PRACTICAL

EL=CTRONICE

DICTAL NTECRATED CRCUI TESTER

ADCOLA Soldering Instruments add to your efficiency

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{C}$.

*Additional Stock Bits

(illustrated) available

COPPER

B $38 \frac{1^{\frac{1}{6}}-3.2 \mathrm{~mm} \text { c }}{}$	CHISEL FACE
$\square \sim$	
$814 \frac{3}{32}^{\prime \prime}$ - 2.4 mm CHISEL face	
$\mathrm{B} 24 \frac{3}{1 .}^{\circ}-4.75 \mathrm{~mm}$	SCREWDRIVER face
B 12 1\% $\frac{1}{16}$ - 4.75 mm EYELET Bit	
B $58^{-\frac{1}{4}}$ - 6.34 mm CHISEL FACE	
LONG LIFE	
-	
B 42 LL $\frac{3}{16}{ }^{*}$ - 4.75 mm	CHISEL FACE
O-2	
B 14 LL $\frac{9}{32}^{\frac{1}{2}}$ - 2.4 mm CHISEL FACE	
\square	
B 44 LL $3^{3}{ }^{\circ}-4.75 \mathrm{~mm}$	SCREWDRIVER face

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list and
catalogue
ADCOLA PRODUCTS LTD.
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telephone: 01-622 0291/3 - Teiegrams: Soljoint London Telex •Telex: Adcola Landon 21851

for fast, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR.

 Economically packed for general electrical and electronic soldering. 75 ft. 18 gauge on plastic reel. Recommended retail price 75 p

A RANGE OF

SOLDERS IN HANDY DISPENSERS.

THIN GAUGE SOLDER,
ESSENTIAL FOR
soldering small components and thin wires. High tin content, low melting point. 60/40 alloy, 170 ft . 22 gauge on plastic reel. Recommended retail price 75p

INVALUABLE FOR STRIPPING FLEX, THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER AND CUTTER, easily

> adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended retail price 50 p

. From Electrical and Hardware shops. If unobtainable, write to: Multicore Soldärs Ltd., Hemel Hempstead. Herts.

D.J.lol Mixer Pre-Amplifier

Six inputs allow full mixing facilities for abll ype of equipment. 9 V battery operation
Bize: $10 \sin _{5}^{\sin } \times \mathrm{E}$ in $\times 4$ in.
Suggested Retail Price 114
D.J. 102 Discotheque Mixer Pre-Amplifier lour inputs each with its own volume control plns master volume control, PFL monitoring and mic override awitches. Size: $10 \operatorname{tin} \times 4 \mathrm{in} \times 4 \mathrm{in}$.
Suggetted Retail Price $£ 25$
D.J.losS P.A. Amplifier
4.chamel mixing facilities each with separate juputs and volume controls, 30 W r.m.s. power output: a.c. Mains 200
D.J. $70 S$ Integrated Mixer Amplifier

Power output 70W r.m.s. 4-channel mixer with separate inputs and volume controls, plus master volume and separate bass and t reble controls
size: 15 in $\times \bar{p}$ in $\times 6$ in. Suggented Retail Price ses
D.J. Disco-Amp.

Designed apecifcally for use with discotheques. Power output 100W r.m.s. Two mic. Inputs and two grain inputs, with independent volume control plus hass and treble controis. Incorporates many 8uggested Retail Price 885

Discosound 40 Discotheque Pre-Amplifier Features independent inputs and volume controls for wo microphones and two turntables plus separste ass, treble and master rolume controls. Selfower Amplider (is capable of running 10 of these power amplifiers-total $1,000 \mathrm{~W}$). Front panel ajze $16 \frac{1}{2} \times 7 \mathrm{in}$
Suggeated Retail Price $£ 40$
Discosound 100 Power Amplifier loow r.m.s. power amplitier (at 8 ohms) utihislng all silicon transistors and features full sutomatic overload against short or open circuits. Frequency response $20-20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Distortion less tha \%
D.J.l03S Stereo Pre-Amplifier

A high quality stereo discotheque pre-amp unit. Incorporating two microphone and two turntable inputs each with independent volume control, plus offers full mixing and monitoring factlities Front offers full mixing and monitoring factities. Fron panerated Retall Prict
D.J.30L Psychedelic Lisht Control Unit 3.channel light unit enabling bass, middle and treble frequencies from the ampllier to be operated indicldually. Handles $1,000 \mathrm{~W}$ yer channel. Front panerestain $\times 6 \mathrm{in}$.
D.J.40L Sound Oparated 3-channul light unit
Features built-in microphone which eliminates the need for connectlone to any amplifier or sound sourc andles $1,000 \mathrm{~W}$ per channel. Front panel Suggested Rotail Price 250.26

D.J. DIMMER 3000

3-channel light dimmer unit offered in two versions: Dimmer 3000 -a atraight 3 -channel dimmer unit ith maing iuput and three light outputs.
Light Control undt only and hand three main Dinp. 30 L and three light outputs. Front Panel alze: $10 \mathrm{in} \times 6 \mathrm{in}$ 8uggested Betall Price $\$ 2.50$

Discosound Disco-Wheel
A projector dealgned to project a range of liquid wheels and colour change wheels for special lighting effecte, adding colour and varlety to any form of entertainment. Size ; $7 \ln \times 101 \mathrm{in} \times 5 i \mathrm{in}$.
Ingronted Eatall Price

A range of complete Discothequet with matching Speakers also available.

DISCOSOUND PRODUCTS ARE GUARANTEED FOR 12 MONTHS

For full details of the Discosound range of products call at or write to your nearest
Discotheque Centre - Demonstrations given at any time.

122 Balis Pond Road, London N.1. Tel: 01-254 5779

HENRY'S RADIO LTD.
309 Edgware Road, London W.2. Tei: 01-7236963

NEW FROM TRS

This money saving STEREO $8+8$ AMPLIFIER in a new PRE-ASSEMBLED MODULAR PRESENTATION

A new conception in modular assembly which makes construction even easier then ever and results even better. Two pre-amp and two power amp modules, factory built, tested and guaranteed by a world famous maker come to you ready mounted with mains power unit on chassis forming part of the attractive TRS cabinet which simply need wiring for immediate use. A generous 8 watt RMS output per channelinto $\mathbf{3 - 5}$ ohms is assured. Cabinet with aluminium front, charcoal grey top and wood sides measures $12 \mathrm{in} \times 8 \frac{1}{2}$ in $\times 2 \frac{2}{4} \mathrm{in}$, Very attractive appearance.

- Frequency resp.: $50 \mathrm{~Hz}=$

Input. 110 mV per P.U.

- input: 110 m

Oucput: $\cdot 8 \mathrm{~W}$ per channel.
RMS into 3-50. Slightly less per 8-150 speakers.

- Record and playback facilities
- Bass/Treble/Volume/Balance InputiOnnoff controls.
- Excra easy to.install.

COMPONENTS CORNER

VYNAIR speaker and cabinec covering by ICl. Send 5p for samples-refundable on purchase. 121p per sq.ft. 11.38 per $y d .48 \mathrm{in}$ wide

BONDACOUST speaker wadding lin thick, 18 in wide, per yard 42 4 p.
YEROBOARD in all latest sizes and forms. inc. $2 \frac{1}{2}$ in $\times 3 \frac{3}{\operatorname{in}} \mathrm{in}, 16 \mathrm{p}$; 2 t in $\times 5$ in or $3 \frac{1}{4} \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}$, 23p; 3亲in $\times 5 \mathrm{in}, 26 \mathrm{p}$; $17 \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}, 75 \mathrm{p}$.

VOLUME CONTROLS. Long spindles all values 5 Kohms to 2 meg. \log or lin., less switch 174p; with switch 25p.
Twin ganged stereo, 5K to 2 meg , less switch, 48p; with switch 100K so 2 meg . 52 p .

STEREO BALANCE CONTROLS, Log/ Anti-log $5 \mathrm{~K}, 10 \mathrm{~K}, \frac{1}{2}$, I or 2 meg , 55 p .

RESISTORS, CAPACITORS, WIRE, ece., etc.

MORE AMPLIFIERS FROM TRS

MULLARD VALYE AMPLIFIERS
$5-10$ basic kit (mono) ¢10.99. Carr. 28p. 2 valve mono pre-amp basic kit for above 47.65. Carr. 28p.

10-10 stereo amplifier kit $\mathbb{1}$ is-99. Carr. 63 p .
TRS 50 WATT VALVE AMPLIFIER A ruggedly built unit in ventilated steel case with carrying handles: size 12 in \times $8 \mathrm{in} \times \operatorname{Bin}$. Two inpus channels mixable (10 mV and 150 mV) bass and treble controls. EL. 34's output (mono) in push-pull, with EL. 34 s output (mono) in Push-pul, with
fixed bias. Excellent for P.A.. musical fixed bias. Excellent for P.A.. musical
group work, etc. Brand new and guranteed group work, etc. Bra
130. Carriage 75 p .

Complete kis assembled ready to wire up with maint lead and instructions. Unsurpetsed value ot only

Carriage and packing 38p in U.K. Descriptive leaflet on request

FOR YOUR STEREO 8+8

OR OTHER HI-FI SYSTEMS

Plinth and motor assembly comprising modern style teak finished plinth cut to take famous Garrard AT6 auto/single playing unit wired for splinth and AT6 les, cartridge $\mathbf{E 1 2 . 5 0}$ (Carr, and packing 53 p).

SPECIAL CARTRIDGE OFFER TO
PURCHASERS OF ABOVE ONLY
Acos stereo 6P93-1 (sapphire) © 4.25 .
Sonotene 9TA/HC (diamond) 2.
AD96K (Mag., diamond) \&3.50.
Various masnetic types from $\$ 3.50$.
TRS SPEAKER BARGAIN
Ready now - SPEAKER AND CABINET ASSEMBLY comprising
8^{*} unit (4 ohms) and asy to put tosecher flatpack cabinet porced and lined, size $19^{\prime \prime} \times 12^{\prime \prime} \times 9^{\prime \prime}$. 25.50 (Carr. 40 p).

TRS

RADIO COMPONENT SPECIALISTS
70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY
Tel. $01-6542188$ sats.. Wedr.1. ${ }^{\text {Oen }}$,
Thornton Heath Stn. (S,R,)

Fingers

The more 'fiddly' the job, the more you depend on your finger-tips. Make sure minor burns and blisters don't rob them of their skill. Apply BURNEZE, pronto! This unique scientific aerosol cools the heat out of a burn in just 8 seconds, anaesthetizes pain, reduces swelling. BURNEZE - the clever tip for burnt finger-tips. From chemists.

(8) Potter \& Clarke Ltd Croydon CR9 3LP

Piff FLOG LST NO. $6 \begin{gathered}\text { Scores } \\ \text { special } \\ \text { Bargains }\end{gathered}$
SEND S.A.E. OR CALL AT ANY BRANCH FOR YOURS

HUGE RANGE OF SPECIAL SNIPS -STEREOS, DECKS, TAPE RE-	EHORMOUS PURCHASE GUARARTEED. APPROX. HALF PRICE.
CORDERS, AMPLIFIERS, SPEAK-	WORLD 1 TA
ERS, TRANSISTORS, VALVES,	FAMOUS
COMPONENTS-NEW BRANCH	8 standard Play Drouble Play
AT 77 EAST \$T., SO'TON.	3 in . 150ft. 12p 3in. 300ft. 20p
	4 jn . 3001 t . 23p 4in. 600ft. 40p
EGHMIGAL	5 in . 600 ft . 45 p 5in. 1,200ft. 75 p
RADIMG	7 ln . $\begin{gathered}\text { 1, 200ft. } \\ \text { Long Play }\end{gathered}$
* Portsmouth-350 Fratton Rd. ${ }_{\text {Tel }} 22034$	4 in . 400 ft , 87 p bin. 1,8001t. 81.13
* Southampton -72 \& 77 Elel. 220	
* Souchampton-72 a Tel. 25851	7in. $1,800 \mathrm{ft}$. 93 p (in. $3,500 \mathrm{ft}$.
* Brighton-6 Queen's Rd.	6004 tion
* A M N DEL-All Mail Order	
15.17 QUEEN ST. Tel. 882299	Post fitee

Why wait weeks? - ALL OUR ORDERS DISPATCHED BY RETURN OF POST! Transistors, Diodes and Integrated Circuits

The Eagle Annual.

Sorry, no Dan Dare, Digby or P.C. 49. Because this is the new Eagle annual catalogue. And it's packed with interesting things. Like the new TSA 151 stereo amplifier: it uses a new block construction silicon output device for absolute reliability. It's got low noise silicon transistors throughout. Its output is 15 Watts per channel. That's 15 Watts RMS, not an exaggerated figure for maximum music power.

The price? A very reasonable $£ 36$.
And for people who like to listen to stereo undisturbed, we've got the new SE 100 headphones.

Dual cone transducers are used throughout, and to keep the weight down, the independent volume controls are
mounted on a separate unit with a pocket clip. £16.00.

Every item in the annual has been specified or selected by Gerry Adler. Eagle is Gerry's baby, and he's very fussy about what goes out under the Eagle banner. He gets very twitchy at the thought of a duff diode. A bit like the Mekon in fact.

But he does it for a reason.
He believes that if the first Eagle product you buy is O.K., you'll come back for more.

That's what's made Eagle a success

Faghe International
 we don't stand still.

Coptic Street, London WC1A 1NR Tel:01-636 0964

YATES ELECTRONICS FLITWICK LTD

RESISTORS
$\frac{1}{2} W$ Iskra high scabilicy carbon film-very low noise-capless construction. IW Mullard CR25 carbon film - very small body size $7.5 \times 2.5 \mathrm{~mm}$. 4W Erie wire wound.

Power			Valves	Price	
wates	Tolerance	Range	available	$1-99$	$100+$
$\frac{1}{2}$	5%	$4.7 \Omega-2.2 M \Omega$	$E 24$	$1.0 p$	$0.7 p$
$\frac{1}{2}$	10%	$3.3 M \Omega-10 M \Omega$	$E 12$	$1.0 p$	$0.7 p$
$\frac{1}{8}$	10%	$1 \Omega-3.9 \Omega$	$E 12$	$1.0 p$	$0.7 p$
$\frac{1}{8}$	5%	$4.7 \Omega-1 M \Omega$	$E 12$	$1.0 p$	$0.7 p$
4	10%	$1 \Omega-10 \Omega$	El2	$7 \frac{1}{2} p$	$7 \frac{1}{2} p$
Ouantity price applies for any selection.	IEnore fractions on total				

Quantity price applies for any selection. Ignore fractions on total order.
DEVELOPMENT PACK
0.5 watt 5% lskra resistors 5 off each value $4 \cdot 7 \Omega$ to $1 M \Omega$.

E12 pack 325 resistors $\mathbf{E 2} 20$.
E24 pack 650 resistors $\mathbf{\$ 4} 20$.
MULLARD POLYESTER CAPACITORS C296 SERIES $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{P}, 0.0068 \mu \mathrm{~F}$, $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} . \quad 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{P}$. $0.15 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.22 \mu \mathrm{~F}, 7$ 7 P p. $\quad 0.33 \mu \mathrm{~F}$, I IP. $\quad 0.47 \mu \mathrm{~F}, \mathrm{I} 3 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{P} .0 .1 \mu \mathrm{~F}$, $0.15 \mu \mathrm{~F}, \quad 0.22 \mu \mathrm{~F}, 4 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} . \quad 0.68 \mu \mathrm{~F}, \mathrm{IIp} . \quad 1.0 \mu \mathrm{~F}$, 12tp.
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}$. $0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}$, $0.068 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} . \quad 0.1 \mu \mathrm{~F}, 4 \mathrm{p} . \quad 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, \quad 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} . \quad 0.47 \mu \mathrm{~F}$, 8立p. $\quad 0.68 \mu \mathrm{~F}$, IIp. $1.0 \mu \mathrm{~F}, ~ 13 \mathrm{p}$.
MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$, $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{3} \mathrm{p}$.
CERAMIC DISC CAPACITORS
100 pF to $10,000 \mathrm{pF}$, 2p each
CAPACITOR DEVELOPMENT PACK
Selection of 100 ceramic and polyester capacitors, 100 pF to $1 \cdot 0 \mu \mathrm{~F}, \mathbf{2} \cdot 90$.
ELECTROLYTIC CAPACITORS--One Price- 5 p Each
Mullard C426 series ($\mu \mathrm{F} / V$): $25 / 6 \cdot 4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4$, $16 / 10,32 / 10,64 / 10,125 / 10,200 / 10,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16$, $6.4 / 25,12 \cdot 5 / 25,25 / 25,50 / 25,80 / 25,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40$, $2 \cdot 5 / 64,5 / 64,10 / 64,32 / 64$
$2 \cdot 5 / 64,5 / 64,10 / 64,32 / 64$.
Miniature P, C. mounting $(\mu \mathrm{F} / \mathrm{V})$: $10 / 12,50 / 12,100 / 12,200 / 12,5 / 25$, $10 / 25,25 / 25,100 / 25$.

POTENTIOMETERS

Carbon track $5 k \Omega$ to $\mid M \Omega$, log or linear $\left(\log \frac{1}{\frac{1}{2}} \mathrm{~W}\right.$, lin $\left.\frac{1}{2} W\right)$
Single, $12 \frac{1}{2} p$. Dual gang (stereo), 40p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 M \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).
Sub-miniature 0.1 watt, 4p each. Miniature 0.25 watt, 5 p each.

SEMICONDUCTORS							
ACl26	15p	BFY52	221 $\frac{1}{2}$ P	OC81	15p	2N3055	72P
ACl27	15p	BSY56	30p	OC82	15p	$2 N 3702$	15p
AC128	15p	BSX21	25p	ORPI2	471P	$2 N 3703$	14p
AD140	40p	BYI24	$7 \frac{1}{2} \mathrm{P}$	1N4001	$7 \frac{1}{1} \mathrm{P}$	2N3704	171p
AFII5	$171 p$	BYZ10	30p	IN4002	10p	$2 N 3705$	15p
AFll 7	17\%p	BYZ13	20p	IN4003	$11 p$	2N3706	12p
BC107	14p	OA85	$7 \frac{1}{2} p$	iN4004	1218p	2N3707	181
BC108	10p	OA91	$7 \frac{1}{2} \mathrm{P}$	IN4005	14p	2N3708	10p
BC109	10p	OA202	$7 \frac{1}{2} \mathrm{p}$	IN4006	15p	2N3709	IPp
BFY50	22p	OC71	15p	IN4007	16p	2N3710	12P
BFY51	19p	OC72	15p	2N2926	IIp	2N3711	14p

ZENER DIODES
$400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to $30 \mathrm{~V}, 17 \frac{1}{3} \mathrm{p}$
VEROBOARD

	0	0		0.15	$0 \cdot 1$
$2 \frac{1}{2} \times 3 \frac{1}{4}$	22p	16p	17×3 (plain)	521 t P	-
$2 \frac{1}{2} \times 5$	24p	24p	$17 \times 2 \frac{1}{2}$ (plain)	371 P	
$3 \frac{3}{4} \times 3 \frac{1}{4}$	24p	24p		171 ${ }^{2} \mathrm{P}$	
$3 \frac{3}{4} \times 5$	27p	27p	$21 . \times 37$ (plain)	$15 p$	
$17 \times 2 \frac{1}{1}$	75p	571 P	Pin insertion tool	$47 \frac{1}{2} \mathrm{P}$	47.1
17×3 年	100p	75p	Spot face cutter	$37 \frac{1}{2} \mathrm{P}$	37 P
17×5 (plain)		75p	Pkt. 36 pins	15p	15p

ROTARY SWITCHES

2P2W, IP $12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}, 22 \frac{1}{2} \mathrm{P}$
PLUGS AND SOCKETS

Standard	tin screened		d
Standard	tin screened	$17 \frac{1}{1}$	2.5 mm insulated 3.5 mm insulated
Stereo	tin screened	35p	3.5 mm screened
Standard	in socket	15p	2.5 mm socket
Stereo	tin socket	171 ${ }^{1} \mathrm{P}$	3.5 mm socket

BRUSHED ALUMINIUM PANELS
 $12^{\prime \prime} \times 6^{\prime \prime}=25 p ; 12^{\prime \prime} \times 2 \frac{1}{}_{\prime \prime}=10 \mathrm{p} ; 9^{\prime \prime} \times 2^{\prime \prime}=7 \mathrm{p}$.

C.W.O. please. Post and packing, please add $7 \frac{1}{2} p$ to orders under $\mathbb{C 2}$. Data sheets are available for most of the components listed, and will be sent free on request.
$8 E 39$ ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD

Selections from FELSTEAD ELECTRONICS' List

(Sent free for stamped addressed envelope to address below
Transistors, etc. ACl26 $12 \frac{1}{2}$ p. AFll5 15p. AFl|6 15p. AFII7 20p. OAS $7 \frac{1}{2} p$. OA10 $7 \frac{1}{2} p$. OA8I $7 \frac{1}{2} p$. OA85 $7 \frac{1}{2} p$. OC23 $32 \frac{1}{2} p$. OC25 30p. OC26 $37 \frac{1}{1 p} \mathrm{p}$. OC28 $42 \frac{1}{2} \mathrm{p}$. OC35 $42 \frac{1}{\mathrm{p}} \mathrm{p}$. OC44 14p. OC45 12 $\frac{1}{2} \mathrm{p}$. OC7। 121p.
 20. OC171 124 p . Many more in list. S.D.R. BY 100800 pir 14 p . 6 Amp series: BY213 300piv 20p. BY212 600piv 25p. BY21I 900 piv 30p. BY210 1200 piv 35 p . (Charges $6 \frac{1}{2} \mathrm{p}$ up to 11 , paid for 12 and over.) Sub Min. Transformers: OUTPUT (3Ω for OC72, etc.) 14p. (Up to $66 \frac{1}{2}$). MULTIMETER. Our famous 20000Ω per V E4.621 (15 p). Details and other in list. SOLDERING IRON. Slim, modern, British highspeed $8 t^{\prime \prime}$, all parts replaceable, highest quality, full guarantee: $\mathbb{C 1 . 0 7}$ speed 8،" all parts replaceable, highest quality, full guarantee. TCB/S, (10 p). DIAMOND STYLII Replacements for BSR TC8/LP TC8/S, TC8LP/STEREO: COLLARO 'O': RONETTE BF40LP: GAR (6p) ACOS GP73, GP91: GC2/LP and GC8/LP: ACOS GP65/67, all at 40p (6p) ACOS GP73, GP91:
BSR ST4 (ST3, ST5), ST8 (ST9): SONOTONE 8TA, 9TA, 9TAHC: PHILIPS AG3306, 3060 (3063, 3066, 3301, 3302, 3304); Garrard GKS25 all at 75p (6 p). All are of the very highest quality. Double Diamond: ST4 (ST3, ST5): STIO (ST9, ST8): 9TA, 9TAHC, 3306, GP91 (For GP92, GP93, GP94 cartridges): GP9|SC for all GP9I-SC cartridges: All at El 1.50 (6p). PICK-UP CARTRIDGES All standard fittings and stlyli. MONO GP67/2 75p STEREO-COMPATIBLE (MONO) GP9IISC (11.05) STEREO GP93 75 P STEREOCO CERAMIC GP94 11.921 SONOTONE STEREO
 E13.50. G800 SUPERE $£ 19.50$ ($6 \frac{1}{2} \mathrm{p}$ all types or Reg. Post 22 $\frac{1}{2}$). STYLII FOR ALL ABOVE TYPES, including GOLDRING available. RECORDING TAPE. Still the finest quality Mylar available: Standard $5^{\prime \prime} 600 \mathrm{ft} . \mathbf{3 6 p}^{36}$ $54^{\prime \prime} 900 \mathrm{ft} .50 \mathrm{p} 7^{\prime \prime} 1,200 \mathrm{ft}$. 56 p . LONG PLAY $5^{\prime \prime} 900 \mathrm{ft}$. $50 \mathrm{p} 5 \frac{3}{3}^{\prime \prime} 1200 \mathrm{ft}$. $56 \mathrm{p} 7^{\prime \prime} 1800 \mathrm{fs}$. 90 p ($7 \frac{1}{2} \mathrm{p}$ on $5^{\prime \prime}$ and $5 z^{\prime \prime} 9 \mathrm{p}$ on $7^{\prime \prime}$). MICROPHONES Crystal Mic 91 , hand/desk 81 p . MiC45 Curved metal handgrip El . CM21 Grey hand/desk 52tp. Srick '60' $\mathbf{E 1 . 0 2 \frac { 1 } { 2 }}$ CM70 'Planet' machined metal tapered stick type with neck cord, adaptor to fit floor stands $£ 1.47 \frac{1}{1}$ metal tapered stick type with neck cord, adaptor to fit
(All 9p LABEL (or hand) with clip $32 \frac{1}{2}$ (6 p)). All are fitted with leads. Dynamic. Cream hand/table MINY 771 PD (9 p) MSIO, $50 \mathrm{~K} \Omega$ for desk. tapered with base and slide-out adaptor $£ 1.97 \frac{1}{2}$ MSII, Similar, but fixed on swivel swan neck to switch-fitted base $\mathbf{£ 2 . 2 2 \frac { 1 } { 2 }}$ (Either 15p). Type 209 Cardioid ball, $50 \mathrm{~K} / 600 \Omega$, omni-dir., built-in vol. control, on/of 5 witch, special lead, handle (as good as money can buy) E6.30. DM160. Non-Dir. Ball, $50 \mathrm{~K} \Omega$, switch, cable, adaptor $\mathbf{6 3 - 8 7 \frac { 1 } { 2 } \text { (} 2 7 \frac { 1 } { 2 } \text { p either). MICROPHONE }}$ INSERTS. Dia., $1.75^{\prime \prime}$ OR $0.9^{\prime \prime}$ either size 271 ${ }^{2}$ p (6 p). EARPIECES with lead \& min. jack plug (2.5 or 3.5 mm , state which) Magnetic 9p Crystal (3.5 only) 24p. (Up to 3 for $6 p$ on any.) HEADPHONES De Luxe STEREO 8-16 ohms, $£ 2.47$ t. Same, fitted vol. control each earpiece, 84.20. Both have lead and stereo jack plug (171)p. HIGH RES. 2000 ohm . Adjustable $92 \frac{1}{2} p\left(12 \frac{1}{2} \mathrm{p}\right.$). SPEAKERS. 12^{*} ROUND, fitted tweeter, 3 or 15Ω (state which) $£ 1-87 \frac{1}{\left(27 \frac{1}{p} p\right)}$) or for Stereo $£ 4-25$ pair, carr paid. $2 \frac{1}{2}{ }^{n} 3$ OR 8Ω (state which) 371 p (6p). EMI $13^{\prime \prime} \times 8^{\prime \prime}, 3,8$ or 15Ω (said. whifh) $£ 2 \cdot 121$ (25 p): with single flared para. tweeter cone 8 or 15Ω (state which) $\leq 2.27 \frac{1}{2}(\mathbf{2 5 p})$: with two tweeters and crossover network 8 or 15 (state which) $£ 3.75$ (25 p). VIBRATORS. Genuine Plessey 12 V 4-pin non-synch. 121 HD4, $2 \frac{z}{7}^{\prime \prime}$ ex. pins $27 \frac{1}{2} p$. Am. $12 \vee 4$-pin, non-synch. $7 / 16$ ths longer, 221 p 12V 7 -pin Synch. (|2SR7) $62 \frac{1}{2} p$ (all types $6 \frac{1}{2} \mathrm{P}$ per vibrator) CONNECTING WIRE. Packs of 5 coils asstd. cols. ea. coil 5yds. Solid core 14p (6p). Flexible 16p (7tp). Super thin for coil 5yds. Solid core 14p (6p). Flexible (6p (18p). Stuper thin flex. transistor wiring 16p (6p). PICK-UP WIRE. Super thin twin flex.
screened and sheathed 6 p yd. (6 p up to $6 y \mathrm{ds}$. over, free). RETRACTscreened and sheathed $6 p$ yd. (6 p up to $6 y d s$.-over, free). RETRACT-
ABLE Flex. Leads. (Curlies) 6 ft , phono plug ea. end $22 \frac{1}{2} \mathrm{p}$. 12 ft . 39 p . ABLE Flex. Leads. (Curlies) 6 ft , phono plug ea. end $22 \frac{1}{2} \mathrm{p}$. 12 ft .39 p . 6 ft . phono plug/phono socket other end 25 p 12 ft . $42 \frac{1}{2} \mathrm{p}$ (6 p per lead, all types). BATTERY ELIMINATOR. 240 a.c. input 3, 6, $7 \frac{1}{2}$ and ar d.c. output at 400 mA , two switches, leads, pilot light and universal adaptor for all trans. appliances incl. all makes cassette $t / r e c o r d e r ~ a n d ~ p l a y e r s ~$ £3-15 (24p). SEND S.A.E. for full free lists-Teleton and small 3W and $7 \frac{1}{2} \mathrm{~W}$ trans. amplifiers, Electrolytics, Vol. Controls, all types of radio switches car and portable expanding aerials, Meters, Test prods, all types of Brit \& Cont, standard and min, plugs and sockets, SDR's, Thyristors, croc."clips (various), terminals, etc. etc. and many "Special Offer" lines at lowest possible prices.

BRAND NEW

SGS/FAIRCHILD SILICON NPN TRANSISTORS

BDI 12 Audio, $80 \mathrm{~V}, 20 \mathrm{~W}$, TO3, $32 \frac{1}{4 p}$ (10 for $\mathbf{2 2 - 5 0}$). BD 16 Audio, 80 V ,
 CP401 Regulator, 60 V , 15 W , TP3, 374p. CP402 Regulator, 100V, 15 W . TO3, 421 p . CP404 Audio, $80 \mathrm{~V}, 15 \mathrm{~W}$, TO3, $37 \frac{1}{2} \mathrm{p}$. CP430/431 Audio $100 \mathrm{~V}, 30 \mathrm{~W}, \mathrm{TO}, 37 \mathrm{tp}$. CP433 Audio, $120 \mathrm{~V}, 40 \mathrm{~W}$, TO3, 42 tp . CP702 Audio 60 V , 15 W . TOP; 371p. CP704 R.F. or Servo 80 V , 30 W , TO3, Audio 60 V , 15 W . TO3, $37 \frac{1}{2} \mathrm{p}$. CP704 R.F. or Servo 80V, 30 W , TO3, $47 \frac{1}{2}$ p. BLY 68 Audio, $100 \mathrm{~V}, 25 \mathrm{~W}$, TO3, $50 \mathrm{p} . \mathrm{BL}^{\text {BLY }} 2$ High Power, 80 V , $100 \mathrm{~W}, 75 \mathrm{p}$. CP703 High Current Relay, $60 \mathrm{~V}, 5 \mathrm{~W}, 32 \frac{1}{1 \mathrm{p}}$. BFW76 Microwave, Oscillator, $4 \mathrm{GHZ}, 30 \mathrm{~V} I \mathrm{~W}, 61.00 .2 \mathrm{~N} 3646$ High Speed Switch, 40 V , $\frac{1}{2}$ Amp, $22 \frac{1}{2} \mathrm{p}$. 2 N 4075 Audio, $100 \mathrm{~V}, 30 \mathrm{~W}, 55 \mathrm{p} .2 \mathrm{~N} 4076$ Audio, $100 \mathrm{~V}, 30 \mathrm{~W}$, 45p.

VARICAP DIODFS

BBYIO, 6.8pf, BBYII, $10 \mathrm{pf}, \mathrm{BBYI2}, 12 \mathrm{pF}, 25 \mathrm{p}$ each.

NTEGRATED CIRCUITS, FLAT PACKS

U6A.998979X 4 Cascade Binary, 75p. U3T.77II39X Dual Differential Comparitor, 75 p . U3H. 771239 X d.c. amp. up to $30 \mathrm{MHz}, 75 \mathrm{p}$. U31. 993151X Clocked Flip Flop, 62 $\frac{1}{2}$ p.
Charges: $6 \frac{1}{2} p$ up to 11 (paid for 12 and over).

FELSTEAD ELECTRONICS (PE503)

Longley Lane, Gatley, Cheadle, Ches. SK8 4EE

Cash with order only. No C.O.D. or Caller Service. Charges (Min. 6p) in brackets after all items. Regret Orders under 25p excluding postage unacceptable. S.A.E. please for inquiries or cannot be replied to. Changes apply G.B. and Eire only. Overseas orders welcomed (lists free overseas).

You too can join the millions of satisfied Heathkit builders who have discovered the easy way to build better products than they could buy... have fun ... and enjoy substantial savings in the process. Heathkit models are the beginner as well as the experienced man's first choice. Everything you need right down to the last nut and bolt is included in every kit. The wonderful step-by-step assembly manual is the last word in clarity. Want to know more . . your first step is to send for the Free Heathkit catalogue and discover the unique satisfaction you can get from building the best.

PICKS UP AIRCRAFT to aircraft, ete.) SHIPS AT SEA, TAXIS. AMBU. LANCES LOCAL RADIO STATIONS, POP PIAATBS.
CONTINENTAL STA: CONTINENTAL STA: MANS, MLL MY, MANY MORE, including fascinating public service tranemissions that we are not allowed to
mention! A miracle of adyanced technology! You get far, far more than an ordinary radio! An instrument that will bring a new dimension to your world of sound! Frequency range: MW 540 . 1600 KHz . FM $88-108 \mathrm{MHz}$. Air 108.136 MHz. Intermediate FM 10.7 MHz , Air 10.7 MHz FM 10.7 MHz AIr Transistors 11, Diodes $6+$ Thermistor! Automasic frequeney control "'locks-in", eliminating drift. Pinpoint quency control ocks-in, elhminating drift. Pinpoint telescopic aerial. Lowost price ever! Tromendously strong leather-grained case wish carry handle. 10 tin $\times 6 \frac{1}{2}$ in $\times 4 \mathrm{in}$ overall approx. Written
 Fhete pair of "aircraft spotter" hish power "bino-scope" binoculars with buittin filters for viowing in strong sunlisht and independent oft and Refund if not delighted. BONUS OFFER: Shoulder strap, earphone for personal listening and batteries, all for 23p extra, if required.

STOP PRESS!

You can still order "By Post" THIS WAY:-
I Whether you have bank account or not-GO TO ANY BANK (Barclays if possible) obtain a BANK GIKO FORM-pay in the amount - to cover your order, (including carriage, sic.), write full. Address ladrest and detais of your order on reverseside of SHOPERTUNITIES | Your complated GARCLAYSBANKLTD., Code No. 20-13-81, BRITISH | MUSEUMBRANCH, LONDON, W.C.I, and hand to bank cashier. We'll arrange immediate dispatch by carrier. This system of payment can always be used in the future (or for past ads.) if you wish.

SHOPERTUN!TIES LTD. ETL Dept. PE/4, I64 UXBRIDGEROAD LONDON WI2BAQ (Thurs. I, Fri. 7). Also 37 Hish Holborn, London, | LONDON WI2BAE (Thurs. 1, Fri. 7). Also 37 High Moiborn, |
| :---: |
| W.C.I (Wed. I, Thurs. 7). Both stores open from MON.-SAT. 9.6 |

 NEW RUSSIAN MERIDIAN G-WAVEBAND PORTABLE RADIO, DESIGNED FOR WORLD
WIDE RECEPTION, Only put into production
after incorporation of every conceivable possible up-to-date technological improvernent had been carafully considerad and thoroughly oxamined, So advanced it will probably make your present radio seem produced! Finest value we've over offered! We're almost giving them away at 69.97-a mare fraction of even today's Russian miracle price! We challenge you to compare performance and value with shat of $\mathbf{4} 34$ radios!* Instant refund if you are not astounded! Purer and eweeter tone than ever! Much wider band epread than hithertofor "pin-point" gtation selection! Once again the Russians have proved their fantastic ability in electronics-brilliantly reflecting their advanced micro-circuitry techniques in the field of spaceship and satellite communications. YOU GET THIS AMAZING SET FROM US AT A PRICE THAT, BEARS NO RELATION TO TRUE VALUE! Yes, 6 separate wavabands, including Stzndard Long, Medium andionort Wavesto cover the of a at your fingertips 24 hours a day, even ships at sea and messages from all over the world-nothing is secrat! The radio enthusiast has the world in his hand! Superb, swet tone-controlled from a whisper to a roar. Push-pul outpur! Separate ON/OFF volume and Treble/Bass tone controls! Take it arywhere-runs economically on standard batteries. Internal ferrite rod aerial plus built-in telescopic aerial oxtending to full 3 3tin length. It'salso a fabulous CAR RAOIO-any speed requires no additional aerial. UNIQUE Elegant Black, White and Chrome finish case. SIZE $104 \mathrm{in} \times \operatorname{Bin} \times 3$ in. overall approx. Magnificently designed, made to give years of parfect service. With WRITTEN GONAY 9.97 , POST, ETC. 43 p . Standard batteries 25 p extra. Can also be used through extension amplifier, tape recorder or public address.

NEW! HANDY! TIDY!
multi-drawer

Newest, neatest system ever devised for storing small parts and components: resistors, capacitors, diodes, cransistors, etc. Rigid plastic units; combinations. Transparent plastic drawers have label slots/removable space dividers. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!
 DOUBLE UNITS (Sins ($4 \frac{1}{2}$ ins 2 2ins)

PLUS QUANTITY DISCOUNTS:
Orders $\angle 5$ and over DEDUCT 50 in the C
Orders $f 10$ and over DEDUCT 7% in the \mathcal{C}
Orders $E 20$ and over DEDUCT 10% in the \mathcal{C}
PACKING/POSTAGE/CARRIAGE: Add 30 p to all orders under 65 . Orders 65 and over packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES

4STATION INTERCOM
 4-8tation Tranaistor Intercom aystem (1 master and s gubs), in de-luxe plastic cabinets for desk or wall mounting. Call/talk/listen from Mastor to subs and 8ubs to Mastor. Ideally ruitable for Buainess, Sur. gery, Schools, Hospital, Office and Honte. operates
on one 9v battery. On/off switch. Volume control. on one 9 V battery. On/oft switch. Complete with 3 connecting
other mecessories. P. \& P. 40p.

MAINS INTERCOM
Ho batteries-no wires. Just plug in the mains for inatant two-way, loud and clear communicaition. On/off switch and volume control
Price $818-95$. P. \& P. 50p extra.

£3.15
Same as 4. Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Battery 18p. P. \& P. 20̄p.

clency with thia incredible De-Luxe Telophone Ampliar. Take down long telephone mesaages or converse without holding the handset. A useful offlce ald. On/ off switch. Volume control. Battery 18p extra. P. \& P 16p. Full price refunded if not satiofled in 7 day 168 Whet LOEDO DRERCT EUPPLDES (PE/5)

The Unique
MULTI-MINI TWIN-VICE

An extra "Pair of hands" for those tricky jobs
ASSEMBLY-SOLDERING-GLUING-WIRING-DRILLING ETC.

- INDEPENDENT ADJUSTMENT OF THE TWO VICE HEADS TO ANY ANGLE WITH POSITIVE LOCKING.
- JAWS WILL FIRMLY GRIP. ROUND. FLAT, SQUARE, OR HEXAGONAL PARTS.
TWIN VICE: E5.90 (24p P * P)
ALSO AVAILABLE
SINGLE VICE: $63.37 \frac{1}{2}$ (20p P \& P)
COVENTRYMOVEMENTCO.LTD.
DEPT. PE 1, BURNSALL ROAD
COVENJRYCVS 6BU STD 0203-74363

There's only one way to buy stereo equipment. Listen to it. Lots of it. Until you find the sound you like for the money you've got.

Sound advice. But try acting on it in 99% of hi-fi dealers and you'll be asked to show the colour of your money. We at Roc think that's unfair. So we fitted out our store in the Edgware Road with a series of sound systems, so you can hear all the stereo you want until you find the equipment you like. With no hustling.

But if you're one of those poor unfortunates who cannot make it in person, we'll sell you a system by mail. We've got the best range in town from single speakers to complete stereo set-ups.

Here are just six of the systems we've got in stock.

Fill in the coupon and we'll have our systems brochure back to you by return.

> Amplifier Output per channel

System I.	4 Watts
System II.	8 Watts
System III.	15 Watts
System IV.	20 Watts
System V	18 Watts
System VI.	30 Watts

The Kd DSCOUNT AUDIO CATALOCUE has something for EVERYONE!...
the most sophisticated of audio systems, cassette recorders, with musicassettes to go with them. Reel to reel recorders and accessories of every kind. Tapes at such incredible discounts it's too good to be true. Amplifiers, tuners, record players, HiFi for the do-it-yourselfer, headphones, mixers, radios for car and home, clock radios, speakers of all types, P.A. equipment, dust bugs, disc preeners, instalment credit-need we say more? . . . we could, but it takes a whole catalogue to do so Why not send for a copy by filling in the coupon below?
 SENT
 FREE!

Please send me FREE a copy of the KJ fully illustrated colour discount catalogue by return of post. To: -
block Capitals please
Name Address

To K.J. ENTERPRISES (Dept. P.E.5)
33 BRIDLE PATH WATFORD HERTS.

MARSHALL'S INTEGRATED CIRCUITS NEW LOW PRICES LARGEST RANGE BRAND NEW FULLY GUARANTEED

See our ad. on opposite page for transistors, diodes and passive components and P. \& P. charges. Many more types in stock and arriving daily. Please inquire.
A. MARSHALL \& SON LTD.

LARGEST STOCKS BRAND NEW
 SEMICONDUCTORS \& COMPONENTS
 WIDEST RANGE GUARANTEED

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

	2						0.88				652
1H5GT	0.8	30 Cl	0.82	DL94	0.87	EL500	0.62	PCL83	0.60	UBF80	0.28
INEGT	0.88	$30 \mathrm{Cl}{ }^{\text {a }}$	0.68	DL96	0.88	EM80	0.41	PCL84	0.87	UBF89	0.88
1R5	0.88	30 Cl 7	0.80	DY86	0.28	EM81	0.41	PCL85	0.45	UCC84	0.85
185	0.21	30C18	0.67	DY87	0.28	EM84	0.88	PCL86	0.41	UCCA5	0.86
1 T 4	0.18	30 F 5	0.76	EABC80	0.82	EM87	0.87	PCL88	0.78	UCF80	0.88
984	0.28	30 FL 1	0.68	EAF42	0.50	EY51	0.88	PCL800	0.77	UCE42	0.68
3 V 4	0.87	30 FL 12	0.72	EB91	0.11	EY86	$0 \cdot 32$	PENA4	0.48	UCH81	0.82
5Y3GT	0.80	30FL14	0.72	EBC33	0.40	EZ40	0.48	PEN36C	0.70	UCL82	0.85
5 Z 4 G	0.87	30L1	0.82	E.BC41	0.62	EZ41	0.48	PFL200	0.58	UCL83	0.55
6/30L2	0.58	30 L 15	0.62	EBC90	0.28	EZ80	0.28	PL36	0.48	UF41	0.68
6AL5	0.11	30 Ll 7	0.78	EBF80	0.88	EZ81	0.24	PL81	0.48	UF89	0.88
6AM6	0.18	30 P 4	0.65	EBF89	0.81	GZ32	0.48	PL81.	0.61	UL41	0.60
6AQ5	0.28	30 P 12	0.77	ECC81	0.18	GZ34	0.48	PL82	0.82	UL84	0.85
6AT6	0.22	30 P 19	0.65	ECC82	0.28	KT41	0.77	PL83	0.85	UM80	0.28
6AU6	0.22	30PL1	0.68	ECC83	0.85	KT61	0.48	PL84	0.88	UM84	0.25
6BA6	$0-22$	$30 \mathrm{PL1} 3$	0.88	ECC85	0.28	KT86	0.88	PL500	0.85	UY41	0.41
6BE6	0.28	30PL14	0.70	ECC804	0.80	LN319	$0 \cdot 68$	PL504	0.67	UY85	0.88
6BJ6	0.42	30PL15	0.68	ECF80	0.80	LN329	0.72	PM84	0.87	VP4B	0.77
6BW7	$0 \cdot 60$	35L6GT	0.48	ECF82	0.80	LN339	0.68	PX25	1.17	W119	0.85
6CD6G	1.10	35W 4	0.24	ECH 35	0.80	N78	0-87	PY32	0.55	Z77	0.22
6 Fl 14	0.45	35Z4GT	0.25	ECE42	0.68	PABC80	0-85	PY33	0.55		
6F23	0.78	807	0.45	ECH81	- 288	PC86	0.51	PY81	0.28	AC107	0.17
6 F 25	0.62	6063	0.68	ECH 83	0.41	PC88	0.51	PY82	0.26	AC127	0.18
6K7G	$0 \cdot 12$	AC/VP2	0.77	ECH84	0.87	PC96	0.48	PY83	0.88	AD140	0.87
6K8G	0.17	AZ31	0.47	ECL80	0.85	PC97	0.40	PY88	0.84	AP116	0.80
88L7GT	0.87	B349	0.65	ECL82	0.88	PC900	0.87	PY800	0.87	AF116	0.20
6V6G	0.17	B729	0.68	ECL86	0.40	PCC84	0.88	PY801	0.87	AF117	0.20
6V6GT	0.82	CCH35	0.67	EF39	0.28	PCC80.	0.80	R19	0.82	AF118	0.48
6×4	0.88	CL33	0.92		58	PCC88	0.45	R20	0.85	AF125	0.17
6X6GT	0.28	CY31	0.88			PCC89	$0 \cdot 47$	U25	0.68	AF127	0.17
10 F 18	0.36	DAC32	0.88	EF80	0.88	PCC189	0.48	U26	0.65	${ }_{0} \mathrm{C} 26$	0.25
$10 \mathrm{P13}$	0.60	DAF91	0.81	EF85	0.81	C80	0.85	U47		OCP_{4}	0.12
12AH8	8.25	DAF96	0.86	EF88	0.81			U49	0.65	0 O 45	0.12
12AT7	0.18	DF33	0.88	EF89	0.26		0.80	U78	0.24	OC71	0.12
12AU6	0.28	DF91	0.16	EF91	0.18	PCF82	0.88	U191	$0 \cdot 68$	0 C 72	0.18
12AU7	0.28	DF96	0.86	EF183	0.28	PCF86	0.47	U193	0.18	$0 \mathrm{C75}$	0.18
12AX 7	0.28	DH77	0.28	EF184	0.82	PCF800	0.67	U251	0.78		
19BG6G	0.87	DK32	0.87	EH90	0.42	PCF801	0.88	U301	0.52	OC81	0.12
20F2	$0 \cdot 67$	DK91	0.88	EL33	0.48	PCF802	0.45	U329	0.78	0C81D	0.18
20P3	0.85	DK92	0.48	EL34	0.47	PCF805	$0 \cdot 67$	U801	0.98	OC82	0.18
20P4	0.92	DK96	0.86	EL4 1	0.55	PCF806	0.58	UABC80	0.88	OC82D	0.18
25 L6GT	0.25	DL3 ${ }^{\text {a }}$	0.25	EL84	0.24	PCF808	0.7	JAF42	0.51	OC170	0.8

[^0]
PARKERS SHEET

METAL FOLDING MACHINES

HEAVY VICE

MODELS

With Bevelled Former Bars

No. I. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$. wide
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide $£ 10$
 Also new bench models. Capacities 48 in .
E $38.24 \mathrm{in} . \times 16$ gauge $£ 29$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36 in . model, $27 \frac{1}{2} p$ per ft . Other models $17 \frac{1}{2} \mathrm{p}$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One yegr's guarantee. Money refunded if not satisfied. Send for details.
A. C. PARKER, Folding Machine Works, Upper George St., Heckmondwike, Yorks. Heckmondwike 3997

THE RELIANT Mk. II
SOLID STATE
GENERALPURPOSEAMPLIFIER

£7.25 Plus ${ }_{50 \mathrm{p}}^{\mathrm{P}}$ \& P

simulated teak case

SPECIFICATION: OutDut: 10 (1) for mike a ${ }^{3}$ ohms speaker. Inputs: (1) for mike (10 mV). Input (2) for germanium. Mains input: $220 / 250$ volts. Size: $10 \pm x$ and three

ELEGANT SEVEN Mk. III (350 mW Output)
7-transistor fully tunable M.W.-L.W. Superhet portable. Set of parts. Complete with all components, -back printed for foolproof construction. MAINS POWER PACK KIT: (47p) extra.
£5.25 Plus P. \& P, 50p. Circuir 13p
THE DORSET (600 mW Output) 7-trarsistor fully tunable M.W.-L.W. Superhet portable with baby alarm facility. Set of parts. The atest modulated and pre-alignment techniques makes
this simple to build. Sizes: $12 \times 8 \times 3$ in. MAINS POWER PACK KIT: 47p extra. $\mathbf{5 5} \mathbf{2 5}$ Plus P. \& P. 50 . Circuit
SOUND 5050 WATT AMPLIFIER AND SPEAKER SYSTEM

Output Power: 45 watts R.M.S. (Sine Wave drive). Frequency response:-3dB poss than 20 at 18 KHz . Total distortion: noise ratio: better than 60 dB .
Speaker Impedance: 3, 8 or 15 ohms. Bass Control Range: $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble Control Range: $\pm 12 \mathrm{~dB}$ at 10 KHz . Inputs: 4 inputs at 5 mV into 470K. Each pair of inputs controlled by
separate volume control. 2 inputs at 200 mV into 470 K .
To protect the output valves, the in corporated fail safe circuit will enable the amplifier to be used at half power. SPEAKERS: Size $20^{\prime \prime} \times 20^{7} \times 10^{\prime \prime}$ incorporaring baker tra heavy duty 25 watt high flux, quality loudspeaker with cast frame. Cabinets attractively finished in two-tone colour scheme-Black and grey.
$7 / 7$ iscount F.E.T. MK I 14.25 Plus High fidelity transistor stereo amplifier employing field effect transistors. W0p P.\&.P. With this feature and accompanying guaranteed specifications below, the Viscount this feature and accompanying guaranteed specifications below, the Viscount
F.E.T. vastly surpasses amplifiers costing far more .E.T. vastly surpasses amplifiers costing far more

Output per channel-10W rms into

3 ohms. Frequency bandwidth 20 Hz to 20 kHz | Frequency |
| :--- |
| $\pm 1 \mathrm{~dB}$ (and |
| W. |

Total distortion@1kHz@9W 0.5\% Input sensitivities-CER. P.U. 100 mV into 3 M Mi Tuner 100 mV into
$100 \mathrm{~K} \Omega:$ Tape 100 mV into $100 \mathrm{k} \Omega$. Overload Factor-Better than 26 dB . Signal to noise ratio-70dB on all igna to (with vol. max). Mk. II (MAG. P.U.) Specification same as Mk. I. but with
the following inputs. Mag PU CER. P.U. Tuner.

Controis-6 position selector switch (3 pos. stereo and 3 pos. mono), separate vol. controls for left and right channels. Bass $\pm 14 \mathrm{~dB}$ (3) $60 \mathrm{~Hz}_{\mathrm{i}}$ Treble (with D.P.S. on/off) $\pm 12 \mathrm{~dB}$ @ 10 kHz .
Tape recording output sockets on size letin $x 6$ in
ize $12 \frac{\mathrm{fin}}{} \times 6$ in $\times 2 \mathrm{fin}$ in simulated 5.75 tase. Built and tested.

7 Post \& packing 50p extra. Spec. on Mag, P.U. 3 mV (21 kHz input impedance 4 kN . Fully equalised to within $\pm d \mathrm{~dB}$ RIAA. Siznal to noise
ratio-65dB (vol. max.).

LIQUIDATED STOCK

DANSETTE

TOURISTE MK3
car radio
ALL TRANSISTOR

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensure excellent tracking. sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than a micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees
success first time 12 volts negative or positive earth sizo
deep.
SET OF PARTS
Originally sold completely built for ($\mathbf{(1 5 \cdot 2 3 \text {) }) ~}$
Circuit diagram 13 p , frae with
285-30 Plus P. \& P
parts Spaaker, baffie and fixing kit
Speaker postase free when
Spacker postaze fre
ordersd with parts
COMPLETE \& Plus or available separately
SYSTEM - 201 P. \& P. Amplifier: 520.50 plus CI .50 P. \& P .
Sound 50 amp and 2 speakers

Speaker: $£ 12.50$ each plus $£ 1.75 \mathrm{P}$. \& P .

1 VALVE MAILORDER CO．
All orders post free！

1 N 21	$\begin{aligned} & 80 \\ & 0.18 \end{aligned}$	AC127	$\begin{aligned} & \text { sp } \\ & 0.85 \end{aligned}$	$\text { BF173 } \quad{ }^{85}$	GJ4M	$\begin{aligned} & 1 \mathrm{p} \\ & 0.28 \end{aligned}$	$0 \mathrm{OC4}$	0
1N23	0.80	AC128	0.85	BF181 0－28	G55M	0.25	$0 \mathrm{OC4}$	0－18
1N8．	0.88	AC187	0.80	BF184 0．26	GJ7M	0.88	$0 \mathrm{C44M}$	0.18
1N2J3	0.50	AC188	0.80	BF185 0．25	HG100J	0.50	OC4j	0.15
1 N 2 ja	0.50	ACY 17	0.80	BF194 0．18	H8100A	0－20	OC4JM	0.18
1N645	0.85	ACY18	0.85	BF190 0－16	Mat 100	0．25	OC46	0.88
1N72JA	0.80	ACY19	0.25	BF106 0．88	Mat 101	0－80	0 OCn 7	$0 \cdot 60$
1N914	0.08	ACY20	0.88	BF197 0－2\％	MAT120	0.28	OC58	
1N4007	0.88	ACY21	0.88	BF861 0．28	MAT121		OCs9	
18021	0.80	ACY22	0.18	BF898 0－88	MJEざ20	0.88	$0{ }^{0} 66$	0.60
18113	0.15	ACY27	0.85	BFX12 0．88	MJE99ju	1.75	$0 \mathrm{OC70}$	$0 \cdot 18$
18130	0.18	ACY 28	0.18	BFX13 0．28	MJE3005	0．98	0071	0.15
18131	0.18	ACY39	0.55	BFX29 0．30	NKT128	0－30	OC7\％	$0 \cdot 85$
18202	0.88	ACY40	0.16	BFX 30 0．88	NKT129	0－80	$0 \mathrm{OC73}$	0.30
2 Cl 40	1.0	ACY41	0.85	BFX35 0．08	NKT211	0.25	0 O 74	0.80
2 Cl 301	0.18	ACY44	088	BFX $63 \quad 0.50$	NKT213	0．85	0075	0.85
$2 \mathrm{C302}$	0.88	AD140	0.50	BFX84 0．30	NKT214	0.15	$0{ }^{0} 78$	0.28
29806	0.80	AD149	0.50	BFX85 0－40	NKT216	0.88	0C77	0
26371	0.88	AD161	0.88	BFX86 0.38	NKT217	0.40	$0 \mathrm{C78}$	0
2G381	0.85	AD16 ${ }^{\text {－}}$	0.88	BFX87 0．38	NKT？18	1.18	OC781	0.18
$2 \mathrm{Cal4}$	0.80	AF106	0.80	BFX88 0．25	NKT219	0．38	$0 \mathrm{C79}$	0.88
2 CaH 17	0.88	AF114	0.88	BFY $10 \quad 1.00$	NKT222	－0．20	OC81	0．85
$\underline{2} 214$	0.48	AFlis	0.80	BFY11 1．25	NKT224	0.89	0C81D	0.20
2N247	0.85	AF116	0.88	BFY17 0．25	NKT2う1	0.24	OC81M	0.80
2N250	0.50	AF117	0.85	BYF18 0.25	NKT271	0.85	OC81DM	0.18
2N404	0.88	AF118	0.68	BFY19 0．25	NKT27？	0.25	OC812	0.58
$2 \mathrm{N697}$	0－18	AF119	0.80	BFY24 0．45	NKT273	0.0	${ }^{0} \mathrm{C82}$	0.25
2N698	0－48	AF124	0.26	BFY44 1.00	NKT274	0．20	OC88D	0.15
2N706	$0 \cdot 10$	AF125	0.20	BFYJ0 0．83	NKT275	0．25	$0 \mathrm{O83}$	0.25
2N706A	0.18	AF126	0.18	BFY 510	NKT 277	0.20	$0 \mathrm{OC8} 4$	0．85
2N708	0－15	AF127	0.18	BFY02 0.80	NKT 278	0.25	$0 \mathrm{Cl14}$	0－88
2N709	0.68	AF139	0.80	BFY53 0．18	NKT301	0.80	OC12	0.60
2N711	0.38	AF178	0.48	BFY64 0．43	NKT304	0.35	$0 \mathrm{Cl23}$	0．50
$2 \mathrm{2N987}$	0.58	AF179	0.48	BFY90 0－68	NKT403	0.75	OC139	0.25
2 N 1090	0.80	AF180	0.68	B8X27 0.60	NKT404	0.68	OC140	0－88
2N1091	0.38	AF181	0.48	B8X 80 0．89	NKT678	0.80	${ }_{0} 0 \mathrm{Cl141}$	$0 \cdot 6$
2N1131	0.80	AF186	0.40	B8x76 0．15	NKT713	0.25	$0 \mathrm{Cl169}$	0.80
2N1132	0.30	AFY19	1.18	H8Y26 0.18	NKT773	0.85	$0 \mathrm{OCl70}$	0 0．80
2N1302	0.20	AFZ11	0.68	B8Y27 0.20	NKT777	0.88	0 OL 71	0.80
2N1303	0.89	AFZ12	．0．75	B8YE1 0.50	078B	0.88	OC200	$0 \cdot 88$
2N1304	0.25	ASY26	0.85	B8Y9JA 0.15	OAS	0.15	OC201	$0 \cdot 49$
2N1305	0.25	A8Y 27	0.88	B8Y95 0.15	OA6	0.18	OC202	0－63
2N1306	0.25	A8Y28	0.25	BT102／500R	OA47	0.10	Oc203	0.88
2N1307	0.25	A8Y29	0.80	－ 0.75	OA70	0.10	$0^{0} \mathrm{C}^{2} 04$	0.40
2 N 1308	0.80	A8Y 36	0.25	BTY42 0.98	0A71	0.10	OC20］	0.61
2N1309	0．85	A8Y50	0.18	BTY70／100R	0.073	0.10	OC206	0.76
2N1420	0.98	A8YO1	0.40	0.75	0 OA74	0.10	OC207	0.75
2N1507	0.28	AgYo	0.20	BTY78／400R	OA79	0.10	$0 \mathrm{C460}$	0.80
2 N 1326	0.88	A8Y ${ }^{\text {¢ }}$	0.80	1.75	0481	0.10	OC470	0.80
2N1909	8．25	A8Y62	0.25	BY100 0.18	0 ABJ	0.18	OCP71	0.98
2N2147	0.75	A8Y86	0.88	BY 12000.15	OA86	0.15	ORP12	0.60
2N2148	0.60	A8Z21	0.48	BY127 0．20	OA90	0.10	ORP60	0.40
2 N 2160	0.69	AsZ23	0.75	HY182 0．75	OA91	0.08	ORP61	$0 \cdot 48$
2 N 2218	0.80	AUY10	0.98	BY182 0.75	OA95	0.08	${ }^{8197}$	0.80
2N2219	0.88	AU101	1.50	BY213 0.25	OA200	0.08	$\mathrm{gaC}^{\text {a }}$	0．25
2N2287	1.08	BC107	0.5	BYZ10 0.40	OA202	0.10	8FT308	0．88
2 N 2297	0.80	BC108	0.25	BYZ11 0．85	0A210	0．2	8T722	0.88
2N2360A	0.80	BC109	0－20	BYZ12 0.30	0A211	0.88	8T7231	0.68
2N2613	0.88	BCl13	0.30	BYZ12 0.80	OAZ200	0.55	8X68	0.80
2 N 2646	0.58	BCl1\％	0.88	BYZ13 0．25	0AZ201	0.80	8X631	0.80
2 N 2712	0.85	BCl16	0.40	BYZ15 1.00	0AZ202	0.48	8x 635	$0 \cdot 80$
2N2784	0.50	BC116A	0.45	$0 \mathrm{OYZ16} 00.88$	0AZ203	0.48	8X640	$0 \cdot 85$
2N2846	2.65	BC118	0.88	BYZ88C3V3	OAZ204	0.48	SX641	O－2
2 N 2848	0.48	BC121	0.80	0.18	OAZ200゙	0.48	8X642	0.88
2 N 2904	0.80	BC12 ${ }^{\circ}$	0.20	C111 0．65	0AZ206	0.48	8X644	0.48
2 N 2904 A	0.88	BC12 ${ }^{\circ}$	0－68	CR81／05 0．20	OAZ207	0.48	8×645	0.75
2N2906	0.80	BC126	$0 \cdot 65$	CRS1／40 0.48	OAZ208	0－83	V15／30P	O．50
2 N 2907	0.88	BC140	0.65	C84B 2.60	OAZ209	0.88	V30／201P	0.88
2 N 2924	0.88	BC147	0.18	C810B $\quad 3.18$	OAZ210	0．88	V60／201	0.88
2 N 2925	0.18	BC148	0.18	DD000 0.15	0AZ211	0.88	V60／201P	0.88
2N2926	$0 \cdot 18$	BC149	0.20	DD003 0－15	OAZ22？	0.40	XA101	0.10
2N3054	0.60	$\mathrm{BCl}^{\mathrm{B}} 7$	0.80	DD008 0.18	OAZ223	0.40	XA10\％	${ }_{0}^{0.18}$
2N30J̈ü	0.75	$\mathrm{BCl}^{\mathrm{BCl}} \mathbf{7}$	0.20	DD007 0.40	OAZ224	0.88		
2N3702	0.18	BC158	0.20	DD008 0.88	OAZ241	0．28	XA182	0.15
ON3703	0.15	BC160	0.68	GD3 0.88	OAZ242	0．88	XA161	0.8
2N3706	0.28	BC169	0.18	$\begin{array}{ll}\text { GD4 } & 0.05 \\ \\ \\ 0.08\end{array}$	OAZ244	0．82	XA162 $\mathbf{X 8 1 0 1}$	0.8
2N3707	0.15	BCY31	0.80	$\begin{array}{ll}\text { GD5 } & 0.88 \\ \text { GD8 } & 0.85\end{array}$	OAZ246 OAZ290	0．88	XB101 $\times \mathrm{B} 102$	0.45
2N3709	$0 \cdot 18$	BCY3\％	0.50	$\begin{array}{ll}\text { GD8 } & 0.25 \\ \text { GD12 } & 0.05 \\ \\ \text { O2，}\end{array}$	$\mathrm{OAR1}_{0}^{\text {OC9 }}$	0.38	XB102 XB103	0．10
2N3711	$0 \cdot 18$	BCY33	0－20	GET102 0－80	${ }_{0}^{0} 167$	0.88	X8113	0.10
－NS819	0.85	BCY34	0.25	GET103 028	0 Cl 9	0.88	XB121	0.48
2N3820	0－88	BCY38	0.80	GET113 0.20	$0 \mathrm{OC20}$	0.98	ZBE4	$0 \cdot 4$
2 N 3823	0.75	BCY39	0.48	GET114 0．16	OC22	0.48	ZR24	0－68
2 Nu 027	0.68	BCY 40	0.48	GET115 0.45	0 C 23	0.60	Z8170	0.10
2Nu088	$0-88$	BCY42	0.15	GET116 $0 \cdot 5$	OC24	0.60	28271	0.18
28000	0.75	BCY70	0.80	GET120 0．26	OC2ō	0.38	ZT2］	0.85
28301	0.48	BCY 71	0.80	GET872 0 0．80	OC26	0.85	ZT43	0.25
28304	$0 \cdot 68$	BCZ 10	0.80	$\begin{array}{cc}\text { GET875 } & 0.25 \\ \\ \text { GET880 }\end{array}$	OC28	0.6	2TX107	0.15
28501	0.88	BCZ11	0.88	$\begin{array}{ll}\text { GET880 } & 0.88 \\ \text { GET881 } & 0.25\end{array}$	OC29			
28708	0.68	BD121	0.65	GET881 0－25	OC29	0.68	ZTX108	0.15
AA129	0－80	BD123	0.88	GET882 0.25	OC30	0.40	ZTX300	0.18
AAZI：	0.30	BD124	0.68	GET885 0.20	OC35	0.50	ZTX 304	0.88
AAZ13	0.18	BF115	1．88	$\begin{array}{ll}\text { GEX44 } \\ \text { GEX45／1 } & 0.08\end{array}$	Oc36	0.68	ZTX000	0.15
ACl07	0.88	BF117	0.60	GEX941 $\quad 0.15$	$0 \mathrm{C4} 1$	0.25	ZTX 03	0.80
AC126	0.85	BF167	0.85	GJ3M 0．25	OC42	0.80	ZTX331	0.80

SEMI－CONDUCTOR SET FOR

P．E．GEMINI AMPLIFIER $£ 12.95$

SEND S．A．E．FOR LIST OF 3，000 TYPES VALVES，TUBES AND TRANSISTORS

Open daily to callers：Mon．－Sat． 9 a．m．－5．30 p．m． Closed Sat． 1.30 p．m． 2.30 p．m．
Terms C．W．O．only
Tel．01－769 0199／1649

TRANSISTORISED TWO-WAY TELEPHONG INTERCOM

Operative over anazingly long distances. Separate call 2 -wire connection. 1000'e of applications. Beautifully finished in ebons. Supplied complete with batteries and wall brackets.
86.07% P. $\$$ P. 172 p.

AVO CT471A MULTIMETER

 Battery operated, fully transistorised Sensitivity $100 \mathrm{mn} / \mathrm{w}$. Measures AC/DC Voltagen 12 mV to $1,200 \mathrm{v}$. AC/DC Current 12 uA to $1.2 \mathrm{Amp}$. Resistance 12 ohm to $120 \mathrm{~m} \cap$ HF, VHF, UHF, Voltage with multiphier 4 v to 400 v up to $50 \mathrm{Mc} / \mathrm{s}, 40 \mathrm{mV}$ to 4 up to $1,000 \mathrm{Mc} / \mathrm{g}$. Offered in perfect -CRYSTAL CALIBRATORS No. 10 Small portable crystal
 controlled wavemeter.
Bize $7^{\prime \prime} \times 75^{\circ} \times \mathbf{c}^{2}$. Free. quency ravge $600 \mathrm{Ke} / \mathrm{e}$
$10 \mathrm{Mc} / \mathrm{s}$ (up to $30 \mathrm{Mc} / \mathrm{s}$ on harmonics). Cali brated dial. Power requirements 300 V.D.C.
 371 p .
B.C. 221 FREQUENCY METERS latest rease coniplete wha calithor charta 227.50 each. Carr. 30 p.

GENERATORS Oscillator Test No precision high quality ment made for the minlstry by Airmec. Frequency cover
age $20-80 \mathrm{Mc} / \mathrm{s}$. AM porates precision dial, level meter, precision attenuator $1 \mu \mathrm{~V}-100 \mathrm{mV}$. Operation from 12 d.c. or $0 / 110 / 200 / 250 \mathrm{Y}$ ac. Size 12 a $8 \frac{1}{9} \times 9 \mathrm{in}$. Supplited in brand new condition complete with all connectors
fullytested. fis. Carr. \&1.

AVO CT. 38 ELECTRONIC

 MULTIMETERSHigh quality 97 range instrument which
 Realatance and lower Output Ranges d.c.
volta $250 \mathrm{mF} \cdot 10,000 \mathrm{~V}^{2}(10$ meg $\Omega \cdot 110 \mathrm{meg} \Omega$ input). D.c. curvent $10 \mu \mathrm{~A} \Omega-110 \mathrm{meg} \Omega$ input). D.e. current $10 \mu \mathrm{~A}-\mathrm{E5A}$. Ohms. K.F. Heaturing head uis to 550 MHz) current $10 \mu \mathrm{~A}-25 \mathrm{~A}$. Power output 50 micro-watte- 5 watts. Operation $0 / 110 / 200 / 250 \mathrm{~V}$ a.c. Supplied in perfect condition complete with circuit leal and R.F. probe. \&\&5. Carr. 75p. ADMIRALTY $62 B$ RECEIVERS
 receiver manufoturedive I receiver manufacture ${ }^{\text {a }}$ burphy. Coverage in Murphy Coverage it
bands
$150-300 \mathrm{Kc} / \mathrm{y} ; ~$
560 $\begin{array}{llll}\text { bands } & 150-300 & \mathrm{Kc} / \mathrm{s}: & 560 \\ \mathrm{~K} / \mathrm{s}-1.5 & \mathrm{Mc} / \mathrm{s} ; & 3.9 .30 .5\end{array}$ $\mathrm{Kc} / \mathrm{s}-1-5$ Mc/s; $3 \cdot 9 \cdot 30 \cdot 5$
Kc / s. I.F. $500 / \mathrm{KHz}$. In-
corporaten 2 R.F.and 3 I.F. corporatea 2 R.F. and $31 . F$.
stages, bandpass filter, noise limiter, crystal con-
trolled B.F'O. trolled B.F,O. calibrator F. output, etc. Built-in speaker, output for phones. Operation $100 / 230 V^{*}$ a.c. Size in good working condltion. $\$ 28 \cdot 50$. Carr. above. $15 \mathrm{KHz}-700 \mathrm{~Hz}$ 17.50. Carr. \&1.50.

TO-2 PORTABLE OSCILLOSCOPE A general purpose low cont economy oscillo${ }_{2}$ (amp. Bandwidth mp. 2 meg Ω. ${ }_{20}$ Input imp. $\frac{2}{}$ meg Ω g lube. $115 \quad 180$ $220 / 240 \mathrm{v}$ a.c. Supplied brand new with hand.
book. 88.50 . Carr. 0 0p.

TO-? PORTABLE OSCILLOSCOPE
 in tube. Y amp. Sensiti vity 0.1 V p-p/CM. BandWidth lis cps-1.jMHz.
Input imp. 2 meg X amp. sensitivity 0.9 V p-p/CM. Bandwidth 1.J. cpa -800 KHz . Input imp. © meg Ω 20pF. Time base. sanges 10 eps-300 KHz . Synchronlzation. Internal/ extertial. Illuninated gcale $140 \times 210 \times 330$ mm . Weight $15 \mathrm{lt} 2 \underline{2} / 240 \mathrm{~V}$. A.C. Supplied

EGM PANEL MIEIEERS

USED EXTENSIVELY BY INDUSTAY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC. LOW COST Q QUICK DELIVERY OVER 200 RANGES IN STOCK O OTHER RANGES TO ORDER

NEW "'SEW" DESIGNS

 Clear plastic meters bakelite panel meters

"SEW" CLEAR PLASTIC METERS

 $50-0-50 \mu$
$100 \mu \mathrm{~A}$ $100 \cdot 0 \cdot 100$ $200 \mu \mathrm{~A}$ 500μ $500 \mu \mathrm{~A} \ldots$. 1 maf
$1-0-1 \mathrm{~m}$.
a $\stackrel{1-0-1 \mathrm{~m}}{2 \mathrm{~mA}}$

	50 ma
$=$	100ma
	300 ma
+	1 A .
	U.A.
	30 A
	20
	30 V
83.60	150 V d
23.10	30 Vad
28.10	300 Va
$8 \cdot 10$	\$ Meter
29.871	1 mA
42.75	VU Me
22.60	1A a.c.
22.60	J.a a.c.
82.60	10 A
42.60	20A
新-80	30 A

-Type MR.52P. 23in muare fronts. $50 \mu \mathrm{~A}$
$50.0 \cdot 50 \mu$ $50.0-50 \mu$

$100 \mu \mathrm{~A}$ | 23.10 |
| :---: |
| 28.60 |
| 22.60 |
| 2.871 | $300 \mu \mathrm{~A}$

1 mA
0 mA

-mA 10 mA

30 mA
100 mA
100 mA
500m.

3 A		
3.	2.00	
10 V d.c.	..	22.00

Type MR.85P. alin 8 sin fronts

$\underset{50 \mu \mathrm{~A}}{\mathbf{0} 0-50 \mu} \ldots$
 $50-0-50 \mu$ $100 \mu \mathrm{~A}$ $100-0-10$
 $100-0-10$ $200 \mu \mathrm{~A}$.

 $.00 \mu \mathrm{~A}$.

 $.00 \mu \mathrm{~A}$.
 $000-0$ 1 mA j mA
 1 maA 10 mA -10 m
 0 mA 10 mA $\mathbf{3} 0 \mathrm{~mA}$ 100 m
 00 mL 100 mA 0
 100 mA $1 \mathrm{~A} . .$.
 1 A. 3 A. 10 A 15 A 20 A 30 A 50 A JV 10 V

*MOVING IRON--
ALL OTHERS MOVING COIL "SEW"EDUCATIONAL

METERS

meter moveruent is in the following range

$50 \mu \mathrm{~A}$.	44.50	20 V d.c.	88.67
$100 \mu \mathrm{~A}$	24.25	50 V d.c.	88.87
$1 \mathrm{~m} / \mathrm{A}$	88.97	300 V d.c.	28.87
$50 \cdot 0.50 \mu \mathrm{~A}$	44.25	Dual range	
$1-0.1 \mathrm{~mA}$	88.97	$500 \mathrm{~mA} / 5 \mathrm{Adc}$	84.25
1A d.c	88.97	$5 \mathrm{~V} / 50 \mathrm{~V}$ d.c.	4.25
5 A d.c.	88.97	Triple range	
10 V d.c.	3.87	100 mA	24.68

 A new range of high quality moving coil nstruments ideal or achool experibench applich other * mirror scale

"SEW" BAKELITE PANEL METERS
 Type MR. 85 3ting aquare front

 28.25

$500 \mu \mathrm{~A}$

lmA

$1-0 \cdot 1 \mathrm{mid}$

JmA
10 mA

10 mA
50 mA
100 mA

LAECOMI Tri4gs DISTORTIOH FACTOE MTRRE. Excellent condition. Fully teated.

TRANSISTORISED L.C.R.A.C. MEASURING BRIDGE
 bridge offering ex. cellent range and accuracy it low
cost. Ranges: cost. Ranges: R. $\begin{array}{ll}1 \Omega-1 n \cdot 1 & \text { mego } \\ 0 & \text { Ranges } \\ -1 \%\end{array}$ HENRY ${ }^{\text {Hes }}{ }^{1}{ }^{1}{ }^{1}$
Rangem 土2\%, TURNS RATIO 1:1/1000:11100. 6 Ranges $\pm 1 \%$. Brilge voltage at 1,100 cps. Operated from 9 volts. $100 \mu \mathrm{~A}$. heter indeglon. Atractive 2 tone metal COS80R 1049 DOUBLE BEAY OSCILLOcoras. D.e. coupled, Band wilith lke/s. Perfect oriler. *2s. Carr, $k 1.50$.

TE-16A Transistorised

LELAND MODEL 27 BEAT

 FREQUENCY OSCILLATORSFrequency $0.20 \mathrm{Kc} / \mathrm{a}$ on ${ }^{2}$ ranges. Output 500Ω or $5 k \Omega$. Operation 200/250V. A.C.
Supplied in perfect order. $812 \cdot 50$. Carr. Jop. CARCONI TF886 VIDEO OSCILLATORS $0-\bar{j} M \mathrm{Mz}$. Sine square Wave. 245. Carr. \&1. LAFAYETTE TE46 RESISTANCE

CAPACITY ANALYSER $2 \mathrm{DF} \cdot 2,000$ mild
$2 \mathrm{ohms}-200$ mezohms. Also checki impe-
dince. turns dance, turns
ratio,
ionula-ingula-
tation, $200 / 250 \mathrm{~V}$
Brand New 217.50 Carr. $37!$

CLASS D WAVEMETERS

MABCOMI TF195M BEAT FREQUEHCY OSCILLATORS. 0.40 KHz . 220 . Carr. $\mathrm{\&} 1 \cdot 00$

Itest

Our latest edition giving full detaila of a comprehensive range of HIFFI EQUIPMENT COMPONENTA, TEST EQUIPMENT And MISCOUNT COUPONS VALIE 50p (10/-). 248 pages, fully illuatrated and detailing thomands of items at bargain prices.

G. W. SMITH
\& CO (RADIO) LTD.
Also see next two pages

SETI－CONWCCTORS／VILIES
 BRAND NEW \＆FULLY GUARANTEED

TRANSISTORS

1N914		AC187	30	BY 100	15y
IN4001	88	AC188	800	BY124	159
IN4002	$9 p$	ACY17	300	BY126	159
IN4008	10p	ACY18	259	BY12\％	20p
［ ${ }^{4004}$	10 p	ACY19	250	BYZ10	40 p
1N4005	18	ACY20	280	BYZ11	
IN4006	159	ACY21	$22)$	BYZ1：	20 p
1N4007	20p	ACY2	17 P	BYZ13	$25 p$
1N4148	7p	ACY28	179	MJ480	7 P
IN6054	88	ACY40	159 N	MJ481	21.85
20301	200	AD140	50 p	MPF10：	4\％
20302	2 m	AD149	50 p	MPF103	85p
20303	5	AD161	87 p	MPF104	37p
20308	808	AD16 ${ }^{\text {a }}$	87 B	MPF10：	40 p
20938	208	AF114	25p	NKT－13	25p
20309	800	AFll：	250	NKT214	16p
20371	20p	AF116	250	NKT216	87p
20374	87.	AF117	25	NKT217	409
20381	25p	AF118		NKT204	20p
2N696	17p	AF118	80	NKT241	27p
3N697	17 p	AF124	259	N KT261	20.
2N698	480	AFl26	17p	NKT271	\％p
2N706	109	AFl9	17p	NKT27．	\％\％
2N706．	$12{ }^{\circ}$	AF139	300	NKT．${ }^{\text {a }}$	20
2N708	150	AFi78	47p	NKT07．	259
2N914	20	AF180	58	NKT278	25p
2 2916	28p	AF181	48p	NKT281	270
2 N 918	87p	AF189	40\％	NKT403	759
2 Ng 29	28p	AF239	429	NKT404	029
2N930	20p	ABY＂6	20p	NKT40う	75 p
2 N1131	30 p	A8Y27	22p	NKT773	85p
2N1132	30p	Asy2\％	25 p	NKT104	37p
－N 1302	20	ASZ17	49	OAJ	80
2N1308		AUY10	97 p	OAl0	25］
2 N 1304	\％p	BAY31	7 p	OA47	100
2N1300	25p	BC107	12P	OA70	100
2N1306	25p	BC108	15p	OA79	10p
2N1307	250	BC109	12．	OA81	10 p
2N130\％	309	BCl^{13}	25	OA8j	12
$\bigcirc \mathrm{N} 1809$	25	BC116	409	OA90	100
2N1613	22 p	$8 \mathrm{Cl25}$	55 p	OA91	7
2N1711	25p	8 Cl 26	55 p	OA95	7
2N1889	32 p	BC14	17p	OA200	7 p
2N1893	50 p	BCl48	12.	OA202	109
－N2147	75 p	BC149	sop	OA210	17 p
2N2160	6^{69}	${ }^{8 C 167}$	15p	OC19	370
2N2193	470	BC17	179	OC20	970
2N2217	40 p	BC177	25 p	OC32	501
－N\％218	30）．	BCl ${ }^{2} \mathrm{LL}$	10p	OC23	60
－N2219	28p	BC184L	1290	OC24	60
－N2368	170	EC186	205	OCs ${ }^{\text {a }}$	37
2N2369	900	BC212L	189	OC26	25
2 N 2389 A	800	BCY 30	259	OC28	68
2 N 2484	59	BCY31	809	OC29	62
2N2813	85 p	BCY 3 －	509	Oc3J	50
$2 \mathrm{~N}^{2646}$	50%	BCY33	\＄5p	Oc36	2 y
2N2904	$20 p$	BCY34	200	$0 \mathrm{C4} 1$	85
2N2923	170	BCY 98	40	OC4：	09
2 N 2924	17 p	BCY 42	155	$0 \mathrm{C4} 4$	179
2N2925	178	BCY43	80	OC4	159
－N29286	128	BCY71	800	$0 \mathrm{OC4}$	7
2 N 2926 Y	12p	BCY\％	15p	OC71	129
2 N 29260	12p	BCZ11	40p	$0 \mathrm{C71}$	15p
2 N 30 S 3	25	BD121	85	OC73	85p
2 N 3054	50	BD123	80 p	OC73	200
2N305s	750	BD124	80	OC74	0
2N3391A	$80 p$	BFlis	\％5p	OC75	
2 N 3416	87	BF117	47	OC76	p
2N3E70	81.25	BF187	25	OC77	0 p
2N3702	18\％	BF173	30 p	OC78	p
2N3703	12	BF180	27	OC81	5
2N3704	178	BF181	770	OC81D	P
2N3705	159	BF18：	$2{ }^{\text {a }}$	$0 \mathrm{C83}$	5
2N3706	20	BF184	$2{ }^{5}$	OC84	
2N3707	159	BF185	${ }^{85}$	OC139	
2N 3708	17p	BF194	17.	OC140	7
2 N 3709	18	BF190	15	OC168	
2N3710	129	BF200	87	OC170	85
2N3711	1290	BF224	30p	$0 \mathrm{Cl17}$	
2N3819	30	BF225	30	OCO^{200}	
2N3903	20p	BF244	47	0 C 201	
2N3904	40	BFXI：	2 p	OC202	76
－2N3905	20p	BFX13	${ }^{5} \mathrm{p}$	OC203	
2N 3906	209	BFX99	300	OCP^{04}	
2 N 4078	17 p	BFX 30	32	OC20	5
2N4039		BFX44	87	$\mathrm{OCP27}^{0}$	75
2 N 4061	15	BFX8：	40	OCP71	97
2N4062	20	BFX86	38	ORP1以	80
${ }^{2} \mathrm{~N} 4286$	15	BFX87	38	ORP60	493
2N4287	17 p	BFX88	35	P346A	
2N4288		BFY18	25	PL4001	145
2N4289	17	BFY20	621	PL4002	15
2N4200	159	BFY 0	2	PLe403	$1{ }^{10}$
2N4291	159	BrY51	80	PL4004	17
${ }^{2} \mathrm{~N} 4292$	${ }^{15}$	BFY02	2	PL4005	19
2NS304	87	BFY90	67	PL4006	80
2N530̄5	78	B8X19	17 P	PL1007	
28102	\％8	B8x 20	178	T1843	40
28103	87	B8x21	27.	T1844	18
28104	37	B8x76	15.	T184	17
40230	50	B8Y26	170	T1846	17p
40361		B8Y27			
40362	60．	B8Y28	17 p	BC107／8／	
AC107	870	B＇Y 38	24	$25+$	10 p
${ }_{\text {AC126 }}$	4	B8Y 89	28		
${ }_{\text {ACl2 }}{ }_{\text {A }}$		BEY51	38	200＋	7
${ }_{\text {AC128 }}$	25	Bry	20，	2N8005	
AC154 ACl 76		B8Y93̇A		$1{ }^{20+} 10$	${ }^{60 \%}$

THYRISTORS

P1V	50	100	200	300	3 jo	400
14	8	27	87	46	－	47
8 A	8	87	40	4＊	－	H
6A	－	5	3	－	－	7
7 A	－	H5	0\％	70\％	－	7

VALVES

HIIFI EQUUPMENT SAKE UPTTOR
 SEND S．A．E．FOR． DISCOUNT PRICE LISTS AND PACKAGE OFFERS！

GARRARD

FULL CURRENT RAMGE OFFERED，BRAND NEW AT FAMTASTIC SAVIMGS
$\begin{array}{llll}2025 \mathrm{~T} / \mathrm{C} \text { 日tereo } & 29.87 & \text { SL72B } & \text { 286．97 }\end{array}$ 40 MKII stereo $88.40 \quad$ APi6 $280-97$ 3000 stereo $\quad 210.50 \quad 8 \mathrm{~L} 7 \mathrm{JB} \quad 230.76$
 Carriage 37ty extra each item．
TEAK PLINTHS AND PERSPEX COVERS
For 8P25，BL6．5，8L゙̄3 $3000,2095 \mathrm{~T} / \mathrm{C}, 202 \mathrm{~J}$
 Carriage $37!\mathrm{p}$ extra each type．

TELETON SPECIAL OFFER！
 SPECIAL OFFERS！

CRIOT AITAT BTEREO TUAER A MPLIFIER MP60 WITH IATCHMG PAIR BA1003 SPEAKER
sYETEAE
Output
4 watts per channel．Excellent
 Alao ivailable With Garrard
Record Changer，Plinth，cover and stereos cartrikige．Ready mired． 14 ．Carr．21．
Rarr． 50 p extra ench item TELETON SAQ－206 BTEREO AMPLITIER

Latest exciting reiease．Besutifully styled
 Incorporates volume，bass，trebie，sllding buance，scrate．List E29．Our price $\$ 19.87$ ．Carr． 37 p ．
Rec． \star TRANSISTORISED FM TUNER \star

G TRANBISTOR
HGG QUALITY
TUNER，SIE
ONEY，
 criminator．A mple
output to leed mont amplifiers．Operates ou 9V Mat tery．Coverage $88-108 \mathrm{M}$ Mz．Ready
built ready．for use．Fantantic value for money．
Steren multiplex adaptors $84.97 \frac{1212}{}$ ．

1HEADSET8
Each headphone con－ $\begin{array}{lll}\text { tains a } \\ \text { and } \\ \text { a } & 21 / \mathrm{in} & \text { woofer } \\ \text { in weeter }\end{array}$ Built in In Individual level controls． 8Ω imp． $25-18,000 \mathrm{c} / \mathrm{s}$ ． Es．871．P．\＆P． 124 p．

AMERICAN TAPE

First grade quality American new Discount on quantitles．

 3in．22jst．L．P．acetate3tin． 600 ft T． P mplar 3 in．B00ft．T．P．myler
oin． 600 tt ．std．plactic 5in．goott．L．P．Pcetate
 6 in． 1,200 t．．L．P．weetate 5 th．1，800ft．D．P．mylar 5 in． 2,400 tt．L．P．mylar
7 in． 1,200 t．itd．soetate． $7 \mathrm{in} .1,200 \mathrm{ft}$ ．th．seetate． $7 \mathrm{in} .1,800 \mathrm{ft}$ ．L．P．acetate 7in．2，400ft，D．P．mylar 7in．2，4001t．T．P．mylar
Postage 10p．Over 43 post paid．

MP60 B．S．R．McDONALD
B．S．R．McDONALD
$211.95 \quad 610 \ldots \ldots$
$215-9$ reception AFC，builf－in MPX．Cer／XTAL For above B8R range 43.971 ．Carr． 371 p ．

Garrard spes／lif fitted Goldring G800 cartridge and wooden plinth and plastic cover．Ready wired．Total Hist price 235. OUR PRICE ARe． 50 ．Carr．50p． GOLDRING GL69／2 fitted Goidring G800 cartridge complete with de luxe base and cover．Total list price $850-80$ ．
OUR PRICE 859 ．Cart． 50 p ．

B．S．R．McDONALD		
M P60	211.95	610．．．．．．815－95
	812.95	310．．．．．．810－85
Carr． 371 p extra each item		
Teak Base and Perspex Cover		
For above B8R range 88.971 ．Carr．371p．		
TPD1 Series with plinth		
4P60 ．．． 818.50 610．．．．． 82.97		

GOODMANS SPECIAL OFFERS！ Manamp 30 Btereo Amplifier $15+15$ watt
r．m．s．with matching stereomax AM／FM Tuner．Total Jift price elg6．52．

OUR 189
$\underset{\text { THE PAIR }}{\text { Clage }} 1$

GOODMANS SPEAKERS！

Maxim．OUR PRICE \＄82．60 pr．Carr．50p Mezzo 1II，OUR PRICE 28．50．Cart．50p． Magnum K2．OLR PRICE sas．Cart．50p． Uambo．OUR PRICE 889.50 pr．Carr． 50 p Marimbar．OUR PRICE 835 pr ．Carr． 50 p Magister，OUR PRICE 41.60 each．Carr，
Minlater．OUR PRICE $\mathbf{8 8 9} 97$ ．Cart．50p．

TAPE CASSETTES
Top quality in plastic library boxem．
C 8060 mln 481 s 3 for $\$ 1.28 \mathrm{~m}$

C 9090 min
$\mathrm{Cl} 20120 \mathrm{mln} 75 \mathrm{~B} ~$
75 inasette Head Cleaner 56p．All Poat extra．

SINCLAIR EQUIPMENT
Project 60．Package oftern． 2×230 amplifier p atereo 60 pre－2mp，PZ5 power supply， F\％－5；with PZ6 power supply． 281．Carr． $371 \mathrm{p} .2 \times 250$
amplifer，stereo 60 pre－ amp PZ8 power supply
备1．50．Carr． 371 ． $-81 \cdot 1$
$81-571$ $81-19$
$41-97$ Q18 of the above se87i for extra．Add to any 76p and s16 for a pair of Q16 speakers．Project 1． 0 All

G．W．\＆MITH \＆CO．（RADIO）LTD．

RUSSIAN C1-16 DOUBLE BEAM OSCILLOSCOPES

 5MHz Pas Band. Separate Y1, Y2 amplifiern. Calibrated tringered sweep from $0.2 \mu s e c$ to $100 \mathrm{msec} / \mathrm{cm}$. Supplled complete with all accestories and Instructions, 887 , Cart. pald.

MARCONI CT44 TF956 AF ABSORPTION WATTMETER
1 Miwatt to 6 watt 280. Carr. 81.

THII.
 DEGADE

 Reaistaice ATTATOATOR Variable range $0-111 \mathrm{~dB}$. nections. (60) balanced T and Bridge T. Impedance $+10+20+30+40 \mathrm{~dB} .0)+(1 \mathrm{~dB} \times 10)$ 0.05 dB . +indication $\mathrm{dB} \times 0.01$. Maxi mum input less than $4 W$ (50 V). Built in 600 1 load resistance with internal/externa switch. Brand new 487.50 . P. \& P. 25p. BELCO AF-5A
SOLID STATE SINE SQUARE WAVE C.R, OSCILLATOR
 18-2 $18-200.000 \mathrm{~Hz}$ $18-50,000 \mathrm{~Hz}^{2}$ Output max $+10 \mathrm{~dB}(10 \mathrm{k} 0)$, Operation
Internal Internal
batteries
Attractive two tone case $71 \mathrm{in} \times 5 \mathrm{xin} \times 2 \mathrm{in}$
Price $\$ 17.50$. Carr. 17 p.
BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New high quality port-
nble instrument. Sine 1 Hz to 100 kHz . Square 20 Hz o 20 xEz . Output max.
$+10 \mathrm{~dB}(10 \mathrm{k} \theta)$. tlon $220 / 240 \mathrm{~V}$ a.c. Blize $215 \mathrm{~mm} \times 150 \mathrm{nim}$
 $2 \overline{0} \mathrm{p}$.

T.E. 40

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. Imput 10 ranges
 Decibela -40 to +50 dB Gupplied brand new complete with leads and instructlons. Operation
290 V a.c. E 17.50 . Carr. 2 JD

TE-65 VALVE VOLTMETER

High quality instrument ${ }_{1.5-1,500 \mathrm{~V}}$ Wes. D.c. volta $1 \cdot 5-1,500 \mathrm{~V}$. A.c. Volts up to 1,000 Realstance ${ }_{2} \operatorname{up}_{20 / 240}$ v' a.c. opegation. Complete with probe and justructions. $817-60$.
P. \& P. 30 p . Additional P. A P. ${ }^{30 \mathrm{p}}$. Additional
Probes syailable: R.F. Probes availgble: R.F.
Ag.121. H.V. 28.00.
 230 VOLT A.C. 50 CYCLES RELAYS Brand New, 3 sets of changeover contacts at 5 amp rating. 60 p each. P. \& P. 10 p (100 lots e40). Quantitles avallable.

MULTIMETERS for GIVERY purposed

 $600 / 1,000 \mathrm{~V}$ a.c. and
d.c. $0 / 100 \mathrm{~K}$. 1197 g . P. \&e. P. P . $121 / 1 \mathrm{p}$.

MODEL TE- $\mathbf{2 0 0 .} 20,000$ O.P.V. Mirror scale, over$\begin{array}{ll}\text { load protection. } & 0 / 5 / 25 / \\ 125 / 1,000 \mathrm{~V} & \text { d.c. } \\ 0 / 10 / 50 /\end{array}$ $250 / 1,000 \mathrm{~V}$ a.c. $0 / 50 \mu \mathrm{~A} /$ 260 MA . $0 / 60 \mathrm{~K} / 6 \mathrm{meg}$ MODEL $500.80,000$ O.P.V. with operlond protection, mirror meale
$0 / .5 / 2.6 / 10 / 25 / 100 /$ $250 / 500 / 1,000 \mathrm{~V} / 25 / 100 /$ $250 / 500 / 1,000 \mathrm{~V}$ d.c. $0 / 2 \cdot 5 /$ $10 / 25 / 100 / 250 / 500$!
$1,000 \mathrm{~V} . \mathrm{a} c .0 / 50 \mu \mathrm{~A} / 5 / 50!$ $1,000 \mathrm{~V} . \mathrm{a} . \mathrm{c}, 0 / 50 \mu \mathrm{~A} / 5 / 50$
500 mA.

$0 / 60 \mathrm{mp} . \mathrm{d.c}$ $0 / 60 \mathrm{~K} / 6$ Meg./80 Meg ® 3877. Pobt paid.

YODSL TE-70, 30,000 O.P.V. 0/3/15/60/800/ $600 / 1,200 \mathrm{~V}$ d.c. $0 / 6 / 30 /$ $\begin{array}{ll}120 / 600 / 1,200 V \\ 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA} . & 0 / \\ 10 /\end{array}$ $30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA} . \quad 0 /$
$16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 \mathrm{M} / 16 \mathrm{meg}$. 6560. P. \& P. 15 p .

TTE MODRL TW-50E. 46 Volt d.c. $5 K / V o l t$ a.c. D.e. volts: $0.125,0 \cdot 25 ; 1.25,2.5$,
$5,10,25,50,125,250,500$, 10, 25, 50, 125, 250,500, $5,10,25,50,125,250,500,1,000 \mathrm{~V}$. D.c. current: $25,50 \mu \mathrm{~A}, 2.5,5,25,50,250$ 1 meg., 10 meg. Decibeln: -20 to

TE-900 20,000 1 /VOLT GIART YULTMETRE. Mirror scale and overload protection, 6 in full view meter, 2 colour scale. $0 /$ $5,000 \mathrm{~V}$ a.c. $0 / 25 / 12 \cdot 5 / 10 / 50 / 250 / 1,000$ d.c. $02 \mathrm{~K} / 200 \mathrm{~K} / 20 \mathrm{meg}$. ohm. 815.
P. \& P. $2 \overline{\mathrm{p}}$.

10DEL 6085. 57 ranges, glant
meter, plarin
pola meter, polarity sitivity: $50 \mathrm{~K} /$ Volt D.c. Volte: $0.125,0.25,1 \cdot 25,5,10,25$, 50 , $125,280,600,1,000 \mathrm{~V}, \mathrm{~A} . \mathrm{c}$. Volts: $1 \cdot 5,3,5$, 10, 25, $60,125,250,500,1,000 \mathrm{~V}$. D.c. $500 \mathrm{~mA}, 5,10 \mathrm{~A}$. Resiatance; $2 \mathrm{~K}, 10 \mathrm{~K}$, 100 K , 1 meg, 10 meg. Decibels; -20 to $+8 \bar{d} B$. 418-50. P. © P. 171 p .

MODEL TR12. 20,000

EOYOR TE. 10A. 20k0/ Volt $5 / 25 / 50 / 250 / 500 /$ $2,000 \mathrm{~V}$ d.c. $10 / 50 / 100 / 500$ / 1,000 a.c. $0 / 50 \mu \mathrm{~mA} / 2 \cdot 5 \mathrm{~mA}$ hm . -20 to +22 dB
 $10-0,100 \mathrm{mfd} .0 \cdot 100-0 \cdot 1 \mathrm{mifl} .28 \cdot 47 \mathrm{it}$.
P. \& P. 15 p . P. \& P. 15 p.

YODEL TR-90. 50,000 O.P.V. Mirror acale, over-
load protection. $003 / 13 / 80 /$ $\begin{array}{ll}\text { load protection. } \\ 300 / 600 / 1,200 \mathrm{~V} & \text { d.c. } 0 / 6 / 13 / 80 /\end{array}$ $30 / 120 / 300 / 1,200 \mathrm{~V}$ $03 / 6 / 60 / 600 \mathrm{~mA}$. $12.50 \mathrm{P} / \mathrm{P} / 16 \mathrm{meg}-20 \mathrm{to}+63 \mathrm{uB}$

TMK MODBL TW-80CB.

 Features Resettable Over-load Button. Sensitivity: load Button. Sensitivity: OK $0 /$ Volt L.e. $5 K \Omega /$ Volt a.c. D.c. volts: $0-0.5$, $5,10,50,250,1,000 \mathrm{~V}$ $\begin{array}{ll}\text { A.c. volts: } & 0-2.5,10,50,250,1,000 \mathrm{~V} . \text { D.c } \\ \text { currents: } & 0-0.05, \\ 0.5 & 5,50\end{array}$ Hemistance: $0-5 \mathrm{~K}, 50 \mathrm{~K}, 0-500 \mathrm{~K}, 500 \mathrm{~mA}$ Decibels: -20 to +52 dB . $811 \cdot 60$. $\mathrm{P} . \dot{\mathrm{s}}$. P. 171 p .

YODEL AG-100D. $100 \mathrm{~K} \Omega$ / Volt. Bin, mirror scale. Built-in meter protection 0/

 d.e. $0 / 6 / 30 / 120 / 300 / 600 \mathrm{~V}$ $\begin{array}{ll}\text { d.c. } & 0 / 6 / 30 / 120 / 300 / 600 \mathrm{~V} \\ \text { B.c. } & 0 / 10 / 2 \mathrm{~A} / \mathrm{B} / 60 / 300 / \mathrm{A}\end{array}$ $12 \mathrm{~A} .0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M}$ +17dB. 818-50. P. \& P. $17!p$. TME LAB TTATMR. 100,000 O.P.V.6iin scale buzzer short círcuit buzzer Senaitivity: 100,000 OPV d.c. 5/Volt a
 D.c. volts: $0.5,2.5,10,50,250,1,000 \mathrm{~V}$ A.c. volts: 3, 10, $50,250,500,1,000 \mathrm{~V}$. D.c. current: $10,100 \mu \mathrm{~A}, 10,100,500 \mathrm{~mA}$ $2.5,10 \mathrm{~A}$. Reaiatance: $1 \mathrm{KK}, 10 \mathrm{~K}, 100 \mathrm{~K}$ 10 meg . 100 meg. Declbels: -10 to
+49 dB . Plastic case with +48dB. Plantic cane with carry ling handle
size $7 \mathrm{In} \times 6{ }^{3} \mathrm{in} \times 3$ in. size 7
2эp.

SKYWOOD SW-500
 $\begin{array}{rr}\text { O.P.V. } \\ 1,200 / 3,000 / 6,000 \mathrm{~V} & \text { d.c. }\end{array}$ $1 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V}$ $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$. $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$. Megohm $\triangle 0 \mathrm{PF}$. ${ }^{2} \mathrm{MFD}$ 26-971. P. \& P. $17!\mathrm{P}$.

FTC-401
TRANSISTOR

TESTER

Full capablitiee measuring A, B and $1 C 0$ apn or prp. Equally foptable for checking rodes. Supplied complete with instructions, battery and

270° WIDE ANGLE
1 mA METERS
MW1-6 60 mm square sq.07! $\mathrm{MW1-8} 80 \mathrm{~mm}$ square
extra.
 -

UNR-30 RECEIVER
4 Bande covering $550 \mathrm{KHz}-30 \mathrm{MHz}$. B.F.O Built in Speaker $220 / 240 \mathrm{~V}$ a.c. Brand new with instructions. E15.75. Carr. 371p.

Wge TRAHECEIVERS

Large quantity available for EXPORT Excellent condition. Enquirles Invited

UR-IA SOLID BTATR
COMTUATCATION RECEIVER
4 Bands covering $55 \mathrm{KHz-30MHz}$. FET, s Speaker, Bandspread, Sensitivity Control $220 / 240 \mathrm{~V}$ a.c. or 12 V d.c. 12 jin : $4 i \mathrm{In}$. in. Brand new with instruction Carr. 37!p.

 LAFAYETTE HA-600 RECEIVER

renctal coverage $150-400 \mathrm{KHz}, 550 \mathrm{KHz}$ 30 MHz . FET front end, ${ }^{2}$ mech. filters, product detector, variable B.F.o., noine $16 \mathrm{in} \times 9$ in $\times 8$ in. 181 b . $220 / 240 \mathrm{Vain}$. or 12 V d.c. Brand new with instructlons. e45. Carr. 50p.

LAPAYETTE
 LAPAYETTE GR-800 80LD compuite

$3 \cdot 0-4,7-\overline{7} \cdot 3,14-14 \cdot 35,21-21 \cdot 45,28-29 \cdot 7$ $50-54 \mathrm{MHz}$. Dual conversion, 2 mech. flters, product detector, variable BFO, s Meter, 100 KHz calibrator. $220 / 240 \mathrm{y}$
 Brand new with instructions. 857.50 .

FULL RAMGE OF TRIO RQUIPMENT

EDDYSTOIE VHF RECEIVERS MODEL 770R. 19-165 Mc/s. Excellent condition. $\$ 150$
VOLTAGR BTABLISER TRANBFORMERS $180-260 \mathrm{~V}$ input. Output 230 V . Available 150 W or 225 W . 212.50. Carr. 23 p .

AUTO TRANSFORMERS
$0 / 115 / 230 \mathrm{v}$. Step up or atep down. Fully ohrouded

SOLID STATE VARIABLE A.C. VOLTAGE REGULATORS

ing pact and panel mount ing. Ideal for control of

lampa, drilie, electrical appliancea, etc. Input 230/240Y a.c. Outputcontinuounly varlable from Model MR2305 5A 68×46 | $\times 43 \mathrm{~mm}, 88871$. |
| :--- |
| MR 2310 Model |
| 90×68 | Postage 12tp

POWER RHEOSTATS

HIgh quality ceramic construction. Windings embedded in vitreous enamel. Heavy duty brush wiper. Continuous rating. Wide range
"YAMABISHI" VARIABLE VOLTAGE Excellent quality . LRANSFORMERS ex-stock 8 ingle hole fixing, 3 in dian 8 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 obme, 72;p. P. \& P. Tip 60 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 2,500$ or $5,000 \mathrm{ohms}, 21 \cdot 05$. P. \& P. 7 jp 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or 2,500 ohnil, $21 \cdot 87!$. P. \& P. 71 p

ADVANCE TEST EQUIPMENT Bnal nemand boxd in orisinalimalod cartona Fin79. DHP MILLIVOLT METER D.c. 10 mV to $3 V$. Current $0-01 \mathrm{~m}$ to 0.3 ma. Resistance 1 ohm to 10 megohm.
TTIS. TRANEIBTOR TESTER. Full range of tacilities for testiog PNP or NPN transistors in or out of circuit. 837.50 .
Carrlage 00 p per It em.

PREMIER STEREO SYSTEM 'ONE"' Consists of an all transistor stereo amplifier. Garrard $2025 \mathrm{~T} / \mathrm{C}$ auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The 10 transistor amplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket. Controls: Bass, Treble, Volume, Balance, Selector. Power on/off, stereo/mono switch. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12 \times 5 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$. high (Amplifier available separately if required $\mathbf{£ 1 4 . 9 5 .}$. Carr, 40p).

PREMIER STEREO SYSTEM "TWO"

As oystem "ONE" above but with arrard SP2
PREMER
PRICE $\underset{\substack{\text { Carr } \\ £ 1.75}}{ }$

MIDLAND AM/FM STEREO TUNER AMPLIFIERS

MODEL 19—520

MODEL 19—542 Tuning $\begin{array}{ll}\text { Semi } & 19 \text { tranaistors, } 12 \text { diodes, } \\ \text { conductors } & 2 \text { variators } \\ \text { Tuning } & \text { FM } 88-108 \text { MHz } \\ \text { ritnge } & \text { FM Stereo Multiplex }\end{array}$

M Stereo Multiple
AM $535-1635 \mathrm{kHz}$
Internal $A M$ and ex-
ternal $F M$ $50-17,000 \mathrm{H} 2$
Frequency
Response
Rower Output

Inputs

Speaker impedan Controls

Function

Size
PRICE
 power)
(eranic phono

4-8 ohm
Power on/off, Volume.
tone, balance, tuning, tone, balance, tuning, AFC. Stereo indicator Phono (Stereo indicator light)
$15^{\circ} \times 8 \mathrm{~A} \times 31^{\prime \prime} .450 .45$
Carr. \& Ins. 50p

PREMIER STEREO SYSTEM "SIX" SAVE OVER $£ 16$

Compriser Midiand AM/FM 8tereo Tuner Amplifier Modol 19-542. Pair of loudapeaker syitemi as 8ystem "ONE" Garrard 8P25 Mk. III atted Goldring 9850 Stereo Cartridge with teak plinth and cover. Total rec. list price over 891.
PREMIER 175
50 WATT PUBLIC ADDRESS AMPLIFIER MODEL PA-5000

A top quality amplifter giving 50 watts rms power output (80w peak). Incorporates 8 transistors and 4 silicon diodes (silicon output transistors). Inputs for 2 microphones each with individual volume controla, plus phono/
sux. input. Master volume control and Bass and Treble Controls. Well presented front panel tor ease of ouers. Contross. Well presented front panel for ease of opersimpedance $4 / 8 / 16$ olims Mike 1 and 2 sensitivity 2 mV ($50 \mathrm{k} \Omega$) Phono/Aux 300 mV ($100 \mathrm{k} \Omega$). Frequency response $50-20,000 \mathrm{~Hz}$. Fused output and thermal overload protection. A.C. Mains $220-250 \mathrm{~V}$, $50 / 60 \mathrm{~Hz}$. Size $13 \frac{1}{1}$ in $\times 9$ in $\times 5 \mathrm{in}$.
PREMIER
PRICE $\mathbf{£ 3 9}$ P.\& P. $\overline{5} 0 \mathrm{p}$

SP25 Mk III SPECIAL!

MIDLAND CASSETTE TAPE

end aun
mputs for mike and aux. Earphone socket. Complete

POCEET SIZE MULII-TESTER With wile angle, jewelled meter movement, ceramic long-life, low-lose nwitching, tough impact resisting case. Sensitivity 20,000 ohme/volt D.C. 18 Ranges: 0-5-25 18 Ranges: $0-5-25-50-250-500-2500$ A.C. $0-50 \mu \mathrm{~A}-2.5 \mathrm{~mA}-250 \mathrm{~mA}$ D.C. $0-$ 6000 ohins- 6 megohms, $10 \mu \mu \mathrm{f}-0.001$ mind-1 mid. -20 to $+2 \mathrm{D}^{2} \mathrm{~dB}$. Complete battery, test lead and instructions. £4.90

"VERITONE" RECORDING TAPE
EPECLALLY MANUPACTURED IN U.SA. FROM EXTRA STRONG FRE-ETRETCEED MATERIAL, THE QUALITY IS ENEQUALLED. TENSILISED to engure the most permanent base. lighly resistant to break. age, mointure, heat, cold or humidity. Hifh polished splice free finigh. Smooth
output throughout the entire audio range. Doulle urapped-attractirely boxed.

 P. \& P. 5 p

All cassettes can be supplied with library caser at $3 p$ extra each.

Poat and Packiog 3* Ep 5** 51* 8p

SPECIALISED COMPONENTS

The private constructor needs more ready and direct access to certain types of components, apart from those general purpose parts and semiconductor devices which we must agree are not at all difficult to obtain. But in order to exploit these latter devices fully, it is sometimes necessary to obtain certain special items. Maybe a special kind of semiconductor; some unusual passive component like perhaps a ferrite pot core; or an electro-mechanical part such as an uncommon type of switch, connector, or relay. By "special" we mean an item not normally carried in stock by the average retailer, but listed in a manufacturer's "industrial" or "professional" catalogue. In effect, this usually means that this particular class of component or device is restricted to equipment makers and component distributors, who can order in the requisite large quantity demanded by the manufacturer.

Industrial component distributors by and large are not favourably disposed towards dealings with private individuals. Some will, it is true, supply direct, but they have to insist on a certain minimum order-either in quantity or value. Such a procedure works well enough for the particularly dedicated and prolific constructor who makes a point of finding his way through the distribution network, and has probably established good personal relations with one or more distributors. But countless other constructors would like the opportunity to gain access to a wider range of components, on perhaps less frequent occasions, but without the inconvenience of hunting around for an obliging distributor for each particular special need.

Retail component stockists are the natural source of supply for individual constructors. Through the mail order business many retail firms have established good links with the amateur, wherever he may live. The point has now arisen whether retailers could not improve and expand their service by stocking a more varied range of electronic components including some special items obtainable from the industrial distributors; or at anyrate, be prepared to order such special items upon request.

In Readout this month we publish two letters relating to this subject, but from different aspects. Firstly, one of our contributors appeals to component manufacturers and trade distributors to consider the needs of amateurs, and also suggests how the latter may further their own cause. Secondly, one of our advertisers offers fellow retailers membership of a co-operative scheme for purchasing special components in reasonable quantities from manufacturers or main distributors. We await with interest any comments on this topic from industry, trade, or individual readers.
F.E.b.

CONSTRUCTIONAL PROJECIS

FISH BITE ALARM 382
DIGITAL I.C. TESTER 386
P.E. AURORA 400
WINDSCREEN WASHER TIMER 417
SPECIAL SERIES
MAKING THE MOST OF LOGIC IC's-II 378
GENERAL FEATURES
TREMULANT SYSTEMS 372
INGENUITY UNLIMITED 410
BEGINNERS
VOICE OPERATED SWITCH 398
NEWS AND COMMENT
EDITORIAL371
NEWS BRIEFS 384, 406
SPACEWATCH 409
ON THE FRINGE 413
MARKET PLACE 414
BOOK REVIEWS 421
POINTS ARISING 422
READOUT 425
Our June issue will be published on Friday, May 14

[^1]

THE popularity of electrically amplified and electronic musical instruments such as the electronic organ has resulted in the invention of all kinds of tremulant and vibrato systems as well as a host of other effects such as artificial echo, reverberation and the so called phasing or skying effect.

No effect has ever been produced that enhances musical sound so well as tremulant, which has been used ever since musical instruments, that could be made to produce it, were invented and even longer by anyone able to sing or whistle a musical phrase.

DEFINITIONS

There is some confusion between the terms tremulant, tremolo and vibrato which are defined by music encyclopædias as follows: Tremulant generally refers to the effect of making a note rapidly softer or louder i.e., a rapid amplitude variation: Vibrato is the effect of altering the pitch of a note rapidly by a very small degree i.e., it is a rapid frequency variation. Some may choose to differ on these definitions but for the sake of clarity, tremulant and vibrato will be used accordingly for the purpose of this article. Tremolo normally indicates the rapid repetition of one or more notes.

APPLICATION

The vibrato effect, or rapid pitch fluctuation, is normally produced on instruments like the violim and guitar by the player. The effect can be produced

Fig. 1. Block diagram showing method of employing an l.d.r. to obtain tremulant fram on amplifier
electronically on instruments with electronic tone generators i.e., electronic organs, in which case a low frequency (5 to 10 Hz) sinewave is employed to produce a small variation in the tuning of the tone generators. The tremulant effect can also be produced on certain non-electronic musical instruments by making the sound rapidly softer or louder, depending on the nature and playing technique of the instrument. With electronic organs and any amplified instrument like the guitar, a tremulant can be introduced by rapidly altering the gain of one stage of the amplifier. This is generally accomplished by employing a low frequency sinewave as a voltage control e.g., to control the bias voltage of a valve or transistor.

L.D.R. CONTROL

On most guitar amplifiers this facility is usually wrongly called vibrato and bias control of this kind generally introduces an obnoxious thumping noise, due to harmonics from the low frequency control oscillator. A far better method is to use a light dependent resistor (l.d.r.) as shown in Fig. 1. The lamp is connected in the collector circuit of a voltage level detector, which is driven by a low frequency sinewave oscillator. The sinusoidal fluctuation of light produces a sinusoidal variation in the resistance of the l.d.r.; this method is free from thump.

A novel idea for a tremulant pre-amplifier employing l.d.r.s, which can be used for portable electronic organs or guitars, will be given in part 2.

The Leslie rotary horn loudspeaker as fitted to many modern electronic organs

Fig. 2. Mechanical arrangement of rotating horn loudspeaker

ELECTRO-MECHANICAL SYSTEMS

There are several electro-mechanical methods of producing a pleasing tremulant from electronic organs and amplified electric guitars. These employ either rotating loudspeakers or rotating horns or deflectors and many of the systems currently in use are due to Don Leslie and bear his name.

Some manufacturers and users of rotating horn and deflector systems are, however, wrongly under the impression that pitch variation is produced by these devices because of the Doppler effect. Tests made by the author have disproved this, but have shown that the tremulant waveform from such systems is a very complex one. Systems in which the loudspeakers themselves are rotated do produce the Doppler effect as in this case the sound source itself is moving.

VARIATIONS IN MECHANICAL SYSTEMS

The exact acoustical function of rotary horn or loudspeaker tremulant systems will be dealt with in part 2 ; meanwhile it may be worth examining the various designs currently in use. The most common type employed in smaller electronic organs is the Leslie rotating horn system (see photograph). As can be seen from Fig. 2, the loudspeaker is fixed on a baffle board but "looks" into the rotating horn. These units are installed so that the sound can only come out of the revolving horn. The acoustical nature of the tremulant is mainly one of amplitude fluctuation of the fundamental notes but with considerable variation of their harmonic structure.

Another method, based on the rotating horn system, is one using a rotating deflector as shown in Fig. 3, this is generally used with large loudspeakers. This arrangement is sometimes used in conjunction with the small twin rotating horn system shown in Fig. 4, both assemblies being used together in external tone cabinets with built-in amplifiers and frequency crossover networks (Leslie organ tone cabinets). The small twin horn system shown in Fig. 4 rotates above the sound transducer the sound following the path shown by the arrows.

Fig. 3. The rotating deflector system used in Leslie tone cabinets

Fig. 4. Rotating twin horn system used in Leslie tone cabinets

Rotary horn or speaker systems are driven by a synchronous motor with a belt drive and a pulley diameter ratio suitable for turning the system at between five and ten revolutions per second; the usual speed is seven revolutions per second. Sometimes an additional motor or an alternative pulley ratio is used so that the system can be run at about one revolution per second to produce what is known as the "Celeste" effect (slow Leslie) which audibly, is a slow undulation not unlike the slow, rise and fall in level heard from an organ in a large church.

ROTATING SPEAKER

Systems in which the loudspeakers themselves rotate present the problem of electrically coupling the speaker to the amplifier. Slip rings and contacts have been found unsatisfactory because of the low impedance so, as in the example shown in Fig. 5, a mercury contact system is used. The loudspeaker itself is a small eliptical type mounted in a rotating drum. In addition to complex amplitude variation, this system produces a small amount of pitch fluctuation due to Doppler effect.

The arrangement shown in Fig. 6 is used in various ways. In small electronic organs two speakers, normally not larger than eight inches in diameter are mounted one at each end of a rotating arm about 18 to 20 inches across. A special rotating coupling transformer, or mercury contact system, is
used to connect the speakers to the amplifier. The system produces pitch variation due to Doppler effect but as with all rotating speaker systems this tends to be masked by the large amplitude fluctuations that are produced.
A variation of this system is also used in large tone cabinets for Church organs to produce the "Celeste" effect in which case four or more loudspeakers are made to rotate slowly on a radius of approximately 24 inches; the speakers themselves are spaced about four feet apart.

A ROTARY TREMULANT SYSTEM

In order to analyse the tremulant effect produced by a rotating horn system, the model shown in the photographs was constructed to the dimensions given in Figs. 7 and 8. A system of this kind can be used with any electronic organ or a guitar amplifier. As the photograph shows the completed assembly (without external covering) consists of the main baffle board on which is mounted an eight inch loudspeaker, the rotating horn drum and its synchronous drive motor and the framework forming the enclosure. The unit is finally covered with an open weave fabric.
Padding is used between the rear of the loudspeaker baffle and the hardboard back of the cabinet to prevent sound coming from the rear of the speaker. All the sound must therefore radiate, via
the rotating horn, through 360 degrees on a vertical plane around it, hence the reason for covering the enclosure with open weave fabric.

ROTATING HORN

The rotating horn drum is not as difficult to make as it might at first appear. Accuracy is important, however, as the drum must rotate smoothly and almost silently at six to seven revolutions per second. Any mis-alignment of the bearings or distortion in the drum itself will cause vibration and noise.
The drum is constructed from $\frac{1}{8}$ inch thick hardboard to the dimensions given in Fig. 7. First the two discs are cut to 15 inches diameter, one with a centre hole approximately $6 \frac{1}{4}$ inches in diameter. The main bearing supports (C) -one on each drum -could be cut from seven inch diameter discs of aluminium, but large holes must be cut in the one fitted on the loudspeaker side. A Ferrograph metal tape spool which comes apart quite easily, thus providing two accurately and ready made supports, was used in the prototype. The actual bearings (A, Fig 8) for the drum were $\frac{\frac{7}{8}}{}$ inch bushes with $\frac{1}{4}$ inch holes, extracted from old potentiometers. These are inserted through the spool cheeks.

DRUM WALL

The drum wall is best made by first cutting a piece of hardboard six inches wide and approximately 45 inches long. This must be gradually rolled up, loosely at first, until the roll is finally down to around 12 inches in diameter. Heat will help, but the rolling up must be done in stages, allowing the hardboard to settle for a while by tying a piece of string around it. When it is down to a small roll, leave it tied up, at least over night. It should then remain rolled to approximately the right diameter for the drum faces. Next cut the material so that the ends coincide with the $8 \frac{1}{2}$ inch wide mouth of the horn as shown in Fig. 7.

HORN WALL

The horn wall is made from thin plywood, or thick cardboard, rolled carefully to prevent it cracking. This is glued to one face of the drum with impact adhesive and also secured with small wood blocks, glued around the outside as shown. The ends of the horn must also be glued to the ends of the drum wall. The space between the drum wall and the horn wall can be filled with soft loosely packed paper or foam rubber.

The remaining side of the drum is then glued in position and the two straps (E) glued and screwed in place as shown in Figs 7 and 8. Note that the bearing plates (C) and bearings must be fitted before the drum itself is put together. The pulley should be approximately $3 \frac{1}{2}$ inches in diameter and fitted so as to stand off the face of the drum by approximately $\frac{1}{2}$ inch as in Fig. 8. It is most important that the đrum and its pulley are perfectly aligned and that there is no encentricity. It might be mentioned here that for the construction of the horn drum and its fittings the usual range of hand tools, plus power drill will be adequate and that the drum and its frame were completed and assembled in a weekend.

FINAL ASSEMBLY

The final stage of assembly is that of the speaker baffle and the drum supporting frame as shown in

Fig. 7. Construction of the rotating horn drum. This drawing shows the drum with one side removed

The completed rotary horn and drive system mounted in its supporting frame

Fig. 8. Completed assembly of rotary horn system in its supporting frome with the drive motor fitted

MATERILIS . . .

(For the construction detailed in this part only)
Hardboard tin thick- 15 in $\times 15$ in (2 off) 45 in $\times 6$ in
$1 \mathrm{lin} \times \operatorname{lin}$ (2 off)
Plywood $\frac{1}{2}$ in thick $-24 \mathrm{in} \times 18 \mathrm{in}$
$24 \mathrm{in} \times 6 \mathrm{in}$
$7 \frac{1}{2} \mathrm{in} \times 6 \operatorname{in}$ (2 off)
Thin plywood or stout card $27 \mathrm{in} \times 5 \frac{3}{4}$ in
Hardwood 6 in $\times 1 \frac{1}{2}$ in $\times \frac{1}{2}$ in (2 off)
Small hardwood blocks
Ferrograph tape spool, 7 in diameter metal type

Silver steel rod $\frac{1}{4}$ in diameter $\times 7 \frac{1}{2}$ in
Brass or steel, approx $\operatorname{lin} \times \operatorname{lin} \times \operatorname{tin}$ (2 off), $\sin \times$ $\operatorname{lin} \times \frac{\text { in }}{}$ and 4 in $\times \operatorname{lin} \times \frac{1}{4}$ in
Pulley $3 \frac{1}{2}$ in diam. and spacer to suit (see Fig. 8)
Bushes $\frac{1}{4}$ in internal diameter (4 off)
Synchronous mains motor with small pulley (see text)
Loudspeaker 8 in diameter with impedance and handling capability to suit amplifier used

Rubber belt

Screws, glue, 4BA fixings and grommets

Fig. 8. Note the position of the back bearing plate, with a $\frac{3}{8}$ inch bush ($\frac{1}{4}$ inch internal hole) across the speaker opening. The front bearing block on the vertical support comprises a metal plate approximately 4 inches $x 1$ inch with a bush (from an old potentiometer) to take the $\frac{1}{4}$ inch diameter spindle that goes right through the drum.

The drive motor may be almost any synchronous tape recorder drive motor, mounted as shown in Fig. 8 on rubber bushes (grommets will do). The diameter of the small drive pulley on the motor may require some thought and experiment, but will normally be $\frac{3}{8}$ to $\frac{1}{2}$ an inch in diameter. A rubber belt of suitable length is used for coupling the motor to the drum pulley.

When the whole assembly (except the speaker) has been completed as shown in Fig. 8, make absolutely sure that it turns freely and accurately. Without the counterweights (shown in Fig. 7) it should revolve freely if pushed and come to rest with the horn mouth uppermost. The counterweights are fitted one each side under the straps E and consist of a small square of brass or mild steel, glued securely in place. When these are fitted, check that the balance is correct, in which case the drum should come to rest at any random point. Under power, the drum will reach speed slowly but should continue to revolve smoothly and quietly. Although a small amount of vibration may be set up in the frame, this should disappear almost completely when the unit is finally secured within the framework of the enclosure.

Next month: the construction of the enclosure frame, and electronic simulation of rotary speaker tremulant systems.

The completed assembly of the ratary speaker described in the text, shown before being covered
 light sensing, this project is not only extremely interesting to build, but also demonstrates a novel way of using electronic circuitry to simulate animal tendencies.

WIND DIRECTION INDICATOR

A reasonably simple project for general interest and weather recording. Using the minimum of components this instrument gives remote indication of wind direction by means of lamps representing eight points of the compass.

AUTOMATIC BATTERY CHARGER

Automatic control of a battery charger is desirable for protection of the battery against over charging and for constantly maintaining a fully charged battery. This article describes the operation and construction of an automatic charger that can supply up to 5 amps; and also the construction of an add-on unit that can automate any standard battery charger.

FIRST OF A NEW SERIES ...

RADIO ASTRONOMY TECHNIQUES

which will include some worthwhile investigations for amateur workers, and details of the equipment needed for a back-garden radiotelescope.
Allin the qume issue of

PRACTICAL

ON SALE MAY 14

PART ELEVEN-By R. W. COLES EMITTER COUPLED LOGICConcluding Article

HIGH speed logic, HSL, is the last family of integrated circuits to be discussed in this series. The name is a very general one to allow for the fact that there are really two sub-families which use very different circuitry to achieve the same goal of very short propagation times, and thus high operating speeds.

This type of logic is, of course, mainly intended for use in computers and other high speed data handling equipment, where its application allows simple operations (addition for example) to be carried out in less time than would be necessary if, say, RTL were employed to carry them out. Looking at this from a different viewpoint, HSL enables one to build a computer which will carry out more complicated tasks in a realistic time than could be carried out by its predecessors.

Some new areas which are now being exploited by computers which possess this super-speed capability are: the reading of written characters which are not in a special "stylised" fount, including signature recognition; the control and real-time analysis of airborne "terrain" radar information, and the ability of "general purpose" computers to handle several jobs or programmes simultaneously.

APPLICATION AREAS

While it is true that computer requirements lead to the development of high speed logic, and will eventually be responsible for the lowering of its price by virtue of the huge volume of devices which will be employed in these machines, it is also true that small quantities of HSL will be found very useful in application areas that are economically within the amateur's reach.

How about an f.m. tuner which is set to the desired channel by a crystal controlled frequency synthesiser with just one crystal? Or a digital frequency counter
which will display directly the frequency of a signal as high as 300 MHz ? These circuits and many others will become feasible when HSL is used.

SUB-FAMILIES

One technique for increasing the operating speed of digital circuits is that of "current-steering" and this solution to the speed problem was used even before it became available in integrated form, where it now reigns supreme. The basic gate is quite simple in conception and utilises a "longtail pair" as a current switch.

The other solution, which has only recently been introduced, uses a specially modified TTL circuit which includes Shottky barrier diodes as anti-saturation clamps. This last solution is a very exciting development because unlike the current-steering circuits the devices are directly compatible with slower saturated logic forms like DTL and TTL. whose power requirements they share.

CURRENT STEERING LOGIC

This family has many names, and apart from CSL it is also referred to as CML (current mode logic), EECL or $\mathrm{E}^{2} \mathrm{CL}$ (emitter-emitter coupled logic) and, most popular of all, ECL (emitter coupled logic). The basic ECL gate is shown in Fig. 11.1.

Excellent high speed performance is assured by using a differential amplifier (longtail pair) in which the component transistors do not enter saturation during operation, eliminating transistor storage time prevalent in TTL, DTL and the other saturating logic families. Emitter followers are used as output drivers to provide a high current drive which is capable of a fan-out of 15 ECL gate input loads.

An unusual feature is the provision of both a true and a complementary output which enables the simple gate shown to be used as either an or or as a NOR gate (or both), in the positive logic convention. By assuming negative logic inputs, this gate becomes either an AND or a NAND, which makes this circuit a universal building brick capable of performing all the basic logic decisions.

Fig. II.I. Basic ECL gate (showing positive logic) Logic level $I=-0.75 \mathrm{~V}$, logic level $0=-I .55 \mathrm{~V}$

The dual outputs are provided first because the cascading of gates to turn a NOR into an OR is unacceptable on the grounds of increased propagation delay in high speed systems, and secondly because this useful addition is very easy to incorporate in the circuit where complementary outputs are inherently available from the longtail pair.

OPERATION

The power line voltages are specified quite closely by manufacturers, and Fig. 11.1 gives a typical example where the $V_{\text {cc }}$ line is grounded, and the $V_{E E}$ line is run at $-5 \cdot 2 \mathrm{~V}$.

The $V_{B B}$ line is used only to bias the longtail pair, providing a reference about which the logic swing is centred, and as such could be provided by a potential divider from the other power rails, a technique which is incorporated in some manufacturers ranges of ECL.
In operation, voltages of either plus or minus 400 mV (with respect to V_{BB}) are applied to inputs A and B. If both inputs are more negative than $V_{B B}$, then TR 3 will steer the current from R1 through R3. which will have a drop of 800 mV across it. The $750 \mathrm{mV} V_{\text {be }}$ drop of TR 5 will subtract from this to give a final or output of -1.55 V (a positive logic 0).
Meanwhile, because very little current will flow through R2, a voltage equal to V_{CC} is present at the base of TR4, giving a final NOR output after the $V_{\text {be }}$ drop, of -750 mV . This re-establishes the input levels of plus or minus 400 mV with respect to V_{BB}, ready to drive further gates. In this example the two logic 0 in gave a logic 0 out on the or pin, and a logic 1 on the NOR pin, just as required.

If any of the inputs become more positive than V_{BB}, then its associated transistor will divert the current from R1 through R2, reversing the situation
in the first example, and giving a 1 out of the or pin, and a 0 out of the NOR pin.
The uncluttered simplicity of the circuit, coupled with its non-saturating operation, and the use of transistors with very high cut-off frequencies (f_{htn}), gives propagation delays of only one to three nanoseconds, compared with the ten nanosecond performance of the relatively fast TTL gate.

NOISE PERFORMANCE

As the current drawn by a gate is constant no matter what state it is in, very little power line noise is generated by switching transients.

Since the threshold of a gate input is about plus or minus 150 mV (with respect to V_{BB}), and since the worst case output levels are about plus or minus 350 mV , a d.c. noise immunity of about 200 mV (from both 0 or 1) is to be expected.
The main noise problem which arises with logic operating at these speeds is due to ringing and reflections generated by very high frequencies present in the square edges of dynamic gate outputs. The frequencies present, when ECL gates switch, extend into the gigahertz region, making even an inch or so of interconnecting wire act as a significant inductor.

The only solution to problems of this nature is to treat interconnections as transmission lines, using twisted pair for wiring up, and terminating each line in its characteristic impedance which is between 90 to 150 ohms. Professional designers working with printed circuits usually design around 50 ohm lines using multi-layer boards with ground planes.
Fig. 11.2 shows three methods of interconnecting ECL. Using unterminated lines of a twisted pair, interconnections of several inches can be safely handled and fan-out from the end of the line is unrestricted (11.2a). To drive longer lines, termination is necessary to reduce reflections, and there are two methods of achieving this.

Fig. 11.2b shows the simplest terminating arrangement where a resistor equal to the (estimated) Z_{0} is placed in series with the line at the driving end; unfortunately, logic swings are of course reduced by half, and noise immunity suffers as a result. This and the next system can be used to drive lines several feet long.

By placing a resistance equal to Z_{0} in shunt with the line at the remote end, very good driving characteristics can be achieved, with the disadvantage that either a separate supply must be used to terminate the resistor, or a parallel combination such as that shown in Fig. 11.2c must be employed.

Photomicrograph of an $E^{2} C L$ double logic gate

FLIP-FLOPS AND MSI

It is likely that the most useful ECL devices for amateur applications will be the flip-flops. At present various ranges are available from different manufacturers to cover the toggle frequency range of 100 to 350 MHz . To build counters using ECL flip-flops is relatively easy if binary multiples are required

If an input frequency is, say, 160 MHz , after three ECL flip-flops it is possible to build the rest of the counter with a slower (and cheaper) logic form such as TTL. After three ECL stages the frequency will be down to 20 MHz which is within the capability of TTL, although a logic-level interface will be necessary between the two families.

ECL is also produced in the medium scale integration (MSI) form, and although the variety available is not as great as with TTL, a useful range of counters, decoders, and especially arithmetic units, is now available.

One particularly advanced example from the Motorola MECL III range will add together two eight-bit words; the delay from carry in (from a possible previous stage) to carry out (to a possible following stage) is an incredible 10 nanoseconds, or in other words it could add together a hundred million pairs of numbers in one second.

PACKAGES

ECL is available in either the Dual-in-line plastic package or the hermetically sealed (and very expensive) flat-pack.

SHOTTKY CLAMPED TTL

The basic TTL family has become increasingly popular in the last few years, and is without doubt the mainstay of the data-processing industry. TTL is available in the widest number of package functions, and the range is continuously expanding.

The price of this versatile family continues to fall, and it is already cheaper than the less useful DTL devices, prices as low as 10 p for a quad 2 -input gate package being reported on some large orders. TTL is also available in a wide variety of MSI
packages including quad adders and eight-bit shift registers, making it the only logical choice for medium speed applications (below 50 MHz) in new designs.

In our investigation of this family, we concerned ourselves only with the 74 series of devices, which are the most popular; but in parallel with this series are the 74 L and 74 H devices which extend the usefulness of TTL respectively down and up in the speed range.

Type 74 L uses a standard 74 type gate but with larger resistance values to reduce power consumption, whereas 74 H uses a slightly modified 74 type gate with lower resistance values to optimise the circuit for high speed operation up to 50 MHz .

NEW SERIES 74S

To extend the usefulness of TTL into the speed range above 50 MHz , which has always been reserved for ECL devices, is clearly an inviting proposition, despite the technical difficulties involved. This breakthrough has now been made, and Texas Instruments offer several devices using Shottky-clamp technology, in a new series labelled 74 S .

Although still in its infancy this new series is set for a great future along with its other TTL relations, with which it is fully compatible in every respect.

A counter which has an input frequency of 100 MHz and which is required to divide by 256 , can now be built using the combination of two 74 S flipflops, two 74 H flip-flops, two 74 flip-flops, and finally two 74 L flip-flops. Using slower devices in the succeeding stages in this way gives a dramatic power saving, and is simple to carry out because no interface circuitry is required.

BASIC GATE

The basic STTL gate is shown in Fig. 11.3, alongside the standard 74 series gate for comparison purposes. The basic 74 series gate operates in the saturated logic mode, which means that when any of the component transistors is turned on with a positive voltage on its base, it will "bottom" or saturate, which means, among other things, that its

collector voltage will be lower than its base voltage. Typical values here woud be 800 mV on the base with 200 mV on the collector.

When operated in this manner, transistors are speed limited by the stored charge which has to be removed before the transistor can be turned off. As we have already seen, operating transistors in what is effectively "class A " (ECL) prevents saturation, but techniques of this kind cannot yield a gate which would be compatible with the rest of the TTL family, and therefore must be ruled out.

By connecting an ideal diode from the collector to the base of a transistor, it would be possible to divert base current if the collector voltage fell below $V_{\text {be }}$, and thus to prevent saturation.

This is just fine except for the problem that available diodes are not "ideal", and have a forward voltage similar to the $V_{b e}$ of a transistor, but a modification to this idea has been used in the past, and is shown in Fig. 11.4. With the transistor turned on, the voltage at point X will be about $2 \times$ 800 mV , or $1 \cdot 6 \mathrm{~V}$.

The diode D2 offsets the V_{f} of diode D1, so that it will conduct and divert base current if the voltage at point Y falls any lower than 800 mV , preventing true saturation of the transistor. The problem with this arrangement is that the silicon diodes used increase storage time effects, and tend to cancel the anti-saturation advantage gained.

SHOTTKY DIODE

In these days of new semiconductor devices seeming to turn up every few weeks, readers may have missed the Shottky-barrier diode, which has proved very useful in microwave applications. The importance of this type of device is that first it has a low forward voltage (V_{f}) of only 200 mV , and second that it has no stored charge because there are no minority carriers. These two characteristics make it ideal for use as an anti-saturation clamp, and in an STTL gate it is used to great advantage across all transistors but one.

Fig. 11.5 shows the way the diode is connected, and also shows the symbol used to denote a clamped
transistor of this type. Other improvements to the 74 type gate include the provision of Shottky input clamp diodes to suppress line ringing and undershoot, which in high speed operation must be minimised.

A compound emitter follower is used in the "active pull-up" section of the output, althouga this is not new, and is used in the 74 H series to give improved performance when driving capacitive lines. Also an extra transistor (TR3), has been incorporated to provide an active "turn-off" for TR6.

Combining saturating and non-saturating design features in this way gives a useful power reduction for the same performance. A measure of this improvement is given by the speed/power product; this could be 10 to 20 mW per nanosecond for ECL; is only about 7 mW per ns with STTL.

One of the most interesting claims made by the manufacturers of the 74 S series is that controlled impedance terminated lines are not required for on-board interconnections, but it is recommended that any constructor using this series uses twisted pairs for such connections.

NOISE PERFORMANCE

Noise immunity of STTL is down on that for the 74 series by about 100 mV because of the higher logic 0 level at the output introduced by the nonsaturation of TR6.

Fan-out and TTL compatibility are not affected by this increase in level, and an STTL gate will handle ten other 74 S inputs or twelve 74 series loads.

At present only a few devices are available in this range, as follows:

$$
\begin{array}{ll}
\text { SN74S00 } & \text { quad, 2-input NAND } \\
\text { SN74S20 } & \text { dual, 4-input NAND } \\
\text { SN74S112 } & \text { dual edge-triggered JK } \\
& \begin{array}{l}
\text { flip-flop (with preset and } \\
\text { clear) }
\end{array}
\end{array}
$$

The gates exhibit a propagation delay of typically 3 ns and the flip-flops will toggle at 100 MHz (typical).

COMPARISON

For the very ultimate in speed performance, ECL still holds the field, and is likely to continue to do so despite the large bite taken out of its slower end by the new STTL. STTL does, however, make a very useful extension to the ever widening application area of the standard TTL, and will soon be found in many frequency counters and synthesisers as well as the inevitable computer arithmetic sections.

I.C. APPLICATIONS TECHNOLOGY

This concludes a long and extensive series of articles on logic i.c.s; some of the devices mentioned in the series are currently obtainable from advertisers, while it is to be hoped that more advanced types will appear later when quantity production is stepped up.

Examples of applications are extremely diversesome have already been described in this magazine; others will follow. One thing is certain: while the series has been running, the range of devices available and the number of suppliers have increased.

The future of integrated circuits is not in killing off the range of circuitry that can be devised-but in harnessing new technology to the ever demanding requirements of application techniques. This new science is as exciting a prospect as transistors were 20 years ago.

AFISH bite indicator that uses an exposed relay for alarm switching will inevitably run foul of such complications as contact coriosion with. exposure to moistare, or line entanglement with the relay. The device to be described has none of these shortcomings, as a sealed reed switch is used.

In principle the switch contacts are held closed by a small permanent magnet which breaks the supply to a multivibrator alarm circuit.

The fishing line is passed betweer the reed switch and magnet, the latter being free standing. With a bite, the line moves and displaces the magnet so that the supply and alarm are turned on.

OPERATION

The alarm circuit of Fig. 1 consists of a multivibrator circuit, TR1, TR2, the frequeney of which is set by C1, R2, R3 and C2.

Square waves produced are applied to the emitter follower ER3 which matches the relatively high output impedince of TR2 to the low impedance of the loudspeaker.

The alarm frequency was determined from experiments designed to discover the most penetrating frequency which would be the least likely to be masked by extraneous sounds. A 1 kHz note was finally decided ujon.

Changes in line voltage have an effect on frequency; a rise in volts causing a rise in frequency and vice versa. However, this tonal variation is not critical and batteries of from 6 to 15 volts are quite acceptable

CHOICE OF REED SWITCH

Cheap dry reed switches have normally open contacts so they are not much use for direct supply switching in this application. Uinfortunately, the cost of a changeover reed switch is about three times

Fig. 1. Circuit of fish bite alarm

COMPONENTS . . .

Resistrors
RI $5.6 \mathrm{k} \Omega$
R2 $10 \mathrm{k} \Omega$
R3 $10 \mathrm{k} \Omega$
R4 $5.6 \mathrm{k} \Omega$
R5 150Ω
R6 $12 \mathrm{k} \Omega$
All 10%, $\frac{1}{2}$ watt callbon

Capacitors

CI $0.22 \mu \mathrm{~F}$ polvester
C2 $0.22 \mu \mathrm{~F}$ polyesuer
Transistors
TRI-TR4 ZTX30C or BCI07 (4 off)
Loudspeaker
LSI 80S, $1 \frac{1}{2}$ in diameter

Switches

SI On/off slide switch:
RLA Dry-reed switch type 6-RSR with short magrex (Radiospares)

Miscellaneous

Diecast box (Eddystone) $4 \frac{1}{2}$ in $\times 3 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in}$. BYIISV battery, Bakelite sheet $3 \frac{1}{2}$ in $\times 4 \frac{1}{2} \mathrm{in}$, aluminium $4 \frac{4}{4} \mathrm{n} \times 3 \mathrm{in}$, copper clad s.r.b.p. board 2 j in $\times 2 \mathrm{in}$
部, 6B.A. tapp stand-eff pillars (2 aff), tin, 6B.A. countersunk screws to suit 14 off), srand-off inzulators (2 eff)
higher, so some additional circuitry is justified to enable the cheaper switch to be used.

One extra transistor TR4, and its feed resistor, R6, are placed in the supply line so that with the magnet positioned near to the reed switch, this is closed, clamping the base of TR4 to the negative line so that it does not conduct.

When the magnet is disturbed by the line, the reed switch contacts open so that TR4 is biased on via R6. In the stand-by condition there is a small current drain but, as this is in microamps, it can be ignored.

The circuit will work over a wide range of transistor types, and the remainder of the components can have wide tolerances.

Speaker impedances can range from 3-80 ohms with little performance variation.

(a)

CONSTRUCTION

The prototype unit was assembled on a printed circuit board, the etched pattern and wiring details of which are shown in Fig. 2. Apart from the reed switch mounting, component layout is not critical so Veroboard could be used as an alternative.

Since, in the final assembly, a Bakelite lid is interposed between the reed switch and the magnet, it is most important that the former be mounted as close as possible to the lid. With the components specified, the maximum operating distance of the magnet is about 1 in .

Two $\frac{1}{2}$ in, 8BA stand-off insulators are used to mount the reed switch which appears on the opposite side of the board's small component assembly.

Fig. 2(d). Etching pattern for copper clad board. (b) The topside of the board with components in position

Fig. 3 (above). Drilling details of Bakelite lid
Fig. 4a (above right). Pattern for cutting and bending aluminium water shield

(a)

(b)

Fig. $4 b$ (right). Profle of completed unit

Other small reed switches can be used if preferred, as the contact current rating requirement is extremely small.

LID MOUNTING

With the wiring of the printed circuit board completed, a $3 \frac{1}{2}$ in by $4 \frac{1}{2}$ in Bakelite sheet should be cut out and drilled as in Fig. 3. This will serve as a non-magnetic lid for mounting the board and loudspeaker.

Two $\frac{3}{8}$ in, 6B.A. tapped pillars with $\frac{1}{4}$ in countersunk screws are used for fixing the board. With this in position the area over the reed switch on the Bakelite lid should be scratched to provide a future marker for the magnet.

As the device will spend a good part of its life in the open air it is a good idea to fit some form of shield to protect the loudspeaker from the ingress of water. How this is achieved is given in Fig. 4 which provides constructional and mounting details of an aluminium water shield. Two 4B.A. self tapping screws are used to retain this to the lid.

Interwiring can now proceed according to Fig. 2. With this completed the unit should be functionally tested.
An Eddystone diecast box supports the lid assembly and contains the battery. This should be drilled for SI and the switch mounted. The battery should now be connected and a final test carried out before securing the lid.

EASILY SEEN

When completed, the indicator should be painted in some bright, easily visible colour, so that it will not be accidentally trodden on or left behind when fishing is completed.
The operating magnet should also be painted and a small piece of cloth glued to its base to supply the necessary friction between it and the fishing line. Green baize is an ideal choice here.

NEWS BRIEFS

Cine to Television

$H^{\text {iGH }}$ quality T.V. pictures can be taken from cinefilm being shown on a normal large screen by a novel simultaneous projection unit, designed by Top Rank T.V. This replaces the ineffective technique of pointing a T.V. camera at the screen.

The unit can be mounted on most standard 35 mm cine projectors to deflect a proportion of the projected light, through a specially computed optical system. into a television camera (see photograph).

It is designed for professional 35 mm projectors but a variant for use with professional 16 mm machines is available to special order.

The optical system provides matching to 1 inch vidicon or plumbicon picture formats, and has accommodation for balancing neutral density filters. It can be used with either mono-chrome or colour television cameras

Portable Television

ANEW single slandard (625 lines) 12 -inch monochrome portable T.V. has been introduced by B.R.C. under the brand name Ferguson. Of its type the Courier-as the set is to be known-is the only portable on the U.K market that is British made and has push-button selection. The set cost $\pm 58 \cdot 60$, less than any other comparable set.
The Courier shown below weighs only $16 \frac{1}{2} \mathrm{lbs}$. is mains operated, has an adjustable loop aerial and is enclosed in a plastics case.

Other unique aspects of the Ferguson 12-inch Courier include technical innovations not usual in small portables. There is a four-stage, transistorised, high gain I.F. amplifier with amplified AGC applied to the first two stages. The horizontal line timebase is flywheel controlled to avoid misregistration of lines under poor reception conditions.

DIGITAL

Provides a rapid functional check-out for digital 'dual-in-line' integrated circuits

RECENT articles on digital integrated circuits in this magazine have stimulated a considerable interest in these fascinating devices. Added to the fact that they are now available to the amateur at low prices, many readers will doubtless wish to experiment with them.

When using transistors, particularly the low-cost bargain variety, the wise experimenter will have carried out a few simple tests on each one before incorporating it into his circuit. The same precaution is advisable to an even greater extent when using i.c.s, for trouble-shooting a complex system is difficult enough without the added complication of one or more dud i.c.s.

The tester to be described will carry out fairly simple go-no go tests on a wide variety of i.c.s., and is particularly aimed at the TTL dual-in-line series which is currently available with the largest choice of functions. However, both RTL and DTL can be checked, and simple adaptors could be devised for other types of i.c. package.

FLEXIBILITY

The major problem with an instrument of this type is to provide sufficient flexibility to enable any one of a very large range of possible logic functions to be checked, from a simple two input NAND gate to a complex four bit binary adder. The key to this problem lies in the use of patch-cords, which, although perhaps somewhat untidy, offers an economical solution.

The i.c. to be tested is plugged into a 16 pin sockst, every pin of which is wired to a single pole, four-way switch. These switches enable each pin to be connected either to 0 volts, a logical 1 voltage, the supply voltage or, via a patch-cord socket, to some other input or output function.

The input is provided by a versatile pulse generator, while the output may be a voltmeter, an indicator lamp or an oscilloscope.

POWER SUPPLY

The circuit may conveniently be divided into two parts, a power supply with associated meter circuit, and a pulse generator with associated indicator lamps.

In the power supply circuit (Fig. 1) the output of transformer T1 is rectified by diodes D1 to D4, smoothed by C1 and fed to R1 and the Zener diode D5 to provide a fixed supply of $5 \cdot 1$ volts for the pulse generator and the indicator lamps.

Diode D6 provides a 12 volt source, part of which, selected by VR1, is fed to the base of the series transistor TR1.

The output from the emitter of TR1 is a voltage which may be varied from zero up to about 10 V and forms the supply to the i.c. under test. In the prototype, a 2 N 3055 was used here, but it is probable that a transistor of a lower rating could be substituted.

Capacitor C3 further smooths the output, while C 4 is a decoupling capacitor to prevent instability.

Fig. I. Circuit diagram of power supply for the I.C. tester

METER CIRCUIT

Meter Ml (Fig. 2) is calibrated to read $0-100 \mathrm{~mA}$ and $0-10$ volts. Here a 1 mA meter with a multiplier resistance R3 of about 10 kg is used. The shunt R4 is made from a piece of resistance wire from an electric fire element. Both of these resistors should be chosen by experiment to suit the meter.

S2 is a single pole, biased, change over switch which may be either toggle or push-button. In the normally closed position, the power unit output voltage $V_{c c}$ is read. In the normally open position, the current being drawn by the i.c. under test is metered.

Both the 0 volt and $V_{\text {co }}$ output are routed to take-off terminals SK1 and SK2 so that the 0 volt line is available as an earth return when an oscilloscope is being used, and the $V_{c c}$ line is available when an external load, required by some i.c.s, has to be connected.

PULSE GENERATOR

In Fig. 3, TR3 and TR4, together with their associated components, form a simple multivibrator.

Fig. 2. Switched meter circuit for providing power supply current and voltage readings

With switch S3 open, C5 and C8 give a frequency of about 100 kHz . Closing S 3 connects C 7 and C 6 across C5 and C8 and results in a pulse rate of about 1 Hz .
. Since digital i.c.s, and particularly the TTL type. require clock waveforms having rise and fall times of the order of 10 to 20 nS for reliable operation, the multivibrator output is sharpened up by gates G1 and G2 of IC1, connected as a Schmitt trigger.

Fig. 3. Pulse generator and lamp indicator circuits

Fig. 4. (a) Wiring layout of i.c. test socket and pin switches. (b) Wiring pattern for all switch wafers. Note that only one half of the wafer is used. This figure should be consulted when assembling and wiring the switch banks

Fig. 5. Constructional details for assembling the aluminium case. Binder screws for fixing the side panels should be 2B.A. The upper and lower plates are fixed with 4B.A. screws

The wiring adopted for the pulse generator and its indicator lamo is such that the lamp LP2 follows the clock pulse, i.e. it is on when the clock is at a logical 1, but it does not load the output of the Schmitt and thus avoids possible degradation of the rise time.

The lower pulse rate allows the operation of an i.c. to be followed with the indicator lamps, while the fast pulse checks the operation of the i.c. at high speed, and is intended to be used with an oscilloscope.

The other two gates of IC1 are connected as a simple flip-flop which is used, in conjunction with the change-over switch S 4 , to provide single rising or falling waveforms for manual operation. This system is essential to avoid the multiple pulses that would otherwise be produced by the inevitable contact-bounce of the switch.

Four indicator lamps, LP3-LP6, and their associated amplifiers TR5-TR8, are provided for monitoring the operation of an i.c. under test. Resistors R11-R14 limit the current drawn from the i.c. output, and are wired to the patch-cord sockets SK6-SK9 so that any pin may be connected to any indicator.

The wiring of the i.c. 'dual-in-line', 16 -way socket SK 10, the 16 single-pole four-way switches S5-S20, and the associated patch-cord sockets SK11-SK25, is shown in Fig. 4a. Notice that the logical 1 level is derived from V_{cc} via a $1 \mathrm{k} \Omega$ resistor R 15 . This ensures that the 1 level cannot exceed V_{CC}, a condition which would result in the instantaneous destruction of the i.c.

CONSTRUCTION

The instrument is built in a case measuring 10 in by 7 in by $3 \frac{1}{i n}$. This may be constructed from 16s.w.g. aluminium following the dimensions of Fig. 5.

PHILIPS STEREO \& MONO AUTOCHANGER

©8.75 Pont 25 p.
Preciaion hi-fi quality at bargain price. 8ilver and tnish, 10 in. dia. tnentable. 4 apeeda, 16, 321
 45 and 78 r.p.m. PIays 7,10 , 12 in . diecs which can be mized. Fitted renowned Philips plag-in Xtal Aca308 with dasl tapphire stylus for LP/EP/78. Sensitivity 100 mV . Frequency response $30 \mathrm{cps}-16 \mathrm{Kc} / \mathrm{s}$. Lightweight atylua prensure 3-6 krsmmes. Board ippace required $14 \times 12 t i n$. Above 4in, Below 21in, 12 month: guarantee.
Also avallable with GP310 diamond sylna LP git
Aleo a valisble with GP310 diamond atylus LP Stereo/EP and sapphire 78.81 extra.
MATCHED TEAK PLINTH with PLASTIC COVER. Only
86 extre or Cut-out plywood base board 50p extra.
BSR 4-SPEED SUPERSLIM

STEREO \& MONO CHANGER

Playi 12", $10^{\prime \prime}$ or 7" recorda

 Auto or Manual. A high rolisblity with 12 montha' guarantec. AC $200 / 250$ v. Size $181 \times 11 \frac{1 \mathrm{in}}{}$.Above motor board 83 in .
below motor board $2 t \mathrm{in}$

With STEREO and MONO XTAL $\$ 7$ Post B8F Minichanger UA50 8tereo and Mono.

GARRARD PLAYERS with Sonotone 9TA Cartridges Stereo Diamond and Mono Sapphire. SP25 Mk II 215. Model 8000 Stereo and Mono Autochanger £13. Pont 25p. Kodel 8500 stereo and Mono Autochanger El4. Pont 25 p.
 RCS DE-LUEE 8 WATT AMPLIFIER. Ready made teited. e-stage with triode pentode valve, 8 watte outpat. Tone and rame controls, fisilted maini tranitormer. Knobs, londspesker, valver ECL88, EZ80. Responie RCS 2 wat a PPITEIEP with loudspeater valvefl UCL82 and UY85. POst 25p,
R.C.S. TEAEWOOD BASE. Ready cut out for mounting (atate player make and model) R.C.S. PLASTIC COVERS FOR ABOVE BABE 13.25

EMI PICK-UP ARM, With mono xtel and stylai e1.25 GMI JUNIOR 4 SPEED RECORD PLAYER. Maing 3 operated motor, tarntable and pick up. Poat 25 p . HI-FI PICK UP CAETRIDGES. Dismond Stereo/Mono 9TA 22.90 ; GP94 22.75; GP98 22.25; Mono GP91 81.50 ; All standard firing complete with only 50 p .
All standard firing complete with stylut.
WEYRAD P50 - TRANSISTOR COILS RAEW Ferrite A I. 1 Irdi.F. P50/8CC ke/s...33p 33 P Printed Circnit PTA. P51/1 or P51/2 $550 / 8 \mathrm{~V}$
Mullard Ferrite Rod 8

33p	Printed Circuit, PCA
J.B. Tuning Gang	

inta 8×3 in. 20 p. 6×1 in. 25 p
VOLUME CONTROLS ${ }^{80 \mathrm{obm}}$ Coax 4p pd. Long apindies. Midget size BRITISH AERIALITE If. L/8 LOG or AERAXIAL-AIR SPACED TEREO L/8 55p. D.P. 75 p PRITGE LOW LOSS Edge 6K. 8.P. Tranaiator 25p. \mid Ideal 625 and colour $\mid 0_{\text {yd }}^{p}$ WIRE-WOUND 3-WATT POT8. WIRE-WOUND3-WATT melotype with mali knob. LONG gPIEDLE
 VEROBOARD $0 \cdot 15$ MATRIX
$2 \ddagger \times \operatorname{Bin}, 18 p .21 \times 81 \mathrm{in} .18 \mathrm{p} .8 \frac{1}{2} \times 3 \mathrm{in}, 18 \mathrm{p} .33 \times 5 \mathrm{in}, 28 \mathrm{p}$
PINS 86 per packet 17p. FACE COTTERS 38p.
s.R.B.P. Board 0.15 MATRIX 2 inin. wide 3 p per lin. 8 in. wide $4 p$ per 1 in.; 5 in . Wide 5 p per lin. (ap to 17 in .)
8.R.B.P. undrilled inin. Board $10 \times 8 \mathrm{in}$, 15 p . S.B.B.P. undrilled itin. Board $10 \times 8 \mathrm{in}$, $15 p$ BLAMK ALUMDITM CHASSIS. 18 Em mg gin. ides, $1 \times 11 \mathrm{in} .80 \mathrm{p}: 15 \times 14 \mathrm{in} .85 \mathrm{p} ; 11 \times 8 \mathrm{in} .50 \mathrm{p} \times 9 \mathrm{in} .75 \mathrm{p}$ ALUMTIUM PANELS 18 e.w.g. $6 \times 4 \mathrm{in}, 8 \mathrm{p}$; $8 \times 6 \mathrm{in}, 15 \mathrm{p} ; 10 \times 7 \mathrm{in} .17 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p}$;
$14 \times$ inch 2 DIAMETER WAYECBANGE SWITCHES. 25p
2 p .2 -wiy, of 2 p . 6-wiy, or 3 p . 4-way 25p each.
1 p. 1 2way, or 4 p, 2 -way, or 4 p. 8 -way $25 p$
 60p, 2 waler 85 p . Extra wafers up to tix 30 peach .
TOGGLE 8WITCHES, sp. 14p; dp. 18p; dp. dt. 23 p .

ALL PURPOSE HEADPHONES L.R. HEADPHONES 2000 ohmg Super Sensiti
LOW RESIBTANCE HEADPHONES $3-5$ ohms LOE LUXE STEREO HEADPHONES 8 ohms.
"THE JNETANT" -ULK TAPE ERAEER AND REGOD HEAD

Poat 15p

GENERAL PURPOSE TRANSISTOR
PRE-AMPLIFIER BRITISH MADE for Mike, Tape, P. D., Gaitar, atc,
Battery 9-12v, or B.T. line 800-800\%. D.C. operation. Size
 For use with valve or transistor egrajpment.
Full inatractions anpplied. Brand new.
$90 p_{10 \mathrm{p}}^{\mathrm{Pos}}$
NEW TUBULAR ELECTROLTTICS CAY TYPES NEW

$10 p$

 $16+16 / 500 \mathrm{~V}$$50+50 / 350 \mathrm{~V}$
$60+100 / 350 \mathrm{~V}$

$82+82 / 650 \mathrm{~V}$ $8 / 450 \mathrm{~V}$ $16 / 450 \mathrm{~V}^{-}$ | $2 / 450 \mathrm{~V}$ | 15 p | $8+8 / 450 \mathrm{Y}$ | 18 p |
| :--- | :--- | :--- | :--- | $26 / 95 \mathrm{Y} \quad 20 \mathrm{p} \mid 8+16 / 450 \mathrm{~V} 20 \mathrm{p}$

 UB-MLI FLECTHOL 00 mF 15 V 10p. $50 \mathrm{LYCS} .1,2,4,5,8,16,40,30,50,100$ CERAMIC, 10 p to 0001 mF . 4 p . Silver Mics 2 to 5000 pF , 4 p . CERAMIC, 1 pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mica 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$

 SILVER MICA. Close tolerance 1%. $2.2-500 \mathrm{pF} 8 \mathrm{8p}$; 580 2,200pF 10p; 2,700-5,600pF 20p; 6,800pF-0.01, mid 30p each TWIN GANG. "0-0" 208pF+176pF, 65p; 810w motion drive $365 \mathrm{pF}+865 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 55 \mathrm{p}$; 500 pF slow motion, gandard 45p; Emall 8-gang 500 pF ' $21 \cdot 10$. 8HORT WAVE 8MTGLE. 25pF, $50 \mathrm{pF}, 55 \mathrm{p}$.
CHROME TELESCOPIC AERIALS 23 in. 8 wivel base 20 p . UTING. 80 idd dielectric. $100 \mathrm{pF}, 500 \mathrm{pF}, 35 \mathrm{p}$ each. RRMMERS. Compresion 30, 50, 70pF, 5p; $100 \mathrm{pF}, 150 \mathrm{pF}, 8 \mathrm{p} ; 250 \mathrm{pF}, 8 \mathrm{p} ; 600 \mathrm{pF}, 750 \mathrm{pF}, 10 \mathrm{p} ; 1000 \mathrm{pF}, 10 \mathrm{p}$ EECTIFTERS CONTACT COOLED half wBve 60 mA 38 p : Pull wave Bridge Bection 30 m ; BY100 50 p . ul wave Bridge Rectifers 75 mA 50 p ; 150 m
TEOA PANEL ITDICATORS $250 V$ AC/DC Red or Amber 20p. RESISTORS. $\frac{1}{}$ W, $\frac{1}{2}$ w., 1 w., 20% Ip; 2 w. 5 p .
HIGH BTABILITY. ${ }^{\frac{1}{2}, 1 .} 2 \% 10$ ohme to 10 meg., 10 p. Ditto 5% Preferred values 10 ohmi to 10 meg., 4p.
WIRE-WOUND RESISTORS 5 watt, 10 watt, is watt, 10 ohma to 100 K 10peach; 2: watt, 10 hm to 8.20 hms 10 p .
Q MAX CHASSIS CUTTER

 AM - FM/VHF TUNING GANG

Super quality amall size $1 \frac{1}{2} 1 \frac{1}{2}$ in. with $25+25 \mathrm{pF}$. British made. Gleared low motion drive 6.1 Platio to cover. BBA tapped front Axing. Cast aluminium trape
$\xrightarrow{+}$
50p post pree

MAINS TRANSFORMERS

All pott
25p each
250-0-250 50 mA. 6.3 ₹. 2 amp, centre tapped $5 p$ each $250-0-25080 \mathrm{~mA} .6 .3$ ₹. 4 amp $250-25080$ mA. 6.3 v. 3.5 2. 6.3 v. 1 s , or 5 ₹ \& ${ }^{21} 40$ $350-0-85080 \mathrm{~mA} .6 .3$ v. $3.5 \mathrm{~s}, 8.3$ v. 1 L , or 5 ₹. 2 z .
 MIDGET $220 \mathrm{v}, 45 \mathrm{~mA} .6 .3 \mathrm{v} .2 \mathrm{a}, 21 \times 81 \times 2 \mathrm{in}$. HEATER TRANS. Ditto tapped sec. 1.4 च., $2,3,4,5,8,3$ v. $1 \frac{1}{2}$ amp. GEAERAL PURPOSE LOW VOLTAGE. Tepped outputs at 2 amp. 3, 4, 5, 6, 8, $9,10,12,15,18,24$ and 80 v. 82
$1 \mathrm{amp} ., 6,8,10,12,16,18,20,24,30,86,40$ en 2 amp., $8,8,10,12,16,18,20,24,80,36,40,48,80$. 23 AUTO TRANSFORMERS $0-115-230$
Input/Oqtput, 150w. 42; 500w. ©5; 1000w. 212
CHARGER TRAFSFORMERS. Input 200/250v.
 8 or 12 v . outputs. $1_{1}^{\prime} \mathrm{amp} .40 \mathrm{p} ; 2 \mathrm{gmp} .55 \mathrm{p} ; 4 \mathrm{smp} .85 \mathrm{p}$. All Transformers Postage $25 p$ each

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS
With fared tweeter cone and cersmic magnet. 10 watt.
Basir rea. $45-60 \mathrm{cpg}$. Eati res. $15-60 \mathrm{cps}$.
Fiux 10,000 gaus.
State 3 or 8 or 15 ohm. Post $15 p$ each Also with twin tweeters. \quad C4 State 3 or 8 or is ohm. Post 15 p Recommended Teak Cabinet \quad ST
Sise $18 \times 10 \times 9$ in. Post $25 \mathrm{p} . \quad \$$

IOW MINI-MODULE E3.25 LOUDSPEAKER KIT Pott ${ }^{25}$

Triple peaker aystem combining on ready cat batio. \ddagger in. chipboard 15 in. 88 in. Separate Basif, Biddle and Treble loudspeakeri and crosmover condenser. The hesvy duty 5 in . Bast Wooler unit has a low resonence cone. The Mid- Eange unit is specially degigned to add drive to the midale resister and the tweetor recrestes the 80 e end, 000 cps . Fnill intructions for 3 or 15 ohm TEAE VENEERED BOOKSEELF ENCLOSURE.
 t RADIO BOOKS - LISTS S.A.E, +

BAKER 12in MAJOR £9	

$30-14,500$ e.p.a. $18 i a$. donlle cone, wootor snd

 tweeter cone rogather wha BAREN corrmie macret samembly havin anes and at 14,00 canes sud houl remonarce $40 \mathrm{c}, \mathrm{ps}$. Rete 80 Watte. State 3 or 80 15 ohm . Poat Free.Modnle kit, s0-17,000 c.p.t. with tweeter, cromever $\begin{aligned} & \text { batime and } \\ & \text { inatruction. }\end{aligned} \leq 1.50$ BAEER " BIG-SOUND ! SPEAKERS

'Group 25'	' Group 35 ${ }^{\text {' }}$	- Group
12 inch 67	12 inch 9	15 inch

 TEAK HI-FI SPEAIEER CABINETS. Fluted wood tront, For 12 in, round Loudspesker

69 Pont 25 p For $18 \times \sin$. Loudspeaker

25 Post 25 p
Por
t4 Post 25 p

THISELACCONETWEETERIS OF THE VERY

 LATEST DESIGN AND GIVES A HIGHER STANDARD OF PERFORMANCE THAN MORE EXPENSIVE UNITS The moving coil diaphragm gives a good radialion pattern to the higher frequencies $8+\times 2$ in. deep. Rating 10 watt. 8 ohm or is ohm models. $\mathbf{L I . 9 0}$ Post 10 p

TWO.WAY XOVER NETWORK 3000

 With Fariable imeeter attenastor giving accurate hish/lfrequency balace. Mounted on paral sita frequency balsoce. Monnted on parel 5 in. ${ }^{\text {control }} 4 \mathrm{in}$. Fith control knob, tweeter and woofor leadi and
inpat terminaln. 8 ajtable for 8 to 8 ohm imp.

Hora Tweetery 2-16Ec/n, 10W ohm or 15 ohm 81.50 De Luxe Horn Tweetery 2-18 Kc/s i5W 8 ohm 21.50. CRO880VERS' 8 or 8 or 15 ohm 95p. $25 \mathrm{ohm}, 3 \mathrm{in}$, $15 \mathrm{ohm}, 81 \mathrm{in}$. dia.; $6 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{in}$.

90 O TYPE $30 \mathrm{hm}, 2 \mathrm{in}, 8 \mathrm{in}, 5 \mathrm{in}, 5 \times 8 \mathrm{in}, 7 \times 4 \mathrm{in}$ LOUDSPEAKERSP.M. 3 OKigs. 61 in . $21-10$; $8 \times 5 \mathrm{in}$. 81.25 :

bin. WOOFER. 8 w. mex, $20-10,000 \mathrm{cpi} .8$ or 15 ohm 21.80. ELAC 8 in. De LaTe Ceramic 3 ohm or 15 ohm 28.50 . BICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in. dis. 4 watt; 10 in. dis, 5 witt; 12 it. dia. 8 wat

 GOODMANS OUTPUT TRANAFOREER6 WARt puah pull for valve: EL84, otc., 3,8 and 15 ohmy 85 p . Pott 20 p.

100 WATT ALL PORPOSE POWER AMPLIFLER 4 inpats speech and masic. Response 10-80,000 cps.

ALL EAGLE PRODUCTS

 SUPPLIED AT-LOWEST PRICESPost tred BARGAIN AM TUNER. Medium Weve. G4 BARGAIN 4 CEANEEL TRANSISTOR MIXER.
Add muticel highlights and soand bifects to recordinge Will mir Microphone, records, tape aud tuner
with separate controls into single outpui. 8 volt. BARGAMFM TUNER 88-108 Mc/A Six Trianiator, 9 volt. Printed Circuit. Calibrated alide dial tuning.
Walnut Cabinet. $8 i x p 7 \times 5 \times 4$ inch Walnut Cabinet. gied $7 \times 5 \times 4$ inch
BARGAIN FM TURER as above. FM ETEREO MOLTIPLEX ADAPTOR for above or ©S seneral use. Ready made with 4 tranaistorn, 6 diodet BARGAIN 3 WATT AMPLIFIRR. 4 Transistor $\mathbf{\$ 3 . 5 0}$ COAXIAL P\&UG 6p, PAMEL SOCEETS 69, LIIE 18p. OUTLET BOXES. GURFACE OR FLDSH 25p. BALAHCED TWIT FEEDERS 59 Ya. 80 ohms or 300 ohms. JACE SOCKET 8td. open-circuit 14p, clowed circait $23 p$; JACE PLDG8 8td. Chrom 15 p . 8.5 mm Chrome 14 p DI: JACE PLUGs 8td. Chrome 15 p ; ${ }^{8.5 \mathrm{~mm} \text { Chrome } 14 \mathrm{p} \text {. DDI }}$ Lead 3-pin 18p; 5-pin 15p. DIF PLDGA 8-pin 18p; 5 -pia
E.M,I. TAPE MOTORS. 180\%. OR $\begin{aligned} & 2407 . \\ & \text { Spindle } 0.18 \% \times 0.75 i n . ~ S i s e ~ \\ & 21\end{aligned} \times \leq 1.25$ BALFOUR GRAM. MOTORS.

CALLERS WELCOME
D, CROYDON

Fig. 6. Assembly and wiring details of power supply unit. Both this and the mains transformer are mounted on the chassis base plate (see photograph below)

The power unit is constructed on a 12 -way piece of standard tag-board as in Fig. 6. Since TR1 is operating well within its capabilities, no heat sink is required, and it is soldered directly to the tags.

The unit is mounted on the chassis base by means of 6B.A. bolts and suitable spacers to ensure that all the components are isolated from the case. The mains transformer is also mounted on the base. The relative positioning of these units can be seen in the photograph.
The pulse generator (Fig. 7) and the lamp amplifiers (Fig. 8 and Fig. 9) are built on pieces of $0 \cdot 1$ in matrix perforated board. Most of the wiring utilises the component leads which are passed through the board and soldered together as required.

Fig. 7. Assembly-and wiring details of pulse generator (Board 'A'). Veropins should be used where connecting flying leads

COMPONENTS
Resistors

RI	$60 \Omega, 5 W$	$R 7 \quad 22 k \Omega$
R2	$68 \Omega, \frac{1}{2} W$	R8 $\quad 22 \mathrm{k} \Omega$
R3 *	See text	R9 $1 \mathrm{k} \Omega$
R4*	See text	R10 390Ω
R5	$4.7 \mathrm{k} \Omega$	RII-R14 $4.7 \mathrm{k} \Omega$ (4 off)
R6	$1 \mathrm{k} \Omega$	

All 10%, $\frac{1}{d}$ watt carbon except where stated.

Capacitors

Capact.	000 F	
Cl	$1,000 \mu \mathrm{~F}$	elect. 25 V
C 2	$250 \mu \mathrm{~F}$	elect. 10 V
C 3	100 F	elect. 15 V
C 4	$0.22 \mu \mathrm{~F}$	polyester
C 5	470 pF	polystyrene
C 6	$16 \mu \mathrm{~F}$	elect. 10 V
C 7	$16 \mu \mathrm{~F}$	elect. 10 V
C 8	470 pF	polystyrene

Potentiometers
VRI 470Ω

Diodes

DI-D4 IN4001 or RS3OAF (4 off)
D5 ZX5.1 5.1V, 10W, Zener
D6 ZLI2 12V, 1.5W Zener
Transistors
TRI 2N3055
TR2-TR8 $2 N 2926$ (G) (7 off)
Integrated Circuit
ICI SN7400N
Switches
SI Double pole, mains on/off
S2 S.p.c.o., biased toggle
S3 D.p.c.o., slide
S4 S.p.c.o., biased toggle
S5-S20 Double-pole, 6 way, break-before-make 'Maka-switch' wafers (Radiospares) (16 off)

Miscellaneous

TI Mains transformer, I2V IA Secondary, MI1 mA moving coil meter $1 \frac{3}{4} \mathrm{in}$ square face, SKI, SK2 Insulated terminals, FSI- 100 mA fuse with panel fuseholder, LPI-Mains neon. LP2-LP6 Panel Mounting M.E.S. lamp holders with 6V, 0.06A bulbs (5 off). SK3-SK9 Miniature sockets with miniature single pin plugs to suit (9 off) (Radiospares). SK10-16 way, 'Dual-in-line' socket (Radiospares), Aluminium, 8B.A. threaded rod, washers, spacers. SKII-SK26 miniature sockets (16 off) (Radiospares).

The boards are mounted on the front panel with small brackets.

SWITCH ASSEMBLY

All the other components of the instrument are mounted on the front panel and present no great difficulty. except, that is, the 16 four-way switches $\$ 5$ to S20 of Fig. 4.
In spite of considerable efforts, the author was unable to track down any suitable commercial items for this job. Ordinary wafer switches could perhaps have been used, but were rejected since a row of eight would require a panel space of some 10 in . Finally, the two switch banks were constructed from 16 Radiospares 'Maka-Switch' wafers, each bank requiring only $3 \frac{3}{3}$ in of panel space.

First, switch levers are cut from Paxolin or similar material, and a hole drilled at one end (Fig. 10). This hole should be countersunk deeply so that the screw head is flush with the surface of the material. Also, when the lever has been bolted to the wafer, the excess bolt length should be cut off and filed flush with the nut, because there is very little space between the wafers.
Next, the brackets should be made up (Fig. 11) and the wafers, together with the washers and spacers, should be assembled on threaded rods before finally bolting the whole lot firmly together to form a rigid unit. Note that the unused tags on the side of the wafers that are towards the front panel must be bent over otherwise they will foul it.

Fig. 9. Assembly and wiring detail of pulse generator lamp amp. lifier (Board 'B'). Clad Veroboard is used for this with none of the copper strips cut

Fig. 8. Assembly and wiring details of function lamp amplifier (Board ' C ')

Fig. 10. Assembly details of switch levers

Fig. II. Showing how eight switch wafers are assembled in a single unit. Two such banks are required

FRONT PANEL ASSEMBLY

The front panel of the case can now be cut and drilled. A suitable layout is illustrated in Fig. 12, but it is emphasised that this is not critical and may be modified to suit available components. For the same reason, drill sizes are not given, although it is recommended that the specified sockets are used for the patch-cords, in which case the holes should be 2B.A. clearance.

The only part that needs fairly accurate work is that concerned with the switch units, and the quoted dimensions should be followed closely or the switch levers may not pass freely through the slots. When the wafers are used in this way, the usual indexing employed in wafer switches is not present, and it may be thought that difficulty would be experienced in finding the correct positions. In fact, the wafer contacts are quite a tight fit on the moving contact and it is very easy to feel when the lever is in the correct position.

Before the components are finally mounted on the panel, it is a good idea to paint it and add the legends. The author used a matt white spray and added the lettering with Letraset, which gives a very neat appearance.

A coat of Letraset protective lacquer will prevent the letters being rubbed off.

Switch banks in position. Here and in Fig. 13 some of the wafers in the lower switch banks have been reversed which accounts for asymmetric wiring. Ideally all wiring should follow the pattern of Fig. 4b. The unused underside wafer tags should be bent back to prevent chassis fouling

The completed front panel with all the legends in pasition and fixed with a protective laequer
 wiring see also Fig. 4. Note that meter positive and shunt terminate at a stand-off insulator

PANEL WIRING

The wiring of the panel is shown in Fig. 13. Reference should be made to Fig. 4b when wiring the switch banks as all connections should follow this pattern.
The mains cable is led in through a hole in the back of the case which should be fitted with a grommet to prevent damage to the insulation. This cable is wired directly to the mains switch SI, with the earth lead being anchored to the case by a solder tag fixed with a nut and bolt. Note that no other pant of the circuit should be connected to the case.
The leads from the power unit are made longer than necessary so that it is possible to work on the panel wiring.
Values of the meter shunt and multiplier resistances must be found by experiment, for which a multimeter is required. First check that the power unit is working correctly before it is connected to the rest of the circuit. The potential at the junction of R1 and D5 is about +5 volts with respect to the 0 volt line. The potential at the emitter of TRI should next be measured, and it should vary from 0 to a maximum of some +10 volts as VRI^{\prime} is turned from one extreme to the other.
Complete the wiring and connect the multimeter across V_{CO} and 0 volts. With a 10 kS resistor temporarily wired in for R3, check that the two meters give the same reading. If the meter reads low, reduce the multiplier and vice versa, until agreement between the two meters is obtained.

To find the value of the shunt resistor R4, the multimeter and a resistor of about 500 ohms should be connected in series across the $V_{C O}$ and 0 volt lines with V_{C} set at about 5 volts. A short piece of electric fire element resistance wire, say 2 in , is temporarily connected across the meter. S 2 is switched to the current position and the unit is
switched on. The multimeter should now read about 10 mA , while the instrument meter will probably be giving a very low reading.
The length of the resistance wire should be gradually increased until the two meters give the same reading, then the shunt can be permanently wired into place.

CHECK OUT

Some patch-cords should be made up, say four about 3 in long and six about 10 in . Since it is occasionally necessary to make two connections to a socket, it is convenient to have two or three cords with a plug at one end and a loop, just large enough to fit over the plug pin, at the other.

The pulse generator and lamp amplifiers can now be checked. Switch on, and the slow speed operation of the pulse generator will be obvious by the indicator lamp LP2 pulsing. The high speed operation will require an oscilloscope, plugged into socket SK3, to follow its operation.

The manual pulse can be checked with the meter; a patch-cord from SK1 to either SK4 or SK5 will give a meter reading of about $2 \cdot 5-3$ volts, changing to 0 volts (or vice versa) as $S 4$ is switched.

The lamps should turn on by connecting a patchcord between SK1 and, one by one, the sockets SK6 to SK9.

THE INSTRUMENT IN USE

It is not possible to lay down hard and fast rules for a tester of this type, since a test schedule must be devised for each type of i.c. to be examined. It follows that the type of i.c. must be knownunmarked devices are virtually useless. Once the type is known, its function, pin connections and truth table can be determined and appropriate tests worked out.

Fig. 14. Pin diagram and truth table of a SN7400N quad two input gate. Note that this is a top view of the package

Fig. 15. Pin diagran (top view) and truth table for a SN7473N dual J-K flip-flop

(a)

Fig. 16. Pin diagram (top view) and truth tables for an SN7490N decade counter

It is a wise precaution first to ensure that there is no internal short circuit across the supply pins. To do this, the device should be plugged into the test socket SK 10, the appropriate pin switches set to 0 and V_{c}, and the supply voltage increased slowly from 0 while monitoring the current. If all is well, the test can proceed.

To illustrate the method of use, detailed test procedures for three TTL devices from the currently available range will be given.

QUAD TWO-INPUT GATE

The pin yiagram of a SN7400N quad two-input gate and truth table are shown in Fig. 14.

First set pin switch SII (i.e. pin 7 of the i.c.) to 0 and S13 (pin 14) to $V_{\text {cc }}$. Check for a short circuit. Set all gate inputs to 0 , that is, $\mathrm{S} 5,6,8,9,14,15,17$ and 18, and connect a patch-cord from the output of gate 1 (SK13) to one of the indicator lamps.
It is a wise precaution in this, and all other tests, to start with all the switches in the outside position, and only move those where a pin is to be connected to 0 , logic 1 , or $V_{c \mathrm{c}}$. This will ensure that no pin will have the wrong voltage applied to it, and that when a patch-cord is used, it will automatically be connected to the corresponding i.c. pin.

To continue with the testing of gate 1 , pin switches S 5 and S 6 should now be operated so as to apply $0 / 0,0 / 1,1 / 0$ and $1 / 1$ levels in turn to its inputs, pins 1 and 2 . The truth table tells us that the lamp should remain on for the first three pairs of inputs, and turn off at the fourth. If any other response is observed, then the gate is faulty
Now move the patch-cord to the outputs of the other three gates in turn and repeat the procedure with the appropriate input switches. Of course, should one or more of the gates prove to be faulty, it does not mean that the i.c. has to be discarded, for the other gates can still be used.
It is a good idea to cut off the pins of any faulty gates to make sure that they are not accidentally wired into a circuit.
The tester may also be used to demonstrate some possible applications of these gates. For example, if one of the inputs to a gate is connected by a patch-cord to SK3 of the pulse generator, it can be shown that the gate will pass the clock pulses when its other input is at 1 , but will block them if it is at 0 .
It will also be noticed that the clock pulses are inverted by this arrangement, and that by connecting the output of this gate by a patch-cord to both the inputs of another gate, the output of the second gate follows exactly the clock pulse.

DUAL J-K FLIP-FLOP

The pin diagram and truth table for an SN7473N, dual J-K flip-flop are shown in Fig. 15.
Sct the pin switch S 16 to 0 and S 8 to V_{C} and carry out the usual short circuit test. Before testing of this and related flip-flops can begin, it is importint to note that the truth table only applies if the clear (and preset, if present) input is at a logical 1. The clear input overrides all others, and if it is at 0 , the Q output will be forced to 0 , irrespective of the states of any other input. Thus $\mathbf{S 6}$ and S 10 should first be set to 1 .

Set J and K (S13 and 7) to 0 and connect a patch cord from SK 11 to SK4 of the puise generator.

Line 1 of the truth table tells us that if J and K are both 0, the flip-flop does not change state on receipt of a clock pulse, so that operating S4 will simply leave the output in its initial form.

It is perhaps helpful to connect both the Q (SK21) and the $\overline{\mathrm{Q}}$ (SK20) outputs to the indicator lamps and verify that they are always in opposite states.

Moving to the second line of the truth table, set K to I and operate S4. Whatever its initial state, Q should now go to 0 , and remain there for subsequent clock pulses. Set J to 1 and K to 0 and verify that Q now goes to 1 and stays there (line 3).

Finally, set both J and \mathbf{K} to 1 ; line 4 tells us that after a clock pulse, Q will be in the state opposite to that before the clock pulse, in other words, the flip-flop will divide by two. The second flip-flop should now be checked in exactly the same way.

As with the SN7400N, we can also demonstrate a simple application of the SN7473N. Set J and K of both flip-flops to 1 ; connect a patch-cord from the Q output (SK21) of the first to the clock input of the second (SK15), and one from the pulse generator (SK3) to the clock input of the first (SK11). The combination will now divide by four, and an indicator connected to the Q output of the second flipflop (SK24) will turn on once for every four clock pulses.

If a double beam oscilloscope is available, this can also be demonstrated at the fast pulse rate by connecting one beam to the pulse generator, and the other to the output of the second flip-flop. The 0 volt terminal should be used for the earth return to the oscilloscope.

DECADE COUNTER

The SN7490N decade counter is included as an example of medium scale integration, that is, a device containing several individual circuits interconnected so as to carry out a complex function, all in one package.

In the case of the SN7490N, four flip-flops and some additional gating are wired so as to provide a complete decade counter, with the full binary coded decimal count available at its outputs. In order to increase its versatility further, the counter is in two parts, a divide by two and a divide by five section, which may either be used separately or externally connected for use as a divide by ten unit.

The pin connections and truth tables are shown in Fig. 16, and each mode of operation will be checked in turn.

First, set S 9 to $V_{\mathrm{CC}}, \mathrm{S} 17$ to 0 and carry out the short circuit check. Install patch-cords from the four outputs to the indicator lamps so that the A output (SK21) goes to the left-hand lamp, the B output (SK24) goes to the next and so on-the lamps now correspond to the order shown in the truth tables.

The counter has two reset modes, each one having two AND-gated inputs. To reset the counter to 0 , both the R_{o} inputs must be at a logical I , so if S6 and S7 are set to 1 , none of the lamps should be on.

The counter may also be reset to binary nine, i.e. 1001, so if both S10 and S11 are set to 1, the first and last lamps should be on.
As in the case of the J-K flip-flop, these reset inputs override all others so that the truth tables will only be followed if at least one of each pair of rest inputs is at a logical 0 . The two sections of the SN7490N will now be checked individually.

TWO SECTION CHECK

By connecting a patch-cord from SK5 of the pulse generator to the A input (SK19), the A output should change state once for every two input pulses. Change the input pulse to the BD input (SK 11) and the B, C, and D lamps should now follow the truth table of Fig. 16b, that is, the D output gives one pulse for every five input pulses.
In order to check the full decade count, the A output must be connected to the BD input, and input pulses applied to the A input; the counter should now follow the truth table shown in Fig. 16a. It can be seen that the D output provides 1 output pulse for every ten input pulses.
The usefulness of the two-gated reset inputs may be demonstrated in the following way. Install patchcords from the B and C outputs (SK24 and 25) to the R_{n} inputs (SW12 and 13), the remaining connections being as for the decade count. Now when the count reaches six, i.e. binary 0110 , both reset inputs will be at 1 and therefore force the counter to reset to 0 , skipping the rest of the decade count sequence.
This is shown in the truth table of Fig. 16c, from which it can be seen that a divide by six function is available at the B or C outputs.

Other division ratios may also be obtained on the same way, providing the required ratio does not have more than two l's in its binary number.
The above examples have shown how a test schedule may be devised for any one of three, widely different types of TTL i.c. Using the same techniques, the reader may readily devise suitable tests for any of the currently available TT1 devices, and with only minor modifications, devices of the RTL and DTL ranges.

PRACTICAL ELECTRONICS

SUBSCRIPTION RATE

With effect from this issue (May 1971) the new Subscription Rate is $£ 2.65$ ($£ 2 \mathrm{l} 3 \mathrm{~s} 0 \mathrm{~d}$) for 12 issues, including postage to any part of the world.
INDEX
An index for volume six (January 1970 to December 1970) is now available price $7 \frac{1}{2} p$ inclusive of postage.
Orders for copies of the Index only should be addressed to the Post Sales Department, IPC Magazines Ltd., Carlton House, 66 Gt . Queen Street, London, W.C. 2.

BINDERS

Easi-binders with a special pocket for storing booklets and data sheets, etc., are available price 73p inclusive of postage.
State required volume, e.g., Vol. I, 2, ... 7.

Orders for Binders and Indexes should be addressed to the Binding Department.

A VOICE OPERATED SWITCH FOR THE BEGINNER

|N this series every effort has been made to permit the continued use of the same semiconductor devices in the projects devised since the T-Dec, plugin assembly method, makes for easy retrieval of parts if no permanent fabrication is intended.
This article is no exception as the entire semiconductor complement has previously been called up, one of these being the 2 N 3819 field effect transistor.

MATCHING

Designing a voice operated switch, or more commonly, a Vox, calls for a high input impedance preamplifier if a crystal microphone is to be used. In the circuit of Fig. 1 the 2N38I9 n-channel f.e.t., TR1, is used in the first stage to match the high input impedance of the microphone X 1 .

This transducer has an output impedance of a few megohms and to connect this into a preamplifier of low input impedance would result in both a sacrifice of frequency response and an effective decrease in microphone sensitivity.

EQUIVALENT CIRCUIT

To understand why this should be look at Fig. 2. This gives the equivalent circuit of a crystal microphone which is, in effect, a voltage generator when excited, with internal resistance R and capacitance C which is typically a few hundred picoforads.

The load it is working into is indicated by the impedance Z.

With the arrival of sound waves the generator produces signal voltages which will divide according to the impedance proportions of the microphone and load. If Z is large compared to the microphone impedance most of the voltage developed appears across the load so the microphone can be said to be working efficiently.
At medium and high frequencies the capacitive element plays very little part in contributing to the microphone impedance, but at bass frequencies, because reactance varies inversely with frequency this addition becomes significant, so once again a high impedance load is important, but this time for a good low frequency response.

Fig. I. Circuit diagram of the voice operated switch

SOURCE FOLLOWER

The gate resistor R1 (Fig. 1) provides the high input impedance requirement as the gate to source current of TR1 is exceedingly small, in the order of nanoamperes $\left(10^{-9} \mathrm{~A}\right)$.

The function of the f.e.t. stage is to act as a transformer, impedance matching the microphone X1 with the low input impedance of TR2. This source follower, so called because the output at R2 "follows", in phase, the input, feeds TR2 the first of a pair of simple cascaded amplifiers.

Fig. 2. Equivalent circuit of crystal microphone working into a load Z

Components . . .
Resistors

R1	$12 \mathrm{M} \Omega$	R5	160 k
R2	$3.9 \mathrm{k} \Omega$	R6	4.7 k
R3	$270 \mathrm{k} \Omega$	R7	4.7 k
R4	$6.8 \mathrm{k} \Omega$		
All	$10 \% \frac{1}{2}$ watt carbon		
Capacitors			
C1	$0.1 \mu \mathrm{~F}$ polyester		
C2	$0.1 \mu \mathrm{~F}$ polyester		
C3	$0.1 \mu \mathrm{~F}$ polyester		
C4	250 p mica		
C5	$250 \mu \mathrm{~F}$ elect. 15 V		

Semiconductors
TRI 2N38I9
TR2-TR4 ZTX300 (3 off)
DI IGPIO
Microphone
XI Crystal insert Type MCI (Henry's Radio)
Relay
RLA 2 Pole 2 way Type PC2CBB/12 (Henry's Radio)

Miscellaneous
BYI-12V (Two PPI 6 V batteries). T-Dec, connecting wire, SI-on/off toggle switch

Overall gain over the three stages is about a 1,000 when TR3 is not loaded. The inclusion of the relay driver, TR4, does reduce this figure but the output is more than adequate to drive it.

CLAMPING DIODE

When a waveform is passed through a capacitor any d.c. level which might have been part of it is blocked. This means that signals passing across C3 are equally balanced about earth.

To get back a positive d.c. level necessary to switch TR4, diode D1 clamps the base of the alternating quantity to ground to provide a fluctuating d.c. quantity. The introduction of a reservoir capacitor before the base of TR4 for smoothing would, in fact, reduce this level, so instead an electrolytic capacitor is connected across the relay to provide a positive contact action.

With a high input sensitivity of less than 0.1 mV r.m.s., and high input impedance it is inevitable that stray noise, produced by radiation influences, might well be troublesome.

In the prototype this problem was eliminated by the bypass capacitor C4. Under conditions of test, the Vox was surrounded by mains operated test equipment and not once was there any spurious activation.

If other construction methods are attempted the important thing is to keep all wiring short and direct to lessen the chance of stray noise pickup.

Ideally, the unit should be contained in a metal box screen with this properly earthed.

APPLICATIONS

Whilst many applications of the Vox may occur to the constructor, the most obvious is its use as a baby alarm or a voice command switch for the remote switching of lights or equipment.

The current consumption on standby is only 2 mA so it is very economical. In terms of sensitivity, the relay will act when the microphone is four feet away from a low voiced conversation, so it is well suited to the aforementioned uses.

The relay specified is a two pole, two way type and for command switching it will be necessary to use a pair of these contacts for latching TR4 on. In Fig. 1, RLA2 is used for this with R7 as the biasing resistor. The other set of contacts, RLA1, should be routed to whatever alarm indicator is chosen, whether lamp or bell.

If this facility is used, switch SI must be added so that the Vox can be restored to its quiescent state.

For impact photography, a flash-gun can be connected to RLA1 contacts. The Vox now takes the role of a flash trigger where action can be frozen photographically at the moment of impact.

In this last application it should be noted that the range of the Vox is very much increased with impulsive sounds such as bangs, whistles or horns which should point the way to some other uses.

MUSIC INSPIRED LIGHT AND COLOUR PART 2 LAMP CONTROLLER
 By M.J.HUGHES M.A.

THIS second part continues the description with construction and setting up details of the thyristor lamp controller. It was mentioned last month that either straight operation with eight lamps can be achieved with this design, or a more ambitious sixteen lamp matrix system using the same amount of electronic circuitry.

It is assumed that most constructors would like to experiment with the matrix, thus the constructional part of this article shows four thyristors mounted with common cathodes and four with common anodes. In-line operation of eight channels can still be effected although one has to be careful with the connections of mains line and neutral, see Fig. 10 later.

CONSTRUCTION

To facilitate stage-by-stage construction, and possible expansion of the system later, all circuits

are mounted on individual cards which are assembled together in a Contil cabinet. Layout presents no special problems as there are few parts of the system which interact. While it would be fairly straightforward to design printed circuit boards for the various stages, perforated s.r.b.p. board or Veroboard is quite suitable. Only three different circuit boards are required for the lamp controller.
(a) Power supply and sync pulse generator, Fig. 8 (1 required);
(b) Trigger circuits, Fig. 9 each board carries two channels (4 required);
(c) Thyristor arrays, Fig. 10 (2 required).

Layout of the Veroboard has been arranged so that the minimum number of strips have to be cut. All the boards should be wired up except the flying lead interconnections (shown in Fig. 11 as looms); these will be added during the final assembly into the cabinet.

SYNC PULSE GENERATOR

It is suggested that this unit is built first as it can then be used to check the functioning of the other boards. Fig. 8 shows the layout; there are no special problems to be encountered with this part of the circuit except the general point about 0 in matrixboard. It is imperative that care is taken to prevent solder running between strips as short circuits can be disastrous.

The unit can very quickly be checked out by wiring up to the mains transformer and making sure that +15 V is present at point 39 A . If the reader has an oscilloscope it is worth checking the waveforms at points $6 J, 8 C$ and $39 P$, which should be as shown in Fig. 4b, c, and d respectively, except that as the unit is not on load the waveform at the collector of TR1 will have a much faster rise time with an amplitude of approximately 10 V . The unit should be left wired up to the transformer as it will form a useful power source for testing the trigger channels later.

LAMP CONTROLLER

looking at wire ends

Fig. 8. Layout of components on $0 \cdot 1$ in matrix Veroboard for the power supply and sync pulse generator. No copper strips are cut. Do not connect the zero volts line to chassis.

COMPONENTS . . .

POWER SUPPLY AND SYNC PULSE GENERATOR

One of each of following except where stated

Resistors

R1
R2
R2
Ik Ω
R3
R4
R
$10 \mathrm{k} \Omega$
R5
R $2.7 \mathrm{k} \Omega$
All $\pm 10 \%$, $\frac{1}{4}$ watt carbon

Capacitors

$* \mathrm{Cl} \quad 0.47 \mu \mathrm{~F}$ polyester $1,000 \mathrm{~V}$
C2 $0.1 \mu \mathrm{~F}$ polyester 125 V
C3 $5,000 \mu \mathrm{~F}$ elect. 25 V

Transformer

*TI Mains transformer, Primary 230-250V; secondary 112 V 500 mA min; Secondary 212 V 500 mA min.

Inductors

*LI, L2 Wound on Ferrite ring cores or pot cores -see text (2 off)
Transistor
TRI BCl08 or any medium gain npn silicon

Diodes

DI to D4 IN4004 (4 off) or 25 V IA min. rated bridge rectifier
D5 to D 8 OA91 (4 off) or any small signal germanium diodes 25 V min.
D9 1 N 4148 or any small signal silicon diode 25 V min

Switch

*SI Double pole, on/off toggle switch

Lamp

*LPI Neon indicator with ballast resistor for 250 V a.c. mains

Fuse

*FSI 5 amp cartridge fuse and fuseholder

Miscellaneous

*Veroboard 0 . 1 in matrix $4 \frac{4}{4}$ in $\times 2 \frac{3}{4}$ in
*Component tag board for CI, LI, L2 transistor

All components above mounted on Veroboard A (Fig. 8) except those shown (*) which are mounted on chassis or case (Fig. II)

TRIGGER UNITS

In this system, eight trigger channels are shown, but readers have the option of making the system smaller or larger. Fig. 9a shows the layout of a single board which carries two complete trigger channels (with the exception of the thyristor or triac). lt is possible to split the circuitry into the two separate elements at the dotted line if a smaller system is wanted.

Before starting to wire up the components ensure that all the strips are cut in the correct places and take particular care that all the copper is removed between the primary and secondary connections of the pulse transformer (T2). Note that both pnp and $n p n$ transistors are used on this board-both types specified are in TO-18 cans and it is easy to make an error by picking up the wrong device. There is quite a high packing density of components on this board so is it particularly important that all soldered joints are perfect and that there are no runs of solder. Remember that the transistor cans are connected to their collectors and should not be allowed to touch each other or any nearby wiring or components.

PULSE TRANSFORMERS

The pulse transformers (T2) are extremely simple to wind; it is worth making all these up at one time as an epoxy resin is used to hold the windings firm, and this will take some time to harden. Fig. 9b shows the winding details.

Ring cores were chosen owing to their low cost and high efficiency: some cores have a thick tough coating of insulating material which is adequate to give full protection. If during the course of winding this coating gets chipped or cracked (or if there is the slightest degree of doubt over the quality of the coating) at least two layers of good quality p.v.c. tape should be wound round the core before the windings are applied.

Adjacent turns of each winding should just touch but primary and secondary windings should be separated from each other by positioning them diametrically opposite. If any other form of ferrite core is used (see components list), ensure that the insulation between primary and secondary is adequate. Ferrite pot cores large enough to take the windings can be used, making sure that insulation is provided. The magnetic properties of the
cores are not critically important, so any type will probably suit.

It should be noted that one end of C 4 is left floating. On final assembly this capacitor on each channel is commoned to the output of the sync pulse generator. On no account should the zero line be connected to chassis, otherwise problems may be experienced when connecting to audio equipment.

SETTING UP

Each circuit on this board can be tested by connecting the output of T2 across the gate and cathode of a thyristor; the cathode is also connected in series with a 40 W lamp and the mains supply, the other mains connection going to the thyristor anode. Points $11 B$ and $37 U$ should be connected to points 39 A and 39 T of the sync pulse generator board (this is the power supply output) and the flying lead of C4 taken to point $39 P$ of the sync board. VR1 should be set mid-way in its range and 15 V d.c. applied to the boards and mains to the thyristor.

If all is well the lamp should light at medium intensity. By reducing VRI to minimum resistance the lamp brightness should reach a maximum, showing that the dwell time of the monostable is being reduced. If the resistance of VR1 is increased the lamp brightness should fall to zero but, if the resistance is increased further, the lamp will suddenly start to fire again at medium intensity; this is due to the monostable "hanging on" into the next cycle.

To set VR1 correctly, slowly reduce its value from this latter condition until the lamp is off, then continue to reduce its value until the filament of the lamp can be seen just to glow. If an oscilloscope is handy this setting can be made more accurately by adjusting VR1 until the maximum dwell time of the monostable is 9 ms .

CHECK VOLTAGE CONTROL

Having set VR1, now check that voltage control is working. This can be done simply by wiring a 10 kilohm potentiometer across a 1.5 V cell. Connect the positive side of the cell to the +15 V line and the wiper of the potentiometer to point 411 . When the wiper of the pot is hard against the positive end, the light should be extinguished. On advancing it in a negative direction, nothing should happen initially but on about one-third of a rotation the light should start to brighten and should reach full brightness at two-thirds of a complete turn.

These tests should be carried out to all eight channels before further assembly is attempted. Any intermittent or erratic flickering of the lamp should be investigated as it is almost certainly caused by a dry joint.

ASSEMBLY OF THE THYRISTOR BOARDS

In the prototype the thyristors were small 1A devices which could be conveniently mounted on Veroboard. There are no real circuitry details for this assembly and no doubt readers will wish to use a variety of differing types of device, thus this description should be used mainly as a guide to a convenient layout. No heat sinks were used on the prototype, thus the current rating of the thyristors

LAMP CONTROLLER

Fig. 9a. Layout of components on $0 \cdot$ lin matrix Veroboard for the trigger units of two control channels. The free end (top) of C4 on all channels are joined together and connected to the sync pulse generator. Do not connect the zero volts line to chassis

COMPONENTS . . .

Fig. 9b. Winding details of the isolating transformers T2 on ferrite ring cores. Vinkor pot cores can be used if one large enough to accommodate windings is chosen. The core magnetic properties are not critical in this application. Primary 10 turns, secondary 10 turns, 20 s.w.g. enamelled copper wire

PHASE CONTROL AND TRIGGER CIRCUIT

Eight of each of following except where stated

Resistors

Potentiometers

VRI $250 \mathrm{k} \Omega$ linear skeleton preset
VR2 $500 \mathrm{k} \Omega$ linear control

Capacitors
 C4 $0.047 \mu \mathrm{~F}$ polyester 125 V
 C5 $0.1 \mu \mathrm{~F}$ polyester 125 V

C6 $0.1 \mu \mathrm{~F}$ polyester 125 V
C7 $0.1 \mu \mathrm{~F}$ polyester 125 V

Transformer

T2 20 s.w.g. enam. copper wire wound on ferrite ring cores or pot cores (see text)

Diode
D10 IN4|48 or any small signal silicon type

Transistors

TR2 BC261 or any medium gain pnp silicon (e.g. 2N3702)
TR3 BSY95A
TR4 BSY95A
TR5 BC261 or any medium gain pnp silicon (e.g. 2N3702)

Thyristors or Triacs* (see text and Fig. 10)

Two of each of the above mounted on Veroboards (B to E) 4din $\times 2 \frac{3}{4}$ in 0 . Iin matrix (Fig. 9). Items shown (*) are mounted on Veroboards Fand G (Fig. 10)

Other Items

Case, Contil Mod-2 type C (West Hyde Developments)
Sockets, 5-pin DIN type (2 off)
Connector male 10 or 12 way rated at 250 V 4 A a.c. per pin, mounted on case. Female mate for light display
must take this into account, and should be considerably greater than the nominal operating current.

Only four connections are required to each device: two from the isolating transformer, one to the lamp channel and one as a return line to the mains. If we were not operating in the matrix mode (or did not require this facility) the polarity of the thyristors would not matter, but as explained previously, we shall need four devices with anodes commoned and taken to line and four whose cathodes are taken to neutral; these are mounted on separate boards and are shown in Figs. 10 and 11 as boards G and F.

Should higher power outputs be required it is

recommended that the thyristors be mounted on heatsinks outside the main cabinet-if this is done it is only necessary to route the trigger pulse lines from the switching circuits. Care must be taken to ensure that full protection from accidental contact with the thyristors or trigger lines is provided.

If constructors abide by the layout of the prototype it is necessary to route the output from the thyristor boards to the lamps. This was effected

Fig. 10. A guide to the layout of the thyristors on two boards. Those shown are the CRS3/40. Other types of thyristors or triacs may appear different-follow the outline guide for connections

(a) Board F-Common side of lamps 5, 6, 7, and 8 are connected to mains "line" for straight channel operation, but as in Fig. 7 If matrix operated. The cathodes of the thyristors (MTI of triacs) are commoned and outputs to the individual lamp circuits are taken from the anodes of the thyristers (MT2 of triacs)

(b) Board G-Common sides of lamps 1, 2, 3, and 4 are connected to mains "neutral" for straight channel operation, but as in Fig. 7 If matrix operated. The anodes of the thyristors (MT2 of triacs) are commoned and outputs to the individual lamp circults are taken from the cathodes of the thyristors (MTI of triacs)
using a multi-pin plug and socket rated for mains operation and full load current. Ten pins are required: four connected to the cathodes on board G, four connected to the anodes on board F and common lines to mains neutral and line. If in-line operation of eight channels is required the external lighting circuits should be connected between mains neutral and the thyristor cathodes on board G and line and anodes on board F.

For matrix operation the circuit of Fig. 7 should be followed: the main matrix is connected between the respective thyristor anodes and cathodes, and the commoned ends of the holding current lamps to mains line and neutral.

Using this technique the two alternative methods of operating can be facilitated only by modifyng the external lighting circuit and requires no internal modifications to the controller.

Fig. II. Wiring looms for the boards mounted vertically on the chassis plate. Board identification is as follows: A-Power supply and sync pulse generator B-Channels 1 and 2 C-Chonnels 3 and 4 D-Channels 5 and 6 E-Channels 7 and 8 F-Thyristor (or triac) channels 5 to 8 G-Thyristor (or triac) channeis It to 4

FINAL ASSEMBLY

Readers will, no doubt, have their own ideas for the best technique of carrying out the final assembly. The author mounted the individual boards on the sub-chassis of the Contil cabinet, using $\frac{3}{8}$ in aluminium angle brackets. A tag board holds the suppression inductors and capacitor so that these can be connected into the matins leads as near the input to the cabinet as possible.

Inductors L1 and L2 are made by winding 40 turns of p.v.c. insulated. connecting wire (of 5A rating) round ring cores of the same type as used for the isolating transformers, T2

The eight manual controls are mounted on the front panel together with the mains switch and a neon. The rear pancl carries two 5-pin DIN sockets (for control signal inputs), a panel mounted fuse holder (5 A rating) and the multi-pin output socket. Once all the boards are in position, loop a pair of power supply lines to each board and back to the sync pulse board. Then parallel all the free ends of C4 (on each board) and take this to the output of the sync pulse generator.

One end of all the manual controls should be commoned and taken to the +15 V rail and the individual wipers taken to their respective control channels. Keep this wiring as neat as possible and loom the wires together in bundles.

SEPARATE INPUTS

Separate input sockets were used for channels 1 to 4 and 5 to 8 so that completely separate control sources can be used simultaneously-this could be highly advantageous if it is desired to use matrix wiring of the lamps. Pin 1 on each input socket is commoned and taken to +15 V , the remaining pins are connected to the respective control signal inputs (R6) on the individual channels. Once all these wires have been installed they should be neatly loomed together.

Pairs of wires should be taken from the output of each isolating transformer and connected between cathode and gate of each thyristor or triac. Finally, connections to mains neutral and line and outputs from the triacs or thyristors should be taken to the multi-pin output socket and the respective thyristor boards connected to mains line and neutral.

Care should be taken during this final wiring that some system of identifying individual channels is embodied-this will greatly simplify any trouble shooting that may occur at a later stage.

Before completely assembling the case it is worth giving the unit a final test and a trimming adjustment of VRI made with VR2 set at maximum resistance. Be careful! Mains voltages are present on some boards.

The controller is now complete and will work as a manually controlled lamp dimmer. It is now necessary to start building input circuits which will provide various types of electronic control.
Note: On page 291 last month (ref. Fig. 6) the text stated that if $y I$ and $x l$ are triggered, lamp A will go on. This should read "lamp C."
Next month: The sound conversion unit with frequency band filters for the eight control channels.

NEWS BRIEFS

Machine-Tool Digital Readout System

AFTER evaluation of several digital readout systems offered for machine tool operation, Elliott Machine Tools Limited have selected the Venture design, on the basis of versatility, simplicity, ruggedness, compact transducer and display design. Elliott Machine Tools Limited will offer its range of centre lathes, milling machines, and other machine tools equipped with Venture readout systems.

The digital readout in two co-ordinates is one of the Venture systems type MSI manufactured by Smiths Industries.

Automatic Flight Control

Adigital automatic flight control system designed to increase reliability tenfold and result in a weight saving of 75 pounds is being developed for the F-106 all weather jet interceptor aircraft by Hughes Aircraft Company of California.

The digital automatic flight control system, which will be the first of its kind, will consist of one small solidstate electronics unit weighing 15 pounds that will replace eight valve units currently in use in the F-106. The unit will serve as an interface between the aircraft's control surfaces and a new solid-state digital computer built by Hughes and recently installed in the interceptors.

Picture Enlarger

Pictures from small T.V. cameras can be magnified up to 100,000 times for lecture-theatre audiences by the Swiss-made Eidophor electro-optical projector. It is shown below being used by Mr. Sebastian de Ferranti during the recent Faraday Lecture at Central Hall, Westminster, to illustrate fine detail in demonstrating the principle of magneto-electric generation during his lecture "Changes and the Future in Electrical Engineering". Made by Gretag AG in Switzerland, the Eidophor was lent for the series of lectures by Electronic Facilities Design Ltd.

[^2]
VARIABLE VOLTAGE TRAISFORIEERS

LIGHT SENSITIVE SWITCH|INPUT 230/240V a.c. 50/60 Kit of parts, including ORP12 Cadmium Sulphide Photocell, Relay. Transistor and Circuit, plus 12 P P. \& P. ORPI 2 including circuit. 63p each. Post Paid A.C. MAINS MODEL.
 I BRAND NEW
Keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp from stock. SHROUDED TYPE Mains Transformer, Rectifier and special

 Price inc. circuit $£ 2.38$ plus 20 P P. \& P. LIGHT SOURCE AND PHOTO CELL MOUNTING Precision eng ineered light source with adjustable
lens assembly and ventilated lamp housing, to take MBC bulb. Separate photo cell mounting assembly fixing. Price per pair 62.75 P. \& P. 18 p .

-

 SANWA MULTI RANGE METERS New Model U-50DN Mulci cescer, I $20,000 \mathrm{OPV}$, mirror scaled with overload protection. Ranges -d.c. volts: 100 mV . current: 5 250MA. Complete with battery and test
Probe. EA. OO post paid. 230V AC SOLENOID

Extremely powerful with

 approx. 14/b. pull, 1" travel. Fitted with mounting feet. Size: $4^{\prime \prime}$ long, $2 \mathbf{1}^{\prime \prime}$ wide.
INSULATED TERMINALS

Available in red, white yellow, black, blue and green. New price lop ea 12 VOLT DC Powerful I amp. RE-
VERSIBLE motor. Speed 3.750 RPM com. plete with external gear irain (remorable) giving final speed of 125 RPM. Size: $44^{\prime \prime}>2 \downarrow^{\prime \prime}$ dia. Price 95 p inc. post.

200-230V $\ddagger \overline{\text { R.P.M. M. МОТО }} \bar{R}$ Manulactured by 5 mith Price 75 p inc. post,
 Price 62.00 post paid

RECHARGEABLE

BUTTON CELLS

 $2 \times 1 \cdot 2 \mathrm{~V}, 250$ MA $\mathrm{HR} \underset{\text { Nickel }}{\text { Had. }}$ 2.4 V a 25 milliamp 10 hour rate complete with $200 / 250 \mathrm{~V}$ ate. charger, Fully tested and unused.Price 40 p each plus $8 \mathrm{p} P$. \& P. or 2 units for $\& 1.00$ post paid. UNISELECTOR SWITCHES NE W 4 Bank 25 Way 24 V d.c. operation. 65.88 ,
 P. \& P. 22 p . 8 B Bank 25 Way 24 Z dic. operation. P.

VENNER Electric Time Switch

 ${ }^{200 / 250 V}$ Ex. GPO. Tested. Manuall set 2 on, 2 off every 24h. Overrideswitch: 10 A C2.75 isA 13.25 20A iJ.75. P. \& P. 20p. Also OFF dawn. Price as above.
 ${ }_{125.00}^{12} \mathrm{mp}, E 21.00 \mathrm{mp}_{15} \mathrm{E} 18.50$. E25.00. 20 amp . 537.00 amp, O2mp, $572.00 .50 \mathrm{amp}, 692.00$.

OPEN TYPE (Panel Mounting) $\frac{1}{\frac{1}{2}}$ amp 63.93
11 amp, 65.50. $2 \frac{1}{2}$ amp, 66.63 . Carr. 40 on on open types.

STROBE! STROBE! STROBE!

Build a 5trobe Unis, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit. 230/250V a,c. operation

EXPERIMENTERS' ECONOMY KIT

Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard 5.C.R. Unijunction Xenon Tube and instructions $\mathbf{4 5} 25$ plus 25p P. \& P .
NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyristor HY-LYGHT STROBE
This strobe has been designed and produced for use in large rooms, halls and the photographic fietd, and printed circuit for easy assembly, also a special trigey coil and output capacitor. Speed adjustable $0-30 \mathrm{f}$.p,s Light output approx. 4 joules. Price $\mathrm{f} 10 \cdot 88$, P. \& P 50p.
7-inch POLISHED REFLECTOR
deally suited for above Strobe kits. Price 53p. P. \& P
Superior Quality Precision Made

NEW POWER RHEDSTATS

100 WATT. 1 ohm, $10 A ; 5$ ohm, $4 \cdot 7 A$
$10 \mathrm{ohm}, 3 \mathrm{~A} ; 25 \mathrm{ohm}, 2 \mathrm{~A} ; 50 \mathrm{ohm}, 1.4 \mathrm{~A}$
$100 \mathrm{ohm}, 1 A ; 250 \mathrm{ohm}, 0.7 \mathrm{~A}$. 000

 \&1.12 aach. P.\& P. ItP.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$. All at 78p \square ———
RELAYS SIEMENS, PLESSEY, Etc. miniature relays . Competitive prices
 (1) Coil ohms: (2) Working d.c. volts; (3) Contacts; (4) Price (HD) Heavy Duty. All Post Paid.
MAINS RELAY
230 V a.c. coil 3 c/o. 10 amp a.c. contacts, 50 p plus 8 Pp P. \& P.
HOSIDEN DH-02-S Stereo Headphones a ohm impedance $20-12,000 \mathrm{~Hz}$. Adjustable head band. Price
only $\mathrm{K2} .38$. P. \& P. 12 p . Complete with lead and stereo jack plug.

SERVICE TRADING

All Mail Orders-Also Callers-Ample Parking Space
Dept. P.E. 57 BRIDGMAN ROAD, LONDON W4 5BB Phone 01-995 1560 SHOWROOM HOW OPEN MON.-FRI.

Personal callers only. Open Sat - LITTLE NEWPORT ST. LONDON WC2H 7JJ 01.4370576

TRANSISTOR AUDIO AND RADIO CIRCUTS

for Radio Receivers, Radiograms, Record Players, Tape Recorders and Hi-Fi Equipment.
A Mullard Publication
£ 1.50
Postage 5p
ELECTRONIC DESIGNER'S HAND. BOOK. A practical guide to transistor circuit design. T. K. Hemingway. $63 \cdot 40$. Postage 10 P .
20 SOLID STATE PROJECTS FOR THE CAR GARAGE. R.M. Marston. 61.20. Postage 5 p .

COLOUR TELEVISION WITH PARTICULAR REFERENCE TO THE PAL SYSTEM. G, N. Patchett. 62.50. Postage 5 sp .
SECURITY ELECTRONICS. John E. Cunningham. $\mathbf{1} 1.70$. Postage $5 p$.
RADIO AUDIO SERVICING HANDBOOK. Gordon J King. 63. Postage 10 p .
TRANSISTOR POCKET BOOK, R. G. Hibberd. $\subset 1 \cdot 40$. Postage $5 p$.
1971 WORLD RADIO-TV HANDBOOK. J. M. Frost. 62•10. Postage 12p. RADIO VALVE \& TRANSISTOR DATA. A. M. Ball. 75p. Postage 9p.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of Britiah and American Technical Books
19-2| PRAED STREET

LONDON, W. 2

Phone: PADdington 4185
Closed Saturday I p.m.
gUaranteed full spec. COMPONENTS FROM LEADING MANUFACTURERS

GYROSCOPE ALTERNATIVE

The Aerospace Division of Honeywell at Minneapolis have developed an alternative system to the traditional type of gyroscope with a spinning rotor for the sensing of angular displacements. The new system consists of a vibrating wire of berylium copper, stretched tightly between two magnetic fields. One of these drives the wire and the other generates the output signal.

To separate the two signals a second wire is set at right angles to the first. This is electrically earthed at the crossover point and the driving magnet is set with its poles in the same plane. The output magnet is set with its poles perpendicular to this plane.

The part of the tight wire which is in the drive field is caused to vibrate by an oscillator. This promotes sympathetic vibrations in the second half of the wire which is in the signal magnet field. Should there be any rotation along the longitudinal axis of the input side, "Coriolis force:" will appear as deflections of the wire which are proportional to the turning rate.

There are a number of advantages in this device, among them a short "warm up" time of only 100 milliseconds and a noise threshold of only 0.02 degrees per second in the output signal. For certain uses it has a possible lifetime of 75,000 hours.

CORIOLIS FORCE

The Coriolis force arises from the Earth's rotation and causes a horizontal force which is at right angles to the direction of the velocity of a body which may be clouds or, for example, a ship.

It has been suggested recently that these forces which are normally small can have an effect of some magnitude on large bodies such as the large oil tankers that are now coming into use. A nautical advisor to a Dutch firm, J. C. Annveld, has shown that the Coriolis force may be a source of danger which might lead to collisions between such vessels. It is possible that the Torrey Canyon disaster may have had this hazard to contend with.
In addition to the normal difficulties of manoeuvre, very large
vessels contemplated for the future are expected to need to take the Coriolis force into account.

SPACE SHUTTLE PROGRAMME

Investigations into structures, aerodynamics and fight test instrumentation for the space shuttle programme is to be carried out by the British Aircraft Corporation.

It is in these fields that BAC are particularly adept and they have already been engaged in space contracts including a large contract for the Intelstat IV communications satellites. They are at the present completing the work on UK-4 which is due for launch in 1971.

SECOND BRITISH SATELLITE

The second wholly British satellite to be launched by NASA will also carry a United States experiment in addition to those designed for Britain, so helping to reduce the cost of the launch. Due to be launched in 1973 it will be named UK-5 until successfully in orbit when its name will change to Ariel 5 .
Coming at a time when very great interest is being shown in X-ray astronomy, the decision of the Science Research Council that UK-5 is to be devoted to this study will be a very welcome one. It will enable the special data. in detailed form that is so badly needed, to be obtained for a better understanding of the high energy sources that have been observed.

X-RAY EXPERIMENTS

There will be a number of separate experiments and the Mullard Space Sciences Laboratory will supply a proportional counter for the parpose of studying individual sources of X-rays in the $2-30 \mathrm{keV}$ band. Higher energy sources will be dealt with by Imperial College, London, who have designed a detector for the study of known sources up to 2 MeV and also to search for X ray emission from pulsars.

The University of Leicester group, who have already contributed so much in this field, are responsible for two detectors. One of these will
scan the whole sky and the other will be designed to measure polarisation of the X-rays.

The Mullard group will also be responsible for another experiment at low energy levels from 0.3 to 30 keV and for this several detectors will be used. In addition they will also be responsible for a special pointing detector which will have a photomultiplier to detect visible light.

The Goddard Spaceflight Centre will be adding an experiment to search for possible transient effects against the background X-radiation.

The satellite is a cylinder 37.75 in in diameter and some 34in high. The sides will be almost entirely covered with solar cells to provide the necessary power. It has its own internal computer which will receive instructions from the ground. This means that most of the detectors on board can be pointed to specific sources as required. while the special detector mounted on one side will scan the whole sky as the satellite rotates in its search for new objects.

There is an interesting co-operalive effort between Britain and America in the work of this satellite. Mount Palomar and Mount Wilson Observatories will carry out simultaneous optical measurements to correlate the X-ray observations.

At the Hale Observatories astronomers are planning to have a set of plates ready by the time the satellite is in operation. These have already been obtained by using their 48 in Schmidt telescope. The uniqueness of the Hale survey is that it covers most of the galactic plane within which X-ray sources have been observed already.

SHIP TO SHORE CONTACT via SATELLITE

A very successful experiment has been carried out by the Post Office from their radio station at Burnham-or-Sea, Somerset. This was to communicate via an application technology satellite, in this case $A T S-3$, with the container ship of CunardBrocklebank called the Atlantic Causeway.

Simple multi-element crossed yagi aerials were used to provide a wide capture angle. Techniques tried out were the Lincompex and Compandor systems of speech processing. Traffic that was successfully passed was teleprinter, speech, facsimile, data and selective calls. The frequencies used were $135 \cdot 6$ and $149 \cdot 22 \mathrm{Mhz}$. The power at the shore station was 250 W .

The great advantage of this method of communication is that it avoids the changing ionospheric conditions which cause considerable difficulty with the conventional systems. It was found that transmission via satellite was only marginally affected.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

SIMPLE METRONOME/TUNING FORK

Fig. I.

READERS with an interest in music may be interested in the circuit of a combined electronic metronome and tuning fork. The circuit, shown in Fig. 1, is an adaptation of a simple multivibrator circuit. A slide switch (S1) is used to change the circuit from the metronome to the tuning fork mode.
In order to give the metronome a loud "tick", a high gain output stage is used, the speaker (X1) being a balanced-armature type earpiece. The pitch of the tuning fork is governed by capacitor C 2 and resistor $R_{\mathbf{x}}$ which, as a guide, is approximately 3.9 kilohms for a tone of $A=440 \mathrm{~Hz}$.

The device can easily be assembled in a small pocketsized case and the layout of components is not critical.

Switched to the metronome mode, the control VR1 needs to be calibrated in beats per minute and the range of the metronome should be adequate: from about 30 to 240 beats per minute.

A. L. Dicks,
Wigston,
Leicester.

AUDIO CHOPPER OR EFFECTS UNIT

THE circuit in Fig. 2 may be of interest to some of your readers. It was developed primarily to produce extra effects on "pop" records, but can also be used to give voice effects.

Transistors TR1, TR2 and associated components form an astable multivibrator; TR3 is a buffer to prevent the frequency from changing when the output is loaded.

Transistor TR4 is connected across the audio line and severely attenuates the signal when conducting. This transistor (TR4) function in a rather unusual mode, acting as an alternate high and low impedance across the audio line, and therefore, any attempt to use a collector resistor would result in a greatly amplified multi-vibrator "buzz" passing into the audio signal.

Potentiometer VR3 controls the level of chopping, while C3 provides bass cut. Capacitors C1 and C2, together with potentiometers VR1 and VR2 control the frequency of the multivibrator. The capacitors Cl and C2 could be several different value capacitors arranged

Fig. 2. Circuit diagram of the audio chopper or musical effects unit
so that they can be switched into the circuit depending on the required effect, i.e. $1.5 \mu \mathrm{~F}, 0.47 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$ or $0.02 \mu \mathrm{~F}$.

The input/output impedances were found to be approximately 2 kilohms.

With regard to sensitivity, a crystal record pick-up can be connected straight to the input, the output going to an amplifier or tape recorder.

However, a preamplifier must be used with a microphone, otherwise the multivibrator noise is excessive.
P. Tyrell,

Ilford,
Essex.

NEW TKPROVED MODEL WITH HIGHER OUTPUT AND INCORPORATIN QUALITY READY DRILLED PRINTED STRTCTIO
really first-class Hi-Fi stereo - Implifier Kit. U'ses 14 transistors including silicon Transistors in the first ave stages on each channel resulting in even lower noise
level with improved sensitivlty. Integrated pre-amp level with improved bensitivity: Integrated pre-amp
with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridgcs. Output stage for any speakers from 5 to 15 ohms. Compact design, all parts supplied including sirilled metal work, high quality ready drilled printed circuit hoard, attractive front panei, knobs, wire, bolder, nuts, bolta, no extras to buy. simple step by step instructions enable any constructor to build an amplitier to be proud of. Brief pecification: Power output 14W r.m.s. per channel into ohms. F'requency response $\pm 3 \mathrm{dBB} \quad 12-30,000 \mathrm{~Hz}$. Senaltivity better than 80 mlV into $1 \mathrm{M} \Omega$. Fullpower bandIdth $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. over main approx. Power requirements $35 \mathrm{r}^{\text {at }} 1.0 \mathrm{mmp}$ Overall size- $1 \underline{2}^{\prime \prime}$ wide 8^{*} deep $\quad 2^{n}$ high. Fully detailed 7 -page construction manual and parts list free with kit or send 18 p plus large B.A.E.
 POWER PACK KIT

Post Free if alt units purchased at same tine). Full after sales service. Also available ready built and tested, 280-50. Post Free
ore: The above amplifier is mitable for feeding tuoo oho sourees lido inputts (e.g. mike, radio, teein record decks, etc.) and will then provide mixing and fading
facilities for neditm pocered Hi-Fi Discotheque nae, etc. FARTASTIC 'POLY PLARAR' WAFER-TYPE, WIDE ANGE ELECTRO-DYAAMIC SPEAKER
Bize only $114^{n} 141^{*} \cdot 1$ 1 * deep. Welght ouly 19 ozs. particularly useful for those with llmited space rugged and shockproot. Operating temperature $-20^{\circ} \mathrm{F}$ o $+170^{\circ} \mathrm{F}$. Power handing 10 watts rms (20 watts peak). Thipedance 8 ohm only. Response 40 Hz - 40 KHz . Can be mounted on ceilings, walls, doors, under tables, tc. and used with or without baffle. Send S.A.E. for full

VYAAIR \& REXINE BPEAKERS \& CABIMET FABRICS app. 54 ln . Wide. Ubually 1175 yd., our price 75 p yd. SIGGLE HEADPHONE. WIth aluminium headband. SIFGLE HEADPHONE. WIth alu
Approx. 200 ohm. \& 5 . P. P. 8 p.
Pratal mires High ap.
CEYGTAL MIXES. High linp. f
HIGE DAPEDAYCE CRYBTAL STICK HIKES. OUR PRICE \&1.05, P. \& P.8p. HIGH IMPEDANCE DYAAYIC STICE MIEES. High ensitivity. \&1.98. P. \& P. 13p

PIANO KEY TYPE SWITCHES, 8 press buttons pius 1 cancel button. Each of the 8 sections contains 6 s.p.c.o. (total 40 s.p.c.o.). Brand new-limited quantity only. Original manufacturing cost $41-37$: OUR PRICE 76p.
P. \& P. 13p (3 or more post free).
8PECLAL OFPER! PLR8SEY TYPE 29 TWII TUNING GANG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and F. Size approx. $2 \times 1 \times$ Suitable for nominal $470 \mathrm{kc} / \mathrm{s}$. HONEYWELL MICROSWTTCEES S/P, C/O. Pish-button
 post free)
HLESCOPIC AERLALS WITE SWIVEL JOIFT Can be Brass. Extends from 6in. to spprox. 22 $\frac{2}{2} \mathrm{in}$. Maximum diameter \ddagger in. 25 p each. P. \& P. Jp
BRAID IEW MOLTI-RATIO MAITS TRATSFORMERS. Olving 13 alternatives. Primary: $0 \cdot 210-240 \mathrm{~N}$. gecontary comblastions: $0 \cdot j-10-15 \cdot 20-2 \overline{-5}-30-3 \overline{5}-40-60 \mathrm{~V}$ half ull wave. Size $3 \mathrm{inL} \because 3$ inW $\times 3 i \mathrm{inD}$, price 81.75 P. \& P. 30p.

AADS TRAMBFORYBR, For trandstor power supplies. Pri. $200 / 240$ V. Sec. $9-0-9$ at 500 mA . 70 p . P. \& P. 13 F . Prl. 200/240V. Sec. 12-0-12 st 1 annp. 88p, P. \& P. 13 P .
Prl. 200/240V. Sec. $10-0-10$ at 2 amp. 21-28. P. \& P. 18 p Tapped Primary $200-220-240 \mathrm{~V}$. 8ec. 21.5 V at 000 mA 03p. P. \& P. 13p
BATTERY CEARGRR TRAMSFORMERS. $200 / 240 \mathrm{~V}$ input. Nominal output for 6 or $12 V$. bitterles 3 amps.
Eize approx. $3 \times 21 \times 2 \mathrm{In}$. Brand New. Price 81.06 . Size approx. $3 \times 2 \frac{1}{2} \times 2 \mathrm{fin}$. Brand New. Price 81.00 P. \& P. 2JP

Open 9.5.30 Monday
to Saturday
Early closing Wed. 1 p.m. Twhe Eintion

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W. 19 Tal. 01-540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

DE LUXE STEREO AMPLIFIER

SPECIAL OFFER!!

HI-FI LOUDSPEAKER SYSTEM
Beautifulty made teak finish enclopure with most attractive Tygan-Vynair front. Size 161 in high Cramic Magne laineep. Fose with E.M.I Ceramer wits and crosiover Power handing 10 .F

Our Price 18.40
Our Price LB Carr. 50p Apeaker with parasitic tweeter. 88.60 , Carr. bop.

LOUDGPEAKER BARGAME

3 in 4 ohm 50 p . P. \& P. 13p. sin 3 ohm 80p, P. \& P. Iun $\times 4 \mathrm{in} 3$ ohm $81.06, \mathbf{P}, 4$ P. $20 \mathrm{p} .10 \times 6 \ln 3$ or 15 ohm 21. 90 , P. \& P. 30 p . E.M.I. $8 \times \overline{\mathrm{s}} \mathrm{in} 3$ ohm with high flux magnet 11 -68, P. \&: P. 20p. E.M.I. $134 \times 8 \mathrm{in} 3$ ohm with high flux ceranuic magnet $28 \cdot 10$ (15 ohm 28.25). P. \& P. 30 p . E.M.I. 13×8 in, 3 or 8 or 15 ohm with two inbull $13^{*}<8^{*}$ twin cone (parastatic ${ }^{2}$. ${ }^{2}$. P. \& P. 30p. E.M. 13 < 8 twin cone (parastatic BRAKD HEW. 12 in 15 w H/D Speakers, 3 or 15 ohm Curent production by well-known British maker. Now P. $P .38 \mathrm{p}$ ceramic ferrobar magnet assembly $65 \cdot 50$ E.M.I. B'in HEAVY DUTY TWRETERS. Powerful ceramic magnet. A vailable in 3,8 or 15 ohm 98p each
P. \& 13 p .

12in.
12in "RA" TWH CONE LOUDSPEAEER
10 watis peak handling. 3 or $1 \overline{\mathrm{ohm}}$, 21-88. P. \& P. 30p

HI-FI STEREO HEADPHONES

Adjustable hearband with comfortable flexifoam earmutis. Wired and fitted with standard stereo $\frac{z i n}{}$ jach plug. Frequency responge $30-15,000 \mathrm{~Hz}$. Mat
inrpedance 8-16 ohns. PRICE 2895, P. \& P. 15p.

GRARRAL PURPOAE HIOH STABILITY TRANgIsTOR PRE-AMPLIFIER. For P.U. Tape, Mike, Guitar, etc., and suitable for use with vaive or
transistor equipment. $9-18 \mathrm{~V}$. Battery or from H.T line $200 / 300 \mathrm{~V}$. Frequeney reaponse $15 \mathrm{~Hz}_{z}-25 \mathrm{KH}$ Gain 2GdB. Solid encapsulation aize $1 \frac{1}{2} \times 1 \mathrm{in}$. Brand new - complete with instructions. Price
88p. P. \& P. 13p.

BRAND NEW E.M.I. LIGETWEIGHT PICE-DP ARM for LP/:8, ONLY \&1. P. \& P. 8p.

QUALITY RECORD PLAYER AMPLIFIER ME II top-quality record player amplifier employing heav and double wound mains transformer, ECCBS, ELol Complete with output traisiormer matched for 3 ohm peaker. Size 7in. w. ${ }^{*} 3 \mathrm{~d} .6 \mathrm{~h}$. Ready built and teated mounted on bosril with output tranaformer and apeake eady to ft into cabinet below. PRICE \&4.88. P. \& P

DE LUXE QUALITY PORTABLE R/P CABDET ME II Encut motor board aizc 14 \ddagger, 12In., clearance 2 in. below GARRARD changer or Single Player (except AT60 and
MP: 2). Size $18 \times 1 j \times 8$ in. PRICE 88.98 . P. \& P. 48p,

10/14 WATT HI-FI AMPLIFIER KIT
i styilahly onished monaural ampllifer with an output of ELstatis from push-pul? Super leproduction of both music and speech, with negli
gible bum. Separat gible bum. Separate
Inputs for mike and inputs for mike and and announcements
 to follow each other
Fully shrouded section wound output transformer to match $3-150$ speaker and 2 independent volume controls and separate base and treble controls are provided giving goodl lift and cut. Valve line up 2 EL84s, ECC83, EF86 and EZA0 rectifler. Simple instruction booklet 13p (Free with
narts). All parts sold separately. ONLY 87.g7. P. \& P. 43 p. arts). All parts sold separately. ONLY 87.97. P. \& P. 43p. riput sockets, 49-97. P. \& P. 43p
BRAND NEW TRANBISTOR BARGALIS. GET 1 (Matched pair) 75p; V15/10p, 60p; OC71 25p; OC76 30p: AF117 18p; 2G339 (NPN) 15, get of Mullard 6 translstors OC44, 2 -OCis, AC128D natched pair ACl28 21-25; ORPIS C'edmiuni Sulphtct Cell 68p. All post free

FERY POWERFUL COMPACT MOTOR
For 12v. D.C. operation. On load congamption approx 00 mA . Totaly enclosed. Qulet is operation with high tarting torque. Overall olze approx. 1k"L $\times 1 t^{*}$ din. Free shaft ic dia. $\times{ }^{1}$ "L. Ideal for Model Makers, etc ONLY 88p each. P. \& P. up.
3 or more post free (A few orsions also avatlable)

HIGE GRADE COPPEB LATITATE BOARDA

ECL86 Triode Pentodes.

- EZ80 as full wave rectificr. Two dual potentiometera are provided for bass and treble control, giving base ard reble boost and cut. A dual volume control is used. Balance of the left and right hand channels can be at the rear of the chassig. Input sensltuvity ts approximately 300 m ,'v for full peak output of 4 watte per channel 8 watts ntono) into 3 ohm apeakers. Full negative eedback in a carefully calculated circuit, allowe hlgh olume levels to be useil with negilgible distortion. upplied completc with knobs, chassig size 11 in. w $\times 4 \mathrm{in} . x^{2}$ verall height including valve sin. Ready bullt and ested to a high standard. Price 88.92. P. \& P. 40p

4-SPRED RECORD PLAYER BARGADI LATRST B.B.R. C100/A21 4-gPRED AUTOCELIGIR. With latest mono compatible cartrigge 26-97. Carr. 33p. With stereo cartridge sf97. Carr. 33p.
UTTABLE PLDFTH UNIT YOR ABOVE with rigid plastle cover. 6 s 75 complete. P. \& P. 43p.
ATTRST GARRARD MODELS. All typel available 1025, 2025, 8P25, 8000, AT80, etc, B.A.E. for Latent Prices! LIMTH UNITS cut out for Garrard Modela 1025. 2025 over. Special design enable above models to be used ith coner in pasition. Also suitable for housing ATG0 and SP:25. OUR PRICE \&575 complete. P. \& P. 43 p .
LATEsT AC08 aP91/18C Mono Compatible Cartrldge with to stylus for LP/EP/78. Universal mounting bracket 1.50. P. d. P. 8 F ,

C08 EI-G Bingle sided mono cartridge for LP \& EP. 80NOTONE 8TAEC COMPATIBLE STKREO CARTRIDGE 0 stylus. Diamond Stereo LP and sapphire 78 . ON LY \& 50. P. \& P. 10 p

Dignond T / O stylus for Stereo LP. ONLY \&8. P. \& P. 10p.
LATEST ROAETHE TiO stereo Compatble Cartride for EP/LP/Stereo/79. \&1-68. P. \& P. 10p.
LATBST BONETHE T/O Mono Compatible Cartridse for P/LP/ 8 mono or stereo records on niono equipment. EI.50. P. \& P. 10p. PRDRTED CIRCUI
AITPLIPIRR KIT Type TAI
Peak ou put in excers of $1 \frac{1}{\frac{1}{2}}$ watts. Alt Bran- Britigh cumponents
pinted circuit pir
Grinted circuit panei size 6. 3in. ransformer tapped for 3 ohin and 15 ohm speakers. Transiatore (GET114 or SI Mullard AC 128D and matebed pair of ACles o!p). 9 volt operation. Every thing aupplied, Flre, battery clips, solder, etc. Comprehenslve easy to follow inatructiona and circuit diagram $18 p$ (Free with

3-VALFE AUDIO

AMPLIFIER HA34 IIX II Designed for Hi-Fl reproduclon of records. A.C. Mains
operation. Ready bullt on plated heavy gauge metal chassls, size 7 hin w. $\times 4$ in. d. $\%$ 1 iln. h. Incorporates ECC83. EL84, EZ80 valres. Heavy duty, double wound mains former matched for 3 ohm former matched for 3 ohm peaker. Separatc volume control and now nith inproved wide range tone controls givog bass and treble hitand panel can be detached and leads extended for ranote mountiog of controly. Complete with tnobs valves etc. wired and teated for only 84.75 . P. \& P. 30p.
HSL "POUR"' AIPLIFIEE EIT. Similar In appearance to Ha34 above but employs entirely different and advanced circuitry. Complete set of parts, etc. A88. P. \& P. 30
HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifer uning a double wound fuily pentode valve as audio amplifier and power output stage. Impedance 3 ohms. Output approx. 3.5 watts. Volume and tone controls. Chaske alze only 7 in . wide \times in. deep x 6in. high orerall. AC maini 200/240V. Supplied absolutely Brand New, completely wired and tested with good Quanty output trantiform

(Please write clearly) please hote: P. AP. chazgze QUOTLD APMLT TO DIF. OMRI. CEAROROMETMA

Gerry Brown . . . ONIMFPMWE

COUNTERPOINT

Isn't it quaint how, just when you think you've thought of a really good idea, it turns out to be one that someone else thought of, and probably patented, years ago! Just such an idea occurred to me last week.
For a long time now 1 have idly considered the possibility of designing a transistorised version of the early Regency musical box. Initially, as you may imagine, this was intended to be a relatively uncomplicated affair; but, like ,"Topsy", I got carried away and the thing just grew, and grew! It now comprises something approaching a cross between an Emmett automatic soup maker and a knitting machine that had mistakenly been programmed to fabricate a barbed wire vest!

After all this hard work (which, incidentally, was rewarded by it returning a fairly good rendering of Annie Laurie) my visions of untold fortunes accruing from this fantastic invention were dashed to the ground. "Oi!", said my old mate John over coffee, "did you know that 'Doomwatch' thing that's growing all over your study has already been invented?" I could hardly believe him, but there it was Patent Specification No. 1,173,747 . . . A Device for Composing and Playing Musical Motifs.
Since I had such a lot of fun making one of these machines I thought it would be interesting to include the basic design in this column. The electronics and associated mechanical principles are shown in Fig. 1.
The motor drives a rotary switch, via the reduction gearing, which sequentially connects pre-arranged wires from the oscillator to the positive supply rail. In this way it is possible to play short tunes of one's choice merely by running the motor.

Naturally, the set-up can be more sophisticated than this and have auto-switch off facilities as well, but this can be left to personal preferences. Certainly the device would make a rather novel door-annunciator, in fact, a solid-state version using a shift-register technique for selecting the notes would lend itself ideally to .a composer-player machine.-What do you think?

SHELL-OUT

Just imagine how much must be lost to egg producers in uncooked omelets ever year! I am referring of course, to the "eggstra" cost involved in time, effort, and the replacement of busted produce

caused by "butter-fingered", and frequently rough, packaging machinery.

Apparently the cost to the U.S.A. alone each year for cracked or broken eggs due to this cause exceeds something to the tune of $\$ 25$ million. Not unnaturally, the U.S. Department of Agriculture has taken certain steps to reduce this high mortality rate and the resultthe bringing into being of an electronic egg!

Having experimented with various materials for the "shell" of the gadget the research team finally settled on an acrylic plastic fashioned into the necessary shape, but hollowed out and having threaded halves so that the electronics embodied within could be serviced easily when required.

Incorporated inside the shell is a piezoelectric accelerometer coupled to a suitable amplifier which drives a telemetry transmitter so that the signals connected with the stresses undergone by the poor old crock can be monitored at a distance. A miniature mercury cell, also tucked away inside supplies all the power.

The electronic egg produces signals (as it goes through the routines connected with packaging) proportional to the degree of violence of its movement. To determine, in the case of a hen's egg, whether a crack or smash level has been exceeded requires the use of a pre-calibrated egg. The calibration, however, is a simple operation and it seems that such eggs have provided valuable data about critical areas in egghandling machinery that could cause impacts severe enough to damage the cargo. Smashing!

TIME WARP

There was an error in the frequencies given for the two oscillators suggested for the long time-constant device outlined in the March issue. The frequencies should have been ten and six pulses per minute. Sorry about that.

m

 Mariet

 Mariet plate

 plate}

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

METAL LOCATOR

Due to a recent television programme on buried treasure hunting, we have received numerous enquiries for information on metal locators. We would like to point out that we have in the past published three designs for metal locators (January 1969, January 1970 and October 1970 issues), but these are, unfortunately, now completely out of print and unobtain-able-surely a good reason to place a regular order with your newsagent, as we will certainly publish another design as soon as practicable.
For those readers who are interested in metal locators, Heath (Gloucester) Ltd., have just introduced a metal locator, in kit form, to their range of electronic audio/ visual kits. Known as the Heathkit G.D.48, it comprises all components necessary to make an extremely sensitive metal locator.

It is claimed to be able to detect small coins up to 6 in (15 cm) below ground and very large pieces of buried metal up to a maximum $6 \mathrm{ft}(1 \cdot 8 \mathrm{~m})$. The locator can be used to search for souvenirs, find buried treasure and hunt for lost jewellery or coins on beaches. The locator can also be used to trace buried pipes and conduits or detect undersurface hazards on farmland.

Powered by a 9 V battery with a life of approximately 80 hours, the metal locator employs the induction balance method of detection. This ensures that no sound is emitted from the amplifier until such time as a metal object enters the search field.

When a metal object is located the amplifier gives off a piercing note, the intensity of this being somewhat relative to the proximity and size of the buried metal.

The locator is simple to operate, costs $£ 32.80$ and weighs 41 b , including battery. No specialised knowledge of electronics is needed to assemble the kit which takes approximately $6-8$ hours to build and a step-by-step manual in pictorial form is supplied for this purpose.

A Post Office licence is required for use in the U.K. and an application form is included with the kit.
Full particulars of the G.D. 48 Metal Locator is available from Heath (Gloucester) Lid., Bristol Road, Gloucester.

PUBLIC ADDRESS

AMPLIFIERS

Seen for the first time at the Sound '71 exhibition were the TA756 and TA757 professional P.A. Amplifiers from Goldring Manufacturing Co. (GB) Ltd.

The TA756 has an output of 30 watts, whilst the TA757 has an output of 60 watts. Both amplifiers have three microphone inputs plus one auxiliary input.

The amplifiers are fitted with 30 ohm plug-in internal, transformers, but these can be changed for 200,600 or 50 kilohm inputs. The outputs are 4,8 , and 16 ohms, and power supplies of 70 and 100 V via a strip panel or octal plug are a vailable.

Each microphone channel has a switched bass-cut filter, and other facilities include a remote control relay precedent switch.

Full technical information on the amplifiers and other public address equipment is obtainable from Goldring Manufacturing Co. (GB) Ltd., 10 Bayford Street, Hackney, London, E.8. 35E.

EQUIPMENT CASES

Instrument cases, type 1 and 2, finished in hammer blue with a contrasting grey front panel are the latest product from Radiospares Ltd. Available through dealers, the cases are supplied in flat-packed form complete with feet and assembly instructions.

The two types available are, type 1 which measures: width 10 in $(254 \mathrm{~mm})$, depth $7 \frac{3}{3}$ in $(197 \mathrm{~mm})$ and height 6 in (159 mm). Type 2 measures: width 16 in (406 mm). depth $7 \frac{3}{4}$ in (197 mm) and height 6 in (159 mm).

BATTERIES

Seven new zinc carbon battery types are now being marketed by Mallory Batteries for general electrical and electronic apparatus.
The zinc carbon range covers all the standard types in common use at the moment, i.e. M1602 (PP6), M1603 (PP9), M1604 (PP3), M1605 (PP7), M13R (SP2), M14R (SP11) and M15R (H7). The numbers in brackets represent Ever Ready type numbers.

Details of nearest stockists and prices can be obtained from Mallory Batteries Ltd., Gatwick Road, Crawley, Sussex.

Heathkit Model GD-48 metal locator from Heath (Gloucester) Lid

Radiospares instrument case

Range of zinc carbon batteries now being marketed by Mallory Batteries

LOW COST ELECTRONIC \& SCIENTIFIC EQUIPMENT \& COMPONENTS

MOTORS

CONTINUOUS TAPE CASSETTE Suitable for sleep-
learning, teaching prolearning, teaching pro-
grammes, programining machine tools, telephone answering, etc. Complete with replay/record head and separate erase head; tin tape single track. spued 3 in per sec. Length of tape $881 t$, 230 v 50 Hz supply. $\mathbf{4} \cdot 50$. Post free.

DIGITAL INDICATORS KGM TYPE M3

SINGLE SPEED TAPE DECK

$\frac{4}{3}$ mongle track on 7 in apools. 1 in per sec. Series operated. Facility for remote conseries operated. Facility for remote con-
trol operation. Record/replay heads with separate erase heal. Fx equipment. Less spools. Bargain price: Deck only no plinth, 65.85. P. \& 3. Top. Buy now while stock exiats.

KEYMECTOR

Connecta
atiything
seconds
electrical
without
lugs or
without Nocke No more worries
sols. in
about dangerous live about dangerous live
make electrical connections safely seconds wlth the revolutionary new
Keynector. Cuts out plugs, sockets and savee time. A hundred different liees in the home, and a must for the do-it-yourselt
ent husiagt. Only 82.89 plus p. onthusiant. Only 88.

GRAMPIAN AMPLIFIERS

TYpe 38ilb, J0W mains powered. 300 ohm O/P. Audio Power Amplifers. Only a
few available. Selling at well beiow few available. Selling at well
price: 216.50 each. Carriage e ,

TELEPHONE DIALS

Clear Perapex, very goud condition
harkings. 75 p each. \mathbf{P} \& P. .ap.
LOW TORQUE HYSTERESIS MOTOR MA23
Extremely
running
 hlgh starting torque. Has many uses such as chart drives, discotheque colour wheels,
$120 \mathrm{~V} 50 \mathrm{~Hz}, 1 / 12, t, 1 / 18,1 / 24,1 / 240$ r.p.1. $1 / 20.1 / 60,\}, 1 / 16,1 / 1 \mathbf{1}, 1 / 1$ r.p.11., 20 r.p.m. 21.50 post free

SYMCHRONOUS MOTORS

$200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$. New condition, ex-equipment. 8.7 1 r.p.h. and I r.p.m. Belf
starting, complete with gearing shaft in starting, complete wi
dia., in long. 21.50 .

ELECTRIC CLOCK MOTOR

NEW $200-250 \mathrm{~V}, 50 \mathrm{~Hz}, 2 \mathrm{~W}$. Syuchronous induction motor. 2 revs. per hour. o/P ehaft, It dia. $x s$ in long. Clockwise rota-
tion. Three-holed mounting at 120° on tin PCD. Price 21 post free.

GOOD QUALITY INSTRUMENTS TAKEN IN PART EXCHANGE OR PURCHASED FOR CASH!

BRAND NEW CAPACITOR REVERSIBLE SNO cont. rated; is dia. shatt; 3 lin long foot mounting; wt. 6 jb . Es .75 . Post free.
E.H.T. GENERATOR. BRAND NEW D.C CONYERTER MULLARD TYPE 1049
Input 19V d.c., 0.3 A . Output. $1,800 \mathrm{~V}$ (min.) at lma, , joov (min.) on no load. Full spec. and circuit provided. Kncapsu-
lated module. L. win,
W. 55.50 . Post free.

DELAY LINE LEXOR MDN 24840 Miniature resin encapsulated module. Total delay 50 msec to 10 masec. Tapped at $10 \mathrm{kn} .30 \mathrm{~V} w \mathrm{~kg}$. Attenuation $0.5 \mathrm{~dB} / \mathrm{masec}$ $\geq \frac{1}{2} \times \frac{1}{2} \times$ in $\times 1 / 50$. Post free.

BATTERY OPERATED TRANSISTOR TESTER
Battery powered for ehecking leakage
current and gain of P.N.P. transistors current and gain of P.N.P. transistors, meter and audlo indication. Siemens

MEMORY CORE STORES

 tervite core store. C / W. quantity.OA10 load diodes. Ideal for building computer store. holding informa.
tion,
teaching experiments
 ${ }^{48} \mathrm{p}$.

NEW ENICRON SHADED POLE MOTORS

 Post free.

NEW FRACTIONAL H.P. CAPACITOR

 MAINS MOTORS$230 \mathrm{~V}, 50 \mathrm{~Hz}, 0.65 \mathrm{~s}, 1 / 20 \mathrm{lh} . \mathrm{p}, 2,8 \mathrm{sin} \mathrm{r} . \mathrm{p} . \mathrm{m}$ Cont. rated. Shaft ${ }^{3}$ in, dia. \times in long.
Circular clamp mounting. \&3 so. Post free.

GENERAL

pURPOSE RELAY TMC Type GPR 300 .
Coil 700 ohm 12V $4 \times 1:$ Coil 700 ohm $12 \mathrm{~V} .4 \times 1 \mathrm{~A}$ changeover contacts. Plug in base. Price
$\mathbf{2 1 . 7 6}$. Post free.

NEW MICROSWITCHESHONEYWELL

 operated. L.
Price Price 's for 21.25. Post iree.

RESET TIMERS - ACRO TIMER BY

 HAYDONSynchronous motor driven timer providing nanual adjusted delay. Delay time is set on graduated dial. Press button closes arm until it actuates the load switch. The cam then returns to thitial position for repeat action. Various ranges available. 230 V 50 Hz . Load contacts 15 A 230 V . 25 .
WIDE RANGE OF
PRECISION MULTI-TURN
POTENTIOMETERS IN STOCK

EXTENSION TELEPHONES
 Complete with dith. Suitable for numerous applications. Two for phones less bells. Two phones less bells. T
for st. Post free.

ELECTRONIC BROKERS LTD.

(Dept. PE), 49-53 PANCRAS RD • LONDON NWI 01-837 7781 TELEX 267307

Open Mon.-Fri. 9-6 p.m.

ivity 250 microranp
250 Dimensions $L_{1} \quad 4$ in. W. $2 \mathrm{in} . \mathrm{H} .1$ in. Pr

READ-OUT DISPLAY
Uses a sensitive moving coil movement to project coil movement to project screen via an optical lens

OVERHAULED AVOMETERS
 Models 40, 47A, 48A. (Model

 Models $40,47 \mathrm{~A}, 48 \mathrm{~A}$. (Modele47 A and 48 A are Admlralty pattern.) D.C. volts: Amps; $0.012,012,1 \cdot 3,12$. A.C. volts: $14,120,480,1,200$. $\begin{aligned} & \text { Amps: } 0.012,0 \cdot 12,1 \cdot 2,12 . \\ & \text { Ohms: } 1,000, \\ & 10,000\end{aligned}$ $\begin{array}{ll}\text { Ohms: } & 1,000, \\ 1000,000 & \text { (external } \\ & 10,000,\end{array}$ $1,000,000$ (external voltage source) Sensitivity: $166.6 \mathrm{hms} /$ Yolt. 333 . Ohms/Volt when divided by two butto Is pressed on both a.c. and d.c. range Complete with volts and $3,600 \mathrm{~V}$. Current multiplier for 480 V 480 A . A.C. Current transformer for 20 A and 60 A . In epecial wooden box. 818.50 . P. \& P. $\& 3$
oossible to demand it may not always be dite to supply a particular nodel, and digpatched. Thpe to that ordered may be dispatched. These models are electrically identlćal.
STOCK CLEARANCE
Brens are sold in as seen condition REFD IORBE RECEIVERS. Model 7B OSCHLLOBCOPE CO8sOR 1035.110. Carriage e3.
OSCLLOSCOPE HMI TYE WM8 PORTABLE. A15. Carriage £o.
VALVE VOLTMESER. Furzehill 378B/2 TH: sigall arareator fre
710-A, I/P $117 \mathrm{~V}, 60 \mathrm{~Hz}, 50 \mathrm{~W}$. 370 Type HHz modulation. (20Hzier (metered) Bealed O/P. 215. Carriage $£ 1$ vo. VALVE VOLTMETER. Marconi TF428, a.c. 1.50 .
21.

WIDE RAMGE OSCLLLATOR. Dawe type $400 \mathrm{C} .0 \cdot 1 \mathrm{~Hz}-1 \mathrm{kHz}$. $0 / \mathrm{P}$ contro C.R.T. monltor. 210. Carriage \&2 50 . O/P Control (metered) O/P Z -20kHz $2,000 \mathrm{ohm}$. 28. Carriage ©/P \& 500,60 VALVE VOLTMELER CTBA IICOVAC A.C./D.C. plus ohma. 6 ranges, $2.4-480 \mathrm{~V}$, battery powered. Very good condition野多 Carriage 21.
VOLTMETRR "AS HRW", Ex ":PO. Superlor quality sin moving coll 200 ohms/volt. A.C./D.C. $0-150 \mathrm{~V}$ and $0-300 \mathrm{~V}$. Mirror acale. Erneat Turner Model 32 in teak carrying case. $\quad 100_{4}^{i} \mathrm{in} \times 8 \mathrm{i} \mathrm{n} \times 4 \mathrm{in}$
sio. Poat free. MIDGET POWER RELAY OMRON MK $230 \mathrm{~V}, 50 \mathrm{~Hz}$. 1PDT new. Faulty plating on frame. 8 for 81 .50. Post free. NUMICATOR PRICE LIST

End Reading	GRIOM/U (Clear)	
Quantity	Price each (iess base)	
1-3	21.40	
4-10	81.35	
11-25	21.30	
26-100		
Price Base. Basea 20p each. side Reading		
XN3/FA	38m/m Lead	(Aniber)
XN3/F	$38 \mathrm{~m} / \mathrm{m}$ Lean	(Red)
XN3A/F	$6 \mathrm{~m} / \mathrm{m}$ Lead	(Red)
XN3A	$6 \mathrm{~m} / \mathrm{m}$ Leed	(Clear)
XN11/F'	$38 \mathrm{~m} / \mathrm{m}$ Lead	(Red)
XN23/FA	$38 \mathrm{~m} / \mathrm{m}$ Lead	(Amber)
1-3	21.15 each	
4-10	81-10 each	
11-25	21.05 each	
26-100	95p each	

NEW LOW INERTIA INTEGRATING MOTORS
Electro-Methods Models 901 and 906PL Bensitivity. Ideal for instrument-type servo-mechanisms, light lomide, driving mechanical countera performing integrathon, or as mall power generators. Wil operate directly off a photo-cell or tbermo couple, etc. Nominal typical parameter 0.375 mA . Full losd speed $15 \mathrm{~m}^{2}$ 0.375 mA,
(approx.). Full load speed $1,84 \mathrm{~J}$ r.p.m
Moment of inertia of armature $1.8 \mathrm{~g} . \mathrm{cm} / \mathrm{cm}$. Welght of Motor 300 g . (approx.). s16. P. \& P. included.
RAPID HEAT SOURCE

from brand new Infre Rod Tabolar Quarts Lampa. Ideally suited as heat source for Drying Ovens, Eigg Hatching,
Incubators, cte., $240 \mathrm{~V}, 1,440 \mathrm{~V}$, 20,000 Angetroms.
Angetroms

LiND-AiR AUDiO

C. 1001 MULTI-TESTER

 of neter 4 in $\times 33 \mathrm{in} \times 1 \mathrm{in}$. Complete with case. 24.25. P. \& P. 17 ! p

> TI-TESTER Ranges: DC. Volace: 0,3, 15,150, foo $1,200 \mathrm{~V}$ 10,0000 $10,000 \mathrm{~g}$ per V$)$
A.C. Voltage: 0,6,
,

(0, 000Ω
$0-300 \mathrm{mi}$

D.C. Curtent: $0-1: 0 \mu \mathrm{~A} 0-300 \mathrm{niA}$
 (R $\times 1 \mathrm{~K}$). Decibels: -20 to +17 clB

E.M.I. LOUDSPEAKERS

MODEL 150, $13!\mathrm{inn} \times 8 \mathrm{in}$ elliptical. 3 anil 10 a impedance. 10 watts Lind-Air Price 12.97 $\frac{1}{2}$

1', \& P. 2d: each.

SANYO J0F892 PORTABLE

 FM/AM RADIOtransistor phus one integrated circuit for excellent FM reception.
Covers FM $88-108 ~ M H z, ~$ AM $540-1605 \mathrm{KHz}$. Blide rule tuning dial, rotatable telescopic aerial. Complete with case and carphone.
$48^{7} \times 1$ $4 \overbrace{}^{\circ} \times 1 /{ }^{1}$ (Batteries $4 \times$
H57 not included) Price 810.35
IND.AIR PRICE 89.25

P. d P. 30p.

GARRARD HI-FI TURNTABLES
-5 T/C with atereo cartridge 3000 with Sonotone 9TAHCD ster cartridige
BP? Mk. 111
8L6"B
Base and cover for above
AP7G.
SL7를
SLī!
SL9.5 1
Base and cover for above
401.
P. \& P. Decks, b'! p , Base and

Deck/Base/Cover, 87 !p.
THIS MONTH'S
SPECLAL OFFERS
S1: $=5 \mathrm{Mk}$. III with base
SPO 5 Mk. IfI with Sonotone
9TAHCD cartridge and base.
$8.97 \frac{1}{\frac{1}{2}}$ £10.971
£ $10.97 \frac{1}{2}$
f11.97
$115.97 \frac{1}{2}$
22.97!
£19.50
224.97 $\frac{1}{2}$
£28.35
239.45
$28.97 \frac{1}{2}$
£28.50
d Cover, 50p

. $£ 12.97 \frac{1}{2}$
P. it P. 75 p .
... $\$ 15 \cdot 77 \frac{1}{2}$

S-DeC BREADBOARD

Solderless breadboard panele, for fast reliable component connections. Single DeCe. One S.DeC with Control Panel, Jig and Accessories for solderless "Projects on S-DeC" giving construction details for a variety of circuits 81 P. \& P 17^{11} 4-DeC KIT, Four s.DeC's with two Control Panels, Digs and Accessorics and the booklet "Projects on S-DeC" all contained in a strong attractive plastic case. Ideal for the professional user. \&3.85. P. \& P. 17 jp .

All Mail Orders and inguiries to Dept. PE5 London, w, 1. Tel: 01-837 1601

G. F. MILWARD

Mail Orders: DRAYTON BASSETT, TAMWORTH, STAFFS ELECTRONIC COMPONENTS

Wholesale/Retail: 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

ANSISTORS. \downarrow / t
assorted

ER IO PACKS AND WE WILL IN
! ! TRANSISTORS
0050 p P.N.P. Untested but mainly
20 50p O.K.

1 to 3 watt 5107 watt 10 watrs

Multi-tapped
PAPER CONDENSERS
TV eypes
Miniature
ELECTROLYTIC CONDENSER
Suitable for Mains
Radio/TV
Transistor types
Mixed (both types)
POLYSTYRENE
MULLARD POLYESTER COND.
WILVER MOCA 3 -Watt
SLIDERS
VOLUME CONTROLS
NUSSS AND BOLTS. Mixed

length/type	
B B.A.	100
6 B.A.	100
4 B.A.	100
2 B.A.	

METAL SPEAKER GRILLES
7tin. \times 3tin.
EARPIECES, Masneric
2.5 mm Plue
3.5 mm Plug

500 MICRO-AMP LEVEL
METERS
VEROBOARD. TRIAL PACK

RECORD PLAYER CARTRIDGES, Well below normal prices GP Magnetic Stereo Cartridges, Diamond Needle, $6 m \mathrm{~m}$ outpur, E 4 . ACOS ACOS GP 93/ Crystal) 75p. ACOS GP $91 / 3$ (Compatible, Crystal) 11.
 ACOS GP $94 / 10$ (Stereo, Ceramic, Diamond) \&i-88. ACOS GP 9 S/I (Stereo Crystal with two L.P./Stereo needles) ©l-25.

SINCLAIR AMPLIFIERS AND SPEAKERS. Complete range in stock. All at 10% discount on list.

VEROBOARD

 $\sin \times 2 \frac{1}{2}$ in $\times 0.15$ in 20p $32 i n \times 2 \frac{1}{2}$ in $\times 0.1$ in 21p $\sin \times 3$ in $\times 0 . \operatorname{lin} 28 p$ Spor Face Curter 38p. Pin Insert Tool 48p. Terminal Pins (0.1 or 0.15) 36 for 18p. Special Offer Pack consisting of $52 \frac{1}{2}$ in \times lin boards and a Spot Face Cutter-50p.
TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse polarity protection. 8 watt type with reflector, suitable for tents etc., \&3. Postage/Packing 25p. 15 watt type, batten fitting for caravans 44. Postage/Packing 25p. THESE CAN BE SENT ON APPROVAL AGAINST FULL

MULLARD POLYESTER CONDENSERS
1,00pf, $1,200 \mathrm{pf}$, $1,500 \mathrm{pf}, 1,800 \mathrm{pf}, 2,200 \mathrm{pf}, 15 \mathrm{p}$ per dozen (all 400 V working). $0.15 \mu, 0 \cdot 22 \mu \mathrm{f}, 0.27 \mu, 30 \mathrm{p}$ per dozen (all 600 V working). 25% discount for lots of 100 of any one type.
RESISTORS
$\frac{1}{t}$ and $\frac{1}{2}$ watt. Most values in stock. 50 p per 100 . 10 p per dozen of any one value. WIRE WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards. f watt to 50 watts. A large percentage of these are multi-tapped offered "assorted" at 50 p per dozen.

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Large range in stock, 75p per 100 of any one value. 15p per dozen.
RECORDINGTAPE BARGAIN! Theverybest British Medelow-noise high-quality Tape! 5in Standard 38p. Long-play 45p. 5tin Standard 45p. Long-play 60p. 7in Standard 60p. Long-play 82p. We aregetting a fantastic number of repeat orders for this tape. Might we suggest that you order now whilst we still have a good stock at these low prices?

NEW! PRODUCE YOUR OWN PRINTED CIRCUITS ! I I ! ! Our new aerosol sprays now make it possible to produce printed circuits either singly or by the hundred from one simple drawing
Either photo-copy circuit or trace it on to clear plastic sheet
Place same on copper laminate board which has been sprayed with our "Photolacquer" and expose to light.
"Photo-lacquer" \& ' per can
G. F. MILWARD, Draytón Bassett, Tamworth, Staffs. Postage (minimum) per order 10 p .

THE MAIN advantage of fitting an electric windscreen washer to a car is that a continuous jet of water is available as opposed to the intermittent jet from a manual pump. However, in practice, much of the advantage is lost since modern driving conditions do not leave a hand or foot free for more than an instant or two. A means for delivering a jet of selected duration at a momentary touch of the button, is desirable.

A "remnant" relay could be used to give a timed action but these are relatively expensive and, in any case, are non-adjustable. A resistance capacitance circuit suggests itself as a means of establishing the necessary time constant.

The standard washer pump circuit is shown in Fig. 1, and Fig. 2 shows a basic timing circuit which would work, but in order to achieve the necessary time constant would require much too large a capacitor; typically $16,000{ }^{4} \mathrm{~F}$ for a ten second hold using a 600 ohm relay.

FUNDAMENTAL IDEAS

The basic circuit of Fig. 2 functions in the following manner. When SI is pressed for a moment, RLAI contacts connect to the supply and allow current from the battery to charge Cl via the relay coil. At the same time, the pump motor is switched on by the second set of contacts RLA2. The relay continues to hold itself latched until capacitor Cl is sufficiently charged to cause the charging current to fall below the value necessary to hold the relay on. Contacts RLAI then change back to the original state, shorting out Cl ready for the next cycle. The resistor RI is necessary to prevent tou great a surge of current through the relay contact points. Requiring such a large capacitor, the physical circuit is bulky and costly; we need to increase the effective impedance of the relay.

A useful increase of impedance can be obtained using a single transistor arranged in an "emitter. follower" type circuit. With most general purpose

transistors, the input impedance can be raised by a factor of at least 30 . However, a capacitor of $500 \mu \mathrm{~F}$ is still needed.

FINAL CIRCUIT

A second transistor in a similar configuration will again raise the impedance by a similar figure, mak-. ing the recessary capacitor (for a ten second "dwell" time) about $16 \mu \mathrm{~F}$. We can now control the resistance of the time-constant circuit by putting a variable or a selected fixed resistor R 1 in parallel with the input (see Fig. 3). Because of variations in components, especially cheap "reject" transistors, it may be necessary to experiment with values for R1 and C1. It was found in practice that a three second jet is adequate and using the transistors indicated, R1 is 22 kilohms and $\mathrm{C} 120 \mu \mathrm{~F}$; these values provide a good starting point. Resistor R1 could be changed to a 500 kilohm potentiometer, which, set at maximum, would probably empty the bottle in a single continuous shot.

Fig. 4. Layout and wiring of the timer on Veroboard

CONSTRUCTION

The prototype was built on Veroboard and mounted in a plastic photographic slide box under the dash board. It has proved completely reliable in service over six months.

The layout on Veroboard is shown in Fig. 4, this is not at all critical. The relay specified is a miniature 170 ohm, 6 to 12 V type, the contacts of which are rated at 2 amp . Any relay having a coil resistance of 150 ohms or more, with one set of changeover contacts and one pair of "normally-open" contacts, rated at 2 amp , will do, so long as it will operate on 12 volts. If the relay is mounted on the Veroboard as in the prototype, rather than separately, some

SEND S.A.E. FOR LISTS GUARANTEE
Satisfaction or money refunded

The Diamond Tip is '007in raltus, thus making it compatale to play metreo iecords on mono nuipment whond damape to the record; and of courte

BRITISH HADE
EEPORT EHQURITS WELCOTE

CARTRIDGES

MAGNETIC RECORDING TAPES by a leading manufactnrer

EMPTY TAPE REELS

CASSETTES
Boxed in Plastic Library Packs
C80
C90

SEMICONDUCTORS - BRAND NEW • MANUFACTURERS' MARKINGS • NO REMARKED DEVICES

2 N 388 A	621 p	2 N 9613
2 N 404	$22+$	2 N 2614

$\begin{array}{cc}621 \mathrm{p} & 2 \mathrm{~N} 2613 \\ 2 \% \mathrm{p} \\ 2 \mathrm{~N} 2614\end{array}$ | 35 p | 9 N 3708 |
| :--- | :--- |
| 30 D | 2 N 3709 | | 30 D | 2 N 3708 |
| ---: | ---: |
| 571 D | |
| 9 N 3710 | |

$2 N 464$	22 p	2 N 2614
2 N 696	2 p	2 N 264 h
2 N 697	20 p	2 N 2696

UNTOff 12 12 p (N2714 $\begin{array}{lrl}2 N 708 & 15 \mathrm{p} & 2 \mathrm{~N} 286 \mathrm{~J} \\ 2 \mathrm{~N} 709 & 62+\mathrm{p} & 2 \mathrm{~N} 2904\end{array}$
 $\begin{array}{lll}2 N 718 & 20 \mathrm{p} & 2 \mathrm{~N} 2904 \mathrm{~A} \\ 2 \mathrm{~N} 18 \mathrm{~A} & 30 \mathrm{p} & 2 \mathrm{~N} \cdot 90 \mathrm{~J}\end{array}$

N N1303	321 p	Yellou				
17tp	Orange			2 N1303	17 p	Orange
:---	:---	:---				
2N1304	28011			$2 N 1304$	$22 p \mathrm{p}$	2 N 3014
:---	:---	:---				
2 N 1300	22 p					
2 N 2053						

2 N 1306
2 N 1307

2 N 1308 2 N 1309

2N1507 2N1613

2N1613
2N1631
2N1631
$\begin{array}{ll}2 N 1632 \\ 2 N 1638 & 48 \\ 2\end{array}$

$\begin{array}{ll}2 N 1711 & 250 \text { N } 339: \\ 2 N 1889\end{array}$

| 2N1889 | 32 DP |
| :--- | :--- | :--- |
| 2 N 1893 | 42 N 3394 |
| 2 | |

| $2 N 1893$ | 42 | |
| :--- | :--- | :--- | :--- |
| $2 N 2147$ | 72 | $2 N 340: 2$ |
| $2 N 2448$ | 62 | $2 N 3403$ |

$2 N 2448$	$62 t p$	2N3404
2 N 2 Y 60	$57 \pm \mathrm{p} 340 \mathrm{~L}$	

2N22194A 281 p D

| $2 N 2217$ | 271 p | 2 N 3417 |
| :--- | :--- | :--- | :--- |
| 2 N 2218 | 32 | |
| 2 N 3415 | | |

$2 N 2219$	324 p	2 N 3439
224 D	2 N 3440	

$\begin{array}{rrr}2 N 2220 & 25 \mathrm{p} & 2 \mathrm{~N} 3440 \\ 2 \mathrm{~N} 3570\end{array}$

$2 N 2297$	$80 p$	$2 N 3607$
$2 N$		

2N2388	17 p	2 N 3662
N2369	17	

$\begin{array}{llll}2 N 2369 A & 20 p & 2 N 3702 \\ 2 \mathrm{~N} 2410 & 2 \mathrm{p} 3703\end{array}$

$2 N 2483$	27	\underline{p}
2N	$2 N 3703$	
$2 N 3704$		

2 N 2539	2 p p	2 N 3700

$2 N 2540$	$22 p$	2 N 3706
2 N 3707		

$$
\begin{aligned}
& \text { DN } 3710 \\
& p \text { 2N } 3711 \\
& \text { D } 2 \mathrm{~N} 3713
\end{aligned}
$$

ACOs	Sapphire	Diamond	ELAC K8	Sapphire	Diamond
GP59	18p	87 p	(PE1B)	Sts	47p
GP65	18 p	87%	ERJMB	83 p	47p
GP67	18 p	870	ERJMX	189	870
GP73-1	88	475	ERJSB	38 p	478
(9P73-1	88p	47p	ER80 Stereo	83	478
${ }^{1879}$	18p	37p	DECCA		
(iP81-1	18 p	375	Deram diamond only GARRARD		21.89
GP91-1	339	47			
[1P91- ${ }^{\text {a }}$	389	478	GARRARD		878
$\mathrm{QP91-3}_{\text {(P91-18 }}$	38p	47 p	GC2	18 p	875
GP91-3BC	38 p	47 p	rc8	18 p	$87 p$
QP93-I	885	478	CCE12	18	870
GP94-1	88 p	47 p	GC8810/1	18p	87p
GP95-1	88 p	478	G6810/2 $81-2-3$	18p	875
$\mathrm{QP96}^{\text {H07 }}$	88	470	$\mathrm{TS1}^{81-2}$	88p	478
${ }_{104}{ }^{\text {HaP37 }}$	18p 88 p	37p	T82	88p	47 p
104	88	47	T83	88p	47p
B.8.R.			GOLDEDIG		
HgR Cl (8T3)	88 p	47p	CKEAO	18p	379
B8R TC8H	187	37D	CM60	18.	879
BER TC8M	18p	370	MX1	18p	87p
BER ST8	88 p	47	MX?	18p	878
BSR ST9	387	47	Stereo C880	18p	87p
BSR 8T10		45	PERPETUUM EBEER		
BER X1M	28,	470	PE188	88p	47
B8R X 1 H	93 p	47 p	PEILIPS		
B8R X3M	385	470	AG3016	18p	87p
B8R X 3 H	835	178	Ag3063	180	87
B8R XJH	88	475	AG3306	88 p	47
BSR M 4 H	$88 p$	47	AG3310/3306	88	47
collaro			AG3400	18p	$87 p$
$\begin{array}{ccc} \text { Collaro } & \text { Stutio } \\ \text { " } 0 \text { " } & 13 \mathrm{p} \end{array}$			ROEETIE BEOFLUID		
		87p	BF40 .	18p	87
Collaro-RonettTX8813p			DC284 , .. 18y		878
		870	80mOTONE		
Collel 8K1	13p	87p	2T	83 p	47
Dual CD82/CD83			3 T	335	470
(DN2)	33p	47p	8T4A	835	47
Dual CDE/320(DN3)			9 TA	835	47
	38p	47p	$9 T A / H C$	88 p	475
$\underset{(\text { PE10 })}{\text { ELAC }}$			$19 T$.	18p	879
	33p	47p	20 T	18p	879

\section*{辛 $|$| BD132 |
| :--- |
| RDY |
 $\begin{array}{ll}\text { BD132 } & 971 \mathrm{D} \\ \text { RDY } & \text { BFY41 } \\ \text { RDY }\end{array}$}

TERMS CASH WITH ORDER ONLY. POST AND PACKING

ELECTROVALUE SEII-CONOLCOOR BRBGAMS

ALL BRAND NEW AND TO SPEC. NO 'SECONDS' All power types supplied with free insulation sets.

> Appointed distributors and stockists for SIEMENS (U.K.) LTD. NEWMARKET TRANSISTORS LTD., E. GRINSTEAD ELECTRONIC COMPONENTS LTD.

COMPONENT DISCOUNTS

10% on orders for components for $£ 5$ or more. 15% on orders for components for $£ 15$ or more. (No discount on nett items.)

POSTAGE AND PACKING
Free on orders over $\mathbf{£ 2}$. Please add 10 p if order is under $\mathbf{6 2}$. Overseas orders carriage and insurance charged at cose.

ELEGTROVALUE

DEPT. PE57I, 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY. Phone: Eghom 5533 (STD 0784-3) Telex 264475

Mullard TECHNICAL BOOKS

Power Engineering using Thyristors

Part 1. Techniques of Thyristor Power Control
A new book to bridge the gap between electrical power engineering and electronics.
Including postage $£ 1.60$.

Data Book 1970

Gives Mullard abridged data on valves, picture tubes, semiconductors and components used in consumer electronics

Paper bound. Including postage 24 p.

Transistor Audio and Radio Circuits

For radio receivers, radiograms, record players, tape recorders, hi-fi equipment.
Over 200 pages packed with the most up to date information.

Bound in cloth. Including postage £1 60 .

Electronic Counting

Circuits. Techniques. Devices.
The increasing use of mechanization and automation in factories has given rise to an increased interest in counting. This present book is intended to help engineers to use electronics to solve their counting problems as simply or as cheaply as possible.
220 pages fully illustrated. With diagrams. Including postage $£ 1 \cdot 50$.

Semiconductor Devices

This book is an introduction to Semiconductor Electronics and its contents should be readily understood. The subject is treated non-mathematically. Numerous illustrations and diagrams. Including postage 42p.

A programmed book on Semiconductor Devices

This book is an integral programme which is a form of self instructional text.
Size 12 ins. x 8ins. Numerous illustrations and diagrams. Including postage 75 p.

Electronic
 Experiments

The 20 experiments are interided as constructional projects, such as, an Oscilloscope, Logic Gates, Electronic Organ, Electronic Timer, etc. Containing numerous illustrations and diagrams. Including postage 75p.

Post now to: Dept. M
SELRAY BOOK COMPANY 60 Hayes Hill Bromley BR2 7HP

Resistor

RI $22 \mathrm{k} \Omega \pm \mathrm{W}, \pm 10 \%$ carbon (or variable-see text)
Capacitor
CI $20 \mu \mathrm{~F}$ elect. 25 V
Transistors
TRI, 2 NKT274 or equivalent (2 off)
Relay
RLA $12 \mathrm{~V} 170 \Omega$ d.p.d.t. contacts rated at 2 amp (STC midget open type available from Henry's Radio Ltd)
Miscellaneous
Veroboard $2 \frac{\text { it }}{5}$ in $\times 1 \frac{1}{8}$ in $\times 0.15$ in matrix-or larger size to accommodate various relays. Connecting wire. Plastics box for case.
care must be taken to isolate the relay mounting screws from the copper strips. The completed unit can be mounted in the box by means of nuts, bolts and spacers or glued in using Araldite. The power supply can be derived from any convenient live line, e.g. from the ignition switch, and a chassis connection. Be absolutely certain to connect up with the correct polarity.

Note that no harm comes of holding the button down continuously; the relay merely drops out momentarily at the end of each completed cycle.

The two transistors do not have to be the same, but TR2 should be able to withstand al collector current of at least 100 mA .

TESTING

To test the completed unit before installation in the car the supply should be connected to the leads indicated and the leads for the load (MO1) connected across a 12 V bulb. The leads that are to be connected to S1 can then be momentarily touched together. This should cause the bulb to light and remain on for a few seconds. The dwell time can be adjusted to suit various requirements by varying R1 and C1 or as mentioned earlier, R1 may be replaced with a variable resistor to provide variable dwell times.

POSSIBLE APPLICATIONS

The unit can be used to time almost any operation of the car's electrical system over a limited period. The relay contacts must be able to switch the required current and it should be noted that the repeat time accuracy of the unit will not be exceptionally high.

If a relay with more than two sets of contacts is used, more than one operation can be actioned simultaneously, e.g. washers and wipers together for a set period. Other possible uses of the timer are: sounding the horn-in an alarm system; reversing light timer-to prevent it being left on; head light timer-to light the garage doors after parking the car; interior light timer-to keep the interior light on for a few seconds after closing the car door thus giving light for finding seat belts and controls.

Readers will probably find many other uses for this unit.

F. M. RADIO SERVIĆING HANDBOOK (2nd edition)

By Gordon J. King
Published by Newnes-Butterworths 206 pages, 10 in $\times 6 \mathbf{i} \mathrm{in}$. Price $£ 3.00$

THE reliability of f.m. radio tuners and receivers is such that the amount of servicing or fault finding necessary on such modern equipment is minimal, particularly on those using semiconductors or integrated circuits. But when anything does go wrong it is essential to know what makes it tick if the serviceman is to restore it to full functional capabilities.

In particular, stereophony demands an understanding of some unusual radio propagation methods, and techniques for decoding to produce the optimum audio end-product.

It is not surprising therefore that actual servicing methods do not commence in this book until page 165. The preceding eight chapters, however, could hatve made up an excellent book on their own, being a fairly comprehensive down-to-earth description of the various principles involved in both valve and semiconductor f.m. tuners and stereo decoders.

The remaining chapters on servicing give a guide to analysis of breakdown symptoms with possible cures. Probably the most common faults are in the ageing of valves and capacitors which result in the tuned circuits drifting off frequency; a great deal is written on tuning procedures and the recommendations must be taken seriously to get the best results.

The final chapter explains the teminology used in specifications.
Overall this book is very well written, being largely new material that did not appear in the first edition. Some readers may even find it an improvement on the more general aspect found in "Radio and Audio Servicing Handbook" by the same author, and reviewed in our February issue.
m.a.c.

SEMICONDUCTORS - BASIC THEORY AND DEVICES

By I. J. Kampel
Published by Newnes-Butterworths
264 pages, $8 \frac{3}{4}$ in $\times 5 \frac{1}{2} \mathrm{in}$
Price $\mathbf{2} .50$

WITH a title such as this, a mere 260 pages obviously imposes constraints upon its author. This accounts, one presumes, for the somewhat terse style of writing. In the main this makes for a most readable work, which provides a good general introduction to the properties of semiconductors and to specific devices employed in everyday electronics. But it does inevitably lead to certain generalisations and some superficial skating over deep and complexing matters. Although aimed at "readers with little knowledge of physical science who require an introduction to semiconducting devices and the theory associated with them", at times the book
appears to make certain assumptions about the reader's familiarity with physics: for example, on page 5 a bald statement "Pauli's principle states that the electrons in an atom must fill up the shells in order from the centre." That is the first and last we hear of Pauli and his principle. Maybe just a minor irritant. But, more seriously, on page 108 the author states that "the human being is particularly adept at sensing electromagnetic, radiation in the region of 10^{6} metres with the ear"' (my italics). This confusion between e / m and sound compressional waves is by no means uncommon, but in the case of the author of a text book it is a bad and unexpected lapse.

Despite some shortcomings, this book has real worth, and its overall comprehensiveness will be attractive to those seeking to get to grips with solid state for the first time. The first ten chapters deal with the basic theory of semiconduction, from an outline of atomic structure through to p-type and n-type materials in contact, and so to the generic devices the diode and transistor, and how they are applied as active elements in circuits. After two chapters dealing with the somewhat abstruse subjects of Quantum Theory and Relativity, there are three devoted to photoelectric effects and semiconductors operating in the visible and infra-red regions respectively. Field effect semiconductors and switching devices are covered (but no mention of the triac), and then follow summary accounts of numerous other specialised solid state devices, including some advanced types not yet in common use. The manufacturing techniques for both discrete devices and integrated circuits are described with sectional views of typical devices. Strangely, the discussion on i.c.s is limited to linear devices.
F.E.B.

20 SOLID STATE PROJECTS FOR THE CAR AND GARAGE

By R. M. Marston
Published by The Butterworth Group 115 pages, $8 \frac{1}{2}$ in $\times 5 \frac{1}{2}$ in. Price $\mathrm{fl} \cdot 80$

WHY OH WHY, must blurb writers make such amazing claims for the authors of books? I have been in trouble before because an introductory "sales" piece was so overwhelming that it was, in my opinion, a distortion of the facts, and now it has happened again. Most people read the cover blurb to get a quick synopsis of a book before buying, and so it is with me. The trouble is that when fantastic claims are made for a book or an author it is very annoying and can result in a bad book review. I hope I have learned to ignore such bumptious blurbs and try to give a fair appraisal of the book. However, publishers please do not print such things as; "R. M. Marston is probably five of the ten bestknown electronics technical authors in the U.K. today." If you want to tell us how good he is, why not publish the pseudonyms and let the readers judge for themselves.

To get to the book itself, after the grouse the good points. All the projects would prove useful to most car owners, although I doubt if anyone would consider building them all. Circuit function is adequately described on all the circuits and this s.ould help the novice building the simple circuits. The book is generally well written and the diagrams are good and easy to follow.

At a price of $£ 1.80$ the cost per project works out at 9 p -even I can do it in my head with decimals-
admittedly some of the designs are worth more than this figure, but I would have expected them all to contain full constructional details and, in some cases, more information on wiring the devices to the car. The range of projects covered is great, from a surpressed-zero voltmeter (three components) right up to the complexities of a capacitor discharge ignition system.

It would be good to see the book better laid out so that the projects are arranged in some formal order-say relating to complexity-rather than in a random fashion. The ignition system, which was first published in Wireless World some time ago, has been placed first but will probably provide the most problems for the constructor both in layout and wiring, for which no diagrams are given, and in fault finding.

Not all projects are illustrated with photographs and those that are, show mainly the circuit boards and are generally of poor quality. Veroboard layouts are given for more than half the projects and these will enable most people to build them. M.K.

P.E. GEMINJAMPLIFIER (November 70 to March 7I)

Some constructors have reported difficulty with h.f. oscillation when setting up the amplifier as described in December 1970 issue. The trouble appears to be caused by the additional impedance of the meter together with feedback from meter leads to the open circuit input. This can be prevented by temporarily shorting the inputs whilst adjusting VR2 and VR102, l.e. link tags 1 to 2 and 3 to 4 on the main amplifier board.

Note that metal foil capacitors must be used for CI7, C117, C25 and C125, although it is preferable to use metal foil types in the other positions indicated; electrolytic types may be substituted.

Components list p. 118: R69 and R169 should be $47 \mathrm{k} \Omega$. Switch S2, 2 pole, 5 way should be $S 3$ and switch S5 is a d.p.d.t. toggle or slide. Fig. 34, p. 120, tag 102 has not been shown on elther diagram; its position is indicated on Fig. 35. Fig. 3, p. 863 (November 1970) the voltage at R9 and R10 junction should be $\mathbf{2 6} 2 \mathrm{~V}$ as given in the check chart, not as shown on the diagram.

We regret that the wiring of $\mathbf{S 5}$ was omitted, it is shown below:

All settings chassis form for you to mount in any housing that you choose. All settings are achieved by two dual-concentric controls at the front including: set alarm AUTO and AUTO ALARM, "sleep" switch, 10 minute division "click" set alarm (up to 12 hour delay), time adjustment. Ulitra simple mechanism and high quality manufacture guarantee reliable operation and long life,
at any preset time up to 60 min . and in conjunction with the Adio, TV, light, etc., at any pre-set time up to 60 min . and in conjunction with the AUTO setting will
switch on the appliance again next morning. The clock measures $4 \frac{\mathrm{Z}}{\mathrm{W}} \times 13 \mathrm{H} \times 3$ 部
switch). SPEC: $210 / 240 \mathrm{~V} \times 1 \mathrm{C}, 50 \mathrm{~Hz}$ (overall from front of drum to back of plete with instructions. HUNDREDS OF APPLICATIONS.
COMPLETE WITH KNOBS.
LASKY'S PRICE £6.95

GARRARD SP25 Mk III

The SP 25 series record deck has proved to be one
of the most popular of its type in the world Styled of the most popular of its type in the world. Styled speed unit complies with the Din 45-500 Hi-Fi performance standard. The tubular low resonance
aluminlum pick-up arm is counter-balanced by a aluminium pick-up arm is counter-balanced by a
resiliently mounted weight. Stylus force is ad iusted by an optical-type knurled knob, finely
 usted by an optical-type knuried knob, finely
calibrated from 0.5 grm . in steps of 1 grm. Bias Pose 18p
finger-tip adjustment, the scale being calibrated to correspond with the wity a force. The viscous damped cue control facilities raising and lowering the pick-up arm onto the track required without damage to either the record or stylus. The $10 \frac{1}{2} \mathrm{in}$ aluminium turntable is driven by the well-proven Garrard 4 -pole high and low voltage induction motor. Actual size including max. rear and side overhang of pick-up arm $15 \frac{13}{} \mathrm{in}$. wide $\times 12 \frac{1}{2} \mathrm{in}$. front to rear x LASKY'S PRICE $£ 12.50$
or complete with
9 TA Cart C 13.95

MCDONALD

PROFESSIONAL SERIES FDUR-SPEED SINGLE $1 / D 80$

PLAY UNIT Hogh-precisully counterbalanced pick-up arm, heavy balanced turntable simple to operate controls, viscous cueing device, carrier, four pole carrier, four pole
motor. LASKY'S PRICE $£ 12.50$

> Post 40p cinmexicite £15.75

610 AUTOMATIC TURNTABLE

Same specifications as the MP60 but with synchronous four pole motor and full automatic change facilities.
LASKY'S PRICE £15.45 Post 35p
WITH PLINTH AND COVER $£ 18.75$ Post 40 p

510 AUTOMATIC TURNTABLE

Counterbalanced pick-up arm, pressed steel turntable, bias compensator ISCous cuiS PRICE ci3. 45 post mocor
LASKY'S PRICE £13.45 Post 35p
With PLinth and cover 816.95 Post 10_{0}

310 AUTOMATIC TURNTABLE

Low-mass square sectron pick-up arm, cue and pause lever, visual stytus

LASKY'S PRICE $\mathbf{£ 9 . 9 5}$ Post ${ }^{35}$
WITH PLINTH AND COVER $£ 13.45$ Pose 40p

NOW AVAILABLE Laskr's exclusive

L.ASKY-McDONALD plinth and cover
pavailable separately at
£4.75
 Branches
207 EDGWARE ROAD. LONDON: W. 2
Tel. 017233271
152/3 FLEET STREET, LONDON, E.C. 4 Tel Open all day. Thursday, early closing 1 ö.m. Saturday High Fidelity Audio Centre
33 TOTIE:HAM CT. RD., LONDON, W. 1 Tel. 01.6362605 42-45 TOTIENHAM CT. RD., LONDON, W. 1 Tel. U1-583 257. Open all day, 9 a.m.-6 p.m. Monday to Saturday \quad Open all day. 9 am - -6 p.m. Monday to Saturdav
ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL STREET. TOWER HAMLETS, LONDON, E.

OUR VERY POPULAR 3p TRANSISTORS

FULLY TESTED \& GUARANTEED
TYPE " A "PNP Silicon alloy, metal TO-5 can. 25300 type, direct replacement for the OC200/203 range
TYPE " B " PNP Silicon, plastic encapsulation, low voltage but good gain, these are of the $2 \mathrm{~N} 3702 / 3$ and $2 \mathrm{~N} 4059 / 62$ range
TYPE "E " PNP Germanium AF or RF—please state on order. Fully marked and tested.
TYPE "F" NPN Silicon plastic encapsulation, fow noise amplifier of the 2N3708, 9, 10, 11 .

ANNOUNCING THE OPENING OF OUR ENTIRELY NEW CASH AND CARRY DEPARTMENT, ON THE SPOT SALES OF ALL CATALOGUED ITEMS, PLUS MANY OTHER LINES OF INTEREST

Reductions for bulk buying manufactures welcome.

These are but a few examples. OC44, OC45, OC82, OCI39, IN4007 all at 8p.
IN4001 at 4p, IN4004 at 5p, IN4006 at 6p, minimum quantity 500. Semiconductor Supermarket of the South East.

NEW		NMARKED UNTESTED	PAKS
B6s	150	Germanium Diodes Min. glass type	50p
883	200	Trans. manufacturers' rejects trypes NPN, PNP, Sil. and Germ.	p
884	100	Silicon Diodes DO. 7 glass equiv. to OA200, OA202	50p
886	50	sil. Diodes sub. min. IN914 and IN916 types	50p
888	50	Sil. Trans. NPN, PNP. equiv to OCL200/,	50p
B60	10	7 Watt Zener Diodes Mixed Voltages	50p
H6	40	${ }^{250 m W}$ Wener Diodes	50p
H10	25	Mixed volts. It watt Zeners. Top hat type	50p
HII	30	MAT Series " alloy "pnp Transistors	50p
H15	30	Tod Hat Silicon Rectifiars, 750 mA . Mixed volts	50p
H/6	8	Experimenters' Pak of integrated Cireuits. Data supplied	50p
H2O	20	BY126/7 Type Silicon Rectifiers, I amp plastic Mixed volts.	50p

		D AND GU	
B2	4	$\begin{aligned} & \text { Phote } \\ & 0.3 \text { f } \end{aligned}$	
879	4	IN 4007 Sil. Rec. dio 1,000 PIV lamp plas	
881	10	Reed Switches, mixed ty large and small	
B99	0	Mixed Capacitors. Postage 13p. Approx. quantity, counted by weight	
${ }^{4}$	250	Mixed Resistors. Postage 10p. Approx. quantity, counted by weight	
H7	40	Wirewound Resistors. Mixed types and values. Postage 80	P
H8	4	BYI27 Sil. Recs. 1000 PIV. I amp. plastic	
H9	2	OCP71Light Sensitive Photo Transistor	50p
H12	20	NKT155/259 Germ. diod brand new stock clearan	
H18	10	OC71/75 uncoded black type PNP Germ.	p
Hi9	10	OC81/81D uncoded whise glass type PNP Germ.	50p
H28	20	OC200/1/2/3 PNP Silic uncoded TO-5 can	
H29	20	OA47 gold bonded dio coded MCS2	P

return of the unbeatable p.I Pak. now greater value than ever
FULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS, APPROX 170. WE GUARANTEE AT LEAST 30 REALLY high quality factory marked tran SISTORS PNP AND NPN, AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA TION ON THE TRANSISTORS
please ask for pak P.I only 50p
10p P. \& P. on this Pak

Make a Rev, Counter for your Car. The TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a linear and accurate rev. counter for any car.

each

FREE CATALOGUE AND LISTS

 for:-
ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10p post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS

8 for
Various Contacts and Coil
Resistances. No individual
selection. Post \& Packing 25p

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Reididaot
 A SEEECTON RHOM OUR POSTAAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

What about us !

Sir-May I make a strong plea to professional electronic components manufacturers to be a little more tolerant to amateurs, and at the same time suggest that we, the amateurs, take note of the specific problems that sometimes prevent the larger companies aiding us with the supply of specialised components.

Generally speaking we are able to obtain most day to day components through retail outlets and specialist companies advertising in your magazine. However, many of the projects that we might like to embark on require components of a highly specialised nature and it is only possible to obtain these directly from the manufacturers or their distributors.

Certain companies have attempted to satisfy this demand by setting up special divisions to deal specifically with the amateur but none seem to have been highly successful ventures -perhaps because the prices of components in question tend to be higher than average and that there are not sufficient of us to make the business worthwhile.

Professional distributors usually refuse to supply individuals because they are afraid that it will be the thin end of the wedge, but the thin end of what edge? Whenever I have challenged distributors to explain their fear it usually turns out that their impression is that individuals do not understand the usual conditions of business sales and present their orders in an un-intelligible way. Some have said that the "dribs and drabs" of business they would get involved in would be uneconomic.

While I agree with the first two points I strongly disagree with the latter. The basis on which distributors operate is to provide a fast supply of small to medium quantities of components to user industries i.e., they take the business which is too small to be economic to the main factory. Most distributors are prepared to supply industrial concerns with remarkably low value orders-typically as low in
value as $£ 2$. Admittedly this is padded out by large orders but nevertheless the organisation must be tooled up to handle the small business as well. I would say that most projects that this magazine deals with involve the use of many times this value of components.

My feeling is that the first two points mentioned are the ones which frighten the distributors, e.g. sending off orders lower than the minimum order value that most companies now have, or telephoning repeatedly, chasing orders, which have only just been sent off, or even sending back goods after ordering the wrong devices in error; and perhaps the worst offender is the illegible order enclosing money for goods which obviously cannot be dispatched.
May I suggest that you approach such distributors on behalf of the amateur asking whether they would in future be prepared to supply

[^3]UR Bloggs
components against a formalised order form which really enthusiastic constructors can easily get printed for not much more than a pound or two (I enclose a simple example). Also that minimum order values are recognised.
If these conditions were laid down I seen no reason why the amateur should not receive exactly the same service as the professional and at the same time the distributors would find a none too small outlet for components.
M. J. Hughes,

Biggin Hill,
Kent.

Desirable scheme!

Sir-About a year ago we formed a buying group with about 15 other dealers in the London area which we provisionally call "Group One." Its primary object was to buy components at the best prices in reasonable quantities. There are several secondary aims such as exchange of excess stock and exchange of information.
To some extent this has been forced on us because we wished to buy certain items that wholesalers don't wish to handle and the manufacturers will only sell in quantities that are beyond the pocket of one dealer to buy. But I would like to stress the fact that this is not aimed at distributors or wholesalers (I for one, have always believed that they do a useful job and earn their money) in fact any small wholesaler or manufacturer would be welcome to join. I feel sure you will agree that this is a desirable scheme, as ultimately it means we can offer your readers a greater range of goods at the lowest prices.

Initially we were going to limit the Group to about 20 dealers (not an account of any closed shop principle but because we thought (quite wrongly) that we could not handle the administration of a larger number). Now we would like to offer membership to any bona fide trader in the U.K. and I would be very grateful if you could make this generally known through the courtesy of your columns. At the moment there is no entrance fee or subscription. If anyone is interested please write to me at the following address.

A. Sproxton,
Home Radio Ltd.,
234-240 London Road,
Mitcham, Surrey.

This magazine will give encouragement or support to any idea or scheme that seems mutually beneficial to all parties concerned. But our especial aim will always be to further the aspirations of the genuine enthusiast, which regrettably are often held in check through want of desired components.

See this month's editorial comment.

Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design, quality and value and now that the remarkable phase lock loop stereo FM tuner is available, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	Z. 30	Crystal P.U., 12 V battery volume control	¢4.48
B	Mains powered record player	Z.30, PZ. 5	Crystal or ceramic P.U. volume control etc.	£9.46
C	20 20 W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times Z .30 s, \text { Stereo } 60, \\ & \text { PZ. } 5 \end{aligned}$	Crystal, ceramic or mag. P.U., most dynamic speakers, F.M. tuner etc.	£23.90
D	$20+20$ W. R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times Z .30 s, \text { Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck, etc.	£26.90
E	40+40W. R.M.S. deIuxe stereo amplifier	$2 \times 2.50 \mathrm{~s}$, Stereo 60 PZ.8, mains trsfrmr	As for D	£34.88
F	Outdoor P.A. system	2.50	Mic., up to 4 P.A. speakers controls, etc.	£5.48
G	Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers, etc., controls	f19.43
H	High pass and low pass filters	A.F.U.	C. DorE	£5.98
J	Radio	Stereo F. M. Tuner	C. Dor E	¢25.00

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools. and you certaınly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet. motor plinth, free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtained superb value for money because Project 60 is the best selling modular system in Europe and can therefore be produced at extremely competitive rrices and with excellent quality control.

Sinclair Radionics Ltd., London Road. St. Ives, Huntingdonshire PE174HJ.
Tel: St. Ives (04806) 4311

Sinclair Project 60

Z.30 \& 2.50
 power amplifiers

The 2.30 and 2.50 are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs Whether you use $\mathbf{Z . 3 0}$ or $\mathbf{Z . 5 0}$ amplifiers in your Project 60 system will depend on personal preference. but they are the same size and may be used with other units in the Project 60 range equally well
SPECIFICATIONS (Z50 units are inter-
changeable with Z.30s in all applications). Power Outputs
Z.30 15 watts R.M.S. into 8 ohms using 35 volts 20 watts R.M S. th.to 3 ohms using 30 volts
$\mathbf{2 . 5 0} 40$ watts R.M S. into 3 ohms using 40 volts: 30 watts R.M.S. into 8 ohms. using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Diatortion: 002% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted.
Input sensitivity: $250 \mathrm{~m} V$ into 100 Kahms
For speakers from 3 to 15 ohms impedance.
Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2} 1 n$.
2.30

Bult tested and guaranteed wht circults and instructionsmanual
$£ 4.48$
2.50

Built. tested and guaranteed with circuits and instructionsmanuat. £5.48

Power Supply Units

Designed specially for use with the Project 60 system of your choice
Illustration shows PZ. 5 to left and PZ 8 (for use with $Z .50$ s) to the right. Use PZ. 5 for normal Z.30 assemblies and PZ. 6 where a stablised supply is essential
PZ.5 30 volts unstabilised $\mathbf{£ 4 . 9 8}$
PZ. 635 volts stabilised $£ 7.98$
PZ-8 45 volts stabilised
(less mains transformer) $£ 7.98$
PZ-8 mans transformer $£ 5.98$

Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatistied with them. we will refund your money at once. Each module is guaranteed to work pe fectly and should any defect atise in normal use we will service it at once and without any cost to you wharsoever provided that it is returned to us within 2 vears of the purchase date. There will be a small charge for ourchase date. There will be a small charge for
service thereafter No charge for postage by service thereafter No charge for
surface mal. Atr-mall charged at cost.

Stereo 60 pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratıo and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

SPECIFICATIONS

Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u.-up to 3 mV : Aux-up to 3 mV .
Output: 250 mV
Signal-to-noise ratio: better than 70 dB
Channel matching: within 1 dB .
Tone controls: TREBLE +15 to -15 dB at 10 KHz : BASS +15 to -15 dB at 100 Hz .
Front panel: brushed aluminum with black knobs ana controls.
Size: $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ ins.
Built, rested
and guaranteed.
$£ 9.98$

Active Filter Unit

For use between Stereo 60 unit and two 2.30 s or 2.50 s , and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12 dB /octave), there :s less loss of the wanted signal than has previously been possible. Amplitude and phase distottion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two stages of filtering are incorporated rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current -3 mA . H.F. cut-off (-3 dB) variable from 28 k Hz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 kHz (35 V . supply) 0.02% al rated output.
Buift, tested
and guaranteed
$£ 5.98$

Stereo FM Tuner

first in the world to use the
phase lock loop principle
Before production of this tuner, the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now. for the first time. the principle has been applied to an FM tuner with fantastically good results. Other original features include varicap diode tuning. printed circuit coils, an I.C. In the specially designed stereo decoder and squelch circuit for silent tuning between stations. Senstivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aertal. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated. a panel indicator lighting up as the stereo signal is tuned in . This tuner can also be used to advantage with any other high fidelity system.

SPECIFICATIONS:

Number of transistors: 16 plus 20 in I.C.
Tuning range : 87.5 to 108 MHz
Capture ratio: 1.5 dB
Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting: $7 \mu \mathrm{~V}$ for full limiting.
Squelch level: $20_{\mu} \mathrm{V}$.
A.F.C. range : $\pm 200 \mathrm{KHz}$

Signal to noise ratio $:>65 \mathrm{~dB}$
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$)
Total harmonic distortion: 0.15% for 30% inodulation
Stereo decoder operating level: $2 \mu \mathrm{~V}$
Pilot tone suppression: 30 dB
Cross talk: 40 dB
I.F. frequency: 10.7 MHz

Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S.
Aerial Impedance: 750 hms
Indicators: Mains on:Stereo on; tuning indicator Operating voltage: $\mathbf{2 5 - 3 0}$ VDC
Size: $3.6 \times 1.6 \times$ B. 15 inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $\mathbf{£ 2 5}$ built and tested. Post free

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. ivES hUNTINGDONSHIRE PE17 4hJ Please send

Address
for which I enclose cash/cheque/money order.

[^4]
Sinclair IC10/Q16/Micromatic

IC10

The world's most advanced high
fidelity amplifier
This is the world's first monolithic integrated circuit high fidelity power amplifier and preamplifier. The circuit itself is a chap of slicon only a twentieth of an inch square by one hundredth of an inch thick. having 5 watts RMS output (10 watts peak). It contains 13 transistors (including two power types). 2 dıodes, 1 zener diode and 18 resistors, and is encapsulated in a solid plastic package which holds the metai heat sink and connecting pins. This exciting device is more rugged and has considerable performance advantages. including complete freedom from thermal runaway and a very low level of distortion. The IC10 is promarily intended as a full performance high fidelity power and preamplifier. for which application it only requires the addution of such components as tone and volume controls and a battery or mains power supply. It may also be used in other applications including car radios. electronic organs, servo amplifiers (it is dc coupled throughout) etc.
Circuit Description
The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. There is generous negative feedback round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory. Each IC10 is sold with a comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include oscillators, etc. The pre-amp section can be used as an RF or IF. amplifier without any additional transistors.

Specifications:

Output: 10 watts peak. 5 watts RMS continuous Frequency response: 5 Hz to $100 \mathrm{kHz} 1 \pm \mathrm{dB}$ Total harmonic distortion: Less than 1% at full Total ha
output.
Loat impedance: 3 to 15 ohms.
Power gain: 110 dB (100.000 .000 .000 times) total
Supply voltage: 8 to 18 volts. (A Sinclair power unit, PZ.7 is available for mains operation).
Size: $1 \times 0.4 \times 0.2 \mathrm{~m}$. plus heat sink and tags
Sensitivity 5 mV
Input impedance: Adjustable externally up to 2.5 Mohms.

Price (with manual) 59/6 (£2.971) post free.

Q16

High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design, technical journals have justly compared the 016 with much more expensive loudspeakers. Its shape enables the Q16 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as 11 s ability to pass all audio frequencies.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading : up to 14 watts TMS
Input impedance: 8 ohms
Frequency response: From 60 to 16.000 Hz Frequency response: From 60 to 16.000 Hz confirmed by independently plotted 8 and K curve.
Driver unit: Special high compliance unit having Driver unit: Special high compliance unit having
massive ceramic magnet of 11,000 gauss, aluminium massive ceramic magnet of 11,000 gauss, aluminium
speech coil and a special cone suspension for speech coil and a spectal
excellent transient response.
 with neat pedestal base. Black all-over cellular foam front with natural solid teak surround. Price $\mathbf{£}^{8.19 .6 .}(\mathbf{~} 8.97$! $)$.

Micromatic

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a mult-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size. Powerful AGC counteracts fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy. The plug-in magnetic earpiece provided matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteries is contained within the mınute and attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested. you will find it as easy to take with you as your wrist watch. and dependable under the severest listening conditions.

Specifications:

Size: $36 \times 33 \times 13 \mathrm{~mm}(14 / 5 \times 13 / 10 \times \pm 1 \mathrm{n}$.
Weight: including batteries. 28.4 gm (1 oz .).
Case: Black plastic with anodised alumintum front panel and spun aluminium dial.
Tuning: medium wave band with bandspread at higher frequencies. (550 to 1.600 Hz).
Earpiece : Magnetic type.
On/off switching: By inserting and withdrawing earpiece plug.
Kit in pack with earpiece, case, instructions and solder 49/6 (f2 47t).
Ready built. tested and guaranteed, with earpiece 59/6 ($\mathbf{5} 2.97$)).
Two Mallory Mercury batteries tyoe RM675 required. From radio shops, chemists, etc.

To: sinclair radionics lid london road st. ives huntingdonshire peit 4hJ Please send

Name

Address

Sinclair Radionıcs Ltd.. London Road St. Ives. Huntingdonshire PE17 4HJ. Tel: St Ives (04606) 4311

You'll find it easy to learn with this out- the latest research into simplified learning standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronice.
 \title{ WHAT READERS SAY

}"T.V. ENGINEER."
"So in two years. I have come from a labourer on a building site to a T.V. Engineer, with the help of your books.
C.G., Sheppey.
"SIMPLE, CLEAR AND CONCISE."
"I would like to endorse the feelings of many purchasers that they are a simple, clear and concise introduction to the study of electronics.
E.P.Y., London, S.E.9.
" MONEY•WELL SPENT."
"I consider this as money well spent. Thank you."
F.A., Burton-on-Trent

A TECH-PRESS PUBLICATION POST NOW FORTHIS OFFER!To the selray book co., 60 hayes hill, hayes, bromley, kent br2 7hp Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/- followed by 3 fortnightly payments of $20 /$ each. BASIC ELECTRONICS $90 /$. Cash Price or Down Payment of $20 /$ - followed by 4 fortnightly payments of $20 /$ Price or Town Payment of this offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 18 signature required of parent or guardian)
NAME
BLOCK LETTERS
fULL POSTAL
ADDRESS

THE RADIO SHOP

16 Cherry Lane, Bristol BSI 3NG Telephone: Bristol 421196 STD Code 0272

Your West Country shop for electronic components and solid state devices

TTL IC'S SERIES 74N

7400 N	25 p	74	25 p	7483 N	
	25p				
7404 N	${ }^{25 p}$	7460 N	25p	7492 N	
7410 N	25 p	7470 N	38	7493 N	
7420 N	25 p	7472 N	38	7494 N	
7430 N	25 p	7473 N	45p	7495 N	${ }^{6} 1.05$
40 N	25	7474 N	45p	74	
$14 . \mathrm{N}$	f1.05	7475 N	53		
7442 N	¢ 1.05	7476 N	53	P. \& P	
Fall outs 5 of any one type .. 63p. P. \& P. 5p					
Series 74N Data Bookles ..					
3 watt I.C. treble and bass data and components .. 65.25, P. \& P. 5p					
Stereo 23 watt I.C. treble and bass data and components \&10, P. \& P. 8p					
Power supply for 3 watt I.C. \&1.75. P. \& P. 10 P					
Crystal Set components with earpiece(if head phones required add 78p. P. \& P. 5p 80p)					
Experimental I.C. wish circuits for morse code osc., variable timer. wiper speed control, etc.				.	
Aircraft band converter circuit, instructions and components ... all you need is a tobacco tin .. . \&1.20. P. \& P. 5p					
Tape recorder level meter's 500μ A. Size lin \times lin \times in 50 p. P. \& P. 5p					
3 Digit tape recorder counters 32p. P. \& P. 5p					
SEND 3p STAMP FOR FREE CATALOGUE					

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aerlals now fitted with tilting bracket and 4 element grid reflectors.
Loft Mounting Arrass, 7 element, fis,-; 11 element, 52,$6 ; 14$ element, $60 ;$; 18 element, 70 Wall Mounting whth Cranked Arm, ${ }^{7}$ 18 element, 90 -. Chimncy Mounting Arra: Complete, 7 element, 80 ;- 11 element, 87,6 : 14 element, $95,=; 18$ element, $105,-$. Complete assembly instructions with every aerial. Low Loss Coaxial Cable, 18 va. King TeleboostersLabgear U.H.F. Boosters from 75 -- Belling Lee "Concond"" all Band V.H.F. U.H.F. mains operated pre-amp 87.10 .0 . State cleariv channel numker required on all orders.

BBC. ITV. FM AERIALS

 Wall S, D. 32,6. "H", array, 60 -: 1,T.W. (Band 3), 5 element loft array, 4,,-7 element, 55 -Wall mounting 5 element, 65/. Combined BBC IIV loft $1+5$, 35-. $1+7.67$. 6 . Wall mounting $1+5,7 \% 6$. Chimney mounting
$1+5,90-$. Pre-amps from $75=$.

Comblised BRCI ITV
 x0! $, 1+5+14,90,-1+7+$
$14,100 \%$. Available loft only.
F.M. 12 ardio Loft S, D, 19 6. ${ }^{\prime \prime} \mathrm{H}$ ", 3\% 6. 3 element array, 57/6. Standard co-axial cable, i_{1} - yd. Coax plugs, 1'8. Outlet boxes, 6 F , Diplexer crossover boxes, $17,6$. p.p. Aerials,
C.W.O. or C.O.D. (min. C.O.D. charge 3,6.) 1 - for fully illustrated Lists.

CALLERS WELCOMED
OPEN ALL DAY SATURDAY
K.V.A. ELEGTRONIGS (Dept. P.E.) 40-41 Monarch Parade London Road, Mitcham, Surrey $01-6484884$

OSMABET LTD.

We make transformers amongst other things MALIS TRALSFORMER8 Prim. 200/240V a.c. TXJ 00 . $425-0-425 \mathrm{~V}, 500 \mathrm{~mA}$,
 $420-0-420 \mathrm{~V}, 250 \mathrm{~mA}, 60 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}$ CT, $0-5-6.3 \mathrm{~V}, 3 \mathrm{~A}$ [4.05; TX5. $300-0-300 \mathrm{~V}, 120 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$ CT, 6.3 V $2 \mathrm{~A}, 6.3 \mathrm{~V}, 1.4,24.05 ; \mathrm{TX}, 250-0-950 \mathrm{~V}, 65 \mathrm{~mA}, 6.3 \mathrm{~V}$ 1.5 A , $28.10 ; \mathrm{MT1}, 200 \mathrm{~V}, 30 \mathrm{~mA}, 6-3 \mathrm{~V}, 1 \mathrm{~A}, 31 \cdot 20 ; \mathrm{MT} 2$ $230 \mathrm{~V}, 45 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}, 1.5 \mathrm{~A}, 51 \cdot 60 ; \mathrm{MT} 2 \mathrm{~A}, 250 \mathrm{~V},{ }^{60 \mathrm{~mA}}$ $6-3 \mathrm{~V}, 2 \mathrm{~A}, \mathrm{A1} \cdot 95 ; \mathrm{MT} 3 \mathrm{Prim}$. $110 / 240 \mathrm{~V}$, Bec. $2 \overline{\mathrm{u}} \mathrm{OV}$

MULTVOLT TRAMSYORIERS
Prim. $200 / 240 \mathrm{~V}$ a.c. OMT4/1. One tapped eec, $5-20-30-$ $40-60 \mathrm{~V}$ giving $5-10-15-20-25-30-40-45-5$ - $-60,10-0-$ $10,20-0-20,30-0-30 \mathrm{~V}$ s.c., 1 A . sest s ; OMT4/2 ditto, $100-110 \mathrm{~V}$ a.c., 1A, 24.45 .
LOW VOLTAGE TRATETORMERS
Prim. 200/240V a.c., $6.3 \mathrm{~V}, 1 \cdot 3 \mathrm{~A}, 6 \mathrm{sp}$; 3A, $1 \cdot 18$; 6A CT,

For FW Recwifit TRANifin Prim. 200/240Y a.c
 output, PPT3 $20-0-20$ V, 0.15A, 11.20 each; ditto, size 2×24 $\times 1$ Mn MTV1 g-0-9V, 1A, Stp; MTV2 12-0-12V, 1A, MTV3 20-0-20V, 075A, $81-20$ each.
O/P TRAISPORIRes
P.P. sec. tapped $3-7 \cdot \mathfrak{v}-1 \overline{0}$ ohme, A-A 6.6k O , 90 W (KT86, etc.), 44.05 : $50 \mathrm{~W}, 3 \mathrm{k} \Omega, \mathrm{A}-\mathrm{A}, 50.75 ; 100 \mathrm{~W}$, 3k O, A-A, EL34 (KT88, ete.). $11 \cdot 40$.
LOUDBPEATETS
Ex equipment perfect, 3 ohme only, jin at 40 each
p.p. IJP min.

New bored famous makes, 25 W , $55-00 ; 35 \mathrm{~W}$. 7.00
 $131 \times \sin , 10 \mathrm{~W}, 3,8$ and 15 ohm , 觡; fited two tweeter $\mathrm{Hi} \cdot \mathrm{Fi}, 3,8$ and 15 ohms, 44 ; Horn tweetery $2-16 \mathrm{kHz}, 8$ or 15 ohms, $10 \mathrm{~W}, \mathrm{si} \cdot 60$.
P.E. A URORA LIOHT COMTROL UITT
Maine tran. a specified. Prlm. 200/240V. Sece. Mains tran. st spectited. Prim

Covers entire aircraft band, $110-135 \mathrm{MHz}$, fully tumable, worke In proximity of any AM receiver, complete with bsttery, inatructions, siss.

Comprehensive outfit, to make your own PiC. boarde, S1-25. Carriage extra all orders G.A.E. INQUIRIES, LIGTY PLEASE, MAIL ORDER ONLY
46 Kenilworth Road, Edeware. Middx. HAB BYO Tel. 01.958 .9314

WOW』 A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outfitl No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s Simplified Study Method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

and what's more, you will understand exactiy what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.

You LEARN—but it's as

 fascinating as a hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the springboard for a career in Radio and Electronics.
FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T has a fine range of Courses up to City and Guilds standards.

New Specialist Booklet

If you wish to make a career in Electronics, send for your FREE copy of "OPPORTUNITIES IN TELECOMMUNICATIONS / TV AND RADIO". This brand new booklet-just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

Dept. 37IB, ALDERMASTON COURT, READING RG7 4PF

POST THIS COUPONFOR FREEBOOK

To B.I.E.T. Dept. 371B, Aldermaston Court, Reading RG7 4PF Please send books and full information - free and without - obligation.

NAME
AGE
ADDRESS

OCCUPATION
British institute of engineering technology

NOW LOWER THAN EVER PRICES-GREATER RANG
BI-PAK semiconductors oner you the largest and most popular
range of I.C's available at these EXCLUSIVE LOW PRICES. TTL
Digital 74 N Seriea fully coded, brand new. Dual in-line plant le

BI-PAK
$\mathrm{BP} 00=7400$
$\mathrm{BP} 01=7401$
BP02 $=7402$
$B P 03=7403$
BP04 $=7404$
BP10 $=7410$
$\mathrm{BP} 13=7413$
$\mathrm{BP} 20=7420$
$\mathrm{BP} 20=7420$
$\mathrm{BP} 30=7430$
BP40 $=7440$
$\mathrm{BP} 41=7441$
$\mathrm{BP} 42=7442$
BP47 $=7447$
APs0 $=7450$
$P_{51}=7451$
$P_{0} 3=7453$
$\mathrm{BP54}=7454$
$\mathrm{BP} 00=7460$
$\mathrm{BP70}=7470$
$\underset{\mathrm{BP}}{\mathrm{BP}}=7472$
$\mathrm{BP73}=7473$
$\mathrm{BP} 74=7474$
BP75 $=7475$
$\begin{aligned} & \text { BP76 } \\ & \text { BP80 }\end{aligned}=7476$
$\mathrm{BP80}=7480$
BP 1
$=7481$
$\mathrm{BP82}=7480$
BP83 $=7483$

BP86
BP90
$=7486$

BP91
$=7491$
$\mathrm{BP92}$
$=7492$
BP93 $=7493$
BP94 $=7494$
$\mathrm{BP9}=749 \mathrm{j}$
BP96 $=7496$
BP118 $=7100$
BP118 $=74118$
BP141 = 7121
BP145 $=74145$
BP153 $=74153$ Dual 4-line-to-1-line data selectors
multiplexers
1.40
3.50

PRICEs for quantitles in excess of 500 pieces mixed, on application.

TTL INTEGRATED CIRCUITS

Manuacturers Full outt -out of spec. devices includios functional units and part function but ciassed as out of spec. from the manufacturers' very rigid speciflea.
 UIC01 $=12 \times 7401 \mathrm{~N} 50 \mathrm{p} \quad$ UIC50 $=12 \times 7450 \mathrm{~N} 50 \mathrm{p} \quad$ UIC82 $=5 \times 7482 \mathrm{~N} \mathrm{50D}$ $\mathrm{UIC} 02=12 \times 7402 \mathrm{~N} \quad 50 \mathrm{D} \quad \mathrm{UICJ}=12 \times 7451 \mathrm{~N} 50 \mathrm{p} \quad$ UIC83 $=5 \times 7483 \mathrm{~N} 50 \mathrm{D}$

 $\mathrm{UIC20}=12 \times 7420 \mathrm{~N} 50 \mathrm{p}$ UIC74 $=8 \times 7474 \mathrm{~N} 50 \mathrm{p} \quad$ UIC94 $=5 \times 7494 \mathrm{~N} 50 \mathrm{p}$ UIC40 $=12 \times 7440 \mathrm{~N} 50 \mathrm{D}$ UIC75 $=8 \times 7476 \mathrm{~N} 50 \mathrm{p}$ UIC95 $=5 \times 749 \mathrm{~N} \times 50 \mathrm{D}$
UIC41 $=5 \times 7441 \mathrm{AN} 50 \mathrm{p}$ UIC76 $=8 \times 7476 \mathrm{~N} 50 \mathrm{p}$ UIC96 $=5 \times 7496 \mathrm{~N} 50 \mathrm{p}$

Packs cannot be split but 20 assorted pieces (our mix) is available as PAK UICXI
Every PAK carries our BI-PAK satisfactlon or money back GUARANTEE

BRAND NEW LINEAR I.C's-FULL SPEC

Type Ho
BP 201C-_sL201C BP 701C-8L701C $\underset{\text { BP } 702 \mathrm{C}-8 L 702}{72700}$

BP 709 - 72709
BP 709P- HA 709 C BP 711-MA711

- $\mathrm{A} 703 \mathrm{C}-\mu \mathrm{A} 703 \mathrm{C}$

TAA 263 -
RTL MICROLOGIC CIRCDIT
Epoxy TO-5 case $1-24 \quad 2 \overline{5}-99 \quad 100$
35p 33p 27p
uL914 Dual 2i/p ${ }^{6} 923 \mathrm{~J}-\mathrm{K}$ fip-flop ${ }^{350} \quad 33 \mathrm{p} \quad 27 \mathrm{p}$ Data and Circult Boll Price 7p.

BI-PAK SEMICONDUCTORS

P.O. BOX 6, WARE, HERTS.

60p. Cash with order please. Giro No. $388-7006$

VALUE ALL THE WAY

NEW LOW PRICE TESTED S．C．R．＇s

PIV	TA
	TO
30	
30	0.2
100	0.2
200	0.3
400	0.4
600	0.6
800	0.8

SIL．RECTS．TESTED

Ply	300 mA	A 730 mA	A 1 A	$1 \cdot \mathrm{t}$ A	3.4	10 A	4
	Ep	$4 . \mathrm{p}$	2p	2p	2p	2p	ep
50	0.04	－ 0.05	0.05	0.07	$0 \cdot 14$	0.21	0.47
100	0.04	－ 0.06	0.05	0.13	0.18	0.28	0.75
200	0.05	0.09	0.08	0.14	0.20	0.24	1.00
400	0.06	0.13	0.07	0.20	0.27	0.37	1.25
800	0.07	$7 \quad 0.18$	0.10	0.23	0.34	0.45	1.85
800	0.10	0.17	0.13	0.25	0.37	0.55	2.00
1000	0.11	$1 \quad 0.25$	0.15	0.30	$0 \cdot 46$	0.83	2.50
1200		0.83		0.88	0.87	0.75	
	TRI	IACs		İ		GH	OLT－
VBOM	M 2 A	6A	10A		REC	TIFI	
	TO－1	TO－66 T	T0－88	P．I．V．）	Stud	Type	with
	2p	Ep	\＆p	Flyin	eads	80	ch．
100	0.50	0.83	1.00		DIA		
200	0.70	0.90	1.25	FOR			JTH
400	0.90	1.00	1.60	PR100		37p	esch

2A POTTED BRIDGE RECTIFIERS ROOV 50 p UNIJUNCTION
 27 p each，
100 UP 20p．

APN gILICON PLANAR BC107／8／9， 10 p each； 80－99，9p； 100 up， 8 Pp each；rive off and coded TO－18 cass

FREE
Ond 50p Pack of your
Own choice free fith orders valued 44 or over． AF239 PNP GERM， AFL39 PNP GERM， BISTORS．RF MIXER \＆OSC UP TO 900 MHZ USF AS RE－ PLACEMENT FOR AF139－AF186
OF OTHER UBES OF OTHER UBES IN
VHF．OUR SPECIAL LOW PRICE：－1－4C 37L each．2j 99 34p each $100+30 \mathrm{peach}$ ．

FET＇S

 $2 \mathrm{~N} \quad 3819$$2 \mathrm{~N} \quad 38.0$

ADI6I

AD162

MATCHED COMILE－ MENTARY PAIRS OF GERM．POWER For niains drive put stage of Amplifiers and Radio receivers． OUR LOWEST PRICE： OF 83 p PER PAIR

HIGH POWER SLLI－ SISTORS．TO－3． FERRANTI ZT1487 VCl360 le 6A． fT ． $1 \mathrm{M} / \mathrm{cs}$ VCE40 Ptot，7\％W PRICE 30 p EACH
$2 H 3055115$ WATT SIL． OUR PRICE，B90 EACH

FULL RANGE OF ZETER DIODES RATGE

PHOTO TRANS．
0CP71 Type．43p
EX－EQUIPMENT MULLARD AF117 transistors．Large can 4 leads type．Leads cut short but atill usable． real valuc at 10 for 50 p ．

SIL．G．P．DIODES Ep 300 mW

SOPIV Sub－Mi
 Sub－M

deal for Organ Builders．
D13D1 Silicon Unilateral switch 80 p each．
Aithic integrated circuit having integrated circuit having thyristor elec－ wical characteristics，but built－in＂Zener＂diode betwcen gate and cathode．Full data and application circuits a rail－ able on request．

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI－PAK UNTESTED SEMICONDUCTORS Sainikfac
Pak No No．
120
1

60 Mixed germanium transistors AF／RF
7 Gi Germanium gold bonded dlodes sim．OA희，OA4ì
40 Germarium transistors like $\mathrm{OC} 81, \mathrm{ACl} 28$
60900 m a sub－min．Sill diodes
30 silicon planar transistors NPN Riln．13SY90．A，2N700
16 Silicon rectiflers Top－Hat 750 mA up to $1,000 \mathrm{~V}$
50 Sil．planar dionlea $250 \mathrm{~mA}, 0.1 / 200 / 202$
20 Mixed vults 1 watt Zener Jioles
30 PNP silicon planar transistors TO－5 sim． 2 N \＆ 132
30 PNP－NPN sil．transistors OC？ 300 \＆ 2 S 104
150 Mixed silicon and germanium diodea
－5 NPN Silicon planar transistors TO－5 sinn．－2N697
$10 \overline{3}-\mathrm{Amp}$ silicon rectifiers st uid type up to 1000 PIV
30 Germaniut PNP AF transistors TO－ \bar{j} like ACY 17 86 －Amp silicon rectifiery BYZ13 type up to 600 P14 Silicon NPN transiators like BC108
12 1－ u －Amp silicon rectifers Top－Hat up to 1.000 FIV
30 A．F．germanitm alioy transistors $\mathfrak{Q G 3 0 0}$ series d $\mathrm{OC}_{7} 7$
30 Madt＇s like MAT series PNP transistors
20 Germanium 1 Amp rectifiers GJM up to 300 P ＇lV
$5300 \mathrm{Mc} / \mathrm{a} \mathrm{NPN}$ silicon transistors 9 N 7 08 ，BSY27
30 Hast switching silicon diotles like 1×914 miço－min
Experimenters＇assortment of integratel circuits，untesteri． （iates，flip－flops，registers，etc．， 8 assorted pieces
10 1－Amp SCR＇s TO－s can up to 600 PLY CRS1／2̄－600
20 Sil．Planar NPN trans．Jow noise amp $2 \mathbb{N} 3707$
$\because \overline{0}$ Zener diodes 400 mW D0 0 case mivel rolls，3－18
15 Plawtic case 1 amp silicon rectiners IN 4000 series
$30 \overline{\mathrm{Sil}}$ ．PNP alloy trans．TO－y BCY26， $2 \overline{\mathrm{S30}} / 4$
$2 . j$ Sil．planar trans．PNP TO－18 2 N 290t
$2 \overline{0}$ sil．planar NPN trans．TO－v BFY $\mathbf{v} 0 / \overline{5} / \overline{\mathrm{u}} \mathrm{y}$

20 Fast switching sil．trank．NPN， $400 \mathrm{Mc} / \mathrm{s}-\mathrm{N} 3011$
30 RF germ．PNF trank． $\mathrm{DN}^{\mathrm{N}} 1303 / \overline{\mathrm{J}}$ TO－$\overline{\mathrm{j}}$
10 Dual trang， 6 lead TO－5 ancorio
45 RF germ．trang．TO－1 OC45 NKT 72
10 VHF germ．PNP trans．TO－I NK T667 AFIti．

$2 p$ 0.50 0.50

NEW QUALITY TESTED PACKS

Pack Description

Q2 16
16 White spot R．F．tran．PNP
4 OC77 type trans．
5 Matched trans． 0 （44／4i／31／81D
4 OCT：transistors
40 O 72 transistors
4 ACl28 trans．PNP high gain
$4 \begin{aligned} & \text { AC126 trang．PNP } \\ & 0 \text { OC81 type trans．}\end{aligned}$
7 OC81 type trans．
AC127／128 comp．pairs PN P／NPN
3 AF116 igpe trans．
3 AF117 type trans．
3 OC171H．F．type trans．
万 $2 \mathrm{~N} 2 \mathrm{~S}_{2} 26$ sil．epoxy trans．
\square GET880 low noise germ．trans．
3 NPN 1 ST141 \＆ 2 gT 40
3 NPN 18 8T141 \＆ 2 ST140
4 Maclt＇s 2 MAT 100 \＆MAT 120 4 OC44 germ．trans A．F．
$40 C 44$ germ．trans．A．F．
3 AC1 27 NPN germ．trans
20 NKT trans．A．F．R．F．coded
10 o．A202 sil．diodes sub－min．
80 0A81 diodes
fiN914 sill．diodes TJPIV 75 mA
$80 . A 9$ germ．diodes sub－min．ING9．
310 A 600 PIV sil．rects．I845 R 2 Si．power rects．1YYZ13
4 Sil．trans． $2 \times 9 \mathbf{N 6 9 6}, 1 \times$ UN 697
$\times 2 \mathrm{~N} 698$
7 Bil．switch trans． 2 NOti NPN 6 Bil． 8 witch trans． 2 N 708 NPN
3 PNP sil．trans． $\mathrm{O} \times \mathrm{N} 1131$ ， 3 8il．WPN trans． 2×1 Ninil
7 Sil．NPN trans． $2 N 2369,300 \mathrm{MHZ}$ ．
3 Sil．PNP TO－5 $\quad \times 2 \mathrm{~N} 2904$
$1 \times 290 \mathrm{~F}$
N 3646
NPN：
2N30J3 NPN sil，trais．
FNP t rans． $4 \times 2 N 3703,3 \times 2 N 3702$
NPN t rans． $4 \times 2 N 3704,3 \times 2 \times 3705$ NPN amp． $4 \times 2 \mathrm{~N} 3707,2 \times 3 \mathrm{~N} 3708$ ． Plastic NPN TO－I8 2 N 3904
6 NPN trana． 3 Nulo
BC107 NPN trans．
NPN trans． $4 \times$ BC108， $3 \times$ melo
3 BCl13 NPN TO－18 traur．
3 nClis NPN TO－Jtrans．
NP：high gain $3 \times$ BC16 $7,3 \times$ BC1 68 4 BCYTO NPN trans．TO－18
NPN trans． $9 \times$ BFY $51,2 \times$ BFY BSY 90 NPN AWitch $10-18$
BSY 904 NPN trans． 300 MH ：
sil．di germ．trans．nixed all marked new．

PRINTED CIRCUITS－EX－COMPUTER

Packerl with semiconductors and components， 10 boards give a guaranteed 30 trans and 30 diodes． Our price 10 boards，50p．Plus 10p P．\＆P． 100 Boards 25，P＇．\＆P．30p．

C－33V．${ }^{400 \mathrm{nIV}}$（DO－7 Hat）18p ea． 10 W （so－10 Stud） $25 p$ ea．All fully tested
markel． required．
BRAMD MEW TEXAS GERM．TRANBISTORS
Coded and Gnaranteed Coded and Guaranteed
Pak No．EQV＇T Pak No
T1 8

GENERAL PURPOSE GERM．，PNP POWER

 TRANSISTORSCoded（iP100．BRAND NEW TO－3 CABE．POSB．REPLAUEMENTS FOR

 SPECIFICATION
VCBO BOV VCEO 50 V LC $10 A$ PT 30 WATTS HFE 30170.
$\begin{array}{ll}90 \text {－99 each } & 100 \text { up } \\ 46 \mathrm{p} \text { each }\end{array}$
43p each 40 p each 36 p each
GENERAL PURPOSE SILICON NPN POWER TRANSISTORS
Coded GP300．BIAAND NFW TO－3CASE．POSSIBLE REPLAUEMENT FOK 2N305J，TBDY 20, BDY11
BPECIFICATION
VCBO 100V，VCEO 60V．IC $1 ⿹ 勹 巳$ PRICE $1-\underline{4} 4100+$

GENERAL PURPOSE MPN SILICON SWITCHENG TRANS．TO－18 8IM．TO 2M706／8， B8Y87／28／95A．All usable devices no open or short circuits．ALSO AYAILABLE in PNP Sim．to $2 \mathrm{~N}=90 \mathrm{n}$ ，BCY70．When orlering please atate preference NPN or PNP，
2N2060 NPR SIL．DUAL TRANS，CODE D1699 TEX

120 FCB MEXIE DRIVER TRAHSISTOR
B8X21＊C40T， 2 N 1893 CODED NDIE0．1－24 17p each．TO－N．P． 20 up 15p each．

Sil．trans，suitable for P．E．Organ．Metal TO－18 Eqve．ZTX 300 5p cach．
Any Qty．

SURPLUS A．E．I．40A GERM．JUNCTION RECTIFIERS．For Power Applications

ALL PRICES QUOTED IN NEW PENCE．

Giro No．388－7006．

TRAMSIRTOR EQUIVALENTS BOOX．A complete cross reference and equivalents book for European， Ameriean and Japanese Transis－ tors．Exclusire to BI－PAK 75D each．

GERM．POWER TRANS．

Type	Price each
OC20	50p
00^{2}	30p
Oc23	33p
OCO5	25p
$0 \mathrm{C}-6$	25p
0 C 28	40p
0 O 29	409
0025	33p
OC36	40p
AD140	40p
．D142	40p
AD149	48p
OUR STOCKS of individual devices are now too numerous to mention in this Advertisement．Send S．A．E． for our listing of over 1,000 Semicondactors．All svailable Ex－ Stock at very competitive prices．	

semicondactors．All available Ex－
Stock at very competitive prices．

Pleaye send all oriers drect to our＂Mareblucuc and degnatch denartment． P．O．BOX 6，WARE，HERTS．
Postage and placking add 7p．Overseas add extra for Lirıä̆i．Minimum order．

G.E.C. INDUCTION MOTOR
Very powerful $1 / 40$ th h.p. 725 R.P.M. For normal 230/240V $50 \mathrm{c} / \mathrm{s}$ mains. Bwitch start, 48.50 including switch, plus poat and Insurance 02 \ddagger p.

18 volk tas Eattery Trickle Charger. Made in Japan, this is very amall and neat. Regular use Wlll keep your car bat tery in good trim throughout incurance.
QUICK CUPPA
Mind Immerulon Heater. 350 w 200/240v. Bolls full cup in about two minutes. Vise any socket or lamp holder. Have at bedside for tes, baby's lood, etc. sl-2s, post and insurance 14 p .12 v . car mode
atoo avaleble 81 .

PLINTH AND COVER Suitabie for most auto changers, teak base with
tinted perppex corer, 14.25 plun 33p poatage. Bpecial set for Balfour autochanger $\mathbf{8 4}$-25 plun 33p postage.

THYMISTOR LIGHT

DIMMENS
Willdimineandescentiighting up to 600 w. from full and wired reaty to ingtall and

AUTO-ELECTRIC CAR AERIAL

With dashboart control awitchfully extendable to 40 in . or fully retractable. Suitable for $12 y$ poaitive or negative earth. Supplled complete with fitting instructions
 and in
COMPUTER TAPE
$0,400 \mathrm{ft}$ of the best magnetic tape money ean buy. Made by E.M.I., lin. Wide alnost unbreakable and ous a 101 in . metal
computer apool. Csers have claimed successful results with Hound recordings el plus 33 p video as well as (daqkette to hold npool bop extra.

ideo as well as

HORSTMANN "TIME E SET" SWHTCH (A soAmp 8witch.) Juat the thing If you want to come home A to a warm hovet without if conting you a fortune. You can delgy the switch on time of your electric flres, etc., up to 14 houre from setting time or you can use the switch to give a boost on period of up to 3 hours. Equally suitable to control procesing. Regular price probably around ef. Special milp price 1.50 . Poat and inn. 23p.

I HOUR MINUTE TIMER
Msde by tamous Smith MiN company, theac hare a large clear dial, size $4 \frac{1}{8} / \mathrm{in}$. $\times 3$ 3inna, which can be aet in minutes ap to 1 hour. After preset period the bell ringa. Ideal for procewing, a memory jogger or, by
11.15 .

The amplifier
tencection of the year You will be amazed at the fullness of reproduction and
at the added qualities your at the added qualities your
records or tuner will rerecords or tuner orill re-
produce. cablnet elegantly styled and teak finlahed to blend With modern turnimhinge, this amplifier nses an

Standard size 1: wafer-silver-plated 5 -amp contact, atanNo. of Poles 2 way 3 way 4 way 5 way 6 way 8 way 9 way 10 way 12 way

1 pole	380	83p	380	83p	33 p	88p	33p	88	38
2 poles	385	839	88	80	385	38	385	55	559
3 poles	${ }^{38}$	385	85	5p	6	85	85	75	750
4 poles	88.	38p	885	85	650	5	\% 6	050	00 p
${ }_{5} 5$ poles	88	385	85	859	$76 p$	759	750	21.15	21.15
6 poles	885	68	85	559	750	75	750	31.35	\$1.85
7 poler	55.	85p	555	75p	95p	$95 p$	959	21.55	31.65
8 poles	55	850	55p	75 p	$0{ }^{\circ}$	95		81.76	81.75
9 poles	55	56	75.	759	21.15	11.15	1.15	21.95	21.08
10 poles	${ }^{50}$	55	75p	$96 p$	21.15	\$1.15	21.15	26.15	䖯 15
11 poles	55.	789	76	85p	81.55	81.85	21.85	28.35	28.35
12 poles	55 p	759	75p	95	81.55	11.85	21.85	88.55	20.5

Where postage is not stated then orders over L5 are post fres. Below 55 add 20p. S.A.E.
with enquiries please.

SPARTAN Portable Long and medium 7 trandetor, ime in. \times Itin. With large than unual epeaker giving very good tone. Built-in ferrite aerial and telescoplc aerial for diatant stations. A real bargain complete with leather case, carry siling, earplug and case. 6

MULTI-SPERED MOTOM

Feplacement in many well known lood mixers. fix speeds are avallable. 500,850 , and $1,100 \mathrm{r}+\mathrm{p} . \mathrm{m}$. from either or both of the nylon sockets (where the beaters of the food mixere normally go) and $8,000,12,000$ and from the main drive shaft Epeeda) pow the main dive shaft. Very spprox. 2in. diameter 5 in . long. Price ${ }^{\circ} \mathbf{O}_{5}$ plit 23 p poet and ins.

MAINS OPERATED CONTACTOR

220/240V 50 cycle solenoid with laminated core 20 very sllent in operation. Closell 4 clrcalts each rated at 10A. Extremely well made by a Overall slze $25 \times 2 \times 2$ in 81 each.

DOUBLEENDED MAINS MOTOR On feet with holes for screw. down fixing. To drive modela, ven, blower hester, etc. 50 p esch, plus 18 p post and free.
0.005 mFd TUNING CONDENSER

Proved design, ideal for straight or reflex circuit. 18p each, $\mathbf{2 1} \cdot 90 \mathrm{doz}$.

ELECTRONICS (CROYDON) LTD

Dept. PE, 266 London Road, Croydon CRO 2TH
Also 102/3 Tamworth Road, Croydon

THE SOCIETY OF ENGINEERS

invites you to visit the

'ENGINEERING 71'

Exhibition at Earls Court, London (Cromwell Hall), 3.30 for 4 pm . on 29th APRIL, 1971, when a paper HARRIER - FIRST OF THE NEW will be presented by:
MR. J. W. FOZARD of HAWKER SIDDELEY AVIATION LTD.

Chief Designer (Harrier)
Complimentary tickets available from the Secretary
ABBEY HOUSE, VICTORIA STREET LONDON, S.W. 1

Tel. 01-222 7244

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch ard is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. The bright chrome control knob activates an on-off switch and conerols $40-600$ watts of all lights except fluorescents at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression. Price: $\mathbf{6 3} 20$ plus $10 p$ post and packing. Kit Form: $\mathbf{6 2} 70$ plus 10 p post and packing. Please send C.W.O. to: -

DEXTER \& COMPANY

1 ULVÉR HOUSE, 19 KING STREET CHESTER CH1 2AH Tel: 0244-25883 As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc.

WAH-WAH PEDAL KIT

SELECTIVE AMPLIFIER MODULE.

 The basis of the Wah-Wah pedal. Kit contains all the components to build a 2 transistor circuit module, also the sockets, control, etc., required for the construetor to assemble his own design, C1.75.Assembled and tested module $\in 2 \cdot 13$.
FOOT YOLUME CONTROL PEDAL. Foot pedal unit in very strong fawn plastic. Fitted with output lead and plug for connection to guitar amplifier. May be used for volume control or converted to Wah-Wah by adding the module.
Pedal unit now only $\mathbf{6 5}$-13.
Complete kit for Wah-Wah pedal now only £6.50.

All post free.
Send 15p for our catalogue of components, testmeters, musical electronics and more details of the above items.

Callers welcome.
WILSIC ELECTRONICS LIMITED 6 COPLEY ROAD, DONCASTER YORKSHIRE

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, MPLIFIER, etc. Types available: $6 v, 9 v$,$18 v$ (single outpue) ≤ 2 each. P. \& P. 15 p . $9 v+9 v / 6 v+6 v$; or $4 l v+41 v$ (4 . $15 p$. outpurs) $\mathbf{2} .50$ each. P. \& +P . 15 p . Pleaso state output required. All the above units are completely isolated from mains by double wound eransformer ensuring 100% safecy.
R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.E.), 31 Olivar homd, London, E. 17

ELECTRIC CLOCK
WITH 25 AMP SWITCH Made by Smith's, these units are as fitted to many top quality coozers is mains driven and The quency controlled so it is exquency controlled so it is exdlals enable switch on and off
 for switching on tape recorders oftered at and fraction of the regular price-new and unuaed only 28, less than the value of the clock alonepost and insurance 14p.

FLUORESCENT CONTROL KITS

Each kit comprises reven Items-Choke, ${ }^{2}$ tuhe ends, atarter, starter hoider and 2 tuhe clips, with wiring' instruct lone. Suitable for normal fluorescent tubes or the new "Grolux'"
tubes for flah tanks and indoor plants. Chokes tubes for flah tanks and indoor plants. Chokes are super-silent, mostly resin filled. Kit A--
10 - $20 \mathrm{~W}, ~ E 1 . ~ K i t ~ B-30-40 W, ~$ or 8ft 25 W . or 8 ft 125 W tube 81.7%. Kit MF1 is for 8 in ,
9 in and 12 in minlature tubes, s1. Kit MF2 for 21 in minature tubes, 13 min . Kit Postage on Kits A and B 23p for one or two filts then 23 p for each two kits ordered. Kits C, Dand E 23 p on first kit then $18 p$ for each
sit ordered. Kit $\mathbf{F} 33$ p then 23p for each kit ordered. KIt MF1 18p on first kit then 18p on each two kits ordered.

BLANKET SWITCH Double pole with neon let nto alde so luminous in dark, deal for dark room light or for use with waterproof element-new
plastlc case 80 p each. 3 heat model $\mathbf{4 0 p}$

BLANKET SIMMERSTAT

Although looklng like, and fitted as an ordinary blanket switch, this is in fact a device for swltching on for varying time off to full heat. Although suitable for comtrolling the teniperature of any other appliances uging up to $\mathbf{1 A}$. Listed at $\$ 1 \cdot 40$ each we ofter these while our stocks last at only 65 y each.
\longrightarrow REED SWITCHES
Glass encased, switches operated by external magnet-gold welded contacts. We can now offer 3 types:
Mintatare, lin long \times approximately in dia. meter. Will make and break up to 1 A up to 300 olts. Price $18 y$ each, 81.20 dozen,
siandard. 2 in long x in diameter. This will reak currents of up to 1 A , voltages up to 250 lats. Frice 10p each, 90 p per dozen. fattened out, so that it can be fitted thick, smaller apace or a iarger quantity may be packed into a square tolenold. Hating 1 amp 200 volta. Price $80 y$ each. 88 per dozen.
Bmall ceramic magnets to operate these reed witches 9 p each. 00 p dozen.
HIGHCAPACITY ELECTROLYTICS Brand new, not ex-equipment.
$100 \mathrm{mid} .25 \mathrm{~V}, 6 p$ each 60 p doz.
$100 \mathrm{mld} .25 \mathrm{~V}, 6 \mathrm{p}$ each 60 p doz
$200 \mathrm{mfd} .25 \mathrm{~V}, 8 \mathrm{p}$ each 76 p doz.

$500 \mathrm{mdd} .25 \mathrm{~V}, 18 \mathrm{p}$ each $\$ 1.80 \mathrm{doz}$.
$500 \mathrm{mid} .50 \mathrm{~V}, 88 \mathrm{p}$ each 28.40 doz .
$500 \mathrm{mfd} .300 \mathrm{~V}, 48 \mathrm{p}$ each 84.50 doz
1000 mfd .12 V , 150 each 51.50 doz
1000 mfd . $18 \mathrm{~V}, 170$ each 11.70 doz
$1000 \mathrm{mfd} .64 \mathrm{~V}, 87 \mathrm{p}$ each 84 doz .
$2000 \mathrm{mfd} .25 \mathrm{~V}, 84 \mathrm{p}$ each 88.95 doz
$10,000 \mathrm{mfd} .6 \mathrm{~V}, 29 \mathrm{pach}$ each 88 doz .
$10,000 \mathrm{mid}$. 15 V . 48 p each 54.50 doz
$15,000 \mathrm{mld}$. $10 \mathrm{~V}, 58 p$ each 55 doz .
$60,000 \mathrm{mfd} .8 \mathrm{~V}, \mathrm{si} 10$ each $\$ 10 \mathrm{doz}$
$70,000 \mathrm{mid} .13 \mathrm{~V}$, 52 each 820 dox.
8 AMP 12V BATMERY CEARGER FIT-com pribing $230 / 40$ mains transformer with 3 amp 18 volt $1+$ AMP POWPR PACE $15+23$ p post. 18 VOLT $1 \frac{1}{8}$ A.iP POWRE PACK. full wave rectifler and $2000 \mathrm{~m} / \mathrm{L} / \mathrm{d} m \mathrm{mothing}$ Prlce $41 \cdot 40$. soinotore strreo carthidaze Turnover type, ref. No. 19 Tl. Thls fits most British pick
ups and is a really excellent reproducer. Limited quantity, 81 .
C AMP 8-PDi sockers. These are always good stock, you never know when you will need some Famous make, brown bakelite, standard size 12 for $65 p$ plus 23 p post. DITIO WITE 8WITCE. 12 for 51 plus 23p post cream, less awitch. 6 for ti BAKELITE PAMELS, MANY THICKNEBESS. We have fust taken delivery of approximately 10 tons of bakelite in varylng thicknesses from 2 in. to a few thou. It you have a need for any of this then we would he glad to supply. The thickest is very heavy and could be used, for instance, as a bed for a motorised undt. Medium thickness is usetul for front panels of instrument, etc., etc.
Cut to your aize price ls 80 per lb. plus 80 p cutting charge plus carriage. mounting brown hakellte. Made by famous maker. 18p each or $11 \cdot 20$ dozen.
100 Ass 0 RTH $8 \amalg I C O N$ RPCTIFIER G.P, AID SWITCHING DIODEs. Small and very amal sizes. A real enip for cxperimenters, efp per 100

20 AMP ELECTRICAL PROGRAMMER Lespn in your glaep: Have Radio playing and kettle bolling as you awake-switch-on lights to ward of intruders-have warm house to come home to. All these and many other thinge you can do if you invest In an Electrical Programmer. Made by the famous Smiths Instrument Company.
 This is easentially a $230 / 240$ volt mains operated Clock and a 20 amp $8 w i t c h$, the switch-off time of which can be delayed up to 12 hours (continuously varlable not atepped). Similarly the switchon time can be delayed. This ia with chrome surround. Offered at $\$ 2.40$ plus postage and insurance 23p.

HI-FI SPEAKERS (15, 30, $40 \& 100 \mathrm{~W}$)
FULL FI 12 IICE LOUDSPEAKER. This is undouhtedly one of the finest loudspeakers that we have ever offered.
produced by one of the country's most tamous makers. it produced by one of the country's most famous makers. It HI-FI load and Rhythm Guitar and public address. Flux Density 11,000 gauss -Total Flux $44,000 \mathrm{Maxwells}-$ Power Handling $1 \overline{5}$ watts R.M.s. Cone Moulded fibre-Freq. reaponse $30-10,000$ c.p.s.-Specity 3 or 15 ohms-Mains resonance 60 c.p.s.-Chassia Diam. $12 \mathrm{in},-12 \mathrm{fin}$. over mounting lugs-Baffe hole 11 in . diam.- Mounting boles 4 , holes- in. diam. on pitch circle 11 iln . diam.- Overall height 5iln. A 26 speaker offered for only 24 . plus 37 p
 18 in . 100 watt $\$ 18.50 \mathrm{carr}$. $21 \cdot 50$.

INTEGRATED CIRCUIT BARGAIN

A parcel of integrated circuits made by the famous Plensey Company. A one-In-a-lifetime offer of Micro-electronic devices well below cost of manufacture. The parcel contalna 5 ICs all new and perfect, first-grade device, definitely not sub-standard or seconds. 4 of the ICs are aingle allicon chip
GP amplifiers. The sth is a nonolithic NPN natched pair Begular price GP anpiflers. The bth is a nonolithic NPN natched pair. Regular price of parcel well over es. Full circuit details of the ICs are included and in prices 250 upwarda with circuits and technical data of each. Complete parcel only 21 post paid. DON'T MISS THIS TERRIFIC BARGAIN.

THIS MONTH'S SNIP

ELECTRIC TIME SWITCH

Made by gmiths these are AC mains operated, NOT CLOCKWORK. Ideal for mounting on rack or shelf or can be built into box with 13 A per 24 hours, 5 anp changeover contacta will per 24 hours, anmp changeover contacts will es-50, post and Ins. 23 p . Additional time contacts 50 p pair.

DISTRIBUTION PANELS

Just what you need for work bench or lab. standard 13 amp fused plugs and on/off switch with neon warninglight. Supplied complete with 7 feet of heavy cable. Wired up ready to work, 88 less plug:

4 AMP VARIAC CONTROLLERS

With thls you can vary the voltage applied to your circuit rom zero to 270 volts without generating undue heat. One obvious application therefore is to dim lighting. Ex equipment but little used-as good'as new offered at approx. half price-s plus 70 p post and ins.

19-PIECE SOCKET SET

Complete with wall or bench rack. An ideal gift for the motorist. $80 p+23 p$; post and insurance. Most use.

- Etitas

HONEYWELL PROGRAMMER

Thls ls a drum type timing device, the drum being calibrated in equal divitions or awitch setting purposes with tripe which arc infinitely adjustable for position. They are also arranged to allow 2 operations per switch per rotation. There are 15 changeover micro awitches each of 10 amp type operated by the tripe thus $1 \bar{j}$ circuits may be changed per revolution. Drive motor is mans operated 5 reve per min. Machinery control, Boiler firing, Dispensing and Vending machines, Display el0 each. Special snip price 56.75 plus 20p post and insurancers probebly over terriff bargain.

Where postage ia not atated then ordert over £ั are post free. Below es add 20p Semiconductors add $\overline{\mathrm{L}}$ p post. Over $\& 1$ post free. S.A.E. with enquiries please.

Miniature
 WAFER SWITCHES

 pole, 4 wry- ${ }^{3}$ pole, 4 Wiy- ${ }^{2}$ pole emach. 1 - pole, 12 woy. All st lozen, your assortment.

WATHRPROOF	ETBTDG
yards length 70W. mperature control.	gelf-regulating 50\% poat free.

MICRO SWITCH
§ amp. changeover contacts, of each, st doz. 10 each or 81.05 doz.

MAINS CONNECTOR

A quick way to connect equipment to the malnt connection by pluge prevents accidental switching on; has sockets which allow invertion of meter without disconnechold one hair wire firmly hold one hair wire on up
to four 7,029 cables.
 85p each.

DRILL
CONTROLLER Electronically change
speed from approxi. speed from approxi.
nately 10 reva. to maximum. Full power at all speeds by finger-tip control. Kit includes all parte, case, everything

> and fuli instruction: 21.50. plus 13 p post and Insurance.

BALAIICED ARMATURE UXIT 500 ohm, operaten apeaker or micro circuite, 88 p each, 88.50 doz

PROTECT VALUABLE

DEVICES

PROMTHEPMAL ROMAWAY OR OVEREEATnifa: Thansistors, rect which use hent. sinka can easily be protected. SImply make the contact the beat part of Motors and equipment generally,
 can also be ade
quately protected by having thermostata in strategic apots on the casing. Our contact thermostat has a callbrated dial for setting between range setting is hetreen 80 to 800 deg . F. Price 50 p .

hermostat

 WiTH This has a mentor This has a seneor atigched to a 16A awitch by a14in length of texlble capillary
to $150^{\circ} \mathrm{F}$ so it is tubing-control range in $20^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$ oo it is auitable to control soll heating and jquid healis. the eensor can be ralaed out and lowered into the vessel. This thermostat could alto be uned to reached in tack or heap subject to spontaneou combustion or if llquid ls being heated by gat or other meane not controllable by the aritch. Made by the tamous Teddington Co., we ofter these at a6p each. Postage and insurance 14p.

MAINS MOTOR Preciaion made - ${ }^{30}$
ueed in record deck: and tape recorderaideal aleo for extractor fan, blower, heaters, etc. New and perfect
Bnip at 50 . Poatage 15p for firat one then $5 p$ for each one
ordered.

NEED A SPECIAL SWITCH?
Double Leaf Contact
 meh. 1.0 dozen, your assortment

WATMRPROOF HEATMO

26 yards length 70 W.	Self-regulating
temperature	

TRANSISTORS
FULLY GUAR CES SEND FOR FREE COPY TODAY

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

and Trawler Banands: Medium Wave 1, Medium Wave 2, Long Wave, S.W.1, 8.W.2, S.W.3 retractable chrome plated telescopic aerial for Medium and Long Waves. section 24 in. Puah-pull output using 600 Mw type transistors. Socket for car aerial. Tape record socket Selectivity switch. 8witched earplece socket complete with earpiece for prisate listening. 8 transistors plus 3 diodes. Famous make 7×4 in speaker. Air spaced ganged tuning condenser. On/oft switch volume control. Wave change switch and tuning control. Attractive case in rich chestnut shade with gold blocking. Size $9 \times 7 \times$ tin approx. Easy to follow instructions and diagrams make the Roaner Eight a pleasure to build. Parts price list and easy build plans 25 p (FREE with
parts). parts
Total building costs

Overseas P. \& P.

roamer seven mk IV

7 FULLY TUNABLE wave-BANDS-M.W.1, M.W.2 L.W., Band, S.W.2, M.W. 3 and Trawler Brovides easier Medium waveband provides easier tuning of Rndio rod acrial for Medinn and Long Waves. Retractable 4 section 24 Ln chrome plated telescopic aerial for peak short Wave ligtening. Socket for Car Aerial. Powéful push-pull output
 and two diodes including Micro-Alloy R.F. Transistors. Famous make wave change switches. Air siraced ganged tuning condenser. Volurne/on/off control, $9 \times 7 \times 4$ in approx. Easy to follow instructiong ane case with carrying handle. Size pleapure to build. Parts price fist and easy build plans 15 (FREF with parts)

Total building costs
95 58 5 Personal Earpiece with plug andswitched socket
Post, packing and insurance 41p
Overseas P. \& P. 90p

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE
WITH SPEAKER
Attractive black and gold case. Size $5 \frac{1}{3} \times 1 \frac{1}{2}$ Atractive black and gold case. Size $5 \frac{1}{3}$, $1 \frac{1}{2}$
3 ine Tunable over both Medlum and Lung Wave
with extended Luxemboutg, etc. 7 , stages-5 transistora and of diodes, supersensitive ferrite rod aerial, fine tope mowng coil speaker. Easy build plans and parts price list $8 p$ (FREE with parts).
Earpiece with plug and switchell socket for private listening, 30p extra.

IMPROVED MODEL!

roamer six

SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER Attractive biack case with red grille and black
knobs and dial with opun brasin inserts. Size $9 \times 0 \% \%$
2lin. approx. Tunable on Medium and 2 lin. approx. Tunable on Medium and Long Waves,
two ' Bhort Waves, Trawler Band plua an extra M two Short Waves, Trawler Band plus an extra M.W band tor easier tuning of Luxembourg, etc. Sensitive
ferrite rod aerial and latest telescopic aerial for ferrite rod aerial and latest telescopic aerial for
Bbort Waves. Improved clrcuit. 8 stages -6 tranSbort Waves. Improved clrcuit, 8 atages- 6 tran-
sistors and 2 diodes Including Micro-Alloy R.F. aistors and 2 diodes Including Micro-Alloy R.F.
Transistors, ete. Easy build plans and parts price list lop (FREE with partblans and parts 11stening, 30p extra.

Total building costs 28-2-2 Post,
and insurance 21p
Overseas P. \& P. 55p

Total building costs cs $8=8$ Post
and insurance 26p Overseas P. \& P. 70p

NEW!

transeight

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case in black with red grille and black knobs and dial
ingerts. With
spun
9×51
$\times 21 \mathrm{in}$.
appros. Tunable on Medium and Long
Waves, 3 Short Waves and Trawler Band.
Sensitive ferrite rod aerial for M.W. and L.W. Telescopic aerial for short Waves. 8 improved type transistors plus 3 diodes. Push-pull output. Battery economiser switch for extended battery life. Ample power to drive a larger speaker. Parts
price list and easy build plans 25 (FREE with parts).

Total building cosis
cs 4-44.
Earpiece with plug and switched socket for private listening, 30 p extra.
Post, packing and insurance 31p
Overseas P. \& P. 70p

transona five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attractive case with red speaker grill Size 95 $4 \frac{1}{2} \times 1$ lin. 7 tageb-5 tranalstors and 2 dlode fine tone moving coil speaker. Easy bulld planz and parts price list 8p (EREE with parta),
Earplece with plug and switched socket for
prlvate listening, gop catra.

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
I enclose £please send items marked
ROAMER EIGHT \square ROAMER SEVEN TRANSEIGHT \square POCKET FIVE TRANSONA FIVE \square ROAMER SIX Parts price list and plans for Name.

Address

BRAND NEW FULLY GUARANTEED DEVICES

$A C 107$ ACII ACI28 ACl41K ACl42K $A C 154$ $A C 155$ $A C 155$ $A C 156$ $A C 157$ $4 C 157$ AC165 AC165 AC166 AC166 AC167 | $4 C 167$ |
| :--- |
| $4 C 168$ |
| 168 | $1 C 168$ ACl69 C 178 $A C 169$ AC176 CI $A C 17$ $A C 187$ Cl $A C 187$ ACl ACB $A \mathrm{Cl} \mathrm{Cl}_{8}$ ACYI7 ACYI7 ACY18 ACY19 ACY20 ACY21

 $15 p$ AF11520p AFI 23p AFII7 AC127 17p AF125 \begin{tabular}{ll|l}
$A C 142 K$ \& 17p \& AF127

AF139

\hline AC151 \& $15 p$ \& $A F 139$

AC154 \& 15 \& $A F 178$
\end{tabular}

 $\begin{array}{ll}\text { ACY } \\ \text { ACY29 } & \text { 30p ASY58 } \\ \text { ACY30 } & \text { 25p ASZ21 } \\ \text { ACY31 } & \text { 25p } \\ \text { ACI }\end{array}$

 ADI40
ADI42
ADI 49 AD 142
AD 149
AD 161

ADP	BC117
AD169	43p
AC119	
AD162	35

AD $161 /$ $\begin{array}{ll}\text { AD161/ } & 35 p \\ \text { BC126 } \\ \text { BC132 } \\ \text { I62(MP) } & 63 p \\ \text { BCI } 134\end{array}$ ADT140

ADZ11 | ADZ11 | 62 | $B C 135$ |
| :--- | ---: | ---: |
| ADZ12 | 22.10 | $8 C 137$ |

$17 p$	BC140
$17 p$	35
$17 p$	BC141
30p	35
2143	45
10	

21p	$B C 145$	45p	BCY
20p	$B C 147$	$17 p$	$B C Y 71$
20p	BC148	12p	BCY72
20p	BC149	$17 p$	$B C Z 11$

22p	BF272	80p
$25 p$	BF273	30p
$17 p$	BF274	30p
20p	EF308	35p
17p	BF309	${ }^{37}$ p
30p	BF316	75p
$15 p$	BFW10	55p
20p	BF×29	27p
85p	BFX84	20p
85 p	BFX85	$27 p$
75p	8FX86	22p
$80 p$	BFX87	25p
$80 p$	BFX88	22p
61	BFY50	20p
22p	BFY51	20p
$45 p$	BFY52	20p
60 p	BFY53	17p
70p	85×19	$15 p$
$35 p$	BS $\times 20$	15p
$35 p$	BSY25	15p
35p	BSY26	15p
$45 p$	BSY27	$15 p$
$25 p$	BSY28	15p
30p	BSY29	$15 p$
30p	BSY38	15p
30p	BSY39	$15 p$
35p	BSY40	30p
35 P	BSY41	$35 p$
35p	BSY95	12p
22p	BSY95A	$12 p$
22p	BUIOS	63.90
35 p	CIIIE	60p
35p	C 400	30p
45p	C407	25p
50p	C424	17 p
30p	C425	40p
30p	C426	30p
30 p	C428	20p
30p	C441	27p
25p	C442	35p
30p	C444	37p
30p	C450	17p
23p	C720	12p
24p	C722	25p
30p	C740	$25 p$
35p	C742	17p
45p	C744	17p
80p	C760	17p
35p	C762	17p
25p	C764	60p
17p	EC401	15p

1,000,000
 SILICON
 PLANAR

NPN-PNP PLASTIC AND TRANSISTORS METAL CAN TYPES
Clearance of manufacturers' seconds, selected in rypes and guaranceed no open or short circuit
units. Ideal cheap transistors for radio enthusiasts manufacturers, schools and colleges. TYPE STNIB. Sificon Planar
$\begin{array}{lll}\text { TYPE } & \text { STNI8. Silicon Planar Transistors npn } \\ \text { TO-18 Metal } & \text { Can. Types similar to: } 2 \mathrm{~N} 706 \text {. }\end{array}$ 2N2220. BSY27-95A. BSX44-76-77. TYPE STP18. Silicon Planar Transistors Pnp
TO-18 Meral Can. Types similar to: BCY70-72 $2 N 2906-7,2 N 2411$ and BCIB6-7. Also used as complementary to the above npn type device type STNIB.

Price: $\mathbf{5 0 0} \mathbf{4 9}, 1,000<15$
TYPE STNL. Silicon Plastic Epitaxial Planar Transistors TO-92 case. IC. $200 \mathrm{~mA}, 300 \mathrm{~mW}$ medium to high gain, available in non or pnp and
types similar to: NPN2N2926-2N2711-2N3391types similar to:
$2 \mathrm{~N} 3707-2 \mathrm{~N} 3711-\mathrm{BC} 167-\mathrm{B}-9$.

Price: $500 \mathrm{K7} 50 ; 1,000<13$ TYPE STPL. As above but in pnp and similar to types 2N5354-S6, 2 N4058-2N4061 and 2 N3702-3 devices type STNL. Price: 500 ¢7.50; $1.000 \mathrm{C13}$ TYPE STNK, Silicon Planạ Plastic Transistor npn with TO-t 8 pin circular lead configuration, $1 . C$.
$200 \mathrm{~mA}, 300 \mathrm{~mW}$ and simitar to BC107-8-9, BC170, BC173, BC182-184, BC237-8-9 and BC337-8. When ordering, please stace type requir STNK or STNIB, etc.

1,000,000

SILICON
TRANSISTORS FOR SALE
Clearance of pap Silicon Transistors from the 25300 (TO-5) and 2 S 320 (SO-2) range and similar to the GC200-205 and BCY30-34 series. Ideal for Amoteur Electronics. Radio Hams and for experimental use in Schools. Colleges and Industry.
Approximate count by weight:
100 off- $75 p$ (plus p. \& p. $10 p$)
300 off- $£ 1.75$ (olus p. \& P. 15p)
500 off- $\mathbf{6 2 . 5 0}$ (plus p. \& p. 17 $\frac{1}{p}$)
1,000 off- 64 (plus p. \& p. 25p)
10,000 off $E 35$ (plus p. \& p. 55p)
Large quantities quoted for on request. EXPORT INQU!RIES WELCOME

TRANSISTOR EQVT. BOOK
2,500 cross references of iransistors_British, European. American and Japanese. A musi Cor ever
DIOTRAN transistor
SALES.
ISp EAC
Dis

300 mW
 SIL. G.P

$\begin{array}{ll}\text { 40PIV (Min.) } & 100 \\ \text { Sub-Min. } & 500\end{array}$ Sub-Min.
Fully Tested
1,000

50 p
$\mathbf{4} 150$
$\mathbf{4 5}$ Fully Tested 1,000
Ideal for Organ Builders
deal CASE UNIJUNCTION TRANSISCASE. TYpe TIS 43 and BEN 3000 and replacement for 2 N2646iL Full data avaiable.
 EB7.50; 1,000 off 15 p each
devices 35 p each on request.
HIGH QUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO. 7 Glass
 clear at 44 per 1,000 pieces. GUAR. 80% GD. OA90 GERM. DIODES 30PW 45MA Coded. Price $\mathbf{6 3}$ per 100 , $\mathrm{El\mid}$ per 500 , El 17 per 1,000 pieces. Once sold cannot be repeated. FULLY TESTED DEVICES AND OUALITYGUARANTEED-SUNPLUS OA202 silicon Diode. Fully Coded. 150 PIV 25AmA Oity. Price Eie per 250 mA Qty. Price 625 per 1,000 .
BY 100 SIL. RECT'S 800 PIV 550 mA . $1-49$ 12 ip each; 50-99 I Ip each; 100-999 10 peach;
1,000 up. $9 p$ each. Fully Coded. Ist Qley.

Practicul Electronics Classified Advertisements

RATES: $7 \frac{1}{2} p$ per word (minimum 12 words). Box No. $7 \frac{1}{2} p$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

miscellaneous

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE
because this GPO approved transmitter/receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means; the printed-circuit boards and components for boeh the princed-circuit boards and components for both this project REALLY FUN.TO.BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGEhas obvious applications for HOUSE-TO-HOUSE USE, SCMOOL PROJECTS, LANGUAGE LABORATORIES, SCOUT CAMPS, erc

GET YOURS! SEND 55.20 NOW
TO: 'BOFFIN PROJECTS'
DEPT. K2010
STONELEIGH, EWELL, SURREY

FASCIA PANEL8, hi-fl equipment, etc., etched aluminium to individual specifications, S.A.E. details. R. MARSH, 29 Shelbourne Road, Stratford on Avon, Warwicks.

MUSICAL MIRACLES

WAA-WAA Pedal, Complete kit of all parts, robust cabiner, mechanism and instructions. Huge sales, well proven design. Onty 62.45 complete. Or buile and tested $\mathbf{\& 4} \mathbf{7 5}$ post free. Rhythm Box. Build your own from our pre-
buite electronic circuit modules, built electronic circuir modules, e.e. box giving waltz, foxtrot, etc., costs under $\subset 17$. Organ Percussion units ci4. Bass pedal and other fascinating effects, fuzz, reverb, etc 5end l5p for list: D.E.W. LTD.
254 Ringwood Road, Forndown, Dorset

12 VOLT FLUORESCENT LIGHTS

Beat Power Cuts, 12 ins 8 watt Tube, ideal for Caravan, Tent, Emergency Lighting, etc. Fully Transistorised, Low Battery Drain, with ON/OFF Switch and 12 V Socker to with ON/OFF Switch and 12 V Socket to
Run other Lights or 12 V Equipment. Unbeatable at $\mathbf{\$ 3} \mathbf{3 0}$ orinkit form $\mathbf{£ 2 . 9 0}$ post paid

4 WATT GRAM AMPS.

Volume and tone controls, mains operation, 3Ω output, new and boxed $=3.63$ POST

SALOP ELECTRONICS Callers welcome
23 Wyle Cop
Shrewsbury, Shropshire S.A.E.forlists

$$
\begin{aligned}
& \text { We stock all those components and materials } \\
& \text { required by the home Hi-Fi constructor, } \\
& \text { including speaker grille fabrics, BAF wadding, } \\
& \text { Peerless speaker kits, Helme Cabinet Kits, } \\
& \text { cross-over networks, inductors, etc. Special } \\
& \text { offers also available. Send } 4 \text { Jp stamps } \\
& \text { NOW for your copy of our new fully illustrated } \\
& \text { catalogue (catalogue cost refunded asainst } \\
& \text { purchases over } 50 p \text {). No callers please, mail- } \\
& \text { order ONLY. }
\end{aligned}
$$

EUILD IT in a DEWBOX quality cabinet $\ln \times 2$ in \times any length. DEW LTD. Ringwood Road, lierndown, Dorset. S.A.E. for loaflet. Write now-right now.

MISCELLANEOUS (continued)

will amm in to 400 watts of hacaadoseent hightia! frem zure te full brillimen. Thls unlt siminty ruplates the normal Ifith switeli, and is inteol lat mattor of minutes. Ao MK mennting frame la sumploit, fer use whon more depth is repulral.

Complate Kit: $£ 2.85$
PRICE Built \& testad: $£ 3 \cdot 35$ (6n-1
Diathane Ltd.
III. Shoffiald Road, Wymondham, NORFOLK.

玉0.10 postage \& packing

NEW! NEW!! NEW!!!

 The Sweetest Sound You Ever Heard An exciting new, all silicon, power amplifier module to a completely NEW design. Minimum cross-over distortion, not dependent on supply voltage, eliminates unpleasant 'transistor sound'. Specially designed to work well from simple, unregulated power supply, $50-58 \mathrm{v}$. 11 transistors, short circuit proof, unconditionaliy stable, temperature stabilised. $400 \mathrm{~m} / \mathrm{v}$ input for 30 watts RMS (8 ohms). Output impedance $8-16$ ohms. Complecely built on 16 swg heatsink. Neat, space-saving, upright mounting. Fully tested and cuaranteed with comprehensive instructions.C8.75 each. P. \& P. 15p. Stereo pair. Post free Coming Soonl Matching Mono/Stereo Preamplifier designs to the same high standard. Available in Kit form. Telephone: Sheffield 365168

ELECTRONIC SUPPLIES

P.O. BOX 148, SHEFFIELD SI7 3EX

PSYCHEDELIC
 LUMINOPHONICS

Or is this just another way of referring to FANTASY? Either way, our Projects 24 and 1014 probably come within this catezory-THINK OF THE FUN
YOU WOULD MAVE WITH SOMETHING THIS AT A PARTYI There are MANY OTHER UNUSUAL PROJECTS TOO The MANY OTHER ELECTRONIC STETHOSCOPE for LISTENING THROUGH WALLS, etc., or a TRANSMITTER RECEIVER that doesn't use RF, SO LICENCE WORRIES ARE OVERI Then there's another project for a "LEARNING" MACHINE-imagine one of these in YOUR BACKROOM; YOUR FRIENDS WOULD BE AMAZED! If REALLY UNUSUAL projects interest you, then WE'VE GOT YHAT YOU WANT: in a few days from FICTION" WORLD OF "BOFFIN"!
DON'T PUT IT OFFI SEND 15p for your list-NOW BOFFIN PROJECTS
4 CUNLIFFE RD., STONELEIGH, EWELL, SURREY Designs by GERRY BROWN and JOHN SALMON and presented on TV

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M / C relays, components, etc. Lower Beeding 236.

MISCELLANEOUS (continued)

FOR 8ALE

SEEN MY CATT 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PE, New Mills, Stockport.

MORSE MADE ! !

FACT NOT FICTION. II you start RIGHT you will be readlug amnteur and commercial Morme Withina moath (normal progresa to be expected). Uuting scientifically prepared 3-apeed reeords you without translating. You can't heip it, it's as easy as learring a tune. 18 W.P.M. in 4 weeks guaranteed. For details and course C.O.D. Fing S.T.D. $01-6002896$ or send 4p atamp for explenatory booklet to:
GSHAC (Box 19), 45 GREEM LANE, PURLEY, SURREY
CATALOQUE NO. 18, Electronic and Mechanical Components, new and manufacturers' surplus. Credit vouchers value 50 p . Price 23p, including post. ARTHUR SALLIS
 Brighton, Sussex.

PRACTICAL ELECTRONIC8 from No. 1 to current issue, with binders and indexes, accept best offer-1Box No. 36.

WANTED

CABH PAID for New Valves. Payment by roturn. WILLOW VALE ELECTRONICS, 4 The Broadway, Hanwell, London. W.7. 01-5675400/2971.

WE BUY NEW VALVE8. Cash sent by return. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

HIQHEST CASH PRICEs for tape recorders. 9.30-5. Immediate quotations. 01-472 2185.

MUSICAL INSTRUMENTS

ELECTRONICORGAN DIVIDER CIRCUITS

These i.c, divider circuits contain one master oscillator and six dividers. The output is square wave with a rise time of approximately 20 nsecs
 Price 83.75 each or 442 per dozen. Edge Conplease, to:

GUDIONIC, 105 Anson Rosd

TELEVISION AND RADIO TRAINING

(DAY ATTENDANCE COURSES)
This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one year's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/3, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721.

EDUCATIONAL

Abstract

HUNDRED8 OF TOP PAID JOBS in engineering await qualified men. Get a certificate through B.I.E.T. Home Study-Mech., Elec., Auto., Radio, TV, Draughts., Electronics, Computers, Building, etc. Send for helpful FREE book, B.I.E.T., Department 125K, Aldermaston Court, Reading, RG7 4PF.

QET INTO ELECTRONICS-big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. R.T.E.B., City \& Guilds. Radio, TV, Telecoms; etc. For iree informative Guide, write CHAMBERS COLLEGE (Dept. 856 K), Aldermaston Court, Reading, RG7 4PF. A.M.s.E. (Elec.), City \& Guilds, R.T.E.B Cert., Radio Amateurs' Cert., etc., on "'Satisfaction or Refund" terms. Wide range of courses in Elec. Engineering, Design, Installation, Repairs, Refrigeration, Electrontics, Radio and TV., etc. Send for full details and illustrated book - FREE. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 124 K Aldermaston Court, Reading, RG74PF.

MEN! You can earn $£ 50$ p.w. Learn Computer Operating. Send for FREE brochureLONDON COMPUTER OPERATORS TRAINING ('ENTRE, C'05 Oxford House, 9-15 Oxford Street, London, W.1.

SERVICE SHEETS

RADIO TELEVI8ION, over 8,000 Models. JOHN GILBERT TELEVISION, ib Shepherds Bush Rd., London, W. $\mathrm{G}^{(01-743} 8441$).

SERVICE SHEET8. Radlo, TV, etc., 8,000 models. List 10p. S.A.E.enquiries. TELRAY, 11 Maudland Bank, Preston.

SERVICE 8HEETB (1925-1971) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFlnding Guide. Prices from 5 p. Over 8,000 modeis available. Catalogue 13 p . Please send models available. with all orders/enquiries. HAMILTON S.A.E. With all orders/enquiries. HAMILTO, 54 London Road, Bexhill, Sussex.

LARGE SUPPLIER OF

SERVICE SHEETS

I.V., RADIO, TRAMSISTORS, TAPES, CAR RADIOS

2sp EACH. MANUALS FROM 50p PLEASE ENCLDSE LARGE SA.E. WITH ALL OTHERWISE LETTERS NOT ATTENDED TO
(Uncrossed P.O.'s please, original
returned if service sheets not available.)
FREE TVF FAULT TRACING CHART OR T C. CARANNA

71 BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

LADDERS

VARNISHED TIMBER LADDER8 from manufacturer, LOWEST PRICES anywhere: $15 \frac{\mathrm{ft}}{}$ ext., 86.20 ; 17 ft extd., $86-50 ; 20 \mathrm{ft}$ extd., 17 ; $21 \frac{1}{2 f t}$ extrl., 87.75 ; $24 \frac{1}{2} \mathrm{ft}$ extd. es.50; 29ft extd., 210.25 ; 31 ft triple extd. 212.25; 36ft. triple extd., 216 . Carr. 80p. Free Lists. Also Aluminium Ext. and Loft Ladders. Callers welcome. Dept. PEE, HOME SALES, Baldwh Road, Stourport, Wores. Phone: $0-29932574$. Placing order on C.O.D.

RECEIVERS AND COMPONENTS

A CORNUCOPIA OF COMPONENTS! Scarce valves, selected TV components, speakers and cabinets. Computer panels-long leads, NOT printed circuits. Transistors, resistors-newand recovered. State your requirements. S.A.E. for details MAIL-MART, 6 Eastbourne Road, Pevensey Bay, Sussex

HI-8TAB RE818TORs mixed bag, 100, 50p; 250, 21. Please send cash with order to ELMBRIDGE INSTRLMENTS LTD., Island Farm Avenue, West Molesey Trading Estate, Surrey.

8 WATT TRANSISTOR AMPLIFIER8 23.45 Intercoms Ohden 2 stations, 2.50 ; Capacitors Dubillier, $0.1 \mu \mathrm{~F} 500 \mathrm{~V}$, 30 p doz; Hunts $0.04 \mu \mathrm{~F}$ 500 V , 15p doz; Co-ax sockets on isolation panel, $8 \mathrm{p}, 6 \mathrm{60p}$ doz; Jack plugs, standard, 9d; 3.5 mm 5p; GP91-3SC, 90 p , $93-1,21 \cdot 22,400-$ $200-50-16 \mu \mathrm{~F} 300 \mathrm{~V}, 30 \mathrm{p} ; 23$ per doz. Switches rotary DP $2 A$ Od.' S.A.E. for list. Post and rotary DP $2 A$ 9d. S.A.E. for 15 add. Post and Packing on orders under $\mathfrak{f 5}$ add $10 \mathrm{p}-$
M . DZIUBAS, 158 Bradshawgate, Bolton, M. Dz

8ITUATIONS VACANT

EAELE INTERNATIONAL require Audio Engineers. Excellent prospects. Must be fully conversant with Stereo Amplifiers, Tuners, Multiplex, etc. Contact MR. MORROW Muriplex, 01.8360961 .

RECEIVERS AND COMPONENT8

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
TESTED VALVES-3 MONTHSGUARANTEE

EBF80	15p	PCC84	15p	PY800	$17 \frac{1}{1} \mathrm{P}$
EBF89	1718p	PCF80	15p	PY801	$17 \pm$
ECC82	15p	PCL82	20p	4191	22.8
ECL80	15p	PL36	25p	30 C 15	15p
EF80	10p	PY33	25p	PCF86	25p
EF85	15p	PY81	171p	PCL85	25p
EY86	20p	PY82	15p	PCL84	25p

Copper Laminate Board, for etching, Ip per sq.in. Double sided lip per sqin. Any size cut, min, order 50 p plus 10% P. \& P.
Postage on Valves: one valve $4 p$, up to $62 \frac{1}{2} p$, over 6 post paid.

HIGHEST GAIN low noise NPN, BC168C, hfe $=$ 450-900, mint, branded, 4 for 50 . U.K. post 5p. S.A.E. list-AMATRONIX LTD., 306 Selsdon Road, S. Croydon, Surrey CR2 ODE.

PRINTED CIRCUIT8 designed, produced, components assembled if required. Send detailsJON TECHNICAL SERVICES, c/o Winchells, Ashford Road, Ashford, Middlesex.

1 ITS
 TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I C S trained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
* C. G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
- RADIO OPERATOR CERTIFICATES.

Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL CORRESPONDENCE
 SCHOOLS
 A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

RECEIVERS AND COMPONENTS
(continued)

PRINTED CIRCUIT BOARDS for P.E. PROJECTS Alt boards drilled and roller tinned complete with layout dr
Marine Tachometer (May
Marine Tachometer (May 1970) 25p ea. Musical
Wave Waa pedal Vol. 4 N .
Gen. (Sine and $5 q u a r e$ on one board) Vol. 5 No
$1042 \frac{1}{2}$ p ead. Now available from:- HENRY'S RADIO LTD., Edgware Road, London, W. 2 P.H. ELECTRONICS, Industrial Estate,

Sandwich, Kent. Tel. 2517

TRANSFORMER KITS

Consisting of:- CLAMPS, WINDING BOBBIN AND LAMINATIONS
Max. Rating Ref. No. Price P. \& P.

5 VA	74/63	45p	$7 \frac{1}{p}$
10 VA	35/75	52dp	121p
15 VA	147/88	$75 p$	17.1p
25 VA	$29 / 1$	E1-02 ${ }^{\text {d }}$	22 dp
50 VA	78/125	E1.771	27-1.
75 VA	78/150	£2.371	321 ${ }^{\text {P }}$
100 VA	120/125	£2.75	37\%

Transformer designs up to 100VA
50ρ ea., larger kits and designs available on request.
Supplied by :
WEST DIDSBURY TRANSFORMERS
Brooks Street, Higher Hillgate
Stockport, Cheshire SK1 3EU
Tel. 061.4806479

C.T. ELECTRONICS
 267 Acton Lane, W. 4 Phone 01-994 6275

West London New Electronic Components Shop, wide range of Components in stock, including metal oxide resistors, relays from 50p each.

$$
\begin{aligned}
& \text { COMPDTER PAMELS. } 5 \cdot \text { BC108 diodes, } 15 p \text { (8/-). } \\
& \text { post } 5 \mathrm{p} \text { (1/-), 4-50p (10/-), post } 15 \mathrm{p}(3 /-) .8-0 \mathrm{c} 76 / \\
& \text { per panel. } 8 \text {-0C170 diodes, } 40 p(8 /-) \text {, post } 8 p(1 / 7) \\
& \text { per panel. 2-OC170, 2•GET875 or } 4 \mathrm{MDS34}, 5-100 \mathrm{mtd} \\
& 12 \mathrm{~V} \text { Electrolytics, pot core, etc., } 80 \mathrm{p} \text { (} 8 /- \text {), post } \\
& 8 \mathrm{8p}(1 / 7) \text { per panel. } \\
& \text { PANELS WITH VHF MPM AND/OR PNP GILICON } \\
& \text { TRANMISTORS, renintors, diodes, capacitors, etc. } \\
& \text { Paneis with } 4 \text { transistora } 10 \mathrm{p}(2 /-) \text {, with } 6-8 \text {, } 16 \mathrm{p} \\
& \text { (3/-). 10-12, 25p (6/-). 14-16, } 20 \mathrm{p}(6 /-) .24,40 \mathrm{p} \\
& \text { five or over } 250 \mathrm{p}(10 /-) \text {. Post up to four } 15 \mathrm{p}(3 /-) \text {, } \\
& \text { Ive or over, 25p (5/-). }
\end{aligned}
$$

> resiators, ceps. and diodes, 6 for 25p ($6 /-$). Poat $15 p(3 /-)$ for six.
> POLY8TYRERE CAPACITORS. $125 \mathrm{~V}, 18,22,120$, $150,180,220,330,390,560,680,820,1,200,1,500$, $1,800,2,200,2,700,3,300,3,900,5,600,6,800,8,200$, $\begin{aligned} & 0-01,0.012,0.015,159(8 /-) \\ & \text { other goods otherwise } 10 p(\varepsilon /-)\end{aligned}$ $\begin{aligned} & \text { other goods otherwise } 10 \mathrm{p}(2 /-) \\ & \text { Assortad Cow Powrers }\end{aligned}$
> Assorted COMPONENTS, 7ib. 11.10 (22/-) C.P. J.W.B. RADIO
> $\begin{aligned} & 75 \text { Haydeld Road, Salford 6, Lance. } \\ & \text { MAIL ORDER ONLY }\end{aligned}$

RECEIVERS AND COMPONENTS

(continued)

BARGAIN RELAY OFFER

Single pole chanke over silver contacts $25 V$ to 50 V . $25 \mathrm{k} \Omega$ coil. 8 for 50 p . P. $\& \mathrm{P} .5 \mathrm{p}$.

KEYTRONICS mail order only 52 EARLS COURT ROAD LONDON, W. 8

01-478 8499

DRY REED INSERTS

Overall length $1.85^{\prime \prime}$ (Body length $1.1^{\prime \prime}$). Diameter $0.14^{\prime \prime}$ to switch up to 500 mA at up to 250 v D.C. Gold elad contacts. $62 \frac{1}{2}$ p per doz. 10, . All carriage paid.
10,000 . Al 1,$000 ; 2250$ per 0,000. All carriage Daid. RIO LTD. 40/42 Portland Road, Worthing, Sussex 090334897

BRAND NEW COMPONENTS BY RETURN Electrolytics 15 or 25 V 1-10mfd, $3 \frac{1}{2} p .20-100$ mfd , 4p. Mylar Fím $100 \mathrm{~V} 0.001,0.002,0.005$ $0.01,0.02,2 p$. $0.04,0.05,0.1,21 p$ Mullard miniature Carbon Film Resistors E12 Series 1W $1 \Omega-10 \mathrm{M} \Omega, \times$ for 5p. Postage 5p. THE C.R. SUPPLY CO., 127 Chesterfleld Road, Sheffield S8 ORN.

NEW MODEL V.H.F. KIT MK2

Our latest Kit, improved design and performance plus extra Amplifier Stage, receives Alrcraft Amateura, Mobile, Radio, 2, 3, 4, etc.
This novel little set will give you endless hours of pleanure and can be built in one evening. Powered by 9 Volt Battery, complete with easy to follow instructiona and bullt in Jack Socket for use with Earphones or Amplifer.

Only $28-40$. P. \& P. Free U.K. only
Illustrated Catalogue of gelected Kits and Components 12 ip. P. \& P. Free.

Cheques, Postal Orders, to:
Dept. PE
Galleon Trading Co., 25 Avelon Road
Romiord, Besex
P.E. AURORA. Component Kits. S.A.E. OPTELMEC LTD., $1,2 \& 3$ Nelson Works, Back Road, Sjicup, Kent.

Complete range of Kinetic Lighting Effects units and 100 W Mixer-Amplifier. Send $5 p$ in stamps for further details.

Still available-our ever-popular Mk. 2 Psychodelic Lighting Unit, manufactured on professional fibre-glass printed-circuit board material.

Drive voltage is derived directly from amplifier output or across speakers. The unit converts the audio frequency signals into a three-coloured light display; the colour depending on the frequency of the signal and the intensity on the loudness of the audio source.

Usos latest full-wave triac circuitry and incorporates signal input level and minimum ambient light level controls. Will drive up to 1.5 kW per channel at 240 V a.c. Complete printed-circuit board assembly built and tested. Size 8交in $\because 6 \frac{1}{2}$ in $\because 3 \frac{1}{2}$ in.
£17.50 net plus 50p carriage

INSTRUMENTAL AUDIO EFFECTS

CREATE "PHASE" on your tape recordings, records, etc., unique electronic circuitry enables you to create "phase" at the turn of a knob. Just connect between pre-amp. and power-amp.
This is not waa-waa, white-noise or swish but genuine phase-shift created electronically. Input and output impedances match to $10-50 k \Omega$. Operates from 9 V battery. Complete printedcircuit assembly, built and tested.
Size 4 in . $\because 2 \frac{1}{2} \mathrm{in}$. $1 \frac{1}{4} \mathrm{in}$. $£ 3.25$ plus 10 p carriage.
OR £2.50 plus 10 p carriage in KIT FORM
SUPER "FUZZ" UNIT. Connects between guitar and amplifier. Operates from 9 V battery. Complete printed-circuit board assembly, built and tested. Size 3 tin. $2 \frac{1}{\mathrm{tin}}$. tin. $£ 3.25$ plus 10p carriage.
OR £2.50 plus 10 p carriage in KIT FORM

MAIL ORDER ONLY
S.a.e. for all enquiries

Dabar Electronic Products
98a Liehfield Street, Walsall, Staffs. o aircraft communications .H.F. AIRCRAFT BAND converter ONLY £2.37
(47/6) cover. Hear for promad control, nirport hing lensencss on talk dowers. Be with thent when they huve to take nerve ripping internation emergencles-cune. a This fantastic fully tranaistorised instrument can be brilt by angone nine to ninety in under two hours. (Our alesign team muilt four-everyone worked first time). No solder ing necessary, Fully illustrated sinuply worded instructions take you step-by-btep. Taes standard PP3 battery. Nize only 4 fin 3 in. 1 in . All you do is extend rol aerial, place close to any ordinary medium-wave radio (even tiny pocket radion. No con.县ECIONE WEATEVER TERDED, I se indoors or outdoors.

SHORTWAVE TRANSISTOR RADIO

REAL WORKING organ

ELECTRONIC ONLY £2.75 (55/-)
Don's confuse twith ordinary eleetric orpans t simply blow air over mouth-organ type reads, ete. Eight months were apent in creating and katiug this superl, revolutionary electronic organ. Fully ranaistorised, no valves. Proper molf-contatned loudspentor.
Fiffeen separate keya span tmo foll octaces-play the "Yellowo Fifleen separate keya span two foll octaces-play the "Yellow
Rose of Terns", "Silem N ight", "A wid Lang Syme", and lots of similar luces on this real working electronic organ. Size $13 \ddagger$ in 10 in , $2 t i n$. Uses standard battery. Have the thrilland excitement of building it together with the pleasure of playing a reat electronic organ. Play it anywhere. No solderling necessary. Fasy as A.B.C. to make following the fully illus trated, step-by-atep instructions. BIG DEMAMD ATHICl PATHD POR TEIS UIICUE DFSTROLEERT at our low price ORLY $28 \cdot 76+23 p$ P. \& P. ($55 /=+4 / 6$) for all parts, including case, loudspeaker. transiniors, condenvers, resiators, knobs transiormers, volume control, wire, nuts, screwa, instructionn, te. (parta available separateig). Hare all the plemsure

MAKE 5 PROJECTS orld wide news, pport, nusic, etc. Earesdrop on unusual roadcasts. ('mes PP3 battery. Transistorised (no valvea). size only 3 in . $\times 4 \mathrm{in} . \times 1 \mathrm{in}$. As tremendous domand anticipated price held to only $22-25+17 \mathrm{p}$ P. \& P. ($45 /-+3 / 6$) for all parts incl. cabinet, screws, ingtr., etc. Parts available reparately.

INCLUDING 3 TRANSISTOR LOUDSPEAKER RADIO

Antazing Ralio Construction set for $81 \cdot 97$ ($89 / 6$).
A complete Home A complete Home experience needed.
Parts includingpl plans, all transiators, loudgpeaker, personal phone, knobs, extren, etc., all you need. Presentation box as illustrated 87 p extra (7/6) if reqd. (parts avail. separately). Send only 1.97
$+23 p \mathrm{P} .4 .(39 / 6+4 / 6)$. + 23p P. \& P. $(39 / 6+4 / 6)$.

FIND BURIED TREASURE! TREASURE LOCATOR-

 how IT'I BERE AT LAAT,
four and a half montha With a multitude of different circuits and carrying out actual field teat with prototypes, our design this real winner. This ully portable transistorised netal locator detects and racks down buried metal bjects-it signals exact ocation (no phones usedal only transistor radio Heh iJts inside一 IIDS GOLD needed) 00T COITS
 LCCES, METALLIO ORE. DGGETB, ETC. Exiremoly Nill signal presence several bwried below grourd Cah be buill whort ease in one with the worn derfully clear easy to follow, tep - by - step ully lllustrated Fully tractions. valvised -no standard Pp3 Uses tery. No soldering $\times 2$ lin Opy price-All parts including detector head case nuts, scress in How $89.87+33 \mathrm{p}$ P \& $(47 / 6+6 / 6)$ (Telescopic handle as illustrated \&1.75 (35/-) extra). Parts N M N2

ENAMELLED COPPER WIRE
 S.W.G.
 $\frac{1}{2} \mathrm{lb}$. Reel
 1lb. Reel
 18-22
 $62 \frac{1}{2} \mathrm{p}$
 92 $\frac{1}{2} \mathrm{p}$
 23-30
 65p
 $97 \frac{1}{2} \mathrm{p}$
 31-35
 $67 \frac{1}{2} \mathrm{p}$
 £1.02 $\frac{1}{2}$
 36-40
 $82 \frac{1}{2} \mathrm{p}$
 £1. $32 \frac{1}{2}$
 41-44
 $97 \frac{1}{2} \mathrm{p}$
 £1.62 $\frac{1}{2}$

Orders despatched by refurn of post.
Please add $12 \frac{1}{2} p$ per item P. and P.

Supplied by:
BANNER TRANSFORMERS

(Dept. PE), Brooks Street Higher Hillgate, Stockport, Cheshire

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 4 \cdot 25$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. K2)
54 Dundonald Road, London, S.W. 19

BAKER ISin. AUDITORIUM

A high wattage loudspeaker of exceptional quality with a level response to above $8,000 \mathrm{cps}$. Ideal for Public Address, Discotheques, Electronic instruments and the home.
Maximum Power
Bass Resonance
Flux Density
Voice coil impedance 8 or 15
Useful response
Hett weight
35 watts
35 c.n.s.
15,000 pauss
5 ghms models
O-14,000 c.p.s.
15 lbs.
POST
GUITAR MODEL "GROUP 50" 50
Lotest catologue 5p with enclosure blons
Baker Reproducers Ltd
Bensham Manor Road Passage, Thornton Heath, Surrey.

booklet on fequest

In just 2 minutes,find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

THEY DID IT-SO COULD YOU

". My income has almost trebled . . . my life is

 fuller and happier." - Case History G/321."In addition to having my salary doubled, my future is assured." - Case History H/493
" I turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on like at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seck. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help youl.

Free!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIISH IWSIIUUIEO Encinefing icehnolog

Dept D256, Aldermaston Court, Reading RG7 4PF.

To: B.I.E.T., Dept D256, Aldermaston Court, Reading RG74PF Please send me book and details of your Courses in

Name
Address

PROJECT 60 PACKAGE DEALS
$2 \times Z 30$ amplifier, stereo 60 pre-amp. PZ5 power supply,
£19. Carr. 40p. Or with PZ6 power supply, $£ 21$. Carr. f19. Carr. 40p. Or with PZ6 power supply, 421 . Carr. 40p. $2 \times Z 50$ amplifier, stereo 60 pre-amplifier PZ8 power
supply, $\mathbf{2 1 . 5 0 , ~ p . p . ~ 4 0 p . ~ T r a n s f o r m e r ~ f o r ~ P Z 8 ~} \mathbf{£ 2 . 2 5}$ extra. supply, 621.50 , p.p. 40p. Transformer for $\mathrm{PZ8} \mathbf{2 2} \mathbf{2 . 5}$ extra.
Any of the above with Active Filter unit add $\mathbf{4 4 . 8 7}$ or with pair Any of the above with Active filter unit add 14.8 ,
Ql6 speakers add $£ 16$. Also NEW FM TUNER, $£ 21$.

BUILD THIS VHF FM TUNER

5 MULLARD TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH. PRINTED CIRCIOIT, HIGH FIDELITY REPRODUCTION.
MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it-VHF FM gives the REAL sound. All parts sold separately.
Free Leaflet No. 3 and 7.
TOTAL 66.97 , p.p. 20 ${ }^{\circ}$. Cabinet $£ 1$, Decoder Kit ES.97, Tuning meter f1.75'. Mains unit (optional) Model P\$900 $\mathbf{E 2} 47$. Mains unit
PSI200 $E 2.62$.

BUILD YOURSELF A QUALITY RADIO
 Excellent printed circuit design with full MWWer output. Fully tunable on both MW/LW bands. 7 Mullard transistors. Fitted Sin speaker. Room filling power. Easy to buitd with terrific results. Two colour leathercloth cabinet with silvered front. Alt local and continental stations.
Complete detailed instructions. Complete detailed instructions. sold separately. Ask for Leaflet No. I

HI-FI TO SUIT

CHOOSE FROM

100
STEREO
and a complete range of
 Demonstrations all day-Yisit
our new Hi-Fi Store. Low CASH OR CREDIT/HP TERMS (Credit terms from E30 purchase-callers only)
FREE-Stock Lists Nos. 1617 FREE-Stock Lists
on
request-BEST
VALUE in U.K.

HENRY'S LATEST CATALOGUE

Now 350 pages

WHY
NOT
SEND
AWAY TODAY?

* COMPONENTS, test gear * EQUIPMENT, MODULES * SPECIAL Offers, Etc., Etc. Everything for the constructor Complete with 50 p value discount vouchers for use with
purchase. Price 50p, post free. .
FREE a page Transistor,
ic,
Diode lists No

FREE 20 page Organs to FREE Decks and $\mathrm{Hi} \mathrm{-Fi}$ $\begin{array}{ll}\text { Decks } \\ \begin{array}{l}\text { Stoks } \\ \text { lock } \\ \text { Lists }\end{array} & \begin{array}{c}\text { Hi-Fi } \\ \text { No. }\end{array}\end{array}$ 16/17
FREE PA, Disco and Lighting List No. 18
FREE Quotations for all Electronics-send

HENELEC SELF-POWERED PREAMPLIFIERS
Designed for use with PA2S and PA5O GOLD AND SILVER FINISH, Mains

SLIM MODERN DESIGNS USING THE LATEST SILLCON TRANSIS. TORS, FET's and IC's, DIN SOCNETS, ETC. fitted Self, powered PUSH: BUTTON SELECTION. $\pm 20 \mathrm{~dB}$ BASS
AND TREBLE BOOST AND CUT AND TREBLE BOOST AND CUTS
 SIMPLICITY TO MOUNT
All units no soldering-just edge connectors and plugs operated. Supplied with all pluss, etc. VOLT.
FET9/4. Mono with built-in mic. mixer. Accepts any ceramic or crystal cartridge. Plus tuner, tape,

* FETI54 STEREO (illus.). Magnetic cart. input, tuner, tape, etc. Beautiful stereo sound. Price $\$ 16.50$, p.p. 25p.
* Also suitable for use with ony power amplifier. Suezested types PA25.

EASY TO USE High Fidelity Sales \& Test Gear Centre
356 EDGWARE ROAD. LONDON, W.2.
Tel: 01-4024736 | Tel: 01-402 5854

25 WATT \& 50 WATT SILICON AMPLIFIERS

PA25 10 transistor all silicon differential input 400 mV sensitivity. 25 W Rms into 8 olams. Supplied with edge connector harness size $\operatorname{Sin} \times 3$ in $\times 2$ in. PA50 12 transistor version SOW Rms into 3 to 4 ohms. Size $\operatorname{Sin} \times 3 \mathrm{in} \times 4 \mathrm{in}$. MU442. Power supply for ane or two PA25 or one PA50.
DESIGNED FOR QUALITY, PERFORMANCE AND PRICE As specified for many "Practical Wireless" 1970 projects

[^0]: READERS RADIO (P.E.)
 86 TORQUAY QARDENS, REDBRIDGE, ILFORD,
 Tel. O1-560 7441
 Pontage on 1 valve spextra. On 2 valves or more, pontage $3 p$ per

[^1]: (c) IPC Magazines Limited 1971. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postagt for one year, to any part of the world, 22.65 ($£ 2$ 13s. Od).
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01.6344202

[^2]: (1) $\begin{gathered}\text { POST NOW } \\ \text { for } \\ \text { BROCHURE }\end{gathered}$

 TO: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

 NAME
 BLOCK CAPS
 or write if you prefer not to cut page 1 ADDRESS
 PLEASE P.E. 5 :

[^3]: Eacloasd: Chegue wo nover anove total

[^4]: Name

