PRACTICAL

SPECIAL SUPPLFATNT: INSTALING AUDIO EOUPMENH

ADCOLA Soldering Instruments add to your efficiencicy

ADCOLA 64
 for Factory Bench Line Assembly

A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits
 (illustrated) available

COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

米
Write for price list and
catalogue
ADCOLA PRODUCTS LTD.,
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telephone: 01-622 0291/3 - Telegrams: Soljoint London Telex * Telex: Adcola London 21851

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Red Phototransintor, Latching Relay, 2 Transistors, Condensers, Resistors, Fain Control,
Terninal Block, Flegant Case, Screws, etc. In fact everpthing you need to butld a Eteady-Light Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) whlch can be modited for modulated-light operation.

Photoelectric kit 39/6
Portage and Pack. 2/6 (UK) Commonwealth: SURFACE MAIL 3/6 AIR MALL $£ 1.0 .0$ Australia, New Zealand S. Africa, Canada and U.S.A. Also Essential Data Cireuits and Plans for Building 10 Advanced Desjgne

INVISIBLE BEAM OPTICAL KIT

Everytbing peeded (except plywood) for building: I Invisible-Beam Projector and 1 Photocell Recefver (as illustrated). Sultable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mirrors, 245 -degree wooden blocks, 1 fra-red filter, projector lamp hoider, bullding plane, performance data, etc. Price 19/6. Pogtage and Pack,
1/6 (U.K.). Commonwealth: Surface Mail $2 /-$; Air Mail $8 /$
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard kit. Larger Lenses, Fitter, etc. Price 29/6. Postage and Pack. 1/6 (U.K.). Commonwealth: Surface mail 2/6. Air Mail $10 /$.

JUNIOR PHOTOELECTRIC KIT

Versatile Invistble-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototransiator, 3 Tranalstors, Chamais, Plastic Case, Resistorn, Screws, etc. Full Size Plans, Instructions, Data Sheet " 10 Advanced Price 19/8 Postagns
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, [nfra-red Filter, Lampholder, Bracket. Plans, etc. Everything (except plywood) to build 1 miniature invieible beam projector and photocell receiver for ure with Junior Photoelectric Kit.
Price 10/6. Post and Pack. 1/6 (U.K.). Commenwealth: Surface Mall 2/w; Air Mat1 4/-

YORK ELECTRICS

335 BATTERSEA PARK ROAD, LONDON, S.W.II
Send a S.A.E. for full detats, a brief' deseriplion and Photographs of all Kils and all 52 Madio, Electronic and Photoplectric I'rojects Assembled.

New for Project 60

the world's first high fidelity phase lock loop FM tuner

It has always been our policy at Sinclair Radionics to employ new and highly advanced circuitry in our products so that we can offer better performance at competitive prices. Our new F.M. tuner is the first in the World to use the phase lock loop principle. We have also incorporated such advanced features as varicap diodes for the tuning, printed circuit coils for the tuner and I.F. strip. A.G.C., A.F.C., an excellent squelch circuit to silence the tuner between stations, an Integrated Circuit stereo decoder and the option of remote control and push button switching.
The phase lock loop principle was first applied to receivers for reception from satellites because of the important improvements in signal to noise ratio that could be obtained by this technique. In addition there were the benefits of greatly improved selectivity and sensitivity. The Project 60 tuner, as the specifications show, is unsurpassed by any tuner now available yet we are able, because of the new circuitry. to sell the product at a fraction of the price.
From the high fidelity point of view this new circuit has the very important advantage of very much lower distortion than any other tuner known to us.

A voltage controlled oscillator (V.C.O.) in a phase lock loop tuner is kept in phase with the incoming signal by a phase comparator or detector which compares the two and feeds a control voltage to the oscillator. This control voltage is the audio output in the case of an F.M. signal. Since it is possible to design a V.C.O. which has an extremely linear voltage to frequency transfer characteristic excellent audio fidelity can be readily achieved. Furthermore, the osciliator can track a signal whilst completely rejecting a nearby stronger signal which would cause interferencein a conventionai receiver.
In use the tuner is especially attractive because the squelch circuit gives complete silence between stations and because fine tuning is accomplished automatically by the tuner. Accurate tuning is therefore ensured.
The use of an integrated circuit for the stereo decoder part of the circuit helps to give improved performance as it enables us to use a far more sophisticated circuit than would otherwise be possible. In particular stereo separation is excellent. Switching from mono to stereo is automatic and is indicated by a bulb.
The Project 60 tuner is supplied completely built and tested and ready
to be mounted into any cabinet you choose. It may be used with any high fidelity amplifier including of course the Project 60 amplifier systems. The remarkable selectivity and sensitivity will make it possible to receive stereo transmissions in many more areas and foreign broadcasts will also be received far more readily. It is worth remembering that the Project 60 tuner will operate well on only a few inches of wire in most areas should this be necessary.
Project 60 F.M. tuner specifications
$\begin{array}{ll}\text { Number of transistors } & 16 \text { plus } 20 \text { in I.C. } \\ \text { Tuning range } & 87.5 \text { to } 108 \mathrm{MHz} .\end{array}$
Tuning range
Capture ratio
Sensitivity
Squelch level
A.F.C. range

Signal to noise ratio
Total harmonic distortion
Stereo decoder operating level
Pilot tone suppression
Cross talk
I.F. frequency

Output voltage
Aerial Impedance
Indicators
1.5 dB
$2 \mu V$ for $30 d B$ quieting
$7 \mu V$ for full limiting
$20 \mu \mathrm{~V}$
$\pm 200 \mathrm{KHz}$
$>65 \mathrm{~dB}$
0.15% for 30% modulation
$2 \mu \mathrm{~V}$
30 dB
40 dB
10.7 MHz
$2 \times 150 \mathrm{mV}$ R.M.S.
75 Ohms
Mains on: Stereo on: tuning indicator

Price: $£ 25$ built and tested. Post free.
at the International Audio and Music Fair, Olympia, Stand 44

Project 60

Laboratory standard modular high fidelity

Sinclair Project 60 comprises a range of modules which connect together simply to form a compact stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance and now the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities
Themodules are: 1 . The $Z .30$ and $Z .50$ high gain power amplifiers. 2. The Stereo 60 preamplifier and control unit. 3. The Active Filter Unit. 4.4 supply units-PZ.5; PZ.6; P.Z. 7 and PZ.8. In a normal domestic application, there will be no significant difference between PZ. 5 or PZ. 6 unless loudspeakers of very low efficiency are being used, in which case the PZ. 6 will be required. For assemblies using two $Z .50$'s there is the PZ. 8 supply unit to ensure maximum performance from these amplifiers: No skill or experience are needed to build your system and the Project 60 manual gives all the instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as new additions are made to the range. A stereo F.M. tuner is next to come. These and all other modules introduced will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe. Project 60 prices are remarkably low.

| | System | The Units to use | In conjunction with | Your Project 60
 Units will cost |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | Car Radio | Z.30 | Existing car radio, Sinclair | |
| Micromatic | | | | |\quad 89/6

[^0] cations will be found in the fully descriptive Project 60 manual included with Project 60 systems. This 48 page manual is available separately, price $2 / 6 \mathrm{~d}$ including postage.
SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE
Telephone 022352731

At the International Audio
44

l.30 \& 2.50 POWER AMPLIFIERS

The $Z .30$ together with the $Z .50$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low $0.02^{\prime \prime}$, at full output and all lower outputs. Whether you use the $Z .30$ or $Z .50$ power amplifiers in your Project 60 system will depend on personal preference, but they are the same physical size and may be used with other units in the Project 60 range equally well. For operating from mains, for the $Z .30$ use PZ. 5 for most domestic requirements, or PZ. 6 if you have very low efficiency loudspeakers. For $Z .50$, use the PZ. 8 described below

SPECIFICATIONS (Z.50 units are interchangeable with Z.30s in all applications.
Power Outputs
Z. 3015 watts R.M.S. into 8 ohms, using

35 V : 20 watts R.M.S. into 3 ohms , using 30 volts.
Z. 5040 watts R.M.S. into 3 ohms from 40 volts: 30 watts R.M.S. into 8 ohms, using 50 volts.
Frequency response 30 to 300,000 Hz 1dB
Distortion 0.02^{\prime}. into 8 ohms
Signal to noise ratio better than 70 dB unweighted
Input sensitivity 250 mV into 100 Kohms.
For speakers from 3 to 15 ohms impedance
Size $3 \frac{1}{2} \quad 2 \frac{1}{4} \quad \frac{1}{2}$ ins
Z. 30 Built, tested and guaranteed with circuits and instruction
manual
89/6
Z. 50 Built, tested and guaranteed with circuits and instruction nanual

109/6

STEREO 60 Preamp/Control Unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV . Mag. p.u.-3mV: correct to R.I.A.A. curve 1 dB : 20 to $25,000 \mathrm{~Hz}$.

Ceramic p.u.-up to $3 m \mathrm{~V}: ~ A u x$-up to 3 mV

- Output-25mV
- Signal-to-noise ratio-better than 70 dB .
- Channel matching-within 1 dB
- Tone controls-TREBLE +15 to 15 dB at 10 kHz : BASS 15 dB to 15 dB at 100 Hz .
- Front panel-brushed aluminium with black knobs and controls.
- Size $8 \frac{1}{4} 1 \frac{1}{2}$ 4ins.

Built, tested and $\begin{array}{l}\text { guaranteed }\end{array}$ 9.19.6

ACTIVE FILTER UNIT

For use between Stereo 60 unit and two Z.30s or Z.50s, the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave) there is less loss of the wanted signal than has previously been possible Amplitude and phase distortion are negligible. The Sinclair A.F.U. is suitable also for use with any other amplifier system.

Two stages of filtering are incorporated -rumble (high pass) and scratch (low pass). Supply voltage- 15 to 35 V Current- 3 mA . H.F. cut-of (3 dB) variable from 28 kHz to 5 kHz . L.F cut-off (3 dB) variable from 25 Hz to 100 Hz . Filter slope, both sections 12 dB per octave. Distortion at 1 kHz (35 V supply) $0.02^{\prime \prime}$, at rated output

Built, lested and
guaranteed
£5.19.6

POWER SUPPLY UNITS

The units below are designed specially for use with the Project 60 system of your choice. Illustration shows PZ. 5 power supply unit to left and PZ. 8 (for use with $Z .50$ s) to the right. Use PZ.5 for normal $Z .30$ assemblies and PZ. 6 where a stabilised supply is essential.
PZ-5 30 volts unstabilised £4.19.6
PZ-6 35 volts stabilised £7.19.6
PZ-8 45 volts stabilised (less mains transformers) £5.19.6
PZ-8 mains transformer £5.19.6
GUARANTEE. If within 3 months of purchasing Project 60 modules directly from us you are dissatisfled with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost.

Sinclair IC-10

the world's most advanced high fidelity amplifier

Specifications
Output: 10 Watts peak. 5 Watts R.M.S con-
tinuous
Frequency response: $\quad 5 \mathrm{~Hz}$ to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Total harmonic distortion: Less than 1% at full output.
Load impedance: $\quad 3$ to 15 ohms.
Power gain 110 dB ($100.000,000,000$ times)
Supply voltage: $\quad 8$ to 18 volts.
Size: $\quad 1 \times 04 \times 0.2$ inches.
Sensitivity: $\quad 5 \mathrm{mV}$.
Input impedance: Adjustable externally up to
2.5 M ohms.

Circuit Description

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. making battery operation eminently satisfactory.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 W . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10. knowing that every unit will work as perfectly as the original and do so for a lifetime.

At the International Audio and Music Fair, Olympia, Stand

Q. 16 High fidelity loudspeaker

Developed out of the revolutionary and much praised design of the original Sinclair 0.14 comes this more advanced version to meet the requirements of even greater numbers of high fidelity enthusiasts. The 0.16 employs the same well proven acoustic principles in which a special driver assembly is meticulously matched to the physical characteristics of the uniquely designed housing. In reviewing this exclusive Sinclair design, technical journals have been loud in their praise for it and it comfortably stands comparison with very much more expensive loudspeakers. The shape of the 0.16 enables it to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures, and with its improved styling, the 0.16 presents an entirely new and attractive appearance. A solid teak surround is used with a special all-over cellular black foam front chosen as much for its appearance as for its ability to pass all audio frequencies unimpaired.
The 0.16 is compact and slim and is the ideal shelf-mounted speaker, and brings genuine high fidelity within reach of every music lover.
Specifications
Construction:

Loading
Input impedance:
A sealed seamless sound or pressure chamber is used with internal baffle, all of materials carefully chosen to ensure freedom from spurious tone coloration.

Frequency response: From 60 to $16,000 \mathrm{~Hz}$, as confirmed. by independently plotted B \& K curve.
Driver unit:

Size and styling

Price: Specially designed high compliance unit having massive ceramic magnet of 11.000 gauss, aluminium speech coil and special cone suspension. Excellent transient response is achieved. $9 \frac{3}{4}$ " square on face $\times 4 \frac{3{ }^{\prime \prime}}{}{ }^{\prime \prime}$ deep with neat pedestal base. Black all-over cellular foam front with natural solid teak surround.

Micromatic Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity, power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations: bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation very much easier than with many larger sets. The plug-in high fidelity type magnetic earpiece which matches exactly with the output of the Micromatic provides wonderful standards of reproduction both for speech and for music. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

Specifications

Size:
batteries:
Tuning:
Earpiece:
Battery
requirements:
Case:
Controls.

> Price: \quad Available in kit form complete with earpiece,
> $1 \frac{36^{\prime \prime}}{} \times 1 \frac{7}{16^{\prime \prime}} \times \frac{1}{2}^{\prime \prime}(46 \times 33 \times 13 \mathrm{~mm})$. 1 oz. (28.35 gm) approx.
> Medium wave band with bandspread at higher frequency end.
> High-fidelity magnetic type.
> Two Mallory Mercury Cells, type R.M. 675. for long working life.
> Black plastic with anodised aluminium front panel, spun aluminium dial.
> Tuning dîal, and on/off switching by means of earpiece plug. case, instructions and supply of solder in fitted pack. 49/6.
> Ready built, tested and guaranteed. 59/6.

Sinclair Radionics Ltd, 22 Newmarket Road, Cambridge Telephone 022352731

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full-time 2 year College Diploma Course which gives a thorough fundamental training for radio and television engineers starts on 5th January, 1971.

The course includes theoretical and practical instruction on Colour Television receivers and is designed to cover the syllabus of the new City and Guilds Radio, Television and Electronics Technicians' Course. Pembridge College diplomas are awarded to successful students.
The way to get ahead in this fast growing industry-an industry that gives you many far-reaching opportunities-is to enrol now. Minimum entrance requirements: Senior Cambridge or "O" Level, or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PE6), 34a Hereford Rd, London W2 5AJ Please send, without obligation, details of the Full-time Course in Radio, Television and Electronics

NAME

ADDRESS

The most accurate pocket size GALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send 85/- for this invaluable spiral slide rule on approval with money back guarantee if not satisfied
CARBIC LTD. (Dept. PE31)
54 Dundonald Road, London, S.W. 19

WRITE NOW FOR YOUR

FREE CATALOGUE

CONTAINING

THOUSANDS OF COMPONENTS

From:
W.E.C. LTD. (NPE), 74 THE STREET, ASHTEAD, SURREY

Many New Models! in The FREE HEATHKII 1971 Calaloguve

CONSUMER

Here's the bumper Heathkit catalogue for you. Read about the wonder and fascination of kit building . . . see in full colour the world's best values in Hi-Fi Radio, and even model radio control. Get up to date with what's new in scientific instrumentation . . . instruments for test and service . . . in fact there is a Heathkit for almost every purpose, in every walk of life. A wealth of information is all yours for the price of a postage stamp, in the Free Heathkit Catalogue.
t No previous knowledge of electronics required.

* The constructional manual supplied with every kit shows you how.
* Building Heathkit models is so economic.

HI-FI \& AUDIO

* Save up to $\mathbf{5 0} \%$ over factory built equipment.
\star Money saving direct from factory prices.
\star They make excellent Christmas gifts.

MODEL R/C CARS

MARINE

'TRENT' SPEAKER

TM-5

5 K ohms/V POCKET MULTIMETER
Another new look pocket multi-meter from Lasky's providing top quality and value. The "slimline" mpact resistant case-size $4 \frac{\mathrm{i}}{\mathrm{in}} \times 2 \mathrm{Z} \mathrm{in} \times 1 \frac{1}{\mathrm{~d} i n}$. ability is superio orge 2 iln square meter. Read excellent instrument for servicing transistorised equipment Recesced click stop selection switch Ohms zero adjustment. Buff finish with crystal clear meter cover

- DC/V: 3-15-150-300-1,200 at 5K

OPV
AC/V: $6-30-300-600$ at $2.5 \mathrm{~K} / \mathrm{OPV}$

- DC Current $0-300 \mu \mathrm{~A}, 0-300 \mathrm{~mA}$
- Resistance : 0-10k $\Omega, 0-1 \mathrm{MR}$.
- Decibels: -10 dB to 16 dB .
- Complete with test leads, battery
and instructions.

ELEGANT BUDGET PRICED

BOOKSHELF SPEAKER SYSTEMS

The AS-57 is a real space saver. This fine miniature high-fidelity speaker system will provide good qually sound anywhere in your home at remarkably low cost. Designed for use where space is at a premium, the AS-57 system is ideal for the small apartment or isolated listening area. The special high efficiency 5 Yin full range speaker has a frequency range of $70-18,000 \mathrm{~Hz}$ with a peak handling
capacity of 10 watts. Imp. 8 ohms. Finish: oiled walnut. Size $5415 i \times 8$ in. capacity of 10 watts. Imp. 8 ohms. Finish: oiled walnut. Size $5 \mathbf{f} \quad 15 \mathbf{f} \times 8 ; \mathbf{i n}$. LASKY'S
PRICE
£15
per PAIR
POST 10.
LASKY'S PRICE 49/6 post ${ }^{2 / 6}$

TM-1
 MINI-TESTER

"LAB MODEL"
A highly accurate yet rugged Multitester using a 10μ A meter hand calibrated to a D.C. features-ultra large meter scale. Special incorporating an entirely new type of range selection panel which gives instant range Identification without taking your eyes from the meter. An audible buzer is provided for easy short testing SPEC. DC V ran $0.5,2.5,10,50,250,500,1000 \mathrm{~V}$ at 100K/O.P V A.C.IV ranges: $3,10,50,250,500,1,000 \mathrm{~V}$ 5KIO.PV D.C current O-10 100 A O $100 \mathrm{~mA}, 0-2.5,10 \mathrm{~A}$. Resistance: $0-1 \mathrm{~K}, 10 \mathrm{~K}$ $100 \mathrm{~K}, 10 \mathrm{M}, 100 \mathrm{M} / \mathrm{onms}$ Decibels 10 , 49.4 dB . Continuity test: Audible buyzer Operates on 11.5 V U2 and 115 VB 154 type batteries. Cabinet size 73 6t 3lin Weight 41 b

E19.0.0
PRICE

SDIICSAS257

Pirl rosino

The first of Lasky's newlook top value meters,
the $\mathrm{TM}-1$ is a really tiny the $T M-1$ is a really tiny
pocket multimeter providing "big" meter accuracy and performance. Precision movement calibrated to $\div 30$ of full scale. Click stop range selection switch. Beautifully designed and made impact resistant black case-with white and ing. Ohms zero adjust-

Size Only
(N. 2fin. \times 1tin

- DC/V: 0-10-50-2501,000 at $1 \mathrm{~K} / \mathrm{OPV}$.
- AC/V: 0-10-50-2501.000 at $1 \mathrm{~K} / \mathrm{OPV}$
- DC CURREN

Resistance.

- Resistance: 0-750hs.
- Decibels: -10 dB to
+22 dB

Complete

- Complete with tes leads, battery and

LASKY'S PRICE 39/6 post 26

\square

The

AUDOO new VELOPMENT

up arm - ready
ourscanding
AD.76K magnetic
cartridge is constructed of brass throughout, heavily chrome.
placed; uses needle and miniacure ballrace bearings: both
coarse and fine balance adjustment is provided. The fixed head
has standard tin. mounting centres and it finished in black enamel
with chrome lifting spur. Complecely wired, with all fixing nuts and washers. Arm rest also supplied. Tech. decails: Overall lengeh 285 mm ; needle to pivot length 223 mm ;
LASKY'S PRICE £8.10.0
Post Free

AUDIO DEVELOPMENT AD-76K

Stereo Magnetic Cartidge. Frequency response:
$20-20,000 \mathrm{~Hz}$. Output: 5 mV . Stylus: Diamond LP. Tracking force: $2 \mathrm{gms} \pm 0.5 \mathrm{gm}$.

AUDIO DEVELOPMENT AD-96K

 Tracking force: 2 gms
Replacement stylus type Y.960S 51/6, post free.

Audiol Tronics 7
 Send your name and address now to receive immediately the new 1971 edition of LASKY'S famous Audio-Tronics pictorial catalogue, larger and more compre hensive than ever before, packed with 1000's of items for the Radio and HI-F enthusiast, electronics hobbyist, serviceman and communications ham. Cover Deals) plus Lasky's mazing saving vouchers worth over $\mathbf{5 3 2}$
 Send your name, address and $2 / 6$ for post and inclusion on our regular mailing $/ / \mathrm{st}$

 SCOOP\&

MADE ESPECIALLY FOR LASKY'S - MAINS OPERATION - 12 HOUR ALARM - AUTO "SLEEP" SWITCH

- HOURS,

HND READ-OFF

- FORWARD AND BACKWARD TIME ADJUSTMENT
- SILENT OPERATION SYNCHRONOUS MOTOR
special quotations
- SHOCK AND VIBRATIO
PROOF
- BUILT IN ALARM
BUZZER

THE AMAZING

Astrad ORION

THE WORLD'S SMALLEST 6 TRANSISTOR
TWO WAVEBAND RADIO THOUSANDS SOLD

Made to the highest space-age standards-this remarkable microsize set measures only $1+\frac{1}{4} \times 1$, fin yet it contains 6 transistors and other components combined in a photo etched circuit, only $\frac{1}{2}$ battery capacitor, ferrite rod aerial etc. Ouave
 crystal earpiece, giving ample volume (automatically adjusted) and
clear tone. Brief tech. spec.: Waveband coverage-Medium wave 525 to 160 kHz
 de-tuning). Power source: $1 \times 1.4 \mathrm{~V}$ Mercury battery.
The Orion is supplied fully built and tested complete with battery, lett and righ fitting earphone supports and attractive black and ivory plastic presentation carrying case (matching the Orion). Never miss your favourite music, sport, news-the Orion is an ideal gift for all, providing a constant source of enjoyment without disturbing others
AUTUMN PACKAGE PRICE 57/-
AVATLABLE SEP: RADIO 39/6, Post $2 / 6$.
39/6

TRIO 9R-59DE

- 8 valve plus 7 diode circuit continuous coverage Calibrated Bandspread on 10, 15, 20, 40 and 80 metre $10,15,20,40$ and 80 metre bands clearss recep tion is achieved through the use of a product detecgrey with dark arey case grey with dark grey case. with instruction manual and service data.

SPECIFICATION : Frequency Ranges: $550-1,600 \mathrm{kHz} ; 1.6-4.8 \mathrm{MHz} ; 4.8-14.5 \mathrm{MHz}$ $10.5-30 \mathrm{MHz}$. Bandspread: (Direct Reading on Ham Bands) $3.5 \mathrm{MHz} 80 \mathrm{~m} ; 7 \mathrm{MHz}$ $40 \mathrm{~m} ; 14 \mathrm{MHz} 20 \mathrm{~m} ; 21 \mathrm{MHz} 15 \mathrm{~m} ; 28 \mathrm{MHz} 10 \mathrm{~m}$. Sensitivity: A, B, C, Bands-Less than 6 dB (for 10 dB S/N ratio): D Band-13MHz; Less than 18 dB (for 10 dB S/N ratio) $23 \mathrm{MHz}_{2}$; Less than 10 dB (for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio). Selectivity: +5 kHz at -50 dB . Aüdio Output: 1.5 w . Power Requirements: $A C \quad 115 / 230 \mathrm{~V},{ }^{50} / 60 \mathrm{~Hz}$. Recom mended Speaker Type: 4 or 8 ohm. Built-in Circuits: Bandspread; Automatic Noise Limiter (ANL); Automatic Volume Control (AVC): Headphone Jack. Dimensions: 7in H, 15 in W, 10 in D .
LASKY'S PRICE \&42.0.0 carrige fitee
TRIO SP-5D
Communications speaker unit -matching all the TRIO re-
ceivers in both style and size. Contains 5×3 in eliptical 8 ohms speaker specially designed to give oxtremely crisp cabinet-size $7 \times 3 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{n}$.

LASKY'S PRICE 87/6 Post 5 ,

TRIO HS-4 HEADPHONES
Rugged construction plus comfort make these a must for the Ham, Dynamic headset. Input impedance 8 ohms, matching $4-16$ ohms. Max. power $3 w$. Frequency range

SPECIAL OFFER

PRICE £IO.19.6

LASKY'S PRICE \&5.19.6 Post $3 / 6$

New Lasky's
C60, C90, C120. Exclusively made for us in U.S.A.
Great Savings !

EACH	FIVE FOR
C $60-1 / 6$	$33 /-$
C $90-12 / 6$	$50 /-$

C $120-17 / 6$
$35 /-$
$75 /-$
13./-

Post $1 /$ - each, five for $2 /-$, ten for $3 /$ -

who wants a£2,000+p.a. opportunity in the dynamic new computer industry?

In only 4 weeks you're in - and only the incredible Eduputer can make it possible.

Now for the first time anybody can train outside the computer industry for a lucrative career as a computer operator, with actual experience on an Eduputer.
Who created Eduputer? The internationally famous company Programming Science International. They developed it to the specific requirements of the massive New York city training board and its practical results have been one amazing success story.
We are proud to have been selected as the only commercial training organisation permitted to use the Eduputer in the U.K.
Thanks to Eduputer, nine out of every ten can learn to operate the most advanced computers in only four weeks. Unlike Computer Programming, no special educational qualifications and no maths required. Just you and the incredible Eduputer!
Jobs galore! The moment you qualify, our exclusive computer appointments bureau introduces you to computer users everywhere with good jobs to offer (up to $£ 40$ a week full-time, $£ 50$ a week as a temporary). More than enough to go round, toobecause 144,000 new operators will be needed over the next five years alone.
This is your big opportunity to get out of a rut and into the world's fastest-growing industry. And remember-LCOT is the only commercial computer school to have Eduputer. It means a lot to employers
Telephone: (01) 4379906 NOW!
Or post the coupon today for full details FREE and without obligation

London Computer Operators Training Centre,

B6. Oxford House, 9/15 Oxford Street, London W. 1 Telephone: (01) 4379906
127/131 The Piazza, Dept. B6, Piccadilly Plaza, Manchester 1. Telephone : (061) 2362935.
Please send me your free illustrated brochure on exclusive Eduputer "hands on" training for computer operating

Name

Address
Tel,:

BI-PAK=LOW GOST I.O's

BI-PAK semlconductors now offer you the largest and most popular range of I.C'e available at these EXCLUEIVE
PRICES. TTL Digital 74 N Series fully coded, brand new. Dual PRICES. TTL Digital 74 N series fully
In-line plastic 14 and 16 pin packages.

BI-PAK
Order H o. BP00 7400N BP01 7401N

BP04 7404N BP10 7410N BP20 7420N BP30 7430 N
BP40 7440 N BP41 7441N

BP42 7442N BP50 7450N
BPE3 7453N
BP60 7460N BP70 7470 N BP72 7472 N
BP 73
7473 N BP73 7473N BP74 7474N
BP76 7475 N BP76 7476N

BP83 7483N BP90 7490N BP92 7492N BP93 7493N BP94 7494N BP95 7493N

Dual Entry 4 Bit Shift Regieter
4 Blt Up-Down Shift Register

Data is available for the above Series of Integrated clrcuits in booklet torm, price 2/6.
BRAND NEW, FULL TO MANUFACTURERS' SPECIFICATIOR
simular Types to:- Description
Quad 2-Input NAND GATE
Quad 2-Input NAND Gate-OPEN COLLECTOR
HEX INVERTER
Triple 3-Input NAND GATE
Single 8-Input NAND GATE
Dual 4.Input BUFFER GATE
BCD to decimal decoder and NIT
Driver Dual 2-Input AND/OR/NOT GATE -expandable
slagle 8-Input AND/OR/NOT GATE-expandable
Dual 4-Input-expandable
Single JK Flip-Flop-edge triggered Single Master Slave JK Flip-flop
Dual Master Slave J K Flip-flop
Dual D Flip-flop
Dual Master Slave Flip.flop with preset and clear
Four Bit Binary Adder
BCD Decade Counter
Divide by 124 Bit binary counter
Divide by 164 Bit binary counter
${ }_{5}^{4}$ Bit Up-Down Shift Regiater $\begin{array}{cc}\text { Price and aty. } & \text { prices } \\ 1-24 & 25-99 \\ 6 / 8 & 6 / 8 \\ 100 & 4 / 6\end{array}$

$6 / 6$	$5 / 6$	$4 / 6$
$6 / 6$	$5 / 8$	$4 / 8$

6
\qquad $8 / 8$
$8 / 8$

22
22
8/6
6/6
$8 /$
$8 /$
9
$8 /-$
$10 /-$
$10 /-$

$11 /-$	$10 /-$	9
$1 /-$	$10 /-$	9

$\begin{array}{ll}28 / 6 & 28 \\ 22 / 6 & 9 \\ 22 / 6 & 2 \\ 28 / 6 & 20 \\ 28 / 6 & 20\end{array}$

Price each

BP709 Operational Amplifler, Uual-in liue 14 pin pack
age $=$ SN72709 and simitar to MIC709 and ZLD709C inputs and low impedance output.

TTL INTEGRATED CIRCUITS

Manutacturera' "Fall outa"-out of apec. devices including functloual units and part functional but clansed as out of spec. Irom the manufacturers very rigid specifcations Ideal for learning about I.C's and experimental work, on teating, some will be found perfect.

DUAL-IN-LINE LOW PROFILE SOCKETS

14 and 16 lead sockets for use with Dual-in-Line Integrated Circuits.

RTL FAIRCHILD (U.S.A.) I.C's

RTL Micrologic Circuite
Epoxy case To 5 temp. range $15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ 1-11 Qty. pricen ench
$\begin{array}{llllll}4 \mathrm{~L} 900 \mathrm{Buffer} & & 0 & 1-11 & 12-24 & 26-99 \\ 100\end{array}$
$\mu \mathrm{L} 914$ Dual two-input Gate
$\mu \mathrm{L} 923 \mathrm{~J}$-K Flip-flop
Full data and circuits for 1C'a in Booklet form price $1 / 6$ each $10 /$ PLASTIC CASE TO-5 6 lead up to $100 \mathrm{~m} / \mathrm{cs}$.

DTL DIGITAL I.C's

DTL dual in-line package.
Type MC844P expandable dual 4-input NAND Power Gate
Type MC845P Clocked Fllp-fiop
Type 862 Triple 3 Input NAND/NOR Gat
FULL DATA SUPPLIED WITH UNITS
Please bend all orders direct to our warehouse and deapatch department
BI-PAK SEMICONDUCTORS P.O. BOX 6, WARE, HERTS.

Postage and packing add 1/-. Overseas add extra for Alrmall. Minimum order 10/-. Cash with order plesae.

VALUE ALLTHE WAY

The Classic
Teak finished case
19.10

Plus P. \& P. $7 / 6$
SPECIFICATION ensitivities for 10 watt outpue Cer.P.U.: 80 mV . Tuner: 100 mv Cer.P.U.: 80 mV . Tuner: 100 mV .
Output. Equalisation for each P.s.) Mag. P. Tape/Rec. Output. Equalisation for each Tone Control Ronge: Boss: 13 dB at 60 Hz . Treble: $\pm 14 \mathrm{~dB}$ at 15 KHz . Totol Distortion: (for 10 watt output) $<1.5 \%$. Signal Noise: $<-60 d \mathrm{~B}$. A.C. Mains 200-250V. Size $12 \frac{1}{2}$ in long, $4 \frac{1}{2}$ in deep, $2 \frac{z i n}{2}$ high. Buile and tested.

THE RELIANT Mk. II SOLID STATE GENERALPURPOSEAMPLIFIER

〔7.5.0 Plus P. \& P. 7/6

 In teak finished caseSPECIFICATION: Output: 10 Watts into a ${ }^{3}$ ohms speaker. Inputs (1) for mike (10 mV). Input (2) for
(250 mV) individual bass and vreble conerol volts. Size: Tronsistors: $10 \frac{1}{t}$, silicon and three germanium. Moins input: $220 / 250$

THE DORSET (600 mW Output) 7-transistor fully tunable M.W.E.L.W. Suparhot portable with baby alarm facility. Set of parts. The latest modulated and pre-alignment techniques makes this simple to build. Sizes 12 B 3 in,
ES.5.0 Plus P. \& P. 7;6. Circuit 2;6. Free with parts.

The T/iscount F.E.T. Mk. I 14.5 .0 Plus $7 / 6$ P. \& P. High fidelity transistor stereo amplifier employing field effect transistors. With thish fideluty kransiscor stereo ampliner anted specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing far more

SPECIFICATION

Output per channel- $10 \mathrm{Wrms}$.
Frequency bandwidth 20 Hz to 20 kHz equency in 1 W .
Total distortion $1 \mathrm{kHz} 9 \mathrm{~W} 0.5 \%$ Total distortion it $1 \mathrm{kHz}, 9 \mathrm{~W} 0.5 \%$
Input sensitivities-CER, P. U .100 mY input sensitivities-CER. P.U. 100 m
into $3 \mathrm{M} \Omega$; Tuner 100 mV into into $100 \mathrm{~K} \Omega$: Tape 100 mV into $100 \mathrm{k} \Omega$. Overload Factor-Better than 26 dB . Signal to noise ratio-70dB on all
Mk. II (MAG. P.U.) €I5.I5.0 Specification same as Mk. I, but with the following inputs: Mag. P.U. CER. P.U. Tuner.

Controls-6 position selector switeh (3 pos. stereo and 3 pos. mono). separate vol. controls for left and
right channels. Bass $\pm 14 \mathrm{~dB}$ 60 Hz Treble (with D.P.S. on $/ 0$ ff) $\pm 12 \mathrm{~dB}$ " 10 kHz . Tape recording output sockets on Size each thannel. bin 2zin in teakSize 12 tin
finished case. Buitr and ${ }^{2 \text { in in }}$ in tested. Post \& packing $10 /-$ extra.
Spec. on Mag. P.U. 3 mV II IkHz input impedance $47 \mathrm{k} \cap$. Fully equalised to within $\frac{1}{5}$ IdB RIAA. Signal to noise ratio- 65 dB (vol. max.).

LIQUIDATED STOCK

DANSETTE

TOURISTE MK3
CAR RADIO
all transistor

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. 3 . sensitivy at 3 max is better than microverts. Power together with comprehensive instructions guarantees
 deep.
Originally sold complete for $£ 15.4 .6$ SET OF PARTS
Circuit diagram 2/6, free with parts
Speaker, baffle and fixing kit
25/- extraplus 4/. P. \& P.
Postage free when ordered with parts
£6.6.0
plus $7 / 6$ P. 2 P.

SOUND 50 SOUND 50 AMPLIIER AND SPEAKER SYSTEM

The Sound Fifty valve amplifier and speakers are sturdily constructed with smart housings and thoroughly tested electronics. They are designed to last-to withstand the knocks and bumps of life on the road. Built for the small and medium sized gig, they are easy to handle and quick to set up and can be relied upon to come over with all the quality and power you need.
Output Power 45 watts R.M.S. (Sine wave drive). Fre quency response- 3 db points 30 Hz at 18 KHz . Total dis. tortion less than $2^{\circ} \mathrm{o}$ at rated output. Signal to noise ratio better than 60db. Speaker Impedance 3. 8 or 15 ohms. Range 12 db at 10 KHz . Inputs 4 inpurs at 5 mV inco 470 K Each pair of inouts controlled by separate volume control Each pair of inouts controlled by separate volume control.
To protect the output valves,
To protect the out put valves, the incorporated fail safe circuit will enable the amplifier to be used at half power
SPEAKERS 1 Size $20^{\prime \prime}$
heavy duty $20^{\prime \prime}$
watt high flux, quality loudspeaker with heavy duty 25 watt high flux, quality loudspeaker with cast
frame. Cabinets atcractively finished in two tone colour scheme-Black and grey.

COMPLETE SYSTEM है? 5
plus 60/- P. \& P.
Amplifier £28.10.0 plus 20/- P. \& P. Speakers each $£ 12.10 .0$ plus 30/- P. \& P.
RADIO \& TV COMPONENTS (ACTON) LTD.

You'll find it easy to learn with this out- the latest research into simplified learning standingly successful NEW PICTORIAL techniques. Ttis has proved that the METHOD-the essential facts are explained PICTORIAL APFROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of
aining mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

carefully written
I am very satisfied with these carefully written and well expressed manuals... A.W., Shanklin.

valuable assistance

Your valuable assistance has enabled me to find a good position as a Radio and TV Engineer ... D.S. . Bristol.

‘. . . they are invaluable
 I find that as a base for a course in Electronics they are invaluable and I have yet to find anything even to approach

 the same standard...H.N., Rotherham.A TECH-PRESS PUBLICATION

To The SELRAY BOOX CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR 27 HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the bove sets on 7 DAYS FREE TRIAL, I will either Teturn set, carriage paid, In good condition within 7 days or send the following amounts BASIC ELECTRICITY 75/-. Cash Price or Down Payment of $20 /$ - followed by 3 fortnightly payments of $20 /-$ each. BASIC ELECTRONICS 90/-. Cash Price or Down Payment of $20 /$ - followed by 4 fortnightly payments of $20 /-$ each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial) BASIC ELECTRICITY \square EASIC ELECTRONICS \square

Prices include Postage and Packing
Signature
(If under 18 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

๕тиョиояМоэ we know them backwards

—and so we should after 25 years as South East London's leading component stores. Fortunately it doesn't stop us looking forward. We've modernised, reorganised and we're all set for the next 25 years.

LOOKING FORWARD TO SEEING YOU

OPEN DAILY

9.15 a.m.-6p.m.
$\binom{$ Closed all day }{ Thurstay }

coter Garland Bros. Ltt.

 DEPTFORD BROADWAY (Corner of Brookmill Road)LONDON, S.E. 8

The Unique

MULTI-MINI TWIN-VICE

An extra "Pair of hands" for those tricky jobs ASSEMBLY-SOLDERING-GLUING-WIRING-DRILLING ETC.

- INDEPENDENT ADJUSTMENT OF THE TWO VICE HEADS TO ANY ANGLE WITH POSITIVE LOCKING - JAWS WILL FIRMLY GRIP, ROUND FLAT, SQUARE, OR HEXAGONAL PARTS.
TWIN VICE: $£ 5-18-0$ (4/6 P \& P) ALSO AVAILABLE
SINGLE VICE: E3-7-6 (3/-P \& P)
COVENTRY MOVEMENT CO. LTD. BURNSALL ROAD, COVENTRY CV5 6 BU STD 0203-74363

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G

Newest, neatest system cver devised for storing small parts and components: resistors, capacitors, diodes, transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/removable space dividers. Build up any size cabinet for wall, berreh or table top

BUY AT TRADE PRICES!

SINGLEUNITS (Sins í2 ins 2fins)
Usually $2 / 6$ each, O R PRICE: 24/- DOZEN DOUBLE UNITS (Sins $4 \frac{1}{2}$ ins 2 inins)
Usually $4 / 6$ each, OUR PRICE: 40/- DOZEN
PLUS QUANTITY DISCOUNTS! Order $f 5$ and over DEDUCT $1 /$ in the f Orders $£ 20$ and over DEDUCT 2 :- in the f

PACKING/POSTAGE/CARRIAGE: Add 6/- to all orders under $\mathbf{6 3}$. Orders $\{3$ and over, packing postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES

Wי4ivt

(Dept. PE\|!) 3| ALBERT RD HENDON, LONDON, NW4

is a high quality COMMUNICATIONS RECEIVER
(replaces NA 5018A) Recommended Price $£ 420.0$

Pirite 36 cns.

(Cash only) plus 9/- p. \& p. Complete with standard batteries and earpiece. BFO (optional extra) add 35/-.
IT NOT ONLY RECEIVES Aircraft, Shipping (VHF \& SW), Taxis, Ambulances, Fire Service, T.V. Sound, Hams, Gas and Electric Boards, Public Services and many other radio telephone mobiles-BUT ALSO Classical Music, Pop and all that Jazz.
TURN ON AND TUNE IN!!! The MPR 3065 is a communications receiver and entertainment source in one neat. transistorised, portable package. It kecps aircraft. shipping. RT mobiles. FM and AM broadcasts at your fingertips. Features a colour coded illuminated iuning dial and band selector, AFC, squelch, BFO (optional extra), large speaker. Works of mains or batteries. Size: $10 \frac{1}{4} \times 7 \frac{1}{4} \times 4$ inches. FREQUENCIES: Medium Wave, $540-1600 \mathrm{Kcs}$; Marine, 1.6-4.6 Mcs.; $\mathbf{F M} /$ VHF, $88-108$ Mcs.: Aircraft, 108-136 Mcs. (Military, Civil and Ground control); High VHF/PB, 146 -176 Mcs. (Commercial and Industrial RT mobiles). Availability of mobile transmissions depend on operators in each area.

STOCKTON PARTNERS (Dept. P.E.) Importers and Distributors Brighowgate, Grimsby, Lincs. Tel. 0472 64196/58815

TYPE 13A DOUBLE BEAM OSCILLOSCOPES
 An excellent general purpuse c／k－750 KHz ．Band wilth o MHz．Sensitivity 3：mい品． operating voltage ofllo／ 200／250V atc．Nupplied it

AVO CT471A MULTIMETER Battery operated，fully transistorised． Sensitivity $100 \mathrm{~m} \Omega / \mathrm{c}$ ．Measures $A C / D C$
Voltages $12 \mathrm{~m} V$ to $1,200 \mathrm{v}$ ．AC／DC Current $12 u \mathrm{~A}$ to 1.2 Amp ．Reastance 12 ohm to $120 \mathrm{~m} \mathrm{\Omega} \mathrm{HF}, \mathrm{VHF}, \mathrm{UHF}$ ，Voltage with multiplier 4 v to 400 v up to $50 \mathrm{Mc}^{\prime} \mathrm{B}, 40 \mathrm{mV}$ to 4 V up to $1,000 \mathrm{Mc} / \mathrm{s}$ ．Offered in perfect

CRYSTAL CALIBRATORS No． 10 controlled wavemeter．
 quency range $500 \mathrm{Kc} / \mathrm{s}$ ．
$10 \mathrm{Me} / \mathrm{s}$（up to $30 \mathrm{Mc} / \mathrm{B}$ on harmonicer）．Cali－ brated dial，Power re－
tuirements 300 V．D．c tuirements 300 V．D．C
15 mA and 12 V．D． 0．3A．Excellent con－
dition．89／6．（arr， $7 / 6$ ，

TAPE CASSETTES
Top quality in plast ic library boxeb．
C 6060 min $8 / 63$ for $24 / 8$ （990） 90 min $12 / 63$ for $36 /$ （＇1291120 mia $15 /-3$ for $43 / 6$ Cassette Heal Cleaner 11／3．All Post Extia．

CLASS D WAVEMETERS

 dyne reguency meter covering $\quad 1 . \overline{7}-8 \quad \mathrm{Mc} / \mathrm{s}$ ． Operation on 6v d．c．
ldeal for amatenr ube． Ideal for amatenr use．
Available in cood used con． Available in good used con－
dition． 55.10 .6 ．Carr．7／6， or bratul new with acces－
sorjes． 87.19 .6 ．Carr． $7 / 6$.

B．C． 221 FREQUENCY METERS latest relense 125 kHz to omilz．Excellent
condition．Fully tested and ehecked int condition．Fully tested and checked itnt conr．plete with calibrator
t27．10．0．etch，Carr． $10 /-$
AM／FM SIGNAL GENERATORS
 Oscillator Test N pecision quality ment made for the ministry by Airmec． Frequency cover－
age $20-80 \mathrm{Mc} / \mathrm{z}$ ． AM morates precision dial，level meter，precision attenuator luF－100my．Operation from
 ondition complicte with ill connectors ully teated．245．Carr． 20

AVO CT． 38 ELECTRONIC MULTIMETERS
High quality 97 range instruntert which mersures a．e．and d．c．Voltage．Current，
Resistance and Power Output Ranges dic， volts $250 \mathrm{~m} \cdot 10,000 \mathrm{~V}$（ 10 meg $\Omega-110$ meg Ω input）．D．c．current $10 \mu \mathrm{~A}-45 \mathrm{~A}$ ．Ohms． $0-1,000$ meg Ω it．e．volt 100 mV －250v＇（with R．F．metauring head up to 250 MHz a a． current $10 \mu \mathrm{~A} \cdot 26 \mathrm{~A}$ ．Power output 50 micro－
watta 5 wats．Operation $0 / 110 \mu 00 \% 50 \mathrm{~V}$ ac watta－ 5 watts．Operation $0 / 110 / 200 / 250 \mathrm{~V}$ a．c．
supplied in perfect condition complete with supplied in perfect condition complete with
circuit lead and R．F．probe．225．Cirr． $15 /$ ．

ADMIRALTY B． 40 RECEIVERS W安

 limiter，crybtal controlled B．F．O．ealibrator I．F，out． utput for phores．Operation $150 / 230 \mathrm{~V}$ a．c． size $19 y^{\prime}-13!$ ， 16 in ．Weight 1141 bb ．Offered in good working condition．282．10．0．Carr．
 817．10．0．Carr． $30 /$

TO－2 PORTABLE OSCILLOSCOPE
cost economy oscillo． cope for everyday use． Y amp．Bandwidth imp． 2 meg Ω 20 P．F muminated scale． 2 in lube． 115
030 m ．II．Weight 81 b $20 / 240$ V a．c．Supplied rand new with hand

$\square \equiv \mathrm{B}$

USED EXTENSIVELY BY INDUSTRY，GOVERNMENT DEPARTMENTS，EDUCATIONAL AUTHORITIES，ETC． －LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

＂SEW＂CLEA

Type MR．52R．2ifin square fronts．		
$50 \mu \mathrm{~A}$	68／－	10V d．c．
$50.0 \cdot 50 \mu \mathrm{~A}$	52／	20 V d．c．
$100 \mu \mathrm{~A}$	52／－	50 V d．c．
$100-0 \cdot 100 \mu \mathrm{~A}$	47／6	300 y dex
$500 \mu \mathrm{~A}$	45／－	15 V atc．
1 mA	40／－	300 V as．
－ma	40／－	5 Meter lind
10 ma	40／－	VU Meter
50 m .1	40\％	1A a．c．＊
100 ma	401－	5 A ase．＊
500 ma	40／．	10A a．c．＂
1．1．	40\％－	20 A acc＊＊
	40／－	30A ：1．c．＊

EDGWISE METERS
 Type PE．70． 3 17／38in 1 15／38in 27 in

Send for illustrated brochure

FTC－401
TRANSISTOR
TESTER
Pull capratilitice for meaburing Equally aliaptable for check－ tur diodes．Nupplied eomplet with inst ructions，lat tery ant
wis．

Marconi tri 4 E distortion factor METERS．Excellent comlition．Fully teeted 220．Carr． 15

TRANSISTORISED L．C．R．A．C MEASURING BRIDGE
 bridge offeriag portable bridge offeriag ex－ cellent range and
accuracy at low $\begin{array}{cc}\text { accuracy at } \\ \text { cost．Manges：} & \text { low } \\ \text { ．}\end{array}$
 ges -2% ．${ }^{\circ}$ ． 10 pF langes 2\％．TURNS RAT1O $\mathrm{I}: 1 / 1000-$ 1：11100． 6 Ranges $t 1 \%$ ．Bridge voltage at Heter indication At ractive 9 voltg． $100 \mu \mathrm{~A}$ ． heter indication．Atractive $\underset{p}{2}$ tone metal

COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES
13．coupled．Band wi－
order． 825 ．Carr． $30 /-$ ．
TE－20D RF SIGNAL GENERATOR
 signal generator cover－
 calibrated．Virectly $\mathbf{R F}$ attenuator，ausio output．Xtal sockel for calibration．
 new with instructions．
E15．

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency 0.20 Kejs on 2 ranger．Output 500Ω or ok Ω ．Operation 2002500° ．A．C supplied in perfert orden．\＆12．10．0

TY75 AUDIO SIGNAL
GENERATOR
Yille Wave 20 e／s to
$200 \mathrm{ke} / \mathrm{s}$ ．Square Wave
 nutput．Output variable
 Yolts ace size

MARCONI TF885 VIDEO OSCILLATORS
0－јMHz．Sine square Wave．245．Carr．：00．
LAFAYETTE TE46 RESISTANCE

MARCONI TF195M BEAT FREQUENCY OSCILLATORS

ADVANCE TEST EQUIPMENT

 Brand new and boxed in origigal realed cartons．JIBADDIOGIGNALGENERATOR． $15 \mathrm{c} / \mathrm{A}$ to $50 \mathrm{Kc} / \mathrm{A} .8 \mathrm{sine}$
ohme or 5 obmis． 430.0 .0
VM79：OHFMILLIVOLTMETER $100 \mathrm{Kc} / \mathrm{g}$ to $1,000 \mathrm{Mc} / \mathrm{B}$, a．c． 10 mV to 3 V D．c． 10 mV to $3 V$ ．Current $0.01 \mu \mathrm{Atoc} 0.3$
mA Registance 1 obnt to 10 megohm ． $\mathrm{mA} . \mathrm{Re}$
E125．0．0．
TTIS．TRANBISTOR TESTER．Full range of lacilities for testing PNP or P P transistore in or out of circuit． $\mathbf{2 3 7 . 1 0 . 0}$

Carriage 10\％－per ite

G．W．SMITH
\＆CO（RADIO）LTD，
Also see next two pages

SETI-COWNOCTORIS/VILIES
 BRAND NEW \& FULLY GUARANTEED

SEND SAE FOR FULL LISTS DISCOUNTS:

10% on $12+$ any one 1 s.re
La Potare: seni-Conductors 1 is lives 3 /.

VALVES

114
1 R 5

$2 / 8 \cdot 25 \mathrm{~L}$ i
$5 / 8$
 $8 /\left[30 C^{\prime} 1\right.$
$9 / 630 C^{2} 1$ $9 / 630 C^{\prime} 1$

$6 / 630 \mathrm{C}$ | $8 / 630 \mathrm{Cl}$ |
| :--- |
| $8 / 630 \mathrm{~F}$ | $8 / 8 \cdot 30 \mathrm{FLI}$ B/ELSO 8 8/E EM8 11/6 EM8I 15% EMN4 18/-EM8 15/- EM8 5- EY8 18/6 EY8

$\frac{1}{1} \frac{1}{1} \div \infty$
$8 / 6$
$7 / 6$
$11 /-$

$\mathrm{Hi}-\mathrm{Fi}$ solid state pre-amplifier and control
unit incorporating trelle, hass, volume unt
(magneticand ceramic), mike and radio. Will also accept tape head. Operates from 9y-12V
hat tery (20V max. 7.5 ma). Frequency hattery $(20 \mathrm{~V} \quad \mathrm{max}, 7.5 \mathrm{~mA})$. Frequency
response
$25 \mathrm{~Hz}-30 \mathrm{kHz}+\mathbf{1 d B}$. Noise leve better than -50 dB on all inputs. Principally
designeil for nge with $Z 12$ Amplifer but full designed for nse with Z12. Amplifier but full
instructinus are supplied to enable it to be
instructions are supplied to enabo
used with any amplifier. Size ti]"
used with any amplifier. Size ti" $2!" \cdots 2\}$
overall plus knobs. Brushed and polished averall plus knobs. Brished and polining front panel with matching knobs. supplied brand

E. 8.19 .6

TELETON SAQ203E

SPECIAL OFFERS!

 farrard MP25.11 hited (ioldring (ison cover. Total lizt price e 330 . cartridge complete with de luxe hase and cover. Total list price $£ 50,16.0$. OUR PRICE 239.

SINCLAIR EQUIPMENT

AMERICAN TAPE	
First grale quadity American tapes.	Brand
new Discount on quantitics.	
3 in .225 t . L. P, auctate.	3.6
3tin. 600 ft . T. P . mylar	10
5in. 000 ft . std. plastic	$8 / 6$
5 in . 900 ft L L.P. acctate	10;
5 in . 1,200it. 1).P. mylar	15
$5{ }^{3} \mathrm{in}$. $1,000 \mathrm{ft}$. L.P. neetal-	12
5 jin. 1.200ft. L.P. mslar	18
5\%in, 1,800ft. 1.P. nuyla	22
	$30 / 6$
Tin. $1,9005 \mathrm{t}$, stal. atetate.	12/6
Tin. 1,800ft. L.F', acetate	
7in. 1.800ft. L. ${ }^{\text {P }}$, mylar	20
7in. 2, 400 (t. I 1 , ${ }^{1}$. mylar	25
Tin. 3,600ft. T.l' mylar	45

\star TRANSISTORISED FM TUNER \star

AMERICAN TAPE

 P'ostage ?

TRIACS

KC41.4 1001'156 6A, 19/6; SC41B
$22 /-$ SC41D 400P1V 6i, $27 / 6$.

ZENER DIODES

$100114,(3 \cdot 3$ (n) 338$) 3 /-$
10 watt (3.4 to 1000) 5
THYRISTORS

 $13 /-: 400 \mathrm{P} 1 \mathrm{C}, 15 / \mathrm{F}, \mathrm{T}, 100 \mathrm{PIV}, 11 /-$

latest

 detaits adition giving full range of HI FI EQUIPMENT, MENT and C CM TEST EQUIP. EQUIPMENT pages. fully illus trated and detailing thousands ofntenis-many at bargain prices.
EREE OISCOUNT COUPONS VALUE 10 -

SEND NOW-ONLY 7/6 P\&P1/6

RUSSIAN C1-16 DOUBLE
BEAM OSCILLOSCOPES 5 MHz Pass Band. Separate Yi, Ye ampliflers. Calibrated triggered swepp from
$0.2 \mu \mathrm{sec}$ to 100 msec crin supplied complete with instructions, 88 , Carr. pait
 MARCONI CT44 TF956 AF ABSORPTION WATTMETER

TH111. DFCADE RESIETANCE GTTENDATOR
 $0-111 \mathrm{~dB}$. Connections. Un
 $+10+20+30+40 \mathrm{~d} 15$. Frequeney d.c. to $200 \mathrm{kHz}(-3415)$. tecuracy: 0.05 dB . +indjcation dB < 0.01 , Maxi mum input less than $4 W$ ($50 \mathrm{~V}^{\circ}$). Built in no0 0 load resistance with internal/external wFltch. Brand new 28\%.10.0. F. \& P. 5i-. BELCO AF-5A
SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR

$18-200.001 \mathrm{H}_{2}$
$18-200,001 \mathrm{H}_{2}:$
square
is-50,000 Hz,
output maz
+100B (10kn).
Operationt Operation
intermal batterits.
$7 \mathrm{Cln} \times 5 \mathrm{~h}$

TE-16A. Trangiatorised Signal Generator, brangee $400 \mathrm{kHz-30}$ mhz. An
inexpenaive instrument for the handyman. Operates on $9 v$ battery. Wide easy to reat scale easy to ream geale:
500 Hz modulation. 53 in
with 31$\}$. Complete
indions and leads. 87.19.6. P.sP.4iBELCO DA- 20 SOLID STATE
DECADE AUDIO OSCILLATOR

New high quality portable ingtrument. Sine 1 Hz
to 100 kHz . Square 20 Hz to 20 kHz . Output max. +10 dB ($10 \mathrm{k} \Omega$). Opera tion $2 \% 0 / 240 \mathrm{~V}$ a.c. Siz 216 mim
120 nitr.

HIGH SENSITIVITY A.C. VOLTMETER 01 meg. mput 10 ranges: $3 / 10 / 30 / 100 / 300 \mathrm{~s}$
R.M.s.
$4 \mathrm{c} / \mathrm{s} .-1 / 2 \mathrm{Mc} / \mathrm{s}$. Decibels -40 to +50 dB . Supplied brand new complete wi instructions. Operation
230 V
 $\frac{230 \mathrm{~V} \text { a.c. } 817.10 .0 \text {. Сагr. } 5 \mathrm{j}-\text {. }}{\text { TE-65 VALVE VOLTMETER }}$
 High quality instrument
with 28 ranges. D.c. colta $1 \cdot 5-1,500 \mathrm{~V}$. A.c. volte 1.5-1.5005 Resistance up to 1,000 megohms
220640 v a.c. operation Complete with probe and Complete with probe and
instructions. 817.10 .0 instructions.
P. \& P. $6 /-$. Aditiona Probes arailable: R.F 42/6. H.V. $50 /=$
AUTO 7RANSFORMERS 0:115/230

SOLID STATE VARIABLE A.C VOLTAGE REGULATORS
 ing. Ideal for control of lamps, drille, electrical appliances, ete. Input - $30 / 240 \mathrm{~V}$ a.c. Output connnuously
40 V to 230 V Model MR2305 5A 68 a 46 MR2310 $10.4 .00{ }^{48}{ }_{69}$ finmur, E11.19.6 Pobtage?'f.

MULTIMETERS for EMSRY purposel

TECH PT-34. 1,000 O.P.N. $0 / 10 / 50 / 250 /$
$500 / 1,000 \mathrm{~V}$ a.c. and
.c.(1/100K . 39/6 - \& P .

MODEL TE-70. 30,000 $\begin{array}{cc}\text { O.P.V. } & 0 / 3 / 15 / f 0 / 300 \\ 600 / 1,200 \\ \text { 1.e. } & 0 / 6 / 30\end{array}$ $120 / 600 / 1,200$ V゙
$30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}$
$16 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot \mathrm{FM} / 1 \mathrm{~F}$ пек.
25.10.0. I'. \& P. B/-

TMK MODEL TW-50K. 45 rangen, mirror seate. 50 K Volt d.c. $5 \mathrm{~K} /$ / olt a.c. IJ.c.
 1.000v. Ace volte: $1.5,3$ 6, 10, $25,50.1 \geqslant 5,250,500,1,0001.1$.
current: $25,50 \mu \mathrm{~A}, 2 \cdot 5,5,25,50,250$ $50011 \mathrm{~A}, \overline{5}, 10 \mathrm{~A}$. Resistance: $10 \mathrm{~K}, 100 \mathrm{~K}$

TE-900 $20.000 \Omega /$ YOLT GIANT MULTIMETER Mirror seate and overlone
protection. bin full view protection. bin full view $3-5 / 10 / \geqslant 50 / 1,000$ $5,0001 \mathrm{~s}$ a.c. $0 / 25 / 12 \cdot 5 / 10 / 50 / 250 / 1,000$ $5,000 \mathrm{~V}$ d.e. $0 / 50 \mu \mathrm{~A} / 110 / 100 / 5001 \mathrm{~mA} / 10 \mathrm{~A}$ d.c. $02 \mathrm{~K} / 200 \mathrm{~K} / \pm 0$ mere, wher. 215.0 .0 . P. is P. 5

MODEL 5025. 54 ranges, giant btin meter, polarity
ieverse suitch. Sensitivity: $50 \mathrm{~K} /$ Volt
D.e. Volts: $6 \cdot 125,025,1 \div 5.5,10,25,50$. $125,250,500,1,0005$. A.e. Volts: $1 \cdot 5,3,5$ current: $25,50,250,500,1,000$. D.c.
 100 K , I meg, 10 meg. Decibely: $\rightarrow 0 \mathrm{~K}$ +85 iB 212.10.0. Y. \& Y. 3/6.

LAFAYETTE HA-600 SOLID STATE RECEIVER
 30 MHz . FET front end, 2 mech. filters product sletector, variable B.F.O., noise limiter, R Meter, Bandsprend. RE゙ (aill.
 or Ie d.e. Brand new with instructions.
 ABLE OSCILLOSCOPE Sin. tube. Y amp. Nensiti-
vity $0 \cdot 1 \mathrm{v}$ p-p/CM. Bandwiilth 1-5 pps-1. MHz Input imp. Mmeg Ω gupF x amp. Bensitivity $0 \cdot 9 \mathrm{v}$ p-p/CM. Bandwidth 1. e eps
-800 KHz . Input imp. -800 KHz . Input imp.

meg 20 F . Time base ${ }_{3}$ ranges $10 \mathrm{cys}-300 \mathrm{KHz}$. exterinal. IJmminated seale 140 210.330 | mm . Weight $15 \frac{1}{2} \mathrm{th}$. 220/240 |
| :--- |
| bratul new with hamllook. E37. 10.0 . Nupplied |

 K/4. 111 e
$\mathrm{P} .3 /$. $-2010+63 \mathrm{IIB} .45 .19 .8$. P. \& P. $3 /$. MODEL TE- 00 . 50,000 load protection. $003 / 13 / 60 /$ $300 / 600 / 1,200 \mathrm{~V}$ $0 \cdot 03 / 6 / 60 / 600 \mathrm{~mA}$ 6F160k $1.6 / 1+$ d.c $\frac{\text { E\%.10.0. P. \& P. 3/-. }}{\text { TMK MODEL TW-ROCB }}$ TMK MODEL TW-ROCB
Features Resettable OYer Fentures Resettable Oyer
load Button. Remsitivity $20 \mathrm{~K} \Omega / \mathrm{Folt}$ Folt A.c, volts $50,250,1,000 \mathrm{~N}$. currents: $0-0.05,0.5,5,50,500 \mathrm{~m} \mathrm{~A} .10 \mathrm{~A}$. Resistance: $0-5 \mathrm{~K}, 50 \mathrm{~K}, 0-500 \mathrm{~K}, 5 \mathrm{meg}$. Decibels: -20 to $+5 \geqslant \mathrm{~dB}$. 211.10.0. P. 3/6.

MODEL A8-100D. $100 \mathrm{~K} \Omega /$
Volt. sin, niror reale. Bolt. sin, mirror scale. $3 / 12 / 60 / 120 / 500 / 600 / 1,200 \mathrm{~V}$ 0/t/130/120/300/600V c. $0 / 10 \mu \mathrm{~A} / 6 / 60 / 300 \mathrm{nAA} / \mathrm{M}$
$0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M}$ $12 \mathrm{~A} . \quad / 2 \mathrm{~K},-00 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M}$

TMKLAB TESTER.

100,000 O.P.V.
bin seale buzzer
short circuit chech.
short ensitivity: 100,000

OPV (l.e. $5 / \mathrm{Moltan}$ a
 A.x, volts: $0.5,-5,10,50,251,1,000 \mathrm{~V}$ Duc, current: $10,100 \mu \mathrm{~A}, 10,100,500 \mathrm{~mA}$ D.t. current: $10,100 \mu \mathrm{~A}, 10,100,500 \mathrm{~mA}$, 10 meg, 100 meg. Decibels: - 10 to +49 dB . Plastic case with carrying handle.

LAFAYETTE HA-800 SOLID STATE AMATEUR COMMUNICATION RECEIVER

$3 \cdot 5-4,7-7 \cdot 3,14-14 \cdot 35, \cdot 21-23 \cdot 45,28-29 \cdot 7$ flters, product conversion, ${ }^{\circ}$ mech. fiters, protuct
K Meter, 100 K Hz calibrator, $220 / 240 \mathrm{~V}, ~$ a.c.or 14 V d.c. $15 \mathrm{in}, 93 \mathrm{in}$, $83 \mathrm{in}$.181 b . Brand new with instructions. 857.10 .0 . $\frac{\text { (arr. paid (} 100 \mathrm{KHz} \text { (rystal } 80 / 6 \text { extra). }}{\text { LAFAYETTE PF60 VHF FM }}$

sulid State. $15 \pm-174 \mathrm{MHz}$. Fuly tuncable ur aryatal controlled (not supplied). Built
in Speaker, Squelch and Yolume Controls $220 / 240 \mathrm{~V}$, squelch and Volume Controls. instructions. 237.10.0. Carr. 10/SHI" VARIABLE VOLTAGE

TRANSFORMERS

UNR-30 RECEIVER

4 Bands cunering 500 KHz -30MHL. B.F. \mathbf{O}. Built in Hpeaker $220 / 240 \mathrm{~V}$ a.c. Branl new with instructions. E13.13.0. Carr. 76 .

WS62 TRANSCEIVERS

 Large quantity available for EXPFxcellent condition. Enquirjeg invited.

UR-IA SOLID STATE

COMMUNICATION RECEIVER

4 Bands cowering 55 KHz - 30 MHz . FEET, ${ }^{\text {K }}$ Meter, Variable BFO for sMB. Built it Speaker. Telescopic Aerial, Bandepread,
Sensitivity Control. $2: 0 / 040 \mathrm{~V}$ Sensitivity Control. $220 / 240 \mathrm{~V}$ a.c. or 121 d.c. 123 in $\times 48 \mathrm{in}$ 7in. Brand new with
instructione, eft, carr, $7 / 6$. instructione. 284. Carr. 7/5.

FULL RAIGE OF CODAR AMATEUR EQUIPMENT IN STOCK

LAFAYETTE LA-324 STEREO AMPLIFIER

soln stiste. 12.5 W r.fn.s. per chanmet. $20-20,000 \mathrm{~Hz}-1 \mathrm{I} B$. Inputs Mag/Cer/Tuner Aux. Output 4-16. Headphone socket, tape output. Black and brughed aluminium front prnel, 10 in 3 in Rgin. e2e4. Carr

PULL RANGE OF PARTRIDGE JOYgTICK FERIALS In stock

TRIO 9R59DE COMMUNICATION RECEIVER

4 hamde- $500 \mathrm{KHz-30MHz}$. A Meter, Virialld $115 / 260 \mathrm{~V}$ and. Brand new with ingtructiona 242. Carr. Paid. Full Rance of other Trio Products in stock.

JR.5008E	Amateur Receiver	265. 0.0
JR. 310	Annateur Receiver	277.10.0
TM, 510	Amateur Traneceiver	180. 0.0
SP5D	Matching Speaker	24. 7.6
HM4	Heaulyhones	\$5,19.6

voltage stabiliser TRANSFORMERS

EDDYSTONE VHF RECEIVERS MODEL 770R. 19-1055 Mc/s. Excellent condition. 8150

INTERCOM/BABY SITTER Transistorised In-
 coms, ideal tor hone / offlee / work
shop, etc. 2 way bhop, etc. 2 -way
huzzer call system huzzer call sybtem
for deak or wall ror deak or wal complete with con hecting wire, bat
i station 26.12.e. P. \& P. 5

HOME RADIO (Components) Ltd., Dept. PE, 234-240 London Road, Mictham, CR4 3HD. Phone $01-6488422$

WAY OUTof the component finding

 mazeIt may be fun finding your way out of the maze at Hampton Court, but it's not so funny trying to locate and obtain just the components you need for a particular job. In fact, the number of problems and frustrations you can meet is quite a-maze-ing!
There is an easy way out however. Simply get a copy of the Home Radio Catalogue and order whatever you need from the comfort of your easy chair. This famous radio and electronic constructor's "Bible" lists over 8,000 items, more than 1,500 of them illustrated. At only $12 / 6 \mathrm{~d}$ ($8 / 6 \mathrm{~d}$ plus $4 /$ - post \& packing) it's a giftespecially as each copy contains 6 vouchers, each worth $1 /-$ when used as directed.
Once you have your Home Radio Catalogue you can make life even easier for yourself by joining our Credit Account Service. Then you can order by telephone any time of day or night, Sundays included! No need to bother with postal orders, cheques, registering envelopes every time you order. We send prepaid envelopes and you make only one payment each month. So simple! Write for details or telephone 01-648 8422.
YOUR FIRST STEP out of the maze - Post the Coupon with your cheque or P.O. for 12/6d.

VOL. 6
 No. 11

THE PROFESSIONAL (AND PERSONAL) TOUCH T is a fact that a piece of home built equipment can be
indistinguishable, both internally and externally, from a factory produced equipment. The amateur constructor has access to much of the general range of circuit components and materials currently used by the professional manufacturers; and he can use one of the well established methods of assembly. For housing purposes, there are stylish commercially made cases. These can be neatly embellished on the outside as befits the particular equipment, since modern lettering aids make this operation quite simple even for those lacking artistic skill. (An article entitled "The Professional Finish" in this issue deals with the subject of housing and external appearance.)

Yes, in a sense it is all delightfully simple and straightforward. Perhaps too simple some veteran constructors may hint, mindful of the "old days". It provokes a natural reaction in some to recall with nostalgia early endeavours, especially if these occurred in a period when the private individual had access to but a few components and constructional materials, and when many items had to be entirely home made. The difficulties certainly spurred on the imagination; and successful innovation was cause for justifiable pride and satisfaction.

That kind of resourcefulness is not required in any great measure today, so far as normal circuit components and hardware are concerned. But it would be entirely wrong for the casual observer to conclude from what he may see or read that the present day private constructor is feather-bedded and spends his spare time merely assembling parts to stereotyped designs. On occasions he is just so employed, this is true. And indeed this is quite an important part of the hobby. But he can look further afield, as well. For there are actually more opportunities for personal innovation than ever, because of the wider applications of electronics now possible.

Consider, for example, the area of measurement and control. Here is boundless scope for individual enterprise. Electronic solid state devices already exist for translating many kinds of physical phenomenon into electrical signals. But mechanical and electro-mechanical contrivances are often indispensable parts of such electronic systems. It is not possible to obtain "off-the-shelf" devices or mechanisms suitable for every requirement, for these tend to be unique in every case. So more often than not such items have to be tailored for the job in mind. And here the imagination, resourcefulness, and skill of the constructor are all brought into play.

The knowledge that it is within his capabilities to produce a "professional looking" job so far as the electronics are concerned, will encourage the constructor to take great pains with any part of the equipment he must fabricate himself. The spur has not vanished.
F.E.B.
CONSTRUCTIONAL PROJECTS
"GEMINI" DUAL PURPOSE STEREO AMPLIFIER 860
RADIO CONTROL SEQUENCE SWITCH 870
BRAKE LIGHT REPEATER 874
"TRANSTAB" POWER SUPPLY 889
SPECIAL SERIES
MAKING THE MOST OF
LOGIC IC's-5902
GENERAL FEATURESTHE PROFESSIONAL FINISH878

BEGINNERS

SIGNAL INJECTOR AND CODE PRACTICE OSCILLATOR882
NEWS AND COMMENT 859
NEWS BRIEFS 877, 901
ON THE FRINGE 884
SPACEWATCH 885
ELECTRONORAMA 886
MARKET PLACE 888
READOUT 914
SPECIAL SUPPLEMENT
INSTALLING AUDIO
Our December issue will be published on Monday, November 16

[^1]
SPECIFICATION...

PRE-AMPLIFIER
Inputs
Radio 100 mV at $50 \mathrm{k} \Omega$
Tape $100 \mathrm{~m} V$ at $50 \mathrm{k} \Omega$
Aux 100 mV at $50 \mathrm{k} \Omega$
Disc $3 \mathrm{mV}(\mathrm{LO})$ and $60 \mathrm{mV}(\mathrm{HI})$ both at $47 \mathrm{k} \Omega$
Mic $\quad 1 \mathrm{mV}$ at $1 \mathrm{M} \Omega$ and 10 mV at $2 \mathrm{M} \Omega$
Microphone can be mixed with any other input with independent level control

Outputs

Tape output 400 mV at $10 \mathrm{k} \Omega$ unaffected by volume or tone controls
Auxiliary output 400 mV at $10 \mathrm{k} \Omega$ controlled by volume and tone centrols

Tone control

Bass $\pm 12 \mathrm{~dB}$ at $100 \mathrm{~Hz}, \pm 18 \mathrm{~dB}$ at 30 Hz
Treble $\pm 12 \mathrm{~dB}$ at $10 \mathrm{kHz}, \pm 15 \mathrm{~dB}$ at 20 kHz

Balance control

Full rotation cuts off either channel
Filter
$15 \mathrm{kHz}, 10 \mathrm{kHz}, 7 \mathrm{kHz}, 5 \mathrm{kHz}$ or Out. Slope 18dB/octave

Signal to noise ratio
Unweighted figures referred to 30 watts into 8Ω
Weighted figures $20 \mathrm{~Hz}-20 \mathrm{kHz}$, 3 -phon curve
All measured with inputs shorted

$$
\text { Aux, Radio, Tape }\left\{\begin{array}{l}
-77 \mathrm{~dB} \text { unweighted } \\
-83 \mathrm{~dB} \text { weighted }
\end{array}\right.
$$

Disc. HI
Disc. LO
Mic. HI
Mic. LO

Interchannel crosstalk

-50 dB at $1 \mathrm{kHz},-35 \mathrm{~dB}$ at 10 kHz
Crosstalk betweeen inputs
-70 dB at $1 \mathrm{kHz},-60 \mathrm{~dB}$ at 10 kHz
Dynamic range
28dB before clipping

Distortion

0.01% at rated sensitivity, less than 0.1% at 10 times (20dB) overload
Supply 40 V d.c. at 35 mA (from main amplifier)

Dimensions

Width $13 \frac{1}{2} \mathrm{in}$, height $3 \frac{1}{2} \mathrm{in}$, depth 8 in

MAIN AMPLIFIER

Output power

30 watts into $8 \Omega .20$ watts into 15Ω
15 watts into 4Ω. Continuous r.m.s. sinewave power into 8 and 15Ω. Intermittent sinewave or speech and music into 4Ω

Harmonic distortion

At full power $\left\{\begin{array}{l}\text { Less than } 0.01 \% \text { with } 8 \Omega \\ \text { or } 15 \Omega \text { load } \\ \text { Less than } 0.1 \% \\ \text { load }\end{array}\right.$

DUAL PUPPDSE Mas ase m I.M. SHAW (FERRANTI LTD)

FILTER

VOLUME
BASS

monop stereo

TREBLE

> Maximum harmonic distortion
> 0.012% at 100 mW into 15Ω load
> 0.02% at 35 mW into 8Ω load
> 0.04% at 30 mW into 4Ω load

Intermodulation distortion

Less than 0.05% at full power into 8Ω or
15ת. S.M.P.T.E. method
$100 \mathrm{~Hz}+10 \mathrm{kHz}$ ratio $4: 1$

Frequency response

8Ω or 15Ω load $\left\{\begin{array}{l}-1 \mathrm{~dB} 30 \mathrm{~Hz}-50 \mathrm{kHz} \\ -3 \mathrm{~dB} 20 \mathrm{~Hz}-100 \mathrm{kHz}\end{array}\right.$
4Ω load $\quad\left\{\begin{array}{l}-1 \mathrm{IB} 50 \mathrm{~Hz}-30 \mathrm{kHz} \\ -3 \mathrm{~dB} 25 \mathrm{~Hz}-70 \mathrm{kHz}\end{array}\right.$

Signal to noise ratio

-100 dB unweighted $20 \mathrm{~Hz}-20 \mathrm{kHz}$

- 110 dB weighted- 30 phon curve

Output impedance

0.25Ω in series with $2,500 \mu \mathrm{~F}$ plus $6 \mu \mathrm{H}$

Stability
Unconditionally stable, suitable for electrostatic loudspeakers

Input sensitivity

400 mV r.m.s. for 30 watts into 8Ω
430 mV r.m.s. for 20 watts into 15Ω
200 mV r.m.s. for 15 watts into 4Ω
Supply
$220-250 \mathrm{~V}$ a.c. at 50 Hz
Dimensions
width 6 in, height 7in, depth I3in

THIS short series of articles will describe the design and construction of a class B, $30+30$ watt stereo amplifier and pre-amplifier of exceptionally high performance. The performance is certainly equal to anything one can buy no matter what the cost, but the construction of this amplifier is well within the capabilities of the ambitious amateur provided that the instructions are followed carefully, particularly with regard to layout and wiring.
The P.E. Gemini has been designed for both home hi fi applications and for use with discotheques and, for this reason, has a microphone input that can be mixed with any other input. The amplifier is designed to be capable of driving two Quad electrostatic speakers and is thus capable of driving any other speakers, provided they are of the correct impedance.

BASIC DESIGN

Over the past few years, countless audio amplifiers have appeared in the technical press, so that one might well be justified in thinking that there could not be anything new left to describe. It cannot be claimed that this amplifier contains any exceptionally original features but rather is aimed at achieving the highest possible performance.

Of course all engineering design is a compromise between confficting requirements and in choosing a final circuit the designer has to weigh the relative importance of distortion, frequency response, signal to noise ratio, transient response, stability, ease of construction and cost, etc. As an example one can always achieve a lower distortion level, in the main amplifier, by increasing the negative feedback, but this usually makes the transient response worse. In describing this amplifier we shall explain the operation of each of the circuits and the reasons for choosing it. We shall also indicate some of the defects of the circuits rejected.

SEPARATE UNITS

A separate pre-amplifier and power amplifier is used instead of the normal commercial "integrated" units. There are certainly good reasons for integrated amplifiers, but they are mostly concerned with cost of manufacture or sales promotion. An "integrated" amplifier is cheaper to manufacture than a "separate unit" one because only one chassis and case are required and the whole amplifier can be assembled on one production line. Also it should be remembered that much hi fi equipment is purchased by people having more interest in music than electronics. Many nontechnical purchasers would be put off by the additional complications introduced by separate units.

For the electronics enthusiast however, separate unit construction offers many advantages. Since the power supply and the pre-amplifier are completely isolated, the risk of hum induction from the mains transformer (which can often be very difficult to eradicate) is completely removed. Also the risk of h.f. oscillation from stray capacitive coupling between the output stages and the sensitive inputs is greatly reduced. Niany people prefer to mount all their equipment in a console. Separate unit construction is ideal for this since the pre-amplifier is light and compact and can easily be mounted by its front panel, whilst the main amplifier and power supply containing all the heavy and bulky components can be hidden away in the cabinet.

Fig. I. Transfer characteristics (a) of class B output stage at 30 mA bias; (b) of class AB output stage at 100 mA bias; (c) at zero bias (threshold of conduction) showing the effect of too low a bias current on a class B output stage

MAIN AMPLIFIER

The designer of a high quality audio amplifier can choose to operate in either class A, class B or class A B . Class A undoubtedly gives the lowest distortion, but at the expense of very high power dissipation and more costly components. The designers have chosen to operate this design in class B and although this produces a slight increase in distortion at low levels, the 0.02 per cent distortion so produced is subjectively inaudible.
One might think that class AB operation would combine the advantages of class \mathbf{A} and class B , but in practice it tends to make things worse as Fig. I shows.

On the central part of the transfer characteristic where both output transistors are conducting the mutual conductance (gm) doubles. When one of the output transistors cuts off as the circuit goes into the class B mode the abrupt change in the slope of the transfer characteristic produces a considerable rise in distortion.

The class B amplifier has been much maligned in recent years by the protagonists of class A . This is due probably to two factors, firstly that the transfer characteristic of the linear quasi-complementary output stage (used almost exclusively in early class B amplifiers) becomes markedly assymetrical at low

Fig. 2. Block diagram of one channel of the P.E. Gemini dual purpose stereo amplifier

signal levels and secondly, because of the difficulty of maintaining a stable bias current, many manufacturers took the easy way out and operated the output stage at or near zero bias. The overall effect was that, although the distortion may have been only 0.1 per cent at full output, it could easily rise to several per cent at low levels with disastrous effects on the reproduction.

However, now that fully complementary output transistors are available, these difficulties can be overcome. This design has a completely symmetrical transfer characteristic and a means of making the bias current exceptionally stable has been developed with the result that the standard of reproduction is subjectively equal to that of a class A amplifier, and with the added advantages of low dissipation and a wide choice of load impedances.

CIRCUIT DESCRIPTION

A schematic diagram of the P.E. Gemini is shown in Fig. 2 and the circuit diagram of the main amplifier itself is shown in Fig. 3. The main amplifier can be divided into three sections. The first section containing TR4, TR5 and TR6 provides all the voltage amplification but at low power level. The cascode arrangement of TR5 and TR6 eliminates "Early effect" distortion (Fig. 4) and R17 provides a means of limiting the current under short circuit conditions.

Transistors TR 7, TR 10 , TR 12 and TR 13 form a fully complementary class B output stage giving a current
gain of around 2.000 but a voltage gain of just below one. The high bias stability mentioned earlier is obtained by two means, firstly, compound npn/pnp and pnp/npn Darlington pairs are used instead of the more familiar configuration shown in Fig. 5, both of these compound pairs are effectively two stage feedback amplifiers by themselves and any change in bias current produced by a change in the junction temperature of the output transistors (TR12-TR13) is reduced by the loop gain stage; a factor of about 7.

Secondly, transistors TR7, TR10 and TR11 are thermally coupled so that any change in the base emitter voltage of TR 10 or TR 11 produced by power dissipation or variations in the ambient temperature is compensated by a similar variation in the base emitter voltage of TR7. The idea of thermal coupling is not new but it has been rarely put into practice because in the past it was necessary to mount the bias diodes or transistor on the same heatsink as the output transistors. This was often mechanically inconvenient so that more often than not no thermal coupling at all was used.

The present circuit overcomes the difficulty by using compound output stages and by thermally coupling the driver transistors to the bias transistors. As these three transistors are in close proximity on the printed circuit board, no mechanical problems arise. The improvement in bias stability is quite impressive. After sustained operation into a short-circuit with the output transistors running at 100 degrees Centigrade

Fig. 3. Circuit diagram of the right-hand channel of the main amplifier of the P.E. Gemini. The left-hand channel is identical-component numbers being the right-hand number plus 100

Fig. 4. Showing characteristics of single transistor and cascade output. (a) Single transistor-note that a change in $V_{c e}$ between Ist and 2nd I_{b} step is much greater than between 4th and 5th step. This produces second harmonlc distortion. (b) Cascade-in a cascade conflguration the bottom transistor works at a fixed low voltage and the top transistor works in common base mode giving complete freedom from Early effect distortion
case temperature, the bias had changed by only 10 milliamps from the correct figure of 30 milliamps, and it returned to within 2 milliamps of the correct current in less than a minute.

Transistors TR8 and TR9 sense both the output current and the output voltage so that the output current under short circuit conditions is actually less than can be otained into a resistive load. When the base emitter voltage of either TR6 or TR9 exceeds about 0.6 volts, the transistors turn on and divert base current from TR10 and TR11. The circuit is thus protected against inadvertent short circuit but since the output transistors get very hot under short circuit conditions with full drive, it is unwise to operate the circuit for more than a few minutes into a short circuit.

PERFORMANCE-DISTORTION

Graphs of distortion versus output power are shown in Fig. 6. The rise in distortion at low levels may seem rather unusual but it is, in fact, far from unusual. Almost every audio amplifier exhibits this effect to some degree, many, especially those using quasicomplementary output stages, being very much worse. Only class A amplifiers are completely free from this effect.

It is interesting that one rarely sees curves such as these published either in manufacturers' brochures or in technical articles. One reason for this is that many designers measure distortion with an instrument called a distortion factor-meter; this works by completely eliminating the fundamental component of the waveform and measuring everything left, unfortunately including hum and white noise. When one is dealing with distortion levels as low as 0.01 per cent the harmonic components tend to disappear beneath the noise at power levels below I watt, so that low level measurements are, fortuitously perhaps, impossible.

A much more satisfactory and precise, although very expensive instrument is the wave analyser, which is in effect a very highly selective tuned amplifier. This

Fig. 5. Output stages (a) using conventional Darlington pairs. Power dissipation in TRI2 and TR13, cause their $V_{b e}$ to drop, this causes the current in TRIO and TRII to increase, providing more base current to the output transistors; net result is a large increase in bias current (b) using compound Darlington pairs. Power dissipation in TRI2 and TRI3 cause their $V_{b e}$ to drop but this does not affect the current in TRIO and TRII. Furthermore the small increase in bias current produced increases the voltage drop across R27 and R28 and reduces the collector current of TRIO and TRII thus compensating for the original change

Fig. 6. Harmonic distortion plotted against output power for the P.E. Gemini main amplifier. (a) 150 hm load at lkHz ; (b) 8 ohm load at kHz ; (c) 4 ohm load at 1 kHz

Fig. 7. Harmonic distortion plotted against frequency for the P.E. Gemini main amplifier. (a) I watt output into 4,8 and 15 ohm loads; (b) maximum rated output into 4,8 and 15 ohm loads
enables one to tune through the whole audio spectrum and measure the amplitude of each harmonic component separately. Because it is so highly selective the effect of noise is greatly reduced and one can make distortion measurements down to 10 mW with ease. All our figures were measured with a wave analyser.

However, we suspect in many cases, when a designer has been able to make distortion measurements at low levels, he has preferred to forget the results.

Another popular trick that the enthusiast should watch out for is the practise of plotting distortion curves against a linear power scale. This expands the high power region to cover most of the graph and squashes everything below one watt to insignificance. As an example, if the curves shown in Fig. 6 were plotted on a lincar scale, the region below IW would occupy only the first one-fortieth of the scale.

The maximum distortion with a 15 ohm load is 0.012 per cent and this occurs at 100 mW output; with an 8 ohm load this rises to 0.02 per cent at about 35 mW . Both these levels are subjectively inaudible. Performance with a 4 ohm load is not quite up to the same standard but distortion still remains below $0 \cdot 1$ per cent for all levels up to 15 watts.

Fig. 8. Frequency response of main amplifier at \mid watt output

Fig. 9. Maximum output power-at onset of clippingversus frequency for the main amplifier operating into 4,8 and 15 ohm loads

Harmonic distortion versus frequency for 1 watt output is shown in Fig. 7a and for full rated output in Fig. 7b. The distortion with 8 ohm and 15 ohm loads remains reasonably constant between 100 Hz and 10 kHz , but starts to rise outside these limits because of various effects including falling loop gain and hole storage in the output transistors.

FREQUENCY RESPONSE

The frequency response of the amplifier is shown in Fig. 8 for an output of 1 watt at 1 kHz , whilst Fig. 9 indicates the maximum cutput power that can be obtained at any frequency before visible waveform distortion becomes apparent. Fig. 10 shows the output waveform with a sinewave input slightly greater than maximum and shows that the amplifier limits cleanly without any tendency to latch-up.

Particular care has been taken to preserve a good transient response even with highly reactive loads such as Quad electrostatic loudspeakers. The transient response of the main amplifier under various load conditions is shown in Fig. 11. These photographs were taken with a 100 kHz input filter to simulate the presence of the pre-amplifier.

Noise at the output of the amplifier is 100 dB below full power into 8 ohms measured unweighted with a bandwidth of 20 Hz to 20 k Hz .

However, because the human ear is most sensitive to noise components between 2 to 5 kHz , an unweighted noise measurement does not correlate very well with the subjective noise level. Using a filter which approximates to the 30 phon frequency response curve of the ear, the noise level is -110 dB .

MAIN AMPLIFIER

(both channels-components for L.H. channel are R.H. channel numbers plus 100)

Capacitors

C6, C106
C7, C107
C8, Cl08
C9, C109
ClO, Cllo
Cll, Clll
C12, Cl12
C13, C113
C14, C114
Cl5, Cll5
2 off each
1μ F elect. 40 V Mullard
$32 \mu \mathrm{~F}$ elect. 40 V Mullard
$250 \mu \mathrm{~F}$ elect. 40 V Mullard
470pF polystyrene 125 V Radiospares
$32 \mu \mathrm{~F}$ elect. 64 V Mullard
470 pF polystyrene 125 V Radiospares
$0.01 \mu \mathrm{~F}$ polyester 160 V Mullard
$0.01 \mu \mathrm{~F}$ polyester 160 V Mullard
$0.1 \mu \mathrm{~F}$ polyester 160 V Mullard
$2,500 \mu \mathrm{~F}$ elect. 64 V Mullard

Resistors
R8, R108
R9, R109
R10, R110
RII, RIII
R12, RII2
R13, R113
R14, R114
R15, RII5
R16, R116
R17, R117
R|8, R|l8

$100 \Omega \frac{1}{2} W$	$\frac{1}{2} W \pm 10 \%$
$24 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	$\frac{1}{2} W \pm 2 \%$
$22 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	$\frac{1}{2} W \pm 2 \%$
$15 k \Omega \frac{1}{2}$	$\frac{1}{2} W \pm 10 \%$
$1 \mathrm{k} \Omega$ - ${ }^{2}$	$\frac{1}{2} W \pm 10 \%$
$39 \Omega \frac{1}{2} W$	$\frac{1}{2} W \pm 2 \%$
$1.5 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	$\frac{1}{2} W \pm 2 \%$
$1 \mathrm{k} \Omega$	$\frac{1}{2} W \pm 10 \%$
$3 \cdot 9 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	$\frac{1}{2} W \pm 10 \%$
$33 \Omega \frac{1}{2} W$	$\frac{1}{2} W \pm 10 \%$
$390 \Omega \frac{1}{2} W$	$\frac{1}{2} W \pm 5 \%$

R19, RII9
R20, R120
R21, R121
R22, RI22
R23, R123
R24, RI24
R25, R125
R26, R126
R27, R127
R28, R128
R29, R129

R30, R130	0.5Ω	$3 W$	W

R3I, R13I Ik $\Omega \frac{1}{2} W \pm 10 \%$ carbon
VR2, VR102 220Ω preset pot (Radiospares
"Mouldtrim")
2 off each.

Semiconductors

TR4, TR104	ZTX503	Ferranti
TR5, TR105	ZTX108	Ferranti
TR6, TR106	ZTX304	Ferranti
TR7, TR107	ZTX108	Ferranti
TR8, TR108	ZTX108	Ferranti
TR9, TR109	ZTX500	Ferranti
TR10, TR110	BFS61	Ferranti
TR11, TR111	BFS98	Ferranti
TR12, TR112	MJE2955	Motorola
TR13, TRI13	MJE3055	Motorola
D6, D106	ZS170	Ferranti
D7, D107	ZS170	Ferranti
2 off each		

2 off each
Miscellaneous
LI, L101 25 turns of 24 s.w.g. enamelled, copper wire on Mullard bobbin DT2178 (2 off)
SK2 5 pin 180 degree DIN socket
SK1 5 pin 300 degree DIN socket
SK 3, SK 103 DIN speaker sockets (2 off)
Capacitor clamps
Turret tags
Heat sinks, Redpoint type 6W (2 off, obtainable from Electroniques)

Grommets

Tag strip
$\frac{1}{2}$ in spacers, 6B.A. (8 off)
Case Contil type N style MOD-2 (West Hyde Developments)
Ready drilled fibreglass printed circuit boards and semiconductors are available from the authors at No. 4, Eleanor Road, Royton, Oldham, Lancs., by mail order only at the following prices:

Pre-amplifier p.c.b.	39 s
Main amplifier p.c.b.	29 s
Power supply p.c.b.	12 s
Pre-amplifier semiconductors (stereo)	35 s
Main amplifier semiconductors (stereo)	145 s
Power supply semiconductors	50 s
Postage and packing	3 s

POWER SUPPLY

Capacitors

$\mathrm{Cl} 250 \mu \mathrm{~F}$ elect. 64 V Mullard
$250 \mu \mathrm{~F}$ elect. 16 V Mullard
$2800 \mu \mathrm{~F}$ elect. 100 V Mullard
$\mathrm{C} 40.1 \mu \mathrm{~F}$ mixed dielectric 1000 V Radiospares
C5 $0.1 \mu \mathrm{~F}$ elect. 250 V Mullard
Resistors

Semiconductors

TRI	BFS98	Ferranti
TR2, TR3	MJE1055	Motorola (2 off)
DRI	KS100A	Ferranti
D2	Ferranti (4 off)	

Transformer

Parmeko mains type P3175 (secondary 48V, 2A d.c.) obtainable from Electroniques. (Other transformers of $48-50 \mathrm{~V}$ rms rated 2 A d.c. or 3 A a.c. may be used if they are of similar physical size)

Miscellaneous

FSI IA slow-blow fuse and holder (Bulgin F55)
FS2 2A slow-blow fuse and holder (Bulgin F55)
SK4 3 pin mains plug and socket (Bulgin P429 and P430)
Capacitor clamps
Earth tags, 4B.A. and 2B.A. fixings, grommets

 advanced electronics

Ferranti offer a wide and varied range of circuits and silicon transistors including, at low prices plastic encapsulated types for high quality audio equipment.

Ferranti E-Line Transistors are specified in quantity by 'Practical Electronics' for their electronic organ, and for their new
high fidelity amplifier which they are demonstrating at the Audio Fair and featuring in this issue.

Write for publication ESB45070 on E-Line Transistor Applications

FERRANTI LIMITED, ELECTRONICS DEPARTMENT, GEM MILL, CHADDERTON, OLDHAM, LANCS.
Telephone: 061-624 6661. Telex: 668038

Take your Wellerchoice* in Soldering

Low initial cost Marksman irons, 10 cover most soldering needs. Screw-in tips on 15 W and 25 W make it easier to change the tips, which are nickel-plated and factory pretinned for longer life. The shanks are stainless steel to concentrate heat at the tips.

Instant Heat for Rapid Soldering \%
Instant heat soldering guns to deal with intermittent soldering. Working heat is reached within seconds of pressing the trigger. so the job is finished in less time than it takes for a normal iron to heat up. Expert dual heat (100/140W) and Heavy Duty (275W) models available. Alternative tips available for plastics working

Weller Electric Limited

Redkiln Way, Horsham. Sussex
TeI: 040361747
PARKERS SHEET
METAL FOLDING
MACHINES
HEAVY VICE
MODELS
With Bevelled Former Bars

No. 1. Capacity 18 gauge mild stee $\times 36 \mathrm{in}$. wide \ldots..... £ 15.0 .0
No. 7. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$, wide $. . . \quad . . \quad .$.
No. 3. Capacity 16 gauge milld steel $\times 18 \mathrm{in}$. wide \ldots.
Also new bench models. Capacities $48 \mathrm{in} . \times 18$ gauge $\mathrm{f} 40.36 \mathrm{in} . \times 18$ gauge $\mathbf{£ 3 0 . 0 . 0}$. 24 in . $\times 16$ gauge $\mathbf{E 2 9 . 0 . 0}^{2}$. Carriage free.
End folding ateachments for radio chassis. Tray and Box making for 36in. model, $5 / 6$ per ft . Other models $3 / 6$. The ewo smaller models will form flanges. As supplied to Goverriment Departments, Universities, Hospitals. One year's guarantee. Money refunded if not satisfied. Send for details.
A. B. PARKER, Folding Machine Works, Upper George St., Heckmondwike, Yorks. Heckmondwike 3997

Closed ALL DECEMBER for annual holidays

Fig. 11. Oscillograms showing the transient response of the main amplifier (a) into 8 ohm load at lkHz ; (b) into 8 ohm + $0.1 \mu \mathrm{~F}$ load at 10 kHz ; (c) into 8 ohm $+2 \mu$ F load (electrostatic loudspeaker) at 10 kHz ; (d) into $8 \mathrm{ohm}+2 \mu \mathrm{Fload}$ (electrostatic loudspeaker) at $(\mathrm{kHz}$

POWER SUPPLY CIRCUIT

The circuit diagram of the stabilised power supply is shown in Fig. 12. This provides an output of 55 volts at up to 2 amps d.c., 6 amps peak (both channels driven at full sine wave power into an 8 ohm load).

Many constructors may tend to think of a stabilised power supply as an unnecessary luxury but it is strongly recommended that the stabilised power supply is used as its cost is a relatively small proportion of the total cost of the amplifier and it provides many advantages. The amplifier will deliver 30 watts per channel continuously; not just music power. Switch-on "plops" are eliminated by the slow switch-on characteristic of the power supply, the main amplifier is protected against

Practical Electronics
November 1970
mains surges and the low output impedance of the power supply greatly reduces the risk of low frequency instability.

The circuit of the power supply is somewhat unconventional and it has the valuable characteristic that if a short circuit is present at the output, it will not turn on. Transistor TRI is the error amplifier which compares the voltage present at its base with the Zener regulated voltage at its emitter. If the base voltage is too low the collector current of TRI increases and vice versa.

The collector current of TRI is amplified by the Darlington pair TR2 and TR3, which provide an output current of up to 2 amps d.c. Capacitor C2 provides the slow turn-on characteristic by allowing the reference voltage to build up slowly as C2 charges through R3 until the Zener diode turns on. Capacitor Cl reduces the output impedance of the power supply at high frequencies.
Next month: main amplifier construction details

Fig. 12. Circuit diagram of the stabilised power supply of the P.E. Gemini

By A.D.BONE

THE unit to be described was designed to replace a mechanical sequence switch, in controlling a servo-motor, which in turn controlled the speed of a model boat. A unit which would respond rapidly and reliably to the pulses from the transmitter was therefore required.

This stipulation ruled out mechanical servos which, apart from being difficult to make, tend to be rather slow and unreliable in operation. An electronic switch was therefore the obvious answer, being easy to construct and install, and fast in operation.

CIRCUIT DESCRIPTION

The basic circuit is a bistable switch shown in Fig. 1. This effectively divides the number of pulses at the input by two. If, for instance, TR2 is conducting and TR1 is cut off, then nearly all the supply voltage will be developed across relay RLA, and so this relay will be operated. The collector of TR2 must therefore be just above earth.

As TR1 is cut off, then its collector will be at a point just below the supply voltage. This means then that D2 has only a small negative reverse bias across it, but

D1 has nearly all the supply voltage across it in the reverse direction.

If a positive pulse now appears across the resistor R5, it will not overcome the 12 volts across DI, but will easily overcome the small voltage across D2, and hence D2 will conduct. As the pulse is positive though, it will reduce the base current of TR2 making the collector more negative. This, in turn, increases the base current of TRI, and hence reduces the collector voltage. This decreases the base current of TR2 until it is cut off and TRI fully conducting.

At first TR2 was conducting and relay RLA operated. On the reception of a positive input pulse TR2 switched off, and TR1 switched on so that relay RLA released. As another positive pulse is applied TRI switches off and TR2 switches on, operating relay RLA once again. Therefore the total effect on relay RLA is to operate and release to each respective input pulse.

MOTOR SWITCHING

In Fig. 1 the contacts of relay RLA are in the servomotor supply, wired such that when the relay is operated the motor will drive in one direction, and when released,

Fig. 1. Circuit diagram of sequence switch

PRACTICAL!

VISUAL!

 Nhe thr a new 4-way method of mastering ELECTRONICs by doing and - seeing1 OWN and complete range of presentday ELECTRONIC PARTS and COMPONENTS

$2 \rightarrow \begin{aligned} & \text { BUILD } \\ & \text { and USE }\end{aligned}$
a modern and professional CATHODE RAY OSCILLOSCOPE

4

 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK INCLUDING . . .| VALVE EXPERIMENTS | PHOTO ELECTRIC CIRCUIT | A.C. EXPERIMENTS |
| :--- | :--- | :--- |
| TRANSISTOR EXPERIMENTS | COMPUTER CIRCUIT | D.C. EXPERIMENTS |
| AMPLIFIERS | BASIC RADIO RECEIVER | SIMPLE COUNTER |
| OSCILLATORS | ELECTRONIC SWITCH | TIME DELAY CIRCUIT |
| SIGNAL TRACER | SIMPLE TRANSMITTER | SERVICING PROCEDURES |

This new style course will enable anyone to really understand electronies by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^2]
VARIABLE VOLTAGE TRANSFORMERS

LIGHT SENSITIVE SWITCH
Kit of parts, including ORP12 Cad. mium Sulphide Photocell, Relay. Transistor and Circuit, etc., 6-12 olt D.C. op. price $25 /=$ plus $2 / 6$. A P. ORP 12 including circuit 12/6 each, Post Paid.
A.C. MAINS MODEL. Incorporates Mains Transformer, Rectifier and special ralay with $2:=5 \mathrm{amp}$ mains c/o contacts. Price inc. circuit $47 / 6$ plus $2 / 6$ P, \& P. LIGHT SOURCEAND PHOTO CELL MOUNTING Precision engineered
 ight source with adjustable
amp housing, to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole Axing. Price per pair 62.15,0. P. \& P. 3/6.

RELAYS New SIEMENS,

relayat COMPETITIVÉ PRICES
Coil Working Contacts

Coil	Working	Cont		Price
ด	d.c. Volts			
52	6-9	6 M		12/6
230	6-12	$2 \mathrm{c} / 0$		12/6
280	6-12	$2 \mathrm{c} / 0$	1.8.	$14 / 6$
700	16-24	4M28	I.B.	12/6
1250	36-45	6 M		12/6
2500	36-45	6M		12/6
5800	80-85	$4 \mathrm{c} / \mathrm{o}$		12/6
9000	40-70	$2 \mathrm{c} / 0$	I.B.	10/-
	H.D. Heavy Duty. POST PAID			

'AVO' MODEL 48A

Ex-Admiralty ingood condition with instrucions, leads, plus D.C. Shunts for 120 Amp. and 240 Amp. Multiplier former 3600 volt. Comp plete outfit in fitted case. C15/0/0, P. \& P. 10 :

ORGANKIT Easy to build,

 Solid State. Two full octaves (less sharps and flats). Fitted hardwood case. Powered by two penlite I! v speaker, etc. together with full instructions and $\mathbf{t} 0$ tunes. Have all the pleasure of building this instrument and finish with a functional and instructive gift for any boy Or girl. Price $\mathbf{\text { E }} \mathbf{3 . 0 . 0}$. P. \& P. $4 / 6$.10 IN I PROJECT KIT O easy to build Projects including: Radio, A Solar Cell is included in this Kit as alterna 14 power for some of the circuits, also a 14 page step by step instruction leaflet.
Price 83.17 .6 P. \& P. 4/6.
T.M.C PUSH BUTTON KEY SWITCH Illuminated No. S. 525594 Lock 4 c o Complete with mounting bracket, push knob and
lenses (green, amber, red or clear-stace colour preference).
Price $14 / 6$ each excluding bulb, post paid. Discount for quantities of 200 and over.
UNISELECTOR SWITCHES NEW 4 Bank 25 Way 24 V d.c. operation. 45.17 .6, P. \& P. $2 / 6.4$ men © Bank 25 Way 24 V d.c.
66.10.0, P. \& P. $2 / 6$.

Bank 25 Way 24 V d.c. operation 47.12.6 plus 4/6 P. \& P.

MINIATURE UNISELECTOR SWITCH Ex-Equipment 3 banks of II positions plus
homing bank. 40 ohm coil. $24-36 \mathrm{~V}$ D.C homing bank. 40 ohm coil.
Tested. $22 / 6$, plus $2 / 6 \mathrm{P}$. \& P.

VENNER ELECTRIC TIME SWITCH
200/250V Ex. GPO tested. Manually set 2 on. 2 off every 24 h. Override switch: 10A 62 15s, 15A $435 s$, 20A 3 15s. P. \& P. 3/6. Alsoavailable With solar dial

INPUT 230/240v. A.C. 5060 OUTPUT VARIABLE $0-260 \mathrm{v}$ BRAND NEW
Keenest prices in the country All Types (and Spares) fron $\frac{1}{3}$ to 50 amp . from stock. SHROUDED TYPE
1 amp, \{5. $10.0 . \quad 2.5$ amps, 6. 15.0 . 5 amps, 19. 15. 0. 8 amps, f14. 10.0 . 10 amps, 418. 10. 0.12 amps, \{21. 0.0 15 amps, 225.0 .0 .20 amps, 15 amps, $225.0 .0 . \quad 20$ amps,
$637.0 .0 . \quad 37.5 \mathrm{amps}, 472.0 .0$. $\begin{array}{lll}\text { 637. } 0.0 . & 37.5 \mathrm{amps}, 472.0 .0 \\ 50 \text { amps } & 0 .\end{array}$
 50 amps, 192.0 .0.
OPEN TYPE (Panel Mounting) $\frac{1}{}$ amp, ©3.18.6.
1 amp, £5.10.0. 2 ! amps, ©6.12.6. Carr. extra on opentypes.

STROBE STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit. $230 / 250 \mathrm{v}$. A.C. operation.
EXPERIMENTERS' ECONOMY KIT
Speed adiuscable 1 to 36 Flash per sec. All electronic
components including components including Veroboard S.C.R. Unijunction NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, ete. Roller tin printed circuit. New trigger coil, plastic thyriscor
Speed adjustable $1-80$ f. P . Price 9 gns .76 P .8 P . HY-LYGHT STROBE
This strobe has been designed and produced in response to many requests, for use in large rooms, halls and the photographic field, and utilizes a silica plug-in tube for longer life expectancy, printed circuit for easy Speed adjustable 0-30f.p.s. Lightoutput approx. 4 joules. Price \&10.17.6. P. \& P. 7 . 6.
7-inch POLISHEO REFLECTOR
Ideally suited for above Strobe kits. Price 10 6. P. \& P. 26 or Post Paid with kits.

100 WATT POWER RHEOSTATS NEW

AVALLABLE IN THE FOLLOWING VALUES

1 ohm, 10 a.; 5 ohm, 4.7 a.; 10 ohm, 3 a.;
$25 \mathrm{ohm}, 2 \mathrm{a} . ; 50 \mathrm{ohm}, 1.4 \mathrm{a}: 100 \mathrm{ohm}, 1 \mathrm{a}$.

$A A^{\frac{1}{2}}$

250 ohm, 7 a.; 500 ohm, 45 a.; I Kohm,
$280 \mathrm{~mA}, 1 \mathrm{Kohm}, 23 \mathrm{~mA}, 25 \mathrm{Kohm}, 2 \mathrm{a}$; $5 \mathrm{Kohm}, 140$ mA . Diameter 31 in . Shaft length sin., dia. 部in. All at $27 / 6$ each. P. \& P. I/6.
50 WATT. $1 / 5 / 10: 25 / 50 / 100250500 \quad 1,1 \cdot 5 / 2.55 \mathrm{Kohm}$ All at 21/- each. P. \& P. $1 / 6$
25 WATT. $10 / 25 / 50 / 100 / 250,500,1,1 \cdot 5,2 \cdot 5 \mathrm{Kohm}$. All at $14 / 6$ each. P. \& P. $1 / 6$
 counter (non-resettable). 18/6, P. \&
BODINE TYPE N.C.I. GEARED MOTOR
(Type 1) 71 r.p.m. Torque 1018 , inch.
Reversible. $1 / 70$ th h.p., $50 ~$ cycie, 38
amp. (Type 2) 28 .
amp. (Type 2) 28 r.p.m. Torque
50 cycle. 28 amp . The above two
precision made U.S.A. motors are
offered in
offered in "as new" condition. Input volat $115 V$ a.c. Supplied complete with riansformer for $230 / 240 \mathrm{~V}$ less transformer 220 plus $4 / 6$ P \& P
-
SOLID STATE INTERVAL TIMER
24-30V D.C. operation. Stabilised unijunction Timer and S.C.R. ($30 \vee 1$ a mp.), eicapsulated
in metal core. Timing interval adiustable in metal core. Timing interval adjustable
from a fraction of a second to several minutes
from a fraction of a second to several minutes Relay many other complex timing Functions are possible Relay many other complex timing Functions are possible.
Price: 16.6 incl.circuir. P. \& P. 26 . Suitablerelay 10 -p post paid.

MOTOROLA MACII/6 PLASTIC

 TRIAC 400 PIV. 8 AMPNow available EX STOCK. Supplied with full data and applications sheet. Price $21 / \cdot$ plus 1/6 P. \&.P.

RE-CHARGEABLE
BUTTON CELLS
Niskel Cad. Cells, connected to give 2.4 V , 25 milliamp to hour rate, complete with $200 / 250 \mathrm{~V}$ A.C. charger. Fully tested and unused. Price

9,6 each plus 16 P. \& P. or 2 units for $\boldsymbol{C l}$ post
9,6.eac
paid.
INSULATED TERMINALS Available in red, white, yellow, black, blue and green. New Price 2!- each.

TELECOMMUNCATIONS POCKET BOOK

edited by T. L. Squires

24/-
MAKING TRANSISTOR RADIOS by R. H. Warring. 21/-. Postage I/

BEGINNER'S GUIDE TO RADIO by Gordon J. King. 20/-. Postage 1/-
DICTIONARY OF TELECOMMUNICATIONS by R. A. Bones. 45/-. Postage PRINCIPLES OF ELECTRICITY IN SI UNITS by Morley \& Hughes. $18 / \mathrm{h}$. Postage 1/-
COLOUR TELEVISION PAL SYSTEM by G. N. Patchett. 50/-. Postage I/-. TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR by Alan Douglas \& S. Astley. 20/\%. Postage

FET CIRCUITS by Rufus P. Turner 28/. Postage 1/-
DIGITAL COMPUTER BASICS, Bureau of Naval Personnel. 19/.. Postage $1 / 6$. PRACTICALINTEGRATEDCIRCUITS by A. J. MeEvoy \& L. McNamara. 18/Postage 1/

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Book:
19-2I PRAED STREET

LONDON, W. 2

Phone: PADdington 4185
Closed Saturday I p.m.

Dept. P.E. II
17 Leigh Park Road Leigh-on-Sea, Essex LONDON, W.C.2. TeI. $01-4370576$

All Mail Orders-Also Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON W4 5BB Phone 01.9951560 SHOWROOM NOW OPEN CLOSED SATURDAY
the motor will drive in the opposite direction. Therefore the effect of the input pulses to the bistable will be to change its direction of drive at each input pulse.

If, as in Fig. 1, input pulses are supplied from relay RLX1 then the inclusion of another pair of make contacts RLX2 in the motor circuit makes the motor operate only on the reception of an input pulse. As long as this pulse is maintained the motor will drive, say anticlockwise.

On the release of this pulse, the bistable and relay RLA change their state, preparing the motor drive circuit for clockwise drive on the reception of the next pulse.

JUMPING POSITIONS

This circuit then, makes the motor very quick to respond to input pulses, and hence makes "jumping a position" very easy. This is an essential requirement in the precise control of a model in a sequential system, whether it be speed or steering that is being controlled.

In other words say, for complex manoeuvres of a model, two consecutive "left moves" may be required. It may not be required, though, to use the unavoidable "right move" sequentially placed between the two required left moves. It is therefore necessary to "jump" the intermediate right move, such that the model does not respond to this position of the servo.

With this system this is overcome by the fast acting bistable circuit. If two left moves are required, one fast blip on the transmitter button will be sufficient to operate the bistable and therefore change the direction of drive of the servo motor. This completely eliminates unwanted movements of the model.

CONSTRUCTION

The components of the sequence switch are assembled on Veroboard. This results in a neat compact unit, measuring $\frac{3}{4}$ in by $1 \frac{1}{4}$ in, which is small compared with similar mechanical units.

Firstly the Veroboard is cut to size, and the copper strips broken as shown in Fig. 2. The components are then mounted as shown in Fig. 2, the wires being pushed through and soldered on the underside of the Veroboard.

TESTING

Once the unit has been assembled, the relay RLA should be wired to the board. The 12 V supply should now be connected.
To check transistor switching and consequent relay operation, a 6 V battery should be loosely connected between the junction of $\mathrm{C}, \mathrm{C} 2, \mathrm{R} 5$ and the 0 V line.

As this battery is connected and disconnected, relay RLA should operate and release in sequence. If it does not, disconnect immediately and check wiring connections.

INSTALLATION

The prototype sequence switch, plus relays and relay driver amplifier for relay RLX were mounted on a wooden base. However, the constructor is free to install these units into his model as required as placement is not critical.

Main motor batteries can be used to power the unit, in which case a common on/off switch would be used. Alternatively, a separate 12 V battery (BY3) could be used.

In the author's boat a tone receiver drove an "amplifier B" as described in the January 1967 issue of Practical Electronics. This amplifier in turn operated relay RLX to supply input pulses. Of course, any relay with two pairs of contacts will suffice for RLX, if driven by a suitable relay amplifier.

This unit could also be used for direct control of the main motor, but would be rather wasteful of transmitter power, as the transmitter would have to be on all the while one wished to maintain a certain move of the model.
(Note: the January 1967 issue is now out of print)

Resistors

RI	$10 \mathrm{k} \Omega$	R6	10Ω
R2	560Ω	R7	$1 \cdot 2 \mathrm{k} \Omega$
R3	$1 \cdot 2 \mathrm{k} \Omega$	R8	$1 \cdot 2 \mathrm{k} \Omega$
R4	$1 \cdot 2 \mathrm{k} \Omega$	R9	10k Ω
R5	$33 \mathrm{k} \Omega$		
	0\% , $\frac{1}{4}$	her	e sta

| Transistors | |
| :--- | :--- | :--- |
| TR1 OC81 | Mullard |
| TR2 OC81 | Mullard |
| | |
| Diodes | |
| D1 OA81 | |
| D2 OA81 | |
| D3 OA8I | |

Relays

RLX (see text)
RLA 500s, 600 type P.O. relay, $6 \vee 4$-pole changeover

Miscellaneous

BYI 6V Ever Ready (Type 996)
Veroboard, solder, wire.

Capacitors
$\mathrm{Cl} 0.047 \mu \mathrm{~F}$ polyester
C2 $0.047 \mu \mathrm{~F}$ polyester

Fig. 2. Component and wiring layout of module

brake light REPEATER

THE circuit described in this article is a simple transistor switch to indicate to a car driver the correct operation of both brake-lights. It is most reassuring to have a continuous check on brake light function and to know that the vehicle is complying with the law, quite besides the safety considerations.

CIRCUIT

The circuit uses the principle that a silicon transistor needs about 0.7 volts across base and emitter to make it conduct fully. A low value resistor is placed in the

Fig. I. Circuit diagram of the brake light repeater. Circuitry within the broken line is housed on the tag panel, all other circuitry-except LP3-is part of the car wiring
brake light circuit (R 1 in Fig. 1.), and the voltage developed across it when the brake lights are working is used to switch transistor TR1.
A resistor of 0.25 ohm is used and the fact that each 21 watt brake-light bulb takes about 2 amp means that with two bulbs working the transistor will be switched, but with only one bulb working the transistor will not switch, hence the panel-light will indicate correct operation. The presence of a resistor in the brake-light lead reduces the brake-light voltage by about a volt. This does not appear to dim the bulbs noticeably and has the advantage that the brake-lights are running nearer to 12 volts and so last longer. Remember that a motor vehicle electrical system runs at about 15 volts in daylight running conditions.

The two transistor circuit shown at Fig. 1 is self protecting, since in the event of a short circuit failure of TR2 the panel-light LP3 will be on whenever the

ignition is on, any other transistor failure will prevent LP3 from illuminating, indicating that something is amiss. The circuit also' includes a resistor and capacitor in the base circuit of TR1 to help alleviate the effect of the initial surge current that occurs with cold bulbs, so removing a possible cause of transistor failure.

The circuit shown is for positive earth; negative earth systems require the swopping of the transistor types, $p n p$ for $n p n$ and vice versa. The wiring into the vehicle is complicated by the fact that an isolated panel-light is required with its other side connected to an ignition controlled supply.

CONSTRUCTION AND INSTALLATION

A piece of s.r.b.p. of suitable size is drilled and the tag-board and connector mounted with bolts. The wires and other components are soldered in place as shown in Fig. 2; the layout is not critical. The

Fig. 2. Layout and wiring diagram of the tag panel for the brake light repeater, connections A to D correspond to those shown on the circuit diagram

Q ROC ELECTRDNICS

Like all Roe Electronic K its the R.le 6 uses raliable nowonder onnections to proluce a complete '? transistor radio in inder " hours. As well as upulied complete with a solat cell to provide power from the cull or any at rong light source.

PRICE £2.10.0,
10 PROJECT INTEGRATED CIRCUIT KIT Model R. 127

PRICE £3.10.0.

2 OCTAVE ELECTRONIC ORGAN KIT Model R. 129

complete with a music book ontaining 10 easy to play mong he R. 129 solid state organ kit -overs 2 full octaves. hardwood hey the panalies and all the components including the loudspeaker. Like all Roc Electronic Kits every item is included down to the last nut and bolt so that the constructor can package. PRICE £4.10.0.

20 PROJECT SOLAR ELECTRONIC KIT Model R. 128 This ultra modern Project Kit is shapel for the space age. Carried inside a trangparent domed 4nin capsule the contained solar eell to power any one of 20 projects ranging from a one transistor radio to a morse set complete with key aud morse training cude. supplied complete with eary to follow instructions and even the cement to :assemble this unique electronic space ":psule. PRICE £4.10.0.

50 PROJECT ELECTRONIC KIT
Model R. 130

PRICE £7.19.0.

AM/FM/MPX STEREO TUNER

Model R. 132

Matehing the R,131 amplifier in both styling and perforniance the R.13: tuner covers AM and FM includingstereo nultiplex channels. Atrength ind tuning on both AM atrength FM Bunde. A usable FM gensitivity of $3 / i$ in ineane that the R.13z can be usest anyahere, even SPECIFICATION:
FM: frequency range: $8 \overline{-}-108 \mathrm{MH}$ I'sabte sensitivity: $3 \mu V$ for $: 20 t B$ quietinu.

O PRICE
£36.0.0.

Stereo meparation: 30 d
Image rejection: 60 dB
lmage rejection: 60 dB . $5 \pm 5-160 \overline{\mathrm{~K} \mathrm{~Hz}}$
AM: frequency range: $5 * 5$

5 WATT 8 TRACK CARTRIDGE STEREO AMPLIFIER

Model R. 133

Just ylot in one of the many $\&$ track cartridge tapes awaitable for a conmusic. it manual programme override switch enables you to switch from on track to the jext at- the push of it button at the same time n numbereal indicator lights up to show which track is playing. Beautifully finished in an oilen walnut cabinet the R.133 is mechanically eugineered to provide lowr athl

PRICE
£36.0.0.

40 WATTS STEREO AMPLIFIER
Model R. 131

PRICE £25.0.0.

STEREO HEADPHONES Model R. 328

Built up to astandard not down to a price, the R. 328 stereo headphones renrescnt a breakthrough is value for

a

A valuable uddition to any steren installation they il povide many hours of listeninit pleasure

Matching impedance: 8-16 ohns
Matching impedance: $8-16$ ohns
Frequency range: $30-15,000 \mathrm{~Hz}$.
PRICE $£ 2.8 .0$.

MICRO SWITCH

TOGGLE SWITCH
sump. 280V with bitime rinc. 18

CONSTRUCTORS' PARCEL

 2. Ferrite slab acrial with wilk to suit the abow tuning complenser. \%. Circuit dagrann qiving al Comphnent values for bit ransigtor circuit covering radio 2 . The three items for oull $7 / 6$ which i half ot the pice of the turing condenser atome.

SLOW MOTION DRIVES

For coupling to luning condensers, ett. Une enil Iin shaft, the other cend fits to a 1 a , shaft with

LARGE PANEL MOUNTING

MOVING COIL METERS

 78/8.

A.C. AMMETER

0.5 nomps. Hush mounting - moving irom. Ex

erfect 29/6

CIRCUIT BOARDS

Heary eupper on $3 / 32$ paxulin sheet ideal for making power packs, Atc., as sheet is very stroug with hacksau blatle. din jin $1 / 8$ away

6KYA AUTO-TRANSFORMER
111 ventilated sheet steel case - tajperl. 110 v -1411, thov-200v-230s. Ex equipment but guaranteed PP3 BATTERY

ELIMINATOR

Run your bimall tranaisto radio from the mains-full wave circuit. Made upready aljustabl
$8 / 6$ each.

REED SWITCHES

class encaseal, switches opeatell by externat magnet - gold wedied colltacts. We cail now ofter tinpes:
Heter. Will lin long approsimntely din dia volta. Price $2 / 6$ each, 24 /- lozen.
standard. 2in long is in diameter. This whll break curtents of up to 1 A , voltagen un to woul volta. Price $2 /-$ cach, $18 /-$ ver dozen.
Flat. Flat type, win long, just over $1 \frac{1}{2}$ in thick flattened out, so that it cran he fitted into : maller space or at larger quantity may be packed
 small ceramio maknets to
0.005 mFd TUNING

CONDENSER
lonved lesign, i, ifal fon staisht or
SUB-MINIATURE MOVING COIL MICROPHONE
as used in behind the ear deaf-aids Acta also :te lurphone size only yin in bin. Note these are ex equipment but if uot in perfect

CHART RECORDER MOTOR

 dianueter) int
hourk. 18/6.

GNITION (E.H.T.)TRANSFORMER

Wade hy Parmeka Lth., Primary 940 V . $\mathbf{0 0 H z}$.

12 YOLT
 EXTRACTOR FAN BY DELCO

 fyxing hole. Iength ipprox. $8 \frac{1}{2}$. Fxceptionith hargain $27 / 6$ phus $5 / 6$ port and insuralure.
IEED A SPECIAL SWITCH?
NEED A SPECIAL
Double Leaf Contact

COMPUTER MULTI-CORE

 CABLES12. 14/0076 erpper cores, each one itusulated by coloured P.V.C. then ecparately screened, the $1+$ overed overall making it cable just under in. lin. bint quite phiable. Price $7 / 8$ per ft. Any leagth cut. Other sizes at
6 core $4 /-\mathrm{ft} ., 4$ core $8 / 6 \mathrm{ft}$.

25 AMP ELECTRICAL PROGRAMMER

Learn in your sleep: Have Randio playimg aml
kettle hoiling ats you awake-switchon lighta to
waral of intrualers-have warm heuse to come warl of intrulers-have warin house to come home to. All these and thang nther thinge you can
do if you invest in an Electrical Programmer Made by the fanour Nimiths Hat cument Company

Thisis essentially at $930 / 240$ volt maine operated (loch and a $=4$ anp switch, the wwitchoffitime of which ean be delayed up to liz hours continuously:

IS, 30, 40 \& 100 WATT Hi-FI SPEAKERS

 FULL Fl 12 INCH LOUDSPEAKER. This is undrubtedly one of the filest lomdapeakers that we have ever offeredi,produced by one of the country's most fambius makers. it has a de-cuat metal frame and is strongly recommended Flux lenaity I 1.000 granss - Total F'lux 44.000 MaxpellsPower Handing 15 wation R.M.S. ('one Moulded fibre freq. \quad esponse $30-10.000$ c.p.s.- sperify 3 or lo ohrus Mains resonance 60 c.p.s.-Chaseis bian. 1 Lin. - 12 pin .

 25 watt 27.19.6 plus $10 / 6 \mathrm{p}$. \& p. 1 \&in. 100 watt $\mathrm{E} 19,10.0$
 plus 30/- 1. \& 13.

INTEGRATED CIRCUIT BARGAIN

 A parcel of integrated circuits made by the famous Plessey Company. -once-in-i-lifetime offer of Micro-electronic devices well helow cost of nanu-facture. The parcel contains $\overline{5}$ ICs all new and perfect; first-grade device, facture. The parcel contains a
definitely not sub-standard or secomls. 4 of the ICs are aingle silicon chip definitely not sub-standard or seconds. 4 of the ICs are aingle silicon chip
©ip amplitiers. The sth is a monolithic. NPN matched pair. Regular price of parcel well over E5. Full circuit letaile of the ICs arre included and in addition you will receive a list of many different ICs available at bargain only El post paid. DONT MISS THIS TERRIFICBARGAIN.

MOTORISED SWITCH

For Animated Signs, etc.
This is a motorised programmer switch, luatis operated, with six 15 amp changeover contacts operated by triggers on a rotating drum. Nix
triggers will put switehes un and another six triggers will put switches up and another six triggers uill put switehes down. Also simple on/ott operation or changeovers are possible. The Irunn which is rotated by a one rev. per hour irum wheh is rotated by a one rev. per hou
motor. (Motors with other speeds available.)
 rost in excess of
each, port tree.

DISTRIBUTION PANELS Iast what you need for work leneh or lab. $1: 3$ anp sockets and on/ofl switeh with
ps standaral 13 amp fuserl plugg. Suppliefl
$39 / 6$ wired up, zeady to work plus $4 / 6$ pust innl hisurint

$$
\begin{aligned}
& \text { An tranait from the East these sets yufered } \\
& \text { slight corrosion as the batteries were left }
\end{aligned}
$$

 ruept that they are new. Price only $24 / 6$ plus $2 / 6$ post anil ingurance hattelies. fi for 27 , just free. Rechargeahle Nicall batteries $8 / 6$ paires
 ELECTRIC CLOCK WITH 25 AMP SWITCH Male by. Nimith's, these mits are as fitted to many top quality cookers to control the oven. The clock is mains driven an frequency controlled so it is extrenely uccurate. The i wo small lials etable switch on atd off times to be accurately set. Ileal
for switching on tape recorders. Offered at only it fraction of the regular price-new and unuged only $39 / 6$, legs than the talue of the clock alone-post and insurance $2 / 9$.

MOST AMAZING BARGAIN

PRINCESS AUTO CHANGER

The monet almazing bargain ever! A biand new Auto change record yinger for less than the price of a single
plager... dhe to a fruatrated export oriler we are able to offer the Batour Princens 4 Speed Authehangerreally fine machime at abrint one-third of its regulat

The Halfour has two unique features (1) A batested brush system which automaticaly cleaus st ylus after each record playing anal (?) at shut off the pick-up locks itself ints its recess-other features incluile pick-up height and stylus μ ressure adjustments, and motor suitable for our $230 / 240$ or for 1155^{2}.
Beautifully styled-this is a high class expensive instrument lont yon can purchase one this month for only $50 / 6$ plus $10 / 6$ post and packing. One point these changers have been to France and back and the vibrations of the journey. However, with each we supply a 16 page service manual and fault finding chart which is so detailed that if necessary you could completely re-build the changer so this is truly in bargatil that you will not want to mise so order today.

MAINS TRANSFORMERS

Nute all theee are first grade Tranoformers ant wil have normal $200 / 240$ volt 50 cycle primary. Mains Transformer Type No. 56786 pright mounting, size $3 \times 2!$ 2jn. approxiother 5.5 volt 1.5 amp. Farth screen between primary and secondaries-this transformer will power a $5-5$ watt otereo amplifler (circuit diagran available, price $8 / 6$). Suttable out put transtormer is type 5 tiant deacribed below. Our price 17/6 hus $4 / 6$ post
Mains Transformer Type No. 56783
Chassis mountling type, size approximately 3 . $2 \ddagger$
3 in. 2 becondaries one 230 volt at 60 mA and other ty 3 volts 1.5 amp. Earth screen between implifier (circuit available 2/6). Matching OPT. is j6734 deacribed below. Price 16/6 plua $4 / 6$ post. Mains Transformer Type No. 56895
Hpright mounting, size approximately 4 ㅇ 3 4 volts at 3.1 mA . There is a screen betweer primary and secondaries. This is a partner to ontput transformer 56694 leucribed below. Price

OUTPUT TRANSFORMERS

OPT. ref. 56684

Chassis mounting-size $\quad 2 \quad: \quad 2 i l$ approsi hately 7 watts. A push pull trangformer for Hatehing $2 /$ /EL84 or similar valves to 15 ohm loudspeaker. 14/6 nu extra for post if ordered
with Tranaformer 06695 . ('ireut diagrant of with Tranaformer 56695. (ireuit diagrant of amplitier vailable, price 2/6
OPT. ref. 58787
Upright mounting, size approximately 2%
Uin. Matching impedance 60 ohma to 15 ohma. a watis output using transistor type ADI40 (Circuit diagram avallable price 2/6). Price 8/6 each, no extra for postage if ordered with mains transforguer type $\overline{6} 68 \mathrm{~B}$.
OPT, rel. 585004
 fupedance 3 whm, otherwise this is as 5678 in $^{\circ}$. Price 8/8.
OPT. rel. 58734
Chassis mounting, size approximately 21 , Ratio $27 / 1.5$ in. Primary 500 ohm centre tapped. Ratio, 2T/l. 5 watts output using twin ELLB0 or similar.
Price $12 / 6$. No extra for postage if ordered with Price 1
0.3733.

HEAVY DUTY MAINS
 TRANSFORMER

310:. 37 A . Primary tapped $200 / 240$ in 10 v . stepk. parmeko, impregnated and varnished. Weigh approx. 50 th ., size approx. 8in. wide 6 in . dee and $8 \frac{1}{2} \mathrm{in}$. high. Metal framed for free standing and titted with E.S. screen. Probably pricel 140-25 from Parmeko. Ex equipment, but perfect. $£ 17.10$

50 CYCLE TO 60 CYCLE INVERTERS For operating American instruments and other equipment made for 60 cycles 110 V . from $230 / 240$ 115 volts $A \cdot C \cdot$ and will handle a loul of up to 100 watts. These are preciaion made and have a reed type frequency meter whlch vibrates when the frequency is exactly $60 \mathrm{c} . \mathrm{p.s}$. Adjustment of the frequency is by a knob ou control panel. Input ins 3 core ontput from 3 pin socket. Original coat
of this inexcess of foio. of this inexcess of 560 . A limited quant it y a vailable

SEED AND PLANT RAISING
wil heatiug wire and trans-
former. Sultable for standaril former. Sultable for standard
size garden frame. $19 / 6$
Port and ins. $3 / 6$.

MAINS OPERATED CONTACTOR

 naminated core eo solenoid with uperation. Closes 4 circuits each rated at 10 amps. Extremely uell made by a German Electrical Company, Overall size

AUTO-ELECTRIC CAR AERIAL with tanhboard control switch- fully extendable to 40 in . or fully fully extendable to 40 in . or fully retractable. Suitable for $]=v$ positive or negative earth. Supplied complete with fitting instructlons and ready nired dabhboard su $\mathbf{2 5 , 1 8 . 6}$ plus $5 /-$ post and ins.

MAINS MOTOR
precision made -- as and tape recorderaideal also for extractor
fan, blower, heatera fan, blower, heatera
etc. New and perfect $3 /$-for first one the

Where postage is not stated then orders over tis are post free. Below fio add $2 / 9$.
Semicouductors adil $1 /$ post. Over \pm j post Eemicouductors add $1 /-$ poss. Over $\begin{aligned} & \text { tJ just } \\ & \text { free. S.A.F. with enquiries pleaze. }\end{aligned}$

ELECTRONICS (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CR0 2TH
Also 102:3 Tamworth Road, Croydon
prototype unit was mounted, with a self-tapping screw, directly to the vehicle bulkhead near a convenient snap connector in the brake-light circuit. For this a packing piece of s.r.b.p. is required under the board to clear the bolt heads on the back.

It might be desirable to mount the unit in a box to avoid shorting and to provide protection to the unit, since the tag-board is live when the brakes are used. This will depend on the position of the unit. The wires connected to the terminals A and B on the unit can be fitted with snap connectors to facilitate wiring into the brake-light circuit on the vehicle. Do not forget that these wires carry approximately 4 amp and should be of heavy gauge.

The panel light is a 12 volt $2 \cdot 2$ watt bulb and any convenient form of panel mounting unit can be used, placed where it may be seen at a glance, remembering that a bright light in the direct line of sight may be distracting.

SETTING UP

Once the unit is installed in the vehicle its operation should be checked. A vehicle electrical system voltage varies from approximately 12 volts to 15 volts according to conditions. The unit is required to show

both brake-lights working at the minimum voltage and not to give a false indication with one bulb working at the maixmum voltage.

First, without the engine running, turn on everything that draws appreciable current like the headlights, heater blower, indicators, etc. including the ignition. Apply the brakes and the repeater panel-light should come on. This will simulate the minimum voltage condition. Now disconnect one of the brake-lights by taking out the bulb or undoing the appropriate connector. Start the engine and run it at about 2,000 r.p.m. for a few moments with all electrical systems, except the ignition, turned off to allow the battery to become reasonably charged and the system voltage to attain its highest level. With the engine still running fairly fast, apply the brakes, the repeater panel-light should not come on. If the panel lamp gives a short initial flash but turns off, this is quite in order since a cold bulb takes much more than its rated current for a few milliseconds after switching on.

Resistors

R1 $2 \times 0.5 \Omega 5 \mathrm{~W}$ wire wound in parallel
R2 100Ω
R3 $10 \mathrm{k} \Omega$
R4 100Ω
All $\frac{1}{4} \mathrm{~W}, \pm 10 \%$ carbon except RI
Capacitor
$\mathrm{Cl} 100 \mu \mathrm{~F}$ elect. 25 V
Transistors
$\left.\begin{array}{ll}\text { TR1 } & \text { BCI08 } \\ \text { TR2 } & \text { BCY38 } \\ \text { TRI } & \text { BCI58 } \\ \text { TR2 } & \text { BFY } 52\end{array}\right\}$ for positive earth

Miscellaneous
LP3 I2V $2 \cdot 2 \mathrm{~W}$ bulb and isolated holder
Tag board, four way connector, wire, s.r.b.p.

TRANSISTORS

The transistor types are not critical as long as TR2 can handle the panel-light current-about 200 milliamp for a 2.2 watt bulb. Some different transistor types may require a slightly different value for the sensing resistor, R1, and it might be necessary to wind a special resistor. This was done for the original development model using a piece of old electric fire element since the resistor has to carry about 4 amp . Measurement proved the homemade resistor to be 0.25 ohms hence the use of two 0.5 ohm resistors in parallel.

NEWS BRIEFS

New Goonhilly Aerial

The Post Office has placed an order worth about $£ 2 £ m$ with Marconi to build a third aerial for the satellite earth station at Goonhilly Downs, Cornwall.

As second largest partner in INTELSAT, the International Telecommunications Satellite Consortium, Britain is already in the major league of satellite users. With three large aerials, Goonhilly will be one of the largest and busiest commercial earth stations in the world. The third aerial system-Goonhilly 3-is expected to go into service early in 1972, working with the next generation of satel-lites-Intelsat IV, first of which is to be launched into position over the Atlantic next year.
The new aerial is to be built to the standard Marconi design but incorporating special features for the Post Office application. Reliability of the earth station is most important and the aim of 99.8 per cent has now been achieved with Goonhilly 2. The new aerial will be made of aluminium, and will be capable of withstanding 210 m.p.h. winds.

Goonhilly 3 will operate at higher power and use a narrower bandwidth than previously possible and hence have greater capacity. The aerial is expected to pay for itself within 2 to 3 years and should enable the Post Office to reduce overseas telephone charges.

THE PROFESSIONAL Finish or mixrmanan aseatear

AMATEUR constructed equipment sometimes looks unprofessional largely due to the lack of external finish. The circuit specifications and components are often equal to that of commercial units and therefore it is unfortunate that this lack of finish attracts derisory thoughts, if not comments. The high standard of finish achieved by manufacturers is testimony to the poor technical discrimination of the public at large, who judge performance by price and finish alone. Consequently, if we are to have pride in our amateur achievements, we must at least approach the standard of finish attained by commercial firms.

Finish may be defined as the artistic effort involved in the construction of equipment, and in industry this field is the province of the industrial designer. Because finish contributes little, except perhaps reliability and simplicity of operation, it is the cinderella of amateur effort. Let us therefore consider the ways and means of improving finish, for which purpose it will be convenient to group the discussion into the following considerations: style and type of instrument housing; front panel layout and finish; internal layout and finish.

FINISH - STANDARD

To assess the standard of finish required, most equipment can be divided into three groupings as follows: domestic equipment such as record players, and radios; electronic units such as transmitters and receivers; and test or breadboard equipment. A further sub-grouping is now popular and is used for domestic equipment of furniture standard but undisguised electronically; this group can be loosely termed electronic furniture.

Domestic equipment must have a high standard of finish and is usually required to blend with the room furniture. Electronic furniture is not disguised although the finish is to furniture standards and a combination of wood and metal is often used. Pure electronic units commonly utilise instrument cases, whilst test and breadboard circuits, which are only occasionally used, do not require more than the simplest casing.

DOMESTIC EQUIPMENT

Generally, domestic equipment is required to conform with commercial domestic units, and a glance at the local radio shops will demonstrate the style and finish required. Typical mass produced record player and radiogram cabinet are shown on this page. These are finished to a very high standard, manufactured from

Grundig radiogram and speakers

Wooden record deck cabinet

veneered wood or chipboard with jointing and polishing to furniture standards. Units of this type are available commercially at prices ranging from 5 gns. to 150 gns., but for the handman they can be constructed from readily obtainable veneered chipboard. A typical construction is shown in exploded form in Fig. 1 and costs from $£ 2$ to $£ 25$.

MATERILIS...

Contiboard, $6 \mathrm{ft} \times 9$ in (cut to $12 \mathrm{in} \times 9 \mathrm{in}-2$ off and $18 \mathrm{in} \times 9 \mathrm{in}$ 2 off)
Contistrip, 6in-veneer to match Contiboard
Battens, wood or aluminium angle, 9 in $\times \operatorname{lin} \times$ lin -4 off Aluminium sheet, 18 in $\times 7$ in $\times 18$ s.w.g. -2 off Perspex sheet, 18 in $\times 7$ in $\times \frac{1}{8}$ in-1 off
Woodscrews, 6B.A. fixings, stain and matching grain filler, polyurethane varnish

This simple wood cabinet is constructed from veneered chipboard accurately cut to the dimensions required such that the side cheeks protrude from the centre section which contains the electronic equipment. Wooden battens or angled metal strips are screwed to the side cheeks and the wooden top section screwed directly to these battens, whilst the bottom plate, which can be ventilated wood or metal, is also screwed directly to the lower battens. The rigidity of this structure depends upon the accurate forming and jointing of all these panels which must be measured, cut and fitted to give a minimum of movement.

The front panel is screwed direct to the top and bottom sections and the back plate, which can be made of ventilated hardboard or metal, completes the structure and gives complete rigidity. It is convenient when using this type of construction to fix all the components to the front panel by means of a chassis arrangement and.then to cover the fixing holes by means of an escutcheon, as discussed later under the heading "Front Panels". The cabinet illustrated can be constructed using the materials shown in the accompanying list, which is for an 18 inch by 9 inch by 12 inch deep cabinet.

Since these units are essentially furniture, care must be taken during the design and construction to choose a style, colouring and polish to blend with the surrounding furniture. Alternatively, the constructor with artistic leanings can choose a bold, striking, or even psychedelic design, providing it has artistic merit and a professional finish.

ELECTRONIC FURNITURE

This form of construction, which is becoming increasingly popular, is used for the domestic equipment

described above, but generally does not attempt to disguise the electronic nature of its function. Very often the construction consists of wooden side cheeks of teak or similar wooden facing which are polished to furniture standards. The central instrument housing, however, is of metal or plastics.

A large selection of equipment falls into this category of furniture/electronics and the plastics encased television sets and undisguised wood, metal and plastics record players with spun aluminium knobs, etc. are all illustrations of this form of design. For the home constructor these designs can be readily imitated, but the essential condition for success is that the surface and construction shall give a polished, professional finish.

It is worth noting that very few general instrument casings are suitable for this electronic furniture effect, with the exception, of course, of the units housed between wooden cheeks. It must be remembered that a fine finish in plastics is easily obtained when mass produced mouldings are used, whereas the amateur can only mould plastics by the craft of his hands using perhaps fibreglass as a base, and this is both difficult and time consuming.

INSTRUMENT CASES

The general range of electronic equipment is not disguised as furniture, but is housed in utility casings of metal construction, although, even in this range, which includes oscilloscopes, receivers, transmitters and test equipment, manufacturers recognise the need for smart modern finishes. It is in this range also that the greatest improvements in finish are necessary amongst home constructors. Very often high quality circuitry is disguised by poorly labelled and finished housings resulting from a lack of time and effort devoted to their manufacture.

Two forms of enclosure commonly used for modern instruments are the visor fronted case, which is very popular due to its low cost, and cases with a recessed front panel formed from aluminium extrusion and trim; both are popular with manufacturers.

Each of these constructional forms illustrate the modern artistic trend of sharp straight edges, recessed front panels and slim shapes which is reflected in modern buildings. Naturally the prices of these units are higher than some conventional cases or die-cast boxes, and this can be an overriding consideration for the home constructor. However, the visor fronted construction is relatively cheap at prices from $£ 2$ to $£ 5$, whilst the extrusion forms are more expensive. Visor covers can always be added to conventional cases and a typical modification to a die-cast box is illustrated in Fig. 2.
These forms of instrument housing are suitable mainly for the larger electronic units, such as receivers, transmitters and controls of a reasonably large complex nature. The boxes themselves are completely assembled and finished and only require the circuitry to be mounted, usually by a chassis to the front panel,

Two examples of the "electronic furniture" effect-above and left

Fig. 2. Visor fitted to die-cast case
and this to be labelled or covered by an escutcheon, for the units to be an effective finished housing. Generally both the front and rear panels are removable and are retained by plated screws.

SIZE

Another problem associated with these casings arises from their rigid adherence to specific sizes, particularly since the vast majority are designed to fit rack systems of one sort or another and many are 19 inches wide and very deep. Relatively few are suitable for free standing applications and of these, even fewer cater for the small sizes generally required by the home constructor. The smaller die-cast boxes or tobacco tins, etc. are hardly finished or dimensioned to give aesthetic appeal. Consequently either an unsatisfactory finish results or considerable further effort is necessitated, such as the attachment of a visor cover. However, compared with the finish and trim of a professional instrument case, these modifications are generally considerably inferior. Hence, for the enclosure of small units such as burglar alarms, intercoms and signalling apparatus, ihe recessed construction as described under "Small Units" below is to be preferred.

MODULAR CONSTRUCTIONS

In order to allow the amateur to construct his own instrument casings, many forms of do-it-yourself casing are available for the amateur and professional instrument manufacturer. The construction is generally based upon aluminium extrusions preformed and supplied in lengths, which can be used for the edges of casing with smart trims and shapes for the front panel surround. The extrusion is cut to shape and both bevel and butt joints are used, whilst the side, top and rear panels can be directly fitted into recesses in the extrusion to give a very neat finish. This is particularly acceptable as a form of construction when a plastics coated metal sheet is used for the side and rear panels. Such a material is known as Bondene and consists of stippled p.v.c. bonded to aluminium sheets.

Another simpler and therefore cheaper constructional form consists of corner pillars of shaped material to which the front, side and rear panels are screwed. The construction allows for a modular build up of these units by bolting the corner pillars together, and thus extending the system to include large control units. This system has the advantage of cheapness but is not as flexible as the system using aluminium extrusion.

Both systems are illustrated by the sketches of Fig. 3 in which Fig. 3a shows the aluminium extrusion system using captive nuts and special corner connectors, all of which slide in channels in the extrusion. Fig. 3b illustrates the simpler drilled and tapped corner post system to which all the panels are screwed. The shape of the unit illustrated in Fig. 3a also illustrates the flexibility which can be achieved using this system, and thus explains why the cost is high compared with the corner post system.

A modification of this construction which is widely used by manufacturers is the wrap around casing. In this form the structure is formed from pillars and tie bars but the top and side casing is formed from a single moulded sheet screwed to the tie bars. Removal of this wrap around case enables easy access to the

Fig. 3. Modular construction: (a) aluminium extrusion system; (b) corner post system
internal circuitry for maintenance and repair. This form of construction is used by many manufacturers of bench instruments such as oscilloscopes, power supplies, etc. and is particularly effective when the cover is of stippled p.v.c. covered metal sheet.

SMALL UNITS

Many items of equipment such as domestic sensing, alarm, and control circuits, etc. are of very small physical size and therefore only small equipment enclosures are necessary to contain all the circuitry. Very often the most useful form of construction for this type of equipment is the use of small die-cast or other metal boxes. Plastics boxes are also useful, especially for small portable equipment, but whereas the manufacturers of commercial equipment can afford to have these made, the amateur can only use what is available. It is surprising the number of suitable plastics boxes which can be freely purchased and which are also obtained as packing for other items, and often these can be used successfully for equipment.
Plastics boxes of this form are not very professional in terms of overall finish since to give a proper finish the controls, inputs and outputs should all be moulded to fit the particular box, particularly with regards to the obtrusion of controls. In most cases the surface finish of these small housings can be achieved with paint which gives a satisfactory finish, but care must be taken with the lettering used. In particular, the overall look is very much harmed by the use of numerous screws and holes in the outer casing, however necessary, for mounting internal components.

RECESSED UNITS

Most of these small boxes functioning as "house" alarms or controls can be recessed into walls and other fittings by making a large overlapping plate as the front panel to which the box is attached. This form of installation is also suitable for use with chassis systems of the valve type which are bolted directly to the front panel. The whole unit can be screwed to a recess in the wall or cabinet door and only the front panel is visible.

Fixings can be either by bolts to captive nuts or else by wood screws to Rawlplugs or similar fixings in walls. Two such small units are illustrated in Fig. 4a and b. Both of these units are designed to be wall mounted in precisely the same manner as recessed light switch boxes and similar commercial equipment. Often it is useful to use the metal switch boxes available for domestic electric fittings, especially since these have the mains inlet and outlet holes available as well as screw holes for wall fixing in addition to the tapped holes for screwing the front panel and attached circuitry to the box.
The advantage of front panel fixings to domestic switch boxes is that the boxes are cheap and very simple to install. In addition, as only the front panel is visible, this is the only item which must be professionally finished. In fact the only construction necessary when using such a box is to mount all the components on a metal panel to which a covering front panel escutcheon is fitted and the drilling of two holes' for the fixing screws. The result is a very neat, professionally finished unit which is robustly, permanently, and professionally installed in the home.

WORKMANSHIP

To work with metal, plastics and wood and still retain a polished professional finish is difficult unless this is a desired objective. In particular, polished aluminium sheets used for side panels should be covered by cardboard and sticky tape to protect the finish, especially when a gloss paint finish is required. In addition, thin metal sheet should preferably be cut by shears rather than sawing and filing since unless great care is taken, sawing results in warped, twisted and misshapen panels which always give a poor appearance. For this reason it is simpler for the home constructor to work in aluminium since the forming and cutting of this material is considerably easier, without machine tools, than is steel.

To be continued

(b)

Fig. 4. Recessed units: (a) all components mounted directly to the front panel and recessed into a wall; (b) use of a metal switch box to house the electronics of a burglar alarm

\title{

Signal Injector \& Code Practice Oscillator

\section*{A SPECIAL PROJECT

A SPECIAL PROJECT FOR BEGINNERS

NEXt to the multimeter probably the most useful servicing tool is the signal injector or generator. With this instrument the technician can test audio or r.f. equipment, such as an amplifier or radio receiver, by simply tracing the signal injected through all the stages from the output to the input, any faulty stage being immediately revealed by the loss of signal at the loudspeaker.

The simple generator to be described provides not only these facilities but can be readily converted to a code practice oscillator which will provide sufficient output for it to be used in group practice.

UNIJUNCTION TRANSISTOR

The signal injector circuit is shown in Fig. 1a. Essentially this is made up of a relaxation oscillator comprising the unijunction transistor TR1; and TR2 which acts as a pulse amplifier.

With switch S1 closed C1 charges by way of R1 until it reaches the peak point voltage. This voltage (see Fig. 2,) is a unique fraction of the inter base voltage for a particular unijunction transistor and when it is achieved the normally reverse biased emitter junction is made to conduct, so discharging C1 through R3.

It can be seen from the graph that when the peak voltage is reached the emitter voltage falls, and the

current increases. This means, in effect, that Cl discharges into a reducing resistance. At the "valley point" conduction ceases and the next charging cycle commences.

The choice of timing components give this oscillator a pulse rate of about 800 Hz . In Fig. la the charge and discharge curves are shown as are the pulses produced at R3.

PULSE AMPLIFIER

To amplify the pulses TR2 is used as a switch. When the input pulses exceed about 650 mV this transistor is turned on so that most of the line volts appears across R4.

The output is taken via C2 which serves to isolate the circuit from d.c. This should be rated for at least 350 V if signal tracing in both valve and transistor equipment is contemplated.

HARMONICS

Any periodic wave or pulse can be shown by mathematics to be composed of a sine wave fundamental frequency and sine wave harmonics. The extent of these harmonics or higher multiple frequencies depends on the steepness of the leading edge of the wave or pulse.

Fig. 3a shows a pure sine wave. This consists only of the fundamental frequency as there are no harmonics.

Fig. I(a). Circuit diagram of signal injector; (b) modifications necessary at TR2 to convert to code practice oscillator

Fig. 3b shows, in expanded detail, the 800 Hz pulses produced by the signal injector. Here the leading edges are extremely steep, the time taken for each pulse to reach its maximum being approximately $0 \cdot 5 \mu \mathrm{~S}$. This means that there are a great many harmonics present.

MODULATION

The amplitude, or height, of the fundamental frequency of this pulse train is very much greater than the harmonics, so it influences all of them inasmuch as that they carry the fundamental; this process is known as modulation.

TESTING

Since the many harmonics produced all carry the modulation frequency, it is possible to troubleshoot all the stages in a radio receiver; r.f., i.f. and a.f.

The order of testing is a.f. stage first; then work back through the i.f. amplifiers and finally the r.f. stages.

This, of course, is a logical procedure since we must make use of the receiver's loudspeaker in revealing the presence or absence of a signal. Any defunct stage

will be made apparent by the absence of sound from the loudspeaker.

The 400 mW amplifier described in the September 1970 issue will prove an excellent alternative signal tracer.

CODE PRACTICE OSCILLATOR CONVERSION

Conversion of the injector to a code practice oscillator involves replacing R4 with an 80 ohm loudspeaker, and substituting a morse key for Sl as shown in Fig. 1 b. To increase the pulse width and therefore the power available, C3 is connected across the loudspeaker LSI.

Whilst the loudspeaker is small the output is adequate for group practice, but if greater volume is required the signal injector output can be directly coupled to a radio receiver aerial input. It is sufficient to lay the output probe near the aerial coil where ferrite rods are used. The receiver dial is tuned to a quiet spot before signal injection. Adjustment in output level can be made with the volume control.

COMPONENTS . . .

Resistors

RI	$18 \mathrm{k} \Omega$	R3	56Ω
R2	47Ω	R4	$1 \mathrm{k} \Omega$

All $\frac{1}{2}$ watt, 10% carbon
Capacitors
C2 $0.1 \mu \mathrm{~F} 350 \mathrm{~V}$ polyester C3* $0.47 \mu \mathrm{~F}$ polyester

Transistors
TR1 2N2160
TR2 ZTX300
Battery
BYI 9V PP9
Loudspeaker LSI* $80 \Omega \quad 2 \frac{1}{4} \mathrm{in}$

ELECTROSLEEP

These days it is difficult to imagine something to which electronics cannot be applied. In this respect even insomiacs appear not to have been forgotten, since for the last few years the Russians and several other countries have performed experiments which positively indicate that sleep might be induced electronically.

The U.S.A.. on the other hand, although actively engaged in theoretical research in this subject are openly sceptical and cautious to admit of its clinical validity.

In essence the electrosleep technique is a fairly simple affair and amounts to the application of low voltage, low frequency pulses between the subject's eyelids and nape of the neck. Electrical connections are made via electrodes contained within saline pads made of foam plastics material.

Although very little design data is currently available in relation to the equipment, sufficient information about the waveforms generally utilised shows that one only needs a source of square waves to "be in business". Take a look at Fig. I. This indicates the basic circuit details of a device [designed for the job.

The important point to remember about electrosleep apparatus is that it never actually puts anyone to sleep. All it is capable of achieving is the promotion of conditions for which sleep would be favourable.

Nevertheless, it does seem to work. At about 15 Hz and a waveform amplitude of approximately 6 V a slight "tickling", relaxed sensation is
experienced which is often accompanied by the most intricate patterns of (apparent) light. Voltages much higher than this, apart from being of doubtful value, could prove to cause discomfort. Since the pulses employed are of such small amplitude (typically only $30 \mu \mathrm{~A}$ at about 15 Hz) complete safety from side effects is assured.

Clinically, the technique has been used with success in such diverse complaints as rheumatism and Parkinson's disease; and to date more than 450 papers on the work have been published.

Evolution of electrosleep and electroanaesthetic devices is well advanced in most of the contintental countries and Western Germany is no exception. Two German companies are already mass producing equipment for home and overseas markets!

HAPPY MACHINE?

It's all a matter of what you mean by happy I guess! Certainly several computer programmes have already been written that profess to simulate the more basic requirements of emotion, but then this isn't a machine with emotion.

Before we can even think of a machine being happy it must surely be necessary to define, in the first place, just what happiness is! And defining it is probably where the greatest difficulty lies.

We all know what pain is for example, but what is an accurate defintition of it? The Oxford dictionary says "... bodily or mental suffering" and leaves it at that! For happiness it gets a little nearer with "... lucky, fortunate, content,
Ah! "Content". Isn't that the word we're after?

Happiness is an equilibrium state is it not, so perhaps "content" is a reasonable definition. But we still need to find the conditions that, when met, fulfil contentment and result in happiness. Could we not say that we always have a number of needs in our minds, some which may have been met and others which remain to be satisfied.

We now are in possession of the facts we require, surely? Perhaps the
formula is something like this:
Happiness (H)
$=$ Number of needs fulfilled (F)
Number of needs (N)
Thus, complete equilibrium equals " 1 " (or unity) since F is either less than or equal to N.

Coming back to our machine, if we depict it as a box and let it have a number of needs to fulfil (say food, warmth, etc.) then couple it to another box called environment and permit the two to react with one another ultimately, and with luck, equilibrium should be reached. Could this be a happy machine"?

TOPPED-UP?
How frequently do you check the level of hydraulic fluid in the brake master cylinder of your car? A glance, just occasionally, could very well save your life one day. I must confess that up to a while ago 1 rarely looked at mine, so imagine my shock, upon checking, when virtually no fluid showed in the cylinder!

Manufacturers, you might complain, ought to provide less bothersome ways of letting one know the fluid level. Indeed, this is not as unreasonable as it might at first appear since most contemporary fluids are slightly conductive.

A small metal probe situated in the cylinders filler cap, but insulated from the cap, can be arranged to just come in contact with the fluid when at the full mark. Any drop in level would break the connection with the probe.

The circuit in Fig. 2 shows a suitable level sensing amplifier which, as you can see, is quite "mean" in the use of components. As a result of this simple set-up one only needs to top-up on occasions when a lamp glows on the dash! What a treat!

A
LTHOUGH the primary problem for the hi fi enthusiast is the actual choice of equipment, some of the more practical problems associated with the interconnection and use of the different units call for some guidance too. These include impedance matching and signal level requirements, loudspeaker phasing for correct stereo reproduction, and pick-up tracking and alignment.
If incorrectly set-up, these aspects can completely spoil the performance of even the very best of equipment in one way or a nother.

Special
Supplement
PRACTICAL
ELECTRONICS
November 1970

IMPEDANCE AND SIGNAL LEVEL MATCHING

Correct matching between the loudspeaker and a transistor power output stage is very important if the full power of the amplifier is to be made available. Some tape record/replay units have what are nominally 600 ohm outputs with an attendant high output signal, usually around I volt r.m.s.

Although it may sound contrary to the laws of impedance matching, a 600 ohm output of this nature will operate quite satisfactorily with an amplifier input of much higher impedance. The real problem may be the high signal level, especially if the amplifier requires a maximum input signal of only 300 or 400 mV . The signal level from the recorder would have to be attenuated of course to prevent overloading the amplifier input resulting in severe distortion.

Although a reasonably close match between an output and an input impedance is desirable, there are instances, like the one mentioned in the previous paragraph, where providing the signal level requirements are observed, outputs and inputs with seemingly large differences in impedance can be connected together without loss of efficiency.

If an amplifier has an outlet for taperecording with an impedance of 10,000 ohms and a signal level of 500 mV , while the tape recorder input is 100,000 ohms and requires a signal of only 50 mV , the difference in impedance, although apparently large, is of little importance here. The large signal from the amplifier (500 mV) could, however, grossly overload the tape-recorder input.

All that is required here is a simple attenuator which, in this case, could be a small pre-set potentiometer of around 50,000 ohms connected between the amplifier and recorder as in Fig. I. Such an arrangement could be used to attenuate large signals from outputs ranging in impedance from 600 ohms up to at least $\mathbf{5 0 , 0 0 0}$ ohms. For higher output
impedances the potentiometer should be about 100,000 ohms.

On the other hand the problem may arise when the output impedance is fairly high and the input impedance is fairly low. For example, if a radio tuner has an output impedance of, say, 100,000 ohms, and the appropriate input of an amplifier has an impedance of only 50,000 ohms or even 10,000 ohms, the mismatching of impedances is not critical, as long as the signal requirements match fairly well.

Fig. I. Potentiometer attenuation
It is quite easy to reduce output signals to an appropriate level by means of a simple attenuator but a somewhat difficult problem arises when the output signal is too low. It is no good just turning the amplifier or tape recorder volume control up in order to amplify the low signal. This will also bring up the hum and noise level of the amplifier (or tape recorder) input stage.

PRE-AMPLIFIER SENSITIVITY

The only answer is a pre-amplifier for the signal source. A typical example is when a modern low sensitivity magnetic pick-up cartridge is to be used with an amplifier having no provision for such low signal levels (usually around 5 mV) and no appropriate frequency response correction network (such as an R.I.A.A. response for playing disc records).

A similar case would be the direct connection of a tape head where the average signal output level may be only $\mathbf{3}$ to $\mathbf{4 m V}$ and for which frequency correction (C.C.I.R. tape replay response) is also necessary. In both cases a pre-amplifier with the appropriate frequency response

Good looks apart the ST. 20 offers outstanding performance equal to amplifiers selling at two or three times the price which makes it one of the best buys on the High Fidelity.market. All silicon solid state circuitry using 20 transistors and 2 diodes provides a full 20 watts r.m.s. output (10 watts r.m.s. per channel). Conservatively rated components are used throughout to ensure long term reliability and stability. Press button selector switches are a feature of the ST. 20 for magnetic phono, crystal phono, radio tuner, tape, mono/stereo and on/off facilities.
The slimline cabinet in teak veneers and the front panel fascia of

Stereo 10-10 Compact System

Expertly designed and providing outstanding quality reproduction. Not just another compact system but a true "sound centre" incorporating an all silicon transistor amplifier, Garrard 3000 autochanger and two Metrosound HFS. 10 speaker systems. Output 20 watts rms. (10 watts "ms. per channel) Bass, Treble, Volume and Balance controls, Input for tiner. Tape record outlet. Price £77.6.4.

Metrosound Speaker Systems

MODEL HFS. 1010 watts handling capacity. 8 ohm impedance. Teak finish. Size $14^{\prime \prime} \times 9^{\prime \prime} \times 7^{\prime \prime}$. As used in the Stereo 10-10 Compact System and available in matched pairs at $£ 26.3 .8$.

MODEL HFS. 2020 watts handling capacity. 8 ohm impedance. Teak finish. Size $23^{\prime \prime} \times 11 \frac{1_{2}^{\prime \prime}}{} \times 10 \frac{3^{\prime}}{}{ }^{\prime \prime}$. Price $£ 18.10 .0$. each.

Available from all leading high fidelity dealers Designed and Manufactured in England by

(metrosound

Metrosound Manufacturing Co. Ltd., Audio Works,
Cartersfield Road, Waltham Abbey, Essex.
Telephone: Waltham Cross 31933

Britain's finest range of High Fidelity modules

The only modules with a complete specifications guarantee (see below)

The only modules for which professionally designed cabinet/chassis systems are produced.

The only constructor modules to employ dual FETs in the front end and IC in the decoder section of the tuner.

The only constructor modules to employ complimentary silicon output stages, thyristor switching O/load protection and glass fibre circuit board.

The only constructional loudspeaker design using electronic filter network for linear frequency response.

The only constructor speaker cabinet design to feature pre-finished interlocking mitre joints and decorative veneers.
Peak Sound Englefield and Baxandall systems are the simplest and most professionally styled of all constructor systems to assemble.

Peak Sound are Britain's best money saving systems.

In Hi-Fi Sound, the 'Casebook' report on constructor's own installations enthusiastically praises Peak Sound amplifier and speaker systems (August issue, page 59).

In Hi-Fi News (August issue, page 1151) Peak Sound Baxandall speakers form part of the equipment chosen as the best submitted in the Budget Stereo competition.

guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as used in equipment reviews appearing in The Gramophone and other leading British high fidelity journals. Audio power outputs are quoted at continuous sine wave power in terms of Root Mean Square (R.M.S.) values into stated loads at stated frequencies.

PEAK SOUND, St. Jude's Road, Englefield Green, Egham, Surrey. Phone: Egham 5316.

[^3]\square URRK
ELECTRONICS LTD.

PROUDLY ANNOUNCE THAT COMING SHORTLY IS

A new approach to practical $\mathrm{HI}-\mathrm{FI}$ starting with the QUARK stereo amplifier incorporating the usual controls-
VOLUME- Helps you live at peace with your neighbours
BALANCE-To give each of your neighbours equal volume if you don't get on
BASS and TREBLE lift and cut
Extras as STANDARD
SCRATCH filter-Will make even that old 78 sound mellow
RUMBLE filter- Removes turntable and motor noise
SPEAKER LIFT-Helps the speakers especially the not-so-good ones
Modular construction Simple installation
WATCH FOR FURTHER DETAILS

and input sensitivity would be required and with sufficient gain to provide the requisite output signal level to drive the main amplifier.

It is unlikely, however, that this problem would arise with any modern hi fi amplifier, the majority of which cater for the direct connection of a tape head and which now have inputs for low sensitivity magnetic pick-up cartridges. This is a point worth checking on by those who contemplate buying an amplifier to be used with signal sources of this nature.

Most hi fi signal sources (radio tuner, tape recorders and/or tape record/ replay units and pick-up cartridges of different makes and types) will match quite well with the majority of present day amplifiers.

It is worth noting that the average output signal from low sensitivity magnetic pick-up cartridges has until recently been around 5 mV and certainly not more than 10 mV . Now, however, the sensitivity of magnetic cartridges has been improved resulting in signal outputs of as high as 80 mV or more. This could cause severe overloading of an amplifier pick-up input designed for only 5 to 10 mV .

However, as the amplifier input impedance for magnetic cartridges is usually around 56 kilohms, it is not difficult to introduce the required attenuation as shown in Fig. I. But a word of warning here! With such low signal and therefore high gain input stages, there is a great risk of introducing hum from any unscreened components connected in or across the input. Any form of attenuator used in such cases must be completely screened, with the screen connected to chassis. This brings us to one problem which often causes headaches-hum.

HUM LOOPS

When several different items of mains powered audio equipment are connected together, there is always the possibility of creating "hum loops". This is where

Fig. 2. Hum loops could be caused by too many common earth connections
small a.c. currents can be induced in the earthing wires if more than one earth wire is joined in a complete circuit close to mains wires. These currents may then flow through chassis or common signal wires and be picked up in live signal leads.

All a.c. mains operated equipment should, of course, be properly earthed for safety reasons; where possible this should be done at one central point, such as the earthing pin of the power socket. If more than one mains plug is used, only one should have an earth connection. This does not always prevent the formation of hum loops which can be set up around interconnecting screened cables as well as earth lines (Fig. 2).

The only way to determine that hum is due to a loop circuit is by trial and

BAKER 12in. MAJOR £9
The remarkable quality and performance of the "Major" makes possible truly brilliant and rich sound from a single loudspeaker. It recreates the entire musical spectrum from 30 to 14.500 c.p.s. The unit consists of the latest double cone, woofer and tweeter cone together with a special Baker CERAMIC magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 E.p.s. For Hi-Fi or P.A. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Major Module 30 -17,000 eps with tweeter, crossover, baffle 19 || 10.0
Baker Reproducers LId
Sond to Slamp Further Details

01-684-1665

Tape Recording

C. N. G. MATTHEWS

Too often the quality of tape recordings is marred by a lack of essential information. This book should put an end to all that, with material on sound and tape recording systems, recording and reproducing processes, distortion, and servicing, etc. 21s (£1.05) net

Pick-Ups: The Key to Hi-Fi Second Edition

J. WALTON

With recording companies now concentrating on stereo recording, material has been added on "compatibility" requirements, as well as general revision Of the first edition Hi-Fi News said: "It can be highly recommended". 15s (75p) net

Electronic Musical Instrument Manual
 Fifth Edition
 alan douglas

A comprehensive guide to the theory and design of electronic musical instruments. In this edition there is a new section explaining the properties of transistors, and their application to electronic musical instruments.
55s (£2.75) net

Transistor Electronic Organs for the Amateur
 Second Edition

ALAN DOUGLAS AND S. ASTLEY
The availability of cheap transistors facilitates the construction of inexpensive, cheap electronic organs. For the first time, this clear and well-illustrated book presents a detailed design for a full-scale organ, with a complete explanation of everything to do with transistorized organs.
20s (£1.00) net

Systematic Electronic Fault Diagnosis

T. H. WINGATE

Dealing with the fundamentals of faultfinding technique in the servicing of electronic equipment, this is a programmed text which has already been validated in use on R.N. Training courses. Will be of use for courses such as the City and Guilds R.T.E.B. Certificate.
$27 / 6$ (£1.37) net. Paperback $17 / 6$ (87p) net

Pitman Publishing
39 Parker Street London WC2
off the shelf for as little as $2 /$ - per watt. Maximum distortion $0.1 \% 20 \mathrm{~Hz}$ to 20 kHz . Full power bandwidth 10 Hz up to $80 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Complementary and quasi-complementary versions in all power ratings perform to the same high standard. Unconditionally stable. Fully protected against accidental misuse.

* Stereo Integrated Circuit Preamplifiers
* Stereo Headphone Amplifiers
* Toroidal Mains Transformers
all designed to the exacting standards of the professional user.
Transaudio combines sophisticated design and no-nonsense engineering in semi-kit products incorporating Motorola transistors/ICs and other dependable components assembled on fibre glass circuit boards. Write today for full details.

Transaudio Limited
8 Elsworthy Rise London N W 3
"Setting the Standard for the Seventies"
error. The usual procedure is to disconnect earth leads one by one and uncouple the various screened signal cables.

The cure may simply amount to leaving the direct earth connection off one item of equipment altogether, especially if it is earthed by another route, such as via a screened and therefore earthed signal cable. Only one item of equipment should bear the direct connection to the earth pin of the mains plug. Reversal of the mains connection to one piece of equipment may also get rid of the hum, or at least reduce it.

On the subject of 50 Hz mains hum, don't forget that it can be introduced into tape heads and magnetic pick-up cartridges from nearby mains transformers. This is an often unsuspected cause of hum, but one which is quite common especially when equipment of this kind is close together, in a hi fi cabinet for instance. Keep all signal carrying leads well away from mains supply leads and components and make sure that all high impedance leads are screened, with the screen connected to chassis.

LOUDSPEAKER CONNECTION

Now let us turn to loudspeakers and their connection; first to transistor power output stages and secondly for stereo. The importance of accurate matching between loudspeakers and transistor output stages has already been mentioned.

Do not connect or disconnect loudspeakers to or from a transistor amplifier whilst the power is switched on. A chance short circuit across a transistor output line running at more or less full power could, in many cases, destroy the output transistors. Not all transistor amplifiers have protective fuses or other protective devices.

If the lines to the loudspeaker(s) are to be very long then fairly heavy cable should be used because the signal current via the loudspeaker can be quite high on peaks. Ordinary 5A "lighting" cable is quite satisfactory.

CROSSOVER NETWORKS

Fig. 3. Crossover networks for stereo
When planning a speaker system made up from two or more units in the same enclosure, they should not be connected directly in parallel to the amplifier output unless due consideration to matching is given. Most ready-built speaker systems are designed to present a combined matched load impedance to the amplifier, using crossover units and/or matching networks (Fig. 3).
'The larger speaker (10 in or more) is called a "woofer". It is coupled to the amplifier via the crossover filter, so that it will handle powerful bass frequencies without interference from the treble range. The crossover filter is also designed to pick out the treble range to drive a smaller speaker (tweeter) of less than bin diameter. Sometimes electrostatic types are used for the

You should read the

Goodmans High Fidelity Manuals

Goodmans High Fidelity Manuals are of vital interest to you, and contain constructive and informative articles on all aspects of High Fidelity sound.
One manual contains specifications, descriptions and full colour illustrations of the entire current range of loudspeaker cabinets, systems, amplifiers and F.M. tuners. The construction manual contains the information needed by those enthusiasts who prefer to make their own High Fidelity or musical instrument loudspeaker systems. These manuals are availabte tree from
Goodmans Loudspeakers Limited Axiom Works Lancelot Road Wembley Middx. Tel: 01-902 1200

Price list and illustrated fiterature on requesi io A. R. SUGDEN \& CO. (Engineers) LTD. Market Street, Brighouse HD6 1DX, Yorkshire. Tel. 2142
treble range and it is important that this is matched correctly to the crossover unit.

Some small bookshelf speakers, while giving pleasing results, can give rise to irritating vibration if driven with a strong low frequency sound; damage can result to the speaker if sustained. The bass control should be judiciously adjusted to prevent this occurring, since a small speaker is not capable of handling such low frequencies adequately.

CHANNEL IDENTIFICATION

As to which will be the left- and right-hand channel connections can of course be determined if each piece of equipment has its outputs (or inputs) appropriately marked. Some hi fi manufacturers label the channels A and B, in which case A is the left-hand channel and B the right-hand channel. Otherwise one must resort to checking right through each channel from each source.

For disc, and tape this can be done with the aid of test discs or tapes. The left and right channels from radio tuners with stereo decoders can, if they are not marked, be determined by the special BBC stereo test transmissions on Radio 3 v.h.f. (more about this later).

STEREO SPEAKER POSITION

Stereo enthusiasts have different ideas as to the most effective loudspeaker positioning and spacing. Some like to think-that speakers placed one in each corner of the room, at least 12 feet apart and each turned slightly inward, produce the best effect. Some prefer the speakers to be flat against a wall, a little way in from each corner and therefore parallel to the listener line of sight.

It is all rather a matter of personal choice and how much space one has in the room in which the speakers are to be installed. A speaker in each corner and pointing slightly inwards does provide a better directivity of the higher frequencies toward the listener; assuming the listener to be at a point equidistant from the speakers $\left(a_{2}, a_{3}\right)$ as in Fig. 5.

Fig. 5. Stereo speaker positions
Much depends of course on the spacing between speakers, which should if possible be not less than about 8 feet (a_{1}), and also on the type of loudspeaker available, for example, corner reflex or closed baffle type. Perhaps the best advice here is, experiment a little and settle for what sounds best.

When two loudspeakers are used for stereo they must be operated in phase to ensure the correct stereo effect and avoid output sound loss at low frequencies. Most manufacturers of stereo amplifiers mark the twin connections for loudspeakers with regard to "phase". The earthed side may be marked "negative" and the live side "positive", but the majority of loudspeaker manufacturers also mark their speaker connections with positive and negative signs or with a red mark on one terminal.

For mono operation from a single channel amplifier, it would not matter which way round the speaker is connected. For stereo, the polarity of the connections should be observed, but no damage will result from incorrect connection. If in doubt, or if there are no polarity markings on either the speakers or the amplifier output terminals, the most simple way of determining "inphase" operation is as follows.

Connect both speakers and play a record with a fairly strong bass content. First note the strength of the bass response from the loudspeakers. Now reverse the connections to one of the loudspeakers and note whether this produces an increase or decrease in bass response. If the bass response increases then leave the connections to that speaker as you have now made them. If the bass decreases then reconnect the speaker as it was.

Some amplifiers have a switch for phase reversal and all that is necessary is to set the switch for the strongest bass response. Another check is to switch the amplifier to mono, in which case all the sound should appear to come from a point midway between the two speakers, when listening from a position equidistant from both speakers as in Fig. 5.

STEREO RADIO

Radio broadcasts in stereo via the BBC v.h.f./f.m. services present no reception problems provided an efficient aerial is used with the correct type tuner and decoder. The noise level on f.m. stereo broadcasting is about 3dB higher than for f.tm. mono and a poor aerial can make this even worse. Those particularly interested in stereo broadcasts from the BBC can obtain various BBC Information Sheets IIO2(4): V.H.F. Radio Receiving Aerials; 1605(2): Stereo Broadcasting-Test Tone Transmissions. These tests are transmitted on Wednesdays and Saturdays every week at

Just what is this ABR, that makes such a vital difference to the ' DITTON 15'?

1. Studio quality high frequency unit (HF1300 Mk. 2).
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances
4. Auxiliary Bass Radiator (ABR)-plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing excursions up to $\frac{3}{4}^{\prime \prime}$ with virtual absence of distortion
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence
7. Full L-C Crossover network

PLEASE WRITE FOR DETAILS

VISIT US ON STAND No. 2

and listen to the acknowledged 'DITTON' Hi-Fi Speaker Systems, and hear the vital differences.

INTERNATIONAL

AUDIO FAIR
OLYMPIA • 20 - 24 OCTOBER, 1970

HEAR CELESTION'S NEW SPEAKER! Celestion
 Serses
 Loudspeakers for the Perfectionist
 ROLA CELESTION ITD. • FOXHALL ROAD •IPSWICH. TEL. 73131

11.30 p.m. (23.30 hrs), using the standard Zenith-GE Pilot Tone System. Information sheet $1603(6)$ and a leaflet called "Stereo Q and A " both deal with the more general aspects of stereo.
These are all available free of charge from The Engineering Information Department, BBC, P.O. Box IAA, London, W.I, and contain very useful information regarding reception.
Never use a.c./d.c. television or radio receivers with your amplifier unless an isolating transformer is inserted between the two.

TRANSCRIPTION UNITS

Good quality disc transcription units rarely call for special attention other than an occasional spot of oil according to the manufacturers' instructions and should only be placed where they are free from vibration, especially through the floor. A heavy footstep on loose flooring can cause a lightweight pick-up to jump right across the record with disastrous results. Be careful when dusting or cleaning around transcription units and in handling the pick-up arm. Its quite easy to catch a duster on the stylus of a cartridge and break it clean off. A good stylus is expensive! A very soft camel hair brush is useful for removing dust from the pick-up head and is less likely to cause damage. Never touch the stylus with the fingers.

Some transcription units have an "off" position on the speed selector. The machine should be left in the "off" position when not in use to prevent continuous pressure of the rubber idler on the turntable and/or capstan spindle. Any "flats" on the idler that may result from not doing so will cause "flutter" in the turntable speed, giving an apparent gurgling effect to the sound reproduced.

It is a good plan to arrange a transparent Perspex cover over the transcription unit with adhesive foam draught excluder strips round the edges. This
will keep ingress of dust to an absolute minimum. This cover can be lowered during playback, while still giving a view of playing position of the pick-up.
Correct tracking and balance of the pick-up arm and cartridge are most important for good quality and minimum record wear. Instructions about this are always given with the transcription unit and/or the pick-up arm and should be closely followed.
Records are made of plastics material which attracts dust by means of the static charge built up.

If you value your records keep them clean and free of dust, using one of the proprietary record cleaning devices specially made for the purpose. Alternatively, a barely damp sponge (not cloth) will help.

TAPE RECORDERS

Tape recorders and/or tape record/ replay units present few problems except that some record/replay units have very large signal outputs (as explained earlier) which may be too high for the appropriate amplifier input and may therefore have to be attenuated.

The more common causes of loss in treble response are usually due to the accumulation of dust on the tape head or wear of tape guides, causing the tape to wander off track. Here again a camel hair brush is useful for cleaning.

Keep the tape heads and guides clean and if, after a time, there should be a noticeable loss in treble response, it may be necessary to check the azimuth alignment of the heads. This can be done on tape recorders with a common record/replay head simply by using a white noise azimuth alignment tape made by B.A.S.F., 9A Gillespie Road, London, N. 5 (instructions for use are included). Alignment of the heads on machines with separate record and playback heads calls for the use of an audio

JUST LOOK AT THESE FABULOUS LOW PRICES!

SERIES 7 RECORDERS

MODEL NO.	LIST PRICE	CASH PRICE				
	t	s	d	t	s	d
$724 / 722$	242	10	9	199	10	0
$72 / 704$	207	7	0	169	10	0
713	188	10	0	156	0	0

AVAILABLE ON NO DEPOSIT CREDIT TERMS CARRIAGE 30/- EXTRA
PORTABLE OR WOOD CABINET

FERROGRAPH STEREO AMP F307

AVAILABLE ON NO DEPOSIT INSTALMENT CREDIT

The famous 20 watt per channel amplifier from Britain's most respected manufacturer. A fabulous range of facilities rarely ever available in equipment at this price. Finished in wood veneered cabinet. Brand New with instructions and guarantee.

LIST PRICE $£ 59$
CASH PRICE £47

CARRIAGE 10/-

SENT FREE!

the kj catalogue PACKED FULL OF ALL THINGS AUDIO. BIG money saving offers FOR EVERYONE FROM A REEL OF TAPE TO A FERROGRAPH. OVER 200 illustrated pages.

NODEPOSIT INSTALMENT CREDIT AVAILABLE

PHILIPS STEREO TUNER BARGAINS!

GH944 AM/FM STEREO TUNER SAVE 623. List Price 〔72.18.4. Receives LW/ MW/SW/VHF. A.F.C. on FM, Tuning meter. Sleek continental teak veneer cabinet. Brand New and guaranteed
CASH PRICE £49.18.0
GH927 FM STEREO TUNER SAVE CI5. List Price $£ 44.19 .6$. Receives VHF stereo broadcasts, can be used in conjunction with your amplifier or tape recorder. A.F.C. on FM, Tuning meter, and low line teak cabinet. Brand New and guaranteed.

CASH PRICE E29.19.6

AVAILABLE ON NO DEPOSIT INSTALMENT CREDIT

KJ ENTERPRISES (0EPT PE11) 33 BRIDLE PATH WATFORD HERTS Tel 25634 Showroms 101 Stalbans roao waitono (close to Watiord Junction Stetion)
signal generator and an alignment tape and is best done by a service engineer.

Moving parts, such as lever arms and bearings, may require an occasional spot of light oil, but do not lubricate nylon bearings or it may cause erratic running of the spindles. Belt drives should be kept scrupulously clean and free from oil or grease. Some machines employing belt drive may suffer from belt slip after a long period of non-use. This can be cured usually by removing the belt and placing in warm water to restore its shape to normal.

Sometimes the heat generated by the recorder may be enough to do the trick.

CONNECTING DIN PLUGS

If you are able to make up your own connecting leads, using a soldering iron, the following may be helpful to sort out the profusion of plug and socket types and their uses. The illustration in Fig. 6 shows the more common types.

A high proportion of equipment now uses the versatile German DIN pattern three or five way connectors and are usually wired to the same pattern. However, it is best not to assume this
but check first with the manufacturers' literature.

These plugs are usually used for input and output connections from and to other equipment. They may also be used for microphone inputs.
The range of DIN plugs available is shown in Fig. 6a. The pins are numbered, but not in the expected order in the case of the 5 - and 6 -pin types. They are in the order $1,4,2,5,3$ reading clockwise from the keyway. The positions of 1 , 2 , and 3 coincide with those on the 3 -pin plug.

In all cases the pin at position 2 is the common or earthy connection. This is important because there is often a connection from pin 2 to the case of the plug, maintaining the screen.

Microphones are connected for mono use to pins 1 and 2 for high or medium impedance unbalanced types; pins I and 3 with screen to 2 for low impedance balanced types; pin 3 and 2 for unbalanced low impedance types. These are shown in Fig. 6, together with connections for stereo microphone, pick-up, tape recorder, and f.m. radio.

DIN plugs and sockets may also be used for loudspeaker connections, particularly for stereo where non-reversible plugs are required. These have two

DISGOSOUND

DISCOSOUND 40 PRE-AMP

The Discosound 40 offers the same specification as the D.J. Disco Amp without the power output stage. Size 16 in , 7 in . 7 in . Self powered and ideal for use with the Discosound 100 Power Amplifier below and one of the outstanding features is that it is capable of running ten of these Power Amplifiers (Total $1,000 \mathrm{~W}$).

PRICE £40.10.0 inc. P. \& P.

DISCOSOUND 100 POWER AMPLIFIER

A 1gow RMS (8 Ohms) High Fidelity power Amplifier which utilises all silicon transistors of modular construction and features full automatic overload protection against short or open circuits. Frequency response: $20-20,000 \mathrm{~Hz} 2 \mathrm{~dB}$. The High output is $20-20,000 \mathrm{~Hz}$ 2dB. The High output is
ideally suited for discotheques, groups, ideally suited for discotheques, groups,
clubs, etc.. or anywhere where reliability and quality are required. This unit is the companion model for use with our control pre-amp Discosound 40, or can be used with any other high quality pre-amp control unit. Completely built and tested on steel Chassis.

PRICE £49.10.0 inc. P. \& P.

DJ70S
 INTEGRATED MIXER-

AMPLIFIER

One of the finest units available on the market today, regardless of price, The front end of the unit consists of a four channel mixer with separate inputs and volume controls, plus a separate bass, treble and master volume control. One of the main features of this remarkable amplifier is its elaborate protection against short and open circuit and we can guarantee that it is virtually indestructable. Allied to this is its very high power output (70 W R.M.S.) a frequency response $(30-20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$) that is superb, and distortion that is well below 1^{n} "even at full output. The unit is suitable for use with discotheques, groups, P.A., clubs, etc., or anywhere that high quality high output is required. Size: $15 \frac{1}{2}$ in , 5 in $\times 6 \mathrm{in}$.

PRICE £63.0.0 inc. P. \& P.
Also available DJlo5S 30W P.A. Amplifier. Similar specification to above.

PRICE £41.0.0 inc. P. \& P.

[^4]
I5 WATTS FOR $\mathbb{E 5 . 5 . 0}$! !

Now available for return of post delivery-"Hardcastle" 15 W Amplifier kit as described in Hi-Fi News. This outstandingly low price includes Fibreglass PCB with screened legend for easy assembly, heatsink, transistors, low noise resistors, capacitors and misc. hardware, circuit diagrams and post packing and insurance. A unique feature is that the output power can be varied from 10 to 30 watts and the output impedance between 8 and 15 ohms. (Basic kit at $£ 5.5 .0$ gives 15 watts/ 15 ohms). An ideal educational project. Send now for your kit by return of post or send a stamped self-addressed envelope for details to:

L.S.T. ELECTRONIC COMPONENTS LTD. DEPT. PET7

7 COPTFOLD ROAD, BRENTWOOD, ESSEX

PHASE LOCKED STEREO DECODER

Revolutionary inductorless design no coils to adjust! Set up with D.C. voltmeter only.

Typical separation 45 dB at $1 \mathrm{kHz}, 40 \mathrm{~dB}$ at 10 kHz . Complete kit. (As in Wireless World Sept. 70) containing Fibreglass PCB, (Approx. $4^{\prime \prime} \times 5^{\prime \prime}$) 62 low noise resistors, 3 Fairchild IC's 15 Ferranti transistors, 8 diodes, 23 capacitors and 4 preset pots. Full instructions plus details of single and dual supply operation. £8.19.6 pp 2/6
Decoder PCB only $£ 1.5 .0 \quad$ U6A747459X $£ 1.7 .6$ U6E7709393 £1

STABILISED POWER SUPPLY
Complete kit for $\pm 6 \mathrm{~V}$ at 50 mA Suitable for above $£ 2.19 .0 \mathrm{pp} 3 / 6$ Transistors: ZTX500 4/- ZTX108 equiv. 2/-
INTEGREX LIMITED PO BOX 45 DERBY DE1 1 TW

LOUDSPEAKERS

FIFTH EDITION

REVISED AND ENLARGED by G. A. BRIGGS with R. E. Cooke, B.Sc.(Eng.) as Technical Editor
336 pages. 230 illustrations Fine art paper. Bound in cloth Fifth Edition published October 195831 chapters

Price 30/(32/6 Post Free)

75,000 copies of this Reprinted October 1961 book have been sold .. December 1963 up to date and it is .. April 1965 now looked upon as a .. October 1966 standaid reference on .. April 1968 the subject of loud March 1969 speakers

Sold by Radio dealers and bookshops or in case of difficulty from RANK WHARFEDALE BOOK DEPT. B.W.S., 13 WELLS ROAD, ILKLEY, YORKS Tel.: Ilkley 4246

Fig. 7. Complete and opened views of 2-pin (left) and 5-pin (right) DIN plugs and sockets
pins, one flat and one round. The flat pin is usually the common line but is not always earthy, so be careful with connections and do not earth or connect to the chassis of other equipment.

OTHER PLUGS

Phono plugs are commonly found on mono or individual channel connections into the amplifier. These and similar alternatives use one pin for the line and the case for the "earthy" connection. The centre wire has to be soldered inside the pin.

Jack plugs come in various shapes and sizes, with either metal or plastics covers. Where high impedance lines apply, metal covers are recommended to maintain the screen effect. It is worth while inserting a rolled card sleeve inside this cover to prevent short circuits with the terminations inside (Fig. 8a).

Connection is usually straightforward if you have a soldering iron. Soldered joints are much preferred to screw terminals, which can work loose and cause
crackling and even short circuits. A cord grip is also recommended.

Cable screen wires should be insulated with sleeving to prevent short circuits, and connected to the sheath, sleeve, or body tag of the plug. The tip is the line connection.

Stereo jack plugs have a tip and a ring connection; the tip to one channel, the ring to the other.

Break jacks may be used where the lines may be shorted when not connected to external equipment. They may also be used to mute the internal speaker when an extension is connected.

Finally, the life and performance of any hi fi equipment is dependent on careful handling and maintenance. Many of the equipment manufacturers issue maintenance advice for straightforward servicing; serious faults or breakdowns should be dealt with by the manufacturers' service departments, or by a trained qualified engineer who specialises in this kind of equipment.

Three superb Build-it-yourself speaker kits fromWharfedale
 You could almost say design-it-yourself kits-as each one owes its inspiration to your wishes! In fact,

 as fast as we issue one kit you ask us for another, till we can hardly keep pace with demand. So if you've a perceptive ear and an eye for real value, make your choice today from the 3 below.
Unit3

Compact bookshelf system

$8^{\prime \prime}$ Bass/Mid Range speaker and acoustiprene tweeter.
Frequency response $50-17,000 \mathrm{~Hz}$. Crossover unit.
Rec. Retail Price $£ 11.19 .6$.

Unit 4

Full range floor-standing system

2 speakers ($12^{\prime \prime}$ Bass and $3^{\prime \prime}$ Treble).
Frequency response $45-17,000 \mathrm{~Hz}$. 4 -element crossover unit.
Rec. Retail Price $£ 16.0 .0$.

Unit 5

For the real enthusiast

3 speakers ($12^{\prime \prime}$ Bass, $5^{\prime \prime}$ Mid Range, and 1 "Treble). Frequency response $40-20,000 \mathrm{~Hz}$. 6 -element crossover unit. Rec. Retail Price £23.10.0.

All kits are complete with speakers, crossover unit, acoustic wadding, mounting bolts and connecting wire, and full assembly instructions. No special technical knowledge necessary.

the true sound in High Fidelity.

CRATER STUDY

Geologists have been able to identify a number of craters on the earth which have been formed by the impact and explosion of meteorites. The 1 kilometre diameter crater in Arizona is one example where there is meteoric material in substantial quantities. There is another in Germany known as the Nordlingen Ries crater. This crater also contains a substantial amount of meteoric material.

The Upper Rhine Geological Society held a conference in Nordlingen and an informal Research Group was set up to explore the possibilities of this crater. It was decided to sink a borehole two or three kilometres deep into the crater to study its structure.

It is hoped that the extensive attack on the problem by a number of disciplines will provide data as to the method of formation of lunar craters. There is abundant evidence from the samples collected by the .Apollo missions to suggest that multiple impact shock is an important factor.
The lunar samples have shown that minerals have been formed in a plastic state, phase changes which could only be the result of very high pressures and temperatures; and some show evidence of the vaporisation of minerals as fracturing and melting effects.

Certain of the rocks from the Ries crater are almost identical with those from the Moon. They resemble them in that they contain some 20 per cent of shock metamorphosed minerals. The age of the Ries crater is of the order of 20 million years and may retain most of its original structure beneath the enormous amount of debris which was blown outwards and then fell back during the impact of the large meteorite.

INFRA-RED SPECTROSCOPY

In the wavelength range from 23 to 900 microns, water vapour in the atmosphere has in the past prevented useful astronomical observations being made at sea level stations.

There is now a solution to this problem other than by orbiting observatories.

At the Meudon Observatory for Infra-red Space Studies, J. Gay has shown that above a height of 28 km the water vapour content is much less than was expected. It is therefore possible to use balloon borne detectors for observations in this region.

The same group have also carried out the first direct measurements of the temperature of the photosphere of the Sun in the wavelength range from 100 to 200 microns.

In the past a great deal of information has been gathered about extra-terrestrial infra-red radiation by using high flying balloons, jet aircraft and rocket flights. With the new technique of using comparatively low flying balloons, weak sources can be studied. This will include the larger planets as well as instellar regions of ionized hydrogen.

There are new avenues in X-ray and Gamma ray astronomy which no doubt will encourage observers in these fields to take full advantage of the facilities offered by balloon techniques for an exhaustive study of the whole of the infra-red spectrum.

VENUS-MERCURY MARINER

The 113lb package aboard the Venus-Mercury Mariner spacecraft noted in October Spacewatch consists of seven experiments. The study of the solar particle bombardment of the surface of Mercury will be by a charged-particle detector for electrons in the energy range in excess of 200 keV and protons in the energy range of 600 keV .

An ultraviolet spectrometer will determine whether Mercury has an atmosphere and to measure airglow. This will enable the constituents of the atmosphere of both planets to be determined. An infra-red radiometer will measure emission temperatures over the range $-185^{\circ} \mathrm{C}$ to $370^{\circ} \mathrm{C}$. It is hoped that it will be possible to measure both cloud top temperatures as well as limb darkening temperatures.

On Mercury the experiment will measure surface temperature distribution and determine whether the surface features show temperature anomalies.

MAGNETIC FIELDS

A scanning electron analyser will measure ions whose energies lie 80 eV and 80 keV and electrons between 40 and 400 eV . It is hoped that this data will give information as to the effects of the solar wind and how it interacts with Venus and Mercury. This will provide, in turn, information about the electromagnetic properties of the planets.

A magnetometer which is made up of two triaxial fluxgate instruments will be in operation. Venus has no measureable magnetic field though there are indications of a magnetic shock front close to the surface.

It is not known what may be the situation on Mercury in this respecti. As Mercury has a diameter of less than half that of the earth it could be too small to possess a liquid or molten core which is conducting and therefore preclude the possibility of a magnetic field.

TELEVISION CAMERAS

There will be two television cameras with a resolution equivalent to pictures of the moon taken from earth based cameras. In the case of Mercury the surface features will be resolved well enough to enable a check to be made of its rotation period and its attitude on its axis.

The radio transmitters will function in an occultation mode for both planets, single for Venus but double for Mercury. Radio signals past the limb of each planet will yield information about the atmospheres. mass, radii, surface features and ionospheres if they exist.

GETTING UNDER THE SKIN

W. Koppl of Martin Marietta Corporation, of Denver, Colorado, recently described an ultra high frequency radiometer that could examine the u.h.f. radiation below the surface and measure the dielectric constant of the soil. At u.h.f. frequencies the dielectric constant is between 2 and 10 for dry soil and rises to around 20 for wet soil.

A satellite or orbiting spacecraft could measure a particular zone or area and determine from the degree of penetration the dampness of the soil. A radiometer to tune over a range from 500 to $1,500 \mathrm{MHz}$ would be able to penetrate even permafrost zones. Koppl considers that a microminiaturised unit could be developed weighing not more than a pound plus the weight of the aerial. More detailed measurements could be made if the frequency range was extended to 200 MHz .

Surveillance Data Transnilission

The use of data link in an Offset Target Lndicator System is based on the requirement for obtaining real time information on targets in a surveillance area. otis uses the Decca variable bit rate data link which supersedes voice communication. The diagram above shows how a Nimrod aircraft picks up information on the area and sends it to Command H.Q. The radar operator uses a "rolling ball" to position a symbol over a target on his p.p.i. display. This gives the exact target position which is fed in digital form to a similar p.p.i. at H.Q.

Television Aids Firing Control System

Arange of compact television equipment by the Marconi Electro-Optical Systems Division is based on a number of units which can be built up as required to cater for a wide range of military applications, with sensor tubes available to cover light levels from the brightest sunlight to the darkest night.
The Vidicon Camera from the 323 Series is shown in the photograph (left) in a weatherproof housing, installed on a warship as part of the ship's fire control system.

Laser Assisted Long Range Missile

Atlas is a joint project of the British Aircraft Corporation Guided Weapons Division and the Fabrique Nationale D'Armes de Guerre SA of Belgium, aimed at an advanced low-cost infantry anti-tank weapon system which can be used at short ranges in a direct fire mode, or with the assistance of a laser which gives terminal guidance to the missile at longer ranges.

Aviation of the Future

There was plenty of talk at Farnborough about the next generation of airliners, the airbus, particularly from Hawker Siddeley and B.A.C. The A300B is a high capacity (260 to 300 passengers) wide body jet built by Hawker Siddeley with other companies in France, Germany and the Netherlands.
B.A.C. is now developing the Three-Eleven of similar size. The photograph (right) shows the increasing complexity of instrumenta.tion, ccupled with electronic control systems for automatic landing and navigation, that is going into the Three-Eleren.

Hawker Siddeley has submitted design details to the Ministry of Technology of a vertical take-off 600 mph aircraft for commercial airline use in the 1980s, based on experience from the Harrier. Details of electronic systems to be used are not yet available, but it is expected to carry similar equipment to that used in the Harrier for navigation at high speed, and the automatic landing system as used in the new Trident $3 B$.

Concorde dzta provessing frore 3, 300 tes: point sos 3 ms grea:ly reducing the i scale of the light test prog zomme and givirg instant ir zication of at-normal finetions

Tyre Anti-skid System and Dynamometer

Calibration and skid response tests are being carried out on a Dunlop electronic adaptive anti-skid system. Signals depicting the actual skid characteristics are fed to this measuring instrument (left) to detect the system's response.

A new dynamometer testing facility for aircraft tyres, wheels and brakes is being installed at Birmingham, and is scheduled to be in operation by 1972 for new generation jet aircraft. Any cycle of tests can be carried out with the tyre assembly running at varying angles of steer, camber, or both. Resultant forces in the tyre in three planes are read off in real time via a computer

Flotation Beacon Buoy

RR abio survival beacon (right) BE369 is a flotation beacon buoy, designed by Burndept Electronics. It operates on aviation frequencies and is being supplied to Norway, the only country to require beacons by law.

market PLate

 ltems mentioned in this leature are usually available'from electronic equipment and component retailers advertising in this magazine. However, where a full address is given. enquiries and orders should then be made direct to the firm concerned.
SOLDERING

The average constructor of electronic components probably has an average constructor"s soldering iron. That is, one which has been attacked frequently with a coarse file until none of the bit remains visible. It has then been mangled in a vice and assaulted with an electric drill in an effort to remove the remains of the bit.

The new "Invader" iron from the Adcola certainly seems to have been designed by an avid user of soldering irons who has ironed out (sorry about that!) all the problems of maintaining irons in a working condition.
The collett holding the bit has been designed so that the bit can be easily pulled out when the iron is cold and any accumulated scale removed, and yet is held tight when the iron is hot.
In the past, replacing an element has always been good for a laugh with tiny insulating beads falling down and around like the gentle rain from heaven. Adcola have again spoilt all the fun by arranging for the element to be rapidly exchanged using just a screwdriver. No tiny nuts and washer to fiddle around with any more, the connections being made via three pins and a socket.

The iron normally has a bit temperature of $360^{\circ} \mathrm{C}$ but other irons are available on request, working at other temperatures and voltages from 6 V to 240 V , at no extra cost. The handle is styled so that it can be put down without the hot bit burning the work surface or rolling off at the slightest provocation.

The two-yard lead was found to be quite adequate for most purposes and the model L646 uses $\frac{3}{16}$ in diameter bits and costs 37s. The model L1076 is for 4 in bits and costs 38 s . The iron is normally supplied with a straight bit but a wide range of interchange bits of many shapes and angles is available.

An electronics manufacturer, probably using several hundred or more soldering irons, would find the cost of servicing these irons much reduced.

Also from Adcola is the L267 desoldering iron. This desoldering instrument draws the molten solder through the hot bit when a rubber bulb, mounted on the handle, is squeezed and slowly released.

Like their irons, many different interchangeable bits of varying shapes and sizes are available on request.

Full details of local stockists of the irons and desoldering instrument can be obtained from Adcola Products Ltd., Adcola House, Gauden Road, London, S.W.4.

AUDIO TRENDS

Two items received too late for our Audio Trends pages last month, but of significant importance that they will surely make their own impact on the audio scene are announced by Rank Aldis-Audio Products and Hammond Organs Ltd.

By acquiring the U.K. marketing rights of the complete range of elliptical stylus magnetic cartridges manufactured by the Empire Scientific Corporation of New York, they have certainly acquired a first-class product. From the non-critical to the hyper-critical there should be a suitable cartridge amongst their large range to meet the need of most people who like to appreciate good reproduction.

For the non-critical user the 80 EE should give completely satisfactory results for an outlay of $£ 9$ 18s. Indeed, at a recent demonstration the performance of the 80 EE compared very favourably against the 999 VE at £44 10s., and to the human ear hardly any difference could be detected, although laboratory tests would prove otherwise.

The frequency response of the 80 EE is claimed to be 12 Hz to 25 kHz .

The output voltage is 8 mV per channel and channel separation is claimed at more than 30 dB . The tracking force is approximately 1 to 4 grams. The load impedance is 47 kilohms.

For the average user the price against performance of the 80 EE will certainly take some beating.

All the cartridges will be available through the usual audio shops.

Recently introduced by the Hammond Organ Company, Edgeware, Middlesex, is the unusual Piper organ, an entertainment instrument which assures the one fingered musician a creditable performance by the simple expedient of providing switch selected automatic rhythmic accompaniment in a multiplicity of tempos such as rock, waltz, country and western, march, ballad, latin american, or combination of any of them.

The keyboard is divided to provide an octave of rhythm keys and a three octave solo. The stops available for melody colouration are trumpet, accordion, mellow flute, violin or deep trombone. These again can be mixed in any combination. Vibrato and reverberation are available for this department.

The most unusual feature of this instrument is that percussion stops, titled sitar, harpsichord, banjo or piano can be switched singly or in combination in a selected rhythm. In fact, if the rhythm rate was sufficiently slowed down it is possible to transpose the melody line onto the rhythm key with some very exciting effects.

Retailing for $£ 595$ the Piper is an exhilarating novelty instrument which should provide an avid appeal for the pop orientated performer.

The 80EE magnetic cartridge from Rank Aldis-Audio Products

As transistors are now commonplace in circuits used by both professional and amateur constructors and experimenters, one automatically considers the best form of low voltage d.c. supply for the circuit in question. While many radio and amplifier circuits only require supplies in the 6-15 volt region with a small current drain, dry batteries are often sufficient for the purpose.

In the case of many electronic devices and power amplifiers, voltage requirements of between 15 and 50 volts are often specified, and in many cases a relatively heavy current drain is called for.

The stabilised power unit described in this article should prove to be an extremely useful piece of equipment, catering for almost all types of low voltage semiconductor circuit. While the initial cost may seem rather high compared with the cost of batteries or a simple unstabilised power supply, it could turn out in the long term to be more economic and more reliable.

FLOATING SUPPLY

The power supply unit was designed to combine simplicity with reliability, provide a wide range of voltage and current output while at the same time maintaining good regulation. The full specification is shown in the display panel, which shows the versatility of the unit to provide controlled supplies up to 1 A at the low regulation figure of 0.3 per cent.

One very necessary and useful facility is that the d.c. output is completely isolated from earth and chassis. This allows the unit to be used in a number of modes. Either positive or negative side may be earthed at the output terminals or in the external circuitry supplied, or they can remain isolated leaving the supply floating.

Looking at the circuit diagram in Fig. 1, the only form of overload protection provided is the fuse. The "short-circuit" detection and correction principle is not always necessary and one must decide whether the extra complexity and cost is justified in view of the application of the unit in practice.

The author has found by experience that unless such circuits are rather complex so as to ensure a very fast electronic cut-out, the protection circuit can be "too late" to prevent damage to the rest of the circuit. The simpler types of protection circuit are generally only effective in preventing overload damage when a reasonable impedance is present between the circuit under test and the power supply source.

D.C. SUPPLY

The action of the circuit is quite straightforward and follows the usual feedback loop sequence of the majority of stabilising circuits. The secondary output from transformer Tl is tapped to the required voltage range through S 2 a and applied to the full wave bridge rectifier Dl-D4. A suppression circuit consisting of

SPECIFICATION

D.C. Output Voltage

Regulation at 0 to IA

Ranges

Ripple over 6 to 40 V range

Stability

Dimensions

6 to 40 V at 0 to 1 A or $1 \cdot 5 \mathrm{~A}$ at slightly reduced regulation
Less than 0.3% voltage change over range 6 to 40 V (see Fig. 6)

Switched ranges 6 to 12 V ; $12-20 \mathrm{~V} ; 20$ to $30 \mathrm{~V} ; 30$ to 40 V . All variable.

75 mV peak-to-peak ($<0.05 \%$) at full load 30 mV peak-to-peak ($<0.02 \%$) at half load

Less than 0.3% change in output for mains voltage variation between -3% and $+5 \%$.

Width 12 in , height 7in, depth 7in.

R1 and Cl prevent mains transients and short duration "spikes" being fed via the transformer into the stabiliser circuit. The diodes operate well within their maximum ratings of 200 V p.i.v. at 6 A , thus coping easily with filter surge current.

The filter circuit $\mathrm{C} 2, \mathrm{C} 3, \mathrm{~L} 1$, is quite orthodox, a choke being used in preference to a resistor as, despite its seemingly low inductance, it is still much more effective, particularly at higher load currents. Its low d.c. resistance also allows a much smaller source impedance to be achieved, giving an improved stabilisation factor. A constant current bleed across this circuit is obtained through R2.

The output from the smoothing circuit is fed into the series stabiliser TR1. As this transistor has to be capable of handling the maximum load current at relatively wide range of voltage levels, it was chosen with a certain amount of care.

Under the worst conditions with S2 on the $30-40 \mathrm{~V}$ output range, VR1 set to give 30 volts output at full load current of $1 \cdot 5 \mathrm{~A}$, the transistor will be required to dissipate approximately 26 watts. On the same range with 40 V output the maximum dissipation is about 15 watts. The transistor should never, therefore, exceed its 30 W maximum dissipation rating. See the dissipation curves in Fig. 2.

Under these conditions a reasonably high gain is still required to maintain good stability. The OC29 was found to be the most suitable of the easily available power transistors, having a maximum dissipation of 30 watts at a case temperature of $45^{\circ} \mathrm{C}$, a maximum collector voltage of 60 V and a minimum gain of 45 a 1A. A large extruded aluminium finned heat sink is used to dissipate heat.

D.C. AMPLIFIER

The action of TRI is controlled by the d.c. amplifier TR3 and TR4. The base of TR3 is biased from the potential divider chain R5-R8, VR1, R9-R12, the level of operation being, capable of variation over the specified range by means of the range switch 52 b and $52 c$ with VR1. The four ranges selected by S 2 are matched to the amplifier circuit via the switched resistors R5-R12, these ensure that VR1 only covers the approximate range selected by S 2 . Close toler-
ance resistors are used in these divider circuits to ensure reasonably accurate tracking between ranges.

The high gain amplifier transistors are connected as a Darlington pair, this circuit giving an extremely high d.c. gain. The load resistor for this amplifier is R3, the output developed across R3 being d.c. coupled from the collector of TR4 into the base of the emitter follower driver transistor TR2. This in turn is d.c. coupled to the series transistor TR1 and so completing the feedback loop.

The constant voltage reference point for the d.c. changes, which tend to occur across the divider chain, and thus the base of TR3, is given by the Zener diode D5. This holds the emitter of TR4 at a constant level, the current feed for this diode being taken from the stabilised side of the supply via R4.

The emitter of TR4 is effectively decoupled by C4 which also helps to prevent self oscillation in the amplifier. The base of TR3 is decoupled by C5, this serving a similar function. A large value smoothing capacitor C6 reduces the ripple on the output voltage to its final low value and is shunted by a smaller paper capacitor $C 7$ to keep the source impedance at higher frequencies at a low value.

STABILISATION

The stabilising action is quite simple to follow. Assume that with S2 and VR1 set to give a particular voltage level, an increase in load current occurs. The voltage across the divider network will fall, thus the base of TR3 (and so TR4) will go more positive with respect to the emitter of TR4 which is held constant. This will reduce the collector current through R3, allowing the collector of TR4 to go more negative with respect to the emitter.

The base of TR1, which is d.c. coupled to TR4 collector via driver transistor TR2, is driven more negative also, so turning. TR1 harder on and allowing more emitter current to flow. The initial increase in load current is pulled down by this increase in emitter current. Small changes in output voltage are thus detected, amplified, fed back to the regulator circuit and so make up a complete amplified negative feedback sequence.

Transistor TR2 is simply an emitter follower driver

stage giving a low impedance drive into the base of TR1. No phase reversal occurs between TR4 and TR1. When considering the overall action of the circuit TRI is also regarded as an emitter follower having a very low output impedance, the external load between the positive and negative terminals being the emitter load. The action described above is of course almost instantaneous, a decrease in load current having the reverse effect to that described.

The stabilised output is taken to the output terminals via the ammeter M2, fuse FS2 and switch S3. This toggle switch must be rated to carry at least 1.5 A d.c. Many toggle switches only have a 1 A rating for d.c. supplies, in which case a double-pole switch with the two poles connected in parallel allows the full load current to be switched if necessary.

The voltmeter M1, is connected to the supply side of the switch, this allowing the correct voltage to be set before being switched to the load. All controls and outputs are accessible from the front panel.

COMPONENTS . . .

Resistors

R1	100Ω	$\frac{1}{2} \mathrm{~W}$	10%	R7
R2	$1.5 \mathrm{k} \Omega$	5 W wirewound	R8	270Ω
R3	$3.3 \mathrm{k} \Omega$	2 W	R9	$10 \mathrm{k} \Omega$
R4	$1.5 \mathrm{k} \Omega$	2 W	R10	$7.5 \mathrm{k} \Omega$
R5	$47 \mathrm{k} \Omega$		R1I	$5.6 \mathrm{k} \Omega$
R6	$22 \mathrm{k} \Omega$		R12	$6.2 \mathrm{k} \Omega$

All $5 \%, \frac{1}{2} \mathrm{~W}$ carbon except where stated.

Potentiometer

VRI $5 \mathrm{k} \Omega$ linear wirewound
Capacitors

Cl	$0.25 \mu \mathrm{~F}$ or $0.22 \mu \mathrm{~F}$ paper 500 V
C 2	$500 \mu \mathrm{~F}$ elect. 50 V
C	$250 \mu \mathrm{~F}$ elect. 64 V
C	$1 \mu \mathrm{~F}$ paper 150 V
C	$2 \mu \mathrm{~F}$ paper 150 V
C	$500 \mu \mathrm{~F}$ elect. 50 V
C	$1 \mu \mathrm{~F}$ paper 150 V

Transformer

TI Any mains transformer with the following minimum ratings:
Primary: $0-200,220,240,250 \mathrm{~V}$
Seconding: 48 V 2 A tapped at $16 \mathrm{~V}, 26 \mathrm{~V}, 36 \mathrm{~V}$.
This transformer is part rewound-see text.
Inductor
LI $50 \mathrm{mH} 2 \mathrm{~A} 0.6 \Omega$ choke (Gardners) see text ${ }^{\circ}$
Transistors
TRI OC29
TR2, TR3 OC205 (2 off)
TR4 BCY39
Diodes
DI-4 BYZI3 (4 off)
D5 OAZ200 (Zener diode 4.7V 100 mA)
Meters
MI $0-50 \mathrm{~V}$ f.s.d. (see text)
M2 0-2A f.s.d. (see text)

Switches

SI Double pole, on-off toggle switch
S2 3-pole, 4-way wafer switch
S3 Single pole, on-off toggle switch (see text)

Fuse and fuseholders

FSI IA
FS2 2A

Miscellaneous

LPI Mains neon indicator with current limit resistor
Cabinet $12 \mathrm{in} \times 7 \mathrm{in} \times 7 \mathrm{in}$ aluminium case type W , fully louvred (H. L. Smith \& Co. Ltd., 287-289 Edgware Road, London, W.2.)
Front panel 12 in $\times 7$ in to fit case
Heat sink $4.875 \mathrm{in} \times 1.05$ in extruded aluminium 4in long with eight pairs of fins
Mica washers, bushes, nylon screws for OC29
Plugs, wander, and sockets (2 off)
Screw terminals (2 off)
Pointer knobs (2 off)
Component tag board, tag strips, grommets, tinned copper wire and sleeving
Chrome handle 9in. Lettering or transfers

Fig. 3 (above). Layout of components on top of the chassis. Drilling details are made to suit the components used. More detail is shown in the photographs and in Fig. 4

Fig. 4 (left). Layout and wiring of the component tag board TBI

Fig. 5 (below). Drilling details of the front panel with the chassis position shown dotted. Fixing holes for the meters may differ according to the meters used

CONSTRUCTION

The construction of the unit is relatively straightforward, there being nothing at all critical about the layout.

The above chassis layout is shown in Fig. 3, together with relevant dimensions. The photographs also show the method of construction.

All components are mounted on top of the chassis, thus allowing a shallow chassis to be used. Only the mains lead is brought under the chassis from the rear grommet and three-way tag strip. This lead is brought up to the mains switch and fuse. The earth wire on the three-core mains input lead is taken to the earth tag on the chassis. No other connections are taken to earth or chassis.

As the transformer and choke (described later) can vary in size, the fixing holes for these components should be marked off from the components themselves.

HEAT SINKS

The OC29 (TR1) is fitted to the heat sink specified, the standard mica washer being placed between the bottom of the transistor and the heat sink. The two screws holding the transistor should be passed through the insulated bushes, a solder tag being fastened under the head of the top screw so as to make contact with the case (collector). This case should not touch the heat sink or chassis.

Ensure that the base and emitter pins are clear of the heat sink and no rough metal burrs are left around these or the fixing holes, as the transistor must lie perfectly flat on the heat sink for maximum efficiency. Before clamping the heat sink to the chassis by means of a small right angle bracket along the bottom, check that there is no d.c. continuity between the transistor elements and the heat sink.

If a short circuit is present, check that the mica insulating washer has not cracked or been pierced by a small spike of metal, or that the fixing screw insulating bushes have not cracked. The heat sink should be mounted with the cooling fins vertical.

DIODE MOUNTING

The diodes Dl to D4 are each mounted on a strip of aluminium lin wide and 4 in high, the four strips of aluminium being mounted together on an insulated angle bracket. The strips of aluminium not only make a convenient form of mounting but also act as heat sinks. The four strips should not touch one another and they should be isolated from the chassis by the bracket, this being of s.r.b.p., wood or similar material. Solder tags should be put on the diode studs and the nuts tightened.

Resistors R9 to R12 are connected between the threeway terminal strip beside T 1 and S 2 c . Resistors R5 to R8 are connected between S 2 b and the negative terminal of the ammeter M2.

A clip-on heat sink should be placed over the can of TR4 as under certain conditions this can approach its maximum dissipation figure of 410 mW at $25^{\circ} \mathrm{C}$. Such small heat sinks, to fit a TO5 can, may be bought very cheaply or simply made from a strip of ${ }_{3}^{12}$ in copper $\frac{1}{4} \mathrm{in} \times 1 \frac{1}{4} \mathrm{in}$. This is bent and clipped tightly round the transistor can. Ensure the heat sink does not make contact with any other components as with this type of transistor the base is common to the can.

The stabiliser circuit components are mounted on a tag board which is mounted vertically on the chassis. The layout of the tag board, with dimensions, is shown
in Fig. 4. This board should be wired up before being fitted to the chassis; flyleads being left for external connections.

FRONT PANEL

The front panel layout together with necessary dimensions is shown in Fig. 5.

As the type and size of meters used may vary, the meter holes should be cut to suit the particular meters which are going to be used (see later). The remainder of the front panel components should be mounted as shown, much of the front panel wiring being done before the panel is fitted to the chassis.

With the particular type of cabinet specified, a lip of approximately $\frac{3}{8}$ in will be found all round the inside when the front panel is removed. The front panel is fitted into the upper and lower lips by means of self tapping screws.

To allow the chassis to fit into the cabinet, both of the vertical or side lips should be cut off, these serving no particular purpose. As the cabinet is made from aluminium, they can be simply removed using a small hacksaw blade or Abrafile.

When mounting the front panel to the chassis, allow the botiom edge of the front panel to protrude approximately $\frac{3}{8}$ in below the bottom edge of the chassis. This compensates for the bottom lip of the cabinet as mentioned above.

If the fixing holes are drilled in the front panel first, they can be marked off on the chassis front with the chassis inside the cabinet, the front panel being loosely held in place by two of its four fixing screws. A hole must also be cut in the rear of the cabinet to line up with the grommet for the mains supply lead outlet.

With all the construction completed, final extras in the form of rubber feet and a carrying handle may be fitted if required. Four $\frac{3}{4}$ in rubber feet mounted on the bottom of the cabinet prevent benches or tables being scratched, while a 9 in chrome handle mounted on the bottom of the front panel (as illustrated) or on top of the cabinet, not only improves the appearance of the unit, but also makes the unit portable.

MOTORS
HIGH PRECISION MAINS MOTOR
$230 \mathrm{~V} \mathrm{BOHz}_{z}$ h．p．continuously rate ，000 rade a JFB don Enkilleer apatan hotor．Size sin long， 4 iin diar meter with bin dianeter flange and \＆tixing holes．Theme amtorm are Capmeitor start，
 Algo available 3 Thane．t4．10．0．eats
$\$ 1.5 .0$ ．P．\＆

SHADED POLE MOTORS I20V 50Hz
Precision made as ubed in record decks a applications， 10 each．P．\＆P． 3 ，othe

PRECISION MOTORS by PULLIN
28V，3，000 r．p．m．， 000 ltj l． $5,000 \mathrm{r} . \mathrm{p} . \mathrm{me}, 0.0014 \mathrm{~h} . \mathrm{p} . \mathrm{i}$ eich 4.10 .0

HYSTERESIS REVERSIBLE MOTOR

hicotporating two coils．Each coil when

HYSTERESIS CLUTCH MOTOR

D．C．MOTORS

Sinular to above type MD 83．28V

SYNCHRONOUS MOTORS

$200 / 250 \mathrm{~V} 5 \mathrm{~Hz}$ ．Xew condition，ex eynip
 Wha．，thin lorice． 30

10 Hz －20MHz．Pulse
montoring duation $\overline{5} 0$ mieromecunds to 01 $10 \mathrm{~Hz}-40 \mathrm{hHz}$ ．Also single sweep 1itcility from 50 microseconds to 3 microseconts Y＂Auplitier．Delay Line Calibration 50 W ．supplied with metal carrying case L． 13 in ．H．Sins，W， 5 in．Weight 141 m

WIDE RANGE OF PRECISION MULTI－TURN POTENTIOMETERS IN STOCK

ELECTRIC CLOCK MOTOR
NEW 200－250r， $50 \mathrm{~Hz}, 2 \mathrm{~W}$ ，Synchronous induct ion motor fers．per hour．O／I
shaft．tin dia shaft，till tiat lin long Clock wist
rotation．Three－holed mounting at 120 rotation．Three－holed
on 2in PCD．Price $15 /$

DELAY LINE

．

HIGH SPEED IMPULSE COUNTERS

 jointer registers up to 100 ind 4 －digit counter，both minually resettable．Th Arive to the counterescapenent si，that the
the pointer mechanism when llaits a changel and adjustable pawls are an necessary：Coll resistance 100 ohms fo nominal rolt operation，but the device
works reliahy from 20 V at rates up to 10 impulses／gec，In circuit with thyratron or neostron counting rates up to 100 impulses／see are possible provided pulse
widh is restricted to keep mean current Whith is restricted to keep mean current sealle thoxes．Price $\mathbf{x 6 . 0 , 0}$ ． $\mathbf{1}, \& \mathbf{P}$ ．$\overline{/} / \mathrm{th}$ ．

dec．ions．Supplied with 3 thmus ith he
attache troe metal carrying casc．Spec attache type metal carrying casc．Spect
fications：Voltmeter $0-15 \mathrm{~V}, 0-100 \mathrm{~V}$ $0-450 \mathrm{~V}$ ．D．C．Jinear mirror scale 3 mA FSD．Ammeter unghunted $7 \cdot 5 \mathrm{~mA}$ F8D
lised with 3 shunts to give rangea of $0-0.3 \mathrm{~A}, 0-0.70 \mathrm{~A}, 0-1.5 \mathrm{~A}, 0-5.5 \mathrm{~A}, 0-15 \mathrm{~A}$, $0-75 \mathrm{mV}$ voltmeter．scale leugth 83 mm Meter size 4 tin 11 in I．Iist price $\times 30$ Our price $£ 5.19 .8$ ．A．P． 30

PORTABLE WHEATSTONE BRIDGE

 nieter．Ranges：Moving Coil Gavatio 2． 0.5 to 50 ohme． 3.5 to 500 oburs． 4． 50 to 5,000 ohms．$\overline{5} .500$ to 50,000 ohms． Scales：Switehert．Slidewire： 0.5 t 150（ralvanometer Gcale： $10-0-10$ Case Malvanometer scale： $10-0-10$ ．Case
Moulded plast ic．Internal Source： 4 Dry hatery．Dimensions： 200

ELECTRONIC BROKERS LTD
49－53 PANCRAS RD LONDON NWI TELEX 267307

Open Mon．－Fri．9－6 p．m
VEEDER ROOT 6 DIGIT COUNTER

3 DIGIT RESETTABLE COUNTER

6 DIGIT RESETTABLE COUNTER COUNTER 8／6．

BERKELEY DECIMAL COUNTING UNIT 0.9
 type 5965 日f，ecial quality
Cシit plugs into stamurd octal base．Modular corr－ etruction with 10 minia－
ture neon lampondianlay ture neon lanhs ondiaflay
panel．Power suphlies panel．Pouer supplies
6.35 ，a．c．， 150 V ， c ．Cut－ on or Cut－off 15以＂．Size

miniature digital display

EAC DIGIVISOR Mk．II DIGITAL READ．OUT DISPLAY

SOLENOIDS

 1
 $250 \mathrm{~V}, 15 \mathrm{~W}, \mathrm{MBC}$ ．Panel lanys．Ideal making up displays，ete．Leugth 2 in $\frac{1}{5} /$ in tia．Special offer， 10 for k 1 ．

MEMORY CORE STORES
$42 \quad 522 \mathrm{~K}$ bit ferrite core sture complete With 840410 load dioles，ldeal for buidd－ hinary torn

miniature moying coil

 RELAY SIISHy Sangatno Wenton， suitable for D．C．circuit． A high bensitivity relay nore sensitive than the
electromannet ic type．
single Coil llesiatance Single Coil Resistance
310 micro amp 315 n
Our L

humicators

\qquad Muction runs，minness machine operation
Mechanically drisen．Reset type kA133： manual knob．Ex－equipt．lut new con－
dition．special price 25／－whes $5 /-\mathrm{P}$ ．\＆P．
Totaliaing 48 V d．c．at $48 \mathrm{~mA} ; 10 \mathrm{impulses}$

3．15．0．

6 DIGIT TOTALISING NON－RESETTABLE
Mechanicat operation．Chromimu limish window fin

Operater
projection
projection pilot lamp．Charac－ er bize I＂high．0－9 digits Dimensions $1 *$ wile
32^{2} deen， $1 \frac{5}{26}$ high List price tigns．Our
price $48 / 6$.

High quality golindy congivucted solenoids． Actuated by $42 \mathrm{~V} 45 \Omega$ coll．Overall length

DOUBLE AUDIO FADERS

These hat to ket，wo－
resaional recording atudio
nita are iueal for andin mita are deal for andior ignad minima，fadin wo bith $1,000+1,000$
hun wire－uound patallel tommection to give 500 ohn I mepentent tracks inted seate
mithinge，with red and blue control knobe Panel mownting 23．19．8，

LIMEAR THYRISTOR CONTROLLED LIGHT DIMMER－BRAND NEW High grade full
brinige circuit linear control light brightness． for controlling lighting ath
commutato itted to portable
 electluit hand drills．Fits bandard 2 in

AVO TRANSISTOR
 ANALYSER CT 446

a portable stirect－rewinar nistruncms capable of giving iccurate transisto contiguration．Batery prounded emitte to 10.5 V in 5 steps，Base current $0-1 \mathrm{~mA}$ ．
 151h．Price 442.10 .0 ．Carriage extra

RAPID HEAT SOURCE
 5 min cycles at $45 /$ ．Thnit Catu RD 29 in 3 min， 4 min cycles at $5 \$ /-$ ． 4 Cun RD Cum RD 55 and 5 min cycles at 75%－ 5 3 nin， 4 min cycles at $95 /-.8$ Cam MD 2 ming， 4 min cycles at 125／－．All plus

techilical training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Now available, Colour T.V. Servicing

Examination Students coached until successful NEW

SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

R.S.T. VALVE MAIL ORDER CO.

BLACKWOOD HALL, WELLFIELD RD., S.W. 16
SPECIAL EXPRESS MAIL ORDER SERVICE

1N21	3/6	28308	9/-	BCY54	7/3	GET116	6/-	OC20	20/-
1N21B	5/-	28501	5/-	BCY 60	191-	GET118		OC22	8/-
IN23	4/-	29703	12/6	BCY70	6J-	GET119	4/-	0 C 23	816
1N85	17/6	3N143	19/-	BCZ11	61-	GETl20	6/6	0 CL 4	9/-
1N263	101-	A13759	4/-	BD121	191-	GETS87	$8 / 6$	OC25	$7 / 6$
1N256	10/-	AA129	5/-	BD123	22/6	GET872 B	$6 /-$	OC26	6/-
1N645	31-	AAZ12	$3 / 6$	BD124	12/-	GET873	$31-$	OC28	$12 / 6$
1N725A	1/-	AAZ13	$3 /-$	BDY11	$5 / 6$	GET875	6/-	OC29	14/6
IN4007	4/6	AC107	5/6	BFI15	316	GET880	8/9	OC30	$81-$
18021	$4 /-$	AC128	4/-	BF117	10/-	GET882	${ }^{61}$	OC3b	$6 / 3$
18113	3/-	AC127	5/-	BF167	6/6	GET885	10/-	OC36	$8 / 6$
18130	2/6	AC128	$4 / 6$	BF 173	713	GEX35	4/6	0C38	10/3
18131	$2 / 6$	AC129	7/6	BF181	$61-$	GEX44	1/6	$0 \mathrm{OC4}$	4/6
2G220	12/6	AC187	11/-	BF184	7/6	GEX941	$41 /$	0 OC 2	$5 /-$
2 G 240	$3 / 6$	AC188	11/-	BF185	$61-$	GJ3M	$7 / 6$	0 C 43	$9 /-$
2 O 301	$3 / 6$	ACY17	4/6	BF194	$6 / 3$	GJ4M	7/6	$0 \mathrm{C44}$	1-
2G306	$8 /-$	ACY18	4/-	BF195	$5 / 6$	GJ5M	$7 / 6$	OC4,	$3 / 7$
29371 B	4 - -	ACY 19	b)-	BF196	$5 / 6$	HG1005	10/m	$0 \mathrm{OC46}$	$3 / \mathrm{L}$
$2 \mathrm{a381}$ A	4/6	ACY20	51-	BF197	516	MATl00	6/-	$0 \mathrm{OC58}$	$12 / 6$
20403	101-	ACY21	4/6	BFX12	$8 / 6$	MAT101	$8 / 3$	-C59	17/-
20414	6/-	ACY22	4/-	BFX13	5/6	MAT120	$5 / 9$	-	
2G417	6/-	ACY27	$51-$	BFX29	12/-	MAT121	61-	OC70	$1 /$
2 N 214	8/6	ACY28	4/-	BFX 30	$8 / 6$	MJ420	$221-$	OC71	3/-
2N404	61-	ACY39	12/6	BFX35	$19 / 6$	MJ4 ${ }^{\text {d }}$	221-	OC72	7/-
2N247	$9 / 6$	ACY40	4/-	BFX43	813	NKT128	$6 /-$	0 O 73	/3
2N697	4/-	ACY41	51-	BFX44	$8 / 3$	NKT129	6/7	OC74	$4 / 6$ $4 / 6$
2N698	4/6	ACY44	7/6	BFX68	13/-	NKT130	$5 / 3$	${ }^{0} \mathrm{OC75}$	4/6
2N706	3/-	AD140	$81-$	BFX68A	13/6	NKT21	$6 / 6$	${ }_{0}^{0 C 76}$	
2N706A	3/6	AD149	12/-	BFX85	10/-	NKT212	6/6	OC77	-
2N708	41-	AD150	15/-	BFX86	$9 / 6$	NKT213	$6 / 4$	${ }_{0}^{0} \mathrm{OC78D}$	$3 / 3$
2N709	$12 / 6$	AD161	$7 / 6$	BFX87	$9 / 6$ $5 /-$	NKT214	4/4	${ }_{0}^{0} \mathrm{C} 79$	$5 /-$
2N711	${ }^{7} 16$	AD162	${ }^{711} 10$	BFX 88	8/-	NKT215	4/6	-	1-
2N987	$10 / 6$	AF106	10/6	BFY20	12/-	NKT216	$6 / 4$	${ }_{0} 0 \mathrm{C8} 81 \mathrm{D}$	-
2N1080	$6 / 6$	AF114	$5 /-$	BFYEl	$8 / 6$	NKT217	$8 / 4$	0C81DM	-
2N1091	$6 / 6$	AF115	5/9	BFY24	$9 /-$	NKT218	22/6	OC81M	-
2N1131	$8 / 6$	AF116	$4 / 6$	BFY ${ }^{\text {B }}$	$9 / 6$	NKT219	6/6	0 CB 2	-
2N1132	$7 / 6$	AF117	4,6	BFY43	12/6	NKT221	$5 / 6$	$0 \mathrm{C82}$	--
2N1302	4/-	AF118	$12 /-$	BFY50	$51-$	NKT223	6/6	0 C 82	3/-
2N1303	$4 / 3$	AF119		BFY81	$6 /-$	NKT224	4/9	$0 \mathrm{C83}$	6
2N1304	$4 / 9$	A	$51-$	BFY53	5/6	NKT225	4/9	$0 \mathrm{C8} 4$	4/9
2N1305	B/-	AF125	51-	BFY77	12/-	NKT227	5/6	0 OCll 4	$7 / 6$
2N1306	b1-	AF126	$51-$	BFY90	12/6	NKT229	$8 / 9$	$0 \mathrm{OCl22}$	12/6
2N1307	81-	AF127	4/6	B8X27	10/-	NKT237	$7 / 9$	$\mathrm{OCl}^{\mathrm{O}} 23$	4/4
2N1308	$6 /-$	AF139	\%/6	B8X60	18/6	NKT238	B/9	0 C 139	7/6
2N1309	$6 /-$	AF	$12 / 6$	BSX61	12/-	NKT240	$6 / 6$	OC140	16
2N1420	$7 / 3$	AF1	11/-	BS	$3 / 6$	NKT241	$6 / 6$	1	$12 / 3$
2 N 1607	$5 / 6$	AF180	12/-	BSY ${ }^{\text {BSY }}$	4/-	NKT25	$4 / 9$	OC169	6 -
2N1526	7/6	AF181	$81-$	BSY 51	10/-	NKT261	4/6	OC170	$5 / 6$
2N1909	45/-	AF186	11/-	B8Y 78	9/3	NKT274	4/9	$0 \mathrm{Cl17}$	6/-
2N2147	16/6	AFY19	22/6	BSY79	9/3	NKT275	5/-	${ }_{0} \mathrm{Cl} 172$	71-
2N2148	12/-	AFZ11	$61-$	B4 882	10/-	NKT277	4/9	OC200	5/6
2N2160	14/-	AFZ12	6/6	B8Y 83	11/-	NKT403	$9 / 9$	OC201	$8 / 6$
2N2193	5/6	ASY26	$5 / 6$	BSY84	12/-	NKT404	12/6	OC202	$8 / 6$
2N2287	20/6	AS	7/6	BSY95A	3/6	NKT678	61-	0 C 203	6)-
2N2297	6/-	ASY28	$5 / 3$	BY 100	4/6	NKT713	$7 / 6$	OC204	5/6
2N2369A	5/-	ASY29	$5 /-$	BY213	5/-	NKT773	6/-	C205	9/-
2N2410	10/6	ASY 36	$5 / 6$	BYZ11	$5 /-$	NKT777	7/6	OC206	14/6
2N2411	6/6	A8Y50	$51 / 8$	BYZ115	7/6	NKT80113		0 C 207	7/6
2N2412	6/6	ASY51	7/6	BYZ12	6/-		20/-	0 C 450	6/-
2N2483	5/6	ASY53	4/9	BYZ14	27/6	0788	$7 / 6$	OC470	6/-
2N2484	7/6	ASY 55	4/9	BYZ15	17/6	OA5	$3 / 6$	OCP71	201-
2N2646	11/6	ASY55	-	BYZ1	$13 / 1 /$	OA10	$31-$	PS144	4/-
2N2696	613	ASY	6/6	${ }_{\text {C111 }}$		OA47	2/-	819 T	6j-
2N2865	12/-	$\mathrm{ABY}^{\text {A } 81}$	13/6	CRSS1/0	12/6	OA70	1/6	SAC40	5/-
2 N 2904	$7 / 6$	A8Z20	13/6	CRS	37.	OA71	$2 / \mathrm{L}$	SF'T308	7/6
2N2904A	$81-$	${ }_{\text {ASZ2 }}$	7/6		$37 / 6$ $67 / 6$	OA73	21-	SJO52F	7/6
2N2906 2N2907	$8 /-$	${ }^{\text {ASZ2F3 }}$	19/6	CS10B	$67 / 6$ $5 /-$	OA74 OA79	$4 /-$	ST722A	$5 /-$
2N2907 2N2926	7/6	AUY 10	19/6	CV253	201-	OA79 OA81	$1 / 6$	ST7231	12/6
2N2926	3/-	BC107	3/6	CV2154	32/6	OA85	1/6	SX68	4/-
2N3014	7/6	BC108	$3 / 6$	CV2155	32/6	OA86	4/-	SX68CH	4/6
2N3054	11.-	BC109	3/6	CV2279	10/6	OA90	1/6	SX631	7/6
2N3085	14/6	BC113	$6 / 3$	CV2903	4/6	0 OA91	1/6	SX631LC	10!-
2N3706	4/-	BCII 5	6/6	CV4073	$3 /-$	OA95	1/6	$8 \times 680 \mathrm{~T}$	4/-
2N3706	4/6	BC116	11/6	CV4074	$3 / 6$	OA200	2/-	sX634w	5 8/-
2N3707	4/-	BC118	6/6	CV7108	801-	OA202	2/-	8X753	15/-
2N 3708	4/-	BCl^{121}	4/-	CV7109	751-	OA210	6/6	SZ33C	121-
2N3709	4)-	$\mathrm{BCl}^{\text {B2 }}$	4/-	CV7183	301-	0 A211	101-	V15/10P	151-
2N3710	$4 /-$	BCl26	13/6	CV7312	101-	OAZ200	11/-	V15/30P	$151-$
2N3819	81-	BC126	13/-	CV7324	101-	OAZ201	10/-	V30/201P	$9 / 6$
2N3820	201-	BC	11/-	CV7341	61-	OAZ202	${ }^{7 / 6}$	XA122	$61-$
2N3823	17/-	$\underset{\text { BC147 }}{ }$	15/-	CV7347	${ }_{1216}$	OAZ203	$81-$	X A124	4/-
2N3900	10/6	BC147	4/9	C246	$12 / 6$	OAZ204	(8/-	XA142	$5 /-$
2N3900A	11/-	BC149	4/6	D246	$8 / 6$	OAZ208	10j-	- 4143	$81-$
2N5027	10/6	BC157	$41-$	DD007	815	OAZ210	$6 / 6$ $6 / 6$	X	$8 / 6$
2N6028	11/6	BC160	12/6	DD008	$7 / 6$	OAZ222	$9 / 6$	XB101	$8 / 6$
2N6307	7/6	BCY31	6/-	GD3	$6 / 6$	OAZ224	$9 / 6$	XB121	8/6
2N5308	7/6	BCY 32	$7 / 6$	GD4	$71-$	OAZ241	$7 / 6$	XK605	5/-
${ }_{2}{ }^{2} 56309$	$11 /$	BCY33	$51-$	GD5	6/6	OAZ242	416	XK518	$61-$
2 S 005	14/-	BCY 34	$51-$	QD6	6/-	OAZ246	4/6	22A882CR	51
28013	151-	BCY 38	$5 / 6$	GD8	51-	OAZ290	$91-$	ZR24	12/6
28013A	16/6	BCY 39	$7 /-$	GET102	$51-$	0 O 16	16/-	2832A	6/-
28301	12/6	BCY40	$7 / 6$	GET113	$51-$	0C16'T	16/6	ZT21	6/-
28304	9/-	BCY 42	3/-	GET114	4/-	OC19	8/6	ZT43	5/-

TRANSISTORS (POSTAGE, PACKING \& INSURANCE) I/3 PER ORDER
SEND S.A.E. FOR LIST OF 3,000 TYPESVALVES, TUBES AND TRANSISTORS

[^5]
METER CALIBRATION

Before going on to the testing of the unit, mention may be made on the types of meters used and their calibration. The meters may be any $1 \frac{1}{2}$ in to $2 \frac{1}{4}$ in moving coil type instruments, having either round or square faces.

While new meters may be obtained to cover the ranges quoted, these can be rather expensive. However, any moving coil instruments having a basic movement of $1-5 \mathrm{~mA}$ may be used, these being suitably calibrated using an external shunt for the ammeter and an external series resistor for the voltmeter.

The ammeter will have to read amperes and not milliamps, therefore the shunt will not only be of a very low resistance but will have to be of heavy gauge resistance wire (22 s.w.g.) to carry the current. As the accurate measurement of such a small shunt is somewhat impracticable for the average constructor, the shunt may be altered in length a small amount at a time, the calibration being checked each time by connecting a multirange testmeter in series with the meter under test.

The meters are calibrated using a scale to suit the particular scale divisions marked on the meter face, new numerals being marked by hand on the scale if necessary.

While calibrating one's own meters can involve extra work, a great saving in cost is made as such instruments can generally be picked up on the surplus market at a very modest price. The accuracy of the calibrated meters can be checked against a normal multirange meter, this being sufficiently accurate for this type of calibration.

SHUNT AND SERIES RESISTORS

Two examples for calculating shunt (R14) and series resistors (R13) are shown below, the equations holding
good for all types of moving coil meter. These resistors will only be needed if low rating meters are used.

Assume a 1 mA movement, scaled $0-1$ f.s.d. in 10 divisions, having a resistance of 50 ohms (meter resistance is normally marked or can be measured), is to be used for the voltmeter.

Rescale the dial $0-50$ volts f.s.d., each division now representing 5 volts.

Series Resistance $R_{13}=\left(\frac{V}{/ M_{1}}\right)-R M_{1}$
Where
$V=$ full scale voltage required (50)
$R_{\mathrm{M}_{1}}=$ meter resistance (50)
$I \mathrm{M}_{1}=$ Basic meter movement in amperes (0.001)

$$
R_{13}=\left(\frac{50}{0 \cdot 001}\right)-50=49,950 \mathrm{Ohms}
$$

say 50 kilohms.
Assume a 2 mA movement, scaled $0-2$ f.s.d. in 10 divisions, having a resistance of 30 ohms , is to be used for the ammeter.

Rescale the dial $0-1.5 \mathrm{~A}$ f.s.d., each division now representing 150 mA .

$$
\text { Shunt Resistance } R_{14}=\frac{R M_{2}}{n-1}
$$

where
$R_{\mathrm{M}_{2}}=$ meter resistance (30)
$n=$ ratio by which meter range is to be extended (1,500 to $2=750$ to 1).
$R_{14}=\frac{30}{750-1}=\frac{30}{749}=0.04 \mathrm{ohms}$

CHOKE

While the choke L1, may be bought commercially, a suitable alternative can be made very simply and much more cheaply. Any unwanted radio transformer or old I.f. choke having a core cross-sectional area of about one square inch is required. The existing winding is stripped off and the former rewound with 250 turns of 18 s.w.g. enamelled wire.

When restacking the core use a butt stack with $\frac{1}{6}$ in air gaps in outer and centre limbs (equivalent to flve thicknesses of writing paper). Using a $\operatorname{lin} \times 1$ in stalloy core with the winding quoted the inductance is approximately 50 mH ; the d.c. resistance is 0.6 ohm . These figures allow a good degree of smoothing to be achieved while at the same time maintaining a very low impedance.

TRANSFORMER

The transformer requires a little more attention. As suitable transformers may not be readily available on the market, a practical "do-it-yourself" method is therefore necessary.

An old mains transformer having a normal tapped primary winding for a.c. mains is used. As a total $V I$ (volts \times amps) rating of at least 75 is necessary, a stalloy core having a cross-sectional area of at least 1.6 square inches is required. Thus any core having

Fig. 6. Regulation curves of output voltage against load current

Table I: VOLTAGE CHECK

All d.c. voltoges shown are NEGATIVE and were measured with respect to the common POSITIVE line on a 20k』 per volt multi-meter under no lood conditions. Mains input 244 V on 250 V topping.

		D.C.
		OUTPUT
Secondary winding of TI	A.C.	TERMINALS
Tap 1	15.5 V	6.4 to 11.6 V
Tap 2	25.3 V	11 to 21 V
Tap 3	35.4 V	18.7 to 31 V
Tap 4	46.5 V	28.8 to 42 V

The following d.c. voltages were measured with voltoge selector on top 3 and VRI set to give 25 V d.c. output.

Junction of D2, D4, L1, C2	48 V
Emitter of TR1 (output)	25 V
Base of TR2	26 V
Emitter of TR4	5.3 V
Base of TR4	6.1 V
Base of TR3	6.6 V
Junction of R6, VR1	9 V
Junction of R10, VR1	5.4 V

TEST 1. OUTPUT NOT STABILISING OR INCORRECT

Check voltage across $C 3$ is correct. If stabilising is correct on only two ranges check R5 to RI2
and SI on appropriate ranges. If incorrect proceed to Test 2a. If voltage O.K. proceed to Test 2 b .

TEST 2. NO OUTPUT AT ALL

Check voltage across C3 is correct. If incorrect proceed as in (a) below. If correct proceed as in (b) below.
(a) incorrect voltage across C3

Check voltage across C2
Check voltage on TI secondary
Check FSI, SI, and mains supply
Check for short circuit across R2, R3, C1, C2. C3, C4, C5, C6, C7
Check for open circuit across DI, D2, D3, D4, LI Check voltage across D5 (4.7V)
(b) Correct voltoge across C3

Check TR1, TR2, R3, FS2, M2 are O.K.
Check for short circuit across MI, C6, C7, C5, C4
Check for open circuit across R3, R4, R5 to R12
Check TR3, TR4, VRI are O.K.
a centre limb core dimension of $1 \frac{1}{4}$ in $\times 1 \frac{1}{4}$ in or greater will be suitable. A larger core will require fewer turns per volt.

By using an old mains transformer with a normal primary winding, only the secondary need be rewound. Only about 300 turns are required; this can be done quite simply by hand. Having acquired a transformer with a suitable core size and primary winding, the outer secondary windings are stripped off, care being taken not to damage the inner primary winding or insulation.

The turns per voit could be calculated from the core area, but due to variations in magnetic properties between one core and another, a more accurate method is to wind on a test winding of 20 turns of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled wire, restack the core, connect the mains supply to the appropriate primary winding and measure the secondary voltage.

Handle the core laminations very carefully; they must not be scratched, bent, dented, or kinked, otherwise the electrical results will not be correct.

One side of each lamination should have an insulated coating which must not be scratched. This insulation reduces eddy current losses through the core. It is important to interleave each layer of laminations with the insulated surface facing one way only.

The clamp plates must be fitted carefully when all laminations are firmly fitted, and closed up by tapping the edge with a piece of wood.

This test winding will give an a.c. voltage which is best measured with a multimeter. From this the turns per volt figure can be calculated from the formula $n=\frac{20}{V_{\mathrm{t}}}$, where n is the turns per volt and V_{t} is the test winding voltage.

－Lind－AiR AUDIO

HI－TONE RECORDING TARE

BRITISH MADE TOP QUALITY

． 11001	3 in	LIP．	PVC	2951	5／6 P．\＆P．1／2	
J1002	3 in	T．P．	1＇oly	600 ft	10／6 P．${ }^{\text {d }} \mathrm{P}$ P／ $1 / 2$	
． 1003	Sin	L．P．	PVC	900ft	10／－P．\＆P． $1 / \mathrm{H}$	
J1004	bin	D．P．	Poly	I， 2001 t	16／－P．\＆P． $1 / 8$	
J1005	${ }^{5}$	L． 1.	PVC	1，200it	12／6 P．\＆P． $9 /-$	
J1006	$\square_{\text {or？}}^{\text {an }}$	D．P．	Poly	1，800ft	22／6 P．\＆P． $2 /-$	
J1007	7 Fin	M．P．	PVe	1，200it	12／6 P．N P．${ }^{2} / 6$	TOP 0＊NTH
， 11008	Tin	L．P．	PVC	1，800ft	17／6 P．\＆P．2／6	
J1009	7 in	D．I＇．	Poly	$2,400 \mathrm{ft}$ $3,600 f t$		
Ciin	ssett	（Lib	y	ed）	$8 / 6 \mathrm{P}$ 心号1－	Moder hated

DE－LUXE STEREO HEADPHONES With soft rubler earpieces．Imped－ nce 8－16ohme Ere． uency response 23 － $13,000 \mathrm{~Hz}$ ，With lead and stereo plug．
Only $59 / 6$ ．F． Only
soldering cun

Solveriess breadruard patuele，
able component comection
fange DeCs．One S－DeC will Luntrel Fanet，Jig amil Accessorims for solderle日s Projects in controls，etc．，with brooklet
 4．DeL Kit．Fon s．Det＇s witatuo Control paneln，Jigs and Accessories and the book et．＂Proicets on S －Dec＂all contane thed atrong ittractive plative case．Ideal for the professional user． $25,17.6$ ．

H1－EITURNTABLES

 001 With monotone 9TAllC＇ spercn eartr
KLitis
$£ 10.19 .6$
$£ 10.19 .8$ Base ath cover ior above．．
ALi2B
£15．19．6
£5．19．6
sL\％0？
NL95
401 ．
£24．19．6
228.7 .0

1．．．．．．．．．．．． 828.10 .0 P．st D．Decks，19 A8． 19.6 Deck／Base／Cover， $17 / 0$

SPECLAL OFFERS

SPOo Mk．II twith basc ．．．．．．．．． $\mathbf{x 1 4 . 1 0 . 0}$
 WTAHCD entridge ant hasc ．．．．． 815.15 .0 sunotone 9 TAHCD entridge P a P ． 150

18／19，25 \＆ 53 TOTTENHAM CT．ROAD，LONDON W． 1 Telephone：01－580 2255／4532／7679

All Mail Orders and corzegpondence to Dept． L4／11，Kirkman Houke，54e Tottenham Cour Road，Loadod，W．1．Te1：01－580 7041／2．

An attractive alternative for the enthusias prepared to assemble these excellent 24W lower Ampliller $89 / 6$（？requileul）． 30
 SIVCD Power supply Cnit £4．19．8．
SIRCLAIR PROJECT 60 Package de
Project to is supplied complele with instruction manual and templates fo winth mounting

SINCLAIR IC－10 INTEGRATED CIRCUIT 0.2 m ．A true bi－liamplifier complete with namual giving detalls of a wide range of applicat ions and instructions．（fuarantced ONLY 58， SPECLAL TRANSFORMER FOR OPERATING SINCLAIR IC－10 mains $230 / 250$
$16 / 6$ ．P ．

FOR
0 A ．

－STEREO EFFECT RIOIO
POWERFUL TRMSISIOR RLDO 15 ＊TWIN －POWERIMTO REAOPHONE WITH LERLIL ROOS
 SPEAKERS－OME IM EACH EARPIECE
programmes anywhere and anytinn Lightweight and comfortable to wear
Covers full uedinan wimend sengitive tuning coursotand．super－ volume contrul．Joleal for out ame

600 WATT LIGHT DIMMER SWITCH
 Lind－Air Price \＆4．10．0．

NEW from MULLARD UNILEX Audio Modules

Now you cin build your own stereo units exactly as you wan them，and entirely in your own home．
A good quality stereo amplifier can be built with no electrical knowledge
All solid state－Baxendall tone control circuit－no soldering

Everything you need to know about UNILEX SYSTEMS is in the Mullard，book＂Do it yourself stereo＇＂．Superb de－
signs，detailed
plans，simple instructions in non－technical language covering 4 systems in 4 price ranges
Send for your copy now 5／－ Post Free．
UNILEX Audio Modules
Amplifier
Module EP5000 62.18 .0 each
Pre Amplifier
Module EP9001 63.2 .0
Module EP9002 E4．12．0
Control Panel
Assembly and Escutcheon
Plate ©3．5．0
BUILD A STEREO AMPLIFIER FOR ONLY
£16．15．0 F．\＆P． $7 / 6$

[8II

 = BETTER QUALITY, SERVICE, PRICES \& LARGEST STOCKS

2N3819 7/-
BC108 $25+2 / 3 \quad 100$

2N4871

6/9

Motorola unijunction
$25+5 / 9100+4 / 9$

2N3055

$25+13 /-100+11 /-$
IRC 20
7/-

Rectifier thyristo
200 pir 1.2 amp (similar clobsi)

2N2926

BY 127

 lamp. (similar BYioo. tamp. (similar
SILICON RECTIFIERS

Amp Miniatu
ion Rectifiers.
P.I.V. $1-2425+100+500+$
$\begin{array}{lrllll}\text { IN4001 } & 50 & 1 / 6 & 1 / 4 & 1 / 2 & 1 /- \\ \text { IN } 4002 & 100 & 1 / 6 & 1 / 4 & 1 / 2 & 1 /- \\ \text { IN4003 } & 200 & 2 /- & 1 / 9 & 1 / 6 & 1 / 3\end{array}$
$\begin{array}{llllll}\text { IN } 4003 & 200 & 2 /- & 1 / 9 & 1 / 6 & 1 / 3 \\ \text { IN } 4004 & 400 & 2 /- & 1 / 9 & 1 / 6 & 1 / 3 \\ \text { IN } 4005 & 600 & 2 / 6 & 2 /- & 1 / 9 & 1 / 6\end{array}$ $\begin{array}{lllll}\text { IN4006 } & 800 & 3 /- & 2 / 10 & 2 / 6 \\ \text { IN } 4007 & 2 / 3 \\ \text { IN } & \text { N } & \text { 2/- } & 3 / 3 & 2 / 9 \\ 2 / 6\end{array}$

In the event of any iN 4000 series going temporarily out of stock we voltage types at no extra charge. 10004 and over prices on application.

NEWS NEWS NEWS NEWS

L.S.T. Electronic Components Limited are proud to announce their official appointment by Newmarket Transistors Ltd. - All Newmarket products now available at Industrial User prices. All R.C.A. Semi-conductors and Industrial User prices. Many Mullard, General Electric, Texas types also ex stock at L.S.T. at Industrial User prices and better. Iskra resistors, Mullard Capacitors, Veroboard. Repanco colls and other misc. components Centre stockists.

INTEGRATED CIRCUITS
Some R.C.A. Linear Types

Application Notes for each individual 2/6d. per copy.
PA234 GEIC I Watt Amplifier
PA237 GE IC 2 Watt Amplifier
$\begin{array}{ll}\text { PA246 } & \text { GEIC S Watt Amplifier } \\ \text { PA424 } & \text { GE IC Zero Voltage Switeh }\end{array}$
SL403A Plessey 3 Wate Amplifier
SL702C Plessey Linear
TAA293 Mullard General Purpose Amplifier
TAA 310 Record Playback Amplifier
TAA320 MOS LF Amplifier
TADI00 Mullard IC Receiver
3N84
GE Silicon Controlled Switch.
$37 / 6$
$52 / 6$

[^6]Now calculate the number of turns for each voltage tapping required fron $n \cdot V$, where V is the secondary voltage. For example, if $n=5 \cdot 6$, the number of turns for each tapping will be $16 ; 5 \cdot 6,10 \times 5 \cdot 6$, 10×5.6, and 12×5.6.
An allowance for voltage drop on load should be added, so 5 per cent should be added to these figires giving for $n=5 \cdot 6$:

(a) 0 to 16 V,	$16,5 \cdot 8 \approx 94$ turns
(b) 16 to 26 V,	$10 \times 5.88 \simeq 59$ turns
(c) 26 to 36 V,	$10 \times 5.88 \simeq 59$ turns
(d) 36 to 48 V,	$12 \times 5.88 \simeq 71$ turns

The total secondary winding in this case would have 283 turns.
The tapping points should have very thin flexible p.v.c. covered wire soldered to the winding after a small part of the enamel is removed with very fine emery paper. This joint must be insulated with plain non-adhesive tape. Some types of adhesive tape are not suitable as the enamel tends to be removed after a period of time.

When the secondary winding is completed a layer of insulating material, such as "Empire Tape" or thin p.v.c. sheet is wrapped round the winding, covered the full width of the winding.

Mains transformers have a tendency to produce "buzzing" unless the windings are impregnated with wax. Ideally the whole bobbin with windings should be immersed in a bath of hot beeswax or paraffin wax for ten minutes. Alternatively the wax can be melted and allowed to flow into the winding through crevices in the side cheeks of bobbin.

The laminated core and clamp can then be reassembled as outlined earlier. The whole transformer is tested before fitting to the power unit chassis; make sure that there are no short circuits between the windings and the laminations.

TESTING AND SETTING UP

Before connecting the completed unit to the mains supply, the wiring should be carefully checked, particularly diode, transistor and capacitor polarity. Before switching on, set S2 to position I and VR1 to about mid-position.

Immediately the unit is switched on the voltmeter should indicate an output about midway between 6 and 12 volts. Vary VR1 from minimum to maximum and ensure that the range covered is approximately 6 to 12 volts

Next set S 2 to positions 2, 3 and 4 in turn and check that VR1 gives the correct spread of voltage in each case. A complete list of the voltage ranges covered, together with a list of various voltage levels throughout the circuit is given in the display Table I.

Should it be found that one or more ranges do not quite track (though about one volt overlap at each end was allowed for) the particular range or ranges in question can be simply brought into line by a slight adjustment of the appropriate resistor in the R5-R12 network. Reducing resistors R5-R8 lowers the voltage range while reducing resistors $\mathrm{R} 9-\mathrm{R} 12$ increases the voltage range.

Connect a dummy load of about 20 ohms across the output terminals with S 2 set to position I and VRI set to give mid-range output close S3 and check that the voltage shows no perceptible difference. A suitable load would be a 10 watt resistor.

To prevent overheating the dummy load, leave S3 closed just long enough to check the output levels.

Using suitable load resistors of different value, the other three ranges can be checked if required. In each case there should be negligible change in output voltage for loads up to 1 A . See regulation curves in Fig. 6. The load current should be shown on meter M2. .

As may be seen from the regulation curves figures are given for loads up to 2 A . The author has found in practice that overloads of up to 4 A resulted in no more damage than a blown fuse and that an overload of almost 2 A for a short period resulted in no damage.

If the unit is to be run for long periods at near full load ratings it is advisable to ensure that the louvres on the sides of the cabinet are not blocked by closely situated apparatus or walls.

CHANGING RANGES

It is advisable if changing ranges at near full load current to switch S3 off while S2 is altered. This prevents heavy surge currents being made through S2 contacts when switching transformer taps. While the switch contacts will carry the normal steady current, repeated changes of range, with heavy currents flowing, could burn S2 contacts.

Having satisfactorily completed the above tests the unit can be mounted in its cabinet and is ready for use.

The complete power unit with good stabilisation factor, low ripple value, wide range of outputs and portable size, make an extremely useful addition to any test bench or workshop where it should give long trouble free service.

Although the initial outlay is somewhat higher than for a straightforward power supply, versatility and reliability always cost a. little extra, though over a period of time generally repay that extra cost may times over.

NEWS BRIEFS

Radiocom 70

NEw dates for this year's International Radio Engineering and Communications Exhibition meant few school parties attended and hence less attention to the stands of the various exhibitors, taking part primarily to attract recruits, resulted. Interest among amateurs was as high as ever and faces were put to many call signs in the bar.

Although this exhibition is popular we were very surprised to find so few home constructed equipments on display, particularly as there is now more interest in home construction than ever before; surely the R.S.G.B. members can do better than a handful of units, even if the standard is high. In this we echo the feelings of the R.S.G.B. who must have felt a little red faced at the response.

Practical Electronics shared a modern design stand with Practical Wireless and Practical Television; equipment described in past, present and future issues were displayed. The P.E. Marksman attracted much attention from young and old alike. Other equipment on display on our stand included a process timer, a boat speed indicator and a multi-function logic circuit using integrated circuits all these items will be described in future issues.

Last year this magazine suggested that the R.S.G.B. exhibition "needs progressive thought in its design" this is still apparent and we are sure that much can still be done to promote communications in general by the R.S.G.B. through this exhibition. Both the R.S.G.B. and its members have a right to feel proud of their exhibition but we feel that they are capable of even greater things-why not more demonstrations and lectures such as those arranged for the VHF-UHF Convention.

PART FIVE-By R. W. COLES TRANSISTOR TRANSISTOR LOGIC

THis article deals with the third of the major logic families mentioned at the beginning of the series, although the explosive growth of this section of integrated circuit technology has promoted two other families to the status of "major".

Transistor Transistor Logic, usually written TTL or $\mathrm{T}^{2} \mathrm{~L}$, is undoubtedly the most important, and certainly the most popular of all the i.c. logic families available. It combines a number of advantages, including high speed, high fan-out, and the flexibility afforded by the large variety of logic "building-bricks "of which the family is made up.

Flexibility is in fact the key word describing this versatile logic form, as it is also available in the form of medium scale integration (MSI). Instead of having a single package containing, for instance, one bistable, it is possible to obtain a complete four bit counter, or eight-bit shift register, in the same space. This last section of the TTL family is expanding very rapidly; some of the circuits available will be described later.

As we have considered the other two families in depth, in this section the performance details of TTL will only be dealt with briefly, as by now the interested reader will no doubt be familiar with the meaning of terms such as fan-out and noise immunity, and the space gained in this way will be used to discuss the design of counters, shift registers and other circuits. using TTL.

BASIC TTL GATES

The basic gate used in this family can take one of the two forms shown in Fig. 5.1; the principle of operation is the same in both cases, the difference being in speed of operation and power dissipation.
The most obvious characteristics of these gates are the unusual multi-emitter input transistor, and the "totem-pole" or "quasi-complementary" output stage, both of which would be most unusual in a discrete com-
ponent logic gate, where the number of components employed would be prohibitive on cost grounds.

Fig. 5.la shows the original type of TTL circuit to be developed and is often referred to as the "Phoenix gate".

This is the fastest gate of the two types, propagation delay being in the region of only 7 ns . It has a slightly higher power dissipation than the circuit in Fig. 5.1b, which is a developed version, produced by Texas Instruments, usually described as series 54 or 74 . This second type is probably the most popular, in spite of its propagation delay of around 13 ns .
As far as this article is concerned, these two circuits may be considered identical in use and, although it is seldom acknowledged by the irrespective manufacturers, they are compatible with one another, and may be mixed in a system.
The fan-out recommended for both is a maximum of ten loads, or gate inputs, which is a significart increase over the drive capability of RTL or DTL. Logic implementation is, therefore, made easier when the paper design is turned into hardware.
The noise immunity of both types is also good, and is quoted as being typically IV, with an absolute minimum of 400 mV guaranteed under the worst conditions likely to be encountered. The logic levels encountered in a system using either of these gates are identical, the maximum low level output being 400 mV , and the minimum high level output being $2 \cdot 4 \mathrm{~V}$.

Fig. 5.la, "Pheonix": TTL gate circuit. Note the two emitters on the input transistor

Fig. 5.lb. Series 54/74 gate by Texas Instruments

COMPLEA STEREO SHETEM

PREMLER STEREOSSSTEM "ONE" Consists of an dil transistor stereo amplifier. Garrard 2025 T/C auto/manual record player muit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systens. Absolutely complete and supplied ready to plug in and play. The 10 transistor amplifier has an output of 5watts per channel with inputs for pick-up, tape and tumer also tape output socket. Controls Bass, Treble, Volume, Balance, Selector. Power on/off, stereo/mono switch. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12 \times 5 \frac{1}{2} \times 3$ bin. high (Amplifie

PREMIER STEREO SYSTEM "TWO"

At systeran ' O OEE" "hove hut with

prepier
$\underset{\text { PRICE }}{\text { PREMER }} 45$ Gns

AURIGA 8 WAVEBAND TELETON SAQ203E STEREO AMPLIFIER
TRANSISTOR PORTABLE

 premier price 15 Gns.

III-FI STEIREO HE \triangle DPHONES Designed to the bighest possible standard. Fitted c'in. speaker uvits with
soit paddel far muffs. soit badilel ear muffs. Adpustable hearlmum pohm whtedince: Com-
plete with fit. leall ani $49 / 6$ P. 49/6
$\begin{aligned} & \text { MONO HEADPHONES :000 hhm } 14 / 6 \mathrm{P} \text {. \& } P \text {, } 2 / 6 . \\ & \text { STEREOSTETHOSCO }\end{aligned}$
$\begin{aligned} & \text { STEREOSTETHOSCOPF } \mathrm{FET} \text { Low imp. } 25 \\ & \text { MONO STFTHOACOPE SET LOw imp }\end{aligned}$

SPECIAL OFFER!

Garrard SPRS Mk. II Single Record Player. Fitted Goldring 850 Magnetic Stereo Cartridge. Complete in Teak Plinth with Rigid Perspex Cover Tutal list Price over \&: 4
PREMIER 18 GMS PRICE

"VERITONE" RECORDING TAPE
SPECIALLY MAKURACTURED IN USSA, FROM EXTRA STRONG PRE-SIRETCHED MATERIAL THE QUALITY IS UNEQUALLED TEKslLISED to enaure the nost permanent basc. Highly resistant to breakage, moisture, heat, cold or hunidity. High polished splice free finish. Smooth

 $\begin{array}{llllllll}\text { LP5 } & 5^{*} & 900^{\circ} & \text { P.V.C. } & 10 & \text { LP7 } & 1800^{\prime} & \text { P.V.C. } \\ \text { DT5 } & 5^{\circ} & 1200^{\circ} & 12 \\ \text { POLYESTER } & 15 & \text { DT7 } & 2400^{\prime} & \text { POLYESTER } & 25\end{array}$

Amanl but paserful thmplifier designesi ful stereo hi-
 Auxiliars. Tape Record output. Controls: Volmae. Balance, Bass, Treble, stereo/Mono slide switch. Steres headphone socket. Attractive oiled walnut cabinet with brushed aluminium front pariel. Liot Price $\mathbf{2 8 . 7 . 0}$. $\underset{\text { PREME }}{\text { PRER }} 22$ Gns.

PREMIER STEREO SYSTEM "FOUR"

Teleton SAQ203E Amplifer (as above)

M3D

Teak base and cove
Pair of Hi-Fi Enclosures atted E.M.I.
speakerí

Total cost if purchased separately
$\underset{\substack{\text { PREMIER } \\ \text { paICE }}}{ } 65$ GNS.

VERITAS V-149 MIXER

Battery operated 4 -channei audia mixer movidirg fou nepicrophone, low imperance wicrophone wilh transformer. radio, tape, ete. Max, input 1.5V, thax. output $\pm 5 \mathrm{~V}$, ghiti
biB. Ktandaril jack plus socket inputs. phomoplug output. Attractive phomoplugs grain fluigh ease Mono 5
Yono $59 / 6$
stereo
Hodel
2 69/6

Tmo gtation TRANSIETOR
MTERCOMS. Complete with battery wite. Compact size, two weny call systcm. Ideal fo home, office, factore, et $65 /-\mathrm{P}: \mathrm{P}$

E.M.I. $13 \times$ in. HI-FI SPEAKERS

Fitted two 2ifin tweeter

 79/6

Er

*WELLER
mives lime and amplifies solderimy
in the home in the home and service soldering dual heat $100 / 140$ wiat. gives instant 67/6
"Weliar Marksmen" Soldering tron Likhtweight, percil bit. $\mathbf{2 5}$

POCKET SIZE MOLTI-TESTER With uide angle
 4 -itching, tough impact resisting case Hrjching, tough impact resisting case
Henaitivity 20,000 whme/voit D.C 10,000 ohins voit A. 19 Ranges: $0-\frac{5}{5}-25-20-250-500-2500$ volte D.C. $0-10-50-100-500-1000$ volts A.C. $0-50 \mu \mathrm{~A}-2.5 \mathrm{~mA}-250 \mathrm{~mA}$ D.C. 0 fi000 ohma-6 megohme, 10μ ui-0 001 mfd-1 $m f d . ~-30 ~ t o ~$
battery, tent lead and instructions battery, tent lead and instructions
£4.19.6

MIDLAND CASSETTE TAPE

 RECORDER12.115
tolial state iucur-
por it it ing

pianokey coutrois
or trouble-free
rack recording. 1uputs for mike and and. Earphone los in. Somplete ${ }^{u \text {-ith }}$ hat teries and earpiece. Size PREMER
EXCLUSVE:
£/6.10.0

TAPE CASSETTES

 CI $20\binom{120}{$ minin } $17 / 6_{51 / 2}^{3 \text { sion }}$

All cassettes can be supplied with library cases at do extra each

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

 l'uab-inull output ueing 600 Mw tope tratusiators. Socket for car aerial. Tape record socket. Selectivity switch. Switchell earpuece socket complete with earpiece for private listeniug. 8 transigturs pus 3 diodes. Fimmous make 7 tin apeaker. Air spaced galnged tuning condenser. On/uff suitch wolume control. Wive change switch and tuning eont rol. Attractive case int rich chestnut
 make the
with partos

roamer seven

 mk IVfully TINABLE WAN BaNDS-M.W. , M.W.B. L.W., Band Extra Medium waveband provides easier tuniug of Radio Luxembourg, etc. Built in ferilte rod acrial for Mediunt und Long Waves. Retractable \& section 24 im chrome plated telescopie aprial for
neak short Wave liatening. Nocket feak short Wave listening, socket
 for Car Aerial. Powertul push pull output, ithinistor
? tin P.M. вpeaker. Air spaced ganged tuning condenger. Volumelon/off eontrol wave change switches and tuning control. Attractive case with carrying hundle. Size

Total building costs

ค5.196
 P. \& P. Perbonal Earpiece with switchell socket 7/6 for private listening, b!- extral.

pocket five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND
PORTABLE
WITH SPEAKER
 with extended M.W. banil ferr papier tuning of Luxembourg, ette; stages of trambiotars and ? dioles, supergeusitive fertite rod derial, fine tole moving coil gpeaker. Easy

IMPROVED MODEL!

roamer six

SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER
Attractive black case with sed grille and cream knobs the dial polished brass ingerts. Size 9×5 d win. approx. Tunable on Medium and Long Waves,
two Short Wave日, Trawler Band plus an extra M.W. two short Wavee, Trawler Band plus an estra M. W.
band for easier tuning of Luxembourg, etc. Sensitive band for easier tuning of Luxembourg, ctc. Sensitive
ferrite rod aerial and latest teleacopic azerial for ferrite rod aerial and latest telegcopic aerial for

Total building costs $44 / 8 \begin{array}{cc}\text { P. \& } P \\ 3 / 6\end{array}$

Sbort Waves. Improverl circuit. 8 stage8-
sistors and 2 diodes including Micro-Alloy R.F. sistors and ${ }^{\text {Pransistors, etc. (Carryins strap } 2 / 6 \text { extra). Easy }}$ buid plans amd parts price list 2/- (FREE with I:arts)

NEW!

transeight
SIX WAVEBAND PORTABLE WITH 3 in. SPEAKER
Attractive case in black with red grille and cream knobs and
 approx. Tunable on Medium and lang
Wave日, 3 Short Waves and Trawler Band,
Sensitive ferrite rod aerial for M.W. and L. W. Telescopic aerial for whort Wives. 8 improved type tranaistors plus 3 diosles. Push-pull outpit. Battery ecolomiser price list and cany build plana 5 - (FRES with patta)

Total building costs

transona five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND
PORTABLE
WITH SPEAKER

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
l enclose £please send items marked ROAMER EIGHT \square ROAMER SEVEN TRANSEIGHT \square POCKET FIVE TRANSONA FIVE ROAMER SIX
Parts price list and plans for

Name

Address

PE 23

It follows, therefore, that there is no need to examine each gate and its uses separately. After a mention of the circuit operation of the Phoenix gate, the 54/74 gate will be used to illustrate systems design.

GATE OPERATION

The operation of both gate circuits is best understood by treating the logic performing input circuit and the output drive circuit separately.

The input circuit looks a little strange at first sight, but its operation is quite simple and is similar to that of the DTL gate, the two being compared in Fig. 5.2. By simplifying the gate input circuits into p-type and n-type semiconductor blocks, the TTL and DTL examples are shown to be identical.

However, it is important to note that the regions of semiconductor material in the TTL example are joined by semiconductor junctions, not by an interconnection. This npn block exhibits current gain, which is the important difference between the two. and the reason for the superiority of the TTL circuit.
When the current through R1 in Fig. 5.2b is sunk by either emitter el or e2, through the output stage of a further gate, the collector potential of TRI drops rapidly to its saturated state, and effectively pulls the stored base charge out of TR2, causing it to switch off very quickly.
In the circuit in Fig. 5.2a, the diodes switch in a passive manner and so the gate operation is slower. When the inputs to either circuit are high, the operation of both is exactly the same; RI and D3 provide a current path to the base of TR2 in Fig. 5.2a, and RI and the base collector diode of TRI provide a similar path in Fig. 5.2b.
The operation of the rest of the TTL gate circuit is quite straightforward and will be described by reference to Fig. 5.3. The totem-pole output stage behaves in a manner not unlike that of the push-pull amplifier circuit. Transistor TR2 in both gate circuits acts as a "phase-splitter", and ensures that when TR 3 is turned on, TR4 will be turned off, and vice versa. The upper transistor TR 3 behaves as an emitter follower and TR 4 behaves as a common-emitter switch.

The difference between the two gates can now be readily seen, in the "Phoenix" type TR3 is made up

Fig. 5.2a. Input of a typical DTL gate with equivalent junction arrangements

Fig. 5.2b. Input of a typical TTL gate with equivalent junction arrangements
from two transistors TR3a and TR3b connected as a Darlington pair, or compound emitter follower. In the $54 / 74$ type, the upper transistor is a single emitter follower with a diode D1 in its emitter lead.

OPERATION STATES

To understand why either a double emitter follower, or a single emitter follower plus diode, must be used and not just a single transistor, it is necessary to look at the circuits in one of the two operating states, and consider the effect of transistor saturation voltages and base emitter voltages when they add or subtract to define output levels.

The transistors are all silicon $n p n$ devices of course; their $V_{\text {be }}$ and $V_{\text {ceisat }}$ will resemble the characteristics of discrete transistors of the same type, i.e. their $V_{\text {be }}$ will be typically $600 \mathrm{~m} V$, and their $V_{\text {ce(sat) }}$ will be about 100 mV . The diode in the $54 / 74$ gate behaves as a base-emitter junction, and will have a forward voltage drop of 600 mV .

For the output of the gates to be in the low level state, TR4 and TR2 (Fig. 5.3a and 5.3b) must be conducting, so the minimum voltage on the base of TR2 to achieve this will be twice $V_{\text {be }}$ or $1 \cdot 2 \mathrm{~V}$.

When TR2 is conducting, its collector voltage will be 100 mV above its emitter potential, or 700 mV . This would be sufficient to turn on a single emitter follower in the TR3 position, because its emitter potential would be taken to only 100 mV when TR $3 / 4$ is on.
As it is essential that this should not occur. it is arranged that the voltage necessary to turn on TR3a and TR3b is much more than the $V_{\text {be }}$ of a single transistor, hence the extra transistor in the Phoenix gate and the diode in the $54 / 74$ gate. Both of these add 600 mV to the voltage required to turn on TR3 in each circuit.

Fig. 5.3a. Simplified output stages of the "Phoenix" gate

Fig. 5.3b. Simplified output stages of the $54 / 74$ gate

Fig. 5.4. Positive lagic NOR gate circuit and symbol

Fig. 5.5a. ANE/OR INVERT gate circuit and symbol

Fig. 5.5b. AND/OR INVERT gate used to load data from one of two sources into a shift register

Fig. 5.5c. Equivalence gete and truth iable.

Fig. 5.5d. Halī adder; adds two binary numbers but does not praduce a carry output

Fig. 5.6. AND/OR INVERT gate with expander input and circuit symbol

Fig. 5.7. Logic diagram of two gates connected in the wired-OR configuration with circuit symbol. The logic performed is the same as that of an AND/ OR INVERT gate

FASTER OPERATION

The advantage of this form of gate output is its faster operation than in the DTL type when the output is rising; instead of a resistor setting the high level output impedance, an emitter follower is used. The resulting decrease of output impedance allows any capacitive load on the output (which must be charged before the output level can rise) to charge very rapidly.
There are disadvantages as well: the maximum high level output voltage will be at least IV less than the V_{Cc} voltage due to the drop incurred in the emitter follower circuit, although this need not worry us.

Because transistors turn off more slowly than they turn on, there will be a very short period during the transition from one state to another, when both output transistors are conducting, and a current limited only by the load R_{1}, will flow from $V_{\text {ce }}$ to ground. This current spike, which only lasts for a few nanoseconds, can cause noise problems and affect other gates if the $V_{\text {CC }}$ line is not properly decoupled; it also causes the power dissipation to rise with input frequency

CIRCUIT FUNCTIONS

Armed with an understanding of the basic TTL gate circuitry, we can turn to the interesting subject of circuit elements available in the $54 / 74$ range. As

MONO TRANSISTOR AMPLIFIER (1 aural ampilifier mance characteristics to suit the most dis-
criminating liscriminating lis-
tener. 6 transistor circuit
mithintegratel Withintegratel
preamplifier peampli
assembled special printel sub panel.
AD15j-1D1fi symmetrical complementat
pair. Output trop
 wave liridge rectitier jower supply for ach mains $200-$
240 tontrols hass, trelje
 strongly constructed on rigid steel chassis be HSL. 700 is strongly constructed on rigio stcel chas benze hammer

PL2- $110 \mathrm{~m} / \mathrm{s}, 5 \mathrm{i}$ meg input impedance. Tape $-110 \mathrm{~m} / \mathrm{v}, 1$ meg input impedance Radio- $110 \mathrm{~m} / \mathrm{s}, 1 \mathrm{meg}$ input impedance
Output power measured at $1 \mathrm{Kc}-6.2$ watts RMS into 3 ohms, 5.8 watta RMS into 10 ohm. Overall frequency response $30 \mathrm{c} / \mathrm{s}-18 \mathrm{kc} / \mathrm{s}:$ Continuonsly variable tone controls: Bass, $+8 d b$ to -12 lb at Inthe's. Treble, +10 db to -10 db at loKefs.
The HsL. 00 has bect
The HSL. 700 has becn designed for true ligis lidelity reproduction from radio tuner, granophone deck ankl tape
recorder preamp. Supplied ready built and tegteil, connrecorder preamp. Supplied ready built and tested, comescutcheon panel, lons spindles (can be cut to suit your housing requirementa) full circuit diagrant anm operating instructione.

LODDSPEAKER BARGAINS

3 in 4 obm $10-$ P. \& P. $/ 6$. Sin 3 ohni 18/-, P. \& P. 3 P. $4 \ln 3$ ohm $21 /=$, P $A \cdot 4 /-10 \because 6 i n 3$ or 150 ohm $35 /-$ 28/-, P. \& P. 4/-. E.M.I. $13 \frac{1}{5}$. 8 in 3 ohm with high Gux ceramic naguet $42 /-$, (15 ohm $45 /-)$, P. \& P. $6 /-$. E.M.I. 13×8 in, 3 or 15 ohm with two inbuitt tweetert and crossover net work 4 gns, P. \& P.
BRAMD NEW. $12 \mathrm{in} 15 w$ H/D Speakers, 3 or 15 ohm. Current production by well-known British maker, Now
 1.M.I. 8jin HEAVY DUTY TWEETERS. Powertu ceramic magnet. A vailable fn 3.8 or $150 \mathrm{hm} 18 / 6$ each. P. \& P. $\% / 6$.

1Rin "RA" TWIN CONE LOUDSPEAKER 10 watts peak handing. 3 or 15 nhm, $37 / 6$, P.
35 OHM SPEAKERS. 3 in $14 / \mathrm{F}, \mathrm{S}$ P. $2 / 6$.
MAGNA YOX DESE TYPE MOVING COIL MICROPHONE, Medium impedance. Brand New - special Price 48%
GINGLE HEADPHONE.
Approx. 200 olim. $5 /-$
BALANCED ARMATURE EARPHONE
Approx. 70 ohmimpedance crin be wed ak ult at helikitive
mike or speaker. ONLI 3,6 , P. \& P. I'6
ORYGTAL MIEES. High imp, for deb or hand use.
HIgh Eensitivity, 18/6. I. \& P. J/G. HIGH IMPEDANCE CRYSTAL STICK MIKES, OII PRICE R1/\%. P. \& P. 1/6.
HIGH IMPEDANCE DYMAMIC STICE MIKES, High Beneltivity, 30/6. P. \& P. 2/6.
BPECIAL OFEER! PLESSEY TYPE 2θ TWIN TUNING GAMG. $400 \mathrm{pF}-140 \mathrm{pF}$. Fited with trimmera and

HONETWELL MICROSWITCHES S/P, C/O. Push-button

TELEBCOPIC AERIALS WITH SWIVEL JOINT. Can be mgled and rotated in any direction. © section Lacquered
Braes. Extends from 0° to apmrox.

BRAND NEW MULTI-RATIO MAINS TRANSFORMERS,
 dary combinations: $0 \cdot 5-10-15-20-2 \mathrm{e}-30-35-40-60 \mathrm{~V}$ half
कave at 1 amp or $10 \cdot 0 \cdot 10, \div 0-0 \cdot 20,30-0-30 \mathrm{~V}$, at 2 amps
 P. \& P. $6 /$

MAIRS TRANSFORMER, For thalsistur power supplies.

Pri. 200/240v. Sec. 12-0-12 at 1 armp. 17/6. P. \& P. 2/t.
Pri. 200/240v. Sec. $10-0-10$ at 2 amp. 2\%.6. P. \& 1 . $3 / t \mathrm{t}$.

BATTERY CHARGER TRANSFORMERS. $200,2400^{\circ}$

HIGH GRADE COPPER LAMINATE BOARD\$
Open 9.5 .30 Monday
to Saturday
Early closing Wed. 1 p.m.
Tube Station

- STockists of simclair equipment SPECIAL OFFER ! ! BI-FII LODDSPEAEER Beautifully made teak finish enclosure with mott stiractive Tygan-Uyair front. Size 161^{*} high $\times 101^{*}$
 crossover. Power handling 10 watts. 8 G ${ }^{2}$. Available 3 or 15 ohm impedance. 8 GMS. $10 /$ Also available in 8 ohm with EMI $13^{\prime \prime} \times 8^{\prime \prime}$ bass
speaker with parasitic tweeter $£ 8.10 .0^{\text {Carr. }} 10 /-$

TRANSISTOR STEREO $8+8$ MK II Now wing Silicon Transistorg in first five stages on each
ctannel resulting in even lower toise level with improrend sensitivity. A really first-class $\mathbf{H j}$-Fi Stereo Amplifier Kit Uses 14 transistory giving 8 watts push pull out put per channel (16W mono). Integrated pre-anip. With Bass
Treble and rolume controls. Treble ind Yolume controls. Suitable for use with Ceranie or Cryatal cartridgcs. Output atage for any speakers from 3 to $1 \bar{o}$ ohms. Compact design, all parte
aupplied including drilled metal work. Cir-k it aupplied including drifled metal work. Cir-kit board uo extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of Brief specification: Freq. response $\pm 3 \mathrm{~d}$ B. $20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 lB . Treble cut approx. to -16 dB . Negative feedback 18 dB over mam amp. Power requirements $2 \overline{5 V}$ at 0.0 amp.
PRICES: AMPLIFIER KIT 210.10 .0 ; POWER PACK KIT 83.00 ; CABINET 83.0 .0 . All Post Free.
Also available STEREO $10+10$. As above but 10 watts per chaunel. PRICES: AMPLIFIER KIT \&12. POWER Circuit diagram.
with kit) $1 / 6$. (S.L.E.).
GENERAL PURPOSE HIGH STABILITY TRANGISTOR PRE-AMPLLEIER. For P.U. Trpe, Mike, Guitar, etc., and suitable for use with valie or
transistor equipment. $9-18 \mathrm{~V}$. Battery or from $\mathrm{H} . \mathrm{T}$. line $200 / 300 V$. Frequeney response $15 \mathrm{H}_{z}-25 \mathrm{KEz}$. Gain 26 dB . Solid encapsulation size $1 \frac{1}{2} \times 1 \times 5 i n$. Brand new - complete with instructions, Price
$17 / 6$. P. \& P, $2 / 6$.

SPECIAL PURCHASE: E.M.I. 4-SPEED PLAYER Heary 8 in. metal turntable. Low fintter performance $200 /$
$\mathbf{2 5 0}$ shaded motor 190 tap). Complete with latest type lightweight piek-up arm and mono catridge \%ith t/o
stylii for LP/Z8. ONLY styli for LP/78. ONLY
68/-. P. \& P. $/ 6.6$
BRAND NEW E,M.I. LIGHTWEIGHT PICE-UP ARM WITH ARM REST (as above). Fitted mono $t / 0$ stylus
and cartridge for $\mathrm{IP} / 78$, ONLY $20 / \mathrm{P}, \& \mathrm{P}, 1 / 6$.
QUALITY RECORD PLAYER AMPLIFIER MK II A top-quality record player amplifier employing heary and rectifiel. Separate Basa, Treble and Volume controls. Complete with output transformer matched for 3 ohm speaker. Size 7in. $\pi . \approx 3 \mathrm{~d} . \because 6 \mathrm{~h}$. Ready built and tested. PRICE 75,- P. \& P. 6\%, ALSO AVAILABLE, mounted on board with output transformer and speaker ready to fit into cabinet below. PRICE 97/6, P. \& P. T/6, DE LDXE QDALITY PORTABLE R/P CABINET MK II Incut motor hoard size $14!$: 12 in., clearance 2 in. below, Gin. above. Will take above amplifier and any B.S.R. or GARRARD chnnger or Single Player (cxcept ATG0 ant
$: \$ P 25)$. $\mathrm{Fize} 18 \times 15 \times 8$ in. IPICE 79/6. P. \& P, $9 / \mathrm{G}$,

10/14 WATT HI-FI

 AMPLIFIER KIT A stylishly finishedmonaural amplifier with an antput o ELSHa in fon super in push-pul). of both music and apeceh, with negliinputs for mike and gram allow records and annonincements to follow each ather.
Fully shmuted

Fully shrouded section woumd output tiansformer to fatch $3-1 \overline{0} \Omega$ speaker and 2 independent volume controls, and separate lass and treble controls are provided giving Hood liftaml cut. Valve line-up 2 ELE4s, ECC83, EF86 and
EZ80 rect iticr. Nimple instruction parts). All parts sold separatels. ONLY £7,19.6.1'. \& P.8/6. diso nuailable ready built and tested compjete with stil. input sockets, $£ 9.19 .6$. ${ }^{1}$. \&: P. $8 / t$.
BRAND NEW TRANSISTOR BARGAINS (EET 105 (Matched Pair) $15 /-\mathrm{F}$ V1510p
AF1173/6: 2f

 cell 10/6. All post free

VERY POWERFUL COMPACT MOTOR
forma. Tutally enclosed. Quiet in operation with high starting torclue. Overall gize approx. I*"L * $1^{\frac{1}{2 *}}$ din Free shatt is" liat. ${ }^{* N}$. I. Ileat for Model Makers, etc. ONLY $7 / 6$ each $P, \& P, 1 /-$

DE LUXE STEREO AMPLIFIER

 EZ80 as iull wave rectifier. Two dual potentiometers are provided for lass and treble control, giving bass and Balance of the left and richt hanil control is used. adjusted by neenns of a separate "balance" control fittod at the rear of the chassis. Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{r}$ for full peak output of 4 watts per channol (8 watts mono), into 3 ohm speakers. Full negatioc rectback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Supplied complete with knobs, chassis size llin. w $\times 4 i n . ~ x$. Overall height including valves oin. Realy built nad tested to is high standard. Price $88,18.6$. P. \& P. 8/-.

4-SPEED RECORD PLAYER BARGAINS

Mains models. All brand new in maker's packing
LATEST B.S.R. Cl09/A21 4-SPEED ADTOCHANGER. With latest ruono compatible cartridge E8.19.6. Carr. 6/b.

LATEST GARRARD MODELS. All types available 1025,
2025, SP25, 3000 , AT60, etc. S.A.E. for Latest Pricen! 2025, SP25, 3000, AT60, etc, S.A.E. for Latest Price:! PLINTH UNITS cut out for ciarrard Models 1025, 2025, 2000, 3000,3500 , etc. With rigid transparent plastic cover. Apecial design enables abore models to be used with cover in pogition, Also suitable for housing AT60
and SPU5. OUR PRICE $85,15.0$ complete, P. \& P. $8 / 6$.

LATEST ACOS GP91/1SC Mono Compatible Cartridge with t/o stylus for LP/EP/78. Tniversal mounting bracket. SOMOTONE OTABC compatible stereo Cartridge with diamond stylus $50 / \%$. P. \& P. 2/
LATEST RONETTE T/O Stereo Compatible Cartridge for EP/LP/Stereo/78. 32/6. P. \& P. 2/-
LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/i8 mono or atereo records on mono equipment

RIGE GADN \& TRANBISTOR PRNTEDD CIRcUIT AMPLIFIE Peak out-
put in excess of $1 \frac{1}{2}$ watig. All standard British components.
Built on
printed circuit

panel size f A 3 in

Generous size Driver and Output Transformers, Output Transiators GET1I4 or $\$ 1$ Mullard AC 128D and matched pair of ACl28 o/D). 9 rolt operation. Eversthing supplied wire, battery elips, solder, etc. Comprehengive easy to follow instructions and circuit diagram 2/8 (Free with Kit). All parts sold separately. SPECLAL PRICE $19 / 6$.
P. \& P. $3 /-$. Also ready bullt and teated $65 /-$. P. \& $\mathbf{P} .3 / \%$.

3-VALVE AUDIO AMPLIFTER HA34 MX II Designed for $\mathrm{Hi}-\mathrm{Fi}$ reproduction of records. A.C. Mains operation. Ready built on plated heavy gauge metal chassis, size $7 \frac{1}{1} \pi \times 4$ in. d. \because 4 in. h. Incorporates ECC83,
EL84, EZ80 valtes. Heary duty, double wound mains
transformer and output transspeaker. separate rolume control and now rith improved wide range tone controls giving bass and treble lift and cut. Negative leedback line. Output 4_{2} matts. Front pancl can be detached and leads extended for remote mounting of controls. Complete wh knobs, valves etc HSL "FOUR" AMPLIFIER EIT, Similar in appearance to circuitry. Complete set of parely diferent and advanced

HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplitier using a double wound fully isolated ming traniormer, rectiner and Eccoa triode Impedance 3 olmse. Output ajprox. 3-í watte. Volunic and tone cont rols. Chassis size only 7 in. wide $\times 3$ in. deep \times Gim, high overall. AC maina $200 / 240 \mathrm{~V}$. Supplied absolutely Brand New, completely wircal and tested with good quality output transformer. FEW ONLY.
OUR ROCE BOTTOM
BARGAIA PRICE
S5/-

HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W.I9 Tel. 01-540 3985 send stamped addressed envelope with all enquiries
(Please write clearly) PLEASE NOTE:P. \& P. CHARGES QVOTED APPLY TO U.K. OXLY P. \&P. ON OVERSEAS ORDEES
CHARGED EXTRA.

NEW MK. 2

Psychodelic Lighting Unit

This new psychodelic lighting unit offers even greater sensitivity than our original unit, requiring typically only IV r.m.s. for full drive. It features higher input impedance circuitry for less loading of speaker lines and is now manufactured on professional fibre glass printed-circuit board material.

Drive voltage is derived directly from amplifier output or across speakers. The unit converts the audio frequency signals into a three-coloured light display; the colour depending on the frequency of the signal and the intensity on the loudness of the audio source.

Uses latest full-wave triac circuitry and incorporates signal input level and minimum ambient light level controls. Will drive up to 1.5 kW per channel at 240 V a.c. Complete printed-circuit board assembly built and tested. Size $8 \frac{3}{\frac{3}{2}} \mathrm{in} \because 6 \frac{1}{2} \mathrm{in} \because 3 \frac{1}{2} \mathrm{in}$.
£17.10.0 net plus 10/-carriage

INSTRUMENTAL AUDIO EFFECTS
 NOW AVAILABLE IN KIT FORM

CREATE "PHASE" on your tape recordings, records, etc., unique electronic circuitry enables you to create "phase" at the turn of a knob. Just connect between pre-amp. and power-amp.

This is not waa-waa, white-noise or swish but genuine phase-shift created electronically. Input and output impedances match to $10-50 \mathrm{k} \Omega$. Operates. from 9 V battery. Complete printedcircuit assembly, built and tested.
Size 4 in , >. $2 \frac{1}{2} \mathrm{in}$. $1 \frac{3}{3} \mathrm{in}$. 65/- plus $2 / 6$ carriage.
OR 45/- plus $2 / 6$ carriage in KIT FORM
SUPER "FUZZ" UNIT. Connects between guitar and amplifier. Operates from 9 V battery. Complete printed-circuit boarci assembly, built and tested. Size 3 tin. $\cdot 2$ tin. . in. 65/- plus $2 / 6$ carriage.
OR 45/- plus 2/6 carriage in KIT FORM

MAIL ORDER ONLY

S.a.c. for all enquiries

Dabar Electronic Products
98a Lichield Street, Walsall, Staffs.

OSMABET LTD

We make transformers amongst other thiugs

MAINS TRAMSFORMERS

Prime $200 / 240 \mathrm{~V}$ a.c. TXI $425-0-425 \mathrm{~V} \cdot 250 \mathrm{miA}, 6.3 \mathrm{~V}$
 150 niA. 6.3 V 4A, CT, $05-6.3 \mathrm{C}^{\circ} 3 \mathrm{~A}, 78 / 6 ; \mathrm{TX5}$

 MT3 Prinn $110 / 240 \mathrm{~N}$ सec 200 N $451-$
MULTIVOLT TRANSFORMERS
Prim 200/240V a.c. OmT4/ ole tapped sec. 5-30-30-$40-60$ vivinx $5-10-1 \overline{0}-20-25-30-35-40-55-60.10-0$ $10.20-0-20,30-0-30 \mathrm{~V}$ a.c. $1 \mathrm{~A}, 45 /-;$ ditto trabsormer
 ${ }_{80} 80-900-110 \mathrm{~V}$. giviug $10-30-30-70-50-60-70-80-$ ${ }_{90-100-110 \mathrm{~V}, 10-0-10,20-0-20,30-11-30, ~ 40-0-40}^{80}$ 50-0-50Va.c. 1A. $87 / 8$.
LOW VOLTAGE TRANSFORMERS

GIDOET RECTIPIER TRANSFORMER

OUTPUT TRANSFORMERS
Mullard $5 / 10$ VL, $67 / 6 ; 7 \mathrm{~T}$ stereu UL, 80/-: 3 w PP3, 30/-: P.P.11K/3-8-15uhn, 21/-i Multi ratio
 50W (EL34 KT\&8, etc.), $135 /-\mathrm{F} 100 \mathrm{~W}$ (E134 KT 10 K /
 3obin, 14/6; anto mat onv line trans, to order.
Ohm thp or OKERS
LOUDSPEAKERS New, 180/-; $60 \mathrm{~W}, 215 /-$; $100 \mathrm{~W}, 350 /-\mathrm{F}$ E.M.I. $13 \times 81 \mathrm{n}, 10 \mathrm{~W}, 3,8$ and $150 h n 18$ at $45 /-$ each; $13 \times 8 \mathrm{in}$, 10 W speakers, fitted two tweet.
crossoyer network
LOUDSPEAKERS
LOUDSPEAKERS Ex equipment 6in periect,
10/- each plus
$\begin{array}{llll}\text { CAPACITORS } \\ \text { Electrolytice, } & 1,000 \mathrm{mF} & 26 \mathrm{~V}, & 4 / 6 ; 2,000 \mathrm{mF} \\ \text { O }\end{array}$ $\begin{array}{ll}\text { Electrolytics, } \\ 10 / 6 ; 6000 \mathrm{mF} & 15 \mathrm{~V}, 4 / 6 ; \\ 1.500 \mathrm{mF} & 150 \mathrm{~V}, 10 / 6\end{array}$

$100 \mathrm{mF} 450 \mathrm{~V}, 7 / 6 ; 4 \mathrm{mF} 3 \overline{5} 0 \mathrm{~V}, 1 / 6$.
Carriage extra all orders
S.A.E. ALI, ENQUIRIER PLEARE, MAIL ORDER ONLY
46 Kenilworth Road, Edgware, Middx. HA8 8 YG Tel. 9589314

AUDIO EFFECTS

5 SHAW LANE, HALIFAX, YORKS
Buy with confldence and obtain the right results. Refunds without question if any of our product fall to give 100° gatisfaction.

AMATEUR BANDS ALL TRANSISTOR
SUPEREET RECEIVER EIT, No fusp, witilling Just fit the components on our printed cirtuit. Ston Motion tuming. Simple IF alignment. Perspex fron panel. Push pull AF amp drives your $x-15$ ohsin speaker. Amp can be used separately. Designed to accept a BFO signal. Fses Denco plug iu conls $\begin{array}{llllllll}2 T & 0.5 \text { to } 1.54 \mathrm{Mhz} & 3 \mathrm{~T} . & 1 \cdot 67 & \text { to } & 5 \cdot 3 & \mathrm{Mhz} \\ 5 \mathrm{~T} & 10 \cdot \overline{0} & \text { ti } & 31.5 & \mathrm{Mhz}\end{array}$ 4 T . 5.0 to $15 \quad \mathrm{Mhz} \quad 5 \mathrm{~T}$. $10 \cdot \overline{0}$ to 31.5 Mhz Range 3T normally supplied with kit. Vses 4 Volt battery'. Easy atep by etep instructions. 12/- per range
POWER CONTROLLER. Power at your finger tips. Not merely half wave control but fill wave. A single variable control gives zero to full power. device. Ideal for all types of lighting, fires, motors, device. fic. Complete with box, power socket, cables, etc. In kit form with easy to follow instructions 28.8,6. Ready built 28,4,6 plus 5/6 P. P. \& Ins. REVERBERATION AMPLIFIER. Self contained transistorised, battery operated. An entirely Normally sound reproduction from a single eource, has a flat one dimensional effect. With this unit, proper sound delay through reverberation, tones, are created with a truly third dimension for concert hall originality. Two controls aisjot volume amd reverberation. Simply plus microphone, suplled etc., in, and the in a beautin w Ins. $6 /-$.
VOX SWITCH. This sound operated awitch is ideal for mobile TX work, tape recorder switching, etc. You speak, it switches. High and medium imp inputs. AF take of point full instructions 42/6, Ready bulit, tested and guaranteed. 69/6 post paid. METRONOME UAIT, Variable beat. Listen while you play and keep in time. Easity built, pocket size with post pald. Ready built in an attractive polythen case, $37 / 6$ post pald.
MORSR OSCILLATOR. PC bonrd, transistors, high stab, components, battery carrier, ear piece. Adjustable tone. Just attach your key. Drives phones In similar case ns above $27 / 6$ post patu.
gTRAIGHT FROM THE PRESS, Latest Muliard manual: Audio Ampa, FM tuners, Stereo clecoder, paid.
TEXA8 TRAASISTORS, Complementary symmetry. Driver, NPN, PNP output. The set of three ONLY $8 / 6$ post paid.

Your local component stockist
\square
ast Anglia
AGLE
lectronics
agle St.

PSWICH som

[^7]mentioned earlier, TTL logic is complemented by a range of medium scale intergration packages, which contain quite complex elements such as shift registers, but for the moment we will concern ourselves with only the "standard range" and its uses.

As with DTL-and RTL, the 54/74 series is available in all three of the package outlines commonly used, i.e. the reduced height TO-5 can, the dual-in-line plastic pack and the hermetically sealed flat-pack, although the TO- 5 version is rather less common. The dual-in-line pack (which is the most popular) is sometimes found with 16 pins, instead of the more usual 14, to allow more freedom in the use of some of the more complex elements.

GATE TYPES

A wide range of different gate packages are available in this family, providing excellent flexibility when designing a logic system. There are three extra gate types in the range which are slightly different from the basic gate, so perhaps it is best if we have a look at the circuits of these first.
The basic logic convention used with TTL is positive logic NAND (otherwise useful as negative logic NOR). If the NOR function on positive " 1 " inputs is required, it is necessary to invert those inputs before using a standard gate to perform the NOR decision.
To overcome the possible waste of gates as inverters, a positive logic NOR gate has been added to the TTL range; the circuit of this is shown in Fig. 5.4. It is left to interested readers to work out how the circuit operates. The input and output arrangement is standard, therefore the gate is completely compatible with the rest of the range.
Another gate circuit available is the AND/Or invert gate, which is really three gates connected together inside the semiconductor chip, to form a versatile building block which may also be described as a half adder or exclusive-or gate. The circuit of this and some of its many logic uses is shown in Fig. 5.5.

Expansion of the number of and functions is allowed on some of these gates, and an expander is shown in Fig. 5.6, connected to a gate of this type.

PULL-UP RESISTOR

The article dealing with DTL investigated the very useful "wired-or" function, which could be performed with that family. With TTL this is not possible because of the active pull-up emitter follower in the output stage, which must not be shorted to ground, as it would when using the wired-or connection.

To overcome this limitation, a TTL gate is available without the usual "totem-pole", output stage, to enable gates to be connected together with a single external "pull-up" resistor, in the wired-or configuration.
This circuit (Fig. 5.7) does slow the response of the gate, but this may be off-set by using a low value of resistance. The fan-out of this gate is reduced to a maximum of seven, but up to ten gate outputs may be connected together in the wired-or function.
A list of gate packages is given in Fig. 5.8, which also shows the pin connections. Pin connections for i.c.s are always given as if you are looking down on the top of the package. This catalogue is not complete but it shows a useful cross section of the 74 range.

USING TTL GATES

As with all branches of electronic design, there is a certain amount of useful knowledge attached to the

Fig. 5.8. Typical gate package outlines and their connections in the 54/64/74 range
use of TTL which is not normally given in manufacturers' data sheets, but is picked up by experience. To save constructors at least some of this expensive experience the following paragraphs are intended to help to get the best from TTL.

Gate inputs may not always be needed to perform the logic required, for instance, if one 4-input gate and one 3 -input gate is needed in one section of a design, the cheapest package to use would be a dual 4 -input gate (7420 for example), but this leaves one unwanted input. What should we do with it?

Anyone who has grasped the principle of TTL gate operation will quickly realise that a logical one (high level) voltage applied to the unused input will not affect the gate operation for the three used inputs, but there are several ways to achieve this. Connecting the input directly to the positive supply seems a possible solution, but this is permissible only if the supply never exceeds 5.5 V . This condition includes the noise or transient spikes so often encountered.

If the supply does rise above 5.5 V the emitter so connected will break down like a Zener, destroying the input transistor. For this reason, this solution is not to be recommended unless a resistor of about 1 kilohm is used in series to limit the current if breakdown occurs.

A better solution is to connect the unused input to one of the used inputs, so that the two are driven in parallel. This method does have the disadvantage that it increases the load on the driving gate output, but in about eight out of ten cases the driving gate will probably have some "fan out" in hand.
pulses while the gate passes through this transient state. This effect is shown graphically in Fig. 5.9.

To prevent this most undesirable state of affairs, it is necessary to keep rise and fall times to less than $1 \mu \mathrm{~s}$, which has the effect of making the duration of the indecisive state so small that the gate does not have a chance to start oscillating. If it is necessary to drive a gate from slow edges, such as those derived from 50 Hz mains, or unijunction timebase circuits, then a Schmitt trigger should be used to provide the necessary steep edge by regenerative action. A Schmitt trigger is easily made from two TTL gates and one external diode and resistor as shown in Fig. 5.10.

SWITCH DRIVE

It is often necessary to drive gates from mechanical switches. Here again it is possible for the gate output to produce more than one pulse due to the reproduction of "switch-bounce" present at the switch contacts.

The classic solution to this problem is to use a monostable which produces an output pulse lasting longer than the period of "switch-bounce". Although TTL monostables are readily available, they are quite expensive, and there is a more simple method using only two gates connected as a bistable.

The circuit of this arrangement is given in Fig. 5.11. Two gaies connected in this way form a "latch" bistable, which changes state when the switch is operated. The first momentary contact causes the change of state, and any subsequent bounce has no effect on the output. This method gives a high fan-out

Fig. 5.9. Gate oscillation when driven from slow rise edges

Fig. 5.10. Schmitt trigger using TTL gates

The best solution, although one which is likely to be practical only in large systems, is to use a complete spare gate as a driver for any unused inputs, by ensuring its output is always at a high level. This is simply achieved by tying all its inputs to ground.

Leaving a spare gate input open circuit will have the same effect as connecting it to a high level input, but this method, although apparently ideal, has an adverse affect on noise immunity and propagation delay.

PREVENTING OSCILLATION

From what we have seen of gate operation it might be thought that an input rise time of any length will successfully cause the output to change accordingly; this is true with one very important reservation. As the input voltage rises or falls, it must pass through an area of indecision, where the input is midway between the high and low level states.

Under these conditions it could be said that the gate is biased to operate as a linear amplifier of very high gain. Any stray capacitance round the gate connections could (and usually does) cause the gate to oscillate at a high frequency, giving rise to a string of narrow
of nine from each of the two complementary outputs, and may be used with several types of switch.

WIRING LENGTH

A consideration which is somtimes neglected when wiring up a TTL circuit, and which can cause unforeseen problems, is that of the maximum permissible lengths of interconnections. The very fast edges produced when gates switch have a large high frequency content, and so the interconnections between packages behave like transmission lines, giving rise to reflections from the remote end of the line.

The obvious way to prevent reflection occurring is to terminate the end of the line with a resistance equal to the characteristic impedance of the type of interconnection used. This impedance may be in the region of 50 to 150 ohms for printed circuit or twisted wire runs; it is not practical because of the load it would impose on the gate driving the line.

As we cannot terminate the line it is inevitable that reflections will occur. The only solution is to specify a maximum length of line which may be used before this problem can become troublesome. The period during

ELECTROVALUE

 EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKSBARGAINS IN NEW SEMICONDUCTORS |PEAK SOUND PRODUCTS
Ul power types suppilied with free insulating sets

1N914	1/3	- ${ }^{\text {N }} 3706$
1N3754	4/-	2 N 3707
1N4148	1/9	2N3708
1N5054	4/-	2N3709
15940	1 (-	- N3710
-2696	$5 / 6$	2x 3111
2xijot	$5 / 6$	2N3731
2N706	$2 / 9$	2N3394
:N1302	4/-	2N331!
2 N 1303	4/-	- $\mathbf{3} 380$
2N1304	4/6	2N3904
2N1305	4/6	2N3906
2 N 1304	$6 / 8$	2N 4058
${ }^{2} \mathrm{~N} 1307$	$8 / 8$	2N4059
2N1308	$8 / 8$	2N 4060
2N1309	$8 / 8$	$\because \mathrm{N} 40 \mathrm{t} 1$
2N1613	6/-	2N406.
2N1711	7/-	-N4284
2 NaHT	18/8	2N 5286
2 N 2218	9/3	$\underline{\mathrm{N}} \times 284$
\bigcirc - 24270	$12 / 9$	2 N 1291
2N2484	18/8	2 N 42142
2 N 2646	10/9	2 N 4410
2 N 2904	11/-	2N506:
2 N 2924	4/-	2Nol63
2Na926	4/6	- No 19:
2N2924	2/3	2Nã195
2N300̄3	5/6	$2 \mathrm{~N} \overline{5} 5 \mathrm{~T}$
2N3054	14/3	2 N 545
2N3055	16/-	2N5405\%
2N3325	$10 / 9$	40․50
2N3663	11/6	40361
2N3702	$3 / 6$	4036:2
2N3703	3/3	$40+04$
2N3704	$3 / 9$	40408
-N370	3/5	40430

3/6	BPYol
$3 / 3$	BSX?0
3/6	BY164
10	61238
11-	C106B 1
$3 / 8$	MC140
8/8	MJ480
3/9	MJ481
2/6	- JJ491
$2 / 3$	MPF10:
2/6	VKT40
8/3	-KT 40
\$/8	0.145
$8 /-$	0
43	OA91
$2 / 3$	0 A 95
2/6	0×99
8/6	OA200
$5 /-$	OR 220.
$5 /-$	0 C 71
3	TIP31A
6	TIP39
	TIS 43
$16 /$	ZTX300
8/6	7TX301
10/6	ZTX 302
12/-	ZTX 303
7/-	ZTX30
$7 / 6$	ZTX000
10/9	ZTX501
$7 / 5$	ZTX502
$8 / 3$	ZTX ${ }^{\text {203 }}$
8	2TX504
$8 / 8$	ZTX530
4/6	ZTX531

RESISTORS
 ENGLEFIELD AMPLIFIER

	Build it $12+12$ or $25+25$
Steren amplitier in modular kit form (including cabinet)	
12 watis per channel 238.8.0; 25 watts 258.15.0. Cabinet	
kit only 26. These prices nett. As recently reviewedtin HiFi gound.	
BAXANDALL	
SPEAKER SYSTEM	
Designed hy Peter Baxamdall, Superd	
reprotuction for its aize. Handles 10 watta	
with ease. Veen ELAC 10 の 59 RM 109	
speaker unit. Kit \$13,12.0 nett.; huilt	
219.8 .8 nett.	

STEREO AMPLIFIER SA. $10-10$
 Developed from the very successitul sis.8-8 amplifier giving first clase ftereo separate volune controls for each channel, babs and treble controls. 10 watts per channel nito 5 to 8Ω. Kil range speaker available 118.150 eich

MAINLINE AMPLIFIER KITS
RCA/BGB dcsigned main amplifier kite. Input sensitivity $600-60 \mathrm{mb}$ for full output into 8 g

	Wif price	Suitabio un
Power	including componenta	power mupply \mathbf{y} it
12W	168)-nett	92/-
20w	195/-nett	N/A
40W	210/-nett	115/1
70w	252/-nett	188/10

30 WATT BAILEY AMPLIFIER KIT

apecial summer reduction (to Bept. 30th, 1970, only) Sensitivity $1 \cdot \frac{1}{\text { for full output into } 8 \Omega \text {. Transistora }}$ two channels $214,11,0$ list, 26 only nett. Transistors for resistors (nictal oxide) 30 -per channel nett. Complete unregulated porer oupply kit 87/6 nett

ZENER DIODES

1w. Clig to increase 1.5 W rating to 3 watto (iype 266 F) gd .

CARBON TRACK POTENTIOMETERS, long apindle: Souble wiper ensures minimum noise level.

Single gang linear
Dual gang linear
$\begin{array}{ll}\text { Dual gang linear } & 4.7 \mathrm{~K} \Omega \text { to } 2.2 \mathrm{Mn} \Omega \\ \text { Dang log }\end{array}$

CAREON SKELETON PRE-SETS

Small high quality, type PR, linear only $100 \Omega, 220 \Omega$, $1 \mathrm{M}, \mathbf{M 2}, 5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting 1/-each.

COMPONENT DISCOUNTS

10% on orders for components for 25 or more. 15% on
orders for comporfents for $\mathrm{t}^{1} 15$ or more (No digcount on nett items)

POSTAGE AND PACKING
Free on orders over 42. Please add $1 / 6$ if under. Over

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR. Economically packed for

A RANGE OF SOLDERS IN HANDY DISPENSERS.
 general electrica electronic soldering. 75 ft . 18 gauge on plastic reel. Recommended retail price 15/-

for fast, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

THIN GAUGE SOLDER, ESSENTIAL FOR soldering small components and thin wires. High tin content, low melting point. 60/40 alloy, 170 ft . 22 gauge on plastic reel. Recommended retail price 15/-

INVALUABLE FOR STRIPPING

 FLEX, THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER ANO CUTTER, easily adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended retail price 8/6LEARN HOW COMPUTERS WORK WITH COMPUKIT

Compukit 1 is a practical do-ityourself teaching aid designed to remove the mystery from digital computers. It is accompanied by an illustrated easy-to-follow instruction book by a Fellow of the British Computer Society.

Ideal as a gift to amateurs, intelligent teenagers, etc.
Unassembled kit, complete Type CKI/U $£ 10.10 .0$ (P. \& P. 6/-).
Assembled, fully tested,' ready to use Type CKI/A ©13.5.0 (P. \& P. 6/-).
FREE P. \& P. for cash with order from LIMROSE ELECTRONICS (PE), Lymm, Cheshire
-the Universal Wiring Boardobtainable from your local Retailer
Trade enquiries to:
NORMAN ROSE (ELECTRICAL) LTD.
8 St. Chad's Place, Gray's Inn Road, London, W.C. 1 Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants

G. F. MILWARD MAIL ORDERS: DRAYTON BASSETT, TAMWORTH, STAFFS.

ELECTRONIC COMPONENTS

Wholesate/Retail:

 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339RESISTORS:

PAPER CONDENSERS:
TV types, 500 V
. .

Miniature

ELECTROLYTIC CONDENSERS:
Mains radio/TV types
Transistor types
Mixed high/low voltage
POLYSTYRENE CONDENSERS
MULLARD POLYESTER CONDENSERS
SILVER MICA
WIRE-WOUND PRE-SET SLIDERS
VOLUME CONTROLS: Double, Mixed
.
NUTS AND BOLTS: Mixed lengths/types 8 B.A.
. 1
6 B.A.
$\therefore \quad 1$

4 B.A.
..
METAL SPEAKER GRILLES: $7 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in V.H.F./F.M. TUNERS: Need ECC85

VEROBOARD: Cutter $+52 \frac{1}{2} \mathrm{in} \times 1 \mathrm{in}$ Bds.

TRANSISTORS:

G. F. Mitward, Drayton Bassett, Tamworth, Stoffs. Postage (minimum) per order $2 /$-.

Fig. 5.12. TTL gate driven by an operational amplifier. (a) The two diodes clamp the input voltage to +5.6 V and -0.6 V . (b) The Zener diode limits the swing to +4.7 V and -0.6 V
which reflections will not affect gate operation is set by the propagation delay time, which is typically 13 ns .

As the speed of an edge travelling down a typical interconnection is about 6 in per nanosecond, the maximum allowable length is regrettably quite small. In fact, manufacturers recommend a maximum of 6 to 10 inches, but in the light of the facts laid out above it may be possible to extend this slightly.
Of course, in very large commercial systems, such as computers, it is often necessary to use interconnections many feet in length. To facilitate this there is a special series of TTL packages called "line drivers" and "line receivers" available.

OPERATIONAL AMPLIFIER DRIVE

It may be necessary to drive the input of a TTL gate from some other kind of circuit, such as an operational amplifier, which uses much higher supply voltages, and which consequently has a much higher voltage swing at its output.

TTL inputs must not rise higher than 6.5 V or go negative with respect to the ground line, so when interfacing with this sort of circuit it is necessary to prevent these ratings from being exceeded. Two methods of achieving this are shown in Fig. 5.12, where a TTL gate is connected to the output of an operational amplifier.

In Fig. 5.12a, two silicon diodes are connected to the gate input so as to clamp the input voltage to between +5.6 V and -0.6 V ; one or other of the diodes conducts when the amplifier output swing is outside these limits.

In Fig. 5.12b, a single Zener diode is used to limit the swing to +4.7 V and -0.6 V , the Zener conducting in the reverse direction on positive excursions, and in the forward direction on negative excursions.

INCREASING FAN-OUT

One last hint, should it be necessary to have a fan-out of greater than ten, it is quite permissible to parallel the outputs of several gates, provided that their inputs are also paralleled. A better solution if a much greater fan-out is required, is to use the special buffer gate, which will drive up to 30 loads, and, incidentally, can be used to drive longer transmission lines than a standard gate if a ground plane or twisted wire line is used.

The buffer gate was not treated separately in the circuits section, as its principle of operation is exactly the same as that of the basic gate, the main difference being the use of smaller resistor values to obtain more drive for the high current output stage.
Next month-practical TTL binary full adder.

TO TALK OF MANY THINGS . .

... SUCH AS . . .

a digital clock using logic i.c.s. Indeed, not merely to talk but to do.
The opportunity presents itself
NEXT MONTH when we commence publication of this up-to-the-minute design.

AND

OPERATION SEA SEARCH

A novel war game

PRACTICAL

Ridedoris
 a SEEETON ROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in regret we are unabe the magazine. Technical queries cannot be dealt with on the telephone.

Informalion here

Sir-In Practical Electronics (June 1970) I notice one of your readers bemoaning the lack of information available on semiconductors.

For some time now we have been providing our mail order customers with a data sheet service, and the popularity of this service is evidenced by the fact that we have supplied 15,000 copies of data sheets since installing our new high speed electrostatic copier in January this year.

Due to the high cost of re-producing this data, and of maintaining an extensive library, it is not practicable to pack data sheets with every single transistor. The information on any one transistor can run into seven or eight pages.

I thoroughly agree with your reader's comments regarding somewhat ridiculous duplication of part numbers. I am sure all of us in the industry wish there was some way around this thorny problem. Meantime, we have to continue to stock a colossal number of types of transistor, many of which do the same job as each other.
P. F. Clarke G3LST,

Managing Director,
LST Electronic Components Ltd., Brentwood.

Progressing

Sir-I am writing in the hope that you may be able to help solve a problem that partially concerns your beginners series "This Way To Electronics".

I wish to take up practical electronics as a hobby, but knowing very little about the design of circuits with view to construction, I have gone somewhat aground. In the past I have had to rely on books, but up until now I have not come across any one book that seems to satisfy my needs.

In your wide experience have you come across a book that will explain, in layman's language initially, the design and practical construction of circuits with ample reference to the calculation of circuit component values. From this to progress to more complex circuit designs involving the derivement of pluses, bias's, etc. but still outlining the practical choice of components.

And finally to end up with the design of quite complex circuits, such that to any one who diligently follows the advice in the book, can, by the time of completion, be both confident and competent enough to design and construct his own equipment.

But does such a book exist? What I ask for is one that covers such a huge field that I find it not hard to appreciate the reasons why I have yet to see one.
W. K. Bennett,
Bradford,
Yorks.

Naturally, we are very sympathetic towards beginners and do understand many of their problems.

I should explain that the series "This Way" . . . deliberately excluded mathematical calculations, and was intended to present a descriptive treatment of the subject. As such I think it has served a very useful purpose.

This article should not be seen just on its own. We have published, on various occasions, other articles dealing with the theory of electronics circuitry. For example, I refer you to the "Demo Switching Circuits" series, in which the full mathematical treatment was given.

I am afraid it is impossible to recommend any one particular book which will give you all you ask for. There are so many publications available, yet no single volume appears to be the ideal one, covering all aspects. I think that if you continue to read our magazine, over a period of months, you will find that the articles we publish are covering your needs.-Ed.

Pick-up vibrations

Sir-Mr. L. F. Dickson's article (September 1970) describes the construction of a Magnetic Guitar Pick-up, but omits one important point, that is spurious note emission (also called second string vibration).

Before dealing with this point, a few words about the operation of such pick-ups. This is probably old hat to most P.E. readers, but is worth repeating. Magnetic pick-ups follow Fleming's law of electromagnetic induction. When a string is plucked it vibrates in the field of the magnet beneath it (see diagrams); this produces eddy currents in the string which in turn produce magnetic fields around the string. These fields in their turn produce an induced current in the pick-up coil which is fed to the amplifier.

If in the making of a pick-up, two of the magnets (or more) have unlike poles together, as in Fig. 1a, their fields will combine as shown. This means that the corresponding strings will vibrate in one combined field instead of two separate ones. So when one string is plucked, the other will start vibrating in sympathy due to the changes in the strong field caused by the two magnets, and so a spurious note will be produced.

This can be reduced, by ensuring on construction that all the magnets have like poles in the same direction. There will always be a tendency for second string vibration due to the magnetic field produced by a vibrating string, but this field is so small that it cannot have much effect on adjoining strings and can be ignored, see Fig. Ib.

Another source of unwanted notes is the common coil winding, but it is impractical to give each magnet its own individual coil, so this has to be put up with. In fact the same argument for ignoring it applies, as the field, due to the coil, is also very small.

A. D. Jones,
Maidstone,

Kent.

PORTABLE AMPLIFIER Martable mini p.s.aystem. Many uses - ideal for
Parties, or as a Baby Alarm, Intercom, TeleAmphor or Record Player
 and four 7 4in. speaker and four transistor one w power amplifler. Uses PP9 battery Erand new with iamous makers' guarantee. $75 /$

WEYRAD P50-TRANSISTOR COILS RA2W Ferrite
Osc. P50/1AC
3rd I.F. P50/3CC
${ }^{3} \mathrm{P} 51 / 1$ or $\mathrm{P} 51 / 2$
P50/3V
Ferrite Rod 8
VOLUME CONTROLS 80 ohm Coax 9d. yd. Long spindles. Midget Size BRITISH AERIALITE

 Edge 5K. S.P. Transistor, 5/-, Ideal 825 lines WIRE-WOUND 3-WATT POTS. WIRE-WOUND 3-WATT Smell type with tmall knob. STANDARD SIZE POTS. $\begin{array}{ll}\text { Values } 10 \Omega \text { to } 30 \mathrm{~K} ., \\ \text { Carbon } 30 \mathrm{~K} \text { to } 2 \mathrm{meg} .\end{array} \mathrm{S} / \mathrm{m} \quad \begin{aligned} & \text { LONG SPINDLE } \\ & 100 \mathrm{OHMS} \text { to } 100 \mathrm{~K} .8\end{aligned} \mathbf{l}$
$215 \mathrm{in} .3 / 8$. $2!$ VEROBOARD 0.15 MATRIX
EDGE CONNECTORS 16 wey $5 /-0$. 3 Sin. 5 PINS 36 per packet $3 / 4$. FACE CUTTERS $7 / 6$. S.R.B.P. Board 0.15 MATRIX $2 \downarrow \mathrm{in}$. wide 6 d . per 1in.. 3.R.B. wide 9 d . per $1 \mathrm{in} . ; 5 \mathrm{Fin}$. wide $1 / \approx$ per 1 in . (up to 17 in .).
S.R.B.P. undrilled BLANK ALUMINIUM Board 10 8in. 3

 1 inch DIAMETER WAVE-CHANGE SWITCHES. 2 p. $2-$ way. or 2 p. 6-way, or $3 \mathrm{p}, 4$-way $4 / 6$ each. 1 p. 12-way, or
4 p . 2-way, or 4 p . 3 -way $4 / 6$ each. 1 inch DIAMETER
 way, 4 p. 3 -way. 6 p. 2 way. 1 wafer $12 /-, 2$ wafer $18 /-, 3$
TOGGLE SWITCHES, sp. 2/6; sp. dt. 3;6; dp. $3 / 6$; dp. dt. 4/6 ALL PURPOSE HEADPHONES LOW RESISTANCE HEADPHONES 3-5 ohms. DE LUXE STEREO HEADPHONES 8 ohms
'THE INETANT' BULK TAPE ERASER AND RECORDING HEAD
DEMAGNETISER

Minimum Post and Packing 2/6. RETURN OF POS

GENERAL PURPOSE TRANSISTOR for Mike, Tape, P.U Guitar
Battery 9-12v. or H.T. line 200-300v, D.C. operation. Siz 12 i. Response 25 c.p.s. to $25 \mathrm{Kc} / \mathrm{s}, 26 \mathrm{db}$ gain. Full inatructions supplied. Brand new. Guaranteed. Details S.A.E. Brand new. $\quad 17 / 6 \begin{aligned} & \text { l'uat } \\ & \text { git }\end{aligned}$ NEW TUBULAR ELECTROLYTICS CAN TYPFS $2 / 350 \mathrm{~V}$
$4 / 350 \mathrm{~V}$ $4 / 350 \mathrm{~V}$
$8 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$ $16 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$ $25 / 25 \mathrm{~V}$
$50 / 50 \mathrm{~V}$ $16+16 / 500$
$50+50 / 350$ $50+50 / 350 \mathrm{~V}$
$60+100 / 350 \mathrm{~V}$ $60+100 / 350 \mathrm{~V}$
$32+32 / 850 \mathrm{Y}$ $250 / 25$
$500 / 25$

$8+8 / 4$ UB-MIN. EL/- | $26+18 / 450 \mathrm{~V} 5 /-$ | $32+32 / 350 \mathrm{~V} 5 /-$ | $100+50+52 / 350 \mathrm{v} .8 / 8$ |
| :---: | :---: | :---: | :---: | :---: | 200 mF 15V ELECTROLYTICS. $1,2,4,5,8,16,25,30,50,100$

 PAPER 350V-0.19d, $0.52 / 6 ; 1 \mathrm{mF} 3 /-12 \mathrm{mF} 150 \mathrm{~V} 3 /-$ 00V-0.001 to 0.05 日d; $0.11 /: 0.251 / 6 ; 0.475 /-$
$1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 ; 6$ SILVER MICA. Close tolersnce 10 , $2-2-500 \mathrm{pF} 1 / 6 ; 560$ $2,200 \mathrm{pF} 2 /-; 2,700-5,600 \mathrm{pF} 4 /-; 6,800 \mathrm{pF}-0.01$, mfd $\mathrm{B} /-;$ ezch. Trive $365 \mathrm{pF}+365 \mathrm{pF}$ 208pF +17 ppF , $11 /-\mathrm{i}$. Slow motion dive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+2 \mathrm{p} \mathrm{pF}, 11 /-; 500 \mathrm{pF}$ slow motion, standard $9 /-;$ small $3-\mathrm{gank} 500 \mathrm{oF} 22 /$

GROME TELESCOPIC A ERIALS 93 in
UNING. Solid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}$. 500 p , base 5 :RIMMERS. Compression $30,50,70 \mathrm{pF}$, $100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 6 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 2 /-; 1000 \mathrm{pF}, 2 ; 6$. RECTUFIERS CONTACT COOLED hall wave $60 \mathrm{~mA} 7 / 6$; 85mA 9/6. SILICON BYZ13 8/-; BY100 10/vil wave Bridze Rectiferi $75 \mathrm{~mA} 10 /-; 150 \mathrm{~mA} 19 / 6$. NEON PANEL INDICATORS 250 F AC ${ }^{2}$ DC
EON PANEL INDICATORS 250 v . AC/DC Red or Amber 4, ESISTORS. Prelerred values, 10 ohms to 10 meg.
 Ditto 5%. Preferred values 10 ohms to 22 mez.. 9 d . WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 wat

MAX CHASSIS CUTTER

Complete: a die, a punch, an Allen screw and key
 in. 16/8 1 tin. 19/6 1 in. 21/6 2in. $39 / 8$ lin. $8 q, 36 / 6$

TRANEISTOR MANS POWER PACKS. FULL WAVE 9 volt 500 mA . Size $4!\times 2 \frac{2}{2} \div 2 i n$. Metal case. 78 Cracke aingh. Ontput terminals. On/off switch.
Half Wave 9 volt 50 mA . Size $2 \geqslant .1$ in. Snap termi

MAINS TRANSFORMERS $\underset{\substack{\text { Post } \\ 5 / \text { each }}}{\text { Pat }}$

250-0-250 50 mA .6 .3 v. 2 smps , centre tepped $250-0-25080 \mathrm{~mA} .6 .3$ v. 4 amp .

 $300-0-300 \mathrm{\nabla}$. 120 mA . 8.3 च. 4 a. C.T. ${ }^{3}$. 6.3 v. 2 a. 50 MINIATURE 200 v. 20 mA . 6.3 v. 1 \&. 21 2,1 in. MIDGET 220 $\nabla .45 \mathrm{~mA}, 6.3$ v. 2 a. $22.2!$ 2in.
HEATER TRANS. 6.3 v. 11 a.....
Dito tapped mec. 1.4 v., $2,8,4,5,6.3$ v. 1 smp. Dito tapped tec. 1.4 ®., 2, B, 4, 5, 6.3 v. 1 gmp. GENERAL PURPOSE LOW VOLTAGE.
$6,8,9,10,12,15,18,24$ and 30 v. at 2 . 1 amp., $6,8,10,12,16,18,20,24,30,36,40,48,60$. AUTO TRANSFORMERS 0-115-230 vi InputiOutput CHARGER TRANSFORMERS. Input 200/250\% Oor 6 or $12 \mathrm{v} ., 1 \frac{1}{3}$ amp.. $24 /-; 4 \mathrm{amp} ., 38 /-$
FULL WAVE BRIDGE CHABGER FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12 v . outpats. $1 \frac{1}{2} \mathrm{amp} .8 /-; 2 \mathrm{amp} .11 /-; 4 \mathrm{amp} .17$ i-. COAXIAL PLUG 1/3, PANEL SOCKETS 1/3. LINE $3 / 6$. OUTLET BOXES. SURFACE OR FLUSH
JACK SOCKET Std ChCK SOCKET Std. open-circuit $2 / 8$, closed circuit $4 / 6$ JACK PLUGS Sth. Chrome $3 /-: 3.5 \mathrm{~mm}$ Chrome $2 / 6$. DIN SOCKETS Chassis $3-$ pin $1 / 6 ; 5-$ pin $2!-$. DIN SOCKETS Lead

E.M.I. $13 \frac{1}{2} \times 8$ in.

LOUDSPEAKERS
With flared tweeter cone and ceramic magnes. 10 watts.
Bass res, $45-60 \mathrm{cps}$.
Flux 10,000 gaus. state 3 or 8 or 15 ohm. Post $2 / 6$ Also with twin tweeters. $\quad \mathbf{~ W} 4$ State 3 or 8 or is ohm. Post $2 / 6$ $\begin{array}{llll}\begin{array}{llll}\text { Recommended Teak Cabinet } \\ \text { Size } & 16 & 10 & \text { gin. } \\ & \text { Post } 2 / 6\end{array} & \mathbf{\$ 5}\end{array}$

MINI-MODULE LOUDSPEAKER KIT

10 watt 65/- carriages.
Triple speaker system combining on ready cut baffle. and Treble loudspeaikers and crossover condenser. The heavy duty 5 in. Bass Woofer unit has a low resonance cone. The Mid-Range unit is specjally designed to add rive to the middle register and the tweeter recreates the $90-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm response $20-15,00 \mathrm{cps}$. Full instructions for 3 or 8 ohm .
TEAK VENEERED BOOKSHELF ENCLOSURE. fluted Front deaign for Mini-Module. ≤ 5 Post $5 /$
 $\begin{array}{ll}30-14,500 & \text { c.p.s., } 12 i n \\ \text { double cone, woofer }\end{array}$ double cone, woofer and with B BAKER cogethe with a AKER cerami 3 flux density of 14,000 gauss and a total fux o 145,000 Maxwells. Bast esonance 40 c.p.s. 8 or 8 o 15 ohm . Post Free.

Module kit, 30-17,000 c.p.s $\left.\begin{aligned} & \text { bsfle and } \\ & \text { instructions. }\end{aligned} \mathbb{L} \right\rvert\, 10.0$ BAKER "GROUP SOUND" SPEAKERS - 8 or 15 ohm.
Group 50

TEAK HI-FI SPEAKER CABINETS. Fluted wood tront For 10 or 12 in round Loudspesker For 10 . 6 in or 6 in round Loudspeaker TWO.WAY CROSSOVER NETWORK $3,000 \mathrm{c} / \mathrm{s}$ With variable tweeter attenuator giving accurato bigh/low control contron knob, tweeter and woifer leads and input $38 /=$
terminals, Suitable for 3 to 8 ohm impedance. Post 2 iHorn Tweeters 2-16ke/s, 10W 8 ohm or 15 ohm 28/6. ELAC Moving Coil De Luxe Cone Tw, TWO-WAY 3000 c.p.s. CROSSOVERS 3 or 8 or $15 \mathrm{ohm} 19 /$ SPECIAL OFFER: 80 ohm, 2 tin, 2 in. dia. 35 ohm 3 in $25 \mathrm{ohm}, 3 \mathrm{in}$. dia.; $64 \mathrm{in} ; 8 \mathrm{Bin} ; 8$ Sin. $17 / 6$ EACH
$15 \mathrm{hm}, 3$ in. dia.; 7
$4 \mathrm{in} ; 8 \cdot 5 \mathrm{in}$. 8 ohm 6 Ain; 3 ohm, $2 \geqslant \mathrm{in}, 3 \mathrm{in}, 5 \mathrm{in} .5$ 3in, 7 TYP LOUDSPEAKERS P.M. 3 OHMS. 6 !in 22/6; 8 5in, 25. 8 . 2 !in $18 /-8 \sin 35 /-; 10 \times 8 \mathrm{im} 38 /-$
Sin. WOOFER. 8 wattsmax. $20-10,000 \mathrm{cps} 8$ or 15 ohm. 36 ; ELAC 8 in. De Luxe Ceramic 3 ohm or 15 ohm $50 /-$ SPECIAL OFFER 8 or 10 or $12 \mathrm{in} \mathrm{T} \operatorname{Tin}$ cone 3 or 15 Ohm 39 . OUTPUT TRANS. EL84 etc. $5 /-$; GOODMANS 4 watt push. pull 3/8/15 ohm 17/6; MIKE TRANS, $50: 15 /-$. Watt push

ALL EAGLE PRODUCTS

SULUPLIED AT LOWEST PRICES

illustrated eagle cataloque 5/-. Post tree.

BARGAIN 4 CHANREL TRANSISTOR MIXER
Add musical highlights and sound effects to recordings. Will mix Microphone, records, tape and tuner
with separate controls into single output. 9 volt. BARGAIN FM TUNER 88-108 Mc/s Six Transistor. 9 volt,
 Walnut Cabinet. Size 7 - 5 4in.
BARGAIN FM TUNER as above.

E7.10
Chassis only, less cabinet.
FM STEREO MOLTIPLEX ADAPTOR for above or
55
Reneral use. Ready made with 4 trangistors, 6 diodes ≤ 5 BARGAIN 3 WATT AMPLIFIER. 4 Transistor $\mathbf{< 3 . 1 0}$
Push-Pull Ready built, with volume control. 9v. Push-Pull Ready built, with volume control. 9v, ≤ 3.10 Practical Radio Inside Out
Practical Stereo Handbook
Supersensitive Transistor Pocket Radio
Radio Valve Guide, Books 1, 2, 3,
T.V. Fault Finding 405/825 lines..
T.V. Fault Finding $405 / 825$ lines
Transistor Communication Sets...

Transistor Communication Sets
Transistor Circuits for Radio Controlled Model
Valves, Transintors and Diodes equivalents Manual Coil Design and Construction
22 Circuits for Micro-Alloy Transistors
Practical Car Radio Instaliation
E.M.I. 'TAPE MOTORS, 120v, or 240 F AC. 1,200 r.p.m, 4 pole 135 mA $\begin{aligned} & \text { Spindle } 0.187<0.75 i n . ~ S i z e ~ a l, ~(i l l u s t r a t e d) . ~ P o s t ~ \\ & 2 / 6\end{aligned} \quad 25 /-$ BALFOUR GRAM. MOTORS

$3 / 20$, Size	$17 / 6$
Post 2/6.	

CALLERS WELCOME.
, CROYDON

A LONG COOL LIFE

for your valuable components with the

S.D.C. DeC range of SOLDERLESS breadboards

S-DeC Available as single packs with accessories and control panel (a) 29/6d or the DeCSTOR double pack containing 2 S -DeCs, accessories, control panel, all in a plastic storage container. Only 67/6d. A 4 DeC pack is available, only $117 / 6 \mathrm{~d}$.

> T-DeC Now available to the amateur. 208 connection points. 38 independent junctions. Accommodates I.Cs using standard carriers. Three times the capability for only twice the price! Unit pack with control panel 50/-d.

μ-DeC Primarily for use with integrated circuits; further details on request.
T-DeCs, S-DeCs and Accessories are all obtainable from leading suppliers throughout the U.K.
 In case of difficulty complete the coupon and mail without delay.

S.D.C. Electronics (Sales) Ltd.,

34, Arkwright, Astmoor Industrial Estate Runcorn, Cheshire. Tel.: Runcorn 5041

STEPHENS
 ELECTRONICS P.O. BOX 26 AYLESBURY, BUCKS.

SEND S.A.E. FOR LISTS GUARANTEE
Satisfaction or money

GUARANTEED VALVES BY THE LEADING MANUFACTURERS BY RETURN SERVICE

AZ31 AR50 CBLI CBL3

 DAF96 DF91
 DF96
 DL9: DL94
 DL96 DM 70
 DY $86 / 7$
 $$
\begin{aligned} & 8 / 6 \\ & 8 / 1 \\ & 8 / 6 \end{aligned}
$$
 E55L E88CC
 E130L
 EBC41 EBC81
 EBC90 EBF80 $E_{B F 8: 4}$ EB97
 EBF8 EB91 EC53
 $\begin{array}{ll}\text { EC53 } & 10 \\ \text { EC8f } & 12 \\ \text { EC88 } & 12\end{array}$
 $\begin{array}{lr}\text { EC8 } & 12 \\ \text { EC88 } & 12 /- \\ \text { EC90 } & 8 /- \\ \text { EC92 } & 6 / 6 \\ \text { EC93 } & 9 / 6 \\ \text { ECC81 } & 8 /-\end{array}$
 $\begin{array}{ll}\operatorname{ECC} 1 & 8 \\ \operatorname{ECC} 4 / 3 & 8\end{array}$
 $$
\begin{aligned} & 8 / 6 \\ & 8 / 6 \\ & 8 / 6 \\ & 8 / \\ & 42 / 1 \\ & 90 \\ & 18 / \\ & 10 \end{aligned}
$$
 18 $10 / 8$ 10 11

 YEAR'S
(8 ECL L800 30

EY83		
	$8 / 3$	EY87
EF86	$13 / 3$	EY88
EF84	$8 /-$	EZ35

$$
\begin{array}{r|lr}
\text { 8/8 } & \text { EF80 } & 8 / \\
8 / 6 & \text { EF83 } & 10 \\
8 /- & \text { EF83 } & 8 / 3 \\
8 / 6 & \text { EF86 } & 13 / 3 \\
55 /- \text { EF89 } & 8 / \\
8 /- & \text { EF91 } & 8 / 6
\end{array}
$$

8/6	EZ 40
$10 /$	FZ41
9/6	EZ80

$$
\begin{array}{l|l|l}
9 / \beta & \text { EF } 800 & 2 \\
\text { B/6 } & \text { EF804 } \\
\text { O/B }
\end{array}
$$

$$
\begin{array}{l|ll}
\text { 8/6 } & \text { EF804 } & 20 \\
\text { 8/6 } & \text { EF811 } & 1 \\
8 /- & \text { ET }
\end{array}
$$

$\begin{array}{rlr}8 /- & \text { EL34 } & 10 \\ 5 / 3 & \text { EL } 41 & 11 \\ 10 /- & \text { EL } 42 & 11\end{array}$

| $8 / 3$ | PY801 |
| :--- | :--- | :--- |
| $8 / 3$ | PY 82 |

$$
\begin{aligned}
& \begin{array}{lll|l|l|l|}
& & 8 / 6 & \text { PY83 } & 10 /- & \text { UL41 } \\
11 /- & \text { PCC88 } & 14 /- & \text { PY88 } & 8 / 8 & \text { UL84 } \\
\text { 11/- } & \text { PCC84 } & 12 / 3 & \text { PY600 } & 20 /- & \text { UM80/4 } \\
\text { 18/- } & \text { PCC189 } & 12 / 3 & \text { P230 } & 16 /- & \text { UY4 }
\end{array} \\
& \begin{array}{l|l}
11 /- & \text { PCC88 } \\
15 /- & \text { PCC84 } \\
16 /- & \text { PCC189 } \\
12 / 8 & \text { PCF80 } \\
8 /- & \text { PCF882 }
\end{array} \\
& \begin{array}{r|r}
12 / 6 & \text { PCF80 } \\
8 /- & \text { PCF882 } \\
8 / 6 & \text { PCF84 }
\end{array} \\
& \begin{array}{c|c|c}
\text { 8/8 } & \text { PCF84 } \\
7 / & \text { PCF86 } \\
11 & \text { PCF }
\end{array} \\
& \begin{array}{l|l}
\text { 8/6 } & \text { PCF801 } \\
8 / & \text { PCF80: }
\end{array} \\
& \begin{array}{l|l|}
\text { 8/- } & \text { PCF80 } \\
\text { 8/- } & \text { PCF805 } \\
\text { 8/- PCF806 }
\end{array} \\
& \begin{array}{l}
\text { PCF806 } \\
\text { 1/ } \\
\text { PCF808 } \\
\text { PCH200 }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
\text { 8/6 } & \text { PCL83 } \\
5 / 6 & \text { PCL84 } \\
\text { 日/- } & \text { PCL85 } \\
\text { 9/- } & \text { PCL86 }
\end{array} \\
& 5 / 6 \text { PD500 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
100 \\
18
\end{array} \\
& \begin{array}{c|l}
12 / 3 & \text { P230 } \\
10 / 3 & \text { QQvor-s } \\
10 / 8 \\
9 / 6 & \text { QQvo3-10 }
\end{array} \\
& \begin{array}{c|c}
10 / 8 & \text { QQVO3-1 } \\
12 / 8 & \text { QYO3-12 } \\
12 / 3
\end{array} \\
& \begin{array}{l|l|l}
18 / 3 & R 19 \\
12 / 3 & R 20 \\
12 / 3 & \text { RU' }^{2} 150 \mathrm{~A}
\end{array} \\
& \begin{array}{ll}
12 / 3 & \text { RU2150 } \\
13 /-7121 \\
12 / 3 & \text { TT } 22 \\
13 / 8 & \text { U18 }
\end{array} \\
& \begin{array}{l|l}
13 / 6 & U 18 /- \\
14 / & \text { C20 } \\
10 / 3 & \text { V25 }
\end{array} \\
& \begin{array}{ll}
12 / 3 & \text { U2ti } \\
10 / 3 & 1731
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { UL84 } \\
& \text { UM80/4 } \\
& \text { UY41 } \\
& \text { UY85 }\end{aligned}$

$7 / 3$	PY801
$8 / 3$	PY80
$9 / 3$	PY $8{ }^{\circ}$

11-	$6 \mathrm{AR}{ }^{\text {a }}$
$9 /-$	6.485
8/-	6.An79
8/9	6at'
15/-	6AL6
15/-	fiavh
14/6	6BA5
17/-	6BEf
11/-	6BH6
24/6	613J6
6/6	6BK7A
9/-	${ }^{\text {fibl8 }}$
$0 \cdot 6$	fiBN5
101	$6 \mathrm{HN6}$
$7 /-$	6BQ5
$8 / 8$	6BR7
$81-$	6BR8
$7 /-$	
8/-	6BW7
11/-	6 BX 6
8/-	6RZ6
7/6	6C4
8/-	acsgT
8/-	bCDigi
9/-	$6 \mathrm{CA4}$
8 -	¢CA7
15,-	6 CBC
8/8	6CD60
9/6	6C¢7
7/6	6 CH 6
10/-	6CL6
$5 / 8$	scw4
6/-	6 CY 5
11/6	6 CY
8/6	6D3
3/3	$6_{6 C 6}$
5 /-	6DK6
4/6	6DQtiB
8/8	idS 4

\section*{B/6 6 EH
 | 6/6 | |
| :--- | :--- |
| 8/6 | 6EJ7 |}

SEMICONDUCTOR

$\begin{array}{lr}2 N 404 & 4 \\ 2 N 696 & 4 \\ 2 N 697 & 4 \\ 2 N 698 & 3 \\ 2 N 699 & 12 \\ 2 N 706 & 2 \\ \text { 2N } 06 \text { A } & 2 \\ \text { 2N } 788 & 3 \\ 2 N 709 & 12 \\ 2 N 718 & \end{array}$

STYLII

Acos	Sapphire	Diamond	garrard	Srpphive		
$\mathrm{GP59}^{\text {9 }}$	2/6	${ }^{2} / 6$	EVebsteren	\%/6	${ }_{\text {d/6 }}$	
${ }^{\text {iP65 }}$	${ }_{2 / 6}^{2 / 6}$	7/6	(iC) ${ }^{\text {c }}$ -	$2 / 6$	7/6	
(fPis-1	- ${ }^{2 / 6}$	$7 / 6$ $8 / 6$	(CC8 ${ }_{\text {Cli }}$	${ }_{2 / 8}^{2 / 8}$	${ }_{7 / 6}^{7 / 8}$	
(1P73-2	${ }_{8 / 6}$	${ }_{8 / 8}^{8 / 8}$	$(\mathrm{CCs} 10 / \mathrm{l}$	${ }_{2 / 6}^{2 / 6}$	$7 / 6$ $7 / 6$	
${ }_{\text {GP79 }}$	$2 / 6$	7/6	GCs $10 / 2$	$2 / 6$	$7 / 6$	
OP81-1	$2 / 6$	7/6	¢1-2	$8 / 8$	$9 / 6$	
GP91-1	8/8	9/6	Tsi ${ }^{\text {-. }}$	${ }_{6 / 6}$	${ }_{9 / 6}$	
EPPaj^{2}	$8 / 8$	9/6	TS2	8/6	$9 / 6$	
	$8 / 6$ $8 / 6$	9/6	TS3	6/6	$8 / 6$	
GP91-3sc	${ }_{6 / 6}^{6 / 8}$	9/6	GOLDRING			
HGP37	2/6	7/8	См¢0.	$2 / 8$ 8	7/8	
			M ${ }^{\text {I }}$	$2 / 6$	7/6	
BSR TC8H	$8 / 6$	${ }_{7 / 8}^{9 / 8}$	MX2	$2 / 6$	7/6	
BSR TC8M	${ }_{2 / 6}$	$7 / 6$	Stereo CS80	${ }^{2 / 6}$	7/6	
BSR ST8	8/6	9/6	Perpetudum e	NER ${ }_{\text {B/6 }}$		
B8R 8T9	$8 / 6$	$9 / 6$	PHILIPS	8/6	9/6	
BSR XIM	8/6	$9 / 8$	AG3016	$2 / 6$	\%/6	
B8R X1H	6/8	9/6	AG3063	2/6	$7 / 8$	
B8K $\times 3 \mathrm{M}$	0/8	${ }_{9 / 8}$	Sta3304	8/8	$9 / 6$	
BSR $\times 3 \mathrm{H}$	8/8	9/8	${ }^{\text {AG3310/3306 }}$	6/8	9/6	
BSR X 5 H	8/6	9/6	AG3400	2/6	7/6	
BSR X 4 H	8/6	9/6	RONETTE BINO	LUID		
collaro			BF40	2/6	7/6	
${ }_{\text {Collaro }} 0^{\circ} \mathrm{Btwlis}$			DC284	2/6	7/6	
Collaro-Ronet	2/6	7/6	SONOTONE			
Conaro-Rmett	2/6		2T	${ }^{6 / 6}$	$9 / 6$	
Collel 8 K 1	2/6	${ }_{7 / 6}$	$8{ }^{\text {8T4A }}$	${ }_{8 / 8}^{8 / 8}$	${ }^{9 / 8}$	
Dual CDN $/$ /CDs 3			9TA	${ }_{8 / 6} 8$	$9 / 6$ $9 / 8$	
(DN: ${ }^{\text {a }}$ (8/6	9/6	$9 \mathrm{TA} / \mathrm{HC}$	8/8	9/8	
Dual CDs/3:0	$8 / 6$		19T	2/6	\%/6	
ELAC K*T9	$6 / 6$	9,8	The Diamond Tip is o07in radiun, thus			
(PE10)	6/6	9/6				
El\|'E	B)	6/6	8/6	records on mono		
ER5MB	$8 / 6$	9/6	damage to the record; and of coursefull			
ER5M	$2 / 6$	$7 / 6$	BRITISH MADE			
ER0SB	8/6	9/6				
ER60 Stereo	6/6	9/6	EXPORT ENQUIRIES WELCOMED			

CARTRIDGES

ACOS		$\begin{aligned} & \text { Jhe. P.T. } \\ & \text { each } \end{aligned}$
CiP\%		12/6
Cr901-1st		21/
		17/9
		15/6
		13/6
41P91-2sc		As abore
(:191-3s ${ }^{\text {c }}$		As abow
suitable to replace TC8, etc.		
GP90:		26/5
CP93-1		24/9
GP94-1		31 /-
GP94.5		36/-
($\mathrm{P95}^{5}$.	24/9
GP90		$31 / 6$
1 $\cos 1041.10$	\cdots	41/10
11-25	.	39/9
$\because 5.50$		$38 / 3$
$51 \cdot 493$		35/5

New and Budget tubes made by the

 teed for 2 years. In the event of failure under giarantee, replacement is made without the usual time wasting forms type postage expense. New Budget
A50-1 20 W

 AW53-88AW50-50 AW59-91
A $59-15 \mathrm{~W}$ पiv30-20 4/10 $\begin{array}{lll}\text { MW43-64Z } & \text { CRM17I } & \\ \text { MW43-80Z } & \text { CRM17! } & 6 / 12 /-4 / 12 / 6\end{array}$ $\begin{array}{lll}1 W 43-80 Z & \text { CRM173 } & 8 / 12 /-4 / 12 / 6 \\ \text { CW } 43-80 \% & \text { CME1702 } & 6 / 18 /-4 / 12 / 6\end{array}$
 DE BANKS MAGNETIC RECORDING TAPES

SOLDERING INSTRUMENTS

DON'T WASTE MONEY

. . . on the purchase and main. tenance of unnecessarily complicated and expensive soldering irons.

In probably 75% of cases the LITESOLD range of lightweight, high performance instruments pro vide the sensible choice. These well-balanced, quality tools reflect nearly twenty years development resulting from wide use in industry.

There are 7 models from 10 watts to 60 watts covering the whole field of electronic soldering, listed at from 32/- with quantity discounts. They are backed by a fast and inexpensive repair service, although servicing is simplicity itself, using ex-stock spares.

Full details of the LITESOLD models free on request, together with introductory details of our ADAMIN micro-instruments and LITESTAT Thermostatic modelsfor some of those other 25% of cases. Ask for literature L37

LIGHTSOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL Telephone 01-688 8589 \& 4559

DOOR INTERCOM

 Know who is calling and spea to them without leaving bed microphone with call pueh button, connectors and master inter-cons. simply plugs to gether. Originally sold at \&10. special snip price 40/6 $3 / 6$ pastage.

5A, 3 PIN SWITCH SOCKETS
An cacellent opportunity to make that bench dis board you have neetle tor to stock up this month we offer British jubse (Hicraft) bakelite flush mounting ehuttereal $\overline{\mathrm{A}}$ (HWitch sockets for only $10 /-$ phus $3 / 6$ pos and insurance. $(20$ hoxes poet TELESCOPIC
AERIAL.
ep).

,

ar tranmitter. ('hrome pla-ted-six sections, extends from it to 47 in . Hole in iontom for 6 BA surew.
上. $9 / 6$.
PHILIPS TRIMMER
0-30pf an old design but which has never lieen bettered.

MINIATURE WAFER SWITCHES

WAFER SWITCHES
 if way-1 pole, 12 way, All it $3 / 6$ each. 86/- tozen, your insortiment

WATEPRROOF HEATIMG
 26 yatis length 7ow. Nelf-regulatink

BLANKET SWITCH

Double pule with neon let
nto side so luminous in dark, ideal for dark room light or for use with waterpmot element, new
case $5 / 6$ eacb, 3 heat mondel $7 / 6$. COPPER CLAD ELEMENT
1250W-4ft long but bent to shape, fodeal fir werheal heater-just mount reflector at

ERGOTROL UNITS

These units made by the Mullard iroup are for operaing and con
troming A.C. mains.
upply a variable frc. resulting in motor speed control-and operation efficiency far superior to most nther methods.
These unita are contained in wall

hounting cabinets with front contri
 firing control.
4 models are available-ail ne brand new ill makers cases: .. 817.10 .0 Model 2410 for up to 5 amps
Model 2411 for up to 10 amps
27.10.0

GLADIATOR' 2 WAVE BAND TRANSISTOR RADIO
fransistor, 2 wave band (mediuni and long) pocket radio with currying handle and earplug. These radios use a ferrite elab aerial and a convent ional superhet circuit with buit in moving coil speaker. Completely buit up,
ready to play. Offered at less than inporters ready to play. ofrered at due to bankrupt purchase. A remarkable bargasin. 59/6 plus $3 / 6$ poot and ins

COMPONENT SNIP
WIRE WOUND CONTROLS BY WELWYN Nirudard size approximately lin (lifa.) with integral bakellte control knob. Nuitable for preget or variable circuits. Following valuee available.

THE FULL-F! STEREO SIX

 The amplifier sensation of the year You will be anmazed at the fullness of reproduction and at the added qualities your records or tuner will re-
produce. Built into metal produce. Builtinto metal cabinet eieganty beyled
with molern furnishinge, tbis amplifier uses an integrated wolld state circuit with an output yower of 6 watts R.M.S. sph over the two channels. The anplifier is ideal for use with normal volume and and tuners, it has a double wound Mono to Stereo, tuner or pick-up. Other tone controls-also swilehifg hor cut", "balance"' and separate mains on/of switch. Price is $88.19,6$ plus $7 / 6$ post and ineurance.

THERMOSTAT
WITH
PROBE
This hat a sensor attached to a 15 A switch by a 14 in length of flexible capiliary tubing-controi range is $20^{\circ} \mathbf{F}^{*}$ to $150^{\circ} \mathbf{F}$ so it is suitable to control soil heating and liquid heating copecially when im buckets or portable vesaels the the senwor can be raised to vessel. This thermostat could aloo be temp. i round a bell or or heap subject to spontaneous combuation or if iiquid is belag heated by gas or other means not controllable by the switch Made by the famous Teddington Co., we ont these at 12/6 each. Postage and Insurance $2 / 9$

CORONET CAMERA

at a Iraction of maker's price. $19 / 6$ plus P. \& P at a
$\stackrel{2}{2} / 6$
plus
plus this FREE ever-ready drop-iront case and shoulder precision auto-focus lens. Perfect pletures in cotour anil B \& W. 12 pictures on Kodak 127 fim. Extremely
 free trial. We guarantee to return your full if you can't take perfect pictures.

Meon Mains Teater, $1 / 8$ ench, 12/- doz
Flood Lamp Control. Our dim and fuli switch is ideal for controlling photo flood lamps; it gives two lamps in series, two lamps full brilliance and lampa off. Similar control of other applances can be arranged where used in pair or where ciliy the can be split exactly in half. Technicaliy the witch is known as a กf. Our pice bil
8 ab-Miniature 8ilicon Diodes, General purpose
dozen.

Clicalar Flex, Non-kink. Ideal for vacuum yd., 100 yd , coil for $80 /-$, plus $6 /$ - postage.

Where postage is not statell then orders over tö are post frec. Below tō add $2 / 9$. NemiN.A.E. with enquiries please.

Dept. PE, 266 London Road, Croydon CRO 2TH Also 102/3 Tamworth Road, Croydon

Wow! a fast easy way TO LEARN BASIC RADIO and Electronics

*

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way Now you can Jearn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical know-how sooner than you would have thought possibleread circuits, assemble standard components, experiment build , and enjoy every moment of it. B.I. E.T's Simplitied Buid Method and the remarkable new TECHNATRON SelfBuid Outfit take the mystery out of the subject-make learn
ing coasy and inforesting
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

YOU'L UNDER more EXACTLY WHAT YOU ARE DOING. The Technatron Outit contains every thing you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.
You LEARN-but it's as
fascinating as a hobby
Among many other interestmeg experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the training is as rewarding and interesting as any hobby. It could be the springhoard for a career in Radio and Electronics or provide a great new, sparetime intersst.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept. 37IB, Aldermaston Court, Aldermaston, Reading, RG7 4PF

A 14-year-old could under stand and benefit from this Course--but it leaches the real thing. Bite-size lessonswonderfilly clear and easy to understand, practical projects rom a burglar-alarm to sophisticated Radio set
here's your chance to master basic Radio and Electronics, even if you think you're a "non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 164 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full delails and a 164-page book -'ENGINEERING OP-PORTUNITIES'- Free and without any obligation.
 send me full details and FREE 164-page book name
address
BRAND NEW FULLY GUARANTEED TRANSISTORS send $\underset{\substack{\text { sin } \\ \text { NEW LIST • NEW PRICES }}}{ }$

IN 4004
IN 4006
IN4007
IN 4007
1N4148
2 G 210
2G240
$2 G 301$
2G301
2G306
2G308
2G309
2G308
2G309

2
2
2
2
2
2
2
2 +

Practical Electronics Classified Advertisements

RATES: $1 / 6$ per word (minimum 12 words). Box No. $1 / 6$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS

PSYCHEDELIC LUMINOPHONICS

Or is this just another way of referring to FANTASY? Either way, our Projects 24 and 1014 probably come within this category-THINK OF THE FUN come within this HAVE WITH SOMETHING LIKE THIS AT A PARTY! There are MANY OTHER UNUSUAL PROJECTS TOO-how about an ELECTRONIC STETHOSCOPE for LISTENING THROUGH WALLS, etc., or a TRANSMITTER RECEIVER that doesn't use RF, SO LICENCE WORRIES ARE OVER! Then theres another project for a "LEARNNG BACKROOM; YOUR one of these FRIENDS WOULD AMAZED! If' REALLY UNUSUAL proiects interest you, then WE'V GOT WHAT YOU WANT. In a rew days from now You Couto Be in The "SCIENCE FICTION" WORLD OF "BOFFIN"I
DON'T PUT IT OFF! SEND 3/- for your list-NOW BOFFIN PROJECTS
4 CUNLIFFE RD.. STONELEIGH, EWELL, SURREY Designs by GERRY BROWN and JOHN SALMON and presented on TV

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ in \times any length. DEW LTD. Hingwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

AUDIO FREQUENCY RESPONBE GRAPH PAPER for response plots, circuit design, studios, teching, hi ff. Samples free, single sheets 6d., quantity reductions. NTS, 4 Red Lodge Road, West Wickhan, Kent. (07-777 9180.)

PARAPHYBICAL LABORATORY, Downton, WAlts. Fascinating international' magazines. S.A.E. for list. Parcel 20t.

TINY TRANSIBTOR MODULES, can be used as multivibrators, bistables, monostables, code practice oscillators, divide by two circuits, etc. practice oscillators, divide a few additional components to decide with a few additional components to module. function. Full information with every module. Park Road, London s.E.26.
sOcKET8 TO YOU will be a thing of the past, and also pluge and bare wires when you make and a quick electrical connection with the reh and tionary new Keynector. Ideal for bench and high speed testing of electrical equipment. A must for the do-it-yourself fan. Send for a leaflet to: E. B. INSTRUMENTS (Dept. PE), 49/53 Pancras Road, London N.W. 1 (01-837 7781). Only $46 / 6$ plus postage.

TOP TRANSISTORS

CLEARING LABORATORY, scopes, V.T.V.M's V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, potentiometers, voltage regulators, sig- Beeding 236.

MISCELLANEOUS (continued)

ALL THOSE LITTLE ITEMs which you can never find are available from our stock. Also speaker fabrics, BAF wadding, Peerless speakers, cabinet kits, cross-over's. For full details send 9d in stamps to: AUDIOSCAN, Dept. PE, 4 Princes Square, Harrogate, Yorks.

BIG BARGAIN PARCEL 13/POST PAID

Containing multi-contáct relay, eransistors, resistors (some high stab), rectifiers, diodes, capacitors, pots, knobs, etc.

6 OR 12 VOLT
 FLUORESCENT LIGHTS

12 ins. 8 Watt tube ample light for caravan, tent, etc. Fully transistorised, low battery drain. Unbeatable at $65 / 6$ post paid. or in kit form $57 / 6$

4 WATT GRAM AMPS.

Volume and tone concrols, mains operation,
3Ω output, new and boxed
SALOP ELECTRONICS Callers welcome
23 Wyle Cop
SAST
23 Wyle Cop shropshire S.A.E. for lista

MUsical miracles! Drum, Cymbals, Waawas and Fuzz modules. New unique effects waits, Percussion, etc. Good waa-waa kits 49/-. Famous "Mister Bassman"' bass pedal unit. Also bargain components list of reed switches, Also bargain componew Send S.A.E. NOWI D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.

ENAMELLED	COPPER WIRE	
S.W.G.	Per tibreel	$16 / 6$
18-22	$11 / 3$ $11 / 9$	17/6
23-30	12/3	18/6
36-40	15/-	24/-
41-44	17/9	29/6

Orders despatched by return of post. Please Orders despan P \& P. Supplied by: BANNER TRANSFORMERS, 84 Oid Lansdowne Road, West Didsbury, Manchester, 20 . TRADE ENQUIRIES INVITED.

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE

because this GPO approved transmitter/receiver kit does not use R.F, and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means Actually it's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmitter AND receiver. YOMUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGEhas obvious applications for HOUSE-TO-HOUSE has obvious applications for HCTS, LANGUAGE LABORATORIES, SCOUT CAMPS, etc.

GET YOURS ! SEND 95/-NOW
TO: 'BOFFIN KITS'
STONELEIGH, EWELL, SURREY

HI-FI EQUIPMENT

8HURE GOLDRING Cartridges. Post Free. G800, M44/5/7 \$7.17.6. M3D 25.5.0. M44E 28.18.6. M55E so.19.6. M75E/2 216.10.0. Garrard 8P25/2 \&10.17.6. AP.75 \&16.17.6. P. \& P. 7/6. ULTIMATE ELECTRONICS, 38 Achilles Road, London, N.W.b. Mail Order Only.

SERVICE SHEETS

BERVIGE SHEET8. Radio, TV, etc., 8,000 models. List $2 /=$. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

8ERVICE 8HEET8 (1925-1970) for 'Televisions, Radios, Transistors, Tape Recorders, Record Players, etc by return post, with free Fault Players, etc., by rices from 1/- Over 8,000 Finding Guide. Prices from $2 / 6$. Please send models available. Catalogue 2/6. Please send S.A.E. with all orders/enquiries, HAMILT.
RADIO, 54 London Road, Bexhill, Sussex.

LARGE SUPPLIER OF
 SERVICE SHEETS

T.V., RAOIO, TRANSISTORS, TAPES, CAR RADIOS 5/- EACH, MANUALS FROM 10/-
(Uncrossed P.O.'s please, original returned if service sheets not avallable.) FREE TV FAULT TRACING CHART OR TV LIST ON REQUEST WITH ORDER
C. CARANNA

7 I BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

RADIO TELEVI8ION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b ShepJOHN GILBERT TELS Bush ld., London, W. 6 (01-i43 8441).

FOR SALE

EEN MY CAT? 5,000 items. Mechanical and lectrical Gear, and materials, S.A.E. K. R WHISTON, Dept. PE, New Mills, Stockport.

MORSE MADE ! !

FACT NOT FICTION. It you start RIGHT you will be reading amateur and commercial Morse withla a month (normal progrese to be expected).
Using sclentificaliy prepared 3 -speed records you utomatically learn to recognise the code RHYTHM whithout translating. You can't help it, it's as casy al earning a tune. 18 W.P.M. in 4 weeks guaranteed. For detaila and course C.O.D. Ting S.T.D. G8RgC (Box 19), 45 GREEN LARE, PURLET BURREE

INTEGRATED CIRCUIT AUDIO AMPLIFIER KIT

- Power output: 3 watts. R.M.S. per channel. - Sensitivity: 160 mv . input for 3 watts output. Output load: 7.5 to 15 . - Frequency response: -15 Hz to 50 KHz (30db down). Treble cut and boost : -18 db to +12 db . Bass cut and boost: -14 db to +12 db . Noise level: -80 db max. (referred to 3 watts output). - Hum: -70 db max. (referred to 3 watts output). Crosstalk: -40 db . Distortion at 3 watts output 1% max. (Total harmonic). - Price of kit of parts and full constructional details $f 15$.

TELEVISION CITY

Dept. PE1, 50 Richmond Road
Kingston-upon-Thames, Surrey
Tel. 01-546 3961 (100 yds. from Station)
Daily 9.30-5.30; Friday 9.30-7; Closad Monday.

FOR SALE (continued)

NEW CATALOGUE No. 18 , containing credit vouchers value $10 /-$, now available. Manufacturers' new and surplus electronic and mechanical components, price $4 / 6$, post free. ARTHUR NALLIS RADHOCONTROL LTD. 28 Gardner Street, Brighton, Sussex.

WANTED

CAsH PAID for New Valves. Payment by return. WILLOW VALE ELECTHONICS. 4 The Broadway. Hanwell. London. W. 7. 01-567 5400/2971.

PRACTICAL ELECTRONIC8. Sept., Oct. Nov. Iec. 1969 WANTED. State price. Box ㄷo. 31

TOP PRICES PAID

for new valves and components Write:
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

ELECTRICAL

BESTEVER 200/240 VOLT "MAINS" SUPPLY FROM 12 VOLTCAR BATTERY Exclusive World Scoop Purchase. The fabulous Mk. I2D American Heavy Duty Dynamotor Unit with a Massive 220 watt output and
giving the most Brilliant $200 / 240$ yolt performance of all time. Marvellous for TelevisionDrills, Power Tools, Mains Lighting. AC Fluorescent Lighting and all 200/240 volt Universal ACIDC mains equipment. Made at tremendous cost for U.S.A. Govt. by Delco. Remy. This magnificent machine is unobtainable elsewhere. Brand New and Fully Texted.
Only $4.19 .6+10 / 6$ postage. C OD Only $44.19 .6+10 / 6$ postage. C.O.D. with pleasure, refund guara
for illustrated details.
Dept. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade
Blackpool, Lancashire
SITUATIONS VACANT
A.M.I.E.IR.E., A.M.S.E. (Elec.), Clty \& Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee' terms. Wide range of Home Study Courses im Electronics, Computers, Radio, T.V., etc. 132-page Guide-FREE. Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124K), Aldermaston Court, Aldermaston Berks.

ELECTRONICS

ENTHUSIASTS !
South East London Component Retailers Urgently need

ADDITIONAL STAFF

Please contact Mr. Hyde
GARLAND BROTHERS LTD.
Deptford Broadway
London, S.E. 8
01-692 4412

RECEIVERS AND COMPONENTS

Printed circuits, $\frac{1}{16}$ in. SRBP, rollertinned and drilled, with circuit layout printed on reverse side available for Two Tone Tester (7s, 6d.)
Humidistat (12s.)
Guitar Amplifier
Prices include post and packing, S. A.E. for list or C.W.O.

ALBOL ELECTRONIC \&
MECHANICAL PRODUCTS LTD.
2 Vine Lane, Tooley Street
London, S.E. 1
Tel. 01-407 4214

8EMICONDUCTOR DIODES. OA81, OA95, OA200, OA202, IN914, 1/6 each. P' © P. $1 / 6$. I) i I) ELECTRONICS, so Scot Lane, Newtown, Wigan, Lancs (Mail Order Only).
TOROIDALMAINS TRAN8FORMER. Primary 240 V , secondary 42 V , at 140 VA . Size $4 \frac{1}{2} \mathrm{in}$ dia. $\times 1 \frac{1}{2} i 11$ deep. $£ 310 s$ plus $6 /-$ post. Mounting clips $2 /-\mathrm{for}$ four required. A VDIO SERVICES (ST. IVES), 3a Kings Hedges, St. Ives, Huntingdon.

DIODE8 suitable for line sync circuits in T/Vs, switching circuits. Organ Buildersuntegted, unmarked. 85 per 1,000 plus $1 /-$ P. de P. O.W O. to MRs. M. EVANs, 3a High Street, Teddington, Middx.

RECEIVERS AND COMPONENTS

(continued)

WEST ELECTRONICS
 78 PARK HILL ROAD WALLINGTON, SURREY

ACl07	7/6	OC44	2/10
AC127	5/6	OC_{45}	2/10
AC128	4/-	0 C 71	2/6
BC107	2/6	OC139	5/-
BC108	2/9	OCl 40	6/-
BFY50	3/9	1 N 914	3/-
BFYSI	3/6	IN4001	2/-
BrY52	3/9	in4002	$2 / 3$
BY126	3/9	IN4003	$2 / 6$
BY127	3/9	IN4004	$3 /-$
OA90	1/4	IN4007	4/6
OA91	1/8	2N2926	2/6
OA200	1/4	2N3053	$5 /$
OA202	1/8	2N3055	.12/6

> P. \& P. I/- min. S.A.E. for CAT. MONEY BACK GUARANTEE

RESISTORS

I watt. Only 3d each

Top qual. Hi stab. Low noise. Carbon $39,47,50,56,100,200,270,360,390,470,560$, $680,820,910 \Omega$. $2 \cdot 4,3 \cdot 3,3 \cdot 6,4 \cdot 7,5 \cdot 1,6 \cdot 2,6 \cdot 8$, $7.5,8.2,10,12,16,18,20,27,33,39,56,82,120$. $130,150,160,180,220,360,430,680,820,910 \mathrm{~K} \Omega$. $1 \cdot 2,1 \cdot 5,1 \cdot 8,2.4,2.7,3,3.3,3.6,3.9,4.7,5.1$;
$5.6,6.2,6.8,9.1$ $5 \cdot 6,6 \cdot 2,6.8,9.1,10,11,12,13,15,18,20,22 \mathrm{Ma}$:
Moner ref. to:

TWENTIETH CENTURY STORE
Station Approach, Chipstead, Surrey CR3 3TD

SITUATIONS VACANT
(continued)

IISE
 Established 1891
 TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man. Let IC S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc.
Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
* RADIO OPERATOR CERTS.

Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

International Correspondence Schools
(Dept. 152), Intertext House, Stewarts Road, London, S.W. 8

POLYSTYRENE CAPACITORS. 125 or $350 \mathrm{~V}^{\prime} 150$, $180,330,380,560,680,820,1,800,2,200,2,700,5,600$, $6,800,8.200 ; 125 \mathrm{~V}, 18,22,120,220,1,200,1.500$. $3.300,3,900,0.01,0 \cdot 012,0.015 ; ~ P a$
COMPUTER PANELS. 5-BC108 diotes 3/- ea. 4 for 10/=. Post $1 / 6$. 8 -OC76 or OC72 or OC42, 8 -OA $10,7 / 6$.
 etc. $7 / 6$. $2-0(\cdot 170.2($ GET 875 or 4 MDS $34,5 \cdot 100 \mathrm{MFF}$) $12 V^{2}$ electrolytics, pot core, etc., $6 /-. \quad 10-B S X 26$.
5j0ME (3 silicon mpn dioder, ete., 7/6.
MIXED TRANSISTORS ON PANELS. 50 for 12/6. 100 for $20 /-$ Pinels with eatpacitors, resistors. diodes, 6 for $5 /-$. Air'spared trimmers, 25 and 100 pF , 2/- Ceranic 40, fo, 125pF, 6d.
SEL. RECTIFIER AND VARIABLE RESISTOR in neat case. Input 15 V , ontput $0-12 \mathrm{~V}$ at lamp $8 /-$ 1) 4 DT Carry 2amp at $285,700 \mathrm{ohm}$ coil, $10 / 6$. With base, 12/B Pust free.
M.C. METERS 2 in and 24 in . 3 assorted for $21 /-$ M.C. Phones and mike, 450hin, 12/6. P. \& P. $2 /$ unless stated otherwise.
J.W.B. RADIO

75 Hayfield Rd., Salford 6, Lancs.

JEF FOR VALUE

New Branded Full Spec. Devices
Integrated Circuits complete with data :
N5709A Type 709 Op. Anp.
PA:234 IW Andlo Amplifier
PA237 ${ }^{2}$ W Audio Amplitit
D40C1 4 W Darlington Amplifier
MEL 11 Photo Darlington Auplifier
Connectors for D.I.L. i.c.'s
Transintors
2N5172 .. 1/8 BFX86

Triaes and Diacs
RCA40669 8 4 400 V
RCA 40583 Trigger Diode
1A silicon Rectifter
$1 N 4001,60 \mathrm{~V} \quad 1 / 5 \quad 1 N 4004,400 \mathrm{~V}$
$1 N 4002,100 \mathrm{~V} \quad 2 /-\quad 1 \mathrm{~N} 4005,600 \mathrm{~V}$ 1N4003, 200 $2 / 21 \times 4006,800 \mathrm{~N}$ N4007, $1000 \mathrm{~V}^{4}$

Bridge Rectiflers W005 1A 50 V
PD 40 2A 400 V
$7 / 6$
$12 / 6$

JEF ELECTRONICS

(P.E.11), York House, 12 York Drive Grappenhall, Warrington, Lancs. Mail Order Only. C.W.O. P. \& P if not antisfed. Overseas 7/6. Money back if not matisfied.

R \& R RADIO
 51 Burnley Road, Rawtenstall

 Rossendale, LancsTel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

EBF80	$3 /-$	PCC84	$3 /-$	PYB1	$3 / 6$
EBF89	$3 / 6$	PCF80	$3 /-$	PY82	$3 /-$
ECC82	$3 /-$	PCF82	$3 / 6$	PY880	$3 / 6$
ECL80	$3 /-$	PCL82	$4 /-$	PY801	$3 / 6$
EF80	$1 / 6$	PCL83	$4 /-$	Y191	$4 / 6$
EF85	$3 /-$	PL36	$5 /-$	$30 F 5$	$2 / 6$
EY86	$4 /-$	PL81	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 /-$
EBC4i	$1 / 6$	PY33	$5 /-$	$50 C D 6 G$	$7 / 6$

POST. ONE VALVE9d. TWOTO SIX 6d. OVER SIX POST PAID.

CONSTRUCTOR UNITS

R.F. Generotor. Supplied with coils, tuning cap., switch and details for wiring and calibration Covers $150 \mathrm{KH} / \mathrm{z}$ to $30 \mathrm{MH} / \mathrm{z}$. $89 / 6+3 / 6$ p.p. A.F. Unit. Osc. operates at 2 freq's. for A.F. R F. checks, connects as amp. for continuity checks. Dual freq. square wave o/p for audio/HiFi tests. Provides modulation for R.F. unit.
39/6 $+3 / 6$ p.P. S.A.E. for derails.
Tweed Electronics (PE), 9 The Green, Hatfield Peverel, Chelmsford, Essex

PRINTED CIRCUIT BOARDS for P.E. PROJECIS
All boards drilled and roller tinned complete with layout drawing.
EXAMPLES
Marine Tachometer (May 1970) 5/- ea. Musical Stave (May 1970) 8/- ea.
Waa-Waa pedal Vol. 4 No. $72 / 9$ ea. Audio Sig. en. (Sine and Square on one board) Vol. 5 No. 10 8/6 ea.
S.A.E.for List. Now available from:- HENRY'S PH ELECTRONICS Industrial Estate, Sandwich, Kent. Tel. 2517

NEW MODEL V.H.F. KIT MK2
Our latest Kit , improved design and performance plus extra Amplifier Stage, receives Aircraft, Amateurs, This novel little set will give you endless hours of pleasure and can be built in one evening. Powered by 9 Vol battery, complete wlth easy to follow instructions and built in Jack Socket for use with Earpnones or Ampliter

Only 68/-. P. \& P. Free U.K. only
Postal Orders, Cheques to:
Galleon Trading Co., 25 Avelon Road
Romford, Essex
A CORNUCOPIA OF COMPONENTS: Scarce valves, selected TV components, speakers and cabinets. Computer panels-long leads, NOT printed circuits. Transistors, resistors-newank recovered. state your requirements. S.A.E. for details MALL-MART, 6 Eastbourne Road, Pevensey Bny, Sussex.

BRAND NEW ELECTROLYTICS - $15 / 16 \mathrm{~V}$ $0.5,1,2,5,10,20,30,40,50,100 \mathrm{mF}, 8-5 \mathrm{~d}$. E12 series 5\% resistors, Carbon Hilm $\frac{1}{} \mathrm{~W}$ 1Ω to $1 \mathrm{M} \Omega, 1.5 \mathrm{~d}$. Wirewound $5 \mathrm{~W} 15 \Omega$ to $15 \mathrm{~K} \Omega, 10 \mathrm{~d}$. Postage $1 /-$. The C.R. SUPPLY to $15 \mathrm{~K} \Omega$, 10d. Postage 127 , Chesterfleld Rd., Sheffield, S8 ORN.

MULLARD CR25 RE8I8TOR8. 0.4W 5\% HS $2.5 \times-11 d$ each. $47 \Omega-1 \mathrm{M} \Omega$, P. \& P, 1/. NPRING ELECTRONICS LTD., 25 Cranley Gardens, Muswell Hill, N. 10.

WITWORTH TRANSFORMERS LTD.

Dept. P.E., 26 All Saints Road North Kensington, W.II Telephone 01-229 9071. 9 a.m. till 5 p.m.
TELEVISION LINE OUTPUT TRANSFORMERS
PRACTICALLY ANY MAKE OR MODEL SUPPLIED OR REWOUND
EKCO, FERRANTI, DYNATRON
Replacement cases $£ 1$ each, please state model.
S.A.E. for return of post quotation.

TERMS: Cash with order or C.O.D., please add 4s. for postage.
C.O.D. orders will be charged 6 s

Transformers fully guaranteed.

SUBMIN MAIN: TRANS. MT7. $0-230-250 \mathrm{~V}$ to $700-7 \mathrm{~V} \quad 120 \mathrm{~mA}$. ($30 \times 30 \times 37 \mathrm{~mm}$.). With circuits, $13 / 6$. IT.K. post paid. List 6 d . MATROXIX LTD, 396 Selsdon Road, South Croydon, Surrey CR2 0DE.

COUR8E8

Careers in Marine and Aircraft Electronics

Marine Radio Officers

2 years' full time course leading to the General Certificate in Radiocommunications. term full time course leading to the Board of Trade Radar Maintenance Certificate. Conversion Course (Ist or 2nd Class PMG Certificate to General Certificate) R/T Licences (Full or Restricted)

Courses for Qualified Marine Radio and Electronics Officers | Short courses:- | True Motion Techniques - 1 week |
| :--- | :--- |
| Single Sideband Techniques- 2 weeks | FM/VHF Techniques | Transistor Techniques - 2 weeks FM/VHF Techniques \quad Marine Electronics Diploma- 12 weeks $\begin{array}{ll}\text { Transistor Techniques } & 2 \text { weeks } \\ \text { Transistorised Radar } & \text { Marine Electronics Diploma-12 weeks } \\ \text { weeks }\end{array}$

Licensed Aircraft Radio Engineers
A full time course of two years duration commences in September of each year.
This leads to the award of the Aircraft Maintenance Engineers (Radio) Licence,
issued by the Air Registration Board. The course includes the associated
Communications, Navigational Aids and Radar Ratings. approved by the ARB and all instruction and practice is cartied out workshops. Training is given on the latest types of Marine and Aircraft Equipment in
aroroved laboratories at:
THE SCHOOL OF MARINE RADIO AND RADAR
Principal Lecturer: F. E. Earlerop. for further information, apply to
Bristol Polytechnic
Director of Studiet, Department of Navigation, Marine Radio Radar, Bristol
Polytechnic, Ashley Down. Bristol B579EU

EDUCATIONAL

TELEVISION

This private College provides efficient theoretical and prac－ tical training in Radio and TV Servicing．One－year day courses， commencing in Sept．，January and April，are available for beginners，and shortened courses for men who have had previous training．Write for free prospectus to：－ London Electronics College，Dept．LX／3． 20 Penywern Road，Earls Court，London，S．W． 5

Tel．01－373 8721
BOOKS AND PUBLIGATIONS

SPECIAL OFFER

THE FIRST VOLUME ON TRANSISTORS in a new series entitled THE

SEMICON INDEX

to be published in conjunction with

AVO LIMITED

will be ready at the end of September
Brochure available

Designed to provide comprehensive tech－ nical data on semiconductors and to be updated annually，the first volume covers over 16,000 transistors of international origin with 18 sections，a cross reference index，over 600 outline drawings，CV numbers，equivalents and manufacturers．
Invaluable to all Engineers and Buyers
SECURE YOUR COPY NOW Send the special pre－publication offer price
of $79 / 6 d+5 / 6 d$ P．\＆P．direct to
Functional Publication Services Ltd． 29 Denmark Street，Wokingham，Berks． （Normal price to be 55.5 s ．）

SURPLUS HANDBOOKS

19 set Circuit and Notes
II55 set Circuit and Nores
H．R．O．Technical Instructions
38 set Technical Instructions． 46 set Working Instructions 88 set Technical Instructions BC． 221 Circuit and Notes Wavemeter Class D Tech．Instr 18 set Circuit and Notes 6／－P．P．9d BC． 1000 （31 set）Circuit \＆Notes 6／－P．P．9d CR． $100 /$ B． 28 Circuit and Notes $10 / 6$ P．P．1／ R． 107 Circuit and Notes．．．．．．．．．7／6 P．P．9d A．R．88D．Instruction Manual． $18 / 6$ P．P．9d 62 set Circuit 7／－P．P．9d 52 set Sender \＆Receiver Circuits 8／－postfree Circuit Diagrams $5 / 6$ each post free R．1116／A．R．1224／A，R．1355．R．F． 24,25 ，\＆ 26 A．Il34，T．II54，CR．300．BC． 342 ．BC． 312 ． BC．348．J．E．M．P．BC．624．22．1475（88）． 1392 ． Colour Code Indicator 2／6 P．P．6d S．A．E．with all enquiries please
Postage rates apply to U．K．only．
Mail order only to：
Instructional Handbook Supplies Dept．P．E．Talbot House， 28 Talbot Gardens Leeds 8

YOUR PRODUCT OR SERVICE

 can be successfully advertised through these columns．For details of how to send in your instructions please turn to first page of classified advertisements．GET INTO ELECTRONICS－big opportunitips for tramed men．Learn the practical way with tow－cost lostal Training，complete with expuip－
 Radio，TV，Telecoms，eto．For FREE 100） page book，write Dept．S56F，（HAMBERS COLLEAE，Aldermaston Court，Reading．Ra？ 1’ド。

ENGINEERS．A technical certificate or qualiflcation will bring you security and much better pay．Elem．and ady private postal courses for C．Lng．，A．M．I．E．K．E．，A．M．S．E． （Mech．\＆Elec．），（ity \＆Guilds，A．M．I．M．1．， A．I．O．B．and（t．C．E．exams．Diploma courses in all branches of Engineering－Mech．，Elec．， Auto，Electronics，Radio，＇omputers， Draughts，Building，etc．For full details write for FREE 132－page guide．BRITISH INSTITLTE（）F ENGINEERING TECI－ NOLOGY（Dept． 105 k ），Aldermaston（＇ourt， Aldermaston，Berks．

TELERADIO ELECTRONICS

 JOIN THE FASCINATING HOBBY OF RADIO CONTROL．BUILD A SINGLE CHANNEL SYSTEM FOR ABOUT EI2 OR A SOPHISTICATED PROPORTIONAL SYSTEM FOR $\mathbf{£ 8 0}$Details from the specialists：TELERADIO CO．（P．E．） 325－7 FORE STREET，EDMONTON，N． 9

MAKES 5 DIFFERENT

TRANSISTOR RADIOS
 Lase 250 total bullding price 39／6

CONCORD ELECTRONICS LTD．（P．E．12） 8 Westbourne Grove，London，W． 2
（nr．Bayswater Tube）
（Callers 9.6 inc．Sat．）

gline studios limited

printed circuits and precision PHOTO MECHANICAL REDUCTIONS

Copthorne Road，Felbridge．Surrey
Telephone：East Grinstead 23540 works

PLEASE MENTION

Practical Electronics

WHEN REPLYING TO ADVERTISEMENTS

4STATION INTERCOM

Solve your commanica．
4－Station Tranistor Intercom tion problem（ 1 mather and 3 Sabs），in de－fure plastic cabinets for deak or wall mounting．Call／talk／listen from Master to Suba and gabs to master．Ideally suitable for Busipess，Sur－
gers，schools，Hospital，office and Home．Operates on one 9 V battery．On／ofl switch．Volume control． Complete with 3 connecting wires each 66 ft ．and other accessorics．P．\＆P． $7 / 6$

MAINS INTERCOM

Mo batteries－oo wirez．Just plug in the mains for instant two－way，loud and clear communicatione On／offyitch and，volume control with lock systom．

Same as 4－station Intercom for inowiy instant communication．Ideal as Baby Alarm and Door Phone．Complete with 66 ft ．connecting wire Battery 2／6．P．\＆P． $4 / 6$

Tronsistor IELEPHOWE AMPLIFIER 59／6
ciency with the brainess eff fler．Take down long telephone messazes or convers without holding the handset．A useful office aid．On on switch．Volume control．Battery 2 ＇6 extra．P．\＆P 3／6．Full price refunded if not satiafied in 7 days．

WEST LONDON DIRECT SUPPLIES（PE 1
169 KENSLNGTON HIGH STREET，LONDON，W． 8

NEW RANGE U．H．F．TV AERRILS

All C．H．F．derials now fitted with tilting hracke and 4 element grid reflectors．

Loft Mounting Arrays， 7 element，4．－ 11 element． 52,$6 ; 14$ clement， $60,-; 18$ element． $70-$ clement，fis－：II element（ranket Arim，${ }^{7}$ element， $65-1$ I 1 element， $75,-; 14$ element． 826 18 element， 90 －．Chimnes Mounting Airras Complete， 7 element， $80-: 11$ element． $876 ; 1$ element， 9.5 －： 18 element， 105 －．Complete assembly instructions with everv aerial．Low Loss Co Labgear U．H．F．Boosters fromg fis－Belliner Lee ＂Coneome all Band V．H．F．U．H．F．main operated pre－amp ei，io．0．State clearls channel number required on all orders．Г．r．Aerials is Accessories 3－C．W．O．or C，O．D

BBC．ITV．FM AERIALS

H．H．C，（Hand 0），Lott，y．j WallS，D．32，6．＂H＂array， 60 I．T．V．（Hand 3）． 5 elemen Waft arras，4ounting 7 clement，55：－ Combined BBC ITV loft $1+5$ －3．）$-1+7,6 \pi$ ． 6 ，Wall mounting $1+5, \pi \%$ ，Chimney mounting $1+5,90 \%$ ．Pre－amps from 75 －
（ombincer BBCI JTV
 $\begin{array}{ll}\text { vor．} & 1+5+14,90-11+7+ \\ 14, ~ 100-., ~ A v a i l a b l e ~ l o f t ~ o n l y . ~\end{array}$

F．D．Radio Loft S D． $196 . " \mathrm{H}$＂． $3 \times 6 \mathrm{6} .3$ element array．576．Standard co－axial cable， $1-y d . C o a x$ plugs． 18 ．Outlet boxes， 6 －．Diplexer crossover boxes． 17 6．F．P．Acrials， 8 －：accessories．3＇－ C．W．O．or C．O．D．（min．C．O．D．charge 3，6．）i for ully illustrated Lists．

CALLERS WELCOMED

OPEN ALL DAY SATURDAY
K．V．A．ELECTRONICS（Dept．P．E．） 40－4）Monarch Parade
London Road，Mitcham，Surrey 01－648 4884

YATES ELECTRONICS (FLITWICK) LTD.

RESISTORS

High stability carbon film. Very low noise. $0.5 \mathrm{~W} 5 \% 4.7 \Omega$ to $2.2 \mathrm{M} \Omega 2.5 \mathrm{~d}$ each, $100 \% 2 \mathrm{~d}$ each, $0.5 \mathrm{~W} 10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega 2 \mathrm{~d}$ each, $100-\dagger 1.75 \mathrm{~d}$ each. Quantity price applies for any selection. Ignore fractions on total order.

DEVELOPMENT PACK

0.5 watt 5% resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$

325 resistors E12 series $50 /-$
650 resistors E24 series $100 /$.
4 WATT WIRE WOUND RESISTORS $1 / 6$ each.
$10 \% 1 \cdot 0,1 \cdot 8,2 \cdot 7,3 \cdot 3,3 \cdot 9,4 \cdot 7,5 \cdot 6,6 \cdot 8,8 \cdot 2 \mathrm{ohms}$.
5% ㅇ, $15,20,25,39,50,100,200$ ohms.
MULLARD POLYESTER CAPACITORS $\quad 10 \%$ $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 6 \mathrm{~d}$. $0.0068 / \mathrm{F}, 0.01 / \mathrm{F}, 0.015 \mu \mathrm{~F}, 0.022 / \mathrm{F}, 0.033 \mu \mathrm{~F}, 7 \mathrm{~d} . \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.068 / \mathrm{F}, 0.1 / \mathrm{F}, 10 \mathrm{~d}$.
$160 \mathrm{~V}: 0.01 / \mu \mathrm{F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 10 \mathrm{~d} . \quad 0.33 \mu \mathrm{~F}, \mathrm{I} / 3.00 .47 \mu \mathrm{~F}, \mathrm{I} / 6$. $0.68_{l}, \mathrm{~F}, 2 / 3$. $1.0 / / \mathrm{F}, 2 / 6$.
250V: P.C. mounting miniature 20% : $0.01 / \mathrm{F}, 0.015 \mu \mathrm{~F}$, $0.022 \mu \mathrm{~F}, \quad 7 \mathrm{~d} . \quad 0.033 / / \mathrm{F}, \quad 0.047 / \mu \mathrm{F}, \quad 0.068 / / \mathrm{F}, 8 \mathrm{~d}, \quad 0.1 / \mathrm{F}, 9 \mathrm{~d}$. $0.15 \mu \mathrm{~F}, 0.22 \mathrm{IF}, 1 /=\quad 0.33 \mu \mathrm{~F}, 1 / 4$.
MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .05 \mu \mathrm{~F}$, $0.1 / \mathrm{F}, 8 \mathrm{~d} . \quad 0 \cdot 2 \mu \mathrm{~F}, \mathrm{I} /-$.
CAPACITOR DEVELOPMENT PACK
Selection of ceramic and polyester capacitors 100 pF to $1.0 \mu \mathrm{~F}$. Total 100 capacitors, $£ 2.18 .0$.
MINIATURE ELECTROLYTIC CAPACITORS ($-10 \%+\mathbf{5 0 \%}$)

$50 \mu \mathrm{~F}$	6 V	$16 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	12 V	$40 \mu \mathrm{~F}$	16 V	$16 \mu \mathrm{~F}$	40 V
$100 \mu \mathrm{~F}$	6 V	$64 \mu \mathrm{~F}$	10 V	$16 \mu \mathrm{~F}$	12 V	$6-4 \mu \mathrm{~F}$	25 V	$50 \mu \mathrm{~F}$	40 V
$200 \mu \mathrm{~F}$	6 V	$125 \mu \mathrm{~F}$	10 V	$50 \mu \mathrm{~F}$	12 V	$25 \mu \mathrm{~F}$	25 V	$2.5 \mu \mathrm{~F}$	64 V
$320 \mu \mathrm{~F}$	6 V	$200 \mu \mathrm{~F}$	10 V	$100 \mu \mathrm{~F}$	12 V	$8 \mu \mathrm{~F}$	40 V	$10 \mu \mathrm{~F}$	64 V

$250 \mu \mathrm{~F} \quad 12 \mathrm{~V}, 100 \mu \mathrm{~F} 40 \mathrm{~V} \quad 1 / 6$. $1000 \mu \mathrm{~F} 25$ volt $6 /-\mathrm{c}$. $2500 \mu \mathrm{~F}$ $25 \mathrm{~V} 9 /-. \quad 500 \mu \mathrm{~F} 50$ volts $5 / \mathrm{m} . \quad 1000 \mu \mathrm{~F} 50$ volt $8 / \mathrm{m}$
CERAMIC DISC CAPACITORS
$100 \mathrm{pF}, 150 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}, 330 \mathrm{pF}, 470 \mathrm{pF}, 560 \mathrm{pF}, 680 \mathrm{pF}$, 1000 pF , 2000pF, $5000 \mathrm{pF}, 10,000 \mathrm{pF}$, 5d each.
$0.02 \mu \mathrm{~F} 800$ volt 8 d each.
GANGED STEREO POTENTIOMETERS
$\frac{1}{2}$ watt carbon track $5 k \Omega+5 k \Omega$ to $1 M \Omega+1 M \Omega \log$ or linear 8/- each.
SKELETON PRE-SET POTENTIOMETERS
Linear: $100,250,500$ ohms and decades to $5 \mathrm{M}_{\mathrm{ohm}} \quad 20 \%$ Linear. $00,250 \%,-250 \mathrm{k} \Omega$. Horizontal or vertical P.C. $\leqslant 250 \mathrm{k} \Omega, \quad-30 \%,-250 \mathrm{k} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).
Miniature 0.3 watt $1 /=$ each.
Sub-miniature 0.1 watt 10 d each.
TRANSISTORS

ANSISTO				
${ }^{\text {ACl }}$ A ${ }^{\text {A }} 127$ 4/-	$\begin{aligned} & \text { AFI17 } 3 / 6 \\ & \text { BC107 } 3 /- \end{aligned}$		$\begin{aligned} & 2 N 3055 \\ & 2 N 3703 \end{aligned}$	3
AC128 4/	BC108 $2 / 9$	BSY56 6/-	2N3705	
ADI40 8/-	BClo9 3/-	BSX21 5/-	2N3711	
AFIIS 3/6	-BFY50 4/6	2N2926 2/6	ORPI2	

DIODES-OA85, OA91, I/. each

ZENER DIODE

$400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to $33 \mathrm{~V} 3 / 6$
SILICON RECTIFIERS

SILICON RECTIFIERS		BYZIO 600V 10A	$7 /-$
IN4006 800V IA	$4 /-$	BY236 800V 0.8 A	$3 /-$
IN4007 1000 V IA	$4 / 3$		

VEROBOARD

VER	$\begin{aligned} & \text { ARD } \\ & 0.15 \\ & \mathrm{Ma} \end{aligned}$	0.1		0.15 M	0.1
21, ${ }^{2} \times \frac{3}{4}$	3/3	3/9	17×33 (plain)	10/6	
$2 \frac{1}{2} \times 5$	$4!$	4/6	$17 \times 2 \frac{1}{2}$ (plain)	$7 / 6$	
35 $\times 3 \times 3$	4	4/6	$2 \frac{1}{2} \times 5$ (plain)	3/6	-
$3 \frac{3}{4} \times 5$	5/3	5/3	$2 \frac{2}{2} \times 3 \frac{1}{4}$ (plain)	916	16
$17 \times 3 \frac{3}{4}$	$15 /$		Pin insertion tool	$7 / 6$	$7 / 6$
$17 \times 2 \frac{1}{2}$	11/6	-	Spot face cutter	$3 / \mathrm{C}$	3/-

17×5 (plain) 15/
ROTARY SWITCHES
IPI2W, 2P6W, 3P4W, 4P3W, 4/6.
GRADUATED DIALS
For use with potentiometers, selector switches, etc., 3/3. C.W.O. please. I/6 post and packing on orders under Cl . Export Enquiries welcome ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD
(6)
 yive yOU1" Clllira present

The 1971 edition of the PRACTICAL MOTORIST ANNUAL is on sale Monday, October 12 . Its 144 pages of authoritative and lavishly illustrated articles cover every aspect of car maintenance, overhauls, preservation, accessories and holiday motoring-as well as advice on driving safely through adverse conditions such as fog and floods.
PRACTICAL MOTORIST ANNUAL 1971 is an ideal reference book for every family motorist-and truly excellent value for only 5/-.

A UNIQUE REFERENCE BOOK FOR EVERY CAR OWNER
 ON SALE 12th OCTOBER 5/-

FULLY TESTED AND MARKED

AC107	3/-	OCI70
AC126	$2 / 6$	OCi71
ACl27	$3 / 6$	OC200
ACl28	26	OC201
AC176	5/-	2 G 301
ACY17	3/-	2 G 303
AF239	7/6	2N711
AFI 86	10/-	2N1302-3
AF139	7/6	2Ni304-5
BC154	5/-	2N1306-7
$\mathrm{BC171}=\mathrm{BC107}$	2/6	2N1308-9
$\mathrm{BC172}=\mathrm{BC} 108$	2/6	2N38\|9FET
BF194	3/-	
BF274	3/-	Power
BFY50	4 /-	Transistor
BSY25	7/6	OC20
B5Y26	$2 / 6$	OC23
BSY27	216	OC25
BSY28	2/6	OC26
8SY29	2/6	OC28
BSY95A	3 --	OC35
OC41	$2 / 6$	OC36
OC44	$2 / 6$	AD149
$0 \mathrm{OC45}$	$2 / 6$	AUY10
OC71	2/6	2 SO 34
$\bigcirc \mathrm{OC72}$	$2 / 8$	2N3055
0 C 73	3/6	Diodes
OC8 1	$2 / 6$	AAY42
OC8ID	2/6	OA95
OC83	4/-	OA79
OCI39	$2 / 6$	OA8i
OC140	$3 / 6$	IN914

SURPLUS ITTEERAEE CIRCUITS

These are brand new genuine surplus stocks,
marked and guaranceed to fullmakers'specification and not re-marked rejects
NE808A
NE816A
NE
NE85A
NE840A
NE855A
NE870A
SN7430
SP6I6A
SP631A
SP670A
SP806A
SP808A
SP816A
SP825A
SP840A
SP85SA
SP870A
SP880A
NE500K
NE501K
NE806J
NE808J
NE816J
NE825!
NE840J
NE855J
ST620A
ST659A

Single 8 I/P Nand Gate TTL
Dual 4 1/P Nand Gate TTL D.C. Clocked d-K Flip-Flop TTL Dual 4 Power Gate TTL Triple $3 \mathrm{I} / \mathrm{P}$ Nand TTL
8 Inpur Positive Nand Gate TTL Qual 4 Nant Gate DTL
Quad $21 / P$ Gate Expander DTL
Triple 3 Nand Gace TTL
Dual I/P Expander TTL
Single $81 / P$ Nand Gate TTL
D.C. Clocked J-K Flip-Flop

Dual $41 / P$ Exclusive OR Gate TTL
Dual 4 Power Gate TTL
Triple $3 \mathrm{I} / \mathrm{P}$ Nand TTL
Quad $21 / \mathrm{P}$ Nand TTL
Video Amplifier
Video Amplifier 40 MHz
Dual 4 I/P Expander TTL
Single $81 / P$ Nand Gate TTL
Dual $41 / P$ Nand Gate TTL
D.C. Clocked J-K Flip-Flop TTL $17 / 6$
Dual $4 \mathrm{~J} / \mathrm{P}$ Exclusive OR G Dual 4 Power Driver TTL
J-K Flip-Flop DTt
Dual 4 Buffer/Driver DTL
price
$7 /-$
$7 /-$
$17 / 6$
$7 /-$
$7 /-$
$7 /-$
$7 /-$
$7 /-$
$7 /-$
$7 /-$
$7 /-$
$7 /-$
$17 / 6$
$7 /-$
$7 /-$
$7 /-$
$40 /-$
$40 /-$
$7 /-$
$7 /-$
$17 / 6$
$7 /-$
$7 / \%$
$17 / 6$
$7 /-$

Suffix $A=$ DIP iflead; $K=10$ lead TO5; $1=$ Flat

LOOK!
TYPE A
PNP SILICON
PNP SILICON
SPEC
ICER AT VCE $=20$
I mA MAX
HFE 15-100
THESE ARE OF THE 25300
TYPE WHICH IS A DIRECT
EQUIVALENT TO THE
OC200/205 RANGE

TRANSISTORS
PNP TYPE B
PNP SILICON PLASTIC
encapsulation
ICER AT VCE $=10 \vee$
I mA MAX
HFE 10-200
THESE ARE OF THE 2N3702/3 AND 2N4059/62

ONLY 6d EACH TYPE E
PNP GERMANIUM FULLY MARKED AND TESTED

AF. or RF.
PLEASE STATE ON ORDER

W	UNMARKED UNTES		PAKS
B80	8	Dual Trans. Matched O/P pairs NPN. Sil in TO-5 can	10/=
B83	200	Trans. manufacturer's rejects all types NPN, PNP, siil and Germ.	0/-
884	100	Silicon Diodes DO.7 glass equir to OA200, OA202	10/-
886	50	sil. Diodes sub. min. N914 and IN916 types	10/-
B8B	50		10/-
B60	10	7 Watt Zener Diodes Mixed Voltages	10/-
H6	40	250, W Zener Diodes DO-7 Min. Glass Type	10/-
H/0	25	Mixed volts, $1 \frac{1}{2}$ watt Zeners Top hat type	0/-
HII	30	$\begin{aligned} & \text { MAT Series "alloy" pnp } \\ & \text { Transistors } \end{aligned}$	10/-
15	30	Top Hat Silicon Rectifers. 750 mA . Mixed volts	10/=
H16	8	Experimenters' Pak of incegrated Circuics. Data supplied	10/-
	20	BY126/7 Type Silicon Rectifiers, I amp plastic Mixed voles	10 =

NEW TESTED AND GUARANTEED PAKS			
B2	4	Photo Cells. Sun Batterie 0.3 to $0.5 \mathrm{~V} \quad 0.5102 \mathrm{~mA}$	0/-
- 97	2	ADI61-ADI62 NPN/PNP	0/-
881	10	Reed Switches, large and small	0/-
$\overline{889}$	2		10/=
891	8		-
92	4	NPN 5 5it Trans. AOB $B 5 \times 20$ $2 N 2369500 ~$ B5 $\times 20$. 360 mW	/-
893	5	GET113 Trans. equiv.	10/-
896	5	2N3136 PNP Sil. Trans. TO. $18, \mathrm{HFE} 100-$ 600 mA .200 MHz	10/-
898	10	$X B 112$ and $\times 8102$ equiv. to AC126. AC156, OC81/2 OC71/2. NKT271, ete.	10/-
H_{4}	250	$\begin{aligned} & \text { Mixed Resistors. } \\ & \text { Packing 2\|- } \end{aligned}$	10/=
H7	40	Wirewound Resistors. Mixed types and values. Postage 1/6	1
H8	4	BYI27 Sil. Ress 1000 PlV 1 amp plastic	10/=
	2	Photo Transisto	10

RETURN OF THE UNBEATABLE P.I PAK. NOW GREATER VALUE THAN EVER
FULL OF SHORT "LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS. APPROX. 170. WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRAN. SISTORS PNP AND NPN. AND A HOST OF DIOOES AND RECTIFIER5 MOUNTED ON PRINTED CIRCUIT PANELS. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA. TION ON THE TRANSISTORS

PLEASE ASK for pak P.I only $10 /-$
2/-P. \& P. on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.
counter for any car.

$$
-1 /- \text { each }
$$

FREE CATALOGUE AND LISTS for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/. CASH WITH ORDER PLEASE. Add 1/-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL

P.O. RELAYS
Various Contacts and Coil Resistances. No individual selection. Post \& Packing 5 /

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

WHAT IS THE AM OF A LOUDSPEAKER?

The fundamental parameters of moving-coil speakers are examined; some significant errors in current ideas revealed; and new thinking introduced in an article on loudspeaker units in the November Wireless World.
In the same issue are details of an extra-versatile tone control and the second of a regular series of articles on the elements of linear i.cs.

WirelessWorld

November issue 3s. 6d.

In just 2 minutes,find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical

A.M.S.E. (Nceh.)

Mrect. of Engincers
Mechanical ling. Waintenance Eng Welding
General Diesel Eng Sheet Asetal W'ork Eng. Inspection Eng, Netallurgy C. $\&$ G. Eing. Crafts C. $\& G$. Fabrication

Draughtsmansh

A.MIIED.

Gin. Draughtsmanship Dic \& Press Lools Elec. Draughtsmanship Jig 心 Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic

 A.M.S.E. (Elec. C. N G. Vilec. Eng. Goncral Elec. Eng. Installations \& Wiring Instalations \&Electrical Maths. Flectrical Science Eomputer Electronics Electronic Eng.

Radio\& Telecomms C. \& G. Tilecomms C. \& Radio Servicing Radio Amateurs' Exam. Radio Operators' Cert. Radio \& IV Engincering Radio Servicing Practical Television TV Servicing Colour 'Ty
Practical Radio \&
Electronies (with kit)

Auto \& Acro
A.M.I.M.I

MA:/IMI Diploma
C. \& G. Auto Eng. Guncral Auto Eng. Motor Mechanics
A.R.B. Certs.

Gen, Acro Eng.

Management \&

Production Computer l'rogramming lnst. of Marketing A.C.W.A.

Works Management
Work Work Study l'roduction Eng. Storckueping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning lingincering Materials Mandling, Operational Ruscarch Metrication

Constructional A.M.S.E. (Cis) C. \& G. Structural Road Enginecring Civil Enginecring Building Air Conditioning Heating \& Vintilating Carpentry \& Jonery Clurk of Works Huilding Drawing Surveying
Painting and Painting and
Decorating Decorating.
Architecture Builders' Quantities

General
C.E. 1 .

Petroleum T'sch
Practical Maths
Refrigerator
Servieing.
Rubher Technology
Sales Engincer
Timber Trade
Farm Science
Agricuhtural ling.
General Plastics
Gencral Certificate
of İducation
Choose from 42
'O' and ' I ' Level
subjects including:
Englsh
Chmistry
(iencral Scionce
Geology
Phusics
Muthematics
Technical Drazing
Irench
German
Russian
Spanish
Biolory
B.I.E.T. and its assuciated schools haze recorded titall over $10,0 \% 0$ G.C.E successes at 'O' and 'A' leval.
WE COVER A WIDE RANGI: OF TECHNICAL .AND PROFESSIONAL EXAMINATIONS.

Over 3.000 of our Students have obrained City de Guilds Certificates. Thousands of other exam successes.

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321
"In addition to having my salary doubled, my future is assured." - Case History $\mathrm{H} / 493$
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept D256, Aldermaston Court, Reading RG7 4PF.
(Write if you prefer not to cut this page)

To: B.I.E.T., Dept D256, Aldermaston Court, Reading RG74PF
\square Please send me book and details of your Courses in

Age
Name
Address

B.IE.T-IN ASSOCIATION WITH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

[^8]- ELECTRONIC COMPONENTS AND EQUIPMENT audio and test gear
356 EDGWARE ROAD LONDON W. 2
- ELECTRONIC organs. public adoress dISCOTHEQUE EQUIPMENT
309 EDGWARE ROAD LONDON Wi2
- high fidelity sales and oemonstaations 354, EDGWARE ROAD LONOON W. 2 TEL. 01.4025854 TEL. 01.4024736

OPEN MONOAY to SATUROAY 9 am to 6 PM. Thurs gam to 1pm. open all day saturday

COMPLETE STEREO SYSTEM FOR 139.10 .0 HENELEC 5-5 5 TEREO AMPLIFIER. Inputs for ceramic cartridge. AUX/Tuner. Output for to 15 ohms speakers. siver win fitted headphone finish. British made. Size $12 \frac{3}{\mathrm{z}} \times 3 \frac{1}{2}$ in $\times 6$ tin Fitted headphone socker. Complete system comprises 5.5 amplifier, Garrard 3000 or model 50 with
 crossover
and cover.

Complete stereo system

 Price (50). $\mathbf{6 3 9 . 1 0 . 0}$, p.p. 20/ - Amplifier only. ©l3.19.6, D.D. $7 / 6$. - TEl035 recommended stereo phones $39 / 6$ UNBEATABLE VALUE!BUILD THIS VHF FM TUNER 5 MULLARD TRANSISTORS 300ke/s BAND. WIDTH. PRINTED CIRCUIT. HIGH FIDELITY REPRODUCTION. MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it $-V H F F M$ gives the REAL sound. All parts PARTS TOTAL COST DECODER $\mathbf{5 5 . 1 9 . 6}$ 6.19.6. PP $3 / 6$. (FOR STEREO) A6.19.6. P.P. $3 / 6$. | ASK |
| :--- |
| No. |

```
New printed circuit design with BUILD
full power output, Fully tuneable YOURSELF
Mullard transiscors. Fitted Sin A
speaker. build with cerriffe results. QUALITY
l
continental stations. Complece
detailed instructions.
SINCLA|R Z30 75/. each, stereo 60 68,10.0, PZ5 79/6
EQUIPMENT
SPECIAL OFFER 2 of Z30, stereo 60, PZ5 (usually 623.10) £19
```

WHEN IN LONDON visit the NEW DISCOCENTRE at " 354 " and
COMPONENT SHOP at " 356 " Edgware Road. W. 2

TEST EQUIPMENT FOR YOUR HOME

AF105 50 kV multimeter (lllus.), case, 28/6.
$200 \mathrm{H}, 20 \mathrm{k} / \mathrm{V}$ multimeter, price 6.17.6, p.p. 3/-; case, 12/6.

E20D R.F. Gen
C15. D.p. 716 .
E220 Matching A
TE65 Valve Vol
617.10 .0, p.p. $7 / 6$.
Full detail
catalogue.
catalogue.

c-aumang

SLIM POCKET TEST GEAR - signal injector 35/., p.p. $1 / 6$ - signal tracer 29/6, p.p. $1 / 6$

WORLD'S LOWEST COST STEREO MAG. NETIC CARTRIDGE OIP 7 mV . $20 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$. Diamond Stylus. Fits most decks. Recommended for quality and performance. Model 940. Price 79/6.

H1-FI equipment to suit EVERYPOCKGT

FREE STOCK LIST NO. $16 / 17$ ON REQUEST
BEST VALUE IN U.K

Choose from 100 complete stereo systemsComplete range of individual units also in stock. Demonstrations all day. Visit the New Hi-Fi Store.

100 STEREO SYSTEMS
LOW CASH AND CREDIT/HP PRICES
(Credit terms from 630 purchase-callers only)
HENRY'S LATEST CATALOGUE
New print. Now 350 'pages. 6th impression.

\rightarrow COMPONENTS, TEST GEAR

* EQUIPMENT, MODULES
* SPECIAL OFFERS, ETC.

Everything for the constructor
Complete with $10 /$-value discount voucher for use
 WHY NOT SEND AWAY TODAY?
New 8-page Semiconductor List free No. 36 new ranges and a few circuits.

PA25 10 Silicon Transistors. Differencial input, 2 Swatt rms into 8ohms 700 mV input. Size only $5^{\prime \prime} \times 3^{n} \times 2^{\prime \prime}$. A.hole fixing. 12 watt into 150 hm PA50 12-Transistor Version, SOwatt rms into 3 to 40 hms MU442 Power supply for one or two PA25 or one PA50

- PA25 $£ 7.10 .0$ - PA50 $£ 9.10 .0$ MU442 $£ 6$

NEIN SELF-POWERED
 PREAMPLIFIERS

Mains operated $5 \lim$ Design Preamplifiers for use with any power amplifier. Mains operated Slim Design Preamplifiers Capable of driving up to 4-PASO
All Silicon FET/TRANSISTOR design. Cal amolifiers. Pushbutcon selection. All facilities.
MODEL FET 154 STEREO AMPLIFIER
MODEL FETIS4 STEREO AMPLIFIER
Induts For mas. Pick-up. Tuner/Aux., Tape in and out. Response $20 \mathrm{c} / \mathrm{s}$ to Inputs for mag. Pick-up. $30 \mathrm{ke} / \mathrm{s}$. Output adjustable up to 1 volt. $\pm 20 \mathrm{~dB}$ boost or cut-out controls. slim design. Size $12^{* *} \times 5 \frac{1}{2}^{*} \times 1 \frac{1}{2}^{*}$. Price $£ 16,10.0$

MODEL FET 9/L

Mono Preamplifier with built-in mic. MC \times EC input for all crystal and $\begin{aligned} & \text { ceramic cartridges. Tuner, tape in and } \\ & \text { Size } 100^{*}\end{aligned} 4^{\frac{1}{2}} \times$ Price $\& 12.10 .0$.
NO SOLDERING JUST PLUG IN CONNECTORS:

ELECTRONIC
 O
 RGANS

COMPLETE RANGE OF
COMPONENTS IN STOCK FOR ALL
PURPOSES
MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS CABINETS FOR ALL MOOELS
49 NOTE, 61 NOTE SINGLE
MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE
KITS AVAILABLE IN SECTIONS AS REQUIRED
NEW PA and DISCOTHEQUE CENTRE at '309"

[^0]: How to assemble and use Project 60 modules to best advantage in the above and other appli-

[^1]: © IPC Magazines Limited 1970. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 625 s . Od. ($\mathbf{f 2 . 2 5)}$
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

[^2]: To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to:
 we do not employ representatives
 NAME... BLOCK CAPS

 ADDRESS
 PLEASE P.E. 11

[^3]: I To Peak Sound, Englefield Green, Egham, Surrey.
 Detals please of \qquad
 \qquad
 \qquad - Address PEII

[^4]: For full details of these and all Discosound Products write direct to: DISCOSOUND 122 BALLS POND ROAD, LONDON, M.1. Tel. 01-254 5779 Full money back guarantee if returned within 10 days All Discosound Products are guaranteed for 12 months Demonstrations given at any time

[^5]: TERMS
 C.W.O.

 Mon.-Sat. 9 a.m. -5.30 p.m. Closed Sat. I. 30 p.m. -2.30 p.m.
 no C.O.D.
 Tel. 01-769 0199/1649

[^6]: Prices quoted are current at time of going to press $E \& O E$, and may be subject to variation without notice-ltems listed not in current production will be withdrawn when stocks advertised are sold. supplied on request $1 /$ - per copy. Price breaks apply at $25+\& 100+$. Please contact Sales Dept. for Price \& Avilability. Terms of Business: Retall Mail orders-cash with order only please. Trade: Nett Monchly Account on receipt of satisfactory references. Despatch: Goods quoted ex stock are normally despatched within one working day by first class post. Export orders and enquiries par-
 ticularly welcome. Cables LESTROCO BRENTWOOD. POst \& Packing allow I/- per order iniand,
 cicularly welcome. Cables LESTR
 4/-Europe, $12 /$-Commonwealth.

 ## L.S.T. EIECTRONIC COMPONENTS LTD.
 7 COPTFOLD ROAD BRENTWOOD, ESSEX

[^7]: BATTERY ELIMINATORS The ideal way of running your TRANSISTCR RADIO. RECORD PLAYER,
 $9 v+9 v: 6 v+6 v$; or $41 v+41 v$ (two separate outputs) 42,6 each. P. \& P. 2/9. Please state outpue required. All the above units are completely isolated from mains by double wound transformer ensuring 100\% safety.
 R.C.S. PRODUCTS (RADIO) LTD.
 (Dept. P.E.), 31 Oliver Road, London, E. 17

[^8]: Andover, Hants. Sole Agents for Australia and New Zealand Gordon \& Gotch (A/sia) Ltd. South Africa Central News Agency Ltar : Rhodesia and Zambia-Kingstons Letd. East Arrica-8tationery and Office Supplies Ltd. Subscription Rate (including postage): For one year to any part of the worid \&iz 5s. Od (e2.25).
 otherwise diaposed of by way of Trade at more than the recommended selling that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or mutilated condition or in any unauthorisedore than the recommended selling price shownondhe cover, and that it shall not be lent, resold or hired out or otherwise dispoged of in a

