RRACTICAL

SEPTEMEER 1971

Par

C-BURST-FIRES:

12 111110
|||||| et loter
Pubis blumolnd

ADCDLA Soldering Instruments add to your efficiency

THE NEW ‘INVADER'

 ADCOLA L. 646for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*
Standard temp. $360^{\circ} \mathrm{c}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{c}$ $410^{\circ} \mathrm{C}$.

*Additional Stock Bits

(illustrated) available

COPPER

B 58 : $\frac{1}{4}-6.34 \mathrm{~mm}$ CHISEIIACE
LONG LIFE

B 44 LL $\frac{2}{6}-475 \mathrm{~mm}$ CWISEL FACE

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

EX RENTAL TV's
$19^{\prime \prime}$ - £29.95
$23^{\prime \prime}$ - £39.95
All Channels 405/625 2 Years Guarantee. Free List by return.

19* Slim line TV's 214.95 . Guaranteed 2 years. Send for List. Carr. 8 Ins. all sets $\mathcal{L} 1.95$. Daily demonstrations to personal shoppers.

TEAK HI-FI STEREO CABINETS £14-95
Brand New 44° wide $\times 16^{\circ}$ deep $\times 18^{7}$ high with Legs. A superb piece of furniture. Carr. £1.00.
TRANSISTOR GANG CONDENSERS 30p. MINIATURE AM POST 5p PRECISION TAPE MOTORS $£ 1.95$, 200/240V. POST 20 p .

Transistor Radio Cases: 25p each.
 SPEAKERS 50p $2 \frac{1}{2}{ }^{\circ}$ 8S BRAND NEW. P. \& P. 5 p .
TRANSISTORS Post Free AC 126 AF 179 OC BID $\begin{array}{llll}A C & 128 & O C & 45 \\ A F & 114 & O C & 71 \\ A F & 117 & O C & 91\end{array}$ POTENTIOMETERS 23p each

Switched	$500 \mathrm{~K} \Omega / 500 \mathrm{~K} \Omega$
3!" shaft	

Switched
Double \&
Switched
Double \&
Post. \& Pack. 5p. -4 for 10 p
KNOBS 100,000 to
clear (Brand New)
100 assorted Radio \& T.V. knobs 50 p . Postage 250. (If you require sets 2 to

TV TUBES REBUILT GUARANTEED 2 YEARS

14"—£3.95, $17^{\prime \prime}$ \& 19"-£5.95 $21^{\prime \prime}$ \& 23"—£6.45.
Exchanged Bowls. Carr. 53p

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.l2 Phone 01-478 6001-2-3 Stamp for Free List

PHOTOELECTRIC KIT

CONTENTS. ? P.C. Chassis Boards, Chemicals, Etehing Manual. Intra-Red Photutransistor, Latching Relay, 2 Transistors, 3 Diodes, Resistors, Gain Control, Terminal
Block, Elegant Case, Scraws, etc. In fact everything you need to buida a Steady-Light Photo-Switch/Counter/Burglar Alarns, etc. (Project No. 1) which can be modified for modulated-light operation.

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarma, CONTENTS.
CONTENR. 2 enses, 2 mirrors, $24 \bar{j}$-degree wooden blocks. Intra-red filter, proCommonwealth: Surface Majl plans, etc. Price 11.00 Postage and Pack. 5p (U.K.) ail 30p
LONG RANGE INVISIBLE BEAM OPTICAL KIT

CONTENTS: As above. Twice the range of standard kit. Larger Lenses, Filter, ete. | Price $21 \cdot 50$. Postage and Pack. Jp (U,K.) Commonwealth: Surface Mail 15p, Air Mail |
| :--- |
| 50 p | 50p.

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photo-Smitch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
Resithis. Inira-Red Sensitive Phototransistor, 3 Transist ors, Chassis, Plastic Case Resistors, 8crews, etc. Full Size Plans, Instructions, Data, Sheet " 10 Advanced Photo
Price $\$ 1.00$. Postage and Pack. 5 p (U, K.) Commonwealth 10 p ; Airmail 20 p

JUNIOR OPTICAL KIT

CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 miniature invisible beami projector and photocell receiver for use with Junior Photoelectric Kit.
Price 50p. Post and Pack. öp (U.K.). Conmonwealth: Surface Mail 10p; Air Mail \%0p,
YORK ELECTRICS Mail Order Dept. 335 BATTERSEA PARK ROAD, LONDON, S.W. 11 Send S.A.E. for foll details, a brief description of all Kits and Projects

ADCOLA PRODUCTS LTD..
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4.
Telephone: 01-6220291/3 - Telegrams: Soljont London Telex - Telex: Adcola London 21851

With a range of thick film hybrid microcircuits off the shelf, Newmarket brings alive for you the old Scottish proverb quoted above"Good things come in small packages."

NMC409 Slow Speed Eccles-Jordan "Divide-by-two"

This RST flip-flop is designed specifically for slow speed switching in industrial controls where standard monolithic TTL/DTL finds it difficult to cope with the large voltage transients arising and where the precise stabilised 5.IV d.c. supply needed for TTL/DTL is difficult to provide (and costly). The NMC409 can work on any unregulated supply of $6-24 \mathrm{~V}$, and is immune to fast voltage spikes because it is designed not to switch faster than 10 kHz . Size: $1.1 \mathrm{in} \times 0.7 \mathrm{in} \times 0.23 \mathrm{in}$. One-off price $\mathbf{E 2} \mathbf{5 0}$

NMC396 Precision 6V Regulator d.c. Supply

This self-contained d.c. voltage regulator provides a precise $6 \mathrm{~V}, 150 \mathrm{~mA}$ d.c. output from a 7 - 15 V d.c. input. The hybrid assembly technique allows the output voltage to be set during manufacture
typically to within 25 mV of 6 V (in contrast to the wider absolute tolerances unavoidable in monolithics). The NMC396 has all the electrical robustness and stability of a discrete-component assembly and incorporates overload protection. Ideal for deriving a precise 6 V from a 9 or 12 V battery, it can also be fed from a standard d.c. power pack such as the NKT PCIOI.
Size : $0.60 \mathrm{in} \times 0.60 \mathrm{in} \times 0.25 \mathrm{in}$. One-off price $\mathbf{E 2} \mathbf{5 0}$

NMC426 Optoelectronic Solid State Logic Indicator

This microcircuit is designed primarily to indicate visually the state of a binary logic circuit but can be used in any circuit calling for a visual indication of the existence or absence of a d.c. voltage at a test point. Completely self-contained it only requires three connections to a nominal 5 V d.c. supply, to earth and to the test point. The light display is a gallium arsenide phosphide solid state diode lamp with virtually unlimited life. The NMC426 incorporates an internal d.c. amplifier enabling the light to switch on with an input drive of only $1 \mu \mathrm{~A}$ or 2 V , and it takes a current of only a few $\mu \mathrm{A}$ from standard TTL/DTL logic gates. Size: $0.42 \mathrm{in} \times 0.3 \mathrm{lin} \times 0.13 \mathrm{in}$. One-off price $\mathbb{E 2} \cdot 83$

NMC809A Wide Band Amplifier
This wide band amplifier is a selfcontained d.c. feedback pair (with output buffer stage) with access to the internal feedback loop for response tailoring. The hybrid assembly technique enables the low frequency gain to be set in manufacture to precisely 22 dB and gives a narrow gain spread difficult to achieve by monolithic techniques. Usable for bandwidths up to 50 MHz , the NMC809A employs the easily handled standard dual-in-line package. Its thick film hybrid assembly eliminates the parasitic stray capacitances to earth unavoidable with monolithics and gives it the electrical stability and robustness of discrete component designs.
Size: $0.71 \mathrm{in} \times 0.28 \mathrm{in} \times 0.15 \mathrm{in}$. One-off price $\boldsymbol{E 3} \cdot \mathbf{3 4}$

distributors

For further details contact one of the distributors listed below. (In the case of darge scale requirements you can save time by referring direct to Newmarket.)

Coventry Factors Ltd.,
Coroner House
Upper Well Street,
Coventry,
Warwickshire CVI 4AF
Tel. 0203-21051/5
Telex 311243

Eastern Aero Electrical Services Ltd.
Building 202,
Enfield Road,
Hounslow, Middlesex
Tel. O1-759 1314
G.S.P.K. (Sales) Ltd.,

Hookstone Park.
Harrogate,
Yorkshire.
Tel.: Harrogate 86258
Telex 57962
Hird-Brown Electronics Ltd.,
Lever Street,
Bolton,
BL3 6BJ, Lancashire.
Tel.: Bolton 27311
Telex 63478
I.T.T. Electronic Services Ltd., Edinburgh Way
Harlow, Essex
Tel. 02796-26777
Telex 81146
L.S.T. Electronic Components Ltd.

7 Coptfold Road,
Brentwood,
Essex.
Tel.: Brentwood 226470
Telex 99443
S.D.S. (Portsmouth) Ltd.,

Hilsea Industrial Estace,
Portsmouth PO3 5JW.
Tel.: 0715/65311
Telex 86114

Newmarket Transistors Ltd.
Exning Rd., Newmarket, Suffolk
Tel. : Newmarket (0638) 3381
Telex 81358

DIPORTANT. THIS LATEST 1971 MODEL DFCORPORATES ALL THE LATEST TECH HOLOGICAL IMPROVEMENTS AND SUPRRSEDES ALL EARLIER MODELS! YES, THIS SENSATIONAL BRAND NEW VEF 204 gusgiar 8 Waveband portable radio, designed for world WIDE RECEPTION, will probably make your present radio seem like a "cryital net"! It's far better than any other 8 wave radio that even they have produced before! It even incorporstes a special MARINE WAVEBARD to receive apoken communications from ship-to-shore : Complete with optionai battery elliminator for both battery and mains use! It representa the fnest value we have ever offered ! We're almost giving them away at only $\mathbf{5 1 3 . 9 7 -}$ s mere fraction of even today's Russian miracle price: In fact we challenge you to compare the performance and value with that of $542 \cdot 00$ radios: *You just can't lose, we'll refund your money instantly if you are not astounded! Purer and sweter tone than ever: Much wider band apread than bilherto, for absolutely "pin-point" station selection! Yes, the Russians have really surpessed themselves this time, proving once again their fantastic ability in the fleld of electronics and brilliantly reflecting their advanced micro-circuitry techniques in the fleld of spaceship and satellite communications. YOU GET THIS AMAZING SET FROM U'S AT A PRICE THAT BEARS NO RELATION TO ITS TRUE VALCE! Yes, 8 separate wavebands, including Standard Long, Medium and Bhort Waves to cover the world. PLOS special "ship-to-shore" MARINE BAND: Unique aide control waveband selection unit gives incredible ease of station tuning : Thougands of different transmissions, sind atations at your fingertips 24 houra a day, including ships at sea, etc. and messages from all over the world-truly nothing is secret! The radio enthusiast can have the world in the palm of his hand ! You must hear it to believe it! Superb, iweet tone -controlled from a whisper to a roar that will fill a hall! Genuine push-pull output : Separate ON/OFF rolume and Treble/Bass tone controls ! Pressbatton dial illumination: Take it anywhore-runs economically on standard batteries (obtainable everywhere) or direct through battery eliminator from 220/240v AC mains supply. Internal ferrite rod aerial plus built-in telescopic aerial extending to full 31 in . length. It'a also a fabulous CAR GADIO-any apeed, requirea no additional aerial, UKIQUE! Elegant Black and Chrome finish ease. SIZE 11 ing. \times Oins. $\times 3_{3}^{3}$ ing. overall approx. Magnificently designed and superbly made to give yeara of perfect acrvice. Complete with WRITTEN GUARANTEE, manual with simple operating instructions and circuit diagram. ONLY 218.97 (with mains/battery eliminator $£ 1.38$ extra). BOX, POST, ETC., 50p. Standard batteries 38p extra, Can aloo be used through extenaion ampliter, tape recorder or public addreas aystem. Send today or call at either store, but HURRY I It's the chance of a lifetime. (Sorry-we cannot change these new radios for any earlier model already purchased.) Send quickly or call. Refund guaranteed.

G. F. MILWARD 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

VEROBOARD

2 in $\times 1$ in $\times 0.15$ in 6p $\quad 5 i n \times 3$ in $\times 0.15$ in 28p 3 in $\times 3$ in $\times 0.1$ in 24p
 Sin $\times 2 \frac{1}{2}$ in $\times 0.15 i n 20 p$ 3tin $\times 2 \operatorname{tin} \times 0.1 \mathrm{in} 21 p$
Spot Face Cutter 38 p . Pin Insert Tool 48 p . Terminal Pins (0.1 or 0.15) 36 for Spot Face Cutter 38p. Pin Insert Tool 48p. Terminal Pins (0.1 or 0.15) 36 for
18p. Special Offer Pack consisting of $52 \frac{1}{2}$ in $\times 1$ in boards and a Spot Face 18p. Special
Cutter- $50 p$.

RECORD PLAYER CARTRIDGES. Well below normal prices! G90 Magnetic Stereo Cartridges, Diamond Needie, 6 mV output, \&4. ACOS GP $6 / 12$ (Mono, Crystal) 75p. ACOS GP $91 / 3$ (Compatible, Crystal) 41 . ACOS GP $93 / 1$ (Stereo, Crystal, Sapphire) $£ 1 \cdot 25$. ACOS GP 93/iD (Stereo, Crystal,
Diamond) $\$ 1.63$. ACOS GP $94 / 1$ (Stereo, Ceramic, Sapphtre) \mathbf{i}. 50 . ACOS GP Diamond) $£ 1.63$. ACOSGP $94 / 1$ (Stereo, Ceramic, Sapphtre) $£ 1.50$. ACOS GP
94/1D (Stereo, Ceramic, Diamond) 41.88 . ACOS GP $95 / 1$ (Stereo, Crystal with 94110 (Stereo, Ceramic, Diamon

TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reversed polarity protection. 8 watt type with reflector suitable for tents, etc. 63. Postage/Packing 25p. 15 watt type, batten fitting for caravans 44 . Postage/Packing 25p. 13 watt type, batten with switch. $22 \mathrm{in} \times 2$ in. \times lin 55.
Postage/Packing 25p. THESE CAN BE SENT ON APPROVAL AGAINST FULL PostageiPack
PAYMENT.

MULLARD POLYESTER CONDENSERS
$1,000 \mathrm{pF}, 1,200 \mathrm{pF}, 1,500 \mathrm{pF}, 1,800 \mathrm{pF}, 2,200 \mathrm{pF}, 15 \mathrm{p}$ per dozen (all 400 V working) $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.27 \mu \mathrm{~F}, 30 \mathrm{p}$ per dozen (all 160 V working). 25% discount for lots of 100 of any one type.

RESISTORS

$\frac{1}{4}$ and $\frac{1}{2}$ watt. Most values in stock. 50p per 100 . 10 p per dozen of any one value. WIRE WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards. I watt to 50 watts. A large percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these can only be
offered "assorted" at 50 p per dozen.
SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Large range in stock, 3 Sp per 100 of any one value. isp per dozen.
RECORDING TAPE BARGAIN! The very best Eritish Made lownoise high-quality Tape! 5 in Standard 38p. Long-play 45p. 5tin Standard 45p. Long-play 60p. 7in Standard 60p. Long-play 82p. We are getting a fantastic number of repeat orders for this tape. Might we suggest that you order now whilst we still have a good stock at these low prices?
STOCKTAKING CLEARANCE! IMPOSSIBLE TO REPEAT! We have huge numbers of components in quantities too small to advertise individually. In order to "clear the decks" we have made up parcels containing a mixture of carbon and wire-wound resistors, electrolytic and paper con densers, controls, transistors, diodes etc., for a tiny fraction of normal price. It is emphasised that these are mixed parcels only-contents cannot be stipulated! Sold only by weight.

Gross weight 2 lb .
Gross weight 5 lb .
11 (postage 20p)

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultraviolet.) Spray with developer, rinse and etch in normal manner.
Light sensitive aerosol spray
61.00

Developer spray
SPECIAL 50p PACKS, ORDER 10 PACKS AND WE WILLINCLUDE AN EXTRA ONE FREE ! ! !
assorted
Wire-wound 1 to 3 watt
5 to 7 watt
10 watts
Multi-tapped
PAPER CONDENSERS
TVEypes
TV types
Miniature
ELECTROLYTIC CONDENSER
Suitable for Mains
Radio/Tr
Transistor types
Mixed (both types)
POLYSTYRENE
MULLARE POLYESTER COND.
SILVER MICA
NUTS AND BOLTS. Mixed

BB.A.

$8 B . A$. $6 B . A$.

4 B.A.
EARPIECES, MAGNETIC
No Plug
2.5 mm Plug

500 MICRO .AMP LEVEL
METERS

TRANSISTORS
P.N.P. Untested but mainly
P.N.P. Untested but mainly
N.P.N. Untested but mainly

50 50p 20 50p
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 15p.

Garrard SP25 Mk. III
Goldring G800H
Teak plinth and tinted cover. Ready wired ¢19.50
Please add $\& 1 \cdot 15$ for post and packing

Please add 50p for post and packing	
*Garrard SP25 Mk. III	610.75
- Garrard 2025 TC with stereo cart.	18.00
- Garrard 2025TC with Sonotone 9TAHC	18.95
*Garrard 3000 with Sonotone 9TAHC	610.25
*Garrard SL65B	413.25
*Garrard AP76	418.75
- Garrard SL72B	624.00
* Garrard SL75B	$\underline{62600}$
- Garrard SL95B	635.50
Garrard 401	$\underline{27.00}$
* B.S.R. MP60	611.50
Pioneer Plizac	¢ 39.00
Thorens TD125	¢64.50
Thorens TDI25AB	698.50
Thorens I50ABII	642.50
Goldring GL69/2	E21.50
Goldring GL69P2	E29.50

packing

AMPLIFIERS

Please add 50p for post and packing

Armserong 521 (cased)
 Amstrad

Europhon $10+10$
$\begin{array}{ll}\text { Leak } & 30 \text { Chassis } \\ \text { Leak } & 70 \text { Chassis }\end{array}$
Leak. 30 Cased
$\begin{array}{ll}\text { Leak } & 70 \text { Cased } \\ \text { Metrosound } & \text { ST20 }\end{array}$
Philips
Pionee
Pioneer SA500
Pioneer SA900
Rogers Ravensbrook Chassis
Rogers Ravensbrook Cased
Rogers Ravensbourne Cased
Sinclair 2000 Mk.
Sinclair 2000 Mk . II
Sinclair 3000
Sinclair PRO60/2: Z30/PZ
$\begin{array}{ll}\text { Sinclair } & \text { PRO } 60 / 2 \\ \text { Sinclair } & \text { PRO } 30 / 2\end{array}$
$\begin{array}{lll}\text { Sinclair } & \text { PRO60/2 } & \text { Z50/PZ8/Trans. } \\ \text { Telecon } & \text { SAQ206 }\end{array}$

TUNERE

Please add 50p for post and packing
Armstrong 523 AM/FM
Armstrong 524 FM
Dulci FMT7
Dulci FMT7 Stereo
Rogers Ravensbourne
Rogers Ravensbourne FET 2 Chassis
Rogers Ravensbrook FET 4 Chassis
Rogers Ravensbrook FET 4 Cased
641.95

PICK-UP ARMS
 Please add 35p for post and packing

 SME 3009/S2SME 3012/S2
626.00
$£ 27.50$

THME
Please add 75p for post and packing Armstrong 525 FM Armstrong 526 AM/FM
670.75 Armstrong 526 AM/FM
Teleton CRIOT with speakers
Teleton F2300 (new product)
Teleton CR55
Teleton F2000
Wharfedale $100-1$

SPEAKERS

Please add $£ 1.25$ for post and packing
Wharfedale Denton (PRICE PER PAIR)
Wharfedale Melton $\quad \leq 49.90$
Wharfedale Triton 445.75
Wharfedale S/Linton
Keletron KN500
Keletron KN700
Keletron KN123/3
$\begin{array}{ll}\text { Kelerron } & \text { KN1000 } \\ \text { Keletron } & \text { KN1500 }\end{array}$
$\begin{array}{ll}\text { Keletron } & \text { KN1500 } \\ \text { Keletron } & \text { KN2000 }\end{array}$
K.E.F. KN2000

Celestion Ditton 15
$\begin{array}{ll}\text { Celestion } & \text { Ditton } 25 \\ \text { Celestion } & \text { Ditton } 10\end{array}$

Ste-Ma	400

Ste-Ma 300
Hi-Fi
$\mathrm{Hi}-\mathrm{Fi}_{4}$
Hi Fi
Hi II 300
Hi Fi 115
Hi Fi 3
GLOBAL CONTRACT SERIES
Contract 8 3-way 7 watts R.M.S. \quad E16.00
SPEAKER KITS
Wharfedale Unit 3
Wharfedale Unit 4
820.50
$£ 27.00$
639.00

CARTAIDCES

Please add 10 p for post and packing
Goidring G850
64.15
45.75
$\begin{array}{ll}\text { Goldring } & \mathrm{G} 800 \mathrm{H} \\ \text { Goldring } & \mathrm{GB} 800\end{array}$
$\begin{array}{ll}\text { Goldring } & \text { G800 } \\ \text { Goldring } & \text { G800E }\end{array}$
Goldring
Sonotone
Shure
Shure
G800SE
9TAHC Diamon
66.95
$\begin{array}{ll}\text { Shure } & \text { M3DM } \\ \text { Shure } & \text { M45/7/C }\end{array}$
Shure M55
$\begin{array}{ll}\text { Shure } & \text { M75E } \\ \text { Shure } & \text { M15 Type } 2\end{array}$
V15 Ty
M4
$\begin{array}{ll}\text { Shure } & \text { M31E } \\ \text { Shure } & \text { M32E }\end{array}$
$\begin{array}{ll}\text { Audio-Technica M32E } & \text { AT66 }\end{array}$
Audio-Technica AT35
SMC
MCIS
101
TAPS DECKS ABECORDERS
Please add 75p for post and packing
Teleton FXB 5100
Teleton TCR130

PERSONAL GALLERS VERY WFLGOME!
Come and browse through our mulij 1,000 foot warehouse/showroom. NO PARKING PROBLEM
The following branded names are not allowed to be advertised at Discount RatesSONY, SANYO. BANG \& OLUFSEN. TRIO. BAOFORA, SONAB, NKKO, CHILTON, FERROGRAPH, LUXOR, CELESTION. AKAI. TANNOY, TANOSERG, TEAC. CAMBRIOGE, ARENA, ROTEL.
Send a stamped addrassed envelope for a GUARANTEEO OISCOUNT PRICE.

PLINTHS E COVERG

(as illustrated)

plus 35 p post and packing

Finished in real teak veneer with tinted dustcover Ready to use (fully assembled). Suitable for
Garrard SP25, 2025 TC, 3000 , AT $60.2000,2500$, $3500,5100,1025$, SL65B.

Also for
B.S.R. McDONALD MP60 and other:

Plinths and Covers for AP76, AP75, SL72B, SL75B, SL95B. 64.25 plus 35p post and packing.
ment-no extra charge

Made by world fomous European monufacturer

COMPLETE HI-FI STEREO SYSTEM

YHF/MEDIUM/LONG WAVE Tuner Amplifier 4 watt per channel, separate tone and balance controls. Two neat speakers with wooden slatted front. Single play deck n plinth and cover Finished in teak. Fully guaranteed 12 months. On constant demon. stration.

[^0]

Now for the first time，anybody（no special qualifications are needed）can train outside the computer industry for an exciting career as a computer operator in only 4
weeks－and can earn $£ 2,000++$ p．a．
How？We are the only commercial training organisation in the U．K．permitted to use the famous ＇Eduputer＇．
JOBS GALORE！144，000 new operators will be needed over the next five years alone．And the moment you qualify our exclusive computer appointments bureau introduces you to computer users everywhere．
This is your big opportunity to get out of a rut and into the world＇s fastest growing industry．Find out more FREE and without obligation by posting this coupon TO－DAY．

London Computer Operators Training Centre
C25 Oxford House，9／15 Oxford Street，London，W． 1 Telephone 01－734 2874
127／131 The Piazza，Dept．C25，Piccadilly Plaza， Manchester 1．Telephone 061－236 2935.
Please send me your FREE illustrated brochure on exclusive Eduputer＇hands on＇training for computer operating．
Name
Address

MOTOROLA

We can now offer a vast range of
Motorola
lC＇s at
気家宗

－ytrt 7

LARGEST STOCKS SEMICONDUCTORS \＆COMPONENTS
 BRAND NEW GUARANTEED WIDEST RANGE

26301 263
263
2兑灾 106
0.0
0.0
0
0 2G304
2G371

に心
こたに

 20p N3414

 2 N
2 N

2 N 2 N 2 N 2 N

TRANSISTORS

| $45 p$ | 40311 | $35 p$ | BC17！ |
| :--- | :--- | :--- | :--- | :--- |
| $28!p$ | $4031:$ | $47!\mathrm{p}$ | BC175 |

27
17
17
37

The Unique

MULT-MIN TWII-VICE

An extra "Pair of hands" for those tricky jobs
ASSEMBLY-SOLDERING-GLUING-WIRING-DRILLING ETC.

- INDEPENDENT ADJUSTMENT OF THE TWO VICE HEADS TO ANY ANGLE WITH POSITIVE LOCKING
- JAWS WILL FIRMLY GRIP, ROUND FLAT, SQUARE, OR HEXAGONAL PART'S.
TWIN VICE: $\mathbf{5 5} 90$ (24P P \& P)
also available
SINGLE VICE; $63 \cdot 37 \frac{1}{2}$ (20 p P \& P) COVENTRYMOVEMENT CO. LTD

DEPT. PE4, BURNSALL ROAD COVENTRY CV5 6BU STD 0203-74363

** OPPORTUNITY KNOCKS ** SAVE $E \in \mathbb{E}$'s

Low cost guaranteed full spec. components from leading manufacturers
SN74N TTL (Plastic DIL)

Practical Electronics September 1971
 VALVES SAME DAY SERVICE NEW！TESTED！GUARANTEED！

READERS RADIO

85 TORQUAY GARDENS，REDBRIDGE，ILFORD ES8EX
 Tel．01－550＇7441

Postage on 1 valve 5 p，on 2 or more valves $3 p$ per valve ex！

PARKERS SHEET

METAL FOLDING

MACHINES
 heavy vice
 MODELS

With Bevelled Former Bars
No．1．Capacity 18 gauge mild steel $\times 36 \mathrm{in}$ ．wide
Carr．free

Also new bench models．Capacities 36 ín． 18 gauge f 38.24 in ．« it gauge E29．Carriage free．
End folding attachments for radio chassis．Tray and Box making for $36 i n$ ． model， $27 \frac{1}{2}$ p per ft ．Other models $17 \frac{1}{2} \mathrm{p}$ ．The two smaller models will form flanges．As supplied to Government Departments，Universities，Hospitals．

One year＇s guarantee．Money refunded if not satisfied．Send for details．
A．B．PARKER，Folding Machine Works．Upper George St．，Heckmondwike，Yorks．Heckmondwike 3997

YUKAK SO PROFESSIONAL THE SFIF－SPRIX YUKAN AEROSOL WAY－ Get these air drying GREY HAMMER NOW！OR BLACK WRINKLE （CRACKLE）finishes

apray Aerosol spraykit contains 453g．fine quality，durable easy instant
spray No stove baking required ．Hammers available in grey and blue，
90 p car，pd Modern Eggshell Black Wrinkle（Crackle）producing a 30 90p carr．pd Modern Eggshell Black Wrinkle（Crackle）producing a 30
textured finish． 90 carr pd．，all at 85 p per push－button self－spray can at textured finish． 90 p carr po．，all at 85 p per push－button gelf－spray can at
our counter．Also durable，heat and water rasistant Black Matt finish （339g．self－spray cans only） 75 p cerr．pd
SPECIAL OFFER：One can plus optional transferable snad－on trigger handle（value 25p）for $96 p$ catr，pd．Chaice of 13 self－spray plain colours

Other Yukson Air
Opying Aerosols．
asig Sthing Aatosok
$453 g$ at $90 p$ cith od
incurede inche Chiomate Cloer lacquer Melaflics
Blue．
and primer（motor car quality）also available

Electronic Brokers Ltd．（Dept．P．E．）49－53 Pancras Road London NWI Tel．01－837 7781 Telex 267307

[^1]

We supply many Government Departments．Municipal Authoritios．
Open all day Saturday Closed Thursday afternoons

Discosound P. A. AND DISGOTHEQUE EQUIPMENT - A COMPREHENSIVE RANGE COVERING EVERY REQUIREMENT AMPLIFIERS, MIXERS, LIGHT CONTROL UNITS.

D.J. 101 Mixer Pre-Amplifier

Six inputs allow futl mixing facilities for all type. of equipment. 9 V battery operation.
Sugreated Retail Price $\boldsymbol{\varepsilon 1 4}$
D.J. 102 Discotheque Mixer Pre-Amplifier Four inputs each Fith its own volume control plus naster volume controi, Pr mon Suggented Retail Price
D.J.I05S P.A. Amplifier

4-channel mixing facilities each with sejarate inputw and volume controls. 30 W r.tus. power output a.c. nains $200 / 2 a 6 \mathrm{Y}$ a.c. Size: $11 \mathrm{in} \times \sin \times 6$ in
D.J.70S Integlated Mixer Amplifier

Power output 70W r.m.g. 4 -chamel mixer with
separate inputs asd volume controls, phus master
volume and separste basp and treble control
size: 15 in \times jin >6 in.
Suggested Retail Yrice $\mathbf{2 6 3}$
D.J. Disco-Amp.

Deaigned speciflcslly for use with discotheques. Power output 100W r.m.s. Two mic. Inputs and two gram inputs, with independent volume control plus bass and treele controls. Incorporates many exclusive features. Front panel size: $16!$ in $\times 7$ in sugkented Retail Price 885

Discosound 40 Discotheque Pre-Amplifier Peatures independent inputs and volume controls for two inicrophones and two turntables plus separate bass, treble and master volume controls. Self. powered and ideal for use with Discosound 100 Power Amplifier (is capable of rumning 10 of these power amplifers-total $1,000 \mathbf{W}$). Front panel size $163 \mathrm{in} \times 7 \mathrm{in}$
Suggested Ratail Price 240
Discosound 100 Power Amplifier
lo0W r.m.s. power amplifier (at 8 ohms) utilising all silicon transistors and features full automatic overload against short or open circuits. Frequency response $20-20,000 \mathrm{~Hz} \neq 3 \mathrm{~B}$ gize: 10 l in $\times 8 \mathrm{in} \times 7 \mathrm{in}$. Suggested Retail Price 249.50
D.J.l03S Stereo Pre-Amplifier

A high quality stereo discotheque pre-amp unit. Incorporating two microphone and two turntable inputs each with independent volume control, plus offers full mixing and monitoring tacilltjes. Front panel size: 16 i in $\times 3 \mathrm{itin}$. Suggested Retall Price $549-50$
D.J.30L Psychedelic Light Control Unit 3-channel light unit enabling bass, middle and treble frequencies from the amplifier to be operated individually. Handles $1,000 \mathrm{~W}$ per channel. Front $\frac{1}{x}$ in.
D.J.40L Sound Operated 1-channel light unit
Features built-in microphone which eliminates the need for connections to any amplifier or aound source. Handles $1,000 \mathrm{~W}$ per caannel. Front pane size: 16 in $\times 3$ in
Sugyested Retail Price ese.25
D.J. DIMMER 3000

3-channel light dimmer unit offered in two version: Dimmer 3000 -a atralght 3 -chanael dimmer unlt with riming input and three light outputs. Dimmer 30008 -for use in conjunctlon with D.J. 30 L Light Control unit on y and han three mains inputs 8 grgeatod Rotail Price Eas. 50

Discosound Disco-Wheel
A projector designed to project a range of Ilquid wheels and colour change wheels for opecial lighting effects, addlng colour and variety to any form of entergested Retail Prico 250

A range of complete Discotheques with matching Speakers also available.

DISCOSOUND PRODUCTS ARE GUARANTEED FOR 12 MONTHS

For full details of the Discosound range of products call at or write to your nearest Discotheque Centre - Demonstrations given at any time.

DISCOSOUND
122 Balls Pond Road, London N.1. Tel: 01-254 5779

HENRY'S RADIO LTD
309 Edgware Road, London W.2. Tei; 01-723 6963

		BRIGHTNESS CONTROL Fuli control over 300 watts of incandescent lighting. Thyristor light dimmer mounted on a standard switch block ready to fit into a MK. Box. Enjoy the pleasure of having the precise amount of light you require at any time. Our Price E2.75 plus 8p P. \& P. each.
		BATTERY ELIMINATOR Plug your Transistor Radio, Amplifler, Cassette, etc., into the a.c. mains through this compact ellminator, $2 \frac{1}{2} \mathrm{in} \times 2 i n \times 3 i n$ approx. 4iV complete with cable and plug for Philips Cassette. $62 \text { plus } 8 \mathrm{p} \text {. }$
STEREO HEADSET 8 ohm impedance, complete with plug and bit lead. A very conifortable phone set. Listen to stereo without noise interrupting the pleasure. Wonderful value. $\in 2.50$ plus 10 p P. \& P. STEREO JUNCTION BOX ror stereo amplifiers without stereo jack socket. El. 25 plus 8p P. \& P.	S. G. BROWN HEADPHONES Used! But in good working condition. These Type " F " phones are $4,000 \Omega$ imp. and a bargain at 50p Plus 10 ip, P. \& P. per pair	
		MAINS KEYNECTOR Keynect or connects any Electrical Equipment to the supply mains seconds. for bench. garage, demonatrations, etc. Multi connections can be made (max. loarl 13A fused). ONLY $£ 2.75{ }^{\text {P. \& }}$ \& .

 standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in raining mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"SIMPLE AND EASILY EXPLAINED "

"I have never come across or read anything so simple and easily explained.
P.L., Wood Green
" COMPLETELY SATISFIED"
"I would like to say I am completely satisfied with the
A.L.P., Buckingham
"PERFECT DETAIL"
"I find these books are exactly what I have been looking for they explain everything in perfect detail,"
A TECH-PRESS PUBLICATION H.W.R., Pontefract
EOST AOW TOL MM16 OLEEM,

TO The SELRAY BOOX CO., 60 HAYES HILL, HAYES, GROMLEY, KENT GR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 -days or send the following amounts. BASIC ELECTRICITY 4450 . Cash Price on Down Payment of $£ 1$ followed by 4 fortnightly payments of $£ 1$ each (Total $£ 5$). BASIC ELECTRONICS £5 40. Cash Price or Down Payment of E 1 followed by 5 fortnightly payments of $£ \mathbf{1}$ each (Total $£ 6$). This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
\square
Prices include Postage and Packing.
Signature
(If under 18 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

EGED PANEL METERTS

USED EXTENSIVELY BY INDUSTRY，GOVERNMENT DEPARTMENTS，EDUCATIONAL AUTHORITIES，ETC． LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

N E W CLEAR PLAS	＇＇SEW TIC METERS	＇D ES I bakelite Pa	EL METERS
	TYPE SW． 100	TYPE S－80	
－			
	（0）	${ }^{\text {a }}$	
	旡	${ }^{\text {and }}$	
		（en	
${ }^{\text {a }}$	\％remerer	${ }^{\text {and }}$	${ }_{\text {coser }}$

＂SEW＂CLEAR PLASTIC METERS

Type MR．85P．41in 4 ifin fronte

Type MR．52P．2 2 in square fron

－0 $\mu \mathrm{A}$	4310	$20{ }^{\text {a d d．c．}}$
． $0.0 .50 \mu \mathrm{~A}$	22．60	300 dic．
$100 \mu \mathrm{~A}$	¢8．80	300 V d．c．
100－0－100 \ldots ．${ }^{\text {a }}$	28.371	15 Y a．c．
500μ A	52.25	300Ya．c．
1 mA	E2．00	－M Meter
imA	22.00	1 mA
10 mA	52.00	V M Meter
50 mm	¢2．00	1.1 a．c．＊
100 mA	82.00	\％A a．c．＊
500 m.	c2．00	
1.1	22．00	10．A a．c．＊
T A	82.00	20A a．c．＊
10 V a．c．	82.00	BuA a．c．

$50 \mu \mathrm{~L}$	E3-37!	$20{ }^{\text {c di．c．}}$	
$50 \cdot 0-20 \mu .1$	22．75	50V If．	
$100 \mu \mathrm{~A}$	22.75	150¢＇d．e．	$2 \cdot 1$
100－0．100 $\mu \mathrm{A}$	E2． 60	300 v d．e．	
$200 \mu \mathrm{~A}$	£2．60	15V anc．	
$500 \mu \mathrm{~A}$	22－371	50才a．c．	
200－0－ $00 \mu \mathrm{~A}$	22．10	150y a．e．	
1 mA	22．10	300 V	
A	22.10	500 y a．c	
0 ma	e2． 10	S Meter	
50 ma	82．10	1 mA	
100 m A	22.10	VU meter	83
500 ml ．	22．10	50 mA ac．＊＊	
1	22.10	100 mA a．c．＊	
	22.10	200 mA a．c．＊	
10 A	22．10	〕00mA a．c．＊	
15 A	22－10	1.1 ace＊	
20 A	知10	5．n．c．＊	
30 A	42－10	10.4 a．c．＊	
50 A ．${ }^{\text {d，}}$	22－37		
5Vd．c．	52.10 22.10	20 A a．c．＊ 30 A a．c．＊＊	
10¢ t．e．	22．10	30 A a	

ALL OT	se ad	MOVING COIL postage
＂SEW＂EDUCATIONAL．		
METERS		
		Type ED．107．Sise
		overall $100 \mathrm{~mm} \times$
		A new range of high
		quality moving coil
		instruments ideal for school experi－
		ments and other
		bench applications． $3^{\prime \prime}$ mirror scale．The
meter movenent is eatily accessible to demonstrate internal working．Available		
in the following ranges：		
$50 \mu \mathrm{~A}$ ．	24．50	20 V d．c．．． 83.97
$100 \mu \mathrm{~A}$	24.25	50 V d．c．．${ }^{\text {e } 3.97}$
1 ma	23.97	
50．0－50 1.4	24.25	300 V d．c．．． $\mathbf{3 3} \mathbf{8} 87$
1．0．1mA	\＄3．97	Dual range
1 A d．c．	¢3．87	500 mak
5 Ad．c．	83.97	500mA／3Ad．c． 24.25
0V d．c．	83.87	5V／50V d．e．

 $0 . \mathrm{P}$.
$1,200 / 3,000 / 6,000 \mathrm{~V}$ d．c． $1 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V}$ a．c． $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA} /$
$0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} . / 60$. Megohn JOPF．\＆MFD \＆5．972．P．\＆P． $17 \frac{1}{2} \mathrm{p}$ ．

MODEL PL438．20k $\Omega /$ Volt d．c． 8 k 凤／Volt
a．c．Mirror scale． $0.6 /$ a．c．Mirror scale．
$3 / 12 / 30 / 120 / 600 \mathrm{~V}$
d．c． $3 / 30 / 190 / 600 \mathrm{~V}$ a．c．
$50 / 600 / \mathrm{A} / 60 / 600 \mathrm{~mA}$ ． $50 / 600 \mu \mathrm{~A} / 60 / 600 \mathrm{~mA}$ ．
$10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10 \mathrm{meg}$ 8.
8.20 to
P．
P． 121 dB. （0．2．P．\＆P． 12 p p．
 protection，mirror seste
$0 / .5 / 2.5 / 10 / 25 / 100 /$ $0 / 5 / 2 \cdot 5 / 10 / 25 / 100 /$
$250 / 500 / 1,000 \mathrm{~V}$ d．c． $0 / 2 \cdot 5 /$ $10 / 25 / 100 / 250 / 500 /$
1000 V．ac． $0 / 50$ MA／5／50／ $1,000 \mathrm{~V}$ ．a．c． $0 / 50 \mu \mathrm{~A} / 5 / 50 /$
500 mA I2 amp．d．c． 88．874．Post paid．

Type MR，45P．2in square lronts．			
30.4.	22.25	10 V d．c．	£1．50
50－0．50 2 A	\＄2．10	20 y d．c．	21.50
$100 \mu \mathrm{~A}$	22． 10	50V di．c．	21.50
100－0－100 $\mu \mathrm{A}$	\＄1．87！	300 y d .0	21．50
$200 \mu \mathrm{~A}$	£1．872	15 V a．c．	21.50
：000 A	E1．60	3004 a．t．	\＄1．50
500－0－500 4.6	81.50	\＆Meter	
1 mat	21.50	1 ma	81.87
Thin	51.50	V1 Meter	22．25
10 mat	21．50	］A a．c．＊	¢1．50
50mis	51.50	EA a．c．＊	11.50
100 mA	21．50	tosace	
500mA	c1．50	10a a．c	
14	51.50	20A ace	11．50
$\therefore .4$	¢1．30	30\＆a．c．＊	c1． 50

＂SEW＂BAKELITE PANEL METERS

EDGWISE METERS

PE． 703 17／32in 1 15／32in 23in deep．

TMK MODEL TW－20CB， Features Resettable Over－
load Button．Sensitivity： $20 \mathrm{~K} \Omega /$ Volt dic ． $5 \mathrm{~K} \Omega /$ Vole a．c．D．c．volts： $0-0.6$ ， A．c．volts： $0-2 \cdot 6.5,10,50,250,250,1,000 \mathrm{~V}$ ．D．c． currents： $0-0.05,5.5,5,50,500 \mathrm{~mA}$ ．
 Decibels
P． $17!\mathrm{p}$ ．

TMK LAB TESTER． 6ifin heale buzzer short circuit check． Sensitivity： 100,000
OPV d．c． $5 /$ Volt a ． IS．c．roits： $0.5,2.5$ ， A．c．volte： $3,10,50,250,500,1,000 \mathrm{~V}$ ． D．c．current： $10,100 \mu \mathrm{~A}, 10,100,500 \mathrm{~mA}$,
$25,10 \mathrm{~A}$ ．Resiatance： $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$ ， 10 meg． 100 meg．Decibels：-10 to +49 dB ．Plastic case with carrying handle， size $\operatorname{itin} \times$ filin $\times 3$ inn． 21890 ．P．\＆P．25p．
270° WIDE ANGLE

1 mA METERS HW 1－6 60 mm square 28－97！MW1－8 80 mm вquare 24－97！．P．\＆P．

T．E． 40

HIGH SENSITIVITY A．C．VOLTMETER
10 meg．input 10 ranges

R．M．S． $4 \mathrm{c} / \mathrm{s} .-1 \cdot 2 \mathrm{Mc} / \mathrm{s}$.
Declbels -40 to +50 dB.
supplied brand new
complete with leads and
Instructions．
Operation

TE－65 VALVE VOLTMETER

High quality instrument with 28 ranges．D．c．volt $1 \cdot 5-1.500 V$
$1 \cdot 5-1.500 V$$\quad$ A．c．volta up to 1,000 megohms $\mathrm{up}_{\mathrm{ga}}^{\mathrm{g} / 240 \mathrm{~V} \text { a．c．operation．}}$ Complete with probe and instructions．Alt．50． P．\＆P． 30 p ．Additional

MODEL TE－200． 20,000 O．P．V．Mirror scale，over－

load protection． $0 / 5 / 25 /$ load protection． $0 / 5 / 25 /$ | $1250 / 1,000 \mathrm{~V}$ | d．c． | $0 / 10 / 60 /$ |
| :--- | :--- | :--- |
| 2000 V | a．c． | $0 / 60 \mu \mathrm{~A}$ | 250 MA ． $0 / 60 \mathrm{~K} / 6$ meg．

KODEL TE－70． 30,000 O．P．V．$\quad 0 / 3 / 15 / 60 / 300 /$
$600 / 1,200 \mathrm{~V}$ d．c． $0 / 6 / 30 /$ $600 / 1,200 \mathrm{~V}$ d．c． $0 / 6 / 30 /$
$120 / 600 / 1,200 \mathrm{~V}$ a．c． $0 /$ $30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{ma}$ a．c． $0 /$ $16 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot 6 \mathrm{M} / 16 \mathrm{meg}$ ．
25．50．1＇．\＆P．15p．
TECE PT－84．1，000
O．P．V． $0 / 10 / 50 / 250 /$ O．P．V．0／10／50／250／ $500 / 1,000 \mathrm{a}$ a．c．and \＆P． 121 p ．
 42．12f，H．V． 82.50 ．

HONOR TE，10A． $20 \mathrm{k} \Omega$／ Volt $\quad 5 / 26 / 50 / 250 / 500 /$ $2,500 \mathrm{~V}$ d．c． $10 / 50 / 100 / 500$ $1,000 \mathrm{~V}$ a．c． $0 / 50 \mu \mathrm{~A} / 2.5 \mathrm{~mA}$ 250 mA u．c． $0 / 6 \mathrm{~K} / 6 \mathrm{meg}$ ． 0 hm ．-20 to +22 dB ．
$10-0,100 \mathrm{mfl} .0-100-0 \cdot 1 \mathrm{mfd}$ ． 3.47 P．\＆P．15p．

MODEL TR－300， 30,000 oad protection $0 / 0.6 / 3 / 15$

 $60 / 300 / 1,200 \mathrm{~V}$（l．c． $0 / 6 / 30 /$$120 / 600 / 1,200 \mathrm{v}$ a．c．$\quad 0 /$
$30 \mu \mathrm{~A} / 6 \mathrm{~mA} / 60 \mathrm{~mA}$
$300 \mathrm{~mA} / 600 \mathrm{~mA} . \quad 0 / 8 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K} / \mathrm{s}$ mes $-20 t 0+63 d B$ ． 5.971, P．\＆P，15p．

$120 / 1,200 \mathrm{~V}$ a．c．
Current $0-60 \mu \mathrm{~A} / 0-12 / 0-$
-20 to +63 dB ． $24 \cdot 68!$ P．\＆P． 1 pp

HODEL TE－90．50，000	
O．P．V．Mirror scale，over－	
load protection，003／13／60／	
300／600／1，200V d．c．0／6／	
$30 / 120 / 300 / 1,200 \mathrm{~V}$ d．c．	

$0-03 / 6 / 60 / 600 \mathrm{~mA}$ ．
$6 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot 6 / 16 \mathrm{meg}$ ．-20 to +63 dB ． 87．50．P．\＆P． 15 p ．

| TE－900 20,000 ＠／VOLT |
| :--- | :--- |
| GHNT |

GHANT MOLTIMETBR Mirror acale and overload protection． 6 in full view
 $2.6 / 10 / 250 / 1,000 /$ $5,000 \mathrm{~V}$ A．c． $0 / 25 / 12 \cdot 5 / 10 / 50 / 250 / 1,000 /$ d．c． $02 \mathrm{~K} / 200 \mathrm{~K} / 20$ meg．ohm． 815 ． P．\＆P． D sp ．

VOLTMETER VT． 100

plug．in cards．
plug－in cards．
Accuracy：± 0.2
Resolution：$=1 \mathrm{mv}$ ． 1 digit
No．of digits： 3 plus fourth overrange digit． Overrange： 100%（up to 1．999）
Input impedance： 1000 Meg oh
Adjustment：Automatic zeroing，full seale
adjustment againat an internal
reference voltage．
overload：to 100 V d．c
Input：Fully tloating（ 3 yoles）．
Input power： $110 \div 230 \mathrm{~V}$ a．c． $50 / 60$ eycles． Overall size：$\overline{-\frac{s}{s}}$ in．$\times \pm 13 / 16 \mathrm{in}$ ．$\times \$ 3 / 16 \mathrm{in}$ AVAILABLE BRAND NEW AND
FULLY GUARANTEED AT APPROX． HALF PRICE

G．W．SMITH
\＆CO（RADIO）LTD．
Also see next two pages

GENI-PONDURTORS/VALVES

ALL DEVICES BRAND NEWAND FULLY GUARANTEED

HI-FI EQUIPMENT SAYE UPTO 33푼 OR MORE SEND S.A.E. FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

RECORD DECKS

B.B.R. Mini Mono \ddagger

 C129* MP6 $\mathbf{4 1 0}$610
310 MP60 T.P.D. 1 MP60 T P.D. 2 610 T.P.D. 1. 210 Package
H.T. 70 248
26.70
211.
218
510
210
218
217
222
280
211
210 H.T. 70 Package eqe -00 GOLDEMG THORENS TD 125 TD125A TD150A II TX11

$$
\ddagger \text { Mono }
$$ \ddagger Mono *Stereo Cartridge All other models less Cartridge Carriage 50p extra any model.

RECORD DECE
 PACKAGES

Decks supplied ready
Fired in plinth and
cover fitted with
cartridge.
Garrard 2025 T/C
with Sonotone
GTAHCD 813.95 $\begin{array}{ll}\text { Garrard SP25 Ill with Goldring G800 } 218.95 \\ \text { Garrard AP76 with Goldring G800 } & 80.95\end{array}$ BRR MP60 with Audio Technica 0100 AT.E5 다 $69 / 2$ with Goldring g800 827.00 Goldring GL75 with Goldring G800. . E45.50 Goldring GL75 with Goldring G800E 250.00

TE-1035 8TEREO HEADPHONE8

Low cost high

periormance ster rubber ear cups. Adjustable headband. $i_{2 \pi}$ impedance. $2 \bar{\sigma}-18,000 \mathrm{~Hz}$. Wit leark and ste.
jack plug.
ONLY
in

SINCLAIR EQUIPMENT

Project 66. Package offeīs. $\mathbf{2}^{-} \times \mathbf{Z 3 0}$ amplifier
stereo 60 pre-anlp. PZ
supply, 818.85 . Carr. 37p. $\times \mathrm{Z} \mathbf{5 0}$ anipll-
Her, atereo 60 pre-amp, PZs power supply,
200.25. Carr. 37 It p. Transformer for PZ8,
82.97: extra. Add to any of the above
pair of Q16 speakers. Project 60 FM Tuner
280.971 . Carr. 371 p .
$\begin{aligned} & \text { All ginclair products in stock. IClo/IC12 } \\ & 42.50 .2 .000\end{aligned}$
42.50. 2.000 amplifier. 285 . Carr. 37 tp .
$\begin{aligned} & 3000 \text { Amplifer } 824 \cdot 50 \text {, Carr. } 37!p \text {. Neoteric } \\ & \text { annplifier } 245 \cdot 97 \frac{1}{2} \text {. Carr. } 37!p \text {. }\end{aligned}$
LATEST CATALOGUE

Our new bth edition gives full detaile of a comprehensiverange of HI-FI EQUUIPMENT COMMUNICATIONS EQUIPMENT. FREE DISCOUNT COUPONS VALUE 50p. 272 pages, fully illustrated and detailing thousands of items at bargain prices.

TE22 SINESQUARE WAVE
AUDIO GENERATORS

TRANSISTORISED L.C.R. A,C MEASURING BRIDGE
 A new pritable bridge offering er-
cellent range and $\begin{array}{lll}\text { cellent range and } \\ \text { accuracy at } & \text { low }\end{array}$ cost. Ranges: R. $\begin{array}{ll}1 \Omega-111 & \text { meg } \Omega \\ G \quad \text { Kanges } & \pm 1 \% \text {. }\end{array}$ L. $1 \mu \mathrm{H}-\frac{1}{2} \%$ $\begin{array}{lll}\text { HENRYS } & 6 \\ \text { ges Ran- } \\ \text { ge }\end{array}$ Ranges $+2 \%$. TURNS HATIO 1:1/1000 1:11100. 6 Ranges $\pm 1 \%$. Bridge voltage at 1,000 cps. Operated from 9 volts. $100 \mu \mathrm{~A}$. Meter indication. Attractive 2 tone meta

TE-18A Trangistorised SigoslGenerator. 5 range $400 \mathrm{kHz}-30 \mathrm{mHz}$. An forpenaive instrument ates on 9 v battery. Wide easy to read acale 300 kHz modulation with instructions and leads.
zop.
 cartridge. Realy wired. 842-50. Carr. \&l. t TRAN8I8TORI8ED FM TUNER
TELETOX SAO-206 STEREO AMPLIFIER

Latest exciting release. Beautifully styled with walnut case. $6+6$ watts r.m.s.
Switehed inputs for Mag, Xtal, aux, tape. Incorporates volume, bass, treble, sliding belance, scratch flter and loudness controls, TELETON SPECIAL OFFER!

> TRANSISTOR
QUALTY

RUSIAN 22 RANGE MULTIMETER Model U437 20,000 o.p.v.
A first chass rersatile instru ment manufactured in
U.S.S.R. to the highest standards. Ranges: $2-\overline{\mathrm{v}} / 10 /$ $50 / 250 / 500 / 1000 \mathrm{~V}$ il.c., 2.b/
$10 / 50 / 250 / 500 / 100 \mathrm{~V}$ a.c. current $100 \mathrm{~mA} / 1 / 10 / 100 \mathrm{~mA}$. 1 A . Resiatance 300 ohms/3/ $30 / 300 \mathrm{k} \Omega / 3 \mathrm{M} \Omega$. Complete with batterles, test leads. instructions and sturdy steel carrying case.
OUR PRICE 25.97

TE111.
DRCADE
RESIETANGE
ATTEXDATOR
Variable range
o-111dB. Con-
mections.

balaneed T and Bridge T. Impedance 600Ω rangc $(0.1 d B \times 10)+(1 d B \times 10)$ $+10+20+30+40 \mathrm{~dB}$. Frequencs: d.c. to $200 \mathrm{kHz}(-3 \mathrm{~dB}) . \quad$ Accuracy:
$0-05 \mathrm{~dB}$.

+ indication $\mathrm{dB} \times 0.01$. Maxi-$0-05 \mathrm{~dB}$. +indication $\underset{\text { di }}{\times 0.01}$ Maxi-
mum inpat less than 4 W (50 V). Built in 600Ω load resistance with internal/external switch. Brand new 297.50 . P. \& P. 25p.

```
ROUND SCALE TYPE PENCIL
```


Completely portäble, simple to une pocket sized tester. Ranges $0 / 3 / 30 / 300 \mathrm{~V}$ a.c. and

OR-IA BOLID BTATE
COMMURICATION RECEIVER
4 Bands covering JJKHz-30MHz. FET, 4
Meter, variable BFO for SgB Meter, Variable BFO for S8B. Built In
Speaker, Bandspread, Sensitivity Control
 7in. Brand new with instructions. ese5. Carr. 371 p .

UNR-30 RECEIVER
4 Bands covering $550 \mathrm{KHz}-30 \mathrm{MHz}$. B.F.O. Built in speaker $220 / 240$ a.c. Brapd new with instructions 315.75 . Cerr 37 ID

LAFAYETTE HA-600 RECEIVER

General coverage $150-400 \mathrm{KHz}, 550 \mathrm{KHz}$ 30 MHz . FET front end, mech. Elters proder s Meter, Bandspread. AF Gain $15 \mathrm{in} \times 9$ in $\times 84 \mathrm{in} .18 \mathrm{lb}, 220 / 240 \mathrm{~V}$. c or 12 V d.c. Brand new with instructions 245. Carr. 50p.

CRYSTAL CALIBRATORS No. 10

Small portable crystal coutrolled wavemeter. Size $7^{\prime \prime} \times 71^{\prime \prime} \times 4^{\prime \prime}$. Fre-
quency range $500 \mathrm{Kc} / \mathrm{s}$. quency range $500 \mathrm{Kc} / \mathrm{s}$. $10 \mathrm{Mc} / 8$ (up to $30 \mathrm{Mc} / \mathrm{s}$
on harmonice). Calion harmonics), Cali-
brated dial. Power rebrated dial. Power re-
quirements 300 v.D.C. 1umA and 12 V.D.C. 0.3A. Excellent condition, $88.47 \frac{1}{2}$, Carr. $37 \frac{1}{1 p}$.
B.C. 22I FREQUENCY METERS latest release 195 kHz to 20 MHz . Excellent condition. Fully tested and checked and complete with calibrato
each. Cart.j0p.

SOLID STATE VARIABLEA.C.

 Compact and panel mount- ing. Ideal for control of lampe, drilis, electrical appliances, etc. Input $230 / 240 \mathrm{~V}$ a.c. Output continuoualy variable from
20 V to 230 V . Model MR2305 5A 68×46 Model
$\times 43 \mathrm{~mm}, 28.87 \frac{1}{2}$. MR2310 $10 \mathrm{~A} 90^{2-} \times 68 \times$ 60nin, e11.97t. Poatage 12 tp.

AUTO TRANSFORMERS
$0 / 115 / 230 v$. Step up or atep down. Fully shrouded.

$\begin{array}{ccc}500 \mathrm{~W} & 84-971 . & \mathrm{P} . \& \mathrm{P} .32 \mathrm{P} .32 \mathrm{p} . \\ 1,000 \mathrm{w} & 87.25 . & \mathrm{P} . \& \mathrm{P} .374 \mathrm{p}\end{array}$

POWER RHEOSTATS

High quality ceramic construction. Windings embedded in vitreous enamel. Heavy duty brush wiper. Continuous rating. Wide range ex-日tock Single bole fixing, tin, dia. bbatta. Bulk quantities available.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohms
 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or 2,500 obms 21.37 I .
"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS
YAMABISHI" VARIABLE VOLTAGE TRANSFORMER
Excellent quality. Low price Immediate delivery ALL MODRLS
IMPUT 230 VOLT8, $50 / 60$ CYCLES, OUTPUT VARIABLE 0-260 VOLT 8 pecial discounte for quantity

WOW! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Abstract

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way, Give yourself essential technical "know how"'like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s Simplified Study Method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.
You LEARN—but it's as fascinating as a hobby.
Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the springboard for a career in Radio and Electronics.

FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Dept. BI2, ALDERMASTON COURT, READING RG7 4PF

POST THIS COUPONFOR FREEBOOK

To

To B.I.E.T. Dept. B12. Aldermaston Court, Reading RG7 4PF Please send books and full information - free and without - obligation.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of Courses up to City and Guilds standards.
New Specialist Booklet
If you wish to make a career in Electronics, send for your FREE copy of "OPPORTUNITIES IN TELECOMMUNICATIONS / TV AND RADIO". This brand new booklet-just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

for fast, easy, reliable soldering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

SAVBIT ALLOY

 ALSO REDUCES COPPER BIT WEAR. Economically packed for

A RANGE OF SOLDERS IN HANDY DISPENSERS.

```
REF, ALLOY SWG
```

19A 60/40 18 18p *
Size 5
(ill- Savbit 18 18 *
Stra. Savbit 18 18p *
ustra*
ted
15 60/40 22 22p *
*Recommended Price

From Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

INTERCOMS

OUTSTANDING VALUE

 only £2.95P.\& P. 25p $\begin{gathered}\text { INC. BATTERY, } \\ \text { 65ft LEAD, etc. }\end{gathered}$

Superb quality two way transistorised intercom. Call, talk. listen. Amazingly sensitive-will amplify the quietest whisper. Hundreds of uses-baby alarm invalids, home, office, shop, workshop, playroom, etc. Absolutely complete, ready to use. One of the best intercoms, at a remarkably low price. Ideal gift!!

Also available-all complete as above with battery, leads, etc.-
3 STATION intercom (I master 2 subs) 65.55 (P. \& P. 35p)

- 4 STATION intercom (1 master 3 subs) 66.65 (P. \& P. 40p)
- TELEPHONE AMPLIFIER with suction pickup. \&2.95 (P. \& P. 20p)
- EASIPHONE two woy telephone amplifier. Just place receiver onto Easiphoneit switches on automatically-for a "no hands"' conversation. Modern styling.
yuality construction. ONLY $\quad \mathrm{E7} 55$ (P. \& P. 30 p)

PRODUCTS
-the name you can trust
SUPERB VALUE AT OUR
DISCOUNT PRICES

MIGH	PHON			STEREO SE. 1	$\begin{gathered} \text { HEADP } \\ \quad \mathrm{C4.38} \end{gathered}$	$\xrightarrow[\text { SE. } 40]{\mathrm{HONI}}$	28
C0.92	$¢ 10.25$	DM. 82	62.49	SE. 5	$\begin{array}{r}\text { - } 62.62 \\ \hline 6897\end{array}$	SE. 60 SE. 80	. $\begin{array}{r}67.57 \\ .613 .34\end{array}$
C.0.96	$\underline{12.54}$	DM. 94	67.88	SE. 28	- 49.88	SE. 100	c13.34 4
DM.16HL	66.07	DM.614	62.13	SE. 30	66.53		
DM.18HL	67.08	UP.50HL	67.49				
DM.31C	67.08	UD.52S	611.16	INTER	OMS		
DM.34C	66.07	UD.76HL	$¢ 17.18$	IN. 2	63.10	IN. 505	61405
DM. 58 HL	69.47	200 C	62.41	IN. 302	67.99	IN. 500	67.99
DM. 73	4563	300 C	62.22	IN. 404	611.38	Wi. 2	614.48

C.W.O. Please. Post, Packing and Insurance. 25p on all Eagle Products. Mail Order only at present).

DORSET ELECTRONICS (PE)
Bransgore, Christchurch, Hants BH23 8AQ

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

7 Tunable Wavebande: Medium Wave 1, Medium Wave 2, Long Wave, S.W.I, 8.W.2, B.W.3, and Trawler Band. Built-in ferrite rod aerial for Medlum and Long Waves. 4 eectlon $24 i n$. retractable chrome plated telescopic aerial for Short Waves for maximurn performance. Selectivity 8 witch. Switched earpiece socket complete with earplece for private listening. 8 tranaistors plus 3 diodes. Famous make $7 \times 4 \mathrm{in}$ speaker. Air spaced ganged tuning condenser. On/off awitch rolume control. Wave change switch and tuning control. Attractive case in rlch cheatnut ahade with gold blocking. Size $9 \times 7 \times 4$ in approx. Easy to follow instructions and diagrams make the Roamer Eight a pleasure to build. Parta price list and easy build plans 25p (FREE with parts).

Total building costs

P. \& P.

roamer seven

 mk IV7 FULLy TUNAble wave-BANDS-M.W.1, M.W. 2 L.W., 8.W.I, S.W.2, B.W. 3 and Trawler Band. Extra Medlum Trareband provjdee easier tuning of Radio
Luxembourg, etc. Built in ferrlte rod aerial for Medium and Long Waves. Retractable 4 section 24in Waver. Retractable 4 section 2 in
chrome plated telegcopic aerial for peak short Wave listening. Socket for Car Aerial. Powerful push-pull output. 7 transistors

$7 \times$ 4in P.M. gpeaker. Air spaced ganged tuning condenser. Volume/on/of control, wave change sxitches and tuning control. Attractive case with carrying bandle. Size $9 \times 7 \times 4$ in approx. Easy to tolow instructions and diagrame mase the Roamer 7 a

Total building costs
£5.98
Personal Earpiece with plug and switched socket for private llatening, 30p extra.

Post, packing and insurance $41 p$ Overseas P. \& P. 90p

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attractive black and gold case. Size $5 \frac{1}{2} \times 1 \frac{1}{2}$ 3 in. Tunable over both Medium and Long Waves Fitb extended M. 4 band ior easier tuning of dioden, supersensitive ferrite rod aerial, fine tone moving coil speaker. Easy build plans and parts price list 8 p (FREE with part B).
Earpiece with plug and switched socket for private listening. 30p extra.

IMPROVED MODEL!

roamer six

SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER
Attractive black case with red grille and black knobs and dial with spun brass inserts. Size $9 \times 5 t \times$ 2 Iin. approx. Tunable on Medium and Long Waves
two short Waves, Trawler Band plus an extra MW band for easier tuning of Luxembourg, etc. Sensitive ferrite rod aerial and latest telescopic aerial for Short Waves. Improved circuit. 8 stages - 6 tran-
gistors and 2 diodes including Micro-Alloy R.F. sistors and 2 diodes including Micro-Alloy R.F. Transistors, etc. Easy build plans and parts price list 10p (FREE with parts). Haplece 30p pagani switched socket for privat Ilstening. 30p extra.

Total building costs

and insurance 21p
Overseas P. \& P. 55p

Total building conts =8 $5-98$ Post,
and insurance 26p
Overseas P. \& P. 70p

NEW!

transeight

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case in black with red grille and black knobs and dial with spun brass inserte. Size $9 \times 51 \times 2$ iln. approx. Tunable on Medium and Long

Sensitue ferrite rod aerial tor M W and L.W. Telescopic aerial tor ghort Wave Sensitive ferrite rod aerial for M.W, and L. W, Telescopic aerial for short waven.
8 improved type transistora plus 3 diodes. Push-pull output. Battery economiser switch for extended battery life. Ample powes to drive a larger speaker. Parta price liat and easy build plane 25p (FREE with parts).

Total bullding costs
£4.48

Sarpiece with plug and awitched socket for private lintening, 30 p extra.

Post, packing and insurance 31p
Overseas P. \& P. 70p

transona five
 NOW WITH 3" SPEAKER

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE
Attractive case with red apeaker grille. Slze of \times 4 jin $\times 1$ in. 7 stages - 5 tranaistors and 2 diodes, fine tone moving coil speaker. Easy buil! plans and parts price litt 8 p (FREE with parto). Earpiece with plug and awitched nocket for private listening, 30p extra.

Total building cosis 5-5■ ${ }_{\text {Post, }}^{\text {packing }}$ and insurance 22p Overseas P. \& P. 55p

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD.
Tel. 023452367
I enclose \boldsymbol{x}................. please send items marked

ROAMER EIGHT	\square	ROAMER SEVEN	
\square			
TRANSEIGHT	\square	POCKET FIVE	\square
TRANSONA FIVE	\square	ROAMER SIX	\square

Address

* Callers side entrance Barratts Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

28 watts, r.m.s. 40 Hz to $40 \mathrm{kHz}=3 \mathrm{~dB}$

There are two stereo amplifiers - the RT100 for ceramic cartridges, the RT101 for magnetic. Both incorporate FETs (FIELD EFFECT TRANSISTORS), just like top-priced units. FETs give you more of the signal you want, and almost none of the background hiss you don't. Both units have a jack.socket to plug in headphones and there's a separate output for tape recorder. Filters (an unusual feature in this price range) and tone controls give a wide range of bass and treble adjustment which compensate for input deficiencies and domestic acoustic conditions.

Radio and TV Components (Acten) Ltd. 21d High Street, Acton, London, W36NG 323 Edgware Road, London, W.2. Mail orders 10 Acton. Terms C.W.O. Allenquiries S.A.E. Geor's not dispatched outside U.K.

XCELITE

Precision made hand tools
for the professional

69CG Radio-TV Pliers 70CG Flat Nose Pliers 7ICG Round Nose Pliers

PLIERS

72CG Chain Nose Pliers 73CG Tip Cutting Pliers
74CG Diagonal Close Cutting Pliers

A complete range of miniature lightweight pliers specially designed for holding, bending, shaping and cutting of fine wires in electronic, Radio! T.V., electrical and jewellery work.

Precision made for the expert with miniatures in mind
Cushion grip handle, coil spring openers.

32H 5" Straight Nose Junior 5* Seizer $33 \mathrm{H} 5^{\prime \prime}$ Curved Nose Junior $5^{\prime \prime}$ Seizer

42H 6* Straight Nose Seizer 43H 6" Curved Nose Seizer

Box joint construction, two position snap on lock. Precision machined from perfectly tempered stainless steel.
Holds like surgicat clamp and acts as heat sink
Straight or curved nose, in $5^{\prime \prime}$ and $6^{\prime \prime}$ sizes.
Distributed by
Special Products Distributors Limited
81 Piccadilly, London, W.I
Tel. 01-629 9556 Cables: SPECIPROD, London, W.I
Full details on request

deamen 50p BaRCAIN PACKS

All fully coded, all from well-known manufacturers and now available, while stocks last, at better than bulk-buyer's prices! Cash with order only.

THIS MONTH:
1N4148 Signal Diode
18 for $50 p$
($=1$ N914)
1N5060 1 Amp Rectifier 400 V
(=A14D) avalanche protected
7 for 50p.
2N2926 NPN Silicon Transistor 8 for 50p
(Red) hfe 55-110
2N2923 NPN Silicon Transistor 7 for 50p hfe 90-180
2N2646 versatile Unijunction 3 for $100 p$
Post and packing 10p for 1 or 2 packs; 3 packs or more post free.

Order and quantity, till sold (but we regret packs cannot be subdivided).

P.O. or eneque payable Jermyn Industries, VestryEstate, Sevenoaks, Kent.

TOURIST
 MARK 3
 CAR RADIO

ALL TRANSISTOR
Beautifully designed to blend with the interiors of all cars. Permeablity tuning and long wave loading coils ensure excellent tracking. sensitivity and selectivity on both wave bands. R F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth.
deep.
SET OF PARTS
 parts Speaker, baffleand fixing kit Speaker postagefree when E1.25 extra plus P. \& P. 25p $\quad \begin{aligned} & \text { Speaker postagefree } \\ & \text { ordered withparts }\end{aligned}$

50 WATT AMPLIFIER

 \& SPEAKER SYSTEMOutput Power: 45 wats R.M.S. (Sine wave drive). Frequency response:
$-3 d B$ points 30 Hz at 18 KHz Total distortion: less than 2% at rated output. Signal to noise ratio: better than 60 dB . Speaker Impedance: 3 , a or 15 ohms. Bass Control Range: $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble Control Inputs: 4 inputs at 5 mV . Inputs: 4 inputs at 5 mV
into 470 K . Each pair of into $470 K$ Each pair of arate volume control. 2 inputs at 200 mV into 470K
To protect the outpur valves, the incorporated fail safe circuit will enable the amplifier to be used at half power.
SPEAKERS! Size $20 \mathrm{in} \times 20 \mathrm{in} \times 10 \mathrm{in}$ incorporating 12 if heavy duty 25 watt high flux. quality loudspeaker with cast frame. Cabinets attractively finished

COMPLETE ET Plus or available separately
SYSTEM \& 0 P. \& P. Amplifier: $£ 28.50$ plus $f 1.50$ P. \& P. \& P

ELEGANT SEVEN Mk. III (350 mW Output)
7-transistor fully tunable M.W.-L.W. Supertet portable. Set of parts. Complete with all components, including ready etched and drilled printed circuit board -back printed for foolproof construscion. MAINS
$\mathbf{5 5 . 2 5}$ Plus P. \& P. 50p. Cireuit 13p
THE DORSET (600 mW Output)
7-transistor fully tunable M.W.-L.W. Superher portable. Set of parts. The latest modulated and pre-alignment techniques makes this simple to build. sizes: 12 in $\times 8$ in $\times 3$ in
65.25 Plus P. \& P. 50p. Circuit

CONTINENTAL

 4-TRACK, 3-SPEED TAPE DECKR.C. 74 tape deck. Three speeds- $7 \frac{1}{2}$ 3t and $1 \frac{1}{6}$ i.p.s. 4-track record/playback head. Plus 4-track erase head. Positive pressure pad system. Takes any tape spool up to and including 7 in. 50 V 50 . C. 74 is c. motor A heavy accurately balanced flywheel brings wow and flutter tevels do $7 \frac{1}{2}$ i.p.s. Fast rewind in both directions. accidental tape dee simpler: Just five push buttons that interlock to cut out
tape loading.
The R.C. 74 comes with an attractive moulded deck cover, which has positions for tone and volume controls. The unit is built into a rigid die-cast frame, and overall size of the whole unit is $127 \times 11 t \times 6$ in. Every single deck fully tested
before dispatch. Spools not supplied. Price complete $\& 15$. Plus 75 P P. \& P.

RSI

VALVE MAIL ORDER CO．
BLACKWOOD HALL
16a WELLFIELD ROAD，LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE
Express postage Ip per transistor，over ten post f́ree

1 N	$\sum_{0.18}$	AC1：3	$\operatorname{sp}_{0.85}$	13F17：${ }^{\text {en }}$		$\begin{aligned} & 17 \\ & 0.88 \end{aligned}$	0 Cl 3	$\ln _{0.40}$
1 N 23	0.20	AClis	0.25	BF＇181 0．38	（：JjM	0.86	OCl4	0.18
1N85	0.88	ACl87	0.30	13F184 0．25	（ i 7 T M	0.38	0C44：	0.18
1×253	0.50	ACl8m	0.80	13F185 0.25	H（1100）	0.60	OC4	0.15
1N256	0.50	AC＇17	0.30	13 F194 0.18	H3100．4	0.20	OC45M	0.18
1N645	0.25	． $\mathrm{CBY}^{\text {c }}$	0.25	BF19－ 0.16	Matiou	0.25	OC4R	0.28
1N725A	0.20	dc＇Y 1 ！	0.25	BF193 0．28	Mat101	0.30	$0 \mathrm{CJ7}$	0.60
1N914	0.08	AC＇You	0.88	BF19 0.28	MAT120	0.25	OCDs	0.60
1N400\％	0.28	． $\mathrm{CY}^{2} \mathrm{l}$	0.28	13 FSE1 0.28	Matill	0.80	OC59	0.65
180：1	0.20	ACYo	0.18	BFs98 0.88	MJEj20	0.88	Ocbi	0.60
18113	0.15	ACY2\％	0.28	BFX1： 0.28	MJE 29 ju	1.75	OC70	0.18
18130	0.18	ACY：8	0.18	BFX 130	MJE30ご	0.88	00^{-1}	0.15
18131	0.18	ACY34	0．55	BrX29 0．80	NKT108	0.35	0 O－	0.85
18203	0.28	ACY40	0.15	BFX 30 0．38	NKT1199	0.80	OCF^{3}	0.30
20240	1.98	ACY41	0.25	BFX35 0.88	NKT：2］	0.85	OC74	0.80
$2 \mathrm{G301}$	0.20	ACY4t	0.88	BFX63 0.50	NK T 213	0.25	OC75	0.25
2G30：	0.88	AD140	0.50	BFX84 0	NKTel4	0.15	0 C 70	0.85
$2 \mathrm{Cr306}$	0.80	AD149	0.80	JFX 850.40	NKTe216	0.38	0 OCT	0.40
2（6371	0.28	AD161	0.88	BFX8 00.88	NKT217	0.40	OC7\％	0.20
－C381	0.25	AD16：	0.38	BFX87 0.88	NKT218	0.40	0C79	0.88
2 CH 14	0.80	AF106	0.80	BFX88 0． 0.5	NKTels	0.88	OC81	0.25
$\because \mathrm{Cd} 17$	0.88	AF114	0.33	BFY10 1．00	NKT2：2	0.80	OC811	0.20
－N214	0.48	AFll	0.30	BFY11 1.2	NKT204	0.83	0C81M	0.20
2 N 247	0.25	AF116	0.88	BFY17 0.25	NKT2yl	0.84	OC81DM	0.18
$\because \mathrm{N} 20$	0．60	AF117	0－25	BYF18 0.25	NKT271	0.25	OC81Z	0－66
2 N 404	0.28	AFl1s	$0 \cdot 68$	BFY19 0.85	NKT2i：	0.85	OC82	0.23
2N69\％	0.18	AF119	$0-20$	BFY24． 0.45	NKT273	0.20	OC821）	0.15
2＊698	0.43	AF゙124	0．25	BFY44 1.00	NKT2i4	0.20	0 C 83	0.25
2 N 706	0．10	AFIO	0.20	BFY¢0 0.88	NKT27\％	0.25	0 C 84	0.25
2s70ti	0.18	AF1®6	0.18	BFY ${ }^{\text {bl }} 0.20$	NKT279	0.20	OC114	0.88
？心704	0.15	AFİ	0.18	BFY ${ }^{\text {Pr }}$	NKT2；8	0.25	OC12：	0．60
2x70y	0.68	AFI3！	0.30	HFY 530.18	NKT301	0.40	0 C 123	0.60
2x711	0.38	AFlis	0.48	BFY64 0.43	NKT304	0.50	OC139	0.25
－N987	0.58	AFIT！	0.48	BFY90 0．88	NKT403	0.75	OC140	0.88
－21090	0.80	AFI80	0.58	BSXי5 0.50	NKT404	0.68	OCl41	0.83
$\because \mathrm{E} 1091$	0．33	AF181	0.48	BgX 600.98	NKT678	0.30	OC169	0.20
$\because \mathrm{N} 1131$	0.30	AF18ti	0.40	BgX76 0.15	NKT713	0.25	OC170	0.25
\because N1132	0.30	AFY 19	1.18	BSY：3 0.18	NKT7T3	0.25	0 Cl 1	0.80
$\because \mathrm{N} 130:$	0.20	AFZ11	0.68	BSY－7 0.80	NKT7\％	0.88	OC200	0.40
－ 21303	0．28	AFZ1：	0.75	BSY 010	078B	0.88	$00^{2} 21$	0.60
2N1304	0.25	ASY：6	0.25	BSY95A 0－15	OAJ	0.80	OC\％0：	0.75
2 N 1305	0.25	ASY゙こ7	0.83	BSY95 0.15	OAf	0.18	OC420	0.40
－ $2130 \$$	0.25	A8Yes	0.25	BT102／500R	OAs 7	0.10	OCPO＋	0.40
－N 1307	0.25	ASY： 9	0.30	0.75	0a70	0－10	OCleis	0.75
$\because \mathrm{N} 130 \mathrm{~s}$	0.30	A8Y3i	0.25	BTY42 0.93	OATl	0.10	OC206	0.90
$\because \mathrm{N} 1309$	0.25	ASY50	0.18	BTY79／100R	0.173	0.10	OC207	0.90
－2x14：0	0.98	．lsys	0.40	0.75	OAT4	0.10	OC 460	0.80
$\because \mathrm{N} 1507$	0.28	ASY：3	0.20	HTY70\％ 400 R	0 ATO	0.10	OC470	0.80
$\because \mathrm{N}$	0.38	As\％o	0.20	1．75	0481	0.10	OCP71	0.88
$\because \mathrm{N} 1909$	2.25	ASY6：	0.25	$\begin{array}{ll}\text { HY100 } & 0.18\end{array}$	OA85	0.18	ORP12	0.60
2 N 2147	0.75	isymi	0.33	$13 Y 1: 2030$	0.486	0.15	ORP60	0.40
$\cdots \mathrm{N} 21+\mathrm{K}$	0.60	AsZ ${ }^{\text {a }}$	0.43	ВY10－ 0.80	0.490	0.10	ORPOI	0.43
2 N 2160	0.63	Asz：3	0.75	$\begin{array}{ll}\text { 3Y1－1 } & 0.20 \\ 13 Y 180 & 0.85\end{array}$	0.491	0.08	819T	0.30
－ N 2－3 18	0.30	A1F\％	0.88	13 Y 18 ¢ 0.85	OA9j	0.08	SAC40	0.25
2 N 2219	0.83	A（＊101	1.50	$15 \mathrm{Y}-13 \quad 0.25$	OA200	0.08	8FT308	0.38
2 N 20287	1.03	P（10）	0.13	$\begin{array}{ll}13 Y Z 10 & 0.40\end{array}$	OA20ㄹ	0.10	ST7！	0.38
2 N 2295	0.80	BC＇10\％	0.13	ISYZ．1 0.85	0.2210	0.25	8T7231	0.88
$\because \mathrm{N} 2369.1$	0.20	BC＇109	0.18	$\begin{array}{ll}\text { HYZI＇} & 0.80\end{array}$	0.2211	0.38	$8 \mathrm{8X} 68$	0.20
2N2613	0.88	BClis	0.25	$\begin{array}{ll}\text { HYZIL } & 0.80\end{array}$	O．AZ9\％	0.56	SX631	0.20
$\because \mathrm{N}=6+6$	0.53	13C115	0.33	ВYZ1：3 0.25	OAZ201	0.50	8X635	0.30
－N2712	0.85	BC＇111：	0.40	BYZ ${ }^{\text {B }}$	OAZ202	0.43	8×640	0.50
2N2784	0.50	belidis	0.45	$\begin{array}{ll}\text { BYZ114 } & 0.83\end{array}$	Oaze03	0.43	SX641	0.85
2N2846	2.25	HCIIN	0.38	13Y Zmatas：	O．IZ204	0.43	8XR4ㄴ	0.60
$\because \mathrm{N} 28.4 \times$	0.48	BC＇1：1	0.20	0.18	0．AZ：20	0.43	sX04．	0.75
2 N 2904	0.30	BC12．	0.80	C111 0－65	O．AZ20ri	0.43	8X640	0.75
$\cdots \mathrm{N} 290+1$	0.83	$13 \mathrm{Cl} \mathrm{S}^{\text {d }}$	0.68	crsijus 0.25	OAZ207	0.48	$\mathrm{V}^{1} \mathrm{~J} / 301^{2}$	0.50
2 N 2906	0.30	13Clem	0.65	CRS $/ 14000.48$	O．AZ20s	0.33	$\checkmark 30 / 201 \mathrm{P}$	0.88
$\because \mathrm{N} 290$	0.88	$1 \mathrm{BCO} 1+1$	0.56	C9413 2.50	OAZ209	0.83	－60／ 201	0.50
：N29：4	0.88	$\mathrm{BC} \cdot \mathrm{I} 47$	0.18	Csiols 3.13	0.42 ± 10	0.38	$\checkmark 60 / 2018$	0.38
N2923	0.18	13C14m	0.13	1 D 000 0．15	0.12311	0.33	XA101	0.10
： N 2926	0.13	13c14！	0.20	$1{ }^{1}$ D003 00.15	O．AZgre	0.40	X． 1102	0.18
N3054	0.50	HC154	0.20	OD00t 0.18 10	0.12 zz 23	0.40	X．1151	0.15
：N3055	0.75	BCISA BClion	0.20	$1{ }^{12} \mathrm{D} 0070.40$	OAZ22S	0.38	XA13：	0.15
－N370\％	0.18 0.15	BC＇ligh Bel 60	0.20	$\begin{array}{ll}\text { UD00H } & 0.38 \\ & 0.38\end{array}$	0．AZ241	0.23	XAltil	0.25
N3705	0.15	10］6n	0.63	$\begin{array}{ll}\text {（iD3 } & 0.83\end{array}$	0．4Z242	0.23	XA16\％	0.25
N3FOr	0.83	HCP16：	0.13	$\begin{array}{ll}\text {（iD }+ & 0.05 \\ \\ \text { id }\end{array}$	OAZ24	0.23	XA16\％	0.85
N3707 2×3709	0.15 0.18	HCY	0.30	$\begin{array}{ll}\text {（iDi } & 0.83 \\ \text {（iDs } & 0.95\end{array}$	OAZ24i	0	X 3101	0.48
2×3709 2×3710	0.18 0.13	BC＇I ${ }^{\text {1 }}$	0.50	$\begin{array}{ll}\text {（idy } \\ \text {（iD1：} & 0.25 \\ \text { ien } & 0.05\end{array}$	OAZ290	0.38	XB10－	0.10
－N3716	0.13 0.13	13C＇3：	0.25	$\begin{array}{ll}\text {（iD12 } & 0.06 \\ \text { CETI0：} & 0.80\end{array}$	$0 C 16$ OC16T	0.50 0.38	X 13103	0.26
－ 3814	0.85	BCY3＊	0.30	（iET103 0．88	OC19	0.88	X 8113	0.12
2N3820	0.88	BCY 38	0.40	$\begin{array}{ll}\text {（iET113 } & 0-20\end{array}$	OCO_{0}	0.98	X 13121	0.43
2 N 3823	0.75	BCY3y	0.80	GFTII ${ }_{\text {G }} 0.15$	OC2：	0.50	ZR24	0.63
－N5027	0.68	BCY40	0.50	（iET1li 0.45	0 C 23	0.80	ZSITO	0.10
2 N 5084	0.38	BCY4：	0.15	（iET1lf 0．50	OCO2	0.60	28ะ71	018
：3000	1.00	BCY－	0.20	OET1？0 0．25				0.25
28301	0.50	BCY71	0.80	$\begin{array}{lll}\text {（1ET87．} & 0.30\end{array}$	OC．	0.38	ZT－	0.25
－ 3304	0.75	BCZ10	0.35	$\begin{array}{ll}\text {（1ET875 } & 0.25\end{array}$	OC： 4	0.25	ZT43	0.25
28501	0.38	$\mathrm{BC} \mathrm{Z})$ ！	0.40	（：ET880 0	OCO_{2}	0.83	\％TX 107	0.15
：8703	0.63	130191	0.65	GET881 0．25	OC： 9	0.68	ZTX108	0.15
AA129	0.80	131123	0.83	$\begin{array}{ll}\text { CET88：} & 0.25\end{array}$	Oc30	0.40	7TX300	0.18
AAZI？	0.80	13 DLD	0.80	GET88－ 0.25	Oc3	0.50	ZTX304	0.88
AAZ13	0.13		1.68 0.25	$\begin{array}{ll}\text { GEX44 } & 0.08 \\ \text { GEX45／1 } & 0.08\end{array}$	OC36	0.83	ZTX500	0.20
AC107	0.38	BF＇17	0.50	GEX941 0.15	OCd	0.25	ZTX 03	0.80
． Cl 129	0.25	BF167	0.25	f．53M 0．25	OC4：	0.30	ZTX 531	0.80

SEMI－CONDUCTOR SET FOR

 P．E．GEMINI AMPLIFIER $£ 12.95$
SEND S．A．E．FOR LIST OF 3,000 TYPES VALVES，TUBES AND TRANSISTORS

Open daily to callers：Mon．－Sat． 9 a．m．-5 p．m． Closed Sat． 1.30 p．m．－2．30 p．m．
Terms C．W．O．only｜Tel．01－769 0199／1649

1 \ddagger W MAINS GRAMOPHONE AMPLIFIER
EZ80，ECL82，O．P．Transformer（3 obm）．Vol．／On－oft and Tone Control．Double Wound mains transformer， $2 k \times 2 \frac{2}{2} \times 2$ in separate but wired to chassis， $4 \times 21 \times$
 （Two less 10% ．）

MAINS TRANSFORMERS（ $\mathbf{2 4 0 - 2 5 0 V}$ input）

Postage in brackets
$6.3 V$ at $21 \mathrm{~A}, 40 \mathrm{p}$（ 1 jp ）
250 V at 50 mA and 6.3 V ht $11 \mathrm{~A}, 60 \mathrm{p}(20 \mathrm{p})$
22 V at $1 \mathrm{~A}, 6-3 \mathrm{~V}$ at 2 A and 250 V at $20 \mathrm{~mA}, 75 \mathrm{p}$（ 25 p ）．
Deduct 10 per cent from total bill for more than one transformer
Complcte set of parts with wiring dlagram for battery eliminator to give 90 V ．H．T． at $20-30 \mathrm{~mA}$ and 1.4 V at 125 of 250 mA （adjustable）．With undrilled aluminium tox Price tex－75 plus 200 P ．\＆ P ．

GLADSTONE RADIO

66 ELMS ROAD，ALDERSHOT，Hants
（ 2 min ．front Station and Busea）．FULL GUARANTEE．Aldershot 22240 CLOSED WEDNESDAY．S．A．E．for enquiries please．

What＇s a Poutriop？

Build yourself
a Compukit 1
minl－computer＇and learn all about the polyflop．．．and full adder，binary counter，decimal－to－ binary converter，etc Kit form，Oniy $£ 10 \cdot 50$ （p．\＆p．40p）
LIMROSE ELECTRONICS（PE）
Lymm，Cheshire．Tel．：Lymm 3019 （STD 092－575 3019）

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy．Write today for free booklet，or send $£ 4 \cdot 25$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied．
CARBIC LTD．（Dept．PE6）
54 Dundonald Road，London，S．W． 19

Send for Heathkit - and send for the best

The best in hi-fi; the best in short-wave; the best in domestic, marine and auto equipment; the best in everything electronic.

Heathkit comes direct from the world's leading suppliers of top-quality electronic equipment. You assemble your components using the unique Heathkit 'step-and-check' method and there's a team of experts ready to help and advise you on any problem. But you won't need them. Hardly anyone does!

I
 CALL AT No. 240 London Rd., Mitcham

If you live within easy reach of Mitcham or are in the area at any time do call on us. We are almost opposite Mitcham Baths. We open 9 a.m. every weekday. On Wednesdays we close 1 p.m. and all other days, including Saturdays, $5.30 \mathrm{p} . \mathrm{m}$. On Saturdays we have extra staff to deal with queries. We carry a vast stock of components, and 999 times out of a 1,000 we can immediately lay our hands on the particular item required.

JOIN OUR CREDIT ACCOUNT SERVICE

We began our Credit Account Service about 18 months ago and it has proved extremely popular. Little wonder! Our customers find it a very simple and convenient way of purchasing all their radio and electronic needs. We supply pre-paid envelopes and order forms and no matter how many orders you send us you make only one payment per month. There are several other advantages with our Credit Account Service. Please write or phone for details.

The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

and ORDER BY MAIL OR TELEPHONE

Although we are kept busy selling "over the counter" we supply even more by Mail Order. You can telephone any time of day or night, Sundays included. If you ring out of office hours a recording machine takes your message for us to deal with as soon as we open shop again. Our number is 01-648 8422. If you wish to order by post our address is in the panel at the top of the page. We deal with all orders promptly.

Post this Coupon with

WHICHEVER WAY YOU

 CHOOSE you need the Home Radio CatalogueIn its 315 pages are listed over 8,000 components, over 1,500 of them illustrated. Each copy contains 10 vouchers, each worth 5 p when used as instructed. Free Supplements are supplied regularly to keep you up-to-date. The Catalogue costs 50 p over the counter, or 70 p including postage and packing.

Cheque or P.O. for 70p

PRACTICAL
 ELECTRONICS

Editor F. E. BENNETT Assistant Editor M. A. COLWELL Editorial Assistants D. BARRINGTON G. GODBOLD M. KENWARD
Art Editor J. D. POUNTNEY Technical Illustrators J. A. HADLEY P. A. LOATES
Advertisement Manager D. W. B. TILLEARD

ON THE ROAD

THE motor car is a wonderful vehicle for electronics. Solid state technology never had a happier hunting ground. Consider that reliable easy-to-tap d.c. supply at 12 volts: just what the transistor ordered. No wonder so many interesting and useful aids for the motorist have appeared in recent times. Many owe their origin to private electronics enthusiasts, their imagination stirred to new heights during long solo drives, no doubt; or, perhaps, during enforced idling caused by holiday season snarl-ups.

The majority of such devices represent electronics in a comparatively simple form. Whether as self-sufficient gadgets or systems, or as ancillary units for coupling to standard car accessories for control purposes, their function is to aid the motorist rather than his vehicle. Useful as they are, such appendages do not represent the limit of electronics involvement in motor cars. This is far from the case. Electronics is destined to become a vital and intrinsic part of the vehicle itself.

The increasing concern over road safety and environmental matters like atmosphere pollution, will bring about more stringent regulations. In order to meet these tough requirements the car manufacturers will have no alternative but to look beyond their own industry and traditional methods. They are already fairly familiar with the possibilities of electronics in the internal combustion engine field. For example, the advantages of electronic ignition and fuel injection have long been known. It is only the initial cost that deters car manufacturers from incorporating such systems in their mass produced models.

Coming now to more life-or-death matters, car designers in the future will have little option but to incorporate more refined and sensitive control systems. Present systems largely dependent upon electromechanical and hydraulic linkages will undergo drastic change, if not entire replacement, as electronic control systems are developed. Methods of preventing wheel slide by use of electronic sensing and computing techniques to control the brake have already been perfected. This is a foretaste of the future in motoring.

This revitalizing of the traditional vehicle is all to the good, though even the magic of electronics cannot save the internal combustion engine from ultimate extinction. Indeed, how far on the road towards fully automated driving will we have journeyed before the electric powered vehicle overtakes us? Commercial interests are very reticent about the current state of development in this exciting area, but there have been some ominous (or rather, welcome) rumblings from Detroit, of late. Perhaps the long awaited motoring revolution is nearer than we think.
F.E.B.

CONSTRUCTIONAL PROIECTS

BURST-FIRE POWER CONTROLLER

TIMER WITH DIGITAL READOUT 722
SEISMOGRAPH 736
WAR GAMES COMPUTER 748
SPECIAL SERIES

RADIO ASTRONOMY

GENERAL FEATURES

MICROWAVE
SEMICONDUCTORS

NEWS AND COMMENT

EDITORIAL

BOOK REVIEWS 729
NEWS BRIEFS 746
MARKET PLACE 747
SPACEWATCH 757
READOUT 758

Our October issue will be published on

 (c) IPC Magazines Limited 1971. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2 \cdot 65$ ($£ 2 \mathrm{I} 3 \mathrm{~s}$. Od).Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

THE simple control of power has for a long time been desirable, but it was not until the introduction of thyristors, or silicon controlled rectifiers that such control became convenient in the home constructor field.

The unit to be described here is capable of controlling power levels of up to 1 kW and makes use of the "burst fire" system to achieve this. Any attempt to control elements in excess of this rating will result in damage to the controller.

Although the handling of greater power levels might seem to be desirable, it should be borne in mind that most heaters of a greater power output have the facility of switching in and out 1 kW at a time. Thus fine control of 1 kW will cover most situations; larger power handling would call for a larger unit than that described here.

In order to understand the advantages of the burst-fire system and why it is used in this controller, a brief outline of the alternative method is given. There are, of course, advantages and disadvantages in both systems, as will be seen.

PHASE SHIFT CONTROL DISADVANTAGES

The simplest form of control of power, using a thyristor, is that known as "phase shift". Fig. 1 shows a typical waveform of load current controlled in this way, where switch-on is delayed in each halfcycle, so causing the power level, averaged over a number of cycles, to be less than when no delay is included. Variation of the length of the delay varies the average power level.

Controllers based on the phase-shift principle have been described previously in this magazine. While they are quite satisfactory in enabling the power level to be controlled, there are two disadvantages.

Since the current switch-on is sudden and is repeated at the rate of 50 Hz , a large level of radio frequency is generated and careful screening and filtering are called for if interference to radio and television is to be avoided. Loads consisting of motors, such as electric drills, tend to give much lower levels of interference due to the inductance of the windings acting as a built-in filter. In general, the greater the power level being controlled, the greater level of interference generated.

Distortion of the mains supply also occurs as can be seen from Fig. I, and large scale use of phaseshift control at high power levels-say greater than a few hundred watts-can give rise to difficulties. The Electrical Supply Authorities accordingly discourage the use of phase-shift control for space heaters.

BURST FIRE COMPARED

The burst-fire system causes very little or no interference, even without filtering, and no distortion of the supply voltage occurs. This is because complete half-cycles of current are permitted to flow to the load in controllable trains as in Fig. 2. Alteration of the ratio of "on" time to "off" time, while still maintaining complete half-cycles in the power supplied to the load, varies the average output power.

Fig. I (left). Phase shift control of thyristor load current.
Power supplied can be varied by altering switch-on point
Fig. 2 (right). Current half cycles supplied to load with burst fire control. Note that switch-on occurs at zero point

CHOICE OF PULSE PERIODS

The actual lengths of time employed for "on" and "off" require choosing with care. Both periods should not be too short, for if, for example, the current period was to consist of two half-cycles, then only a slight change in component values, due to load or temperature changes, could alter this to either one or three half-cycles. This represents a large percentage change and smooth stable control would be impossible.

Conversely, too long a period of time in either the "on" or "off" mode would permit a heater element to alternately cool down and heat up. Continuous temperature cycling. of this kind might give rise to a shorter life for the element. In any case, it is easily avoided, for with correct timing, the thermal inertia of the element overcomes this.

The unit described here has been arranged to have its output pulsed on and off once per second, that is "on" time plus "off" time is equal to about 1 second. As the ratio of "on" and "off" is varied, to effect a change in average power supplied, this time of 1 second remains virtually constant, due to the circuit configuration employed.

Control of power from 10 per cent to 90 per cent of full is possible; a by-pass switch (which may be omitted if desired) enables full power to be supplied when required.

APPLICATIONS FOR THE BURST FIRE CONTROLLER

From the foregoing it will readily be seen that while the Burst Fire Controller is eminently suitable for control of heaters-such as electric fires, aquaria heaters and photographic processing bath heaters-it is not suitable for the dimming of lights, nor the slowing of motor speeds.

However, as was noted earlier, phase-shift control of electric motors is appropriate; the self suppression of interference in motors and the generally lower power levels present in lamp circuits avoid the difficulties mentioned in that system.

Uses for the Burst Fire Controller involving lamps is in those cases where flashing is required. Christmas tree and similar displays are examples; perhaps a cycling period of about 5 to 10 seconds would be more suitable and possible modifications will be given later.

Having thus outlined the need for burst fire control, we can now turn to practical details.

Fig. 3. Block diagram of controller

BLOCK DIAGRAM

In Fig. 3 is given the block diagram of the unit. Here the astable multivibrator has an almost constant frequency, but its on-off ratio can be altered. The output of the multivibrator, together with information from the zero crossing detector, is fed to the and gate, the output of which turns on the thyristor, and so applies power to the load.

The incorporation of the and gate in this way ensures that switch-on of the thyristor occurs only at the start of each mains half-cycle, so causing no high frequency radiation.

CIRCUIT ACTION

Full circuit details are given in Fig. 4. In the circuit diagram, transistors TR2 and TR3 form the astable multivibrator, which has two points of interest.

Potentiometer VR1 enables the on-off ratio of the multivibrator to be changed but with a constant repetition rate. This is because while varying amounts of resistance can be included between each base and the positive supply rail, the total amount of such resistance is constant, one base circuit having more resistance included as the other has less.

The inclusion of the diode D7 and resistor R9 to supply rail, isolates the timing capacitor C6 from the collector of TR3 so allowing the voltage at that collector to rise sharply when the transistor ceases to conduct. Consequently, a good square wave is available for passing to the AND gate comprising D8, D9 and R11.

ZERO CROSSING.DETECTOR

The second input to the and gate is derived from the zero crossing detector circuitry.
Inspection of the circuit will show that the upper side of C3 has D3 connected to negative rail; similarly, C4 has D1 connected to the positive rail. This means that the waveforms at the upper sides of C3 and C4 are 90 degrees out of phase with the waveform across D6, this acting as a positive clamp to the negative line and providing positive half-cycles, as shown in Fig. 5.

These provide positive switching of TR1, so giving positive signals, coinciding with zero mains crossing, at the emitter of TR1.

The capacitors C3 and C4 are connected to the mains, and so must withstand full mains potential. For this reason, 750 volts should be considered the minimum working voltage for these components, with 1,000 volt working desirable.

GATE CONTROL

The AND gate comprising D8 and D9 controls the switching of TR4. Suppose TR3, in one of its

Fig. 4. Circuit diagram of controller

Fig. 5. Trains of voltage half-cycles that are applied to the zero crossing detector via the input capacitors

Fig. 6 (a). Unidirectional half cycles at thyristor load, (b) Rectifled and much reduced voltages that appear at TRI base. These are 90 degrees out of phase with the load voltages, (c) Voltage waveshape at TR3 collector
oscillations, is switched off, then the collector voltage goes positive as in Fig. 6c. D8 is reverse biased and does not conduct.

As stated, a train of positive voltages is being continually applied to TRI base as in Fig. 6b. At zero volts TRI does not conduct so that D9 is forward biased and the voltage that appears at TR4 base is insufficient to turn it on. With the base voltage at TR1 increasing to a maximum this transistor is switched on and D9 is reverse biased.

With both diodes not conducting R11 provides a direct feed to TR4 base and this transistor is switched on, so gating the thyristor at the zero crossing point of the bridge rectifier supply as in Fig. 6a. When TR 3 turns on D8 conducts, and TR4 turns off and the applied burst voltage to the load is terminated.

POWER SUPPLY

A low voltage d.c. supply is required to run the control circuits and this is most conveniently done by means of the diode bridge, D1-D4, followed by a resistive dropper and Zener regulator, with capacitive smoothing.

The thyristor employed to switch power to the load can deal only with direct current so it is logical to uprate the current capacity of the bridge rectifier and use it to rectify the a.c. supply at each halfcycle, and so feed the thyristor.

It follows that unidirectional current flows in the load. This is no disadvantage with heaters and the like, but it positively rules out any load involving a transformer.

Heaters are the most likely load for this controller, however, and they function just as well on d.c. as on a.c.

Fig. 7. Assembly and wiring layout of control board

beware of high voltages

Practical construction raises some important safety points and it would be as well to mention them first.

All parts of the circuitry are at high voltage, due to direct connection to the mains and under no circumstances should any part be handled directly when live. Disconnect the unit from the mains supply by un-plugging it when making any adjustments or modifications to it.

Since most oscilloscopes are grounded via mains earth at one input terminal, it is essential that any waveform inspection is made through a $1: 1$ isolating transformer. Any direct oscilloscope connections will certainly result in considerable damage to the controller circuitry.

Where control of an electric fire is intended, avoid low mark-space ratio settings of VR1, since short period bursts of power are not sufficient to make a IkW element glow. This could be dangerous to children with inquisitive fingers who might think the fire is off.

For insulation, the piece of Veroboard carrying most of the components in Fig. 7 is secured by means of 4B.A. nylon screws and nuts, with nylon nuts used as insulated spacers. The heat sinks themselves are earthed, although the components they carry are of course at high potential, with the appropriate insulation.

The need for care, when the cover of the box is removed and the unit is connected to the mains, cannot be too strongly emphasised. Of course, in normal use, no danger should arise.

A strong die-cast box is used to house the controller, and this should be earthed. Such boxes are readily available, easy to drill and, rather important in this case, provide good protection.

COMPONENTS . . .

Resistors			
RI	$15 \mathrm{k} \Omega$	6 W wire wound	$R 7$
R2	390Ω	$\frac{1}{2}$ watt	R8
R3	$68 \mathrm{k} \Omega$	$47 \mathrm{k} \Omega$	
R4	$2 \cdot 2 \mathrm{k} \Omega$	$R 9$	$15 \mathrm{k} \Omega$
R5	$2 \cdot 2 \mathrm{k} \Omega$	R10	$10 \mathrm{k} \Omega$
R6 $10 \mathrm{k} \Omega$	RII	$10 \mathrm{k} \Omega$	
R		R12	120Ω

All $10 \% \frac{1}{4}$ watt except where otherwise stated

Potentiometers

VRI $250 \mathrm{k} \Omega$ carbon linear

Capacitors

CI $40 \mu \mathrm{~F}$ elect. 16 V
C2 $47 \mu \mathrm{~F}$ elect. 6 V
C3, C4 $\quad 1000 \mathrm{pF} \quad 750 \mathrm{~V}$ (2 off)
C5, C6 $2 \cdot 2 \mu \mathrm{~F}$ elect. 6 V (2 off)
Transistors
TRI-TR4 BCI07 (4 off)
Diodes
DI-D4 BYZ12 (4 off)
D6-D9 IN914 (4 off)
D5 5.6 V 400 mW Zener
Thyristor
SCRI BTY79-400R

Switch

SI D.P.D.T. 5A contact rating

Miscellaneous

LPI-Mains neon, heat sinks and insulating mica for rectifiers, nylon screws and nuts (4 B.A.). Eight way insulated tag strip, 13A mains socket, Die-cast box $7 \frac{1}{2}$ in $\times 4 \frac{3}{4} \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}$.

A high degree of polish can be imparted to the box by rubbing with successively finer grades of emery paper, followed by toothpaste (in lieu of jewellers' rouge) and then metal polish. Alternatively, a painted finish, obtained by making use of one of the many spray aerosols on the market, enables a choice of colour to be made.

MOUNTING THE RECTIFIERS

The four power rectifiers, D1 to D4, and the thyristor are mounted on heat sinks as shown in the wiring diagram of Fig. 8.

These sinks are earthed, and this can be done because mica washers, with insulating bushes, are employed on the diode and thyristor mounting studs as in Fig. 9.

Each of the sinks is painted matt black, to assist with heat dissipation, as are the inside surfaces of
the box. A light smear of silicon grease, if available, should be applied to the surfaces of the sinks that joint with the box.

When fitting the washers, ensure that no burrs are present that could puncture the mica insulation. After fixing, check that the mica washers are still insulating, with an ohmmeter.

FULL POWER SWITCHING

A mains voltage neon lamp across the load indicates when power is actually being applied to it, while the double pole change-over switch S1 enables full power to be applied direct to the load when required.

This switch must be capable of handling the full load current, and for this reason has a rating of 5 A or greater.

When wiring up, remember that all leads passing load current can be called upon to carry 4 A , so use

wire of an appropriate rating. Leads such as those running to the Veroboard can be of a lighter gauge.

When it has been ensured that all components and connections have been made correctly, power can be applied.

CHECK OUT

A voltmeter should be used to monitor the d.c. voltages present-those given in Fig. 4 are with respect to the thyristor cathode. At the collector of TR3 the voltage will change as the multivibrator oscillates, it depending on the setting of VR1.

A 100 watt lamp is a good load to check the operation of the unit; it will easily be seen that variation of the setting of VR1 results in a short flash at intervals of about one per second at one end of the range, with almost continuous light, punctuated by short term extinguishing of the lamp, at the other end. Settings of VRI in between give smooth control of average power.

After a few minutes, withdraw the plug of the unit from the mains, and test the running temperature of the diodes and thyristor. With the 100 watt load suggested, they should not be in any way warm to the touch.

At this stage, it would be as well to ensure that the zero crossing circuits and and gate are working correctly. To do this, disconnect one end of C3. The lamp should continue to flash, but at reduced brilliance. Disconnection of C 4 also will give no output at all.

The explanation for this is that with C3 removed, only alternate half-cycles of the mains can be switched through to the load. Removal of both C3 and C4 means that no pulses are fed to TR1 and, with the AND gate working correctly, the output of the multivibrator is unable to switch on the thyristor.

NO INTERFERENCE

Correct functioning of this part of the circuit is essential if no interference is to be caused, for if the thyristor could apply voltage to the load starting at

any time but zero crossing, the resultant sudden flow of a large current would generate considerable r.f. energy.

Switch off of load current at zero crossing is automatic, for the current through the thyristor falls to zero at the end of each half-cycle.

With C3 and C4 replaced and a larger load connected, such as a 1 kW fire, there will be a warming of the heat sinks and the box at the higher power settings. This is quite in order. It should be borne in mind that about 30 watts is to be dissipated at the highest setting, and in case this seems excessive, remember that it is only 3 per cent of the total power controlled.

At lower power settings, only slight warming should occur.

Depending on the relative values of the capacitors employed for C5 and C6-remember that electrolytics have a wide tolerance-it will be found that average power levels of from 10 per cent to 90 per cent of full power can be delivered.

SUBSTITUTE COMPONENTS

The question of substitute components will no doubt arise in connection with the Burst Fire Controller.

The transistors specified are $\mathrm{BC107}$, but in fact unmarked npn transistors, quoted as being "similar to $\mathrm{BC107}$ ', worked well, provided those found to be leaky or of low gain were not used.

As for the diodes D6 to D9, germanium or silicon devices can be used, although D8 and D9 should be of a similar type.

The thyristor employed in the prototype was a Mullard BTY79-400R; a BT102-500R also functioned satisfactorily. Unmarked thyristors, of a sufficiently high current rating may require more gate current than this circuit can generate and consequently may not prove to be suitable.

The power diodes are type BYZ12, with cathode stud. Alternatives, provided that they are at least of 400 volt 4 A rating, but preferably of a somewhat higher current carrying capability, can be employed.

FLASHING DISPLAYS

As already described, the repetition rate is about one burst per second. An increase in the value of C5 and C6 to say, $4.7 / \mu \mathrm{F}$, or $6 \cdot 8_{\mu} \mathrm{F}$ will slow down the rate of flashing to a suitable rate, while unequal values of these capacitors will enable the relative lengths of "on" and "off" time to be varied over a very wide range, particularly useful for lamp fashing displays.

Should the use of the Burst Fire Controller be confined to such uses, with upper power limits of, say, 200 watts, then some economies in the construction can be made. A 3A thyristor, on a smaller heat sink, and 1 A wire ended rectifiers should enable the unit to be constructed in a smaller die-cast box, so making a very compact unit.

Apart from the obvious use of controlling room heaters, constructors may find the Controller useful to run a soldering iron, when on stand-by, at a reduced temperature, with switching to full power for actual soldering. These will increase the life of the iron bit. Other uses will doubtless occur to the home experimenter.

Micranatue semiconductors

By M. FLETCHER (mulord lus)

Microwave frequencies occupy that part of the spectrum where the circuitry used is comparable in size to the wavelength. In practice this usually means frequencies from 1 GHz to 100 GHz or possibly higher. Originally exploited for radar at the beginning of World War II, microwaves now have a multitude of applications.

The wide bandwidths possible are utilised in communications, both overland and by satellite. Microwaves form a valuable research tool for performing various physical measurements and the use of high power microwaves is now being applied to cooking.

Until comparatively recent times microwave electronics has been largely the domain of thermionic devices. Within the last decade however a host of microwave semiconductor components have become available. Many of these, because of their simplicity and low power consumption compared to thermionic devices, are stimulating new applications for microwaves not previously considered practical.

POINT CONTACT

In the early development work on radar principles, a sensitive detector was required for the receiver to respond to the high frequencies being used. The
technique adopted was to use a point contact diode either as a detector or as a mixer in a superhet receiver.
The diodes used were really a refined form of the simple cat's whisker semiconductor rectifier used in early radio receivers. The form of construction is shown in Fig. 1. The noise figures obtained were poor by modern standards but sufficed for the purpose. No basic change in technology took place for many years although a steady improvement in materials and techniques brought about improvements in noise performance (Fig. 2).

Although still widely used today the point contact diode remained the only semiconductor element available to microwave engineers for nearly two decades. In the early 1960s, however, the gathering pace of semiconductor technology began to have application in the microwave area. One of the first of these devices was the variable capacitance diode or varactor.

VARACTOR DIODES

The varactor diode depends on the phenomenon of capacitance change under varying reverse bias due to the variation in the width of the depletion region in a $p n$ junction. See Fig. 3.

Fig. I. Construction of a modern point contact mixer diode

Fig. 2. Improvement in the noise figures of mixer diodes

The capacitance voltage relationship is $\mathrm{C} \propto \mathrm{V}^{-\mathrm{n}}$ The value of n depends on the impurity profiles in the $p n$ junction. It is typically 0.5 (as shown in Fig. 3) but the important point is that the relationship is non-linear.

The junction capacitance of a microwave varactor is normally specified at $V=6 \mathrm{~V}$ and might be from $0 \cdot 2 \mathrm{pF}$ to 20 pF , depending on the application. Various methods are used for fabricating pn junction varactors, two important ones being shown in Fig. 4.

The diodes are usually made with silicon although gallium arsenide is used for some special applications. The manufacturing problem is to define the required area of diffused $p n$ junction since this affects the capacitance value.
In the case of the mesa diode this is done by etching away the unwanted area. In the case of the planar diode areas are defined by making holes in the oxide window of required size prior to diffusion. The holes are made by photolithography and the whole process is similar to that used for making planar transistors.

The advantage with planar construction is that a large number of diodes may be fabricated with one series of operations. When the varactor chip is made it must be mounted in an envelope suitable for use at microwave frequencies.

The varactor diode has numerous applications, not all of them confined to microwaves. Clearly it may be used as a circuit tuning element which is voltage controlled. In this respect it is used for tuning microwave oscillators, T.V. tuners, automatic frequency control systems and so on.

The other applications of the varactor depend on the fact that it is a non-linear circuit element whose response to a large signal differs from that of a small one. The change of impedance at high signal levels may be applied to limiter type circuits.

Under conditions of high signal level the varactor will generate harmonics. If resonant circuits are coupled, tuned to the harmonic frequencies, substantial amounts of power may be extracted at the higher frequency. Using the second or third harmonic, a chain of varactor multipliers may be built up capable of giving powers in the order of $1-2$ watts at 8 GHz (see Fig. 5).

Of course, losses are present in this system both in the circuits and the varactors and a great deal more power must be supplied at the lower frequencies from, say, power transistors. However it is a useful technique for generating power with solid state devices and is widely used in communications transmitters. Obtainable output powers are shown in Fig. 6.

SCHOTTKY BARRIER DIODES

Another new type of microwave diode to appear in recent years is the Schottky barrier diode. Basically a Schottky barrier is a junction diode with the junction formed between the semiconductor and a metal contact rather than between dissimilar semiconductor materials, as in the case of an ordinary $p n$ diode.

The construction of a Schottky diode is shown in Fig. 7. The manufacturing processes used are very similar to those for planar diodes and many of the same advantages accrue, for example the uniformity arising from making a large number of diodes with a single process.

Fig. 3. Relationship of capacitance with voltage $C \propto V^{-n}$

Fig. 4. Construction of (left) Mesa and (right) planar pn diodes. The chips are typically $0.25 \mathrm{~mm} \times 0.25 \mathrm{~mm}$

Fig. 5. Chain of varactor doublers producing 1.5 W at 8GHz

Fig. 6. Output power obtainable from vacactor chains

Fig. 7. Construction of Schottky barrier diode. The metal junction may be as small as 0.01 mm across

The Schottky diode has the advantage that minority carrier storage effects (present in normal pn junction diodes) cannot take place. These limit the switching speed and hence rectification efficiency and are the main reason why $p n$ diodes are not suitable for detection or mixing of microwave frequencies.

Thus Schottky diodes are finding application as microwave mixer diodes and have noise figures equal to the best point contact diodes. They are also

Fig. 8. Voltage/current characteristic of the Schottky barrier diode (dotted) compared with that of a point contact diode

Fig. 9. Variable resistance characteristic of a pin diode

Fig. 10. Construction of a Gunn diode

Fig. II. Current/time waveform in a Gunn diode
mechanically more robust and have several other advantages so that in time they are likely to displace the long standing point contact microwave diode. The absence of minority carrier storage also makes the Schottky diode useful in high speed switching circuitry. The d.c. characteristics of silicon point contact and Schottky diodes are compared in Fig. 8.

THE PIN DIODE

Another new and very useful device is the pin diode. These consist of a $p n$ silicon junction with a layer of intrinsic or high sensitivity silicon between the p and n regions. When forward biased the pin diode behaves as a resistance from d.c. to microwave frequences. The value of the resistance depends on the forward current (see Fig. 9). Under reverse bias the resistance is very high.

Thus the pin diode may be used as an electrically variable resistance or attenuator. It uses at microwave frequencies are for switching and modulating microwave signals as well as an electrically variable attenuator. It can perform switching in a few nanoseconds and handle peak powers of hundreds of watts.

GUNN DIODE

The Gunn diode is one of the most important forms of a new family of microwave semiconductors which are used for directly generating microwave power from d.c. In view of their simplicity of operation and simple power supply requirements, Gunn diodes present an attractive alternative to the klystron valve.

The Gunn diode requires a power supply of a few volts d.c. which can be obtained from a battery as opposed to the reflex klystron which requires (typically) -150 V d.c. for the reflector, +300 V for the resonator, and 6.3 V for the heater. At present Gunn diodes are rather expensive but already a Gunn diode transmitter with its battery can cost less than a klystron with its special power supply. Gunn diodes are available which can give up to 100 mW of output power.

Gunn diodes are already being used in "miniradar" systems for small boats, in burglar alarms, for counting, for measuring the speed of road traffic, and for many other applications where small size, simplicity of design and portability are important. Although simple in operation the mechanism of the Gunn diode requires some explanation.

The device is named after J. B. Gunn who discovered the phenomenon now called the "Gunn Effect" at the Watson Research Centre of I.B.M. in 1963.

GUNN DIODE CONSTRUCTION

Gunn diodes contain a tiny wafer of n-type gallium arsenide of thickness about $100 \mu \mathrm{~m}$ mounted in a standard microwave diode encapsulation. The faces of the wafer constitute the two electrodes of the device, Fig. 10.

The wafer consists of a thin active layer of n-type gallium arsenide grown on a low resistivity substrate of the same material. The substrate is bonded to the anode terminal of the encapsulation and the other face of the wafer has an evaporated cathode contact connected by a bonded gold wire.

The Gunn diode has two terminals called the cathode and the anode. However, it is misleading to

the
HY40
for perfection
in stereo

Output Power: British rating, 40 watts peak, 20 watts RMS continuous.

Load Impedance: 8-16 ohms
Input Impedance: $22 \mathrm{~K} \Omega$ at 1 KHz .
Voltage Gain: at $1 \mathrm{k}: \mathrm{Hz} 30 \mathrm{~dB}$.
Frequency Response: 5 Hz to $60 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
Total Distortion: less than 1% (typical 0 : 1%) at all output powers.
Supply Voltage: 45 or ± 22.5 volts.
Price: including comprehensive manual and P.C. board, Mono £398. Stereo £7.96. All post free.

Twc HY40's each with five inexpensive extra components require only the adoition of a simple power supply and tone network to produce a Hi-Fil stereo amplifier of excellent quality for modest cost.
The FREE MANUAL supplied with each HY40 gives clear "easy-build" instructions for a suitable power supply and lone retwork incorporating Volume, Bass, Treble and Balange controls, together with inputs for Ceramic and Magnetic Pick-ups, Tape, Tuner and Auxiliary Functions. Internally the Hy40 is based on convertional and proven circuif techniques deqeloped over recent years and will prove iceal not cunly for Hi-Fi but also for public address, organs, groups, etc.

THIS MONTH'S NEW BARGAINS T03 Heet Sink. Suitable for most power tran sistors OC 36 , etc. This is aluminlum. anodised bleck for naximum heat diasipation. Supplited Price 10 p esch or 10 for 80 p . Size approx. if x

12 Volt 500 M.A. Mains Transformers. Miniatire type now available, price 56 peach or 10 for 85 . 8 Core Fleq, New Colours. (Brown for live, blue
for neutrai, yellow/green for earth, This is for neutrai, yellow/green for earth,) This is
completely p.i.c. covered and ribbed, virtually completely p.i.c. covered and ribbed, virtually
non-kinkable. Suitable for washing machine9 (without heaters) and all portable tools, laut mowers, etc. Conductor size $\because 3 / 36$. 41 per dozen jarda or 810 per 1005 d coil.
MOTOR by A.E.I. $1 / 20 \mathrm{hp}, 1,275$ r.p.ni. Self starting for nornal a.e. niaina, well made enclosed notor With standard $3 / 16 \mathrm{in}$ dia. shaft lin long. Suitable for light power operation. Cont inuous rating. $\mathbf{2 1} 50$ plus 30 p post.
Instrament Motor by Evershed. Hyateresis nutor -makers type No. FEXUJ-CG30-this is a capacitor start motor for 110 V a.c. working
double endel whaft $-\$ 8.50$ plux 20 post and insurance.

Cot and Prepared 8 Core Laads. Oyda long, p,s,c covered and ribbed, virtually non-kinkable $23 / 36$ conductors. Ohd colour schenie, 8 g each, 10 fo
70 p . New colour scheme 15 p each or 10 for K 1.35 .
Feartag Aid Amplifiers ($\mathrm{F} x$ behind ear deaf aids). 3 transistors on tiny P.C. boarld with volume Oxo cube. 21.75 or with sub-niniature niterophone and L.S. attached 83.50 .
Tokally Encloned Maing Tranatormers with
Primary for normal $230 / 240 \quad 00 \mathrm{~Hz}$ mains and Primary for normal $230 / 240 \quad 50 \mathrm{~Hz}$ mains and This is a very well wade transformer totally
 terminations all on botton, 23.50 each plus 65 J post.
8 AMP Variacs. $0-260 \mathrm{v}$-panel mounting type-ex-unused cquipment. fully glaranteed. 210 each. Carriage
Waler 8witches. Standard size (1: wafer) built to Post Office spec. good contact and generally very reliable. 9 pole 3 -was on 3 wafers, $45 p-$
10 for 84 . titto $\boldsymbol{2}$ pole 3 -war, 20 p- 10 for 81.80 . P.C. Edge Connector. 18 contact switch with ${ }^{\prime}$ mountinglearthing lugs- 80 p each, 10 for 82.70 Pointer Enobs. Bulgin brass insert type ref. No. grub screw fixing, 5 p fach- 10 for 45 p .
Jack-soclat Bulgin. Catalogue No. J14. This is a utandard size panel mounting jack, with two recommended price 41 p . Our price 80 p or 10 for $\mathbf{4 8} \mathbf{8} 70$.
Minithore Wafer 8witch, 1 Pole 8-Way. This bas a hort spindle and is therefore suitable only fo mounting through a metal panel. Price 18p or 24-Way Ro
double Rotetery Switch. single pole, $81 \cdot 25$; Double pole, Double Throw Toggle 8witch. suitable for maine voltage and up to 10 A . 15p or 10 for 21 -85.
Pre-Recorded Tapes. Very special Ofter. Regular apeed (3] i.p.a.) Mono tape recordings of popular long playing records. Each tape plays for approx mately 10 minutes per track. These are on sin long tape for background music. We are offering hese at leas then t of the reguler price. Clanaical Recordinga Offer 30 reco popular pieces,"Pomp and Circunnatance Marchea" "Nutcracker Sutte" and othera, all by famous composers. Total of 32 different recordings (giving a plaring time of approx. 16 houra). Price \&EO.
Populer Recordinga Ofler. 36 recordings of popular music by Frank sinatra, Dean Martin, time of approx. 18 hours). Price 2 get.
Ministore 8witeh. 1 pole 6 was-Exunused equipment, 6 p each, 10 for 54 p . model but for 24 V operation alao these are new ex-factory stock. not returned export. Lenw cartridge, es each plus 50 p post and insurance. Waterprool Floodiampa. Male by G.E.C. th ake up to 500 W lamp-ideal for garclen lighting ctc. Price 22 each plus 6.jp carriage.

CAR ELECTRIC PLUG

Fits in place of cigarette lighter. Geful method for making a quick connection into the car electrical $858 t$
10 for $28-42$.
ROCKER SWITCH
13A self-fxing into an oblong hole, ately $\operatorname{lin} x$ in op each, 10 for 54 p .

MAINS RELAY BARGAIN

Special this month are sulue single double and treble pole changeover | relays, contacts rated at 10 A . |
| :--- |
| Operating coil wound for |
| 40 V | a.c. Good British make Cnused Size approx. 1 íinxlin. Open cunstruction. $\begin{array}{lll}\text { single pole } & 20 p \text { each } & 10 \text { for } \\ \text { Treble pole } & 40 p \text { each } & 10 \text { for } 28.60\end{array}$

HORSTMANN "TIME AND SET" SWITCH
(A loA \&witch) Just the thing if you want to come home to a warm house without it costing you a fortune. You can delay the swtch on time of your electric fires, etc., up to 14 hours from setting time or you can use the switch to give processing. Regular price probably around \&.5. Special anip price $81 \cdot 50$, p. \& ins, 23 p .

OUT OF SEASON BARGAIN

TANGENTIAL HEATERS

nce again we are able to make a special bargai urer of these very popular heating units. Tangential heaters although brought out a few nothing has yet been made whlch could be called an improvement on them. gential unit is still the only ane used in good quality heaters made by Hoover, G.E.C. and all the famous nanes. The unit comprises quiet running a.c. Induction motor with special bear.
ings, the tangential impeller and a 2 sectlon heater element which allows awitching half and full heat in the case of the 2 kW and one-third-twothirds and full heat in the case of the 3 kW . These heaters are also fitted with a safety cutout to cut the heaters should the impelier stop or the air flow be impeded. They are free standing and need only the simpleat of cases, even a woolen cabinet is sultable or the plinth of the kitchen last year so order early. $200 / 240 \mathrm{~kW}$ model 28.50 . 20010403 kW mers 53.50. Control switch hesters only 25 p or two-heat. cold-blow and off 35 p . Postage and insurance 33 p on heaters.

CAPACITOR DISCHARGE CAR IGNITION
Thls system which has proved to be amazingly efficient and reliable was first described in the Wireless World about a year
ago. We. can supply kit of parts for ago. We can supply kit of parts for
improved and even nore effieient version, price $24 \cdot 95+30 \mathrm{p}$ post. When ordering

Hease atate whether fur positive or negative systeme.

STANDARD WAFER SWITCHES

Standard size 1; wafer-silver-plated j-amp contact
standard $1^{\prime \prime}$ spindle 2^{*} long-with locking washer and nut

No. of	$\underline{2}$	3	4	J	6	8	9	10	12
Poles	way	way	way	wray	wry	way	way	way	way
1 pole	40p	40p	40p	40 p	40 p	409	40p	40 p	40p
\because polea	40p	40p	40p	40 p	40p	40p	40\%	70p	70p
3 poles	40p	40p	40p	40 p	70p	70p	70p	95p	95p
4 poles	40p	40p	40p	70 p	70p	70p	70 p	81.80	21.20
5 poles	40p	40p	70p	70p	95p	95p.	95p	81.45	11.45
3 poles	40p	70 p	70p	70p	95p	95p*	95p	81.70	21.70
7 poles	70 p	70p	70p	95 p	21.20	21-20	81.20	\$1.95	\$1.95
8 pules	700	70p	70 p	95p	81.20	11.20	11.20	82-20	22.20
9 poles	70p	70p	95p	95p	21.45	21.45	21.45	28.45	82.45
10 poles	70p	70p	95p	\$1-20	21-45	21.45	11-45	22.70	28.70
11 poles	70p	95p	95	81.20	21.70	21.70	81.70	E2-95	82.85
112 poles	70 p	95p	95p	21.20	11.70	81.70	81.70	28.80	88.80

Precision maxie with dlecast indexing mechanism
Full length in spindle 5 a and silver plated water switches. Prices obviously higher, For
 40 p read 60 p , for 70 p read 21 , for 95 p read $21 \cdot 40$, for $£ 1 \cdot 20$ read $21 \cdot 80$, for \&1.45 read $22 \cdot 20$. Note also 2 way types arallable up to 36 poles, 3 way 30 poles, 4 way 24 poles, 5 way 19 poles, but 10 and 12 way only available up to 6 poles.

3 STAGE PERMEABILITY TUNER

This Tuner is a preciaion instrument made for the famous Radionobile Car Radio. It is a medium wave tuner (but set of
 alue of 470 kHz . Extremely compact (size only $2 \frac{3}{3} \times 2 \times 1 \mathrm{in}$ Thick) with reduction gear tor tine tuning. With clrcult of front end suitable for car radto or as a general purpose tuner for use
with Amplifler. 65p.

ELECTRIC CLOCK WITH 25 AMP SWITCH Made by Smith's, these units are as fitted to many top quality cookers to control the oven. The clock is mains driven and dials enable switch on and off times to be accurately aet. Ideal for uwitching on tape recorders. Offered at only a fractlon of he regular price-new and unused only $52-50$. less than the
value of the clock alone-post and inaurance $\mathbf{1 5 p}$.

DISTRIBUTION PANELS

Just what you need for work bench or lab.
$4 \times 13 \mathrm{~A}$ sockets in metal box to take standard 13.A fused plugs and onfoft awitch with neon warning light. Supplied complete with 7 t of heavy warning light. supplied complete with 7ft of heary cable. Wired up ready tu Hu9 $23 \mathrm{p} \mathbf{P}$. \& I.

MAINS OPERATED SOLENOIOS

nodel 772-small but power ful in pull-approx. siz畳odel $400 / 1$ zin pull. Size
 $3 x$ 2 $x \times \frac{1}{2}$ in $81-80$ plus 20 p post and ins.

XEE I/cs, relays and mont parts

MAINS

CONNECTOR
A quick way to connect equipment to the mains and E, coded to new colour acheme; discon nectlon by plugs prevents accidental switching on
 insertion of meter without disconnection; cable inlete firmis hold one hair wire on up to fou 7.029 cables. 85 p each.

MINIATURE

WAFER SWITCHES

2
3 pole, 2 way- 4 pole, 2 way- 3 pole,$~$ way- 3 pole, 4 way- 2 pole, 6 way1 pole, 12 way. All at 18 p .

WATERPROOF HEATIGG

26 yarda length 70W. Self-regulating 26 yarda length 70 W . Seli-reguiating
temperature control, 50 p post free.

COMPUTER TAPE
$2,4001 \mathrm{t}$ of the Beat Magnetic Tape money can buy-users claim good wide 81.45 plus 33 p post in wide $81 \cdot 45$ plus 33 p post and
Insurance, w/th cassette.
sin 1.25 plus 30 post and insurance with In wide 21 plus 20 p post and insurance with cassette. Spare spools and cassettes-1ln 81 , 3 in 85 p . $\frac{1}{1}$ in 75 p each plus 20p post and insurance.

BALANCED ARMATURE UNITS

 These capsules are 1 in dia. and ifn thick. They wan be used in Intercom and similar circulta ${ }^{8}$ 10 for 83.MULTI-SPEED MOTOR
Replacement in many well-known food mixers, Six speeds are avallable
$\mathbf{5 0 0}, 8 \mathrm{j} 0$ and $1,100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. from either 500,850 and 1,100 r.p.m. from either
or both of the nylon sockets (where the beaters of the food milxers normally go) and $8,000,12,000$ and 15,500 r.p.in. (ideal poliahing ipeers) from
 the main drive shaft. This drive shaft is in dia about this motor is that being $230 / 240 \mathrm{~V}$ a.c.-d.c. series wound lts speed may be further controlled with the use of our Thyristor contrgller. This is a very powerful and ueful motor size approx. 2in dia. X oin long, malns 230/240v. Price 89p plus 23p postage and insurance. 12 or more post free. 220/240V j0 cycle solenoid $220 / 240 \mathrm{~V}$ s0 cycle solenoid
with laminated core so very with laminated core so very
silent in operation. Closes 4 sircults each rated at 10 A . Extremely well made by a overall size $21 \times 2 \times 2 \mathrm{in}$.
 41 each

QUICK CUPPA

Mini Immersion Heater, 350w, $200 / 240 \mathrm{~V}$. Boils full cup in ahout lamp holder. Have at bedside for tea, baby's food, etc. 81 -25, post and insurance 14 p . 12 V car model also available same price. Jug

TREASURE TRACER

Complete Kit (except wooden
battens) to make the metal battens) to make the metal
detector detector
editorially in $\begin{aligned} & \text { dewcribed } \\ & \text { Practical }\end{aligned}$ Wireless, Augugt igsue, 22.50 plus 20 p post and

A Now Service to Readers. A bulletin bringing news of new lines, special snips and "too few to during first week of each month. The bulletin will the called "Advance Advert News" bull the Subseription is 60 p per year. Subscribers will also receive our completed 1971 catalogue when this is published

> Where postage is not stated then orders over \& are post free. Below $\$ 0$ add 20p.
Bemlconductors add up post. Over $£ 1$ post iree. S.A,E, with enquiriea pleage.

Dept. P.E. 7, Park Street, Croydon CRO IYD
think of it as a diode as it has no $p n$ junction and cannot be used for rectification. When a few volts d.c. are applied to make the anode positive with respect to the cathode, the current which flows is d.c. with superimposed pulses as illustrated in Fig. 11.

In the case of a diode designed to work at 10 GHz , the current pulses occur at 10^{-10} second intervals and can be used to induce oscillations in a cavity or waveguide resonator.

GUNN EFFECT

The Gunn effect is caused by high field regions called "domains" passing between the cathode and the anode. When the supply is connected a high field domain builds up at the cathode and drifts rapidly through the crystal to the anode. As the domain reaches the anode, a new domain forms at the cathode.

The transit time of the domains through the active layer determines the frequency of the pulses. The velocity of the domains has been measured experimentally and is known to be about $10^{11} \mu \mathrm{~m} / \mathrm{s}$ and so a frequency of $10 \mathrm{GHz}(\lambda=3 \mathrm{~cm})$ is obtained with a $10 \mu \mathrm{~m}$ thickness.

As is well known, in the energy band diagram for semiconductor materials the valence and conduction bands are separated by an energy gap called the "forbidden gap". Electrons can be excited from the valence band to the conduction band by the application of energy, for example by heating the crystal or by the addition of donor atoms. However, this wellknown concept does not explain the Gunn effect.

To explain the effect we must look more closely at the conduction band. This can in fact be divided into two regions-the normal conduction band and a higher energy "satellite" band. In the satellite band the effective mass of the electrons is higher and their mobility lower than in the normal conduction band, Fig. 12.

In n-type gallium arsenide the majority of the conduction band electrons can be excited into the satellite band by the application of a field of about $350 \mathrm{~V} / \mathrm{mm}$. As this critical field is reached the electrons in the crystal become heavier and slow down.

This reduction in average velocity results, in a negative resistance characteristic. For this phenomenon to occur, the energy gap between the normal conduction and satellite bands must be considerably smaller than the forbidden gap between valence and conduction bands, otherwise the application of the critical field would result in the transfer of electrons across the forbidden gap, and an increase rather than a decrease in the average velocity would result. Only a few known materials, notably gallium arsenide and gallium phosphide, have a suitable band structure.

ELECTRON MOBILITY

In an ordinary conductor under normal conditions the electron velocity increases linearly with the applied field (Ohm 's law). In n-type gallium arsenide, however, the average velocity increases at first linearly with the field, Fig. 13 A to \mathbf{B} and then, as the critical field of $350 \mathrm{~V} / \mathrm{mm}$ is reached and electrons begin to move into the low mobility satellite band, the average velocity begins to fall (point B). Eventually, as the field continues to increase and all the available electrons have moved into the satellite band, the velocity increases linearly again (C to D).

Clearly the region BC is one of negative resistance. However, the result of applying such a bias field to the wafer is not the same as for conventional negative resistance devices.
In practice the wafer is biased in the negative diflerential resistance region above the threshold value of $350 \mathrm{~V} / \mathrm{mm}$. Many of the electrons coming into the crystal at the cathode are excited to the lower mobility satellite band and slow down. The situation where two types of carrier exist simultaneously is unstable and the lighter electrons flow away leaving a concentration of heavy ones behind.

It follows that there is a local increase in the field since, in the negative resistance region BC , a fall in average velocity is associated with an increase in field. Moreover the effect is cumulative since an increase in the field causes a further decrease in average velocity.

Hence a high field E_{11} builds up at the cathode whereas the field throughout the rest of the crystal falls to a low value E_{1}. The high field domain $\left(E_{11}\right)$ drifts rapidly across the walfer to the anode.

Fig. 12. Energy band diagram for gallium arsenide

Fig. 13. Current density/efectic fleld characteristic of an n-type gallium arsenide diode

Fig. 14. Tuning characteristic for a Gunn oscillator

Fig. 15. Sectional view of a coaxial cavity Gunn oscillator

As the domain reaches the anode the bias supply again causes the field at the cathode to exceed the threshold of $350 \mathrm{~V} / \mathrm{mm}$ and a new domain is established. The action repeats continuously.

CHARACTERISTICS OF GUNN DIODES

From the above explanation of the Gunn Effect it is apparent that the frequency of oscillation depends on the thickness of the active layer of gallium arsenide $10 \mu \mathrm{~m}$ at 10 GHz . Whilst this is true, the device must be used in a cavity and the effect of the r.f. voltage in the cavity is to modify the transit time of the current pulses through the diode.

In practice it is found that a Gunn diode oscillator may be tuned up to one octave by tuning the cavity. Maximum power output occurs at or near the "normal" transit time frequency however (Fig. 14). Cavities may be constructed in either coaxial or waveguide form. A simple coaxial cavity is shown in Fig. 15.
By introducing a varactor diode into the cavity electronic tuning of the Gunn oscillator is possible up to al few per cent by varying the d.c. bias applied to the varactor. Such a combination of Gunn diode, cavity and varactor form a solid state equivalent of the klystron with the inherent advantages of modest power supply requirements and solid state reliability.

Gunn diodes are now commercially available from 4 GHz to nearly 40 GHz with power outputs from a few milliwatts to 100 milliwatts. Apart from being used in the traditional forms of microwave equipment the Gunn diode is already opening new fields of application for microwaves as mentioned above. Although the diodes are currently somewhat expensive for amateur construction projects the possibilities are many.

fUTURE FOR MICROWAVE SEMICONDUCTORS

So much innovation has occurred in this field during the last 10 years that it seems unlikely to be repeated in the 1970 s. Although other new forms of device may be introduced there is bound to be an overriding trend to lower cost microwave semiconductors stimulating new microwave applications.

One way of producing cheaper microwave circuits is to eliminate the traditional "plumbing" required and substitute a thin film circuit. Transmission line components maly be deposited onto a thin film substrate and microwave semiconductors bonded to this in chip form.

Already being introduced to professional systems, this technique is likely to have considerable impact in microwave applications in the years to come.

2

THERE are many situations in both recreational pursuits and in engineering, where it is necessary to measure a time interval to one-tenth of a second without employing expensive and complex equipment. The suggested design in this article gives a direct digital reading with tenths of a second and keeps the cost to a reasonably small figure.

MEASUREMENT READOUT

In most digital timers, the designs are based on the accurate generation of a basic frequency; then, with suitable gating circuits, the counting of the number of cycles passed whilst the gate is open. The accuracy of these timers is therefore mainly dependent on the frequency generator.

Although some of the cost is determined by the frequency generator accuracy, the major proportion of the cost is usually involved in the readout system. An inexpensive digital readout device is the electromagnetic counter, several versions being readily available on the surplus market.

The use of this counter does place a limitation on the smallest measurable time interval and hence the number of decimal figures, since the maximum speed of operation is 10 Hz . Accepting this limitation allows an inexpensive design based on a minimum time measurement of 0.1 second to be constructed.

Fig. 1 shows the system block diagram. A simple astable or multivibrator circuit generates a square wave of 10 Hz . When the gate is opened this square wave supply drives the counter at the same speed. If the gate is held open for 10.8 seconds, the counter will have counted 10 units for each second, i.e. a reading of 108. Marking in the decimal point gives a direct readout of 10.8 seconds.

DRIVE CIRCUIT

The multivibrator circuit is given in Fig. 2. The transistors can be any germanium types such as OC71 or OC72. Potentiometer VRI controls the frequency of oscillation, and the square wave generated may be taken from the collector of either TR1 or TR2.

Fig. 3 shows a suitable drive circuit for the counter. The additional relay is necessary since the majority of low voltage counters available on the surplus market take currents that are too high for the OC72.

If it is required to eliminate the additional counter battery and relay, then it is often possible to remove the counter coil and replace it with a more suitable coil taken from a Post Office 600 type relay, as was done in the prototype.

CALIBRATION

The unit should be calibrated with the multivibrator driving the counter, so that any loading presented by the relay/counter unit is accounted for. This may be achieved by comparing the collector voltage waveform with that of a signal generator, producing a signal of 10 Hz , on a double beam oscilloscope, or a direct reading frequency meter.

An alternative method is to measure the time taken for the counter reading to change from, say 0 to 3,000 (which should take five minutes) with a stop watch. In this case an accuracy of at least 6 counts in 3,000 , i.e. $0 \cdot 2 \%$ or better should be obtainable.

Fig. I. Block diagram of the basic timing system

Fig. 2. Multivibrator oscillator used for providing clock pulses

Fig. 3. Relay driver for operating the counter readout

Fig. 4a. Multivibrator system using a microswitch to gate the clock pulses to the driver. The circuit for the multivibrator is in Fig. 2 and the relay driver in Fig. 3

COMPONENTS . .

LIGHT-SENSITIVE FLIP-FLOP
(Fig. 4d)
Resistors

R9	$1 \mathrm{k} \Omega$	R13
R10	$33 \mathrm{k} \Omega$	$56 \mathrm{k} \Omega$
RII	$56 \mathrm{k} \Omega$	R14
RI2	$33 \mathrm{k} \Omega$	R15
R	$1 \mathrm{k} \Omega$	
All	R16	100Ω

$\mathrm{All} \pm 10 \%, \frac{1}{4} \mathrm{~W}$ carbon
Potentiometer
VR5 $2 k \Omega$ linear preset spindle type
Capacitors
C4, C5 $0.01 \mu \mathrm{~F}$
Transistors
TR6, TR7 OC72 (2 off)
Diodes
D4, D5, D6 OA8। (3 off)
Relay
RLD 700Ω, 12 V operate
Light sensitive cells
$\times 4, \times 5$ ORP1 2 light dependent resistors 2 off)

Fig. 5. Complete multi-function timer incorporating the circuits given in Figs. 2, 3, 4a, 4d

Fig. 6. Layout of components on Veroboard of system shown in Fig. 5. The copper strips must be cut at holes 25A, 25B, 25C, 24D, 25D, 25H, 24I, 25I, 25J, 25K

GATING CIRCUITS

To gate the unit, several methods are possible depending on the application of the timer. Basically, two alternatives are available: firstly, the d.c. supply line to the oscillator may be interrupted; secondly the output from the multi-vibrator may be interrupted. Both methods may have particular advantages, but in the prototype design the negative supply line was switched on and off by a relay.

Four possible gating methods are shown in Fig. 4. The first method (Fig. 4a) is the simplest, and is a single pole on/off switch such as a microswitch. This circuit could be employed for measuring the time taken for a moving object to pass a given point. so that the microswitch is held closed by the object. Alternatively, the switch could be held closed manually when the time for the object to pass between two points could be measured.

Fig. 4b indicates a photoresistor operated gate for a similar situation to that outlined above, the contacts on the relay replace the microswitch contacts. These methods could be used for sports events, photographic processing, machine speed measurement, batch counting and so on.

Fig. 4c shows a circuit whereby the passage of an object in front of the first cell X 2 starts the timer, and the passage of an object in front of the second cell X3 stops the timer. This method was found to be satisfactory with the first model constructed, but the setting of VR3 and VR4 was found to be very critical.

Because of this, the more conventional bistable circuit (Fig. 4d) was adopted. Due to the additional transistor, diodes and other components, the circuit is more expensive, but the added reliability justifies its use in the majority of applications.

RESET CONTROL

An improvement may be to use a counter with a reset control, so that all the time reading will commence from zero readout. Unfortunately these units are much more costly, and some applications may not justify this additional expenditure. Resettable counters are obtainable but can cost a few pounds to buy. Further accuracy is possible by modifying the multivibrator to operate at 50 Hz and to utilise a high speed counter.

CONSTRUCTION

A complete operational system using the basic system shown in Fig. 4a employs the following circuits for reliability, and the construction of the timer is based on these three: the multivibrator (Fig. 2); a gate unit (Fig. 4d); the drive unit (Fig. 3).

A Veroboard layout for this system is given in Fig. 6 and uses a board that has twelve copper strips each 38 holes long. The preset-potentiometers are fitted directly to the board, so that the only components not attached are the relays, with their associated diodes, the counter and miscellaneous

hardwear such as switches, batteries, plugs and sockets. The use of "skeleton" or miniature potentiometers would enable a shorter length of Veroboard to be used.

The inter-unit wiring diagram is given in Fig. 5. This assumes that the counter requires the additional relay in the drive unit, and the extra battery. The counter used in the prototype had a coil which took only a few milliamperes, so that this directly replaced the relay RLA.
One suitable form of case (Fig. 7) is constructed from 18 s.w.g. or 20 s.w.g. aluminium sheet. Two end pieces are folded as indicated, and the flat top panel, rear, base, lower front and instrument panels fastened to the end pieces with self tapping screws. Alternatively, if bending proves too difficult, the end pieces may be cut from $\frac{3}{8}$ in thick plywood, and the panels screwed to them.
A slide switch S1 is used to isolate the batteries when the timer is not in use. One refinement on the prototype was to use a two-pole, two-way slide switch in conjunction with the two cells, so that the triggering sequence of the cells could be reversed. For example, switch position 1: cell 1 starts the timer, cell 2 stops the timer; switch position 2 reverses the operation. See Fig. 8.

LIGHT SENSORS

Each l.d.r. is soldered to a small piece of Veroboard. Light shields for these may be made from small cardboard tubes (such as is found for containing sweets) and glued to the cells, to keep out unwanted stray light. The leads are fitted with miniature two-pin plugs to fit the sockets on the rear panel of the case.
Penlight torches are used as light projectors for the cells, as they produce a narrow concentrated beam of light, and are easily fitted in the required positions with adhesive tape.

OPERATION

Connect the two photo-sensitive l.d.r.s into the sockets on the rear of the case. Place the cells in bright daylight or average (not brilliant) artificial lighting. Switch on the supply. With the "starter" switch selecting "L.H.", and the right-hand cell covered with the hand or a piece of card, the counter should stop. If it does not, adjust the sensitivity control until it does. This should now be set for normal operation. Normally, when the L.H. cell is covered the timer should start; when covering the R.H. cell it should stop. Moving the "starter" switch to R.H. will reverse the cell effects.

TRANSISTORS NEW LIST－－NEW PRICES
SEND FOR FREE COPY TOD Brand New 2N404
2N696 2N696
2N697
2N706 2N69
2N70 2N7
2N9
2N1 $\left\lvert\, \begin{aligned} & 2 \mathrm{~N} \\ & 2 \mathrm{~N} \\ & 2 \mathrm{~N}\end{aligned}\right.$ 2 N
2 N
2 N电台药
云要至

＜

身空灾

云空
空云云
云云
艺云各

2N8．

领W．
俞
－くくく$A A Y$
$A A Z 1$
$A A Z$mam
9.
ACl
ACl
ACl
ACl

$4<4$

$4<4$ 37
ACY A
ACY
AD140
AD14
AD14
AD16 AD16
AF11
AFl1AF11
AF11AF11
AF18AF124
AF125
AF138AF179AF181

AF186\begin{tabular}{ll|l}
AF180 \& 52 p

AF181 \& 42 D \& B

AF186 \& 40 p \& R

AF239 \& 40 p \& B

AFY

AFY2 \& 25p \& BAX 20 \& $65 p$

ABY27 \& 82 p \& BBX21 \& 20 p

ASY27 \& 82 p \& BSX21 \& 20 p

ASY \& RSX \&

ASY \& 150

A8Y28 \& $25 D$ \& BSX76 \& $15 p$

ASY29 \& $80 p$ \& B8Y95 \& 15 D

A8Y67 \& 47p \& B8Y95 15D

A8Y95A15p

A8Y67 \& 47 p \& B8Y95A15p

ASZ21 \& 42 p \& BY100 15p

ASZ21 \& 42p \& BY100 \& 15 p

BA115 \& 7 p \& BY126 \& 15 p
\end{tabular}BA164BAX13

BAX13BAX1BAY38 17p $\begin{array}{ll}\text { BYZ11 } & 85 p \\ \text { BYZ12 } & 30 \mathrm{p}\end{array}$

HENRY＇S cows INTEERATED CRRCUITS

 WE OFFER FROM STOCK AN EXCLUSIVE RANGE OFBRAND NEW FULL SPECIFICATION LOW COST TTL 7400 RANGE OF INTEGRATED CIRCUITS

Part		Price and Qty．			
No．	Ceramic Dencription	1－24	25－98	8100	$250+$
7400	Quadruple 2 －input NAND Gate	23p	20p	16p	13 D
7401	Quadruple 2 －input Positive NAND Gate （with ojen collector output）	28p	20p	15p	13p
7402	Quadruple 2－input Positive NOR Gater	23p	20 p	15p	18p
7408	Quadruple 2－input Positive NAND Gatek （with open collector output）	23p	20p	15p	13 p
7404	Hex Invcrters	23p	20p	15p	13p
7405	Her Inverter with open collector	28 p	20p	15p	18．
7410	Triple 3－input Positive NAND Gates	23p	20p	15p	13D
7418	Dual 4 －input Schmitt Trigger	35p	38p	29p	25 p
7480	Dual 4－1nput Positive NAND（rates	23p	20p	15p	18p
7430	8 －input Positive NAND Gatea	23p	20p	15p	13D
7440	Dual 4 －input Positive NAND Buffers	23p	20 p ．	15p	13 p
7441	BCD to lecimal nixie driver	87	77p	66 p	60p
7442	BCD to decimal decoder（4－10 lines， 1 of 10）	87p	77p	67p	60p
7447	BCD－Seven－Segment Decoder／Drivers （15－v Outputs）	21.40	21.80	1120	1－05
7450	Expandable dual 2－input AND－OR－INVERT	23 p	20 p	15p	13p
7451	Dual 2 －wide 2－input AND－OR－INVERT GATES	28p	20p	15D	18p
7453	Quat 2 －input Expandable AND－OR－1NVERT	23D	20 p	15D	18 p
7454	4－wile 2 －input AND－OR－INVERT Gates	23p	20p	15p	12p
7460	Dual 4－input Expander	2sp	20p	15p	18p
7470	Bingle－phase J－K Flip－Flop	35 D	32D	290	25p
7472	Master－slave J－K Flip－Flop	35 D	32 p	29p	25p
7473	Dusl Master slave J－K Flip－Flop	48D	40p	37D	33D
7474	Dual 0 tyoe Flip－Flop	43p	40p	37p	33p
7476	Quad latch	470	45p	430	40p
7476	Dual J－K with pre－set and clear	47p	45p	43D	40p
7480	（ iated Full Adders	870	77p	67 D	80 p
7481	16－bit read／write memory	$\underline{E 1} 35 \mathrm{E}$	$11.25 \pm$	21.15	21.00
7482	2－bit Binary Full Adders	51.80	21.20	\＆1．00	85 p
7488	Quad Full Adder	87 D	77 p	67 p	60 p
7496	Quad 2 input Exclusive OR Gates	80p	70D	60p	50 D
7490	BCD decade counter	870	770	67p	${ }^{60} \mathrm{p}$
7491	8－bit Shift Registers	21.81	21.00	87p	75
7402	Divide－by－Twelve Counters	870	77 p	67 p	60
7493	4－bit B inary Countera	87 D	77p	67 p	80 p
7494	Dual entry 4－bit shift register	87D	770	67p	60p
7495	4－bit uv－down stift register	87 p	77	67p	600
7496	5－bit Parallel in parallel out Shift Register	87p	770		${ }^{60 \mathrm{D}}$
74100	8 －bit Bistable Latches	41.75	21.65	$21 \cdot 65$	21.35
74118	Hex Set－Reget Latches	21.80	11.20	21.00	85 p
74121	Monostable Multivibrators	87p	77	67p	${ }^{60}$
74141	BCD－to－Decimal Decoder／Driver		770		${ }^{80} \mathrm{D}$
24145	BCD－to－Sectmal Decoler／Drivers	21.80	21.70	¢1．80	21.50
74151	8 －bit Data Selectors（with Strobe）	21.40	81.30	¢1． 20	21.05
74153	Dual 4－Line－to－1－Line Data Belectorn／Multiplexe	rs 21.40	8130	21.20	21.05
74191	Binary Counter reversible	83－60	48.25	28.00	22.50
Device Data Latrat	may be mixed to qualify for quantity price． available for above series in booklet form，price 10 p ． （gazantitv prices Extn．4．Dual Inline 14 Pin Bac	（Ref So． ket $\mathbf{3 0 p}$	each 1 \％	Pin 85	pp each

SILICON RECTIFIERS

1 AMP MINIATURE WIRE ENDED PLASTIC

Type	F．I．V．	$1-49$	$50+$	$100+$	$500+1000+$	
IN 4001	50	$8 p$	$7 p$	$8 p$	$5 p$	$4 p$
IN 4002	100	$9 p$	$8 p$	$7 p$	$5 / p$	$41 p$
IN 4003	800	$10 p$	$9 p$	$71 p$	$6 p$	$5 p$
IN 4004	400	$10 p$	$9 p$	$8 p$	$7 p$	$8 p$
IN 4005	600	$12 p$	$10 p$	$9 p$	$7 p$	$7 p$
IN 4006	800	$16 p$	$14 p$	$12 p$	$11 p$	$9 p$
IN 4007	1000	$20 p$	$16 p$	$18 p$	$12 p$	$10 p$

1．5 AMP RIRIATURE WIRE ENDED PLASTIC

Type	P．I．V．	1－49	$50+$	$100+$	$500+1000+$	
PL4001	50	10p	9 p	8 D	7 p	8p
PL4002	100	11 p	10p	90	8D	7 D
PL4003	200	12p	11p	10p	9 p	8 p
PL4004	400	12p	11p	10D	9 p	8 p
PL4005	600	15 p	13p	11p	10p	9p
PL4006	800	17p	15p	13D	12p	100
PL4007	1000	20p	17p	15p	13p	11p
3 AMP PLASTIC WIRE ENDED RECTIFTERS						
Tspe	P．I．V．	1－49	$50+$	$100+$	$500+1$	00＋
PL7001	50	20p	18p	17D	16p	14p
PL7002	100	20p	19p	18p	17p	15D
PL7003	200	22p	20p	19D	18p	16p
PL7004	400	25p	23p	21p	20p	180
PL7005	600	26 p	24p	23p	22p	20D
PL7006	800	27 p	25\％	24p	23p	21p

POTTED BRIDGE RECTIFIERS （SILICON）SIZE $t x+x$ ins

Type	P．I．V．	rent	1－49	$50+$	$100+$	
1002	100	2 amps	60p	55	50p	450
2002	200	2 аmps	70p	B5D	80p	55 p
4002	400	2 amps	80 p	750	70 p	65 D
1004	100	4 amps	70p	60 p	65p	500
2004	200	4 mmps	75p	70 D	65p	60 D
4004	400	4 amps	80p	750	70p	85
6002	600	2 amps	900	80p	76 p	70 p
6004	600	4 зmps	90 p	80 D	75p	70p
1006	100	6 amps	75 p	70D	65p	60 D
2006	200	6 amps	80p	750	70p	650
4006	400	6 amps	21.10	21.00	90 p	80 p
	tion		¢1．25	1	\＆1．	

 $400 \mathrm{M} / \mathrm{W} 5 \%$ Miniature
BZY 88 Range．
Volt．15p Range．All voltagea 3 －3－33 25
$1000+12 p ; 100+10 p ; 500+8 p ;$ $1000+6 \mathrm{D}$ ．Any one type．Wire Ends． 6.8 V ．all voltages to 100 V .25 p each．
$25+22 p ; 100+19 p ; 500+17 \mathrm{p}$ ；
$1000+16 p$ ．Any one type． All voltages $6.8-100 \mathrm{~V}$ ． 30 p each．
$25+27 \mathrm{p} ; 100+25 \mathrm{p} ; 500+28 \mathrm{p}$ ； $1000+21 \mathrm{p}$ ．Any one type． 10 Watt Stud Mounting 5% All voltages $5 \cdot 1-100 \mathrm{~V}$ ． 40 p each．
$25+37 \mathrm{p} ; 100+35 \mathrm{p}$ ．Any one type．

TRIACS Type $\begin{gathered}\text { P．I．} \\ \text { Volts } \\ \text { Cur．} \\ \text { rent }\end{gathered} \quad \begin{gathered}\text {（All stud monnting）} \\ 1-49 \\ 50+100+\end{gathered}$

SEMI－CONDUCTORS
LOOK AT THESE PRICES FOR QUANTITIES FROM STOCK

AFII4Mullard 25p	AFII5 Mullard 25
$25+20 p$	$25+20 p$
$100+17 p$	$100+17 p$
$500+15 p$	$500+15 p$

AFII6 Mullard 25p	AFII7 Muliard 25p
25＋20p	
$100+17 p$	$25+20 p$
$500+15 p$	$100+17 p$
2N $305+15 p$	
75p	2N3819 Texas 35p

N3819 Texas
Mullard 115watt
Silicon Power
$25+65 p$
$100+50 p$

BFY90 65p
2N2646

8C113 SGS 15p	Mullard Photo
	$25+85 p$
$100+11 p$	$100+80 \mathrm{p}$
$500+{ }^{\text {p }}$	$500+75 \mathrm{p}$

OA202 10p 0 O28 62p

SILICON Diodes	Mullard Power
$25+8 p$	$25+55 p$
$100+6 p$	$100+50 p$
$500+5 p$	$500+42 p$
$1000+4 p$	
OC42 Mullard 30p	OC7I Mullard $15 p$
$25+25 p$	$25+12 p$
$100+23 p$	$500+8 p$
$500+21 p$	$8 p$
$1000+18 p$	ORP 12 Mullard 50 p

 SO50E 50015 smps £2．2 DIAC 8T2 20p

OCI70Mulard 25p
$25+21 p$
$100+17 p$
$500+15 p$
OC171 Mullard 30p
$25+27 p$
$100+22 p$

8Y 127 Mullard 20p

OC45 Mullard 15p
OC45 Mulard
$25+13 p$
$100+12 p$
$500+10 p$
$1000+8 p$
0C75 Mullard 25p
ORPI2Mullard 50p
$25+45 p$
$100+42 p$
$500+40 p$
$2 N 930 \quad 25 p$

2N930 25p	
25 100 $+23 p$	
$500+17 p$	
$1000+15 p$	
OC72 Mullard 25p	
$25+20 p$	
$100+17 p$	
$500+15 p$	
$1000+13 p$	
OC83	25p
$25+20 p$	
$100+17 p$	
$1000+13 \mathrm{p}$	
$0 \mathrm{C84}$ 25p	
$25+20 p$	
$100+17 p$	
1000＋13p	
AF239	42p

$$
\text { OCI } 39 \text { Mullard } 25 p
$$

$100+17$
$500+15$
$1000+13$
AF239
$25+35 p$
$100+30 p$
$500+25 p$
$1000+20 p$
$500+25 p$
$1000+20 p$

Discounts

VARIABLE VOLTAGE TRAMSFORMERS

BODINE TYPE N.C.I. GEARED MOTOR \| INPUT 230/240V 2.c. 50/60 OUTPUT

ex

 ${ }^{\text {TYprow }}{ }^{1}{ }^{1011}$All Types (and Spares)
Reversible. $1 / 70 \mathrm{ch}$ h. .i. 1 Alompes (50 amp Spares) 2 cycle, 0.38 amp. (Type 2) SHROUDED TYPE inch. Reversible. $1 / 80 \mathrm{th}$. 1 amp, 65.50 . 2.5 amp , 66.75 h.p., 50 cycle, 0.28 amp . $5 \mathrm{amp}, \mathcal{\mathrm { ma }} 75.8 \mathrm{amp}, \mathcal{\mathrm { am }} 4.50$. "As new' condition. Input voltage of motor $10 \mathrm{amp}, 18.50$. $12 \mathrm{amp}, \mathrm{A} 21.00$ 115 V a.c. Supplied complete with trans- 15 amp , 625.00 . $20 \mathrm{mmp}, 637.00$. 37.5 formerfor 230/240V a.e, input. Price, either amp, 172.00 . 50 amp, 692.00 . Carr. exera. 2.5 AMP former 42.13 保 $27 \times P . \&$ \&.

12 VOLT DC MOTOR

 Powerful I amp. RE-VERSIBLE motor. VERSIBLE Motor,
Speed 3,750 RPM complete with external gear train (removable) giving final speed of 125 RPM. Size: 42 230V/240V COMPACT SYNCHRONOUS GEARED MOTORS

Manufactured by either
Smith. Built-in gearbox
mith. Built-in gearbox.
rev. per hour. Clockw
2 rev. per hour. Anti-clockwise rocation.
2 revs. per hour. Clockwise rotation.
5 revs. per hour. Anti-clockwise rotation.
 Fraction of makers' price. All at 75 p incl. P.\&P ALARM BELL Mig. by GENTS. 6 inch bell. $3 / 6$ vole D.C.
operation. As NEW. Only $£ 1.50$ plus $45 p$
P. \& P.

200-250V A.C. NEON INDICATOR

INDICATOR
Available in red or amber at 20p each.
green at $\mathbf{3 2}$ p each. Minimum order 3

Superior Quality Precision Matro

NEW POWER RHELSTATS

100 WATT. 1 ohm, 10A: 5 ohm. 4.7A:
$100 \mathrm{hm}, 3 \mathrm{~A} ; 250 \mathrm{hm}, 2 \mathrm{~A} ; 50$ ohm, 1.4 A ;
$100 \mathrm{ohm}, 1 \mathrm{~A} ; 250 \mathrm{ohm}, 0.7 \mathrm{~A}$; 500 ohm.
0.45 A ; $1 \mathrm{k} \Omega, 280 \mathrm{~mA} ; 1.5 \mathrm{k} \Omega, 230 \mathrm{~mA} ; 2.5 \mathrm{k} \Omega, 2 \mathrm{~A} ; 5 \mathrm{k} \Omega, 140$ each. P \& P er 3 tin Shaft length tin, dia. 指in. All at $\in 1-50$
 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$. All at 78p each. P. \& P. 15p.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering

EXPERIMENTERS' ECONOMY KIT
Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijun
Xenon Tube and instructions $£ 6.30$ plus 25 p P. \& P.
NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin Speed adjustable 1-80 f.p.s. Price 110.50 . P. \& P. 50p HY-LYGHT STROBE MK III
This strobe has been designed and produced for use in utilizes a silica plug-in tube for longer life meld, printed circuit for easy assembly, also a special trigeer coil and output capacitor. Speed adjustable $0-30$ es Light output approx. 4 joules. Price $£ 12.00$. P. \& P.

AND NOW!
 THE 'SUPER' HY-LYGHT KIT

Approx. four time Hy-Lyght strobe

Hy-Lyght stro

incorporating

- Heary duty power supply

Fantable speed from -23 flash per sec
Reactor control circuit with massive electrodes.
lighs. concrol circuit producing an intense white
The briltiant light output of the "SUPER" HY-LYGHT gives fabulous effects with colour filters.
Never before a Strobe Kit with, so HIGH an output at so LOW a price. ONLY 620 plus 75p P. \& P.
7-inch POLISHED REFLECTOR
deally suited for above Strobe kits. Price 53p. P. \& P
13p or post paid with kits.

RELAYS SIEMENS, PLESSEY, Etc. MINIATURE RELAYS - COMPETITIVE PRICES
\qquad

45	6-9	2 HD M	50p	700	12-24	$2 \mathrm{c} / \mathrm{o}$	63
185	6-12	$2 \mathrm{c} / \mathrm{O}$	$63 p^{*}$	700	15-35	$2 \mathrm{c} / \mathrm{OHD}$	73
185	6-12	$4 \mathrm{c} / \mathrm{o}$	$73 p^{*}$	700	16-24	GM	63
230	$9-12$	$4 \mathrm{c} / \mathrm{o}$	78p*	1,250	24-36	$4 \mathrm{c} / \mathrm{o}$	63
280	$9-12$	$2 \mathrm{c} / \mathrm{o}$	73 p *	2.500	36-45	6 M	63 p
600	18-32	$4 \mathrm{c} / \mathrm{o}$	$78{ }^{\text {p }}$	2,400 5.800	30-7	4 c	50p
700	16-24	4M 2B	$63{ }^{*}{ }^{*}$	9,800	$40-70$ $40-70$	4 $2 \mathrm{c} / \mathrm{o}$ 2 c	63 50
700	16-24	$4 \mathrm{c} / \mathrm{O}$	78p*	15 k	85-110	6 M	50

(1) Coil ohms; (2) Working d.c, volts; (3) Contacts; (4) Price
(HD) Heavy Duty. All Post Paid.

MAINS RELAY
10 amp a.c. contacts, 50p plus Bp P. \& P.

MOTOROLA MAC II/6 PLASTIC TRIAC 400 PIV, 8 AMP
Now available EX STOCK. Supplied with full data and applications sheet. Price $\leqslant 1.05$. P. \& P. 7p.
Suitable DIAC (RCA 40583) 30p each.

All Mail Orders-Also Callers-Ample Parking Space Dept. P.E, 57 BRIDGMAN ROAD, LONDON W4 5BB Phone 01.9951560 SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Open Sat - LITTLE NEWPORT ST

LONDON WC2H 7JI Ol-4370576

colour television

 picture faultsThere are over 120 illustrations, including 88 colour photographs by K. J. Bohlman. £2.50. Postage 10p.

RCA SOLID-STATE HOBBY CIR. CUITS MANUAL, by R.CA. $£ 1.05$. Postage lop.
ABC'S OF INTEGRATED CIRCUITS, by R. P. Turner. El-25. Postage 10 p .

TRANSISTOR AUDIO \& RADIO

 CIRCUITS, by Mullard. $f 1.50$. Postage 10p.TAPE RECORDERS, by H. W. Hellyer. £2.25. Postage 10 p .
BASIC THEORY \& APPLICATION OF TRANSISTORS, by Dover. $90 p$ Postage 10p.
TRANSISTOR MANUAL, by G.E El.05. Postage lop.
RADIO VALVE \& TRANSISTOR DATA, by A. M. Ball. 75p. Postage lop.
ELECTRONICS POCKET BOOK, by J. P. Hawker, $61 \cdot 40$. Postage 10p.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W2 INP Phone: PADdington 4185
Closed Saturday \mid p.m.

OSMABET LTD.

MAINS TRANEFORMERS

 $230 \mathrm{~V}, 4 \mathrm{JmA}, 6 \cdot 3 \mathrm{~V}, 1 \cdot \mathrm{jA}, ~ £ 1.50 ; \mathrm{MT} 2 \mathrm{~A}, 250 \mathrm{~V}, 60 \mathrm{~mA}$ $6.3 \mathrm{~V}, 2 \mathrm{~A}, \mathrm{E1} \cdot \mathbf{9 5}$; MT3 Prim. $110 / 240 \mathrm{~V}$, Sec. 2m0V 100mA, 6.3Y, 2A, 22.25.
AUTO TRANSFORMERS
MOLTIVOLT TRANSFORMERS
Prim. 200/240V a.c. OMT4/1. One tapped see, $\mathbf{3}-20-30$ $40-60 \mathrm{~V}$ gligg $5-10-10 \mathrm{~V}$ a.c 1 A - 2.25 . 2A. 28.45; OMT:/1 one tapped sec, $40-50-60-80-90-$

LOW VOLTAGE TRARSFORMERS
Prim. 200/240V a.c. $6 \cdot 3 \mathrm{~F}, 1-5 \mathrm{~A}, 85 \mathrm{p} ; 3 \mathrm{~A}$, $21-18 ; 6 \mathrm{ACT}$,
$21-80 ; 12 \mathrm{Y}, 1-\mathrm{JA} .213 .3 \mathrm{CT}$

 MIDGET RECTIFIER TRANSFORMERS For FW rect., size $13 \times+2 \times 1$ in, Prime $200 / 240 \mathrm{y}$ a.c.
output, PPT1 $9-0-9 \mathrm{~V}, 0.3 \mathrm{~A}$. PPT, PPT3 $20-0-20 \mathrm{~V}, 0.10 \mathrm{~A}, 81-20$ cach; uitto, size 2×24 $\times 1$ In MTV1 $9-0-9 V, 1 A, 98 g ;$ MTVE 12-0-12V, 1 A O/P TRANGFORMERS FOR POWER AMPLIFIERS P.P, sec, tapped $3-7.5-15$ ohms, A-A $6 \cdot 6 \mathrm{k} \Omega$, 30W
(KT66, etc.), $4406 ; 50 \mathrm{~W}, 3 \mathrm{k} \Omega$, A-A, 86.75 ; 100 W LKO, A-A, EL34 (KT88, et c.), $811 \cdot 40$ with and to 400 W LOUDSPEARERS, HI-RI, P.A., GUITAR. ETC.
 $131 \times 8 \mathrm{in}, 10 \mathrm{~W}, 3,8$ and 15 ohms, 22.25 ; fitted two tweeter HirFi, 3, 8 and 15 ohms, 84 ; Horn tweeters $2-16 \mathrm{kHz} 8$ or 15 ohms, 10 W , $21-50$; 5 in , 80 p , $61 \mathrm{in}, 41.10,8 \mathrm{in}, 21.75,10 \mathrm{in}, 41.95 .7 \times 4 \mathrm{in}, 21.25$,
 Match apeaker impedance to amplifier from 3 to A or I2V LT FLUORESCENT LIGB, 75 p .
Complete 8 ORESCAT LIGHTING
Complete 8 watt 12 in fitting with tube. e3-75; $1 \underline{1} \mathrm{~V}$ PRINTED CIRCUIT ETCHING KITS
Comprebensive factory pack, with all solutions, and equipment to make your own P.C. boaras, instructions. B, Carriage extra all orders
,AE. INQUIRIES.LISTA, MAIL ORDER ONLY
6 Kenilworth Road, Edsware, Middx. HA8 8 YG Tel. $01-9589314$

A DICTIONARY OF ELECTRONICS-Third Edition

Compiled by S. Handel
Published by Penguin Reference Books
413 pages, $6 \frac{1}{8}$ in $\times 4 \frac{3}{8} \mathrm{in}$. Price 45 p

To compile a dictionary of any kind is no small task and of those currently available in the electronics field, this Penguin paperback gives by far the best value for money. To add to the data given above, there are 185 designated diagrams plus numerous "thumb-nail" drawings of circuit symbols against appropriate references. All the descriptions and diagrams are concise and easy to understand; cross-references are also given to related expressions in a distinctive type face.

Whilst Mr Handel readily admits in the Preface that omissions are inevitable due either to oversight or the need for avoiding over complication, one must give full credit for keeping up-to-date with such a useful work. Since the second edition was first published five years ago, a great many changes in electronics have brought to light several new entries.

On the subject of acronyms, many have had to be left out; the author feels that he needs a RED PENCIL -a Reliable Electronic Device for Printing Every Name Composed of Initial Letters.

> M.A.C.

TEST YOUR KNOWLEDGE OF PHYSICAL ELECTRONICS

By T. Wilmore
88 pages. Price 80p

TEST YOUR KNOWLEDGE OF APPLIED ELECTRONICS

By R. W. J. Barker
92 pages. Price 80p

TEST YOUR KNOWLEDGE OF TELECOMMUNICATIONS

By L. Ibbotson
92 pages. Price 80p
Published by the Butterworth Group.
All $7 \frac{1}{4}$ in $\times 4 \frac{3}{4} \mathrm{in}$.

Three titles in a series of revision texts designed to cover a first degree course in electrical engineering and HNC, HND and CEI examinations. The books are based on a series of question and answer tests which have appeared over a period of years in Wireless World.

The first in the series deals with electron physics and poses questions on electron dynamics, atomic theory and spectra, semiconductor physics electron emission and valves. It concludes with sections on gas discharge processes, devices and lasers and masers.

The second book, probably more pertinent for readers of this magazine, covers rectifiers and regulator diodes, load lines, small signal amplifiers, feed-
back, power amplifiers, oscillator, switching theory and waveshaping.

The final volume in Telecommunications includes principles, Fourier analysis, noise, two part networks, transmission lines, waveguides, radio propagation, aerials and modulation theory.

In each of the books the questions are set on each right hand page with the solutions overleaf. This certainly speeds the learning process.

Since most of the questions require calculations. to work through these texts will undoubtedly reinforce any weaknesses or knowledge of specific matter for examination purposes.
G.G.

INTEGRATED CIRCUIT SYSTEMS

By D. J. Walter, B.Sc.(Eng.), C.Eng.
Published by Iliffe Books (Butterworth Group) 228 pages, 9 in \times 6in. Price $\mathbf{6 3 . 5 0}$

FIRST of all let me qualify this title a little because first impressions might assume a complete dossier on all types of integrated circuit. The primary aim of the book is to assist students in the final stages of HND or degree courses in engineering and computer science. The emphasis is on logic systems using monolithic integrated circuits, although operational amplifiers and d-to-a and a-to-d converters are brought in at the end to relate the arithmetic logic to real time and on-line applications.

Having established these details it comes somewhat as a surprise to find Chapter 1 extolling the ins and outs of reliability assessment and statistical analysis of quality control procedures. Chapter 2 goes into manufacturing procedures, and it is not until page 59 that we start to come to terms with the theory and application of logic systems and Boolean algebrai in relation to integrated circuits. This, as they say, is the meat, and the book progresses through flip flops and counting circuits to binary calculation, correction and coding in Chapter 5.

Armed with the information gained in these three chapters, the reader can then make an intelligent assessment of the advanced techniques using MOS (Chapter 6) which will undoubtedly figure more prominently in the near future.

Converters (mentioned previously) provide a means of assessing the characteristics of analogue or digital techniques and interrelating both of these to the task in hand.

Generally, this book has been carefully prepared and the author provides a great deal of useful material, assuming that the reader has some mathematical background experience.
M.A.C.

PRICES !!!

> Due to recent Government purchase tax changes, all prices quoted in the magazine may be subject to alteration

THE first project that will be undertaken will be a Simple Full Power Radio Telescope for the study of Solar Radiation. This project has been chosen because it will be possible to record the sun quite satisfactorily with a minimum of apparatus. Furthermore, it will be possible to use the system for the amateur bands and for the observation of satellites. The design of the aerial system will also be applicable to a more advanced telescope in the form of a simple interferometer and later to the near professional set-up of a complete phase-switching system. All the apparatus of the simple full power telescope will be absorbed as the project advances.

NATURAL PROGRESSION

Those who undertake this programme will be going step by step from the simplest type of radio telescope to the most advanced form that can be attempted by the private enthusiast.

There is a considerable advantage in taking this course, because in moving from the simple to the complex a better understanding of the final results will emerge. It also means that each unit that is constructed or adapted will remain in the project. There will be no redundant parts. This perhaps will be most helpful to the younger group who may have to improvise more.

In the construction of the telescope only common or garden "bits" will be essential, but of course those who wish to put their mechanical engineering skill to work can do so provided the basic parameters are kept in mind. The aerial system can normally be of wood or angle iron, whether the latter be the wrought iron type or drilled constructional angle of which there are a number of proprietary makes. The life of an aerial system constructed of wire and rough sawn timber, even unpainted, is of the order of ten years. In fact the writer has one unit which is still in operation after twelve years.

Perhaps it would be right here to set out the objects of the Project and what is required to implement them.

THE PROJECT

The purpose of this project is the study of solar radiations at a frequency of 137 MHz . Time of observations:
(1) Sunrise to two hours after sunrise
(2) Two hours before noon (G.M.T.) until two hours after noon
(3) Two hours before sunset until sunset

Conditions of locality will determine whether the first and last items are practicable. It will add valuable data about the propagation of radio waves if these two periods of observation can be put into operation.

THE TELESCOPE

Aerial System

Ninety degrees Corner Reflector Steerable in azimuth and altitude, or fixed in azimuth but steerable in altitude.

Pre-Amplifier

Valve or transistor, gain preferably 16 dB plus, noise level as low as possible, bandwidth about $5-10 \mathrm{MHz}$.

Receiver

A standard communications receiver preceded by a convertor for the operating frequency. A twoposition time constant circuit may be added.

Recording

For recording purposes a pen recorder and/or tape recorder will be required. The pen recorder should preferably have two speeds, one inch and three inches per hour. The tape recorder should have speeds sufficient to cover the period of observation and ideally this will be 15 inches per second If the recorder can accommodate large reels then $1 \frac{7}{8}$ inches per second could be used.

Power Supply

The power supply should be stabilised. The preferred form would be a stabilised mains transformer. Some of these are still available on the surplus market. If this is not possible then a voltage stabilised power pack can be employed. Many of the communications units already have in-built stabilisation.

D.C. Amplifier

This will offer a higher sensitivity than the direct recording from the output of the receiving unit. Where the pen recorder is of a low current type then this will be an advantage. If the pen recorder is of the potentiometer type it will have an in-built amplifier.

DATA RECORDING

The manner in which data recordings are stored is most important. It may take the form of an album for the pen recordings or, alternatively, the whole record may be kept on the paper roll and a simple table with spindles used to scan the paper by rolling from one spindle to the other. The advantage of this is that later scrutiny may reveal other items of regular change which may be worth a special study. This is in fact how many new sources of radiation were discovered.

Cassettes are useful to store the tape recordings.
The log book should be arranged in columns so that it contains a record of the times of starting and finishing an observation. The background level of radiation at the start of the observation period and also at the end of the period should be noted. The maximum level that was recorded should also be included. Finally, a column for special remarks which should include a note of the weather conditions at the time of observations.

AUTOMATED OPERATIONS

It should be noted here that in radio astronomy it is not always necessary for the operator to be present. This is perhaps one of its advantages over optical astronomy. Provided certain precautions are taken anyone can be taught the simple methods of setting up and switching on the equipment and merely returning to check at the time the observation ends.

If no help like this is available then the whole operation can be automated so far as the start and stop times are concerned. A time clock arranged to cut in for a sufficiently adequate time for the
equipment to warm up and become stabilised, and then to cut out at the end of the observation time would work out quite well.

Such a procedure will result in a considerable saving in paper and tape, and in the general project that is being used to start the hobby, will not materially affect the results. The day to day variations of local conditions will be known since there will be a preliminary trial period of observation before starting the observations in earnest.

THE CORNER REFLECTOR AERIAL

The corner reflector has been chosen for two main reasons. Firstly, it has a front-to-back ratio which is superior to the ordinary dipole and reflector. Unwanted signals from the rear of the array are at a minimum and the best use of the forward gain can be made.

Setting the size for the lowest frequency that is to be used will allow for even greater efficiency when other projects involving higher frequencies are attempted-this is the second reason for the choice of this type of aerial.

REASON FOR HIGH GAIN

The corner reflector can be regarded as a development of the flat sheet in that it is folded so that single elements may be used for the same effective gain. An analysis of this aerial is not an easy task but some clue as to the reason for the high gain in such a simple aerial can be understood from the diagram in Fig. 4.1.

Angles other than 90 degrees may be used but each has certain individual characteristics. For example, had 60 deg . been chosen instead of 90 deg . there would have been a greater reduction in bandwidth for little advantage in forward gain.

If the diagram in Fig. 4.1 is studied it will be seen that there are three images of the dipole in addition t . the dipole itself. The nett result of this configuration is to provide a forward gain of some 10 dB over a single dipole. It can be viewed as though the images reinforce the real dipole and add to the gain.

Fig. 4.1. The corner reflector aerial: an analysis diagram showing the reflections of the real dipole. If the reflector was not present the configuration would behave as though there were four separate dipoles. The presence of the reflector can be regarded as the means by which the gain is increased over a half-wave dipole in free space. The result is an increased gain in the forward direction

Fig. 4.2. Chart of terminal radiation resistance of a half wavelength dipole in relation to the distance of the dipole from the apex of a 90 degree corner reflector
lt is possible to set up an extensive mathematical analysis of the corner reflector but no useful purpose would be served at this time by doing this. The empirical measurements which have been made of this type of aerial yield consistent results and these data will be used for the purpose of this design. The system is quite tolerant in that the gain over a reasonable variation of dimensions remains constant.

AERIAL IMPEDANCE

The chart in Fig. 4.2 shows the variation of the impedance of the dipole at various distances from the apex of the reflector. It will be seen that the optimum value is a spacing from the apex to the centre of 0.35 wavelengths for an impedance of 72 ohms.
If a single dipole is used then standard 75 ohm coaxial cable will be suitable for conveying the signals from the aerial to the receiving system.

PRACTICAL DIMENSIONS

Having chosen a frequency of 137 MHz for the project the practical aerial will need to conform to the following dimensions.

The frequency of 137 MHz is a wavelength of approximately 2.2 metres. This is about 7 ft 2 in . The length of the reflector according to the dimensions laid down in Part 1 should not be less than 1.5 wavelengths at the lowest frequency to be used. At the frequency chosen this will be 10 ft 9 in , but for convenience this can be rounded up to 11 ft .

The width of the side of the reflector was given as not less than 0.7 of a wavelength. This works out at approximately 5 ft , but as it would be beneficial to exceed this dimension this will be rounded up to 6 ft .
With these dimensions it will be possible to use two half-wavelength dipoles in the reflector with the benefit of gain increase by a factor of 2 .

AERIAL CONSTRUCTION

The diagrams in Fig. 4.3 show the constructional details for the aerial reflector assembly.

Work begins with the construction of the reflector. This consists of two frames each 11 ft by 6 ft , see " A ". These should be finished with a coat of aluminium paint. Next the reflecting surface is added to each frame. This can consist of either wire mesh or single wires.

WIRE MESH REFLECTOR

If mesh is to be used, then it must be of good quality with a mesh size of not less than one inch. This refers to the normal twisted galvanised wire type. There is another popular type of welded mesh and this is better than the ordinary type previously mentioned. Both types of mesh do however, suffer from certain mechanical drawbacks. This particular type of reflector requires to be pulled very tightly up on the frames and it is doubtful if a really flat surface will be achieved with mesh. A certain a mount of buckling is tolerable-say up to one and a half inches-however, it does not look very elegant though the performance of this aerial will not be impaired.

SINGLE WIRES

A more simple and easy method of making the reflector is to use single wires. This can result in a successful unit which is also of satisfying appearance. The single wires may be of standard insulated telephone wire or fencing wire (16 s.w.g.) which should be "half-hard" to hold tension.

The wires should be arranged in parallel rows at one inch spacing. They will run longitudinally and be secured at each end of the frame. If insulated wire is used then on the wooden frames ordinary staples should be used.

Starting at one end the wire is made off with two turns round the staple and a tail of 2 inches or so left, see inset diagram " A ". The staple is then driven home tightly. The other end of the wire is dealt with in the same way after tensioning. The intermediate fixings are made with staples driven in far enough to thold the wire but leaving room for movement to take care of expansion and contraction.

If bare wire is used then it would be better to use insulated staples for the intermediate positions since movement in the wire in the supporting staples may give rise to unwanted noise in the aerial system.

CONNECTING THE TAILS

After a frame is completed the tails should be soldered so that there is a continuous connection between all elements of the reflector. It is not good enough to merely twist the ends together for there will be corrosion which could also add to noise in the aerial. The rule again here as with wiring connections is use no flux other than resin.
Fig. 4.3a shows how the two frames are bolted together. The accompanying photograph of one type of corner unit shows some of the details of construction. (The supports at the sides of the particular unit shown in this photograph will help to give some alternative ideas for use in cases where the aerial is to be fixed in azimuth.)
The reflector itself has side members bolted on, see " B ". The centre strut serves to support the dipole units and also provide the suspension points for the reflector on the main frame support.

It will be necessary to check the centre of gravity of the completed unit so that it is balanced. This will ensure easy adjustment of position in altitude.

SUPPORTING UNIT

The next task is to make the supporting unit which can be made in either of two forms-fixed or steerable. The basic construction is the same in both cases and is shown in " C ". The material used is 2in by 2 in timber and the assembly consists of a base and frame-support system. The base is made 6 ft by 6 ft with corner diagonal members which will serve as supports for the wheels (see "E") as well as providing rigidity for the base frame. If the unit is not to be steerable in azimuth then the wheels can be omitted.

On this base is mounted the aerial support system which is a sub-frame with vertical supports for the reflector, see "D". Again the material used is 2 in by 2 in timber. Detailed measurements are given in the diagrams.

For main assembly work coach bolts are used as far as possible since these will weather well, make for easy assembly, or if necessary allow easy dismantling for future modification.
If the aerial is to be steerable it is preferable that the wheels should run on a solid surface. Ideally this would be of concrete about 2 in thick or, alternatively, concrete paving units could be used provided the base on which they are laid is carefully prepared, see "C". Cost-wise concrete would be the better choice.
If it is decided to make a permanent base and the project is to be carried through to the later developments of the interferometer where a second aerial unit will be required, then place the first unit on the east-to-west base line at one end of the line.
An alternative method of mounting the reffector, which again can be fixed or steerable, is shown in the photograph on page 467 (Part 1 of this series). This arrangement will provide scope for those who prefer to work in materials other than wood. The foundation for the steerable unit is much simpler than for the four wheel system of the first design, described above.

FOLDED DIPOLES

The frequency chosen will enable two dipoles to be used and in order to make the system as efficient as possible folded di.poles will be used. It was stated that the optimum distance from the apex would be 0.35 wavelengths and that this would give an impedance of 72 ohms. As two aerials are to be used

it will be better to make these folded dipoles to take advantage of the increase in impedance that these will provide. By doing this the system can be properly matched and balanced.
A dipole is naturally a balanced system, and the use of coaxial cable to make connections makes it unbalanced. It might be thought that because it is common practice to use coaxial cable for connection between the television aerial and the receiver, that this is also a satisfactory arrangement for radio astronomy. This is not so because the level of signal that is available for television is much greater than that which is received from extra terrestrial sources.

BALUN TRANSFORMER

It is however possible to use coaxial cable for part of the system. In order to do this a balance to unbalance transformer known as a "balun" is used to connect in unbalanced system to a balanced system and vice versa.

To connect the folded dipole to standard 75 ohm cable the "balun" shown in diagramatic form in Fig. 4.4 will be used. This is a $4-1$ step down in impedance and provides a balanced connection at the dipole. Details of the construction are given in Fig. 4.5. The centre core of the coaxial feeder is connected to a half-wave length of cable in a special way. The outer braid of the cable ends are all connected together as closely as possible.

The inner of the main cable and inner of the nearest end of the half-wave section are connected together and to one side of the dipole. The inner of the other end of the half-way section is connected to the other side of the dipole. No connection is required to the outer of the coaxial cable at the dipole end of the system. The other end of the main coaxial lead matches the unbalanced termination at 75 ohms.

CONNECTING THE DIPOLES

The dipoles can be either of the following types.
They can be made up from copper wire of about $14 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. The wire should be hard drawn copper, or cadmium copper. This is necessary because there will be considerable strain on the dipoles if they are to remain in the focal line of the reflector without sagging.

Alternatively, the standard commercial folded dipole as used for television can be employed. In this case the dipole can be supported by an aluminium tube of about 0.5 in diameter, from the apex of the reflector.

The "balun" on each dipole and the coaxial lead should go straight to the apex of the reflector and the lead taken through without touching the wires of the reffector screen. The free ends of the two cables will be matched to the 50 ohm quarterWave section which will, in turn, be plugged into the preamplifier. See Fig. 4.6.

[^2]

Fig. 4.4. A balance to unbalance transformer or "balun" connected to a dipole

NOTE: The length of the halfwave section will depend on the type of cable insulation :

$$
\begin{aligned}
\text { Solid polythene } & =\frac{\text { wavelength } \times 0.65}{2} \\
\text { Cellular polythene } & =\frac{\text { wavelength } \times 0.86}{2} \\
\text { Air-spaced } & =\frac{\text { wavelength } \times 0.9}{2}
\end{aligned}
$$

Fig. 4.5. Constructional details of the balun

CONNECTING BOX SUFFICIENTIY SMALL
TO ALLOW COAXIAL SOCKET TAILS TO MEET

Fig. 4.6. Connector of two dipoles to the $\mathbf{5 0}$ ohm cable

If wire dipoles are used then a wood support reaching nearly to the dipoles will help to support the balun and cable. The dipoles themselves are supported in the reflector framework between the diagonal struts by means of nylon cords. The assembly of the two dipoles is shown in Fig. 4.7.

If the commercial type of dipole is used then balun and cable can be taped to the tube support.

ASTRONOMICAL TERMS

During this article the terms azimuth and altitude have been used. Though no doubt many will be familiar with these terms it may be of interest to give a short summary of the use of them. They are the coordinates by which the position of a celestial object may be indicated. A diagram of the system is shown in Fig. 4.8.

Fig. 4.7. Details of the dipole assembly and mounting

Fig. 4.8. Illustrating the meaning of the terms Azimuth and Altitude

AZIMUTH

This is the distance measured on a horizontal circle which coincides with the visible horizon. It is measured usually from North in degrees through East $\left(90^{\circ}\right)$, South (180°), West (270°), thence up to North again (360°). The logging of a position, for example, would read "Azimuth 202°."

ALTITUDE

This is the distance from the horizon up to the position of the object observed. The greatest altitude is 90° therefore the logging in this case might be "Altitude 52°." This greatest altitude is called the Zenith.
The altazimuth system is known as the Horizon System of Coordinates. It is used where the aerial system in radioastronomy is steerable in these terms and the position so obtained is translated into other celestial coordinates such as equatorial or galactic. Where large radio telescopes are involved it is usual to have direct computerised conversion of altazimuth to the other system of equatorial coordinates, in order that the telescope is kept continuously pointing to the correct position.

Altazimuth coordinates are used mostly for the location of artificial satellites where it is necessary to follow their path.

Next month: The receiver set-up and recording methods will be described, and some elementary Solar Astronomy will be discussed.

THIS month constructional details for a 1 Hz vertical seismograph are given together with installation and operating instructions.

A IHz VERTICAL SEISMOMETER

The spring pendulum seismometer of Fig. 9 is based on a welded mild steel frame. It might be possible to persuade a garage proprietor to weld the frame and also tap threaded holes in the baseplate. but if not, the frame could be built of well seasoned oak. Compared with many other seismometers, the spring pendulum type is one of the easiest to set up and operate.

Any old spring will not do for the seismometer as it must be near zero length. If the turns of a zero length spring were without thickness it would shrink to nothing when untensioned. Of course, an actual spring will only contract to the position where the wire turns touch. Some springs can have a theoretical negative length, depending on how they are wound.

To determine the spring length. tension it with various weights, measure the extension given by each weight, and then plot weight against extension on a graph. When the resulting straight line is projected it should pass through, or close to, the zero co-ordinates.

A spring of the dimensions specified in Fig. 9 can be obtained from most large ironmongers, but it is advised that several should be purchased so that one may be selected which has a zero or negative length.

A negative length spring can be converted to zero length by altering the spring adjuster.

Magnets for the transducer are taken from dismantled loudspeakers. The small bar magnet taped to the seismometer boom, above the calibrating coil, will impart a small force to the boom when the calibrating coil is energised by a 1 Hz sine wave input. Approximately 1 millivolt r.m.s. in the coil will produce a zero-peak deflection of 50 nanometers.

The thin leads from the transducer coils are threaded through the hollow boom, and can be terminated by soldering them to a tag strip mounted on the upright section of the frame. Coil the transducer wires so that they do not interfere with the free movement of the seismometer boom.

To make up the seismometer mass, obtain a length of 2 in inside diameter cardboard tube and glue this to a cardboard base. Insert and glue in position a dowel of the same diameter as the boom tube, then melt down 2 lb of lead and pour this into the mould.

WINDING TRANSDUCER AND CALIBRATING COILS

A bobbin for the transducer coil, shown in Fig. 10, is made up from two $2 \frac{1}{2}$ in square thin sheets of s.r.b.p., and a $\mathrm{in} \times \mathrm{lin} \times$ tin plywood former. Make sure that the corners of the former are rounded off, and edges smoothed, before glueing on the s.r.b.p. sides.

Drill a hole in the centre of the bobbin for mounting on a mandril in the chuck of a hand drill. With a sharp spike, make a hole in one s.r.b.p. side to admit L1 start lead. Solder some thin red insulated wire to the 40 s.w.g. enamelled wire and push through the spiked hole. Secure and insulate the joint with a layer of plastics insulating tape.

Wind on 2,000 turns of $40 \mathrm{~s} . \mathrm{w}$. g. wire for L1 then make another spiked hole and terminate this winding with a short length of green insulated wire. Insert the wire through the hole and insulate and secure with plastics tape.

A similar procedure is followed for the L2 winding, except that this consists of 500 turns of 40 s.w.g. wire, and has a blue start lead and a green finish lead. Finally, use more plastics tape to protect the windings and transducer bobbin.

A piece of s.r.b.p. or gummed paper tube is glued to one edge of the transducer bobbin to make a push fit mount on the end of the seismometer boom. A hole is drilled to admit the transducer leads.

Fig. 9. Constructional details of IHz vertical seismometer

(c)
calibrating coil l3 bOBBIN (SIZE NOT CRITICAL) WOUND WITH 1000 TURNS 40 S.W.G. ENAMEL WIRE

Fig. 10. Coil assembly details: (a) exploded view of transducer coil bobbin, (b) transducer coil shown in cross section, (c) calibrating coil bobbin dimensions

The calibrating coil dimensions are not critical, and the small bar magnet does not have to enter the hole in the centre of the calibrating coil. An LA5 pot core bobbin, or a former of approximately the same shape and size. can be wound with approximately 1.000 turns of 40 s.w.g. enamelled wire to make the tramsducer coil L3.

CONSTRUCTING THE SEISMOMETER AMPLIFIER

For the seismometer amplifier, prepare a piece of 0 Iin matrix Veroboard 19 holes wide by 43 holes long, with copper strips running parallel to the longest side. Drill holes to take panel mounting screws, enlarge the holes for VR1 tabs, and make breaks in the copper strips, see caption Fig. 11.

Insert and solder all terminal pins and proceed with mounting all components, except R2. Take particular care not to overheat transistors TR1 and TR2.

TESTING

To test the seismometer amplifier module for wiring or component faults, solder a 470 ohm resistor temporarily across the terminal pins to which the red and green leads from the transducer coil will later be attached.

Connect the orange and black leads to the module panel as in Fig. 11, and ignore the remaining terminal pins.

Wire the orange lead to the positive terminal of a 12 V battery, and the black lead to the negative terminal.
Check the potential between the collector and emitter of TRI using a $20 \mathrm{kilohm} / \mathrm{volt}$ meter. If significantly lower than 0.9 V , disconnect the battery and add resistor R2; this should increase the TR1 collector emitter voltage to near the required value. If necessary experiment with the value of $R 2$.

Where the TR1 voltage is found to be much higher than 0.9 V , when R 2 is absent, the transistor may be faulty.
Now check the voltage between the collector of TR2 and the negative battery terminal. Any serious departure from five volts will probably indicate either a faulty transistor, a wiring error, or abnormally high leakage in C 3 .

PEN AMPLIFIER CONSTRUCTION AND TESTING

The pen amplifier module is based on a 0.1 in matrix Veroboard 19 holes wide by 57 holes long, with copper strips running parallel to the longest side. Drill holes to take the panel mounting screws,

Fig. II. Assembly and wiring details of seismometer amplifier. Cut copper strips at the following: $B 4 ; B 40 ; C 4$; C40; D4; D40; FI B; G14; H14; N34; O5; O40; P5; P40; R5; R40

Fig. 12. Assembly and wiring details of pen amplifier. Cut copper strip at following holes: B48; C36; C48; D27; D48; El0; E1I; E48; K27; M6; N6; N30; O6; O48; P6; P48; Q48; R9; R48
the miniature mains transformer mounting screws, and enlarge holes for VR4 tabs.

Make breaks in the copper strips as listed in the caption of Fig. 12, and insert all terminal pins before wiring up other components.

Make a preliminary check on the pen amplifier module as follows. Temporarily wire a six volt, 60 mA bulb across the terminal pins identified by mauve leads in Fig. 12. Connect a mains lead to the appropriate pins on the miniature mains transformer Ti.

Solder a one kilohm resistor across the grey and orange lead terminal pins, and connect a shorting link across the brown and yellow lead terminal pins.

When the mains input to Tl is switched on, look for a dull red glow from the lamp LP1. With the testmeter, check that the voltage across Cll is between 11 V and 12 V .

Apply the positive voltmeter lead to the grey wire terminal pin, and the negative lead to module earth. Adjust VR4 for a reading of around 6 V .

If it is impossible to obtain a reading of 6 V , there may be a wiring fault, or something wrong with TR4 or TR5.

INSTALLING THE SEISMOMETER AMPLIFIER

Although insensitive to slow changes of ambient temperature, the seismometer amplifier should be screened against thermal variations which lie within the frequency range of the seismograph, otherwise there will be an addition to the apparent overall noise level. Draughts can similarly produce spurious noise.

Thermal screening is achieved by placing the amplifier module inside a draught proof box which is lined with expanded polystyrene. In Fig. 13, board mounting and interwiring details are shown. Here the aluminium base plate provides a support for the polystyrene lined s.r.b.p. cover. Only the socket panel is shown. SK1 and SK2 are mounted by means of an 8 in $\times 1 \frac{1}{2}$ in s.r.b.p. panel attached to the side of the $\operatorname{8in} \times 3$ in $\times 1 \frac{1}{2}$ in aluminium chassis.

A layer of expanded polystyrene is interposed between the top of the chassis, and the amplifier module and C5. to minimise thermal gradients. Leads from the seismometer transducer are taken through a grommet in the s.r.b.p. panel, to appropriate terminal pins on the module panel.

Fig. 13. Seismometer amplifier unit. After assembling the unit should be enclosed in hardboard lined with polythene to exclude draughts, and short term temperature changes

There is sufficient room on the baseplate of the seismometer to accommodate the complete seismometer amplifier and batteries on either side of the boom. The amplifier unit chassiş can be fixed with two self-tapping screws. If desired, a battery box can be made up for BYI and BY2.

CONTROL UNIT CONSTRUCTION

A bin $\times 4$ in $\times 2$ itin aluminium chassis placed on its side will serve as a box for the control unit components. and can house the pen amplifier module.

After drilling the box front to take those components shown in Fig. 14, drill holes in the sides of the box to accept the pen amplifier module mounting screws, and mains lead grommet. Install all controls, sockets, and the amplifier module, then proceed with wiring up as shown.

CONSTRUCTING A DISC RECORDER

A prototype disc recorder which incorporates a bell warning circuit and a pen vibrator is shown in Figs. 15a and b. Disc recorder layout will depend on the types of turn-table motor used and on additional facilities.

A start can be made by selecting a suitable motor for one revolution per 24 hour operation. It is essential to have a slipping clutch drive of the type found in mechanisms taken from alarm clocks, electric wall clocks, or time switches.

Most time switches have a spindle with a threaded hole which can be easily adapted to take a turntable, but in the case of a converted clock, a threaded bush must be soldered to the hour hand cog as in Fig. 16a. If difficulty is experienced in making a suitable turntable and fixing it to the motor, try using an old gramophone turntable with a friction drive on the rim; this will also allow a bigger paper disc to be employed, and will give greater trace detail.

Mount the turntable assembly on a baseboard made of plywood or thick s.r.b.p., with space to spare for the pen relay RLA, and RLB and RLC if used see Fig. 8).

RELAYS

All relays specified for the disc recorder are of the G.P.O. type 3000 , with 1,000 ohm windings, operating on 6-12V. Modification details for RLA are given in Fig. 16 b .

The pen arm is soldered to a 4B.A. solder tag which is held against the armature by a small pressure spring. The arm is free to move up and down, with the pen counterbalanced by a lead weight, but is driven horizontally by the movement of the armature; in this way the pen is free to follow surface irregularities of the paper and maintains a constant but light contact.

Remove RLA armature and glue two small squares of foam plastic, approximately $\frac{1}{4}$ in $\times \frac{1}{4}$ in $\times \frac{1}{8}$ in thick, to the relay frame and polepiece, then replace the armature and mount the pen arm. If necessary, bend the relay contacts so that they are just open when the armature is naturally biased by the foam inserts.

Fix RLA to the baseboard beside the turntable and bend the pen arm until the resulting ink trace is in line with the turntable radius. The disc recorder in its basic form will now be ready for use.

EXTRA FACILITIES

It is useful to have some warning of the onset of a tremor when the seismograph is left operating

Fig. 15a. Top view of prototype disc recorder

Fig. 16. Piece part assembly details for dise recorder
unattended, perhaps in a separate room. The simple bell circuit wired to the relay RLA contacts as in Fig. 8 can be quickly added to the basic recorder.

One of the bugbears of most pen recorders is. unreliable inking. There is nothing more infuriating than finding that the pen has dried up just before the onset of an interesting event. To improve matters, the pen can be filled with watered down ink, but this gives a grey trace.

Further improvement results if the detachable nib is cleaned at the end of each 24 hour recording period, but this is a nuisance, and uses up valuable recording time.

The remedy is to employ a vibrator to keep the point of the nib bouncing up and down on the paper. and maintain a tiny pool of wet ink under the nib, without appreciab!y thickening the trace. A description of the vibrator has already been given, see also Fig. 8 and Fig. 15.

For triggered. expanded trace recording, a one revolution per minute synchronous motor can be arranged to rim drive the turntable approximately one revolution in every 36 minutes by means of a spring loaded $\frac{1}{5}$ in diameter rubber wheel.

A choice of motor speeds and friction wheel sizes will allow a wide range of recording speeds to be covered.

INSTALLING THE SEISMOMETER

An ideal seismometer site would be a deep pit excavated down to bedrock, somewhere in the middle of a large, unpopulated area of open countryside, devoid of trees. and at least one hundred miles from the nearest seashore. Of course, the ideal site is not available in the United Kingdom, and the best use must be made of available terrain.

In the centre of large towns built on chalk or clay, the "cultural" noise level will almost certainly mask all but the strongest tremors from distant events, but advantage can be taken of reduced human activity in the early hours of the morning. The seismograph will anyway be left running for 24 hours under normal circumstances.
The seismometer can be placed on a large concrete block which is let into the floor of a cellar, as this serves to couple it efficiently to the ground.

A suburban site could be based on a pit-or seismometer "vault" to use the correct term-dug in a garden. See that the pit is either well drained, or rendered completely waterproof with a lining of impervious concrete.
Although rural seismometer sites are obviously the best. the presence of trees can multiply the microseismic background noise at least three or four times when a high wind is blowing, and quarry shots have a perverse habit of turning up right in the middle of an interesting recording.

Training areas for the Armed Services are also sited in rural areas. Guns, bombs, depth charges, and sonic booms are all recorded faithfully by the seismograph.
Having decided upon and prepared a seismometer site, the instrument is installed and levelled with the aid of a spirit gauge. Make sure that the transducer coil is correctly aligned, completely free to move, and cannot touch the magnets.
A sharp increase in resonant frequency can be caused by minute whiskers of ferrous metal bridging the gap between magnets and coil. The remedy is to clean the magnets by wiping them with a piece of foam plastic.

A tin can placed over the transduver assembly, with a cut-away to clear the seismometer boom, will prevent dirt collecting on the magnets. It is advisable to protect and shield the seismometer with a heavy box cover of wood or metal, which is in turn covered by an old blanket to keep out drafts and loud noises.

TESTING THE SEISMOGRAPH

Connect the seismometer amplifier to the control unit. Adjust VR1 for minimum damping (slider earthed, and plug in the batteries. With gain control CR2 at zero, switch on the control unit, and wait for a minute or two for the circuits to settle down.

Advance VR2 while watching the zero-peak meter; the pointer should be seen to rise and fall rhythmically at the resonant frequency of the seismometer. If instead the pointer persistently goes to full scale, at low settings of VR2, and the panel lamp LPI flashes, this will indicate instability.

- The instability might have been caused by switchon surges, in which case a 1.5 V d.c. voltage injected into SK4 sockets should kill the unwanted oscillation, and return the seismometer amplifier to normal working.

To check the amplifier noise level, set VR2 to zero and clamp the seismometer transducer by inserting a thickness of cardboard between the coil and the magnets. Turn VR2 to maximum gain and observe the peak meter deflection, this should not exceed $4, \mu \mathrm{~A}$ on the existing meter scale.

CALIBRATION

The seismologist is not necessarily concerned with the accurate measurement of ground motion amplitudes. Often it is enough to time the tremors, and merely compare relative trace amplitudes. Nevertheless, it is instructive to see how the seismometer responds to a well defined mechanical displacement and there are several methods of attempting this.
Perhaps the best technique is to place the seismometer on a special "shaking table", a precision engineered platform capable of being moved with great accuracy through small distances.
A simpler alternative more suited to the amateur is to impart a small motion to the seismometer boom by applying a known electromagnetic force.
An item of equipment needed for calibration is a sub-audio oscillator, tunable from about $0.5 \mathrm{~Hz}^{-}$ 5 Hz , with an output of at least 10 V r.m.s., and having a switched attenuator covering r.m.s., 100 dB or more.
An ordinary audio signal generator can sometimes be converted for sub-audio use by adding extra large capacitors to the frequency determining network, while at the same time increasing the value of all coupling, de-coupling, and smoothing capacitors to prevent distortion and loss of output at the lowest attainable frequencies.
The Heathkit AG-9U, for example, will work down to 0.1 Hz after suitable modification.
To calibrate the 1 Hz spring pendulum seismometer, attach a small pointer to the seismometer mass, arranged so that it moves up and down a milli-metre scale. Temporarily short-circuit the red and green leads from the transducer coil L1 at the seismometer amplifier input, and make sure that the supply is disconnected.

electronics mastered!*

by our highly practical
 BUILD, SEE \& LEARN system

Step by step we take you through the apparent intricacies of electronics and show you how easily you can master the subject. Write for the brochure which shows, in full detail, how you can do it.

We provide a full range of components and subassemblies, with details of what they do, so that you learn to recognise all the 'bits and pieces'. Using some of these you are instructed in how to build this oscilloscope, simply and quickly.

You are shown how to read and understand circuit diagrams so that you can later build more advanced equipment or draw your own diagrams.

You can construct over 40 kits, including :-

- Valve experiments
- Electronic switch
- Transistor experiments
- Amplifiers
- Oscillators
- Signal tracer
- Photo electric circuit
- Computer circuit
- Basic radio receiver
- Simple transmitter
- a.c. experiments
- d.c. experiments
- Simple counter
- Time delay circuit
- Servicing procedures complete newcomers to electronics. No Maths needed !

POST NOW FOR
 FREE BROCHURE

BLOCK CAPITALS PLEASE
SPECIAL ELECTRONIC GIFT to allour Students

SPECIAL PURCHASE!

BRARD KEW FR MULTIPLEX STEREO DECODER OHIT8. Manufactured by PHILIPN, Nize $2^{*} \times 3 \frac{1}{2}^{\prime}$ aligned with full circuit diagram and conmention details. 84 each. Post free.
FEW ONLY-LEAK MK I TRANSCRIPTION PICKUP ARMS. Using the world famoua gimbal piyot sgatelli. Con
P. \& P. 20 p.
IKPUT MATCHIMG TRANEFORMER. Beautifuly made in heavy Mu-metal cylindrical case for minimum hum pick-up. Size $11^{\prime \prime}$ high $\times I \frac{1}{"}^{\prime \prime}$ dia. Ratio 150: 1 approx. Especially suitable for matching high imperlance or vice versa. 75p eaph. Post Free. BLACK ANODISED 16g. ALUMINIUM HEAT 8DKKS. For TO3, complete with mica's and bushey. Size 2 g $^{\prime \prime} \times 3^{\prime \prime}$ approx. 25 p pair. P. \& P. J1).

HARVERSONIC SUPER SOUND $10+10$ STEREO AMPLIFIER KIT

A really, first-class Hi-Fi stereo, Amplifier Kit. Unes 14 trangistors including silicon Trangistors in the firat flve stager on each channel result ing in even lower noise
level with improved sengitivity. Integrated preanp With Bass, Treble amp two Volume Controls. Suitable for with Bass, Treble or crystal cartridgce. Output otage for any apeakere front 5 to 15 ohmag. Compact design, all parts supplieid including irilled metal work, high quality ready drilled printed circuit board, attractive front panel, knobs, wire, solder, nuts, bolts- no extras to buy. Ample stcep by sted instructions enable any
constructor to huild an amplifier to be proul of. Briet speciffeation: Poser output $14 W$ r.m.s. per channelinto 5 ohms. Frequency respouse $\div 3.1 \mathrm{~B} \quad 12-30,000 \mathrm{~Hz}$ width $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Bass boost approx. to 12 IdB Treble cut approx. to - 16 dB . Negat ive feelback 18 dB Treble cut approx. to
 Fully detailed 7 -page construction manual and parts 1 i free with kit or send 18 sp plus large A.A.E.
PRICES AMPLIFIER KIT

CABINET
83 P. \& P. 30p.
(Pust Free it all units purchased at same time). Full after males zerviee. M1so
t20. 50 Post Frec.
Note: The abore amplifier is suthate for feeding theo mono sources into inputs (e.g. mike, radio, twin record deckst ele.) and will then provide mixing and fading
factlies for medtum poutered Hi -Fi Discotheque wse, etc.
gPECIAL PURCHASE OF MANUFACTURER'S SURPLUS: All Transist or F.M.tuner head with twin A.M. Gank incor porated. Beat in congineered with precisson geared reduction drise. F.M. R.F. Transistor, oscillator/Mixer and firet I.F. miagc ($10.7 \mathrm{Mc} / \mathrm{s}$ output) with optional $A \mathrm{AFC}$ connection. Buile on printed circuit stable over range $88-108 \mathrm{Mc} / \mathrm{s}$. Brand new and pre-alignecl. Size 2tin H. 1 in W. $\times 2$ inin D. For 6 V D.. 2.8 mA . A.M. Gang fited with trimmers which can be connected to circuits if required. LIMITED NUMBER. Only 22.25 post free. Connection details supplied.

HIGH GRADE COPPER LAMINATE BOARDS
x
TBLESCOPIC AERLALS WITH SWIVEL JOINT. Can be angled and rotatedin any direction. G section Lacquered Brass. Extends from Gin. to approx. 22lin. Maximum diameter 4 in. $25 p$ each
BRAND NEW MULTI-RATIO MAIES TRANSFORMERS. Giving 13 alternatives. Primary: $0-210-240 \mathrm{v}$. Secon lary combinations: $00-5 \cdot 10 \cdot 10 \cdot 20 \cdot 20-30-3 j \cdot 40-60 \mathrm{~V}$ hall
wave at 1 anmp or $10-0 \cdot 10,20 \cdot 0-20,30-0-30$, at 2 amps tull wave. Size $3 \mathrm{inL} \cdot 3 \frac{1}{2} \mathrm{nW} \times \times 3 \mathrm{inl}$. Price $\$ 1.75$.

MAIES TRANSFORMER. For transistor power supulles
Pri. 200/240v. Sec. 9-0-9
Pri. 200/240V. Sec. 12-0-1. 200 mi . 70 p . Pri. 200/240V. Sec. 10-0-10 at 2 amp. £1-38. P. P. 13 p Tapped Primary $200-200-2404$. See. 21% at 500 m.

Inject a 1 Hz sinusoidal signal of about 5 V r.m.s. into the calibration coil L3, via sockets SK4 and SK5 on the control unit front panel.

With the help of another person, tune the oscillator for maximum deflection of the seismometer boom, and then adjust the oscillator output voltage until the seismometer mass is swinging through a vertical distance of 1 millimetre. Carefully note the exact oscillator voltage required to give the above deflection, then switch off the oscillator.

Remove the short circuit from the transducer leads and re-connect the supply. Advance VR2 to make sure that the seismometer is now responding correctly to microseisms, with VR1 set for minimum damping.

With VR2 turned down low, attenuate the previous oscillator output voltage by 80 dB and inject this signal into SK5. Adjust the oscillator frequency control for maximum deflection of the zero-peak meter; this is because the seismometer may not have the same point of resonance for very large and very small displacements. Since the original deflection was 1 millimetre peak-to-peak, or 0.5 millimetre zeropeak, the new seismometer deflection should be $0.5 \mathrm{~mm} \times!0^{-4}$, or 50 nanometres.

Adjust VR2 for a full scale deflection of $50 \mu \mathrm{~A}$ on the zero-peak meter, and make a note of the VR2 setting for future reference. The calibration obtained will be dependent on the amount of damping applied.

For other settings of VRI, re-calibrate, or prepare a response graph similar to Fig. 2 so that known settings of VR1 can be related to amplitude.

Another factor to be taken into account is that the calibration will only apply at the particular frequency used to deflect the seismometer boom, because the transducer is of the velocity type. It is a reasonable assumption that output will be related to amplitude in the undamped mode when the seismometer can only respond to a narrow band of frequencies centred at resonance.

OBTAINING RECORDINGS

Set VR2 to zero and insert the disc recorder jack plug into socket JK1 on the control unit front panel. Wait for a few minutes for the pen amplifier to settle down, and then adjust VR4 to position the armature of relay RLA at the mid-point of its travel.

Set up the pen, paper disc, and turntable rotation. Advance VR2 until the pen just moves in response to microseisms, and gives a slightly thickened trace. If necessary, re-adjust the pen zero by means of fine control VR3.

Leave the disc recorder running for several hours to check for reliable inking and pen deflection. At the same time, try injecting a range of frequencies from the test oscillator via SK 5, to see how the complete seismograph responds to displacements of the seismometer mass.

SEISMOGRAMS

Four seismograms obtained with a simple disc recorder are given in Fig. 17.

A tremor from an epicentre a few hundred miles from the seismograph is depicted in Fig. 17a, recorded at a speed of one revolution every 24 hours. Seismogram Fig. 17b is the result of a rapid succession of small quarry shots at a distance of 6 miles (also clearly audible at the recording station); turntable speed one revolution every 36 minutes.
 disc recorder: (a) a near earth tremor, (b) quarry blasting six miles from recording station, (c) storm microseisms, (d) speeded up trace showing microseisms

An approaching area of low pressure, accompanied by high winds produced the seismogram of Fig. 17c; the large amplitude deflections were caused by trees in the vicinity of the seismometer. The recording speed for this was the same as for Fig. 17a seismogram.

Finally, in Fig. 17d, a turntable rate of one revolution per minute gives a detailed record of microseisms, and shows the modulation effect which is sometimes referred to as "string of sausages".

Although not certain, the modulation may be caused by long period oscillations from the continental shelf being added to more local microseisms.

If a strip or helical chart recorder is available, having paper speeds of $10 \mathrm{sec} / \mathrm{cm}$ or more, it can be connected to the seismograph control unit as shown in Fig. 18, to obtain more detailed recordings.

Serious seismological work demands the use of fast paper speeds with precise timing marks, to fix the arrival times of subsidiary waves reflected from crustal layers.

STRIP CHART RECORDINGS

The two seismograms in Fig. 19 are representative of traces given by a strip chart servo recorder.

Fig. 18. Circuit for feeding output from pen amplifier into an advanced recorder

(b)

Fig. 19. Seismograms obtained with a strip recorder, (a) earthquake in the North Atlantic Ocean, (b) depth charge recorded at a distance of $\mathbf{2 5 0}$ miles

Fig. 19a is of a confirmed earthquake centred under the North Atlantic ridge, with minimum damping applied to the seismometer, and a fairly slow paper speed of $5.5 \mathrm{~min} / \mathrm{cm}$.

Clearly shown here are the two peaks produced by the difference in arrival times of major P and S waves.

Fig. 19b gives a good general impression of seismograph sensitivity, and also shows the increase in detail resulting from a faster paper speed of $10 \mathrm{sec} / \mathrm{cm}$. To obtain this seismogram, frequencies below 1 Hz were filtered out by reducing the value of C14 coupling capacitor (Fig. 18) to one microfarad. The input impedance of the chart recorder was ten kilohms

For this, the response of the seismometer was set to wide-band with near maximum damping, and the major recorded frequencies were in the region of 5 Hz .

FILTERING

The seismograph response characteristic can, of course, be tailored to suit a particular situation.

If the main interest is the recording of teleseisms, that is events occurring some thousands of miles away, integrating capacitor Cl 0 in Fig. 7 can be added to attenuate signals above 1 Hz ; this also partly corrects the inherent transducer response to yield an output more nearly related to amplitude over the full frequency range of the instrument, instead of velocity.

Quarry shots and other explosions can form a study in themselves, as seismic signals revealing something of the structure of the Earth's crust.

For all but explosions approaching nuclear magnitude, the frequencies generally encountered will lie above 1 Hz . It will pay, therefore, to improve the signal to microseismic noise ratio by attenuating unwanted frequencies below 1 Hz ; simply achieved by reducing the value of $\mathrm{Cl4}$, as was done for seismogram Fig. 19b.

To conclude this short introduction to the subject, the serious experimenter can find plenty of opportunity in the field of seismology for circuit development. Good sub-audio amplifiers, filters, and oscillators are scarce items. Equally, there are few seismological stations run by amateurs in the British Isles, despite the new impetus given to the subject by nuclear explosion detection and Moon quake recording.

NEWS BRIEFS

Sub Trainer

ANEW era in the training of Royal Naval submarine crews was signalled by the recent opening of a computer-based Submarine Command Team 'Trainer (SCTT) at HMS Neptune, the R.N. training establishment.

The SCTT system was developed jointly by the Ministry of Defence and the Electronic \& Display Equipment Division of Ferranti Ltd. in Manchester, and is based on two Ferranti Argus computers.

The equipment is designed to train the submarine command team and crew in tactics and operations, and the various degrees of training available in the simulator system range from simple operator training to complex tactical exercises involving a number of target and escort vessels. Realistic simulations of sonar, radar. periscope, fire control and navigation systems are provided.

Lucas Looks Ahead

With the formation of an Electronics Product Group under Dr. John E. Maund, Lucas Electrical Limited intend to marry their undisputed engineering skill in automative electrical systems with the more recent electronics and semiconductor technology and production capacity of their former Semiconductor Division.
This move was considered desirable in the face of a rapidly changing electronics market where integration in both i.c. and hybrid module form are foreseen as major expansion areas, and in particular the acceleration of automotive electronics technology, an area in which Lucas has made a significant contribution. This company sees a greatly expanded market in the future since electronic-based systems will become essential parts of modern cars as a move to meet the new safety and environmental requirements.

Apart from the automotive market. Lucas intends to increase its activities in other areas, including consumer electronics. To this end their recent distributor agreements with two large U.S. component manufacturers. Centralab Semiconductor and Quantrol Electronics, are significant. The optoelectronics market in particular is seen as a major expansion area in the future.

It is of interest to note that the entry of Lucas into the field of semiconductor manufacture started originally in 1955 when. faced with the difficulty of obtaining silicon semiconductors, they decided to develop and manufacture their own.

They achieved fame as the creators of the world's first 500 V transistor.

A JOB WITH P.E.?

An unusual opportunity for an electronics enthusiast to enter technical journalism. There is a vacancy for an editorial assistant, age 20 to 30 , on the staff of Practical Electronics. Keenness and ability to learn more important than previous experience in publishing.

Write, with brief details of career, to the Editor, Practical Electronics, Fleetway House, Farringdon Street, London, E.C. 4.

m
 ค plact

Isems mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

INSTRUMENT CASES

Keeping up with the range of instrument cases available on the market is becoming increasingly difficult for the designer and constructor of equipment.

Adding to this large selection of instrument cases available at present are three new ranges from West Hyde Developments, Vero Electronics and McArdle and Brainsby.

With the increase in popularity of anodised aluminium finishes, West Hyde have developed the "Brightcase" instrument case which can be either free standing or rack mounting. The external construction is of aluminium with the exception of the top and bottom panels which are made of black PVC coated steel.

The anodised side panels are held with button head socket screws, which can also be used to carry the rack mounting brackets.

All units come complete with front and back panels in anodised aluminium in either full, half or quarter width. These panels are held by stainless steel Pozidriv screws on to the anodised main rails. Inside there are four aluminium slides on which the equipment can rest.

Details of case sizes and prices can be obtained from West Hyde Developments L-td., Ryefield Crescent. Northwood Hills, Northwood, Middx. HA6 INN.

As an addition to their "D" series instrument cases Vero Electronics introduce a $17 \frac{1}{2}$ in deep series. The cases accept standard 19in front panels or frames and incorporate flush fitting side handles, for ease of carrying.
The cases incorporate all the usual features of the "D" series, such as tilt feet, front trim, and handles and a vinyl paint finish. Ventilation is provided by slots in the bottom and rear panels which are both detachable for easy access to the interior.

Further details of all the Vero cases are available from Vero Electronics Lid., Chandlers Ford, Hampshire, SO5 3ZR

The Impex range of cases from McArdle and Brainsby covers 36 different sizes. The case bodies are made from 20 s.w.g. steel coated with stove enamel in green hammer finish.

The detachable front and back panels are 18 s.w.g. satin anodised aluminium and the base is made from 18 s.w.g. passivated zinc plated steel.

Further information on the Impex range of cases is obtainable from McArdle and Brainsby (Import and Export) Ltd., P.O. Box 2BB, Newcastle-upon-Tyne, NE99 2BB.

SWITCH KIT

Constructors will be delighted to learn that a contender to the famous Maka Switch, which many readers seem to have difficulty in obtaining, is now being marketed through Home Radio (Components) Lid., by A.B. Electronic Components Ltd.

The switch is available in kit form and practically any multiple arrangement of rotary switching can be set-up. The switch consists of a shafting unit with a 6 in shaft, wafers, screens, spacers, studding and a mains switch.

Addresses of local stockists and details of wafers available can be obtained from A.B. Electronic Components Ltd., Sutherland House. 5/6 Argyll Street, London. WIV IAD.

Switch kit made by

A.B. Electronics Components

TREASURE HUNTER

Hunting for buried treasure appears to be one of the popular outdoor pastimes, and the electronic metal detector is an essential part of the equipage of every serious treasure hunter.

A useful little handbook "A Fortune Under Your Feet" by Edward Fletcher has been brought to our attention. Its value is in the lesser known facts it contains about where and how to search. One chapter gives a broad outline of metal locators and suggests the kind of performance one should look for. Available from Joan Allen \& Co., Biggin Hill. Kent, price 45 p plus 6p post and packing.

METALS TO ORDER

Happy to -meet even the smallest order and advise which metal is best suited for a particular job, Henry Righton \& Co. Ltd., of Brookvale Road, Witton, Birmingham 6 , have opened a "Cash \& Carry" counter for the do-it-yourself enthusiast and model builders in the Birmingham area.

The counter. open from $9.0 \mathrm{a} . \mathrm{m}$. to $5.0 \mathrm{p} . \mathrm{m}$. and $8.30 \mathrm{a} . \mathrm{m}$. to 12 noon Saturdays, is able to supply aluminium, brass. copper, bronze and stainless steel in rod, bar tube, sheet or strips cut to any size, shape or length.

Vero Electronics D series case

WAR GAMES COMPUT PARI TWO
 By D. R. Daines

II SHOULD have been possible with last month's article to play in a very limited game using the primary parameter controls in Fig. 8. The SPEED controls would be "slowest" at the higher voltage end of the potentiometers VR4 and VR5; while target size would be smallest when S 4 is switched to (d) line and largest on R22, although the labels for these switch positions have no direct importance to circuit function-only to strategy.

SECOND STAGE-PANEL 'A'

Panel A contains the three multivbrators and the gate. The circuit is shown in Fig. 9. TRI and TR2 form the first "chance" multivibrator, with TR3 added to speed up the rise time.

The frequency of a multivibrator can be changed by altering the voltage applied to the bases of the transistors, which is what is done here. VRI alters the voltage, while $V R 2$ alters the distribution of that voltage between TRI and TR2, thereby altering the mark/space ratio (Fig. 8). The large CR combinations result in a slow change-over rate, and can be as low as once in every six or seven seconds.

The rate of itre multivibrator is formed by TR4 and TR5. with TR6 speeding up the output. Applying a variable voltage to the base of both transistors TR4 and TR5 would result in a varying frequency, but the mark/space ratio would remain the same; what is required is a fixed time pulse output with a variable delay between pulses. To this end TR4 is provided with a fixed base bias, but the voltage to TR 5 is varied.

Exactly the same configuration is applied to the PROBABILIIY multivibrator formed by TR7 and TR8, but the components are chosen to give a repetition rate somewhere between those of MVI and MV2. TR9 speeds up the output. In practice TR6 provides a very good square wave, but because of the slow repetition rates of MVI and MV3. TR3 and TR9 switch on and off very slowly, but the result is good enough for our purpose.

The outputs of the three multivibrators are applied to the gate formed by D5, D6, D7 and R41 (D8 is described later). Any small glass diodes will do for this purpose. If an oscilloscope is available, R41 may be adjusted to give the best output, but a meter may

Fig. 9a. The waveforms into each gate diade D5, D6, D7 and the gate output waveform

COMPONENTS . . .

STAGE TWO (Panel "A" Fig. 9)

Resistors

R23	$56 \mathrm{k} \Omega$	R30	$100 \mathrm{k} \Omega$	R37	$1 \mathrm{M} \Omega$
R24	$1 \mathrm{k} \Omega$	R31	$1 \mathrm{M} \Omega$	R38	$22 \mathrm{k} \Omega$
R25	$1 \mathrm{k} \Omega$	R 32	$470 \mathrm{k} \Omega$	R39	$330 \mathrm{k} \Omega$
R26	22k Ω	R33	$22 \mathrm{k} \Omega$	R40	$56 \mathrm{k} \Omega$
R27	$10 \mathrm{k} \Omega$	R34	$330 \mathrm{k} \Omega$	R41	$100 \mathrm{k} \Omega$
R28	$56 \mathrm{k} \Omega$	R35	$56 \mathrm{k} \Omega$		(see text)
R29	$22 \mathrm{k} \Omega$	R36	$22 \mathrm{k} \Omega$		
	10\%.	carbon			

Capacitors

C3	$25 \mu \mathrm{~F}$ elect. 50 V
C4	$50 \mu \mathrm{~F}$ elect. 50 V
C5	$0.05 \mu \mathrm{~F}$ polyester
C6	$0.05 \mu \mathrm{~F}$ polyester
C7	$4 \mu \mathrm{~F}$ elect. 50 V
C8	$10 \mu \mathrm{~F}$ elect. 50 V
C9	$0.25 \mu \mathrm{~F}$ polyester

Transistors and Diodes

TRI to TR9 any general purpose germanium types (e.g. OC7I) all same (9 off)

D4 to D8 any general purpose diodes (e.g. OA8I) all same (4 off)

Miscellaneous

Copper strip Veroboard 8 in $\times 3 \frac{3}{4}$ in
Dial (ex-P.O. type) with all contacts or components for Alternative Firing Element (Fig. IO)

Fig. 9b. Circuit diagram of the multivibrators and gate (stage one) with waveforms (Fig. 9a) showing how coincidence gating is achieved

Fig. 9c. Layout of components on Panel A with underside view showing the breaks in the copper strips
be used as well. C9 prevents any back e.m.f. from damaging the transistors.

TESTING AND USING

Apply an oscilloscope to the collector of TR3, TR6 and TR9 in turn and ensure that all three multivibrators respond to their associated controls in a satisfactory manner.
All multivibrators have a free-running frequency and unless the controls allow sufficient current to pass to the bases of the transistors, the multivibrators will assume their own free-running condition. There must be a variation of response throughout the entire sweep of associated controls.
Earthing resistors such as R2 in Fig. 8, may be increased or decreased and it may be necessary to have recourse to padding resistors between the various controls and the negative rail.

When all is satisfactory, apply the scope to the gate output (f), observing the appearance and disappearance of pulses singly or in bursts. After a while a definite sequence will be discerned; the adjustment of any control will affect this sequence. Connect the output (f) to one of the pulsing contacts on the telephone dial and the other one to chassis.

In the best conditions of the controls, dialling a 1 will produce a pulse or pulses 99% of the time, whereas in the worst conditions it may be necessary to dial ten times ten before observing pulses out.
The circuit so far may be used with a simple voltmeter attached as before, but this time any deflection of the needle will indicate hits and damage. A dice may then be thrown to determine where the damage is, or the extent of that damage. If necessary, a simple one-transistor amplifier stage can be used.

FIRING BUTTON

Some constructors may prefer pressing a firing button to dialling (see Fig. 10). TR10 may be considered as part of a bistable with TR11 and part of a monostable with TR12. Switches S5a and S5b are

Fig. 10a. Circuit diagram of the alternative firing element and firing button S5, shown with dotted connections in Fig. 3

COMPONENTS . . .

ALTERNATIVE FIRING ELEMENT (Fig. IOa)
Resistors

R42	$2.2 \mathrm{k} \Omega$	R46	$2.2 \mathrm{k} \Omega$	R 50	$1 \mathrm{k} \Omega$
R43	330Ω	R47	$220 \mathrm{k} \Omega$	R 51	$5.6 \mathrm{k} \Omega$
R44	$10 \mathrm{k} \Omega$	R48	$4.7 \mathrm{k} \Omega$	R 52	$4.7 \mathrm{k} \Omega$
R45	$10 \mathrm{k} \Omega$	R49	$22 \mathrm{k} \Omega$		

Capacitors

Clo, CII $100 \mu \mathrm{~F}$ elect. 50 V (2 off)

Transistors

TRIO-TRI2 any general purpose germanium types (e.g. OC7I) all same (3 off)

Miscellaneous

S5 Double-pole, on/off toggle switch, Veroboard

Fig. 10b. Wiring of the dial to provide a choice of firing power using the pulse contacts. The trigger pulses are used later to operate the Ledex motorised switch. Lamp wiring is also given here to supplement circuitry given in each wiring stage. The diagram will be required later for stoge six (see Fig. 3)

ELEGTROVALUE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS

MANY AT NEW REDUCED PRICES

40361	55p	2N2905	44p	2N4291	15p	BC148	9 p	BF×87	29p
40362	$68 p$	2N2905A	47p	2N4292	15p	BC149	10p	BFX88	26p
2N696	17 p	2N2924	20p	AC107	$46 p$	BCl53	19p	BFY50	$23 p$
2 N 697	18 p	2N2925	22p	ACl 26	20p	BC154	20p	BFY51	20p
2N706	12 p	2N2926	$11 p$	AC127	20p	BC157	12 p	BFY52	$23 p$
2N930	29p	2N3053	27p	AC128	20p	BC158	$11 p$	BS $\times 20$	$16 p$
2 N 1131	29p	2 N 3055	60 p	AC153K	22p	8 Cl 59	12p	C407	17p
2 N 1132	29p	2N3702	13p	ACl176	16p	BC167	$11 p$	MC140	25p
2 N 1302	19p	2N3703	13 p	ACY20	20p	BC168	10 p	MPS6531	35p
2 N 1303	19p	2N3704	13 p	ACY22	16p	BC169	$11 p$	MPS6534	30p
2N1304	26p	2 N 3705	13 p	ADI 40	$63 p$	8C177	14p	NKT211	25p
2 N 1305	${ }^{26 p}$	2 N 3706	13 p	AD142	50 p	BC178	13p	NKT212	25p
2 N 1306	33p	2N3707	13 p	AD149	58p	BC179	14 p	NKT214	23 p
2N1307	33 p	2N3708	10 p	AD161	33p	BC182L	$11 p$	NKT274	18p
2N1308	36p	2 N 3709	11 p	ADI 62	$36 p$	BC183L	10p	NKT ${ }^{403}$	$65 p$
2 N 1309	36p	2N3710	13 p	AFI14	24p	BCIB4L	$11 p$	NKT405	79p
2 N 1613	23p	2N3711	13 p	AFII5	24p	BC212L	$16 p$	OC71	38p
2N1711	26p	2N3819	23p	AF117	22p	BC213L	$16 p$	OC81	25p
2 N 1893	54p	2N3904	35p	AF124	24 p	$\mathrm{BC}_{214 \mathrm{~L}}$	$16 p$	OCsio	25p
2 N 2147	95p	2N3906	35p	AF127	22p	BCY70	18 p	ZT×300	14p
2N2218	34p	2N4058	13 p	AF139	33p	BCY7I	33p	ZTX301	$16 p$
2N2218A	44p	2N4059	10p	AF239	36p	BCY72	15 p	ZT×302	22p
2 N 2219	38p	2 N 4060	$11 p$	ASY26	27p	BFI15	23 p	ZTX303	22p
2N2219A	53p	2N4061	$11 p$	ASY28	27p	BF167	18p	ZTX304	27p
2 N 2270	62 p	2 N 4062	12 p	BC107	12p	BFI73	19 p	ZTX500	18 p
2N2369A	19 p	2 N 4124	18 p	${ }^{\text {BC }} 108$	11 p	$\mathrm{BF}^{\mathrm{BF} 194}$	14 p	ZTX50	$21 p$
2 N 2483	35p	2 N 4126	27p	BC 109	12 p	BF195	15p		
2 N 2484	42 D	2 N 4284	15 p	BC125	15 p	BFX29	315	$\times 21 \times 502$	25p
2N2646 2N2904A	47p	2N4286	150 150	BC126	22p	BFX84	25p	ZTX $\times 503$ ZTX	22p
2N2904A	42p	2N4289	15p	BC147	10 p	BFX85	52p	21×504	52p

RESISTORS

Appointed distributors for

SIEMENS (U.K.) LTD.
Appointed stockists

NEWMARKET TRANSISTORS
 RADIOHM POTENTIOMETERS

SAVE $\mathrm{E}^{6} 25$ ON THE NEW ENGLEFIELD 840 AMPLIFIER
This latesc Peak Sound high fidelity amplifier in. corporates many strikingly original features including facility for adding in stereo FM tuner. Superb per Eleccrovalue choice of simulared sofe learher covering

MAINLINE AMPLIFIER KITS
70W. power amplifier, 612.60 nete

30 WATT BAILEY AMPLIFIER PARTS

Transistors and PCB for one channel 66.46 Capacitors, resistors (metal oxide), and transistors. ne channel. 88.41 .
Complece unregulated power supply pack, 64.75
Suitable hearsink 100 N 400C. 55 p

SIEMENS TTL
 INTEGRATED CIRCUITS

We stock full range of all Siemens types for a very wide range of applications. For full details. ee our latest catalogu PLESSEY I.C. SL403D 7.5 ohms, $2 \cdot 10$ nett. Applications data 10p.
S.DeCs put an end to birds nesting

Components just plug in-saves cime-allows re-use
of components. S.Dec (70 points), $\$ 1.00$
T-Dec. may be temperature-cycled (208 points). 62.50 Also μ-Decs and IC carriers.

INDICATOR LAMPS

NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A. 24p; chrome bezel, round clear NR/C, 24p. Neon, square red ype LSSC/R, 18p; amber type All above are for 240 V ; clear peration. Filament types: $6 \mathrm{~V}, 0.04 \mathrm{~A}$ square redtype LSSC/R-6V 30 p ; 6 V , 0.04 A amber type LSSC/A.6V 30p; 6V 0.04A clear type LS5C/C-6V, 30p: 6V 0.04 A green type L55C/G-6V, 30p: 12 V 0.04 A LS5C/R-12V, 34p; 34V 0.04A LS5C/R-28V, 45 p .

SIEMENS 5\% TOLERANCE POLYCARBONATE CAPACITORS

$01,0.0120 .015,0.018,0.022,0.027$

$0.0330 .0390 .0470 .056,0.068,0.0920 .1$ $0.15,018,0 \cdot 22$
$\begin{array}{lll}0.27 & 7 p & 0.33\end{array}$

DIN CONNECTORS

Loudspeaker		plug	sock
	2 -pole	12p	10p
Audio	3-pole	13p	10p
Audio	4-pole	14p	12p
Audio	5-pole 180deg.	15p	12 p
Audio	5-pole 240deg.	15p	12p
Audio	6 -pole	15p	13p

NOW READY-1971
ELECTROVALUE CATALOGUE
64 pages plus covers. Thousands of items plus
classified information and illustrations.

techinical thalining in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further yoùr technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- Radio Operators' Certs.
- General Certificate of Education, etc. Now available, Colour T.V. Servicing

Examination Students coached until successful

NEW

SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

The rate of change of some electrical signals is often too slow to provide convenient monitoring with a test meter. This Chart Recorder makes a continuous assessment in graphical form on slow moving paper of such changing signals.
Suitable for use with currently running P.E. Radio Telescope project and other applications involving long-term observation and monitoring.

ENGINE TEMPERATURE CONTROLLER

The fan used in the motor car is unnecessarily wasteful when driven from the engine. This controller operates a fan independently from engine drive according to the temperature of the water in the radiator.

WATER LEVEL and RAIN ALARM

A simple audible alarm is triggered when rain falls or when the level of water in a vessel reaches a set point.

PRACTICAL

two poles of a pushbutton. It should be red and marked "Firing". Depressing the button discharges Cll completely and at the same time turns TR 10 off and TR11 on.
The collector of TR 11 becomes approximately 3 volts negative with respect to earth, and 6 volts with respect to the negative rail. C11 begins to charge through R47 and as it charges the base of TR 12 lowers.

There comes a point (after about five seconds) when TR12 switches off. The voltage at the collector rises towards the negative rail, and this rise is transmitted through R51 to turn TR 10 on. TR 10 and TR 11 together form a bistable and they now assume a stable state in which TR10 is on and TR11 off. The cycle cannot resume until S 5 is again depressed, hence the whole circuit is a five-second timer, determined by R47, R48, R $50, \mathrm{R} 51$ and Cl1.

While TR 10 is in the off position during the cycling process, the voltage at the collector rises to the negative rail and this is taken out to prime the gate
via D8 (Fig. 9a). Since nothing can pass the gate until all inputs have a 1 (positive), no rate of fire pulses can go forward until the firing button is pressed.
This substitution for the dial would leave the constructor no method of feeding the computer with information regarding the number of guns firing and so it would be necessary to introduce another VR arranged as a voltage divider, and it may be necessary to adjust the gate resistor.

Fig. 10b shows the connections to the dial and lamps on the upper part of the control panel.

THIRD STAGE WIRING

Pulses are now routed and attenuated according to the positions of the remaining controls, S6, S7 and S8 (Fig. 11). Notice that first they go through the second wafer of the calibre switch, S2b. Heaviest calibre pulses pass unattenuated, while others pass through voltage divider networks, for example that formed by R48 and R49.

Fig. Ilb. How to use n.c. positions to indicate "out of range"

COMPONENTS . . .

STAGE THREE (Fig. II)
Resistors

R42	33 k	R53	$33 \mathrm{k} \Omega$	R64	$470 \mathrm{k} \Omega$
R43	$1.5 \mathrm{M} \Omega$	R54	$100 \mathrm{k} \Omega$	R65	$56 \mathrm{k} \Omega$
R44	$100 \mathrm{k} \Omega$	R55	$220 \mathrm{k} \Omega$	R66	$330 \mathrm{k} \Omega$
R45	$220 \mathrm{k} \Omega$	R56	$100 \mathrm{k} \Omega$	R67	$220 \mathrm{k} \Omega$
R46	$470 \mathrm{k} \Omega$	R57	$2.2 \mathrm{k} \Omega$	R68	$56 \mathrm{k} \Omega$
R47	$470 \mathrm{k} \Omega$	R58	$100 \mathrm{k} \Omega$	R69	$1.5 \mathrm{M} \Omega$
R48	$1 \mathrm{M} \Omega$	R59	$2.2 \mathrm{k} \Omega$	R70	$2 \cdot 2 \mathrm{k} \Omega$
R49	$100 \mathrm{k} \Omega$	R60	$100 \mathrm{k} \Omega$	R71	$4.7 \mathrm{k} \Omega$
R50	$470 \mathrm{k} \Omega$	R61	$100 \mathrm{k} \Omega$	R72	$10 \mathrm{k} \Omega$
R51	$56 \mathrm{k} \Omega$	R62	$56 \mathrm{k} \Omega$	R73	$22 \mathrm{k} \Omega$
R 52	$2 \cdot 2 \mathrm{k} \Omega$	R63	$56 \mathrm{k} \Omega$	R74	$22 \mathrm{k} \Omega$

```
Switches
    S6 3-pole, 4-way rotary wafer
    S7 6-pole, 2-way rotary wafer (only 4 poles are used)
    S8 3-pole, 4-way rotary wafer
Optional (see Fig. IIb and text)
    Lamp and battery (any voltage) to show "out of
        range"
```

The other dividers will readily be discerned. At S6, the range control, lightest calibres are blocked at long range, while heaviest calibres are blocked at short range, it being assumed that such guns will fire over their targets.

If desired, the outputs marked N.C. (no connection) may be taken to illuminate an out-of-range bulb (Fig. 11b). A separate supply will be necessary; four 1.5 volt batteries in series would feed a six volt bulb for months, at the rate of use found here.

The shell type switch S 7 is unusual in that the player is required to make a conscious choice that is not governed by conditions on the playing board. There are two positions, marked "Armour piercing" and "High explosive", the point being that AP shells pierce thicker armour, but HE shells do more damage.

On the AP side the pulses pass through a divider network such as R 63 and R 64 , but are routed to the left of the diagram to pierce thicker armour, whereas HE pulses pass unattenuated to the right.

The armour switch S8 is set for armour thickness and again the pulses are blocked if the shells that they represent cannot pierce that thickness at that range. Others are attenuated by voltage dividers as before. Notice that R69 may form a divider with R62 as well as R70 to R74. The clear unattenuated signal path down the left of the diagram means that at optimum range the very heaviest shells whether HE or AP can pierce any armour. At a little longer range the heaviest AP can do so.

TESTING AND USING

Disconnect the chassis wire from the telephone dial (Figs. 9b and 10b), allowing pulses to pass unrestricted, and apply an oscilloscope to the output. There should be a very wide variation in the amplitude and frequency of pulses, and since we now have 12 controls (without the dial), the total number of combinations becomes $6^{3} \times 10^{3} \times 12 \times 4^{2} \times 3$ $\times 2$-which is over 60 million combinations. It is obviously impossible to check all these and it becomes necessary to sample in order to satisfy ourselves that all is well.

First repeat the tests of the second stage, ensuring that the sequence pattern alters with the movement of the previous controls. Then set the Range switch to position two (short) and ARMOUR to minimum. Under these conditions all calibre settings will produce pulses.

Check that heavy calibres produce large amplitude pulses, and not vice-versa. Switching range to position 1 should block the two heaviest calibres, while switching to position 4 will block the lightest.

Check that pulses are progressively attenuated with range, also in the AP position. Check the progressive blocking of lighter calibres as armour is thickened.

It is really a matter of checking step by step, keeping a clear idea of the principles involved. When all is satisfactory, replace the chassis lead to the dial.

The computer can be used with a voltmeter as before, if necessary with an amplifier stage. Deflection. of the needle indicates damage, but it is difficult. to be any more precise about this without becoming complicated. The amount of deflection is not a very good guide to the amount of damage because of the time lag in meter response.

A single heavy pulse of short duration may pass unnoticed by the observer, whereas a longer train of weaker pulses would produce a deflection proportionate to their amplitude and frequency. It is much better at this stage to say that if there is a needle deflection there is damage and to roll a dice to ascertain the extent of the damage.
Next month : Stage four - the start of showing how much damage is made to equipment.

P.E.GEMINI

REPRINTS AVAILABLE

Because of the continuing interest in the "P.E. Gemini " Dual Purpose Stereo Amplifier it has been decided to reprint all articles (together with any appropriate amendments) in booklet form.
The price of this 32 -page booklet is 55 p, including postage. Orders for copies, with P.O. or cheque made payable to IPC Magazines Ltd., should be addressed as follows:

The Receiving Cashier (P.E. Gemini)
IPC Magazines Ltd.,
Tower House,

- Southampton Street. London, W.C.2.

[^3]value $£ 5$ or more, received before Dec. 31, 1971

PHILIPS STEREO AUTOCHANGER

£9.75 Pont 25p. Precicion hi-E quality at grey dock enameiled Anilah. 10 fin. dia. turn
 able. 4 speeds, 18, $38 \frac{1}{5}$ mized. Fitted renowned Philips plug-in pick-np with atylus LP Stereo EP and 78. Sensitivity 100 mV . Frequenc
 grammé.
Below 2tin.

PHILIPS PORTABLE PLAYER CABINET

Size $18 \times 151 \times 7$ in. Cut for above deck. Ampliffor apace $14 \times 5 \times 3$ in. Satin alnminium tront grille. Really smar

BSR C. 109 SUPERSLIM

STEREO \& MONO CHANGER

Plays $12^{\circ}, 10^{\circ}$ or $7^{\prime \prime}$ record cullity unit backed by 888 telis bility with 12 month' garantee. AC 200/250v. Size 181×11 in. Above motor board 81 in .
 with stereo and mono xtal $\mathbf{£ 7 . 7 5} \underset{250}{\text { Poat }}$
GARRARD PLAYERS with Sonotone 9TA Gartridges. Stereo Diamond and Mono Sapphire. 8P25 Mk II 215 , Model 3500 8tereo and Mono Autochanger 214. Post 26 p.
RECORD PLAYER PORTABLE CABINET
 RCS DE-LUXE 3 WATT AMPLIFIER. Ready made tented. 2-atage with triode pentode ondapeaker, valve ECL88 EZ80. Reaponia $50-12,000 \mathrm{cps}$. Sensitivity' 200 m V. Post 25 p . ROS \& WATT AMPLIFIER with loudspeaicer and \& $\mathbf{4}$ alves UCL82 and UY85; Post 25 p .
R.C.S. TEAKWOOD BA8E. Ready cut out M O

E2.75 R.O.S. PABTC COVERS FOR ABOVE BASE

EMI PICK.UP ARM. With mono xtal and stylus 41.25 . EMI JUNIOR 4 SPEED RECORD PLAYER. Main: \& 3 operated motor, trarntabe and pice np. Poat 25p HI-FI PICE UP CARTRIDGES. Diamond Stereo/Mono 9TA E2.90; GP94 22.75; GP93 E2.25; MONO GP01 21.50 ; All standard fing complete with ntrlu!

WEYRAD P50-TRANSISTOR COILS RA2W Ferrite Aerial....65p Spare Cores................	Onc. P50/1AC
I.F. P50/2CC 470 kc/a.....33p	\(

\& Printed Circuit, PCA1\end{aligned}\)

 P51/1 or P51/233p .3s Werrad Boozlet P50/3V | .33 p | |
| :--- | :--- |
| 33p | OpT1 |
| $\times 1 \mathrm{in}, 20 \mathrm{p}$. | | \qquad .3 p

.50 p
.50 p VOLUMECONTROLS 80 omm Coax 4p sd. Long spindlen. Midget Size BRITISH AERIALITE 5 K ohms to $\dot{2}$ Meg. LOG or AERAXIAL-AIR SPACED LIN. L/8 $15 \mathrm{p} . \quad$ D.P. 25 p . $40 \mathrm{Jd} .21 \cdot 40 ; 60 \mathrm{yd}$. 22.
 WIRE-WOUND 3-WATT POTS. WIRE-WOUND 3-WATT Small type with small knob. STANDARD SIZE POTs.

 EDGE CONECTORS 18 Why 25 D ; 84 wiy 38p. 8.R.B.P. Board 0.15 MATRIX 21 in . wide 3 p per lin.
$81 \mathrm{n} . \mathrm{mide} 4 \mathrm{p}$ per lin.; 5in. wide 5 p per lin. (up to 17 in).
 S.R.B.P. undrilled hin. Board $10 \times 8 \mathrm{in}$. 15 p .

BLANK ALUMINIUM CHASSIS. 18 E.F.g. Rin. gides $14 \times 11 \mathrm{in}$. $80 \mathrm{p}: 15 \times 14 \mathrm{in} .85 \mathrm{p} ; 11 \times 3 \mathrm{in} \times 13 \mathrm{p}$.
 $8 \times 6 \mathrm{in} .15 \mathrm{p} ; 10 \times 7 \mathrm{in} .17 \mathrm{p} ; 12$
$14 \times 8 \mathrm{in} .27 \mathrm{p} ; 12 \times 12 \mathrm{in} .32 \mathrm{p}$.
1finch DLAMETER WAVECHANGE SWITCHES. 25p
 1 p. 1 R-wBy, or 4 p . 2 -way, or 4 inch DIAMETER Wevechange "MAKIT 25 p .
 TOGGLE 8WITCHES. dp .14 p ; dp. 18p; dp. dt. 28p.

ALL PURPOSE HEADPHONES
H.R. HEADPHONES 2000 ohms Super Sensitive. LOW RESISTANCE HEADPHONES $3-5$ ohms
DE LUXE STEREO HEADPHONES 8 ohm.
"THE INSTANT"
BULK TAPE
RA8ER AND
REGORDING
HEAD

GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE
lor Mile, Tape, P.D., Quitar, ste.
Battery 9-12\%, or H.T. line 200 m 00 y . D.C. operation. Sine
 For use with valve or trannintor equipment.
Full inatractioni mupplied. Brand new.

Guaranteed. Detaili 8.A.E. NEW TUBULAR ELECTROLYTICS | $2 / 850 \mathrm{~V}$ | \cdots | 14 p | $100 / 25 \mathrm{~V}$ | \cdots | 10 p |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $4 / 350 \mathrm{~V}$ | \cdots | 14 p | $250 / 25 \mathrm{~V}$ | \cdots | 14 p | $8 / 450 \mathrm{~V}$. $18 / 450 V^{\circ}$

$82 / 4507$ $82 / 450 \mathrm{~V}$ $82 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V}$ $50 / 50 \mathrm{~V}$ $14 p$
$15 p$
20p
10 p $500 / 25 \mathrm{~V}$

$8+8 / 450 \mathrm{~F}$ | p | 1 |
| :--- | :--- |
| p | | CAR TYPE $16+18 / 500 \mathrm{~V}$

$50+50 / 350 \mathrm{~V}$ | 58 p |
| :--- |
| $\quad 55 \mathrm{p}$ |

 $80 B-M L$. ELECTEOLYTICS. $1,2,4,5,8,16,25,30,50,100$
$200 \mathrm{mF} 15 V 10 \mathrm{p} ; 500,1000 \mathrm{mF} 12 \mathrm{~V}$ 18p; 2000 mF 25 V 35 p CERAMIC, 1pF to 0.01 mF , 4D. silver Mica 2 to 5000 pF , 4p. PAPER 350V-0. $14 \mathrm{p}, 0.513 \mathrm{p}$; 1 mF 15 p ; 2 mF 150 V 15 p $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$.
$1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,8 \mathrm{p} ; 0.047,0.1,14 \mathrm{p}$
SILVER MICA. Close tolerance $1 \% .22 \mathrm{~F} 00 \mathrm{pF} 8 \mathrm{p} ; 560$ 81LVER MICA. Close TWIN GANG. $40-0.1208 \mathrm{pF}+176 \mathrm{pF}, 65 \mathrm{p}$; 810 w motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$; 500 pF slow motion, tanderd 45p; Emall 8-gang 500 pF $81-10$. 8HORT WAVE SINGLE. $25 \mathrm{pF}, 50 \mathrm{pF}, 55 \mathrm{p}$.
CHROME TELESCOPIC AERIALS 23in. Swivel base 20p TUNDFG. 8olld dielectric. $100 \mathrm{pF} .500 \mathrm{pF}, 35 \mathrm{p}$ each. TRIMMERS. Comprassion $80,50,70 \mathrm{pF}, 5 \mathrm{p}$; $100 \mathrm{pF}, 150 \mathrm{pF}, 8 \mathrm{p} ; 250 \mathrm{pF}, 8 \mathrm{p} ; 800 \mathrm{pF}, 750 \mathrm{pF}, 10 \mathrm{p} ; 1000 \mathrm{pr}, 10 \mathrm{p}$ RECTIFLERS CONTACT COOLED half wave 85 mA 48 p . 81 mICON BYZ13 30 D ; BY 10030 p : BY127 30 p . 85mA 48p. 8ILICON BYZ13 30D; 8Y $10030 \mathrm{p} ;$ BY
Full wave Bridgo Rectiferi $75 \mathrm{~mA} 50 \mathrm{p} ; 150 \mathrm{~mA}$ 98p Full wave Bridge Rectifer! 75 mA 50 p ; 150 m
EXEON PANEL INDICATORS 250 V AC/DC Red or Amber 20 p . RESISTORS. \ddagger w., \ddagger w., 1 w., $20 \% 1 \mathrm{p} ; 2$ w. 5 p .
HIGH STABILITY. ${ }^{1}$ w. $2 \% 10$ ohms to $1 \mathrm{meg} ., 10 \mathrm{p}$ Ditto 5\%. Proferred valuen 10 ohms to 10 meg., 4 D . WIRE-WOUKD RESISTORS 5 watt, 10 watt, 15 watt 10 ohm to $100 \mathrm{~K} 10 \mathrm{peach} ; 2 t$ whatt, 1 ohm to 8.20 hm 10 p .

MAX CHASSIS CUTTER

 $\overline{A M}$ - FM/VHF TUNING GANG Super quality imall aize $1 \frac{1}{2} \times 14$ (1 iln. plas apindle $11 \times$ in. $\quad 365+365 \mathrm{pF}$ with $25+25 \mathrm{pF}$. British made. Geared low motion drive 6:1. Plastic dust cover. 6BA tapped Iront fling. Cant sluminium frame.

50p post pree

\section*{MAINS TRANSFORMERS | All pont |
| :---: |
| 250 |
| pech |}

$250-0-25050 \mathrm{~mA} .6 .8$ ₹. 2 amp. $2500-0-25080 \mathrm{~mA} .8 .3 \mathrm{v} 4 amp.$.

$3500-0-85080 \mathrm{~mA}, 6.3$ v. 3.5 s .6 .8 v .1 a , or $5 \nabla .2 \mathrm{a}$. ti

 MINI-MAINS 20 v .100 mA . $14 \times 1 / \times 1 \mathrm{in}$ HEATER TRAN8. 6.88 . 3 A .
Ditto tapped sec. $1.4 \nabla ., 8,3,4,5,6.3 \%$ if amp GENERAL PURPOSE LOW VOLTAGE. Tapped output at 2 amp., 3, 4. 5, 8, $8,8,10,12,15,18,24$ and 30 V . 82 1 amp., $6,8,10,12,16,18,20,24,30,36,40,48.80$.
2 amp., $8,8,10,12,16,18,20,24,30,36,40.48,80$.
AOTO to 230 F 100w CHARGER TRANSFORMERS. Input $200 / 2500$. for 8 or 12v., $1 ;$ amp, $81 \cdot 80 ; 2 \mathrm{amp} \mathrm{fl} \cdot 50 ; 4 \mathrm{amp} .81-90$ FULL WAVE BRIDGE CHARGER RECTIFIERS:
B or 12v. ontpaks. 11 amp. 40 p ; 2 amp . $55 \mathrm{p} ; 4 \mathrm{amp} .85 \mathrm{p}$.
All Tranilormers Postage 25p each

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS

 With flared tweeter cone and ceramic magnet. 10 watt.Bans rea, $45-60 \mathrm{cps}$.
Flux $10,000 \mathrm{ganas}$. State 3 or 8 or 15 ohm . Pont 15D
And with twin tweaters. And croanover. 10 wal Pont 15p Stato 3 or 8 or
As illustrated.
Recommended Teatr Cabinet
Size $16 \times 10 \times 9$ in

IOW MINI-MODULE $£ 3.25$ LOUDSPEAKER KIT Pot 25p

Triple ppeaker agatem combining on ready cut beme. 1 in. chipboard 15 in . $88: \mathrm{in}$ geparate Basi, Middle heapy duty 5 in. Rass Wooler unit has a low sesonance cone. The Mid-Range unit is apecially designed to add drive to the middle register and the tweeter recreates the top end of the matical spectrum. Total roaponite $20-16,000 \mathrm{cps}$. Full inatruction for 3 or 15 ohm . TEAK VENEERED BOOK8HELF ENCLOSURE. $16\} \times 10\} \times$ bin. Modern design, dark \&
grey Tygan coverad batile.

Minimum Post and Packing 15p.
Minimum Post and Packing $15 p$

SOVIET PROBE TO MARS

One of the experiments being carried out on the Soviet probe to Mars, which began with the launching of the Russian Mars 3 on May 28 , indicates extensive RussoFranco co-operation. This is the first time that a Western European country has been able to "thumb a lift" on an interplanetary probe.

The originators of the new experiment J. L. Steinberg and C. Caroubalos of the Observatoire de Meudon are studying solar bursts at metre wavelengths.

The particular study of sudden bursts of radiation from the sun is being carried out because the mechanism of their appearance is not fully understood. The bursts which may last from a few milliseconds to a few seconds are not adequately explained by the thermal motions of electrons. There must be some additional mechanism involving energetic electrons interacting with the magnetic field, and the plasma in the corona.

SOLAR RADIATIONS

Solar radiations are classified into different type groups. The two types involved in this study are Type I which last for less than half a second and are strongly polarised, indicating interaction with the coronal field; and Type 3 which are indicated by solar flares, terrestrial magnetic disturbances and auroral effects.

Type 3 bursts last for seconds and the particles that are involved move at very high speeds through the corona. Typically the velocity of the particles may be as high as 100.000 $\mathrm{km} / \mathrm{second}$. Type 3 bursts are confined to a cone of direction with an axis that lines up with direction of maximum variation of electron density.

From the earth these can be studied only in two dimensions but with the instrumentation on a probe it will be possible to obtain simultaneous observations from earth and a position in distant space. A partial 3D effect can then be secured. For this reason the French have called this a "stereo experiment". It is hoped that the experiment will reveal how the energy of the bursts is distributed in space and also the total amount of energy that is radiated.

The earth based station will be installed at Nancay in France where the 1,500 metre long radio heliograph is in operation. This radio telescope can provide 50 high resolution radio images of the Sun every second.

On Mars 3 there is a radio telescope mounted on the solar panels of the spacecraft so that it is always pointing at the Sun. Two identical receivers will be in operation, one on Mars 3 and one connected to the aerials at Nancay. From the probe data will be telemetered to the USSR where it will be processed and then passed on to France for comparison with their data.

MARINER NINE

The ninth of the Mariner series on its way to Mars alone, since Mariner 8 aborted on May 8 for the reasons given in August SPACEW ATCH. has been modified to give a compromise survey of the planet. It will go into a 65 degree orbit with periapais at 750 miles.

Under the new scheme less than 70 per cent of the planet will be mapped but with the same resolution as was originally intended. The slant range will be greater for some of the photography and some loss of detail will ensue.

Instead of the original plan of looking at six selected areas every five days it will look at several small areas once every seventeen days. Also, two tapes of data per day will be relayed back to earth instead of three as would have been the case with both vehicles operating. The scheduled programme remains the same at 90 days.

INTERSTELLAR MOLECULES

Using the 300 foot radio telescope at Kitt Peak to observe the emission lines in the millimetre-wave spectrum of the object Sgr B2, which is near the galactic centre, Dr. L. E. Snyder and Dr. D. Buhl have identified the molecules methylacetylene $\left(\mathrm{CH}_{3,} \mathrm{C}_{2} \mathrm{H}\right)$ and isocyanic acid (HNCO).

They also found another line in the spectra of two other galactic sources W51 and DR2I though identification was difficult. It is thought that the molecule is isocyanide (HNC) but this opinion is based on laboratory work.

Dr. Snyder is from The University of Virginia and Dr. Buhl from the National Radio Astronomy Observatory.

ARTIFICIAL MARS CHAMBER

At the Institute of Microbiology in Moscow a chamber has been set up to simulate Martian conditions in order to examine the behaviour of different types of microorganisms. The chamber with a pressure of 7 mm of mercury and sharp temperature variations ranging from minus 60 degrees to plus 30 degrees Centigrade, with a minimum amount of moisture, represents the conditions that are as near to that which exists on the planet.

Soil bacteria from the Pamirs, the Kara-Kum desert and Dixon Island in the Arctic Ocean was obtained for the experiment. During the experiments it turned out that microbes and bacteria from Dixon Island had the highest survival factor.
It is thought that the main reason for the survival of terrestrial forms in a Martian environment was the low humidity. Also, it turned out that coloured organisms were able to endure the conditions better.

It seems that pigment is a good protection against the effect of ultra violet rays. There are some workers who think that the changing colour observed on Mars is linked with the activity of micro-organisms.
If there is life on Mars then the cycle involving micro-organisms is a necessary part of any organic process.

TELESCOPES IN SATELLITES

The object of the design of telescopes to be carried by satellites above the turbulent and murkx parts of the earth's atmosphere is to obtain improved viewing.

Such instruments are costly and tend to be of relatively large size if they are to exceed the performance of the 200 inch reflector at Mount Palomar. Hopes of any unit of suitable size being put into space seemed to be linked to the advent of the space shutlle since the greatest single weight unit is the mirror.
A solution to the problem has been offered by J. Wilczynski of IBM. He suggests that two mirrors 20 inches in diameter could be put into orbit in such a way that the resolution of the 200 inch telescope could be achieved.
The new telescope would consist of two mirrors arranged to have a common focus by mounting them on a common arm which could be rotated with great precision. The image through the two mirrors would be photographed and the position changed. This would continue until the whole area was covered. By-this means any point on any picture would be mathematically related to any other.

Riodlart A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

Prior notice please!

Sir-Referring to the correspondence published in your July issue, one of the answers to the general problem of constructors being unable to obtain components, is for the authors of the articles in your magazine and others, to ensure that all components are currently obtainable at the time of issue. The name of the manufacturer of specialised components, including semiconductors should be mentioned, as also sources of supply.

In agreement with $\mathrm{Mr} \mathbf{P}$. F . Clarke, prior notice to suppliers would ensure that specialised components could be available within a reasonable time from the date of publication of a constructional article.

My firm is able to supply any component manufactured by Mullard Ltd., on a one-off basis, and this covers many thousands of individual items.

For Mr A. J. Sanders, the components he requires in the way of ferrites and associated hardware, can be supplied off the shelf.

I sympathise with Mr H . Boys of Weedon regarding the Mullard LA 2103 which is obsolete, the number having been changed twice since 1968.
I cannot understand Mr Easterfield's difficulties in obtaining Radiospares components, as all items in their catalogue (available to the trade only) can be supplied to retailers generally throughout the country on the day after an order is placed.
A. F. Trinder, Gurney's (Radio) Ltd.

Reckless design

Sir-We agree that the points you have raised constitute real problems to the amateur constructor. We would, however, like to make the following comments:

Amateurs often obtain components for their circuits from unusual sources, i.e. cannibalising surplus equipment and by buying from surplus dealers. This means that very often the manufacturer is approached for components which are either obsolete or have been made for a specific purpose against a specific contract.

We as a company are in the process of appointing distributors for our components and would suggest that prior to publishing circuits the designer contacts either ourselves or one of our distributors so as to ascertain the availability.

We would mention that we would expect our distributors to deal not only with industrial customers but with amateur customers as well. It is probable, however, that there would be minimum order charges.

If this kind of liaison could be built up, it should in theory then be possible to arrange for our distributors to hold stocks of particular items, and in fact we see no reason why there should not be some reference at the end of the article as to where the components could be obtained.

We are sympathetic towards amateurs as very often amateur designed circuits eventually become professional circuits, but we do consider that some amateurs are reckless in the extreme by designing circuits without having made sure that the components are available.

The other point we would like to make, is that as manufacturers it is really not a practical proposition for us to deal direct with amateurs, as they only usually require very small quantities and the cost of processing their orders costs more than the goods. This of course emphasises the need for distributors.
J. N. Shipton,

Siemens (United Kingdom) Ltd.

Inadequate details

Sir-I refer to the letter published in the May issue concerning the supply of components to electronic enthusiasts.

In my experience the main problems encountered when dealing with private individuals are exactly those outlined by Mr Hughes. Firstly, ascertaining the exact component required and secondly arranging payment. Often orders give inadequate details and describe the application instead of the component which, rather than enter into correspondence, we tend to reject.

The remedy is for anyone requiring our components to detail accurately the unit required, preferably the type number, but if this is
unknown, the value, working voltage, tolerance, size, etc., and; if the price is also unknown to request a Pro Forma Invoice.

On receiving an order in this form, our Distributor Division will be pleased to supply anyone subiect to the following conditions which are necessary to cover the cost of non-standard clerical routines and to protect against the unfavourable economics of special small quantity manufacture:-

1. The order has a minimum value of $£ 3$.
2. The component required is in stock or available from Work-inProgress.

Our Distributor Division carries a broad selection of Erie products, manufactured both in the U.K. and overseas, including ceramic, monolithic and trimmer capacitors, r.f.i. suppression filters, semiconductors and integrated circuits, and is able to provide on request full details of its stock programme.

While appreciating that we can only satisfy in part the demand for specialised,. new or non-standard items, we can, if given a businesslike order, extend considerably the variety of Erie products previously available to the enthusiast.
R. D. Hurrell,

Distribution Manager,
Erie Electronics Ltd.

Good relations

Sir-l hope 1 am not too late in replying to your editorial in Practical Electronics May issue, which at the same time was related to a letter in Readout from M. J. Hughes.

On behalf of our company we would be very pleased to help those electronic enthusiasts who are having trouble in obtaining semiconductors. As stockists for many components we may well be able to offer some of those rather special parts which people need from time to time.

In Worcester we have already served a number of amateur radio enthusiasts with their "ones and twos" requirements and we see no reason why this should not be extended to those other branches of electronics which need similar parts.

As a licensed "ham" I appreciate the feelings of those unable to complete a project for the want of a small part. If readers care to send us their "wants lists", particularly for all types of semiconductors, integrated circuits, capacitors, miniature transformers and so on, we should be glad to do our best to help. What we value most is a satisfied customer whether he buys one part or one thousand, and we have no minimum order charge on those goods we actually hold in stock.
R. C. Evans, G3LQC,

Thorp Electronic Components Ltd.

TTCC-IO5I Meter

Miniaturised version of Model C-1052 em resistant cabinet. Features-large easy io read itin meter with mirror scale, tion circuit. Fine calitration gives extremely high standard of accuracy on all ranges Ohms zero adiustment. Clickestop rang - DC/V: $03151503001 \cdot 2 \mathrm{kV}$ at $20 \mathrm{k} / 0 \mathrm{hms} / \mathrm{V}$ - AC/V: $0630300 \mathrm{I} \cdot 3 \mathrm{kV}$ at $10 \mathrm{k} / 0 \mathrm{hms} / \mathrm{V}$ - RC current: $0-60 \mu \mathrm{~A}-300 \mathrm{~mA}$ - Decibels: -20 dB to +17 dB

test lead

LASKY'S PRICE 14.055
POST 18 p

EXCLUSIVE TM-I

MODEL TM-I MINI-TESTER

The first of Lasky's new-look rop value meters, the

really tiny pocket multimeter providing "big' mete accuracy and performance. Precision movement calibrated
to Jin of fulf scale. Click stop range selection switch. Beautifully designed and made impact resistant black case with white and metallic red/green figuring. Ohms Size Only
$3 \frac{1}{8}$ in $\times 2$ in $\times 1 \frac{10}{5}$ in
$D C / V: 0-10-50-250-$
1.000 at 1 k OPV
AC/V: $0-10-50-2.50-$

- AC/V: 0-10-50-250-- DC CURRENT: 0-1mA

LASKY'S

- Complete with test

TM-5
 5K ohms/V POCKET MULTIMETER

and value. The "slimocke, multimeter from Lasky's providing rop quality fitted with extra large 2fin square meter. Readability is superior on all low ranges: making this an excellent instrument for servicing eransistorised equipment. Recessed click stop selection swich. Ohms zero adiustment. - DC/V: 3-|5-150-300-1,200 as 5 k

- ACIV: 6-30-300-600 at $2.5 \mathrm{k} / \mathrm{OPV}$ - Complete with test leads. b

Resistance: $0-10 \mathrm{k} / \mathrm{ohms}, 0-1 \mathrm{M} / \mathrm{ohm}$
LASKY'S PRICE $\mathbf{E 2 . 9 5}$

BSR MCDONALD MP60

High precision low-mass counterbalanced pisk-up controls viscous cueing device, slide in cartridge ± 12.50
carrier, 4 pole motor.
BSR MCDONALD MP6O UNITS \& PACKS.
A. Chassis only B. Complete with Lasky's plinth and cover. C. Complete plinth with cover. E. as D. plus AD76K cartridge

MODEL	A	B	c	D	E
610	C15.45	618.75	622.50	¢24.50	62850
510	613.45	¢16.95	¢ 20.75	£22.00	$£ 2600$
310	69.95	¢13.45	C17.25	¢21-00	¢ 23.50
MP60	f12.50	f15.75	¢19.50	¢21.50	¢25.5

GARRARD UNITS AND PACKAGES MODEL SL55B

LASKY'S PRICE $\mathbf{1} \mathbf{1 0 . 5 0}$

Garrard SP25 Mk. III \{ll 50
Garrard SP25 Mk. If wired $\begin{aligned} & \text { f1 } 2.00\end{aligned}$
Garrard SP25 Mk. It with Garrard AP76 without cart. $f 20.95$
Garrard 3.000 with 9 TA cart. 10.50 9TA cart. Garrard 2025 TC with 9TA Garrard AP76 with AD76K cart. and Lasky's plinth and cover. $\begin{array}{ll}\text { Garrard AP76 } & \mathbf{~} 9.85 \\ \mathbf{1 3 5}\end{array}$ Garrard AP76 with Shure MA4E cart. and Lasky's plinth and cover. 40 Garrard SP25 MK. AD76K cart. and Lasky s plinth and cover. POST FOR ALL PACKAGES 50p

DIGITAL CLOCK SCOOP

EXCLUSIVELY FROM LASKY'S in chassis form for you to mount in an
 drum to back of swirch). SPEC.: $210 / 240 \mathrm{~V}$ AC. 50 Hz operation; switch HUNDREDS OF APPLICATIONS. COMPLETE WITH KNOBS LASKY'S PRICE $£ 6.95$ POST 18p SPECIAL QUOTATIONS FOR QUANTITIES TMK LAB 100

A highly accurate yet rugged Multitester using a $10 \mu A$ meter hand calibrated to a DC accuracy of 3% of full scale. Special ncorporating an entirely range selection panel which gives instant eyes from the meter. An audible buzzer SPEC: provided for easy short testing. 250, 500, 1,000V at $100 \mathrm{k} / \mathrm{O} . \mathrm{P} . \mathrm{V}$. AC/V' ranges: 3, 10. 50. 250, 500. 1,000V at $0-10.100 \mathrm{~mA}, 0-2.5,10 \mathrm{~A}$. Resistance:
 $0-1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 10 \mathrm{M}, 100 \mathrm{M} / 0 \mathrm{hms}$. Decibels: 10 to 49.4 dB . Continuity test Audible buzzer. Operates on $11-5 V \mathrm{~V}$ and 115 VB 154 type batteries.

LASKY'S PRICE $\mathbf{£ 1 7 . 7 5}$

post 25 p

TMK MODEL 200 METER KIT

TMK offer the unique opportunity of building a really irst-class precision multimeter at a worthwhile saving
in cost. The cabinets are supplied with the meter scale and movement mounted in position. The highest quaity components and 1% tolerance resiscors are used throughout. Supplied complete with full constructional circuit and operating instructions.
Specification
20,000 P.OV
ranges with mirror scale accuracy. DCM and current 2%. A.c.:V: 3%. Resistance 3%. Special $0-6 \mathrm{~V}$ DC

ONLY

LASKY'S PRICE $£ 4 \cdot 60$

TTC Model A-1005 FM TUNER CHASSIS

1.000 's sold of this highly sensitive FM tuner-fully tunable-range 88 to $108 \mathrm{Mc} / \mathrm{s}$. Completely wired on printed circuit $10^{3} \mathrm{Mc} / \mathrm{s}$ IF. 6 transistors
and 3 diodes. Slow motion tuning drive. Size $6 \frac{1}{4} \times 4 \times 2 \frac{1}{2}$ in. Operates and 3 diodes. Slow motion tuning drive. Size $6 \frac{1}{4} \times 4 \times 2 \frac{1}{2}$ in. Operates

LASKY'S PRICE $\mathbf{£ 6} \mathbf{5 0}$

POST 18p
ADD MULTIPLEX to the MODEL A-I005
You can enjoy stereo sound with the Model A-1005 FM Tuner above by adding the TTC Model A-1005M Multipex Adaptor. Brief specification: MPximpter 6 .

LASKY'S PRICE $£ 4.95$

Duty bound

Sir-1 am following with considerable interest the correspondence and your remarks in P.E. relating to supplies of special electronic components to the amateur.

It may be of interest to your readers to know that the British Amateur Electronics Club appears to anticipate the demand by amateurs in some cases. This is probably because we are an amateur organisation, and the problems relating to minimum economical orders do not apply.

As an example, when the British Amateur Electronics Club started in 1966, silicon controlled rectifiers available in this country were very expensive. However, the B.A.E.C. was able to obtain good quality SCR's in America at very low prices, even after paying duty and additional postage

Members of the B.A.E.C. are able to obtain specialised electronic components either at cost or, if they are required for experimental purposes and the member undertakes to write an article on his experiments for the B.A.E.C. Newsletter, they are provided free of charge.

The B.A.E.C. has recently been able to obtain very cheap but perfect voltage regulator integrated circuits and also inexpensive infrared and visible-light semiconductor generators (L.E.D.) and receivers (photo-transistors).

These, as you know, are available in this country at relatively high prices, but I think that if any supplier in this country, who is interested in the amateur market, were to study the advertisements in amateur electronic magazines published in America, they, too, would be able to supply sophisticated and up-to-date electronic devices at reasonable prices to the amateur.

However, this does not apply to the well-known SN74 TTL integrated circuits which are in fact cheaper in this country than in America.
C. Bogod,

British Amateur Electronics Club

Opposite view

Sir-Having been a home constructor for a number of years, I would like to present the opposite view in your correspondence on the subject of components, and their availability.

I have rarely, if ever, experienced difficulty in obtaining components I require, even by mail order. Having lived in an area close to the majority of component retailers, I received, with few exceptions, courteous assistance and good service during personal buying of parts.

As I am no longer able to shop personally, due to a change of resi-
dence to another area of the country, I have, for the past year been buying by mail. Parcels received have been well packed, again with few exceptions, and refunds for out of stock items cheerfully and promptly given. In the case of the exceptions, a simple, well worded letter of complaint direct to the sales manager has usually cleared matters in a fortnight or less.

Considering the amount of business done by mail order, it is surprising that the service of most retailers is as good as it is, indeed, it could be far worse.

While I would also concur with the view that "one-offs" and highly specialised components are a loss maker for the firm who are prepared to deal with them, I would express surprise that the people who complain about being unable to obtain them, while deeming themselves capable of constructing, testing and setting to work a piece of often complex equipment, are unable to write to suppliers for their catalogues and find a replacement.

The one possible exception to the last paragraph is the amateur radio enthusiast, who, following the demise of the only manufacturer (Electroniques) in the country supplying r.f. coils to tune the amateur bands, has the dubious choice between bodging commercially available coils or winding his own.

To conclude, if components cannot be bought, begged or borrowed for the special project, there is a solution-set up in business and supply your own components!
P. J. Brent,

Helensburgh,
Scotland.

Finul lip

Sir-I have just received Practical Electronics magazine July issue, and after reading Readout I cannot understand why a number of your readers have such a problem trying to obtain parts for various circuits.

For instance, a 6-pole 5-way switch (letter on page 585), an advertisement for this appears on the opposite page 584, I think that a lot of readers do not take enough trouble to read the various advertisement pages for items wanted.

I have always found most manufacturing companies or large distributors very helpful regarding where to obtain special parts providing you keep your request brief, enclose an s.a.e. and make sure that your letter can be read.

A final tip, always keep by your side a number of catalogues from various companies, this can make life a lot easier.
D. J. Brown, Coventry.

It is to be hoped that all who know the much loved Milli will help to getter back to health, transformer situation, and insulator from any future attacks. Watts more, I trust that Current will be put on charge and if not given the potential drop then made to walk the Planck.

I am sorry if my reaction seems unusually strong but the core of the matter is that Eddy Current is one of my two illbegotten sons who have always wasted energy. I could never control them and many are the times that I have had to cover up for them. But to no avail, and matters that for Eddy and his equally heated brother / squared no losses. This has always teo peaked me and as far as I am
R. M. S. Current, Waverley.

YATES ELECTRONICS

(FLITWICK) LTD.

RESISTORS

$\frac{1}{2}$ W Iskra high stability carbon film-very low noise-capless construction. tW Mullard CR25 carbon film - very small body size

Power			Valves	Price	
watts	Tolerance	Range	available	1-99	$100+$
$\frac{1}{2}$	5\%	4.7@-2.2MS	E24	1.0p	0-8p
$\frac{1}{2}$	10\%	$3-3 M \Omega-10 M \Omega$	E12	1.0p	0.8 p
1	10\%	$1 \Omega-3.9 \Omega$	E12	1.0p	0.8 p
t	5\%	$4 \cdot 7 \Omega-1 M \Omega$	E12	1.0p	0.8 p
4	10\%	$1 \Omega-10 \Omega$	E12	$7 \frac{1}{2} \mathrm{p}$	71p

Quantity price applies for any selection. Ignore fractions on total order.
DEVELOPMENT PACK
0.5 watt 5% iskra resistors 5 off each value $4.7 \Omega 2$ to IMS.

E12 pack 325 resistors $\mathbf{£ 2 . 5 0}$.
E24 pack 650 resiscors $\mathbf{\$ 4 . 8 0}$
MULLARD POLYESTER CAPACITORS C296 SERIES
400V: $0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .0068 \mu \mathrm{~F}$, $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, \quad 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, ~ 4 \mathrm{p}$. $0.15 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.22 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 11 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}$, $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 4 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} . \quad 0.68 \mu \mathrm{~F}, \quad 11 \mathrm{p} . \quad 1.0 \mu \mathrm{~F}$, 121p.
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}$, $0.068 / \mathrm{F}, 3 \frac{1}{2} \mathrm{p} . \quad 0.1 \mu \mathrm{~F}, 4 \mathrm{p} . \quad 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p}, \quad 0.47 \mu \mathrm{~F}$, $8 \frac{1}{2} \mathrm{p} . \quad 0.68 \mu \mathrm{~F}, ~ I I \mathrm{p} . \quad 1 \cdot 0 \mu \mathrm{~F}, 13 \mathrm{p}$.

MYLAR FILM CAPACITORS

$100 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 21 \mathrm{p}, 0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$, $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$.
CERAMIC DISC CAPACITORS
100 pF to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each.
CAPACITOR DEVELOPMENT PACK
Selection of 100 ceramic and polyester capacitors, 100 pF to $1.0 \mu \mathrm{~F}, \mathbf{£ 2} \cdot 90$.
ELECTROLYTIC CAPACITORS-One Price-5p Each
Mullard C426 series $(\mu F / V)$: $25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4$ $16 / 10,32 / 10,64 / 10,125 / 10,200 / 10,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16$, $64 / 25,125 / 25,25 / 25,50 / 25,80 / 25,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40$, $2 \cdot 5 / 64,5 / 64,10 / 64,32 / 64$.
Miniature P.C. mounting ($/ \mu \mathrm{F} / \mathrm{V}$): 10/12, $50 / 12,100 / 12,200 / 12,5 / 25$, $10 / 25,25 / 25,100 / 25$.

POTENTIOMETERS

Carbon track $5 k \Omega$ to $I M \Omega, \log$ or linear (log $\ddagger W$, lin $\frac{1}{2} W$)
Single, 12p. Dual gang (stereo), 40p

SKELETON PRESET POTENTIOMETERS

Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).
Sub-miniature 0.1 watt, 4p each. Miniature 0.25 watt, 5p each

SEMICONDUCTORS

SE	OND	ORS					
ACl26	15p	BFY52	221 $\frac{1}{2}$ P	OC81	15p	2N3055	72p
ACl27	15p	BSY56	30p	OC82	15p	2N3702	15p
ACl 28	15p	BSX21	25p	ORPI2	471p	2N3703	14p
ADI40	40p	BY124	$7 \frac{1}{2} p$	IN4001	71p	2N3704	171 ${ }^{1}$ p
AFlis	171 ${ }^{\text {P }}$	BYZ10	30 p	IN4002	10p	2N3705	15p
AFl17	171 P	BYZ13	20p	IN4003	$11 p$	2N3706	12p
BC107	14p	OA95	71p	IN4004	121 ${ }^{1} \mathrm{p}$	2N3707	181 ${ }^{\text {P }}$
BCIO8	10p	OA91	$7 \frac{1}{1}$	IN4005	14 p	2N3708	10p
BC109	10p	OA202	71p	IN4006	15p	2N3709	$11 p$
BFY50	22p	OC71	15p	IN4007	16p	2×3710	12p
BFY51	19p	OC72	15p	2N2926	$11 p$	2 N 3711	14p

ZENER DIODES
$400 \mathrm{~mW} 5 \% 3.3 \mathrm{~V}$ to $30 \mathrm{~V}, 17 \mathrm{p}$
VEROBOARD

	0.1	0.15		0.15	0.1
$2 \frac{1}{2} \times 3 \frac{1}{4}$	22p	16 p	17×37 (plain)	52tp	-
$2 \frac{1}{1} \times 5$	24p	24p	$17 \times 2 \frac{1}{2}$ (plain)	371p	
$3 \frac{1}{4} \times 3 \frac{3}{4}$	24p	24p	$2 \frac{1}{2} \times 5$ (plain)	171 ${ }^{\text {p }}$	
34×5	27p	27p	$2 \frac{1}{2} \times 3 \frac{1}{4}$ (plain)	$15 p$	
$17 \times 2 \frac{1}{2}$	75p	571p	Pin insertion tool	471p	471 P P
17×34	100p	75 p	Spotface cuter	371 P	$37 \frac{1}{2} \mathrm{P}$
17×5 (plain)	-	75p	Pkt. 50 pins	20p	20p
ROTARY SWITCHES					
PLUGS AND SOCKETS					
Standard tin scr	eened	$17 \frac{1}{1} \mathrm{P}$	2.5 mm insula		$71 p$
Standard tin ins	ulated	14p	3.5 mm insula		$7 \frac{1}{2} \mathrm{P}$
Stereo tin scr	ened	35p	3.5 mm screen		$12 \frac{1}{2}$
Standard tin soc		15p	2.5 mm socke		$71 p$
Stereo din soc	ket	$17 \frac{1}{2} \mathrm{P}$	3.5 mm socke		$7 \frac{1}{2} p$

BRUSHED ALUMINIUM PANELS
$12^{\prime \prime} \times 6^{\prime \prime}=25 p ; 12^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}=10 p ; 9^{\prime \prime} \times 2^{\prime \prime}=7 p$.
C.W.O. please. Post and packing, please add $10 p$ to orders under $£ 2$. Data sheets are available for most of the components listed, and will be sent free on request.

8E39 ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD

the most widely read motoring monthly published on the 15 th of the month -15 p

IN 15 MINUTES YOU COULD HAVE CAPACITIVE DISCHARGE ELECTRONIC IGNITION FITTED TO YOUR CAR

Capacitive Dischargelgnition is recognised as being the most efficient ignicion ystem and will give you

- CONTINUAL PEAK PERFORMANCE
- UP TO 20\% REDUCED FUEL CONSUMPTION
- EASIER ALL-WEATHER STARTING
- INCREASED ACCELERATION \& TOP SPEED
- LONGER SPARK PLUG LIFE
- INCREASED BATTERY LIFE

CONTACT BURN ELIMINATED
PURER EXHAUST GAS EMISSION
For all petrol engines-cars - RADIO INTERFERENCE SUPPRESSED boats, etc. Guaranteed for 5 yrs Complete Instaltation Kit for 12 -volt vehicles $\mathbf{f 1 2 . 9 5}+35 \mathrm{p}$ P. \& P. State carth polarity of vehicle POSITIVE or NEGATIVE earth. Unit Construction The construction kit includes instructions and all components for wiring as positive or negative earth, and is complete with the stove enamelled steel case and aluminium base. All components are available separately.
ELECTRONIC DESIGN ASSOCIATES
82 BATH STREET, WALSALL WSI 3DE

BUILD THIS WAH-WAH PEDAL KIT

The Wilsic Wah-Wah pedal comprises SELECTIVE AMPLIFIER MODULE KIT, containing all the componencs to build a two cransistor circuit module, which may be used by the construc cor for his own design or fitted to the FOOT VOLUME CONTROL PEDAL (as photo) converting ic to Wah-Wah operation. This pedal is in strong fawn plastic and fitted with output lead and screened plug.

Super IC-12

Highfidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclair Radionics announced the World's first monolithic integrated circust $\mathrm{Hi}-\mathrm{Fs}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC.12. This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages

1. Higher power.
2. Fewer external components.
3. Lower quiescent consumption.
4. Compatible with Project 60 modules
5. Specialiy designed built-in heat sink. No other heat sink needed.
6. Full output into $3,4,5$ or 8 ohms
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

SINCLAIR GENERAL GUARANTEE
Should you not be completely satisfield with your purchase when you receive it from us. return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full service facilities are avalable to all Sinclair customers.

Output power 6 watts RMS continuous (12 watts peak).

Frequency Response 5 Hz to $100 \mathrm{KH}> \pm$ 1 dB .
Total Harmonic Distortion Less than 1% (Typical 0.1\%) at all output powers and all frequencies in the audio band.

Load Impedance 3 to 15 ohms.
Power Gain 90dB (1,000,000,000 times) after feedback.

Supply Voltage 6 to 28 volts (Sinclart PZ-5 or PZ-6 power supplies ideal).

Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.

Input Impedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up. F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project-60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radıos, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation.

Price. inc. FREE printed circuit board formounting.
f2.98 $\underset{\text { free }}{\text { Post }}$

Sinclair Radionics Ltd. London Rd. St. Ives Huntingdonshire PE174HJ
Telephone St Ives (048 06) 4311

Sinclair Project 60

The World's leading range of high fidelity modules

Sinclaır Radionics Limited, London Road, Si. Ives. Huntingdonshire PE174HJ
Tel: St. Ives (04806) 4311

Project 60 offers more advantage to the constructor and user of high fidelity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile - using them you can have anything from a simple record player or car radio amplifier to a sophsticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system, as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with all Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.

Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simple battery record player	2.30	Crystal P U.. 12 V battery volume control	¢4.48
Mains powered record player	2.30, PZ.5	Crystal or ceramic P.U. volume control etc.	¢9.45
$20+20 \mathrm{~W}$. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ.5 } \end{aligned}$	Crysial. ceramic or mag. P.U.F.M. Tuner. etc.	£23.90
$20+20 \mathrm{~W}$. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo 60, } \\ & \text { PZ.6 } \end{aligned}$	High quality ceramic or magnetic P.U., F M. Tuner, Tape Deck, etc	¢26.90
$40+40$ W. R.M.S. de-luxe stereo amplifier	$\begin{aligned} & 2 \times 2.50 \text { s, Stereo } 60 \\ & \text { PZ.8, mains trsfrmr } \end{aligned}$	As above	¢34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers, etc. controls	£19.43

[^4]
from a simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z.30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in vour Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equaliy well. SPECIFICATIONS (2.50 units are interchangeable with Z. 30 s in allapplications).
Power Outputs
Z.30 15 watts R.M.S. into 8 ohms using 35 volts 20 watts R.M.S. into 3 ohms using 30 volts
2.5040 watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S. into 80 hms using 50 volts.
Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Distortion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms .
For speakers from 3 to .15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$
2.30

Bull, tested and guaranteed with crrcuits and instructions manual.
$£ 4.48$
2.50
with circurs and instruc.
Built, tested and guaranteed with circur
tions manual.
$£ 5.48$

Power Supply Units

Designed special for use with the Project 60 system of your choice. Use PZ. 5 for normal Z.30 assemblies and PZ. 6 where a stabilised supply is essential.
PZ. 530 volts unstabilised f 4.98 PZ. 635 volts stabilised $\mathbf{£ 7 . 9 8}$ PZ. 845 volts stabilised (less mains transformer) $£ 7.98$ PZ.8 mains transformer $£ 5.98$

The Sinclair Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatusfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should anv defect arrse in normal use we will service it at once and without any cost to vou whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mall. Air-mailchargedat cost.

Project 60 Stereo F.M. Tuner

First in the world to use the phase lock loop principle
The phase lock loop principle was used for recerving signals from space craft because of its vastly improved signal to noise ratio Now. Sinclair have applied the principle to an F.M tuner with fantastically good results. Other originial features include varıcap dode tuning. printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Good reception is possible in difficult areas. and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated. a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.
SPECIFICATIONS—Number of transistors: 16 plus 20 in I.C. Tuning range : 87.5 to 108 MHz Capture ratio: 1.5 dB . Sensitivity: $2 \mu \vee$ for 30 dB quieting ; $7 \mu \vee$ for full limiting. Squelch level: $20 \mu \mathrm{~V}$. A.F.C. range: $\pm 200 \mathrm{KHz}$, Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}(\pm 1 \mathrm{~dB})$. Total harmonic distortion : 0.15% for 30% modulation. Stereo decode operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage : $2 \times 150 \mathrm{mV}$ R.M.S. Operating voltage: 25-30 VDC. Indicators: Mains on; Stereo on; tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$

Stereo 60 Pre-amp/control unit - =- - -

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, acheving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-Input sensitivities: Radı-up to 3 mV . Mag. p.u. 3 mV : correct to RI.A.A curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u. - up to 3 mV : Aux-up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB Channel matching: within 1 dB . Tone controls: TREBLE +15 to -15 dB at $10 \mathrm{KHz} \cdot \mathrm{BASS}+15$ to -15 dB at 100 Hz . Front panel: brushed alumınium with black knobs and controls Size: $66 \times 40 \times 207 \mathrm{~mm}$ Bult tested and guaranteed.
£9.98

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two $\mathrm{Z.30s}$ or Z .50 s , and is easify mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with anv other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current - 3mA. H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply (0.02% at rated output. Size: $66 \times 40 \times 90 \mathrm{~mm}$

Built tested and guaranteed.
£5.98

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDDNSHIRE PE17 4HJ
Please send
I Address

SPECIALIST ELECTRONICS COMPANY
SPECIAL OFFER:
Sinclair project 60 kit complete with power supply, two Z 30 's and scerco 60
CLEARANCE ITEMS
Garrard plinth and cover for 2025TC ©6.00.
BRAND NEW FULL SPEC. COMPONENTS
100 uf electrolytics 25 volt. 20p each.
Plessey SL403A $\mathbf{6 2} \cdot 20$ each
24 KINGSWAY, WATERLOO, LIVERPOOL 22 (Mail order only)

Juan \mathfrak{E}. Allen \& Clompany offers a comprehensive range of COIN \& MEAL DEIECIORS

THE HUNTER

High sensitivity combined with marked stability to give a simple-to-use detector which is a must for the professional mansuch as tree $\quad \mathbf{2 4 , 0 0}$

THE EXPLORER

Inexpensive but sensitive. Will give hours of treasure hunting fun for the whole family on the beach, whilst walking or at home in $\mathbf{\$ 1 9 . 5 0}$

THE DISCOVERER

1. The Do-lt-Yourself kit entails a minimum capital outlay and can be easily assembled in a few hours. The kit is complete except for a available. As sensitive and stable as the more expensive one or these detectors but a fraction of the cost
2. The "Discoverer" Metal Detector fully assembled
3. Portable transistor radio ideal for use with the $\mathbb{1 . 9 5}$

TREASURE HUNTER'S HANDBOOK

'A Fortune Under Your Feet'. This new publication answers all your questions on treasure hunting. Find out the How

PLEASE ADD 30p TO DETECTOR ORDERS TOWARDS COST OF POST, PACKING AND INSURANCE.
ALL DETECTORSARE GUARANTEEDFORONE YEAR.
SHOWROOM DEMONSTRATIONS: MONDAY-FRIDAY $10-5$ p.m
FURTHER DETAILS OF ALL DETECTORS AVAILABLE ON REQUEST
(A 3p stamp would be appreciated).
I84 Main Road, Biggin Hill, Kent. Telephone: Biggin Hill 4234

If you have difficulty in obtaining

PRACTICAL ELECTRONICS

Please place a regular order with your newsagent or send 1 year's subscription ($£ 2.65$) to Subscription Department, Practical Electronics, Fleetway House, Farringdon St., London, E.C.4.

LSFOR SIEMENS, NEWMARKET, IR, RCA MULLARD, TEXAS, FERRANTI, GE

EXAMPLES OF OUR BULK QUANTITYPRICES:

BEST

 IN

SIEMENS QUALITY PLUS BARGAIN PRICES PLUS LST SERVICE
A full design range of high quality TTL available from LST your Officlally Appointed Siemens Distributors

III Triple 3-input NANO
121 Dual 4 -input NAND gate
1318 -input NAND gate
41 Dual 4-input NANO buffer
151 Expandable dual 2.wide 2-inaut
AND.OR-INVER gate
161 Oual 2 -wide 2-input
AND.OR-INVERT AND.OR-INVERT Expandable ${ }^{\text {4-wide }}$
2-input AND-OR. INVERT gate
I8I 4-wide 2-input AND-OR-INVERT gate
191 Quadruple 2-inpu NOR gate
uadruple 2 -input uadruple
NAND gate with open
collector output
211 Hex inverter
$\begin{array}{ll}231 & \text { 2-bit binary full } \\ 241 & \text { Four-bit binary }\end{array}$
full adder

FLH
271

				Port No. Descri		$\underset{\text { to }}{\substack{\text { Equal }}} 1.24 \quad 25.99100$ up			
				$\begin{aligned} & \text { FLH } \\ & 271 \end{aligned}$	Hex inverter with open collector output	7405	25p	$21 p$	10p
7400	20p	$16 p$	14p						
7410	20p	16p	14p	281	BCD to decimal decoder TTL				
7420	20p	$16 p$	$14 p$	291	outpur	7442	k 1.16	94p	$81 p$
7430	20p	16p	14p	29	NAND gate with				
7440	24	20	17p	341	open collector out-	7403	20p	$16 p$	p
					put Quadruple 2-input exclusive-OR element				
7450	20p	16p	14p	$\begin{aligned} & 351 \\ & 361 \end{aligned}$		7486	33p	27p	${ }^{23} \mathrm{p}$
					Schmitt Trigger Excess 3 to decimal decoder	7413	35p	29p	25p
						7443	61.45	61.20	61.08
7451	20p	16p	14p	371	Excess 3 gray to decimal decoder Quad 2-input positive		C1.45	¢1.20	L108
7453	20p	16p	14p	391	pole oufput Quad 2-input positive AND gate open collecror	7408	25p	$21 p$	18p
7454	20p	16p	14p			7409	25p	$21 p$	18p
7402	20p	16p	14p	101	Dual 4input expander				
						7460	20p	16p	14p
				1	J.K flip flop	7470			
7401	20p	16p	14p	111	I-K master-slave				
7404	25p	21p	18p		flipeflop	7472	32p	27 p	23p
7480	67p	56p	48p	21	Dual J-K master-				
7482	87p	73p	62p	131	Dual S SK K master	7473	45p	40p	${ }^{35} \mathrm{p}$
					slave flip-flop wit				
7483	61.32	1.16			preset and clear	7476	45p	40p	36p

Description to \quad Equal 24 25-99 100 up FLI Dual D-type edge 151 Quiggered flipflop 7475 45p 40p 37p 161 Decade counter 7490 80p 67p $57 p$ 171 Divide-by-12 councer 7492 85p 71p 61p 181 4-bit binary counter 7493 80p 67p $57 p$ 191 4-bit shift register 7495 87p $\quad 72 p$ 62p 201 Synchronous up down 4 -bit decade
line mode control 74190 \& 1.80 \& 1.48 (1.27 211 Synchronous up down 4 bit binary counter with one line
221 8-bir 74191 \& 1.80 \& 1.48 \& 1.27 231 8-bit shift register 7491 A 1.28 [1.07 92p 241 S-bitshift register $\begin{array}{lll}744 \text { Ell } & 94 p & 91 p\end{array}$ 41 Synchronous up down 4 bit decade
251 As above-binary counter-binary
$74192 \in 1.74 \leq 1.45 \in 1.25$
$74193 \leqslant 1.74 \leqslant 1.45<1.25$ $261 \quad 5$-bit shift register $7496 \in 1.48 \in 1.22 \in 1.05$ flip-flop with prese and clear $\quad 74107$ 52p 43p \quad 36p 301 Dual quadruple
FLK bistable latch $74100<1.64 \leqslant 1.37<1 / 7$ FLK Monostable multi-
FLL vibrator 74121 48p 40p 34p
101 BCO to decimal decoder and nixie 74141 C1.22 \&1.02 87p
driver

CONTRACT ORDER PRICES ANI BULK QUANTITY PRICES QUOTED ON REQUEST

4.STATION INTERCOM

 4-8tation Trantiator Intercom system (1 mastar and 8 Subl), in de-luxe plastic cabinets for deak or wall mounting, Call/talk/listen from Master to 8 ubs and Subs to Haster. Ideally suitable for Business, Surgery, Schools, Hospital, Office and Home. Operates on one 9 baitery. On/ont BFitch. Complete with 3 connecting

MAINB INTERCOM

Mo betteries-no wires. Just plug in the nains for instant two-way, loud and clear communication. on/ofi switch and rolume control with lock syatem Price 218.96. P. \& P. jup extra.

£3.15
Same as 4-Station Intercom for twoway instant communtation. Ideal as Baby Alarm and Door Phone. Complete with
Battery 18 p. P. \& P. $^{2} \mathrm{~s}$.

ciency with thi incredible De-Luxe business efflciency with this incred without holding the handset. A useful office ald. On/ without holding the handset. Attery 13p extra. P. \& P P 20p. Fuil price refunded if not astialled in 7 days.

WEST LONDON DIRECT SUPPLIES (PE/9) 169 KEN8EGTON HIGH STREET, LONDON, W.8

16 Cherry Lane, Bristol BSI 3NG Tel.: Bristol 421196. STD Code 0272
Your West Country shop for electronic comporients and solid state devices

DABAR audio mixer modules

A range of audio Pre-amplifier Modules is now available enabling the construction of custom-built audio mixers for studio, P.A. and discotheque installations; at reasonable cost and with many facilities usually available only on expensive systems. The Modules, constructed on glass fibre printed-circuit boards, are complete with anodised aluminium black facia plates and four control knobs indentified: L.F., H.F., Echo Send and P.F.L. The modules are designed for use with external faders or volume controls and fulfil most requirements in the audio field. Up to ten input modules may be mixed into the combined Mixer/Line Amplifier Type MX/ LNTA which is available on a matching facia plate with V.U. meter. The line amp will deliver +20 dBM . All mixing may be effected with 10k log faders
The modules are fixed with four screws and dimensions are $7 \frac{1}{2}$ in 2 itin.

Input modules available:
UM1 200-600 ohm MIC
UM2 50k ohm MIC
UM3 Mag P/U 1.5 mV R.1.A.A.
UM4 Mag P/U 5mV R.I.A.A.
UM5 Crystal P/U 500 mV
UM6 High Level Tape/Tuner 500 mV
Mixer/Line amp MX/LNTA: 10 inputs plus expander input; 600 ohm line out with preset for V.U. adjustment.
Power Unit for above Modules: Type PU11/30, $30 \mathrm{~V}, 500 \mathrm{~mA}$. 100 W slave amplifier-100W into 4 ohm load $13 \frac{\text { zin }}{}$: $10 \frac{1}{2}$ in $7 \frac{1}{2} \mathrm{in}$.

Prices: UM1-6, £9each. MX/LNTA
£12. PU11/30, £8. 100W Slave Amp £60.
Manual showing mixing arrangements, connection data, etc., 25p. S.A.E. all inquiries. Trade inquiries welcome.

DABAR ELECTRONIC PRODUCTS

98a LICHFIELD STREET
WALSALL, STAFFS WSI IUZ WALSALL 34365

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.
Loft Mounting Arrass, 7 element. 4j11 element, 52,$6 ; 14$ element, $60,-5$ is element, $70-$ Wall Mounting with Cranked Arm, 18 element, 90 - Chinmey Mounting Arias Complete, 7 element. $80_{1}-; 11$ element, 87,$6 ; 14$ complete, 98 element, $105-$. Compiete assembly instructions with every aerial. Low Loss co axial Cable. 18 yd, King Teteboosters-
 "Concord" all Band V.H.F. U.H.F. mains operated pre-amp 27.10 .0 , State crarly number required on or or C.O.D.

BBC. ITV. FM AERIALS

B.13.C. (Band 1), Loit, *0. T. D. or, 3) 5 element oft array, $45,-7$ element, 55 :Wall mounting 5 element, 65:Combined BBC ITV loft $1+$,.) $-1+7,67,6$, wallmounting $+5,77,6$. Chimney mounting

Combined HBCI ITV
HRC\% Mral:. $1+5+9$ $80,-1+5+14,50,-1+7+$
$14,100-$. Available loft only
F.M, Radio Loft S, D, 14 6. " H' ${ }^{\prime}, 386.3$ element array, 576. Standard co-axial cable, 1 - yd. Coax plugs. 18 . Outlet boxes, 6 -. Diplexer crossove boxes, 17 6. p.p. Aerials. 8,-; accessories, 1 arge 3.6.) 1 - fo fully illustrated Lists.

CALLERS WELCOMED

OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.)

40-41 Monarch Parade London Road, Mitcham, Surrey $01-6484884$
 devised for storing small parts and components
resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/ removable space dividers. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES !

SINGLE UNITS (ID) (Sins $\times 2$ ins

 2 $\frac{1}{1}$ ins). $f(1.35$ DOZEN.DOUBLE UNITS (2D) (Sins $\times 4$ ins x 2tins) $\mathbf{2}$-25 DOZEN
TREBLE (3D) $£ 2.35$ for 8 .
DOUBLE TREBLE 2 draws, in one outer case (6D2), €3.65 for 8, EXTRA LARGE SIZE (6Di) $£ 3.30$ for 8 .

PLUS QUANTITY DISCOUNTS !

Orders 55 and over DEDUCT 5% in the f Orders f 10 and over DEDUCT $7 \frac{1}{2} \%$ in the \mathbb{L} Orders $£ 20$ and over DEDUCT 10% in the $£$
PACKING/POSTAGE/CARRIAGE: Add 35p to all orders under $\mathbf{f 5}$. Orders $\mathrm{f5}$ and over. packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES
NLPAICESTAXPAID
DIDITYT
(Dept. PE9) 124 Cricklewoo Broadway, Londo
Tel. $01-4504844$

FIND BURIED TREASURE WITH THIS READY BUILT \& TESTED Treasure Locator £4.95 (99/-)

BRAED NEW PULLY TRANSISTORIEED PRIKTED CIRCUIT METAL DETECTOR MODULE Ready buill and tested-just plog in a PP3 battery and 'phones and it'g working. Put it in a care, 601 Extrernely sensitive-penetrates through earth, sand, rock, wood, dirt, water, ete.-EASILY
 OORICAL RELICS, BURIED PIPEB, KFY8, HAM-IN-TREES, ETC., ETC, \&ignals exact location by "beep" pitch increasing as you near buried metallic objects. PRIFTED CIRCUIT SEARCH COIL CLEAB BIGNAL ON OME COINI You could even paried SEVERRAL FEEET BELOW GROUND! GIVES beachcombing-it's almost like having a licence to print money! Unclaimed treasure now ex eectronic
 DKMAND EXPECTED AT THIS REMARKABLY LOW PRICE, DEMONSTRATIONS DAILY,
 (High quality Danish stethoscope headphones 22.75 ($55 /-$) extra if required).

SOOTHE YOUR NERVES, RELAX WITH
 TMHIS RELAXATRON

CUTS OUT NOISE POLLDTION-SOOTHES YOUR NEEVES! Don* underestimate the usen of this fantastic new design-the RELAXATRON ia basically a pink noise generator based on avalanche operated transistors. Besides being able to mask out extraneous unwanted sounds, it has rainatorm mysteriously relaxing, a large part of this feeling of well.being can be firectly traced to the sound of falling raindropsl-a well known type of pink noiae. A group of Dertista have experimented on patients with this pink noise-NO AMESTHETICS WERE USED! The noise ostensibly c nervous systems with the results that their pain systems were blocked. IF Yoi most definite reaction on these patients 8URROUIDINGS, IF YOU HAVE TROUBLE COACESTRATIIG, IF YOD FEEL TESEED DRABLE TO RELAXthen build this fantastic Relaxatron. Once used you will never want to be without it-use this amazing pink noise generator whenever you feel uneasy, can't relax or wish to concentrate. TAKE IT ARYWHERE, pocket sized. Uses standard 12 YPAR 1 a YEARS OF AGE uning our unique, step-by-step, fully illustated plans. No soldering necesary. All parts including case,
a pair oftal phones, Components, Nuts, Acrews, Wire, etc. etc. no soldering. Bond only $22.25+25 p(45 / \sim+6 /-)$ a pair of cryatal phones, Componen
p. \& p. parts available separately.)

GET A GOOD NIGHT'S SLEEP-EVERY NIGHT INGENIOUS ELECTRONIC SLEEP INDUCER
 only
 £2.75
 (55/-)

CAN'T SLEEP AT MIGETSP DO YOU WAKE UP IN THE MIGHT AND CAN'T GET OFF TO SLEEP AGAINP WOULD tronic sleep inducer. It even stops by itself so you don't have to worry abo EVERY HIGHTP Then buid this ingenious electronthing audio-frequency sounds, continuously repeated-but as time goes on the sounds gratuall beadspeaker produces -until they eventually cease altogether, the effect il has on people fs amazingly very similar to hupnosis. A control is less vided for adjusting the leng th of times etc., all transistor, can be built by anyone over 12 years of age in about two hours. No knowledge of electronics or radio needed. Extremely simple, easy-to-follow, step-by-step, fully illustrated instructions ncluded. No soldering necessary. Works oft atandard batterles-extremely economical. Bize only $3^{\prime \prime} x 4^{\prime \prime} x 1^{\circ}$-take

REAL WORKING ELECTRONIC ORGAN

ont confuse with ordinary electric organi ihat simply blow air over mouth-organ type reeds etc. Eight months were spent in organ. Fully transistorized-no vailves. Proper sell-contsined oudsposker. Fifteen "parate keys span two full octaves-plar the "Yellow Rose of Texas", play "Silent Night', play "Auld Land Syne", play lots and lotn of similar tures on this real working electrontc organ. Although it's no theatre organ it's certainly no tiny thing, it measures $134 \times 10 \times 2 t^{\prime \prime}$. You bave the thrill and excitement of building to together with the pleasure of playing a real, live, throbbing electronic organ. Take OF ELECTRONICS NEEDED-NONE WHATEVER, No £2.75 Anyone trom nine years npwarde can build tit ensily in one ehort evening following the fult itlus. make Atep-by-step, simply worded instructions. BIG DEEAND ANTICIPATED FOR THIS UNIOUE INSTRU-(55/-) MENT at our low, low building price. ONLY $22-75$ ($55 /-$) +23 p (4/6) p . \& p. for all parts, includin case, loudapeaker, transistors, condensers, resistors, knobs, transformer. volume control, wire, nuts, screws, simple yourself, finish with an exciting gift for sondard battery (parts avallable separately). Have all the pleasure of making it

SHORTWAVE TRANSISTOR RADIO

Can be built in one evening
At lant: Alter trving conntleas circuity rearching for easy build, work this 'Sky Roms'. Anyone from 9 yeara up can follow the ace, we chose easy-as-ABC, fully illustrated inatructions. (We bullt ten prototypes and every one worked first time) no soldering necessary. 76 stations logged on rod atifal in 30 mins.-Rustis, Alrica, UsA, \mathbf{S} witzerland, otc. Experience thrills of world wide news, sport, music, etc. Eaverdrop on unusual brosd-
 As tremendous demand anticipated price held to only $22.25(45 /-)+$
$17 \mathrm{p}(3 / 6)$ p. \& p. for all parts incl. Cabinst, screws, instructions etc. (Part 17p (3/6) p. \& p. for all
available Beparately).

EAVESDROP ON THE EXCITING WORLD OF AIRCRAFT COMMUNICATIONS - JUST OUT V.H.F. AIRCRAFT BAND CONVERTER

Many thousends of v.h.l. Aircralt Band Converteri now solling in D.s.A. Listen in to AIBLIFES, PRIVATE PLANES, JETPLANES. Eavesdrop on exciting crocatalk between pilots, ground approach condrol, airport tower. Hear for yourself the disciplined voices hiding tersoness on lalk dows. Be with them when they have to take nerve rippling decisions in emergencies-Tune tnto the inter national distress frequency. Covers the atreratt trequenc band inciuding EEATHROW, GATWICK, LUTOM, RIMGWAY, PRESTWICK ETC., ETC. CLEAR AS A BELL" This tantastic fully transistorised inatrument can be. buill by anyone nine to ninety in under two hourt. (Our design team built four-everyone worked first time). No knowledpe of radio or electronics required. No soldering necessary. Fully illustrated simply worded lnstructions take you step-by-step. Uses standard PP3 battery. Size only $41^{\prime \prime} \times 3^{\prime \prime} \times 18^{\prime \prime}$. All you do is extend rod aerial, piace close to any ordinary medium-wave radlo- (even ting portables) HO CONFECTIONS FHATEVER MEAEED Use indoors or outdoors. THERE WILL BE EHORMODS DEMARD FOR THIS NEW DBEIGN, 8RH0 INOW, OMLT case, nuts, $+23 \mathrm{p}(4 / 6) \mathrm{p}$. \& p . for all parts, including
sere case, nuts
only ${ }^{\text {BUILD }} 5$ RADIO AND
£2:25
(45/-)
 ELECTRONIC PROJECTS sididite
(39/6)
Amazing Radio Construction setl Become a radio expert for $\$ 1.97$ (39/6). A complete Home Radio Course. No experience needed. Parts includdesign. Illustrated destgn. Illustrated
Step-by-step plans Step-by-step Plann,
all Translstors, loudall Translstors, loud hone, knobs, acrews, etc., all you need. Presentation Box 87 p 7/6) extra as illus. (It required) (extra parts available separ ately) no soldering necessary. Send only $81.97(39 / 6)+29$ p (4/6) P. \& p.

FIND
 BURIED TREASURE!

TREASURE LOCATOR

 TRANSISTORISEDNOW IT's HERE AT LAST, after experimenting for four and a half months with a multitude of different circults and carrying out actual field testa with prototypes, our design team have come up with this real winner. This fully portable transiatorized metal exact location with lou' audible sound (no phones used)-usea

EXAMINE AT HOME FOR 7 DAYS. YOUR MONEY REFUNDED IN FULL IF NOT I00\% DELIGHTED.

The largest selection

NEW LOW PRICE TESTED S．C．R．＇s

PIV	1 A	3．	7 A	10.1	16.4	30.4
	TO－6	TO－66	T0．66		TO－48	10.48
	tp	Ep	£p	${ }^{\text {P }}$	£p	£p
50	0.23	0.25	0.47	0.50	0.53	1.15
100	0.25	0.33	0.53	0.58	$0 \cdot 63$	1.40
200	0.35	0.37	0.57	0.61	0.75	1.60
400	0.43	0.47	0.67	0.75	0.93	1.75
600	0.53	0.57	0.77	0.97	1.25	
800	0.63	0.70	0.80	$1 \cdot 20$	1．50	4.00

SIL．RECTS．TESTED

PIV 3	300m：	750 mb	－ 1 A	$1 \cdot \mathrm{~A}$	3.4	0.1	30.1
	20	Ep	£	Ep	£p	£p	fp
50	0.04	0.05	0.05	0.07	0.14	0.21	0.47
100	0.04	0.08	0.05	0.13	0.18	0.23	． 75
200	0.05	0.09	0.06	0.14	$0 \cdot 20$	0.24	00
400	0.06	$0 \cdot 13$	0.07	0.20	0.27	0.37	1.25
600	0.07	0.18	0.10	0.23	0.34	0.45	1.85
800	0.10	0.17	0.13	0.25	0.37	0.55	2.00
1000	0.11	0.25	0.15	0.30	0.46	0.63	2.50
1200	－	0.33		0.33	0.57	0.75	
		IACS		SILICO	N H	GH	OLT．
On	M 2 A	ti．${ }^{\text {d }}$	10.1		RE	TIFIE	
	TO－1 T	TO－bis		（0－Am	$)^{3}$	T．	3000
				P．I．V．）	Stur	Type	with
	tp	£p	£p	Flying	Leat	80p	．
100	0.50	0.63	1.00		DIA		
0	0.70	0.90	1.25	FOR	1.		ITII
－0				THIAC			
400	0.80	1.00	1.60	Bl100		37 p	eazch

2A POTTED BRIDGE RECTIFIERS 200V 50p
UNIJUNCTION
Equt．T1S43．BENB3000 27p each， $20-99$ 25p 100 どP 20 p ．

NPN SILICON PLANAR BC10i／8／9．10p each $50-99, \quad 9 \mathrm{p}, \quad 100{ }^{119}$ 8p each；Fully tested and coded TO－18 case．

FREE

One 50p Pak of your own choice Iree with orders valued 24 or over．

AF239 PNP GERM， SIEMENS YHF TRAN
 MHZ．LSE is RE PLACEMENT POR AF139－AF18ti \＆ $100^{\prime} \mathrm{s}$ OF OTHER YSEA IN YHF OUR SPECLAL LOW PRICE：－1－2437p each，2j－99 34p each
$100+30 \mathrm{p}$ each $100+30 \mathrm{peach}$ ．

FET＇S
2 N
2819
23820
$2 N 380$
MPF10
CADMIUM CELLS

ORPGO，ORPE6 40 peach

PHOTO TRANS．
 OCP71 Tчие．43p

SIL．G．P．DIODES $£$ $300 \mathrm{~mW} \quad 30 \ldots \quad 0.50$ Sub－Min． $500 \ldots 5.00$

D13D1 Silicon Unilateral

 witch 50 p eachA silicon Planar，mono－ lithic integrated circuit having thyristor elec． trical characteristics，but with an anolegate and a built－in＂Zener＂diode between pate and cathoure．Full data avail able on request．

ADI61 ADI 62
$\begin{array}{cc}\text { MATCHED } & \text { COvPLAE } \\ \text { MENTARY } \\ \text { PAIRS }\end{array}$ OF GIERM．IOWER TRANBISTORS put stame of Amplifiers and Rallo receivers
OUR $1.0 W E S T$ OF B3p PER PALI
$2 N 3055115$ WATT SIL OITR PRICE B3p FACI

FULL RANGE 0 FULL RERER DIODES ZENER DIODES
VOLTAGE RANGE $2-33 V$ ． 400 HV （DO－7 Саяе）13p（ea． 1 W（Top－ Hat）18p ea．10w（so－10 Stud） $25 p$ ea．All fully tested 5% tol thil
marked．
state voltage required．

BRAND NEW TEXAS GERM．TRANSISTORS | Coded and Guaranteed |
| :--- |
| Pak No．FQ： |

 $\begin{array}{llll}\text { T3 } & 8 & \text { gh3 } \\ \text { T4 } 4 & 8 & \text { 2 } 6381: & \text { OC811 } \\ \text { OC81 }\end{array}$ $\begin{array}{llll}\mathrm{T} 4 & 8 & 2(4381 A & 0 \mathrm{CB1} \\ \mathrm{~T} & 8 & 2 \mathrm{G} 382 \mathrm{~T} & 0 \mathrm{CB} 2 \\ \mathrm{~T} 6 & 8 & \mathrm{G} 944 & 0 \mathrm{C} 4\end{array}$ $\begin{array}{lll}\text { T6 } & 89 \mathrm{G344A} & \text { OC44 } \\ \text { T7 } & 8 \text { 2G345 } & \text { OC4．}\end{array}$

2N2060 NPN SIL DUAL TRANS．CODE；D1G99 TEXAS．Our price 25p each．
120 VCB NIXIE DRIVER TRANSISTOR
188X21＂C407，2N189\％ FULLY TESTED AND CODED NDI20． $17 p$ each．TO．
25 up $15 p$ each．
Sil．trans．suitable for P．E．Organ．Metal TO－18 Any Qty

[^5]KING OF THE PAKS Unequalled Value and Quality

NEW BI－PAK UNTESTED SEMICONDUCTORS

0 （ i lass sub－min．general purpese gernanimu diotes

60 Mixed germanium transistors AF／RF
 40 （iermanima transintors like OC81，AC12 8

00 20 mus sub－min．Sit．dioles

Gsilicun rectifiers Top．Hat 750 ml inp to 1.000 J
50 Sil．planar denfes $1.00 \mathrm{~mA}, 0.1 / 200 / 20=$
0 Mivel volen 1 wat：Zener dinten．
$30 \mathrm{PNP}^{3}$ silicon planar transivtors TO－5 sim．2xilis：
40 PNP－NPN sil．transistors OC＝00 \＆ $2 \mathbf{8 1 0 4}$
．a Mixed milicon and germatima diole．
NPN silicon planar transistors TO－is sith． 2 N697
103 －Arup silicon tectifiers intul ivge up to 1000 PI

－5 Silmen NPN tansistor＊like BC108

30 Madt＇s Fike NAT seric PNP iransistor
20 （iermaniurti 1－Ansp rectiners f：JM up to 300 PI

30 r＇ast switching silicon diotes like IN914 micro－min
Fixpermenters assortanem of integrated circuits．butestel
Gates，fiprflops，registers，etc＇．． 8 assorted pieces

U31 20 Sil．Hanat SPN trans low noiseramp $2 \mathrm{H}_{3} 307$
Zener diodes 400 mW D 07 case mixerl rolta，3－18
$1 \overline{\mathrm{v}}$ Ilastic cese 1 amp silicon rectifiers $1 \times \overline{\mathrm{N}} 4000$ series
31）Sil．PNP alloy trans．TO－5 BCY 24 ， $2 \mathrm{~S} 30 \% / 4$

－2）F＇agi spitching gil． 1 rans．NpN， $400 \mathrm{Mc} / \mathrm{s}: 2 \mathrm{~N} 301 \mathrm{l}$
30 Rド geruc．PNO＇trans． $2 \times 1303 / 5$ TO－．

Code Num mentioned above are given as a guile to the type of device in

code shos－The levices thenselves are normally unmarkens．

	20 Red spot trans．PNP．A
	16 White spot R．F．trang．PNP
Q3	$4 \mathrm{OCO}^{-7}$ type trans．
Q4	6 Matched trans．OC＇44／45／81／81
Q．	40 Oc ¢ L transistors
Q ${ }^{\text {c }}$	$40 \mathrm{Cr}{ }^{\text {a }}$ transistors
Q	4 ACJ 28 trans．PNP high gaith
Q8	\pm AClob trans．PNP
Q4	7 OC81 type trans．
Q10	\％Oc7 1 type traim．
Q11	$\because \mathrm{AC1} 3 / 128$ comp．mairs PNP／
Q1	3 AFl16 type trans．
Q13	3 AF117 type trans．
Q14	3 OC171 H．r゙，tyue trans
Q1s	52N2926 sil eroxy trans．
Q1i5	2 ciets 80 low hoise germ，tram
Q17	3 NPN 1 STl41 did STI40
Q18	4 Madtes 2 MAT $100 \times 2 \mathrm{AST} 1: 0$
Q19	：Madt＇s＂MAT 101 \＆I Met I21
Q20	4 Oct4 gertn．trans．A．F
Q21	3.10127 NPN germ．tran
42．3	go NKT \｛rans．A．F．R．W．code
Q23	1004202 sil．dioules sub－
Q：24	40.81 diodes
Q 3	
Q26	80.195 gernl．dioles sub－mit．
Q27	$\therefore 10 \mathrm{~A}$ f100 10 sil rects．IS40R
Q 2 R	2 Sil．power tects．BYZ13
Q29	4 Sil trans $? \times 2 \mathbf{2}$ か 46 ． $1 \times 2 \times 697$. $1 \times$ 2N698 ．
Q 230	7 sil，switch trans．$\because \mathrm{NOHND}$
Q31	6 Sil．switch trans．2NO08 NPN
Q3：	3 PNP sit．trans， $2 \times 2 \times 1131$,
Q3：	3 Sil NPN tratse 171
Q34	7 Sil．NPY trans，
Q35：	3 sil．PNP TO－ $2 \times 2 \times 2904$ a 1×290.5
Q36	
Q37	32 N 30.35 NPN sil．trat
Q38	7 PVP trans $4 \times 2 \times 3703.3 \times 4 \times 3702$
Q39	T NPN trans． $4 \times 2 \mathrm{~N} 3704,3 \times \pm \mathbf{N} 3705$
Q40	
Q41	
Q4．	\％NPN＇trans．${ }^{\text {NS51 }}$
Q43	7 BClOA NPN trans．
Q44	7 NPN trans． $4 \times 13 \mathrm{Cl} 108,3 \times 13 \mathrm{Cl}$
Q45	：BCII3 NPN TO－18 trans．
Q4 ${ }^{\text {a }}$	：13Cl15 NPN TO－Stra
Q4	15 NPN high gain $3 \times$ BC167， $3 \times 1 \mathrm{ClH}$
（14 4	4 BCYTONPN trans．To－18
＜49	4 NPN trans， $2 \times 1 \mathrm{~F}$
Q：O	7 T 18Y $\because 8$ NPN awitch TO－18
Qul	7 BSY 9.8 N PN trans． 300 MH
Q3：	8 BY100 type sil．rect．
Q 33	：5it．\＆germ．trans．mixed alt marked new

PRINTED CIRCUITS－EX－COMPUTER
Packed with semiconductors and components Our price 10 bouts． 50 p P1pla 10 P \＆ 00 Boarils £3，P．\＆P． 30 p ．

GENERAL PURPOSE GERM．PNP POWER TRANSISTORS

$0 \mathrm{C}=2-28-29-30-35-36$ ．
13027 SPECIFICATION
VCBO ROV VCEO JUY IC $10 . \mathrm{A}$ IT， 30 WATTS HFE $30-170$

GENERAL PURPOSE SILICON NPN POWER TRANSISTORS
 sheciflestio
CCBO 100 V ，VCEO 60 V ，IC 15．NI＇S．PT． 115 W．STTS．Iffe 20 100 PRICE 1－24 100＋ $55 \mathrm{peach} \quad 50 \mathrm{p}$ each $\quad 47 \mathrm{p}$ each

GENERAL PORPOSE NPN SILICON SWITCHING TRANS．TO－18 SIM．TO $2 N 70 \in / 8$,

$$
\begin{array}{lll}
& \text { \&p } \\
=0 & \text { For } & 0.50 \\
30 & \text { For } & 1.00
\end{array}
$$

$$
\begin{array}{cccc}
\text { When mopering please gtate pre } \\
\text { \&p } & 100 & \text { for } & \mathbf{1} \\
0.50 & 500 & \text { for } & 7 .
\end{array}
$$

[^6]| | Price each | | |
| :---: | :---: | :---: | :---: |
| Eopay TO－s case | 1－24 | 20゙99 | $100{ }^{\prime \prime}$ |
| 1 L900 Butiet | 35p | 33p | 27p |
| $1 \mathrm{LS14}$ Dual $3 \mathrm{i} / \mathrm{p}$ | | | |
| gate | 35 p | 33p | 27 p |
| 10．923 J－K lijp－10p | 50p | 47p | 45．p |
| Data and Circuits | | klet f | －1．C゙m |
| Price 71． | | | |

TRANSISTOR EQUIVALENTS BOOK．A complete cross reference and equivalents book for European， American ancl Japanese Tratusis－ tore Exclugive to BI－PAK 75p each．

GERM，POWER TRANS．

Type	Price each	Tye	I＇rice each
OC： 2	50p	OC49	40p
OC2：3	30p	0 C 3.5	33 p
$0 \mathrm{OC2} 3$	33 p	OC36	40p
OC2，	25p	AD140	40p
OC：5	25p	AD142	40 p
OC28	40p	AD149	43p

OUR STOCKS of individual devices are now too numerous to mention in this wivertisement．Send S．A．E for our listing of over 1,000 Semiconductors．All available Ex－ Stock at very competitive prices．

Dual－in－Line Low Profile Socketa

14 and 16 Lead Sockets for us
Dual－in－Line Integrated Circuits

	Price each		
Order No．	1－24	－¢5－00	100
Tso it pin type	30p	27 p	25p
80 th pin type	35p	32p	30p

Price each
$\begin{array}{llll}\text { Tso If pintype } & 30 \mathrm{p} & 27 \mathrm{p} & 25 \mathrm{p} \\ \text { Tso th pin type } & 35 \mathrm{p} & 32 \mathrm{p} & 30 \mathrm{p}\end{array}$

-the lowest rices!

74 series T.T.L. I.C's

NOW LOWER THAN EVER PRICES

 -GREATER RANGEB1-1 H K Semiconductors offer you the largeat and most popula Digital TiN Series fully coded, brand new. Dual in-line plastie 14 and 10 pin packages.

BI-PAK Order No.		Price and qty. pricos		
	Similar Typer to:-Description	1-24	25-99	100 up
		fy	5p	
$\begin{aligned} & 13 P 00=7400 \\ & B P 01=7401 \end{aligned}$	Qualruple 3 -input positive NANI			
	gate (with open collector output).	0.23	0.20	0.15
BP02 ${ }^{\text {- }} 402$	gates.	0.23	0.20	0.15
$\mathbf{B F O 3}=-1403$	Qualruple 2 -itput positive SAND gates (with open-collector output)	0.23	0.20	0.15
$\mathrm{BFOt}=7404$	Ilex Inverters..	0.23	$0 \cdot 20$	0.15
$\mathrm{BF} 10=7410$	Triple 3 -input prositive NAND gater	0.23	0-20	0.15
HF13 $=7414$	Dual 4 -input schmitt trigger	0.35	0.82	0.29
BE20 $=7420$	D)amalinput positive NANil gates	0.23	0.20	0.16
BP30 $=7430$	8-input poritive NAND gates	0.23	0.20	0.15
BP40 $=7140$	Dual -input positive NAND buffers	0.23	0.80	0.15
$\mathrm{BP} 41=7441$	BCD to decinal nixie driver	0.87	0.77	0.67
$\mathbf{B P 4 2}=14{ }^{\text {d }}$	BCD to decimal decoder ($4-10$ lines, 1 oi 10)	0.87	0.75	0.67
$\mathrm{BP} 4 \bar{i}=744$	BCD-seven-segraent decoler/itivers (15V outputs)	1.40	1-30	1.20
$13 \mathbf{P 6 0}=74{ }^{\text {c }} 0$	Expandable dual *rinput and.otinvert	0.23	0.20	0.15
$\mathbf{B P E 1}=$ 7401	Dual \because-whle \because-itput aud-ur-invert gates.	0.23	0.80	0.15
$\mathbf{B P 5 3}=74{ }^{\text {¢ }} 3$	Quad $\stackrel{2}{2}$-ingut expandable ánd-orinvert.	0.23	0.20	0.15
	$\boldsymbol{4}$-wide ${ }^{\text {a }}$-input ind-or-insert gates	0.23	0.20	0.15
$\mathrm{BP} 60=7460$	Duat 4-inptit expander	0.23	0.20	0.15
$\mathrm{BP70}=7470$	single-phase J-K tlip-flop	0.25	0.32	0.28
$\mathrm{BP72}=7472$	Master-slave J-K tlip-flot	0.35	$0-32$	0.29
BP73 $=748$	Dual master slave J-K tlip-du;,	0.43	0.40	0.37
BP'4 $=7474$	Dual D type flip-10p	0.43	0.40	0.87
BP75 $=7475$	Quad latch	0.47	0.45	0.43
$\mathrm{BP76}=74 \mathrm{ic}$	Dual J•K with preset and clear	0.47	0.45	0.48
$\mathrm{Br}^{8} 80=7480$	(lated ful) adders	0.87	0.77	0.87
BP81 $=7481$	10.blt read/ririte mentory	1.35	1.25	1.15
13P82 = 748:	- bit binary full adders	1.30	1.20	1.00
BP83 $=7983$	Quad full iuder	0.87	0.77	0.87
BP86 $=7486$	Quad - -input exclusive or gater	0.80	0.70	0.60
$\mathrm{BP} 90=7490$	BCD decade counter	0.87	0.77	0.67
BP91 $=7491$	8-bit shift registers	1-21	1.00	0.87
BP0: $=740 \%$	Divile-by-twelve countern	0.87	0.77	0.87
$\mathrm{BP93}=7493$	4 -bit binary conntera	0.87	0.77	0.67
BP94 $=7494$	Jual entry 4-bit shift register	0.87	0.77	0.67
BP95 $=7495$	4-bit up-down shift register.	0.87	0.78	0.87
[1P96 $=740$ \%	0 -bit parallel in parallel ont shiftregister	1.10	1.00	0.80
$\mathrm{BS} 100=74100$	8 -bit bistable latches	1.75	$1 \cdot 65$	1.55
$13 \mathrm{Pl18}=74118$	Hex set-reset latches	1.30	1.20	1.00
13P121 $=74121$	Monostable multivibrators	0.87	0.77	0.87
BP141 $=74141$	BCD-to-decimat decoder/triser	0.87	0.77	0.67
BP145 $=74145$	BCD-to-tecimal decoder//Irivers	1.80	1.70	1.60
BP101 $=74151$	8 -bit clata selectors (with atrobe)	1.40	1.30	1.20
BP153 $=74153$	Dual 4 -line-to-1-line lata aclectorn/ multiplexers	1.40	1.80	1.20
	Binary counter resersible	3.50	3.25	3.00
PRICE-MIX. Devices may be mixel to qualify for unantily prices.				
ata is avatlable	he above Series of Integrated Circu	Oot		13

TTL INTEGRATED CIRCUITS
Xanufacturers "Pail outs"- out "f silec. devices including functional units and part function but classed as out of spec. from the manufacturers' very sigid specifica PAK No. PAK No.

BRAND NEW LINEAR I.C's-FULL SPEC.

Type No.	Case	Leade	Description	Price		
BP 201C-SL201C	TO-5	8	(1.P. Amp	63 p	53p	45p
BP 701C-SL70IC	TO- 5	8	OP Amp	62 p	500	45
BP 702C-8L702C	TO-J	8	OP Amp Direct O1*	63 p	50 D	45p
BP $702-7270:$	D.I.L.	14	G.1', op Amp (Wite			
			Band)	53p	45D	40p
8P 709 - 2708	D.I.L.	14	High OP Aurp	53p	459	40D
	TO-J	\$	High Gain OP A mı	53 p	45	40 D
BP 711-MA711	TO. ${ }^{\text {a }}$	10	Dual comparator	58 p	500	450
BP 741 -72741	D.I.L.	14	Ifigh Gain OP Am, (Protected)	75 D	60p	50p
HA 703C-hato3C	T0-5	6	1.F.-I.F. Amp	43p	350	270
TAA $263-$	70-72	4	A.F. Amp	70 D	60 p	550

ANOTHER
 BI-PAK

 FIRST!
THE NEW S.G.S.

 EA 1000 AUDIO AMPLIFIER MODULE
*GUARANTEED NOT LESS THAN 3 WATTS RMS

Especially designed by S.G.S. incorporating their proven Linear I.C. Audio Amp. TA/621 providing unlimited applications for the enthusiast in the construction of radios, record players. Audio and Stereo units. Also ideal for intercomsystems, monitoring applications and phone answering machines. OTHER USES: portable applications where supply rails as low as $9 V$ are of prime imporiance.

Sensitivity 40 mV for 1 wat VOLTAGE GAIN 40dB but can be varied up to 73 dB for some applications.

- Signal to Noise Ratio 86dB.
- Frequency response better than 50 Hz to 25 KHz for -3 dB .
- Normal supply Voltage 9.24 V .
- Suitable for 8-16 OHM Loads.
- Typical Total Harmonic distortion at 1 watt less than 1°
*Supply voltoge $\quad(V s)=24 V$ 15ohm lood.
Module Tested and Guaranteed $\begin{array}{lcc}\text { Quantity } & 1.9 & 10.25 \\ \text { Price each } & £ 2.63 & f 2.28\end{array}$ Larger quantities quoted on request

Full hook-up diagrams and complete technical data supplied free with each module or available separately at 10 p each.
C'

DTL (Diode Traneistor Logic) INTEGRATED CIRCOIT8 manufacturers' "Fall -out of spec, devices inclulting functional unts and part functional but learning abont IC's and experimental work

All prices quoted in new pence Giro No. 388-7006 Please send all orders direct to warehouse and despatch department

Practical Electronics Classiiied Advertisements

RATES: 7$\ddagger \mathrm{p}$ per word (minimum 12 words). Box No, $7 \neq p$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, " Practical Electronics " IPC MA GAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

MISCELLANEOU8

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE

because this GPO approved transmitter/receiver kit does not use R.F. and you can get one easily. kit doos not use R.F. and you can set one easill be virtually SECRET since they won't be heard by- conventional mesns. Actually it's TWO KITS IN ONE because youget all the printed-circuit boards and components for both the transmitter AND receiver. You're going to find thia project REALLY FUN-TO.BUILD with the EASY-TO.FOLLOW instruetions. An extrerhely fexible design with quite an AMAZING RANGEhat obvious applications for HOUSE-TANGUUGE LABORATORIES, SCOUT CAMPS, ete.
GET YOURS! SEND 45.20 NOW
TO: 'BOFFIN PROJECTS
DEPT. KE2O10
STONELEIGH, EWEL, SURREY

TOP MANUFACTUUERS' PROOUCTS

 AT TRADE PRICES!!!ADCOLA SOLDERING IRONS AND ACCESSORIES: 60/40 SOLDER ELECTROBIL RESISTORS TR4, TR5, TR6, TR8, C5
T.M.C. RELAYS, PUSH BUTTON KEYS AND LEVER KEYS
B.I.C.C. P.V.C. EQUIPMENT WIRE ALL COLOURS
Send large s.a.e. for price lists
SPEEOY COMPONEETS SUPPIY LTD.
High Street " Hendcrosit
Haywards Heath . Sussex RHI7 6BW Handcress 671/2
CALLERS WELCOME

CLEARINO LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. null potentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M/C relays, components, etc. Lower Beeding 236.

RING MODULATOR by Dewtron is professional, transformerless, S-transistor, has adjustable F1/F2 rejection. Module ali parts, including all mechanics and instructions ONLY $£ 2 \cdot 45$, AUTO RHYTHM from Dewtron modules. Simple unit for waltz, fox.
trot etc. Costs niting effects. Send $15 p$ for illustrated list. D.E.W. 254 Ringwood Road,

PRINTED CIRCUITS. Gapacity now available for prototype or production runs, Artworks. Photographics, Etched Boards, and Assembly Fast turn round. Send S.A.E. for quotations, Also copper laminated fibreglass board. Single sided $11 p$ per sq. inch. Double sided $2 p$ per sq. inch. Any size cut. Minimum order sop. P.P inch. Any size cut. MATICS, 18 Fennine Road, plus 10%. SYSTEMATICS, 18

PROFESSIONAL CONTROL PANELS

> with FASCIA KIT

MAKE YOUR OWN PANELSIN PERMANENT ANODISED, SELF-ADHESIVE ALUMINIUM. NO SPECIAL EQUIPMENT NEEDED. CHOICE OF SILVER ON BLACK, GOLD, RED. BLUE, GREEN.
TRIAL KIT (Approx. 50 sq in.) 98p + p.p. 30p No. 2 KIT (Approx. 100 sq.in.) $£ 1.58+$ p.p 30 p M.P.E. Ltd., BRIDGE ST., CLAY CROSS, DERBYS.

MISCELLANEOUS (continued)

TOP Thillsions

Brand New and Individually Tessed Transistors supplied unmarked, but packed separately for indentification and guaranteed to be within their correct specification or money refunded. All at 9p. each or Any 12 transistors for only 4

ACY22	BFY51	OC72	2N3702
BC108	BFY52	OC202	2N3703
BC109	B5Y27	ZTX300	2N3705
BC168	OC45	2N706	2N3706
BC169	OC71	2N2926	2N3708

17 Buckridge, Portpool Lane, London, E.C.I

Beat Power Cuts, 12 ins 8 watt Tube, ideal for Caravan, Tent, Emergency Lighting, etc. Fully Transistorised, Low Battery Drain With ON/OFF Switch and 12 V Socket to run other Lights or 12 V Equipment.
Unbeatable at $£ 3.30$
or in kit form $82 \cdot 90$
post paid
SALOP ELECTRONICS
Callers welcome
23 Wyle Cop
S.A.E. for lists

We stock all those components and materials required by the home $\mathrm{Hi}-\mathrm{Fi}$ constructor, including speaker grille fabrics, BAF wadding, speaker kits, cabinets, crossover networks, inductors, etc. AT TOP DISCOUNTS. Price list free of charge. Send 2×3 p stamps for pattern card of speaker grille fabrics. Mail order ONLY. No callers please.

4 doloscan

LOUDSPEAKER8 for P.E. intercom. 15Ω, 3in. Two for \&1, post fref. ('ROW BOROCGH ELECTRONICS, Eridge Road, Crowborough, Sussex

COMPLETE SY8TEM of 8 telephones, automatic dialling distribution board and 200yd connecting cable. All working, 225 o.n.o. Buyer collects. Also Radionic Set No. 4 buyer collects. Also Kad Ereamp Kit and Educational E parts,
 4646.

VERITONE POLYESTER recording tape, 5 tin 1200 \&1, $1800 \& 1$; 7in 2400 \&1-70. Cassettes: C60 600, C90 80p, C120 81. All post free. C.W. 60p, C90 8BC TAPES, 16 Bishops Road, C.W.O. SBC TAPES, 16 B
Sutton Coldfield, Warwickshire.

CHEMICAL8. Wide range. Send S.A.E. for list. KEMCO, 22 Kemerton Road, London, S.E.5. Mail Order ony.

WRITINE a constructional article for P.E.? Drop us a line, and we will tell you how we may be able to help. Nestra Electronics Ltd., 97 Felpham Way, Bognor Regis, Sussex, atten. Mr. N. Strange.

EUILD IT in a DEWBOX quality cabinet in $\times 2$ in \times any length. DEW LTD. Kingwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

FABCIA PANELE, hi-fi equipment, etc., etched aluminium to individual speciffcations, S.A.E details. R. MARSH, 29 Shelbourne Road Stratford on Avon, Warwicks.

RECORD T.V. SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. Instructions included, $70 p+10 p \mathrm{P}$. \& P. CROWBOROUGH ELECTRONICS (P.E.), Eridge Road, Crowborough, sussex.

PSYCHEDELIC LUMINOPHONICS

Or is this just another way of referring to FANTASY? Either way, our Projects 24 and 1014 probably come within this category-THINK OF THE FUN
YOU WOULD HAVE WITH SOMETHING LIKE YOU WOULD HAVE WITH SOMETMING LIKE THIS AT A PARTY! There are MANY OTHER
UNUSUAL PROJECTS TOO-how about an ELECTRONIC STETHOSCOPE for LISTENING THROUGH WALLS, etc., or a TRANSMITTER/ RECEIVER that doesn't use RF, SO LICENCE WORRIES ARE OVER! Then there's another projece for a "LEARNING"" MACHINE-imagine one of these in YOUR BACKROOM; YOUR
FRIENDS WOULD BE AMAZED! If REALLY FRIENDS WOULD BE AMAZED! If REALLY UNUSUAL Projects interest you, then WEVE GOT WHAT YOU WANT, In afew days from now YOU COULD BE IN THE
FICTION" WORLD OF "BOFFIN"!
DON'T PUT IT OFF! SEND I5p for your list-NOW
BOFFIN PROJECTS
4 CUNLIFFE RD., STONELEIGH, EWELL, SURREY Designs by GERRY BROWN and JOHN SALMON and presented on TV

LADDER8

VARNIBHED TIMBER LADDER8 from manufacturer, LOWEST PRICES anywhere: $15 \not \mathrm{ft}^{2}$ ext., 26.20 ; 17 ft extd., $26 \cdot 50$; 20 ft extd., 27 ; 21 fft extd., $27 \cdot 75$; $24 \frac{1}{2} \mathrm{ft}$ extd., 88.90; 29 ft extd., 810.25 ; $31 \frac{1}{2} \mathrm{ft}$ triple extd., $\mathbf{s} 12 \cdot 25$; 36 ft . triple extd., 816 . Carr. 80p. Free Lists. Also Aluminium Ext. and Loft Ladders. Callers welcome, Dept. PEE, HOME SALES, Baldwin Road, Stourport, Worcs. Phone: ${ }_{02-993} 2574$. Placing order on C.O.D.

TEST EQUIPMENT

8IGNAL GENERATOR 9 to 300 mHz output 1 Microvolt to 100 Millivolts. $1,000 \mathrm{~Hz}$ internal sinewave and squarewave modulation 515. SEECO, 61 Arragon Road, Twickenham, Middlesex. 01-892 1217

TELEVISION TRAINING

(MONOCHROME AND COLOUR)
This private College provides theoretical and practical training in Radio and TV Servicing. Courses of 16 months' duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Marine Radiocommunication and Radar are also available. Write for prospectus to: London Electronics College, Dept. B/3, 20 Penywern Road, Earls Court, London SW5 9SU. Tel. 01-373 8721.

EDUCATIONAL

EDUCATIONAL

Young men (and women) trained as Radio Officers on liners and other ships. Salaries rising to $\mathbf{£ 2 , 5 0 0}$ per year (all found). Immediate vacancies. Grants available for Day full time course. For details of training write to:
The Radio College, 91 Lancaster Road, Preston, Lancs., stating if interested in Day or Postal course

QET INTO ELECTRONIC8-big opportunities for trained men. Learn the practical way with low-cost Postal Training, connplete with equipment. R.T.E.B., City \mathbb{K} Guilds, Radio, TV, Telecoms, ete. For free informative Guide, write CHAMBERs COLLEGE (Dept. 856 K), Aldernaston court, Reading, RG7 4 PF .

MEN: You can earn f50 p.w. I.earn Computer Operating. Nend for FREE brochureLONDON OOMPITEK OPLRATORS TRAINING CENTRE, C95 Oxford House, 9-1.5 Oxford street, London, W. 1.

Courses for ELECTRONICS COMMUNICATIONS AND ELECTRICAL TECHNIIIANS

SOUTH-EAST LONDON TECHNICAL COLLEGE

Day, evening, day and evening courses Also full-time, sandwich and block courses

CITY AND GUILDS OF LONDON INSTITUTE COURSES
ORDINARY AND HIGHER NATIONAL CERTIFICATE COURSES ORDINARY AND HIGHER NATIONAL DIPLOMA COURSES

Enrolment 13th to 16th September, 1971
Earlier application is desirable for Dipioma courses
Particulars from Department of Electrical Engineering and Applied Physics, South-East London Technical College, Lewisham Way, SE4 IUT Tel. 01-692 7296 Ex. 27

ENEINEERS-get a technical certificate. Exam and Certificate Postal Courses in all branches of bingineering, Electronics, Radio and TV, Computers, Draughts., Building, etc. Write for helpful Free Book-BIET (Dept. H.4), Aldermaston Court, Reading, RG74PF.

SERVICE SHEETS

RADIO TELEVIsION, over 8,000 Models
JOHN GILBERT TELLEVISION, herds Bush Rd., London, IV. 6 (01. 143 8441)

8ERVICE SHEETS. Radio, TV, etc., 8,000 models. List 10p. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

8ERVICE 8HEET8 (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFinding quide. Prices from 5p. Over 8,000 models available. C'atalogue 13 p . Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Rexhill, Sussex Telephone, Bexhill 7097.

SITUATIONS VACANT

EAQLE INTERNATIONAL require Audio Engineers. Excellent prospects. Must be fully conversant with stereo Ampliflers, Tuners, Multiplex, etc. Contact MR. MORROW 01.9030144.

ELECTRONIC/ELECTRICAL TEGHNICIAN required for duties in Teaching Laboratories. Interest in servicing electronic equipment an advantage. Excellent prospects. Salary range $£ 1,041$ to $£ 1,410$ plus $£ 125$ London Weighting. Application forms from Personnel Officer (Technical Staff EE1), LNIVERSITY COLLEGE LONDON, Gower Street, London, WC1E 6BT

FOR SALE

SEEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PE, New Mills, Stockport.
catalogue no. 13, Electronic and Mechanical Components, new and manufacturers' surplus. Credit vouchers value 50 p. Price 23p, including post. ARTHUR SALLIS RADIO CONTROL LTD., 28 Gardner Street, Brighton, Sussex.

MORSE MADE ! !

FACT NOT FICTION. II you start RIGHT you will be readiug amateur and commerclal Morno Thin a month (normal progrebe to be expected).
Uaing gclentifically prepared 3-speed records you without translating. You can't belp jt , It's as easy as learning a tane. 18 W.P.M. in 4 weeks guarantced. For detaits and course C.O.D. ring g.T.D. 01-660 2896 or eend 4p atamp for explanatory booklet to:
G3ESC (Boz 19), 45 GRREN LANE, PURLEY, AURRET
P.E. Nov. '64 (No. 1) to Dec. '68 except Jan. '65 Aug. '67. Any offers for these, 59 copies? GORRETT, "Anton", West Beeches Road, Crowborough, Sussex.

DELCO ROTARY TRANSFORMERB, 12/24 volt input. $265 / 540$ volts output at 0.12 amps (new) $82-25$ each, carriage paid. A. C SUMMERS, Dallas Works, New Milton Hampshire.

First-class opportunities in Radio and Electronics await the I CS trained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the spocialized craining so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
* RADIO OPERATOR CERTIFICATES.

Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of 1 C S courses in Radio, Television and Electronics will be sent to you by return mail
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL
 CORRESPONDENCE

SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

WANTED

CAsH PAID for New Yalves. I'ayment by return. WILLOW VALE ELECTRONICS, 4 The Broadway, Hanwell, London. W.7. 01-567 5400/2971.
hIGHEst POssible CAsh prices for hevox, Ferrograph, Brenell, Vortexion, Tandberg. $9.30-5.00$. 01-837 8206 .

WE PAY THE HIQHEST PRICES for new valves. Cash sent by return. A.D.A. MANEFACTURING CO., 116 Alfreton Road, Nottingham.

TOP PRICES PAID.

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

DECEMBER'69, MARCH '70 issues of Practical Electronies. Offer 50 p per copy or will pay by arrangement to borrow for few days. Yhone 01-579 1036.

RECEIVERS AND COMPONENTS

BRAND NEW COMPONENTS BY RETURN. Electrolytics 1.5 or 25 volts, 1, 2, 5, 10 mifds. 31 $\frac{1}{2}$; 25, 50, 4p; 100, 5p. Mylar Film 100 V $0.001,0.002,0.005,0.01,0.02,2 p ; 0.04,0.05$, $0.1,2.5 \mathrm{p}$. Mullard miniature carbon fini resistors, third watt E .12 serips. $1 \Omega-10 \mathrm{M} \Omega, 8$ for 5 P . Postage 5 p . THF, C.R. SUPPLY CO., 127, ('hesterffeld Road, shetfield, ss 0IRN.
P. E. AURORA. Complete sets of electronic components for assembly on Vero board. We also have specially designed printed circuit cards for a combined controller / filter system readily available.
(S.A.E. for lists).

OPTELMEC LTD.
 1, 2 \& 3 Nelson Works

Back Road, SIDCUP, Kent

I.C. STEREO AMPLIPIRR

$3 W$ per channel, internal overvoltage, short circuit and polarity protect ion. Input required, 250 mV for $3 \mathbf{w}$ output into ${ }^{8}$ nhm speakers. Distortion at max. output 0.5%. Controls, volunle, bass, treble
and balance. Supply. 18 V (a) 1 A d.c. Size 7 in \times and balance. Bupply. 18V (a) 1 A d.c. Size in \times
8 in $\times 1$ in in , will fit into the lower part of most 8 in $\times 1$ in, will fit into the lower part or mont 114.75. P. \& P. 25 p .

POWER SUPPLY for 1.C. Stereo Amplifer. unregulated, Input $230 / 250 \mathrm{~V}$ a.c. Output 18 V . m^{2} in d.c. Insuiated case size $4 \mathrm{in} \times 4 \mathrm{in} \times 3 \mathrm{in}$. Built and tosted, 24.75. P. \& P. 25p.
Amplifer and power supply on one order P. \& P. 25 p only.

HEATSMKS

${ }^{50}$ dide Plain undrillec
$5 D N$ Plain drilled $2 \times \mathrm{TO}-3$ (OC28), 33p each.
10DN Plain undrilled $4 \operatorname{in} \times 4$ in $\times 1 \mathrm{in}$ finned both
sideas, 33p each.
10DN Plain drilled $2 \times \mathrm{TO}-3$ (OC 28), 38 p each. Accessory kite TO-3 (OC28). I set $\mathrm{Sp}_{\mathrm{p}} ; 2$ or more sets ip each.
So-55 (AD161) 1 set 5p: 2 or more sets 4p each
P. \& P. On leatainks and Accessory kith 10p

SEPTUN ELECTRONICS

P.O. Box 15, Alderihot, Hants

Mail order only please.

DRY REED INSERTS

Overall length $1,85^{\prime \prime}$ (Body length 1.1°). Diameter $0.14^{\prime \prime}$ to switch up 10500 mA at up to 250 V D.C. Gold clad contacts. $62 \frac{1}{2}$ P. Per doz.; 63.75 per $100 ; 427$
10,000 . All carriage paid.
G.W.M. RADIO LTD.

40/42 Portiand Road, Worthing, suasex 090334897

RECEIVERS AND COMPONENTS

(continued)

Microcircuits
Microcircuits 73p; PA230 97p; PA234 87p; 709 43P;

Transistors
2N3055 60p; 2N5172 7p; BCY70 18p; BDI24 B0p; BFX86 15p; ME0402 21p; MEO412 20p; ME0413 15p;. ME1002 12p; ME4101 11p; ME4102 12p; ME6001 13p; ME6101 15p;

1A Rectifier
$50 \mathrm{~V} 7 \mathrm{P} ; 400 \mathrm{~V} 10 \mathrm{p} ; 600 \mathrm{~V} 14 \mathrm{p} ; 1000 \mathrm{~V} 19 \mathrm{p}$.
Bridges-50V 37p; $100 \mathrm{~V} 40 \mathrm{p} ; 2200 \mathrm{~V}$ 40p.
Printed Circuit Resist Pen, s0p.
JEF ELECTRONICS (P.E.9) York House, 12 York Drive, Grappenhall,
Warrington, Lancs. Mail Order Only. C.W.O. P. \&'P. Sp per order. Overseas 40p. Money back if not satisfied. List free on application.

RADIOSPARES EQUIPMENT

now available for enthusiasts and amateurs. Callers by appointment. S.A.E. must accompany all enquiries.

SONAR GROUP (Dept. P.E.) 24 Fordway Ave., Blackpool, Lancs. Telephone 0253 (Blackpool) 32819

COMP UTER PANELS. 5 - BC108 diodes 15p, post 5p, 30 transistors, frat grade componente, details provided, 3-55p, pos t10p. 6-0C170, D10DES, 36p, post 8 peach 8-0078/78/42, 8-OA10 DIODES, 40p, poit 10 p each. 4-MD834, $5-100 \mathrm{mF}$ ELECTROLYTICS, 12V potcore, etc., 80 p, post 8 p each. NEW COIL PACES. LONA, MED, S.W. piano key, No dope, a0p. post 10p each. ORP12 on panel ex-equip-
 c.p., diecount for quantities. PERRITE ROD $7^{*} \times I^{\prime}$,
120 , pont $8 p$ each, LA2 POT CORES. 20 in AL1 box with 20 pot cape 81.50 , post 27 p . Singles, 15 p c.p. with 201° cape, 1.50 , post 27 p. Singles, $15 p$ c.p. weigh toz, 55 p with base. 65p post free. sMALL GYNCHRONOUS MOTORG with train of geara, ${ }^{200-250} \mathrm{~V}$, sop post free.
POLYSTYRENE CAPACITORS. $125 \mathrm{~V}, 150,180,220$. $330,390,560,680,820,1,200,1,500,1.800,2,200$, $2,700.3 .300,3,900,5,600,6,800,8,200,0 \cdot 01,0.012$. $0.015,15 \mathrm{p}$ dozen, post 10 p .

 76 HAYPIELD W.B. RADIO MAIL ORDER ONLY

PE GEMINI
 STEREO AMPLIFIER
 (Dual purpose, 30W per channel)

 All the components to build this high quality amplifier, as featured in "Practical Electronics," Nov. 1970 - Feb. 1971, are now available from one source.ALL PARTS CAN BE PURCHASED SEPARATELY.
Please send foolscap size S.A.E. for free complete lists. Return post service.

MAIL ORDER ONLY
ElectroSpares
21 BROOKSIDE BAR CHESTERFIELD, DERBYSHIRE Quality - Value - SERVICE

[^7]
RECEIVER8 AND COMPONENTS

(continued)

TO66 HEAT RADIATORS Anodised, $\frac{1}{1}$ in high, $14^{\circ} \mathrm{C} / \mathrm{W}$. $12 \frac{1}{2} \mathrm{p}(25+10 \mathrm{p})$. Min. S.P. REED RELAYS N/O
12 V coil, 10 W reed, p.c.b. Mtg. 70p ($25+$ 80p).
Min. S.P. REED RELAYS C/O
12V coil, 3W reed, p.c.b. Mtg. CI.35 (25 + (1.25).
D.I.L. SOCKETS

14 lead, $40 p(25+35 p)$; 16 lead, 45p ($25+$ 40p); also 24 and 40 lead.

Needing semiconductors and components? Let us quote for your "shopping list". Our min. order only $E 1$. Please add 10 p for P. \& P. Orders over 65 paid. Mail Order only. Strictly C.W.O
KONTAX ELECTRONICS (Sheerness) Led., lis Barton Hi

```
NEW SILICON TRANSISTORS Texas markings. NOT seconds, etc., or rejects. gain applications. Both have hie 45-800 and max dissipation 250 mw .
2N37087p each. (N-P-N, coll-emitrer 30v max, coll current 30ma max).
2N4059 9p each. (P-N-P. coll-emitter - 30v max. coll current - 30 ma max)
Ratings at \(25^{\circ} \mathrm{C}\) free-air temp. Data sheets Ipea.
Mail order only. Mail order only. (Compont etc. 6p per orderi
Gower Street. Derby DEI isB
```

mAGNETIC RECORDING TAPE. Fully Guaranteed. 5in L.P., 60p. 5in D.P., \&1. 5 in T.P.,
 T.P., 83. Invertor. 15 W 12 to $240 \mathrm{~V}, \mathbf{2 1} 50$. Postage, 15 p . Send 10 p for full lists of electronic components. MFJ ELECTRONICS, 495 Alum Rock Road, Bírmingham, 8.

CHROMASONIC ELECTRONICS

supply only 1 st grade branded goods subject to makers' guarantees
SN $7400 \mathrm{~N}, 1,2,4, ~ 5,10,20,26,30,40,50,51,54$
SN 460 n SNT460N

PA230				
34	87 p	TAA263	70 p	TAA3:0
PAd37	21.57	TAA293	${ }^{90} \mathrm{p}$	Tad100
P4.339	82.60	TA	. 50	TAD110 $\frac{1}{}$

LOW NOISE HI-STABS
$\frac{1}{6}$ watt 5_{0}^{o} all E24 values 3 for 2p plis p. \& p. 6p
up to 50 resistors $+1 p$ for each alditional $\bar{j} 0$.
free catalogue p. \& p. 3p
p. \& p. on all orders other than resistors 6 p.

56 Fortis Green Road, London N10 3HN

TELERADIO SPECIAL PRODUCTS

Hi-Fi Amplifier Systems by Texas, Linsley Hood \& Bailey. In kit form with P.C. Board. Digital Clock Kit Radio Control Systems.
Details gladly sent on request from
325/7 L. Fore Street, Edmonton, N. 9

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTORRADIO, RECORD PLAYER, TAPERECORDER, AMPLIFIER, etc. Types available: $6 \mathrm{v}, 9 \mathrm{v}$, 12 v $18 v($ single output) 22 each. P. \& P P. $15 p$.
 outputs) 22.50 each. P. \& P. 15 p . Please state output required. All the above units are completely isolated from mains by double由CS PRODUCTS (ADIOI LTD
(Dept. P.E.), 31 Oliver Road, London, E. 17

Bl-PREPAK

FULLY TESTED AND MARKED

ACl07	${ }_{6}{ }^{2} \mathrm{P}$	OC170	${ }^{\text {f }}$ 0.23
${ }^{\text {ACl }} 126$	0.13	$\bigcirc \mathrm{CO} 171$	0.23
${ }_{\text {ACl27 }}$	0.17	OC200	0.25
${ }^{\text {ACl }} 28$	0.13	OC201	0.25
${ }_{\text {ACl }} 176$	0.25	2G301	0.13
ACYI7	0.15	2 G 303	0.13
AF239	0.37	BCl13	0.10
AF186	0.50	$2 \mathrm{~N} 1302-3$	0.20
AF139	0.37	2N1304-5	0.25
BC154	0.25	2N1305-7	0.30
$\mathrm{BC} 171=\mathrm{BC} 107$	0.13	2N1308.9	0.35
$\mathrm{BC172}=\mathrm{BC1} 108$	0.13	2N3819FET	0.45
BF194	0.15	Power	
8F274	0.15	Transistors	
BFY50	0.20	$\begin{aligned} & \text { Trans } \\ & 0 C 20 \end{aligned}$	0.50
B5Y25 $85 Y 26$	0.57 0.13	\bigcirc	0.50 0.30
BSY27	0.13	$\mathrm{OC}^{\mathrm{O} 25}$	0.25
BSY28	0.13	OC26	0.25
BSY29	0.13	${ }^{\circ} \mathrm{O} 28$	0.30
BSY95A	0.15	${ }^{\circ} \mathrm{C} 35$	0.25
OC41	0.13	${ }^{\circ} \mathrm{CO} 36$	0.37 0.30
0 O 44	0.13	AUY10	0.30 1.25
OC45	0.13	${ }_{2}{ }^{\text {SOH3 }}$	0.25
0 O 71	0.13	${ }^{2} \mathrm{2NO3} 3055$	0.25 0.63
$\mathrm{OC72}$ $\mathrm{OC73}$	0.13 0.17	Diodes	
OC81	0.13	AAY42	0.10
OCal	0.13	OA95	0.10
OC83	0.20	OA79	0.09
${ }_{\circ}^{\circ} \mathrm{Cl} 139$	0.13	OABI	0.09
OC140	0.17	IN9114	0.07

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 50p WITH ORDERS

CLEARANCE LINES

SL4030 Audio amp.	1-10	$\begin{array}{r}10-50 \\ \hline 1.95\end{array}$	${ }_{50}^{50}$
709C Linear Opp.			
A.E.I. fully marked and	50 p	40p	5p
tested gates	25p	22p	${ }^{20} \mathrm{p}$
tested flip-flops	50 p	40p	p
OC71/72 fully tested			
Mnmarked	5p	5p	4p
OC45 per set	25p	20p	5p
Matched sets OC45's Ist			
and 2 nd If per set	15p	12p	${ }^{10 p}$
6 amp 60 V Texas	15p	15p	
IW	3p	3 p	2 p
7.5. 24, 27, 30 and $43 V$	5p	4 p	3p
11, 13,20 and 100 y			
Mi 13, 20 and 100 V	${ }^{20} \mathrm{p}$	17 p	p
1 amp bridge rec. 25	25p	220	
\| amp plastic rectifiers.			
reversed polarity and oth	Thes	are ${ }^{\text {fro}}$	the
BY127 range. Ideal for	ota	power	
Price El per 100			
COLOUR T.V.	E O	P	
TRANSFO	MER		
esigned to give 25 kV wh	n used		
and PY500 valves. As re	us	with	509
receivers at the factory.		LYCI	
	post and	packing	$23 \mathrm{p}$

BUMPER BUNDLES

These parcels contain all types of surplus elec. tronic components, printed panels, switches, 2 LBS IN WEIGHT FOR $\mathbf{E l}$

Post and packing 25 p

OUR VERY POPULAR 3p TRANSISTORS

FULLY TESTED \& GUARANTEED
TYPE "A "PNP Silicon alloy, metal TO. 5 can. 25300 type, direct replacement for the $0 C 200 / 203$ range
TYPE " B " PNP Silicon, plastic encapsulation, low voltage but good gain, these are of the 2 N $3702 / 3$ and $2 \mathrm{~N} 4059 / 62$ range

TYPE "E" PNP Germanium AF or RF-please state on order. Fully marked and tested.
TYPE " F " NPN Silicon plastic encapsulation, low noise amplifier of the 2 N3708, 9, 10,11

BULK BUYING CORNER

NPN/PNP Siticon Planar Transistors, mixed, untested, similar to 2N706/6A/8, BSY26-29, BSY95A.

Silicon Planar NPN Plastic Transistors, untested, similar to 2 N3707-II, etc., $\mathbf{6 4 - 2 5}$ per 500 ; $£ 8$ per 1,000
Silicon Planar Diodes, DO-7 Glass, similar to OA200/202, BAY31-36, $£ 4.50$ per 1,000 .

NPN/PNP Silicon Planar Transistors, Plastic TO-18, similar to $\mathrm{BCl13/4}, \mathrm{BCl53/4}$. BF/53/160. etc. ¢4.25 per 500 ; $£ 8$ per 1,000 .

OC44, OC55 Transistors fully marked and tested, $500+$ at $8 p$ each; $1,000+$ at $6 p$ each.

OC7I Transistors, fully marked and tested, $500+$ at $6 p$ each; $1,000+$ at $5 p$ each.

3823E Field effect Transistors. This is the 2N3823 in Plastic Case, $500+13$ p each; $1,000+10 p$ each.

I amp Miniature Plastic Diodes:
IN4001, $500+3 p$ each; $1,000+3 p$ each.
IN $4004,500+$ at $5 p$ each, $1,000+$ at 4 p each
IN 4006 , $500+$ at 6 peach,
IN $4007500+$ at 8 p each $1,000+$ at 7 p each

EW		MARKED U	S
B66	150	Germanium Diodes Min. glass type	50p
B83	200	Trans. manufacturers' rejects all types NPN, PNP, Sil. and Germ.	50p
884	100	Silison Diodes DO-7 glass equiv. to OA200, OA202	50p
B86	50	sil. Diodes sub. min. IN914 and IN916 types	50p
B88	50	Sil. Trans. NPN PNP, equiv. to OC200/1. 2N706A, BSY95A, etc.	50p
B60	10	7 Watt Zener Diodes Mixed Voltages	50p
M6	40	250 mW . Zener Diodes DO-7 Min. Glass Type	50p
Mio	25	Mixed volts, $1 \frac{1}{2}$ watt Zeners. Top hat type	p
HII	30	MAT Series " alloy " pnp Transistors	50p
H15	30	Top Hat Silicon Rectifiers. 750 mA . Mixed volts	50p
H16	8	Experimenters' Pak of Integrated Circuits. Data supplied	50p
H20	20	BY126/7 Type Silicon Restifiers. I amp plastic.	50p

| NEW | TESTED AND | GUARANTEED |
| :--- | ---: | :--- | :--- | :--- | PAKS

F.E.T. PRICE BREAKTHROUGH ! ! !

This field effect transistor is the 2N3823 in a plastic encapsulation, coded as 3823 E . It is also an excellent replacement for the 2 N 3819 .
Data sheet supplied with device. 1-10 30p each, $10-50$ 25p each, $50+$ 20p each.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev. counter for any car.

each
FREE CATALOGUE AND LISTS for:-

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10p post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL,

P.O. RELAYS
Various Contacts and Coil Resistances. No individual FOR selection. Post \& Packing 25p

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Stre: 0 nowroucw BUID YOUR OWN

Mullard Unilex modules need no soldering, no knowledge of electronics. They make the stereo amplifier so simple that anyone can build it in an hour, for around $£ 16$. Connect the record deck
 and speakers and you've built your stereo system. For the comprehensive instruction book 'Do-it-yourself Stereo' and stockist list post this coupon today with a 25p P.O.

Room 512,
Mullard House,
Torrington Place, London WC1E 7HD.

Name Address

BRUNEL TECHNICAL COLLEGE, BRISTOL

DEPARTMENT OF MARINE AND AERO-ELECTRONICS

MARINE RADIO OFFICERS

The Department offers the following courses for prospective Radio Officers in the Merchant Navy-2 years' full-time course leading to the Ministry of Posts and Telecommunications General Certificate in Radiocommunications. I term full-time course leading to the Department of Trade and industry Radar Maintenance Certificate. Conversion Course from ist or Rest Licences (Full and Restricted). Marine Electronics Diploma Advanced Marine Electronies Diploma

LICENSED AIRCRAFT RADIO ENGINEERS (Civil Aviation)

A full-time course of two years duration commences in September of each year. This leads to the award of the Aircraft Maintenance Engineers Category R Licence issued by the Air Registration Board.
All instruction and practice is carried out with modern equipment and test instruments, in well-equipped labioratories and workshops at th College and on the Department's own aircraft at Bristol Airport

The Department also offers a course for the Board of Trade Civil Aero. nautleal RT Licence
For further information apply to - Head of Department of Marine and Aero-Electronics

Brunel Technical College, Ashley Down
BRISTOL BS7 9BU

	Each	10	100
Telescopic Aerials ${ }^{\text {a }}$ in	$45 p$	¢ 4	236
Capacitora $400 \cdot 200 \cdot 50 \cdot 16 \mathrm{mF}$	30 p	12.60	¢23
16.16 mF 450 V	21p	f1.80	¢18
Dubilier 0.1 z 00 N	$3 \geqslant \mathrm{p}$	${ }^{30} \mathrm{p}$	¢2.50
TCC0.l 400 V	3 p	28p	42.10
Uunts 0.04 mF 500 V	21p	20p	£1.80
TCC 0.001 and 0.005	2p	18p	£1.80
100 pf Feed through Ceratnics	3p	25 p	f2.20
Plugi Jack 8 gandard	10 p	$85 p$	¢5.50
- 3.5 mm	7 p	${ }^{60 \mathrm{p}}$	${ }^{\text {c }}$
,. 2.5 mmm Shielded	8p	70p	${ }^{\text {f } 6}$
Sockets Jack Standard	7p	50p	¢4.50
(${ }^{\text {a }}$, 3 \%mm	5 p	35 p	¢2.50
Electrolytion-Trandiator Type			
10 mt 10 Y	23 p	20 p	$\underline{11.80}$
30 mf 10 y	3 p	25p	28.20
50 mit 10 y	4 p	35p	¢3.10
Omim ${ }^{\text {ary }}$	${ }^{69}$	55p	85
50 mi 50 C	${ }^{7 p}$	${ }^{655}$	$¢^{68}$
500 mf 12 y	9 p	${ }^{86}$ p	¢8.10
250 mP 12 y	7 p	${ }^{85 p}$	
${ }^{6400 m a f ~} 2$ -	50 p		
Switches, Rotary D.P. 2000 - 2.1	9 p	80p	
Skeleton Presets 2 K	8p	70p	
Microphones, Japal	37p	23.20	
Acos MIC 4,	${ }^{\text {92p }}$	28.75	
, MIC 60	94p	${ }_{68}$	
-'D130 Dual Impedance 600 olm and 00 K	f4.50	¢ 40	
8 Watt Transistor Amplifier	13.45	$\underline{28.50}$	
Crystal Ear piece	${ }^{20} \mathrm{p}$	¢1.80	
WWas Intercoms, OLIDEN	¢2.50	121	
\%h Potentioneters with $\mathbf{8 w i t c h}$	18 p	E1.40	
Co-av. Sockets on Isolation Panel	${ }^{8 p}$	${ }^{50 \mathrm{p}}$	
Balance and Tuning Meters $500,1 \mathrm{~A}$	38 p	£3.40	
100 Mixed Resistors	45 p		
Rectibiere Battery Charging $11 / 4$	18 p		
." as Contact Cooling	27 p	¢22.80	
	42 p		
Miniature Indicator Lamps	11p	${ }_{\text {¢ }}{ }^{\text {crp }}$	
fiv or 12 C Bulbs for abore	4p	35p	
Add 10 p on orders under ${ }^{\text {et }}$.			
For items not listed or prices for large quantity please enquire:			
58 Bradshawg	12		

BAKER ISin. AUDITORIUM

A high wattage loudspeaker of exceptional quality with a level response to above $8,000 \mathrm{cps}$. Ideal for Public Address, Discotheques, Electronic instruments and the home.

Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier.' - Case History G/321
"In addition to having my salary doubled, my future is assured." -Case History H/493.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/461

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIIISH INSTIIUTIEOF ENGINEERINGTECHKOLOGY

Dept B4, Aldermaston Court, Reading RG7 4PF.

To: B.I.E.T., Dept B4, Aldermaston Court, Reading RG7 4PF
Please send me book and details of your Courses in

Name
Age
Address

TENRY'S RADIO LTMITED Memsemo ENGLAND'S LEADING ELECTRONIC CENTRES

 HI-FI • COMPONENTS • TEST • PA. DISCOTHEQUE • ELECTRONIC ORGANS • MAIL ORDER

COMPLETELY NEW

FREE to Industry, Educational or any Organisation, including Schools and Colleges, etc. Apply on Official heading to our " $303^{\prime \prime}$ 'address.

A NEW HENRY'S CATALOGUE IS A MUST FOR ELECTRONICS TODAY!

```
To Henry's Radio Ltd. (Dept. PE)
    3 Albemarle Way, London, E.C.I.
Please send...........copies at 55p each Post Paid.
I enclose Cheque/PO for
```

(Use BLOCK CAPITALS-cut out and send with Cheque or Postal Order (No cash pilease). Use only for ordering catalozue)
\qquad
\qquad
\qquad
\qquad

MORE OF EVERYTHNG AT LOW PRICES ALWAKS FROM HENRYS

*Components from stock for almost all published designs

TRANSISTOR AMPLIFIERS
new ranges now in stock (Leaflets Ref. Nos. 6 and 8).
Post, etc. 20p.
$4-3004$ TR 9 V 300 mW 104 4TR 9V IW 3044 TR $9 V 3 \mathrm{~W}$ 555 6TR 12 V 3 W
PA7 6TR 16 V 7 W PA7 6TR 16 V 7 W
SO8 6TR 24 V 10W 608 6TR 24 V IOW
$4104 T \mathrm{~T} 28 \mathrm{~V}$ 10W MPAI2/3 6TR 18 V 12 W MPAI2/15 6TR 36V 12 W Z30 9 TR 30V 20 W (25 W Z50 30V 40 W PASO 12TR (Special) 50W 100100 W with power supply

OPTIONAL POWER SUPPLIES
PS00 (One or Two) for 104, 304
PS20 (One or Two) for PA7
MU24/40 (One or Two) for MPAl2/3 or MPA12/15 63
PZ5 for $Z 30 £ 3.97$ Two for MPAI $2 / 3$ or MPAI $2 / 15$
or PZ6 for $Z 30$ PZB for $\mathbf{Z 5 0 ~} \mathbf{6 5 9 7}$ or Transformer
MU442 for l or 2 PA25 or I only PAS0

Post, etc., 20p

NEW MINIATURE
LOW COST
AMPLIFIER
MODEL 4-300
9V operated or mains unit optional transformer (MT98 70p), 1-10mV adjustable sensitivity. P/P output for 3-8 ohms. Fitted volume control and leads. Size $5 \frac{1}{2}$ in $\times I$ in \times in. Thousands of uses-takes Price $\mathbf{4} \mid=75$ magnetic, dynamic and crystal inputs direct. Output 300 mW -very high gain-built in rectifier circuit.

HI-FI TO SUIT

9 V operated 2 -speed tape deck fitted Record/Replay $\frac{1}{2}$ track and Erase/Bias Osc. Head. Complete with Oscillator/Record head Ifin and 2 tin below motor board. Takes up to 4 in spools.

Price $\mathbf{6 9 . 9 7}$

P.P. 33p (3tin. tape 300ft.) and spool 40p.

HENELEC

EQUIPMENT
(as previously advertised) SELF-POWERED SILICON PRE-AMPLIFIERS
FET154 Stereo 216.50, post 25p. FET9/4 Mono with mike mixer
E12.50, post 20 p 612.50, post 20p.

SILICON POWER
AMPLIFIERS FOR USE AMPLIFIERS FOR USE WITH ABOVE
PA 25 25W into 80 ¢7. 50 , post 20p. PA50 50W into 4 Q 69.50, post 20 p . PA25's or I only PA50 E6, post 20p.

PACKAGE DEALS
FET9/4 plus PA25 plus MU442 E25, post 40p. PA50 plus MU442 E27, post 40pi 54 plus $2 \times$ PA2S plus MU442 E36, post 50 p; \times PA50 plus $2 \times$ MU442 f40, post 50p.
No soldering-just edge connectors and din plugs/sockets.
Free Brochure No. 25

Excellent princed circuit desizn with full power output. Fully tunable on both MW/LW bands. 7 Mullard transistors. Fitted Sin Eseaker. Room filing power. Two colour leathercloth cabines with silvered front. All local and continental stations. Complete detailed instructions. Total cost $66 \cdot 98$, p.p. 35p. All parts sold separately
Ask for Leaflet No. I. PROJECT 60 PACKAGE DEALS 2×230 amplifier, stereo 60 pre-amp. PZ5 power supply, E16.75. Carr. 40p. Or with PZ6 power supply, 1818.25. Carr. ${ }^{40 \mathrm{p} .2} \mathbf{2} \mathbf{2 5 0}$ amplifier, stereo 60 pre-amplifier PZ8 power supply, 620.25, p.p. 40p. Transformer for PZ8 £2.25 extra. Any of the above with Active Filter unit add E4.75 or with pair Q16 speakers add E15. Also NEW FM TUNER, $\mathbf{C 2 1}$.

BUILD THIS VHF FM TUNER

5 MULLARD TRANSISTOR5 $300 \mathrm{kc} / \mathrm{s}$
BANDWIDTH. PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION. MONO AND STEREQ. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it-VHF FM gives separately.
 Free Leaflet Nos, 3 and 7
TOTAL 66.97, p.p. 20p. Cabinet E1, Decoder Kit 65.97. Tuning meter ©1.75. Mains unit (optional) Model PS900 62-47. Mains unit for Tuner and Decoder PS 1200 \&2'62.

Efectronic Organs,
P.A. \& Discotheque Centre 309 EDCWARE ROAD,
LONDON, W.2.
Tel: 01-723 6963

Shop. Industrial Sales 303 EDGWARE ROAD. LONDON, W.2. Tel: 01-723 1008/9

[^0]: 2 minutes from KING'S CROSS, EUSTON \& ST, PANCRAS 2 minutes from leading to the East and West Country
 $\|A\|$? $\|_{\text {B. Order with confidence. Send Postal Order, Cheque, }}^{4}$.

[^1]: Open Mon．－Fri．9－6 p．m．

[^2]: A corner reflector aerial built by the author. Note that the side supports are of a different style to those in the described design

[^3]: Redeemable upon receipt of subsequent orde

[^4]: F.M. Stereo Tuner ($\mathbf{£ 2 5}$) \& A.F.U. Filter Unit ($£ 5.98$) may be added as required

[^5]: EX－EQUIPMENT MULLARD AF117 transistore．large cut short hut still usable real value at 15 for 50 p ．

[^6]: HIGH POWER SILICON PLANA
 TO－3．
 FERRANTI ZT1487 NPN
 CCBbO le 6A fT．19／ed
 EBS hFEL， 4
 RICF：30p EACI

[^7]: PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned complete with layout drawing.
 Marine Tachometer (May 1970) 25p ea. Musical Stave (May 1970) 40p ea
 Stave May 1970) Vop ea. 7 14p ea. Audio Sig. Waa-Waa pedal Vol. 4 No. 7 14p ea. Audio Sig.
 Gen. (Sine and Square on one board) Vol. 5 No. $1042 t$ Pea.
 S.A.E. Tor List. Now available from:- HENRY'S RADIO LTD., Edgware Road, London, W. 2 P.H. ELECTRONICS, Industrial Estate, Sand wich, Kant. Tel. 2517

