APRIL 1971

 APAIL 19710 C \square

8

AURORA MUSIC INSPIRED LIGHT AND colour

Alsa inside * BOAT SPEED INDICATOR * DOOR YODELLER

acculat soluering Instruments add to your efficiency

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*
Sta dard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{C}$.
*Additional Stock Bits
(Ilustrated) available
COPPER

LOVG LIFE
\qquad
chisel face

B $33 \mathrm{LL} \frac{1}{\circ}^{\circ}-32 \mathrm{~mm}$ chisel face
$=-\infty$
\longrightarrow
B $46 \mathrm{LL} \frac{3}{10}-4.75$ min $\underset{\text { FACE }}{\text { SCREWDIVEG }}$

Don't take chances. We don't All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... relia-
bility . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list and catalogue

HOW ATAILABLBHASMS -matas mome bornos
1971
The great new 1971 edition of Lasky's famous Audio-Tronics catalogue is now available FREE or request. The 44 newspaper size pages many in full colour are packed with 1000 's of items from the largest stocks in Great Britain of everyching for the Radio and Hi-Fi enthusiast Electronics Hobbyist, Serviceman and
Communications Ham. Over half the pages are devoted exclusively to every aspect of Hi-Fi (including Lasky's budget Scereo Systems and Package Dcals). Tape recording and Audio accessories
AUDIO-TRONICS CREDIT
CARD SCHEME offering holders
onc month's interest free credit up to $£ 50$. Send your name and address and 15 p for post and inclusion on our regular mailing list.
LASKY'S RADIO LTD. (Dept, PE)
3-15 Cavell Street, London EI 2 BN

PRACTICAL ELECTRONICS Specify CONTIL MOD 2 CASES for housing the P.E. GEMINI AMPLIFIER. F.E. AURORA LIGHT DISPLAY SYSTEM. P.E.
DIGITAL CLOCK. AIso available ready punched for sincla DIGITAL CLOCK. Also available ready punched for Sinclair Project 60 . with or
without active fitter unit. Full kit or hardware is also ayalable. including Gapacitors. for use with $Z 30$ or $Z 50$ at $£ 3$ WIDTH HEIGHT DEPTH I OFF $\begin{array}{lllllll}\text { PVC COATED MATERIAL5. PVC A } & \text { WIDTH HEIGHT DEPTH I OFF } \\ \text { easy to clean Surface is Scuff } & \text { C } & 4.5 & 3 & 3 & 6.5 & \text { E2.10 } \\ \text { resistant. PVC/ALUMINIUM FOR } & \text { G } & 13 & 10 & 65 & 6393 \\ \text { FRONT. }\end{array}$ FRONT AND BACK PANELS G PVC/STEEL FOR SIDES. TOP AND BOTTOM. LOW COST.

Whee January issue for all sizes. Send for free leaflets and price list.

WH) WEST HYOE
WEST HYDE DEVELOPMENTS LTD., RYEFIELD CRESCENT NORTHWOOD. MIDDX.. HAS INN.
Telephone: Northwood 24941/26732. Telex 92323 I WEST HY'DE NTHWD

knifht-kits

 HURRY! STOCKS

 HURRY! STOCKS GOING FAST!

 GOING FAST!}

Due to huge purchase these superb U.S.A. construction kits can be offered at $\mathbf{2 5} \%-\mathbf{5 0} \%$ off recommended list prices. Absolutely complete with most detailed construction and operating books. A vailable from all branches or by mail order for $37 \frac{1}{2}$ p CARRIAGE AND PACKING on each kit. Two kits or more carr. free.

SINCLAIR EQUIPMENT (Post 15p per order)

Z30-£3.95	PZ5-£4.25
Z50-£4.95	PZ6-£6.95
Stereo 60-£8.75	PZ8-£5.25

Package Price: $1 \times$ PZ̄̄, $1 \times$ Stereo $60 \star 2 \times \mathbf{Z 3 0}-\mathbf{8 1 8 . 8 0}$
MiCROMATIC KIT- 28.30
micromatic beilit 22.75
E.M.I. LOUDSPEAKERS (Post 30p per order)

Quantity inquiries invited
 20 watte peak, 3,8 or 15 chilis- 81,60
ditto with crossover andl E.M.I. 2 in hin fit weeter, 8 or 15 obme - 22.40
ditto with fared parasitic tweeter cone, 3 or 8 ohmis - 21.95
CAR AERIALS (Post 15p per order)
Quantity inquiries invited
Wingtopröim, chromed, tripte extension, pivotel uith 53 in lead/phig
(vatue $\boldsymbol{\text { e }}(1-60$) -65 y
Retractable lock-llown, chromed, 44 ins, 5 sectione (with 2 keys)
4 in sereened lead and plug (value $\mathbf{4} 2 \cdot 40$) -85 p
Fend S.A.E. ior iree sale list of special items

"GAMMA" 20 WATT ENCLOSURE

As above but with super hesvy duty basa unit with 3 . 61 l magnet in Magnadure In material with 1 -5in speech coil and super tweeter giving irequency range of $20-20,000 \mathrm{~Hz}$. standard 8Ω impedance in beautilally finished heavy teak veneers. 81 ge $121 \times 12 \times 23 i n .20$ Watti RMS, 40 watti peak. At a super keen price. Carriage and ins, 62ip. Carriage price in pairs $\mathbf{1 9 . 5 0}$

PLINTHS \& COVERS tor aurract tabto all curreat models oxcept heary transcription hypes). Beantiful beavy solid perapex top with "atereo" badge high guality base with aolid wood sider machined ready for R/P deck to drop in without any further work. Torritc value at only $\mathbf{6 3 . 4 5}$ complete Carr. and Inturance $37!$ p.

DISgosound

D.J. DISCO-AMP

Designed specifically for use with discotheques and has many exclusive features not normally found on P.A. amplifiers. The unit will be of use to the professional D.J. as well as in clubs and mobile discotheques
A.complete Prefade listen (P.F.L.) cueing monitor section is featured with separate input for headphones (either stereo or mono) with an independent volume control for headphone monitoring, and a P.F.L. switch, so that cither turntable can be monitored for accurate cueing up of records. A mic over-ride switch is also added which cuts the music volume by half. Specification: Output power 70 watts R.M.S. L 1 db at 8 ohms. Frequency resnonse $\mathbf{3 0 - 2 0 , 0 0 0 ~ H z}+3 \mathrm{db}$. Harmonic distortion Frequer 0 or . Signal/noise ratio: Better than - 65 db Inputs: Mic 1 \& 25 mV at 50 K ohms. Turntable $1 \& 2100 \mathrm{mV}$ at 1 meg ohm
50 ohm or 600 ohm mic inputs may be ordered at extra cost Size: Front Panel $16 \frac{1}{2} \times 7$ in. Cut out $15 t$ in $\times 6 \mathrm{in}$. Fuses A.C 1.5 amp (B.S.) mounted on back panel

PRICE $£ 85$ inc. P. \& P.

D.J. 102

DISCOTHEQUE MIXER
PRE-AMPLIFIER
Consists of a 4 channel mixer each with its own volume control and a complete P.F.L. monitoring system. Also features a mike cut down switch. For use with amplifiers having tone controls but not having the above facilities. Frequency response $20-20,000 \mathrm{~Hz}$ 2 db . Distortion less than 1%. Signal to noise ratio better than 65 db . Size $10 \underline{1}$ in $\times 4$ in $\times 4$ in. Self powered
PRICE £25 inc. P. \& P.

D.J. 30L PSYCHEDELIC LIGHT CONTROL UNIT

3 channel light control unit that handles up to 1,000 watts per channel. Separate bass, middle and treble controls for full frequency separation.
Completely built and tested

PRICE $£ 37.50$ inc. P. \& P.

For full details of these and all Discosound Prodicts write direckito

DISCOSOUND

122 sALLS POMD ROAD, LOYDON, N.1. Tel; 01-254 5779
Full moncy back guarantee if returned within 10 days
All Discosound Products are guaranteed for 12 months
Demonstrations given at any time

for fast, easy, reliable soldering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR.

Economically packed for

general electrical
and electronic
18 gauge on
plastic reel.
Recommended
retail price 75 p

THIN GAUGE SOLDER ESSENTIAL FOR

soldering small components and thin wires. High tin
 content, low melting point. 60/40 alloy, 170 ft . 22 gauge on plastic reel. Recommended retail price 75p

A RANGE OF
 SOLDERS IN HANDY DISPENSERS.

REF. ALLOY SWG
$4 \mathrm{~A} \quad 60 / 40$
$15 p$
Size 5
(ill- Savbit 18 15p *
usira-
ted)
15 60/40 22 20p *
*Recommended Price

INVALUABLE FOR STRIPPING FLEX, THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER AND CUTTER, easily adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended
retail price 50 p

From Electrical and Hardwàre shops. If unobrainablé, write to Multicore Solders Ltd., Hemel Hempstead, Herts.

Selections from FELSTEAD ELECTRONICS' List

 20p. OC1FI 12 p. Atany note in livt. S.D.R. BYI00 800pix 14 p . 6 Amp series: BY2

 other it list. SOLDERING IRON. Slim, Musern, British high, speed si all part replaceable highest quality, iull guarantee: £1-07' (10p), DIAMOND STYLI Replace ments for 188K TC8 LP, TCA/B, TCSLESSTEREO,

 hikhest quality. Double Diemond: ©T4 (ST3, 4TH); NT10 (ST9, ST8): 9TA, 9TAFIC. 930 .

 TTERFO-COMPATBLE: (MONO) AP91/SC (E1.05) ATEAR

 RECORDING TAPE, St ill the finest quality Mylar available: Standard :" 500 ft .36

 "Planet" nachind rictar tapeced stick lype with neck eorat, aldaptor to fit thour stands

 £2.22\& (Either 15p). Type e29 Cariond ball, 2

 3.5mn, state which) Magnetic 日p Crystal ($3: 5$ only) 24p. (l'p to 3 for 6 p onany.) HEADPHONES De Lixe sTEREO 8-15 ohms, 22.47!. Sanf, fitted wol, control each earpiece.
 82jp (121p). SPEAKERS. 12- Rot ND, titce trecter. or
 EMI $13^{*} \times 8^{\prime \prime}$. ${ }^{8} 8$ or 15Ω (state which) $£ 2.121$ (25 p): with single nlarel parat tweeter

 Synch. (128R7) 82tp (all types B;p per vibrator). CONNECTING WIRE. Packs of coils tastal cols, ea. coil oyds. solht core 14 p (8 p). Flexitle 16p (7!p). Super thin for transistor wiring 16p (6 p). PICK-UP WIRE. Shper thin twin fiex. screened anal

 421 p (6p per leal. all types). BATTERY ELIMINATOR. 240a.c. input 3, , , And is
 rifpliance incl, ill makes casselle it aw and $\mathrm{T}^{\prime} \mathrm{W}$ trans, amplifiers, Electrolytics, Vol. controls, all types of radio wwitches, car and portablc expanding aerials, Mitera, Test prods, all types of Brit. \& Corit, stantlard and min. plugs and sockets, sDR's, Thyrist ors, eroe, elips (rarions), terminals, etc. etc. and many "Special offr" lines at lowest pogsible prices.

FELSTEAD ELECTRONICS (PE503)

LONGLEY LANE, GATLEY, CHEADLE, CHES. SK8 4EE
Caylh with order only. No CCO.D or Caller servicc. Clarges (Min. Gp) in brackets atter all items. Hegret Orilers urider 25 pexiulling postage ulacecptable. S. A. E. please for inquisies or caninot be repica
welcomed ligt

Britains most popular kits..

Heathkit the beginner as well as the experienced mans first choice.
Want to know more... the unique Heathkit one-step-at-a-time construction manual is your guarantee to kit building success. To see for yourself how easy it all is, simply order the manual for the model of your choice (price only 10/- each). If you order a kit at a later date the manual price can be deducted. Your first step is to send for the Free catalogue, yours for only the price of a postage price stamp.

Exciting Sound - Budget Price
Kit: K/SRP-I - - $\$ 32.50$ Carr. 80 NP

30W Stereo Amplifier

Stereo Gram, Radio, Aux inputs
Kit: K/TSA-I2
$£ 36.00$
(cab extra)
Carr. 50 NP

'SEVERN' AM/FM Radio

Beautiful Looks - Luxury Sound
Kit: K/SEVERN - $£ 19.90$ Carr. 50 NP

Economy SW Receiver

World-wide Reception I to 30 MHz plus $550-1620 \mathrm{KHz}$ Kit: K/GR-64 - - $\mathbf{£ 2 5 . 0 0}$ Carr. 50 NP

Ambassador Speaker
Remarkable sound quality for its price

Kit: K/AMBASSADOR $£ 33.00$
Carr. 80 NP

Powerful Car Radio

Heathkit Value-Powerful Output
 Carr. 30 NP

Stereo tuner/amplifier

One of todays best values
Kit: K/AR-I4
$£ 59.00$
(cab. Extra)
Carr. 60 NP

A Schlumberger Company
HEATH (Glos.) LTD. GLOUCESTER GL2 6EE

Many more wonderful kits to choose from
\square Please send me FREE Catalogue
NAME
ADDRESS \qquad POS
notice
5/4/71

The Gerr.

AdlerStory.

Once upon a time Gerry Adler worked a 25 hour day making and selling valve filament testers. And very efficient they were too.

But at that time the Japanese could make them for about half the price, and sent Gerry one to prove it. It was as good as the ones he was making, so he sold it. And every other one he could get into the country.

After a time Gerry decided to go one step further. He designed some electronic equipment and had it built to his specification in Japan.Then he sold it here under the brand name 'Eagle'. Nothing particularly remarkable about that. But Gerry couldn't stand the idea of a barrier between him and his manufacturers. So he went to Japan. He poked his nose into all the electronics factories to find out how the Japanese worked.And when he got back he started to learn Japanese, and to study their history, culture and way of life.That way he had fewer communication problems and could get what he wanted.

That's what matters to Gerry.He's very fussy about what goes out under the Eagle banner.Because Eagle aren't in the filament testing business any more. They make just about everything electronic: amplifiers, test equipment, PA systems, intercoms, old uncle substation and all. Eagle is now twelve years old, and has opened offices in New York, Tokyo and Brussels.

This isn't just so much chest expansion on Gerry's part. He puts his money where his mouth is. If you think one of his products is not as good as a rival's, or it's faulty, or it's not all it should be, Gerry wants to know.

So write to him personally. He'll do something about it. He wants to make sure the Gerry Adler story has a happy ending.

Fagke Interinational
we don't stand still.
Coptic Street, London WC1A 1NR. Telephone 01-636 0961

NEW FROM TRS

This money saving STEREO $8+8$ AMPLIFIER in a new PRE-ASSEMBLED MODULAR PRESENTATION

A new conception in modular assembly which makes construction even easier then ever and results even better. Two pre-amp and two power amp modules, factory built, tested and guaranteed by a world famous maker come to you ready mounted with mains power unit on chassis forming part of the attractive TRS cabinet which simply need wiring for immediate use. A generous 8 watt RMS output per channel into $\mathbf{3 - 5}$ ohms is assured. Cabinet with aluminium front, charcoal grey top and wood sides measures 12 in $\times 8$ tin $\times 2$ fin. Very attractive appearance.

- Frequency
$16 \mathrm{kHz} \pm 3 \mathrm{~dB}$.
- Input: 110 mV per P.U., radio 240 mV .
- Output: $8 W$ per channel. RMS into 3-5a. Slightly less per 8 - 15Ω speakers.
- Record and playback facilities Bass/Treble/Volume/Balance Input/On-off cantrols.
- Extra easy to. install.

COMPONENTS CORNER

VYNAIR speaker and cabinet covering by ICI. Send 5 p for samples-refundable on purchase. $12 \frac{1}{2} p$ per sq.ft. El 1.38 per yd .48 in wide.

BONDACOUST speaker wadding lin thick, l8in wide, per yard $42 \frac{1}{2} p$.

VEROBOARD in all latest sizes and forms.

VOLUME CONTROLS. Long spindles all values 5 Kohms to 2 meg ., log or lin., less switch 171tp; with switch 25p.
Twin ganged stereo, 5 K to 2 meg . less . switch, 48p; with switch 100 K to 2 meg . 52p.
STEREO BALANCE CONTROLS. Log/ Anti-log 5K, 10K, $\frac{1}{2}$, 1 or 2 meg ., 55 p .

RESISTORS, CAPACITORS, WIRE, etc., etc.

MORE AMPLIFIERS FROM TRS

MULLARD VALVE AMPLIFIERS
5-10 basic kit (mono) $\mathbf{f 1 0 . 9 9 .}$ Carr. 28p. 2 valve mono pre-amp basic kit for above E7.65. Carr. 28p.
10-10 stereo amplifier kit E 18.99 . Carr. $63 p$.

TRS 50 WATT VALVE AMPLIFIER A ruggedly built unit in ventilated steel case with carrying handles: size 12 in x Bin $\times 8 \mathrm{in}$. Two input channels mixable (10 mV and 150 mV) bass and treble controls. EL. 34's output (mono) in push-pull, with fixed bias. Excellent for P.A., musical group work, etc. Brand new and guaranteed group work, etc. Br
$\mathbf{6 3 0}$. Carriage 75 p.

Complete kit assembled ready to wire up with mains lead and instructions. Unsurpassed value at only
£17.50
Carriage and packing 38p in U.K. Descriptive leafiet on request
FOR YOUR STEREO $8+8$ OR OTHER HI-FI SYSTEMS Plinth and motor assembly comprising modern styla teak finished plinth cut to cake famous Garrard AT6 auto/single playing unit wired tor
 (Carr. and packing 53p).
12.5

SPECIAL CARTRIDGE OFFER TO PURCHASERS OF ABOYE ONLY
Acos stereo 6P93-1 (sapphire) \&1.25.
Sonotone 9TA/HC (diamond) 22 .
Various magnetic cypes from \& 3.50 .
TRS SPEAKER BARGAIN
Ready now - SPEAKER AND CABINET ASSEMBLY comprising
8^{*} unit (4 ohms) and easy to put tozether flat-
pack cabinet ported and lined, size $18^{*} \times 12^{*} \times 9^{*}$. pack cabinet ported and lined, size $18^{\prime} \times 12^{-1} \times 9^{\prime \prime}$ 85.50 (Carr, 40p).

RADIO COMPONENT SPECIALISTS 70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY Tel. 01-654 2188 Thorncon Heash Sext sto. (S.R.)

Vary the strength of your lighting with a DTMMASMICH

The DIMMASWITCH is an ateractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of she DIMMASWITCH matches modern electric fittings. The bright chrome conerol knob activates an on-off switch and controls $40-600$ watts of all lights except fluorescents at mains voltages from $\mathbf{2 0 0 - 2 5 0 ~ V , 5 0 ~ H z}$. The DIMMASWITCH has built-in radio interference suppression. Price: 63.20 plus $7 \frac{1}{2} p$ post and packing. Kit Form: $\mathbf{6 2} \mathbf{7 0}$ plus $7 \frac{1}{2} p$ post and packing. Please send C.W.O. to:-

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel: 0244-25883 As supplled to H.M. Government Departments, Hospitais, Local Authorities, etc.

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aerials now ficted with tilting tracket and 4 element grid reflectors.
Loft Mounting Array x : 7 element, 45-; 11 element, 52,$6 ; 14$ element, $60 .-; 18$ element, 70 -: Wall Mounting with Cranked . l'm, ${ }^{7}$
 Complete, 7 element, $80,-; 11$ element, 87,$6 ; 14$ element, $95,-: 18$ element, $105 .-$. Complete assembly instructions with every aerial. Low Loss coaxtai Cable, 18 yd. King Telebooster:Labgear U.H.F. Boosters from O_{F}-. Helling Lee "Concord" all Band V.H.F. U.H.F. maıns operated Dre-amp 87.10 .0 . State clearly channe Accessories 3.. C. W.O. or C.O.D.

BBC. ITV. FM AERIALS
B.B. (C. (Bandi), Loft, Bi, Walls, $D, 38,6, \quad$ ' ${ }^{\prime}$ ' array, 60 I.T.D' (Band 3). 5 element loft array, 45, -. 7 element, s. Wall mounting 5 element, 65 'Combined BBC ITV loft $1+5$, in) - I +7 , 67, 6, Wali mounting $1+5,90$. Pre-amps from ang
comblimed bisci ITV 1313(-) Acrials, $1+5+9$ N0, $1+5+14.90-1+7+$
$14.100-$ Avalable loft only.
F. M. Radlo Loft S D, 19.6. " H ", 3* 6 . 3 element array, 57.6. Standard co-axial cable. I - yd. Coax plugs, 18 . Outlet boxes, is -. Diplexer crossover C.W.O. or C.O.D. (min. C.O.D. ©harge 3.6.) 1 . for fully illustrated Lists.

CALLERS WELCOMED

OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.)

40-41 Monarch Parade
London Road, Mitcham, Surrey 01-6484884

4STATIONINTERCOM
 4-8tation Transiator Intercom syatem (1 - master and 3 Sobs), in de-luxe plastic cabinets for desk or wall mounting. Cal/talk/Listen from Master to Bubs sud
Subit to Master. Ideally suitable for Business, Surgery, Schools, Hospital, Office and Home. Operates on one 9V battery. On/off switch. Volume control. Complete with 3 connecting wites each fi6it. and other accessories. P. \& P. 40p.

MAINS INTERCOM
No batteries-no wires. Just plug in the mains for instant two-way. loud and clear communlcation. On/off switch and volume control with lock system. Price \&12.95. P. \& P. 00p extra.

£3.15
Same as 4-station Intercom for two-way instant communication. Ifleal as Baby Alarm and Door Phone. Complete with 66ft. connecting wire. Battery 18p. P. \& P. 2up.

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

WEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

Tunable Wavebinds: Yediun Wive 1, Mediun Wave 2, Long Wave, S.W.1, s.W.2, S.W.: retractable chrome plater tclescopic aerial for short Waves for maximum pection 24 in Push-pull output using fiodMw type transistors. Nocket for tar acrial. Tape record socket Selectivity switch, hwit hed carpicce socket complete with earpicec for private listening. \$ transistors plas 3 diodes Pimous make $\overline{7}$ tinspeaker. . bir spaced ganged tuning condenser. On/off swite romme contron, whe chanze sintch anm tumbe control. ittractive case in rich ehestnu ahaue with goh blockins, size, tin approx. Lasy to folow instructions and diagrarum
 with parte)
Total building costs $\mathcal{E} Q=88 \begin{array}{cc}\text { P. \& P. } & \text { Overseas } \\ 38 \mathrm{p}(7 / 7) & \text { P. \& P }\end{array}$

roamer seven

mk IV

7 FULLY TiNABLE WAVE: BANDS-M.W.I, M.W. 2 L.W. Band. Fxtra Medium wareband proviles easicr tuning of Radio Luxembourg, efe, Built in ferrite rod aerial for Mediuns and long Waves. Retractable \& section "4ir chrome plateal telescopic acrial for for Car Aerial. l'owerful push-putlo out

wave change suitches and tunimg control. Attractive ease with Volumpory off eontrel. 4) \bar{i} tim appros. Fatsy to follow hast ntetions and diagrabis make the Foamer 7 a

Total building costs

£5.98 (65.19.7)

Overseas P. \& P. 85p (17/-)

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Atractive black and gold cate. size $\times 1$ itin. Tumable over both Meliun and Long Wase With extented M.N. band for casier tuning of diodes, supersengitive ferrite roll acrial, dine toll novine coil gneaker. Easy butul phome and part price libt 81 (1/5) (IPREF: with patts).
istening. $30 \mathrm{p}(\mathrm{h} / \mathrm{)}$) extra.
IMPROVED MODEL! roamer six
SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER
Attractive black case with red gritle atw blach knobs and dial with spun brass inserte. Size 9 5t 2 lin appros. Tunable on Medium and Long Waves band for easier tuning of Luximbourg etce sensitit ferrite rod aerial and lateat telescopic aerial for short Wases. Improved chrcuit. 8 stages - 6 trimi histors and 2 diodes including Micru-Alloy R.F Trangistore, cte. Easy build plans anil part price list 10 p ($\%$) (FREE with parts).

listening, 30p (6/-) extra.

Total building costs
 ((2.4.7)
Overseas P. \& P. 50p (10/-)

Total building costs

(63.19.7)

Overseas P. \& P. 65p (13/-)

NEW:

transeight

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive casc in black with
red grille and hack hnohs and

ineerte. Nize 9 : ipt ot olin.
approx. Turiable on Medium and Lous
Wayeg, 3 Short Waves und Trawler Hand
Sensitive ferritc rod acrial for M.W. and L.W. Telescopic aerial for Short Waves 8 improved type transistors plus 3 diodes. Push-pull output. Hattery cconomiser witeh for extented batterylife. Ample fower to drive a iarger rpeaker. Part

Total building costs
 (44.9.7)

Overseas P. \& P, 65p (13/-)

transona five

medium wave, long wave AND TRAWLER BAND PORTABLE
WITH SPEAKER
Attractive case with red nueaker grille. Size $9 \frac{5}{5}$ ${ }^{\frac{1}{2} \text { in }} 1$ din. 7 stages -5 tradidetors and 2 dinite fine tone minving eoil speaker. Finsy butid platsand
parte price list 8p (1/5) (PREF with jarts).

Total building costs
 (62.7.7)

Earpiece with plug and awitched steket for
Overseas P. \& P. $50 p(10 /-)$

BADIO EXCHANCE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
I enclose £ease send items marked
ROAMER EIGHT

\square	ROAMER SEVEN	\square	\mid	
TRANSEIGHT	\square	POCKET FIVE	\square	\mid
TRANSONA FIVE	\square	ROAMER SIX	\square	\mid
Parts price list and plans for				

Name
Address

* Callers side entrance Barratts Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

YATES ELECTRONIGS
 FLITWICK LTO

RESISTORS

tW Iskra high stability carbon film－very low noise capless con－ struction．IW Mullard CR25 carbon film－very small body size $7.5 \times 2.5 \mathrm{~mm}$ ．UW Erie wire wound

Power			Valves		
watts	Tolerance	Range	available	1－99	$100+$
1	5\％	4．7S $2-2.2 \mathrm{Ms}$ ，	E24	1．0p	0．7p
$\frac{1}{1}$	10\％	3．3MS－10MS	E12	1.0 p	0.7 p
t	10\％	1行－3．9	E12	1.0 p	0.7 p
t	5\％	4．7 ${ }^{\text {d }}$－1M 10	E12	1.0 p	0.7 p
4	10\％	$1 \Omega-10 \Omega$	E12	71 ${ }^{\text {p }}$	71 P

Quantity price applies for any selection．Ignore fractions on total order．

DEVELOPMENT PACK
0.5 watt 5% Iskra resistors 5 off each value 4．7S 2 to IMS．

E12 pack 325 resistors $\mathbf{£ 2} \mathbf{2 0}$ ．
E24 pack 650 resistors $\mathbf{\$ 4 . 2 0}$
MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{P} .0 .0068 \mu \mathrm{~F}$ $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}$ ． $0.15 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.22 \mu \mathrm{~F}, 7 \mathrm{f} \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 11 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 13 \mathrm{p}$
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}$ ． $0.1 \mu \mathrm{~F}$ $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 4 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \mathrm{p} . \quad 0.47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} . \quad 0.68 \mu \mathrm{~F}, ~ i 1 \mathrm{p} . \quad 1.0 \mu \mathrm{~F}$, $12 \frac{1}{2}$ ．
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P．C．mounting： $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}$ ， $0.068 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} . \quad 0.1 / \mathrm{F}, 4 \mathrm{p} . \quad 0.15 \mu \mathrm{~F}, 0 \cdot 22 \mu \mathrm{~F}, 5 \mathrm{p}$ ． $0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} . \quad 0.47 \mu \mathrm{~F}$ ， $8 \frac{1}{2} \mathrm{p} .0 .68 \mu \mathrm{~F}, ~ I 1 \mathrm{p} . \quad 1 \cdot \mu \mathrm{~F}, 13 \mathrm{p}$ ．
MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$ ， $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$ ．

100pF to $10,000 \mathrm{pF}$ 2p each
CAPACITOR DEVELOPMENT PACK
Selection of 100 ceramic and polyester capacitors， 100 pF to $1.0 \mu \mathrm{~F}, \mathbf{2} \mathbf{2} 90$. ELECTROLYTIC CAPACITORS－One Price－5p Each
Mullard C426 series（ $\mu \mathrm{F} / \mathrm{V}$ ）：25／6．4，50／6．4，100／6－4，200／6．4，320／6．4， $16 / 10,32 / 10,64 / 10,125 / 10,200 / 10,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16$ ． $6 \cdot 4 / 25,12 \cdot 5 / 25,25 / 25,50 / 25,80 / 25,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40$, $2 \cdot 5 / 64,5 / 64,10 / 64,32 / 64$.
Miniature P．C．mounting（ $/ \mathrm{F} / \mathrm{V}$ ）： $10 / 12,50 / 12,100 / 12,200 / 12,5 / 25$ ， $10 / 25,25 / 25,100 / 25$ ．

POTENTIOMETERS

Carbon track $5 k \Omega$ to $I M \Omega, \log$ or linear $\left(\log \frac{1}{4} W, \operatorname{lin} \frac{1}{2} W\right)$
Single， $12 \ddagger$ p．Dual gang（stereo），40p．
SKELETON PRESET POTENTIOMETERS
Linear： $100,250,500 \Omega$ and decades to $5 M \Omega$ ．Horizontal or vertical P．C． mounting（ 0.1 matrix）．
Sub－miniature 0.1 watt，4p each．Miniature 0.25 watt，5p each．
SEMICONDUCTORS

ACI26 15p	BFY52	221 P	OC81	15p	2N3055	72p
AC127 15p	BSY56	30p	OC82	15p	2N3702	15p
AC128 15p	BSX21	25p	ORPI2	47tp	2N3703	14p
ADI40 40p	BY124	$7 \frac{1}{2} \mathrm{p}$	IN4001	$7 \frac{1}{2} p$	2N3704	171 P
AFII5 171p	BYZIO	30p	IN4002	10p	2N3705	15p
AFII7 171p	BYZ13	20p	IN4003	$11 p$	2N3706	12 p
BC107 14p	OA85	71 P	IN4004	121p	2N3707	181 P
BCl08 10p	OA91	$71 p$	IN4005	14 p	2N3708	10p
BC109 10 p	OA202	7 $\frac{1}{P}$	IN4006	15p	2N3709	$11 p$
BFY50 22p	OC7I	15p	1N4007	16p	2N3710	12p
BFY51 19p	OC72	15p	2N2926	$11 p$	2N3711	14p
ZENER DIODES $400 \mathrm{~mW} 5 \% 3.3 \mathrm{~V}$ to $30 \mathrm{~V}, 17 \frac{1}{\mathrm{p}}$ ．						
VEROBOARD						
	0.1	0.15			0.15	0.1
$2 \frac{1}{2} \times 3$	22p	16 p	$17 \times$	37 （plain）	$52 \frac{1}{2} \mathrm{p}$	
$2 \frac{1}{2} \times 5$	24p	24p	$17 \times$	$2 \frac{1}{2}$（plain）	371 P	
$3 \frac{3}{4} \times 37$	24p	24p	$2 \frac{1}{2} \times$	5 （plain）	171 P	
$3 \frac{3}{4} \times 5$	27p	27p	$2 \frac{1}{2} \times$	3？（plain）	15 p	
$17 \times 2 \frac{1}{2}$	75p	$57 \frac{1}{1} \mathrm{p}$	Pin ins	ertion tool	471 P	47 ${ }^{\text {P }}$
17×37	100p	75p	Spotfa	ce cutter	371 P	$37 \pm p$
17×5（plain）	－	75p	Pkt． 3	pins	15p	15p

ROTARY SWITCHES
2P2W，IP12W，2P6W，3P4W，4P3W，22tp．
PLUGS AND SOCKETS

Standar	in screened	171 ${ }^{\text {P }}$	2.5 mm insulated	
Standard	in insulated	14 p	3.5 mm insulated	71p
Stereo	in screened	35p	3.5 mm screened	$12 \pm p$
Standard	in socket	15p	2.5 mm socket	71 p
Stereo	tin socket	171p	3.5 mm socket	$7 \frac{1}{2}$

BRUSHED ALUMINIUM PANELS

$12^{\prime \prime} \times 6^{\prime \prime}=25 p ; 12^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}=10 \mathrm{p} ; 9^{\prime \prime} \times 2^{\prime \prime}=7 \mathrm{p}$ ．
C．W．O．please．Post and packing，please add $7 \frac{1}{2} p$ to orders under $\boldsymbol{\ell 2}$ ． Data sheets are available for most of the components listed，and will be sent free on request．
$8 E 39$ ELSTOW STORAGE DEPOT，KEMPSTON HARDWICK，BEDFORD

容気以 $=$

TRANSISTORISED TWO－WAY TELEPHONE INTERCOM

Operative over amazingly long diatances．Separate call and press to talk buttons， 2－wire connection． 1000 es of
applications．Berutifully fin－ applications．Berutifully fin－ ighed in ebony．Supplied wall brackets． \＄0．97！．P．\＆P． 17 ！p．

AVO CT471A MULTIMETER Battery operated，fully transiatorised．
Senaltivity $100 \mathrm{mn} / \mathrm{v}$ ．Meanures $\mathrm{AC} / \mathrm{DC}$ Soltages 12 mV to $1,200 \mathrm{v}$ ．AC AC／DC Current 120 A to 1.2 Amp ．Remistance 12 ohm to 120 mo HF，VHF．UHF，Voltage with multiplier 4 v to 400 v up to $50 \mathrm{Mc} / \mathrm{m}, 40 \mathrm{mV}$ to iv up to $1,000 \mathrm{Mc} / \mathrm{s}$ ．Offered in perfect condition． 856 each．Carr． 50 p ．
CRYSTAL CALIBRATORS No． 10 Small portable erystal
controlled wavemeter． Size $7^{*} \times 71^{*} \times 4^{*}$ ．Fre－ quency range $500 \mathrm{Kc} / \mathrm{s}$ ．
$10 \mathrm{Mc} / \mathrm{g}$（up to $30 \mathrm{Mc} / \mathrm{s}$ $10 \mathrm{Mc} / \mathrm{a}$（up to $30 \mathrm{Mc} / \mathrm{s}$
on harmonics）． Cali ． on harmonics），Cali－ brated dial．Power re－ quirements 300 V．D．C．
15 mA and 12 v．D．c． 0．3A．Exeellent con－ dition．

B．C． 221 FREQUENCY METERS latest retease condition．Fully teated and checked and coniplete with calibrator charts． 207．50 each．（Garr．J0p．

AM／FM SIGNAL GENERATORS
 Oscillator Test No． \because precision high quality precision inetru－ ment made for the
mintstry by Airme． Frequency cover－
age $20-80 \mathrm{Mc} / \mathrm{B}, \mathrm{AM}$ age $20-80 \mathrm{Mc} / \mathrm{s} . \mathrm{AM}$
C．W．／FM．Incor－ porates precision dial，level meter，precision 12 V l．e．or $0 / 110 / 200 / 250 \mathrm{~V}$ a．c．fize $12 \times 8 \mathrm{j} \times 9 \mathrm{in}$ ．Supplied in brand new condition complete with all connectors fully tented． 845 ．Carr．\＆1

AVO CT． 38 ELECTRONIC

 MULTIMETERSHigh quality 97 range instrument which meaoures a．c．and d．c．Voltage．Current，
Realistance and Power Output Ranges d．c． volts $250 \mathrm{mV} \cdot 10,000 \mathrm{~V}$（ 10 meg a -110 mega input）．D．e．curreut $10 \mu A-25 A$ ．Ohms． $0.1,000$ meg a n．c．volt $100 \mathrm{mV}-150 \mathrm{~V}$（with current $10 \mu \mathrm{~A}-25 \mathrm{~A}$ ．Power output 50 micro－ current $10 \mu \mathrm{~A}-25 \mathrm{~A}$ ．Power output 50 micro－ supplied in perfect condition complete with clrcuit ieal and R．F．probe．285．Carr．7jp． ADMIRALTY 628 RECEIVERS
 High quality 10 valve
receiver manufactured by receiver manufactured by
Murphy．Coverage in 5
bands $100-300 \mathrm{Kc} / \mathrm{s}: 560$ bands $150-300 \mathrm{Kc} / \mathrm{a} ; 500$
 Kc / a ．I．F． $500 / \mathrm{KHz}$ ，In－
corporates 2 R．F．and 3 I． \mathbf{F} ． corporates 2 R．F．and 3 I．F．
stages，banlpass filter， stages，bamipass filter，
uose limiter，crystal con－
trolled B．F．O．calibrator I．F ，output，etc．Build－in speaker，output for phones．Operation $150 / 230 \mathrm{~V}$ a．c．Size in in good working condition． 822.50 ，Carr． $\mathrm{B} 41 \underset{\mathrm{~L}}{\mathrm{~L}} \mathrm{~F}$ ．version of above．${ }_{5} \mathrm{FKHz} \cdot 700 \mathrm{~Hz}$ ． \＄17－50．Carr． 21.50 ．

TO－2 PORTABLE OSCILLOSCOPE A general purpose low
cost economy oscillo－ ecope for everyday use． \mathbf{Y} amp．Band uidth
2 cPG－1 MHZ． 2 CPG－1 MERZ．Input imp． 2 meg Ω os P．F． llluminated scale． 2 in ． tube． 115 Weight 8180 ． $220 / 240$ V a．c．Supplied brand new with hand－

TO－3 PORTABLE OSCILLOSCOPE

 ly 0－p／CM．Band
 \mathbf{X} amp．sensitivity 0．9V p－p／CM．Bandwidth 1 －jeps
-800 KHz ．Input -800 KHz ．Input imp，＇3
meg 0 20pF．Time base， meg 020 pF ．Time base，
z ranges 10 cps－ 300 KHz ．
gynchrouizetion exterual，Itluminated scale $140 \times 215 \times 330$ mm ．Weight 1 ũ1b $220 / 240 \mathrm{~V}$ ．A．C．Supplied
brand new with handbook． $837-50$ ．Carr，Dop．

GEM PANEL MMETERS

USED EXTENSIVELY BY INDUSTRY，GOVERNMENT DEPARTMENTS，EDUCATIONAL AUTHORITIES，ETC． STOCK OTHER RANGES TO ORDER

＂SEW＂CLEAR PLASTIC METERS

Type Mr．85P．Atin ： 1 tin tronts．

$50 \mu-4$ $100 \mu \mathrm{~A} \ldots$. $200 \mu \mathrm{~A}$
$500 \mu \mathrm{~A}$
$500-0-500 \mu \mathrm{i}$ $300-0-\bar{u}$
1 mAA
$1-0-1$

1 mA	29．60
1－0－1m．	29.60
5 mA	42.60
10 mA	52.60

Type MR

$\mathbf{3 0 \mu A}$	28.10
50－0－50 $/ \mathrm{A}$	28．60
$100 \mu \mathrm{~A}$	22．60
$100 \cdot 0 \cdot 100 \mu \mathrm{~A}$	42．87！
$\underline{0} 00 \mu \mathrm{~A}$	20．25
1 ma	22.00
5 mA	22.00
10 mA	28．00
50 ml 4	28.00
100 mA	22.00
500m．	22.00
1．A．	28.00
DA	22.00

Type MR．65P． $81 \mathrm{in} \times 8 \mathrm{im}$ Ironta

A	23．87	20 V d．c．	22.10
$50 \cdot 0-50 \mu \mathrm{~A}$	28.75	30V d．e．	22－10
$100 \mu \mathrm{~A}$	22.75	1509 d．c	28．10
100－0－100 L A	22.60	$300{ }^{\text {d }}$ d．c	28．10
$200 \mu \mathrm{~A}$	28.60	10% a．c．	28.10
500124	22．871	30 V a．c．	22－10
$500 \cdot 0-500 \mu \mathrm{~A}$	82．10	150 V a．c．	28．10
1 mA	$22 \cdot 10$	300 V a．c．	2－10
5 ma	$52 \cdot 10$	300 V a．c	10
10 ma	22－10	A Meter	
50 mt	4．10	1 mA	28－37！
100 mA	管－10	YU meter	28.87
500 mA	知 10	50 mA a．c．＊	2090
1 A	42．10	100 ma a．c．＊	82．10
${ }^{\text {a }}$	28－10	$\underline{200 m A ~ a . c . * ~}$	22．10
10A	镍－10	j00mA a．c．＊	c2． 10
15A	20．10	1A a．c．＊	22.10
20 A	28.10	5i a．c．＊	22－10
30A	28.10	10A a．c．${ }^{\text {c }}$	28．10
j0A	28．87！	10 A a．c． 20 A a．c．	28．10
by d．c． 10 V d．c．	28.10	$\cdots{ }^{20} 4$ a．c．	28.10
10V d．c．	42.10	30A a．c．＊	82.10

＊MOVING IRON－
ALL OTHERS MOVING COIL
Please add postage

\section*{＂SEW＂EDUCATIONAL METERS

 Type ED． 10% Bize

overall $100 \mathrm{~mm} \times$ $90 \mathrm{~mm} \times 108 \mathrm{~mm}$ ． A new range of high quality moving coil instrument ments and experi－ bench applications． 3^{7} mlr ror acale．The meter movement is easily accesaible to
demonstrate internal working．Available demonstrate internal

in the folfowing ranges：
 | $50 \mu \mathrm{~A}$ | 24.50 | 20 V d．c． | 88.97 |
| :---: | :---: | :---: | :---: |
| $100 \mu \mathrm{~A}$ | 84.25 | 50 V d．c． | 88.07 |
| 1 ma | 23.97 | 300 V d．c．．． | 88.07 |
| 50－0．50 $\mu \mathrm{A}$ | 44.25 | Dual range | |
| 1－0．1mA | 88.97 | 500ma／5Ad． | 84．25 |
| 1A d．e． | 28.97 | 5V／50V de． | 24.25 |
| 5A d．c． | 48.87 | $1 \mathrm{~mA} / 10 \mathrm{~mA}$／ | |
| 10V d．e． | 28.97 | 100 mA | 24.62 |

 signalgenerator． 5 range inexpenalve instrumen for the handyman．Oper ates on $9 v$ battery，Wide easy to read scale
800 kHz modulation $53 \times 51 \times 31 \%$ ．Complete with intructions and
leads． $87-97$ as，P ．P 20 p ．

LELAND MODEL 27 BEAT

 FREAUENCY OSCILLATORS 50 Frequeney $0.20 \mathrm{Kc} / \mathrm{s}$ on 2 ranges．Outpu Supplied in perfect order． $812 \cdot 50$ ．Carr．vop MARCONI TF88G VIDEO OSCLLLATORS $0-\mathbf{j M H z}$ ．Bine gquare Wave． $\mathbf{8 4 5 \text { ．Carr．} 8 1 \text { ．}}$ LAFAYETTE TE46 RESISTANCECAPACITY ANALYSER

CLASS D WAVEMETERS

A cryatal controlled hetero－ dyne frequency meter
coveriug $1.7-8$
Me／s． Ideal for amateur uee Avallable in good used con－
ditton．E5－97s．Car
 Corr． $371 p$ ．

MARCONI TYISSM BEAT PREQUEMCT OSCTLLATORS． $0-40 \mathrm{KHz}$ ． 480 ．Cart．$£ 1.50$

Our latest edition giving full details of a comprehenaive range of HI－FIFQUIPMENT COMPONENTB，TEST EQUIPMENT and DIACOUNT COUPONS YALUE 50p（10／－）． thousands of items at bargain prtces．

G．W．SMITH
\＆CO（RADIO）LTD．
Also see next two pages

TRANSISTORS

${ }^{7 \mathrm{P}} \mathrm{A} \mathrm{ACl}_{\mathrm{AC}} 87$

$$
\begin{aligned}
& 30 \mathrm{P} \text { BY } 109 \\
& 30 \mathrm{BY} 24 \\
& 80 \mathrm{BY} \mid 26
\end{aligned}
$$ 100 ACY18 10 ACY 19 12 D

16 ACY 20
ACY21 20p／ACY22 20 PACY 22
$70 \mid A C Y 28$ 20 ACY 28
20 ACY 40
20p AD140 29p AD140 20p AD161
 209 BY127
28： －VALVES

40250 40361 40362

40361
40362
$\mathrm{ACIO7}$
$\mathrm{AC1} 26$
AC126
$\mathrm{AC127}$
ACl 54

THYRISTORS

 1．For $8 \mathrm{SP}_{2} \overline{5}, \mathrm{SL} 6 \overline{5}, \mathrm{SL}_{5} \overline{5}, 3000,202 \overline{\mathrm{~T}} / \mathrm{C}, 202 \overline{5}$ ，
 Carriage 3 àp extra each t w

TELETON SPECIAL OFFER！

 CEIOT AM／FI STEREOTUNER AMPLIFIER SYSTERS Output 4 watia per channel．Excellent

 Record Changer，Plinth，cover and stereo cartridge．Ready wired． 245 ．Carr 21. TELETOX SAG－206 8TEREO AMPLIFIRR

Latest exciting release．Beautifully styled Wwitched inputs for Marg，X tal，aux，tape． Incorporatea volume，bass，trebse，sliding Rec．List £29．Our price 218－97．Carr．37p． ＊TRANSISTORISED FM TUNER t
 TRANSIBTOR
HIGH QUALITY
TUNER，SIZE
ONLY $6<4 \times 2 \|$ in．
3 I．F．stages． Double tuned dis－ criminator．Ample
output to feed most amplifers．Operates on 9 V battery．Coverage 88.108 MHz ．Ready
built ready for use．Fantastic value for
money．io－37t，P．\＆P． 121 p ． money． $16.37 \frac{1}{2}$ ．P．\＆P． 121 p ．
Stereo multiplex adaptors \＆i．97i．
HOSIDEN DH－08S DE LUXE STEREO HEADPHONES Features unique mech－ anical 2－way unith and fitted adjustable level
controls， 80 ohm imp－ Comance $20-20,000 \mathrm{cpa}$ lead \＆ster eo jack plug．
27.971. P．\＆P． 121 p．

AMERICAN TAPE

First grade quality American tapes．Brand new Discount on quantities．
3 in． $222 \overline{\mathrm{j} t}$ ．L．P．acetate
$3 \frac{1}{12}$ ．600tt，T．P．mylar 5 in .600 ft ．std．plastic
5 in .900 ft ．L．P．acetate 5 in．1，200ft．D．P．mylar $5 \frac{1}{2}$ in．1，200ft，L．P．acetate 5 in． $1,200 \mathrm{ft}$ ．LeP mylar
5 In． $1,800 \mathrm{ft}$ ．D．P．mylar 5 Im ． $1,800 \mathrm{ft}$ ．D．P．mylar 5in．2，400it．L．P mylar 7 in ． 1,2001 t．std．acetate． inin．1，800it．LPP．acetate in． 2,400 t．D．P．mylar
$7 \mathrm{in} .3,600 \mathrm{ft}$ ．T．mylar 7 in ． $2,400 \mathrm{ft}$ ．D．P．mylar
$7 \mathrm{in} .3,600 \mathrm{ft}$ ．T．P．mylar

SPECIAL OFFERS！

Garrard sPos／III fitted Goldring G800 cartridge and wooden plinth and plastic
cover．Ready wired．Total list price 236 ． OUR PRICE 虹： 50 ．Carr．50p． GOLDRING GL69／f Atted（ioidring 0800 cartridge complete with de luxe base and cover．Total list price $250 \cdot 80$ ．
OUR PRICE 889. Carr． 50 p ．

SINCLAIR EQUIPMENT

Project 60．Package oftern． $2 \times$ Z30 amplifier，
 amplifier，stereo 60 pre－
amp，PZB power

G．W．SMITH \＆CO．（RADIO）LTD．

RUSSIAN C1-16 DOUBLE BEAM OSCILLOSCOPES
 $0.9 \mu \mathrm{sec}$ to $100 \mathrm{msec} / \mathrm{cm}$. supplied complete with all
instractions, 887 , Carr, paid.

MARCONI CT44 TF956 AF ABSORPTION WATTMETER
E . μ / watt to
s20. Carr. s .

TE111,

DECADE
RESISTAMCE
ATTERDATOR
 $0-111 d B$. Connections. $\mathrm{T}_{\mathrm{an}}^{\mathrm{Un}}$ 60 anced T and Bridge T. Impedance $+10+20+30+40 \mathrm{~dB} . \quad \begin{aligned} & \text { Frequency } \\ & +\end{aligned}$ d.c. to 200 kHz (-3dB). Frequency: 0.05 dB . +indication $\mathrm{dB} \times 0.01$. Maxi mum input less than $4 W$ (50V). Built in 600Ω load resistance with internal/external switch. Brand new $287 \cdot 50$. P. \& P. 25p. BELCO AF-5A
SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR
 $18-200,000 \mathrm{~Hz}$; Square $18-50,000 \mathrm{~Hz}$.
Output max Output max
$+10 d B$ ($10 \mathrm{k} \Omega$). Operation internal
Attractive two-tove case $71 \mathrm{in} y$ sin 2 in
Price $\$ 17.50$. Carr. $17!\mathrm{p}$.
BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

HIGH SENSITIVITY
A.C. VOLTMETER A.C. VOLTMETER
10 meg. input 10 ranges
 R.M.S.
Decibela $-40 / \mathrm{c} \cdot-1 \cdot 2 \mathrm{Mc} / \mathrm{s}$
to +50 dB Supplied brand new complete with leads and 230 V a.c. 817.50 Operation

TE-65 VALVE VOLTMETER

High quality instrument ${ }_{1-5-1,500 \mathrm{~V}}$ wes. D.c. volte $1.5-1,500 \mathrm{~V}$. A.c. Volts
$1.5-1,500 \mathrm{~V}$. R . 1,000 megohms,
up up to 1,000 megohms,
e20/240 a.c. operation. Complete with probe and Inatructions. 817.50 , P. \& P. 30p. Aduitlonal
Probeg available: R.F e2.121, H.V. E2.60. R.F 230 VOLT A.C. 50 CYCLES RELAYS Brand New. 3 bets of changeover contacts at 5 amp rating. 50 p each. P. \& P, 10p (100 lots £40).
Quantities avalable. Quantities available.

MULTTMETERS for EVERY purposed

7:
TECH PT-84, 1,000 O.P.V. $0 / 10 / 50 / 280 /$
$500 / 1,000 \mathrm{~V}$ a.c. and 1.c. $0 / 100 \mathrm{~K} .21 .97!$. P. \& P. $12 \downarrow \mathrm{p}$.

MODEL TR-200. 20,000
O.P.V. Mirror ncale, over-
lod protection. $0 / 5 / 25 /$
$125 / 1,000 \mathrm{~V}$ d.c.
$0 / 10 / 50 /$
$250 / 1,000 \mathrm{~V}$
a.c.
$0 / 50 \mu \mathrm{~A}$ $\begin{array}{lll}1250 / 1,000 \mathrm{~V} & \text { d.c. } 0 / 10 / 50 / \\ 2501,000 \mathrm{~V} & \text { a.c. } & 0 / 50 \mu \mathrm{~A}\end{array}$ 250 MA . $0 / 60 \mathrm{~K} / 6 \mathrm{meg}$ $\begin{array}{lll}\text { MODEL } & 500 . & 30,000\end{array}$ protection with overlos protection, mirror scale $250 / 500 / 1.000 \mathrm{~V} / 251100$ $10 / 25 / 100 / 250 / 500$ 1,000 V. a.c. $0 / 50 \mu \mathrm{~A} / 5 / 50 /$ 500 mA 12 amp. d.c.

MODEL TE-70, 30,000 O.P.V. $0 / 3 / 15 / 60 / 3001$ $600 / 1,200 \mathrm{~V}$ d.e. 0/6/30/ $120 / 600 / 1,200 \mathrm{~V}$ a.c. $0 /$ $30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}$.
$16 \mathrm{~K} / 160 \mathrm{~K} / \mathrm{I} \cdot 6 \mathrm{M} / 16 \mathrm{meg}$
25\% P. P. \& P. 15

TMK MODEL TW-50K, 40 ranges, mirror scale. $50 \mathrm{~K} /$ Volt d.c. $5 \mathrm{~K} /$ Volt a.c. D.c.
volts: $0.125,0.25 ; 1 \cdot 25,2 \cdot 5$, 5, 10, 25, 50, $125,1250,500$. $5,10,25,50,125,250,500,1,000 \mathrm{~V}$. D.e. current: $25,50 / 1 \mathrm{~A}, ~ 2.5,5,25,50,250$

TE-900 $20,000 \mathrm{n} / \mathrm{TOLT}$ GLANT MULTLMETER Mirror scale and overload protection. 6 in full view meter, 2 colour salc. 0 ,
$2.5 / 10 / 250 / 1,000$ $5,000 \mathrm{~V}$ a.c. $0 / 25 / 12 \cdot 5 / 10 / 50 / 250 / 1,000 /$ d.c. $02 \mathrm{~K} / 200 \mathrm{~K} / 20 \mathrm{~m} / 110 / 100 / 500 \mathrm{~mA} / 10 \mathrm{~A}$ P. \& P. 2öp.

MODEL 5025. 57 ranges, giant 5 tin
meter,
polarity everse switch, Sen-
sitivity: $50 \mathrm{~K} /$ Volt D.c. Volts: $0.125,0.25,125,5,10,25,50$, $10,25,50,105,250,500,1,000 \mathrm{~V}, \mathrm{~S}_{1}$ current: $25,50 \mu \mathrm{~A}, 2.5,5,25,50,250$, $500 \mathrm{~mA}, 5,10 \mathrm{~A}$. Resiatance: $25 \mathrm{~K}, 10 \mathrm{~K}$, $100 \mathrm{~K}, 1$ meg, 10 meg. Decibels: - 20 to $+8 \overline{\mathrm{j}} \mathrm{dB}$. 212-50. P, \& P, $17_{2}^{\frac{1}{2} \mathrm{p} \text {. }}$

MODEL TE12. 20,000 $\begin{array}{lr}\text { O.P.V: } & 0 / 0 \cdot 6 ; 30 / 120 / 600 / \\ 1,200 & 3,000\end{array}$ $1 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V}$ $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$ $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} .60$

FTC-401

TRANSISTOR TESTER
Full capabilitie measuring A, B and $1 C 0$. npn or pap. Equally adaptable for ehecking diodes. Supplied complete with instructions, battery 15p.

HONOR TE.10A, 20kR/ Yolt $\quad 5 / 25 / 50 / 250 / 500 /$
$2,500 \mathrm{~V}$
d.c. $10 / 50 / 100 / 500 /$ $1,000 \mathrm{~V}$ a.c. $0 / 50 \mu \mathrm{~A} / 2.5 \mathrm{~mA}$
 $10-0,100$ mfd. $0 \cdot 100 \cdot 0 \cdot 1$ P. \& P 15.
 $30 \mu \mathrm{~A}, 6 \mathrm{~mA}, 60 \mathrm{~mA}$ $300 \mathrm{~mA} / 600 \mathrm{~dB} \quad 15.0780 \mathrm{~K} / 800 \mathrm{~K} / 8 \mathrm{meg}$ -20 to $+63 \mathrm{~dB}, \quad 25.97$. P. \& P. 1 jp . $\begin{array}{lll}\text { MODEL TE } & \text { 80. } & 20,000\end{array}$ $0 . P .7$.
$\begin{array}{ll}1,000 V^{2} & 50 / 100 / 500 \\ 1 & 0\end{array}$ 250 , 500 a.c. $1,000 \mathrm{~F}$ d.e. $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{M} / 5 \mathrm{ma}$. 487!. P. \& P. 13p.
MODEL TE-90, 50,000 O.P. Mirror acale, over$300 / 600 / 1,200 \mathrm{~V}$. $003 / 13 / 60 /$ $300 / 600 / 1,200 \mathrm{~V}$ II.c. $0 / 6 /$ $30 / 120 / 300 / 1.200 \mathrm{y}$
$16 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot 6 / 16 \mathrm{me}$
THK MODEL TW-20CB. Features Resettable Overload Button. Renaitivity: Folt a.c. D.c. volta: $0 \mathrm{~K} \Omega /$ $2.5,10,50,250, \quad 1,000 \mathrm{v}$

$$
\text { A.c. volte: } 0-2.5,10,50,250
$$ currents: $0-0.05,0.5,5,50,50,50,1,000 \mathrm{~V}$. D.c. Resistance: $0-5 \mathrm{~K}, 50 \mathrm{~K}, 0-500 \mathrm{~K}$, 5 meg Decibels: -20 to +52 dB . $211 \cdot 50$. P. \&

KODEL A8-100D. $100 \mathrm{~K} \Omega /$ Yolt. 5 in, mirror scale.
Built-in meter protection 0 $3 / 12 / 60 / 120 / 300 / 600 / 1,200 \mathrm{~V}$ d.c. $0 / 6 / 30 / 120 / 300 / 600 \mathrm{~V}$ a.c. $0 / 10 \mu \mathrm{~A} / 6 / 60 / 300 \mathrm{~mA} /$

$12 \mathrm{~dB} . \quad 212.50 \mathrm{~K} / 2 \mathrm{P} / 200 \mathrm{M}$.
+17 Cl

 D.c. volts: $0.5,2.5,10,50,250,1,000 \mathrm{~V}$ A.c. volta: $3,10,50,200,500,1,000 \mathrm{~V}$
D.c. current: $10,100 \mu \mathrm{~A}, 10,100,500 \mathrm{~m}$ $2.5,10 \mathrm{~A}$. Resiatance: $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$ $2.5, ~ 10 A . ~ R e s i a t a n c e: ~$
10
10
meg, $100 \mathrm{~K}, 100 \mathrm{~K}$
meg. Declbels: -10 to +49dB. Plastic case with carrying handle, size 7 din $\times 6$ in $\times 3$ din. 21890 . P. \& P size 7
3 p.

SKYWOOD SW-500

$50 \mathrm{~K} \Omega / \mathrm{Volt}$. Mirror scale BC Volt
$0.6 / 3 / 12 / 30 / 300 / 600$ AC Volts $3 / 30 / 300 /$ 600 . DC Current 20uA/6/60/600mA. Reslstance $10 \mathrm{~K} / 100$ K/1Meg/10 Meg. De.
27.50. P. \& P. I р.
270° WIDE ANGLE 1 mA METERS MW1-6 \quad G0mm
e8.87t.
square
square square 44-97, P. \& P square
extra.

UNR-30 RECEIVER
4 Bands covering $550 \mathrm{KHz}-30 \mathrm{MHz}$. B.F.O with instructions. $115-75$, Cs.cr. B7! 37 p.

W882 TRAFSCEIVER8

Large quantity available for EXPORT Excellent condition. Enquiries invited.

R-IA SOLID 8TATE

COMM OHICATION RECEIVER
4 Bands covering $55 \mathrm{KHz}-30 \mathrm{MHz}$. FET, s Meter, Varlable BFO for SAB. Huilt in Speaker, Bandspread, Sensitivity Control.

LAFAYETTE
HA- 600 RECEIVER

Genctal coverage $150-500 \mathrm{KHz}, 500 \mathrm{KHz}$ 30 MHz . FET front end, 's mech. filtere, limiter, \& Meter, Bandspread. RF Gain. 15 in : 97 m \% 8 in. 18 lb . $220 / 240 \mathrm{~V}$ a.c. or 12. d.c. Brand new with instructions 445. Carr. 30 p

$3 \cdot 5-4,7-5 \cdot 3,14-14 \cdot 35,21-21 \cdot 45,28-29.7$ filters, product delector, variable BFO filters, product detector, variable BFO,
y a.c, or 12 V d.c. 15 in 9 in $8\{\mathrm{in}$. 181 b . Brand new with instructions. e57.50. Carr. pail (100 KHz ('rystal $£ 1.97$! exira).

FULL RANGE OF TRIO EQUIPMENT
EDDYSTONE VHF RECEIVERS MODEL 770R. 19-165 Mc/s. Excellent condition. 8150

VOLTAGE STABLISER TRANSPORMERS $180-260 \mathrm{~V}$ input. Output 230 V . Availabl 50W or 225 W . 212.50 .

AUTO TRANSFORMERS

$0 / 115 / 230 \mathrm{v}$. Step up or atep down. Finl obrouded.

$$
\begin{aligned}
& \begin{array}{lll}
1,000 \mathrm{~W} . & 27.25 . & \text { P. \& P. } 371 \mathrm{p} . \\
1,500 \mathrm{~W} . & 88.97 . & \mathrm{P} . \& \mathrm{P} .42 \$ \mathrm{p}
\end{array}
\end{aligned}
$$

SOLID STATE VARIABLE A,C VOLTAGE REGULATORS
 Compact and panel mount ing. Ideal for control of
lamps, drills. electrical lamps, drills. electrical
appliances, etc. Input $230 / 240 \mathrm{~V}$ a.c. Output con. tinuoumly variable fron 20 V to 230 V . Model MR2305 5A 88 K 46
$\times 43 \mathrm{~mm}, 88.371$. Model MR2310 IOA

POWER RHEOSTATS

HIgh quality ceramic construction. Windings embedded in vitreous enamel, Heavy duty brush riper. Continuous rating. Wide range estock Single hole fixing, In. dia. shafts. Bulk quantities available. WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohms, $72!\mathrm{p}$. P. \& F. Tlp. 50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 2,500$ or 5,000 ohms, $21 \cdot 05$. P. \& P. $7!p$. 100 WАTT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or 2,500 ohms, $21 \cdot 37$. P. \& P. $7 \leq p$.
ADVANCE TEST EQUIPMENT rand now and boxed in originalisealed cartons 100 79 , DEF HILLIVOLT METER, D.c. 10 mV to 3 V . Current 0.01 mA to 0.3 mA. Resiatance 1 ohm to 10 megohm 125.

TT1. TRANSIBTOR TESTER. Full range of incilities for teating PNP or NPN tramesators in or out of circult. 287.50 .
Carriage 50 p per item.

Catering to your particular service and production requirements Speciprod

Our range includes:
Aerosol Aids: From Kontakt, Antistatic spray-Cold spray-Fluid spray-Graphite spray-Oil sprayPlastic spray-Soldering Lacquer-Switch and contact cleaners-Video spray for cleaning tape heads.
Allen and Bristol Keys: L Type. Standard and Long Arm.
Contact Cleaners: Diacrom Diamond Spatulas and Kontakt aerosols.
Nutdrivers: Hex-A.F.-Metric. Solid and hollow shaft and Palnut.
Pliers, Seizers and Nippers: Quality Precision made hand tools from Xcelite, and other leading makes of special tools.

Special Products Distributors Ltd
81 Piccadilly, London W1V OHL

Screwdrivers: Allen-Ball head-Bristol-Clutch head -Hold-e-Zee-Phillips and slotted.
Soldering Equipment: Resistance and heat controlled units. Also thermal wire stripping equipment from American Beauty ānd Waseco.
Tweezers: Quality Swiss made electronic tweezers.
Ultrasonic Cleaners: Bench models and accessories from American Beauty.
Work Positioners: The versatile Panavise 300 series for modern precision and allied industries.
Work Viewers: Distortion free Ednalite viewers and optical glass lenses for single and group viewing.
For catalogues and other information on the above write : Tel: 01-629 9556
Cables: Speciprod London W1
 out. Complete kit 28.75 .
Post and Ing. 38p.

12 polt Car Battery Trickle Charger. Made it Japan, this is very small and neat. Regular use will keep your car batter in good trim throughout
the winter. Silly price 21.25 plus 23 p postage and frigurance.

QUICK CUPPA

Mind Inimeraion Heater, 350 w 200/240r. Boill full cup in about To minuter. Ube any socket or tes, baby's lood, etc. 21.25 , post and insurance 14 p . 12 F . car model also a vaileble 21 .
PLINTH AND COVER Suitable for most auto changers, teak base with tlinted perspex cover, 4.25 plus 33p postage. Special set plus 33p poatage plus 33p poatage.

THYRISTOR LIGHT DIMMERS
Willdimincandeacent lighting up to 600 w . from full briliance to out. Assenibled and wired ready to inetall 28.

AUTO-ELECTRIC CAR AERIAL with dashboard control swltchfully extendable to 40 in . or fully
retractable. Suitable for 12 y retractable. Suitable for 12 V complete with fitting instructions and ready wlred dashboard switch. 25.95 plus $2 \overline{5}$ p post and ins COMPUTER TAPE $2,400 \mathrm{ft}$ of the best magnetic tape money can buy. Made by L.M.I., lin. wide almost unbreakable and on a $10{ }^{\text {in }}$ in. metal computer spool. Users have claimed successful results with video ay well as sound recordings 81 plus 33 , post

cassette to hold spool 50f extra

HORSTMANN "TTME E SET" SWITCH to a warm house without it costing you a fortune. You can delay the gwitch on time of your electric fires, etc., up to 14 hours from setting time or you can use the awitch to give a boost on period of up to 3 hours. Equally sultable to 8pecial snip price $21 \cdot 50$. Post and ins. 23p.

IHOUR MINUTE TIMER
Made by famous \&mithe company, these have is large clear dial, size 4 in,$\times 3$ in., which can lie set in minutes up to 1 hour. After presct periol the bell ringe. Ideal for processing, a memory jogger or, by adiding simple lever, would operate micro-awitch,

THE FULL-FI STEREO SIX

The amplifier
sensation of the year You will be anazed at the fullness of reproduction and at the added qualities your records or tuner will re. produce. Builtinto metal and teak finished to blend with Hodern furnishings, this amplifier uses an ategrated solid atate circuit with an output power of 6 watts R.M.S. split over the two channels. The amplifier is ideal for use with normal pick-ups and tuners, it has a double wound mains transformer and ganged volume and tone controls-also switching for Mono to Stereo, tuner or pick.up. Other controls include "treble lift and cut", "balance" and separate mains on/off switch. Price is 59 plus 38 p post and insurance

1 pole	33 p	33p	33p	33p	38p	33p	33p	33p	33p
2 poles	33p	33p	33p	33 p	33p	33 p	33p	55 p	55p
3 poles	33p	33p	33p	33 p	55p	55p	550	$75 p$	75p
4 poler	33p	33p	38p	55p	85p	55 p	55 p	$95 p$	95p
$\overline{3}$ polea	38p	38p	55p	55 p	75p	750	75 p	£1-15	21.15
6 poles	33p.	55p	55p	55p	75	75p	75 p	21.35	21.35
7 poles	55 p	55p	55p	75	95p	85p	95p	£1.55	21.55
8 poles	55p	55p	55p	750	950	95p	95p	21.75	21.75
9 poles	55 p	${ }^{55} 5$	75 p	75 p	21.15	21.15	21.15	21.95	\&1.05
10 poles	55p	65 p	75	95p	21.15	21.15	21.15	¢2.15	e2.15
11 poles	550	750	75	95p	21.35	21.35	81.85	48.35	88.85
12 polem	55 p	76p	75p	95p	21.85	21.35	21.85	42.55	28.55

SPARTAN Portable

 LOUR RADIOLong and medium wave 7 translator, size 6 in. than win. With larger very good tone. Built-in very goom tone. Built-l scoplc aerial for distant

stations. A real bargain complete with leather casc, calry wling, earplug and case. 28.75 plus 25 p post and ins.

MULTI-SPEED MOTOR

Replacement in many well known 500,850 , and $1,100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. from either or both of the nylon sockets (where the beaters of the food mizers normally go) and $8,000,12,000$ and 15,000 r.p.1n. (ideal poliahlng speeds) from the main drive shaft. Very nowerful and useful motor size Price gop plus o3p post and ing

MAINS OPERATED CONTACTOR
$220 / 240$ V 50 cycle solenohl with laminated core so very silent in operation. Closes 4 circuits each rated at 10 A . Extremely well made by a Overall size $2!$ g 2 in. 21 each.

DOUBLE ENDED MAINS MOTOR
On feet with holes for serew. down fixing. To drive modets, oven, blower heater, etc. SOp each, plus 28 p post and insura
0.005 mFd TUNING CONDENSER

Proved design, ideal for straight or reflex eircuits 13p each, $\mathbf{k 1}$ - 20 doz.

ELECTRIC CLOCK
WITH 25 AMP SWITCH Made by Smith's, these unite are a fited to many top quallty
cookers to control the oven. The cookers to control the oven. The
clock is nains driven and trequency controlled so it is exquency controlled so it is exdials enable switch on and ofll
time to be accurately get. Ideal tIme to be accurately set. Ideal for awltching on tape recorders. Offered at ouly; fractlon of the regular price-new and unuaed only
post and insarance 14 p . post and insurance 14 p .

FLUORESCENT CONTROL KITS

Abstract

Each kit comprises seven items-Chok tube ends, starter, starter holder and 2 tube clips, with wiring instruct ions. Suitable for normal fluorescent tubes or the new 'Grolux' tubes for fish tanks and indoor plants. Chokes are super-silent, mostly resin filled. Kit A- $10 \mathbf{0}-20 \mathrm{~W}, \mathrm{Et}$. Kit $\mathrm{B}-30-40 \mathrm{~W}$, \&1. Kit (1-80w, $21-20$. Kit $\mathrm{E}-30 \mathrm{JW}, \mathbf{2 1 . 2 0}$. Kit for 8 ft 1 '2 5 W tube $\mathbf{8 1 . 7 6}$. Kit MFl is for 6 in 9 in and 12 in miniature tubes, is. Kit MF: for 2Iin minature tubes, ell. Kit Postage on Kits A and $\mathbf{B} 23 \mathrm{p}$ for one or two kits then $23 p$ for each two kits ordered. Kits C, D and E 3 p on first kit then $18{ }_{p}$ for each kit ordered. Kit F 33p then 23p for each kit each tro kits ordered on first kit then 18p on each to ${ }^{\circ} \mathrm{o}$ kits ordered

BLANKET SWITCH

 Double pole with neon let Ito aide bo luninous in dark,deal for dark room light or use with waterproof element -ur

BLANKET SIMMEASTAT

 Although looking like, and fitted as anordinary blanket suitch, this is in orderice for switching on for tarying time perlods, thus giving a complete eontrol from of to full heat. Although suitable for controlling the teniperature of any other appliances using up to 1 A . Listed at $\mathbf{2 1 . 4 0}$ each we offer thesc while our whocks lant at only 65p each.

REED SWITCHES
Glate encased, wwitches operated by external magnet-gold welded contact We can now offer 3 types:
Laterare. lin long a approzimately in diameter. Wlll make and break up to 1 A up to 300 olte. Price 18 p each, 81.20 dozen.
break current of up to 1 A , voltages up to will volle. Price 10 p each, 90 per dozen.
Fiat. Flat type, 2in long, just over hin thick, datteued out, so that it can be fitted into a maller apace or a larger quantity may be packed nto a square solenojd. Rating 1 amp 200 volts. Price 30 p each. es per dozen. mant ceramic magnets to openate these reel HIGHCAPACITY ELECTROLYTICS Brand new, not ex-equipinent.
00 mfl ajv op cach 60 p doz.
50 myd . $50 \mathrm{~V}, 16 \mathrm{p}$ each $\mathbf{1 1} .65 \mathrm{~d}$.
400 mifd. $40 \mathrm{v}, 29 \mathrm{peach} 29.30$ doz.
$500 \mathrm{mid} .12 \mathrm{~V}, 10 \mathrm{p}$ each $\mathbf{2 1 . 0 5}$ doz.
00 mid. $25 \mathrm{Y}, 18 \mathrm{p}$ each 21.00 doz.
500 mild .50 V ; 28 p cach 22.40 doz.
$500 \mathrm{mid} .350 \mathrm{~V}, 48 \mathrm{p}$ each 3450 do
$1000 \mathrm{mfd} .12 \mathrm{~V}, 15 \mathrm{p}$ each $\$ 1.50$ doz
1000 mfd . $18 \mathrm{~V}, 17 \mathrm{p}$ each $\$ 1.70$ daz
$1000 \mathrm{mdd} .64 \mathrm{~V}, 8 \mathrm{87p}$ each $84 \cdot 70 \mathrm{dk}$
$2000 \mathrm{mdd} .25 \mathrm{~V}, 34 \mathrm{p}$ each $\mathbf{1 4} \mathbf{3}$ doz.
2000 mid. 12 V , 24 p each 48.40 doz
$10,000 \mathrm{mfd} .6 \mathrm{~V}, 29 \mathrm{peach} 48 \mathrm{doz}$. 10,00 mal 48 g each $24.50 \mathrm{~d} 0 z$
$15,000 \mathrm{mld}$. $10 \mathrm{~V}, 48 \mathrm{~g}$ each 55 doz .
$90,000 \mathrm{mfd} .8 \mathrm{~V}, 81 \cdot 10 \mathrm{cach} 210 \mathrm{doz}$
$70,000 \mathrm{mfd} .13 \mathrm{~V}$, 82 each 280 doz
priaing 129 BATRERY CHARGER KIT- compriaing $230 / 40$ maing transformer with 3 amp secondary and 3 amp rectifer $81 \cdot 15+$ 2 2 p post. double-wound $230 / 240 \mathrm{~V}$ mains transformer with full wave rectifier and $2000 \mathrm{~m} / \mathrm{f} / \mathrm{d} / \mathrm{smoothing}$ Price 81.40 .
8OFOTONE ETEREO CARTRIDGE. Turnover type, ref. No. 19 T1. This fits most British pickups and is a really excellent reproducer. Limited Ifuantity, E1.
5 AMP 3-PII
SOCKETs. These are alwayy goor miock, you never know when youl will need som ramous make, brown bakelite, standard size 12 for 65 p plus 23 p post
 cream, less switch. for il.

解 to have just taken delivery of approximately 10 tons of bakelite in varying thicknesses from 2 in to a few thou. If you have a need for any of this then we would be glad to supply. The thickest is bed for a motorised unit. Medium thickness is useful for front panels of instrunent etes Cut to your size price is 30 p per lb . plus 30 p cutting charge plus carriage. mounting, brown bakelite. Manle hy fantons Hlaker. $13 p$ each or si- 20 dozel.
100 A8sORTED SILICON RECTIFIES G.P. AND 8WITCHMG DIODES. Small aud very smal

20 AMP ELECTRICAL PROGRAMMER
Loarg in your wloep: Have Radio playing and
kettle boiling as you awake-switchon lights to
ward off intruderg-have warm house to come
home to. All these and many other thlngs you cal
do it you invest in an Electrical Programmer. This is easentially a $230 / 240$ volt mains operated $\mathbf{C l}$ This is easentially a $230 / 240$ volt maing operated Clock and a 20 alops in itch, variable not stepped). Similarly the switch-on time can be delayed. This is a beautiful unit, size $52 \times 38 \times$ 2lin. deep. Metal cncased glass. with chrome surround. Offered at 28.40 plus postage and insurance 23 n .

HI-FI SPEAKERS (15, 30, 40 \& 100W) FULL FI IS IFCH LOUDAPEAKER. This it undoubtedly ne of the finest the country's most fanoms offered has a die-cast metal frame and wa strongly recommended for Hi-Fi load and Rhythm Ceuitar and public address. Flux Density 11,000 gauss-Total Flix 44,000 Maxwells-Power Handling ij watts R.M.s. Cone Moulded fibre-lireu. cesponse $30 \cdot 10,000$ c.p.a-Specily 3 or 15 ohms-Mains resonance 60 c.p.s.-Chassls Diam. 12 in .- $12 \mathrm{i} \frac{\mathrm{in} \text {. over }}{}$ mounting lugs-Baffe holc 11 in . diam.-Mounting boles 4.
holes- 1 in . iliann. on pitch circle 11 tin. diann... Overail holes- in. aliam. on pitch circle 11 din. diant... Overall height sim. A 46 apcaket offered for only 84 . plus $3^{7} \mathrm{p}$

INTEGRATED CIRCUIT BARGAIN
A parcel of integrated circuits made by the famous Plessey conpany. A
one-in-a-litet one-ja-a-lifetlme offer of Nicro-electronic devices well below cost of manusfacture. The parcel contains 5 ICs all new and perfect, frat-grade device, definitely not sub-btandard or seconds. $\&$ of the ICB are single silicon ehip
GP amplifiers. The 5th is a monolithic P . matuhed pair. Regular price GP ampliflers. The 5th is a monolithie NPN matehed pair. Regular price
of parcel well over \&o. Full circuit details of the 1 Cs are included and in of parcel well over £o. Full circuit details of the lCs are included and in
addition you will recejve a list of many difterent ICs avaliable at bargain prices 25 p upwarits with circuits and technical data of cach. Complete parcel prices 20 p upwaris with circuits and technica data of cach. Conilie
only $\& 1$ post paid. DON'T MISS THIS TERRIFIC BARGAIN.

ELECTRIC TIME SWITCH

Made by Bmiths these are AC mains operated NOT CLOCKWORK. Ideal for mounting on wocket. \because completely adjustable time periouls per 34 hours, 5 amp changeover contacts will switch circuit on or off during these periods. $22-50$, post and ins. 23n. Additional tinie contacts 50_{p} pair.

DISTRIBUTION PANELS
I ust what you need for work bench or lab standard 13 amp fused flage and onjoff awiteh with neon warning light. Suppliet complete with 7 feet of hesvy cable. Wired up ready to work 82 less plup

4 AMP VARIAC CONTROLLERS

With this you can vary the roltage applied to your circuit fon zero to 270 volts without generating undue heat. One woions application therefore is to din lighting. Ex cyupphent but little nsed-as goral am uew offeril at appros. half price- 65 plas $\%$ poat and ius.

A quick way to connect
equipment to the mains safely and firmly; diaconnection by plugs prevents accidenta switching on; has sockets which allow insertion a meter without disconnec ion; cable inlets firmly o four 7,009 cables.
 65 p cach.

DRILL CONTROLLER Electronically changes speed from approximately 10 refe. to
maximum. Full power at all speeds by finger-tlp warte, Kit includes all E1.50, plus 13p fost and insurance.

BALAKCED ARMATURE DKIT

ohm, operites speaker or micro phone, so uaeful in intercon

PROTECT VALUABLE

DEVICES
ROM THERMAL RUX
WAY OR OVERHEAT-
flers, tranaistora, etc.
hich use heat-
protected. Simply make the contact hermostat part of
Motors and equip-
ments generally,

quately protected by han ing thermovtate in strategic ppots on the casing. Our contact thermooodeg. to $190 \mathrm{deg} . F$, or with the dial remored range setting is between 80 to 800ideg.F. Price 50p.

THERMOSTAT WITH This pas a This has a sensor attached awlteh by a
15 in length of flexible length of of ubing-control range is 20 F to $150^{\circ} \mathrm{F}$ so it is suitable to control soil heating avd liquid heating the sensor when in buckets or portable ressela as vessel. This therniostat coukd also be used to sound a bell or other alarm when critical temp. is reached in stack or heap subject to spontaneous conbustion or if liquid is being heated by gas or other means not controllable by the switch. Made by the famous Teddington Co., we offer
theac at 65 p cach. Postage and insurance 14 p .

MAINS MOTOR
Precision made - as used in record decke and tape recorderslan, blower, heaters etc. New and perfect. Nnip at 50 p . Postag
1.5 p for firgt co 5 p for each one ordered.

NEED A SPECIAL SWITCH?
Double Leaf Contact

19-PIECE SOCKET SET

Conplete with wall or bench rack. Au ideal gift for the ful sizes from tin to fo in.

HONEYWELL PROGRAMMER

This is a drum type timing device, the drum being calibrated in equal divinions or switch setting purposes with trips which arc infinitely adjustable for position. They are also rranged to allow 2 operations per switch pel rotation. There are $1 \bar{y}$ changeover microswitehes 15 circuits may be changed ber revolution. Drice motor is maing operated per reves per min. Some of the many uses of this timer are

Machinery control, Boiler fring, Dispensing and Celuling machines, Diagoay tghting animated, and signs, slgnalling, etc. Price from Makers probably over 110 each. Special snip price | |
| :---: |
| 50 |
| 15 | terrific bargain.

MINIATURE

WAFER SWITCHES
2 pole, 2 way- 4 pole, 2 way
a pole, 4 way-3 pole pole, 3 way-2 pole, 4 way- 3 pole, 4 way- 2 pole
6 way- 1 pole, 19 way. All at 189 each. 21.80 dozen, your assortment
WATERPROOF HEATIMG
ELENERT
26 yards length 70 W. Self-regulating
tenperaturc control. $80 p$ post free.

MICRO SWITCH

amp. changeover contacts, ip
10p each or EI.OS doz.

Where postage is not stated then orders Where postage is not stated then orders
over es arc post free. Below ts achl Ifp.
 free. S.A.E. with edquiries please.

ELECTRONICS (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CRo 2TH
Also 102/3 Tamworth hoad, Croydon

AUDIO MODULES
Do-it-yourself stereo as featured in the SUNDAY TIMES

Win nothing more than simple tools and the parts described below. you can buld you own stereo system wish excellent results guaranteed. The heart of the systeme comprises our mullard Unilex modules and a control unit All the modules and the control unit are supplied to you fully buith and only require connecting together. Screw terminals and each module is cabinets or your own design to suit your nome.

Control Unit. Fitted with Bass, Treble, Volume and Balance controis. A metal fascla panet is supplied and all wires are ready fitted for connecting to the pre- $\mathbf{£ 3 . 2 5}$ Pre-amplifier Module type EP-9001. Input impedance: P/U 2.2M Tuner IM nput Sens.: PYU 320 mV . Tuner 140 mV . Treble control range- 14 dB to 14 dB at 16 KHz . Amplifler Module Type EP-9000. Oufput 4 watis per channel to 12 ohms to 15 ohms £ 3.10 Amplifler Module Type EP-9000. Oufput 4 watis per channel to 12 ohms to 150 hms
or 8 ohms nith sertes resistor. Frequency resp. (to 3 dB at 50 mW): 50 Mz to 16 KHz . $£ 5.80$ Harmonic d stortion less than 2% at typical listening level. Size $30 \mathrm{in} . x 4 \mathrm{in} \times 10 \mathrm{in}$ Power Supply Module Type EP-9002. For use with control unit, EP-9001 and $2 \times \quad \mathbf{E 4 . 6 0}$
EP. 9000 . For $220 / 250$ volt AC mans. Size 50 in. $\times 30 \mathrm{in}, \times 3$ in.
PACKAGE DEAL
Two EP-91000 Modules $£ 5.30$ - EPg002 Module $£ 4,60$ - EP-9001 Module £3.10 Control Units $£ 3.25$ instruction Book 25 p. TOTAL LIST PRICE $£ 11.00$

FANTAVOX 105

MODEL VHF 105

An item for the radio enthusiast bringing instant reception of the ground-to-alr. alf-to ground waveband. For use with any standard AM or FM radio covering $535-1600 \mathrm{KHz} 88-108 \mathrm{MHz}$ respectively with no electrical conversion or connection required. The model cose to the receiving set and then tuned over 110 to 135 MHz which covers the whole arrcraft communications band Volume and reception ef-ectiveness is adjusted by moving both sets to the most tavoureble position and balancing the vol controls of each cos favoureble posion VHF-105 has a smartly desianed black
 telescopic antenna. size only $4 \times 2^{1 / 4} \times 2^{3 / 6}$ in. (inc knobs) Complescopie antenna. size only battery and full instructions.

LASKY'S
PRICE
£3.60
Post 10p

ADC 40

PRECISION
PICK-UP ARM
The ADC 40 MK II is a complete low inertia arm with side thr
compensator and anti-drag lead out arrangement. Singlecompensator and anti-drag lesd out arrangement. Singi walnut non-resonant arm. Adjustable counter-weiaht. Plug-in head shell accommodates nearly all cartridges. Easy installations Bullt-1n arm, rest. Arm length $10^{3} /$ in. overall. Pivot to stylus tip 9 in. Rear

List Price
£19.41
OUR
PRICE
£6.95
Post 18p
AUDO DEVELOPHIENT

AD-309K

PRECISION PICK-UP ARM COMPLETE WITH AD-76K
The
AUDIO
AELOPMENT
precision
count
balanced
er
pick

0 uns canding
cartridge is constructed of brass throughout, heayily chrome
plated; uses needle and miniature balirace bearings; both
coarse and fine balance adjuscment is provided. The fixed head
has standard tin. mounting centres and is finished in black enam
with chrome lifting spur. Completely wired, with all fixing nuts and washers. Arm rest also supplied. Tech. details: Overall length 285 mm ; needle to pivot length 223 mm ; offset angle 24 ; overhang 10 mm . Requires single 7/hin. dia mounting hole
LASKY'S PRICE £8.50
AUDIO DEVELOPMENT AD-76K
Stereo Magnetic Carridga. Frequency response $20-20.000 \mathrm{~Hz}$ Dutput: 5 mV , Stylus 5 LP
Oiamond LP. Post

AUDIO DEVELOPMENT AD-96K

Ster*o Magnetic Cartridge. Frequency
response $20-20,000 \mathrm{~Hz}$. Outpul: 5 mV . Stylus:
Diamond LP Oiamond LP
Tracking force 2 gms

Lasky's COMPACT CASSETTES

C60 •C90 • C120

Exclusively made for us in USA Great Savings.

	Each	Post	Five for	Post	Ten for
C60-	37p	5p	¢1.65	20p	\$5.95
C90-	57p	5p	£2.75	20 p	¢9.90
C120-	87p	5 p	¢3.75	20 p	¢12.10

MIDLAND 10-406 AM/AIRCRAFT RADIO

[^0]
HIGH PERFORMANCE 11 TRANSISTOR THREE WAVEBAND PORTABLE BATTERY MAINS RADIO

This is a really top performance, top quality solid state receiver packed with SONY know-how and backed by the
jutstanding reliability for which SONY are renowned. Now this outstanding set is available from Laskys at over 2 utstanding reliability for which SONY are renowned. Now this outstanding set is available from Laskys at over it these outstanding features. Covers MW, LW and FM (VHF). II transistor circuit for high sensitivity and stability Powerful output to 5^{*} P.M. Dynamic speaker with rich clear tone quality. AFC for drift free VHF reception. Push sutton wavechange selectors and cone control.
Choice of three power sources- 9 V battery, household mains or car battery with suitable adaptors. Dial tight for use in the dark. External jacks lor earphone, tape recording, external power input and car aerial. Ultra modern syling and superb finish with padded featherette covered cabiner for superior sound damping with chrome trim trong carrying handle.
The SONY TFM 8030 L will entiven your leisure hours anywhere, anytime with exciting sound, news, sport, music, etc. Technical specification: Freq. range. FM $87-108 \mathrm{MHz}$. LWI $50-285 \mathrm{kHz}$, MW530-1, 605kHz. Circuit: 11 transistors Olodes and 2 thermistors. Aerial System: Directional telescopic for FM, internal ferrite bar for LW/MW. Power $A C$ mains with adaptor, Car battery with adaptor. Size: $9 \sharp(\mathrm{~W}) \times 8$ 名 $(\mathrm{H}) \times 3 \mathrm{l}(\mathrm{D})$. Complete with earphone and batrery and full instruction manual.
MANUFACTURERS LIST PRICE $£ 29.75$
Optional Extras. SON LASKY'S SPECIAL
OFFER PRICE
ar battery cord 66.00 . Both post FREE purchased with radio.

Post 35p

\#RCLUEIVE MCDONALD
 PROFESSIONAL SERIES FOUR-SPEED SINGLE MP60
 PLAY UNIT
 High-precision
 SCOOP:

 counterbalanced pick-up arm, heav
special quotations

 FOR QUANTITIES- MADE ESPECIALLY FOR LASKY'S BY FAMOUS MAKER MAINS OPERATION 12 HOUR ALARM - AUTO "' SLEEP" SWITCH HOURS, MINUTES AND SECONDS READ-OFF
- FORWARD AND BACKWARD TIME ADJUSTMENT
- SILENT OPERATION SYNCHRONOUS
MOTOR MOTOR
This unique DIGITAL CLOCK is now available EXCLUSIVELY FROM All settings are achieved for you to mount In any housing that you choose. ON-OFF.AUTO and AUTO ALARM "soncentric controls at the front including set alarm (up to 12 hour delay), time sleep switch, 10 minute division "click high quality manufacture guarantee reliable operation and long mechanism and The sleep switch will automatically turn off any appliance long life
at any pre-set time up to 60 min . and in conjunction with the A TV, light, etc.; at any pre-set time up to 60 min . and in conjunction with the AUTO setting will
switch on the appliance again next morning. The clock measures $41 \mathrm{~W} \times 13 \mathrm{H} \times 32 \mathrm{D}$ (over
switch). SPEC: $210 / 240 \mathrm{~V}$ AC, 50 Hz operation. from front of drum to back of plete with instructions. HUNDREDS OF APPLICATIONS
COMPLETE WITH KNOBS.
LASKY'S PRICE \&6.95
Post 18p

GARRARD SP25 Mk III

The SP 25 series record deck has proved to be one of the most po pular of its type in the world. Styled

 of the most popular of its type in the world. Styled in black and silver, this moderately priced inree-speed unit complies with the Din $45-500 \mathrm{Hi}-\mathrm{Fi}$ performance standard. The tubular low resonance resifiently mounted weight. Siylus force is ad justed by an optical-type knurled knob, finely
 calibrated from 0.5 grm . in steps of 1 grm . Blas finger-tip adjustment, the scale belng calibrated to correspond with the witylus force. The viscous damped cue control facilities raising and lowering the pick-up arm onto the track required without damage to either the record or stylus. The $10 \frac{1}{2} \mathrm{in}$. aluminium turntable is driven by the well-proven Garrard 4 -pole high and low voltage induction motor. Actual size including max. rear and side overhang of pick-up arm $15 \frac{1}{\mathrm{~h}} \mathrm{in}$. Wide $\times 12 \frac{1}{2} \mathrm{in}$. front to rear x
2 tin . above and $2 \frac{1}{5} \mathrm{in}$. below edge of unit plate. LASKY'S PRICE E12

Trastray's I=3achio Tuta
 Branches

207 EDGWARE ROAD, LONDON. W. 2
33 TOTTENHAM CT. RD, LONDON, W. 1 Tel: 01.636260 . Open all day. 9 a.m.-6 p.m. Monday to Salurday
ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL STREET. TOWER HAMLETS, LONDON,IE.

152/3 FLEET STREET,LONDON,E.C. 4 Tel: 01-353 2833 Open all day Thursday, early closing 1 o.m. Saturday Hrgh Fidelity Audfo Centre 42-45 TOTTENHAM CT. RD., LONDON. W. 1 Tel: U1. 580 257A open all dav. 9 a.m.-6 p.m. Monday to Saturdav

(DIMOAI
 LiND-AiR AUDiO

GARRARD

$2025 \mathrm{~T} / \mathrm{C}$ with stereu cartridge:. 3000 with Sonotone 9TAFCD stereo cartridge $810.07 \frac{18}{2}$ 8P" 25 Mk. 111 818.971 SL65B E15.97⿺
Base and cover for above. .
AP76..
SL7:13
8L75B
SL95B
Base and cuver for
Base a
401.

Deck/Base/Cover, 87!p.
THIS MONTH2
SPECLAL OFFRRS:
SP'25 Mk. I1I with base 818.97
SPaj Mk. 111 with Sonotone PTA HCD cartridge and base.
C. 1001 MULTI-TESTER

 of meter $41 \mathrm{lin} \times 3 \frac{3}{4} \mathrm{in} \times 1 \mathrm{in}$. Complete with case. \$4.es. P. \& P. 171 p .

TI-TESTER
Ranges: Voltage; 0,3 , $15,150,600,1,200 \mathrm{~V}$ (10,000 \quad per V).
A.C. Voltage: 0, A.C. Voltage: 0,6 ,
30.
300, $30,300,1,200 \mathrm{~V}$
$\left(5,000 \mathrm{n}^{2} \mathrm{per}\right.$ Volt). $(0,000 \Omega$
$0-300 \mathrm{~mA}$

C. Current: $0-120 \mu$ A $0-300 \mathrm{~mA}$.

D.C. Current: $0-50 \mathrm{k} \Omega, 0-5 \mathrm{M} \Omega(\mathrm{R} \cdot \times \mathrm{P})$ ($\mathrm{R} \times 1 \mathrm{~K}$) Decibels: -20 to +17 dB , $85 \cdot 87 \frac{1}{2}$. P. \& \mathbf{P} 17!p.
C. 1052 MULTI-TESTER

Rangea:
A.C. Voltage: 6,30
1, 120. 300 , ($15,000 \Omega / \mathrm{V}$).
 $\left(30,000 \Omega /{ }^{\circ}\right)$. D.C. Current: $0,0.03,3,30$, 300 miA . Remiatance: $0,6 \Omega, 60 \Omega, 600 \Omega$, P. \& P. 171 p .
 OUDSPEAKERS HODEL 480 . $1331 \mathrm{n} \times 8$ in 80 impedance. 10 watts. Brand new, guaranteed. Lind-Air Price 58.971
P. * P. $22 \frac{1 p}{}$ each.

MODRL 150. $131 \mathrm{in} \times 8 \mathrm{~m}$ Elliptical 3 and 150 impedance. 10 watts, Lind-Air Price
$29.97 \frac{1}{2}$
P. \& P. 22ip each.

18/19, 25 \& 53 TOTTENHAM

 COURT ROAD, LONDON W. 1 Tel: 01-580 2225/7679 Open 9-6 Mon-Sat (Thurs until 7)All Ihail Ordert and ingntrios to Dopk. PE4 Airyman Ronso, Fta Todtnham Court Rosd. Lomion, W, 1. Tel: 01-087 160 .

S-DeC BREADBOARD

Britigh Madr bradboard panela, for fast
Solderlesa solderlesa breadboard panels, Bingle DeCa. One g.DeC with Control Panel. Jig and Accessories for bolderless connections to controls, etc., with booklet 'Profects on 8-DeC' giving conatruction details for a variety of ctrcuite. P. \& P. 171p.

4-DeC KIT. Four S-DeCis with two Control Panels, Jigs and Acceasories and the booket "Projects on 8-DeC" all contalined in a trong attractive plantic. cose. ${ }^{2}$ P. $17 \frac{1}{1}$ T-DeC KIT \&\&-50. P. \& P, 17 \}p. g-DeC stor 52.50. P. \& P. 17!p.

94-96, UPPER PARLIAMENT STREET, NOTTINGHAM
Tel: Nottingham 40403 (STD 0602)
Open 9-6 Mon-Sat (Weds until 7.30)

I MILLION SILICON PLANAR TRANSISTORS
 NPN-PNP PLASTIC AND METAL CAN TYPES

Clearance of manufacturers' seconds, selected in types and guaranteed Clearance of manufacturers seconds, selectedeap transistors for radio enthusiasts, manufacturers, schools and colleges.
TYPE STNI8
Silicon Planar Transistors npn TO-18 Metal Can. Types similar to: 2N706, 2N2220, BSY27-95A, BSX44-76-77.

Price: 500 £9, $1,000 £ 15$
TYPE STPI8
Silicon Planar Transistors pnp TO-18 Metal Can. Types similar to:
BCY70-72, $2 \mathrm{~N} 2906-7,2 \mathrm{~N} 2411$ and $\mathrm{BCl} 86-7$, Also used as complementary to the above npn type device type STNI 8.

Price: 500 ¢9, $1,000 ¢ 15$
TYPE STNL
Silicon Plastic Epitaxial Planar Transistors TO-92 case. I.C. 200 mA , 300 mW medium to high gain, available in npn or pnp and types similar to:
NPN 2N2926-2N271I-2N3391 - 2N3707-2N371I-BC167-8-9.
Price: 500 ¢7.50; $1,000 \notin 13$
TYPE STPL
As above but in pnp and similar to types $2 \mathrm{~N} 5354-56$, 2N4058-2N4061 and $2 \mathrm{~N} 3702-3$. Also used as complementary to the above npn devices type STNL.

Price: 500 67.50; $1,000 \& 13$

TYPE STNK

ith TO-18 pin circular lead
Silicon Planar Plastic Transistor npn with 10-18 pin circular lead configuration, I.C. $200 \mathrm{~mA}, 300 \mathrm{~mW}$ and simi

Price: 500 £9.50; 1,000 ¢16
When ordering, please state type required, i.e., STNK or 5 TNI8, etc.
All prices in pounds and new pence.
All goods Ex-stock sent by retürn. Cash with order please to:

DIOTRAN SALES

P.O. Box 5, WARE, Herts.
S.A.E. For full list of surplus semiconductors

EX RENTAL TV's

17"
 2 YEAR' GUARANTEE
 $19^{\prime \prime}$

STEREO RECORD PLAYER CABINET £5.97 $\frac{1}{2}$

Cloth covered. Two tone Blue/Black.
-Lnent
PRESS BUTTON SWITCHING UNITS. 4 Banks 17 p. 6 Banks 27p. P. \&P. 5p.

TAANSISTORS 15p EACH. OC44, OC45, OC71, OC81, OC8ID, AF114, AFII7. AC128.

DUKE \& CO. (LONDON) LTD.

 $621 / 3$ Romford Road, Manor Park, E. 12 Phone 01-478 6001-2-3Stamp for Free List

STEPHENS
 ELECTRONICS
 P.O. BOX 26 AYLESBURY BUCKS.

CARTRIDGES

Acos GP79 GP91-1BC			P.T.			Iuc. P. Tr.
			${ }^{63} \mathrm{p}$	8× ${ }^{\text {m }}$	9/8	21.81
	-1	.	21.05		s/3	- 81.81
	2-11		89p	sXom	D/8	- 28
	12-49		77	8 SJH	D/8	22
	50-500		${ }^{87}$	X4N	D/8	11.86
			A* aboer	goldrivg		
G P91-3sc.			As abore			
Sultable in	to replace	TCS,		8800		${ }_{87.35}^{2.25}$
${ }_{\text {OP92 }}$			81.32	${ }^{18800 E}$		
GP93-1			21.24	G800 Super		218.50
GP94-1	\cdots		21.55	RONETTE		
GP94-	.. .		21.80	105	5/8	90p
GP950			21.24	106	8/8	${ }^{89}$
(:P96			11.57	12 C 400	8/8	70D
Acos 104	1-10		22.09	DC4008s	8/4	
	11-20		21.99	105	D/8	- 21.12
	-6-50	\cdots	41.91	106	1/8	21.12
	31-499		81.77	DC400	D/8	84 p
B.8.R.				DC4008C	D/8	845
X3M	S/8	.	21.39	SOROTONE		
X3H	8/8	.	81.39	8 TA	D/G	£1. 25
X5M	8/8		11.39	9TA	D/8	21.78
X $\quad \mathrm{H}$	8/8	\cdots	21.38	YTAHC	D/8	81.79

de baiks mandetic recording tapes

POLYESTER	
Longth 8poot	Size in.
8tandard Play	
	$\stackrel{3}{3}$
${ }^{\text {8joft }}$	3:
12004	7
Long Pley	
210 ft	3
4.507	4
hmpty tape reels	
3 in	7 p
4 in	${ }^{9 p}$
3 in	11 p
Jin	185
7 in	13p

PTY TAPE REELS

3 inn
inn

CABSETTES
Bonerl in Plastic Lithrary Packs
$C 60$
C90
C1.20

THE RELIANT Mk. II SOLID STATE GENERALPURPOSEAMPLIFIER
 Simulated teak case SPECIFICATION: OULDUT: 10 wates into a 3 ohms speaker. Inputs: (1) Farts into mike (10 mv). ${ }^{\text {ohms }}$. Input (2) for gram. radio (250 mV). Transistors: 4 silicon and three

ELEGANT SEVEN Mk. III (350 mW Output)
7-transistor fully tunable M.W.-L.W. Superhet portable. Set of parts. Complete with all components, inclucing ready etched and drilled printed circuit board POWER PACK KIT: (47p) extra
<5. 25 Plus P. \& PP. ${ }_{\text {Free with parts }}^{50}$.
THE DORSET (600 mW Output) 7-transistor fully tunable M.W.-L.W. Superhet
portable with baby alarm facitity. Sec of parts. The portable with baby alarm facitity. Set of parts. The latest modulated and pre-alignment techniques makes this simple to build. Sizes: $12 \times 8 \times 3 \mathrm{in}$. $\mathbf{5 5 . 2 5}$ Plus P. \& P. 50p. Circuit
SOUND 50 50 WATT AMPLIFIER AND SPEAKER SYSTEM
Output Power: 45 watts R.M.S. (Sine wave drive). Frequency response:-3dB points 30 Hz at 18 KHz . Total distortion: noise ratio: better than 60 dB . Signal to Speaker Impedance: 3,8 or 15 ohms. Bass Control Range: $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble Control Range: $\pm 12 \mathrm{~dB}$ at 10 KHz . Inputs: 4 inpurs as 5 mV into 470 K . Each pair of inputs controlled by separate volume control. 2 inputs at 200 mV into 470 K
To protect the output valves, the inCOrporated fail safe circuit will enable the ting Bake'"p Cabinets attractively finished in two-tone colour scheme-Black and grey.

The Viscount F.E.T. Mk. I ©14.25 plus High fidelity transistor stereo amplifier employing field effect transistors. With High fidelity transistor stereo amplifier employing field effect transistors. With F.E.T. vastly surpasses amplifiers costing far more.

Output per channel-loWrms. into ohms. Frequency bandwidth 20 Hz o 20kHz $\pm 1 d \mathrm{~B}$ (IW .
Total distortion $1 \mathrm{kHz} 9 \mathrm{~W} 0.5 \%$. Input sensitivities-CER, P.U. 100 mV into $3 \mathrm{M} \Omega$; Tuner lomv into
$100 \mathrm{~K} \Omega$. Tape 100 mv into 100 k Overload' Factor-Better than 26 dB Signal to noise ratio- 70 dB on all signal to noise ratio-70dB on all Mk. II (MAG. P.U.) Specification same as Mk. I, but with CER. following inputs: Mag. P.U. CER. P.U Tuner

LIQUIDATED STOCK

 DANSETTE TOURISTE MK3 CAR RADIO
ALL TRANSISTOR

ontrois-6 position selector switch (3 pos. stereo and 3 pos. mono) separate vol. controls for left and right channels. Bass $\pm 14 \mathrm{~dB}$ (3) 60 Hz Treble (with D.P.S. on/off) $\pm 12 \mathrm{~dB}$ (310 kHz .
Tape recording output sockets on Size $12 \frac{1}{2}$ in $\times 6$ in $\times 2 \frac{1}{2}$ in in simulated teak case. Built and tested.
$\mathbf{5 . 7 5}$ Post \& packing 50 p extra. Spec. on Mag. P.U. 3 mV @ 1 kHz input impedance $47 \mathrm{k} \Omega$. Fully equalised to withio $\underset{\text { ration }}{ \pm} \mathrm{dB}$ (vol. max.).

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensure excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at MHz is better than micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F module and tuner together with comprehensive instructions guarantees deep. SET OF PARTS Originally sold completely built for ($£ 15-23$)
Circuit diagram 13p, free with
£6.30
parts Speaker, baffle and fixing kit
Speaker postagerre
ordered with parts
COMPLETE P Plus or available separately

SYSTEM E 0 P. \& P. Amplifier: $£ 28.50$ plus \& I P. \& P
Sound 50 amp and 2 speakers

ONE GOOD REASON

There are all sorts of reasons why people build electronic equipment for themselves. A very good one is, simply, that unless they do, they go without!

No wild exaggeration, this. While the semiconductor industry can turn out vast quantities of thought-provoking circuit devices-orginally developed for professional applications, it is true-is it not strange that equipment manufacturers have not seized upon these to embody in a host of imaginative functional products for the domestic consumer?

Oh yes, for sure the radio, television, and audio equipment business is well saturated, as the shop windows and showrooms in every high street testify. But the very proliferation of traditional entertainment products from both home and overseas factories induces a lop-sided view of electronics and what it can do for everyman and his wife. For instance, light and heat sensitive semiconductors, and power switching thyristors and triacs, are all crying out for more general use; to say nothing of logic systems based on miniature integrated circuits which offer possibilities for programming routine switching operations within the home.

There has been plenty of pie-in-the-sky talk of the electronics-run home of the future. When will the big breakthrough occur?

While prodding the commercial world to venture into these unusual and as yet scarcely explored domestic regions, we do see that this is not so simple nor (perhaps) as profitable as satisfying mass market needs for standardised conventional products like radio and audio equipment. Many installed automatic systems, such as intruder detectors, and environment sensing and controlling equipments, have to be tailored to suit specific needs and situations. And coping with a number of possible combinations from a wide range of units in order to build up an ideal installation for one customer would give the retailer some headaches, no doubt.

This is, of course, where we came in: if you do require something rather special in this particular line of electronics, the chances are you will have to build it yourself. This is just one further demonstration of the paradoxical situation we now have, and which arises directly from the highly productive semiconductor industry: the general availability of mass produced, efficient and versatile devices is helping in the preservation of individual craftsmanship.
F.E.B.

CONSTRUCTIONAL PROJECTS
P.E. AURORA 286

TOUCH SWITCH
BOAT SPEED INDICATOR

SPECIAL SERIES

GENERAL FEATURES
PROTECTION CIRCUITS 296
DESIGN OF OHMMETERS 301
INGENUITY UNLIMITED
316

NEWS AND COMMENT

EDITORIAL
NEWS BRIEFS
308, 325
SPACEWATCH 309

MARKET PLACE
298, 321
OVER THE CHANNEL 337

BOOK REVIEWS

PRICE INCREASE

As from next month, the price of Practical ElecTRONICS will be 20p (4s). We regret the necessity for this increase, which is due to rising production costs.

Our May issue will be published on Friday, April 16

[^1]Create living colour that "moves" with the mood of your music.

P.E. AURORA is a controlled lighting system that can be as simple or as complex as you like to make it.

The selected audio frequency ranges can be "coloured" and the lighting arranged in whatever domestic decor

SOUND controlled colour light displays can be arranged to provide several kinds of visual effects some of which have been exploited for television

Fig. I. Basic eight channel thyristor switching system used to operate a 16 -lamp matrix of P.E. Aurora

PART 1 By

M.J.HUGHES M.A.

The P.E. Aurora system was specially commissioned by Practical Electronics and is the result of close collaboration with M. J. Hughes, M.A., who designed the electronics, and M. Leonard, A.R.J.B.A., who was responsible for the artistic presentation of this light display shown at the "Audio \& Music Fair" and the
"Electric Theatre" exhibition.

THYRISTOR OR TRIAC CONTROL

The heart of the system to be described is a d.c. voltage controlled phase shifter, coupled to a trigger circuit, which in turn fires either triacs or thyristors early or late within the mains a.c. waveform. The controller's input is of high impedance and has at linear control over input voltages ranging from 0.5 V 101.0 V d.c.

The input is 100 per cent isolated from the output, thus the control voltages can be derived with safety from many forms of semiconductor circuitry. Two such circuits will be described in detail: a narrow band filter unit-for sound to light control, and a self programming digital unit which provides constantly changing light patterns.

Other input circuits, which will be discussed later, include tape control (using at conventional tin or cassette tape recorder) and several types of optical feedback control.

The system to be described will be based on eight individual control channels supplying a matrix of 16 lamp nodes, but individuals can tailor their systems to suit the application or their pockets. The basic system is shown in block form in Fig. 1.

DESIGN SPECIFICATIONS

As the original intention was to make the "P.E. Aurora" a versatile piece of equipment the following design parameters were self-imposed:

1. Ultimate a.c. power control should be by readily available thyristors or triacs and the

equipment should interface with as wide a range of trigger requirements as possible, in conjunction with the a.c. mains frequency.
2. Either triacs or thyristors could be used without any change in circuitry, provided they are capable of operation from the voltage and current source of the switching circuit.
3. The power side of the controller should be isolated from the input for safety reasons-this isolation should not be by optical means (which is quite often specified) because it presents difficulties in producing a simple mechanical construction.
4. Phase angle control should be over a range of as near 180 degrees as possible to obtain full lamp brightness and as near full extinction as possible.
5. Input signal requirements should be as wide as possible and be such that the equipment can be used with semiconductor circuitry.
6. Simple unstabilised power supplies should be used. All circuitry should be simple, should use low price components, and should need no specialised test equipment for setting up, apart from a multimeter and possibly an audio signal generator.
7. Perhaps the most difficult of the specifications to achieve; that the lamp brightness should appear linearly related to the input control signal.
All the above parameters have been met in the equipment to be described.

FREQUENCY LOCKED SWITCHING

Fig. 2 shows a block diagram of a single control channel. All thyristor or triac phase control systems should be accurately locked to the mains frequency so that linear control may be effected by firing the device early or late within a single mains frequency cycle or half-cycle.

The triacs require a trigger pulse every positive and negative half-cycle of the mains while a thyris-tor-a unidirectional switching device-requires trigger pulses during positive half-cycles only. The sync pulse generator produces a single positive going pulse at the start of every positive and negative going half-cycle of the mains frequency. This pulse is applied to all channels in parallel (the present generator will satisfactorily drive up to 10 control channels).

Fig. 3. Circuit diagram of the power supply and sync pulse generator

Considering a single channel; the arrival of this pulse fires the monostable multivibrator, the output of which rises to approximately +10 V and dwells at this level for a period which is set either by the manual control or the input d.c. control signal. It is this dwell time that controls the phase angle of the final trigger pulse and is designed to be in the range of 2 to 9 ms (this gives a range of firing angles of approximately 36 to 160 degrees).

After the dwell period the output of the monostable falls back to zero volts and this negative going transition is detected and amplified by the pulse shaper, which is coupled to the primary winding of a simple pulse transformer. This provides isolation between the mains and low voltage parts of the circuit. The secondary of this transformer is directly coupled across the cathode and gate of the thyristor or main terminal I and gate of the triac.

Trigger pulses will arrive at the transformer every 0.01 sec and thus will fire a triac on every half-cycle. If a thyristor is used only alternate pulses will fire the device pulses arriving during negative excursion half-cycles will be ignored.

POWER SUPPLY AND SYNC PULSE GENERATOR

As the power supply and sync generator are closely coupled to the mains transformer, both units are shown in Fig. 3. T1 is a straightforward mains transformer having two separate secondary windings each providing 12 V a.c. One of the windings rated at 500 mA is connected to a standard bridge rectifier comprising diodes D1, 2, 3, and 4. The smoothed output of this supplies sufficient power to drive all the circuitry required for the eight channels.

The inductors L 1 and L 2 together with C1 provide a satisfactory degree of interference suppression. The rating of fuse FS1 will depend on the total power the controller will eventually be driving. In the case of the prototype a 5 A fuse was sufficient. Later we will deal with modifications necessary for higher power operation.

The main switch S 1 only serves to isolate the electronics from the mains-it does not disconnect the main power to the lamps owing to problems in obtaining a suitably rated panel switch of reasonable mechanical proportions.

The second winding of $T 1$ is connected to a bridge comprising four germanium diodes-D5, 6, 7 , and 8 . This provides a full wave rectified signal across the nominal load R1.

For those constructors having access to an oscilloscope. approximate waveforms are shown on the circuit diagram. Diode D9 is a small signal silicon type connected in a forward biased direction. The 600 mV forward drop across this device serves to clamp the full positive excursion of the bridge producing a waveform closely resembling a square wave with fairly fast negative going edges. This waveform is inverted and its level restored to approximately 10 V (off load) by transistor TRI.

using S.C.R.
Fig. 4. Waveform timing diagram as measured on an oscillioscope. Typical amplitudes are shown. All levels are measured relative to the zero voltage rall. Waveforms (g) and (h) show the extremes of fring angle, 36 to 160 degrees

The output is a 100 Hz sync pulse which is then applied to all the monostable stages for triggering the thyristors. On full load the amplitude of the positive going pulses at the collector of TR1 falls to approximately 5 V .

The waveform timing diagram shown in Fig. 4 shows the relationship of sync pulses to the original mains waveform ($\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d).
However, due to the trigger sensitivity of the monostables (which require approximately 4 volts for reliable triggering) the monostable does not fire until the sync pulse reaches this voltage which occurs almost exactly at the moment the mains waveform crosses the zero voltage line (Fig. 4e).

MONOSTABLE AND TRIGGER CIRCUIT

Fig. 5 shows the circuit of the monostable and trigger for a single channel. In this system eight such circuits are required; for other systems more or fewer can be built.

TR3 and TR4 form the main monostable, these being cross coupled by C5 and R11. Sync pulses are applied to the base of TR3 via C4 and D10. In the absence of such pulses TR4 is normally "on", its base being returned to the positive rail by R9 and the parallel combination of VR1 (a preset potentiometer), VR2 (the manual control) and TR2.

On the arrival of a sync pulse at TR3 this transistor switches on rapidly; the negative going transition at its collector is transmitted via C5 to TR4 which turns off and stays off for the duration of the time constant of C5 together with R9. VRI, VR2, and TR2. K9 guarantees a minimum dwell time (in this case approximately 2 ms); as will be seen later this corresponds to maximum lamp intensity.

This resistor can be safely reduced to 22 k ! if absolute maximum brightness is required, but if this
is done the circuit begins to operate on the edge of stability. In actual fact, very little increase of light output was apparent by firing earlier in the cycle than 36 degrees which is what 2 ms represents.

The maximum dwell time is set by VR1. This is necessary to prevent the possibility of the monostable "hanging on" into the next mains half-cycle. The effect of deliberately causing this to happen will be described during the setting up procedure. Maximum dwell time should be approximately 9 ms for stability-this also allows for variations in mains frequency.

Having set the minimum and maximum dwell times, intermediate periods can be set by adjusting VR2 (the front panel control) or by causing TR2 to draw current. Voltage control of this dwell time is effected by drawing base current through TR2 by a voltage applied to the input of R6. It is important to note that the control voltage must be negative with respect to the positive rail as TR2 is a $p n p$ transistor.

No control is effected until the input voltage exceeds the emitter-base forward voltage drop $(500-600 \mathrm{mV})$. As the input voltage increases the collector current of TR2 increases in proportion and thus linearly reduces the dwell time of the monostable. See Fig. 4e and $4 f$.

As it is the dwell time which determines the position of the ultimate trigger pulse within the mains half-cycle, it is the negative going excursion of the collector of TR4 that is used. This is differentiated by C6 and R13 before being applied to TR5 which provides the trigger pulse drive into the isolating transformer T2.

The output of T2 is directly connected across the cathode and gate of the thyristor or triac. The amount of gate current to the thyristor is determined by the tuned circuit C7 and T2 primary. If this gate current is insufficient for the device used C7 can be

Fig. 5. Circuit diagram of the monostable timing and trigger for one channel

Fig. 6. Simple thyristor matrix of two by two. It is necessary to include the ballast loads (RI to R4 shown dotted) in the form of 15 watt lamps. These will have a higher resistance than the lamps at the matrix nodes, but still low enough to provide at least 20 mA holding current for the thyristors. Each lamp node should not be less than 40 watts to minimise interaction

Fig. 7. A complete four-by-four matrix where symbols A to P represent the lamp nodes (40 watts each), symbols RI to R8 represent the ballast loads (15 watt bulbs), DII to D26 steering diodes to avoid interaction are rated at 600 V IA for each lamp node. Thyristors for channels 1 to 8 must each be rated at four times the current through each node.
increased to a value up to $0 \cdot 2 \ell \mathrm{~F}$. Trigger current for the thyristors or triacs is not greater than 30 mA $3 V$. Polarity of the output of $T 2$ is not important owing to differentiation of the waveform.

TRIAC AND THYRISTOR MATRIX

It was mentioned earlier that a novel type of output was available from the controller, and it is worth discussing at this point as it requires a slight variation in thyristor orientation. If it is desired, each control channel can be used independently of any other, thus one can control up to eight lamp circuits. If this is all that is required then the following details can be ignored and the circuits wired up exactly according to Fig. 5.

Provided one is prepared to use thyristors, it is possible to obtain up to 16 lamp control channels from the eight basic trigger circuits. This is done by matrixing four of the channels against the remaining four.

The principle of the matrix is shown in Fig. 6, which represents four lamp circuits controlled by four thyristors ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{yl}$, and y 2). One side of lamps A and B are commoned and taken to the cathode output of thyristor at y2; similarly one side of C and D is taken to yl. Conversely the free side of A is commoned with C and taken to xl ; similarly with B and D to $\times 2$.

Note, however, that the commoned sides of A and C with B and D go to the anode ends of thyristors $x 1$ and $\times 2$. The anodes of the thyristors on the Y axis are both taken to one side of the mains (say "line") and the cathodes of those on the X axis to "neutral". All the thyristors can be individually controlled by trigger pulses from the control channels.

If one ignores the fact that a thyristor needs a holding current to sustain conduction, one can simply say that if $y l$ and $x l$ are triggered, lamp A will go on; $y 2$ with $x l$ and $x 2$ will light A and B and so on. In practice, however, this simple concept will not work unless trigger pulses arrive at the x and y thyristors simultaneously.

Assume that y 2 is triggered but neither x 1 or $x 2$; no current will flow through $y 2$ and hence it will immediately extinguish at the end of the trigger pulse. If a trigger pulse was to arrive at xl or x 2 later but within the same half-cycle, neither of these would hold on.

HOLDING CURRENT

For the matrix to work we must provide some holding current when either axis switches. This holding current can be provided by the resistors shown dotted as R1 to R4 (Fig. 6). If either of the thyristors on the Y axis are now triggered they will

Top view of the controller chassis showing the circuit boards and power unit
draw current through either R1 or R2. Likewise for devices on the \mathbf{X} axis through R3 or R4.
The values of these resistors must be carefully chosen so that they pass sufficient holding current, but not sufficient current for any apparent illuminaltion of the main lamps A, B, C, and D, which are in effect in a complicated series parallel arrangement with the resistors. In operation the thyristors work by by-passing the resistors rather like toggle switches.
A few moments puzzling over a network analysis of the equivalent circuit under all combinations of switching will show that the problem is extremely complex. If the circuit was scaled up to a four-byfour matrix the problem could only be satisfactorily solved by computer.

Without going into the complicated mathematics it is sufficient to say that the problem can be solved in two ways:

1. The holding current resistors should be of very high resistance compared with the lamps, or
2. We allow current only to flow in one direction through the main lamps by using "steering diodes.

The author has used both methods and quite definitely the diode solution, al though more expensive, is by far the best.
Even with diodes one still has to provide holding current and the simplest solution to obtaining resistors of sufficient power rating is to use low power mains rated lamps (these can ultimately be incorporated as part of the display). This holding current is provided by 15 W bulbs which allow a reasonable matrix effect if the main display lamps are not less than 40 W each.
If diodes (of sufficient voltage and current rating) are also used they should be connected in series with each main lamp in the same direction as the thyristors.

LAMP LOADS

Using 40W bulbs in the main display, a perfect matrix display, with no parasitic interaction, is obtained. Fig. 7 shows the complete circuitry for the four-by-four matrix using diodes as recommended.

It is important to note that each thyristor on each axis must be capable of handling the load of all four lamps to which it is commoned. In this article we shall be considering 1A thyristors without heat sinks, thus the maximum current that may be drawn by each lamp node is 250 mA (i.e. approximately 60 W). This can easily be extended by using higher current rated thyristors mounted on heat sinks; however, for domestic use 16 lamps of 60 W each are more than adequate.

No advantage is obtained by using triacs in the matrix when diodes are in use. They will, of course, increase the available light in the simple resistor only matrix but will exaggerate the interaction of current paths.

Next month: construction of the lamp control unit
P.E. AURORA AUDIO BAND SPLITTING FILTER UNIT FOR OPERATION WITH SOUND WILL BE DESCRIBED IN PART THREE

by C. R. Bradley

There are many cases where it would be convenient to be able to switch equipment on and off by touch alone. The device described here enables any equipment to be switched merely by momentary hand contact with the sensitive touch plate.

Some advantages and possible applications for the switch are as follows. The sensitive plate can be made large and therefore easier to find and operate than a conventional toggle switch. Hence the touch switch could be useful for operation in darkness, or operation by blind or otherwise disabled persons.

It can also serve as a cut out switch on potentially dangerous machinery as operation is quicker than either a toggle or push button switch. In some cases the touch plate could be an insulated metal part of the machine which is unsafe to touch; any bodily contact with the part would cause the machine to stop.
A further advantage of the touch switch is that little or no vibration need be caused by its operation. The author has found it convenient to mount a touch switch on his photographic enlarger. The large touch plate is easily found in the dark and if it is touched lightly there are no undesirable vibrations of the enlarger. There are also many applications for the touch switch in burglar alarm devices.

Fig. 1. Circuit diagram of Touch Switch

F.E.T. INPUT

The circuit of the touch switch is shown in Fig. 1. A field effect transistor, TR1, is used at the input to provide a very high input impedance, to the noise voltages developed across the resistor chain R1-R6 through contact with the touch plate.

The source, gate and drain electrodes of the n-channel f.e.t. are closely analogous to the cathode, grid and anode of the triode valve. The voltage drop across source load R2 biases the gate negative with respect to the source. With the values shown, the f.e.t. is biased close to pinch-off, corresponding to valve cut-off.

TOGGLE ACTION

On touching the touch plate, the stray noise introduced raises the mean drain/source current and the potential across Cl rises. When the touch is removed the potential falls. This negative swing is passed by C3 and C5 to cause the bistable circuit of TR2 and TR3 to change state.

When TR2 is conducting, its collector is close to earth potential and TR3 is biased off via VR1. TR2 is held in conduction by current through R10 and therefore this state is stable. The small current through the relay is insufficient to energise it.

If now a negative pulse is fed to TR2 base via C3 and D1, TR2 turns off. Its collector goes positive and TR3 is turned on via VR1. The collector of TR 3 swings towards earth so that TR2 is no longer biased on. The circuit is now in its other stable state where there is sufficient current in the relay to energise it.

A negative pulse fed to TR3 base via C5 and D2 causes the circuit to change state again. The relay contacts switch the power to the equipment to be controlled. Thus the switch provides a touchon, touch-off operation.

COMPONENTS . . .

```
Resistors
    RI-R6 IOM\Omega (6 off)
    R7 6.8k\Omega
    R8 10k\Omega
    R9 470k\Omega
    RIO IM\Omega
    RII 470k\Omega
    All }\pm10% \frac{1}{2}\mathrm{ watt carbon
Capacitors
    Cl 64\muF elect. 40V
        0.1 HF polyester
        l }\mu\textrm{F}\mathrm{ polyester
        0.01 \muF ceramic
        I MF polyester
Transistors
    TRI 2N3819
        TR2-TR3 ZTX302 (2 off)
Diodes
        DI-D3 OA8I (3 off)
Relay
        RLA 700\Omega, 2; pole C/O relay type 43
                            (Radiospares) or type MH2 (Omron)
```


Miscellaneous

```
BYI-9V batteries ( 3 off), Veroboard \(2 \frac{1}{2}\) in \(\times 3\) in 0.1 in matrix, 6 in \(\times 4\) in \(\times 2 \frac{1}{2}\) in aluminium.
```


As TR3 has an inductive load, its turn on time has to be speeded up by the addition of C4. It is also protected by diode D3 against transient voltages induced in the relay.

The a.c. gain of TR2 is reduced by C2 to prevent relay chatter.

The times taken for C3 and C5 to charge through R9 and R11 respectively affect the rate at which the bistable states can be changed and these time constants are made large to ensure stable operation.

RESISTOR CHAIN

The large total value of the resistor chain R1-R6 was found to give good sensitivity. It is obtained by connecting six, 10 megohm carbon resistors in series and arranging for them to be self supporting to avoid leakage problems.

Higher resistance values will provide a higher input impedance and hence more sensitivity but there is a diminishing return as the f.e.t. gate impedance becomes more significant in comparison. If the resistance of $R 1$ is made infinite, or in other words R1 is just an open circuit, the input impedance is so high that the f.e.t. responds to static charges.

Electrolytic capacitors cannot be used for C3 or C5 as these capacitors receive charges of opposite polarity in the two bistable states. Small paper or polyester types are suitable.

CONSTRUCTION

The circuit components are arranged on a small piece of Veroboard (Fig. 2) mounted inside an aluminium chassis as shown in Fig. 3. The chassis is connected to battery negative to provide screening for the circuit. Layout is not critical and the unit can be made smaller provided it is fully screened.

If mains equipment is to be controlled a piece of metal, bolted to the chassis, should be used to screen the relay contacts from the rest of the circuit.

The supply is made up of three 9 V batteries connected in series to give 27 V ; the circuit will work well on any voltage between 18 V and 30 V .

A tin lid can be used for the touch plate. This is supported above the chassis by a short piece of Bakelite tube as it is important to maintain a high insulation and a low capacity between the touch plate and the chassis.

Fig. 2. Assembly and wiring details of topside and underside of Veroboard sub-assembly. Resistor R8 is shown on the underside, broken to reveal the connection ot hole 6 L for RII

Fig. 3. Chassis mounted components and Veroboard wiring detalls. The precise details of connecting the relay contacts will depend on the circuit application

For a more robust support Bakelite sheet can be used with Araldite for chassis fixing.

SETTING UP

When the wiring is complete connect the supply. Set VR1 to mid-position and switch on. The bistable will immediately go into one of its two stable states and the relay may energise.

Touch the touch plate to see if this will trigger the bistable. VR1 must be carefully adjusted to give proper action and equal "on" and "off" sensitivity and stability. If the resistance is set too high, TR3 will not conduct hard enough to keep the relay energised.
As VR1 resistance is reduced, a point may be reached where touching the touch plate causes the relay to chatter. Reducing the resistance a little more will give the proper operating point. If the resistance is too low the relay will remain permanently energised; if this should happen for all settings of VR1 it may be necessary to reduce R 5 to $820 \mathrm{k} \Omega$ or $680 \mathrm{k} \Omega$.

If the circuit fails to work, the f.e.t. stage can be checked by connecting a voltmeter across C1. Touching the plate should cause an increase in deflection.

The bistable can be checked by connecting a lead to battery negative and touching it to the base of whichever of TR2 and TR3 is conducting. This should cause the bistable to change state.

SENSITIVITY

When the switch is used in a building, it responds to the mains radiation transferred by bodily contact with the touch plate. When used away from mains wiring it responds to radio frequencies and is somewhat less sensitive. It will not work in a completely screened room or react to the touch of a person who is well "earthed".

If C 2 is reduced in value or removed, the touch switch becomes slightly more sensitive and mere body proximity may be enough to cause switching. But under these conditions the setting of VR1 is extremely critical and the switch is less stable. \star
where $I_{\mathrm{Dp}}=$ maximum diode current
$V_{\text {in }}=$ supply voltage
$V_{\mathrm{Dp}}=$ Zener voltage
$R_{\mathrm{S}}=$ series resistance in ohms
Assuming an integrated circuit supply having an input voltage of 12 V and an output rating of 5.1 V at 1 A , the resistor R_{s} would normally have a value of 4 ohms. Consequently the $6 \cdot 2 \mathrm{~V}$ protection Zener should be capable of carrying 1.5 A continuously, and therefore a $10 \mathrm{~W}, 6 \cdot 2 \mathrm{~V}$ Zener diode mounted on a heatsink would be required.

It should be noted that the power rating of the series resistor must be capable of 9 W continuous dissipation.

From this it can be seen that the protection Zener diode must be capable of holding and dissipating the full output power of the supply, therefore it is only suitable for low power stabilised supplies.

As an example a 24 V d.c. supply capable of delivering 1A would require a protection diode of 26 to 30 W rating and clearly this is impractical. For higher power circuits, therefore, crowbar protection circuits are utilised.

CROWBAR PROTECTION

Crowbar protection circuits operate by effectively causing a short circuit across the supply until the line fuse ruptures. Unlike Zener protection where an intermittent fault would result in a return to normal working after the fault cleared, crowbar circuits positively isolate the faulty power supply.

This can be an advantage in very complex systems. Any failure condition can be used to operate the crowbar circuit and these include overvoltage, overcurrent and overpower.

Fig. 2. Overvaltage crowbar protection

$$
I_{\mathrm{Dp}}=\frac{V_{\mathrm{in}}-V_{\mathrm{Dp}}}{R_{\mathrm{S}}}
$$

OVERVOLTAGE CROWBAR

In Fig. 2 is shown a typical overvoltage crowbar system operating in conjunction with a high power series stabiliser.

Any overvoltage at the output causes the sensing Zener diode D_{p}, to conduct, so passing current to the thyristor gate. The thyristor SCR1 switches on and causes a heavy current to flow through the fuse until it ruptures.

Since the circuit operates only for a very short period the Zener diode can be of 100 mW rating as can the thyristor gate resistor.

The thyristor is chosen for its peak transient current rating which can be 25 A to 100 A for a TO-5 case thyristor. The series resistor R_{S} is a low value wirewound resistor which simply limits the peak transient current.

Whilst an actual overvoltage condition must occur before the crowbar circuit operates, the overvoltage acts for a very short period.

Since the turn-on time of the thyristor is 10 to $20 \mu \mathrm{~s}$ and following this a large current flows through the fuse, the supply voltage reduces almost immediately. Consequently the circuitry operated from the power supply receives an overvoltage transient of only 10 to 20μ s duration which is usually insufficient time to cause circuit failure.

Because the ratings are based on transient effects, low cost components can be used.

OVERCURRENT CROWBAR CIRCUIT

One form of overcurrent crowbar circuit is illustrated in Fig. 3 and it can be seen that a certain amount of increased complexity, and therefore expense, is involved.

The current level is sensed by resistor R_{c} which is chosen to give approximately 0.5 to 0.75 voltage drop at the fusing current. Generally the fusing current is chosen to be 150 to 200 per cent of full load current. When the current reaches this level the transistor conducts and operates the crowbar thyristor.

The resistor capacitor combination $\mathrm{R} 4, \mathrm{R} 3$, and Cl are incorporated to limit the speed of response of the circuit. This is a vital precaution since the capacitors in the stabiliser and following circuitry usually require a heavy switch-on charging current, consequently the time constant $C_{1} R_{4}$ must be longer than any switch-on surge current periods.

Typical component values using a transistor series stabiliser are $\mathrm{R} 4=680 \Omega, \mathrm{R} 3=1.8 \mathrm{k} \Omega, \mathrm{Cl}=10 \mu \mathrm{~F}$.

COMPARISON WITH A FUSE

With the increased complexity and difficulties inherent in the design of overcurrent trip circuits, the usefulness of this type of circuit is doubtful. For the vast majority of applications the simple fuse is adequate. However, occasionally this form of circuit is necessary for the protection of complex power equipment.

The main advantages over the simple fuse are a more definite fuse current, increased speed of response and greater reliability.

Reliability is perhaps the most important aspect, since the fuse incorporated with the crowbar circuit can be two or three times the rated current. This increased rating could well increase fuse life by three to ten times above the 1,000 hours usually quoted.

OVERPOWER CROWBAR CIRCUIT

The overpower crowbar circuit is seldom employed but can have very useful applications. The simplest form of circuit is given in Fig. 4 and consists of a thermistor for temperature sensing together with the thyristor crowbar.

In this example, the directly heated bead type thermistor is located on the surface of the series transistor of the stabiliser. Any excess power dissipation in the series transistor, such as produced by a short circuit, would result in overheating and consequent reduction in thermistor resistance. After a thermal delay period the minimum gate voltage will be exceeded and the thyristor triggers.

Since the body of the thermistor is isolated, any critical or expensive component in any part of the circuit can be monitored. Therefore this form of protection is extremely versatile.

Unfortunately, this form of protection requires a fairly large temperature change for reliable operation and is suitable only for non-critical operation. For more critical operation a single transistor comparator circuit can be used to give an accuracy of temperature measurement to ± 5 degrees Centigrade.

APPLICATIONS

The Zener diode protection circuits are only suitable for low power supplies, although they are useful for high current low voltage integrated circuit power supplies.

The thyristor crowbar circuits can be used for any size power supply, and it can be arranged for any type of fault condition to fire the thyristor. The crowbar circuits given can be combined to give a comprehensive protection device using a single thyristor, sensing Zener diode, thermistor and transistor. All the circuits are separate to the basic power supply and modifications to this are not required.

mp
 R
 PLACE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

STEREO TAPE CARTRIDGE

Offering 40 minutes and 80 min utes recording time, compared with the 30 and 60 minute version currently available, is the main feature of the new Scotch 8-track tape cartridges. type S-8TR-40 and S-8TR-80, from the 3M Company.

The Scotch 8 -track cartridges may be used in any cartridge system having recording facilities and may, of course, be played back on any 8track stereo equipment. The extra 10 minutes on the S-8TR-40 permits the complete recording of an average 12 in . LP record.

Recommended retail prices are fl 50 for the 40 minute cartridge. and $£ 1.80$ for the 80 minute version.

MOULDED TRACK
 POTENTIOMETER

Potentionmeters, types T and TS. of all-moulded construction, including the bush and fixing nut, are announced by Plessey.

The type TS is identical to the Type T except that it incorporates a single-pole switch which is suitable for low voltage battery circuits.

Scotch 8-track stereo tope cortridge from the 3M Company

The case is in two halves and is ultrasonically welded together to provide a completely insulated potentiometer.
These potentiometers are particularly suitable for portable transistor receivers and other equipment where a miniature moulded track potentiometer is required.

Full details and technical specifications can be obtained from Painton Electronic Components. Kingsthorpe. Northampton, NN2 6NA.

Plessey type TS and T miniature moulded potentiometers

FLASH TUBE

A new photographic flash tube, the Type CD13, has been introduced by the Electronic \& Display Equipment Division of Ferranti as an addition to its range of tubes for photographic and similar applications.

A high intensity xenon-filled flash tube for electronic flash equipment, the CD13 produces a white light which is a good match to daylight and is suitable for "daylight" colour films. This device is a straight tube 210 mm long.

Operating voltage of the tube ranges between a minimum 400 V and a maximum $1,000 \mathrm{~V}$, and the typical operating level is 900 V . The CD13 is not polarised and the charging voltage and discharge capacitor may be connected across the leads without regard to polarity.

Details of price and local stockists can be obtained from Ferranti Ltd., Electronic and Display Equipment Division, Gem Mill, Chadderton, Oldham, Lancashire.

CIRCUIT BOARDS

Quality printed circuit boards are now available for the circuits shown in the Mullard book "Transistor Audio and Radio Circuits ". The boards manufactured by Bribond Printed Circuits Limited, Terminus Road, Chichester, Sussex, are made to the same standards as their industrial boards.

The boards are manufactured from high electrical grade s.r.b.p. laminate clad with 0.0015 in copper. The copper tracks are tinned to aid soldering and give protection against oxydisation. To aid construction, the
component identification is printed on the reverse in white.

At the moment the following circuits are available:-
10W high quality aüdio amplifier (p. 102) 66p

25W high quality audio amplifier
(p. 106) 70p

10/25W high quality audio preamplifier (p. 108) 73p
10W audio amplifier (p. 39) 66p
10 W audio preamplifier (p. 42) $69 \frac{1}{2} \mathrm{p}$
Price each including postage and packing.

LITERATURE

The new component catalogue from A. Marshall \& Son (London) Ltd, is now available to readers. The catalogue lists many new items but probably the most interesting, to our readers, is the section on integrated circuits. This section contains one of the largest selections of I.C.'s available to the amateur we have seen. Apart from the English manufacturers there is a large range from American firms.

Request for copies should be addressed to, A. Marshall \& Son (London) Ltd., 28 Cricklewood Broadway, London, N.W.2.

All the new editions of the component catalogues from Henry's Radio, Home Radio (components), G. W. Smith \& Co. (Radio), and LST Components are up to their usual high standard and make a useful reference for the workshop.
Of particular interest to designers is a revised designers' guide to mercury and alkaline manganese primary power systems published by Mallory Batteries.

In addition to describing the two primary cell systems, the guide explains their advantages under widely differing environmental conditions.

It provides detailed specifications of over 100 different cells with the object of giving designers such basic information as capacity, nominal voltage and dimensions.

The designers' guide is also available in French and German and full details can be obtained from Mallory Batteries Ltd., Gatwick Road, Crawley, Sussex.

Containing more than 70 new products, ranging from an 8 -track stereo cartridge player for cars to a multi-meter for test engineers, Eagle International's new 45-page catalogue is now available from Eagle International, Coptic Street, London. WCIA LNR, price 20p.

Divided into sections on hi fi equipment, hi fi accessories and peripherals, radio and tape equipment, office intercoms, public address, test equipment, electronics and accessories, the catalogue carries illustrations, detailed specifications and prices of over 400 products.

RST
 VALVE MAIL ORDER CO. BLACKWOOD HALL, WELLFIELD RD., S.W. 16
 SPECIAL EXPRESS MAIL ORDER SERVICE

 All orders post free!

SEMI-CONDUCTOR SET FOR
P. E. GEMINI AMPLIFIER $\quad 12.95$

SEND S.A.E. FOR LIST OF 3,000 TYPES VALVES, TUBES AND TRANSISTORS
Open daily to callers: Mon.-Sat. 9 a.m.-5.30 p.m. Closed Sat. I. 30 p.m. 2.30 p.m.
Terms C.W.O. only | Tel. 01-769 0199/1649

Price list and illustrated literature on request to
A. R. SUGDEN \& CO. (Engineers) LTD.

Market Street, Brighouse HD6 1DX. Yorkshire.
Tel. 2142

Fingers

The more 'fiddly' the job, the more you depend on your finger-tips. Make sure minor burns and blisters don't rob them of their skill. Apply BURNEZE, pronto! This unique scientific aerosol cools the heat out of a burn in just 8 seconds, anaesthetizes pain, reduces swelling. BURNEZE - the clever tip for burnt finger-tips.
From chemists.
(8) Potter \& Clarke Ltd Croydon CR9 3LP

Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping. Precision power for the Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, incerchange
De Luxe Professional Kit with 17 tools $\& 7$ p.p. Money Ref. Guarantee.

MERLIN SUPPIY CO

Dept. PE4D, Nailsea, Bristol BSIS 2LP

THERE are many ways of making an ohmmeter circuit; the most popular circuits can be reduced to either of two basic types which, for convenience, we will designate A and B .

In the A-type circuit (Fig. 1), a battery is connected in series with a fixed resistor (R 1), a variable resistor (VR1), and the indicating meter (M1). R_{m} is the internal resistance of the meter and R_{1}, the total resistance in the circuit, is equal to $R_{\mathrm{I}}+R_{\mathrm{VR}}+R_{\mathrm{m}}$.

SIMPLE MEASUREMENT

The unknown resistor ($R x$) is connected between the two ohmmeter terminals X and Y, which places it in series with the rest of the circuit. To determine the value of $R x$, the X and Y terminals are first shorted together (so as to simulate $\mathrm{Rx}=\mathbf{0}$ ohms); VR is then carefully adjusted so that M1 just indicates full-scaledeflection (f.s.d.). This procedure is called zeroing the ohmmeter, and is necessary to compensate for ageing of the battery.

The short-circuit between X and Y is then replaced with $R x$ and the meter indication, which will now be less than f.s.d., gives an indication of the value of $R x$; the greater the value of $R x$, the smaller the deflection.

CALIBRATION

To illustrate how this circuit works, let the battery voltage V_{b} equal 1.5 V and let the f.s.d. of Ml equal $50 \mu \mathrm{~A}$. When the ohmmeter is zeroed, VR1 must be adjusted so that the meter current (I_{m}) equals $50 \mu \mathrm{~A}$, which means that $R_{\mathrm{t}}=\frac{1 \cdot 5 \mathrm{~V}}{50 \mu \mathrm{~A}}=30 \mathrm{k} \Omega$. Leaving R_{t} set at $30 \mathrm{k} \Omega$, now connect to the X and Y terminals, an unknown resistor (Rx) of such a value that I_{m} is reduced to $25 \mu \mathrm{~A}$ (mid-scale). From Ohms law,

$$
\begin{align*}
& I_{\mathrm{m}}=\frac{V_{\mathrm{b}}}{R_{\mathrm{x}}+R_{\mathrm{t}}} \tag{1}\\
& R_{\mathrm{x}}=\frac{V_{\mathrm{b}}}{I_{\mathrm{m}}}-R_{\mathrm{t}} \tag{2}
\end{align*}
$$

$R_{\mathrm{x}}=\frac{1.5}{25 \times 10^{-6}}-30 \times 10^{3}=30,000$ ohms which is the same as R_{t}.

This is the first important point to notice about the A-type circuit; the mid-scale resistance vaiue is equal to the value of R_{t} corresponding to $R_{\mathrm{x}}=$ zero.

Knowing that V_{b} equals 1.5 V , and that R_{t} equals $30 \mathrm{k} \Omega$ for $I_{\mathrm{m}}=50 \mu \mathrm{~A}\left(R_{\mathrm{x}}=0\right)$, a table of R_{x} for corresponding values of I_{m} can be compiled by substituting values of R_{x} in equation 1 above (Table 1).

From this table a suitable ohms scale may be produced, which can then be marked on the meter dial face; this is illustrated in Fig. 2, for a few values of $\boldsymbol{R}_{\mathrm{x}}$.

TABLE I

Resistor	Meter
on test	current
R_{x}	$(\mu \mathrm{A})$
(ohms)	$50($ f.s.d. $)$
0	49.8
100	48.4
1 k	37.5
10 k	25
30 k	11.52
100 k	1.5
1 M	0

Fig. I. "A"-type circuit where the battery, meter and variable resistor are all in series

Fig. 2. Typical dial calibration for the example described with Table 1

SCALE CRAMPING

Note that zero ohms ($I_{\mathrm{m}}=50 \mu \mathrm{~A}$) occurs at the right-hand end of the scale, and that infinite resistance ($I_{\mathrm{m}}=0 \mu \mathrm{~A}$) corresponding to $R_{\mathrm{x}}=$ open-circuit, occurs at the left-hand end.

The scale is also non-linear, following a line of $1 / R$. It appears severely cramped at the high-resistance end and open at the low resistance end. In fact, if we assume $1 \mu \mathrm{~A}$ to be the smallest discernible deflection of the meter pointer (corresponding to 2 per cent of f.s.d.), then we can say that the largest measurable resistance with this particular circuit is about $1.5 \mathrm{M} \Omega$, using equation 2. Even so, cramping is so severe in this region of the scale that anything greater than about $1 \mathrm{M} \Omega$ is almost unmeasurable.

To measure greater resistance values with this particular circuit (without changing to a more sensitive meter), it is necessary to increase the value of V_{b}.

INCREASING RANGE

Increasing V_{b} from 1.5 V to 15 V increases the measurable resistance by ten times, and also the value of R_{t} required for the zero-ohms setting from $30 \mathrm{k} \Omega$ to $300 \mathrm{k} \Omega$, as is the mid-scale resistance indication.

The advantage of providing a tenfold increase in the value of V_{b} means that a single ohms scale can be used for a two-range ohmmeter, the readings corresponding to the higher range being multiplied by ten by the user. This is common practice; typical basic two-range ohmmeter circuits might look like those shown in Fig. 3.

In Fig. 3a, separate VR controls are provided, whereas in Fig. 3b a single VR control is shared by the two ranges. The advantage of having separate controls means that once the two ranges have been zeroed properly it is possible to change from one range to the

other without having to re-zero each time. The only disadvantages of having two controls are additional expense and greater panel space needed to accommodate them.

In the case of one control types of circuit, it is usually fairly coarse in operation, i.e. small adjustments bring about comparatively large changes in the meter indication, which makes zeroing rather difficult.

We have recently seen that the required value of R_{t} for the oHms $\times 1$ range ($V_{\mathrm{b}}=1.5 \mathrm{~V}$) is $30 \mathrm{k} \Omega$, and that for the $\Omega \times 10$ range ($V_{b}=15 \mathrm{~V}$) it is $300 \mathrm{k} \Omega$. The value of VR1 in Fig. 3 b should be made as small as possible for the OHMS $\times 10$ range, so that it is no larger than absolutely necessary when it is used for the oHMs $\times 1$ range (a resistance value which is small compared with $300 \mathrm{k} \Omega$ is likely to be large when compared with $30 \mathrm{k} \Omega$).

BATTERY AGEING

The batteries used in most ohmmeter circuits are of the carbon-zinc type, a type which is notorious for the variations which occur in its terminal p.d. throughout its life. Because of this, when a new battery is purchased, its terminal p.d. is quite likely to be higher than its nominal voltage, even when delivering a small load current.

In time, however, even if not used, its p.d. will fall and its internal resistance will increase considerablyso much so that it will be unable to deliver the required voltage for the circuit. When it has reached this state the battery is considered as being fully discharged and should be replaced.

AGEING COMPENSATION

In view of this, the resistance of VRI must be sufficient to compensate for changes in V_{b} ranging from about 13 V to 16 V on the ohms $\times 10$ range, and from about 1.3 V to 1.6 V on the $\mathrm{oHms} \times 1$ range.

Taking the oHMS $\times 10$ range first; when V_{b} is 16 V , the value of R_{t} required to limit I_{m} to f.s.d. $(50 \mu \mathrm{~A})$ when zeroing the ohmmeter is

$$
R_{\mathrm{t}(\max)}=\frac{16 \mathrm{~V}}{50 \mu \mathrm{~A}}=320 \mathrm{k} \Omega
$$

Similarly, when $V_{\mathrm{b}}=13 \mathrm{~V}$

$$
R_{\mathrm{t}(\min)}=\frac{13 \mathrm{~V}}{50 \mu \mathrm{~A}}=260 \mathrm{k} \Omega
$$

It is the difference between these two required values of R_{t} which must be compensated for by VR1; the value of VR1 should therefore be $60 \mathrm{k} \Omega$.

Since this is not a standard value for a potentiometer, we must either accept a value of $50 \mathrm{k} \Omega$, which means we won't be able to compensate completely for all changes in V_{b}, or one of $100 \mathrm{k} \Omega$, which would be much too coarse when used on the ohms $\times 1$ range (R_{t} for the oнms $\times 1$ range is only $30 \mathrm{k} \Omega$). The sensible thing to do then is to select the $50 \mathrm{k} \Omega$ value and to accept the limitation on V_{b} compensation.

RANGE RESISTOR

The next thing to do is select suitable values for $\mathbf{R} 1$ and R2. Now, since $R_{t(\max)}$ for the ohms $\times 10$ range is $320 \mathrm{k} \Omega$, and VR1 is $50 \mathrm{k} \Omega$, then $\mathrm{R} 2=(320-50) \mathrm{k} \Omega=$ $270 \mathrm{k} \Omega$-which happens to be a preferred value resistor.

Unfortunately, we run into another problem here, and that is the selection tolerance of R2. For cheapness a $\pm 20 \%$ type could be used, but the value of VR1 (which itself will have a tolerance of $\pm 10 \%$) would have to be large enough to compensate for tolerance differences in $\mathbf{R} 2(\pm 20 \%$ of $270 \mathrm{k} \Omega= \pm 54 \mathrm{k} \Omega$), as well as for changes in $V_{\mathrm{b}_{2}}$.

BRAN	ND NEW				ORS	COMPONENTS		
\％								
${ }_{\text {cosem }}^{10}$								
							厚	
				cise				
			cition			，		
						cien		
		cose					Hex	
						citib		
						（ex	SAM	
		cix						
					Sition			
					ckive	1，1		
						${ }^{\text {coit }}$	Mいが 10 50	
						\％	\％$\because \quad: \quad: \quad: 8.210$	
					Nктово1			
					cos			
					\cdots			
						（isp		
					0			
		coid						
					coin	THYISTORS		
						${ }^{\text {ajo }}$		
							eip	
		aidib						
			${ }_{\text {80，}}^{\text {80，}}$			50 p of 100 ） 40		
							POTENTIOMETERS	
		${ }^{\text {co }}$						
	${ }^{20}$			cill			PRESETS（CARBON）	
						12t	${ }_{\text {a }}$	
				cill		${ }_{2 i 2}{ }^{2}$ P RESIS		
Tel．01－452 0161／2／3 Tolex 21492		3 A．MARSHALL \＆SON S．Srd S for our New Comprofensive 28 CRICKLEWOOD BROADWAY，LONDON，N．W． 2					$\begin{aligned} & \text { CALLERS WELCOME } \\ & \text { MOM-FRI } 9.5 .30 \\ & \text { SAT } 9.5 \end{aligned}$ $\text { SAT } 9.5$	

TVARIBELE YOLTAGE TRAMSFORWERS

LIGHT SENSITIVE SWITCH|INPUT ${ }^{230 / 240 V}$ 2.c. 50160 Kit of parts, including ORP12 Cadmium Sulphide Photocell,
Relay, Transistor and Circuit, etc., 6-12 volt d.c. op. price 61.25 plus I2P P. \& P. ORPI 2 including circuit. 63p each. Post Paid. A.C. MAINS MODEL. Incorporates Mains Transformer, Rectifier and special relay with I make, 1 break H.D. contacts.
Price inc. circuit $\& 2.38$ plus 20 P P. \& P. LIGHT SOURCE AND PHOTO CELL MOUNTING B Precision engineered light source with adjustable lamp housing, to take MBC bulb Se photo cell mounting assembly for ORP|2 or similar cell. Both units are single hole fixing. Price per pair 62.75 P. \& P. 18 p .

- SANWA MULTT RANGE METERS New Model U-50DN Multi rester,

 20,000 OPV, mirror scaled with overload protection. Ranges-d.c. volts: 100 mV , $2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}$, $1,000 \mathrm{~V}$. des. current: $5 \mu \mathrm{~A}, \quad 0.5 \mathrm{MA}, 5 \mathrm{MA}, 50 \mathrm{MA}$, 250MA. Complete with battery and test probe, $68-00$ post paidTEN OTHER MODELS. LEAFLET ON REQUEST. 230v AC SOLENOID

Extremely powerful with

 approx. |4/b. pull, I" travel. Fitted with mounting feet. Size: $4^{\prime \prime}$ long, $27^{\prime \prime}$ wide, $3^{\prime \prime}$ high. $E 2.00$ incl. P. \& P.INSULATED TERMINALS - $=$ Available in red, white, yellow, black, blue and
 Powerful I amp. RESpeed 3,750 RPM com plete with external gear plete withexternal gear
train (removable) giving final train (removable) giving final
speed of 125 RPM. Size: $4 \frac{1}{2}^{\prime \prime} \quad 2 \frac{1^{\prime \prime}}{2}$ dia. Price 95p inc, post. 200-250 VOLT I.R.P.
MOTOR
Dimensions: $4^{\prime \prime} y^{\prime \prime} 3^{\prime \prime} \times$
 Dimensions: $4^{\prime \prime} y^{\prime \prime} \times 23^{\prime \prime} \times 13 / 16^{\prime \prime}$
Spindle length 13 diameter $t^{\text {t }}$. Manufactured by SEC. Price El-13 plus I5p P. \& P.

300-230 v. 1 R.P.M. MOTOR

 Manufactured by Smith. Price 75p inc, post. RECHARGEABLE BUTTON CELLS $2 \times 1-2 V, 250$ MA HR NickelCad Cells, connected to give 2.4 V @ 25 milliamp 10 hour rate, omplete with $200 / 250 \mathrm{~V}$ Price 4 . Fu each plus $8 p$ P. \& P. r 2 units for $£ 1.00$ post paid

brand new

Keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp from stock.
SHROUDED TYPE
f amp, am 50.52 .5 amp , $\begin{array}{ll}f 6.75 . & 5 \text { amp, } 89.75 . \\ f 14.50 . & 8 \text { amp, } \\ 10 \text { amp, } & \text { £ } 18.50 .\end{array}$ 12 mp, $£ 21.00 \quad 15$ amp,
$£ 25.00$. 20 amp, $£ 37.00$ 37.5 $£ 25 \cdot 00.20$ amp, $£ 37 \cdot 00.37$
amp, $£ 72 \cdot 00.50 \mathrm{amp}, \pm 92 \cdot 00$.

OPEN TYPE (Panel Mounting) $\frac{1}{2}$ amp, 43.93.
$1 \mathrm{amp}, 65 \cdot 50.2 \frac{1}{2} \mathrm{amp}, 66 \cdot 63$. Carr. 40 p on open types.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit $230 / 250$ a.c. operation.
EXPERIMENTERS' ECONOMY KIT
Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijunction NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyrist HY-LYGHT STROBE
This strobe has been designed and produced for use in large rooms, halls and the photographic field, and utilizes a silica plug-in tube for longer life expectancy, printed circuit for easy assembly, also a special trigger Light output approx. 4 joules. Price floge8. P, \& P.
50p.
7-inch POLISHED REFLECTOR
ideally suited for above Serobe kits. Price 53p. P. \& P I3p or post paid with kits.

Superior Quality Precision Made NEW POWER RHEOSTATS

$100 \mathrm{WATT}, 1 \mathrm{ohm}, 10 \mathrm{~A} ; 5 \mathrm{ohm}, 4.7 \mathrm{~A}$
$10 \mathrm{ohm}, 3 \mathrm{AA} ; 25 \mathrm{ohm}, 2 \mathrm{~A} ; 50 \mathrm{ohm}, 1.4 \mathrm{~A}$

50
AMPS

Your local component stockist

AUDIO EFFECTS

5 SHAW LANE, HALIFAX, YORKS. LATEST DESIGN-BUY WITH CONFIDENCE FROM PROVEN DESIGNERS
Radio Control
Single channel T.X. Small compact crystal contrölled printed circuit. Easy to build and tune. Push Pull O/P. All siliconi transistora. Micro action tone switch. Bottom loaded aerial. Coil on P.C. board.
Fantastic $0 / P$ Everything bar case in kit form at Fantastic O/P. Everything bar case in kit form at Undrilled alloy case $8 /-(40 \mathrm{p})$. Ready bullt in case 88.5.0 (28.25) post pald.

Super regen RX
Miniature, lightweight, supersensitive. Uses PP3 or pen celle. Bilicon transistors. Front end works atraight oft. O/P without relay (drives actuator direct) or through 6V 300 ohm relay (not provided). Ideal for model aircraft. In kit form at only $\$ 8.5 .0$ (83.25) post paid.
Avalabie shortily
Buperhet kit with cascade front end, dual AGC loops. Buper selective. Recomniended soldering iron Antex Buper selective. Rect
Ham Band Transiator Superbet Receiver Kit
Uses Denco plug in coils 500 kHz to 30 kHz in 4 ranger. Normally supplied with kit $1-$ om Mz to 5 MHz extra ranges $12 /-$ (60 p) eich. Siow motion tuning. Push pull audio output to your 8 ohm speaker, black perspex predrilied front panel. In kit form at
(9.12 .6 ($9.62 \dagger$)
ready
built, calibrated and 29.12.6 ($89.62 \pm$) ready built
guaranteed at 215.5 .0 ($215 \cdot 25$).
guaranteed at el
Full wave control using braded tric rated 15 anpp 3 kW . Single control zero to full power. In sirong metal box with 13 amp main sucket outlet, Ideal for fires, drills, Hoodlights, motors, etc. Keady built at 89.15 .0 ($80 \cdot 75$) post paid. In kit form with
full ingtructions 87.5 .0 ($27 \cdot 25$) post paid. full instructions 27.5 .0 (27.25) post paid.
Vox Switch
Make a noise, it switches, high imp. L/P for XTL mike. Drives your 12 volt relay- Ready
$\$ 8.10 .0$ (88.50) or in kit forin 82.7 .6 ($22-371$). Reverberation Amplifier
Reverberation Amplifier
Self contained transistorised. Batt. operated. Entirely different approach to sound reproduction. With this unit proper sound delay through reverberation, tones are created truly third dimension for concert hall originality. Two controls adjust volume and reverberation. Simply plug in micro-
phone, guitar, etc, and $0 / \mathrm{P}$ into your amplifier. phone, guitar, ete., and $0 / \mathrm{P}$ into your amplifier.
Encased in beantiful walnut cabinct $7!^{\prime \prime} \times 33^{*} \times 41^{*}$ at only 810.15 .0 ($£ 10.75$) post paid.
Pocket Metronome
Variable beat. Drivea your speaker or earpiece provided, uses PP3. In attractive plantic case at 21.17.6 ($\mathbf{2 1 . 8 7 !)}$ or a.s a kit at 21.7 .6 ($\mathbf{2 1 . 3 7 1}$) both
post paid.
arorse Oncillstor
Just attach your key. Drives your speaker or earpiece provided. Works on pen cells. Ready buht in case as above 21.5.0 ($\mathbf{1 1 2 5}$ 25) R.4 a kit $17 /$ and (8udio amps, etc, $32 / 6$ ($£ 1.621$) post paid. audio amps, etc., $32 / 6$ ($81 \cdot 621$) post paid
Texas Transistors Driver, NPN and PNP complementary symmetry Pack of three 7 ${ }^{2}$ - (35p) post paid.

I BODINE TYPE N.C.I. GEARED MOTOR

 (Type 1) 71 r.p.m. Torque 101 l, inch,Reversible. $1 / 70$ th h.p., 50 cycle, 38 amp. (Type 2) 28 r.p.m. Torque
201b. inch. Reversible. $1 / 80 t h ~ h e r ~$ 201 b . inch. Reversible. $1 / 80$ th h.p.,
50 cycle. 28 amp. The above precycion made U.S. A. motors are
offered in "as newio offered in "as new" condition. Input voltage of motor a.c. inpue. Price, either type $£ 3.15$ plus 35p P. \& P. or less transformer $\mathbf{6 2} \cdot 13$ plus 27 P P, \& P.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space Dept. P.́E. 57 BRIDGMAN ROAD, LONDON W4 5BB Phone 01.995 1560 SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Open Sat - LITTLE NEWPORT ST. LONDON WC2H 7JJ 01.4370576

To be able to do this, VR1 would have to be made $100 \mathrm{k} \Omega$, which is unacceptably large for the oHms $\times 1$ range. The simplest solution would be to use a closer tolerance resistor for R 2 and accept a reduction in the compensating ability of VRI. Ideally, this should be of $\pm 1 \%$ tolerance before an acceptable result is obtained.

OHMS $\times I$ RANGE RESISTOR

Having settled on the value of R2 in Fig. 3b, we must now turn our attention to the oHMS $\times 1$ range and determine the value of R1.

Since $V_{\mathrm{b}_{1}}$ is one-tenth of $V_{\mathrm{b}_{2}}$, then the corresponding values of $R_{\mathrm{t}(\max)}$ and $R_{\mathrm{t}(\mathrm{min})}$ for maximum and minimum values of $\mathrm{V}_{\mathrm{b}_{1}}$ will be one-tenth of those values determined for $R_{\mathrm{t}(\max)}$ and $R_{\mathrm{t}(\min)}$ for $V_{\mathrm{b}_{2}}$. For the ohms $\times 1$ range then, $R_{\mathrm{t}(\max)}=32 \mathrm{k} \Omega$ and $R_{\mathrm{t}(\min)}=$ $26 \mathrm{k} \Omega$.

This means that VR1 for this range, should ideally be equal to the difference between these two values, i.e. $6 \mathrm{k} \Omega$. However, VR1 has already been selected as being $50 \mathrm{k} \Omega$ which is nearly ten times greater than $6 \mathrm{k} \Omega$ and VRI is already greater than the largest value ever required for R1.

In this case we don't need RI at all since VR1 ($50 \mathrm{k} \Omega$) is more than big enough to cope with all required values of R_{t}. However, if R 1 is dispensed with altogether, there would be no built-in protection for the meter if VRI should inadvertently be set to zero. By insertion of a large value for R1, the operation of VRI is even coarser than it is already (it is almost ten times greater than it need be).

Resistor R1 must be made large enough to provide a substantial degree of overload protection for the meter, and yet small enough to have little effect on the sensitivity of VR1.

If the meter current is limited to a value equal to ten times the f.s.d. current (most meters will just about stand a $10: 1$ instantaneous overload) then the overload current will be $500 \mu \mathrm{~A}$ and the corresponding value for R_{t} (assuming VR1 is set to zero, and $\mathrm{V}_{\mathrm{b}_{1}}$ is at its highest value of 1.6 V) will be equal to $\frac{1.6 \mathrm{~V}}{500 \mu \mathrm{~A}}=3.2 \mathrm{k} \Omega$. Then, $\quad R_{1}=R_{\mathrm{l}}-R_{\mathrm{m}}=1.7 \mathrm{k} \Omega$. The nearest preferred value is $1.8 \mathrm{k} \Omega$.

INDICATION ACCURACY

Before leaving the A-type ohmmeter circuit, it is important to note a very serious drawback concerning its indication accuracy. The validity of the mid-scale indications (the oHms $\times 1$ range is $30 \mathrm{k} \Omega$, and on the ofms $\times 10$ range it is $300 \mathrm{k} \Omega$) only applies when the battery voltages are 1.5 V and 15 V , respectively. See what happens to the indications when the battery voltages are first high, and then low; this need only be done for one ohmmeter range because the overall effect will be the same for both ranges.

Taking the oнms $\times 1$ range, and a $V_{b(\min)}$ value of $1 \cdot 3 \mathrm{~V}$, the value of R_{t} required to achieve f.s.d. $(50 \mu \mathrm{~A})$ is $26 \mathrm{k} \Omega$. The value of VRI will be adjusted during the zeroing procedure so that it equals $26 \mathrm{k} \Omega$.

From earlier deductions, the value of R_{t} required to bring about f.s.d., is also equal to the value of an external resistor (R_{x}) required to bring about halff.s.d. $(25 \mu \mathrm{~A})$. Consequently, the mid-scale indication of the oHms $\times 1$ range when V_{b} is 1.3 V (instead of $1 \cdot 5 \mathrm{~V}$) is $26 \mathrm{k} \Omega$, instead of $30 \mathrm{k} \Omega$, i.e. $4 \mathrm{k} \Omega$ below normal. This represents an indication error of about - 13%, which is almost the same as the corresponding reduction in the value of V_{b}.

For a $V_{b(\max)}$ value of 1.6 V (about 7% above the 1.5 V normal value), the indication inaccuracy will be about $+7 \%$.

From these calculations we may deduce that the indication accuracy of the A-type ohmmeter circuit (quoted at mid-scale) is correct only when V_{b} is equal to 1.5 V , and that the inaccuracy of this indication will vary from about $+7 \%$ when the battery is new, to about -13% when it is ready for replacement. These facts are worth knowing, especially when using the ohmmeter to select a close tolerance resistor.

This completes the examination of the A-type ohmmeter. The reasons for going into its circuit in such detail were to illustrate the difficulties in reaching a suitable compromise for the component values, and to highlight its undesirable indication inaccuracies.

PARALLEL POTENTIOMETER OHMMETER CIRCUIT

The B-type of circuit (Fig. 4) is basically very similar to the A-type circuit shown in Fig. 1, except that the variable resistor VR1 is connected in parallel with the meter (M1) instead of in series with it. The zeroing procedure is exactly the same except that, in this case, the meter current (I_{m}) is adjusted to f.s.d. by shunting the excess current (I_{s}) through VR1.

The total circuit current (I_{t}) is equal to the sum of I_{s} and $I_{\mathrm{m}}\left(I_{\mathrm{t}}=I_{\mathrm{s}}+I_{\mathrm{m}}\right)$, and is therefore greater than the corresponding value of I_{t} for the A-type circuit in which I_{t} was always equal to I_{m}. This type of circuit therefore consumes more power than the previous type.
The B-type circuit, for the same number of components, is much more flexible than the A-type and the zeroing control VR1 is much smoother in operation. The reason for this, as you will see, is that almost any value can be chosen for VR1, which means that it may

be used to determine the overall resistance range of the ohmmeter; in addition to its normal role of compensating for changes in V_{b}.

BATTERY V COMPENSATION

Let us first consider the fundamental requirement of compensating for a change in V_{b}, assuming a nominal value of 15 V for V_{b} and a mid-scale resistance indication of $300 \mathrm{k} \Omega$ (the same as the corresponding indication for the A-type circuit).

Since the battery voltage V_{b} is likely to change from about 13 V (for old battery) to about 16 V when renewed, I_{m} will increase from $50 \mu \mathrm{~A}(13 \mathrm{~V} / 260 \mathrm{k} \Omega)$ to $61 \cdot 5 \mu \mathrm{~A}$ $(16 \mathrm{~V} / 260 \mathrm{k} \Omega)$. In order to compensate for this change in $I \mathrm{~m}$, VRI must be set to such a value that it will bypass the excess $11 \cdot 5 \mu \mathrm{~A}$ at present flowing in R_{m}.

The value of VR 1 should be $50 / 11 \cdot 5$ or approximately 4.33 times greater than the value of R_{m}; VRI should therefore be $6.5 \mathrm{k} \Omega$. This is illustrated in Fig. 5.

What we have just done is to determine the minimum value that VR1 is ever required to have in order to compensate for the maximum likely value of V_{b}. One obvious advantage with this type of circuit is that no matter how large V_{b} might be, the excess current can always be fully absorbed by VR 1 since its value can, if necessary, be reduced to zero-thereby bypassing all the current.

VR UPPER LIMIT

There is no upper limit for the value of VRI since we have already shown that I_{t} can never exceed $61.5 \mu \mathrm{~A}$ (with RI $=260 \mathrm{k} \Omega$), and that setting VR1 to $6.5 \mathrm{k} \Omega$ can take care of that current which is in excess of the $50 \mu \mathrm{~A}$ required by the meter.

It is, however, necessary to employ a reasonably large value for VR1 so that when set to its maximum value its shunting effect on R_{m} is negligible. This is important in order to ensure that $50 \mu \mathrm{~A}$ f.s.d. is still possible when V_{b} is approaching its minimum value of 13V. If VRI is set to a maximum value of $10 \mathrm{k} \Omega$ (by using a $10 \mathrm{k} \Omega$ variable resistor), then I_{m} would equal $43 \cdot 5 \mu \mathrm{~A}$ when $V_{\mathrm{b}}=13 \mathrm{~V}$ and $6 \cdot 5 \mu \mathrm{~A}$ would flow in VR1, giving a total (I_{t}) of $50 \mu \mathrm{~A}$.

This means that it would not be possible to obtain f.s.d. when V_{b} had fallen to 13 V . Looking at it another way, we can say that the minimum value of V_{b} which can be tolerated with a $10 \mathrm{k} \Omega$ value for VR1 is about 15 V . The circuit as it stands, therefore, isn't going to be very useful because the battery will need replacing as soon as its potential has fallen to 15 V ; a value which is only a little less than its value when new.

COMPROMISE

The alternatives are to reduce the value of R 1 , or increase the value of VR1. If the value of $R 1$ is reduced, then the mid-scale indication of the ohmmeter will also be reduced. On the other hand, if VRI is increased then its rate of adjustment will be more coarse, making it difficult to zero the ohmmeter, particularly when the battery is new and a comparatively low-value setting is required for VRI.

The final choice for VR1 is a compromise between mid-scale resistance indication and ease of zeroing adjustment. A useful rule-of-thumb in selecting a value for VRI in this type of circuit is that its value should not exceed about ten times the value of R_{m} (the resistance of the meter). In the example we have just considered, R_{m} is $1 \cdot 5 \mathrm{k} \Omega$, therefore VR1 should not
exceed $15 \mathrm{k} \Omega$. The initial selection of $10 \mathrm{k} \Omega$ for VRI appears to be quite reasonable; the compromise required in this example must be made with the value selected for R1. This may be done as follows.

SET MID-SCALE INDICATION

If a value of $10 \mathrm{k} \Omega$ is selected for VR1, then the maximum acceptable value for R1 may be determined by assuming a $V_{\mathrm{b}(\mathrm{min})}$ value of 13 V . With $I_{\mathrm{m}}=50 \mu \mathrm{~A}$ (f.s.d.), then $7 \cdot 5 \mu \mathrm{~A}\left(I_{\mathrm{s}}\right)$ will flow in VR1 (determined from $I_{\mathrm{s}}=R_{\mathrm{m}} \times I_{\mathrm{m}} / R_{\mathrm{VR}_{1}}$, making I_{t} equal to $57.5 \mu \mathrm{~A} . \quad R_{\mathrm{s}}$ is determined by $V_{\mathrm{b}(\min)} / I_{\mathrm{t}}$, which equals $13 \mathrm{~V} / 57 \cdot 5 \mu \mathrm{~A}=226 \mathrm{k} \Omega$ ($220 \mathrm{k} \Omega$ is a preferred value).

The mid-scale indication of the ohmmeter is thus $220 \mathrm{k} \Omega$, which is not very different from the corresponding indication of $260 \mathrm{k} \Omega$ determined for the A-type circuit when V_{b} equalled 13 V .

In the B-type circuit, however, R_{1} is fixed at $220 \mathrm{k} \Omega$ irrespective of the variations which occur in V_{b}, since the parallel combination of VR1 and R_{m} is always small enough to be neglected. This is very different from the A-type circuit in which the mid-scale indication changed from $320 \mathrm{k} \Omega$ to $260 \mathrm{k} \Omega$ (due to adjustment variations in VRI) when V_{b} changed from 16 V to 13 V .

This is a very important observation since it shows that the B-type circuit is inherently more accurate than that of the A-type. Actually, this statement ignores the relative abilities of the two circuits to compensate for variations in the internal resistance $\left(R_{b}\right)$ of the batteries. However, R_{b} is relatively small in the lowcurrent circuits considered so far, and may therefore be ignored.

RANGE SELECTION

Now consider the second feature of the B-type circuit-the ability to select a particular resistance range by suitable choice of VR1.

We have just seen that a $10 \mathrm{k} \Omega$ value for VRI sets the mid-scale resistance indication at $220 \mathrm{k} \Omega$. Assuming a low-resistance range with a mid-scale indication of about $1 \mathrm{k} \Omega$ (30 times smaller than that obtainable with the corresponding A-type circuit) when $V_{b(\min)}=$ 1.3 V , then $\mathrm{I}_{\mathrm{t}}=\frac{V_{\mathrm{b}(\mathrm{min})}}{\left(R_{1}+R_{\mathrm{p}}\right)}$ where $R_{\mathrm{p}}=\frac{R_{\mathrm{m}} \times R_{\mathrm{VR}}}{\left(R_{\mathrm{m}}+R_{\mathrm{VR}}\right)}$.

The value R_{p} is now comparable with R_{1} and cannot be ignored; at least, not just yet. Since the mid-scale indication is $1 \mathrm{k} \Omega$, then ($R_{1}+R_{\mathrm{p}}$) must equal $1 \mathrm{k} \Omega$. Thus, $I_{\mathrm{t}}=\frac{1 \mathrm{k} \Omega}{1.3 \mathrm{~V}}=1.3 \mathrm{~mA}$. When the meter is indicating f.s.d. $\left(I_{\mathrm{m}}=50 \mu \mathrm{~A}\right)$, the current (I_{s}) which flows in VR1 must equal ($I_{\mathrm{t}}-I_{\mathrm{m}}$), i.e. $I_{\mathrm{s}}=1 \cdot 3 \mathrm{~mA}$ $-50 \mu \mathrm{~A}=1,250 \mu \mathrm{~A}$. The value of VRI required to absorb this amount of current is therefore equal to $I_{\mathrm{m}} \times R_{\mathrm{m}} / I_{\mathrm{s}}=60$ ohms.
This is the maximum value that VRI is ever likely to require. Now, since this value is so small compared with $R_{\mathrm{m}}(1,500 \Omega)$, the value of R_{p} can be assumed to equal 60 ohms. Furthermore, since R_{p} is also very small compared with $R_{1}+R_{\mathrm{p}}$, i.e. $1 \mathrm{k} \Omega$, we may further assume that R_{1} equals $1 \mathrm{k} \Omega$. The value required for VRI when $V_{\mathrm{b}(\max)}=1.6 \mathrm{~V}$ and when $I_{\mathrm{m}}=$ f.s.d. $(50 \mu \mathrm{~A})$ is equal to $I_{\mathrm{m}} \times R_{\mathrm{m}} / I_{\mathrm{s}}=48$ ohms.

This is the minimum value that VR1 is ever likely to require. From these two sets of calculations, VRI is required to vary between 48 and 60 ohms, depending upon the value of V_{b}; a 100 ohms variable resistor would therefore be a very satisfactory choice.

When using such a resistor value, the minimum setting of 48 ohms would represent a setting of 48 per cent of maximum, which would yield very smooth adjustment during the zeroing procedure. The circuit for this particular ohmmeter is shown in Fig. 6.

TWO-RANGE OHMMETER CIRCUIT

The B-type circuit can also be used to provide two resistance ranges and, like the A-type circuit, this may be achieved by using two batteries and a single zeroadjustment control. In order to make a more direct comparison with the A-type circuit (Fig. 3), a B-type two-range circuit will be designed using battery voltages of 15 V and 1.5 V , attempting to achieve the same approximate mid-scale indications.
The mid-scale indication for the oнms $\times 10$ range of the A-type circuit, using $V_{\mathrm{b}}=15 \mathrm{~V}$, was found to be $300 \mathrm{k} \Omega$. The nearest approach to this figure using the corresponding B-type circuit, and a value of $10 \mathrm{k} \Omega$ for VR1, was $220 \mathrm{k} \Omega$.
By replacing V_{b} of the B-type circuit with a battery of 1.5 V , so as to produce a oHMs $\times 1$ range, then the mid-scale indication will be reduced by a factor of ten, making $R_{1}=22 \mathrm{k} \Omega$. The mid-scale indications are, therefore, not widely different from those of the A-type circuit.

However, as was explained when the A-type circuit was examined, the zeroing adjustment of VR1 on the онмs $\times 1$ range of that circuit was expected to be very coarse, because of the compromise which had to be made concerning the choice of value for VR1. Let us now see what the sensitivity of the zeroing adjustment is like in the B-type ohmmeter.

The sensitivity is all right on the ohms $\times 10$ range because VRI was selected to make it so.

LOW RESISTANCE SETTING

On the ohms $\times 1$ range, the lowest resistance setting required for VRI occurs when $V_{\text {b(max })}=1.6 \mathrm{~V}$; the total current $\left(I_{t}\right)$ in the circuit during the zeroing procedure is equal to $V_{\mathrm{b}(\max)} / R_{1} \simeq 73 \mu \mathrm{~A}$. In this condition, therefore, the value of VR1 must be adjusted so that it absorbs the $23 \mu \mathrm{~A}$ which is in excess of I_{m}, the f.s.d. current of the meter.

Since $I_{\mathrm{s}}=23 \mu \mathrm{~A}$, and $I_{\mathrm{m}} \doteq 50 \mu \mathrm{~A}$, then the required value of VR1 must equal $I_{\mathrm{m}} \times R_{\mathrm{m}} / I_{\mathrm{s}}=3,260$ ohms. A setting of this value represents 33 per cent of $R_{\mathrm{VR}(\max)}$, which represents a substantial angular rotation of the control shaft- the zeroing adjustment will, therefore, be quite smuuth in this worst-case condition, and will be even better when the battery is relatively new. The circuit diagram of this particular two-range ohmmeter is shown in Fig. 7.

SHUNT OHMMETER

In the shunt ohmmeter (Fig. 8), the indicating meter M1, is connected directly across the input terminals in parallel with the unknown resistor (Rx). The circuit is normally used for measuring very low resistance values (typically 0.01 to $2,000 \mathrm{ohms}$), and is therefore ideally suitable for measuring the winding resistances of coils and transformers.

The resistance scale differs greatly from the other types of ohmmeters so far examined in.that it reads from left-to-right instead of from right-to-left, i.e. zero ohms corresponds to zero deflection and infinite resistance corresponds to f.s.d.

SET ZERO

The zeroing procedure is very similar to that adopted for previously described circuits, except that it is carried out with the input terminals open-circuit (corresponding to infinite resistance) instead of with them shortcircuit .
To zero this type of ohmmeter, the input terminals are left open and VR1 is adjusted until the meter indicates f.s.d. (VR1 and R1 have the same purpose as in previously described circuits, and their values are determined by the same procedures.) Having done this the unknown resistor (Rx) is then connected to the input terminals. This causes the meter current (I_{m}) to be bypassed to some extent and a reduced indication results; the degree of the reduction depending upon the value of $\mathbf{R x}$. If a short-circuit is connected to the terminals then all of I_{m} is bypassed and zero indication results.

RANGE SELECTION

The range of the ohmmeter may be changed by connecting an internal resistor across the meter. This reduces the effective sensitivity of the meter and hence more total current (I_{t}) is required to achieve f.s.d.
On the онмs $\times 1$ range no ranging resistor is added and the mid-scale resistance indication is equal to the meter resistance R_{m}, i.e. 1,500 ohms. Thus, if a resistor (Rx) of the same value as R_{m} is connected to the terminals, then I_{t} will be shared equally between Rx and the meter; $25 \mu \mathrm{~A}$ will flow in each.

In order to produce the oHms $\div 10$ range provided for in Fig. 8, an internal resistor R2 must be connected across the meter so that the parallel combination of R 2 and the meter is equal to $R_{\mathrm{m}} / 10$, or $\frac{R_{2} \times R_{\mathrm{m}}}{R_{2}+R_{\mathrm{m}}}$. Rearranging this expression and substituting known values, we get $R_{2}=R_{\mathrm{m}} / 9=1,500 / 9=166 \cdot 6$ ohms.

Fig. 8. Shunt ohmmeter in which the meter is connected directly across the terminals and the range selector

fig. 9: Constant resistance ohmmeter

The same result may be achieved by using the expression

$$
R_{2}=\frac{R_{\mathrm{m}}}{n-1}
$$

where n is the number of times that the f.s.d. is to be multiplied. When operating on this range, I_{t} is increased by a factor of ten $(500 \mu \mathrm{~A}), 90$ per cent of which flows in \mathbf{R}_{2}, and the mid-scale indication equals $R_{\mathrm{m}} / 10$ or 150 ohms.

CONSTANT RESISTANCE OHMMETER

In the constant resistance type of ohmmeter (Fig. 9), the variable resistor VR1 is connected in such a way that the total resistance of the circuit is maintained near-constant as VR1 is adjusted to compensate for changes in V_{b}. This is accomplished by connecting VR1 across the meter in such a way that it is used as a potentiometer.
Adjusting VR1 in one direction causes more resistance to be added in series with the meter and a lower value of resistance to be connected in parallel with Rx ; the reverse occurs when VR1 is adjusted in the opposite direction. This arrangement maintains an almost constant total circuit resistance, and hence the accuracy of the indication is very little affected by the setting of VR1.

Fig. 9 shows a two-range ohmmeter based upon this type of circuit. Only one battery is used and the midscale indications on the oHMs $\times 1$ and oHMs $\times 10$ ranges are $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$, respectively. The zeroing procedure is conventional and is carried out with the input terminals short-circuited; the ohmmeter scale reads from right-to-left.

This completes this examination of various ohmmeter circuits; there are a great many other types of circuits but these are, in many cases, simply variants of those just described.

NEWS BRIEFS

Silicon Pictures

A NEW TV camera tube incorporating a silicon target is being developed by English Electric Valve Co. Ltd. The target of this tube-The Sidicon-is in the form of a mosaic of isolated silicon diodes and its production follows a sequence of modified micro-circuit practices resulting from improved microlithographic techniques.

Results of developments so far, have shown these tubes, which are interchangeable with 1 inch vidicons, to be mechanically, thermally and electrically very rugged, with high sensitivity throughout the visible and infra-red range. The Sidicon has considerably less lag than conventional vidicons and much higher sensitivity. The nature of the targets allows full high-vacuum processing, so ensuring a long life expectancy.

Brain Box

A Small sensitive electronic amplifier no larger than a packet of cigarettes is helping surgeons at the London Hospital, Whitechapel, to trace brain activity during operations for Parkinson's disease.
This is achieved by picking up and monitoring very small signals from the brain through an electrode implanted in it. The amplifier enables the surgeon to track with greater accuracy the exact portion of the brain in which he is working while carrying out this extremely delicate operation.

Made by the British company, Fenlow Electronics Ltd., it is the first miniature data amplifier the firm has produced for medical use. Using f.e.t.'s the amplifier is constructed to stringent safety specifications and costs only £40.

Transportable Tactical Centre

The photograph below shows test pattern symbols on the screen of a lightweight display console being checked with a microscope at Hughes Aircraft Company, America, to verify their sharpness and clarity. The console, along with high-speed computers and other electronic equipment, is being built by Hughes for the U.S. Air Force Electronic Systems Division's 407L programme, an advanced concept of tactical air control.

The equipment will be housed in inflatable, modular operations centres that can be transported anywhere in the world and set up in a matter of hours. Hughes is producing 31 of these tactical centres along with two training systems designed to give the Air Force flexible and mobile response to fast-changing battlefield situations.

WHAT THE ASTRONAUTS SAW

All crews of the Apollo missions reported seeing flashes and streaks before their eyes even when closed. It is supposed that this is the result of the passage of ionised cosmic ray particles through the head.

It has been suggested that the light comes from the passage of the high energy particles through the jelly-like medium in the eyeball where light has a lower velocity. Another explanation is that it is the impact of the particles on the retinal cells.

The particles also affect the astronauts' space helmets which are made of a polycarbonate plastic. This plastic is of the long-chain polymer class and as a result of radiation the molecules are broken up. It is known in biological systems that ionising radiations damage cells by disturbing the replication of long-chain molecules.

It has been found that the damage to the space helmets can be studied by etching the streaks caused by the particles. Silicone casts can be made of the holes in the plastic and the rate of etching indicates the degree of ionisation that takes place. The shape of the rubber allows the measurement of the ionisation from point to point along the track. Comparison with the effects of known ions enables the particular particle to be identified.

RADIO TELESCOPE

Germany's new 100 m radio telescope, the largest steerable dish in the world, is nearing completion at Effelsberg some 40 km from Bonn. The site is' a deep valley in an area of minimum interference.

The design of this telescope has made use of the most advanced principles of structural engineering to ensure that in all positions of the dish the effects of loading both static and variable cause the least departure from paraboloid form. It is expected that the surface accuracy will hold to less than 1 mm .

The actual construction of the reflecting surface is interesting, the inner section of 60 m diameter is formed from an aluminium sandwich with a honeycomb inner unit bonded to the outer formed sheets. Trial measurements show that the r.m.s. accuracy of the surface of this construction is of the order of 0.22 mm .

The next 20 m of the surface is covered by formed sheets of aluminium supported by aluminium sections. The standard of accuracy reached in this section of the dish is 0.27 mm . The outer section of this ring of panels is connected to the rest of the surface, made up of 6 mm square stainless steel mesh panels, by perforated aluminium panels to maintain the aerodynamic conditions required. The accuracy of the outer mesh is about 0.55 mm .

The overall efficiency of the telescope is expected to be capable of operation down to a wavelength of 5 cm . The central 60 m section will, it is hoped, enable wavelengths of 8 mm to be used.

Round the outer rim of the dish a collar has been added to reduce the effects of local interference.

FOCUSING ACCURACY

The focus to diameter ratio is midway between that of the Jodrell Bank and Parkes telescopes. Jodrell Bank Mk1 is 0.25 and Parkes 0.41 with the German dish at 0.3 .

The Gregorian system has been adopted which enables both prime focus and secondary focus work to be carried out. For prime focus operation a tube will project through the centre of the subreflector to house a prime focus receiver. The intention is to use multibeam methods of observation and as many as nine feeds will be available at the secondary focus. Space receivers at wavelengths of $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 13 cm will be provided at the secondary focus.

With such a sophisticated type of radio telescope it is not surpris-
ing that the receiving installation is very elaborate. Cryogenically cooled amplifiers and low noise front ends are being provided.

The timing system will use a rubidium clock as reference for the universal oscillator in line measurements for Pulsar timing and very long base line observations. Continuum measurements will be made by Radiometers.

COMPUTER CONTROL AND PROCESSING

Data processing is also very elaborate and the basic data processor and steering computer is an ARGUS 500 by Ferranti. This digital computer will co-ordinate transformations, control the telescope drive and process real time data.

From a control desk an observer can choose the astronomical coordinates he needs and the method of scanning. The computer will then carry out the transformations and instruct the drives of the telescope in the necessary velocities in azimuth and elevation.

Since this occupies only a portion of the computer cycle, time is available for storing of data on magnetic tape, operate a fast line printer and Calcomp plotter and have time available for some on-line data processing.

SUPPORT FOR THE GENERAL THEORY OF RELATIVITY

Working with Mariners 6 and 7 probes, the team at the Jet Propulsion Laboratory led by Dr J. Anderson have obtained data which, they claim, confirms Einstein's predictions with an accuracy of 2 to 4 per cent.

Previous work by Muhleman and Shapiro using the passive radar technique by bouncing signals off planets close to the sun's limb showed an accuracy of 5 per cent.

The first results with active radar are now available from the 210 ft dish at Goldstone. A narrow beam of radio signals at 250 kW is sent out to impinge on Mariner 6 or 7 , which are now some 250 million miles beyond the sun. The spacecraft collect the signals, amplify them, and transmit them to the dish at Goldstone. The round trip takes about 43 minutes and can be timed within a microsecond.

The most important source of error is the very considerable dispersion of radio waves by the sun and the results depend on the type of model of the sun's atmosphere that is used.

Dr Anderson's resuits conflict with the gravitational theories which show about 7 per cent error.

0WNERS of small boats, both power and sail, often find the need for a boat speed indicator. The speed indicator is useful for a variety of reasons including engine tuning, propeller selection, water skiing, sail trimming, arrival time estimation, and the obeyance of speed limits. The device described here uses a potentiometric transducer in a simple circuifto produce a linear speed reading on a moving coil 哲eter.
 linearly to boat speed. Graph (b) is the actual graph of meter reading against probe angle, taken from 0 to 45 degrees; graph (c) is the result of (a) minus (b). Graph (c) is not quite a straight line-as it should be for complete accuracy-but is within 0.3 of a knot or 5 per cent of the true reading, which ever is the greater, and it is felt that this is sufficiently accurate for most purposes.

The boat speed indicator circuit could, of course, have been made to give a perfect straight line for
(c), but this would make it more complicated and expensive to build. If greater accuracy is required a graph such as (c) can be plotted for the completed unit over the full range of speeds, and this graph used for correcting the speed indicated.

A times 2 range is provided to give greater meter movement at low boat speeds and in this mode the accuracy of the unit will depend mainly on the transducer construction.

CIRCUIT OPERATION

The input voltage is stabilised by RI and Zener diode D1 so that variations in battery voltage will not affect the circuit function unduly.

The resulting 10 V is applied across VR1 and VR2 and the varying voltage at VRI wiper is taken via
range switch S 3 to a voltmeter circuit. The volmeter circuit consists of the appropriate range resistorsR3 and VR3 or R4 and VR4-diode D2 and the $500 \mu \mathrm{~A}$ f.s.d. moving coil meter M1. The diode is used as a low voltage Zener; its breakdown voltage in the forward bias condition is 0.6 V . This means that up to 0.6 V can be present across D 2 without the meter indicating any current. Once the breakdown voltage is exceeded the diode resistance drops to a low value and the circuit acts essentially as a normal voltmeter.

Potentiometer VR2 is preset to give a reading of 0.01 milliamps on M1 with the wiper of VR1 turned towards VR2 end; this indicates that D2 is just beginning to conduct and as soon as VR1 is varied M1 will indicate the voltage present at its wiper.

Fig. I. Circuit diagram of the boat speed indicator. Reference is made in the text to the supply voltoge, RI and LPI. The tinted panel indicates the potentiometer used in the transducer.

COMPONENTS . .

Resistors

RI 220Ω or $2 \cdot 2 \mathrm{k} \Omega$ (see text)
R2 $20 \mathrm{k} \Omega$
R3 lk Ω
R4 lk Ω
All \downarrow W, $\pm 10 \%$ carbon
Potentiometers
VRI $5 k \Omega$ high quality sealed carbon lin (see text)
VR2 $2 k \Omega$
VR3 $5 k \Omega$ wirewound trimmers
VR4 Ik Ω
Diodes
DI ZLIO 1.5W, IOV Zener
D2 IN4I48 silicon

Switches

SI D.P.D.T. toggle
S2 S.P.S.T. pushbutton
S3 S.P.D.T. toggle
Miscellaneous
MI $500 \mu \mathrm{~A}$ f.s.d. moving coil meter (S.E.W. edgewise type)
SKI/PLI Two pin DIN plug and socket
SK2/PL2 Three pin DIN plug and socket
LPI Miniature indicator lamp and holder (voltage to suit supply)
Veroboard 2 年in $\times 3$ itin $\times 0.1$ in matrix
Diecast case $6 \frac{3}{\text { a }} \mathrm{in} \times 4 \frac{3}{2} \mathrm{in} \times 2$ tin
Connecting wire, transducer connection wire3 core plastics covered mains lead; supply connection wire-2 core plastics covered mains lead.
6B.A. fixings
Foam rubber, paint and Letraset

The action of D2 provides the required circuit response to variation of VR1.

Switch S2 and resistor R2 provide a circuit voltage checking position that will indicate, by way of MI, when the battery voltage is too low to operate the circuit. Resistor RI will be either 220 ohms or 2.2 kilohms to accommodate supplies of 11 V to 18 V or 18 V to 50 V d.c. respectively; LP1 will, of course, have to be the correct voltage for the supply.

Fig. 2. Groph of probe rotation against meter reading (b) subtracted from the $\operatorname{Cos}^{2} \theta$ graph (a) to give the resultant curve (c). For an accurate instrument curve (c) should be a stralght line

TRANSDUCER CONSTRUCTION

The transducer must be constructed of materials that will not be affected by water; in the prototype brass was used throughout. The shaft is a model boat propeller shaft and the gears are nylon, 2 to 1 ratio, also supplied for model making. The torsion spring can be any $\frac{1}{2}$ in diameter coil spring that is of fairly light construction. Particular attention should be paid to accuracy since any unnecessary friction or play in the unit will result in inaccurate and erratic readings when in use.

The gears should be arranged to mesh closely and there should be as little play in the potentiometer bearings as possible; because of this a metal encased potentiometer may prove best in this application-this can be sealed with epoxy resin or paint if necessary. Before using the transducer all surfaces should be protected with paint or varnish, the shaft and potentiometer bearing packed with grease and the container sealed with a rubber ring.

Details of the transducer are given in Fig. 3. Three $\frac{1}{8}$ in diameter brass rods are used to position the two plates; one of these rods forms a locating pin to ensure correct orientation of the probe with respect to boat axis.

The other two pins form rotation limiters for the arm connected to VRI and a spring anchoring point. The locating pin slides into a hole in the mounting bracket (shown in Fig. 3), that is fixed to the transom of the boat. The complete transducer can be lifted clear of the water, for breaching purposes or mooring, without completely removing the unit.

TRANSDUCER ASSEMBLY

Assembly of the transducer may prove slightly tricky, but is fairly easy once the correct sequency is known. When all parts have been made to the details shown in Fig. 3 the three rods can be soldered or brazed to the lower plate-the one with no potentiometer mounting hole. The locating pin should be affixed so that its top end is about $\frac{1}{16}$ in above the position of the upper plate-determined by the depth of VR1. The remaining two pins are mounted so that their lower end is flush with the underside of the lower plate.

Next, VRI should be mounted on the upper plate approximately in the centre of the slightly elongated hole. It is not necessary to tighten the fixing fully at this stage since the horizontal position of VR1 will have to be adjusted. Fit the spacers over the pins and place the two plates together, holding them with the two screws and two further spacers; the case lid should not be included under the screw heads at this stage.

The next operation is to mount the small gear on the potentiometer using the spindle coupler. The shaft can then be inserted through the two plates and the larger gear attached by tapping the brass bush 4B.A. and screwing it to the spindle.

SHAFT ALIGNMENT

The vertical position of the shaft can now be adjusted so that the two gears align-a small washer should be inserted under the large gear-the shaft is then soldered or brazed to the lower plate. The two screws can be removed and the case lid slid over the shaft and locating pin and the whole thing screwed together. The rotation limit arm is inserted so that with the arm touching the anti-clockwise limit pin, VRI is turned so that it is a few degrees off its fully anti-clockwise position. VRI can now be adjusted so that the two gears mesh correctly and its fixing tightened fully.

The torsion spring can now be fixed, the spindle revolved so that slight torsion is applied and, with the mounting bracket in place, the probe bolted in position. A washer should be included between the shaft and the probe and the probe fixed so that there is no vertical play on the spindle. The probe is made by hammering flat one end of a $\frac{3}{16} \mathrm{in}$ diameter brass rod, shaping and drilling the flattened end.

INDICATOR CONSTRUCTION

The four resistors, the two diodes, D1, D2 and VR2, VR3 and VR4, are mounted on a small piece of Veroboard, as shown in Fig. 4. Veroboard is used as it provides good support to the components and is not badly affected by water, as some tag panels are.

Fig. 3a. Exploded view of the complete transducer, the torsien spring is shaped from a long tension spring and is affixed to one of

TRANSDUCER MATERIALS. . .

16 s.w.g. brass plate, 2 in $\times 10 \mathrm{in}-$ for plates and bracket; $\frac{1}{8}$ in diameter brass rod, 8 in -for pins; $\frac{3}{16}$ in diameter brass rod, 6 in-for probe
Model boat propeller shaft and spindle-see text
Model makers' nylon gears $2: 1$ reduction with $\frac{1}{4}$ in diameter brass bushes
Spindle coupler $\frac{3}{4}$ in long, for $\frac{1}{4}$ in diameter spindles Spacers $\frac{1}{4}$ in $\times \frac{1}{\frac{1}{8}}$ in internal diameter, brass (40 ff)
6B.A. screws $1 \frac{1}{2}$ in long (3 off) for fixing screws and rotation limit arm
Case, 3 in internal diameter plastics container with flat screw top
Spring $\frac{1}{2}$ in diameter tension spring of light construction at least $1 \frac{1}{2}$ in long.
Grommets (3 off) - 2 to suit shaft and Ifor connection lead; 4BA and 6BA nuts and washers

Fig. 3b. Drilling details of the transducer plates. The distance between the two plates is determined by the depth of the potentiometer body-thus rod and spacer length wIII vary. Two plates are required and these should be drilled while clamped together. The elongated hole is only drilled through one plate. The position of the plates when mounted inside the case is indicated

Fig. 3c. Transducer mounting bracket details. Holes marked "D" must line up when the bracket is bent, their sire will depend on the shaft and grommet diameter

Fig. 4. Veroboard layout and wiring diagram. The potentiometers may be designated as shown on the board, for easy identification during setting up and calibration

Fig. 5. Layout and wiring diagram of all components mounted in the die-cast case. The lid to the case forms the base of the unit and the view shown is of the underside with the base plate removed

The remainder of the components are mounted directly to the die-cast case used to house the unit, see Fig. 5. This case should be carefully painted inside and out, after drilling, to prevent it being corroded by salt water; the base plate should be sealed with rubber strips. Sockets are provided for the leads to the transducer and the supply; these leads should be of good quality plastics insulated flex.

The meter is mounted on a rubber pad to provide some shock protection and prevent water from entering the case. The meter specified has no external apertures and the mechanical zero is adjusted through a hole in the top of the case which is plugged with a small piece of rubber when not in use. The Veroboard is mounted by sandwiching it between two pieces of foam rubber.

Layout and wiring of all components mounted in the indicator case is shown in Fig. 6. Internal batteries may be used if a larger housing is provided; in this case LP1 should be omitted to conserve the battery.

INSTALLATION

The mounting bracket is fitted to the transom of the boat so that the lowest part of the bracket is about lin above the highest possible water line. The bracket should be fitted well away from propellers on power craft or any obstruction that could interfere with the water flow.

The length of the shaft used will depend on the type and speed of the boat. The prototype, which was intended for a sailing dinghy, used a 9 in shaft,
but power yachts may require a greater length to keep the probe below and the unit above, the water level at all speeds (the transducer body should also be clear of the water when going astern).

The indicator unit can be fitted in a convenient position and a good quality piece of 3 core mains lead made the correct length and wired to PL2. The transducer could be fitted through the bottom of larger craft but a special adaptor will have to be manufactured for this.

CALIBRATION

The first step in calibration of the unit is to mark the correct supply level on MI. To do this a d.c. voltmeter is used to measure the voltage across D1; this voltage should be 10 V -providing the battery is in good condition and D1 is functioning. Once this has been checked S 2 can be depressed and the reading of M1 noted and marked on the scale or meter face; VR1 should be in circuit at its stationary position for this operation.

Switch S3 can then be set to the first range (\times 1) and VR2 adjusted so that the meter shows a reading of 10 MA . Once this is done the meter can be zeroed when the circuit is energised, using the mechanical zero adjustment.

The maximum possible speed of the boat should be estimated and this speed marked at the full scale deflection point on M1. The scale should then be 'divided equally to indicate the intermediate speeds. With the probe rotated through 45 degrees, VR3 should be set to indicate full scale deflection on M I

INITIAL SETTING

Initial setting of VR3 can be made without installing the unit. Once this is completed the unit should be installed for further calibration in the boat in which it is to be used, in the correct position with the transducer lead of the required length.

Initial calibration is by means of variation of probe length and diameter (prototype used a 4 in shaft of $\frac{3}{16}$ in diameter brass) and torsion spring. Probe diameter may easily be increased by sliding a length of plastics flex insulation over it. Fine calibration may be effected by adjustment of VR3. The unit should be calibrated as near the maximum speed as possible, since this is the point at which the circuit is most accurate (refer to Fig. 2).

There are two ways of speed calibrating the unit: by comparison with another speed indicator or by timing the boat over a measured distance. If the second method is used the measured distance should be as large as practicable and the boat speed held constant by means of the indicator, any error can then be adjusted after a second run in the opposite direction.

To calibrate the times 2 range it is only necessary to hold the probe in such a position that half full scale deflection is indicated with S3 in the $\times 1$ position; then switch S3 to $\times 2$ (with the probe in the same position) and adjust VR4 to give full scate deflection on M1. When this has been done the probe fixing can be soldered over, to protect it and prevent it becoming corroded, and finally painted

Designations may then be added to the unit as required, using Letraset, and given a coat of clear varnish to protect them. The unit is then ready for use.

If it is found that the meter is too sensitive to slight variations in speed or that the needle tends to flicker in use, the movement can be damped by placing a $2,000 \mu \mathrm{~F} \quad 15 \mathrm{~V}$ electrolytic capacitor directly across the meter terminals-observing polarity. \star

DIGITAL INTEGRATED CIRCUIT TESTER

Testing a digital i.c. package can be a time consuming task. With this tester TTL, DTL and RTL devices can be rapidly checked for correct logic functioning with a visual go no-go readout.

MAGNETIC FISH BITE INDICATOR

Independent of the rod and with no complicated line linkage, this unit provides an audible indication when a fish bites.
Utilising a simple magnetic reed switch it provides an ideal electronic overseer for unattended rods.

WINDSCREEN WASHER TIMER

A simple unit for holding on an electric windscreen washer for a pre-set time interval. May also be used as a short interval timer.

P日ACTICAL

ELECTRONICS
May issue on sale FRIDAY APRIL 16 Price 20p (4s)

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment accord. ing to its merit.

DIGITAL DICE

Perhaps your readers would be interested in the following circuit for an Electronic Dice.
The circuit is basically three binary stages with feed-back to give a count of six, being driven at high frequency by a free running multivibrator. When the count is stopped by pressing the display button S1 the output of the six counter is fed via gates to light lamps LP1 to LP6, giving a display in the familiar dice combinations, i.e. with the centre lamp only lit for a "one", the six outer lamps for a "six", etc. The dice requires only four decoding circuits;

the first of these decides "even or odd"-if the count is odd only the centre lamp lights. The next gate decides "not one" which lights two diagonally opposite lamps (except during a one). A third gating circuit decides four, five or six and lights the two remaining diagonally opposite bulbs on these counts. The final gate decides "six" and lights the two remaining bulbs on this count. A little thought will show that these combinations will automatically light the proper number of bulbs in the correct pattern for each dice position. The block schematic diagram of the dice is shown in Fig. 1; Figs. 2, 3, 4 and 5 show the sections of circuitry, Fig. 2 being the driving multivibrator; Fig. 3 is the divide by 6 counter; Fig. 4 shows the five gates that together form the three gateing circuits and Fig. 5 shows the lamp driver cịrcuits.

The display panel is made up of a square of holes drilled in the positions shown in Fig. 6. A piece of coloured translucent perspex is fitted over a blanking panel, so that only the illuminated lamps can be seen as spots of light on the perspex.

If required, the dice may be built up as a double unit in which case the divider board, gates and lamp display should be duplicated and the second divider board input driven from point "D" on the first divider board; this ensures independent displays on the two dice.

The circuit may be powered either by a nine volt dry battery or by a d.c. nine volt, one amp, mains power supply. The mains power supply is preferable due to the current drain of the lamp display.
J. D. Croft,

Warrington, Lancashire.

Count	Output from \div counter				Binary
	A	8	C	D	
1	NEG	POS	POS	POS	000
2	POS	NEG	POS	POS	001
3	MEG	POS	NEG	POS	010
4	POS	NEG	NEG	POS	011
5	NEG	POS	NEG	NEG	110
6	POS	NEG	NEG	NEG	111

Fig. 2. Multivibrator driver for the dice

Fig. 3. The divide by six counter

Fig. 4. Gate circuits used in the dice

Fig. 5. Lamp driver circuits; all lamps 6.3 V 0.04 A

II is often required to obtain a staircase waveform output from 1, 2, 4, 8 counter or logic outputs. The methods usually used are combinations of integrators and diode pumps of various descriptions. The circuit used here, however, is purely digital and the minimum of design application and components are required. The components used may be four transistors, used as single input gates, four Zener diodes and a load resistor. All of the components could probably be incorporated economically on a single i.c.

For operation of this circuit, I will refer to the circuit diagram (Fig. 1) where the resistors R1, R2, R3, and R4 ensure that the transistors TR1, TR2, TR3 and TR4 are saturated when the inputs $1,2,4$, and 8 are at logic " 1 ". (which must be 10 V or more in this circuit).

In " 0 " output condition the transistors TR1, TR2 and TR3 and TR4 will all be saturated and the output will be at a level of $V_{\text {ce(sat }} \times 4$ above zero volts or ground, this gives a level of approximately $1 \cdot 2 \mathrm{~V}$. Now assume input 1 is taken to zero volts. or ground, TR1 will thus switch off; the voltage across which will rise until D1 Zener diode break-down level is reached. This break-down voltage level is selected to be 1 volt plus the $V_{\text {ce(sat) }}$ of TR1, this will give a step of 1 volt at the output. The voltage $1 \times V_{\text {ce(sat) }}$ is added to each Zener voltage to maintain linear 1 volt steps at the output, as without taking this into account the voltage output will vary depending on the number of transistors saturated or not.

Assume the inputs to be obtained from a binary counter then input 2 will become zero and input 1 will
go to a positive voltage. Thus TRI will saturate shorting out Zener diode D1, but TR2 is now switched off-the voltage across which rises to the Zener break-down voltage of D2. This has been selected as 2 volts plus $V_{\text {ce(sal) }}$ of TR2 which gives an output level of 2 volts above the zero level of $V_{\text {ce }(\text { sat })} \times 4$.

This is continued for inputs 1 and 2 where both TR1 and TR2 are switched off which allows the output to rise by 3 volts i.e., D1 plus D2, and like-wise all the way along the chain of a $1,2,4,8$ counter or other input.
The output will start at $V_{\text {ce }(\text { sat })} \times 4$ (which is zero) and ascend in one volt steps until the output voltage reaches ten volts, our count of ten plus $V_{\text {ce(8si })} \times 4$, this gives a total of 11.2 volts, and it goes without saying the steps may, ascend in level by reversing the logic input levels.

The beauty of this circuit is that it is entirely independent of frequency and voltage levels, providing V_{CC} does not fall to below the sum of the total Zener voltage levels, i.e. V_{CC} may be 100 volts (if the components will take it) and the output levels obtained will not vary considerably from those when V_{CC} was at 12 volts. So it can be seen that the only design consideration is one of upper operating frequency which is dependent upon the components used and not so much the circuit; by selecting the appropriate Zener voltage levels this circuit may be used on various coded outputs quite easily.
D. W. Lloyd, Stotfold, Herts.

Fig. I.

a new 4-way method of mastering

$1>$	OWN and
HANDLE a	

2	BUILD and USE

a modern and professional CATHODE RAY OSCILLOSCOPE

3 READ and

U NDERSTAND CIRCUIT DIAGRAMS

4 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC	
CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .	
- Valve experiments	- Photo electric circuit - a.c. experiments
- TRANSISTOR EXPERIMENTS	- Computer circuit - d.c. EXPERIMENTS
- AMPLIFIERS	- basic radio receiver - simple counter
- oscillators	- electronic switch - time delay circuit
- SIGNAL tracer	- SIMPLE transmitter - SERVICING Procedures
no maths, and a minimum of theoryto test, service and maintain all types of	to really understand electronics by a modern, practical and visual methodprevious knowledge required. It will also enable anyone to understand how lectronic equipment, Radio and TV receivers, etc.

[^2]
ELECTRONIC COMPONENTS

Wholesale/Retail :

4,000,000 DIODES SILICON•GERMANIUM•ZENER LOTS OF 100,000-E150 10,000-E20 1,000-£3
 500-E2

1,000,000
 GERMANIUM TRANSISTORS LOTS OF 100,000 - $\mathbf{£ 2 5 0}$ 10,000- $\mathbf{E 3 0}$ 1,000-£3.50 500- $\mathbf{E 2}$

SPECIAL 50p PACKS. INCLUDE AN EX
RESISTORS, $\frac{1}{d} / \frac{1}{2} W_{\text {att }}$

TV types
\square 6

ORDER 10 PACKS AND WE WILL

 NE FREE! ! ! !| 00 | $50 p$ |
| :--- | :--- |
| 20 | $50 p$ |
| 15 | $50 p$ |
| 10 | $50 p$ |
| 12 | $50 p$ |
| 50 | $50 p$ |
| 100 | $50 p$ |

OO 50p
1050
$\begin{array}{ll}10 & 50 p \\ 20 & 50 p\end{array}$
15 50p
00 50p
$\begin{array}{rr}50 & 50 p \\ 100 & 50 p\end{array}$
15 50p
5 50p

$\begin{array}{ll}00 & 50 p \\ 00 & 50 p\end{array}$
 10050 p

100
$50 p$
$50 p$
CRYSTAL EARPIECES 3.5 mm Plug

TRANSISTORS
P.N.P. Untested but
mainly O.K.
N.P.N. Untested but
mainly O.K
OCP7I equivalent
Light-sensitive Diodes
$\begin{array}{rr}50 & 50 p \\ 5 & 50 p\end{array}$
$\begin{array}{rl}5 & 50 p \\ 10 & 50 p\end{array}$
(These produce up to $\operatorname{Im} A$ from light)
OC44 Mullard Ist grade
OC45 Mullard Boxed
2G378 Output, Marked
2G371 Driver, Marked
ASY22, Marked
BY127 Rectifiers
N4007 Rectifiers
(1200V peak) 50p
50p STC $3 / 4$ Rectifiers DIODES (OA8I \& OA91) 40 WIRE
Solid Core. Insulated 100 yds
Stranded ditto Soyds
SOLAR CELLS
Large Selenium
50p Small
$\begin{array}{ll}2 & 50 p \\ 3 & 50 p\end{array}$
(6 cells will power
Micromatic radio)
CO-AXIAL CABLE
Semi Air-spaced
Semi Air-space
CRYSTAL. TAPE
15yds 50p
I 50p

50p TRANSISTORISED Signal
4 50p Injecior
4 50p TRANSISTORISED Signal Tracer
I 50p TRANSISTORISED CAR REV. COUNTER KIT (Needs ImA meter as
50p indicator)

SINCLAIR AMPLIFIERS AND SPEAKERS: Complete range in stock. All at 10% discount on list.

VEROBOARD

2tin lin 0.15 in 6p 5 in $3 \frac{y}{a}$ in 0.15 in 28p 3 夺in 3 in 0.1 in 24p

 Sin $2 \frac{1}{2}$ in 0.15 in 20p $3 \frac{3}{4}$ in $2 \frac{1}{2}$ in $0 \cdot 1$ in $21 p$
Spot Face Cutter $38 p$. Pin Insert Tool 48p. Terminal Pins (0.1 or 0.15) $) ~$ 36 for 18p. Special Offer Pack consisting of $52 \frac{1}{2}$ in lin boards and a Spot Face Cutter -50p.

RECORD PLAYER CARTRIDGES. Well below normal prices! G90 Magnetic Stereo Cartridges, Diamond Needle, 6 mV output, $f 4$. ACOS GP $67 / 2$ (Mono, Crystal) 75p. ACOS GP $91 / 3$ (Compatible, Crystal) 11 . ACOS GP $93 / 1$ (Stereo, Crystal, Sapphire) $\mathbf{x 1 . 2 5}$. ACOS GP $93 / 10$ (Stereo, Crystal, Diamond) $\mathbf{f 1} \cdot 63$. ACOS GP $94 / 1$ (Scereo, Ceramic, Sapphire) $\mathbf{E 1} 50$. ACOS GP $94 / 10$ (Stereo, Ceramic, Diamond) f1,88. ACOS GP 95/I (Stereo, Crystal with two L.P./Stereo needles) \& 1.25 .

TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse polarity protection. 8 watt type with reflector, suitable for tents, etc., 43 . Postage/Packing 25 p. 15 watt type, batten fitting for caravans 64. Postage/Packing 25p. 13 watt type, batten with 5 witch 22 in 2 in linf5. Postage/Packing 25p. THESE CAN BE SENT ON APPROVAL. AGAINST FULL PAYMENT.

MULLARD POLYESTER CONDENSERS

1,000pf, 1,200pf, 1,500pf, 1,800pf, 2,200pf, 15p per dozen (all 400V working). $0.15 /$ ff, 0.22 ff, $0.27 / f, 30 \mathrm{p}$ per dozen (all 160 V working). 25% discount for lots of 100 of any one type.

RESISTORS

$\frac{1}{4}$ and $\frac{1}{2}$ watt. Most values in stock. 50p per 100 . 10p per dozen of any one value. WIRE-WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards. I watt to 50 watts. A large percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered "assorted" at 50p per dozen.

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Large range in stock, 75 p per 100 of any one value. $15 p$ per doz.
RECORDING TAPE BARGAIN! The very best British Made lownoise high-quality Tape! 5in Standard 38p. Long-play 45p. 5sin Standard 45p. Long-play 60p. 7 in Standard 60p. Long-play 82p. We are getting a fantastic number of repeat orders for this tape. Might we suggest chat you order now whilst we still have a good stock at these low prices?

L5 WORTH OF COMPONENTS FREE ! ! ! !
Thinking of learning another language? If so apply to us for details of Thinking of learning another language? your selection quite free of charge when you purchase a course! !! !
G. F. MILWARD, DRAYTON BASSETT, TAMWORTH, STAFFS. Postage (minimum) per order 10 p

m
 相 Place

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

LOUDSPEAKERS AND ENCLOSURES

An increasing number of cost conscious hi fi enthusiasts are home constructing loudspeaker systems from the expanding range of multiunit kits and individual loudspeakers now available.

One of these multi-unit kits is the Peerless $20-3$ from P. F. \& A. R. Helme. This is a 3 -way system consisting a low frequency "woofer" loudspeaker with rubber roll surround, a mid-range speaker, a "tweeter" high frequency speaker and a printed circuit board crossover unit.

Recommended for amplifiers of 10 to 40 watts, the maximum power input of the system is 40 watts. The frequency range is claimed to be 40 to $20,000 \mathrm{~Hz}$ and the crossover frequencies are 1,500 and $6,000 \mathrm{~Hz}$. All speakers have voice coils wound on an aluminium coil former and have standard impedances of 4,8 or 16 ohms.

The Peerless 20-3 kit costs approximately $£ 18.87$ and full details will be supplied by A. F. \& A. R. Helme, Summerbridge, Harrogate, Yorkshire, HG3 4DR.

For those readers who do not feel sufficiently proficient to make their own enclosures, Messrs. Omar Skinner \& Sons produce ready built enclosures to makers' specifications for the more popular systems.

The enclosures are soundly constructed and available in a variety of finishes. The baffle boards are cut to order and they claim they can supply an enclosure for every need.

Our photograph shows the Omar Skinner enclosure for the four loudspeaker EMI 750 kit . The 750 kit consists of a bass, mid-range and two treble speakers, which together are capable of handling 20 watts and cover the frequency range of approximately 30 $20,000 \mathrm{~Hz}$. A crossover unit with a choice of switching frequencies. wiring harness and full instructions is included and the complete EMI 750 kit costs $£ 27.50$.

Details of enclosures may be obtained from Messrs. Omar Skinner \& Sons, Warfield Park

Workshops, Warfield Park, Bracknell. Berkshire, and enquiries for information on EMI loudspeaker kits and enclosures should be addressed to EMI Sound Products Ltd., Blythe Road, Hayes, Middx.

TOOL KITS

During the last few years manufacturers have been gradually gearing themselves to continental specifications and component practices when designing equipment. The result of this gradual changeover has meant that numerous pieces of equipment have contained both U.K. and continental components, i.e. Phillips, Allen, and standard screws.

One of the problems encountered by this situation is the lack of necessary tools when carrying out service repair work. Special Products Distributors seem to have recognised this problem and are now introducing the well-known Xcelite tools from America to the British market.

The first tools to be marketed are a 19 -piece screwdriver kit, 14-piece socket set and a 5 -piece screwdriver kit.

The XL-70 19-piece kit contains a selection of Allen keys, slotted and Phillips screwdrivers, reversible ratchet and extension handle. The ratchet can be attached to the extension handle for added torque if required. This kit is particularly useful for television service engineers.

The 1001 14-piece socket set includes sockets from $\frac{3}{1} \frac{3}{5} \mathrm{in}$. to $\frac{1}{2} \mathrm{in}$., 2 in . extension, reversible ratchet and extension handle.

Included amongst the sockets are two 10 -point sockets, $\frac{1}{4}$. and $\frac{1}{10}$ in., which are dual purpose to fit both square and hexagonal nuts. The reversible ratchet in this kit is fully enclosed to keep out dirt and grit.

The XL. 755 -piece kit is contained in a plastics wallet and is a small set of slotted and Phillips screwdrivers with an offset ratchet handle, again extremely useful for working in awkward and confined spaces.
The XL70 screwdriver kit costs $£ 6 \cdot 25$, the 1001 socket set costs $£ 7 \cdot 18$ and the XL 75 costs $£ 2 \cdot 10$.

Both the XL70 and the 1001 kits are housed in moulded high impact plastics cases. Full particulars of these tools are available from Special Products Distributors Ltd., 81 Piccadilly, London, WIV 0HL.

Peerless 20-3 kit from P. F. \& A. R. Helme

EMI 750 kit housed in an Omar Skinner enclosure

THis article describes the construction of a completely electronic door bell which is simple, cheap, and does not require accurate adjustment. The rhythm and melody are continually changing so that each time the bell push is depressed a different sound is produced.

CIRCUIT BLOCKS

In the block diagram of the unit shown in Fig. 1, the 250 Hz multivibrator produces the basic note. The base resistors controlling the frequency are divided into two so that the two low frequency (1 Hz) multivibrator circuits can short circuit the upper resistors. A total of four notes is thus obtained using only three switching circuits.

Since the multivibrator circuits run asynchronously the rhythm will be continually changing which means that a different tune will be obtained each time the bell push Sl is depressed.
The output from the 250 Hz multivibrator is fed via an AND gate to amplifier A2 to drive the loudspeaker LS1. The signal is allowed through the gate when the monostable is pulsed, the duration of which may be adjusted between 0.5 and 12 seconds.

A buffer amplifier, A1, precedes the monostable stage and provides the triggering action when the bell push is used.

DETAILED OPERATION

Transistors TR3 and TR4 in Fig. 2 form the main astable circuit which provides low frequency calculated by $1 / 0 \cdot 7\left[C_{3}\left(R_{5}+R_{7}\right)+C_{4}\left(R_{8}+R_{9}\right)\right] \mathrm{Hz}$.

In order that diodes D1 and D2 effectively short circuit R6 and R8, R7 must be greater than R6 and R9 must be greater than R8.

TR5 and TR6 form another astable circuit working at a very low frequency of about 1 Hz . With R12=R13 and $\mathrm{C} 5=\mathrm{C} 6$ the frequency is given by $1 / 1 \cdot 4 C_{5} R_{12} \mathrm{~Hz}$.

When TR 5 is hard on, the collector is almost zero volts and diode D2 is back biased since the junction of R8 and R9 is always positive. When TR5 is cut off the collector is +6 V and D 2 is forward biased which effectively short circuits R8 and consequently changes the operating frequency of the 250 Hz astable.

The action of TR1/TR2 astable circuit is identical to this but is applied to D1.

GATING THE OUTPUT

The output is taken from TR3 collector and gated at the input of the amplifier A2 by diode D3. With the bell switch not made TR11 in the monostable circuit will be normally hard on and thus the collector will be nearly at zero volts. Here the diode D4 is forward biased and the junction of R28 and R29 will be held at zero volts irrespective of the input to D3.

TR9 is held on by the positive voltage appearing at the junction of R19 and the lamp. When the bell push is depressed the base of TR9 is brought to nearly zero volts so that it switches off.

With TR9 cut off, the collector will change from zero volts to +6 V . This positive going voltage turns TR10 on via C10 and R23 thus triggering the monostable action of TR10 and TR11. TR11 is turned off and the collector changes to +6 V which reverse biases diode D4, so allowing D3 to pass the output of TR3 to the amplifier A2.

Irrespective of whether the bell push is maintained depressed or not the monostable action will end after a time given by $0.7 \times \mathrm{C} 11 \times($ VR1 $+\mathrm{R} 25)$. In this period a short burst of notes will be obtained. With VRI set to zero the duration will be approximately 0.5 seconds. Set to maximum resistance it will be about 12 seconds.

R21 is included to reduce the voltage to the astable and monostable circuits so that 6 V working capacitors can be used. C9 decouples the astable circuits.

POWER SUPPLY

The circuit diagram of the power supply is shown in Fig. 3. Here the total current required will depend, in the main, on the rating of LP1.

If a Friedland bell push is used the lamp voltage will probably be $8-15$ volts. Thus a 12 volt transformer would be suitable.

The prototype was powered from a 12-0-12 volt transformer and using a Friedland Type ' A ' lamp the following measurements were made.

Normal current Bell operating	150 mA
Bell push held depressed	1.2 amps

Components

Resistors					
RI	$1 \mathrm{k} \Omega$	RII	$1 \mathrm{k} \Omega$	R21	$220 \Omega \cdot \mathrm{~W}$
R2	$22 \mathrm{k} \Omega$	R12	$22 \mathrm{k} \Omega$	R22	$1 \mathrm{k} \Omega^{\text {. }}$.
R3	$22 \mathrm{k} \Omega$	R13	22k Ω	R23	$100 \mathrm{k} \Omega$
R4	$1 \mathrm{k} \Omega$	R14	$1 \mathrm{k} \Omega$	R24	$1.8 \mathrm{k} \Omega$
R5	$3.3 \mathrm{k} \Omega$	R15	$6.8 \mathrm{k} \Omega$	R25	$2 \cdot 2 \mathrm{k} \Omega$
R6	$22 \mathrm{k} \Omega$	R16	150Ω	R26	$22 \mathrm{k} \Omega$
R7	$33 \mathrm{k} \Omega$	RI7	10』 2 W	R27	$1.8 \mathrm{k} \Omega$
R8	$27 \mathrm{k} \Omega$	R18	$15 \Omega 2 \mathrm{~W}$	R28	$1 \mathrm{k} \Omega$
R9	$33 \mathrm{k} \Omega$	R19	$15 \Omega 10 \mathrm{~W}$	R29	$1 \mathrm{k} \Omega$
R10	$3 \cdot 3 \mathrm{k} \Omega$	R20	$5.6 \mathrm{k} \Omega$		

Potentiometers
VRI $47 \mathrm{k} \Omega$ Vertical preset VR2 25 Ω Preset

Transformer
TI I2V 2A centre tapped (Douglas MT7I)

Cl	$32 \mu \mathrm{~F}$ elect. 6 V
C 2	$32 \mu \mathrm{~F}$ elect. 6 V
C 3	$0.01 \mu \mathrm{~F}$
C 4	$0.01 \mu \mathrm{~F}$
C 5	$32 \mu \mathrm{~F}$ elect. 6 V
C 6	$32 \mu \mathrm{~F}$ elect. 6 V

C7
$250 \mu \mathrm{~F}$ elect. 15 V
C9 $250 \mu \mathrm{~F}$ elect. 6 V
$10 \quad 0.1 \mu \mathrm{~F}$
CII $250_{\mu} \mathrm{F} 6 \mathrm{~V}$
Cl2 $5,000 \mu \mathrm{~F}$ elect. 15 V

Transistors
TRI-TR7 BCIO8 (7 off)
TR8, OC28
TR9-TRII BCIO8 (3 off)
Diodes
DI-D4 OA90 (4 off)
D5-D8 RS50AF (4 off)

Miscellaneous

SI (see text), LSI 3-15 ohms loudspeaker,
Veroboard $0 \cdot 1$ in matrix $4 \frac{1}{2} i n \times 6 i n$ and $2 \frac{1}{2} i n \times 5 i n$.

Fig. 2. Circuit diagram of Doorbell Yodeller

Fig. 4. Component assembly of (a) the astable and amplifier circuit; (b) the monostable and switching amplifier. Assembly may be combined on a single Veroboard

(b)

CONSTRUCTION

In the prototype the astable and amplifier circuits were built on a piece of 6 in by $4 \frac{1}{2}$ in Veroboard as given in Fig. 4. Here there is ample room for the components and no breaks in the copper strip are required.
A $2 \frac{1}{2}$ in by 5 in Veroboard is used for assembling the monostable circuit and switching transistor TR9. The reason for this separate board construction is because the monostable is dispensable since it only provides an interval of tones, the period of which can be set by VR1.

Since there is nothing critical in the layout, single board construction for the complete circuit, including power supply, can be made.

CHECK OUT

If the completed unit fails to function with the supply applied, the following check out procedure should be undertaken.

First disconnect D4 to isolate the monostable. If a tone is not apparent, connect a headset via crocodile clips between TR3 collector and emitter. No sound points to either TR 3 or TR4 being defunct.
If the stage is alright, apply the 'phones to TR7 and TR8 collectors, in that order, to determine the offending transistor.

To check the operation of the low frequency astables, a voltmeter should be connected to the collectors. This method can be used to establish the switching action at TR9 collector, the swing here being between 0 and 6 V when the bell push is depressed.

Once the circuit is functioning correctly R6 can be replaced by a preset potentiometer if any time adjustment is required.

VARIATIONS

As already mentioned the monostable section could be omitted. Simply omit TR10, TR11 and their associated components. Also omit C10 and R23 and connect the collector of TR9 directly to D4.

If an illuminated bell push is not used connect a 100 ohm resistor across the bell push contacts. This can be done on the component board.

If the monostable action is not required and a nonilluminated bell push is used, connect TR 3 collector directly to R15, the base resistor of TR7. The bell push may then be used to connect the dc supply to the circuit. A 6 volt transformer could be used in this case.

A wooden box, or metal case, can be used for housing the completed circuitry, here the only external control item will be the potentiometer VR2.

NEWS BRIEFS

Trinitron T.V.

ANEW colour television tube-called the Trinitron has been announced by Sony Ltd. The tube uses only one electron gun that projects three electron beams; the beams are converged and focused through two large diameter electron "lenses" and a pair of deflectors. Because a large diameter single "lens" can be used to focus all three beams from the Trinitron gun, greater brightness and better focus are claimed to be achieved.

The tube shown below next to a conventional tube) also utilises a new colour selection method named "Apeture Grill" which uses a vertical slotted grill and vertical lines of phosphers rather than the holes and dots of the normal shadowmask tube. The single gun can also be used with either a shadowmask tube, or a chromatron tube, as can be seen from the drawing below.

The new tube has been incorporated in a 13 in screen colour television which, when recently demonstrated to the press, gave a good account of itself. The set will be on the market in this country in April ' 71 and will retail at just under $£ 200$. It will be interesting to see if Telefunken A.E.G. are prepared to allow Sony to market this set, if it infringes their patent on the P.A.L. colour system, without a legal fight. It is not yet possible to say if the set infringes P.A.L: patent since Sony will give no technical circuit data, it will also be interesting to see if Sony can mak larger screen sets-even if, as they state, they do not wish to market them in this country.

PART TEN-By R. W. COLES
METAL OXIDE SILICON LOGIC (MOS)
T was mentioned in an earlier article in this series, that a further two logic families have been elevated to positions which rank them alongside the three originally basic groups RTL, DTL, and TTL.

This article concerns itself with the first of these two comparative newcomers, Metal Oxide Silicon Logic, usually referred to simply as MOS.

MOS DEVICE CAPABILITY

MOS logic is a very different family from any of the others discussed, both in fabrication and application. Instead of conventional bipolar transistors, insulated gate field effect devices are employed, and in general no linear resistors or diodes are used at all.

MOS is used with negative supply voltages of up to 30 V , with consequently large logic swings which render the mixing of this family with, say, TTL a complicated business usually requiring special "interface" circuitry.

Registers and gates in the MOS range will not run at the high speeds associated with TTL either, a limit of 1 MHz being common in the specification of a shift register package.

In the light of all these apparent disadvantages one may well ask why anyone should bother with these devices at all, and the answer to this is that MOS is very simple indeed to produce, an advantage which makes it possible to incorporate vast quantities of logic elements on a single chip, and still achieve an economic yield.

A bipolar device, whether it be a single transistor or an MSI counter, requires well over one hundred process steps in its manufacture from a silicon "chip". An MOS circuit on the other hand is produced in less than forty steps of comparable complexity, which means less chance of manufacturing discrepancies and a correspondingly lower reject rate on circuits of the same magnitude as their bipolar counterparts.

Usually this improvement is used to advantage to enable large logic arrays, such as dual 100 -bit serial shift registers, to be built on one chip, rather than duplicate the bipolar circuits. This slant towards large scale integration (LSI) is also helped by the fact that an MOS transistor, being a low current, high impedance device, takes up only about one fiftieth of the chip area that a typical bipolar device needs.

MOS techniques are beginning to revolutionise many areas of logic design because of this capability of producing complete systems in one package. As an example, a recently introduced three digit multimeter uses a single LSI MOS chip which contains all the analogue-to-digital conversation logic and display decoding required, all in a 16 -pin dual in-line package.

STRUCTURE

Transistors of the MOS type have been around for some time now, and have appeared in many designs, in particular the "front ends" of communications receivers, and high impedance input stages for audio amplifiers. Readers will be more familiar with them as field effect transistors (f.e.t.).

Just as there are $p n p$ and $n p n$ bipolar devices, so there are p-channel and n-channel f.e.t.s, but in this case there is a further division into "enhancement" and "depletion" modes of operation, giving four device types in all. MOS logic circuits generally employ p-channel enhancement mode devices, although there is a recent form which uses complementary (p - and n-channel) logic on the same chip. The difference between p - and n-channel devices will be obvious to most readers, but "enhancement" and "depletion" may call for some explanation.

Fig. 10 shows the operation of these two devices in diagrammatic form. F.e.t.s have three electrodes known as the source, the drain, and the gate, and in the MOSFET the aluminium deposition known

PHILIPS STEREO
AUTOCHANGER
AUTOCH
E8．75 Post 25 p．
Prection hi－f quality at bargain price．silver and grey dect enamelled table． 4 apeeds，16，33
45 and 78 r．d．m．Plays 7．10， 12 in ，disci which oan be mired．Fitted renowned Philipe plag－in Xtal AG8806 with dual sapphire stylua for LP／EP／78．Sentitivity 100 mV Frequency reapone $30 \mathrm{cps}-16 \mathrm{Kc} / \mathrm{A}$ ．Lightweight atylu pronsure 3－8 grammes．Board space required 14：12tin Above 410 ，Below $2 /$ in． 12 monthi guarante．
Also available with GP310 dismond stylus LP Stereo／EP and sapphire 78．\＆1 ertra ef extra or Cut－out plywood base board 50p extrs．
BSR 4－SPEED SUPERSLIM AUTO RECORD CHANGER Playi $122^{\prime \prime} 10$ or 7 record Arto or Manual．A high
guality unit backed by BSR quality bility with 12 months＇ Enarantee．Size 13k 11tin．Above motor board sinc
below 2tin．AC 200／250v．
with STEREO and MONO XTAL $\mathcal{C} 7 \mathrm{POs}$
BRR Minichanger UA50 Stereo and Mono．

GARRARD PLAYERS with Sonotone 9TA Cartridgee． Stereo Diamond and Mono Sapphire．SP25 Mk II 215 Model 8000 Stereo and Mono hutochanger 813 ．Poat $85 p$ ， RECORD PLAYER PORTABLE CABINET $\mathbf{S 3 . 7 5}$ IFIER Ready made ketied RCS DE－LUXE 3 WATT AMPLIFIER．Ready made tented 2－utage with triode pentode vive， loudapeaker，valves ECL8\＆，EZ80．Reaponse
$50-12,000 \mathrm{cps}$ ．Senilitivity 200 mV ．Post 250
RCS 2 WATT A MPLIPIER with loudspeaker and $\quad \mathbf{3}$ valves UCL82 and UY85．Post 25p．
R．C．S．TEAKWOOD BASE．Ready cut out
for mounting（stato player make and model）． $\mathbf{~} 3.25$ R．C．S．PLASTIC COVERS FOR ABOVE BASE． $\mathbf{3} 25$ purable tinted plastic．attractive appearance．
EMI PICK－UP ARM．With mono atal and stylus 81.25 ． EMI JONIOR 4 SPEED RECORD PLAYER．Mains operated motor，hurntable and pick up．Poit 25 ．
 5 C 21 05：GPer 5 ：ACOS p only 500 All stendard fring complate with stylu！．

WEYRAD P50－TRANSISTOR COILS RA8W Ferrite Aerial．．．85p Spare Cores．．．．．．．．．．．．3p I．F．P50／2CC $470 \mathrm{kc} / \mathrm{s} . . .33 \mathrm{p}$ Printed Circuit，PCA1 ． 50 p 3rd I．F．P50／3CC． P51／1 or P51／8 P50／8V

 VOLUMECONTROLS 80 mm Coax 4 p yd． Long spindles．Midget size BRITISH AERIALITE $\mathbf{5 K}$ K．ohms to 8 Meg．LOG or ．AERAXIAL－AIR SPACED LII．L／S 15p．D．P． $25 \mathrm{p} .40 \mathrm{yd} .81 .40 ; 80 \mathrm{yd} . ~ £ 2$. | STEREO L／8 55 p, D．P．75p． | PRINGE LOW LOSS |
| :--- | :--- |
| Edge 5K．8．P．Tranaistor 25 p ． | Ideat 625 and colour | WIRE－WOUND 3－WATT POTS．WIRE－WOUND 3－WATT gmall type with small knob．STANDARD SIZE POTS．

 $2!\times 5 i n .18 p .2!\times 3 i \operatorname{in} .16 \mathrm{p} .3 ; \times 3 \mathrm{in} .19 \mathrm{p} .3: \times 5 i n .26 \mathrm{p}$ ． EDGE CONNECTORS 16 way 25 p； 24 way 38p． S．R．B．P．Board 0.15 MATRIX 2 ：in．wide 8 p per 1 in ． 3 jin．wide $4 p$ per 1 in ．； 5 in ．wide 5 p per lin．（up to 17 in ．） S．R．B．P undrilled in goard $10 \times 8 i n .15 p$
BLANK ALUMINIUM CHASSIS． 18 s．w．g．2！in，sides， $8 \times 4 \mathrm{in} .45 \mathrm{p} ; 8 \times 8 \mathrm{in} .50 \mathrm{p} ; 10 \times 7 \mathrm{in}$ ． $70 \mathrm{p} ; 14 \times 8 \mathrm{~g}, 1 \mathrm{in} .90 \mathrm{p}:$ $16 \times 6 \mathrm{in}, 90 \mathrm{p} ; 12 \times 3 \mathrm{in}, 90 \mathrm{p}$.
ALUMINIUM PANELS 18

$8 \times 6 \mathrm{in} .15 \mathrm{p} ; 10 \times 7 \mathrm{in}, 17 \mathrm{p} ; 12 \times 8 \mathrm{in} .23 \mathrm{p} ;$
1！inch DIAMETER WAVECHANGE SWITCHES． $2 \mathrm{p} .2-$ way，or 2 p ．6－way，or 3 p．4－way 25 p each． 1 p ．12－way，or
 Wavechange＂MAKITS＂ 1 p． 12 －way， 2 p． 6 －way． 8 p， $4-$
way， 4 p． 8 －way， 6 p ．\＆－way． 1 wafer 60 p， 2 wafer $95 p, 3$
 TOGGLE SWITCHES．sp．14p；dp．18p；dp．ds． 28 p ．
 LOW RESISTANCE HEADPHONES $3-5$ ohm：
DE LUXESTEREO HEADPHONES 8 ohms

Minimum Post and Packing 15p
RADIO COMPONENT SPECIALISTS
$200 / 250$
2001．50
S．A．E．
42.35

Post 15p

P（DS＇TAL EMERGENCY

Phone your order then make payment by Bank Transfer at any bank in U．K．to BARCLAYS WADDON 20－89－57 RADIO COMPONENTS 10－55－05－82 and write order on reverse of bank transfer
Emergency carriage charge 45p
Allow 7 days for delivery
GENERAL PURPOSE TRANSISTOR PRE－AMPLIFIER BRITISH MADE Ior Mike，Tape，P．U．，Guitar
Battery 9－127，or H．T．line 200－s00\％．D．C．operation．Sise $11^{\prime \prime} \times 11^{2} \times \mathbf{1}^{\prime \prime}$ ．Response $25 \mathrm{c} . \mathrm{p} . \mathrm{s}$ ．to $25 \mathrm{Ko} / \mathrm{s}, 26 \mathrm{db}$ gaio Fof uite with valve or transistor equipment． Full ingtructions aupplied．Brand new． 90p ${ }_{10 \mathrm{p}}^{\text {Po }}$ NEW TUBULAR ELECTROLYTIC CTICS \mid CAN TYPE ／350V $\cdots \quad 14 \mathrm{p} \left\lvert\, \begin{array}{llll}100 / 25 \mathrm{~V} & \cdots & 10 \mathrm{p} & 16+16 / 300 \mathrm{~V}\end{array}\right.$

 \begin{tabular}{ll|lll|ll}
$8 / 450 \mathrm{~V}^{\cdots}$ \& 14 p \& $80 / 25 \mathrm{~V}$ \& 20 p \& $60+100 / 350 \mathrm{~V}$ \& 58 p

$16 / 450 \mathrm{~V}$ \& 15 p \& $8+8 / 450 \mathrm{~V}$ \& 18 p \& $82+32 / 250 \mathrm{~V} .$. \& 18

$32 / 450 \mathrm{~V}$ \& 20 p \& $8+8 / 450 \mathrm{~V}$ \& 18 p \& $32+32 / 450 \mathrm{~V} .$.

\& 80 p \& $32+32 / 450 \mathrm{~V}, ~$ \& 88 p
\end{tabular}

 （ $0 \mathrm{p}|32+32 / 350 \mathrm{~V} 25 \mathrm{p}| 100+50+50 / 350 \mathrm{~V} 48$ SUB－MIN．ELECTROL YTICS． $1.2,4,5,8,16,25,30,50,100$ $200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} ; 500,1000 \mathrm{mF} 18 \mathrm{~V} 18 \mathrm{p} ; 2000 \mathrm{mF} 25 \mathrm{~V} 85 \mathrm{p}$ CAPAEIC， 1 pF to 0.01 mP ， 4 p ，8ilver Mica 2 to 5000 pP ， 4 p
 $5000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,8 p ; 0.047,0.1,14 \mathrm{p}$

MAX CHASSIS CUTTER

Complete：a die，a panch，an Allen screw and key

AM－FM／VHF TUNING GANG
Super quality amall aize $1!\ldots 12 \ldots 1$ in plus apindle 1！tin． $365+865$ pI with $25+25 \mathrm{pF}$ ．Britioh made．Geared slow motion drive $6: 1$ ．Plastic duat cover，6EA tapped front fixing．Cast aluminium trame．

50 p post pree

MAINS TRANSFORMERS Post

$250-0-25050 \mathrm{~mA} .6 .3 \mathrm{v} .2$ amp．centre tapped
$250-0-25080 \mathrm{~mA} .6 .3$ ₹． 4 am

MIDGET 220 ₹． $45 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 2 ; \times 2!\times 2 \ln$. Ditto tapped tec． 1.4 F．，2，8，4，5，8．3 F．I amp． GLFERAL PURPOSE LOW OLTAGE．TBPped ontputi $3,4,5,8,8,9,10,12,18,18,24$ and 30
1 amp．， $6,8,10,12,16,18,20,24,30,36,40,48,60$ AUTO TRANSFORMERS 0 ， $0.116-230 \quad$ v．Input／Outpnt 150 w e2． 500 w es： 1000 w CHARGER TRAISFORMERS．Input E00／250v

E．M．I． $13 \frac{1}{2} \times 8$ in． LOUDSPEAKERS
With flared tweeter cone and ceramic magnet． 10 Watt． Plux res．43－80 cps． 10,000 ganil． state 8 or 8 or 15 ohm ．Poat 15p each Also with tivin tweeters． \＆4 State 3 or 8 or 15 ohm．Port 150 Recommended Teak Cabinel＿（5）

IOW MINI－MODULE $£ 3.25$ LOUDSPEAKER KIT Pott 25 p

Triple speaker system combining on ready cut batede $\frac{1}{2} \mathrm{in}$ ．chipboard 15 in .88 in ．Separate Band，道iddle and Treble loudspeakeri and cronhover condenser．The beave dury in ．Bass Woler an has drive to the middle register sind the tweeter recrestes the drive to the midaje regiter snd the tweeter recreates $20-15,000 \mathrm{cps}$ ．Full instructions for 3 or 15 ohm TEAK VENEERED BOOKSHELF EACLOSURE． $16!\times 10!\times 6 \mathrm{in}$ ．Modern design，dark $\mathbf{C S}$ Poat 25 p grey tygan covered bafle．\quad Posk 25p

THISELACCONETWEETERIS OFTHE VERY ATEST DESIGN AND GIVES A HIGHER TANDARD OF PERFORMANCE THAN MORE EXPENSIVE UNITS The moving coil diaphragm gives a good radiation pattern to the hikher irequenciea and a mooth extonsion of trotal response $1,000 \mathrm{cpa}$ to $18,000 \mathrm{cps}$ ．sise $8 \pm x$ from $1,000 \mathrm{cpa}$ to $18,000 \mathrm{cps}$ ． $8150 \mathrm{gi} \times$ 15 ohm models．≤ 1.90 Pont 10 p
TWO－WAY CROSSOVER NETWORK $3,000 \mathrm{c} / \mathrm{s}$ With varisble tweeter attencastor giving accurato htgh／low requency balmace，monaked on panel sin，in．with uitable tor 3 to 8 ohm impedence．$C 190$ Pont

Horn Tweeters 2－18Kc／a， 10 W 8 ohm or 15 ohm 21.60 De Laxe Horn Tweetors $2-18 \mathrm{Kc} / \mathrm{s}, 15 \mathrm{~W}, 8$ ohm 88. WO－WAYis，000 c．p．s．CRO880V ERS 8 of 8 or 16 ohm 85p． PECIAL OFFER！ 80 ohm． 2$\} \mathrm{in}, 2$ lin．dia．； $85 \mathrm{ohm}, 3 \mathrm{in}$ $25 \mathrm{ohm}, 3 \mathrm{tn}$ dia．$: 8.4 \mathrm{in} ; 8$ ．Sin．
I5 ohm ， 3 in ．dia．； $7 \mathrm{in} ; 8.5 \mathrm{in}$. 90 EACE 5 ohm， 8 inin ，dia．； $7 \mathrm{hm}, 8 \mathrm{in}, 3 \mathrm{in}, 5 \mathrm{in}, 5 \cdot 8 \mathrm{in}, 7 \times 4 \mathrm{in}$ ．
 $8 \times 2 \mathrm{in} .90 \mathrm{p} ; 8 \mathrm{in}$ ． $\mathrm{El} \cdot 75$ ； $10 \times 6 \mathrm{in}$ ， il .90 ．
 ELAC 8 in．De Lare Ceramic 8 ohm or 15 ohm 88.50 RICHARD ALLAF TWIM CONE LOUDSPEAKERS Bnn．dia． 4 watt；10in，dia． 5 watt； 12 in．dia， 6 watt
or 8 of 15 ohm models $21-95$ each．Port 15 p ．
OUTPUT TRANS．EL84，etc．25p．LIKE TRANB． $60: 1 \mathrm{e} 25 \mathrm{p}$ ． PEAKER COVERING MATEALALS．Samples Larce B．A． OODMARS OUTPUT TRAFSFORMER 6 watt pulh pull to ven ELsA，etc．， 3,8 and 15 ohms 85p．Pont 20 ．
100 WATT HIGH POWER P．A．AMPLIFIER
 A．C．Wains 200／250V．Detaila 8．A．E．
ALL EAGLE PRODUCTS SUPPLIED AT LOWEST PRICE

GARGAIL AM TUHER．Medium Wave．≤ 4 gransistor superhet．Ferrito aerial． 9 volt．
Add muaical highlights and sound effects to recordingi， with separath controls into single outpat． 8 volt．
bargain Fm tuiter 88－108 Mc／a 8 ix Tranaistor． 9 volt Printed Circnit．Calibrated slide dial tuning． 10 Wannut Cabinet．sire 7 人 3 人 4 inch BARGALI FM TUNER \qquad．

FM STEREO YULTIPLEX ADAPTOR for above or $\int 5$ general use，kendy made with 4 trankiori，o lodea
BARGAIF 3 WATT AMPLIFIER． 4 Transitor $\mathbf{~} \mathbf{3 . 5 0}$
Push－Pull Ready built，with volume control．9v， COAXIAL PLUG 6p，PANEL SOCKET8 6p．LINE 18p OUTLET BOZES．SORPACE OR FLUSH \＆D
BALANCED TWI FEEDERS 5 p Yd． 80 ohms or 800 ohms JACE 8OCKET 8td，open－circuit 14 p ，closed circuit 28 p ； Chrome Lead Socket 88p．Phono Pluge 5p．Phono Socket 5p． JACK PLUG8 8td，Chrome 15p；3． 5 mm Chrome 14p．DL Lasd 8－pin $18 p ;{ }^{5-p i n} 16 p$ ，DLN PLUG8 8－pin 18p；5－pin
25p．VALVE HOLDERS，5p；CERAMIC 8p；CAM8 5p．

E．M．I．TAPE MOTORS．120\％．or
 $2 \frac{1}{2} \times 21 \mathrm{in}$ ．（illustrated）．Poost 15 p ． $\mathbf{I}=25$ BALFOUA GRAM，MOTORS．

CALLERS WELCOME．

First Class Makers-We Must Not Mention Name: THiS OFFER ONLY FROM US: Due to Shopertunities' sensational scoop purchase of entire advance shipment for cash not only do you get this fabulous, brand spanking new, 1971 model, fully transistorised, portable/mains, 625 -line TV with
BiG I2in SCREEN well ahead of everyone else but you SAVE E3I.50 AS BIG I 2in SCREEN well ahead of everyone else but you SAVE E3I.50 AS
WELLI Even if you've got the biggest, most expensive colour TV alreadyyou'll love this! And at our amazing price you could even afford to buy one as a second set! Brilliantly designed incorporating the very latest techniques and refinements! Beautifully made and finished. Superb perform "warming-up," no old fashioned outside aerials-perfect sound and crystal clac vision almost instantly! Control sound from a whisper to a roar-no image rejection, even on maximum volume! Full range of simple controls. Extra smooth station selection dial. Size overall approx. 15 ị in \times lin x Iltin. Weight 1911b approx. 220/240V a.c. Yes, only $\mathbf{6 5 1 . 9 7}$, carr. etc. (Cl. (Certified guarantee sent with every set.) No more to pay while the going's good? Get one for grandma! Get one for the children Get one for the bedroom! Get one as a gift! At our incredible price you just can't lose! Shopertunities for bargains! Send today or call.

NOT JUSTA RADIO-BUT TECHNOLOGICAL MAGIC! What everyone's been waiting for-THE LATEST
I97I MODEL SUPERSEDING ALL PREVIOUS MODELS THE FANTASTIC BRAND NEW RUSSIAN "MERIDIAN"G-WAYEBAND PORT. ABLERADIO. DESIGNED FOR WORLD WIDE *COMPARE
ITS PERFORMANEE with
E 34 RADIOC! RECEPTION. Only finally put into production after incorporation of overy conceivabie possible up-to-date technological improvement had been carefully considered and thoroughly examined, So advanced it will probably make your present radio seem like a crystal eet it's far ever offered! We're almost giving them away at $\mathbf{4 9 . 9 7}$-a mere fraction of even todars Russian miracle price! We chalenge you Instant refund if you are not astounded! Purer and sweeter tone than ever! Much wider band spread than hitherto for "pin-point" station selection! Once again the Russians have proved their fantastic ability in the field of electronicsbrilliantly reflecting their advanced micro-circuitry techniques in the field of spaceship and satellite communications. YOU GET THIS AMAZING SET FROM US AT A PRICE THAT BEARS NO RELATION TO ITS TRUE VALUE! Yes, 6 epparate wavebands, including Standard Long, Medium and Short Waves to cover the world! Uniqueside control waveband selection unit gives incredrbitease of stationg and stations at your fingertips 24 hoursa day, even ships at sea and messages from all over the world-nothing is secret! The radio enthusiast can have the world in the palm of his hand! Superb, sweet tone-controlled from a whisper to a roar that will fill a hall! Genuine push pull output! Separate ON/OFF volume and Treble/Bass tone controls. Take it anywhereruns economically on standard batteries. Internal ferrite rod aerial plus built-in telescopic aerial extending to full 33 in length. Iz's also a fabulous CAR RADIO-any speed, requires no additional aerial. UNIQUE! Elegant Black, White and Chrome finish case. SIZE 10 in \times Bin $\times 3$ ain overall approx. Magnificently designed and made tith GUARANTE, manual with simple operating instructions and circuit diagram. ONLY E9.97, POST, ETC., 43p. Standard batteries 25p extra, Ciagram. addrass. Refund if not delighted.

SHOPEPTUNITIES LTD EIL Dept. PE/3, 164 UXBRIDGE ROAD LONDON W12 8AQ (Thurs. 1, Fri. 7). Also at 37 High Holborn London, W.C. 1 (Wed. I, Thurs. 7). Both stores open MON-SAT 9-6.

Take your Wellerchoice* in Soldering

I/$1 / 1$ $1 /$

Low Initial Cost *
Low initial cost Marksman irons, to cover most soldering needs. Screw-in tips on 15 W and 25 W make it easier to change the tips. which are nickel-plated and factory pretinned for longer tife. The shanks are stainless steel to concentrate heat at the tips.

Instant Heat for Rapid Soldering * Instant heat soldering guns to deal with intermittent soldering Working heat is reached within seconds of pressing the trigger, so the job is finished in less time than t takes for a normal iron to heat up. Expert dual heat ($100 / 140 \mathrm{~W}$) and Heavy Duty (275 W) models available. Alternative tips available for plastics working.

Weller leatric Linited

Redkiln Way, Horsham, Sussex
Tel: 040361747

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

	-		Ep		£p		£p		£p		\pm D
1AFGT	$0 \cdot 37$	SU4it	0.57	1) Lis	0.28	EL90	0.28	PCL8:	0.36	C13ctl	0.52
1156GT	0.36	30 C 1	0.32	DL44	0.37	EL.500	$0 \cdot 62$	PCL83	0.60	1 T F80	0.28
1Nigut	0.38	30 Cl á,	0.83	D Linj	0.38	EM80	0.41	PCL84	0.37	V'13189	0.33
1RE	0.28	$30 \mathrm{Cl}{ }^{7}$	0.80	DY8i	0.28	EM81	0.41	PCLE:	0.45	LCC84	0.35
15:	0.21	30 Cl 18	0.67	$1 \mathrm{Y} 8{ }^{-1}$	0.28	FM84	0.33	PCL86	0.41	1CC80	0.86
174	0.16	30 F 5	0.76	E.AnC80	0.32	EM8:	0.37	PCL88	0.72	${ }^{1} \mathrm{CF} 80$	0.38
354	0.28	30 FL 1	0.68	Esf42	0.50	EYOI	0.36	PCL800	0.77	("CH4*	0.62
3 l	0.37	30 FL 12	0.72	EB91	0.11	EY86	0.32	PENA4	0.42	TCH81	0.32
6YBGi	0.30	30 FL 14	0.72	EBCs3	0.40	EZ40	0.43	PEN 36C'	0.70	TCL8:	0.35
5Z4G	0.37	30 Ll	0.32	EBC4 1	0.52	EZ41	0.43	PFL200	0.58	${ }^{\text {CCL83 }}$	0.55
6/30L2	$0-58$	30 LIS	0.85	E BC90	0.82	EZ80	0.23	${ }^{\text {P L }}$ 36 6	0.48	LF41	0.62
6AL.j	0.11	30 L 17	0.73	EBF80	0.33	EZ81	0-24	PL8!	9.48	UF89	0.33
6AM6	0.13	30 P 4	0.65	EBF89	0.31	(1232	0.43	PL®1A	0.51	ULi!	0.60
6AQJ	0.26	30 Pl 13	0.77	ECC81	0.18	GZ34	0.48	PL8:	0.30	CL84	0.36
6AT6	0.22	30 P19	0.85	HCC82	0.23	KT41	0.77	PL83	0.35	L M80	0.22
6A Uis	0.22	$30 \mathrm{I}^{\text {L }}$ L 1	0.63	ECC83	0.35	KT61	0.48	PLes4	0.32	UM84	0.25
613A6	0.22	$30{ }^{\text {P/LI3 }}$	0.88	ECC85	0.28	KT66	0.83	PLu00	0.65	UY41	0.41
CliE6	0-23	301 PL14	0.70	ECC804	0.60	LN314	0.83	PLS04	0.67	Trisu	0.28
$6 \mathrm{BJ5}$	0.42	$30 \mathrm{PL15}$	0.78	ECF80	0.30	LN 3×4	0.72	PM84	0.37	VP4 ${ }^{\text {d }}$	0.77
6Bw'	0.60	35L69T	0.43	ECF8:	0.30	Lx 33!	0.83	PX25	$1 \cdot 17$	W11!	0.35
6CD64	1-10	3¢W4	0.22	ECH35	0.30	N78	0.87	PY32	0.55	$2 i 7$	0.22
6 F 14	0.45	35Z44T	0.25	ECH4?	0.68	P A BC80	0.35	PY33	0.55		
6F:23	0.73	$80{ }^{-}$	0.45	ECH8 1	0.88	PC86	0.51	PY81	0.26	${ }^{1} \mathrm{Cl07}$	0.17
6F25	0.62	6063	0.82	ECH83	0.41	PC88	0.51	PY8-3	0.28	AC127	0.18
6K7G	0.12	AC/V122	0.77	ECH84	0-37	${ }^{\mathrm{PC} 96}$	0.42	PY83	0.28	ADl40	0.37
6K8G	0.17	AZ31	0.47	ECL80	0.35	${ }^{\mathrm{PC}} \mathbf{\mathrm { CC }} 7$	0.40	PY88	0.34	AF11.)	0.20
68LTGT	0.27	1349	0.65	ECL8-	0.33	PC900	0.37	PY800	0.37	AF10	0.20
6V6G	0.17	13729	0.62	ECL8	0.40	PCC84	0.32	PY80	0.37	AFI 17	0.20
6V6GT	0.32	ccru3	0.67	EF39	0.23	PCC83	0.30	R19	0.32	AFils	0.48
6×4	0.23	CL33	0.98	EF41	0.58	PCC88	0.45	R20	0.65	AF[2, ${ }^{\text {a }}$	0.17
6XJGT	0.28	CY31	0.33	80	0.23	PCC8:	0.47	U2\%	0.68	AF12才	0.17
10 Fl 8	0.35	DAC3:	0.38	EF85	0.31	PCC189	0.48	U24	0.65	OC26	0.25
10913	0.60	Dar91	0.21	EF85 EF86	0.31	PCC80	0.85	Ul_{4}	0.68 0.65	0 C 44	$0-12$
12AH8	2.25 0.18	DAF96	0.38 0.38	EF86	0.31 0.26	PC'80	0.32	T4! 78	0.65 0.24	OC4J	0.12
leAT7	0.18 0.28	DF33	0.38 0.18	EF89	0.26 0.18 0.18	PCM8:	0.32	U78 U191	0.24 0.62	$\mathrm{OC7}_{0}$	0.12 0.12
$12 \mathrm{AV7}$	0.23	DF96	0.36	EF183	0.28	PCF86	0.47	U193	0.42		
12AX7	0.23	DH7\%	0.22	EF184	0.32	PCF800	0.67	U251	0.72		0.12
19BG66;	0.87	DK32	0.37	EH90	0.42	PCF801	0.33	U301	0.52	0C81	0.12
20F2	0.87	DK91	0.28	El33	0.48	PCF802	0.45	U329	0.78	$0 \mathrm{C81} 1 \mathrm{D}$	0.12
20 P 3	0.85	DK92	0.42	EL34	0.47	PCF805	0.67	U801	0.98	0C8.	0.12
20 P 4	0.92	DK96	0.36	EL41	0.55	PCF806	0.58	UABC80	0.38	OC82)	0-12
20 L 6 G										OC170	0.22

READERS RADIO (P.E.) 85 TORQUAY GARDENS, REDBRIDGE, ILFORD, E88EX.
Postage on 1 valve fpextra. On 2 vaves or more, poatage 3 p per
ave extra. Any Parcel Insured against Damage in Transit 3p extra.

Fig. 10.1a. P-channel enhancement mode device
FIg. 10.1b. P-channel depletion mode device

Fig. 10.2. Construction of the f.e.t. in MOS logle (left) with theoretically correct and simplified versions of the circuit symbol

Fig. 10.3a. Logic Inverter with discrete resistor as a load

Fig. 10.36. Using an MOS transistor In place of the resistive load
as the gate is insulated from the other sections of the device by a layer of silicon dioxide. There is therefore no d.c. current flow into or out of the gate, and the input impedance is extremely high, only the field set up by the gate voltage is used to modulate the current flow from source to drain.

When the gate voltage is such that there is a current flow between the other two terminals, a "channel" is said to exist between them. It is the type of bias necessary to form this channel which sets the difference between the enhancement and depletion devices.

ENHANCEMENT MODE

In the enhancement mode a channel does not exist between source and drain until an appropriate gate bias is applied, whereas in the depletion mode a channel exists with zero gate bias, and a bias has to be applied to cut off current flow. In Fig. 10.1a, for example, the p-channel enhancement mode device requires a negative bias on the gate before it will form a channel, but in Fig. 10.1b the p-channel depletion mode device will have a channel unless the gate is biased positively.

Of these two types the enhancement device is more suited for use as a logic switch, because it is off until turned on by a negative bias from a previous stage.

Fig. 10.2 compares the construction of the f.e.t.s used in MOS logic with the correct circuit symbol and the simplified version usually employed for logic circuits.

THRESHOLD VOLTAGE

The MOS device is commonly used in logic circuitry as a switch, and performs very well in this role. On resistance can be varied by the manufacturer by altering the geometry of the device, but is usually chosen to be about 10 kilohms, whereas off resistance is closer to the ideal open circuit than
can be approached with bipolar devices, and is typically 10^{11} ohms.

Fig. 10.3a shows a single MOS used with a discrete resistor to form a logic inverter. As the gate voltage is increased negatively, a point is reached when the device resistance drops to the on value, reducing the output voltage to a low level, which would have the effect of turning off any following stage. The actual voltage at which an MOS turns on is referred to as the "threshold voltage", and it usually lies at about 3 V . The threshold is not very abrupt, however, so this is only a nominal value.

Using conventional diffused silicon resistors in an MOS i.c. would unfortunately take up a great deal of space on the chip, losing the size advantage of the MOS active device. A diffused resistor such as is used in TTL circuits would in fact be about 1,000 times larger than a single MOS.

MOS TRANSISTOR AS A LOAD

To sidestep this problem the arrangement in Fig. 10.3 b is employed. Here another MOS transistor is used as a load resistor, only in this case the device geometry is chosen to give an on resistance of the required 100 kilohms. The gate of this load element can either be wired permanently to the $-V_{\mathrm{Dn}}$ negative supply, holding the device permanently on, or all the gates of devices used for this purpose can be brought out to a $-V_{\text {GG }}$ common line which is held at a voltage even more negative than $-V_{\mathrm{nn}}$. This also has the effect of keeping the load on. A third alternative uses these devices as "clock-line" switches as we shall see later.

BASIC GATE CIRCUITS

Because of the "ideal switch" characteristics of MOS, biasing problems, a feature of bipolar designs, do not arise. MOS devices are used almost as simply as relay contacts or toggle switches in gate circuits,
making them very simple to understand, once the initial unfamiliarity of the symbols is overcome.

Fig. 10.4 shows some examples of gates made with MOS alongside their relay equivalents. With this family there is no "standard" gate, both NOR and nand logic are used as it suits the designer, though it is normal practice to define gates in the negative logic convention, unlike TTL. There really seems little need to explain the action of the gates in Figs. 10.4a and 10.4 b; with the understanding of
an MOS transistor action and the relay version to refer to, readers will be able to work this out for themselves, with the knowledge of logic systems given earlier in this series.

Fig. 10.4e demonstrates how easy it is to expand MOS logic. Here two NAND gates are used in the wired-or configuration, 10 generate the AND/OR/ invert function. Interested readers may like to compare this very simple arrangement with the equivalent TTL circuitry.

Fig. 10.4a. MOS NOR configuration

Fiz. 10.4b. MOS NA.ND configuration

Fig. 10.4E MOS wired-OR :onflguration (AND/OR) INVERT]

Fig. 10.5. Static shift regiser cell and slock waveferms

Fis. 10.6. Dynamic shift register cell and clock weveform:

The price of 63p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

Many radio and electronic enthusiasts say that our catalogue is "priceless"! Be that as it may, we charge you only 63 pence. What is more the catalogue contains 6 vouchers, each worth 5 pence when used as indicated. And for good measure, we throw in a useful Bookmark giving electronic abbreviations and a 30 -page Price Supplement. Why are you waiting?
By the way, if it suits you to call at our shop you save yourself another 20 pence - the post and packing costs.

POST THIS COUPON
 with your cheque

 or P.O. for 63p
Name

\square
Address
隹

HOME RADIO (Components) LTD.
Dept. PE, 234-240 London Road, Mitcham CR4 3HD

Players, Tape Recorders and Hi-Fi Equipment.
A Mullard Publication
\&1.50
Postage 5p
ELECTRONIC DESIGNER'S HANDBOOK. A practical guide to transistor circuit design. T. K. Hemingway. $£ 3 \cdot 40$. circuit design
Postage 10 p .
20 SOLID STATE PROJECTS FOR THE CAR \& GARAGE. R. M. Marston. $\neq 1 \cdot 20$. Postage $5 p$.
COLOUR TELEVISION WITH PARTICULAR REFERENCE TO THE PAL SYSTEM. G. N. Patchett. £2.50. Postage 5p.
SECURITY ELECTRONICS. John E. Cunningham. f1-70. Postage 5p.
RADIO \& AUDIO SERVICING HANDBOOK. Gordon J King. $£ 3$. Postage lop.
TRANSISTOR POCKET BOOK. R. G Hibberd. $£ 1 \cdot 40$. Postage 5 p .
1971 WORLD RADIO-TV HAND. BOOK. J. M. Frost. £2.10. Postage 12p. RADIO VALVE \& TRANSISTOR DATA. A.M. Ball. 75p. Postage 9p.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of Britah and American Technical Books 19-2I PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

NEW! HANDY! TIDY!

multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G

Newest, neatest system ever devised for storing small parts and components: resistors, capaciinterlock to eransistors, etc. Rigid plastic units interlock together in vertical and horizontal
combinations. Transparent plastic drawers have label slots/removable space dividers. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!

SINGLE UNITS (Sins $\times 2$ tins $\times 2$ tins)
Usually 15p each, OUR PRICE: $i .35$ DOZEN DOUBLE UNITS (5ins $\times 4 \frac{1}{2}$ ins $\times 2$ tins)

PLUS QUANTITY DISCOUNTS! Order 65 and over DEDUCT 50 in the E Orders $\left\{10\right.$ and over DEDUCT $7 \frac{1}{\circ}$. in the Orders $\mathcal{E} 20$ and over DEDUCT 10^{n} ", in the C PACKING/POSTAGE/CARRIAGE: Add 30p to all orders under $£ 5$. Orders $C 5$ and over,
packing/postage/carriage free. QUOTATIONS FOR LARGER OUANTITIES IVAMA
(Dept. PE4) 31 ALBERT RD HENDON, LONDON, NW4

OSMABET LTD.

We make trantormers amonget other thing"

MALIS TRAMSFORMERS

 AACT, 6.3 V 4ACT, $0-5-6,3 \mathrm{~V} 3 \mathrm{~A}, ~ £ 6.75 ;$ TX2,绿-821; TXJ, $300-0-300 \mathrm{~V} 130 \mathrm{~mA}, 6.3 \mathrm{Y}^{2} 2 \mathrm{ACT} 6.3 \mathrm{~V}$ $2 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}$ AA, 83.921 ; TX8, $\because 50-0-250 \mathrm{~V}$ 65mA, $6.3 \mathrm{~V} 1.2 \mathrm{~A}, 12.10 \mathrm{~F}^{2} \mathrm{MT1} 200 \mathrm{~V} 30 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A}, ~ 21.20$;
 $60 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}, 81.87 \mathrm{y}: ~ \mathrm{NT} 3$ Prim $110 / 240 \mathrm{~V}^{\circ}$ Sec 250 V $100 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}, ~ 22.25$.
MULTIVOLT TRANSFORMERS
Prim 200/240v a.c. OMT $4 / 1$ one tapped sec, $\bar{J}-20-30-$ 40-60V giving $\bar{j}-10-1 \bar{v}-20-2 \bar{j}-30-3 \bar{j}-40-\bar{j}-60,10-0-$ 10; 20-0-20, 30-0-30V a.c. 1 A , 28.25 : ditto trans, 2 A OMT4/2, 28.871 : OMTJ/1 one tapped sec, $40-50-60-80-$ $90-100-110 \mathrm{~V}$ a.c. $1 \mathrm{~A}, \$ 8 \cdot 37 \frac{1}{2}$.
LOW VOLTAGE TRAMSFORMERS
 21.70; $12 \mathrm{~V} 1 . J \mathrm{~A}, 21.05 ; 3 \mathrm{~A}$ CT, 21.70 ; 6 A CT, 28.25; $18 \mathrm{~V} 1.5 \mathrm{ACT}, 21.88,224 \mathrm{~V} 1-5 \mathrm{ACT}, 21.75: 3 \mathrm{~A}$ CT, $88.90: 5 \mathrm{~A}, 43.75$; $8 \mathrm{~A}, 45.62!$; $12 \mathrm{~A}, 88.75$ MIDGET RECTIFIER TRANSFORMERS
For FW rectification, gize $12 \times 2 \times 1, \mathrm{in}$, Prim $200 / 240 \mathrm{~V}$ a.c. output, PPT $12-0-9 \mathrm{~V} 0.3 \mathrm{~A}, \mathrm{PPT}$?
 12-0-12V 1A: MTV3 20-0-20V 0 7UA, $21 \cdot 121$ each. O/P TRAMSFORMERS
 (KT66, etc.). 8.92 : $30 \mathrm{~W}, 3 \mathrm{~K}$ ($\mathrm{FL} 34, \mathrm{KT88}$, etc.) LOUDSPEAKERS
Ex equipment perfect, 3 ohns why, Jin at 40 p each, p.p. 1up min

LOUDSPEAKERS, HI-FI, P.A., GUITARS, ETC.
 j0W, $210 ; 60 \mathrm{~W}, ~ \& 12 ; 100 \mathrm{~W}$, 820 ; E.M.I. $13 \times 8 \mathrm{in}$, crossover network, HI-FI, 3,8 and 150 hms , \&4. Horn Tweeters $2-16 \mathrm{kHz} 8$ or 15 ohms, $\$ 1.50$.
MULTI-WAY COFAECTORS (BELLDG LEE)
18 pray, new, for line, inter chassia, etc., pair, $85 p$.
LT FLUORESCENT LIGHTMNG
12V fittings with tube, 8 W , 28.75 ; 13W, 26.25 ; liverters 30W or single 50w, 111 ; Extensiverange, list \& A

Carriage extra all ordere.
8.A.E. ALL ENQUIRIES PLEASE, MAIL ORDER ONLY
46 Kenilworth Road, Edgware, Middx. HA8 BYG
Tel. 01.9589314

ELECTROVILUE

EVERYTHING BRAND NEW \& TO SPEC. LARGE STOCKS NO SURPLUS
BARGAINS IN NEW SEMICONDUCTORS

$\begin{aligned} & \text { NNG9 } \\ & \because \mathbf{2 N} 697 \end{aligned}$	
	$2 \mathrm{NTO4}$
2 N 930	
	-N1131
2N113:	
	$2 \mathrm{~N} 130 \%$
$\because \mathrm{N} 1303$	
	- N 1304
2 N 130.	
2 N 1304	
	2N $130{ }^{\circ}$
-N1308	
	$\because \mathrm{N} 1304$
2N1til:	
	$\underline{2} 1711$
2N1893	
	2N:147
2 N 2418	
	$2 \mathbf{N 2 2 1 8}$
2 N 2414	
	2N221:
2 N 29.0	
	2N236:4,
UN2483	
	2N2484
2 N 2904	
2N2904A	
2N290\%	
	N290, A

20p	2 N 2904	80p	40361
22p	2N292\%	22p	4036:
12p	2N2926	11p	ACtoz
29p	2N3053	27 p	AC12
30p	2N33..5	54p	AC1-
40p	2N3:03	13p	AC12*
19p	2N3708	13p	AClüd
19p	- $\mathrm{NB7} 04$	13p	ACliti
23p	2N370.	13p	ACI ${ }^{\text {(}}$
23p	2 N 370 i	13p	$\triangle \mathrm{CY}=$
33 p	2N3707	13p	ADI4
33p	- \times 3\%0x	13p	AD14:
38p	$\cdots \mathrm{Na7} 04$	13p	ADl4
36p	- $\mathrm{N}_{3} 310$	13p	AD161
23p	9N3T11	13p	AD16.3
26 p	2 N 3794	15p	AF114
54p	$\because \mathrm{N} 3904$	35 p	AF11,
95p	2 N 3906	35p	AF117
33p	2 N 40 N	20p	AF124
43 p	$2 \mathrm{~N}+054$	20p	AF127
38p	$\because \mathrm{N} 4060$	20p	AF134
53 p	2N4061	20p	- 1239
82p	0 N 404.2	20p	A8Y24
19p	2 N 4124	18p	ASY:8
35p	$2 \mathrm{~N}+126$	27 p	BC 107
42p	2 N 4284	15p	nC108
38p	$\because \mathrm{N}+28 \mathrm{Bb}$	15p	1 Cl 09
42p	2 N 428	15p	13C10.3
44p	$2 \mathrm{~N}+291$	15p	BCl
479	2 N 429.3	15p	$\mathrm{BCl}_{4}{ }^{-}$

RESISTORS

Code	Power	Tolerance	Range	ayailable	(see pote below)		
C	120W	5%	$8.2 \Omega-20 \mathrm{k} \Omega$	E12	7 p	${ }^{6 p}$	${ }^{6 p}$
C	婁W	5\%	$4 \cdot 7 \Omega-330 \mathrm{k} \Omega$	E24	1p	0.8p	0.7 p
C	2W	10\%	$4.7 n-10 \mathrm{Mn}$	E12	1p	08 p	0.7 p
C	$\frac{1}{2}+1$	5\%	$4.7 \Omega-10 \mathrm{M} \Omega$	E 24	1.2 p	1p	$0 \cdot 9 \mathrm{p}$
C	1w	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$	E12	2.5p	25p	$1.9 p$
MO	${ }_{2} \mathbf{w}$	2\%	10』-1Mn	E24	4p	$3.5 p$	3p
WW	1W	10\% 1/200	0.22n-3.9n	E12	7p	7 p	${ }^{8 p}$
WW	3 W	5\%	12n-10kn	E12	7 p	7 p	$6 p$
WW	TW	5%	12, $\mathrm{l}^{10 \mathrm{k}} \Omega$	E12	9p	9p	8p

CODES: \mathbb{C} carbon film high stability low noise, MO metal oxide Electrosil TRo ultra low noise. WW wire wound Plessey
TALUES: E12 denotes series; $10,12,15,18,22,27,33,39,47,56,68,82$ hml their decades. E24 denotes series: as E12 plus $11,13,16,20,24,30,31,43,51,62,75,91$ and their decades.

Prices are in pence each for same ohmic ratue am poner rating,
NoT mixed volues. (Ignore fractions of 1 p on total lesistor order.)

INTEGRATED CIRCUIT AMPLIFIERS
SIMCLAIR IC. 10 complete with instruetion book giving
amplither circuit details and range of applications. 28.95 nett. amplitier eircnit details and range of applications. $z 2$. 68 nett. components pack for stereo inc, mains transformer, controls, PLe
 18V supply. Application lata 10p: frec with two or more.

WAVECHANGE SWITCHES LONG SPINDLES 1P 12W; 2P 6W: 3P 4W : 4P 3W

SLIDER SWITCEES D.P.D.T
15p each

NEON INDICATOR LAMPS all $200 / 250 \mathrm{~V}$
Aquare bezel, red only
Round chrome bezel red, amber, clear 23 p each Toggle awitches, $2 j 0 \mathrm{~V}$ s.c. 1-J.A. Chrome tolly and
chrome milled nut S.P.S.T. 19p; A.P.D.T. 28p; D.P.D.T. 28p: S.P.D.T. centre off 25p.

8-DeC's put an end to "birdanesting". Componenta just Hug in. Saves valuable time. Use components again and again. \&-DeC (70 points) only E1. Compact T-Dec. ncressed capacity, thay be temperature-
(208 points) only $i g-50$. Full range stacked.

MULLARD POLYESTER C280 series $0.0 \mathrm{~V} 20 \%: 0.01,0.023,0.033,0.047,3 p$ ea.; $0.068,0.1$, $1 \mu \mathrm{~F}, 18 \mathrm{p}: 1, \mu \mathrm{~F}, 21 \mathrm{p}: 2-2 \mathrm{~F}, 24 \mathrm{p}$.

MULLARD SUB-MIN ELECTROLYTIC

C426 range axial lead 6p each.
Values ($\mu \mathrm{F} / \mathrm{H}$): $0.64 / 64,1 / 40,16 / 25,3,5 / 16$. $2 \cdot 5 / 64,4 / 10$, $4 / 40,5 / 64,164 / 6 \cdot 4,64 / 25,8 / 4,8 / 40,10 / 2,10 / 16,10 / 64$, $30 / 10,32 / 40$ 30 $64,40 / 16,40 / 25,50 / 4.4,50 / 25,5040,64 / 4$, $1,4 / 10,80 / 2 \cdot 5,80 / 1 \mathrm{f}, 80 / 25,100 / 6 \cdot 4,12 \sqrt{2}, 120 / 10,125 / 16$, $160 / 2 \cdot 3,200 / 64,200 / 10,250 / 4,320 / 2 \cdot 3,320 / \mathrm{h} \cdot 4,400 / 4$,

ARGE CAPACITORS

High ripple current types: $100012 J$ 28p; $1000 / 5041 p$ $1000 / 10082 \mathrm{p}: 2000 / 2587 \mathrm{p}: 2000 / 5057 \mathrm{p} ; 2500 / 6484 \mathrm{p}$ $2500 / 7097 \mathrm{p}: 2000 / 2582 \mathrm{p} ; 2000 / 50 \mathrm{EL} 10: 5000 / 100 \mathrm{t2} .91$ $0000 / 1585 \mathrm{p}$: $10000 / 20 \mathrm{E} 1.23$

MEDIUM RANGE ELECTROLYTICS Axial leads: $50 / 509 p ; 100 / 259 p ; 100 / 5012 p ; 250 / 2512 p$, 20p; 1000/5030p; 2000/2.530p.
SMALL ELECTROLYTICS
A xial leads: $4 \cdot 7 / 10,4 \cdot 7 / 2 \overline{5}, \overline{3} / 50,5 \mathrm{p}$ ea. $10 / 10,10 / 2 \overline{5}, 10 / 50$ $33 / 10,50 / 10,5 \mathrm{p}$ ea. $25 / 25,25 / 50,47 / 25,100 / 10,220 / 10$ 6p ea.
ENAMELLED COPPER WIRE even No. HWG.
 only 41p.

PEAK SOUND PRODUCTS ENGLEFIELD AMPLIFIER

30 WATT BAILEY AMPLIFIER KIT

Sensitivity 1.2 V for full output into 8Ω. Transistors and PCB for one chatnel $\mathbf{8 7}$.30, Transistors and PCB for PCB for one chainel $\mathbf{x 7 . 3 0 \text { , Transistors and PCBB for }}$ two channels
oxide) $\& 2$ per channel
Complete unregulated power supply kit $\mathbf{4 4} 76$.

ZENER DIODES

5% full range E24 values: $40011 \mathrm{~W}: 2.7 \mathrm{~V}$ to 30 y 19p ea.

CARBON TRACK POTENTIOMETERS, long slindles. | Double wiper ensures minmum noise erel. |
| :--- |
| Bingle gang linear |
| 020Ω |
| $20 \cdot 2 \mathrm{M} \Omega$ | Single gang log Dual gang linear Dual gang log -7K Ω to $2-2 \mathrm{M} \Omega$ $\begin{array}{ll}\text { Dual gang log } & 4.7 \mathrm{~K} \Omega \text { to } 2 \cdot 2 \mathrm{Ma} \\ & 4.7 \mathrm{M} \Omega \text { to } 2.2 \mathrm{M} \Omega\end{array}$ Log/antilog $\quad 10 \mathrm{~K}, \frac{4}{3} \mathrm{~K}, 1 \mathrm{M} \Omega$ onty Dual antilog Please note: only lecacles of $10,2 \%$ and $4 \overline{7}$ are arailable within ranges quoted

CARBON SKELETON PRE-SETS

Aniall high quality, tyle PR, lineat only $100 \Omega, 9 \% 0 \Omega$, $470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, $1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting 5p each

TYGON SPEAKER MATERIAL
Seven designs, 3 tion $\times 2$ in sleets, $\mathbf{1} 1 \cdot 57$. Pattern hooks, send R.A.E. plus 3_{p} in stanps.

COMPONENT DISCOUNTS

10% on orders for components for $\mathrm{f} \bar{s}$ or mure. 15% on orders for compnnent for $£ 1$ ju or more (No discount on nett iterns)
POSTAGE AND PACKING
Free on orders over 29. Please add 10p if unter. Overseas orders welcome: carriage charged at cost. IMPORTANT-I'lease elisure that cheques dated on and after February 15th are lirawn in decmal currenct. Otherwise they cannot be acceptel.

SHIFT REGISTERS

MOS is rarely used to build general purpose flipflops such as the JK type, although a manufacturer's catalogue may contain a single device of this sort to enable a system to be built entirely of MOS. It is included for the sake of completeness, and it is unlikely that these devices could stand on their own merit for economic reasons.

As we have already seen, the strength of MOS lies in its ability to be produced in the LSI form, and this advantage is put to good use in the range of shift registers available. Shift registers in this family are mainly of the "serial-in/serial-out" type, and their operation may be either static or dynamic.

The static type of register uses more devices per stage than the dynamic type, but data is stored by means of cross-coupled flip-flops, and there is no minimum clock rate. Dynamic registers use the capacitor inherent in the gate construction to store data, and are not capable of storing information indefinitely as a result. A minimum clock frequency of about 1 kHz at $25^{\circ} \mathrm{C}$ is common for these registers which are used in continuously circulating applications such as delay lines.

The unit storage cells in both types of register bear little or no relation to the circuitry employed in any of the bipolar logic forms.

STATIC REGISTER

The emphasis in MOS is on simplicity at the expense of clock circuit complexity. Fig. 10.5 shows the circuit used for a static register cell; the cross coupled flip-flop configuration is immediately apparent.

In all, three separate clock waveforms are necessary to operate this circuit, although in an LSI chip it is usual to have a circuit which generates all these from a single external timing waveform. The clock corresponds to the external waveform and $\overline{\bar{\phi}}$ fast is the p clock inverted, $\bar{\phi}$ slow comes on sometime after $\bar{\psi}$ fast, and usually, although not necessarily, ends before it. Fig. 10.5 shows some typical waveforms.

A negative logic level would be transferred from the input to the gate of device A when ϕ comes on, and this would turn on A, pulling its output to ground. As soon as goes off, $\bar{\phi}$ fast comes on and transfers the ground on the output of A to the gate of B which starts to turn off. During this operation $\bar{\phi}$ slow comes on and the rising negative at the output of B is transferred to the gate of A , holding it on. If the clock is stopped with ϕ off (and hence $\bar{\phi}$ fast and \bar{p} slow on) data can be stored indefinitely.

The gate of an MOS transistor can be considered to be a capacitor, the insulating silicon dioxide layer acting as the dielectric, and the aluminium and silicon acting as the plates. This capacitor is of ve y low value, perhaps 0.5 pF , but because of the extremely high input impedance of an MOS device any charge stored on this gate capacitor will take quite a long time to leak away. (Remember that time constant equals C times R .)

DYNAMIC REGISTER

In the dynamic register this effect is used to store digital information, but because the charge will eventually leak away in any event, it is necessary
to quote a minimum clock frequency which is temperature dependent.

Fig. 10.6 shows the circuit of one cell of a dynamic register, and as can be seen there is no cross-coupled flip-flop, only two gated inverters. The load MOS devices are used as switches controlled by the clock, and further devices gate information between stages. The clock waveforms $\phi 1$ and $\phi 2$ are in antiphase and must not overlap.

Assuming a negative input to the cell shown, this will be stored on the gate of device A, and will turn it on as soon as the $\phi 1$ clock comes on. While $\phi 1$ is present, the output of A will be pulled to ground, and this level will be gated through B to C, the gate capacitor of which will now hold a "ground" charge.
With no negative stored on its gate, C will not turn on when its load is enabled by $\$ 2$, and the output gated through D will be the negative we started with delayed by one clock period.

Dynamic registers may seem pretty useless at a first glance because they cannot stand still and must keep their contents moving, but in fact there are many occasions when this is not a disadvantage.
When this is so the dynamic register has several points in its favour. First, it is about twice as fast in operation than the static type; secondly, because the loads are clocked, at low frequencies the power consumption of each cell is extremely low, typically 10 microwatts at 10 kHz . This last feature is due to the fact that power is only dissipated when the gate capacitors are charged, which makes the power consumption frequency dependent. At 1 MHz a power drain of 1 milliwatt per bit is common.

APPLICATIONS

MOS circuits are still in their infancy, but are certain to be one of the most important advances ever to be made in the world of data processing and allied fields. Their biggest impact will be in the consumer area, and it will not be long before our homes will have the benefit of a "domestic" computer made possible by the advent of cheap MOS LSI.

A home computer could become adaptable to the telephone (which has push button dialling) so that by ringing our own number from a remote call box, and then dialling a coded message, we could instruct the computer to cook the dinner or turn on the central heating. At work the desk calculator could replace the slide rule, giving answers to all arithmetic problems at the touch of a few keys, and electronic digital test equipment such as frequency counters and digital voltmeters will shrink to pocket size.

On the way home in our car, exhaust emission will be nullified by electronic fuel injection, and the wheels will be unable to lock and skid because of another electronic system. Relaxing in our home we will be able to programme the hi fi system to sooth us in any way we fancy without leaving our armchair or sorting through piles of records.

All these things are possible now, but it will be MOS which makes them economically viable for the many.

AVAILABLE MOS I.C.'s

Many readers may be hoping for some MOS circuits which are available to do a practical job in
amateur projects right now. Talk of dual 100 -bit shift registers in a TO-5 can will, perhaps, only interest those who like to build, or dream about, the amateur built computers of the future.

MOS circuits of simple nature are beginning to appear, and, as an example, look at a couple of Marconi-Elliott i.c.s which are intended for use in electronic organs, the MA60 and the MA70. These owo devices are housed in TO-5 cans and operate from -26 V . Inputs and outputs are compatible with DTL and TTL.

The MA60 contains six binary dividers arranged as two chains of three, each chain has three outputs, divide-by-two, four, and eight. If the two chains are used in series, a total division of 64 is obtained. The MA60 is shown in Fig. 10.7.

Fig. 10.7. Block diagram of the MA60 i.c. divider

Fig. 10.8. Block diagram of the MA70 i.c. divider

Fig. 10.9. Display programme for one character (letter H) of the Texas read-only memory

The MA70 is rather more complex than the previous device and is intended to produce three separate semitones from a single oscillator. MA70 can be cascaded if required, and when used in conjunction with the MA60 they enable complex organs to be built on a single p.c.b. The block diagram is given in Fig. 10.8.
These are circuits available to amateurs, and they do give a hint of MOS capabilities, but to get a glimpse of advanced applications, it is necessary to return to computer and process control electronics which are finding that MOS memories are becoming increasingly attractive.

COMPUTER MEMORY CIRCUITS

In the past the main memory in a computer has been built using ferrite core matrices, or core stores. This type of memory is of the "random access" type, as it is possible to address any location and read or write into it immediately.

Another type of memory used is the magnetic drum, which provides bulk storage but which is rather slower to address because the revolving drum may have to make a complete revolution before the correct data location is available.
Some memories are programmed during manufacture by the wiring in of diodes where data is required, these are used as fixed programmes to control computer sub-routines, or sometimes as "tables" to store constants. These memories are of the "read-only" type, and cannot be written into.

MOS LSI techniques are now being used to simulate all three of these memory systems, and the solid state versions are proving to be superior on many counts. As an example, the Texas TMS-2A-$4824-\mathrm{MH}$ read-only memory contains 2,240 bits of data which are programmed during manufacture to provide the information necessary to produce 64 alphabetical and numerical characters on a c.r.t. display.

Each character is stored as five seven-bit words which are used to modulate a dot matrix on the tube face. Fig. 10.9 shows how one of the characters is stored and formed. When a particular dot location has to be brighted up on the display a "one" is stored in the memory, each dot position is displayed in sequence, and the information to be displayed is used to address the correct character location.

This type of circuit can also be programmed to customer requirements to contain any information required, a set of sine tables for example, or a sequence programme for an industrial machine.

DEVELOPMENTS

MOS technology is being continuously improved, and these improvements are making this type of circuit ever more easy to use.
"Silicon gate" MOS devices are now being made with threshold voltages low enough so that they can be driven directly from bipolar logic, without the need for the voltage interface circuits that were necessary with the earlier types. The silicon gate technique uses polycrystalline silicon instead of aluminium for the gate electrode, and apart from giving lower threshold voltages, this also reduces the capacitance inherent in the construction and allows higher operating speeds.
PREMIER STEREO SYSTEM '"ONE"' Consists of an all transistor stereo amplifier. Garrard 2025 T/C auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The 10 transistor amplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket. Controls Bass, Treble, Volume, Balance, Selector. Power on/off, stereo/mono switch. Brushed aluminiun front panel. Black metal case with teakwood ends: Size $12 \times 5 \frac{1}{2} \times 3 \frac{1}{2}$ in. high (Amplifier

PREMIER STEREO SYSTEM "TWO" available separately if required $\mathbf{£ 1 4 \cdot 9 5}$. Carr. $\mathbf{4 0}$ p).

MIDLAND AM/FM STEREO TUNER AMPLIFIERS

MODEL 19—520

MODEL 19—542

Momi Model 19-520

Model 19-542 conductors Tuning FM $88-108 \mathrm{MH}$
 ternal FM
rrequency
Reqроняе Power Ontput nel (8) watts masie Jmputa Ceranic

Neaker Controls Function Size
PRICE

Ceramic ।

4-8 ohul

Poner on/off, Volume, tone, balance, tuning, AM, FM, FM Steren. Phono (Stereo indi. $15^{\circ} 8$ cator light)
(
\qquad
\square

VERITAS V-I49 MIXER

PREMIER STEREO SYSTEM "SIX" SAVE OVER EI6

Comprizes Midand AM/FM Storeo Tuner Amplifer Model 19-642. Pair of loudapeskor ayitems at syitem "ONE" Garrard SPE5 Mk. HI Rated Goidring G850 stereo Cartridge with teal plinth and cover. Total
rec, list price over 291 . rec. list price over 291.
PREMIER
PRICE $\mathbb{5 7 5}$
50 WATT PUBLIC ADDRESS AMPLIFIER MODEL PA-5000

A top quabity amplitier giving 50 watts rma juwer out put (80W peak). Incorporates 4 tranaistors and 4 sticon
(liodes (ailicon out put transistors). Inputs for 2 microphones each with individual volume controls, plus phono anx input. Master volume control and l3ass and Treble Controls. Well presented front panel for ease of operation, on/off power flick aujtch and pllot light. Output impedance $4 / 8 / 16$ ohms Mike 1 ans ${ }^{4} 2$ aenaitivity 2 mV
Phono/Aux 300 mV
($100 \mathrm{k} \Omega$). Frequeney
 respolise $50-20,000 \mathrm{~Hz}$. Pused output and thermal
overload protection. A.C. Maing $220-250 \mathrm{~V}$, $\mathbf{j 0} / \mathrm{b0Hz}$. overload protection- A.C. Mainh $220-250 \mathrm{~V}$, $50 / \mathrm{boH}$
Size $13 \mathrm{inn} \times 9 \mathrm{in} \times$ uin.
PREMIER $£ 39$

ER £39

SP25 Mk III SPECIAL!

Garrard SP25 ME III Goldring 0850 Mesnetic Stereo Cartridge. Complete In Teak Plinth with Rigid Persper Cover.
Total list Price over 829 . $\underset{\text { price }}{\text { premier }} \quad £ 19.90$
P. \& \mathbf{P}. 50 p

TAPE CASSETTES
C60 (${ }_{\text {min }}^{60}$) $37 \mathrm{p}_{212}^{3 \text { for }}$

 P. 4 P. ${ }^{5 p}$

All cassettes can be supplied with library caser ot 3p extra each.

	<p		¢
${ }^{\text {ACl }} 107$	0.15	OC170	0.23
${ }^{\text {ACl }} 126$	0.13	OC171	0.23
${ }_{\text {AC127 }}$	0.17	-C200	0.25
${ }^{\text {ACl }} 128$	0.13	OC201	0.25
${ }_{\text {ACII }}{ }^{\text {c }}$	0.25	2G301	0.13
ACY17	0.15	$2 \mathrm{C303}$	0.13
AF239	0.37	2 N 711	0.50
AF186	0.50	2Ni302-3	0.20
AF139	0.37	2N1304-5	0.25
BC154	0.25	$2 \mathrm{Ni} 306-7$	0.30
BC171 $=$ BC107	0.13	2N1308-9	0.35
$\mathrm{BC} 172=\mathrm{BCl} 108$	0.13	2N3819FET	0.45
BFI94	0.15		
BF274	0.15	Transistors	
BFY50	0.20	Transistors	0.50
BSY25	0.5	$\mathrm{OC}^{\circ} 2$	0.30
BSY27	0.13	$\mathrm{OCl}^{\mathrm{OC}}$	0.25 0.25
BSY28	0.13	- ${ }^{\circ} \mathrm{C26}$	0.25 0.30
BSY29	0.13	OC28 OC 35	0.30 0.25
BSY95A	0.15	\bigcirc	0.35
OC41	0.13 0.13	AD149	0.30
OC44	0.13 0.13	AUY10	1.25 0.25
$\bigcirc \mathrm{C} 71$	0.13	25034	0.25
$\bigcirc \mathrm{C} 72$	0.13	2N3055	0.63
$0 \mathrm{C73}$	0.17	Diodes	
$\bigcirc \mathrm{OCB1}$	0.13	AAY42	0.10
$\bigcirc \mathrm{CBID}$	0.13	OA95	0.10
$\bigcirc \mathrm{OCB}^{8}$	0.20	OA79	0.09
OC139	0.13	OABI	0.09
OCl40	0.17	IN9114	0.07

$\square \square \square \square \square$

PACKS OF YOUR OWN CHOICE UP TO the value of 50 p WITH ORDERS

CLEARANCE LINES

DON'T MISS THIS LAST CHANCE ONLY A FEW LEFT
UHF/VHF T,V. TUNER UNITS TU. 2 CONTAINING 2 AF186's \& 2 AFI78 PRICE 30p. P. \& P. I3p EACH UNIT All the units have many other components, e.g. Capacitors. Resistors, Coils and tuning condensers, etc. Although these are manufacturers' rejects they are not beyond repair as has been
ALe by many of our cuscomers.
ALL TUNER UNITS ARE SUPPLIED

COLOUR T.V. LINE OUTPUT TRANSFORMERS
Designed to give $25 \mathrm{k} V$ when used with PL509 and PY 500 valves. As removed from colour receivers at the factory.

ONLY ©I each
post ond pocking 23 p .
SPECIAL LINE
I AMP Bridge rectifiers
100 PIV. $=25$ p. 400 PIV. $=33 \mathrm{p} . \quad 800$ PIV Square $=40 \mathrm{p}$.
PAK F.3. ..
Complementary Set.
NPN/PNP Germ. Trans.
PAIR

BUMPER BUNDLES

These parcels contain all types of surplus electronic components, printed panels, switches, 2 LBS IN WEIGHT FOR \& Post and packing 23 p .

OUR VERY POPULAR 3p TRANSISTORS

FULLY TESTED \& GUARANTEED
TYPE " A "PNP Silicon alloy, metal TO-5 can. 25300 type, direct replacement for the OC200/203 range.
TYPE "B" PNP Silicon, plastic encapsulation, low voltage but good gain, these are of the 2N3702/3 and $2 \mathrm{~N} 4059 / 62$ range.
TYPE "D" NPN Silicon planar, plastic TO-18 case. Audio preamplifier or 500 mW output stage, of the BCII3/4/5 range.
TYPE " E"PNP Germanium AF or RF-please state on order. Fully marked and tested.

NEW UNMARKED UNTESTED PAKS
B66 150
Germanium Diodes
Min. glass rype $\quad 50 \mathrm{P}$
B83 $\left.200 \begin{array}{l}\text { Trans. manufacturers' rejects } \\ \text { all types } \\ \text { NPN, PNP, Sit. and }\end{array}\right)$ all types
Germ.
B84 $100 \begin{aligned} & \begin{array}{l}\text { Silicon Diodes DO-7 glass } \\ \text { equiv. so OA200, OA202 }\end{array} \\ & \text { 50p }\end{aligned}$
$\begin{array}{ll}886 & 50\end{array}$
B88 50
IN9I4 and ING/6 min.
50p
Sil. Trans. NPN, PNP, $\quad \mathbf{5 0 p}$
equir, to OC200/1,
equiv. to BSY BSMA, etc.

B60	10	$\begin{array}{l}7 \text { Watt Zener Diodes } \\ \text { Mixed Voltages }\end{array}$
H6	40	250 mW Zener Diodes

250 mW . Zener Diodes
DO.7 Min. Glass Type
50p

HIO 25 Mixed volts, $\begin{aligned} & \text { Top hat type }\end{aligned}$
HII $30 \underset{\substack{\text { Mransisters }}}{\text { Malloy } " \text { pnp }}$ 50p
HIS $30 \underset{\substack{\text { Top Hat Siticon Rectifiers, } \\ 750 \mathrm{~mA} \\ \text { Mixed volts }}}{\text { M0p }}$
H16 $8 \underset{\substack{\text { Experimenters' Pak } \\ \text { Integrated Circuits. }}}{\substack{\text { Data }}} \quad$ 50p supplied
H20 $20 \begin{gathered}\text { BYI } 26 / 7 \text { Type Silicon } \\ \text { Rectifiers. } \\ \text { Ramp plastic. }\end{gathered} \quad 50 p$ Rectifiers.
Mixed volts.
FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

The RCA COS-MOS family uses both n - and p channel MOS f.e.t.s on the same chip, providing circuits that will run from 5 V positive supplies with extremely low quiescent power consumption and a speed of up to 5 MHz .
The latest introduction to the MOS field is a processing system which uses low temperature doping by bombardment with ions. This process is rather complex and expensive at present but it produces circuits which will operate at the same sort of speed as TTL, a great improvement.

PRACTICAL POINTS

MOS devices come in a wide range of package outlines, especially the more complex circuits which require large numbers of pins. Hermetically sealed packages are almost universally used, because the normal MOS chip needs to be well protected from contamination, and this rules out the simple plastic
d.i.l. packages. The TO-5 can is very popular because this style can provide enough pins, and for the more complex devices a type of ceramic d.i.l. package, or a flatpack is employed.

PRECAUTIONS WHEN HANDLING

Because of the extremely high input impedance of the MOS, it is possible for a static charge on the gate to exceed the breakdown voltage of about 60 V , and so short out the silicon dioxide layer and ruin the device. Some circuits use protective Zener diodes to prevent this, but it is advisable to be sure by consulting the data sheet. Leakage from an unearthed soldering iron could provide the minute current necessary to destroy a device. It is often recommended that pins should be shorted together whilst in store, to prevent static build up.

Next month: Emitter Coupled Logic (ECL)

0NE OF the extra pleasures for the electronics enthusiast going abroad is the chance to observe the effect of electronics on daily life abroad, particularly if one can stay for any length of time in a foreign household. This I was privileged to do recently-just over the channel.
It is very interesting to see high-definition French television on 819 or 625 lines and note the clarity and excellence of the picture as well as the fact that the French programme directors are as hard put as ours to fill the screen with sixty minutes of excellence per hour.
It was interesting for me to meet two French clergymen-schoolmasters, who are fervent radio amateurs, and to visit their "shacks" from where they work the world on 2 metres. Incidentally, I did not know before that for this amateur band the French authorities do not require proficiency in morse; merely the equivalent of the City \& Guilds written examination.

APPLIED ELECTRONICS

In the line of applied electronics the Continentals are not slow to make use of the automation made possible by modern techniques. It is probably now well known that in the Renault factories most of the production of major parts, such as the boring of engine cylinder blocks, is performed and controlled by electronically based automative processes.

At the other end of the scale I recently noticed a most effective use for the light-controlled relay that has done so much to automate town-lighting systems, lift doors, car parking lights and the rest. I went into the "Messieurs" in a newly completed and finely appointed hotel in Montreux, Switzerland
and, on approaching the sanitary porcelain, noticed, coming from a metal panel in the wall, the unmistakeable "clack" of a well fed relay slamming shut. The noise coincided with a flush of clean water where it would do most good. On looking down, I noticed that my calves had interrupted a light beam aimed at a photo-cell in the side wall and, presumably, the relay thus activated had turned on a plunger-tap

GAS LIGHTER

Another gadget 1 noticed in three separate French households I stayed in this year was a new form of gas lighter, driven direct from the mains. The lighter looks like a small, six inch long, plastic torch, with a perforated brass cap where the light bulb should be and a press-button switch on one side. When Madame wishes to light the gas ring, she takes this little "torch", applies the perforated head to the burner and presses the button. The lighter produces a noise like a rattle-snake and a bright spark inside the head immediately lights the gas.
Enquiries in two households as to how this device worked drew shrugs, no solid information, and no enthusiasm in response to my wish to take it to pieces. Finally, in the third family I met sympathyfrom the clergyman ham, who affirmed that it worked like an electric bell, but was dissuaded from dismantling it there and then by his sister, who kept house for him. However, I was later able to obtain such a lighter, and no sooner had I returned to my home den than 1 took it to pieces and found that it does, indeed, work like an electric bell, as my friend had said.
The d.c. resistance of the coil in the specimen examined was 150 ohms, wound from 42 s.w.g. wire. At 230 volt mains a current of about 1.5 amp is broken at the contact bosses and for such slender wire, the sheer temerity of the concept might at first appear alarming. It must be remembered, however, that with such a healthy spark the gas is lit immediately, so that the button switch is released after a few seconds and no fuses blow.
Anyway, these lighters are in use in thousands of French homes, are on general sale at the equivalent of approximately $37 \frac{1}{2} p$ each and their construction must therefore be presumed to have the approval of Electricite de France, the central electricity authority of France.

TAPE RECORDERS

H. W. Hellyer
Published by Fountain Press
239 pages, $8 \frac{1}{2}$ in $\times 5 \frac{1}{2} \mathrm{in}$. Price $\mathbf{E} 2.25$ (45s)

MRITten by the author of the Tape Recorder Servicing Manual, this, in like vein, is an essentially practical book that sets out to educate the reader painlessly into tape recorder techniques and simple maintenance.

From an opening chapter sketching the birth, development and growth prospects, the author embarks on a very readable breakdown on machine principles, naming of parts and functions, all being punctuated with some valuable workshop observations.

Guidelines to recorder and microphone choice will no doubt appeal to prospective buyers although it seems, the yardstick axiom of "You only get what you pay for" must eternally prevail.

Chapters on maintenance for both tape and deck are very well illustrated. A final chapter on tests and measurements embraces choice of service equipment, bench tips and typical measurement hook-ups for determining wow and flutter, distortion levels and signal to noise ratios, etc.

All in all, a must for any user of tape recorders, as it affords a useful reference that is very easily dipped into.

FOUNDATIONS OF WIRELESS AND ELECTRONICS Eighth edition

By M. G. Scroggie B.Sc., C.Eng., F.I.E.E. Published by Iliffe Books
 521 pages, $8 \frac{3}{2}$ in $\times 5 \frac{1}{2} \mathrm{in}$. Price 63 ($60 \mathrm{~s}^{\circ}$)

THERE must be thousands who have built their hobby, or even their career, upon Mr. M. G. Scroggie's "Foundations". First published in 1936, this well known work has re-appeared in new editions from time to time. The present edition, the eighth, is noteworthy for the addition of "electronics" to the title. This is justified by the inclusion of two new chapters providing brief but useful accounts of such subjects as waveform generators and computers.

Apart from this extension of its range, the general character and arrangement of the book has not changed over much, and wireless transmission and reception remains the dominant theme. But much of the material has been completely re-written, and semiconductors have now nearly, but not entirely, ousted thermionic valves.

Those not already familiar with Mr. Scroggie's classic can be assured that no previous knowledge of radio or electronics is assumed. The text excels in clarity and exposition, and there is little demand upon mathematics. Starting with first principles of electricity and circuit elements, the book proceeds to electronic devices, both thermionic and semiconductor, and explains their function in straightforward descriptive terms. Only in chapter 12 does the going become tough (as the author warns the reader) when transistor and valve equivalent circuits are evolved. Full understanding of this chapter is not, however, vital at the elementary stage.

The application of all the foregoing principles is demonstrated with stage by stage description of the various processes involved in a radio communications system. The principles of cathode ray tubes, television and radar are also outlined.

The two new chapters provide a sound, concise introduction to the many other uses of electronics which stem mainly from pulse switching techniques, as distinct from the generation, detection, and amplification of sinusoidal signals.
F.E.B.

RADIO VALVE AND TRANSISTOR DATA

Compiled by A. M. Ball

Published by Butterworth \& Co. Ltd.
232 pages, $10 \frac{3}{4}$ in $\times 8 \frac{1}{4} \mathrm{in}$. Price $\mathbf{C 0 . 7 5}$ (15s)

Substantially revised and added to, this is the ninth edition of a very popular reference on valve and semiconductor electrical characteristics.

Additions to the previous contents list are colour tubes, f.e.t.s, tunnel diodes and i.c.'s, the latter including both digital and linear references.

Full marks must be given for the choice of a larger type face in the data presentation. This has meant, inevitably, some considerable pruning in obsolete device information, so don't just throw away that older edition as it will prove to be a valuable complement.

I suppose that in a work of this nature, errors can occur, but those that I found are inexcusable.

In the Amplifier Triodes section, the headings gm_{m} and r_{a} should be transposed. The data for the PCC89 given in the Mullard Valve Data Book includes the description "Variable-mu frame-grid double triode".

In the Integrated Circuits section, the pin layout diagrams (p.199) do not include identification of mode connections. If one has to refer to manufacturers' data for this, then there was little point in including the technical data. It should also be made clear which view is shown in the drawings.

Finally, it would be very much easier to locate transistor types on the data pages if some semblance of alphabetical order were adopted.
G.G.

BEGINNERS GUIDE TO RADIO Seventh Edition

By Gordon J. King
 Published by Newnes-Butterworths
 194 pages. $7 \frac{1}{2}$ in $\times 5$ in. Price $\& 1$

THIS book is an updated version of an original of the same title by F. J. Camm, it is not just a rewrite in parts but a completely new book. The author's explanations of the basic principles are excellent and this book would prove useful to all studying electronics as well as basic radio. It is unfortunate that most of the work is based on valve theory and practice, however the radio principles are unaffected by this and there is a useful section on transistor theory and function and some transistor circuits are given and described in the text.

Sections 11 and 12 are concerned with "Disc Record Players and Radiograms" and "Hi-Fi Reproduction". Although these items may seem rather out of context under the title of this book they are both worthwhile sections describing the principles involved and giving block diagrams of the systems.

A selection of circuit symbols is given at the front of the book together with a brief description of each and lists of abbreviations and a wavelength/frequency conversion table are given at the back. Also included is an index of words and terms described in the text.
M.K.

ニートーロ
 LOW COST ELECTRONIC \＆SCIENTIFIC EQUIPMENT \＆COMPONENTS

MOTORS

CONTINUOUS TAPE CASSETTE
Suitable for Heep－ learning，teaching pro－ machine tools，telephone anawering，etc．Complete with replay／record head and separate erase head； in tape single track． speed 3zin per sec．Length of tape 88 ft ， but wil hoki three times this amount，

DIGITAL INDICATORS KGM TYPE M3 A neat compact indicator $0-9$ ．Fig．Ht．18nm．Panel mounting．Gimm tubular midget flange lamps．Sup－
plled
nith iniehed matt black ano． lized．W．${ }^{1 i n}$ ，H．＂in

SINGLE SPEED TAPE DECK

diusingle track on Fin spouls． 1% in zer sece Series operated，Facility for remote con－ trol operation．Recorid／replay heads with separate crase head．Ex equipment．Leas apools．Bargain price $\mathbf{2 5} 95$ ．P．\＆P．\％isp Buy now while stock exists．

KEYNECTOR

electrical in anything seconds
or mithout sociket．No more worries about langerous live
wifes．
make electrical connect
seconds with the revolutionary new Kaynector．Cuty out phugs，sockets and saves time．A hundred different uses in the honic，and a must for the do－it－yourself
enthuslaet．Only $\& 2-33$ plus I ． Or send for O leaflet．

GRAMPIAN AMPLIFIERS

Type 38jB．Jow mains powered． 200 ohn
O／P．Audio Pow＇er Ampliters．Ouly few avallable．Selling at well below list price： $\mathbf{1 1 5} 50$ each．Carriage $=$

TELEPHONE DIALS

Clear Perspex，vacy good cunditio

LOW TORQUE HYSTERESIS

 MOTOR MA23Extremely
running mot
hlgh atarting torque．
Has many uses such as
chart arives，disco
ete． $1 / 20 \mathrm{r}$ r． m ．， $1 / 1 \mathrm{l}$
$120050 \mathrm{~Hz}, 1 / 12, t, 1 / 18,1 / 24, \mathbf{i}, 40 \mathrm{r}, \mathrm{p}, \mathrm{m}$ 21．60 post frce．

SYNCHRONOUS MOTORS

$200 / 200 \mathrm{~V}$ 5017z．New condition，ex－equip－ ment， 8.7 r．p．b．and 1 r．p．m．S．Sels starting，complete
dia．，$\frac{1}{2}$ in long． 21.50 ．

ELECTRIC CLOCK MOTOR

NEW $200-250 \mathrm{~V}$ ， $30 \mathrm{~Hz}, 2 \mathrm{~W}$ ．Synchronous induction motor．＂revs，per hour．o／p ghalt，hin dia．ôin long．Clockwise rota tion．Three－holed mounting
Din PCD．Price 21 nost free．

GOOD QUALITY INSTRUMENTS TAKEN IN PART EXCHANGE OR PURCHASED FOR CASH！

BRAND NEW CAPACITOR REVERSIBLE SINGLE PHASE PARVALUX MOTORS $230 / 2.50 \mathrm{~V}, .50 \mathrm{~Hz}, 2,800 \mathrm{r} .12, \mathrm{ml} ; 1 / 30 \mathrm{l}$

E．H．T．GENERATOR．BRAND NEW D．C． CONVERTER MULLARD TYPE 1049 Input lev di．c．， 0.3 A ．ontput 1,8001 Full spec and m， 2,001 （min．）on mo load． ated ale ©5．50．Post fre

DELAY LINE LEXOR MDN 2484D

 Miniature resin encapsulated Total delay sonisec to 10 msec ．Tapper at $10 \mathrm{k} \Omega .30 \mathrm{Y} \mathrm{kkg}$ ．Atirevance ＇ly in x in x inin． 21.50 ，Yost free．
BATTER

 TESTERBattery powered for checkith leakage current and gain of P．N．P．trangistors，
meter and audto indication Siemens meter and audfo indication，Blemens D．2in．25－50．Post fre

MEMORY CORE STORES

 lemonstrations， 38 p ．
NEW ENICRON SHADED POLE MOTORS $240 / 250 \mathrm{~V}, 50 \mathrm{~Hz}, 2,200$ r．p．．．II．（110 luall） Shatt fin dia．$\times 1$ in long．Snitable Post free．

NEW FRACTIONAL H．P．CAPACITOR MAINS MOTORS

A YOMETERS

These well－known purtable test instru menls have been overhauled and are

 －omplete nitl volt \quad| 833 |
| :--- |
| 20 | pher for 480 Y and 3600 V ．coltage multi－ for 120.4 ancl 480 A ．A．C．Current trans． former for 20 A and fioA． 1 n special

wooden box． 47 A and 48 A aro Admiralty patterns of the motel 40 ．216．75．

RESET TIMERS－ACRO TIMER BY HAYDON
Synchronous motor driven timer providing
manual adjuated delay，Delay time is set manual adjusted delay．Delay time is set on graduated dial．Press button closes contact and drives motor which drives an ath until it actuates the load awitch．The canr then returns to initial position for 230 V 50 Hz ．Loarl contacts 15 A 230 V ． 25 ．

WIDE RANGE OF PRECISION MULTI－TURN POTENTIOMETERS IN STOCK

MEMORY PLANES Ferrlte core menory planes with wiredt
Ferrite cores．Used for buikling vour rerrite cores．Used for buikling your
oun computer or as an interesting exhibit in the or an an interesting juter．Mounted on plastic material， rame $\times 8$ in．Consisting of matrices avdressable and disidel into andually with indepenlent verse intil halizes 26．50．

LINEAR THYRISTOR CONTROLLED
LIGHT DIMMER－BRAND NEW 11 lig
brid linear for eontrolling． lighting and commutator moterx
fittel to portable electric luan portably 82．99．P．\＆P． 13 p

MINIATURE MOVING COIL

 RELAY SII

By Sangamo
A hable sor sititisity relay
more sensitive than the electronagnetic type．
single Coil Reyiatance Single Coil Resiatance
310 micero amps．$\quad 310 \Omega$, 10 míro amps．

6 DIGIT RESETTABLE COUNTER

6 DIGIT TOTALISING NON－RESETTABLE COUNTER
Mechanical operation，Chromian thish．
Length $1 \frac{1}{n}$ in $\times \frac{3}{4}$ in x in with viewing
Himpow x ：Fixerqumment．Frice
48p P．\＆P．13p．
berkeley decimal counting
 nected in cascade．Power supply 6 did．e．
Cut on／Cut off 15 V ．Price $\$ 3.50 \mathrm{p}$ ．$\dot{\mathrm{p}} \mathrm{p}$ ．free．

MINIATURE DIGITAL DISPLAY $\begin{array}{ll}\text { Operates on a rea } \\ \text { proiection } & 6.3 \mathrm{~V}\end{array}$ pilot lamp．Charac ter size sin high． 0 － digits with
gymbol， Dimensions $\begin{array}{ll}\text { wide，} & 3{ }^{3} \mathrm{in} \\ \mathbf{1}_{16} \text { in } & \text { high．}\end{array}$ price 6 gnin
price 22.73.

$\begin{array}{lll}\text { in claracters } \\ \text { in characters } & \text { 83．} & \text { 8．} \\ \text { 8．}\end{array}$ Port free．

EAC DIGIVISOR Mk．II DIGITAL READ－OUT DISPLAY

ELECTRONIC BROKERS LTD．

（Dept．PE），49－53 PANCRAS RD • LONDON NWI 01－837 7781

Open Mon．－Fif．9－6 p．m．

OVERHAULED AVOMETERS Moclels 40，47． 48 A ．（Morlels
47 A and 48 A are Adnuiralt pattern．）
D8c．volts
Anly： $0.01 \circ$ 0．1． $10,1 \%$ A．C．volts： $12,120,480,1,200$ ． Amps： $0013,012,1+3,12$. 1，000，000 1，000， 0,000
 Ohms／Volt when divided by two button is pressed on both a．c．and d．c．ranges．
sib．P ．
Complete with voltage multiplier for 480 y and $3,700 \mathrm{~V}$ ．Current shunte for 120 A and
and 480A．A．C．current transformer for 20.4
and tho．In succial wooden hox．e18．50．
\qquad mossible to supply a particular nol waya an a different type to that ordered may be dinpatchet？．These molels are electrically ilentical
STOCK CLEARANCE
All ilem are sold in sy seen condition OSCILLOSCOPE COSSOR 1038． 210 OSCILLOSCOPE EMI TYPE WM3 oschlosco PORTABLE． 215 ．Cariage £2． VALVE VOLTMETER．Furzehill
UHF BIGNAL GENERATOR．RCA＇Type
$710-A, I / P 117 \mathrm{~V}, 10 \mathrm{~Hz}, \overline{\mathrm{H}} \mathrm{W} \mathrm{W}, \quad 3 \mathrm{~B} 0-560$ 1 Hz molulation．Cartier（nuetered） VALVE vOLTMETER．Marconi TF4ン8， el． AO ．
WIDE RAKGE OSCILLATOR．Jawer type 400C． 0 IHz－1kHz．O／P cont ONE ONLY－7ype 400 A ． $20 \mathrm{~Hz}-20 \mathrm{kHz}$
 VALVE VOLTMETER CTSA MICOVAC A．C．／D．C．phas ohms． 6 anges， $2 \cdot 4-480 \mathrm{~V}$ battery woered Very gool comation E15，Carriage＂I．NEW＂．EX IPO ouperior quality sill moving coil 200 ohme／rolt A．C．／D．C．0－150V anill 0－300V Mirror scale．Ernest Turner Model 3：in teak carrying care． 10 ！in $\times 8$ in $\times 4$ in
t10，fost free．
MIDGET POWER RELAY OMRON MK $230 \mathrm{~V}, \mathrm{J0Hz}$ ．1PDT unusen．Faulty plaths NUMICATOR PRICE LIST
End Reading GRIOM／U（Clear）
$\begin{array}{cc}\text { Qud Reading } & \text { Trichomich（Clear）} \\ \text { Qrice eath（lens base）}\end{array}$

Quantity	Price each（de	base）
1－3	21.40	
4－10	21.35	
11－20	11.80	
26－100	11.20	
Price Base．	Bases 20p each．	
Side Reading		
XN3／FA	88m／m Lecal	（Atnlet）
XN3／F	$38 \mathrm{~m} / \mathrm{ml}$ Lead	（ He ，${ }^{\text {d }}$ ）
XN34／F	$6 \mathrm{~m} / \mathrm{ml} \mathrm{Lead}$	（Red）
X，3A	$6 \mathrm{~m} / \mathrm{m}$ Lead	（Clear）
XN11／F	$38 \mathrm{~m} / \mathrm{m}$ Lead	（Red）
XN23／Fi	$38 \mathrm{~m} / \mathrm{m}$ Lead	（Amber）
1－3	21.15 each	
4－10	21．10 each	
11－35	21.05 each	
26－100	95p each	

NEW LOW INERTIA INTEGRATING MOTORS
Electro－Methods Modela 901 and MotPL Permanent magnet d．c．motor．High
gensitivity．Ideal servo－mechanisms，light losis，driving mechanical counters performing integra－ tion，or at amal power generators．Wil operate directly ofi a photo－cell or thermo couple，etc．Nominal typical parameter．
Btarting voltage（no load）lomv at 0.375 mA ．Full load speed 1,845 r．p．m． Motor 300 g l．8g．cni，cm．helght of Motor
（approx．），2Is．P．\＆P．included．
RAPID HEAT SOURCE

from brand new Inita Red Tubular Quartz Lampa．Idcally suited as heat Incubator，etc．， $240 \mathrm{~V}, 1,440 \mathrm{~V}, 20,004$ Angetrons．
Angetton
Price 75p

Sinclair Project 60

the world's most advanced high fïdelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design. quality and value and now that the remarkable phase lock loop stereo FM tuner is available, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment. no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	2.30	Crystal P.U., 12 V battery volume control	£4.48
B	Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control etc.	£9.45
C	$20+20$ W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 s, \text { Stereo 60, } \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P.U., most dynamic speakers, F.M. tuner etc.	£23.90
D	$20+20$ W. R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck, etc.	£26.90
E	$40+40$ W. R.M.S. deluxe stereo amplifier	$2 \times 2.50 \mathrm{~s}$, Stereo 60 PZ.8, mains trsfrmr	As for D	£34.88
F	Outdoor P.A. system	2.50	Mic., up to 4 P.A. speakers controls, etc.	£5.48
G	Indoor P.A.	2.50, PZ.8, mains transformer	Mic.. guitar, speakers. etc., controls	£19.43
H	Hıgh pass and low pass filters	A.F.U.	C. Dor E	¢5.98
J	Radıo	Stereo F.M. Tuner	C. D or E	£25.00

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordınarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certainly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet, motor plinth. free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtanned superb value for money because Project 60 is the bestselling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control.
Sinclarr Radionics L.td.. London Road. St. Ives. Huntingdonshire PE174HJ.
Tel: St. Ives (048 06) 4311

Sinclair Project 60

Z.30 \& 2.50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well.
SPECIFICATIONS (250 units are inter-
changeable with 2.30 s in all applications).
Power Outputs
Z.30 15 watts R M.S. into 8 ohms using 35 volts: 20 watts R M S. Mito 3 ohms using 30 volts.
Z.50 40 watts R.M S into 3 ohms using 40 volts: 30 watts R.M S. into 8 ohms. using 50 volts.
Frequency response: 30 to $300000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 002% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted.
Input sensitivity: 250 mV into 100 Kohms.
For speakers from 3 to 15 ohms impedance.
Size $3 \frac{1}{2} \times 2 \frac{1}{d} \times \frac{1}{2} \mathrm{in}$.
2.30

Built tested and guaranteed with circuits and instructions manual
£4.48
2.50

Bult. tested and guaranteed with circurts and instructionsmanual. $£ 5.48$

Power Supplv Units

Designed specially for use with the Project 60 system of your chorce.
Illustration shows PZ. 5 to left and PZ. 8 (for use with Z .50 s) to the right. Use PZ .5 for normal $Z .30$ assemblies and PZ. 6 where a stablised supplv is essential.
PZ-5 30 volts unstabilised £4.98
PZ $\mathbf{6} 35$ volts stabt/ised $\mathbf{£ 7 . 9 8}$
PZ-8 45 volts stabilised
(less marns transtormer) $£ 7.98$
PZ-8 mains transformer $£ 5.98$

Stereo 60
pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Agaın silicon epitaxial planar transistors are used throughout. achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

SPECIFICATIONS

Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u.-up to 3mV: Aux-up to 3 mV .
Output: 250 mV
Signal-to-noise ratio: better than 70 dB .
Channel matching: within 1 dB
Tone controls: TREBLE +15 to -15 dB a: $10 \mathrm{KHz}:$ BASS +15 to -15 dB at 100 Hz .
front panel: brushed aluminium with black knobs and controls.
Size: $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ ins.
Built, tested
andguaranteed.

£9.98

Active Filter Unit

For use between Stereo 60 unit and two Z. 30 s or $Z .50 \mathrm{~s}$, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable. and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave), there $: 5$ less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. Is suitable for use with any other amplifier system. Two stages of filtering are incorporated rumble (high pass) and scratch (low pass). Supply voltage - 15 to 35 V . Current - 3 mA . H.F. cut-off $(-3 \mathrm{~dB})$ variable from 28 kHz to 5 kHz . L.F cut-off $(-3 \mathrm{~dB})$ variable from 25 Hz to 100 Hz . Distortion at $1 \mathrm{kHz}(35 \mathrm{~V}$. supply) 0.02% at rated output.
Built, tested
and guaranteed
£5.98

Stereo FM Tuner

first in the world to use the

phase lock loop principle
Before production of this tuner. the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now. for the first time, the principle has been applied to an FM tuner with fantastically good results. Other original features include vartcap diode tuning, printed circuit colls, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Senstivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of a high fidelity this iuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated. a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.

SPECIFICATIONS:

Number of transistors: 16 plus 20 in I.C
Tuning range: 87.5 to 108 MHz
Capture ratio: 1.5 dB
Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting: $7 \mu \mathrm{~V}$ for full limiting.
Squelch level : $20 \mu \mathrm{~V}$.
A.F.C. range: $\pm 200 \mathrm{KHz}$

Signal to noise ratio: $>65 \mathrm{~dB}$
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ $(\pm 1 \mathrm{~dB})$
Total harmonic distortion: 0.15% for 30\% modulation
Stereo decoder operating level: $2 \mu \mathrm{~V}$
Pilot tonesuppression: 30 dB
Cross talk: 40 dB
Cross talk: 40 dB
Output voltage: $2 \times 150 \mathrm{mV}$ R.M.s
Aerial Impedance: 750 hms
Indicators: Mains on: Stereo on; tuning indicatop
Operating voltage: $\mathbf{2 5 - 3 0}$ VDC
Size: $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $\mathbf{P} 25$ built and tested. Post free

Guarantee

If within 3 months of purchasing Progect ' 60 modules directly from us, you are dissatisfied with them. we will refund your money al once. Each module is guaranleed ro work pe tectly and should any defect alise in normal use we will service t at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a smatl charge for service thereafter No charge for postage by surface mall. Air-mall charged at cost.

TO: SINCLAIR RAOIONICS LTD LDNOON ROAO ST. IVES HUNTINGDDNSHIRE PE17 4HJ Please send

Name

Address

Sinclair IC10/Q16/Micromatic

IC10

The world's most advanced high fidelity amplifier
This is the world's first monolithic integrated circuit high fidelity power amplifier and preamplifier. The circuit itself is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, having 5 watts RMS output (10 watts peak). It contains 13 transistors (including two power types). ? diodes, 1 zener diode and 18 resistors, and is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is more rugged and has considerable performance advantages. including complete freedom from thermal runaway and a very low level of distortion. The IC10 is primarily intended as a full performance high fidelity power and preamplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mans power supply. It may also be used in other applications including car radios. electronic organs. servo amplifiers (it is dc coupled throughout) etc.
Circuit Description
The first three transistors are used in the pre-amp and the remaining 10 in the power amplefier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. There is generous negative feedback round both sections and the amplifier is completely free from crossover distortion at a!l supply voltages. making battery operation eminently satisfactory.
Each IC1O is sold with a comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include oscillators, etc. The pre-amp section can be used as an RF or IF, amplifier without any additional transistors.

Specifications:

Output: 10 watts peak. 5 watts RMS continuous Frequency response: 5 Hz to $100 \mathrm{kHz} 1 \pm \mathrm{dB}$. Total harmonic distortion: Less than 1% at full output.
Load impedance: 3 to 15 hms .
Load impedance: 3 to 15 ohms.
Power gain: 110 dB ($100,000,000,000$ times) total.
Supply voltage: 8 to 18 volts. (A Sinclair power unit, PZ. 7 is available for mains operation).
Size: $1 \times 0.4 \times 02$ in plus heat sink and tags Sensitivity 5 mV .
Input impedance: Adjustable externaliy up to 2.5 Mohms.

Price (with manual)• 59/6 (£2.97⿺) post free.

Q16

High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclaır design, technical journals have justly compared the 016 with much more expensive loudspeakers. Its shape enables the 016 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audro frequencies.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading: up to 14 watts TMS
Input impedance : 8 ohms
Frequency response: From 60 to 16.000 Hz . confirmed by independently plotted B and K curve. confirmed by independently plotted B and K curve.
Driver unit: Special high compliance unit having Driver unit: Special high compliance unit having
massive ceramic magnet of 11,000 gauss, aluminium massive ceramic magnet of 11,000 gauss, aluminium
speech coll and a special cone suspension for speech coll and a specia
excellent transient response.
Size and siyling: 9a in square on face $\times 4 \frac{\mathrm{in} \text {. deep }}{}$ with neat pedestal base. Black all-over cellular foam front with natural solid teak surround.
Price f8.19.6. (£8.971 $)$.

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ Please send

Name

Address

Micromatic

Britain's smallest radio

Considerably smailer than an ordinary box of matches. this is a multi-stage AM receiver brilliantly designed to provide. remarkable standards of selectivity. power and quality for its size. Powerful AGC counteracts fading from distant stations: bandspread at higher frequencies makes reception of Radio 1 easy. The plug-in magnetic earpiece provided matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteries is contaned within the minute and attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested. you will find it as easy to take with you as your wrist watch, and dependable under the severest listening conditions.

Specifications:

Size: $36 \times 33 \times 13 \mathrm{~mm}\left(14 / 5 \times 13 / 10 \times \frac{1}{2} \mathrm{~m}\right.$.)
Weight : including batteries. $28.4 \mathrm{gm}(1 \mathrm{oz}$.$) .$
Case: Black plastic with anodised alumınium front panel and spun aluminium dial.
Tuning: medrum wave band with bandspread at higher frequencies, (550 to 1.600 Hz).
Earpiece: Magnetic type.
On/off switching: By inserting and withdrawing earpiece plug.
Kit in pack with earpiece. case, instructions and Kit in pack with oar
solder $49 / 6\left(\mathrm{f} 247 \frac{1}{2}\right)$.
Ready built, tested and guaranteed, with earpiece 59/6 (£2.97t).
Two Mallory Mercury batteries type RM675 required. From radio shops, chemists, etc.

Sinclar Radionics Ltd.., London Road
St. Ives. Huntingdonshire PE17 4HJ. Tel: St. Ives (046 06) 4311

								京			

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT
 $0 \cdot 0$

HEW IIPROVED MOD LL WITH HIGHER OUTPUT AND INCORPORATING HIGH QUALITY READY DRILLED PRINTED STRECTION

A really first-clags Hi-Fi stereo Amplifler Kit. Tise 14 transistora iacluding Sillicon Transiators in the frrst five stages on each chasne! resulting in even lower noise with Basa, Treble and two Volume Controlated Suithole for use with Ceraninic or Crystal cartriugcs. Output stage for any speakers from 5 to la ohms. Conpact lesign, all parts supplied including alrilled metal work, high quality ready dilled printed circuit board, ateractive front panel, finohs, wire, solder. nuts, holtg- no extris to buy. Sinple step by step instructions enable any constructor to build an amplifier to be proul of. Brief ${ }_{5}$ specincatmit: Power output 14 r.m.s. per channel into Sensitivits, Frequency response -'3d73 $12-30,000 \mathrm{~Hz}$. wldth $\ddagger 315312-15.000 \mathrm{~Hz}$. Hass hoost approx, to a Treble cut approx. © -16 AB .: Negative feedlack $18,1 \mathrm{~B}$ over main amp. Fower requirements $3 \dot{5} \mathrm{~V}$ at 1.0 amp. Overall size- 12^{*} wide 8^{*} lleep ${ }^{23}{ }^{3 *}$ high. Fully detailed 7 -pare construction minuat atind garts list ree with kit or seld 1 Rp plus large R.A.t.
FRICES AMPLIFIERKIT. $\$ 10.50$ P. \& P. Itp
 (Post Free if all units purchased at same time). Full after Ralen merviec. Also available ready built and tested, Note: The above amplifier is mitable for foeding tivo mono sources into impuls (e.g. mike, radio, hain recor decks, elc.) ard woill then procide mixing and fading

FAMTASTIC 'POLY PLANAR' WAFER-TYPE, WIDE RAMGE ELIECTRO-DYAAMIC SPEAKER
Size only $11 ?^{\prime \prime}-14 \mathrm{it}^{n} .1 \jmath_{16}^{7}$ deep. Weight only 19 ozs . particularly useful for those with limited space. Extremely rugged and shockproot. Operating temperature - $20^{\circ} \mathrm{F}$ to $+175^{\circ} \mathrm{F}$. Power handling 10 watts rmas (20 watt peak). Impealance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{KHz}$. Can be mounted on ceilings, walls, doors, under tables, ctc, and used with or without baffle. Bend's.A.E. for full
detailg. Only t5-75 each. P. sip.

HAGNAVOX DESK TYPE MOVMG COLL HICROPHONE Mediunt imperlance. Brand New-Special Price \&a. 10 P. \& P. 10 p .

SIEGLE HEADPHOXE. With aluminiun headband. Approx. 200 ohmı, 25p. P. \& P.8p. High gensitivitr gip, High imp. for deak or hand use HIGH ITPEDAKCE CRYGTAL STICX MKES. OUR HIGH DTPEDAYCE DYYAMIC gTICE MEES. High gensitivity. E1.98. P. \& P.13p.
PIAKO KEY TYPE SWITCHEs. \& press butcons blus 1 cancel button. Fach of the 8 sectiona containg 6 s.p.c.o total 40 e.p.c.o. . Brand new-limited quantity only Original manufactaring cost $11 \cdot 3 \mathrm{~K}_{2}$. OUR PBICE \%p P.

GPECLAL ORFRR: PLESGEY TYPE 29 TWID TUNING GAIG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and
 HONEYWELL MACBOSWITCEES S/P. C/O. Push-button action. Raling 250 v . AC at 15 anips. Size approx

TELESCOPIC AERIALS WITH SWIVEL JOINT. Can be angled and rotated in any direction. 6 section Lacquered
 BRAND NEW MULTI-RATIO MAIMS TRAMSFORMERS. Giving 13 alternatives. Primary: $0-210-240 \mathrm{~V}$. Seconlary combinations: $0-5-10-1 \overline{5}-40-25-30-3 J .40-60 \mathrm{~V}$ hali
wave at 1 anp or $10.0-10,20-0-20,30-0.30 \mathrm{~V}$ at 4 anps wave at 1 anp or $10.0-10,20-0-20,30-0-30 \mathrm{~V}$, at 4 amps
full wavc. Size 3 in L . $31 \mathrm{inW} \times 3 \mathrm{inD}$. Priee 81.75 . full wavc.
HAINS TRANSFORMER. For transintor power supilies. Pri. $200 / 240 \sqrt{2}$. Sec. $9-0-9$ at 500 mA . 70 p . P. \& P. 13 p .
 Pri. 200/240V. Sec. 10-0-10 at '3 amp. il-38, P. \& P, 18 p . 63pped Primary
6. P. P .13 p
BATYERY CEARGER TRAIEFORYERS. $300 / 240 \mathrm{~V}$

SPECIAL OFFER!!
 HI-FI LOUDSPEAKER SYSTEM

Beautifully made teais bisish encloaure with most

 $\times 10$ in wide $\times{ }^{1}{ }^{1}$ deep. Fitted with E.M.I
Ceramic Magnet $13 i n \times 8 \mathrm{in}$ bass unit, two F.F. Ceramic Magnet $13 \mathrm{in} \times 8 \mathrm{in}$ bass unit, two H.F
tweeter units and crossover. Power handling 10 W
tweeter units and crossover. Power ha
Available 3,8 or 15 ohm impedance.
Our Price $\mathbf{E 8} \mathbf{4 0}$ carr. 50 p
Also arailable in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. bass

LOUDAPEAEER BARGAME

3 in 4 ohm 60 p . P. \& P. 13 p . $5 \mathrm{in} 3 \mathrm{ohm} 80 \mathrm{p}, \mathrm{P} . \& \mathrm{P} .15 \mathrm{p}$ $7 \times 4 \mathrm{in} 3 \mathrm{ohm} 1.05, P, \&$ P. $20 \mathrm{p} .10 \times 6 \mathrm{in} 3$ or 15 ohm 81.90, P. \& P. 30p. E.M.1. $8 \times 5 \mathrm{in} 3 \mathrm{ohm}$ with high flux magnet \&1-69, P. \& P. 40p. E.M.I. $13!\times 8 \mathrm{in} 3 \mathrm{ohm}$ with high fux ceranic magnet 22.10 (15 ohm Eith 25). P. \& P
90 p . E.M.I. $13 \times 8 \sin , 3$ or 8 or 15 ohm with t o inbuit 30 p . E.M.I. 13×8 in, 3 or 8 or 13 ohm with two inbuil
tweeters and crossover network 84.20 . P. $\$$ P. 30p. E.M.I tweeters and crossover network $\mathbf{4 4} \cdot 80$. P. \& P. 30 p . E.M.I
$13^{\prime \prime} \times 8^{*}$ twin cone (parastatic tweeter) 8 ohni 28.25. $13^{\prime \prime} \times 8^{*}$ twin
P. $\&$ P. 30 p.
BRARD MRW. Nin $15 w$ H/D Speakers, 3 or 15 ohm Current production by well-known Britibh maker. Now with Hithux ceramle ferrobar magnet assembly 46.50 E.M.I. 3 yin HEAVY DUTY TWEETRRS. Powerfu ceramic magnet. Available in 3. 8 or 15 ohm 98p each
\& P. 13 p .

18in "RA" TWIM CONE LOUDBPEAKER 10 watts peak handling. 3 or 15 ohm. 81 -88.P. \& P. 30p.

HI-FI STEREO HEADPHONES

Aujustable headband with comfortable flexifoam ear muffs. Wired and titted with standard stereo $\frac{1}{i n}$ jack

GEMERAL PURPORE EIGH STABILITY TRAN-
 GISTOR PRE-AMPLIPIER. For P.U. Tape, Mike.
 Guitar, etc., and suitable for use with valve or transistor equipment. g-18V. Battery or from H.T. transistor equipment. 9-18V. Battery or from H.T. Gain 26dB. Solid encapsulation aize $1 \frac{1}{2} \times 1 \times 1 \mathrm{in}$. Gain 26 dB . Solid encapsulation aize $1 \% \times 1 \| \times$ lin. Brand new - complete with instructions. Price Brand new - complete with instructions. Price $88 p$. P. \& P. 13p.

BRAMD NEW E.M.I. LGHTWRIGHT PICK-UP ARM WITH ARM REST. Fitted modo t/o stylus and eartrldge for LP/78. ONLY i1. P. \& P.8p.

QUALITI RECORD PLAYER AMPLIFIER MX II A top-quality recore player amplifier employing heavy duty double wound mains transformer, ECC83, EL84, Complete with output trainsormer matched for 3 ohm | Complete with output transformer matched for 3 ohm |
| :--- |
| speaker. Size $7 \mathrm{in} . \mathrm{w} . ~$ |
| l . -6 h . Ready bullt and tested. | PRICE 88.76. P. \& P. 30p. ALSO AVAILABLE mounted on boarit with output trantormer and speaker read

38 p .
D:

DE LUXE QUALITT PORTABLE R/P CABMET ME II Uncut motor board size $141 \times 12 \mathrm{ln}$., clearance 2 in . below, 5ilin. above. Will take above ampllifer and any B.S.R. or

10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished
monaural amplitier
with an output
14 watts iron EL84s in push-pull. Super reproduction of both music and日peech, with negli-
gible hum. Separate gible hum. Separate
inputa for mike and gram aliow records
 to follow each other. Fully shrouded section wound output transformer to inatch 3-15 Ω speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 ELE48, ECC83, EF86 and
EZ80 rectifier. Simple instruction booklet 18p (Free with parts). All parte sold separately. ONLY $\mathbf{2 7} 97$. P. \& P. 43 p Algo available ready built and tested complete with std. input sockete, 89-97. P. \& P. 43p.
BRAND NEW TRAKSIGTOR BARGAIIS GET 15 (Matched pair) 75p; V15/10p. 60p; OC71 25p; OC76 80p; Set of Mullard 6 transistors

OC44, 2-OC4 matched pair ACiz8 21.25 ; ORPIO C'admium Sulphide Cell 53p. All post free.

VERI POWERFVL COMPACT MOTOR

For 12v. D.C. operation. Off load contumption approx. 100 mA . Totally enclosed. Quiet is operation with high Ftarting torque. Overall aize approx. $11^{\prime \prime} \mathrm{L} \times 11^{\prime \prime}$ dia. Free ehait ?" dia. $x^{\prime \prime}$ "L. Ileal for Model Makers, ete. 3 or more post free (A few 6 v . versions alan available).

EIGE GRADE COPPER LAMINATE BOARDS

DE LUXE STEREO AMPLIFIER

$1 \times$ EZ80 as full ware rectifier. ' Two dual potentiometera are provided for bass and treble control, giving base and treble boont and cut. A dual volume control is used. Baiance of the left and right hand channela can be
adjusted by means of a separate "balance" control atted at the rear of the chassia. Input sensitivity in approxj. mately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watto per channel (8 watts mono), into 3 ohm speakers. Full negative feelback in a carefully calculated circuit, allows high volume levels to be used with negllgible distortion. Supplied complete with knobs, chassis size 11 ln . w $\times 4 \mathrm{In}$. x . teated height micluaing ralves sin. Ready bulit and teated to a high standard. Price $\mathbf{2 8 \cdot 9 2}$. P. \& P. 40p

4-SPRED RECORD PLAYER BARGAINS LATEST B.8.R. C109/AR1 4-SPRED AUTOCKEANGER. With latest mono compat With atereo cartridge 87.97. Carr. 33p.
gUtTABLE PLINTH USIT FOR ABOYE with rigid plastle cover. st-75 complete. P. \& P. 43 p .
LATEST GARRARD MODELAS, All iyper avallable 1025. 20e5, SP25, 3000, AT6A, otc. B.A.E. for Lateat Prices! PLIFTH UHITS cut out for (harrard Models 1025. 2025, 2000, 3000, 3500 , etc. With rigid transparent plastle with coter in position. Also sultable for housing ATGO and SP2J. OUR PRICE $\mathbf{5} 575$ complete. P. \& P. 43p. LATEST ACOS GP91/18C Mono Compatible Cartrtdge with t/o stylus for LI/ EP/万8. Thiversal mounting bracket

Acos Bit-G Single sided mono cartridge for I.P \& EP. 80NOTONE GTAHC COMPATIBLE BTEREO CABTRLDGE T/O stylus. Diamond Stereo LP and Sapphire 78.0 NLY 28.50. P. \& P. 10 p .

Also available fitted with twin Dianond T/O stylus for Stereo LP. ONLY \& 8 . \& \& P. 10 p .
LATEST E DNETYTE TiO 8 tereo Compatible Cartridse for EP/LP/Btereo/78. 21.68. P. \& P. 10p
LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/78 mono or stereo records on mono equipment EIGIGH GAIN 4 TRANEIGTOR PRMFTED CLRCUIT AMPLIFIER KIT

Type Tal Peak out

put in crcess
of $1 \frac{1}{2}$ watts.
dard Britiah
Built

printed clrcuit panel size 6×3 in.
Generous size Driver and Output Tranaformers. Outpat transformer tapped for 3 ohin and 15 ohm apeakers.
Transistors (CiET114 ors N Mullard AC 128D ind matched Transistors (GETLI4 ors 1 Mullard AC 198D and matched
pair of AC128 o/p). 0 rolt operation. Ererything gupplied, pair of AC128 o/p). 0 rolt opcration. Ererything atpplied, wire, battery clips, solder, etc. Comprchensire easy to
follow intructions and circuit diagram 13 p (Free with Kit). All parts sold separately. SPECLAL PRICE E2.48

15p. 3-VALVE AUDIO

AMPLIFTER HAS4 ME II Designed for Hi-Fi reproduc operation. Ready bailt on plated heavy gauge metal chasgis, gize $\frac{1}{2}$ in w. . 4 in . d. \times
4tin. h . Incorporates ECCB 4i in, h. Incorporates ECC83,
EL84, EZ80 valves. Heary duty, double wound mains fransformer and out put transformer matched for 3 ohni
speaker. Separate volume control and now with improved wide range tone controls giving bass and treble liftand panel can be detached and leads extended for remote mounting of controle. Complete with knobs, valves, etc, wired and tested tor only 24.75. P. \& P. 30p.
HiL "FOUR" AMPLIFIER EIT. Similar in appearance to HA34 above but employs entirely diferent and advanced
circuitry. Complete set of parts, etc. \&8.98. P. \& P. 30 p . HARVERSON'S SUPER MONO AMPLIFIER
 molated maing transformer. rectifier and ECL 82 trlode pentode valve is audio amplifier and power output stage. Impedance 3 ohns. Output appror. $3 \cdot \overline{0}$ watts. Volume
 Brand high overall. AC mains $200 / 240 \mathrm{~V}$, Supplied absoiutely Brand New, completely wired and tested with goon OUB ROCX BOTTOM
OUB ROCX BOTTO
BARGAD PRICE

Open 9.5.34 Monday
to Saturday
Early closing Wed. 1 p.m. 4 fow minules from South W'imbledon
Tube Slation

HARVERSON SURPLUS CO. LTD.
I70 HIGH ST., MERTON, LONDON, S.W.I9 Tel. 01-540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) pleabe note: P. e P.charoze QOOTED APLY TO D.E. OMLY P. \&P. ON OVRRS

who wants a£2,000+p.a. opportunity in the dynamic new computer industry?

In only 4 weeks you're in - and only the incredible Eduputer can make it possible.
 Now for the first time anybody can train outside the computer

 industry for a lucrative career as a computer operator, with actual experience on an Eduputer.Who created Eduputer? The internationally famous company Programming Science International. They developed it to the specific requirements of the massive New York city training board and its practical results have been one amazing success story
We are proud to have been selected as the only commercial training organisation permitted to use the Eduputer in the U.K. Thanks to Eduputer, nine out of every ten can learn to operate the most advanced computers in only four weeks. Unlike Computer Programming, no special educational qualifications and no maths required. Just you and the incredible Eduputer!
Jobs galore! The moment you qualify, our exclusive computer appointments bureau introduces you to computer users every where with good jobs to offer (up to $£ 40$ a week full-time, $£ 50$ a week as a temporary). More than enough to go round, toobecause 144,000 new operators will be needed over the next five years alone
This is your big opportunity to get out of a rut and into the world's fastest-growing industry. And remember-LCOT is the only commercial computer school to have Eduputer. It means a Iot to employers.
Telephone: (01) 7342874 NOW!
Or post the coupon today for full details FREE and without obligation.

London Computer Operators Training Centre,

C22, Oxford House, 9/15 Oxford Street, London, W.1.
Telephone (01) 7342874.
127/131 The Piazza, Dept. C22, Piccadilly Plaza, Manchester 1 Telephone (061) 2362935.
Please send me your free illustrated brochure on exclusive
Eduputer "hands on" training for computer operating
Name

Address
Tel.:

BI-PAK =LOW COST I.C'S

NOW LOWER THAN EVER PRICES-GREATER RANG
BI-PAK Semiconductors offer you the largest and most popular
range of IC's a vailable at these EXCLUsive LOW PRICEs. TTL
14 and 16 pin packages.

$\mathrm{BP} 00=7400$
$\mathrm{BP} 01=7401$
$\mathrm{BP} 02=7402$
$\mathrm{BP03}=7403$
$\mathrm{BP} 04=7404$
$\mathrm{BPOH}=7+04$
$\mathrm{BP} 10=7+10$
$\mathrm{BP10}=7410$
$\mathrm{BP13}=7413$
$\mathrm{BP13}=7413$
$\mathrm{BP} 20=7420$
$\mathrm{BP20}=7420$
$\mathrm{BP} 30=7430$
$\mathrm{BP40}=7440$
$\mathrm{BP} 41=7441$
$\mathrm{BP} 42=7442$
$\mathrm{BP4} 7=744$

$\mathrm{BP} \overline{\mathrm{z}} 3=74 \overline{\mathrm{z}} 3$
$\mathrm{BP} 54=7454$
BP 60
$=7460$
$\mathrm{BP70}=7470$

$\mathrm{BP73}=7473$
BP 4
7474

$\mathrm{BP74}=746$
BP75
BP 76
147

$\mathrm{BP75}=747,5$
$\mathrm{BP76}=7476$
BP80 $=7480$
$\mathrm{BP81}=7481$
$\mathrm{BPB2}=7482$
$\mathrm{BP83}=7483$
$\mathrm{BP8}=7483$
$\mathrm{BP} 86=7486$
BP 86
$\mathrm{BP9}=7486$
$=7490$
$\mathrm{BP9} 90=7490$
$\mathrm{BP} 91=7491$
$\mathrm{BP91}=7491$
$\mathrm{BP92}$
$=7492$
$\begin{aligned} \mathrm{BP92} & =7492 \\ \mathrm{BP93} & =7493\end{aligned}$
$\mathrm{BP93}=7493$
$\mathrm{BP94}=7494$

$\mathrm{BP94}$
BP 95
$=7495$

$\mathrm{BP96}=7496$
$\mathrm{BP} 100=7+100$ BP118 $=74118$ $\mathrm{BP121}=74121$ BP141 $=74141$ $\mathrm{BP140}=74150$ $\mathrm{BP}_{163}=74101$
BP153: $=74153$
$\mathrm{BP} 191=74191$ BP191 = 74191 Binary counter
PRICES for Devices may he mixed to qualify for quantity prices
PRICES for quantities in excess of $\overline{0} 0$ pieces mixed, on application
Data is avallable for the above Series of Integrated Circuits in booklet form, yrice 13p.

TTL INTEGRATED CIRCUITS

Manufacturers" "Full outs"-out of spec. devices including functional units and part function but classed as ont of spec. from the manutacturers' very rigit speclfica tons. Infegl tor learning ahout IC"s and experimental work
PAK No. PAE Xo. PAK No.
UIC00 $=12 \times 7400 \mathrm{~N} 50 \mathrm{p}$ UIC42 $=\tilde{0} \times 7400 \mathrm{~N} 50 \mathrm{p}$ UIC80 $=5 \times 7480 \mathrm{~N} 50 \mathrm{p}$ UIC01 $=12 \times 7401 \mathrm{~N} \quad 50 \mathrm{D}$ UIC $50=12 \times 7450 \mathrm{~N} 50 \mathrm{p}$ UIC82 $=5 \times 7482 \mathrm{~N} 50 \mathrm{p}$

 $\begin{array}{lllll}\text { UIC1 } & =12 \times 7410 \mathrm{~N} & 50 \mathrm{p} & \text { UIC73 }=8 \times 7473 \mathrm{~N} & 50 \mathrm{p} \\ \text { UIC93 } & =\bar{J} \times 7493 \mathrm{~N} 50 \mathrm{p} \\ \text { UIC20 } & =12 \times 7420 \mathrm{~N} & 50 \mathrm{D} & \text { UIC74 }=8 \times 7474 \mathrm{~N} & 50 \mathrm{p} \\ \text { UIC94 } & =\mathbf{j} \times 7494 \mathrm{~N} & 50 \mathrm{D}\end{array}$ UIC40 $=12 \times 7440 \mathrm{~N} 50 \mathrm{p}$ U1CT0 $=8 \times 7470 \mathrm{~N} 50 \mathrm{D}$ UIC95 $=5 \times 7490 \mathrm{~N} 60$

Pack cannot be split but 00 assorted pieces (our mix) is available as PAK UICX Every PAK carries our BI-PAK gatisfaction or money back fUARANTEE.

BRAND NEW LINEAR I.C's-FULL SPEC.

				Price		
Type No.	Case	Leads	Description	1-24	23-99 100 up	
BP 201C-SL201U	T0-3	8	T.P. Amp	63 p	58 p	45p
BP 701C-8L70IC	T0. 5	8		83p	50 p	45p
BP 702C-8L702C	T0.,	\%	OP Amp Direct Or	83p	50p	46
BP 702-72702	D.I.L	14	Band)	53 p	45 p	40p
BP $709-72704$	D.1.L	14	High OF Amp	53 D	45p	40p
BP 709P- ${ }^{\text {a }}$ (709C	T0.	8		53 p	45p	40 p
BP 711- 1 A711	T0-5	10	Migh Gain OP Amp Dual comparator	58 p	60p	45p
B1'741 - 72741	D.I.L.	14	High Gain of Arip	750	60p	50 p
$\mu \mathrm{A}$ 703C- 2 A 7030	TO-j	${ }^{4}$	(Protected) R.F.-I.F. Amp	43p	35p	270
TAA 263-	TO-72	4	A.F. Amp	70 D	80p	55 p
TAA 293 -	T0.74	10	G.P. Amb	800	75p	700
RTL MICROLOGIC	CIRCUITs Price each		Dusl-in-Line Low Froale sockets			
Epoxy TO-5 case uL900 Buffer	$\begin{gathered} 1-24 \\ 35 \mathrm{p} \end{gathered}$	$\begin{array}{r} 5-99 \cdot 100 \\ 33 \mathrm{p} \end{array}$	14 and 16 Lead sockets for use with Dual-in-Line Integrated Circuita			
					rice	
${ }_{\text {gate }}^{\text {gat }} \mathrm{J}$-K fip-fop	35 p $\mathbf{5 0 p}$]	Order No.	1-24	$2 \ddot{0}-99$	
Data and Circuits	Booklet	for 1 .	TSO 14 pin type	80p	27p	0
Price 7y.	Booklet	for 1	TSO 16 pin type	35 p	38 p	30p

BI-PAK SEMICONDUCTORS

P.O. BOX 6, WARE, HERTS.

Postage and packing add 7 p . Overseas add extra tor Airmail. Minimum order 50p. Cash with order please. Giro No. 388-7006.

VALUE ALLTHE WAY

SIL．RECTS．TESTED

IIV	300 m －	－$\overline{0} 0 \mathrm{~m}$ ．	A 1A	1－s．	3.4	10．4	A
	Ep	Ep	£p	£p	8 l	${ }_{\text {f }}$	ip
30	0.04	$4 \quad 0.05$	0.05	0.07	0.14	$0 \cdot 21$	0.47
100	0.04	0.08	0.05	0.13	0.16	0.23	0.75
200	0.05	0.09	0.08	0.14	0.20	0.24	1.00
400	0.06	0.13	0.07	0.20	0.27	0.37	1.25
900	0.07	0．16	$0 \cdot 10$	0.23	0.34	0.45	1.85
800	$0 \cdot 10$	0.17	0.13	0.25	0.37	0.55	2.00
1000	0.11	0.25	0－15	0.30	0.48	0.63	2.50
1200		0.33		0.33	0.57	0.75	
triacs ${ }^{\text {SILICON High VOLT－}}$							
VBOM \because A		10 A		SILICON HIGH VOLT－ age rectipiers			
	TO－1 1	To－6n T	T0－88	P．I．V．）	Atbed	Type	with
	¢p	£p	$\chi_{\text {P }}$	Flyin	Leuls	80p	
109）	0.50	0－63	1.00		DIA		
－00）	0.70	0.90	1.25	Fok	US1		ITH
400	0.90	1.00	1.60	13R100		37p	cacil

2A POTTED BRIDGE RECTIFIERS 200V 50 p

FET＇S
$9 N \quad 3819$
N 38.00
MN $38^{20} 0$
MPF105
CADMIUM CELLS
R1P60，OR1PRG140p cach

PHOTO TRANS． 0CP71 Type．43p
EX－EQUIPMENT MULLARD
AF＇117 transistors，Latge
can 4 leads type．Leads
cut short but still usable，
real valuc at is for 50p．

| SM，G．P．DIODES p |
| :--- | :--- | :--- |

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS

N 0 $1 \geq 0$ 0

60 Mi ed germanium transist ors $\boldsymbol{A} \mathbf{F} / \mathbf{R F}$

Ti．Germanium gold bonded diodes sim．O．AJ，O．14
40 Cermanium transistors like OC8।，（c＇I？8
fi0 200 ma sub－min．Sill diorles
30 Silicon planar transistors NPN mim．BsY95A．2N70
1f Silicon rectifiers Top－Hat 7.00 mA up to 1,0001

$\therefore 0$ Mixed volts 1 watt Zener dionde
30 PNP silicon planar transistors To－$\overline{\mathrm{J}}$ sim． 1 Nitl ：
30 PNP－NPN sil．transistors Ot＂200 \＆： 24104
wo Mixet silicon and germanium tiodes
2．5 NPN silieon planar transistors TO－ 5 sinu． 2 N 697 103 －Anp silicon rectiflers athal type up to 1000 PIV
30 Germanium PNP AF transistors TO－Jlike ACY I 8 b－Imps siticon rectiflers 13 YZ 13 tyrue up to 600 PI Silicon NPN transislors like BC108

 30 Malt＇s like MAT＇series f＇Nl＇transistors

 30 Fust awitching silicon tionles fike 1 NO I 4 miero－min Finperimenters＇assurtment of integrated circuitn，untestent
 $\because 0 \mathrm{Sil}$ ．Planar Nf＇N trath，low nuise artp $\because \mathrm{N} 370{ }^{-}$

Zener dionles 400 mW Doi case mined volta， 3 －is
jú Plastic case I ank silicon rectiliets IN 4000 series

25 Sill planar trans．PNP TO－18 2 N 290 t

30 Sil．alloy trans．SO－2 PNP，Otw00 $2 \mathrm{~S} 3 \cdots$
30 Fast switching sil．trans．NPN， $400 \mathrm{Mc} / \mathrm{s} \because \mathrm{N} 3011$
30 Rド germ，PNP trans．※N13035；TO－
U40 10 Dual trang．\＆Ican TO－5 $\mathrm{N}=040$
U41 $\xrightarrow{3} \mathrm{RF}$ germ．trans．To－1 OCA5 NKTz：

Corle Nos．mentioned above are given as a guide to the type of levice in the Pak．The derices themselves are normally mumarked

NEW QUALITY TESTED PACKS Pack Description

	${ }^{0} 0$ Jied sput（rans．PNP
Q2	16 White spot R．F．trans．PNP
Q3	40 C 77 type trang．
Q4	is Matcheil trans．OC44／45／81／815
Qu	$40 \mathrm{C7} \mathrm{j}^{\text {dransiators }}$
Q6	40 OC 2 transistors
Q7	4 ACl28 trans．PNP high gain
Q8	4 ACLO6 trans．PNP
（29	7 OC81 type trans．
Q10	70071 type trans．
Q11	\because－${ }^{\text {Cl127／128 }}$ comp．pairs
Q13	3 AF116 type trans．
Q13	3 AFII type trans．
Q14	3 OC171 H．F．type trans．
Q15	二 $2 \mathrm{~N} \geq 92 \mathrm{fj}$ sil．epoxy trans．
Q1／	${ }^{3}$ GET880 low noise germ．tran
Q17	3 NPN 1 ST141 \＆STIL40
Q18	4 Madt＇s＂Mat 100 \＆ 2 MAT 100
Q19	
Q20	4 OC 44 germ trans A．F．
Q2 ${ }^{1}$	3 AC127 NPN germ．trans．
Q ${ }^{3} \cdot \underline{2}$	20 NKT trans．A．F．R．F．coden
Q23	10 OA：202 sil．diodes sub－
Q24	＊O．s81 diodes
Q：3	
Q：6	80.495 germ．diodea sub min． 1 N 69
Q27	$\because 10 \mathrm{~A} 600 \mathrm{PlV}$ sil．rects， $\mathrm{J84} 5 \mathrm{R}$
Q 28	\because Bil．power rects．BYZ13
Q29	$1 \times 3 \mathrm{~N} 698$
Q30	7 \＄il．awitch trans． $2 \mathrm{~N} / 06 \mathrm{NPN}$
Q31	6 Sil．switch trang．2N708 NPN
Q32	$\begin{aligned} & 3 \text { PNY sil trans } \because \times 2 \times 1131 \text {, } \\ & 1 \times x \text {. } \end{aligned}$
Q33	3 Eil NPN trans．${ }^{\text {N }}$ N1711
Q34	7 Sil．NPN trans． 2 No360，b004HZ．
Q3	$3 \text { Sil. PNP TO }$
Q310	7 NP 3646 TO－18 plastic 300 MH ？
Q 37	3 N 3003 NPN ail．trans．
Q3\％	7 PNP trana $4 \times 2 \mathrm{~N} 3703,3 \times 2 \mathrm{~N} 3 \mathrm{O} 0$
Q34	7 NPN trans． 4×0 N3704， $3 \times 2 \mathrm{~N} 370.7$
Q40	7 NPN amp， 4×2 N3707， $2 \times 3 \mathrm{~N} 3708$.
Q 41	3 Plastic ${ }^{\text {N }}$＇${ }^{\text {N TO－18 }}$
Q4를	6 NPN trans． 2 Nut 2
Q43	
Q44	7 NPN 1 rans， $4 \times$ BC108， $3 \times 1 \mathrm{CO} 09$
Q4J	$3 \mathrm{BCl13} \mathrm{NPN}$ TO－18 trans．
Q46	3 BCH 1 J N PN TO－utrans．
Q4 ${ }^{-}$	fi NPN high gain $3 \times \mathrm{BC167,3} \mathrm{\times 13} \mathbf{C 1 5}$
Q48	4 BCY 70 NPN trans．TO－18
249	
Qio	T BSY 28 NPN Bwitch T0－18
Q 01	7 B8Y90̈A NPN trans 300MI
Qit	B BY100 type ail．rect．
Qu3	A．：Sil．germ．trans．mixed all marked mew

$1 \begin{aligned} & 1.00 \\ & 1.50\end{aligned}$

GENERAL PURPOSE GERM．，PNP POWER TRANSISTORS

 SPECIFICATION
VCBO SOV VCEO 50V IC 10.1 F＇T 30 WITTTS HFE： $30-160$ $\begin{array}{ccc}1-24 & 100 \mathrm{up} \\ 43 \mathrm{peach} & 40 \mathrm{peach} & 36 \mathrm{p} \text { each }\end{array}$
GENERAL PURPOSE SILICON NPN POWER TRANSISTORS
Goded fr＇300．BRANUNFW TO－3 CABE．POABIBLEREPLACEMENTHOR SPECTH，BDY： 20, RDY 11
SCECIFICAT VCEO
CRICE 55p each 50 p cach 47 p each

GENERAL PORPOSE KPN SILICON SWITCHING TRANS．TO－18 SIM．TO 23706／8，

		10
30	For	0.50
00	For	1.00
100	For	1.75
500	For	7.50
1000	For	13.00

SURPLUS A．E．I．40A GERM．JUNCTION RECTIFIERS．FUR Puwer Applicalions

TRANSISTOR EQUIVALERTS BOOK．A complete cross reference and equiralenta hook for Enropean can and Japanese Transid each．

GERM．POWER TRANS．
Type Price
Trpe
OCH_{2}^{2}
0 C 25
0 C 2 B
$0 \mathrm{CO}_{2} 8$
$0 \mathrm{CO}_{2} 9$
OCO－
0 C 36
\rightarrow D140
AD142
iD149

OUR STOCKS of inlividual devices are now toonumerous to mention in for our listing of over 1,000 Semiconductors．All arailable Ex－ Stock at very competitive prices．
all prices quoted in new PERCE．
 P．O．BOX 6，WARE，HERT8
fostage and packing add 7p．Oversead add extra for Airmail．Minimum order．

Practicul Electronics Classified Advertisements

RATES: $7 \frac{1}{2} p$ per word (minimum 12 words). Box No. $7 \ddagger p$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD

MISCELLANEOU8

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE

because this GPO approved eransmitter/receiver kit does not use R.F. and you can get one easily. Your eransmissions will be virtually SECRET since cher won't be heard by conventional means. Actually it's TWO KITS IN ONE because youget all the printed-circuit boards and components for both the eransmitter AND receiver. You're soing to find this project REALLY FUN-TO-BUILD with the EASY-TO.FOLLOW instructions, AA extremely fiexible design with quite an AMOUNE-TO.HOUSE has obvious applications for HOUSE-T. PROJECTS, LANGUAGE LABORATORIES, SCOUT CAMPS, etc.

> GET YOURS! SEND E5.20 NOW

TO: ' BOFFIN PROJECTS'
DEPT. K2010
STONELEIGH EWELL SURREY

FASCIA PANEL8, hi-fl equipment, etc., etched aluminium to individual speciffcations, S.A.E. details. R. MARSH, 29 Shelbourne Road, Stratford on Avon, Warwicks.

MUSICAL MIRACLES

WAA-WAA Pedal. Complete kit of all parts, robust cabinet, mechanism and instructions. Huge sales, well proven design. Only $\mathbf{6 2} 45$ complete. Or built and teseed 44.75 post free. Rhythm Box. Build your own from our prebuilt electronic circuit modules, e.f. box giving waltz, foxtrot, etc., costs under fily. Organ Percussion units $£ 14$. Bass pedal and other fascinating effects, fuzz, tremolo, etc.
Send s.a.e. for list: D.E.W. LTD.
254 Ningwood Road. Ferndown, Dorset

12 VOLT FLUORESCENT LIGHTS

12 ins. Watt tube ample light for caravan, sent, etc. Fully transistorised, low battery drain. Unbeatable at $\mathbf{~} 3.27 \frac{1}{2}$ post paid
or in kit form $£ 2.87 \frac{1}{2}$
BIG BARGAIN PARCEL 75p POST PAID
Containing multi-contact relay, transistors, resistors rectifiers, diodes, capacitors, pors, resistors
knobs, et c.

4 WATT GRAM AMPS.

Volume and cone controls, mains operation, 3Ω output, new and boxed $\{3.63$ POST

SALOP ELECTRONICS Callerswelcome 23 Wyle Cop
Shrewbbury, Shropehire S.A.E.for lists

ORIGINAL DESIGNS NEW IDEAS • PATENTS
 Mechanical • Electronic Automotive
 If you possess any of the above, suitable for mass production. contact one of Britain's oldest manufacturers of automobile accessories.
 It could be financially rewarding SYDNEY RUSSELL LTD. Wednesbury Road Works . Walsall

 TeI. 23144MISCELLANEOUS (continued)

NEW! NEW!! NEW!!!

The Sweetest Sound You Ever Heard

An excicing new, all silicon. power amplifier module to a completely NEW design. Minimum cross-over distortion, not dependent on supply voltage, eliminates unpleasant 'eransistor sound'. Specially designed to work well from simple, unregulated power supply, 50-58 v. II transistors, short circuit proof, unconditionally stable, temperature stabilised. $400 \mathrm{~m} / \mathrm{v}$ input for 30 watts RMS (8 ohms). Output impedance 8-16 ohms. Completely built on 16 swg heatsink. Neat, space-saving, upright mounting. Fully tested and guaranteed with comprehensive instrucsions.
\&8.75 each. P. \& P. 25p. Stereo pair. Post free

ELECTRONIC SUPPLIES

P.O. BOX 148, SHEFFIELD SI7 3EX

We stock all those components and materials required by the home Hi-fi constructor, including speaker grille fabrics, BAF wadding, Peerless speaker kits, Helme Cabiner Kits, cross-over networks, inductors, etc. Special offers also available. Send stamps to value of 10 new pence NOW for your copy of our new fully illustrated catalogue (catalogue cost refunded against purchases over 50p). No callers please, mail-order ONLY.

(UDIOSEAN Dopet. p.E.
 HARADOATE, Yoaks.

COMPONENT8, 8PEAKER8, CABINET8. JG80 Speaker System, Bass Tweeter, teak case, \$10.66. Garrard SP25 with cartridge, \$15. Garrard 2025 with cartridge, \&11.75. Plinths to suit, with cover, $85 \cdot 25$. Full details, list avallable, send S.A.E. Open Saturdays. J. \& G. ELECTRONICS, 22a Baldock Street, Ware, Herts.
"DIRECTORY". 450 paraphysical cases, Britain. Unusual electrical effects, 22. PARALABORATORY, Downton, Wilts.

will alm up ti 400 watte of Inesadaseant IIghtlag from zere to full milliance. This uall simply replaces the normal light a itith, and is fitted la a mattor of minutes. Ao MK mayntiof frame is supallaif, for use when mare lafth ls rapulati.

Complate Kit: $£ 2.85$ (sor.
PRICE
Buill \& tostod: $£ 3 \cdot 35$ tur-
Diathane Ltd.
III. Shaflield Road, Wymondham, NORFOLK. $\boldsymbol{8 0} \mathbf{- 1 0}$ postage \& packing

MISCELLANEOUS (continued)

HOLIDAY FOR BOY8. $14 / 16$ years August 1971, specialising in engineering, electronics, photorraphy. Tuition and practical work Including karting. 11 days- 15 . Write for free brochure: INTER-SCHOOL CHRISTIAN FELLOWSH IP, 47 Marylebone Lane, London, WIM 6AZX.

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.C.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M/C relays, components, etc. Lower beeding 236:

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ in \times any length. DEW LTD., lingwood lkoad lerndown, Dorset. S.A.E. for leaflet. Write now-right now.

PSYCHEDELIC LUMINOPHONICS

Or is this just another way of referring to FANTASY? Either way, our Projects 24 and 1014 probably come within this category-THINK OF THE FUN
YOU WOULD HAVE WITH SOMETHING LIKE YOU WOULD HAVE WITH SOMETHING LIKE UNUSUAA PARTYCTS TOO-how about an UNUSUAL PROJECTS TOONTC STETHOSCOPE for LISTENING THROUGH WALLS, etc., or a TRANSMITTER RECEIVER that doesn't use RF, SO LICENCE WORRIES ARE OVER! Then there's another project for a "LEARNING"" MACHINE-imagine one of these in YOUR BACKROM; REALIY FRIENDS WOULD BE AMAZED! if REALLY UNUSUAL proiects interest you, then WE'VE GOW YOU COULD BE IN THE "SCIENCE. now You CoULD BE in THE
DON'T PUT IT OFF! SEND I Sp for your list-NOW BOFFIN PROJECTS
4 CUNLIFFE RD.. STONELEIGH, EWELL, SURREY Designs by GERRY BROWN and JOHN SALMON and presented on TV

WANTED

CASH PAID for New Valves. Payment by return. WILLOW VALE ELECTRONICS 4 The Broadway, Hanwell. London. W.7. 01-567 5400/2971.

WE BUY NEW VALVE8. Gash sent by return. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street

Bradford 8, Yorks.

HIGHE8T CASH PRICES for tape recorders. 9.30-5. Immediate quotations. 01-472 2185.

LADDERS

VARNISHED TIMBER LADDER8 from manufacturer, LOWEST PRICES anywhere: $15 \nmid \mathrm{ft}$ ext., $\$ 6-20 ; 17 \mathrm{ft}$ extd., $86-50$; 20 ft extd., $\& 7$; $21 \frac{1}{2} \mathrm{ft}$ extd., 87.75 ; $24 \frac{1}{2} \mathrm{ft}$ extd., 88.00; 29 ft extd., 810.25 ; 31 ft triple extd., 812-25; 36ft. triple extd., \&16. Carr. 80p. Free Lists. Also Aluminium Ext. and Loft Ladders. Callers welcome. Dept. PEE, HOME SALES, Baldwin Road, Stourport, Worcs. Phone: 02-993 2574. Placing order on C.O.D.

TELEVISION AND RADIO TRAINING
 (DAY ATTENDANCE COURSES)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one year's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/3, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721.

TAPE RECORDERS

TAPE BARGAINs. Double play AMPEX, 7in, 2,400ft reels, packed in RECOTAPE sealed boxes. Superb quality, fully guaranteed,
 above, 2 for $£ 2.10,6$ for $\leqslant 5.37 \frac{1}{1}$. $7 \mathrm{in}, 1,800 \mathrm{ft}$ L.P., 2 for $\$ 2.07 \frac{1}{2}, B$ for $\$ 6$. $5 \frac{3}{3}$ in D.P. $1,800 \mathrm{ft}$, 2 for $£ 2.27 \frac{1}{2}, 6$ for $\mathbf{£ 6 . 5 0}$. $5 \frac{3}{2}$ in L.Y. $1,200 \mathrm{ft}$, 2 for $\$ 1.37 \frac{1}{2}, 6$ for $83.87 \frac{1}{2}$. Money back if not delighted. $12 \frac{1}{2} p$. P. \& P' on all orders under $£ 5$. MUSIC TAPES MAIL ORDER, 36 High Street, Salisbury, Wilts.

NOW SAVE ON CASSETTES

AUDEMAG Compact Cassettes, tully guaranteed top quality, in plastic library boxes with giant 6×4 label giving double writing space.

	3	6	10
060	¢1.7)	22.71	23.50
080	81.571	22.00	25
C180	21.921	83.674	£6.50

$2 \frac{1}{2} \mathrm{p}$ P. \& P. on all orders under $£ 3$. Money back if not satisfled. MOSIC TAPES MAIL ORDER 38 High Street, Salinhary, Wilts.

RECEIVERS AND COMPONENTS

Abstract

A GORNUCOPIA OF COMPONENT8! Scarce valves, selected TV components, speakers and cabinets. Computer pathels-long leads, NO'I printed circuits. Transistors, resistors - new and recovered. State your requirements. S.A.E for details MAIL-MART, 6 Eastbonrne Road, Pevensey Bay, sussex.

FULL 8PECIFICATION TRAN8ISTOR8:

 Texas, A.G.s., efc. $13(108 \mathrm{~B}$ 11p; BC109C 2p; 2N3705 14p; BFY51 17p. 5p Postage S.A.E. List. GREENWELJ, 24 Goodhart Way, W. Wickharm, KentCAPACITOR8. 1)ubillier, $0.1 \mu \mathrm{~F} \quad 500 \mathrm{~V}, 30 \mathrm{p}$ doz., $82 \cdot 10$ per 100. Hunts $0 \cdot 04 \mu \mathrm{~F} 500 \mathrm{~V}$, 15 p doz., 1 per $100 ; 0 \cdot 001 \mu \mathrm{~F}$ and $0.005 \mu \mathrm{~F} 350 \mathrm{~F}$ 15 p doz., \&1 per 100 . Nkeleton P'resets, $2 \mathrm{~K} \Omega$, 16 p doz.,
$6 \mathrm{p}, \mathrm{Co-ax}$ Sockets on isolation panel, $6 \mathrm{p}, 60 \mathrm{p}$ 6p, Co-ax
doz. Jack Pluges, Standard, $9 p ; 3.5 \mathrm{~mm}, 6 \mathrm{p}$; $400-200-50-16 \mu \mathrm{~F} 300 \mathrm{~V}, 30 \mathrm{p}$, e3 per doz Recording Tape, 5in L' ${ }^{2}$, 45p, 5 inin LP, 60 p . Post and packing on all orders 10 p . Send S.A.E. for list. M. DZII BAS, 158 Bradshawgate, Bolton, lanes

R

51 Burnley Road, Rawtenstall
Rossendale, Lancs
Tel.: Rossendale 3152

EBF80	15p	PCC84	15p	PY800	p
EBF89	17tp	PCF80	15 p	PY801	174p
ECC82	15p	PCL82	20p	U191	22+p
ECLB0	15p	PL36	25p	30 Cl 5	25 p
EF80	10 p	PY33	25p	PCF86	$25 p$
EF85	15p	PYBI	171pp	PCL85	25p
EY86	20p	PYB2	15 p	PCL84	$25 p$

Copper Laminate Board, for ecching, ip per sq.in. Double sided Itp per sq.in. Any size cut, min.
order 50 p plus 10% P. \& P.
Postage on Valves: one valve 4 p, up to $62 \frac{1}{2} p$, over 6 post paid.

HI-8TAB RE8I8TORs mixed bag, 100, 50p; 250, \&1. Please send cash with order to ELMBRIDGE INSTRUMENTS LTD., Island Farm Avenue, West Molesey Trading Estate, Surrey.

ZZ ELECTRONIC8, 141 Morning Lane, Hackney, E.B. TV and Electrical repairs. Spares Specialist. Valves and TV tubes tested

FOR SALE

SEEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PE, New Mills, Stockport.
"PRACTICAL ELECTRONICs'. Every issue. Offers. 2 Lydford Way, Birtley' ('o. I)urham

MORSE MADE ! !

FACT NOT FICTION. If you start RIGHT you will be readiug amateur and commercial Morso withln a month (normal progreas to be expected).
Using scientifically prepared 3*Epeed records you automntleally learn to recognise the code RHYTHM Without transiating. You can't help It, It's as eray as learniug a tune. 18 W.P.M. in 4 weeks guaranteed.
For details and course C.O.D. ring S.T.D. 01-660 2896 or aend $4 p$ stamp for explanatory booklet to:
G8HEC (Box 19), 45 OREEN LANE, PURLEY, SUREEY
catalogue no. 18, Electronic and Mechanical Components, new and manufacturers surplus. Credit vouchers value 50p. Price 23p. including post. ARTHUR SALLIS RADIO CONTROL LTD., 28 Gardner Street, Brighton, Sussex.

SITUATIONS VAGANT

EAGLE INTERNATIONAL require Audio Engineers. Excellent prospects. Must be fully conversant with Stereo Amplitiers, Tuners, Multiplex, ete. Contact MR. MOKIOW 01-636 0961.

EDUCATIONAL

HUNDREDS OF TOP PAID JOBs in engineering await qualifled men. Get a certiffcate through B.l.E.T. Home Study-Mech., Elec., Auto., Radio, TV, Draughts., Electronics, Computers, Building, etc. Send for helpful FREE book, B.I.E.T., Department 125 K , Aldermaston Court, Reading, RG7 4 PF.

GET INTO ELECTRONICs-big opportunitles for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. R.T.E.B., ('ity \& Guilds, Radio, TV, Telecons, etc. For froe informative Guide, write CHAMBERS COLLEGE (Dept. 856 K), Aldermaston Court, Reading, RG7 4 PF .
A.m.s.E. (Elec.), Clity \& Guilds, R.T.E.B. Cert., Radio Amateurs' Cert., etc., on "Satisfaction or Refund" terms. Wide range of courses in Elec. Engineering, Design, Installation, Hepairs, Refrigeration, Electronics, Radio and TV., etc. Send for full details and illustrated book -FREE. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 124 K Aldermaston Court Reading, RG7 $41^{\prime} F$.

MEN: You can earn 550 p.w. Learn Computer Operating. Send for FREE brochureIONDON COMPITER OPERATORS TRAINING CENTRE, C95 Oxford House 9-15 Oxford Street, London, W. 1.

TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
First-class opportunities in Radio and Electronics await the I CS trained man. Let I CS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:
: C. \& G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.

* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- RADIO OPERATOR CERTIFICATES.

Examination Students coached until successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES

Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how I C 5 can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL
 CORRESPONDENCE

Schools

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools
(Dept. I52), Intertext House, Stewarts Road, London, S.W. 8

NAME

RECEIVERS AND COMPONENTS (continued)

PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned complete with layout drawing.
EXAMPLES
Marine Tachometer (May 1970) 25p ea. Musical Stave (May 1970) 40p ea.
Waa-Waz pedal Vol. 4 No. 7 14p ea. Audio Sie. Gen. (Sine and Square on one board) Vol. 5 No.
1042tp ea. List. Now available from:-HENRY's
S.A.E.
Sor RADIO LTD., Edqware Roadd LOndon, W. 2 P.H. ELECTRONICS, Industrial Estato,

Sandwich, Kont. Tel. 2517

TRANSFORMER KITS

Consisting of:- CLAMPS, WINDING BOBBIN AND LAMINATIONS
Max. Rating Ref. No. Price P. \& P.

5 VA	74/63	45p	$7 \frac{1}{2} \mathrm{P}$
10 VA	35/75	52 $\frac{1}{2}$ p	12tp
15 VA	147/88	$75 p$	173p
25 VA	$29 / 1$	f1.02\%	224p
50 VA	781125	f1.77 ${ }^{\text {d }}$	27)p
75 VA	78/150	[2.37 ${ }^{\text {d }}$	$32 \frac{1}{10}$
100 VA	120/125	¢2.75	371 $\frac{1}{2}$

Transformer designs up to 100 VA
50p ea., larger kits and designs available on request.
Supplied by
WEST DIDSBURY TRANSFORMERS
Brooks Street, Higher Hillgate
Stockport, Cheshire SK1 3EU Tel. $061-4806479$

BARGAIN RELAY OFFER

Single pole change over allver contacta 25 V to $50 \mathrm{~V}, 2.5 \mathrm{k} \Omega$ coil. 8 for 50 p . P. \& P. 5 p .
KEYTRONICS mail order only 52 EARLS COURT ROAD LONDON, W. 8

01-478 8499

COMPUTER BOARD8, with about 10 silicon transistors, mainly npn similar 2N706, 20 silicon diodes, quality resistors, capacitors, etc., some have trimpots and zeners, 17p each, 70 p for 5 , 82.50 for 25 . L061C I.C.'s from 5 p each on boards. MIXED COMPONENT8 including resistors, capacitors, diodes, I.C.'s transistors, some damaged but well worth 65p per lb or money back. THYRIBTOR8 2N1595 per lb or money back. 50 PIV, 1 A, $65 p$ for 8 on board. All post paid S.A.E. for list and all data, PAWson, Sotreet, Armadale, W. Lothian, Scotland.

PRINTED CIRCUITS

PE 'Gemini' STEREO AMPLIFIER (Dec. 1970) Twin Channei Main Amplifier. Stabilised Power Sup ply Total price $£ 1 \cdot 13$. $9 / \mathrm{P}$. 8p.
All boards are fibreglass, drilled and tin plated with reverse side screen printed for easy component and reverse side goreen printed for easy component
connection identification. SAE Ior PC EICCRONICS 18 projects. SERVITRON ELECTRONICS, 18 Beackdean FY6 BBG

COMPUTER PANELS. 5 -BC108 diodes, 15 p ($8 /-$ COIPUTER PAMELS. ${ }^{5-\mathrm{BC}} \mathbf{1 0 8}$ diodes, 15 p (8/-)
 per panel. 8-0C170 diodes, 40 y (8/-), poet 8p (1/7) per panel. 2-0C170, 2 -GET875 or 4 MD834, $5 \cdot 100 \mathrm{mfd}$ 12 V Electrolytics, pot core, etc., 80 p ($8 /-$), post 8 pp (1/7) per panel. PAMELS WITH VHF MPR AKD/OR PIP SILICOIT TRANIISTORS, resistors, diodes, capacitors, etc. Panela with 4 tranaiftors 10 p (Ri-), with 6-8, 15p
 dve or over $250 p(5)$
GIXED TAABPISTORS OK PAIELS. 50 for 80 (18/-). 100 for 81.85 ($2 / /-)$ C. C.
 15p (3/-) tor six.
POLYBTYREAE CAPACITORS. $125 \mathrm{~V}, 18,22,120$,
$150,180,220,330,390,560,680,820,1,200,1,500$, $1,800,2,200,2,700,3.300,3,900,5.600,6.800,8,200$. $0 \cdot 01,0.012,0.015,15 \mathrm{p}$ ($8 /-1$ dozen. Post free with other goods otherwise 10 p (2/-).
AB8ORTED COMPORENTS. 7ib. 21 (20/-) C.P.
J.W.B. RADIO

75 Eayalde Road, selford 6, Lancs. MAIL ORDER ONLY

BRAND NEW COMPONENTS BY RETURN. Electrolytics 15 or $\mathbf{2 5 V} 1-10 \mathrm{mfd}, 3 \frac{1}{2} \mathrm{p}$. $20-100$ mfd, 4p. Mylar Film 100V 0.001, 0.002, 0.005, $0.01,0.02$, 2 p . $0.04,0.05,0.1$, $2 \frac{1}{2} \mathrm{p}$. Mullard minlature ('arbon Film Resistors E12 Series HW $1 \Omega-10 \Omega, 8$ for 5 p. Postage 5 p . THEC.R. SUPPLY ('O., 127 ('hesterfield Road, sheffield, S8 ORN.

MINI MAIN8 PACK KIT. Safe double-wound transformer, Si rects, $1,000 \mu \mathrm{~F}$ and instructions for $9 \mathrm{~V}, 120 \mathrm{~mA}$ eliminator. Can be built to size of PP6 battery. U.K. post paid $95 p$. S.A.E. list. AMATRONIX LTI., 396 Selsdon Rd., S. Croydon, Surrey, CR2 0DE.

SERVICE SHEETS

RADIO TELEVIBION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Iid., London, W.6 (01-743 8441).

8ERVICE 8HEET8. Radio, TV, etc., 8,000 models. List 10p. S.A.E.enquiries. TELRAY, 11 Maudland Bank, Preston.

8ERYICE 8HEET8 (1925-1971) for Televislons, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFinding quide. Prices from 5p. Over 8,000 models available. ('atalogue 13p. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

TELERADIO ELECTRONICS

JOIN THE FASCINATING HOBBY OF RADIO CONTROL. BUILD A SINGLE CHANNEL SYSTEM FOR ABOUT £12 OR A SOPHISTICATED PROPORTIONAL SYSTEM FOR £80
Details from the specialists: TELERADIO CO. (P.E.)
325-7 LOWER FORE STREET, EDMONTON, N. 9

AMPLIFIER \& PREAMP. PRINTED CIRCUTT BORROS FOR MULLARD CIRCUITS

High quality Printed Circuit Boards for the following circuits shown in the Mullard publication Transistor Audio and Radio Circuits.

10 W high quality audio amplifier (p.102) 66p 25 W high quality audio amplifier (p.106) 70p 10/25 W high quality audio preamplifier (p.108) 73p Price each including postage and packing. Cash with order. All boards are tinned to prevent oxidization and to aid soldering and have the component identification printed on the reverse.
BRIBOND PRINTED CIRCUITS LTD
Terminus Road, Chichester, Sussex

WAH-WAH PEDAL KIT

SELECTIVE AMPLIFIER MODULE. The basis of the WahWah pedal. Kit contains all the components to build a 2 -transistor circuit module, also the sockets, control, etc., required for the constructor to assemble his own design, $\in 1.75$ ($35 /-$).
Assembled and tested module $£ 2 \cdot 13$ (42/6).
FOOT VOLUME CONTROL PEDAL. Foot pedal unit in very strong fawn plastic. Fitted with output lead and plug for connection to guitar amplifier. May be used for volume control or converted to Wah-Wah by adding the module.
Pedal unit now only $£ 5 \cdot 13$ ($£ 5.2 .6$).
Complete kit for Wah-Wah pedal now only $£ 6.50$ ($£ 6.10 .0$).
All post free.
Send 15 p ($3 /-$) for our catalogue of components, testmeters, musical electronics and more details of the above items.

Callers welcome.

brand

TRANSISTORS NEW LIST－NEW PRICES SEND FOR FREE COPY TODA

\section*{HENRY＇S saw interniep nieulis} | 2N404 | 22p | BAY38 | 17p｜BY100 | |
| :--- | :--- | :--- | :--- | :--- |
| 2N696 | 17p | BC107 | $12 p$ | BY | | 2N404 | 22p | BAY38 |
| :--- | :--- | :--- |
| 2N696 | 17p | BC107 |
| 2N697 | 17p | BC108 |
| 2N706 | $10 p$ | BC 109 | 2N706A

2N930 $2 N 706 A$
$2 N 930$
$2 N 1131$ $2 N 113$
$2 N 1132$

\square | 2p | BY 100 |
| :--- | :--- |
| 2p | BY127 |

$17 p$
10 BCl 108
10 BC 109 10 p
12 BC 109
BC113

35 p	C	14
30 BC	3	
30 p	BC 116	3
20p	BC 116 A	4

 | BYZ10 |
| :--- | :--- |
| BYZ |
| BY 11 |
| BYZ |
| p |
| BYZ 15 | 3p

SE OFFER FROM
5_{p}
OF BRAND NEW
3_{p}
LOW COST TTL STO
CER
7400
C

gript

Qua
Qua
HEX
HEX
Trip
Sing
Dua
BCD
BCD
Dua
Sing
Dua
Sing
Sua
Dua
Qua
Dual
Fou
BCD
Div
Div
Dua
4 B
5 B

NTN

NतN

路

，

完

TतNT

 $2 \mathrm{~N}_{2} 90_{6} 30 \mathrm{D}$ BCY

 $\begin{array}{lll}2 N 3011 & \text { 25p } & \text { BCY } 41 \\ \text { 2N } & 2053 & \text { 15p } \\ \text { 2NCY42 }\end{array}$ \begin{tabular}{ll|l}
$2 N 3053$ \& $15 p$ \& $B C Y 42$

$2 N 3054$ \& $50 p$ \& $B C Y 43$

$2 N 3055$ \& $75 P$ \& $B C Y 58$

$2 N 3525$ \& C1．10 \& BCY5

$2 N 3702$ \& 12 B \& BCY7

 $\begin{array}{ll}\text { 2N3703 } & 12 \mathrm{p} \\ \text { 2NCY7I }\end{array}$

2N3704 \& 17 P \& BCY 72

2N3705 \& 15 P \& BCY 78
\end{tabular} $\begin{array}{ll}\text { 2N3707 } & \text { 15p } \\ \text { 2NCY79 } \\ \text { 2N3709 } & \text { 12p } \\ \text { BCZ } 10\end{array}$ $\begin{array}{ll}2 N 3710 & 12 \\ 2 N 3819 & 15\end{array}$ $2 N 3819$

$2 N 3820$ $\begin{array}{ll}2 N 3820 & 60 p \\ 2 N & \text { BD } 1212\end{array}$ 2N405
2N406
2N545 2N5457
2N5458 2NS4S8
2N5459
2S301 2530
2530

2530 | | $50 p$ | BD153 |
| :--- | :--- | :--- |
| $\mathbf{2 S 3 0 2}$ | $50 p$ | BDI 56 |
| $\mathbf{2 S 3 0 3}$ | $60 p$ | BDY |
| $\mathbf{2 S 3 0 4}$ | $\mathbf{7 5 p}$ | BDY | 25304

40250
40351 4036
4036
AAY號

，

FIND BURIED REAL WORKING ELECTRONIC TREASURE! ORGAN

necessary, size of detector head No soldering \times atin Great demand expected at this remarkably low price-All parts including detector head case, nuts, screws, wire, simpie instructions, etc. Send
now $42.87+33 \mathrm{P}$ now $48.87+33 \mathrm{p}$ P. $\& \mathbf{P} .(47 / 8+6 / 6)$ (Telegcopic
handle as illustrated $1.75(35 /-)$ extra) Parts handle as illustrated
available separately. Made up looks worth
\pm

(55/-) Don't cenfuse with ordinary electric organ that simply blow air over that simply blow air over mowh-argan type reeds, elc. Eight months were spent in creating and testing this superb, revolutionary electronic organ. Fully translatorised, no valves. Proper moif-contained londspaakor.
Fifteen separate keys span tivo full oclaves-play the "Yellow Rose of Texas", "Silent Night", "Auld Lang Syne', and lota of simitar tunes on this real working plectronic organ. Size $131 \mathrm{in} \times 10 \mathrm{in} \times 21 \mathrm{in}$. Uses standard battery. Have the thrilland excitement of building it together with the pleasure of playing a real electronic organ. Play it anywhere. No moldering necesary:. Easy as A.B.C. to make following the fully illus-
 OKLY $29.75+23 \mathrm{p}$ P. \& P. ($55 / \sim+4 / 6$) for all part. , including case, loudspeaker, transiators, condensers, resistors, knobs transformers, volume control, wire, nuts, screws, ingtructions etc. (parts available separately). Have all the pleasure of nuaking it yourself, fluivh with an exciting gift for somente.

MAKE 5 PROJECTS

INCLUDING 3
TRANSISTOR
LOUDSPEAKER

RADIO

Amazing Construction get $\begin{array}{cc}\text { tor } 21.97 & \text { (39/6). } \\ \text { A complete Home }\end{array}$ Radio Course. No Radio Course. No
experience needed Parts inchuding

LISTEN TO AIRCRAFT COMMUNICATIONS new V.H.F. AIRCRAFT BAND converter ONLY fi, 27 (47/6) Listen is to AIRLIMES, PRIVATE PLAMGs, JET PLAIES, Eavesdrop on
exciling crosatalk besoeen pilols, ground approach, ground control, airport tower. Hear for yourself the disciplined voices hiding leaseness on talk downs. Be with them when they have to take nerve ripping decisions in emergencies-tune in to the international distress frequency. Covers GATWICK, LUTOH, RIFGWAY, PRESTWICK, ETC This fantastic fully transistorised instrument can be brilt by anyone nine to ninety in noud forst time). No soldering necessary. Fully illustrated simply worded inatructions take you step-by-step. Usea standard PP3 battery. Size only $41 \mathrm{in} \times 3 \mathrm{in} \times$ 1 in. All you do is extend rod aerial, place close to any ordinary medium-wave radio (even tiny pocket radios). HO CONNECTIONS WHATEVER FEEDED, Lse indoors or outdoors. SEND NOW. ONLY 48.87+23p (4/6) P. \&P.for all parts, including case, nutp, screws, wire, etc. etc. (parts available separately).

SHORTWAVE TRANSISTOR RADIO

IN ONE EVENING
At last! After trying countlews circuits eoarching lor eaty build, work-hraame ehort waver. formance, we chose this "Sky Roma". Anyone from 9 years up call follow the step-by-step, easy-asABC fully illustrated in-
(We built ten prototypes and every one worked first time) no soldering Russia, Africa, USA, Switzerland, otc. Experience thrills of world wide news, sport, music, ete. Eavendrop on anaraal broadcants. Uses PP3 battery. Transtatorised (no valves). Size only $3 \mathrm{in} . \times 4 \mathrm{in} . \times 1 \mathrm{in}$. As tremendons demand anticlpated price held to only $52-25+17 \mathrm{p}$ P. \& P. $(45 /-+3 / 6)$ for all parts inct. cabinet, screws, instr., etc. Parts available separately.

ENAMELLED COPPER WIRE

S.W.G.
$\frac{1}{2} \mathrm{lb}$. Reel
1lb. Reel
18.22 $62 \frac{1}{2} \mathrm{p}$ 9212 p
23.30 65p $97 \frac{1}{2} \mathrm{p}$
31-35
$67 \frac{1}{2} \mathrm{p}$
£102 $\frac{1}{2}$
36.40
$82 \frac{1}{2} \mathrm{p}$
£1.32 $\frac{1}{2}$
41-44
$97 \frac{1}{2} \mathrm{p}$
£1.62 $\frac{1}{2}$

Orders despatched by return of post.
Please add $12 \frac{1}{2} p$ per item P. and P.

Supplied by:
BANNER TRANSFORMERS

(Dept. PE), Brooks Street Higher Hillgate, Stockport, Cheshire

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and well send you full details and a free book. B.I.E.T. has successfully trained thousamds of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION

OR REFUND OF FEE' terms. If youdd like to know how just a few hours a week of your spare tine, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

THEY DID IT-SO COULD YOU

- My income has almost trebled . . . mv life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured." - Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662
"Completing your Course meant going from a job I detested to a job I love." - Case History $\mathrm{B} / 46$ I

FIND OUT FOR YOURSELF

These letters - and there are many more on tile at Aldermaston Court - speah of the rewards that come to the man who has given himselt the specialised k mow-how employers seeh. There's no surer way of getting ahead or of opening up new opporlumties for sourself. If will cost you a stamp to tind ou how we can help rou.

7ree!

Why not do the thing that really interests sou? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIIISH INSTIIUTEOF ENGINEERING IECHNOLOGY

Dept 316A, Aldermaston Court, Reading RG7 4PF.

TENRY'S RADIO LTMTED \#umsmo ENGLAND'S LEADING ELECTRONIC CENTRES HI-FI COMPONENTS • TEST • PA. DISCOTHEQUE ELECTRONIC ORGANS • MAIL ORDER

TRANSISTOR AMPLIFIERS

 NEW RANGES NOW IN STOCK(Leaflets Ref. No.: 6 and 8). Post, etc., 20p (4!-). 43004 TR 9 V 300 mW 104 4TR 9V IW 3044 TR $9 V 3 W$
555 GTR I2V $3 W$ PA76TR 16 V 7 W 6086 TR 24 V 10 W 4104 TR 28V 10W MPA $2 / 36$ TR 18 V 12 W
MPA12/15 6 TR 36 V 12 W Z30 9TR 30V 20W PA25 IOTR (Special) 25 W Z50 30V 40 W PA50 I2TR (Special) 50 W 100100 W with power supply $(190 / 4)$

OPTIONAL POWER SUPPLIES Post, etc., 20p (4/-) P500 Switchable (One or Two) for 104, 304 ب2.62 (52/5) PS20 Switchable (One or Two) for PA MPA12/3 or MPA12/15 PZ5 for 730 \$3.97 (79/5) or PZ6 for Z30 84.50 ($90 /-$)
 MU442 for 1 or 2 PA25 or 1 only PA50

PROJECT 60 PACKAGE DEALS

$2 \times Z 30$ amplifier, stereo 60 pre-amp. PZ5 power supply, 40p. 2×750 amplifier, stereo 60 pre-amplifier PZ8 power supply, C21.50; p.p. 40p. Transformer for PZ8 $\mathbf{2 2 . 2 5}$ extra Any of the above with Active Filter unit add $\mathbf{£ 4 . 8 7}$ or with pair Qi6 speakers add fi6. Also NEW FM TUNER, $\mathbf{1 2 1}$.

BUILD THIS VHF FM TUNER
5 MULLARD TRANSISTORS $300 \mathrm{ke} / \mathrm{s}$ BANDWIDTH. PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION.
 VHF FM Tuner for quality and reseption of mono and stereo. There is no doubt about it-VHF FM gives the REAL sound. All parts sold separately. TOTAL E6.97 (129/-). p.p. 20p (4/-) Cabinet f1, Decoder Kit 65.97, Tuning meter $\{1.75$. Mains unit (optional) Model PS900 $\mathbf{C 2} .47$ (49/5). Mains unit for Tuner and Decoder PSI200 22.62
(52/5).

BUILD YOURSELF A QUALITY RADIO
 Excellent printed circuit design with full Power output. Fully tunable on both Fitted 5in speaker. Room filling power. Easy to build with terrific results. Two colour leathercloth cabinet with silvered Cont. All local and continental stations. Complete detailed instructions.
Afl parts sold separately.p. 35p (7/-) Af parts sold separately. Ask for

HI-FI TO SUIT

ChOOSE
FROM
and a complete range of andividual units in stock of Demonstrations all day-visit our new HiFi Store. LOW
CASH OR CREDIT/HP CASH OR CREDIT/HP
TERMS (Credit terms from E30 purchase-callers only).
FREE-St FREE-Stock Lists Nos.
on request-BEST in U.K.

HENRY'S LATEST CATALOGUE

Now 350 pages

WHY
NOT
SEND
AWAY TODAY?

- COMPONENTS, TEST GEAR * EQUIPMENT, MODULES
- SPECIAL OFFERS, Etc., Etc. Everything for the constructor Complete with 50 p value discount vouchers for use with purchase.

FREE
FREE

FREE
FREE ${ }^{8}$ ic, Page Transistor, 36
20 page Organs to Decks and Hi -Fi Stocks Lists No.
$16 / 17$ 16/17
PA. Disco and Light. ing List No. 18
Quotations for all Electronics-send

TEST EQUIPMENT FOR HOME, SCHOOL \& PROFESSIONAL USE

$\underset{\text { E8. } 50 \text { (} 190 /-) \text {, p.p. } 20 \mathrm{p} \text { (4/-). (illus.). Price }}{\text { Leather case }}$ $68.50(190 /-)$, p.p. $20 \mathrm{p}(4 /-)$. Leather case
$\$ 1.42(20 / 5)$. $81.42(20 / 5)$. 200 H
$20 \mathrm{k} / \mathrm{V}$. Price $63.87(77 / 5)$, p.p. 20 p $(4 /-)$ Case 62p ($12 / 5$).
500 Price $80 \mathrm{k} / \mathrm{V}$ multimeter. 87 ($177 / 5$), p.p. 20p (4/-). Leather case $11.50(30 /-)$),
 (3/-). Leather case 1 (15 (23/-). (350/-) P. P.P. Pop (8/-).
signal injector \& 1.75 pencil
SE500 Pocket pencil signal tracer $\& 1.50$ post paid. TE20D RF generator. Price f15, p.p. $40 \mathrm{p}(8 /-)$ C17, p.p. $40 \mathrm{p}(8 /-)$.
TEIS Grid dip meter. Price $\mathbf{1 2} \mathbf{2 . 5 0}$, P. ${ }^{2} 3$ Scope 3 in. tube. Price 637.50, T.P22 Audio Generator. C17, p.p. 40p.
 (Get a copy of our latest catalogue for full specifications and further ranges.)

NEW MINIATURE
LOW COST
AMPLIFIER MODEL 4-300
9 V operated or mains unit optional transformer (MT98 70p (14/-)), $1-10 \mathrm{mV}$ adjustable sensitivity. P/P out put for 3-8 ohms. Fitted volume

Ideal for experimenters, educational projects as well as for practical uses. Delay adjustable $3-15$ secs. Operates Relay Colts. Heavy Duty plete with suggested applications sheet. Price fi.75 (35/-) post paid.

GARRARD TAPE DECK

 Price 19.97 199/6, p.p. $\begin{array}{lr}33 \mathrm{p} & (6 / 6) \\ \text { (3tin. } & \text { tape }\end{array}$ $300 f$ t. and ($8 /-$).

9 V operated 2 -speed tape deck fitted Record/Replay $\frac{1}{2}$ track and Erase/Bias Osc. Head. Complete circuit. Unit size 9 in $\times 6$ fin $\times 1$ itin and 2 itin below motor board. Takes up to lin spools. Supplied Brand New.

HENELEC SELF-POWERED PREAMPLIFIERS

Designed for use with PA25 and PA50

SLIM MODERN DESIGNS USING THE LATEST SILICON TRANSIS ETC.' fitted. Self powered PUSH. BUTİON SELECTION, $\pm 20 \mathrm{~dB}$ BASS AND TREBLE BOOST' AND CUT. All inputs provided plus TAPE RECORD and REPLAY.

SIMPLICITY TO MOUNT
All units no soldering-just edge

25 WATT \& 50 WATT SILICON AMPLIFIERS

GOLD AND SILVER FINISH, Mains operated. Supplied with all plugs, etc.
ADJUSTABLE OUTPUT UP TO VOLT.

* FET9/4. Mono with built-in mic. mixer. Accepts any ceramic or crystal cartridge. Plus tuner, tape, etc. Price 412.50 ($\mathbf{L 1 2 . 1 0) , ~ p . p . 2 0 p}$ (4/-).
- FETIS4 STEREO (illus.). Magnetic cart. input, tuner, tape, etc. Beautiful stereo sound. Price 116.50 (16.10), p.D. 25p (5/-).

Also suitable for use with any power amplifier. Sugzested types PA25,
PA50, MPA12/3, MPA12/15.

Electronic Compo
Test Gear Centre356 EDGWARE ROAD,
LONDON, W. 2.
Tel: 01 -402 4736
OPEN 9 a.m. to 6 p.m. MONDAY TO SATURDAY - 9 a.m.

Electronic Cirgans,
P.A. \& Discotheque Centre 309 EDGYARE ROAD,
LONDON, W. 2.
Tel: 01-723 6963
to 1 p.m. THURSDAYS -

Mail Orders, Special Bargain Shop, Industrial Sales 303 EDGWARE ROAD, LONDON, W.2. Tel: 01-723 1008/9

[^0]: une-In to the entire air communications band covered by $108-137 \mathrm{MHz}$ in addilion to full AM medium wave intermedrate requencies. AM 455 KHz : VHF $10.7 \mathrm{mc} / \mathrm{s}$ Output power: $200 \mathrm{mV} 2^{21 / 215}$. P.D. 8 otim speaker. A built in ferrite rod aerial is provided for AM reception. The 10-406 is finished in blue with chrome trim, chrome telescople an-enna. Size $6^{3} / 4 \times 33 / 4 \times 17 / 4$ in. Complete with batteries. magnetic earphone. instructions and
 LASKY'S PRICE $=8.35$

[^1]: © IPC Magazines Limited 1971. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2.25$ ($£ 25 \mathrm{~s}$. 0d).
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editoriol 01-634 4452; Advertisements $01-6344202$

[^2]: - I POST NOW

 To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

 NAME
 BLOCK CAPS
 BROCHURE
 or write if you prefer not to cut page I
 ADDRESS

