PRACTICAL

 JANUARY 1971

ADCOLA Soldering Instruments add to your efficiency

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}(4.75 \mathrm{~mm})$ diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{c}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.
*Additional Stack Bits
(illustrated) available
COPPER

-	
B $14{ }^{\frac{7}{12}}{ }^{\prime \prime}-2.4 \mathrm{~mm}$	chisel face
\square	
B $12 \frac{1}{16}{ }^{\circ}-4.75 \mathrm{~mm}$ EYELET Bit	
B $588^{\frac{1}{4}}$ " -6.34 mm chisel face	
LONG LIFE	
\square - 0	
$\bigcirc 42 \mathrm{LL} \frac{1}{16}$ - 4.75 mm	
B 38 LL $\frac{1}{*}^{\circ}$ - 32 mm chisel face	
$\longrightarrow \longrightarrow$	
B 14 LL $\frac{7}{12}^{\circ}$ - 24 mm Chisel face	
\square	
B 44 LL $\frac{1}{14}$ - 475 mm	SCREWDRIVER face

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service. . . reliability . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list and catalogue
ADCOLA PRODUCTS LTD..
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telephone: 01-622 0291/3 - Telegrams: Soljoint London Telex • Telex: Adcola London 21851

PHOTOELECTRIC KIT

Contents: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Intra-Red Phototransistor, Latchigg Relay, 2 Transistors, Condensers, Resistors, Gain Control, 8 teady-Light Photo-Switch/Counter/Burglar Alam, etc. (Project No. 1) which can be modified for modulated-light operation.

INVISIBLE BEAM OPTICAL KIT

Everytbing needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTB: 2 lenses, 2 mirrors, 245 -degree wooden blocks, Infra-red filter, projector lamp holder, build ing plans, performance data, etc. Price 19/6. Pontage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mail 8/.
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard kit. Larger Lenses. Filter. etc. Price 29/B. Postage and Pack. 1/B (U.K.). Commonwealth: \&uriace Rail etc. Price 29/6.
$2 / 6$. Air Mail $10 /$.

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-bearn, Relay-less, Steady-light Photo-Switch, Burglar Alarm. Door Opener, Counter, etc., for the Experimenter.
CONTENTB: Infra-Red Sensitive Phototransiator, 3 Transistors, Chasois, Platic Case, Resistori, Screws, etc. Full Size Plans, Instructions, Data Sheet ' 10 Advanced Pice 1010 Pota
and Pack. 1/6 (U,K.). Commonwealth 2/; Air Kail 4/-

JUNIOR OPTICAL KIT

CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to huild 1 miniature invisible beam projector and photocell
recefver for use with Junior Photoelectric Kit.
Price 10/6. Post and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/: : Air Mail 4/.

YORK ELECTRICS

335 BATTERSEA PARK ROAD, LONDON, S.W.II
Srnd a S.A.E. for fall dehats, a brie'description and Photographs of alt Kits and alt à Radio. Electronic and Photoctectric I'rojects Assembled.

knifherkis
 FANTASTIC LOW PRICES!

Due to huge purchase these superb U.S.A. construction kits can be offered at $25 \%-50_{\%}^{\circ}$ off recommended list prices. Absolutely complete with most detailed construction and operating books. Available from all branches or by mail order for 7/6 CARRIAGE AND PACKING on each kit. Two kits or more carr. free.

KG-865 50 Watt Stereo Amplifier Kit
helexf reatuag
All Bilicon Transiatora for stability, Cleaner Sounde Extremely Wide Power Bandwidth and Frequency Reaponse 50W IHF Power Output Specially selected Low-Noine Preamy Tranaistorse Two Printed Circuit Boarda for Fabt Easy Assembly Convenient Front-Panel stereo Headphone Jack Teakfiniahed Extraded Aluminiam Front Panel-Two a.c. Convenience OutLete.

 pluk sterca headphoner - IM Distortion: zuder $1{ }^{\circ}{ }^{\circ}$,
of fullz and ;,monllz mised +1 at rated nomer

 ment: :3n- Aur, juhz a.c.
 Lasembled 84 GRS. Teak Cise 25 EAtra

KG-625 Deluxe fin Vacuum Tube Voltmeter Kit
 $I-5-5-15-50-150-500-1,500)^{\circ}$ fuld senle.
Accuracy: 1.3% of froll sente reading - Accuracy: I- 3% of foll scale readinf

 $1,400-1,2 \mu 0 \mathrm{~J}$ full scale Accuracy: $\pm 5 \%$ Prequency Reaponse: 1 IdB+30 IFz

KG-375A Deluxe Solid-State Auto Analyzer Kit
Twie-up ned tronble-shool miny ellr. perforum In' nevernd restera in omp... do nll thin Sat Engine Idie and Automatic Transmisaion Shilt Pointe Detect Condition of Point 8urfacen Detect Distributor Wrear - Check Voltage and Current Regulatort Yoltsece Oqunerators for both Current and Circulta Detect Variation in Dwell Angle. Circuiti betect Variation in Dwell Angle. 18 Gms . Asmembled Price 21 GNs.

WHY NOT BUY THE PAIR ?
KG-371 Deluxe Solid-
State Timing Light
IPrformmence nurpusses assenbled wiln
costing thuch more
Helps Set Iguition Timing Check! Synchronisation of Double Breaker Arms Check! for Btickink Antomatic Spark-Advance Mechaniam Checks Distributor Cam Wear A Built-in d.c. Power per gallon; Improved performance; Greater reliability More mile
 Only.

ALL SILICON TRANSISTORS

The NEW KG-980
Stereo FM Receiver Kit
besiguted to satixfy the hoxt
critical Lixtecier

R.F, and I.F. Panely Asembled and Aligned Front Panel Stereo Headphone Jack snd Speaker Muting \$witche Full Controln imelading Tape Monitor 50 FW I, H. F. Output Urable I.R.F. Senitivity: $3 \mu 1$ Frequency Response: $1-$ Id B, 30 to
 3HilB Chsnnel Separation: 3ivd B Complementary Traniformerlease Power

STAR ROAMER 5-Band Shortwave Receiver Kit
Bandspread: electrical. calibruted
"-10.1 Sennitivity: $10 \mu 1$ for Van sighnt-to-noise raito I,F. Bandwidth: skHzz at bil B down ".-.j.iliz Speaker: li, perniauent maguel lype Power Supply: fused, hiansformer operated Headphone Oatpat: lore impedance Valve Complenients:

 Requirements: $\because: 3 H-: j 0 I^{\prime}$, 50 Hz H.c.; fill R Coveri 200 to 400 KHz and 550 kHz to 30 MHz in 5 Band-awitched Ranges Superheterodyne Circnit includes controlled regenerative I.F, stage ©A.V.C. reducea tading and blating; A. N.L. ents nolse to a minimum Aerial Trimmer
 Eany-to-Rend 7 in Silde Rule Din).

100-in-1 Electronic Science Lab LOOK AT THE PROJECTS YOL CAN BCTLU - Electronjc 8cale Electronic Timer Signal Generstor Hybrid Light, Mettere signal Injector Morst Code Buzzer Electronic Cat Ohmmetor Boat Horn Hybrid Radio. Hybrid Voice Rolay Air-powered Radio Colarity Checker Valve Checker. Includes: Duat Headset Photocell Nueaker Meter Aerial Transistors.
Recommented List Price $816.8 .0: 9$ g: Girs.

KG-640 20,000 ohms/Volt VOM Kit

 מIG PROFESSIONAL SIZE 0: RANGEACLLTAETER - A.C. Volt (12 Ranges): $0-1-1-16-10-50-200-100-500-$
 Ranges): $1-1.9 月 0-100$, not ohma-10 megs. Centre scales nt 14 ,

u.e. 3 oin. ".r. 5% Teat Leads: one red, one black. eark trin long © Multiplier ReniaRecommended List Price £16.19.6: 9yaNs. Assembled Price 12 G\#g.
 We offer you fully tensilised polyester'mylar and
P.V.C. tapes of identical qualjty hiofi, wide range P.N. . tapes of identical quality hi-ff, wide range
recording characteristics as top grade tapes. Quality control manufacture. They are traly worth it few more coppers than acetate, sub-stanulard, jointed Or chenp imports. TRY ONE IND PROVE $1 T$
YOURSELF.

 Triple 000 ft . 5in. $1,800 \mathrm{ft} .13 /-$ 51 in. $2,400 \mathrm{ft} .84 / \mathrm{m}$ $7 \mathrm{~m} .3,600 \mathrm{ft}$. $44 / \mathrm{m}$
Quadruple
3in. 600 ft .

Poxtoge $1:$. seel. Pust frec less $5^{\circ}{ }^{\circ}$ on the ce reels. Quality and Trade enquiries invited. NOTE. Large tope slocks at all branches.
Stockists of Leak, Quad, Chapman, Goodman, Armstrong, Tripletone, Linear, Rodgers, Truvox, Ferrograph, Wharfedale, etc., etc.

[^0]

brano new fully guaranteed tranisitors sind NEW LIST - NEW PRICES

1N4001	1/6	AAZ12 4/-	BPY10 19/6	INTEGRATED CIRCUITS	
1N4002	$1 / 6$	AAZ13 2/6	B8X20 3/6	Type I 12	$25+100+500+$
1N4003	$2 /-$	AAZ17 2]-	BSX21 4/	UL914 $9 / 9$	8/- $7 / 3^{+} \quad 6 / 6$
1N 4004	$2{ }^{2 /}$	AC126 5/-	B8X76	UL923 $12 / 6$	1/- 10/- 9/3
1N4005	$2 / 6$	$\mathrm{ACl27}^{5 /-}$	BSY27 4/-	SL403A $42 / 6$	40/- 37/6 35/-
1 N4006	3 3/-	AC127Z 10/-	B8Y28 5/	MC1303 $52 / 6$	45/- 40/- $35 /-$
1 1N4007	4/-	$\mathrm{ACl28}^{\text {5 }}$ /-	BSY29 5/-	$\begin{array}{lll}\text { MCi304 } & 55 /-50\end{array}$	$-47 / 6 \quad 42 / 6 \quad 37 / 6$
1N4009 1N4148	1/8	AC153 $4 /-$ AC154 $3 /-$ 185	$\begin{array}{ll}\text { B8Y50 } & 5 /- \\ \text { BSY53 } & 5\end{array}$	$\begin{array}{llll} \text { PA246 } & 52 / 6 & 48 \end{array}$	$45 /-40 /-35 /-$
2 G 210	12/8	AC169 3/-	BSY66		
2G240	4916	AC176 \quad 5/-	BS Y 67 5/-	2N3055	
$2 \mathrm{Ca301}$	$4 / 1$	AC187 8/-	BSY95A $4 / 8$	Mullard ! 15 watt	exas F.E.
2G302	4/8	AC188 6/-	BSI95 3/-	cilicon Power	$\begin{gathered} 25+6 / 3 \\ 100+5 / 3 \end{gathered}$
$2 \mathrm{G303}$	$5 /$		$\begin{array}{ll}\text { BY100 } & 3 / 6 \\ \text { BY103 } & 4 / 6\end{array}$	$100+11 /-$	$\begin{aligned} & 100+5 / 3 \\ & 500+4 / 9 \end{aligned}$
2G306 2 C 308	$8 / 8$	$\begin{array}{ll}\text { ACY18 } & 4 /- \\ \text { ACV19 } & 5\end{array}$	BY103 ${ }^{\text {BY126 }}$ A/6	$100+(1)-$	$500+4 / 9$
2G309	$81 /$	ACY20 4/-	BY127 4)	2/6	646 10/6
20371	4/6	ACY21 $4 / 6$	BYZ10 8/-	NPN Pianar	Motor
2G374	$5 / 6$		BYZ11	All Colours	nijunc
2G381	$5 /-$	$\begin{array}{ll}\text { ACl } 28 ~ & 3 / 6\end{array}$	BYZ12 B/-	All Colours	$25+8 / 9$
2G382	B/	ACY34 4/	BYZ13 4/-	$100+1 / 6$	$100+7 / 6$
2 G 383	51	$\begin{array}{ll}\text { ACY36 } & 5 / 0\end{array}$	BYZ15 $20 /-$		$500+6 / 9$
2N696	$3 /-$	$\begin{array}{ll}\text { ACY40 } & 3 /-\end{array}$	GET102 6/-	3	86
2N697	3/6	AD140 10/-	GET103 4/6		ullard
2 N 698	$8 / 6$	AD149 101-	MPF102 8 8/6	$25+5 / 3$	
2N706	$2 /-$	AD161 7/6	MPF103	$100+4 / 6$	00
2N706A	218	AD162 7/6	MPF104 $7 / 6$	$500+3 / 9$	
2 N 707	$8 / 6$	$\begin{array}{rrr}\text { AF102 } & 12 / 8 \\ \text { AF114 } \\ 8 / 6\end{array}$			
2N914	4/8	AFl15 6/-	OA7 41		
2N916	4/8	AF116 $6 / 6$	OA9	70	Illa
2N918	$7 / 6$	AF117 5/-	OA10	25+4/3	$1 \mathrm{amp} P$
-N919	4/-	AF118 12/6	OAt\%	$100+36$	am
2N920	$5 /-$	AFl24 6/-	OA70		$00+2 / 3$
2N922	8/6	AF125 5/-	0.471		
2N930	$5 /-$	AF126 4/-	OA73 2/-		YZ13
2N1131	6/-	AFl27 4/-	OAIt 2/-	$25+$	Mullard 6a 200
2N1132	B/-	AFl39 8/-	$\begin{array}{ll}\text { OA79 } & 2 /- \\ 0.481 & 2 /-\end{array}$	100+4/6	$25+3 / 6$
2N1303	4/6	AF178 9/6	OA81 2/-		$100+3 / 2$
2N1304	$5 /-$	AF181 8/6	OA85 2/6		$500+2 / 10$
2N1305	$5 /-$	$\begin{array}{ll}\text { AF186 } & 8 /- \\ \text { AF } 239 & 8 /-\end{array}$	OA86		
2 N 1306	$5 /-$	$\begin{array}{ll}\text { AF239 } & 8 /- \\ \text { AFY19 } & 22 / 6\end{array}$	$\begin{array}{ll}\text { OA90 } & 2 /- \\ \text { OA91 } & 1 / 6\end{array}$	Mullard 1000 y	107/8/92/6 ea.
2 N 1307	5/-	AFY19 22/6	OA91 1/8		T.T. Planars
2N1308	$8 /-$	AFZ11 12/6	OA95 1/6	1 amp Plastic	$25+2 / 3$
2N1304	$5 /-$	AFZ12 15/-	OA200 1/6	$25+3 / 3$	$100+2 /-$
2N1613	4/6	ASY26 5/-	OA202 2/-	$100+3 /$	$500+1 / 9$
2N2147	15/-	AsY27 $7 / 6$	$0 \mathrm{~A} 210 \mathrm{~J} /$		
2 N 2160	13/6	AsY28 5/-	OA211 7/6	BTI02/500R 15/-	P71 19/6
2N2287	25/-	Asi29 6--	OAZ225 7/6	Mullard Thyristor	ullard Pho
2N26	10/6	ASY67 9/6	OAZ228 7/6	500 p.i.v. 8.5a	$25+17 / 3$
2N2904	${ }^{6 /-}$	A8Z21 8/6	OAZ229 $9 / 6$		$100+14 / 9$
2N2905	$7 / 6$	AUY10 19,	OAZ231 9/8	$100+11 /-$	$500+13 / 6$
2N2925	4/-	B3M 19/6	OAZ234 7/6		
2N2926	$2 / 6$	BA110 5/-	OAZ238		
${ }_{2} 2 \mathrm{~N} 3011$	$5 /-$	BA×31 ${ }_{\text {BCl07 }}$ 2/-	${ }_{0}^{0 \mathrm{C} 10} 8$	9	C28 12/6
2N3053	$\begin{array}{r} 5 /- \\ 10 /- \end{array}$	$\begin{array}{ll}\mathrm{BC107} & 2 / 8 \\ \mathrm{BC} 108 & 2 / 6\end{array}$	$\begin{array}{rrr}\text { OC19 } & 7 / 6 \\ \text { OC20 } & 19 / 6\end{array}$		Mullard Powe
$\begin{aligned} & \text { 2N305 } \\ & \text { 2N } 305 \end{aligned}$	15/-	$\begin{array}{ll}\text { BC108 } & 2 / 6 \\ \text { BCi09 } & 2 / 6\end{array}$	OC22 $\begin{array}{ll}\text { 18/6 }\end{array}$	$25+1 / 6$	$25+11 /-$
2N3702	2/6	BC113 6-	OC23 10/-	$100+1 / 3$	
2N3703	2/6	$\mathrm{BC116}$ 8/-	OC24 10/-	$500+1 / 1$	
2 N 3704	3/6	BC118 7,6	OC25 7/8		
2N3705	3/6	BC134 7/6	OC26 5/-	OC42	71 3/-
2N3707	$3 /-$	$\underline{\mathrm{BCl} 35}$ 6/-	OC28 12/6	Mullard	Mu
2N3709	$2 / 6$	73 Cl 36 7/-	OC29 12/8	$25+5 / 3$	$25+2 / 3$
2N3710	$2 / 6$	BC137 8/-	O<35 10/-	$100+4 / 9$	$100+2 /-$
2N3711	2/6		OC36 $12 / 6$	$500+4 / 3$	$500+1 / 9$
	10/-	BCY $30 \quad 5 / 8$			
$\begin{aligned} & 2 N 3731 \\ & \text { 2N3794 } \end{aligned}$	$12 / 6$ $2 / 8$	$\begin{array}{ll}\text { BCY31 } & \text { 6/- } \\ \text { BCY } 32 & 10 /-\end{array}$	$\begin{array}{ll}\text { OC42 } & 6 /- \\ \text { OC43 } & 8 /-\end{array}$	OC45 3/6	Y34 5/-
2N3819	7)-	BCY33 4/-	OC44 4/-	Mullard	Mullard
2N3820	17/8	BCY34 5/-	OC45 3/6	$25+3 /-$	9
2N3823	17/6	BCX38 6/-	OC44 5/6	$100+2 / 6$ $500+2 /-$	$100+3 / 9$ $500+3 / 6$
2N 4058	${ }^{3 / 8}$	BCY39 9/6	$0 \mathrm{ClO} \quad 2 / 8$	$500+21-$	$500+3 / 6$
2N4061	3/-	BCY40 8/6	0 C 71		
${ }_{2}^{2 N 428}$	3 3/-	BCY442 5/-	OC72	OC75	IN4001/2/3 1/6
$\begin{aligned} & 2 \mathrm{~N} 42 \\ & 2 \mathrm{~N} 42 \end{aligned}$	${ }_{3 / 8}^{3 /}$	$\begin{array}{ll}\text { BCY4 } & \text { B/- } \\ \text { BCY } & \text { 4/- }\end{array}$	OC74	$25+4 / 3$	amp $100-300$
2N4290	3/-	BCZ11 7/8	OCTo 5/-	$100+3 / 6$	$100+1 / 2$
2N4291	3/-	BC147 3/9	0 Cat 51-	$500+3 /-$	$500+1 /-$
2N4292	3/-	BC148 2/9	OC77 8--		
40361	11/-	BC149 4/-	$0 \mathrm{C78}$ 5\%-	OC20 19/6	
40362	12/-	BF152	OC81 5/-	Mullard 100v	
${ }_{28002}^{2 \mathrm{~S} 001}$	10/-	$\begin{array}{ll}\text { BF194 } & 3 / 8 \\ \text { BF195 } & 3 /-\end{array}$	${ }_{\text {OC8 }} \mathrm{CC8}$	$25+15 / 9$	
2	$10 / 6$	$\begin{array}{ll}\text { BF195 } \\ \text { BD124 } & \text { 12/6 }\end{array}$	${ }_{\text {OC8 }}$	$100+14 / 6$	ER
${ }_{2 S 004}$	9/6	BEN3000 5/-	OC84 5/-	$500+13 / 3$	-
${ }^{2 S} \mathbf{S 0 0 5}$	14/-	BF115 5/-	OC122 10/-		400 MW 5\%
28012	25)-	BF154 8/-	OC123 10/-	IN 4004/5 2/6	ZYB8 Range
2 S 013	201-	BFi58 8/-	OC139 5/-	400-600y 1 amp	All Voltages
$2 \mathrm{S017}$	15/-	BF159 12/-	$0 \mathrm{Cl40}$ 7/8	$25+2 / 9$	
${ }_{2}^{2 S 034}$	12/6		$\begin{array}{ll}\text { OC141 } & 15 /- \\ 0 C 169 & 4\end{array}$		$25+219$
28036	251-	$\begin{array}{ll}\text { BF167 } & \text { 5/- }\end{array}$	$\begin{array}{ll}\text { OC169 } & 4 /- \\ 0 \mathrm{Cl} 170 & 5\end{array}$	$500+1 / 6$	$100+2 / m$
28320 28321	9/-	$\begin{array}{ll}\text { BF173 } & 8 /- \\ \text { BF180 } & 7 / 8 \\ \text { BF18 }\end{array}$	$\begin{array}{ll}0 C 170 & 5 /- \\ 0 \mathrm{Cl} 11 & 8 /-\end{array}$		$500+1 / 9$
28321 28322	7/8	$\begin{array}{ll}\text { BF180 } \\ \text { BF181 } & 7 / 8 \\ 7 / 6\end{array}$	$\begin{array}{ll}\text { OC171 } & \text { 6/- } \\ \text { OC200 } & 7 / 8\end{array}$	IN 4006/7 $800-1000 \mathrm{y}$ 1 mp	$1000+1 / 7$
${ }_{28323}^{2832}$	10/-	BFX30 6/-	OC201 9/8	00-1000v I amp $25+2 / 10$	any one type
${ }_{2} 8324$	12/6	BFX 88 5/-	OC202 12/6		
$2 \mathrm{S512}$	9/6	BFY20 12/8	OC203 7/6	$500+2 / 3$	
28701	8/6	BFY50 4/8	OC204 8/		
$2 \mathrm{S702}$	11-	BFY51 4/-	OC205 12/6		
${ }_{2}^{28731}$	$8 / 8$	BFY52 ${ }^{\text {BFY }}$	$\begin{array}{ll}\text { OC206 } & 15 /- \\ \text { Oc20 } & 15 /-\end{array}$		OCl40 ${ }_{\text {Mullard }} 7 / 6$
$2 \mathrm{S732}$	$8 / 8$	BFY53 3/8	OC207 15-	Mullard	Mullar
25733	9/6	BFY64 8/6	OCP71 19/6	$25+4 /-$	$25+6 /-$
AA178	8/6	BLY10 20/-	ORP12 11/	$100+3 / 3$	$100+51-$
AAY 12	$5 /$	BLY11 22/6	ORP60	$500+3 /-$	$500+4$

PLEASE NOTE MINIMUM ORDER SHOULD BE $10 /-$ Quantity prices $100+$ Phone (0I) 723 NEW AUTUMN LIST NEW 0401 Ex. 4. All listed devices are from DEVICES, NEW PRICES. ASK FOR stock at time of going to press. Please TODAY. Discounts 10% on $12+$ any 1 I 103 EDGWARE ROAO WHITHS Wind

LONDON, W. 2
(O1) $7231008 / 9$
(01) $7231008 / 9$
OPEN MON-SAT. 9 dm -

Take your Wellerchoice* in Soldering

Low Initial Cost *
Low initial cost Marksman irons, to cover most soldering needs. Screw-in tips on 15 W and 25 W make it easier to change the tips, which are nickel-plated and factory pretinned for longer life. The shanks are stainless steel to concentrate heat at the tips.

Instant Heat for Rapid Soldering * Instant heat soldering guns to deal with intermittent soldering. Working heat is reached within seconds of pressing the trigger, so the job is finished in less time than it takes for a normal iron to heat up. Expert dual heat (100/140W) and Heavy Duty (275W) models available Alternative tips available for plastics working.

Weller Electric Limiled

Redkiln Way, Horsham, Sussex
Tel: 040361747

I MILLION SILICON PLANAR TRANSISTORS NPN-PNP PLASTIC AND METAL CAN TYPES

Clearance of manufacturers' seconds, selected in types and guaranteed no open or short circuit units. Ideal cheap transistors for radio enthusiasts, manufacturers, schools and colleges

TYPE STNI8

Silicon Planar Transistors npn TO 18 Metal Can. Types similar to 2N706, 2N2220, BSY27-95A, BSX44-76-77. Price: $500 £ 9,1,000 £ 15$
TYPE STPI8
Silicon Planar Transistors pnp TO- 18 Metal Can. Types similar to BCY70-72, 2N2906-7, 2N2411 and BC186 7. Also used as complementary to the above npn type device type STNI8. \quad Price: $500 £ 9,1,000 £ 15$

TYPE STNL

Silicon Plastic Epitaxial Planar Transistors TO-92 case. I.C. 200 mA , 300 mW medium to high gain, available in npn or pnp and types similar NPN 2N2926-2N271I-2N3391-2N3707-2N371I BC167-89.

TYPE STPL
As above but in pnp and similar to types 2 N 5354 56, 2N4058 2N4061 and 2 N 3702 -3. Also used as complementary to the above npn devices type STNL.

Price:- $500 £ 7.10 .0 ; 1,000 £ 13$
TYPE STNK
Silicon Planar Plastic Transistor non with TO-I8 pin circular lead configuration, I.C. $200 \mathrm{~mA}, 300 \mathrm{~mW}$ and similar to $\mathrm{BCl} 07-89, \mathrm{BCI} 70$, BCI73, BC182-184, BC237-8-9 and BC337 8.

Price: $500 £ 9.10 .0 ; 1,000 £ 16$
When ordering, please state type required, i.e., STNK or STN18, etc.
All goods Ex-stock sent by return. Cash with order please to
DIOTRAN SALES
P.O. Box 5, WARE, Herts.
S.A.E. For full list of surplus semiconductors

TYPE 13A DOUBLE BEAM
 OSCILLOSCOPES

 Operating voltage o/110/ $200 / 200 y^{\circ}$ ane. Kupplied is excellent working conilition. tes.10.0.

AVO CT471A MULTIMETER Battery operates, fully transiatoribed.
Senaitivity $100 \mathrm{~m} \Omega /$ Measures $A C / D C$ Senaitivity $100 \mathrm{~m} \Omega / \mathrm{M}$ Measures AC/DE
Voltages 12 mV to $1,200 \mathrm{v}$ AC/Dr Current 12uA to J. Amp. Resistance 13 ohm to multipher 4 v to 400 v up to $00 \mathrm{Mc} / \mathrm{s}, 40 \mathrm{mv}$ to iv up to $1,000 \mathrm{Mcig}$, Oficrell in perievt comation, 255 emeh. Carr. 10° -
CRYSTAL CALIBRATORS No. 10
 matl portable crystal ontrolled wavemeter. quency range $\overline{0} 00 \mathrm{Kc} / \mathrm{s}$. $10 \mathrm{Mr} / \mathrm{s}$ (up to $30 \mathrm{Mc} / \mathrm{s}$ on harmonics). Calibrated clial. Power re. guirements : 000 V.D.C 15mA and 12 V
0.0 A.
Excelient 0.3A. Excelicut
fition. 89/6. Carr.

TAPE CASSETTES
 Tuи quality in plast ic library loxes. C $6060 \mathrm{mln} \quad 8 / 64$ for $24 / 6$

 CLASS D WAVEMETERS

 olled hetero (3) mon dyue frequency meter coverlug
Operation
operation
-Irnitable in gool useal eone lition. E5.19.6. Carr. 7/6, Br brami
C'ilrr. $7 / 6$.
B.C. 221 FREQUENCY METERS latest releasc 125 kHz to 20 MHz . Ficellent condition. Fully tested ansl wheched and 227.10.0. cach, (arr. 10/\%.

GENERATORS Oscillator Test No a. A high quality
mecision
instrupecision instru-
ment mate for the ministry ly for the frequency cover.
age $20-80 \mathrm{Mc}$, $\%$. AM
 boratea precision dan, level meter, precisjon Hermator $1 \mu 5-100 \mathrm{mV}$ Operntion from
 ondition emmplete with

AVO CT. 38 ELECTRONIC

 MULTIMETERSHigh quality 97 range lustrument which Resistance and Power Output Ringes de. volts 250 mV - $10,000 \mathrm{~V}$ ($10 \mathrm{meg} \Omega-110$ meg Ω input). D.c. current $10 \mu \mathrm{~A}-\underline{2} \mathrm{~s}$ A. Ohms. $0-1,000$ meg a n.e. volt 100 mV -250y (with R.F. measuring head up to 250 MHz) a.c. current $10 \mu \mathrm{~A}-20 \mathrm{~N}$. Power sutput 50 mincro-watte-5 ratts. Operation $0 / 110 / 200 / 250 \mathrm{~V}$ a.c. cupplied in perfect condition complete with

ADMIRALTY $62 B$ RECEIVERS

相

$$
\begin{aligned}
& \text { Kc/ } \\
& \text { Ke } \\
& \text { cor } \\
& \text { stat } \\
& \text { nois }
\end{aligned}
$$

Kc/g. 1.F. $500 / \mathrm{KHz}^{2}$ In
corporates R R.F. and 3 I.F
stages stages bandpass filter,
noise imiter, crvatal con, noise imiter, crystal con
trolled B.F.O. calibrator 1.F. wutput, etc. Bull-in speaker, output for phones. Operation $150 / \mathbf{3 0 0}$, s.e. Size in good working conditiont 1416 . Offered 30/-. With circuit dingrams. Also ivailable B41 L.F. version of above. $15 \mathrm{KHz}-600 \mathrm{KHz}$.

$\square \equiv \mathrm{B}$

USED EXTENSIVELY BY INDUSTRY, GOYERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

NEW "'SEW"' DESIGNS! CLEAR PLASTIC METERS\|BAKELITEPANEL METERS			
	TYPE SW. 100 $100 \times 80 \mathrm{~mm}$	TYPE S-80 80 mm square fronts	
		(e) ${ }^{50 \mu .1}$	

"SEW" CLEAR PLASTIC METERS

Type Mr.8.s. 4 Iin 4 itin fronts.

"SEW" BAKELITE PANEL METERS
Type MR 65. 3 , in square fronts.

Type PE.70. 3 17/32in 1 15/32in 2jin
deep.
Send for illustrated brochure - Discounts for Quantities

POWER RHEOSTATS

High quality ecramic construction. Windings embedded in vitreour cx-stock single hole fixing, win, dia. shaftes, bulk quantitios available 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 whins, 14

FTC-401
TRANSISTOR TESTER
Full capabilitica for theasui iuc E, B and ICO, spa or pap ing diodee. Supplical complet with instructions, battery and

WAECOMI TFI492 DIETORTION FACTOR METURS. Excellent condition. Fully teeted. 820. Carr. 16

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE
 A new portable bridge offering er-
cellent
range cellent range and
accuracy at
and accut. Rangeg: R. $\begin{array}{cc}10-11 \cdot 1 & \text { megn } \\ 0 \text { Ranges } \\ -1-1 \%\end{array}$ ThENRHY ${ }^{1} 1$ nes -2\% \% 10p1 Hangea $=: 20$. TLRNS RATLO 1:1/1000$1,000 \mathrm{cps}$. Operated 10. Bridge voltage 2 Meter indication. Attractive 9 tone meta

COgsoz 1040 DOUBLE BEAM OACLLLO. scopes. D.c. coupled. Band width $1 \mathrm{ke} / \mathrm{s}$. Periect oriler. 425. Carr. 30/-
TE-2OD RF SIGNAL GENERATOR
 Accurate wide range aignal generator covering $120 \mathrm{kc} / \mathrm{s}$ to $500 \mathrm{Mc} / \mathrm{s}$
on 6 band Directly on 6 bandg. Directly calibrated, Variable RF attenuator, audio 940 V a.c. Slize 140 ! $1 \overline{0} \times 170 \mathrm{~mm}$. Brand new with instruction
\&15. Carr. $7 / 6$.

LELAND MODEL 27 BEAT

 FREQUENCY OSCILLATORS Frequency 0.20 Ke /s on 2 ranges. Output Supplicil in perfect order. 812.10 .0 carr $101-$

TY75 AUDIO SIGNAL
GENERATOR
OOMc/s. Squarc Wave $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{g}$. High and low impedance oulput. Output variable $\begin{array}{ll}\text { up to } 6 \text { volts. } & 220 / 240 \\ \text { volts a.c. size } & 210\end{array}$
 e16. Carr. 7/6.
MARCOMI TY885 VIDEO O8CILLATOR8. $0 \cdot \overline{5} \mathrm{MHz}$, Sine Square Wave. 245. Carr. 20/LAFAYETTE TE46 RESISTANCE CAPACITY ANALYSER ${ }_{2 \mathrm{p}}^{\mathrm{p}-2,000} \mathrm{mifu}$ 2
megothnes-200
check:
dance,
tion, nonsula:
Frand Xew 1 17.10.0

$270^{\circ} 500$ MCROAMP METER. Incorporater in Radio Aititude Indicator 1D-14APN Ideal for rev. counter, ctc. 15/6. P. d\& P. 3/:
ADVANCE TEST EQUIPMENT Brand new and boxed in originaleoated cartons. is c/s to 50 Kala. Sine wave Output 60 c ohmis or 5 ohms. $\mathbf{2 3 0 . 0 . 0}$.
VI 79. © E F MLILIVOLT METER. $100 \mathrm{Kc} / \mathrm{g}$ to $1,000 \mathrm{Me} / \mathrm{B}$, a.c. 10 mV to 3 V .
$\mathrm{D} . \mathrm{c} .10 \mathrm{mV}$ to 3 V . Current $0.01 \mu \mathrm{~A}$ to 0.3 mA. Reeistance 1 ohnt to 10 megohn. 125.0.0.

TT18. TRAMBISTOR TBGTER. Full rauge of achieg or testing PNP or
Carriage 10/- per item.
MaRCOHI TE195M REAT FREQUENCY
OsCHLATORS. 0.40 KHz E2O. Cirr 30
G. W. SMITH
\& CO (RADIO) LTD.
Also see next two pages

SELI-CONDUCTORS/VALVES
 BRAND NEW \& FULLY GUARANTEED

TRANSISTORS

THYRISTORS

VALVES

HI-FI EQUIPPMENT SAVE UPTO 33:\% OR MORE
SEND S.A.E. FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

GARRARD

CR10TAM/FY STEREO TUTHR AMPLIFIRR 878TEMA
Output 4 watta per chaunel. Excellent reception AFC, built-1n MPN. Cer/XTAL
Input. Total List 50.5 .0 . OITR PRICE \$89.19.0, Carr. 12/6.
Alao uvaitable with Garrard $2025 \mathrm{~T} / \mathrm{C}$ Record Changer, Plinth, cover and atereo
TELETON SAQ203E
STEREO AMPLIFIER
 Solld state, $\left.\begin{array}{r}\text { low } \\ \text { per channel }\end{array}\right\} \begin{aligned} & \text { music }\end{aligned}$ SPECIAL PRICF 820 . Carr, $7 / 6$, tuner, aux,

ECHO HS-606 STEREO HEADPHONES

Wonderfully comfortable. Light-
weight aijuatable
 Yingl headband.
bift. cable and stereo Jack plug.
$25-17,000$
8 ohm $\mathrm{imp}^{\mathrm{P}} \mathrm{P}$ \& $\mathrm{P} .2 / 6$. $67 / 6$.

HOSIDEN DHO4S 2-WAY STEREO HEADSETS

Each headphong con-
tains 2 din woofer
 level controls. 8Ω imp. esx-18,000 $/ \mathrm{s}$.
cable and sth 6.18.6. P. \& P. 2/6.

SPECIAL OFFERS! (iarturd spebliit fitted foldring G800 cartridge and wooden plinth and plastic
cover. Total liet price esw. OUR PRICE 820.10 .6 . Carr, $10 /$ GOLDRING GL69/2 fitted Goldring
cartrluge complete with de luxe base and cover. Total liat price eŏ0.16.0. OTTR PRICE 889 . Carr. 20/•

SINCLAIR EQUIPMENT

Our latest ellition giving full details of it
comprebensive range of HI-FIEQUIPMENT comprehensive range of HI-FI EQUIPMENT COMMUNICATIONS EQUIPMENT. FREE pages, fully Illustrated and detailing thousabds of itema at bargain prices.

SEND
NOW-
ONLY
7/6
P. \& P.

1/6
\& See previous page

RUSSIAN C1-16 DOUBLE BEAM OSCILLOSCOPES 5 MHz Pass Band. Separate Y1, Y2 anıpll. fiers. Calibrated trlggered sucep from $0.2 \mu \mathrm{sec}$ to $100 \mathrm{msec} / \mathrm{cm}$. Supplied complete with all
instructions, 887 . Carr. paill

MARCONI CT44 TF956 AF ABSORPTION WATTMETER
1 miwatt to g watte
220. Carr. 20!

TE111.
RESIBTANCE ATTEMUATOR Variable rang $0-111 \mathrm{~dB}$. Con
 nections. T en-
balanced T and
jidge T. Impedance
 d.c. to $20+20 \mathrm{kHz}+(-3 \mathrm{~dB})$. Frequenes $0.05 \mathrm{df:}$ +inclication its $\times 0.01$. Naxi600 g lonal resistanec with internal/externil
 BELCO AF-5A
SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR

 $18-200.000 \mathrm{~Hz}$: $18-50,000 \mathrm{H} \%$ | Ontput mas |
| :--- |
| +10 dB |
| $10 \mathrm{k} \Omega$ | $\stackrel{+100 \mathrm{~B}}{\mathrm{O}} \stackrel{\text { peration }}{ }$ internal batteries.

7in. 5 in
Attractive twotone pase (arre 3/6.

TE-18A Transistorised SignalGenerator. $\overline{5}$ ranges $400 \mathrm{kHz-30}$
inexpensivc
instrument imexpensive instrument for the handyman. Oper-
ates on 9y battery. Wide, casy to reat scale. 800 kHz modulation. with instructions and
leads. 27.16.6. P.\&P. 4/-.
BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New high quality port$\int_{\text {able instrument. Sine } 1 \mathrm{~Hz}} 100 \mathrm{kHz}$. Square 20 Hz to 100 kHz . square 20 Hz $+101 \mathrm{~B}(10 \mathrm{k} \eta)$. 0 perajou $2: 20 / 240 \mathrm{~V}$ a.c. size | 215 mm |
| :--- |
| 120 mm. |

 A.C. VOLTMETER 10 mes. input 10 ranges:

 Supplied brand mew complete with leads and
 230V a.c. 217.10 .0 . Carr. J --.

with quality inst rument W.5-1,500V. A.c. volts 1-5-1,500V, Resistance up to 1,000 megohms, $20 / 240 \mathrm{~V}$ a.c. operation. Complete with probe and instructions, t17.10.0. P. \& I' 6/-. Alditional Proues available
$48 / 6$. H.V. $50 /=$.
AUTO TRANSFORMERS
$0 / 110 / 230 \mathrm{v}$. Step up or btep down. Fully throuted.

150 W. 22.7.6, P. \& P. 3i6
300 W .88 .5 .0
500 W. 24.19.6, 1, d ${ }^{50} \mathbf{P}$. $6 / 6$

7.500 W 815100 P \& P 20

SOLID STATE VARIABLE A.C.
VOLTAGE REGULATORS

Compact and panel mount ing. Ideal for control of appliavees, etc. Iuput $30 / 440 \mathrm{~V}$ i.c. ${ }^{2}$. Output continuouely rariable from $\because 0 \mathrm{~V}$ to 230 V
Model MR2305 5.468×46 - 43 mm , 28.7.6. Model Potage $2 / 6$.

MULTIMETERS for GUERY purposel

TECH PT-34. 1,6/w O.1.N: 0/10/50/200 $500 / 1,000 \mathrm{~V}$ a.c. and
小.c. 0/100K, 39/6. I'. \& P. $0 / 9$,

MODEL TE-200. 30,000 O.P.V. Mirror scale, overload protection. $0 / 5 / 2 \overline{0} /$ $150 / 1,000 \mathrm{~V}$ a.c. $ก / 50 \mu \mathrm{M}$
 MODEL $500.30,000$ protection, with overload proteckn, $/ .5 / 2.5 / 10 / 25$ scale $\because 00 / 500 / 1,000 \mathrm{~V}$ I.c. $0 / 2.5$ $10 / 251100 / 2501500$ 1,000 V. n.c. $0 / 50 \mu \mathrm{~A} / 5 / 50 /$
 88.17.6. liont pair.

MODEL TE-70. 30,000 O.P.V. $0 / 3 / 10 / 60 / 300 /$ $\begin{array}{ll}100 / 1,2005 \\ 1+0 / 600 / 1,000 & 0 / 4 / 30 /\end{array}$

3 /-.
25.10.0. I'.

TME MODEL TW-50K. 4i
 rolts: $0 \cdot 125,0.25,1 \cdot 25,9.5$,
i, $10,25,50,125,250,500$,

 5, $10,20,50,120,200,500,1,000$. 10 meg Decihels: -om +81.0.1' ' 28.17.8. P. \& P. 3/6

TE-900. 20,000 Ω /VOLT GRANT MULTMETER. Mirror acale and overload yrotection. Gin full view
 $0 / 25 / 105 / 10 / 50 / 250 / 1,0001$ 5,001 a a.e. 0/25/12.5/10/50/250/1,000/

MODEL 5025. ranges, giant jlin
molarity
mor neter, polarity
reversc switch. Senwitivity: $50 \mathrm{~K} /$ Yolt d.c. $5 \mathbf{N} / \mathbf{V o l t}$ a.c. D.c. Volta: $0 \cdot 1 \because 25,0 \cdot 05,1 \cdot 25,5,10,25,50$, 10 , 50, 10, 500 $1000 v$, current: $25,50 \mu \mathrm{~A}, \stackrel{5}{5}, 5,25,50,200$
 100K, 1 meg, 10 meg. Decilels: - 20 in +854B. 212.10 .0 . IP. \& P. $3 / 6$.

Spare movements fur Mudel s or t. (titted meter Brand scale) or basis for any nulti

UNR-30 RECEIVER

 Built in Speaker $220 / 240 \mathrm{~V}$ a.e. Brand ne保

WS82 TRANSCEIVERS Large quantity avalable for EXPORT Excclient comlition. Rnquiries invited

UR-IA SOLID STATE
 COMMUNICATION RECEIVER

 Meter, Variable BFO for GuB. Built in Npenker, Telestopit Acrial, Banclepread,
sensitivity ('ontrol, $2 x 0 / 240$, Sensitivity Control. .2z0/240 a a.c. or 12y

LAFAYETTE HA-600 RECEIVER

(icheral coverage $130-400 \mathrm{KHz}$, jo 0 K Hz 30MHz. FET front end, ${ }^{\text {w }}$ mech. filters, proiuct actector, Yariable BiF.O., nole $15 \mathrm{in} \cdot 94 \mathrm{in} \because 84 \mathrm{in}$. 181 h . $2=20 / 240 \mathrm{~V}$ a.c. ne 10Vil.c. Brand new with ingtructions. 245. ('arr. 10:

$\begin{array}{ll}30-4,7-73, & 14-14 \cdot 35,21-2145,28-99 \cdot 7, \\ 00-54 M H z\end{array}$ hiters, product detector, rariable BFO. 4 Meter, 100 KKz calibrator. $920 / 240 \mathrm{~V}$ Hec. or I2V d.c. 1 in : 9 in 81 in .181 b . Hraml new with ingruction 857.10 .0 .
Cirr. paid (100 KHz (ryatal $39 / 6$ extra).

 LAFAYETTE PFBO VEF FI RECEIVR

ond state. $10.2-1,13 H z$. Fully tuneable or crystal controlled (not supplicd). Built " Speaker, Squeleh and Volume Controls. $20 / 240 \mathrm{y}$ a.c. or 19 V d.c. Brand now with instruct inns. 287.10.0. Carr. 10/.

FULL RANGE OF TRIO EQUIPMEIT
VOLTAGE STABILISER TRANSFORMERS
180-2000 input. Oatput 230 V . Availabl 150 W or 025 F W. 212.10.0. Carr.

EDDYETONE VHF RECEIVERS MODSL 7702. 10-165 Me/s. Excellent condition. 1150

INTERCOM/BABY SITTER Transistorlsed Inhome / office / work home / office/work-
hop, etc. 2 -way buzzer call asstcm. For desk or wall mounting. Supplied complete with connecting wire, bat tecies, iustructious, :3 station $59 / 6$.

STOP PRESE: new branch at 27 TOTTENHAM COURT ROAD Opening during December

VARI-STAT

THERMOSTATIC
 SOLDERING IRON

HIGH PRODUCTION MINIATURE
MODEL D. 50 WATT
Weight . . 2 oz.
Heating time 50 seconds
Bit Sizes .. $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$
Nickel or Iron Plated
Voltage .. 250 to 12 volts
Price
66/-

HIGH PRODUCTION INSTRUMENT MODEL H. 150 WATT

Weight . . 6 oz.
Heating time 1 min .45 sec .
Bit Sizes .. 3/16", $1 / 4^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$
Nickel or Iron Plated
Voltage .. 250 to 24 volts
Price

OTHER VARI-STAT IRONS:

Miniature Model M 50 watt Push-in Bits 1/32"
$1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$
Instrument Model B 70 watt Bit Size 11/64"
Industrial Model I 500 watt Bit Size $5 / \mathbf{8}^{\prime \prime}$
CARDROSS ENGINEERING CO. LTD.
Woodyard Road, Dumbarton Phone: Dumbarton 2655

AMPLIFIER \& PREAMP. PRINTED CIRCUIT BOARDS FOR MULLARD CIRCUITS

High quality Printed Circuit Boards for the following circuits shown in the Mullard publication Transistor Audio and Radio Circuits.

10 W high quality audio amplifier (p.102) 13/2d 25 W high quality audio amplifier (p.106) 14/0d 10/25 W high quality audio preamplifier (p.108) 14/7d
Price each including postage and packing. Cash with order.
All boards are tinned to prevent oxidization and to aid soldering and have the component identification printed on the reverse.
BRIBOND PRINTED CIRCUITS LTD Terminus Road, Chichester, Sussex

PHASE LOCKED STEREO DECODER

Revolutionary inductorless design no coils to adjust! Set up with D.C. voltmeter only.
Typical separation 45 dB at $1 \mathrm{kHz}, 40 \mathrm{~dB}$ at 10 kHz . Complete kit (As in Wireless World Sept. 70) containing Fibreglass PCB (Approx. $4^{\prime \prime} \times 5^{\prime \prime}$), 62 low noise resistors, 3 Fairchild IC's, 15 Ferranti transistors, 8 diodes, 23 capacitors and 4 preset pots. Full instructions plus details of single and dual supply operation.
£8.19.6 pp 2/6
Decoder PCB only $£ 1.5 .0 \quad$ U6A747459X $£ 1.7 .6$

U6E7709393 £1.0.0

STABILISED POWER SUPPLY
Complete kit for $\pm 6 \mathrm{~V}$ at 50 mA suitable for above $£ 2.18 .0 \mathrm{pp} 3 / 6$ Transistors: ZTX500 4/- ZTX108 equiv. 2/-
INTEGREX LIMITED PO BOX 45 DERBY DE1 1TW

NEW! HANDY! TIDY!

Newest, neatest system ever devised for storing small parts and components: resistors, capacitors, diodes, transistors, ete. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots'removable space dividers. Build up
any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!

SINGLE UNITS (5ins 2tins 2tins)
Usually $2 l l$ each, OUR PRiCE: 27/-DOZEN DOUBLE UNITS (Sins titins... 2 tins) Usually 4, il each, OUR PRICE: 45!- DOZEN
PLUS QUANTITY DISCOUNTS! Order 65 and over DEDUCT $1 / 6$ in the $\&$ Orders $\in 10$ and over DEDUCT $1 / 6$ in the $£$
Orders $E 20$ and over DEDUCT $2 /$ in the \mathcal{E}
PACKING. POSTAGE CARRIAGE: Add 6/- to all orders under f5. Orders CS and over, packing'postage/carriage fres.
QUOTATIONS FOR LARGER QUANTITIES

(Dept. PEI) 31 ALBERT RD. HENDON, LONDON, NWA

is a high quality COMMUNICATIONS RECEIVER
(replaces NA 5018A) Recommended Price £420.0

(Cash only) plus 9/- p. \& p. Complete with standard batteries and earpiece. BFO (optional extra) add $35 /$ -
IT NOT ONLY RECEIVES Aircraft, Shipping (VHF \& SW), Taxis, Ambu: lances, Fire Service, T.V. Sound, Hams, Gas and Electric Boards, Public Services and many other radio telephone mobiles-BUT ALSO Classical Music, Pop and all that Jazz.
TURN ON AND TUNE IN!!! The MPR 3065 is a conmmunications receiver and entertainment source in one neat, transistorised, portable package. It keeps aircraft, shipping, RT mobiles, FM and AM broadcasts at your fingertips. Features a colour coded illuminated tuning dial and band selector, AFC, squelch, BFO (optional extra), large speaker. Ext. Aerial Socket. Works oft mains or battéries. Size: $10 \mathrm{~m} \times 7!4$ inches. 22 Transistors/Diodes. FREQUENCIES: Medium Wave, 540$1600 \mathrm{Kcs}$. ; Marine, $1.6-4.6 \mathrm{Mcs}$; FM/VHF, 88-108 Mcs: Aircraft, 108 -136 Mcs. (Military, Civil and Ground control); High VHF/PB, $146-176$ Mcs. (Commercial and Industrial RT mobiles). Availability of mobile transmissions depend on operators in each area.
Enclose 5d. stamp for reply. Trade supplied STOCKTON PARTNERS (Dept. P.E.) Importerz and Distributors
Brishowsate, Grimsby, Lincs.
Tel. 0472 64196/58815

DIMMASWITCH

This is an attractive dimmer unit which fits in place of the normal modern lisht switch. The ivory mounting plate knob is in bright fittingsand An ON/OFF switch is incorporated to control $40-600$ watts of all lightsexcept fluorescents at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$.
Competitive products swllat 44 19s 6dour price is 23 4s. We also ofrer at E2 I4s a complete kit of parts with instructions enabling you to build this dimmer yourself.
The circuit uses a miniature RCA triac and a diac triggering device to sive complete reliability, Radio interferonce suppressien is included.
Post and Packing $1 / 6 \mathrm{~d}$ extra.
Post and Packing lod oxtra.
DEXTER \& COMPANY
ULVER HOUSE, 19 KING STREET
CHESTER CHI 2AH
Tel.: Chester 25883
As supplied to H.M. Govt. Departments, Hospitals, Local Authorities, etc.

Many New Models!

 in the fREE HEATHKII 1971 Catalogue

CONSUMER

HI-FI \& AUDIO

MODEL R/C CARS

MARINE
‘TRENT' SPEAKER


```
\star No previous knowledge of elec-
    tronics required.
\star The constructional manual
    supplied with every kit shows
    you how.
\star Building Heathkit models is so
    economic.
\star Save up to 50' "over factory built
- No previous knowledge of elec-
* Save up to \(50^{\circ}\) "over factory built tronics required. equipment.
\(\star\) The constructional manual supplied with every kit shows you how.
\(\star\) Money saving direct from factory prices.
\(\star\) Building Heathkit models is so economic.
\(\star\) They make excellent gifts.
```

Here's the bumper Heathkit catalogue for you. Read about the wonder and fascination of kit building . . . see in full colour the world's best values in $\mathrm{Hi}-\mathrm{Fi}$ Radio, and even model radio control. Get up to date with what's new in scientific instrumentation . . . instruments for test and service . . . in fact there is a Heathkit for almost every purpose, in every walk of life. A wealth of information is all yours for the price of a postage stamp, in the Free Heathkit Catalogue.

A Schlumberger Company
Many other models in wide range
(BLOCK CAPITALS PLEASE)
Name
FILL IN THE COUPON FOR YOUR
Address \qquad FREE CATALOGUE TODAY

$\xrightarrow[\text { Simulated teak case }]{\text { The }}$
19.10

Plus P. \& P. 101.
SPECIFICATION at 1 KHz into 3 ohms. Tape Head: 3 mV (${ }^{2}$. 3 t
s.) Mag. P.U.: 2 mV . Cer.P.U. 80 mV . Tuner: 100 mV

Aux. 100 mV . Tape/Rec. Output. Equalisation for each Tone Control Ronge: Boss: 13dB at 60 Hz . Treble: $\pm 14 \mathrm{~dB}$ at 15 KHz . Totol Distortion, (ror watt output) $<1.5 \%$ Signal Noise: $<-60 \mathrm{~dB}$. A.C. Mains $200-250 \mathrm{~V}$. Size $12 \frac{1}{2}$ in long. 41 in deep. 2 in high. Buile and tested.

THE RELIANT Mk. II SOLID STATE GENERALPURPOSEAMPLIFIER

E7.5.0 Plus P. \& P. 76

Simulated teak case

SPECIFICATION: Output: 10 watts into a 3 ohms speaker Inputs: (i) for mike (10 mV). Input (2) for gram. radio (250 mV) indivicual bass and reble control. volts. Size: $10 \frac{1}{4} \quad 4$ onsistors: $4 \frac{3}{4}: 2 \frac{1}{2}$ in

ELEGANT SEVEN Mk. III (350mW Output)

7-transistor fully tunable M.W.-L.W. Superhet portable. Set of parts. Complete with all components. including ready etched and drilled printed circuit board back printed for foolproof construction. MAINS PACK KIT: $9 / 6$ extra
£5.5.0 Plus P. \& P. 76. Cireuit 2;6. Free with parts
THE DORSET (600 mW Output) 7-transistor fully tunable M.W.-L.W. Superhet
portable with baby alarm facility. Set of parts. The portable with baby alarm facility. Set of parts. The larest modulated and pre-alignment techniqu MAINS POWER PACKKIT: $9 / 6$ extra
45.5.0 Plus P. \& P. 7,6. Circuit 2;6. Free with parts.

The Viscount F.E.T. Mk. I $£ 14.5 .0$ plus $101 . \mathrm{p} . \& \mathrm{p}$. High fidelity transistor stereo amplifier employing field effect transistors. With this feature and accompanying guaranteed specifications below, the Viscount E.E. . vastly surpasses amplifiers costing far more.

SPECIFICATION

 Ourput per channel-10W rms.Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \quad \begin{gathered}\text { Controls- } 6 \text { position selector switch } \\ \text { (3 pos. stereo and } \\ 3\end{gathered}$ pos. mono), requency bandwidth 20 Hz to 20 kHz Total distortion © 1 kHz (ab $9 \mathrm{~W} 0.5 \%$ In put serisitivities-CER. P.U. 100 mV tiro $3 \mathrm{M} \Omega$; Tuner 100 mV into $100 \mathrm{~K} \Omega$; Tape 100 mV into $100 \mathrm{k} \Omega$. Overload Factor-Better than 26dB. Signal to noise ratio- 70 dB on all Mk. II (MAG.P.U.) EI5.15.0 Post \& packing 10/-extra. Spec. on Mag. P.U. 3 mV (${ }^{(1)}$ kHz input the following inputs: Mag; P.U. impedance 4ik Ω. Fully equalised to CER. P.U. Tuner. within \pm IdB RIAA. Signal to nois ratio- 65 dB (vol. max.).

LIQUIDATED STOCK

DANSETTE TOURISTE MK3 CAR RADIO
ALL TRANSISTOR
Beautifully designed to blend with the interions of all cars. Permeability tuning and long wave loading coils ensure excellent tracking, sensitivity and selectivity on both wave bands. R., sensitivity at MHz is better than micro vols. Power output inch ohmprehensive instructions success first time. 12 volts negative or positive earch. Size $7^{\prime \prime} \quad 2^{\prime \prime} \quad 4 \frac{1}{2}$ deep. Originally sold completely built for £15.4.6
Circuit diagram 26, free with parts SET OF PARTS
E B B B ?
Speaker, baffle and fixing ki
$25 /-$ extraplus $4 /-\mathrm{P}, ~ \& \mathrm{P}$.
Speaker postage free when ordered with parts

SOUND 50 SOUND 50 AMPLIFIER AND SPEAKER SYSTEM

The Sound Fifty valve amplifier and speakers are sturdily constructed with smart housings and thoroughly tested electronics. They are designed to last-to withstand the knocks and bumps of life on the road. Built for the small and medium sized gig, they are easy to handle and quick to set up and can be relied upon to come over with all the quality and power you need.
Output Power 45 watts R.M.S. (Sine Wave drive). Frequency response- 3 db points 30 Hz at 18 KHz . Total disbetter than 60db. Speaker Impedance 3. 8 or 15 ohms. Bass Control Range $\pm 13 \mathrm{db}$ at 60 Hz . Treble Control Range $\pm 12 \mathrm{db}$ at 10 KHz . Inputs 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control. 2 inputs at 200 mV into 470 K
Topprotect the output valves, the incorporated fail safe circuit will enable the amplifier to be used at half power
SPEAKERS! Size 20" 20° 10"incorporating Baker's 12^{*} heavy duty 25 watt high flux, quality loudspeaker with cast frame. Cabinets attractively finished in two tone colour scheme-Black and grey.

COMPLETE SYSTEM 2545

plus 80/. P. \& P.
Amplifier $£ 28.10 .0$ plus 20/- P. \& P. Speakers each $\mathbb{E} \mid 2.10 .0$ plus 30/- P. \& P.

RADIO \& TV COMPONENTS (ACTON) LTD.
Post orders to:-2Id High Street, Acton, London W3 6NG Also at 323 Edgware Road, London, W. 2
Goode not despatched outside U.K.
Terms C.W.O.
All Enquirie: S.A.E.
 The'New Picture-Book'way of learning 3AS/C ELECTRICITY (5vols.)
You'll find it easy to learn with this out the latest research into simplified learning standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of
exceptional value in training mechanics and technicians in Electricity, Radio and Electronlc

WHAT READERS SAY

'. . . carefully written
I am very satisfied with these carefully written and well expressed manuals . . A.W., Shanklin.

- . . valuable assistance

Your valuable assistance has enabled me to find a good position as a Radio and TV Engineer . . D.S. . Bristol.

Є. . they are invaluable

I find that as a base for a course in Electronics they are invaluable and I have yet to find anything even to approach the same standard...H.N. . Rotherham.
A TECH-PRESS PUBLICATION

TO The SELRAY BOOX CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/- followed by 3 fortnightly payments of 20/- each. BASIC ELECTRONICS 90/-. Cash Price or Down Payment of $20 /$ - followed by 4 fortnightly payments of 20/each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY \square BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 18 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

PRACTICAL
 ELECTRONICS

Specify

PRACTICAL ELECTRONICS specify CONTIL MOD. 2 CASES for housing the P.E. GEMINI AMPLIFIER and the P.E. AURORA LIGHT DISPLAY SYSTEM, both of which were recently exhibited at the "International Audio \& Music Fair 1970'. In addition cases from this range are specified for housing the P.E. DIGITAL CLOCK also the SINCLAIRPROJECT 60 SYSTEM and ACTIVE FILTER UNIT.
IDEAL FOR DEVELOPMENT-CHEPPER FOR PRODUCTION
PVC COATED MATERIALS. No outside paint to be scratched. PVC easy to clean, surface is scuff resistant. PVC/ALUMINIUM FOR FRONT \& BACK PANELS gives easy cutting with rigidity PVC/STEEL FOR SIDES, TOP \& BOTTOM gives rigidity, low cost, ease of assembly, 3 HEIGHTS OF CASE, 4 WIDTHS, 2 DEPTHS, make 24 cases with screws on top and 24 cases with screws on side, that's 48 different cases. LOW COST. Prices include chassis. MODERN DESIGN. Metal work on front and back and chassis is made easier by aluminium with PVC cladding. PVC/steel on sides and bottom for strength. GOOD DELIVERY. Off the shelf range of all PVC coated cases.
The Mod-2 type \mathbf{G} is also available with a very good simulated wood grain, which we think looks like teak, and it also has the PVC aluminium: grey front and back panels.
The type G case in either wood grain and grey or blue and grey is available either punched or unpunched, and is approved for the SINCLAIR PROJECT 60, with or without the active filter.

NOTE THE LOW COST

We also have available for Sinclair sets of DIN sockets, fuses, etc., to fit these particular specified parts.

* SEE OUR STANDARD
 PRICE LIST FOR QUANTITY PRICES AND ALL OUR OTHER PRODUCTS

	x	Y	z	1 off	P. \& P
A	4.5	3	6.5	34/-	3/-
B	4.5	7	6.5	40/-	$4 / 6$
C	4.5	10	6.5	$50 /$	$4 / 6$
D	9	3	6.5	$50 /$	4/6
E	9	7	6.5	55/	$4 / 6$
F	9	10	6.5	65/-	$4 / 6$
G	13	3	6.5	55/	$4 / 6$
H	13	7	6.5	65/	$4 / 6$
1	13	10	6.5	73/	6/16
」	18	3	6.5	65/	$4 / 6$
K	18	7	6.5	89/1	6/-
L	18	10	6.5	107/	$6 /$
M	4.5	3	13	401	$4 / 6$
N	4.5	7	13	55/	4/6
0	4.5	10	13	73/-	$6 /$
P	9	3	13	55/.	$4 / 6$
Q	9	7	13	73/-	6/-
R	9	10	13	89/	6/-
5	13	3	13	73/	6/-
T	13	7	13	89/-	6/1
U	13	10	13	109/-	$7 / 6$
v	18	3	13	89/	6/-
W	18	7	13	107/	$7 / 6$
\times	18	10	13	138	$7 / 6$
G	Woodgrain			68/	4/6

WEST HYDE
DEVELOPMENTS LIMITED
Ryefield Crescent, Northwood Hillls, Northwood Middlesex, HA6 1NN
Telephone: Northwood 24941/26732

YATES ELIGTRONIGS
 FLITWICK)LTD

RESISTORS

High stability carbon film. Very low noise. $0.5 \mathrm{~W} 5 \% 4.7 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega 2.5 \mathrm{~d}$ each, $100+$ 2d each, $0.5 \mathrm{~W} 10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega 2 \mathrm{~d}$ each, $100+1.75 \mathrm{~d}$ each. Quantity price applies for any selection. Ignore fractions on total order.
DEVELOPMENT PACK
0.5 watt 5% resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$

325 resistors E/2 series $50 / \mathrm{m}$.
650 resistors E24 series $100 /$.
MULLARD POLYESTER CAPACITORS C296 SERIES $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 6 \mathrm{~d}$. $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 10 \mathrm{~d}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 10 \mathrm{~d} . \quad 0.33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, \mathrm{I} / 6$. $0.68 \mu \mathrm{~F}, 2 / 3$. $1 \cdot 0 \mu \mathrm{~F}, 2 / 6$.
MULLARD POLYESTER CAPACITORS C280 SERIES 250V: P.C. mounting miniature 20% : $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$ $0.022 \mu \mathrm{~F}, 7 \mathrm{~d} . \quad 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, \quad 8 \mathrm{~d} . \quad 0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 1 /-\quad 0.33 \mu \mathrm{~F}, 1 / 4$.
MYLAR FILM CAPACITORS
100V: $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .05 \mu \mathrm{~F}$, $0.1 \mu \mathrm{~F}, 8 \mathrm{~d}$.
CAPACITOR DEVELOPMENT PACK
Selection of ceramic and polyester capacitors 100 pF to $1.0 \mu \mathrm{~F}$ Total 100 capacitors, $\mathbf{2 . 1 8 . 0}$.
MINIATURE ELECTROLYTIC CAPACITORS

$50 \mu \mathrm{~F}$	6 V	$16 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	12 V	$40 \mu \mathrm{~F}$	16 V	$18 \mu \mathrm{~F}$	40 V
$100 \mu \mathrm{~F}$	6 V	$64 \mu \mathrm{~F}$	10 V	$16 \mu \mathrm{~F}$	12 V	$6.4 \mu \mathrm{~F}$	25 V	$50 \mu \mathrm{~F}$	40 V
$200 \mu \mathrm{~F}$	6 V	$125 \mu \mathrm{~F}$	10 V	$50 \mu \mathrm{~F}$	12 V	$25 \mu \mathrm{~F}$	25 V	$2.5 \mu \mathrm{~F}$	64 V
$320 \mu \mathrm{~F}$	6 V	$200 \mu \mathrm{~F}$	10 V	$100 \mu \mathrm{~F}$	12 V	$8 \mu \mathrm{~F}$	40 V	$10 \mu \mathrm{~F}$	64 V

1/- each
$250 \mu \mathrm{~F} 12 \mathrm{~V}, 100 \mu \mathrm{~F} 40 \mathrm{~V}$ 1/6. $1000 \mu \mathrm{~F} 25$ volt $6 /-. \quad 2500 \mu \mathrm{~F}$ $25 \mathrm{~V} 9 /-. \quad 500 \mu \mathrm{~F} 50$ volts 5/-. $1000 \mu \mathrm{~F} 50$ volt $8 / \mathrm{m}$.

CERAMIC DISC CAPACITORS

$100 \mathrm{pF}, 150 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}, 330 \mathrm{pF}, 470 \mathrm{pF}, 560 \mathrm{pF}, 680 \mathrm{pF}$, $1000 \mathrm{pF}, 2000 \mathrm{pF}, 5000 \mathrm{pF}, 10,000 \mathrm{pF}$, 5d each.

POTENTIOMETERS

$5 \mathrm{k} \Omega$ to IMS log or linear, $2 / 6$.
GANGED STEREO POTENTIOMETERS
$\frac{1}{2}$ watt carbon track $5 k \Omega+5 k \Omega$ to $I M \Omega+1 M \Omega \log$ or linear 8/- each.
SKELETON PRE-SET POTENTIOMETERS
Linear: $100,250,500$ ohms and decades to 5 M ohm 20% $\leqslant 250 \mathrm{k} \Omega, \quad 30 \%,-250 \mathrm{k} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix). Sub-miniature 0.1 watt lod each. Miniature 0.3 watt $1 /-$ each.

TRANSISTORS

ACI26 3/-	BCl08 $2 /$	2N2926	2/3	2N3707	3/8
$\mathrm{ACl}^{\text {a }}$ 3/-	BCl09 2/9	2N3055	14/6	2N3708	2/
ACl28 3/-	BFY50 4/6	2N3702	3/-	2N3709	2/3
ADI40 8/-	BFY51 3/9	2N3703	2/10	2N3710	2/5
AFll5 3/6	BFY52 4/6	2N3704	3/6	2N3711	2/10
AFli7 3/6	BSY56 6/-	2N3705	3/-	ORPI2	9/6
BC107 2/9	BS $\times 215 /-$	2N3706	2/5	ZTX302	4/6

DIODES—OA85, OA91, OA202, 1/6 each
ZENER DIODE
$400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to $30 \mathrm{~V} 3 / 6$
SILICON RECTIFIERS

ROTARY SWITCHES
|PI2W, 2P6W, 3P4W, 4P3W, 4/6.
JACK PLUGS AND SOCKETS

Standard Screened	$3 / 6$	2.5 mm Insulated	$1 / 6$
Standard Insulated	$2 / 9$	3.5 mm Insulated	$1 / 6$
Stereo	Screened	$7 /-$	3.5 mm Screened
Standard Sockets	$3 / 6$		
Stereo Sockets	$3 / 6$	2.5 mm Socket	$1 / 6$
SR	3.5 mm Socket	$1 / 6$	

BRUSHED ALUMINIUM PANELS

Self adhesive backing approx. $13 \times 2 \frac{1}{2} 2 /-$.
C.W.O. please. $1 / 6$ post and packing on orders under El .

Export Enquiries welcome
$8 E 39$ ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD

LiND-AiR AUDiO

E.M.I. LOUDSPEAKERS MODEL 50.13 In. 8 in elliptical with twintwee10 W. Brand new, Euarantcect. Lind-Air Price 78/B,

MODEL 150. 13? in 8 in elliptical. 3 and 15 ohn impalance. $10 w$. LindAir Price 59,6 . P. \& P. $4 / 6$ TEAK FINISHR NPE KER C.ABINETS.
size 16 in 10i11, git. Lileal for atove units.
$49 / 8$.
C.IOOI MULTI-TESTER

Overload wotections $\because 0,000$ ohms per volt; a.c. volts
0.50
10,50,
50,

 Resistance $0-60 \mathrm{k} \Omega$ $0-6 \mathrm{M} \Omega$; decibels -20 to +22 dB . Sizc of meter $4 \frac{1}{2} \times 33 \mathrm{in} \times 1 \mathrm{in}$. Complete with leather case. 85/-, P. \& P. 3/6.

62. D. MULTI-TESTER

20,000 ohme zer volt; dic. voltage ohmes per volt), a.c. voltage $10,50,100,500$, $1,000 \mathrm{~V}(10,000$ ohmis
 $0-6 \mathrm{k} \Omega, 0-6 \mathrm{M} \Omega$ centre scale); capacitance $10 \mathrm{~F}^{2}$ to 0.00 mm $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$; decibels -20 to $+2 \cdot \mathrm{~dB}$. Size 41 in $3 k$ in in. $71 /$. P. \& P. $3 / 6$.
 투묻둘 RaOEGTOO

Allateractive alternative for the cnthusiast prepared to assemble these excellent modules to make a stereo assembly. $Z .30$ 24 W Power Amplificr 89/6 (2 refuired). Ntereo Sixty Control/Pre-auplific: 20.19.6 PL.5 Power Rupply unit 24.19.6. Sinclair Project 60 Package deal price 19 Gni. P. \& P. $12 / 6$
instruetion manual and template with plinth mounting.

SINCLAIR IC-10 WTEGRATED CIRCUIT 10W Amplifier. Bize only lin $\% 0 \cdot 4$ in $0.2 i n$. A true hinitampliner complete with manual giving details of a wide range of
applical ions and instructions. Guarintced $\overline{3}$ years.
ORLY 59/6. P. \& P. 1/6
SPECLAL TRAKSFORMER FOR mains $230 / 250 \mathrm{~V}$. Out put 13 V at 0.5 s . 18/6. P. \& P. 2/6.

HI-TONE RECORDING TAPE

 $\begin{array}{ll}\text { C90 Cascettc (Library cased) } & \text { 13/-1. \& P. } 1 / \\ \text { C120 Cassette (Library cased) } & 18 /-\mathbf{P} . \& \mathbf{P} .1 /\end{array}$

chann Henipiovis

- STEREO EFFECT RAOID

 - BUITIWTO MEAOPHONE TROLS ${ }^{\text {Chis }}$ Roos / Light beam is automatiTUMIMG MNO Valume comirors acopic SPEAEAS-OME IM EACH EARPIECE
Listen to all your farourite radio programmes tinywhere and anytime. Covers full medium waschand, super. senaltive tuning control and variable volume control. Ideal for out and imloors. Only 210.18.6.

600 WATT LIGHT DIMMER SWITCH

anne size as standard wall switeh and will dim incsudescent
lighting from full on to off. Heary plastic box with knob Lind-Air Price 84.10 .0 . P^{2}. $\mathrm{P}^{2}, 3 / 6$

UNILEXAudio Modules A good quality stereo amplifier can be built with no electrical knowledge.
All solid state-Baxendall tone control circuit-no soldering -terminal block connections throughout
Everything you need to know about UNILEX SYSTEMS is in the Mullard book "Do it yourself stereo". Superb de signs, detailed plans, simple instructions in non-technical language covering 4 systems in 4 price ranges. Send fo

UNILEX Audio Modules
Amplifier
Module Ep9000 62.18 .0 each Pre Amplificr Module EP90)| 43.2 .0 Power Supply Module EP90)2 64.12 .0 Control Panel Assembly and Escutcheon Plate
63.5 .0

BUILD A STEREO AMPLIFIER FOR ONLY \&16.15.0 P. \& P. $7 / 6$ UNILEX PACKAGE DEALS

Luilex Modules \quad :18.15.0
Garrard $202 \overline{0}$...... 111.14 .1
Celention speakers. ${ }^{25} .17 .0$
£34.6.1
LIND-AIR 28 GNS. PRICE
P. \& P. 201

NOW OPEN AT:
94-96 UPPER PARLIAMENT STREET NOTTINGHAM

Cinitex Manluies
Garrard $\triangle P=5$ Mk i B. S.R. C1 Cartridge
Celestion peakerg

LIND-AIR
35

Tel. 40403 (STD 0602)

DE-LOIE STEREO HEADPHONE With soft rubber earpicce: Impedance 8-16ohms. Frequency response 2313,000Hz. With lead
Onis
and
$58 / B$
stereo
P. 3/6.

SOLDERING GUN

S-DEC BREADBOARD

solderless breadionat purly for fat in liable component conncetlons. Single DeCs. One B-DeC with Control Fanet, Jig ath Aecessories for solderless connections to controls, etc., with booklet "Projects on s-DeC"' giving construction P. de P. $\boldsymbol{2} / 6$. 4-DeC K1T. Jour s-Dec's with two Contiol Panelg, Jigs and Accessories ant the bookstrong attractive platic case. Ifeal for the proiessional piser. 25.17.6. $\mathrm{F}_{\text {, \& }} \mathrm{P}$. T/LECC K1T 22.10.0. I. \& P. 3/b.

H-FITURNTABLES

202: T/C with stereo cartrigge . . 88.10 .6 3000 with Bonotone 9TAHCI \&pterco cartridgc - 810.19 .6 8L651 Base and cover for above. £5.10.6 AP75.
SL/2E
SLIJB
401..
… \quad E38.9.0
Bage and cover for above ….. 288.10 .0 P. \& P. Decks, 12/6; Basc ant Cover, $10 /=$. Deck/Base/Cover, 17/6

Pess Mk. II with base

 SPō Mk. 11 with sonotone 9TAHCD eartrdge and base.Sonotouc 9T A1MCD antride

18/19,25 \& 53 TOTTENHAM CT. ROAD, LONDON W. 1 Telephone: 01-580 2255/4532/7679
 0 pen $9-6 \mathrm{pm}$. Monday to Saturday. Thursday until 7 pm

All Mail Orders and correspondence to Dept. L4/13, Kiriman Honse, 54a Tottenham Court Road, London, W,1. Tel: 01-580 7041/2.

Project 60

the world's most advanced high fidelity modules

With the introduction of an entirely new and original high fidelity stereo F.M. tuner, the Project 60 range can be said at this stage to be complete. It offers the constructor a most attractive choice of modular arrangements whereby a high fidelity system can be selected to suit the user's personal requirements. Equally, it is possible to use any Project 60 modules separately or partially grouped and so benefit greatly from the flexibility in use these modules afford. The chart below shows somr of the most popular applications for constructors to assemble. The Project 60 manual (free with the modules) suggests others as well and its 48 pages are packed with valuable information. The new tuner, for example can be used with any good high fidelity system as well as Project 60.
Project 60 now falls into four interdependent groups :-1. The $Z .30$ and Z.50 amplifiers which have only 0.02% distortion at all output levels and are useful in a wide variety of other applications. 2. The control units comprising the Stereo 60 preamp and control unit and the Active Filter Unit (A.F.U.) with which both high pass and low pass filtering can be introduced between control unit and power amplifiers. 3. The Stereo F.M. tuner as described opposite : and 4. The power supply units PZ.5.

PZ. 6 and PZ.8. For most requirements when using $Z .30$ power amplifiers, the PZ. 5 will be perfectly adequate : if low efficiency (high quality) loud speakers are used, the PZ. 6 stabilised power supply unit will be used. The PZ. 8 will be needed with $Z .50$ s which can be used for any Project 60 system.
Project 60 modules incorporate some of the most advanced circuitry in the world to achieve unsurpassed standards of high fidelity and modern manufacturing techniques enable these modules to be sold at exceptionally attractive prices. Assembling the modules requires no skill or previous experience since the manual supplied with the modules explains clearly how everything can be done with nothing more than the simplest of domestic tools.

Project 60 manuals

How to assemble and use Project 60 modules to best advantage in the above and other applications will be found in the fully descriptive Project 60 manual included with Project 60 systems. This 48 page manual is available separately, price $2 / 6$ d including postage.

	System	The Units to use	In conjunction with	Cost of Units	+ Project 60 tuner
A	Car Radio	2.30	Existing car radio. Sinclair Micromatic	89/6	
B	Simple battery powered record player	2.30	Crystal pick-up. 12V or more battery supply and volume control	89/6	
C	Mains powered record player	2.30 and P2.5	Crystal or ceramic P.U. Volume control etc.	£9.9.0	£34.9.0
D	$20+20$ watts R.M.S. stereo amplifier for most needs	$\text { Two Z.30s, Stereo } 60$ and PZ.5	Crystal, ceramic or magnetic P.U., most dynamic speakers, F.M. tuner etc.	£23.18.0	£48.18.0
E	$20+20$ watts R.M.S. stereo amplifier for use with low efficiency (high performance) speakers	$\begin{aligned} & \text { Two Z.30s, Stereo } 60 \\ & \text { and PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner, Tape Deck, etc All dynamic speakers	£26.18.0	£51.18.9
F	$40+40$ watts R.M.S. de-luxe stereo amplifier	Two 2.50s, Stereo 60 PZ. 8 and mains transformer	As for E	£32.17.6	£57.17.6
G	Outdoor public address system	2.50	Microphone, up 104 P.A. speakers. 12 V car battery with converter, or 45 V d.c., controls	£5.9.6	
H	Indoor P.A.	One Z.50, PZ. 8 and mains transformer	Microphone, guitar, heavy duty speakers etc., controls	£17.8.6.	
J	High pass and low pass filters	A.F.U.	D. E or F as above	£5.19.6	

Z.30 \& Z.50 power amplifiers

The 2.30 together with the 2.50 are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the $Z .30$ or 2.50 power amplifiers in your Project 60 system will depend on personal preference, but they are the same physical size and may be used with other units in the Project 60 range equally well. For operating from mains, for the 2.30 use PZ. 5 for most domestic requirements. or PZ. 6 if you have very low efficiency loudspeakers. For Z.50. use the PZ 8 described below.

SPECIFICATIONS ($Z .50$ units are inter-
changeable with $Z .30$ s in all applications). Power Outputs
Z.30 15 watts R.M.S. into 8 ohms. using 35 V : 20 watts R.M.S. into 3 ohms using 30 volts.
Z.50 40 watts R.M.S. into 3 ohms from 40 volts: 30 watts R.M.S. into 8 ohms, using 50 volts.
Frequency response 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ Frequency response 30 to 300
Distortion 0.02% into 8 ohms Distortion 0.02% into 8 ohms
Signal to noise ratio better tha
Signal to noise ratio better than 70 dB unweighted Input sensitivity 250 mV into 100 Xohms . For speakers from 3 to 150 hms impedance. Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ ins.

2.30

Built, tested and guaranteed with circuits and instructions manual

89/6
2.50

Built. tested and guaranteed with circuits and instructions manual

Stereo 60 pre amp/control unit
 Designed for the Project 60 range but suitable for use

 with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS

- Input sensitivities - Radıo - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u. - up to $3 m$ V: Aux. - up to 3 mV .
- Output - 250 mV .
- Signal-to-noise ratio - better than 70dB
- Channel matching - within 1 dB .
- Tone controls - TREBLE +15 to -15 dB at $10 \mathrm{kHz}:$ BASS +15 to -15 dB at 100 Hz .

- Front panel - brushed aluminium with black knobs and controls
- Size $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ ins.

Buitt. testedand guaranteed
£9.19.6

Active Filter Unit

For use between Stereo 60 unit and two 2.30 s or 2.50 s, the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12dB/octave). there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The Sinclair A FU is suitable also for use with any other ampl fier system. Two stages of filtering are incorporated - rumble (high pass) and scratch (low pass). Supply voltage (high pass) and scratch (low pass). Supply voltage -
15 to 35 V . Current -3 mA . H.F cut-off $(-3 \mathrm{~dB})$

Power Supply Units

The units below are designed specially for use with the Project 60 system of your choice.
Illustration shows PZ. 5 power supply unit to left and PZ. 8 (for use with Z.50s) to the right. Use PZ. 5 for normal $Z .30$ assemblies and PZ. 6 where a stabilised supply is essential.

PZ-5 30 volts unstabilised $£ 4.19 .6$
PZ-6 35 volts stabilised $\mathbf{f} 7.19 .6$
PZ-8 45 volts stabilised
(less mains transformers) $£ 5.19 .6$
PZ-8 mains transformer $\mathbf{£ 6 . 1 9 . 6}$

Stereo FM tuner

first in the world to use the phase lock loop principle
Before production of this tuner. the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now. for the first time the principle has been applied to an FM tuner with fantastically good results. By the inclusion of other original features such as varicap diode tuning. printed circuit coils and an I,C. in the specially designed stereo decoder, the tuner has an unsurpassed specification, which also incorporates a squelch circuit for silent tuning between stations. A.F.C. and A.G.C. Sensitivity is such that good reception becomes possible in difficult areas, foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of high fidelity. this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. Although the tuner is intended primarily for use with a Project 60 system, it can be used to advantage with any other high fidelity system. It is easily mounted into any cabinet as shown in the manual supplied with it.

Specifications

Number of transistors 16 plus 20 in I.C
Tuning range 87.5 to 108 MHz
Capture ratio 1.5 dB
Sensitivity $2 \mu V$ for 30 dB quieting $7 \mu \mathrm{~V}$ for full limiting
Squelch level $20 \mu \mathrm{~V}$
A.F.C. range $\pm 200 \mathrm{KHz}$

Signal to noise ratio $>65 \mathrm{~dB}$
Audio frequency response $10 \mathrm{~Hz}-15 \mathrm{kHz}(\pm 1 \mathrm{~dB})$
Total harmonic distortion 0.15% for 30% modulation
Stereo decoder operating level $2 \mu \mathrm{~V}$
Pilot tone suppression 30 dB
Cross talk 40 dB
t.F. frequency 10.7 MHz

Output voltage $2 \times 150 \mathrm{mV}$ R.M.S
Aerial tmpedance 75 Ohms
Indicators Mains on: Stereo on : tunıng indicator
Operating voltage 25-30VDC
Size $3.6 \times 1.6 \times 8.15$ inches : $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $£ 25$ built and tested. Post free.

GUARANTEE If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your monev at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail, Air-mail Charged at cost.
—n \quad for which / enclose cash/cheque money
To: Sinclair Radionics Ltd., 22 Newmarket Road, Cambridge

Sinclair IC-10

the world's most advanced high fidelity amplifier

Specifications
Output: 10 Watts peak, 5 Watts R.M.S. continuous
Frequency response: -5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Total harmonic distortion: Less than 1% at full output.
Load impedance: 3 to 15 ohms.
Power gain: 110 dB (100.000,000,000 times)
total.
Supply voltage: $\quad 8$ to 18 volts.
Size: $\quad 1 \times 0.4 \times 0.2$ inches.
Sensitivity:
5 mV .
Input impedance: Adjustable externally up to
2.5 M ohms.

Circuit Description

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 W . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout). etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every $1 \mathrm{C}-10$. knowing that every unit will work as perfectly as the original and do so for a lifetime.

\footnotetext{
To: Sinclair Radionics Ltd., $2 \mathbf{2 2} \overline{\text { Newmarket }} \overline{\text { Road, }} \overline{\text { Cambridge }}$

Please send	NAME
.	ADDRESS . .	
... -..... . . . ${ }^{\text {a }}$	--.	-
for which I enclose cash/cheque money order	-..	PE/I7I.B

Q. 16 High fidelity loudspeaker

Developed out of the revolutionary and much praised design of the original Sinclair Q. 14 comes this more advanced version to meet the requirements of even greater numbers of high fidelity enthusiasts. The 0.16 employs the same well proven acoustic principles in which a special driver assembly is meticulously matched to the physical characteristics of the uniquely designed housing. In reviewing this exclusive Sinclair design, technical journals have been loud in their praise for it and it comfortably stands comparison with very much more expensive loudspeakers. The shape of the 0.16 enables it to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures, and with its improved styling. the 0.16 presents an entirely new and attractive appearance. A solid teak surround is used with a special all-over cellular black foam front chosen as much for its appearance as for its ability to pass all audio frequencies unimpaired.
The 0.16 is compact and slim and is the ideal shelf-mounted speaker, and brings genuine high fidelity within reach of every music lover.

Specifications

Construction:

Loading
Input impedance:
Frequency response
Driver unit:

Size and styling:

Price:

Micromatic Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity. fower and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations: bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation very much easier than with many larger sets. The plug-in high fidelity type magnetic earpiece which matches exactly with the output of the Micromatic provides wonderful standards of reproduction both for speech and for music. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

Specifications

Size:
Weight including
batteries:
Tuning:
Earpiece:
Battery requirements:
Case:
Controls:
Price:
$1+\frac{\mathbf{B}^{\prime \prime}}{} \times 1 \frac{7}{16}^{\prime \prime} \times \frac{1}{2}^{\prime \prime}(46 \times 33 \times 13 \mathrm{~mm})$. 1 oz. (28.35 gm) approx.

Medium wave band with bandspread at higher frequency end. High-fidelity magnetic type. Two Mallory Mercury Cells, type R.M. 675. for long working life.
Black plastic with anodised aluminium front panel, spun aluminium dial.
Tuning dial, and on/off switching by means of earpiece plug.
Available in kit form complete with earpiece, case, instructions and supply of solder in fitted pack. 49/6.
Ready built, tested and guaranteed. 59/6.
A sealed seamless sound or pressure chamber is used with internal baffle, all of materials carefully chosen to ensure freedom from spurious tone coloration.
Up to 14 watts R.M.S.
8 ohms.
From 60 to $16,000 \mathrm{~Hz}$, as confirmed. by independently plotted B \& K curve. Specially designed high compliance unit having massive ceramic magnet of 11.000 gauss, aluminium speech coil and special cone suspension. Excellent transient response is achieved.
$9 \frac{3}{4}^{\prime \prime}$ square on face $\times 43^{\prime \prime}$ deep with neat pedestal base. Black all-over cellular foam front with natural solid teak surround.
\qquad

Glatarmino

MICRO SOLDERNG INSTRUMENTS

A range of micro soldering instruments combining high performance with really small dimensions and providing exceptional versatility.

Weighing about $\frac{1}{2}$ oz. (less flex) these miniature tools ensure the utmost accuracy and safety in use, resulting in consistently high standards of soldering with minimum operator fatigue.

Ultra-slim unbreakable nylon handles give a cool, comfortable grip for sustained delicacy of operation.

Slip-on bits are fitted over the element shaft, so absorbing all the heat produced and giving high performarice with rapid heating and recovery, A wide range of interchangeable tip sizes is available to suit different types of work.

There are ADAMIN models from, 8 to 24 watts, in voltages from 6v. to 240 v .

Please ask for NEW LEAFLETS 37/1005/7

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL Telephone 01-688 8589 and 4559

Selections from FELSTEAD ELECTRONIC'S

Winter List (Sent tree for stamped addressed envelope to address below:Tranistori \& c. AC126 2/6. AF115 8/-AF116 8/-. AF117 4/-. OAS 1/6. OA10 1/6. OA8 $1 / 6$. OA85 1/6. OC23 6/6. OC25 6/-. OC26 7/6. OC28 8/6. OC35 8/6. OC44 2/9. OC45 2/6
OC71 2/6. OC72 2/6. OC75 2/6. OC81 2/6. OC81D 2/6. OC82D 2/6. OC170 4/.. OC171 2/6 OC71 2/6. OC72 2/6. OC75 2/6. OC81 2/6. OC81D 2/6. OC82D 2/6. OC170 4/e. OCI71 2/6
Many more in list. S.D.R. BY100 800piv 2/10. 6 Amp serlen: BYZ13 300 plv 4/-. BYZ12 Many more in list. 8.D.R. BY100 800piv 2/10. 6 Amp erian: BYZ13 300 piv 4/\%. BYZ12 over.) 8nb-Min Tranatormera: OUTPUT (3Ω for OC72, \& c) $2 / 9$ DRIVER 8%. (Upto either $1 /$-), MOLTIMETER. Our famous 20000 Rper V $\mathbf{4}, 12.6$ (2/6). Details and other in list.
lis.
list. $80 L D E$ IMG IRON. Slim, modern, British high-speed 8 In $^{\circ}$, all parts replacesble, higheat quality, fullguarantee: 21/-(1/6). DIAMOND STYLII Replacements for BER TC8/LP, TC8/S TC8LP/GTEREO; COLLARO 'O': RONETTE BF40LP: GARRARD GC2/LP and GC8
 Il at isl- All are of the very highest qualty. Donble Diamond: ET4 (BTa, BTs) sil at 15/- (1/-). All are of the very highest qual ity. Double Diamond: 8T4 (BTS, 8T6)
RT10 (8T9, ST8): 9TA, 9TAHC, 3 306, GP91 (For GP92, GP93, GP94 cartridgea): GP91SC for all GP91-SC cartridges; All at $80 /-$ each ($1 /-$). PICK-UP CARTRIDGE8 All standard At tings and stylii. MONO GP67/2 15/- STEREO-COMPATIBLE (MONO) GP91/SC (21/) GTEREO GP93 25/6. STEREO CERAMIC GP94 88/6. SONOTONE GTEREO 9TAHC DIA.) $47 / 6$. GOLDRING G850 97/6. G800 88.10.0. G800E 218.10 .0 G800 SCPER E 819.10. (1/- all types), Reg. Post 4/-) ST YLII FOR ALL ABOVE TYPES, including GOLDRING available. RECORDING TAPE. Still the finest quality British Mylar available: Standand 5°
 1800ft. 18/- (1/3 on $5^{\prime \prime}$ and $5 y^{\circ} 1 / 6$ on 77°. MICROPHONES Cryetsl M ic 91 , hand/desk $16 / 8$ MIC45 Curved metal handgrip 20/-. CM21 Grey hand/desk 10/6. St ick 60 20/8 CM70 "Pia$1 / 6)$ LaPEL (or table MINY $15 / 6$ ($/ 6$) Ms10, $50 \mathrm{~K} \Omega$ for desk, tapered, with bave and sltue-out adaptor 39/6 MS11, Similar, but fixed on swivel swan neck to swltch-fit ted base 42/6. (Either 2/6). Type 209 Carlioid ball, $50 \mathrm{~K} / 600 \Omega$, omni-dir., built-in rol. control, on/oft switch, apecia lead, hamlle (as good an money can buy) \&8.8.0. DM160, Non-Dir. Ball, $50 \mathrm{~K} \Omega$, switch, cable, adapt or $77 / 6$ ($5 /$ - either). MICROPHONE IMSERTS. Dis., 1.75^{*} OR $0.9^{\prime \prime}$ either size $3 / 6(1 /-)$. EARPIECES with lead \& 11 in . Jack plug (2.5 or 3.5 mm , ktate which) Magnetic $1 / 9$ Crystal (3.5 only) $4 / 9$. ('pto 3 for 1 (-on any). HEADPRONES De luxe STEREO $8-16$ ohmas, 47/6d. Same, fitted vol. control each earplece, 67/6. Both have lead and steres jack plug. (3/-). High Res, 2000 ohmi. Adjuatabie $18 / 6$ (2/-) SPEAKERS. $12^{\prime \prime}$ ROUND.
 EAI $18^{\prime \prime}=8^{\circ}, 3,8$ or 15Ω (State which) $48 / 6$ (4/6): with single flared para. t weeter cont 8 or 15Ω (atate which) $45 / 6$ (4/6): with two tweeters and cross-over network $7 / 5 /$ ($5 /-$) VIBRATORs. Genuine Plegrey 12 v .4 pin non-8ynch. 121HD4, $2 \mathrm{q}^{\prime \prime}$ ex. pins 5/6-. Am. 12v 4 -pin. non-synch. 7/16ths. longer, $4 / 6$ 12v. 7-pin Synch. (128R7) 12/6. 6v. 7-pin. Synch. (68R7) 12/6. (All types 1/- per vibrator). CONAECTING WIEE. Packs of 5 colls assti coln. "3. coll 5yds. Bolid core $2 / 9(1 /-)$. Flexible $3 / 3$ (1/3.) super thin for transistor wiring $3 / 8$ ($1 /-$). PICE-UP WIRE. Super thin twin flex. ecreened and sheathed $1 / 8 \mathrm{yd}$. (1/- upto 6yds.-over, free.) RETRACTABLE Flex. Leads, (Curlies) 6ft. phono plug ea. end 4/6. 12ft. 7/9. 6 ft , phono plug/phono socket other end $5 /-12 \mathrm{ft}$, $8 / 6$ ($1 /$ - per lead, all types). BEAD BAE for full tree lists-Teleton and small $3 w$ and $7 \nmid w$ trans. amplifiers, Electrolytics, Vol. prods, all types of Brit \& cont, ktandard and min. plugs and sockets, SDR's, Thyristora croc, clips (variou4), terminals, etc. etc, and many 'Special Offer' lines at lowest possibl prices.

FELSTEAD ELECTRONICS (PE38)
LONGLEY LANE, GATLEY, CHEADLE, CHES. SK8 4EE Cash with order only. No COD or Cailer Service. Charges (Min. 1/-) in brackets after al tems. Regret Orders under 5/- unacceptable. SAE please for enquiries Overseas oriler welcomerl-lists free.

BUIL YOUR CIRCUTS on VEROBOARD -the Universal Wiring Board-

 obtainable from your local Retailer Trade enquiries to:NORMAN ROSE (ELECTRICAL) LTD.
8 St. Chad's Place, Gray's Inn Road, London, W.C. 1 Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants

LEARN HOW COMPUTERS WORK WITH COMPUKIT

Compukit 1 is a practical do-ityourself teaching aid designed to remove the mystery from digital computers, logic and Boolean algebra. "Cheap, Quick and Clean.... and, clear winner on all counts" says the Times Educational Supplemens. Accompanied by easy-to-follow instruction book.

Ideal as a gift to amateurs, intelligent ceenagers, teachers, etc.
Unassembled kit, complete, Type CKI/U \&10.10.0 (P. \& P. 6/-).
Assembled, fully tested, ready to use, Type CKI/A fl3.5.0 (P. \& P. 6/-).
Also available Compukir 1 Deluxe Model and Compukit 2 I.C. Patchboard.
Cash with order, or further information, from
LIMROSE ELECTRONICS (PE), Lymm, Cheshire

2N4871 6/9	MGA 100 35/-
Mororia unioncion	$31 F 2$ 28/6

IRC 20
Rectifier thyristor
$\begin{array}{ll}\text { (similar C10 } & \text { amp } \\ 5+6 \% & 100+5\end{array}$

2N2926

2/-
NPN Planar transistors

OA91 spectal offer

 Muliard Diode$+9 \mathrm{~d} . \quad 100+7 \mathrm{~d}$.

CHEAP
LOGIC!

Fairchild-USA)

 $1-1112.24 \quad 25-99100+$ 8/- $7 /$ outer $8 / 6$ul914Dual 2 inpur Gate UL914Dual 2 inpur Gate
8/K $7 /-\quad 8 / 6 \quad 5 / 6$ uL 923 J-K Flip Flop
$10 / 6 \quad 10 /-\quad 9 / 6 \quad 9 /-$ Data and circuits
article, 5 -page, ar $2 / 6$ Article ${ }^{\text {Circuits for Suggested }}$ Micro-
Cis. logic'", at ${ }^{3 /-}$ -
TOS to Dlíconversion spreaders adaptors at
$1 / 6$ each.

SILICON RECTIFIERS

Amp Miniature Moulded Junc V. $1-2425+100+500$ $\begin{array}{lrllll}\text { IN4001 } & 50 & 1 / 6 & 1 / 4 & 1 / 2 & 1 / \\ \text { IN4002 } & 100 & 1 / 6 & 1 / 4 & 1 / 2 & 1 / \\ \text { IN4003 } & 200 & 1 / & 1 / 9 & 1 / 6 & 1 / 3\end{array}$ IN4003

IN4004
\qquad IN4006 800
IN4007

In the event of any IN 4000 series going temporarily out of stock we
reserve the right to send higher voltage types at no extra charge $1000+$ and over prices on appli.

ZENER DIODES

UTRRSONIC TRANSOUCERS

 transmut
receive.
FREE: With each
pair our complere
pair our complese
transmitcer and
receiver circuit
PR.18.0 Pair
(Sold only in pair s)

INTEGRATED CIRCUITS

CA3005 23/6 CA3020 25/3 CA302BB 21/- CA3043 27/6

 $\begin{array}{lllllll}\text { CA } 3011 & 14 / 9 & \text { CA } 3021 & 31 / 3 & \text { CA } 3035 & 24 / 6 & \text { CA3044 } \\ \text { 14/ }\end{array}$ $\begin{array}{llllll}C A 3012 & 17 / 9 & C A 3022 & 26 /- & \text { CA3036 } & 14 / 6\end{array}$ $\begin{array}{llll}\text { CA3013 } 21 /-\quad \text { CA3023 } & 25 / 3 \quad \text { CA3039 } & 16 / 9\end{array}$ $\begin{array}{lllllll}\text { CA } 3018 & 1649 & \text { CA3026 } & 20 /- & \text { CA3041 } & 21 / 9 & \text { CA3048 } \\ \text { CA0/9 }\end{array}$ Application Notes for each individual $2 / 6 \mathrm{~d}$. per copy.$\begin{array}{ll}\text { PA234 } & \text { GE IC } 1 \text { Watt Amplifier } \\ \text { PA } 237 & \text { GE IC } 2 \text { Watt Amplifier }\end{array}$
PA246 GEIC 5 Watt Amplifier
GEIC Zero Voltage 5 witch
SL.403A Plessey 3 Watt Amplifier
SL702C Plessey Linear
TAA263 Mullard Linear Multard General Purpose Amplifie
$\begin{array}{ll}\text { TAA293 Mullard General Purpose A } \\ \text { TAA } 310 & \text { Record Playback Amplifier }\end{array}$
TAA 320 MOS LF Amplifier
TADE Mulard GE Receiver Silicon Controlled Switch
L.S.T. EIECTRONIC COMPONENTS LTD.

7 COPTFOLD ROAD BRENTWOOD, ESSEX

HOME RADO (Components) Ltd., Dept. PE, 234-240 London Road, Mitcham, CR4 3HD. Phone 01-648 8422

You must admit, the lad's keen - he's fallen as'eep still tuned in to dad's vintage receiver. His cat's whiskers set lies abandoned by his other "receiver", and now he's dreaming of the super sets and gadgets he's going to build once he's got the Home Radio Components Catalogue that Father Christmas has been ordered to bring. In the morning when the lad sits up in bed and flips through its 300 pages he'll certainly come out with some such phrase as "It's the cat's whiskers!".

If you can't rely on Father Christmas to bring you a Home Radio Catalogue, play safe-give yourself one! It will cost you only $8 / 6$, plus 4/- post and packing, and once you've got it you'll wonder how you ever managed without it. It's packed with over 8,000 items, no less than 1,500 of them illustrated; and every copy contains 6 vouchers each worth a bob when used as directed. Fill in the coupon right away and post it with your cheque or P.O. for 12/6.

> A Stappy Christmas to all our readers.

Address

Home Radio (Components) Ltd.
Dept. PE, 234-240 London Road, Mitcham, CR4 3HD.

Editor F. E. BENNETT Assistant Editor M. A. COLWELL Editorial Assistants D. BARRINGTON G. GODBOLD M. KENWARD Art Editor J. D. POUNTNEY Technical lllustrators J. A. HADLEY P. A. LOATES

Advertisement Manager D. W. B. TILLEARD

SEENG WTTH SOUND

Almost two whole years have passed since fog was last discussed on this page. More specifically, we then aired our hopes for an electronic system that would, to some degree, restore visibility to drivers of motor vehicles in bad weather conditions.

Two years is a long time in electronics, and one could quite reasonably expect important steps to have been taken by now toward the solution of this serious problem. But nothing concrete has.emerged so far from industry or from government research establishments.

We do know that much effort has been put into the development of a radar system for vehicles operating inside airports. There is a vital need for emergency service vehicles to be able to move at speed to the scene of an aircraft mishap, no matter what state of visibility obtains. This particular radar system has not yet been put into production, presumably because the airport authorities have not yet been decided to buy.

By normal standards, a radar system is necessarily expensive and involves much sophisticated engineering. It is true that solid state devices such as Gunn-effect diodes are available for microwave operation, and these help to simplify the receiver and transmitter design and so reduce the overall bulk of the installation. But there still remains a major problem in the form of the display device. Until the c.r.t. is superceded by a solid state electro-luminescent panel, there is little likelihood that radar, even in an elementary form, can be seriously considered as a feasible proposition for installation on all types of road vehicles.

While waiting for further advances in technology to solve these engineering (and cost) problems, there is no reason why private individuals should not on their own account investigate other methods to combat the common enemy, fog.

Leaving aside electro-magnetic waves, why not explore the possibility of sound waves? The equipment needed for an acoustical system is not highly complicated, and the basic principles involved are familiar enough to most electronics enthusiasts. The Sonic Obstacle Locator described in this issue has proved itself to a marked degree. Admittedly, as a driving aid it is not infallible, and lacks, as yet, the ability to discriminate between tree, lamp post, or car. Serious limitations, in fact, for a car-borne device. But it is not offered as an instant solution to a formidable problem. It is offered as an idea worthy of further development by the experimentally inclined. And other uses may well become apparent.

We hope many will rise to the challenge. Amateurs have blazed the trail before. Most significantly, in proving the usefulness of the then neglected high frequency radio waves. Maybe private experimenters can achieve some noteworthy success in electro-acoustics.
F.E.B.

THIS MONTH

CONSTRUCTIONAL PROJECTS
SONIC OBSTACLE LOCATOR 22
WASH-WIPE CONTROL 40
"P.E. GEMINI" DUAL PURPOSE STEREO AMPLIFIER 48
P.E. DIGITAL CLOCK 58
SPECIAL SERIES
MAKING THE MOST OF LOGIC $1 C$'s- 7 35
GENERAL FEATURES
BEGINNERS
SIREN30
NEWS AND COMMENT
EDITORIAL 21
NEWS BRIEFS 31, 47
SPACEWATCH 32
AUDIO TRENDS 52
ON THE FRINGE 73
READOUT 74
Our February issue will be published on
Friday, January 15

[^1]ATMOSPHERIC pollution and weather conditions often combine to produce thick fogs which reduce visibility to as little as $10-20$ feet. Much the same applies where there is smoke or driving snow. In such conditions man's senses are virtually useless and there is a real need for technical aids to penetrate the murk.
Short range radar would seem to provide an answer to the problem, but the equipment is expensive and involves radio licensing complications. Fog is transparent to certain bands of infra-red, but infra-red emitters and sensors for use at such wavelengths are not, as yet, sufficiently developed. Another approach would be ultrasonics, but high frequency sound waves tend to be scattered by fog droplets, and have a short range.

AUDIBLE SOUND

The Oil-bird of South America points the way to a possible solution to the problem; it finds its way around dark caves by emitting audible clicking noises, like the sound of castanets. Audible sound is, of course, only slightly attenuated by fog and other atmospheric particles, hence the use of the fog horn, and the explosive cap on railways.

Sonar has long been employed for navigation and ranging purposes underwater, and there seems to be no reason why audible sound pulses in air should not be similarly used if the equipment can be made to operate against a background of day-to-day ambient noise.

The Sonic Obstacle Locator is the result of experiments to test the practicability of using audible sound to detect the presence of unseen objects in fog. With a range of 100 feet, the equipment could be used on board small boats for docking in conditions of poor visibility, or as an outdoor, all weather intruder alarm. There are many other possible applications, such as counting passing cars on a roadway, and educational demonstrations involving the speed, refraction, and reflection of sound waves.

SENSITIVITY

Although not recommended for use on cars in fog, the Sonic Obstacle Locator will work at low speeds, and was tested on a vehicle as this provided the most adverse conditions of high ambient noise.

To give an idea of sensitivity, a response is obtained from an adult pedestrian at up to 22 feet, a small parked car at 50 feet, or a stone wall perpendicular to

By D. Bollen

the sound source axis at 100 feet. When an obstacle in the road ahead is detected, the unit inside the car emits a bleep warning note, of duration directly proportional to distance.

The note varies from a short click at 95 feet range, to an almost continuous tone at the minimum range of 5 feet. A meter linearly calibrated 0-100 feet is incorporated to show the actual distance of the obstacle.

Because of sonic interference from the exhaust noise of other vehicles, particularly diesel lorries, the equipment will only operate reliably at traffic speeds below 30 m.p.h., under typical fog driving conditions.

MEASURING DISTANCE THROUGH AIR WITH SOUND

High frequency sound is readily reflected from solid surfaces, and sound waves conform to the same general laws of reflection as light.

The time taken for a sound to travel to a reflecting surface and back again can be used as a measure of the intervening distance, with an accuracy dependent on slight changes in the speed of sound resulting mainly from variations of temperature and humidity.

Sound velocity is not significantly influenced by droplets or particles in the atmosphere, and is largely independent of air pressure and altitude when corrections are made for temperature.

The velocity of sound in dry air at 0 degrees centigrade is 1,087 feet per second; about $4 \frac{1}{2}$ times slower than sound in water. If the air temperature is raised to 20 degrees centigrade a velocity increase of about 3.7 per cent will be noted.

When the air is fully saturated with water vapour, this causes a velocity increase of about 0.5 per cent, because water vapour decreases the density of air.

From the above it can be estimated that, over a temperature range ± 10 degrees centigrade, and in varying humidity, a sonic yardstick should offer a potential accuracy of about ± 2.5 per cent.

OPERATING FREQUENCY AND TRANSDUCERS

The frequency of the transmitted sound should be high, to combat interference from man-made noise, the bulk of which lies in the lower part of the audio spectrum. However, sonic transducers operating above 15 kHz are usually not sensitive enough for low power sound-through-air applications, although they may be suitable for service underwater where sound conduction

Fig. I. Area of response of the Sonic Obstacle Locator when used for pedestrian detection
is good. In the interests of economy, it was decided that special transducers should be avoided.

Tests were made with several types of loudspeaker and microphone, to establish a suitable compromise between cost and noise rejection when choosing the operating frequency. Firstly, the upper limit was set by microphones offering a useful output above 15 kHz , as they were too expensive to qualify.
It was discovered that good quality tweeters operating at $10-15 \mathrm{kHz}$ gave markedly inferior results when compared with small, cheap loudspeakers handling 10 kHz . This somewhat surprising result was eventually attributed to sound reinforcement arising from resonances $\mathrm{in}^{\text {the }}$ theap loudspeakers, and further improvements at 10 kHz were effected by cutting down the size of the loudspeaker cone, and stiffening it with cellulose dope. Obviously, if the sonic transmitter can be encouraged to provide a large acoustic output, this will tend to minimise noise, and compensate for the lower frequency.

When a loudspeaker is handling frequencies above a few kilohertz there will be only a small excursion of the voice coil and cone, and the limit to the amount of power the loudspeaker can handle is determined by voice coil overheating. If the high frequency input is pulsed on and off, with a relatively long pause between pulses, the loudspeaker can sustain very high levels of input without damage, and at the same time yield an output of high intensity.

Fig. 2. Block diagram of the Sonic Obstacle Locator. 10 kHz bursts of radiated acoustic energy are made to bounce off the obstacle. These are then ampliffed and the distance of the obstacle computed by the decoder for display by a meter. An audio bleep warning is also triggered at this final stage

DIRECTIONAL CHARACTERISTIC

In using a locator, echoes should only be obtained from obstacles in the road ahead, and not from objects which do not lie in the path of the vehicle.

A loudspeaker offers a polar response, at high frequencies, which is directional, but is not sufficiently narrow in shape for the present application; the requirement taking the form of a broad sphere slightly flattened along the sound source axis. However, a microphone can be made to see only a narrow angle by placing it at the focus of a parabolic reflector which looks along the source axis.

When loudspeaker and microphone polar responses are combined, the result is a thin, almost ideal cigar shape extending in front of the vehicle, as depicted in Fig. 1.

The plot upon which Fig. 1 is based was obtained from a 5 gallon oil drum which simulates a pedestrian wearing normal, soft clothing.

It can be seen that the area of response is roughly the width of the car and extends forwards to a distance of 22 feet. For larger obstacles, the area of detection will be wider and longer, though still of the same cigar shape.

SONIC TRANSMITTER

The basic features of the Sonic Obstacle Locator are outlined by the block diagram of Fig. 2, with associated waveforms in Fig. 3.

Dealing first with the transmitter, this consists of a pulse generator, a 10 kHz square wave oscillator, and a tuned power amplifier. The pulse generator provides a master pulse of 2 ms duration (Fig. 3A) at intervals of 178 ms , the time taken for sound to travel to the obstacle and back at the maximum range of 100 feet.

On receipt of the pulse, the 10 kHz oscillator provides an output of 2 ms duration, consisting of 20 cycles of a 10 kHz square wave, which is then passed to the power amplifier. Being tuned, the power amplifier converts the square wave into a sine wave, and the input to the loudspeaker is an envelope containing 20 cycles of a 10 kHz sine wave as seen in Fig. 3B.

To detect echoes from obstacles very close to the transmitter, the radiated sound must be of short duration, so that it dies away completely before the
echo arrives. A time of 2 ms for the acoustic burst from the transmitter is well inside the period fixed by the minimum range of 5 feet, to allow for various circuit delays and loudspeaker lag.

In passing, it is of interest to note that the short burst of 10 kHz sound from the transmitter is registered by the human ear merely as a loud click, with virtually no tone content.

RECEIVER

If an untuned amplifier was used with a microphone to pick up the minute reflected signals from the transmitter, the echo pulses would be completely swamped by

Fig. 3. Waveforms associated with Fig. 2 and identiflable by the letter. Fig. 3D is the tuned amplifier gain characteristic

Fig. 4. Circuit diagram of the transmitter consisting of pulse generator, square wave oscillator and tuned power amplifier
broadband ambient noise, except in a very quiet environment. Therefore, the sonic receiver is tuned to the transmitter frequency. In the block diagram the receiver is seen to consist of a microphone, a tuned high gain amplifier, and an echo pulse decoder circuit.

A typical microphone response to the burst of sound from the transmitter is shown by waveform Fig. 3C. Note the presence of back-scatter, noise, and the echo pulses.

Because echoes from near objects are of greater amplitude than echoes from distant objects, rough surfaces and very small objects close to the loudspeaker and microphone tend to cause unwanted back-scattering of sound, and there is also direct pick-up of the unreflected burst from the loudspeaker.

Ideally, the receiver response should be proportional to distance; low for near objects and high for distant objects, so that an echo of the same amplitude is obtained from a given object at any distance with the range of the equipment. In practice, however, it is sufficient to ensure that the receiver is pulsed off while the acoustic burst is travelling over the first few feet of its journey, and then gain can be allowed to rise quickly to maximum for the reception of echoes.

ELIMINATING BACK-SCATTER

Controlled by the gain delay pulse derived from the pulse generator, the tuned amplifier gain characteristic takes the form shown, on an exaggerated time-distance scale, in Fig. 3D. Gain is almost zero at the time of the acoustic burst, and remains low over the region of back-scatter, then rises quickly to a stable level for the remainder of the period.

The effect of gain delay is demonstrated by comparing the resulting tuned amplifier output Fig. 3E with the amplifier input Fig. 3C. Back-scatter has been virtually eliminated from the waveform, without influencing the echo pulses. Although the tuned amplifier is switched off during the transmitter burst, it is almost impossible to remove evidence of the burst from the amplifier output (Fig. 3E) because of electrical interaction between transmitter and receiver circuits, despite careful screening. However, the decoder circuit takes this into account.
The function of the decoder, which will be examined in greater detail later, is to measure the time interval between the start of the control pulse and reception of the first significant echo, while ignoring as far as possible noise, and secondary echoes.

Distance is computed by the decoder for display by a meter, and an audio bleep warning oscillator is also triggered to give an output from a crystal insert loudspeaker.

TRANSMITTER CIRCUIT

The transmitter circuit of Fig. 4 was designed to feed a peak pulsed power of more than 20 watts, at 10 kHz , into a 3 ohms nominal impedance loudspeaker (12 ohms at 10 kHz), using as few components as possible.

Looking first at the pulse generator of Fig. 4, Cl is positively charged through VR1, the unijunction transistor TR1 triggers into conduction, whereupon Cl discharges rapidly through R2 to produce a steep-sided positive pulse. The interval between pulses is set by adjustment of VR1, and the duration of the pulse is determined by the fixed values of C 1 and R 2 .

COMPONENTS . . .

SONIC TRANSMITTER

```
Resistors
\begin{tabular}{llll} 
R1 & \(560 \Omega\) & R5 & \(4.7 \mathrm{k} \Omega\) \\
R2 & \(180 \Omega\) & R6 & \(4.7 \mathrm{k} \Omega\) \\
R3 & \(330 \Omega\) & R7 & \(330 \Omega\) \\
R4 & \(220 \Omega\) & & \\
All \(10 \%\) & \(\frac{1}{2}\) watt carbon & &
\end{tabular}
```


Capacitors

CI $4 \mu \mathrm{~F}$ electrolytic 50 V
C2 $0.01 \mu \mathrm{~F}$ miniature polyester 250 V
C3 $0.01 \mu \mathrm{~F}$ miniature polyester 250 V
C4 $4 \mu \mathrm{~F}$ electrolytic 50 V
C5* $4 \mu \mathrm{~F}$ metallised 150 V (see text)
C6 $1,000 \mu \mathrm{~F}$ electrolytic 50 V
Transistors
TRI 2N2646
TR2, TR3, TR4 2S512 or BSY27 (3 off)
TR5 ACl57 or ACl 27
TR6 BCY39 or 2N2904
TR7 OC28
Potentiometers
VRI $100 \mathrm{k} \Omega$ horizontal preset
VR2 $4.7 \mathrm{k} \Omega$ horizontal preset
Inductor
LI $\quad 2.5 \mathrm{mH}$ RF choke
Transformer
TI LAS pot core (see text)
Loudspeaker
LSI 3 ohm Sin dia. (see text)
Socket
SKI Coaxiai socket
Plug
PLI Coaxial plug
Miscellaneous
0. in matrix Veroboard 4.1 in $\times 1.7 \mathrm{in}$ $3 \mathrm{in} \times 1.8 \mathrm{in} 16$ s.w.g. sheet aluminium TO3 transistor mica washer and spacers 20 s.w.g. enamelled copper wire

Timing components R5, R6, C2 and C3, in Fig. 4, will cause the multivibrator circuit TR2 and TR3 to oscillate close to 10 kHz , but a fine frequency adjustment is provided by VR2 (tune transmitter).
The multivibrator will only oscillate when the, emitters of TR2 and TR3 are connected to the negative, rail by transistor switch TR4. In turn, TR4 is only switched on for a period of 2 ms when it receives the pulse from TR1, via R4.

Driven by the multivibrator output, the complementary pair TR 5 and TR6 alternately clamp C4 to positive and negative supply rails, and owing to the presence of tuned circuits L1, C4, and L3, C5, the switching waveform is converted into a sine wave by output transistor TR7.

Approximately 15 V r.m.s. is developed across the 12 ohm speaker load during the 2 ms pulse period.
Transformer T1 is hand wound on a. Vinkor assembly, and one end of the secondary winding L3 is taken to a separate earth connection to accommodate positive or negative earth battery supplies.

REGENERATIVE RECEIVER

Receiver tuned amplifier and decoder circuits will be considered separately. Fig. 5 shows the tuned amplifier circuit.

Looking first at the very important stage TR9 in Fig. 5, it can be seen that this closely resembles a regenerative tuned stage in a t.r.f. radio receiver. Regeneration does away with the need for multiple tuned stages and simplifies tuning adjustments, while still giving reasonable selectivity.

Winding L6 is phased with L7 to give positive feedback between collector and base of TR9, and thus multiplies the Q value of tuned circuit $\mathrm{L} 7, \mathrm{C} 12$, and TCl . Regeneration is smoothly controlled by the VR5 setting.

TR9 is operated at a low collector current, near the point where gain falls off as collector current is decreased. VR4 sets the working point by establishing the amount of positive bias on the base of TR9.

A positive going pulse from the pulse generator is converted by C9, D1, and D2 into a negative pulse which counteracts the bias on the base of TR9, thus reducing gain. Owing to the slow discharge of C9 through VR4, R11, and R12 at the termination of the pulse, TR9 remains off for a period much longer than the time of the control pulse. The gain delay period is adjustable by VR4, and back-scatter control VR3.

Transformer T3 is hand-wound on an LA2107 pot core assembly.

EMITTER FOLLOWER

The signal from the microphone could be fed straight to the base of TR9, but this would demand a microphone transformer of non-standard impedance. Also, a long run of microphone cable could cause detuning. Therefore, emitter follower TR8 is included to serve as an impedance converter and buffer stage. Transformer T2 is of the type found in hand-held, moving coil stick microphones, and has an output impedance of 50 kilohms.

As the collector load of TR9 is a high Q tuned circuit; it will present a high impedance, with large voltage amplification, to a signal of 10 kHz , but side frequencies will see a low impedance and are hardly amplified at all. Overall rejection of the Fig. 5 circuit is better than 30 dB for signals 1 kHz above and below the centre frequency.

TUNED AMPLIFIER

Triple stage amplifier TR10, TR11, and TR12, is designed to offer some selectivity, but not enough to cause problems with instability. Emitter and coupling capacitors cause some attenuation of frequencies below 10 kHz , and the response is sharpened still further by tuned collector load C16, and L8.

When viewed on an oscilloscope, the tuned amplifier output will appear similar to Fig. 3E when echo signals are present. If the oscilloscope is d.c. coupled, and can offer linear timebase sweeps at around $0 \cdot 2 \mathrm{~s}$, then distance can be read off the X axis to give the precise location of all echoes.

DECODER

Having obtained satisfactory echo signals from the receiver tuned-amplifier, these must be converted into regular shaped pulses for timing purposes.

In the decoder circuit of Fig. 6, the monostable (TR13 and TR14), responds only to signals above a certain amplitude, determined by the VR7 setting, and thus rejects noise and small, spurious echoes.

Fig. 5. Circuit diagram of the receiver tuned amplifier

Fig. 6. Circuit diagram of decoder which converts the outpur from the tuned amplifier into regular shicped pulses for timing purposes

RECEIVER DECODER

Resistors

F. 25	120k Ω	R32	$10 \mathrm{k} \Omega$
F. 26	$10 \mathrm{k} \Omega$	R33	3.9k!
F. 27	$3.9 \mathrm{k} \Omega$	R34	10kS
F. 28	$8 \cdot 2 \mathrm{k} \Omega$	R35	1.2 k !
F. 29	$5.6 \mathrm{k} \Omega$	R36	$12 \mathrm{k} \Omega$
F. 30	$10 \mathrm{k} \Omega$	R37	2-2kg
F31	$3.9 \mathrm{k} \Omega$		

Capacitors

C21 $0.1 \mu \mathrm{~F}$ moulded polyester 250 V
C22 $0.047 \mu \mathrm{~F}$ moulded polyester 250 V
C23 $0.022_{\mu} \mathrm{F}$ miriature polyester 250 V
$\mathrm{C} 24 \quad 1,000 \mu \mathrm{~F}$ electrolytic 12 V
C25 $0.022 \mu \mathrm{~F}$ miniature folyester 250 V
C26 $\quad 0.033 \mu \mathrm{~F}$ miniature folyester 250 V

Transformer
T4 LT44 trawistor driver transformer (Henry's Radio)

Meter

MI 0-100 A A MR.65P

Loudspeaker

X2 lin- $\frac{1}{2}$ in diameter crystal microphone insert
Transistors
TRI3, TR.15, TR16 2S703 or 2 N929
TRI4, TF. 17 OC7I

Diodes

D3, D4, D5, D6 OA6
Miscellaneous
0.1 in matrix Veroboard 3.9 in $\times 1.7$ in

COMPONENTS...

RECEIVER TUNED AMPLIFIER			
Resisto			Trimmer Capacitor
RB	330 R 2 R17	$5.6 \mathrm{k} \Omega$	TCI 3,000pF Buigin C.P. 7
R9	270ks R18	$39 \mathrm{k} \Omega$	
R10	47ks R19	$6.8 \mathrm{k} \Omega$	Inductor
RII	$120 \mathrm{k} \Omega \quad \mathrm{R} 20$	$1 \mathrm{k} \Omega$	L8 10 mH RF choke
R12	$120 \mathrm{k} \Omega$ R21	$12 \mathrm{k} \Omega$	
R13	330k Ω R22	2.7kS	
R14	$100 \mathrm{k} \Omega \quad \mathrm{R} 23$	2-2k Ω	Transformers
R15	47k Ω R24	560Ω	T2 50k Ω moving coil microphone. matching
R16	22k Ω		transformer
All 10	\%, $\frac{1}{2}$ watt carbon		T3 LA5 pot core (see text)
Potentiometers Transistors			
VR3	600Ω panel mounting		TR8, TRIO, TRII, TRI2 25703 or 2 N929
VR4 VR5	$200 \mathrm{k} \Omega$ sub-min horizo $25 \mathrm{k} \Omega$ panel mounting	tal mounting	TR9 2S512 or BSY27
V25	$25 \mathrm{k} \Omega$ panel mounting	-	
V26 loks panel mounting - Diodes			
All presets			Diodes
			D1, D2 DA4:
Capacitors			
57	$25 \mu \mathrm{~F}$ electrolytic 50 V		
C3	680pF palystyrene 125		PLI Coaxial plug
C)	$0.5 \mu \mathrm{~F}$ metallised 250 V		PLI Coaxial plug
clo	$0.0047 \mu \mathrm{~F}$ miniature po	ester 500 V	
Cll	$0.25 \mu \mathrm{~F}$ metallised 250 V		Sceket
C12	2,000pF polystyrene 12		SK2 Coaxial socket
C13	680pF palystyrene 125		
C14	$0.022 \mu \mathrm{~F}$ miniature poly	ester 250 V	
C15	0.14 F moulded polyest	er 250 V	XI DMI 07 or similar
C16	$0.022 \mu \mathrm{~F}$ miniature poly	ester 250 V	
C17	$0.047 \mu \mathrm{~F}$ miniature poly	ester 250 V	
C 18	$0.1 \mu \mathrm{~F}$ mculded polyest	er 250 V	Miscellaneous
C19	${ }_{1} / \mathrm{F}$ miniature electroly	tic 15 V	0.1 in matrix Verobcard 6.9 in $\times 1.6 \mathrm{in}$
C30	$1 \mu \mathrm{~F}$ miniature electrol	tic 15 V	$40 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. eniamalled copper wire

Fig. 7. Waveform sequence appearing at decoder. (A) Typical input signal. (B) Response of monostable. (C) Output of bistable. (D) Audio oscillator output

Demodulated by D3, the leading edge of a signal envelope triggers TR13 on, which in turn switches TR14 on. With the collector of TR14 now close to the positive rail, TR13 remains biased on by the slow charge of C22 through R29, giving a rectangular pulse output from the collector of TR14, of length dependent on C22 and R 29 values.
Owing to the positive voltage present on the base of TR13, D3 is reversed biased, and blocks further signals until the monostable switches back into its stable state. The duration of the monostable output pulse determines the minimum distance which can be measured. If C22 is made smaller in value, a point will be reached where the monostable begins to deliver two pulses from each input signal.

BISTABLE

Looking next at the bistable in Fig. 6; a pulse via R35 and D6 from the pulse generator, at the commencement of each acoustic burst, will switch TR 15 off and TR16 on. With the collector of TR15 almost at positive rail voltage, C24 will begin to charge via R31 and VR8. If no echo signals are present, C24 is allowed to become fully charged and the meter M1 will read full scale.

In the event of an echo being repeatedly received some time after each transmitter burst, however, the leading edge of a pulse from the monostable will switch TR 15 on and TR16 off, thus interrupting the slow charge of C24, and giving a meter reading which is directly proportional to the distance of the nearest echo producing obstacle.

DECODER WAVEFORMS

The decoder waveforms of Fig. 7 show clearly the sequence of events. Fig. 7A is a typical input signal to the decoder, consisting of an acoustic burst waveform followed by four sizeable echo waveforms spaced in time. Fig. 7B gives the response of the monostable to the Fig. 7A signals, with a pulse for each signal envelope.

As the acoustic burst from the monostable, and the reset pulse from the pulse generator occur simultaneously, the bistable ignores the former, but will be

Fig. 8. Power supply circuit suitable for car battery or dry battery working. Battery impedance is minimised by large electrolytic

COMPONENTS . . .

POWER SUPPLY AND 8OX
 Capacitor
 C27 $5,000 \mu \mathrm{~F}$ I5V

Battery
BYI 12 V accumulator or two 996 dry batteries
Plug
PL3 Non-reversible 2 way
Switch
SI Toggle d.p.s.t.

Socket

SK3 Non-reversible 2 way

Miscellaneous

Universal chassis 6 in $\times 8$ in $\times 3$ in with extra 6in $\times 8$ in top plate and $8 \mathrm{in} \times 3$ in side (Home Radio)
set by the leading edge of the first echo pulse to be received, see Fig. 7C. The bistable can only respond again after it has been reset, and gives an output of duration exactly corresponding to the time taken for the sound to complete its journey.
The inverse occurs with the audio oscillator waveform Fig. 7C; in the event of no echo there is no output from TR17 but an echo from a close obstacle gives an audio oscillator output of long duration.

POWER SUPPLY

There are two possible snags when the Obstacle Locator is powered from a car battery; interference and voltage fluctuations.

Charging circuit contacts, dynamo brushes, and , gnition spark gaps generate quite a lot of interference, which could increase the sonic receiver noise input to the point where maximum range suffers.

Although the situation could be improved by incorporating filters and some form of voltage stabilisation, the easiest and cheapest solution is to run the equipment from suitable dry batteries.

Average current consumption of the Obstacle Locator is in the region of 50 mA , so two 996 batteries coupled in series will give 100 hours operation.

A power supply circuit suitable for car battery or dry battery working is shown in Fig. 8. The large electrolytic C27 helps to minimise battery impedance.

Part two next month will cover the construction, testing, and calibration of the Sonic Obstacle Locator.

SIREN

 A SPECIAL PROJECT FOR BEGINNERS

Fig. I. Circuit diagram of the Siren; link wires are shown as thick lines. Note that an electrolytic capacitor should not be substituted for C3

COMPONENTS . . .

Resistors
RI $47 \mathrm{k} \Omega$
R2 $47 \mathrm{k} \Omega$
$\frac{1}{2}$ watt, $10{ }_{0}$ ocarbon
Capacitors
Cl $100 \mu \mathrm{Felect} 15 \mathrm{~V}$
C2 $0.01 \mu \mathrm{~F}$
C3 $2 \cdot 2 \mu \mathrm{~F}$ polyester
Transistors
TRI ZTX 300
TR2 ZTX 500
Switch
SI On/off press switch
Loudspeaker LSI $3 \Omega 5$ inch
Miscellaneous T-Dec, connecting wire

With S1 closed, Cl charges on a relatively long time constant to a maximum of 4 V . A rising voltage across R2 and C2 means, in effect, a diminishing time constant, so the overall frequency starts to rise.

Just as the charge transition is smooth on C2, so is the frequency change which starts at zero and glides up to about 2 kHz . The output at LS1 remains constant at 4 V during this period, the waveshape produced being shown in Fig. 2.

The release of S 1 causes the frequency to fall. Since C 1 is charged to about half the rail volts, the discharge period is reduced by this factor.

INCREASING THE OUTPUT

Without the inclusion of C3 the power available at the output would be negligible. This capacitor has the effect of increasing the pulse width and so raising the mean d.c. level.
It is most important that a capacitor with a low
power factor be used here; an electrolytic type just will not do.
To alter the frequency of the siren C2 should be changed. An increase in capacitance will mean a reduction in peak frequency and a decrease will raise it.

ALTERNATIVE CONSTRUCTION

A permanent assembly of this unit can be made on Veroboard. Component mounting can be identical to that given for the T-Dec as the hole matrix for the board is identical.

NEWS BRIEFS

Soults Communications

The centre of the 3rd Bracknell Scouts was turned into a complete communications centre for a weekend in October by equipment loans from the nearby Racal Electronics Group. The Racal Amateur Radio Club GB3RAC, also loaned the Scouts equipment and the members assisted operations for day and night watches.

The centre had four complete transmitting/receiving stations, five separate monitoring stations manned by Scouts, a news and weather bureau with all necessary sound and TV monitoring receivers, teleprinter, and Mufax picture receiver.

Pictures of weather charts included one from Khabarovsk in Eastern Siberia. Other weather information was intercepted from weather ships in the Atlantic.

Jamboree contacts were made with numerous Scout Groups throughout the world, including Australia, S. Africa, U.S.A., Middle East and Europe.

Over 200 Scout Leaders and Scouts shared watch duties throughout the weekend and there werc over 200 spectators. The photograph left shows part of the communications centre operating.

A DECADE AHEAD

As 1971 opens it is perhaps worthwhile to look at the next decade as planned at this moment. Certain programmes have already been put in hand and these have been covered by previous Spacewatch articles. However, in order to take an overall look at the next decade some of the programmes will of necessity be noted again.

One of the most important items in the programme is to find ways of reducing the cost of space operations. For this reason the development of the space shuttle will be a priority venture. The prospect of a re-usable shuttle vehicle which can travel between the Earth and space stations in Earth orbit offers a system that is within the range of present technology. Already the design stage has reached a definitive study. The vehicle in its present form will be launched by a booster from a rocket pad and return to Earth to land like an aircraft.

SPACE TUGS

To this must be added the rather newer proposal for a space tug which would serve for goods and personnel $/$ transport from space station to space station. Other operations to be undertaken would be the raising of satellites from lower orbits to higher and synchronous orbits and the firing of automated probes from Earth orbit into orbits that will enable a further investigation of the planets. The tug would ride in the shuttle cargo compartment. Already these programmes envisage international participation in a greatly extended manner.

In the past decade there has been considerable co-operation so far as contractors were concerned, but the new thinking is more in the terms of a cost sharing as well as contracting between the U.S.A., the United Kingdom, Federal Republic of Germany, France, Belgium and Italy. This could mean that the European Nations will provide half of the cost of the space tug (about 1,000 million dollars). The cost of the space programme for the shuttle is estimated at about 4,500 million dollars, and for the 12 man space station
upwards of 4,000 million dollars. There is to be a standardisation of technique, and both vehicles should be operative by 1978.

SKYLAB

This will be a large orbiting workshop which will examine the capability of men to live and work in space over long periods. It will use systems already developed for the Apollo missions. Later, there will be even more sophisticated vehicles with the exchange of personnel on varying tours of duty.

EARTH RESOURCES SATELLITES

One of the major projects already well under way is that of surveying the earth to assess its potential for the future. This programme will have an unprecedented facility for the study of crops, the location of new sources of water and the prospecting for mineral deposits. There will be the more extended use of space vehicles in the fields of weather forecasting, communications, air traffic control, geodosy map making and navigation. There will also be concentration on the use of television for. education particularly directed toward the under-developed countries.

The Apollo programme, although curtailed somewhat from the original one, will nevertheless offer an exciting new extension of moon exploration. Apollo 14 site will be the same as that which was originally scheduled for Apollo 13, that is the Fra Mauro rugged region. The site for Apollo 15 has now been decided; it will land in the lunar plain much further North than any previous mission. There is an area known as the Hadley-Apennine region which has the $8,000 \mathrm{ft}$. Apennine range on one side and the 60 mille long meandering canyon, 600 ft . deep, known as the Hadley Rille, on the other. It is an important region and will yield a great deal of valuable scientific data.

The astronauts will be able to gather material from the base of the mountains, some of which may date from the old lunar crust, which existed more than 4,000 million years ago. It is thought this may be older
than the Mare Imbrium basin which was probably formed by meteoritic impact. There may also be materials, thrown out by this cataclysmic impact, which originated deep within the moon.

On this mission the Lunar Rover vehicle, electrically powered, will be in operation for the first time. The crew will be able to go some miles from the base of operations in order to carry out experiments, and set up scientific instruments. The crew will be David Scott, Alfred Warden and James Irwin. Launch date is likely to be July 1971. The following two Apollo missions (16 and 17) are scheduled for January 1972 and June 1972; no sites or crews have been decided at the moment.

MARS PROBES

These have already been noted in some detail in Spacewatch for June 1970 and this programme gets under way with the first launches in 1971.

GRAND TOURS

These will take advantage of the position of the planets in the solar system during the next few years. In the case of the first mission the next possible time for this to be done will not come again for 200 years and the second planned mission could not be undertaken for another 100 years. Therefore, these programmes are of great importance, for to achieve the objectives of these missions with our present technology, the gravitational effects of the planets will be needed for an effective gain in momentum for the vehicles as they move from one area to another. These will of course be unmanned. The manned tours will need nuclear or some other source of power for this to be successful. The testing of nuclear powered rockets will be made in 1978 with unmanned craft.

The Mariner Venus-Mercury tour will begin the series and for the first time man may be able to see a closeup of the surface of Mercury. The next will begin in 1977 with one or perhaps two unmanned craft launched toward Jupiter.

When the spacecraft arrives in the vicinity of Jupiter it will swing round the planet under the influence of the local gravitational field; four years later it will reach the planet Uranus where again gravity will influence the path to project it toward the end of its journey five years later at the planet Neptune in 1988 after a 3,000 million mile trip.

A further launch will be in 1979. The route will on this mission be more direct to Jupiter and by 1980 will swing round Saturn and will head for Pluto which it should reach five years later. Pluto itself is the most distant planet from the Earth and will at that time be some 3,700 million miles distant.

ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ bit
Intercherigeable bits $3 / 22^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ evailable. Ideal for high speed production lines. For 240, 220, 110,24 or 12 volts 36/-

F40 wotts. Finted $5 / 16^{\circ}$ bit.
Interchangeable bits $1 / \mathrm{m}^{\prime \prime}, 3 / 16^{\circ \prime}, 1 / 8^{\prime \prime}, 3 / 32^{\prime}$ available, Very high tempenature iron. For $240,220,110,24$ or 20 volts. $47 / 0$. Spare bits and elementefor al models
mod volt epes immediatery available from stock.

This kit-in .
Thiskit-in a rigid plastic - contains Model CN 15 watts miniature iron, fitted spare bit's " $\mathbf{H}^{\prime \prime}$. An".

- Reel of resin-cored solder
- Fett cleaning pad
- Stand for soldering iron

PLUS 36 -oage booklet on "How-to-Solder"-a mine of information for amateur and professional.

15 watts - 240 volts
Fitted with nickel plated bit ($3 / 32^{\prime \prime}$) and in handy transparent pack. From Electrical handy transparent pack. From Electrical
and Radio Shops or send cash to Antex.
Complete precision soldaring kit

From Electrical and Radio Shope o
cend cash
to Anter. to Antex.

PRECISION MINIATURE SOLDERING IRONS
Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymouth 67377/8.
Telex: 45296. Giro No. 2581000.Please send me the Antex colour catalogue

\squarePlease send me the following irons Quantity Model Bit Size Volts Price

I enclose cheque/P.O./cash value

NAME
ADDRESS

VARIABLE VOLTAGE TRAMSFORMERS

 Kit of parts, including ORP12 Cadmium Sulphide Photocell, Relay, Transistor and Circuit, etc., 6-12 volt d.c. Op, price 25/-
plus $2 / 6$ P. \& P. ORPI2 including circuit. $12 / 6$ each. Post Paid. A.C. MAINS MODEL A.C. MAINS MODEL. Incorporates Mains Transformer, Rectifier and special
relay with $2 \times 5 \mathrm{amp}$. mains c/o contacts Price inc. circuit $47 / 6$ plus $2 / 6 \mathrm{P}$. \& P .
LIGHT SOURCE AND PHOTO CELL MOUNTING
 Precision engineered light source with adjustable $0, \square$ ens assembly and ventilated lamp housing, to take MBC bulb. Separate if photo cell mounting assembly for ORP12 or similar cell. Both units are single hole fixing. Price per pair £2.15.0. P. \& P. 3/6. SANWA MÜTi RANGE METERS ${ }^{1}$
New Model U-50DN Multi tester, 20,000 OPV, mirror scaled with overload protection. Ranges-d.c. volts: 100 mV , $\begin{array}{llll}0.5 \mathrm{~V}, & 5 \mathrm{~V}, & 250 \mathrm{~V}, & 1,000 \mathrm{~V} ; \\ 2.5 \mathrm{~V}, & 10 \mathrm{~V}, & 50 \mathrm{~V}, & 250 \mathrm{~V}, \\ \mathrm{I}, 000 \mathrm{~V} ; & \text { d.c. }\end{array}$ $2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1.000 \mathrm{~V} ; \quad$ d.c.
current: $5 \mu \mathrm{~A}$,
0.5 MA,
5 MA,
50 MA current: $5 \mu \mathrm{~A}, 0.5 \mathrm{MA}, 5 \mathrm{MA}$, 50 MA ,
250 MA . Complete with battery and test probe. $\mathbf{\ell 8 . 0 . 0}$ post paid.
Ten other models. Leaflet on request. 'AVO' MODEL 48A
Ex-Admiralty in good condition with instrucand 480 amp a.c. Transformer for 60 amp and 240 amp . Multiplier for $3,600 \mathrm{~V}$. Complete outfit in fitted case. \&is.0.0. P. \& P. $10 / \mathrm{F}$.

ELECTRONIC ORGAN KIT
 Easy to build,

 Solid State Two full octaves (tess sharps and flats) Fitted hardwood case. Powered by two penlite $1 \frac{1}{2} V$ batteries. Camplete set of parts including speaker, etc. together with full instructions and 10 tunes. Have all the pleasure of building this instrument and finish with a functional and instructive gift for any boy or girl. Price $\mathbf{8 3 . 0 . 0}$ P. \& P. 4/650 in I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering no special tools required. The kir includes Speaker, Meter, Relay, Transformer, plus a host of other components and a 56 -page instruction leaflet. Some examples
of the 50 possible Projects are: Sound of the 50 possible Projects are: Sound etc, etc. Price 67.15.0. P. \& P. $6 /$-.

RECHARGEABLE

BUTTON CELLS

 $2 \times 1 \cdot 2 \mathrm{~V}, 250$ MA HR Niekel $2 \cdot 4 \mathrm{~V}$. 25 milliamp 10 hour rate, complete with $200 / 250 \mathrm{~V}$ charger. Fully tested and unused. or 2 units for $f 1 \begin{aligned} & \text { plus } 1 / 6 \text { post paid. \& } P \text {. }\end{aligned}$ UNISELECTOR SWITCHESI NEW$$
4 \text { Bank } 25 \text { Way }
$$ $24 V$ d.c. operation. E5.17.6,

P. \& P. $2 / 6.6$ Bank 25 $\begin{array}{llll}\text { Way } 24 V & \text { d.c. } 6.10 .0, \\ \text { P. \& P. } 2 / 6 \text {. } 8 & \text { Bank } 25\end{array}$
Way 24 V d.c. operation. $\mathbf{~} 7.12 .6$ plus 4/6 P. \& P.
VENNER Electric Time Switch 200/250V Ex. GPO tested. Manually set 2 on, 2 off every 24h, Override witch: 10A $£ 2.15 .0$, I5A $£ 3.5 .0$, 20Aailable with with solar dial ON dusk, OFF dawn. Price as above.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON W4 5BB Phone 01-995 1560 SHOWROOM NOW OPEN CLOSED SATURDAY

Personal callers only - LITTLE NEWPORT ST. LONDON, W.C.2. Tel. O1-4370576

Characteristics of 3,000 Valves and Cathode Ray Tubes, 4,500 Transistors, Diodes, Rectifiers and Integrated Circuits

Compiled by A. M. Ball
15/-
Postage 2/-
MAKING AND REPAIRING TRAN. SISTOR RADIOS by W. Oliver. 20/. Postage 1/-.
RSGB AMATEUR RADIO TECH. NIQUES by Pat Hawker. 20/. Póstage 1/6.
ELECTRONICS FOR TECHNICIAN ENGINEERS by W. W. Smith. 55/-. Postage $3 / 6$.
SECURITY ELECTRONICS by John E. Cunningham. 34/.. Postage l/-.
RADIO AND AUDIO SERVICING HANDBOOK by Gordon J. King. 60/-. Postage $2 / 6$.
TELECOMMUNICATIONS POCKET BOOK by T. L. Squires. 24/\%. Postage $1 /=$
110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR by R, M. Marston. 18/-. Postage $1 /$.

THE MOOERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books
|9-2| PRAED STREET

LONDON, W. 2

Phone: PADdington 4185
Closed Saturday I p.m.

OSMABET LTD.

We make transiormers amonget other thing

MALNS TRAKGFORMERS

Print 200/240V a.c. TXI $420-0-4: 25 \mathrm{~V} 250 \mathrm{~mA}, 6 \cdot 39$

 $1 \mathrm{~A}, 78 / 6 ;$ TX8 $250-0-250 \mathrm{~V}^{25} \mathrm{~mA}, 6.3 \mathrm{~V} 1.5 \mathrm{~A}, 42 / \mathrm{F}$ MT1 $200 \mathrm{~V} 30 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}, 24 / \mathrm{m} ; \mathrm{MT} 2330 \mathrm{~V} 45 \mathrm{~mA} ;$
6.3 V
$1.5 \mathrm{~A}, 29 / 6 ; \mathrm{MT2A} 250 \mathrm{~V} 60 \mathrm{~mA} .6 .3 \mathrm{~V} 2 \mathrm{~A}, 37 / 6 ;$
 MT3
MULTIVOLT TRANSFORMERS
 $10,20-0-20,30-0-30 \mathrm{~V}$ a.c. 1 A .45 F - allit to transformer
 $80-90-100-110 \mathrm{~V}$. giving $10-20-30-40-50-60-70-80-$ $90-100-110 \mathrm{~V}$, $10-(1-10,20-0-20,30-0-30$. $40-0-40$ $50-0-50 \mathrm{~V}$ a.c. $1 \mathrm{~L}, 67 / 6$.
LOW VOLTAGE TRARSFORMERS

 MIDEET RFCTIPTEP TRANSPORMER
FIDGET RECTIFIER TRANSFORMER

 OUTPUT TRANSFORMERS
OUTPUT TRANSPORMERS
Mulard 5/10 ULL, 67/6; 7W sterus $1 \mathrm{~L}, 80 /-$; 3 W
 s0W (ELS4 KT88, ete.), 185/\%; 100W (E134 KT88 etc.). 285/-; Stanlart $3-4 \mathrm{~W}$ O/P $5 \mathrm{~K} / 3 \mathrm{ohm}$ or 10 K 3ohm, 14/6; auto matchilug transformer $10 \mathrm{~W}, 3-8-10$ ohm up or own, 15/-; jnoviline trans. to orcter
LOUDSPEAKERS
New, boxed, famoms makex, ?aW, $110 /-$; $35 \mathrm{~W}, 180 /-$ $50 \mathrm{~W}, 180 / \mathrm{F}$. $60 \mathrm{~W}, 215 \mathrm{j}=100 \mathrm{~W}, 350 / \mathrm{F}$ E.M.I $13 \cdot 8 \mathrm{in}, 10 \mathrm{~W}, 3,8$ and $15_{\text {ohn }}$ at $46 /-$ each; Hi-Fi 13×8 in, 10 W speaker, 1 , 1 ,
BULE TAPE ERASERS
BULE TAPE ERASERS
Ingtant erabure of magnetic tupe, demagnetlaing Instant erasure of magnetic tape, remagnetizing of
tape heads. $200 / 40 \mathrm{v}$ ac, $47 / 6$ post, $2 / \beta$, leaflet $S . A$. E. LT FLDORESCENT LIGETMG
6, 12, 24 CH DC 12Y fittings with tube, 8 watt $75 /-13$ twin tubes, from 135/-, extensive rauge. Lleta, 8.A.E.

Carriage extra all orders
\&.A,E. ALL ENQUIRIES PLEASE, MAIL ORDER ONLY
46 Kenilworth Road, Edgware, Middx. HA8 8 YG
Tel. 9589314

PART SEVEN-By R. W. COLES TTL FLIP-FLOPS

THe range of bistables, or flip-flops as they are usually termed in i.c. parlance, is more varied in the TTL family than in either DTL or RTL. There is, in fact, a flip-flop to suit every occasion, or for those who dislike using a different component for each specialised application, there is one flip-flop which may be used for any of the normal storage circuits.

Flip-flops are one of the most important elements in a logic system, all types having one feature in common. They provide storage of one binary digit for any length of time which may be necessary, as long as the power is applied.
The differences between the various types occur only in the way that the data to be stored is "written" into them, their outputs always consist of a true and an untrue indication of the digit they contain. By connecting them together in the appropriate fashion, it is possible to build many types of counters or dividers, shift registers, and memories, which may contain a complete binary word.

DATA ENTRY

Data may be entered into a flip-flop either asynchronously, i.e. at any time, regardless of the original contents or the state of the clock pulse, or synchronously, i.e. the data is entered only when a clock pulse "enables" the data inputs.
The flip-flops in the TTL family usually have both synchronous and asynchronous inputs, which makes them most versatile in use. In fact, so many useful features have been packed into such a small package, that the discrete, specialised designs of ten years ago seen primitive in comparison.

Apart from the usual types of data entry mentioned above, TTL synchronous inputs can be further subdivided into either those which employ the positive edge of the clock pulse for gating (edge-triggered), or those which employ both edges of the clock pulse (master/slave).

EDGE TRIGGERED TYPE

With the edge-triggered type, assuming that the data to be entered is waiting at the inputs, as the clock pulse starts to rise this data is entered into the storage latch, and is thus immediately present at the outputs. As soon as the clock pulse has passed the threshold of the input gates, the input data is locked out, and can have no effect on the stored information until the clock rises again.

MASTER/SLAVE

The master/slave type is a little more complex in operation, as the individual flip-flops of this type really consist of two interconnected bistable sections, termed the master section and the slave section. Information enters the master section as the clock pulse rises, but this information does not appear at the outputs immediately because of the interposition of the slave section.
The slave bistable is also clocked, but through an inverter. The slave sees a positive clock pulse when the main clock pulse is actually falling, and enters the data present at the output of the master latch, and transfers it immediately to its outputs, which are also the outputs of the flip-flop as a whole.

Ignoring what goes on inside such a flip-flop and looking at it just as a "black box", information enters on the positive excursion of the clock, and appears at the outputs on the negative excursion. A simplified logic diagram of this type is shown in Fig. 7.1, together with a diagram of clock action.

Master/slave JK flip-flops form the backbone of TTL counting circuits, giving maximum versatility at the expense of a slightly higher power dissipation and slightly lower maximum toggle frequency than the edgetriggered type.

Fig. 7.1. Master/slave flip-flop. This is a simplifled explanatory arrangement, using the master/slave principle. As it stands, it is a set/reset type, but $J K$ operation is simply achieved by connecting the Q output to the reset input gate, and the \bar{Q} output to the set input gate. No preset or clear inputs are shown

A few examples of the many flip-flops available of both edge-triggered and master/slave type are given with their package outlines in Fig. 7.2. Note that some JK types have several J and K inputs, so that gated inputs for synchronous counters will not require separate gate packages.
Some of the flip-flops have no preset input-only clear. These are useful for counter circuits, where the asynchronous inputs are not needed other than to set up the all zeros condition before a count sequence.

TYPE-D FLIP-FLOP

There is one "odd-ball" which is a little different from the rest-the 7474 type " D " flip-flop. This one is intended specifically for shift-register applications, and belongs to the edge-triggered group.
It embodies full asynchronous input capability, but has only one data input D . The other data input is obtained internally by inverting the information on the D input. This means that only one connection is necessary to transfer data from one stage of a shift register to the next.
Perhaps this is not so obvious an advantage until you consider that many shift registers require inputs from several sources, in which case the external gating is cut by half when using the type D.
Although it is intended only for register use, it may be used in ripple counters by connecting the \bar{Q} output back to the D input, but this is by no means the best choice of flip-flop for such use.

TTL COUNTERS

Having discussed what types of flip-flop are available, it is possible to have a look at some applications. To start, let us examine counting circuits. Simple ripple counters were described in the sections on RTL and DTL, and should help here to understand the principles involved in TTL.

RIPPLE COUNTER

Ripple counters are the simplest type of design using TTL i.c.s; all that is necessary is to connect the Q output of the first flip-flop to the clock input of the second, and so on, the input being connected to the clock of the first flip-flop in the chain.
The maximum number of separate states is given by 2^{n}, where n is the number of flip-flops so connected. Thus a four-stage counter has sixteen states, and a five-stage counter has thirty-two states.
If a count which is not a binary multiple is required, it is necessary to force the counter to skip some of its usual states. There are several ways to achieve this, the simplest method being to detect the desired final count +1 with a NAND gate, and use its output to reset all the flip-flops in the counter to zero.
This method may, however, result in a "race" condition if one of the counter stages resets more readily than the others, causing the NAND gate output to disappear before all stages are reset. For this reason it is not commonly used, although it is possible to include some sort of delay, such as a monostable, in the reset path to ensure that the reset pulse will last long enough to do its job properly.

IMPROVED DIVIDER

A much better method of dividing by a number which is not a binary multiple is to feed the flip-flop outputs which are in the 1 state at the desired final count, along with the counter input, or clock, to a NAND gate, and use the resultant output to set all the counter stages to 1 .

Fig. 7.2 Logic circuits and pin connections of TTL fip-fops

PREMIER STEREO SYSTEM "ONE" Consists of an all transistor stereo amplifier. Garrard 2025 T/C auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The so transistor amplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket. Controls: Bass, Treble, Volume, Balance, Selector. Power on/off, stereo/mono switch. Brushed aluminium

PREMIER STEREO SYSTEM "TWO"

As aystem "ONE, * above but with Garrard SP25.
 front panel. Black metal case with teakwood ends: Size $12 \times 5 \frac{1}{2} \times 3 \frac{1}{\mathrm{in}}$. high (Amplifier available separately if required £14.19.6. Carr. y/6). Now Available MATCHING F.M. TUNER 21 gns .

MIDLAND AM/FM STEREO TUNER AMPLIFIERS

 range FM Btereo Multiplex [ntcrpal AM and ternal FM 50-17,000 HzFrequency
Reaponse
Power 2 watts rus per chanOutput nel (8 watts music
linputs Ceramic phono
Speaker
impedonce Controls

Punction

Rize
PRICE

48 ohn

Power on/off, voluine, one, balance, tunine AFC. Sterco indicator M, FM, FM Steren Phono (Stereo indi catorlight)

37 GNS

Model 19-54:

Two new all solid state redeivers from Midland at
coononical prices. Beautifully st veled in elimiline canomic

MODEL 19—520

MODEL 19-542

HI-FI SPEAKERS Fitted two 2 in tweeters and croseover network. Available with 8 or 15 ohm impedance. Handling capacity 10W. Brand

79/6

ILI-FI STEIREO HEADPHONES Designed to the highest posin. speaker units with soft padded ear muffs. Adjustable headband. 8 ohn impedance. Com. plete with 6ft. lead aml stereo jack plug. 49/6

MONO HEADPHONES 2000 ohm $14 / 6 P^{\prime}$. is P. $2 / 6$. 8TEREOSTETYOSOPE SET Low imp. $10 / 8$ P. \&P.

MIDLAND CASSETTE TAPE RECORDER
12-1|5
Solid state incor
por a tion piano key controls track recording. Inputs for mike and inx. Earphone track recording, Inputs for mike and inx. Earphone $10 \mathrm{in} \times 5$ in $\times 21 \mathrm{in}$. PREMIER
EXCLOSIVE:
$\mathbf{I} / 6.10 .0$ F.
$\mathrm{i} / 6$

MOLTI-TESTER With wide angle, switching, tough impact resist ing case. Sensitivity $\mathbf{0 0 , 0 0 0}$ ohnis/volt D.C. 10,000 ohms/rolt A.C. 19 Ranges: 0-5-25-50-250-500-2500 volts D.C. $0-10-50-100-500-1000$ volts A.C. 0 . $50 \mu \mathrm{~A}-2.5 \mathrm{EmA}-250 \mathrm{~mA}$ D.C. $0-$ 6000 ohms- 6 megohms, 10μ. $\mu \mathrm{i}-0.001$ battery, test lead anil instructions.
£4.19.6

"VERITONE" RECORDING TAPE
gpecinlly manufactured in v.s.a. prom extra strong PRECSTRETCHED MATERIAL. THE QUALITY IS UUEQUALLED. TENSILISED to ensure the most pet manent lase. Highly realistant to break.
 LP3 ${ }^{2}, ~ 2500$ P.V.C.

 TAPE GPOOLS $3^{\circ} 1 /-, 5^{\circ}, 53^{3}, 7^{\prime} 1 / 9$. TT7 $7^{\prime \prime}$ 3B00 POLYESTER SO/

TELETON SAQ2O3E STEREO AMPLIFIER

small but nowerful amplitier designed for stereo hi-n reproduction. 10 watte per chamnel music power. Inputs for Gram (magnetic and Crybtal), Tuner and Auxiliary. Tane Record output. Controls: Volume, Balance, Bass, Treble, Stereo/Mono slide switeh. Sterco healphone socket. Attractive oiled malnut cabinet with hrushed alument panch. List F'rice $\$ 28.7 .0$ PREMIER
PRICE 22 Gins. \quad. \& $10 /$

Premer stereo Syste "FOUR"

Teleton SAO203E Amplifer (as above) Gartard 8P85
Shure base and cover
Pair of Hi-Ri Enclosures Atted E.M.I. Speakerz
Total cost if purchased separately

423.2 .0

11.19.8 16.10 .6
$\mathbf{~} 5.10 .0$
226.5.0

PREMIER 65 GNS. Carr. 35/
PRICE

SPECIAL OFFER!

Garrard SP25 Mk. II Siagle Record Player. Fitted Goldring 850 Magnotic Stereo Cartridge, Complete in Teak Plinth with Rigid Perspex Cover. Total list Price orer fos. $\underset{\text { PREMER }}{\text { PRER }} 18$ GIS. P. \& P. 10

TAPE CASSETIES

$$
\begin{aligned}
& \text { C60 (}{ }_{\text {min. }}^{60} \text {) 7/6 } 6_{21 /=}^{3 \text { for }}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Cl} 20\binom{(120}{\text { min. }} 17 / 6_{51 /-}^{3 \text { for }} \\
& \text { P. \& P. } 1 / \text {. }
\end{aligned}
$$

All cossetites can be supplied with library cases ot $6 d$ expro each

ELECTRIC CLOCK

WITH 25 AMP SWITCH

 Made by Rmith's, these units are an fitted to many top quality cookers to control the oven. The clock is mains diviven nonl frequency controlleal so it lo extremely accurate. The two manall itals enable switch on anl offtimes to be tuccurately set. Heal for witiching on tape recorders. Othered at ouly ; only so/s, iema than the walne of the clock tilone port and ingurance $\underline{1} / 9$.

BLANKET SWITCH

Double pole with neon let
deal for dark room light or fo
use with waterproof element-new

BLANKET SIMMERSTAT

Although looking like, and fitted as ordinary blanket owitch, this is in fact a device for switching on for varying time periods, thus giving a connplete control from of to full heat. Aithough suitable for conances using up to 1A. Listed at 27/6 each whe offer these while our stock last at only $12 / 6$ each.

REED SWITCHES

Hass encased, switches operated by external nagnet-gold welded contacts. We can now offer 3 typen:
Mnintura, lin long \because approximately tin diameter. Will make and break up to it up to 300 flandard. 2 in long 24 in diazen.
break currents of up to in diameter. This will volts. Price $8 /-$ each, $18 /-$ per dozen.
Fiat. Flat type, 2in long, just over in thick fattened out, so that it can be fitted into a maller space or a larger quantity may be packed into a square solenold. Rating 1 amp 200 volts Price $6 /-$ each. 88 per slozen.
Mmall ceramic sungnets to operite thesc recil
switches $1 / 9$ each, $18 /$ - lozen.

HIGH CAPACITYELECTROLYTICS

Brand new, not exequipment.
$100 \mathrm{nitl} . \underline{2} 5 \mathrm{~V}, 1 / 3$ each $18 /-102$
$00 \mathrm{mfd} .25 \mathrm{~V}, 1 / 6$ cach $15 /-$ tox
$250 \mathrm{mfl} .50 \mathrm{~V}, 8 / 8$ each $88 /-\mathrm{doz}$
$400 \mathrm{mid} .40 \mathrm{~V}, 6 / 4$ each $46 /-$ doz.
$500 \mathrm{mfd} \cdot 12 \mathrm{~V}, 8 /-$ each 81.1 .0 doz.
500 mid . $25 \mathrm{~V}, 8 / 6$ ench $88 / \mathrm{d}$ doz
$500 \mathrm{mid} .50 \mathrm{~V}, 4 / 6$ ench $48 / \mathrm{loz}$
500 mifi . $350 \mathrm{~V}, 8 / 6$ each $24,10.0$ the
$1000 \mathrm{mfd} .12 \mathrm{~V}, 8 / \mathrm{e}$ each $\$ 1.10 .0 \mathrm{doz}$
1000 nifd. $18 \mathrm{~V}, 8 / 4$ each $84 /-\mathrm{doz}$.
$1000 \mathrm{mfd} .64 \mathrm{~V}, 7 / 4$ each $80 / \mathrm{d}$ doz.
2000 mfd . $25 \mathrm{~V}, 6 / 8$ each $79 /=$ doz.
5000 mitd. $12 \mathrm{~V}, 4 / 9 \mathrm{each}$ \$2.8.0 doz.
$10,000 \mathrm{mid} .6 \mathrm{~V}, 5 / 9$ each 88.0 .0 doz
10.000 nifd . $15 \mathrm{~V}, 8 / 6$ each 84.10 .0 doz
$15,000 \mathrm{midc} .10 \mathrm{~V}, 10 / 6$ each 5.0 .0 doz
$0,000 \mathrm{mft} .13 \mathrm{~V}, 40 / \mathrm{e}$ ench 29.0 .0 doz
3 AYP 18V BATTERY GHARGER KIT-comprising t30/40 mains transformer with 3 amp econdary and 3 anjp rectitier $\varepsilon 8 / 6+4 / 6$ post. 187 1i AMP POWRR PACK, Thia comprises doublewound $230 / 240 \mathrm{~V}$, malna tranalormer with Price $27 / 6$. rectlier and 2,000 m.i.d. moothing. rice
SOMOTONE BTEREO CARTRIDGE. Turnover type, ref. No. 19 Tl. This fits noot British plekups and ts a really excellent reproducer. Limited
5 AIP \& PIT SOCESTR. These ure always good stock, you never know when you will need some. Fanious make, brown Lakelite, standard size, TrTO WTH
ITIO WITH SWITCH, 12 for 21 plus $4 / 6$ post. 13 AMP BOCKETS, FLU8H MOUNTITG. Bakelite. cream, less switch, 6 for $£ 1$

2 AMP 8 PL 8 WITCKED gOCKELS for surface mounting, brown bakelite. Made by fanous 100 Aseontud sinicol prcTIFTERS G.P. AND SWITCHITG DIODIES. Smalland very amali lzes. A real snjp for experimenters, $18 / 6$ per 100. MADI SUPPRESBION ADAPTOR for preventing ualns interference cuused by vacuunt cleaners, razors, sewing machines, ete, rated at 4 ampe, | simply plug thla fitw your 5 any 3 pin socket. |
| :--- |
| $/=$ cach. |

20 AMP ELECTRICAL PROGRAMMER
Loarn In your sloep: Have Hadio playing and kettie bolling lis you awake - witch-on lights tu home to. All these and many other thinga you can to if you Invest in an Electrlal Programmer. Male by the famous Nmith Inatrument Company. This is essentially a $030 / 240$ volt mainu operated Clock and a 20 amp, Nwitch, the switchoff thine of which can be delayed up to 12 hours (continuously variable not stepped). Similinrly the awitch-on tinte can be delayed. This in

40 WATT |2in. HI-F| SPEAKER

Is undoubtedly one of the finest loudspeakers that we have ever offered, produced by one of the country's most famous makers. It has a die-cast metal frame and is strongly 40 watts R.M.s. -Cone moulded fibre-Frea responge $30-10,000$ c.p.s.-specify 3 or 15 ohnis. Chasis diam. 12in.-124in. over mounting lugs, Overall helght 581 in . I 810 spenker offered thle tuonth for $\mathbf{8 . 1 9 . 6}$ plus $7 / 6$ pont and ins.

INTEGRATED CIRCYIT BARGAIN

A parcel of integrated circuita made by the fumour Plesoey Company, facture. The parcel contains 8 lCa all new and perfect, firstegrade device, definitely not sub-standard or meconde. 4 of the ICs are single silicon chip GP amplifiers. The 5th is a monolithic NPN matched pair. Regular price of parcel well over to. Full clrcult details of the 1 Cs are Included and in addition you will receive a list of many different ICs available at bargain prices 5/- upwards with circuits and technical data of each. Complete parcel only

THIS MONTH'S SNIP

4 AMP VARIAC CONTROLLERS

With this you can vary the voltage applied to your circuit from zero to 270 volts without generating unduc heat. One obrious application therefore is to dim lighting. Ex equipment but little used -as good as new offered at approx halt price- $\mathbf{4 5}$ plus $12 / 6$ jonst and fins.

DISTRIBUTION PANELS Just what you need for work bench or lab. standard 13 amp fused plugs and on/off switch with neon warninglight. Aupplien complete with 7 feet of heayy cable. Wired up ready to work, $89 / 8$ less plug 45/- with fitted 13 anp plug; 47/6 with fitted 15 nup plug, plus $4 / 5 \mathrm{P}$. \& 1 .

BARGAIN OF THE YEAR

MICROSONIC KEYCHAIN RADIO

transistor K ey chnin Radio in very prett y case, size $21 \times 2 \frac{1}{x}$ 1tin-complete wi
soft leather zipped bag. Specification: Circuit: 7 transistor superheterodyne. Frequency range: 530 to $1,600 \mathrm{Kc} / \mathrm{s}$. Sensitivity: 5 nuv/m. Intermediate frequency: $465 \mathrm{Kc} / \mathrm{s}$ or $455 \mathrm{Kc} / \mathrm{s}$. Pou output: 40mW. Antenna: ferrite roil. Intransit from the East these sets suffered
 sight corrosion as the batteries were eft in them but when this corrosion is cleared away they should work periectly-offered without guarantee batteries. 6 for $\mathbf{1 7}$, post free Rechargeabie batteries 8/6 pair. Charger 8/6.

TANGENTIAL HEATER UNITS
This heater unit is the very latest type, most efficient, and quiet running. Is as fitted in We have a few only, Comprises motor, inpeller nud two elements allowing 3 heat owitiching ant with thermal safety cut out. Can be fitted into any metal line case or cablinet. Only need con trol aw'tch. 2! k.w. model $50 / 6 ; 2 \mathrm{k} . \mathrm{w}$. model 39/6. Postage and jasurance 6/6. Control switch 5/6.

RE-CHARGEABLE TORCH

Neat fat torch, fits unobtrusively in your poeket, contajns
2 Nicad cells and built-in charger. Plugg into ohaver
adaptor and charges from our standard $200 / 240$ volt najns,
Anerican made, solld orighanly at over 4 dollars. Our price huly 19/6 each.

MOTORISED SWITCH
For Animated Signs, etc.
This is a motorised programmer switch, nianin operatel, with gix 10 amp changeover contacts operated by triggers on a rotating drum. Six triggers will put switches up and another sid triggers will put switches down. This simple on/of operation or changeovers are possitble. The triggers can be exactly set to any position around the drum which is rotated by a one rev. per hour beautifully made precision switch which probabl cost in excesa of $£ 20$. Linited quantity only $\mathbf{8 7 . 1}$ cost in excese of e20. Linited quantity only 87.15 Honeywell but 15×10 amps awitchea operated by 5 rpm motor $\mathbf{8 5 . 1 5}$ plus $4 / 6$ post and ins .

MAINS CONNECTOR

A quick way to connect equipment to the mains connection by plugs prevents accidental switching on; has sockets which allow insertion of heter without disconnecion; cable inlete firmly hold one hair wire on up
 to tour
$12 / 6$ ench.

DRIL

controller
Electronically changey speed from approximately 10 revs. to
maxinum. Full power at maximum. Full power at all speede by finger-tip control. Kit includes all
parts, case, everything
19/6, plus $2 / 6$ post andinsurance
BALAFCED ARMATURE UMIT 500 ohm, operates speaker or microphone, to useful in intercom or
circuita, $6 / 6$ each. $\$ 3.10 .0$ doz.
 plete with appools ready to install. Record. Replayhead la the enaitive m4 type intended for use with transistor amplifier. Unused, ex-equipment. Price 70/6. Poet and insurance $4 / 6$.

henmostat

 WITH PROBEThis has a seneor attached to a 15 A swlteh by a lin length of
fiexible caphlary tubing- control range is $20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ to it is suitable to control soll heating and liquid heating especially when in buckets or portable veasels at
the nensor can be raised out and lowered into the veasel. This thermostat could also be used to sound a bell or other alarm when critical temp. is reached in stack or heap subject to spontaneous combustion or if liquid ia being heated by gas or other means not controllable by the switch. Made by the tamous Teddington Co., we offer these at $12 / 6$ each. Postage and insurance $2 / 9$.

MAINS MOTOR Precision made - as used in record decks ideal also for extractor fan, blower, heaters, etc. New and perfect. Snip at 9/6. Postage $3 /$-for first one then to $\quad 1$-for each one ordered. 12 and
over post free. over post free.
NEED A SPECIAL SWITCH ?
Double Leaf Contact

miniature

WAFER SWITCHES
3 pole, 2 way-4 pole, 2 way-
3 pole, 3 way- 4 pole, 3 way-2
3 pole, 3 way- 4 pole, 3 way- 2 6 way-1 pole, 12 way. All at $3 / 4$
each. $86 /-$ dozen, your assortment.

WATIRPROOF HEATIMG ELCAITT
26 y ards length 70W. Self-regulating temperature control. 10/-post free.

MICRO SWITCH
5 amp, changeover contacts, $1 / 9$
each, 18/- doz.
$2 /-$ each or $21 /-$ doz

Where postage is not stated then orders over $\mathbf{2} 5$ are post free. Below $£ 5$ add $2 / 9$. Scniconductora add $1 ;$ poot. Over $\& 1$ post irce. S.A.E. with enquiries pleake.

ELECTRONICS (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CR0 2TH
Also 102/3 Tamworth Road, Croydon

Fig. 7.3. Improved divider witt truth table

Fig. 7.4 Effect of compounded propagation delay

When the final clock pulse falls (assuming JK master/slave flip-flops), the counter will count to the all zeros state, ready to begin another cycle. The appearance of the all 1 state during the final clock pulse is unlikely to cause a problem, although this depends on the application.
To see this system operating, take as an example a divide-by-five counter using type 7472 JK flip-flops. The nearest power of 2 which is higher than 5 is 2^{3}, so a three stage counter will be necessary as a basis of the design.

The final counter state will be binary four, 100 , because the first state of the counter will be zero, i.e. 000 . The only flip-flop which has an output of 1 at this stage is the third one, so we must feed this output together with the clock into a 2 -input nand gate, and connect the output of this gate to the preset inputs of the first two flip-flops.

The final circuit is shown in Fig. 7.3, together with a truth table and the clock pulse action. Note that the J and K inputs are not used in this application, and are therefore left disconnected, simulating a 1 input. They can, in practice, be connected to $+V_{\mathrm{cc}}$ to ensure this state.

PROPAGATION DELAY

The counters we have considered so far have all been ripple types, and, as such, they all suffer from a drawback which can be serious in some applications.

If we look closely at such a counter which is in the all 1 state, it will be required to count to the all zeros state on the arrival of the next clock pulse. The final flip-flop in the chain will not be able to do this until all the stages preceding it have already done so; after all, it gets its own clock edge from the flip-flop immediately before it, which in turn gets its clock edge from the stage before it, and so on.

This all sounds quite straightforward, until we consider the propagation delay incurred from each stage, which in the case of the 7472 , is 20 ns . This seeningly insignificant delay is multiplied by the number of flip-flops there are in the counter, and may reach alarming proportions in a counter working at high speed and with a long cycle length.

Even so, it need not be a problem unless several of the counter outputs are gated together. Spikes appearing at the gate output at the wrong time may cause other circuits connected to the gate output to mistrigger. To illustrate the effect of this ripple delay, Fig. 7.4 shows the output waveforms obtained from a three stage counter, with the error due to the delay magnified.

To overcome this ripple delay error, a different kind of counter called a synchronous counter is used. With this type, the clock input is fed to every stage, not just the first. Input gating is used to determine the conditions when a flip-flop is required to "toggle", or change state.

Next month's article will continue with synchronous counters, shift registers, and ring counters using TTL flip-flops.

BE SURE OF YOUR COPY

We have many requests for back issues and cannot always guarantee supplies; to make sure of your copies why not take out a yearly subscription.
Subscription including postage for one year to any part of the world $£ 25 \mathrm{~s}$. Od. ($£ 2.25$).
Subscriptions dept., IPC Magazines Ltd., Carlton House, 68 Great Queen St., London WC2B 5DD.

WASH-WHPE

An electronic device for intermittent wiping and automatic wiper operation with washers, on cars with 12 volt field coil wiper motors.

AFaCILITY not provided as standard on older cars but which proves to be very useful in the British climate is that of intermittent operation of windscreen wipers. Another useful facility is windscreen wiping initiated by operation of the windscreen washer control and continuing for a limited period after its release. Both facilities are provided by the circuit to be described which can be added to the existing circuits in the car without impairing the normal operation of the standard controls.

The circuit takes advantage of the windscreen selfparking mechanism fitted to most cars; reference to back numbers of practical motoring magazines will show that this mechanism can be fitted to almost any vehicle very easily at little cost. The circuit is also basically designed for negative earth connection but a modified version to suit positive earth connection is given. The unit cannot be operated with the latest permanent magnet wiper motors, or in conjunction with 6 volt systems.

CIRCUIT DESCRIPTION

The circuit diagram for negative earth connection is given in Fig. 1 and the mode of operation is as follows.

The thyristor SCRI is connected in parallel with the manual switch controlling the windscreen wipers (S4) and when triggered will initiate wiper action. A small amount of wiper action closes the selt parking switch S3, short-circuiting SCR1 and turning it off; the wipers continue under the control of the self parking switch to the end of a single sweep. If SCR1 is not in a triggered state at this time, no further wiping action will take place until SCR1 is again triggered or the wiper switch (S4) is closed.

The function of diode D2 is to bypass the inductive surge current generated when the motor is switched off. The necessary trigger pulses for SCRI are provided by the unijunction oscillator TR2 at intervals determined by the time constant (VR1 + VR2 + R5)C2. The function of R5 will be described later. VR2 is a preset potentiometer which determines the fastest intermittent rate and VRI is the rate control which can be omitted if fixed rate operation only is required, in which case VR2 determines the rate. Switch S2 is the on-off control and is incorporated in VRI.

With the component values given, the sweep rate can be adjusted to cover a range from one sweep every 1.5 seconds to one sweep every 15 seconds. Resistor

Fig. 1. Circuit diagram of the negative earth wash-and-wipe control

CONTROL or susemen

R8 and capacitor C3 form a filter which prevents voltage disturbances on the battery line from producing false trigger pulses. If R5 is omitted together with that part of the circuit to the left of the chain dotted line (the components on tagboard A), the circuit as described will provide the intermittent sweep facility alone.

LIMITED CONTINUOUS OPERATION

The limited continuous wiper operation is obtained in the following way. In the quiescent state, with SI open, point A (Fig. 1) is approximately at the same potential as the junction of R1 and R2 and, since this is less than ηV_{b}, the unijunction oscillator will not function. When S 1 is closed C 1 is charged rapidly through D1 and R3 and by emitter follower action in TR1 point A is raised above ηV_{b}, allowing the unijunction oscillator to function at a rate determined by the time constant $R_{5} C_{2}$. (Where ηV_{b} is the intrinsic stand-off ratio.)

If the resistor R 5 has the minimum value consistent with reliable operation, a high repetition rate is obtained so that there is minimal delay at the end of each wiping stroke before SCR1 is re-triggered. When S1 is opened C1 discharges slowly through R3 in series with the parallel combination of R1 and R2 towards a potential $R_{2} V_{10} /\left(R_{1}+R_{2}\right)$ and the potential of point A follows. When this falls below V_{b} the unijunction oscillator again ceases to function.

The effective time constant of the component values suggested allows three or four sweeps after the opening of S , depending upon the speed of the windscreen wiper motor. The elaborate charge-discharge circuit
is incorporated to prevent an unwanted sweep occuring when power is first applied. It will be noted that the limited continuous wiping facility is obtained irrespective of the state of S2. If the latter is closed, intermittent operation automatically follows the end of the continuous wiping period.

COMPONENTS

The modified circuit for use in vehicles with positive earth connection is shown in Fig. 2. Two additional components are required to provide the necessary improvement in false trigger pulse suppression.
The choice of $n p n$ transistor TR1 and unijunction transistor TR2 are in no way critical, the particular types listed being those which were at hand. The thyristor SCR1 should have current rating at least equal to the running current of the windscreen wiper motor, typically 3 to 4 amps , although in the interests of reliability the thyristor should be of sufficiently high rating to handle the hot stall current, typically 7 to 8 amps.

Diode D2 should have a forward current rating equal to at least half of the normal running current. Other component values are selected to suit the particular devices used and to provide the desired timing intervals.

CONSTRUCTIONAL DETAILS

The simplicity of the circuit means that any form of construction which is convenient may be used without difficulty. However, details of the form of construction used in the prototype are given here as a guide.

Fig. 2. Circuit diagram of the positive earth wash-and-wipe control

Fig. 3. Semiconductor connections for the components listed

Fig. 4. Generallayout of the tag boards

Fig. 5. Tag board B, for negative earth version

Fig. 6. Tag board A, for both versions

Resistors
RI $1.2 \mathrm{M} \Omega$
R2 $82 \mathrm{k} \Omega$
R3 $4.7 \mathrm{k} \Omega$
R4 ik Ω
R5 $4.7 \mathrm{k} \Omega$
$\begin{array}{ll}\text { R6 } & 150 \Omega \\ \text { R7 } & 27 \Omega\end{array}$
R7 27Ω
R8 100Ω
All $\frac{1}{4} \mathrm{~W}, \pm 10 \%$ carbon
Potentiometers
VRI $500 \mathrm{k} \Omega$ with single pole on-off switch (52)
VR2 $50 \mathrm{k} \Omega$ skeleton preset

Capacitors

$\mathrm{CI} 150 \mu \mathrm{~F}$ elect. 15 V
C2 $25 \mu \mathrm{~F}$ elect. 15 V
C3 $25 \mu \mathrm{~F}$ elect. 15 V
C4 $2 \mu \mathrm{~F}$ paper (for positive earth version only)
Semiconductors
DI OA202
D2 ZR20
SCRI C20F thyristor
TRI 2N3704
TR2 2N1671 B unijunction

Miscellaneous

LI IA T.V. suppressor choke
Control knob
Tag boards and aluminium for heat sink
6B.A. fixings

Fig. 7. Tag board C, replaces tag board 1 for pesitive earth version

Fig. 8. Sub-assembly for positive earth vertian

For the benefit of readers who are not familiar with the unijunction transistor and the thyristor, details of the electrical connections are shown in Fig. 3. Although these are typical, should other types be used the relevant manufacturer's information must be followed.

NEGATIVE EARTH VERSION

The general layout for a negative earth system is shown in Fig. 4, SCR1 and D2 being fixed directly to the base plate which acts as a heat sink. Two tag boards are also attached to the base plate. Since the base plate is live to the circuit, it is enclosed in a small plastics box using nylon screws as mounting studs; this box can be fixed at a convenient point behind the car facia panel (the base plate must not be earthed to the car).

Detailed component layouts on the two tag boards are shown in Figs. 5 and 6. Although VR2 is shown on the circuit diagrams as a preset component, once its value has been found it can be replaced by a fixed resistor.

Two groups of leads are taken from the box, one group going to S1, S2 and VR1 mounted on the facia panel and the second passing through the bulkhead to the washer pump, the wiper motor and to the positive and negative battery connections.

POSITIVE EARTH VERSION

Because the stud connections to SCR1 and D2 are not common when a positive earth system is required, a slightly different form of construction has to be adopted. The general layout of the base plate differs from that shown in Fig. 4 in that D2 is omitted and one of the tag boards carries an additional component (L1) - Fig. 7 replacing Fig. 5.

Diode D2, together with the additional capacitor C4, is mounted as a separate assembly in a small insulated tube (see Fig. 8) fixed near the wiper motor. In all other respects the details of construction are similar.

CONNECTION TO WIPER MOTOR

Examination of the electrical connections to a wiper motor already fitted with a self-parking switch will show two live leads and an earth return. Reference to the workshop manual, or a few minutes work with a voltmeter, will establish which of the live leads is connected to the battery and which is the switch lead. The lead from the base plate (i.e. the common connection of the thyristor and diode anodes) is connected to the switch lead terminal. It is stressed that no modification to the wiper motor is required unless the motor does not have the self-parking facility.

In the case of wiper motors not fitted with a selfparking switch, the first step is to make the necessary modifications. When the modifications have been completed the connection can be made as previously described.

WASHER PUMP SWITCH

An electric washer pump switch is sometimes fitted in cars but is normally connected between the pump and earth. If this is so it is a simple matter to reconnect is as shown in the circuit diagram (Fig. 1).
Although the control for manual and vacuum washer pumps is not electrical, it should be possible to fit a microswitch, actuated by the normal control, in place of the washer switch. Other methods of switching may well be possible and no doubt some readers will add this facility to non-electric washers.

This electronic control system can be added to any tape recorder to control an automatic slide projector in sequence with a recorded sound track. It has been designed so that no modifications are necessary to the tape recorder or the

SUBMARIME CHASER

A follow-up "war" game to Operation Seasearch (December 70). This game uses the same chassis and much of the wiring of Operation Seasearch but introduces depth. In Submarine Chaser, "Asdic" is used to narrow the search and the destroyer must adjust his depth charges correctly to destroy the submarine.

FEBRUARY ISSUE -ON SALE JANUARY 15-

$\sqrt{1045}$ Iupt дicioname

By C.W. Smedley c.Eng., MI.E.E.

Southall College of Technology

TAPE recording has been covered by many text books, and the general principles are well known. The explanations given of bias, however, tend to be vague, and those who would like to pursue the matter are often deterred by the B / H loop, with its associated mathematics, implied if not stated. This article is intended to be a reasonably valid description avoiding the use of complicated analysis.
The object is to record signals, which can be audio, video, digital, etc. on a tape which is either coated or impregnated with magnetic material, and the system described here will be longitudinal.

THE MAGNETIC CIRCUIT

The recording/playback head consists of a winding on a ferromagnetic core, and current fed to the head will produce a magnetic flux. Fig. I shows the relationship between flux, B, and the magnetising force H, which is proportional to ampere-turns. If the current is increased slowly from zero, the value of flux can be plotted against the value of H, and the line OA will be traced.
At some point, A on our diagram, the value of flux will remain constant for any further increase in H, and the core is said to be saturated. Prepresents this maximum value of flux and \mathbf{S} shows the corresponding value of H. If.the current, i.e. H, is now reduced to
zero, the flux decays along the curve $A R$, and R is the remanent value of the flux.

The ratio of OR to OP is called the retentivity of the core material. Some ferrites produce a curve in which OR and OP are practically equal; these are called square loop materials and are used in computer stores.

HYSTERESIS LOOP

If the current is now increased in the reverse direction, at some point the flux will have fallen to zero, shown as point C. Further increase will bring the flux to point D , which is reverse saturation, identical in value with point A, but opposite in polarity. Reduction of current, towards zero, will reduce the flux, and the curve DQ will be traced out.
Note that this curve does not pass through point \mathbf{O}, but rises, as current is increased in the original direction, through E to A. It can be seen that, for any value of H, there are two possible values of B, and the perpendicular drawn at the point where H equals X cuts the B / H loop at points Y and Z . When H is rising, the value of flux corresponding to Y is less than on the original trace, OA, whereas, when H is falling, the value of flux corresponding to Z is higher. This lagging effect is called hysteresis, and the curve ACDEA is called the hysteresis loop.

THE AIRGAP

If the magnetic core formed a complete ring there would be no flux outside the ring, and a tape drawn across it would be unaffected. To produce flux outside the ring it is necessary to break the magnetic circuit, i.e. to have an airgap, and it will be at this point that the moving tape will be brought into contact with it.
The airgap will increase the reluctance of the magnetic circuit, and the flux for any given value of head current will be less than the value without an airgap. Another effect, however, offsets this apparent loss, and Fig. 2 has been drawn to illustrate it.
If we assume that the B / H loop is very narrow, then let OA represent the loop with no airgap. OA' shows the loop when a small gap is introduced, $\mathrm{OA}^{\prime \prime}$ the loop for a bigger gap. The first trace, OA, shows extreme curvature near the ends, and would not, in fact, be linear at any point. OA^{\prime} is much more linear, although the slope is less, and OA" is better still, although the value of H necessary is increasing with the size of the airgap. This is not too important, since the amplifier gain can be increased to compensate. For the sake of linearity, therefore, the gap should be as big as possible.

Fig. 1. B H curve or hysteresis loop
 magnetic core. The larger the gap, the better the linearity

But it can be shown that, for any given tape speed, the bigger the gap the poorer is the high frequency response of the system, and the two fundamental requirements appear to be in conflict. The practical solution is to make the actual recording/playback gap as small as possible, then to insert a second gap diametrically opposite to it.

DIAMAGNETIC GAP

Although the term airgap remains in use, the actual gap must be filled, for two reasons. One, if left open it would collect magnetic material from the tape, to re-form a closed magnetic circuit. Two, the external flux would be low in value. The gap is closed by a material which is both hard, to resist wear, and diamagnetic. Brass is a good example, and is commonly used. The flux now "fringes" out across the gap to make recording more effective

The actual distribution, however, is not at all like the pattern across the open end of a horseshoe magnet. The brass insert acts as an obstruction to the flux and the tape itself closes the magnetic circuit. The flux can be said to enter and leave the tape at right angles to the surface of it, but all of the flux does not leave the core at the edge of the gap. It is spread each side of the gap to form a fringe which tails off within a short distance, and the electrical gap is therefore greater than the physical gap in the head. It is important to remember this when considering erasure.

THE NEED FOR BIAS

The effect of recording a signal has been shown by superimposing it on the vertical axis of Fig. 2. The recorded pattern on the tape will show the curvature near to point O , and harmonic distortion has been introduced. To prevent this effect the working area should not include the extreme curvatures near zero and saturation.

Direct current bias can be used, for example sufficient current can be passed through the record head so that every tape element is, in the absence of a signal, magnetised in the same direction, to the same degree. Such a current would correspond to a value of H somewhere between S and S^{\prime}, so that the effective working point is M on the curve OA". The signal to be recorded is now shifted bodily to the right, so that it becomes symmetrical about the vertical drawn through M .

This bias system closely resembles that used for valves and transistors, where the transfer, or mutual, characteristics exhibit similar curvature at cutoff and bottoming.

Although this d.c. system is used on cheap tape recorders, there are two major limitations. One, the peak to peak signal amplitude must be only half the value of that when no bias is used. This can be partially overcome by shifting the d.c. bias point, but the benefits are marginal and still include some distortion. Second, every particle on the tape is magnetised and, on playback, will make a contribution to the output voltage in the form of noise, mainly high frequency (hiss). For these reasons supersonic (a.c.) bias is now almost universal.

HIGH FREQUENCY BIAS

The frequency chosen must meet two requirements: it must be high enough to be filtered out on playback without attenuating the wanted signal and, in general, should not be less than three times, preferably five times, the highest frequency to be recorded. At the same time, it must not be too high because the record head is highly inductive. The practical value lies between 50 and 75 kHz and a sinewave form is essential to prevent head magnetisation by second harmonic. LC oscillators of the Hartley or Colpitt type are popular, and the stage often "doubles" as audio output on playback

To understand the full effect of a.c. bias, two points should be kept in mind. One, the gap includes the fringe each side of it, and the actual flux entering the tape from the head is almost perpendicular to the surface. Two, the flux is alternating at bias frequency, and the actual value affecting each tape element will be the instantaneous value as that element leaves the fringe. Each tape element, or particle, is therefore exposed to a flux which can have any value from zero to maximum, of either polarity, but the resultant magnetic pattern on the tape is not sinusoidal.

Fig. 3a will show this more clearly, and the applied flux, H, is shown to have sine wave form. Point A on the sine wave corresponds to saturation, i.e. point A on the B / H curve, and any tape element exposed to this value of flux will have a remanent magnetisation equal to point R when it leaves the fringe. Following elements will be exposed to a flux decaying towards point R but all will have the same remanent value as point A.

REMANENT FLUX

Fig. 3b shows the remanent flux plotted against the sine wave producing it, and it can be seen that the waveform written on to the tape has a flat top from point A to point R. From R to B the applied flux is increasing in the reverse direction, but the remanent flux does not fall to zero until the applied flux has reached a point between T and B. At point B reverse saturation is reached and from B to Q the remanent flux again shows a flat top. In the absence of any other signal the bias continues to write this pattern.

If the tape is now played back at the same speed the pattern will induce small voltage pulses in the head at bias frequency, but since the pulses are symmetrical about zero, simple integration (to be discussed later) will virtually eliminate them. One thing the bias has established is the maximum wavelength of each pattern on the tape. Larger groupings, which would give rise to low frequency noise if exposed to direct current bias, have been restricted to this wavelength.

It should be noted at this stage that, although the terms amplitude and frequency are used for signal and bias currents, they should not be used when referring to the recorded tape. The pattern on the tape has intensity and wavelength.

SATURATION BIAS

If a low frequency signal, for example audio, is now fed to the head at the same time as bias the pattern on the tape will be modified. Fig. 4 shows the effect, in terms of H and B. The l.f. signal shifts the bias waveform progressively, in this case, to the right. The bias current remains the same in amplitude but now "rides" on the signal. The value of " H ", in the right hand direction, increases to well beyond saturation, but the remanence pattern cannot increase with it, as it already corresponds to the saturation value.

However, due to the shift, much more than a half period, in terms of bias, is spent at and beyond saturation, and the pattern on the tape covers a greater distance. On the left hand side, not only is " H " reduced in value, but less than half a period is spent in this region. The pattern on the tape therefore shows a reduction in intensity and in length. The overall bias wavelength has not changed, but the pattern distribution has, and any pulses produced by playback will not be equal and opposite. Integration will show a progressive change in one direction, the value depending upon signal amplitude and the direction upon signal phase.
show the scope for improvement. Assuming a bias frequency of 70 kHz and a tape speed of $7 \mathrm{in} / \mathrm{sec}$ the recorded wavelength will be one tenth of a thou (0.000 lin) the pattern representing each flat topped pulse will therefore be one tenth of that. Since the process produces a serics of "bar magnets" along the length of the tape, the smallest unit will be the dust particle of the coating, and this will be in the region of one micron, which is about one twenty-fifth of a thou.

The flat top cannot be considered as any more than one particle, and it remains flat with or without a signal. If the dust particles were made smaller, and/or the tape speed increased the recorded length of the flat top could cover many particles and any change of signal level during that passage would modify the top. The slope of the signal would then appear superimposed on the flat top.

PLAYBACK

The surface induction (remanence pattern) on the tape has been shown to be a distorted version of the bias waveform. At very short wavelengths there is a

\title{

Fig. 5. Correct application of bias magnetises the tape by a series of pulses which are proportional to the opplied audio signal

Fig. 4. The effect of applying an audio signal ot the same time as the bias signol, producing a soturated magnetisation of tape particles

(a)

(b)

Fig. 6. Fiter networks used on playback to eliminate the high frequency bias pulses. A simple CR network is shown in (o) and on LR network using the tope head inductonce in (b)

DISADVANTAGES

This system uses saturation bias and has disadvantages. One, the high value of bias tends to demagnetise the pattern recorded, leading to a loss of high frequency response; two, the limiting action described still gives distortion. The optimum value of bias is about half the saturation value, and the remanence pattern on the tape will be lower in intensity. The flat tops will still be present exactly as before, but, when a signal appears, both polarities will be affected, i.e. one half will be increased, the other decreased.

Integration will produce an output whenever the remanence pattern is unbalanced by a signal, but, for any given value of signal, the output will be greater than when using saturation bias because both polarities change in length and intensity.

SCOPE FOR IMPROVEMENT

The system so far described is the typical domestic sound recording, and a few practical details will help to
strong demagnetising effect, and the actual value measurable would be less than expected. The presence of the bias has, however, made the signal effective over the linear part of the characteristic and this is its true function. Fig. 5 shows the effect of a signal on the pattern, the applied signal represented by the dotted line. Each half cycle of signal now appears as a group of pulses.

When the tape is passed over the gap this pattern will produce voltage pulses in the head circuit and the next process can be considered as filtering. Fig. 6a shows a CR network which will act as a low pass filter, suppressing the high frequency pulses, but producing an output proportional to their amplitude/duration. This action is integration, the pulses producing the charging current for the capacitor, the output signal being the voltage developed across it.

Fig. 6b, although less well known, is also an integrating circuit, having the same effect, but the inductance is that of the playback head, usually 0.5 to 1.0 henries.

ERASURE

The advantage of tape is that it can be used many times, and, to achieve this, some means must be used to remove the recorded signal.

The most common method is to mount an additional head-the erase head - fairly close to, and just ahead of, the record head. A much larger gap is used and the same bias waveform of greater amplitude, is fed to the winding. The current should be sufficient to take each tape element beyond saturation.

This head is usually tuned to bias frequency since it does not handle signal. Although the gap is large, and the erase current high, it is found that the original pattern on the tape, especially that of strong signals, often recovers after erasure. To avoid this effect a double gap is used, the gaps, in this case, being adjacent to each other.

Because the gap is larger, and bias current higher, the flux extends well beyond the physical gap, i.e. the fringe is longer. Each tape element spends much more time in the fringe than it would in that of the recording head, and many loops are traversed in that time. The loops fall off in amplitude as each element moves out of

Fig. 7. The series of BH loops through which each tape particle passes, due to large air gap and increase h.f. current for erasure by soturation
the fringe so that the remanent flux is negligible. Fig. 7 shows the series of loops to which each element is exposed as it leaves the erase gap, the actual number of loops being much greater than a clear sketch could show.

CONSTANT CURRENT RECORDING

When a signal is recorded on tape the pattern must represent the amplitude as well as the frequency. The flux and therefore the head current should be independent of frequency. The recording head is highly inductive and its reactance would reduce the current as the frequency became higher, assuming a constant voltage drive.

A resistor is usually connected between the output of the signal amplifier and the head to reduce this effect, which could lead to a fall-off of 6 dB per octave. If the resistor value is high, it will swamp the reactance of the head, so that the head current will be the same for all frequencies of the same original amplitude. This is called a constant current system.

NEWS BRIEFS

B.A.E.C.

The British Amateur Electronics Club recently held its annual exhibition at Penarth, Glamorgan, and as a result of this, some of the exhibits were used in a BBC television programme on BBC Wales; the programme-"Heddiw"-was televised in Welsh but the B.A.E.C. were provided with an English translation of the text that they published in their October Newsletter. The games illustrated on television were all constructed by members of the B.A.E.C

Vidicon Storage Tube

DEvelopment of the first television camera tube to feature built-in stop-action capabilities was reported recently by RCA.

The unit is a small, vidicon-type device that can takeand store for later play-back-single electronic "snapshots" or "stills" of continuous programmes being transmitted by the tube.

The still picture is electronically stored inside the tube itself thus eliminating the need for an external storage medium such as film or videotape. It can be relayed to a TV monitor immediately, or kept intact within the tube for several days.

The new tube is technically referred to as a silicon storage vidicon and could be used, for example, in a space, satellite to eliminate the bulk and weight of the present video storage devices which relay individual TV pictures to earth by relatively slow communications systems.

The picture below shows the new tube in use. Theimage on the left of the screen was recorded by the tube a few minutes before, and the one on the right is being transmitted "live". giving the impression that the subject is talking to himself.

踢
 oualPulipost PARET 1 AWPCIITEI

By D. S. GIBBS and I. M. SHAW (ferranti ltd)

AHIGH quality pre-amplifier must perform several important functions, it must have an input impedance sufficiently high not to load the signal sources, it must provide frequency equalisation where necessary, it must have filters to remove spurious noise or harsh treble from poor recordings and it must have tone controls to accommodate the preferences of the listener, the deficiencies of the loudspeakers and the acoustics of the listening room. Furthermore it should do all this without any significant increase in either distortion or background noise level over a wide range of input signal levels.
The design evolved meets all these requirements, as the specification published previously shows, and it has several other valuable facilities. A microphone channel is included which can be mixed independently with any other input. This facility is useful to tape recording enthusiasts or can be used as a "home discotheque" for parties etc. Another feature valuable to the tape recorder enthusiast is the recorder output which is taken after the equalisation and filter stages but is unaffected by volume or tone controls. The circuit diagram of the right hand channel of the pre-amplifier is shown in Fig. 24, the left hand channel is identical.

DISC INPUT

The disc input stage comprising T14, T15, T114 and T115, provides frequency equalisation to the RIAA L.P. characteristic with an accuracy of approximately $\pm 0.5 \mathrm{~dB}$ between 30 Hz and 15 kHz as shown in Fig. 25. The circuit has been designed so that the frequency response curve falls below 20 Hz . This attenuates low frequency components in the output of the pickup and makes a separate rumble filter unnecessary. The sensitivity is 3 mV in the "Lo" position and about 60 mV in the "Hi" position so that either magnetic or ceramic pickup cartridges may be used.

The circuit used is a complementary two stage feedback amplifier, a more detailed circuit of which is shown in Fig. 26. This was chosen in preference to the more popular circuit shown in Fig. 27, because of the greatly improved bias stability and its freedom from the subsonic ringing which the circuit of Fig. 27 tends to produce. This arises through the feed-back provided by R1 becoming positive at certain frequencies due to the phase shifts produced by C1 and C2 (Fig. 27).

The shape of the frequency response curve is defined by the negative feed-back provided by R39, R40 and C19 to 21; the overall gain is defined by R38. The circuit gives an output of 100 mV for an input of

Fig. 25. Frequency response curve of disc input stage

 ponent numbers being right-hand channel plus 100, except for the switches and sockets which serve both channels by being double pole types

3 mV at 1 kHz . Distortion generated by the input stage is below 0.005 per cent with 3 mV input at 1 kHz and below 0.05 per cent at 20 dB overload. Between 100 Hz and 10 kHz the distortion does not exceed $0 \cdot 1$ per cent at any level up to 30 dB overload.

MICROPHONE INPUT

The circuit of the microphone input stage (Fig. 28) is virtually the same as the disc input except that the feed-back network is replaced by a single resistor to give a flat frequency response and the bias resistors at the input are bootstrapped to increase the input impedance. Two input sensitivities have been provided. In the "Lo" position of S2 the input sensitivity is 1 mV with an input impedance of 1 megohm which is suitable for most low and medium impedance dynamic and ribbon microphones. With the switch in the " Hi " position the sensitivity is reduced 1010 mV and the input impedance rises to 2 megohms. This sensitivity is suitable for high impedance dynamic or crystal microphones.
Constructors not requiring the microphone input can simply omit all the components associated with this stage, or if only mono microphone operation is required only one microphone input stage need be built and the output can be fed to both mixers via separate 100 kilohm resistors (R56, R156). Potentiometer VR 3 in this case need only be single gang.

The table below summarises the performance of the microphone input stage:

INPUT MIXER

The input mixer works on the virtual earth principle which is explained in Fig. 29. Because the input impedance at the base of the TR18 is low-only about 100 ohms-it can for all practical purposes be considered as a short circuit to earth, hence the name virtual earth amplifier. The total input current when

Table 1

"Lo"
"Hi"

Input Sensitivity	1 mV	10 mV
Input impedance	$1 \mathrm{M} \Omega$	$2 \mathrm{M} \Omega$
Distortion	less than 0.005% at 1 mV input and less than 0.05% at 20 dB overload	less than 0.005% at 10 mV and less than 0.02% at 20 dB overload
Frequency response	$\begin{aligned} & 65 \mathrm{~Hz} \text { to } 70 \mathrm{kHz} \\ & \text { at }-3 \mathrm{~dB} \end{aligned}$	10 Hz to 200 kHz at -3 dB . With 500 pF source (crystal microphone) frequency response is -3 dB at 60 Hz
Signal to noise ratio at rated sensitivity	-60 dB with 100Ω source, -56 dB with $1 K \Omega$ source, unweighted, 20 Hz to 20 kHz	-70 dB with Ik Ω source, -56 dB with $50 \mathrm{~K} \Omega$ source, unweighted, 20 Hz to 20 kHz

Fig. 29a. Virtual earth amplifier-functignal diagram

Because point X is "virtually" at earth, potential the tocal input current when used as a mixure is

$$
i_{1}+i_{2}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{\bar{R}_{2}} i_{1}
$$

The output voltage $V_{0}=i_{\mathrm{f}} R_{\mathrm{r}}=\frac{V_{1} R_{\mathrm{r}}}{R_{1}}+\frac{V_{2} R_{\mathrm{f}}}{R_{2}}$
i.e. the gain from each input is given by the ratio of R_{r} to the appropriate input resistor and the output is proportional to the sum of the individual input currents

Fig. 29b. Virtual earth amplifier as a mixer
used as a mixer is then just simply the sum of the input currents from each signal source, which enables the microphone input to be mixed with any of the other inputs without interaction.

The input sensitivity at the tape, tuner and aux, inputs is 100 mV with an input impedance of 50 kilohms, and the output at the emitter of TR19 is 400 mV . Capacitor C34 is a bootstrap capacitor which increases both the gain and the available output voltage swing to give minimum distortion. At 1 kHz the distortion produced is below 0.005 per cent at rated sensitivity and below 0.02 per cent at 20 dB overload, at 10 kHz these figures become 0.01 per cent and 0.1 per cent respectively. The circuit will give an output of 10 volts r.m.s. (28 dB overload) before clipping occurs. Signal to noise ratio at rated sensitivity is -80 dB (unweighted 20 Hz to 20 kHz).

To be continued

WHEN stereophonic sound reproduction made its debut, only a few years ago, the various manufacturers who exhibited at the annual Audio Fair were quick to take advantage of the "moving sound" illusions that could be created with stereo. These consisted mainly of the sounds of express trains and racing cars, etc. which hurtled across the demonstration rooms at breakneck speed, and of phantom ping-pong games in which you followed the movement of the ball without seeing it. After being subjected to this and other subtle forms of audio brain-washing, you went home either cross-eyed or cross-eared but nevertheless convinced that stereo had something even if it was only two of everything.

Now it seems that stereo is out-iwo channel stereo that is. The "in thing" is four channel stereo alias quadrasonic, alias CD-4 alias surround sound, call it what you like. At least that's one impression gained at the 1970, 16th International Audio and Music Fair held in October at Olympia. This time, no trains and no ping-pong game. This time they sat you down in the middle with the sound all around and intensified the audio brain-washing with real solid state power.

Practical Electronics went one better. With their demonstration of the "P.E. Gemini" stereo amplifier, visitors were also treated visually with the "P.E. Aurora", an audio controlled light display, which can be adapted by the constructor for domestic settings. (Details of "Aurora" will be published very soon as a constructional project-Ed.)

FOUR CHANNEL-ON DISC

JVC-Nivico (Victor Company of Japan) recently announced their new four channel disc stereo system and its reproducing equipment known as CD-4. This was demonstrated at Olympia and is claimed to be high fidelity and also compatible with existing two channel reproducing equipment, i.e. the CD-4 four channel discs can be played on conventional two channel equipment and two channel discs can be played on CD-4 equipment.

The four channels are cut in one groove and according to the very limited technical information at present available, the system features both frequency and phase modulation which are combined to carry the signals for the extra channels. Reproduction requires four separate amplifier channels and four loudspeakers. Two loudspeakers are positioned in front of the listener and two at the rear. The photographs show the difference between recording on a two channel stereo disc and the new CD-4 disc. The U.K. distributors are Denham and Morley Limited, Denmore House, 453 Caledonian Road, London, N. 7.

FOUR CHANNEL-ON TAPE

The Audiosonic system, which is four channel stereo on tape, was also demonstrated at Olympia by JVC-Nivico. The system employs four separate tape heads and offers various ambionic arrangements for the listener, i.e. two speakers in front and two at the rear or three in front and one at the rear or all four at the front. The makers claim that the system presents truly "solid music" with complete freedom of movement for the listener. As the two recommended twin channel Nivico amplifiers for this system are each rated for 140W music power (total 280W) the system could present some pretty solid sound as well.

Nivico four channel disc player

Model R. 130

 King diant fl 130 which makes is the (iiant f.130 whith makes up neluding Radio Heceivers, Transinitters, Tiwhometer, Ratin Alarm, Tesicrs, Electronic Swltehes, Ampli: fiers and ceves an Electronic Target Giame. As well as carphone, spcaker. meter, relay, transomer, solar cel, nuphiel complete with it litted hardwool cilse PRICE £7.19.0 20 PROJECT SOLAR ELECTRONIC KIT Mod. R. 128 This ultranoiern Proiect K it is shaped for the space age. Cinriath inaide
 transistor tadin to a morse set complete with key aud tuorse trainiug coule Supplied complete with ensy' to follow instructions innl even the cement to saemble this uniouc electronic space cupsule

PRICE £4.10.0

2 OCTAVE ELECTRONIC ORGAN KIT Mod. R. 129
Complete with a music book containing 10 ensy to play sumgs the $R .129$ golid state organ kit covers full notaves Alotting into a fitted hardwom case the top pathel carries Elect rovic Kits every item is ineluled down to the list wut and bolt sul thit the constructor can start assembly within minutes of olentng the parkage.

10 PROJECTINTEGRATED CIRCUIT MIT Model R. 127

 projects: (1) (icrmanimm Radio. (o) Test Oscilator. (3) Murse Telegraph Trainims

PRICE £3.10.0
2 TRANSISTOR SOLAR RADIO KIT Model R. 126
Like all Rod Eleetronic kits the R. 126 uses rellable no-bolder comnections
 powet from the sull or any strong light soure

PRICE
£2.10.0

CRYSTAL RADIO KIT Model R. 125

This eaby tu buikl Radio is based on the name circuit developend by Marconi for the vees first melio trinsmission hime uses a modern ferri

PRICE £1.10.0

5 WATT 8 TRACK CARTRIDGE STEREO AMPLIFIER Model R. 133

PRICE £36.0.0

STEREO HEADPHONES Model R. 328

Built up to a standiad not dewn to a price, the 1 ll 3 :3 sterco headphones represent a breakithrough in value for mones. raluable addition to any stereo inatallation they will provide many hours of listening pleasire.

- PEECIFICATION

Matching impedance: 8-16 ohms.
PRICE £2.8.0

FOUR BAND SHORT WAVERECEIVER KIT

Model R. 140

This excellent transistorised, bittery uperate
hen made only prowife hours of enterta hereceives the normal hroadcast band $5 \overline{0} 0 \mathrm{hHz}$ to .f MHz and oll short wave $\mathbf{3} 5-30 \mathrm{MHz}$ in three ands.
The $3 \cdot$ phage hanual not ouly blows atep by step nstructions on how to assemble the kit but also nelucles a guide on brondensting stations throughout the worl
PRICE £9.8.0
PROFESSIONAL SOLID STATE FOUR BAND COMMUNICATION RECEIVER Model R. 135

This is the conmumica-

ton receiver that you have fong been waiting or. Fully transistorised from 555 kHz to 30 MHz In four bands ineluding illutninated electronic baindgpread for 160-10 metres. Also incorporated is an internal
speaker, automatic noise
limiter, S8B/AM/CW Switch, Ave switht, s Meter, Recelve and standby SFitch, external mocket for headphone or apeaker, bandepread control The R. 135 will run off of 940 V a.c. dry bniteries or trimmer and RF gaill. rend soume. negative PRICE £45.0.0

-
10 WATT BUDGET STEREO ALL TRANSISTOR AMPLIFIER Model R. 136
 Tdend as a second stereo aystem or for the newcomer to HI-Fi who wishes to upgradc existing equipment the R.13t sounds every bit as good as it looks. As
well as inmuty for crystal or ceranic cartridge the $K .136$ has a stereo Tuner nyut which sccepts
The satin Finish front panel carries a stereu headphone socket as well as volume, balanee, tone. Gall ganged) speahet, mote anl selector controls. Suppliel complete with oiled wahnut \therefore PECLFICITION: Ouput: 10 watis hetal. j wat is per chausel. Frequeney Range: $35-18,000 \mathrm{~Hz}$. Inputs: Phono and Tuner.
PRICE £13.0.0

AM/FM/MPX STEREO TUNER
Model R. 134

Perfect Matching Cnit to the R. 136
implifiter. The R. 134 Stereo Tuner tmplifier. The R. 134 Stereo Tuncr is deaigned to give years of reliable performance. The Tuning Band
covers AM \& FM with a separate covers $A M$ s FM Nith a separate
stereo beacon to indicate when stereo broadeasts are belng received. - SPECIFICATION FM: frequency range: $88-108 \mathrm{mHz}$. Usable sensitivity: $18 \mu \mathrm{~V}$. sterco
 PRICE £21.0.0

4 WATT STEREO FM/AM/MPX TUNER AMPLIFIER

Model R. 124
on value for money per formance the R. 124 is is stereo Tuner/Amp with facilities only usually found in much more expensive maits. Features like sepmate bass and control switeh and steron healcontrol switch and sterch head
phone socket give the R.124 priec to appecificition rat jn secomi Housed in a hambemic walnut cabinct the classical lowline styling of the R.1:4 willgrace any hume. ©PECIFIC:ITIOX: FM: Fiequency Range: 888108 MHz , Lsibl

 Input: 200 m at $\mathrm{M} \Omega$. T:口 In Input: 100 mV - at $100 \mathrm{~K} \Omega$
PRICE £29.19.0

ClanH.P. Termi available for personal callers on purchaves over $£ 30$. RETURN OF POST MAIL ORDER SERVICE Dept. PE Orders under £10 please add 5/-post and packing. Orders over $£ 10$ sent post free.
BDE ELECTADNICS LIMITED
193 EDGWARE ROAD LONDDN WD1ET

[^2]
SURROUND STEREO

A cheaper and perhaps equally effective "ambionic" system known as "surround stereo" can be devised using any conventional two channel stereo equipment plus one extra loudspeaker. This system is introduced in a leaflet included with the new EXP-70 LP disc called "This is Stereo".
This record, one of the EXP Technical Series, will by now be available from all record dealers price 39 s . It is a combined stereo demonstration and test record containing various recordings that illustrate not only the dynamic and spatial possibilities that stereo offers, but also includes test tracks for adjustment of experimental "surround stereo" systems described in the leaflet and for balance and phasing, etc. of two channel stereo.

SOME NEW AUDIO PRODUCTS

Although over 80 manufacturers were exhibiting at the 1970 Audio and Music Fair, few completely new products were to be seen. Most manufacturers were showing their current ranges of equipment, a good deal of which has already been publicised in the technical press.
The new Wharfedale Aston wall mounting loudspeaker was one new product and this breaks away from the old hi-fi tradition of dark veneer and rather uninspiring front covering. These speakers are available in glossy white enamelled cabinets and the front is finished with what Wharfedale call their "silver fox" fabric which looks like shiny metal. The Aston speaker system comprises an 8 inch bass unit and 3 inch treble unit and the cabinet measures $19 \times 11 \frac{1}{2} \times 4 \frac{1}{2}$ inches. Power handling capacity is 18 watts r.m.s. and the input impedance 4 to 8 ohms . These and the new Wharfedale Triton speakers, also released at the same time, are available in matched stereo pairs complete with 15 feet of connecting cables and DIN plugs.

LOUDSPEAKERS FOR THE FUTURE

The loudspeaker has always been the most inefficient link in an audio reproducing system requiring as it does a comparatively large amount of audio power to produce a useful sound output. J. B. Lansing Sound Inc. of America have not only found a way of increasing efficiency but also of producing better sound distribution. Most of their loudspeakers are intended for professional studio use but one known as Aquarius 4 has been designed for domestic use and was introduced at the Audio and Music Fair.

Mounted inside the enclosure is an 8 inch wide range transducer directed upward into a radial horn. This spreads the sound through a 360 degrees horizontal radial defraction slot. The higher frequencies emerge in a 360 degree vertical plane from a 2 inch driver separately loaded by a radial horn mounted at the rear of the enclosure. The result is a much wider distribution of sound than would be obtained with a conventional system.

The Aquarius 4 will handle power up to 30 watts r.m.s. but nothing like this power is necessary for life size sound because of the high efficiency. The same company also manufacture a very compact studio monitor speaker for power capacity up to 75 watts. The U.K. distributors are Feldon Recording Limited, 126 Great Portland Street, London, W.I.

Wharfdale Aston, wall mounting loudspeaker

LESS NOISE PLEASE

The Dolby noise reduction system has, until recently, been available only for studio use. Kellar Electronics Limited have now introduced two Dolby type B noise reduction units for use with any domestic tape recorder having radio or line inputs and line or external amplifier outputs. The KDBl unit is switchable from record to replay and is for use with recorders having a combined record/replay head. This retails at $£ 45$. The second unit, known as the KDB2, has two separate record and replay channels for use with machines having separate record and replay heads and retails at $£ 75$. Both units are supplied complete with stabilised power supplies and VU meters and are for two channel (stereo) operation.

Kellar Electronics have also released a combined cassette recorder/amplifier known as type DTA50, with a. built-in Dolby noise reduction system the retail price of which will be $£ 1484 \mathrm{~s} 8 \mathrm{~d}$. It seems likely that a noise reducing system will become an integrated part of all domestic as well as professional tape recorders. Cassette tape recorders are a very obvious choice to begin with as few have a noise performance of better than -40 dB .

Tape head magnetisation is one of the most common causes of high noise level on tape recordings. Tape heads should therefore be frequently demagnetised with a defluxing tool. Together with many other new audio accessories that Ferrograph have just released is a new tape head demagnetiser, their Defluxer type D/2 which retails at $£ 4$. The outlay is a very worthwhile

Ferrograph tape head demagnetiser
 a new 4-way method of mastering

2	BUILD
and USE	

a modern and professional CATHODE RAY OSCILLOSCOPE

$3>$| READ and |
| :--- |
| DRAW and |

U N D ERSTAND CIRCUIT DIAGRAMS
 CARRY OUT OVER 40 experiments on basic electronic CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

\author{

- VALVE EXPERIMENTS
 TRANSISTOR EXPERIMENTS
 AMPLIFIERS
 - OsCILLATORS
 - SIGNAL TRACER
}

PHOTO ELECTRIC CIRCUIT	A.C. EXPERIMENTS
COMPUTER CIRCUIT	D.C. EXPERIMENTS
BASIC RADIO RECEIVER	SIMPLE COUNTER
ELECTRONIC SWITCH	TIME DELAY CIRCUIT
SIMPLE TRANSMITTER	SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^3][^4]
SIEPMEVIS ELECTRONICS P.O. BOX 26 AYLESBURY BUCKS.

CARTRIDGES

EMPTY TAPE REELS

CASSETTES
in Plastic Libraty lemea
$\begin{array}{ll}\text { C60 } & 10 / 8 \\ \text { C90 } & 12 / 8 \\ \text { C120 } & 17 / 6\end{array}$

Satisfaction or money refunded

STYLII

ACOS		Supphise	Dimmond	ELACKST!	Sapphire	Diamour
GiPu!		2/6	7/6	(PE1B)	$8 / 8$	9/6
GP60	\cdots	2/6	$7 / 6$	ER5MB	6/8	$9 / 6$
GP97		2/6	7/6	ER5MX	$2 / 6$	7/8
(:P73-1		6/6	9/8	ER5 SB	$6 / 6$	$0 / 6$
GP73-2		6/8	$9 / 6$	ER60 Stereo	8/8	$9 / 6$
(iP79		2/6	7/6	DECCA		
(1881-1		2/6	7/6	Deram., dianonl onls		27/0
(1P91-1		0/6	$9 / 6$			27
(1PO1-2		6/8	9/6	EV26 Sterce		
(cp91-3		6/6	9/6		$2 / 8$ $2 / 8$	$7 / 8$ $7 / 8$
CP91-Isc		$8 / 6$	9/6	(:C-2 CC	2/8	$7 / 6$
(1P91-38c		6/6	9/6	(CEEI:	$2 / 8$	$7 / 6$
GP93-1		6/8	$9 / 8$	ficsioll	2/6	7/6
(1P94-]		6/6	$9 / 8$	GCs $10 / 2$	$2 / 6$	$7 / 6$
QP90-1		${ }_{6 / 6}$	9/6	$\times 1-2$	$8 / 6$	$0 / 8$
(P 96		$6 / 6$	$9 / 6$	TSI ..	6/6	$9 / 6$
HGP3\%		$8 / 6$	7/8	TS:	$8 / 6$	9/8
104		6/6	8/6	T\$3	8/6	$9 / 6$
B.S.R.				GOLDRIMG		
B8R C1 (NT3)		$8 / 6$	9/6	CM50 .	$2 / 6$	7/6
B8R TC8H		2/6	$7 / 6$	CM60 .	2/6	7/6
HSR TC8M		2/6	7/6	MX1..	$2 / 8$	$7 / 6$
BSR ST8		8/6	9/6	MX2 sterco Cs80	$2 / 6$	7/6
BSR ST9		6/6	9/6		2/6	$7 / 6$
BsR ST10			$8 /-$	PERPETUOM ERAER		
BSR X MM		$8 / 6$	$8 / 6$	PE188	B/6	9/6
84R X 1 H		${ }^{8 / 6}$	9/6	PHILIPS		
13sR $\times 3 \mathrm{M}$		$8 / 6$	$8 / 6$.193016	2/6	7/6
HSR X 3 H		${ }_{8 / 6}^{8 / 6}$	$8 / 6$.163063	$2 / 6$	7/6
134R N5H		6/8	$8 / 6$	$\begin{aligned} & \text { LG330 } \\ & \text { IG3310/330t } \end{aligned}$	6/6	$9 / 6$
BNIC X 4 H		8/B	$8 / 6$		$6 / 6$	$9 / 6$
collaro				1G3400	2/6	7/6
				RONETTE BIMOFLUID		
				BF40	8/8	7/6
Coblaro-honet				$1 \mathrm{LCO}^{4}$	2/6	7/6
		$2 / 8$	\%/6	sonotone		
Cullel 8 K 1		2/6	7/6	2 T .	6/8	$9 / 6$
Duat CDs $/$ Clas 3(DN2)				37.	$8 / 8$	$9 / 6$
		6/8	9:8	8 T 4 A	$8 / 6$	$9 / 6$
Dual CDer3:-				9TA	$8 / 6$	$9 / 6$
(DN3) ${ }^{\text {(D) }}$		6/6	$9 \cdot 6$	9TS/HC	6/6	$9 / 6$
ELAC KST ${ }^{\text {a }}$				19T .	2/8	$7 / 6$
(PE10)		6/6	$9 / 6$	20 T	2/6	7/6

SEMICONDUCTORS • BRAND NEW • MANUFACTURERS' MARKINGS • NO REMARKED DEVICES
$\begin{array}{ll}12 N 388 A & 12 / 6 \\ 2 N 404 & 2 / 8 \\ 2 & 213 \\ 2\end{array}$ 2N368A
2N404
2N641 NN64
2N697
2N688
safeguard against the high noise level that can be imparted even to pre-recorded tapes if a tape head has become magnetised.

Another new and useful device suitable for all current Ferrograph tape recorders is a signal operated switching unit which starts the recorder on arrival of wanted signals and stops it again automatically when the signals cease. The device operates from a lowest signal level of 400 mV and has an adjustable over-run time of 5 to 25 seconds; retail price $£ 30$.

MUSIC AT THE FAIR

A few large musical instrument distributors were showing currently available instruments, such as electronic organs, guitars and amplifiers, but nothing that could be described as new could be found.

One of the highlights in the music field, however, was the Moog Synthesiser which is an electronic music composition and performance system. The system is partly keyboard operated but consists mainly of a large number of voltage controlled oscillators and filters

The Moog Synthesiser - this version would cost between £2,250 and £3,000
which can be interconnected to produce the pitch, waveform and envelope for an infinite range of musical sounds and even of "pseudo" human voices. One of the larger versions of the Moog Synthesiser is shown on this page but such devices are hardly for domestic use since the price range is $£ 2,250$ to over $£ 3,000$. However, a small synthesiser suitable for schools and small studio use will shortly become available at less than $£ 600$. The present U.K. distributors for Moog Synthesisers are Feldon Recording Limited, 126 Great Portland Street, London, W.I.

The designer of the Synthesiser, Dr R. A. Moog, who gave a leature on and a demonstration of the instrument at Olympia, spoke of the possibility of combining the music synthesiser with a conventional electronic organ resulting in a musical instrument with variable voicing and effects that could be chosen at will by the player. There is already some indication of this idea in modern electronic organs.

AUDIO PRESENTATION PROGRAMME

Visitors to the Fair were also able to hear a. series of lectures (many with demonstrations) by well-known
experts in sound reproduction and music. Among these were Dr R. A. Moog mentioned above, P. J. Baxandall, inventor of the almost universally used Baxandall tone çontrol network, Desmond Briscoe from the BBC Radiophonics Workshop and Sir Arthur Bliss (Master of the Queen's Music). Many well-known audio journalists and designers also gave talks on high fidelity sound reproduction. Other special features included a recording studio where visitors could make a record, a search for a singer contest, a music tuition bookshop and a comprehensive display of musical instruments of ail kinds.

A number of films of interest to audio enthusiasts such as "The Timeless Track" and "The Magic Tape" by B.A.S.F. and "Sound on Tape" by Philips Limited, were also shown during the week of the fair. All this, together with the displays and demonstrations of products by over 100 exhibitors made the 1970 Audio and Music Fair a successful and interesting venture for both the exhibitors and the visitors. However, the exhibiting manufacturers of audio equipment still had the problem of accommodating a worthwhile number of people during demonstrations; the demonstration cubicles were just not large enough.

NEW RELEASES

Rola Celestion Limited-a new loudspeaker-the Ditton 120. The 120 was displayed at the Audio Fair; it consists of three units, an HF1300 treble speaker, a long throw mid range and bass speaker and an audio bass resonator (A.B.R.) all housed in a case measuring $17 \times 7 \frac{3}{4} \times 8 \frac{3}{4}$ inches. Frequency response is 30 Hz to $15,000 \mathrm{~Hz}$, power handling is 20 W DIN, impedance is 4 to 8Ω; the speakers are available in matched pairs and cost $£ 48$ per pair.
K.E.F. Electronics Limited-a new range of loudspeakers known as the Cresta, Chorale, Cadenza and Concerto and each has a three speaker system. The Cadenza was released at the Audio and Music Fair and is a completely new system with a passive bass radiator. Frequency range 30 to $30,000 \mathrm{~Hz}$. Power handling capacity 25 watts at 8 ohms.

Uher-Bosch Limited-a new tape recorder, the Uher 724 , which is a quarter-track stereo machine for $7 \frac{1}{2}$ and $3 \frac{3}{4}$ i.p.s. Specification is to DIN standards with an output power of 2 watts per channel. The recorder operates in the vertical or horizontal position. Retail price is $£ 103$ 10s 0 d plus $£ 2511 \mathrm{~s} 5 \mathrm{~d}$ p.t. Uher have also introduced a new portable cassette recorder for C60, C 90 or C 120 tapes and which features a reversible drive system to obviate having to turn the tape cassette over. Price not available at time of writing.

B.A.T.R. CONTEST

Prizes were presented at the Audio and Music Fair to winners of the 1970 British Amateur Tape Recording contest. The "Tape of the Year" winner was Mr K. McKenzie for his documentary tape called "Sunderland Hospital Broadcasts". For this he was awarded the Emitape Challenge Cup and also the Philips Shield for the best recording in the documentary class.

The 1971 and 14th British Amateur Tape Recording Contest has already been announced with a closing da.te of 30 th June, 1971. Entry forms are available from the Secretary, B.A.T.R. Contest, 37 Fairlawnes, Maldon Road, Wallington, Surrey. As before there are six categories to choose from including one for schools.

DI|EDOCLOER By R.W. Coles

THE alarm board "B" carries the logic and oscillator circuitry required by the alarm system, and the 5 volt regulator, which provides the highly stable supply required by all the i.c.s used in the clock. The board is physically smaller than the main clock board "A", being a "Dualine" DL109/22, which has positions for nine $14 / 16$ pin DIL packages, and is equipped with a single-sided 22 -way edge connector.
Six i.c.s are used in all, but two of these are CA3046 transistor arrays which are 14-pin packages containing five individual transistors. These are not members of the TTL family used to perform all the clock and alarm logic.

ALARM OPERATION

The time at which the alarm is required to sound is entered by means of a bank of thumbwheel switches S2a and S2b mounted adjacent to the display on the front of the clock.

These switches are so constructed that they give a four-bit binary coded decimal output pattern for each number selected. This b.c.d. word is continuously compared with the b.c.d. output from the clock counters in a digital comparator (see Fig. 7). When the switch setting and the display are the same, the output of the comparator falls to a low level and is used to set a simple "latch" bistable in IC18.

The output of the latch enables a gate G5c which allows the alarm tone through to a 40 ohm moving-coil speaker, and thus the alarm is sounded. The alarm will
continue indefinitely unless reset by means of the miniature toggle switch S3, also mounted on the front of the clock.

The alarm setting accuracy could be extended to any degree by simply adding more switches and increasing the comparator size. A setting to within 0.1 second is quite possible if required, but with the prototype the system was intended for domestic use, and time setting in ten minute increments was considered adequate.

It was also considered unnecessary to include the hours 10.0 to 12.50 in the comparison, thus saving an expensive switch bank which would have been necessary in the "tens-of-hours" position. If this expense is unimportant, or if the aesthetic consequences of using a toggle switch in this role (for this is all that is required in this position) can be tolerated, these times are casily added because the comparator as described has allowance for this extra switch.

There is therefore a considerable amount of flexibility in the alarm circuitry which allows individual constructors to tailor the system to their own requirements.

ALARM CIRCUIT

The circuit of the alarm system is given in Fig. 7, and it can be seen that it is not very complicated at all. Of course, the alarm circuit can be omitted altogether without affecting the remainder of the clock circuit.
The digital comparator is formed from two SN7483 MSI packages, each containing four complete fulladders, with internally connected ripple through carry.

LOW COST ELECTRONIC \& SCIENTIFIC EQUIPMENT \& COMPONENTS

motons

SHADED POLE MOTORS 120 V 50 Hz

 Precision made as used in record decke a tape recorders. Suitable many other applicationa. 10/-each.
HYSTERESIS REYERSIBLE MOTON

Incorporating tro coile. Each coil when energised will produce opposite rotation ol cach. P. \& P. $5 /$

LOW TORQUE

CIUTH MOTOR
With integral clutch allowof the notor to strop out gear train, thercloy ficilitating easy resetting when
uned in timers or nged eagy resetting when
uithers or in con. Junction with : light mpring. 6 oz torque at

 4 r.p.m. $25 /-$ each:
p.
D.C. MOTORS Sinilar to above type
MD 83 . 28 y

SYNCHRONOUS MOTORS $200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$. New condition, 1 r.p.m, Self starting, haft lin dia in $\frac{\text { long. } 30 /- \text { P. \& }}{\frac{1}{5} /-}$ MOTOR
 SoHz, W. Brnchro nous intuction motor. o reva. per hour. o/P
ghaft. lin dia ahaft. Ain dia sin tion. Thrce-holed 2in PCD. Price $15 /-$

WIDE RANGE

 OF PRECISION MULTI-TURN POTENTIOMETERS IN STOCKNew 6 Bank $2 \overline{5}$ way 50V 75 Ohms Make before breah. Half circle type 2 geta of willer arms at 180 PRICE 62/6 Minikture Chselector 3 Baths 12 Winy $12 V$
35 Ohms. PRICE E5.5.0. Pimeking antl jnstage fre

UNISELECTORS

MINIATURE UNISELECTORS

3 bank, 12 way, 260 ohm,
24 V . Type 2200 A . Supplied complete with ylug-in base. Size 3in lita 2in. A very neat precision com nonent. Price 85.5 .0 P. \& P. 5

LAMPS

Outpat Folls	Oupw Current	Inри! rolla	stabild. or Uteraid.	1/ake	Price
4-19	y A Max at $6 V^{\circ}$	240	Ntabiliseal	Coutant	830
3-15	$\begin{aligned} & \text { 6A Max } \\ & \text { it } 6 \mathrm{~V} \end{aligned}$	240	"	*	225
26-3\%	7 A Mas it $30{ }^{*}$	240	*	${ }^{*}$	\$30
15 V	$\overline{\mathrm{j}} \mathrm{A}$	$\because 40$	"	dsallee	120
Adjustable					
125	1A	240	-	Furuel	215
$\pm 200{ }^{\circ}$	15011.	$\because 40$..	Rolanal	212-10-0
$\begin{aligned} & +30 \mathrm{~V} \\ & -20 \mathrm{~V} \end{aligned}$	300 ma	240	,*	B.P.L.	214-0-0
12 V	4.4	110	.	18M	218-0-0
124	20.4	110	..	,	295-0-0
12V	12. 4	..	.	,	222-0-0
6 V	8 A	",	212-10-0
6 V	14 A	,	.,	,	123-0-0
20 V	+iA	,	"	"	218-0-0
48 V	6 A		-		218-10-0
$\mathrm{CbV}_{6} \mathbf{6}$	210	$\because 40$	Stabilised	Lix	445
6 GV	10A		Arljustable	computer	
6 G	⒑	$\because 40$	-	A1un	445
$\begin{aligned} & 190 \cdot 350 \\ & 6.3 V \cdot 0-6.3 \mathrm{~V} \end{aligned}$			Ntabilised	$\begin{aligned} & \text { Airmer } \\ & i 05 \end{aligned}$	216-10-0
$24{ }^{\circ}$	5.1	$\underline{240}$	Cinregulater	Advance DC2:	218-10
48 V	± 8	$\because 40$.	Aivadee DC1를	215
48 V	4.	$\because 40$		Alvance DC8	218-10
$\begin{aligned} & 350 \mathrm{~V} \text { or } \\ & 250 \mathrm{~V} \end{aligned}$	500 nc	$\because 10$	Stathilised	$\begin{aligned} & \text { Kolatron } \\ & \begin{array}{l} 755-2 \\ \mathrm{~F} \cdot 3 \mathrm{~V} \text { CT at } \\ \mathrm{b} .3 \mathrm{~V} \text { CT at } \end{array} \end{aligned}$	$\begin{aligned} & 249.10 \\ & \left.\begin{array}{r} 5.4 \\ 10 \mathrm{~A} \end{array}\right\} \mathrm{AC} \end{aligned}$
SOLARTRO Stabillty 0. ANCE. LOW 3 ranges 0-17 When units parallel 0 - 500 Our price 26	N RR\&15 $\%$ for 10 W RIPPL \%0, 160-340 are used 0 V at 3001 5 overhau	$\begin{aligned} & 5 \mathrm{TW} \\ & \% \mathrm{O} / \mathrm{P} \\ & \mathrm{E} \text { 10 } \mathrm{m} \\ & 40,330- \\ & \text { in ner } \\ & \text { inA. A } \\ & \text { uled in } \end{aligned}$	IN Regulated change. Lo F. OLTPU 500 V at 0.15 ries $0 \cdot 1000 \mathrm{~V}$ C O/P. 6.3 V Vo conditio	d DC Suppl W 8OURCE T $0-500 \mathrm{~V}$ V" 0mis. \qquad at 5 amps. H.	ly. High 1MPEDrariable In - ve or ill

ERAND NEW 4 Digit

with electrical reset

High quality comnter operating from 122^{3} D.C. I20 ma at $10 \mathrm{impulae} / \mathrm{sec} W 1 \mathrm{R}^{\circ} \mathrm{F} 23^{\circ}$ L 4" PRICE E5.5.0. P. \& P. FREE

4 DIGIT NON-RESETTABLE COUNTER

Totalisiug 10 impulses
3 in 13 in $1 \geq$ in
24 V d.c., 300 ohm. Price
5 for $25 /=$. P. \& P. $5 /$
6 DIGIT ELECTRICAL IMPULSE COUNTER
New Type EM 101 24V Resettable 85.0 .0
 110 V D.C. 4400 Ohnis coil

VEEDER ROOT 6 DIGIT COUNTER

Suitable for counting all kimile of production rulls, business machine operation Mechanically driven. Reset type KA 1337, dition. Mpecial price 26/- plus 5/-P.\&P.

3 DIGIT RESETTABLE COUNTER

Totalising 48 d.c. at 48 mA ; 10 impulees/

6 DIGIT RESETTABLE COUNTER Totalising 240 S 50Hz, Viewing windon $\mathrm{P}^{\mathrm{P}} . \AA \mathrm{P} .5 \mathrm{~S}^{2}$

6 DIGIT TOTALISING NON.RESETTABLE

 COUNTERMechanical operation. Chronitum liuish Leogth 1 in \quad zin $\frac{1 i n}{}$ with viewing window in

BERKELEY DECIMAL COUNTING

 UNIT 0.9Direct reading octal tronit plug in ur number counts receive is inficated by one of ten Heon lablus behimi acetate panel. The unit
counts from $0 \cdot 9$ the tenth pulse resetting to zero and simuitaneously generating an o/p signal
Circuits can ise con
nectellin cascade. Power supply $15 \cdot 3 \mathrm{~V}$ I.c Cut on/Cut off 15N Price 70/-p. a p. ftec.

MINIATURE DIGITAL DISPLAY
 Operates on a rear
projection
d. $3 \mathbf{V}$ pilot lamp. Character size ${ }^{*}$ high. $0-9$ ligits with degree
 Dimensions 1 Whe, price 48/6. F. \& P.
" charimiters 85/-8.10.0

EAC DIGIVISOR Mk. II DIGITAL

READ.OUT DISPLAY
Uses in sensitive moving coil hovelnent to project fligits $0-9$ on to it viewing
gcreen ria an optical leng system. Image height in ${ }^{\circ}$ Lamp G.3V. Sengitivit
 H. 1 R" Prive 83.10 .0

SOLENOIDS

High quality solidly consiructed solenoids. Actuatell hy $4: 2 \mathrm{~V} 45$ a coil. Overall length $\hat{S}^{\prime \prime} \times 1^{*}$ \&quare with a ${ }^{\circ}$ tribel of the it 24 V . 70 ohnt. Armature a^{*} movement Lug type ftting.
Price $4 / 6, ~ \mathbf{P} . \& \mathbf{P}$.

250V, 15 W , MBC. Panel lamps, Ideal making up displays, etc. Length 2 in $\%$
1tin dia. Kjuecinl offer, 10 for $11 . \mathrm{P}$. \&. P .

SLIDER SWITCHES

250 V 1A D.P.B.T. Flush wounting Size L 1 :" W': 15 for 21.5.0. p. \& p. iree.

miniature moving coil

 RELAY $\$ 115$By Sangamo Weatod, suitable for D.C. circuit. A high nensitivity relay
more sensitire than the electronagnetic type. Single Coil Reaiatance

NUMICATORS

Fig size 16 וn
Cold cathode gay flled in ine 0, digital display ancy. Minitnum striking voltage 180 V . Side reading Type XN 7, XN 23 and

MEMORY CORE STORES

4.2 52.2 K bit
rerrite core store completc with 84 Ideal tor building Ideal for building
computer or holưing formation
 binary for
Handbook stores. 7/6

MEMORY PLANES

Ferrite core memory planes with wireal Ferrite cores. ["sed for building your wil computer or as an interesting exhibit in the dellonstration of a comframe $\bar{s} \mathrm{im}$. Consisting of matrices adilressable and each one indellitidually with independent senas unt fuhihit wire 3. 28/10/0. P. \& P. 3/\%

LINEAR THYRISTOR CONTROLLED LIGHT DIMMER - BRAND NEW High grade full wave bridge circuit gives light brinhentrol of for controlling romm lighting andl a.c./A.c. cormmutator motors electric hand elrills. condult box. $240 \mathrm{~V}, 50 \mathrm{~Hz}$, 600 W price 89/6. P. \& P. $9 / 5$.

RAPID HEAT SOURCE

from Mrand 1 Iew Inira Red Tubular Qurtz Lamps. Ideally sultel as heat Incubators, etc.. $240 \mathrm{~V}, 1,440 \mathrm{~V}, 20,000$ $\begin{array}{ll}\text { Angatroms- } & \text { Length } \\ \text { Price 15 } / \text { - } & \text { P. \& } P .5 /-.\end{array}$

STOCK CLEARANCE

"-is is condition" Oscillosenpe Solartron D. 300 Furzehill 0/10 F゙urzehlil 0/110 tirmec 249
Airmee $7: 3$
L.C.R. Bridge Wayn Kerr B1: L.C.R. Bridge B.P.L. VB:02?

Crystal Calibrator Marconi Tr 723 A
ELECTRONIC BROKERS LTD.
(Dept. PE), 49.53 PANCRAS RD • LONDON NWI
01.8377781 TELEX 267307

Open Mon.-Fri. 9-6 p.m.

PORTABLE WHEATSTONE BRIDGE

pechuration. Type: Moring Con meter. Ranges . 05 to 50 . 0.5 to 50 ohme, 3.5 to 500 ohm . 50 to 5,000 ohme. 5.500 to 50,800 ohm Internal source batters. Dimensions. 000 AYOMETERS

AYOMETERS
These well-known portable test instruoffered complete with lealn, cmons

ET TIMERS - ACRO TIMER BY
nehronous motor irveit timer proviling untilit actuates the load switch. am then returne to initial position fo 500 Hz Lond conticts $15+330$. 5.0 .0 .

POWER SUPPLIES. V.G. CONDITION

Multhmeter AC/DC Singamo
Weaton Er:
Safety Ohmmeter Fvershel anm Vignoles
Bridge Oacillatur Airnuc 703 P. © P. $5 / \cdot$ on single iten.

E10. 0.0 29.10 .0 211.10 .0
210.0 .0 210.0 .0
10.0 .0 218.10 .0
212.0 212.10 .0
215. 0.0

DIScosound

DISCOSOUND 40 PRE-AMP
The Discosound 40 offers the same specification as the D.J. Disco Amp without the power output stage. Size 16 in , 7in. 7in. Self powered and ideal for use with the Discosound 100 Power Amplifier below and one of the outstanding features is that it is capable of running ten of these Power Amplifiers (Total 1.000 W).

PRICE £40.10.0 inc. P. \& P.

DISCOSOUND 100 POWER AMPLIFIER

A 100W R MS (8 Ohms) High Fidelity power Amplifier which utilises all silicon transistors of modular construction and features full automatic overload protection against short or open circuits. Frequency response: $20-20,000 \mathrm{~Hz}$ i 2 dB . The High output is ideally suited for discotheques, groups, clubs, etc., or anywhere where reliability and quality are required. This unit is the companion model for use with our control pre-amp Discosound 40, or can be used with any other high quality pre-amp control unit. Completely built and tested on steel Chassis.

PRICE £49.10.0 inc. P. \& P.

DJ70S
 INTEGRATED
 MIXER-

AMPLIFIER

One of the finest units available on the market today. regardless of price. The front end of the unit consists of a four channel mixer with separate inputs and volume controls, plus a separate bass, treble and master volume control. One of the main features of this remarkable amplifier is its elaborate protection against short and open circuit and we can guarantee that it is virtually indestructable. Allied to this is its very high power output (70 W R.M.S.) a frequency response $(\mathbf{3 0}-20,000 \mathrm{~Hz}+3 \mathrm{~dB}$) that is superb, and distortion that is well below $1^{\prime \prime \prime}$ even at full output. The unit is suitable for use with discotheques, groups, P.A., clubs, etc., or anywhere that high quality high output is required. Size: $15 \frac{1}{2} \mathrm{in} \times 5 \sin \times 6 \mathrm{in}$.

PRICE £63.0.0 inc. P. \& P.
Also available DJIOSS 30W P.A. Amplifier. Similar specification to above.

PRICE £41.0.0 inc. P. \& P.

> For full details of these and all Discosound Products write direct to: DISCOSOUND
> 122 BALLS POND ROAD, LONDON, N.1. Tel. 01-254 5779
> Full money back guarantee if returned within $\mathbf{1 0}$ days All Discosound Products are guaranteed for 12 months Demonstrations given at any time

techicical traninivg in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- Radio Operators' Certs.
- General Certificate of Education, etc. Now available, Colour T.V. Servicing
Examination Students coached until successful
NEW

SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

Each package has four A inputs, four B inputs, four "sum" outputs and a "carry-in" to the first adder and "carry-out" of the last.

These circuits are mainly intended for high-speed multiple bit parallel addition in computer arithmetic units, but binary adders are versatile devices, capable of performing several logic operations. The availability of four such devices in one package opens all manner of possibilities to the logic designer.

To understand exactly how these circuits can be used as comparators, consider Fig. 8. Fig. 8a shows the truth table of an "exclusive-or" gate, which is some-
should be equal to the switch outputs before the completed comparator registers an equality. To achieve this, the eight sum outputs from the adders (each of which registers equality of one digit) are fed to an SN7430 8-input NAND gate G4 in ICl7, the output of which will only fall to a logic 0 when all the individual comparisons are valid.

The output of this gate will remain low for ten minutes, until a further increment in the "tens-ofminutes" count invalidates the comparison. A period of this length would probably be sufficient for alerting the sleeper, but to make absolutely sure that the alarm

Fig. 7. Block diagram of the alarm circuit using five integrated circuits and showing their pin connections. Thie full circuit of the alarm oscillator appears in Fig. 10
times called a "non-equivalence" gate because its output is a logic 1 only when its inputs are exactly opposite.

To use such a gate as an equivalence circuit which gives a logic 1 output when its inputs are identical, it is only necessary to invert one of those inputs by means of an inverter gate, ol if complementary inputs are available anyway, to compare the true form of one input with the negated form of the other. It follows then that this type of gate could be used to build the complete alarm comparator we require.

As Fig. 8b shows, the truth table of a full-adder is identical to that of the "exclusive-or" gate, if we ignore the carry output and keep the carry input at 0 . In fact, using the SN7483 as four "exclusive-OR"" gates suits our comparator design admirably. The inverted form of one of the words to be compared is already available, because the thumbwheel switches give outputs in this form. The fact that we do have a carry input available can be put to good use in correcting the lagging output of the hours counter.

EIGHT DIGIT EQUALITY

So far this article has only considered the comparison of single digits, but all eight digits from the counters
cannot be ignored, the output of 1 CI 7 sets a' latch formed from two cross-coupled 2 -input NaND gates G5a and G5b in IC18, which ensures that the alarm tone will continue until reset, even if this process takes longer than ten minutes.

Fig. 8a. Truth table for "exclusive-OR" function
Fig. 8b. Truth table for full adder when $\mathrm{C}_{\mathrm{in}}=0$

ALARM TIME SWITCHES

The switches used to set the alarm time were chosen from the Birch-Stolec "standard" range, and both banks are coded S.B.10.N1248. These switches are well suited to this application because they give an output on four lines which conforms to the binary code, a separate pattern being produced for each of the ten positions of the numbered wheel.

Any number of switch banks can be mounted together if the constructor wishes to expand the alarm system, the final assembly being finished off by means of a pair of end cheeks which give a neat appearance and provide the mounting holes.

The principle on which these switches are based is that of a four-track printed, gold plated stator, traversed by four phosphor bronze rotor contacts. The life of this assembly is at least 100,000 operational cycles when switching 24 watts, so in this application the life will be much extended due to the very small current being carried.
To fabricate a similar system using wafer switches, a four pole ten-way switch would be required in each position, with a considerable amount of wiring necessary to programme the required code.
The wafer switch system does provide a useful way of explaining the action however, and a diagram with output logic table conforming to the thumbwheel switch coding is given in Fig. 9. Note that the output is in the complement form (assuming positive logic). A logic 0 is represented by a ground connection, and a logic 1 by an open circuit.

DIGITAL COMPARISON

As discussed earlier, this inverted code is just what is required for connection to the comparator. Of course, numbers one to nine only are required as inputs to the hours comparator, and numbers zero to five for the tens-of-minutes circuit. Stops could be fitted to the switches if desired, although this is not really necessary; blanking the undesired numbers with paint would be a simple alternative.
Only six positions are required for the tens-ofminutes switch. It follows, therefore, that the full output of four digits is not needed. In fact, the " 8 " output from this switch can be ignored in the comparison, leaving a spare comparator section in IC15, which is put to good use as an "inhibit" while the "tens-of-hours latch" E output is high. Remember that the alarm system is not operative during this three-hour period as it stands.
This inhibiting logic is simply achieved by comparing the E line with a permanent " 1 ", thus only permitting a 1 output from this section when the E line is at 0 .

As an alternative, it would be possible to ignore this spare comparator section, and feed the $\overline{\mathrm{E}}$ output from 1C10 (Fig. 2) to the 8 -input gate in IC17 which, when using this method, would have an input àvailable. This system was not used in the prototype simply to retain the design simplification of feeding only true outputs from the main clock board.

HOURS COUNT CORRECTION

So far so good, but up to now we have ignored the point made last month that the hours counter outputs do not conform directly to the binary code, 0000 representing decimal 1 instead of 0 , and so on up to 1000 representing 9 instead of 8 .

The thumbwheel switches, being "off-the-shelf" items, do not allow for this idiosyncrasy. The comparison as previously described would reveal that, when

Fig. 9. Wiring of a 4 -pole 10 -way switch to give a four-bit binary coded decimal output in complement form. The truth table shows positive logic
the switch was set to, say, four o'clock, the alarm would sound at five o'clock, and so on, a most unhappy state of affairs.
It is evident, however, that the code output from the hours counter could be corrected by simply adding binary 0001 to it, increasing its binary value by one. This simple conversion could be carried out using a four-bit parallel adder such as the SN7483N. (A fourbit adder is necessary because carries must be allowed for over all four bits.)
A separate SN7483N could be employed to carry out this correction, but as these circuits are used as comparators anyway, this is not necessary. A 1 can be added in by feeding a carry in on the "carry" input to the least significant adder. Admittedly this is all a little difficult to grasp, but it does work, and the best way of proving it is to set an exàmple down as a sum, thus:

Hours display: 7, Switch setting: 7 .
Binary 7: 0111
Therefore switch output (inverted) $\left.: \begin{array}{c}\text { Binary } \\ \text { Hours counter output } \\ : 1000 \\ 0110\end{array}\right)$ add
Hours counter output: 0110) add

$$
=1110
$$

1 (plus 1 carry)
$=1111$ equal (alarm sounds)

RISK OF TRANSIENT OPERATION

During the "paper" design of this part of the clock it occurred to the author that, due to the relatively lengthy propagation delay of the SN7483N, and the non-synchronous inputs from the MSI ripple counters, it might be possible for all the adder outputs to be at 1 when the comparison should not show equal, thus giving a transient output from 1C17.

As any such transient "low" output longer than a few nanoseconds is likely to set the latch and sound the alarm (at the wrong time), this state of affairs must obviously be avoided. A good deal of thought was

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

and Trawe Wavebands: Mediun Wave 3, Medium Wave ${ }^{2}$, Long Wave. S.W.I, S. W. 9, B.W. 3 ant Trawler Band. Built-in ferrite rod aerial for Mediun and Long Waves. 4 section 24 in Push-pull out ehrome plated tefescopic aerial for Short Wives for maximum performance Selectivit output nising boomw type transistors. Socket for car serial. Tipe record socket. gistors plus 3 diod Switchel carpiece socket colnpletc with carplece for private ilstening. 8 transistors plus 3 diodes. Fanous wake 7×4 in speaker. Air spaced ganged tuning condenser. On/off ghade with gold blocking. Hize 9 , 7 in apurox. Fasy to follow instructions rich chestnut make the Hoamer Flaht it pleasure to build. Parts pirice list and easy build plans 5/- (FREF, with parts).

roamer seven mk IV

7 flely tenable waye BANDS-M.M.1, M.W.E, L.W S.W.1, S.W.2, S.W. 3 and Trawler Barul. Extra Meliun waveband provides ersier tuning of Radio rod aerinl for Medium and Long Wures. Retractnble \& section
chrone plated telescopic aerial for peak short Wave listening. Socket for Car Aerial. Powertal pushopull outpat, Itransistors
and two diodes inchnding Micro-Alloy K.F. Trallisistors. Pamous meke
7.4 ID.M. speaker. Air spaceil ganget tuning condenser. Volunifon off controt.

Total building costs

Overseas P. \& P. 17/-

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attractive black and gold case. Size 5 , 1 ,
3tin. Tunable over both Medlum and Long Waves 3 in . Tunable over both Medlum and Long Waves
with extended M.W. band for easier tuning oi Luxembourg, etc. $\bar{\gamma}$ stanes $\overline{5}$ transistors nnd 2 diodes, gupersensitive ferrlte roi zerial, fine tone moving coil speaker. Easy
price ligt $1 / 6$ (FREE with parts).

IMPROVED MODEL!

 roamer sixSIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive black case with red grille and black knobs and dial with spun briss inserts. size $9 \times 5!$ 2 in . approx. Tunable on Medium and Long Waves two short Waves, Trawler Band plus an extra Mil. lerrite rod aerial and latest telescopic aerial for Khort Waves. Improved circuit. 8 stage - 6 tran-
Sistors ind 2 diodes including Micro-Alloy \mathbf{R}.F. Transistors, etc. Easy build plans and parts price list $2 /$ (FRFE with farts).

Total building costs 4.4./8 $\underset{36}{\text { P. \& } P}$

Total building costs

Overseas P. \& P. $13 /$

\qquad

NEW!

transeight
SIX WA VEBAND PORTABLE WITH 3in. SPEAKER
Attractive case in black with red grille and black knobs and
 ineerts. Size $9 \% 5!=2$ zin. approx. Tunable on Medium and Long
 8 improved type transistors plus 3 diodes. Push-pull output. Battery economiser switch for ext ended battery life. Ample power to drive a harger speaker. Parts price list and easy buikl plans 5 /- (FREF wlth parte).
Total building costs
$89 / 6{ }^{\text {P.9.9. }}$
Earpiece with switched socket for private Earpiece with swit.
listening $5 /-$ extra.
Overseas P. \& P. 13/-

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attrastive case with red speaker grille. Size $6 \frac{1}{2}$ 4 in in in. 7 stages - 5 tranaistors and 2 diodes, fine toue moving coll speaker. Easy build plans anil parts price list 1/6 (FREE with parts).

Total building costs A.7/ © $\underset{3 / 9}{\text { P. \& } P}$

Overseas P. \& P. $10 /$

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
I enclose $\mathbf{£} \quad$ pleasè send items marked

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

Bl-P PE

PACKS OF YOUR OWN CHOICE UP TO the value of 10/- With orders OVER C_{4}

CLEARANCE LINES

DON'T MISS THIS LAST CHANCE ONLY A FEW LEFT
UHF/VHF T.V. TUNER UNITS TU. 2 CONTAINING 2 AFI86's \& 2 AFI78's TU. 2 CONTAINING 2 AFI86's \& 2 AFI7A's
PRICE 10/-
TU. 3 CONTAINING 2 AFI86's \& 2 AFI78's TU. 3 CONTAINING 2 AFIB6's \& 2 AFI78's
PLUS WAVEBAND SLIDER SWITCH PRICE 12/6 P. \& P. $2 / 6$ EACH UNIT All the units have many other comporients, e.g. Capacitors, Resistors, Coils and tuning condensers, etc. Although these are manufacturers
rejects they are not beyond repair as has been proven by many of our customers.

ALL TUNER UNITS ARESUPPLIED
WITH CONNECTION DATA
COLOUR T.V. LINE OUTPUT
TRANSFORMERS
Designed to give 25 kV when used with PL509 and PY500 valves. As removed from colour receivers at the factory.

$$
\text { ost ond pocking } 4 / 6
$$

SPECIAL LINE
I AMP Bridge rectifiers.
100 PIV. $=5 /-400$ PIV.
16800 Piv. 7 Square
1970 MULLARD DATA BOOKS Data and equivalents on semiconductors valves
and tubes......................
I.C. PANELS-FEW ONLY-50/-EACH Each panel contains:-
I6-Dual 2 I/PNOR gates MC7I4G. I-Dual 3 I/P NOR gate MC715G. I-I.K. flip flop MC723G. $29-85 Y 95 A$ or $2595 A$ and I V405A transistors.

OUR VERY POPULAR 6d. TRANSISTORS

FULLY TESTED \& GUARANTEED
TYPE "A" PNP Silicon alloy, metal TO-5 can. $2 \$ 300$ type, direct replacement for the OC200/203 range
TYPE " B " PNP Silicon, plastic encapsulation, low voltage but good gain, these are of the $2 N 3702 / 3$ and $2 N 4059 / 62$ range.
TYPE "D" NPN Silicon planar, plastic TO-I8 case. Audio preamplifier or 500 mW output stage, of the $B C 113 / 4 / 5$ range.
TYPE "E" PNP Germanium AF or RF please state on order. Fully marked and tested.

B66	150	Germanium Diodes Min glass type	10/-
883	200	Trans, manufacturer's re all types NPN, PNP, Sil Germ.	-
884	100	Silicon Diodes DO.7 glass equiv. to OA200, OA202	10/-
886	50	Sil. Diodes sub. min. IN914 and IN916 types	10/-
888	50	Sil. Trans. NPN, PNP, equiv. to OC200 2N706A, B5Y95A, ete	10/-
860	10	7 Watt Zener Diodes Mixed Voltages	0/-
H6	40	250 mW . Zener Diodes DO-7 Min. Glass Type	\%/-
HIO	25	Mixed volts, it watt Zen Top hat type	0/-
HII	30	MAT Series "alloy" pnp Transisistors	10/-
HIS	30	Top Hat Silicon Rectifiers, 750 mA . Mixed volts	10/-
H/6	8	Experimenters' Pak of Integrated Circuits. Data supplied	10/-
	20	BY\|26/7 Type Silicon Rectifiers, I amp plastic. Mixed volts	10/-

B2	4	Photo Cells, Sun Batteries. 0.3 to $0.5 \mathrm{~V}, 0.5$ to 2 mA .	10/-
$\overline{877}$	2	AD161-AD162 NPN/PNP	10/-
B81	10	Reed 5 witches, mixed types large and smali	10/-
$\overline{889}$	2	5SP5 Light Sensitive Cells. Light Res. 400Ω Dark IM Ω	10/-
891	8	NKT163/164 PNP Germ. TO-5 equivalent to OC44, OC45	10/-
B92	4	NPN. Sil. Trans. AO6 = BSX20, 2 N 2369500 MHz , 360 mW	10/-
$\overline{893}$	5	GETII3 Trans. equiv. ${ }^{\text {GCO }}$ ACYIT-21 PNP Germ.	10/=
899	200	Mixed Capacitors. Postage 2/6. Approx. quantity, counted by weight	10/-
B98	10	X 812 and $\times 8102$ equiv. 10 ACII2, NKT271, etc	10/=
H4	250	Mixed Resistors. Postage $2 /-$ Approx. quantity, counted by Approx. weight	10/-
मु7	40	Wirewound Resistors. Mixed cypes and values. Postage 1/6	10/-
HB	4	BY 127 Sil. Recs 1000 PIV. 1 amp. plastic	10/-
H9	2	OCP71 Light Sensitive Photo Transistor	10/-

RETURN OF THE UNBEATABLE P.I PAK. NOW GREATER YALUE THAN EVER
full of short lead semiconductors AND ELECTRONIC COMPONENTS, APPROX. 170. We guarantee at least 30 really HIGH QUALITY FACTORY MARKED TRAN. 5ISTORS PNP AND NPN, AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA TION ON THE TRANSISTORS
PLEASE ASK for pak P.I only $10 /$
2/- P. \& P. on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev. counter for any car.

$$
20 / \text {-each }
$$

FREE CATALOGUE AND LISTS for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS
Various Contacts and Coil Resistances. No individual selection. Post \& Packing 5/- 20/=

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Fig. 10. Alarm oscillator circuit using an integrated package of five transistors. TRE is unused
put in to discover whether this could in fact occur. It was decided that the only way to find out was to "try it and see"!

In the event, it was found impossible to generate this condition in the completed clock, and so all was well, but the point has been made because, with the wrong combination of adders and counters, it was thought to be a possible occurrence.

If any reader should be unlucky enough to experience this phenomenon, the solution is simply to gate the comparison with a clock waveform from one of the divider stages not used in the comparison. In this way the output from IC17 could be strobed only after the hours and tens-of-minutes counters have changed and the SN7483N "carries" have propagated. Obviously some circuit modifications would be necessary to achieve this.

ALARM OSCILLATOR

The alarm oscillator circuit is shown in Fig. 10, which may attract the interest of those who are not otherwise concerned with the clock, because. of its obvious applications in many other designs.

The circuit was described by A. B. Blackwell-Jones in a letter to Wireless World (August 1967). He called it a "Trivibrator" or "Donkey Simulator", a very apt pair of names indeed. The circuit is based on the usual two transistor astable multivibrator arrangement, to which an extra transistor has been added, so that three separate cross-coupled timing networks result instead of the usual one, as shown in Fig. 11.

Each of the timing networks has a different natural frequency, two being audio tones of about one and two kilohertz respectively, and the other being a low frequency timing circuit giving a 5 Hz gating effect. The output is taken from the centre transistor of the two a.f. arms, and consists of alternate bursts of the two tones, each lasting for about 0.2 second, controlled by the l.f. arm. When fed to the speaker this tone gives a very pleasing "space age" warble effect.

If the reader is familiar with the basic multivibrator circuit action, there should be no problem at all in
understanding this extension of the idea. It will help to refer to Fig. 11.

CIRCUIT OPERATION

Either transistor TRA or TRC will be saturated at any time. This saturation will last for about $0 \cdot 1$ second, as controlled by the 5 Hz timing network coupling them. The saturated transistor is unable to react via its a.f. timing network with TRB during this time, so this tone is not produced. Meanwhile, however, the other transistor (of the pair TRA or TRC) is not saturated by the l.f. arm and is free to interact via its a.f. timing network with TRB, giving an a.f. output of the appropriate frequency. When the 0.1 second period has expired the 1.f. arm changes over, saturating the other (TRA or TRC) transistor, and allowing the other a.f. tone to be produced, and so on.

The only unfamiliar parts of the circuitry are the two resistors, R4 and R9, which are necessary in the trivibrator to prevent the very low impedance of the I.f. coupling capacitors shunting the a.f. arms. In effect, the capacitors C4 and C6 coupling this section are taken to taps on the CR timing resistance chain.

Fig. II. Principle of operation of the alarm oscillator

The output of the oscillator is taken from TRB via a resistor R11 to gate G5c (Fig. 7), where it is held until allowed through by a logic 1 input from the alarm latch G5a. Note that the alarm oscillator runs continuously, whether the latch is set or not.

When G5c is not enabled, its output will be at a permanent 1 , or positive, level. If this output is fed to the simple saturating switch used to drive the speaker directly, although the alarm would not sound, this transistor would be hard on, giving a high power drain and possibly damaging the speaker. To avoid this, G5d is interposed between G5c and the switch TRD to act as an inverter, ensuring that when the alarm circuit is inactive, the output transistor will be off, and no current will flow through the speaker.

The three transistors forming the oscillator, and the transistor used to drive the speaker, are all contained in an integrated package IC19. The other transistor in this array is not used, but it is vital that its emitter (pin 13) should be grounded, as it is connected to the substrate of the device. An open circuit on this pin would jeopardise the isolation between the separate transistors.

The positive supply for the a.f. output stage is taken from the unregulated 10 V line, not to gain any power advantage, but to isolate the 5 V line powering the logic circuitry from any ripple produced.

The emitter of the output stage is grounded through the combined "alarm-off/reset" switch S3. When this switch is in the "off" position the alarm cannot sound under any conditions, and a 0 is fed to G5b to reset the latch ready for the next alarm setting.

Note that during the ten-minute period that the alarm output from IC17 is active, it is not possible to reset the latch by simply flicking the switch up and down.
This concludes the description of the alarm circuitry; the 5 V regulator, which is wired up on the same board, follows next. It is recommended that the 5 V regulator be wired up before the alarm circuit as will be realised later in this article.

FIVE VOLT REGULATOR

The 5 V regulator uses a total of seven transistors, five being contained in another CA3046 (IC20), one being a discrete 2 N 706 , and the last being a plastic encapsulated power transistor, type MJE521, which is mounted off the board using the chassis as a heat sink.

The regulator features fold-back current limiting, excellent temperature stability, and an output impedance of less than 0.1 hm from d.c. to 100 kHz together with line regulation of better than 10 mV per volt.

Inputs to the circuit are 10 V d.c. (nominal) and 200 V d.c. (nominal), provided by conventional power supplies which are described next month. The regulator circuit is shown in Fig. 12.

The 200 V line is reduced to provide a 12 V biasing supply set by a discrete Zener diode D3, which is bypassed by Cl to suppress any high voltage transient surge when switching on. The 12 V is used to power the temperature compensated 7.5 V reference supply and the differential amplifier. Using a separate bias supply rather than the unregulated 10 V to power these sections gives a great improvement in line and load regulation, and increases ripple rejection.

In the alarm oscillator circuit the advantages conferred by employing a transistor array were those of compactness and convenience, but in this circuit the benefits of the monolithic construction provide a specification which could not be equalled simply by replacing the array with discrete devices. Because
each transistor is mounted in close thermal contact with its neighbours, tight temperature tracking is assured, enabling the construction of an accurately compensated reference and a differential amplifier with a negligible input offset voltage temperature coefficient.

As each transistor was made at the same time and experienced the same diffusion process, parameter matching is also assured. The transistors' $V_{\text {be }}$ are guaranteed to be within 5 mV of each other; all these factors can be put to good use in this type of circuit.

REFERENCE SUPPLY

The reference supply is provided by TRD and TRE, which are not used as transistors in this application, but as a Zener diode and forward diode respectively. The use of a base emitter junction as a Zener is not new, and the transistors in the CA3046 provide a breakdown voltage of about seven volts when used in this way, with a temperature coefficient of plus $2 \mathrm{mV} /$ degree C.

A temperature induced variation of this order is not serious in itself, but if it occurs at the same time as other variations, it could take the 5 V supply outside the necessary design limits of plus or minus 250 mV .

To eliminate this drift, a forward biased diode, formed from another base emitter junction (TRE), is connected in series with TRD. A junction biased in this way exhibits a forward voltage of around 600 mV , but it has a negative temperature coefficient of 2 mV / degree C, which cancels the plus $2 \mathrm{mV} /$ degree C of the TRD "Zener" junction.
A variable potential divider is used to tap off an accurate 5 V from the reference line, and is used as an input to the non-inverting input of the differential amplifier (TRA and TRB). A capacitor Cll is used to bypass any noise which may be present on this supply.
Because a 5 V reference is used, the differential amplifier can be used in the voltage-follower mode, with the final 5 V output being fed back directly to the inverting input without the usual potential divider chain being interposed. This connection gives a maximum value of loop gain for good regulation, and also increases the frequency response of the amplifier, giving good transient response.

DIFFERENTIAL AMPLIFIER

A differential amplifier was used because of its high voltage gain and absence of temperature problems which affect single-ended designs.

The output of the "error" amplifier is taken from the collector of TRA and used to drive the base of TR1 which, with the series pass power transistor TR2, forms a compound emitter follower with a very high current gain, and consequently low output impedance. TR2 has to pass all the current required by the load, which could be as high as 1 A , and is therefore a power device bolted to a heat-sink.

FOLDBACK CURRENT LIMITING

The foldback current limiting circuit is provided by TRC with R21, R22, and R23. The following paragraphs describe its operation using Fig. 12.

As many constructors are aware, a short-circuit on the output of a semiconductor regulator can wreak havoc with the regulator devices in a matter of microseconds, and with a project of this complexity a shortcircuit is very likely to occur, especially in the early stages of testing. Protection against this sort of disaster

Good looks apart the ST.20. offers outstanding performance equal to amplifiers selling at two or three times the price which makes it one of the best buys on the High Fidelity market. All silicon solid state circuitry using 20 transistors and 2 diodes provides a full 20 watts r.m.s. output (10 watts r.m.s. per channel), Conservatively rated components are used throughout to ensure long term reliability and stability. Press button selector switches are a feature of the ST. 20 for magnetic phono, crystal phono, radio tuner, tape, mono/stereo and on/off facilities.
The slimline cabinet in teak veneers and the front panel fascia of

Stereo 10-10 Compact System
Expertly designed and providing outstanding quality reproduction. Not just another compact system but a true "sound centre" incorporating an all silicon transistor amplifier, Garrard 3000 autochanger and two Metrosound HFS. 10 speaker systems. Output 20 watts rms. (10 watts rms. per channel) Bass, Treble, Volume and Balance controls. Input for tuner. Tape record outlet. Price £77.6.4.

brushed anodised aluminium finish witn gleaming silver trims combine to give a look of expensive and stylish elegance. Size $15 \frac{1_{4}^{\prime \prime}}{}{ }^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 10^{\prime \prime}$.
Price $\mathrm{f}^{26.0} \mathbf{0}$.
"Its performance is not just on the fringe of the specification-as happens with many low-priced amplifiers - it is well within it and well within the requirements for hi-fi"
F. C. Judd "Hi-Fi Sound" August 1970
 COUNCIL OFINDUSTRIAL DESIGN FOR INCLUSION IN DESIGN INDEX

Metrosound Speaker Systems

MODEL HFS. 1010 watts handling capacity. 8 ohm impedance. Teak finish. Size $14^{\prime \prime} \times 9^{\prime \prime} \times 7^{\prime \prime}$. As used in the Stereo $10-10$ Compact System and available in matched pairs at $£ 26.3 .8$.

MODEL HFS. 2020 watts handling capacity. 8 ohm impedance. Teak

Available from all leading high fidelity dealers
Designed and Manufactured in England by

(metrosound

Metrosound Manufacturing Co. Ltd., Audio Works,
Cartersfield Road, Waltham Abbey, Essex.
Telephone: Waltham Cross 31933

who wants a£2,000+p.a. opportunity in the dynamic new computer industry?

NOT as a PROGRAMMER but an

 OPERATOR - No maths and no special education.Now for the first time anybody can train outside the computer industry for a lucrative career as a computer operator, with actual experience on an Eduputer.
Who created Eduputer? The internationally famous company Programming Science International. They developed it to the specific requirements of the massive New York city training board and its practical results have been one amazing success story.
We are proud to have been selected as the only commercial training organisation permitted to use the Eduputer in the U.K.
Thanks to Eduputer, nine out of every ten can learn to operate the most advanced computers in only four weeks. Unlike Computer Programming, no special educational qualifications and no maths required. Just you and the incredible Eduputer!
Jobs galore! Thee moment you qualify, our exclusive computer appointments bureau introduces you to computer users everywhere with good jobs to offer (up to $£ 40$ a week full-time, $£ 50$ a week as a temporary). More than enough to go round, toobecause 144,000 new operators will be needed over the next five years alone.
This is your big opportunity to get out of a rut and into the world's fastest-growing industry. And remember-LCOT is the only commercial computer school to have Eduputer. It means a lot to employers.
Telephone: (01) 4379906 NOW!
Or post the coupon today for full details FREE and without obligation.

London Computer Operators Training Centre,

B30, Oxford House, 9/15 Oxford Street, London W. 1
Telephone: (01) 4379906.
127/131 The Piazza, Dept. B30, Piccadilly Plaza, Manchester 1. Telephone: (061) 2362935.
Please send me your free illustrated brochure on exclusive
Eduputer "hands on" training for computer operating.
Name
Address
Tel.:

RSI
VALVE MAIL ORDER CO. BLACKWOOD HALL WELLFIELD RD., S.W. 16

SPECIAL EXPRESS MAIL ORDER SERVICE

All orders post free!

1N21	3/6	ACl^{127}	5/-	BF173	6/-	GJ 4 M	7/6	OC43	81-
1N23	4/0	AC128	5/-	BF181	7/6	GJ5M	3/-	OC44	3/6
1N85	17/6.	AC187	6/-	BF184	5/-	GJ7M	7/6	OC44M	$3 / 6$
1N253	10/0	AC188	6/-	BF185	5/-	HG1005	101-	0 C 43	3/-
1N256	10/0	ACY17	6/-	BF194	$3 / 6$	K8100A	4/-	OC45M	3/6
1N643	5/0	ACY18	$5 /-$	BF195	$3 /-$	Matl00	5/-	0 C 46	8/6
1N725A	4/-	ACY19	$5 /-$	BF196	3/6	MAT101	6/-	0 Cs 7	12/-
1N914	1/6	ACY20	4/6	BF197	5/6	MAT120	5/-	0 C 58	12/-
1N4007	4/6	ACY21	4/6	BF861	$5 / 6$	Mat121	61-	00^{59}	13/-
18021	$4 /-$	ACY22	$3 / 6$	BF998	$5 / 6$	MJE520	17/6	00_{68}	101-
18113	3/-	ACY27	$51-$	BFX12	$5 / 6$	MJE2935	35/-	OC70	$2 / 6$
18130	2/6	ACY28	3/6	BFX13	4/6	MJE3055	18/6	0 C 71	$3 /-$
18131	$2 / 6$	ACY39	11/-	BFX29	6/-	NKT128	$61-$	OC72	5/-
18202	4/6	ACY 40	3/-	BFX 30	6/6	NKT129	6/-	0 C 73	$6 /-$
2 C 240	39/6	ACY41	5/-	BFX35	$19 / 6$	NKT211	5/-	OC74	6\%-
2 G 301	3/6	ACY 44	7/6	BFX63	10/-	NKT213	$51-$	$0 \mathrm{C75}$	5/-
2 G 302	4/6	AD140	10/-	BFX84	6/-	NKT214	3/-	0076	5/-
2 G 306	6/-	AD149	101-	BFX85	$8 /-$	NKT216	7/6	$0 \mathrm{C77}$	$8 /-$
20371	4/6	AD161	7/6	BFX86	6/6	NKT217	8)-	0078	4/-
2 G 381	$5 /-$	AD162	7/6	BFX87	8/6	NKT218	22/6	0C78D	2/6
2 G 414	6/-	AF108	6\%	BFX 88	$5 /-$	NKT219	8/6	OC79	4/6
2 Cl 17	4/6	AFI14	6/6	BFY10	20/-	NKT228	4/-	OC81	5/-
2N214	$8 / 6$	AFI15	6/-	BFY11	25/-	NKT224	4/6	0C81D	4/-
2N247	510	AF116	$6 / 6$	BFY17	5/-	NKT251	4/9	$0 \mathrm{C81M}$	4/-
2 N 250	10/-	AF117	$51-$	BFY 18	5/-	NKT271	5/-	OC81DM	3/6
2N 404	4/6	AF118	12/6	BFY19	5/-	NKT272	51-	OC812	11/-
2N697	3/6	AF119	4/-	BFY24	$9 /-$	NKT273	4/-	0082	5/-
2N698	8/6	AF124	5!-	BFY44	201-	NKT274	4/-	OC82D	3/-
2N706	$2 /-$	AF125	4/-	BFY¢0	4/6	NKT275	5/-	OC83	5)-
2N706A	$2 / 6$	AF126	$3 / 6$	BFY51	4/-	NKT277	4/-	$0 \mathrm{C84}$	$51-$
2N708	3/-	AF127	$3 / 6$	BFY 52	4/6	NKT278	5/-	OC114	7/6
2N709	$12 / 6$	AF139	8/-	BFY53	$3 / 6$	NKT301	61-	OC122	101-
2N711	7/6	AF178	$9 / 6$	BFY64	8/6	NKT304	71-	0 Cl 23	10/-
2N987	10/6	AF179	$9 / 6$	BFY90	13/6	NKT403	15/-	OC139	5j-
2N1090	6/-	AF180	10/6	BEX27	10/-	NKT404	12/6	OC140	$7 / 6$
2N1091	6/6		8/6	B8X60	18/6	NKT678	61-	0 Cl 41	12/6
2N1131	6/-	AF186	$8 /-$	B8X 78	3/-	NKT713	$51-$	OC169	4/-
2N1132	6/-	AFY19	22/6	B8Y26	$3 / 6$	NKT773	$51-$	0.6170	5/-
2N 1302	4/-	AFZ11	12/6	B8Y27	4/-	NKT777	$7 / 6$	0 O171	6/-
2N1303	4/6	AFZ12	15/-	B8Y51	10/-	O78B	$7 / 6$	OC200	7/6
2N 1304	$5 /-$	A8Y26	51-	B8Y95A	3/-	OAS	$3 /-$	OC201	9/6
2N 1305	8/-	ASY27	$6 / 6$	B8Y95	3/-	OA6	$2 / 6$	OC202	12/6
2N1306	5/-	A8Y28	5/-	BT102/		0 OA 47	$21-$	OC203	7/6
2N1307	$5 /-$	A8Y29	6/-	300R	15/-	OA70	$2 /-$	OC204	9/-
2N1308	6/-	A8Y38	5/-	BTY42	18/6	OA71	21-	OC205	12/6
$\text { 2N } 1309$	51-	A8Y50	3/6	BTY791		OA73	$2 /-$	OC208	15/-
$2 N 1420$	18/6	A8Y51	$8 /-$	$100 \mathrm{R}$	151-	OA74	$21-$	OC207	15/-
2N1507	5/6	ABY53	4/-	BTY79/		0 OA79	$2 /-$	OC460	4/-
2N1526	7/6	ASY 55	4/-	400 R	$351-$	OA81	$2 /-$	OC470	91-
2N1909	45/-	A8Y62	B/-	BY100	3/6	OA85	$2 / 6$	OCP71	19/6
2N2147	15/-	A8Y88	$6 / 6$	BY126	3/-	OA86	$3 /-$	ORP12	101-
2N2148	12/-	A8Z21	$8 / 6$	BY127	4/-	OA90	$2 /-$	ORP60	8/-
2 N 2160	12/6	A8Z23	15/-	BY182	15/-	OA91	1/6	ORP61	8/6
2N2218	6/-	AUY10	19/6	BY213	$51-$	OA95	1/6	819 T	-8/-
2N2219	6/6	AU 101	30/-	BYZ10	81-	OA200	1/6	8AC40	51-
2N2287	20/6	BC107	2/6	BYZ11	71-	OA202	$21-$	8FT308	$7 / 6$
2 N 2297	61-	BC108	2/6	BYZ12	$81-$	OA210	5/-	87722	7/6
2 N 2369 A	4/-	BC109	$2 / 6$	BYZ13	81-	OA211	7/6	8 T 7231	12/6
2N2613	$5 / 6$	BCl 13	$5 /-$	BYZ15	$201-$	OAZ200	11/-	8×68	4/-
2N2646	10/6	BC115	6/6	BYZ16	12/6	OAZ201	101-	8X631	4/-
2N2712	3/-	BC116	$81 /$	BYZ88C3	V3	OAZ202	$8 / 6$	8X 635	61-
2N2784	107-	BC118A	$8 /-$		3/6	OAZ203	$8 / 6$	8X640	51-
2N2846	451-	BC118	$7 / 6$	C111	13/-	OAZ204	$8 / 6$	8X641	$5 /-$
2N2848	$8 / 6$	BC121	4/-	CR81/05	$51-$	OAZ205	$8 / 6$	8×642	716
2N2904	${ }^{6 /-}$	${ }^{\text {BC122 }}$	$4 /-$	CRS1/40	$9 / 6$	OAZ206	$8 / 6$	BX644	9/6
2N2904A	8/6	BC125	13/6	C84B	${ }^{501}$	OAZ207	816	BX645	10/-
2N2906	$6 /-$	BC126	13/-	C810B	$62 ; 6$	OAZ208	616	V15/30P	10/-
2N2907	$7 / 6$	BC140	11/-	DD000	3/-	OA7209	$6 / 6$	V30/201P	7/8
2N2924	$4 / 6$	BC147	$3 / 6$	DD003	$3 /-$	OAZ210	$6 / 6$	V60/201.	$7 / 6$
2N2925	$3 / 6$	BC148	2/6	DD006	3/6	oaz211	6/6	V60/201P	7/6
2N2926	2/6	BC149	$4 /-$	DD007	81-	OAZ222	$81 /$	X $\times 101$	$21 /$
2N3054	10/-	BC157	4/-	DD008	$7 / 6$	OAZ223	81	XA102	3/6
2N3055	$151-$	BC158	4/-	GD3	$6 / 6$	OAZ224	7/6	XA151	$31-$
2N3702	2/6	BC160	12/6	GD4	1/6	OAZ241	4/6	XA152	$3!-$
2N3705	$3 /-$	BCl69	$2 / 6$	GD5	$6 / 6$ $5 /-$	OAZ242	4/6	XA161	$5!-$
2N3706	3/6	BCY 31 BCY 22	81-1-	GD8 ${ }_{\text {GD12 }}$	5/-	OAZ244	4/6	XA162	51-
2N3709	$2 / 6$	BCY32	10/-	GET102	6/-	OAZ246	$4 / 6$ $7 / 6$	XB10]	876
2N3710	$2 / 6$	BCY33	4/-	GET103	$6 /-$ $4 / 6$	OAZ290	$7 / 6$ $8 / 6$	XB102	$2 \%-$ 5%
2N3711	$2 / 6$	BCY38	6/-	GET113	$4 / \mathrm{4}$	OC16 $0 \mathrm{OC16T}$	$8 / 6$ $7 / 6$	XB103 $\times \mathrm{B} 113$	5/-
2N3819	7/-	BCY39	$9 / 6$	GET114	$3 /-$	${ }^{\text {OC19 }}$	7/6	$\times{ }^{\times 1} \times 121$	$2 \%-$ $8 / 6$
2N3820	$17 / 6$ $15 /-$	BCY40	$8 / 6$	GET115	9/-	0 C 20	19/6	ZR24	$12{ }^{16}$
2N5027	$10 / 6$	BCY 42	3/-	GET116	101-	$\mathrm{OC}^{\mathrm{C} 22}$	9/6	ZS170	2\%-
2N5088	6/6	BYC70	4/-	GET120	5/*	0 C 23	101-	Z8271	316
28005	$15 /-$	BCY71	$6 /-$	GET872	6/-	$0 \mathrm{OC24}$	10\%	ZT21	$5{ }_{5}$
28301	$8 / 6$	BCZ10	6/-	GET875	${ }^{5 /-}$	0 C 25	7/6	ZT43	5
28304	12/6	BCZ11	7/6	GET880	7/8	0 C 26	51.	ZTX107	3 O
28501	7/6	BD121	13/-	GET881	$51-$	0 C 28	12/6	ZTX108	3 F
28703	12/6	BD123	16/6	GET882	$5 /-$	OC29	12/6	ZTX300	$2 / 6$
AA129	4/-	BD124	$12 / 6$	GET885	4/-	0 O 30	81-	ZTX304	3/6
AAZ12	6/-	BDY11	32/6	GEX44	1/6	0C35	101-	2TX500	3/-
AAZ13	$2 / 6$	BF115	5/-	GEX45/1	1/6	0 O 36	12/6	ZTX 503	4/m
AC107	7/6	BF117	10/-	GEX941	3/-	0c41	5/-	ZTX331	6/-
AC126	$\overline{5} /$	BF167	51-	GJ3M	5/-	OC42	6/-		

SEMI-CONDUCTOR SET FOR P. E. GEMINI AMPLIFIER $£ 12-19-0$

SEND S.A.E. FOR LIST OF 3,000 TYPES VALVES, TUBES AND TRANSISTORS
 Open daily to callers: Mon-Sat 9 a.m.-5.30 p.m. Closed Sat. I. 30 p.m. -2.30 p.m.
 Terms C.W.O. only | Tel. 01-769 0199/1649

Fig. 12a. Circuit diagram of the $5 V$ regulator circuit including foldback current limiting

Fig. 12b. Skeleton circuit of a 5V regulator with constant current and foldback current limiting

is easily provided by adding a current limiting circuit, of which there are numerous designs available, the simplest being the one transistor "constant current" arrangement.

A skeleton circuit of the regulator with this kind of limiting is shown in Fig. 12b, along with its limiting characteristic. The operation is quite straightforward; a current sense resistor in series with the 5 V supply is used to develop a voltage proportional to the current drawn.

When this voltage approaches the $V_{b e}$ of the current limit transistor, it turns it on, diverting some of the base drive to the series pass transistor, and causing the output voltage to fall to maintain the preset current. If the load on the supply is reduced to zero ohms (i.e. a short circuit) the output voltage falls almost to zero allowing only a current preset by the sense resistor value to flow.

The short-circuit current must be set to greater than the permissible load current. For this particular regulator this would be up to 1 A , giving a very high dissipation in the power transistor under short circuit conditions, because most of the unregulated voltage appears across this device.

handling the heavy load

This problem could be overcome by using a heat sink large enough to handle the extra dissipation under fault conditions, but there is a much simpler method that is used in this regulator and requires only the addition of two resistors.
In Fig. 12b these extra resistors have been added, and are used as a potential divider to "buck-out" the voltage developed across the sense resistor, preventing it from turning on the transistor at the previous current level.
With the resistor values used in this regulator, the limit transistor will not be able to turn on until the

COMPONENTS . . .

ALARM \& 5V REGULATOR BOARD

(a) Alarm Oscillator
(b) 5V Regulator

Diode

> D3 152120,
> 12 V 400 mW Zener

Transistors

> TRI 2 N706
> TRS MJE521 (with mica washer)

Integrated Circuits

IC15	SN7483N	(BP83)		
IC16	SN7483N	(BP83)		
IC17	SN7430N	(BP30)		
IC18	SN7400N	(BP00)		
IC19	CA3046	(R.C.A.)	IC20 CA3046	(R.C.A.)

Further notes on purchasing i.c.s given in the article "Making the Most of Logic ICs" last month

Miscellaneous

S2 2-bank printed thumbwheel switch 10-way (see text) (Birch-Stolec or Radiospares)
S3 Miniature toggle switch, single-pole, changeover
LSI 40Ω or higher miniature
"Dualine" type DL109/22 printed circuit card (Shirehall Electronics Ltd., Station Yard, Borough Green, Sevenoaks, Kent)

current drawn approaches 1 A , instead of the 250 mA level set with constant current limiting and the same sense resistor.

When the transistor does turn on, however, the output voltage will drop, removing the effect of the "bucking" voltage and reducing the output current. When the output load becomes a short on the output, the final voltage will have dropped almost to zero, and the output current fallen to less than half the value at which limiting began.

This effect is termed "fold-back" limiting, for obvious reasons, and cuts the dissipation in the power transistor, under short circuit conditions, to about a third of that obtained with "constant current" limiting, operating at the same maximum current-a very worthwhile return for a couple of resistors.

In the prototype the limiter began to operate at about 1 A , and with a shorted output the current dropped to 400 mA , although resistor tolerances will affect these figures with later versions. The current limiting transistor TRC, is contained within the CA3046, which gives the added advantage that the operating and shortcircuit current will decrease as the chip warms up, due to the negative temperature coefficient of the device's $V_{b e}$, giving a degree of thermal feedback.

OUTPUT VOLTAGE CONTROL

The output voltage of the regulator is not affected by the limiting circuitry under normal conditions, because the feedback to the error sensing amplifier is taken from after the current sense resistor R22, the voltage drop across this resistor being automatically allowed for by the amplifier.

The capacitor C 12 , which should either be a $22 \mu \mathrm{~F}$ tantalum type or an aluminium electrolytic in parallel with a $0 \cdot 1 \mu \mathrm{~F}$ paper capacitor, reduces transient spikes on the output and also ensures that the regulator remains stable at all times.

Using a miniature helical preset potentiometer for VR1 allows accurate setting of the output voltage. This type of component also features excellent temperature and long term stability. There is, however, no overriding reason why a single turn rotary control should not be substituted as an economy if a sacrifice of these qualities can be tolerated.

The construction of the regulator should precede that of the alarm circuitry; details of these will be given next month before describing the main power supply.

BSR 4-SPEED SUPERSLIM AUTO RECORD CHANGER Plage 12°, 10° or 7° records Anto or Manual. A high
emality unit backed by BSR amality unit backed by BSR
relisbility with 12 month:' garantee. Size 131 . motor bosrd $82 i n$. below 2tin. AC $200 / 250 \mathrm{v}$. with BTEREO/MONO XTAL

£ 7 | Post |
| :---: |
| $5 /-$ |

Auto Changer. Ealibrated Stylus Presiure.
B8R Minichanger UA50 Stereo/Mono.
Playt 12, 10 or 7 records.
Sixe $12: 88 \mathrm{in}$. AC $200 / 250 \mathrm{v}$. Post 5
GARRARD PLAYERS with Sonotone 9TA Cartridges. gk II 815 AT60 Mk II Stereo \&15. Model 3000 Stereo \&13. Post 5 RECORD PLAYER PORTABLE CABINET

PORTABLE AMPLIFIER

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial .. 13/- Spare Cores
Oic. P50/1AC 1 P50/2CC 470 kc 's B/7 $/ 7$ Driver Trans. LFDT4
Prd I.F. P50/3CC .
P51/1 or P51'2
P50/8V
Mallard Ferrite Rod 8

| VOLUMECONTROLS | 80 omm Coax 9 d. gd. |
| :--- | :--- | Long spindles. Midget size BRITISH AERIALITE LIM. L / S to D LOG or AERAXML-AIR SPACED

 WIRE-WOUND 3-WATT POTS. WIRE-WOUND 3-WATT Small type with small knob. STANDARD SIZE POTS

VEROBOARD 0-15 MATRIX
5in. 3/9. $25:: 3 / 2 \mathrm{in} .3 / 2.33^{2}: 3 / \mathrm{in} .3 / 9$.
EDGE CONTICTOR $3 i:: 3$ lin. 3/9. 3i. Sin. 52
PINS 36 per packet $3 / 5$, FACE CUTTERS $7 / 7$.
S.R.B.P. Board 0.15 MATRIX 21in. wide 7d. per lin. lin. Wide gd, per lin.; sin. wide $1 /$-per lin. (up to 1 'in.) BLANK ALUMINIUM CHASSIS. 18 ल.w.E. 2!in. sides,
 $15 \cdot 14$ in., 15/; $9 \cdots 7$.. 2in., $8 / 6 ; 14 \cdot: 11:: 2 \mathrm{in}, 14 / 6$
 linch DIAMETER WAVE-CHANGE SWITCHES. 2 p. $2-$ way, or 2 p. B-way, or 3 p. 4 -way sj- each. 1 p. 12-way, or
4 p. 2 -wiy, or 4 p. 3-way $5,-$ each. 1 inch DIAMETER
 way, 4 p .3 -way, 6 p . 2 -way. 1 wafer 12/-, 2 waler 18 -. 3 wafer $24 /-, \frac{4}{2}$ wafer $30 /-, 5$ wafer $36 ;-, 6$ wafer $42_{i}^{\prime}-$.
TOGGLE SWITCHES, sp. 2/9; 3p. dt. $3 / 7 ; \mathrm{dp} .3 / 7$; dp. dt. $4 / 7$

ALL PURPOSE HEADPHONES

 H.R. HEADPHONES 8000 ohms Super Sensitive. LOW RESIETANCE HEADPHONES $3-5$ ohmsDE LUKE STEREO
BULK TAPE
ERABERAND
ERABER AND
RECORDING
RECOR
HEAD
DEMAGNETISER

Minimum Post and Packing 2
 Minimum Post and Packing 2:- RETURN OF POST DESPATCH.

A GRERAL PURPOSE TRANSISTOR for Mike, Taje, P.U., Guitar
Batiery 9-12v. or H.T. line 200-3007. D.C. operation. Size $11^{*}: 1 t^{\prime \prime}: 3^{3 *}$. Response 25 c.p.a. to $25 \mathrm{Kc} / \mathrm{s}, 26 \mathrm{db}$ gain. For use with valve or trangiator equipment. Full instructions aupplied. Brand new. $\quad 18 /=\frac{\text { lost }}{\text { free }}$ Guaranteed. Details S.A.E.
NEW TUBULAR ELECTROLYTICS
$2 / 350 \mathrm{~V}$
$4 / 350 \mathrm{~V}$
$4 / 350 \mathrm{~V}$
$8 / 450 \mathrm{~V}$
$8 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V}$
 SUB-MIN. ELECTROLYTICS. $32+32 /-100+50+50 / 350 \mathrm{~V} .9 / 7$ 200 mF 15 V 2/F; $500,1000 \mathrm{mF}$. $12 \mathrm{~V}, 5,8,16,25,30,50,100$, CERAMIC. 1 pF to $0.01 \mathrm{mF}, 9 \mathrm{~d}$, Silver Mica 2 to 5000 pF , 9 d . PAPER $350 \mathrm{~V}-01 \mathrm{gd}, 052 / 6 ; 1 \mathrm{mF} 3 /-; 2 \mathrm{mF} 150 \mathrm{~V} 3$:$500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.11 /-0.251 / 6 ; 0.4751$ $1.000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 8 ; 0.047,0.1,2 / 9$. SILVER MICA. Close tolerance $10,2 \cdot 2-500 \mathrm{pF}$ 1/7; 580-
 drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 11 / \cdot 500 \mathrm{pF}$ slow motion, standard $9 /-$; small $3-$ gang $500 \mathrm{pF} 22^{\prime}$ SHORT WAVE SINGLE. 25pF, $50 \mathrm{pF}, 11$;
CHROME TELESCOPIC AERIALS 23in, Swivel bese 4 TUNING. Solid dielectric. 100 pF . $500 \mathrm{pF}, 7 /$ eash. TRIMMERS. Comprestion 30, $50,70 \mathrm{pF}$, $100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 7 ; 250 \mathrm{pF}, 1 / 7 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 2 ;-1000 \mathrm{pF}, 2$, RECTIFIERS CONTACT COOLED half wave $60 \mathrm{~mA} 7 / 7$ $85 \mathrm{~mA} 9 / 7$. SILICOH BYZ13 8/-; BY100 10,
Full wave Bridge Rectifera $75 \mathrm{~mA} 10 /-150 \mathrm{~mA} 19, \%$ EX-KOT. RECTIFICR 20%. 20 mA -
NEON PANEL NDICAIORS 250. ACIDC Red or Amber 4 RESISTORS. Preferred values, 10 ohms to 10 me: ! Wa, ! w., 1 W., $200^{\circ} 3 \mathrm{~d} . \mathrm{i} 2$ w. $1 /$
Ditto 50 . Preferred values 10 ohms to $22 \mathrm{meg} 9 \mathrm{ol}^{\circ}$ WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohms to 100 K . 2/-each; 2! watt. 1 ohm to $8 \cdot 2$ ohms. $2 /-$
Q MAX CHASSIS CUTTER
Complete: a die, a punch an Allen screw and key
 tin. 16/9 1 itin. $10 / 7$ 1in. $21 / 7$ 2in. 39/8 lin. 8 q . 38/7
AM - FM/VHF TUNING GANG

Super quality small siza $1!1!, 1!\mathrm{in}$.

 plu: spindle 1: lin. $365+365 \mathrm{pF}$ with $25+25 \mathrm{pF}$. British made. Geared slow motion drive B:1. Plastic dust cover. 6BA tapped front fixing.
MAINS TRANSFORMERS

Post
$5:-$ eac
$250-0-25050 \mathrm{~mA} .6 .3$ v. 2 mmps 250-0-250 80 mA .6 .3 v .4 mmp .
$250-0-25080 \mathrm{~mA} .6 .3$ v. $3.5 \mathrm{a}, 6.3 \mathrm{v} .1$ a, or 5 v. 2 a. $38 / \mathrm{l}$ $350-0-35080 \mathrm{mA}$.6.3 v. 3.5 a. 6.3 v. 1 a, or 5 v. 2 a. $38 /$
$300-0-300$ v. $120 \mathrm{mA},$.6.3 v. 4 a. C.T.; 6.3 v. 2 a. $50 /-$
 MIDGET 220 ₹. 45 mA ., 6.
HEATER TRANS. 6.3 v. 1 , a...................
Ditfo tapped sec. 1.4 F. $2,3,4,5,6.3$ v, 11 amp
GENERAL PURPOSE LOW VOLTAGE Outpu
GENERAL PURPOSE LOW VOLTAGE. Outputs 3, 4,5 1 amp., $6,8,10,12,16,18,20,24,30,36,40,48,60.38 / \mathrm{c}$ amp., $6,8,10,12,16,18,20,24,30,36,40,48,60$. $38 / 2$
AOTO TRANSFORMERS
$0-115-230$
v. Input/Ontput 60w. 24j-; 150w. 38/-; 500w. 45: 1000w. £12. CHARGER TRANSFORMERS. Input 200'250v.

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS

With flared tweeter cone and ceramic magnet. 10 Watts. Flax 10,000 gauss. 45/$\$$ tate 3 or 8 or 15 ohm . Post $3 /-$ each Also with twin tweeters. $\quad \mathbf{~ W 4}$ State 3 or 8 or is ohm. Poat 3i- each Recommended Teak Cabinet, \quad S5
Size $16 .: 10^{\circ}$ gin. Post 5:-

MINI-MODULE

 LOUDSPEAKER KIT
10 WATt 65/- carriages.

Triple zpeaker system combining on ready cut bafle. in. chiphoard 15 in. $8{ }^{7}$ in. Separate Bass, Middle and Treble loudspeakers and crosiover condenser. The heavy duty 5 in . Bass Wooter unit has a low resonance cone. The Mid-Range unit is specially deagned to add op end of the musical zpectrum. Total response $20-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm . TEAK VENEERED BOOKSHELF ENCLOSURE. $16:: 10$. 0 in . Modern Scandinavian \quad (5) Post 5 :
flated front deriga for Mini-Module. + RADIO BOOKS - LISTS S.A.E.

ALL MODELS "BAKER SPEAKERS" IX STOEK
BAKER 12in MAJOR £9

$30-14,500$ c.p.s., 12 in tweeter cone togeth with a BAKER ceramic magnet atsembly having a flux denaity of 14,00 gauns and a total flux of 145,000 Maxwelli. Basi
resonance 40 c.p.s. Rated resonance 40 c.p. th Rite 15 ohm . Post Free.

Module kit, 30-17,000 c.p.s. with tweeter, cromover, baffe and
jnatructions. $\leq|| | 10.0$ BAKER "GROUP SOUND" SPEAKERS - 8 or 15 ohm. 'Group 25' 'Group 35' 'Group 50'

TEAE HI-FI SPEAKER CABINETS. Fluted wood Iront. For 10 or 12 in round Loudspesker 89 Poat $5 /=$ For 10 Gin or 6 !in round Loudspeaker 24 Post $5 /-$ For 10 6in or 6 in round Loudspeaker $\ldots .$. \& 4 Pot $8 /-$ -
LOUDSPEAKER CABINET WADDING 18 in wide, $3 /-$ It

TWO.WAY CROSSOYER NETWORK $3,000 \mathrm{c} / \mathrm{s}$ With variable twetter attenuator giving accurate high/low frequency balance. Mounted on panel 5 in. : 4 in . With control knob, tweeter and woofer leade and input $38 /-$
terminala. Suitable for 3 to 8 ohmimpedance. Post $2 /-.3$

Horn Tweetera $2-16 \mathrm{kc} / \mathrm{s}, 10 \mathrm{~W} 8 \mathrm{ohm}$ or $15 \mathrm{ohm} 80 /-$ De Luxe Horn Tweeters 2-18 Kc/a, 15 W .8 ohm $60 /-$ TWO-wAY 3000 De CROOSOYERS 3 or 8 or $150 \mathrm{hm} 10 /$ SPECIAL OFFER! 80 ohm . \&1ings 27 in or 8 or 15 ohm $18 /-$
 ohm $6 \times 4 \mathrm{in} .3 \mathrm{ohm}, 2 \operatorname{in}, 8 \mathrm{in}, 5 \mathrm{n}, 53 \mathrm{in} 7 \mathrm{in}$ TYPE LOUDSPEAKERS P.M. 3 OHRI8. 6!in 22!-; 8 5in, 25;8 2!in 18/-: 8 in $35 /-; 10 \times 6 \operatorname{in} 38 /$
5 in . W00RER. 8 watte max. $20-10,000 \mathrm{cps} .8$ or 15 ohm . $38 /-$ ELAC 8 in. De Luxe ceramic 3 ohm or 15 ohm $50 /-$ RICHARD ALLAN TWIN CONE LOUDSPEAKERS gin or 10 in or $12 \mathrm{in}, 3$ or $15 \mathrm{ohm} 38 /$ -
OUTPUT TRANS. EL84 etc. 5/-. MIKE TRANE, $50: 15 /-$ GOODMANS OUTPUT TRATERIALSE. Samples Large S.A.E valves ELB4, etc., 8,8 and 15 ohms $17 / \mathrm{m}$. Post push pull for
VHF-FM TUNER FRONT END 88-108 Mc/s
 Iransistor FM toner changer printed circuit. Slow motion tuning gan condentor. Ready wired and terited including two Ar125. A totol of 29 components. Size 2 , $\times 2$ isin. Requires I.F. and Detector atages 10.7 M/cs. supplied but we have no $45 /-\begin{array}{ll}\text { Post } & \begin{array}{l}\text { Iurther } \\ \text { Free }\end{array} \\ \text { available. }\end{array}$
ALL EAGLE PRODUCTS SUPPLIED AT LOWRST PRICES. ILLUSTRATED EAGLE CATALOGUE $5 /$. Post free
 Trandistor Superhet. Ferrite aerial. 9 volt.
BARGAIN 4 CEANHEL TRAMSISTOR MIXER.
Add mnsical highlights and sound effects to recordings. With separate controls into single output. 9 volt
BARGAIN FM TUNER 88-108 Mc/a Six Transistor. 9 polt Printed Circuit. Calibrated slide dial tuning. \& 10 Walnut Cabinet. Size $7 \quad \because 5$ fin.
BARGAIN FM TURER as above.
Chasais only, leta cabinet.
FM STEREO MULTIPLEX ADAPTOR for above or $\subset 5$
general use. Ready made with 4 transisiors, 6 diodes
BARGAIN 3 WATT AMPLIFIER. 4 Transistor ≤ 3.10 COAXIAL PLUG 1/3. PANEL SOCKETS 1/3. LINE 8/7. OUTLET BOXES. SURFACE OR FLUSH 5/-
BALAKEDD W JACK SOCKET Std. open-circuit 2/9, closed circuit $4 / 7$ JACK PLUGS Std. Chrome $3 /-: 3$-5mm Chrome 2/9. Din SOCKETS Chassis 3-piam 1/7; 5-pin 2/-. DIN SOCKET8 Lead 3-pin 3/7; 5 -pin $5 /$-. DIN PLUGS 3 -pin 3/7; 5 -pin $5 /-$. VALVE HOLDERS, 1/-.; CERAMIC 1/7; CANS $1 /-$

RADIO COMPONENT SPECIALISTS
E.M.I. TAPE MOTORS. 120\%. or
 BALFOUR GRAM. MOTORS. 120 v. or 240 y . AC. 1,200 r.p.m. 4 pole 50mA. Spindle
$2!\therefore 2 t \therefore 1!\mathrm{in}$.

Pont 3/=. $\quad 17 /=$

customers free car park.
337 WHITEHORSE ROAD, CROYDON

List I/.. Written guarantee with every purchase. (Export: Remit cash and extra postage.) Buses 133, 68 pass door. S.R. Stn. Selhurst. Tel. 01-684-1086

ELECTROVALUE

EVERYTHING BRAND NEW \& TO SPEC. LARGE STOCKS OO SURPLUS
BARGAINS IN NEW
SEMICONDUCTORS

Many items at new reduced prices. All power

RESISTORS

PEAK SOUND PRODUCTS

 ENGLEFIELD AMPLIFIER

8tereo anpiffer in modular kit form (including cablaet) 12 wat te pe
prices nett.

BAXANDALL

 SPEAKER SYSTEMDesigned by Peter Baxandall. Superd with ease. Uses ELAC 15Ω 50RM109 speaker unit. Kit 213,12.0 nett.; built 819.8.6 nett

MAINLINE AMPLIFIER KITS

RCAISGS deaigued main anıplifer kita. Inmut sensitivity $500-700 \mathrm{mV}$ for full output into 8Ω.

30 WATT BAILEY KMPLIFIER KIT

Sensitivity 1 V for full out put into 8Ω. Transistors and PCB for one channel 87.5.6. Translstors and FCBs for two channels 814.11 .0 . Capacitors and reaistor
oxide) $40 /-$ per chanael.

ZENER DIODES

5% full range E24 values: 400 mW : 2.7 V to $30 \mathrm{~V} 8 / 9$ ea

CARBON TRACK POTENTIOMETERS, long spindles.
 Single gang linea
8ingle gang log Bingle gang log

Dual gang linear | Dual gang log | $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$ |
| :--- | :--- |
| | $4 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$ | Loglantilog

Dual antilog $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$ 10K. $47 \mathrm{~K}, 1 \mathrm{Mn}$ only Any type with A D.1. 10 K only Plenge note: onl decan. maing switch, extra $2 / 3$. withill ranges quoted.

CARBON SKELETON PRE-SETS

Enall high quality, type PR, linear only $100 \Omega, 220 \Omega$ 470 a, $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 2 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$ $1 \mathrm{M}, \dot{\mathrm{om}} \mathrm{L}, 5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mountige 1/-each

COMPONENT DISCOUNTS

10% on orders for components for $£ 5$ or more. 15% on orders for componenta for $\$ 15$ or more (No discount on

POSTAGE AND PACKING

Frec on orders over A\&. I'leage add $1 / 6$ if uuder. Over seas orders welcome: carriage charged at cost

HAVE YOU HAD YOUR

 ELECTROVALUE CATALOGUE?48 pages-thousands of itemspacked with information, generously illustrated with product pictures and technical diagrams-2/- post free. Add $4 /$ - if sent overseas by air mail,

Gerry Brown

BATH GOSSIP

"Daddy", chorused my two girls the other day, "Mummy says you're trying to talk through your bathwater. Is that true?" Well how can you best answer this sort of question when you have the bath half-full of tepid water and a whole maze of electronics and tangled wires connected to electrodes dipping over the side!
"You look as if you're going to 'lectracoot yourself", they continued, quite unconcerned about the unanswered question, "Can we help?" Since I had no immediate desire to meet an early demise, I thought it prudent to explain just what was going on.

Actually, I had for a long while been toying with the possibility of using one of Marconi's earlier ideas for transmitting through water. His technique, which he later abandoned, was to utilise a pair of conductors on one side of a river connected to a carbon microphone and battery, and another couple of electrodes on the opposite bank hooked up to a pair of headphones. This arrangement essentially amounts to a bridge circuit, which, provided the impedances between the various electrodes are maintained as in Fig. 1, some fair results can be obtained, but only fair. Put a little two stage amplifier in at the transmitter and another in at the receiver
and you have something that will "go-out" quite a way. Try it and see.

Two hours and four ounces of liquorice comfits later, and my bathtub project, still not off-the-ground, saw me leaving this silent epitaph of despair for the more successful reaches of the Basingstoke Canal.

WALKING MACHINES

Who, you might well ask, wants a machine that walks! Particularly since there are already such perfectly satisfactory devices as the wheel, and even caterpillar tracks for more difficult terrain. Well, it seems that at least two groups of people are extremely interested in having a viable mechanised walker at the earliest opportunity. One, the Army Tank Automotive Command in Michigan, have already got an experimental "clomper" to play with, and I understand that such a machine is likely to be brought into use where wheels or tracks leave off. This pretty sizeable piece of "ironmongery" is apparently capable of climbing over objects in its path and walking through swamps.

The Army machine weighs 1,400 odd kilogrammes and each of the powerful legs is operated by an hydraulic "muscle" driven by highpressure oil. Incorporated within the legs are tactile sensors which permit a degree of force-feedback control, so enabling any forces encountered by the machine to be sensed and dealt with accordingly!

Likely to have a more valid interest in walking devices are the gentlemen of the medical profession, who for years have sought the perfect walking prosthesis with precious little success. However, there seems no reason why hope should be completely abandoned because Prof. A. A. Frank of the University of Wisconsin (who has already completed a very successful four-legged creation) is currently engaged in work on a machine having two legs. This set-up, he forecasts, is anticipated to take the place of the conventional wheelchair and, in time, would give

amputees more freedom than they currently enjoy.
Coordination of the legs in Frank's device is envisaged to be under the direction of a miniaturised digital computer. This, basically, will consist of a random access core memory which can be addressed by associated read/write registers. Initially, the handicapped person would need to make the rather tedious walking movements via the artificial legs himself, but once a satisfactory gait had been established the data could be written into the memory for subsequent use. From then on, whenever walking was required, the memory would be read in a continuous fashion, rather like a tape-recorder using a loop of tape, so producing cyclic leg action; left, right, left, right, and so on until they were required to stop or maybe perform some other function.

A working prosthesis is expected to be in existence round about 1972; it would be nice to think that such worthwhile devices will be capable of being mass-produced fairly soon. Without a doubt the demand will be high.

CHATTY COMPUTER

For 'umpteen years now, workers in the field of speech research have hankered for a computer that could produce good synthetic speech without the prior need for human trànslation of input data into "machine-language" before it could "understand". They need hanker no more, for scientists at the Bell Laboratories in New Jersey have recently taught a computer to convert printed English directly into synthetic speech.

During the experiments the computer was programmed with a basic vocabulary of words, together with their categories and definitions plus such related data as the pitch, stress, and timing as used in average normal conversation. In order to achieve the most natural sound, the computer was additionally given mathematical approximations to the changes in shape which occur in the human vocal tract when making speech sounds.

In use, information for conversion to synthetic speech is fed to the computer via a conventional teletype machine. Since the programme incorporates stress data, one must trust that its digestion is not upset 100 greatly by such word-group similarities as "a noisy noise", and "a noise annoys", or, dare I say it, "a noisy noise annoys". "Burp!"

Rerdout
 A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

"P.E. Gemini"

Sir-I unfortunately do not know whether Mr D. S. Gibbs or Mr I. M. Shaw was responsible for writing the introductory article for "P.E. Gemini" Stereo Amplifier, but this preamble was one of the most interesting articles which I have read for quite some time. It could easily serve as a general guide to basic amplifier design and pointing out some of the pitfalls of design and, of course, teaching one how to gain more useful information from the various technical data leaflets published by the manufacturers of stereo equipment.

I particularly liked the point about distortion at low levels. I had, up till now, thought only that distortion at the high power levels to be of importance, and how it could be "swept-under-the-carpet" by plotting the graph with a linear scale instead of a logarithmic one.

Of course, my impression of this preamble is purely subjective, not being connected in any way professionally with electronics, only in an amateur capacity, but still nevertheless, possessing a fairly good knowledge of basic valve and transistor theory through spare time reading of your own journal and various other publications. I only hope that next month's article can achieve the same level of interest; and I suspect that with the same author it will probably surpass it. As always, looking forward to next month's issue.
D. J. Whitaker,

Bromley,
Kent.

Abstract

"GEMINI" When the name P.E. Gemini was adopted for the Practical Electronics Stereo Amplifier, we overlooked the fact that Gemini was already associated with products of the Tripletone Manufacturing Co. This company has in fact used the name Gemini for a range of low cost amplifiers since 1959. The current version Tripletone Gemini Mk II is an all solid state design, previous models being valve designs. The output is 5 W per channel and the retail price is $£ 23$ 10s.

We hope there has been no confusion. In fact the P.E. Gemini and the Tripletone Gemini Mk II are quite dissimilar, both in specification and physical appearance.-Ed.

Beginning

Sir-I was interested to read Mr Bennett's letter (November 1970) and I appreciate the difficulty he and other beginners experience trying to find suitable books to guide them. Perhaps my own experience will be of interest to anyone finding it difficult to get started.

My interest in electronics began about 11 years ago at the age of 13. At that time transistors were relatively expensive, but' I found that old televisions and radios could be acquired for next to nothing, so naturally I began by building valve circuits. 1 visited my local public library, renounced the children's section forever, and looked instead at the mysterious books on electronics. Nearly all of these books explained how the various electronic components functioned but hardly any of them gave practical advice on making a circuit work.

It was around this time that I discovered that magazines were available describing practical circuits and they proved to be very useful. There was nearly always some simple project that I could build and the more complex designs could be left until later. I quickly found that the practical experience helped to make the theory more meaningful.

After a year or two I was building circuits to my own designs and some of the circuits behaved in the most extraordinary way. There were audio amplifiers which oscillated and audio oscillators which didn't. This was very frustrating at the time, but clearing the faults was a challenge and further knowledge was gained in this way. Progressing from one mistake to another may not sound exciting, but its amazing how much you learn. Touching the tags of a capacitor charged to 300 volts d.c. is a mistake that you learn not to repeat too often!

Transistors and small components bring electronics within the reach of anyone having a table and a few hours to spare. A 9 volt battery makes an excellent (and inexpensive) power supply and a surprising number of projects can be built around just two transistors.

My advice to anyone thinking of taking up electronics is quite simple-
have a go! Read as many books and magazines as possible and spend as much time as you can trying out the circuits that are published.
A. M. Rudkin B.Sc.(Eng.),

St. Albans,
Herts.

Second string boosi

Sir-Your reader Mr A. D. Jones (Readout, November 1970) refers to my article on guitar pick-up construction (September 1970) and points out that an important point was omitted. He is, of course, quite correct in his comment that the magnets should be mounted with like poles at the same end and I regret that this point was not included in the article.

The phenomenon known as "second string boost" amongst guitar players, has for a long time been believed to be due to the particular character of the material, tension, etc. of the second string and it is supposed that this string vibrates with a slightly wider arc than the rest of the set, so producing a stronger signal than its neighbours.
Mounting magnets with opposite poles adjacent will cause interaction between strings and certainly aggravate any tendency the second string may have to vibrate over a wider arc. Fortunately, modern technology has done much to eliminate this irritating feature and good makes of guitar strings do not usually produce this bugbear.
I have made quite a number of pick-ups in the manner described in the article, assuring that all magnets are the same way up, and all have produced an even response on all strings.
L. F. Dickson,

Salisbury,
Wilts.

MEETINGS

INSTITUTION OF ELECTRICAL ENGINEERS

LONDON
January 11, 5.30 p.m.
Amorphous Semiconductors, R W. Brander, at Savoy Place. London, WC2R 0BL.

INSTITUTION OF
 ELECTRONIC AND RADIO ENGINEERS

LONDON
January 13, 6.0 p.m.
Integrated Circuits for Colour Television, J. C. MacKellar, at 9 Bedford Square, London, WCIB 3RG.

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

MEW IMPROVED MODEL WITH HIGHER OUTPUT AND INCORPORATING HIGH QUALITY READY DRILLED PRINTED
STRECTION
A really frat-class hi-Fi stereo Allplifer Kit. Y se 14 transistors inclading Silicon Transistors in the first tive stages on each channel result ing in even inwer noise level with inyproved sensitivity. Integrated preamp
with Bass, Treble and tro Volunie Controls. Suitable for with Bass, treble and two Yolume Controls. Suitable for use with Ceramic or Crystal cartridges. Output stage dil parts supplied including drithed metal work, high quality ready drilled printed elrcuit looard, attractive front panel, knobs, wire, solder, nuts, bolts- no extras to buy. Simple step ly step instructions emable any constructor to buifí an amplitier to be proul of. Briei specifcation; Power output 14 W r.un.s. per channel inth $\overline{5}$ ohms. Y'requency response $\pm 3,1 \mathrm{BB} \quad 1 \overline{5}-30,000 \mathrm{~Hz}$ Renaitivity better than 80 IV into $1 \mathrm{M} \Omega$. F'ull power baud $w^{\text {id }}$ dth \pm 3il $20-14,000 \mathrm{~Hz}$. Bass loost approx. $\omega \pm 10 \mathrm{~dB}$. Treble cut apprex. to - 16 dlB . Negative feedlatek 18 dB

 free with kit ur kenil $3 / 4$ plus large x, \mathbf{k}. paices
AMPLIFIER KIT, 210.10 .0
CABINET, K KT. E3. 0.0
(Post Free if :ll wnits purthased at mane time). Fullafter males servile. Alsos arailable ready linilt atml tegterl,
 Note: The abotc anplifer is stidalic for fecring teoo
mono soturecs into inputs (f.g. nike, radio, hein record decks, etc.) awd rill thes provile mixing and fading
facillies for medium porcered Hi -Fi Discotheque use, dic.

PANTASTIC 'POLY PLANAR' WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
 Can replace cone speakers in any application and is particularly useful for those with limited space. Fxtremely rugged and shockproof. Operating temperature - 90 F pelk). Jmpedance 8 ohm only. Response $10 \mathrm{~Hz}-20 \mathrm{KHz}$. tc. and nsed on ceilings, Wials, doors, imier hisles, letails. Only 85.15 .0 ench. P. A I^{\prime}.
MAGMA FOX DESK TYPE MOVITG COIL MICROPROME, Medlum finpetiance. Brand Xew--Necial Price 42/-
SLGLE HEADPHONE, With ;hmininu healman
Approx. 200 ohm. $5 /=$. 1'. \& 1^{\prime}. 1 ,

HIGH IMPEDANCE CRYSTAL STICK MIKES. OIA PRICE 21/-. P. \& P. 1/6
HIGH TMPEDAMCE DYKAMIC STICK MIKES. High
senaltlvity. 39/6. P. \& P. $\boldsymbol{2} / \mathrm{j}$.
GPECIAL OFFER! PLESSEY TYPE 29 TWIN TUMIMG GAnG. $400 \mathrm{pl}-1-146 \mathrm{p} F$. Fitted with trimmerg and

HONET WELL MICROSWITCEES S/P.C/O. Push-button action. Rating e50r. AC at 15 amps. Size approx,

TELEECOPIC AERIALS WITH BWIVEL JOINT. Can bc angled and rotated in any dircetion. © scetion Jacquered Brasa. Extends from \mathbf{G}^{*} to approx
dlameter 1". $5 /-$ cach. F . P . $1 /$.

BRAMD KE W MULTI-RATIO MAMS TRANEFORMERS Giving 13 alternatives. Primary; $0-210-240 \mathrm{~V}$. Secon dary conabinations:-0-5+10-10-20-25-30-30-40-60 hali full wave. Nizc $3 \mathrm{inL}: 3!\mathrm{inw}$, 3 in V . Price $35 /$ P. \& P. $0 /$

MASHE TRANEFORMER. For transistor power supplies Pri. 200/240V. Sec, 9-0-9 at 500 mA . $14 /=$. P. \& P. $2 / 6$

 BATTERY CEARGER TRANBFORMERE. $200 / 240 \mathrm{Y}$ input. Nomlnal output for 6 or 12 V . batteries 3 amps
Gize approx. $3: 2 \pm \times$ Ifin. Prand New. Irice $21 /-$ size approx
\mathbf{P} \& $\mathbb{P}, \bar{j} / \%$.

HIGE GRADE COPPER LAMMATE BOARDS

Open 9.5.30 Monday

to Salurday
Early closing Wed. 1 p.m.
A few thintict

SPECIAL OFFER!!

 HI-FI LOUDSPEAKER SYSTEMBeautifully made teak finish enclosure with most attractive Tygan-Vynair front. Size 16 it in high © 101 in widex6in deep. Fitted with E.M.I. tweeter units and erossover. Power handling 10W
Our Price 68.8 .0
tho available in 8 ohm with EMI $13 i n \mathrm{n} \div$ sin bass speaker with parasitic tweeter, $\mathbf{8 6 , 1 0 . 0}$. Carr. 10 F .

LOUDSPEAXER BARGAITS

3in 4 ohm 10/-, P. \& P. 1/6. Sin 3 ohm 16/-, P. \& P. 3!$\times 4$ in 3 ohm $81 /=$ P \& P. $1 /-10 \times 6$ in 3 or $15 \mathrm{ohm} 85 /-$
 28/-, P. \& P. 4/-. E.M.I. $131: 8$ in 3 ohm with high
fiux cernnic magnet $48 /-$ (IJ ohm $45 /-)$. P. \& P. $0 /-$. E.M.I. $13 \div 8$ in, 3 or 15 ohm with t wo inbuilt tweeter and crossover net work 4 Ens, P. \& P. 6;
BRAND NEW. $12 \mathrm{in} 15 \overline{\mathrm{w}}$ H/D Speakers, 3 or 15 obm Current production by well-known British maker Yow current production by weli-knowa Britisiax ceramic ferrobar magnet assembly $\mathbf{i 5}$. 10.0 , P. \& P. $7 / 6$. (fuitar molels: 2Jw $86.10 .0, \quad 35 \mathrm{w}$ 8.10.0. E.M.I. Jin HEAVY DUTY TWEETERS. Powerful ceramic magnet. Available in 3,8 or 15 ohm 18/6 each

12in "RA" TWIN CONE LOUDAPEAKER 10 watto peak hatulling. 3 or 15 ohm, $87 / 6, \mathrm{P}$.

HI-FI STEREO HEADPHONES

ajustable headband with comfortable fiexifoam ear mufis. Wired and fitted with standard stereo zin jack plug- Frequency response $30-15,000 \mathrm{Fz}$. Matching
fmpedance $8-16$ ohms. PRICE $50 /-$, P, P. 3 -

GERERAL PURPOSD HIGH STABILITY TRAK-

SIBTOR PRE-AMPLIFLEE. For P.U. Tape, Mike, Guitar, ete., and suitable for use with valve or transistor equipment. $0-18 \mathrm{~V}$. Battery or from H.T line 000300 V . Frequeney response $15 \mathrm{Bz}-25 \mathrm{KHz}$.
 Brand new complete with instructions. Price

BRAND NEW E.M.I. LIGRTWBIGHT PICK-UP ARM BRAND NEW E.M.I. LIGAT WEIGLT PICK-OP AR WITH ARM RERT (as abore). Fitted mono to atylut
and cartridge for LP/\%8. ONLY $20 /=$. P. \& P. $1 / 6$.

QUALITY RECORD PLAYER AMPLIFIER ME II toj quality record player ampllier rmploylog heavy and rectifier woum brains trangiornier: Complete with output transformer matched for 3 ohm peaker. Nize rim. $3,3 \mathrm{l} .6 \mathrm{~h}$. Ready built and teated. PRICE 75/- P' A r. b/e. ALSO AVAILIBLE mounted it boatd with output transfornier and speaker ready to DE LDEE OUALITY PORTABLER/P CABIKET MX DE LUEE QUALITY PORTABLE R/P CABINET ME II
 HARRARD thanger or Single Player (excent AT60 and

10. 14 WATT HI-FI AMPLIFIER KIT

 A stylishly ciuishad with an output 14 walts fron :ELSfs in push-pull super reproduction of both nusic an specch, with negli. inputs for meparate mpats allow recorde gram announcements R \& R \& R R R Fully shrouded section wound output transformer to matich j-10 Ω speaker and 2 independent volumc controls, and separatc bass and treble controls are provided giving cood 11 ft and cut Falve line-up 2 ELe4s, ECC83, EF86 and EZ80 rectifine. simple instruction booklet $2 / 6$ (1;ree, With parle). All parin sold separately. ONLY 27,19.6. P. \& P. 8j6. uput socketz, 89.19.8. I. FI I

BRAMD NEW TRAMSISTOR BARGAIMS. GET 15 Matched Pair) 15/-; V15/10n, $10 /-$; $06715 ;-$ O $0666 /-;$ Matched Pair $16 /-;$ V16) 10 n
AF'117 3/6; 2 G 339 (NPN) $8 /=$
 matchet pair ACl:8 25/a: ORDIV Cadminn Sulphile 'ell 10/6. All post free.

VERY POWERFUL COMPACT MOTOR

or ins. Totally enelosed. Of load in operamption approx. tarting torque. Uverali gize approx. $1^{3 /} \mathrm{L} \times 11^{*}$ dia Free shaft T_{0}^{*} dia. $\because \pm " L$. Ineal for Model Makers. etc. ONLY 7/B each P. \& P. I $/$-.
3 or more post irce (A few 0 , verions also available).

DE LUXE STEREO AMPLIFIER

 Valve line
FCLs Triode 1: EZ80 as full wave rection Pentodes.
 treble boost and cut. treble boost and cut. A dual volume control is used adjusted by means of a separate "balance" control fitted at the rear of the chassis. Input sensitivity is approxi mately $300 \mathrm{~m} / \mathrm{v}$ tor full peak output of 4 watts per channel (8 watts nono), into 3 obm speakers. Full negatly teetback in a carefully calculated circuit, allows high volume levels to be used with negliglble distortlon Supplied completc with knobs, chassis gize 1 lin. w 24 in . x overall height including valves $61 n$. Realy built and tested to a hlgh standard. Price 28.18 .6 . P. \& P. 8/-

4-SPEED RECORD PLAYRE BARGAINS

Mains models. All orand new in maker it packing. With lat B,as. Cios/atible With stereo cartrldge 87.19.6. Carr. 6/6. SUITABLE PLIMTE UATFOR ABOVE

LATEST GARRARD MODELS. All typer availeble 1025 2025, 8PR5, 3000, AT60, etc. S.A.E. for Latest Pricen ! PLINTE UAITS cut out 1or Garrard Modela 1025, 202: $2000,3000,3500$, etc. With rigid trabsparent plastic cover. Special design enables above models to be used With cover in position. Aso suitable or housing AT60

LATEST ACOs GP91/1sc mono Compatible Cartridge with fo stylus 80/0. P. \& P. $1 / 6$.
ACOs Bir-a single sided mono cartridge for LP \& EP

 ee.10.0. P. \&i P of
Also available fitted with twin Di
LATEST BONETTE TIO Stereo Com
LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/T8 mono or sterco records on mono equipment HIGR GAIM 4 TRANSIBTOR PRITTED CLRCUI

ADPLIER

Peak out-
put in cxcess
of 111 watts.
All Brat Britlsh
components.
Built

printed circuit panel size 6\% 3in.
Generous size Driver and Output Transformers. Output Generous size Driver and Output Transformers. Output
transfornier tapped for 3 ohm and 15 ohm speakers, verythlog supplied wire, battery o/p). 9 rolt operation. Everybentre easy follow iustructiona and circuit diagram $2 / 6$ (Free with Kit). All parts sold separately. 8PECIAL PRICE $49 / 6$ P. \& P. $3 / \cdot$. 1 lso ready built and tested, B5/-. P. \& P. $3 / \%$

3-VALYE AUDIO
AMPLEIER HAB4 MK II Designed for $\mathrm{Hi}-\mathrm{Fi}$ reproducoperation. Ready luilt on plated heavy gange metal chassis, sizz \bar{y} in $w,:$ fin. d...
4in. h. Incorporates ECC8 EL84, EZ80 valves. Heary duty, double wound main transformer and output transformer matched for 3 ohm spetiker. Separatc rolume control and now with improve wide range tone controls giving bass and treble lift an
cut. Negative feedback line. Outpul 4 watis. Front cut. Negative reedbach line, outpul andiats. Front mounting of controls. Complete with knobs, valres, ete. wired and tested for only 24.15.0.1 P. \& P. 6j-
HEL "FOUR" AMPLIFIER EIT. Similar in appearance 10 HA34 above but employs entirely different and advance circuitry. Complete bet of parts, etc. 79/6. 1. \& P. 6 ; HARYERSON'S SUPER MONO AMPLIF'IER A super quality gram amplifier using a double wound full pentode valve as audio amplifier and power output stage Impedance 3 ohms. Output approx. $3 \cdot \bar{j}$ watts. Volumc and tone controls. Chassis alze only in. Wide <3 in. deep Gin. high overall. AC malns $900 / 240{ }^{\circ}$. Supplied absolutely Brand New, completely wirell and tested with good OUS BOOE BOTHO 5
$\begin{array}{lll}\text { OUR ROGX BOTLOA } & 55 /= & \text { P. \& } P \text {. } \\ \text { BARGAL PRICE } & 5 /-\end{array}$

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. $01-5403995$ SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) pleage rote p. ep. charaes ROOTED APPLY TO I.X. ORLY PAPAR OVERS
CHARGED EXTRA.

BI-PAK WAREHOUSE CLEARANCE

Over I Million Semiconductors must be sold,
Order any or all of these. Bargain "SALE" PAKS Listed Below "NOW'
UNSORTED/UNTESTED/UNCODED/UNBEATABLE PAK:
Order No
$\begin{array}{lll}\text { Prder No. Qty. } & \text { Besceriptien } \\ 8.1 & 150 & \text { (ien. Trans PNPMixell luts }\end{array}$

sil. planar Trans. Tos plastic pivisooin
sil planar trañe Tols plast ic NPN
sil. plamar trans phastic NPN med. \& high gain
DIODE:
GERM Jioxles (ien.J.
GERM Gold Bonder
Sil. Swjtching Dioles jom
(il. Genil. Dio
new nut Finly Tested Transistor Pack
PNP Trans Mixed all coded Germ

PNP (ierm. VHF-2G407L $=A F I 1=000170$ uncorlei
PNP Meina Ahoy YHF 800m/es Trans
PNP NPN Assorted Trans all coded
N 706 NPN 8 witching St1 Trass $44 / 45$
N 608 NPN Hil Trang $\$$ Trans
BSY28 NPN Sil. Trang
2N3703 PNP 8il. Trans
T1S48=9N 2368 NPN $400 \mathrm{~m} / \mathrm{cs}$
NE/2N3646 NPN TO- 18 plastic $330 \mathrm{~mm} / \mathrm{ct}$
243010 sil Alloy Trane PNP TOJ

Pilee
Pik
Met PAK

WHEN ORDERING PLEASE MENTION PAK ORDER NO. IN AJIL CASES CLLBS, RCHOOLS © OTHER ORGANISATIONS REQUIRING LARGER QUANTITIES (1,000 MIN. SA \& SB) (100 MIN. ST) MAY RUBMIT THEIR OFE NO LATER THAN I能 FEB. 1971

NEW STOCK ITEMS

I AMP SILICON RECTIFIERS (pIANTIACURESE)
Type Price each and Quantity Price

300 mW GLASS SILICON RECTIFIERS Do. 7 Case
VOLTAGE RANGE 50-1000PIV AND PRICE AK FOLLOWG

	1.49		50.99		100u	
$50{ }^{\circ}$	9d.	ch	8 d .	ch	7 d.	leh
$100{ }^{-1}$	10 d.	,	9 d.	,	8 d .	,
-200V	11 d .	"	10 d .	.	9 d .	,
4003	1/2	,	1/1	,	1/-	,
600)	1/4	"	1/3	,	1/2	,
8007	$1 / 11$	\%	1/10	,	1/9	,"
1000V	2/3	\because	2/2	,	2/-	,

GENERAL PURPOSE GERM. PNP POWER

 TRANSISTORSCodel ciploo. BRANDNEW To-3 CABE. POSG. REPLACEMENTS HOR OC25-28-29-30.35-30, NKT401-403-404-405-406-450-451-452-453. T13027-30:8

VCBO 80V VCEO 50V IC JOA PT 30 WATTS HFE 30-170 PRICE

$1-24$	$25-99$	100 up
$8 / 6$ each	$8 /-$ each	$7 / 3$ each

GENERAL PURPOSE SILICON NPN POWER

 TRANSISTORSCudel GP300. BRAND NEW TO-3 CARE. FOSABPLF, REPLACEMENT FOR 2N3055. BDY20. BDY1I.
YCRO 100 V . YCEO GOV. IC $15 \triangle M P \oiint$. PT. 115 WATTA. Hfe -100 . FTI MHZ. $\begin{array}{llll}1 ' R T C E & 1-94 & 05.99 & 100+ \\ & 11 /- \text { each } & 10 /- \text { ench } & 9 / 8\end{array}$

SEMICONDUCTOR HAND BOOK

H0 PSGEK OF SEGRESTEDCIRCLITG-TRANBISTOR OUTLINES AND NEMI CONDLCTOR SPECIFICATIONS. INTRODUCTION AND EXPLANATION IN NW EDISH,SPANISH, PORTUGUESEIT, FRENCH, GERHAN, INDONESIAN, A HANDBOOK FOR ILLSEMICONDECTOR TGPR4. (DUTCH BIBIOAFHAN PRICE $28 / 6$ incl. P \& P.

SEND ALL ORDERS

FOR BY-RETURN SERVICE
bl-pat
Oruar no.

-
BP04 7404N BP10 7410N BP20 7420N ${ }_{\mathrm{BP} 40}^{\mathrm{BP} 30} 74440 \mathrm{~N}$ BP41 7441 N

BP42 7442N BP50 7450N
BP63 7453N
BP60 7460N BP70 7470N $\mathrm{BP} 72 \mathrm{~B}^{7472 \mathrm{~N}}$
BP 73
7473 N ${ }_{\text {BP74 }}{ }^{\text {BP74 }}$ BP7B 7475N BP78 7476N
${ }_{B P 90} \mathrm{BP} 8383 \mathrm{~N}$
BP90 7490N BP92 7492N BP93 7493N BP94 7494N BP96 7496N

8imular Typas to:- Description Quad 2-Input NAND GATE Quad 2-Input NAND Gate-OPEN HEXINCERTER
Triple 3.Input NAND GATE Sual 4-Input NAND GATE single 8-Input NAND GATE
Bual to decimal decoder and NIT Driver
BCD to decimal decode (TTL O/P). Dual 2-Input AND/OR/NOT GATE single ${ }^{\text {8-Input }}$ AND/OR/NOT GATE-expandabl
Dual 4-Input-expandable
Single JK Flip-Flop-edge triggered Single Master slave JK Flip-fiop Dual master blave JK Flip.fio Qual D Fietap-fop
Dual Mater Slave Flip-flop with preset and clear
Four Bit Binary Adder
BCD Decade Counter
Divide by 124 Bit binary counter Divide by 164 Bit binary counte Dual Entry 4 Bit Sbift Register 5 Bit uhift register

Prics and aty
$1-24$
$25 / 89$
$25 / 8$
160 $\begin{array}{ccc}6 / 6 & 8 / 6 & 160 \text { up }\end{array}$ $\begin{array}{lll}6 / 6 & 5 / 6 & 4 / 6 \\ 8 / 8 & 5 / 6 & 4 / 6\end{array}$
8/6

22/6
201-
$17 / 6$
$27 / 6$

BI-PAK=LOW COST 1.0's

BI-PAK gemiconductors now offer you the largent and most PICRS. TTL DIgital 74N Series fully coded, brand new. Dual mila in-line plast ic 14 and 16 pin packages

Data is available for the above Series of Integrated circulta in book let form, price 2/6

BRAND NEW. FULL TO MANUFACTURERS'

 EPRCEICATIONPrice each
BP709 Operational Amplifier, dual-in-line 14 pin pack This is a high performance operational amplifer with high lmpedance diferentia inputs and low impedance output

TTL INTEGRATED CIRCUITS

Manufacturers "Fall outs"-out of spec, devices including functional units and part Ideal for learning about I.C's and experimental work, on teating, some will be found perfect.

Packe cannot be split but 20 assorted pieces (our mix) la avallable as PAK UICX1.
Every PAK carries our BI-PAK Satiafaction or money back GUARANTEE
DUAL-IN-LINE LOW PROFILE SOCKETS
14 and 16 lead sockets for use with Dual-in-Line Integrated Circuits,

RTL FAIRCHILD (U.S.A.) I.C's

TL Micrologic
Epoxy cise To-5 temp. range $15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ L 900 Buffe
L Dual two-input GATE
23 -K Flip-flop
$\begin{array}{lll}10 / 6 & 10\end{array}$
A703E near RF-IF AMPLIFIER

	Qty. prlces asch
$12-24$	$26-99$

PLASTIC CASE To-5 6 lead up to $100 \mathrm{~m} / \mathrm{c}$

DTL DIGITAL I.C's

DTL dual in-line package
ype MC844P expandable dual 4 -input NAND Power Gate ype MC845P Clocked Flip-fiop \qquad
Type 862 Triple 3 Input NAND/NOR Gate
FULL DATA SUPPLIED WITH UNITE

Please aend all orders direct to our warehouse and despatch department
BI-PAK SEMICONDUCTORS
P.O. BOX 6, WARE, HERTS.

Pootage and packing add $1 /-$ - Overseas add extra tor Alrmail. Minimum order 10/-. Canh with order please.

VALUE ALLTHE WAY

LINEAR INTEGRATED CIRCUITS

BI－PAE MONOLITHIC AMPLIFIERS 709c，Operat liffer， $16 /=$ each． BP701C，Operational amp－ put），12／6 each
HP702C，Operational amp－ lifier（with direet out． put）， $12 / 8$ caclı．
＂P501，Wite hanl ；umpli－ fler，18／－cach．
Heb21，Logarithwic wide B1＇20／C，General furpose amplitier（TO．5 8 lead）． （voltage or current amp．）， 12／6 each．
I．C．Operational Amplifler with Zener output． Type 701C，Ideal for p．t． Projects． 8 Leal TO－5 ctese Our price $12 / 6$ each 5 oflll－each．Large Qty Prices quotel for

SIL．G．P．DIODES 300 mW （10） $30 \ldots 10 /-$
 Full Tester $1,000 \ldots$ en 29
Ideal for Organ Buihlers．

OA200／OARO2 ILICON Diodes 1 $35+1 / 6$
$100+1 / 3$ $500+11$

TRADE SEND FOR YOUR free catalogue

MULLARD I．C AMPLIFIERS TAS243．Operational anmp． TAA2H3，Lincar． fler， $15 /-$ cath
rater，15／－Cath．
ampliticr． $19 / 6$ cach．

OTHER MONOLITHIC DEVICES

H13DI Silicon Li switeh $10 /=$ each．

 switel $10 /$－each，A Silicou Planar，mono
lithic intecrated eircuit lithic integrated eircuit characteriatice，but with an anode pate add a builtin ＂Zencr＂diode betreen gate and cathole．Full data and application cir
cuits availalipe on requent

Silicon Microwave Diodes－ ilicon Microwave Diod
Sylvania（U．S．A．） INO18 anl IN218R matched pair s．Band miner．Max．overall noise faction 13.7 dB at $3,000 \mathrm{~m} / \mathrm{cs}$ Cland mew and boxed．

[^5]ADI6I wis
AD162 \quad Pי
MATCHED COMPLE－ MENTARY PAIRN OF GERM．
TRANSISTOR
For mainh driven out． Imit atages of Amplifiers amd Radio receivers． OTH LOWEKT PRIC Oर 12／6 FEL P－1／R
H16：H POWER SILI． SOSTOMS．TO－S． FERHANTI KT14日

CEA Ptot． 75 W
VEBK hFEI5－
IRICE $8 /-$ EACH
243055 POWER NTPN OLR PRICE 12／6 EACH FULL RAKGE OF ZENER DIODES RANGE VOLTAGE RANGE
$2-33 Y$ HOMV（DO－7 （Gase） $2 / 6$ е： 1 W（Top Hat）3／6 eat．10w（50－10 Stud） $5 /$－cit．All fully tested b^{0} tol．and
marked．State voltage requiral．

BRAND NEW TEXAS GERM．TRANSISTORS Coded and Guaranteed | Pi |
| :--- |
| \mathbf{T} |

T10 8 ：2G417 AF117
A11 10／－eath pack

each．
120 VCB MIXIE DRIVER TRANBISTOR． FULL TESTED AND CODED ND120．1．243／6 each．To－5 NiPN： 25 up 3／－each．
Sil．trang．suitable for
P．E．Organ．Metal TO－18 P．E．Organ．Mctal TO－18
Eqvt．ZTX $3001 / \rightarrow$ each． Eqyt．ZTX 300 1／－ench．
Any Qty．

FREE

One 10／．Fack of your own choice Iree with orders valued 44 or over．
AF 29 PNP GERM，
SIEMENS VHF TRAN： SISTORS．IRF MIXER SISTORS．IEF MIXER
\＆OSC．UP TO 900 MHZ，USE AS RE， $\begin{array}{lll}\text { PLACEMENT } & \text { FOR } \\ \text { AF139－AF186 } & 100 \text {＇}\end{array}$ OF OTHER UBES IN VHF OUR SPECIAL LOW PRICE：－1．24 7／6 each， $25-998 / 9$ each
$100+8 /-$ each．

FET＇S

2N 3819

LOW COST F．E．T．s Fully Tested，Guaranteed Perameters equit．
5459．1－24 7／6 each； 20－90 8／3 each； 100 up Full cach．Coded FE19． Full data sent．To－is
case．
CADMIUM CELLS
ORP12 8／6

PHOTO TRANS． OCril Time． $8 / 6$

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS

Sittis Pak

 \begin{tabular}{l} Pak

\hline 1
\end{tabular}

 ti0 Mixed Germanium Transistors AF／RF 75 （iermaniunt Gold Bonded Diodes sim．OA5 40 （iermaniun Transistors like－OC81，ACI28 tio 200mA Sulb－min．Sil．Diotes
 30 Silicon Planar Tratusis tors NPN gim．BSY95．4， 2
 If Silicon Mectifers Top－Hat 750 mA up to $1,000 \mathrm{~V}$ 50 Sil．Planar Diolles 250 mLA OA／200／202 20 Mixel Volte I watt Zener Diodes
 30 PNP＇NPN Nil．Tramsistor OC200 \＆2N 104 150 Mixell Nilicon ant Rernamiunt Diolea
 25 NPN Nilicon Planar Transintors TO． 5 Binl．2N694． 10 3 －Amp Nilicon Kectifers stud Type up to 1000 P 1 V 30 Liermaniun PNP AF Trimsistors TO－5 like ACY 17.22 －

 I23 30 Madt＇s like MAT series PNI＇Trausistore
 ［24 20 （iermaniunt I－amp Itcethers（iJM up to 300 PlV
 $\overline{\mathrm{E} 25} \quad 25300 \mathrm{Me} / \mathrm{s}$ NPN Silicon Trantiatore 2NT08，B4527
 C26 30 Fast Switching Kilicon Dionles like IN914 Miero－min．
 C28 Esperinuenters （iates，Flip－Flops，Registers，etc．， 8 ． ． 101 aup scle 20 Nil．Planar NPN trany．low hoise Amp 2 N 370 ． L32 ${ }^{2} \overline{5}$ Zener dionles 400 mW D07 catse mixel Volts， 3 －Is Lia 15 Plastic ease 1 amp silicon rectiflers 1×4000 series T34 30 mil．PNP alloy trans．TO－5 BCY2t， $29302 / 4$ C35 25 kil．Planar trans．PN1 TO－18 2 N2904．

 T38 20 Fast wwitching sil．trans．NPN， $400 \mathrm{Mc} / \mathrm{s} 2 \mathrm{~N} 301 \mathrm{I}$
 C39 30 RF Germ．PND trans． $2 \mathrm{~N} 1303 / 5 \mathrm{TO}$
 C40 10 Dual trans． 6 learl TO－5 2×2060

Code Nos．mentioned above are given at a guide to the ty
the Pak．The devices themselves are mormally unmarked
NEW LOW PRICE TESTED S．C．R．＇s

	$\stackrel{1.1}{(\mathrm{TO}-5}$	$\begin{gathered} 3 . \\ {[0-6} \end{gathered}$	$\begin{gathered} 7.4 \\ 10 \cdot 48 \end{gathered}$	${ }_{(\mathrm{TO} \cdot 48}^{16 \mathrm{~A}}$		30.4
	case）	carse）	case）			
－	each	each	cach	eich	アい゙	each
0	4／6	$5 /-$	$9 / 6$	10／6	$\underline{0}$	$201-$
00	5	6／6	10／6	12／6	0	28／－
	\％／－	7／6	11／6	15／－	100	28／－
	8／6	9／6	13／6	18／6	$\because 00$	32／－
	10／6	11／6	15／6	25／－	400	35／－
	12／8	14／－	18／－	30／－	600	80

DIACS

FOR USE WITH TRIACS

Bに100

A POTTED BRIDGE RECTIFIERS 00 V 10／

PRINTED CIRCUITS

EX－COMPUTER
racked with semisonductors and comb－ 30 trans and 30 diodes．give a guaranteed

PLEASE MOTE T0 woid amb further Increased Postal Charge日 to our Customers and enable us to keep our＇Hy Return Postal servicc＂which is second to none，we bave re－organised and streamlined our Despatch Order Department and we now request you to send all your orders together with your
renlittance，direct to our Warchouse and remittance，direct oo our harchouse ams BI－PAK SEMICONDUCTORS．Despatch BI－PAK SEMICONDUCTORS，
Dept．，P．O．BOX 6，WARE，HERTS．Postage Dept．，P．O．BOX 6，WARE，HERTS．Postage
and packing et ill 1 －jer order．Miuinum and packi
order $10 /-$

QUALITY．TESTED PAKS
age in either direction． Branded． 400 PIV
Special Price，stud type Hy ing lead， $22 / 6$ each． UNIJUKCTION
UT48．EqYt． 2×2646 ． $\begin{array}{ll}\text { Equt．TIS43．BEN } 3000 \\ \text { S／6 ewh，} 25-99 & 5 /-\end{array}$
NPN SILICON PLANAR
 $1 / 8$ each； 1,000 off． IB each．Fully tested $\frac{\text { and coded TO－18 casc．}}{\text { SILICON HIGR VOL }}$
TAGE RECTITIERS
$10-A 11 \mathrm{E}$
$\mathbf{3 . K} . \mathrm{Y} . \quad 3400$
P．I．V．）Stud Type with

f Matched Trans．OC4 $4 / 45 / 81 / 811$ 20 Red Apot AF Tranc．PNP
6 Sllicon Recls， 3 A $100-400$ PI
210 A Silicon Recta． 100 P1V
2 OCI 140 Trans．NPN Switching
1
3
Sil．Trane $28303 ~ P . ~$
2
3 sil．Trane． 28303 PN
$3200 \mathrm{Mc} / \mathrm{Bil}$ ．Trang．NP Bis $26 / 27$
3 Zener Dioten IW 33V 5 ，Tol．
4 High Current Trans．OC＇42 EqVt．
2 Power Transistors 1 OC26 I OC 55 ${ }_{5}$ Power Rransistors Rects， 400 PIV 250 m ． OC75 Transistors
1 Power Trans． 0 C 20 ion
10 OA？02 Sil．Diodes Sub－min
2 Low Noise Trans．NPN 2N929／30
1 gll．Trans．NPN VCB 1002 T 8 G
8 OA81 Diodee．
40072 Transibtors
4 Sil．Rectan 400 PIV 500 min
45il．Rects． 400 PIV 500mi
8 GET884 Trans．Eqvt．OC44．
2 GET883 Trans．Eqv．OC45．．．
3 GT31 LF Low Noise Germi T
A 0495 Gierm．Diodes Sub－min．N 69
3 NPN Germ．Trans．NKT＇̈̄3 Equt．
20 OC 22 Power Trang．Gierm
2 OC25 Power Trane．（iernh．
4 AC128 Tranu．PNP High（iain
4 AC128 Tranis．PNP High（iain
4 AC127／128 Comp．pair PNY／N1
3 2N 1307 PNP Switching Trang．
：I AFII6 Type Trins．
12 Asported Germ．Diodes M
4 gilicon Rect． 100 PIV 750 mi
3 4F117 Trans．
7 OC81 Type Traнe
3 OC171 Trans．
b 2N2926 Sit．Epwoy Trius． Oc71 Type Trane．
210 A 600 PIV Mil．Rects．isutu
3 BC108 Sil．NPN Migh Gain Trank 1 2N910 NPN Sil．Trana．VCB 100 21000 PIV gil．Rect． 15 A R63310 3 BSY95A Sil．Trana，NI＇N 200Mc／：
30 C 200 Ell ．Trane．
2 GFT880 Low Noige Vierm．Tran．
1 AF139 PNP High Freq．Tranh．
3 NPN Trans．$]$ ET141 d $2 太 T 140$
4 Madt＇ 2 MAT100 \＆2MAT120
4 OC44 Germ．Trans．AF．
1 2N3906 shl PNP Trane．Motorola
2 Sil．Power Rects．ByZ13
1 Sil．Power Trang．NPN 1003ic／
TK201A．
2N1132 PNP Epitasial Planar sit．
3 2N697 Epitaxial Planar Trana．Sil
4 （ferm．Power Trans．Eqtit．O
2 gil．Trans．200Mc／s 60 Vcb ZT83／84 20 NKT Trans．AF，RF．VHF，Conlex

8 BY100 Type sil．Rects．
25 Sil．and Ciern．Trans．Mixel，all

1.

 ，
\qquad － A． Tran 25 Sil．amd Germ．Trans．Mixel，all

SAVE MONEY NOW!
 On the famous S.D.C. DeC range of solderless breadboards

We are pleased to announce that greatly increased demand has enabled us to slash the prices of our S-DeC range. In addition we offer Practical Electronics readers a special reduction in the price of T-DeC for one month only.

S-DeC Available as single packs with accessories and control panel NOW AT 20/- or the DeCSTOR double pack containing 2 S-DeCs, accessories, control panel, all in a plastic storage container. NOW ONLY $50 /$-. A 4 DeC pack is available, NOW ONLY 78/-
T-DeC Now available to the amateur. 208 connection points. 38 independentjunctions. Accommodates I.Cs using standard carriers. Three times the capability for only twice the price!
 Unit pack with control panel $50 /$ -
$\mu-$ DeC Primarily for use with integrated circuits; further details on request.

G. F. MILWARD

Mail Orders: DRAYTON BASSETT, TAMWORTH, STAFFS ELECTRONIC COMPONENTS

Wholesale/Retail : 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

SPECIAL $10 /$ - PACKS. ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE FREE!!!!
RESISTOR5, $\frac{1}{1} / \frac{1}{2}$ watt
assorted
Wire-wound 1203 watt
5 to watt
10 watts
Multi-tapped
PAPER CONDENSERS
TV types
ELECTROLYTIC CONO

uitable for Mains

Transistor types
Mixed (both types)
OLYSTYRENE
CONDENSERS
MULLARD POLYESTER COND.
SILVER MIC
SLIOERS NO 3-Wat SLIOERS

NUTS AND BOLTS. Mixed

MULLARD 'UNIFLEX'AMPLIFIER
n our opinion these units are the best value for money ever offered. A complete tereo unit consisting of Control unit. Pre-amplifier, Two Main Amplifiers and Power Pack complete and ready for use-NO extra components to buy-yours for £15. (Normal retail price is E16.10s.)
GARRARD SP 25 UNITS also offered at a discount. Our price only $\mathbf{E 1 2} 10$ s. Postage 9/-

SINCLAIR AMPLIFIERS AND SPEAKERS. Complete range in stock All et 10 per cent discount on list

VEROBOARD

 Soor Face Cutter $7 / 6$. Pin Insert Tool $\frac{1}{2} / 6$. Terminal Pins (.l or .15) $\mathbf{3 / 6}$ for 36 .
Special offer pack consisting of $52 \frac{1}{2} i n . \times$ lin. boards and Spot Face Cutter... $10 /-$ TRANSISTOR RADIOS
Once again we have a supply of these excellent radios which offer superb quality sound and excellent sensitivity. They are packed in a colourful preentation box complete with battery, earpiece and carrying case. Each one is uaranteed. You would expect to pay at least $\mathbf{6 5}$-but our price due to a bulk purchase is only $\mathbf{3 7 / 6}$. Many of our customers have made a considerable profic by buying these radios and re-selling them to friends!
WECOND PLAYER CARTMIDGES. Well below normal shopgrice! 931 (Mono). ACOS GP 91/3 $20 / 4$. (Compatible) ACOS GP 25/-. (Stereo) ACOS GP 94/- 30/-. (S
32/6. ACOS $94 / 1$ DIAMOND $37 / 6$.
TRANSISTORISED FLUORESCENT LIGHTS. 12 volt. All with heverse Polarity protection. 8 watt 59/6. 15 watt 7\%/6. 13 watt $99 / 6$. Postage $3 /-$ per fitting
MULLARD POLYESTER CONDENSERS
000 of 1,200 pf 1,800 pf., 2,200 pf., 400 volts, 3d. each. 25 per cent discount ©0 any type. 15 uf, 22 fi, 27 uf, 160 volts 6 d , each. 25 per cent discount 100 any one type.

RESISTORS

and watt. Most values in stock. $10 /$-per 100 of any one value. $2 /$ - dozen. 3d, ingles. MAINS DROPPER TYPE. Hundreds on values from. 7 ohm upwards. radio/television. Owing to the huge variety these can only be offered 'assorted' 10/-per dozen.
SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Largerange in stock. $15 / \circ$ per 100 of 6d.each.
RECORDING TAPE BARGAIN: The very best British Made low-noise, high-quality Tape! Sin. Standard, 7/6. Long-play $1 /$. Long-play $12 /-$. Fin
Standard $12 /$. Longeplay $16 / 3$. We are getting a fantastic number of repeat orders for this tape. Might we suggest that you order now whilst we still have a good stock available?
CS WORTH OF COMPONENTS FREE! ! !
Thinkingoflearning another language? If so, apply to us for details of Linguaphone courses. We will GIVE you $f 5$ worth of components of your selection when you purchase a language course" ! !!!
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 2/

 ather 500 only. BRAND SPANKING NEW with written 12 monthe guarantee, for only $4 \theta^{\prime}$ gns., carriage, etc., 2 gns . You'll never appreciate the wonderlui reproduction possible from your old stereo or mono records until you listen to them on the 6 Wrvebund Radio you cun get thousinds of trauswissious from all wier the world including han radin, ships at seas, continental and internathonal stations. A batzing clarity of tone and Incredible atat ion belect ion. Just feal the magnificent specitiontion of this compact fully trathistoriseet, high quality gount repromuct han equipment lin matebing unit forn: Four-speed single Record Player deck. lightweight

 Button top panelonitrols: J'ush pullout put stage. Frontally contiolled rotatable ertite rod uerial, intermal FM aerial, meter type tuming indientor, stereo babame control, apatate variable hass and tieble controls give superly batince and tonle. Plus ull usual extension sockets. 110, 127, $820,240 \mathrm{~V}$ a.c. All cubineta vely ntrongly const ucterl-with heautitnl high gloss walmut malyester thish. Long aegotiationa and a fanal purchase for cabh made this incredible offer possible: Please don't ank questions-just hurry! Only 500 will be lucky ! SPARES AND UK BERVICE CONSTANTLY AVAILABLE, Only $4 \theta_{1}$ gns, plus carriage, crating,
 congt sou $\mathbb{E} 140$: We guarantee to refand your money if YOU don't agree :
SHOPERTUNITIES LTD. STL Dpt. PE/1, 184 UXBRIDGE RD.. (Iacing 8AQ. (Thurs, 1, Fri. 7). Also 37 High Holborn, London, WCl (opp. Chancery Lane). 8AQ. (Thurs. 1, Fri. 7). Also 37 High Holborn, London, WCl (opp. Chancery Lane)
(Wed. 1, Thurf. 7). Both storet open Mon.-Sat. Irom 9 a.m. until $6 \mathrm{p} . \mathrm{m}$.

KINETIC LIGHTING EFFECTS

The DABAR range of Kinetic Lighting Effects encompass a wide range of sophisticated colour pulsing and blending units, designed for discotheques, dance halls, restaurants, shop-window displays, etc. Basically 3 facilities are available: A sound to light Psychodelic lighting unit or colour organ. This unit connects directly into an amplifier output or across loudspeakers (with negligible loading effect) and converts the audio frequency signals inco a 3-colour light display; the colour depending on the frequency of the signal and the intensity of the light on the loudness of the audio source. Secondly a background control providing a variable minimum ambient lighting level if required and thirdly a colour blender providing a continuously and completely random slowly changing pattern of lights. This is fully automatic requiring no audio input and is controlled by 3 speed-control potentiometers.
Units are available providing loading of either IkW of lighting per channel (3kW max per unit) or 3kW per channel (9 kW max per unit). Latest full-wave Triac circuitry is used and radio-frequency interference ilters are fitted in all units.
Case size: $13 \mathrm{in} \times 7 \mathrm{in} \quad 9 \mathrm{in}$.
Audio Activated Colour organ incorporating background controls IkW per channel $\mathbf{C} 50$
Colour blender:
IkW per channel $£ 40$
3 kW per channel $\mathbf{£ 8 8}$
dio activated colou
$3 k W$ per channel $£ 78$
blender
kW per channel $\mathbf{4 6 0} \quad 3 \mathrm{WW}$ per channel $\mathbf{C 9 8}$

I00 WATT AMPLIFIER

The latest addition to the DABAR range of equipment is a 4 channel integrated Preamplifier and Power amplifier, delivering a full 100 W r.m.s. into a 4 ohm load. The amplifier has 4 inputs, each with their own gain control and 2 further master gain control, treble and bass control. A unique feature of this amplifier is in is's versatility of uses. It has been designed to accept plug-in pre-amp cards for each channel thus covering a wide range of applications. The basic unit is supplied with input modules of your choice, but further modules may be purchased at moderate cost, thus enabling, with the minimum of time, effort and outlay the conversion of any one or all channels to accept an entirely different input.
Modules available include: P/U cartridges crystal, ceramic, and magnetic (equalised R.I.A.A.): Microphones-30-60 $\Omega, 300-600 \Omega$ and $50 \mathrm{k} \Omega$ types. Guitar and two modules for high impedance outputs from tape, tuner, etc. 100 mV f.e.t. and IV input.
Case size: 13 in $\times 7$ in $\times 9$ in.
Price complete with 4 modules $£ 109.0 .0$
Extra modules $\mathbf{6 5 0 . 0}$ each.
Please send $1 /$ - in stamps for full descriptive literature.
TRADE ENQUIRIES WELCOME
Callers by appointment only. Carriage extra.

DABAR electronic products

98a LICHFIELD STREET, WALSALL, STAFFS. WSI IUZ
Tel.: WALSALL 34365

|| LISTEN TO AIRCRAFT COMMUNICATIONS new V.H.F. AIRCRAFT BAND CONVERTER ONLY Lithen in ${ }^{\text {to }}$ Areurigs. 47/6 PRIVATE PLAMEB, JET PLALES, Eavesdrop on pilos, grosud apmoteh pilote, grownd appronch,
grownd control, nirport pround control, airport hiding renseness out talk downs. Be with them when they have to take nerve ripping decislons in emergencies-tune in to the International distress frequency, Cover
GATMCE This furtastic fully transietorlsed Instrument cen be built by anyone nine to ninety in undar two houra. (Our design tean
built four-everyone worked first inme). Nosoldering necessary. Fully illustrated simply worked instructions take you step by-btep. U'se standard PP3 battery. Size only 4 giu $\times 3 \mathrm{in}$ " lif. All you do is extend rod serial, place close to any ordinary medium-wave radio (even tiny pocket radios). No COIHECILOHI WHATEVER NEEDED. Use indoora or outhloors gimid lim, OMLY $47 / 6$ for all parts, including cose, nuts, acrew s, wire, etc. etc. (parts available reparately).

REAL WORKING ELECTRONIC ORGAN

$+1 /$ Don't confuse with that simply blow air over mouth-organ type reedt, etc. Eight months were spent in creating and testing this auperb, revolutionary electronic organ. Fully Fifteen separate keys span trop full octaces-play the "Yellow Rose of Texas", "Silens Night", "Auld Lang Syne", and lois of similar twues on this real working electronlc organ. Size $13 \mathrm{inn}^{2} 10 \mathrm{in} \times 2 \mathrm{tin}$. Uses mandard battery. Have the thrlll and excitement of building it together with the pleasnre of playlng necessary. Easy a A.B.C. to make following the fully llug necessar, Easy a A.B.C. to make following the fully fllus trated, btep-by-step instructions. BIG DEALADD AIrixciOnLT $50 /=+4 / 6$ P. at P. for all parts, Including case, joudpeaker, transistors, condensers, realstors, knobs, trantformers volume control, wire, nuts, acrewe, instructions, etc. (parts avallable separately). Have all the pleasure of making it yourself, filah with an exciting gift for aomeone.
"READ PEOPLE'S MINDS"-TEST THEIR NERVES-BEAT THEM AT CARDS-TEST THEIR MENTAL ABILITY, ETC.-ASTONISHING

ELECTRONIC BRAINBOX

57/6
Make thls an exciting Christmas. If you've seen a giant computer on show at an electronics exhibition, you will have seen people of ail ages queueing to pit tion that at tracts ordinary people and profesain. There is tremendous facina games of skill, chance and meoptery. With thia "Brainbox" you will be able to perform mind+boggling feats. THE MID BEADLG DEVICE will make people twear yow have lelepalhic poners. TEE AMAZDNG CABD TRICK UIIT completely mybtifies
 TEBERR puts your friends to a verylively teat. It gives out failand finish aignalis (the winner is the permon with lowest number of fail signals.) Can be adjuased frow the weakest to strongeat person. TEZ BLECRZONIC MAZE tess the mental ability of the player becruse it usea paychology with electronic twist to it. You can change the maze path waya in secouda to prevent the maze becoming too stale after lots of use. Completely safe and foolproof, uses etandrud buttery, Size i8inx 19 inx 6 in (Max.) You
 \& Por all parts including chaksis, aritches atylus, sipalling, SEPARATELY). FULL OPERATIEG DIRECTIONB WITH EACR OF THE PROJECTB.

Your money refunded in full if not $\mathbf{1 0 0 \%}$ delighted.

 CONCORD ELECTRONICS LTD. (P.E.14) - 8 WESTBOURNE GROVE (Near Bayswater Tube) Callers welcome. 9-6 including Saturdays

W. 2

2ikW FAN HEATEA Three position spritching suit changes in the weather: WW), bwitth down for halit
 blows cold for summer coollng -adjutatable thermootat acto as nutn control and anfety cut-
out. Complete Fit 23.15.0. Post ard ins. $7 / 6$.

12 volt Car Battory Trickle Charger. Mide in Japan, this is very siluall and neat. Regular use whe winter. Silly price, $25 /-$ plua $4 / 6$ pootage and insurance.

QuICK CUPPA

Mini Inmersion Heater, 3J0w. $200 / 240$. Bolls full cup in about two minutes. Lise any socket or
lamp holder. Hare at bedside for tea, baby's food, etc. 24/6, post and insurance $1 / 6$. 120 . car modet also a vailable 19/6.
PLINTH AND COVER Sultable for most nuto changers. teak base with
tlated perspex cover.
$85 /-$ plue 6/6 postage.

THYRISTOR LIGHT

DIMMERS
Hilldmincandeaventilghting
 and wired ready to instnll. 59/6.

AUTO-ELECTRIC CAR AERIAL with dashboard control awitchfully extendable to 401 In . or fully retractable. Sultable for 12 V pooitive or negative earth. Supplied and ready wired dashboard 25.18.6 plua 5/- poest and ina.

COMPUTER TAPE
2,400 ft of the bert magnetic tape nonicy can buy. Made by
 breakable and on at 1011 n . metinl
computer spoul. Users have latimed enceessfu! results with

HONSTMANN "TIME \& SET" SWITCH 430 Amp Switch.) Juat the thing if you rant to come home o a warm house without It coasting you a fortune. You can 14 hours from setting time or you can use the switch to give s boot on period of up to 3 hours. Equally suitable to control processing, Regular price probably around e5. special snip price 29/6. Poet ard ins, $4 / 6$.

THE FULL-FI STEREO SIX

The amplifier Younsillion of the yamazed at the fullness of reproduction and at the added qualitlen your records or tuner will reproduce. Built into metal cabinet elegantly metyled
and teak finiened to blend and teak finianed to blend with modern furnishinge, this amplifier usea an over the two channels. The amplither is Ideal for use with normal plek-upe and tuners, it has a double wound mains transforner and ganged volume and tone controls-aleo switching for Mono to stereo, tuner or pick-up. Other cont rols include "treble lift a and cut", "balance"' and separate mains on/oft switch. Price is *8.10.6 plus $7 / 6$ poest and insurance.

1) pole	8/6	6/68	8/8/8	$8 / 6$ $8 / 8$	${ }_{6 / 6}^{6 / 6}$	${ }_{6 / 8}$	$8 / 6$	0/6	
${ }^{3}$ polem	0	d/6	$6 / 6$	${ }_{6} / 8$	10,6	10/6	10/6	14/6	14/6
4 poles	$8 / 6$	8/6	6/6	10/6	$10 / 6$	$10 / 6$	10/6	18/6	18/6
5 poles	8	$1 / 6$	10/6	10/6	14/6	14/6	14/6	2\%/6	28/6
6 poles	8/8	10/6	10/6	10/6	14/6	14/6	$14 / 6$	20/6	20/6
7 poles 8 poles	10/6	10/6	10/6	14/6	18/6	18/6	18/6	20/6	20/6
${ }_{9} 9$ poles	10/6	10/6	10/6	14/6	18/6	18/6	18/6	34/6	34/6
10 poles	$10 / 8$	10/6	14/6	18/6	22/6	$28 / 6$	206	48	
11 poles	10/6	14/6	14/6	18/6	20/6	20/6	20/6	4/6/6	46
12 poles	10/6	14/6	14/6	18/6	23/6	$20 / 6$	20/6	50/6	80/6

SPARTAN Portable Long and medium wave 7 transistor, size bin.:than uaual apeaker giving very good tone. Bullt-1n lerrite aerlal and telescopic aerlal for dietan
stations. A real bargain stations. A real bargain complete with leather case, carry siling, earplug
and case. $88.15,0$, plus 5 ,- poot and and case. Es.15.0. plus 5^{\prime}; post and m n.

MULT-SPEED MOTOR

Replacement in many well knowu food mixerss. Six apeeds are availahle. or both of the nylon socketa (wher or both of the nylon sockets (where the beaters of the food mixers
normally go) and $8,000,12,000$ and 15,000 r.p.m. (Ideal polithing ane from the main drive shalt. Very powerful and uaseful motor size
approx. approx. 2 in. diameter 3 in. long.
Price $17 / 6$ plus $4 / 6$ post and Ina. 1: or more post free.

MAINS OPEMATED CONTACTOR

 2200240 V 50 cycle solenold with laminated core so very ilent in operation. Closea 4 circulte eitch rated at 10 A . Extremely well made by an 19/6 each.

DOUBLE ENDED MAINS MOTOR

 On feet with holes for acrewdown fixlng. To drive nodelis, each, plus $3 / 0$ post and each, plus $3 / 0$ post and free.0.005 mFd TUNING CONDENSER

Provent desigu, ideal fur stralght or reflex circuita 2/6 each, 24/- doz.

Where pootage la not stated then ordera over E5 are post frec. Below $\mathcal{E} 5$ add $9 / 9$, M.A.E. with enquiriea pleasc.

ELECTRONICS (CROYDON) LTD

Dept. PE, 266 London Road, Croydon CRO 2TH Also 102/3 Tamworth Road, Croydon

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

147GT $7 / 6$	25U4GT11/6	DL92 5/9	EL90 5/3	PCL84 $7 / 6$		
1FSGT $7 / 8$	$30 C 16$	DL44 7/6	EL500 12/6	19CL85 8/-	UBF80	5/0
1N5GT 7/9	30 Cl 5151 L	DL46 7/3	EM80 8/3	PCL86 8/3	UBF89	\%/0
$1 \mathrm{R5} \quad 6 / 8$	30 C 17 16/-	D186 5/9	EM81 8i3	PCL88 14/6	UCC84	7 -
185 4/8	30 Cl 81818	DY87 5/9	EM84 8/9	PCL80015/6	UCC85	7/3
$1 \mathrm{~T} 4 \mathrm{3} / \mathrm{-}$	$30 \mathrm{~F} 515 / 6$	EABC80 8/6	EM87 7, ${ }^{\text {7 }}$	PENA4 $8 / 6$	UCF80	7/3
384518	$30 \mathrm{FL} 112 / 9$	EAF42 10/-	FY51 7/3	l'EN36C14/-	TCH42	12/6
$3 \mathrm{SV}_{4} \quad 7 / 6$	30FL $1214 / 6$	EB91 2/3	EY8 ${ }^{6 / 6}$	PFL20011/9	UCH81	$8 / 6$
5Y3GT 6/-	30 FL 14 14/-	ERC33 8/-	EZ40 8/9	${ }^{1}$ L3a6 $6 / 9$	LCL82	7/-
5Z4G 7/8	$30 \mathrm{LI} \quad 8 / 6$	EBC4 $10 / 6$	EZ41 8/9	PL81 9/3	TCL83	11/-
6/30L2 11/9	$30 \mathrm{Ll} 513 /$	EBC90 4/6	EZ80 4/6	PL81A 10/3	UF41	10/6
6AL5 2/8	30 LLT 1719	EBF80 6/9	EZ81 4/9	PL82 $6 /-$	UF85	$8 / 9$
6AM6 $2 / 8$	$\begin{array}{ll}30 \mathrm{P} 4 & 13 \%\end{array}$	EBF89 6/3	GZ32 8/9	PL83 6/6	UF89	819
$6 \mathrm{AQ5} \quad 6 / 8$	$\begin{array}{ll}30 \mathrm{Pl} 12 & 13 / 8\end{array}$	ECC81 3/8	G734 9/8	PL84 8/6	UL41	12\%
6at6 4/6	30P19 18/-	$\begin{array}{ll}\text { ECCB2 } & 4 / 9\end{array}$	KT41 15/6	PL500 13/-	UL44	$201-$
6BAG $4 / 6$	30 PL 1 12/9	ECC83 7 7-	KT61 8/8	PL504 13/6	UL84	71
6BEG $\quad 1 / 9$	$30 \mathrm{PL} 1318 / 6$	ECC85 5/9	KT66 16/9	PL508 23/6	UM80	$5 /-$
ORJ6 8/6	30PL1414/-	FCCE804 12/-	LN329 14/6	PM84 7/6	UM84	1/6
6C5G 4/8	35L6GT 8/9	ECF80 6/-	$\begin{array}{ll}\text { N78 } & 17 / 6\end{array}$	$\begin{array}{ll}\text { PX25 } & 23 / 6\end{array}$	TY41	716
6CD6G 22\%-	35 W 4 4/8	ECF82 B/-	P61 10/-	PY32 11/-	UY85	6/0
6 Fl 4 9/-	35Z4GT 5/-	ECH35 8]-	PABC80 7/-	PY83 11/-	VP4B	16/8
$6 \mathrm{~F}^{2} 2318 / 9$	150 B2 13/6	ECH42 12/9	PC86 10/3	PY81 5/3	W119	7/-
6 F 25 12/6	$80{ }^{81} \quad 9$	ECH81 5/8	$\begin{array}{ll}\text { PC88 } & 10 / 3\end{array}$	PY82 518	27%	4/6
6K7G $\quad 2 / 6$	${ }^{6063}$ 12/6	ECH83 $8 / 3$	$\begin{array}{ll}\text { PC96 } & 8 / 6\end{array}$	PY83 5/9	${ }^{\text {ACl0 }}$	$3 / 6$
6K8G 8/6	AC/YP215/8	ECH84 76	PC97 8/-	PY88 6/8	${ }^{1} \mathrm{Cl27}$	2/6
6V6G $2 / 6$	$\begin{array}{\|cr\|}\text { AZ31 } & \text { 9/6 } \\ \text { B349 } & 13 /-\end{array}$	ECL80 7/-	PC900 $7 / 6$	PY800 7/6	AD140	$7 / 6$
6V6GT 6/6	$\begin{array}{ll}\text { B349 } & 13 /- \\ \text { B729 } & 12 / 6\end{array}$		$\begin{array}{ll}\text { PCC84 } & 6 / 6 \\ \text { PCC85 } & 8\end{array}$	$\begin{array}{ll}\text { PY801 } & 7 / 6 \\ \mathrm{R} 19 & 8 / 8\end{array}$	AF110	4/-
6×4 to	$\begin{array}{ll}\text { CCH35 } & 12 / 6\end{array}$	EF3\%A 8/8	$\begin{array}{ll}\text { PCC85 } \\ \text { PCC88 } & 8\end{array}$	$\begin{array}{rr}\text { R19 } & 8 / 6 \\ \text { R20 } & 12 /-\end{array}$	AF116	4/-
6X5G7 5/0	CL33 18/6	EF30 1/9	PCC89 $9 / 6$	TH2IC 17/6	AF118	9/9
$\begin{array}{ll}10 \mathrm{Fl} 18 & 7 /- \\ 10 \mathrm{Pl} 3 & 12\end{array}$	CY31 $6 / 8$	EF41 11/g	PCC189 8/8	C25 13/-	AF125	$3 / 6$
$10 \mathrm{Pl3}$ 12 AH 8 12/- 45/-	$\begin{array}{ll}\text { DAC32 } & 7 / 3 \\ \text { DAF91 } & 4 / 3\end{array}$	EF80	PCC80513/-	U26 12/-	AF12'	$3 / 6$
12AT7 3/9	DAF91 ${ }^{\text {DAF9, }} 78$	EF8E 6 8/3	$\begin{array}{ll}\text { PCF80 } & 6 / 6 \\ \text { PCF82 } & 8 / 6 \\ \text { PCF8 }\end{array}$	$\begin{array}{ll}\text { U47 } & 13 / 6 \\ \text { U44 } & 12 /-\end{array}$	OCd	5/-
12AUG $4 / 8$	$\begin{array}{ll}\text { DF33 } & \\ \text { D/3 }\end{array}$	$\begin{array}{ll}\text { EF86 } & \text { 6/3 } \\ \text { EF89 } & 5 / 3\end{array}$	$\begin{array}{ll}\text { PCF82 } & \text { 8/6 } \\ \text { PCF80 } & 9 / 6\end{array}$	$\begin{array}{ll}\text { U494 } & 12 /- \\ \text { U'S } & 4 / 9\end{array}$	OC44	2/6
12AL7 19	DF91 8/-	$\begin{array}{ll}\text { EF89 } \\ \text { EF91 } & \text { 2/3 }\end{array}$	PCF88 PCF800 $18 / 6$	$\begin{array}{ll}\text { U78 } & 4 / 9 \\ \mathrm{U191} & 12 / 6\end{array}$	OC4	$2 / 6$ $2 / 6$
12AX7 4/9	DF96 7/8	EF183 5/9	PCF801 $6 / 9$	U193 8/6	$0_{0} \mathrm{Cl}^{2}$	$2 / 6$
12K8GT 7/8	DH75 4/6	EF184 6/6	PCF802 $9 /-$	$\underline{\mathrm{U} 251} 14 / 6$	0 CF 5	$2 / 6$
19BG6G17/6	DK32 7/6	EH90 8/6	PCF805 $13 / 8$	U301 10/6	0 O 81	$2 / 6$
20F2 13/6	DK9] 5/9	EL33 9/8	PCF80G 11/3	U329 14/6	OC8 1 I	$2 / 6$
$20 \mathrm{P3}$ 11/9	DK92 8 8/6	EL34 0/6	PCF808 14 /-	U801 19/6	OC82	$2 / 6$
20P4 18/6	DK96 7/3	EL41 11/-	PCL82 7/3	UABC80 $6 / 6$	OC82D	$2 / 6$
25L6GT 5/-	DL35 5/-	EL84 4/9	PCL83 12/-	UAF42 10/3	OC170	,

```
READERS RADIO (P.E.) 88 TORQUAY GARDENS, REDBRIDGE, ILFORD,
```



```
Tel. 01-5507441
Postage on 1 valve 9d. extra. On 2 valves or more, postage 6 d . per valve extra. Auy Parcel Insured against Damage in Tranait 6d. extra.
```


You should read the Goodmans
 High Fidelity Manuals

Goodmans High Fidelity Manuals are of vital interest to you, and contain constructive and informative articles on all aspects of High Fidelity sound.
One manual contains specifications, descriptions and full colour illustrations of the entire current range of loudspeaker cabinets, systems, amplifiers and F.M. tuners The construction manual contains the information needed by those enthusiasts who prefer to make their own High Fidelity or musical instrument loudspeaker systems.
These manuals are avallabie tree trom
Goodmans Loudspeakers Limited
Axiom Works Lancelot Road Wembley Middx. Tel: 01-902 1200

If you can put a'Yes' in every box, you might just make a RADIO TECHNICIAN in AirTraffic Control

An all-consuming interest in tèlecommunications \square
At least one year's practical experience in telecommunications, preferably with 'ONC' or 'C and G' technical qualifications

A highly developed sense of responsibility

Willingness to undergo a rigorous programme of training \square

Aged 19 or over

To the right man, the National Air Traffic Control Service offers the prospect of an interesting and steadily developing career as a Radio Technician in air traffic control.

The work involves the installation and maintenance of some of the very latest electronic equipment at civil airports: radar stations and other specialist establishments all over the country. Important today. the job will become increasingly vital as Britain's air traffic continues to grow, and prospects for promotion are excellent. Starting salary varies from $£ 1044$ (at 19) to $£ 1373$ (at 25 or over). Scale maximum $£ 1590$ (higher rates at Heathrow). The annual leave allowance is good, and there is a non-contributory pension for established staff
If you feel you can meet the demands of this rather special job-and you have a strong determination to succeed-you are invited to complete the coupon below.

Send this coupon for full detasis and application form To: A J Edwards, C Eng, MIEE, The Adelphi, Room 705, John Adam Street, London WC2N 6BQ. marking your envelope 'Recruitment'.

Name
Address

Not applicable to residents outside the United Kingdom
NATCS
National Air Traffic Control Service

Pructicul Electronics Classified Advertisements

RATES: 1/6 per word (minimum 12 words). Box No. $1 / 6$ extra. Advertisements must be prepaid and addressed to Classifled Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London, E.C. 4

miscellaneous

Abstract

We stock all those components and materials required by the home $\mathrm{Hi}-\mathrm{Fi}$ constructor, including speaker grille fabrics, BAF wadding, Peerless speaker kits, Helme Cabinet Kits, cross-over networks, inductors, etc. Special offers also available. Send S, 5d. stamps NOW for your copy of our newfully illustrated catalogue (catalogue cost refunded against purchases over 10 s .), No callers please, mailorder ONLY.

a untoscan
 Dept, P.E.I

PSYCHEDELIC

LUMINOPHONICS
Or is thisjust another way of referring to FANTASY Either way, our Projects 24 and 1014 probably come within this category-THINK OF THE FUN YOU WOULD HAVE WITH SOMETHING LIKE THIS AT A PARTY! There are MANY OTHER UNUSUAL PROJECTS TOO- how about an ELECTRONIC STETHOSCOPE for LISTENING THROUGH WALLS, etc., or a TRANSMITTER/ RECEIVER that doesn't use RF, SO LICENCE
WORRIES ARE OVER! Then there's another project for a "LEARNING" MACHINE-imagine one of these in YOUR BACKROOM YOUR Y
FRIENDS WOULD BE AMAZED! If REALLY FRIENDS WOULD BE AMAZED! If REALLY UNUSUAL projects interest you, then WE'VE now YOU COULD BE iN THE "SCIENCE FICTION" WORLD OF "BOFFIN"!
DON'T PUT IT OFF! SEND $3 /$ - for you
DON'T PUT IT OFF! SEND 3/-for your list-NOW BOFFIN PROJECTS
4 CUNLIFFE RD., STONELEIGH, EWELL, SURREY Designs by GERRY BROWN and JOHN SALMON
and presented on TV

BIG BARGAIN PARCEL $13 /=$
POST PAID
Containing multi-contact relay, transistors, resistors (some high stab), rectifiers, diodes, capacitors, pots, knobs, etc.
4 WATT GRAM AMPS.
Volume and tone controls, mains operation, 3Ω output, new and boxed $72 / 6$ POST
SALOP ELECTRONICS Callers 23 Wyle Cop
Shrewshury, Shropshire
S.A.E. for liste

GARRARD RECORD PLAYER UNITS
The Garrard 2025TC with (GCS36) Curt ridge for Stereo or Mono Records, com-
plete with Plinth and Top Cover.

only 415 plus 10,6 post and packing Also avallable: Garrard SP25 Mk. 11C w/th GP93/1 Cartridge, $\mathbf{2 2}$. Garrard 3000 with GPlo4 Cartridge, [18. Also manufacturers of HI-FI ampllfiers and car radios.
SUNDERLAND ELECTRICS LTD Princess Street, Manchester MI 6HR

GIRCUIT BOARD ETCHING KIT8, full lnstructlons, 10/6d. C.W.O. ARVIN SERVICE COMPANY, 12 Cambridge Road, St. Albans, Herts.

PARAPHY8ICAL LABORATORY, Downton, Wilts. Fascinating international magazines. S.A.E. for list. Parcel 20 .

Brand New and Individually Teated Transiators supplied unmarked, but packed separately for identiHeation and guaranteed to be within their correct specification or money refunded. All at $1 / 9$ each or			
Any 16 trantistors for only \mathbb{L} l.			
ACY2?	BSY27	0 C 201	2N3702
BC108	OC45	0 C 202	2N3703
BC109	0 C 71	ZTX 300	2N3705
BFY ${ }^{\text {c }}$	OC72	2NX300	2N8706
BFY5:	OC200	2N2926	2N3708

ANTEX SOLDER IRON

A lightweight Iron with a 15 watt nickel plated bit. Designed to enable you to weld rellable jolnts accurately. Model CN240 volts. Special low prlce. Act now. Onty 29/11. MONEY BACE GUARANTEE. P. \& P. $1 /-$

J. M. KING (H)

17 Buckridge, Portpool Lane, London, E.C.I

P8YGHEDELIC LIGHTING UNIT. This sound modulated lighting control unit can add a new dimension to the sort of music you prefer. It adds feeling to mood music and power to beat music. Easy to construct display units that can be built into an old TV case or hi fi console, display set-ups for mobile discotheques and many more brand new designs are described in the literature given free with each unit. Now that the festive season is coming it will be ideal for "freek-out parties" and connected to Christmas tree fairy lights will really make things swing. No connections need be made to loudspeakers or amplifiers; this unit has its own Built-in Microphone and Amplifier and only needs plugging into the mains. It can be loaded with up to 1,500 watts of lamps and sensitivity is fully variable. Case size is only bin $x 4$ in $\times 3$ in. It comes to you ready built and tested for the amazingly low price of $12 \mathrm{gns}, \mathrm{P}$. \& P. 4/-. Money back if not delighted. Don't dolay. Send for yours now to REID ELECTRONICS, 30 Second Avenue, Heaton, Newcastle-upon-Tyne, NE6 5XS.

HOLIDAY FOR BOY8. 14/16 years August 1971, specialising in engineering, electronics, photography. Tuition and practical work including karting. 11 days-\$15. Write for free brochure: INTER-SCHOOL CHRISTIAN FELLOWSHYP, 47 Marylebone Lane, London, WIM 6AX.

- MUSICAL MIRACLES

WAA-WAA Pedal. Complete kit of all parts, robust cabinet, mechanism and instructions.
Huge sales, well proven design. Only $49 /-$ Huge sales, welf proven design. Only 49/complete. Or built and tested 24.iss. post free. built electronic circuit modules, e.g. box giving waltz, foxtrot, etc., costs under $£$ if. Organ Percussion units $£ 14$. Bass pedal and other fascinating effects, fuzz, tremolo, etc. Send s.a.e. for list: D.E.W. LTD. 254 Ringwood Road, Ferndown, Dorset

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE

because this GPO approved transmitter/receiver kit does not use R. F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means.
Actually it's TWO KITS INONE because you get ali Actually it's TWO KITS IN ONE because you get ali the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-T -FOLOW instructions. An extremely has obvious applications for HOUSE.TO-HOUSE has obvious applications for HOUSE-TO-HOUSE
USE, SCHOOL PROJECTS. LANGUAGE LABORATORIES, SCOUT CAMPS, ete.

GET YOURS ! SEND 95/- NOW
TO: 'BOFFIN PROJECTS'
DEPT. K2010
STONELEIGH, EWELL, SURREY

ENAMELLED COPPER WIRE

S.W.G.	Per 11 b reel	
$18-22$	$11 / 3$	Per 11 b reel
$23-30$	$11 / 9$	$16 / 6$
$31-35$	$12 / 3$	$17 / 6$
$36-40$	$15 /-$	$18 / 6$
$41-44$	$17 / 9$	$24 /-$
		$29 / 6$

Orders despatched by return of post. Please add $1 /$ per item $P . \& I$. Supplied by: BANNER TRANSFORMERS, Brooks Street, Higher Hillgate, Stockport, Cheshire. TRADE ENQUIRIES INVITED.

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrun analysers, voltage regulators, sig-gens, M / C relays, components, etc. Lower Beeding 236.

BUILD IT in a DEWBOX quality cabinet $2 \ln \times 2 \frac{1}{2}$ in \times any length. DEW LTD. lingwood leoad, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

8CRAP VALVE8 WANTED. Type TY5-500, TY6-800, TY6-1250A, TY7-6000A, TYS-53000 , ESA1500, 16P13, BW1169, also similar types. ELECTRONIC HEAT CO., 352 Lower Addiscombe Road, Croydon. Tel. 01-654 7172 .

Ine Nite-Lite dimmerswitch will dim up to 400 watts of incandescent lighting from zero to full brilliance. This unit simply replaces the normal light switch, and is supplied with MK mounting frame for use where more depth is required. Price built and tested complete kit All orders CWO + $1 / 6 p^{85} /-$ Trade enquiries welcome DIATHANE LTD. Ill sheffield Road Wymondham, NORFOLK
PRINTED CIRCUIT PROBLEMS: Prototype circuits produced from your artwort: $2 /- \text { per sq. in. }+2 / 6 \mathrm{p} \& \mathrm{p} \text {. }$ Small to medium batch production at reasonable rates! Complete design and manufacture from circuil diagrams !
Fairchitd $\mu \mathrm{L}$ 914 sss s s! Xstock 8/- Quadrac 400v 4A (as used in our lamp dimmer) 29/6 Untested SCR's 300v IA TOS rase 2/- SAE for full list

PRINTED CIRCUIT8. Send circuit and board dimensions for quote. Trade inquiries welcome. JON TECHNICAL SERVICES, c/o Winchells, Ashford Road, Ashford, Middlesex.

FOR SALE

SEEN MY CAT 7 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PE, New Mills, Stockport.

MORSE MADE ! !

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commerclal Morse Using sclentifcally progreas to be expected). Using scientifically prepared 3 -speed recordy you without translating. You can't help it, it's as easy as learnlug a tune. 18 W.P.M. in 4 weeks guaranteed. For detaila and course C.O.D, rling B.T.D. 01-660 2896 or send 8d. stamp for explanatory booklet to: G8ERO (BOY 19), 45 GEREH LAFE, PUELEY SUREEY
NEW CATALOQUE No. 18, containing credit vouchers value 10/-, now available. Manufacturers new and surplus electronic and mechanical components, price 4/6, post free ARTHUR SALLIS RADIO CONTROL LTD., 28 Gardner Street, Brighton, Sussex.

AVO 7 METER, electronic tools, components books, and coples of P.E. for sale. J. VERNON, 8 Southfields Avenue, Oadby, Leicester.

EDUCATIONAL

TELEVISION

困This private College provides efficient theoretical and practical training in Radio and TV Servicing. One-year day courses, commencing in Sept., January and April, are available for beginners, and shortened courses for men who have had previous training. Write for free prospectus to:-
London Electronics College, Dept. LX/3. 20 Penywern Road, Earls Court, London, S.W. 5

Tel. 01-373 8721
A.m.8.E. (Elec.), (ity it Guilds, R.T.E.B Cert., IRadio Anhateurs' (Cert., etc., on "Satis faction or Refund" terms. Wide range of courses in Elec. Engineering, Design, Instal lation, Repairs, Refrigeration, Electronics Radio and TV., etc. Send for full details and illustrated book - FREE BRITISH INSTITUTE OF EN(INEERING TECHNOLOGY, Dept. 124 K Aldermaston court

COLOUR TV SERVICING

Be ready for the coming Colour TV boom. Learn the techniques of servicing colour TV sets through new home-study courses specially prepared for the practical TV engineer technician, and approved by leading manufacturer. Full details from ICS (D.561), Intertext House, London, S.W.8, or phone 01-720 1983.

HUNDREDS OF TOP PAID JOBS in engineer ing await qualifled men. Get a certiflcate through B.I.E.T. Home Study-Mech., Elec. Auto., Radio, TV, Draughts., Electronics, Computers, Building, etc. Send for helpful FREF book, B.I.F.T., Department 125 K , Aldermaston, Court, Reading, RG7 4 $\mathrm{P}^{\prime} \mathrm{F}^{1}$.

GET INTO ELECTRONIC8--big opportunities for trained men. Jearn the practical way with low-cost Postal Training, complete with equipment. R.T.E.B., City \& Guilds, Radio, TV, Telecons, etc. For freo infornative Guide, write ('HAMBERA COLLEGE (Dept. 856 K), Aldermaston ('ourt, Reading, RG7 856 K).

ELECTRICAL

BEST EVER 200/240 VOLT "MAINS" SUPPLY FROM 12 VOLT CAR BATTERY Exclusive World Scoop Purchase. The fabulous Mk.12D American Heavy Duty Dynamotor Unit with a Massive 220 watt outpur and giving the most Brilliant 200/240 volt performance of all time. Marvellous for Television, Drills, Power Tools, Mains Lighting, AC Fluorescent Lighting and all 200/240 volt Universal AC/DC mains equipment. Made at tremendous cost for U.S.A. Govt. by Delcoremy. This magnificent machine is unobtainable elsewhere. Brand New and Fully pleasure, refund guarantee. Please send S.A.E. for illustrated details.
Dept. PE, STANFORD ELECTRONICS Rear Derby Road, North Promenade Blackpool, Lancashire

IERVICE 8HEET8

SERVICE BHEET8. Radio, TV, etc., 8,000 models. List 2/=. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.
RADIO TELEVI8ION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London, W. 6 (01-743 8441).

8ERVICE \&HEET8 (1925-1970) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFinding Guide. Prices from $1 /$. Over 8,000 models available. Catalogue 2/6. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

WANTED

CABH PAID for New Valves. Payment by return. WILLOW VALE ELEOTRONICS 4 The Broadway, Hanwell, London, W. 7. 01-6675400/2971.

HIGHEsT CASH PRICES for good quality Tape Recorders. 9.30 to 5.00 . Immediate quotations. Tel. 01-472 2185.

WE BUY NEW VALVE8. Cash sent by return, A.D.A. MANUFACTURING CO. 116 Alfreton Road, Nottingham.

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

RECEIVER8 AND COMPONENTS

PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned complete With layout drawing.
EXAMPLES
Marine Tachometer (May 1970) 5/-ea. Musieal Stave (May 1970) 8/- ea.
Waa-Waa pedal Vol. 4 No. $72 / 9 \mathrm{ea}$. Audio Sig. Gen. (Sine and Square on one board) Yol. 5 No. $108 / 6 \mathrm{ez}$.
S.A.E. for List. Now available from:- HENRY'S PH LTD.' Edgware Road, London, W. 2 Sandwich, Kent. Tel, 2517 Instrial Estate,

> DRY REEDINSERTS
> Overall length 1.85* (Body length 1.1") Diameter $0.14^{\prime \prime}$ to switch up to 500 mA at up to $250 v$ D.C. Gold clad contacts. $12 / 6 \mathrm{~d}$. per doz.; 75/-per 100; $£ 27,10.0$ per 1,000; $\mathbf{E 2 5 0}$ per 10,000. All carriage paid.
> 40/42 Portland Road, Worthing LTD.

NEW MODEL V.H.F. KIT MK2

Our latest KIt, improved design and performance plus extra Amplifier Stage, recelves Aircraft, Amateurs, Mobile, Radio 2, 3, 4, etc.
This novel lit tle set will give you endless hours of pleasure and can be built in one evening. Powered by 9 Volt battery, complete with easy to follow instructions and bullt in Jack Socket for use wlth Earphones or Amplifier. Only 68/-. P. \& P. Free U.K. only Postal Orders, Cheques to: Dept. P.E.
Galieon Trading Co., 25 Aveion Road, Romford, Essex
MULLARD CR25 RESISTORs. 0.4 W 5\% HS $2.5 \times 7 \mathrm{~mm} 2 \mathrm{~d}$. each. P. \& P. $1 /$-. SPRING ELECTRONICS LTD., 25 Cranley Gardens, Muswell Hill, N. 10 .

SITUATIONS VACANT

Enم TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I C Strained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses.offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:

* C. G. TELECOMMUNICATION TECHNICIANS' CERTIFICATES.
- C. G. ELECTRONIC SERVICING
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION:
- RADIO OPERATOR CERTIFICATES.

Examination Seudents coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how I CS can help YOU in your career. Full details of I C Scourses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL
 CORRESPONDENCE
 SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools
(Dept. 152), Intertext House, Stewarts Road, London, S.W. 8

NAME.
Block Capitals Please
ADDRESS
ADDRESS

R\&R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED\& GUARANTEED

EBF80	$3 /-$	PCC84	$3 /-$	PY81	$3 / 6$
EBF89	$3 / 6$	PCF80	$3 /-$	PYB2	$3 /-$
ECC82	$3 /-$	PCF82	$3 / 6$	PY800	$3 / 6$
ECL80	$3 /-$	PCL82	$4 /-$	PY801	$3 / 6$
EF80	$1 / 6$	PCL83	$4 /-$	UI91	$4 / 6$
EF85	$3 /-$	PL36	$5 /-$	$30 F 5$	$2 / 6$
EY86	$4 /-$	PL81	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 /-$
EBC41	$4 / 6$	PY33	$5 /-$	$50 C D 6 G$	$7 / 6$

POST, ONE VALVE 9d. TWO TO SIX $6 d$. over six post paid.

A CORNUCOPIA OF COMPONENTS: Scarce valves, selected TV components, speakers and cabinets. Computer panels-long leads, NOT printed circuits. Transistors, resistors-new and recovered. State your refuirements. S.A.E. for details MAIL-MART, 6 Eastbourne Road, Pevensey Bay, Sussex.

SUB-MINIATURE RESISTORS SMALLER THAN A MATCH HEAD!

Microhnt hath watt. 5 per cent. Values from 51 K

 to 100 K at 10 d . each. Microhm Metai Glaze Resjators for the ultimate in D.I.Y, miniaturisation. Integraded Circuits complete wilh Data:SN79741N Type 741 Op. Amplifler
N5709A Type 709 Op. Amp
PA230 Audio Preamplifier
PA234 IW Audio Amplifier
PA237 :W Audio Amplifter
SL402A.2W Audio Amplifter
D40C1 4W Darlington Amplifier
MEL 11 Photo Darlington Amplifier
Connectors for D.T.L. I.c.'s

Trangistors 2N5172
 ME041?
 2N4059

$\begin{array}{ll}1 / 9 & \text { BFX86 } \\ 8 / 9 & \text { BDI24 }\end{array}$
$\begin{array}{ll}8 / 8 & \text { BDI24 } \\ 8 / 8 & 2 \mathrm{~N} 305 \mathrm{~S}\end{array}$
Silicon Diode IN914
RCA 40583 Trigger Diode
Silicon Rectiners: 1 A IN 4000 Series
$100 \mathrm{~V} \quad 1 / 6$
$\begin{array}{ll}200 \mathrm{~V} & 1 / 9 \\ 400 \mathrm{~V} & 2 /-\end{array}$ 400 V 2/600 V
800 V 2/10
1.6A PL4000 Series 400 V

Bridge Rectifiers $2 /$
$400 \mathrm{~V} 2 / 6$
$1 \mathrm{~A} 50 \mathrm{~V} 7 / \mathrm{B}$. $\quad 1 \mathrm{~A} 200 \mathrm{~V}$ 8/-. $\quad 2 \mathrm{~A} 400 \mathrm{~V} 12 / 6$.
JEF ELECTRONICS
(P.E.1), York House, 12 York Drive Grappenhall, Warrington, Lancs.
Mail Order Only
W.O. P. \& $P_{i} 1_{i *}$ per order,

CAPACITORS. Dubillier, $0 \cdot 1 \mu \mathrm{~F} \quad 500 \mathrm{~V}$, 6/doz., $2 /-100$. Hunts, $0 \cdot 04 \mu \mathrm{~F} 500 \mathrm{~V}, 3 /-$ doz., \$1 per $100 ; 0.001 \mu \mathrm{~F}$ and $0.005 \mu \mathrm{~F} 350 \mathrm{~V}, 3 /-$ doz., 81 per 100 . Skeleton Presets, $2 \mathrm{k} \Omega, 1 / 3$., Co-ax Sockets on isolation panel, 1/3, 12/- doz, Jack Plugs, Standard, $1 / 9 ; 3.5 \mathrm{~mm}, 1 / 3$; 400-200-50-16 $\mu \mathrm{F}$ 300V. 6/m, 83 per doz., Recording Tape, 5 in LP, $\% /=5$ in LP, $12 /-$ Post and packing on all orders 2/- Send S.A.E. for list. M. DZIU'BAS, 158 Bradṣhawgate, Bolton, Lancs.

EX COMPUTER PRIRTED CIRCUIT PARELS quality resistors, wipacitors, diodes, etc. our Inaity resistors, cipacitors, fioctes, etc. Our
price 10 boarde $10 /=$, P. \& P. $1 / 6$. With a guaranteed minhmum of 35 tranisistors. Data on transistors fucluded.
SPRCIAL BARGAIM PACK, 25 boards for st, P. \& P. 3/6. With a guaranteed minimium of 85 transistors. Data on transistors included.
PAMELS with \& power transistors blmilar to OC28 on each board-components ty boarde (4 $0 \mathrm{C} 28) 10 /-$ P. \& P. 1/6.

9 OA5, 3 OA10, 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 GET 872,3 GET 872 B , 1 GET 876 All long leaded on panels 13 in $\because 4 i n .4$ for $20 /-$ P. \& P. 5/-

LARGE CAPACITY RLECTROLYTICS $\left.\begin{array}{l}10,000 \mathrm{MFD} 30 \mathrm{~V} \\ 16,000 \mathrm{MFD} 12 \mathrm{~V}\end{array}\right\} 7 / 6$ each. P. \& P. 1/6. or $\mathbf{2 8 . 1 0 . 0}$ per doz. Carr. 10/-

250 MIXED RESISTORS

150 MIXED HI STABS

1. : * 1 watt 5% \& better.

EXTRACTOR/BLOWER FANS (PAPST)
$100 \mathrm{CFM} 2,800 \mathrm{RPM} 4!\mathrm{n} \times 4$ in $\times 2 \mathrm{in}$. Ideal for kitchen extraction, inatrument cooling, et
 O D E S EXEORT
 Anp 1,000 P1V 4 for 10/-
 4 1or 81.
1.
}

BARGAIN RELAY OFFER

Single pole change over silver contacts 25 V to 50 V . $2.5 \mathrm{k} \Omega$ coil. 8 for $10 /-, \quad$ P. \& $\mathrm{P} \quad 1 /-$

KEYTRONICS mail order only 52 EARLS COURT ROAD LONDON, W. 8

01-4788499

BRAND NEW ELECTROLYTIC8 $15 / 16 \mathrm{~V}$ $0 \cdot 5,1,2,5,10,20,30,40,50,100 \mathrm{mF}$, 9 d . E12 scries 5% resistors, Carbon Film $1 \mathbf{W}$ 1Ω to $1 \mathrm{M} \Omega, 1-5 \mathrm{~d}$. Wirewound $5 \mathrm{~W} 15 \Omega$ to $15 \mathrm{~K} \Omega, 10 \mathrm{~d}$. Postage $1 /-$. The C.R. SUPPLY CO., 127, Chesterfleld Rd., Sheffield, S8 ORN

RAZOR-今HARP I.F. BELECTIVITY with Brush Clevite ceramic i.f. resonators. Set of Brush Clevite ceramic i.f. resonators. Set of
$4 \mathrm{TFO} 4-442,455 \mathrm{kHz}$, with circuits, $30 / \mathrm{U}$, U.K. post paid: List 6d. AMATRONIX LTD., 396 Selsdon Road, S. Croydon, Surrey ('R2 ODE.

COMPUTER PANEL8-5-BC108, Diodes, 4-10/=. American, Total Transistors, minimum 30. Details, types, first grade components, $3-10 / 6$, post $1 / 6$. Assorled Components, $7 \mathrm{lb}, 20 /=$ C.P. J.W.B. RADIO, 75 Hayfleld Road, Salford 6, Lanes.

PRINTED CIRCUITS. Capacity now available. Send artwork for quote. S.A.E. Sample 1 off. Artwork, reduction, negative, \&d. per sq in. if in Fibreglass. $1 / 6$ per sq in. including tinning. Drilling extra. FREEMANTLE, 18 Pennine Road, Millbrook, Southampton.

OFFER. Copper laminated $\frac{1}{\text { is in fibreglass }}$ Board single-sided 4d. persq in. Double-sided Bd. per sq in. Any size cut. Minimun order $10 /$ P. \& P. plus 10%. FREEMANTLE, 18 Pennine Road, Millbrook, Southampton.

LADDER8

VARNISHED TIMBER from manufacturer Lowest prices anywhere: 15 fft . ext., 85.10 17 ft . ext., 25.15 ; 20 ft . ext., $86.5 ; 21 \mathrm{ift}$ ext. 27; $24 \frac{1}{\mathrm{f} t}$. ext., 88.2 ; 29ft. ext., $29.5 ; 31 \frac{1}{\mathrm{f}} \mathrm{ft}$ ext., 11.2 .6 ; 30ft., triple ext., $\& 14.10$. Carr 13/6. Free Lists Also aluminium ext. and loft ladders. Callers welcome. Dept. PEE, HOME SALES, Baldwin. Road, Stourport Worcs. Tel. Stourport 2574.

AUDIO EFFECTS
 \section*{5 SHAW LANE, HALIFAX, YORKS.}

Buy with confldence and obtain the right results. Refunds without question if any of our producta fail to give 100% batisfaction.
AMATEUR BANDS ALL TRAMSISTOR
SUPERHET RECEIVER KIT. No fuse, no driling. Just fit the components on our printed circuit. Slow Motion tuning. Simple IF alignment. Perspex front panel. Push pull AF armp drives your 8-15 ohm speaker. Amp can be used separately. Degigned to
 $\begin{array}{lllll}2 \mathrm{~T} . & 0.5 \text { to } 1.54 \mathrm{Mhz} & 3 \mathrm{~T} . & 1.67 & \text { to } \\ 4 \mathrm{~T} . & 5.3 & \mathrm{Mhz} \\ 5.0 & \text { to } 15 & \mathrm{Mhz} & 5 \mathrm{~T} . & 10.5 \\ \text { to } & 31.5 & \mathrm{Mhz}\end{array}$ Range 3 T normally supplied with kit. U'ses 9 Volt battery. Easy step by step instructions. Complete Kit. $8,19.6$ plue $5 / G$ P.P. \& Ins. Extra rangea 12/- per range.
POWER COMTROLLER. Power at your finger tips. Not merely hall wave control but full wave. A single variable control gives zero to full power. Uses latest 15 amp 3 kW triac and apecial triggering
device. Ideal for all trpea of lighting, fires, notors, device. Ideal for all trpes of lighting, fires, notors,
drills, etc. Complete with box, power socket, drills, etc. Complete with box, power socket tions ie.9.6. Ready built s9.4.8 plus $5 / 6$ P. P. 8 Ins. REVERBERATIOM AMPLIFIER, Gelf contained tranaiatorised, battery operated. An entirely different approach to sound reproduction Normally, tound reproduction from a single source proper sound delay throush reverberation tones, are created with a truly third dimension for concert hall originality. Two control adjust volume and reverberation. simply plug microphone, guitar etc., in, and the output into your amplifier. Supplied in a beautiful walnut cabinet 7 in $\vee 3 i n \times 4 i n$ s10.4.0. P. P. \& Ins. 6/-
VOX SWITCH. This sound operated switch is ldeal Yor mobile TX work, tape recorder switching, etc iou speak, it awitches. High and medium imp relay. In kit Ready built, tested and grarantecd. 69/6 poat paid METROMO亶E UNIT. Variable beat. Listen while you play and keep in time. Easily built, pocke slee with personal mini earphone. In kit form 87/6, post paid. Ready built in an attractive polythene case, 87/6 post pald.
MOREE OBCILHATOR. PC board, tranistorm, high stab. componenta, battery carrier, ear piece. Adjuat able tone. Just attach your key. Drives phopes or peaker. In kit form $17 / 6$ post pald. ready buil in aimilar case al above $27 / 6$ post pald.
CTRAIGHT FRON THE PREAS. Lateat Muliard manual: Audio Amps, FM tuners, stereo decoder, Recelver clrcuite, HI FI, Tape, etc., etc. $28 / 6$ pont pald.
THCAS TRAMsistors. Complementary symmetry. Drlver, NPN, PNP output. The set of three ONLY $8 /{ }^{(1)}$ post pald.

The most accurate

pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $85 /-$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE32)
54 Dundonald Road, London, S.W. 19

PARKERS SHEET METAL FOLDING MACHINES heavy vice MODELS

With Bevelled Former Bars

No. 1. Capacity 18 gauge mild steel $\times 36 i n$, wide \ldots... \ldots £ 15.0 .0
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide \ldots...... No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$. wide $\ldots . .$. Also new bench models. Capacities $48 \mathrm{in} . \times 18$ gauge 440.36 in . $\times 18$ gauge $\mathbf{6 3 0 . 0 . 0} 24 \mathrm{in} . \times 16$ gauge $\mathbf{£ 2 9 . 0 . 0}$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for $36 i n$ End folding attachments for radio chassis. Tray and Box making for $36 i n$.
model, $5 / 6$ per $f t$. Other models $3 / 6$. The two smaller models will form model, $5 / 6$ per ft. Other models $3 / 6$. The two smaller models will form
flanges. As supplied to Government Departments, Universities, Hospitals.

One yeor's guarantee. Money refunded if not satisfied. Send for details.
A. B. PARKER, Folding Marhine Works, Upper George St. , Heckmondwike, Yorks. Heckmondwike 3997

People with the right connections switch to US

It's no choke. People who have zeners phase to phase and been solder relay good component can't resistors.

We're the enthusiasts ohm from ohm. Come and meters or megaphone coil now. It never hertz ...

OPEN DAILY
9.15 a.m.-6 p.m.
$\binom{$ Closed all day }{ Thursday }

Garrand Bros. Ltd.
 TELEPHONE 01-692 4412

DEPTFORD BROADWAY (Corner of Brookmill Road) LONDON, S.E. 8

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR
RADIO, RECORD PLAYER, TAPE RECORDER, MPLFIE AMPLIFIER, ete. Types available: 6 v , 9 v , 12 v , $18 v$ (single output) $39 / 6$ each. P. \& P. 2/9.
 outputs) $50 /$ - each. P. ap. above units are completely isolated from mains by double wound transformer ensuring 100% safety.
R.CS PRODUCTS (RADIO) LTD.
(Dept. P.E.), 31 Oliver Road, London, E. 17

Your local component stockist

58075

TELERADIO ELECTRONICS

JOIN THE FASCINATING HOBBY OF RADIO CONTROL. BUILD A SINGLE CHANNEL SYSTEM FOR ABOUT €I2 OR A SOPHISTICATED PROPORTIONAL SYSTEM FOR $\mathbf{£ 8 0}$
Details from the specialists: JELERADIO CO. (P.E.) 325-7 FORE STREET, EDMONTON, N. 9

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Lofe Mounting Arrass, \vec{i} element, \boldsymbol{H}_{5} 11 element, $5 \% / 6$: 14 clement, $60-; 18$ element, 70 Wall Mounling with Cranked Arm, element, $65-; 11$ element, $75,-14$ element, 826 ; 18 element, 90 - Chimney Mounting Arras Complete. 7 element, 80 - -11 element, 87,$6 ; 14$
 axlal Cabie, 8 yd. King TrleboostersLabgear U.H.F. Boosters from Jhie, Belline Led "Concord" all Band V.H.F. U.H.F. mains operated pre-amp fi.10.0. State cicarly
number required on ali orders.
p. 5 . Aerials 8 . number required on all orders.
Accessories $3:$ C. W.O. or C.O.D.

BBC. ITV. FM AERIALS
A.B.C. (Hand 1), Loft, 品, Wall S/D. 32/6. "H" array, 60 loft array, $4{ }^{\prime}-.7$ eiement, 55 'Wall mounting 5 element, $6 . /-5$ Combined BBC ITV loft $1+5$, 5.5. $-1+7,676$. Wall mounting $1+5,7 \% 6$. Chimney mounting $1+5,90 ;-$. Pre-amps from 7 \%) -
Combincd BBCI ITV
$\mathrm{BBC}^{\mathbf{3}} \mathrm{Aerials} 1+5+9$. 14,1010 -. Avallable loft only.
F.M. Madio Loft S D, 19,6. " H ", $3 \mathrm{k}, 6,3$ element array, $37 / 6$. Standard co-axial cable, 1 - yd. Coa. plugs, 18. Outlet boxes, 6,- Diplexer crossore boxes, 176. P.p. Acrials, $\mathrm{R}-$-: accessories, 3/C.W.O. or C.O.D. (min. C.O.D. charge 36.) 1 - tor fully illustrated Lists.

Callers welcomed

open all day saturday
K.V.A. ELEGTRONICS (Dept. P.E.) 40-41 Monarch Parade
London Road, Miteham, Surrey 01.6484884

Every six months the Navy needs 175 hand-picked men to train as its future top technicians. You could be one of the next 175. But apply early. Send now for the free booklet, all about Artificer Apprenticeships. It tells you how the Navy gives you one of the finest engineering trainings in the world.

And look what it means: You become the man in charge of advanced modern equipment in ships, submarines and helicopters-like electronic systems, computers, radar, missiles, gas and steam turbines.

In your early twenties you can be a Chief Petty Officer earning over $f_{2}^{2,000}$ a year. And there are very good chances of becoming a commissioned officer.

The Navy gives you a full 4-year apprenticeship at its own technical sehools. There are plenty of sports and hobbies too. And, during training, you get nine weeks' holiday a year.

Full union status and O.N.C. ensure you a secure, well-paid job for life-in the Navy or out.

You enjoy a life of actionexeiting and adventurous, with the chance to see something of the world while you're young.
FIND OUT MORE. To enter the Navy asan Artificer Apprentice you must be $15 \frac{1}{2}-17!$ and pass an entry exam. (With 'O' level or C.S.E. Grade 1 in Maths plus one Science subject or English Language, you are exempt from the written part.) If you're 171-23 you can apply for a Mechanician Apprenticeship. Post the coupon.

INTEGRATED CIRCUIT'S
NEW LOW PRICES - FULLY GUARANTEED

	MOTOBOLA	$1-9$	$10+$	$25+$	MOLLARD
86!-	MC724P	$17 / 6$	$15 /-$	$18 / 6$	LIHEAR
$24 i-$	MC788P	$10 / 6$	$17 / 6$	$16 /-$	TAA241
$58 /-$	MC789P	$17 / 6$	$15 /-$	$13 / 6$	242

$82 / 6$ $80 /-$ $80 /-$

11
12
14
14
1

Pout \& Packing $1 / 6$ per order. Datz sheet free il ordered with ics.
telephone A. MARSHALL \& SONS LTD telex $01-4520161$

KKLEWOOD BROADWAY, LONDON,
CALLERS WELCOME 9.5.30 SATURDAY 9.5
SEE OUR MAIN ADVERTISEMBNT ON PAGE 81 FOR SEMICONDDCTORE

WAH-WAH PEDAL KIT

SELECTIVE AMPLIFIER MODULE. The basis of the WahWah pedal. Kit contains all the components to build a 2 -transistor circuit module, also the sockets, control, etc., required for the constructor to assemble his own design, 35/-.
Assembled and tested module $42 / 6$.
FOOT VOLUME CONTROL PEDAL. Foot pedal unit in very strong fawn plastic. Fitted with output lead and plug for connection to guitar amplifier. May be used for volume control or converted to Wah-Wah by adding the module.
Pedal unit now only $\mathbf{4 5 . 2 . 6}$
Complete kit for Wah-Wah pedal now only $\mathbf{6 6}$.10.0.
All post free.
Send 2/6 for our catalogue of components, testmeters, musical electronics and more details of the above items.

Callers welcome.

WILSIC ELECTRONICS LIMITED 6 COPLEY ROAD, DONCASTER, YORKSHIRE

BAKER 12in. MAJOR £9

The remarkable quality and performance of the "Major" makes possible eruly brilliant and rich sound from a single oudspeaker. It recreates the entire musical spectrum from 30 to 14,500 c.p.s. The unit consists of the latest double one, wooler and tweeter cone together with a special Baker CERAMIC mag-
 net assembly having a flux derisity of 4,000 gauss and a total flux of 145,000 Maxwells Bass resonance 40 MaxWells. Bass reso 20 wars. or Voice coils available 3 or 8 or 15 ohms. Major Module $30-17,000$ cps with weeter, crossover, baffle $\{\| .10 .0$

Latest catalogue $1 /$. with enclosure plan.

Baker Reproducers Itd
Eensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we ll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION
OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

WHICH SUBJECT WOULD INTEREST YOU?

Mechanical
A.MSE Arech.
Inst of lenvineers

Michanical Eng.
Maintenames Eng.
Gineral Dicsel Eng.
Sheet Metal Work
Eng. Innpection
ling Metallurgy
这 G. Eng Crafts
\& labrication
I)raughtsmanship
A.M.I.E.D.

Gen. 1)raughtsmanship
Dic \& Press Tools
Elec. Draughtsmanship
Jin \& Tool Design
Dongn of Ehec. Machine l'echnical Drawing Buiking

Electrical \& Electronic A.M.S.1: (1:
C. \& G. Flec. ling

Gicncral like. Eng
Installations \mathcal{S} Wuring
Electrical Maths.
Ekerrical Scinnce
Computer Electronics Plectronic Eng.

Radio \& Telecomms.
C. \& G. Radio Servicia Radio Amateurs' Exam Radio Amatcurs Exam Radio Operators' Cert. Radio \& IVV lingincerring Radio Servicing Practical Television TV Sorvicing Colour IV
Practical Radio $\&$
lilectronics (with kit)

Auto \& Aero
A.M.IM. 1

MAA IMII Diploma
C. \& G. futo Eng Gineral Auto ling Motor Mechanics Aotor Mechanics
Gen. Aero Eny
Management \&
Production
Computer l'rogramming Inst. of Marketing 1 C.W...
Works Mamagement Work Subly Production I:ng Storckeping Betimating Persomel Sanagemen Quality Contral Qualty Control Processing Processing
Nuncrical Coneral Numcrical Control Planning Envincering Materials Itandling Opcrational Rcscarch Actrication
Constructional A.A.S.E. (Civ) © A G. Structural Road Engutering Cisil linginecring Building
tir Conditioning Heating \& Ventilating Campentry \& Jonery Clerk of Works Bualding Drawing Surveyng
lainting and
Painting and
Decorating.
Buiders' Quantitios

General
Peroleum Tech
Practical Maths.
Refrıgerator
Rubter Tecinnolory
Rubher Technolog
Saley Engencer
limber lrade
harmicultural ling Gentral Plastics

Gencral Certifieate of Education Choose from 42 -O' and 'A' Level sulyicets including: lumbish Chumbis
Chmisry Gomeral Scionc Geolesit
Phusics
Mulhomathis Technical Drammb Prond
Grmunt
Russim
Sponish
Stohagy
Brohn
R.I.E.T. mplits
associatid schools
hatic recordat arch
over IO, 1 OHO G.C.I: stacesses at 'O' ama

WE COVER A WIDI: RANGI: Of: TECHNICAI. ANI) PROIESSIONAL. EXAMINATIONS.

Over 3,000 of otr Sturdents have obtained City d Girilds Certificates. Thotusands of orherexam suceesses.

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321
"In addition to having my salary doubled, my future is assured." - Case History H/493
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.

- Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on tile at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIIISH ISSTIIUITOF EmGiNEERINGG IECHNOLOGY

Dept D256, Aldermaston
Court, Reading RG7 4PF.
(Write if you prefer not to cut this page)

BIE.T-IN ASSOCIATION WITH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

 Andover. Hants. Sole Agents for Australia and New Zealand Gordon \& Gotch (A/wia) Ltd : South Africa-Central Newf Ageney Ltd. Rhodesia and Zambia-Kingstons Ltd. East Ariea stationery and Offce Supplies Litd. Subscription Rate (including postage): For one year to any part of the world f2 5s. (Od ($£ 2.25$)
Practical Electronics is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given. be lent, resold, bired out or mutilated condition or in any unauthorized cover br wity of Trade, or affired to or as mart of any publication or adyertiang, literary or pictorial matien what otherwise siaposed of in a

303.309.354.356 EDGWARE ROAD LONDON W. 2

PROJECT 80 PACKAGE DEALS

$2 \times Z 30$ amplifier, stereo 60 pre-amp, PZS power supply, $7 / 6$. $2 \times Z 50$ amplifier, stureo 60 preamplifier $P Z 8$ power supply, E21.10.0. Carr. 7/6. Transformer for PZ8, 59/6 extra. Any of the above with Active Filter unit add $97 / 6$ or with pair
Q16 speakers add $£ 16$. All Sinclair models in stock. 2000 Q16 speakers add $£ 16$. Alt Sinclair models in stock. 2000
amplifier, E 23 . Carr. $7 / 6$. Neoteric amplifier, $\mathbf{4} 46$. Carr. $7 / 6$.

BUILD THIS VHF FM TUNER

 VONO AND STEREO. A popular of mono and stereo. There is no doubt about it-VHF FM gives the REAL sound. All parts sold separately. PARTS TOTAL COST C6.19.6, p.p. $3 / 6$.
MULTIPLEX DECODER (FOR STEREO) D.p. 3/-. Ask for (FOR STEREO)
Brochure No.

ELECTRONIC ORGANS

You can bor
Portable for $£ 99$

All parts available separatelyseveral models to choose from 309 Edgware Road.

DISCOTHEQUE

 -PA CENTREAlf the latest equipment in
stock. Call and sec for yourstock. Call and sec for your
self or send for latest lists.
\qquad

HENRY'S LATEST CATALOGUE
Latest edition. Now 350 pages. - COMPONENTS, TEST GEAR * EQUIPMENT, MODULES - SPECIAL OFFERS, Etc., Etc Everything for the constructor Complete with $10 /$ - value discount voucher for use with purchase. Price 7/6, p.p. 2/WHY NOT SEND AWAY TODAY? FREE 8-page 'SEMI CONDUCTOR LIST No. 36

HI-FI TO SUIT EVERY POCKET

SPECIAL STEREO SYSTEMS

*FREE-pair of stereo headphones for private listening. C5/8 Teleton 203E. $6+6 \mathrm{~W}$ amplifier, SP25 or MP60 with deluxe plinth/cover, pair of 3 -way 10 W bookshelf speakers, all cables. leads, magnetic cartridge (List 879.10 .0). PRICE
\$59. p.p. $30 /-$. CI/8 Novz 505 Amplifier. 2025 TC with 9 TAH/C diamond clinth and cover, pair of 3 -way low bookshelf speakers, cables/leads, etc. (List f65). PRICE \&49. p.p. 30/-. C9A/B Sinclair 2000 amplifier, SP25 or MP60 with G800, plinth and cover, pair of 3-way 10 W bookshelf speakers. BII/8 Teleton F2000 (or F2300) MW/FM/STEREO Tuner amplifier. SP25 or MP60 with 9TAHC diamond, pair of 3 -way 10 W s.
e79. p. $30 /-2$ (All systems add f 10 for larger spezkers. $£ 14$ for Dentons). SEND FOR FREE LISTS OF 100 STEREO SYSTEMS

TEST EQUIPMENT FOR HOME, SCHOOL \& PROFESSIONAL USE AF105 50k/V multimeter (illus.). Price 68,10.0. p.p. $3 / 6$. Leather case 28/6.
 $\mathbf{2 0 0 H} 20 \mathrm{k} / \mathrm{V}$. Price $\mathbf{6 3 . 1 7 . 6}$. p.p. $3 / 6$. Case 12/6. 500 30k/V multimeter. Price E8.17.6. THL33 $2 \mathrm{k} / \mathrm{V}$ Price 64.2 .6 P.P. 31/ THL33 $2 \mathrm{k} / \mathrm{V}$. Price E4.2.6 TE65 Valve voltmeter (illus.). €17.10.0. SE250B Pocket pencil
signal injector $35 /-$ p.p. $1 / 6$. ignal injector $35 /-\mathrm{p} . \mathrm{p} .1 / 6$.
SE500 Pocket pencil signal tracer $29 / 6$ p.p. 1/6.
TE20D RF generator. Price E15. p.p. 7/6.
TE22D Matchin
617. p.p. 7/6.

TEIS Grid dip meter. Price El2,10.0.
p.p. 3/6.

TO3 $5 c$
p.p. $10 \%-$

NEW SELF-POWERED PREAMPLIFIERS

SLIM MODERN DESIGNS USING THE LATEST SILICON TRANSIS TORS, FET's and IC's, DIN SOCKETS,
ETC. ETC. ficted. PUSH-BUTTON TREBLE BOOST AND CUT. All inputs provided plus TAPE RECORD and REPLAY SeCifically designed for use with
PA25 and PAS0 Amplifiers.
operated s shlvin pilstugs.eti. ADJUSTABLE OUTPUT UP TO I VOLT.

FET9/4. Mono with builtoin mic mixer. Accepts any ceramic or crystal cartridge. Plus tuner, tape, etc. Price ©12.10.0. p.p 1/-.

FETI54 STEREO (illus). Magnetic cart, input, tuner, tape, etc. Beauti-
ful stereo sound. Price $£ 16.10 .0$. p.p. $4 / 6$.

I.C. STEREO

All facilities plus headphone socket without amplifiers. Uses IC's,
FET's, ete. Price $£ 24.0 .0$. p.p. 5/6.

25 WATT \& 50 WATT

SILICON AMPLIFIERS
LOOK AT THE SPECIFICATIONS!

- At full power 0.3\% Rise time 2usec distortion.
- Short circuit proof

Response- 1 dB
c / s to $100 \mathrm{kc} / \mathrm{s}$.
P425 10 transistor all silicon differential input 400 mV sensitivity. 25 W Rms into 8 ohms. Supplied with edge connector harness size $\sin \times 3$ in $\times 2 i n$. PA50 12 transistor version 50W Rmsinco 3 to 4 ohms. Sixe 5 in $\times 3$ in $\times 4$ in. MU442. Power supply for one or two PA25 or one PA50. PA25, 67.10.0. MU442. Power supply for
PASO, E9.10.0. MU442. E6.

> SIMPLICITY TO MOUNT - EASY TO USE - DESIGNED FOR QUALITY, PERFORMANCE AND PRICE
> All units no soldering - just edge connectors and plugs

[^0]: TEGIUIGAL badint

 All Mail Orders:-
 \star ARUNDEL $\begin{gathered}15-17 \\ \text { Tel. } 32020\end{gathered}$

 \star SOUTHSEA ${ }^{2}$ Clarendon Road \star PORTSMOUTH | 350.352 Frat |
 | :---: |
 | Road. |
 | Teli. 22034 |

 PERSONAL CALLERS Welcomed at all Branches where there are large Hi-Fi and Component stocks at the keenest prices including:
 GARAARD 1025 Autochangerz complete with GARRARD STEREO CARTRIDGE 7! GNS.
 MAGNETIC CARTRIDGES Goldring 800 H $7 \frac{1}{2}$ GNS.
 Shriro AT33 $\mathbf{~ 7 ~} 10.0$ (Both Listed over fl 10)

[^1]: © IPC Magazines Limited 1971. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 25 \mathrm{~s}$. Od. ($£ 2.25$)
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

[^2]: TELEPHONE: ロ1-723 6211
 Shop open 8-6 Mondsr-Saturdty (Thurs, 1 p.m.)

[^3]:

 POSTNOW for BROCHURE
 or write if you prefer not to cut page

[^4]: To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

 NAME
 BLOCK CAPS
 ADDRESS
 PLEASE P.E.I

[^5]: EK－EQUIPMENT MULLARD
 $\begin{array}{ll}\text { AF117 trinsintors．Latge } \\ \text { can } 4 & \text { lead type．Leads }\end{array}$ cut sholt but still usable， real value ate 15 for 10

