PRACTICAL

AJㅓㄴ́ 1971

EOp

War tames BOMPIIS:

accula suluering Instruments add to your efficiency
 THE NEW 'INVADER'

 ADCOLA L. 646for Factory Bench
Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}(4.75 \mathrm{~mm})$ diameter, detachable copper chisel-face bit*
Standard temp. 360 c at 23 watts
Special temps. from $250^{\circ} \mathrm{c}-$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits

(illustrated) available
COPPER

LONG LIFE
B CHISEL FACE

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*

Write for price list
and catalogue

YATES ELEGTRONIGS

(FLITWICK) LTD

RESISTORS

$\frac{1}{3}$ W lskra high stability carbon film very low noise-capless con-
struction. IW Mullard CR25 carbon film - very small body size $7.5 \times 2.5 \mathrm{~mm}$. 4W Erie wire wound

Power			Valves	Price	
watts	Tolerance	Range	available	$1-99$	$100+$
$\frac{1}{2}$	5%	$4.7 \Omega-2.2 M \Omega$	$E 24$	$1.0 p$	$0.8 p$
$\frac{1}{2}$	10%	$3.3 M \Omega-10 M \Omega$	$E 12$	$1.0 p$	$0.8 p$
1	10%	$1 \Omega-3.9 \Omega$	$E 12$	$1.0 p$	$0.8 p$
1	50%	$4.7 \Omega-1 M \Omega$	$E 12$	$1.0 p$	$0.8 p$
$\frac{1}{6}$	10%	$1 \Omega-10 \Omega$	El2	$7 \frac{1}{2} p$	$7 \frac{1}{2} p$
4	Quantity price applies for any selection.	Ignore fractions on total			

DEVELOPMENT PACK
0.5 watt 5% Iskra resistors 5 off each value 4.75 to 1 MS

E12 pack 325 resistors $\mathbf{\$ 2} 50$.
E24 pack 650 resistors $\mathbf{E 4 . 8 0}$.
MULLARD POLYESTER CAPACITORS C296 SERIES
400V: $0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{P} .0 .0068 \mu \mathrm{~F}$, $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}$. $0.15 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.22 \mu \mathrm{~F}, 7 \frac{1}{3} \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 11 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F}$, $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 4 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} . \quad 068 \mu \mathrm{~F}, \mathrm{ilp} . \quad 1.0 \mu \mathrm{~F}$, $12 \frac{1}{2}$ p.
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}$, $0.068 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} . \quad 0.1 \mu \mathrm{FF}, 4 \mathrm{p} . \quad 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{FF}, 5 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} . \quad 0.47 \mu \mathrm{~F}$, 812 P. $0.68 / \mathrm{F}, 11 \mathrm{p} . \quad 1.0 \mu \mathrm{~F}, 13 \mathrm{p}$.
MYLAR FILM CAPACITORS
100V: $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 / \mathrm{FF}, 0.01 / \mu \mathrm{F}, 0.02 / / \mathrm{F}, 2 \frac{1}{2} \mathrm{p} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$, $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2}$ p.
CERAMIC DISC CAPACITORS
100 pF to $10,000 \mathrm{pF}$, 2p each.
CAPACITOR DEVELOPMENT PACK
Selection of 100 ceramic and polyester capacitors, 100 pF to $1.0 / 1 \mathrm{~F}, \mathbf{£ 2 . 9 0}$.
ELECTROLYTIC CAPACITORS-One Price-5p Each
Mullard C426 series (1 FF/V): $25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4$.
$16 / 10,32 / 10,64 / 10,125 / 10,200 / 10,10 / 16,20 / 16,40 / 16,80 / 16$. $125 / 16$, $6 \cdot 4 / 25,12.5 / 25,25 / 25,50 / 25,80 / 25,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40$. 2.5/64, 5/64, 10/64, 32/64

Miniature P.C. mounting ($1 \mathrm{FF} / \mathrm{V}$): 10/12, $50 / 12,100 / 12,200 / 12,5 / 25$, 10/25, 25/25, 100/25.

POTENTIOMETERS

Carbon track $5 k \Omega$ to IMS2, log or linear (log $\left.\frac{1}{4} W, \operatorname{lin} \frac{1}{2} W\right)$
Single, 12p. Dual gang (stereo), 40p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizoncal or vertical P.C mounting (0.1 matrix).
Sub-miniature 0.1 watt, 4p each. Miniature 0.25 watt, 5 p each

SEMIC ACl26	OND	CTORS BFY52	22tp	OC81	15 p	2N3055	
AC127	15p	BSY56	30p	$\bigcirc \mathrm{C} 82$	15p	2 N3702	15p
ACl28	15p	BSX2I	25p	ORPI2	47!p	2N3703	14p
ADI40	40p	BY124	$7 \frac{1}{p}$	IN4001	$7 \frac{1}{2} \mathrm{P}$	2N3704	171 p P
AFIIS	171 ${ }^{\text {p }}$	BYZ10	30p	1N4002	10p	2N3705	15p
AF117	171 t P	BYZ13	20p	IN4003	$11 p$	2N3706	12p
BC107	14p	OA85	$7 \frac{1}{2} p$	IN4004	12 ${ }^{\text {P }}$ P	2N3707	181p
BCl08	10p	OA91	$71 p$	1N4005	14p	2N3708	10p
BC109	10p	OA202	$7 \frac{1}{2} \mathrm{P}$	IN4006	15p	2N3709	$11 p$
BFY50	22p	OC71	15p	IN4007	16p	2N3710	12p
BFY5I	19p	OC72	15p	2N2926	$11 p$	2N3711	14p

ZENER DIODES
$400 \mathrm{~mW} 5 \% 3.3 \mathrm{~V}$ to $30 \mathrm{~V}, 17 \mathrm{p}$.
VEROBOARD

	0.1	0.15		0.15	0.1
$2 \frac{1}{2} \times 3 \frac{1}{4}$	22p	16 p	$17 \quad 3 \frac{3}{4}$ (plain)	52łp	
$2 \frac{1}{2} \times 5$	24p	24p	$17 \times 2 \frac{1}{2}$ (plain)	371 P	
37×34	24p	24p	$2 \frac{1}{2} \times 5$ (plain)	$17 \frac{1}{5} \mathrm{P}$	
37×5	27p	27p	$2 \frac{1}{2} \times 3 \frac{3}{4}$ (plain)	15p	
$17 \times 2 \frac{1}{2}$	75p	571 P	Pin insertioncool	471 P	$47 \frac{1}{2} \mathrm{p}$
$17 \times 3 \frac{1}{4}$	100p	75p	Spot face cutter	371 ${ }^{\text {p }}$ P	371p
17×5 (plain)		75p	Pkt. 50 pins	20p	20p
ROTARY SWITCHES $2 \mathrm{P} 2 \mathrm{~W}, \mathrm{IP} 12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}, 22 \frac{1}{2} \mathrm{p}$.					
PLUGS AND SOCKETS					
Standard tin scr	ened	171p	2.5 mm insula		7年p
Standard $\frac{1}{\text { in }}$ insula	alated	14p	3.5 mm insula		$71 p$
Stereo tin scre	ened	35 p	3.5 mm screen		12 tP
Standard $\frac{1}{2}$ in soc		15p	2.5 mm socke		$71 p$
Stereo $\frac{1}{4}$ in soc		171 ${ }^{\text {p }}$ P	3.5 mm socke		$7 \frac{1}{2} \mathrm{P}$

BRUSHED ALUMINIUM PANELS

$12^{\prime \prime} \times 6^{\prime \prime}=25 p ; 12^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}=10 p ; 9^{\prime \prime} \times 2^{\prime \prime}=7 p$.
C.W.O. please. Post and packing, please add 10_{p} to orders under $\notin 2$. Data sheets are available for most of the components listed, and will be sent free on request.
$8 E 39$ ELSTOW STORAGE DEPOT, KEMPSION HARDWICK, BEDFORD

ADCOLA PRODUCTSLTD..
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W. 4
Telephone: 01.622 0291/3 - Telegrams: Solioint London Telex - Telex: Adcola Londan 21851

Discosound P. A. AND DISGOTHEQUE EQUPMENT -A COMPREHENSIVE RANGE COVERING EVERY REQUIREMENT AMPLIFIERS, MIXERS, LIGHT CONTROL UNITS.

D.J. 101 Mixer Pre-Amplifier

Six inputs allow full mixing facilities for :all type of equipment. 9 y battery operation.
Suggested Retail Price 214
D.J. 102 Discotheque Mixer Pre-Amplifier Four inputs each with its own volume control plus master volume control, PFL nonitoring and mic. "Merride awitches. Size: 10 in $\times 4$ in \times 4in.
Suggested Retail Price $£ 25$
D.J.I05S P.A. Amplifier

4 -chamel mixing facilities each with selparate input* and volume controls. 30W r.in.s. power output Suggented Retail Price $\mathbf{2 4}$
D.J. 70 S Integrated Mixer Amplifier Yower out jut 70 W r.mi.s. 4 .channel nixer with separate inputs and volume controls, plus maste volume and serarate bass and treble controls.
size: 15 in \times in \times bin. Suggeted Retail Price 263
D.J. Disco-Amp

Designed speciflcally for use with discotheques. Power output 100W r.m.s. Two mic. Inputs and two gram inputs, with independent volume controls exclusive features. Front panel slize: 16 lin $\times 7$ in Sugrented Retail Price $\mathbf{8 8 5}$

Discosound 40 Discotheque Pre-Amplifier Ftatures independent inputs and volume controls for 1 wo microphones and two turntables phis separate leass, trehle and master volume controls. Selfpowered and ideal for use with Discosound 10 of Power Amplifer (is capable of running 10 of these power amplifers-total $1,000 \mathrm{~W}$). Front panel size Sugkeated Retail Price $£ 40$

Discosound 100 Power Amplifier
100 W r.m.s. power amplitter (at 8 ohms) utilising all ailicon transistors and features full automatic uverload against short or open circults. Frequency response $20-20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Diatortion less than Suggested Retail Price $£ 40 \cdot 50$. $101 \ln \times \sin \times 7 i$

D.J.l03S Sterco Pre-Amplifier

A. high quality stereo discotheque pre-amp unit. Incorporating two mlerophone and two turntable inputs each with independent volume control, plus fiffers full mixing and monitoring facilltiey. Front panel size: $161 \mathrm{in} \times 3 \mathrm{lin}$.
Euggested Retail Price 849.50
D.J.30L Psychedelic Light Control Unit g.channel light unit enabling bass, milddle and treble frequencles from the ampliffer to be operated individually. Handles $1,000 \mathrm{~W}$ per thannel. Front Euggettod Petall Price
D.j.40L Sound Oparated 3-channel light unit
Features built-in microphone which eliminates the need for connections to any amplifier of sound nource. Handies $1,000 \mathrm{~W}$ per channel. Front panel suggented Retail Price 458.25

D.J. DIMMER 3000

3 -channel light dimmer unit offered in two veraions Dimmer 3000 -a straight 3 -channel dimmer unit with maing input and three light outputa.
Dimmer 30008-for use in conjunction with D.J. 30 L Light Control unit only and has three mains Inputa and three light outputs. Front Panel alze: $10 \mathrm{fn} \times$ bin susgested Rotall Price sase-50

Discosound Disco-Wheel
A projector dealgned to project a range of liquid wheels and colour change wheels for apectai lighting effects, adding colour and varlety to any form of entertainment. 8lze: $7 \ln \times 10 \ln \times 5 \ln$.
8 urgested Retail Price aso

A rangt of complete Discotheques with matching Speakers also available.

DISCOSOUND PRODUCTS ARE GUARANTEED FOR 12 MONTHS

For full details of the Discosound range of product's call at or write to your nearest Discotheque Centre - Demonstrations given at any time.

DISCOSOUND
122 Balls Pond Road, London N.1. Tel: 01-254 5779

The largest selection

NEW LOW PRICE TESTED S．C．R．＇s

PIV	1.4	3.4	TA	10.	16．4	30.4
	TO－s	T0－66	TO－66．		T0－48	T0－48
	Ep	\＆ p	Ep	£p	fp	ep
50	0.23	0.25	0.47	0.50	0.53	1.15
100	0.25	0.33	0.53	0.58	0.63	1.40
200	0．35	0.37	0.57	0.61	0.75	1.60
400	0.43	0.47	0.67	0.75	0.93	1.75
600	0.53	0.57	0.77	0.87	1.25	
800	0.63	0.70	0.90	1.20	1.50	4.00

SIL．RECTS．TESTED

2A POTTED BRIDGE RECTIFIERS 200V 50p

FREE

AP239 PNP GERM， SIEMENS VHF TRAN： SISTORS．HF MIXER
 PLACEMENT FA RER PLACEMENT OF OTHER CSGK IN VHF．OUR SPECLAL LOW PRICE：－1－2437p each， $20-99$
$100+30 \mathrm{p}$ each

FET＇S

ADI61
ADI 62
MATCHED COMPIE， OF（EERM POWER TUASISISTORS．
For mame Iriven unt．
mut stage of Amplitiers
 Oド83p PER PA／h

2H305 ${ }_{\text {POWER }}^{115}$ WATT SIL
QHOD POWER NPN
OIT PRICド：63p EACI

FULL RANGE OF ZENER DIODES 2－33V． 400 mV RANGE Case）13p ea． $1!\mathrm{w}^{4}$（Top－ IIat） 18 p ea． 10 w（ $\mathrm{so}-10$ Stul） 25 p ea．All fully tested ${ }^{2}$ ，tol．and
marked．state voltage requitired

BRAND NEW TEXAS
GERM．TRANSISTORS GERM．TRANSISTOR Coded and Guaranteed $\begin{array}{lll}\text { T1 } & 8 & 2371 A \\ \text { OC71 } \\ \text { T2 } & 82 \mathrm{G3} 4 & \text { OCT1 }\end{array}$ T^{4} 8
 T6 8 2G344A OC44
 T10 8 2G417 AF1I All 50p cach pak

KING OF THE PAKS Unequalled Value and Quality

SUPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS
\qquad

Nu
120

Th）（iernaniant gold honded divies sim．OAT，OA47 40 （erruanium trangistory like OC81，AC1：8
60200 mA sult－man．Sil．diondes
30 Sllicon planar transistors NPN sim．BBY95s，2N；Ot
16 Silicun rectitiers Top Wat $\overline{\mathrm{j}} 0 \mathrm{n}$ ． A ul to 1,000
50 Kil planar Itodes 250ma，OA／200／202
20 Mixet volls 1 watt Zener diolen
30 PNO silicon planam transistors TO－5 sinn．2N 113
30 PNP－NPN sil．Iransixtorx OCH0 a 28104
150 Mixed silicon and germanimn tionles

10 3．Anp silicon teclitiers oftal type up to 1000 PIV
30 Gernanium PNP Al Cransistors TO－j like ACY 1
8 b－Anp silicm rectifiers 13 YZ 13 type up 10600 PI
$2, \overline{3}$ Silicon NPN trangistora like belos
12 I－T－Anp aillcon rectifters Top－Hat un to 1.000 PIV
30 A．F．germaniun alloy transistors－3G300 seties \＆OC7 7
30 Malt＇s like MAT series PiP transistors
20 （iermaniom 1－Amp rectifters（GJM up to 300 PIV
2． $300 \mathrm{Mc} / 9 \mathrm{NPN}$ silicon transist ors 2 N 708 ， $139 \mathrm{Y} \% 7$
30 Fast нwitching silicon diodes like IN914 micro－min
Experimenters＇assortment of integrated circuits．intested Gates tip－flop，registers，etc．， 8 assorted pieces

2．5 Zener diodes 400 mW D0 case mised volts，z－1s
15 Plastic case 1 amp silicon tectitiers IN 4000 series
30 sil．PNP alloy trans．TO．FBCY26， $28302 / 4$
！J sil planar trans．PNF＇TO－14：N 2906

30 sit alloy tians． $80-3$ PN＇P，OC＂00 28323
$\because 0$ Fast witching sil．trans．NPS， $400 \mathrm{Mc} / \mathrm{s} \because \mathrm{N} 3011$
30 HF germ．I＇NP trans． $\mathrm{NN} 1303 / \mathrm{T}$ TO－i

0 Dual trans． 6 lcad TO－5 2 N 2060

NEW QUALITY TESTED PAKS

Pak	Deacription P	Price E
Q1	20 Red syot taus．PNPAF	0.50
Q2	10 White spot R F．trans．PNI＇	0.50
Q3	＋OC7\％type trans．	0.50
Q4	\＄Matched trans．OC4 $4 / 45 / 81 / 810$	0.50
Q5	4 OCTO transistors	0.50
Qf	$40 \mathrm{C}=9$ transistors	0.50
Q7	4 ACL28 trans．PNP high gain	0.80
Q8	$4.4 C 120$ tran．PNP	0
Q9	70081 type trans．	0.30
Q10	7 OCII tupe trans．．．．	O
Q11	$\because \mathrm{ACl}{ }^{2} 7,128$ conur pairs PNP／NPS	0
Q13	3 AFlls type trans． 3 AFll type trans．	0．80
214	$3 \mathrm{OC171} \mathrm{H}, \mathrm{F}$ ，type trans．	0.50
Q1J	5.2 N 2926 sil．epoxy trans．	0.50
Q16	\because qET880 low noige germ，trans．	0.50
Q17		0.50
Q18		0.50
Q19		0.50
Q 20	$4 \mathrm{OC}+4$ germ．trans．A．F゙．	0.50
Q 21	$3 \mathrm{AC127}$ NPN germ，trans．	0．50
Q ${ }^{\frac{6}{2} \text { ，}}$	${ }^{2} 10$ NKT trans AF．R．F．coded	0.50
（2 ± 3	10 0．A：02 ail．lioules rub－min．	0.50
Q 2.4	$80.81{ }^{\text {P }}$（tioter	0.50
Q2．5		0
Q 26	80.495 germ．diodes sub－minn． 1 N 69	0.50
Q：2	$2104600 \mathrm{PI} \mathrm{S}^{2}$ sil．rects． 1840 R	0.50
Q 28	\because Sil．power reets．BYZ13	
Q29		－ 0.50
Q30	7 Sil switch trans． $\mathrm{ENO}_{0} \mathrm{O}$ NPN	0.50
Q31	ci Sil．switch trans．2N708 NPN	0.50
Q3：	3 PNP trans $3 \times 2 \mathrm{~N} 1131$ ，	－0．50
Q33	3 Bit．XPN tramy	0.50
Q34	7 sil．NPN trans． 3 N2369， 700 MHZ	0.50
Q35	3 sil．PNP TO． $2 \times 2 \times 2904 \mathrm{~N}$ 1×240.7	0.50
Q ${ }^{\text {d }}$	T－N3546 TO－14 phastic 300 Mll 2	
Q33		． $\begin{array}{r}0.50 \\ 0.50\end{array}$
Q：3	7 NPN trans $4 \times 2 \mathrm{~S}_{3} 904.3 \times 2 \mathrm{~N} 300$	－ 0.50
Q44	7 N1N anp． 4×2 N3707， $3 \times 3 \mathrm{~N} 3708$.	． 0.50
Q4：	3 Plastic NPN TO－18 2 N 3904.	0.50
Q4：		0.50
Q43	$7 \mathrm{BC107}$ NPS ${ }^{\text {trans．}}$	0.50
Q 44	7 NPN trans． $4 \times$ HC108， $3 \times 13 C 104$	0.50
Q45	3 ISC113 NPN TO－18 trans．	0.50
Q4t	3 BCLI＇̇ NPN TO－̇ trama．	0.80
Q47		80.50
Q48	4 BCY＇0 NPA trans．TO－18	0.50
849		$\because 0.50$
Qu0	7 HSYOR NPN Awitch TO－18	0.50
Qus	7 138Y9．ja NPN trans． 300 MH 8 13Y100 type sil．rect．	0.50 1.00
	20 sil．\＆germ．trans．mixed all marked new	1.50

PRINTED CIRCUITS－EX－COMPUTER

Pathed with semicontuctors and components． 10 boards pive a guaranteed 30 trans and 30 dioles． Owr price 10 hoarils， 50 p.
100 hoards £3，P．\＆1＇， 30 p．

GENERAL PURPOSE GERM．PNP POWER TRANSISTORS

APECIFICATIOD

CRO 80V TCEO 20V IC 10A P＇T． 30 WATTS HFB： $30-1 \div 0$
$\begin{array}{cccc}\text { FRICE } & 1024 & 100 \mathrm{ul} \\ & 43 \mathrm{peach} & 40 \mathrm{pearh} & 36 \mathrm{p} \text { each }\end{array}$

GENERAL PURPOSE SILICON NPN POWER TRANSISTORS

Coded（：P30G，BKANDNEWTO－3CAHE．POKRIBLEREPLACEMENTFOR

BPELIFICATION

55p each 50p each 47p each
GENERAL PURPOSE NPN SILICON SWITCHING TRANS．TO－18 SIM．TO 2N706／8， BSY27／28／95A．AH urable devices nouren or sloot circuits．A LSO AVAILABLE in

$$
\begin{array}{lll}
& \text { £D } \\
20 & \text { Hor } & 0.50 \\
30 & \text { ror } & 1.00
\end{array}
$$

$$
\begin{gathered}
\text { ring ple } \\
100
\end{gathered}
$$

HIGK POWER SILICON

TO－3．

FERRANTY ZT148：
CBbo le ba fT．1 M／es
CE40 Ptot．Tow
EB8
RICE 30D EACH

RTL MICROLOGIC CIRCUITS

uL900 Buffer 35p 33p 27p uL914 Dua

ul923 J．K Hip－thur 50p 47p 48p
Price 71

TRANSISTOR
EQUIVALENTS BOOK．A complete cross referenc and equivalents book for Euronean Anerican anu Japancee Trangio Ort Eaclusive to BI－PAK 75 each

GERM．POWER TRANS．

Type	luice each	Type	Priet each
OC：0	50p	OC： 9	40p
OC2：	30p	OC35	33 p
OCP3	33 p	OC3 ${ }^{+}$	40D
OCU	25 p	AD140	40 p
OC゙y	25p	AD143	40p
0C28	40p	ADH9	43p

OUR STOCKS of individual device are now too numerous to mention t his Advertisement．Send S．．．．E． or our listing of over 1,00 Semiconductors．Alt available ET

Dual－in－Line Low Profle Sockets

14 antd 16 Leall sockets for use with Inal－in－Line Integrated Circuits

	Price each		
Order No．	$1-24$	$25-90$	100 ul
TSO 14 pintype	30 p	27 p	25 p
T\＄0 16 pin type	35 p	32 p	30 p

-the lowest prices

74 series T.T.L. I.C's

NOW LOWER THAN EVER PRICES

 -GREATER RANGEH-P'Ak Scmiconductors offer yen the largest and most pupular range of I.C's available at these EXCLOBIVE LOW PRICES. TTI Digital 74N Series fully codecl, brand new. Dual in-line plantic 14 and 16 pin packager.

TTL INTEGRATED CIRCUITS
Manufacturers "Fall outs"- wut of spec. devices including fanctional mite and part function but classed as out of npec. from the manufacturers very rigid specitica PAK Mo. PAK No. PAK No. UICOO $=1 \% \times 7400 \mathrm{~N} \quad 50 \mathrm{D}$ UIC4 $=$. $\times 7400 \mathrm{~N} \quad 50 \mathrm{p}$ UIC80 $=$ 二 $\times 7480 \mathrm{~N} 50 \mathrm{p}$ UICOI $=1 \because \times 7401 \mathrm{~N} 50 \mathrm{p}$ TIC $20=1 \underline{x} 7450 \mathrm{~N} 50 \mathrm{p}$ UIC8:2 $=, ~ \times 482 \mathrm{~N} 50 \mathrm{p}$

 Paks cannut be split but 20 assorted picces (our mix) is avalable as PAK ('ICXI Every PAK carries out Bİ-PAK Satisfaction or money back GUAR,ANTEE.

					Price	
Type BP 201 C SL201C	${ }_{\text {Caso }}$	Leads	Deseription	1-94	20-99	00 up
BP 701C-SL701C	T0. 5	8	G.P. Amp	63p	53p	450
1PP 702C-SL702C	T0. ${ }^{\text {T }}$	$\stackrel{N}{8}$	OP Amp	63 p	50 D	45
BP 702-7270	D.I.L.	14	(4.P. OP Amp (Wide	63 p	\$00	460
			Band)	53p	450	40p
13P 709 - 72709	1.1.L.	14	High OP Amp	53p	450	40p
BP 709P- ${ }^{\text {BA700C }}$	TO. 5	8	High Gain OP Amp	53p	450	40 p
BP 711-MA711	TO-5	10	Dual comparator	58 p	50p	469
BP 741 -72741	D.I.L.	14	ligh Gain OP Amj (Protected)	750	60 p	80p
$\mu \mathrm{A} 03 \mathrm{C}-\mu \mathrm{AF03C}$	TO-	9	R.F.-L.F. A	43p	350	270
TAA 263 -	T0.7-	4	A.F. Amp	70 p	60 D	55 p
TAA $203-$	TO-74	10	C.P. Anp	90p	75	70p

ANOTHER
 BI-PAK

 FIRST!THE NEW S.G.S.

EA 1000 AUDIO

AMPLIFIER MODULE

"GUARANTEED NOT LESS THAN 3 WATTS RMS

Especially designed by S.G.S. incorporating their proven Linear I.C Audio Amp. TA/621 providing unlimited applications for the enthusiast in the construction of radios, record players. Audio and Stereo units. Also ideal for intercom systems, monitoring applications and phone answering machines. OTHER USES: portable applicarion. where supply rails as low as 9 V are of prime imporiance.

- Sensitivity 40 mV for 1 watt Overall Size $2^{\prime \prime}>3$ VOLTAGE GAIN 40dB but can be varied up to 73 dB for some applications
- Signal to Noise Ratio 86dB.
- Frequency response better than 50 Hz to 25 KHz for -3 dB .
- Normal supply Voltage 9-24V
- Suitable for 8-16 OHM Loads.
- Typical Total Harmonic disto tion at 1 watt less than 1°
*Supply voltage (Vs)=24V 15ohm load.
Module Tested and Gmarameed
Quantity 1-9 10-25 Price each $£ 2.63 \quad £ 2.28$
Larger quantities quoted on request

Full hook-up diagrams and complete technical data supplied free with each module or available separately at 10 p each.

NOTE THESE PRICES!

$1 C^{\prime} \mathrm{s}$	DTL 930 SERIES		LOGIC	
Type			Price	
No.	Function	1-24	23-49	100 "15
$\mathrm{BP}^{1} 930$	Expamable dual 4 -input NAND	23p	20p	15p
BP93\%	Expandable dual 4 -imput NAND buffer	25p	239	20p
8P933	Lual 4-injut expander	25p	23 D	200
${ }^{13 P 935}$	Expandable Hex Inverter	25p	23 y	20p
BP936	Hex Inverter	25 p	235	20 p
BP944	Dual 4 -input NaND expandable buffer w yull-u	25p	239	20 p
BP94J	Master-slave JK or Rs	35p	32 p	$20 p$
BP946	Quad,	23p	20p	15p
BP948	Mastersslave JK or Rs	35p	32p	29p
13'954	Monostable	90p	85 p	800
13P96\%	Trijle 3-input NAND	23 p	20p	15p
BP9093	Dual Master-slave JK with deparate cloch	80 p	765	700
$13 \mathrm{P9094}$	Bual Manter-slave JK with sepratate clock	80 p	750	700
BP9097	Dual Master-slave Jk with Common Clock	80 p	750	700
BP9099	Dual Master-slave JK Common Clock	80 p	75	70p
Devices	be mixed to qualify for duantity price.	er $\mathrm{I}^{\text {d/ }}$	ity pr	ces on

All prices quoted in new pence Ciro No. 388-7006 Please send all orders direct to warehouse and despatch department

DIGITAL INDICATORS KGM TYPE M3 A neat compact indicator providing selective displsy 0-9. Fig. Ht. 18 mm . Panel mounting. 6 mm tubular midget fange lamps. Supplied with $98 V$ bulbs. Finished matt black anodized. W. lin, H. $\mathrm{I}_{\mathrm{in}} \mathrm{i}$, W't. 4oz. 2s.25. Post free. NUMICATOR PRICE LIST	OYERHAULED AVOMETERS Models 40, 47A, 48A. (Modele 47A and 48A are Admiralty pattern.) D.C. volts: $012,1 \%, 12,120$ $480,1,200$. Amps: 0.010, 0.12, $1,12$. $\begin{array}{ll}\text { Ohms: } \\ \text { 1,000,000 } \\ \text { Sensitivity: } & \text { criternal volta } \\ 166.6 & \text { ohms/ }\end{array}$ Ohms/Volt when divided by two buttor is pressed on hoth s.c. and d.e. ranges. P. Tup. and $3,600 \mathrm{~V}$. Current shunts for $1 \because 0 \mathrm{~A}$ am 480 A . A.C. current transformer: for 20 A and $\mathbf{6 0 A}$. In special woolen box. 818.50 . P. \& P. $\mathbf{E 1}$. Due to demand it may not aluaya he possible to supply a particular model, sud a differcnt type to that ordered may lit diapatched. These models are elcetrically identical.
side readig (1thm Fig. Height) 0-9. Display XN3F/A 38 man leand Amber Filter Xnsa fimin leada clear Filter XN11/F, 38 mm leanls Red Filter NXea/r.a 3 mmin lesia amber filter grecial displays XN9 38 mm leads Clear Filter 	MEMORY CORE STORES
Display's Fig. Displays " + , - and \sim Diaplays Vix. A, $\Omega, V_{\text {fIN }}$	BRAND NEW CAPACITOR REYERSIBLE SINGLE PHASE PARVALUX MOTORS $230 / 250 \mathrm{~V}, 50 \mathrm{~Hz}, 2,800$ r.f.m.m.; $1 / 30$ h.p. cont. rated, is in dla. shaft; 3_{3}^{2} in long foot mounting: wt. 6 lll . C/W capacitor. 83.50 . Post free.
All Post free. TELESCOPIC CABINET LID STAYS	THERMOMETER Industrial instrument employing Bourdon tube principle. Scaled 0-105. degrees C. and 32-291 degrees F. 3in dir. scale. 36 in capillsry tube. Sensing element $s \mathrm{in}$.dia. \times Odin long. Price 75p. P. \& l'. iree.
Closed length $\overline{2} \frac{1}{2} \mathrm{in}$, open lengtlı 10 i in. Finished dull plating lirand new. 4 for 21. Post fice. SLIDING CABINET LID STAYS	NEW ENICRON SHADED POLE MOTORS
similar principle to above clowed lergth Ifin, open length Jian. timisthed dull	TELEPHONE DIALS Clear Perspex, very good condition. Nu marking. 76p each. P. \& P. 2J̄p.
NEW MICROSWITCHES HONEYWELL 1 PL swo to contacts. 15 Amp. 125/250 volts. Single pole. ON/OFF, Plunger operated. L.1 $\mathrm{I}^{\prime} / 8^{\prime \prime}$, W. 5/8". I4. 3/4", Price 5 for 21.25. Post free.	OSCILLOSCOPE TYPE CT 52 A very handy miniature nortable ingtripurpore applications ${ }^{2}{ }^{3}$ in liam. tube. Wave form investigation from $10 \mathrm{~Hz}-20 \mathrm{MHz}$. Pulne monitoring
NEW FRACTIONAL H.P. CAPACITOR MAINS MOTORS $\because 30 \mathrm{~V}, 20 \mathrm{~Hz}, 0.65 \mathrm{~A}, 1 / 20 \mathrm{~h} . \mathrm{p} ., 2,8 \mathrm{~g} 0 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Cont, rated. Shaft $\frac{3}{i}$ in, dia. x in long. Circular clamy mounting. es 50 . 1'oat free. DELAY LINE LEXOR MDN 2484D	
Miniature resin cricapsulated monde. Total delay $50 n n e c$ to 1 Omsec. Tapped at 10% intervals. Impedance $\overline{\mathrm{T}}$ ohtrs to $10 \mathrm{k} \Omega .30 \mathrm{~V}$ wg. Attequation $0.5 \mathrm{~dB} / \mathrm{mbec}$. Also available MDN 2484 C : m micro-sec 400 ohm impedance. $2!$ in \times lin $\times n$ in. 1-50. Post free. MIDGET POWER RELAY OMRON Mk I 230 V . 50 Hz .1 PDT new. Faulty plating on frame. 6 lor 21.60 . Post free.	GOOD QUALITY INSTRUMENTS TAKEN IN PART EXCHANGE OR PURCHASED FOR CASH

230 V . 50 Hz .1 PDT new. Faulty plating
on frane. δ for 21.50 . rost free,

Colbert Pana-Vise WORK The required work position is POSITIONERS are specially firmly secured with a patented designed to quickly and easily ONEKNOB CONTROL, a unique achieve the most CONVENIENT, feature of COLBERT COMFORTABLE and TIME- POSITIONERS SAVING work position.
Available with vacuum clamp or A series of special holders is screw-on base. They can be available for various types of ROTATED, TIPPED, TILTED, work.
ANGLED, ELEVATED, Full details available on request.
LOWERED. Distributors :
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 PICCADILLY, LONDON, W.1. Tel. 01-628 9556
Cables: SPECIPROD LONDON
(made in U.S.A.)

Joan Th. Allen \& (Jompany

 offers a comprehensive range of COIN \& NEIA DETETORS
THE HUNTER

High sensitivity combined with marked stability to give a simple-to-use detector which is a must for the professional man such as tree $\quad \mathbf{2 4 , 0 0}$

THE EXPLORER

Inexpensive but sensitive. Will give hours of treasure hunting fun for the whole family on the beach, whilst walking or at home in $\mathbf{~} \mathbf{1 9 . 5 0}$

THE DISCOVERER

. The Do-lt-Yourself kit entails a minimum capital outlay and can be easily assembled in a few hours. The kit is complece except for a available. As sensitive and stable as the more expensive $\mathbf{4 5} 40$ detectors but a Iraction of the cost
2. The"Discoverer" Metal Detector fully assembled $\begin{aligned} & \text { and ready for use (transistor radio not included) }\end{aligned}$
3. Portable transistor radio ideal for use with the $\mathbf{~ D i s c o v e r e r " ~ M e t a l ~ D e t e c t o r ~}$

TREASURE HUNTER'S HANDBOOK

A Fortune Under Your Feet". This new publicat questions on treasure hunting. Find out the How.
$45 p$ plus 6p post
PLEASE ADD 30p TO DETECTOR ORDERS TOWARDS COST OF POST,
ALL DETECTORS AREGUARANTEED FORONEYEAR.
SHOWROOM DEMONSTRATIONS: MONDAY-FRIDAY $10-5$ p.m
9-1 p.m
FURTHER DETAILS OF ALL DETECTORS AVAILABLE ON REQUEST
(A 3p stamp would be appreciated)

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

and Trawler Band. Iuilt-in territe rod, Medium Wave 2, Long Wave, 8.W.1, s.w.s, s.W.3, refractatile chrome plated telescopic aerial for Short Wives for mavimum section 24 in . Push-pull output using 600Mw tyje transistors. Socket for car aerith. Tape record socket. Selectivity switch. Switched earpiece socket complete with carpiece for private listening. 8 translators plus 3 diodes. F'amous trake 7×4 in speaker. Air spaced ganged tuning conderser. On/ofi switch volume control. Wave change switch and tuning control. Attractive case in rlch cheatnut make the Roamer Eight a pleasure to luild Parteprice List to follow instructions and diagrams marts). parts)

Total building costs

夫6.98
Overseas
Post, packing and insurance 41p
$90 p$

NEW!

transeight

SIXWAVEBAND
PORTABLE WITH
3in. SPEAKER
Attractive case in black with
red grille and black knobe and
dial with apun brase
inserts. Size $9 \times 5 t \times 2 l \mathrm{in}$.
approx. Tunable on Medium and Long
Sensitive territe waves and Truler and , 8 improvitive ferrite rod aerial for M.W, and L.W. Telescopic aerial for Short Waves, switch for extended battery life. Ample power to drive a larger apeaker Firto switch for extended battery life. Ample power to drist and eagy build plans 2 (FPEE with

Total building costs
£4.48
Earpiece with plug and switched nocket for private listening, 30 p exfra.

Post, packing and insurance 31p
Overseas P. \& P. 70p

transona five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attractive case with red speaker grilie, Size $6 \mathrm{~F} \times$ 4 in \times litin. 7 atages- 5 trandistors and 2 diodes, fine tone noving coil speaker. Easy build plans and parts price list 8 p (FREE with parts).
Earpiece with plug and switched socket for private listening, 30 p extra.

Total building costs £2.38 post
and insurance 22p Overseas P. \& P. 55p

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
I enclose £ please send items marked

ROAMER EIGHT	\square	ROAMER SEVEN	
TRANSEIGHT	\square	POCKET FIVE	\square
TRANSONA FIVE	\square	ROAMER SIX	\square

28 watts, r.m.s. 40 Hz to $40 \mathrm{kHz}=3 d B$

There are two stereo amplifiers - the RT100 for ceramic cartridges, the RT101 for magnetic. Both incorporate FETs (FIELD EFFECT TRANSISTORS), just like top-priced units. FETs give you more of the signal you want, and almost none of the background hiss you don't. Both units have a jack.socket to plug in headphones and there's a separate output for tape recorder. Filters (an unusual feature in this price range) and tone controls give a wide range of bass and treble adjustment which compensate for input deficiencies and domestic acoustic conditions.

PRICES SYSTEM 1
Viscount III RT101 amplifier $\mathbf{£ 2 2 . 0 0}+90$ p p\&p $2 \times$ Duo Type Il speakers, $\quad £ 14.00+£ 2 \mathrm{p} \mathrm{\& p}$ Garrard SP25 Mk. III with MAG. cartridge. plinth and cover

Total $\frac{\mathbf{£ 2 3 . 0 0}}{\frac{\mathbf{£} 59.00}{\mathbf{£ 1}} \mathbf{p \& p}}$
p\&p.

SPECIFICATION

14 watts per channel into 3 to 4 ohms. Total distortion @ 10w @ 1kHz 0.1\%. P.U.1 150 mV into 3 Meg . P.U. $24 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within $\pm 1 \mathrm{~dB}$ R.1.A.A. Radio 150 mV Into 220 K . (Sensitivities given at full power.) Tape out facillities; headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to $-17 \cdot \mathrm{~dB} @$ 60 HZ . Bass filter: 6 dB per octave cut. Treble control; treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter; 12 dB per octave. Signal to noise ratio: (all controls at max) RT101 - P.U.1. \& radio - 65dB.P.U. $2-58 \mathrm{~dB}$. RT100 same as RT101 but P.U.2. 450 mV into 3 Meg. Cross talk better than -35 dB on all inputs. Overload characteristics 26 dB on all inputs.

$$
\text { Size } 137^{n} \times 9^{\prime \prime} \times 3 i^{\prime \prime}
$$

Radio and TV Componerits (Acton) Lid. 21d High Street, Acton, London, W36NG 3 33 Edgware Zoad, Loncon, W.2. Mail orders to Acton. Terms C.W.O. All enquiries S.A.E. Goods not dispatched outside U.K.

Give us six months, and weillum your hobby into a caree.

You have a hobby for a very good reason. It gives you a lot of pleasure.

So if you can find a job that involves your hobby, chances are you'll enjoy your work more, and you'll do better work.

Now CDI can help you find such a job. A job where you'll be responsible for the maintenance of a computer installation. A job that pays well too. If you're interested in mechanics or electronics (without necessarily being a
mathematical genius), have a clear, logical mind and a will to work, then we can train you to be a Computer Engineer inside six months.
So give us a call. CDI. We're the Education Division of one of the world's largest computer manufacturers. And we have the experience to know if you can make it. A ten minute talk with us, and you could be on the way to spending the rest of your life with your hobby.

Ring
 01-637 2171

between 9 a.m. and 9 p.m. and ask for Mr Pearce

It's quicker and easier to phone, but if you prefer, send this coupon to: Control Data Institute, Wells House, 77 Wells Street, London, W. I
Please give me further information.
Name
Address

Age Phone

CONTROL DATA INSTITUTE

CONTROL DATA LIMITEO

The Education Division of one of the world's largest Computer manufacturers.

TOURIST

MARK 3
 CAR RADIO

ALL TRANSISTOR

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensure excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 microvolts. Power output into ${ }^{3}$ ohrm speaker is 3 watts. Pre-aligned 1,F, module and tuner together with comprehensive instructions guarantes
success first time. 12 volts negative or positive earth. Size 7in 2 in 4 in deep.

SET OF PARTS
Circuit diagram 13 p, free with
parts speaker, baffleand fixing kit $\underset{\text { Speaker postage free when }}{\text { s. }}$ £1.25 extra plus P. \& P. 25 p $\quad \begin{aligned} & \text { Speaker postage ire } \\ & \text { ordered with parts }\end{aligned}$

SOUND 50

50 WATT AMPLIFIER \& SPEAKER SYSTEM

To protect the output valves, the incorporated fail safe circuit will enable the
amplifier to be used at half power.
SPEAKERS! Size 20 in $\times 20 \mathrm{in} \times 10$ in incorporating 12 in heavy duty 25 wat high flux. quality loudspeaker with cast frat.
in two tone colour scheme-Black and grey.
COMPLETE SR Plus or available separately

ELEGANT SEVEN Mk. III (350mW Output)
7-transistor fully tunable M.W.-L.W. Superhet portable. Set of parts. Complete with all components. including ready etched and drilled printed circuit board POWER Printed for foolproof cons
£5.25 Plus P. ${ }^{2}$ Pree withp. Circuit 13p
THE DORSET (600 mW Output) 7-transistor fully tunable M.W.-L.W. Superhet
portabte. Set of parts. The latest modulated and portabte. Set of parts. The latest modulated and pre-alignment techniques makes this simple to build.
Sizes: 12 in $\times 8$ in 3 in. Sizes: 12 in $\times 8$ in $\times 3$ in.
$\mathbf{E 5} .25$ Plus P. \& P. 50p. Circuit

THE RELIANT MK. III SOLID STATE general purpose AMPLIFIER
in simulated teak case £7.25 P. \& \& P. P. 50 p
SPECIFICATIONS
Output 10 watts. Outpur impedance -3 to 4 ohms.
Inputs 1. -xtal mic. 10 mV Tone Controls-Treble control range 12 dB at 10 KHz . 2. -gram/radio 250 mV . Bass control range 13 dB at 100 Hz Frequency Response- (with tone controls central) Minus 3 dB points at 20 Hz and 40 KHz . Signal to Noise Ratio-better than - 60 dB . Transistors- 4 silicon lotin type and 3 Germanium type. Mains input-220/250V a.c. Size of chassismakes of pick-ups and mikes. Built and tested
man

21d High Street, Acton, London W3 6NG 323 Edgware Road, London, W. 2

ALL MAIL ORDERS TO OUR ACTON BRANCH

Terms C.W.O. All inquiries S.A.E.
U.K. only

Mullard

 TECHNICAL BOOKS
Power Engineering using Thyristors

Part 1. Techniques of Thyristor Power Control
A new book to bridge the gap between electrical power engineering and electronics.
Including postage $£ 1.60$.

Data Book 1970

Gives Mullard abridged data on valves, picture tubes, semiconductors and components used in consumer electronics.

Paper bound. Including postage 24p.

Transistor Audio and Radio Circuits

For radio receivers, radiograms, record players, tape recorders, hi-fi equipment
Over 200 pages packed with the most up to date information.

Bound in cloth. Including postage $£ 1 \cdot 60$.

Electronic Counting

Circuits. Techniques. Devices.
The increasing use of mechanization and automation in factories has given rise to an increased interest in counting. This present book is intended to help engineers to use electronics to solve their counting problems as simply or as cheaply as possible.
220 pages fully illustrated. With diagrams Including postage $£ 1.50$.

Semiconductor Devices

This book is an introduction to Semiconductor Electronics and its contents should be readily understood. The subject is treated non-mathem atically. Numerous illustrations and diagrams Including postage 42p.

A programmed book on Semiconductor Devices

This book is an integral programme which is a form of self instructional text.
Size 12 ins. $\times 8$ ins. Numerous illustrations and diagrams. Including postage 75 p.

Electronic Experiments

The 20 experiments are intended as constructional projects, such as, an Oscilloscope, Logic Gates, Electronic Organ, Electronic Timer, etc. Containing numerous illustrations and diagrams.
Including postage 75p.

Now a screwdriver that holds the screw for you The Chuck Grip

At last, someone's improved the screwdriver. Made it so that you can fix a screw, any screw, with one hand. No more fumbling or dropping, even in awkward situations. Look at these features
 \star Nylon chuck-
grip clasps any
screw head
securely (dome,
flat, countersunk)
whilst you turn the
screwdriver with one hand.

- Interchangeable blades for either Phillips, Pozidriv, or conventional screw heads.
* Blade retracts into handle, so no torn holes when carried in pocket.

\star Electrically insulated handle stands up to 50,000 volts.

\star Handy size $6 \frac{1}{2}$ inches fully extended.

Available at D.I.Y. and hardware stores everywhere,
recommended reta price $57 \frac{1}{2}$ p. Distributed by
I.X.P. Ltd., Dept. PE8/71, Menshaw Lane, Yeadon LEEDS LST9 7RZ

Telephone: Rawdon 401316 Monufoctured by Unique Small Tool Co. Led

VALVES SAME DAY SERVICE

1 R5	. 28	25U4GT	. 57	DL96	-38	EL500	. 68	PCL82	$\cdot 36$	UABC80	. 88
156	. 22	30 Cl	. 80	DY8i	. 28	EM80	.41	PCL83	-60	UAF42	. 51
174	-16	$30 \mathrm{C15}$. 68	DY87	. 28	EM81	- 41	PCL84	-37	UBC41	-58
38.4	- 28	$30 \mathrm{C17}$. 80	DY802	. 40	EM84	. 33	PCL85	- 41	UBF80	. 34
3 V 4	$\cdot 37$	30 Cl 8	. 67	Eabc80	. 32	EM87	. 87	PCL8	. 41	UBF89	. 38
5U4G	. 26	30F5	. 76	EAF42	. 50	EYSI	-38	PCL88	. 72	UCC84	. 85
5 V 4 G	-37	30 FL 1	. 83	EB41	. 40	ET86	. 32	PCL800	- 77	UCC85	.38
5 Y 3 GT	-30	$30 \mathrm{FL12}$. 78	EB91	-11	EZ40	. 48	PENA4	. 42	UCF80	. 86
$5 \mathrm{Z4G}$	- 87	30 FL 14	. 72	EBC33	40	EZ41	. 43	PEN36C	- 70	UCH42	. 62
6/30L2	. 58	30 Ll	. 32	EBC41	-54	Ez80	. 23	PFL200	.58	UCH81	. 82
6AL5	-11	$30 \mathrm{L15}$. 82	EBC90	. 22	EZ81	. 24	PL36	. 49	UCLAO	. 85
6AM6	-13	30 L 17	$\cdot 73$	EBF80	- 83	G230	. 37	PL81	. 46	UCL83	.65
6AQ5	-28	30 P 4	-65	EBF89	. 31	GZ32	. 43	PL81A	. 51	UF41	. 56
6AT6	. 22	30 P 12	. 77	ECC81	-18	GZ34	. 50	PL82	. 38	UF89	. 88
6AUG	-22	$30 \mathrm{P19}$. 85	ECC8:	. 23	KT41	. 77	PL83	. 35	UL41	. 80
6BA6	- 22	30 PL 1	. 63	ECC83	-36	K'T61	. 55	PL84	. 33	UL44	1.00
6BE6	-28	30 PL 13	. 85	ECC85	. 28	KT66	. 83	PL500	. 65	UL84	. 88
6BJ6	- 42	30 PL 14	. 70	ECC804	. 60	LN319	. 88	PL504	. 67	UM84	. 22
6BW7	-60	30 PL 15	. 90	ECF80	-30	LN329	. 72	PM84	. 37	UY41	. 41
6CD6	. 10	35 L 60 T	. 45	ECF82	. 30	LN339	. 68	PX25	81.17	UY85	. 28
${ }_{6}^{6 F 14}$	-45	35W4	. 28	ECH35	.30	N78	. 87	PY32	. 55	VP4B	. 77
$6 \mathrm{~F}^{2} 23$	-71	35249T	. 25	ECH42	. 68	P61	- 50	PY33	-66	277	. 28
6 F 25	- 62	807	. 45	ECH81	. 29	PABC80	. 35	PY81	. 27	Tramsiato	tor:
6K7G	- 12	6063	-68	ECH83	- 41	PC86	. 51	PY82	. 27	A.C107	.17
6 K 8 G	-17	AC/V P'2	.77	ECH84	. 37	PC88	. 61	PY83	. 28	${ }_{\text {AC127 }}$. 18
6Q79	. 28	B349	. 85	ECL80	-35	PC96	- 42	PY88	.38	AD140	.87
6SL7GT	-27	B729	. 62	ECL82	. 33	PC97	-40	PY800	. 87	AF115	- 20
68N7GT	-30	CCH35	. 87	ECL86	. 40	PC900	. 37	PY801	. 87	AF116	. 20
BV6G	- 23	CL33	. 92	EF39	. 23	PCC84	. 88.	R19	. 32	AF117	. 20
6V6GT	-32	CY31	. 33	EF゙41	- 60	PCC85	- 30	R20	. 65	AF118	. 48
6×4	-28	DAF91	-22	EF80	. 24	PCC88	. 45	U 25	. 68	AF12	-17
6X5GT	- 28	DAF96	.38	EF85	. 81	PCC89	. 47	U26	. 08	AF127	. 17
$10 \mathrm{P13}$	-60	DF33	. 88	EF86	. 31	PCC189	. 51	U47	. 68	OCH^{4}	. 25
12AH8 \& 12	22.25	DF91	. 16	EF89	.27	PCC805	. 65	U49	. 68	OC44	. 12
12AT7	-18	DF96	. 36	EF91	. 18	PCF80	. 30	U.50	. 80	OC45	. 12
12AU6	-23	DH77	. 22	EF183	. 29	PCF82	. 82	U52	-31	0C7:	. 18
12AU7	. 23	DK 32	. 37	EF184	. 32	PCF'86	. 47	U78	.24	OC7\%	. 12
12AX7	. 28	DK91	. 28	EH90	. 42	PCF800	. 67	U191	. 62	0 C 75	. 12
19BG6G	. 87	DK92	.42	EL:33	. 55	PCF801	. 83	U193	. 42	0081	. 12
$20 \mathrm{~F}^{2} 2$. 67	DK96	-38	E1.34	. 40	PCF802	- 45	U251	. 72	OC81	. 12
${ }^{20 \mathrm{P}} 3$	-85	DL35	. 35	EL4 1	. 55	PCF805	. 67	U301	. 52	OC82	. 12
20 P 4	-92	DL92	. 28	EL84	. 24	PCF806	. 60	U329	.78	OC82 1	. 12
25L6GT	. 25	DL94	. 87	EL90	. 26	PCF808	. 72	U801	. 98	OC170	. 22

[^0]FIND BURIED TREASURE WITH THIS READY BUILT \& TESTED Treasure Locator Module

Only £4.95 (99/-)

BRAND NEW FULLY TRANBISTORISED PRINTED GIRCDIT METAL DETECTOR MODULE heady outh and lested-jugt plug in a PP3 battery and phones and it a working. Put it in a case
 LOCATES COINB, GOLD, BILTER, WATCHES, JEWELLERY, NOGGETS, METALLIC ORE, HIS TORICAL RELICB, BURIED PIPES, KEYS, MAIL-IN-TREES, ETC., ETC. Bignals exact location by "beep" pitch increasing as you near buried metallic nbjects. PRINTED CIRCUIT SEARCH COIL so slable and senzitive il woill detect certain objects buried BEVERAL FEET BELOW GROUND! GIVES
CLEAR BIGYAL ON ONE COIN! You could even pay for wour holidays with two or three dave CLEAR BIGNAL ON ONE COIN! You could even pay for your holidays with two or three days electronic combined wealh of all nations. ORDER NOW WHME PRESERT STOCES LABT-TREMMENDOU
 (High quality Danish Stethoscope headphones $£ 2-75$ ($5 \mathrm{~S} /-$) extra if required).

SOOTHE YOUR NERVES, RELAX WITH

THIS
 amazing RELAXATRON

CUTS OUT NOLSE POLLUTION-SOOTHES YOUR NERVES! DOn' underestimate the uses of this fantast ic new design-the RGLAXATRON is basically a pink noise generator based on avatanche operated trangigtors. Besides being able to mask out extraneous unwanted sounds, it has other very interesting properties. For instance, many people find a rajnstorm mysteriously relaxing, a large part of this feeling of well-betng type of pink noige. A group of Dentists have erperimented on patients with
 this pink noise-NO ANESTHETICS WERE URED! The nolse ostensibly nervous syatems with the results that their pain systems were blocked. IF TOU WORE IN reaction on these patients SURROUNDINGS, IF YOU HAVE TROUBLE CONCENTRATING, IF YOU FEEL TENEED, URABLE TO RELAXthen build this fantast ic Relaxatron. Once used you will never want to be without it use this amazing pink noise generator whenever you feel uneasy, can't relax or wish to concentrate. TAKE IT ANYWHERE, pocket sized. Uses standard 12 YEARS OF AGE using our unlque, step-by-step fully illustated plans CAN BE EABLI BUILT BY ANYONE OVER a pair of crystal phones, Components, Nuts, Screws. Wire, etc. etc. no soldering. Send only $\mathbf{2} 2 \cdot 25+25 p(45 /-+5 /-)$ p. \& p. parts avaitable separately.)

GET A GOOD NIGHT'S SLEEP-EVERY NIGHT! INGENIOUS ELECTRONIC
SLEEP INDUCER

CAN'T SLEEP AT NIGHTSP DO YOU WAKE UP IN THE NIGHT AND CAN'T GET OFF TO SLEEP AGAINP WOULD YOU LIKE TO BE GERTLY SOOTHED OFP TO BATISPYING SLEEP EVERY FIGHTP Then build this ingenious elec tronic sleep inducer. Yt even slops by itself so you don't have to worry about ti being on all night! The loudspeaker produces soothing audio-frequency sounds, continuously repeated-but as time goes on the sounds gradually become leas and less -until they eventually cease altogether, the effect it has on people is amazingly eery aimilar to hypnosis. A control is proNo knowledge of electronics or radio needed. Extremely simple, easy-to-follow, atep-by-step, fully illustrabed instructions includer. No soldering necessary. Works off standard batterles- extremely economical. Size only $3^{\prime \prime} \times 4^{\prime \prime}$ instructions it anywhere. All parts including case, loudapeaker, components, nuts, wire, screws, etc. etc. THERE WILL BE A GREAT DEMAND FOR THIS UNIQUE NEW DESIGN-SEND NOW \&\&'75 +25 p ($55 /-+5 /-$) p. \& p. (parts available separately).

REAL WORKING ELECTRONIC ORGAN

Anyone from nipe years opwards can baid it ensily in one tho realy is as aimple as a.b.c. to mak Atep-bv-step, simply worded inatructions BIG DEMAND A MTICIP TRD FOR TBIS UYIOUE ITRSTRD MENT at our low, low building price ONL $82.75(55 / \cdots$) (55/-) r, transtators, condensers, resistors knobs, $28 \cdot 75$ (55/ case, loudspeaker, transktors, condensers, resistors, knobs, tranatormer, volume control, wire, nuts, screws, simple but fully instructions, etc. etc. Uses atandard battery (parts available separately). Have all the pleasure of making it yourself. finish withan exciting gift for someone.

SHORTWAVE TRANSISTOR RADIO

Can be built in one evening At latt: Attor trying countless circuits searching for casy build, work firstotime short waver. Giving advanced world-wide portormance, we chose this 'gky Roma'. Anyone from 9 years up can follow the step-by-step, easy-as-ABC, fully illustrated instructions. (We built ten prototypes and rod aerial in 30 mins.-Ruasia, Arica, USA, 8 witzerland, etc. Experience thrills of world wide news, sport, music, etc. Eavesdrop on anusual broadcasta. Uses PP3 battery. Transistorised (no valvesl). Size only $3^{\prime \prime} \times 49^{\prime \prime} x 1^{\prime \prime}$ As tremendous demand anticipated price held to only $22.25(45 /-)$
$17 \mathrm{p}(3 / 6)$ p. \& p. for sll parts incl. Cabinet, 17p (3/6) p. \& p. for a
available separately).

EAVESDROP ON THE EXCITING WORLD OF AIRCRAFT COMMUNICATIONS - JUST OUT V.H.F. AIRCRAFT BAND CONVERTER

Many thourandm of v.h.i. Aircralt Band Converters now selling in U.S.A. Liaten in to ATRLINES, PRIVATE PLANES, JETPLANES. Eavesdrop on exciting crosulalk between pthots, ground approach control, airport tower Hear for yourself the disciplined voices hiding tenseness on lalk downs. Be with them when they have to take nery rippling decisions in emergencies-Tune into the inter national distress frequency. Covers the sircraft frequenc band including HEATHROW, GATWICE, LUTON RINGWAY, PRESTWICE ETC., ETC. CLEAR AB A BELL This fantastec fully transistorised instrument can b buill by anyone nine to ninety in under two hours. (Our design team built four-everyone worked first time). No nowhedge of radio or electronics required. No soldering necessary. Fuliy illustrated simply worded instruction take you step-by-step, Uses standard PP3 battery. Siz only $44^{\circ} \times 3^{\circ} \times 11^{\circ}$. All you do is extend rod aerial, place close to any ordinary inedlum-wave radio- (even tin portables) NO CONNECTIONS WHATEVER NEEDED Use indoors or outdoors. THERE WILL GE EHORHOO DEMAND FOR THIS NEW ORIIG:N, BNNO NOW, ONLY 48.87 (47/6) p. \& p. for all parts, including case, nuts screws, wire, etc., etc. (parta available separately).

BUILD 5 RADIO AND
 ELECTRONIC PROJECTS
 Amazing Radio Construction ret! Becoine a radlo expert for $81.97(39 / 6)$. A complete Home Radin Course. No ex perience needed. Parts includ perience needed. Parts inc ad design. Illustrated Step-by-step plans all Transistors, loud phone, knobs, screws, etc., all you need. Presentation Box 37 p 7/6) extra as illus. (if required) (extra parts available separ (4/6) p. \& p.

FIND BURIED TREASURE!
 TREASURE LOCATOR TRANSISTORISED

How it's here at last, after experimenting for four and half monthe with a multitude of different circuits and carrying out actual field tests wits prototypes, our design team have come up with this real winner. This fully portable transistorized metal iocator detects and tracks down buried metal objects-it signale
exact location with loud audible sound ino phones used)-use exact location with loud audible sound any transietor radio which fits inside
 no connections needed no connections neded. FNDD GOLD, KEY8, WAR SOUVEIIRS, ARCHAE OLOGICAL PIECES, METALLIC ORE, NDGGETS ETC. ETC. Outdoors or in - loors. Extremely rensitive, will signat presence of certain objects buried several feet belowe oround No knowledge of ratio or electronics required. Can be builu with ease in one short evening by nine years of afe upwarde with the wonderfully clear easy to follow, step-by-step, fully illustrated instructions-it really is easy as $\begin{array}{ll}\text { A.B.C. } & \text { transistorized } \\ \text { valves. } & \text { Uses } \\ \text { Etandard } \\ \text { PP3 }\end{array}$ Dattery. No soldering necesary. size of detector head

 SENT 8TOCES LAST. All parts including detector head case, nuts, instruct ions ${ }^{\text {wire. }}$ etc. simple ONLY $22.37{ }^{(47 / \beta)}{ }^{\text {etc. }}$
 illustrated
extra). Parts available
separately looks worth $\mathrm{El5} 1$

DTPORTAMF. THII LATEGT 1071 HODEL mCORPORATES ALL TEL

 gutian 8 waverayd portable padio, degianied for world Wime mecerilon, will probelly make your prosent radio weom Hike a "eryutal net"! It's far better than any other 8 wave radio that oven they have produced before 1 It even incorporates aspecial MARMIE WAVEBAND to recoive spoken communications trom ahip-to-abore! Complete with optional battery ellminator for both battery and nualns use I It reprementa the fimot velve wo have ever oflered! We're alnost givint then away at only 218.97s mare frection of oven today's Rumian miraclo prico! In fact we chalienge you to compare the perfornance and value with that of $\mathbf{2 4 2 . 0 0}$ emdion "You just can't lose, we'll refund your money instantly if you are not antounded! Parer and aweeter tose than aver! Moch wibor mand aproal than hitborto, for alvolutoly "pin-point" atation meection! Yee, the Bustlana have roslly sarpasod thempelven this time, proving once again their fantantic abillty in the field of electronica and brilliantly reflecting their advanced mlero-circuitry techniques in the field of apaceship and astellite communications. YOU GET THIS AMAZING SET FROM US at a price that bears no relation to its true value Yes, 8 aparate wavehands, tnclading Btanderd Lonf, Mediam and Ehort Wever to cover the worid. PLOE special "dhip-to-abose" HarDIE BAND! Unieme ide control wareband melection unit gives incrodith ense of atation tuniog! Thonsande of diflerent transmionions, sid etations at your Angertip es hours a day, incluuling ships at sea, etc. and messagea from all over the world-truby nothing is werot! The radlo onthusiast can have the world in the palm of hla hand ! You mast hear it to believe it I Saparb, owet tone -controlled from a whiper to a roar that will all a hall 1 Genuine push-pull output! Separate ON/OFF volume and Treble/Bass tone controls : Freso Hatton dial jllamination: Take it anywere -runt economically on standar batteriee (obtainable everywhere) or direct through battery ellminator front $290 / 240 \mathrm{C}$ AC mains supply. Internal ferrite rod aerial plus built-in teleacopic merial extending to full 3 in , length. It's sloo a fabuloua CAR Radio-say speed, requires no additional aerial, OMIQUE! Elegant
 Magniacently designed and superbly made to give yoars of perfoot mervice Complete with WRITTEN GUARANTEE; manual with simple operaling instructiona and circuit diagram, OILY 819.97 ($(\mathbf{1 t h}$ nuajne/bat tery elimina tor 41.38 extra). B0X, P05z, ETC., $86 y$, Itandard batterios $88 p$ extra. On shoo in uned through artansion ampliter, tepe recordar or public sddrens angtem. Send today or call at either store, but HURRY : It's the chance of a lifetine. (Sorry-we cannot change these new radion for any earilier model already purchased.) Gond quiekly or call. Relund zameranteed.

SHOPERTUNITIES LTD. S|L
Dept. PE/7, 164 UXBRIDGE ROAD, LOMDOK W12 8AQ (facing Shepherd's Bugh Green). (Thursday 1 p.m., Friday 7 p.m.)

EX G.P.O. CQUPMENT

wishlitor wir
Unit contains:
2×3 bank 25 way
2×4 bank 25 way
2×5 bank 25 way
interconnected to 12 relays plus chokes and condensers. E6•70

TWO MOTION SWITCH UNIT

Unit contains 3×10 bank 11 way switch wired to 1,400 position tag board giving possible 660 single pole switch positions. 50 V d.c. $£ 4.75$

UNISELECTORS

3 bank 25 way 80p
4 bank 25 way sop
5 bank 25 way
ع1
$\mathbf{8 1} \cdot 10$
STEP UP SWITCH with loose contacts
c1.75
TOGGLE SWITCH 3 position 2 pole each
25p
INDICATOR LAMP STRIPS 10 lamps 15p
Post and packing free
READER MAIL SERVICE
II ASHDALE DRIVE, WITHINGTON
MANCHESTER M2O 9IF

Vary the strength of your lighting with a

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal. light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fitsings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $\mathbf{2 0 0 - 2 5 0 ~ v , ~ 5 0 H z}$. The DIMMASWITCH has built-in radior: $600-\mathbf{E 3} .20$ Kit Form $\boldsymbol{£ 2} .70$

$$
\mathbf{3 0 0} \text { - } \mathbf{2} .70 \text { Kit Form } £ \mathbf{2} .20
$$

All plus 10 p post and packing
Please send C.W.O. to:-

DEXTER \& COMPANY

 1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel. 0244-25883As supplied to H.M. Government Departments

GARRARD PLAYERS with Sonotone gTA Cartridges. Bereo Diamond and Mono Sapphire. SPR5 Mk II 215 Model 3500 Stereo and Mono Autochanger \&14. Post 25p RECORD PLAYER PORTABLE CABINET 63.75 RCS DEP MPE R-stege- with rolume controls. pentode raive, 8 watis outpat. Tone and loudapeaker, valven ECL82, EZ80. Responie
$50-12,000 \mathrm{cps}$. Sonsitivity 200 mV . Post 25 p . RCS 2 WATT AMPLIFIER with loudipeaver and \quad alver UCL8R and UYS5. Post 25p.
R.C.S. TEAKWOOD BASE. Ready cut out for mounting (atate player make and model). R.C.s. PLASTIC COVERS FOR ABOVE BASE

Durable tated plantic, attractive appearance
£2.75
EMI PICK-UP ARM. With mono rtal and atyius $81 \cdot 25$. EMI JUNIOR 4 SPEED RECORD PLAYER. Main: \mathcal{C} operated motor, turntable and pick up. Poat 25 p GTA 62.00 . UP94 CARTRIDGES. Diamond Stereo/Mono GC8 21-25; GPG7 95p; ACOS I P ODI 50 p GP81 \&1-50 All standard firing complete with stylus.

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial.... 65p

Oic. P50/1AC........30p I.F. P50/2CC $470 \mathrm{kc} / \mathrm{s}$. 3rd I.F. P50/3CC 33p ${ }^{3}$ Priver Circuit, PCA1 J.B. Tuning Gang Weyrad Booklet. | PEN/8V |
| :--- |
| P50/8V |
| Mullard Ferrite Rod $8 \times \times$ in. | .50 p

.50 p
.65 p 55p

VOLUMECONTROLS 80ohm Coax 4p yd. Long apindies. Midget 8ize \mid BRITISH AERIALITE \begin{tabular}{cc|c|c}
5 K .0 mmg \& to 2 Meg . LOG or \& AERAXIAL-AIR SPACED

LIN. L/B \& 15 p. \& D.P. 25 p. \& $40 \mathrm{gd} . ~ £ 1-40 ; 60 \mathrm{yd} . ~ £ 2$.

 TEREO L/S 55p. D.P. 75p. YRINGE LOW LOSS IOp WIRE-WOUND 3-WATT POTS WIRE-WOUWD 3-WATT WPOTS. WIRE-WOUND 3-WATT

Values 10Ω to $90 \mathrm{~K} .$, \& 25 p

Carbon 80 K to 2 meg. \& LONG SPINDLE

\hline
\end{tabular}

EDGE CONNECTORS 18 way $25 \mathrm{p} .24 \mathrm{p} .31 \times 5 \mathrm{in} .26 \mathrm{p}$.
PINS 36 per packet 17 p . FACE CUTTERS 38p 8.R.B.P. Board 0.15 MATRIX 2 inin. wide 3 p per 1 in . 8.in. Wide 4p per lin.; Sin. whde 5 p per lin. (up to 17 in .) S.R.B.P. undriled bin. Board $10 \times 8 \mathrm{in}, 15 \mathrm{p}$.

BLANK ALUMINIUM CHAS8IS. 18 L.w.g. Rin. sides $7 \times 4 \mathrm{in} .45 \mathrm{p} ; 9 \times 7 \mathrm{in} .80 \mathrm{p} ; 11 \times 7 \mathrm{in} .70 \mathrm{p} ; 13 \times 8 \mathrm{in} .75 \mathrm{p}$;
$14 \times 11 \mathrm{in} .80 \mathrm{p} ; 15 \times 14 \mathrm{in} .85 \mathrm{p} ; 11 \times 3 \mathrm{in} 50 \mathrm{p}$. $14 \times 11 \mathrm{in}, 80 \mathrm{p}: 15 \times 14 \mathrm{in} .85 \mathrm{p} ; 11 \times 3 \mathrm{in} .50 \mathrm{p}$
ALUMINIUM PANELS $18 \mathrm{s.w.g} .8 \times 4 \mathrm{in} .8 \mathrm{p} ;$ ALUMINIUM PANELS 18 \&.w.g. $6 \times 4 \mathrm{in} .8 \mathrm{p}$;
$8 \times 8 \mathrm{in} .15 \mathrm{p} ; 10 \times 7 \mathrm{in} .17 \mathrm{p} ; 12 \times 8 \mathrm{in} .23 \mathrm{p} ;$
$4 \times 8 \mathrm{in} .27 \mathrm{p}$; $12 \times 121 \mathrm{n}, 32 \mathrm{p}$
1 inch DIAMETER WAVECHANGE SWITCHES. 25p. 2 p. 2 -way, or 2 p. 6-way, or $3 p .4-w a y ~$
1 p. $126 p$ each
2 1 p. 1 2-way, or 4 p. 2-way, or 4 p. 3 -wsy $25 p$ 2 p. 6-way, 3 per Wavechs nge " HAKITS" 1 p. 12 -way. 60p, 2 waler $95 p$. Extra waters up to sir 30 peach .
TOGGLE 8 WITCHES, ap. 14 p ; dp. 18p; dp. dt. 83 p . H.R. ALL PURPOSE HEADPHONES H.R. HEADPHONES 2000 ohms $\$$ uper Senaitive. DE LUXE STEPEO HEADPHONES $3-5$ ohms
"THE JNSTANT" BULK TAPE ERABER AND HEAD
HEAD
DEMAGNETI8ER

GENERAL PURPOSE TRANSISTOR
PRE-AMPLIFIER BRITISH MADE for Mira, Tape, P. U., Guitar, otc.
Battery 9 -12\%. or H.T. line $200-300 \mathrm{~F}$. D.C. operation. Sise $11^{*} \times 11^{*} \times 1^{\prime \prime}$. Response 25 c.p.s. to $25 \mathrm{Kc} / \mathrm{z}, 28 \mathrm{db}$ gain. For use with valve or tran instor equipment.

 NEW TUBULAR ELECTROLYTICS CAN TYPES 4/350V | p | $100 / 25$ |
| :--- | :--- |
| $250 / 25$ | | $4 p$

$0 p$
$8 p$
$20 p$
$25 p$ $16+18 / 500 \mathrm{~V}$
$80+50 / 350 \mathrm{~V}$.
$60+100 / 350 \mathrm{~V}$
$32+32 / 250 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V}$
$25 / 25 \mathrm{~V}$
$50 / 50 \mathrm{~V}$
 SUB-MIN. ELECTROL YTICS. $1,2,4,5,8,18,25,30,50,100$, $200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} ; 500,1000 \mathrm{mF} 12 \mathrm{~V} 18 \mathrm{p} ; 2000 \mathrm{mF} 25 \mathrm{~F} 35 \mathrm{p}$. PAPER 350V-0.1 $4 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF}$. 15 p ; 2 mF 150 V 15 p . $500 V-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; \quad 0.258 \mathrm{p} ; \quad 0.4725 \mathrm{p}$. $1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,8 p ; 0.047,0.1,14 \mathrm{p}$. SILVER MICA. Close tolergnce 1%. $2 \cdot 2.500 \mathrm{pF} 8 \mathrm{p}$; $580-$ $2,200 \mathrm{pF} 10 \mathrm{p} ; 2,700-5,600 \mathrm{pF} 20 \mathrm{p} ; 6,800 \mathrm{pF}-0.01$, mld 30 p each.
TWIN GANG $40-0 " 208 \mathrm{pF}+176 \mathrm{pF}, 65 \mathrm{p}$; Slow motion TWIN GANG, $40-0 " 208 \mathrm{pF}+176 \mathrm{pF}$, 65 p ; Slow motion
drive $365 \mathrm{pF}+365 \mathrm{pr}$ with $25 \mathrm{pF}+25 \mathrm{pr}, 50 \mathrm{p}$; 500 pr How drive $385 \mathrm{pr}+365 \mathrm{pr}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$; 500 p
motion, tandard $45 \mathrm{p} ;$ small 3 -gang 500 pF il 10 . motion, standard 45p; small 3-gang 500 p
8HORT WAVE SNGLE. 25pF+ 50 pF , 55 p.
SHORT WAVE SNGLE. 25pF, 50pR, 55p.
CHROME TELESCOPIC AERIALS 23in. Swivel base 20 p. TONDNG. Solid dielectric. $100 \mathrm{pF}, 500 \mathrm{pF}, 35 \mathrm{p}$ each. TRIMMERS. Compression $30,50,70 \mathrm{pF}, 5 \mathrm{p} ; 10 \mathrm{p} ; 1000 \mathrm{pr}, 10 \mathrm{p}$.
$100 \mathrm{pF}, 150 \mathrm{pF}, 8 \mathrm{p} ; 250 \mathrm{pF}, 8 \mathrm{p} ; 600 \mathrm{pF}, 750 \mathrm{pr}, 10 \mathrm{p}$ RECTLEIERS CONTACT COOLED halt wave 60 mA 38p; 85 mA 48 p . SILICON BY213 30p; BY 100 30p; BY12730p. Full wave Bridge Rectifers 75mA 50p; 150mA 88p.
EX-GOVT. RECTIFIERS 250 V 200 mA 30 p .
NEON PANEL INDICATORS 250 V AC/DC Red or Amber 20 p .
 HIGH STABILITY. W. $2 \% 10$ ohms to 1 meg., 10 p . Ditto 5\%. Preferred values 10 ohms to 10 meg, 4 p
WLRE-WOUND RESISTORS 5 watt 10 wett 10 ohms to 100 K 10p each; 2t watt, 10 hm to $8.20 \mathrm{~m}^{15}$ watt

Complete: a die, a punch, an Allen screw and key

 AM - FM/VHF TUNING GANG Le Super quality omall size $1 \frac{1}{2} \times 1 \frac{1}{1} 1 \frac{1}{2}$. plus spindle $1 \frac{1}{2}$ - $\mathrm{in} . \quad 365+365 \mathrm{pF}$ with $25+25 \mathrm{pF}$. British made. Geared How motion drive 6:1. Plastic duat cover. 6BA tapped front flxing. Cast aluminium frame.

50p post pree

MAINS TRANSFORMERS

All post
25p each

250-0-250 50 mA . .3 v. 2 amp. centre happed \qquad | $250-0-25080 \mathrm{~mA} .6 .3$ |
| :--- |
| $250-0-25080 \mathrm{~mA} .4 \mathrm{mmp}$. |
| 1.3 |
| m .3 m. |

 P.E. ADRORA TRANS. $12+12 \mathrm{~F}, \mathrm{~F}, 500 \mathrm{~mA}$
MINI-MANS 20 v .100 mA . $1 \% \times 1 \times 18 \mathrm{in}$. MINL-MAINS $20 \mathrm{~F} .100 \mathrm{~mA} .1 \% \times 1 \mathrm{i} \times 1 \mathrm{in}$
HEATER TRANS $0.3 \nabla 3 \mathrm{~m}$ Ditto tapped sec. 1.4 v. $2,3,4,5,8.37 .1 i \mathrm{mmp}$.
GENERAL PURPOSE LOW VOLTAGE GENERAL PURPOSE LOW VOLTAGE. Tapped outpats t 2 amp., 3, 4, $5,6.8,9,10.12 .15,18,24$ and 30 F .22 A smp., $8,8,10,12,16,18,20,24,30,38,40.48,60$. 23 Input/Oatput, 150w. \&2; 500w. \&5; 1000w. 112 CHARGER TRANSFORMERS. Input $200 / 250 \mathrm{v}$.
 FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12v. outputs. $1 \frac{1}{2} \mathrm{amp} .40 \mathrm{p}$; 2 amp . $55 \mathrm{p} ; 4 \mathrm{amp}$. 85 p . All Transformers Postage 25p each

E.M.I. $13 \frac{1}{2} \times 8 i n$. LOUDSPEAKERS

With flared tweeter cone and ceramic megnet. 10 Watt.
$\begin{aligned} & \text { Bans res. 45-60 cps. } \\ & \text { Fluy } 10,000 \text { gaus. }\end{aligned} \quad 4 \geq \square 5$ State 3 or 8 or 15 ohm. Post $15 p$ And with twin tweatern.

14
And crossover. 10 watt.
State 3 or 8 or 15 ohm. Post 15p As illustrated Recommended Teai Cabinet
Size $16 \times 10 \times 9$ in. $\quad \mathbf{~ P o s t ~} 25 \mathrm{p}$.

IOW MINI-MODULE $£ 3.25$ LOUDSPEAKER KIT Pott 25p

Triple apeaker aystem combining on ready cut bafle. in. chipboard 15 in. 81 in . Separate Bass, Middle and Treble loudspeakers and crogsover condenser. The heavy duty 5 iu. Bass Woofer unit has a low resonance
cone. The Mid-Range unit is apecially designed to add cone. The mid-Range unit is apecially designed to add
drive to the midde register and the tweeter recreates the top end of the musical apectrum. Total response $20-15,000 \mathrm{cps}$. Fullinatructions for 3 or 15 ohm . TEAK VENEERED BOOKSHELF ENCLOSURE. $161 \times 10 \frac{1}{2} \times 6 \mathrm{in}$. Modern design, dark
grey Tygan covered bafile.

ALL MODEL8 "BAKER 8PEAKERS' IN 8TOCK BAKER 12in MAJOR £9

THIS ELAC CONETWEETERIS OFTHE VERY LATEST DESIGN AND GIVES A HIGHER STANDARD OF PERFORMANCE THAN

MORE EXPENSIVE UNIT'S The moving coil diaphragm gives a good radiation pattern to the higher frequencies and a smooth ertension of total response Irom $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size $34 \times$ 31 . 2 in . deep. Rating 10 watt. 3 ohm o
15 ohm models. 15 ohm models. $\mathbb{1} .90$ Post 10p

TWO-WAY XOVER NETWORK $3000 \mathrm{c} / \mathrm{s}$ With variable tweeter attenuator giving accurate high/low requency balance. Mounted on panel 5 in. 4 in . With control knob, tweeter and woofer leads and
input terminals. Suitable for 3 to 8 ohm imp. $\quad \mathbf{4 1 . 9 0} \begin{aligned} & \text { Post } \\ & 10 p\end{aligned}$

GOODMANS HEAYY DUTY IOin. WOOFER 10 w.
Large ceramic magnet. Columns, Hi-Fi Enclogures, etc.

Horn Tweetera $2.16 \mathrm{Kc} / \mathrm{s}, 10 \mathrm{~W} 8 \mathrm{ohm}$ or 15 ohm 21.50 . De Luxe Horn Tweeters $2-18 \mathrm{Kc} / \mathrm{s}, 15 \mathrm{~W}, 8$ ohm ${ }^{23}$ PECIAL OFFER! 80 ohm. $2 \ddagger \mathrm{in}$. dia.; $35 \mathrm{ohm}, 3 \mathrm{in}$. 5 ohm , 3in. dia.; 6 . $4 \mathrm{in} ; 8$ Sin. 5 ohm , 3 lin. dia. $7 \cdot 4 \mathrm{in} ; 8 \cdot 5 \mathrm{jn}$.
\&| EACH 3 ohm, 2 ijin. 3 in, sin, $5: 3$ in. 7 . 4 in
$\times 2$ DSPEAKERS P.M. 3 OHMS. 61 in. $\mathrm{E1} 110 ; 8 \times 5 \mathrm{in}$. $\mathbf{2 1 - 2 5}$
 ELAC 8 in. De Luxe Ceramic 3 ohm or 15 ohm 2250 ELICHARD ALLAN TWIN CONE LOUDSPEAKERS 8in. dia. 4 watt; 10 in . dia. 5 watt; 12 in. dia. 6 wistt,
3 or 8 or 15 ohm models $11 \cdot 85$ each. Post 15 p .
OUTPUT TRANS. ELB4, etc. 25p. MIKE TRANS. $50: 125 \mathrm{p}$. 8PEAKER COVERING MATERIALS. Samples Large S.A.E. GOODMANS OUTPUT TRANSFORMER 5 watt puih pull tor alves EL84, etc., 3,8 and 15 ohms 85 p. Post 20 p .
100 WATT ALL PURPOSE POWER AMPLIFIER 4 inputs speech and music. Response $10-30,000 \mathrm{cps}$ Matches all loudspeakers. A.C. 200/250V. Treble $\mathbf{E 3 6}$ Post
and Bass controls. Guaranted. Details S.A.E.

ALL EAGLE PRODUCTS ILLUSTRATED EAGLET LOWEST PRICES	BARGAIN AM TONER. Medium Wave.
Fint.	Transistor Superhet. Ferrite aerial. 9 volt. Add manical highlights and sound effects to recordings With separate controls into siagle outpat. 9 volt BARGAIN FM TUNER 88-108 Mc/a Six Transistor. 9 volt. Printed Circuit. Calibrated alide dial tuning. $\quad \mathbb{1} 0$

Walnut Cabinet. Size 7,5 inch
 Chassis only, less cabinet.
BARGAIA 3 WATT AMPLIFIER. 4 Transistor $\mathbf{\$ 3 . 5 0}$
Push-Pull Ready built, with volume control. 9 y . $\mathbf{~}$ COAXIAL PLUG 6 p , PANEL SOCKETS 6p. LINE 18p. OUTLET BOXES. SURFACE OR FLUSH 25p. JACK SOCXET Std. open-circuit 14 p , closed circuit 23 s . Chrome Lesd Socket $45 p$. Phono Plugs 5p. Phono Socket 5p. JACK PLUGS Std. Chrome 15 p ; 3.5mm Chrome 14 p . DIN
SOCEETS Chassis 3-pin 10p; 5 -pin 10 p . DIN SOCKETS Lead 3-pin 18p; 5-pin 15p. DIN PLUGS 3-pin 18p; 5-pin
25p. VALVE HOLDERS. SD; CERAMIC 8p; CANS 5p.

E.M.I. TAPE MOTORS. 120 y . or
 BALFOUR GRAM. MOTORS 120 F . or 240 v . AC. $1,200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. 4 pol

Get into the Computer Industry the fast and easy way.
Now for the first time, anybody (no special qualifications are needed) can train outside the computer industry for an exciting career as a computer operator in only 4 weeks - and can earn $£ 2,000++$ p.a.
How? We are the only commercial training organisation in the U.K. permitted to use the famous 'Eduputer'.
JOBS GALORE! 144,000 new operators will be needed over the next five years alone. And the moment you qualify our exclusive computer appointments bureau introduces you to computer users everywhere. This is your big opportunity to get out of a rut and into the world's fastest growing industry. Find out more FREE and without obligation by posting this coupon

London Computer Operators
Training Centre
C24, Oxford House, 9/15, Oxford Street, London, W1. Telephone: 01-734 2874
127/131 The Piazza, Dept. C24, Piccadilly Plaza, Manchester 1. Telephone: 061-236 2935.
Please send me your FREE illustated brochure on exclusive Eduputer 'hands on' training for computer operating.
Name
Address

MARSHALL'S INTEGRATED CIRCUITS

NEW LOW PRICES LARGEST RANGE BRAND NEW FULLY GUARANTEED SPECIAL OFFER 5\% DISCOUNT TO SATURDAY CALLERS JULY AND AUGUST ONLY

LARGEST STOCKS SEMICONDUCTORS \＆COMPONENTS BRAND NEW
WIDEST RANGE

TRANSISTORS
突 20301
26302
20203 $2 G 303$
 $2(2309$
$2 G 371$ $2 G 371$
$2 G 374$ 2G374
2G381准には

2×718
2NTH

2N7：
$2 \mathrm{~N}_{2} \mathrm{~N}^{2}$
2 N 916
2 N 918
2 N 918
2 NO 9 C
2 N 930

？ 2109
2 N 1091
2N1131
2 N 1132
2 N 1302
$\begin{array}{r}2 \times 130^{3} \\ \hdashline \mathrm{ON} 130^{-4}\end{array}$
$\because N 130^{2}$
$2 N 130^{\circ}$
？N 1300°
ON1306
ON130
－N 1307
2N 1306
2 N 1308
2 N 1309
2NT50
－ 251613
令感

24171
$20188!$
2015

2N 2143
2 N 214 4
2.214^{μ}
$\square N 2160$
 NNㅇ․

 $\mathrm{N}^{2} \mathrm{~N}_{2} 20^{\circ}$
$\mathrm{S}_{2} 2308$
2

 N2． 239
$2 N .541$
20613 $2 N 2613$
$2 N 2614$
2
 2N2085

 2N271．3 $2 \mathrm{~N}_{2} 8_{6 i}$
$2 \mathrm{~N}_{2} 9_{01}$ 2 N 2904
$2 \mathrm{~N}_{2904}$
2 $2 \mathrm{~N}_{2} 90^{4} \mathrm{~A}$
$2 \mathrm{~N} 20^{5}$
N 2N2905 2Nagos 42906.1
$\square \mathrm{~N}_{2} 2900^{\circ}$

 $2 N_{29}$
$-N_{2} 9296$
 ＂Orank Orank 2N3011
 ？N3054
2N305 $\because N_{3}$
$\mathrm{~N}_{3} 1_{3}$
$\mathrm{~S}_{3}$ ？N3133
2N3134 2N3134， 2N3134

 2N3390 | 2N3391 |
| :--- |
| －N |
| $2391-$ | ？${ }^{2} 339$. $2 N 3393$

$2 N 3394$ 2N3394
2N3404 2N3404
oN3403 －N3404

2N3405 2N3414
2N3415

28p

 7ip \mid BC17．

15p Baw7o

15 B BAW70
$22 \not 2 p$ BSM 19
120 B8X 19
210
B9X 20

45 NKT	NKT243
$\mathbf{4 7 p}$	
8210	NKT24

D．C．PANEL METERS

25y MR38 SERIEN－FACE SIZE $42 \times 42 \mathrm{~mm}$ ．ALL PRTCES FOR 1－9PIECES

${ }^{30 p}$	P15	50	100	200	400	600	800	1000	1200
200	14	10p	12 pp	150	16 p	1710	18p	20p	
20 p	3A	150			29.5		30 y		
${ }_{20 p}^{201}$	81	－		25 p	30 p	821p	35 p	50p	
$20 p$ 200	10.1	－ 5	521 p	87.18	$65 p$	7710	871 p	9718	21．25
2719	17.1		5710	6915	7710	80 p	971 p	11.20	21．571
27.	1 A and	is are	plesti	ic encaps	去tion．				
$\begin{aligned} & 90 p \\ & 75 p \end{aligned}$	DIODES 6 RECTIFIERS								
$62 \pm$	IN914	710		18940	3 p	BAX13	12ip	BYZI？	80 p
750	IN916	710		AA119	10p	BAX10	121 p	BYZ13	250
62.1	IN $400{ }^{-}$	2210		A Al09	100	BAY18	17 ip	OAS	1710
62.5	1N4148	71 p		AAZ13	10D	BAY31	710	0.49	100
62310	1N5145	28．371 ${ }^{\text {d }}$		AAZ15	$12 \pm$	BAY3	26p	OA10	2elp
47 p	［844	10 p		AAZ17	121p	BY 100	1790	$0 \mathrm{A47}$	75
3219	18113	15p		I3A100	15p	BY 103	2210	0470	710
321 D	Is 1：30	150		BA10？	221 p	BY12：	371 p	0.93	109
80 p	18121	1710		BALIO	3210	BY124	150	0.79	98
300	18130	1210		BAlly	$71 p$	BY106	15p	0 O81	715
26 p	18131	1210		BA141	3210	BY1：7	1710	O．A85	715
30 p	1813：	150		BA142	32 p	13 Y 164	5240	0.90	719
80 p	18920	$7 \frac{1}{2}$		BA144	1210	13 YX 10	28.5	OA01	770
871 p	1592：	715		13.4145	20 p	BYZ10	35p	OA95	719
821p	18923	$7 \frac{1}{3} \mathrm{P}$		BA1ă4	12！p	BYZ11	3810	OA： 200	10p

MAIFS TRANSFORMERS

3
$0.30 y$
0.300

Abstract

－

Post and packing 3iłp．
85.50

SOD NKT8021J 92tp TRLACS BRIDGERECTIFIERS 30 p
$\mathbf{8 2 ! p}$ NKT80216 9
37 p OC＂0

TTL LOGIC IC＇s

WE ARE NOW ABLE TO SUPPLY FROM STOCK LOWEST PRICE TTL＇S．BRAND NEW AND GUARANTEED．SEE FACING page．whole range of motorola， MULLARD AND RCA LINEARS STOCKED．

THYRISTORS

21 OCl39
21.37
22.17
2.171
$621 p$
$871 p$
871 p
$81.37)^{\circ \mathrm{OC} 203}$

421 T TIC47 $0.4 \mathrm{~A} 200 \mathrm{PlN} 55 \mathrm{p} \quad 971 \mathrm{p}$

25 watt $5^{\circ} \%$（u）to 270 ohme
；watt 5%（up to $8 \cdot 2 k \Omega$ only）， $10 p$ ．
io watt $\%$（up to $2.5 k$ only），
POTENTIOMETERS
Carbon：
Log．and Lilt．，less switeh，16p
Log．and Lint，less switch，18p．
Wire－wound Pots（3W）， 871 p ．
Twin Ganged Ateren Pots．Log．
Twin hanged Nteren lots．Log
and Lin．，40p．
PRESETS（CARBON）

THERMISTORS
$\begin{array}{lr}\text { R53（STC）} & 21.27! \\ \text { K1J1（Ik）} & 12 \ddagger \mathrm{p}\end{array}$

Mullard Thermistots alsa in stock． Please inquire．

CALLERS WELCOME

KV-132 $13^{\prime \prime}$ COLOUR TELEVISION

This amazing value 13 in UHF colour TV is now available from Lasky's. Designed with the new TRINITRON tube to give you superb colour reproduction, sharper focusing to be moved from room to room with ease and like all Sony products it has solid state circuitry for trouble free operation.
Finished in a handsome teak cabinet $20 \mathrm{in}: 13 \mathrm{in} \because \underset{ }{*} 16 \mathrm{in}$ Weight 391 lbs . A.c. mains 240 volts.
COMPLETE with free Parabolic aerial valued at 66.

EXCLUSIVE TM-1
 MODEL TM-I MINI-TESTER

tiny pocket mulcimeter providing "big", meter accuracy and performance. Precision movement caliorated to Beaucifully designed and made impact resistant black case-with white and metallic red/green figuring ACV O OCV: 0-10-50-250-1,000 at IK/OPV - AC/V: 0-10-50-250-1,000 at IK/OPV. ODC CURRENT: -IOdB to +22 dB . Complece with test leads, bactery and instructions LASKY'S PRICE £1'95

TM 5
 5K/ohms V Pocket
 Multimeter

Another new look pocket mula-meter from Laskys providing top quality fitted with excralarge 2 in square meter. Readability is superior on all low ranges, making this an excellent instrument for servicing transistorised equipment. Recessed click stop selection
Buff finish wirh erystal elear meter cover.

- DCV: 3-15-150-300-1,200
- ACV: 6-30-300-600 at 2.5 K - Decibels.--10dB to 16 dB .
- DC Current $0300 / 1 \mathrm{~A}, 0-300 \mathrm{~mA}$. Complete with test leads,

LASKY'S PRICE £2.95 POST 13p

bSR MCDONALD UNITS and PACKAGES
A. Chassis only. B, Complece with Lasky's plinth and
cover. C. Complete with Lasky's plinth, cover and AD76K cartridge. D. Comp wired on BSR plinth with
cover E. as D plus AD 76 K cartridge. Post for packages 50 p MODEL

MODEL	A	B	C	D	E
610	$£ 15.45$	$£ 18.75$	$£ 22.50$	$£ 24.50$	$\mathbf{£ 2 8 . 5 0}$
510	$£ 13.45$	$£ 16.95$	$£ 20.75$	$£ 22.00$	$£ 26.00$
310	$£ 9.95$	$£ 13.45$	$£ 17.25$	$£ 21.00$	$£ 23.50$
MP60	$£ 12.50$	$£ 15.75$	$£ 19.50$	$£ 21.50$	$£ 25.50$

GARRARD UNITS AND PACKAGES SL 55B

$$
\text { Liskris secke } £ 10.50
$$

POST 35p

DENSHI BOARD KITS

EXPERIMENTAL AND EDUCATIONAL ELECTRONIC CIRCUIT SYSTEMS

The DENSHI BOARD system enables the young experimenter and electronics hobbyist to produce a wide range of transister
circuits of increasing sophistica-tion-without soldering or the use of any tools at all! Basically the system comprises of a slotted
circuit board into which pluy-in components and bridge pieces are set to produce up to 30 different circuits. The components are
encapsulated in transparent encapsulaced
plastic blocks transparent
the appropriate circuit symbol and value. Thus enabling even the complete novice to visually grasp the fundamentals of circuitry
after only a few moments study. DENSHI BOARD KIT SR IA Comprises: Base board, tuner block, 4 resistors, choke coil for RF, 2 diodes, 3 capacitors, battery block, morse key, anrenna, lead, crystal earphone', various bridge and connecting
pieces. This kit permits the pieces. This kit permits the

DENSHI BOARD KITS come complete with an 80 page Manuals are available separate Mt 23 p. Post 3 p refundable if you LASKY'S £3.35 PRICE

DENSHI KIT SR 2A as SR IA with these additional parts: 2SB transistor for AF, 2 resistors, capacitor, erystal microphone, test probes, electrode. additional connecting pieces, 9 V battery. This kit permits the

LASKY'S PRICE £5.25

POST 13p

DIGITAL CLOCK SCOOP

- MADE ESPECJALLY FOR lasky's by famous MAKER
- mains operation
- 12 -HOUR ALARM
- auto " sLeep" switch
- hours. minutes and SECONDS READ-OFF
- FORWARD and backward time ADJUSTMENT
- SIENT OPERATION SYNCHRONOUS MOTOR

Exclusively from Lasky's for you to mount into any housing.
The clock measures $4 \frac{1}{4} \mathrm{~W} \times 1 \frac{3}{3} \mathrm{H} \times 3 \mathrm{BD}$ (overall from front of drum to back of switch). SPEC.: $210 / 240 \mathrm{~V}$ a.c. 50 Hz operation; switch rating $250 \mathrm{~V}, 3 \mathrm{~A}$. HUNDREDS OF APPLICATIONS. COMPLETE WITH KNOBS.
LASKY'S
PRICE
£6.95
POST 18p
SPECIAL QUOTATIONS FOR QUANTITIES

Tel: 01-723327
33 TOTTENAAM.CT.RD. LONOON, WIP gRB. Tel: 01-636 2605 Open all day. 9 a.m.- 6 p.m Mondav to Saturdav
tog FleEt street, IONDON, E.C.4.
Tel: 01 - 3535812
152/3 FLEET STREET, LONDON, E.C.4.
Tel: 01-353 2833 Open all day Thursocy. oariv ciosing 1 pm. Saturday
hIGH FIDELITY AUDIO CENTRE
42.45 TDTTENHAM CT, RD, LONDON. WIP 9RD. Jel: 01.5802573

Open allday. $9 \mathrm{~mm}-6 \mathrm{pm}$. Monday to Saturday

CHANGE OF COMMAND

War games played with miniature models and conducted on severely objective lines have for long been an essential part of military training. More recently war gaming has been taken by non-professionals and has grown into a popular hobby which its adherents claim is most exciting and mentally stimulating.

Today our professional militarists play a very scientific game. Advanced technical aids are employed to help create realism and to determine accurately the results achieved by every manoeuvre in the simulated battle. The electronic computer has replaced the human adjudicator of former times.
The non-professional devotees playing for fun and recreation are (so we gather) always looking for ways to raise the status of their pastime and to dispel any juvenile "playing with toy soldiers" image it may conjure up in the minds of the uninitiated. Now, thanks to electronics, it is possible to instal more realism into their game by use of a home-made computer.

However, recourse to electronics does not have to end there, we venture to suggest. Come to think of it, why should our amateur, spare-time strategists be satisfied with inanimate models (soldiers, tanks, warships, or what have you) that must be deployed by hand? Each piece in the game could well be a miniature automaton capable of inflicting punishment on the enemy while, being sensitive to missiles directed towards it, able to manoeuvre out of the line of fire.
But steady on, some dire consequences will arise from the unfettered use of electronics. Will our amateur battle commanders be prepared to sit quietly and impotently, merely watching while the automatons fight it out on the carpet or table top, unaided by human minds or hands?
Quite a problem. But not, in actual fact, confined to the world of make-believe and harmless pastimes. It is one the professional militarists will have to face shortly, for real. It is reported that in the United States a special Combat Development Command committed to the automation of modern warfare is already at work. The whole paraphernalia of science and technology is being pressed into service, towards this end. Every move of the enemy will be detected by light or heat radiation sensors, robots will replace front line troops. and the wealth of data derived from such sourses will be processed by computers. which will then advise the most effective tactics to employ.

The next logical step is to let the computers control and fire all weapons, and so dispense with any human intervention at all. A chilling prospect for the top brass, who will presumably be relegated to the role of computer data processers.

CONSTRUCTIONAL PROJECTS

WAR GAMES COMPUTER 624
VOLTAGE STABILISER 633
P.E. AURORA 638
SEISMOGRAPH 646
SPECIAL SERIES
RADIO ASTRONOMY

GENERAL FEATURES

NEWS AND COMMENT

EDITORIAL
SPACEWATCH 637
NEWS BRIEFS 653
ELECTRONORAMA 654
MARKET PLACE 656
BOOK REVIEWS 666
Our September issue will be published on
Friday, August 20

[^1]

It is said that deep in the heart of

 every Englishman is a sea-dog trying to get out. Whether this is true or not, many people will find the games to be described of great interest, affording as they do real insight into the problems of Naval strategy as well as some fun and excitement.WAR-GAMING as a hobby suffers under a severe handicap: either chance assumes too large an aspect (six-you're dead!) or else in the search for realism, rules become so complicated and tedious that all pleasure is lost. In either case, interest soon wanes. Again, most war-gamers are tied to the use of dice for their chance effects. War-gaming has been called "chess with a thousand pieces", but whereas there is no chance on the chessboard, there is on the battlefield.

Chance therefore must play some part at least, and it may be that as long as war-gamers continue to use dice they will be considered to be merely "playing soldiers". It follows that electronics-and particularly computerisation-has much to offer wargaming in accuracy, speed and a carefully controlled modicum of chance.

Constructors of Operation Seasearch will perhaps have noticed that the use of dice for chance effects in variations 5 and 6 can lead to some absurd situations-an unarmed supply ship sinking a cruiser, for example. When highly realistic effects are required, we must turn to computerisation since so many variables are involved.

NAVAL GUNNERY

The computer to be described has been designed as a naval gunnery computer, but it will be shown that by the use of card overlays it may be used
most effectively for any other form of gunnery and for any period; whether for Roman galleys, Napoleonic artillery, American Civil War, modern missiles or what-have-you.

The computer has been designed in stages so that it is usable at each stage, but of course each additional stage adds to the versatility and convenience. There is a built-in ability to handle ten targets. with provision for the external addition of others without number.
Since this external addition is very inexpensive and easily adaptable, whole fleets or armies may be involved. This opens up exciting possibilities, with any number of people taking part. Each could captain his own ship, for example, with admirals able to communicate only by "signal"-slips of paper handed to captains the move after they were written.

The setting-up of the computer requires only a few seconds and the result of a salvo is available immediately. in the complete version. The total cost is in the region of $£ 30$, but since it can be built in stages this can be spread over many months, play beginning almost immediately, or left at some suitable stage with limited operations.

EFFECT OF CHANCE

In a combat between any two contestants, whether war, chess, or other game, it is necessary to draw a distinction between striking strength and resistive strength (Fig. 1). A low resistive strength increases damage sustained, which in turn lowers resistive strength still further as well as affecting striking power. It is well known that soccer teams must keep a fine balance between attack and defence; too much emphasis on one or the other results in lost games. Similarly in war, H.M.S. Hood was sunk by Bismarck mainly because her power to resist in no way matched her power to strike.

Chance enters at every point. A few yards difference in the landing point of a shell may make all the difference between superficial damage and sinking; in much the same way a gunner's indigestion or personal problems can affect the outcome of a battle.

We might perhaps add that one of the horrors of modern war is that the element of chance is reduced to a mathematical certainty, but the reader is invited to speculate on Fig. 1, considering the effects of chance if two men are shooting at each other with smooth-bore pistols, bow and arrows, or machine guns.

DAMAGE SUSTAINED

Fig. 2 follows the course and effects of a naval salvo. The number of shells fired in a certain span of time depends on their calibre, the number of guns firing, and the skill of the crew. Not all of the shells fired will be hits. A list of factors determining the proportion of hits has been drawn up in the diagram. It is not definitive, but includes the major factors; readers may like to add their own.
Out of the much smaller number of hits, the amount and severity of damage sustained will vary enormously according to (again) the calibre of the shells, the range, the type of shell, the thickness of armour and chance. A lot of hits will cause fire to break out, which of course assumes a malignancy of its own (particularly in wooden ships) and must be brought under control if the fight is to be carried on.
voltage applied and this is adjusted in analogue form by the calibre and morale controls. Strictly speaking, morale and efficiency are two different things and many war-gamers carefully differentiate between them, but for the purpose of this computer they are considered synonymous.

The probability multivibrator runs much slower and therefore in conjunction with a gate would reduce the number of pulses passing to a strict proportion of their original.

However, to make the outcome unpredictable there is a third and even more slow-running multivibrator termed chance, in which not only is the repetition rate governed by the SEA control, but the mark/space ratio is altered by the visibility control.

Now the gate will pass pulses forward only when pulses are present from all three multivibrators. It will be apparent that adjustment of any of the seven controls will affect the pattern of outgoing pulses. Details will be given of a burst fire button circuit which can be used in place of the dial contacts.

The pulses are normally grounded through the pulse contacts at the back of a telephone dial, hence nothing appears beyond this point. Dialling a "I" will allow a few pulses to pass forward; dialling a " 2 " will pass t wice this number, and so on.

Fig. I. War game strategy
Many war-gamers use multiple tables and charts, with much dice-throwing, to get realistic results along the lines of the above. The writer has played such games and very good they are too, but when it takes nearly half an hour to work out the result, interest soon wanes.

ANALOGUE COMPUTER

The outline of Fig. 2 is roughly followed in the design of the computer. This is an analogue computer of a specialised type designed specifically for use in mock naval battle. One could if preferred relabel the controls to suit other kinds of battle.

Fig. 3 shows the full block diagram of the system parameters, although it is sub-divided so that a smaller system can be built.
Individual shells are represented by pulses generated in the "rate of fire" multivibrator. The rate at which they are generated is governed by the

Fig. 2. Parameters affecting the war game strotegy
Hence the dial is used to feed the computer with the number of guns firing and also functions as a start switch since nothing can go forward until the dial is operated.
There is a further chance element here since at the heavier calibre settings the rate of fire multivibrator runs at a slower frequency than the dial. In other words, the dial contacts may open at an instant when no pulse is present to pass. This happens to other settings too, but in the case of heavy calibres the pulse may arrive between openings of the dial contacts.

Of course, as in any other chance element, the more samplings that are taken the nearer does the overall result approach to a mathematical proportion.

HIT ATTENUATION

All pulses passing the dial are considered potential hits, but as yet all are of equal amplitude; light

Fig. 3. Block diagram of the complete war game computer with alternative operational modes for smaller systems. The equipment is built up in stages, each stage being a workable progression from the previous

The controls are temporarily fitted for marking stop positions, then removed for lettering
calibre as well as heavy. Now they are attenuated according to their ability to inflict quantitive damage. To this end they pass through voltage dividers on the calibre, range, shell type and armour controls and then passed through an amplifier which also functions as a buffer.

The output is applied to a storage capacitor. When the energy of the incoming pulses has raised the charge on the capacitor to a certain preset level, Schmitt Trigger 1 fires, passing on one pulse of fixed duration and amplitude, which we might term a unit of damage.

In this way, many low amplitude pulses are required to charge the capacitor and produce a damage pulse, but only one high amplitude pulse produces the same damage. Damage pulses may occur only once per salvo, immediately upon completion of dialling.

MAGAZINE SECTION

The damage pulses are applied equally to two buffers. Buffer 2 presents pulses to another storage capacitor, which fires Trigger 2. There is a separate capacitor for each target ship, of different size to suit the size of the target; a rotary switch SII switches the appropriate target capacitor into the circuit. The capacitor will of course retain its charge from the time a certain target is under fire to the next and therefore functions as a cumulative damage counter.

When the charge on the capacitor reaches a certain preset level, Schmitt Trigger 2 fires, the outgoing pulse this time switching over Bistable 2. In its second stable state the bistable primes Lamp Driver

2, illuminating a lamp indicating that the magazine has blown up. That particular target ship is of course out of the battle.

OTHER DAMAGE

A more interesting game results when ships receive damage bit by bit, affecting their fighting capacity. The output from Buffer I switches over Bistable I. which in turn primes Lamp Driver 1.

A single lamp could be taken from this, indicating a unit of damage, but where is the damage? One means of indicating the damage is shown in Fig. 3. Every time the dial is used, a motordriven rotary switch is made to move round one position of twelve. The switch outputs are used singly and in pairs to indicate eight types of damage - conning tower, hull, rudder, engine room, aircraft or torpedo tubes, sub-armament, forward turret and rear turret.

FIRE

Another attempt to simulate some realism and to introduce some very real tension into the game is to incorporate a fire. One third of the damage pulses are routed by the Ledex motorised rotary switch to trigger a "fire" bistable, Bistable 3. This lights the "fire" lamp, applies a trickle charge to the storage capacitor in the magazine section and also a third storage capacitor in front of Trigger 3.

When Schmitt Trigger 3 fires, the output switches the bistable off again. Thus in play, when the "fire" lamp lights, the player can do nothing but watch and wait.

If he is lucky, the lamp will go out in ten seconds, but if he is unlucky the magazine lamp will light. Even though the fire lamp will subsequently go out, the magazine lamp will stay on and he is out of the game. This method of using a storage capacitor in conjunction with a bistable and Schmitt trigger is much better than a monostable for long time delays.

Tha: concludes the basic description of the computer functions; more detailed circuits and construclion notes follow in seven stages, followed by the final hints of its use in operation.

CASE CONSTRUCTION

The layout of the computer is in no way critical, so the constructor may lay out his controls as he pleases. He should really decide early on how much of the equipment he is likely to build based on the information given in Fig. 3.

Construction of the case was started with $\frac{3}{3}$ in thick sheet plywood cut to the dimensions given in Fig. 4. Four rubber feet were screwed to the underside and then the matins transformer TI bolted on

MATERIALS FOR CASE
Tinned iron sheet (tinplate) or aluminium Veneered chipboard side cheeks Hardboard, plywood (to choice)
Fig. 4. Construction details of the case and baseboard layout
top. A length of component board was bolted along side to carry the rectifying diodes and smoothing capacitors (Figs. 4 and 7).

The centre tap of TI secondary was ignored, giving a 50 V output. The rectifying diodes can be any type capable of handling 100 V at 3 amp although those shown will handle much more.

The shaped top of the case (Fig. 4) was cut out of heavy-gauge tinplate (which is cheaper than aluminium) and all cutting and drilling completed while the sheet was still flat. Bending was done in a vice a small-radius curve being left on all corners.
Notice that the bend across the centre is forward, the others all being back. The $\frac{1}{2}$ in tabs on each side are for soldering or screwing the side pieces on. A gas-torch was used for soldering tinplate since such large sheets of metal conduct away nearly all the heat from a soldering gun.
Many constructors will want to paint the face or use adhesive plastics sheet, but it is wise to make sure all drilling and bending is carried out first. The surface must be absolutely clean and free from grease or finger marks. Excess material at the edges was wrapped round and glued underneath.

The shaped and covered top was then checked against the baseboard for a snug fit and was secured in place by wood screws along the front and at each side. If one. screw at each side is left in position (marked " x " on Fig, 4) the top may be pivoted on them, allowing easy access to the panels and underside without disturbing the wiring.

The back of the computer is a piece of perforated hardboard fitting inside the metal top. It is screwed to the edge of the base and to a strip of wood glued and screwed $\frac{1}{4}$ in inside the top edge.

LETTERING

With the cover removed from the base, all lamps and controls are temporarily fitted and the positions of all stops marked. Controls are then removed and lettering and spots applied with rub-on Letraset (sae photograph).

Note that 12 pointer-type knobs are required with escutcheon plates to match. On the prototype, some escutcheons have numbers 0 to 10 on them, plus one blank space, so they are admirably suited for 12-way switches. The lettering is given a spray of clear lacquer, and the escutcheons replaced.

Lampholders are also fixed at this stage, if required, although they are not wired up until much later. Many "surplus supply" shops will supply an

Fig. 5. Panel bridge for mounting the various stage panels

Fig. 6. Circuit diagram of the power supply (stage one)

COMPONENTS . . .

STAGE ONE (Power Supply Fig. 7)
Resistor

- RI $25 \Omega 5 \mathrm{~W}$ wirewound

Capacitors
CI $250 \mu \mathrm{~F}$ elect. 50 V
C2 $2,000 \mu \mathrm{~F}$ elect. 50 V
Transformer
TI Tapped mains primary $0-250$; secondary
Diodes
DI to D4 Rectifier diodes SX75IR (4 off) or 100 V 3A type

Switch
SI Double pole on/off toggle or may be coupled with VRI

Miscellaneous

FSI Cartridge fuse 2 amp in mains plug
LPI Mains neon indicator with ballast resistor Rubber grommets, component tag board

Fig. 7. Wiring of the diodes and capacitors. RIa, RIb, RIc are decoupling resistors $330 \Omega 3 \mathrm{~W}$ to supply Boards A, B, C, and D.

Fig. 8. Analogue parameter controls (stage one)
old telephone dial for about 75 pence or less; after careful cleaning, light oiling and adjusting, it is secured in place with Araldite.

FIRST-STAGE WIRING

First-stage wiring presents no problems. VRI has an integral mains double pole on/off switch SI, while the associated mains neon LPI is mounted close by. The incoming three-core mains lead is brought through a rubber grommet and both supply leads soldered to the switch.

Keep the leads from SI to TI long enough for the top to open easily. Watch the polarity of the rectifying diodes DI to D4 very carefully (Fig. 7). Good

COMPONENTS . . .

STAGE ONE (Analogue Controls Fig. 8) Resistors					
R3	$10 \mathrm{k} \Omega$	R10	$100 \mathrm{k} \Omega$	R17	100k Ω
R4	$22 \mathrm{k} \Omega$	RII	$220 \mathrm{k} \Omega$	R18	$150 \mathrm{k} \Omega$
	$47 \mathrm{k} \Omega$	R12	10k Ω	R19	220k Ω
	100k Ω	R13	22k Ω	R20	$330 \mathrm{k} \Omega$
	220k Ω	R14	$33 \mathrm{k} \Omega$	R21	$470 \mathrm{k} \Omega$
	1.5MS	R15	$47 \mathrm{k} \Omega$	R22	510k Ω
All	- 10%, $\frac{1}{4}$	carbon			
Potentiometers					
VRI $500 \mathrm{k} \Omega$ (may have double-pole on/off switch SI)					
VR2 10k Ω (ll					
VR3 25k Ω All linear carbon types					
VR4 100 k S					
VR5 $500 \mathrm{k} \Omega$					
Switches					
S2 Double-pole, 6-way wafer switch					
53 Single-pole, 12-way (only 3 ways used)					
S4 Single-pole, 12-way wafer switch					

smoothing by Cl and C 2 is required otherwise the Schmitt Triggers may fire when not wanted. Soldering tags screwed to the base board and metal panel provide convenient take-off points for earth connections.

Wire the controls from Fig. 8, taking off four flying leads of flexible wire, (a), (b), (c) and (d). Resistors to earth such as R2 may be soldered to the tinplate or chassis tags at any convenient spotthere are no problems with earth loops such as occur with audio circuits. One length of flexible wire connects the panel to the positive side of the power pack.

USING THE FIRST STAGE

For a very small outlay the constructor has an analogue computer giving 10^{-7} variations $10,000,000$. If we proceeded no further, this would be worth having. Directions for the full game will be given later, but for the time being we can use what we have built so far in the following way.

Ignore output (b); take output (a) through a 1 megohm resistor and connect it to outputs (c) and (d). The resulting voltage (indicated on a suitable meter) will vary according to the setting of the controls, all resistors acting in a series-parallel divider configuration in a complex manner. The voltage will also depend to a certain extent upon the impedance of the meter used, varying from 48 volts to about 15 volts. This voltage reading is used as the starting point for "damage" points.

For the chance element, one can use a dice, multiply by ten and add to the voltage reading. A points value is accorded to each ship at the commencement of the game and a running total of damage points kept. When damage reaches the awarded value, the ship is sunk.

Many interesting games can be played by varying the chance element (multiplying the dice throw by 5 , or squaring) or varying the points value. As a starting point, try 250 for a destroyer and 2,000 for a battleship.
Next month: Second and third stages

The answer to the Starter question is obvious-the ubiquitous HOME RADIO COMPONENTS CATALOGUE. You all got that right! And the answer to the Bonus question is-the same! May we explain "this most ingenious paradox?" The price is now 50p, but with each catalogue we now include 10 vouchers each worth $5 p$ when used as directed. This means that if you spend a quite modest sum in ordering components from us over a period the catalogue will have cost you nothing-bar 20p for post and packing.
So then-for today's most useful electronics catalogue, 50 p if you call and collect, or 70 p if you send the coupon with a cheque or Postal Order. Join the
winning team-act now!

THIS month we finish the circuit description and give construction and application details of the Voltage Stabiliser.

RESISTOR MATCHING

Several ways of matching the padded 11 kilohm resistors with the 10 kilohm variable control will no doubt suggest themselves to the constructor. Here are two possible ways. A simple Wheatstone bridge with two, equal in value, 1 per cent resistors for the ratio arms may be rigged up. The 10 kilohm wirewound control is used as the "known" resistor and the 11 kilohm fixed resistors are connected, in turn, as the "unknown" resistor. The 11 kilohm resistors are then shunted as required until a balance (zero current) is obtained on the meter. See Fig. 3.

Alternatively, when the control unit has been constructed and is working, the 10 kilohm wire-wound control only can be inserted with its full resistance in circuit. The output of the unit is then set to read 2.5 volts by adjustment of the preset control, VRI. (An Avometer or other reliable voltmeter should be used for measuring the output voltage from the unit.)
The 11 kilohm resistors can then be inserted in the circuit, in turn and in place of the 10 kilohm wire-wound control, and shunted until the same

Fig. 3. Wheatstone bridge for resistor matching
2.5 volts output is obtained. Using the small $\frac{1}{x}$ watt resistors allows a neat arrangement of the 10 kilohm resistors around the 12 way switch (just visible in the bottom left-hand corner of the photograph of the internal view of the unit). To those constructors who are hesitant about this method of obtaining accurate 10 kilohm resistors, a word of reassurance; the author did not have to use more than two padding resistors per 11 kilohm resistor and in the majority of cases used only one.

CURRENT RANGES

For full current limiting the voltage developed across the selected value of TR9's emitter resistor is nominally one volt giving a value for R_{c} of $1 / /_{1}$. depending on the value of I_{1} required. For current limiting ranges of $10,25,50,100$ and 250 mA the required values of resistance are $100,40,20,10$ and 4 ohms respectively. If the precise value of the limiting current is not important the 40 and 4 ohm resistors can be replaced by the standard values of 39 and 3.9 ohms. One section of a 4 pole, 5 way rotary switch (S3c; only three poles are needed) was used to switch in the five values of resistance. The other two sections were used to switch in a shunt resistor (R33) across the milliammeter to give an additional range of 0 to 250 mA for the three upper current limiting ranges.
The section S3b may appear to be redundant, but omitting it means that heavy currents will flow through the contacts of section S3a. As the contacts of S3a are in series with the shunt resistor, erroneous and erratic readings can be expected on the meter due to the relatively large value of resistance of the contacts compared with the shunt. (This, indeed, was the author's experience). Including the section S3b puts the contacts of S3a effectively in series with the meter, which has a resistance of 9 times the shunt and draws one ninth of the current flowing through the shunt, thus greatly reducing the effect of the contact resistance.
For the 4 pole, 5 way switch, the author was lucky enough to possess a Yaxley type wafer with two 1 pole, 5 way sections on either side. The constructor's best bet, if somewhat of an expensive solution,

Fig. 4. Veroboard layout and wiring

Note: It is regretted that the wrong transistor base connections were published last month; this is corrected above.

Also under Specification, the last line of Stabilised Voltage Output should read " 2 and 35 V in excess ..."

In the second paragraph of the introduction 85 volts should read " 65 volts"

Fig. 5. Internal wiring of the stabiliser

Fig. 6. Front panel drilling details
is to construct a "Makaswitch" assembly using two 2 pole, 5 way wafers mounted close together, without using spacers, in order to conserve space.

As stated, the value of R_{s} the meter shunt resistor) will be one ninth of the meter resistance. Where the meter resistance is known the value of R_{S} may be easily made up using a coil of 22 s.w.g. Eureka resistance wire. If the meter resistance is not known the best way to determine it is to measure the voltage dropped across the -meter, when it is indicating full scale deflection, by means of a suitable voltmeter. (The sensitivity of the voltmeter, in terms of ohms/volt is unimportant). For most meters, other than the popular Japanese types, the voltage dropped will be about 100 mV giving a meter resistance of about 4 ohms. A shunt is then required of about 0.44 ohms. This can be made from about 14.5 inches of 22 s.w.g. Eureka resistance wire ($2.75 \mathrm{ft} / \mathrm{ohm}$ for 22 s.w.g. Eureka resistance wire).

MAIN CONSTRUCTION

Using the type of controls and meter described, the author was able to fit all the components of the unit, including batteries, into a die-cast box of size, ${ }_{5}^{6} \frac{3}{2} \mathrm{in} \times 4 \frac{3}{3} \mathrm{in} \times 2 \frac{1}{8} \mathrm{in}$. The two diagrams, Figs. 4 and 5 , show Veroboard layout and internal wiring of the completed unit.

It is possible to mount all the electronics of the unit, except of course the controls, on a piece of Veroboard measuring $5 \frac{1}{4}$ in by 2 in .

Details of the positioning and size of the holes drilled in the front panel are shown in Fig. 6. The mounting position of the Veroboard layout can be clearly seen in the photograph of the internal view. The series regulator transistor, TR9, can be mounted in any convenient position. In the photograph it can be seen at the top of the unit near MI. The particular transistor specified for TR9 is the B5041, which is on a X53a base.

The mounting of the batteries on the back panel of the box is left to the ingenuity of the constructor. In the prototype a special bracket was manufactured from 16 s.w.g. aluminium.

USING THE STABILISER

The stabiliser is shown in Fig. 7 being used to provide a stable output voltage. When operating in this manner the difference between the input and output voltages of the unit must not be allowed to exceed 55 volts, which is the maximum $V_{c e}$ rating of the series regulator transistor. The current meter

Fig. 7. The voltage stabiliser being used to provide a stable output voltage

Fig. 8. The stabiliser being used to provide a constant current
is connected in the collector line of the series regulator transistor and hence gives an indication of the current being drawn from the external supply. The current flowing through the load applied to the output terminals will be equal to the meter reading less the sensing current, I_{v}, which is $250 \mu \mathrm{~A}$.

The unit being used to provide a constant current is shown in Fig. 8. As the output voltage of the unit is completely insensitive to changes in voltage from the external supply (providing that the external supply volts do not drop below about 2 volts in excess of the output voltage setting), the current drawn from the supply is independent of its voltage.

The precise value of the current drawn from the external supply is equal to the output voltage setting of the unit divided by the value of the load resistor, plus the sensing current which equals $250 \mu \mathrm{~A}$. A range of constant currents from $250 \mu \mathrm{~A}$ to 250 mA is thus possible. The current drawn from the external supply will fall below its constant value when the voltage dropped across the external resistor is equal to or greater than the difference between the external supply volts and the voltage output setting of the unit, less about 2 volts. As for the stabilised voltage mode of operation, the difference between the input and output voltages of the unit must never exceed 55 volts.

NEWS BRIEFS

Tape Competition

Young tape recordists are invited to enter the Animal Sounds recording competition for under-18's organised by the 3 M Company, manufacturer of Scotch magnetic tape. Entry is free. and there are two classes: British birds in song: and Animals (including domestic pets).

For the three best recordings in the birds section a 472-page guide to the identification of all the birds commonly seen in Britain is the prize.

For the three best recordings in the animal section a 428-page Living World of Animals will be awarded.

The recording judged best overall will merit a $£ 30$ portable cassette recorder, complete with microphone. carrying case and supply of Scotch low-noise cassettes, and there are certificates for the winning entrants' schools.
Entry forms are being distributed to some 20,000 schools, or can be obtained direct from Magnetic Products Marketing. 3M Comany Ltd., 3M House, Wigmore Street, London, WIA IET.

Last date for receipt of entries is October 31, 1971.

PO Copying Service

MEMBERS of the public needing a quick copy of imporiant documents can now use coin-operated (5p) photocopying machines in 20 head and branch post offices. The Post Office has installed the machines for an extended trial following an initial trial at five offices during the past 18 months.

The machines chosen are simple to operate and make copies in A4 size (8 tin $\times 11 \frac{3}{3}$ in).

The 20 offices involved are the head offices at Harrow, Belfast, Coleraine, Chester. Plymouth, Swindon, Dundee, Portsmouth. Hastings, Bury St Edmunds, Worcester, Black pool, Sunderland (probable). Leeds, Coventry, Bolton and Cambridge, and branch offices at Great Portland Street, London, Swansea (Kingsway) and Edinburgh (Frederick Street).

If the extended trial is successful, the Post Office plans to install photocopiers on a much wider scale.

Heated Diagnosis

Doctors at Cape Town's Groote Schuur hospital are to use infra-red techniques in diagnosing breast cancer, thrombosis and other ailments following the purchase of a "Thermoscan" thermal imaging system from EMI.
With this electronic equipment, the first British system of its type, the famous South African hospital will be able to assess or investigate quickly disorders which disturb the body's normal heat distribution, by obtaining a heat "picture" of a suspected area of infection.

The thermal imaging equipment comprises a mobile infra-red scanner unit (similar in appearance to a small television studio camera) and a monitor, incorporating a cathode ray tube. The system operates by scanning the distribution of heat over the area of the body being studied and is sensitive enough to detect differences in temperatures as small as 0.2 degrees Centigrade.
The scanner can be operated remotely, with the monitor locaied up to 30 metres away from it. This facility enables a patient to be separated completely from the clinician, allowing free discussion of the observed symptoms.

The Thermoscan systems are currently being evaluated by Britain's Department of Health and Social Security at selected hospitals where they are aiding diagnosis of a wide variety of conditions which are difficult or impracticable to study by other means.

Socket Guide

N RECENT years a good deal of confusion has arisen over the use of connectors for public address equipment. The German DIN connectors are suitable for permanent installations, but where equipment is portable or is available for hire, a more robust connector is needed.

To resolve these problem; the Association of Public Address Engineers has published a technical information sheet which recommends that XLR connectors are used for all professional public address applications. The Information Sheet gives details of the correct use of XLR connectors for microphones, loudspeakers and auxiliary circuits.

The Information Sheet, reference T.I.S. 2 is available free to members of the A.P.A.E. or price 5 p to nonmembers on application to the Secretary, 394 Northolt Road, South Harrow, Middlesex HA2 XEY.

Luxury Viewing

Wguests even raising their heads from the pillows, guests at the new Capital Hotel in Knightsbridge can select from nine channels of sound and vision from Top Rank designed remote control panels fitted in the bed headboard.
The h.f. distributor system which makes this remote control possible carries television signals in monochrome and colour. The television sets are bracketed so they can be viewed either from the bed or from the easy chairs.

Green Diodes

THE Electronic \& Display Equipment Division of Ferranti Lid. has successfully developed the world's first gallium phosphide monolithic green light emitting array. Perfected at the Gem Mill, Chadderton laboratories of the Division, the array is based on a unique masking and diffusion process for use on gallium phosphide to produce high output, low consumption light emitting diodes.

The gallium phosphide is enveloped by a dielectric layer, so protecting it and ensuring that it attains an exceptionally long life to an extent previously obtained only from hermetically-sealed devices.

Vacation School on Circuit Theory

The Moscow Institute of Medical Instrument-making has designed an ultrasonic apparatus for the diagnosis of cerebral diseases. It is claimed that scientists regard it as quite promising for neurosurgery and neuropathology.

The instrument makes it possible to examine the patient quickly and painlessly. By touching alternatively various parts of the cranium with a sensor, the physician completely "sounds" the cranium.

Clinical tests have shown its high accuracy in diag. nostics. Experts note that the new way is also most reliable in control of the results of intra-cranial operative intervention. Examinations are harmless and can be repeated many times.
The apparatus is now in batch production.

BY FRANK W. HYDE

MARINER INQUEST

The cost of the loss of Mariner 8 cannot easily be calculated in totality. The spacecraft and its launch vehicle was a $£ 50$ million project but the loss of data cannot be measured in terms of money.

Sadly, the cause of the disaster was a part costing a few cents and microscopic in size. It was part of the autopilot system of the vehicle, and the part of the integrated circuit which failed was a diode about the diameter of a human hair.

The investigating team simulated the telemetry which was returned by the Centaur vehicle to mission control up to the time of failure. It was possible from this data to determine that the engine, which should have had a swivel range of 3 degrees to enable it to be accurately steered, could only cover a range of $1 \cdot 3$ degrees.

The amplifier which was a part of the system had an output which was between 20 and 30 per cent of what it should have been. This was due to a voltage overload that the diode should have controlled.

Many other tests were carried out to simulate possible faults but only this one produced the conditions radioed back at the time of the failure.

Though there is no way to tell now why the diode malfunctioned. the investigating team have devised tests to make sure that the same thing will not happen with Mariner 9). Certain other modifications were made which will help to minimise the loss of the Mariner 8 experiments. Some of thesc were added to Mariner 9 before it was launched.

The launch could have been delayed until the middle of June, but any later launch date would have compromised the mission, as a favourable period would not arise again for 25 months. This means that the next launch would have to
be delayed until 1973 when the Earth and Mars are in correct alignment. However, the amount of power required then would be greater than the capacity of the present Centaur vehicle.

The arrival time of Mariner 9 at its destination will not now be November 14 but more likely November 24.

SOVIET THOUGHTS ON PULSARS

A Russian Academician, Vitaly Ginzburg, has advanced a new hypothesis on the subject of Pulsars. It is generally accepted that the Pulsars are in fact Neutron Stars and are known to be stars which are in a certain stage of cooling.

Ginzburg is suggesting that his mathematical model fits the known facts about these bodies. He believes they are in a state of compression so great that they are reduced to a thousandth of their original size.

Their speed of rotation, he say, can be measured to a small fraction of a second and that the density of the material is of the order of a thousand million tons for a cubic centimetre, if measured on the earth. The radiation pulses from these bodies, which have been observed by radio astronomers, are the result of the fact that their magnetic and rotational axis do not coincide.

It is also suggested that the temperature of these pulsars is of the order of hundreds of millions of degrees, and that under a plasmic liquid or gaseous outer layer there is a hard crust about one kilometre thick. Inside there would be a superfluid and superconductive mixtures of liquids consisting of elementary particles. The matter is being investigated at the Pulkovo Observatory near Leningrad.

LUNOKHOD I

The Lunokhod I moon vehicle continues to pursue its programme of exploration of the Moon's surface. It is in its ninth lunar day of operation since it was landed on November 17, 1970. A film of its work compiled from the television pictures sent back to earth has been showing in Russian cinemas to enthusiastic audiences.
The vehicle has successfully overcome many difficulties. For example, it encountered a crater which was full of fair sized boulders and was able to negotiate the rugged terrain. It did have one serious difficulty where the side of a crater proved to have a very loose surface and the telemetry showed a slip of up to 90 per cent of the wheels. Such was the skill of the earth based controllers that the vehicle was got safely out of the crater.

Studies of the chemical composi-
tion of the surface have been made and continuous mapping is being carried out.

MORE SPIN-OFF BENEFITS

There are a number of medical benefits available from space activities, sometimes relating directly to space medicine, and sometimes to other techniques, which have been turned to medical use on earth.

A special version of the space helmet has been used to measure the oxygen consumption of children while they were undergoing special hard exercise in hospitals. The multilayered principles of the space suit has been adapted and used as a pulsating device to assist in respiration for severely paralysed patients. It may well be possible that this system can be used to replace the iron lung. The advantages of giving possible mobility to such unfortunate sufferers may well open a new avenue of hope for them.

BODY MONITOR

A personal health monitoring device has been adapted from the space techniques. This is in the form of a battery operated device about the size of a cigarette box which can be strapped to the patient and will then transmit the temperature, blood pressure, respiration. pulse and other vital physiological information.
Seated at a console a nurse will be able to monitor up to 60 or so patients in an intensive care unit with consequent increase in moment to moment observation and a great increase of efficiency in dealing with emergencies.

Another system which was used to improve the detail of pictures returned to Earth from Mars has been applied to X-ray pictures and has resulted in great improvement in these by enhancing detail.

An early study of lunar mobility involved the development of a sixlegged walking device for astronauts. This has now been applied to handicapped patients enabling them to negotiate stairs, curbs and avoid obstacles where the ordinary wheelchair could not cope.

LUNAR EXCHANGE

Samples of lunar rock brought back to earth by Luma-16 and Apollo-ll and 12 were exchanged by Soviet and American scientists on June 10.

The exchange took place under an agreement between the U.S.S.R. Academy of Sciences and the United States National Aeronautics and Space Administration. The scientists expressed the hope that the exchange of lunar material would enable them to make, in the laboratories of their respective countries, a comparative analysis of rock samples brought from different areas of the lunar surface.

PART 5 PROGRAMMING

CONCLUDING ARTICLE

THE "P.E. Aurora" system has the great advantage that light control is effected by low voltage levels from fairly high impedance sources. This fact enables a wide range of sources for control. This part explores some possibilities which have been tried successfully by the author, and which might provide some hints for further experimentation.

No doubt apart from domestic use the nex.t most likely application for "P.E. Aurora" is in the field of discotheques and clubs. As already shown, sound control of lights can be achieved successfully, but sometimes fast strobing effects may be required. Xenon flash tubes are normally used for this, but they cannot be left running for long periods of time. They do not have a very great power for long range illumination.

STROBE EFFECT

While a "freeze" strobe cannot be produced from "P.E. Aurora", a very good simulated strobe can be obtained with the advantage that up to eight channels can be independently operated simultaneously with different colours and at different speeds. The basis for this effect is a simple free running multivibrator. The circuit of one is shown in Fig. 1. It is suggested that instead of having eight circuits (for a full system) only four are needed; complementary outputs of the unit being applied to adjacent channels.

Some spectacular effects can thus be obtained if complementary colours are alternately strobed against each other, for example, red with green, or blue with yellow. It is best for the mark/space ratio of the strobe to be approximately 1 to 1 , therefore if variable speed is required a ganged potentiometer (VR1 and VR2) should be used so that both sides of the multivibrator are identically controlled. ,

Note that in this circuit pnp transistors are used. The common emitter rail (positive) should be commoned to the +15 V rail of the "P.E. Aurora" con-troller-the 0 V rail should not be commoned with the $0 V$ rail of the controller if an external power supply is used. If the internal supply of this controller is to be used, apply decoupling in the 0V line as explained in part 3.

ВУ M.J.HUCHEB M.A.

SEQUENTIAL STROBE

Some of the lighting arrangements described last month can be shown to best advantage if the lights appear to move. This can be done by switching lights on and off in a given sequence. For example a set of four lamps A, B, C, and D can be made to look as if they are moving by first of all lighting lamp A. it is then extinguished and B^{\prime} lit; B is extinguished and C lit and so on. As D is extinguished, A lights for the second time.

A sense of movement can be obtained with three lamps but the effect is better with four, especially if the effect is to be repeated down a long string of lamps paralleled together in four groups.

This effect can be produced very simply by using four of the control channels (if more power is required the remaining four channel controls can be paralleled in by strapping the input signals across pairs of channels). Fig. 2 shows one way to produce a sequential step from one lamp channel to the next It utilises some simple logic controlled by a clock which is used to set the speed of switching.

Integrated circuits are used and the prototype system was designed around DTL. There is no reason why other logic systems should not be used, but TTL could be difficult to use because of the need for short inter-connections.

POSITIVE LOGIC

Assuming positive logic throughout; the most positive voltage $(+15 \mathrm{~V}$ level of the controller) is " 1 ", therefore a logic " 0 " (provided the difference in level between it and a " 1 " is greater than IV) applied to a control input will turn that lamp on.

Provided we do not excessively load the outputs of gates or flip flops, when they have an output of level "1", the actual output voltage is very close to $+V_{\text {co. }}$ Thus if the logic system has its
 troller, a logic "l" will turn a lamp off and a 0 will do the converse.

Referring back to Fig. 2, the free running multivibrator can be adjusted by VRI to oscillate from

Fig. I. A simple multivibrator as this can produce some interesting strobe effects especially if the two collector outputs are fed to adjacent channels, thus, for example, strobing red and green in complementary mode. Note that pnp transistors are used; this ensures that an active "pull up" to $+15 v$ ' will ensure that lamps can be totaly extinguished

Fig. 2. A simple scale of four counter with output gating which produces sequential " O " level pulses on four separate output lines. These can be fed to four separate channels thus producing a sequential strobe. The elements shown are a discrete component clock followed by DTL elements. Note that the $+5 V$ above is the positive rail supplying the integrated circuits and is used as the common line when connecting the output gates to the controller. It should be connected to the +15 V rail of "P.E. Aurora' system

Fig. 4. This shows a much more ambitious system of sequentially switching the lamps. Designed to make full advantage of the matrix display, this unit comprises two multiple twist ring counters whose twists are controlled by a programme sequencer. Discrete DTL units were used in the prototype. It is possible to use MSI circuits to simplify some of the system and smaller systems based on this could be devised. The block labelled Y ring counter is identical to the X ring counter and uses type 945 flip-flops and 946 gates. They are fed in the same way from the S and T series of flip-flops in the programme sequencer
between several pulses per second to approximately one pulse per two seconds. The output waveform of this is speeded up by using a single Nand gate as an inverter. This is then fed to a pair of cascaded binaries which are straightforward clocked RS flipflops with the outputs cross-coupled back to the inputs. If a JK flip-flop is used no cross coupling is required.

The four discrete output conditions of the two binaries are decoded by the four gates. The decoding sequence is such that there is an output of " 0 " from only one gate at any instant and this " 0 " steps from one gate to the next in the sequence $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, back to A and so on. These outputs should be connected to respective inputs of the controller. Again note that the 0 V rail of the logic system should not be commoned to the $0 V$ line of the controller.

SEQUENTIAL MATRIX SWITCHING

Use can be made of logic to select and switch any given lamp node or nodes within the Aurora matrix (see Part 1). One could envisage, for example, a lamp being lit at the top left-hand corner of a matrix and moving along a horizontal row of four. then back to the beginning of the next line down, across it and down to the next and so on (rather like a television beam scan producing a raster).

Some of the lighting arrangements shown last month are designed around 16 controlled nodes in
a matrix. If the 16 nodes were spacially set in a circle one could use logic to select any one of the 16 lamps in turn and turn it on. With a little more thought one could make this step from one to the next all the way round the circle (this in itself could make an interesting attraction at fetes).

Fig. 3 shows a fairly simple way in which this fixed programme can be obtained. It uses two circuits identical to that shown in Fig. 2. Each time one circuit completes a cycle it steps the other circuit on one position, hence 16 separate lamps can be individually switched on in sequence at any speed selected by the clock. A gate could be inserted between the clock and the first binary so that the clock can be started and stopped after a random period of time by some other circuitry.

RING COUNTER

The system just described produces an interesting sequence, but cannot accommodate any variation from the simple step-by-step sequence. A much more ambitious system which includes a variable programme is shown in Fig. 4. The circuit as shown uses electronic programme change, but if the constructor so desired he could simplify the system, and cut down on the number of integrated circuits used by using toggle switches to select any particular programme manually.

In this case the X and Y axes are controlled by the outputs of stages in two separate ring counters.

[^2]value $£ 5$ or more, received before Dec. 31, 1971

VARIABLE
 VOL230v AC SOLENOID Extremely powerful with approx. I4lb. pull, I" travel. Fitted with mounting feet. Size: $4^{\prime \prime}$ long: $2 z^{\prime \prime}$ wide,

230-250V SOLENOID
Mfg. by Westool, approx. $1 \frac{1}{2} 1 \mathrm{~b}$ pull (similar in appearance to above itlustration).

VENNER Electric Time Switch $200 / 250 \mathrm{~V}$ Ex. GPO. Tested. Manually switch: 10 A E2.75, i5A $\mathbf{6 3 . 2 5}$ 20A 63.75. P. \& P. 20p. Also available with solar dial
BODINE TYPE N.C.I. GEARED MOTOR
 28 r.p.m. Torque 201 l . h.p., 50 cycle, 0.28 amp. "As new" condition. Input voltage of motor former for $230 / 240 \mathrm{~V}$ a.c. input. Price, either type 43.15 plus 35
former \&2.13 plus 27p
12 VOLT DC MOTOR Powerful I amp. RESpeed 750 RPM plete with external gear train (removable) giving speed of 125 RPM. Size: $4 \frac{1}{2}{ }^{\prime \prime}$

230V/240V COMPACT

SYNCHRONOUS GEARED MOTORS
Manufactured by either
I rev. per hour. Clockwise rotation
I rev. per hour. Anti-clockwise rotation 2 revs. per hour. Clockwise rotation. 3 revs. per hour. Anti-clockwise rotation. ${ }_{5} 5$ revs. per hour. Anti-clockwise rotation. 15 revs. per hour. Anti-clockwise rotation
60 revs. per hour. Clockwise rorarion. 60 revs. per hour. Clockwise rotation.

200-250V A.C.

NEON INDICATOR

Available in red or amber at 20p each. Or in green at 32p each. Minimum order 3 units.

\int जring xid

ELECTRONIC ORGAN KIT

Easy to build, Solid State. Two ful octave (less sharps and flats). Fitted hardwood case. Powered by two penlite $1 \frac{1}{2} V$ batteries. Complete set of parts including speaker, etc.. together Price $\$ 3.00$. P. \& P. 22p.

50 in I ELECTRONIC PROJECT so easy Kit
so easy to build Projects. No solder ing, no special tools required. The Transformer. plus a host of other components and a 56 -page instruction leaflet. Some examples of the 50 possible Projects are: Sound Level etc. Price $\mathbf{4 7 . 7 5}$. P. \& P. 30D

CRYSTAL RADIO KIT
Complete set of parts, including Crystal Diode, Ferrite Aerial, Drilled Chassis, and Personal Ear Piece. No soldering, easy to build, full step by step instructions.

INPUT 230/240V a.c. $50 / 60$ OUTPUT VARIABLE 0.260 V .

BRAND NEW
All Types (and Spares)
from to 50 amp from stock. SHROUDED TYPE
1 amp, 55.50 . 2.5 amp ,
 $1 \not 14.50 . \quad 10 \mathrm{amp}, \quad \pm 18.50$. $12 \mathrm{amp}_{\mathrm{in}} \mathrm{E21.00} \quad 15 \mathrm{amp}$,

2.5 AMP

 mp, $72.00 .50 \mathrm{amp}, \pm 92 \cdot 00$. Carr. extra OPEN TYPE.(Panel Mounting) $\frac{1}{2}$ amp, 63.93.

 50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1!1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$, All at 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$. All at 78p each, P. \& P. 15p.

RELAYS SIEMENS, PLESSEY, Etc.
MINIATURE RELAYS • COMPETITIVE PRICES

	2	3	4	1	2	3	4
45	6-9	D M		700	12-24	10	63p**
185	6-12	$2 \mathrm{c} / \mathrm{o}$	63 p *	700	15-35	$2 \mathrm{c} / 0 \mathrm{HD}$	73p*
185	6-12	$4 \mathrm{c} / \mathrm{o}$	73p*	700	16-24	6M	63 p *
230	9-18	$2 \mathrm{c} / 0 \mathrm{HD}$	$63{ }^{\text {p }}$	1,250	24-36	$4 \mathrm{c} / \mathrm{o}$	63 p *
230	$9-12$	$4 \mathrm{c} / \mathrm{o}$	78p*	2,500	36-45	6M	63 p *
280	$9-12$	$2 \mathrm{c} / 0$	73 p *	2,400	30-48	$4 \mathrm{c} / \mathrm{o}$	50p
600	18-32	$4 \mathrm{c} / \mathrm{o}$	78p*	5.800	40-70	$4 \mathrm{c} / \mathrm{o}$	63 p *
700	16-24	4M2B	63p*	9,000	40-70	$2 \mathrm{c} / 0$	50p*
700	16-24	$4 \mathrm{c} / \mathrm{o}$	78p*	15k	85-110	6M	50p*
(1) Coil ohms; (2) Working d.c. volts; (3) Contacts; (4) Price (HD) Heavy Dury. All Post Paid. *Including Base.							
MAINS RELAY 230V a.c. coil 3 c/o.							

STROBE! STROBE! STROBE!

Buid a Strobe Unity using the latest type Xenon white
light flash tube. Solid state timing and triggering circuit. 230/250V a.c. operation.
EXPERIMENTERS' ECONOMY KIT
Speed adjustable 1 to 36 Flash per sec. Alt electronic components including Yeroboard S.C.R. Unijunction Xenon Tube and instructions $\mathbf{4 6} \mathbf{3 0}$ plus 25 p P. \& P. NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyristor printed circuit. $1-80$ f.p.s. Price $\mathbb{1} 10.50$. P. \& P. 50 p . HY-LYGHT STROBE MK III
This strobe has been designed and produced for use in large rooms, halls and the photographic field, and printed circuit for easy assembly, also a special tiancy coil and output capacitor. Speed adjustable $0-30 \mathrm{f} . \mathrm{p} . \mathrm{s}$ Light outpur approx. 4 joules. Price $\mathbb{1} 12 \cdot 00$. P. \& P

AND NOW!

THE 'SUPER' HY-LYGHT KIT
Approx. four times the light output of our well proven Hy-Lyght strobe.
incorporating:

- Heavy duty power supply.
- Variable speed from 1-23 flash per sec
- Fantastic Octal based rube with massive electrodes.

The brilliant light output of the "SUPER" HY-LYGHT gives fabulous effects with colour filters.
Never before a Strobe Kit with so HIGH an output at so
LOW a price. ONLY \&20 plus 75p P. \& P.
7-inch POLISHED REFLECTOR
Ideally suited for above 5 trobe kits. Price 53 p. P. \& P
13 p or post paid with kits.

MOTOROLA MAC II/G PLASTIC TRIAC 400 PIV. 8 AMP
Now available EX STOCK, Supplied with full data and applications sheet. Price \& 1.05 . P. \& P. 7p.
applications sheet. Price (RCA 40S83) 30p each.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON W4 5BB Phone 01.9951560 SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Open Sa 9 LITTLE NEWPORT ST. LONDON WCZH 7JJ OI-4370576

NEW 1971 EDITION rado Amateur's handbook

By A.R.R.L.
$\$ 2.60$
Postage 20p
T.V. TECHNICIAN'S BENCH MANUAL, by G. R. Wilding. E2.50. Postage 10p.
20 SOLID STATE PROJECTS FOR THE CAR \& GARAGE, by R. M. Marston Cl.20. Postage 5p.

PICK-UPS \& LOUDSPEAKERS, by John Earl. \&3." Postage 10p.
MAKING TRANSISTOR RADIOS A BEGINNER'S GUIDE, by R. H. Warring. Cl.05. Postage 5p

TRANSISTOR CIRCUITS IN ELEC. TRONICS; by S. S. Haykin \& R. Barrett. C2.50. Poscage 10 p .
ABC'S OF FET'S, by Rufus P. Turner. \&1.25. Postage 5p
TELEVISION SERVICING HANDBOOK, by Gordon J. King. $\$ 3.80$. Postage 10 p .
RADIO VALVE TRANSISTOR DATA, by A. M. Ball. 75p. Postage 10 p.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-2| PRAED STREET LONDON W2 INP Phone: PADdington 4185 Closed Saturday I p.m.

Same as 4-Station Intercom for two way inctant communication. Ideal as Baby Alarm and Door Phone. Complete with
Battery 13p. P. \& P. 2 Jp.
 clency with this incredible De-Luxe Telophond Amplior. Take down long telephone messages or converse without holding the handset. A useful office aid. On off switch. Volume control. Battery 13p extra. P. \& P
20p. Full price refunded if not satisfied in 7 days WEST LONDON DIRECT SUPPLIES (PE/8) 169 KENSINGTOA HIGH STREET, LONDON. W.

Table I: TRUTH TABLE FOR 34 OF THE DIGITAL SEQUENCES

Sequence	XI	X2	X3	X4	YI	Y2	Y3	Y4
Reset	0	1	1	1	0	1	1	1
1	1	0	1	1	0	1	1	1
2	1	1	0	1	0	1	1	1
3	1	1	1	0	0	1	1	1
4	0	1	1	1	1	0	1	1
5	1	0	1	1	1	0	1	1
6	1	1	0	1	1	0	1	1
7	1	1	1	0	1	0	1	1
8	0	1	1	1	1	1	0	1
9	1	0	1	1	1	1	0	1
10	1	1	0	I	1	1	0	1
11	1	1	1	0	1	I	0	1
12	0	1	1	1	1	1	1	0
13	1	0	1	1	1	1	1	0
14	1	1	0	1	1	1	1	0
15	1	1	1	0	1	1	1	0
$16 \times$ prog. ch.	0	1	1	1	0	1	1	1
17 pros.	1	1	1	1	0	1	1	1
18	1	0	1	1	0	1	1	1
19	1	0	0	1	0	1	1	1
20	1	0	0	0	1	0	1	1
21	0	0	0	0	1	0	1	1
22	0	1	0	0	1	0	I	1
23	0	1	1	0	1	0	1	1
24	0	1	1	1	1	1	0	1
25	1	1	1	1	1	1	0	1
26	1	0	1	1	1	1	0	1
27	1	0	0	1	1	1	0	1
28	1	0	0	0	1	1	1	0
29	0	0	0	0	I	1	1	0
30	0	1	0	0	1	1	,	0
31	0	1	1	0	1	1	1	0
$32 \times$ prog. ch.	0	1	0	1	0	1	1	1
33	1	0	0	0	0	1	1	1
34	0	1	1	0	0	1	1	1

The stages in each ring counter are connected to the next through a set of crossover gates which can be controlled to "twist" the data between stages. A set of these gates is provided between each pair of stages, thus in one counter there are up to 16 possible ways of coupling (some of the 16 are equivalents).

The state of the cross coupling gates is set for both the X and Y axis by the programme sequencer which is simply an eight-stage binary divider, the first four stages controlling the X counter, and the final four the Y counter. Thus the X counter goes through 16 permutations of programme before the Y counter takes up its next condition.

The clock sequencer allows 16 pulses to be applied to the X counter before the programme sequencer changes the programme. Sib allows pulses to be applied to the Y counter on a one for one basis with the X counter or alternatively one for two or one for four. A fourth position on switch Sla allows manual stepping of the lights and programme by means of a push button.

PROGRAMME SEQUENCE

To start the whole operation it is useful to know that a precise condition is set and that the programme is at the start, therefore a reset button has been incorporated. Note that this resets everything in the system except the second, third, and fourth stage of each ring counter which is set.

Table 1 shows the movement of "0"s (i.e. lamp illuminating signals) through the X and Y counters for the first 34 clock pulses.

This is a very short extract of the early part of the self-programming switching sequence. It can be seen that at the count of 16 a twist is introduced between stages one and two of the X counter and a further twist is introduced between stages two and three while the first twist is removed at the count of 32. This procedure continues indefinitely and will eventually recycle after going through all combinations of twists and counts.

The Y programme will make its first change after 16 X programme changes.

A " 0 " in Table 1 indicates that that channel is switched on.

This digital sequencer was successfully built by the author and demonstrated with "P.E. Aurora" at the Audio Fair last year. When left to run through the complete programme some fascinating sequences are obtained, some of an extremely regular nature and some random. Sometimes the unit seems to stop and dwell on certain combinations of lights: this is merely the effect of a freak code cycling through the ring counters.

A word of warning for anyone who wishes to construct this unit-due to the constantly changing combinations of the cross coupling gates it is extremely difficult to keep track of the switching sequence and trouble shooting can become extremely hair raising! Nevertheless certain parts could be abstracted from this complete system for special types of application.

Full constructional details are not provided here since it is expected that anyone interested would be able to translate the logic diagrams into practical wiring. It can prove to be an expensive project, however, and some research into 'costing is thoroughly recommended before starting.

PHOTO ELECTRIC CONTROL

Let us move to one of the simplest-and to some extent most amusing-forms of control: namely using light to control light. This is simply done in the case of "P.E. Aurora" by using a photo-sensitive cell and a resistor. Depending on which way round they are connected, a positive or negative logic can be arranged, i.e. light falling on a photo cell to increase the controlled light output of another lamp, or vice versa. Fig. 5 shows both systems.

If the light being controlled is used to illuminate the controlling photocell, some interesting types of positive and negative feedback can be obtained. Even more interesting is to form a ring of control using the light output of one channel to control the next and so on until the loop is closed.

If this is done a delay can be introduced by inserting a capacitor (1 to $10 \mu \mathrm{~F}$) as shown. If one cell is momentarily obscured a ripple can be made to move round the loop-with care and the correct amount of positive feedback coupling one might achieve regenerative oscillation.

TAPE CONTROL

Quite early on it was envisaged that the "P.E. Aurora" system could be used in conjunction with a loop tape recorder to provide control of shop window or boutique lights. The author has built a system which worked well with three channels. There

(b)

(a)

Fig. 5 (above). Two simple control circuits using photo resistive cells. In circuit (a), light falling on the cell will make the controller increase the brightness of a lamp-thus positive feedback could be used to make a self latching system. Circuit (b) does the opposite-light falling on the cell reducing the intensity via the controller. VRI is made variable to adjust sensitivity. Some interesting ring systems could be made by using the light from one channel to influence the next. Deliberate delays could be introduced with capacitors (as shown dotted)

Fig. 6 (top right). Simple schematic for a tape control lighting. The prototype used only three channels to avoid the possibility of interaction. It is quite possible that by careful selection of frequencies harmonic interaction could be avoided if a larger number of channels was desired

Fig. 7 (right). A simple phase shift oscillator. Three mixed together can provide a signal that when recorded could be used with suitable filters (see Fig. 8) to provide tape control of lights. VR2 is used to control the relative levels of signal during recording

Fig. 8. A more gentle active filter using a series LC tuned circuit for use with a tape recorder if tape control of lights is required. DI and C9 detect and integrate the filtered audio signal, the amplitude of the resulting d.c. level controls the respective light channel of Aurora, VR3 is used to balance the channels

TABLE 3		
NOMINAL FREQUENCY	bi(WOUND ON LAI FERRITE POT CORE)	$\mathbf{C 7}$
1 kHz	800 TURNS	$0.1 \mu \mathrm{~F}$
3 kHz	600 TURNS	$0.02 \mu \mathrm{~F}$
5 kHz	400 TURNS	$0.01 \mu \mathrm{~F}$

is no reason (apart from interaction between channels) why this should not be extended by using the eight-channel system, but it was thought to be unnecessary expense.

The tape recorder used should be of conventional domestic quality, having a good frequency response up to about 10 kHz . Perhaps the most stringent specification is on wow and flutter. If this is undetectable to the ear when a 3 kHz pure sine wave is recorded then the recorder is satisfactory. The recorder should also have a manual record level control and should not use a.g.c.

The technique is quite straightforward as shown schematically in Fig. 6. A number of fixed frequency oscillators having frequencies suitably separated (the prototype had three at $1 \mathrm{kHz}, 3 \mathrm{kHz}$ and 5 kHz) have their amplitudes adjusted by manual controls. The outputs are mixed together and applied direct to the tape recorder input.

The individual or mixed tones are recorded at various levels, the amplitude being selected to be in proportion to the intensity of illumination ultimately required.

On playback the composite audio signal is applied to a set of tuned audio filters and thence to inte-grators-rather like the filter unit already described in Part 3.

PHASE SHIFT OSCILLATORS AND FILTERS

The prototype phase shift oscillator circuit is shown in Fig. 7 and the tuned filter in Fig. 8. It might be argued that the active RC filter already described would be satisfactory, but it was felt that the characteristic was a little too viscious for precise linear control of amplitude, hence the LC circuit was chosen. Tables 2 and 3 show component values for each of the three frequencies.

Obviously due to component tolerances it will be difficult to obtain precise frequencies and so the oscillators must be tuned to match the respective filter. This is best effected by directly connecting the output of the oscillator in question to the input of the filter; with both VR2 and VR3 set at about midrange. connect a voltmeter across C9 (range 4V) and adjust VRI until a maximum is read on the meter. If the bandwidth appears excessive, reduce the output level of the oscillator and retune.

When recording it is best to start with a test signal. Set all the oscillator outputs to maximum and set the recording level so that the tape recorder shows maximum level; all other settings of controls will thus be relative to this setting. Record about 30 seconds with all controls at maximum, then record the programme required.

On playback use the maximum level output signal at the leader end to adjust the settings of VR3 for each channel; these should be set so that the light output from "P.E. Aurora" is only just maximum. This equalises the system to counter any devious frequency response of the tape recorder.

It is hoped that the above suggested applications will form the basis for other ideas constructors might have. In an article such as this it is extremely difficult to cover every possibility, but suffice to say any form of input signal in the range of 0 to I volt can be used to provide control.
Note: The notation of connections of IR7 into the board (Fig. 19, p. 501, June 1971) may not agree with the configuration of the wires as they appear from the transistor. Check lead notation of the f.e.t. used before soldering into position.

BURST-FIRE POWER CONTROLLER... FOR ELECTRIC FIRES AND HEATERS

In the control of heating equipment, "burst-fire " has considerable advantages over the "phase-shift" method of thyristor operation.
This compact unit ${ }_{\text {p }}$ provides continuously variable control of output up to a maximum loading of 1 kW .

TIMER WITH DIGITAL READOUT...

This useful instrument gives direct digital readout with tenths of a second by counting pulses triggered by objects breaking a light beam.

genaticat
 ELECTRONICS
 ON SALE AUGUST 20

An instrument for the detection and graphing of earth tremors

ELECTRONIC techniques are now extensively employed for detecting and processing signals arising from earth tremors. The circuits and information given in this article are intended to serve as a basis for the construction of a seismograph which has the capability of recording displacements of less than 10 nanometres, roughly the diameter of a medium sized molecule.

Described are a seismometer, a seismometer amplifier, and a pen amplifier which drives an inexpensive chart recorder based on a G.P.O. relay and a clock motor. A block diagram of the complete instrument is shown in Fig. 1.

SEISMOMETER

A seismometer is the "front end" of a seismograph and consists typically of an inertial mass suspended from a stout frame on a weak spring. When the
ground moves, together with everything resting on it, including the seismometer frame, the mass tends to remain more or less static.

A common form of sensing arrangement, for converting the relative motion of the mass and the seismometer frame into an electrical signal, is a coil of wire free to move between the poles of a powerful magnet, known as a velocity transducer.

The chief advantage of a velocity transducer is that it is insensitive to slow drift caused by thermal and atmospheric displacements of the seismometer mass, but its cutput is proportional to the energy of the ground movement and not the amplitude.

There are two conflicting requirements in seismometry, on the one hand a faithful response to ground movements covering a wide band of frequencies at low sensitivity, or else a high sensitivity and selectivity with resulting distortion of the signal. A weight suspended from a spring is a

Fig. I. Block diagram of seismograph
mechanical analogue of a tuned electrical circuit which, when undamped, possesses a high magnification at one particular frequency.

Like the tuned circuit with a high Q, a seismometer will offer maximum sensitivity when it is sharply resonant, but then exhibits a marked tendency to continue oscillating or "ringing" for some time after the initial disturbance.

The modern trend is to use a damping factor of less than unity and have the seismometer tuned to a relatively narrow range of frequencies, but obviously, much depends on individual requirements.

SEISMOMETER AMPLIFIER REQUIREMENT

Seismometer amplifiers must be capable of resolving microvolt level signals at frequencies generally lower than 5 Hz , and this poses' special problems. The noise generated by amplifying devices rises steeply at sub-audio frequencies. For example, a transistor with a noise figure of 5 dB at 1 kHz could show as much as 25 dB at 1 Hz .

In order to achieve low noise working at high gains, the frequency range of seismometer amplifiers is usually restricted to a narrow bandwidth. It will be evident from the above remarks, and also bearing in mind the stringent drift performance demanded by continuous operation day after day, that even the best general purpose laboratory type amplifiers would be unsuitable for seismic work.

With a peak noise level of less than 0.2 microvolt over the frequency range of $0 \cdot 1 \mathrm{~Hz}-10 \mathrm{~Hz}$. the seismometer amplifier described here enables the microseismic background noise to be recorded even in quiet areas. In terms of ground movement with the transducer used, 0.2 microvolt corresponds approximately to 4 nanometres at maximum gain. In addition, seismometer damping can be adjusted between almost zero and unity by electrical feedback to an extra winding on the trannsducer coil.

Seismograph response can be varied from a sharply resonant peak at around 1 Hz to a substantially flat characteristic extending beyond $0 \cdot 2 \mathrm{~Hz}$ 8 Hz .

Velocity response curves for the seismometer amplifier combined with a 1 Hz vertical seismometer are given in Fig. 2, and this shows how damping affects sensitivity.

SEISMIC ACTIVITY

One of the mysteries of inner space still waiting to be explained is the origin of some of those tiny earth tremors or microseisms which cause the ground to move continuously. A sensitive seismograph will record microseisms as a noise trace upon which occasional dramatic events, such as earthquakes and large explosions, are superimposed.

It is known that meteorological conditions play some part in influencing the level of microseismic activity. An increase in seismic noise amplitude is often noticed several hours before the approach of a low pressure system and can be used to predict a deterioration in weather conditions.

It is also true that seismic recording stations near the sea have a higher background noise than stations situated in the middle of a continent, and this is attributed to large waves below the ocean surface striking against the continental shelf. However, even when weather conditions are very calm and all known factors have been taken into account, there still remains a significant level of seismic background noise which cannot easily be explained.

EARTHQUAKE WAVES

An earthquake will cause wave motions to be set up in surrounding rock. Waves of differing character and orientation will move away from the epicentre at various speeds; some will be refracted and reflected by discontinuities in the earth's structure.

First to arrive at a distant location will be the P or primary wave, causing a movement of earth particles in the direction of travel. P waves are, in fact, sound waves transmitted by the inner regions of the globe, and their speed is approximately 5 miles per second.
The slower S or secondary wave arrives next, at a speed of 3 miles per second, producing a motion transverse to the line of travel. The time lapse between the onset of the P wave and the arrival of the S wave can be used to compute the distance of the earthquake. S waves cannot pass through the liquid core of the earth, and therefore only have a range of about 7,000 miles.

Fig. 2. Seismometer response to constant energy input

Fig. 3. Professionally recorded traces of earthquakes occurring in the British Isles. Upper trace: earthquake at Glen Spean in Scotland; lower trace: earthquake under South Downs in England (Photo by courtesy U.K.A.E.A. Blacknest)

There are other types of waves which move more slowly and travel on the surface, such as Rayleigh and Love waves, but these are not detected by shortperiod seismometers of the type described here.

It is important to realise that a P or S wave may be considerably bent or twisted during its passage through the earth and the actual motion of the ground in response to either could be horizontal. vertical. or a mixture of both, depending on the angle of approach. Therefore, a seismometer which is sensitive to, say, vertical motion only is capable of detecting P and S waves simultaneously.
Considering an earthquake as a source of broadband noise, over long distances the high frequency components are gradually filtered out, to leave a mixture of waves with periods extending from about 1 second to I hour.
Taking rough averages from past records, there are something like 10,000 earthquakes per year of magnitude equivalent to an explosion of 10 tons of T.N.T.. 50 per yeat of about 200 kiloton magnitude, and just two per year of 10 megatons magnitude.
Earthquakes do not receive much publicity unless they are exceptionally large or occur near centres of population. As far as the amateur seismologist is concerned, an event will be recorded perhaps once a week and will either be a large distant earthquake or a local tremor. Much depends on the siting of the seismometer and the manner in which it is coupled to the ground.
To underline the fact that earthquakes occur almost everywhere, two professionally recorded detailed traces of small events in the British Isles are shown in Fig. 3. The upper trace is of an earthquake which had its epicentre at Glen Spean in

Fig. 4. A professional seismometer

Scotland, quite near to the recording station, and the lower trace is of an earthquake under the South Downs in England. It is doubtful if local inhabitants were even aware of these events because they were of small magnitude.

SEISMOMETER STRUCTURES

It can be seen from Fig. 4, that a modern, professional seismometer is far removed from those early instruments which had masses and booms weighing several tons. The reduction in size is mainly attributable to the use of electrical transducers which need only a small force to drive.

As far as the construction of a seismometer is concerned, this is perhaps less. important than the environment in which the instrument is placed. Nearby trees, draughts, loud noises, and local movement caused by animals or humans should be avoided if the best performance is desired.
Successful seismometers have been built by amateurs from pieces of wood and bent wire, but wherever possible the most rigid and durable constructional methods are to be preferred.
Seismometer structures suitable for use with the circuits given here are depicted in Fig. 5. Transducer magnet poles are labelled relatively and can be reversed.

It is important to orientate the transducer coil windings and magnets according to the figures, for maximum electrical output.

A CHOICE OF FIVE

Looking first at the horizontal pendulum seismometer of Fig. 5a; this uses a triangular shaped boom supported on two spring strip hinges, similar to a garden gate. If the hinge axis was vertical the boom would be unstable, but a slight inclination of the boom downwards, towards the mass, supplies a gravitational restoring force. Strips of 0.002in phosfhor bronze or steel shim will serve for hinges.
Although simple to build, with a frame and boom of wood or metal, this seismometer is notoriously difficult to set up and operate, and readily becomes unstable.
In Fig. 5b, the mass-spring seismometer can form a compact and rugged instrument. A mass of several pounds is suspended from a coil spring, and is prevented from moving horizontally by thin cross wires. Resonant frequency is determined by the length of the spring and the weight of the mass.

The vertical pendulum of Fig. 5c consists of a mass secured to an upright boom, which is in turn supported on a strip hinge or knife edge, with restoring force supplied by two coil springs. Resonance can be adjusted by sliding the mass up or down the boom.

SEISMOMETER AMPLIFIER
Resistors
RI $390 \mathrm{k} \Omega$
R2* $1.5 \mathrm{M} \Omega$ (see text)
R3 $47 \mathrm{k} \Omega$
R4 $330 \mathrm{k} \Omega$
R5 $68 \mathrm{k} \Omega$
R6 $22 \mathrm{k} \Omega$
R7 $4.7 \mathrm{k} \Omega$
R8 $1 \mathrm{k} \Omega$
R9 $100 \Omega \Omega$
All 10%, $\frac{1}{2}$ watt carbon

Potentiometer
VRI $22 \mathrm{k} \Omega$ sub-min horizontal skeleton

Capacitors

$\mathrm{Cl} 160 \mu \mathrm{~F}$ elect. I2V
C2 $160 \mu \mathrm{~F}$ elect. I2V
C3 $160 \mu \mathrm{~F}$ elect. 12 V
C4 $0.01 \mu \mathrm{~F} 250 \mathrm{~V}$ polyester
C5 $8,000 \mu \mathrm{~F}$ elect. 6 V
C6 $100 \mu \mathrm{~F}$ elect. 12 V
Transistors
TRI BCIO9
TR2 BC109
TR3 BC107

Fig. 6. Circuit diagram of low noisc seismometer amplifier

Sockets

SKI Two way DIN with plug
SK2 Non-reversible two way with plug
Battery
BYI, BY2 Two Ever-ready 996 6V batteries in series

Miscellaneous
Veroboard 4.3 in $\times 1.9$ in $\times 0.1$ in matrix, 40 s.w.g. enamelled copper wire for transducer coils, four loudspeaker magnets or similar, and one small bar magnet. Aluminium chassis $\operatorname{Bin} \times 3$ in $\times \frac{1}{2} \mathrm{in}$, s.r.b.p. 8 in $\times 1 \frac{1}{2} \mathrm{in}$, screened microphone cable, capacitor fixing clip to suit C5.

SEISMOMETER AMPLIFIER CIRCUIT

High gain, low noise transistors are employed for the first two stages of the a.c. coupled amplifier circuit in Fig. 6. Maximum gain of the circuit is in the region of 88 dB .

Grounded base silicon transistor TRI has a collector to emitter voltage of not more than one volt, thus satisfying one of the conditions for minimum noise. Collector current is also low.

The d.c. resistance of the transducer coil in series with the emitter junction of TR1 is about 450 ohms, and this, together with the negative feedback afforded by R1, gives adequate temperature stabilisattion.

Resistor R2, shown dotted in Fig. 6, can be adjusted in value, or omitted altogether from the circuit, to allow for transistor gain spreads, and to optimise performance.

Capacitor C1 decouples the base of TR1 to signal frequencies, while C2 across a TRI emitter input impedance of only a few ohms merely serves to block unwanted high frequencies and mains ripple.

The reactance of the transducer coil is negligible compared with its d.c. resistance at signal frequencies.

TR2 and associated components form a conventional grounded emitter low noise amplifier stage, except for the unusually high value of emitter capacitor C5.

Feedback capacitor C4 largely determines the amplifier high frequency roll off, while C 5 controls the low frequency end of the pass band.
Emitter follower TR3 is directly coupled to the collector of TR2, and acts as an impedance converter and buffer stage. A damping feedback current for the seismometer, derived from potential divider R8 and R9, is tapped off by VRI before being fed to the winding L2 on the fransducer coil.

VR1 is pre-set prior to measuring and recording seismic signals, because any human activity in the vicinity of the seismometer is likely to cause overloading.

DIN socket SK 1 connects the remote seismometer amplifier output, via a run of screened cable, to the pen amplifier. Two extra wires are included (unscreened) to allow for battery checks and to energise the calibrating coil L3 without the need for going near the seismometer when it is functioning.

A battery power supply was chosen for the seismometer amplifier to avoid a long run of mains cable, and to eliminate troublesome mains borne noise spikes. Two $996,6 \mathrm{~V}$ dry batteries in series will power the seismometer amplifier for about three months continuously.

Resistors	
R10	22k Ω
RII	$1.5 \mathrm{k} \Omega$.
R12	10Ω
R13	$1 \mathrm{k} \Omega$
R14	$15 \mathrm{k} \Omega$
R15	$50 \mathrm{k} \Omega$
R16	$5.6 \mathrm{k} \Omega$
R17	$180 \mathrm{k} \Omega$
R18	$3.3 \mathrm{k} \Omega$
R19	$1 \mathrm{k} \Omega$
All 10	\%, $\frac{1}{2}$ watt carbon

Potentiometers

VR2 $5 \mathrm{k} \Omega$ carbon
VR3 $50 \mathrm{k} \Omega$ carbon pre-set
VR4 $500 \mathrm{k} \Omega$ sub-min skeleton pre-set

```
Capacitors
    C7 100\muF elect. 12V
    C8 0.01 }\mu\textrm{F}\mathrm{ polyester 250V
    C9 100\muF elect. 12V
    ClO* 160\muF elect. 12V
    CII 100\muF elect. 12V
    C12 100\muF elect. 12V
    C13 2,000 8,000 \muF elect. I2V
    CI4 0.5\muF-1,000\muF elect. I2V (see text)
```

Transistors
TR4 BC107
TR5 ACY20
TR6 BC107

Diodes

DI OA6
D2 OA6
D3 ZBI2 250 mW 12V Zener
D4, D5 RS2IOAF 130 p.i.v. IA (2 off)

Meter

MI 50μ A Type MR 38P

Lamp

LPI $6 V 60 \mathrm{~mA}$ m.e.s.

Transformer

TI 20-0-20V sub-min mains (Radiospares or Home Radio)

Sockets

SK3 DIN 3 way with plug
SK4/SK5 Two miniature single sockets with plugs
JKI/PLI 3.5 mm jack socket with plug

Switches

SI Push-button or biased toggle single pole changeover
S2 Miniature toggle single pole changeover

Miscellaneous

Veroboard 5.7in $\times 1.9$ in $\times 0.1$ in matrix
Aluminium chassis 6 in $\times 4$ in $\times 2 \frac{1}{4}$ in
Panel mounting lamp holder

PEN AMPLIFIER CIRCUIT

The pen amplifier of Fig. 7 has a DIN socket SK3 to correspond with the output socket on the seismometer amplifier. VR2 across the pen amplifier input allows adjustment of gain to compensate for day to day changes in microseismic level and anticipated tremor amplitudes.

VR3 and VR4 provide fine and coarse adjustment of the d.c. working point of direct coupled pair TR4 and TR5: this alters the standing current flowing through the pen relay RLA for the purpose of zeroing.

Two negative feedback paths for d.c. and signal frequencies exist in the circuit of Fig. 7. First, feedback given by VR3 and VR4 across the collector and base of TR4, and second the feedback between the collector of TR5 and the emitter of TR4 via the load formed by REA or substitute resistor R13.

Sufficient feedback is provided to ensure a low impedance output, good linearity, and negligible pen zero drift at normal room temperatures.

A signal from the collector of TR5 is taken via C9 to a special zero-peak meter circuit formed by R14, D1, D2, R15, and 50 AA meter. Instead of giving a steady meter reading related to amplitude, the pointer oscillates between zero and peak value at the same frequency as the signal; this technique
offers certain advantages. The smooth, regular movement of the meter pointer when responding to a seismic signal is not confused with the random motion caused by noise or instability, and malfunctions are immediately revealed.

Large amplitude high frequency seismic noise from local sources, such as quarry blasts, is made apparent by the meter pointer not returning to zero between successive cycles, and the frequency of the longer period signals can be determined by counting the oscillations of the meter pointer. Meter reading accuracy is within 3 dB over the range $0 \cdot 2 \mathrm{~Hz}-10 \mathrm{~Hz}$.

The pen amplifier is powered by a built-in partly stabilised 12 V supply, employing a miniature mains transformer T 1 , and series regulating transistor TR6.

Lamp LP1 serves the double purpose of protecting TR6 in the event of a short circuit, and gives a flashing indication when the pen amplifier is overloaded by a large input signal.

CHART RECORDERS

Seismograph recorders are usually of the helical trace type, giving a detailed record in convenient form of events separated by many hours. A reclangular piece of paper is wrapped around a drum which revolves, say, once every 24 hours. A pen driving mechanism slowly traverses the drum parallel to its axis on a screw driven carriage, drawing a

DISC RECORDER

Fig. 8. Disc recorder with extra facilities
helical trace. Needless to say, a helical recorder is expensive to buy.
Another more familiar alternative, often used by amateur seismologists, is the strip chart recorder, where a roll of paper a few inches wide is fed under the recording pen, but these can use as much as 48 feet of paper per day when employed for seismic work.

If a fully detailed record of seismic events is required then a helical or strip recorder must be purchased or constructed. On the other hand, where the main concern is only with the onset time, duration, and relative amplitude of large scale events, then a trace drawn on a small dise of paper will probably suffice.

A paper disc recorder is simple to construct because there is no elaborate paper feed mechanism. One revolution in 24 hours of the disc will give the approximate time of earthquakes, within a minute or two, and will also show variations in microseismic amplitudes for the purpose of weather forecasting.
Yet another possibility is to have the paper disc revolving, say, once per hour. A signal from the earthquake onset triggers the chart motor on, and an expanded trace of the event will be obtained.

DRIVING THE PEN

Given a moving piece of paper, the next step is to arrange some way of making the pen traverse the paper in response to a signal. Meter movements are often used to drive pens, but the mechanism is delicate and susceptible to friction.

An ordinary relay can supply a large mechanical force, but the movement of the armature is not linearly related to the current flowing in the relay coil. However, if the armature of a G.P.O. type relay is packed with small pieces of foam plastic. and the coil is supplied with a bias current to offset the pressure of the relay contact springs, it is possible to achieve a linear pen movement over a small arc.

The pen can be attached to the relay armature on a long wire arm, to magnify the movement.

Fig. 8 shows how extra facilities can be added to the basic disc recorder. The warning bell (A) rings at the onset of a tremor, when the seismic amplitude exceeds a pre-set level.

Unit (B) will give an expanded trace for the duration of a large scale event, but does not record between events. RLA2 contacts close, the capacitor C13 is charged to the full battery voltage, which holds RLB on for a period of about 10 seconds, depending on the value of C13.
If the event lasts longer than 10 seconds-and they usually do-repeated closing of RLA2 contacts will keep C13 fully charged, and the turntable will continue to revolve.

To obviate inking difficulties when a fine pen is used, the pen can be made to vibrate up and down slightly by means of a further relay RLC, contained in unit (C), which is wired as a buzzer.

A weight of a few ounces attiched to the armature is sufficient to cause a vibration of several thousiandths of an inch when relay RLC is mounted under the disc recorder baseboard, and this will keep the ink flowing.

Next month, constructional details will be given for a 1 Hz vertical seismometer, seismometer transducer and amplifier, a pen amplifier and disc recorder, together with information on installing and operating the seismograph.

NEWS BRIEFS

I.E.E. Centenary Exhibition

TOMARK the centenary of the Institution of Electrical Engineers, a small special exhibition has been arranged in the main hall entrance of the Science Museum.

Founded one hundred years ago, the J.E.E. then had the title of Society of Telegraph Engineers. This was at a time when the main application of electricity was the telegraph. With expansion this was changed to the Institute of Electrical Engineers in 1888 .

Tne exhibition illustrates the growth of electrical and clectronic engineering in the period of the Institution's lifetime, by contrasting state of the art exhibits of the past and present in the fields of medicine, communications and computers.

While telegraphy dominated the electrical scene a century ago, electric lighting was being developed. Two complementary light producers of this period are shown. An arc lamp and its current producing magneto-electric generator for lighthouse use.

One of the show cases of contrasts compared a popular nineteenth century multiplication machine with an Elliott microminiature computer.

Two medical exhibits from the same family tree are the "shocking" machine, an ornate piece of Victoriana which produced high voltage from a hand generator and a modern heart pacemaker. Both the construction and arrangement in the body of the pacemaker are shown.

The show case illustrating the development of electrical communication has a telegraph instrument of a type used in 1871. Also included are an early telephone, a crystal set and one of the first domestic valve radios. these being contrasted with a modern telephone instrument and a small portable radio.

A separate case is devoted to the Institution's activities with examples of its most recent publications.

The exhibition, which opened on May 17, is expected to run for approximately three months.

British Amateur Electronics Club

The Secretary of the British Amateur Electronics Club. Mr J. G. Margetts has moved to a new addreis and anyone who wishes to contact him should write to 17 St Francis Close. Abergavenny. Monmouthshire.

If any readers are interested in the Club. Mr Margetts will be pleased to send details.

P.E. GEMIIII

REPRINTS AVAILABLE

Because of the continuing interest in the "P.E. Gemini': Dual Purpose Stereo Amplifier it has been decided to reprint all articles (together with any appropriate amendments) in booklet form.
The prise of this 32 -page booklet is 55 p, including postage. Orders for copies, with P.O. or cheque made payable to IPC Magazines Ltd., should be addressed as follows:

The Receiving Cashier (P.E. Gemini) IPC Magazines Ltd.,

Tower House,
Southampton Street, London, W.C.2.

ELECTRONORAMA

Laser Lighthouse

THIS gigantic * monument was recently completed and opened at Point Danger on the east coast of Australia. It is claimed to be the first laser beam lighthouse in the world combined with a memorial to commemorate the 200 th anniversary of Captain Cook's discovery of this east coast point on the border between Queensland and New South Wales.

It is expected that the laser light will penetrate rain and fog for distances up to 22 miles out to sea (six miles beyond the horizon) using only 200 watts of electricity. It shows a red flash every $7 \frac{1}{2}$ seconds which is visible out to sea only

Video Tape Recorder To Fly Over Horth Pole

Aspecial. compact video tape recorder will film Miss Sheila Scott's attempt to be the first person to fly solo over the North Pole in a light aircraft-a Piper Aztec. It is the lightweight Akai VT 100 self-contained battery-operated video recording system supplied by The Rank Organisation. It provides instant television recording and playback facilities.
Complicated instruments from NASA, the American space Agency, will record and relay her mental and physical state in flight as well as measuring world air pollution. Her North Pole attempt is just part of a 34,000 mile, five week solo flight that will take her one and a half times around the world.
The original recorder was stolen from Miss Scott's home just before this magazine went to press, and it was expected that Rank Audio Visual would loan her another

PORTABLE ELECTRONLC MUSIC SYWTHESSER

TAKE a number of electronic signal generators, add a few effects circuits. mix well and there's no limit-but no limit at all-to the variety and range of the sounds you can produce. Theatrical sound effects, or electronic musical compositionssounds you create yourself-for the moment or for longer life by transferring to magnetic tape. Add a keyboard, and indeed you become a one man band. (The pop boys will love it!)

Credit must go to Electronic Music Studios (London) Ltd., who have designed and built this latest wonder in the exciting new field of music synthesisers, "Synthi A".

At $£ 198$ it is claimed to be the world's cheapest instrument of its kind. Electronically it is essentially the same as EMS's successful model VCS 3, but scaled down to attaché case size-and is of course, completely portable.

The basic electronic blocks found inside any synthesiser are conventional enough, but devising a system around such circuits and providing maximum flexibility for user control and operation is obviously an art in itself. One of the secrets is that all circuits are voltage controlled.

The important ingredients that make up "Synthi A" are set out below.

Signal generation sources

Three tunable oscillators: one gives sine and ramp waveforms, another square and ramp, and both operate over a frequency

range 1 Hz to 10 kHz . A third oscillator provides square and ramp waveforms but over the exceptionally low frequency range of 0.025 Hz (1 cycle every 40 seconds) to 500 Hz .

Noise generator with amplitude and colouration controls, so that various bandwidths of noise can be obtained at any level.

Envelope generator, providing a low frequency control waveform.

Treatment facilities

The foregoing signals can be treated in various ways, for example with reverberation from a spring unit, by filtering via a bandpass filter, which can also be employed as an additional oscillator; and by a ring modulator. Attack/delay can be controlled by the envelope generator.
High and low inputs for microphone and line are provided on the two inputs' amplifiers, both of which have level controls. The two output amplifiers have level controls and, additionally, tone controls, and trols, and can be voltage controlled, allowing amplitude modulation and automatic fades and cross fades.

Monitoring and Patching

Any required signal or control parameter can be monitored on the built-in meter.
Signal patching is by a 16×16 way pinpanel matrix-no cords are used. Each of the 256 locations on the matrix board can be identified by a simple map grid reference.

Manual Control

In addition to the attack/delay the "Synthi A" is equipped with a joystick which enables any two control arameters to be varied simultaneously with one hand, leaving the other hand free for keyboard operation.

Keyboard Unit

The versatility of "Synthi A " can be further increased by use of a keyboard unit. This additional, optional unit incorporates its own oscillators and it is simply plugged into the front panel of the synthesiser, which can then be played as a musical instrument.

IMRRET PLALE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

CCTV CAMERA KIT

Of particular interest to the amateur and professional engineer is the new and updated version of the Beulah Electronics closed circuit television camera kit.

Suitable for education and training establishments, and the keen amateur, this high quality, yet fairly inexpensive 625 line video camera has a claimed resolution in exces; of 350 television lines.
A fully comprehensive instruction manual is included with the kit and the original manufacturers' guarantees apply to all parts. Beulah Electronics will also carry out inspection, testing and setting up after assembly, if required, for a charge of ± 5 excluding the cost of postage and packing.

If the "New Beukit" camera is required to operate in conjunction with an off-air television receiver, an r.f. kit is available as an extra.

The price of the "New Beukit" complete with manual and all parts, excluding vidicon tube, is $£ 45 \cdot 50$. Vidicon tubes are available at various qualities and prices from $£ 5-£ 15$ and first grade tubes at $£ 25$. The cost of the r.f. kit is $£ 3.75$. Various other extras including lenses and tripods are available if required.
Further information and supplies of the "New Beukit" can be obtained from Beulah Electronics (1970) Ltd., Upper Halliford Road, Shepperton, Middx.

AUDIO SUITE

A new range of inexpensive audio equipment marketed under the name Viscount has been introduced by Radio and TV Components (Acton) Lid. Complete stereo systems are offered.

The heart of each system is the Viscount amplifier, of which there are two versions: The RT100 for ceramic cartridges and the RTIOI which has an additional input stage designed to accept magnetic cartridges. Both versions have an output of 14 watts per channel r.m.s. with a frequency response of 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$.

The input stages of these amplifiers incorporate f.e.t.s which give excellent signal to noise ratio. Both units have features unusual in the price range such as a headphone socket, and a separate output for a tape recorder is incorporated.

System 1 (available at $£ 52$ complete), comprises the Viscount RT101 amplifier, SP25 with magnetic cartridge, and a pair of Duo Type II speakers.
System 2 (£69), is as System 1 , but with Duo Type III speakers capable of handling outputs up to 20 watts.

System 3 ($£ 49$), comprises the Viscount RT100 amplifier, Garrard SP25 turntable with ceramic cartridge, and a pair of Duo Type II speakers giving a maximum output of 10 watts.

Postage and package is not included in the above prices.

Examination of the amplifier plus listening tests of the complete systems suggest that this is good all round value for money-the use of imported semiconductors no doubt being a vital factor in keeping the amplifier price to such a modest level. The makers are also modest (and sensible) in that they make no pretensions that this is "hi f". More to the point, or rather to the ear, and the pocket, the quality is likely to meet the requirements of many who wish to sit down and enjoy music without incurring a tremendous financial outlay.

STEREO AN.PLIFIER

A new stereo amplifier incorporating an f.e.t. integrated circuit is the latest product from Tripletone Manufacturing Co. Ltd., 138 Kingston Road, Wimbledon, S.W.19.
Known as the Tripletone 800 Mk H, it has a claimed continuous power output of 18 W r.m.s. per channel into 4 ohms and 15 W r.m.s. per channel into 8 ohms. Power bandwidth is quoted as -3 dB 30 to $25,000 \mathrm{~Hz}$ and the distortion level is claimed to be less than 0.2 per cent.

Inputs are provided for tape, radio, magnetic and ceramic cartridge. The load for the ceramic cartridge is kept at 2 megohms at all frequencies by the use of the f.e.t. integrated circuit. The magnetic input will take an overload of 120 mV before clipping.

A feature of the amplifier is the inclusion of a dual concentric control for the middle frequencies as well as for the volume, bass and treble. A top cut filter is provided by an illuminated push-button and a jack socket is fitted for headphone listening.

The 800 Mk II is housed in a teak case with a black and silver aluminium facia and is priced at £ 38.50 .

OOKI PRACTICAL! VISUAL!

Nm Mh

a new 4-way method of mastering 래로NRMME by doing - and - seeing

U N DERSTAND CIRCUIT DIAGRAMS

a modern and professional CATHODE RAY OSCILLOSCOPE

The Golaxy M104 in the constellation of Virgo. The dark band across the middle is interistellar dust which obscures the light of the stars. Our own Galaxy might appear like this to on observer seeing it edge on. The MiO4 is about 40 million light years away

Raоог
 AHITMY:Ty UEHMNIOUTS EY F.W.HYDE P PARTЗ

power in the receiver whether the aerials were in phase or anti-phase. On the other hand, a small source passing through the aerial beam would not have the same effect in both positions, so that the output from the receiver would vary at the frequency at which the aerials were switched. If the recorder is connected to this arrangement then the pattern will appear as in Fig. 3.2.

It is possible to use much greater sensitivity in the recording network by this method, and in the first trials; sources only $1 / 000$ of the background level could be detected. The resolution of the system enabled small soürces to be readily distinguished from each other.

ROTATING LOBE INTERFEROMETER

A variation of the phase-switched system is the rotating lobe interferometer, due to Jennison and Latham. This enables the fringes of the system to be rotated quite independently of the movement of the aerial systems across the sky. The block diagram is shown in Fig. 3.3

One very important advantage of this system is that it may be used in north/south arrangements and it produces a fringe pattern which cannot be achieved with the phase-switched interferometer.

The limitation mentioned earlier in regard to the area of sky covered by the atrial beam from north to south is overcome by the rotating lobe method

GRATING INTERFEROMETER

The combination of aerials as interferometers is often used to obtain special effects. One of such combinations is the grating interferometer. This system uses a number of aerials in line and connected to a receiver by feeders equal in length, see (a) in Fig. 3.4. The reception pattern that results is similar to a diffraction grating, and is shown in (b) in Fig. 3.4.

An example of the pattern resulting when the sun is scanned is given in Fig. 3.5. This shows the very high degree of resolution of the source which is

Fig. 3.1. Block diagram of a phase-switched interferometer

We'll give you the chance you didn't take at school.

' O ' level standard in Maths, and Science or English, could get you a great career in today's Navy. We'll train you to be one of our top technicians, working on space-age equipment and earning $£ 2,000$ a year at 24 . If you're $15 \frac{1}{2}-17^{\frac{1}{2}}$ send for our free book.

APPRENTICESHIPS

ELEOTROVALUE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS

MANY AT NEW REDUCED PRICES • ALL POWER TYPES WITH FREE INSULATING SETS

$\begin{aligned} & 40361 \\ & 40362 \end{aligned}$	$\begin{aligned} & \text { 55p } \\ & \text { 68p } \end{aligned}$	$\begin{aligned} & 2 N 2905 \\ & 2 N 2905 A \end{aligned}$	$\begin{aligned} & \text { 44p } \\ & \text { 47p } \end{aligned}$	$\begin{aligned} & 2 N 4291 \\ & 2 N 4292 \end{aligned}$	$15 p$ $15 p$	$\begin{aligned} & \mathrm{BC} 148 \\ & \mathrm{BC} \mid 49 \end{aligned}$	9p $10 p$	$\begin{aligned} & B F \times 87 \\ & B F \times 88 \end{aligned}$	29p
2N696	$17 p$	2N2924	20p	AC107	46p	BC153	19p	BFY 50	23p
2N697	18p	2N2925	22p	ACI 126	20p	BC. 154	20p	BFYSI	20p
2N706	12p	2N2926	$11 p$	ACl 27	20p	BC157	12p	BFY52	23p
2N930	29p	2N3053	27p	AC128	20p	BCIS8	$11 p$	BS $\times 20$	16 p
2N1131	29p	2 N 3055	60p	AC153K	22p	BC159	12p	C407	17\%
2N1132	29p	2N3702	$13 p$	AC176	16p	BC167	$11 p$	MC140	25p
2 N 1302	19p	2N3703	13 p	ACY20	20p	BC168	10p	MPS6531	35p
2N1303	19p	2N3704	13 p	ACY22	16p	BC169	11 p	MPS6534	30%
2 N 1304	26p	$2 N 3705$	$13 p$	ADI40	${ }^{63} \mathrm{p}$	BC177	$14 p$	NKT211	25p
2 N 1305	26p	2N3706	13p	ADI42	50p	BC178	13p	NKT212	$25 p$
2N1306	33p	2N3707	$13 p$	ADI49	58p	BC179	$14 p$	NKT214	$13 p$
2N1307	33p	2N3708	10p	AD161	33 p	BC182L	$11 p$	NKT274	18p
2 N 1308	36p	2N3709	110	AD162	36p	BC183L	$10 p$	NKT403	$65 p$
2N1309	36p	2N3710	$13 p$	AFII4	24p	BCl 84 L	1/p	NKT405	79p
2 N 1613	23p	2N3711	$13 p$	AFII 5	24p	BC212L	$16 p$	OC71	38p
2N1711	26p	2N3819	23p	AFI17	22p	BC213L	$16 p$	$\bigcirc \mathrm{CBI}$	250
2 N 1893	54p	2N3904	$35 p$	AFI24	24p	BC214L	$16 p$	OC8IO	25p
2N2147	95p	2N3906	350	AF127	22p	BCY70	18p	ZTX300	14p
2N2218	34p	2 N 405 B	13 p	AFl39	$33 p$	BCY71	33p	$2 \mathrm{Z} \times 301$	16
2N2218A	44p	2 N 4059	10p	AF239	36 p	BCY72	15p	2TX302	22p
2N2219	38p	2N4060	$11 p$	ASY26	27p	BFII 15	23p	2 ZTX 303	22p
2 N 2219 A	53p	2 N 4061	$11 p$	ASY28	27p	BF167	$18 p$	ZTX304	27p
2 N 2270	62p	2N4062	12p	BC107	12p	BF173	19p	ZTX500	18 p
2N2369A	19p	2 N 4124	18p	BCIO日	$11 p$	BF194	14p	ZTX501	21
2N2483	35p	2N4126	27p	8C109	12p	BFI9S	$15 p$	$2 \mathrm{~T} \times 502$	$21 p$
2 N 2484	42p	2N4284	15p	BC125	$15 p$	BF×29	319	$2 \mathrm{TX502}$	25p
2N2646	47p	2N4286	15 p	BC126	22p	BFX84	25p	$2 \mathrm{~T} \times 503$	22p
2N2904A	42p	2N4289	15p	BC147	10p	BFX8S	52p	Z TX504	52

RESISTORS

Appointed distributors for
SIEMENS (U.K.) LTD.
Appointed stockists
NEWMARKET TRANSISTORS
RADIOHM POTENTIOMETERS

SAVE 66.25 ON THE NEW

 ENGLEFIELD 840 AMPLIFIERThis latest Peak Sound high fidelity amplifier in facility for adding in ster FM formance characteristics and luxurious styling in black, blue, red or dark green. As 439.75 in black, blue, red or dark green. As $\mathbf{4 8} \mathbf{8 5} 5$
advertised at $\mathbf{t 4 5}$. Our price, net

MAINLINE AMPLIFIER KITS
70W. power amplifier, $\mathbf{6} 12.60$ nets

30 WATT BAILEY AMPLIFIER PARTS

Transistors and PCB for one channel 66.46 Capacitors, resistors (metal oxide), and transistors Complete unregulated power supply pack, 64.75 suitable hearsink 100 N space $400 \mathrm{C}, 55 \mathrm{p}$

INTEGRATED CIRCUITS SIEMENS
 rit

We stock full range of all types in stock for very widerange of applications. Forfull details te our latest components list. Please send PLESSEY SL4030 7.5 ohms. $\mathbf{6 2} \cdot 10$ netr. Application data 10 p .

S-DeCs putan end to birds nesting
Components just plue in-saves time-
of components. S-Dec (70 points) $\mathbf{~} 1.00$
T-Dec. may be temperature-cycled (208 points) 62.50 Also μ-Decs and IC carriers.

INDICATOR LAMPS

NEON chrome bezel, round red NR/R, 24p chrome bezel, round amber NR/A, 24p; chrome bezel, round clear NR/C, 24p. Neon, square red type L55C/R, 18p; amber type LSSC/A, 18p; clear cype LSSC/C, 18p. All above are for 240 V main operation. Filament types: 6V, 0 04A squareredtype 30p: 6 V 0.04A clear type $\mathrm{L55C} / \mathrm{C}-6 \mathrm{~V}$, 30 p : 6 V 0.04 A green type L.55C/G.6V 30D: 12 V . 0.04 A LSSC/R-12V. 34p; 34V 0.04A LSSC/R-2BV, 45p.

SIEMENS 5\% TOLERANCE POLYCARBONATE CAPACITORS

250 V up $100.1 \mathrm{mF}: 100 \mathrm{~V} 0.1 \mathrm{mF}$ and above $0.01,0.012,0.015,0.018,0.022,0.027$ $0.033,0.039,0.047,0.056,0.068,0.082,0.1,0.12$ $0.27,0.18,0.22$

DIN CONNECTORS

Loudspeaker	2-pole	plug	socket 10 p
Audio	3-pole	13 p	10p
Audio	4-pole	$14 p$	12 p
Audio	5-pole 180deg.	15p	12p
Audio	5 -pole 240 deg.	15p	12p
Audio	6-pole	15p	13 p

NOW READY-1971/72
ELECTROVALUE CATALOGUE
64 pages plus covers. Thousands of items plus
classified information and illustrations.
Post free
obtained with the extremely narrow beam of one degree obtained by this aerial system, using a phaseswitched receiver.

An outstanding example of the grating technique is the crossed dish arrangement set up by Christiansen in Australia. This crossed gratting consisted of two rows of 19 fi dishes, one line north/south and the other east/west. There were 16 aerials in each arm. This system, which became known as the Chris Cross, presents an array of beams pointing skywards. Though it would show confused records of discrete sources, it is specially suitable for the purpose for which it was designed, that is, the detailed study of the sun.

Fig. 3.2. Pattern recorded on phase-switching interferometer

Fig. 3.3. Rotating lobe interferometer

Another type of grating array is that at Nancay in France. It consists of 32 dishes in line and has a resolution of 4 minutes of arc at a frequency of 169 MHz . It is the longest in the world, being $1 / 55 \mathrm{~km}$ long.

The Mills Cross designed by B. Y. Mills of Australia has two arms which again are arranged north/south, east/west, and consists of rows of dipoles. The result is a pencil beam of small width at the centre; the pattern produced is seen in Fig. 3.6. The system has a very high resolving power, but is not so sensitive as other methods. It is, however, very valuable as a tool to study fine detail of the sky radiation.

Fig. 3.4. A grating interferometer: (o) arrangement of aerials; (b) reception pottern

aerial beam width 1 degree
Fig. 3.5. Recording of the sun obtained from the aerial system shown in Fig. 3.4 used in conjunction with a phase-switched receiver

Fig. 3.6. Mills cross grating array

Fig. 3.8. The radio source Cassiopela A. Brightness distribution at $/ 40 \mathrm{MHz}$ (part of a survey by Ryle, Elsmore and Neville)

APERTURE SYNTHESIS

Still another system for increasing resolving power is that of aperture synthesis. If an aerial is moved successively to a number of positions in a given area a detailed plot of that area can be made and detail observed that cannot be equalled by any other method. A number of ways are available to do this.
One system first used at Cambridge by Ryle consisted of a fixed base line of aerials and a smaller movable aerial that could take up any position in a rectangle. By observing at each position, a statistical evaluation could be made of the intensity of variations over the whole area. This was later improved by a system which had one fixed line of aerials and another which ran on a railway track at right angles to it. This is shown in Fig. 3.7.

The one-mile telescope with its three dishes is a further extension of the aperture synthesis technique pioneered by Ryle and his team. Strictly speaking, this should be called "supersynthesis", since its combination of aerials has so many variations of positions. The synthesised results are processed on a computer and fed into a special plotter which shows the intensity variation of the sources like a relief map. An example of this is shown in Fig. 3.8.

FOUR MAIN TYPES OF RADIATION

The radiation that originates in the galaxy and the universe covers a wide range. However, so far as radio astronomy is concerned, the radiation that can be detected is somewhat restricted and depends very largely upon the site of the observatory, that is whether the radio telescope is on the earth or outside the earth.

The limitation so far as earth based observatories are concerned is the radio window. Within this part of the spectrum there are four main groups of radiation. Not all the stars or star systems that can be observed with optical telescopes have detectable radiation in the radio part of the spectrum, indeed many of them are seen and not heard. Conversely, many sources of radiation that are detected cannot be identified optically.

Much of the limitation is governed by the techniques that are at present available for radio-
astronomy. Within these limits the four main groups of radiation detected are: Synchroton Radiation, Ionised Hydrogen Gas, Neutral Hydrogen Gas, and Discrete Sources.

SYNCHROTON RADIATION

The physics of synchroton radiation is well understood and is at present applied in particle accelerators used in nuclear investigations. Synchroton radiation is produced when an electron enters a magnetic field. The field compels the electron to spiral round the lines of force and the high speed that is imparted to it causes. it to radiate in the metre-wave band. It is this kind of radiation that is detected in the Milky Way and in the halo of the galaxy. It also appears in the radiation from the planet Jupiter.

IONISED HYDROGEN GAS

The emission from ionised hydrogen is also known as thermal emission. Near hot stars the hydrogen becomes ionised, that is the electron is ejected from the atom of hydrogen leaving the proton. Under these conditions there exist free electrons and protons. When an electron passes near a proton it is accelerated but may not be captured. The high acceleration of the electron causes the emission of radiation in the centimetre wavelength band. This type of radiation is abundant in the plane of the Milky Way.

NEUTRAL HYDROGEN GAS

Neutral hydrogen appears in clouds of gas and it was predicted by Van de Hulst in 1944 that this gas would emit radiation at a wavelength of 21 centimetres. It is often referred to as the 21 centimetre line or H.I. line.

Van de Hulst made his prediction as a result of reading a paper by the American Amateur, Grote Reber, who had studied what he called cosmic noise. In 1951 Ewan in America proved the existence of the line. It can be detected by emission and absorption.
In emission the radiation is caused by the change of direction of the spin of the electron as it orbits

HEARING AID AMPLIFIERS (Ex behind ear cleal alds) 3 transistors on tiny only about half as big as oxo cube thele thing with sub-niniature microphnue anil L.S, attarheil 48.50 .

MAINS OPERATED SOLENOIDS
Model 772-sumall but power ful hin . pull-approx. size 1 Model $400 / 1 \mathrm{inn}$, pull. Size $21 \times 2 \times 1 \mathrm{in}, 76 \mathrm{p}$. 21.80 phis 20 p pont. and insurance

BEST QUALITY BRITISH MADE ELECTRICAL PLUGS AT APPROX HALF PRICE
$1 亏$ amp 3 pin, 10 p each or ten for 90 p ; \rfloor amp 3 pin, 8 e each or ten for 70 p ; 5 amp 2 pin, 5 p each or ten for 46p.

DRIL
L CONTROLLER NEW IKW MODEL

Electronically changes speed from approximately 10 ress. to
maximum. Full power at maximum. Full power at
all speeds by flnger-tip all speeils by friger-tip
control. Kit includes all arts, case, everything all full instructions. 81.50 plus Made up model also avail MAINS MOTOR Precision made - ax ased in record decks and tape recordersfan, blower, heaters, etc. New and perfect.
Bnip at sop, Postage 15p for first one then $\overline{0} \mathrm{p}$ for each one orderecl.
NEED A SPECIAL SWITCH? Double Lea! Contact. Very slight pressure closes both contacts, 6p
rod suitable for operating rod suitable for operating.
50 each, $45 p$ doz. miniature WAFER SWITCHES
2
3
pole, ${ }^{2}$ way- 4 pole, ${ }^{2}$ way- ${ }^{2}$ way- 4 pole, 3 way-2 pole, 4 way- 3 pole, 4 way- 2 pole ti way-1 pole, 12 way, All at 18p
each. $\varepsilon 1.80$ dozen, your assort ment.

WATERPROOF REATIMG E ELEMENT 26 yards length 70W, Self-regulatin temperature control. 50p post free.

MICRO SWITCH
5 amp , changeover contacts, 9 p
each, 21 doz 15 amp . On/of 10 p each, 15 amp, changeover

MAINS OPERATED CONTACTOR

$$
\text { wo } 33 \mathrm{p} \text {. }
$$

EXTRACTOR FAN

Cleans the air at the rate of 10,000 eubic ft . per hour. rooms, etc., it's so quiet it can hardly be heard. Compact, \tilde{v}_{2}^{1} casing with J!" fan blades K it comprises motor, fa blades, sheet steel casing, pul switch, mains connector, and
fixing brackete, 28 plus 3 b fixing brackete, 82 plus 3 bit

MAINS TRANSISTOR POWER PACK

Designed to operate transistor sets and amplifiers. Adjustable output fiV, $9 \mathrm{~V}, 12 \mathrm{~V}$ for up to 500 m A class 8 working). Takes the place of any of the PPO and batteries. PP1, PP3, PP4, PP6, PP ormer rectifer soothing and logd resiator former rectifier, smoothing and load resjator 88p, plus 18 p postage

OUT OF SEASON BARGAIN TANGENTIAL HEATERS
Once again we are able to make a special bargain offer of these very popular heating units. Tangential heatery although brought out a few years ago are still the latest and best type as nothing has yet been marle which could be called an improvement on them. The Tangential unit is atl the only one used in good quality heater unde by Hoover, G.E.C. and all the famou numes. The umit conuprises quifet running a.c. induction motor with pecial bearings, the tangential inpeller and a a section heater elemen which allows switching half and full heat in the case of the 2 kW and one also fitted with a salety cutout to cut the heaters should the impelter stop or the air flow be impeded. They are free-atanding and need only the simplest of cases, even a wooden cabinet is suitable or the plinth of the titchen cabinet. Lots of customers missed our apecial Summer offer of these heaters last year su order early. $200 / 240$ okw model 28.50 . $200 / 240$ 3W niodel $23 \cdot 50$. Control switch heaters only 20 p or two-heat, cold-bluw and ofl 36p. Fostage and insuranee 33 p on heaters.

TANDARD WAFER SWITCHES

tandard y in epindle $2 i n$ long-with locking washer and nut.

1 pole	40p	40p	40p	40p	40p	40p	40 p	40p	40p
$\underline{2}$ poles	400	40p	408	40p	40p	40p	40 p	70p	70p
3 poles	40p	40p	40 p	400	70 p	700	70p	95p	95p
4 poles	40p	40p	40p	70p	70p	$70 p$	70p	21.20	21.20
3 poles	40p	40p	700	70p	95p	$95 p$	95p	21.45	21.45
6) poles	40	70p	70 p	70p	96p	95p	95p	21.70	81.70
7 poles	70p	70 p	700	96p	\$1.20	21.20	21.20	21.85	\&1.85
8 poles	70p	70p	70p	96p	21.20	81.20	21.20	28-20	22.20
4 poles	70D	70p	95p	05 p	21.45	21.45	21.45	22.45	88.45
10 poles	70 p	70p	95p	21.20	21.45	21.45	21.45	82.70	28.70
11 poles	70p	95p	95p	21.20	21.70	81.70	\&1.70	22.85	28.85
12 poles	700	95p	950	21.20	81.70	81.70	21.70	23.20	28.20

AMPLIFIER MAINS TRANSFORMER

50V $1:$ amp. Upright mounting with fixing brackets and metal shrouds tor contain magnetic feld, $00 \mathrm{e} / \mathrm{s}$ prinary, tapped $110 \mathrm{~V}, 217,210 \mathrm{~V}$. 230 and 20. Tro secondarien, one $u 0{ }_{2}$ amp, other of I amp for pilot light, etc. 21.95, postage 30 p .

BATTERY CONDITION TESTER

Made by Mallory but auitable for all batteries made by Ever Ready and others, nost of which are zinc carbol types but also mercury manganese-nicad-ailver oxlde and alkaline batteries may be tested. The tester puts a dunning load on the battery and the meter acale indicates the condition dependlng upon which section the pointer reats. The section reads "replace", "weak" $3_{4}^{3} \times 66_{4} \times 2$ in with leads and prods. Price 21.75 size 20 p portage.

COMPUTER TAPE

B, 400ft of the best magnetic tape money can biy. Almost un successful results with video as well as sound recordinge. 1^{*} wid 81, 3" 88p, I" 76p. P. \& P. 33p exira. Spare spools 60 p each Cassette to hold spool 50p each. Nit extra poatage if orilerent

CAPACITOR DISCHARGE IGNITION SYSTEM

Well proved that it helps atarting and increases petrol econonis. Also increases acceleration but saves contact wear. For details see Practical Wireless June. Gives optional canacitor or standard ignition at the flick of a wwiteh. Price

MICROSONIC KEYCHAIN RADIO

transistor Keychain Radio in very pretty case, size $2{ }_{c}^{3} \times \frac{2!}{2!} \times 1$ in.-complete with ferrite rod. Loudspeaker.
In transit from the East these seta suffered corrosion as the batteries were left in thent but when this corrosion is cleared away hey shond work-offeret without guaran recexcept that they are new. Price only 21.25 less batteries, plus 13p post, 6 for 7 post free. Pair of rechargeable

MAINS RELAY BARGAIN

Special this month are some single, double and treble pole changeover relays Contacts rated at 15 amps. Operating coil wound for 240 V s.C. (foml British Make. L'nused. Size approx. $1: \times 1$ lll. Open conat ruction. single pole, 25 p each, 10 for $\$ 2.25$.

Double pole, 32 p each, 10 for 28.90 . Treble pole, 40 p each, 10 for $28 \cdot 60$.

AMP VARIAC CONTROLLERS

With this you can vary the voltage applied to
ero to fuli mains without som pplication therefore in generating undue heat. One obvious ittle used-as goorl an new offered at approx. half price. \& lus $7 \overline{3}$, pord and inu.

OVEN THERMOMETER WITH ALARM Besically this is a thermometer which is callibrated between $300^{\circ} \mathrm{C}$ and $900^{\circ} \mathrm{C}$ using a sensor on a fiexible lead. The second feature, however, is an alarm which can be set anyHhere within the temperature range. When the temperature
is reached a buzzer sounds. Presumably the buzzer couli is reached a buzzer sounds. Presumably the buzzer could Limited quantity only of theae units, price $\mathbf{2 3} \mathbf{5 0}$, includey thermometer-scalesensor and buzzer.

ELECTRIC CLOCK
WITH 25 AMP SWITCH rade by Smith's, these unta are as fitted to many top quality clock is mains driven nid fre quency controlled to it is quency controled to it is exdiala enable switch on and off or $a w j t c h l n g$ on tape recorders, Offered at only raction of the regular price-new and unued nily 28. less than the ralue of the clock slonepost and insurance 14 p

P.W TREASURE TRACER

As described in August issue of Practical Wireless
Send today for price list of parts
TELESCOPIC
AERIAL
or transmitter, chrome pla
ted-six sections, extends fron
screw. 88p KNUC'KLED MODEL FOA .M. 50 p.
QUICK CUPPA
Mind Immersion Heater, $3 \mathbf{3 0 W}$. 200/240V. Boils full cup in about two minutes. Lse any socket or lamp holder. Hare at bedside for
tea, baby's food, etc. 81.25 , poat and babys food, etc. 21.25, port 21.50 plus $14 \mathrm{p} P$. \& P.

THYRISTOR LIGHT

DIMMERS

Will dim incandescent lighting up to 600 W from full brilliance to out. Assembled
ready to install, 23.

12 VOLT II AMP
POWER PACK $\underset{\text { This comprises }}{230 / 240 \mathrm{~V}}$ double wound $230 / 240 \mathrm{~V}$ mains transformer with full waye
rectifer and $2000 \mathrm{mu} / \mathrm{d} / \mathrm{d}$ rectifier and $2000 \mathrm{~m} / / / \mathrm{d} /$
smoothing. Price $21-50$ plum smoothing.
$20 \mathrm{p} P . \& \mathrm{P}$.

REED SWITCHES

Glass encased, switches operated by external magnet-gold weddet contacts. We can now offer
3types:
Miniature, lin long \times approximately $\begin{aligned} & \text { in } \\ & \text { (liameter. Will make and break up to } \frac{1}{d} \text { up to }\end{aligned}$ liameter. Will make and break up to 1 A up to 300 volta. Price 13 p each. $21 \cdot 20$ dozen,
8 tandard. 2 in . long $\times 3 / 16 \mathrm{in}$. diamete tandard. 2in. long $\times 3 / 16 i n$. diameter. Thi wilt break currents of up to 1 A , voltages up to 250 Flat. Flat type, 2 in . long, Just over $1 / 1$ approximately in. wide. The Standard Type Hattened out, so that it can be fittesl into a smaller space or a larger quantity may be packed fnto a $8 q u a r e$ solenoid. Rating lamp 200 volts. Price Small ceramic per dozen,
witcher $9 p$ each magnets in operate theae reet dozen.

PUSH BUTTON CHANGEOVER

 SWITCHESThis is a Honeywell micro switch mounted on a metal irane with spring loaded
plunger to uperate. Panel fixing by single ${ }^{3}$ in hole. Single Changeover switch 25 p
each or ten for $22-26$, changeover switches operated by single pluncer, 350 each changeover switches 45 D each or ten for $\$ 4.05$

Meter Box. Designed to take 3 in flush mounting meter. This has a $2 l i n$ diameter hole with 3 meter fixing holes. Overall size of box 4×4
$\times 2$ in deep, hinged to a metal base 2 ! in by 4 in $\times 2 y$ in deep, hinged to a
Pilot Bulbs. 6-8 Volts 15 anp tubular MES British made pood quality. 1 dozen in a box. 25p per box.
Amp Connector 8trips. This is the normal type connector strip. Tweve connectors with grub crews mounted in a line and moulded in polyry
24V Bozser. Made by (B.E.C. in brown heary bakelite case, these work off a.c. masins through tep down transformer. Price 40p each.
9 Pin Plag and Socket. Suitable for connecting multicore fiexer to equipment. Socket size pprox. in ciameter. Plug size $9 / 10 \mathrm{in}$ dianteter ith Rex entry. 20p pai
A Mew gerviee to Readert. A bulletin bringing news of new lines, special snips and 'too few to adver ise" lines will be postel to subscribers during firat "Advance Advert New i". bud the will be called 60 p . per year. Subscribers will also receive our completed 1971 catalogue when this is published

Where poatage is not stated then orders over $£ 5$ are pobt frec. Below ej add 20p. Semiconductors add up post. Over \&l post frec. B.I.E. with inquiries pleake.

J. BULL (ELECTRICAL) LTD.

Dept P.E., 7 Park Street, Croydon CRO IYD
Callers to Electronics (Croydon) Ltd., 102/3 Tamworth Rd., Croydon

AT HOME SOLDERING?

Our miniature irons are used all over the world in that most exacting marketthe modern electronics industry, the rapidly developing technology of which has made possible the enormous growth of activities available to the technical hobbyist.

He now also requires equipment to the highest commercial standards. Like our soldering irons, for example.

Look at the ADAMIN Model 15. If there is a smaller iron for mains use, we haven't seen it. It weighs a mere $\frac{1}{2} 0 z$ (less flex) and is about 7 inches long.

But it has a big performance. Used with interchangeable bits from $\frac{3}{64}$ in to $\frac{3}{16}$ in it is suitable for all work, from Hearing Aids to Colour Television.

Use the mains version at home or clip the 12 volt model to the car battery or 12 volt power unit (consumption only 1.25A),

Send for HOBBY PACK 37 consisting of Model 15 iron with four bits, $\frac{3}{64} \mathrm{in}$, $\frac{3}{32} \mathrm{in}, \frac{1}{6} \mathrm{in}$, $\frac{3}{16} \mathrm{in}$ and tube of Bit Lubricant. State voltage required12 V or $220 / 240 \mathrm{~V}$

PRICE: HOBBY PACK $£ 2.30$
P. \& P. FREE

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon CR9 2LL
Telephone 01-688 8589 and 4559

LiND-AiR AUDiO

thuslast prepared to assemble there excellent modules to make a stereo ass.471 () requirel) Amplifer 84.47! (2 requirei) 89.971 PZ - Power tor 1 Pre-amplither er Supply Unit $84 \cdot 97$! SHMCLAIR PROJECT 80. Pbekage leal price 18 -85. . Project io is rupplied complete With plinth mounting.

SINCLAIR IC.IO

 INTEGRATED CIRCUIT 10 W Amplifier. Size only lin $\times 0$-4in $\times 0.2 i n$. A true hi-fi amplifier coniplete with manual giving details of a wide range of applications and inatructions.

8IMCLAIR IC10

with apecial transfurmer to operate from a.c. mains $230 / 250 \mathrm{~V}$. Output 13 V at 0.5 amp . $23.98, \mathrm{P} . \& \mathrm{P} .1 \overline{\mathrm{a}} \mathrm{p}$.

No Heddy tape thrcanling, just shap in a compact cansette. Anazing performance from all tranistorised circuit. Auto leve control. Lilxuriuns wool grain and black finish. Runs on 4.011 batteries. Complete with remote control mike, stand and atrap. 90 min. play Hunl. with case 28040).

Bump in stereo
amplitier for an
lithe as ver 10.0. Nond for Mullard " Do It Yourself stereo " booklet. All items in stock.

S-DeC BREADBOARD

Solderless breadboard fanela, fur fast reliable component conzections. Single Decta. One S-DeC with Control Pantl. Jig and Accebsories for solderless connections to controls. etc., with hooklet "Projects on s-DeC" giving construction detaila for a variet y o circuits. 11. P. \& P. 171p.

- DeC KIT. Four s.DeC with two Control Panels, Jigs and Accessorie and the booklet "Projects on B-DeC plastic case. lleal for the professiona

HI-FI CATALOGUE
100 pages fully illustrateil with 8 page P.A. section. All leading makes and syatetus. $85 p$. P, \& P. Fp .

All mail orders to: Dept. PE8 53 TOTTENHAM COURT ROAD LONDON, W.1. Tel. 01-6371601 Callers welcome a/so at : 18-19 Tottenham Court Road London, W.1. Tel. 01-580 2255 25 Tottenham Court Road London, W.1. Tel. 01-580 7679 149 Fleet St., E.C.4. Tel. 01-353 1419 94-96 Upper Parliament Street Nottingham. Tel. 40403
round the proton. The action of the reversal of the spin causes the radiation. Because it emits at the single frequency it differs from the other types of radiation which can cover a broad band. Because it is singular in this effect it is possible to detect the radiation in other sources.

If a cloud of neutral hydrogen lies between the observer and a source of radiation, and is sufficiently thick optically, then the hydrogen line will be absorbed. The structure of the galaxy has been plotted using this method of detection of spectral lines. The comparison type of receiver is used for this purpose and is shown in Fig. 3.9. The kind of recording which is made is also shown.

DISCRETE SOURCES

The discrete sources of radiation emit over a wide range of frequencies. Many of these sources have been identified and much is known about them. The Crab Nebula was one of the first to be identified.

A great deal of continuous observation has been given to this object which was the star which exploded some nine hundred years ago as observed by the Chinese astronomers. It is in our own galaxy

Fig. 3.9. The detection of spectral lines: (a) the switched comparison receiver; (b) typical outputs from receiver

Fig. 3.IO. A multi-channel spectrometer
and is about 4,100 light years away from us. This means that the actual explosion took place over 5,000 years ago. It has been a source of great power, much of which was not explainable by ordinary theories.
Now, since certain polarisation measurements have been made, and pulsar investigations carried out, a number of puzzling features have been resolved. Other sources of a similar nature have been mentioned earlier in these articles. Many sources have been found in the galaxy, but many more exist beyond it since they appear to be scattered all over the sky. Some of these sources may be exploding star (or Nova) remnants; some are quasars, and some will be pulsars.

RADIO SPECTROMETERS

A number of special lines have been discovered at various frequencies, such as the OH line (a hydroxyl radical) and, the latest to be recognised, those of ammonia and formaldehyde.
The instruments used for these measurements are called radio spectrometers. Such instruments fall into two types: one has a number of channels each separated by narrow band filters, and the other a system where the frequency is changed rapidly over a band of frequencies-this is known as the swept frequency spectrometer.
As these spectral lines are very narrow, the spectrum covering as little as 2 MHz , the hydrogen line can be used to measure the speed at which the parts of the galaxy are moving. It is therefore an important tool with which to explore the universe.
The first type of radio spectrometer is shown in block diagram Fig. 3.10. Spectrometers are used for other purposes, for example, the study of the sun over a wide frequency range. The swept frequency spectrometer has been used for the study of decametre radiation from Jupiter. In this case the range of operation was from 10 MHz to 42 MHz .

OCCULATION

So far, apparatus has been described for the techniques employed in radio astronomy, and perhaps these various systems might be called the tools. There are however, a number of "tricks" by which the radiations can be studied. For example, in June each year the Crab Nebula passes (apparently) behind the sun. This fact, and also because the level of radiation from the Crab is very high, is used to study the corona of the sun.

The "radio" sun is very much more extended than the "face" that can be seen and which is called the photosphere. The sun has a corona and this extends way beyond that which can normally only be seen at the time of an eclipse. Radio astronomers however can study this atmosphere of the sun at any time.
When the radio waves from the Crab are behind the corona a reduction of the intensity of the Crab radiation is noted. This reduction continues until the Crab is blotted out completely, but it re-appears as it passes out the other side. By this method the density of the corona at various frequencies can be readily determined. This, incidentally, is another project that amateurs can attempt with modest apparatus.
Another type of occultation measurement is to use the moon and planets. As the moon or planet passes
in front of a radio source, the power of that source is reduced or sometimes blotted out altogether, depending on its size. Predictions of sources to be affected is circulated to those concerned by the Royal Observatory, and regular observations are carried out at various frequencies.

POLARIMETERS

Generally, the radio waves are received in one plane of propogation, but may well be randomly polarised. To examine this feature, polarimeters are used. Polarimeters consist of aerials which are crossed or arranged in the form of a square with the sections arranged in phase combinations such that the direction of rotation can be detected.

The helical aerial is very useful in this connection, for it can be arranged to give right or left handed polarisation. A system containing helices of both right and left hand polar diagrams can collect a large amount of data. The evaluation is quite a difficult task, for the radiation is rarely consistently polarised in one sense or the other and is more generally elliptical than circular.

RADAR ASTRONOMY

Radar astronomy is a special branch and has its own techniques. The equipment involved is necessarily complex and costly. It is certainly beyond the resources of private individuals. As with any form of radio transmission, a licence is required to operate radar. equipment. Participation in radar astronomy is thus, automatically, the prerogative of certain scientific or research establishments.
Contributions made by radar techniques are of great importance, as the following few examples will indicate. Signals bounced off the moon gave a clue to surface conditions before unmanned and manned landings. Venus has been studied and at last an agreed period of rotation has now been arrived at. Radar has been used to study the sun, though of course, enormous powers are necessary for this work. Active studies of meteors have been carried out by radar methods and represent an enormous amount of pioneering work which began in the early days of Jodrell Bank and still continues. At Sheffield the study of meteors with the aid of radar has made great progress under Dr Kaiser. The temperature of the planets and the moon has been closely studied by radar methods.
The next two articles will deal with the equipment needed to set up a small radio astronomy observatory. A project related to solar observations will be detailed and the methods of recording the results explained.

BACK NUMBERS

We very much regret that Back Numbers of Practical electronics can no longer be supplied. Consequently, it is now more important than ever to place an advanced order with your newsagent to make sure of getting your copy.
Alternatively by taking out a subscription order your own personal copy will be sent direct by post to your permanent address anywhere in the world.
Further details are given on the "Contents" page.

TELEVISION SERVICING HANDBOOK (3rd edition)

By Gordon J. King
Published by Newnes-Butterworth
357 pages, 10 in $\times 6 \frac{1}{2}$ in. Price $\mathbf{E 3} \cdot 80$

THE most significant difference in this the third edition, compared with earlier editions, is the inclusion of colour television techniques and problems. Dual standard and 625 -line only sets are also included.

Since all these types have shown how transistors and integrated circuits can be usefully employed, the last chapter is a very good treatise on methods adopted commercially, and shows the significant differences from valve circuits. The part on integrated circuits is naturally very short because, at the time of writing the book, the applications to television were in the experimental stages.

My only other comment on an otherwise excellently written book is that perhaps the chapter headings are a bit misleading, because long circuit descriptions and functions are given before fault finding methods. The amount of space so devoted is sometimes unrelated to the headings and cross reference to other chapters often becomes necessary.

The quality of paper and printing is excellent, as is necessary in the accurate reproduction of the pictorial matter taken directly from the screen.
M.A.C.

INTRODUCTION TO A.C. MACHINES CAPACITANCE AND CAPACITORS RESISTANCE AND OHM'S LAW INTRODUCTION TO D.C. MACHINES

Four programmed textbooks prepared by Educational Systems Ltd.
Published by Newnes-Butterworths.
Each book has 183 pages, $8 \frac{1}{4}$ in $\times 5 \frac{1}{2}$ in. Price 75 p

THESE are four titles from a series of ten uniform textbooks designed for class or private tuition in Engineering fundamentals, both practical and theoretical.
Each book is broken up in a number of sections. or programmes. In studying these sections the only requirement of the student is a pencil and paper with which to record his answers to the questions set out on each page.
All instruction is very well illustrated and contributes in no small measure to the effectiveness of this form of tuition.
As the student progresses through the book he is continually examined on his comprehension of the subject matter. Each section has revision notes and is completed with a short test.
Introduction to D.C. Machines covers generator principles, commutator action, the magnetic circuit, windings and motor principles.
Capacitance and Capacitors deals with atomic charge concepts and electrostatics. A final section of practical capacitors is instructive.
Resistance and Ohm's Law is concerned with the measurement of electricity in series and parallel circuits.

Introduction to A.C. Machines, proceeds from simple a.c. generation through three phase circuits. examines rotors and stator windings and is completed with sections on synchronous and induction motors.

G. F. MILWARD 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

VEROBOARD
$2 \operatorname{tin} \times \operatorname{lin} \times 0.15$ in $6 p \quad \sin \times 3$ in $\times 0.1 \sin 28 p \quad 34$ in $\times 3$ in $\times 0.1$ in $24 p$
 $3 \operatorname{in} \times 3 \sin \times 0.15$ in 20p 17 in $\times 3$ in $\times 0.15$ in 74p $\sin \times 3$ 3in $\times 0.1$ in 28p
$\operatorname{Sin} \times 2 \operatorname{tin} \times 0.15$ in 20p 3 in $\times 2$ in $\times 0.1$ in $21 p$ $\operatorname{Sin} \times 2 \frac{1}{2} \times 0.15 i n 20 p 3$ in $\times 2 \frac{1}{2}$ in $\times 0.1$ in $21 p$
Spot Face Cucter 38p. Pin Insert Tool 48p. Terminal Pins (0.1 or 0.15) 36 for 18p. Special Offer Pack consisting of $52 \frac{1}{2}$ in \times lin boards and a Spot Face Cutter-50p.

RECORD PLAYER CARTRIDGES. Well below normal prices!
G90 Magnetic Stereo Cartridges, Diamond Needle, 6 mV output, 64 . ACOS GP $67 / 2$ (Mono, Crystal) 75p. ACOS GP $91 / 3$ (Compatible, Crystal) \&1. ACOS GP 93/1 (Stereo, Crystal, Sapphire) \&I•25. ACOS GP 93/ID (Stereo, Crystal,
Diamond) \&1.63. ACOS GP 94/1 (Stereo, Ceramic, Sapphire) ©i.50. ACOS GP 94/10 (Stereo, Ceramic, Diamond) \&1.88. ACOS GP95/l (Stereo, Crystal with two L.P./Stereo needles) $\mathrm{El} \cdot \mathbf{2 5}$.
TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reversed polarity protection. 8 watt type with reflector suitable for tents,
 Postage/Packing 25p. THWacking 25p. THESE CAN BE SENT ON APPROVAL AGAINST FULL PAYMENT.

MULLARD POLYESTER CONDENSERS
$1,000 \mathrm{pF}, 1,200 \mathrm{pF}, 1,500 \mathrm{pF}, 1,800 \mathrm{pF}, 2,200 \mathrm{pF}, 15 \mathrm{p}$ per dozen (all 400 V working). $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.27 \mu \mathrm{~F}$, 30 p per dozen (all 160 V working). 25% discount for lots of 100 of any one type.

RESISTORS
$\frac{1}{2}$ and $\frac{1}{2}$ Watt. Most values in stock. 50p per 100. 10p per dozen of any one value. WIRE WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards. I watt to 50 watts. A large percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these cari only be offered "assorted" at 50p per dozen.
SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Large range in stock, 75p per 100 of any one value. $15 p$ per dozen.
NECRDING TAPE BARGAIN: The very best British Made lownoise high-quality Tape! Sin Standard 3ap. Long-play 45p. 5tin Standard fantastic number of repeat orders for this Lape. Might we suggest that you order now whilst we still have a good stock at these low prices?
STOCKTAKING CLEARANCE! IMPOSSIBLE TO REPEAT!
We have huge numbers of components in quantities too small to advertise individually. In order to "clear the decks" we have made up parcels containing a mixture of carbon and wire-wound resistors, electrolytic and paper conIt is emphasised that these are mixed parcels only-contents cannot be stipulated! Sold only by weight.

Gross weight 2 lb. \&l (postage 20p)
Gross weight 5 lb. 62 (postage 30p)

NEW : NEW: NEW! NEW!
An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultraviolet.) Spray with developer, rinse and etch in normal manner.
Light sensitive aerosol spray $\mathbf{6} 1.00$
Developer spray 50p
SPECIAL S0p PACKS. ORDER IO PACKS AND WE WILLINCLUDE AN EXTRA ONE FREE ! ! ! !
assorted
assorted
Wire-wound 1 to 3 watt
5 to 7 watt
10 watts
Multi-tapped
PAPER CONDENSERS Trtypes

Miniature
ELECTROLYTIC $100 ~ 50 \mathrm{p}$
100

ELECTROLYTIC CO
Radia/Ty
Radio/TV
Transistor eypes
Mixed (both types)
POLYSTYRENE
CONDENSERS
MULLARD POLYESTER COND.
SILVER MICA
NUTS AND BOLTS. Mixed
ength/typ
8 B.A.
8 B.A.
6 B.A.
6 B.A.
4 B.A.
2 B.A.
EARPIECES. MAGNETIC
No Plug
2.5 mm Plu
2.5 mm Plug
3.5 mm Plug

500 MICRO-AMP LEVEL
METERS

TRANSISTORS

100	$50 p$
20	$50 p$
15	$50 p$
10	$50 p$
12	$50 p$
50	$50 p$
100	$50 p$

P.N.P. Untested but mainly

OCP7I equivalent

BY 127 Rectifiers
N4007 Rectifiers
(1200V peak)
\qquad
So
\qquad
$\begin{array}{ll}50 & 50 p \\ 5 & 50 p\end{array}$
Light-sensitive Diodes 10 50p
(These produce up to I mA from light)

STC $3 / 4$ Rectifiers
$450 p$
$650 p$
Solid Core. Insulated $100 y d 50 p$
Stranded ditto
SOLAR CELLS
$\begin{array}{ll}\text { Large Selenium } & 250 p \\ \text { Small } & 30 \mathrm{p}\end{array}$
(6 cells will power a Micromatic
CRYSTAL TAPE RECORDER
CRYSTAL TAPE RECORDER , 50 p
MIKES
CRYSTAL EARPIECES
3.5 mm Plug 250 p

TRANSISTORISED ${ }^{3}$ signal
Injector Kiz. 1 sop
Tracer
TRANSISTORISED CAR REV.
COUNTER KIT (Needs I mA
meter as indicator)
meter as indicator) AI 50p
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 15p.

components Shown aп口

While much discussion on component availability prevails on the domestic scene, let us not overlook some of the problems encountered in industry. Any visitor who regularly attends the Components Show at Olympia, organised by the R.E.C.M.F., will have gazed at the ground floor area from the gallery and admired the massive displays put on by large American and British companies. The view this year was not the same. Many of them were not there.

COMMERCIAL COMBAT

We walked downstairs to the ground floor to find out from close quarters what the electronic components industry is doing, and straight away were confronted by smaller displays, smaller stands (perhaps to suit the smaller components) but many of them. The Goliaths were missing-at least, most of them! There were several Davids finding out that exhibitions are big business (to them at any rate!).
It seems that the bigger the Company, the greater the economies, but are they always in the right direction? Millions of pounds are spent in commercial combat with sling and stone poised; consequently, the customer who is, let's face it, the reason for company existence is often almost cast off as a bore. The customers want the goods and the suppliers shout that they have the goods, but what happens in between is anybody's guess.
When you look more closely, the source of trouble becomes evident-the economic manipulation of hard cash. Are the priorities in the right quarters? Should the supplier spend money to sell any item in any quantity or spend to produce bigger and better cutout polystyrene lettering with complementary timber and hardboard structures and glossier brochures?

THE MISSING GIANTS

Well, this year's exhibition, extended over all three halls at Olympia, is a lesson to be learned for anyone in the business and here is the reason why.

It all began with the Vietnam War-no less. The U.S.A. has sunk billions of dollars in mortal combat and in space exploration too. The spin-off of technology from space work has made in-roads into electronics applications all over the world. Since the growth of electronics and associated technology requires capital investment, it is not surprising to learn that the electronics recession in America has spread to other influential countries, while expenditure on space research is reduced.

Consequently, some of the large component manufacturers, companies such as Motorola, Texas Instruments, Honeywell, Marconi-Elliott Microelectronics, Mitsubishi, Muirhead, SGS, were conspicuous by their absence. These are not all Amercian but it does indicate that the U.K. and Japan are influenced by American economics. On the other hand, a large American Government representation incorporating several small companies were apparently quiet.

CLOSED SHOP

On the home front we see the continued closing down of departments within the larger organisations so as to attempt to save on small outgoings. Of these, the most shattering is the closiure of Electroniques within the American ITT Company, which absorbed S.T.C. a few years ago. The large whitewashed display stand of ITT was mainly devoted to a raised platform, on which were paraded at occasional intervals four luxuriously clad young ladies covered in ITT components-a lavish display -with glib commentary selling the advantages of their components.
"We have it all!" was not our idea of apologising for the closure of Electroniques-a fine service in the past.

NEW LINEAR ICs

The foregoing may appear to be a rather grey picture of the exhibition, but should not be taken to imply that the electronics industry is in dire straits. Far from it! It was refreshing to find a buoyant mood among many participants, not the least being the ubiquitous Mullard, who had many new developments on display aimed for both consumer and industrial equipment, via trade outlets, of course.

A new range of eight integrated circuits designed for use in the signal processing stages of colour and monochrome receivers continues the trend for miniaturisation. Portable radio set makers can rejoice in the new integrated circuits, types TBA 690 and TBA 700, for these contain all the active stages of an a.m. $/ \mathrm{f} . \mathrm{m}$. receiver with the exception of the mixer. The TBA 690 will deliver an output of 0.5 W , and the TBA $700,1 \mathrm{w}$.

Integrated circuit type TBA 750 includes the mixer and all stages with the exception of the output stage. It can be used in high performance a.m. or a.m./f.m. receivers. Low power i.c. audio amplifiers have a
is correct here) and wish to eliminate much of the noise that drowns that signal, then Brookdeal Electronics of Bracknell, Berks, may be able to help. Their new "Lock-in" Amplifier type 401 is claimed to be capable of recovering the signal from noise which is 100,000 times greater than that signal. It's frequency range is 1 Hz to 50 kHz and the amplifier is battery operated.

Amid the problems of supply and demand, it is good to see that one company at least is interested in supplying "one-offs". Tape Recorder Spares Ltd. of London, S.E. 17 market pre-pack components for audio equipment, including plugs, sockets, drive belts, fuses, and connecting leads.

Newly introduced by ITT Components Group Europe is the Super-Permacolour television picture tube type A 67-150 X. A 26 in shadow mask tube with 110 degreee deflection angle and narrow 29 mm diameter) neck, the new tube is claimed to give a sharper picture than 90 degree large screen tubes. The overall length of the tube has been reduced by approximately $4 \cdot 3 \mathrm{in}$ (11 cm) to approximately 17 in $(43.1 \mathrm{~cm})$. This enables the depth of the receiver cabinet to be reduced accordingly. Specially designed for use with the tube are a new toroidal reflection yoke ITT Type FAS 110-3 and a convergence unit Type FRK 110-3.

Basic memory module of the Plessey Planar 850 core memory built on three printed circuit boards

Range of thyristors and triacs rated from 0.8A to 640A from Siemens (U.K.) Ltd. The Thyblock system is a disc shaped thyristor sandwiched between two aluminium extrusions for cooling
ready market for use in television receivers, record players, tape recorders and radiograms.

Unfortunately, it is quite easy to irrepairably damage these devices by accidently short circuiting the output. Plessey Microelectronics have successfully overcome this particular problem with the SL403D package (younger brother of SL403C) which is protected against permanent a.c. and d.c. shorts to ground of its input and output terminals.

LOCK-IN AMPLIFIER

Ever heard of a signal to noise ratio of -100 dB ? If you encounter such proportions (and that minus

CORE MEMORY

Plessey displayed a large range of components and equipment extending from optoelectronics to sheet metal work. A completely new product from the Memories Division, is the Planar 850 core memory (see photograph) which meets, in part, the increasing demand from industry of inexpensive core systems. This has a capacity of 4,09618 -bit words and, with other modules, this can be extended to 32,786 words.

Gresham Lion have brought out a higher density recording head. The dual gap read-after-write digital recording head is designed to record 36 separate tracks on lin tape.

A new integrated circuit incorporates the equivalent of 20 TTL packages in one with 30 connec-

EI-PRE-PAK

D MARKED			
ACl07	0.15	OC170	0.23
$A^{\text {ACl }} 126$	0.13	OC171	0.23
${ }_{\text {ACl }} 127$	0.17	OC200	0.25
${ }^{\text {ACli }} 18$	0.13	OC201	0.25
AC176	0.25	2G301	0.25
ACY17	0.15	2 G 303	0.13
AF239	0.37	BCII	0.10
AFI86	0.50	$2 \mathrm{~N} 1302-3$	0.20
AF139	0.37	2N1304.5	0.25
BC154	0.25	2N1306-7	0.30
BC171 = BC 107	0.13	2N1308-9	0.35
BC172 $=$ BC108	0.13	2N3819FET	0.45
BF194	0.15		
BF274	0.15	Power	
BFY50	0.20	Transistors	
85 Y 25	0.57	${ }^{\circ} \mathrm{C} 20$	0.50 0.30
BSY26	0.13		
BSY27	0.13	-	0.25
BSY28	0.13	$\mathrm{O}^{\circ} \mathrm{C} 28$	0.25 0.30
BSY29	0.13	${ }^{\circ} \mathrm{OC} 35$	0.30 0.25
BSY95A	0.15	OC36	0.25 0.37
OC41	0.13	ADI49	0.37 0.30
OC44	0.13	AUY10	0.30 1.25
$\bigcirc \mathrm{OC45}$	0.13		
$0 \mathrm{OC71}$	0.13	2N3055	
0 C 72	0.13	2N3055	0.63
$0 \mathrm{OC73}$	0.17	Diodes	
$0 \mathrm{OC8}$	0.13	AAY42	0.10
OC81D	0.13	OA95	0.10
$\mathrm{OCB3}^{\text {ce }}$	0.20	OA79	0.09
OC139	0.13	OA81	0.09
OC140	0.17	IN9114	0.07

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 50p WITH ORDERS

CLEARANCE LINES

BUMPER BUNDLES

tronic components tronic components, printed panels, switches 2 LBS IN WEIGHT FOR $\mathbb{f} \mid$ Post and packing 25p.

OUR VERY POPULAR 3p TRANSISTORS
FULLY TESTED \& GUARANTEED
TYPE " A " PNP Silicon alloy, metal TO-5 can. 25300 type, direct replacement for the OC200/203 range
TYPE " B " PNP Silicon, plastic encapsulation, low voltage but good gain, these are of the 2N3702/3 and $2 N 4059 / 62$ range.
TYPE "E"PNP Germanium AF or RF-please state on order. Fully marked and tested
TYPE " F " NPN Silicon plastic encapsulation, low noise amplifier of the $2 \mathrm{~N} 3708,9,10,11$.

BULK BUYING CORNER

NPN/PNP Silicon Planar Transistors, mixed, untested, similar to 2N706/6A/B, SSY26-29, BSY95A, BCY70, ete. $\mathbf{6 4 . 2 5}$ per 500 ; $£ 8$ per 1,000 .

Silicon Planar NPN Plastic Transistors, untested similar to $2 \mathrm{~N} 3707-11$, etc., $\mathbf{4} .25$ per 500; $\mathbf{4 8}$ per 1.000.

Siticon Planar Diodes, DO-7 Glass, similar to OA200/202, BAY31-36, $\mathbf{t 4} \cdot 50$ per 1,000

NPN/PNP Silicon Planar Transistors, Plastic TO-IB, similar to $\mathrm{BCl13/4}$ BCI53/4, BFI53/160, etc. $\$ 4.25$ per $500 ; \$ 8$ per 1.000.

OC44, OC55 Transistors fully marked and tested $500+$ at 8 p each; $1,000+$ at 6 p each.

OC7I Transistors, fully marked and tested, $500+$ at 6p each; $1,000+$ at $5 p$ each.

3823E Field effect Transistors. This is the 2N3823 in Plastic Case, $500+13 p$ each; $1.000+10 p$ each

I amp Miniature Plastic Diodes: IN4001, $500+3 p$ each; $1,000+3$ p each iN4004, $500+$ at 5p each, $1,000+$ at 4 p each iN4006, 500 + at 6p each, $1,000+$ at $5 p$ each in $4007,500+$ at $8 p$ each, $1,000+$ at $7 p$ each.

V		AARKED UNTESTED	PAKS
B86	150	Germanium Diodes Min. glass type	50p
B83	200	Trans. manufacturers' rejects all types NPN, PNP, Sil and Germ.	p
B84	100	Siticon Diodes DO-7 glass equiv. to OA200, OA202	0p
B86	50	Sil. Diodes sub. min. IN914 and IN916 types	50p
B88	50	Sil. Trans. NPN, PNP. equir. to OC200/1, 2N706A, BSY95A, etc.	Op
B60	10	7 Watt Zener Diodes Mixed Voltages	0 p
H6	40	250 mW . Zener Diodes DO-7 Min. Glass Type	50p
H10	25	Mixed volts, it watt Zeners. Top hat type	
HII	30	MAT Series " alloy " pno Transistors	50p
HI5	30	Top Hat Silicon Rectifiers. 750 mA . Mixed volts	50p
H16	8	Experimenters' Pak of Integrated Circuits. Data supplied	50p
H2O	20	BYI26/7 Type Silicon Rectifiers, I amp plastic. Mixed volts.	$50 p$

NEW	TEST	TED AND GUARANTEED	PAKS
$\overline{\text { B2 }}$	4	Photo Cells, Sun Batteries. 0.3 to $0.5 \mathrm{~V}, 0.5$ to 2 mA .	50p
879	4	IN4007 Sil. Rec. diodes. I,000 PIV lamp plastic	50p
B81	10	Reed Switches, mixed types large and small	50p
B99	200	Mixed Capacitors. Postage 13p. Approx. quantity, counted by weight	50p
H4	250	Mixed Resistors. Postage 10p. Approx. quancity, counted by weighe	$50 p$
H7	40	Wirewound Resistors. Mixed types and values. Postage 8p	50p
H8	4	$\begin{aligned} & \text { BY } 127 \text { Sil. Rees. } \\ & \text { 1000 PIV. } 1 \text { amp. plastic } \end{aligned}$	50p
H9	2	OCP71 Light Sensitive Photo Transistor	50p
H12	20	NKT155/259 Germ. diodes, brand new stock clearance	50p
H18	10	OC71/75 uncoded black glass type PNP Germ,	50p
Hा9	10	OCBI/81D uncoded white glass type PNP Germ.	50p
H28	20	$\begin{aligned} & \text { OC200/1/2/3 PNP Silicon } \\ & \text { uncoded TO-5 can } \end{aligned}$	50p
H29	20	OA47 gold bonded diodes coded MC52	50p

F.E.T. PRICE BREAKTHROUGH !!!

This field effect transistor is the 2N3823 in a plastic encapsulation, coded as 3823 E . It is also an excellent replacement for the 2 N 3819 .

Data sheet supplied with device.
$1-10$ 30p each, $10-50$ 25p each, $50+$ 20p each.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev. counter for any car.

FREE CATALOGUE AND LISTS
for:-
ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10p post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.
P.O. RELAYS

Various Contacts and Coil Resistances. No individual selection. Post \& Packing 25p

SPECIAL PURCHASE !

BRAMD HEW FM MOLTIPLEX 8TEREO DECODER UIITP. Manufactured by PHILIPA. Size $2^{\prime \prime} \times 31^{\circ}$ aligned with full circuit diagrani and connectlon details. 4 each. Post free.
FEW OMLY-LEAE ME I TRANBCRIPTION PICK DP ARME. Using the world famoun gimbal pivot rystem.
P. \& P. 20 p
LPDT MATCEIMG TRANBEORIER. Beantifully made in heavy Mu-netal cyindrical case for mini mum hum pick-up. Size $1_{1}^{\prime \prime}$ high $\times 1 \frac{1}{*}^{\text {" dia. Ratio }}$ 150: 1 approx. Especially suitable for matching dynamic or ribbon nikes or pick-up from low to BLACK AMODIBED 16 g . ALUMIMIDM HEAT 8NES. For TO3, complete with micas and bushe

HARVERSONIC SUPER SOUND

 $10+10$ STEREO AMPLIFIER KIT

A really first-class Hi-Fi stereo Anplifier Kif. Uses 14 transistors including Silicon 'Transistors in the firs five stages on each channel resuiting in even lower noise
level with improved sensitivity. Integrated preamp level with improved sengitivity. Cintegrate Suitable for wise with Ceramic or Crystal cartridgcs. Output stage for any speakers from 5 to $1 \overline{5}$ ohns. Compact design, all parts aupplied including drilled metal work, bigh quality realy drllled printed circuit board, attractive front pancl, knobs, wire, solder, nuts, bolts-no extras to buy. Simple step by step instructions enable any conatructor to build an amplifier to be proud of. lirief
apecifcation: power output 14 W r.m.s. per channel into specifcation: lower output 14 W r.m.8. per channelinto
5 ohma. Frequency response $-134 \mathrm{~B} \quad 12-30,000 \mathrm{~Hz}$.
 Senaltivity better than 80 m Vinto $1 \mathrm{M} \Omega$. Full power band
width $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Rase boost approx. to $\perp 12 \mathrm{~dB}$
 over main amp. Power requiremients 35) at 1.0 amp Overall sizc-12" wide. 8^{*} deep. of ${ }^{\prime \prime}$ high. Fully detailed 7 -page conatruction nanual and parts list iree with kit or send 18 p plus large s.A.
PRICES AMPLIFIER KIT

POWER PAC'K KIT,	
CABINET	P. \& P. 30 p

facilities for medium porcered Hi-Fi Discotheque wse, tie: SPECLAL PORCHASE OF MARUFACTURER'S SURPLUS! All Tranaistor F.M. tuner head with twin A.M. Gang incor porated. Beautifully engineered with precision geared reduction drive- F.M. R.F. Transistor, orcillator/Mixer
 connection. Built on printed circuit panel and fully acreened. Extremely new and pre-aligned. Size 2fin H. 13 in W, $x 2$ lin D. For 6 V D.C. (1) 2.8mA. A.M. Gang fitted with trintmers which can be connected to atandard A.M. aerial and otcillator
cireuits is required. LIMITED circuits ii required. LIMITED
NUMBER. Only 22.25 post free Connection detaila supplied

HIGE GRADE COPPER LAMMATE BOARDS $8 \times 6 \times$ Fin FIVE for 50 p . P \& 13 p .

TELESCOPIC AERLALS WITE SWIVEL JOITT. Can be angled and rotated In any direction. 6 section Lacquere Brass. Extends from Gin. to approx. $22 \frac{1}{2} \mathrm{in}$. Maximum diameter \ddagger in. 25p each. P. \& P. jp
BRARD FEW MOLTI-RATIO MADIS TRAISFORMERS. dary combinations: $0 \cdot 5 \cdot 10 \cdot 1 \overline{5} \cdot 20-2 \overline{2}-30-3 \bar{j}-40-60 \mathrm{~V}$ hal wave at 1 anp or $10-0 \cdot 10,2000-20,30 \cdot 0-30 \mathrm{~V}$, at 2 amp full wave. Size 3 inL $\vee \frac{1}{3} \mathrm{inW} \times 3 \mathrm{inD}$. Priee 21.75. P. \& P. 30p.

HATIS TRAMSFORMER. For transiator power supplies. Pri. $\mathbf{2 0 0 / 2 4 0 V}$. Sec. $9-0-9$ at $500 \mathrm{mIA} .70 \mathrm{p} . \mathrm{P} . \& \mathrm{P} .13 \mathrm{p}$
 Tapped Primary $200-220-240 \mathrm{~V}$. Sec. $21-j \mathrm{~V}$ at $\mathbf{v} 00 \mathrm{~mA}$ 68p. P. \& P. 13p.

SPECIAL OFFER!!

 HI-FI LOUDSPEAKER SYSTEMBeautifully made teak finish enclogure with most attractive Tygan-Vynair front. Size l6lin high $\times 101$ in wide $50 \frac{1}{3}$ deep. Fitted with E.M.I Ceranic Magnet $13 \mathrm{in} \times 8 \mathrm{in}$ bass unit, two H.F tweeter units and crossover. Power
Arailable 3,8 or 15 ohm impedance

Our Price 18.40 carr. кбр
ABINET AVAIL.SBLE SEPAR. STELY 24.50. Carr. 60p

Also available in 8 ohnt with EMI $13 i n \times 8 \mathrm{in}$. bass Apeaker with parasitic tweeter. \$6.50. Carr. 65p

LOUDSPEAKER BARGAMS

3 in 4 ohm 50 p . P. \& P. 13p. Jin 3 ohm $80 \mathrm{p}, \mathrm{P}$. \& P. 1 mp . $\times 1.90, P$. $\& P$ P. 30p. E.M.I. $8 \times 5 \mathrm{in} 3 \mathrm{ohm}$ with high flux magnet $81 \cdot 62$, P. \& P. 20p. E.M.I. 13! $\times 8$ in 3 ohm with high flux ceramic magnet $28 \cdot 10$ (15 ohm $22 \cdot 25$). P. \& P. $30 \mathrm{p} . \mathrm{E} . \mathrm{M} . \mathrm{I} .13 \times 8 \mathrm{in}, 3$ or 8 or 15 ohm with two inbuilt tweeters and crossover network 4.20 . P. \&\& P. 30p. E.M.I., $13^{\prime \prime} \times 8^{n} \mathrm{t}$ सi
P. \& P. 30 p .
BRAND NEW, 12in lyw H/D Speakers, 3 or 10 ohm. Current production by well-known British maker. Now -ith Hiflux ceramic ferrobar magnet assembly 55.50 . Guitar models: 25 w \&8.50. 35 w \$8.50. P. \& P. 38 p each. E.M.I. 3 !in HEAVY DUTY TWEETERS. Powerful eramic nagnet. Available in 3,8 or 15 ohm 98p each. P. \& P. 13p

I梠"RA" TWIN CONE LOUDSPEAKER 10 watts peak handlink. 3 or $15 \mathrm{hm}, 22 \cdot 20$. P. \& P. 30 p . 35 ohm 8PEAKERS 3". ONLY 68p. P. \& P. 13p. VYNAIR \& REXINE SPEAEERS \& CABINET FABRICS app. 54 in. wide. Voually $£ 175$ yd., our price 75 p yd.
length. P. \&P. 15 (min. 1 yd.). SA.E. for samples.

HI-FI STEREO HEADPHONES

Adjustable headband with comporable nexioant earmuffs. Wired and fitted with standard atereo \ddagger in jack plug. Frequency reaponse $30-15,000 \mathrm{~Hz}$. Matching impedance 8-16 ohmis. PRICE 82-95. P. \& P. 15 s . SIHGLE HEADPHONE With alu
CRYSTAL MIKES. High imp. for leak ar hand use High sensitivity, 93p. P. \& P. 8p. HIGH DMPEDANCE CRY

GENERAL PURPOSE HIGH BTABILITY TRAN
gISTOR PRE-AMPLIPIER. For P.U. Tape, Mike, Guitar, etc., and sultable for use with valve tranaistor equipment. $0-18 \mathrm{~V}$. Bat tery or from H.T line $200 / 300 \mathrm{~V}$. Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$ Gain 26 dB . Solid encaptulation size $1 \frac{1}{2} \times$ it Brand new - complete with instructions. Price
88p. P. \& P. 13 p . BRAND NEW E.M.I. LIGHTWEIGHT PICK-OP ARM
WITH ARM REST. Fited mono to stylus and cartridge for LP/78, ONLY 21 .

QUALITY RECORD PLAYER AMPLIFIER MK II A top-quality record player amplifer employing heary duty double wound mains transformer, ECC83, EL84. and rectifier. Separate Bass, Treble and Volume controls.
Complete with output transformer matched for 3 ohm Complete with output transformer matched for 3 ohm
speaker- size 7 in . $w . \quad 3 \mathrm{ll} .6 \mathrm{~h}$. Ready built and tested. speaker- Bize 7 in . w. " 3 s. 6 h . Ready built and tested.
PRICE $\& 3.75$. P. P. 40 p . ALSO AVA1LABLE mounted on board with output transformer and speaker realy to fit cabinet below. PRICE \&4.88. P. \& P. 50 p. DE LUXE QUALITY PORTABLE R/P CABINET MK 11 Cncut motor board size $14 \frac{1}{2} \times 12 \mathrm{in}$., clearance 2 in . below 51 in . above. Will take above amplifier and any B.S.R. or
GARRARD changer or Single Player (except AT60 and SP25). Size $18 \times 15 \times 8 \mathrm{in}$. PRICE 88.98 . P. \& P. 50p.

10/14 WATT HI-FI AMPLIFIER KIT
A stylishly onished nonaural amplifict Fith an output EL84a in push-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow records and announcements

Fully shroucied sect match $3-1 \overline{0} \Omega$ speaker and 2 independent tratuniornter to and separate bass and treble controls are provided piving goodlift and cut. Valve line-up 2 ELEAs, ECC83, EF86 and EZ80 rectifler. Simple instruction booklet 13p (Free with parts). All parts sold soparatoly. ONLY 87.97 . P. \& P. 55p Also arailable ready built and tested complete with stal
input sockets, \&9-97. P. \& P. 55 p.

BRAND KEW TRANBISTOR BARGAINS. (EET Yatched pair) 75p; v15/10p, 50p;OC71 25p; OC 7630 p AF117 18p; 2G339 (NPN) 15p. OCA4, \&-OC's, AC1.)8D Set of Mullard 6 transistors OC44, "O-OC'4, AC128D
niatched pair AC128 21.25 ; ORP12 Calnium Sulphide niatched pair ACles f (ell 58 p . All post free.

SPECIAL PURCHASE !

SPEAKER CABINET FROM FAMOUS MAKER!
Beautifully made sil-wooden conitruction cabinet with medinm walnut finiah front, gold anodised expanded aluminium grille and dari gides. Approz. ize overall 11 or casily removabie bane cut out for $8^{\prime \prime}$ npeaker. Pibre
 fcgether with speaker. An expensively made cabine t a give-away price.
Limited nomber only $\mathbf{2 1 - 3 8}$ Pott Free.
DE LUXE STEREO AMPLIFIER
 1.EZ80 as rectioner. Two dual potentiometers are provided for bass and treble control, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and right hand channels can be at the rear of the chassis. Input sensitivity is approxl mately $300 \mathrm{~m} / \mathrm{y}$ for full peak output of 4 watta per channel 8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit, allows bigh colume levels to be uscal with negligible diatortion. Overall height including valves 5 in Ready built and testell to a high standarit. Price $88 \cdot 82$. P. \& P. 45p.

4-SPEED RECORD PLAYER BARGAINS
Malne models. All brand new in maker'i packing.
LATEST B8. $C 109 / A 21$ 4-SPEED AUTOCHANGRR. LATEST B.g.R. C109/A21 4-SPEED AUTOCHANGER. With latest mono compatible cartridge 26-97. Carr. 50p, SOTTABLE PLITTH UNIT FOR ABO
over 25.75 complete P \& cover. 2575 complete. P. \& P. 50]
LATEST GARRARD MODELS. All types available 1025, 2025, SP25, 3000, AT60, etc. S.A.E. for Latest Prices ! PEINTH UNETS cut out for (iarrard Models 1025. 2025. 2000, 3000,3500 , etc. With rigid transparent plastic rover. Special design enables above models to be uaed with cover in position. Aso suitable for housing AT60
and SPus. Ol R PRICE $\& 5.75$ conmplete. P. \& P. 50 p .

LATEST ACOS GP91/1SC Mono Compatible Cartridge with yo atylus for ILP/EP/79. C niversal mounting bencer
$81 \cdot 50$. P. \& P. 8u. SONOTONE 9TAHC COMPATIBLE STEREO CARTRIDGE 2.50. P Diamond T/O stylus for Stcreo LP. £3. P. sel'. 10p. LATEST RONETTE T/O Stereo Compatible Cartridge for LP/LP/Stereo/is. EP/LP/as mono or aterco recork on monn equipment EP/LP/TR MONO OR
$81.50 . \quad$ I. $\$$ P. 101 ,

3-VALVE AUDIO
AMPLIFIER HA34 ME II Designed for $\mathrm{II} \cdot \mathrm{Fi}$ reproduction of rccords. A.C. Mains
operation. Realy built on plated heavy gauge metal chassis, size 7 in $\%, \times 4$ in. d. $\%$ Elin, h. Incorporates ECC83,
EL84, EZ80 valyes. Heary EL84, EZ80 valves. Heary duty, double wound mains transformer and output transspeaker. Separate volume control and now with iniproved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output $4 \frac{1}{5}$ watte. Front panel ean be detached and leads exteaded for remote nounting of coatrols. Complete with knobs, valves, etc. wired and tested for only 44.75 . P. \& P. 35p.
H8L "FOUR" AMPLIFIEE RIT. Similar in appearance to HA34 above but employs entirely different and advanced
circuitry. Complete set of parts, etc. \&s.98. P. \& P. 40p. HARVERSON'S SUPER MONO AMPIIFIER A super quality gram amplifier uaing a double wound fully A super guality gram amplifier using a double wound fully isolated mains tranaformer. rectifler and ECL 82 trlode
pentode valve as audio amplifier and power output stage. Impedance 3 ohms. Output approx. $3 \cdot 5$ watts. Volume and tone controls. Chassis size only 7in. Wide 人3in. deep x 6 in . high overall. AC mains $300 / 240 \mathrm{~V}$. Supplied absolutely Brand New, completely mired and teated with good quality output tranaiormer. FEW ONLY
ODR ROCK BOTTOM
BARGAR PRICE $\quad \mathbf{2} 2.75 \quad$ P. \& P
HANDBOOX:OF TRAN8IBTOR EQUIVALENTS AND 8 UBBTITUTES
A must for servicemen and home constructors. 197 edition including many 1000's of British, U.S.A
European and Japanese transistors. ONLY 10p. Post Jp.

Open 9-5.30 Monday
to Saturday
Early closing Wed. 1 p.m. A feo minules from Soulh Wimbledon

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W.I9 Tel. 01.540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clear/y) piense mote p. ep. charger
 P. ©P. ON OVERS

conmponemes ShOVNロロロロ

tions in a d．i．l．encapsulation．It reduces the number of soldered connections considerably from up to about 280 so adding to time saving and reliability． This MOS－LSI device was developed by Integrated Photomatrix Lid．，of Dorchester for a digital panel meter for Evershed and Vignoles．

The behaviour of TTL and DTL in response to random noise spikes is known to cause quite a few headaches to troubleshooters．A new instru－ ment will help by detecting spikes that an oscillo－ scope may miss．It is a pencil－size probe produced by Birch－Stolec of Hastings to indicate any opera－ tion（l or 0 ）by means of a lamp．

FOR THE MOTORIST

Of particular interest to motorists is the flexible printed circuit aerial that can be fitted around the periphery of the rear window for a car radio．Screen－ ing problems are thus avoided and accessibility from outside vandalism is nil（provided doors and win－ dows are locked）．MB Metals of Portslade，Sussex， developed the aerial while engaged on producing complete printed circuit type harnesses for cars and aircraft．

While on the subject of cars，piezo－electric ignition is on the way．Although not yet available，advanced work by a Japanese company，Murata Manufactur－

ing，expects to provide this off－shoot from its low cost ceramic ignition systems for lighters and gas cooker ignitors．

Crompton Parkinson have produced a＂zinc－air＂ primary cell capable of up to eight times the out－ put of conventional cells，and is smaller and lighter in weight．This is believed to be the first commercial one of its kind and should be a breakthrough for electric cars．

THYRISTOR SUPPRESSORS

Demonstration of this new range of interference suppressors puts Birch－Stolec among the progressive British companies．

The suppressors have been designed to meet requirements of the latest technological developments covering thyristor and triac suppression and equip－ ment used in computers，data logging instruments and communications．They combine three facilities－the elimination of discrete inductors and capacitors，the absorption of unwanted interference power and the use of suppressor rather than filter techniques．

Birch－Stolec have also set up a new printed circuit division for custom design of flat flexible cables and cards．

One might be forgiven for thinking that a physio－ logical stimulator was intended as a＂wakey－wakey＂ alarm，but it is intended to be a serious scientific instrument for medical research teams．It emits pulses in sequences，set up by the controls，either in continuous mode or in gated trains．The stimu－ lator is expected to assist neurologists in particular， but can also be used in biological research of broader base．Farnell Instruments of Wetherby，Yorks，are responsible for this equipment．

Magnetron type YJI37I developed by Mullard for use in microwave cookers（above）

MB Metals Ltd．are developing flexible printed wiring harnesses for cars and aircraft．This one （left）is for a helicopter and shows the wiring it replaces（top left）

A commercial development from experimental work at R.A.E. Farnborough is the high speed television camera and video tape recorder which provides an exposure time of 10^{-4} second while running at a picture rate of 100 per second. The result is that immediate playback either in slow motion or with stop action is obtained. The equipment is being manufactured by- Aston Electronic Developments Ltd., Pirbright, Surrey

DISCRETE COMPONENTS

For engineers and designers with appetites for small and simple switching solutions, N.S.F. of Keighley, Yorkshire, introduce the Ledex "sandwich stepper". This is a new 1 -pole, 12 -position stepping switch socalled because of its unusual rectangular design built on a layer of printed circuit board.

It comprises a 12-position circuit wafer together with a restoration or zero reset wafer control system. These, with a complete solenoid drive assembly are sandwiched between two printed circuit boards. The entire unit is only $\frac{1}{2}$ in thick.

Contact breaking current rating is 120 mA at 120 V a.c. and 500 mA at 28 V d.c. (resistive). Current carrying capacity is 2 amperes. The stepping speed (intermittent) is 60 per second.

Vitramon Europe displayed their established range of porcelain and ceramic dielectric capacitors. Among the new exhibits were miniature axial leaded ceramic capacitors 10 pF to $100,000 \mathrm{pF}$ designed for computer application and an extended range of ceramic chip capacitors for hybrid microcircuit use.
An economical and robust magnetron for use in microwave cooking is the Mullard YJ1371 (see photograph). It requires a heater voltage only when starting and subsequently operates at the low anode voltage of 366 kV , ensuring a long life and low operational cost.
Wire strippers are common place for p.v.c. covering, but these are hardly suitable for fine enamel coverings. Gardners Transformers Ltd., of Christchurch, Hampshire, have introduced an IGWES

One of the new u.h.f. amplifier modules by Mullard compared with a 50 pence piece (above)

Physiological stimulator by Farnell Instruments (top right)

Supplementary Parts Kit (Ref. No. 1) for the Multicore Solderability test machine. This kit is used to determine solderability with short leads down to 1.2 mm from the component body (right)
(Inert Gas Wire Enamel Stripper) for enamelled copper wires. The wire is heated in a nitrogen atmosphere to decompose the insulation. As the wire is withdrawn it is cooled by a nitrogen flow which prevents oxidisation.
A novel innovation from A. F. Bulgin \& Co. of Barking, is their fused crocodile clip CR50 which is designed to protect test meters against false operating conditions, faults, and shorts during fault finding procedures. It is available in clip or probe form.

STANDARD COMPONENT SPECIFICATIONS

The work of the British Standards Institution culminates in an enormous amount of paper work. So much so that one wonders how anyone can find anything. All due credit therefore to BSI for setting up the BS 9000 Scheme for Electronic Parts of Assessed Quality. It is not possible here to go into any detail on the scheme, but briefly the aim is to standardise on manufacturing and usage specifications for electronic components.

Specifications appropriate in the past to the Ministry of Defence, Post Office, and C.E.G.B. are being incorporated in the scheme, which will provide for a universal test procedure for quality control. Over 100 British manufacturers, test centres, and stockists have already applied for approval under the scheme.

new Super IC-12

Highfidelity Monolithic Integrated Circuit Amplifier

Two vears ago Sinclair Radionics announced the World's first monolithic integrated circuit HI-Fi amplifier, the IC.10. Now we are delighted to be able to introduce sts successor the Super IC. 12 . This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages:

1. Higher power.
2. Fewer external components.
3. Lower quiescent consumption.
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink No other heat sink needed.
6. Full output into $3,4,5$ or 8 ohms
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

Output power 6 watts RMS continuous (12 watts peak).
Frequency Response 5 Hz to $100 \mathrm{KHz} \pm$ 1 dB .
Total Harmonic Distortion Less than 1% (Typical 0.1\%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms.
Power Gain 90dB (1,000,000.000 tımes) after feedback.
Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal).
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.
Input Impedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts.
Price: including FREE printed circuit board for mounting. £2.98 Post free

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up. F.M. tuner etc. Alternatively. for more elaborate systems, modules in the Project 60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wifing diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation.

Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design, quality and value and now that the remarkable phase lock loop stereo FM tuner is available, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	2.30	Crystal P.U., 12 V battery volume control	£4.48
B	Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control etc.	£9.45
C	$20+20$ W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 s, \text { Stereo 60, } \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic ormag. P.U.. most dynamic speakers. F.M. tuner etc.	£23.90
D	$20+20$ W. R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 s, \text { Stereo 60, } \\ & \text { PZ.6 } \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck. etc.	£26.90
E	$40+40$ W. R.M.S. deluxe stereo amplifier	2×2.50 s. Stereo 60 P2.8, mains trsfrmr	As for D	£34.88
F	Outdoor P.A. system	$\mathbf{Z . 5 0}$	Mic., up to 4 P.A. speakers controls, etc.	£5.48
G	Indoor P.A.	$\begin{aligned} & \text { Z.50, PZ.8, mains } \\ & \text { transformer } \end{aligned}$	Mic., guitar. speakers, etc., controls	£19.43
H	High pass and low pass filters	A.F.U.	C. Dor E	£5.98
	Radio	Sterso F.M. Tuner	C. Dor E	£25.00

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certannly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet, motor plinth, free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtaıned superb value for money because Project 60 is the best selling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control.
Sinclair Radionics Ltd., London Road, St. Ives, Huntingdonshire PE174HJ.
Tel: St. Ives (04806) 4311

Sinclair Project 60

Z.30 \& Z.50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifers in your Praject 60 system will depend on personal preference. but they are the same size and may be used with other units in the Project 60 range equally well.
SPECIFICATIONS (250 units aro inter-
changeable with Z.30s in all applications).
Power Outputs
Z. 3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M S. Ir.to 3 ohms using 30 volts.
2.5040 watts R.M S into 3 ohms using 40 volts: 30 watts R.M.S. into 8 ohrns, using 50 volts.
Frequency response: 30 to $300000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70dB unweighted.
Input sensitivity: 250 mV into 100 Kohms. For speakers from 3 to 15 ohms impedance.
Size $3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{2} \mathrm{in}$.
Size
$\mathbf{Z} .30$
2.3

Burlt tested and guaranteed with circurts and instructions manual
£4.48
2.50

Built. tested and guaranteed with circuits and instructionsmanual.
$£ 5.48$

Power Supply Units

Designed specially for use with the Project 60 system of your choice.
Illustration shows PZ. 5 to left and PZ. 8 (for use with $Z .50 \mathrm{~s}$) to the right. Use PZ. 5 for normal Z. 30 assemblies and PZ. 6 where a stablised supply is essential.
PZ-5 30 volts unstabilised $\mathbf{£ 4 . 9 8}$
PZ-6 35 volts stabilised $\mathbf{f 7 . 9 8}$
PZ-8 45 volts stabillsed
(less mains transformer) $\mathbf{£ 7 . 9 8}$
PZ-8 mains transformer $\mathbf{£ 5 . 9 8}$

Guarantee

If within 3 months of purchasing Projact 60 modules direcily from us. you are dissatisfiad with them, we will refund your money al once. Eoch module is guaranteed to work pe fectly and should any defecr allse in normal use we will service it at once and without any cast to you whatsoaver provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter No charge for posioge by surface mal. Air-mail charged at cost.

Stereo 60

 pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratıo and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

SPECIFICATIONS

Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u.-up to 3 mV : Aux-up to 3 mV . Output: 250 mV
Signal-to-noise ratio: better than 70 dB .
Channel matching: within 1 dB .
Tone controls: TREBLE +15 to -15 dB a: 10 KHz : BASS +15 to -15 dB at 100 Hz .
Front panel: brushed aluminium with black knobs and controls.
Size: $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ ins.
Bullt, tested
and guaranteed.
$£ 9.98$

Active Filter Unit

For use between Stereo 60 unit and two $Z .30$ s or 2.50 s , and is easily mounted. It is unique in that the cut-off frequencies are continuously variable. and as attenuation in the rejected band is rapid (12dB/octave). there :s less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two stages of filtering are incorporatedrumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current -3 mA . H.F. cut-off (-3 dB) variable from 28 kHz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 kHz (35 V . supply) 0.02% at rated output.
Bult. tested
and guaranteed
$\mathbf{f 5 . 9 8}$

Stereo FM Tuner

first in the world to use the

phase lock loop principle
Before production of this tuner. the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now. for the first time, the principle has been applied to an FM tuner with fantastucally good results. Other original features include varicap diode tuning. printed circuit colls, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Sensitivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a fow inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panet indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.

SPECIFICATIONS:

Number of transiators: 16 plus 20 in I.C.
Tuning range: 87.5 to 108 MHz
Capture ratio: 1.5 dB
 limiting.
Squelch level: $20 \leadsto \mathrm{~V}$.
A.F.C. range: $\pm 200 \mathrm{KHz}$

Signal to noise ratio: $>65 \mathrm{~dB}$
Audio frequency response: $10 \mathrm{~Hz}-16 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$)
Total harmonic distortion: 0.15% for 30% inodulation
Stereo decoder operating level: $2 \mu \mathrm{~V}$
Pilot tonesuppression: 30 dB
Cross talk: 40 dB
Cross talk: 40 dB
I.F. frequency: 10.7 MHz
O.F.frequency : 10.7 MHz
Output voltage : $2 \times 150 \mathrm{mV}$ R.M.S

Output voltage: $2 \times 150 \mathrm{mV}$ R
Aerisl Impedance: 75 Ohms
Indicators: Mains on: Stereo on; tuning indicator Operating voltege: $25-30 \mathrm{VDC}$
Size : $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $\mathbf{£ 2 5}$ built and tested. Post free

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ

Please send
Name

Address
for which I enclose cash/cheque/money order.

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aerials now fitted with thting bracket and 4 element grid reflectors.
Joft Mountlng Arrass. 7 element, $45-$ 11 element, 52.6; 14 element, 60.-; i8 element, 60 element, $65-; 11$ element, m;-; it element, 8\% 6 : 18 element, 30 . Chimney Jiounting Airas Complete, 7 element, $80 \rightarrow 11$ element, 87,$6 ; 1+$ element, 95,-: 18 elemenr, 105 -. Complete assembly instructions with every aerial. Jow Joss Coaxlal cable. 18 sd. King TeleboostersLabgear U.H.F. Boosters from Th-. Belling Le'c operated pre-amp e7.10.0. State clearly channel operated pre-amp $\mathbf{n 7 . 1 0 . 0}$. State clearly channer Accessories 3 . C.W.O. or C.O.D.

BBC. ITV. FM AERIALS

1H.B.(. (Band 1), Loft, 牟

 WallS, D, 32, 6. "H" array, 60 I.T.V. (Band 3). 5 element loft array, $45.8,7$ element, $5.5-$Wall mounting
5 element, $65-$ Wall mounting 5 element, 65 i. $-.1+7.68$. Wall mounting $1+5, \%$. Chimney mounting
(qminined BBCIIT: 13BC'2 Acrials. $1+5+9$,
$40-1+5+14,90-1+7+$ 10. $-101+5+14,90-1+7+$
14,100
F.M. IRAdit Loft S, D, 14 6." H", 38 6. 3 element array, 38,6. Standard co-axial cable, $1-y d$. Coan plugs, 1 . Outhet boxes, ti \because Diplexer crossover boxes, 17.6. p.p. Aerials, -i accessories, 3-: fully illustrated Lists.

CALLERS WELCOMED

open all day saturday
K.V.A. ELEGTRONICS (Dept. P.E.) 40-41 Monarch Parade
London Road, Mitcham, Surrey 01-6484884

OSMABET LTD.

Fe make transformers amongst other thing

 MAINS TRANSPORMERS
 TX2, 250-0-2501, $150 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}$, ©T, $0-5-6.3 \mathrm{Y}^{+} 3 \mathrm{~A}$ 44.05: TX $-300-6-300 \mathrm{Y}, 1 \cdot 20 \mathrm{~mA}, 6-3 \mathrm{Y}$, $-5 \mathrm{CT}, 6.3 \mathrm{~V}$
 $1 \cdot 6 A, 28 \cdot 10 ;$ MT1, $200 \mathrm{~V}, 30 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}, 1 \mathrm{~A}, \pm 1 \cdot 20 ; \mathrm{MT} 2$
$230 \mathrm{~V}, 4 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}, 1 \cdot 5 \mathrm{~A}, 51 \cdot 50 ; \mathrm{MT} 2 \mathrm{~A}, 250 \mathrm{~V}, 60 \mathrm{~mA}$ 6.3V, 0А, 21.95 ; MT3 Prim. $110 / 240 \mathrm{~V}$, Sec. 2.50 V

AUTO TRANSFORMERS
HOLTIVOLT TRANSFORMERS
Prim. 200/240Y a.c. OMT4/1. Onc tapped sec, $5-20-30$ $40-60$ giving $5-10-15-20-5-30-40-40-5 \overline{5}-60,10-0-2$
$10.20-0-20 ; 30-0-30 \mathrm{~V}$ a.c., $1 \mathrm{~A}, 22 \cdot 25 ; 0 \mathrm{MT}+12$ ditto $2 \mathrm{~A}, 88-45$; ОМT5/1 one tapped sec, $40-50-60-80-90-$ $100-110 \mathrm{~V}$ a.c., $1 \mathrm{~A}, 28-45$. Duo $\because V \mathrm{~V}^{4 A-12 V} 4 \mathrm{~A} 28 \cdot 60$;

LOW VOLTAGE TRANBPORMERS
 21.80: 12V, 1-5A, 113 ; 3A (T, 21.80; 6A CT, 22.70;
 MIDGET RECTIFIER TRANSFORMERS
For FW rect, size $1 \times 3 \times 1$ in, Prim. $200 / 240$ a.c. output, PPTI $9-0-9 y, 0 \cdot 3 A$, PPT:2 12-0-12V. $0 \cdot 2 \overline{4} \mathrm{~A}$
 MTV3 $20-0-20 \mathrm{~V}, 075 \mathrm{~A}, \mathrm{El} \cdot 20$ each.
O/P TRANSFORMERS FOR POWER AMPLIPIERS P.P. sec. tapped $3-7.5-16$ ohms, $A-A \quad 6.6 \mathrm{k} \Omega$. 30 W Kk LOUDSPEAKERS, HI-FI, P.A., GUITAR, ETC.
New boxed famous makes, 2 JW . $25-60 ; 35 \mathrm{~W}$ 27.20 $13 \mathrm{k} \times 8$ in, $10 \mathrm{~W}, 3,8$ and j_{5} ohms, $28-25$: fitted two tweeter Hi-Fl, $3, \dot{x}$ anal 15 ohns, e4; Horn tweeters
 YATCHIMG AOTO 8PEAKER TR 8 or 15 ohms. MATCHING ADTO SPEAKER TRANSPORMER Match speaker impedance to amplifier front 3 to $12 V$ LT FLDORESCENT LIGHTHNG
Complete 8 watt 12 in fitting with twio, e3.75: 1iv PRINTED CLRCUIT ETCHING KITS
Comprebensive factory pack, with all solutions, and equipment to make your own P.C. boards, instructions, t1.25. Carriage extra all orders
S.A.E. INQUIRIES-LISTS, MAIL ORDER ONLY

46 Kenilworth Road, Edgware, Middx. HA8 8 YG
Tel. O1.9589314

$1,000,000 \begin{gathered}\text { SLLLCON } \\ \text { PLANAR }\end{gathered}$

NPN-PNP PLASTIC AND TRANSISTORS METAL CAN TYPES
Clearance of manufacturers' seconds, selected in types and guaranteed no open or short circuit manufacturers, schools and colleges
TYPE STNI8. Silicon Planar Transistors npn TO-18 Metal Can. Types similar to: 2 N706, 2N2220, BSY27-95A, BS $\times 44-76-77$
TYPE STPIB. Silicon Planar : 500 69, 1,000 \& 15 TO-18 Metal Can. Types similar Transistors BCY0-72. $2 \mathrm{~N} 2906-7$. 2 N 2411 and $\mathrm{BC} / 86-7$. Also used as complementary to the above npn cype device type
STNis. STNIB.

Price: 500 c9, $1.000<15$ TYPE STNL. Silicon Plastic Epicax:al Planar Transistors to high eain, available in medium to high Rain, available in npn or Pnp and
types similar to NPN2N2926-2N2711-2N3391-2N3707-2N37II-BC167-8-9.

TYPE STPL As types 2 N5354-56, 2N4058-2N 4061 and $2 N 3702-3$. Also used as complimentary to the above npn devices type STNL

Price: 500 47.50; 1,000<13
TYPE STNK. Silicon Planar Plastic Transistor npn with TO-18 pin circular lead configuration, $1 . C$.
$200 \mathrm{~mA}, 300 \mathrm{~mW}$ and similar to BC107-8-9, BCi70. BC173, BC182-184, BC 237-8-9 and BC 337-8. When ordering. please state type required, i.e.,

1,000,000 TRANSISTORS FOR SALE

Clearance of pnp Silicon Transistors from the 25300 (TO-S) and 25320 ($5 \mathrm{O}-2$) range and similar to the GC200-205 and BCY30-34 series. Ideal for Amateur Electronics. Radio Hams and for experimental use in Schools, Colleges and Industry
Approximate count by weight: 100 off- 75 p (plus p. \& p. 10 p) 300 off- $\& 1.75$ (plus p. \& p. 15p) 500 off $-\mathbf{E 2 . 5 0}$ (plus p. \& p. 17, p) 1000 off $\mathbf{6 3}$ (plus p. \& p. $25 p$)
Large quantities quoted for on request. EXPORT INQUIRIES WELCOME

DIOTARAM SALES POBOX 5,WARE, HERTS

 Full Money-Back GuaranteePOSTAGE \& PACKING 1p

10 MILLION DIODES

Silicon or Germanium

$\mathbf{2 0 0}$	50 p	10,000	$\mathbf{1 0 . 0 0}$
1,000	$\mathbf{6 2 . 0 0}$	50,000	$£ 30.00$
5,000	$\mathbf{5 7 . 0 0}$	100,000	$£ 50.00$

2,000,000 SILICON

 PLANAR TRANSISTORSTOI8 P.N.P. \& N.P.N. TYPES

100	$£ 1.50$	10,000	$£ 90.00$
500	66.00	50,000	$£ 400.00$
1,000	$£ 10.00$	100,000	6625.00

LINEAR INTEGRATED CIRCUIT 709/PC S.G.S.

TO. 5 can 8 lead. Full specification high

 supplied. Lowest ever price.QUANTITY: 1.9, 10-24, 25.99, 100-999, $1,000+$
PAICE EACH: 37p, 34p, 30p, 25p.

Wow! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits. assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s Simplified Study Method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
... and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.
You LEARN-but it's as fascinating as a hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the springboard for a career in Radio and Electronics.
FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of Courses up to City and Guilds standards.
New Specialist Booklet
If you wish to make a career in Electronics, send for your FREE copy of "OPPORTUNITIES IN TELECOMMUNICATIONS / TV AND RADIO'. This brand new booklet-just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

Dept. BI2, ALDERMASTON COURT, READING RG7 4PF

EX RENTAL TV's
19^{7} - £29.95
$23^{\prime \prime}$ - £39.95
All Channels 405/625 2 Years Guarantee. Free List by return.

17* Slım line TV's £11.95, 19" Slim line TV's $£ 15 \cdot 95$. Guaranteed 2 years. Send for List. Carr. \& Ins. all sets £1'95. Dally demonstrations to personal shoppers,

TEAK HI-FI STEREO CABINETS $£ 14.95$ Brand New 44^{*} wide $\times 16^{\circ}$ deep $\times 18^{\circ}$ high with Legs. A superb piece of turniture. Carr. £ 1.00 .
TRANSISTOR GANG CONDENSERS 30p. MINIÄTURE AM PŌST 5 PRECISION TAPE MOTORS EI.95. 200/240V. POST 20p.

Translstor Radio Cases: 25p each
Size $9 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2}^{*} \times 3 \frac{1^{\prime}}{}$. P. \& P. 15 D .
NEW.P. \& P. 5p.
TRANSISTORS Post Free

AC	126	AF	179	OC	81
AC	128	OC	444	OC	$81 D$

POTENTIOMETERS 23p each
Double \&
Switched
\qquad $500 \mathrm{~K} \Omega / 500 \mathrm{~K} \Omega \mathrm{~B}^{\prime}{ }^{\prime \prime}$ shaft
Doublea
Double \&
Switched
Double \&
Switched 1 MEG/100 K $\Omega, 14^{\prime \prime}$ shaft
KNOBS 100,000 to
clear (Brand New)
100 assorted Radio \& T.V. knobs 50p
Postage 25 p. (If you require sets 2 to

\section*{6 just ask)}

DUKE \& CO. (LONDON) LTD.

TV TUBES REBUILT GUARANTEED 2 YEARS

14"-£3.95, 17" \& 19"-£5.95 $21^{\prime \prime}$ \& 23"-£6. 45 . Exchanged Bowls. Carr. 53p. 621/3 Romford Road, Manor Park, E. 12 Phone 01-478 6001-2-3 Stamp for Free List

BUILD THIS WAH-WAH PEDAL KIT

The Wilsic Wah-Wah pedal comprises a SELECTIVE AMPLIFIER MODULE KIT, containing all the componencs to build a two cransiscor circuit module, which may be used by the constructor for his own design or fitted to the FOOT VOLUME CONTROL PEDAL (as photo) converting it to Wah-Wah operation. This pedal is in strong fawn plastic and fitted with output lead and screened plug.

$\rightarrow=\mathrm{B}$

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC. - LOW COST QUUICK DELIVERY OVER 200 RANGES IN

NEW ''SEW'" DESIGNS! CLEAR PLASTIC METERS, BAKELITE PANEL METERS				
	TYPE SW, 100 $100 \times 80 \mathrm{~mm}$			
\ldots	$\begin{array}{lll}500 \mu \mathrm{~A}\end{array} \cdots$.	$\begin{aligned} & 50 \mu \mathrm{~A} \\ & 50.0-30 \mu \mathrm{~A} \end{aligned}$		
	300 V d.c. ${ }^{\text {a }}$ - 228.971	500 AA … 22.62		
	1 A d.c. \cdot. 28.071			
50.0.50, A (88.371	5 A d.c. $\cdot{ }^{28.971}$	20V d.c. .. 82.471	5 A d.c.	
$100 \mu \mathrm{~A} \ldots . .8888{ }^{28}$	300 V a.c. 82.971	50 V d.c. .. 28.47	300 V a.c.	
100-0-100MA 83.25	VU Meter 85.75	300 V d.c. 28.471	V Meter	23.37!

"SEW" CLEAR PLASTIC METERS
Type Mr, 85P. 4tin 4 fin fronts.

		50 m .4	29-60
		100 mA	48.60
$\underline{\square}$		500 m A	29.60
		1 A	48.60
		5 A	28.60
		15 A	20.60
		30 A	88.60
		20 V d.c.	ce. 60
		50 V d.c.	88.60
		150 V d.c.	地. 60
50, 4.	88.80	300 V d.c.	8280
$50-0-50 \mu \mathrm{~A}$	23.10	15 V a.c.	28.60
$100 \mu \mathrm{~A}$	23.10	300 Va a.c.	82.60
$100-0 \cdot 100 \mu \mathrm{~A}$	33.10	S Meter	
$200 \mu \mathrm{~A}$	82.871	1 mA	28.871
$500 \mu \mathrm{~A}$	28.75	$V{ }^{\text {U M Meter }}$	88.80
500-0-500 LA	48.80	1A a.c.**	24.60
1 ma	28.60	5 A a.c.	22.60
1-0-1ma	28.60	10A a.c.*	52.60
5 mA	22.60	20A a.c.*	E8-80
10 mA	22.60	30A a.c.*	82.60
Type MR.58P. 2lin aquare Erontm.			
. $0 \mu \mathrm{HA}$	E8.10	20 V d.c.	28.00
50-0-50 $\mu \mathrm{A}$	28.60	50 V d.c.	22.00
100 HA	22.60	300 V d.c.	28.00
100-0-100 $/ \mathrm{A}$	82.871	15 V a.c.	22.00
$500 \mu \mathrm{~A}$.	22.25	300 V a.c.	48.00
1 mA	29.00	8 Meter	
5 ma	20.00	1 mA	29.10
10 mA	48.00	VU Meter	48.10
50 mA	82.00	1A a.c.*	28.00
100 mA	88.00	UA a,c.*	82.00
500 mA	28.00	10A a.c.*	\$2.00
	22.00		
5A 10 d d. ${ }^{\text {c }}$	82.00	20A a.c.*	28.00 2.00
100 d.c.	22.00	30A a.c.*	20.00
Type MR.65P. 31in , 3 hin Ironts.			
j0 0 A	28.371	20 V d.c. .-	22-10
50-0-0.0 $0 \mu \mathrm{~A}$	28.75	50 V dic.	28.10
$100 \mu \mathrm{~A}$	22.75	150 V d.c.	28.10
100-0-100 1 A	28.80	300 V d.c.	22.10
$200 \mu \mathrm{~A}$	22.60	15 V a.c.	20.10
$500 \mu \mathrm{~A}$	22.874	50 V a.c.	28.10
$500-0-500 \mu \mathrm{~A}$	22-10	150 V a.c.	28.10
1 mA	22.10	300 V a.c.	42.10
5 mA	28-10	500 V a.c.	28.10
10 mA	42.10	8 Meter	
50 mA	48.10	lmA	42.37
100 mA	28.10	VU meter	榇-87t
$\overline{0} 00 \mathrm{ma}$	28.10	$50 \mathrm{~mA} \mathrm{a.c.*}$	28.10
	22.10	100 mA a.c.*	28.10
	22.10	200 mA a.c.*	28.10
10A	22.10	500 mA a.c.**	e2.10
154	22.10	1A a.c.*	28.10
20 A	28.10	5 A a.c.*	28.10
30A	28.10		
50 A	22.87	10A a.c.*	28.10
5 V d.c. .	22.10	20A a.c.*	52.10
10 V d.e. .	42.10	30A a.c.*	28.10

* MOVING IRON ALL OTHERSMOVING COIL Please add postage
"SEW" EDUCATIONAL METERS
 overall 100 mm $90 \mathrm{~mm} \times 108 \mathrm{~mm}$. A new range of high
quality moving coil instrumenting coil for school experiinents and other
bench applications. 3^{*} mirror scale. The neter movement is easily accessible to lemonstrate finternal working. Available in the following ranges:

$50 \mu \mathrm{~A}$.	24.60	20 V d.c. . . 83.97
$100 \mu \mathrm{~A}$	84.95	50 V d.c. . . 83.97
1 ma	28.97	50 V d.c. .- 23.97
$50-0-50 \mu \mathrm{~A}$	24.25	300 V d.c. . . 38.97
1-0-1mA	23.97	Dual range
1 A d.c.	28.97	
	28.97	$500 \mathrm{~mA} / \mathrm{SAd.c.24.25}$
OV d.c	23.97	$5 \mathrm{~V} / 50 \mathrm{~V}$ d.c. 84.2

Type MR,38P. 1 21/88in square fronts.

Type MR.45P. 2in square fronts.			
: $0 \mu \mathrm{~A}$	52.25	10 V d.c.	81.50
$50.0-50 \mu \mathrm{~A}$	22.10	20 V d.	21.50
$100 \mu \mathrm{~A}$	8.10	50 V d.c.	21.50
100-0-100 $\mu \mathrm{A}$	21.871	300 V d.c.	81.50
$200 \mu \mathrm{~A}$	\$1.871	15 V a.c.	81.60
$500 \mu \mathrm{~A}$	21.60	300V a.c.	81.50
500-0.500 4 A	21.50	\$ Meter	
1 mA	21.50	1 mA	21-87!
SmA	81.50	$V \mathrm{U}$ Meter	22.25
10 ms	21.50	1A a.c.*	11.60
50 mA	21.50	ЈA a.c.*	21.60
100mA	21.50	10A a.c.*	81.50
500ma	21.50	20A a.c.*	21.60
EA	11.50	30A a.c.*	81.60

'SEW" BAKELITE PANEL METERS
Type MR:65 31 in square trontr.

25μ
50μ
$50-0$ $\begin{array}{lll} & & 88.50 \\ 50 \mu \mathrm{~A} & \cdots \cdots & 28.871 \\ 50-0-50 & \cdots & 88\end{array}$ $50-0-50 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$ $100-0-100 \mu$, $500 \mu \mathrm{~A}$

1.0 .1 m

10 mA

10 mA
50 mA
100 mA

EDGWISE METERS

PE. 70 17/32in 1 15/32in 2lin deep.

$50 \mu \mathrm{~A}$	23.00	$500 \mu \mathrm{~A} . . . \mathrm{E}$ E 60
60-0-50/LA	82871	$1 \mathrm{~mA}{ }^{22} 37 \mathrm{~F}$
$100 \mu \mathrm{~A}$	218.871	
$100-0 \cdot 100 \mu \mathrm{~A}$	88.75	300 V a.c. 28.873
200	2.75	

MULTIMETERS for GUERY purpose;

MODEL TE18 20,000 O.P.V. $0 / 0 \cdot 6 / 30 / 120 / 600$.
$1,200 / 3,000 / 6,000 \mathrm{~V}$ d.c. 1,200/30/120/600/1,200V a.c. $0 / 60 \mu \mathrm{AA} / 6 / 60 / 600 \mathrm{MA}$
$0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} .60$. $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} .60$.
Megohm
00 PF
2 Megomin P. \& P. 174 P .

MODEL PL438. 20kn Volt d.c. 8 k a/Volt
a.c. Mirror gcale. 0.61 a.c. Mirror gcale.
$3 / 12 / 30 / 120 / 600 \mathrm{~V}$
$3 / \mathrm{c}$. $50 / 600 \mu \mathrm{~A} / 60 / 600 \mathrm{~mA}$. $10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10 \mathrm{meg}$
0. 86.97!. P. \& P .12 fP .

MODEL 600,
O.P.V.
with
overlosd protection, mirror icsele
 $250 / 500 / 1,000 \mathrm{Vd.c} .0 / 2 \cdot 5 /$
$10 / 25 / 100 / 250 / 500 /$ $10 / 25 / 100 / 250 / 500 /$
$1,000 \mathrm{~V}$ a.c. $0 / 50$ HA/5/50/
 88.87!. Post paid.

TECH PT-\$4, 1,000
O.P. $0 / 10 / 50 / 2501$ $500 / 1,000 \mathrm{~V}$ a.c. and
d.c. $0 / 100 \mathrm{~K}, 21 \cdot 97$. P. \& P. 121 p .

YODEL TE- $200,20,000$ O.P.V. Mirror ecale, over$\begin{array}{ll}\text { load protection. } 0 / 5 / 25 / \\ 125 / 1,000 \mathrm{~V} & \text { d.c. } 0 / 10 / 50 /\end{array}$ $\begin{array}{lll}125 / 1,000 \mathrm{~V} & \text { d.c. } & 0 / 10 / 50 / \\ 250 / 1,000 \mathrm{~V} & \text { a.c. } & 0 / 50 \mu \mathrm{~A} /\end{array}$ 250MA. $0 / 60 \mathrm{~K} / 6^{\text {meg. }}$ -20 to $+6201 \mathrm{~B} .28 .75 . \quad$ P. \& P. 15p.
 MODEL TE-70.
O.P.
60,000
$0 / 3 / 15 / 60 / 300 /$ $600 / 1,200 \mathrm{~V}$ d.c. $0 / 6 / 30 /$ $120 / 600 / 1,200 \mathrm{~V}$ a.c. of $16 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot 6 \mathrm{M} / 16 \mathrm{meg}$.
2560. P. \& P. 15p

HOYOR TE. 10A, $20 \mathrm{kn} /$ Volt $\quad 5 / 25 / 50 / 250 / 500 /$ $1,000 \mathrm{~V}$ a.c. $0 / 50 \mu \mathrm{LA} / 2.5 \mathrm{~mA}$ 250 mA d.c. $0 / 6 \mathrm{~K} / 6 \mathrm{meg}$. ohm. -20 to +22 dB
$0-0,100 \mathrm{mfd} .0 \cdot 100 \cdot 0 \cdot 1 \mathrm{mfd} . \quad$ es.
P. \&'P. 1ūp.

K0DEL TE-800, 30,000 \square
O.P.V. Mirror scale, over. oad protection $0 / 0 \cdot 6 / 3 / 15 /$ $60 / 300 / 1,200 \mathrm{~V}$ d.c. $0 / 6 / 30 /$
$120 / 600 / 1,200 \mathrm{v}$ a.c. 0
$30 \mu \mathrm{~A} / 6 \mathrm{~mA} / 60 \mathrm{~mA}$
$300 \mathrm{~mA} / 600 \mathrm{~mA} . \quad 0 / 8 \mathrm{~m} / 80 \mathrm{~K} / 800 \mathrm{~K} / 8$ me
-20 to +63 dB . 5.971 , P. \& P. 15 p .
TME MODEL MD. 120.

Current $0-60 \mu \mathrm{~A} / 0-12 / 0-$
-20

MODEL TE-90 50,000 \rightarrow O.P. V Mirror ${ }^{50,000}$ laad protectlon. $003 / 13 / 60 /$ $300 / 600 / 1,200 \mathrm{~V}$ d.c. $0 / 6$ $30 / 120 / 300 / 1,200 \mathrm{~V}$
$0.03 / 6 / 60 / 600 \mathrm{~mA}$.
$16 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot 6 / 16 \mathrm{n}$
87.50, P. \& P. 15 p .

MODEL As-100D. 100K Ω;

Volt. bin, mirror ecale.
Built-in meter protection of
$3 / 12 / 60 / 120 / 300 / 600 / 1,200 \mathrm{~V}$
.c. $0 / 6 / 30 / 120 / 300 / 6001$
12A. $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} / 20 \mathrm{OM}$

TE-900 20,000 OVOLT GIANT MULTI Mirror acale and overload protection. 6 in full view meter, 2 colour acale. $0 j$

 $25 / 10 / 250 / 1,000 /$ / $5,000 \mathrm{~V}$ a.c. $0 / 25 / 12 \cdot 5 / 10 / 50 / 250 / 1,000$ $5,000 \mathrm{~V} . \mathrm{c}^{2} 0 / 50 \mu \mathrm{~A} / 110 / 100 / 500 \mathrm{ma} / 10 \mathrm{~m}$ P. \& P. 2,jp.FTC-40I TRANSISTOR TESTFR Full capabilities for
measuring A, B and 1 CO,
uph or pup. Equally uph of
adaptable for equaaly diodes. Supplied complete with instructions, battery and lemis. et-973. P. \& P. 10 p .

HONEYWELL DIGITAL
VOLTMETER VT. 100

of e.c. and
d.c. volt, current and ohme with optional d.c. volt, curr
pluge in cards.

plug-in cards.

Accuracy: ± 0.2,
Resolutjon: $\ln \overline{V^{\prime}} \pm 1$ digit
No, of digits: 3 plus fourt h overrange digit Overrange: 100% (up to 1.999)
lnput inpedance: 1000 Meg ohu
Measuring cycle: 1 per second.
aljustment: Automatic zeroing, full seale
aljustment againat an interna reference voltage
Input; Fully floatlng (3 poles). Input power: $110-2305$ a.c. $50 / 60$ cycles.
Overalt size: $5 \sin \times 213 / 16 \mathrm{in} . \times 83 / 16 \mathrm{i}$ Overall size: 33 in. $\times 213 / 16 \mathrm{in} . \times 83 / 16 \mathrm{in}$
AYAILABLE BRAND NEW ANI AVAILABLE BRAND NEW AND
FULLY GUARANTEED AT APPROX FULLY GUARANT
HALF PRICE
f49-97!
Carr. 50p

649-971 Carr. 50p
\& CO (RADIO) LTD.
Also see next two pages

GEMI-CONDUCTORS/VALVES

ALL DEVICES BRAND NEW AND FULLY GUARANTEED

Abstract

TRANSISTORS

INTEGRATED CIRCUITS

\section*{$10121.02 .8 \mathrm{~N} T 410$} \%

RECORD DECKS
B.S.R.
Mint Monw $\mathrm{Cl29}^{\mathrm{CH}}{ }^{\text {M }}$ MP60
610 510
310 310
MP60 T.P.D. 1 MP\&OT P. 610 T.P.D.1. :10 T.P.D.1. H.T. 70°

THORENS

THORENS
TD 12 J
TD12
TX2J.
TDIJ0. 11 TD1JかA
 TXII +M.92

Probably the mont popular bulget Tuner Amp. ansl now offered at a ridichloms low
price. $;$ watts ram. per channel. Tape Cer phono imputs. AFC/Built-in MPX OUR PRICE 832.50. ('aIT
SUGGESTED SYSTEM F. 2000 , Garraril $2025 \mathrm{~T} / \mathrm{C}$ Changer fitted +Muno *stereo C'artridge Carriage 50 p evtra any molel.

RECORD DECK

PACKAGES
PACKAGE8
Decks gupplied realy
wirel jup plinth anht
cover fittet with
cartridge.
ciarraric 2023 T/e
with 9 TAHCD 2l5
 BSR MP60 with Andin Technica
 (ioldring GLTJ with (foldring (:800

SINCLAIR EQUIPMENT

stereo cartringe, with plinth and enver
 Rec. Pri
Carr, t1. t TRAN8ISTORISED FM TUNER
 an 9 battery. Coverage 88.108 MHz . Ready bullt realy for use. Fantastic value for

RESSIAN CI-16DOUBLE BEAM OSCILLOSCOPES

5 MHz Pass Band. Separate II, y anipli-
Ders. Calibrated triggered eweep from 2puec to $100 \mathrm{msec} / \mathrm{cm}$. Supplied complete with all arcessories and nstructions, 287, Carr. paid.

BELCO DA-20 80LID 8TATE DECADE AUDIO O8GILLATOR

TE-20RF 8IGNAL GENERATOR
 ing 120 ke/s-260 Mc / s on 6 bands Directly calibrated tenuator. Operation $200 / 240 \mathrm{~V}$ a. Brard new with int
atructions. S.A.E. f. P details.

BELCO AF-5A
80LID 8TATE 8INE 8QUARE WAVE C.R. O8CILLATOR

Sine

$18-200,000 \mathrm{~Hz}$; Square $18-50,000 \mathrm{~Hz}$ Output max. | Output mas |
| :--- |
| +10 d 3 s |
| (10 | operation internal

batierics.
 Ranges $+2 \%$. TURNS RATIO $1: 1 / 1000-$ 1,000 cps. Operated
\pm
from
9 Meter indication. Attractive volta. $100 \mu \mathrm{~A}$. case. Size $78 \times 5 \times 2 \mathrm{in}$. 280 . P. \& P. $2 \overline{\mathrm{E}} \mathrm{p}$.

Brand Ne
Carr. 371

B.C. 221 FREQUENCY METERS latest release 125 kHz to 90 MHz . Excellent condition. luully tested and checked and $42^{\prime} .50 \mathrm{cach}$ (arg 70 m

SOLID STATE VARIABLE A.C YOLTAGE REGULATORS

AUTO TRANSFORMERS Fully
$0: 115 / 230 \%$. Step up or step lown. Fully 01115230 d.c. to $2004 \mathrm{~Hz}+40 \mathrm{~dB}$. -3 dB). Accuracy mum imput less than $4 W$ (50v). Built in 600Ω load resistance with intermal/extermal switch. Brand new $827 \cdot 50$. P. \& P. 20.p.

AM/FM SIGNAL GENERATORS shish Oscillator Test No

 y| 150w. | 8237: | 1. \& P. 17 [1]. |
| :---: | :---: | :---: |
| 300w. | E3.25. | P. \& P. $22 \ddagger p$. |
| j00w. | 44.97⿺. | P. \& P. 32 ${ }^{\text {p }}$ p. |
| 1,000W. | 27.25. | P. \& P.371p. |
| 1.500W. | E8.97! | P. \& P. 4:1p. |
| 5,000W. | 238.00. | P. © P. \&l. |

230 VOLT A.C. 50 CYCLES RELAYS Brand Neu. 3 sets of changeover contacts at 5 amp rating. sop each. P. \&P. 10 p (100 loLs \& 40). Quantities available.
LARGE STOCES OF TEST EQUIPMENT ARD RECEIVERS-Marconi, etr., for AND

POWER RHEOSTATS

High quality ceramic construction. Windings embedded in vitreous enamel. Heary duty brush wiper. Continuous rating. Wide range ex-stock Single bole fixing, tin. dia. shafts. Bulk quantities available 50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 2,500$ or 5,000 ohms, $21 \cdot 05$, P. \& P. Ijp

Practicul Electronics Classified Advertisements

RATES: $7 \ddagger p$ per word (minimum 12 words), Box No. $7 \frac{1}{2} p$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics " IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

miscellaneous

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE
becauso this GPO approved transmitter/receiver kit doos not use R.F. and you can get one easily Your tranimissions will be virtually SECRET sinc they won't be heard by conventional means Actually it a the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO.FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGEhas obvious applications for HOUSE-TO-HOUSE USE, SCHOQL PROJECTS, LANGUAGE LABORATORIES, SCOUT CAMPS,

GET YOURS! SEND $\mathbf{4} 5 \cdot 20$ NOW
TO: 'BOFFIN PROJECTS*
DEPT. KE2OIO
STONELEIGH, EWELL, SURREY

* ELECTRONIC MUSIC *
 Ring Modulators Electronic Phasing Oscillators - Sub-Octave Generators Fuzz and Waa-Waa - White Sound Complete units or P.C. assemblies 30 stomp for fullest detolls, from
 TAYLOR ELECTRONIC MUSIC DEVICES TEGID HOUSE - BALA - MERIONETH

INSTRUMENT KITS

New range of laboratory instruments in kit form! Sine/square wave osciltacor, Pulse generator, Distortion meter, Frequency meter. E.E. sine/square wave oscillator kit $<1 \%$, distortion at 10 Vpp and $<100 \mathrm{~ns}$ square wave rise time.-E25

INTEK ELECTRONICS LTD.
4 Lowfield Lane. Hoddesdon, Herts
JOHN SAYS
RING MODULATOR by Dewtron is
$\begin{aligned} & \text { professional, transformerless, } 5 \text {-transistor, } \\ & \text { has adiustable F1F2 rejection. Module } £ 7 \text {, }\end{aligned}$
$\begin{aligned} & \text { has adiustable F1 F2 rejection. Module } £ 7 \text {. } \\ & \text { Unit } £ 8.90 \text {. WAA-WAA Pedal }\end{aligned}$
Unit \&8.90. WAA-WAA Pedal kit of al
Dewtron modules. Simple unit for waltz, fox-
trot, etc. Costs $£ 16.55$ in modules.
ORGAN PERCUSSION and other fasci-
nating effects. Send $15 p$ for illustrated list.
D.E.W. LTB.. 254 Ringwood Road,
Ferndown, Dorset

TOP Tralysitioss

Brand New and Individually Tested Transistors supplied unmarked, but packed separately for indentification and guaranteed to be within their correct specification or money refunded. All at 9p. each or Any 12 transistors for only $\mathbb{C l}$
ACY22 BFY5I OC72 2N3702 $\begin{array}{llll}\text { BC108 } & \text { BFY52 } & \text { OC202 } & 2 N 3703\end{array}$ $\begin{array}{llll}\mathrm{BCl} 109 & \text { BSY27 } & \text { ZTX300 } & \text { 2N3705 } \\ \text { BC168 } & \text { OC45 } & 2 N 706 & 2 N 3706\end{array}$ $\begin{array}{llll}\mathrm{BCl} 68 & \text { OC45 } & \text { 2N706 } & \text { 2N3706 } \\ \text { BCI69 } & \text { 2N2926 } & \text { 2N3708 }\end{array}$ Money back guarantee. P. \& P. IOp J. M. KING (J)

17 Buckridge, Portpool Lane, London, E.C.I

PRINTED CIRCUIT8. Capacity now aviailale for prototype or production runs, Artworks, Photographics, Etched Boards, and Assembly Fast turn round. Send S.A.E. for quotations. Also copper laminated fibreglass hoard. Bingle sided $1 \frac{1}{1} p$ per sq. inch. Double sided $2 p$ per s inch. Any size cut. Minimum order 50p. P P plus 10%. SYSTEMATICS, 18 Pennine Road, Millbrook, Southampton, Hants

MISCELLANEOUS (continued)

Dept. PE
72 Willesden Lane London, N,W. $01-6246643$

BARGAIN8 P.8.U'8, test geir, lists N.A.J: b()N SMITH, 1ㄹ (hammel Heights, Weston-super-Mare, somerset

3 WATT TRAN8I8TORISED AUDIO AMPLI FIER. Volume, tolne controls, input: ('rysta (:artridge. Gutput for $13-15 \Omega$ speaker
 314 Kibinney 1 hill Road, Northampton.

TOP MANUFACTURERS' PRODUCTS AT TRADE PRICES !!!

ADCOLA SOLDERING IRONS AND ACCESSORIES: 60/40 SOLDER ELECTROSIL RESISTORS: TR4, TR5, TR6, TRB, C5
T.M.C. RELAYS, PUSH BUTTON KEYS AND LEVER KEYS
B.I.C.C. P.V.C. EQUIPMENT WIRE ALL COLOURS
Send large s.a.e. for price lists
SPEEOY COMPONENTS SUPPLY LTD.

High Street - Handcross

 Haywards Heath - SussexHandcross 569 CALLERS WELCOME

PSYCHEDELIC

 LUMINOPHONICSOr is this just another way of referring to FANTASY? Either way, our Projects 24 and 1014 probably come within this category-THINK OF THE FUN THIS AT A PARTY! WITH SOMETHING LIKE UNUSUAL PROJECTS TOO The MANY OTHER ELECTRONIC STETHOSCOPE for LISTENING THROUGH WALLS, etc., or a TRANSMITTER RECEIVER that doesn't use RF, SO LICENCE WORRIES ARE OVER! Then there's another project or a LEARNING MACHINE-imagine FRIENDS WOULD BE AMAZED! If REALLY UNUSUAL projects incerest you, then WE'VE GOT WHAT YOU WANT. In a few days from now YOU COULD BE IN THE "SCIENCE-
FICTION"WORLD OF "BOFFIN"! FICTION" WORLD OF "BOFFIN"?
DON'T PUT IT OFF! SEND I5p for your list-NOW BOFFIN PROJECTS
4 CUNLIFFE RD., STONELEIGH, EWELL, SURREY Designs by GERRY BROWN and fOHN SALMON and presented on TV

CLEARING LABORATORY, scopes, V.T.V.M's V.O.M's, II.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, 1).C. null potentiometers, bridges, spectrun analysers voltage regulators, sig-gens, \mathbf{M} / C relays components, etc, Lower Beeding 236 .

MISCELLANEOUS (continued)

RECORD T.V. SOUND using our loudspeake isolating transformer. l'rovides safe connection to recorder. finstructions included $70 \mathrm{p}+10 \mathrm{p} \mathrm{P}^{\mathrm{F}} \mathrm{P}$. CROWBOROUGH electronics (P.E.), Eridge Road, Crow borough, sussex.

12 VOLT FLUORESCENT LIGHTS

Beat Power Cuts, 12 ins 8 watt Tube, Ideal for Caravan, Tent, Emergency Lighting, etc. Fully Transistorised, Low Battery Drain With ON/OFF Switch and $12 v$ Socket to
run other Lights or 12 v Equipment.

```
Unbearable at }\leq3.30 post paid
or in kit form $2.90
```

4 WATT GRAM AMPS.
Volume and tone controls, mains operation, 3Ω output, new and boxed $\{3 \cdot 63$ POST SALOP ELECTRONICS Callerswelcom 23 Wyle Cop
Shrewsbury, Shropshire
S.A.E. for lists

will dim up to 400 watts af incindestent lightag from zera to full brilliance. This ualt simaly riplaces the norimal light swich, and is fittot in a mattor of manutes. An MK menntiag frame is supillod, for usi when mart donth is recultus.

$$
\begin{aligned}
& \text { Prics-osmplate kit } \\
& \text { buit and tested } \\
& \text { b3. } 80 \\
&
\end{aligned}
$$

as supplied to Industry, Schools, Hospitals Government Depts. etc.
Diathane Ltd.
III, Shaffiald Road, Wymondham, NPRFOLK.
$\mathbf{\Sigma 0}-10$ postage \& packing
BUILD IT in a DEWBOX quality cabinet $2 \ln \times 2$ in \times any length. DEW LTD. llingwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

FA8CIA PANEL8, hi- fl equipment, ete., etched aluminium to individual sperillcations, s.A.E details. R. MARsH, 29 shelbourne Road stratford on A von, Warwicks

[^3]
Electronics at The Open University

Catch up in your spare time by studying at home a new, introductory university course in Electromagnetics and Electronics which the Open University is offering in 1972.

Accepted students each receive an oscilloscope, and other equipment, to augment tuition by text, tutor, TV and radio. Whilst applicants are expected to have a scientific or technical background, no formal qualifications are needed.
Further information can be obtained by writing to
G. A. H. Kiloh,
\bigcirc The Open University Waiton Hall, Bletchley, Bucks.

HUNDREDS OF TOP PAID JOBS in engineer Ing awalt qualifted men. Get a certificate through B.I.E.T. Home Study-Mech., Elec. Auto., Radio, TV, Draughts., Electronics, Computers, Building, etc. Send for helpful FREE book, B.I.E.T., Department 125 K , Aldermaston Court, Reading, RG7 4PF.

FOR SALE

8EEN MY CAT 9 5,000 Items. Mechanical and Electrical Gear, and materials. S.A.E. K. R WHISTON, Dept. PE, New Mills, Stockport.

CATALOQUE NO. 18, Electronic and Mechanical Components, new and manufacturers ${ }^{\circ}$ surplus. Credit vouchers value 50 p . Price 23p, including post. ARTHUR SALLIS RADIO CONTROL LTD., 28 Gardner Street, Brighton, Sussex.

8HIBADEN VIDEO RECORDER, condition as new £175. Ihone 061-998 3494.

MORSE MADE ! !

FACT NOT FICTION. If you atart RIGHT Fon fill be reading amateur and commerclal Morse whitha a month (normal progresa to be expected). Using aclentifically prepared 3 -speed records automatically learn to prepared 3 -speed records you Whthout tranolatlag. You can't help It, it's nit eaby at learning a tune. 18 W.P.M. in 4 weeks guaranteed.
For detajls and course C.O.D. ring B.T.D. $01 \cdot 6602898$ or aend 4 p stamp for explanatory booklet to: GEHSO (Bor 10), 45 GREEN LANE, PURLEY, BURREY

SITUATIONS VACANT

EAQLE INTERNATIONAL require Audio Engineers. Excellent prospects. Must be fully conversant with stereo Amplifiers, Tuners, Multiplex, etc. Contact MR. MORIROW 01-636 0961.

QET INTO ELECTRONICs--big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. R.T.E.B., City \& Guilds, Madio, TV Telecoms, etc. For froe informative Gulde, write CHAMBERS COLLEGE (Dept. 860 K), Aldermaston Court, Reading, RG7 4 PF .
A.m.s.E. (Elec.), City \& Gullds, R.T.E.B. Cert., Radio Amateurs' Cert., etc., on "Satisfaction or Refund" terms. Wide range of courses in Elec. Engineering, Design, Installatlon, Repairs, Refrigeration, Electronics, lation, Repairs, Refrigeration, Electronics,
Radio and TV., etc. Send for full details and Radio and TV., etc. Send for full details and
Hllustrated book FREE. BRITISH INSTITUTE book ENGREE. BRITISH NOLOGY, Dept. 124 K Aldermaston Court, Reading, RG74PF.

MEN: You can earn $£ 50$ p.w. Learn Computer Operating. Send for FREE brochureLONDON COMPUTER OPERATORS TRAINING CENTRE, C'95 Oxford House, 9-15 Oxford Street, London, W.I.

FULL TIME COURSES IN ELECTRONICS AND TELEVISION. These are nine month courses, starting next september. which lead to ('ity and Crulds certificates. Lextensive laboratory work is included, and there are, in most cases, no fees for those under is at enromment. Full details from- iection $4 \overline{7}$, Electrical and Electronic Engineering Department, Southall College of Technology, Beaconsfleld Road Southall, Middx.

EDUCATIONAL

Young men (and women) trained as Radio Officers on liners and other ships. Salaries rising to 62,500 per year (all found). Immediate vacancies. Grants available for Day full time course. For details of training write to:
The Radio College, il Lancastor Road, The Radio College, Proston, Lancs.
or Postal course.

Established 1891

TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
First-class opportunities in Radio and Electronics await the ICS trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:

- C. G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
- C. G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- RADIO OPERATOR CERTIFICATES.

Examination Students coached until successful
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how I S can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL

CORRESPONDENCE

SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

8ERVICE 8HEET8

RADIO TELEVIston, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shep herds Bush Rd., London, W. 6 (01-743 8441).

EERVIGE 8HEETs. Radio, TV, etc., 8,000 models. List 10p. S.A.E. enquiries. TELRAY 11 Maudland Bank, Preston.

SERVIGE 8HEET8 (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFinding Guide. Prices from 5p. Over 8,000 models available. Catalogue 13p. Please send S.A.E. with all orders/enquirles. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

LARGE SUPPLIER OF

SERVICE SHEETS

t.v. ridio, trahsistors, tapes, car rados PLEASE ENCLOSELARGE SAE. WITH ALL OTHERWISE LETTS AN NOT ATTS,

ED TO
(Uncrossed P.O.'s please, original returned if service sheets not avallable.) free tv fault tracing chart or tv LIST ON REQUEST WITH ORDER C. CARANNA

7I BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

WANTED

CABH PAID for New Valves. Payment by return. WILLOW VALE ELECTRONICS, 4 The Broadway, Hanwell, London, W.7. 01-567 5400/2971.

HIOHE8T PO8sIBLE CA8H prices for Revox, Ferrograph, Brenell, Vortexion, 'Tandberg. 9.30 - 5.90 . $01-8378200$.

PRACTICAL ELECTRONIC8 any back issues required. BAN(ROFT, st. Wilfrids, Halton, Nr Lancaster.

PRACTICAL ELECTRONIC8. Volumes 1 to 4 , November and December issues in particular Price and condition, please to-MR. BLAKE, 124 Windsor Avenue, Hillingdon, Middx.

WE PAY THE HIGHEST PRICES for new valves. (ash sent by return. A.D.A. MANT. FACTURDVG CO., 116 Affeton Road, Nottingham.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

RECEIVERS AND COMPONENT8

BRAND NEW COMPONENTS BY RETURN. Electrolytics 15 or 25 volts, $1,2,5,10 \mathrm{mfds}$, $3 \nmid \mathrm{pi} 25,50,4 \mathrm{p}$; 100, 5p. Mylar Film 100 V $0.001,0.002,0.005,0.01,0.02,2 \mathrm{p} ; 0.04,0.05$, $0 \cdot 1,2.5 p$. Mullard miniature Carbon Film Resistors iW $1 \Omega-10 \mathrm{M} \Omega$. 8 for 5 p . Postage 5p. THE C.R. SUPPLY CO., 127, Chesterfleld Road, sheffield, S8 ORN.

RECEIVER8 AND COMPONENT8
(continued)

MULLARD TRAN8I8TOR8, ex. eqpt. P'erfect OC23 20p (Heat Sink 5p), oc72 10p. Diodes OA10 10p. LESMAR, 15 Conholt Road, Andover, Hants.
BIG BARGAIN PACK contalning varied assort ment of semiconductors, pots and larger components. 75p post free. PAXTON, 108 The Chesils, Coventry.
P. E. AURORA. Complete sets of electronic components for assembly on Vero board. We also have specially designed printed circuit cards for a combined controller/filter system readily available. (S.A.E, for lists).

OPTELMEC LTD.
1, 2 \& 3 Nelson Work Back Road, SIDCUP, Kent

CHROMASONIC ELECTRONICS

supply only 1 st grade branded goods subject to makers' guarantees SN7400N, 1, 2, 4, 5, 10, 20, 28, 30, 40, 50, 51, 54 SN7460N SNT441AN, 42, 74, 81, 82, 90, 92, 93, 94, 95 all $\mathrm{L1} \mathrm{ea}$

30		,	22		
PA234	87p	TAAL63	70 p	20	
		TAA293	90 p		

LOW NOISE HI-STABS
1 watt 5° o all E24 values 3 for $2 p$ plus p . \& p. 6 p u_{p} to 50 resistors $+1 p$ for each additional 50 .
FREE CATALOGUE p. \& p. 3p
p. \& p. on all orilers other than reeistors 6 p.

56 Fortis Green Road, London N 10 3HN

RECEIVER8 AND COMPONENT8

(continued)

COMPUTER PANELS. $\delta-\mathrm{BC108}$ diodes 15 p , post 5 p . 4-50p, post 10p. Americak painels. Totalat least 30 transistors, frst grade components, detalle provided, $3-55 \mathrm{p}$, pat 10p. 6-OC170, DIODES, 85p, post 8p each. 8-0C72/73/42, 8-0A10 DIODE8, 40p, post 10 p each. $4 \mathrm{MDD34} 5-,100 \mathrm{mF}$ ELECTROLITICS. PACES. L.M.S.W. Pugh button or plano key, No dope 80 p , post 10 p each 0 BP 18 on panel kx. No ment, 85 p c.p. MICRO 8 WITCHES on or off, 16 p c.p., discount for quantities. PERRETE ROD $7^{7^{*}} \times \mathbf{1}^{+7}$ 12p, post 8 p each. LA2 POT CORES. 20 In ALI box with 201° caps, $21 \cdot 50$, post 27 p. Singles, 15p c.p. COMPUTER RELAYS, D.P.D.T., 700 ohm coll, weigh for, 65p with base, 65p poat free. 8Mall SYNCHRONOUS MOTORS with train of gears, $200-250 \mathrm{~V}, 80 \mathrm{p}$ post free.
POLYETYREIE CAPACITORS. $125 \mathrm{~V}, 150,180,220$, $27031300,3900,5,00,800,80,1,001,2,2012$ $6,800,8,200,0.01,0.012$ 0.015 .15 p dozen, post 10 p .

Assorted. 1* leade, 100 for 80 p, post 10 p
Asgorted computer Panels. 21 b . $11 \cdot 25$ c.p.
J. W.B. RADIO
75 HAYFIKL ROAD, BALFORD 6, LAICE.

C-CORE
 TRANSFORMER KITS

Consisting of:-
CLAMPS, WINDING BOBBIN, TWO C-CORES AND BANDS Rating Price P \& P

5 VA	35 p	5 p
10 VA	40 p	10 p
15 VA	50 p	15 p
25 VA	60 p	20 p
50 VA	99 p	25 p
100 VA	61.50	35 p
500 VA	62	40 p
1000 VA	63	50 p

Inquiries invited for other sizes, also toroids, E-cores, transformers for other frequencies, and enamelled copper wire. Design advice given F.o.C.

Supplied by:-

Trankit Electrical
192 Silvertonhill Avenue
Hamilton ML3 7PF

30 WATT POWER AMPLIFIER

IDEAL BASIS FOR HI-FI SYSTEM
30 watts rms into $8 \mathbf{\Omega}$.
$<20 \mathrm{~Hz}-40 \mathrm{KHz}+$ IdB at full output. 0.04\% distortion at fulf output. Differential input stage -300 mV for full output. Tested, ready to mount $\mathbf{\text { 67.35. } 2 \text { for }}$ © 14 :50. Quantity/Trade discount.
Kit with drilled glass fibre board, heatsink and all components, etc., 65-70. P. \& P. 15p. Overload protection 25p extra.
S.A.E. details of above, also 50 WATT, 100 WATT IC POWER AMPS, power supplies, etc., to:

FIELDSIDE ELECTRONICS
120A Rithmond Road, London, S.W. 20 01.428 8076

REOEIVER8 AND COMPONENTS

 （continued）Texas markings．NOT seconds，etc．or reject Texas markings．NOT seconds，etc．．or rejects． Both are for zeneral－purpose，low－ilevel，high－
gain applications．Both have hfe $45-800$ and max gain applications．B
dissipation 250 mw ．
2N 37087
2N37087p each．（N．P．N．coll－emitter 30v max， coll current 30 ma max）．
2N4059 op each．（P－N－P，coll－emitter－30v max，coll current－30ma max）．
Ratings at $25^{\circ} \mathrm{C}$ free－air temp．Data sheets Ipea
Mail order
 a Gower Street，Derby DEI ISB

MAGNETIC RECORDING TAPE．Fully Guar－ anteed． 5 in L．P．，60p．5in D．P．，21．5in T．P．，
 T．P．，33．Inverter． 15 W 12 to 240 V ， $81 \cdot 50$ ． Postage， 15 p ．Send 10 p for full lists of elec－ tronic components．MFJ ELECTRONICS， 495 Alum Rock Road，Birmingham， 8.

DUAL GATE MO8FET MEM S64C，ruggedised 3N140，sim．40873．For WW communic． Rx，Stereo FM，etc．，only 65 p．U．K．post 5p． AMATRONIX LTD．， 396 Selsdon Rd．，S． Croydon，Surrey，CR2 0DE．

LADDER8

VARNISHED TIMBER LADDER8 from manu－ facturer，LOWEST PRICES anywhere： $15 \frac{\mathrm{ft}}{}$ ext．， $26 \cdot 20$ ； 17 ft extd．， 26.50 ； 20 ft extd．，27； $21 \frac{1}{2} \mathrm{ft}$ extd．，27．75； $24 \frac{1}{\mathrm{ftt}}$ extd．， 88．90； 29 ft extd．， 810.25 ；31年ft triple extd．， $\$ 12 \cdot 25$ ；36ft．triple extd．，$\& 16$ ．Carr， 80 p ．Free Lists．Also Aluminium Ext．and Loft Ladders． Callers welcome．Dept．PLE，HOME SALES， Baldwin Road，Stourport，Worss．Phone： $02-9932574$ ．Placing order on C．O．D．

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR The ideal way of running your TRANSISTOR
RADIO，RECORD PLAYER，TAPE RECORDER， AMPLIFIER，etc．Types available： $6 v, 9 \mathrm{v}, 12 \mathrm{v}$ ， 18 v （single outpur） E 2 each．P．A P．P． 15 p ．
 outputs） 82.50 each．P．a P．15p．Please state output required．All the above units are complerely isolated from mains by double
wound transformer ensuring 100% safety R．C．S．PRODUCTS（RADIO）LTD． （Dept．P．E．）， 31 Oliver Road，London，E．I7

Your local component stockist

HOW TO BUILD A MULTI－CHANNEL DIGITAL RADIO REMOTE CONTROL SYSTEM FOR CARS，BOATS OR PLANES． MANUAL 75p plus 8p post．
TELERADIO ELECTRONICS
325／7 Fore Street，Edmonton，N． 9

A range of audio Pre－amplifier Modules is now available enabling the construction of custom－built audio mixers for studio，P．A．and discotheque installations；at reason－ able cost and with many facilities usually available only on expensive systems．The Modules，construc－ ted on glass fibre printed－circuit boards，are complete with anodised aluminium black facia plates and four control knobs indentified：L．F．， H．F．，Echo Send and P．F．L．The modules are designed for use with external faders or volume controls and fulfil most requirements in the audio field．Up to ten input modules may be mixed into the combined Mixer／Line Amplifier Type $M X /$ LNTA which is available on a match－ ing facia plate with V．U．meter．The line amp will deliver 20 dBM ．All mixing may be effected with lok log faders．
The modules are fixed with four screws and dimensions are $7 \frac{1}{2}$ in 2lan．
Input modules available：
UM1 200－600 ohm MIC
UM2 50k ohm MIC
UM3 Mag P／U 1.5 mV R．I．A．A．
UM4 Mag P／U 5 mV R，I．A．A．
UM5 Crystal P／U 500 mV
UM6 High Level Tape／Tuner 500 mV
Mixer／Line amp MX／LNTA： 10 inputs plus expander input； 600 ohm line out with preset for V．U．adjust－ ment．
Power Unit for above Modules： Type PU11／30， $30 \mathrm{~V}, 500 \mathrm{~mA}$ ． 100 W slave amplifier－ 100 W into 4 ohm load 13娄in 10立in $7 \frac{1}{2}$ in．
Prices：UM1－6，£9 each．MX／LNTA， £12．PU11／30，£8．100W Slave Amp $£ 60$.
Manual showing mixing arrange－ ments，connection data，etc．，25p． S．A．E．all inquiries．Trade inquiries welcome．

DABAR ELECTRONIC PRODUCTS

98a LICHFIELD STREET
WALSALL，STAFFS WSI IUI WALSALL 34365

UNIQUE TWIN APE DECK UNITS

OFFERED AT A FRACTION OF THEIR ORIGINAL COST

（Few available requiring attention ot $\mathfrak{f 2 5}$ each） Carriage $\{3.50$ each，including wooden packing case，insurance，etc．
These superb twin tape deck units were originally designed for installations requiring the continuous replay of music or speech when connected to suitable amplifiers and cost approx．©450 each to
manufacture．Consisting of two completely self－ manufacture．Consisting of two completely self－
contained tape decks operating at either $3 z$ in contained tape decks operating at either $3 \neq i n$
（ 3 button i track model）or $7 \frac{1}{2}$ in（ 6 button \downarrow track （ 3 button track model）or $7 \frac{1}{2} i n$（ 6 button $\frac{1}{2}$ track
model）．Each tape drive unit is fitted with a unique automatic solenoid operated sape drive reversal mechanism actuated by metallie stop foil at end of tape or inserted where reversal is desired．Constructed to the highest specification with the finest components available to ensure the
utmost reliability．Nothing has been spared in the utmost reliability．Nothing has been spared in the
construction and the superb heavy duty capstan motors（ 2 off）and rewind motors（ 4 off），top grade relays，solenoids，etc．，all bear witness to the high standards set．
Available in two basic
6 butron operation．The three pushbution model 34 i．p．s．has interlocked controls operation both tape drive units simultaneously and is fitted with 2 Ferrograph $\frac{1}{2}$ track stereo heads．The 6 burton $7 \frac{1}{2}$ i．p．s．model has independent control over each tape drive unit and is fitted with 2 Marriott it crack stereo heads．A．c．230／250V． 50c／s．Vertical or horizontal operation．Size
19 in 19in．Bin deep．Weight 541 b ．

TECHNICAL SPECIFICATION

Power requirements $230 / 250 \mathrm{~V}$ a．c． $50 \mathrm{c} / \mathrm{s}$ ．Vertical or horizontal operation．Overall dimensions：
19 in ． 19 in Bin deep．Weight 541 b 3 button I9in 19 in 8 in deep．Weight 541b． 3 button model operates at $3 \frac{1}{4}$ i．p．s．
operates at $7 \frac{1}{2}$ i．p．s．TAtton model Upper deck 5 tin．Lower deck Sin．Capstan drive motors： 2 AEl as．motors continuous rating Type $\mathrm{BC} 1504-\mathrm{B}$ ． $230 / 250 \mathrm{~V}$ a．c． $50 \mathrm{c} / \mathrm{s} 1 / 75 \mathrm{th} \mathrm{h} . \mathrm{p}$ ． 1.500 r．p．m．REWIND AND TAPE UP MOTORS： 4 Garrard a．c．motors continuous rating Type
DHPSC $100-130 / 200-250 \mathrm{~V}$ ． $50 / 60 \mathrm{c} / \mathrm{s} 0.3 \mathrm{~A}-0.15 \mathrm{~A}$ 24W．RELAY SUPPLY TRANSFORMER： Primary $210-230-240 \mathrm{~V}$ a．c． $50 \mathrm{c} / \mathrm{s}$ ．Secondary 24－26－32V．RECTIFIER．Sentercel selenium rectifier type 460 SC 21 BI 5 ．CONDENSERS：
1 Plessey 2,000 uf 50 V d．c． 2 AEI 2uf 400 V ： solessey 2，000uf SOV d．c． 2 AEl 2uf 400V． 42766120 ohms ．RELAYS： 2 Double coil relays cype $593 \mathrm{Eli/Ts} 5668590$ ohims． 2 Type $569 \mathrm{EI} 4 /$ $590 /$ AEF2／24． 2 Trpe $596 / E 9 / 890 / G 2 / 24$ ． 2 Type
$596 E 8 / 590 / E 2 / 24$（3 button unit unly i）． $596 E 8 / 590 / E 2 / 24$（3 button unit unly I）． RECORD／REPLAY HEADS． 3 burton unit fitted 2 Ferrograph 350 ohms impedance half track
stereo heads． 6 button model firced 2 Marrio stereo heads． 6 button model fitted 2 Marriott
4 track heads 500 ohms impedance．

SYPHA SOUND SALES LTD．
82 high holborn，london，w．c．I Telephone 01－242 7401
Few mins．Holborn Tube．Half day Sat．

VALVE MAIL ORDER CO． BLACKWOOD HALL
I6a WELLFIELD ROAD，LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE
Express postage Ip per transistor，over ten post free

1N21	$\begin{aligned} & \text { fp } \\ & 0.18 \end{aligned}$	ACH^{-1}	en 0.25		（iJ 4 M	$\begin{aligned} & 2 p \\ & 0.88 \end{aligned}$	OC43	$\begin{aligned} & 2_{9} \\ & 0.40 \end{aligned}$
1N23	0.20	ACliz	0.26	BF181 0．38	（15j3	0.26	OC44	0.18
1N8J	0.88	ACl8：	0.80	BF184 0.25	（iJiM	0.88	OC449	0.18
1N203	0.50	AClss	0.80	BF18j 0.26	H（1005	0.60	OC45	0.15
1N256	0.50	Acyli	0.80	BFi94 0.18	H8100．	0.80	OC＇4ü	0.18
1N645	0.25	ACY1＊	0.25	BF195 0.15	MaT100	0.25	OC46	0.28
1 N 725 A	0.20	AcY 19	0.25	BF198 0.88	MAT101	0.80	OCS ${ }^{\circ}$	0－60
1 N 914	0.08	ACYe0	0－28	BF197 0.88	MATl20	0.25	OC5s	0－60
1N4007	0.28	ACY21	0.23	HFS61 0．28	MATIO！	0.80	OC59	0.65
1802］	$0 \cdot 20$	AcYw	0.18	BFS98 0.88	MJEate	0.88	OC66	0.50
18113	0.15	ACY27	0.25	BFX1： 0.88	MJE29JJ	1.76	OC70	0.18
18130	$0 \cdot 18$	ACY28	0.18	BFX13 0．26	MJE30̄̄	0.98	OCTI	0.18
18131	0.18	ACY39	0.55	$\begin{array}{ll}\text { BFX29 } & 0.80\end{array}$	NKT128	0.85	Oct：	0.25
1820：	0.28	ACY40	0.16	BFX30 0.88	NKT1：9	0.80	0 Cl 3	0.80
2 G 240	2.98	ACY41	0.26	BFX35 0．98	NKT 211	0.25	OCT	0.30
－C301	0.20	ACY44	0.88	BFX $63 \quad 0.50$	NKT213	0.25	0005	0.26
26302	0.28	AD140	0.50	BFX84 0.80	NKT214	$0 \cdot 15$	OCT 6	0.25
－${ }^{\text {a }} 30 \mathrm{~B}$	0.30	AD149	0.50	$\begin{array}{ll}\text { BFX85 } & 0.40\end{array}$	NKTי1；	0.38	OCz	0.40
2 C 371	0.28	AD161	0.88	BFX8＊ 0.88	NKT：17	0.40	00^{088}	0.20
2G381	0.85	AD16？	0.88	BFX87 0.88	NKT？ 18	0.40	0 OC 5	0.28
2 CH 14	0.30	AF10t	0.80	BFX88 0－26	NKT219	0.38	OC81	0．26
2 C 417	0.28	AF114	0.38	BFY10 1.00	NKT ${ }^{\text {cen }}$ ？	0.20	$0 \mathrm{C8} 1 \mathrm{D}$	0.80
$\bigcirc{ }^{-14}$	0.48	AF11\％	0.30	BFY11 1.25	NKT224	0.83	0C81M	0.20
2 N 245	0.25	AF116	0.88	BFY1； 0.25	NKT2J1	0.24	OC81DM	0.18
－ 20	0.50	AF11\％	0.25	BYFI\％ 0.26	NKT271	0.25	OC812．	0.55
2 N 404	0.28	AFll	0.68	BFY 1900.25	NKT272	0.25	OC8：	0.95
2N69	0.18	AF119	0.20	BFY24．0．45	NKT273	0.20	$0 \mathrm{C8} 2 \mathrm{~J}$	0.15
2 N 988	0.48	AF124	0.25	BFY44 1.00	NKT2it	0.80	$0 \mathrm{CB3}$	0.25
2N706	0.10	AF10う	0.80	BFY 0000	NKT275	0.25	0 C 84	0.25
2S706A	0.18	AF1³	0.18	BFYJ1 0.20	NKT ${ }^{\text {a }}$	0.80	$0 \mathrm{Cl14}$	0.88
－ $\mathrm{N}_{50 \mathrm{O}}$	0.15	AF10－	0.18	BFY ${ }^{\text {B\％2 }} 0$	NKT278	0.26	$0 \mathrm{OC12}$ ？	0.50
2 N 09	0.68	AF13	0.80	$\begin{array}{ll}\text { BFY53 } & 0.18\end{array}$	NKT301	0.40	${ }_{0}^{0 C 123}$	0.60
－N711	0.88	AFiTs	0－48	BFY64 0.48	NKT304	0.80	OC139	0.25
2N987	0.63	AF174	0.48	BFY90 0．68	NKT403	0.75	OC140	0.88
ご1090	0.80	AF180	0.58	B8X 270.50	NKT404	0.68	0 Cl 41	0.68
2N1091	0.83	AF181	0.48	B8X $60 \quad 0.93$	NKT678	0.80	$0 \mathrm{Cl169}$	0.20
－N1131	0.80	AFIB6	0.40	$\begin{array}{ll}\text { B8X76 } & 0.15\end{array}$	NKT313	0.25	OC170	0.26
Ex113：	0.30	AFY19	1.18	BSY 260	NKTテI3	0.25	0 Clil	0.30
－N1302	0.20	AFZ11	0.63	BSY2\％ 0.80	NKTisi	0.88	OC200	0.40
2N1303	0.23	AFZ1：	0.75	$\begin{array}{ll}\text { BSY } 51 & 0.50\end{array}$	0783	0.88	OC201	0.60
$\because N 1304$	0.25	ASY：${ }^{\text {d }}$	0.25	B8Y95A 0.15	OAJ	0.20	$0 \mathrm{CL202}$	0.75
－ N 1305	0.25	ASY ${ }^{-1}$	0.88	B8Y95 0．15	OAG	0.18	OC203	0.40
－ 13130	0.25	Asyen	0.25	BT102／500R	OA47	$0 \cdot 10$	0 C 204	0.40
2 N 1307	0.25	AsY： 4	0.80	0.75	OAT0	$0 \cdot 10$	$0 \mathrm{CL20}$.	0.75
2N 1308	0.80	ASY36	0.25	HTY4： 0.08	0.711	0.10	${ }^{0} \mathrm{C} 206$	0.90
2N 1309	0.25	AsY50	0.18	BTY79／100R	0.473	$0 \cdot 10$	$00^{0} 20$	0.90
2N 1420	0.98	ASYOI	0.40	0.75	OAT4	$0 \cdot 10$	OC460	0.80
2 N 1507	0.28	AsYi3	0.80	BTY79／400R	OA79	$0 \cdot 10$	$0 \mathrm{CH7O}$	0.80
2N152h	0.38	А8Y	0.80	1.75	OA81	$0-10$	$0 \mathrm{CPT1}$	0.98
？N1909	2.26	．19Y6？	0.25	BY100 0.18	OA85	$0 \cdot 18$	ORP1	0.50
2 N 214	0.75	A8Y8\％	0.88	HY129 0	OA86	0.15	ORP60	0.40
$2 \mathrm{~N} 214 *$	0.60	ASZ： 1	0.48	$\begin{array}{ll}3 \mathrm{YH} 2 \mathrm{~T} & 0.80\end{array}$	OA90	$0 \cdot 10$	ORP61	0.48
？ N 2160	0.63	A87：23	$0 \cdot 75$	$\begin{array}{ll}\text { BYY18：} & 0.85 \\ \text { B }\end{array}$	OA91	0.08	819 T	0.80
2N2018	0.30	Aly ${ }^{\text {d }}$	0.98	उY18： 0.85	OA9J	0.08	SAC40	0.25
2 N 2214	0.38	At＇101	1．80	HY：13 0．25	OA200	0.08	EFT308	0.88
2 N 2287	1.08	Heloz	0.13	BYZ10 0	$0 \mathrm{~A} 20 \div$	0.10	8T7\％3	0.38
2N229	0.80	BC10\％	$0-13$	13YZ11 0－85	OA210	0.26	8T7231	0.68
2 N 2369.1	0.20	$13(104$	$0 \cdot 13$	$\begin{array}{ll}\text { BYZ1³ } & 0.80\end{array}$	0 O211	0.38	8X68	0.20
－N2613	0.88	BCl13	0.25	BYZ13 0.28	OAZ200	0.55	8X631	0.20
2N2646	0.63	BC115	0.38	BYZ1： 0	OAZ：01	0.60	\＄x635	0.80
2 N 2 IT	0.25	BCl1t	0.40	HYZ1： 1.00	OAZ20：	0.48	8×640	0.60
QN2784	0.50	3clitid	0.45	BYZ16 0.63	OAZ：03	0.43	8X641	0.55
2N2846	2.26	BClis	0.38	13 YZ8me：3v3	0.17204	0.48	8×642	0.60
－ 2884	0.48	BC121	0.20	0.18	OAZ：05	0.48	8×644	0.75
－ 22904	0.80	BCIO	0.20	Clll 0.85	OAZ206	0.48	4×640	0.75
2 N 2904.1	0.23	B（125）	0.68	CRst／05 0.25	OAZ207	0.48	［15／301＇	0.50
2 N 2906	0.30	BCl^{-4}	0.85	CRS1／411 0.48	OAZ208	0.38	$530 / 201 \mathrm{P}$	0.38
－N2907	0.88	BCl 40	0.55	Cstib 2.50	OAZ209	0.88	$\checkmark 60 / 201$	0.60
2N29\％4	0.28	BCl4	0.18	C81013 3.13	0.12 C 10	0.88	－6012011	0.88
2 N 2925	0．18	以С14ヶ．	0.18	1）D000 0.15	$0.5 Z 211$	0.33	XA101	0.10
2 N 2928	0.18	1以14！	0.20	LD003 0.15	OAZ2P－3	0.40	XA10：	0.18
－N30－4	0.50	${ }^{\text {BCCLS }}$	0.20	DD004i 0.18	OAZ223	0.40	XAlJ	0.15
－N30．5	0.75	BCLST BC 10 y	0.20	$\mathrm{DDD00}^{-1} 00.40$	OAZי24	0.88	XAlvi？	0.15
－N3\％ 02	0.13	13C15\％	0.20	$\begin{array}{ll}\text { LDD0\％} & 0.38 \\ \end{array}$	OAZ241	0．83	XA161	0.25
$\because \mathrm{N} 3505$	0.15	13C＇160	0.83	GiD3 0.83	OAZPs	0.88	XAliz	0.26
－2N3704	0.89 0.16	Be＇ltst	0.13	$\begin{array}{ll}\text {（iD4 } & 0.06 \\ \text {（iD } & 0.38 \\ & 0.26\end{array}$	OAZ244 OAZ24	0.28 0.28	XB101	0.48
－2N370t	0.16 0.13	BCYis	0.80	$\begin{array}{ll}\text {（iDj } \\ \text {（iD } & 0.33 \\ \text { id } & 0.95\end{array}$	OAZ24t OAZ290	0.28 0.88	X 3101 $\mathrm{XB10} \mathrm{\%}$	0.48 0.10
2 N 3709 $\mathrm{\sim N} 3710$	0.13 0.13	BCY3：	0.50	$\begin{array}{ll}\text { GD } \\ \text { GD1：} & 0.25 \\ \text { GDI } & 0.05\end{array}$	OAZ290	0.38 0.60	$\mathrm{XB10} \mathrm{\%}$ X 13103	0.10 0.25
2N3711	0.13	BCY 3	0.25	$\begin{array}{ll}\text { GETIO2 } & 0.80\end{array}$	0 Cl 16 T	0.88	－	0.25
2 N 3819	0.85	BCY34	0.30	${ }^{\text {GET103 }}$	ociy	0.88	X 1113 $\times 131.01$	0.12
2N3820	0.88	BCY38	0.40	（iET113 0.80	0 C 20	0.98	KB1：1	0.48
2 N 3823	0.75	BCY 39	0.80	GET114 0.15	OC2\％	0.50	ZR24	0.68
？ N 5027	0.33	BCY40	0.50	GETIIJ 0.45	0 C 23	0.60	28170	0.10
2 N 0083	0.88	BCY 4：	0.15	GET114 0.50	OCP 2	0.60	28：31	018
28005	1.00	BCY BCY	0.80	GET120 0 0．25	OC：5	0．38	ZT：1	0.28
28301	0.60	BCY71	0.30	$\begin{array}{lll}\text { GET87\％} & 0.30\end{array}$	OCO26			
28304	0.75	BCZ10	0.35	$\begin{array}{ll}\text { GET87J } & 0.25\end{array}$	OCer	0.25	ZT 43	0.25
28501	0.38	BCZ 11	0.40	（iET880 0.38	Oc： 8	0.63	7TX10\％	0.15
28703	0.63	BD121	0.65	（：ET881 0.25	0 C 20	0.63	2TX108	0.15
AA129	0.80	BDI23	0.88	GET88： 0.25	OC30	0.40	ZTX300	0.18
AAZIE	0.30	BD124 BDY1	0.80 1.68	$\begin{array}{ll}\text { GET88J } & 0.95 \\ \text { GEX44 } & 0.09\end{array}$	OCS	0.50	2TX304	0.28
AAZ13	0.13	BFII：	1.68 0.25		OC3t；	0.63	7TX 500	0.20
ACl10	0.38	BF117	0.50	GEX941 0.15	OC41	0.25	ZTXJ03	0.80
． $\mathrm{Cl}^{2} 26$	0.25	BF16\％	0．26	C．J3M 0.26	OC4：	0.30	2TX331	0.30

SEMI－CONDUCTOR SET FOR

P．E．GEMINI AMPLIFIER $£ 12.95$

SEND S．A．E．FOR LIST OF 3，000 TYPES VALVES，TUBES AND TRANSISTORS
Open daily to callers：Mon．－Sat． 9 a．m．－5 p．m． Closed Sat． 1.30 p．m．-2.30 p．m．
Terms C．W．O．only
Tel．01－769 0199／1649

PHOTOELECTRIC KIT

CONTENTS． 2 P．C．Chmesis Boards，Cheanicals，Etching Manual，Inira－Red Photo－ transistor，Latching Relay， 2 Transistors， 3 Diodes，Resistors，Gain Control，Terminal Block，Elegant Case，Screwa，etc．In fact everything you need to build a seadised for modulated－light operation．

INVISIBLE BEAM OPTICAL KIT
Everything needed（except plywood）for building： 1 Invisible－Beam Projector and 1 Photocell Receiver（as illustrated）．Suitable for all Photoelectric Burglar Alarms， Counters，Door Openers，etc．
jeetor lamp holder，building plans，etc．Price 41.00 Pobtage and Pack．Jp（U．K．）． Commonwealth：suriace Mail 10p，Alr Mall 30p．
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONT ENTS：As above．Twice the range of standard kit．Larger Lenses，Filter，etc． Price E1－50．Postage and Pack．5p（U．K．）Commonwealth：Surface Mail 15p，Air Mail 50p．
JUNIOR PHOTOELECTRIC KIT
Versatile Invialble－beam，Relay－iess，Steady－light Photo－Switch，Burglar Alarm，Door Opener，Counter，etc－，for the Experimenter． Resiators，Screws，etc．Full Size Plans，Instructions，Data Sheet＂ 10 Advanced Photo－
electric Designs， JUNIOR OPTICAL KIT
CONTENTS： 2 Lenses，Infra－red Filter，Lampholder，Bracket，Plans，etc．Everything （except plywood）to build 1 miniature invisible beam projector and photocell recelver for use with Junlor Photoelectric Kit．
for use with Junior Phote 50p．Post and Pack．5p（U．K．）．Commonwealth：Surface Mail 10p；Air Mail 20p．
YORK ELECTRICS Mail Order Dept． 335 BATTERSEA PARK ROAD，LONDON，S．W． 11 Send S．A．E．for full details，a brief descriplion of all Kits and Projects

YUKAN SO PROFESSIONAL THE SF1F－SPIIN YUKAN AEROSOL WAV－ Get these ain drying GREV HAMMER NOW！OR BLACK WRINKLE
 Yukan Aerosol spraykit contains 453 g fine quality，durable easy instant $90 p$ carr pd．Modern Eggshell Black Wrinkle（Crackie）producing a 3D textured finish， 90 p carr pd，all at 85 p per push－button seff－spray can at our counter．Also durable．heat and water resistant Black Matt finish （339g．self－spray cans ondy）75p cant pd，
 Other Yukan Ait Orving Aerosols． Orying Aeroso 4539 at 900 4539 at cien od inciutis uncilute Zinc Chromote Clear iscquate Clear hacquer Metalics Grey Blue handle（yalue 25p）for can plus optional transferable snap－on trigger and primer（motor car quality）also available．
 Please enclose cheque or crossed PO for total amount direct to
 DEPT：K7 YUKAN，307a EDGWARE ROAD，LONDON W2 1BN
 We supply many Government Departments，Municipal Authorities．
 Institutes and Leading Industral Organisations－We can supply you too．Now British－
 Open all day Saturdsy．Closed Thursdzy gfternoons．

BAKER I5in．AUDITORIUM

A high wattage loudspeaker of exceptional quality with a level response to above $8,000 \mathrm{cps}$ ．Ideal for Public Address，Discotheques， Electronic instruments and the home．
Maximum Powe
Bass Resonance
Flux Denslty
Useful response
Matt weight

15，000 gauss
 35 watts
 5 ，000 nauss

20－14，000 c．p．s

Baker Reproducers Ltd

Bensham Manor Road Passage，Thornton Heath，Surrey．
01－684－1665

In just 2 minutes,find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on SATISFACTION OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical

Ansts of (Mych.
Intt of Engincers
Mcchancal Ling. Mantenathe Eng. Welding
Gencral 1)wel ling.
Sheet Metal Work
Eng. Inspection
Eng. Aletallurgy
C. G. Eng. Cratis

Draughtsmanship AM.IED.
Gin. Draughtsmanship
Des \& Press Tools biec. Draughtsmanship Jre \& Tool Design Desjign of Elec Alachines Technical Drauing Building

Electrical \& Electronic
A.M.SE Elec
C. A G Elec. Eng. Cencral Elec. Eng. Installations \& Wiring
Elcerical Maths. Elcetrical Mathe
Electrical Scienc Electrical Scicnce
Computer Electronics Electronic Eng.

Radio \& Telecomms.
C. \& G. Tuscomms. C. \& G. Radio Serviving Radio Opraiors' Curn Radio \& TV Engineering Radio Servicing Iractical Television TV Servicing Colour Th
Practical Radio $\& ~$ Practical Radio \mathbb{E}
Electronks (with kit)

Auto \& Acro A.M.IMI. MAA/MMI Diploma C. \& G. Auto Eng. Gicncral Auto Eng. Motor Mechanics A. R.B. Certs. Gen. Auro Eng.

Management \&

Production Computer Programming Inst of Marketing ACWA. Work, Management Work Scudy Prodution Eing. Storckeeping liktimating Personnel Management Quality Control Electronic Data Proctsome Xumerical Conern] Manning limginecting Operational Rescarch Operational
Alctrication Constructional A.A.SE tiv. Ruad Ene Structural Ruad Englacering
Civil Enginerring Civil Enginerring Building Air Conditioning Heating \& lentilating Carpentry \& Jeinery Ckrk of Works Building Drawing Surveying Painting and Decorating Builders' Quantitics

General
C.... 1

Pctroleum Tech
Practical Maths.
Refrigerator
Rubher T"chnology
Salow Engincer
Timber Trade
Agricultural Eng Agricultural Eng
Gencral llasties

General Certificate
of Education
Choose from is
subicis including:
Enphish
Chumistry
fichoral Sitionce
Gieotogy
Plosing
Phhsics
Muhthometis
Muhtematics
Tcomiad Drazime
Heroth
Germant
Russiun
Spunish
Biolugy.
B.A.E.T. and its ussociatcid schools
hurce ricordel l tadl Oiar 10.001) (G.C.L: suciesses at ' O ' an. l
we Cover a wide R.ange of thennical AND PROFESSIONAL EXAMINATIONS.
Over 3,000 of our Student.: haw obtained City \& Guilds Cerificates. Thoisands of

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured.' ${ }^{-}$-Case History H/493.
"Completing your Course meant going from a job I detested to a job I love." Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court speak of the rewardis that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIIISH INSIIIUTFOF EmGINEPRINGI TEHHOLOGY

Dept B4, Aldermaston Court, Reading RG7 4PF.

(Write if you prefer not to cur this page)

POST THIS COUPON TODAY

B.IET-IN ASSOCIATION WITH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

TENRY'S RADO LTMTED \#wurswo ENGLAND'S LEADING ELECTRONIC CENTRES HI-FI COMPONENTS • TEST P PA. DISCOTHEQUE ELECTRONIC ORGANS • MAIL ORDER

COMPLETELY NEW

FREE to Industry. Educational or any Organisation, including Schools and Colleges, etc. Apply on Official heading to our " 303 " address.

A NEW HENRY'S CATALOGUE IS
A MUST FOR ELECTRONICS TODAY!

To Henry's Radio Ltd. (Dept. PE)
3 Albemarie Way, London, E.C.I.

Please send..........copies at 55p each Post Paid
I enclose Cheque/PO for
| (Use block CAPITALS-cut out and send with Cheque | or Postal Order (No cash please). Use only for ordering catalogue).
| Name ..|
\qquad

MORE OF EVERYTHNG AT LOW

 PRICES ALWAKS FROM HENRYS*Components from stock for almost all published designs.

TRANSISTOR AMPLIFIERS
NEW RANGES NOW IN STOCK (Leaflets Rer. Nos. 6 and 8). Post, etc. 20p. $4-300$ 4TR 9 V 300 mW 104 4TR 9V IW 304 4TR $9 V 3 W$
555 GTR 12 V 3 W 555 6TR $12 V$ 3W
PA7 GTR 16 V 7 W PA7 6TR 16 V 7 W
608 6TR 24 V 10W 608 6TR 24 V 10 W
410 4TR 28 V 10 W MPA $2 / 36 T R ~ 18 V 12 W$
MPA12/15 $6 T R ~ 36 V ~$ MPA12/15 6TR 36V 12 W PA25 10TR (5pecial) 25 W 25030 V 40 W PASO 12 TR (Special) 50W 100100 W with power supply

OPTIONAL POWER SUPPLIE
P500 (One or Two) for 104, 304
PS20 (One or Two) for PA

PZ5 for $\mathbf{Z} 30 £ 3.97$ or PZ6 for $\mathbf{Z} 30$ PZ8 for $25065.97 \quad$ Transformer
MU442 for I or 2 PA25 or I only PA50

 .12
2.47
2.75
3.62
4.12
4.97
4.50
5.25
1.75
7.50
6.47
9.40
645
45

Post, etc., 20p

NEW MINIATURE
LOW COST
AMPLIFIER
MODEL 4300
9 V operated or mains unit optional transformer (MT98 70p), I-10mV adjustable sensitivity. P / P output for 3-8 ohms. Fitted volume control and leads. Size $5 \frac{1}{2}$ in $\times 1 / 1 \mathrm{in}$ $\times \frac{1}{2}$. Thousands of uses-takes Price $\mathbf{6 1 . 7 5}$ magnetic, dynamic and crystal inputs
direct. Output 300 mW -very high with FREE leaflet
wo. gain-built in rectifier circuit.
 No. 8.

HI-FI TO SUIT
 CHOOSE 100
FROM FROM
and a complete range of individual units in stockour new Hi-Fi Score. LOW CASH OR CREDIT/HP TERMS (Credic terms from E30 purchase-callers only).
FREE-Stock Lists Nos. $16 / 17$ On request.
BEST VALUE IN U.K.

GARRARD TAPE DECK

9V operated 2-speed tape deck fitzed Record/Replay $\frac{1}{2}$ track and Erase/Bias Osc. Head. Complece with Oscillator/Record head circuit. Unit size 9 in $\times 6 \frac{1}{2} \times$ 1 in and 2 tin below motor board. Fakes Up Hew pools

Price $£ 9.97$

P.P. 33p (3tin. rape 300 ft .) and spool 40p.

HENELEC

EQUIPMENT

(as previously advertised) SELF-POWERED SILICON PRE-AMPLIFIERS
FET 154 Stereo $\mathbf{f 1 6} 50$, post 25p. FET9/4 Mono with mike mixer 61250, post 20p.
SILICON POWER USE
AMPLIFIERS FOR US
WITH ABOVE
PA25 25 W inco 8 C 67.50, post 20p. PA5050W into $4 \Omega \mathrm{f9} 50$, post 20p.
MU442 power supply for 1 or 2 PA25's or 1 only PA50 £6, post 20p.
PACKAGE DEALS
FET9/4 plus PA25 plus MU442 E25, post 40p.
FETS/4 plus PA50 plus MU442 EETIS4 plus $2 \times$ PA 25 plus MU442 C36, post 50p.
FETIS4 plus $2 \times$ PA50 plus $2 \times$ MU442 840, post 50p.
No soldering-just edge connectors and din plugs/sockets.
Free Brochure No. 25.

buILD YOURSELF A QUALITY RADIO

Excellent printed circuit design with full power output: Fully tunable on both MW/W bands. speaker. Room filling power. Easy to build with terrific results. Two colour leathercloth cabinet with silvered front. All local and continental stations. Complece detailed instructions.
Total cost 66.98, p.p. 35p. All parts sold separately. Ask for Leafler No. 1.

PROJECT 60 PACKAGE DEALS

2×230 amplifier, stereo 60 pre-amp. PZ5 power supply, ¢16.75. Carr. 40p. Or with P26 power supply, $\mathrm{Cl8.25}$. Carr. 40p. 2×250 amplifier, stereo 60 pre-amplifier PZQ power supply, £20-25, p.p. 40p. Transformer for PZe
£2-25 extra. Any of the above with Active Filter unit add E4.75 or with pair Q16 speakers add \&i5. Also NEW FM TUNER, 611 .

BUILD THIS YHF FM TUNER

5 MULLARD TRANSISTORS 300ke/s BANDWIDTH. PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION. MHF FM Tuner for qualicy and reception of mono and stereo. There is tion of mono and stereo. FMere is the REAL sound. All parts sold separately.
Free Leaflet Nos. 3 and 7
Free Leafer Nos. 3 and 7. Tuning meter \&i.7. 20p. Mains unit (optional) Model PS900 Tuning meter \&1.75. Mains unit (optional) Model PS
6247. Mains unit for Tuner and Decoder PS 1200 \&2.62.

Shop, Industrial Sales 303 EDGWARE ROAD,
LONDON, W.2.
Tel: 01-723 1008/9

[^0]: READERS RADIO
 85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

 Tel. 01-550 7441.
 Postage on 1 valve 5 p , on 2 or more valves 3 p per valve extra Any parcel insured, against damage in transit 3p extra.

[^1]: (5) IPC Magazines Limited 1971. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legaf responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $\{2.65(\leq 2 \mathrm{13}$. Od).
 Practical Electronics, Fleetway House Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

[^2]: *Redeemable upon receipt of subsequent order

[^3]: PROFESSIONAL CONTROL PANELS with

 ## FASCIA KIT

 MAKE YOUR OWN PANELSIN PERMANENT ANODISED, SELF-ADHESIVE ALUMINIUM

 NO SPECIAL EQUIPMENT NEEDED CHOICE OF SILVER ON BLACK, GOLD, RED BLUE, GREEN
 TRIAL KIT (ADprox. 50 sq in.) $98 \mathrm{p}+$ p.p. 30 No. 2 KIT (Approx. 100 sq. in.) $\mathrm{El} .58+$ p.p 30 p M.P.E. Ltd., BRIDGE ST., CLAY CROSS, DERBYS.

