. $25 p$ each. P. \& P. Ip.

BRAND IEW MULTI-RATIO MAIHS TRANSPORMERS. Giving 13 alternatives. Primary: $0-210 \cdots 40 \mathrm{~N}^{\circ}$ Seconwave at 1 amp or $10-0 \cdot 10,20 \cdot 0-20,30 \cdot 0-30 \mathrm{v}$, at 2 amps
 P. \& P. 30p.

MALS TRANBFORMER. For transistor power supplies. Pri. $000 / 240 \mathrm{~V}$. Sec. $9-0-9$ at 500 nAA . 70p. P. \&i P. I3p
 Pri. $200 / 240 \mathrm{~V}$. Sec. $10-0-10$ at 2 anp. \&1.38. P. A P. 30 p . Tapped Priniary
83p. \& P. 13p.
4AMP BATTERY CRARGER TRANSFORMER
Brand new. For 6 or 12V. 'l 40 V Primary. Secomlary volts r.m.s. off load 10 and $1 t i-5 V$, Overall size appros 23in $\times 21$ in $\times 3 \ln$. Weight 31 b . Limiterl momber at
E1.85. P. \& P. 35 p .

SPECIAL OFFER!!

HI-FI LOUDSPEAKER SYSTEM
Beautifully made teak finigh enclosure with most attractive Tygan-Vynair.front. Size 16 in in high
$\times 10 \sharp i n$ wide $\times 5 t^{\text {dep }}$ deep. Fitted with E.M.I. Ceramic Magnet IBin $\vee 8$ in bass unit, two H.F Ceramic Magnet unitg ani crossover. Power handling low

Our Price $£^{8.40}$
Carr. 65p
BINET IVAILABLE NEPARATELY 24-50. Carr. 60p.
Also a railable in 8 ohm with KMI $13 \mathrm{in} \times 8 \mathrm{in}$. bass speaker with parasitic tweeter. $8 \mathbf{8 0} 50$.

LOUDSPEAKER BARGADE
 $20 p .10 \times 6$ in 3 or 15 ohm 11.90 , P. \& P. 30 p . E.M.I.
$8 \times$ 5in 33 whtu with high flux magnet ह1.62. P. \&. 20p. H.M.I. $13: \times 8$ Sin 3 (Jlw with ligh flux ceramic magnet \&2. 10 (1.0 ohn 22.25). P. \& P. 20p. E.M.I. 13×8 in, ${ }^{2}$ ne work $24-20$. P. 30p. E.M.T. $13^{*}: R^{n \prime}$ tw
א (hnil 28.25. P. $\mathcal{P} .30 \mathrm{p}$. BRAND NEW. IVin 35 H H/D Speakers, 3 or 15 ohu Current prorluction by well-known britiah maker. Now
 E.M.I. 3ईin BEAVY DUTY TWEETERB. Powerful .available in 3,8 or 15 ohm $98 p$ each. P. \& P. 13p.

IRID "RA" TWIH CONE LOUDSPEAKER 10 watts peak handing. 3. R or 10 ohm, 22.20. P. \& P. 30p. 35 ohm SPEAKERS $3 "$ ". ONLY 63p. P. \& P. 13p. VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS

SPEAKER CABINET BARGAIN
Beant ifully madr all woden construction medium walnut
 sides. Approx. size overall llyin high \times on tleep x 13 iin ride at base. Baffle ent out or hin speaker
could acconmunate anmplifer in radion together with (omuld an
4peaker.

HI-FI STEREO HEADPHONES

Adjustable hearlband with comfortable flexifoan earmuffs. Wired and fitted with Rtandard gtereo tin jack mpelance \mathcal{X} t 6 ohme Fasily convertell for mono. PRICE 42.95.

SINGLE READPHONE. With alunininm healband. CRYBTAL MKES. High ilup. for desk or hand use CRYBTAL MIKEs. High inup. for hesk or hand ube HIGH IMPEDANCE CRYBTAL STICK MIKES. OUR PRL(ERE 21-05. P. \& P.sp.
GENERAL PURPOBE HIGA STABILITY TRANSIBTOR PRE-AMPLIFIER. For P.V. Tape, Mike Gultar, etc., and suitable for use with valve or
transistor equipment. $9-18 V$. Battery or from H .T. line $200 / 300 \mathrm{~V}$. Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$ Gain 2filB. Solid eucapoulation size $1: \times 1+\times 1 \mathrm{in}$. Brand new -complete with instructions. Price
88 p . P. \& P. 13p.

BRAND NEW E.M,I, LIGBTWEIGHT PICK-UP ARM WITH ARM REST. Fitted mono t/o st ylur and cartridge
or LP $/ 78,0$ NLY fi. P. \& P. M.
QUALITY RECORD PLAYER AMPLIFIER ME II A top-quality record player amplifer enploying heavy and rectifier. Separate Bass, Treble and Volume controls Complete with out put t ransforiner matched for 3 ohm speaker. Nize 7in. w. - 3 d. . 6 h . Ready built and tested. PRICE \&3\%5. P. \& P. $\$ 01$. ALSU AVAILABLE mounted on buard with out pit transformer and speaker
ready to fit cabinet, below. PR1CEF \&4-88. I^{\prime}. \& P. 50 p . ready to fit cabinct below. PRICE $24-88.1 . \&$ P. 00 p
DE LUXE QUALITY PORTABLE R/P CABINET ME II Uncut motor board size 141 12in., clearance 2 in. below tin. above. Will take above amplifier and any B.S.R. or GARRARD changer or Single Player (except AT60 and
SP: $\%$). Size $18 \times 15 \times 8$ in. PRICE 84.75 , P. \& P. 50 p.

10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished
inonaural amplifier nonaural amplifier ith watts from 2 ELSts in puah-pull. Super reproduction of both music and specch. with negli-
sible hum. Separate gible hum. Separait
inputa for nike and inputs for linke and
gram allow records
 and announcements to ioilow each other Fully throuded seetion wouth output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls, and scparate bass and treble controls are provided giving good lift and cut. Valveline-upe FLE4s. ECC83. EF86 and EZ80 rectifier. simple instruction bonket 13. (Free with parts). All parts sold separakely. ONLY 27.87, P. \& P. 50 p Also available ready buit and

FAMTASTIC "POLY PLANAR" WAFRE-TYPE, GIDE RANGR GLECTRO-DYAAMIC BPEAKER Size only 11 inn $\times 143$ In $\times 1$ ifn deep. Weight application and is particularly useful for those with Inilted space. Extremely rugged and ahockproof. Operating temperature - $20^{\circ} \mathbf{F}$ to $+175^{\circ} \mathbf{F}$. Power handling "0W r.m.s. (40W peak). Impedance K ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls. tloors, under tables, te., and used with or without haffle. Bend 8. . for full letails. Only $\mathbf{\$ 5} \mathbf{2 5}$ each. P. \& P. 25.

DE LUXE STEREO AMPLIFJER
 rovided for bass and treble control, giving bass and treble boost and cut. A dual volume control in uned. Balance of the left and right baud chanuela can be adjusted by the rear of the chassis. Input senaltivity is approxi mately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 wat ta per channel (8 watts mono), into 3 ohm spenkers. Full negative eedback in a carefully calculated circuit. allowa high rolume levels to be used with negligitele diatortion. Supplied complete with knobs, chassis size litn. w $\times 4 \mathrm{in} . \times$. overall height including calves 5 in . Ready built and ested to a high standard. Price \&8-92. P. \& P. 45p.

4-SPEED RECORD PLAYER BARGAIMS

 With atereo cartrialge e797, Carr. 50p.
SUITABLE PLITH UNIT FOR ABOVE with rigid plant ic
 025 SP95, 8000 , AT40, etc. 8.A.E. Lor Latent Pricen! PLITTE DIIT8 cut out for Garrard Modele 1025. 2025 2000, 3000, 3500 , etc. With rigla trausparent plantic cover. Special design enables above models to be uned

Latest Acos GP91/18C 1 1 ono Compatible Cartridge with LATEsTAcos GP/EP/78. Universal mounting bracket. 2 O TONE 9TAEC COMPATIBLE ETEREO CARTRIDGE O. stylus. Diamnad Stereo LP and Rapphire 78. ONLY Ez 30 . P. \& $P_{1} 10 p$. Also available fitted with! twin Diamond T/O stylus for Stereo LP. 88. P. \& P. 10p.
LATEST RONETIE T/O \&tereo Compatible Certridge for P/8tereo/78.63. P. \& P. 10p
LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/78 mono or
\&1.50. P. \& P. 10 p.

3-VALVE ADDIO
AMPLIFIER HA84 IEE II Designed for $\mathrm{Hi} \cdot \mathrm{Fi}$ reproduc-
tion of recorde. A.C. Maina operation. Ready built on plated heavy gauge metal
chassis, sire $7 \neq \mathrm{in} w . \times 4 \mathrm{in}^{\mathrm{d}} \mathrm{d} . \times$ chassis, size $7 f$ in w. $\times 4$ in. d. x
4tin. b. Incorporates ECCAB ELR4, EZ80 valves. Heary duty, double wound maina dransformer and output transformer matehed for 3 ohm opeaker. Separate volunte control and now with improved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output $4 \frac{1}{2}$ watte. Front panel can be detached asd lends extended for remote mounting of controls.
HSL "HOUR" A MPLIFIRR EIT. Similar in appearance to HA34 above but employs entirely diferent and advanced circuitry. Complete set of parts, etc. 18.98. P. \& P. 40p.
HARVERSON'S SUPER MONO AMPLIFIER
A super quality gram amplifier using a double wound fully isolated mains transformer, rectiffer and ECL82 triode pentode valve as audio amplifler and power output atage. Impedance 3 ohms. Output approx. 3.5 wat ts. Volume and tone controls. Chassis size only fin. Whe Ain. deep Brand New, completely wired and teated with good Brand New, completely wired and teate
quality output tranfformer. FEW ONLY.

EAADBOOX OP TRANEISTOR EQUIVALEXTS AND SUBBTITUTES
Amst for sersicemen and home constructors. 1971 edition meluding many 1000 'в of Britigh, U.S.A..
European anl Jquanese transistors. ON LY 40 p . Post Jp.

HIGH GRADE COPPER LAMINATE BOARDS
HIGH GRADE COPPER LAMMATE BOAR
$8 \times 6 \times \frac{1}{4}$ in. FIVE for 50 p.
P. \& P. 13 p .

Open 9-5.30 Monday
to Saturday
Early closing Wed. 1 p.m. Tube Station

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. 01.5403985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

NEW from Goodmans for constructors

Din 20 Kit

20 watt, high fidelity loudspeaker kit contains all parts necessary to complete the system, except timber and other material for the cabinet itself, with detailed, illustrated instructions. Specification: 20 Watts DIN, 4 ohms impedance, 8 ins bass unit, dome HF radiator, crossover frequency $4,000 \mathrm{~Hz}$.

Axent 100

Dome HF Radiator with integral crossover. Capable of high frequency sound reproduction with negligible distortion in systems rated up to 30 Watts DIN, this 'state of the art' drive unit has an integral crossover which cuts frequencies below 3 kHz at a rate of $12 \mathrm{~dB} /$ Octave.

Audiom 100

12 inch high fidelity bass loudspeaker.
For use as a bass unit in two-way systems, the sensitivity and high frequency roll-off of the Audiom 100 has been tailored to match the Axent 100.

Goodmans

[^3]
J=ENY 58p BA E CAM EABME

All fully coded, all from well-known manufacturers and now available, while stocks last, at better than bulk-buyer's prices! Cash with order only.

THIS MONTH:
2N2926
NPN Silicon Transistor
(Red)
Hfe 55.110
C6U
1.6 amp general purpose 25 V SCR in T05 case

8 for 50p
3 for 50p
D16P4 (Equals 2N5306) Darlington
transistor $\mathrm{Hfe} \mathrm{min}=7000$
3 for 50p
3 for $50 p$
2N3391A Silicon high gain low noise
transistor (better than BC109) 3 for 50p
Post and packing 10p for 1 or 2 packs; 3 packs or more post free.

Order any quantity, till sold (but we regret packs cannot be subdivided).
P.O. or Cheque payable Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

This month's Star Bargain
1970 edition Motorola Semiconductor data 100 pence post free.

JUST A SECOND HOME CONSTRUCTOR

Yes, about a second, to remove dual-in-line I.C. and T.O. 5 type transistor from those ex-computer printed-circuit boards, experimental circuits, etc.
DILKIT comprises a high performance soldering iron, long-life bits specially shaped to unsolder all leads of a component in a single operation, and a length of solder-absorbing wick.
Automatic component extractors also available.
TO: ORIENTATION LTD., MAYFIELD, COVERACK, CORNWALL. PLEASE SEND

	DILKIT $£ 7 \cdot 40$			
	DIL EXTRACTOR $£ 2.25$			
	T.O.5 EXTRACTOR $£ 2.25$			CHEQUE/P.O.
:---				

SURPRISE SURPRISE!!

The decision by RCA to pull out of the computer mainframe business sent a chill down the spine of the United States' electronics industry-and of Europe too.

Everyone was taken by surprise. It happened almost exactly a year after RCA chairman Robert W. Sarnoff had announced firm plans for a frontal attack on the market held so lucratively by IBM. As recently as July, Sarnoff was still denying that RCA had any intention of pulling out.

The RCA debacle follows a similar withdrawal by U.S. General Electric a year earlier. GE's move, however, was well regulated and involved lengthy negotiations before the sale of its computer interests to Honeywell.

Industry experts on both sides of the Atlantic are asking themselves: if giants like U.S. General Electric and RCA can't stand the pace, who can? Except, of course, the almighty IBM.
Unstoppable IBM has 70 per cent the U.S. domestic market and not far short of that figure in the rest of the world. RCA's share was under 4 per cent with a growth target of 10 per cent of the market by 1975. The crunch came when it was realised that another $£ 200$ million of capital, on top of the $£ 200$ million already spent, would be required before breaking into profit.

Now the RCA market share will be distributed among the survivors with the bulk going to IBM, still further tightening IBM's stranglehold.

THE AFTERMATH

Britain's ICL is involved only through System 4, a development of RCA's Spectra 70 Series. ICL say they will remain unaffected. But Siemens in Germany will be affected because they rely strongly on close technical links with RCA.

RCA customers have been told that all existing orders and service contracts will be honoured. But the demise of two major mainframe manufacturers in a period of 16 months will influence new buyers toward the most stable source which means even more business for IBM.

Component suppliers to RCA such as Motorola, Signetics and Advanced Memory Systems will all suffer from the closure. Some smaller suppliers stand to lose 10 per cent of their total business.

At the time of writing there was no firm news that RCA had been able to sell its computer interests either in whole or in part. In the present depressed state of the computer market few firms are interested in acquiring extra plant and manufacturing capacity.

One possibility emerging from the debacle is that Britain's ICL and Germany's Siemens could now get together to form a new and potentially extremely powerful computer force in Europe.

DATA SATELLITE

The computer industry may be suffering at the moment but the demand for data processing and data transmission will continue to increase at a growing rate. In 1970 there were 14,000 data terminals in Britain. By 1980 there might be, and probably will be, 300,000 . This figure will be matched by other major European nations and so far no international agreements on data network standards have been made.

An interesting new development is a study contract awarded to Marconi Communications Systems Ltd. by the European Space Research Organisation (ESRO). The idea is that data links should be through a geo-stationary satellite used in conjunction with large numbers of small and inexpensive earth terminals.

The earth terminals would have dishes no larger than 9 ft in diameter sited within $100 y$ ds of the data terminal. Use of such a system, dedicated entirely to data transmissions, would obviate many of the difficulties of international connections through existing public telephone and data networks where data rates are comparatively low due to line variations.

The preliminary study, involving analysis of present and future traffic, prospective users and costs of the system, should be completed by April 1972

WHERE THE GIANTS MAY GO

Although the great electronic exhibitions aimed at industry such as the IEA and ILECS at Olympia are by no means on the way out, increasing costs have been forcing companies to look more closely at the less expensive small shows which tend to be more costeffective.

One of the brightest operators in the field is John McNeill, managing director of Electromation Exhibitions Ltd. I have just seen the company's forward programme with electronics shows starting at Birmingham in November and moving round the country to Harrogate, Southend, Stevenage, Portsmouth, Croydon, Glasgow, Dublin, Bristol, Manchester and back to Birmingham in November 1972. This is an impressive programme which includes, apart from exhibitor stands at each venue, a technical convention. Admittance is reserved for professional engi-
neers and you need an invitation before you can get admission.

Another bright operator in small exhibitions is Evan Steadman who has already sold out for his Seminex due to be held next April. This one is for semiconductor manufacturers. Yet another is Gordon Johns who organised the successful Compec '71 computer peripheral exhibition in London last September.

It is too early to predict the effect of this type of exhibition on the IEA at Olympia next year but one thing seems certain. With Mullard, TI, Fairchild, RCA, Emihus, Ferranti, to name but a few who have already booked for Seminex and its accompanying technical symposium, it seems clear that the bulk of the semiconductor companies have already opted out of

BRIGHTER OUTLOOKBUT SLOW

Sir John Clark, chairman of Plessey, thinks the worst may be over but it will be a long haul back to the halcyon days of prerecession. Ernie Harrison, Racal chairman, believes that it could be another 18 months before business takes off in any big way. Dr F. E. Jones, managing director of Mullard was not exactly cheerful when we last met despite the boom in colour TV sales.

On the whole, however, I have found most industry leaders optimistic. Smaller companies with their greater level of flexibility have in many cases proportionately weathered the storm better than the giants. But 1972 could see further "re-structuring" of the industry through takeover or merger. On one thing they all agree. Even if the bottom has now passed, don't expect a dramatic revival. Recovery will be slow.

Physical inspection of rubyliths (artwork) of a 1,024-bit CDI shift register

Layout of the car safety belt system as installed in a car. Note the narrow ultrasonic beam directed at the receiver mounted in the windscreen pillar

Part of the pre-production line for CDI

New LSI Combines Logic and Linear Functions on one chip

How does the thought of a high performance computer on a single slice or even a chip strike youimpossible? Well it is not as far fetched as it may seem. While we are just getting accustomed to MOS integrated circuit technology. along comes anotherthe CDI process of producing LSI (large scale integration).
CDI (collector diffusion isolation) is a simple bipolar process originally developed in the Bell Laboratories in the U.S.A. and has now been further developed by Ferranti at Manchester for large scale

ELECTRD

Ultrasonic Car Safety Belt System

O
NE of the results of a new car safety belt system, developed by Mullard and the Ford Motor Co., means that even the car thief will have to strap hiniself in if he wishes to make off with his "booty". The belt must not only be fastened but also be correctly positioned across the wearer.

As the block diagram shows, before the ignition will function the driver must occupy his seat, activating a pressure switch fitted beneath it, buckle the belt across his lap and close the belt switch. Provided the belt is worn correctly a 40 kHz signal emitted from an ultrasonic transmitter, mounted in the belt, is received by a detector built in the windscreen pillar, which in turn completes the ignition circuit. If the front passenger seat is occupied then a 50 kHz signal must be received from the passenger`s

Block diagram of the car safety belt system

bipolar integrated circuits at Ferranti
production at an economic cost. This is said to be the first time that LSI has become a practical proposition. combining the high complexity of MOS with the performance advantages of bipolar technology.

The breakthrough is in the combination of both high speed switching logic and linear capability for a common supply of 5 V on the same monolithic chip. The system is completely compatible with existing TTL i.c.s.

Only five masking operations are required compared with nine steps involved in current bipolar processing. It is expected that this new bipolar LSI technology will be used where digital and analogue control. computers and telecommunications already require complex and sophisticated circuitry.

NORAMA

safety belt before the ignition switch will be functional.

If the correct sequence has not been carried out a logic circuit will trigger an audible and visible alarm mounted on the dashboard.

The system can be arranged so that if the belt is unfastened while the car is moving the ignition is not immediately affected. Instead, the alarm is sounded and if, at the end of a specified time, the belt still remains unfastened, the ignition will then be cut out.

For very short operations, such as parking or garaging the car. the logic arrangement can be adjusted to allow for car movement in first or reverse gear for a specified time without the driver being belted.

As a method of enforcing the wearing of safety belts by driver and passengers, thus cutting down the death and injury toll on the roads, this contribution to road safety should be closely looked at by the Police and the Ministry of Transport.

The ultrasonic transmitter (top) and receiver circuit boards
Practical Electronics
December 1971
The ultrasonic transmitter mounted on a car safety belt

THE stabilised power supply to be described was designed and built to provide a power source for transistorised equipment undergoing development. As such, it had to fulfil certain basic requirements.

A long and varied experience of development and service work had shown the need for a power supply capable of being varied from near zero to a maximum of some 25 V , with a maximum current capacity, within this voltage range, of 1 A .

A further requirement was that the output voltage had to be regulated. The output current also had to be controlled, so that even if the load terminals were made short circuit, the maximum current rating could not be exceeded.

The final requirement was that the maximum current output should be capable of being adjusted

Fig. I. Block diagram of power supply
to values less than the 1 A maximum. In the prototype, two switched ranges of 1 A and 100 mA are provided.

A block diagram of the power supply is shown in Fig. 1 which should be studied in conjunction with the circuit diagram of Fig. 2.

SERIES REGULATOR

The regulator element of this design is of the series type and is made up of the transistors TR5, TR6 and TR7.

This is a compound configuration where TR5 controls the base to emitter voltage of the output pair TR6 and TR7. The base feed resistor of TR5 also functions as the collector load of TR2. This transistor, together with TR1, constitute a differential amplifier.

DIFFERENTIAL AMPLIFIER

The differential amplifier provides an output voltage which is proportional to the difference of the input voltages applied to the transistor bases. At the base of TR1 is connected a fixed Zener voltage which is derived from a double diode rectifier and filter circuit.

This stable reference at one base means that any changes in the output voltage-either up or down -will be fed back by way of VR2 to provide a collector current change through R5. If the current flow is low the volt drop at this resistor is low, which corresponds to a movement of the base potential of TR5 towards the collector potential. Increased emitter current therefore flows, and as this current is into the bases of TR6 and TR7, their emitter currents also increase.

If the output load is a resistive one, this will result in an increase of output voltage. A converse feedback action will decrease the output.
The overall gain of TR2, TR5 and the output pair is very high, and very small changes in output voltage can be sensed and automatically corrected. Rapid changes in output voltage, corresponding to a residual 100 Hz ripple, or the signal frequency of a connected high power amplifier, can also be sensed and corrected. In this instance, feedback is via C5, again to the base of TR2 which treats it also as an error signal.

CURRENT LIMITING

The current limiter circuit comprises TR3 and TR4, in conjunction with VR3, R8 and VR4 and R10.

The transistor TR3 is connected so as to function as a cheap form of Zener diode which fixes the emitter potential of TR4. Under no load or small load conditions TR4 is reverse biased and does not pass any collector current.

Fig. 2. Circuit diagram of power supply

SPECIFICATION...

MAIN SUPPLY

Output Voltage Output Current Current Limiting Output Resistance
A.C. Ripple
A.C. Ripple

Output Variation

2 V to 24 V
1 A max
1 A and 100 mA
50 milliohms at IA
With no load is $250 \mu \mathrm{~V}$ r.m.s.

At $20 \mathrm{~V}, \mathrm{IA}$ is 5 mV r.m.s. 0.1% for 10% mains variation

AUXILIARY SUPPLY

Output Current
30 mA max
IIV $\pm 5 \%$ at 30 mA

Fig. 4. Component layout and wiring of rectifler panel

values must be selected. The exact values used may require some adjustment, dependent on the gains of the transistors used in individual versions.

The action of the limiting circuit is not an abrupt one. The limiting process on the 1 A range begins at about 0.8 A and gradually increases. This will affect the output resistance above and below about 1 A .

AUXILIARY SUPPLY

The transformer $T 2$ has two windings, one of which provides the reference voltage for the differential amplifier, the other provides a stabilised IIV

COMPONENTS...

```
Resistors
    R1 
    R4 4.7k\Omega R10 12\Omega 2.5W wirewound
    R5 3.9k\Omega RII 299k\Omega 1% metal film (see text)
    R6 390\Omega Rl2* See text
    All 5%, \frac{1}{4}\mathrm{ watt carbon except where shown}
```

Capacitors
$\mathrm{Cl} 2,000 \mu \mathrm{~F}$ elect. $50 \mathrm{~V} \quad \mathrm{C} 4 \quad 1,000 \mu \mathrm{~F}$ elect. 50 V
C2 $100 \mu \mathrm{~F}$ elect. 50 V
C3 $1,000 \mu \mathrm{~F}$ elect. 50 V
$\mathrm{C} 5100 \mu \mathrm{~F}$ elect. 50 V
$2,000 \mu \mathrm{~F}$ elect. 50 V

Transistors

TRI-TR4 8C109 (4 off)
TR5 2N3053
TR6-TR7 2N3055 (2 off)
Diodes
DI-D4 SX632 (4 off)
D5-8 OA202 (4 off)
D9 IZ3.3T5 IW 3.3V Zener
DIO IZIIT5 IW IIV Zener

Potentiometers

VRI I $\mathrm{k} \Omega$ miniature horizontal preset
VR2 $2.5 \mathrm{k} \Omega$ multi-turn potentiometer (see text) (R.S. Components)

VR3-VR4 100Ω miniature horizontal presets (2 off)

Switches

SI Double pole mains on/off switch
S2 Double pole, double throw slide switch
S3 Double pole, double throw "centre-off"
toggle switch
Meter
MI 100μ A Type MR26 (R.S. Components)

Transformers

TI Mains transformer: Primary 0-240V
Secondary 26 V at 1.6 A
Type X6705 (Belclere Ltd)
T2 Mains transformer:
Primary 0-240V
Secondaries $26-0-26 \mathrm{~V}, 23 \mathrm{~mA}$
and $11-0-11 \mathrm{~V}, 33 \mathrm{~mA}$
Type X676X (Belciere Ltd)
Miscellaneous
LPI Mains neon indicator, FSI 500 mA fuse with holder, $3 \frac{3}{4}$ in $\times 4 \frac{3}{4}$ in pegboard $0 \cdot 1$ in pitch, $2 \frac{1}{2}$ in \times $3 \frac{1}{2}$ in pegboard, 0.15 in piteh, 20 s.w.g. aluminium sheet cut as required
Heat sink $4.875 \mathrm{in} \times 1.05 \mathrm{in}$ extruded aluminium 4 in long with eight pairs of fins, SKI-SK6 insulated sockets (6 off)
at 33 mA and can be used for powering any permanently attached piece of equipment, provided it does not draw current in excess of the rated figure.

METER CIRCUIT

For monitoring purposes a fairly large $100 \mu \mathrm{~A}$ meter is used. The one on the prototype was arbitrarily scaled $0-3$ and $0-10$, which is convenient, since with the multiplier R11 and shunt R12 no scale marking is necessary for the ranges $0-30 \mathrm{~V}$ and $0-1 \mathrm{~A}$.

A two pole, two way, "centre-off" switch (S3) provides the measurement requirement. The centre position provides a standby facility which can be used when changing connections or reversing supply polarities.
The multiplier resistor R11, should ideally have a resistance of 299 kilohms and can be ordered with the meter. It is possible to use a 300 kilohm, 1 per cent type as the loss of accuracy is not severe.
The construction of the meter shunt will be dealt with later.

OUTPUT TRANSISTORS

The more knowledgeable constructor will have noticed the use of two 2 N 3055 transistors for the series regulator TR6 and TR7, when one would suffice.

For maximum dissipation to occur in these transistors requires the output to be made short circuit and is approximately 45 W . Clearly, a good heatsink and ample ventilation are required, for even under normal load conditions the dissipation can be as much as 30 W .

Since the unit was intended to be used for long periods at fairly high dissipations, it was decided to use two output transistors for the reliability offered.

CONSTRUCTION

The disposition of the components, whilst permitting the use of a relatively small cabinet, does result in a high packaging density.

Most of the semiconductors, capacitors and resistor are mounted on a $3 \frac{3}{3}$ in $\times 4 \frac{3}{3}$ in plain piece of $0 \cdot 1$ in pitch pegboard as in Fig. 3. Veroboard can be used if desired.

The rectifer panel of Fig. 4 is a $2 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in plain pegboard of $0 \cdot 15$ in pitch. This should be drilled for mounting to the frame of T1 (see photograph). When the rectifiers are mounted the panel should be attached to the transformer using 4B.A. nuts and bolts and $\frac{1}{4}$ in spacers.

INTERWIRING

Interwiring details for the complete power supply are given in Fig. 5. The arrowed connections to the boards can be determined by referring to Figs. 3 and 4.

The front panel carries all the controls, the meter, fuse, indicator neon and output terminals (Fig. 5). On the prototype, the output voltage control, VR2 was a ten turn potentiometer, though somewhat expensive it is to be recommended since it enables precise setting to be achieved. Of course, an ordinary wirewound poter tiometer can be substituted.

Transformer $\Gamma 2$ is one of the clamp type of construction and is secured to the rear wall of the case. So too is a five way tag strip, to which the mains input is connected, and the heat sink for TR6 and TR7.

Fig. 5. Interwiring details of power supply

Professional receivers, supplied to Govt. Depts., Industry, Laboratories, Radio and TV Authorities, etc.

BUY DIRECT AT PRICES 15\% BELOW RETAIL VALUES

(Cash only) plus 62p P. \& P. Complete with standard batteries and earpiece. BFO (optional extra) add 21.75 .
IT NOT ONLY RECEIVES Aircraft, Shipping (VHF and SW), Taxis, Ambu. lances, Fire Service, TV'Sound, Hams, lances, Fire Service, TV Sound, Hams,
Gas and Electric Boards, PublicServices Gas and Electric Boards, Public Services
and many other radio telephone mobiles-BUT ALSO Classical Music, Pop and all that Jazz.
The MPR 3065 is a communications receiver and entertainment source in one neat, transistorised, portable package. Features a colour coded illuminated tuning dial and band selector, AFC, squelch, BFO (oprional extra), large speaker, Ext. Aerial Socket. Works o'f mains or batteries. Size: IOtin

7 tin 4 in. 22 Transistors/Diodes. FREQUENCIES: Medium Wave, 540 1,600Kcs.; Marine, $1.6-4.6 \mathrm{Mcs}$. ; FM/VHF, $88-108 \mathrm{Mcs}$.; Aircraft, $108-136 \mathrm{Mcs}$. (Military, Civil and Ground control): High VHF/PB, $146-176 \mathrm{Mcs}$. (Commercial and Industrial RT mobiles).

MODEL MPR 30166 BAND

SAME BANDS AND FREQUENCIES AS MODEL MPR 3065 PIUS ADDED FEATURE OF SW 5.0-12.0Mcs. (with Fine Tuner). Batts. and Earpiece incl. Plus 62tp P. \& P. Styled in elegant black case with luxury Chrome trim, soft padded speaker grille, die-cast sides and walnut insert. Size $8 \frac{7}{4}$ in xIlin $3 \frac{3}{4} i n$. Wr. 5lb approx Enclose 5d stamp for-reply. Trade supplied

NEW!

FROM "LAFAYETTE"

4 Band TV Sound Battery Portable with PB Mobile Band ($146-176 \mathrm{MHz}$).
TV sound channels 2-13, VHF/FM local and national radios, PSB RT mobiles. Our Price E 27.95 Plus 50p P. \& P. complete with batteries, earpiece, circ diagram, $A C$ adaptor socket; external aerial socket.

STOCKTON PARTNERS (Dept. "PE") Importers and Oiatributors Brighowgate, Grimsby, Lincs.
Tel. 0472 G4196/58ais

AMBITRAK - THE NEW D.I.Y. PRINTED GIRGUIT

Ambitrak the system whereby one-off and protocype
Printed Circuit Boards can be made quickly and accurately by means of a precision 0 lin matrix superimposed upon the entire copper surface.
Around the edge of the board there is an alpha. numeric graduation which allows precise co. ordinates to be located
The circuit is easily drawn onto the copper surface with an etchant resist pen and then etched using
materials provided.
2 Standard Kits are available with eicher S.R.B.P. or E.B.G.F. 8 in. Gin Boards. Both in in thick and loz copper
Each Kit contains 3 Boards of either type,
S.R.B.P. Kit 65.35.
E.B.G.F. Kit ©6.25.

All parts of the Kit are avalable separately.
Patents applied for and pending.

For further information contact:

TECHNOMARK BOROUGH GREEN • SEVENOAKS - KENT TEL.: BOROUGH GREEN 3669

THE MAZDA BOOK OF PAL RECEIVER SERVICING

 by D. J. Seal. £3.50. Postage 15p.IIO INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR, by R. M. Marston. 61.20. Postage lop.

GUIDE TO PRINTED CIRCUITS, by Gordon J. King. E2.50. Postage lop.
RCA SOLID STATE HOBBY CIRCUITS MANUAL, by RCA. $\mathbf{E 1 . 0 5}$. Postage 10p.
MULLARD TRANSISTOR AUDIO \& RADIO CIRCUITS, $\mathrm{f} 1 \cdot 50$. Postage IOp.

FOUNDATIONS OF WIRELESS \& ELECTRONICS, by M. G. Scroggie. f1.80. Postage 20 p .

RADIO \& ELECTRONIC LABORATORY HANDBOOK, by M. G. Scrogrie. 44.75. Postage 20 p

MAKING TRANSISTOR RADIOS, A BEGINNER'S GUIDE, by R.H. Warring. EI•10. Postage lop.

britain's largest stockist of British and American Technical Books 19-2| PRAED STREET LONDON W2 INP Phone: PADdington 4185 Closed Saturday I p.m.

U.H.F. TV AERIALS

SUITABLE FOR COLOUR \& MONO. CHROME RECEPTION
 LOFTMOUNTING
ARRAYS
7 element $\mathbf{E 2 . 2 5}$. 11 element
62.75 . 14 element 63.25 .
18 element 63.75 .

WALL MOUNTING C/W WALL ARM AND BRACKET. 7 element 63.25 . I I element CHIMNEY MOUNTING ARRAYS MAST AND LASHINGKIT, 7 element E4. MAST AND LASHING KIT. 7 element $\& 4$. element $\mathbf{E 5} \mathbf{2 5}$.
MAST MOUNTING arrays only 7 element 62.25. II element 62.75. 14 element $\mathbf{6 3 . 2 5}$. structions with every aerial. LOW LOSS coaxial cable 9p yd.
KING TELEBOOSTERS from 63-75. LABGEAR all band V.H.F.-U.H.F.-F.M. radio mains operated pre-amps 67.50. State clearly channel number required on all orders. P. \& P. on all aerials 50p aces. 15p. C.W.O. min. C.O.D. charge 25 p.

BBC-ITV-FM AERIALS
BBC (band 1) Wall S/D E2. LOFT inverted 'T' 11.25 . EXTERNAL 'H' array only 53. ITV (band 3) 5 element loft array 62.50.
7 element 63 . COMBINED BBC-ITV lefi $1+562.75 .{ }^{\circ} 1+7$ @3.50. WALL AND CHIMNEY UNITS ALSO AVAILABLE. Pre-amps from 63.75.
COMBINED U.H.F.-V.H.F. aerials I $+5+9$ C4. $+5+14$ ©4.50. $1+7+14$ E5. F.M. RADIO loft S/D $\mathbb{C l}$. 3 element $\mathbf{6 3 - 2 5 .} 4$ element $\$ 3 \cdot 50$. Standard coaxial plugs ${ }^{9} \mathrm{P}$. Coaxial cable $5 p$ yd. Outler box 30p. P. \& P. all aerials 50 p , aces. 30 p . C.W.O. min. C.O.D. charge 25p. Send 5p for fully illustrated lis

OPEN ALL WELCOMED
K.V.A. ELECTRONICS

40-41 Monarch Parade, London Rd. Mitcham, Surrey
Telephone 01-6484884

Fig. 6. Case assembly and drilling details. Self tapping screws are used for all fixings

Transformer T1 and capacitors C1, C4 and C6 are mounted on the cabinet base. The main component board is attached vertically at its two lower corners, one corner by means of a small right angled bracket, the other by the clamp of C4.

MAKING THE CASE

The cabinet used for the prototype was made from 20 s.w.g. aluminium, bent and cut as in Fig. 6. In assembling, the various panels are all secured together by small self tapping screws.

Ventilation must be adequate and is effected by means of a rectangular hole 3 in $\times 7$ in cut out of the top panel. This is covered by an aluminium plate 4 in $\times 8$ in separated from the top by $\frac{1}{4}$ in spacers.
To maintain air flow through this port $\frac{3}{8}$ in holes should be drilled below the heat sink and around T1.

TESTING

When all of the components have been assembled and connected, a careful check for wiring errors should be made. If everything appears satisfactory set VR1 and VR2 for maximum resistance, and VR3 and VR4 to mid-range. S3 should be set for a voltage reading. A load is not required.

With the unit connected to the mains and switched on, the voltmeter should indicate. VR2 should be rotated anti-clockwise, when the voltage should fall, then rise again as VR2 is returned to its original fully clockwise position.

The preset VR1 should now be set for a maximum output voltage of 24 V .

METER SHUNT

The meter shunt, R12, is made up of resistance wire with a measured value of 0.125 ohms. Since the formula for calculating this includes the meter resistance the meter specified, or one with a resistance of 1,250 ohms, must be used.

To actually construct the shunt, a length of resistance wire. somewhat longer than is required, is connected in the position of R12. With S3 set to "Volts" adjust the output of the unit for 10 V . Switch off and connect a 10 ohm, 10 W resistor, in series with a multimeter switched to 1 A d.c., across the output terminals.

If S3 is switched to "Amps" and the unit switched on, R12 can be adjusted so that 1A flows in the multimeter when meter M1 registers full scale deflection.
A high value resistor can be used as a mounting for the resistance wire, it being simply wrapped round the resistor body with the wire ends soldered to the resistor leads.

CURRENT LIMIT SETTING

Having set the output voltage, attention can now be turned to the current limiting potentiometers VR3 and VR4.
With S2 switched to the IA range a multimeter switched to the IA d.c. range can be connected directly across the output terminals and VR3 adjusted for a reading of IA.

The time taken for this adjustment should be a minimum as the dissipation in the output transistors is high. Adjustment for the 100 mA range is identical with suitable multimeter range switching. Here, of course, VR4 is adjusted.

0-8 Ammeter. Din square tull vision face for flusin mounting. Moving iron instrument. Ideal for charger. Price 48p each. 10 for 88.80 .
9 Vol Gramophone Unit. Collaro battery operated with pick up on unit plate. 4 speed auto-stop turnover cartridge. Price $82-50$ plus 40 p post Bay Time Slot
3 typer-one for each coin, Sanganio Weston 3 typer-one for each coin, $\because!p$, op ur 10 p . Photo Electric Kit. Contains photo cell, relay transistor and all parts to make light operated switch. Orlginally i'2. 2. Limiterl quantity to clear $21-25$ plus $20 p$ post and insurance
Desk/Hand Wike. Made by Acos. Crystal insert in neat plastic case which opens at right angles for desk or opens completely for hand holding. (foo general purpose mike. Price 85p each.
Printed Circuit Kits. Hagato Pk. 3 facilit ies in k form include printing, etching, resist removal sets to own specifications. Price $£ 1 \cdot 25+20 \mathrm{p}$. 4 Station Transistorised Intercom. Solid state three transistor printed cet. master and 3 aubstation push button/press talk system. 200 mW output complete with installation accessories and 9 V Everready power pack. Approx. Almensions Master $4\{\times 1\} \times 31 \mathrm{in}$.
4 in . Price $88.50+20 \mathrm{p}$. Lin. Price $88 \cdot 50+20 \mathrm{p}$
Laboratory Instraments. For horizontal nse in strong black reinforced bakelite cases with screw
down terminals especially suitable for experiment down terminals especialy Ruitable for experiment (manufacturers quoted accuracy of better than 1. $\%$). Following available
D.C. Voltmeter $0-300 \mathrm{~F}$ f.s.d. moving coil mirror scale meter size approx. $3 \times 4 \frac{1}{2} \times 1 \frac{1}{2}$. Price E1-75.
D.C. Voltmeter, 0-30V I.a.d. moving coil mirror scale meter. Size approx. $\quad \times 41 \times 1 \geq 1 \mathrm{in}$ A.C./D.C. Milliameters 3 range, nowing iron mirro scale meter. Range selection 25,50 and 100 ma by marked) size. $7!\times \mathfrak{j} \times 31$ in type $35999 / 1$ Price $\mathbf{2 9} \mathbf{7 5}$.
Hicrommeter 100 micro amps fis.d., moving coil mirror scale precision meter (coil resistanc marked) size $5 \times 41 \times 2 \frac{1}{2}$ in type $\mathrm{M} / 109 / 1$ Price 23.
Galvanometer 20-0-20 i.s.d. moving coil precision laboratory instrument of extremeiy high sen sitivity $\quad(3 \times 10-7 \mathrm{~A}$ per division). Size appros

SPARTAN Portable RADIO
Long and medium wave 7 transistor, size 6 in x 4 in $\times 1 \frac{1}{4} \mathrm{in}$. With larger than usuai apeaker giving yery good tone. Butit-in ferrite aerial and tele-
scopic aerial for distant
 stations. A real bargain
complete with leather casc, carry sling, earplug and case 83.75 plus 25 p post and ins.
Parmeko Neptune Series C. Core Transformers These transformers are beautifully maile, stee encased, stove enamelled black, upright mounting primary screen and are new and unused. Smal puantities only of each type available as follow: Model 6000/79. 275-0.275V at 330 mA and 6.3 V at 4.6A. Price £4-50. च0p post.

Model 6000/71. 290-215-0-215-290 at 125 mA and at $6 \cdot 3 \mathrm{~V} 6 \mathrm{~A}$. Price $84.50+40 \mathrm{p}$ post.
Model 49. 250 V at 10 mA . 63 V at $3 \mathrm{~A}, 5 \mathrm{~V}$ at 0.75 A Price $82+30 \mathrm{p}$ post.
Model 47. $620 \cdot 0-620$ at 9 mA . 4V at 1 A . Price 84-50 +40 p post.

Parmelo Neptune C. Core Chokes. These are encaser and mateh the transformers above. Model 55. 10 H at 1 mA . $£ 2-50+40 \mathrm{p}$ post Model 55.10 H at 1 mA . $52-50+40 \mathrm{p}$ post. | Model 49. | 10 H at 70 mA. |
| :--- | :--- |
| Model 69. | 10 H at 110 mA . Price $£ 2+40 \mathrm{p}$ post. |

RHYTHMETRON
 As ieatured in Novenber lssue. : Electronic: parts kit, less case and knobs, but including
 艮

Electronic Car Ignition. In addition to the kits for 19 V cars we can also supply systems for 6 V cars Price $50 \cdot 50+30 \mathrm{p}$ post
Carbon Resistors. We are now stocking these in a
big way and will be pleased to quote special prices big way and will be pleased to quote special prices Dubilier.

	Price per each			
	$1 \cdot 9$	10-99	100-099	1,000 up
${ }_{2}^{1}$ Watt	10	8p	6p	5 P
1 Wait	2p	18p	$15 p$	125p
\because Watt	4p	32p	30p	275p

Special Revistor Annortment Offer (1). $100 \times \frac{1}{2} \mathrm{~W}$ resistors made up of each of 00 inerent 10 inega. fairly eveni
Price 50 p.
Price 50p.
$8 p e c i a l$ Resistor Assortment OEfer (2). $1.000 \times$ values fairly evenly apaced between 1 ohm and 20 megs. Price 84.
Special Resistor Assortment Offer (3), As offer 1 but IW. Price 11.
Special Registor Aa
but $1 W$. Price 88.
12 Way Sab-Miaiatnre Malti-core Cable 7 -0076 copper cores each core p.v.c. insulated and ul
ditferent colour. p.v.c. covered overall anm approx. 1 in thick. Price 20 p per yard.

MICROSONIC KEYCHAIN RADIO

7 tranBistor Keychain Radio in very pretty case, aize $2 \times 2 \times 2 \times 1$ in-complete with Loudspeaker.
In transit from the East these sets suffered corrosion as the batteries were left in then should work-offered without guarantee except that they are new. Price only 21.2 fess batteries plus 13p, post 6 for 87 post free l'air of rechargeable batteries and charger 85p.

24-HOUR TIME SWITCH Made by Smiths, these are a.c. mains operated NOT CLOCK WORK. Ideal for mounting on rack or shelf or can be built into box with 13A socket \because completely adjustable time periods per $\because 4$ hours, 5A changeover contacts will gwitch circuit ing. 23p. Alditional time contacta 50 p pair

THE FULL-FI STEREO SIX

The amplifier
Yon will gensation of the year You will be amased at th
fullness of reproduction and a ullness of reproduction and at or tuner will reproduce. Built into metal cabinet elegantly atyled in simulated teak finished blend with modern furnishings, this ampliffer use an integrated rolid state circuit with an output power of 6 W R.M.S. split over the two channels. The amplifler is ideal for use with normal pick-upa and tuners, it has a double wound mains transformer and ganged volume and tone controls-also switching for Mono to stereo, tuner or pick-up. Other controle UNREPEATABLE PRICE is $£ 9$ plus 38 p post and insurance.

-THIS MONTH'S SNIP

POCKET CIRCUIT TESTER

Test continuity of any low resistance circuit, house wiring, car electrics. Tests polarity of diodes and rectiffers. Also ideal size for conversion to signai injector (circuit suppled) 30 p or 2 for 50 p , post paid.

TANGENTIAL HEATER UNITS

 This heater unit is the very latest type, most and blower heaters costing 1515 and more. We have a few only. Comprises motor, inupeller, 2 kW element and 1 kW element allowing switching 1 , be fitted into any metal line case or cabinet. Only be fitted into any metaline case or cabinet. Only
needs control switch. $83-50$. 2 kW . Model as above except \% kilowatts 82.50 . Don't miss this. Control Switch 35p. P. \& P. 40p.

DISTRIBUTION PANELS

CENTRIFUGAL FAN

Maing uperated, turbo-blower type. Pressed steel Housing contains motor and aluminium impeller. Motor is $1 / 10$ th h.p. giving considerable air flow out sirtualy nin wide hy
4 inin. $84.96+£ 1$.

Jint what you need for work bench or lab.
tandard 13A fused plugal and on/off switch with neon warning light. Supplied complete with 7 feet of heary cable. Wired up reauy to work, ts less plug $\mathbf{8 2} \cdot 25$ with fitted 13 A plug; $\mathbf{5 2} \cdot \mathbf{4 0}$ with titted 15 A plug, plus 23 p poat and ins.
CAPACITOR DISCHARGE CAR IGNITION
This syatem which has proved to be amazingly eflicient and reliable was first described in the Wireless World about a year ago. We can supply kit of
 (P.W. June), price $44 \cdot 95$. When ordering please Plus 30p post.

2 OCTAVE MINI ORGAN

As featured in P.W. Kit of Electronic parts $\mathbf{2 4} 50 \mathrm{plns} \div 0_{1} \mathrm{p}$ post. Cold wire and other metal parts $21-50$.

15 WATT 12 in HI-FI SPEAKER the finest loudspeakers that we have ever offered, produced by one of the country's most fanous makers. It has a die-cast metal frame and is strongly recom-
 R.M.B.-Cune monided fibre-Freg. response 30
0,000 e.p.s.-specify 3 or IS ohms. Chassis dia. 0,000 e.p.s.-specify 3 or 15 ohms. Chassis dia. flo speaker offered this month for 23.75 plus 30 p . post and ins.

DIGITAL COUNTER TIMER

lery stable and retiable crystal controlled circuit. Capable of work in excess of 15 MHz Construction simplified by use of 15 inte rated circuits. Complete kit with case 837.50

Where postage is not stated then orders over $£ 5$ are post free. Below 5.5 add 20 p. Semiconductore add 5 p post. Over $£ 1$ poot frec. S.A.E. with cnquiries please.

R
TREASURE TRACER
Complete KIt (except wooden battens) to make the metal detector as the circuit in Practical WIrelese August issue. 2.95 plus 20 p post and insurance.

DRILL CONTROLLER

NEW IKW MODEL

Sanp Action Ilide 8witch. Rated 5A 340V. Made by Arrow. Type fitted in the handles of electrl drills, vacuums, etc. 5 p each, 10 for 45 p .
Mamicator Tubes. For digital instruments, counters, timers, clock
Pressure 8 witch. Containing a 15 A change over awitch operated by a dtaphragme which in turn operated by air pressure through a small metal tube. The operating pressure is adjustable but is set to operate in approx. loin of water. These are quite low pressure devices and can in fact be operated simply by blowing into the inlet tube Original use was washe machies torn on wout has tuny other applications. 60 peach 10 for 24.50 . for 24
Papt Miniature Extractor Fana. Beautifully made as are all Papst motors. Intended for coollng computers but sultable for any equipment. Size and insurance 20 p .
Commutator Motor, small Size approx. 3 in plus 1 in of shaft, 3In high $\times 1$ in wide, but high speed and very powerful. These motors operate from the mains. Are particularly useful as they can be speed controlled by our thyristor kit or by variable resiator. EI each.
Auto Light Kit. The circuit for this appeared in Practical Wireless, October issue. It in a simple circult but han many uses: Parking light, porch Cight, ete. Uses light ceil and two cranglete lit, no case 85 p . Suitahle case Chapar ki, no case 85p. Sulable case 20p
Charger Kit. Compriaes of 3A transformer, 5A
rectifler and a pair of hefty crocodile clips. With rectiner and a pair or hety crocodile clips. With 84 hr. Clock 8 witeh. In metal case with 13A socket. Siniths movement, 2 ons and oas per retail price ary each. Few only, new and perfect. \&4-00 each.
Meon Indicator Lampa. With amber lens, standard type with built in resistor for mains. 10 p each. 10 for 90 p .
Condensery. Another alldition to our range. $500 \mu \mathrm{~F}$ at 50 V . 15 p each. 10 for $81-25$.
Thermintor Bead Type. For instruments, medical applications. etc. 1TT No. GL23. 76 p each. 10 for 20.75.

3 Core Mains Leads. Special offer this month is a 6ft lead with $23 / 36$ cores and coloured according to the new code i.e. Brown-live; Yellow/Green-
earth: Blue-nentral. Price 6 p each or 10 for 50 p.

DIGITAL DICE

an featured in this issue. Send S.A.E. fur
as featured in this issue. Send S.A.E. fur
parts list.

MAINS RELAY BARGAIN

Apecia? this month are sonie single, double and treble pole changeover
relays. Contacts rated at 15 ampa. Operating coil wound for 940 V A.C. Good British Make. Ex-unused equipment. Size approx. $1 \frac{1}{2} \mathrm{in} \times 1 \mathrm{in}$.
Open constructlo

FLEX CONNECTOR
A quick way to connec equipment to the mains safely and firmly-L., N and E. cooded to new colour scheme; disconnection by plugs prevent

has sockets which allow disconnection, cable insertion of meter without disconnection, cable
inlets firmly hold one halr wire on up to four inlets firmly hold one ha
7.029 cables. $85 p$ each.

THYRISTOR LIGHT DIMMER For any lamp up to 200 W .
Mounted on awitch plate to fit in Mounted on awitch plate to fit in
place of standard awitch. Virtually place of standard switch. Virtualy plus 20p post and ingurance.

RADIO FREQUENCIES USED IN SPACECRAFT

A large number of enquiries are received about the communication frequencies used by the Apollo missions and other spacecraft.

The frequencies that are used on spacecraft depend on the matter to be transmitted and also on the propagation conditions. There are normally three bands in use. Thesc are the h.f., v.h.f. and u.h.f. bands. The latter includes the S-band which is of considerable importance since it is less susceptible to propagation anomalies and has perhaps the best noise level characteristic. Noise is at a minimum on this band.
Taking the Apollo spacecraft as an example, there are three units involved. These are the command module, the service module and the lunar module. Communication between ground and the spacecraft from the count down through launch and into earth orbit is maintained by v.h.f. on frequencies of 259 MHz and 296 MHz (exact values for Apollo 15 were 259.7 MHz and 296.8 MHz). The command and lunar modules also operate on these frequencies. Within the spacecraft the u.h.f. frequencies are used as well as sound frequencies.

After leaving earth orbit and heading toward the target, communications change to the S-Band. These frequencies are $2273 \cdot 5 \mathrm{MHz}$ for the television channel and 2106.4 M Hz for speech and exchange of data between the spacecraft and earth. Another channel on 2287.5 MHz gives a link between the command module and the ground for speech, directly given data on the course position and other real time information..

The lunar module has two transceivers one of which is used for speech and data and operates on a frequency of 2101.8 MHz . The other channel uses a frequency of 2282.5 MHz and can be used for data, speech or television. In addition to these systems the craft operates another transceiver which uses a frequency of $10,006 \mathrm{M} \mathrm{Hz}$. The powers that are used are quite low being 2.8 watts and 11.2 watts on the S-band.

PARACHUTE TESTING

NASA is to carry out free-flight tests on the Viking landers to test the parachute system to be used in the Viking spacecraft when they are launched in 1975. This is a new departure in technique for no parachute landing of spacecraft has been attempted before.

The Viking system is operated by a mortar which is fired automatically and deploys a 50 ft diameter parachute. During tests units will be dropped from $50,000 \mathrm{ft}$ and drogue parachutes will slow a ten foot container to the speed at which the mortar will fire.

PROJECT EOLE

The new French Eole world wide system of weather watch reported previously ran into difficulties.

One hundred and forty-one balloons had been launched in the southern hemisphere and when the satellite was instructed to interrogate it sent instead a destruct signal to 72 balloons which were lost with all their sensors. This occurred on the 364th orbit.

The origin of the wrong signal was traced to one of the control centres at Bretignay. The French space organisation, CNES, consider that the programme will still be valuable since up to 500 balloons will be released during the 180 day period of observation.

SEARCH FOR EXTRATERRESTRIAL LIFE

At the final session of a Conference on Communication there was a discussion for a programme to organise a search for intelligent beings in the space of the galaxy. The conference was attended by many countries and the delegates were from many disciplines: astrophysicists, theoretical astronomers, radio astronomers, sociologists. archacologists and anthropologists.

LUNOKHOD

The Russian roving vehicle Lunokhod was shut down after its eleventh day. The last test period resulted in a movement of only 100 metres. It has been shut down because Russian scientists are unwilling to risk the possible misalignment of the on-board laser reflector.

LAST LUNAR MISSION

The Apollo 17 is, at the moment, the last lunar mission of the series for manned landing on the Moon. The planning of its landing site is therefore of considerable importance. Last June the target decided upon was the area near the crater Alphonsus. It still is the prime candidate.

There are impertant reasons for the examination of this area. It was from here that the Russian astronomers noted the emmission of gases and changes in the spectrum which suggested vulcanism. Since then, this area has been the subject of close study by professionals and amateurs. Many instances of transient changes in the crater have been noted, some of them detected by spacecraft photographs.

However, after examination of the Apollo 15 data, recovered with much new information, it may be that another site would be of greatet scientific value. This sets a problem because the time for crew training is affected particularly as this is the last mission.

SPACECRAFT COMPUTER

A low power spacecraft computer has been developed by Honeywell. It is suitable for a wide range of unmanned spacecraft missions and its power requirements are only 26.9 watts. It provides a one microsecond memory cycle time.

NASA's satellites for application technology will use two of these computers in parallel. The package weighs 231 b and is known as HDC 401.

SATELLITE GANYMEDE

Ganymede is one of the four satellites originally discovered by Galileo to revolve round Jupiter. It has virtually no atmosphere and it was thought, till recently, that the surface would be like that of the Moon. Recent observations, however, have shown that the atmosphere is below one millibar and the surface may be rock powder or ammonia snow.

These observations were carried out at a wavelength of 25 micrometres at the University of Hawaii. Led by Dr. D. Morrison the team at the University and the Los Alamos Scientific Laboratory observed the satellite before, during and after the eclipse by Jupiter, revealing that except for the presence in the spectrum of features which suggest ammonia frost, the surface is indeed moonlike in character.

The presence in the spectrum of features which suggest ammonia frost still leaves some puzzling questions.

Substitutes for ZENERS

By J.N.WATT

THE regulation of fairly low voltages using Zener substitutes is fairly straightforward, if a little unconventional, as was illustrated last month. In this final part we shall look at the application of these substitutes in power supply circuits and give some examples of their applications.

SHUNT REGULATOR

Fig. 9 shows a typical shunt regulator, where the extra transistor handles the additional power.

The Zener substitute and the power transistor's base-emitter voltage hold the output voltage at $V_{0}=V_{\mathrm{Z}}+V_{\mathrm{BE}}$.

The resistor R2 ensures that sufficient current flows through the Zener substitute to give stability.

The current through the shunt transistor is about $h_{\text {FE }}$ times that through the Zener substitute (ignoring the current in R2). It is this that gives the greater power handling capability, which is that of the shunt transistor. This latter could well be one of the unmarked $n p n$ devices mentioned earlier as being suitable for use as a Zener substitute.

Calculation of the value of R1 follows the same procedure as in the simple shunt regulator in Fig. 2.

In common with all shunt regulators there are two disadvantages: firstly, stability of output voltage is not as good as can be obtained by other methods, and secondly, the circuit is very inefficient, since full current is taken from the supply whatever the actual load current. With a shunt regulator, the total of load and shunt element currents is a constant.

There is one compensating advantage though-a shunt regulator is inherently short-circuit proof.

SERIES REGULATOR

For most purposes, series regulators are used when simple low power Zener shunt regulators are not capable of handling the power level required.

Fig. 10 shows the circuit of a typical simple series regulator. The Zener substitute holds the base of the series transistor at a constant voltage and, by emitter follower action in TR1, the output voltage remains constant also, at $V_{0}=V_{\mathrm{Z}}-V_{\mathrm{BE}}$.
Sufficient base current must be supplied to the series transistor TR1 to permit it to pass the required load current. The maximum base current is $I_{\mathrm{B}}=I_{\mathrm{max}} / h_{\mathrm{FE}}$, which must be made available by the Zener substitute.

Fig. 9. Transistor shunt regulator

Fig. 10 (left). Simple series regulator
Fig. II (above). Series regulator using an "amplified Zener"
Fig. 12 (above right). Division of Zener voltage
Fig. 13 (right). Shunt regulator with Improved performance

PREMALR STEREO AYSTEM "THRER Wh. This onsint of Klinger KCOOS
 Balance Controbs. Inynts for sagnet ic and ceranic pick-up, tumer, fane in ant cover and fittel somothe !T. AHCD thammal atereb cartridge. A pair of HMF Speakers "ize 1 in ALL SYSTEMS SUPPLIED WITH FREE LEADS AND PLUGS

PREMIER HI-FI OFFERS!

Amstrad 8000
Stereo Amplifier (List $\mathbf{£ 2 5 . 9 5}$
Philips 580 Stereo
Amplifier (List £29 00) Rogers Ravensbrook 11 Stereo Amplifier in teak case (List 15250) Rogers Ravensbourne Stereo Amplifier in teak case (List 964

NOW AVAILABLE AGAIN!?
MODEL SAQ203 Stereo
Amplifier-Return of this popular model. 1000's have been sold. $\mathcal{1} 19.50$ NOW AT NEW LOW PRICE

Metrosound ST20E
Stereo Amplifier in teak
case (List £39-50)
Goldring GL\%5
less cartridge (List $\mathbf{4 1} \mathbf{6 1}$)
Garrard SP25 111
less cartridge
Garrard SP25 111 with
Goldring G800 cartridge (List £28.35)
Garrard AP\%6
less cartridge

SP25 Mk III SPECIAL!

Garrard SP25 Mic. III Single Record Player. Eitted Goldring G800 Magnetic Stereo Cartridze as available Complete in Teak
Plinth with Rigid Peraper Cover.

Tuth liat Price over $\mathrm{E}: 34$ $\underset{\text { PRICE }}{\text { PREMIER }} \quad £ 18.90$

HI-FI STEREO HEADPHONES Designell to the highest ?! in spreaker mita with
woft paddel ear mutfis. adjustable lieauband. $*$ ohm impedance. Com-
blete witla bit lead and blete with bift tranl an $\mathbf{2} 2.47^{\text {r.s. }}$ NDT Loн imp, £1.25. P.\& P. 10

MONO STETHONCORE SET Low imp. 52p. P. \& r^{F}. 10 p ,
E.M.I. $13 \times 8 \mathrm{in}$. HI-FI SPEAKERS

 "WELLER EXPER
SOLDER GUN
Hines timu and sinmpities solte in the home and servinotering Two prasition triguer given inatiat $100 / 140$ watt. £4-25
"Weller Marksman" Soldering Iron Lightueight, is "encil int.

VERITAS V-49 MIXER
 microphont,
microphone with tuperance
turomer radio, tape, etc. Max. nput 1-5V, Max. outpnt 2-5V, sain
fids. Standard jack phur sockel iupute, phoncplugs outpat. Attracti
grain tin ish case.
Mono f3
Stereo $£ 3.47$

TAPE CASSETTES
C60 (${ }_{(00}^{60}$) $37 \mathrm{~m}_{\text {E1 } 1.05}^{3 \text { for }}$ C90 (${ }_{(\mathrm{min} .}^{90}$) $62 \mathrm{p}_{\mathrm{f1}}^{3180}$ CI20 $\binom{120}{$ ninin. } $87 p_{82}^{3 \text { for }} 5$ $p \in P$ sp
FREE Gamette Head Cleaner with every 10 capsettes purchased
All cossettes can be supplied with librory cases at $3 p$ extro eoch.

Garrard 3500

with Sonotone 9TAHC
stereo cartridge (List £15.50)
£9.97
Garrard 2025 T/C with
Sonotone 9TAHC Diamond
Cartridge
$£ 8.97$
Garrard 2025 T/C with
Sonotone 9TAHC Diamond Cartridge ready wired in teak plinth with cover

"VERITONE" RECORDING TAPE

SPECLALLY MANUFACTURED IN U.S.A. FBOM EXTRA STRONG PRE-STRETCHED MATERIAL THE QUALITY IS UNEQUALLED TENSILISED to enaure the most permanent base. Higbly resistant to hireakage, moiature, heat, cold or humidity. High polighed splice free finigh. Smooth output throughout the entire atdio range. Double wrapped-attractively boved LP3 3: 250° P.V.C. $\quad 28 \mathrm{p} \quad$ LP6 $51^{*} 1200^{\prime}$ P.V.C.

 $\begin{array}{llllllll}\text { DT5 } 5^{*} & 1200^{\circ} & \text { POLYESTER } & 75 \mathrm{p} & \text { DT7 } & 7^{*} & 2400^{\prime} & \text { POLYESTER } 1.25 \\ \text { TT7 } & 7^{*} & 3800^{\prime} & \text { POLYESTER } 82.50\end{array}$
TAPE SPOOLS 3"5p, 5*, 51", $7^{\prime \prime} 9 p$.
Post and Packing $3^{*} 5 \mathrm{j}, 5^{*}, 51^{*} 8 \mathrm{p}, \mathrm{f}^{*} \mathrm{l0p}$. (3 reele and orer Post Frec.)

This kit consists of a high-pressure mercury discharge lamp enclosed in a deep blue-violet outer bulb. This absorbs all visible light given by the discharge but transmits the long-wave ultra-violet rays.
The unit performs in a similar fashion to the fluorescent tube type units in use in some discocheques but instead uses a 3 -pin B.C. lamp fitted into a high intensity spot-fitting with fully adjustable swivel bearing. The reflector is also fully adjustable and the unit may be pounted in any position and focused as desired
White shirts and dresses glow "Whiter than white". Paint scenes on walls, etc., with our special fluorescent paint, focus the black-light from across the room and switch-on. The pictures glow brilliantly as if by magic!
Full kit includes lamp, reflector, control-gear, generous samples of five different colours of fluorescent paint and full instructions. Price $\mathbf{8 2 5}$ carr, paid. S.A.E. with all inquiries.

AUDIO MIXER MODULES

A range of audio Preamplifier Modules is now available enabling the construction of custom-built audio mixers for studio, P. A. and discotheque installations; at reasonable cost and with many facilities usually available only on expensive systems. The modules, constructed on fibreglass printed-circuit boards are complete with anodised aluminium black facia plates and four control knobs.

A comprehensive range of input modules is available, together with mixer/line amplifier and V.U. meter, power unit and looW slave amp. See Aug. and Sept. Practical Electronics for further details or send 25p for manual showing mixing arrangements, connection data, etc.
Trade inquiries welcome.

PSYCHODELIC LIGHTING UNIT Mk. 3

This unit represents a natural progression from our phenomenally successful Mk. I and 2 Units. As before the drive voltage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency signals into 2 threecoloured light display; the colour depending on the frequency of the signal and the intensity on the loudness of the audio source.
The unit is constructed on professional fibre-glass printed-circuit board material and uses latest full-wave triac circuitry There is a master-level control, together with independent sensitivity controls for each channel. The original minimum ambient light level controls have been redesigned permitting their use as faders: allowing dimming from max. to zero at the urn of a knob R.F.I suppression is now incorporated as standard as well as provision for D J. "Pulse-Flash" controls. The choice of two inpurs entibles the choice of two inputs enable operation from both high and low
poweramplifiers. Max. power 1.5 kW per power amplifiers. M
channel at 240 V a.c.
channelat $240 \mathrm{Va.c}$. Size 9 in $\times 7 \mathrm{in} \times 3 \mathrm{in}$.
Price $£ 25$ carr. paid. S.A.E. with all inquiries.

DABAR ELECTRONIC PRODUCTS

 98a LICHFIELD STREET, WALSALL, STAFFS WSI IUZ WALSALL 34365 mail order onty

AMPEX 7.5 V . D.C. MOTOR This is an ultra-precision tape motor designed for use in the AMPEX model AG20 portable
recorder. Torque $450 \mathrm{GM} / \mathrm{CM}$. Stall load at 500 ma. Draws Stal oad at 500 ma. Draws
60 ma on run. 600 rpm $+5 \%$
speed adjustment, internal AF/RF speed adjustment, internal AF/RF
suppression tia. apindle, suppression t * dia. I spindle,
motor 3^{3} dia. I Original cost〔16.50. Our price $£ 4.25$. P. \& P. 25 p. Mu-metal enclosure available 75p each
SMITHS SYCHRONOUS MOTORS
 R.P.M. 2-3-6-10-30-60. Price 75 p each. Carr. paid. CROUZET, $220 / 380 \mathrm{v} .50 / 60 \mathrm{~Hz} .250-300 \mathrm{rpm}$ 75p. C
MAINS IND UCTION MOTOR. Open frame, ${ }^{3}$ "
spindle, weight ELECTRO GEARED MOTORS
ELECR CONTROL (CHICAGO). Shaded pole $240 \mathrm{v}, 50 \mathrm{~Hz} .200 \mathrm{rpm}$. $101 \mathrm{l} . \mathrm{in} .\{2.50$, P. \& P. 25 p . MYCALEX. Open frame, shaded pole motors,
240 v .50 Hz .7 rpm .28 lb . in. 80 rpm .12 lb . in. $240 \vee .50 \mathrm{~Hz} .7{ }^{\text {rpm. }} 28$
$£ 2.25$ each. P. $\&$ P. 25 p.

"CROUZET" TYPE 965. $115 / 240 \mathrm{~V}$. $50 \mathrm{~Hz}, 47 / 68$ watts. 50 rpm . Stoutly long plus spindle
clock. $£ 2.75$. P \& P. 25 p. TYPA Anti-
955 . "MALLORY" LONG LIFE BATTERIES. TyPE A. RMI2 cell 1.35 v . $3,600 \mathrm{ma} / \mathrm{H}$. CAP.
$250 / 300 \mathrm{ma}$ cont. current size. $250 / 300$ ma cont. current. Size:
$2^{\prime \prime} \times 5^{\prime \prime}$.
dor $£ 1.00$ or $£ 2.00$ per doz. Carr. Paid. Type B. Comprises
$8 \times$ RM 625 cells. Nom. volts. $1-35$ $8 \times$ RM 625 cells. Nom. volts 1.35
eachil 5 v . Overall, $350 \mathrm{ma} / \mathrm{H}$ CAP. $20 / 25 \mathrm{ma}$ cont. current. Size:
 A.C./D.C. M/IRON AMMETERS. $0-5$ amps or 0.8 amps (suitable
battery chargers, etc.). Perspex batcery chargers. etc.). Perspex
front. Size: $17^{\frac{1}{8}} 1 \frac{7}{6}$. Any 2 for 61.10. Carr. Paid.

ERNESTTUANER 800μ M METER

 160Ω movement, $2^{\prime \prime}$ case eliptic. plastic front, Green-Red-Green uncalibrated seale $£ 1.50$ each. C.P.PROGRAMME TIMER BY HONEYWELL A bank of 15 micro-switches ar fortedmaral 15 pairs of cams which in turn are individually adjustable in to arn are switching periods of zero to 12 seconds with infinitely variable combinations. A mains synchronous motor drives the cam shaft at 1 rev. per 12 seconds (5 rpm). Originally cost $£ 15.00$ plus. Many applications such as lighting effects, etc. New in original makers
cartons. First class value at $\mathbf{5 5 . 7 5}$ plus $\mathbf{2 5 p}$ P. \& P.
PRECISIONFAN CO (SMITHS INDUSTRIES) DOUBLE ENTRY CENTRI. FUGAL FAN/BLOWER. This is a beautifully balanced, particularly quiet running unit giving approx. 2 pole shaded pole Myealex 2 pole shaded pole Mycalex.
drawing only 240 ma on run. drawing only 240 ma on run.
Weight 24
lbs. Sizes: case Weight 2 t lbs. Sizes: case
dia. 3.1 ins. Width (case only) 3.125 ins. Width overall (ine.)
5.25 . Width (case only) 5.25 ins. Aperture 3.125 ins
1.85 ins. Offered $w e l l$
 makers price at $£ 2.95$. P, \& P. 25p.

Perspex RELAYS

 per doz MO 50810000 r. c/o. 60p ea.. 55.00 $\$ 4.50$ per doz.
S.T.C. Midget Sealed Relay type 40 mA 1709 EC

Mingle H.D. make. 53p each
"B. \& R." $3 \mathrm{c} / \mathrm{o} .10 \mathrm{amp}$. contacts (silver) operates on 2 volts D.C. Draws approx. I amp. Size: 2°
"OMRON" OCTAL BASE. A.C. mains. 2
5 amp C/O contacts. Perspex enclosed. 88p.
NEW "F.I.R.E." PLUG-IN
RELAY. li 15 v . Coil $50 / 60$ c.p.s.
3 heavy duty silver change-over
concacts. Very robust. 63 p.
NEW "ISKRA" 240v, A.C. RELAY.-3 6 amp . Changeover

SIEMENS HIGH SPEED AELAY, Type 89L. $1,700 \Omega$
$1,700 \Omega$ coil. New 63p each
6 DIGIT NON-RESET COUNTER by E.N.M

Special offer of AMPEX professional tape heads, mu-metal shrouded. (Designed for model AG20). Full track record, or playback, $£ 300$. rase head $\mathbf{2 2 . 0 0}$. Set of 3 with mounting bracket and cover \mathbf{y}. Half track record only, $£ 3.00$

"BENSON BROS." 12v. D.C. HEAVY DUTY SOLENOID. Size: $3^{\prime \prime}$ overall $k \mathrm{It}^{\prime} \times \mathrm{I}^{\prime \prime}$. Very powerful, with secondary low current hold coil. "DECCO" MAINSSOR. \& P. I5p.
"DECCO" MAINS SOLENOID. Compact and very powerful. 16 lb . pull. $\mathrm{y}^{\text {" }}$ travel which can be increased to $1^{\prime \prime}$ by, removing captive-end-plate. Over
"MAGNETIC DEVICES" Mains Solenoid:$2^{* *} \times 1 \frac{1}{2}^{*} \times 1 \frac{1}{2}^{*}$ approx. 21b. pull. Plunger Travel 1t". New in makers boxes; offered at half original cost. 75 p . P. \& P. 25p.
 Prim 220/240y sec 0-5-10-15-20y at 2 amps f1 25 Prim. 220/240v. Sec. $0-5-10-15-20 \mathrm{v}$. at 2 amps . $£ 1.25$. Prim P. 15p
Prim. 200/240v. Sec. 0.1-56-58-60 at 3.5 amps plus $0-90$ at 100 ma. Wax impregnated withscrew term blocks. Weight 10 lbs. 63.60 , plus 40 p P . \& P.
"WODEN." Prim. $10-0-200-240 \mathrm{y}$. separate windings 6 v . $10-0-200-240 \mathrm{v}$ Sec. two 30 p \& \& P .
"WODEN." Prim. 0-110-200-220-240v. Sec $34-36-38 \mathrm{v}$. at 600 va . $£ 7.50$, plus 50 p P. \& P.
H.T. TRANSFORMER. Prim. 240r. sec. $0-380$ -400-420-440w. 40 va . 33 Carr. paid
SLIDER SWITCHES. 3 amp. type SLIDER SWITCHES, 3 amp. type
D.P.D.T.
 © 1.25 per doz. Either type or mixed C URQRENT: Carr. Paid, LOW INDICATOR, Ideal for all types of battery operated equipment (portable machines, tape
recorders, etc.). Four white seg. recorders, etc.). Four white seg. ments appear when current flows.
Coil is $600 \Omega 6 / 12 \mathrm{v}$. Drawing only 8 ma on function. Neat in appearance. Size: did $j_{6}{ }^{*} \times$

* TRZ is a silicon planar npn transistor, e.g. BSY95A,
BCIO7, BC108, 2 N 2926

Fig. 14. Stabiliser with variable output voltage and short circuit protection

It is as well, therefore, by suitable choice of R1 to arrange for the current through the latter to be, say, 50% greater than this value of I_{B}.

With no load current, the current taken from the supply is only that through the Zener substitute. However, as it stands the arrangement is unprotected against short circuit of its output, an event which would be most likely to destroy the series transistor, unless protective measures are taken.

SHUNT TO SERIES CONVERSION

To provide an output voltage greater than V_{Z}, the circuit in Fig. 6 can be adapted to series operation, as shown in Fig. 11.

$$
V_{0}=\frac{R_{1}+R_{2}}{R_{1}}\left(V_{\mathrm{Z}}+V_{\mathrm{BE}_{1}}\right)-V_{\mathrm{BE}_{2}}
$$

An output voltage less than the Zener voltage is easy to arrange by simple division of V_{7}.

$$
V_{0}=\frac{R_{1}}{R_{1}+R_{2}} V_{\mathrm{Z}}-V_{\mathrm{BE}}
$$

This is shown in Fig. 12.
With these last two circuits sufficient base current must be supplied to permit the series transistor to pass the required full load current.

Thus in Fig. 12, R1 and R2 should be chosen to allow a standing current of, say, five times I_{B} to flow through them. This current can be looked upon as the load of the simple circuit comprising the Zener substitute and its series resistor R3.

With R1 and R2 so chosen, R3 can be selected as before.

VOLTAGE AMPLIFER

Regulation of the output voltage can be improved by incorporating a further transistor, used as a voltage amplifier, shown in Fig. 13.

If V_{0} tries to rise in level, then so does the voltage at the base of TR2, since the Zener substitute has a constant voltage developed across it. Transistor TR2 amplifies this change, with reversal of sign, so that a larger fall in voltage appears at TR1 base. Emitter follower action in TR1 thus tends to reduce V_{0}, so correcting the original rise. TR1 can be a member of the OC28 to OC36 family, while TR2 can be almost any of the popular silicon $n p n$ devices so readily available.

Besides the better regulation given by the gain of TR2, it is noteworthy that the Zener substitute is driven by the regulated output voltage, V_{0}. Since this is constant, better stability of Zener voltage is obtained. In those circuits where the Zener is fed from the unregulated supply, some change of Zener, voltage can occur with variation in that supply, due to change of current through the Zener.

An alternative method of obtaining better Zener voltage stability will be mentioned later.

STABILISED POWER SUPPLY

Having thus briefly described many of the circuits in which Zener substitutes can be employed, we can now turn to the design of a stabilised power supply, using a circuit configuration not previously mentioned, see Fig. 14. It has the following advantages:

1. Being a series regulated supply, it can efficiently handle moderately large currents-up to 1 A or even greater, depending on the transistor and heat sink employed.
2. It gives a variable stabilised output.
3. Despite the series regulator configuration, short circuit protection is provided.
4. Constant current output, in place of constant voltage output, is possible, the level of such constant current being easily adjustable.

SERIES RESISTANCE FOR ZENER

Initially, consider the "black box" (between V_{i} and TRZ) feeding the Zener substitute to consist of a resistor of an appropriate value, say 330 ohms. Alternative components for the "black box" will be considered later.

Let us assume that an output current of 1 A is required. Then the base current of TR1 will be $I_{\mathrm{B}_{1}}=1 / h_{\mathrm{FE}_{1}}$. Since this current is provided by TR2, its base current will be $I_{\mathrm{B}_{2}}=1 /\left(h_{\mathrm{FE}_{1}} h_{\mathrm{FE}_{2}}\right)$.

Assuming $h_{\mathrm{FE}_{1}}=25$ (OC28 family) and $h_{\mathrm{FE}_{2}}=100$ (BC 108), then the base current of TR2 is $400 \mu \mathrm{~A}$.

We should allow, say, 10 times this current to flow through VR1 as a standing current, i.e. 4 mA . If V_{Z} is made 8 volts (a reasonable value for a Zener substitute), then the value of VR1 is equal $V_{Z} / 4=2 \mathrm{k} \Omega$.

A $2 \cdot 5 \mathrm{k} \Omega$ potentiometer will be suitable; it does of course give us the means of providing a variable stabilised output.

Capacitor C 1 ensures that the Zener voltage is held smoothly, despite any rapid, large changes in supply voltage (V_{i}) which could occur if the mains were used

Fig. 15. Constant current drive for Zener substitute
as a primary supply, while $C 2$ reduces any similar changes at the output due to rapid variations in load current. Resistor Rl is necessary to turn on TRI, thereby providing control, by drawing a small load current when no, or only a very small, load current would otherwise be taken. Without R1, V_{0} could rise above the stabilised voltage, due to leakage in TRI.

SHORT CIRCUIT PROTECTION

Turning now to D1 and VR2, it is these components that provide the short circuit protection and constant current output facility.

In normal running, D1 is forward biased. Should a short circuit be applied to the output of the power supply, it will no longer be so biased, since its anode will then be at negative rail potential (via the short circuit). This results in TR1 passing a current determined by its then existing base current; this will be set largely by the value of VR2, since the lower end of VR2 is now connected directly to the collector of TR1 (via the short circuit).

Thus by choice of an appropriate setting of VR2, limiting of the current to any desired value is obtained.

The constant current mode is brought into play by ensuring that the output voltage setting is such as to attempt to deliver more current than the setting of VR2 allows. Output current is then constant despite supply voltage changes and load changes, provided of course the necessary output voltage can in fact be reached by the supply.

The short circuit protection and constant current output facility are possible in this way because of the method of connection of TR1. It is not, as in previous examples of series stabilised supplies, connected so that emitter follower action takes place. With the output

Fig. 16. Use of npn transistors in place of the silicon diodes shown in Fig. 15
taken from the collector as shown, the output impedance is still low, however, because of the heavy negative feedback present.

CONSTANT SERIES CURRENT FOR ZENER

There is, of course, a disadvantage in this method of connection.

It has been noted above, in connection with the circuit in Fig. 13, that better output voltage stability is obtained if the Zener substitute is driven from the stabilised supply, V_{0}. Because of the circuit arrangement, in Fig. 14, of the series transistor being used with its collector as the output, it is not possible to drive the

Fig. 17a. Graph of output voltage versus output current for the circuit in Fig. 15

Fig. I7b. Output short circuit current versus setting
of VR2

Zener substitute from the stabilised side. Consequently, other means of providing a more constant voltage need to be investigated.

That adopted here concerns the replacement of the "black box" with a constant current circuit similar to that in Fig. 7. The arrangement of this is given in Fig. 15, where a current of 7 mA is given by TR1, 4 mA through VR1, and 3 mA through the Zener substitute.

electronics mastered!*

by our highly practical
 BUILD, SEE \& LEARN system

Step by step we take you through the apparent intricacies of electronics and show you how easily you can master the subject. Write for the brochure which shows, in full detail, how you can do it.

We provide a full range of components and subassemblies, with details of what they do, so that you learn to recognise all the 'bits and pieces'. Using some of these you are instructed in how to build this oscilloscope, simply and quickly.

You are shown how to read and understand circuit diagrams so that you can later build more advanced equipment or draw your own diagrams.

You can construct over 40 kits, including:-

- Valve experiments
- Electronic switch
- Transistor experiments
- Amplifiers
- Simple transmitter
- Oscillators
- Signal tracer
- Photo electric circuit
- Computer circuit
- Basic radio receiver
- a.c. experiments
- d.c. experiments
- Simple counter
- Time delay circuit
- Servicing procedures

This course has been designed to help even those who are complete newcomers to electronics. No Maths needed!

somminics

 Saveuntio835／RrmoreModel 1220 L stcreu Recorder
Moulel 4000 D Stereo Tape Beck
Model CRBOI）S．Track Stereu Deek
Model CRMO M／Trank Nteree kenold
P．s \mathbf{P} ．Top
Armatrung 521
Ferrograph $\mathbf{F}: 301$
Ferrograph Fsul
－New Leak Belta 30 cased mils
Ner Leak Delta
Metrosound STzot 2 ．
Nikko TRM 30
Nikko TR M4 41
Nikko TRM40
Pioneer SA900
－New Wharfedale Linton An！
New Release
Sinclair Project 60 special package deals save fif
2×230 Stereo．Amp B0 Preaup P2．，Power Supply
Active Filler fur abouse
ater
Project 60 VM Tuner

P．A P．s．⿹丁口．
Garraril Allos wh 111
Garrar d AP7！

Carrard \＄Lovis
Garrard 401
SPECIAL OFEER

Garrard AP＇with diollring lisoo

Celeation Ihtton 120
Celeration Ditton
Celestion Ditton
Celest fon Bitton 20
Coodmans Minister
Goodman4 Minister
Gootmand Magister
doodmang Mezzos
New Wharfotale Denton ？2．PIs
New Wharfedale Linton
New Whartedale Melfor
New Wharferlale Duvestale 111
Wharfersale Tritun PR
Wharfedale 1 nit 3 Kit
Wharfelate rnit + Kit
Whariedale C

Arnestra4g $5 \because 5$ FM
Armastrong 526 AMH／F3
Nikko STA 301
Nikkostaj01
Whartedale 100 －
New Leak Delta নis AS POt
New Releave．
finstrung 523 ＋ $1 / 12: 3$
Armstrung
4rmistrong
U2
2
Armstrong M8 Decurle
－New Leak Delta FM
－New Leak Delta FM／S
Nikko FAM10
Nikko PAM1：
Nikko FAM14
Pleaue note：Armulrong 2est 5－4 nol fithed with MP4

Akai ASEU
Alf goods supplied are brand new and carry manulacturer＇s guarantee
Ill pricen carrect at throf mew and

RSI
VALVE MAIL ORDER CO． BLACKWOOD HALL 16a WELLFIELD ROAD，LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE Express postage Ip per transistor，over ten post free

1N21	$\begin{aligned} & 19 \\ & 0.17 \end{aligned}$	Ac127	$\begin{aligned} & \text { sp } \\ & 0.25 \end{aligned}$	BFizs ${ }^{\text {in }} 0$	（iJ）${ }^{\text {a }}$	$\ln _{0.88}$	（1）43	$\begin{aligned} & 2 p \\ & 0.40 \end{aligned}$
1N23	0.20	AC12 ${ }^{\text {d }}$	0.20	$\begin{array}{ll}\text { BF181 } & 0.35\end{array}$	GJう．	0.85	OC44	0.17
1N85	0.88	AC187	0.25	BF184 0．20	1：J7M	0.37	OC44	0.17
1 N 253	0.50	AC188	0.25	BF185 0.80	H6：100\％	0.50	OC45	0.12
1N256	0.50	${ }^{\text {ACY } 17}$	0.30	BF194 0.17	HSt00A	0.80	OC45	0.18
1N645	0.85	ACY18	0.25	BF190 0．15	Mati00	0.25	OC4 4	0－27
1N726A	0.80	ACY19	0.25	BF190 0.15	MAT101	0.80	OC 57	0.60
1 N 914	0.07	ACY20	0.20	BF197 0.15	Matie 0	0.25	OCうb	0.60
1N4007	0.20	ACY21	0.20	BFS6］ 0.28	Matlel	0.80	OC59	0.85
18021	0.20	ACY22	$0 \cdot 10$	$13 \mathrm{FS98} \quad 0.28$	MJEJ20	0.87	OC＇66	0.80
18113	0.15	ACY27	0.25	BFXI： 0.20	MJE290．	1.37	OC70	0.18
18130	0.18	ACY28	$3 \cdot 17$	BFX13 0.25	MJE30．	0.87	OC71	0.12
16131	0.18	ACY39	$0-50$	BFX29 0．25	NKT128	0.35	OCT	0.20
18202	0.23	ACY40	$0 \cdot 15$	$\begin{array}{ll}\text { BFX30 } & 0.25\end{array}$	NKT129	0.30	OC73	$0 \cdot 30$
$2 \mathrm{G240}$	1.98	ACY41	0.15	BFX3＊ 0.88	NKT2．1	0.25	OCT4	0.30
2 G 301	0.80	ACY44	$0 \cdot 25$	13FX63 0.50		0.25	OC75	0.25
$2 \mathrm{G30} 2$	0.82	AD140	0.60	PFX84 0.25	NKT ${ }^{\text {d }} 14$	0.15	Or 76	0.25
$2 \mathrm{C306}$	0.80	AD149	0.50	HFX85 0．25	NKT ${ }^{\text {a }} 16$	0.37	OC\％	0.40
$2 \mathrm{C371}$	3.22	AD161	0.87	BFX85 0.25	NKT217	0.35	Oc＇is	0.20
$2 \mathrm{C381}$	0.25	ADI62	0.37	BFX87 0.20	SKTolk	0.40	0c＇79	0.22
$2 \mathrm{Cl14}$	0.80	AF106	0.30	BFX88 0.85	NKT 219	0.38	OC＇81	0.20
$2 \mathrm{Cl17}$	0.22	AF114	0.25	BFY10 1．00	NKT	0.20	OC811	0.20
2N214	0.43	AF11	0.25	13FY11 1．25	NKT	0.82	OC813	0.20
2 N 247	0.25	AF＇116	0.25	BFY17 0.25	NKT251	0.24	OC81DM	$0-18$
2N200	0.50	AF117	0.25	BYFIS 0.26	NKT ${ }^{\text {a }}$ I	0.25	OC817	0－40
2 N 404	0.20	AFl1\％	0.62	13FY19 0.26	NK゙T2\％	0.25	$00^{0} 82$	0.26
2N697	0.15	AFl19	0.20	13FY24 0.45	NKT273	0.15	OC8211	0.20
2N698	0.40	AF194	0.25	3FY44 $\quad 1.00$	※KT2す4	0.20	OC83	0.25
2N706	0.10	AF12J	0.20	BFYu0 0.82	NKT2T\％	0.25	OC84	0.25
2N706A	0.12		0.17	$\begin{array}{ll}\text { 1FFYJ } & 0.20\end{array}$	NKT277	0.20	OC114	0.38
2N708	0.15	AFH^{-7}	0.17		NKT\％${ }^{\text {a }}$	0.25	OC122	0.60
2 N 709	0.63	AF139	0.30	$\begin{array}{ll}13 \mathrm{FY} 5 & 0.17\end{array}$	NKT301	0.40	OCl23	0.65
2N711	0.87	AF178	0.55	BFY64 0．42	NKT304	0.75	0 C 139	0.25
2N987	0.58	AF179	0.45	BFY90 0.65	NKT403	0.75	OC140	0.35
2N1090	0.30	AF180	0.62	3s8X27 0.50	NKT40t	0.55	OC141	0.60
2N1091	0.92	AF181	0.42	BSX60 0.93	－K T678	0.30	OC＇169	0.20
2N1131	0.25		0.40	BSX－6 0.15	NKTT13	0.25	OC1\％	0－25
2N1132	0.25	AFY19	1.13	$\begin{array}{ll}\text { BSY } & 0.18\end{array}$	NKTİ3	0.25	$0<171$	0.30
2 N 130 g	0.18	AFZ11	0.60	BSY27 0.17	NKT\％it	0.38	OC200	$0 \cdot 40$
2N 1303	0.28	AFZ1：	1.00	BSY 0	0783	0.38	$00^{0} 201$	0.70
2N1304	0.25	ASY26	0.25	13SY90̈A 0.12	OAJ	0.80	OC30：	0.80
2N130\％	0.22	ASYe7	$0 \cdot 32$	$\begin{array}{ll}\text { BSY95 } & 0.12\end{array}$	OAfi	0.12	OC203	0.40
2 N 1306	0.25	ASYO8	0.25	BT102／00R	0.47	0.10	OC：04	0.40
2 N 1307	0.25	ASY：9	0.30	0.75	0A70	0.10	OC20	0.75
2N1308	0.25	ASY36	0.25	13TY43 0.82	0.171	0.10	OC206	0.90
2N1309	0.85	ASY 0	0.17	13 T	0 O．7	0.10	OC207	0.90
2N1420	0.98	ASY 1	0.40	0.75	0.474	0.10	OC460	0.20
2N1007	0.28	A8Yü	0.20	HT Y79／400R	0479	0.10	OC470	0.80
2N1526	0.38	ASY ${ }^{\text {a }}$	0.20	1.25	0 A81	0.08	OCP71	0.97
2N1909	2.85	ASY6？	0.25	$13 \times 100 \quad 0.15$	0.85	0.12	ORP12	0－50
2 N 214	0.75	ASY86	0.38	BY126 0.15	0.486	0.15	ORP60	0.40
2N2148	0.60	Asz 21	0.42	BY⿺𠃊 0.17	0 A 90	0.08	ORP61	0.42
2N2160	0.80	AsZ23	0.75	BY18． 0.17	0.991	0.07	\＄19T	0.80
$2 \mathrm{~N} 2 \cdot 218$	0.20	ALY10	0.98	BY18：	$0 \mathrm{A9}{ }^{\text {O }}$	0.07	SAC40	0.26
2 N 2219	0.20	AU101	1.50	BY213 0.25	OA200	0.07	SFT308	0.88
2N2：87	1.08	${ }^{\text {BC107 }}$	0.10	B YZ10 0.85	OA20：	0.10	STz2\％	0.38
2N2297	0.20	BC108	0.10	BYZI1 0.32	OA210	0.25	ST7231	0.68
2N2369．A	0.15	BC109	0.10	BYZ1： 0.80	OA211	0.30	5×68	$0 \cdot 20$
2 N 2613	0.28	BC113	0.16	$\begin{array}{ll}\text { BYZ12 } & 0.80 \\ \text { BYZ13 } & 0.25\end{array}$	$0.2 Z 200$	0.55	8X631	0.30
2N2646	0.45	BC11．	0.20	$\begin{array}{ll}\text { BYZ13 } & 0.25\end{array}$	OAZ201	0.50	5×635	0.40
2N2712	0.25	BC116	0.25	BYZ1－ 1.00	0A2202	0.40	S ${ }^{\text {c } 640}$	0.60
2 N 2784	0.60	BC116a	0.30	$\begin{array}{ll}\mathrm{BYZ} 16 & 0.62\end{array}$	OAZ203	0.42	5X641	0.55
2 N 2846	0.75	BC118	0.25	BYZAsčuv3	OAZ：04	0.30	SX 64.	0.60
2N2848	0.42	BC121	0.20	0.15	OAZ 205	0.42	SX644	0.75
2 N 2904	0.20	BC122	0.20	Clll 0.85	OAZ206	0.42	8×645	0.75
2 N 2904.4	0.38	BC12 ${ }^{3}$	0.68	CR\＄1／0． 0.25	OAZ20	0.47	V1－1301	0.60
2N2906	0.20	BC126	0.66	CRSI／40 0.17	OAZ208	0.32	V30／201P	0.75
2 N 2907	0.28	BC140	0－55		OAZ909	0.83	160／201	0．75
2N2924	0.23	BC147	0.15	CS1013 3.13	OAZ210	0.32	$\stackrel{1}{60 / 201 P}$	0.38
2N292J	0.15	BC148	0.12	DD000 0.15	OAZ211	0.82	X 4101	0.10
2 N 2926	0.10	$\mathrm{BCI}+9$	0.20	DD003 0．15	OAZ222	0.45	XA102	0.18
2 N 3054	0.50	BClö	0.20	UD00fi 0.18	OAZ223	0.45	XA151	0.15
2N3000	0.75	BClus	0.15	${ }^{\text {D D 0 0 }}$	0.12224	0.45	XA152	0.15
2N3702	0.10	BCl 58	0.12	${ }^{\text {DDP00 }} 00.38$	OAZ241	0.22	XA161	0.25
2N3705	0.10 0.93	BC16n	0.63	$\begin{array}{ll}\text {（iD3 } & 0.33 \\ \\ \text { GD4 } & 0.05\end{array}$	OAZ：242	0.23 0.88	XA162	0.25
2N3706	0.23	BC169	0.12	CiD4 00.05	OAZ244	0.83	XA162 $\times \mathrm{X} 101$	0.25 0.48
2N3707	0.12	BCY31	0.30	GD5 00.33	OAZ：46	0.88	X B101	0.48
2N3709	0.13			$\begin{array}{ll}4 \mathrm{D} 8 & 0.25\end{array}$	OAZ990	0.38 0.50	X $\mathrm{CB102}$	0.10
2N3710	0.13 0.10	BCy 32 BCX 33	0.55 0.25	$\begin{array}{ll}\text { GD1 } \\ \text { GET10\％} & 0.05 \\ 0.30\end{array}$	${ }_{\text {OC16 }}^{\text {OC16 }}$	0.50 0.38		0.25 0.18
2N3819	0.35	BCY 34	0.30	$\begin{array}{ll}\text { GET103 } & 0.82 \\ 0.22\end{array}$	${ }_{0} 0 \mathrm{Cl19}$	0.58 0.37	X B 113	0.12
2N3820	0.80	BCY38	0.40	GET113 0．20	OU20	0.88	XB12I	0.48
2N3823	0.75	BCY39	1.00	GFT114 0．15	0 C 22	0.50	ZR24	0.68
2N5027	0.63	BCY40	0.50	GETIIJ 0．45	OC23	0.80	ZS170	0.10
2N5088	0.33	BCY42	0.25	GET116 0.50	0 OL 4	0.80	z8271	018
28005	1.00	BCY70	0.15	GET120 0.25	OC25	0.37	ZT ${ }^{\text {］}}$	0.25
28301	0.50	BCY71	$0 \cdot 20$	GET872 0.30		0.25	ZT 43	0.26
2玉304	0.75	BCZ10	0.35	（EET875 0.26	OC＇26	0.25	ZT 43	0.25
28501	0.32	BCZ11	0.50	$\begin{array}{lll}\text { GET880 } & 0.37\end{array}$	OC28	0.60	7TX107	0.15
29703	0.62	BD121	$0-65$	GET881 0.25	OC29	0.80	ZTX108	0．12
AA129	0.20	BD123	0.80	GET882 0.25	OC30	0.40	ZTX 300	0.12
AAZ12	0.30	${ }_{\text {BD }}{ }_{\text {BD }}$ B11	0.75 1.82	$\begin{array}{ll}\text { GET883 } & 0.25 \\ \text { GEX44 } & 0.08\end{array}$	Oc3s	0.50	2TX304	0.25
AAZ13	0.12	${ }_{\text {BF110 }}^{\text {BDY }}$	1.62 0.25	$\begin{array}{ll}\text { GEX44 } \\ \text { GEX4／1 } & 0.08 \\ & 0.07\end{array}$	0c36	0.80	ZTX 000	0.16
AC107	0.37	BF117	0.50	$\begin{array}{lll}\text { GEX } 941 & 0.15\end{array}$	OCll	0.25	ZTX 503	0.17
AC126	0.20	BF167	0.25	GJ3M 0.25	OC 42	0.80	ZTX0̄31	0.25

SEMI－CONDUCTOR SET FOR
P．E．GEMINI AMPLIFIER $£ 12.95$
SEND S．A．E．FOR LIST OF 3，000 TYPES VALVES，TUBES AND TRANSISTORS
Open daily to callers：Mon．－Sat． 9 a．m．－5 p．m．
Closed Sat． 1.30 p．m．－2．30 p．m．
Terms C．W．O．only
Tel．01－769 0199／1649

A modification of the original constant current circuit is employed, due to the need for it to function correctly with a varying supply voltage, V_{i}. The two silicon diodes (these can be of any low power type, or alternatively two npn silicon transistor base-emitter junctions, forward biased as shown in Fig. 16) provide a constant voltage at the base of TRA-constant, that is, with respect to the positive supply line. With the base and hence emitter so held constant, the 100 ohm resistor passes a constant 7 mA current through TRA and hence to the TRZ and VR1 in parallel.

It was from this configuration that the graphs in Fig. 17 were obtained, to show how output voltage varies with output current, and how the level of short circuit current varies with the setting of VR2.

In passing, note that the driving of the TRZ from the input voltage allows the output voltage to be made variable down to zero volts. If TRZ is driven from the output side, output voltages of less than Zener voltage would cease to give regulation.

Fig. 18. Suggested mains supply unit for the stabiliser shown in Fig. 14

VOLTAGE FEEDER

Practical construction of such a stabilised power supply can follow usual techniques. After maximum output current and maximum output voltage have been decided upon, a decision is made on the method of driving the regulator. A simple mains unit is shown in Fig. 18, and the voltage rating of the transformer secondary is chosen to give, at full load current, a value of V_{i}, about 4 volts more than the maximum regulated output voltage. Alternatively, a battery or accumulator could provide power.

HEAT SINK FOR TRI

As for the size of the heat sink required for TR1, calculate first the maximum power dissipated in that transistor. This will be:

$$
\begin{aligned}
&\left.V_{i}-(\text { minimum output voltage used })\right] \\
& \times \text { maximum load current }
\end{aligned}
$$

It is at minimum output voltage and maximum load current that maximum power will be dissipated in TR1, and a suitable heat-sink should be chosen.

Generally speaking, for an OC28 or similar transistor, bolted to a heat-sink with an insulating mica washer, a rise in heat-sink temperature of about $40^{\circ} \mathrm{C}$ above ambient room temperature can be permitted.

Heat-sinks of various ${ }^{\circ} \mathrm{C} /$ watt ratings are readily available from components stockists.

As an example, for a 1A 9 volts output, driven from a 13 volts supply, with operation down to 3 volts expected, maximum power dissipated in TR1 is $(13-3) \times 1=10$ watts, so a heat-sink of $4^{\circ} \mathrm{C} / \mathrm{watt}$ is needed for an OC28. About 20 sq in of 16 s.w.g. aluminium sheet will suffice.

Having thus decided on transformer and heat-sink requirements, the size of the final unit can be settled. VR1, and possibly VR2, are front panel controls, but otherwise layout is unimportant, and can be adapted to suit individual requirements.

TRICKLE CHARGER FOR SMALL BATTERIES

Mention was made earlier of deriving the supply from an accumulator and this is a useful way of obtaining a good general purpose stabilised voltage for powering many circuits. Recharging of the accumulator can be carried out overnight or a trickle charger can be used while the power supply is in use.

It is worth noting that many 12 volt car batteries can still provide a handy 1 A even after their useful life in a car is over.
Constant current output can prove useful in the charging of some types of small batteries.

Batteries such as nickel-cadmium have a low internal resistance; hence, when in a discharged state, they would draw very large currents if the usual constant (or almost constant) voltage charging system is employed. This large current could give rise to overheating, tending to reduce the internal resistance still further and hence allowing thermal runaway to take place, and so leading to destruction of the battery.

However, for battery charging applications, adjust VR2 to give the required current, ensuring that VR 1 is set to give a high enough voltage to charge the battery in question when it reaches its full final voltage. The battery manufacturer's instructions should be followed if in doubt.

Otherwise, the constant current circuitry is used as an overload limiter. With VR2 at maximum resistance, short circuit the output terminals; then bring down VR2 until the output current is a little greater than the maximum expected to flow in the unit being powered, under normal conditions.

Thereafter, should excessive current attempt to flow due to a fault, such current will be safely limited to that previously set by VR2.

Although the uses of Zener substitutes so far described have been in power supplies, this does not exhaust their usefulness.

OTHER USES

Clipping and limiting of waveforms to specific amplitudes can easily be accomplished. In the design of d.c. amplifiers, shifts of voltage by the constant voltage of the Zener substitute enable large gains to be achieved without limiting due to saturation of later stages.

With the ready availability of npn silicon transistors for use as substitute Zeners, it is hoped that experimenters will be encouraged to make greater use of them in stabilised power supplies, on the lines suggested, with corresponding improvement in equipment performance.

market PLaIE

Items mentioned in shis feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

PHOTOCONDUCTIVE CELL DESIGNERS' KIT

Designed primarily for educational establishments as well as industrial organisations interested in developing light activated controls, Photain Controls have produced a Photoconductive Cell Designers' Kit which readers may like to experiment with.

The kit consists of five different photoconductive cells together with 13 circuit diagrams each complete with a brief explanation of the circuit. Each diagram enables the student to build devices embracing light intensity measurement; feedback gain controllers; photo switches; signal modulating and musical instrument volume controller.

The kit is available from Photain Controls Ltd.. Randalls Road, Leatherhead, Surrey, price $£ 2$.

SOLDERING ACCESSORIES

Leaving one hand free to hold the work piece, the Anextra Solder Feed fits the majority of soldering irons and carries up to 4 oz reels of flux cored solder.

Solder from 22 to 18 s.w.g. can be used and is fed to the joint by operating the solder feed trigger.

Supplied with an initial $10 z$ reel of $60 / 40$ cored 22 s.w.g. solder, the recommended retail price is $£ 4 \cdot 25$. Further details of the Solder Feed is obtainable from Anextra Ltd.,

Chiltern Works, 77-78 Chiltern View Road, Uxbridge, Middlesex.

Standard package integrated circuits, despite their numerous advantages, suffer from one major drawback as far as the amateur is concerned. The removal of these units from printed circuit boards, since it is necessary either to remove all traces of solder from all the connecting pin joints or melt all the joints simultaneously.

A range of desoldering heads for the Solderstat HMS miniature irons is an accessory which, using the method of simultaneous desoldering, removes the standard dual-in-line packages within a few seconds is claimed by Solderstat Ltd.

The desolder head is placed on the iron in place of the copper bit and aligned with the i.c. connecting pins on the printed circuit board. Both 14 -way and 16 -way dual-inline heads are available.

Readers can, of course, use standard i.c. holders available from advertisers when they construct prototype circuits.

LOW VOLTAGE TOOLS

A range of battery-operated miniature tools capable of operating drills, cleaning brushes, abrasive stones, cutting burrs, polishing mops and other tools for precision work has been introduced by Expo (Drills) Ltd.

Two basic models are available. The "Reliant" designed for lighter work such as model making, and has a full load current of 1.5 A , and the "Titan Super". Rated torque of the "Reliant" is 1.38 oz in (100 gm cm .). For jobs requiring a more powerful tool and for professional applications the "Titan Super", rated at $3 \cdot 5 \mathrm{~A}$ on full load, should be used. It has a rated torque of $350 \mathrm{c} . \mathrm{m} . \mathrm{p}$. operating at $4,000-9,000$ r.p.m.

Accessories include a diamond bonded drill, for gem stones up to 7MOHS, various types of abrasives, cutters and saws. Different
collets and accessories are supplied according to model.

Prices range from $£ 3$ to $£ 5 \cdot 50$ and full details are obtainable from Expo (Drills) Ltd., 62 Neal Street. London, W.C.2.

INSTANT LETTERING

To help finish-off equipment Instant Plastic Ltd. have introduced a range of p.v.c. self-adhesive plastic lettering kits.

Designated type K, the kits consist of 40 different sets in five colours, sizes from 10 mm ($\frac{3}{1}$ in) high upwards, in capitals and lower case letters and numerals.
The smallest set contains 578 letters and numerals and the number in each set reduces as the letter size increases.

The K sets cost approximately fl per set, and details of their other ranges can be obtained from Instant Plastic Ltd., 101 Bramley Road. London, W. 10.

PRINTED CIRCUIT BOARDS

A new price list of printed circuit boards for previously published P.E. projects has just been issued by P.H. Electronics.

Copies of the price list can be obtained from P.H. Electronics, Industrial Estate, Sandwich, Kent.

SWITCH KIT

The mention of the versatile switch kit in the September issue should have included the following firms who are all part of the buying group set up by Home Radio (Components Lid.).

Crescent Radio, 40 Mayes Road, London, N. 22 .
Garland Bros., Chesham House, Deptford Broadway, London, S.E.8.
Radioparts, 5 Market Way, Plymouth, Devon.
Servio Radio, 156-158 Merton Road, Wimbledon, London, S.W. 19.

GEW PANEEL METERRS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC
LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

"SEW" CLEAR PLASTIC METERS

Type Mr.85P. 4\}in 4 \}in fron

$50 \mu \mathrm{~A}{ }^{2} 3 \cdot 10120 \mathrm{~V}$ d.c. ... $£$
 $50-0-00 \mu \mathrm{~L}$ $100 \mu \mathrm{~L}$ $100-0.100$
 100-0-100
 $500 \mu \mathrm{M}$ 1 mA
 10 mA
 .0 mA 100 mA
 100 mA , 700 mA
 $1 A$. 10 V 1

Type MR.65P. 3tin , 3tin fronts.			
310.1	£3.37	rov de.	22.20
-0.0.50 $\mu \mathrm{A}$	£2.75	.00) d.e	22.20
$100 \mu \mathrm{~A}$	£2.75	I. 00 d.e	£2.20
$100 \cdot 0 \cdot 100 \mu \mathrm{~A}$	22.65	$300{ }^{\text {d d d.c. }}$	12.20
$\because 00 \mu \mathrm{~A}$	£2.65	ந5y a.c.	22.30
-00 0.4	22.40	sov ac.	22.30
$\overline{0} 0 \cdot 0 \cdot 500 \mu \mathrm{~A}$	22.20	150 y a.c.	£2.30
1 ml	£2-20	300 V ac	£2.30
\%ma	\&2.20	300V a.c	$2 \cdot 30$
OnA	22.20	S Mcter	
50nA	£2.20	1 mL	2. 32
100 mA	12.20	vis meter	£3.37
-00mA	22.20	50mA a.c.*	£2.20
1 A	22.20	100 mA a.c.**	£2.20
TA	£2.20	$\because 00 \mathrm{~mA} \mathrm{a.c.*}$	£2.20
10A.	22.20	500 mA a	22.80
15A.	22-20	1. a.c.*	20
A	22.20	3.t a.c.*	20
A	22.30		
4	22.50		
Vlec	\$2.20	20.1 a.c.**	ع2-20
0v d.e.	\$2.20	30.A a.c.*	£2.20

* MOVING IRON ALL OTHERS MOVING COIL. Please add postage
"SEW" EDUCATIONAL

meter movement is demonstrate internal

j0 $\mu \mathrm{L}$	25.00	20V d.c. . . . $£ 4.40$
$100 \mu \mathrm{~A}$	24.65	50以
1 mA	£4.40	50N (1.c. . . 84.40
30-0.00 -2 A	84.85	300 V d.e. . . $£ 4.40$
1.0 .1 mA .	£4.40	Lı
1A de.	£4-40	
Jide.	£4.40	200mid/u.d d.e.84.65
I0V d.c.	£4.40	

Type MR.38P. 1 21/32in aquare Ironts.

'SEW" BAKELITE PANEL METERS
Type MR. 65 3tin square front.

30μ.
$30 \mu A$
$j 0.0-j 0 \mu A$

$100-0$
200μ
1 mA

METERS

Type ED. 10%. Size $90 \mathrm{~mm} \times 108 \mathrm{~mm}$. A new range of high quality moving coil instruments ideal for school experiments and other bench applications. *aily accessible to working. Available

MULTIMETERS for GUSRY purpose!

MODEL TE-200. 20,000 O.P.V. Mirror acsie, over $125 / 1,000 \mathrm{~V}$ dion. $010 / 50$ | $250 / 1,000 \mathrm{~V}$ | a.c. | $0 / 10 / 50$ |
| :--- | :--- | :--- | 260MA. 0/60K/6 mes -20 to $+62 \mathrm{~dB} . \quad 88.75 . \quad$ P. ${ }^{260 \mathrm{P} .15 \mathrm{p} .}$.

ERL 20 kD (rolt
 Current $0-60 \mu \mathrm{~A} / 0-12 / 0-$

$300 \mathrm{~mA} \quad 0-60 \mathrm{k} \Omega / 0-6 \mathrm{Ma}$
 grotection, mirror tole 260/500/1.000 V d.c. $0 / 2 \cdot 5 /$ $10 / 25 / 100 / 250 / 500 /$ 1,000 V. a.c. $0 / 50 \mu \mathrm{~A} / \sigma / 50 /$ $\begin{array}{lll}500 \mathrm{~mA} & 12 & \mathrm{amp} \text {. d.c. } \\ 0 / 60 \mathrm{~K} / 6 & \text { Meg. } / 60 \mathrm{Meg} \mathrm{a} .\end{array}$ 88.87). Post paid.

TME LAB TRETER

 100,000 O.P.V. 61in scale buzzer Sensitivity: 100,000 OPV d.c. S/Volt a.c. D.c. Volta: $0.5,2 \cdot 5$ A.c. volts: $3,10,50,250,500.1,000 \mathrm{~V}$.D.c. current: $10,100 \mu \mathrm{~A}, 10,100,800 \mathrm{mAA}$ $2.5,10 \mathrm{~A}$. Resistauce: $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$, 10 meg. 100 meg. Decibels: -10 to +49 dB . Plastic case with carrying handle, size $7 \mathrm{~h} \mathrm{in} \times$ 6ain $\times 3$ hin. $218 \cdot 90$. P. \& P. 25p. ROUND SCALE TYPE PENCIL
TESTER MODEL TS. 68

Completely portable, simple to use pocket.
sized tester. Ranges $0 / 3 / 30 / 300 \mathrm{~V}$ a.c. and sized tester. Ranges $0 / 3 / 30 / 300 \mathrm{v}$ a.c. and d.c. at 2,000
ONLY 21.97.
O. P. \&

TMK MODEL 117 F.E.T. BLECTRONIC

 VOLTMETER Battery operated, meg input. 96 ranges. Large 57 in $x \quad 4$ in x 2 In. D. D.c. volts $0.3-$$1,200 \mathrm{~V}$.
A.c. volts $3-1$ 300 V R.M.S. $8 \cdot 0-800 \mathrm{~V}^{-}$ P-P. D.c. current $0 \cdot 12-$
nce up to $2,000 \mathrm{M}$ ohm. 12MA. Resistance up to $2,000 \mathrm{~m}$ ohm.
Decibels -20 to +51 dH . Complete with leads/instructions. 217.50 . P. \& P. 20p.

T.E. 40

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranged R.M.S. $40 / 10 / \mathrm{s},-1.2 \mathrm{Mc} / \mathrm{B}$ Decibele -40 to +50 dB Supplied brand new complete with leads and
inatructions.
Operatlon 230 V acc. 817.50 . Carr. 25p

TE22 SINE SQUARE WAVE

 20c/s to $30 \mathrm{kc} / \mathrm{s}$.
Output
impedance 5,000 ohms. $300 / 250 \mathrm{~V}$ Supplied brand new and guaran-
teed with inatruc tion manual and leade. $\mathbf{1 6 \cdot 5 0}$. Carr. 37 Hp .

TE-20RF BIGNAL EENERATOR

 Accurate wide range signal generatorcovering $120 \mathrm{kc} / \mathrm{g}-260 \mathrm{Mc} / \mathrm{s}$ on 6 band .

 $300 \mathrm{~mA} / 600 \mathrm{~mA}$. $\quad 0 / 8 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K} / 8 \mathrm{meg}$

Volts: $-0.125,0 \cdot 2 \overline{0} .1 \cdot 25,5,10,25,50,125$, $250,500,1,000 \mathrm{~V}$. Ac Volts: $1 \cdot 5,3,5,10$, 5, $50,125,250,500,1,000 \mathrm{~V}$. D.c. current: 10 A . Resistance: $2 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K} .1 \mathrm{meg}$, 10 meg. Decibela: -20 to +85 dB . $12-50$. P. \& P. 17 p.

Teat MODEL TW-80CD. Features Resettable Overload Button. Sensitivity:
20 K a/Volt d.c. 5 K ; Volt a.c. D.c. volts: $0=0.5$. $2 \cdot 5,10,50,250,1,000 \mathrm{~V}$ A.c. volts: $0-25,10,50.250,1,000 \mathrm{~V}$. D.c. Resistance: $0-5 \mathrm{~K}, 50 \mathrm{~K},{ }^{5}, 500 \mathrm{~K}, 5 \mathrm{meg}$. Decibels: -20 to +52 dB . $\quad \$ 11-60$. P. \& P. 17 p.

RUSSIAN 22 RANGE MULTIMETER Model U437 10,000 versatile A Arst class rersalile instrument manufactured in highest standards. highest standards:
Hanges: $2.5 / 10 / 50 /$ Hanger: $25.5 / 10 / 50 /$ $2.5 / 10 / 50 / 250 / 500$ / 1000 V a.c. D.c. current $100 \mathrm{~mA} / \mathrm{l} / 10$ / $100 \mathrm{~mA} / 1 \mathrm{~A}$. Resist. ance 300 ohms/3/30/300k a / 3Ma. Complete with batteries, teat leads, atructiona and aturdy steel carrying case.
OUR PRICE $\$ 6.97$
P. \& P. 25 .

TO-2 PORTABLE OSCILLOSCOPE A general purpore low scope for everyday use Y amp. Bandwidth 2 CPS-1 MHZ. Input imp. 2 meg $\Omega 25$ P.F. Illuminated scale. 2 in. tube. $115 \times 180 \times$ $220 / 240 \mathrm{~V}$ a.c. Supplied brand new with hand

book. 288-50.Carr. 50p

HONEYWELL DIGITAL
VOLTMETER VT. 100

d.c. volt, curs
plug-in cards.
specification
Accuracy: $\pm 0.2, \pm 1$ digit.
Resolution: 1 mV ,
No. of diglts: 3 plus fourth overrange digit. No. of diglts: 3 plus fourth overra
Overrange: 100% (up to 1.999) Input impedance: 1000 Meg ohm
Measuring cycle: 1 per second.
Adjustment: Autornatic zerolng, full scade
adjustment against an internal reference voltage.
0 verload: to 100 V d.c
Input: Fully floting (3 poles).
Input power: $110-230 \mathrm{~V}$ a.c. $50 / 60$ cycles. Overall size: 5fin. $x 213 / 16 \mathrm{in}, x 83 / 16 \mathrm{in}$ AVULLY GUARANTEED AT APPROX HALF PRICE

449097 $\frac{1}{2}$ Carr. 50p
G. W. SMITH
\& CO (RADIO) LTD.
Also see next two pages

GENIRONDUGORE/VAMVES
 ALL DEVICES BRAND NEWAND FULLY GUARANTEED

SAME UP
$3 S \% O R O R$
SEND S.A.E. FOR
DISCOUNT PRICE LISTS
AND PACKAGE OFFERS! RECORD DECKS

B.s.R. Mini M C129: MP60 M P60 610 510 310 MP60 T.P.L. MP60 T P.1. 610 T.P.D.1. 510 T.P.D.1. 210 Package* H.T. 70 H.т. 70 Package THORENS TD 125 TX25 TD150A 11 284:50 TXII
 \ddagger Mono \#Mono *Stereo Cartridge Carriage modela iextra cartridge

EECORD DECE

packages
Decks supplied ready wired in plinth and
cover fitted with caver fild
Garrard 2025 T/C
 9 9AHCD $\quad 18.95$ Garrard SPū III with 9TACH1 \quad E15.85 Garrard SP25 III with (ioldring 1800 £18.85 Garrard AP76 with Goldring q800 $820 \cdot 95$ B8R MP60 Audio Technica AT. $55 .$. . $281 \cdot 00$ Goldring GL75 with Goldring G800 Goldring GL75 with Goldring G800E E48.85 Carriage 50 p extra ans model.

HOSIDEN DH-08S DE LUXE STEREO
HEADPHONES
Features unique mechfitted adjustable leve controls. 8 ohm im pedance. $20 \cdot 20,000 \mathrm{cps}$, Complete with spring 27-97\% P. P. P. P. 12 年

SINCLAIR EQUIPMENT

Project 60.Package offers. 2×230 amplifier tereo 60 pre-annp. PZ5 power supply, 16.75. Carr 37ip. Or with PZ6 power supply. 81885 . Carr. 37pp. 2×250 anmpllfier, stereo 60 pre-and PZA power supply,
$480-25$ Carr. $37!p$. Tranaformer for PZ8, 42.87 extra. Add to any of the above e4.87 for active filter unit and 213.90 for pair of Q16 speakers. Project 60 FM Tuner
2 $20-25$. Carr. 37 p . New Project 605220.97 . Carr. 37 p .
All sinclair products in stock. [CI0/IC]I2 22.50. 2,000 amplifier, 283-75. C'arr. 371 p . 3000 Amplifier $831 \cdot 50$. Carr. 37 ip. Neoteric ampllfier 448.95 . Carr. 37 ip .

LATEST CATALOGUE

Our new 6th edition gives full details of a COMPONENTE COMMUNICATIONS EQUIPMENT. FREE DIECOUNT COUPONS VALUE 50 p 272 pages, fully illustrated and detailing

Latest exciting release. Beautifully atyled with Walnut case. $6+6$ watts r.m.s.
Switched inputs for Mag. Xtal, sux, tape. Switched inputs for Mag, Xta, aux, tape.
incorporates volume, bass, treble, sliding bslance, scratch filter and loudness controls. Rec. List $£ 32$-50. Our price 817 -50. Carr. 37p. TELETON F. 2000 AM/FM STEREO TUFER AMPLIFIER
 on 9y' battery, Coverage amplifiers. Operate built ready for use money, eb-371, P \& $\&$. $12 \dagger p$.
Stereo multiplex
$\frac{\text { Stereo multiplex adaptors } £ 4.87 \mathrm{~L}}{\text { HA }-10 \text { 8TEREC }}$
 HEADPHONE
 ates from magnetic, ceramic or tuner in headphone outputsand separate volume controls

NS-I, 000 W STEREO AMPLIFIER

 ut selector separat case. Switched in reble, bass controls balance. volume R.M.S. Inputs Mag, Tape, Xtal. Tuner, Tape Out. E14.75. Carr. 37p.
EA. 41

AMPLBERATION AMPLIFIER
Belf-contained, tran-
$\begin{array}{ll}\text { sistorised, } & \text { battery } \\ \text { operateal. } & \text { Simply }\end{array}$ operated. Simply
plug in nictophone, puitar, etc., and out
put into your ampliffer solume depth of reverberation control. Beautiful wainut cabinet. ifin $x \operatorname{in} \times 4$ in. $25-97$ P. \& P. 15p.

TO. 3 PORTABLE OSCILLOSCOPE

 external lliuningehronization. Internal mm . Weight 151 lb g20/240Y brand new with handbook. 387.50. Carr. 50 p

RUSSIAN CI-16 DOUBLE BEAM OSCILLOSCOPE 5MHz Pasa Band. Separate Y1, Y2 amupli $0-2$ usec to $100 \mathrm{msec} / \mathrm{cm}$. $0-2 \mu \mathrm{sec}$ to $100 \mathrm{msec} / \mathrm{cm}$.
lastructions, 887. Carr

ill.

SOLID 8TATE SINE 8QUAR WAVE C.R. O8CILLATOR

Sine
$18-200,000 \mathrm{~Hz}$; square $18-50,000 \mathrm{~Hz}$ Output max
+10 dB (10k Ω +10 dB ($10 \mathrm{k} \Omega$ Operation internal

TE-16A Transistorised

 Signal Generator. 5 ranges $400 \mathrm{kHz}-30 \mathrm{mHz}$. An inexpensive instrumenfor the handyman. Oper ates on 9 v battery. Wide easy to read acale 800 kHz modulation
$5: \times 5\} \times 31 \%$. Connlete with instructions and 20p.

TR111.
DECADE
RESIBTANGE
ATTERUATOR

0 -111dB. Con

nections. Ud

balanced T and Bridge T Impedence 600Ω range $(0.1 \mathrm{~dB} \times 10)+(1 \mathrm{~dB} \times 10)$ $600 \Omega+$ rangc $(0.1 \mathrm{~dB} \times 10)+(1 \mathrm{~dB} \times 10)$
$+10+20+30+40 \mathrm{~dB}$.
 $\begin{array}{lll}\text { d.c. to } & 200 \mathrm{EHz} \\ 0.05 \mathrm{~dB} . & \text { +igdication } \mathrm{dB} \times 0.01 \text {. Maxi }\end{array}$ mum input less than 4 W (50 V). Built in 600 Ω load resistance with internal/externa
switch. Brand new E87.50. P. \& P. 25p.

HELICAL POTENTIOMETERS ITT MCPMIJ 10 turn $2 \frac{1}{2}$ W. Available $\ddagger 00 \mathrm{ohm}, 1 \mathrm{~K} . \overline{\mathrm{J}}$ ohnm. $21-25$ each. P. \& P
10 p .

SPECIAL PURCHASE SPECIAL PURCHASE 100 watt SPEAKERS Made by Celeation or Fane. 18 in . 100 watt rms. $3 \overline{\mathrm{~J}}$ cps bass resonance. Limited ntock
only. 818.95 each. Carr. 00 p .

JE-IA SOLID STATE
OMMUAICATIOK RECEIVEA
Bands covering $55 \mathrm{KHz}-30 \mathrm{MHz}$. FET, s Meter, Variable BFO for g8B. Built in Speaker, Bandapread, Senaitivity Control. $220 / 240 \mathrm{~V}$ a.c. or 12 V d.c. $12 \frac{1}{2}$ in $x 42 \mathrm{in} \times$ Carr. $37 \frac{1}{2} \mathrm{p}$.

UNR-30 RECEIVER
4 Bands covering $550 \mathrm{KHz}-30 \mathrm{MHz}$. B.F.O.

General coverage $150-400 \mathrm{KHz}, 550 \mathrm{KHz}$ 30 MHz . FET front end. 2 mech. flters. product detector, variable B.F.O., noise imiter, A Meter, Bandapread. RF Glain. or 12 V d.c. Brand new with lngtructions or
845 . Carr. 50 p .

CRYSTAL CALIBRATORS No, 10 Small portable cryatal controlled wavemeter. Size. $7^{*} \times 71^{*} \times \mathbf{4}^{\prime \prime}$ Frequency range $500 \mathrm{Kc} / \mathrm{s}$. $10 \mathrm{Mc} / \mathrm{s}$ (up to $30 \mathrm{Mc} / \mathrm{s}$ on harmonics). Calibrated dial. Power re
5 mA and 12 DC 0.3 A Excellent con dition. $88.47 \frac{1}{2}$. Carr. 371 p
B.C. 221 FREQUENCY METERS latest release 125 kHz to 90 MHz . Excellent condition. Fully tested and checked and coni.50 each. Carr. 50 p .

SOLID STATE VARIABLE A.C. VOLTAGE REGULATORS $60 \mathrm{~mm}, 211-971$. Compact and panel mount- ing. Ideal for control of lamps, drills, electrical sppliances, etc. Input $230 / 240 \mathrm{~V}$ a.c. Output continuously variable from 20 V to 230 V . Model MR2305 5A 68×46 $\times 43 \mathrm{~mm}, 88.371$. Model MR2310 10A $90 \times 68 \times$ Postage 12tp.
AUTO TRANSFORMERS $0 / 115 / 230 \mathrm{v}$. Step up or step down. Fully shrouded.

POWER RHEOSTATS

High quality ceramic construction. Windinga embedded in vitreoun enamel. Heavy duty brush wiper. Continuout rating- Wide range ex-stock Single bole fixing, tin. dia. shafts. Bulk quantities available. 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohms, 721 p. P. \& P. 74 p

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

\qquad ALL MODELS
IHPDT 230 VOLTE, 50160 CYCLEs. OUTPUT YABIABLE 0-280 VOLTS special iliscounta for quantity

SIEMENS QUALITY PLUS BARGAIN PRICES PLUS LST SERVICE
A full design range of high quality TTL available from LST your Officially Appointed Siemens Distributors

Equal	Description Por	Port No.	1-24	25-99	100 up	Equal	Description Por	Port No	1-24	25.99	100 up	Equol	Description Po	are	-24	.99	Oup
7400	Quadruple 2-inpue NAND gate	$\begin{aligned} & \text { FLH } \\ & 101 \end{aligned}$	20p	16p	14p	7444	Excess 3 gray to decimal decoder	371	£1.45	¢1-20	¢1.08	7486	Quadruple 2-input exclusive-OR				
7401	Quadruple 2-inpue NAND gate					7450	Expandable dual 2-wide 2 -input ANO-OR-INVERT						element	$\begin{aligned} & 341 \\ & \text { FLJ } \end{aligned}$	33 p 80 p	$27 p$ $67 p$	23p
	with open collector output	201	20p	16p	14p		AND-OR-INVERT	151	20p	16p	14p	$\begin{array}{r} 7490 \\ 7491 \mathrm{~A} \end{array}$	Decade counter 8-bit shift register	$\begin{array}{r} 161 \\ 221 \end{array}$	$\begin{array}{r} 80 p \\ f 1 \cdot 28 \end{array}$	$\begin{array}{r} 67 p \\ \mathbf{f} 1.07 \end{array}$	$\begin{aligned} & 57 p \\ & 92 p \end{aligned}$
7402	Quadruple 2-input NOR gate	191		16		7451	Dual 2 -wide 2 -input AND-OR-INVERT					7492 7493	Divide-by- 12 counter 4 -bit binary counter	$\begin{array}{rl} r & 171 \\ r & 181 \end{array}$	$85 p$ $80 p$	$71 p$ $67 p$	61p
7403	Quadruple 2-input						gate	161	20p	16p	$14 p$	7494	4-bit shife register	231	61.13	94 p	$81 p$
	NANO gate with					7453	Expanda					7495	4-bic shift register	19 h	87 p	$72 p$	$62 p$
	open collector						2 -input AND-OR-					7496	5-bit shift register	261	£1.48	£1.22	61.05
	output	291	20p	16p	14p		INVERT gate	171	20p	16p	14p	74100	Dual quadruple				
7404	Hex inverter Hex invercer	211	25p	$21 p$	18p	7454	4-wide 2 -input AND-OR-INVERT					74107	bistable lateh Qual J -K master-slave	0^{301}	f1. 64	¢1.37	¢1.17
	open collector outpue	271	25p	$21 p$	18p	7460	gate Dual 4-input	$\begin{aligned} & 181 \\ & F L Y \end{aligned}$	20p	16p	14p		flip-flop with preset and clear	271	52p	43p	36 p
7408	Quad 2-input						expand	101	20p	16p	14p	74121	Moncostable mulsi-	FLK			
	positive AND gate Totem pole output	$\text { e } 381$	25p	$21 p$	18p	7470	J-K flip flop	$\begin{aligned} & \text { FLJ } \\ & 101 \end{aligned}$	45p	37p	32p	74141	vibrator BCD to decimal	101	48p	40p	34p
7409	Quad 2-input positive AND					7472	J-K mascer-slave flip-flop	111	32p	27p	23p		decoder and nixie driver	$=F \begin{array}{ll} = \\ 10 \end{array}$	£1.22	¢1.02	$87 p$
	Open collector	391	25p	$21 p$	$18 p$	7473	Dual J-K master-					74190	Synchronous up				
7410	Triple 3 -input NAND						slave flip-flop	121	45p	40p	35p	74190	down 4-bit decade				
7413	Schate ${ }^{\text {grite }}$ Trigg	111	20p	$16 p$ $19 p$	$\begin{aligned} & 14 p \\ & 25 p \end{aligned}$	7474	Dual D-cype edge triggered flip-flop						counter with one				
7420	Schmitt Trigger	${ }^{351}$				7475	Quad bistable lateh	151	45p	40p	$37 p$		line mode contro	20	£1.80	1.48	E1.27
	gate	121	20p	16p	14p	7476	Dual J-K master-						nehronous UP				
7430	8-input NAND gate	131	20p	16p	14p		slave flip-flop with						counter with one				
7440	Dual 4-input NAND buffer	141	24p	20p	17p		preset and clear	$\begin{aligned} & 131 \\ & \text { FLH } \end{aligned}$	45p	40p	36p		line mode control	211	f1.80	61.48	61.27
7442	BCD to decim					7480	Gated full adder	221	67p	56p	48p	74192	Synchronous up				
	decoder TTL output	281	61.16	94p	$81 p$	7482	2-bit binary fulladder	231	$87 p$	73p	62p		down 4-bit decade counter	241	¢1.74	f1.45	£1.25
7443	Excess 3 so decimal decoder	361	61.45	61.20	¢1.08	7483	Four-bit binary full adder	241	61.32	f1.16	41.00	74193	As above-binary counter	251	61.74	¢ 1.45	£1.25

A MEW Masazine

everyday ${ }^{\mathrm{coser}}$ electronics

CIRCUIT BUILDING
DEMO.DECK
FOR THE BEGINNER
...AND THE EXPERTMIMG

PMOTOGRAPHIC
COLOUR METER

NO. 2

Out Friday, November 19

> TO AVOID SELL-OUT DISAPPOINTMENT ORDER THIS EXCITING NEW MA GAZINE TODAY

bringinga

to everyone

PROJECTS EASY TO CONSTRUCT THEORY SIMPLY EXPLAINED

This exciting new magazine presents easy-to-follow, step-by-step illustrated articles on useful and imaginative electronic gadgets for the home, car and other hobbies.

BUILD THESE USEFUL PROJECTS .. .

‘FUZZ' BOX

Build this ingenious little unit in a matter of hours . . . gives an interesting
effect to guitar playing!

PHOTOGRAPHIC COLOUR TEMPERATURE METER

Are you a keen photographer . . . then make this inexpensive colour
temperature meter for a quick indication of the colour filters necessary for correction in any light!

DEMO DECK

Are you apt to experiment . . . this circuit-building deck has been specially designed for the 'Teach-In' series. It will also be useful for general experimental work and for prototype testing.
ALSO-TEACH-IN ... A beginner's series dealing with the theory and practice of electronics . . . this month-the electric current, resistance and resistors.

 (a) only

G. F. MILWARD 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE ANEXTRA ONE FREE ! ! !

STOCKTAKING CLEARANCE! IMPOSSIBLE TO REPEAT!
We have huge numbers of components in quantities too small to advertise ndividually. in order to "clear the decks" we have made up parcels containing densers, controls, transistors, diodes etc, for a tiny fraction of normal price it is emphasised that these are mixed parcels only-contencs cannot be stipulated! Sold only by weight.

Gross weight 2 lb .
61 (postage 20p)
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 15p.

Unrepeatable Offer ! ! ! !
 Surplus VEROBOARDS, $3^{\frac{3}{4}} \times 2 \frac{1}{2} \times 15^{\prime \prime}$
 Only $10 p$ each or $£ 1 \cdot 00$ per dozen

TANTALUM CAPACITORS. COMPARE THE PRICE-ONLY IOp EACH ! ! ! !

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light-sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner. Light sensitive aerosol spray
Developer spray

(1) YES! The ideal present for any electronics enthusiast, so do not miss this greot opportunity.
(2) JUST TAKE THIS COUPON TO YOUR LOCAL

STOCKIST WHO WILL SUPPLY ONE S-DeC for only
EI.19
(3) OR in case of difficulty send coupon and cash to:-
S.D.C. ELECTRONICS (SALES) LTD., 34 ARKWRIGHT ROAD ASTMOOR INDUSTRIAL ESTATE, RUNCORN, CHESHIRE WAT INU Name
Address.
(4) Offer closes January 31, 1972.

ELEKON CLEARANCE OFFERS

Pye Transistorised Car Radio Panels includes $2 \times$ Double Tuned IFs, 5 NKT Transistors, etc., etc. Your bargain for 50 p, post 10 p U.K. Assorted Coil Formers includes Aladdin types, erc., etc. Amazingly cheap.
Assorted Paxolin Panels marked A.E. Speaker, P.U., etc., etc. Look at the price! 100 for only $\mathrm{fl} \cdot 50$, post free U.K.
Assorted Paxolin Voltage Panels. Various mains voltage markings. An absolutely fantastic selection, 100 for $£ 1.50$, post free U.K
Assorted Valve Holders. A lot of old types that you never expected to see again. So many for so little. 100 for 11.50 , post free U.K.
Assorted Fibre Washers. Miniature types rarely ever advertised. Knock-
out price, 1,000 for 25p, post free U.K
10 for 50p, post 14 p U.K.
For other bargains see our advert on page 542 October Practical Wireless. Our ocation near Goodge St. Station, opposite Heals of Totrenham Court Road.

ELEKON ENTERPRISES

I2A TOTTENHAM STREET, LONDON WIP 9PQ
TELEPHONE OI-580 7391

IN I5 MINUTES YOU COULD HAVE CAPACITIVE DISCHARGE ELECTRONIC IGNITION FITTED TO YOUR CAR

Capacitive Discharge Ignition is recognised as being the most efficient ignition system and will give you:

- CONTINUAL PEAK PERFORMANCE

UP TO 20\% REDUCED FUEL CONSUMPTION
EASIER ALL.WEATHER STARTING
INCREASED ACCELERATION SOP SPEED
LONGER SPARK PLUG LIFE
INCREASED BATTERY LIFE
CONTACT BURN ELIMINATED
PURER EXHAUST GAS EMISSION
RADIO INTERFERENCE SUPPRESSED
For all petrol eng boats, etc Guaranteed for 5 prs

Complete Installation Kit for 12 -volt vehicles $£ 12.95+35 p$ P. \& P. State earth polarity of vehicie POSITVE or NEGATIVE earth. Unit Construction Thaso available for the radio electronics constructor 29.95 + 35p.P. \& P The construction kit includes instructions and all components for wiring as and aluminium base. All components are wath the stove enamelled steel cas

ELECTRONIC DESIGN ASSOCIATES
82 BATH STREET, WALSALL WSI 3DE

Highfidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclaır Radınics announced the World's first monolithic integrated circuit $\mathrm{H}_{1}-\mathrm{FI}_{1}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC. 12 This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages

1. Higher power.
2. Fewer external components
3. Lower quiescent consumption.
4. Compatible with Project 60 modules
5. Specially designed built-in heat sink. No other heat sink needed.
6. Full outputinto $3,4,5$ or 8 ohms.
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

Output power 6 watts RMS continuous (12 watts peak).
Frequency Response 5 Hz to $100 \mathrm{KH}> \pm$ 1 dB

Total Harmonic Distortion Less than 1%. (Typical 0.1\%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms.
Power Gain 90dB (1,000,000,000 times) after feedback.
Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal)
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.

Input Impedance 250 Kohms nominal
Quiescent current 8 mA at 28 volts

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitaple for use with pick-up. F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project-60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quescent consumption makes the Super IC. 12 ideal for battery operation.

Price, inc. FREE printed circuit board for mounting.
$£ 2.98_{\text {free }}^{\text {Post }}$

SINCLAIR GENERAL GUARANTEE
Should you not be completely satisfield with you purchase when you receive it from us. return the goods without delay and your money will be refunded in full, including cost of return postage. at once and without question. Full service facilities are available to all Sinclar customers,

Sinclair Radionics Ltd, London Rd, St. Ives Huntingdonshire PE17 4HJ
Telephone St Ives (048 06) 4311

Sinclair Project 60

The World's leading range of high fidelity modules

New!

The easy way to buy and build
Project 60

Project 605 is one pack containing: one PZ5. two $Z 30$ s, one Stereo 60 and one Masterimk. This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat little clips to plug straight on to the modules Thus all soldering and hunting for the odd part is eliminated. You will be able to add further Project 60 modules as they become avallable adapted to the Project 605 method of connecting. Complete Project 605 pack with $£ 29.95$ All you need for a superb 30 watt high fidelity siereo amplifier

Sinclair Radionics Limited, London Road, St. Ives. Huntıngdonshire PE174HJ. Tel: St. Ives (04806) 4311

Project 60 offers more advantage to the constructor and user of high fidelity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile - using them you can have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system, as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with all Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.
Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simale battery record player	2.30	Crystal P.U., 12 V battery volume control	¢4.48
Mains powered record player	2.30, PZ.5	Crystal or ceramic P.U. volume control etc.	¢9.45
$20+20$ W. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ.5 } \end{aligned}$	Crystal. ceramic or mag. P.U.. F.M. Tuner. etc.	£23.90
$20+20 \mathrm{~W}$. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60 \text {, } \\ & \text { PZ. } \end{aligned}$	High quality ceramic or magnetıc P.U., F.M. Tuner, Tape Deck. etc.	£26.90
$40+40$ W. R.M.S. de-luxe stereo amplifier	2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As above	£34.88
Indoor P.A.	2.50, P2.8, mains transformer	Mic.. guitar, speakers, etc., controls	£19.43

from a simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well. SPECIFICATIONS (Z.50 units are interchangeable with Z. 30s in all applications). Power Outputs
Z. 3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 30 nms using 30 volts. 2.5040 watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S. into 8 ohms using 50 volts. Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Distortion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted Input sensitivity: 250 mV in to 100 Kohms .
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$.
2.30

Built, tested and guaranteed with crrcuits and instructions manual.
2.50
with circurts and instruc-
tons manual.
$£ 5.48$

Project 60 Stereo F.M. Tuner

First in the

world to use the phase lock loop principle

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other original features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Good reception is possible in difficult areas, and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are recelved automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signai is tunedin. This tuner can also be used to advantage with any other high ficelity system.
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range: 87.5 to 108 MHz . Capture ratio: 1.5 dB . Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB queting: $7 \mu \mathrm{~V}$ for lock-In over full deviation. Squelch level: $20 \mu \mathrm{~V}$. A.F.C. range: $\pm 200 \mathrm{KHz}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}(\pm 1 \mathrm{~dB})$. Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Qutput voltage: $2 \times 150 \mathrm{mV}$ tion. Stereo decoder operating evel: 2μ. Cross talk: $40 d B$, Cutput
R.M.S. Operating voltage $: 25-30 \mathrm{VDC}$. Indicators : Power on/tuning/stereo. R.M.S. Operating volta
Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Built and tested. Post free.

Stereo 60 Pre-amp/control unit

\rightarrow -

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
S.PECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mv : correct to R.I.A.A curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p. u, up to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel marching: within 1 dB . Tone controls: TREBLE +15 to -15 dB at $10 \mathrm{KHz}: \mathrm{BASS}+15$ to -15 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$. Built testedand guaranteed.
£9.98

Power Supply Units

Designed special for use with the Project 60 system of your chorce. Use PZ. 5 for normal $Z .30$ assemblies and PZ. 6 where a stabilised supply is essential.
PZ. 530 volts unstabilised $£ 4.98$
PZ. 635 volts stabilised $\mathbf{£ 7 . 9 8}$ PZ. 845 volts stabilised
(less mains transformer) £7.98

The Sinclair Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small. charge for service thereafter. No charge for postage by surface man. Air-mall charged at cost.

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two $Z .30$ s or $Z .50$ s. and is easily mounted. It is unique in that the cut-off frequencies are continuously variable. and as attenuation in the rejected band is rapid (12 dB /octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current -3 mA . H.F. cut-off (-3 dB) varrable from 28 KHz to 5 KHz , L.F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply $(0.02 \%$ at rated output. Size: $66 \times 40 \times 90 \mathrm{~mm}$.

Built tested and guaranteed.
£5.98

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ		
Pleasesend	Address	
Ienclose cash/cheque/moneyorder.		P.E. 1271

Sinclair Q16/Micromatic

016 High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design. technical journals have justly compared the 016 with much more expensive loudspeakers. Its shape enables the 016 to be positioned and matched to its environment 10 much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audio frequencies without loss.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading: up to 14 watts RMS.
Input Impedance: 8 ohms.
Frequency response: From 60 to 16.000 Hz . confirmed by independently plotted B and K curve.
Driver unit: Special high compliance unit having massive ceramic magnet of 11,000 gauss, aluminium speech coil and special cone suspension for excellent transient response.
Size and styling: $9 \frac{3}{4} \mathrm{in}$. square on face x $4 \frac{3}{4} \mathrm{in}$. deep with neat pedestal base. Black all over cellular foam front with natural solid teak surround.
Price £8.98.

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size. Powerful AGC counteracts fading from distant stations: bandspread at higher, frequencies makes reception of Radio 1 easy. The plug-in magnetic earpiece provided, matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteries is contaned within the minute attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested, you will find it as easy to take with you as your wrist watch, and dependable under the severest listening conditions.

Specifications:
Size: $36 \times 33 \times 13 \mathrm{~mm}(1.8 \times 1.3 \times 0.5 \mathrm{in}$.)
Weight: including batteries, 28.4 gm (1 oz.)
Case: Black plastic with anodised alumınium front panel and spun aluminium dial.
Tuning: medium wave band with bandspread at higher frequencies (550 to 1.600 KHz).

Earpiece: Magnetic type.
On/off switching: By inserting and withdrawing earpiece plug.
Kit in pack with earpiece, case, instructions and solder $£ 2.48$.
Ready built, tested and guaranteed, with earpiece $£ 2.98$.
Two Mallory Mercury batteries type RM675 required from radio shops, chemists, etc.

TO: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ
Please send
Name
Address

Sinclair Radionics Ltd., London Rd, St. Ives Huntingdonshire PE174HJ.
Telephone St. Ives (048 06) 4311

 BY ATES EMIHUS FAIRCHILD FERRANTI I．T．T．MULLARD－NEWMARKET P PHILIPS •R．E．A．TEXAS

TRANSISTORS

a SELECTION FROM OUR LIST

AAY \begin{tabular}{ll|ll}

AAZ13 \& 10 p \& BD123 \& 85D

RD12 \& 80

AAZ15 \& 10 p \& BD131 \& 76 p

AAZ15 \& $10 p$ \& BD131 \& 70 p

AD

AAZ17 \& 10 p \& BD132 \& $80 p$
\end{tabular} ＜ $A C 12$

$A^{C l 2}$
$A C l 2$ ＜＜＜＜ C＜

－ 40＜＜＜＜ ＜ưO AC
AD1
AD1
AD $A D_{1}$
$A D_{1}$
$A F_{1}$
號路AF
ABY
ABABY
ARY
ABZBA10
BA10
BAl1B_{A}
$B_{A l}$
B_{A}
B_{A}
BAY3
BAY
BA
$\underset{\mathrm{BCl}}{\mathrm{BCl}} \mathrm{BC}$
BC 10
BC 11
BCl
BC 11
BCl
BCl
BCl
BCl
BCl
BCl
BCl
BCl
BCl
简品品
$\mathrm{BC1} 3$
BCl 3
BCl
BCl
BCl
BCl
BCl
兑志品
式拖品
BCl_{5}
BCl_{5}
BCl_{69}
BCl 69
BCl 99BCl 77
$\mathrm{BC178}$
BCl 7
BCl
BC
$\underset{\mathrm{BCl}}{\mathrm{BCl}} \mathrm{B} 2 \mathrm{~L}$

\qquad
\qquad
\qquad
\qquadBCY30
BCY 31BCY 3
BCY 3
BCY 3BCY 32
BCY 33
BCY 34BCY 34
BCY 38
BCYBCY 38

BCY 39| BCY70 | 18 p | 0.491 |
| :--- | :--- | :--- |
| BCY71 | 800 | OA |
| BCY | | |

W
20 pBDY 38
BDY 60
35p
$\begin{array}{ll}\text { AS } & 8 \\ 0 A 10 & 2 \\ 0\end{array}$

BRAND NEW FULL SPECIFICATION TTLT4 SERIES
BY FAIRCHILD，I．T．T．AND TEXAS Part
Ano．
no
1
Quad 2 －input open
Quad 2 －nput NoR
Quan 2－input open
Hextuple Inverers
7404
7406
Triple 3－Input NAND gatea
Dual 4 －input NAND gater
Bingle $8 \cdot$ input NAND gates
BCD－Dectmal decoler／N
AND gation
BRAND NEW FULL SPECIFICATION TTLT4 SERIES

Prices
$85-90$
140 우N： $200+$
$12 p$
$12 p$
$12 p$

BCD－Dectmal decoiter（4－10－1ine）TTL O；P
Excess 3－Decimal iecoker TTL outputn
BCD－Declmal 7 seg．decoder／indicator drive
BCD－Decinal 7 seg．decoder／driver TTL $0 / \mathrm{P}$
BCD－Decinial 7 seg．decoler／driver TTL O／P
Hxpanid dual 2－Input AND－OR－INVERT gate
Dual 2 － －lice 2 －input AND．OR．INVERT gat
Quan 2 －Input expand AND－OR．INVERT
4－wlde 2 －input AND－OR．

Aingle $\mathrm{J}-\mathrm{K}$ fip－fop（gated input．
Single $\mathrm{J} \cdot \mathrm{K}$ fip flop（zated input

Dual $\mathbf{J} \cdot \mathbf{K}$ filp flop

Dual D flip flop

Dual J．K Hip－thope with Preset and Clear

Gated Full Adder

2－bit blnary Full Adder

16－bit RAN with gated write inputs

Quadruple 2 input Ex

Q．bit Ahift register
Divide twelve count

4－bit binary counter

4－bit up－down shlft regiater

7498 5－bit parallel／merial in／out ahift reginter

74118 Hertuple get．Remet latche

74141 MCD－Decimal decoder／Nixie driver

$7145 \mathrm{BCD} \cdot$ Decimal recoder（1－4－1in
74150 16－bit diata selector／multiplexe

75151 B－bit data melector／multiplexe
74158 Dual 4 －Hine to 1 －Ine data

74154
16－bit decoler／demultiplexer
74155
Dual 2 －line to
4－line decoler／demultiplexer

74186 Dual 2 －Hne to 4 －line decoler／demulitplexer
74190 Aync decade up－lown counter， 1 －line mode

74191 Sync 4 －bit up－down counter．W－line monle

74198 gync 4 －bit up－dnwn counter， 2 －line more

7100 Asynchronous prenettable decale counte

74197 Asgnchronous presettable 4－bit birary cou

C 18
C 20

2 N 1308
2 N 1309
25
2 N 613
2 N 2147
20
20 2N1613
2 N 2147
2 N 21 B
2 N 2217
${ }_{2}^{2 N_{2} 2218}$2 N
$2 \mathrm{~N}_{2} 290$
2 N 2221
2 N 2221

HENRY＇S ${ }_{\text {coss }}^{\text {Losintegrated }}$ greuits

QUANTITY
OFFERS！FROM STOCK
Af 117 Muliard 20p

2N2646 Motorola
$25+30 p$
$100+3 p_{p}$
$500+28 p$
$1000+25 p$
OC170 Mullard $25 p$
$25+22 p$
$100+18 p$
$500+15 p$
$1000+13 p$

OC35 Mullard 50
$25+45 p$
$100+40 p$
$500+33 p$
$2 N 2926$ Green 10p
$25+8 p$
$100+8 p$
$500+6 p$
$1000+8 p$
EC107 All Makes
$25+8 p$
$100+7 p$
$500+6 p$
$100+$
$500+$
$1000+$

$8 p$
$7 p$
6

$8 p$
$7 p$
6

2N3055 Fairchild 7 75p
$25+6 p_{p}$
$100+50 p$
$500+40 p$
$1000+35 p$

BYZI3Mullard 25p
$25+20 p$
$100+17 p$
$500+15 p$
$1000+12 p$
INTEGRATED
CIRCUITS
MFC4000P
MFC4010
MFC 40
1C12
$\mathrm{PA}^{2} 46$
1C12
PA246
PAZ46
TADIO
TAD100
TAD1
MC724P
$70^{2} 2 \mathrm{C}$ (TO5)
702 C (TOS)
709 C (TOS)
709 C (D.1.L.
709C (D.1.L.
7थ3C(TOS)
$74(\mathrm{C}(\mathrm{TO} 5)$
$\mathrm{MC1303P}$
MCl 303 P
MCl 304 P
MCl 304 P
ML 403 D
741C(DIL)
$914(\mathrm{TO})$
923 (TO5)
TO8H1BA
20 wett smp.
TOBHIBA

RED
65 p
60p
28.50
11.50
11.50
81.50
80p
75p
45p
45 p
81.00
80°
42.00
49.25
21.50
75p
40p
40p
24.47
11.50

PLERSET IMTEGRATED
CIRCUIT
Watt Ampliber
SL408D

Complete with 8 -pere	Biod with mocessories
P.I. Curent	

S1.50 on orrar
2EMER DIODES
$\begin{array}{ll}1- & 95 / 100 / 800 / 100 \\ 14 & 90 \\ 499 & 900\end{array}$
$400 \mathrm{~m} / \mathrm{w}$
$\underset{\text { series }}{ }{ }^{\text {B }}$
$\begin{array}{lllll}\text { series* } & 18 p & 10 \mathrm{p} & 8 p & 7 p\end{array} \mathbf{8 p}$
ZL meries 25p 88p 200 17p 16p
8 watt meries 30 p 27 p 96 p 2ep 20 p
Z8 neriea +40087 p 85 p 80 p 88 p
20
All types are 3%. Wire Ended + thene
Atud. In voltagen $3.3 \cdot 100$ volt in allTRIACS
02022

N 382350 D
N 382495 g
$\mathbf{9 5}$
N3903 20 p
N 390 F
25 p
N
N 405812

$2 N^{2} 4290$
$2 N^{2} 481$
2N5457
2N5458
N
2N5459
40250
40340
空
$403+1$
403652

40430| 40430 | 80 |
| :---: | :---: |
| 0543 | |
| 00 | |40543864059

4059
4063Full transistorlist available－
freend

Practical Electronics Classilied Advertisements

RATES: 7 1 p per word (minimum 12 words). Box No. $7 \frac{1}{\mathrm{t} p}$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, " Practical Electronics " IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

MISCELLANEOUS

NO NEED TO WORRY ABOUT

A TRANSMITTING LICENCE

because this GPO approved transmitter/receiver kit does not use R.F. and you can ger one easily. Your transmissions will be virtually SECRET since Actually it's TWO KITS IN ONE because youget all the printed-eireuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely fexible design with quite an AMAZING RANGEhas obvious applications for SCHOOL PROJECTS LAN

GET YOURS ! SEND 45.20 NOW
TO: 'BOFFIN PROJECTS'
DEPT, KE2010
STONLIFFEROAD
STONELEIGH, EWELL, SURREY

HARDWARE FOR CONSTRUCTORs. SCREws, nuts, brackets, spacers, etc. S.A.E. list R. A. MARSH, 29 Shelbourne Road, Stratford on-Avon, Warwicks.

CLEARINE LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transeription turntables, electronic testmeters, calibration unlts, P.S.U.'s, pulise generators, D.C. null potentiometers, bridges, spectrum analysers voltage regulators, sig-gens, M/C relays, components, etc. Lower Beeding 236.

RECORD T.V. sOUND using our loudspeaker isolating transformer. Provides safe con nection to recorder. Instructions included 70p $+10 p$ P. \& P CROWBOROUGH ELECTRONICS (P.E.), Erldge Road, Crow borough, Sussex.

FABCIA PANEL8, hi-fl equipment, etc., etched aluminium to individual specifications, S.A.E. detalls. R. MARSH, 29 Shelbourne Road, Stratford on Avon, Warwicks

JOHN SAYS

RING MODULATOR by Dewtron is professional, transformerless, 5 -transistor, has adjustable FI/F2 rejection. Module ifil parts, including all mechanics and instructions parss, including al mechanics HYTHM from Dewtron modules. Simple unit for waltz, foxtrot.etc. Costs under 220 in modules. SYNTHESISEN MODULES and other miracles 1 Send $15 p$ for illustrated list. D.E.W. LTD., 254 Ringwood Rosd, Ferndown, Dorset

HA8 SOMEONE CALLED WHILE YOU WERE OUT? Make door message recorder unit, for visitors. Standard kits, suitable for battery recorders such as "Hit Parade", etc. Engraved plastic block (drilled, grey). Crystal mike. (able. Push switch. $2 h$ and $3 \frac{1}{2} \mathrm{~mm}$ mike. ("able. Push switch. 2p and $3 \frac{1}{2} \mathrm{~mm}$
plugs. Instructions. Screws.
e2.52. PYLE, ${ }_{7}{ }^{\text {plugs. Instructions. Screws. }}$ Theokout, CP, Stoborough, Wareham.

PSYCHEDELIC LIEHTS. Ideal discos, clubs, groups, etc. No connections to amplfler, only one lead to mains required. I'ses four separate randomly programming channels, four separate randomly programming channels,
each driving a coloured 150 watt reflector each driving a coloured 150 watt reflector
bulb and a 40 watt standard coloured bulb. bulb and a 40 watt standard coloured bulb.
Unit contained in open box $39 i n$ long, 9 in high and $6 \frac{1}{2}$ in wide. Finished in black leather cloth with carrying handle and mains socket. Money back guarantee if returned in perfect condition within 14 days of date of purchase. Price $\$ 17$ each $+\mathbf{x 1}$ (Securicor delivery). Send 15p for colour photo of unit in action. Orders to: "ORCHARD MEADOW", Uffington Road, Stamford, Lines.

mISCELLANEOUS (continued)

ELECTRONIC MUSIC \star

I-C Ring Modulator - Electronic Phasing Oscillators Sub-Octave Generator Fuzz, Waa-Waa White Sound Effects Printed-Circuit assemblies supplied with constructional guide to making complete units. Mail Order onily. Catalogue 10p from
TAYLOR ELECTRONIC MUSIC DEVICES tegid house . bala . MERIONETH

TOP TRALSTSTORS

Brand New and Individually Tested Tranaistors supplied unmarked, but packed ieparately for indentification and guaranteed to be within their correct specification or money refunded. All at 9p. each or Any 25 tranaistoris for only ≤ 1.90 $\begin{array}{llll}\text { ACY22 } & \text { BFY51 OC72 } & 2 N 3702\end{array}$ $\begin{array}{llll}\text { BC108 } & \text { BFY52 } & \text { OC202 } & \text { 2N3703 } \\ \text { BC109 } & \text { BSY27 } & \text { ZTX300 } & \text { 2N3705 }\end{array}$ $\begin{array}{llll}\text { BCI } 09 & \text { BSY27 } & \text { ZTX300 } & \text { 2N3705 } \\ \text { BCI68 } & \text { OC45 } & \text { 2N706 } & \text { 2N3706 }\end{array}$ BCI 69 OC7I 2N2926 2N3708 Money back guarantee. P. \& P. 10p J. M. KING (R)

17 Buckridge, Portpool Lane, London, E.C.I

$$
\begin{aligned}
& \text { DO-IT-YOURSELF we stock a large range } \\
& \text { of audio and electronic components at very } \\
& \text { competitive prices, e.g.: Chassis speakers, cross- } \\
& \text { over. networks, hi-fi speaker kits (Wharfedale } \\
& \text { and Peerless), BAF sound absorbent, speaker } \\
& \text { srille fabrics, inductors, resistors, electrolytics } \\
& \text { (reversibleand polarised), transistors, etc. Send } \\
& \text { for FREE list. (} 2 \times 3 \text { p stamps for fabric samples). } \\
& \text { Mail order ONLY. No callers please. }
\end{aligned}
$$

GIRCUIT BOARD ETCHING KIT8, full instructions, \&1.25, c.w.o. ARYIN SERVICE ('OMPANY, 12 Canbridge Road, St. Albans, Herts.

HOLIDAY FOR BOY8. 14/16 years Summer 1972. Tuition and practical work in electronics (and tape recording), engineering, (Karting), photography. 11 days in Norfolk \$16. Write for free brochure INTERSCHOOL (HRISTIAN FELLOW゙ホHIl, c/o 1 Hubbard Road, London, SE®' 9P3.

> LIGHTWEIGHT TREASURE-PROBE
> Look for BURIEDCOINS, silver, gold and metal relics PROFESSIONALLY with the BOFFIN solid-state TREASURE-PROBE. An extremely
EASY-TO-BUILD Kit that REALLY DOES EASY-TO-BUILD Kit that REALLY DOES
WORK! SIMPLE-TO-FOLLOW INSTRUCTIONS. It comes to your doorstep with maximum copper PRINTED-CIRCUIT BOARD plus ALL ELECTRONIC COMPONENTS including search-coil and earphone. Think of the fun you'll have BEACHCOMBING with the sensitive TREASUREPROBE, and the expectancy of hearing its LOUD' 'BEEP', tell you '" YOU'RE ON TO

> GET YOUR TREASURE-PROBE!
> SEND 46.95 NOW!
> BOFFINPROJECTS
> 4 CUNLIFFE ROAD, STONELEIGH EWELL, SURREY
> Designed by GERRY BROWN and JOHN
SALMON and presented on TV

MISCELLANEOUS (continued)

PSYCHEDELIC

LUMINOPHONICS

Or is this just another way of referring to FANTASY? Either way, our Projects 24 and 1014 probably come within this category-THINK OF THE FUN
YOU WOULD HAVE WITH SOMETHING UKE THIS AT A PARTY! There are MANY OTHER UNUSUAL PROJECTS TOO-how about an ELECTRONIC STETHOSCOPE for LISTENING THROUGH WALLS, etc., or a TRANSMITTER RECEIVER that doesn't use RF, SO LICENCE WORRIES ARE OVER! Then there's another project for a "LEARNING" MACHINE-imagine FRIENDS WOULD BE AMAZED! If REALLY GRENSS WOUL projects interest you, then WEVE GOT WHAT YOU WANT. In a few days from now YOU COULD BE iN THE "SCIENCEFICTION" WORLD OF "BOFFIN"!
DON'T PUT IT OFF! SEND 15p for your list-NOW BOFFIN PROJECTS
4 CUNLIFFERD., STONELEIGH, EWELL, SURREY Designs by GERRY BROWN and JOHN SALMON and presented on TV

SYNTHESISER MODULES

Send S.A.E. for details of voltagecontrolled modules for synthesiser construction to:
D.E.W. Ltd.

254 Ringwood Road, Ferndown, Dorset

12 VOLT FLUORESCENT LIGHTS

Beat Power Cuts, 12 ins 8 watt Tube, ideal for Caravan, Tent, Emergency Lighting, ete. fully Transistorised, Low Battery Drain. With ON/OFF Switch and 12 V Socket to run other Lights or 12 V Equipment.
Unbeatable at 83.30
orinkit form \&2.90
post paid
SALOP ELECTRONICS Callers welcome 23 Wyla Cop
Shrewsbury, Shropshire S.A.E. for lists
PROFESSIONAL CONTROL PANELS

> with FASCIA KIT

MAKE YOUR OWN PANELSIN PERMANENT, ANODISED, SELF-ADHESIVE ALUMINIUM: NO SPECIAL EQUIPMENT NEEDED.
EASY TO FOLLOW INSTRUCTIONS.
CHOICE OF SIVER ON BLACK RED.
CHOICE OF SILVER ON BLACK, RED, BLUE, GREEN.
TRIAL KIT \&1.28 Carr. Paid No. 1 KIT $\{1.88$ Carr. Paid
No. 2 KIT 2.39 Carr. Paid
M.P.E. Ltd., BRIDGE ST., CLAY CROSS, DERBYS.

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ in \times any length. DEW LTD. Ringwood Road, Ferndown, Dorset. S.A.E for leaflet. Write now-right now.

AARVAK ELECTRONIC8. 3 -chamnel soundlight converters, \$17. Strobes, \&16. Rainbow Strobes, $296 . \quad 74$ Bedford Avenue, Harnet Herts. 01-449 1268 .

LADDERS

LADDER8. 20ft, 57. Order C.O.D. Phone 02-993 5222. HOME SALES, Baldwin Road, Stourport, Worcs. Callers welcome.

FOR 8ALE

8EEN MY CAT ? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R WHISTON, Dept. PE, New Mills, Ntockport.

CATALOGUE NO. 18, Jilectronic and Mechanical Components, new and manufacturers' surplus. Credit vouchers vahue 50 p . Price 23p, including post. ARTHUR SALIIS RADIO CONTIOI, ITTD., 28 Gardner Street, Brighton, Sussex.

```
    PERFECT SPEAKERS EX TY
    P.M. 3 OHM (MinImum order 2)
5" round or ' }\mp@subsup{|}{}{\prime\prime}\times2\frac{1}{2}\mp@subsup{}{}{*}12\frac{1}{2}p\mathrm{ each, add }7\frac{1}{2}p\mathrm{ per
    100 SPEAKERS for &1Sg.
    100 SPEAKERS for &15 delivered
OHF TUNERS EXTY (Complete with V&lvoi)
            &2.50 each + 50p p. & pkg.
            <2.50 each + 50pp.& pkg
    TRADE DISPOSALS (Dept. PE)
Thornbury Roundabout, Leeds Road, Bradford
                Telephome 665670
```


MORSE MADE !!

FACT NoT FICTION. It you btart RIGIIT you will be reading amateur and commercial Morse Within a month (norinal progress to be expected).
Uaing acientlfacally prepared 3 -speed records you automatically learn to recognise the code RFYTHM
without translating. You can't help it, it's as easy as learning a tune. $18 \mathrm{w} . \mathrm{P} . \mathrm{M}_{\text {. in }} 4$ weeks guaranteed. For details and course C.O.D. ring S.T.D. 01-660 2806 or aend $4 p$ stamp for explanatory booklet to: GBH8C (Box 19), 45 GREEA LANE, PURLEY, SURREY

PRACTICAL ELECTRONICS Journals.
November 1964 to October 1971 in Hardcover Binders with indexes for 1964-1970 + all enclosures, 812 . Maverhill 3674.

TEST EQUIPMENT

MULTI-RANGE FREQUENCY METER, $0-1$ MIIz in 5 ranges. Solid state, large scale meter readont, 230 V a.c. Brand new and fully guaranteed $226, \mathrm{P}$ \& P 37p cwo
 Church Hill House, Eythorne, Dover, Kent.

EDUCATIONAL

GET INTO ELECTRONIC8-big opportunities for trained men. Le"arn the practical way with low-cost Postal Training, complete with equipment. R.J.L.B., City \& Guilds, Kadio, TV, Telecoms, ete. For free informative Guide, write CHAMBERS GOLLEGE (1)ept 856K), Aldermaston (ourt, Reading, RGi 856 K)
4 PF .

ENGINEERS-get a technical certificate. Exam and Certificate l'ontal ('ourses in all Exam and Certificate pistal courses in all branches of Engineering, Electronics, Radio
and TV, Computers, Draughts., Building, etc. Write for helpful Free Book-BBET (IDept H.4), Aldermaston (ourt, Reading, R(a74 4 PF

BRUNEL TECHNICAL COLLEGE, BRISTOL
Department of Marine \& AeroEfectronics
Applications invited for following posts. Duties to commence as soon as possible.
TECHNICIAN GRADE 3 (two vacancies)
Candidates should be over 21 years of age and hold Intermediate City \& Guilds in Electronics or Radio Communications, or other appropriate qualifications. Duties include servicing and maintenance of electronic and electrical equipment as used in Merchant Ships and Civil Aircraft Salary in range $£|,|94-£|, 395$, according to age, experience and qualifications.
Further particulars and application forms (returnable by 14 days after the appearance of this advertisement) from Registrar (S), Brunel Technical College, Ashley Down, Brunel Technical.
Bristol BSI 9 BU .
Please quote post ref. No. 71/58.

SITUATIONS VAGANT

EAQLE INTERNATIONAL require Audio Engineers. Excellent prospects. Must be fully couversant with Strere Amplifers, Tuners, Multiplex, ete. (ontwet Mr. MORROW 01-9030144.

SERVICE 8HEET8

8ERVICE 8HEETS (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, hecord Players, ptc., by return post, with free FaultFinding Guide. Prices from 5 p . Over $\mathrm{x}, 000$ models available'. ('atalogue 13p. Please send S.A.E. with all orders/emgulies. HAMLLTON RADIO, 54 London Road, Jexhll, Sussex. Telephone, Bexhill 7097.

there's a good job for you at Baird with pay to match!
If you have experience of Colour T.V. and would like to ioin a highly efficient production team earning top wages we've a place for you at Baird. A progressive Company, we offer excellent working conditions plus many other benefits including:

> 21 days' Holiday
> Generous Discounts in our Staff Shop
> Canteen and Active Sacial Facilities

ALSO EXCELLENT OPPORTUNITY FOR EXPERIENCED MONOCHROME ENGINEERS TO LEARN COLOUR T.V. TRAINING GIVEN BY THE COMPANY.
INTERESTED! Then drop a line giving brief details of your qualifications and experience to
MR. G. BRIER (PERSONNEL MANAGER) BRITISH RADIO CORPORATION (BRADFORD) LTD., BAIRD TELEVISION, BECKSIDE LANE, BRADFORD BD7 2EQ TELEPHONE: BRADFORD 75555

$\frac{1}{\text { THOAN }}$
 BRITISH RADIO CORPORATION (BRADFORD) LTD.

108 TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man. Let IC S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:

* C. \& TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
* RADIO AMATEURS' EXAMINATION.
- RADIO OPERATOR CERTIFICATES.

Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how $I C S$ can help YOU in your career. Full details of IC S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ABCC
ACCREDITED BY THE CACC

INTERNATIONAL
 CORRESPONDENCE
 SCHOOLS
 A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

jervice Sheets and Manuals NO, TELEVISNOH, TAPE RECORDER RECORD PLAYERs, ETC. FROM 1933 UP-TO-DATE ACH - 1971 SERVICE SHEET INDEX LIST 20p. - S.A.E. WITH ENOUIRIES PLEASE

ATED CIRCUIT SYSTEMS by D.J. Walier. 234 poges

$\begin{aligned} & \text { Price } \\ & \text { £ } 3.50 \end{aligned}$	+ Post $25 p$
¢1.75	15p
£1.40	15p
¢1.50	15p
¢1.50	15p
¢2.10	15p
¢3.00	15p
¢2.50	15p
¢3.00	$15 p$
¢0.90	10 p
¢2.10	15p

NTS OF TRANSISTOR PUL SE CIRCUITS by T.D. Tow
NTS OF TRANSISTOR PUL SE CIRCUITS by T Towers. 168.
-TRONIC COUNTING CIRCUITS by Mullard Letd. 224 pages
ER ENGINEERING USING THYRISTORS Vol. 1 by Mullard L-td. 228 pages
-ANSISTOR AUDIO AND RADIO CIRCUITS by Mullord Lid. 205 pages
PHOTO-ELECTRONIC DEVICES by J.B. Dance. 165 pages
SOLID-STATE DEVICES AND APPLICATIONS by R. Lewis. 264 pages
SEMICONDUCTORS: BASIC THEORY AND DEVICES by I. Kompel. 272 poges
FOUNDA TIONS OF WIRELESS AND ELECTRONICS by M.G. Seroggie. 552 pages
PRACTICAL INTEGRATED CIRCUITS by A.J. McEvoy \& L. McNamara. 144 poges
HIGH QUALITY SOUND PRODUCTION \& REPRODUCTION by H. Burrell Hadden. 274 pagos

BELL'S TELEVISION SERVICES

Albert Place, Harrogate, Yorkshlre. Telephone 0423-86844

RADIO, TELEVI8ION AND TAPE RECORDER8. 50 mixed odd sheets 50 p . Also large stock of obsolete and current valves. JOHN GILBERT TELEVISION, 1b Shepherds Bush Road, London, W. 6 (01-743 8441). S.A.E. enquiries.

8ERVICE SHEET8. Radio, TV, etc., 8,000 models, List 10 p . S.A.E. enquiries, TELRAY. 11 Maudland Bank, Preston.
service sheets with Free Fault Finding Chart 35p, plus stamped addressed envelope LESMAR, 15 Conholt Road, Andover, Hants.

WANTED

OASH PAID for New Valves. Payment by return. WILLOW VALE ELLECTRONICS, 4 The Broadway, Hanwell, London. W.7. 01-587 5400/2971.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

WE PAY THE HIGHEST PRICES for new valves. Cash sent by return. A.D.A. MANUFACIURING CO., 116 Alfreton Road. Nottingham.

WANTED. Practical Electronics, November 1964 to September 1966 . Offers to 5 Leyland Road, Rainford, St. Helens.

HIGHEST POSSIBLE CASH prices for Akai, B. \& O., Brenell, Ferrograph, Revox, Sanyo, Sony, Tandberg, Uher, Vortexion, etc. 9.305.00. 01-242 7401

RECEIVER8 AND COMPONENT8

PE GEMINI STEREO AMPLIFIER

(Dual purpose, 30W per channel) All the components to build this high quality amplifier, as featured in "Practical Electronics," Noy. 1970-Feb. 1971, are now available from one source. ALL PARTS CAN BE PURCHASED SEPARATELY.
Please send foolscap size S.A.E. for free complete lists. Return post service.

MAIL ORDER ONLY
ElectroSpares 21 BROOKSIDE BAR CHESTERFIELD, DERBYSHIRE Quality - Value - SERVICE

CONTROL YOURSELF! WE DON'T SHOW YOU MIPPY LADIES

 but we will show you Nippiboards Our booklet reveals the secrets of a NEW PRINTED WIRING BOARD Send $2 \frac{1}{2} p$ stamp to find how you can get the best out of multi-purpose
NIPPIBOARD

Range ' A ' single pattern $15 p$
Double pattern 2A or 2AS 28p
Quad pattern 4A or 4AS 44p Also 3A, 5A, 6AS, 8AS, 10 AS at low prices up to 90'p for ten patterns. Please add 5p for postage and packing. Cash with order TRADE INのUIRIES INVITED ALSO SL403D i.c. amplifier €1.99 plus 9p postage and packing.

DEPARTMENT NB/EII, NIP ELECTRONICS
P.O. BOX II, ST. ALBANS, HERTFORDSHIRE

"P.E. DIGITAL CLOCK I.C's"

$\begin{array}{llll}\text { SN7441AN/SN9315 50p; } & \text { SN7476 30p; } \\ \text { SN7475 30p: SN7495 35p; SN7403 20p: }\end{array}$ SN7475 30p; SN7495 35p; SN7403 20p:
SN7410 20p: SN7400 20p.
Numerical indicator tubes. GNP-7A side
view with decimal point 70p. OA47 5p.
Other components, hardware, transistors.
metal oxide resistors, etc., in stock. S.A.E.
"A lists.
"AQUA-GEM" ELECTRONICS
8 Pound Lane, BOWERS GIFFORD,
P. \& P. 7p. MAIL ORDER ONLY

BRAND NEW COMPONENT8. Carbon Film Resistors, $\frac{1}{2}$ watt 5% Iskra E24 series; $\frac{1}{5}$ watt 5% Mullard C25 series; E12 series, all at 1 1p each. Electrolytic Capacitors 10/16, $20 / 16,40 / 16,80 / 16,125 / 16$, at 6 each. Copper Laminated P.C. Board $1 / 6$ F/glass, single sided $1 \frac{1}{1} p$ per $s q$ in; double sided $2 p$ per sq in. P.P. plus 10%, minimum $5 p$. FREEMANTLE, 18 Pennine Rd., Southampton.

RAZOR-8HARP I.F. SELECTIVITY with Brush Clevite ceramic i.f. resonators. Set of four TF04-442, 455 kHz , with circuits, $\$ 1.50$, four TF04-442, 455 kHz , with circuits, 1.50,
U.K. post 5 p . S.A.E. list. AMATHONIX LTD., 396 Selsdon Rd., S. Croydon, Surrey, CR2 ODE.

TRAMPUS ELECTRONIX

NEW. TOP GRADE, GUARANTEED.

 NUMERICAL INDICATOR Computer type $9 \mathrm{~mm}, 7$ bar display 0.9 DP . 5 V 8 mA bar €1.95. Plugs into D.1.L. 16-pin socket NUMERICAL INDICATOR side. NUMERICAL INDICATOR, side reading, LIGHTEMITTING DIODEINDICATOR, visible red $2 V 10 \mathrm{~mA}$ brighter 40 mA 67 p . TRANSISTORS, FET2N3819 35p. Unijunction EQV2N2646 45p. T1L63 npn sil. PHOTOTRANSISTOR 67p. OCP7!/M 60p. BC107, TRANSISTOR 67p. OCP7I/M 60p. BC107,
$8,911 \mathrm{P}$. ORPI2 50p. SILICON RECTIFIERS IA $8,911 \mathrm{p} . \quad$ ORPI2 50p.
100 V p. 400 V 10 p.
INTEGRATED CIRCUITS 7400 TTL. $7400,1,2,3,4,10,20,30,40,50,51,53,54,21 \mathrm{p}$. $7413,70,72,45 p .73,74,75,67 p$. 7441, 141, 709 IC HIGHPGAIN OP AMP TOS 8 LEAD 50 p Mail Order only, Data Sheets $7 p$ each.
C.W.O. P.P. 8p. Overseas 40 p min.
P.O. BOX 29, BRACKNELL, BERKS.

PRINTED CIRCUIT BOARDS for P.E. PROJECTS
All boards drilled and roller tinned complete Alt boards driled and
with layout drawing.
EXAMPLES
Marine Tachometer (May 1970) 25p ea. Musical Stave (May 1970) 40p ea.
Waa-Waa pedal Vol. 4 No. 7 I4p ea. Audio Sig. Gen. (Sine and Square on one board) Vol. 5 No. $10421 p$ ea.
S.A.E.for List. Now available from:- HENRY'S RADIO LTD.I EdgWare Road, London, W. 2 P.H. ELECTRONICS, Industrial Estate,
Sandwich, Kent. Tel. 2517

LOW PRICED

8EMICONDUCTORs
All our stocks are brand now, no rojects. No
seconds, All guaranteed. P. \& P. 5 p . seconds, All gu
TRAITEIBTORS

TRATSIB			
AC187K		ZN3055	${ }^{569}$
AC188K ${ }^{\text {S }}$	450	AD142	50 p
Matched pair		BC107	8p
AC141K	209	BC108	8 p
AC142K	20p	BC109	8 D
AL102	60p	BC142	85
AU103	90 p	BC143	$85 p$
AD262		ZN3866	21.85
BD162	70 p	BFY51	10p
Matched palr		BFY52	10p

DIODRS REGTIFIERS
400mW Zener diode $6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}$, IN $4001 \mathrm{7p}$ 9.1V 15p

Send for free price list, includes hundreds of transistors, cap's, T.T.L. ${ }^{\circ}$ s, etc. Free equivalent charts.
C. HADLEY (P.E.)

24 WOODHILL, HARLOW, ESSEX

EX COMPUTER PRINTED CIRCUIT PANELS 2 in $\times 4$ in packed with semi-conductors and top quallty resietors, capacitors, diodes, etc. Our price minimum of 35 transistors. Data on tranaistors Included.
 speclal bargain pacy. 25 boards for El, P. \& P. 18p. With a guaranteed timimuin of 85 transisturs. Data on transistors included.
 PANELS with 2 power transiators aimilar to OC28 on each board-components 2 boards ($4 \times$ OC28) $50 \mathrm{D}, \mathrm{P} . \& \mathrm{P}$. Gp .
 9 OAS, 3 OA10. 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 6ET 872, 3 (EET $872 \mathrm{AB}, 1$ GET 875. Ali long leadet on panels $13 \mathrm{in} \times 4 \mathrm{in}$. 4 for 81 , P. de P. 25p.
 709C OPERATIONAL AMPLIFIER TOS
 8 lead J.C. $\quad 1$ off $50 \mathrm{p} . \quad \begin{array}{r}50 \text { off } 85 \mathrm{p} . \\ 100 \text { off } 20 \mathrm{p} .\end{array}$
 250 MIXED RESISTORS
 I 50 MIXED HI STABS
 \&. \& \& 1 watt 5% \& better.
 QUARTZ HALOGEN BULBS
 With long leads. 12 V 55 W for car spot lights. projectors, etc. 50 p each. P. \& P. $5 y$.
 GPO EXTENSION TELEPHONES
 with dial but without bell. 95 peach. P. \& P. 30p. $81 \cdot 75$ for 2 . P. \& P. 50 p.
 BARGAIN RELAY OFFER
 Single pole change over giliver contacts 25 V to
 Single pole change over silver contacts 20 $50 \mathrm{~V} .{ }_{2} \mathrm{5k} \Omega$ coil. 8 for 50 p. P. $\&$ P. 5 p .
 KEYTRONICS mail order only 44 EARLS COURT ROAD
 LONDON, W. 8
 $01-4788499$

HIGH QUALITY SILICON TRANSISTORS

Surplus to our manufacturing requirements. NPN exact to BCIO7B specification. VCEO 45 V IC 100 MA PC 300 MW hfe 240 to 500.
Pack of 6 for 50 p .
PNP as above but VCEO 25V. BCI78B
Pack of 5 for 50 p.
New and guaranteed, mail order only.
C.W.O. P. \& P. 5 p per order.

> CROSS ELECTRONICS
> Red Lodge, North Cove, Becclas, Suffolk

RECEIVERS AND COMPONENTS
(continued)

BRAND NEW COMPONENT8 BY RETURN. Electrolyties 15 or 25 V $1,2,5,10 \mathrm{mfds}-3 \frac{1}{2} \mathrm{P}$ 25, $50-4 \mathrm{p}$. $100-5 \mathrm{p}$. Mylar Film 100 V , $0 \cdot 001,0 \cdot 002,0 \cdot 005,0 \cdot 01,0 \cdot 02-2 p ; 0 \cdot 04.0 .05-$ $2 \frac{1}{2} p ; \quad 0.068, \quad 0 \cdot 1-3 p$. Mullari miniature carbon film resistors third watt E.12 series $1 \Omega-10 \mathrm{M} \Omega, 8$ for 5 p , insured postage 8 p . The C.R. SLTPLY 'O.. 127 ('hesterfield Rd. Sheffield, so ORN

CAPACITOR8, $-005 \mu \mathrm{~F}$. 500 v . Dises. 2 p fach 100 for $81 \cdot 75$. p + p 5 p. Various other compon ents, enquiries s.a.c. NHEMMJNG, 9 Bramhal Close, Jpswich

ZTX300, BC'108, 0c42, 5 K PC Pots, 3 P each ACY20, ASZ21, BSX26, 5p each, post free S.A.E. Aists other items. 1). C^{\prime} M. 1 (one) Newton st., Ulverston, Janes.
$5 k \Omega$ P.C. POT8, 3p; 100 solder tags, $12 \frac{1}{2}$ p ZTX300, 3p. Lists S.A.E. 1 Newton'Street Clverston, Lancs.

```
BRAND NEWW FULL SPEC. DEVICES
CONFIDENCE
Microcircuits
SN76013 (like IC12) &1.50; 709 36p; 741 36p
PA230 90p; PA234 86P; PA237 El.55; SL402A
&1.75; SL702C 40p; TTL'GATES 15p.
2N3055 54p; BCI07B 9p; BCIO8C 9p; BCIO9C
9p; BCY70'14p; BFX86 15p; MEO402 21p
MEO411 20p; MEO412 20p: MEO413 15p
MEIOO2 ilp; ME4101 11p; ME4102 12p;
ME6101 15p; ME6102 19p; ME8001 17p
MPSI|I 35p.
Amp Rectifier
50V 3p; 100V 4p; 200V 5p; 400V 6p.
3. Amp Rectifiers: 400V 12p.
Printed Circuit Resist
    JEF ELECTRONICS (PEI2)
York House, 12 York Drive, Grappenhall
Warrington Mail Order Only
C.W.O. P. & P. 7p per order. Overseas 65p.
    Money back if not satisfied
        List free on application
```


DRY REED INSERTS

Overall length $1.85^{\prime \prime}$ (Body length $1.1^{\prime \prime}$), Diameter 0.14* to switch up to 500 mA at up to 250 v D.C. Gold clad contacts. 6212 per
doz. $\mathbf{6 3} .75$ per $100 ; £ 27.50$ per $1.000 ; \mathbf{2 5 0}$ per doz. $\mathbf{6 3 \cdot 7 5}$ per $100 ; £ 27 \cdot 50$
10,000 . All carriage
G.W.M. RADIO LTD

40/42 Portland Road, Worthing, Sussex 090334897

COMPUTER PANELS. 5 -BCl08 Diodes, 15 p , post 5 p 4-50p, poat 10p. AMERICAS PANELS. Tutal at least 50 transiators, first grade components, $4-55 \mathrm{p}$, diodes. TRANSISTORS ON PANELS (at least 4) 50-65p post 10 p . LIST OF PANELS AVAILABLE, send inge 8.A.E. for copy.
Assorted I.C.s. Fall Outs, $5-10 \mathrm{p}$, post 3p. Type and pin connections given. Same on small panels but o.k. 8p each, post 3p. LA\& POT CORES, 20 in ali
c.p. 8 FichRorous motors with gear train $200-250 \mathrm{~V}$ 80p port free. BARK OF 20 NEONS, wire ended, 60p, post 7p. ORP12 on panel ex equipt., 35p c.p. ELECTROLYTICS, $5,000 \mathrm{M} . \mathrm{F} . \mathrm{I}, 2 \mathrm{~V}, 40 \mathrm{y}$ post pajd. POLYSTYRENE CAPACITORS, $125 \mathrm{~V}, 150,180,220$, $330,390,560,680,820,1,200,1,500,1,800,2,200$,
$2,700,3,300,3,900,5,600,6,800,8,200,0.01,0.012$, $2,700,3,300,3,900,5,600,6,800,8,200,0.01,0.012$, A8SORTED COMPONENTS.
A8SORTED COMPONENTS, $7 \mathrm{lb} ., \mathrm{E} 1.25$ c.p.
ASSORTED COMPUTER PANELS, $21 \mathrm{~b} ., \mathrm{fi} .25 \mathrm{c.p}$
J.W.B. RADIO

75 HAYFIELD ROAD, SALPORD 6, LANCS MAIL ORDER ONLY
> hot news Nippiboard Range ' B ' NEW FIBREGLASS TYPE Version of the srbp range ' A ' NOW AVAILABLE Dept. NB/EI2. NIP Electronics
P.O. Box 11 , St. Albans. Herts.

SPECIALISTS IN RADIO CONTROL

Teleradio are the largest suppliers of kits and designs for home construction of radio remote control systems.
Send S.A.E. for leaflets or 10 p for full parts catalogue

TELERADIO SPECIAL PRODUCTS 325/7 Lower Fore Street Edmonton, London, N.9
Telephone 01-807 3719

VISUAL MORSE MEMOR
 Difficulty with memorising morse?

A new, ingenious, pictorial method enables you to remember each letter and number in relation to its own particular coding. Mental fumbling is eliminated and recall positive and confident. Basically simple, the code can be learnt 'Modulator' costs only 18 .

Mellt Systern

School Road, Gt, Barton, Suffolk

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPERECORDER AMPLIFIER, etc. Types available: $6 v, 9 v, 12 v$ $18 v$ (single output) E2 each.
$9 v+9 v .6 v+6 v ;$ or $4 t y+$. ourpues) 8250 each or $4 \mathrm{iv}+4 \mathrm{fv}$ (two separate outpues) 2.50 each. P. \& P. 15p. Please state completely isolated from mains by double wound transformer ensuring 100% safety.
R.C.S. PRODUCTS (RADIO) LTD.
opt. P.E.), 31 Oliver Nosd, London, E,I7

OSMABET LTD. We make tranaformers MAMS TRAMSFORMERS amonget other things
 6-3V 6A CT, 6.3V 6A CT, 0.5-6.3V 3A, 212.75; TX1, $425-0-425 \mathrm{~V}, 250 \mathrm{Ma}, 6 \cdot 3 \mathrm{~V} 4 \mathrm{~A}$ CT, 6.3 J 4 A CT $0-5-$ $6 \cdot 3 V, 3 \mathrm{~A}, 57.50 ;$ TX2, $250-0-250 \mathrm{~V}, 150 \mathrm{~mA}, 6.3 V 4 \mathrm{~A}$ CT, $0-j-6 \cdot 3 \mathrm{~V}, 3 \mathrm{~A}, 24.05 ;$ TX5, $300-0-300 \mathrm{~V}, 120 \mathrm{~mA}$, $250 \mathrm{~V}, 65 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}, 1 \cdot 5 \mathrm{~A}, 22 \cdot 10 ; \mathrm{MT1}^{2}, 200 \mathrm{~V}, 20 \mathrm{~mA}$
 MTMA, $250 \mathrm{~V}, 6 \mathrm{MHA}, 6 \cdot 3 \mathrm{~V}, 2 \mathrm{~A}_{4} 21 \cdot 95$; MT3 Prim. $110 / 240 \mathrm{~V}$, Sec. $250 \mathrm{~V}, 100 \mathrm{~mA}, 6.3 \mathrm{~V}, 2 \mathrm{~A}, 22.25$. AUTO TRANSFORMERS
30 to 4000 watt ex atock, up to 1000 watt to order.
MULTIVOLT TRANSFORMERS MULTIVOLT TRANSFORMERS

 $2 \mathrm{~A}, 83.45$: $\mathrm{OMT} / 1$ one tapped $\mathrm{sec}, 40-50-60-80-90-$ $100-110 V$ a.c., $1 \mathrm{~A}, 23.46$. Duo $12 \mathrm{~V} 4 \mathrm{~A}-12 \mathrm{~V} 4 \mathrm{~A} 43.60$; Duo 0-10-20-25V'2A-0-10-20-25V 2A 28.80 . LOW VOLTAGE TRANSPORMERS
Prim, 200/240V a.c., 6.3V, 1 . $\mathrm{AA}, 85 \mathrm{p} ; 3 \mathrm{~A}, 21.13 ; 6 \mathrm{ACT}$, E1.80; 12V, $1.5 \mathrm{~A}, ~ 21.13 ; 3 \mathrm{ACT}, 21.80 ; 6 \mathrm{ACT}, 22.70$;
 MIDGET RECTIFIER TRANSFORMERS
For FW rect, , bize 1 a $\times 2 \times 1$ in, Prim. $200 / 240 \mathrm{~V}$ a.c. ontput, PPT $19-0-9 \mathrm{~V}, 0.3 \mathrm{~A}$, PPT: 12-0-12V, 0.25 A,
PPT3 20-0-20V, $0.15 \mathrm{~A}, ~ 41.20$ each.
 MTV $20-0-20 \mathrm{~V}$, 0 OA, si.20 each. P.P. sec. tapped $3-7, \bar{i}-15$ ohnis, A-A $6.6 \mathrm{k} \Omega, 30 \mathrm{~W}$
(KT66, etc.), 24.05 ; 50W, $3 \mathrm{k} \Omega$ A-A, 86.75 : 100 W $3 \mathrm{k} \Omega$. A-A, EL 34 (KT88, etc.) \&11-40 with and to 400 W LOUDSPEAKERS FOR POWER AMPLIFIERS

 Tweeters $2-16 \mathrm{kHz} 10 \mathrm{~W} 8$ or 16 ohms, $11 \cdot 50$. HI-FI, $8 \times \sin 8 \Omega, 81.85 ; 10 \times 6 \mathrm{in} 3 \Omega 21.95$.
MANUAL OF POWER AMPLIFTERS
issued by G.E.C. Five detailed valve circuits 30 to 400 watts. With price list 05 p .
LOUDSPEAKERB
$\operatorname{Lin} 35 \Omega, 2 \operatorname{lin} 8$ or $80 \Omega, 2 \operatorname{in} 2 \overline{5} \Omega, 3 \operatorname{in} 30 \Omega, 60 \mathrm{peach}$:
 8×2 each $\times 4$ in 3 or 8 or $15 \Omega ; 7 \times 4$ in 3 or 8 or 35Ω $8 \times 2 \operatorname{in} 3 \Omega ; 6 \operatorname{in} 3 \Omega, 21-08 ; 8 \times \sin 3$ or 15 or 25Ω
$21.35 ; \sin 3 \Omega, 61.85 ; 10$ in 3 or $15 \Omega, 82.25 ; 10 \times 6$ in 3 or 8 or 1 - Ω, £1-95. SPEAKER AUTO MATCHING TRAMSFORMER 12W 3 to 8 or whms, up or down, 76 p . P. \& P. 15p 100 WATT POWER AMPLIFIER
4 inputs, variable tone controls, mixing controls, response $25 \cdot 20 \mathrm{kHz}$, for a.c. $200 / 250 \mathrm{~V}$, new and
guaranteed. EULK TAPE ERASERS
Instant erasure, tape spools and cassettes, demap netizes tape heads, a.c. 200/2j0 $0 \mathrm{~V}, 22 \cdot 40$ plus 24 p P. \& P AIRCRAFT BAND COMVERTERS
Covers entire aircraft band, $110-135 \mathrm{MHz}$, fully tunable, works in proximity of any a.m. receiver
with battery, instructions, e4-25 plus 25p F. P . with battery, instructions, $84-25$ plu
NEW TURER-STEREC AMPLIFIER
NEW TUNER-STEREC AMPLIFIER
JW per channel, P.U. input, output for tape recorder,
S.M.L, wave coverage, complete with all pluga leade, Stylish chassis, British manufacturer, $18 \times 7 \times$ 3 i in. Guaranteed \&23-50. S.A.E. details.
CONDENSERS
Paper: $0.01 / 2 \mathrm{kV}, 12 \not \mathrm{p} ; 0.22 / 800 \mathrm{~V}$ a.c. $25 \mathrm{p} ; 0.47 / 700 \mathrm{~V}$
$15 \mathrm{p} ; 40 / 150 \mathrm{~V}, 25 \mathrm{p} ; 4 / 500 \mathrm{~V}$ 250 Electrolyticc: $6,000 \mathrm{l}$ $15 \mathrm{p} ; 40 / 150 \mathrm{~V}, 25 \mathrm{p} ; 4 / 000 \mathrm{~V} 25 \mathrm{p}$. Electrolytica: $6,000 /$
$15 \mathrm{~V}, 10 \mathrm{p} ; 10,000 / 16 \mathrm{~V}, 40 \mathrm{p} ; 100 \times 60 / 450 \mathrm{~V} 25 \mathrm{p} ; 350 \times$ $15 \mathrm{~V}, 10 \mathrm{p} ; 10,000 / 16 \mathrm{~V}, 40 \mathrm{p} ; 100 \times 60$
$50 / 325 \mathrm{~V}, 25 \mathrm{p} ; 100 \times 400 / 275 \mathrm{~V}, 25 \mathrm{p}$.
P.E. SCORPIO IGHITION SYSTEM

Traneformer as specified on Mullard Pot Core 23.45 Eddystone Diecast Box as specifled 21.85. Carriage extra on all orders
S.A.E. IMQUIRIES-LISTS. MAIL ORDEE ONLY 46 Kenllworth Road, Edgware, Middx. HA5 $8 Y G$ Tel. 01-9589314

HOME LDERING?

Our miniature irons are used all over the world in that most exacting marketthe modern electronics industry, the rapidly developing technology of which has made possible the enormous growth of activities available to the technical hobbyist.

He now also requires equipment to the highest commercial standards. Like our soldering irons, for example.

Look at the ADAMIN Model 15. If there is a smaller iron for mains use, we haven't seen it. It weighs a mere $\frac{1}{2} \mathrm{Oz}$ (less flex) and is about 7 inches long.

But it has a big performance. Used with interchangeable bits from $\frac{3}{64}$ in to $\frac{3}{16}$ in it is suitable for all work, from Hearing Aids to Colour Television.

Use the mains version at home or clip the 12 volt model to the car battery or 12 volt power unit (consumption only $1 \cdot 25 \mathrm{~A}$).

Send for HOBBY PACK 37 consisting of Model 15 iron with four bits, $\frac{3}{64} \mathrm{in}$, $\frac{3}{32} \mathrm{in}, \frac{1}{6} \mathrm{in}, \frac{3}{16} \mathrm{in}$ and tube of Bit Lubricant. State voltage required12 V or $220 / 240 \mathrm{~V}$.

PRICE: HOBBY PACK $£ 2.30$

 P. \& P. FREE
LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon CR9 2LL

BRUNEL TECHNICAL COLLECE BRISTOL

DEPARTMENT OF MARINE AND AERO-ELECTRONICS

MARINE RADIO OFFICERS

The Department offers the following courses for prospective Radio Officers in the Merchant Navy- 2 years' full-time course leading to the Ministry of Posts and Telecommunications General Certificate in Radiocommunications. I term full-time course leading to the Department of Trade and Industry MPT R/T Licences (Full and Restricted). Marine Electronics Diploma. Advanced Marine Electronics Diploma.

LICENSED AIRCRAFT RADIO ENGINEERS (Civil Aviation)
A full-time course of two years' duration commences in September of each year. This leads to the award of the Aircraft Maintenance Engineers Category R Licence issued by the Air Registration Board.

All instruction and practice is carried out with modern equipment and cest instruments, in well-equipped laboratories and workshops at the College and on the Department's own aircraft at Bristol Airport.

The Department also offers a course for the Board of Trade Civil Aeronautical RT Licence.

For further information apply to - Head of Department of Marine and Aero-Electronics,

Brunel Technical College, Ashley Down BRISTOL BS7 9BU

LIGHT SENSITIVE

INTEGRATED CIRCUIT ARE YOU STILL USING

NISTORS, DIODES AND OTHER PHOTOCELLS? WE ARE OFFERING THE COMPLETE PHOTOD
AMPLIFIER
TRIGGER
DRIVER-ALL IN A SINGLE 4 mm . DIA.

- Whul anye nelay on shac for AOHNALC MUGHT ALAMCHANG BOOK COHTECTOAN MANTOMATIC
P.O. CHEQUES payable to ELBON and crossed

LITE-IC, BLBON, SUMMERFIELD.THE CRESCENT. WEST WITTERING. SUSSEX

In just 2 minutes, find out hov. you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn.
If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." Case History G/321.
"In addition to having my salary doubled, my future is assured. ' - Case History $\mathrm{H} / 493$.
"Completing your Course meant going from a job I detested to a job I love." - Case History $\mathrm{B} / 461$

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court speak of the rewards that come to the man who has given himself the specialised know-how employer's seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Aecredited b! the Council for the Acernitation of Correapondenre Collequs.

BRITISH INSTITUTEOF ENGINEERINGTECHNOLOGY

Dept B4, Aldermaston Court, Reading RG7 4PF.

(Write if you preter not to cut this page)

[^0]: Order No.
 Price each T8O No. 1 1-24 25-99 100 ul T80 16 pintrpe 350 38 30 D

[^1]: © IPC Magazines Limited 1971. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2 \cdot 65$ ($£ 2$ 13s. Od).
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

[^2]: *LM103 is specified as "LM103-1.8" etc. depending on voltage required.

[^3]: Please send Free leaflets on Constructors Equipment Name
 Address

 Goodmans Loudspeakers Ltd.,
 Downley Road, Havant, Hampshire PO9 2NL

