PRACTICAL
\square ए

JULY 1971

P

ADRORA

DISPLAYS

DESCRIIBED This Thourdi

ADCOLA Soldering Instruments add to your efficiency

ADCOLA 64
 for Factory Bench Line Assembly

A precision instrument-supplied with standard $3 / 16^{\prime \prime}(4.75 \mathrm{~mm})$ diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.
*Additional Stock Bits
COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list and catalogue ADCOLA PRODUCTS LTD.
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telephone: 01-622 0291/3-Telegrams: Soljoint London Telex •Telex: Adcola London 21851

EX RENTAL TV's
$19^{\prime \prime}$ - £29.95
$23^{\prime \prime}$ - £ 39.95
All Channels 405/625
2 Years Guarantee. Free List by return.
17^{\prime} Slim line TV's $£ 11 \cdot 95,19^{*}$ Slim line TV's $£ 15 \cdot 95$. Guaranteed 2 years. Send for List. Carr. \& Ins. all sets £1-95. Daily demonstrations to personal shoppers,

TEAK HI-FI STEREO CABINETS £14-95
Brand New $44^{\prime \prime}$ wide $\times 16^{*}$ deep $\times 18^{*}$ high with Legs. A superb piece of turniture. Carr, £1 00 .
TRANSISTOR GANG CONDENSERS 30p. MINIATURE AM POST 5p. PRECISION TAPE MOTORS EI-95. 200/240V. POST 20D.

Transistor Radio Cases: 25p each. Size $9 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2}^{\circ} \times 3 \frac{1^{*}}{2}$. P. \&P. 15 D . NEW. P. \& P. 50 .
TRANSISTORS Post Free $\begin{array}{llllll}A C & 126 & A F & 179 & O C & 81 \\ A C & 128 & O C & 44 & O C & 81 D \\ \text { AF } & 114 & O C & 45 & & \end{array}$ $\begin{array}{lllll}\text { AF } & 114 & \text { OC } & 45 & \\ \text { AF } & 117 & \text { OC } & 71 & 15 p \text { each }\end{array}$ POTENTIOMETERS 23p each
Double \&
Switched
Double \&
Switched
Double \&
Evitched
vitched 1 MEG/100 K Ω 11" shatt
ost. \& Pack. 5p.-4 for 10 p
KNOBS 100,000 to
clear (Brand New)
100 assorted Radio \& T.V. knobs 50 p.
Postage 25p. (lf you require sets 2 to
6 just ask)
TV TUBES REBUILT
GUARANTEED 2 YEARS

14"-£3.95, $17^{\prime \prime} \& 19^{\prime \prime}-£ 5 \cdot 95$, 21" \& 23"- 16.45 .
Exchanged Bowls. Carr. 53p.

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road. Manor Park, E. 12 Phone 01-478 6001-2-3 Stamp for Free List

PHOTOELECTRIC KIT

contents. a P.C. Chassis Boards, Chemicals, Etehing Manual, Infra-Red Phototransistor, Latching Relay, 2 Transiators, 3 Diodes, Renistors, Gain Control, Terminal Block, Elegant Case, Acraws, etc. In fact everything you need to build a Steady-Light Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modifled for modulated-light operation.

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building: I Inviaible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarma, Counters, Door Openers, etc.
CONTEN'TS: 2 lenses, 2 mirrors, $24 \bar{j}$-degree wooden blocks. Infra-red flter, projector lamp holder, building plans, etc. Price $\$ 1-00$ Poatage and Pack. 5 p (U.K.). Commonwealth: Suriace Mail 10p, Air Mail 30p.
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of atandard kit. Larger Lenses, Filter, etc. CONTENTS: As above. Twice the range of atandard kit. Larger Lenses, Fiter, etc. 50 p .

JUNIOR PHOTOELECTRIC KIT

Versatile Inviaible-bemm, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Senaltive Phototransiator, 3 Transistors, Chasgis, Plastic Case Resiators, Screws, etc. Full Slze Plans, Instructions, Data Sheet " 10 Advanced Photoelectric Deaigna
Price $1 \cdot 00$. Poatage and Pack. $\overline{\mathrm{p}}$ (U.K.) aCommonwealth 10p: Airmail 20p.

JUNIOR OPTICAL KIT

CONTENTA: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to bulld 1 niniature invisible beam projector and photocell receiver for use with Junior Photoelectric Kit.
Price 50 . Post and Pack. 5 (U.K.). C
Price 50 p . Poet and Pack. 5p (U.K.). Commonwealth: Surface Mail 10p; Air Mail 20 p .
YORK ELECTRICS Mail Order Dept.
335 BATTERSEA PARK ROAD, LONDON, S.W. 11
Send S.A.E. for full details, a brief description of all Kits and Projects

New expanded 1971 range of ready-to-use electronic circuit modules

Complete pre-tested sub-assemblies requiring only soldering iron, pliers and screwdriver to install in equipment. Ideal for lab "one-off's," prototypes and pilot marketing short runs.

A data sheet is packaged with each unit.

PC1
LOW CONSUMPTION HEADPHONE AMPLIFIER
for hearing aids, loop paging receivers, monitor amps, bridge null detectors, signal tracers, A.C. level meters, etc.
Price $£ 1.46$ (£1.9.3)

PC2

SENSITIVE $\frac{1}{2} W, 15$ OHM SPEAKER AMPLIFIER
for telephone pick-ups, intercom systems, taikback amps, alarm systems, frequency meters, G.P. audio amps and oscillators.
Price £2.14 (£2.2.9)

PC3

MEDIUM IMPEDANCE VERSION OF PC2
for similar applications but where a higher input resistance (typically 2500 ohms) is required.
Price £2.14 (£2.2.9)

PC4

EXTRA HIGH IMPEDANCE VERSION OF PC2
with 220 kohrs input resistance for capacitive or high resistance signal sources such as crystal/ceramic pick-ups and microphones.
Price £2.14 (£2.2.9)

PC5

HIGH POWER 4.5W, 3 OHM SPEAKER AMPLIFIER
for A.C. servo amplifiers, workshop intercoms, electronic megaphones, transmitter modulators, audio visual systems, etc. Price £3.97 (£3.19.6)

PC7

MEDIUM POWER $1 \mathrm{~W}, 8$ OHM SPEAKER AMPLIFIER
for higher power applications similar to PC2 or where standard 8 ohm speaker is to be used or wider bandwidth required.
Price £3

PC9

HIGH INPUT RESISTANCE AF PREAMPLIFIER
with 1 megohm input and 600 ohm output to match capacitive or crystal/ ceramic transducers to amps like PC1, 2, 5, 7, etc.
Price 95p (19s.)

PC10
MAGNETIC TAPE REPLAY PREAMPLIFIER
using self-compensating circuit that adjusts itself to different tape speeds without switching, usable with PC1, 2, 5, 7. Price $£ 1.87$ ($£ 1.17 .6$)

PC101
COMPACT 9V, 200 mA A D.C. POWER SUPPLY UNIT
General replacement for $9 V$ batteries. Suitable PC1, 2, 3, 4, 7, 9, 10, 1006 source for Zener-stabilised 5 V digital IC supply. Price $£ 1.73$ ($£ 1.14 .6$)

PC102

VERSATILE 21V, 330 mA D.C. POWER SUPPLY UNIT
with separate 21 V winding for optional extra D.C. output, suitable 3 W 15 ohm transformerless amps and as source for $12-18 \mathrm{~V}$ stabilised supply.
Price £3

PC106

USEFUL 12V, $\frac{1}{2}$ A D.C. POWER SUPPLY UNIT
General replacement for 12 V batteries, suitable PC5, 712. Source for Zenerstabilised supplies replacing 6 and 9 V batteries.
Price £2.47 (£2.9.6)

PC712
MEDIUM POWER SPEAKER AMPLIFIER (1W, 15 OHM)
For higher power applications similar to PC2 butusing 12 V supply and standard 15 ohm speaker; driver for higher power amplifiers.
Price $£ 3$

PC1006 and PC1006K

MULTIMETER SENSITISER ($1 \mu \mathrm{~A}, 10 \mathrm{mV}$ FULL SC ALE)
Multiplies sensitivity of standard multimeter or $50 \mu \mathrm{~A}$ D.C. meter fifty times. PC1006 amp or PC1006K assembly kit. Price PC1006 $£ 6.05$ ($£ 6.1 .1$) and PC1006K $£ 1.50$ ($£ 1.10 .0$)

PC1010

BALANCED INPUT LINE MONITOR AMP (3W, 8 OHM)
Designed for 600 ohm line but can be used as general purpose monitor/ talkback amp powered by two batteries or PC1011 supply.
Price $£ 6.67$ (£6.13.4)

PC1011

DOUBLE D.C. ($\because 10 \mathrm{~V}, \frac{1}{2} \mathrm{~A}$) POWER SUPPLY UNIT
Useful general purpose double power supply. Source for Zener-stabilised rails for linear IC's. Suïtable PC1010.
Price $£ 4.17$ ($£ 4.3 .4$)

distributors

Coventry Factors Lid.,
 Coronet House, Upper Well Street, Coventry CV1 4AF,
 Warwickshire.
 Tel: 0203-21051/5
 Telex: 311243
 I.T.T. Electronic Services Ltd., Edinburgh Way,
 Harlow, Essex.
 Tel: 02796-26777
 Telex: 81146

Eastern Areo Electrical Services Lid.,
Building 202,
Enfield Road,
London (Heathrow) Airport,
Hounslow, Middiesex.
Tel: 01-759 1314
L.8.T. Electronic Components Ltd.,

7 Coptfold Road,
Brentwood.
Essex.
Tel: Brentwood 226470
Telex: 99443
G.8.P.K. (8alos) Lid., Hookstone Park, Harrogate, Yorkshire.
Tel: Harrogate 96258
Telex: 57962

Lugton a Co. Ltd.,
209-212 Tottenhañ゙ Court Road,
London W1A 2BN.
Tel: 01-636 3261/9
Telex: 25618

Hird-Brown Electronics Lid.,
Lever Street,
Bolton BL3 6BJ,
Lancashire.
Tel: Bolton 27311
Telex: 63478
8.D.s. (Portsmouth) Ltd.,

Hilsea Industrial Estate,
Portsmouth PO3 5JW,
Hampshire.
Tel: 0715-65311
Telex: 86114

(
 Juliette

COMMUNICATION RECEIVERS from the U.S.A. The Leaders in specialist radios UNIQUE in VHF frequencies

UNSURPASSED in performance and styling

They NOT ONLY receive Aircraft, Shipping (VHF and SW), Taxis, Ambulances, Fire Service, T.V. Sound, Hams, Gas, Electric and Water Boards, Public Services and many other Commercial and Industrial Radio Telephone mobile transmissions...
BUT ALSO Clossical Music. Pop and All That Jazz ! ! ! TURN ON TO INSTANT SOUND

These are Communications receivers and unique entertainment sources in one neat, transistorised portable package. They keep exciting Aircraft. Shipping, RT mobiles plus Medium Wave, FM National and Local broadcasts at your fingertips Both are extremely reliable and feature large powerful PM dynamic wide Both are exters, rentrol, dial range speakers, switchable AFC to Previ rod aerial, precise slide rule lighting. sensitive swivel telescopic VHF and rod aerial, precise slide rule vernier tuning. external aerial applied. Operate from standard batteries or mains.

BUY DIRECT AT 15\% BELOW RETAIL VALUES

MEDIUM WAVE 530-1605kcs MARINE 1.4-4.6Mcs
FM/VHF 87-108Mes
AIRCRAFT VHF 108-136MEs HIGH VHF/PB 146-176Mcs Botts. inel. P/us 62 $\frac{1}{2}$ D P/P
Impressive finish in Walnut with deep Chrome die-cast side panels and grained inserts. Trimmed with brushed Aluminium and black speaker grille. Log scale for easy tuning. Size $9 \frac{7}{4}^{\prime \prime} \times 12^{\prime \prime} \times 4^{\prime \prime}$ W_{t}. 5albs. approx

MODEL MPR 30166 BAND

SAME BANDS \& FREQUENCIES AS MODEL MPR 3005 PLUS AS MODEL MPR OFD 5 W $5.0-$ ADDED FEATURE OF SW
12.0Mes (with Fine Tuner). Botts. inel. Plus $62 \frac{1}{2} p$ P/P
Styled in elegant black case with luxury Chrome trim, soft padded speaker grille. die-cast sides and
 walnut insert. Size
Wt. 51 bs . approx.
EARPIECE SUPPLIED WITH BOTH MODELS

T.V.SOUND ALSO NTRODCNES INTRODURNEF MIINT.VSOIIND
 The latest in contemporary U.S.A HEAR T.V. SOUND
 All channels 2-13. Also UHF (many areas) and RT Mobiles

MODEL MPR 3073. THE FIRST IN T.V. SOUND PORTABLES.
Sensitive swivel telescopic aerial receives LOCAL AND DISTANT TV TRANSMISSIONS. PLUS FULL MEDIUM WAVE AND VHF/FM BANDS TO RECEIVE YOUR USUAL NATIONAL AND LOCAL RADIO STATIONS. This unique model has stylish leatherette trim, handsome walnut grain inserts and smart chrome trim. 22 transistor/diode superhet circuit. AFC. AGC. Tone Control, Slide rule tuning. Works from standard batteries or mains. Earpiece supplied for private listening. Log scale for easy tuning.

STOCKTON PARTNERS

(Dept PW), Importers \& Distributors, Brighowate, Grimsby. Tel: 047264196 58815. Suppliers to Government Depts., Industry, etc.

Plus 50p P/P. Botts. incl. BANDS
MW 535-1605Kcs FM/VHF 88-108MCs TV $1.58-88 \mathrm{Mcs}$ TV $2.175-218 \mathrm{Mcs}$

YATES ELECTBONIGS (FLITWICK) LTD

RESISTORS

WW Iskra high stability carbon film-very low noise-capless con$7.5 \times 2.5 \mathrm{~mm}$. $4 W$ Erie wire wound

Power	,	wire	Valves		
wates	Tolerance	Range	available	1-99	$100+$
$\frac{1}{2}$	5\%	4.78-2.2MS2	E24	$1.0 p$	$0.8 p$
$\frac{1}{2}$	10\%	3.3M $\Omega-10 M \Omega$	El2	1-0p	$0.8 p$
$\frac{1}{1}$	10\%	18-3.982	E12	1.0p	0.8 p
\downarrow	5\%	4-7 $2-1 \mathrm{M} \Omega$	E12	$1.0 p$	0.8 p
4	10\%	$1 \Omega-10 \Omega$	El2	$7 \frac{1}{1} \mathrm{p}$	$7 \frac{1}{2} p$

DEVELOPMENT PACK
0.5 watt 5% iskra resistors 5 off each value $4.7 \Omega 2$ to IMS.

E12 pack 325 resistors $\mathbf{£ 2 . 5 0}$.
E24 pack 650 resistors $£ 4.80$.
MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .0068 \mu \mathrm{~F}$, $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 / \mathrm{F}, 4 \mathrm{p}$. $0.15 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.22 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 11 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}$ $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 4 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} . \quad 0.68 \mu \mathrm{~F}$, IIp. $1.0 \mu \mathrm{~F}$ 121p.
MULLARD POLYESTER CAPACITORS C280 SERIES
250V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}$ $0.068 \mu \mathrm{~F}, ~ 3 \frac{1}{2} p . \quad 0.1 \mu \mathrm{~F}, 4 \mathrm{p} . \quad 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F} .5 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} . \quad 0.47 \mu \mathrm{~F}$, 81 p. $\quad 0.68 \mu \mathrm{~F}, \mathrm{IIp} . \quad 1.0 \mu \mathrm{~F}, \mathrm{I} 3 \mathrm{p}$.

MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 / \mu \mathrm{F}, 0.02 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .04 / \mathrm{F}, 0.05 \mu \mathrm{~F}$ $0.068 / \angle F, 0.1 / 2 F, 3 \frac{1}{2} p$.
CERAMIC DISC CAPACITORS
100 pF to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each.
CAPACITOR DEVELOPMENT PACK
Selection of 100 ceramic and polyester capacitors. 100 pF to $1.0 \mu \mathrm{~F}$, $\mathbf{E 2}-90$ ELECTROLYTIC CAPACITORS-One Price-5p Each
Mullard C426 series $(\mu \mathrm{F} / \mathrm{V}): 25 / 6.4,50 / 6.4,100 / 6.4,200 / 6 \cdot 4,320 / 6 \cdot 4$, $16 / 10,32 / 10,64 / 10,125 / 10,200 / 10,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16$. $6.4 / 25,125 / 25,25 / 25,50 / 25,80 / 25,4 / 40,8 / 40.16 / 40,32 / 40,50 / 40$, $2 \cdot 5 / 64,5 / 64,10 / 64,32 / 64$.
Miniature P.C. mounting ($/ \mathrm{FF} / \mathrm{V}$): $10 / 12,50 / 12,100 / 12.200 / 12.5 / 25$, $10 / 25,25 / 25,100 / 25$.

POTENTIOMETERS

Carbon track $5 k \Omega$ to IM Ω, \log or linear (log $\frac{1}{4} W$, lin $\frac{1}{2} W$)
Single, 12p. Dual gang (stereo), 40p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 M \Omega$. Horizontal or vertical P.C mounting (0.1 matrix).
Sub-miniature 0.1 watt, 4p each. Miniature 0.25 watt, $5 p$ each.

SEMICONDUCTORS						
ACI26 15p	BFY52	221 ${ }^{\frac{1}{2}} \mathrm{P}$	OC81	$15 p$	2N3055	$72 p$
AC127 15p	BSY56	30p	OC82	15p	2N3702	15p
AC128 15p	BS×21	25p	ORPI2	471 ${ }^{\text {P }}$	2N3703	14p
ADI40 40p	BY124	$7 \frac{1}{2} \mathrm{p}$	IN4001	$7 \frac{1}{2} p$	2N3704	171 ${ }^{1} \mathrm{p}$
AF115 171p	BYZ10	30p	IN4002	$10 p$	2N3705	15p
AF117 171p	BYZ13	20p	1N4003	$11 p$	2N3706	$12 p$
BC107 14p	OAS5	$7 \frac{1}{2} p$	IN4004	$12 \frac{1}{2} \mathrm{P}$	2N3707	$18 \frac{1}{2} p$
BC108 10p	OA91	$7 \frac{1}{2} \mathrm{P}$	IN4005	$14 p$	2N3708	10p
BC109 10p	OA 202	71p	IN4006	15p	2N3709	$11 p$
BFY50 22p	OC71	15p	IN4007	$16 p$	2N3710	12p
BFY51 19p	OC72	15p	2N2926	IIp	2N3711	14p
ZENER DIODES $400 \mathrm{~mW} 5 \% 3.3 V$ to $30 \mathrm{~V}, 17 \mathrm{p}$.						
VEROBOARD 0.15 0.1						
	$0 \cdot 1$	0.15			0.15 $521 p$	0.1
$2 \frac{1}{21} \times 3 \frac{3}{2}$	22p	16p	$17 \times$	31 (plain)	521 P 37 P	
$2 \frac{1}{3} \times 5$	24p	24p	17 -	$2 \frac{1}{2}$ (plain)	3718	
$31 \times 3 \frac{1}{4}$	24P	24p	$2 \frac{1}{2}$	5 (plain)	1719 ${ }^{\text {P }}$	
$3 \frac{1}{4} \times 5$	27p	27P	$2 \frac{1}{2} \times$	$3 \frac{3}{2}$ (plain)	15 p	
$17 \times 2 \frac{1}{2}$	75p	571. P	Pin in	ertion toal	$147 \frac{1}{2} p$	471p
$17 \times 3 \frac{3}{4}$	100p	75p	Spot	ce cutter	3719	3719
17×5 (plain)	-	75p	Pkt. 5	pins	20p	20p

ROTARY SWITCHES

2P2W, IP $12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}, 22 \frac{1}{2} p$
PLUGS AND SOCKETS

Standard tin screened			
Standard tin screened	$17 \frac{1}{2} \mathrm{P}$	2.5 mm insulated	1p
Standard tin insulated	14p	3.5 mm insulated	$7 \frac{1}{2}$
Stereo tin screened	35p	3.5 mm screened	121p
Standard tin socket	$15 p$	2.5 mm socket	$7 \frac{1}{2} p$
Stereo $\frac{1}{4}$ in socket	$17 \frac{1}{2} p$	3.5 mm socket	71p

BRUSHED ALUMINIUM PANELS

$12^{\prime \prime} \times 6^{\prime \prime}=25 p ; 12^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}=10 p ; 9^{\prime \prime} \times 2^{\prime \prime}=7 p$.
C.W.O. please. Post and packing, please add 10 p to orders under $\mathrm{C2}$. Data sheets are available for most of the components listed, and will be sent free on request.
8E39 ELSTOW STORAGE DEPOT, KEMPSION HARDWICK, BEDFORD

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amazingly and press to talk buttons. 2-wire commection. 1000 's of applications. Beautifully finisbed in ebony. Supplied complete with batteries and 26.97!. P. \& \mathbf{P}.

CRYSTAL CALIBRATORS No. 10 Small portable crystal controlled wavemeter.
Size $7^{*}: \therefore 7!*: 4^{*}$ Fre. quency range $500 \mathrm{Kc} / \mathrm{s}$. $10 \mathrm{Mc} / \mathrm{s}$ (up to $30 \mathrm{Mc} / \mathrm{s}$ brated dial. Power re quirements 300 V.D.C 15mA and 12 V.D.C. alition
B.C. 221 FREQUENCY METERS latest release 125 kHz to 20 MHz . Frcellent condition. Fully tested and checked and E87.50 each. ('arr, 50 p .
 jorates precision dial, lecel meter, precision attemuator $1 \mu V-100 \mathrm{mV}$. Operation fron $12 \mathrm{~d} . \mathrm{c}$ or $0 / 110 / 200 / 250 \mathrm{~V}$ a.c. Size
12.81 in. Supplied in brand new condition complete fully teatert. 845. Carr. \&1
 meatures ac 97 range instruncolt which Resistance and Power Output liangea d.c. input).
 R.F. measuring heal up to 250 MHz , a.c. watts. 5 watts. Operation $0 / 110 / 200 / 2 \overline{50}$ a.c. cirenit lead and lR.1. probe. \&es. Carr with ADMIRALTY 62B RECEIVERS High quality 10 valve
receiver manufacture! by Murphy Coverage in by hands $100-300$ Kc/s; 5 bo
 corporates: 2 R.F.and 3 I.F.
stages, bandpass filter stages, bandpass ifler,
noise simiter, crystal controlled B.F.O. calihrator
Built-in spal phones. Operation $150 / 230 \mathrm{~V}$ a acc. Size $19!$ 13: : 16 in 11 . Weight 11411), Offered \& f . With circuit diagrann. Also avalable B41 L.F. version of above. 1.5 K Hz .700 Hz . 817.50. Carr. E) j 0 .

TO-2 PORTABLE OSCILLOSCOPE cost economy oscillogope for evergday use. Y amp. Bandwidth 2 CPG-1 MHZ. Input
 Illuminated scale. $180{ }^{2} \mathrm{in}$ 230 mm . Weight 81 b .
$220 / 240$ v a.c. Supplied brand uew with hand
book. $\& \& 2$. Carr. 00 p .

TO-3 PORTABLE OSCILLOSCOPE

 vity $0 \cdot 1 \mathrm{~V}$ p-p/CM. Band. width 1.5 cps-1.jMHz. Input imp. a mega ${ }^{2} \mathrm{zpF}$ X amp. mensitivity 0.9 V $\mathrm{p}-\mathrm{p} / \mathrm{CM}$. Bandwhith $\mathbf{1 - \sigma e p s}$
-800 KHz . Input imp, ${ }^{2}$ -800 KHz . Input imp, ${ }^{2}$ $111 e g ~ a ~ e p p . ~ T i m e ~ b a s e . ~$
j ranges 10 cps- 300 KHz . Jranges 10 eps- 300 KHz . xternal. Illuminated scale $140 \times 215 \times 330$ min. Weight $151 \mathrm{~J}, 2: 2 / 240 \mathrm{~V}$. A.C. Supplied brand new with halubook. 237,50. Carr, J0p.

$\rightarrow \equiv \mathrm{B}$

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

	j0ma	82.60		150 mid	
	$\underline{100 \mathrm{mat}}$	28.60 88.60		200 ma	$41.87{ }^{\text {a }}$
	-000mat			300 mL	21.87
-		22.60		750mA	21.87 61.372
	15.4	22.60		1 A	E1.371
	$20 \mathrm{vid.e}$	82.60	- $2: 9$	2A.	21.371
	30Vd.e.	22.80	-	10 A	${ }_{21.371}$
50¢A 23.60	150 yd	8280		3 V d.c.	$81.37{ }^{\text {d }}$
	isvac.	22.80	30, ${ }^{\text {a }}$.... 22.00	100 d	
$190 \mu \mathrm{~A} \ldots{ }^{\text {a }}$ (23.10	300 V a.c.	2280		200 dic	
100-0.100 4 , E8.10	\$ Meter		$100 \mu \mathrm{~A}$ … $81.87{ }^{\text {l }}$	100vic.	${ }_{81.871}$
$200 \mu .1{ }^{2}$	11114	22.87]	100-0-100ر. 821.75	150 c d.c.	41.37
	VC Meter	2380	$2004 \mathrm{~A} \cdot \cdots$.	300 V d.c.	$21.87{ }^{\text {i }}$
$500-0.500 \mu \mathrm{AL}$	1A ac.:	82.80	$\underline{500 \mu \mathrm{~A}}$ … 21.50	300 V d.c.	21.879
$1 \mathrm{ma} \quad \cdots \mathrm{l}$	эА a.c.*	22.60	${ }^{500-0.500 \mu . ~} 81.371$	T300 dic.	21.371
	$10 \mathrm{~A} \mathrm{a.c.**}$ 20 A a.c.*	\%280		İV a.c.	81.37 t
	$20 \mathrm{~A} \mathrm{a.c.*}$ 30 A a.c.**	82.60 82.60		50 V s.c.	81.371
$\underline{10 \mathrm{~mA}} \ldots$	30 Aa	22.60		130V a.c.	21.37
Type Mr.5RP. 2 inin muare frontr.			10 ma.	500 V a.c.	
$50 \mu \mathrm{~A}$.... 88.10	20 V d.c.	22.00	20 mat 81.37	\$ Meter	
${ }^{50.0 .00 \mu .1} \quad 42.60$	jovid.c.	28.00		1 mA	21.60
	300 V d.c.	22.00	$100 \mathrm{~mA} \mathrm{.}. \mathrm{21.37!}$	\checkmark d meter	82.10

MARCOMI TFICER DIBTORTIOM PACTOR :ETMA. Excellent condition. Fulls tested. 220. Carr. 75 p

TRANSISTORISED L.C.R. A.C.
MEASURING BRIDGE
A new
bridge ortering ex bridge offering ex.
cellent
range
 $\begin{array}{cc}\text { celleat range } & \text { and } \\ \text { accuracy it } \\ \text { at }\end{array}$

 Ranges $\pm 2 \%$. TLRNS RATIO $1: 1 / 1000-$ 1:1100. 6 Ranges $: 1 \%$. Brilge voitage at 1,000 cps. Operated fromi 9 volts. $100 \mu \mathrm{~A}$. case. size $\mathrm{T}_{\mathrm{i}}^{\mathbf{3}} \times \overline{\mathrm{J}} \times 2 \mathrm{in}$. 220 . P. it P. 25p.
C0880R 1048 DOUBLE BEAM OSCILLOscopes, D.c. coupled. Rand
Perfect orider.

TE-18A Tranaiatorited SignalGenerator. 5 ranges $400 \mathrm{kHz-30} \mathrm{mHz}$. An inexpensive instrument tor the handyman. Oper-
ates on 9 y battery. ates on 9 v brittery. Whde, 800 kHz modulatlon $5 \% \times 5 \% \times 311$, Complete leadla. $\mathbf{E 7 . 9 7 4}$, P. \& P. 20p.

LELAND MODEL 27 BEAT

FREQUENCY OSCILLATORS

 Frequency $0.20 \mathrm{Kc} / \mathrm{s}$ on 9 ranges. Output Supplied in perfect order. 112.50 . Carr. $\mathbf{3} 0 \mathrm{p}$. MARCOII TP888 VIDEO OSCILLATORS $0-\overline{\mathrm{MHz}}$. Sine square Wave. s45. Carr. $\ell 1$.LAFAYETTE TE46 RESISTANCE

CLASS D WAVEMETERS	
	A cryetal fonutroned hetero-
¢ C - ${ }^{\circ}$	covering $1.7 / 88$ Mc/a.
4-0	Operatiou on fis d.c.
	Ideal for amateur use.
	, itition. $55.97 \frac{1}{2}$. Carr. 37 tp .
aconf trish beat frequemex	

Our latest celition giving full detaild of as comprehensive range of HI-FI EQUIPMENT COMPONENTS, TEST EQUIPMENT And COMMUNICATIONS EQUIPMENT. FREE
DISCOUNT COUPONS VALEE 50 ($10 / \cdot$). 24scolst coupons fully illustrated and delailing thousanls of items at largain prices.

SEND
G. W. SMITH
\& CO (RADIO) LTD.
Also see next two pages

GENI-COYOUCTORISVVIVIES
 BRAND NEW \& FULLY GUARANTEED

TRANSISTORS

THYRISTORS

VALVES

38.8	$25 \mathrm{Z4}$	${ }^{30}{ }^{\text {p }}$	L95	850
45 p 2	25 Z 5	42p	EM80	400
80 p 2	2526	66 p	EM81	60%
20 p	30 Cl 5	800	8M84	36
8503	$30 \mathrm{C17}$	859	EM85	1
2093	30 Cl 8	75 p E	EM87	42
25 p	30F5	85 p E	EY51	40 p
278 3	30FL1	70 p	EY86	400
50.3	$30 \mathrm{FLL2}$.	089	EY87	48p
865	30FL14	759	EZ40	46
400	30L15	850	E241	45
35 P 3	30L17	809	EZ80	258
45.3	30 Pl 12	$80 p$	EZ81	237
60 p 3	30 P 19	80 p	OZ32	485
88p	30 PL 1	709 O	0234	607
42p 3	30 PL13	98p	KT66	1.70
889	30 PL 14	00 p	KT88 \&	1.75
40p;	35 L 6	50	MU14	60 p
75p	35W4	80 p	PABC80	40 p
263	35 Z 4	80 p	PC86	${ }^{80}$
40 p	$35 Z 5$	40 p	PC88	608
80 p	50B5	445	PC97	45p
57 p	50C5	40 D	PC900	48p
20 p	80	60 p	PCC84	40 p
88 P	85A2	400	PCC85	400
350	807	60 p	PCC88	550
87 p	1625	50 p	PCC89	50p
80 p	5763	70 p	PCC189	68p
2596	6146	21.50	PCF80	30.
80 p	AZ31	60 p	PCF82	948
25 p	CY31	850	PCF84	50p
80 D	DAF91	25 p	PCF88	60p
459	DAF96	480	PCF800	800
459	DF91	250	PCF801	50.
400	DF96	42p	PCF802	${ }^{50 \mathrm{p}}$
850	DK91	859	PCF805	780
669	DK92	60 P	PCF800	70 p
85 p	DK96	429	PCF808	75
709	DL92	85 p	PCL82	80p
859	DL94	46	PCL83	6 p
88p	DL96	420	PCL84	45p
81.16	DM 70	82 p	PUL85	409
50 p	DY86	88 p	PCL86	459
68p	DY87	859	PFL200	700
68	E88CC	${ }^{65} \mathrm{p}$	PL36	55
800	E180F	959	PL81	50 p
38 p	EABC80	35 p	PL82	45p
659	EAF42	\$5p	PL83	45D
659	EB91	$20 p$	PL84	40 p
45 p	ERC41.	550	PLa00	75 p
80 p	EBC81.	30 p	PL504	80 p
209	EBF80	40 p	PY 32	68 p
509	EBF83	40p	PY33	88^{88}
20p	EBF89	32 p	PY80	250
80 p	EBL21	609	PY81	30%
20 p	EC86	60 D	PY82	80 p
45p	EC88	60 p	PY83	38 p
86 p	ECC40	60 g	PY88	40 p
459	ECC84	80 D	PY800	50 p
401	ECC80	609	PY801	50 p
409	ECC88	401	U25	76
400	ECF80	85 p	U26	750
850	ECF82	85 p	U50	885
400	ECF86	650	U52	88 p
85p	ECH21	579	U191	750
85 p	ECH30	600	U281	40.
850	ECH42	700	U282	409
40 p	ECH81	800	U301	404
600	ECH83	409	U801	21
26p	ECL80	40 p	UABCS0	85 p
829	ECL 82	35p	UAF42	650
80 p	ECL83	659	UBC41	60 p
80	ECL8 8	40 p	UBC81	40p
27 p	EF37A	60 p	UBFB0	40p
50 p	EF39	400	UBF89	$8{ }^{85}$
90 p	EF40	50 p	UCC84	49
550	EF41	85	UCC85	40p
21.10	EF42	700	UCF80	559
800	EF80	259	UCH21	609
80	EF85	85 p	UCH42	709
801	EF86	80 p	UCH81	86 p 350
88 p	EF89	289	UCL83	360 $60 p$
807	EF91	338	UCL83	60 p
${ }^{350}$	- EF92	40 p	UF41	${ }^{60} \mathrm{p}$
850	EF183		UF80	855
40.	EF184	86	UF85	40 p
851	EH90	409 1.25	UF89	
46	EL33		UL41	85
75	EL34	508	UL41	650
81.10	0 EL41		UL84	80p
50 p	EL42		UY41	45p
60 p	PL81		UY85	80 p
S1.10	0 EL84	${ }^{48}$	VR105/30	
21.80	${ }_{\text {O }}^{\text {ELL8 }}$ EL91		VR150/30	-35p

GARRARD

FULL CURRENT RANGE OFFERED, BRAMD MEW AT FAMTASTIC SAVINGS

TELETON SPECIAL OFFER!

CR1OT AM/PM 8TEREOTUAER AMPLIFIER WITH AATCHING PAIR SAIO03 SPEAKER 8Y8TEME
Output 4 reception AFC, buitt-in MPX. Cer/XTAL Input. Total List 250.25 . OUR PRICE 209.95. Carr. 621 p.

Also available with Garrard $2025 \mathrm{~T} / \mathrm{C}$
Record Changer, Plinth, cover and btereo Record Changer, Plinth, cover and
cartridge. Ready wired. 48 . Carr. $£ 1$.

Latest exciting release. Begutifully styled Switched inputs for Mag. Xtal, aux, tape
Incorporates volume, bass, treble, sliding Incorporates volume, bass, treble, sliding

* TRANSISTORISED FM TUNER +

Double tuned dis
criminator. Ample
aupput to feed most
 bullt ready for 8 . P. \& P. $12 t \mathrm{p}$.
money.
8teren multiplex adaptort 84.97 .

HOSIDEN DHO4S 2-WAY STEREO HEADSETS

Each headphone con tains a 2 lin wooter Built in Individus $25-18,000 \mathrm{c} / \mathrm{s}$. with cable and stereo plug
$85 \cdot 971$ P. \& P. $12 \$ \mathrm{p}$.

AMERICAN TAPE
First grade quality American tapec. Brand 3 in. 2250 ft . L.P. acetate itin. 600t. T.P. mylar 5 in .600 tt , Btd. platic
5 in .900 t . L. P. acetate 5 in. 1.200 t . D.P. mylar bin. 1.200t. D.P. thylar $5 \frac{1}{2} \mathrm{in}$. $1,200 \mathrm{ft}$. L.P mylar btin. 1,8001t. D.P. mylar 5 in. 2,4001t. L.P. mylar $7 \mathrm{in} .1,2001 \mathrm{t}$. std. acetate. 7 in . $1,800 \mathrm{ft}$. L.P. acetate
7 in . 80 ft . L.P. mylar 7in. 1.800 ft . L.P. mylar
71n. 2.400 ft . D.P. mylar 7in. 2,400ft. D.P. mylar
7in. $3,600 \mathrm{ft}$. T.P. mylar

SPECIAL OFFERS!
Garrard SP25/LII fitted Goldring G800 cartridge and wooden plinth and plaet cover. Ready wired. Total list price GOLDRING GL69/2 fitted Goidring G800 cartridge complete with de luxe base and cover. Total list price 250.80 OUR PRICE 889. Cart. 50p.

B.S.R. McDONALD			
M P60	211.95	610.	815.96
510	812.85	310	210.85
Carr. 37 p extra each item			
Teak Base and Peroper Cover			
For above BSR range 83.871 .			
TPD1 Series with plinth aready wired.			
MP60.... $\mathbf{1 0} 50$			828.97
	... 510.	200.97	
	Carr. 50p	ch	

GODDMANS SPECIAL OFFERS Maxamp 30 Stereo Amplifier $15+15$ watt
r.m.s. with matching Btereomax AM/FM Tuner. Total list price $£ 136-52$.
$\begin{array}{lll}\text { OUR } \\ \text { PRICE } & \mathbf{8 8 9} & \text { THE PAIR } \\ \text { Carriage } £ 1\end{array}$

GOODMANS SPEAKERS!

Maxim. OUR PRICE 88.60 pr . Carr. 80 p Maqnum K2. OUR PRICE ssea Carr. 50 p Mambo. OUR PRICE $532-50 \mathrm{pr}$. Carr. 50p Garimba. OUR PRICE 885 pr. Carr. 50p Magister. OUR PRICE $\mathbf{8 1 . 5 0} \mathrm{emch}$. Carr, $\mathbf{2 1}$
Minister. OUR PRICE $\mathbf{2 3 9}-\mathbf{8 7} \mathrm{pr}$. Carr. 80 p .

TAPE CASSETTES
Top quality in plaitic library boxem.
C60 60 min 42 p 3 for 21.22 t C90 $90 \mathrm{~min} 82 t \mathrm{p} 3$ for 81.80 C120 120 min 75 p 3 for $88 \cdot 17 \mathrm{f}$ Cussette Head Cleaner 58p. All Post extra.

ECHO HS-606 STEREO HEADPHONES

SINCLAIR EQUIPMENT
Project 60. Package offerf, $2 \times Z 30$ amplifier.

 \rightarrow pre-amp. PZ8 power sup
 of the above $24 \cdot 87 \mathrm{f}$ for actlve Alter unit
and s10 for a pair of Q16 apeakers. Prolect 50 FM Tuner $820-97 \mathrm{t}$. Carr. 37 p .
E1.00 All other Slnclair products in tock. 2,000

RUSSIAN C1-16 DOUBLE BEAM OSCILLOSCOPES gherz Pam Band. geparate X1, X2 anipliders. Callbrated triggered aweep trom supple to 10 ansec/cm.
lantructiona, 287, Carr. paili.

MARCONI CT44 TF956 AF ABSORPTION WATTMETER
1μ /watt to

TE111.

DECADE
peitryame
ATtEMOATOR Variable range $0-111 \mathrm{~dB}$. Con-

beclanced
balanced T and Bridge T. Impedance $+00 \Omega$ range $+10+20+$
 mum iuput lens thad $4 W$ (50%). Built in 300 n load rebiatadce wifh internal/extern: witch. Brand new e27.50. P. \& P. 27p. BELCO AF-5A
SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR

$18-200.000 \mathrm{~Hz}$
 $18-50.000 \mathrm{~Hz}$. Output max $+10 \mathrm{ClB}(10 \mathrm{k} \Omega)$

 Operation internalhatieries.
Attractive two-tone case ilin \times Kin
Price 217.80.
Carr. 17 p .
BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New high quality port able instrument. sine 1 Hz to 100 kHz . Square 20 Hz , +10 dB (10k0). Opera fion $220 / 240 \mathrm{~V}$ a.c. 8 ize $215 \mathrm{~mm} \times 160 \mathrm{~mm}$
ct $\underset{\text { Price }}{ }$

$$
\text { T.E. } 40
$$

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. Input 10 rangen $\begin{array}{lll}\mathrm{B} / \mathrm{m} \\ \mathrm{B}\end{array} / 30 / 100 / 300 \mathrm{~V}$.
 Supplifed brand new complite with leads and inntructions. Operation

TE-65 VALVE VOLTMETER
 High quality instrumen ${ }_{1.5-1,500 \mathrm{~V}}$ $1.5-1,600 \mathrm{~V}$. A.c. Volita
Restance 4 p to 1,000 megohms. Complete ac. operation. instructlons. probe and instructlons. $\quad 17.50$ P. \& P. 30p. Additional
Probes avaliable: R. \&R.184. H.V. $42.60 .{ }^{\text {R.F }}$

230 VOLT A.C. 50 CYCLES RELAYS Brand New. 3 sete o changeover contacte at
 P. \& P. 10 p (100 lots E40) Quantities available.

MULTIMETERS for GIEEY purpose)

TECH PT-84, 1,000 O.P.V. $0 / 10 / 50 / 250 /$
$500 / 1,000 \mathrm{~V}$ a.c. and d.c. $0 / 1 / 100 / 500 \mathrm{~m} A$ d.c. $0 / 100 \mathrm{~K} .81 \cdot 97 \mathrm{f}$. P. $\$$ P. 12 f p.

MODEL TE-200. 20,000 O.P.V. Mirror acale, over$125 / 1,000 \mathrm{~V}$ d.c. $0 / 10 / 50 /$ $250 / 1,000 \mathrm{~V}$ a.c. $0 / 50 \mathrm{pA}$ 250MA. 0/60K/6 meg MODEL $600.30,000$ O.P.V. with ovarload protection, mirror seale $0 / 5 / 2 \cdot 5 / 10 / 25 / 100 /$ $250 / 500 / 1,000 \mathrm{~V}$ d.c. $0 / 2 \cdot 5 /$ $1.0 / 25 / 100 / 250 / 500 /$
1.000 V. a.c. $0 / 50 \mu \mathrm{~A} / 5 / 50 /$ 500 mA . 12 amip. d.c. $0 / 60 \mathrm{~K} / 6 \mathrm{Meg} .60^{\mathrm{o}} \mathrm{Meg}$ n 8.87. Post paid.
 MODEL TE-70. 30.000 O.P.V $0 / 3 / 1 \$ / 60 / 300$ $600 / 1,200 \mathrm{~V}$ d.c. $0 / 6 / 30 /$ $120 / 600 / 1,200 \mathrm{~V}$ a.c. 0 $16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 \mathrm{M} / 16 \mathrm{meg}$.
25-80. P. \& P. 15P

TKX MODEL TW-5OK 46 ranges, mirror acale. $50 \mathrm{~K} /$ volts: $0.1+5$ /Volt a.c. D.c. 5. 10. 25, 50, 125, 250, 500 , $1,000 \mathrm{~F}$. A.c. volts: $1 \cdot 5,3$ 5. 10, 25, 50, 125, 250, 500, 1,000V. D. . current: $25,50 \mu \mathrm{~A}, 2.5,5,25,60,250$,
$500 \mathrm{~mA}, 5,10 \mathrm{~A}$. Resigtance: $10 \mathrm{~K}, 100 \mathrm{~K}$, $500 \mathrm{~mA}, 5,10 \mathrm{~A}$. Resistance: $10 \mathrm{~K}, 100 \mathrm{~K}$,
1 meg,
meg. Decibeln:
-20

TE-900 $20,000 \mathrm{n}$ / YOLT GIANT MULTIMETER. Mirrorscale and overload
protection. 6 in full view meter. 2 colour scale. of $3.6 / 10 / 250 / 1,000$ $5,000 \mathrm{~V}$ a.c. $0 / 25 / 12 \cdot 6 / 10 / 50 / 250 / 1,000$, 000 V d.c. $0 / 50 \mu \mathrm{~A} / 110 / 100 / 600 \mathrm{~mA} / 10 \mathrm{~A}$ d.c. $02 \mathrm{~K} / 200 \mathrm{~K} / 20$ nues. ohm. 215.
P. $\&$ P. 25 p .

$\begin{array}{lr}\text { MODEL } & \text { 6025. } \\ \text { ranges, } & 87 \\ \text { giant } & 5+1 \text { in }^{2}\end{array}$ $\rightarrow \begin{aligned} & \text { ranges, giant stin } \\ & \text { meter, polarity }\end{aligned}$ reverse switch. Sen sitivity: $50 \mathrm{~K} / \mathrm{Vol}$ D.c. Tolts: $0.125,0.25,1.25,5,10,25,50$ 0,25, , 100, . 1 . Volte: $1-5,3,5$ $10,25,50,125,250,500,1,000 \mathrm{~V}$. D.c current: $25, ~$
$500 \mu \mathrm{~mA}, 2 \cdot 5,5,25,50,200$
$5,10 \mathrm{~A}$. Reaistance: $2 \mathrm{~K}, 10 \mathrm{~K}$ $100 \mathrm{~K}, 1$ meg, 10 meg. Decibels: - 20 K

MODEL TE12. 20,000 $\begin{array}{ll}\text { O.P.V. } \quad 0 / 0 \cdot 6 / 30 / 120 / 600 \\ 1.200 & 3.000 / 6.000 \mathrm{~V}\end{array}$ $1 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V}$ a.c / $60 \mu \mathrm{AA} / 6 / 60 / 600 \mathrm{MA}$
$0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$. Megohns 50 PF . $6 \mathrm{meg} / 60$ 26.071. P. \& P. 17tp.

FTC-401

TRANSISTOR
TESTER
Full capabilitiea measurlng A, B and $1 \mathbf{C O}$ npn or prp. Equally adaptable for cbecking diodes. Supplied complete with instructions, battery and
15 p.

HONOR TE. 10A, 20 K B $2,500 \mathrm{~V}$ d.c. $10 / 50 / 100 / 500$ 1,000V a.c. $0 / 50 \mu \mathrm{HA} / 2 \cdot 5 \mathrm{~mA}$ 250 mA d.c. $0 / 6 \mathrm{~K} / 6 \mathrm{meg}$. ohm. -20 to +22 dB

$10-0,100 \mathrm{mfd} .0-100-0 \cdot 1 \mathrm{mfd} \cdot 23.47 \mathrm{t}$ P. \& P. 15 p .

MODEL TE-90. 50,000 oad protection. 003/13/60 $00 / 600 / 1,200 \mathrm{~V}$ d.e $0 / 6$ $30 / 120 / 300 / 1,200 \mathrm{v}$ 0/6/ 03/6/60/600m1 $6 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot 6 / 16$ meg. -20 to +63 dB 7.50. P, \& P. 15p.

TME MODEL TW-20CB. eatures Resettable Over
fad Button. Sensitivity $20 \mathrm{~K} \cap /$ Nolt d.c. $\$ \mathrm{KQ} /$ Yolt a.c. I.c. volte: $0-0.5$. -5, 10, 50, $260,1,000 \mathrm{~V}$: A.c, volts: $0-2 \cdot 5.10,50,250,1,000 \mathrm{~s}$. D.c. $\begin{array}{llllll}\text { currents: } & 0-0.05, & 0.5 & 5, & 50, & 500 \mathrm{~mA} \\ \text { Resistance: } & 0-5 \mathrm{~K} & 50 \mathrm{~K} & 0.500 \mathrm{~K} & 5\end{array}$ Resiatance: $0-5 \mathrm{~K}, 50 \mathrm{~K}, 0-500 \mathrm{~K}, 5$ meg 171p: -20 to +52 dB . 21150

MODEL A8-100D. $100 \mathrm{~K} \Omega$ Volt. Sin, mirror 8cale. Built-in meter protection 0/ 3/12/60/120/300/600/1,200V d.c. $0 / 6 / 30 / 120 / 300 / 600 \mathrm{~V}^{\circ}$ $\begin{array}{ll}\text { a.c. } & 0 / 10 \mu \mathrm{~A} / 6 / 60 / 300 \mathrm{nA} / \\ 12 \mathrm{~A} . & 0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M}\end{array}$
 +17dB. 21280. 100,000 fin scale buzzer hort circuit check. Sensitivity : 100,000 OPV'd.c. $\delta /$ Folt a.c. $0,50,250,1,000 \mathrm{y}$
 A.c. volts: $3,10,50,250,500,1,000 \mathrm{~V}$ D.c. current: $10,100 \mu \mathrm{~A}, 10,300,500 \mathrm{~mA}$ $2 \cdot 5,10 \mathrm{~A}$. Reajstance: $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$ 10 meg. 100 mer. Decibela: - 10 to

UNR-30 RECEIVER
Bands covering $550 \mathrm{KHz}-30 \mathrm{MHz}$. B.F.O Buit in Speaker $220 / 240 \mathrm{~V}$ a.c. Brand new with inatructions. 215.76. Carr. 37 ip .

WG62 TRAMSCRIVERS Large and

JR-IA SOLID STATE
COMMOHICATION RECEIVER
4 Bands covering $5 \$ \mathrm{KHz}-30 \mathrm{MHz}$. FET, B Meter, Variable BFO for 88B. Built In peaker, Bandapread, mensitivity Control.
 arr. 37 p .

General coverage $150-400 \mathrm{KHz}, 550 \mathrm{KBz}$ 30 MHz . FET front end, 2 mech. Hltera, product wetector, variable B.F.O., noise $16 \mathrm{in} \hat{1} 9 \mathrm{in}<8 t i n .18 \mathrm{lb} .220 / 240 \mathrm{~V}$ a.c. 245. Carr. 50p.

3.5-4, 7-7.3, 14-14.35, 21-21'45, 28-29.7, 50-54MHz. Dual conversion, ${ }^{2}$ mech.
filters, product detector, variable BFO fiters, product detector, variable BFO,
8 Meter, 100 KHz calibrator. $220 / 240 \mathrm{~V}$ a.c. or 12 V d.c. $15 \mathrm{in} \times 9 \mathrm{in} \times 81 \mathrm{in}$. 181 l . Brand new with instructions. 857.60 . Carr. paid (100 KHz Crystal 21.97) extra).

FULL RANGE OF TRIO EQUIPMENT

EDDYSTONE VHF RECRIVERS MODRL

VOLTAGE STABILIBER TRANBPORYERE

 $180-260 \mathrm{~V}$ input. Output 233 V . Arailable150 W or 225 W . 212.50 . Carr. 25 p .

AUTO TRANSFORMERS 0 of $15 / 230 \mathrm{v}$. Step up or atep down. Fully ahrouded

SOLID STATE VARIABLE A.C

 VOLTAGE REGULATORS Compact and panel mount ing. Ideal for control of appliances, etc. Input $230 / 240 \mathrm{Va}$ a.c. Output conthinuously variable from

20 V to 230 V . Model MR2305 5 A 68×16 | $\times 43 \mathrm{~min}, ~ 28.874 \mathrm{~A}$ |
| :--- |
| MR 2310 Mode | Pontage 12 fp .

POWER RHEOSTATS

High quality ceramic construction. Windinge embedded in vitreous enamel. Heary duty bruch wiper. Continuous rating, Wide range
 er-atock Slige hole fixing, itn. dia shafts. Bulk quantitien available es WATT. $10 / 26 / 60 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5.000 ohms, 721p. P. \& P. $7 / 1 \mathrm{p}$ 50 WATT. $10 / 25 / 60 / 100 / 250 / 500 / 1,000 / 2,500$ or 5,000 ohms, $21 \cdot 05$. P. \& P. 71 p 100 WATT. $1 / 5 / 10 / 20 / 50 / 100 / 250 / 500 / 1,000$ or 2,500 ohma, $81 \cdot 87 \mathrm{f}$. P. \& P. 7 fp .
"YAMABISHI" VARIABLE VOLTAGE Excellent quality TRANSFORMERS

ADVANCE TEST EQUIPMENT Grand new and worod in original uenled carton $100 \mathrm{Kc} / 0$ to $1,000 \mathrm{Mc} / \mathrm{e}, \mathrm{ce} 10 \mathrm{mb}$ to 3 l D.c. 10 mv to 3 V . Current $0.01 \mu \mathrm{~A}$ to 0.3 ma. Renintance 1 ohrn to 10 megohin. ST18.
TT1E. TRAMBigTOR TESTER. Full range of incilitlea for terting PNP or NPN tranalatora Carriage 5 orip per itens.

Joan \mathfrak{E}. Allen \&e Clompany offers a comprehensive range of COIN \& MEIAL DEIECOTS

THE HUNTER
High sensitivity combined with marked stability to give a simple-co-use
derector which is a must for the professional man such as rees
$\mathbf{2 4 . 0 0}$ surgeon, electrical contractor or serious treasure hunter

THE EXPLORER

Inexpensive but sensitive. Wing ive hours of treasure hunting fun
whole family on the beach, whilst walking or at home in
\mathbf{E} the garden. A useful robust general purpose detector

THE DISCOVERER

The Do-t-Yoursell kit entails a minimum capital outlay and can be 1. easily assembled in a few hours. The kit is complete except for a standard portable transistor radio as most romiles have one
available. As sensitive and stable as the more expensive
$\mathbf{5 . 4 0}$䢂
2. The "Discoverer" Metal Detector fully assembled
£7.50
3. Porrable transistor radio ideal for use with the
£ 1.95

TREASURE HUNTER'S HANDBOOK

publica questions on treasure hunting. Find out the How,

45p $\begin{gathered}\text { plus } 6 p \text { post } \\ \text { and packing }\end{gathered}$
PLEASE ADD 30p TO DETECTOR ORDERS TOWARDS COST OF POST. ALL DETECTORS ARE GUARANTEED FOR ONE YEAR. SHOWROOM DEMONSTRATIONS: MONDAY-FRIDAY $10-5 \mathrm{p} . \mathrm{m}$ further details of all detectors available on request (A 3p stamp would be appreciated)

I84 Main Road, Biggin Hill, Kent. Telephone; Biggin Hill 4234

Eit5 FLOGLSTNO. $6 \begin{gathered}\text { Scores } \\ \text { Special } \\ \text { Bargains }\end{gathered}$

SEND S.A.E. OR CALL AT ANY BRANCH FOR YOURS

HUGE RANGE OF SPECIAL SNIPS HSTEREOS. DECKS, TAPE RECORDERS, AMPLIFIERS, SPEAK. ERS, TRANSISTORS, VALVES, COMPONENTS-NEW

\#ARUNDEL-All Mail Order
$\mathbf{~} 15-17$ CUEEN $\mathbf{S T}$. Tel. 882299

ENORMOUS PURCHASE. GUARANTEED APPROX, HALF PRICE.
WAMLD
FAMOUS TAPE FAMOUS Standard Play Standard Play
3 in boft.
300 ft . tin.
जnin.
जninn 3 in .100
in. $1, \because 0$ Long Pla ?ejft. 13 p 400 ft .27 p 900 ft . 53 p $1,8004 \mathrm{t}$. 93 p Quadraple Play
 Pout Free less ond ond trade inquiries invited

Discosound P. A. AND DISCOTHEQUE EQUPMENT -A COMPREHENSIVE RANGE COVERING EVERY REQUIREMENT AMPLIFIERS, MIXERS, LIGHT CONTROLUNITS.

D.J.lol Mixer Pre-Amplifier
six inputs allow full mixing facilities for all 151 pes of equipment. 9 V battery operation
Bize: 10_{5}^{5} in $\times 2{ }^{5}{ }_{5}^{5}$ in $\times 4{ }^{\frac{5}{3} \text { in. }}$
Suggested Retail Price $£ 14$
D.J. 102 Discotheque Mixer Pre-Amplifier Four inputs each with its own volume control plin naster volume control, PFL monitoring and fric. Sugkested Retail Price f25
D.J.IO5S P.A. Amplifier

4 -channel mixing facilities each with separate inphis and volume controls. 30 w r.mn.s. power out put Sugreated Retail Price stil Size: $113 \mathrm{in} \times \sin \times \operatorname{bin}$
D.J.70S Integrated Mixer Amplifier Power output 70W r.m.s. 4 -channel mixer with reparate inputs and volume controls, plus master volume and separate hass and treble controls. Suggested Retail Price $\mathbf{8 8 3}$

D.1. Disco-Amp.

Designed spectically for use with discotheques. Power output 100W r.m.s. Two mic, inputs and two gram inputs, with independent volume control plus bass and treble controls. Incorporates many anguane features. Front ianel size: $16 \frac{1}{2}$ in $\times 7 \mathrm{in}$

Ciscosound 40 Discotheque Pre-Amplifier D.J.40L Sound Opereted 3-chennel light Festures independent inputs and volume controls for va microphones anif two turntables plus sepsrate powered and illeal for use with Discosound 100 pover Amplifler (is capable of running 10 of these power amplifters-total $1,000 \mathrm{~W}$). Front panel slze 16. in $\times 7 \mathrm{~m}$

goatud Retail Price 240

Ciscosound 100 Power Amplifier 106W r.m.s. power amplifier (at 8 ohms) utilising all ailicon transistors and features full automatic urerload against short or open circuits. Frequency reaponse $20-20,000 \mathrm{~Hz} \pm 31 \mathrm{~B}$. Diatortion less than "oo at row r.m.s. \pm idB, size: $101 \mathrm{in} \times 8 \mathrm{in} \times$ in. Sumgested Retail Price $849-50$

C.J. 103 S Stereo Pre-Amplifier

A high quality stereo discotheque preamp unit. r.corporating two microphone and two turntable inpelts each with independent volume control, plus bzw, treble, balance and master volume control. Offers full mixing and monitorlng facilities. Front panel size 16 in x in.
D.J.30L Paychedelic Light Control Unit 3-channel light unit enabling bass, middle and tre ble ir-quencies from the amplifier to be operated individually. Handles $1,000 \mathrm{~W}$ per channel. Front 8ctigerted Retail Price 187.50
D.J.40L Sound Opereted 3-chmnnel ligh unit
restures built-in microphorc which eltminates the nced for connections to any amplifier or sound mource. Handles 1,00 per channei. Front panel aize: $16 \frac{1}{2} \times 3 \mathrm{in}$.
8ugrented Retall Price 258.28

D.J. DIMMER 3000

-channel light dimmer unfiofered in two versions: Dimmer 3000 -a atraight 3 -channel dlmmer unit with mains input and three light outputs
Dimmer 30008 - or use in conjunction with D.J. 30 L Light Control unit only and has three mains inputs agrested Retail Price tos. co . Panel Bize: $10 \mathrm{in} \times 6 \mathrm{i}$

Discosound Disco-Wheel
A projector designed to project a range of liquid wheels and colour change wheels for apecial lighting effects, addIng colour and variety to any form of
 ugrested Rotail Pric eso

A rangt of complete Discotheques with matching Speakers also available.

DISCOSOUND PRODUCTS ARE GUARANTEED FOR 12 MONTHS

For full details of the Discosound range of products call at or write to your nearest Discotheque Centre - Demónstrations given at any time.

DISCOSOUND
122 Balls Pond Road, London N. 1 . Tefi 01-254 5779
HENRY'S RADIO LTD.
309 Edgware Road. London W.2. Tei: 01-723.6963

LiND-AiR AUDiO

GARRARD
HI-FI TURNTABLES

An attractive alternative for the en-
thusiast prepared to assemble these excellent motules to make a stereo assemibly. 2.3024
64.471 (2 require Stereo Sixty Control/Pre-anplifier SINCLAIR PROJECT 60. Package deal price 219.95, P. P. 62!p. Project 60 is supplied complete with plinth mounting.

SINCLAIR IC-IO
INTEGRATED CIRCUIT
10W Anplitter. Bizc only lin $\times 04 \mathrm{im}$ $\times 02 \mathrm{in}$. A true hi-fl ampliffer complete with manual giving details of a wide range of applications and inatructions.
ONLY 22.97 : . P. \& P. Kp.

sInclair iclo

with npecial transformer to olnerate
from acc main $230,250 \mathrm{~V}$. fronl a.c. mains 230/2jov. Output

No fillily tape thrcading, juet shap in a compact cassette. Amazing performance from all trankistorised circuit. Auto level control. Luxurious wood grain and black finish. Runs on 4-U11 batteries. Complete with reniote control mike, stand and atrap. 10 min . play
cassctte 60̄p extra (*Rec, price of ident mod. with case e88-40).
E.M.I, LOUDSPEAKERS MODEL 450. $131 \mathrm{in} \times$

 Britith Mady soliable companenard panels, reliable component connectionf,
Single Decs. One s-DeC with Control Panel, Jig anul Accessories for soliterless connections to controls, ete., with booklet "Projects on 8-Dec." giving construction details for a variety of circuits. \&1, P. \& P. 17.p.
4-Det KIT. Four s.DeC with two 4-Ded KIT. Four s-DeCh with two
Control Panels, Jigs and Accessories anlit the booklet "Projects on 8.Dec" all contained in a strong attractive plastic came. Ideal for the professional

HI-FI CATALOGUE
100 pagea fully illustrated with 8 pag P.A. rection. All leadling makes amm accesmories plue tetails of Buiget Stereo syatems. 25 p . P. \&P. jp .

All mail orders to: Dept. PE 7 53 TOTTENHAM COURT ROAD LONDON, W.1. Tel. 01-637 1601 Callers welcome also at: 18-19 Tottenham Court Road London, W.1. Tel. 01-580 2255 25 Tottenham Court Road London, W.1. Tel. 01-580 7679 149 Fleet St., E.C.4. Tel. 01-353 1419 94-96 Upper Parliament Street Nottingham. Tel. 40403

MARSHALL'S INTEGRATED CIRCUITS

NEW LOW PRICES LARGEST RANGE BRAND NEW FULLY GUARANTEED SPECIAL OFFER 5\% DISCOUNT TO SATURDAY CALLERS JULY AND AUGUST ONLY

MOTOROLA				TTL LOGICS					
We can now offer the whole vast range of Motorola IC's at Industrial distributor					1-24	$26-99$ 200	180-489		
				8N7400	${ }_{25 p}$	20p	18p		
				$8 N 7402$	250	20 D	18p		
MC724P		20.124		SN7403	${ }^{259}$	200	18p		
MC790P	. 24			SN7404	25p	20p	18p		
MCl303L				SN7406	80	750	70p		
FAIRCHILD (RTL)				SN7408	25	80	18p		
				8N7409	25p				
	1-5	6-11	$\geq+$	SN7410	25p	20	180		
L900	40 D	87	85p	${ }^{\text {8N74 }}$ SN411	${ }^{250}$	20p	18 p 40 p		
${ }_{\text {L9 }} \mathrm{L} 923$	${ }_{40 \mathrm{p}}^{40 \mathrm{p}}$	87 p	85p	${ }^{\text {BN } 7420}$	25p	20p	18p		
Data sheet 121 p				9N7430	${ }^{25}$	20 D	${ }^{18 p}$		
				8N7440	${ }^{250}$	20p	18p		
LINEAR				SN74414	${ }_{21}$	${ }^{00 \mathrm{p}}$	80p		
Op. Amps.	1-5	8-11	11-24	8N7448	12.25	41.10	21		
		\&p	2 p	8N7447	81.10	81	9p		
UA50:A	$2 \cdot 80$	2.70	2.76	gN7448	1	90p	80 p		
	0.77	0.76	0.72	9n7460	25p	20p	${ }_{18 p}^{18 p}$		
UA703C	1.37	1.80	${ }_{1}^{1.25}$	8N7431		2 p	${ }_{88} 8$		
UA709A TOJ	0.65	0.55	0.60	${ }_{\text {8N7454 }}$	25p	20 p	18p		
$\begin{aligned} & \text { UA709C DIL } \\ & \text { UA7090 TO } \end{aligned}$	0.55	0.52	0.46	8N7460	250	20 p	18p		
UA709C TO	1.25	1-17	1.12	SN7472		${ }^{350}$			
UA710C T0	0.70	0.65	0.80	SN7473	45	40 p	5 p		
UA716 T	1.88	1.75	1.70	8N7474	45				
UA730C TOJ		1.45	1.37	${ }_{\text {SN7476 }}$	45 p	40 p	${ }^{35}$		
UA730C TOJ UA741 TOJ UATilC DIL	0.87	0.80	0.70	8N7483	81	90	80 D		
	87	0.80	0.70	8N7486	50,	45	40 p		
LMFIICN DII.			0.70	8N7490	建	90 p	80 p		
MULLARD TTL		PLESSEY		8 S 7495	81		80 p		
		8N7496	21	90 p	808				
			$\mathrm{ef}^{\text {p }}$	8N74107	${ }^{45 p}$	40 p	${ }^{85 p}$		
	29			HL403DHL701C	2.121	8N74153		21.70	81.60
	0.877	1.45	SN74154		22.20	12.80			
FJH141	O.87			SN74160j T157D1	21.80	21.70	30		
	0.871			8N74161	22.80	28.50	28.40		
FJH171 0.	0.91	data sheeta		8N74164	22.20	81.95	21.80		
FJH2? ${ }_{\text {FJJ }}$	0.871 1.371	TOSHIBA		8N74163 8N74192	22.25	11.98 81.98	8180 81.80		
FJJ121	1.87			${ }_{\text {SN74 }}$	42.25	21.98	E1.80		
FJJ141	8.12		ep	RCA					
FJJ191	${ }_{3}^{1.187}$	TH9013P ${ }_{\text {2 }}$							
	${ }_{8.25}^{3.12}$	20 WATT	MP		4 c		2 p		
FJY101 0.	0.80	$\mathrm{TH}^{\text {Prem }} 14 \mathrm{P}$	21.65	Ca3000	. 801.60	迷	4.283.80		
MULLARD				CA3000 ${ }^{\text {cha }}$	1.80 2.69 2.40	CA303JV1	1.23 1.10		
DTL	Ep	DATA SHEEA 0 -121		C. 33001 V 1	12.892 .40	СА 303 F	0.780 .65		
				CA3002	1.801 .80	$\mathrm{CA}^{\text {ca } 3037}$	1.851 .47		
FCH101 0	${ }^{0.871}$	MULL	D	${ }_{C}^{C A 3} 30004$	1.801 .60 1.80 1.80	CA3037.	2.53 2.25		
FCH121	${ }_{1}^{1.05}$			CA300	1.171 .05	CA3038.	3.408 .08		
${ }_{\text {FCH201 }}$	${ }_{1}^{1.60}$			CA3006	2.802 .50	CA3039	0.840 .75		
FCJ101	1.621	TAA:4I	1.621	CA3007	2.63 2.84	CA3040	2.40 2.14		
FCJ111	1.55	- 242	4.25	${ }_{\text {cas }}$	1.80 1.80	$\mathrm{CA}^{\text {CA3041 }}$	1.090 .97		
$\mathrm{FCJ}^{\text {FCJ }}$	1.80	243	1.60	${ }_{\text {CA3 }}$ CA010 ${ }^{\text {a }}$		CA3043	1. 1.371 .28		
FCJ211	2.75 4.871	263	0.771	cas3010a	2.53 2.25	CA3044	1.201 .07		
FCY101 1	1.05	293	0.871	CA3011	0.740 .85	CA3044,	1.201 .07		
GENERAL		300	1.75		0.740 .85	(A3046	0.690 .80		
		310	1.25	ca3012	0.8980 .79	(A3047	1.371 .23		
ELECTRIC		0	$0.72 \pm$	CA3012v1	10.890 .78	CA3047A	2.53 2.25		
(${ }^{\text {p }}$		0	1.76	CA3013	1.050 .94	CA3048	2.041 .81		
Pater	8.80	435	$1.47 \frac{1}{}$	CA3014	1.241 .10	ca3049	1.601 .48		
PA230	1.40	521	$1.32 \pm$	CA3014V1	11.241 .10	${ }_{\text {Ca330jo }}$	1.841 .64 1.84 1.80		
${ }_{\text {PA237 }}$	8.10	524	3.80	CA301Ja	3.408.08	(A305?	${ }_{1} 1.651 .47$		
PA239	2.10	530	4.95	CAj016	2.488 .19	CA3003	0.480 .41		
P4246	1.60	570	1.97!	Ca3016a	8.738 .88	CA3054	1.090 .87		
PA264	1.90	811	4.45	ca3018	0.840 .75	cas30js	${ }^{1.6080} 1.51$		
	2.00	tabiol	0.971	CA33019A	1.10 0.84 0.99 0.75	${ }_{\text {Ca }}$	${ }^{1} 8.19018 .85$		
PA436		TAD100	1.871	CA3020	1.86 1.18	CA3059	1.651 .48		
PA494	2.05	Tadilo	1.871	CA3020A	1.601 .48	CA3060	4.914 .87		
				CA3021	1.581.89	CA3062	2.55 2.27		
SGS				CA3021V1	11.581 .89	CA3064			
				$\mathrm{CAS3O23}^{\text {CA3 }}$	${ }_{1}^{1.2881 .18}$	CA3066	2.11 1.88		
TAA6E1B 21.82				CA3026	1.000 .90	CA3067	2.181 .94		
100 or more gates may be mixed to qualify for the $100+$ price. This concession also				CA3026Pr	RE	${ }_{\text {CA3068 }}$			
				CA 3028 A	${ }^{1.7400 .65}$	CA3071	1.62 1.44		
8 Pin TO-5 I.C. Holders, 20.35				СА 43028 B	1.050 .94	CA3072	1.6881.48		
				СА3029	0.870 .77	CA3075	1.131 .00		
10 Pin TO-J I.C. Holders, $20.57 \frac{1}{2}$				CA3029A	1.651.47	CA 3076	1.30 1.18		
				CA3030.	- 1.871 .28	CA3078	3.198 .85 0.780 0.70		
14 Pin Duab-in-Line I.C. Holders, 20 -ast16 Pin Dual-in-Line I.C. Holdera, $\mathbf{5 0}$. 42 t				$\mathrm{CAS}^{\text {CA30304 }}$	2.8588 .25 2.85	${ }_{\text {CA }}$	${ }_{8}^{0} 1988$		
See our ad. on opposite page for transistors, diodes and passive components and P. \& P. charges. Many more types in stock and arriving daily. Please inquire.									

READY BUILT AND TESTED
Treasure Locator Module
C4.954 (99/6) BRAND NEW FULLY TRANSIETORIZED PRIWTED CIRCUIT METAL DETECTOR MODOLE. Ready bwill and lested-just plug in a PPS battery and 'phones and it's working. Fut it in a case, screw a handle on and YOU HAVEA PORTABLE TREASURE LOCATOR RASILY WORTE ABOUT \&201 Extremety senaitive-
 RELICS, BURIED PIPRS, KEYS, IAIL-in-TREES, FTC. ETC. Signals exact locstion by "beep" pitch increasing as you near buried metallic objects. PRINTRD CIRCUIT BEARCH
COM, so table and sentitive it toill detect certain objects buried SEVERAL FEET BELOW GROUMD
 electronic beachcombing-it's almost like having a licence to print money! Unclaimed treasure now clectronic seachombing-it's almost like having a licence to print money PRESERT 8TOCES LAST-

SOOTHE YOUR NERVES

reLaX With this amazing
RELAXATRON
CUTR OUT MOISE POLLUTIOX-8OOTHRS uses of this fantastic new design-the RELAXATRON is basically a pink noise generator barea on avalanche operated transistors. Benfiles being able to mank out extraneous inwanted sonnds, it
has other very interesting properties. has other very interesting properties. For instance, many people fin a railpart of this feeling of well-being can be part of this feeling of well-being can be ralndrops!-a well-known type of pink noise. A yroup of Dentists have experimented on patients with this pink noisenoise obetensibly created a noost lefinite
 reaction on these patients nervons systems (45) YOU work hi molgy or pigtr acmila sure booked. If IF YOU HAYE TROUBLE CONCETTRATDG IF YOU IF YLL TREAED, URABLE TO RRLAX-then build thi fantart ic Reiaxatron. Once usell you will never want to be withont it-use this atuazing pink noige generator whenever you feel measy, can't relax or wish to concentrate. TAXE IT AMYWHERE, pocket sized. ['ses standaril. PP3 batteries (current used so small that battery life js ithost shelf-iffe!). CAM BE EASILY BUILT BY ARYONS OVER 12 YRARS OF AGR using our unithe, step-by-step. fully Illustrated plann. All parts incluting case, a pair of cryatal phones, components, nutus, si-) (parts avallable separstely). No solilering neceseary Examine at bome for 7 tays. Your mone y back if not delightel

TREMEEDOUS DEMAND EXPRCTED AT THIS REMARK ABLY LOW PRICE DRMONRTRATIONS DAIY. ORDEE DIEPATCEED IN STRICT ROTATION. BEND MOW 8A-O plus 30 p carr. ($98 /$ - plus 6/-). (High quality Danish Stetho *cope healphones $\mathbf{2 8 - 7 5}(\mathbf{5 5} /-$) extra if required.)

LISTEN TO AIRCRAFT COMMUNICATIONS new V.H.F. AIRCRAFT (B BAND converter

onlr £2.37

(47/6) Listen in to ARELIMEs,
PRIVATE PLANES, JET PLANES. ELavesirop on exeifing erosatalk beltceet pilots, grownd approach gronted control, airport oucer. Hear for yourself the disciplined wice hiding renseness or talk downs. Be with then when they hare to take nerverippling internatjonal diatress irequency. Covers nircraft frequency bandincluding HEATHROW GATWICX, LUTON, RINOWAY, PEESTWICE, RTC. This fantastic fully transletoriged instrument can be built by angone nine to ninety in under two bours. (Our deelgn tean built four-everyone worked firat time). No soldering necessary Fully illustrated simply worded instructions take you ste by-step. I'zes standard Pr3 battery. Size only 4 fin $\times 3 \ln$ 1lin. Ali you do is extend rod nerlal, place close toany ordinary medium-waye riulio (even tiny pocket radlos). 10 CON-
 case, nuts, screwr, wire, etc, etc (parts available meparalely).

FIND BURIED TREASURE! TREASURE LOCATORHOW IT'\& EEREAT LABT,

CONCORD ELECTRONICS LTD. nuts, acrewil parts including detector head case, nuts, screws, wire, simple mstructions, etc. send hamile illustratel 7o (1J/-) extra) Part handle as illustrated 70p ($10 /-$) extra). Part

Vary the strength of your lighting with a axmisulch

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounring plate of the DIMMASWITCH matches modern electric fittings. The bright chrome control knob activates an on-off switch and controls $40-600$ watts of all lights except fluorescencs at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression. Price: $\mathbf{4 3} \mathbf{2 0}$ plus $10 p$ post and packing. Kit Form: $\mathbf{2 2} 70$ plus 10p post and packing. Please send C.W.O. to :

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel: 0244-25883 As supplied to H.M. Government Departments, Hospitals, Local Authoritles, otc.

The Unique

 MULTI-MINI TWIN-VICE

An extra "Pair of hands" for those tricky jobs
ASSEMBLY-SOLDERING-GLUING-WIRING-DRILLING ETC.

- INDEPENDENT ADJUSTMENT OF THE TWO VICE HEADS TO ANY ANGLE WITH POSITIVE LOCKING.
- JAWS WILL FIRMLY GRIP, ROUND, fLAT, SQUARE, OR HEXAGONAL' PARTS.
TWIN VICE: $\mathbf{8 5} 90$ (24p P \& P) ALSO AVAILABLE
SINGLE VICE: $\mathbf{\text { E }} 3.37 \frac{1}{2}$ (20 P P \& P)
COVENTRY MOVEMENT CO, LTD, DEPT. PE3, BURNSALL ROAD COVENTRY CV' 6BU. STD 0203-74363

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

7 Tunable Wavebands: Medium Wave 1, Mediun Wave 2, Long Wave, S.W.1, S.W.2, S.w.3, and Trawler Band. Built-in ferrite rod aerial for Medjum and Long Waves. 4 section 24 in. Push-pull output using 600 Mw type transiators. Socket for car aeriah. Tape record socket Sclectivity switch. Switched earplece socket complete with earpiece for private listening. 8 tran sistors plus 3 diodes. Famous nlake 7.4 in speaker. Air spaced ganged tuning condenser. On/of switch volume control. Waye change sxitch and tuning control. Attractive case in rich chestnut shade with gold blocking. Size $9<7 \times 4$ in approx. Easy to follow instructions and diagrams make the Roamer Fight a pleasure to build. Parts price list and casy build plans 25 p (FREE with
partis).
Total building costs 88.98
Overseas
Post, packing and insurance $41 p$

roamer seven

 mk IV7 FULLY TUNABLE waveBANDS \rightarrow M.W.1, M.W.2 L.W., S.W.1, S.W.,., M.W. 3 and Trawler band. Extra Medium wareband Luxembourg, etc. Built in ferrite rod aerial for Medium and Lons Waves. Retractable 4 section 24 in chrome plated telescopic aerial for peak Short Wave listening. Socket for Car Aerial. Powerful push-pull output. 7 transistors and tho diodes including Micro-Alloy R.F. Tranisiotors. Famoun make - ${ }^{2}$ An P.M. speaker. Aif apacerl ganged tuning condenser. Volume/ov/off contrul, 9 ave change switches and tuning control. Attractive case with carrying handle. Size pleasure to build. Paris erice list and easy lanlly plans diap (FREEM mith the Roamer 7 a

Total building costs

$£ 5.98$
 Personal Earpiece with plug and switched socket for private listening, 30p extra.

Post, packing and insurance 41p
Overseas P. \& P. 90p

pocket five

medium wave, long wave
AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Atin. Tunable over both Mediun and 5 , $1=$ with extended M.W. band for easier tuning of Luxembourg, etc. 7 stages - 5 transistors and 2 dlodes, supersensitive ferrite rod aerial, fine tone moving coil ppeaker. Easy build phans and parts
price list $8 p$ (FREE with parts) price list 8p (FREE with parts)
istening, 30 p extra.

IMPROVED MODEL!

roamer six

SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER
Attractive black case with red grille and blach knobs and dial wifth spun brass inserts. Size $9 \times 5 t$ 21 in. approx. Tunable on Medium and Long Waves. two Sbort Waves, Trawler Rand plus an extra M.W. band for easier tuning of Luxembourg, etc. Senaltive Short Waves. Improved circuit. 8 etages $-6 \cdot$ teranslators and 2 diodes including Micro-Alloy. R.F. Tranistors, etc. Easy bulld plans and parts price liat 10p (FREE with parts).
Earpiece with plug and switched socket for private
listening, 30 p extra.

Total building costs

and insurance 21p Overseas P. \& P. 55p

Total building costs

and insurance $26 p$
Overseas P. \& P. 70p

* Callers side entrance Barratts Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

NEW!

transeight

SIX WAVEBAND
PORTABLE WITH
3 in . SPEAKER
Attractive case in black with
red grille and black knobs and
dial with spun brase
ineerts. Size $9 \times 5\} \times 2 l i n$.
approx. Tunable on Medium and Long
Waves, s Short Waves and Mrawler Banu. T 8 improved type transistors plus 3 , und .W. Telescopic at 8 witch for extended battery life, Ample power to drive a lareer apener parts prica list and easy buifil plans 25p (FREE with parts) Aarts

Total building costs
£4.48
Earpiece with plug and awitched socket for private lietenlog, 30 p extra.

Post, packing and insurance 31p
Overseas P. \& P. 70p

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE
WITH SPEAKER
Attractive case with red apeaker grille. Size $61 \times$ 41 In $\times 1$ tin. 7 atazes- 5 tranaistors and 2 diodes tine tone moving coilspeaker. Easy build plansand parta price list 8p (FREE with parts) arpiece with pur and suitched socket for private listening. 30p extra.

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367 I I enclose £please send items marked

ROAMER EIGHT	\square	ROAMER SEVEN		
\square	POCKET FIVE	\square	\mid	
TRANSEIGHT	\square	POCIX		
TRANSONA FIVE	\square	ROAMER SIX	\square	

Name
Address

28watts, r.m.s. 40 Hz to $40 \mathrm{kHz}=3 \mathrm{~dB}$

There are two stereo amplifiers - the RT100 for ceramic cartridges, the RT101 for magnetic. Both incorporate FETs (FIELD EFFECT TRANSISTORS), just like top-priced units. FETs give you more of the signal you want, and almost none of the background hiss you don't. Both units have a jack socket to plug in headphones - an unusual feature in this price range. And there's a separate output for tape recorder. Tone controls and filters give a wide range of bass and treble adjustment which compensate for input deficiencies and domestic acoustic conditions.

PRICES SYSTEM 1
Viscount III RT101 amplifier $\mathbf{£ 2 2 . 0 0}+90 \mathrm{p} \mathbf{p} \boldsymbol{6}$ p $2 \times$ Duo Type II speakers. Garrard SP25 Mk. III with
MAG. cartridge, plinth and cover

$$
\text { Totál } \frac{£ 23.00}{£ 59.00}
$$

Available complete for only £62.00 $+\mathbf{£ 2 . 6 0}$
p\&p.

SPECIFICATION (to BS 3860)

14 watts per channel into 3 to 4 ohms. Total distortion @ 10 W @ $1 \mathrm{kHz} 0.1 \%$. P.U. 150 mV into 3 Meg P.U. $24 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within $\pm 1 \mathrm{~dB}$ R.1.A.A. Radio 150 mV into 220K. (Sensitivities given at full power.) Tape out facilities; headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to $-17 \cdot \mathrm{~dB} @$ 60 HZ . Bass fitter: 6 dB per octave cut. Treble control; treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter: 12 dB per octave. Signal to noise ratio: (all controls at max) RT101 - P.U.1. \& radio - 65dB.P.U. $2-58 \mathrm{~dB}$. RT100 same as RT101 but P.U.2. 450 mV into 3 Meg . Cross talk better than -35 dB on all inputs. Overload characteristics 26 dB on all inputs.

Radio and TV Componmets (Actan) Ltd. 21d High Street, Acton, London, W36NG 323 Edgware Road, London, W. 2 Mail orders to Acton. Terms C.W.O. All enquiries S.A.E: Goods not dispoutched outside U.K.

SYSTEM 2
As System 1, but with $2 \times$ Duo Type III speakers at pair $\mathbf{£ 3 2 . 0 0}+\mathbf{£ 3} \mathbf{p} \mathbf{8 p}$ Available complete for $\mathbf{£ 6 9 + \mathbf { £ 4 } \mathbf { p } \mathbf { \& } p}$ SYSTEM 3
Viscount Ill Amplifier RT100 $£ 17.00+90 p$ p\&p $2 \times$ Duo Type II speakers, pair $£ 14.00+£ 2 p \& p$ Garrard SP25 Mk. III with CER. diamond cartridge, plinth and cover $£ 21.00+£ 1 \mathrm{p} \& \mathrm{p}$ Total $\overline{£ 52.00}$
Available complete for only $\mathbf{£ 4 9 . 0 0}+\mathbf{£ 2 . 5 0}$ p\& p

SPEAKERS Duo Type II

Size $17^{\prime \prime} \times 10 \frac{4}{\prime \prime}^{\prime \prime} \times 6 \frac{4}{}^{\prime \prime}$. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic iweeter. Max. power 10 watts 3 ohms Teak veneer cabinet. $£ 14$ pair + £2 p\&p.
Duo Type III Size $23 \frac{1}{\frac{1}{2}} \times 11 \frac{1^{\prime \prime}}{} \times 9 \frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$. Drive unit $13 \frac{1^{\prime \prime}}{2} \times 8 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ with H.F. speaker. Max. power 20 watts at 3 ohms. Frequency range 20 Hz to 20 kHz Teak veneer cabinet. $£ \mathbf{3 2}$ pair $+£ 3$ p $£ p$.

Be a technician on radar, radio and electronics.

As an Artificer Apprentice, you train to be one of the Navy's top technicians: at 24 you'll be a $£ 2,000$ a year man responsible for ultra modern radar, radio and electronic equipment. If you're $15 \frac{1}{2}-17 \frac{1}{2}$, with ' O ' level standard in Maths, and Science or English, send for details.

HIGH PERFORMANCE 11 TRANSISTOR THREE Waveband portable battery/malns radio

This is a really top performance. top quality solid state receiver packed with SONY know-how and backed by the 27% below the manufacturers list price making it without a doubt the NUMBER ONE SCOOP of 1971 ! Just look at these outstanding features. Covers MW, LW and FM (VHF). It transistor circuit for high sensitivity and stability Powerful output to 5° P.M. Dynamic speaker with rich clear tone quality. AFC for drift free VHF reception. Push button wavechange selectors and tone control. household mains or car battery with suitable adaptors. Dial light for
Choice of three power sources- 9 V battery, Choice of three power sources- 9 battery . household mains ox car battery with sitable adaptors. Dial ing ear aerial. Ultra modern syling and superb finish with padded leatherecte covered eabinet for superior sound damping with chrome trim. trong carrying handle.
The SONY TFM 8030L will enliven your lersure hours anywhere, anytime with exciting sound, news, sport, music, 7 diodes and 2 thermistors. Aerial System: Directional telescopic for FM. internal ferrite bar for LW/MW. Power Output: 1.85 W max. Speaker PM Dynamic- 4Ω imp. Power Source: 9 y power pack battery (Ever-Ready PP9 or equiv.) $A C$ mains with adaptor. Car battery with adaptor. Size: 9 il $(W) \times 8$ in $(H) \times 3(D)$. Complete with earphone and battery

MANUFACTURERS LIST PRICE £29.75
LASKY'S SPECIAL OFFER PRICE

Optional Extras. SONY DCC- 126 stabilised AC-90e AC adaptor ± 4.00 DCC- 126 stabilised purchased with radio.

Post 350

NEW

 FANTAVOXENJOY PERFECT STEREO AS YOU DRIVE WITH THE NEW

SIMPLE ONE HANDED OPERATION_SAFE AND EASY TO USE WHILE DRIVING

The newest and most efficient personal car entertainment yet-already a fantastic success in the U.S.A. AND NOW
IT'S HERE! Accepts any of the 1000 's of pre-recorded 8 -track cartridges now available giving up to I hour each. Channels change automatically giving or horizontally) with high quality matching surface mounting speakers specially designed for really dynamic stereo. All solid state (10 transistor) eircuis. High 4 watts per channel output. Playback system Btrack, 4 channel with automatic or manual push button channel selection. Volume, tone and balance driving. Power requirements 11.16 V d.c. negative earth. Line protection fuse fitted. Finished in matt black with satin chrome trim-size only 7(D), housings Complete with all necessary connecting leads, mounting bracket and

LASKY'S PRICE £26.95

COMPLETE WITH MATCHING STEREO SPEAKERS Without Speakers $£ 22 \cdot 50$
Full range of pre-recorded 8-track cartridges available from

EXCLUSIVE TM-1

MODEL TM-I MINI-TESTER
The first of Lasky's top value meters, the TM. 1 is and performance. Precision movement calibrated to $\pm 3 \%$ of full scale. Click stop range selection switch. Beautifully designed and made impact resistant black case-with white and metallic red/green figuring. Ohms zero. ODC/V: 0-10-50-250-1,000 at IK/OPV $0-1 \mathrm{~mA} 100 \mathrm{~mA}$. -10 dB to +22 dB . Complete with test leads battery and instructions. LASKY'S PRICE $£ 1.95$ Post 13p

Size only

ก N 1 LASKY'S NEW 1971 AUDIO-TRONICS CATALOGUE
Send your name and address and 13 p for post and

FANTAVOX

TWO WAVEBAND ALL TRANSISTOR CAR RADIO A new two waveband all transistor car radio that really breaks the quality/orice barrier. Covers full med. and long wavebands with slide switch wave change controls. Illuminated dial. Externally adjustable aerial trimmer ensures max mum output. Operates on all 12 V d.c. systems. Negative or positive earth Scandard size $6 \frac{1}{2}(W) \times 4 \neq(D) \times 2 i n$. H). Black with chrome trim. Complet with speaker, baffle, mounting brackets and instructions. Fully guaranteed.

GREAT VALUE $£ 8.95$

SPECIAL OFFER! SONY TV 720UK

625 LINE 7 inch PORTABLE TELEVISION The world in seven inches, this miniature
portable TV can be operated by housepold current, rechargeable power pack or I2V car/boat battery. It's handsome. ebony and chrome case houses Sony's precision solid-state circuitry, giving
reception on BBC.1. BBC.2, and the
 independent stations. The anti-glare screen shows a crystal clear image even in sunshine. Here's a portable companion that brings you a world of system: Built-in loop aerial. External 300 ohm- 75 ohm switchable. Antenna conductors: 23 transistors, 15 diodes, 3 thermistors, I EHT rectifier (selenium). - Power source: $A C 240 \mathrm{~V}, 50 \mathrm{~Hz} ; \mathrm{DC} 12 \mathrm{~V}$. 'Power consumption: AC 17 W . DC IIW. Dimensions: 9 in x 9 Itin. x 11 tin. Weight: Blb. 130 z . onktian prick LASKY'S PRICE $£ 54 \cdot 95$ GREAT VALUE! $12^{\prime \prime}$ TANDBERG H.T. 120-4

Superb bass woofer specially made by Goodmans for Tandberg. Spec.: 12 in . paper cone. Voice coil 1 in. 4Ω impedance. Gap 15,500 gauss. Power handling LASKY'S PRICE £9•50 Trimaitect

THAT SPECIAL PROBLEM

I is now becoming widely appreciated that many private constructors are highly competent, expect up-to-the minute designs, and that they generate a demand for many new and unusual ty'pes of components, such as industry had previously deemed its exclusive own. This is the heartening news to emerge from correspondence arising from our comments in the May issue on the subject of component availability. On the less bright side, problems of supply there are, and will remain; but all concerned-makers of components, industrial distributors, and retailers-seem keen to mollify them.
Several large component manufacturers have made clear that no embargo is imposed by themselves that would prevent their products ultimately reaching the hands of private individuals. The operative word here of course is "ultimately". In the majority of cases the components must pass through the established distribution system. The terminal point so far as the private purchaser is concerned is the retailer or, exceptionally, an industrial distributor.
A significant development, in fact, is the interest certain industrial distributors are showing in the growing amateur market. Some are already entering the retail mail order business. Is this a challenge to the established component retailer? Some retailers admit to us that the supply of "specials" is an uneconomical business, but they are prepared to do it as a service to their customers.
A few retailers, resenting what they felt to be an attack upon their business acumen in our May comment, have laid the blame for much of the present difficulty upon Practical Electronics. Two main points have been raised. They are of interest to anll involved in amateur electronics, and we will give our answers to both points herewith.
A common (and perfectly understandable) request, is for advance notification of components that will be specified in forthcoming articles. Admirable as this sounds, it overlooks the exigent demands that arise in producing a monthly magazine containing extensive technical detail. Could such problems be overcome, there would remain the severe burden of circulating all advertisers each month: it would be an invidious act to select just a few.

A second criticism levelled at this magazine is that we should make certain that all items specified are actually available to private purchasers. Suppliers and constructors alike can be assured that great pains are taken to verify this. Often alternatives are substituted prior to publication when perusal of retailers' current catalogues

THIS MONTH

CONSTRUCTIONAL PROJECTS

P.E. AURORA 550
VOLTAGE STABILISER 564
XEE 568
THE PIPSQUEAK 576
SPECIAL SERIES
RADIO ASTRONOMY TECHNIQUES—2586
GENERAL FEATURES
INGENUITY UNLIMITED 560
BEGINNERS
SIMPLE INTERCOM546
NEWS AND COMMENT
EDITORIAL 545
SPACEWATCH 549
ON THE FRINGE 556
MARKET PLACE 563
PHYSICS EXHIBITION 578
READOUT 581
ELECTRONORAMA 595
Our August issue will be published on
Friday, July 16
continued on page 559

[^0]THE simplest form of intercommunication system is made up of one master unit and one slave unit. The slave unit consists of a loudspeaker serving in the dual role of microphone and loudspeaker.

For the other unit the choice of title "master" derives from the fact that all two way conversation is controlled from it as seen in Fig. 1. Here, master loudspeaker LSI is connected by a short twin lead to the amplifier via a two way switch. In the "Talk" position the switch connects LSI to the amplifier input and the remote slave loudspeaker to the amplifier output.

It is common practice to have the function switch biased to "Talk" as all conversation is initiated by the master. However, as the intercom might find use as a baby alarm or doorphone this convention was dropped.

As a microphone, LSI acts as a voltage generator with the voice coil responding to sound waves striking the cone. The amplifier steps these voice signals up and relays them to the slave load LS2. A person

Fig. I (a). In the "Talk" position master loudspeaker LSi acts as a microphone. LS2 functions normally as a loudspeaker (b). In the "Listen" position, slave loudspeaker now functions as the microphone and initiates the call. Ideally screened lead should be used for LS2 to eliminate noise influences

Fig. 2. Circuit diagram of intercom unit
in proximity to this loudspeaker responds by simply speaking up when the master unit switch is set to the "Listen" position.

COUNTING THE COST

Probably the most important criteria for an intercom system is low running and building costs. Whilst a rectified mains supply will effectively reduce running costs by avoiding batteries, it does introduce the hazard of possible accident, the likelihood of hum on the line and the necessary siting of the master unit near a mains outlet.
Anticipating the manifold applications of the system in garden workshops or garages, battery power was considered a prime requirement. In fact quiescent current drain is about 8 mA with peaks, according to speech level, of about 35 mA .
The cost of the unit to build should be around $£ 1 \cdot 50$. This excludes the price of the loudspeakers.
Most intercom systems provide peak power outputs from about 100 to 500 milliwatts. To the hi-fi man in pursuit of an ever spiralling power figure this must represent an almost inaudible sound level when coming through a loudspeaker. In fact, a power output of 100 milliwatts is adequate for room listening.

Equally, whilst a sound purist might reach for his hat when you beg to demonstrate your intercom amplifier with a harmonic distortion content approaching 10 per cent, impress on him that an intercom is for intercommunication and the intelligence loses little by this type of distortion.

CIRCUIT ACTION

In Fig. 2 is given the intercom circuit diagram with T-Dec hole positions for plugging in component parts. If translation of this unit into the form of a more permanent assembly is intended, such as on Veroboard, then the prototype component geometry should be maintained to lessen the likelihood of instability.

The circuit diagram shows S1 in the "Talk" position so that the call facility is with the master unit. Cl provides d.c. isolation so that no biasing of the loudspeaker cone is possible.

Since the loudspeaker in use is a voltage generator of low output impedance it must work into a higher load to effectively transfer small signals. TR1 is a silicon transistor which means that the simplest form of base biasing can be used as the expected small changes in surrounding temperatures are hardly likely to affect its working point.

Components

Resistors	
R1	$100 \mathrm{k} \Omega$
R2	$2.2 \mathrm{k} \Omega$
R3	$22 \mathrm{k} \Omega$
R4	$2.2 \mathrm{k} \Omega$
R5	270Ω
R6	$100 \mathrm{k} \Omega$
All	$10 \% \frac{1}{2}$ watt carbon

Capacitors			
C1	$4 \mu \mathrm{~F}$	elect. I5V	
C 2	$4 \mu \mathrm{~F}$	elect. I5V	
C 3	$0.01 \mu \mathrm{~F}$	polyester	
$\mathrm{C4}$	$0.01 \mu \mathrm{~F}$	polyester	
C5	$250 \mu \mathrm{~F}$	elect. 15 V	
C6	$100 \mu \mathrm{~F}$	elect. I5V	
Transistors			
TR1	ZTX 300		
TR2	2N2926 green spot		
TR3	ZTX 300		
TR4	ZTX 500		

Switches
 S1 D.P.D.T. roggle
 S2 On/off toggle

Loudspeakers LSI, LS2 $5 \mathrm{in}, 15 \Omega$
(2 off)

Miscellaneous

BY|-9V
T-Dec, connecting wire

Fig. 3 (a). Transistor output characteristic showing two common bias conditions (b) How input characteristic non-linearity produces crossover distortion with zero biased input signal (c) sllght forward bias for the complementary transistors gives a clean output voltage ($V_{\text {out }}$)

Both this and the succeeding transistor TR2 work in a condition known as Class A. In Fig. 3(a) is shown an output characteristic for a transistor with a resistance load. If a signal current is passed to the base this will be reproduced at the collector ($V_{\text {ont }}$) only if it is well contained within the load line. For small signals, Class A, or mid point bias, does in fact provide this as can be seen.

Since we are not concerned with power in the first two transistor stages the inefficiency represented by Class A biasing can be ignored. However, where transistors are used as power amplifiers. with large collector current swings, mid-point biasing would mean a large continuous drain from the power source and the batteries would soon be flat.

CLASS AB

Biasing further down the load line to near cut-off will give a very low quiescent current drain but intolerable distortion as the collector voltage is only reproducing half the signal voltage. Biasing at this point is known as Class $A B$.

If an npn/pnp combination are arranged as TR3/TR4 in the circuit and the gain characteristics of these transistors matched then we have the advantage of excellent efficiency and low distortion in a power output pair. As previously stated, since second harmonic distortion in speech is not a cause for concern the cost or problems of matching, can be ignored.

CROSSOVER DISTORTION

There is a form of distortion found with this type of output configuration which is intolerable. Known as crossover distortion, it occurs when the transistors are zero biased as seen in Fig. 3(b).

Here a sinusoidal signal applied to the transistor bases will be distorted at the output due to curvature on the input characteristics. At low signal levels this distortion is particularly bad.

To overcome this a small amount of bias is applied to both transistors so that any signal transfer is made on the linear part of the input characteristics. Fig. 3(c) shows how effective this is when related to the output characteristics.

In the circuit diagram VR1 is used to make this bias adjustment.

NOISE

In any high gain amplifier there is always the possibility of noise being introduced, this applies particularly where long runs of wire are introduced directly to the preamplifier input. With an input impedance of less than 1 kilohm the noise problem, in general, should only be a small one even for substantial twin runs to the slave loudspeaker.

It must be realised, however, that noise will raise the quiescent current level. Since this is normally about 8 mA single screened lead connected as in Fig. 1 will prove effective against such influences.

Spontaneous high frequency oscillation can also be a nuisance so decoupling capacitors C3 and C5 are included.

SETTING UP

Since there is only one control requiring preliminary adjustment, namely VRI, setting the amplifier up is simple and only requires a multimeter. First set VR1 wiper to mid travel. With S1 in the "Talk" position connect the multimeter in series with the battery with range switches set to 100 mA d.c.

With the unit switched on the current reading should be about $20-30 \mathrm{~mA}$. Now adjust VRI to the lowest current reading which should be about 8 mA . If now a transistor radio is placed before LSI, preferably tuned to some speech programme, VRI should be adjusted for minimum distortion at the slave output LS2. If the radio volume is set too high you will probably overload the amplifier as it has an input sensitivity of about 1 mV r.m.s. to provide an output of 120 mW .

Turn the radio off and check the quiescent current, this should not have moved much from the 8 mA figure. With these procedures satisfactorily carried out, the intercom should be ready for use.

The command module pilot, astronaut Roosa, took thousands of photographs of the moon's surface and one of these, on the far side of the moon, showed a new crater which is probably the youngest on the moon.

On the near side, another new feature was detected near the Crater Lansburg which looks like a winding ditch. It is not a rille or fault line and the astronaut has called this feature "The Thing".

CANADIAN SATELLITE

Another Canadian satellite of the ISIS series launched by America triggers off another international scientific project. Code named ISIS 2 it weighs 260 kilograms and will, for the first time in the series, send continuous "ionograms" for display on television consoles.

The name "ionogram" is given to the picture which records the depth and density of the ionosphere. Sudden changes in density or depth as viewed from above can give direct indication of the propagation conditions for radio communication.

The first $I S I S$ satellite launched in 1969 is still in operation but only transmits ionograms at specific periods, most of its data is in the form which requires processing at ground stations in order to arrive at a picture.

Previously the ground station made an ionospheric sounding as the satellite passed overhead and two sets of data were correlated and a picture built up. This results in a delay in warning when ionosphere disturbances arise.

TRACKING CENTRE

The ISIS 2 satellite is of a more advanced design containing a new telemetry system where the ionograms are relayed directly to each participating centre, together with other data, with the result that immediate knowledge is available of the ionospheric condition.
The stations involved are the tracking stations in America, Canada, United Kingdom, Norway, Japan, India, Australia and New Zealand. The information is also deposited at the World Data Centre at Boulder, Colorado.

The advanced ISIS 2 is the forerunner of a series of ionospheric operational satellites and these together with a world wide network of ground stations will be of the utmost value to communications operations, enabling a minute by minute decision to be made as to the choice of the best frequency for propagation.
Other data provided by these satellites will include information of
the effect of the sun on the earth's atmosphere and may lead to the solution of how atmospheric pollutants are disposed, and how and what mechanism might be available naturally for dispersal.

LUNAR NAVIGATION

The two astronauts Shepard and Mitchell in their report on the Apollo 14 mission have made the point that personal navigation on the Moon needs instrumentation.

Part of their work task was to reach the Cone Crater in the Fra Mauro Region, but they turned back before reaching it as they thought there was not sufficient time to carry out this operation. In actual fact they were within 50 feet of the crater but the difficulty of deciding on distance made it impossible for them to know this. The horizon is so close, there are no colour differences to compare distances against. and the lack of contrast on the surface indicates that some kind of range finder is required.

LUNAR LOPE

The astronauts said that the most difficult thing they found in their walks was this inability to judge distance accurately. They thought that they were covering more distance than in fact they were because of this, and also that in doing the "Lunar Lope" of one step and a hop they did not move more than three or four feet a second; which is only slightly faster than walking normally on Earth. This bothered them because they felt in the one sixth gravity condition on the Moon that they were moving much faster than this.

The long distances that will be covered by the crews of Apollo 15 and 16 using the "lunar rovers" will be accurately indicated on the vehicle instruments.

The report also noted that the magnetometer which they set up on the Apollo 14 mission has indicated that the magnetic field in the Fra Mauro area is much higher than that found at the other landing sites visited by A pollo 11 and 12 missions.

ROCK COLLECTION

It seems that some of the rocks collected from the moon are at least 4,500 millior years old and must belong to the original crust. This was the preliminary statement made by Paul Gast and Robin Brett of the Manned Spaceflight Centre at Houston.

The samples brought back differ considerably from those of the Apollo 11 and 12 missions, and also from the Luna 16 mission of the Soviet Union. For one thing they are more complex, containing more minerals and so far 23 different minerals have been detected, though ten of these have not yet been positively identified. It is also apparent that these rocks reveal several different phases of the moon's
history. history.

Another difference between the Apollo 14 and previous missions for rock collection is that the latest samples contain very few fragments of igneous rock but they do contain some of the elements that formed the Earth's crust.

It is possible to learn more about the earth from the moon samples since they are probably in exactly the same condition as when they were formed, whereas on earth much of the geological record has been obliterated.

MOON BIRTH

A theory has been advanced that the moon was formed some 4,500 million to 5,000 million years ago by planetoids composed of the lighter gases that were thrown off from the coalescing, earth and formed a ring round it. It is also suggested that another of the planetoids moved in an erratic path and when the earth and moon became distinct and separate it crashed on to the moon to form the oldest maria the Mare Imbrium or Sea of Rains.
Whether this is a tenable theory or not may emerge from the different centres to whom parts of the moon rocks have been distributed. There will be more than 700 investigators in some 187 groups all over the world working on these samples.

This is one aspect of the value of the manned missions to the moon and later other planets.

MATRIX DISPLAYS

In the preliminary design work on the "P.E. Aurora" unit a simple control system with a matrix of lamps was used as the basis for the switching control. The first arrangement made is shown in Fig. I, where 16 bulbs are set out on a 4×4 grid. The control system described previously in Part 1 was such that, in order to light up the bulbs, it was necessary to power them through both co-ordinate axes (x and y).

Experiments showed that there is a great potential in programming lights by the use of a matrix. Besides the obvious.varations in thyristor controlled a.c. the disposition of the matrix itself is an important visual aspect of the whole system.

If the point sources in Fig. 1 are changed to small tungsten strip lights, the pattern configurations are radically altered.

The grid may be disposed in many ways Fig. 2 shows, for example, an arrangement where one coordinate is radial and ane concentric.

Fig. 3 combines three co-ordinates, two being curved radials, and the third eccentric. Visual effects achieved could be rotation and counter-rotation or expansion and contraction from the centre.

A light display may be three dimensional in form, and the matrix applied as in Fig. 4.

,

Fig. 1. Basic matriz of lt lamps triggered from an eight-chanmel controller PART 4-LICHT DISPLAYS BY M.LEONARD A.RIB.A

BULB SELECTION

Examination of manufacturers catalogucs bill show bulbs of various shape and size. It is suggested that the reader obtains a number of hulbst in differing forms for experiment. It is advisable to obtain? prices before committing oneself to a particular arrangement, as some bulbs can be very expensive when buying eight or even 16 of them.

The characteristics of a particular bulb will "often be the starting point in the design of a dipslay. Many bulbs are too bright to be left exposed, but those of lower wattage or of opal finish may be glare free.

Bulbs like quartz-iodine have small point source and throw sharp shadows, whereas strip-lights obviously give a more diffused light. Silver spot bulbs are internally mirrored at the base end in order to throw light forward as a beam; whereas "crown silvered" are mirrored on the top. and thus send light back to the socket end of the bulb at which there is normally a reflector. This can be adjusted to vary the focus of the beam.

In the course of selecting suitable bulbs, take heed of the restrictions imposed by the power ratings of the thyristor controller tise Part 11. Examination of some of the better designed light fittings in worthwhile, for these show how a great variby of control can be achieved over a source as mundane as the domestic light bulb. Certain fittings may give a soft diffused light, others may throw is texture of light and shade on to surrounding surfaces.
Glass elements may be incorporated to simulate the glistening chandelier, or a bright light screened by metal in which there are a number of fine perforations - this giving a brilliant sparkle of light.

Fig. 3 (right). Three-dimensional display taking in four concentric channels, 12 A radial channels, and 12 B radial channels (total 48 lamps, $2 \cdot 16$ control channels)

Fig. 4. The lamps can be re-arranged to suit geometric outlines such cs a cone or sphere with latitude and longitude control channels

DISPLAY CABINET

In the final display cabinet, as illustrated on the front cover and in Fig. 6, the bulbs used were 40 watt 240 volt "continental" fittings, of $1 \frac{3}{4}$ in diameter. These were "pearl" in finish and were left exposed, creating perfect spheres of white light.

Fig. 5 shows the plan arrangement of a single bulb, set within a fan of coloured transparent plastics sheet. The surfaces, being highly reflective, act as mirrors; the image of the bulb appears at points A, B, C, D. Each reflected image appears to be a different colour, and the colours will be different from different viewpoints.

At the rear of the display was a glass mirror so that the form which was a half cylinder appeared reflected as a complete cylinder. Lights arranged in spiral form (Fig. 6) gain the best effect from the multiple reflections, only half the spiral being constructed.

Wiring was taken from each lamp holder. via a stalk to the main vertical support column and then to the backboard of the structure. The stalks consisted of metal tubes fitted at one with the lamp holders, and the other end fixed to a common large diameter central trunk, through which all the supply lines are fed. The ballast lamps shown in the matrix in Part 1 can be incorporated as permanent lamps shown in the display.

Fig. 5. One bulb can supply a large number of images by reflections in Perspex panels in the shape of a fan

COLOUR MIXING

A very important principle in the control of colour is the use of additive or subtractive colour mixing. In mixing paint the primary colours are red, blue and yellow. The colour seen from a painted surface is that component of white light left after the pigment has absorbed the remaining part of the spectrum. Combinations of pigment may be made which progressively absorb more and more of a white light source, until black is reached; at this point all light is absorbed and none reflected.

The effect achieved by overlaying transparent colour filters is also a subtractive one. Thus the mixture of blue and yellow paint, or the overlay of blue and yellow filters will produce green. It is important to remember this principle to distinguish colour light from colour pigment.

Fig. 6. The finished display cabinet was bullt around a central trunk with radiating fins of coloured Perspex and a mirror at the back. Matrix wiring is used as in Part 1 , the diodes being molinted on the back panel

Fig. 7. Tri-colour shodow casting technique

COLOUR LIGHT MIXING

However, when coloured beams of light are overlayed the effect is completely different, for the principle is that of additive mixing. The light primaries are red, blue and green. Those readers who try this technique for the first time may be surprised to find that, for example, the addition of red, and green light produces yellow light.

If three light sources which are the light primaries are arranged to illuminate an opal screen and completely overlap one another (this could be a flat surface, a sphere or cylinder) and each bulb controlled in light intensity, variations in intensity will produce a complete spectrum of colour. In the first instance controls could be operated manually, and later, sequences of colour change programmed electronically.

Fig. 7 shows another way in which the three light primaries can be used. An object A is lit by a red, blue and green light. The red light will illuminate the wall behind the object, casting a black shadow.

The addition of the green light will overlight the shadow turning it green, and where red and green light mix, the product will be yellow. The addition of blue will increase the complexity of colours and shadows. Movement of the lights will cause further complications if the shadows are allowed to overlap.
This experiment is a very rewarding one and can be translated in a number of ways. If the object is a dancing figure, and the light primaries provided by theatre spot lights, dramatic effects of colours and shadows can be back projected onto a translucent screen. Alternatively, the whole idea can be miniaturised in the form of a small light box.

Fig. 8. Colour reflecting from the idea shown in Fig. 7. The coloured light is projected onto a translucent screen of opal finish

LIGHT MURALS

A number of methods have been used to make light murals; the main problem is how to keep the depth behind a screen surface to a minimum. One system shown in Fig. 8 is to replace the object illuminated with a series of rotating shaped reflectors.

Light sources are beamed in from the edge of the screen, and coloured reflections are thrown forward; mixing taking place on the screen can be reduced to a few inches. One example of a system similar in principle to this is the "Dreamscreen" (see Electronorama last month).

Fig. 9 outlines a completely different approach. The elements are arranged in layers. The rear layer is that of the light sources, which can be white, coloured, or combinations of both. In front of this are a series of cut out shapes which can be opaque, or translucent colour filters, or again combinations of both. The next layer can be hardboard, which is obtainable with a variety of perforations; reeded or cross reeded glass gives further interesting effects.

Fig. 9. Back projection onto an opal finish screen through layers of translucent material or perforated sheet

The final layer is an opal screen. A simple framework will be needed to allow the planes to be suspended, and the distance between the elements easily varied.

Switching lights in sequence will give a movement of shadows and colours on the front screen. The perforated layer can give a pinhole camera effect focusing images, the definition of which will depend on size and shape of the holes. In some instances this layer may work best close to the bulbs. The reeded glass can act like a series of lenses, and often the opal screen can be omitted, and the effects of the programmed lighting seen directly in the glass layer.
The light beam of a slide projector will give a whole new range of effects if used to replace the light sources shown in Fig. 9. Optical effects can be introduced in front of and behind the lens.

PLAN A SYSTEM

The foregoing ideas are based mainly on geometric arrangements, and will in some way produce a formal display restricted only by the boundary of the
*

Fig. 10. Simple wall of wrinkled aluminium foll for direct front projection of coloured light
arrangement. An example of their applications would be as an exhibition centre piece. Several other arrangements can be devised and it is well worth the constructor's time to sit down with pencil and paper and plan a system suitable to the setting.

If a less formal display is required, maximum use can be made of walls, ceilings or other fixtures to convey the light patterns.

ALUMINIUM WALL OR SCREEN

One experimental system that was tried successfully at Sound '7l exhibition was a wall of wrinkled aluminium foil (Fig. 10). A simple timber framework was used to hang domestic cooking foil; heavy duty foil is recommended and in fact a caterer's pack size would be particularly suitable.

The foil is hung from the top cross bars of the frame, fixing with transparent adhesive tape. Try not to fold over or crease the foil during the setting up, otherwise undesirable crease lines will remain.

When hung, just tack together the adjacent vertical edges of the strips to hold the whole screen fairly stable. The strips of foil could be made to extend about four to six feet along the floor in front of the foot of the wall. This will then give
the appearance of an extended display showing reflections of light in the floor.
If possible, the wall of foil should be made slightly concave to help spread the light projected onto it. When set up, the foil is wrinkled and dented by gently tapping all over with the flat palm of the hand. The larger the indentations are, the better will be the final effect.

EIGHT CHANNEL OPERATION

The lights are now set up for straight eight-channel operation (not matrix), i.e. one bulb per channel.
Although expensive to purchase initially, it is well worth obtaining colour flood lamps (e.g. Philips "Comptalux" E27) rated at 240 V 100 W a.c. These can be obtained in red, blue, green and yellow and clear, with reflective rear inside surfaces and diffuser lenses, and will provide the basis for some interesting colour mixing as described earlier. These lamps use Edison screw bases, which are mounted on either side of the foil screen, either on wooden battens or in cases.

The spacing of the lamps will best be found by experiment. They can be mounted close together about six feet away from the foil, but the light will be restricted to a small area on the foil (Fig. 11). However, by doing this, some colour mixing can be achieved.

If there is an apparent gap in the centre of the screen, use two lamps to project from the centre near the floor. The small pictures on the front cover will give some idea of what can be done.

ADDING VARIANTS

There are some simple variations that the reader will want to try, such as suspending twists of foil strips, each about 2 in wide from cotton just in front of the screen. Any ambient heat in the room will encourage the twist strips to rotate while the light shines on them.

The screen could be made entirely of freely suspended narrow strips that can move, but no movement should be violent or the effects will be spoilt.

Fig. II. Suggested positions of the eight coloured lamps in relation to the aluminium wall

Fig. 12. Staggered foil strips on a bin wide supporting batten

Fig. 13. 'Cinemascope" concave mirror of foil

Try staggering the positions of the large foil strips on either side of a 6 in board (Fig. 12).

One of the simplest and cheapest ways of displaying the light is by projecting across a ceiling, especially one that has the modern stipple finish texture. The lamps are fitted below ceiling level, perhaps on the top of a pelmet. The result is a changing ambient coloured light that is not too violent to the eyes, but spread over large areas of the ceiling.

SUBTLE CHANGES

When setting up any colour light display, always bear in mind that the "P.E. Aurora" system was designed for subtle changes in light intensity without flashing. The degree of change and the speed of switching will depend on the music driving the system, but overall one should not expect to get harsh flashing unless the preset controls in the electronics are incorrectly set up.

Follow the setting up instructions given in the earlier articles, and experiment fully with light positioning. Earlier notes on using patterned glass or coloured Perspex apply equally well, whatever the type of display you choose.

In any house there are many objects, from cheesegraters, to glass ash trays which can be used as a starting point in the experiments of displaying light. From these simple beginnings the reader can progress to the manufacture of optical elements more tailored to his own needs and finally to systems of switching and dimming of the light sources.

Next month's article will discuss some alternative methods of driving the lamp controller and included will be a random digital sequencer which triggers the lamp channels in all possible sequence codes.

The best display for this method, which incidentally does not require the use of filter circuits, is to matrix the channels to get maximum number of bulbs operating. This is typically a "Christmas Tree" effect suited to displays of random flashing lights, and is ideal for the geometric displays described earlier in this article.

Note: In Fig. 21 last month (page 505), C19 should be C24.

Fig. 14. Convex side projection

Fig. 15. Rotating reflective shapes in front of a curved white screen

Gerry Brown Wifferwil BITTER SWEET

When next you are mucking about in your workshop, or study, with an audio frequency tone generator do be careful to make certain that you don't happen to be eating, or swallowing a mouthful of beer, at the same moment. Why? Well you just might be on the wrong frequency!

Sounds idiotic. I know, but the Danish psychologist, Dr Kristian Holt-Hansen, has recently indicated that there definitely seems to be a strong connection between the perception of sounds and taste.

In his experiments, subjects have reported that quite widely varying foods and drink seem to relate with specific frequencies at which they taste best. Apparently, when the pitch of the sound was taken either above or below this specific tone the taste became less pleasing; furthermore, a unique "harmonytone" could be shown to exist for each taste.

The really interesting point, I think, is that the subjects were almost unanimous in agreeing that each food had a tone-pattern which was the same for every person being tested.

With the diminishing prices of i.c.'s, one can conjecture that it will not be long before some enterprising individual puts a vinegar on the market that has all the bouquet of a good wine provided that the battery, driving an oscillator built into the bottom of the bottle. doesn't go flat!

CHICKEN

Don't ask me why, but a farmer friend of mine was telling me, over a glass of beer the other day, that he wanted to be able to determine the movements of a particular cockerel he owned.

However, this had caused him some head-scratching at the time, because a photo-cell technique would have been useless in the application due to its inability to discriminate between one bird and another. He had also thought of using a radio-active tracer, but decided against that on the grounds of contamination.

His final solution to the problem was to attach a tiny magnet a little way up the chicken's leg and use this to cause a movement on the needle of a compass buried a couple of inches in the ground. The needle movement was sensed by a simple pick-up coil and the output fed to a low-frequency amplifier connected to a delay circuit and relay, Fig. 2.

Whenever the cockered walked over the compass the needle would spin and thereby induce a current in the sensing coil. After amplification and a short time delay it operates the relay which activates a counter.

I understand that this fowl plan was eminently successful!

PSI EFFECT

One can never fail to admire the fortitude of the psychic researcher. An example which perhaps typilies what I mean has been set recently by Professor Rhine of Duke University, North Carolina.

Because the rules of human studies in the ESP (extra sensory perception) field have proved so indeterminate, he has chosen to use mice in his studies.

In the tests, the mice are placed in a cage which has a low lengthwise division which forms a barrier the mice can jump over easily when cicaping from a harmless electric shock applied randomly through the floor on one or other sides of the partition. Although the shocks are applied randomly, relative to sides, they occur at regular times and so the mice have the chance to develop "hunches" about which side of the barrier the shock will occur and either jump or not, as the case may be.

Statistically they ought to be correct 50 per cent of the time, but (mice being what they are) this worked out to be 54 per cent! Precognition? Rhine seems to think so; in fact he goes so far as to say that he believes the whole of the animal world may have this power.

Who can say; certainly it's beginning to look as though there might just be something in what he says.
Believe it or not. I was reading a paper only today, by J. L. Randell, entitled "Experiments to Detect a Psi Effect with Small Animals". And the animals? Would you believe woodlice?

Suffice to say that these experiments appear to have proved positive and are backed by good solid mathematical logic.

ROUND THE BEND

Motorcyclists have a term for a particular form of enjoyment known to their fraternity as "bendswinging". Simply, this amounts to laying one's machine over at an angle approaching the horizontal when navigating the various bends in the road.

Whilst this kind of amusement can be dangerous, even for motorcyclists, the similar practice of "taking "em as fast as you can" could be positively prohibitive in a car when one has little or no idea of the banking-angle/speed required to turn the vehicle completely over!

Since it is difficult to determine just how close a car is to instability at such times the little device given in Fig. I should help provide the warning required. The device comprises a pair of mercury switches, suitably mounted on the bulkhead of the car, interconnected with some form of "attention-getter" like a buzzer or an oscillator.

In use, if one enters a bend too fast without much conscious thought, the centrifugal force acting on the car will cause the mercury to climb the walls of the relevant switch and so close the circuit to give warning to reduce speed.

A similar device l built for my "wagon" has proved to me just how easy it is to be lulled into a false sense of security and exceed the limitations of the vehicle.

Fig. 2

 montion! A miracle of advanced technology!
You get far, far more than an ordinary radio! An instrument that will bring a new dimension to your world of sound! Frequency range: MW $540-1600 \mathrm{KHz}$. 10.7 MHz . Air 10.7 MHz . 18 SEMI-CONDUCTORS: Transistors II, Diodes $6+$ Thermister! Automatic frequency control 'locks-in', eliminating drift. Pinpoint station selection! Built-in adjustable 8 -section 3 lin telescopic aerial. Lowast price ever! Tremendously strong leather-grained case with carry handle, $10 t$ in $\times 6 \frac{1}{2}$ in $\times 4$ in overall approx. Written guarantee. Oniy $\mathrm{E} \| \mathrm{II} 97$, carr. atc.; 38p-with FREE pair of "zircraft spotter" high power "bino-scope" binoculars with built-in filters for viowing in strong sunlight and independent left and right eye focus. Send or call. ©Compare it with sets costing $t 40$ or more. Relund il not delighted. BON , earphone for personallistening and batteries, all for 23 Poxtra, if required. SHOPERTUNITIES LTD ETL Dept. PE/6, 164 UxERIDGE ROAD LONDONWI28AQ (Thurs. 1, Fri. 7). Also 37 High Holborn, London,
W.C.I (Wod. 1. Thurs. 7). Both stores open from MON. -SAT. 9.6

01-648 8422

The answer to the Starter question is obvious-the ubiquitous HOME RADIO COMPONENTS CATALOGUE. You all got that right! And the answer to the Bonus question is-the same! May we explain "this most ingenious paradox?" The price is now 50p, but with each catalogue we now include 10 vouchers each worth $5 p$ when used as directed. This means that if you spend a quite modest sum in ordering components from us over a period the catalogue will have cost you nothing-bar 20p for post and packing. So then-for today's most useful electronics catalogue, 50 p if you call and collect, or 70 p if you send the coupon with a cheque or Postal Order. Join the winning team-act now!
POST THIS
COUPON
with your
cheque or
postal order
for $70 p$

The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

HOME RADIO (Components) LTD.
Dept. PE, 234-240 London Road, Mitcham CR43HD

that Special problem

continued from page 545
and advertisements suggest that this is wise. Bearing in mind the volatile state of the electronic component market (and the inevitable lapse between going to press and publication) it would be hardly surprising if we slipped up on occasion. With regard to the more exclusive type of components, we always verify that they are listed either in the manufacturer's or a distributor's catalogue. It remains for the retailer to make his own arrangements to procure such items.
A further suggestion that we should restrict our contributor-designers to "popular" components is quite untenable: it is defeatist and unrealistic. Any magazine that has pretensions to be known as serious and forward-looking must at times venture beyond the wares displayed by the average retailer. And indeed how do components become "popular"? Often because of the attention originally drawn to them through some interesting and appealing project published by a magazine. Public demand then encourages traders to locate a source of supply and to incorporate such items in their catalogues and lists.

Component availability is a big and important subject. It involves a number of different trading organisations operating at different levels. The market they endeavour to serve is composed of a vast number of individuals, whose requirements are bound to be diverse in the extreme. Some contentious issues emerge when this matter is discussed openly, but we must all try to appreciate the difficulties and problems of others involved in this business.

Finally, although it is but little consolation, it is perhaps worthwhile remembering that industrial users have similar difficulties and often have to endure long delays for some components.
F.E.B.

A representative selection of letters from the large correspon.dence received on this topic appears in Readout this month. page 581

We very much regret that Back Numbers of Practical electronics can no longer be supplied. Consequently, it is now more important than ever to place an advanced order with your newsagent to make sure of getting your copy.
Alternatively by taking out a subscription order your own personal copy will be sent direct by post to your permanent address anywhere in the world.; Further details are given on the "Contents" page.

WAR GAMES COMPUTER...

Designed for simulation of naval gunnery, the computer can handle up to ten targets - with facilities for the addition of an infinite number
Takes into account 12 factors such as target size, range, gun calibre, crew morale, sea state, etc., and will provide immediate indication of a hit
Although the computer project is extensive, it will be described in stages so that it can be used at any stage of construction
The computer can be adapted to simulate any battle of any age

Alsa
 SEISMOGRAPH

This instrument will detect and graph earth tremors produced by natural or man-made causes.
Consisting of a seismometer, pen amplifier and pen recorder, this inexpensive device is well within the capabilities of any enthusiastic amateur to build and should prove particularly useful as a group science project for schools

PRACTICAL

ELECTRONICS

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

TEMPERATURECONTROLLER

THE temperature controller circuit shown (see Fig. 1) was initially designed for keeping cactus seeds at a constant 40 degrees Fahrenheit in a greenhouse. However, when the circuit was constructed it was found that by adjusting the potentiometer VR2 it would keep a room or greenhouse at a constant temperature from 30 degrees to 90 degrees Fahrenheit, ± 3 degrees.

Fig. I. Circuit diagram of the temperature controller. The thermistors X1 and X2 are types VA1070 as used in television heater chains and are rated at 0.3A

The combined resistance of R1 and VR1 gives fine control over the forward bias of TR1. It was found in practice that TR1 continued to function perfectly with no thermal runaway component in the circuit; even in the hottest condition.

The relay was the only one available at the time, its working voltage was 20 V , although it pulled in at 7.5 V and the coil resistance was 1.5 kilohm. A relay of a lower working voltage would obviously improve the performance of the circuit.

When setting up the controller, the end of VR2 connected to the collector of TR1 should be disconnected and a voltmeter connected between the collector and the positive line. VR1 should be adjusted to give a meter reading of 7.5 V . When VR1 has been adjusted to give the correct setting the meter should be removed and VR2 reconnected -the controller is now ready for use.

It should not be difficult to replace the relay with a thyristor. This should be done by omitting RLA1 and D1, replacing this with a 1.5 kilohm resistor. The collector of TR2 could then operate the gate of a thyristor to switch on the heater. This has not been tried in practice.
A. D. Huff,

Dagenham,
Essex.

POWER SUPPLY CUT-OUT

「N transistor power supplies there often arises a need for a simple overload cut-out circuit. The one shown in the circuit diagram Fig. 2 uses a minimum number of components, is quite fast-acting and is extremely versatile in application.
The resistor R 1 sets the limiting current, which can be anything from a few milliamps to the maximum current rating of the relay contacts. When the limiting current is reached, the transistor is turned on by the voltage across R 1 and the relay contacts open, thus isolating the power supply from its load and at the same time providing a self-latching effect which drives the transistor even harder into conduction. The circuit can be reset by a push-button switch across the relay contacts. An overload indicator lamp LP1 may be used if a relay with changeover contacts is incorporated in the device.

No component values are given for R1, TR1 and the relay as these will depend on the individual power supply. The transistor should be silicon; adequately rated to withstand the current requirements of the relay and the voltage of the power supply. For supplies using a negative earth a $p n p$ transistor is used, and D1 is reversed.

The relay should have a switching voltage about 5 volts less than the supply voltage.
The value of R1 can be found approximately from the following formula

$$
\mathbf{R 1}=\frac{0.6}{\text { Limiting current }} \text { Ohms }
$$

The value is, however, best found by experiment after using the above formula to find the approximate value.
G. H. Birkinshaw,

Brimington,
Chesterfield.

Fig. 2. Circuit diagram of the power supply cut-out

HARVERSONIC SUPER SOUND

REW IMPROVED MODEL WITH HIGHER OUTPUT AND INCORPORATING HLOH QUALITY READY DRILLED PRINTEV struction
really first-class HirFi steren Almplifer 14 transistors including Hilicon Transistors in the firs five atages on each channel resulting in even iower noise level with improved sengitivity. Integrated pre-nmp
with Basa, Treble and two Volume Controls. Suitable for with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Output stage for any epeakera from 5 to 15 ohms. Compact design, all parts bupplied including drilfed metal work, high quality read knel, knobs, wire. solder, nuts. bolts- no extras tront panel, knobs, wire. solder, nuts. bolts-no extras conatructor to huild in amplifier to be prowl of. Briet specifleation: Power output $14 W$ r.mes. per chanmel into 5 ohms. Frequency response i $311312-30,000 \mathrm{~Hz}$. sensitivity better than ROmVinto 13Ω. Fullower band.
 Treble cut apurox. to - 1 (idl3. Negative feedback 181 IB

Fulty detailed 7 -page construction manual and partelist ree with kit or sench 18p phus large S.A.E

$$
\begin{aligned}
& \text { POWER PACK KIT, \&3 P. \& P. } 30 \mathrm{P} \text {. } \\
& \text { 'ABINET. KKis, } 23 \text { P. \& P. } 30 \mathrm{p}
\end{aligned}
$$ (Post Free if all units purchasel at same time). Fullafter ales service. Also armilahle ready milt and tested, 280.50 . Post Frec

Tote: The above omplifier is sulinale for feeding treo mono sonrees intn inpHs (e.g. mike, radio, hein record decks. elc.) and will then provide mixing and fading
facilities for medinm porered Hi-F'i Discoheque nse, efc. FANTASTIC 'POLY PLANAR' WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size only $111^{3} 14_{6} 1_{6}$ decp. Weight only 19 ozs. Can replace cone speakers in any application and is particularly useful for those with linitel apace. Extremely rugged and shockpmoi. Operating temperature - 0 F
to $+175^{5} \mathrm{~F}$. Pow handling 10 watis rms (20 gratts peak). Impedance 8 ohmonty. Response 40 Hz - 20 KHz . can be mounted on ceilings, walls, doors, under tables. te. and used with or without baffle. Send N.A.E. for full details. Oniy $\$ 5.75$ each. P. \& P. 2 jp .
SPECIAL PURCEASE OF MANOPACTURER'S SURPLUS: All Transistor F.M. tuner heall with twinh A.M. Gang neduction drive F.M. R.F'. Transistor, oscillator/Mixer and first I.F. stage ($10.7 \mathrm{Me} / \mathrm{s}$ output) with optional AFC panel and fully acreened. Extremely
 Rtable over range $88-108 \mathrm{Mc} / \mathrm{s}$. Brand new and prealigned. Size 2lin $\mathrm{H} . \mathrm{x}$
 mers which can be connected to Ftamlard A.M. aerial and oscillator circuits if required. Lime post
NUMBER. Only e2-25 post
Connection detaila supplied. HIGR GRADE COPPER LAMINATE BOARDS

PIANO KEY TYPE SWITCEES. 8 iress buttons plus 1 cancel lutton. Fach of the 8 sections contains 6 s.p.c.o. (total 40 e.p.e.o.), Brand new-limited quantity only.
Original manufncturing cost $£ 1-37!$. OUR PRICE 75 p . P. \& P. 13p (3 or more post free)

SPECLAL OFFER! PLESSEY TYPE 29 TWIN TUTLNG GANG. $400 \mathrm{pr}+146 \mathrm{pF}$. Fitted with trimmers and
 HONEXWELL MICROSWITCEES S/P. C/O. Push-button action. Rating $250 v$ AC at lis ampa. Size approx. , mitine
TELESCOPIC AERIALS WITH SWIVEL JOCNT. Can be angled and rotated in any virection. 6 section Lacquered dianeter zin. 25p each. F.\& P. jp. BRAND NEW MULTI-RATIO MANS TRAHSFORMERS, diving 13 alternatives. Primary: $0-2 \cdot 10-240 \mathrm{~V}$. Secon-
dary lembinations: $0-\bar{v}-10-10-20-2 \bar{v}-30-3 \bar{v}-40-60 \mathrm{~V}$ half dary rombinations: $0-\bar{j} \cdot 10-10-20-2 \overline{-2}-30-3 j-40-60 \mathrm{~V}$ half
 P. \& P. 30 p

MANS TRANSFORMER. For tranmintor power supplies. Pri. $600 / 240 \mathrm{~V}$. Sec. $9-0-9$ at 500 ml . 70 p . P. \& P. 13 F .
Pri. $200 / 240 \mathrm{~V}$. Sec. $12-0-14$ at 1 amp .88 p P. \& P. 13 p . Pri. $200 / 240 \mathrm{~V}$. Sec. $10-0-10$ at 2 amp . 21.38. P: \& P. 30p Tapped Primary
$63 \mathrm{p} . \mathrm{P} . \&$ P. 13p.

SPECIAL OFFER!! HI-FI LOUDSPEAKER SYSTEM

Beautifully made teak finish enclonure with most attractive Tygan-Vynair front. Size $16 \ddagger$ in high $\times 10$ in Fide $\times 5 t$
Ceramic Magnet $13 \mathrm{in} \times 8 \mathrm{in}$ base unit, two H.F tweeter unita and crossover. Power handling low

Our Price 68.40
Carr. 63_{p}
Also available in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. bass
Rpeaker with parasitic tweeter. $\mathbf{8 6}$ - 50 . Carr. 60 .

LOUDSPEAEER BARGATHS

3 in 4 ohns 50 p . P. \& P. 13p. 5 in 3 ohm $80 \mathrm{p}, \mathrm{P} . \& \mathrm{~F}$ P. 15 p . i1.90, P. \& P. 30 p. E.M.1. 8×5 in $30 h m$ with high thit magnet iI 62, P. \& P. 20 p. E.M.I. 131×8 in 3 high with
 30^{2}. E.M.I. $13 \times 8 \times 8 \mathrm{in}, 3$ or 8 or 15 ohm with two inhuilt tweeters and crossover network $24 \cdot 20$. P. \& P. 30 p . E.M.I
$13^{*}-8^{\circ}$ twin cone (parasiatic tweeter) \& ohm 22.25 $13^{*}<8^{\circ} \mathrm{t}_{\text {win }}$
P. \& P. 30p.
BRAND KEW. $12 \mathrm{in}_{2} \mathrm{j} \mathrm{w}$ H/D Speakers, 3 or $1 \bar{j} \mathrm{ohm}$. Current production by well-known British maker. Now
 Ghitar molels: ¿jw $28-50.35 w$ 28.50. P. \& P. 38 p each.
E.M.1. B!in HEAVY DUTY TWEETERS. Powerfu E.M.I. 3in HEAVY DUTY TWEETERS. Powerfu. $\underset{\text { ceranic magne }}{\text { P. \& } P \text { in }}$

L2in "RA" TWIN CONE LOUDSPEAKER 30 watts peak handing. 3 or 15 ohm, e1.88. P. \& P. 30 p. 35 ohm SPEAKERS $3^{\prime \prime}$. ONLY 63p. P. \& P. 13 p . FYMAIR \& REXIME SPEAKERS \& CABITET FABRICS app. 54 in. wide. Csually el 75 yd., our price $75 p$ yd
l ength. P. \& P. $15 p$ (min. I yd.). S.A.E. for ganipleg.

HI-FI STEREO HEADPHONES

Adustable headiband with comfortable fexifoam ear muffs. Wired and fitted with standard stereo tin jack plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching
sruct Approx. 200 ohm. 25 p . P. \& P. \&p
CRY8TAL MIBES Hith for dev or hat CRY8TAL Mikes. High imp. for lenk or hand use HIGH IMPEDANCE CRYSTAL STICX MIXES, oUR PRICE £1.05. P \&

BRAND NEW E.M.I. LIGRTWEIGHT PICK-UP ARM for LP/7\&, ONLE $£ 1$ P. \&

QUALITX RECORD PLAYER AMPLIFIER ME II A top-quality record player amplifier employing heavy duty rectifie wound maing transformer, ECC83. EL84 Complete with output transformer matched for 3 ohm peaker. Size i it. w. $3 \mathrm{~d} . \quad 6 \mathrm{~h}$. Ready built and tested PRIC'F 23.75 . P. A P. 40p. ALSO AVAILABLE mounted on board uith out put transformer and rpeake ready to fit into cahinet below. PRIC'E\&4.88. P. AP P.
50 p .
DE LUXE QUALITY PORTABLE R/P CABINET MK II Yncut motor board size $14 \frac{12 i n}{}$, clearance 2 in . below, Slin. above. Will take above amplifier and any B.S.R. or

IO/I4 WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output
14 wite
from
 ELSis in push-pull.
Super reproduction Super reproduction
of both music and speech, with negli gible hum. Separate inpute for mike and gram allow recoris and announcernents
 to follow each ot

Fully shrouded section is match $3-150$ speater and 2 indenendent volume controls and separate bass and treble controls are orovided giving EOOHlift and cut. Valve line-np 2 ELe4s, ECC83, EF86 and E/An rectider. Simple instruction booklet 13p (Free with parts). All parts soid separately. ON LY e\% 97. P. \& P. 55p. Also available ready built and teated complete with std. input socketa, £9-97. P. \& P. 55p.
BRAND NEW TRANBISTOR BARGADIS. GET 15 (Matched pair) 75p; V15/10p, 50 p ; OC7L 25 p ; OC76 30 p ; AF117 18p: B (G339 (NPN) 15p set of Mullard 6 transistors OC44. $2-O C 45, \mathrm{ACl} 28 \mathrm{D}$ matched pair ACl $29821 \cdot 25$; ORP12 Coulmium Sulphide
Cell 58 p . All post free.

SPECIAL PURCHASE !

SPEAKER CABINET FROM FAMOUS MAKER !
Besptinuly made all-wooden contruction cabinet with mediam. Walaut finigh froat, gold saodired expanded aluminum griue and daris sides. Approx. ise overall 11 " $^{\prime \prime}$ high $\times 5{ }^{\prime}$ deep $\times 18!^{*}$ wide at bate. Eavily remorable bafile cut ont for $8^{\prime \prime}$ apeaker. Fíbre board back. Coold accommodato amplifier or radio a at a give-away price.
LIMITED NUMBER ONLY $21-38$ Post Free.

DE LUXE STEREO AMPLIFIER
 ez80 as wave rectifier. Two dual potentiometers are provided for bass and treble control, giving bass and
treble boost and cut. A dual volume control is used. Balance of the left and right hand chapnels can be adjusted by means of a separate "balance" control fitted at the rear of the chassis. Input sensitivity is approzimately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per channel (8 watts mono). into 3 ohm speakere. Fuli negative feedback in a carefully calculated circuit, allows high volume levels to be ueed with negligible distortion. Supplied complete with knobs, chasgis size $11 \mathrm{lin} . \mathrm{w} \times 4 \mathrm{in}$. x. ved heshir ested to a high standaril. Price 88.92 P. \& P. 45 p

4-SPEED RECORD PLAYER BARGAINS

Mains models. All brand new in maker's packing. With

SOITABLE PLIFTR UNIT FOR ABOVE with rigid plastic cover. 25.75 complete. P. \& P. 50
LATEST GARRARD MODELS. All typea \& vailable 1025. 2025, SP25, 3000. AT60, etc. 8.A.E. Ior Latest Prices! PLINTH UNITS cut out for (iarrard Models 1025. 2025, $2000,3000,3500$. etc. With righ transparent platic
corer. Special design enables aboce models to be used with cover in position. Also suitable for housing AT60

LATEST ACOS GP91/18C Mono Compatible Cartridge with to styius ior hi/EP/is. Tnivergal mounting bracke 21.50. P. \& P. 8p

ACOS Hi-G Single sided mono cartridge for 1,P \& EP. ONLY 50p. Post Free.
SONOTONE 9TAHC COMPATIBLE STEREO CARTRIDGE T/O Plul Diamond T/O stylus. Diamon
$\$ 2.50 . \mathrm{P} . \& \mathrm{P} .10 \mathrm{n}$.
Also arailable fitted with twin Diamond T/O stylus for Sterco LP. ONLY \&8. P. \& P. 10p.
LATEST RONETTE T/O Stereo Compatible Cartridge for LATLP/Stereo/is. E168. P. \& P. 10p.
LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/a8 mono or atcrco recorda on mono pquipment. 11.50, P. \& P. 10 p.

3-VALVE ADDIO
AMPLIFIER HA34 MK II Designed for Hi-Fi reproduc tion of records. A.C. Mains
operation. Ready built on operation. Ready built on phassis, size 71 in w. 4 in. d . ${ }^{\prime}$ tiin. h. Incorporates ECC83 EL84, EZ80 valves. Heav3 duty, double wound mains
transformer and output trans. former matched for 3 ohm speaker. Separate volume control and now with improved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output 41 watts. Front mounting of controls. Complets with linobs, valves, ete wired and tested for only $\mathbf{2 4 \cdot 7 5}$. P. $\&$ P. 35 p

HSL "FOUB" AMPLIFIER EIT. Similar in appearance to circuitry C'om oletc set it parts, etc. 43.98 P \& P. 40 p

HARVERSON'S SUPER MONO AMPLIFIER
A super quality gram amplifier using a double wound fully isolated mains transformer, rectifier and ECLS2 triode pentode valve as audio amplifter and power output stage. Impedance 3 ohms. Output approx. $3 \cdot 5$ watts. Volume and tone controls. Chassis size only y. Hide \times, in. deep Brand New, completely wired and tested with rood quality output transformer. FEW ONLY. OOR ROCE BOTTOM
BARGAIM PRICE $\quad £ 2.75 \quad \begin{aligned} & \text { P. \& } \\ & 35 p\end{aligned}$

Open 9-5.30 Monday

o Saturday

Early closing Wed. 1 p.m. Tube Sation
(Please write clearly) PLEABE MOTE: P. \& P. CHARGRS P. P OF OVERSEAS ORDEE ciarard extra.

EI-PRE-PAK LIMITED

FULLY TESTED AND MARKED

	${ }_{6}{ }^{\text {f }}$		¢p
$\begin{aligned} & A C 107 \\ & A C 126 \end{aligned}$	0.15	$\begin{aligned} & \mathrm{OCl}_{\mathrm{Cl}}^{\mathrm{CO}} \end{aligned}$	0.23
${ }_{\text {ACl }}{ }^{\text {a }}$	0.17	OC200	0.25
${ }_{\text {ACl }}{ }^{\text {a }}$	0.13	OC201	0.25
	0.25	2G301	0.13
${ }_{\text {ACY }}{ }^{\text {A }}$	0.15	2G303	0.13
AF239	0.37	2N711	0.50
AFI86	-. 50	2N1302-3	0.20
AFI39	0.37	2N1304-5	0.25
BC154	0.25	$2 \mathrm{~N}^{1306-7}$	0.30
BC171 = BC107	0.13	2N1308.9	0.35
8C172 $=$ BCIOB	0.13	2N3819FET	0.45
8F194	0.15	Power	
BF274	0.15	Transistors	
BFY50	0.20	OCC20	0.50
BSY25	0.57		0.30
$85{ }^{\text {B } 26}$	0.13	-C25	0.25
BSY27	0.13	${ }^{\circ} \mathrm{C} 26$	0.25
BSY28	0.13	OC^{-18}	0.30
BSY29	0.13	$\bigcirc \mathrm{OC} 35$	0.25
BSY95A	0.15	-¢ 36	0.25
OC41	0.13	AD 149	0.37 0.30
OC44	0.13	AuYio	1.25
OC45	0.13	${ }^{2} \mathrm{SO} 34$	0.25
OC71	0.13	2N3055	0.63
${ }^{\circ} \mathrm{OC72}$	0.13	Diodes	
$\bigcirc{ }^{\circ} \mathrm{Cal}$	0.13	AAY42	0.10
OC810	0.13	OA95	0.10
$0 \mathrm{O}_{63}$	0.20	OA79	0.09
OC139	0.13	OA81	0.09
OCl40	0.17	IN9114	0.07

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 50p WITH ORDERS

CLEARANCE LINES

TO MAKE ROOM FOR NEW STOCK OC71, OC72 transistors unmarked fully tested $5 p$. TIC 45 thyristors 6 amp 60 V fully marked and ested Texas plastic type 15 p .
CRS25/025 Thyristors 25 amp 25 V 25 p .
C's fully marked and tested by AEI. Gates 25p. Flip flops 50p.
709 C linear amp TO-5 can 50p. $24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}$ and $43 \vee 5 p$ each
OA47 gold bonded diodes 3 p.
COLOUR T.V. LINE OUTPUT TRANSFORMERS
Designed to give $25 k V$ when used with PLS09
and PY500 valves. As removed from colour receivers at the factory. oost ond pocking 23p

SPECIAL LINE

I AMP Bridge rectifiers
I00 PIV. $=25$ p. 400 PIV. $=37 p . \quad 800$ Pin Square

NPN/PNP Germ. Trans.
PAIR

BUMPER BUNDLES

These parcels contain all types of surplus elecronic components. printed panels, switches potentiometers, transistors and diodes, ete.

2 LES IN WEIGHT FOREI
Post and packing 25p.

OUR VERY POPULAR 3p TRANSISTORS

FULLY TESTED \& GUARANTEED
TYPE " A "PNP Silicon alloy, metal TO. 5 can. 2 S 300 type. direct replacement for the OC200/203 range.
TYPE "B " PNP Silicon. plastic encapsulation, low voltage but good gain, these are of the $2 \mathrm{~N} 3702 / 3$ and 2 N4059/62 range.
TYPE "E " PNP Germanium AF or RF—please state on order. Fully marked and rested.
TYPE "F" NPN Silicon plastic encapsulation, low noise amplifier of the 2 N3708, 9, 10,11 .

ANNOUNCING THE OPENING OF OUR ENTIRELY NEW CASH AND CARRY DEPARTMENT, ON THE SPOT SALES OF ALL CATALOGUED ITEMS, PLUS MANY OTHER LINES OF INTEREST

Reductions for bulk buying manufactures welcome

These are but a few examples. OC44, OC45, OC82, OCI39, IN4007 all at 8 p .
IN400| at 4p, IN4004 at 5p, IN 4006 at 6p, minimum quantity 500 .

Semiconductor Supermarket of the South East.

new tested and guaranteed paks

${ }^{\text {en }}$	4	$\begin{aligned} & \text { Ph } \\ & 0.3 \end{aligned}$	50p
879	4	$\begin{aligned} & \text { N4007 Sil } \\ & \text { I. } 000 \text { PIV } \end{aligned}$	p
в日1	10	Reed Switshes. mixed ty large and small	p
$\overline{89}$	200	Mixed Capacitors. Postage 13p. Approx. quantity, counted by weight	
H4	250	Mixed Resistors. Postage 10p. Approx. quantity, counted by weight	50p
H7	40	Wirewound Resistors. Mixed types and values. Postage 8 B	
प8	4	By 127 Sil. Recs. 1000 PIV. I amp. plastic	50p
H9	2	OCP71 Light Sensitive Photo Transistor	
H12	20	NKTI 5 5/259 Germ. diodes, brand new stock clearance	50p
H18	10	OC71/75 uncoded black glas type PNP Germ.	50p
H19	10	OC81/810 uncoded whise glass type PNP Germ.	50p
H_{28}	20	OC200/1/2/3 PNP silicon uncoded TO.S can	50p
H29	20	OA47 gold bonded diode coded MC52	50p

F.E.T. PRICE BREAKTHROUGH ! ! !

This field effect transistor is the 2N3823 in a plastic encapsulation. coded as 3823 E . It is also an excellent replacement for the 2 N 3819 .
Data sheet supplied with device 1-10 30p each, 10-50 25p each, $50+$ 20p each

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev. counter for any car.

each
FREE CATALOGUE AND LISTS for:-

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER SOD CASH WITH ORDER PLEASE. Add 10 p post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.
> P.O. RELAYS
> Various Contacts and Coil
> FOR
> Resistances. No individual
> selection. Post \& Packing 25p

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

m
 nR PLate

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

EXPERIMENTER'S BOARD

The Chequerboard system by Circuit Integration Ltd comprises a series of patchboards and component carriers designed to facilitate the design, construction and proving of logic systems.
The patchboards, which can accommodate from 12 up to 4814 pin carriers according to size, consist of a series of sockets on $\frac{1}{4}$ in centres into which the carriers are plugged. The arrangement of these sockets is such that each pin of the carrier has two further sockets connected to it, so that interconnections can be made with the patchcords provided.
plain carrier enables units to be constructed from discrete components. A very good point is that provision is made on each carrier for decoupling the supply lines.

The system also includes a number of pre-wired modules which include a switch unit, a pulse generator, an indicator unit with three filament lamps, and several TTL gates and flip-flops. It would perhaps be less confusing if the indicator unit followed the normal positive logic convention, i.e. lamp ON for a positive, rather than a zero, input level.

The complete system has been well designed and certainly makes the wiring-up of a prototype logic circuit a very simple and rapid operation. The totally enclosed and very rugged construction will commend it to industrial and educational applications, although the price will probably put it out of the reach of all but the most dedicated amateur.

Full details and price list for the Chequerboard system is available from Circuit Integration Lid., Canal Street, Runcorn, Cheshire.

SUPER I.C.

After two highly successful years, the. Sinclair IC-10 integrated circuit

With the addition of very few external resistors and capacitors the Super IC-12 makes a complete high fidelity audio amplifier suitable for use with pick-up or f.m. tuner. For more elaborate systems it can be used in conjunction with modules from the Project 60 Range.

Each Super IC-12 is supplied with a comprehensive Manual giving full circuit and wiring diagrams for numerous applications including high fidelity amplifiers. car radios, and oscillators.

The price of the Super IC-12 is $£ 2.98$ including a printed circuit board for mounting.

STYLUS BALANCE

Calibrated in $\frac{1}{4}$ gram divisions, the Bib Model 32 stylus balance is claimed to be the first balance designed for determining the pressures of modern cartridges.
It has a non-magnetic base mounted on foam plastic and the crossbar of the beam has recesses which are mounted on a pair of pivot points. The end of the pivot boom has a red rubber insert on to which the pick-up stylus has to be lowered.

The price of the Bib model 32 stylus balance is $£ 1.80$ and as the balance will only be used occasionally, it is packed in a robust plastics case.

Power is conveyed to each carrier through two special pins which engage in further rows of bussed sockets, placed so that the carriers cannot be inserted the wrong way round. The power busses are wired to sockets on the side of the patchboard so that connection may be made to a suitable power supply.

Although the emphasis is clearly on digital circuits, one of the patchboards has an extra row of bussed sockets which allows for the provision of the $+, 0,-$ supplies required by many linear circuits.

A *wide variety of 14 and 16-pin carriers is available. The 14 and 16 -pin DIL, 8 and 10 -pin TO5, and flat-pack i.c.'s can all be accommodated, either by soldering to a blank carrier or, more usefully, by plugging into carriers which have the appropriate sockets on them. A

1C-12 marketed by Sinclair :Radionics

Bib Model 32 stylus balance from Multicore Solders
amplifier has had to give way to a successor.
Designated the Super IC-12 it has all the virtues of the original IC-10 but with the following improvements: greater output; lower quiescent consumption; works on any voltage from 6 to 28 V , without adjustment; full output into 3, 4, 5 or 8 ohms and a specially designed built-in heatsink.

The output claimed is 6 W r.m.s. continuous (12 watts peak). Frequency response is quoted as 5 Hz to $100 \mathrm{kHz} \pm 1 \mathrm{~dB}$. The total harmonic distortion is claimed to be less than 1 per cent (typically $0 \cdot 1$ per cent) at all output powers and all frequencies in the audio band. The quiescent current stated is 8 mA at 28 V . Input impedance is 250 kilohms nominal and the load impedance is 3 to 150 hms .

LITERATURE

A comprehensive publication on Stroboscopes is available from Dawe Instruments. Written by W. V. Richings, the Company's Technical Director, it describes the basic principles of stroboscopy and the various stroboscopic devices, with particular emphasis on the modern electronic ștroboscope using a high-power discharge lamp.

The design criteria and technical features of stroboscopes are discussed and details are given of accessories and typical applications.

It provides a guide to the subject for technicians, production personnel and students. It is available free on request from: Dawe Instruments Ltd., Concord Road, Western Avenue London, W3 OSD.

Many home constructors must have required a fully variable, d.c. low voltage supply when experimenting with electronic circuits. One solution is, of course, to construct a fully variable, mains powered, stabilised power supply. However, there are the odd number of occasions when a mains supply is not available and a battery is the only source of power. With this in mind, the author has designed a self-powered, electronic, voltage stabilising control unit, the design and construction details of which are given in this article.

The stabiliser can accept input voltages of up to 85 volts d.c. (depending on the output voltage setting) and provide a fully variable stabilised output voltage from 0 to 30 volts d.c. at up to 250 mA
load current. To obtain a stabilised output voltage the input voltage must exceed the required level by 2 volts. The stabiliser draws virtually no current from the external supply and is completely selfcontained. Automatic current limiting is built into the unit and can be set to any one of five values, namely, $10,25,50,100$ or 250 mA .

By connecting a resistor across the output terminals, a constant current is available between the external voltage supply and the input terminals of the stabiliser. The value of the constant current is determined by the value of the load resistor and the output voltage setting of the unit. It can be set to any value from $250 \mu \mathrm{~A}$ to 250 mA .

Fig. I. Block diagram showing fundamental stabiliser

PRINCIPLE OF OPERATION

The complete circuit diagram of the unit is shown in Fig. 2. In order to understand the operation of the circuit it is shown in simplified, block diagratmatic form in Fig. 1. The output voltage of the unit is determined by the values of V_{1}, R_{k}, and R_{v}, and is equal to, $V_{\mathrm{o}}=V_{\mathrm{r}} . R_{\mathrm{V}} / R_{\mathrm{k}}$, since both inputs to the voltage differential amplifier will be zero volts when the output is stabilised and thus, $I_{v}=V_{0} / R_{4}$ $=V_{\mathrm{r}} / R_{\mathrm{h}}$. The output voltage, V_{0}, is directly proportional to $R_{\text {, }}$ if both V_{r} and R_{k} are kept constant. Keeping V_{r} and R_{k} constant has the advantage of maintaining the sensing current, $I_{\sqrt{ }}$, constant for all values of the output voltage.

SPECIFICATION . . .

Stabilised Voltage Output: 0 to 30 volts in switched steps of 2.5 volts, plus 0 to 2.5 volts, fully variable. Input voltage must be between 2 and 55 V in excess of output level required.
Constant Current Capability: $250 \mu \mathrm{~A}$ to 250 mA , continuously variable.
Current Limiting: Five ranges: $10,25,50,100$ and 250 mA .

Accuracy of Output Setting: I per cent on all switched voltage ranges.

Stabilised Voltage Stability:

(a) ± 0.1 per cent for variations in the input voltage of from 2 to 35 volts in excess of the output voltage.
(b) ± 0.1 per cent for variations in the external load from 0 to 250 mA .
(c) \pm I per cent for normal room temperature variations
(d) ± 0.1 per cent for variations of ± 10 per cent of the unit's internal battery supply voltages.
Output Impedance: Less than 0.03 ohms over audio frequency range (No current limiting).
Ripple Voltage: Less than 2 mV peak-to-peak on full load (when used with a full-wave rectified unregulated supply of 35 volts output).

Providing the output current is below its limiting value, the output voltage is stabilised and the current flowing into the base of TR3 is controlled by the voltage differential amplifier. (Both the voltage and current differential amplifiers are in fact voltage differential amplifiers; the words "voltage" and "current" are used to describe the function that the corresponding differential amplifiers control, i.e. the "voltage" differential amplifier controls the output voltage and the "current" differential amplifier controls the limiting current).

When the output current nears its limiting value, the voltage developed across R_{t}. nears the reference voltage level fed to the current differential amplifier. which is equal to $V_{r} \cdot R 2 /(R 1+R 2)$. The result of this is that current is drawn away from the base of TR3 by the current differential amplifier thus reducing the output voltage in order to maintain a consiant current through R_{c}.

When completely current limiting the current differential amplifier has full control over the current flowing into the base of TR3, the voltage across $R_{\text {c }}$. is stabilised at a value equal to $V_{1} . \mathrm{R} 2 /(\mathrm{R} \mid+\mathrm{R} 2)$ and the current flowing through R_{c} is maintained at a constant value equal to $V_{r}, \mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2) R_{\text {V }}$. Because the currents $I_{1,1}$ and $I_{\text {, are flowing through }}$ $R_{\text {, }}$. in addition to the load current, I_{1}, the output current in the limiting condition is given by the expression:

$$
I_{1}=V_{\mathrm{r}} . \mathrm{R} 2 / R_{\mathrm{t}} . .(\mathrm{R} 1+\mathrm{R} 2)-I_{1,1}-I_{\mathrm{t}}
$$

Now, the current flowing through R_{r}, is also equal to the emitter current of TR1, $I_{\text {"1 }}$, which is equal to $\left(\beta_{1}+1\right) . I_{1,1}$, where β_{1} is the current gain of TRI. Thus $I_{1,1}=I_{, 11} /\left(\beta_{1}+1\right)$ and I_{1} becomes:

$$
I_{1}=\beta_{1} \cdot V_{r} \cdot \mathrm{R} 2 / R_{c}(\mathrm{R} I+\mathrm{R} 2)\left(\beta_{1}+1\right)-I_{1}
$$

Thus, providing β_{1} is very much greater than one, I_{1} is approximately equal to:

$$
V_{\mathrm{r}} . \mathrm{R} 2 / R_{\mathrm{c}} .(\mathrm{R} 1+\mathrm{R} 2)-I
$$

Current I_{v} has a maximum value of $V_{\mathrm{r}} / R_{\mathrm{k}}$ when the output voltage is stabilised (designed to be $250 \mu \mathrm{~A}$) and will have a value of approximately V_{1} / R_{v} when the output voltage is reduced to a value V_{1} due to current limiting.

GENERAL CIRCUIT DESCRIPTION

Returning now to Fig. 2 it will be seen that transistors TR2 and TR3 form the voltage differential amplifier in a conventional long-tailed pair circuit. Transistors TR5 and TR6 form the current differential amplifier, again in a conventional long-tailed pair circuit. Matched pairs of 2N3707’s are used for the two differential amplifiers but virtually any pairs of $n p n$ silicon transistors with a current gain of greater than 100 at a collector current of $100 \mu \mathrm{~A}$ will do.

The common collector load of transistors TR3 and TR6 is made to appear very high by employing a constant current source provided by TR4. The emitter resistor of TR4 and the Zener diode, D1, determine the value of this constant current which is designed to be $100 \mu \mathrm{~A}$.

When the output voltage is stabilised (i.e, no current limiting) transistor TR6 is cut-off since its base voltage is below the value of the base voltage of TR5 with the result that all of the $100 \mu \mathrm{~A}$ constant
current, except that which flows into the base of TR7, flows through the collector of TR3. Any change in output voltage is inversely reflected at the base of TR2. A drop in the output voltage raises the voltage at the base of TR2 above zero and hence raises its emitter voltage. As the base of TR3 is connected to the zero volt line, by way of R20, a rise in its emitter voltage starts to cut the transistor off directing more of its collector current into the base of TR7. This in turn increases the current into the bases of.TR8 and the series regulator, TR9, reducing TR9's effective resistance and therefore the voltage dropped across it. The output voltage is thus restored to its original stable value.

When the current through the emitter resistor of TR9 reaches the limiting value the voltage at the base of TR6 equals or nears that at the base of TR5 with the result that TR6 starts to conduct, drawing some of the current away from the base of TR7. When this starts to happen the output voltage drops. TR3 starts to cut-off and the $100 \mu \mathrm{~A}$ constant current supplied by TR4 comes under the control of TR6. Any variation in the current flowing through the emitter resistor now controls the amount of current flowing into the base of TR7 and hence the current through TR9 emitter resistor. The output voltage is therefore automatically adjusted to maintain a constant current through TR9 emitter resistor.

REFERENCE VOLTAGE

The reference voltage circuit consists of DI, TRI, R12, R13, and D2. The transistor, TR1, is fed with a stable voltage at its base by DI. The emitter resistor (R 13) determines the values of the emitter and collector currents of TRI. Zener diode D2 is in the collector line of TRI and, since all the currents flowing away from the junction of TR1 and D2 are constant, the current through D2 will also be constant. Thus a stable reference voltage is maintained. Transistor TR1 is a silicon pnp transistor operating at a collector current of nearly 5 mA . The 2N4289 type specified is entirely suitable in this position, but any pnp silicon type with a current gain of the order of 100 at 5 mA collector current will be equally suitable.

The silicon diodes, D3 and D4, protect the base of TR2 from any large voltage swings. D2 also prevents the base of TR2 from going more than 0.6 volts positive when current limiting takes place. Any low current type of silicon diode is suitable in these positions.

REMAINING COMPONENT FUNCTIONS

The $0.47 \mu \mathrm{~F}$ capacitor, C 2 , in parallel with the resistors around S2 and VR2, effectively increases the loop gain of the stabiliser to alternating voltages at the output, with the result that the ripple content is reduced as is the output impedance of the unit.

The $0.001 \mu \mathrm{~F}$ capacitor, C 3 , and the 22 kilohm resistor. R19, connected in series between the collector and base of TR3 reduce the loop gain of the amplifier at high frequencies and prevent instability that would otherwise occur.

The reference voltage for the current differential amplifier is derived from D2 by a potentiometer network consisting of R21, R22 and VR3. The current limiting ranges are set to their correct values by adjustment of VR3.

The resistor R_{k} referred to in Fig. 1 becomes R14 and VR1 in Fig. 2. The output voltage ranges are set accurately by adjustment of VR1.
The total consumption of the 9 V positive rail is approximately 11 mA . Two 4.5 V pocket lamp batteries (No. 1289) were chosen for this supply rail because of their large capacity and convenient size.
The total consumption of the 9 V negative rail is less than 1 mA . A 9V (PP3) battery was chosen for this supply rail because of its small size and adequate capacity.
A 4-pole, 3-way rotary switch (S1) switches the unit on and off. One pole (SId) is used to control the external supply and the remaining three poles

COMPONENTS . . .

Resistors

RI-R	$110 k \Omega$-see text (11 off)		
R12	$1.1 \mathrm{k} \Omega$	R23	$2 \mathrm{k} \Omega$
R13	510Ω	R24	$16 \mathrm{k} \Omega$
R14	16 kSz	R25	$47 \mathrm{k} \Omega$
R15	680Ω	R26	$100 \mathrm{k} \Omega$
R16	20k Ω	R27	$100 \mathrm{k} \Omega$
R17	$43 \mathrm{k} \Omega$	R28	4Ω (see text)
R18	$24 \mathrm{k} \Omega$	R29	10Ω
R19	$22 \mathrm{k} \Omega$	R30	20Ω
R20	680Ω	R31	40Ω (see text)
R21	$16 \mathrm{k} \Omega$	R32	100Ω
R22	$5.1 \mathrm{k} \Omega$	Rs se	e text
All $\pm 5 \%$ - ${ }_{6} \mathrm{~W}$, carbon high stabs.			

Capacitors

$\mathrm{C!} 10 \mu \mathrm{~F}$ elect. 12 V
C2 $0.47 \mu \mathrm{~F}$ polyester
C3 $0.001 \mu \mathrm{~F}$ polyester
C4 $10 \mu \mathrm{~F}$ elect. 12 V
C5 $50 \mu \mathrm{~F}$ elect. 100 V
C6 $0.1 \mu \mathrm{~F}$ polyester 250 V
C7 $10 \mu \mathrm{Felect}$. 12 V

Potentiometers

VRI $5 \mathrm{k} \Omega$ skeleton preset
VR2 $10 \mathrm{k} \Omega$ wire wound
VR3 $5 \mathrm{k} \Omega$ skeleton preset
Semiconductors
TRI 2N4289
TR2, 3 2N3707 (matched pair)
TR4 2N4058
TR5, 6 2N3707 (matched pair)
TR7 2N3707
TR8 BCI68
TR9 B504I
D! $3 \mathrm{~V}, 400 \mathrm{~mW}$ Zener diode
D2 $4.7 \mathrm{~V}, 400 \mathrm{~mW}$ Zener diode
D3, 4 any good low current silicon diode (2 off)

Miscellaneous

MI 25 mA moving coil meter ($2 \frac{1}{2}$ in diameter case)
SI 4 pole 3 way rotary switch
S2 Single pole 12 way rotary switch
S3 4 pole 5 way rotary switch (only 3 poles used)
SKI, SK4 Red screw terminals (2 off)
SK2, SK3 Black screw terminals (2 off)
BYI, BY2 No. $12894 \frac{1}{2} \mathrm{~V}$ battery (2 off)
BY2 PP3, 9 V battery
Veroboard $5 \frac{\operatorname{tin}}{} \times 2$ in $\times 0.15$ in matrix
Die-cast box $6 \frac{3}{4}$ in $\times 4 \frac{3}{2}$ in $\times 2 \frac{1}{8}$ in
4B.A. fixings, connecting wire, knobs for VR2, SI to S3, material for battery fixing.
connect the unit to the two internal batteries. In the first position of the switch all supplies are disconnected. In the second position the unit is switched on and in the third position the external supply is connected in addition to the internal batteries. This arrangement ensures that the unit is operating before the external supply is connected.

RANGE SWITCHING

The sensing current, I_{v} (see Fig. 1) is designed to be $250, \mathrm{~A}$, which gives a value for R_{v} of 4 kilohms per volt. The maximum output from the unit is 30 volts giving a total resistance for R_{v} of 120 kil o.'ms. A 10 kilohm wire-wound control (VR2) provides 0 to 2.5 volts fully variable and a twelve position rotary switch (S2), switching in successively
eleven 10 kilohm fixed resistors (\mathbf{R} | to $\mathbf{R} 11$), provides 0 to 27.5 volts in 2.5 volt steps. The rotary switch used for this operation is a single-pole 12-way wafer type. Eleven 10 kilohm fixed resistors are required for the construction of the switched ranges: 1 per cent, high-stability types could be used, but they are invariably large and expensive. The author found i: more convenient, and cheaper, to use $\frac{1}{3}$ watt, 5 per cent, high-stabs. of 11 kilohms in value and shunt them, as required, with 5 per cent resistors of values 100 kilohms, 200 kilohms, 390 kilohms and 820 kilohms. This method enables them to be matched to the value of the wire-wound control which is unlikely to be within 1 per cent of its nominal value.

Next month: construction details

置察

IN Part I we considered the theoretical aspects of XEE's operational characteristics. This month, in the second and final part, we lobk at the system logic, construct the animal and perform the various tests.

RANDOM CONTROL SYSTEM

Since our noise source produces spikes having a high occurrence rate, it is necessary to perform some processing before they can be usefully employed. The concept behind the scheme used here is quite a simple one (see, Fig. 6) which shows the basic principle). Noise pulses are fed continuously to the NAND gate, and the clock periodically "lets a few through" to operate the counter.

In the durations between clock pulses, the counter remains in the state previously set by the pulses occurring during the last clock period. It is at such times the counter can be "read" and so provide the required control information for the rest of the animal. It will be seen now that the occurrence rate of the noise pulses in no way affects the rate at which the random control data appears.

The principle is thus one of "throw the dice-look at the result-use the information", and so on. Indeed, a set-up of this type might usefully be employed in a dice throwing machine or, perhaps, a reaction-analyser.

NOISE PROCESSING

The general idea is shown in Fig. 6, but in practice the system is a little different. In Fig. 5 we see that because JK flip-flops are used we are able to take advantage of the JK function for gating purposes. Hence the effect of the noise pulses at the clock input to the starboard control flip-flop will only be valid at times when the clock applies a logical I at both the J and K inputs.

A clearer picture of what happens can be seen from the waveforms given in Fig. 7. From these waveforms it can be seen that during every clock pulse, or "window", the counter represented by the starboard and port flip-flops can be cycled many times before it finally comes to a stop. However, the important point to note is that this operation occurs quite randomly and hence the counter, following a clock period, can be set to any one of its severall possible states.

PART 2

> An animal approximation utilising integrated circuits to process optical and tactile sensing together with a random control to give reasonably lifelike responses

Fig. 7. Waveforms associated with random control system

The random control system has control, either directly or indirectly, over all gating functions within XEE. Since this information is derived from the Q and \bar{Q} terminals of the flip-flops, the control is complimentary.

REVERSE GATING

The direction of rotation of the motors is dependent on the outputs at the starboard and port reverse gates. For forward rotation, the inputs to the particular gate must all be at logical 1 (output goes to 0). If both gates are in this condition, the animal will drive forward; if only one gate is producing a 0 . the animal will turn either right or left.

If any input to the gates is taken to logical 0 , the output will change to a 1 , with the result that the corresponding motor will reverse. Both gates in this condition result in reverse drive of the animal.

INHIBIT REVERSE GATING

Inhibit reverse gating is provided by gates G2 and G3 (IC4); it is part of the stop function and serves to inhibit any reverse command given by the control flip-flops at such times. It is also included to ensure that correct homing on to light sources is provided when the optical sensors are stimulated (this only applies under conditions which will be mentioned later).

STOP GATING

The stop function, overriding all other functions, is available through the agency of gate G3 (ICI). If both its inputs are at logical 1 then the output is at 0 , with the result that all motor supplies are disconnected and the animal stops. If, on the other hand, either or both inputs are at 0 , then the output will be 1 , permitting resumption of motor operation. The stop gate also controls the inputs to the inhibit gates to ensure that under stop conditions all muscle control relays are de-energised and consequently current in this area is reduced to a minimum.

Fig. 8. Waveforms associated with load sensing and reversing bistable

AVOIDANCE FUNCTION

Application of any load exceeding a given period of time or amplitude will result in the avoidance routine being elicited. This amounts to the animal reversing for a short while then reverting to whatever the random system has currently set. The routine might thus be: reverse and turn left, or right, or stop. Whenever the Schmitt trigger is fired, a negative-going pulse sets the reversing bistable which simultaneously applies a 0 to one input of the reverse gates. Both gates thus return a 1 to the muscle control circuits, and XEE moves backwards.

The duration of the reversing mode is determined by the time interval from when it began, to when the clock pulse arrives to reset the reversing bistable. This will always be random, and can never exceed a completc clock period; take a look at Fig 8, which indicates the type of relationships that can occur between clock and load sensing pulses.

For operation of the reversing bistable it is convenient to think of it being first reset by the clock. Since, at the clock pulse, a 0 is fed to G 2 (IC5) its output will go to logical 1. As a result, Gl (IC5) will have one input at the same level, and because its other input is connected to a capacitor (Cl 1), this too is effectively at 1 ; the output from this gate is thus 0 . Due to the cross-coupling between the gates, G2 (IC5) will have one input held at 0 by the output from Gl (IC5). The bistable will remain in this state unless a pulse arrives from the Schmitt; if this occurs, a 0 will be effectively applied to one input of Gl (IC5) whose output will go to 1. As a consequence, both the inputs of G2 (IC5) will then be at logical 1 and its output will go to 0 . Again. due to the cross-coupling, this state will exist until the clock pulse arrives to reset the bistable.

OPTICAL SENSE AND RANDOM FUNCTION

For simplicity, the optical sensors do not boast any lens system, abthough, of course, there is absolutely no reason why this kind of sophistication should not be included if the constructor wishes.

The way in which the optical sense operates will depend on whether direct sensing is used, or whether the constructor chooses to permit some degree of random control. Since operation of this section of XEE is more easily understood by reference to the direct sensing arrangement, we will consider this first.

DIRECT SENSING

For this form of sensing, the connections to the input gating marked with an asterisk in Fig. 5, are disconnected. The gates, however, must be left connected in all other aspects otherwise the logic will be affected.

Under dark conditions, when neither of the sensors are illuminated, the animal will be under the control of the random system; it will be either turning in one direction or another, or driving forward. If, say, the starboard sensor is illuminated, a logical 0 will appear at the output of the starboard input gateing which will be applied to the inputs of the starboard reverse gate and the inhibit port reverse gate. The former gate will thus show an output of 1 and so cause motor MOI to go into reverse drive. At the same time, the inhibit port reverse gate's output will be 1 , and, provided the remaining inputs to the port reverse gate are also at 1 , the additional input will ensure that a 0 , and hence forward drive, is established for MO2.

This complementary control over both channels is necessary because, ostensibly, there could be a counter command from the random control system to the opposite channel, when, in fact, no optical input was present on that side.

A similar regime will be operative if only the other sensor is stimulated. If both channels are active, though, the effects of the inhibit gates will be nullified, since the reverse gates will each have a 0 on at least one of their inputs, causing them to both return outputs of 1 resulting in XEE driving backwards.

Simultaneous illumination of both sensors is fairly rare, but can be an obvious embarrassment because when it happens XEE will continue its backing routine (up walls, if need be!) until the source of light is removed. A way of overcoming this difficulty is discussed later.

An important aspect of the optical sense is that a form of homing function is permitted. Take the case where light has fallen on the starboard sensor; this will cause a turn to the right. In doing so, the machine will move this sensor away from the source of illumination, but this will also result in the port sensor being brought in to line with the source. If this occurs, the animal will turn left, and so on. Under these conditions XEE thus performs a kind of "serpentine" movement until it is fairly close to the light, when it will suddenly veer off to the left or sight.

RANDOM CONTROL

If the inputs to G2 (IC1) and G3 (IC7) are left connected to the starboard and port control flip-flops,

the optical sense displays quite different characteristics. One interesting point is that XEE no longer shows quite the same zest for mounting walls when in the reverse mode!

Optical sensing under random control permits XEE to extricate itself from powerful light sources. This is achieved by means of the control over the input gates. As a consequence, even though an input may be present at either of the sensors, unless the relevant gate is in receipt of a 1 from its associated flip-flop, the input will be ineffective.

XEE can therefore (apparently) make up its own mind about what it does, and does not, wish to look at! This does of course mean that in this mode of operation XEE is now free of the fetters that most moths seem unable to shake off.

CONSTRUCTION

An illustration of the general wiring scheme for the main circuit board is given in Fig. 9. This shows the wiring and layout on Veroboard. Additional, simpler boards which are involved with the muscle control circuits are shown in Fig. 10.

The main board must be drilled in accordance with the chassis holes shown in Fig. 11. The two smaller boards must be cut to the sizes given in the

Fig. 9. Layout and wiring of the circuit board
components list. All components are mounted by means of their leads; breaks in the copper strips "must be made before the associated components are fitted. It is most important to make sure that the complete width of the relevant copper strip is cut through.

Do not fix the photo-sensors until last since they, almost always, are blessed with thin leads which with little doubt will break off if "man-handled" too frequently!

Mounting of the integrated circuits is best done first; the job is not a particularly difficult one, but it is essential that care be taken to ensure that every one of the 1.4 leads in each I.C. go through the holes in the circuit board. Attention is drawn to this fact because it is easy to think that all the
leads are poking through the board, when in reality they are not. The trick, if there is one, in fitting the I.C.'s is to ease the seven leads on one side through first, then, with the aid of the three fingers of one hand placed in-line against the edge of the remaining pins, gently locate and press them through the relevant holes. As each I.C. is fitted in this way it is advisable to solder it in place, lest it falls out as the next one is being attached.

Wiring of the circuit boards, and interconnections between them, should be done with thin plastic covered wire. Since the pitch of the holes in the boards is small, the copper lands are necessarily close together and without care it is extremely easy to make accidental bridge-overs. Such errors should be looked for prior to connecting any supplies.

Fig. II. Chassis details

Fig. 10. General layout of XEE and muscle control circuit wiring

In case of difficulty in obtaining the specified relays, any miniature d.p.d.t. relay of the correct voltage, and having a resistance of more than 500 ohm, may be used; although it may prove necessary to mount substitute types on top of the chassis near the batteries.

LOAD SENSOR

The load sensor, as we previously discussed, employs a reed switch. This is of the 1 inch variety and must have approximately 16 turns of 26 s.w.g. enamel or cotton covered wire wrapped around its middle. The winding should take the form of two eight-turn layers.

During the initial testing the coil will be firmly cemented to the glass envelope of the reed switch. but at this stage the free wire ends to the coil need only be gently twisted together to keep everything from unravelling. An illustration of the complete sensor is shown in Fig. 10.

OPTICAL SENSORS

The two l.d.r.'s (X1 and X2) should be mounted so that when the board is in position they face forward. If a "body" is to be made for XEE these sensors can be incorporated in the front. Once the l.d.r.'s have been connected-up, an Araldite "fillet" should be made between them and the circuit-board. To ensure a good bond, the board should be roughened with a piece of emery paper just at the places of contact with the epoxy resin.

INITIAL TESTING

Just before testing, give the boards a visual inspection to make absolutely certain that no dry joints. bridge-overs, or wiring errors exist. The muscle control boards will not need to be checked out now, but will be tested in conjunction with the relays later. Connect points " b " and " c " on the main circuitboard to an 18.0 volt d.c. source; " b " must go to positive, and "c" to the negative. While performing the tests make sure to keep the optical sensors clear from any direct sunlight which could cause ambiguous results.

RANDOM CONTROL SYSTEM

Connect a voltmeter (set to a range which will measure 600 V) between earth and pin 13 of the starboard control fip-flop (IC2), and check that approximately every second or so there is a brief flicker shown by the meter. This will be the indication if the clock is functioning correctly. Now disconnect the lead from pin 13 and connect it to pin 10 (IC2). The meter reading should be either a steady 6.0 V (logical 1). or very nearly zero (logical 0); this indication should be interrupted about every second by the effect of the clock and noise pulses. It is important that this last reading changes in a random fashion periodically. Next, disconnect the lead from pin 10 and reconnect it to pin 10 on the port flipflop (IC3). The reading should be similar to the last, to wit, it must change randomly from 1 to 0 every now and then. If no change is observed, then connect the meter between earth and pin 3 of the starboard flip-flop (IC2). In this position it should indicate a regular flickering due to the noise source. If this is not so, the Zener diode D1 should be disconnected and replaced by another one. Sometimes one comes across a particularly "un-noisy" diode, these "good ones" are however no good to us!

STOP AND REVERSE GATING

Connect the meter between earth and the output of the stop gate. This should periodically change its logical state from 1 to 0 , or from 0 to 1 . Disconnect
the meter from the stop gate and reconnect it with the output of the inhibit starboard reverse gate. Now disconnect the leads going to pins 5 on the two control flip-flops, and apply the light from a torch to the port optical sensor.

The meter should indicate a logical 1 condition as long as the light remains on. Repeat this test with the meter connected to the output of the inhibit port reverse gate, but with the light applied to the starboard optical sensor. Again the meter should indicate the 1 state all the time that the light remains on. With the light still on, connect the meter to the output of the starboard reverse gate. The meter should again show the logical I state. Reconnect the meter with the output of the port reverse gate. This too should be at 1 when the light is transferred to the port sensor. Leave the meter connected for the next test.

REVERSING FUNCTION

With no light applied to the optical sensors, trigger the reversing bistable by momentarily touching an earth connection on either one of the inputs of G1, IC5 (pins 12 and 13). The meter should immediately indicate a logical 1 condition (if it is not already). This reading should eventually change once the reversing bistable has been reset by the clock pulse and the system returns to the control of the random control section. Connect the meter to the output of the starboard reverse gate. Again trigger the reversing bistable and ensure that the results are the same. Disconnect the meter and the 18.0 volt supply. Reconnect the leads to pins 5 of the control flip-flops.

CHASSIS CONSTRUCTION

The type of material from which the chassis is fabricated is not particularly critical; for the prototype, 16 gauge aluminium was used. The chassis takes the form of a single piece of material having two $\frac{3}{4}$ inch right-angle sections folded down the length of its sides. The rear side plates carrying the gear shafts and wheels are mounted on this chassis.

A "U" bracket, situated on the chassis midway between the two side plates, serves to support the inner ends of the gear shafts. A further " U " bracket is utilised for the frontally located castor wheel. All metalwork should be constructed according to Fig. 11. Any bending which is required can be done with the aid of two small pieces of tough wooden plank and a vice.

MOTORS, GEARS AND WHEELS

As Fig. 10 shows, both motors are situated side-by-side towards the rear of the chassis. Each motor has a friction-fit worm attached to its output shaft, and this is arranged to drive a further shaftyat right-angles to it by way of a wormwheel. The gear ratio thus provided is $40: 1$. This lay-shaft is also fitted with a pinion which, in conjunction with another pinion, on the final drive shaft, results in a further reduction of $3: 1$. In this way an overall ratio of $120: 1$ is achieved.

The rear wheels, one attached to each final-drive shaft, are $1 \frac{1}{2}$ inch diameter soft rubber aircraft type. These should have their centres drilled out a little to accommodate 3^{3}, , inch shafting, and be secured in position with epoxy resin. In order to achiever improved traction, the rear wheels should have their

tyres "scalloped" around the circumference. This is best performed using a pair of small side-cutters, pinching-out the required amount of rubber and nipping it off. The resulting tread is fairly coarse, but serves its purpose, since, on nylon carpet, the wheels would undoubtedly slip.
The castor wheel is the same as the type used at the rear but, naturally, without the tread. The wheel is fitted to a shaft going through offset holes in the "U" bracket which swivels on a 4B.A. screw at the front of the animal.
Shaft retention is obtained either through the use of plastic tubing, or by means of washers soldered to the ends of the shafting. Sometimes the nylon gear-pinions have casting flashes still attached to them; this is particularly noticeable on teeth. The flashes must be removed with a sharp knife, or razor-blade, before the pinions can mesh properly.

MOUNTINGS

Four 4B.A. screws secure the main board to the chassis. The screws are initially bolted to the chassis, their nuts serving as spacers to separate the board from the metal body. Once the screws and nuts have been fitted, a layer of insulation tape, approximately the same size as the main board, should be placed directly beneath where the board will be located. This will ensure that no exposed wiring gets shorted out on the chassis. At this stage the supply leads,
outputs w, x and y and the connections to RLA should be connected up and have sufficient length to reach the other areas of the animal to which they will be later connected. The main board can now be fitted.

Relays RLB and RLC are mounted one above the other, secured on a pair of long 6B.A. screws. The Veroboard associated with these relays is mounted on RLB. The board is fixed in place with an impact adhesive.

The remaining relay, RLD, is kept in position with this adhesive, as is its associated component board.

SYSTEM INTERCONNECTIONS

The various interconnecting wires are shown in Fig. 10. Once the relays have been connected to their respective boards, the inter-circuit wiring can be completed. The latter, when finished, should be neatly laced up or cleated so that all leads are formed into one common cable-loom. The free ends of the leads going to the batteries should be passed through the grommet in the chassis and terminated in crocodile clips. Constructors may, at this point, choose to include a switch for isolation of the batteries from the rest of the circuit; for both simplicity and minimum cost, however, it was considered sufficient to employ crocodile clips for the purpose at the time.

Before connecting any batteries, do make absolutely certain that there are no wiring mistakes.

Fig. 12. Battery fixing and wiring details

BATTERIES

The motors are powered by a pair of type HPII batteries. These should be strapped together according to Fig. $12 \cdot$ using masking tape or similar material. A link between the positive of one battery and the negative of the other should next be soldered into position. The free ends of the batteries will be available for connection to the motors.

The two PP6 batteries, that provide the circuit supply, should undergo a similar process (see Fig. 12). The batteries are mounted on top of the chassis directly above the motors.

FINAL TESTING

Connect up the motor supplies first; note that motors do not run. If this is not so, check wiring from relays. Temporarily disconnect the motor supplies if all is satisfactory. Connect the supplies to the logic and muscle control electronics; note that a regular ticking sound is evident from the RLB, RLC and RLD. If this is the case, then reconnect the motor supplies.

With both supplies connected the rear wheels should be either rotating so as to give forward motion of the animal if placed on the floor, or rotating in opposite directions. On no account should the rotation be that which would result in reverse motion. If, occasionally, this reverse action does occur, then disconnect the outer end of RLA operating coil and remove one turn. Reconnect the coil and try again. Repeat the process until conditions are just stable, i.e. motors not going into the reverse state when unloaded.

Apply a load to the rear wheels by attempting to stop them with the fingers; this should be done for a period of at least I second, or at least until reverse motion of the wheels occur. If no reverse action is noted short out the contacts of RLA and ensure that reverse action occurs. If this is not so, then check the Schmitt trigger or reversing bistable. Assuming that XEE reverses when RLA contacts are shorted out, then add one turn to the coil and test the function again. Once this function is satisfactory, the coil can be cemented in place. Shine a torch on to the optical sensors, whilst XEE is moving forward, and establish that the motors respond by reversing for the opposite side to that stimulated; this need not happen straight away since the random
function is also involved. The animal can now be placed right way up and begin its life proper, journeying around the chair and table legs in your living room.

BODY

The constructor may wish to construct a shell for XEE to give it a more animal like appearance. The shell shown on last month's cover and in the various photographs was constructed by inflating a balloon to the required size and covering it with tissue paper or newspaper torn in small pieces and pasted with polycell glue.

The shell is built up layer by layer until it is about ${ }^{1} 16$ inch thick; it is then left to dry fully before slowly deflating the balloon. The bottom edge of the shell is then trimmed and a thick cardboard base cut to shape so that it fits inside the shell about 1 inch away from the bottom edge. This base is then fixed to the shell using more paper and paste and finally a hole is cut from the centre to accommodate the batteries and XEE is secured to the base.

Decoration can be painted on the shell as desired and eyes made from the plastic lamp covers glued on over holes in the shell behind which can be mounted X1 and X2. The prototype XEE utilises a selection of resistors to form a spine and has an on-off switch as a tail!

CONCLUSION

XEE is only a partially non-deterministic animal. That is to say it does not always respond to stimuli with any predictability. However, despite this, the beast does stand a greater chance of "survival" than, say, one which acts with 100 per cent certainty. Nevertheless, this in no way implies that it has any intelligence, although it does have the chance of reacting as if it did.

ACKNOWLEDGEMENT

The author wishes to acknowledge assistance given by J. Salmon in connection with the mechanical aspects of XEE; also J. D. Pountney who devised and constructed XEE's "body".

THE painting of anything made of metal, particularly a ferrous metal, that is exposed to a marinc atmosphere, becomes a process requiring somewhat more than ordinary care.

Air charged with a saline content soon corrodes away metal work not properly protected. Objects immersed in the sea itself, are subject to a great rate of corresion, this being accelerated by electrolysis acting between dissimilar metals that are touching or in very close proximity to one another.

Even painting the hull of a boat, and we are here concerned only with metal hulls, does not in itself guarantee an indefinite degree of protection, since any imperfections in the paintwork will allow the salt water to come in contact with the metal hull and begin its corrosive work.
wats riddled with holes, the existence of these not being known prior to the tests.

RESISTANCE METER

The detector is essentially a resistance meter that measures the resistance occurring via the pin hole, between the metal and a probe that is passed over the paint work.

This probe, connected to the input of the detector, consists of a length of broom handle to the end of which is clamped a piece of sponge material containing the search wire. In use, the sponge is soaked in water with the addition of a wetting agent. As the probe is passed over the paintwork, the water, its surface tension reduced by the wetting agent, flows into the pin holes and combines the circuit between the metal and the probe.

A PAINT PIN-HOLE DETECTOR

Visual inspection of the paintwork becomes at boring and laborious process, and will not reveal pin prick holes and hair line cracks that will permit the ingress of the sea water.

STANDARD COMPARISON

The device that forms the basis of the article is cheap, easy to build and use, and has proved to be of real usefulness. Accurate and reliable testing of such at device is difficult, since "standards" in the form of graduated pin holes in a given thickness of paint, on metal, are not available. One therefore has to resort to comparison with commercial pin hole detectors, and this was the standard used when evaluating the prototype.

The commercial detector utilised a radio frequency generator providing a low current output. at a voltage up to 25 kilovolts. The test piece was the metal partitioning in a block of offices, that visually appeared to be in very good condition. An area was marked off and tests commenced, the home made detector performing first.

The results were extremely pleasing as the commercial detector agreed with the home made detector every time.

It was a revelation to discover that the paintwork

CIRCUIT ACTION

The circuit of the detector is shown in Fig. 1, and will be saen to be very simple. Transistor TR 1 comprises the input stage, TR2 is a simple CR audio frequency oscillator, and TR3 is the output stage feading a 250 ohm magnetic carpiece.

Under normal circumstances, the batse of TRI will be floating, and only a small leakage current will flow from collector to emitter.

Whon TRI is cut off, the leakage current is insufficient to bias TR2 on and it will not oscillate. If the resistance between the base of TR1, and the positive supply line (between which the probe is connected) is such as to allow TR1 to pass sufficient current to bias TR2 on, it will oscillate and the earphone in TR3 collector will emit a whistle.

If the probe is short circuited, TRI will be tottomed, allowing approximately 8 V to appear between TR1 emitter and the negative line.

For this particular application, all we want is a noise to signify pin holes, we don't want $\mathrm{Hi}-\mathrm{Fi}$, so TR3 is a very primitive output stage which does provide a very lively whistle when the occasion arises.

The current drawn from a 9 V battery is very modest. 2.5 mA at quiescent, rising to 3.7 mA maximum with the probe short circuited.

CONSTRUCTION

The prototype was made up on a piece of plain $0 \cdot 1$ in pitch peg board, shown in Fig. 2. The compenents are inserted from one side, and the leads interconnected on the other side, sleeving being used where appropriate. Any plastic box with dimensions approximating 3 in $\times 3$ in $\times \frac{3}{4}$ in will provide a suitable housing.

Fer maximum sensitivity, the transistors should be as specified. Experiments have shown that TRI can be successfully replaced by a BC109C, and TR2/TR3 by either a BC109 or a BC108.

Depending on components used, R1 may require an alteration in value. With the prototype, a resistance value was found such that vigorous oscillation occurred with the probe short cireuited, with a still useful signal available when the probe was replaced

Fig. 2. Board assembly and wiring details
by a string of 10 megohm resistors in series providing a total value of 100 megohms. Construction ef the probe is simple as shown in Fig. 3.

When the prototype was completed and performing satisfactorily, the circuit board was isolated from the rest of the components and then encapsulated with a silicone rubber compound, so completely water-proofing it. This is very desirable, if not essential, in equipment that is used with water.

USING THE DETECTOR

In use, the positive line is clipped to the painted metal, ensuring a good electrical connection. The length of line required will clearly depend upon individual circumstances.
The probe is then dipped into a solution of water and wetting agent (a proper wetting agent is definitaly helpful and should be used whenever possible. The use of a saline additive does improve conductivity; however, it may get into holes and cracks and start the very corrosion we are trying to prevent, so its use is not recommended) and passed over the paintwork in slow regular sweeps. As soon as the probe's sponge loses its water it must be recharged.

A steady whistle will indicate a single pin hole, whilst a bleep or series of bleeps will indicate a singlo pin hole, or a whole colony of pin holes. The suspect

COMPONENTS . . .

Resistors			
RI	270 k	R4	4.7 k
R2	3.9 k	R5	560 k
R3 4.7 k			
all $10^{\circ}{ }^{\circ} \frac{1}{8} \mathrm{~W}$			

Capacitors
CI-C4 0.01 polyester (4 off)
Transistors
TRI, 2, 3 2N2926 green spot (3 off)

Earpiece

XI 250Ω Magnetic with socket

Miscellaneous

PLI, 2 Miniature plugs (2 off)
SKI, 2 Miniature sockets (2 off)
SI Single pole on/off slide
BYI 9V PF3
Plastics case 3 in $\times 2$ in $\times \frac{3}{4}$ in

Fig. 3. Probe assembly details

area is then circled with chalk-not grease pencils or "Chinagraphs". as these may show through when patinted over-for subsequent repainting.

SPURIOUS SIGNALS

As TRI base is, in effect, floating, it is possible for an electronic charge to build up between the base probe and adjacent components. This charge will cause random bleeps when the probe is used in the described manner, causing the operator to erroneously suspect the presence of non existent flaws in the paintwork.

A high value resistor, 10 megohms or so, connected between base and the negative line will prevent the building up of such static. This addition may lower the sensitivity though it should not be so low as to affect the detector's usefulness.

The prototype was designed to be slipped into an overall top pocket, with wires terminated in wander plugs permanently attached to the probe's broom handle. The case can be attached to the handle if required, providing a single composite assembly.

It was nice to renew a visual acquaintance at least of Ithe magnificent Willis concert organ in the auditorium of Alexandra Palace, the venue of the fifty-fifth Physics Exhibition held during the period April 19-22.

The setting provided by this 19th-century masterpiece well suits the academic and scientific tenor represented by universities, research establishments and industry.

Representation by these various factions provided a full hall of exhibits, the mrost conspicuous of all being the large central stand organised by the ltalian Federation of Scientific and Technical Associations and other bodies. Besides providing a showcase of current developments in instruments and apparatus, there was also a large selection devoted to the history of physics in ltaly with career cameos of some of the more distinguished physicists.
Of the exhibits, probably one of the most exciting was the Mullard Research Laboratory's demonstration of microwave television broadcasting using an intermediary satellite transmitter and standard colour television set for reception.
The implications of this are tremendous, as a satellite aerial 20,000 miles above the earth can cover a whole sub-continent.
Complex and expensive ground networks are not required which means that a developing country can be equipped with a service in a fraction of the time necessary to install a conventional television system.

For technical reasons. satellite television systems in advanced countries would probably use the frequency band 11.7 GHz to 12.7 GHz with either digital or frequency modulation. Commercial success would depend greatly on the availability of cheap, reliable microwave components.

A solid state digital clock with an unusually small readout display proved an arresting item of the Marconi stand. This indicated hours and minutes using four characters each of which consisted of seven tiny electroluminescent bars providing a total character size of 0.185 in by 0.125 in . (!)

An accompanying exhibit demonstrated the display capabilities of organic nematic crystal materials under the action of an electric field. Requiring only low power, six etched alpha-numeric characters made up on plates of conducting glass containing a thin film of liquid crystal material, were illuminated by a simple keyboard switching.

The advantages of these display elements are low running costs and good resolution and contrast under conditions of high ambient lighting. Perhaps in these materials, we will see the demise of advertising's neon jungles.

While these display examples represent the research of companies there was a great deal to be seen which will almost certainly be the object of commercial development.

Measurement devices always figure strongly at this exhibition, and this year proved no exception. In this department the Ministry of Defence showed a corrosion monitor for measurement of corrosion rates. Corrosion is a subject of very great technical importance that is still not fully understood and is the subject of research of a number of laboratories.
Every refinement in instrument technique pushes back the frontier of scientific ignorance and it is at this exhibition that this is most manifest.

PRACTICAL! visual! Nh Ah-

a new 4-way method of mastering 태르NRDMME by doing - and - seeing . . .

4 CARRY OUT OVER 40 EXPERIMENTS OṆ BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING

\author{

- VALVE EXPERIMENTS
 TRANSISTOR EXPERIMENTS
 - AMPLIFIERS
 - OSCILLATORS
 - SIGNAL TRACER
}

PHOTO ELECTRIC CIRCUIT	A.C. EXPERIMENTS
COMPUTER CIRCUIT	D.C. EXPERIMENTS
BASIC RADIO RECEIVER	SIMPLE COUNTER
ELECTRONIC SWITCH	TIME DELAY CIRCUIT
SIMPLE TRANSMITTER	SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^1]VOLTAGE TRANSFORMERS

VARIABLE
 36 Y 30 amp. a.c. or d.c. VARIABLE L.T. SUPPLY UNIT INPUT 220/240V a.s. OUTPUT
 CONTINUOUSLY VARIABLE $0-36 \mathrm{~V}$

INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V.

BRAND,NEW

Keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp from stock. from
SHROUDED TYPE

 $\begin{array}{llllll}12 & \mathrm{amp} & £ 21.00 & 15 & \mathrm{amp} \\ £ 25.00 . & 20 & \mathrm{amp}, & £ 37.00 . & 37.5\end{array}$

230v AC SOLENOID
Extremely powerful with
approx. 141b. pull, $]^{\prime \prime}$ travel. Fitted with mounting feet. Size: $4^{\prime \prime}$ long, $21^{\prime \prime}$ wide, ${ }^{3}$ Size: "long 27 " wide,
high. $£ 2.00$ incl. P. \& P.

230-250V SOLENOID

Mfg. by Westool, approx. Itib pull (similar in appearance to above illustration). Size of feet
if \times I A. Price 85 incl. Post.

MOTOROLA MAC II/6 PLSSTIC TRIAC 400 PIV. 8 AMP
Now available EX STOCK. Supplied With full data and applications sheet.
Price \&1-05. P. \& P. 7p
Suitable DIAC (RCA 40583) 30p each
BODINE TYPE N.C.I. GEARED MOTOR amp, $172 \cdot 00$. $50 \mathrm{amp}, 192 \cdot 00$ С C (OPEN TYPE (Panel Mounting) $\frac{1}{2}$ amp, 63.93.

amp, $55 \cdot 50$. $2 \frac{1}{2}$ amp, $26 \cdot 63$. Carr. 400 on open types

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation
EXPERIMENTERS' ECONOMY KIT
Speed adjustable I to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijunction
Xenon Tube and instructions \&6.30 plus 25p P. \& P. NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyristor HY-LYGHT STROBE MK III
This strobe has been designed and produced for use in large rooms, halls and the photographic field, and printed circuit for easy assembly, also a special trigger coil and output capacitor. Speed adjustable $0-30$ f.p.s. Light output approx. 4 joutes. Price $\mathbb{1} 12.00$. P. \& P. 50 p .
7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 53p. P. \& P. 13p or post paid with kits.

Superior Quality Preaision Made NEW POWER RHEOSTATS

100 WATT. 1 ohm, $10 \mathrm{~A} ; 5 \mathrm{ohm}, 4.7 A$; 10 ohm, 3A; $25 \mathrm{ohm}, 2 \mathrm{~A}$; $50 \mathrm{ohm}, 1.4 \mathrm{~A}$;

 50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$. All at
E1.12 \&ach. P. \& $11 p$. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$. All at 7ep
25 WATT. each, P. \& P.15p.

RELAYS SIEMENS, PLESSEY, Etc.

 MINIATURE RELAYS - COMPETITIVE PRICES| | 2 | 3 | | | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | 6-9 | 2 HD M | 50p | 700 | 12-24 | $2 \mathrm{c} / \mathrm{o}$ | 63D* |
| 185 | 6-12 | $2 \mathrm{c} / \mathrm{o}$ | 63p* | 700 | 15-35 | $2 \mathrm{c} / \mathrm{oHD}$ | $73 p^{*}$ |
| 185 | 6-12 | $4 \mathrm{c} / \mathrm{o}$ | 73p* | 700 | 16-24 | 6 M | 63p* |
| 230 | 9-18 | $2 \mathrm{c} / \mathrm{oHD}$ | 63p* | 1,250 | 24-36 | $4 \mathrm{c} / \mathrm{o}$ | $63 p^{*}$ |
| 230 | $9-12$ | $4 \mathrm{c} / \mathrm{o}$ | $78{ }^{\text {7 }}$ | 2,500 | $36-45$ | 6 M | $63 p^{*}$ |
| 280 | 9-12 | $2 \mathrm{c} / \mathrm{o}$ | $73{ }^{\text {P* }}$ | 2,400 | 30-48 | $4 \mathrm{c} / \mathrm{o}$ | 50p |
| 600 | 18-32 | $4 \mathrm{c} / \mathrm{o}$ | 780p* | 5,800 | 40-70 | $4 \mathrm{c} / \mathrm{o}$ | $63 p$ |
| 700 | 16-24 | 4M2B | $63{ }^{*}$ | 9,000 | 40-70 | $2 \mathrm{c} / \mathrm{o}$ | - |
| 700 | 16-24 | $4 \mathrm{c} / \mathrm{O}$ | 78p* | , 15 | 85-110 | 6M | * |
| (1) Coil ohms; (2) Working d.c. volts; (3) Contacts; (4) Price (HD) Heavy Duty. All Post Paid.
 *Including Base. | | | | | | | |

MAINS RELAY

230V a.c. coil 3 c/o. 10 amp a.c. contacts, 50p plus 8p P. \& P.

SERVICE TRADING CO
 All Mail Orders-Also Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON W4 5BB Phone OI-995 I560 SHOWROOM NOW OPEN MON.-FRI.
 Personal callers only. Open Saz. - LITTLE NEWPORT ST. LONDON WC2H 7JJ 01.4370576

NEW 1971 EDITION

RadIO AMATEUR'S

 HaNOBOOKBy A.R.R.L.
$\$ 2.60$
Postage 20p
T.V. TECHNICIAN'S BENCH MANUAL, by G. R. Wilding. $\mathbf{E 2} \cdot 50$. Postage lop.
20 SOLID STATE PROJECTS FOR THE CAR \& GARAGE, by R. M. Marston. $\mathbf{E l} \cdot \mathbf{2 0}$. Postage 5p.
PICK-UPS \& LOUDSPEAKERS, by John Earl. 63.' Postage IOp.
MAKING TRANSISTOR RADIOS A BEGINNER'S GUIDE, by R. H. Warring. flo5. Postage 5p.
TRANSISTOR CIRCUITS IN ELEC. TRONICS,' by S. S. Haykin \& R. Barrett 62.50. Postage 10p.

ABC'S OF FET'S, by Rufus P. Turner. El.25. Postage 5p.
TELEVISION SERVICING HAND. BOOK, by Gordon J. King. $\quad \mathbf{3} \mathbf{3 0}$. Postage 10 p
RADIO VALVE \& TRANSISTOR DATA, by A. M. Ball. 75 p. Postage 10 p.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-2| PRAED STREET

LONDON W2 INP

Phone: PADdington $4 / 85$
Closed Saturday I p.m.

THE RADIO SHOP

16 Cherry Lane, Bristol BSI 3NG Telephone: Bristol 42 II96 STD Code 0272

Your West Country shop for electronic
components and solid state devices
TTL IC'S SERIES T4N

Redidut
 A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

Tiresome and uneconomic

Sir-Replying to your comments regarding specialised components has been very difficult. I have tried to offer some constructive suggestions. First, however, I am thoroughly convinced that the onus lies with the various authors writing in your magazine and that your editorial staff should ensure that the specialised components needed for a particular circuit are available to the retail customer.

With respect, I would quote your small independent competitor, Radio Constructor, who for years have made a point of advising us in advance that such and such a transistor would be specified. Also we are informed of the approximate publication date and then lay on stock to meet the demand. I have repeatedly suggested this approach to you and to your staff.

1 dispute your suggestion that specialised components are not available to the retail public. For years we have supplied specials. However, I would state that this has been done as a service to the customer and has usually resulted in a thoroughly uneconomic transaction. In the last few days I have discussed this matter with several other suppliers of repute and we are all of the opinion that specials are a tiresome and uneconomic matter but which we put up with as a service.

I could go on to stress many examples of costings done on the economics of obtaining special parts for customers, but I think I have said enough on the subject to convince you.

In attempting to make a constructive suggestion, I have thought along the lines of charging a $\ddagger 1$ service charge for specials, but the fact is that the enthusiast of today is primarily experimenting for his own enjoyment and has a limited budget, and so such suggestions may not be a proposition.

My company is now distributing the products of Siemens, Newmarket, Marston Excelsior, Schauer semiconductors and many others. and we carry very much larger and extensive stocks of components than we offer for retail.

Our mail order operation has now been carefully examined and we are offering a wide range of popular components at competitive prices and with excellent delivery. and I know beyond any shadow of doubt, merely from the tremendous response of the last month or so, that this is what the customer really wants. We will continue to try and assist customers with specials and very probably continue to make a loss on those specials. However, it is very few companies who will be prepared to do the same.
P. F. Clarke,

LST Electronic Components Ltd., Brentwood, Essex.

Direct access

Sir-I was interested to read your editorial in the May edition of Practical Electronics where you discuss the problems encountered by the private constructor in obtaining direct access to components.

As you will no doubt realise from our advertisement in your magazine, we have started a mail order division which is specifically directed towards the requirements of the private constructor. Distronic Ltd. is an industrial distributor and a member of A.F.D.E.C. (Association of Franchised Distributors of Electronic Components). We are a very active industrial distributor and recognise the problems encountered by your readers. For this reason we are attempting to do something about it and are hopeful of being able to offer the same service to private individuals as we are currently offering to our industrial customers.

The products we are offering are all supplied by leading manufacturers under guarantee, and we are able to pass on to the private constructor some of the cost advantage we have gained by buying in bulk.

Looking forward to a long and fruitful association with your magazine.
M. H. Jacobs,

Distronic Ltd.,
Harlow, Essex.

Workuble solution

Sir-I have read the letters on the Readout page and also your editorial comment. As an active transmitting amateur I appreciate the problems facing your readers in obtaining specialised components, but the solution to this problem unfortunately lies with the distribution industry rather than the manufacturer. You will, 1 am sure, appreciate that it is quite impossible for a manufacturer to deal with individuals and in any case it is now usual practice for a minimum order charge to be levied to cover the high cost of order processing.

It would seem to me that the letter in your Readout page over the signature of Mr. A. Sproxton sets out a workable solution to the problem and 1 am sure that the usual distribution outlets will be quite willing to deal with such an organisation.
R. R. Adams.

Sales Manager,
Resistor Division,
Painton \& Co. Lid.

Nol all roses!

Sir-We would like to make the following points which we believe are not understood by people outside this trade.

Firstly, the amateur market in the United Kingdom has seen a drastic expansion for its size over the last two years and individuals who have no connections with this industry have proven to be ambitious and professional in their approach to construction.

The quest for improving quality seems never ending, and the number of specialised components required for projects are becoming numerous and more expensive.

The second and perhaps the most important point we would like to bring to your attention is the faot that the trade has no warning of the components which are to be used in the various projects each month and in the case of Practical Electronics, readers will have to wait two months before they can see an advertisement showing the special components they may require. Also none of the trade are consulted by the authors of the articles, as to the price and ease of availability of components used.

The sad fact of this is obviously to reduce the numbers of potential constructors and, therefore, make many of the articles which are produced purely an academic exercise.

Finally, referring both to the letter published in the magazine by the private individual referring to the inability to obtain I off, and your own comment, we must point

out that the costs involved both on the part of the manufacturers, or distributors and a concern such as ourselves, are somewhat prohibitive so that an article which would perhaps cost $£ 2$ to purchase would end up being sold by the retail customer at anything up to $£ 4$, if all concerned are to break even let alone make a profit. We believe that this is the major deterent to solving this problem in the manner suggested by your reader. However, we must commend his innovation to having personal order forms printed for the real enthusiasts.

Although this is an extremely long letter, it will only scratch the surface of the problem, but we hope that you will publish some of the content, so that the amateur enthusiasts will perhaps realise that all is not roses in this particular garden.
J. Marshall,
A. Marshall \& Son (London) Ltd.,

London, N.W.2.

Distribution set-up

Sir-I have read with interest your Editorial concerning specialised components as well as the letters from your readers and can well appreciate the problem of obtaining specialised components which are not normally available from the usual retail outlets for components.

We ourselves are Specialised Distributors of electronic components and from time to time, we do get private individuals approaching us to obtain components. Wherever we can, we do try and help them and since it is normally a cash with order transaction, there is no problem in supplying one or two offs to private people and I think you will find that this is not peculiar to ourselves and quite a number of Distributors are quite willing to operate this way.

The problem is, however, in the private individual locating a source of supply for the component that he wants, bearing in mind that at the present time there are well over 80 Distributors of electronic components in this country, many of them specialising in a narrow field of items. For instance, ourselves, we specialise in the supply of Electrolytic Capacitors and Wirewound Potentiometers as well as a number of other items and in the main, you will find that this is the
pattern of Distributors throughout the United Kingdom.

There are, of course, exceptions to these and there are quite a number of very large Distributors indeed who handle a very wide range of components but because of their size it might well prove difficult for the private individual to purchase from these larger Distributors. Hence it follows that a knowledge of the distribution set-up is necessary if the person is to locate a source of supply for the type of specialised component he is looking for.

Publications are available which list all the Accredited Electronic Component Distributors in the United Kingdom, showing their location, contacts and the range of components that they handle. Using such a publication the private individual should have no great difficulty in obtaining the particular component that he wants.
D. E. Clarke, Intercontinental Components, Maidenhead, Berks.

Customer relations

Sir-As you perhaps know, in general retail mail order a distributor carries a wide range of components in order that a customer may kit up his project in an order to one address. Certain projects require specialist components obtainable perhaps from only one source which is often indicated in an article. Thus in some cases two or perhaps three suppliers must be contacted. I feel that this situation must always exist since even mail order retail concerns such as mine must keep large quantities of "stock items" to be economical and satisfy the market and to keep small stocks of a wide range of items of uncertain demand is expensive on space, finance and organisation and results in an uncompetitive approach. I may say the problem is much more acute in industry where for a simple project several suppliers may have to be approached for good delivery of all components.
As a company we are quite prepared to order non-stock items from our normal suppliers for retail customers. In certain cases we advise against this and offer substitutes. There is a great problem here in that having ordered a component and given a delivery date as advised by the supplier, it is not uncommon to have the delivery date extended by three or even six months. This causes bad customer relations and although it is possible for us to forward cover our own stock several months ahead for known long delivery items, the retail customer is usually not prepared to suffer this inconvenience.

Until recently it has been our policy to offer components at a catalogue price and offer a discount to all customers, industrial and retail alike, the discount rate depending on order value. We have recently become industrial distributors or stockists for three companies and in addition to the discount arrangement we will be able to offer components at a lower (but net) price for quantities of the same item. This facility will be offered to retail customers on request. Thus we hope to extend our service and provide many i.tems formerly unobtainable.
D. A. Longland,

Electrovalue,
Englefield Green,
Egham, Surrey.

Your responsibility

Sir-Regarding your leader in the May issue, 1 think you also have some responsibility regarding the marketing of components.

I recently started building the equipment for the Integrated Circuit Tape Recorder in the January 1968 issue, having had the deck for some time. I now have all the parts except the oscillator pot core, type LA2103. I visited a number of shops in London, and no-one can tell me where this can be obtained. Being retired I do not now have access to the information that might help me to use other cores in my possession.

If we cannot get components to build the equipment described in your magazine, there is little reason to buy your magazine.
H. Boys,

Weedon, Northampton.

Mysiery of the Ferrites

Sir-With reference to your Editorial in the May 1971 issue, I am at present constructing the "P.E. Gemini", amplifier and having great difficulty in obtaining the ferrite components for it (FX2239 pot cores and DT2178 formers).
During the past year I have built a colour T.V. set from articles in another journal, and had the same difficulty in obtaining the many ferrite components for this, but after much phoning and letter writing 1 managed to obtain the parts from a number of suppliers. I have referred to these suppliers for components for the "P.E. Gemini" but with no success. Eventually, I phoned Mullard Lid. direct for assistance and was given a list of local distributors, I then got in touch with some of these and was told they could not trade directly with the public, and I would have to place my order with one of their retailers. When I called at the

1,000,000

NPN-PNP PLASTIC AND TRANSISTORS METAL CAN TYPES
Clearance of manufacturers' seconds, selected in types and guaranteed no open or short circuit manufacturers, schools and colleges
TYPE STNIB. Silicon Planar Transistors npn TO-18 Metal Can Types similar to: 2N706, 2N2220, BSY27-95A, BSX4-7 Price: $50069,1,000 \in 15$ TO-18 Metal Can. Types similar to: BCY70-72. 2 N2906-7. 2 N2411 and BC 186-7. Also used as complementary to the above non type device type
STNIE. TYPE STNL. 5iticon Plaseic Epitaxial Planar Transistors TO-92 case i.C. $200 \mathrm{~mA}, 300 \mathrm{~mW}$ types similar to. NPN2N2926-2N2711-2N3391-2N3707-2N3711-8C167-8-9.

Price: $500<7 \mathbf{5 0}$; 1,000 613 types $2 N 5354-56$, 2 2n $405 B-2 N 4061$ and $2 N 3702-3$. Also used as complimentary to the above npn devices type STNL.

Price: 500 67.50; $1.000<13$ TYPE STNK. 5ilicon Planar Plastic Transistor npn with TO-18 pin circular lead configuration, $1 . \mathrm{C}$.
$200 \mathrm{~mA}, 300 \mathrm{~mW}$ and similar to BC $107-8-9, \mathrm{BC} 170$. BC173, BC182-184, BC237-8-9 and BC337-8

When ordering, please seate type required STNK or STNIB, please state type required. i.e.,

1,000,000 transistors FOR SALE

Clearance of pnp Silicon Transistors from the 25300 (TO-5) and 25320 (SO-2) range series. Ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Approximate count by weight: 100 off- 75 p (plus p. \& p. 10p) 300 off- 1.75 (plus p. \& p. 15p) 500 off -62.50 (plus p. \& p. $17 \frac{1}{3}$ p) 1.000 off- $\mathbf{~} 4$ (plus p. \& p. 25p) 10,000 off- $\mathbf{3 5}$ (plus p. \& p. 55p)
Large quancities quoted for on request.
DOORLRALY SALES POBOX5,WARE,HERTS Full Money-Back Guarantee
postage a packing 7 p

10 MILLION DIODES

Silicon or Germanium

200	$50 p$	10,000	$£ 10.00$
1,000	$£ 2.00$	50,000	$£ 30.00$
5,000	$£ 7.00$	100,000	$£ 50.00$

2,000,000 SILICON

 PLANAR TRANSISTORSTOI8 P.N.P. (in. N. TYPES

100	$£ 1.50$	10,000	$£ 90.00$
500	$£ 6.00$	50,000	$£ 400.00$
000	$£ 10.00$	100,000	$£ 625.00$

LINEAR INTEGRATED CIRCUIT 709/PC S.G.S.

TP-5 can 8 lead. Full specification high gain Operational Amplifier data supplied. Lowest ever price.

QUANTITY; 1.9, 10-24, 25-99, 100-999, $1,000+$

PRICE EACH: 37p, 34p, 30p, 25p.

INVERTER UNITS

Transistorised for working fuorescent lighting fron 12y or "4V car batteries, For caravan lighting, mubile displayg, ctc. He have \bar{t} types all at about half list price. Type No. 126128. This is for working 3 miniature steel case. Size: $10 \mathrm{in} \times 2$ in $\times 2 \mathrm{in}$ with ermnection diagram. Price 54.25 .
Type No. 128328 for working one $\geq f t: 0$ watt tube from lev battery, this is on a metal plate whieh cant also be used to hold the fube (using Terry clips). Price 23.50 .
Type No. 128481 same as 126328 except that it works off 24 V battery, Price $\mathbf{5 4} 50$.
for ?lin tulue of way Price 83.75 exper that it is Type No, 58814 for wurking un to if
$6{ }^{6}$ tubes fron 245° in pressed steel casc: size: loin \times "lin $\times 2 i n$ with connection diagrant. Price $\mathbf{8 6}=50$.
Type Mo. 58801 for working une 2 ft 20 W tube oft 24y battery. This is in a pressed stetl case. Type No. YB. This is a big 24V unit. It weighs about 60 lb and measures $24 \mathrm{in} \times 8 \mathrm{in} \times$ in approx. Mulard 0 og enough to light a bus. It uses -24 V d.c. and the output $2.20 / 240 \mathrm{~V}$ a.c. p'rice 280

TELESCOPIC

AERIAL
ted-six sections, extends from ew. 38 p KNICKLED MODEL FOR F.M. 50p.

QUICK CUPPA
Mini Immersion Heatel, 3 30 W , two minutes, Use any in about lamp holder. Have at bedside fur ea, baby's food, etc. 21.25, pos E1. 50 plus 14 p P. \& P .
THYRISTOR LIGHT DIMMERS
W'ill dim incandezcent lighting up to 600 W from full brilliance to out. Assembled and wiret ready to install, 23. COMPUTER TAPE -h00ft of the best nagnetic unbreakable and on a metal computer spuol. L'sers have
 claimed successful results with
 itco as well as sounl recordinge. 1" wide 81 "88p
60 p extra. Cassette to hold spool 50 p cxtra. No. No - 12 VOLT I: AMP 12 VOLT I: AMP POWER PACK wound $230 / 240 \mathrm{y}$ mains transformer with full wave amoothing. Price $£ 1.50$ plus $\because 0 \mathrm{p}$ P. \&P.
DRILL CONTROLLER NEW IKW MODEL
 Electronically changes speed from approxi-
mately 10 reve to maximunn. Fuli power at control. Kit includes alt parts, case, everything and 13 p post and insurance. ble, $£ 1.90$ mins 13 p post avail
3 STAGE PERMEABILITY TUNER This Tuner Is a precision instru-
 "Cyldon" Company for the equally famous Hadiomobile Car Radio. It is a medium wave tuner (but set of longwave coils, arailable as ant cxtra if rc quired) with a frequency age $1,620 \mathrm{kc} / \mathrm{s}-5 \mathrm{D}=\mathrm{kc} / \mathrm{s}$ and
intended to operate with an I.F. value if $470 \mathrm{kc} / \mathrm{m}$. Extremely compact (size only $2_{1}^{2} \times \because \times$ in thick) with reduction gear for fine ffront end suitable for car ralio or as a general burpose thace for use B -ith Amplifier. Post Free. MAINS TRANSISTOR POWERPACK gesigned to operate transistor sets and amplifers. Cljustable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ for up to $\mathbf{3 0 0 \mathrm { m }} \mathrm{d}$ (class B working). Takes the place of any of the
following batteries: PP1, PP3, PP4, PP6, PP following batteries: PP1, PP3, PP4, PP6, PP ${ }^{-}$, PP0, and others. Kit compyises: mains trans. condensers and instructions, Real knin at only 83p, plus 18 p postage.
MICRO SWITCH
A changeover contacts, 9 p each changeover 15 p .

TOGGLE SWITCH 3 A aj0V with fixing ring 0.005 mF F TUNING CONDENSER Proved design, ideal for straight, or reflex
13p eách, $£ 1.90$ dozen.

OUT OF SEASON BARGAIN TANGENTIAL HEATER UNITS

This heater unit is the rery latest tybe, most efficient, and quiet runing. Is as fitted in hoover and blower heaters costing tib and
more. We have a few only. Comprises motor, impeller, and two elements allowing 3 heat switching and with thermal safety cot out. - Can be fitterl into any metal line line case or cabinet. Only need control switch. 3 kW model $83 \cdot 50$; 2 kW model 82.50 .
Postageand insurance 40 p . Control switch 3 Jp .

THERMOSTAT WITH PROBE

tis lenge sensor attached to a 15 A switel by a range is $20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ capilary it is suitable to control soil heating and liquid heating eapecially when in buckets or portable vessels as the sensor can be raiserl out and lowered into the vessel. This thermostat could also be used to sound a bell or stack or heap subject to spontaneous reached in or if liquid is being to spoted byeous combustion not contrullable by the switch. Made by the femous Tedlington cor we offer hese at 850 each Poutsge and inguranee 141 a 20 AMP ELECTRICAL PROGRAMMER Learn in your sleep: Have Radio playing and kettle boiling as you awake-switch-on lights to waril off liese and many other things you can do if you invest in an Electrical Programmer. Made by the famous
 Hniths Instrument Company. This is essentially $230 / 240 \mathrm{~V}$ mains operated Clock and a 20 A Switch, the switch-uff time of which can be lelayed up to 12 hours (continuously variable not stepped). Sinuilarly the Witch-on tinie can be delayed. This is a beautiful unit, size $\Sigma_{i}^{3} \times 3^{3} \times 2$ in Heep. Metal encased, glass fron

Miniature precision switches with 1" cia. moukled waters. Silver plated zamp contactu, standard!" spindie.							$0 \text { way } 10 \text { way } 12 \text { way }$		
No. of Pole	2 way	3 way	4 way	5 way	6 way	8 way			
1 pole	60p	60p	60D	${ }^{60 p}$	60p	60p	80 p	60p	60p
\because poles	60p	60p	60 p	80 p	60p	60p	60p	11	11
3 poles	60p	60 D	60 p	60 p	21	21	21	21.40	81.40
\pm poles	60 p	80 p	60 p	$\underline{1}$	11	21	11	21.80	21.80
\therefore poles	60p	601	E1	21	21.40	21.40	21.40	22.20	24.20
${ }_{5} \mathrm{i}$ poles	60 p	e11	E1	81	\&1.40	21.40	\$1.40	22.60	28.60
7 poles	60p	E1	E1	£1.40	21.80	21.80	21.80		
${ }^{8}$ poles	21	21	¢1	£1-40	\&1.80	11.80	81.80		
9 poles	\$1	81	$\underline{11}$	\$1.40	22.20	22.20	22.20		1
10 poles	81	\%1	11.40	\$1.80	22.20	22.20	28.20		,
j1 poles	\&1	21.40 $\$ 1.40$	1.40 $\$ 1.40$	21.80 21.80	42.60 22. 60	22.60 ¢2.60	22.60 22. 60		

AUTO-ELECTRIC CAR AERIAL

With dayhboard colitrol switch-fully extentable to 40 in or fully retractable. Suitable for 12y positive or negative earth. Supplici switch. 26 phas $2 . j n$ post and insurance.

24-HOUR TIME SWITCH

Made by 8 mithy these are AC mains operated, NOT ('LOCKWOKK. lucal fin' inomiting on rack or shelf or can be built into box with 13A socket. $\because 2$ completely adjustable time periotls per 24 hours, $\bar{J}-1$ changeover contacty will suiteh circuit on or of during these perious. E2-50, post and ins. "3p. Alditional time

THE FULL-FI STEREO SIX

he amplifier sensation of the year fullness of reproduction and at the added qualities your
records or tuner winl re produce. Built into metal $\begin{array}{ll}\text { cabinet } & \text { elegantly } \\ \text { and teak fled } \\ \text { finished to blend }\end{array}$ ategraten solid state cirult with all output power of 6 W R.M. 8 split over the two channels. The amplifier is ideal for use with normal pick-ups and tuner, it has a double wound mains transformer and ganged volume and tone controlsaso switching for Mono to steren, tuner or piek.up. Other controls inclucte 'treble lift and eut", "balance" and scparate mains onfoff suitch. Price i

MICROSONIC KEYCHAIN RADIO

transistor Key chain Radio hn very pretty soft leather zipped bag. 7 transistors, errite rod loutspeaker. In transit from the East these sets sufferet corrosion as the batteries were left in thent but when this corrosion is cleared away they shouht work-offered without price only except that they are new insurance less batieries 13 por 87 post charger 85p.

SPARTAN Portable Loug and mDIO
Loug and medium wave transintor, size bin x
tin $x 1_{\text {in }}^{\text {in }}$ with larger
than usual speaker giving very good tone. Built-in ferrite aerial and tele. scopic aerial for distant complete with leather and case. 23.75 phus $2 \overline{5 p}$ post and insurance.

15/20 AMP CONNECTORS Pulythene
81.20 tozen

REED SWITCHES

cilass encated, switches operated by external 3 types:
Miniature lim long x approximately in diameter. Will make and break up $10: 111,103000^{\circ}$ Price 18p cach, 21.20 dozen.
stendard. Lin long $x{ }^{3} \mathrm{in}$ in dialleter. This will break currents of up to 1 A , roltages up to 2 Jov . Plat. Flat trpe , in toug iust
plat. Flat type, 2in long, just over 1 in thick, flatteled out, so that it can be fitted into a
sinaller space or a larger quantity may be packed into a square solenvid. Rating 1 A 200V. Price $30 \mathrm{p} \mathrm{each}, \pm 3$ per dozen.
small ceramic magnets to operate these reed
 Midget Output Transformer
Ratio 140:1. Size approx.
lin $\times \sin \times$ in, impedance 450Ω. Connection by flying leads. 88p cach, Midget Output Transformer
$\begin{array}{lll}\text { Ratio } 80: 1 . & \text { size } \\ 1 \text { appros. } \\ l & \text { lin } \times \text { fin. } & \text { Primary }\end{array}$ lim \times lin \times in.
impedance $13: \Omega$
circuit board Ω $\begin{gathered}\text { Primary } \\ \text { Printel } \\ \text { connection. }\end{gathered}$ 28p each, 28 dozen. IGNITION (E,H,T.) TRANSFORMER Made by Parmeko Ltd. Primary tetov, 50 c.p.s. Secondary $5 k V$ at 23 mLA . Fize approx. 41 in \times
$3!$ in $\times 2$ in thick. Price $21.50+23 \mathrm{p}$ postage. PAPST MOTORS Est. $1 / 40$ th h.p. Made
for $110-120 \mathrm{~V}$ Working but two of these work, ideally together of our 1 really beautiful moins. cxtremely quiet rumning and reversible, $\quad \$ 1.50$
 each. Postage one 23 p ,

LIGHT CELL

Almioat zero resistallt in sultlight, increases to $10 \mathrm{k} \Omega$ resin sealed. size approx. jin dia, by in thick. Rated at 500 MW wire ehulel, 43 p . Nuit moat
circuits.

CONSTRUCTORS' PARCEL

1. Plessey miniature 2 -gang tuning condenser with built-in trimmers and wave gang suitch. : , Ferrite slab aerial with coils to stit the above tuning condenser. 3. Circuit diagran giving all eomponent values for 6 -transist or circuit covering Radio 2. The three items for only 40 p which is halif of the price of the tuning condenser alone MAINS OPERATED CONTACTOR $20 / 2400^{\prime}, 20$ eycle solenohl ilent in operation so very irenits operation. Closes 4 Extremely well made by a ierman Electrical Company.
 leans the air at the rate of 10,000 cubic it 1 er hour. Compact, Jinin casing uith motor, fan blailes sheet stcel casing, pull switch, mains connector and fixing brackets. 22 plus 36 p post and ins.

MINIATURE
WAFER SWITCHES
\because pole, \because way- 4 puld, 2 way3 pole, 3 way-4 pole, 3 way al © way-1 pole, 12 way. All at 18p

A New Service to Readers. I bulletin bringing hews of new lines, special snips and "too few to advertise " lines will be posted to subscribers during first week of each month. The bulletin will be tion is 60 p per year. Subseribers will also receite tion is 60p per year. Subscribers will also receive purblished.

> Where poatage is not stated then orders over $£ \mathbf{j}$ are post free. Below \& 5 add 20p. Semiconductors add up post. Over \&1 post free. G.A.E. with inquiries please.

J. BULL (ELECTRICAL) LTD.
 Dept P.E., 7 Park Street, Croydon, CRO IYD

 Callers to Electronics (Croydon) Ltd., 102/3 Tamworth Rd., Croydon
retailers 1 was told, "Sorry, we do not sell spares". So back to where 1 started. 1 would be very grateful to you if you could inform me where these items may be obtained.

Whilst writing, I would like to mention that it would have been of assistance if you had stated in the components list where one could obtain such special items as the pot cores, 6 -pole 5 -way switch, etc. instead of resistors, capacitors and transistors, as these form the basic component stock of most retailers anyway.

In conclusion, I agree with your view that it is almost impossible to obtain special components. I can say that I have been deterred from embarking on some of the projects in the magazine for this reason.
A. J. Sanders,

Woking. Surrey.
You should be able to obtain all the Mullard Ferrox components for "P.E. Gemini" from Home Radio Ltd, Mitcham. The switches referred to were quoted as Maka types and are also available from Home Radio.

No-one wants my order!

Sir-Since "Radiospares", often mentioned as a source of components, supply only trade, those people who are not in the trade can have great difficulty in obtaining such components.

For example, one of the transformers used in the "Digi-Clock" is quoted as available from them, and so far 1 have found nowhere else which will sell this type.

Moreover, since many places will not take single orders, I cannot order through them from "Radiospares". and I have therefore found it impossible to obtain such a transformer.
Can you suggest any remedy to the situation?
This problem does not only apply to the clock, but also to many other articles.
M. Easterfield, London, N.W.11.

Makers' numes

Sir-Interest in your magazine has led me to try my hand at building some of the projects therein. As 1 am in a strange town and have difficulty in finding the parts, would you please let me know where I may get the kits specified in your projects. I am particularly
interested in the "Digi-Clock" project at the moment and would like that kit first. From that, of course, will lead many other efforts, and I hope with success.

In your components list I see several addresses bracketed (). Does this mean that these components may be got only from these people? e.g. Nixie numerical indicators (Electroniques (S.T.C.) Ltd., Edinburgh Way, Harlow, Essex) or (Midget Mains 250 V by Radiospares). Of Radiospares I could find no address and this is what led to the questions.

Thank you for a very interesting magazine, and may all your projects be successful.

> F. Lewis,

Chaddesden, Derby.

Any type of Dekatron or digital number tubes can be used, some of which are available through Henry's Radio, etc. or Z \& I Aero Services, 44 Westbourne Grove, London, W. 2.

Radiospares do not supply direct to private individuals. Their full range of components is however available to any bona fide retailer or distributor.

"Most advanced" is now " phased out"

Sir-The receipt of my May 1971 copy of Practical Electronics. containing the editorial entitled "Specialised Components" coincided with a letter from ITT Components Group, Europe, regarding the firm Electroniques of Harlow, Essex.

1 had written to Electroniques regarding certain components specified for the "Transistor D.C. Multimeter", appearing in the June, July and August 1970 issues. Presumably, the supply source of the components in question has been quoted since these were considered "specialised components":

The reply, obviously duplicated. stated simply that the Electroniques operation was being phased out and the components were obsolete. In view of this; the sales depaftment of ITT at Harlow regretted that they were unable to assist.

At the bottom of the letter was the cryptic advertisement, "Europe's most advanced distributor, ITT Electronics Services".

This, I feel, is a rather unfortunate example of, to quote, the editorial: "Industrial component distributors by and large are not favourably disposed towards dealings with private individuals".

In view of this experience I wonder if you could help me with the names of distributors from whom I could obtain the following requirements for the project (not all stated as having been available from the now defunct Electroniques): Miniature Mains Transformer. Primary 0-220/240V, Secondary $12-0-12 \mathrm{~V} \quad 40 \mathrm{~mA}$ (Electroniques
type P9005). 1 mA f.s.d. B.P.L. type S40.V1 moving coil meter. 6 in x 4 in $\times \frac{1}{8}$ in Bakelite, 6 in \times Sin \times ${ }^{\prime}$ I; in Bakelite.
I hope that you are interested in my comments and are able to help with the components.
S. R. Fisher. Ongar, Essex.
We have had no official notification from Electroniques concerning their intention to cease trading. This information has come to us via readers! Some early warning from this company of their intention to "phase out"' the supply of components to private individuals would have enabled us to obviate these current problems, by ceasing to mention Electroniques as a source of supply for various items.

Transformer available from G. W. Smith \& Co (Radio) Ltd.-Eagle type MTI2 240 V primary, $12-0-12 \mathrm{~V}, 50 \mathrm{~mA}$ secondary.

The meter was originally available from Electroniques, but now the SEW type MR-65p from G. W. Smith \& Co will have to be used.

The s.r.b.p. panels should be available from most component stockists.

WANTED:

A reward is offered for information leading to the arrest of Eddy Current, charged with the induction of an 18 -year-old coil named Milli Henry found induced, half choked and robbed of caluable joules.

This unrectified criminal armed with a ferrite rod, escaped from Weston Primary Cell, where he had been clupped in ions since Faraday.

With an erg to be free, his escape was carefully planned in three phases. First, he fused the electrolytes, then he climbed through a grid despite the impedance of the warders whose reactance was too slow. Finally, he went to earth in a magnetic field.

What seems most likely is that he stole an a.c. motor. This is of low capacity, and he is expected to try to change it for a megacycle, and return by a short circuit to ohm. He may offer series resistance and is a potential killer.
A. C. Maynes- Humm,

Sheriff.

ASTRONOMY TEERMOUE
 BY F.W.HYDE• PARTE

THE simplest radio telescope consisting of aerial, receiver, and recorder is known as a "total power" instrument. It is so named because all the energy received by the aerial is continuously recorded. If the aerial is fixed the result on the recorder will be a "drift curve". That is to say the rotation of the earth will carry the aerial across the sky and record the successive changes in level.

If the aerial is, say, a simple full wave dipole with a reflector pointed up into the sky at an angle of 45 degrees then the two powerful sources of radiation Cygnus A and Cassiopeia will be recorded as humps against the normal background of galactic radiation.
(Cygnus A is part of a nebula sometimes called the Veil Nebula. It is an almost circular streamer of gas about 3 degrees across, and has a high level of radiation extending over a range of frequencies from 100 MHz to $1,200 \mathrm{MHz}$. Cassiopeia A is also the remnants of a nebulae and was discovered by F. Graham-Smith. It is thought that these are the remnants of a super nova, parts of it are stationary and parts moving at very high speeds. From calculations of the small moving parts of cloud it would suggest that it actually was a star which exploded about 1702.)

The background galactic radiation shows a gradual rise and fall over the normal 24 hour period. It was this particular variation and its
diurnal change that led Jansky, the pioneer in this branch of astronomy, to make this statement ". . . in conclusion, data have been presented which show the existence of electromagnetic waves in the earth's atmosphere which apparently come from a direction fixed in space. The data obtained give for the coordinates of this direction a right ascension of 18 hours and a declination of 10 degrees."

A TYPICAL RECORDING

A recording made with the simple, fixed aerial described above connected to a pre-amplifier with a gain of 16 dB , a CR 100 communications receiver and a Recoord pen recorder is shown in Fig. 2.1. Because it was recorded over a period too long to permit the whole recording to be displayed it has been con-certina-ed in sections. The rise of the background can be clearly seen together with the high power sources as the earth sweeps the beam of the aerial across the sky.

With such a simple low power system only the very few really powerful sources can be recorded and even then there may be smaller sources also making up the level but which cannot be resolved. The sun will show up very well and an example is shown in Fig. 2.2.

The frequency at which these records were made was 27.5 MHz .
If the collecting area of the aerial was increased, then there would be an increase in signal level, a narrowing of the aerial beam, and therefore an improvement in resolution. However, this is not the method usually adopted nowadays unless there is a special reason for large areas of collection. Better resolution can be achieved by other means, such as interferometry, which will be described later.

COMPARISON METHOD

One method adopted to overcome the inherent receiver noise, and so improve the sensitivity, is to

The most accurate pocket size CALCULATOR

in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 4.25$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE5)
54 Dundonald Road, London, S.W. 19

booklet on bequest

compare the incoming signal with a standard level of noise produced electronically by a "noise source."

The earliest form of receiver employed for the comparison method was due to Dicke and is known generally as the Dicke system. The receiver is continuously switched between the aerial system and a "noise source". The latter can be a diode valve or semiconductor. The important requirement is the stability of the noise source, since it is the standard or comparison source with which the aerial output is compared.

The Dicke system is shown in the block diagram Fig. 2.3. In (a) is shown the detected levels of $T_{r}+$ T_{a} (receiver noise plus the aerial noise) and $T_{r}+T_{o}$ (receiver noise plus standard source noise) after the detector and before amplification. In (b) is shown the amplitude after the signals passed through the amplifier which is tuned to the same frequency as that of the switching unit. At this point it is an alternating signal. To bring it to a standard level the output of the amplifier is also switched at the same frequency as the switch. The synchronous switching then brings the two signals into phase and thus the two levels show as a varying signal because the standard level is constant but the input from the aerial varies, as shown in (c).

The final trace on the chart will not of course show the divisions as in the diagram (c) which have been exaggerated to make the method clear. The
frequency of the switch is high enough so that a regular change of level appears on the slowly moving pen recorder. The signal level may vary about the level of the standard noise. If the switch frequency is $1,000 \mathrm{~Hz}$ then the intervals shown in the diagram will represent $1 / 1,000$ of a second.

In this system the aerial is connected to the receiver for only half the period and this is an obvious disadvantage. On account of this, such a system is not widely used.

A modification to the Dicke system devised by Graham helps to restore the lost time by using a double receiver. A block diagram for this system is shown in Fig. 2.4.

RYLE AND VONBERG MODIFICATION

A further modification of the comparison receiver is that due to Ryle and Vonberg. This is based on the Dicke principle of using a noise source for calibration.

In this modification the receiver is switched between the aerial and the calibrating noise source in such a way that the difference signal which appears in the output of the receiver is amplified and controls the noise source so that it is always equal to the input to the receiver. Since this is a varying signal this variation can be recorded. The changing level of the radiation that the aerial collects will thus

Fig. 2.I. A recording of galactic background made with a simple radio telescope
 incoming signals with a standard noise source

Fig. 2.4. The Graham receiving system, which employs a double receiver

FIg. 2.7. A simple two-aerial interferometer

Fig. 2.5. Ryle and Vonberg modification of Dicke system

Fig. 2.6. Cliff interferometer, the sed provides a mirror image of the real aerial
be followed by the recorder. This system also reduces the problems of stability particularly in the receiver. A block diagram of this system is shown in Fig. 2.5.

LARGE DISH AERIALS

The large parabolic "dish" aerials have enormous collecting areas, and at high frequencies can achieve a very high degree of resolution. For example, the 250 ft dish at Jodrell Bank when used at a frequency of $1,425 \mathrm{MHz}$ has a beamwidth of about 15 seconds of arc, so that two sources at a separation of, say, 25 seconds of arc would be easily distinguished. However, at a frequency of 300 MHz , two sources would have to be more than 45 minutes of are apart before they could be resolved.

This emphasises what has been said previously about the type of aerial system used: it depends essentially upon the nature of the project.

INTERFEROMETERS

High resolution and increased sensitivity can be obtained by using aerials as interferometers. There are two principal methods used: one is similar in operation to that of the Lloyd's mirror interferometer used in optical work, and the second is equivalent to the Michelson optical interferometer.

The Lloyd's mirror equivalent was devised by McCready, Payne-Scott and Pawsey of Australia. In this arrangement the sea took the place of the mirror for the aerial system was mounted on a cliff overlooking the sea. Thus a single aerial system was all that was necessary for the application of this ingenious experiment. It does, of course, have limitations in that it is suitable for use with sources rising above the horizon to the zenith only.

The cliff interferometer system is shown in the diagram Fig. 2.6. The wave front is intercepted by the sea at the same time that the aerial receives a direct wave. The intercepted wave is reflected from the sea to the aerial but by reason of the longer path of travel there is a difference in phase or time of arrival. The aerial therefore will be subject to additions or subtractions of signal level according to variations of the phase. This means that the receiver will measure a signal increasing or decreasing in power as the changes of phase occur with rising of the source above the horizon and through the beam of the aerial.

armstriong - teleton - connoisseur - koss - apollo - shure - gelestion

SME - LOWTHER - SINCLAIR•FERROGBAPH • STE-MA • THORENS • BBYAN •PHILIPS• KEF GTE WHY PAY MORE? ALL GOODS ARE BRAND NEW \& FULLY GUARANTEED FOR 12 MONTHS

SUPERB PLINTHS AND COVERS as illustrated (£3-50

STEREO AMPLIFIERS p.p. $\mathbf{4 1 . 0 0}$	
ARMSTRONG S21.............	642.99
AMSTRAD 8000	617.99
H.L. SA707 ${ }^{\text {TELETON }}$ SAOOO	19.90 618.95
VICEROY AS70..	442.00
VICEROY 55	\$18.00
SANSUI in stock	
METROSOUND ST20	626.00
SINCLAIR 2000.................	623.50
SINCLAIR 3000	¢ 35.00
SINCLAIR NEOTERIC	646.00
SINCLAIR A.F.U.	14.75
SINCLAIR S60 $\times 2 \mathrm{Z} 30 / \mathrm{PZ5}$	¢16.50
	19.00
Mains trans.	625.00
TUNER AMPLIFIERS P.D. El 1.00	
ARMSTRONG 526	c82.00
ARMSTRONG 52 S	E72.00
TELETON TFS50	\$54.00
TELETON CRIOT with speakers	629.00
TELETON F2000	£32.00
WHARFEDALE 100	¢115.00
PHILIPS RH781	653.00
GOODMANS MODULE 80	474.00
TELETON 7ATI	¢80.00
TELETON CRS5	¢88.00
TELETON R8000 with speakers. .	¢ 38.00
TUNERS P.p. 75 p	
ARMSTRONG M8	67.75
ARMSTRONG 523	642.00
ARMSTRONG 524	E33.00
TELETON GTIO1	634.00
TELETON STQ204X	640.00
SINCLAIR Pro 60 RAVENOBOUOM	621.50
FET2 Chassis 	¢48.00

TURNTABLES P.p. 75p GARRARD 2025TC with Sonatone 9TAHC cartridge	c9.00
GARRARD 408 with Sonatone	
TAHC cart	¢11.50
GARRARD A70 Mk. II	¢11.00
GARRARD SP25 Mk. II	C11.00
GARRARD SL65B	613.50
GARRARD AP76	119.00
GARRARD SL75B	627.00
GARRARD SL95B	636.00
GARRARD 401	$\underline{27.50}$
B.S.R.MP60	f11.75
Goldring GL7S with Plinth and Cover	
Thorens TDISOAB Mk. II	643.00

PICK-UP ARMS p.p. 4Sp	
SME 3009/S2	626.50
SME 3012/52	628.00
GOLDRING L75	610.00
GOLDRING L69	68.00
AUDIO TECHNICA ATIOOS	616.25

Suitable for Garrard AT60, SP25, 2000, 2500, 3000, 3500, $5100,2025,1025$, SL65B and B.S.R. McDonald range
Superbly finished plinth, ready cut for use (fully assembled). Complete with tinted perspex cover. This unit finished in Teak polish and will blend in any home. Please state deck

COMPLETE GARRARD SP25 MK. III GOLDRING G800H SUPERB PLINTH AND COVER £17-50 p.p. £1

VISIT OUR 3 STOREY WAREHOUSE PACKED WITH HI-FI \& STEREO EQUIPMENT. I000's OF ITEMS ALWAYS AVAILABLE TO SELECT FROM.

2 SHOWROOMS DEYOTED TO DEMONSTRATING SPECIALLY SELECTED SYSTEMS.

TAPE RECORDERS \& TAPE DECKS P. \& P. 75p FERRGGRAPH 722
FERROGRAPH 742
6195
6195
FERROGRAPH 702…................................ FERRCGRAPH 704/W 4 track tape deck 1772 PHILIPS 44044 track Stereo Recorder 172 PHILIPS 44074 track Stereo Recorder PHILIPS N4308
PHILIPS 4302 Twin track auto
PHILIPS 43074 track
PHILIPS N4404 4 track stereo
TELETON FXB 5IOD 4 track stereo
PHILIP5 45004 track stereo tape deck.
PHILIPS RH882

```
CARTRIDGES p.p. 25p
```

CARTRIDGES p.p. 25p
GOLDRING G850
GOLDRING G850
GOLDRING G800H
GOLDRING G800H
GOLDRING G800,
GOLDRING G800,
GOLDRING G800/E.
GOLDRING G800/E.
SHURE M30
SHURE M30
SHURE M44/5/7iC
SHURE M44/5/7iC
SHURE M55E
SHURE M55E
SHURE M75E
SHURE M75E
SHURE VI5 type 2
SHURE VI5 type 2
SHURE 44E
SHURE 44E
SHURE 3IE
SHURE 3IE
SHURE 32E SOOMOCD
SHURE 32E SOOMOCD
SONATONE 9TAHCD
SONATONE 9TAHCD
SCOOP BUY
SCOOP BUY
MCI-5 HIGH FIDELITYSTEREO
MCI-5 HIGH FIDELITYSTEREO
PRICE: E6.00.

```
PRICE: E6.00.
```


SPECIAL OFFER ON MATCHED SYSTEMS

AMSTRAD 8000
GARRARD SP25 Mk. III OLDRING GBOOH APOB PLINTH AND COVER comLo a SpeAkers Quote S.A.G. II system) plugs
. 1 sytem)
953-10 p.p. £2.00
SINCLAIR Pro 60 Stereo Pre amp. control SUnit
SINCLAIR 2, Z30
SINCLAIR 1, PZG
2 WHARFEDAALE UNIT 3 kit
(Quote S.W.G. 12 system)
942-50 p.p. $£ 1.50^{\circ}$

PERSONAL CALLERS WEL-
COME. We are always available
to advise on the best system to
suit your need and pockec.

OUR OWN CAR PARK (at
rear)
You have no parking problems
when you pay us a visit.

UNBEATABLE VALUE
The largest and best quality range PRICES is usually available.
Crossover Network. Specification: Impedance 4-8 ohms ($15-16$ ohms to order). Power Handing 0 watts RMS 20 Watts Size $21 \times 11 \frac{1}{2} \times 9$ lin. Finish Polished Teak.
OUR PRICE 613.47 ach ($65 p$ \&) AUR PRICE E13.47 *ACh (65PPD \& P.). SYSTEM. As above but 7 watts RMS (14 watts peak). F.R. 55 to $18,000 \mathrm{~Hz}$. Size 20 $\times 12 \times 8 \mathrm{in}$. C 10.12 each (50 p p. \& p .). APOLLO-66 3-WAY SPEAKER SYSTEM. As above but 5 watts RMS (10 watts peak). F.R. 75 to $18,000 \mathrm{~Hz}$. Size $14 \frac{1}{2}$ $\times 8 \times 6$ in. PRICE 66.97 each ($37 \frac{1}{2}$ Pp. \& P.).

Fig. 2.8 (a). Diagram of simple interferometer fringes

(b)

(b). Actual recording from simpie interferometer

If the number of fringes is very large and consequently their width small, there may be some difficulty in correctly identifying the fringe in which the source of radiation appears. In the simple interferometer a diffused source may obscure a smaller one in the same area and a special technique is used to overcome this. The modification is known as phase switching and will be described later.

LIMITATIONS

One disadvantage of the two aerial interferometer is that the resolution that can be achieved in the north-south direction is not good except when large dishes are used. A dish has the same beamwidth in each mode but the limitations of size imposed by other types of aerial precludes the reduction of the vertical beamwidth to that of the horizontal beamwidth.

For example: at a wavelength of 2 metres four full wavelength dipoles will have a beamwidth of 30 degrees if they are stacked vertically at half-wave spacing. If two of these aerials are spaced 20 wavelengths apart the centre fringe lobe will be a little less than 3 degrees. The area "seen" by such a simple interferometer will be 3 degrees in azimuth and 30 degrees in altitude. Now 40 degrees of sky is wider than the Milky Way which contains a number of sources and it would be difficult to separate them. However, if a study of the sun is to be the object of a project, this system will provide a good deal of data.

A PRACTICAL RADIO TELESCOPE

At this point it is perhaps appropriate to outline a design which amateurs could put into operation. Three frequencies will be chosen in order that standard equipment can be used. Also the frequencies chosen will enable those with minimum space to at least "have a go"

The three frequencies are $184 \mathrm{MHz}, 144 \mathrm{MHz}$, and 30 MHz . Choice can be made to suit individual needs and preferences and, of course, space limitations. For example if might be easier to raise the frequency of 184 MHz since this is channel 7 in band III and converters are on the market with 19 MHz outputs which may be coupled to a communications receiver, or alternatively, the television receiver can be used without interfering with its normal performance.

At the lower end, 30 MHz is within the communication receiver limit but the physical limit for the
aerial baseline might defeat the aims of the project. At this frequency less than five wavelengths spacing will give rather poor results and might dampen enthusiasm.

The middle frequency 144 MHz should appeal to many, for this is standard for communication and converters for this band are available in quite cheap kit form.

BASIC REQUIREMENTS

The basic requirements, as we have already seen, are the aerials, a pre-amplifier of 20 dB gain or more, a receiver which may be converter-plus-communication receiver, and (preferably) a pen recorder. As an alternative to the pen recorder, a tape recorder operating at a low speed ($1 \frac{7}{8} \mathrm{in} / \mathrm{sec}$ or preferably $1 \frac{1}{\mathrm{i}} \mathrm{in} / \mathrm{sec}$) could be used for processing to paper later. These basic requirements are indicated in Fig. 2.9.

AERIALS

The aerial system allows choice of Yagi's, corner reflectors. or pairs of dipoles, or mattress with dipoles (Kooman array). All of these were illustrated in Part 1 of this series.

The aerials must be aligned east and west. The distance between aerials should be correct to one sixteenth of a wavelength. Also remember that magnetic east and west differs by several degrees from geographic east and west. The following table gives the spacings for each frequency.

TABLE 2.1

λ	184 MHz	144 MHz	30 MHz
5λ	21 ft	30 ft	150 ft
10λ	42 ft	60 ft	300 ft
20λ	84 ft	120 ft	600 ft

FEEDERS

The aerial feeders should be of identical length. They can be brought individually direct to the receiver, or they may be connected together by a length of cable tapped exactly in the centre from the feeder to the receiver.

In the case of the higher frequencies the preamplifiers should be located at the aerials if possible and they must be fed from stable supplies. If the distance is not too great (say, not more than the distance between aerials) from the aerials to the receiver, then the pre-amplifier can be at the receiver.

At the lower frequency the cable losses will be much smaller so that it will be quite satisfactory if the pre-amplifier is next to the receiver. If the feeder is coaxial cable with an impedance of 75 ohms, then the two cables will need to be matched, either at the junction between the aerials or at the receiver input. A suitable system is shown in Fig. 2.10. The matching section is a length of 50 ohm coaxial, a quarterwavelength long at the selected frequency.

PEN RECORDER

Pen recorders vary considerably in type and performance specification. Some are fitted with a rectifier so that both a.c. and d.c. operation is possible. If the input is low impedance the recorder can be connected directly to the output of the audio section of the receiver in place of the loudspeaker.

Fig. 2.9. Block diagram of a practical interferometer radio telescope

Fig. 2.10. Matching arrangements for aerial coaxial feeders

If the pen recorder is of the potentiometer type then it may be necessary to connect to some stage prior to the output of the receiver. A suitable point could be the a.g.c. line if the recorder has a d.c. input. If it is of the low resistance a.c. direct reading type then an instrument rectifier will need to be fitted.

PROJECTS TO BE DESCRIBED

There are a number of radio astronomy projects which can be taken up by individuals or groups working in radio and electronics clubs and schools. Some suitable projects will be introduced in subsequent articles in this series. They will include a study of solar radiation, and radiation from the Galaxy with special-attention to the sources of high level such as Cassiopeia, Cygnus A and the Crab Nebula. It will also be possible to use the various arrangements of apparatus to monitor earth satellites.

Following this there witl be full details of a project for the study of the radiation from the planet Jupiter. Finally, a special project involving a search for evidence of the effects of gravitational waves.
Next month: Increasing the resolving power and
some special methods of observation

Electronic Microscope

S
hown at the recent Labex exhibition at Earls Court was a new low-cost high-performance electron microscope. The Corinth 275 by GEC-Elliott Automation was shown as the ideal teaching and demonstration instrument with special appeal to biologists requiring a high throughput of routine specimens. The operation of Corinth 275 is very simple with all controls, including a single push-button for the automatic vacuum system, readily to hand. The electron lens system, the vacuum system and all power supplies are self-contained within the single console, requiring a minimum of floor space. The resolution is better than 9 A . The photograph shows the' complete unit.

A^{N} ultra high vacuum evaporator manufactured by保 in Europe, was recently installed and is now in production use at ITT Semiconductors, Footscray, Kent.
The unit has a special oil free vacuum system to ensure complete absence of the hydrocarbon contamination present in conventionally pumped equipment.

The evaporator is fitted with a 10 kW electron beam evaporation source and rotary work holder designed for the deposition of aluminium films on $1+\frac{\mathrm{in}}{}$ diameter silicone slices.
During acceptance trials film thickness uniformity and film reliability were both extremely high.

ELEGTRONQRAMA

Electronic Jay

Opus has been a familiar name to builders of racing engines and cars for a number of years and has now created further interest with the recent announcement of the V12 Jaguar The application of the Opus system on the Jaguar-the first time an electronic ignition system has been fitted as standard equipment to a volume production car.

Lucas Opus Ignition (Mark 2) is an electronic contact breakerless system which will provide a

spark rate of the order of 100 sparks/second. The conventional distributor is replaced by a timing rotor assembly mounted on the drive shaft (see photograph) and a stationary passive pick-up module connected to the amplifier unit. The pick-up module is in effect a transformer having two input windings connected in series and an output winding. When ferrite coupling rods embedded in the timing rotor pass the pick-up the balance of the transformer is upset and increased signal from the oscillator-part of the amplifier module-appears at the output coil. This voltage is fed to the amplifier and causes the output transistor to cut off; the ignition coil primary is thus broken and a spark is fanned by the coil in the normal way. The photograph shows:

1 Distributor h.t. cover
2 Distributor
3 High performance ignition coil
4 Amplifier unit
5 Ballast resistor unit

I.E.E. CENTENARY

ASPECIAL exhibition to commemorate the centenary of the Institution of Electrical Engineers is now open at the Science Museum, London, S.W.7.
The theme of the exhibition is the development of electrical engineering over the last hundred years.
The exhibition will last approximately another two months and museum times are; 10 a.m. to 6 p.m. weekdays, 2.30 to 6 p.m. Sundays.

RST

VALVE MAIL ORDER CO.

 BLACKWOOD HALL I6a WELLFIELD ROAD, LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE Express postage Ip per transistor, over ten post free| 1N21 | ${ }^{2} 9.18$ | $\mathrm{ACl}^{2} 7$ | $\begin{aligned} & 2 p \\ & 0.25 \end{aligned}$ | $\begin{array}{ll} \text { BF173 } & \mathbf{2 0} 0 \\ 0.80 \end{array}$ | GJ4M | $\begin{aligned} & \text { fp } \\ & 0.88 \end{aligned}$ | 0 O 43 | $\begin{aligned} & 20 \\ & 0.40 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 N 23 | 0.80 | AC128 | 0.25 | BF181 0.28 | GJ5M | 0-25 | $0 \mathrm{C4} 4$ | $0 \cdot 18$ |
| 1N85 | 0.88 | AC187 | 0.80 | BF184 0-25 | GJ7M | $0 \cdot 38$ | OC44M | 0.18 |
| 1 N 2053 | 0.50 | $\mathrm{ACl}^{\text {c }} 8$ | 0.80 | BF18s 0.25 | H(1000 | 0.50 | $0 \mathrm{C4} 5$ | 0.15 |
| 1N250 | 0.60 | ACY17 | $0-80$ | BF194 0.18 | H8100A | 0.20 | OC45M | 0.18 |
| 1N640 | 0.25 | ACY18 | 0.25 | BF195 0-16 | MAT100 | 0.26 | 0 C 46 | 0.28 |
| 1N72JA | 0.80 | ACY19 | 0.25 | BF196 0.28 | MAT101 | 0.80 | OCST | 0.60 |
| 1 N 914 | 0.08 | ACY20 | 0.28 | BF197 0-28 | Matico | 0.25 | OCJ8 | 0.60 |
| 1N4007 | 0.28 | ACY21 | 0.28 | HFg61 0.28 | MAT121 | 0,80 | OC39 | 0.65 |
| 18021 | 0.20 | ACY22 | 0.18 | BFS98 0.28 | MJEsio | 0.88 | OC66 | 0.50 |
| 18113 | 0.15 | ACY27 | 0.25 | BFX12 0.28 | MJE29JJ | 1.75 | OCro | 0.18 |
| 18130 | $0 \cdot 18$ | ACY28 | 0.18 | BFX13 0.28 | MJ E30ū | 0.98 | 0071 | 0.16 |
| 18131 | 0.18 | ACY39 | 0.55 | HFX29 0.80 | NKT128 | 0.80 | 007: | 0.25 |
| 18202 | 0.88 | ACY40 | 0.16 | BFX30 0.38 | NKT129 | 0.80 | OC73 | 0.80 |
| 2 G 240 | 1.98 | ACY41 | 0.25 | BFX3j 0.88 | NKT211 | 0.25 | 0074 | 0.80 |
| 2G301 | $0 \cdot 18$ | ACY44 | 0.38 | BFX63 0.50 | NKT213 | 0.25 | 0 C 75 | 0.25 |
| 2(3302 | 0-28 | AD140 | 0.80 | $\begin{array}{ll}\text { BFX } 84 & 0.80\end{array}$ | NKT214 | 0.16 | $0 \mathrm{C76}$ | 0.25 |
| -G306 | 0.80 | AD149 | 0.50 | $\begin{array}{ll}\text { BFX83 } & 0.40\end{array}$ | NKT216 | 0.88 | $0 \mathrm{Cr7}$ | 0.40 |
| 2G371 | 0.88 | AD161 | 0.38 | BFX86 0.38 | NKT217 | 0.40 | 0 Cr 8 | 0.20 |
| $2 \mathrm{G381}$ | 0.25 | AD162 | 0.89 | $\begin{array}{ll}\text { BFX } 87 & 0.88\end{array}$ | NKT218 | 0.40 | 0 C 79 | 0.28 |
| $2 \mathrm{G414}$ | 0-30 | AF106 | 0.80 | BFX88 0.20 | NKT210 | 0.88 | $0 \mathrm{OC81}$ | 0.25 |
| 29417 | 0.28 | AF114 | 0.88 | BFY $10 \quad 1.00$ | NKT222 | 0.80 | OC81D | 0.20 |
| 2N214 | 0.48 | AFilij | 0.80 | BFY11 1.25 | NKT224 | 0.23 | OC81M | 0.20 |
| 2 N 247 | 0-25 | AF116 | 0.88 | $\begin{array}{ll}\text { BFY } 17 & 0.25\end{array}$ | NKT251 | 0.24 | OC81DM | 0.18 |
| 2N250 | 0.50 | AF117 | 0.25 | BYF18 0.25 | NKT271 | 0.25 | 0c812 | 0.55 |
| 2N404 | 0.28 | AF118 | 0.68 | BFY19 0.25 | NKT27: | 0.25 | $0 \mathrm{C8} 2$ | 0.25 |
| 2N697 | 0.18 | AF119 | 0.20 | BFY24 0.45 | NKT273 | 0.80 | OC821 | 0.15 |
| 2N608 | 0.48 | AF124 | 0.25 | BFY44 1.00 | NKT274 | 0.20 | 0 C 83 | 0.25 |
| 2N706 | 0.10 | AF125 | 0.20 | BFY 50 0.28 | NKT270 | 0.25 | $0 \mathrm{C8} 4$ | 0.25 |
| 2N706A | 0.18 | AF126 | 0.18 | $\begin{array}{ll}\text { BFY } & 0.20\end{array}$ | NK T277 | 0.80 | OC114 | 0.88 |
| 2N708 | 0.16 | AF127 | 0.18 | BFY52 0. ${ }^{8}$ | NKT278 | 0.25 | OC122 | 0.50 |
| 2N709 | 0.68 | AF139 | 0.80 | BFY | NKT301 | 0.80 | $0 \mathrm{Cl23}$ | 0.50 |
| 2N711 | 0.38 | AF178 | 0.48 | BFY64 0.48 | NKT304 | 0.86 | OC139 | 0.25 |
| 2 N 987 | 0.68 | AF179 | 0.48 | BFY90 0.68 | NKT403 | 0.76 | OC140 | 0.88 |
| 2N1090 | 0.80 | AF180 | 0.53 | B8X27 0.50 | NKT404 | 0.88 | OC141 | 0.68 |
| 2N1091 | 0.83 | AF181 | 0.48 | B8X60 0.93 | NKT678 | 0.80 | OC169 | $0 \cdot 20$ |
| $2 \mathrm{Nl131}$ | 0.80 | AF186 | 0.40 | B8X 760.16 | NKT713 | 0.96 | 0 Cl 70 | 0.25 |
| 2N1132 | 0.80 | AFY19 | 1.18 | BSY 2600 | NKT773 | 0.25 | 0 Cl 11 | 0.80 |
| 2N1302 | 0.20 | AFZ11 | 0.68 | B8Y27 0.20 | NKT777 | 0.88 | OC200 | 0.88 |
| 2 N 1303 | 0.23 | AFZ12 | 0.75 | B8Y51 0.60 | 0781 | 0.38 | OC201 | 0.48 |
| 2 N 1304 | 0.25 | AsYe6 | 0.25 | B8Y90, 0.15 | OAJ | 0.15 | OC202 | 0.68 |
| 2 N 1305 | 0.25 | ASY27 | 0.38 | B8Y95 0.16 | OA6 | 0.18 | OCL^{203} | 0.38 |
| 2N1306 | 0.25 | AsY28 | 0.25 | BT102/500R | OA4 4 | 0.10 | OC204 | 0.40 |
| 2N1307 | 0.25 | AsYe9 | 0.80 | 0.76 | OA70 | 0.10 | OC20u | 0.68 |
| 2N1308 | 0.80 | A8Y36 | 0.25 | BTY42 0.98 | OA71 | 0.10 | OC206 | 0.75 |
| 2N1309 | 0.25 | ASY 0 | 0.18 | BTY79/100R | 0.873 | 0.10 | OC207 | 0.75 |
| 2N1420 | 0.98 | $\mathrm{ASY}^{\text {¢ }}$ | 0.40 | 0.75 | 0.174 | 0.10 | OC460 | $0 \cdot 20$ |
| 2N1607 | 0.88 | ARYJ3 | 0.20 | BTY\%9/400R | OA79 | 0.10 | OC470 | 0.80 |
| 2N10326 | 0.38 | ABYos | 0.20 | 1.75 | OA81 | 0.10 | $00^{0} 71$ | 0.98 |
| 2N1909 | 2.25 | ASY62 | 0.25 | BY100 0.18 | OA85 | 0.18 | ORP1: | 0.60 |
| 2N2147 | 0.76 | A8Y86 | 0.88 | BY 1260.15 | 0A86 | 0.16 | ORP60 | 0.40 |
| 2 N 2148 | 0.60 | A8Z21 | 0.48 | BY 1270 | 0 A 90 | 0.10 | ORP61 | 0.48 |
| 2N2160 | 0.68 | AsZ23 | 0.75 | BY127 0.20 | OA91 | 0.08 | S19T | 0.80 |
| 2 N 2218 | 0.80 | AUY10 | 0.88 | BY182 0.76 | OA95 | 0.08 | 8AC40 | O.25 |
| 2 N 2219 | 0.88 | AU101 | 1.50 | BY213 0.25 | OA200 | 0.08 | SFT308 | 0.88 |
| 2N2287 | 1.08 | BC107 | 0.18 | $\begin{array}{ll}\text { BYZ10 } & 0.40\end{array}$ | OA202 | 0.10 | ST722 | 0.38 |
| 2 N 2297 | 0.80 | BC108 | 0.18 | BYZ11 0.85 | 0.4210 | 0.25 | $8 \mathrm{S7231}$ | 0.68 |
| 2N2369A | 0.80 | BC109 | 0.18 | BYZ12 0.80 | OA211 | 0.88 | 8×68 | 0.20 |
| 2N2613 | 0.88 | BC113 | 0.25 | BYZ12 0.80 | OAZ200 | 0.55 | 8X631 | 0.80 |
| 2 N 2646 | 0.65 | BC110 | 0.88 | BYZ13 0.25 | OAZ201 | 0.50 | 8×63J | 0.80 |
| 2N2712 | 0.25 | BC116 | 0.40 | BYZLis 1.00 | OAZ202 | 0.48 | BX640 | 0.85 |
| 2N2784 | 0.50 | BCl16A | 0.45 | $\begin{array}{ll}\text { BYZ16 } & 0.88\end{array}$ | OAZ203 | 0.48 | 9X641 | 0.85 |
| 2N2846 | 2.25 | BC118 | 0.88 | BYZ88C3V3 | OAZ204 | 0.48 | SX642 | 0.38 |
| 2N2848 | 0.48 | BC121 | 0.80 | 0.18 | OAZ205 | 0.48 | 8X644 | 0.48 |
| 2N2904 | 0.80 | BC122 | 0.20 | C111 0.65 | OAZ206 | 0.48 | 8X640 | 0.75 |
| 2 N 2904 A | 0.88 | BC12 | 0.88 | CRS1/05 0.25 | OAZ207 | 0.48 | V15/30P | 0.60 |
| 2N2906 | 0.40 | BC126 | 0.65 | CRS1/40 00.48 | OAZ208 | 0.88 | V $30 / 201 \mathrm{P}$ | 0.88 |
| 2N2907 | 0.88 | BC140 | 0.55 | $\mathrm{Cs}_{4} \mathrm{~B}$ 8 8.50 | OAZ209 | $0 \cdot 88$ | V60/201 | ${ }_{0}^{0.88}$ |
| 2 N 2924 | 0.88 | BC147 | 0.18 | C810B 8.18 | OAZ210 | 0.88 | V60/201P | 0.38 |
| 2 N 2925 | 0.18 | BCl48 | 0.18 | DD000 0 | OAZ211 | 0.88 | XA101 | 0.10 |
| 2N2926 | 0.18 | BC149 | 0.20 | DD003 0.15 | OAZ222 | 0.40 | XA102 | 0.18 |
| 2N3054 | 0.50 | $\mathrm{BC1}^{\mathrm{BC} 59}$ | 0.80 | $\begin{array}{ll}\text { DD006 } & 0.18\end{array}$ | OAZ223 | 0.40 | XAl51 | 0.15 |
| 2 N 3055 | 0.75 | BC157 | 0.20 | ${ }_{\text {DD } 007} \quad 0.40$ | OAZ224 | 0.88 | XAlu'2 | 0.15 |
| 2N3702 | 0.18 | BC158 | 0.80 | DD008 0.88 | OAZ241 | 0.88 | X Al 161 | 0.25 |
| 2N3705 | 0.15 | BClb0 | 0.68 | GD3 0.88 | OAZ242 | 0.28 | XA162 | 0-25 |
| 2 N 3706 | 0.88 | BC169 | 0.18 | GD4 0.05 | OAZ244 | 0.28 | XA162 | 0.48 |
| $2 N 3707$ | 0.15 | BCY31 | 0.80 | GDJ 0.88 | OAZ248 | 0.88 | XB101 | 0.48 |
| 2N3709 | 0.18 | BCY32 | 0.50 | GD8 0 | OAZ290 | 0.88 | XB102 | 0.10 |
| 2 N 3710 | 0.18 | BCY32 | 0.80 | GD12 0.05 | 0 OCl 6 | 0.48 | X E103 | 0.25 |
| 2N3711 | 0.18 | BCY33 | 0.80 | GET102 0.30 | 0 OCl 6 T | 0.88 | X 8113 | 0.10 |
| 2N3819 | 0.85 | BCY34 | 0.25 | GET103 0.88 | OC19 | 0.88 | XB191 | 0.48 |
| 2N3820 | 0.88 | BCY 98 | 0.80 | GET113 0.20 | $\mathrm{OCl2}^{0}$ | $0 \cdot 08$ | XBlel | 0.48 |
| 2 N 3823 | 0.75 | BCY 39 | 0.48 | GET114 0.15 | OC22 | 0.48 | ZRed | 0.68 |
| 2N0027 | 0.58 | BCY40 | 0.48 | GET110 0-45 | OC83 | 0.50 | 28170 | 0.10 |
| 2N5088 | 0.88 | BCY42 | 0.15 | GET116 0.50 | OC24 | 0.50 | 28271 | 018 |
| 28000 | 0.75 | BCY70 | 0.80 | GET120 0.26 | $00^{2} 25$ | 0.88 | ZT21 | 0.25 . |
| 28301 | 0.48 | BCY71 | 0.80 | GET872 0-80 | OC26 | 0.25 | ZT43 | 0.2.5 |
| 28304 | 0.88 | BCZ10 | 0.80 | GET875 0.85 | OC28 | | | |
| 28001 | 0.88 | BCZ11 | 0.88 | GET880 0.88 | OC28 | 0.68 | ZTX107 | 0.15 |
| 28703 | 0.68 | BD121 | $0 \cdot 65$ | GET881 0.25 | 0 C 29 | 0.68 | ZTX108 | 0.15 |
| AA129 | 0.20 | BD123 | $0 \cdot 88$ | GET882 0.25 | OC30 | 0.40 | ZTX 300 | 0.18 |
| AAZ12 | 0.80 | BD124 | 0.68 | GET885 0-20 | 0 C 35 | 0.50 | ZTX304 | 0.88 |
| AAZ13 | 0.18 | ${ }_{\text {BF115 }}$ | 1.68 0.25 | $\begin{array}{ll}\text { GEX44 } & 0.08 \\ \text { GEX45/1 } & 0.08\end{array}$ | 0 C 36 | 0.68 | ZTXJ00 | 0.18 |
| AC107 | 0.88 | BF117 | 0.60 | GEX941 0.15 | $0 \mathrm{OC4} 1$ | 0.25 | ZTX503 | 0.20 |
| AC126 | 0.2\% | BF167 | 0.25 | GJ3M 0.26 | OC42 | 0.80 | ZTX531 | 0.80 |

SEMI-CONDUCTOR SET FOR
P. E. GEMINI AMPLIFIER $£ 12.95$

SEND S.A.E. FOR LIST OF 3,000 TYPES VALVES, TUBES AND TRANSISTORS

Open daily to callers: Mon.-Sat. 9 a.m. -5 p.m. Closed Sat. I. 30 p.m. -2.30 p.m.
Terms C.W.O. only | Tel. 01-769 0199/1649

LOW COST ELECTRONIC AND SCIENTIFIC EQUIPMENT AND COMPONENTS

OVERHAULED AVOMETERS Models 40, 47A, 48A. (Models 47A and 48 A are Admiralty pattern.)
480, 1,200.
Amps: $0 \cdot 010,0 \cdot 12,1 \cdot 2,12$.
A.C. volts: $12,120,480,1,200$. A.C. volts: 12, $120,480,1,200$.
Amps: $0 \cdot 012,0 \cdot 13,1 \cdot 2,12$.
$0 \mathrm{hms:}$ Ohms: 1,000 , 10,000 , $\begin{array}{lll}1,000,000 & \text { (external roltage source) } \\ \text { Sensitivity: } \\ 166.6 & \text { ohms/Volt, } \\ 333 \cdot 3\end{array}$ Ohms/volt when divided by two button is pressed on both a.c. and d.c. ranges. 216. P. \& P. Tup. Complete with voltage multiplier for 4801 and $3,600 \mathrm{~V}$. Current shunts for 120 A ant 480A. A.C. current transformer 10 r 20 A
and 60 A . In special wooden box. 818.50 . P, \& P, $£ 1$.
Put to demand it may not always be possible to supply a particular model, and a different type to that ordered may be dispatched. Thesc models are electrically Identical.

MEMORY CORE STORES

 $42 \times 52.2 \mathrm{k} \Omega$ bitferrite core store. rerrite core 日tore.
C/W quantity
OA10 load diodes. OA10 ioad diodes,
Ideal for building computer store, holding informa, tion, teaching demonatrations, etc. Price 22.25. 13. \& P 38 p .

BRAND NEW CAPACITOR REVERSIBLE SINGLE PHASE PARYALUX MOTORS $230 / 250 \mathrm{~V}, 50 \mathrm{~Hz}, 2,800$ r.p.m.; $1 / 30 \mathrm{~h} . \mathrm{p}$. cont. rated; $\frac{1}{\text { id }}$ in dia.
shaft; $3 \frac{1}{2}$ in long foot mow capacitor. 88.50 Pont free.

THERMOMETER

Industrial instrument employing Bourdon tube principle. Scaled $0-100$
$32-221$
degrees F . and
. 3in dia. scale. 36 in capillary tube. Sensing element sin dia. $\times 2 \mathrm{in}$ long. Price 7 Sp . P. \& P. free

NEW ENICRON SHADED

 POLE MOTORS$240 / 250 \mathrm{~V}, 50 \mathrm{~Hz}, 2,500$
r.p.rn. (no load).
Shaft s_{1} in dia. $\times 1 \frac{1}{2} \mathrm{in}$
long, Suitable record
player, blower motor, ete. ©5p. Poat playe
free.

TELEPHONE DIALS
Clear Perspex, very good condition. No markinge, 75p each. P. \& P. 25p.

RAPID HEAT SOURCE .

from brand new Inifa Red Tubular Quartz Lemps. ldeally suited as heat
source for Drying Ovens, Egg Hatching, Incubators, cte., $240 \mathrm{~V}, 1,440 \mathrm{~V}, 20,000$
Angstroms.
Length
12 in $\times 2$ in
dia. Price 75p. P. \& P. 20.p.

MAINS MOTORS

$430 \mathrm{~V}, 50 \mathrm{~Hz}, 0.60 \mathrm{~A}, 1 / 20 \mathrm{~h} . \mathrm{p} ., 2,850 \mathrm{r} . \mathrm{p} . \mathrm{m}$, Circular clamp mounting. 83.50. Post free,

DELAY LINE LEXOR MDN 24A4D

Miniature reain encapsulated module. Total delay j0msec to lomsec. Tapped at
10% Intervals. Impedance 75 ohms to $10 \% \Omega .30 \mathrm{~V}$ wkg, Attenuation $0 . \overline{\mathrm{o}} \mathrm{dB} / \mathrm{msec}$. 21 in $\times \frac{1}{3} \times 8 \mathrm{in}, \quad 81.50$. Post 1 fee,

MIDGET POWER RELAY OMRON Mk I on frame. 5 for $\mathbf{s i}$ - 60 . Poat free.

Electronic Brokers Ltd. (Dept. P.E.) 49-53 Pancras Road London NWI Tel. 01-837 7781 Telex 267307

Super IC-12

HighfidelityMonolithic Integrated Circuit Amplifier

Two vears ago Sinclair Radionics announced the World's first monolithic integrated circuit $H_{I}-F_{1}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor the Super IC. 12. This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages:

1. Higher power.
2. Fewer external components
3. Lower quiescent consumption.
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink.

No other heat sink needed.
6 . Full output into $3,4,5$ or 8 ohms.
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

Output power 6 watts RMS continuous 112 watts peak).
Frequency Response 5 Hz to $100 \mathrm{KHz} \pm$ $\vdots \mathrm{dB}$.
Total Harmonic Distortion Less than 1% (Typical 0.1%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms.
Power Gain 90dB (1,000,000,000 trmes)子fter feedback.
Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supples ideal).
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and neat sink.
Input Impedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts.
Price: including FREE printed cricult board for mounting. $\mathbf{£ 2 . 9 8}$ Post free

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up. F.M. tuner etc. Alternatively, for more elaborate systems. modules in the Project 60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation.

[^2]

Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design. quality and value and now that the remarkable phase lock loop stereo FM tuner is available, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophistrcated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	2.30	Crystal P.U., 12 V battery volume control	£4.48
B	Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control etc.	¢9.46
C	20+20W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 s, \text { Stereo 60, } \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P.U.. most dynamic speakers. F.M. tuner eic.	£23.90
D	$20+20$ W. R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \mathrm{~s}, \text { Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck, etc.	£26.90
E	$40+40 \mathrm{~W}$. R.M.S. delixe stereo amplifier	$2 \times 2.50 \mathrm{~s}$, Stereo 60 PZ.8, mains trsfrmr	Asfor D	£34.88
F	Outdoor P.A. system	2.50	Mic., up to 4 P.A. speakers controls. etc.	¢5.48
G	Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers, etc., controls	$£ 19.43$
H	High pass and low pass filters	A.F.U.	C. Dor E	£5.98
	Radio	Stereo F. M. Tuner	C. Dor E	£25.00

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certainly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assemhly in an existıng cabinet, motor plinth, free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtained superb value for moneybecause Project 60 is the best selling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control.
Sinclair Radionics Ltd., London Road. St. Ives, Huntingdonshire PE174 HJ Tel: St. Ives (04806) 4311

Sinclair Project 60

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $Z .30$ or $Z, 50$ ampliffers in your Project 60 system will depend on personal preference. but they are the same size and may be used with other units in the Project 60 range equally well.
SPECIFICATIONS (Z50 units are interchangeable with $Z .30$ sin all applications).

Power Outpurs

Z.30 15 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M S. ".to 3 ohms using 30 volts.
$\mathbf{Z . 5 0} 40$ watts R MS into 3 ohms using 40 volts: 30 watts R.M S. into 8 ohms. using 50 volts.
Frequency response: 30 to $300000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 002% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted.
Input sensitivity: 250 mV into 100 Kohms.
For speakers from 3 to 15 ohms impedance.
Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2} \mathrm{in}$
2.30

Bult tested and guaranteed with crrcuits and mstructionsmanual
$£ 4.48$
2.50

Bult. tested and guaranteed whth circuits and instructions manuat
$£ 5.48$

Power Supply Units

Designed specially for use with the Project 60 system of your chorce.
Illustration shows PZ. 5 to left and $P Z .8$ (for use with Z.50s) to the right. Use PZ.5 for normal Z.30 assemblies and PZ. 6 where a stablised supply is essential
PZ.5 30 volts unstabilised $£ 4.98$
PZ-6 35 volis stabilised $\mathbf{£ 7 . 9 8}$
PZ-8 45 volts stabillsed
(less mains uansformer) $£ 7.98$
PZ-8 mans transformer $£ 5.98$

Stereo 60 pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high stgnal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is prowded for all the usual inputs.

SPECIFICATIONS

Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV . correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u.-up to 3 mV : Aux-up to 3 mV .
Output: 250 mV
Signal-to-noise ratio: better than 70 dB .
Channel matching: within 1 dB .
Tone controls: TREBLE +15 to -15 dB at 10 KHz . BASS $+15 \mathrm{to}-15 \mathrm{~dB}$ at 100 Hz
Front panel: brushed aluminium with black knobs and eontrols.
Size: $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4 \mathrm{ins}$
Bult. tested
and guaranteed
£9.98

Active Filter Unit

For use between Stereo 60 unit and two $Z .30$ s or $Z 50$ s. and is easily mounted. It is unique in that the cut-off frequencies are contonuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} / o c t a v e$), there $: s$ less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are neghigible. The A.F.U. is suitable for use with any other amplifier system. Two stages of filtering are incorporated rumble (high pass) and scratch (low pass). Supply voltage - 15 to 35 V . Current - 3 mA . H.F cut-off (-3 dB) variable from 28 kHz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at $1 \mathrm{kHz}(35 \mathrm{~V}$. supply) 0.02% at rated output.
Bult tested
and guaranteed
$£ 5.98$

Stereo FM Tuner

first in the world to use the

phase lock loop principle
Before production of this tuner. the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now for the first time, the principle has been applied to an FM tuner with fantastically good results. Other original features include varicap diode tuning. printed circuit coils. an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Sensitivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.

SPECIFICATIONS:
Number of transistors: 16 plus 20 in I.C.
Tuning range : 87.5 to 108 MHz
Capture ratio: 1.5 dB
Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting: $7 \mu \mathrm{~V}$ for full limiting.
Squalch level: $20 \mu \mathrm{~V}$.
A.F.C. range: $\pm 200 \mathrm{KHz}$

Signal to noise ratio: $>65 \mathrm{~dB}$
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ $(\pm 1 \mathrm{~dB}$)
Total harmonic distortion: 0.15% for 30% imodulation
Stereo decoder operating level: $2 \mu \mathrm{~V}$
Pilot tone suppression: 30 dB
Cross talk: 40 dB
I.F. frequency: 10.7 MHz

Output voltage: $2 \times 150 \mathrm{mVR}$.M.S.
Aerial Impedance: 750 hms
Indicators: Mains on: Stereo on; tuning indicator
Operating voltage: $25-30 \mathrm{VDC}$
Size : $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $\mathbf{5} 25$ built and tested. Post free

Guarantee

If within 3 months of purchasing project 60 modules directly from us. you are dissalisfied with them. we will refund your money at once. Each module is guaranteed to work pe fectly and should any defect anise in normal use we will service It at once and without any cost to you whatsoever provided that It is returned to us within 2 vears of the purchase date. There will be a small charge for service thereafter No charge for postage by surface mail. Aur-mall charged at cost.

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ Please send

Name

Address

Sinclair Q16/Micromatic

Q16 High fidelity loudspeaker

The Q16 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design. technical journals have justly compared the Q16 with much more expensive loudspeakers. Its shape enables the Q19 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audio frequencles without loss.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading: up to 14 watts RMS
Input Impedance: 8 ohms.
Frequency response: From 60 to 16,000 Hz . confirmed by independently plotted B and K curve.
Driver unit: Special high compliance unit having massive ceramic magnet of 11,000 gauss, aluminium speech coil and special cone suspension for excellent transient response.
Size and styling: $9 \frac{3}{4} \mathrm{in}$. square on face x $4 \frac{3}{4}$ in. deep with neat pedestal base. Black all over cellular foam front with natural solidteak surround.
Price f8.98.

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size. Powerful AGC counteracts fading from distant stations: bandspread at higher, frequencies makes reception of Radio 1 easy. The plug-in magnetıc earpiece provided, matches the Micromatıc's output to give wonderful standards of reproduction. Everything including the special ferite rod aerial and batteries is contained within the minute attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested, you will find It as easy to take with you as your wrist watch, and dependable under the severest listening conditions.

Specifications:

Size: $36 \times 33 \times 13 \mathrm{~mm}(1.8 \times 1.3 \times 0.5 \mathrm{in}$.) Weight: including batteries, 28.4 gm (10z.)
Case: Black plastic with anodised alumınium front panel and spun aluminium dial.
Tuning: medium wave band with bandspread at higher frequencies (550 to $1,600 \mathrm{KHz}$).
Earpiece: Magnetic type.
On/off switching: By inserting and withdrawing earpiece plug.

Kit in pack with earpiece, case, instructions and solder $\mathbf{£ 2 . 4 8}$

Ready built, tested and guaranteed, with earpiece $\mathbf{£ 2 . 9 8}$.
Two Mallory Mercury batteries type RM675 required from radio shops, chemists, etc.

Sinclair Radionics Ltd., London Rd, St. Ives Huntıngdonshire PE17 4HJ.
Telephore St. Ives (048 06) 4311

You'll find it easy to learn with this out- the latest resfarch into simplified learning standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by "an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT
" OUT OF DATE."
"These books make all other publications out of date with their simplicity and interest.'
J.W.R., Newbary
"SO INTERESTING."
"I have found the Electronics volumes so interesting: please rush me Electricity.
C. A., Folkestone
" ADD MY BLESSINGS.'
"You can add my blessings to your already long list of praises about your Basic publications.'
P.J.J., Rustington.

A TECH-PRESS PUBLICATION

POST NOW FOR THIS OFFER!

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

What readers say

OSMABET LTD.

We make transformers amonget other thing MAINS TRANSFORMERS
 $42 \mathrm{~J}-0-42 \mathrm{JV}, 20 \mathrm{~mA}, 6 \mathrm{BV} 4 \mathrm{~A}(\mathrm{~T}, 0-5-6 \cdot 3 \mathrm{~V}, 3 \mathrm{~A}, 27 \cdot 50 ;$
TX2, $250-0-250 \mathrm{~V}, 150 \mathrm{~mA}, 63 \mathrm{~V} 4 \mathrm{ACT}, 0-5-6 \cdot 3 \mathrm{~V}, 3 \mathrm{~A}$ TX2, $250-0-250 \mathrm{~V}, 150 \mathrm{~mA}, 63 \mathrm{~V} 4 \mathrm{~A} \mathrm{CT}, 0-5-6.3 \mathrm{~V}, 3 \mathrm{~A}$
$4.05 ;$ TXJ, $300-0-300 \mathrm{~V}, 120 \mathrm{~mA}, 6.3 \mathrm{~V}$ 2A CT, 6.3 Y, 24.05; TXJ, $3000-0-300 \mathrm{~V}, 12 \mathrm{~mA}, 60-250 \mathrm{~V}, 65 \mathrm{~mA}, 6.3 \mathrm{~V}$, $1.5 \mathrm{~A}, 22.10 ; \mathrm{MT1}, 200 \mathrm{~N}, 30 \mathrm{~mA}, 6-3 \mathrm{~V}, 1 \mathrm{~A}, 21 \cdot 20 ; \mathrm{MT} 2$, 6.3V, 2A, ह1. 95 ; MT3 Prim. $110 / 240 \mathrm{~V}$, , 8ec, $2 \overline{0} 0 \mathrm{~V}$ $100 \mathrm{~mA}, 6.3 \mathrm{~V}, 2 \mathrm{~A}, 62.25$

MOLTIVOLT TRANBFORMERS

Prim. 200/240va.c. OMT4/1. One tapped see, J-20-30-$40-60 \mathrm{~V}$ giving $\bar{j}-10-1 \overline{5}-20-25-30-40-4 \bar{j}-\overline{5} \overline{5}-60,10-0-$ $10,20-0-20: 30-0-30 \mathrm{~V}$ a.c., 1A, $52 \cdot 25$; OMT4!2 ditto 2A, 83.45 ; OMTJ/l one tapped sec, $40-\mathrm{j0}-60-80-90-$ $100-110 \mathrm{~V}$ a.c., $1 \mathrm{~A}, 23.45$.
LOW VOLTAGE TRAKSFORMERS
Prim. 200/240V a.c., 6.3V, 1 .JA, 85D; 3A, 11 18; 6A CT

 50V, 6A CT, $48 \cdot 75$.
MIDGET RECTLPIER TRANSFORMERS
For FW rect., size $1^{3} \times 2 \times 1+i n$, Prim. $300 / \div 40$ a output, PPT1 9-0-9V, 0.3A. PPT? 12-0-12V, 0-25A PPT3 20-0-20V, $0.15 \mathrm{~A}, 21.20$ each; ditto, size 2×2 $\times 1$ in MTV1 $9-0-9 V, 1 \mathrm{~A}, 88 \mathrm{p}$; MT
MTV3 $20-0-20 \mathrm{~V}, 0.75 \mathrm{~A}, 81-20$ each
AMPLIFIER O/P TRAASFORMER
A.P. sec. tapped $3-7.5-15$ ohms, A-A $66 \mathrm{k} \Omega$, 30 W (KT66, etc.) $£ 4.05 ; 50 \mathrm{~W}, 3 \mathrm{k} \Omega$, A-A. $86-78 ; 100 \mathrm{~W}$ 3k@, A-A. EL34 (KT88, etc.), 11 - 40 . New boxed famons makes, $25 \mathrm{~W}, \mathrm{w} \cdot 60$; 35 W e $8 \cdot 20$ 50 W , 8.45 : 60 W . $811 \cdot 30$; 100 W , 210.90 ; E.M.I $131 \times 8 \mathrm{in}, 10 \mathrm{~W}, 3,8$ and $15 \mathrm{ohms}, 22.25$; fitt ed two tweeter Hi-Fi, 3,8 and $1 \bar{\sigma}$ ohnss, 24: Horn tweeter
 $8 \times 5 \mathrm{in}, 81.35,10 \times 6 \mathrm{in}, 81 \cdot 90$.
P.E. AURORA LIGHT'CONTROL UNIT

Mains tran. as specifted. Prim. 200/240V', Sees $12 \mathrm{~V} 0.5 \mathrm{~A}-12 \mathrm{~V} 0.5 \mathrm{~A}, 21.25$ plus P. \& P. 20 p . Ferrite

AIRCRAFT BAND CONVERTER Covers entire aircraft band, $110-13 \mathrm{j} \mathrm{MHz}$, fully turabie,
works in proximity of any AM receiver, complete with works in proximity of siny
battery, instructions, 8.25 .
PRINTED CRCUIT ETCELNG EITS
Comprehensive outfit, to make your own l'.c. boarils \&1.25. Carriage extra all orders
SA.E. INQUIRIES, LISTS PLEASE, MAIL ORDER ONLY
46 Kenilworth Road, Edgware, Middx. HA8 8 YG Tel. $01-9589314$

NEW RANGE U.H.F. TV AERIALS

All L..H.F. aerials now titted with tilting bracket and \ddagger element $g r i d$ reflectors.
Loft Nountink Arras i, 7 element, 4.5 11 element, 52 6: 14 element, 60--: is element, 0 Wall Nounting with cranked elemen, 6,5
 Conmplets, 7 element, $80-11$ element, $876 ; 14$ element, $95_{i}-: 18$ element, 105 . Complete assembl instructions with every aerial. Jow I.oss Co axtal cable. is ud. King TeleboostersLabgear U.H.F. Boosters from Th.- Helling lide "Concord" all Band V.H.F. U.H.F. mains operated pre-amp ir10.0. State cleart chans Accessories 3. C.W.O. or C.O.D.

BBC. ITV. FM AERIALS

H. H.C. (13and 1). Loit, 時 WallS D, 3.3 6. "H"' array, 60 I.T.V. (Hand 3), 5 element loft array, $45-7$ element, $53-$. Wall mounting 5 element, 6 Combined BBC . Wall mounting
 (mint)ned HBCI ITT
 14, 100-. Available ioft only
F. M. I<adio Loft S D, $196 . " \mathrm{H} ", 386$. 3 element amar, 776 . Standard co-axial cabie, $1-y \mathrm{~d}$. Coax
pluge, 1 \&. Outlet boxes, 6 -. Diplexer crossover plugs, 1 s. 6 . p. D. Aerials, $x \rightarrow$ accessories, $3-$. C.W.O. or C.O.D. (min. C.O.D. charge 3.6.) 1 - for fully illustrated Lists.

CALLERS WELCOMED
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.) 40-41 Monarch Parade
London Rozd, Mitcham, Surrey 01.6484884
4STATION INTERCOM

4-Station Transistor Intercom srokini (i maitex thit 3 Sabs), in (le-luxe plastic cabinets for deak or walt mounting. (alltalk/haten from Manter tor Subs and Subs to Master. lileally suitable for Buainess, Surgery, Hehouls, Hupita, othce alle Home. Operates on one battery. On/of switch. Colmme control other acceasories. P . \& P. 40 p .

> MAINS INTERCOM
Ho batterist - no wires. Just plug in the mains for instant two-nay, lomi and clear commumication

Same ay f-Station luterem fur tworway instan communication. lileal as baby Alarmand poor Phone. Complete with 66if
Transistor TELEPHONE AMPLIFIER

ciency with this incredible De-Luxe Tolophons efti der. Take down long telephone messages or convire without holding the handset. A useful office aid. On 18p. Full price refunded if not satisfied in 7 days.
Wret LOMDOX DIRECT gUPPLIES (PE 77)
189 KENSINGTON EIGE STREET, LONDON, W. 8

The largest selection

NEW LOW PRICE TESTED S．C．R．＇s

PIF	1.1	3.1	－A	10．4	16.4	30.4
	TO－	TO－fit	T0－66．		TO－48	TO－48
	Ep	\＆	Ep	fp	Ep	\＆p
50	$0 \cdot 23$	0.25	0.47	0.50	0.53	1.15
100	0.25	0.33	0.53	0.58	0.63	1.40
200	0.36	0.37	0.57	0.61	0.75	1.60
400	0.48	0.47	0.87	0.75	0.93	1．75
600	0.53	0.57	0.77	0．97	1.25	
00	0.63	0.70	0.80	1.20	1.50	4.00

SIL．RECTS．TESTED

PIV	300 ma	700nt	A 1.1	1－3．4	3.	10.1	0．A
	$\mathrm{Ep}^{\text {p }}$	fp	fp	£p	fp	£	ep
50	0.04	0.05	0.05	0.07	0－14	0.21	0.47
100	0.04	0.08	0.05	0.13	0.16	0.23	0.75
200	0.05	0.09	0.68	0.14	0.20	0.84	1.00
400	0.06	0.13	0.07	0.20	0.27	0.37	1.25
600	0.07	0.16	0.10	0.23	0.34	0.45	1.85
800	$0 \cdot 10$	0.17	0.13	0.25	0.37	0.55	2.00
1000	0.11	0.25	0.15	0.30	0－46	$0 \cdot 63$	2.50
1200		0.33		0.33	0.57	0.75	
triacs				SILICON HIGH VOLT－ AGE RECTIFIERS			
VBOM 2 A		1.1	10.1				
	To．l T	T0－60	T0－88	10－A111）З3－K．S＇（3000			
	25	2p	2p	Fhying Leadx，80p each．			
104	0.50	0.63	1.00	HOR PIACS witu			
200	0.70	0.90	1.25				
400	0.90	1.00	1.60	BR100		37	eas

2A POTTED BRIDGE RECTIFIERS 200 V 50 p

NPN SILICON PLANAR BC $10,78,9,{ }^{10 p}$ each
 7 p each，rully teste．
and coded to－18 case．

FREE

One 50 p Pak of your own choice free with ordert valued 44 or over

ANE39 PNP（IERM SIEMENS VHF TRAN gISTORS．RF MIXFR MHZ USE TO 900 PLACEMENT AS RE AF139AF18 \＆\＆ $100{ }^{\circ}$ OF OTHER TSES IN GHF OLR SIECLAI each， $25-99$ 34p eac $100+30 \mathrm{p}$ each．
 FET＇S
 2 N 3814 2 N 3820
 NPF10．
 CADMIUM CELLS
 ORP60，ORP61 40p cac

PHOTO TRANS．

SIL G．P．DIODES E

300 mW

40PIV（Min）$) 100 \ldots 1.50$
sull．Min． $500 \ldots 5.00$
Full Tested $1,000 \quad 9.00$
Ideal for Organ l Builders

D13D1 Silicon Unilatera awitch 50 p each．
A Silicon Planar，mono lithic integrated circuit having thyristor elec trical characteristics，but with an anole gate and a bullt－in＂Zener＂diode bulit－in＂Zener＂diode betweell gate and
cathode．full data an！ cathode．Full tata ant
application ciscuits atail application circu

KING OF THE PAKS SUPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS

Satisfaction（：I ARANTERH in Fivery Pah，of money bach Pak Nis
U1 \qquad
60 Mixed gernaniutu tranxistors $A F / R F$
is fiefmanium gold bonded diodes sim. OA.
40 tiermaniun fransistors tike OC81, AC12s
ADI6I
ADI62
MATCHED, COMPLK
OF (IFRM, JOWER
TRANSISTOIS
For mairis alrivell oult
and ladio receivers.
OL゙R LOWEST PRIC:

2 23055 115 WATT SIL
OUR PRICF: 63p F:ACH
FULL RANGE OF
ZENER DIODES
VOLTAGE RANGE
Cane) 13p ea. 100 (DO-7
Hat) 18 pea . 10 W (so. 10
Stud) $25 p$ ea. Alt fully
tested
tol
marked. slate voltace
required
BRAND NEW TEXAS
GERM. TRANSISTORS
Coded an
Pak No.

26374 A OC81
298381.A OC81
2G382T OC8:
$\mathrm{H} 2 \mathrm{G34} 4 \mathrm{~A}$ OC8:

$\begin{array}{lll}\text { T8 } & \text { N } 2 \mathrm{~GB} 378 & \text { OC78 } \\ \text { T9 } & 8 & 2 \mathrm{G3} 39 \mathrm{~A} \\ \text { T10 } & 2 \mathrm{~N} 1302\end{array}$
T9 8 2G399A 2N130:
T10 8 atir AF117
All 50p each pak
2NROBO NPN SIL. DUAL
TRANS. CODE IVI699
TEXAS. Our price 25 p
each.
120 VCB NIXIE DRIVER
TRANSISTOR.

CODED TESTED AND
TOL
wio up 15p cach.
Sil. trant suitable for
P.E. Organ Metal TO-18
Eqvit VTX 300 5p each
Any Qty.
EX-EQUIPMENT
MOLLARD
AFll 7 transistors. Large
can 4 lears type. Leads
cut short but still usablle
cut short but still usablle
$50200 \mathrm{~m} . \mathrm{t}$ sub-1nin. sii. dionles.
30 sillicon planat transisturs NF'N sim. BSY90.s, 2 N 700
1t Silicon recethers Tup-Hat 750 mA up to 1.000 A
.0 Sil. planar niontes 250 man . OA/200/202
20 Mixen! volts I watt Zener diodes

C14 150 Mixed silicot and germanimm liosles

$103 \cdot A$ inp sificon rect thersm mad type up to 1000 IIS
\% (ietmantua PNP Al' transistory TO-i like ACY 17

$30 \mathrm{~A} \cdot \mathrm{~F}$. germanium alloy transistors 2 C G300 series \& OC:7
30 Madt's like MAT neriex PN' transigtors
$\because 0$ (icrmanium $1-\mathrm{Amp}$ rectifiers diJM up to 300 PIT

30 Fast switching silicon hiodes like $1 \times \overline{9} 1+$ micronnin
(ates, lip-fops, registers, ete, 8 assorterl pieces

i5 Zencr diodes $400 \mathrm{~m} \overline{\mathrm{w}}$ 100 case mixed volta, $3-18$
15. Plastic case 1 amp silicon rectihers 1×4000 series
30 sil. PNP alloy tran*. TO-5 BCY26, $2830-3 / 4$

2.5 Sil planal NPN trans. TO-弓 Bly Yolaline
30 sil alloy trans $80 \because \mathrm{PSP}$, OC $2002 \mathrm{S3} 3$
20 Foast switching sil. trans, NPN, 400Mc/s 2 N 3011
30 RF gerni. PNP trans. $2 \mathrm{~N} 1303 / \mathrm{s}$ TO-
10 1)nal tran*. 6 lead TO-u 2N 2040
 $\begin{array}{cc}10.1 & 30 . A \\ 1 p & 2 p \\ 0.21 & 0.47 \\ 0.23 & 0.75 \\ 0.24 & 1.00 \\ 0.37 & 1.25 \\ 0.45 & 1.85 \\ 0.55 & 2.00 \\ 0.63 & 2.50 \\ 0.75 & \end{array}$
if Silicon rectithers Two－Hat 750 mA up to $1,000 \mathrm{D}$

20 Mixen volts I watt Zener diodes

150 Mixed silicor and cermaninm hioles
－．APN silicon planat trathistom TO－2 sinh，
\％0（ietmantun PNP AF transistors TO－5 like ACY 17－

2 Hilicon NiPN trabsistora like bllos
 2ósilicon Ni＇N trabsistora like belos

 30 Madt＇s like MATC neries PNP transistors
20 （icrmanium 1－Amp tectifiers tiJM up to 300 PIT
30 Fast switching silicon hiotes like $1 \sqrt{9} 1+$ micro－nin
（：ates，lijp－fops，registers，ete， 8 assorterl pieces
10 1－Amp SCR＇s TO－5 can up to 600 PIS CRSI／2．j－h00

15 Plastic case 1 amf silicon rectihers 1×4000 series
30 Nit PNP allos tratw．TO－5 BCYo6，2830：3／t
2\％Sil panar trana．PNP TO－18 2×2906
30 sil．alloy trans 80% PSP，OC200 2 B 3
30 RF gertin．PNP trans．©N $1303 / 5 \mathrm{TO}$

corle Now．mentioned above are given as a guide to the ty
the Fak．The devices flienselves are nomaty unmarked．

GENERAL PURPOSE GERM．PNP POWER TRANSISTORS

 3028，2N2J04，2N4． SPECIFICATION
C＇CBO 80V VCEO \％OY IC 10A PT， 30 WATTS HFF，30－1\％0．

NEW QUALITY TESTED PAKS

PRINTED CIRCUITS—EX－COMPUTER
Pached with sendiconductors and romponents． 10 子ooards gise a guaranteed 30 trans and 30 diodes． Our price 10 boarda， 50 p ．Plus 10 p P．\＆P

GENERAL PURPOSE SILICON NPN POWER

SPECIFICATIO

GENERAL PURPOSE NPN SLLICON SWITCHING TRAN8．TO－18 SIM．TO 2N70B／8， BSY27／28／85A．All usahe devices nit oplen or short circhits．ALSO AVAILABLE in 					
		¢0	100	For	1.75
20	For	0.50	500	For	7.50
50	Por	1.00	1000	Por	18.00

HIGH POWER SILICON	RTL MICROLOGIC CIRCUITS			
PLANAR TRANSISTORS	Price each			
T0－3．	Eopay TO－j case	1－24	2J－99	100
FERRSNTI KTIA8T NJ＊	3 L 900 Buffer	35 p	33 p	27
leb60 Ictil fT．1m／cs				
VCEs Potot．Tiw	${ }_{\text {uLore }}^{\text {gate }}$ J－K Hip－fou	35 p	$3_{47 \mathrm{p}}$	270
－E138 hreljo4．	Data amd Circuit	Hood	klet	1.
PRICE 30p EAC＇I	Price \％p．			

TRANSISTORS

OOR STOCKS of individual devices are tow too numerous to mention in this Advertisement．Send S．A．E． for our listing of over 1,000 Semiconductors．All available Ex－ stock at very competitive prices．
－in－Line Low Profle Sockets Dual－in－Line Low Profle Sockets
14 sind 16 Lead Bockets for use with
Dual－in－Line Integrated Circuit＊

	Price each		
Order No．	$1-24$	$20-99$	100
TSO 14 pin type	30 p	27 p	25 p
TSO 18 pin type	35 p	32 p	30 p

the lowest prices！
 74 series T．T．L．I．C＇s

 SPECIAL CLEARANCE LINES

 SPECIAL CLEARANCE LINES LEFT OVER FROM POSTAL STRIKE

 LEFT OVER FROM POSTAL STRIKE}

NOW LOWER THAN EVER PRICES －GREATER RANGE

I－PAK Semiconductors offer you the largest and mout poptalar ange of I．C＇s available at these EXCLUSIVE LOW PRICES．TTL ligand 16 pm packages．

K				ricen
Order \％o．	Similar Types to：Deacription	1－24	－5－99	100 山夕
		Ep	$\mathrm{EP}^{\text {p }}$	ip
$\mathrm{BP} 00=7400$	Qualruple L －input NAND gat	0.23	0.20	0.15
$\mathrm{BPO1}=7401$	Quadruple 2 －fuput positive NANB gate（with open collector out	0.23	0.20	0.15
BP02 $=7402$	Quadruple 2 －input positive NOR gates	0.23	0.20	0.15
BP03 $=\uparrow 403$	Quadruple ＇－input positive NANi） gates（with open－collector output）	0.23	0.20	0.15
$\mathrm{BPO}=740.4$	Hex Inverters	0.28	0.20	0.15
BP10 $=7410$	Triple 3－input positive NAND gater．	0.23	0.20	$0 \cdot 15$
BP13 $=7413$	Dual 4 －input Schmitt trigger．	0.35	0.38	0.28
BY20 $=7420$	Dual 4 －input positive NAND gates	0.23	0.20	0.15
BP30 $=7430$	8 －input positive NAND gates	0.23	0.80	0.15
$\mathrm{BP} 40=7440$	Dual 4 －input positive NAND buffers	0.23	0.20	0.15
［P41 $=744$	13 CD to decimal nixie driver	0.87	0.77	0.87
$\mathrm{BP4} 2=7442$	BCD to decimal decoler（ $4-10$ lines． 1 of 10 ）	0.87	0.77	0.87
$\mathrm{BP} 47=7447$	BCD－seven－gegment Uecoder／drivers （1ぶ outputs）	1.40	1.80	1.20
BP50 $=7450$	Expandable dual \because ripput and－or－ invert	0.23	0.20	0.18
BPil $=7451$	Bual 2 －wide 2 －input and－or－invert gates	0.23	0.80	0.15
BP53 $=7453$	Uuad erinput expamlable and－or－ invert	0.23	0.80	0.15
BP0゙4 $=\mathbf{8 4 5 4}$	4－wide ${ }^{\text {－}}$－input and－or－invert gates	0.23	0.20	0.15
$8 \mathrm{P60}=7460$	Dual 4－input expander	0.23	0.20	0.15
BP70 $=7470$	Single phase J－K flip－tiop	0.85	0.82	0.29
$8 \mathrm{B72}=3472$	Master－slave J－K flip－flop	0.35	0.32	0.29
$\mathrm{BP73}=7473$	Dual master alave J－K flip－flop	0.48	0.40	0.87
BP74 $=7474$	Dual D type fip－flop．．	0.48	0.40	0.87
BP70 $=7475$	Quad latch	0.47	0.45	0.48
BP76 $=7476$	Dual J－K with pre－set andl clear	0.47	0.45	$0 \cdot 48$
BP80 $=7480$	Gated full adders	0.87	0.77	0.67
BP81 $=7481$	16－bit read／write memory	1.35	1.28	1.15
$\mathbf{B P 8 2}=7482$	2 －bit binary full ailders	1.30	1.20	1.00
BP83 $=7483$	Quad full adder	0.87	0.77	0.67
BP86 $=7486$	Quad 2 －input exclusive or gates	0.80	0.70	0.60
$\mathbf{B P 9 0}=7490$	13CD decade countet	0.87	0.77	0.67
BP91 $=7401$	8 －bit shift registers	1.21	1.00	0.87
$\mathrm{BP9} 2=7492$	Divide－by－twelve counters	0.87	0.77	0.87
$\mathrm{BP93}=7493$	4 －bit binary counters．	0.87	0.77	0.67
BP94 $=7494$	Dual entry 4－bit shift register	0.87	0.77	0.67
HP9á $=749 \overline{0}$	4－bit up－down shift register	0.87	0.77	0.67
$\mathrm{BP} 96=749 \%$	j－hit parallel in parallel out shift． registe	$1 \cdot 10$	1.00	0.90
$\mathrm{BP100}=74100$	8 －bit bistable latches	1.75	1.65	1．65
BP118 $=74118$	Hex set－reset latches	1.30	1.20	1.00
BP121 $=7+121$	Monostable multivibrators	0.87	0.77	0.67
BP141 $=74141$	BCD－to－decimal decoder／driver	0.87	0.77	$0 \cdot 67$
BP145 $=74145$	BCO－to－decimal decoder／drivers	1.80	1.70	1.60
$13 P 151=74151$	8 －bit data selectors（with strobe）	1.40	1.80	1.20
BP153 $=74153$	Dual 4－line－to－1－line data selectors／ multiplexers	1.40	1.80	1.20
BP191 $=74191$	Binary counter reversible	8.50	3.25	3.00

PRICE－MIX．Devices may be mixel to qualify for uuantity prices．
PRICES for quantities in excess of $\mathbf{3 0 0}$ pieces mired，on application．
Data is available for the above Series of Integrated Circuits in booklet form，price 18p．

TTL INTEGRATED CIRCUITS

Mariufacturers＇＂Fall outs＂－wout of apec．devices including functional winits and part fonction but classed an out of spec．from the manufacturers＇very rigid speciflea－ PAX No．PAE Ko．
 UICO1 $=12 \times 7401 \mathrm{~N} 50 \mathrm{p}$ UICLO $=12 \times 7450 \mathrm{~N} 50 \mathrm{p}$ UIC8 $=5 \times 5 \times 380 \mathrm{~N} 50 \mathrm{p}$

 UIC $20=12 \times 7420 \mathrm{~N} \quad 50 \mathrm{p} \quad$ LIC74 $=8 \times 7474 \mathrm{~N} \quad 50 \mathrm{p}$ UIC94 $=5 \times 5494 \mathrm{~N} 50 \mathrm{p}$
U1C UlC41 $=5 \times 7441 \mathrm{AN} 50 \mathrm{p}$ L1C76 $\pm 8 \times 747 \mathrm{AN} 50 \mathrm{p}$ VIC96 $=5 \times 7496 \mathrm{~N} 50 \mathrm{p}$ $11 \mathrm{CX1}=25 \times$ Asst＇d 74 s 8150
le as PAK U1CX
Paks cannot be split but $\mathbf{E v e r s}$ PAK carries out BI．PAK Satisfaction or money back（GUARANTEE．

BRAND NEW LINEAR I．C＇s－FULL SPEC．

Type No	Case			Price		
		Leada	Description	1－24	25－99 100 up	
BP 201C－SL20IC	T0－5		G．P．Amp	68p	Sp	45p
BP 701C－SL701C	TO－5	8	OP Amp	63D	50 p	45p
BP 702C－8L702C	TO－E	8	OP Amp Direct OP	68p	500	450
BP 702－72702	D．I．L．	14	（3．P．O1 Amp（Wide Band）	53p	45	40p
BP $709-72709$	D．I．L．	14	High OP Amp	53p	40	407
BP 709 P － $\mathrm{HA} 700 \mathrm{C}^{\circ}$	TO－5	8	High Gain OP Amp	58p	\cdots	40p
BP 711－HA711	TO－5	10	Dual comparator	58p	50 p	40］
BP 741 － 72741	D．I．L．	14	High Gain OP Amp （Protectecl）	75 p	60 p	50p
UA 703C－$\mu \mathrm{A} 703 \mathrm{C}$	TO－5	6	1U．F．－I．F．Amp	43p		27p
TAA 263－	T0．72	4	A．F．Amp	70p	60 p	850
TAA 293－	TO－74	10	C．P．Amp	90p	75	70p

Over 1 Million Semiconductors must be eold．
Order any＂or all of these Bargain＂gALE＂PAKB liated below＂NOW＂
UNSORTED／UNTESTED／UNCODED／UNBEATABLE VALUE Ord

Order No．	Qty	Description	
SA1	150	Cerm．Trans I＇NP Mixed lots	
8A2	200	（ierm，Sil．Alloy Trans．I＇NP＇	
SA3	100	（herm，A．F．Trans． 300 mW PNP	
$8 \mathrm{A4}$	$\because 00$	Sil，Alloy Low gain switching Trans．PNP．．	
sam	100	Sil．plastic planar tranh．NPN	
8.7	100	Sil．planar Trans，TOJ plastic NPN 800mU	
8.48	100	Sil．planar trans．TO18 plastic NPN $300 \mathrm{~m} \mathbf{W}$	
8.9	100	Sil，planar trans，plastic NPN med．\＆high gain	
		DIODES	
\＄131	200	Germ．Diodes（ient IP－	
SB2	200	Germ．Gohl Bonded	
8183	200	Sil．Suitching Dioules 30 mA	
8134	$\because 00$	Sil．Gen，P．Dioutes＇00mA	
N13，	300	Sill．and Germ．Mixed Diodes following are all new and Fully Tested Tranmistor l＇aks．	
	The		
ST：	40	PNP Trans Mixed all coded Germ． XPN Germ．TOJ 2 （i339 Equt． 2 N 1302 ．ACl：27	
ST3	40	PNP fierm．AF．2G3713．OC71．7．j type	
ST4	30	PNP Germ．Y $11 \mathrm{~F}-2 \mathrm{G} 407 \mathrm{~L}$－AF117－OC170 uncosed	
ST5	30	PNP Metal Alloy VHF $800 \mathrm{~m} / \mathrm{cs} \mathrm{Tranm}$.	
$8 \mathrm{~T}{ }^{\text {＋}}$	40	PNP／NPN Assortel Trans．all coderd	
ST7	40	D1374 RF Trans Eqvt．AsYJiz，OC44／4．	
ST8	40	－2N706 NPN Switching Sil．Trana．	
8T9	30	ON708 NPN 8il．Trans	
ST10	30	BSY28 NPN Bil．Trans．	
8 S11	25	2N3703 PNP 8il．Trank． T1848－3 2368 NPN $400 \mathrm{M} / \mathrm{cs}$	
8T1：	2		
$8 \mathrm{Tli3}$	$2{ }^{-1}$	SE／8N 3646 NPN TO 18 plastic $350 \mathrm{M} / \mathrm{cm}$ 2 S 3010 Sil．Alloy Trana PNP TOS ．	
STI4	40		

$$
\begin{aligned}
& \text { BSY28 NPN Sii. Trans } \\
& \text { 2N3703 PNP Sil. Tran }
\end{aligned}
$$

$$
\text { T1848- } 2 \mathrm{~N} 2368 \text { NPN } 400 \mathrm{M} / \mathrm{cs}
$$

$$
\begin{aligned}
& \text { SE/RN3646 NPN TOL8 plastic } 350 \mathrm{M} \\
& \text { ? } \mathrm{g} 3010 \mathrm{gil} \text { Alloy Trans PNP' TOJ }
\end{aligned}
$$

When ordering flease mention PAK Orfler No．in all cases．

NOTE THESE PRICES！

／C＇s	DTL 930 SERIES		$\angle O G / C$	
Type			Price	
No．	Function	1－24	2j－99	100 up
${ }_{3} \mathbf{P} 930$	Expandable dual 4 －input NAND	28p	20D	15p
BP932	Expandable dual 4－imput N．AND buffer	25 p	28p	20p
${ }_{3} \mathrm{PP933}^{3}$	Dual 4 －input expander	25p	88	20p
13P93．）	Expandable Hex Inverter	25p	28p	200
BP936	Hex Inverter	250	287	207
BP944	Dual 4 －input NANi）expandable buttier wit pull－up	25p	23 D	20p
131945	Master－Elave JK or RB	35 p	380	29 p
${ }^{3} \mathrm{P9} 966$	Quad，e－input NAND	889	20D	15p
BP948	Master－slave JK or Rg	85p	32 p	290
$\mathrm{BP9}_{54}$	Monostable	90p	850	800
BP962	Triple 3－input NANI	230	20p	15p
BP9093	Dual Master－slave JK with separate clock	807	75p	70 D
BP9094	Dial Master－slave JK with geparate clock	80 p	75	70 D
BP9097	Dial Master－slave JK with Conmmon Clock	80 p	750	70 p
BP9099	Dual Maater－blave JK Common Clock	80 p	75p	70p
Devices	be mixed to qualify for quantity price．	r	y	（en

Devices may be mixed to qualify for quantity price．Larger quantity prices on application．（DTL 930 series only）．

Pructical Electronics Classified Advertisements

RATES: $7 \frac{1}{2} p$ per word (minimum 12 words). Box No. $7 \frac{1}{2} p$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

MISCELLANEOUS

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE
because this GPO approved transmicterfreceiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means, Actually it's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmitter AND receiver. You're soing to find EASY-TO-FOLLOW instructions. An extremely EASY-T design with quite an AMAZING RANGEhexibledesign with quite an AMAD HOUSE-TO-HOUSE has obvious applications for PROUSE-TANGOUSE LABORATORIES, SCOUT CAMPS, etc.

GET YOURS! SEND $55 \cdot 20$ NOW
TO: 'BOFFIN PROJECTS
OEPT, KE2010
STONELEIGH, EWELL, SURREY

12 VOLT FLUORESCENT LIGHTS

Beat Power Cuts, 12 ins 8 watt Tube, Ideal for Caravan, Tenc, Emergency Lighting, etc. Fully Transistorised, Low Battery Drain With ON/OFF Switch and $12 v$ Socket to run other Lights or 12 v Equipment.
Unbeatable at $\quad \mathbf{~} 3.30$
or in kit form $\quad \mathbf{~} 2.90$ post paid 12.90

4 WATT GRAM AMPS.
Volume and cone controls, mains operacion 3Ω output, new and boxed $\$ 3.63$ POST SALOP ELECTRONICS Callers welcome 23 Wyle Cop

Shrewtbury, Shropshire S.A.E.forlists

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, II.S. recorcerg, transcription turntables, electronic testmeters, calibration units, P.S.J.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M/U relays, components, etc. Lower Beeding 236.

We stock all those components and materials required by the home $\mathrm{Hi}-\mathrm{Fi}$ constructor, including speaker grille fabrics, BAF wadding, Peerless speaker kits, Helme Cabinet Kits, cross-over networks, inductors, etc. Special offers also available. Send $4 \times 3 \mathrm{p}$ stamps NOW for your copy of our new fully illustrated catalogue (catalogue cost relunded against purchases over 50p). No callers please, mailorder ONLY.

A UBle日EAN Dept. P.E.E

BUILD IT in a DEWBOX quality cabinet 2in $\times 2$ in \times any length. DEW LTD., Kingwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

FABCIA KIT. Make professional panels yourself. A nodised aluminium, six colours. Trial kit 88 \& 30 p , or send S.A.E. for details. MUGGLESTONE PRODUCTS LTD., Bridge Street, Clay Cross, Derbys.

TOP TRAISISTOSS

Unmarked but brand new and individually tested. We will refund your money and postage in full if any of our transistors are found to be faulty. All at $9 p$ each or

Any 12 transistors for only $\& 1$
ACY22 BFY51 OC72 2N3702
$\begin{array}{llll}\text { BCI08 } & \text { BFY52 } & \text { OC202 } & \text { 2N3703 } \\ \text { BC109 } & \text { BSY27 } & \text { ZTX300 } & \text { 2N3705 }\end{array}$
$\begin{array}{llll}\text { BC109 } & \text { BSY27 } & \text { ZTX300 } & \text { 2N3705 } \\ \text { BC168 } & \text { OC45 } & 2 N 706 & 2 N 3706 \\ \text { BC169 } & \text { OC71 } & 2 N 2926 & 2 N 3708\end{array}$
BCI69 OC7I 2N2926 2N3708
MONEY BACK GUARANTEE, P, \& P. $10 p$ J. M. KING (H)

17 Buckridge, Portpool Lane, London, E.C.I

JOHN SAYS..

RING MODULATOR by Dewtron is professional, transformerless, 5-transistor, has adjustable FI/F2 rejection. Module $£ 7$.
Unit 88.90 . WAA-WAA Pedal kit of ali Unit E8-90. WAA-WAA Pedal kit of all parts, including all mechanics and instruments.
ONLY $£ 2.45$. AUTO RHYTHM from Dewtron modules. Simple unit for waltz, foxrot, etc. Costs $£ 16.55$ in modules.
ORGAN PERCUSSON and other fascinating effects. Send 5 pliorillustrated list. Ferndown, Dorset

TOP MANUFAGTURERS' PRODUCTS AT TRADE PRICES !!!

ADCOLA SOLDERING IRONS AND ACCESSORIES: 60/40 SOLDER ELECTROSIL RESISTORS: TR4, TR5, TR6, TR8, C5
T.M.C. RELAYS, PUSH BUTTON KEYS AND LEVER KEYS
B.I.C.C. P.V.C. EQUIPMENT WIRE-ALL COLOURS
Send large s.a.e. for price lists
SPEEDY COMPPNENTS SUPPLY LTD.
High Street Mandcross
Haywards Heath Sussex Handcross 569 CALLERS WELCOME

FABCIA PANEL8, hi-fl equipment, etc., etched aluminimm to individual specifications, S.A.E. details. R. MARSH, 29 Shelbourne Road, Stratford on Avon, Warwicks.

RECORD T.V. SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. Instructions included, 70p $+10 \mathrm{p} P$. P. CROWBOROUGH ELECTRONICS (P.E.), Eridge Road, Crowborough, Sussex.

PSYCHEDELIC

 LUMINOPHONICSOr is this just another way of referring to FANTASY Either way, our Projects 24 and 1014 probably come within this category-THINK OF THE FUN YOU WOULD HAVE WITH SOMETHING LIKE THIS AT A PARTY! There are MANY OTHER UNUSUAL PROJECTS TOO-how Labout an ELECTRONIC STETHOSCOPE TOF LISTENING THROUGH WALLS, etc., or a TRANSMITER/ RECEIVER that Joesn't Use RF, SO LTE's another project for a "LEARNING" MACHINE-imagine one of these in YOUR BACKROOM; YOUR FRIENDS WOULD BE AMAZED! If' REALLY UNUSUAL PHojects interest you, then WE'VE GOT WHAT YOU WANT. In a few days from now YOU COULD BE IN THE
DON'T PUTIT OFF! SEND 15p for your If
4 CUNLIFFE RD., STONELEIGH. EWELL, SURREY Designs by GERRY BROWN and JOHN SALMON and presented on TV

FOR SALE

SEEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E.K.R. WH1STON, Dept. PE, New Mills, Stockport.

MORSE MADE ! !

FACP NOT FICTION. If you start RIGHT you will be readiug amateur and commercial Morse within a month (norimal progress to be expected).
Using scientiflcally prepared 3 -speed recorilg you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's as ensy as For details and course C.O.D. ring S.T.D. O1-660 2896 or send 4 p atamp for explanatory booklet to:
G8HBC (BOY 19), 45 GREEN LANE, PURLEY, SURREY

CATALOQUE NO. 18, Electronic and Mechanical Components, new and manufacturers' surplus. Credit vouchers value 50p. Price $23 p$ including post. ARTHUR SALLIS KADIO CON'TROL LTD., 28 Gardner Street, Brighton, Sussex.

SKV EHT UNIT as new. \&20 o.n.o. Phone LAN(iPORT (Somerset) 8834 .

PHY8IOLOGICAL 08CILLO\&COPE. Heathkit Impscope for E(Gis, JEGis., Manual and all extras. $£ 100$ o.n.o. Phone LANGPORT (Somerset) 8834.

COMPUTER. Heathkit analogue computer, all extras. $\$ 60$ o.n.o. Phone LAN(xI'ORT (Somerset) 8834 .

WANTED

CAsH PAID for New Valves. Payment by return. WILLOW VALE ELECTRONICS, 4 The Broadway, Hanwell, London. W. 7 01-5675400/2971.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types KENSINGTON SUPPLIES (B) 367 Kensington Street Bradford 8, Yorks.

HIQHEST CABH PRICES for tape rerorders 9.30-5. Immediate quotations. U1-472 2185.

ELECTRICAL

TELEVISION AND RADIO

(DAY ATTENDANCE COURSES)
This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one year's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/3, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721.

EDUCATIONAL

HUNDREDS OF TOP PAID JOBS in engineering await qualiffed men. Get a certificate through B.I.E.T. Home Study-Mech., Elec. Auto., Radio, TV, Draughts., Electronics, Computers, Building, etc. Send for helpfui FREE book, B.I.E.T., Department 125 K , Alvermaston court, Reading, RG7 4PF.

QET INTO ELECTRONIC8-big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. R.T.E.B., City Guilds, Radio, TV, Telecoms, etc. For Pree informative Guide, write CHAMBERS COLLEGE (Deṗt. 856 K), Aldermaston Court, Reading, RG7 4 PF .
A.M.8.E. (Elec.), City \& Guilds, R.T.E.B. Cert., Kadio Anateurs' cert., etc., on 'Satisfaction or Refund" terms. Wide range of courses in Elec. Engineering, Design, Instal lation, Repairs, Refrigeration, Electronics, Radio and TV., etc. Send for full details and illustrated book - FREE. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 124 K Aldermaston Court, Reading, RG74PF.

MEN: You can earn 550 p.w. Learn Computer Operating. Send for FREE brochureLONDON COMPETER OPERATORS TRAINING (ENTRRE, (95 Oxford House, 9-15 Oxford Street, London, W.1.

EDUCATIONAL

Young men (and women) trained as Radio Officers on liners and other ships. Salaries rising to $£ 2,500$ per year (all found). Immediate vacancies. Grants available for Day full time course. For details of training write to: The Radio Colleger 91 Lancaster Road, Preston, Lancs., stating if interested in Day or Postal course.

LADDERS

VARNISHED TIMBER LADDERS from manufacturcr, LOWEST PRICEA anywhere 15 $\frac{1}{2 f t}$ ext., $26 \cdot 20$; 17 ft pxtd., 86.50 ; 20 ft extd., $\& 7$; $21 \frac{1 \mathrm{ft}}{}$ extal., $\& 7.75$; $24 \frac{1}{2 f t}$ extd. ex.90; 29 ft extll., $£ 10.25$; $31 \frac{1}{2} \mathrm{ft}$ triple extd., $12 \cdot 25$; 36ft. triple extd., $\mathbf{\Sigma 1 6}$. ('arr. 80p. Free Lists. Also Alumininm Ext. and Loft Ladders. Callers welcome. Dept. PELE, HOME SALES, Baldwin Road, Stourport, Wores. Phone: 02.9932574 . Placing order on C.O.D.

SITUATIONS VACANT

EAGLE INTERNATIONAL require Audio Engineers. Excellent prospects. Must be fully conversant with stereo Ampliflers, Tuners, Multiplex, etc. Contact MR. MORROW 01 -636 0961 .

DEVON RIVER AUTHORITY require HYDROMETRIC A8sISTANT. Work includes collection, measurement and processing of information on water resources using both mechanical and electronic instrumentation. Salary within range ${ }^{429-\& 1,776}$ p.a. a cording to age, qualifications and experience. Essential user car allowance. Further particulars and application forms from The Chief Executive, Devon River forms from The Chief Executive, Devon River Anthority, County Hall, \mathbf{E}
closing date 30 h June, 1971 .

SITUATIONS VACANT

MINISTRY OF DEFENCE (AIR FORCE DEPARTMENT) CENTRAL MEDICAL LABORATORY

 VACANCY FOR A
SCIENTIFIC ASSISTANT

Duties involve practical assistance in the development and design of medical electronic equipment, and in processing experimental data for the 3 Services.

Qualifications

Four GCE Ordinary level passes, including English Language and a Scientific or Mathematical subject.
Candidates must be natural born British subjects.
Salary
£615 (at 16) - £922 (at 21) - £1,128 (at 25) rising to $£ 1,378$.
Application Forms from Civil Administration Officer, Central Medical Establishment, Kelvin House, Cleveland Street, London, W.1. IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
First-class opportunities in Radio and Electronics await the $1 \mathbf{C S}$ trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:

- C. G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
c. G. ELECTRONIC SERVICING.
: R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- RADIO OPERATOR CERTIFICATES.

Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL

 CORRESPONDENCE
SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools
(Dept. 152), Intertext House, Stewarts Road, London SW8 4UJ

NAME
Block Capitals Please
ADDRESS \qquad

AGE. \qquad . OCCUPATION. \qquad
\qquad
\qquad
\qquad $7 / 71$

8ERVICE SHEET8

RADIO TELEVISION, over 8,000 Models. JOHN GILBERT TLILEVASON, 1b Shepherds Bush Rd., London, W. 6 ($01-7438441$).

8ERVICE BHEET8. Radio, TV, etc., 8,000 models. List 10p. S.A.E.enquiries. TELRAY, 11 Maudland Bank, Preston.

8ERVICE 8HEET8 (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFinding Guide. l'rices from 5 p . Over 8,000 models available. C'atalogue 13 p . I'lease send S.A.E. with all orders/enyuiries. HaMILTON RADIO, 54 London Koud, Bexhill, Sussex.

LARGE SUPPLIER OF

SERVICE SHEETS

T.Y., radio, taansistors, tapes, caa radids

25 D EACH, MANUALS FROM 50p PLEASE ENCLOSE LARGE S.A.E. WITH ALL INQUIRIES AND ORDERS.
OTHERWISE LETTERS NOT ATTENDED TO (Uncrossed P.O.'s please, original returned If service sheets not avallable.) FREE TV FAULT TRACING CHART OR TV
C. CARANNA

71 BEAUFORT PARK, LONDON, N.W. 11 MAIL ORDER ONLY

RECEIVERS AND COMPONENTS

PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned complete With layout drawing.
Marine Tachometer (May 1970) 25p ea. Musical Stave (May 1970) 40p ea.
Waa-Waa pedal Vol. 4 No. 7 14p ea. Audio Sig. Gent (Sine and Square on one board) Vol. 5 No. $1042 \pm p$ ea.
S.A.E. for List. Now available from:- HENRY'S RADIO LTD.; Edgware Road, London. W. 2 P.H. ELECTRONICS, Industrial Eotate,
Sandwich, Kent. Tel. 2517

EX COMPUTER PRETED CLRCUIT PANELS	
2 in $\times 4$ in packed with semi-conductors and top quality resistors, capacitors, diodes, etc. Our price 10 boards $80 \mathrm{p}, \mathrm{P} . \& \mathrm{P}$. 7p. With a guaran-	
price 10 boards 60p, P. \& P. 7p. With a guaranteed minimum of 35 traneistors. Data on transistors included.	
BPECIAL BARGAIM PACK. 25 boards for 11. P. a P. 18p. With a guaranteed minimum of 85 transiators. Data on transigtora included.	
PAMELS with 2 power transistors similar to OC28 on each board-components 2 boards ($4 \times$ OC28) 50p, P. \& P. 6p.	
9 OA5, 3 OAl0, 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 GET 872, 3 GET 872B, 1 GiET 875. All long leaded on panela $13 \mathrm{in} \times 4 \mathrm{in}$. 4 for El , P. \& P. $2 \overline{\mathrm{u}} \mathrm{p}$.	
LAROE CAPACITY ELECTROLYTICS $\left.\begin{array}{l}\text { 10,000MFD 30V } \\ \text { 16,000MFD 12V }\end{array}\right\} 40 \mathrm{p}$ each, P. \& P. 6p. or 88.50 per doz. Carr. 50p.	
250 MIXED RESISTORS + \& watt.	
I50 MIXED HI STABS $\frac{1}{4} \pm 1$ matt 5% better.	
QUARTZ HALOGEN BULBS With long leadg. I2V 55 W for car apot lights, projectors, etc. 50 p each. P. \& P. 5 p .	

BARGAIN RELAY OFFER

Single pole change over silver contacta 96 V to 20 V . 2 vk Ω coil. 8 for 80 p . P. \& P. Бp.

KEYTRONICS mail order only 52 EARLS COURT ROAD
LONDON, W. 8
01-4788499

RECEIVERS AND COMPONENTS

(continued)
COMPUTER PANELS. 5-BC108 diodes 15p, post $5 p$
4-80p, post 10p. AMERICAN PANELS. Total at least
30 transiators, firat grade components, details pro-
$\begin{aligned} & \text { vided, 3-65p, post } 10 \mathrm{p} \text {. MIXED TRAMSISTORS ON } \\ & \text { PARELS. } 60 \text { for } 65 \mathrm{p} \text {, port } 10 \mathrm{p}, 100 \text { for } 11 \text {, poat } 16 \mathrm{p} \text {. }\end{aligned}$
Panels with resistors, caps. and diodes, 6 for 25 p. post
15p for 6. FEW COIL PACK8. L.M.S. W. Fugh bution
$\begin{aligned} & \text { or piano key. No dope, 30p, poat 10p each. ORP18 on } \\ & \text { panel ex-equipment, } 35 \text { c.p. MICRO } 8 \text { WITCHES on }\end{aligned}$
or off, 16 cip.p., discount for quantities. FERRITE
or off, 16 p c.p., discount for quantities. FEARITE
20 in AL1 box with 20 1\% caps, $21 \cdot 50$, post 27 p .
Singles, 1 Np c.p. COPPER CLAD PAEOLIN aingle
sided $13^{*} \times 11 \neq 30 \mathrm{p}$, post 5 p each.
POLY8TYRERE CAPACITORS. 125V, 150, 180, 220 ,
$330,390,560,680,820,1,200,1,500,1,800,2,200^{\prime}$
$2,700,3,300,3,900,5,600,6,800,8,200,0.01,0.012^{2}$
$0.015,15 p$ dozen, post 10 p .
Ateorted. I leads, 100 for 80 p , poat 10 p .
ASSORTED COMPONEFTE, 71 b . 11.10 c.p.
J.W.B. RADIO

75 HAYFIELD ROAD, SALFORD 6, LAMCS. MAIL ORDER ONLY

AD161/AD162 POWER PAIR8, matched for Mullard amplifler circuits. Mint, 60p pair, L.K. post $5 p$. S.A.E. list. AMATKON[X
I.TD, 396 helsdon Road, i. (roydon, Nurey, ITRD., 396
('R2 ODE.
P. E. AURORA. Complete sets of electronic components for assembly on Veroboard. We also have specially designed printed circuit cards for a combined controller/filter system readily available. (S.A.E. for lists).

OPTELMEC LTD.
1, 2 is 3 Nelson Works
Back Road, SIDCUP, Kent
BRAND NEW COMPONENTS BY RETURN. Electrolytics 15 or 25 volts, 1, 2, 5,10 mfds, 31p; 25, 50, 4p; 100, 5p. Mylar Film 100y $0.001,0.002,0.005,0.01,0.02,2 p ; 0.04,0.05$, $0 \cdot 1,2.5 \mathrm{p}$. Mullard miniature Carbon Film Resistors $\frac{1}{6} 1 \Omega-10 \mathrm{M} \Omega, 8$ for 5 p . Postage 5 p . THE C.R. SUPPLY CO., 127: ©hesterfield Road, shetfield, 580 RN .

DRY REEDINSERTS

Overall length 1.85° (Body length $1.1^{\prime \prime}$). Diamerer $0.14^{\prime \prime}$ to switch up to 500 mA at up to $250 v$ D.C. Gold clad contacts. $62 \frac{1}{2}$ p per doz.; 6.75 per $100 ; \pm 27 \cdot 50$ per $1,000:$
10,000 . All carriage paid. 40/42 Portland Road, Worthing, Sustex 090334897

FREE STORAGE UNIT

with every purchase over $£ 2$ 5 WATT R.M.S.I.C. (${ }^{10}$ WATTS ${ }^{\text {PEAK }}$) PA246 Audio Amp with elrcuit 82.49 With all component

LOW NOISE HI-STABS

 up क5 5 reaistora + 1 p or
MULLARD C280, C426, C437 electrolytics and many other now component bargalng, for detalls see
FREE CATALOGUE p. \& p. 3p p. \& p. on all ordert other tban renistora ${ }^{6 p}$

> CHROMASONIC ELECTRONICS

56 Fortis Green Road, London N10 3HN

REGEIVERS AND COMPONENTS

 (continued)| Microcircuits: | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 709 | 40p | PA237 | ¢1.57 | 7410 | 22p |
| 741 | 73p | SL402A | C1.75 | 7420 | 22p |
| PA230 | 92p | MELII | 47p | 7430 | 22p |
| PA234 | 87 p | D40CI | 67 p | DIL Conn | $25 p$ |
| Transistors: | | | | | |
| ME0402 | $21 p$ | ME4102 | 12p | 2N5172 | 7 p |
| ME0412 | 20p | ME6IOI | 15p | 2N3055 | 60p |
| ME4IOI | $11 p$ | MPBIII | 35 p | BFX86 | 23 p |
| tW Zener Diodes: | | | | | |
| 4.7V | 12p | 6.2 V | 12 p | 9.1V | 2p |
| | Etch resist filled Marker Penfor making printed circuits 80p | | | | |
| JEF ELECTRONICS (P.E.7) | | | | | |
| York House, 12 York Drive, Grappenhall Warriengon, Lancs. Mail Order Only. | | | | | |
| C.Vf.O. P. \& P. 5p per order. Overseas 40p. Money back if not satisfied. | | | | | |

PE GEMINI

STEREO AMPL!FIER
(Dual purpose, 30W per channel)
All the components is build this high quality amplifier, as fratured in "Practical Electronics," Nov. i970-Feb. 1971, are now available from one source.
ALL PARTS CAN BE PURCHASED SEPARATELY.
Please send roolscap size S.A.E. for free complete lists. Return post service. MAIL ORDER ONLY
Electrospares 21 BROOKSIDE BAR CHESTERFIELD, DERBYSHIRE
quality - value - service

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPERECORDER, AMPLIFIER, erc. Types available: $6 \mathrm{v}, 9 \mathrm{v}, 12 \mathrm{v}$, $18 v$ (single output) $\mathbf{C 2}$ each. P. \& P. $15 p$.
 outputs 22.50 each. P. \& P. 15p. Please state
output required. All the above units are output required. All the above units are
complately isolated from mains by double wound transformer ensuring 100% safety.
R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.E,), 31 Oliver Road, London, E,I7

HOW TO BUILD A MULTI-CHANNEL DIGITAL RADIO REMOTE CONTROL SYSTEM FOR CARS, BOATS OR PLANES. MANUAL 75p plus 8p post.
TELERADJO ELECTRONICS
325/7 Fore Street, Edmonton, N. 9

ELEGTROVLUE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS

MANY AT NEW REDUCED PRICES

| | 2N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

RESISTORS

Appointed distributors for
SIEMENS (U.K.) LTD.
NEWMARKET TRANSISTORS
E. GRINSTEAD ELECTRONIC COMPONENTS

PEAK SOUND	
BAXANDALL	
SPEAKER SYSTEM	
Designed by Perer Baxandall Superb reproduction for sts size. Handices iow res. nett.	
MAINLINE AMPLIFIER KITS	
12 W	
fow	ctiosiso

30 WATT BAILEY AMPLIFIER PARTS
Sensitivity 1.2 V for full output into 8Ω.
Transistors and PC8 for one channel 66.46 Capacitors and resistors (metal oxide), $\mathbf{8 2 . 0 0}$ per channel. Suitable heatsink 100 N space 400 C . 55 p Suitable heatsink 10 DN 400 C , 55p

INTEGRATED CIRCUITS

PLESSEYSL403A 3 watts into 7.5 ohms
SINCLAIR IC.IO as advertised, complete instructions and applications manual $\mathbf{5 2 . 9 5}$ nett instructions and applications manual $\mathbf{C 2}$. 5 nert. conerols, etc., $\$ 4.75$ nett.

S-Decs put an end to birds nesting
Components just plug in-saves time-allows re-use of components. $\$$-Dec (70 points), $\$ 1.00$
Complete T-Dec, may be temperature-cycled (208 points), $\mathbf{6 2} 50 \mathrm{Als} 0 \mu$-Decs and IC carriers

INDICATOR LAMPS

NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A, 24p; chrome type LS5C/R $17 p$; amber type LSSC/A 17 p ; clear type LS5C/C, 17p. All above are for 240 V mains operation. Filament types: $6 \mathrm{~V}, 0.04 \mathrm{~A}$ squarered eype LS5C/R-6V, 20p; 6V, 0.04A amber type LS5C/A.6V, 20p; $6 \mathrm{~V} / 0.04 \mathrm{~A}$ clear type LSSC/C-6V, 20p; 6 V 0.04 A green type LSSC/G-6V, 20p; 2 V
LS5C/R-12V,23p;28V $0.04 \mathrm{~A} L 55 \mathrm{C} / \mathrm{R}-28 \mathrm{~V}, 2 \mathrm{p}$.

DIN CONNECTORS

		plug	socket
Loudspeaker	2-pole	12p	10p
Audio	3-pole	13p	10p
Audio	4-pole	14p	12 p
Audio	5 -pole 180deg.	15p	12p
Audio	5 -pole 240 deg.	15p	12 p
Audio	6 -pole	15p	13p

G. F. MILWARD

SPECIAL 5 RESISTORS
assorred assorted
Wire-wo 5 to 7 wate
10 watts 10 watts
Mulri-capped
PAPER CONDENSERS APER CON
TV types Miniature SLECTROLYTIC for Mains

Suitable for Main
Radio/TV
ransistor types
POLYSTYRENE
CONDENSERS
MULLARD POLYESTER COND.
SILVER MICA
WIRE-WOUND 3-Watt
VOLUME C
OLUME CONTROLS.
NUTS AND BOLTS. Mixed
length/type
8 B.A.
6 B.A.
4 B.A.
METAL SPEAKER GRILLES

No Plug
2.5 mm Plug

500 MICRO-AMP LEVEL
METERS
VEROBOARD. TRIAL PACK 50
5 BOARDS + CUTTER
RECORD PLAYER CARTRIDGES. Wall below normal prices
G90 Magnetic Stereo Cartridges, Diamond Needle, 6 mV output, t^{2}. ACOS
GP $67 / 2$ (Mono, Crystal) 75 p . ACOS GP $91 / 3$ (Compatible, Crystal) El . GP 67/2 (Mono, Crystal) 75p. ACOS GP $91 / 3$ (Compatible, Crystal) $\ddagger 1$. ACOS GP $93 / 1$ (Stereo, Crystal, Sapphire) $£ 1 \cdot 25$. ACOS GP $93 / 10$ (Stereo.
Crystal, Diamond) $£ 1.63$. ACOS GP $94 / 1$ (Stereo, Ceramic, Sapphire) $£ 1.50$. ACOstal, $\mathrm{GP} 94 / 1 \mathrm{D}$ (Stereo, Ceramic, Diamond) \&I.88. ACOS GP $95 / 1$ (Stereo, Crystal with two L.P./5tereo needles) El. 25 .

TRANSISTORS
P.N.P. Untested but mainly

N.P. Untested but mainly O.K.	¢0	50p
N.P.N. Untested but mainly	inly	
O.K.	50	
OCP 71 equivalent	5	50
Light-sensitive Diodes	10	50
(These produce up to I ma from		
OC44 Mullard Ist grade	4	50p
OC45 Mullard Boxed	4	50p
2G378 Output, Marked	4	50p
2G371 Driver. Marked	4	50p
ASY 22, Marked	5	50p
BY 127 Recrifiers	4	50 p
IN 4007 Rectifiers (1200V peak)	4	
STC 3/4 Rectifiers	6	50
OIODES (OA 8I \& OA 91)) 40	50
WIRE.		
$50 l i d$ Core. Insulated 100	100yds.	50
Stranded ditto 50	50yds.	5
OLAR CELLS.		
Large Selenium	2	50
Small	3	50

${ }_{6}{ }^{\text {Small }}$ cells will power a Micromat ${ }^{3}$
CO-AXIAL CABLE.
Semi Air-spaced l5yds
CRYSTAL TAPE RECORDER
CRYSTAL TAPE RECORDER
MIKES
CRYSTAL EARPIECES
3.5 mm Plus
3.5 mm Plug
TRANSISTORISED signal

Injector
Tracer
TRANSISTORISED CAR REV
TRANSISTORISED CAR REV.
COUNTER KI (Needs I ma
50p

50p

50p
50p
50p
50p
50p

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS

Large range in stock, 75p per 100 of any one value. $15 p$ per dozen.
RECORDING TAPE BARGAIN! Theverybest British Made low-noise high-quality Tapel Sin 5tandard 38p. Long-play 45p. 5tin Standard 45p.
Long-play 60p. Fin Standard 60 p. Long-play $82 p$. We are getting a fantastic Long-play $60 p$. Tin Standard $60 p$. Long-play $62 p$. suge are getting a fancastic number of repeat orders for this tape.
whilst we still have a good stock at these low prices?
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 10p.

Selections from the FELSTEAD ELECTRONICS' List

 (2) and over). Sub-Min. Transiormers: OUTPUT (3R Tor OC7. and ocher ip ist. SOLDERING IRON. Silim, modern, British hithospeed Binn, all parts replaceable, highest quality, fuil guarantee: \&i.7) (10p; DIAMOND

 40p (6p). ACOS GP73, GP9I, BSR ST4 (5T3, ST5), ST8 (ST9): SONOTONE
$8:$ A. 9 AA. 9 TAHO: PHILIP5 AG $3306,3060(3063,3066,3301,3302,3304)$: Garrard
 quality. Double Diamond: ST4 (ST3, ST5): STIO (ST9, STG): 9TA,
9TAHC, 3306, GP9I (For GP92, GP93, GP94 cartridges): GP9ISC for all GP91-5C 9TAHC, 3306, GP9I (For GP92, GP93, GP94 cartridges): GP9ISC for all GP9I-5C
Cartridges: All at EI.50 each (6p). PICK-UP CARTRIDGES All sandard fittings and stylii. MONO GP67/2 80p. STERO-COMPATIBLE (MONO) GP31/SC €1.10. STEREO GP93 £1.30 STEREO CERAMIC GP94 £I.95. 5ONOTONE
 E13.50. G800 5UPER E\&19.50 (61 ip all types or Reg. Post, 22ip). STYLIIFOR ALL ABOVE TYPES, including GOLDRING available. RECORDING ThP
the finest quality British Mylar available: Standard 5 in 600 ft 36 p . 5 tin 900 ft the finest quality British Mylar available: Standard sin 600ft 36p. 5in 900 ft
50 p . 7in 1,200ft 56 p . LONG PLAY 5in 900 ft 50 p . 5 in $1,200 \mathrm{f}$ 56p. 7in $1,800 \mathrm{ft}$ 90p. (71 ip on 5 in and 5 Iin, $9 p$ on 7 in). MICROPHONES Crystal Mic 91 , hand/desk, $81 p$. MIC45, Curved metal handgrip $£ 1$. CM21 Grey hand/desk $52 \frac{1}{2} p$. Stick " 60 " $\ddagger 1$ I. 21. CM70 "Planet"' machined metal tapered stick type with neck cord, adaptor to fit floor stands fl 1.471 (all 9p) LAPEL (or hand) with clip 321p (6 p). All are fitted with leads. Dynamic MSIO 50K Ω for desk, tapered with base and slide-out adaptor 2 (Either $15 p$). Type 209 Cardiojd ball, $50 \mathrm{~K} / 600 \Omega$, omni-dir.,
fitted base, $£ 2.22$ (fitted base, $\mathbf{~ 2 . 2 2 . 1}$ (Either 15p). Type 209 Cardiojd ball, $50 \mathrm{~K} / 600 \Omega$, omni-dir..
built-in vol. control on/off switch, special lead, handle (as good as money can buittin vol. control, on/of switch, special lead, handle (as good as money can
buy) 66.30 UDI 30 UNI-Dir, Bali., MESH, $50 \mathrm{~K} / 600$, ADAP., CABLE JACK
 either). MICROPHONEINSERTS. Dia., 1.75 in or or 9 in either size 27 p p ($6 p$). EARPIECES with lead and min. jack plug (2.5 or 3.5 mm , state which) Magnetic 9p Crystal (3.5 only) 24p (up to 3 for $6 p$ on any.) HEADPHONES De-luxe STEREO 8-16 6 , $\mathbf{1 2 . 4 7 1}$: Same, fitted vol. control each earpiece E4. 20. Both have lead and stereo jack plus (171p). HIGH RES. 2000n. Adjustable
9210 (12 Ip). SPEAKERS. 2 in ROUND fitted tweeter, 3 or 15 (state which) 921p (12 Fp). SPEAKERS. 12 in ROUND fitted tweeter, 3 or 15Ω (state which)
fl.87 (27 or for Stereo $\mathbf{~} 4.25$ pair, carr. paid. 2 in 3 or 8Ω (state which)
 37p (6p).
and crossover network $15!2$ E3.75 (25p). VIBRATORS. With two tweeters and crossover network
12 y 4pin non-synch. 121 HD 4,2 itin ex. pins 27tp. $12 V 7$.pin synch. (I25R7) 61 ip (both types 61 p per vibrator). CONNECTING WIRE. Packs of 5 coils asstd. cols. ea. coil $5 y d s$. Solid core 14 p (6 p). Flexible 16 p (7 ip). Super thin for transistor wiring 16p (6p). PICK-UP WIRE. Super thin twin flex. screened and sheathed $6 p$ yd. ($6 p$ up to 6yds-over free). RETRACTABLE Flex. Leads. (Curlies) 6 ft . phonoplug ea. end 221 p , 12 ft 39 p . 6 ft phono plug/phono socket other end 25p. ${ }^{12 \mathrm{ft} 42 \mathrm{~T} \mathrm{p}^{(6 p} \text { per lead all types). SEND S. A. E. for full free }}$ lists- 5 mall 3 W and $7 \frac{1}{2} \mathrm{~W}$ trans. amplifiers, Electrolytics, Vol. Controls, all types of radioswitches, car and portable expanding aerials, Meters, Test prods, all
types of, Brit. \& Cont. standard and min. plugs and sockees, SDR's Thyristors, croc. clips (various), terminals, etc., and "Special Offer" lines at lowest possible prices.

FELSTEAD ELECTRONICS (PE505)

Longley Lane, Gatley, Cheadle, Ches. SK8 4EE

Cash with order only. No C.O.D. or Caller Service. Charges (Min. 6p) in brackets after all items. Regrec. Orders under 25 p excluding postage, unaccepable. 5.A.E. please for inquiries or cannot be replied to. Charges apply G.B. and Eire
only. Overseas orders welcomed (lists free overseas.)

PARKERS SHEET

METAL FOLDING

MACHINES

HEAVY VICE

MODELS

With Bevelled Former Bars

No. I. Capacity 18 gauge mild steel $x 36 \mathrm{in}$. Wide
15
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. Wide
 Also new bench models. Capacities 48 in . \times
©30. 24 in . $\times 16$ gauge $\mathbf{C 2 9}$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36 in . model, $27 \frac{1}{2} p$ per ft . Other models $17 \frac{1}{2} \mathrm{p}$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One yepr's guarantee. Money refunded if not satisfied. Send for details.
A. E. PARKER, Folding Machinc Works, Upper George St., Heckmondwike, Yorks. Heckmondwike 3997

BAKER |5in. AUDITORIUM

A high wattage loudspeaker of exceptional quality with a level response to above $8,000 \mathrm{cps}$. Ideal for Public Address, Discotheques, Electronic instruments and the home.
Maximum Power Bass Resonance
Flux Density
Voice coil impedance a or 15 ,000 gauss Useful response 20-14,000 c.p.s. Nett weight

GUITAR MODEL "GROUP 50" 50

Baker Reproducers Ltd

Bensham Manor Road Passage, Thornton Heath, Surrey.
$01-6841665$

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION
OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

\square scchanic:-1

Acchanicat
Inst. of Engincers
Mechanical Eing.
Mechancal Eng. Mantena
Welding
General Diesel Eng Sheet Meral Work
Eng. Inspection
Eng. Metallurgy
C. \& G Eng. Cralts
C. \& G. Fabrication

Draughtsmanship
A.M.I.E.D.

Gen. Draughtsmanship Die \& Press Tools Ekec. Draughtsmannin Jig \& Tool Design Design of Elec. Machanes lechancal Drawing building

Electrical \& Elcctronic A. A.S.E. (ELCC.) C. \& G. Elec. Eng. Installations \& Wiring liketrical Maths. Computer Electronics Electronic Eng.

Radio\& Telecomms C. \& G. Telecomms C. 太 G. Radio Servicing Radio Amatcurs' Exam. Radio Operators' Cert. Rudio \& TV Enginecring Radio Servicing, Practical Television TV Servicing Colour TV
Practical Radio E
Electronics (with kit)

Auto \& Aero
A.M.I.M.

MAA/SMI Diploma C. S G. Auto Eng Gencral Auto Eng Motor Mechanics A.R.B. Certs. Gen. Acro Eng.

Management \&

I'roduction
Computer l'rogramming Inst. of Alarketing A.C.W..A.

Works Management
Work Study
Production Eng Storckuphing Storcktorning
Estmating
Estmating
Personnel Management Quality Control Electronic Data l'rocessing Numerical Control Planning Enginereng Materials liandlong Operational Rescarch Metrication
Constructional 1.11.S.1: (Cit: C. \& G. Structural Road Enginecring Civil lingincering Building
dir Conditioning Hating \& Ventilating Carpurtry \& Jomery Clerk of Works Building Drawing Surveying Painting and Decorating. Architecture Builders' Quantities

General
C.li.I:

Petroleum 1'ech
Practical Maths.
Refrigerator
Rubber licehnolog
Sales Engineer
Timber trade
Farm Science
Agricultural Eng.
Gencral Plasties
Gencral Certificate of Lducation
Choose from 42
subjects including:
subjects including:
English
Chomistr
Genustry Science
Gehwral
Gcology
Phusics
Muthemarics
Technical Drawims
Gcrmun
Rustion
Spunish
Riolory
B.I.E.T. and its
ussociarid schools
hate ricorded cadl
ozer 10,000 G.C.E
successes at ' O ' and
WE COVER A WIDI: RANGE OF THCHNICAL AND PROFESSIONAL I:XAMINATIONS.
Over 3,000 of our Sudents have obrained City \& Guilds Cerificares. Thousands of

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier.' - Case History G/321
"In addition to having my salary doubled, my future is assured." Case History H/493.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/46I

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIIISH INSIITUTEOF ENGINEERINGIECHNOLOGY

Dept D256, Aldermaston Court, Reading RG7 4PF.

TENRT'S RADO LTMTTED Humsemo ENGLAND'S LEADING ELECTRONIC CENTRES HI-FI COMPONENTS - TEST • PA. DISCOTHEQUE ELECTRONIC ORGANS • MAIL ORDER

MORE OF EVERYTHING AT LOW PRICES ALWASS FROM HENRYS

* Components from stock for almost all published designs.

COMPLETELY NEW

FREE to Industry, Educational or any Organisation, Official heading to our " 303 " address.

A NEW HENRY'S CATALOGUE IS A MUST FOR ELECTRONICS TODAY!

To Henry's Radio Ltd. (Dept. PE)
3 Albemarle Way, London, E.C.I.
Please send...........copies at 5Sp each Post Paid.
I enclose Cheque/PO for
(Use BLOCK CAPITALS-cut out and send with Cheque or Postal Order (No cash please). Use only for ordering catalogue).

Name

TRANSISTOR AMPLIFIERS
NEW RANGES NOW IN STOCK (Leaflets Ref. Nos. 6 and 8) Post, etc. 20p.
$4-300$ 4TR 9 V 300 mW 104 4TR 9V IW 304 4TR 9V 3W 555 6TR 12 V 3 W PA7 6TR 16 V 7 W 608 6TR 24 V 10W
MPAI2/3 6TR IBV 12 W MPA12/15 GTR 36 V 12 W MPAI2/5 6TR 36 W I2W PA25 10TR (Special) 25 W $25030 \vee 40 \mathrm{~W}$ PA50 12TR (Special) 50W 100 loow with power supply

OPTIONAL POWER SUPPLIES

Post, etc., 20p
P500 (One or Two) for 104, 304 MU24/40 (One or Two) for MPA12/3 or MPA12/15
 P11for $60862.87 \quad$ P15 for 410
MU442 for lor 2 PA25 or I only PA50
62.62
63.47
64.50
66.97
62.25
62.62
66.50

NEW MINIATURE LOW COST AMPLIFIER

MODEL 4-300

9 V operated or mains unit optional transformer (MT98 70p), 1-10mV adjustable sensitivity. P/P outpur for 3-8 ohms. Fitted volume
 control and leads. Size $5 \frac{1}{2}$ in $\times t$ in

Price $£ I \cdot 75$ x in. Thousands of uses-lakes magnetic. dynamic and erystal inputs direct. Output 300 mW -very high gain-built in rectifier circuit. P.P. 15p. Complete with FREE leafle No. 8.

HI-FI TO SUIT

CHOOSE 100 STEREO from SYSTEMS and a complete range of Demonstrations all day-visit pur new Hi-Fi Store. LOW CASH ${ }^{\text {new }}$ OR SH CREDIT/HP TERMS (Credit terms from 630 purchase-callers only) FREE-Stock Lists Nos. 16/17 BESTVALUE IN U.K

GARRARD TAPE DECK

9 operated 2-speed tape deck fitted Record/Replay $\frac{1}{2}$ track and Erase/Bias Osc. Head. Complete with Oscillator/Record head circuit. Unit size 9 in $\times 6$ in \times l in and 2tin below motor Supplied Brand New

Price $\mathbf{£ 9} 97$
P.P. 33p (34in. tape 300ft.) and spool 40p.

HENELEC EQUIPMENT
 (as previously advertised)

SELF-POWERED SILICON

 PRE-AMPLIFIERSFET154 Stereo ¢16.50, post 25p. E1250, post 20p.
SILICON POWER
AMPLIFERS FOR USE
PA 2525 W into 8 O
PA50 50W into 8Ω £7.50, post 20p. PA5050W into 4Ω £9.50, post 20p PA25's or 1 only PA50 E6, post 20 p.
PACKAGE DEALS
FET9/4 plus PA25 plus MU442 F25,'9/4 plus PA50 plus MU442 E27, post 40 P .
FET'I54 plus $2 \times$ PA 25 plus MU442 636, post 50p.
FETI54 plus $2 \times$ PA50 plus 2 MU442 \&40, post 50p.
No soldering-just edge connectors and din plugs/sockets.
Free Brochure No. 25

BUILD YOURSELF A QUALITY RADIO

Excellent printed circuit desig with full power output. Fully 7 Muliard transistors. Fitted 5in speaker. Room filling power. Easy to build with terrific results. Two colour leathercloth cabinet with silvered front. All local and continental stations. Complete Total cost 66.98 P 35 All parts sold Ask for Leaflet No. M.p.

PROJECT 60 PACKAGE DEALS
$2 \times z 30$ amplifier. stereo 60 preamp. PZ5 power supply, £16.75. Carr. 40 p. Or with PZ6 power supply, f18. 25. Carr. 40p. 2 , $\mathbf{t 2 0} 25$, p.p. 40p. Transformer for PZB $\mathbf{~} 2.25$ extra. Any of the above with Active Filter unit add E4.75 or with pair Q16 speakers add Els. Also NEW FM TUNER, C21.

BUILD THIS VHF FM TUNER
5 MULLARD TRANSISTORS 300kc/s BAND WIDTH. PRINTED CIRCUIT. HIGH FIDELITY REPRODUCTION.
MONO AND STEREO. A POpular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it-VHF FM gives the REAL sound. All parts sold

$$
\begin{aligned}
& \text { separately. } \\
& \text { Free Leafler }
\end{aligned}
$$

Free Leaflet Nos. 3 and 7
TOTAL 66.97, p.p. 20p. Cabinet \&1, Decoder Kit 65.97 , Tuning meter 61-75. Mains unit (optional) Model PS
C2.47. Mains unit for Tuner and Decoder PS1200 \&2.62.

[^3]High Fidelity Sales $\&$
Demonstrations Centre 354 EDGWARE ROAD. LONDON, W. 2. Tel: 01-402 5854

> Electronic Organs.
> P.A. \& Discotheque Centre 309 EDGWARE ROAD. LONDON, W.2. Tel: 01-723 6963

Mail Orders. Special Bargain Shop, Industrial Sales 303 EDGWARE ROAD, LONDON, W.2. Tel: 01-723 1008/9 open all day saturday

[^0]: (C) IPC Magazines Limited 1971. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 82.65 (22 13 . Od).
 Practical Electronics, Fleetway House Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

[^1]: To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

 NAME BLOCK CAPS
 ADDRESS
 PLEASE P.E. 7

[^2]: Sinclair Radionıcs Ltd., London Rd, St. Ives
 Huntingdonshire PE174HJ
 Telephone St lves (048 06) 4311

[^3]: Electronic Components, Audio and Test Gear Centre 356 EDCWARE ROAD, LONDON, W.2. Tel: 01-402 4786

