

ADCDLA Soldering Instruments add to your efficieincy

ADCOLA 64

for Factory Bench

 Line AssemblyA precision instrument-supplied with standard $3 / 16^{\prime \prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. 360° c at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{C}$.

*Additional Stock Bits

(illustrated) available
COPPER

$838 \frac{1}{\circ}^{\circ}-3.2 \mathrm{~mm}$ CHISEL FACE	
$814{ }^{\frac{1}{2}}{ }^{\circ}-2.4 \mathrm{~mm}$ CHISEL FACE	
B 12 年* - 4.78 mm EYELET BIT	
B $58 \frac{1}{4}^{-2}-6.34 \mathrm{~mm}$ chisel face	
LONG LIFE	
B 42 LL $\frac{3}{10}$ - 4.75 man chisel face	
B $38 \mathrm{LL} 1^{*}$ - 3.2 mm chisel face	
B $14 \mathrm{LL} \frac{3}{3}{ }^{\text {² }}$ - 2.4 mm CHISEL FACE	
-a, cremen	
844 LL if^{7} - 4.75 mm	SCREWDRIVER FACE

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability ... from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list and catalogue

EX RENTAL TV's

 17" 2 Years'guarantee $19{ }^{\prime \prime}$ SLIMLINE 405 ONLYFREE ILLUSTRATED SLIMLINE fll. 10.0

LIST OF TELEVISIONS 405/625 BBC 2 39 gns.

$17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

RECORD PLAYER CABINET |TWO-YEAR GUARANTEED 49/6

Cloth covered. Size $16 \frac{t}{4}^{\prime \prime} \times 14 \frac{1}{2}{ }^{\prime \prime} \times 7 \frac{1}{2^{*}}$ Takes any modern auzochanger P. \& P. $7 / 6$.

WIDE RANGE OF MODELS
SIZES AND PRICES demonstrations dally

CARR. INS.
30/-

SPEAKERS GALORE, BRAND NEW 25に, $4^{* 10} 10,3^{*} \times 5^{\prime \prime} B \Omega .7^{\prime \prime} \times 4^{\prime \prime}$ and $8^{\prime \prime} \times 3^{\prime \prime} 30$

TRANSISTOR CASES, 4 FOR E1. Cloth covered, many colours, Size $9 \frac{1}{2} \times 6 \frac{1}{2} \times 3 \frac{1}{2}$ ". P. \& P. 9/6. Similar cases in plastic. RECORD PLAYER \& TAPE MOTORS IO/-BRAND NEW P. \& P. $3 / 6$. TRANSISTORS 2:6 EACH. OC44, OC45, OC71, OCBI, OC8ID, AFI14, AFI17, AC12s.

DUKE \& CO. (LONDON) LTD, $621 / 3$ Romford Road, Manor Park, E. 12 Phone 01-478 6001-2-3

Stamp for Free List

PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS on a PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Comper Laminate Buards 48 $\times 2$, (2) 1 Bourd for Match box Radio. (3) Buard for Wristwatch Kaxlio, eto. (4) Resist. (5) Rustst Solvent (6) Etebsut. (7) Cleanser/Degreaser, (8) 16-page Bouklet Printed Circitia for Amateurs (9) 2 Miniature Radio Dialo 8 W/MW/LW. Also free with each kit. (10) Exsentia) Design Data, Clrcuits, Chassis Plans, etc. for 40 TRANSISTORISED PROJBCTS A very comprehensive selection of circults to sult everyone's requirements and oonstructional ability. Many recently ueveloped very effictent designs published for the first time, including 10 new circuits

EXPERIMENTER'S PRINTED CIRCUIT KIT 8/6
Pootage \& Pack. 1/6 (UK) Commonwealth: SURFACE MAIL $8 /-$ AIR MAIL $81-$
Australis, New Zeałand South Aifica, Canada.
(1) Crystal Set with biaged Detector. (2) Cryatal Set with volisge-quadrupler detector. (3) Crystal Set with Dynaznic Loudspeaker. (4) Cryylai Tuner with Audio Amplifier. (5) Carrier Power Conversion Receiver, (6) Split-Load Neutralised Double Reflex (7) Matchbox or Photocell Radio. (8) "TRI-FLEXON" Tripie Reflex with The smallest 3 designs yet offerell to the Home Convtructor any zoudspeaker kadio 3 Subminiature Radio Receivers laced on the "Triflexon" circuit. Let us know If you know of a smater design published anywhere. (10) Postage Stamp Radio. Size only $1-62^{\prime \prime} \times-95^{\prime} \times-25^{-}$. (11) Wristwatch Radio $1 \cdot 15^{\circ} \times \cdot 80^{-} \times \cdot 55^{\circ}$. (12) Fing Radio ${ }^{\circ} 70^{\prime \prime} \times \cdot 70^{\prime \prime} \times \cdot 55^{\prime \prime}$. (23) Bacteria-powered Radlo. Runs on sugar or bread. (14) Radio Control Tone Receiver. (15) Transistor P/P Ampliter. (16) 1ntercom. (17) 1-valve Amptifier. (18) Reliable Burgiar Alarm. (10) Light-Secking Aniumal, Guided Missile. (20) Perpetual Motion Marhine. (21) Melai Detector. (22) Transistor Fester. (23) Humab Body Kaliation Detector. (24) Minn/Woman Discriminator.
(25) Signal Injector. (26) Pocket Tranuceiver (Lsence Voturne Intercom (28) Remote Control of Modeis by Inductinn. (29) Inductive-Loap Tranmmitter. (30) Pocket Triple Refiex Ravlo, (31) Wryat watch Transmltter/ WIre-less Microphone. (38) Rain Alarm. (83) Ultrabonic Bwitch/Alarn. (34) Stereo Preamplifier. (35) Quality Stereo Push-Pull Amplifer. (38) Llkht-Beam Telephone "Photophone". (37) Light-Beam Transmitter. (38) Silent TV Sound Adaptor, (39) Ultrasonle TranignItter, (40) Thyristor Drill Speed Controller.

YORK ELECTRICS

335 BATTERSEA PARK ROAD, LONDON, S.W.II
Send a S.A.E. for full detats, a brief description and Photographe of ali Kits and alt 52 Radio, Electronic and Pholochectric ['rojects Asseswbled.

knloht-ktes
 FANTASTIC LOW PRICES!

Due to huge purchase these superb U.S.A. construction kits can be offered at $\mathbf{2 5} \%-50 \%$ off recommended list prices. Absolutely complete with most detailed construction and operating books. Available from all branches or by mail order for $7 / 6$ CARRIAGE AND PACKING on each kit. Two kits or more carr. free.

KG-865 50 Watt Stereo Amplifier Kit

DELCXE FEATERES

All silicon Transistors for stability, Clesuer, Sounde Extremely Wide Fower Bsadwidth and Frequency Response sow IHF Rower Output especialty selected Low-Noile Freamp Trantintors © Two Prlated Cirouit Boards for Fart Eary Aswembly Convenient Pront-Panel 8 tereo Hendphone. Jach Tentfinished Extruded Alaminium Front Panel Two a.c. Convenience Outletr.

 plus *ereo zeadphontri IX Distartion: wader 1% nit 60 Hz and $7,700 \mathrm{~Hz}$ mixed $i: I$ el sated ponver OInpat sensitivity: Sagmetic Phono, jomer: Twrer mid Auxllary, sogmic Phono, sinir:
 Recommended List Price \&34.19.6: 2t orrs.

KG-625 Deluxe 6in Vacuum Tube Voltmeter Kit
Huge bin Meter soala o Ranges: d.e. $1+u \cdot \Sigma-$
 - Ioput Revitance: $11, H \Omega$ scmic reading Ranges: 1,500V fiell a.e. $1, \pm 00-1$, QNOF full seale Accuracy: $\frac{1}{10} 3 \%$ Frequency Respopse: $\frac{+}{1 / 2 h}$, silHz meter Ranice: $\theta-1,000-10,010$ odms.

 Ragges) isut + ! 1 n \&fule: $8 \frac{1}{2}$ GNg.

KG-375A Deluxe Solid-State Auto Analyzer Kit

ALL SILICON TRANSISTORS

The NEW KG-980 Stereo FM Receiver Kit
Designed to setinfy the Hoas
Crifical Linlenter

R.F. and L.F. Papely Aosembled and Atigned Yront Pavel Btereo Feadphone Jack

 3oaz Channel separation: 30dB Complamentary Transiormerlesa Power
 Response:- TdRA. N.

STAR ROAMER 5-Band Shortwave Receiver Kit

Baudupread: electricent, callibreted

Bandwidth: $s k H z$ at $6 d B$ dotoin - Beest Frequenes: variabli, $\|=-5 k I J z$ Speater: Jis permanemid pragnel lype Power Bupply: fuced, transformer opernted Beadphone Output: love impe$\operatorname{dinvec}_{i \rightarrow 6 B E G}$ Velve Complementr:
 Requfrements: $130-250 \%$ Vow

 Eary-to-Rezd 7 tio Budde Rule Dial.
Reconmended List Prlea E21.19.0: 14 GRs. Assemblel Price 19 ars.
100-in-1 Electronic Seience Lab LOOKATTHE PROJECTS YOU CAN BUILD - Erectecaic Scale Eleotrontc Timex Bignal Injector Miforte Oode Buzzer e Electronic Cate Metsonome O Codo Flanhere OW Monitore Ohmmeter Bonk Fora Hy yria Rediot Hybrid Yoice Relay Afr-Dowered Radio - Polarity Cheoker Valve Checker. 1ncludea: Dual Headiet Photocell Reconturented Llat Irlec 216.8.0: 9! GNS.

KG-640 20,000 ohms/Volt VOM Kit

 EIG PROFESNIOVAL SIZE US RANGE MULTHMETER

 tors: All 1\% carbon film.
Recommenuled List Price $416.19 .6: 9$ gaxs. Aseembled Price 12 GNS. recording charncteristics as top grade tapes. Quality centrol manafacture. They axe truly worth a few more coppers than ncetate, Eub-standard, folnted more coppers tarn ncetate, eub-siandard, dointed
of cheap imporle. I'RF ONE AND PROV'F IT
IOURSELF.

Postage 1/- reel. Post free less $\overline{5} \%$ on three reels. Quality mnd ratade engrixies invited, NOTE, Large tape stociss at alt brakehes.

Sin. Triple 5in. 0001t. 18/5in, 1,8001t. 84/6

Quadruple
3 8. 606 .

Stockists of Leak, Quad, Chapman, Goodman, Armstrong, Tripletone, Linear, Rodgers, Truvox, Ferrograph, Wharfedale, etc., etc.

PERSONAL CALLERS Welcomed at all Branches where there are large HinFi and Component stocks at the keenest prices including:
GARRARD 1025 Autochangers complete with GARRARD STEREO CARTRIDGE $7 \frac{1}{2}$ GNS.
MAGNETIC CANTRIDGES Goldring 800 H $7 \frac{1}{2}$ GNS.
Shriro AT33 E7.10.0 (Both Listed over C10)

T-Esi-ay

Audio Tronics 70
 The 1970 edition of Lasky's Audio-Tronics catalogue is available FREE on request.

 Packed with 1000's of items for the Radio and Hi-Fi enthusiasi, Electronics Hobbyist, Servicemen and Communtcations Ham, Covers every aspect of Hi-Fi (Inciuding Lasky's budget Stereo Systems and Package Deais), Tape recording and Audio accessorles plus Lasky's amazing money saving vouchers worth over £25. SEND TODAY. Send your name, address and $2 /$ for posi and inclusion of your name on our regular mailing list.This month's voucher worth $50 /-$

THORN PYGMY PLUG-IN

A compact pyomy relay on an 8 -pin base with D.P.D.r. contacts RN TYPE Contacts Ease Coil Voltage

RN TYPE	Contacts	Ease	Cail Vo
215048	D.P.D.T.	8 pin	48 V ACJDC
235004	D.P.D.T.	8 pin	40 V DC
295060	D.P.D.T,	8 pin	60 V ACIDC
305030	3.P.D.T.	11 sin	60 V DC
205024	D.P.D.T.	8 pin	$24 \mathrm{~V} D \mathrm{C}$

$\begin{array}{llll}205024 & \text { D.P.D.T. } & 8 \text { pin } & 24 \mathrm{~V} \text { DC } \\ 215042 & \text { D.P.D.T. } & 8 \text { pin } & 42 \mathrm{~V} \text { DC }\end{array}$
Ohtrers avaitable in fimited quantities.
LASKY'S PRICE $12 / 6$ posi $3 / 6$

UST ATनTVGD

Lasky's cen, cse, cri2.
Exclusively made for us in U.S.A. Great Savings!
$\begin{array}{llll} & & \text { Post Five for Ten for } \\ \mathrm{C} 50- & 7 / 6 & 1 /- & 33 /- \\ \mathrm{C} & 2 /- & 62 /-\quad 3 /\end{array}$ $\begin{array}{lllllll}\mathrm{C} 90- & 12 / 6 & 1 /- & 56 /- & 2 /- & 10 /- & 3 / / \\ \mathrm{C} 120-17 /- & 1 /- & 75 /- & 2 /- & 139 /- & 3 /\end{array}$
U.S.A, Cassotis head cleaner, 10/6, Post t/-

SKJidover mikl

COMMUNICATION

 RECEIVER A short wave receiver, exclu A short wave foce Lasky, at a real econ sive to Laskys, at a real economy price. Four valve line 4 . Using one each 68Eb, 68 A6, hichly sensitive reception and powerlal gain, Switch se ected SW frequency range cover: 1 is to 30 MHz in three separale bandspread ranpes and tuli AM medium wave band cover in one range 550-$8,6003 \mathrm{~Hz}$. Reduction trive tuning with hate line cursor, Conitros incluce votume onjo BFO, 8 and selector. Power on incicator tamp. External anfenna connections and ront for maphoy an mains operatlon. Strong metal cabinet finsished in gre crackle with anodised sitver front panel, Size $\left.9 \frac{1}{2} \times 5 \frac{7}{2} \times 5\right\}$ in, Complete with main lead and full instructions.

LASKY'S PRICE \& 3.3 .0

HKKMAIER KIIS

This meter kit by TMK offers the unique opportunity of building a really firsi class precision mullimeter at a worthwhite saving in cost. The cabinet, movernen and range selector mounted in position is supplied with the meter scale. The highest quatity components and i\% talerance resistors ara used shayg Supplied complete with full constructional, circuit and HDDEL20 24 measurament ranges with mirror scale accuracy: DCV and cufrent: $+2 \%$ ACV: $+3 \%$, resistance $i 3 \%$. Special 0.6 V DC range for transisior SPECIFICATION

- DCV: $0-0 \cdot 6-6-30-120-600-1,200 \mathrm{~V}$ at $20 \mathrm{~K} / \mathrm{OPV}$. ACV $0-6 \mathrm{~m} 30-120-600-1.200 \mathrm{~V}$ at $10 \mathrm{~K} / \mathrm{OPV}$. DC Current: 0-0.6-6500 mA . Resistance: $0-10 \mathrm{~K} 100 \mathrm{~K}-1 \mathrm{M}-10 \mathrm{M}$ fohms ($58-580-$ $5 \cdot 6 \mathrm{~K}-58 \mathrm{~K}$ at mid-scale). Capacitance: $0-002-0.2 \mu \mathrm{FF}$ (AC, GV range), Decihels -20 to 63 dB . blocking capacitor. test leads.
 KIT PRICE ONLY 92/-

MODEL 5025

50,000 O.P.V. FEATURING 57 MEASUREMENT RANGES

Uses an entirely new range selection mechanism which permits the usa of a reaily large meter in a more compact cabinet. The range selected is indicated on the meter face. High speed totary range gelection knob; poiarity reversal switch, measurement ranges.
SPECIFICATION DCV: $0-0.25-2.5-10-50$ $50-1,000 V$ at $25 \mathrm{~K} / O P V$ O $0.0 \cdot 125-1 \cdot 25-5 \cdot 0-25$ $125-500 \mathrm{~V}$ at $50 \mathrm{~K} / \mathrm{OPV}$. A CV: $0-3-10-50-250$ $1,000 \mathrm{~V}$ at $2.5 \mathrm{~K} / O P \mathrm{~V}$. $0-1 \cdot 5-5-25-125-500 \mathrm{~V}$ at $5 K / O P V$. $D C \mu A: 0-25 \mu A$ al 125 mA $0-50 \mu \mathrm{~A}$ at 250 mA . DCmA: $0-2.5-25-250 \mathrm{~mA}$ at $125 \mathrm{mV}: 0-5-50-500 \mathrm{~mA}$ at 250 mV . DC Amps: $0-5 \mathrm{~A}$ at 125 mV ; $0-10 \mathrm{~A}$ at 250 mV Resistance: $0-10 \mathrm{M} / \mathrm{ohms}$. Output: Capactlo $0.1,4 \mathrm{~F}, 400 \mathrm{~V} w)$ in series with ACV ranges Decibels; -20 to 81.5 dB . Operates on two black bahelite cabinel, siz

KIT $£ 10.10 .0$

ALSO AVAILABLE READY BUILT AND TESTED E $12,10.0$ Posi 5.
 MODEL TM-1
The first of Lasky's new-look top value meters, the TM-1 is a really tiny pocket multimeter providing "big" meter accurscy and performance. Precision movement calibrated to $3^{\prime \prime}$ "of full scale. Clich stop range selection switch. Beautifully designed made impact resistint Beath white ad metallic red/areen figuring Onms zero
DCIV: 0-10-50-250-1,000 at IK OPV
ACIV: 0-10-50-250-1,000 at 1 K OPV
DC CURRENT : O-1mA, 100 mI .

- Resistance: 0-150k to 22 dB
- Camplete with test leads

battery and instruc

TM-5
LASKY'S PRICE 39/6 post 2 2\%

Another new look pocket multimemeter from Lasky providing lop quality and value. The "stimline" impact resistant case-size ditted $\times 2$ in \times arin fted with extra large $2 \frac{7}{3}$ in square meter. Read abslity is superior on all low ranges; making this an excellent instrument for servicing transistorised equipmant. Recessed click stop selection switch
Ohms zero adjustment. Buff finish with crystai Ohms zero adjustm

- DCIV: 3-15-150-300-1,200 at 5K OpV
- ACJV: 6-30-300-600 at 2.5K OP
- DC Current $0-300 \mu \mathrm{~A}, 0-300 \mathrm{~mA}$

Resistance: $0-10 \mathrm{k} \Omega, 0-1 \mathrm{MO}$

- Complete with tast feads, batery and instruc tions.

LASKY'S PRICE 49/6
 POST 26

Garrare

SL-55

OTHER GARRARD UNITS FROM STOCK
AUTOCHANGERS
SLT2B
2025TC with sterea cartridge £8 17 3000 complete with STAHC stereo cartridge \&9 196
SL65B ,
SL.95B
SINGLE PLAYERS
AP 75, E18.10.0. AP75 with AD76K mag. cart., £21.10.0. 401 Transcription Unit f20.0.0. BASES AND COVERS FOR GARRARD UNITE Type WB1 and WB5 for models AT60 Mk 1,202 , 3000, SL.65B, SL.55, 1025, SP2 Mk. II. Price WB1 £3 18 6. WB5 £5 12 6. Type WB4 for models SL72B, SL75B SL. 95 P Price E5 12 6, Perspex covers: SPCY for WB1 E.3 141 . SPC

BRAND NEW FULLY GUARANTEED TRAUSISTORS
SEAD NEW LIST - NEW PRICES

1ONDON, W.2
(01) 723 1058;9
(OI) 723 1098;9
OPR MOR-SAT 9am-6

PRINTED CIRCUIT BOARDS for P.E. PROJECTS

All bo
Soine of the moet popular boards are Ilaterl below:
June 1968 Llyht Opersted Aug. 1969 sjirlng Lize Reverb 18/8
7uly 1968 Catnera Trigger
$3 / 10$
$4 / 6$
$4 / 6$
Juig 1968 Drin Speed Cor
Dec. 1968 Dormes
Dec. 1968 Stock Market
Oct. 1969 Audio Signal Genera-
Nuv. 1969 J.C. Hrale Amplifier
Nos. 1969 I.C. Steres Amp.
Dee. 1969 HI-FI Stereo
Dec. 1969 Double Six Main
Jsh. 1970 HI-PI Gtereo Pre-
May 1970 Marlne Tuchonreter
Jurie 1970 Sound Trigger
June 1970 D.O. Multisneter Ampliter
Frahing LIght Shot Monoatable Panel Dlode Patiel
Central Exchange
Jan. 1969 Stabillsed Power
Feb. 1969 Rapply, $\mathbf{3}$ board
Feb. 1969 Hramonophone
Feb. 1969 Electrie Fencer
Mar. 1969 Photographic Tinter
Mar. 1963 ModernAadioCircuits
Apr. 1969 Mlurophone Mixer
June 1970 Model Train Control
Apr. 2969 Interrupted Screen.
Tulper
meter

P.H. ELECTRONICS, Industriai Estate, Sandwich, Kent

for fast, easy,

 reliable solderingContains 5 cores of non-corrosive flux, instantly cleaning heavily oxldised surfaces. No extra flux required.

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR.
 Ecomically packed for

 general etectrical and electronic 18 gauge on plastic reel.
 Recommended retail price 15/-

A RANGE OF SOLDERS IN HANDY DISPENSERS.

THIN GAUGE SOLDER, ESSENTIAL FOR soldering smalt components and thin wires. High tin
 content, low melting point, 60/40 alloy, 170 ft . 22 gauge on plastic reel. Recommended retall price 15/-

INVALUABLE FOR STAIPPING FLEX, THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER AND CUTTER, easily
 adjustable for all standard dlameters. Plastic covered handles can also be used as wire cutter. Recommended retall price 8/6

From Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Litd., Hemel Hempstead, Herts.

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output 5 watts R.M.S. (10 watts peak). It contains 13 transistors (including two power types), 2 diodes, 1 Zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required as part of the process of producing monolithic I.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. This enables us to cover every IC-10 with the Sinclair guarantee of reliability.

SPECIFICATIONS

Output 10 Watts peak, 5 Watts R.M.S. continuous. Frequency response 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total harmonic distortion Less than 1% at full output. Load impedance

3 to 15 ohms. Power gain $110 \mathrm{~dB}(100,000,000,000$ times $)$ total. Supply voltage Size Sensitivity Input impedance
$1 \times 0.4 \times 0.2$ inches.
5 mV .
Adjustable externally up to
2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class AB output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

IC. 10

Project 60

Laboratory standard modular high fidelity
 Sinclair Project 60 comprises a range of modules which connect together simply to form a compact stereo amplifier with really excellent

 performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance and now the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facillties.The modules are: 1. The $Z .30$ and $Z .50$ high gain power amplifiers. 2, The Stereo 60 preamplifier and control unit. 3. The Active Filter Unit. 4.4 supply units-PZ.5; PZ.6; PZ.7 and PZ.8. In a normal domestic application, there will be no significant difference between PZ.5 or PZ. 6 unless loudspeakers of very low efficiency are being used, in which case the PZ.6 will be required. For assemblies using two $Z .50$'s there is the PZ. 8 supply unit to ensure maximum performance from these amplifiers. No skill or experience are needed to bulld your system and the Project 60 manual gives all the instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as new additions are made to the range. A stereo F.M. tuner is next to come. These and all other modules introduced will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructormodules in Europe, Project 60 prices are remarkably low.

How to assemble and use Project 60 modules to best advantage in the above and other applications will be found in the fully descriptive 48 -page Project 60 manual included with Project 60 systems. Available separately, price $2 / 6 \mathrm{~d}$ including postage.

	System	The Units to use	In conjunction with	Youz Project 6 6 Units will east
A	Car Radio	2.30	Existing car radio, Sinclair Micromatic	89/6
B	Simple battery powered record player	2.30	Crystal pick-up, 12 V or more battery supply and volume control	89/6
C	Mains powered record player	2.30 and PZ.5	Crystal or ceramic P.U. Vol. control etc.	£9.9.0
D	$20+20$ watts RMS stereo amplifier for most needs	$\begin{gathered} \text { Two Z.30s, } \\ \text { Stereo } 60 \text { and } \\ \text { PZ.5 } \\ \hline \end{gathered}$	Crystal, ceramic or magnetic P.U., most dynamic speakers, FM tuner, etc.	£23.18.0
E	$20+20$ watts RMS stereo amplifier for use with low efficiency (high performance) speakers	Two 2.30s. Stereo 60 and PZ. 6	High quality ceramic or mag. P.U., F.M. Tuner, Tape Deck, etc. All dynamic spkrs.	£26.18.0
F	$40+40$ watts RMS deluxe stereo amplifier	Two Z.50s, Stereo 60 PZ. 8 and mains transformer	As for E	£32.17.6
G	Outdoor public address system	z.60	Microphone, up to 4 P.A. speakers, 12 V car battery with or without converter, controls	£5.9.6
H	Indoor P.A	$\begin{aligned} & \text { One Z.60, PZ.8 } \\ & \text { and mains } \\ & \text { transformer } \end{aligned}$	Mic., guitar, heavy duty speakers etc., controls	£17.8.6
J	High pass and low pass filters	AFU	D, E or F as above	¢5.19.6
K	Stereo F.M. tuner	To be released shortly		

Z. 30 \& $\mathbf{Z . 5 0}$ POWER
 AMPLIFIERS

The $\mathbf{Z .} \mathbf{. 3 0}$ together with the $\mathbf{Z . 5 0}$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.2% at full output and all lower outputs. Whether you use the $Z .30$ or Z.50 power amplifiers in your Project 60 system will depend on personal preference, but they are the same physical size and may be used with other units in the Project 60 range equally well. For operating from mains, for the $Z .30$ use PZ.5 for most domestic requirements, or PZ. 6 if you have very low efficiency loudspeakers. For Z.50, use the PZ. 8 described below.
SPECIFICATIONS (Z.50 units are interchangeable with $Z .30$ s in all applications.)

Power Outputs

Z.30 15 watts R.M.S. into 8 ohms, using 35 V : 20 watts R.M.S. into 3 ohms using 30 volts.
2.30
Z.50 40 watts R.M.S. into 3 ohms from 40 V : 30 watts R.M.S. into 8 ohms, using 50 volts.

Frequency response 30 to $300,000 \mathrm{~Hz}$ 1dB

Distortion 0.02\% into 8 ohms

Signal to noise ratio better than 70 dB unweighted
Input sensitivity 250 mV into 100 Kohms. For speakers from 3 to 15 ohms impedance, Size $3 \frac{1}{2} \times 2 t \times \frac{1}{2}$ ins.

GUARANTEE

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Ezeh module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. That will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged ac cost charge for $\square \quad \square \quad \square$

STEREO 60 Preamp/Control Unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Silicon epitaxial planar tranamplifier. Silicon epitaxial planar tran-
sistors are used throughout, achieving a sistors are used throughout, achieving a
really high signal-to-noise ratio and excellent tracloing between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

- Inpur sensitivities-Mag, p.u. - 3mV: correct to R.I.A.A. curve $\pm I d B: 20$ to $\mathbf{2 5 , 0 0 0} \mathrm{Hz}$, Radio, Ceramic p.U. and Aux. -each up to 3 mV
- Output -250 mV .
- Signal-to-noise ratio-becter than 70dB.
- Channel matching-wichin IdB.
- ione controls-TREBLE +15 to 15 dB at 10 kHz : Bass + 15 to -15 dB at 100 Hz .
- Frone panel-brushed aluminium with black knobs and controls.
- Size $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ ins.

Built, tested and guaranteed

ACTIVE FILTER UNIT

For use berween Stereo 60 unit and two Z.30s or Z.50s, the A.F.U. matches the Stereo 60 in 5 tyling and is as easily mounted. It is unique in that the cut-off frequencies are concinuously variable, and as accenuation in the rejected band is rapid (12d8/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The Sinclair A.F.U. is suitable also for use with any other amplifier system.

Two stages of filtering are incorporated rumble (high pass) and seratch (low pass), H.F cut-off (-3dB) variable from 2 gkHz to 5 kHz . L. F, cutoff (-3 d 8) variable from 25 Hz to 100 Hz . Filser slope, boch sections 12 dB per octave. Distortion as $\quad \mathrm{kHz}$ (35 V supply) 0.02% as rated output.

POWER SUPPLY UNITS

Designed specially for use with the Project 60 system of your choice.
lilustration shows PZ. 5 power supply unit to left and PZ. 8 (for use with Z.50s) to the right. Use PZ. 5 for normal Z. 30 assemblies and PZ. 6 where a stabilised supply is essential.
PZ-5 30 volts unstabilised $\mathbf{\text { E4.19.6}}$ PZ-8 45 volts stabilised (fess mains transformers) E5.19.6 PZ-6 35 voles stabilised $\mathbf{\text { E7.19.6 }}$ PZ-8 mains transformer E5.19.6
T0: SINCLAIR RADIONICS LTD., 22 NEWMARKET RD., CAMBRIDGE
Please send
NAME.
ADDRESS.

for which / enclose cash/cheque
money order

NEW! HANDY! TIDY!

multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G storage units

A PLACE FOR EVERYTHING
EVERYTHING
IN ITS PLACE!

Newest, neacest syscem ever devised for storing small parts and components: resistors, capacitors, diodes, transistors, ets. Rigld plastic units, interlock rogether in vertical and horizontal combinations. Gransparent plastedraweuild up any size cabines for wall, bench or sable top

BUY AT TRADE PRICES!

SINGLE UNITS (5ins <2tins 2 tins)
SINGLE UNTS (Sins (2tins 2ins) DOZEN
DOUBLE UNITS (Sins: 4tins: : 2 zins)
DSUally 4 /6 Cach. OUR PRICE: 40 O- DOZEN
PLUS QUANTITY DISCOUNTS!
Order C5 and over DEDUCT $1 /$ in she f Orders $E 10$ and over DEDUCT $1 / 6$ in the
PACKING:POSTAGE:CARAIAGE: Add 6:all orders under $£ 3$: Orders $£ 3$ and over, packingipostage carriage free.
QUOTATIONS FOR LARGER QUANTITIES

DIMMASWITCH

This is an attractive dimmer unit which this in place of the normal modern tight witch. The ivory mounting plate watches modern fittingsand the control knob is in bright chrome. An ON/OFF wwiteh is incorporated to controf 40-600 watts of all lights except fluprescants at mains voltages from 200-250V, 50 Hz .
Competitive products sell at 44 19s 6 d our price is $£ 3$ 4s. We aiso offer at our lis a completa kit of parts with $3 n-$ structions enabling you to build this dimmer yourself.
The circuit uses a miniature RCA triac and a diac triskering device to give uppression is ineluded.
Post and Packing $/ 16 \mathrm{~d}$ extra.
Please send Cash with Order to:
DEXTER \& COMPANY
ULVER HOUSE, 19 KING STREET CHESTER CHI 2AH Tel: : Chester 25883
As supplied to H.M. Govt. Departments, Hospitals, Local Authorities, ete.

NIW BDOIF

MAKING \& REPAIRING TRANSISTOR RADIOS
byW. G. Oliver (G.3XT) (Published by Foulshom Technical) (Oct.) 21/-

SECURITY ELECTRONICS by John E. Cunningham (Oct.)

101 QUESTIONS AND ANSWERS ABOUT TRAN. SISTOR CIRCUITS
by Leo G. Sands (Oce.)
261

HI-FI STEREO SERVICING GUIDE
by Robert G. Middleton (Nov.)

101 EASY HAM RADIO PROJECTS
by Robert M. Brown and Tom Kneisel (Nov.)

FOULSHAM-SAMS

 TECHNICAL BOOKS(W. FOULSHAM \& CO.LTD.) YEOVIL RAD, SLIOGH, BUAKS, EWHL LiD

We make computers. Wealso train computer engincers.

Could we train you?

We're the Education Division of one of the world's largest Computer manufacturers (and who's better qualified to teach Computer Engineering than a Computer manufacturer ?)
Already, we've set up 39 Centres throughout the world to train Computer personnel. Now, the 40th has opened in London, with complete courses for Computer Engineers.
The curriculum includes Basic Electronics, Computer Circuitry, Development in Computer Design with the emphasis on practical work on the world's most advanced computers.
The first courses start in September and last approximately 6 months. We are now interviewing possible students
for these courses.
If you are interested in the challenge of being responsible for the maintenance of a computer installation or if you foel you'd like a move into today's fastest growing space-age industry wo'd like to hear from you. We'll give you all the details, assess your abilities and give you an honest answer about future prospects.
world's largest computer manufacturers

CONTIROL DATA

LIMITED

CONTROL DATA INSTITUTE

The Education Division of one of the
CONTROL DATA

If there's a phone handy, ring us now at

between 9 am and 9 pm (Mon-Fri) and ask forIMr. Jones. It's quicker and easier to phone, but if you prefer, send this coupon to: Control Data Institute, Wells House, 77-79 Wells Street, London Wi. Pfase give me further information

Name (Block Capitals)
Address

Age
Phone
Address
Age
J J

Please send me a battery charger kit for which I enclose $£ 3.4 .0$ including carriage.

[^0](BLOCK CAPITALS PLEASE)
Name Address

Post Code

This superb stereo system is a real price breakthrough. K comprises she VISCOUNT F.ET. Mk. 1 amplifier on which full decails are given below, the famous Garrard SP25 Mk. If (inctuding teak venear base and eransparent cover) with diamond cartridge or 2025 TC and che very successfut DUO type 2 speakers.
Measuring 177 in $\% 102 \mathrm{in} 26 \mathrm{in}$, the Duo cype 2 speakers are beautifully finished in teak veneer with matching vynair 8 rilis. They incorporate a $10 \frac{1}{2}$ in $\times 6$ din drive unit and high frequency speaker. both of which are of 3 ohms, impedance. The Duv speaker system is also available separazely ac
$\mathbf{X 6 . 6 . 0}$ each plus $15 /-\mathrm{P}$, \& P .
Complete stereo system $\boldsymbol{\ell 4 1}$ plus $£ 2.10 .0 \mathrm{P} . \& \mathrm{P}$
or with Viscount Mk. II Amplifier and Magnetic Cartridge $\mathbf{L 4 5}$ plus $£ 2.10 .0$ P. \& P.

The Classic

 Teak finished case 69.10Plus P. \& P. $7 / 6$
SPECIFICATION: Sensitivities for 10 watt output at 1 KHz into 3 ohms. Tape Head: 3 mV (ar 3 z i.p.s.) Mag. P.U.: 2 mV . Cer.P.U.; 80 mV , Tuner: 100 mV . Aux. 100 mV . Jape/Rec. Output. Equalisation for each inpur is correct to within +2dB (R.I.A.A.). from 20 Hz to 20KFz. Tone Consrol Range: Bass: 13 dB at 60 Hz . Treble: $\pm 14 \mathrm{~dB}$ at 15 KHz . Total Dis* tortion: (for 10 watt output) $<1.5 \%$ signal Noise: $<-60 \mathrm{~dB}$. A.C. Mains
$200-250 \mathrm{~V}$. Size 12 tin long, 4t in deep, 2 sin high. Built and tested. $200-250 \mathrm{~V}$. Size $12 \frac{1}{2}$ in leng, $4 \frac{1}{2}$ in deep, $2 \frac{1}{2}$ in high. Built and tested.

THE RELIANT Mk. II s0LID 8TATE GENERALPURPOSE AMPLIFIER

£7.5.0 Plus P. \& P. 7.6

 In teak finithed case SPECIFICATION: OULDu:: 10 watts into a ${ }^{3}$ ohms speaker. Inputs: (1) for mike (10mV). Input (2) for gram. radio (250mv) individual bass and trebte control. volts. Size: Tronsiseors: $10 \pm$ silicon and three germanium. \& Mains input: $220 / 250$ case

ELEGANT SEVEN Mk. III (350mW Output)
7-transistor fulfy tunable M.W.-L.W. Superhet portable. Set of parts. Complece wieh all components, including ready ecthed and drilled printed circuit board -back princed for foolproof construction. MAlNS POWER PACK KIT: $9 / 6$ extra.
〔5.5.0 Plus P. \& P. 7,6. Girevit 2;6. Free with parts.
THE DORSET (600 mW Output) 7-transistor fully tunable M.W.-L.W. Superhet portinble with baby alarm facility. Sec of parts. The atest modulated and pre-alignment techniques make this simple ro build. Sizes: $12 \times 8 \times 3$ in
MAINS PDWER PACKKIT: $9 / 6$ extra
〔5.5.0 Plus P. P. 7/6. Cirevit2/6. Free with parts.

The Viscount F.E.T. Mk. I $£ 14.5 .0$ plus 7,6 P. \&PP. High fidelity transistor stereo amplifier employing fiold effect transistors. With this feature and accompanying guaranteed specifications below. the Viscount F.E.T. vastly surpasses amplifiers costing lar moro.

SPECIFICATION
Outpue per channel- 10 W rms.
Frequency bandwidth 20 Hz to 20 kHz Total discortion $6 \mathrm{a} \cdot \mathrm{kHz}$ at $9 \mathrm{~W} 0.5 \%$ Input sensitiviries-CER. P.U. 100 m into 3 Mg : Tuner 100 mV inco 100 Kg : Tape 100 mV into $100 \mathrm{k} \Omega$. Overioad Factor-Better than 26dB. ignal to noise ratio-70dB on all
MK. \|I (MAG. P.U.) $\leq 15.15 .0$ Specificacion same as Mk. I, bue with the following inputs: Mag. P.U. CER. P.U. Tuner.

50 WATT AMPLIFIER A.C. Mains 200-250V

Price $\mathbf{£ 2 8 . 1 0 . 0}^{\mathbf{1}}$
Plus 20i- P. \& P. Tane Controls are common to all inputs. Bass sonitivicy relative so - 13 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Treble Boolt +11 dB at 15 KHz . Trable Cut -12 dB at $15 \mathrm{KHz} / \mathrm{s}$. With bass and ereble controls central 3 dB points are $30 \mathrm{~Hz} / \mathrm{s}$ and 20 $\mathrm{KHz} / \mathrm{s}$. Powor output. For specth and music 50 wasts rms. 100 watts peak. For sustained music 45 watts rms. 90 watts peak. For sinc wave 38.5 wates rms. Nearly 80 watts peak. Total distortion at rated output 2%. distortion at 20 watcs 0.15% at $1 \mathrm{KHz/s}$, Negative fefo back 20 dB at $00 \mathrm{KHz} / \mathrm{s}$. A. $50-60 \mathrm{H}$ /s A protective fuse is focated at the rear of unic. Outpue imped. A.c. 30 and is ahms.

Originally sold complete for $\{15.4 .6$

SET OF PARTS

plus 7/6 P. \& P.

Speaker, baffle and fixing kit 25/- extra plus 4/- P. \& P.
Postage free when ordered with partu

RADIO \& TV COMPONENTS (ACTON) LTD.
Post orders to:-21d High Street, Acton, London, W. 3 Also at 323 Edgware Road, London, W. 2
Goods not derpatched outside U.K.
Termı C.W.O.
All Enquiries S.A.E.

TheNew Picture-Book'way of learning
BASC ELECTRICITY (5vols)
You'll find it easy to learn with this out- the latest research into simplified learning standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Elec. tricity, Radio and Electronics.
WHAT READERS SAY
"I have looked at each book and must confess they are very, good,
everything is made so simple, which makes reading a pleasure." everything is made so simple, which makes reading a pleasure. R.H.H.G., Blandford.
"I find the information contained very aptly illustrated and composed." D.G., Twickenham.
"I would like you to know once again that I have read parts of each yolume and think they are excellent reading material. Easy to understand, easy to read and the subjects are not flooded with reams of unnecessary calculations which most electrical books delight in."
P.B., New Malden.

A TECH-PRESS PUBLICATION

[^1]\qquad

OCTOBER 20-24

Hear and compare the world's finest sound reproducing equipment for the home. The top loudspeakers, amplifiers, tape recorders, pick-ups, tapes, and accessories have been brought together under one roof to give you a superb Festival of Sound.
Famous manufacturers from all over the world will be demonstrating their products in specially constructed studios which will enable you to hear the Sound at its best.
Each day a programme of special live presentations and lectures will be held in the $\mathrm{Hi}-\mathrm{Fi}$ Theatre . . . and there will be two cinemas continuously showing films of instruction and interest. Entrance to both theatre and cinemas is FREE.
Everyone who takes pleasure in using and listening to $\mathrm{Hi}-\mathrm{Fi}$ equipment of the highest standard must visit this International Audio Fair.

EXCLUSIVE SHOWING TO THE TRADE BY INVITATION ONLY MONDAY 19 OCT. 2-9 pm

Apply for your ticket to the organizers: Audio Music Fair Sales Office, Iliffe Exhibitions Ltd., Dorset House, Stamford Street, London SE1 Telephone: 01-928 3333 Ext. 223

YATES ELECTRONICS (FLITWICK) LTD.

RESISTORS
High stability carbon film. Very low noise. $0.5 \mathrm{~W} 5 \% 4.7 \Omega$ to $2.2 \mathrm{M} \Omega 2.5 \mathrm{~d}$ each, $100+2 \mathrm{~d}$ each, $0.5 \mathrm{~W} 10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega 2 \mathrm{~d}$ each, $100+1 \cdot 75 \mathrm{~d}$ each. Quantity price applies for any selection. Ignore fractions on cotal order.
DEVELOPMENT PACK
$0.5 \mathrm{watt} 5 \%$ resistors 5 off each value 4.7Ω to $\mathrm{IM} \Omega$ 325 resistors E12 series 50/-.
650 resistors E24 series 100/-
4 WATT WIRE WOUND RESISTORS $1 / 6$ each.
10% 1.0. $1 \cdot 8,2 \cdot 7,3 \cdot 3,3 \cdot 9,4 \cdot 7,5 \cdot 6,6 \cdot 8,8 \cdot 2$ ohms.
$5 \% 10,15,20,25,39,50,100,200$ ohms.
MULLARD POLYESTER CAPACITORS $\pm 10 \%$
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}$, 6 d . $0.0068 \mu \mathrm{~F}, 0.01 / \mathrm{F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 / \mathrm{FF}, 7 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 10 \mathrm{~d}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022_{\mu} \mathrm{F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d}$ $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 10 \mathrm{~d}, \quad 0.33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, 1 / 6$. $0.68 \mu \mathrm{~F}, 2 / 3$. $1 \cdot 0 \mu \mathrm{~F}, 2 / 6$.
250V: P.C. mounting miniature $\quad \therefore 20 \%: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$, $0.022 \mu \mathrm{~F}, 7 \mathrm{~d} . \quad 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, \quad 0.068 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 1 /-. \quad 0.33 \mu \mathrm{~F}, 1 / 4$.
MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02_{\mu} \mathrm{F}, 6 \mathrm{~d} .0 .05_{\mu} \mathrm{F}$, $0.1 / \mathrm{F}, 8 \mathrm{~d}, \quad 0.2 \mu \mathrm{~F}, 1 /-$

CAPACITOR DEVELOPMENT PACK

Selection of ceramic and polyester capacitors 100 pF to $1.0 / \mathrm{FF}$. Total 100 capacitors, E_{2}. 18.0 .
MINIATURE ELECTROLYTIC CAPACITORS
($-10 \%+50 \%$)

$50 \mu \mathrm{~F}$	6 V	$16 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	12 V	$40 \mu \mathrm{~F}$	16 V	$16 \mu \mathrm{~F}$	40 V
$10 \mu \mathrm{~F}$	6 V	$64 \mu \mathrm{~F}$	10 V	$16 \mu \mathrm{~F}$	12 V	$6.4 \mu \mathrm{~F}$	25 V	$50 \mu \mathrm{~F}$	40 V
$20 \mu \mathrm{~F}$	6 V	$125 \mu \mathrm{~F}$	10 V	$50 \mu \mathrm{~F}$	12 V	$25 \mu \mathrm{~F}$	25 F	$2.5 \mu \mathrm{~F}$	64 V
$320 \mu \mathrm{~F}$	6 V	$200 \mu \mathrm{~F}$	10 V	$100 \mu \mathrm{~F}$	12 V	$2 \mu \mathrm{~F}$	20 V	$10 \mu \mathrm{~F}$	64 V

$320 \mu \mathrm{~F}$ oV $200 \mu \mathrm{~F}$ 1/- each
$250 \mu \mathrm{~F} \quad 12 \mathrm{~V}, 100 \mu \mathrm{~F}$ 40V $1 / 6$. $1000 \mu \mathrm{~F} 25$ volt $6 / \mathrm{F} .2500 \mu \mathrm{~F}$ 25 V 9/-. $\quad 500 \mu \mathrm{~F} 50$ volts 5/\%. $\quad 1000 \mu \mathrm{~F} 50$ volt $8 /-$

CERAMIC DISC CAPACITORS

$100 \mathrm{pF}, 150 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}, 330 \mathrm{pF}, 470 \mathrm{pF}, 560 \mathrm{pF}, 680 \mathrm{pF}$, $1000 \mathrm{pF}, 2000 \mathrm{pF}, 5000 \mathrm{pF}, 10,000 \mathrm{pF}$, 5 d each.
$0.02 \mu \mathrm{~F} 800$ volt $8 d$ each.
GANGED STEREO POTENTIOMETERS
$\frac{1}{2}$ watt carbon track $5 k \Omega+5 k \Omega$ to $I M \Omega+I M \Omega \log$ or linear 8/- each.
SKELETON PRE-SET POTENTIOMETERS
Linear: 100, 250, 500 ohms and decades to 5 M ohm 20% $\leqslant 250 \mathrm{k} \Omega$, $: 30 \%, \quad 250 \mathrm{k} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).
Miniature 0.3 watt $1 /-$ each.
Sub-miniature 0.1 watt 10 d each.
TRANSISTORS

Cl26 4-	AF117 $3 / 6$ BC107	BFYS1 $3 / 9$	$2 \mathrm{~N} 3703$	3/3
ACl28 d/-	BC108 $2 / 9$	BSY56 6/-	2N3705	3/6
ADI40 8/-	BCl09 3/-	BS $\times 21$ 5)-	2N3711	3/3
AFIIS 3/6	BFY50 4/6	2N2926 $2 / 6$	ORP12	$9 / 6$

DIODES-OA85, OA91, I/- each
ZENER DIODE
$400 \mathrm{~mW} 5 \% 3.3 \mathrm{~V}$ to $33 \mathrm{~V} 3 / 6$
SILICON RECTIFIERS IN4006 800V. IA 4/-

BYZ10 600V 10A IN4007 lo00V IA 4/3 BY236 800V 0.8A

VEROBOARD

	0.15	0.1
21 $\times 1 \times 3 \frac{7}{4}$	3/3	3/9
21 $\times 5$	4/-	4/6
$3{ }^{\frac{3}{4} \times 3} \times$	4/-	4/6
$3 \frac{3}{7} \times 5$	5/3	5/3
$17 \times 3 \frac{3}{2}$	15/-	
$17 \times 2 \frac{1}{2}$	11/6	

ROTARY SWITCHES

IPI2W, 2P6W, 3P4W, 4P3W, 4/6.

GRADUATED DIALS

For use with potentiometers, selector switches, etc., $3 / 3$
E,W.O. please 1/6 poze and packing on orders under Cl .
Export Enquiries woicome
ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD

181

EL ECTRONIE OOMPDNENTE =BETTER QUALITY, SERVICE, PRICES \& LARGEST STOCKS

BC107/8/9

2N4871
Motorola unijunction
$25+5 ; 9 \quad 100+4 / 9$
2 2N3055 $15 /-$
15 watt sinicon power
$25+13$ trasister $11 /-11 \%$

IRC 20

2N2926

Non mamar cunimen

${ }_{25}^{25+10} 100+18$

HV rectifier Boic

etc.)

2N3819
Texas FET

MGA 100	$35 /-$
3IF2	$28 / 6$
infra-red devices	

OCP71 19/6

Mullard
$25+17 / 3 \quad 100+14 ; 9$
New low integrated New low integrated
circuir prices Fairchild
(U.S.A.) micrologic R.T.L. epoxy case TO5 temperature range 15°
C. $2055^{\circ} \mathrm{C}$
$1-11 / 2.2425 .99100$
 4L914Dual 2 input Gate

8/6 | uL 923 J KK Flip Flop |
| :--- |
| $10 / 6 \quad 10 / \mathrm{g}$ |
| 16 | $\begin{array}{ll}10 / 6 & 10 /-9 / 6 \quad 9 /- \\ \text { Data and circurits } \\ \text { article, } 5 \rightarrow p a g e, ~ a t ~ 2 / 6 . ~\end{array}$ article, 5 -page, at $2 / 6$.

Arciele " 30 Suggested
Circlits Circuits for Micro-
logic
TOS'to DIL 3 -. TOS to DIL conversion
spreaders adaptors at
l/6 each.

SILICON RECTIFIERS

1 Amp Miniazure Moulded Junc
tion Rectifiers.

In the event of any 1 N 4000 series going temporarily out of soock we
reserve ethe right to send higher volcage types at no extra charge. $1000+$ and over prices on appli-
cation. cation.

NEWS NEWS NEWS NEWS

L.S.T. Electronic Components Limited are proud co
announce their official appointment by Nowmarkei Tran announce their official appointment by Newmarkei Jran sistors Led.-All Newmarket producrs now available at
Industrial User prices. All R.C.A. Seminconductors and integrated circuits now also available from L.S.T. at Industrial User prices, Many Mullard, General Electric, prices and better. Iskra resistors, Mullard Capacitors Veroboard, Repanco coils and other misc, components stocked in large quantizies. Official international Rectifier Centre stockists.

INTEGRATED CIRCUITS
Some R.C.A. Linear Typez $\begin{array}{llllll}\text { CA300S } 23 / 6 & \text { CA3020 } & 25 / 3 & \text { CA3028B } 21 / 6 & \text { CA3043 } 27 / 6 \\ \text { CA301 } & 14 / 9 & \text { CA3021 } & 31 / 3 & \text { CA3035 } & 24 / 6 \\ \text { CA3012 } 17 / 9 & \text { CA3022 } & 26 /- & \text { CA3036 } & 14 / 6 & \text { CA3045 } 24 / 6 \\ \text { CA }\end{array}$ CA3012 1719 $\begin{array}{lllllll}\text { CA3014 } & 21 / 9 & \text { CA3023 } & 25 / 3 & \text { CA3039 } & 16 / 9 & \text { CA3046 } \\ \text { CA } & \text { CA } & 2026 & 20 /- & \text { CA3041 } & 21 / 9 & \text { CA304B }\end{array}$ CAj018 $16 / 9 \quad$ CA3028A 14/9 CA3042 21.9 CA3058 $26 / 9$ Application Nozes for each individual 2/6d. per copy.
$\begin{array}{ll}\text { IC10 } & \text { Sinclair Audio Amplifier } \\ \text { PA234 } & \text { GE IC I Watt Amplifier }\end{array}$
PA234 GEICI Watt Amplifier
PA237
PA246
GE IC 2 Watt Amplifier
PA246 GE IC 5 Wart Amplifier.
PA424 GEIC Zero Voltage Switeh
SL403A Plessey 3 Watt Amplifier
$\begin{array}{ll}\text { SL702C } & \text { Plessey Linear } \\ \text { TAA263 }\end{array}$
TAA293 Mullard General Purpose Amplifier
$\begin{array}{ll}\text { TAA } 310 & \text { Record Playback Amplifier } \\ \text { TAA320 MOS If Ampliner }\end{array}$
TAA320 Mocord Piayback An
TADI00 MuS LF Amplifer.
Mullard IC Receiver
GE Silicon Coneroll
GE Silicon Conerolled Switch.

L.S.T. ELECTRONIC COMPOMENTS LTD. 7 COPTFOLD ROAD BRENTWOOD, ESSEX

SPECIAL OFFERS!

(arrard SPe $6 / 11$ ditend Giuldring G800 cartridge and wooden pllath ant plastic cover. Total list price 235 .
OUR PRICE $520.10,6$. CaEr. 10%.
GOLDRING GL68/2 nitled Goldring a800 cartridge cotrplete with deluze base and cover. Total list price $250,16.0$.
OVR PRICE 239 Curr. 20\%-.
OUR PRICE 239, CuTr. 20;
\star TRANSISTORISED FM TUNER \rightarrow
 Thangibtor MIGH QUALITY
 Bouble tuned dia criminator- Ample
output to feed noot aumplifiers. OperReady bullt ready for use. Fantastlo value

BELCO AF-5A
SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR

ation

CLASS D WAVEMETERS

yn frepuency meto
 eoverlng
Operation
A wallable in amateur use ued con
dititon, 85.18 .6 , Cast, $7 / 6$, or brand new with acece
gorles. 87.19 .6 . Carr. T/6.
B.C. 221 FREQUENCY METERS Jatcet releake 126kHz to 20 MHz . Excellent condstion. Fully teated andi checked and complete with callbrator charts. 287,10,0, each, Cartre 10%

TYPE 13A DOUBLE BEAM OSCILLOSCOPES An excellent gencral piur*

 Heneitivity $33 \mathrm{mv} / \mathrm{CM}$. Operating voltage ofiled
$200 / 250$ V. a.c. Suppled in excellent working con(ition. 282.10.0.

Carriage 301

MARCONI CT44/ TF956 AF. ABSORPTION WATTMETER
1 miwatt to of watts.
220. Carr. 20/4

SOLARTRON CD. FII88 DOUBLE BEAM oscilloscopes. J.

TO-2 PORTABLE OSCILLOSCOPE A general purpose low
cost
comumy oacillocost econumy orcillo-
ocope for erery geope for everyday use.
Randwidth
anop. imp. \% mega 20 Input,

 ${ }_{220}^{230} 240 \mathrm{~V}$ a.c.ight supplied

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

t new portable bridge offering ex. cellent range and
nocutacy ait low necueacy at
low
cost.
Ranges:
R. n-11.1 megn Ranges 는 1% L. $1 \mu \mathrm{HE}-{ }^{1}{ }^{1} 1$
 Hanges 52% TLRSS RATIO $1: 1 / 1000-$ $1: 11100.6$ Rangea $j 1 \%$. Bridge voltage at $1,000 \mathrm{cps}$. Operateid from 9 volls. $100 \mu \mathrm{~A}$,

HALF PRICE OFFER! SINOLAIR STEREO 25

UNR-30 4-BAND COMMUNICATION

RECEIVER

Covering $550 \mathrm{Ko} / \mathrm{s}-30 \mathrm{Mcis}$. Incorporaten BFO. Buill-in speaker and phone jack. Setal cabinet. Operation 390/ instructions.

13 gns.
TRIO ZR-310 HEW AMATEUR BANTD
10-80 METRE RECEIVEX. In stock.
E77.10.0.

LaFAYETTE SOLID STATE Ha6OO REEEIVER SHAMD AY/CW/SSB AMATEUR ABD SHORT
 dial Product detector © Yarisble BFO F Moloo

 for fall dotails.
LAFAYETTE HA. 800 G-BAND AMATEUR EEOSTYEB, 57.10 .0 . Carr. Path

TRIO COMMUNICATION
RECEIVER MODEL 9R-59DE
1 band receiver covering $650 \mathrm{Kc} / \mathrm{a}$ to $30 \mathrm{Mc} / \mathrm{f}$. conilnuous and electrical bundspread on $10,10,2$,
40 and 80 metres: $\$$ valve plus 7 diode clrevit 4/8 ohm output and phone jack. SBB-CW - ANL 0 Varinble BYO \& 8 meter © Sep. bandepread Varlable $\mathbf{R F}$ and AF gain controls. $115 / 250 \mathrm{Y}$ A.C. Malns. Beautifully designed. Rize:

10in. Wiht inulruction manmal and service data. 242 Carriage paid
OUR PRICE \&3.15.0 if purchased with above recelver

TELETON MODEL. CR $10 T$ AM/FM STEREO TUNER AMPLIFIER
 new moitel from Telelon. 31 solid etato alevices, $4+4$ watt outpat. Inputs ios $\mathrm{AM} 540-1600 \mathrm{KHz} \mathrm{FH} 88-108 \mathrm{MHz}$. Auto matic FM atereo recoption, Stereo indicalor. Controls: Tuning, function selector, Tone und It \& Ls volume controls. AFC awitch,

POWER RHEOSTATS

High quality ceranite construction. Windings embedded in vitreoun enamel. Heayy duty brukh wiper. Continuous rating, Wille range

CRYSTAL CALIERATORS No. 10

T.E.4D

HIGH SENSITIVITY
A.C. VOLTMETER 10 mes. inpot 10 rangea:
 R.M.S. $4 \mathrm{c} / \mathrm{s},-1 \cdot \mathrm{MMc/s}$. Decibels -40 to +50 dB . Supplied bramd new
 lagtructiona. Opratatlon

LELAND MODEL 27 BEAT

FREQUENCY OSCILLATORS Frequencs $0 \cdot 20 \mathrm{Kc} / \mathrm{s}$ on 9 ranges. Output 500 R or $5 \mathrm{k} \Omega$. Operation $20 j 250 \mathrm{~V}$. A.C Suppliel
10 -

TE-65 VALVE VOLTMETER

COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES
D.e. coupled, Band whith ike/s. Pertect

AM/FM SIGNAL GENERATORS

 Ogeilintor Test No.
2. A high qualfty 2. A high quality
precision
instra. ment made for the ministry by Alrmec. Frequency cover C.W.jFM. Incorporates prectaion dal, level meter, precialon attenuator $1 \mu \mathrm{~V} / 110 / 200 / 200 \mathrm{~V}$ a.c. Size $22 \times 8 \frac{1}{2} \times$. 9 in . Supplied in brand ner condition completo with all connectors fully tested. \$26. Carr. 20/-

RUSSIAN C1-16 DOUBLE
BEAM OSCILLOSCOPES
5МНz Pias Band. Separate Y1, Y2 ampilters. Caslibrated triggered sweep from $0-2 \mu \mathrm{sec}$ to $100 \mathrm{mesec} / \mathrm{cra}$.
Supplied complete with all arceseorlea and Instructions, 287, Carr. paid.
EDAYETOME YHF RECEIVERS MODEL 770 Z . $19-165 \mathrm{Mc} / \mathrm{g}$. Excellent condltoon. $\mathrm{I150}$
 TRE-18A Transintotised 81gualGenerator. 6 tangee $400 \mathrm{kHz-30} \mathrm{mHz}$. An
inespensive inatrument inexpensive inatrument
for the handyman. Operfor the handyman. Oper-
atee on 3 b battery. Wide, casy to read acale.
800 kHz modulation. $52 \times 52 \times 31 \%$. Complete with mstruclions and
TE-1035 STEREO HEADPHONES
Low cost high
performance
heatereo rubber ear cupe Adjuatable
headband. 8 oha
impedance.
$26-18,000 \mathrm{~Hz}$, With
lead and stereo

$\begin{array}{ll}\text { jack plag. } \\ \text { ONLX 89/6. } & \text { P.\&P, } 2 / U .\end{array}$

AUTO TRANSFORMERS

0.115 Bhrouded

7,500 W. $215,10,0, \mathbf{P} . \& \mathbf{P} .201-$
G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

VARIABLE TRANSFORMERS Iaput 230 V н．c．${ }^{50!6 n H z}$ ．Out．jnt varlable

BEBCH MOUXTLNG

 29．15．0； 8 amp，214．10．0； $10 \mathrm{amp}, 188.10 .0$ ：

PAEEL MOUNTIRG

TE－20D RF SIGNAL GENERATOR
 Accurate wide range $\operatorname{ign} 120 \mathrm{ke} / \mathrm{s}$ to $500 \mathrm{mc} / \mathrm{s}$ ． on 6 banils，Mifectly calibrated．Varlahte．
HE attenuator，audio cF
output．X atal
nocket for conibration， $2420 /$ 240 Y a．c．Size $140 \times$ new with instructions new with ingtructions．

TY75 AUDIO SIGNAL GENERATOR sine Wave e200／8 to
 noc／s to $30 \mathrm{kc} / \mathrm{s}$ ．High
and low impedance ontput．Output variable

 new with instructions，

MARCOII TE142S DIGTORTION FACTOR OO．Cat．Bx： 620．Carr． 10

friad Mew 217.10

ADVANCE TEST EQUIPMENT Brane new and bozed in orisinal vealed cartons T1B．AUDIOBIGHALGERERATOR $15 \mathrm{c} / \mathrm{a}$ to 50 Kc g，gine watve．Output fiov ohms or 5 ohma． $\mathbf{3 0 , 0 , 0}$
VI79．चHY MILYIVOLTMETER 100 Kejg to 1,000 ． Mc / o ．ac． 10 mV to aV
 MA．Real
TNIE．TRAMsig\％OR TESTER．Full range of acllities for testing PNP or NPN transiatora or out of circult． 887.10 .0
arriage 10j－per item

TO－3 PORTABLE OSCILLOSCOPE

 oin．Lube，Y amp，Sensitl

 Input imp． 2 meg 925 pF X amp．sensitivity 0.9 v ． Pop／CK Bandwidth $1 \cdot 5$ cy： -800 KHz ．Input Imp． | meg 0 |
| :--- |
| 5 ranges 10 pF ．Time base |
| kg |
| 100 |
| kgz | 5 ranges $10 \mathrm{cps}-300 \mathrm{KHz}$ xternal，Illuminuted scale $140 \times 21 \overline{5} \times 380$

 brand new with handbook， $837,10.0$ ，Carr 101

58111.

DEOADE
Mrgisiance
Variable
 －111ds．Cone
balanced T and bridge 1 ．Impedance 3000 range $(0.1 \mathrm{~dB} \times 10)+(1 \mathbf{1} \mathbf{B} \times 10)$ $+10+20+30+40 \mathrm{~dB}$ ．Frequency 3．c．to 200 kHz （ -3 LB ）．Accaracy： 0.054 B ．＋indieation $\mathrm{dB} \times 0.01$ ．Maxl mum input lese than $4 W$（ 00 V）．Built in witch．Brand new extio．0，P，\＆P．5／m．

BELCO DA－ 20 SOLID STATE

 DECADE AUDIO OSCILLATORNew high quality port to 100 kHz ．Square 20 Hz to 20kFiz，Output max． +10 dB （10kg）．Opera－ tlon $220 / 240 \mathrm{~V}$ a．c．slze 215 mm ．
 B／：。

llilistThe lazest edtuon giving funt range of HI FI EQUPPMENT COMPONENTS，TEST ECUUPP－ MENT and COMMUNICATIONS EQUIPMENT
Over 230 ．äd Over， 230
 trated and detail－ ing thousands of bargain petces FREE DISCOUNT： COUPONS

SEND NOW－ONLY $7 / 6$ P\＆P 116

GARRARD

FULL CURREIT RANGE OFFERED，BRAKD KEW AT FANTASTIC SAVIFGS

\section*{10보 sterco $\begin{aligned} & \text { 87．} 19.8 \\ & 2025 \mathrm{~T} / \mathrm{C} \text { 日teren } \\ & 28.17 .8\end{aligned}$ 2015M／C 日teren 29.17 .8 3000 sterco 80.19 .6 8P95 MKJI slo．19．8 L 55 \＄11．12．6 SL65B E14．18．8
 | SL7208 | 224．18．6 |
| :---: | :---: |
| AP75 | 518．19．8 |
| SL75 | |
| SL75R | 227．10．8 |
| \＄L95B | 397，10．0 |
| A70！11 | \＆11，18．8 |
| 401 | \＄25． 0.0 |
 ThAK PLINTHS AND PERSHEX COVERS
 For SPe $5, ~ S L A 5, ~ \& L D 5,3000,2025 T / C, 2025,1000$ ．EA．10．0
 For AP75，SLī，8L95．\＆5．10．6
 Gurrlage $5 / 6$ extra to operate uith lid In place $55,18.6$}

LAFAYETTE LA－324 STEREO AMPLIFIER
A fine new Hi．pt Anpllifer at low cost． $12 \cdot \overline{\text { F }}$ watts R．M．S．per chanpel－
$20-20,000 \mathrm{~Hz} \pm \mathrm{db}$ ．Inputs for 3ag or Cer Cartrifge，Tuner or Auxitiary： Output 4－16 Eeatures Headphone Bocket，Tape output．Frotected output stage．Finish stmulated walnut vinyl clad metal case black and brawhed
anodised aluminfum front panel． anodised aluminium front panel．

MULTIMETERS for EVERY purpose！

TE－5L．KEW $20,000 \mathrm{n}$ VOLT MULTLMETER with Mirror senle．0／6／60；140
 ／300m It A．c． $0 / 60 \mathrm{~K} / 6 \mathrm{~m}$ meg nhm．92：8．

MODEL AS－100D． 100K 2 ／VOLT．oin．
airror scale．Bull in meter protectlon $200 / 600 / 1,2001$ $\begin{array}{ll}\text { l．c．} & 0 / 6 / 30 / 120 / 300 / \\ 600 \mathrm{~V} & \mathrm{a}, \mathrm{c}, \\ 0 / 70 / 31\end{array}$ G／60／300MA／12 Amp $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$ 200 Mn 0
+15 E.
＋1718．
P． 8 ．
$3 / 6$

MODEL TE－200 20，000 O．F．V Mirror scate，overload protec．
tion， $0 / \mathrm{D} / 125 / 125 / 1,000 \mathrm{~V}, \mathrm{C}$. 0／19／60／250／1，000 V．A．C． $0 / 50$ LA／250 MA．0／G0K／6 meg．
-20 to +62 db ． $25 /=$ ． P． \＆P．20 to $2 / 6$ ．

MODEL TE－70．30，000 O．P．V．0／3／15／60／300 $600 / 1,200 \mathrm{~V}$, d．c． $0 / 6 /$ a．c． $0 / 30 \mu \mathrm{~A}$／$\$ / 30$ 300 mA ． $0 / 18 \mathrm{~K} / 160 \mathrm{~K}$

MODEL PT－84． ，000 O．P．Y．0110i $1,000 \mathrm{v}$ a．c．and
d．c．0／1／100／500 K』 39：6．ロ．\＆\＆

TE－000 20，0009 MULTJMETER hn．full siew meter colour seale，overlona protection．oferiond $2 \overline{0} / 1,000 / 5,000 \mathrm{~V}$ a．c $0 / 25 / 12.5 / 10 / 50 /$
$200 / 1,000 / 5,000 \mathrm{~V}$
d．c． $0 / 50 \mu \mathrm{~L} / 110 /$ $100 / 500 \mathrm{ma} 10 \mathrm{~A}$
d．e． $20 \mathrm{~K} / 200 \mathrm{~K} / 20$ A．e． $20 \mathrm{~K} / 200 \mathrm{~K} / 20$
M 1． $\mathrm{\Sigma} 15, \mathrm{P}, \mathrm{K} \mathrm{P} .5 \%$ ． MODEL TEA00 80,000 OP．F．Mirror acale
overioad protectjon． 0 $8 / 3$／ $15 / 60$／ 800 $1,200 \mathrm{~V}$ th．c． $0 / 6 / 50 / 120 /$ $6 \mathrm{~mA} / 60 \mathrm{~mA} / 300 \mathrm{~mA}$ $600 \mathrm{~mA} .0 / 8 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K}$ 8 meg．-00 to +63 えR

MODEL TE－10A $20 k \Omega /$ Volt，$\quad 5 / 25 / 50 / 250 / 500 / 2,500$
V，d．c． $10 / 50 / 100 / 500$ $\begin{array}{ll}1,000 \mathrm{~V} . \\ \text { mA．} / 200 \mathrm{~A} . & \mathrm{c} \text { d．e．} \quad 0 / 50 \mu \mathrm{~A} / 2.5 \\ 0 / 6 \mathrm{~K} / 6\end{array}$ megohm．-20 to +22 dB ． $10-0,100 \mathrm{mdd}$ ．to $0 \cdot 100-0.1$
$\mathrm{mfd}, ~ 80 / 6 . ~$ mfd．80／6．P．\＆P． $2 / 6$ ．

Orerlosd Protection
SAVE UP TO 33 $\frac{1}{3} \%$
ON HI－FI EQUIPMENT
Send for discount price list

AVO CT471A MULTIMETER

Battery operated，fully transistorised． Scraltivity 100 m D $/ \mathrm{v}$ ，Measures $\mathrm{AC} / \mathrm{DC}$ Voltages 12 mV to $2,200 \mathrm{v}_{\text {．}} \mathrm{AC} / \mathrm{BC}$ Curremi 12uA to 1.2 Amp．Recligtance 12 ohm to 130 mB HF，VHF，UHF，Voltage with multiplier 4∇ to 400 v up to $80 \mathrm{Yc} / \mathrm{s}, 40 \mathrm{mV}$ to 4 V up to $1,000 \mathrm{Me} / \mathrm{s}$ ．
Onfered in perfect condition．stas each． Carr．10／．

TRANSISTORISED

 TWO－WAY TELEPHONE INTERCOMperative over amazingly nd distamces．Separate calt owire comnection．1000＇s of appllcationg．Beauthiully fla－ shed in ebony．Supplied complete wita batlerics and wall bracketg．
86．10．e．P．\＆P．3／G，

SINCLAIR EQUIPMENT

Project 60．Package oftern． 2×230 amplifier， tereo 60 preamp，P25 power supply，
 18．0．0．Carr．7／6．Ot Fith PZ6 power aupply，
ag2，Carr．7／6． 2×250 amplifler， stereo 60 pre amp，PZ8 power supply， e21．10．0，Carr． $7 / 6$ $58 / 0$ extrax for $\mathbf{P 2 8}$ ， $58 / 0$ extra，Add to ady of the above 24．17．6．for actlve fliter unit and 216 for a pair of Q16 speakers．
in stock．$\quad, 000$ smplifter，423，Carr，7／6．Neoteric amplsfier 646，Carr．7／6．

PEAK SOUND PRODUCTS
Full range of Amplifierg，Kits，Speakers in stock．
solid state Variable a．c． VOLTAGE REGULATORS Compact and panel mount－
ing．Ideal for control of ing．Ideal for contro！of
lamps，drille，electrical appliancee，etc，Ioput $330 / 240 \mathrm{~F}$ a．c．Output con tnuonaly variable from Model MR2305 6 A $68 \div 46$ $43 \mathrm{~mm}_{4}$ 28．7．8．Model MR2310 $10 \mathrm{~A} 90{ }^{2} \times 68$
$60 \mathrm{~min}, 211.18 .6$ Postage $9 / 6$.
HOSIDEN DH－08S DE－LUXE STEREO
HEADPHONES
Fentures unique mech． anleal $\stackrel{2}{-}$ way unlte and fitted adjustable level controls． 8 ohm 1 m － pedance， $20-20,000 \mathrm{cpe}$ ． Complete with sprjag lead \＆stereo jack plug
$\mathbf{E 7} .19 .8, \quad \mathbf{P}$, i P P $/ 26$ ．

RECORDING HEADS

COSMOCORD f－track heads．High imp．record／playback 65／－Low imp． High imp．record／pleyback $6 \mathrm{c}_{1}$－．Low imp． crase 20：－Post extri

RACAL HA． 188 TRAYBYSTORISED DIVER－ 85＇Y swrict．Brand New Condition 115. Carr．10／－

AMERICAN TAPE

First graule quality American tapes．Brand new Discount on quantitses．
3 in． 29 ght．$工, P$ ，acetate
31 la ．680ft．T．P．mylar
$\$ 1 \mathrm{n}$.
600 ft atd．plastic
$61 \mathrm{~g}, 900 \mathrm{ft}, \mathrm{L}, \mathrm{P}$, acetate
Bin． 900 ft ．L．P，gcetate．
Vin．
，200it．D．P．mylar
Gin，1，200it．D．P．mylar

sin．1，8001t，D．P．mylar
7in．1．200ft．Bta，acetete．
7in． $1,800 \mathrm{ft}$, L．P．acetate
7n，I， 800 th．L，P，mytar
7in． $\mathbf{D , 4 0 0 f t}$ D．P．mylar
fin．3，600It．T．R．mylar ．．．．．．．．．
Postage 2／－．Over \＆3 post paid

TAPE CASSETTES

Top quality in plantic Hbrary bores．
$C 6080 \mathrm{~min} 8 / 83$ for 24,6
C90 $80 \mathrm{~min} 12 / 83$ for 36%
C120120 min 16／－3 Ior $43 / 6$
Cashette Head Cleaner 11／8．All Pont Extra．

Ever had

 karntafindapartitisAt some time or another most constructors of radio and electronic projects get hit by this complaint! The symptoms? Depression . . . exasperation . . . headaches . . . weariness . . . sore feet, etc. The causes? Frustrating hours spent in thumbing through inadequate out-of-date catalogues; making numerous fruitless phone calls, tramping or touring from shop to shop - all in a vain attempt to locate some vital components.

Here is the answer to the problem-the Home Radio Components Catalogue, a world renowned medicine for preventing the complaint or for quickly clearing up the trouble if symptoms have already begun to appear! Just send the coupon with $8 / 6 \mathrm{~d}$ plus $4 /-$ postage and packing, and your copy will be despatched immediately. In its 350 pages over 8,000 components are clearly listed, over 1,500 of them illustrated. A cross-reference Index and a 30 -page Price List enable you to locate your components without any trouble.

RADIO

The price of $12 / 6$ applies only to catalogues purchased by customers residing in the U.K.

Once you have your Home Radio Catalogue you can, if you wish, make life even easier for yourself by joining our Credit Account Service. Then you can order by telephone any time of day or night, Sundays included! No need to bother with postal orders, cheques, registering envelopes every time you order. We send prepaid envelopes and only one payment is required each month. So simple! Write for details or telephone 01-648 8422.

Editor F. E. BENNETT Assistant Editor M. A. COLWELL Editorial Assistants D. BARRINGTON G. GODBOLD M. KENWARD Art Editor I. D. POUNTNEY Technical Illustrators J. A. HADLEY P, A. LOATES Advertisement Manager D. W. B. Tilleard

THE IC INVASION

THE BRITISH IC industry is worried. Justly, so, for three-quarters of the U.K. market for these devices has been captured by American companies. The four indigenous IC manufacturers have the remaining quarter of this market to divide between themselves; and their hold on even this fraction is far from secure. In fact, one firm seems on the point of throwing in the towel. The head of the Mullard Organisation has openly confessed his company's inability to produce IC devices at prices comparable with those of U.S. competitors. The other three home IC makers have not been so forthcoming. But there is little doubt that despite the shot in the arm provided by the British taxpayer, this trio on which Mintech based its main hopes for the future of U.K. microelectronics, is feeling the same cold blasts from across the Atlantic.

Allegations of price cutting and dumping have been voiced aloud. Governmental action to limit the number of IC devices imported has been urged. But can such extreme measures really help in the long run? Electronic equipment manufacturers in other countries will continue to use the more favourably priced devices. Their finished products will thus have built-in price advantages over similar type products produced in this country and using mainly all-British components.

Protection of the home IC industry cannot conceivably benefit the home electronic equipment industry. The big question surely is, which branch of the electronics irdustry is the more valuable national asset and has the best chance in the future against increasing world-wide competition.

If the hard economic realities are indeed against the home IC maker, it might be just as well to bow to the inevitable and, instead, capitalise to the full on this country's skills in designing and building equipmentselecting the best available components from an open competitive market.

This certainly is a form of exercise familiar enough to many Practical Electronics readers-to introduce a more homely slant into this topic. . . After all, the amateur market is to a great extent a microcosm of the professional or industrial market. The advertisements of component retailers reflect trends in the bigger world outside. Thus readers who have been studying the components listed in these announcements will not have been taken by surprise by the IC industry's recent desperate cries for help. Clearly, the invasion by U.S. manufacturers has resulted in great price reductions in a variety of IC devices.

We all like to support home industries. But without these "foreigners" the amateur's chance to gain experience in the vital area of microelectronics would be severely curbed.
F.E.B.

THIS MONTH

CONSTRUCTIONAL PROJECTS
TELESCOPE TRACKER 770
LIGHT OPERATED SWITCH 775
PROTON MAGNETOMETER 782
TRIAC LAMP REGULATOR 810
SPECIAL SERIES
MAKING THE MOST OF' LOGIC IC's-4 818
GENERAL FEATURES
AUDIOMETRY 804
INGENUITY UNLIMITED 825
BEGINNERS
THERMISTOR THERMOMETER 794
THIS WAY TO ELECTRONICS—7 796
NEWS AND COMMENT 769
AUDIO TRENDS 778
ELECTRONORAMA 802
SPACEWATCH 809
NEWS BRIEFS 822, 826
Our November issue will be published on Thursday, October 15

[^2]The Moon Probe programme and the startling astronomical developments over the last few years have created such interest that many people have bought small telescopes. Though a small instrument of up to 3 inches diameter is capable of satisfying the needs of most amateurs, half its potential is lost without adequate means of synchronously tracking the moon, planet, satellite or star under view.
This article describes the construction of a compact and relatively inexpensive drive unit using a mains type synchronous motor, driven from a constant frequency generator designed for 12 volt operation (batteries or mains unit), that can easily be fitted to tripod telescopes to provide tracking facilities. The system can also be used for larger telescopes with equatorial mountings.

TRACKING

The apparent motion of the stars about the north pole star is 360 degrees in 24 hours, or 15 degrees per hour; this figure is better appreciated in terms of sun or moon widths of approximately 0.5 degrees. The "moon moves by its width every 2 minutes and since the optical gain or magnification of a telescope increases the apparent speed, it follows that high magnifications require constant use of slow motion controls to keep the object in view. Most small telescopes are fitted with a slow motion slewing control in the form of a knurled

knob, spring loaded against backlash, that has a rate of about 0.5 degrees per revolution and a total slew of approximately 20 degrees.

Mains type synchronous motors fitted with reduction gearboxes are available on the surplus market, with a final speed of 0.25 to 4 revs per minute. Such a motor is fitted to the telescope frame and coupled to the slow motion knob by means of accurately fitted high quality gears to give a slew of approximately 15 degrees per hour with the motor energised at 50 Hz . Using the circuit to be described the motor speed can be varied accurately by changing the frequency of the supply. Adequate torque is available from the motor to rotate the telescope and an anti-backlash device can be used, e.g., centre sprung double gears.

FREQUENCY GENERATOR

A hybrid unijunction bistable circuit is used for the frequency generator because:
(1) The timing stability is excellent being dependent upon C_{t} and R_{t} according to $f=\frac{1}{2 R_{\mathrm{t}} C_{\mathrm{t}}}$ (where f represents frequency).
(2) The stability is independent of transistor parameters and is reasonably independent of supply voltage changes.
(3) The timing capacitor C_{t} may be quite small (0.1 to $0.22 \mu \mathrm{Fd}$) and the inexactitude and variations of electrolýtics are avoided.
(4) The frequency may be readily and continuously varied over a wide range by changing only one component $-R_{\mathrm{L}}$, and temperature compensation (if required) can be easily applied.
(5) An equal mark to space ratio of well shaped rectangular wave form is obtained to feed a step up transformer.

The behaviour of the unijunction transistor is shown in Fig. 1. The capacitor C_{t} charges until the emitter voltage is approximately 60 per cent of the voltage across b1, b2 (peak point) when the emitter to b1 junction becomes almost a short circuit and the capacitor rapidly discharges.

TRACKER CIRCUIT

The unijunction transistor operating as described above fires the bistable circuit (Fig. 2) which is fitted with speed up capacitors C2 and C3, producing a rectangular waveform at the collectors of TR 3 and TR 5 . Emitter followers TR2 and TR6 pass this waveform, via reverse voltage protective diodes D1 and D2, to the bases of TR1 and TR7 which perform a switching action and can therefore control powers of approximately 5 times that of the normal class A operation.
The emitter resistors R1 and R15 dissipate some useful power and reduce output voltage but apply local feedback to linearise the waveform and prevent thermal runaway. The values of R1 and R15 may be varied to increase efficiency or reduce current drain as desired; changing R3 and R13 to vary the base drive.

The collectors of TR1 and TR7 are connected to the centre tapped secondary winding of a small mains transformer T 1 ; in this circuit the secondary winding is used as'a primary. The primary winding forms a tuned secondary, the output of which feeds the synchronous motor to track the telescope.

Fig. I. Unijunction oscillator basic circuit and curve showing voltage variation across \mathbf{C}_{t}

Fig. 3. Mains power supply for the telescope tracker

POWER SUPPLY

The circuit needs approximately 200 mA at 12 V d.c. and this can be supplied from a bank of U2 cells, an accumulator or alternatively from a simple mains power supply as shown in Fig. 3. In the mains supply circuit VR1 is adjusted to give 12 volts output on load and the choke Ll and capacitor Cl are resonated at mains frequency.

COMPONENTS . . .
$\left.\begin{array}{ll}\text { Resistors } \\ \text { R1 } & 6 \Omega(2 \times 12 \Omega \text { in parallel) } \\ \text { R2 } & 1.2 \mathrm{k} \Omega \\ \text { R3 } & 2.4 \mathrm{k} \Omega \\ \text { R4 } & 560 \Omega \\ \text { R5 } & 15 \Omega \\ \text { R6 } & 200 \Omega \\ \text { R7 } & 11 \mathrm{k} \Omega \\ \text { R8 } & 11 \mathrm{k} \Omega \\ \text { R9 } & 11 \mathrm{k} \Omega \\ \text { R10 } & 300 \Omega \\ \text { R11 } & 11 \mathrm{k} \Omega \\ \text { R12 } & 560 \Omega \\ \text { R13 } & 2.4 \mathrm{k} \Omega \\ \text { R14 } & 1.2 \mathrm{k} \Omega \\ \text { R15 } & 6 \Omega(2 \times 12 \Omega \text { in parallel) } \\ \text { R16 } & \text { approx. } 20 \mathrm{k} \Omega \\ \text { R17 } & \text { approx. } 30 \mathrm{k} \Omega \\ \text { R18 }\end{array}\right\}$ (see text)

Potentiometers
VRI $20 \mathrm{k} \Omega$ carbon preset
VR2 $10 \mathrm{k} \Omega$ carbon preset
VR3 $20 \mathrm{k} \Omega$ carbon lin.
Capacitors
$\mathrm{Cl} 0.1 \mu \mathrm{~F}-0.22 \mu \mathrm{~F}$ (see text)
C2 $0.01 \mu \mathrm{~F}$ polyester
C3 $0.01 \mu \mathrm{~F}$ polyester
C4 $100 \mu \mathrm{~F}$ elect. 15 V
C5 $\quad 0.25 \mu \mathrm{~F}-0.6 \mu \mathrm{~F} 450 \mathrm{~V}$ (see text)
Semiconductors
DI OA202
D2 OA202
TRI BFY50
TR2 2N3702
TR3 2N3702
TR4 2N2646 (unijunction)
TR5 2N3702
TR6 2N3702
TR7 BFY50

Switches

$$
\begin{array}{ll}
\text { S1 } & \text { 3-way wafer } \\
\text { S2 } & \text { single-pole on/off toggle } \\
\text { S3 } & \text { single-pole on/off toggle }
\end{array}
$$

Miscellaneous

-Tl Mains transformer 200/250V primary 9V-0-9V secondary-used in reverse (Douglas L.T. type) MOI Synchronous mains motor, $0.25-4$ r.p.m.
Printed circuit board, metal case, gears

Fig. 4. Layout and wiring of the printed circuit board

Fig. 5. Wiring diagram of the components mounted inside the tracker case

CONSTRUCTION

Most of the components are mounted on a printed circuit board, shown full size in Fig. 4. The board is fitted, together with the output transformer (T1), C5, the controls and associated resistors, inside a metal case of suitable size. A layout and wiring diagram of the components inside the case is shown in Fig. 5. The mains or battery supply is accommodated outside the case as is the tracking motor MO1.

When the telescope is tripod mounted and has a slow motion tracking screw the motor may be geared directly to this screw and hence revolve the telescope through an angle of some 20 degrees. The coupling gear ratio can be ascertained by calcuiation of the number of revolutions of the tracking screw to swing the telescope through 15 degrees. Assuming the speed of the motor is known the gear ratio can be found in the following manner
Gear ratio $=\frac{\text { motor speed in rev. per min. } \times 60}{\text { revolutions of tracking screw required for }}$ 15 degree swing
Assuming the motor speed to be $0.5 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and that $15 \cdot 5$ turns of the slow motion screw produce a 15 degree swing of the telescope the gear ratio required is:

$$
\frac{0 \cdot 5.60}{15 \cdot 5} \text { or } 30 / 15 \cdot 5
$$

Since this is almost $2 / 1$, gears of that ratio may be used and the slight error will be easily compensated by frequency adjustment in the circuit.

TESTING

The circuit should be set up with a polyester capacitor of $0.22 \mu \mathrm{~F}$ as C 1 and a 100 kilohm resistor as R_{t}; the output waveform is examined on an oscilloscope and C5 adjusted until the waveform is as shown in Fig. 6b. If an oscilloscope is not available then the transformer should be resonated, with the load applied, by monitoring the output voltage with a voltmeter (approximately 180 V r.m.s.) and adjusting C 5 in fine increments for a maximum reading.

Use should be made of the primary tappings of the transformer (if available) not only to achieve the required output but to incrementally change the effect of C5.

Fig. 6a indicates an output waveform without C5 and Fig. 6c shows a waveform with the transformer resonated for 50 Hz but with the generator frequency changed.

Fig. 6. Graphs of output voltage (a) without C5, (b) in resonance, (c) with transformer resonated for 50 Hz but with the generator frequency changed

Fig. 7. Control circuit used to replace R_{t} in telescope tracker circuit

The output frequency should be accurately determined by connecting the generator to a household electric clock and noting the timing error over a period of hours. If this frequency is not close to $50 \mathrm{~Hz} R_{\mathrm{t}}$ should be changed and C5 readjusted. Finally, with Cl and C 5 set for 50 Hz replace R_{t} with a variable resistor to slow the frequency until the drive motor to be used will no longer start up on load: this value of R_{t} should be measured as R_{t} slow; similarly determine the upper limit R_{t} fast. The output voltage should be at least 150 volts r.m.s. in the slow and fast condition dependent upon R1 and R15.

CONTROL CIRCUIT

The timing resistor R_{t} is replaced by the circuit of Fig. 7. Switch S3 (slow) is normally closed, and when S 2 (fast) is closed resistor combination $R_{\mathrm{t}_{2}}$ has the value of R_{t} fast. The variable resistors VR1, VR2 and VR3 are chosen and adjusted for star, moon and auxiliary rates and switch S3 is used to introduce $R_{\mathrm{L}_{1}}$ such that $R_{\mathrm{t}_{1}}+R_{\mathrm{t}_{2}}+\mathrm{VR1}$ (etc.) $=R_{\mathrm{t}}$ slow. The thermistor indicated may be used to shunt part of $R_{\mathrm{t}_{2}}$ to give temperature compensation (if required) for the temperature coefficient of C 1 (of the order of +300 parts per million per degree centigrade).

FINAL SETTING UP

Direct the telescope to a bright star group and use the fast and slow switches to centralise the group such that stars can be observed on the edges of the field of view. Preset VR2 is adjusted until the group is synchronously tracked. Repeat the above procedure using the moon, which moves relative to the stars, and adjust VR1 using a prominent crater as a marker. The remaining variable resistor VR3 is fitted with a suitable knob and used to track satellites, etc.

If the drive is fitted to a telescope, with an equatorial mount, as a 360 degree drive, the adjustment of VR2 can be accurately set by leaving the unit powered and performing a 24 hour check, preferably with the generator kept indoors at a reasonably constant temperature. The degree of temperature compensation can then be determined by noting the angular error over 24 hours for a given temperature change and determining the necessary change in the value of R_{t} to correct this. It will be found that a thermistor that changes from, say 10 kilohms to 3 kilohms (0 degrees C -30 degrees C) can be used as indicated in Fig. 7 to compensate for the change in value of C 1 .

IITHITI THMTI SMIGl By T.F:Arputhers

3

THE circuit to be described was designed to operate a bench light when the daylight fell below a certain level. The unit was to switch sharply and accurately at the same light level each time, to avoid repeated setting and interactions between the light sensor and the switched light when switching begins.

CIRCUIT DESCRIPTION

To ensure accurate switching an amplifier with high impedance must be used to amplify current taken from the voltage developed across the light dependent resistor (Fig. 1). A common collector amplifier is used, the first transistor (TR1) is a silicon device to prevent leakage current affecting the voltage across the l.d.r. (X1); all leakage current passes through R1. Transistor TR2 need not be silicon, an OC71 would do, but an OC200 is used to prevent variations in switching due to temperature variations. Theoretically the input impedance of the stage is $h_{\mathrm{FE}^{2}} R_{1}$ so that for circuit used the input impedance should be of the order the of 160 megohms for an h_{FE} of only 40.

Transistor TR3 is the power switch and is an $n p n$ device, in order to improve the switching time positive feedback is applied by R4. The feedback resistor couples the collector of TR3 to the base of TR1.

When light is falling on the 1.d.r. TR3 is off and the only effect of R4 is to shunt the l.d.r.; once the voltage at the l.d.r. rises to a sufficient level, due to failing light causing its resistance to rise, TR1 starts to conduct and the collector voltage of TR3 begins to rise. This voltage rise at TR3 collector is fed back via R4 and since the impedances around the base of TRI are large in value then the voltage drop across R 4 is small and the base voltage of TR1 rises causing TR1 to switch fully on. The regenerative effect ensures rapid switching.

Zener diode D6 is used to supply a constant voltage to the emitter of TR2; this stabilises the switching voltage required at the base of TR1. If a Zener diode is considered an expensive luxury, then it is possible to change VR1 to 100Ω and omit D6. This will reduce the accuracy of the switching and the level at which the device switches will be more dependent on variations of supply voltage.

POWER SWITCHING

The switching operation is performed by a thyristor with a voltage rating of 350 volts or more at 0.5 A . Resistor R7 may need to be changed if the specified thyristor is not used.

Fig. 1. Circuit diagram of the light operated switch for use with a 12 V supply and 12 V load

Fig. 2(a). Current supplied to load when a.c. is applied directly across the thyristor. (b) Current supplied to load when full wave rectified

To switch on the thyristor it is necessary to supply a pulse of current to the gate of the device, this is done by switching TR3. To switch off the thyristor the load current must be reduced to a low level, typically 10 mA . If the thyristor is fed from an a.c. source the load current is reduced to zero every half cycle. Unfortunately such a system would supply half wave rectified power (see Fig. 2a) to the light and this causes a flickering effect which can be disconcerting. This may be avoided by full wave rectifying the mains before feeding it to the thyristor (Fig. 2b). A full wave rectified mains supply circuit is shown in Fig. 3.

If the unit is required to switch off when the light level increases, C1 should be omitted from the supply circuit (Fig. 3). For most uses it is better that the light should remain on, independent of changes in light level, this allows the 1.d.r. to be placed on the workspace to be illuminated. Also if the l.d.r. is placed in a window headlamps from cars passing may cause the unit to switch unless it locks on.

Capacitor C1 will maintain the current to the load above the thyristor holding current (see Fig. 2), the
value given is sufficient for use with a load of up to 200 watts, for greater loads a value must be determined by trial and error. The current rating of Cl is important, this can be calculated by:
max. surge current $=\frac{\text { load power }}{\text { supply voltage }}$

RELAY OPERATION

A relay may be used in preference to a thyristor for switching the load as shown in Fig. 4. If a relay is used its coil resistance must be greater than 150Ω to, prevent the current through TR3 becoming excessive. If the coil resistance is less than this, but the relay only requires 100 mA or less to operate, then R6 may be replaced by a resistor of sufficient value to limit the current through TR 3 to 100 mA or less. The relay should be wired to latch on (see Fig. 4).

When a relay is used it is not necessary to rectify the mains before supplying the load as the contacts will pass the full waveform to the load; this represents a considerable saving in cost of diodes. Diode D7 protects TR3 from the back e.m.f. generated when the relay is

Fig. 3. Circuit of a mains supply using two transformers and full wave rectification of the 250 V load supply

Fig. 4. Modified circuit using a relay to switch the load

Fig. 5. Veroboard layout and wiring of the mains supply and mains load switching light operated switch (see text)

de-energised. Contacts RLAI latch the relay on and the circuit must then be disconnected from the supply to turn the load off. For non-latching operation RLAI contacts can be omitted.

CONSTRUCTION

The circuit is assembled on a single piece of Veroboard as shown in Fig. 5. Transformer T1, VR1, X1 and the thyristor can be mounted around the Veroboard in a small metal case. When a mains supply is used an adequate earth must be provided to the Veroboard and the metal case.

COMPONENTS . . .

Resistors

R1	$100 \mathrm{k} \Omega$
R2	$12 \mathrm{k} \Omega$
R3	$4.7 \mathrm{k} \Omega$
R4	$100 \mathrm{k} \Omega$
R5	220Ω
R6	$12 \mathrm{k} \Omega$
R7	330Ω
R8	560Ω
All	$\pm 10 \%, \frac{1}{2} W$
not required for relay version	

Capacitors

$8 \mu \mathrm{~F}$ elect. 250 V for mains supply version C2 $200 \mu \mathrm{~F}$ elect. 15 V$\}$ only

Semiconductors

Miscellaneous

XI ORPI2 photocell
VR1 500Ω carbon potentiometer
RLA $12 \mathrm{~V} 150 \Omega$ relay with two pairs of normally open contacts, one pair rated at 250 V IA (see text -for relay version only)

If a battery is used to supply the circuit, components $\mathrm{D} 1-5, \mathrm{C} 1$ and C 2 can be omitted from the Veroboard and the connections to T 1 secondary (12 V a.c.) connected to the supply-make sure that the negative line is applied to the strip A on the board. The breaks at $14 F$ and $17-18 A$ should not be made when a battery supply is used. All wires carrying mains voltage should be insulated and of sufficient size to carry the load current.

Once complete the unit can be tested by connecting a load and varying the light falling on X1; VR1 is used to set the switching level.

LOAD POWER

Load power is limited by T1 rating, D1-4 rating and the thyristor rating. Using the components specified the load power is limited to 100 watts by T1. When a battery supply is used the load power is limited only by the thyristor and for a 12 V supply would be 12 watts, this power could be increased by using a thyristor with a higher current rating.
When switching inductive lamps the thyristor should be able to pass the cold resistance current-normally about twice the normal current.
If the relay circuit in Fig. 4 is used, TI can be omitted and the supply fed from T2 and D2 or a battery. The relay contacts RLA2 should be rated at 250 V a.c. 1 amp for a 100 W load or at higher current ratings for increased loads.

APPLICATIONS

The switch unit is very versatile and may be used for a number of jobs; the switch will operate mains lamps or car parking lights. When used for the second of these a non-latching relay should be employed and the 1.d.r. sited away from the switched lights and from any other source of artificial light. If protection against shadows falling across the l.d.r. or momentary illumination is required a capacitor can be placed across the 1.d.r. the value of which is best found by trial and error-too large a value should be avoided as this would slow down the switching speed- $10 \mu \mathrm{~F}$ is a good value to use as a starting point.

The switch may also be used as a burglar alarm; if the unit is arranged so that a thief interrupts a beam of light falling on the l.d.r., the switch will power an alarm that can be locked on to indicate an intruder. The light beam may be made invisible by the use of an OCP71, in place of the ORP12, and an infra red light source. Any bulb with an infra red filter may be used and the beam focused on the sensitive section of the OCP71.

ONCE again an audio products exhibition is with us and what was formerly the International Audio and Photocine Fair is now the International Audio and Music Fair to be held at Olympia from October 19 to 24 , with trade only day on the October 19.

Why has "music" come into the name of the exhibition? Many may be wondering for example if the exhibition has been extended to cover electronic and other musical instruments. In fact it has not and "music" denotes general interest in music reproduction which is to be promoted by approximately 20 special presentations during the course of the exhibition in the form of music recitals and lectures.

The organisers also hope to present the Moog Electronic Music Synthesiser with demonstrations of its capabilities. The fact remains however, that a combined audio and musical instrument fair might prove as successful in this country as the annual "Firato" exhibition in Holland.

SONEX '7I

Following the successful Sonex '70 exhibition at the Skyway Hotel (Nr. London Airport) last April, the organisers, British Audio Promotions Limited, have now decided to run "Sonex " 71 " at the same venue.

The Daystrom (Heathkit) Audio Signal Generotor (sine or square wave) type AO-IU

The dates have been announced as Wednesday, March 31 to Sunday, April 4, 1971 with the first two days for the trade only.
Two whole days for trade visitors only, was apparently supported by a large majority of exhibitors. The number of exhibitors at "Sonex " 71 " is expected to be not less than 60 .

AUDIO TEST EQUIPMENT

No new audio products with any significant developments have been announced since Sonex ' 70 and the time of writing is too early for notice from manufacturers of anything outstanding they are likely to be showing at Olympia. For this reason most of this month's Audio Trends is devoted to a few items of currently available audio test equipment which may well be of interest to those who construct a good deal of audio equipment and have little time to build their own test gear.

Accurate test equipment is, of course, invaluable in all applications of electronics and particularly in the

Since this article was prepared the name Daystrom has been superseded by Heath-Gloucester Ltd.

The Daystrom Model AV-3U audio millivolt meter

design and development of circuitry. In audio work the two main essentiai instruments are perhaps the audio signal generator and the oscilloscope. An oscilloscope with reasonably accurate calibration can be used to measure audio signal amplitudes as well as show defects and distortion.
The ideal combination is a signal generator, oscilloscope and audio millivolt meter. A distortion meter might be considered a luxury as far as the amateur equipment constructor is concerned but is an essential piece of equipment in a design laboratory.

TEST GEAR IN KIT FORM

The greatest problem in building one's own test gear is that of reasonably accurate calibration, for unless

ES25 watis. Fitred with $1 / 8^{\prime \prime}$ bit
Interchanigeable hiss $3 / 32^{\prime \prime}, 3 / 15^{\prime \prime}$ and $1 / 4^{\circ}$ sisifable. Ideal for high speed production Fines For 240, 220, 110, 24 or 12 voles.

F 40 watts. Fitted 5 / 16^{22} bis.
Interchangenble bits $1 / 4^{\prime *}, 3 / 16^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ Wailable. Very high tempersure fron. for $240,220,110,24$ or 20 volts, $47 / 0$. Spare bits and alements for all modals and volroges hamediately mysicibite from stock.

15 watts - 240 volts

Fitted with nickel plated bit ($3 / 32^{\prime \prime}$) and in handy transparent pack. From Electrical 341
and Radio Shops or send cash to Antex.

for your miniature soldering iron.

PRECISION MINIATURE SOLDERING IRONS
Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymouth 67377/8.
Telex: 45296. Giro No. 2581000.Please send me the Antex colour cataloguePlease send me the following irons Quantity Model Bit Size Volts Price
..............e. :..n+u.....

I enciose cheque/P.O./cash value

NAME
ADDRESS
PE 10

VARIIBBLE VOLTAGE TRAHSFORUERS

Le日t sensitive switch Kit of parts, including ORPI2 CadTransistor and Circuit, etc, $6-12$ volt D.C. op. price $25 /$ plus $2 / 6$ P. 2 P. ORP 12 including circuit 12/6 each, Pose Paid.
A.C. MAINS MODEL. Incorporazes Mains Transformer, Rectifier and special relay with $2 \times 5 \mathrm{amp}$ mains c/o contacts. Price inc. circuit $47 / 6$ plus $2 / 6$ P. \& P.

LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered
Precision engineered lamphousing, to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair $£ 2.15 .0$, P. \& P. $3 / 6$.

UNISELECTOR SWITCHES NEW
4 Bank 25 Way 24 V d.c. operation $£ 5.17 .6$ P. \& P. 2
6 Bank 25 Way 24 V d.c. E6. 10.0 , p.p. $2 / 6$. 8 Bank 25 Way 24 V d.c. operation. E7.12.6 plus 4/6 P. \& P.

RELAYS Now SIEMENS,

 relays at COMPETITIVE PRICES Coil WorkingINPUT $230 / 240 \mathrm{v}$. A.C. $50 / 60-$ OUTPUT VARIABLE $0-260 v$. BRAND NEW
Keenest prices in the country. Alt Types (and Spares) from $\frac{1}{2}$ to 50 amp . from stock.

SHROUDED TYPE

$1 \mathrm{amp}, 65.10 .0,2.5 \mathrm{amps}$,
 f6. 15. 0.15 amps, 59.15 .0.
8 amps, $f 14,10.0$.
10 amps, £ 18 . 10 . 0 . i2 amps, $£ 21$. 0.0 . 15 amps, 825.0 .0 .20 ampı, £37. 0. $0.37 .5 \mathrm{amps}, 272,0.0$. 50 amps, 892 . 0. O.
OPEN TYPE (Panel Mounting)
$\frac{1}{2} \mathrm{amp}$, $\mathbf{6 3 . 1 8 . 6 .} 1 \mathrm{amp}$, $\mathbf{6 5 . 1 0 . 0}$: $2 \frac{1}{2} \mathrm{amps}, \mathbf{4 6 . 1 2 . 6 .}$
STROBE! STROBE! STROBE!
Build a Strobe Unic, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit. $230 / 250 v$. A.C. oparation.
EXPERIMENTERS' ECONOMY KIT
Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unitunction Xeron Tube and instructions $\mathbf{~ 5 , 5 . 0}$ plus 5/: P. \& P,
NEW INDUSTRIAL KIT
Ideally suitable for schools, laborataries, etc, Roller tin printed circuit, New trigger cail, plastic thyris
Speed adjustable f-80 f.p.s. Price $9 \mathrm{gns} 7 /$.6 P. \& P.
HY-LYGHT STROBE
This strobe has been designed and produced in rosponse to wide publie demand, for use in large rooms, halls and the photographic fielo, and utilizes a silica plug-in zube assembly, also a special erigger coil and ourpur capacizor. Speed adjustable 0-30f.p.s. Light output approx, 4 joules. Price $£ 10,17,6$, P. \& P. 7 lf .
7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 10/6, P, \& P, $2 / 6$ ldeally suited for above
or Post Paid with kits.

100 WHTT POWER RUEOSTATS (MEW)

 AVALLABLE IM THE FOLLOWIEB VALUES$1 \mathrm{ohm}, 10 \mathrm{a}, 55 \mathrm{ohm}, 4.7 \mathrm{a}$; $10 \mathrm{ohm}, 3 \mathrm{a}$; $25 \mathrm{ohm}, 2 \mathrm{a} . ; 50 \mathrm{ohm}, 1.4 \mathrm{a} ; 100 \mathrm{ohm}, 1 \mathrm{a}$.
 mA . Diameter 3tin. Shaft length $\frac{1}{3} \mathrm{in}$., dia. bisin. All at $27 / 6$
each. P. \& P. P
50 WTT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / \mathrm{I} \cdot 5 / 2 \cdot 5 / 5 \mathrm{Kohm}$ All at $21 /$ each. P. \& P. I/6.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 / 5 / 2.5 \mathrm{Kohm}$. All at $14 / 6$ each. P. \& P. $1 / 6$.
VEEDER ROOT, 230 V a.c. 50 cycle, 5 -figure \square counter (non-resettable). i8/6, P. \& P. 1/6. . NTCKEL CAD. BATTERY OUTFIT (Ex. W. ${ }^{\circ}$.)
Two mecal carrying cases each containing $10 \times 1.2 \mathrm{~V} 7 \mathrm{AH}$ (12V) Batteries, also $10 \times 1.2 \mathrm{~V} 27 \mathrm{AH}(12 \mathrm{~V})$
Batteries (40 batteries in all).
One dual voltage, dual meter chyristor controfled charging unit, Designod for charging the 7AH and 22AH
 batteries simultaneously. Input voltage specification. ldeal power supply for field work. Offered at speciicasion. makers' price. Two sets of batteries, I eharging Unit. The ser e45. P. \& P. 301 -.
$24-30$ V D.C. operation. Stabilised unijunction Timer and S.C.R.' (30 V 1 amp a), encapsulated in metal core. Timing interval adjustable from a fraction of a second to several minutes
by means of external resistor or pot. By
 by means of external resistor or pot. By adding a 24 V Relay many other complex timing Functions are possible.

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV. 8 AMP
Now available EX STOCK. Supplied with full data
and applications sheet. Price $21 /=$ plus $1 / 6$ P. \& P.

RE-CHARGEABLE

BUTTON CELLS
BUTTON CELLS $2 \times 1.2 \mathrm{~V}$, 250 MA/HR Nickel had. Cells, connected to give $2 \cdot 4 \mathrm{~V}$, 25 A.C. charger. Fully tesred and unused. Price $9 / 6$ each plus 1/6 P. \& P. or 2 units for 81 post

paid.

INSULATED TERMINAE Available in red, white, yeHow, black, blue Available in red, white, yehow,
and green. New Price 2 - each.

SERVICE

All Mail Orders-Also Callers-Ample Parking Space
Dept. P.E, 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN CLOSED SATURDAY 780

Personal callers only
9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576

AUOIO CIREUIT DESIGIG

 SILICON COMPEEMENTARY PARSS
Motorola Publication

12/6

Postage I/

HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS by Jack W. Streater. 28/-. Postage 1/-

THE HI-FI AND TAPE RECORDER HANDBOOK by Gordon J. King. 10/. Postage $2 / 6$
INTRODUCTION TO LOGIC CIRCUIT THEORY by I. Aleksander 32/-. Postage 1/
TRANSISTOR IGNITION SYSTEMS HANDBOOK by Brice Ward. 22/6. Postage I/
TRANSISTOR MANUAL by Generat Electric Company, 21/4. Postage $1 / 6$.
BASIC THEORY AND APPLICATION OF TRANSISTORS, Dept. of the Army Manual. $17 / \%$, Postage $1 / 6$.
SERVICING WITH THE OSCILLOSCOPE by Gopdon J. King. 28\%. Postage

TRANSISTOR POCKET BOOK by
R. G. Hibberd. $25 /$. Postage $/ /-$.

THE MODERN BOOK CO.

GRITAIN'S LARGEST STOCKIST of British and American Tochnical Books

19-21 PRAED STREET LONDON, W. 2 Phone: PADdington 4185 Closed Saturday I p.m.

this can be carried out the equipment would be virtually useless. Most test equipment available in kit form is pre-calibrated or requires only simple adjustment to effect calibration and in any event the suppliers of kits usually undertake to calibrate the finished instrument for a nominal charge.

Well known for test equipment kits are Daystrom (Heathkit) and three of their least expensive models are shown in the photographs. Their audio signal generator type AO-1U covers a frequency range of 20 Hz to 150 kHz in four ranges and provides a sine-wave output of up to 10 volts at less than 1 per cent distortion. The generator also provides a square-wave output over the frequency range 20 to $25,000 \mathrm{~Hz}$ with a rise time of less than 3 microseconds. A fast rise time on the squarewave output of an audio signal generator is essential for square wave tests on amplifiers. This Daystrom kit costs $£ 1416 \mathrm{~s} 0 \mathrm{~d}$ but can be purchased assembled and tested for $£ 1918 \mathrm{~s} 0 \mathrm{~d}$.

Also from the Daystrom range are the model OS-2 general purpose oscilloscope and the AV-3U audio

The Grundig MV-20 audio millivolt meter

The Grundig TG-20 audio signal generator with sine or square wave output
millivolt meter both of which are suitable for a wide range of audio equipment tests. The O-S2 'scope costs $£ 2418 \mathrm{~s} 0 \mathrm{~d}$ as a kit, or $£ 3218 \mathrm{~s} 0 \mathrm{~d}$ assembled and tested. It has a bandwidth of 2 Hz to 3 MHz and a timebase range of 20 Hz to 200 kHz . Other features are synchronisation, horizontal 50 Hz sweep, a 1 volt reference signal and switched internal/external Y plate connections.

The AV-3U audio millivolt meter has a lowest range of 0 to 10 mV and a highest range of 0 to 300 V . On the lower ranges (10 millivolts to 100 volts) the input impedance is 10 megohms. The intermediate ranges are more than sufficient for all audio work and aside from calibration in volts there is also a decibel scale directly related to the voltage readings.

READY-TO-USE EQUIPMENT

Many of the larger radio component stockists carry a wide variety of test equipment suitable for the amateur and at reasonably low prices. In the Nombrex range for instance, stocked by many dealers, there is a transistorised audio generator with sine or square-wave output at $£ 1919 \mathrm{~s} 0 \mathrm{~d}$.

There are also various Japanese made instruments of reasonable accuracy on the market and among these is an audio millivolt meter at $£ 1710 \mathrm{~s} 0 \mathrm{~d}$, a sine/square wave audio generator at $£ 17$ and a fairly versatile oscilloscope with a 3 inch diameter screen at $£ 3710 \mathrm{~s} 0 \mathrm{~d}$. These are stocked by Henry's Radio Limited, 303 Edgware Road, London, W.2., whose special test equipment catalogue is available free on request.

The items mentioned above are from this catalogue and they have sufficient range and accurate enough calibration for all but precise audio tests and measurement.

HIGH GRADE EQUIPMENT

The greater the accuracy and versatility of test instruments, the more costly they become. For laboratory work where a high degree of accuracy is required there are many makes and types of instruments to choose from. However, the Grundig range is perhaps not so well known in this country as their tape recorders but does include an audio signal generator and a millivolt meter with fairly high accuracy and performance at a reasonably low price.
The Grundig millivolt meter type MV-20 has a minimum range of $0-3 \mathrm{mV}$ and a maximum range of $0-300 \mathrm{~V}$ with 9 ranges in between. On all ranges the input impedance is 10 megohms and the frequency response is flat from 10 Hz to 1 MHz . The instrument is also calibrated in decibels in relation to the voltage scales and has provision for checking its own calibration. It retails at $£ 555 \mathrm{~s} 0 \mathrm{~d}$.
Also from the Grundig range comes their TG-20 audio signal generator which employs a Wien bridge oscillator and delivers a sine or square wave output signal. This covers a frequency range of 10 to 1 MHz and it has a calibrated output attenuator. The distortion factor is better than 0.2 per cent at the lower frequencies (40 to 150 Hz) and better than 0.1 per cent for the remainder of the ranges. It retails at $£ 4810 \mathrm{~s} 0 \mathrm{~d}$.

Further details of these and all other Grundig test instruments, most of which are high grade laboratory type, are available from Grundig (G.B.) Limited, Newlands Park, London, S.E. 26.

TAPE RECORDERS

Grundig have just announced the release of four new stereo tape recorders; an automatic portable cassette recorder; a high fidelity three speed professional portable tape recorder; a new loudspeaker system called the "Troika" and a new systemised hi fi outfit, comprising a tuner amplifier, two loudspeakers and a transcription unit.

The new TK3200 portable tape recorder is a halftrack mono machine intended for professional use and should be up to that standard since it retails at $£ 1783 \mathrm{~s} 0 \mathrm{~d}$. The new domestic recorders cover a wide variety of facilities and are available for half or quartertrack stereo with prices ranging from $£ 5415 \mathrm{~s} 7 \mathrm{~d}$ for the TK21 model to $£ 15714 \mathrm{~s} 0 \mathrm{~d}$ for the TK248.

The TK248 is a de-luxe model with twin 8 watt output stages, four built-in loudspeakers and facilities for multi-play, signal mixing, echo and monitoring on or off tape.

ARCHAEOLOGISTS, treasure hunters and skin divers have a common problem, where to dig or dive to discover the loot. A buried metal locator would come in handy, but most are either expensive or have too limited a range. The one described here is a proton magnetometer utilising discoveries made in nuclear magnetic resonance first published in 1946.

Some care is required in putting together the high gain amplifier, but otherwise construction is straightforward, using standard components, and the exotic nuclear material is distilled water.

Essentially, the magnetometer measures the intensity of the earth's magnetic field at two nearby points. A difference in the intensities produces an output from the device, which can be either an audio signal or a meter reading.

The earth's field is normally uniform, but will be disturbed by local concentrations of magnetic materials, such as iron ore or just iron junk. Hence the magnetometer can only be used to search for ferrous materials or compounds. For this purpose it is extremely sensitive with considerable range.

It will, under ideal conditions, detect a one pound mass of iron at about four or five feet below one of the bottles, and larger masses at much greater distances. Typical of the latter is a twelve foot length of three inch diameter iron water pipe at twelve feet. It is difficult to give performance figures, since much depends upon the size, density and attitude of the object disturbing the field, and experiment provides the best answers.

This high sensitivity to field variations means that the magnetometer may only be used remote from known earth field disturbers, such as buildings and power lines.

ATOMIC PRINCIPLES

To understand the principles involved is easy, if the cobwebs and dust are shaken off the school books and memories of atomic particles. Remember that old friend, the hydrogen atom, first in the atomic table,
with just one proton and one orbiting electron, as simple a thing as any alchemist could wish.

The orbiting electron acts just like electric current in a coil of wire and sets up a magnetic field about the atom as seen in Fig. 1. The proton, the main mass of the atom, is also in motion, spinning about its centre, so that the whole atom looks like a magnetic gyroscope, whose magnetic poles are on its spin axis.

Gyroscopes have idiosyncracies revealed to mechanical engineers, one of them being that they, will precess if acted upon by an external field. In the hydrogen proton's case, its spin axis will wobble or precess about the direction of the earth's magnetic field, if that is the only magnetic field acting on it. This is shown in Fig. 2. The frequency of precession will be proportional to the strength of the field and is given by $v=k B$ where $v=$ frequency of precession
$k=4.26 \times 10^{3} \mathrm{~Hz} /$ weber for hydrogen
$B=$ intensity of magnetic field.

USE OF DISTILLED WATER

If a coil of wire is wound round a small plastic bottle containing distilled water, sufficient current can be passed through the coil to set up a local field in the bottle very much greater than any external field, in this case the earth's.

A number of the spinning protons of the hydrogen atoms, remember $\mathrm{H}_{2} \mathrm{O}$, happily line themselves up with their spin axes along the direction of the induced field. If the current is suddenly cut off, the induced field collapses, and the protons try to realign themselves with the earth's field.

Because they behave as gyroscopes, they cannot simply switch back, but must precess back at the precessional frequency. In doing so they set up a very weak alternating field in the bottle, and an alternating voltage is induced in the coil. This voltage falls to zero as realignment with the earth's field is completed. Fig. 3 shows the signal that would be seen on an oscilloscope.

A combination of nucleonics and electronics provide an extremely sensitive detector with long range search capability. Detection principle is based on local variation in earth's magnetic field.

by L. HUGGARD, в.sc.
 MAGNETOMETERFerrous mital locaton

Fig. I. Magnetic field around hydrogen proton produced by orbiting electron

Fig. 3. Diminishing alternating voltage set up by precession frequencies from the detector coils

Fig. 4. Modulated output produced by mixing the two precession frequencies from the detector coils

BASIC MAGNETOMETER

This phenomena can now be used to make a ferrous metal detector. Two such bottles filled with distilled water are spaced about six feet apart. The longitudinal axes of the bottles lie east-west.

The coils wound round the bottles are connected in series and a current passed through them. After three seconds, the current is cut off and an amplifier connected across the coils. If the intensity of the earth's field is the same at each bottle, the precession frequency at each will be the same, and the signals from both coils of equal frequency.
lf, on the other hand, the field intensities were different due to some local magnetic disturbance, then the signal frequencies will differ, and the difference can be detected.

The amplifier input signal is then the sum of two signals of slightly different frequencies and its output will be a signal of a third frequency which is half the sum of the two input frequencies. The amplitude of this is modulated at a fourth frequency equal to the difference between the original two input frequencies. This composite output signal can be heard in a headset as a note of about 2 kHz with a marked quaver. This is illustrated in Fig. 4.

Fig. 5. Block diagram of proton magnetometer

The greater the difference in the field intensities between the two bottles, the faster will be the quaver. It only remains to reach for the shovel and see what is causing the magnetic difference.

CIRCUIT BLOCKS

Now look at the block schematic of the magnetometer in Fig. 5. There are in effect six units comprising: two detector bottles, relay circuit, multivibrator, main amplifier, meter amplifier, and power supply. These form what might be called a de-luxe unit. The relay and meter circuits may be omitted if costs have to be kept down.

The relay is used to switch the series wound coils, L1, L2 from the "polarise" condition to "detect". In the "polarise" condition the relay passes current through the coils via terminal B1 at the stabiliser. On "detect" the relay switches the precession frequencies produced at the coils to the main amplifier input terminals AI, A2. Detection of the modulation envelope is then provided for, both aurally and visually, by the headphones X1 and meter M1.

The relay can be,made to operate manually by the push-switch S1 or automatically when coupled via S2 to the multivibrator; this switch does in fact select the mode.

The multivibrator switches the relay on for about three seconds and off for the same period. This continuous operation is particularly useful when searching. The manual option is used when setting up or detecting a very small frequency difference.

RELAY DRIVER AND MULTIVIBRATOR

The circuit diagram of the relay driver and multivibrator is given in Fig. 6. Here TR1 and TR2, in modified super alpha configuration, drive the relay.

The relay contacts are shown in the quiescent state. A $1 W$ resistor, R1, can be inserted in the "polarise" circuit to reduce the detector coil current and so cut down on battery consumption. It follows that the higher the value of this resistance the smaller will be the signal presented to the main amplifier, so the choice of value should be made when the unit is completed and tested; 4.7 ohms is a suitable value to start with. "Cut and try" methods should provide balance between a tolerable signal and battery economy.
The multivibrator, comprising TR3 and TR4, provides an equal mark-space output of three seconds duration at the collector of TR3. This is passed via S2, when switched to the "auto" mode, to the base of TR2.
Details for assembling and wiring this circuit module are given in Fig. 7.

Relay driver and multivibrator board

COMPONENTS . . .

RELAY DRIVER AND MULTIVIBRATOR

Resistors

R1*	See text	R6	$10 \mathrm{k} \Omega$
R2	$1 \mathrm{k} \Omega$	R7	$330 \mathrm{k} \Omega$
R3	$1 \mathrm{k} \Omega$	R8	$330 \mathrm{k} \Omega$
R4	$82 \mathrm{k} \Omega$	R9	$10 \mathrm{k} \Omega$
R5	$33 \mathrm{k} \Omega$	R10	150Ω

All $\frac{i}{2} \mathrm{~W}, 10 \%$ carbon except where otherwise stated.

Capacitors

| Cl | $100 \mu \mathrm{~F}$ | elect. 25 V |
| :--- | :--- | :--- | :--- |
| C 2 | $5 \mu \mathrm{~F}$ | elect. 25 V |
| C 3 | $5 \mu \mathrm{~F}$ | elect. 25 V |

Transistors

TRI 2N2613
TR2 2N5088
TR3, TR4 2N2712 (2 off)
Diodes
DI OA202.

Switches

SI Press switch
S2 Single-pole changeover

Relay

RLA $12 \mathrm{~V} 185 \Omega 4$ pole-changeover
STC miniature relay type 25 (Electroniques)
Miscellaneous
Veroboard $4 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, \quad 0.15$ mamix plain, SKI-SK4 phono sockets (4 off)

Fig. 8. Circuit diagram of main amplifier

MAIN AMPLIFIER

The main amplifier, seen in Fig. 8, serves to increase the level of the precession voltages. A ferrite cored transformer, T1, with the primary centre tapped, is tuned to the required frequency by C4 and C5. The first stage comprising TR5 has a tuned collector load resonant at the same precession frequency.

The output from the secondary of T2 feeds the d.c. coupled amplifier TR6-TR7. This acts, in effect, as a pre-amplifier to the meter circuit, the input for this being taken from M1.

The bandwidth of the tuned circuits is about 300 Hz , which has proved adequate on field trials.

VR1 is the volume control for the headphone amplifier, TR8-TR9, the output being taken via. JK1.

The headphones used should preferably be high impedance crystal, since magnetic ones can cause feedback trouble if brought too close to the detector bottles and so cause the amplifier to oscillate.
(In field trials magnetic phones were used and proved trouble-free provided they were maintained in the plane of the detector bottles.)

AMPLIFIER CONSTRUCTION

Since the amplifier provides high gain, the wiring layout and constructional details of Fig. 9 should be adhered to, to prevent instability.
Both of the transformers are contained in Vinkor adjustable pot cores. To wind Tl use 40 s s.w.g. enamel covered wire. Slip a couple of inches of fine sleeving over the start to protect the leadout, then wind on seven hundred and fifty turns. Put on another piece of sleeving over the finish leadout and wrap a layer of cellotape round the winding.

Put on two more windings of three hundred and seventy-five turns each and identify the starts and finishes with different coloured sleeving. Wind a layer or two of plastic electrical tape around the completed

Main amplifier board

PRACTICAL! VISUAL! Nm M M

a new 4-way method of mastering 트늪BMBE by doing - and - seeing

4

)
VALVE EXPERIMENTS
TRANSISTOR EXPERIMENTS
AMPLIFIERS
OSCILLATORS
SIGNAL TRACER CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING
PHOTO ELECTRIC CIRCUIT
COMPUTER CIRCUIT
BASIC RADIO RECEIVER
ELECTRONIC SWITCH
SIMPLE TRANSMITTER
A.C. EXPERIMENTS
D.C. EXPERIMENTS

- SIMPLE COUNTER
- TIME DELAY CIRCUIT

SERVICING PROCEDURES
This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^3]
COMPLETE STHEU

FOR ONLY

PREMIER STEREO SISTEM＂ONE＂Consists of an all transistor stereo amplifier，Garrard $2025 \mathrm{~T} / \mathrm{C}$ auto／manual record player unit fitted stereo／mono cartridge pad mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems．Absolutely complete and supplied ready to plug in and play．The 10 transistor amplifier has an output of 5 watts per channel with inputs for pick－up，tape and tuner also tape output socket．Controls： Bass，Treble，Volume，Balance，Selector．Power on／off，stereo／mono switch．Brushed aluminium front panel．Black metal case with teakwood ends：Size $12 \times 5 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$ ．high（Amplifier available separately if required $£ 14.19 .6$ ．Carr． $7 / 6$ ）．

PREMIER STEREO SYSTEM＂TWO＂

As ayatem＂ONE＂ahore but with Aacrard 9P25．
PRETGBR 45 GIIS．Cart．
PRICE
$35 /=$

AURIGA 8 WAVEBAND

 TRANSISTOR PORTABLE Volume，tome，tuning nuli wavechunge coutruls．Telescopht aerial．Vises $6 \approx 1$ IV batterien．socketa for cxternal batterles，tape recoriler and aerial．Elegant black nad chrome enhinet．Size iltu
premise price 16 Gis．$\frac{\mathrm{F}}{\mathrm{F} / \mathrm{s}} \mathrm{F}$

HHFI STEREO HEADPHONES Destgnel to the highest posaible standard．Fittel ying．apeaker units with soft padded ear muffs． 8 ohma fmpedance．Cons－ pohm fimpedance．Coni sleren jack plug． 59／6 p ．

MONO FEADPHONEB 2000 ohm $14 / 6$ P \＆P ． $2 / 6$ STEREO STETHOSCOPE SET LOW imp． 20 －P．\＆P．

SPECIAL OFFER！

Garrand SP25 Mr，I Single Record Player，Fitted Amido Technica ATB8 Stereo Cartridge．Complete in Tenk Plinth with Rigid Perspex Cover．Totn！list Price over 524.
PREMIER 18 GNS Y．

＂VERITONE＂RECORDING TAPE SPECLLLY HAXUFACTURED DN U．S．A．TROM EXTRA STRONG PRE－STRETCEED MATERIAL．TYE QUALITY IS DHEQUALLED． TENSILISED to ensure the mort permazent base．Hlghly remiatant to break－ age，moliture，heat，cold or hurality．High polished gplice free amlsh．Smooth ontput throughout the entire audio range．Dooble wrapped－attractirely boxell．

 Trost and Facking $3^{*} 1!--5^{*}, 58^{*} 1 / 6,7^{7} 2 /-, \quad(3$ reela and orer Post Free．）

PREMIER

SPEAKER CABINET
Teak flnish with blsck front．Size $16 i n \times 10$ in $\times 71 \mathrm{in}$ ．Cut out for
ONLX $49 / 6 \underset{\substack{\mathrm{P}, 6 \\ \hline \\ \hline}}{\substack{\text { \＆}}}$
E．M．I． $13 \times 8 \mathrm{in}$ ．HI－FI SPEAKERS
Fitted two 21in tweeters tand crossover network， Arailable with 8 of 15 ohm impedance．Hand－

79／6 ァ．\＆Р．7／0 reproduction． 10 watts per ehannel muale power Inpute for Gram（Magpetic and Cryatal），Tuner and Auxiliary，Tape Record output．Conirola：Volume， Bulnnce，Bass，Treble，Stereo／Mono sllde swich．Steren headphone socket，Athrackive olled waina cabiaet

$$
\begin{aligned}
& \text { PREMIER } 22 \text { Gins. P. \& P. } 10 \% \\
& \text { PRICE }
\end{aligned}
$$

PREMER STEREO SYSTEM＂FOUR＇

Teleton 8Aqeosg Amplifier（as above）
 283，2．0

 Garrard 8P2Ghure $\mathbf{I 8 D}$
Teak base and cove
Fadr of EifFi Enclosures Atted E．M．I 8peakert
Total cost if parchseri separstoly
278.18 .0
$\underset{\text { PREMIER } 65 \text { GNS．carr．35／－}}{ }$

VERITAS V－149 MIXER

Battery operated 4－channel audio miker provilirg four meparate inputh，size microphone，low imperiance radio，tape，etc．Mas．j刀put 1.5 V ，max．output $9-5 \mathrm{~V}$ ，galn 6dB．Standard jack plug socket inputs，phonoplugs output．Altractive teak wookl grain finish cafe． rono $59 / 6$ stereo
 codel $59 / 6$

Model 09 ／

SOLDER ©UY．

＂WERLEA EXPERE＂ Ssves time and simplifies soldering It the home and service dept， dzal heat． $100 / 140$ wntt． 940 volt A．c． $67 / 6$ P．\＆ \mathbf{P} ．
＂Weller Markman ${ }^{\text {Wh }}$ Eoldering Iron Lightwelght，${ }^{5}{ }^{*}$ pencll bit． 25 watt．
240 volt A．C． $31 / 6$. P．\＆P． $2 / .4$

POCERT sIZE MULTE－TEATES With yide angle， ewellen meter movement，reramic long－life，low－loss Sensitivity 20,000 ohnis／volt D．C． 10,090 ohms／rolt A．C． 19 Rasgey： $0-5-25-50-250-600-2500$ ralts D．C． $0-10-50-100-500-1000$ volts A．C．0－60 AA－9－0゙mL－ 260 mA D．C．${ }^{0-}$ 6000 ohmis－ 6 megohnis， $10 \mu \mu(14-0.001$ batters，tebt lead and ingtructions．

MIDLAND CASSETTE TAPE

RECOROER
12－115
solid state incor－
porating
pianokey controls pianokey control
track reconling．Inpula for raike tud rux tirphone track reconing．Inputs or raike tud nux，Barphone $10 \sin \times 5 \sin \times 2$ 亚的

TAPE CASSETTES

P．\＆P．1／－
Al castetter an be woplied with fibrary cesee of $6 d$ extre edch．

Fig. 9. Assembly and wiring layout of main amplifier board

COMPONENTS . . .

windings then very carefully assemble the bobbin in the ferrite core. Ensure that nothing gets trapped between the two halves of the core, preventing them mating.
If test equipment is at hand, the inductance of the seven hundred and fifty turn winding should be $0 \cdot 196 \mathrm{H}$, and its resistance about 56 ohms. The resistance of each of the other windings will be 28 ohms.

COUPLING TRANSFORMER

The coupling transformer T 2 is built in the same way. Its primary winding has 1,076 turns of 40 s.w.g. and the secondary 258 turns of 40 s.w.g. When finished the primary inductance should be 0.4 H and its resistance about 88 ohms. The secondary resistance will be about 26 ohms.
Since final tuning of the amplifier is made during field trials, the capacitors C4, C5 and C9 should be temporarily connected using crocodile clips.

Meter amplifier board

Fig. 10. Circuit diagram of meter amplifier

Fig. 11. Assembly and wiring layout of main amplifier board

COMPONENTS . . .

METER AMPLIFIER

Resistors

R30 56k Ω
R31 $33 \mathrm{k} \Omega$
R32 $5.6 \mathrm{k} \Omega$
All $\frac{1}{2} \mathrm{~W}, 10 \%$ carbon

Capacitors

$\mathrm{C} 175 \mu \mathrm{~F}$ elect. 15 V
C18 $0.012 \mu \mathrm{~F} 5 \%$ polystyrene
C19 $10 \mu \mathrm{~F} 6 \mathrm{~V}$
C20 $1 \mu \mathrm{~F} 15 \mathrm{~V}$

Potentiometer
 VR2 $20 \mathrm{k} \Omega$ linear

Transistors
 TRIO 2N5088
 TRII 2N404

Diodes
 D2, D3 OA202 (2 off)

Inductor
L3 0.4 H LA2301 pot core-Type " B " Assembly (See text)

Meter

MI 0-ImA moving coil 2 ${ }_{4}^{\text {itin }}$ square

Fig. 12. Circuit diagram of stabiliser circuit

- Fig. 13. Assembly and wiring layout of the stabiliser board

COMPONENTS . . .

STABILISER

Resistors

| R33 100Ω | R34 270Ω | R35 150Ω |
| :--- | :--- | :--- | :--- |
| All $\frac{1}{2} W, 10 \%$ carbon | | |

Capacitors

C21: $500 \mu \mathrm{~F}$ elect. 15 V
C22 $500 \mu \mathrm{~F}$ elect. 15 V

Diodes

D4 ZL24 9.1V 1.5W Zener D5 IS40|

Switch

S3 Single pole on/off

Lamp

LPI 6V 0.06A MES bulb to fit
Eagle IL. 115 Indicator Lens (G. W. Smith Ltd) ${ }^{\text {f }}$

Fuse

FSI 2A fuse and holder

Sockets

SK5, SK6 4 mm insulated terminals coloured red and black (2 off)

METER AMPLIFIER

The circuit for the meter amplifier is given in Fig. 10. Here VR2 acts as a sensitivity control in feeding the complementary pair TR10 and TR11.

The meter circuit can be used in conjunction with, or to replace the headset.

The meter needle follows the amplitude of the amplifier output which varies at a rate equal to the difference between the two input frequencies. It is particularly useful with very low difference frequencies.

Constructional details of this module are given in Fig. 11.
The inductor L 3 is contained in an adjustable pot core, the type being the LA2301, the same as used in the main amplifier.

To achieve the specified inductance, 1,076 turns of 40 s.w.g. enamel covered wire should be wound on the bobbin. With the winding complete the free ends should be cleaned and the bobbin assembled in the cup cores.

The mating surfaces of the cores should be fixed together with an adhesive such as Araldite, and the whole stuck to the Veroboard.

POWER SUPPLY

The power supply stabiliser circuit is shown in Fig. 12. Here the diode D5 will prevent damage if incorrect connection to the power source is made.

The supply to the main amplifier and multivibrator is taken from the Zener diode D4, and that for the meter circuit is additionally decoupled by R33 and C21.

Three separate chassis connections, G1-G3, are made between the main amplifier and stabiliser to prevent the possibility of oscillation.

The supply lead from the 12 V battery must be screened. The centre wire is positive and terminates at SK5; the negative screen at SK6. Constructional details are given in Fig. 13.
Since the magnetometer draws about 750 mA during "polarise", an adequate heavy duty power source must be used.

CHASSIS ASSEMBLY

Assembly details of the modules on the chassis and front panel interwiring is given in Fig. 14. It should be emphasised that the chassis must be aluminium, and contain as few iron parts as possible, ideally none.

DETECTOR BOTTLES

The detector bottles are plastic, $1 \frac{5}{3}$ in outside diameter and 4 in long. The bottle caps must be plastic.

COIL FORMERS

The coil formers for the bottles are made to be a sliding fit. One way to do this is to roll each bottle in a couple of thicknesses of paper, cover that with a layer of thin plastic sheet, such as is used for food wrapping, and then wind on two or three layers of glass cloth as shown in Fig. 15.

The glass cloth is impregnated with epoxy resin and left to cure. The final thickness of the former wall

Prototype power supply stabiliser board

Fig. 15. Constructional details of detector coil former

COMPONENTS . . .

```
Detector Coils
    L1, L2 0.021H 750 turns of 24 s.w.g. enamelled
        copper wire wound on }1\frac{5}{8}\mathrm{ in }\times4\mathrm{ in plastic
        bottle formers (2 off) (See text)
    PLI-PL4 Phono plugs (4 off)
```


Carrying staff

$\frac{1}{4}$ in wood cut as required $4-\frac{1}{2}$ in brass wood screws (see text)

All Other Miscellaneous Items
Aluminium chassis and top panel $13 \frac{1}{2}$ in $\times 5$ in $\times 2 \frac{1}{2}$ in (H. L. Smith)

Knobs (2 off), carrying strap, plastic covered connecting wire, twin conductor screened lead, single conductor screened lead.
BYI $-12 \mathrm{~V}, \mathrm{HPI}$

Fig. 16. Constructional details of carrying staff
should be about ${ }^{5} \mathrm{~s} \mathrm{in}$. Once the epoxy has hardened, the outer surfaces should be sanded smooth, and two wooden cheek pieces epoxied on. This gives a very rugged former. Two small holes are drilled in one cheek, one close to the bottom, the other near the top, to bring the ends of the coil out through. The former is then covered with a layer of insulating tape.

WINDING THE DETECTOR COILS

Carefully solder an eight inch length of fine plastic covered multistrand wire to the start of the coil wire and insulate the joint with thin sleeving.

Three inches of the multistrand wire are passed out through the bottom hole in the cheek to make the wiring connections to. Seven hundred and fifty turns of 24 s.w.g. enamelled coil wire are now wound on. The winding should be as neat and even as possible.

If a lot of rough use is foreseen in the future, it might be prudent to spend a little more and use coil wire with a tougher coating. A suitable coating is armoured polythermaleze. With the winding completed the free end is joined to another piece of multistrand, the joint insulated and the wire taken out through the remaining hole in the cheek.

The complete winding is covered with a couple of layers of plastic insulating tape.. For further protection, put on a layer of thin foam rubber or plastic. At this point take a break to steady the hands and then make the second coil in exactly the same way.

Now if it is possible to measure the coils, the inductance of each should be 0.021 H and the resistance about 7.9 ohms.

CARRYING STAFF

Details of the carrying staff construction are given in Fig. 16. This is of wood, the cross members being attached with brass wood screws.

D.C. CHECK OUT

Give the wiring and all solder joints a final careful check, making sure that all semiconductors are connected correctly. Set all controls to minimum and connect to a 12 V power source. Switch on and check all given d.c. voltages with a test meter (20,000 ohms per volt).

Operate the press switch S1 which should energise the relay when the switch S2 is at "Manual". Switch the latter to "Auto"; the relay should now cycle on for three seconds and off for three seconds.

If the periods are unequal try substituting different electrolytics for either C 2 or C 3 in the multivibrator. These capacitors have a very wide manufacturing tolerance which may affect the timing. Once the meter circuit is cycling correctly, connect the test meter across the detector input sockets SK1 and SK4. The meter should read 12 V when the relay is closed, and zero volis when it is open. Switch the supply off.

Check that the meter reads about 43 ohms across the input sockets SK1 and SK3. This ensures that the relay is switching the two inputs to the input transformer.

METER AND FIELD CHECK

Connect up the detector bottles and turn the supply on again.

If an oscillator is available, make a loop of wire across its outputs and set it near the end of one of the bottles.

Turn up the amplifier gain control slightly and a loud note should be heard in the headsets if the oscillator is adjusted between $2,000 \mathrm{~Hz}$ and $2,500 \mathrm{~Hz}$. At this

Place a pound mass of iron-pair of pliers or hammer-about two feet below one of the bottles and switch S2 to "Auto".

QUAVERING NOTE

A note with a marked quaver should be heard on the "detect" portion of the relay cycle. Adjust the gain to give a convenient output in the headset.

Vary the distance between the iron mass and the bottle until the note peaks about five times during "detect".

Try going up or down a few preferred values on the tuning capacitors to get the loudest signal. Then fine tune by adjusting the tuning core in the ferrite cores. If the gain of the meter circuit is turned up the meter should follow the amplitude of the detected signal, the height of the peaks shown falling over the detect period.

All is now in order, heave a sigh of relief, the magnetometer is ready to go to work.

USING THE MAGETOMETER

It is probably obvious by now how the device can be used. The area to be searchet should be traversed,

Fig. 17. Search pattern that should be followed when using the magnetometer

Fig. 18. Arrangement of magnetometer equipment in a boat

frequency turn up the meter gain control until the meter reads about half scale. Turn the oscillator off, whereupon the note should disappear, and the meter needle fall to zero.
Switch S2 to "Auto", the coils will now be energised each time the relay is closed. This can be checked by holding a compass near each one and seeing that a field is produced.

No further testing can be carried out indoors. The unit must be taken to some spot at least a quarter of a mile from all wires, buildings, and possible sources of electrical or magnetic interference and ferrous junk.

TUNING

The resonant circuits have now to be tuned to the exact precession frequency produced by the earth's field at the site chosen for the test. This will be between 2 kHz and 2.5 kHz .
Once so tuned the magnetometer can be used within a radius of a hundred miles or so of the test site. At greater distances the tuning should be checked, and corrected if necessary.

The staff with the bottles should be set with the bottle axes pointing east-west, that is the staff points northsouth (see Fig. 4). The chassis should be somewhere along a line east-west through the middle of the staff.

With S2 switched to "Manual", turn the audio gain full up. There should only be some noise in the headset, and no trace of oscillation. Now turn the gain dewn to about half.
moving so that the coil axes point east-west; this gives maximum sensitivity.

Move fairly slowly, remember that it takes six seconds for one polarise and detect cycle, so do not overshoot small objects.

Alternatively, walk a couple of steps, let the device cycle and then move on a few more. Once something is detected, move around until the quaver reaches its fastest, when the "something" should be somewhere beneath.

DETECTION CAPABILITY

The size of that something and how far down it is will only be resolved by digging. As a rough and ready guide as to what to expect, a one pound mass should be detectable at about five feet below one of the bottles, and a one ton mass at around forty feet.

Size, distribution of metal and the attitude of the object all affect the magnetometer's ability to detect it; the best way to evaluate its performance is by experiment with a number of different objects.

In Fig. 17 is shown the traverse pattern that should be employed for overland searches.

When working from a boat it is simpler to keep the bottles near the surface, rather than make an elaborate underwater housing to get it near the bottom. Using this method, some idea of a wreck size and depth can be more easily estimated. A typical arrangement for aquatic search purposes is given in Fig. 18.

THERMISTOR THERMOMETER

 A SPECIAL PROJECT FOR BEGINNERS

 A SPECIAL PROJECT FOR BEGINNERS}

This month we present an Air Thermometer with a range of $0-50^{\circ} \mathrm{C}\left(32-122^{\circ} \mathrm{F}\right)$ which is more than adequate for indoor measurement. Since the readout is essentially a linear function of temperature, a sensitive $50 \mu \mathrm{~A}$ moving coil meter can be used directly, no scale re-calibration being necessary.

THERMISTOR BRIDGE

The element of the circuit in Fig. 1 which makes temperature measurement possible is the thermistor X1. Unlike ordinary conductors its resistance decreases with increasing temperature. In order to magnify the effect of the current variations produced, the thermistor has been arranged with other resistors and potentiometers to form a bridge circuit and so multiply the effects of thermal changes at the meter.
To understand the working of the bridge let S1 be switched to the temperature measurement position. Looking round the bridge arms it can be seen that the lower arms are of equal resistance with variation possible at the upper arms in VR1 and the thermistor.
To arrange that zero current through the meter coincides with an environmental temperature at the thermistor of $0^{\circ} \mathrm{C}$ means adjusting VR1 until the voltages across R3 and the meter M1 are equal. The bridge is then said to be balanced.

When the thermistor subsequently is exposed to other higher temperatures in the range $0-50^{\circ} \mathrm{C}$ its resistance changes proportionally to the new temperature and the bridge is unbalanced. The voltage across R3 and M1, is then proportional to the temperature change.

LINEAR TRACKING

In order to linearise the thermistor's logarithmic resistance/temperature characteristic it is necessary to add the resistors R5 and R6. Since manufacturing spreads can provide variations of ± 20 per cent on this characteristic it may be necessary, in individual
cases, to vary slightly by experiment, the value of those resistors for linear tracking of the meter with temperature change.

CONSTRUCTION

The T-Dec is used for mounting the majority of small components, the pre-set potentiometers being connected to the control panel. Assembly details are shown in the photograph.

Be careful when soldering the thermistor leads to wire lengths as the former are fragile, in addition they should not be reduced in length. When joints are made they should be sleeved to prevent inadvertent short circuits.

Since there is nothing critical in the circuit apart from the calibrations, other constructional methods may be employed.

CALIBRATION

The requirements for calibration are an ordinary Celsius mercury thermometer and environments for fixing the scale limits. Since the stabilisation of the zero point $\left(0^{\circ} \mathrm{C}\right)$ takes some time a refrigerator freezer compartment is to be preferred in fixing this lower reference.

With the potentiometer VR3 set to about midposition and the thermistor placed in the freezer, adjust VR1 for a null on the meter. This adjustment should be maintained over a period of ten minutes.

To fix the upper point $\left(50^{\circ} \mathrm{C}\right)$, the thermistor should be transferred to a water bath heated to this temperature. Since the thermistor lead is glass encapsulated this can be partially immersed, but make sure the wire leads do not come in contact with the water.

To obviate inaccuracies, the water. should be stirred from time to time with the bulb thermometer. When this indicates $50^{\circ} \mathrm{C}$ adjust VR3 so that the meter needle aligns at $50 \mu \mathrm{~A}$. The calibration procedure should be repeated at least twice.

Fig. I. Circuit diagram of the air thermometer

The meter should be checked for tracking linearity by reducing the temperature of the water bath. If iced water is added this part of the calibration can be rapidly undertaken. Once again before each measurement the water should be stirred and comparisons between meter and bulb thermometer made at 10 degree intervals.

- If the readings are graphed, temperature against microamps, the plots made should roughly align with a straight edge; if not the value of R5 and R6 myy need to be slightly altered. Here, R5 will affect the lower end of the meter scale and R6 the upper. Experiment with resistor values approximating to those given should provide linear tracking.

BATTERY CHECK

With deterioration of the battery and consequent reduced line voltage, meter readings will be displaced from true so it is necessary to compensate for this.

In the initial calibration it was arranged that the peak temperature reading should coincide with the 50 mark on the meter. If a potentiometer is arranged to have the same total resistance as that contained in the thermistor arm at that temperature then it can be switched in when required as an upper point calibration check.

VR2 is adjusted to achieve this; when it is necessary to check the battery condition S1 is switched to "calibrate". If the meter needle shows full scale deflection, all is well; if not, VR3 should be adjusted.

COMPOHENTS . .

Resistors

R1	$1.5 \mathrm{k} \Omega$	R3	$5.6 \mathrm{k} \Omega$	R5	$6.8 \mathrm{k} \Omega$
R2	$1.5 \mathrm{k} \Omega$	R4	$1.5 \mathrm{k} \Omega$	R6	390Ω

Thermistor

XI TH8I2 (Radiospares)
Potentiometers
VRI $5 \mathrm{k} \Omega$ VR2 $2 \mathrm{k} \Omega$ VR3 500Ω
All wirewound linear presets
Meter
MI Moving coil meter, $0-50 \mu \mathrm{~A}$ f.s.d.
Switch
SI Single-pole, double-throw toggle switch

Battery

BYI $1 \frac{1}{2}$ volt, HP2

Miscellaneous

T-Dec, connecting wire

THis concluding article in the series continues with electromechanical output transducers, particle and radiation sensors, then follows with special purpose semiconductor devices.

We are concerned here with devices that provide a mechanical force to push, pull, rotate, or accurately position some mechanical system in response to an electrical signal.

Solenoid

The solenoid in Fig. 7.1a is a straightforward example of a mechanical output transducer for pushing or pulling. A cylindrical plunger of ferrous material is drawn into the coil by the magnetic field arising from a current flowing in the wire turns. The force is only attractive and the plunger is returned to its original position by a spring when the current ceases to flow.

Electromagnet

Another simple type of transducer for supplying a mechanical force is the efectromagnet with pivoted armature as in Fig. 7.1b. When a current flows through the coil, the core is magnetised and attracts the ferrous armature against the tension of a return spring.

Servomechanisms

A more sophisticated arrangement for accurate linear or rotational positioning is the d.c. proportional servo, so called because the output motion is proportional to the input signal. Applications include the remote panning of closed-circuit television cameras, rotating aerials, and radio control of models.

The servo uses a d.c. motor as an output transducer, which is coupled via a gearbox to a feedback potentiometer. As the diagram in Fig. 7.1c shows, a pinion gear on the gearbox shaft can convert the rotational motion of the motor spindle into a linear push-pull movement when so required.

The d.c. servo operates as follows. In the absence of an input signal the motor is stationary with zero volts at the amplifier output, and the potentiometer slider is half way along the resistance track. When a d.c. signal is applied to the comparator, it will be amplified to a level sufficient to cause the motor to rotate.

The potentiometer slider moves to a setting where the feedback signal has the same value as the input signal and is of opposite polarity, thus cancelling the input signal and switching the motor off.

Stepping Motor

Stepping motors are derived from synchronous motors of the type used in clock and timer mechanisms.

When connected to a special electronic switch circuit, the stepping motor can be speed-controlled in both directions, and will also offer a rotational output consisting of a series of angular steps. The-stepping motor armature has permanent magnet poles-usually 12-and two field coils, see Fig. 7.1d.
If a single pulse is fed to one of the inputs of the electronic switch the armature will move $\frac{1}{12}$ of a revolution, but a fast train of pulses at the input will

THTU

cause smooth rotation at a rate dependent on pulse repetition frequency. Thus, there can be complete control of motor speed and spindle positioning.

PARTICLE AND RADIATION SENSORS

Radioactive substances emit electromagnetic waves (gamma rays) and high speed atomic particles. Gamma radiation is equivalent to x-rays of high energy. There are several kinds of particle, such as the fast moving electron (beta particle) and the helium nucleus (alpha particle).

Silicon Alpha Detector

Alpha particles can be counted by specially constructed silicon diodes, and germanium diodes-with an extra layer of intrinsic semiconductor material inserted between the n - and p-type regions (pin diode)-will respond to gamma rays.
The silicon diode in Fig. 7.2a has a gold leaf window which offers little resistance to the passage of an alpha particle. When reverse biased, the diode emits a pulse as an alpha particle penetrates the window and causes ionisation of silicon atoms.

Geiger-Muller Tube

The Geiger-Müller tube (Fig. 7.2b) is an extremely sensitive detector of individual beta particles and gamma ray quanta. The tube is filled with an inert gas plus additives to ensure that an electrical discharge between the cylindrical and wire electrodes is quenched quickly.

Fig．7．1a．Moving core solenoid
Fig．7．lc．Proportional d．c．servo mechanism

Fig．7．lb．Electromagnet relay switch
Fig，7．Id．Synchronous stepping motor（magslip）

WAY TO ELECTRONICS

Fig. 7.3a. Linear particle accelerator

Fig. 7.3b. X-ray tube

On arrival of a particle, a momentary discharge takes place, due to ionisation of gas atoms, thus giving an output pulse. The tube is ready to receive the next particle after a recuperation period of about 200 microseconds.

Scintillation Counter

Certain transparent materials and crystals will emit flashes of light when bombarded by nuclear particles. In the scintillation counter, a photomultiplier tube is employed to detect each flash.

Briefly, the process is as follows, see Fig. 7.2c. A minute flash of light within the transparent block of material is picked up by the photomultiplier cathode, which then ejects a few electrons. The electrons then travel to the first dynode and liberate more electrons. So, at each dynode there is a progressive multiplication of the electron stream, leading to a large electrical output pulse when the electrons finally arrive at the anode.

Particle Accelerator

The linear accelerator in Fig. 7.3a emits a beam of high speed electrons having the same properties as beta particles from a radioactive substance.

Electrons from a hot filament source are accelerated along the tube by an alternating, high frequency field applied to cylindrical electrodes. The electrons are given a "kick" by the high frequency field at each gap between adjacent electrodes, thus gaining velocity and resulting in a high energy beam. This beam can either be used to bombard a target or may be emitted from the tube via a thin window.

X-Ray Tube

An x-ray tube is shown in Fig. 7.3b. A hot filament cathode provides a source of electrons, which are accelerated towards the anode by a large positive potential. When the electrons strike the anode target, about one per cent of their energy is converted into x-rays, the remainder is given off as heat. The x-rays emerge from the tube in a conical beam.

THE SEMICONDUCTOR FAMILY

Transistors and semiconductor diodes are important members of a growing family of devices, all depending on the special properties of pn junctions. Some of these associated devices will now be examined.

FIELD EFFECT TRANSISTORS

A conventional or bipolar transistor, as explained in Part 3, uses a current on its base terminal to control a flow of current between emitter and collector, and is characterised by an intrinsically low value of input impedance. With the field effect or unipolar transistor (f.e.t.), on the other hand, a voltage on the gate terminal controls a flow of current between source and drain, and input impedance is very high.
The three basic circuit configurations of an f.e.t., common source, common drain, and common gate, behave in much the same way as common emitter, common collector, and common base bipolar circuits respectively. Like a pnp bipolar transistor, a p-channel f.e.t. has a negative supply voltage on its drain, and the n-channel f.e.t. is orientated as an $n p n$ device. There are two types of f.e.t. construction: junction and insulated gate.
A figure for the dc. gain of an f.e.t. is obtained from the ratio of a small change of drain current to a small change of gate voltage, called mutual conductance or transconductance $\left(g_{\mathrm{m}}\right)$, and is expressed either as mA / V or $\mu \mathrm{mho}$, where $1,000 \mu \mathrm{mho}=1 \mathrm{~mA} / \mathrm{V}$. A typical g_{m} for a. junction f.e.t. is $4 \mathrm{~mA} / \mathrm{V}$ or 4,000 μ mho.

Junction f.e.t.

Looking at the diagram of an n-channel junction f.e.t. in Fig. 7.4, a bar of n-type silicon is provided with source and drain connections at each end, termed "ohmic" because the connections do not involve pn junctions and the bar behaves as a plain resistance.' Two p-type silicon gate regions are formed on opposite sides of the bar to create a channel through which electrons moving from source to drain must pass. The gates make two $p n$ junctions with the bar, having associated depletion regions as explained in Part 2.
If a voltage is applied between gates and source, to reverse bias the $p n$ gate junctions, the depletion regions -shown dotted in Fig 7.4 -will extend towards each other, making the channel narrower, and tending to "pinch off" a flow of electrons from source to drain. Gate input impedance is high because only a minute leakage current can pass through the depletion regions as long as the gate junctions remain in the reverse biased condition. It follows that external input biasing of a junction f.e.t. should be such that the gate is always maintained at a lower potential than the source, to preserve the depletion regions.
The two separate gate regions of the junction device are usually joined together internally, but some f.e.t.s have independent gate connections to allow two input signals to be mixed together to yield a combined output; see dual gate f.e.t. circuit symbol, Fig. 7.4.

Insulated gate f.e.t.

The insulated gate field effect transistor or i.g.f.e.t. (also called metal oxide silicon or m.o.s.f.e.t.) has a gate electrode which is completely insulated from source and drain by a layer of metal oxide, irrespective of input voltage polarity. There is also an extra terminal labelled "substrate" which can either be joined externally to the source, or may be used as an independent bias or input terminal. The gain of an

Fig. 7.4. N-channel junction field effect transistor and circuit symbols

Fig. 7.5a. Enhancement mode P-channel i.g.f.e.t.

Fig. 7.5b. Depletion mode P-channel l.g.f.e.t.

Fig. 7.6. Unijunction transistor
i.g.f.e.t. usually lies somewhere between $0 \cdot 5-2 \mathrm{~mA} / \mathrm{V}$, slightly lower than for a junction f.c.t.

There are two distinct kinds of i.g.f.e.t. In the enhancement mode there is no flow of current between source and drain when the gate is at source potential. A depletion mode device, on the other hand, has mean conductivity between source and drain when the gate is at source potential.

Enhancement mode

An enhancement mode p-channel i.g.f.e.t. is shown in Fig. 7.5a: Source and drain are formed by two p-type regions which are separated physically and electrically by an n-type substrate. For a current to flow between source and drain, the intervening substrate must be given p-type properties. How then is this achieved?
Consider the gate electrode and substrate as the plates of a capacitor, separated by the oxide insulator. A negative charge on the gate electrode will induce a positive charge in the substrate by normal capacitor action, in effect replacing the n-type surplus of electrons with a p-type surplus of holes directly under the oxide layer, and this forms a narrow channel linking source and drain.
Because the enhancement mode device can only conduct as a result of a voltage on its gate, it is normally biased so that the gate is at about 0.5 Vdd , or alternatively with the gate directly coupled to the drain of a previous, similar stage.

Depletion mode

The depletion mode n-channel i.g.f.e.t. shown in Fig. 7.5b operates in the following manner. With the gate at source potential, electrical charges naturally present in the oxide layer will induce a narrow n-type channel in the p-type substrate, thus linking n-type source and drain regions and permitting a current to flow. If the gate is made negative with respect to source, a depletion region will be induced in the channel and source-drain current will be reduced.

The interesting thing here is that a positive voltage applied to the gate merely increases the width of the existing n-channel and promotes a greater flow of current between source and drain, without lowering input impedance, as would be the case with a junction f.e.t. or thermionic triode. So, the depletion mode i.g.f.e.t. can operate satisfactorily with zero external bias on its gate.

UNIJUNCTION TRANSISTOR

A unijunction transistor is a three terminal device with one $p n$ junction, which acts as a voltage controlled switch by changing from a high to a low impedance state when an input voltage reaches a set value.
It can be seen from Fig. 7.6 that the structure of a unijunction resembles a junction f.e.t. with a single gate, but the mode of operation is quite different. A bar of n-type silicon has ohmic connections at each endtermed base 1 and base 2-with a pellet of p-type semiconductor fused into one side of the bar to form an emitter region.
If a voltage V_{bc} is applied to base 1 and base 2, the bar will behave like a plain resistance, with a voltage gradient distributed along its length. Assume that the potential midway along the bar, in the vicinity of the emitter pellet is $0.5 V_{b c}$, and that the bar resistance is represented by two equal resistances $R_{\mathrm{B}_{1}}$ and $R_{\mathrm{B}_{2}}$. As long as the emitter potential is less than $0.5 \mathrm{~V}_{\mathrm{bc}}$, the $p n$ junction will be reversed biased and non-conducting, with a high internal impedance. However, if the

Fig. 7.7. The thyristor and an equivalent circuit showing the principle of operation

THYRISTOR

The thyristor, or silicon controlled rectifier (s.c.r.) is a three terminal, four layer pnpn device which conducts in one direction only, like a diode, when triggered by an input current. Because the thyristor has four semiconductor layers and three junctions, with built-in transistor action, its operation is best explained by using a simplified model or equivalent circuit where two complementary transistors TR1 and TR2 represent the thyristor, as in Fig. 7.7.

In the absence of an input current on the gate terminal (base of TR2), both transistors are switched off and no current flows between anode and cathode terminals. It can be seen that TR1 and TR2 are connected so that a flow of collector current in one will cause a flow of base current in the other.

If a small positive input current is applied to the gate terminal, it will tend to turn TR2 on, and TR2 collector current turns TR1 on. As TR1 goes on, its collector current reinforces the gate input current (positive feedback), and so the circuit rapidly reaches the condition where TR1 and TR2 are holding each other fully on, and remain so when the gate input current is removed. In other words, the thyristor has a selflatching action, and can only be reset by removal of the anode supply voltage.

If the battery of Fig. 7.7. circuit is replaced by an a.c. supply, the thyristor will behave like a half-wave rectifier when a continuous gate signal is present, conducting during alternate half-cycles via the load resistor. When the gate signal is removed, the device turns off as soon as the a.c. potential reaches zero during a cycle, and then remains off until another gate signal is applied.

So, the mean current flowing via the load resistor can be controlled by timed gate pulses, and this is the principle of one type of electric motor speed controller. The outstanding advantage of thyristors is that they are capable of handling large output currents at high voltages with minimum heat dissipation, and are therefore useful for controlling mains powered equipment.

OTHER SEMICONDUCTOR DEVICES

There are, in addition to those already covered in this series, a few devices which have been designed to exploit some special semiconductor property, or are derived from more common devices, see circuit symbols Fig. 7.8 and following list.
Zener diode. Variant of the silicon diode used for voltage stabilisation or as a voltage reference.
Tunnel diode. Specially doped diode which can be made to function as an amplifier, switch, or oscillator at high frequencies.
Varactor diode. Behaves like a small variable capacitor when biased by a variable reverse voltage.
Four layer diode. A small, two terminal version of the thyristor; switches on when the anode-cathode voltage reaches a set value.
Silicon controlled switch. A four layer device akin to the thyristor which has each semiconductor layer made accessible. Used for switching applications.
Triac. Bidirectional thyristor used for full-wave control of a.c. currents.
Diac. Bidirectional version of a four layer diode. Normally employed with triac in control circuits.

This series of articles has attempted to introduce the beginner to basic principles in electronic components and circuitry. A wealth of more detailed information appears in some of our other published articles and in books usually available in public libraries.

NEMMDMH-WE INTRUQUE

 cemini nuir pusposis sitifita amput formance expected from modern sound reproducing systems, this amplifier has, in addition, microphone mixing facilities which extend the general usefulness of. the equipment in the area of home entertainment and also make it suitable for discotheque and p.a. applications- 30W output per channel into 8Ω - 20W into 15 2 - 15 W into 4』
- Disc, tape, radio, and Mic. inputs
- Mic. can be mixed with any other input
- Truly complementary output transistors
- Full range filters and tone controls
- Outputs open and short circuit proof
- Low impedance stabilised power supply
- Two units in matching style mood lighted at the fair, olympia demonstrate music Audio and London

SPECIAL SUPPLEMENT ON AUDIO EQUIPMENT

A guide to hi-fi system planning. Deals with practical matters such as matching and connecting up the various items, from pick-ups
to loudspeakers, and their maintenance

IEL=CTRONOAAMA

Mini Computers Through Dealers

PLans for the setting up of appointed dealers to market their low cost System 21 display terminals and computers was outlined at the official opening (July 29) of Viatron Computer Systems (U.K.) Ltd., at Finchley.
Marketing will be handled through dealers who can provide supporting software systems and management consultancy associated with data processing.
The basic System 21 terminal configuration includes a micro-processor with two Viatape recorders, which acceptltape cassette cartridges similar to those used on the entertainment market; keyboard; two data channels and a video display.

The 2111 Microprocessor has a main memory capacity of 400 characters. This 400 -character memory is divided into five separate 80 -character storage areas, designated as the READ record, WRITE record, MASTER record, CONTROL 1 record, and CONTROL 2 record.

Integral to the microprocessor are four input/ output channels. Two of these internal data channels are devoted solely to reading and/or writing from one or two Viatape recorders.

C.C.T.V. Gamera

ONe of the latest constructional projects to be produced for schools and other teaching establishments by the Mullard Educational Service is a closed-circuit television camera. It can be built for as little as $£ 45$-claimed to be two or three times less than the cost of the cheapest professional camera.
The camera uses a 1 inch vidicon tube which, together with the lens system, accounts for approximately 75 per cent of the total cost.
It employs extremely simple basic circuitry, easy for the student to construct. No extravagant claims are made for the camera's performance, but given reasonable lighting conditions it will provide an output signal of 1.0 V p-p
into 75Ω; capable of producing an acceptable picture on a TV monitor. The low impedance signal output further allows the distribution of the TV signal to other monitors at remote positions. At a recent press reception the camera was demonstrated and proved to give an excellent picture for its price and simplicity.

A block schematic of the camera and preliminary information about the circuit are available now. A more formal publication will be issued later in the year. Linstead Electronics will be marketing a kit for the camera as well as complete units. It is hoped that a modulator will later be added to the circuitry.

The complete prototype Mullard camera made from readily avoiloble components for about $\mathbf{4 5}$

Speed Radar

Marconi Marine's new SAMI doppler Speed of Approach Measurement Indicator shown on the left in use on an oil jetty on the River Thames as a 100,000 ton tanker comes in to berth. Speed of approach is measured on the large meter in the upper cabinet and also on that in the lower cabinet, while a permanent record is simultaneously made showing direction of movement, as well as speed, on the graph recorder in the upper cabinet. The upper cabinet which contains all the signal processing circuitry is detachable and may be sited separately in a pressure proof hut. Information regarding the speed and movement of the vessel is passed to the pilot by v.h.f. radiotelephone.

Now a very necessary equipment-with the size of ships increasing it is more difficult for the pilot to judge the speed of approach-the speed indicator can assist in the docking of all vessels in any weather conditions.

Automatic Control

THE Norwegian fisheries research vessel "G.O. Sars", designed to meet future demands in fisheries investigation for the next decades, carries a computer data logging system, acoustical instrumentation and a complete machinery remote control console. All monitoring and bridge remote control equipment was supplied by Amund Clausen A/S.

The remote control console is shown below; this console is linked to a slave console on the bridge and comprises control instruments, pressure and temperature measuring devices for all essential engine functions, engine speed, propeller speed and pitch monitoring and control for all four main engines. The engines are automatically speed synchronised before they are coupled to the reduction gear, load distribution and propeller pitch regulation to protect the engines are also automatic.

Monitoring System

AN alarm, scanning and monitoring system, manufactured by Decca and called ISIS 300 , provides a standard range of instrumentation from which individual configurations may be selected for vessels ranging from yachts to supertankers.

The photograph below shows an installation in the 250,000 ton Esso Northumbria, the Jargest vessel built in Britain. The system's local scanning facility covers 120 points on the main machinery, cargo pumps and electrical generating equipment.

ASSESSMENT OF HEARING IMPAIRMENTS

By S. A. HARDY

Electronics plays a very large part in providing diagnostic and remedial equipment for the hard of hearing. The hearing aid is widely publicised and advertisements for these devices appear regularly in the daily press. However, little mention is made of the diagnostic facilities available, for example, local medical centres and education authorities. Also it is seldom pointed out that a hearing aid should only be used if prescribed by an otologist (ear specialist) as in some cases a hearing aid would serve no useful purpose, or may be a source of great discomfort to the user even to the point of accelerating the degeneration of a hearing impairment.

AUDIOMETER

The measurement of the sensitivity of a patient's hearing under set conditions is of prime importance to the otologist who is making a diagnosis of a hearing impairment.

A simplified block diagram of an audiometer is shown in Fig. 1. The audio sine wave generator may be of the continuously variable tuning type, or it may have preselected fixed frequencies which are based on the physical scale of $\mathrm{C}=256 \mathrm{~Hz}$ and not the British standard concert pitch based on $A=440 \mathrm{~Hz}$-where C would be $261 \cdot 6 \mathrm{~Hz}$. The output from the oscillator is fed into an attenuator which is calibrated in decibels against laboratory standards. All extraneous equipment, such as the headset and bone conduction transducer, are included in the calibration process.

Signals are passed from the attenuator into a linear frequency response amplifier which drives either the headset or a bone conduction transducer, probably of the type shown in Fig. 2. The headsets used are of the type which exclude external noise, also the earpieces may be independently selected so that whilst one ear is
being tested the other can be fed from a masking (white) noise generator at a preset level. This avoids the possibility of erroneous results due to the tone being fed to the ear under investigation being heard by the other through bone conduction.

The basis of the audiometric tests is to select at random certain frequencies and moving the attenuator from maximum attenuation to minimum. The patient presses a switch, illuminating a lamp on the audiometer, as soon as the sound becomes audible. The audiometrician, not necessarily an otologist, then prepares a graph called an audiogram which in this particular case would show the patient's threshold to hearing.

AUDIOMETRIC TESTS

A few audiometric tests used in determination of hearing malfunctions, other that the threshold test mentioned in the previous paragraph, are outlined below to demonstrate the usage of the different transducers:
(a) The Rinne test is conducted by placing a bone conduction transducer on the mastoid bone just behind the ear under test-the patient then indicates when a tone is no longer audible at a particular level. The tone is then fed directly to the ear at the same level and should be perfectly audible in the case of the healthy ear. The use of masking noise for the ear not under investigation is necessary to avoid ambiguous results.
(b) The Weher test is conducted with both of the patient's ears occluded to external noise and tones are fed to a bone conduction transducer placed on the centre line of the forehead. The patient then indicates the ear in which the tones appear. This test is used to prove the binaural function of the ears.

A range of early horn hearing aids

(c) The Gelle test is carried out by slightly increasing the air pressure in the external auditory meatus and simultaneously introducing a tone via an earpiece. In a normal ear the threshold of hearing slightly increases at frequencies below 1 kHz as the pressure is increased. This test is used to show seizure of the stapes.
(d) The Bing test is used to demonstrate malfunctions of the middle ear mechanism. This test is carried out by placing a bone conduction transducer against the mastoid bone adjacent to the ear under investigation and the tone level is then turned down until inaudible, then the ear canal is closed off. The tone then becomes audible again in the case of normal ear.
(The titles for the above list are of American origin.)

HEARING AID REQUIREMENTS

Most of the consonants in human speech have frequency products which lie in the range of 1 kHz to 4 kHz and an impairment of hearing in this frequency range renders speech unintelligible, especially in the presence of background noises. The audiogram (Fig. 3) shows the critical area below which a hearing aid becomes a necessity. For instance case A would find a hearing aid a necessity, even though the low
dB

Fig. 3. Audiogram showing the critical areo of hearing impairment
frequency response of the ear is satisfactory. Whereas case B could get by without an aid because the impairment is over the whole frequency spectrum, but there is an improvement over the critical area of the audiogram.

HEARING AIDS

There are many types of hearing aid available from reputable manufacturers. However, the circuits given in Figs. 4 and 5 are Mullard experimental circuits and the design considerations discussed are the same for both aids. Both circuits have TR1 (input) and TR2 (driver) collector currents of approximately 250 microamperes, this being the lowest practicable value consistent with low noise level without signal clipping. Transistor TR3 in both circuits are class A power amplifiers and have standing collector currents of roughly 2.5 mA to give outputs of about 0.5 mW .

The circuit in Fig. 4, though having more components, is able to cope with large variations in ambient terthperature and by siting the volume control between the? input and driver stages contact noise generated by the microphone is reduced. If a mercury cell (such as the Mallory RM625) is used; the decoupling components R3 and C3 may be omitted and the cell life is about 100 hours. This circuit gives an output of 0.4 mW for 5 per cent total harmonic distortion with an

Fig. 4. Hearing aid circuit by Mullard

Fig. 5. Mullard hearing aid circuit using a d.c. amplifier

The Audiorama headrest type hearing aid
electrical frequency response that is flat to within 0.25 dB between 100 Hz and 4 kHz .

The circuit of Fig. 5 is intended for use in spectacle frames, hence the requirement of the minimum number of components. However, the d.c. coupled amplifier of this type relies on the feedback loop to govern the d.c. stabilisation of the transistors and their temperature dependent characteristics. Thus the choice of R1 and Cp are critical, as R1 sets TR3 collector standing current and C_{F} affects the working frequency range of the circuit. A loss of 6 dB at 1 kHz is considered permissible and a time constant of one second ($\mathrm{RI} \times C_{\mathrm{t}}$) is required. The predicted electrical frequency response of this circuit is within 1.5 dB of the response level at 1 kHz over the range of 300 Hz to 5 kHz . However, the battery drain is slightly higher and the circuit has an ambient temperature limitation of 0 to 39 degrees C , the ideal working point being set at 25 degrees C .

Hearing aid of the type shown in Fig. 6

Both circuits have an approximate acoustic gain of 50 dB allowing for an overall air to air loss in the microphone and earpiece of 35 dB .

TRANSDUCERS

Both circuits (Figs. 4 and 5) use electromagnetic devices for the microphones and earpieces. Two advantages of the electromagnetic device are that it is not affected by high humidity levels and jt is less sensitive to contact noise than the higher gain crystal counterpart. Most hearing aids are designed to drive electromagnetic earpieces or bone conduction transducers which are sometimes used for certain types of deafness.

Some aids, such as the spectacle frame or behind the ear device, have the transducer mounted in the body of the aid with a small bore ($\frac{1}{8}$ in internal diameter) flexible polythene acoustic coupling tube which terminates in a special acrylic perspex ear insert as shown in Fig. 6. Also the type of transducer that is fitted directly into the outer ear canal, though similar to the earpiece supplied with some transistor radios, has the ear insert moulded to fit the individual's ear for maximum efficiency and comfort.

When a hearing aid is prescribed utilising either of the above inserts, casts are made by the consultant from which the insert is manufactured. This is done by filling the contours of the part of the ear where the insert is to be situated with a special compound. The compound consists of two chemical components which,

Fig. 6. A hearing aid using an acoustic coupling from the transducer in the aid to the outer ear conal
on mixing, are semi fluid but rapidly harden after a short period of time though retaining a certain amount of flexibility. This impression is then used to form the casting mould for the plastic insert. The process is much the same for the manufacture of dentures.
It is not usually convenient to use a hearing aid all the time and some people do have hearing impairments that do not require the use of an aid. For this reason Audiorama (a member of the Plessey group of companies) manufacture a headrest for domestic usage in conjunction with television, radio, tape and disc replay equipment. The headrest (Fig. 7) also provides protection from the hazard of equipment using the live chassis a.c./d.c. technique.

Future trends with the advent of integrated circuits should result in even smaller hearing aids with much improved frequency responses and power gains allowing for the limitations of acoustic feedback.

TECHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Elećtronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certficate of Education, etc.

Examination Students coached until successful NEW
 SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics
INTERNATIONAL
EST. 1891 CORRESPONDENCE SCHOOLS
Dept. I5I, Intertext House, Stewarts Rd., London, S.W. 8
please send me the ICs prospectus-iree and without
obllgatlon.
(state Subject or Exam.)
NAME
ADDRESS
INTERNATIONAL CORRESPONDENCE SCHOOLS

12 watts to 250 watts r.m.s. power amplifiers

off the shelf for as little as $2 /$ per watt. Maximum distortion $0.1 \% 20 \mathrm{~Hz}$ to 20 kHz . Full power bandwidth 10 Hz up to $80 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Complementary and quasi-complementary versions in all power ratings perform to the same high standard. Unconditionally stable. Fully protected against accidental misuse.

* Stereo Integrated Circuit Preamplifiers
* Stereo Headphone Amplifiers
* Toroidal Mains Transformers
all designed to the exacting standards of the professional user.
Transaudio combines sophisticated design and no-nonsense engineering in semi-kit products incorporating Motorola transistors/ICs and other dependable components assembled on fibre glass circuit boards. Write today for full details.

Transaudio Limited
8 Elsworthy Rise London N W 3
"Setting the Standard for the Seventies"

THE SOLAR ECLIPSE OF 1970
The eclipse of the sun on March 7 this year was perhaps the most important in the history of astronomy. The extensive techniques of all the disciplines associated with astronomy and space environment has brought a wealth of data for analysis. Though much of this data will take some time to evaluate, a good deal of preliminary information has been given out from various sources. This information is mainly concerned with the corona and the effects observed in the ionosphere.
Before the advent of the Lyot type of coronagraph, astronomers had to rely on the eclipses for observation of the corona. It is still true that only at the time of the eclipse can the best observations of the visual corona be made. To this is added the techniques of radio astronomy, rocketry and other space research methods. The eclipse this year was therefore a considerable adventure with the very important advantage of cross correlation of data.

There was an important prediction of the shape of the corona as it would be at the time of the eclipse by K. H. Schatten. This prediction was based on the measurements of the photospheric magnetic field in the weeks that immediately preceded the eclipse. A number of the predictions were fulfilled particularly the presence of large helmet type streamers.

SPACECRAFT EXPERIMENTS

However, in other respects there were a number of predictions not observed and it would seem that the deductions based on spacecraft observations need modification in the light of this eclipse. Rocket observations had been made on a number of occasions before the eclipse using a coronagraph. Special experiments carried out by the Naval Research Laboratory of Washington made use of an Aerobee rocket launched from New Mexico two hours after the eclipse.

One important observation was directed to the examination of white light corona at 3 solar radii. Normally when using earth based telescopes this area of the corona is difficult to observe.

The Los Alamos Scientific Laboratory made airborne observations of the corona, the chromosphere and geophysical observations of the environment during the eclipse. The aircraft fiew at a speed of 508 knots at a height of just over 36,000 feet. The observations were thus enabled to be carried out for a period of 5 minutes 30 seconds which was two minutes more than for earth based instruments.

A very comprehensive experiment using five spectroheliographs were

flown on an Aerobee Rocket from Wallops Island. This was fred into the eclipse path to photograph and scan the ultraviolet and the XUV flash spectrum electronically.

Unfortunately, only part of the data was found usable in the form of a film in a cassette. The whole payload sank into the Atlantic because of the malfunction of the recovery system. The payload was recovered by the Naval Research and Development Salvage unit.
The recovery was on March 22 and it is thought that the cassette which was coated in Teflon owes its survival to the slowing down of electrolysis by the presence of the Teflon.

ECLIPSE EFFECTS

The effects in the ionosphere of the solar eclipse showed a reduction of the electron content of the " F " layer by as much as 30 per cent. There were a number of effects in the ionosphere on radio propagation over a very wide range of frequencies. Satellite transmissions have yielded a great deal of data so that it will be some time before the final conclusions can be drawn.

Measurements were also made at very low frequencies in region of 10 to 20 kHz ; three phase changes were noted. At even lower frequencies, 1 to 10 kHz , some extraordinary phenomena appeared. During and for about an hour after the eclipse, "risers" were noted at 1.8 kHz and 2.4 kHz . Risers are musical tones of rising frequency.

A number of suggestions have been putforward as a tentative explanation, all of which involve the "D" layer which is also very much reduced in density during total eclipse.

Certain travelling ionospheric disturbances that were observed may be caused by gravity waves. The timings of certain oscillations show a near agreement with the possible effects of the cool shadow of the moon moving at supersonic speed across the atmosphere and generating gravity waves as suggested by Chimonas and Hines.

MARINER TO VENUS AND MERCURY

The launch in 1974 of the Mariner with two objectives, Venus and Mercury, will carry seven experiments.

These have been chosen from the 40 or so suggestions that were put forward. The total payload will be 113 pounds out of the total weight of the probe which is 900 pounds.

The probe will swing by Venus in 1974 at a distance of about 3,300 miles and will then proceed toward Mercury under gravity alone to pass the planet at a distance of some 630 miles a month later.

With the completion of the other two large dishes at Madrid and Canberra, there will be continuous contact by television and telemetry direct to earth. This means no storage on tape and re-transmission. All events recorded will be in real time. Many more pictures will be transmitted and it is expected that some 5,700 frames will be transmitted of Venus and 2,700 of Mercury.
It is hoped that the ultra violet "clouds"' which circulate round Venus every five days will be observed. The infra red radiometer will look for "holes" in the Venusian cloud cover. The photographs of Mercury should reveal whether it has satellites and also whether there are any special features on the surface. There will also be an ultraviolet spectrometer which will determine by solar occultation whether Mercury has an atmosphere.
The occultation of the two transmitters will provide data as to the mass and radius, and whether it has an atmosphere and an ionosphere.
The magnetic fields near the planets and the particle densities will be measured by other experiments aboard the spacecraft.

MOONQUAKES

Every month, when the moon comes to its closest point to the earth, it suffers a slight quake. This occurs every 28.2 days and the seismometer set up by the Apollo 12 crew has been sending continuous signals since last November. It is from the strong and weak signals that this new state of the moon has been derived. Identical patterns appear at the time of the closest approach each month.

It has, of course, been known for a long time that the moon bulges toward the earth about one metre at this time. These results also confirm that the moon has residual heat.

SUITABLE FOR PHOTOGRAPHIC COLOUR PROCESSING CONTROL

Colour printing is becoming more and more popular with amateur photographers. In this process it is vital that the enlarger lamp output remains constant despite mains voltage fluctuations, for not only will the density of prints be affected by any changes, but colour balance will be altered also.

Since correct colour balance is probably the most difficult characteristic to achieve in printing, it is worth while to go to some trouble to eliminate as many variables as possible. A constant light output from the enlarger lamp will certainly go a long way towards achieving this.

In black and white printing also, a stable light level will assist in producing consistent results.

CONSTANT VOLTAGE

Probably the best method of ensuring a constant level of illumination is to run the enlarger from a constant voltage transformer-indeed, this is done in commercial colour printing laboratories. However, the cost of such a transformer could approach that of the enlarger itself.

The alternatives are either to work in the darkroom at times when mains voltage fluctuations are at a minimum, or use a resistive dropper in series with the enlarger lamp.

The resistance of the dropper is adjusted to give a constant voltage across the lamp. Since this voltage can be no higher than the lowest mains voltage experienced, a lamp of a lower rating is sometimes used, although as enlarger lamps are normally arranged to be overrun in any case, the light loss is often acceptable.

The disadvantages of a system using such a resistor are fairly obvious. It is wasteful, since excess voltage is spent as heat, and a large unwieldy resistor is required to achieve this dissipation.

SOLID STATE CONTROL

The use of some kind of solid state semi conductor device seems to be called for, and it is actually quite easy to construct a lamp dimmer control using a thyristor and a bridge rectifier. This would remove
the objections of large bulk and the need for the dissipation of heat.
A further improvement is the use of a triac with a saving in components, for no bridge rectifier is then needed, to obtain full wave control.

TRIAC

Many readers are no doubt familiar with the operation of the thyristor in control applications. The triac operates in principle like the thyristor. When triggered into the conducting state by a suitable gate signal it will remain so until the current through the device is reduced to less than the holding current.
It is different however, in that it can conduct in either direction on application of a positive or negative gate signal. Having three electrodes and bilateral a.c. operation provides the derivative, triac, from triode, a.c.

In Fig. 1 is given the circuit of the controller. The symbol for the triac is that of two thyristors in inverse parallel. Because of its bi-directional properties MT1 and MT2 are used in place of anode and cathode, MT being the bi-directional anode, or more commonly termed "main terminal".

Integral to this particular device is a diac, or bidirectional trigger diode. The symbol for this logically enough is two diodes in inverse parallel. The input to the diac is the gate input which controls the triac in phase with the load current.

TRIGGER INPUT

The capacitor and resistor network preceding the triac gate make up a phase control circuit. By varying VR1 the phase angle at which conduction begins may be varied. The π arrangement of C4, R6 and C5 in combination with VR1, forms a circuit with a double time constant which provides smooth control from low to full power.

When the voltage on the gate capacitor exceeds the breakover voltage on the trigger diode this conducts and switches the triac on for periods in the positive and negative half cycles. The length of these periods is

Here＇s the bumper Heathkit catalogue for you．Read about the wonder and fascination of kit building ．．．see in full colour the world＇s best values in Hi－Fi Radio，and even model radio control．Get up to date with what＇s new in scientific instrumentation ．．．instruments for test and service ．．．in fact there is a Heathkit for almost every purpose，in every walk of life．A wealth of information is all yours for the price of a postage stamp，in the Free Heathkit Catalogue．
＊No previous knowledge of elec tronics required．
＊The constructional manual supplied with every kit shows you how．
\star Building Heathkit models is so economic．

Save up to 50% over factory built equipment．
＊Money saving direct from factory prices．

They make excellent Christmas gifts．

MODEL R／C CARS

MARINE

‘TRENT＇SPEAKER

HEATH
Many other models in wide range
（BLOCK CAPITALS PLEASE）
Name
Address \qquad

Post Code

FILL IN THE COUPON FOR YOUR FREE CATALOGUE TODAY

MONO TRANSISTOR AMPLIFIER A really high
fidelty monaural amplific with perfor-
mance charac teriaticn to nuit criminntlig tis tener. 8 tranBithor eirenit
w lith mintegrateil preampilitic assemblet apecial printer

AD161-AD10
 oficrutiry

pair. Output tranaformer couplet tu 3 ohtro aut 15 ohtal wave brhige rectiner mower bupply for a.c. mainis 200 240v. Controls: bass, treble, volutitefon/oft. Function
 strongly conetrueted on rigid steel chatisju lyronze hammer enamel finish, size $\left\{1 \frac{1}{5}: 5: i f\right.$ in. himh.
 PC2-110m/s; incg mput inupelance.
Trpe-110m/s, 1 meg input mpedauce Radlo- $110 \mathrm{~m} / \mathrm{s}, \frac{1}{2} \mathrm{meg}$ iapat Inppedance. Output 1 wwer ineascren into 15 ohns. Owarall frectuency 3 ohnuk, 5 , watts 8 Kal , Contimougly rariable tome centrolh: Bass, + \&idb to -12 lb at $100 \mathrm{c} / \mathrm{m}$. Trclale +10 db to $-10 \mathrm{Hb} \mathrm{at} 10 \mathrm{Kc} / 8$.
The HSL, 700 bas been designal for true high fedelity reproductlon from radio tuner, gramophone deck and tape recorder preanp. Supplied ready luilt and tegted, cornplete with knobs, attraclive anodisell aluminium front eacutcheon parel., long apindles (can be cut to suit your housing requirements) fuli circuit (liagrant athi operating instructions.
Oox trecein pace f7.19.6.

E.M, I. $18 \times$ Ein, 3 or 15 ohm with two inluullt tweeters

BRAND MEW
vircent production by well-known Britinh maker. Niow With Hiffux ceramic ferrobar macnet assenrbly e5,10.0,
 ceramic magn ${ }^{5}$, \& \mathbf{P}. N/6.

IRin "RA" TWIH CONE LOUDSPEAKER
10 wate peak handilng. 3 or $15 \mathrm{ohm}, 37 / 6$, P, \&
85 OHM BPRAEERS. $37 \mathrm{in} 14 / \omega$. P. \& P. $2 / 6$. VYRAIR AHD REXINE APEAXERS AND CABLNET
 MAGNAVOX DESK TYPE MOVING COIL TICROPRONE. Medium \{mperlance. Branul
P. \& P. 2/. EALAVCED ARMATURE EARPHONE

Approx. 70 ohtn impedance. Can be pased ra ultra seusilive
mise or speaker. 0NTY 3 . P. P. 1/6
CgYoTAL JIKEs, High imb. for tlesk or hami use.

PRICE R1j=, P, \& PIJ6.
sensitivity, 39/6. I. \& P. 2/G,
BPECLAL
BAIG.
AMG. 400pF -f 146pF. Fitteil with trimmer8 and

HONEYW SL MICROSWITCEES 8/R, ©/O, RUsh-button
 TRLESCOPIC ARRIAIS WITH IWIVEL JOIAT. Can be angled nom rotated in any direction, 14 section Meavs

BRADD MEW YULTI-RATIO MAITS TRAM8FORMERE. Giving is alternatives, Primary: 0-210-g.40V. Secondary comblinations: $0-5010-100+20-2 \overline{0} \cdot 30-355$
 P. \& P. 0/m

 Pri. 200/240V. Sec. 10-0-10 at $2 \mathrm{amp} .27 / 6$, P. \& P. $3 / 6$.
 BATRERY CFARGER TRAXGFORNERS, $200 j 240 Y$, input. Nominal output for 6 or 12 V , batterlea 3 ampg. slze approx.

GIGK GRADE COPPER LAMMATY BOARDS

STOCKISTS OF SIKCLAR EOUIPMENT

 2.8i) Amplifier 89:6, P. \& P. 2/0. Stereo 00 Pre-Abiplitier Invegrated Circuit 59/6.

SPECIAL OFFER ! !

Mr-FI LOUDSPEARER SYSTEM, Beantifuly made
 Size $181{ }^{2}$ high $\cdots 102$ wide tweiler unite and cronto Power handiling 10 watts. \qquad 8 Gnis
TRANSISTOR STEREO $8+8$ MK II chrymel resulting in even lower noise level with improced
chat Ebsit irity. A really frst-class Hi-Fis Sterco Amplifer rit. Lises 14 transistors giving 8 watts push pull output per

 speakers frum ot to 15 ohins. conpact teatga, all parts sappieel incluming hrillen inctai work atractive front puluel, knobs, wire, solder, nute, vottsyo extras to buy, nilup te step bs step instructions enaito any constructor to luild aut amplifier to be proull of.
Briet suecication: Freq. rcsponse $\pm 9313.20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +124 DR . Tretlo cut approx. To -16118 , Tegatice reediback 1818 ovề main nap.
 FRICES:0.0; CABINET 23.0 .0 . A11 Post Free.
 per channcl. REMC.
PACK KTT $\mathbf{2} 3.10 .0$.

ireuit 1ingram, cmetruet

GENSRAL PURPOSE EIGE STABILITY TRAX 8ISTOR PRE-AKPLTFIER. For PıE. Tape, zitke,
 the $200 / 300 \mathrm{~V}$. Ficquency responae $15 \mathrm{~Hz}-95 \mathrm{KHz}$. Oala podB. Solid encapsuation size 1×1.

0SPECIAL PURCRASE! E,M,Y. 4-SPEED PLAXER lfenvy $8 \frac{1}{2}$ in, metal turntable
Low fint ter performance 200 ,
20 V shated motor 100 200 shaded motor (ay), Complee rith intes
type lightreight pick-ug arm type lightreight pick-up arn
nnd mono enrtridge with tio
stylif for $1 / P / 78$. $0 \times z \%$

QUALITY RECORD PLAYER AMPLIETER MK II topequality record player anplifier emplosing hears
 Complete with output trantformer matched for 8 ohm ppeaker. Size 7in. w, : 3 d . 86 h . Read 5 luilt and tebtcl pabpard sith output transiormer and apeaker reasly to
DE LUEE QUALITY PORTABEE RTP CABLFET MK II hitat motor board size lut \% 12 inh, elearance 2 ib . Welow
 10/14 WATT EI-ET
AMPLIEDR AMpLIFIER Kit monaural amplitic with an ontput on 14 watts irom Super reproductio of woth music an speech, with negh
gible hum, separat inpute for mike ani sram nifow recartia

$$
\begin{aligned}
& \text { To follow exch othes } \\
& \text { Fully shrouted os }
\end{aligned}
$$

Fully shrouked sectim wanui output tianslurnur to
match $3-15 \Omega$ spenker and 2 independent volume controls and separate bass and treble controls are provicied givinf goodilit and cat. Valseline-up 2 ELE4s, ECCB3, EFSU and
 imput ackets, \$9.18.6. P.
BRAMD EEW TRASISTOR BARGAINS (GET 38 (Matched Pair) 18/- Y1J10p, 10/=; 0C71 6/a; 0CT $8 /=$
 matched pair AC128 $85 / 0$ ORP12 Cadinlum Sulphile Cell 10;6. All post iree.

VERY YOWERFUL COMPACT MOTOR
For 1ts. D.C, operation. Oit load consumption rapprox. 100 mA . Totally enclosed. Qulet in operation with high starting torque. Overall size approx. $1 \mathrm{~s}^{\circ} \mathrm{L}: \mathrm{I}^{\circ}{ }^{\circ}$ dis. Free shaft

DE LUXE STEREO AMPLIFIER
 FCLSGGTriode Pp:- Patales. 1. Ezzo as full wave rectifer Two Tunal potetent lomeeters

 ad Inated by manns of a separate "batance" coni2 toil itted
 matels $300 \mathrm{~m} / \mathrm{y}$ fur foll peak output of 4 watts per channel

 teatalt to a high siandart. Price $\& 8,18.6$.

4-SPEED RECORD PLAYER BARGAIMS
 Mains models. All brand new in maket's packing.

 ZATEST B.B.R. C100/A21 4-SREEBD AUTOGEAFGER With atest mono conpatitre cartrlige e8,18.8. Carr. ©/6 LATEST GARRARD MODELS, AII types availeble 1095 2025, SP25, 2000, AT80 ete, 8end 8.A.E. Lor Latest Prices PLNNTH UNITS cut out for (iarravil Motels 1025, 2025) $2000,3000,3500$, ete. With right transparent plasti corce. Special teseign embles above models to be used

IATEST ACO8 GP91/L8C Mono Compatiblo Cartridge with t/o mtylus for L,P/EP/iB. E'nirersal mounting bracket. SOFOTONE OTARC compatible stereo lartridge with

 EP/LP/ 8 mono or sterco records on nono equipment. $501=$ HIGH GAIN GTRANSISTOR PRINTED CIECUTI AMPLYYTBE KIT Type TAI
\qquad
\qquad
dard British
compronent
Bullt
printel circuil panel size 6 : 8 isu. Gencrous size Driver and Output Troasiornters. Output
transformer tapped for $\%$ ohm and 15 ohm epcatcers. Tranaistors (GET1l4 or S1 Mullard AC 1:88D anil matched palr of ACliz8 ofp). 9 rolt operation. Eversthing supplled, wire, battery cilps, soluler, cte. Comprchensire easy to
follow instructions and e|reule ulagram 2/6 (Frec with K (t). Al parts sold separately, SPECIAL FRICE \& $8 / B$. P. \& P. 3/~ Algo ready built and tested, $\$ 5 /-\mathbf{P}$, \& \mathbf{P}. $3 /$

3-VALVE ADDIO
AMPLIFIER HA34
HK II Designen for Hi-Fl reproluc: operation. Records. A.C. built on operation. Ruady built on
plated heary gange metal
 FL81, Ez80 ralses, Jeary duty, double round mains irnasformer ant output trans-
former matchel for $\$$ ohm speaker. Separate rolume control and now with improved wilie range tone controls glring basa and trebis lift and panel can be detached nad leads extended for remote panel can be detached nad reads extenued for remote wired and testol for oniy 2t.15.0. P. \& P. O/:

H8L, "FOUR" AYPLUFIER XIT. Sinillar in appearance to MA34 above but employa entirely different and advanced

HARVERSON'S SUPER MONO AMPLIFIER
A super quality gram amyllifer using a double wound nenlode rafre ra nudlo amplifier and power ontput stage. Impelance 3 ohnss. Output spprox, 3 and tone coutrols. Chassis slze only Tin. Tide $2:$ Sin. deep 6in. Bjgh overall. Ac ntalns 2e0/240V. Supplied absolutely Brand Niew completely nired and tested with valvee and Gook guaity output trangiormer. Fow Dax $\begin{array}{lll}\text { OUR ROCX ROMTOM } \\ \text { BARGAM PRICE } & 55 /= & \text { F. } \frac{8}{61-}\end{array}$

Open 9-5.30 Monday

to Saturday
Eaply closing Wed. 1 p.m. T'uxe Stofla
(Please write clearly) PLEASE MOTE: P. \& P. CHARGES COOTED APPLY TO U. X, OILY:

Fig. 1. Complete circuit of the triac lomp controller with meter circuit and interference suppression
governed by the setting of VR1, the cumulative effect of which is to permit the power to the load to be varied.

Typical load voltage waveforms for early triggering in the cycle are given in Fig. 2. Here, the power available would be near maximum.

INTERFERENCE SUPPRESSION

Improvements in the manufacture of s.c.r.'s and triacs has resulted in faster turn on times. In the case of the 40432 triac used, this time is about 2 to 3 microseconds. Pulses with such short rise times are a source of radio frequency interference and some form of suppression is necessary.

In the circuit, L1 and C3 prevent interference being fed back via the mains leads. Radiated interference is kept to a minimum by mounting the components in a metal box, then earthing this.

In practical tests carried out with a transistor radio, interference was only apparent with the radio held about a foot away from the completed controller.

The inductor L1 is made up by pile winding about 400 turns of $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire on a small Aladdin coil former complete with iron dust core.

Since this coil appears in series with the load there is a power handling limit of 200 watts.

VOLTAGE MONITORING

In order to be of value in enlarger lamp controlling, an accurate means must be provided for measuring the voltage applied to the lamp. Unfortunately, an ordinary moving coil voltmeter is calibrated for r.m.s. sine wave voltages, which is not much use for measuring the distorted waveshapes as given in Fig. 2.

A "true" r.m.s. voltmeter would indicate correctly since lamp light output is strictly dependent on applied r.m.s. voltage; but such r.m.s. meters are expensive and not easy to obtain.

METER CIRCUIT

The meter circuit, which is in parallel with the load terminals in Fig. 1, was developed to overcome this problem and found to be not only accurate in use but
to have an advantage over r.m.s. meters for the range of voltage employed.
The diode D 1 permits only positive going half cycles to charge Cl .
R1 and R2 prevent the circuit from becoming a peak reading voltmeter and in combination with Cl effect a compromise between peak and average voltages to indicate true r.m.s. lamp output over the range 190 to 250 volts.
Since only this limited range is required, advantage is taken of the technique of expanding the meter scale with the Zener diode D2. The capacitor C2 removes the 50 Hz ripple and gives meter needle stability.
As the object of the meter is to maintain a steady light output irrespective of mains fluctuation, calibration is unnecessary as the only requirement is an arbitrary constant meter setting.

CONSTRUCTION

All of the components of the controller fit inside a $4 \frac{1}{2}$ in by $3 \frac{1}{2}$ in by $2 \frac{1}{4}$ in die cast box. This provides at once, a robust housing as well as electrical screening. Reference to Fig. 3 gives the complete prototype wiring

Fig. 2. Supply and load waveforms indicating triac switch on points

Fig. 3. Wiring of the controller in a diecast box. The tog strips are shown removed from their mountings to show the connections of the triac mounted on the heat sink (note the two leads which connect to tags)

Fig. 4. The substitution of a double-pole change-over switch for Sl enables a neon lamp to be used as a full power indicator.

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

 piated telescoplo rertin for shori whyen cau be angled abd rotated for minximulin porformance. Puah-pall outpat using boomw type tranalstors. Socket for car aerial. Tape record acocket. Selectivily uwitch. Bwitched earplece wocket conuplete wita entpiece for private pislening, 8 tran-
 switch rolume colitrol. Ware change switch abil $\begin{gathered}\text { oning control. Atractive cage in rich chentrut }\end{gathered}$
 with purte).

Total bullding costi 2 © © \& \& P. \& P.
roamer seven mk IV

7 FULLY TENABLE TVAVE BANDS-M.W.1, M.W.E, LWW. A.W.1. 8.W.2, A.W. 3 und Trawler
Band. Extra Melinum providea easier tuintug of Radio protides engier tumhy of Radio rod terlal for Nedium and Lonk Warea, Retractable 4 sectlou 241 n chrome plated telecocopic serkal for peak Short Wave listenimg. Socket for Crir Aerial. Powerfal puibi-pulif output. 7 tranalstors

and two dioder inclualigg Milero-Alloy R.F. Tr tranaistors
3 \& tin P.M. छppeaker. Air opaced ganged tuning condeneer. Volume/on/ofr tontrol,

Total building costs

P. \& P. Pertonal Larpleve with awtiched mekeb 7/6 for private listening, of- extra.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attractlve black and gold case. Blize ol : $: 14$ illin. Tunable over both Medium und Losg Favea with extended M.W. band for easier tualng of Envenibourg, etc. 7 stayes- 5 tranilotors nad y diodes, wherbenoltive ferrite rod aerlal, Ane tole moving coll (FREE with parts).
price lise 1/6 (FREE with parta).

Total building costs 4.4/ 8 \quad P.\& P.

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
 1 fm . Tunable on Medium and Lovg Waves, iso Ehort Waves, Trawfer Band plus an extra M.W. band for cabier tunigg of luxenibourg, ete seanithe
fertite roil aerluil and telescopic aerlat for fhort Waves. 8 stages- 6 tranditors and 3 diodeu Inelading Miero-Alloy $8 . F$. Trsmoritotes, etc. (Carrying

Total buidding costs

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri, 9-12 Sat.

NEW!

transeight

SIX WAVEBAND PORTABLE WITH 3 in . SPEAKER
Attrecthre case in black with red grillit and cream knobs and
 approx. Tunable on Medluan and Lang
Benstitive lerrite rod aerinl for W.W. and LLW. Teleneople authal fur whort Waves. 8 improved type transistors plua a diodef. Pumb-pull outgut. Battery ecmosiulecr switch for estended battery life. Ample power to drke n larger *peaker. Parts grice list and essy build plane E!- (FREE with parts).
Total building costs

- $0 / 8$ P.\& 8 .

Earplece with swithed socket for frivate Hstening $\$ /-$ extra.

transona five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND
PORTAELE
WITH SPEAKER
Attraztlve case wlit red syeuker grille. Nize ul
 ferrite rod aeriul, tuaing condeaser, Tolume control, fine tope mosing coil gpeaker. Rasy build pians ami parta price list 3/6 (FREE with purts).

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
I enclose £................... please send items marked

ROAMER EIGHT	\square	ROAMER SEVEN	
TRANSEIGHT	\square	POCKET FIVE	\square
TRANSONA FIVE	\square	ROAMER SIX	

Parts price list and plans for.
Name.
Address

PORTABLE AMPLIFIER

WEYRAD P50－TRANSISTOR COILS RA2WW Ferrito
Ore．P60／1AC 170 ．．．．．＇
 R51／2 or P51／2 P51／8．．．．．．．．．

\％Driver Trans LPDT4．

VIUME CONTROLS 80 omm Coax 9 d ，yd． Midet sI Beritisy AERIALITE 5 E ．phmi to 2 Heg．LOG or AERAXIAL－AIR SPACED
 Edge סK，B．P．Transistor，$\delta /=$ ．Ideal 685 lines WIRE－WOUKD B－WATT POTS．WLRE－WOWND $3-$ WATT
 VRROROARD 0．15 MATRLX
$\times \operatorname{Sin} .3 / 8.21 \times 81$ in． $8 / 2.81 \times 83$ in $8 / 8$

B．R，B． P ，Bobrd 0.15 MATRIX 21 ta ，wide Bd．per Lin． fin．wide od．por lina；fin，wide $1 /-$ per Iin．（up to 1 Fin．） ELAVK ALUMINTUM CHASSIS， 18 s．w．g， 2 Iin Fidey
 ALUKMFIUM PAMELS 18 E W．g， $18 \times 18 \mathrm{in}, 6 / 6 ; 14 \times 8 \mathrm{~m}$, 5／6； $12 \times 8 \mathrm{in}, 4 / 8 ; 10 \times 7 \mathrm{ib}, 8 / 8 ; 8 \times 6 \mathrm{in}, 2 / 6 ; 6 \times 4 \mathrm{in}, 2 / 6$

 ALL PURPOSE HEADPHONES H．R．HEADPFORES 2000 ohmi Supar Sensfive LOW \｛ESIBTANCE HADPKONER Ohm DE LUXE STEREO HEADPHONES 8 ohms

THE INETANT
3ULK TAPE ERABER AND RECORDING HEAD
DEMARNETI8ER

GENERAL FURPOSE TRAMSI8TOR for Mike，Thape，P．U．Goiter． Bathery 8－1gy．or H，T，ling 200－800\％，D．C，operation Size For uise with valve of transistor eguigment． Fot ine with vaive of transistor eguigm Gual insiractions supplied，Brand new．
$17 / 6_{2.6}^{\text {past }}$
 $2 / 280 \mathrm{~V}$
$4 / 260 \mathrm{~V}$ 4／360V
$8 / 450 \mathrm{Y}$ 18150Y 16／450V $38 / 460 \mathrm{~V}$
$25 / 25 \mathrm{~V}$ $25 / 25 \mathrm{~V}$

$50 / 60 \mathrm{~V}$ | $2 / 6$ | 100 |
| :---: | :---: |
| $2: 6$ | 250 |
| 2.6 | 500 |
| $3 /=$ | $8+$ |
| $4 /=$ | $8+$ |
| $8 /=$ | 16 |
| $8 /=$ | 38 | $40 \mathrm{~F} \quad 3 / 6$

 m8 15V \＆／m： $500,1000 \mathrm{~m}$ ． $1,2,4,5,8,16,25,30,50,100$ ， CERAMIC， $102 \mathrm{~F}=0.01 \mathrm{mP}, 8 \mathrm{~A}$ ．Silver Mica 2 to 6000 pF ， 8 d ． PAPER $350 \mathrm{~V} 0.18 \mathrm{~d}, 0.52 / 6 ;$ Im² $8 / \mathrm{c} ; 2 \mathrm{mF} 150 \mathrm{~V} 8 /=$ $6007-0.001$ to $0.059 \mathrm{~d} ; 0.11 /-; 0.251 / 6 ; 0.4751-$ $1,000 \mathrm{~V}-0.001,0.0028,0.0047,0.01,0.02,16 ; 0.047,0.1,2: 6$ ． SILYEA MICA，Close tolerance 2% ． $2.2500 \mathrm{pF} 1 / 8 ; 560-$
 TWIN GANG，＂00－0＂ $208 \mathrm{pF}+176 \mathrm{pF}, 11 / \mathrm{F}$ ， 810 m motion
drive $865 \mathrm{pF}+865 \mathrm{pF}$ with $55 \mathrm{pF}+25 \mathrm{pF}, 11 / 800 \mathrm{pF}$ slow drive $885 \mathrm{pF}+865 \mathrm{pF}$ with $85 \mathrm{pF}+25 \mathrm{pF}, 11 /=800 \mathrm{pF}$ glow
motion，standard $9 /=$ small $3-\mathrm{kan}$ 500pF $22 /=$ SEORT
CZROME TKLESCOPIC AERLALS 23jn．5／0．
TUNING，Solld dielectric． $100 \mathrm{pF}, 800 \mathrm{pF}, 500 \mathrm{pF}, 7 i$－each $100 \mathrm{pF}, 150 \mathrm{pP}, 1 / 6: 250 \mathrm{pF}, 1 / 6: 600 \mathrm{pF}, 750 \mathrm{pF}, 2 /=1000 \mathrm{p}, 2,6$ RECTLFLERS CONTACT＇COOLED hall wave $80 \mathrm{~mA} 7 / 6$ ； $85 \mathrm{~mA} 9 / 6$ ．SILICON BY 213 日／－；BY100 $10 / \mathrm{F}$ Full wave Brldge Rectijers $75 \mathrm{~mA} 10 /-150 \mathrm{~mA} 19 / 6$ EX－GOVT，RECTIFIERS $850 \mathrm{~T}_{\mathrm{C}} 800 \mathrm{~mA}$ ；－
HEOI PANEL LIDICATORS 250% AC／De Red，Amber 4：－ RESISTORS．Prelerred Valuea， 10 ohms to 10 meg．
 Ditto 5% ．Preferred valuen 10 ohms to 22 meg．．． 9 d ． WITEEWODND RESISTORS 5 with，IO wath， 15 watt，

Q MAX CHASSIS CUTTER

 9 volt 500 ma ．\＆ize $43 \times 2\} \times 21 \mathrm{~s}, \mathrm{Metal}$ case． $78 /=$

MAINS TRANSFORMERS

260－0－250 $60 \mathrm{~mA} .6 .8 \% .2$ amps，eentre ts pped

$2500-25080 \mathrm{~mA}, 6.8$ v． 4 amp ．

 MOLATURE $200 \mathrm{~m} .20 \mathrm{~mA}, 8.8 \mathrm{~F}, 1 \mathrm{B} 21 \times 2 \times$.
 Ditto tapped sec．
 $8,8,9,10,12,15,18,24$ ， 1

 CHARGER KRANSRORMERS．IRPa $200: 250 \mathrm{~V}$

 COAXIAE PLUG 1／3，PANET，SOGKETS 1：3．ILIKE 8；6． OUTLET BOXES．SUEFACE OS FLUSH 5
BALAXCED TWIS FERDERS $1 / \mathrm{F} \mathbf{y d} .80$ ohms or 800 ohms． JACK SOCKET Std．opon－circnit 2／6，closent circuit 4／6； Chrome Lead Bocket \％／6．Phona Plaga 1／－．Phono Socket 1／－

E．M．I． $13 \frac{1}{2} \times 8 \mathrm{in}$ ： LOUDSPEAKERS

With fiarad tweeter cone and ceramis
 Jat 10,000 ganas．
State 3 or 8 or 15 ohm．Pa斯 $2 / 6$ Also with \mid win tweeters．With eroni－ over．State 3 or 8 or 15 ohm． 84 Recommended Teak Cobinet
Stzo $16 \times 10 \times$ gin．
Fost $2 ; 6$$\quad \mathbf{C 5}$

MINI－MODULE

 LOUDSPEAKER KIT
10 watr 65／－carriages．

Triple speake system combining on ready cut baino． and Treble loudspeskers and erossover condenser，The heavy inty 5 in ．Bass Woofer unit has a low resonance cons．The Whi－Rango unit is apecially designed to add drive to tha mitule register and the theeter recreates tho top end of the masical spectrum，Total re

ALL MODELS＂BAKER SPEAKERS＂IM BTOCK BAKER 12in MAJOR £9

$30-14,500$ e．p．g．a 12 in danble cone，woofer and twaeter cone together

 With a BAKER cersmie maknet assombly having fiux denvity of 14，000 gave and a total fixx of 145，000 Maxwello．Bas retionsuce 40 c．p．s．Rated 20 watty，state 3 or 8 or 15 ohm．Poat FreeMoinle kit， $30-17,000$ e．p．3，
 fastructions．

BAKER＂GROUP SOUND＂SPEAKERS－ 8 or 15 ohm，

Group 25＇＇Group 35＇＇Group 50＇

TEAX HI－FI SPEAKER CABENETS．Plotod wood front． For 10 or $12 \ln$ round Loudspeaker
For 18×8 in or 8 in round Londspeaker
29.0 .0
24.0 .0.

LOUDSPEAKER CABIIET WADDING 18in wide，8／－it
TWO－WAY CROSSOVER HETWORK 300 o／L．With varisble weoter attenuator giving aceurate bigh／low fretuency
 Horn Tweetern $2-16 \mathrm{ke} / \mathrm{s}$ ， 10 W 8 ohm or 15 ohm 29／B．
He Laxe Form Tweetery $2-18 \mathrm{Kc} / \mathrm{G}, 25 \mathrm{~W}, 16$ ohm $59 / 6$ ．

8000 c．P．I．CROSSO YERS 8 or 8 or $150 \mathrm{hm} 19 /$
SPECLAL OFFER！ 80 ohm， $2 t \mathrm{ts}$ ， 2 ilin ，dfa． 85 ohm， 8 in 25 ohm， 31 in ，din； $6 \times 4 \mathrm{in}, 8 \times 3 \mathrm{~min} 8:<5 \mathrm{in}, 17 / 6$ EACH
 8×2 in 18／w；8in asf； $1.0 \times 6 \mathrm{~min} 38 \%$ ．
Sin．WOOFER． 8 whiticmax， $20-10,000$ eps． 8 or 150 hm ． 88 ： ELAC 8 fn，De Laxe Ceramio 8PECIAL OFFER：FAMOUS RYCEARD ALLAN LOUD SPEAKER8 8 or 10 or 12 in Twin coge 8 or 15 ohm $39 ; 6$ ．

SOUND ACTIVATED PSYCHEDELIC LIGHT BOX

Fanclasting light patterns of Green，Blue，Red huch Amber． Works with say monn or stereo amplifer，or redio output． A．C，meins operated，size 13 8×450.

¢12．10．0 Poat Pree

ALL EAGLE PRODUCTS
\qquad
ILLUSTRATELE EAGLE CATALOGER． 5 F －． Post Irte． BARGAIX AM TUKER．Medium Wave．$£ 4$ BARGAIS 4 CEAENEL TRANSISTOR MIXER． Add mugical highlijata and sound effects to recordings． Will mix Microphone，reeords，tape and tuper BARGAIN FM TUNER 8B－108 MC／8 Six Trabsletor Printed Circuit．Callbrated stide dial taning．
 FM STEREO MULTIPLEX ADAPTOR for above or $99 / 6$ general nse，Ready made with 4 transistors， 8 diodea
品
Practical Radio Inside Out
Practical Rado Mside Out
Supersensitive Transistor Poekel Radio
 T．V．Fanit Finding 405／625 lines．
Transigtor Communication Sets．．．．
Wireless Worla Radio Valve Datis
Wireless World Radio Valre Dats．．．．．．．．．．．．．．．．．
Transistor Cifecuits 10 Radio Controiled Models．．．．．
Yalvess Tranuletors and Diodes equizalentu Coll Design mod Constraction
Hartieg on HitFI Radio Tuners．．．．．．
Practical Car Radio Iontajation ．．．．．．．
3 inch MOVING COIL METERS BRITISH MADE Yarions calibralions／movements， 500 Miferosmp； $37 / 6$
1 Milliamy： $60-0-50$ Microamp，etc，B．A．（or list．

BALFOUR MOTORS．（120V．OR RAOV．AC）SLI $2 x^{2} \times 24 \times 1 \frac{1}{2} \mathrm{Fn}$ ．Clockwise 1,200 r．p．m．${ }^{4}$ pole 50ma．Spazate z $\begin{gathered}\text { Prest } 8 / 20.17 / 6\end{gathered}$
E，M．I．TAPE MOTOR，120V．or 240 v ． AC．Heary anty 1．200 r．p．．．． 4 pola $25 /=$

and component layout details. Here, mounting strips with ceramic stand-offs are used to carry the majority of components, with the remainder supported by the switch, control potentiometer and meter terminals.

When ordering the triac the heat sink should be included. The latter is soldered to the long tag strip terminals, then the triac is clipped in. A view of the heat sink mounted triac is given in Fig. 3.

In view of the light loading of the triac-less than 1A -the use of a heat sink as such is not really called for, but it does provide a convenient way of mounting.

If a double-pole change-over switch is available, it is worth while to make use of the second pole as in Fig. 4 to bring in a neon indicator.

The neon will light when the enlarger lamp has full, uncontrolled, power applied to it, and acts as a warning to the photographer that this is so. The inadvertent use of this setting for exposing, giving over-exposure of the print, should thus be avoided.

USING THE CONTROLLER

The output of the controller is adjusted as required so that a constant meter reading is obtained; the reading chosen must, of course, be a little lower than that given by the lowest mains voltage likely to be encountered.

The switch S1 can be used to apply the full voltage to the lamp for the purpose of focusing.

The numbered curves A and B in Fig. 5 indicate light output from a 75 watt enlarger lamp with:
(a) Variation of applied voltage, that is, without the controller.
(b) Variation of mains voltage but with a constant meter reading setting of 0.6 mA .
Graph (c) Uncontrolled meter reading with changing mains voltage.

The output of the lamp in the lower graph is expressed in terms of the reading on a Weston 3 exposure meter. It can be seen that the change of almost $1 \frac{1}{2}$ stops, given by an uncontrolled lamp when the mains changes from 250 volts to 200 volts, can be reduced to zero by this controller, so giving good correction for both black and white and colour photography.

Fig. 5. Graphs showing light output from 75W enlarger lamp with: (a) Variation of applied voltage, (b) variation of moins voltage with constant meter reading of 0.6 mA , (c) Uncontrolled meter reading with changing mains voltage

PART FOUR-By R. W. COLES PRACTICAL DTLSLIDE PROJECTOR DELAY TIMER

DIODE TRANSISTOR LOGIC is available in all of the three package outlines commonly used to house integrated circuits, namely the modified TO-5 can, the miniature flat-pack, and the most popular of all, the 14 -pin dual in-line plastic package. The dual in-line package is recommended to amateurs because of its cheapness and comparative simplicity in use.
It might be thought that "breadboarding" is a thing of the past with such sophisticated circuits as these, but this is far from true. With logic i.c.s it is a simple matter to "breadboard" complete systems instead of just individual circuit blocks. These ready made blocks are just as robust as transistors, and in many respects they are more so.

Home designed printed circuit boards are still useful for the finished article, although the layout design will take much longer. It is very difficult to remove a package with so many pins once it has been soldered to such a board.

I.C. BREADBOARDING

One breadboarding system that can be used with success, enabling easy removal of the integrated circuit package, employs plain white stiff cardboard, which is obtainable from most stationers very cheaply.

The package layout is first decided upon, and then roughly sketched out on the board, holes are then made in the board to correspond with the i.c. lead-outs. There is no need for accurate marking out; an i.c. can be used directly as a guide. These holes can be made simply with dividers or the point of a pair of compasses. If they are made to take the lead-out tags tightly, there will be no need to anchor the packages to the board.

All that remains is to wire up the circuit as required. The wiring can be drawn on the board before assembly, but remember, manufacturer's diagrams of i.c. pin connections, unlike those of valves, assume you are looking down on the top of the package.

By this time you may be asking yourself just what you can build with i.c. DTL circuitry. Of course you would like to build your own computer, but it could be far too expensive.

There are vast new areas open to the experimenter working with just a handful of gates and flip-flops. Examples are logic control of a model railway system; an automatic dipping headlight system for a car, which provides a manual back-up and manual override. Automatic indication of an approaching car when in the manual state can be included, with a warning signal when you have overridden the automatic system. Perhaps you might like to try digital control of a model aircraft. Another idea is a digital clock with a display on numeral indicators. This article concerns itself with one application-a slide projector delay timer.

SLIDE PROJECTOR DELAY TIMER

This simple design, which employs DTL integrated circuits, is intended to be used in conjunction with an automatic slide projector, and allows such a projector to run continuously and unattended, changing slides roughly every ten seconds. It is mainly intended for use with a circular slide magazine containing 100 slides which, in the case of the prototype, was fitted to a Gnome projector with remote slide changing capability.
The main use of such an installation is as a visual demonstration aid at exhibitions (the original set-up was used to simulate a radar display) the projector being behind an imitation radar console.

An automatic slide projector of this type changes slides when a remote control button is pressed twice, the first press causes the slide carrier, containing the slide, to move to the open position, and also rotates the magazine one position. The second press allows the carrier to return to the display state with the new slide.

If instead of pressing the button twice, it is kept depressed after the first press, the above process continues indefinitely, with the disadvantage that whereas it takes about two to three seconds to change a slide, the time during which the slide is projected only amounts to about half a second. This situation is clearly unsatisfactory for the continuous display sequence, as it results in only a brief display every two to three seconds.

Experiments with the button show that a press of $1 \frac{1}{4}$ seconds was sufficient to produce a complete change of slide, a shorter press resulted in only half a change, and a longer press caused the mechanism to commence a second change. A suitable interval between changes was decided on as about ten seconds.

PULSE FREQUENCY DIVISION

In this particular application the requirement was to design a timer which closed a pair of relay contacts, wired in parallel with the change button, for $1 \frac{1}{4}$ seconds in every ten. The eventual design utilises a pulse generator to provide one pulse every $1 \frac{1}{4}$ seconds. The output of this generator is divided by eight in a binary counter.

As each of the counter's eight states lasts for $1 \frac{1}{4}$ seconds, and occurs once in every ten ($8 \times 1 \frac{1}{4}$), it is a simple matter to decode one of these states and use the resultant output to operate a relay.

The circuit used is shown in Fig. 4.1a, and contains three bistable i.c. packages type 9945 , and one triple 3 -input gate package type 9962 ; the pin connections

motors

HIGH PRECISION MAINS MOTOR
 ing Hodel KA 60 JFB, Sultable for enputan motor. Blze 8ln long, 4 lin diameter with 6 in diameter flange and 4 fixing holeo. These motore are Capacitor Btart, Capacitor Run, supplied less Capacitor. Also arallable 3 Phase. 84.10 .0 . each. 21.6.0, P, \&P.

SHADED POLE MOTORS 120 V 50 Hz

precislon made as used in record decks and Lape recordery. Buitable many other
applications. $10 /-$ each. P. \& P. $3 /-$

PRECISION MOTORS by PULLIIM
28V. s,000 r.p.m., 0-6016 h.p.

HYSTERESIS REVERSIBLE MOTOR

Ineorporating two coils. Fach coil when energlaed will produce opponite rotation of

LOW TORQUE HYSTERESIS

MOTOR MA23

Ideal for instrument
ehart
ehart drives. Bxtreme-
ly qulet, useful in
areng where amblent
nolse levels are jow.
noise Levelis are jow.
High etarting torque
enobles relative torque
enables relative bjgh inetto driven up to Gox/ta. Available fo the 4 r.p.mg speedm and mages: 240 V 50 Hz ,

 2sj- each. P. \& P.

hYSTERESIS CLUTCH MOTOR

With Integral clutch allew. Ing the motor to drop out of engagement with the gear trato, thereby facilitat-
ing easy reselting when ing easy reselting when fanclion with a ifght spring. 6 oz torque at

24V $501 \mathrm{~Hz}, 1 / 20$ r.g.m., 4 r.p.pı, $25 /=$ each

D.C, MOTORS

Similar to sbova type MD 88. 28V $1 / 20$ r.s.m., $1 / 60$ r.p.m., I'r.p.ms. 12 V

SYNCHRONOUS MOTORS

$200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$, New condition, ex-equipmest, 8.71 r.p.h, and I r.p,ph. Self atartiog, complete with gearing ehaft $i=19$
dia., inin long. $80 /-$. P. P. $8 /-$.

OSCILLOSCOPE TYPE CT 52

A very handy mintatore portable jnetra. ment for general purpose applications. 2zin dlant trbe. Wave form nvertigation from 1021)
 nonitortar duration 50 mioromecond to microgecond. Time base free running microsecond. Time base iree running
$10 \mathrm{~Hz}-40 \mathrm{kHz}$. Also single tween facility from 50 microseconds to 3 nilcmectond "Y" Amplifier. Delay Lins Calibration Voltage. Power aupply $110-250 \mathrm{~V} 40 / 60 \mathrm{~Hz}$ бow. Supplied prith metal carrying case.
 Price \&89. P. \& P. 30/-
AVO TRANSISTOR ANALYSER CT 446 In V. G. condition Carrent instrument.

ELECTRIC CLOCK MOTOR

NEW $240-250 \mathrm{~V}, 50 \mathrm{~Hz}, 2 \mathrm{~W}$. Synchronous induction motor. 2 reve- per hour. o/P ghaft. In dia \times in long. Clockwise rotation. Three-holed mounting at 120
on 2in RCD. Price $15 /-$. P. \& R. $0 /-$.

MEMORY CORE STORES
42×52 2K bit ferrite nore store mmplete
with 940 A 30 loud dionles. I Fith 8t OA 30 loud dionles, Iteal for ballding computer atore or holiling information
in binsry form. Price $5 \$ /=\mathbf{P}, \& P_{-} 7 / 6$.

MINIATURE MOYING COIL

 RELAY SII5By Bangamo Weaton suitable for D.f. circuie A high sestaitivity relay more mensitive than the electromagnetio type,
Single Coil Resistance Single Coil Resistance
310 micro amps. 318 B . List price \&4.10. Our price $90 /-$. P. \& P. 8%

Fig. aize 16 mm .
Coid cathove ger fillel in line 0-8 digital diapiny tubes. Long life expectvoltage 180 V . Skde readitg Type XN 13 and XN 3 , amber. Price $18 / 6$ each.

DOUBLE AUDTO FADERS

These hard to get, pro fearional recorling studio tuits ara fieal mor audio grammes in and out, ete grammes in and ont, etc
Two bank $1,000+1,000$ ohm wire-wound parsllel comnectlon to give 500 ohm IW. Independent tracks ftted scale
tuakinge, with red and blue control knobs. Priel mounting, Ex-equfpment. Prite 8.19.8. P. \& $\mathbf{B}_{0} 7 / 6$

LINEAR THYRISTOR CONTROLLED
LIGHT DIMMER-BRAND NEW
Migh gemble full wave bridge circult light brightnesi light brightiness. Ideal lighting and a.c./W.e. commutator motors fltted to portable electric hand drills. Fits stand conduit box, $240 \mathrm{Y}, 60 \mathrm{~Hz}$, 000 F . Prlee 59/\%. P, \& P. 2/f6.

POCKET CALCULATOR

 Save time anil solve allyour mult plication divjalon, percentage, cubs and equareroot problems. Enay to use pocket calculator with no errors, Invaluable daily aid,
should Jast a lifetime, ofirered complete in black onfered complete in black
wallet with full tustric. thones, $8 \frac{1}{2}$ in diant $12 / 4$ each, P. \& P. 1/6.

RAPID HEAT SOURCE

Iront brand new Intra Red Tubuler source for Jrys. Ifeally miltel as heat Inculators, etc, ovev, f,4t0v, 00,000 Ingstrons. Tength 12 jin it 备in Uja

REPEAT CYCLE TIMERS

These timerg rcpeat a set cycle of switching opera-
1.ous via a cam and micro switch, for as long at the motor ts energised.
 2 min, ${ }^{2}$ min, $13 a_{1}-2$ 6 min cyoles at $451-$ Twin Cum RD 22 in 0. in $^{2} 4$ min and 5 min ojeles at $75 /-$. Cam RD $502 \min 80 / \%$ Cam RB 20 in 3 min, it min cyclea at $85 / \sim 8$ Cam RD Nesin 3 min, tutu cycles at 116 $i=$. All plus
P. \& P. $5 /-$.

IT SURPRISED US!
 We are probably South-East London's LARGEST COMPONENTS SHOP

— but the other day a chap walked into our place at Deptford Broadway and said that he had only just found out that we were there.
"What!" we said, "After 25 years? Incredible!"
And then it occurred to us that there just might be other unfortunate electronics addicts who didn't know that there was a wealth of components close at hand.

So to celebrate our Silver Jubilee let's tell them now . . .
9.15 a.m.-6 p.m.
$\binom{$ Closed all day }{ Thursday }

\section*{OPEN DAILY
 Garland Bros. Ltd.

 TELEPHONE

 TELEPHONE}

DEPTFORD BROADWAY (Corner of Brookmill Road) LONDON, S.E. 8

A LONG COOL LIFE

for your valuable components with the S.D.C. DeC range of SOLDERLESS breadboards

$$
\begin{array}{ll}
\text { S-DeC } & \begin{array}{l}
\text { Available as single packs with accessories and } \\
\text { control panel @ 29/6d or the DeCSTOR double } \\
\text { pack containing 2 S-DeCs, accessories, control } \\
\text { panel, all in a plastic storage container. Only } 67 / 6 \mathrm{~d} . \\
\text { A 4 DeC pack is available, only 117/6d. }
\end{array} \\
\text { T-DeC } & \begin{array}{l}
\text { Now available to the amateur. } 208 \text { connection points. } \\
\text { 38independent junctions. Accommodates I.Cs using }
\end{array} \\
\begin{array}{l}
\text { standard carriers. Three times the capability for only } \\
\text { twice the price! Unit pack with control panel } 50 /-\mathrm{d} .
\end{array}
\end{array}
$$

μ-DeC Primarily for use with integrated circuits; further details on request.
T-DeCs, S-DeCs and Accessories are all obtainable from leading suppliers throughout the U.K. In case of difficulty complete the coupon and mail without delay.

Post to:
S.D.C. Electronics (Sales) Ltd., 34, Arkwright, Astmoor Industrial Estate, Runcorn, Cheshire. Tel.: Runcorn 5041

Please send me:

................T-DeC PackS-DeC Single Pack
...............DeCSTOR Pack4-DeC Pack
Tick here ifyou require further details of the μ-DeC
I enclose PO/Cheque/Money Order value £ / I d.
Money refunded if not satisfied.
Name ..
Address ..

Fig. 4.ia. Block diagram of integrated circuits with the additional discreet components required to make up the delay timer for a slide projector. VRI is adjusted so that the projector just goes through one slide change for each relay operation. Gates G1, G2, G3 are contained in one i.c. package type $9962,862 \mathrm{P}$ or MIC962, the bistables are
type 9945,845 or MIC945 (3 off)

Fig. 4.1b (left). Truth table for the counter states

Fig. 4.1c (right). Suggested arrangement for supplying the d.c. power
ano
\qquad

Fig. 4.2. Diagram of integrated circuit dual in-line outlines with arrangements of pin connections looking down on the top
for these are given in Fig. 4.2. In addition three discrete transistors are used in the clock generator and relay driver circuitry, together with five resistors and two capacitors.
The pulse circuit, which generates a negative going, steep-sided pulse every $1 \frac{1}{4}$ seconds is ideally suited for this application as it uses few components, has a very high input impedance due to the complementary pair of transistors being used as a four layer diode, and produces a short output pulse with transition times of short duration. The time between pulses is set by the $C R$ time of R1 and C1.
The capacitor charges through the resistor until the emitter of the transistor TR1 reaches a potential more positive than its base, which is set to a reference voltage adjusted by VR1. As soon as its base-emitter junction is forward biased in this way, it conducts sharply, and in turn causes the npn transistor TR2 to turn on.

This process is regenerative; the capacitor is discharged through these two transistors which effectively short it to earth. When it has discharged TR1 is no longer forward biased, so it turns off and presents a high impedance to the CR network, which allows the capacitor to begin charging slowly again.

The output pulse is taken from the wiper of VR1, which rests at the reference potential of about three volts until TR2 saturates; then it drops to about 200 mV to form the pulse.

This output is passed through one of the gates in the package, which speeds up its already fast edges and acts as a buffer to raise the pulse amplitude and current drive capability (i.e. fan-out). It also inverts the pulse.

DECODING

The flip-flops used in the 3-bit ripple counter are of the d.c. coupled set/reset type, and require two external feedback connections to enable their outputs to change state after the application of a negative going edge to their clock input terminal.

Fig. 4.3. Simple voltage regulator for connection between $9 V$ d.c. power supply and the $5 V$ power line of the i.c.s. A 25 F F capacitor should be connected ecross the $5 Y$ output

Output A is connected to clock B input and so on, each stage dividing the clock frequency by two. Flipflop C is up for four input pulses and down for four input pulses; after eight such pulses the counter ends up at the first state of 000 .

The correct interval between relay operations is obtained by decoding one of these eight states in one of the three input gates (G2).

The 14 second pulse at the output of this gate drives the relay via the third gate, which is used simply as an inverter, and a relay driving stage TR3.

The actual state of the counter which is decoded is immaterial, as they all must last for $1 \frac{1}{4}$ seconds, and be separated by ten seconds. The state 000 is shown decoded in Fig. 4.1b. To decode any other state, it is necessary to feed to the logic gate the three counter outputs which are at a logic " 1 " state at that time.

Thus to decode 101 the outputs A $\overline{\mathbf{B}} \mathbf{C}$ are fed to the gate inputs. This last point is mentioned because it would be quite possible to decode more than one state and use this extra output (or outputs) to initiate other actions. For instance, a tape recorder could be started up by the counter state after that which changed the slide, perhaps giving a short commentary on the picture being displayed.

POWER SUPPLY

The power supply poses a slight problem, as the 5 V required by the i.c.s is not available from dry batteries directly, and a simple mains supply without regulation is unlikely to be accurate enough. The prototype was run from a 4.5 V battery with no noticeable ill-effects.

The best solution is to use a higher voltage from either a power supply or batteries and trim this to exactly 5 V with a Zener diode emitter follower regulator, a suitable circuit being shown in Fig. 4.3. The supply to the relay circuit does not need to be accurately set and can be between 12 and 15 volts derived from batteries or a mains fed power supply.

Next month: Part 5 will study transistor transistor logic (TTL) in which multi-emitter element transistors are incorporated in the i.c. package. The application of TTL to designing a binary adder will follow in Part 6.

NEWS BRIEFS

Manchester and Southampton Exhibitions Full

S^{\top}Tand space at both of the professional electronic instrument shows sponsored by the Electronic Promotion Group, one at Manchester and the other at Southampton in September, are filled to capacity, claim the organisers.

There are 37 exhibitors at the Electronic Instruments Exhibition at the Hotel Piccadilly, Manchester, from September 15 to 17. This is the fourth and biggest of the Manchester series.

The Southampton show, with 27 exhibitors at the Skyway Hotel from September 22 to 24 , is also completely full up. This is the first EPG-backed exhibition in southern England and is part of the EPG policy of picking a new centre each year. Last year, in addition to the Manchester show, a similar exhibition was held in Coventry.

Collision Course Solution

Asolution to air traffic jams and a method of drastically reducing the possibility of mid-air collisions through use of the fastest computer systemever developed hasjust been unveiled in U.S.A. Called the Staran IV system it has been developed by Goodyear Aerospace Corporation of Akron, Ohio, and can perform more than 40 -million mathematical operations per second in predicting which planes are on collision courses and determining evasive action.
One feature of the system is its ability to single out planes on collision courses and show them to air traffic controllers on a viewing screen as if they were the only planes in the air.

Use of the Staran IV has been proposed to the U.S. Federal Aviation Administration who are analysing the system and considering its possible installation at U.S. airports.

Thames Navigation Improvements

DECCA Radar have received an order from The Port of London Authority for replacement of the existing Thames Navigation Service Stage Two, which is the Gravesend to Cliffe section, to be completed in 1971.

Existing fixed coil displays designed in the 50 's will be replaced by the latest Decca equipment incorporating Deccaspot. With a 255 ft scanner, two 25 kW transceivers, three 16 in displays, a Ferranti micro-wave link, and Cossor u.h.f. radio, the system will be identical to that of the Crayfordness-Broadness section.

Deccaspot will be used for channel marking and for showing the designated anchorages recently published on Admiralty charts. This is a new system of very accurately positioned electronic spot markers, permanently displayed on the p.p.i.

Flying Darkroom Transmitters

THE first half of a $\$ 8$ million contract worth $\$ 4,172,500$ has just been awarded to the Goodyear Aerospace Corporation (GAC) of Akron, Ohio, U.S.A. by the U.S. Air Force.
The contract is for 70 completely equipped, air mobile laboratories for processing and interpreting aerial reconnaissance film.
Included will be "data link" electronic equipment which can receive signals from reconnaissance aircraft and display in a matter of minutes, the terrain being covered. Thus, it is no longer necessary for reconnaissance aircraft to land and have film processed before intelligence officers can see what data is being gathered.

-LIND-AIR AUDIO

18/19,25 \& 53 TOTTENHAM CT. ROAD, LONDON W. 1. Telephone: 01-580 2255/4532/7679
Open 9-6 pm. Monday to Saturday. Thursday until 7 pm .

All Mail Orders and corterponconce to Dept. LA/20, ZXikman Forion, Sth Tottonham Court

Build a transistor radio in an evening

SOLDERING

- learn about radio and electronics at the same time

There's no complicated soldering with the Radionic X30 Kit. The components plug in and your radio will work straight away. Build 33 fascinating experiments: a printed circuit transistor radio, a burglar alarm, a morse code buzzer etc. Radionic kits are safe - they're battery operated. The X30 and more advanced Radionic Kits can help you with your exams too. Send off this coupon today.

who wants af2,00D+M_2. opportunity in the dynamic new computer industry?

In only 4 weeks you're in - and only

 the incredible Eduputer can make it possible.Now for the first time anybody can train outside the computer industry for a lucrative career as a computer operator, with actual experience on an Eduputer.
Who created Eduputer 7 The internationally famous company Programming Science International. They developed it to the specific requirements of the massive New York city training board and its practical results have been one amazing success story.
We are proud to have been selected as the only commercial training organisation permitted to use the Eduputer in the U.K. Thanks to Eduputer, nine out of every ten can learn to operate the most advanced computers in only four weeks. Unlike Computer Programming, no special educational qualifications and no maths required. Just you and the incredible Eduputer!
Jobs galore! The moment you qualify, our exclusive computer appointments bureau introduces you to computer users everywhere with good jobs to offer (up to $£ 40$ a week full-time, $£ 50$ a week as a temporary). More than enough to go round, toobecause 144,000 new operators will be needed over the next five years alone.
This is your big opportunity to get out of a rut and into the world's fastest-growing industry. And remember-LCOT is the only commercial computer school to have Eduputer. It means a lot to employers.
Telephone: (01) 4379906 NOWI
Or post the coupon today for full details FREE and without obligation.

```
London Computer Operators Training Centre,
B5, Oxford House, 9/15 Oxford Street, London W.1.
Telephone : (01) 4379906.
127/131 The Piazza, Dept. B5, Piccadilly Plaza, Manchester 1. Telephone: (061) 2362935.
Please send me your free illustrated brochure on exclusive
Eduputer "hands on" training for computer operating.
```

Name \qquad
Address

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

MAGNETIC COMBINATION LOCK

THE system described here has extremely high security characteristics, and its principles can be safely described in detail to the most doubtful looking individuals without fear of compromising the security of one's abode. The standard door-lock may be used, and the power normally associated with operating heavy lock plunger solenoids is thus unnecessary.

The actual "key" comprises a coded array of tiny magnets, in which the physical positioning and magnetic sense (i.e. position of N and S poles) form the secure code which alone will operate the simple circuit. Furthermore, attempts at solving the coded magnetic field will immediately result in the sounding of the doorbell, or, if desired, and outdoor alarm bell!

Use is made of the existing doorbell push so that if this is pushed in the pormal way, the doorbell sounds. If, however, the special magnetic "key" is first correctly placed in position, and the doorbell pushed, the door lock is released.

Circuit operation

The circuit diagram Fig. 1 shows one configuration which applies for a.certain combination, using five reed switches. The power supply to the entire circuit is broken by the bell-push S 6 . This ensures that no current is drawn from the battery except during the instant it is required.
The reed switches S1-S5 are all miniature normally open contact types, i.e. their contacts remain separated in the absence of a strong magnetic field. S4 and S5 have permanent magnets secured close to them so that they then perform as normally closed switches, which require not only an additional magnetic field to part their contacts, but such a field must be of opposite polarity to that of their fitted magnets, so that the two fields cancel.

Unlocking

For bias to be fed to TR2 base the following conditions must be obtained: S1, 2 and 3 contacts must be all closed; S4 and S 5 contacts must both be open; and the door-bell push S 6 must be operated to complete the voltage supply path.

Thereupon TR2 becomes forward-biased and conducts, causing almost the entire power supply voltage to be dropped across the solenoid X2. The collector of TR1 is practically at earth potential, and the portion of voltage appearing across TR2 emitter and collector is potentially-divided by R1 and VR1. The resulting potential on TRI base is insufficient to allow TR1 to conduct and so the solenoid X2 is energised, but the bell XI does not ring.

If the bell-push is operated when any of S1-3 contacts are not closed, or, S4 and S5 contacts are not open, no bias is fed to TRI base, and it will not conduct. Hence, the solenoid will not operate, and the entire battery supply voltage appears across TR2 emitter/collector. Part of this voltage is tapped off by the wiper of VR1, and the resulting voltage causes sufficient current to flow in TR2 to operate the bell X1.

The bell-push can be operated by a caller, who does not possess a special "key" and the door-bell would ring in the normal manner.

Fig. I. Circuit of the magnetic combination lock

Components

The solenoid X2 should be capable of operating at 3 volts, and may be operated by a light-duty relay in TR1 collector circuit, in which case a lower-power transistor may be used. Resistor values will depend to some extent on the types of transistors used, and VR1 must be of sufficiently high resistance as not to conduct sufficient current from TR1 collector to earth as to operate X 2 (or relay if used) when TR1 is not conducting.

To determine the value of R1 connect up TR2 and X2 only, and connect a 50 kilohm potentiometer (set to maximum resistance!) between base and negative 6 V line. Vary the potentiometer, gradually decreasing the resistance until the solenoid or relay is operated. Disconnect and measure resistance arrived at ; insert in circuit the next lower preferred value for R1. VR1 should be adjusted to make TRI ring the bell when the bell-push is operated without the magnetic key, but not to allow the bell to ring when TR2 is conducting.

Solenoid

The circuit described is intended to operate a manually-assisted arrangement, in which X2 merely removes a locking pawl from the standard door knob
mechanism, so that the handle may be turned. However, there are now available on the market electricallyoperated solenoid locks, but care should be taken to choose a type which will operate from the power available, and which will not draw more current than can be safely supplied by the transistor or relay chosen.

Fig. 2. Suggested arrangement of reed switches

Key

The form taken by the key is governed by the arrangement of the reed switches. Probably the most practical configuration for these is to arrange them in a single row, side by side, making sure that they are close enough to allow a key to be made of reasonable proportions, but not too close so that the field of the fixed magnets interact to give trouble, see Fig. 2.
B. H. Baily,

Dorset.

NOVEL OSCILLATOR

Fig. I. Simple oscillator circuit diagram
Fig. 1 shows a simple and novel oscillator utilising a motor found in many model trains, cars, etc. When the spindle is rotated, the motor acts as a dynamo and the output is fed to the base of the transistor (any common type should suffice), which acts as a common emitter amplifier.
The frequency of the resultant note depends on the speed of rotation of the motor.
> J. M. Maud,

> Scunthorpe, Lincs.

NEWS BRIEFS

S.E.R.T. Computer Group

T°o encourage Society involvement in the whole field of electronic data processing, the Society of Electronic and Radio Technicians has established a Computer Group Committee to organise Society activities in selected fields. Initially, the Computer Group Committee will be organising meetings and procuring papers in the field of computation.
The committee will be made up of the following personnel: J. Harris (chairman), Kingston College of Further Education; D. J. Dennis, I.B.M.; K. R. Brown, B. Dobson and M. R. Fox, I.C.L.; and J. Cairns, Univac.

The first meeting to be organised by the Computer Group will be a lecture and demonstration by $\mathrm{Mr} \mathbf{C}$. J. Fleckney, Information Co-ordinator of I.C.L. to be held at the I.C.L. Training Centre, Icknield Way, Letchworth, Herts. on Wednesday, October 21, commencing at 7.00 p.m.

Navigation System Takes the Air

Alightweight military navigation system announced by Marconi at the end of last year has started flight demonstrations to prospective customers in the Company's Piaggio aircraft. Aimed at a major slice of a prospective $£ 4$ million European and U.K. market, this is the first time that this system has flown in Europe.

The equipment, Type AD280, is designed to be mounted in the pilot's instrument panel, and to provide complete YOR and instrument landing facilities in a single unit, including all necessary controls.

The navigation system is designed primarily for small high performance'military aircraft, such as the Jaguar and the Phantom, and could also be applied to military helicopters.

Servicing will take the form of removing a faulty module and replacing it with a complete sealed unit. The faulty module will then be returned to the factory for repair or replacement.

The system is the result of over a million dollars expenditure on research and development. Marconi intend to start production at their own factory in Basildon, Essex, and a new, thick-film assembly area will be laid down to produce the assembled substrates for this and other equipment which will be in production next year.

Computers to Train Postcode Operators

Dostmen who operate postcode desk keyboards may in future be taught almost entirely by computer. In pioneering this type of training, the Post Office is soon to take delivery of a computer which will individually control up to 20 trainees, allowing each to develop his or her skill at the most suitable pace.
A keyboard simulation is fiashed on a television-type screen before him; over this is a superimposed diagram showing how his fingers should be positioned. The letter to be typed will flash on the screen-the position of the flashing letter on the keyboard simulation corresponding with the position of the key which should be pressed.

The aim is to produce operators capable of a speed of 250 characters per minute with an error rate of only one in 2,000 characters. The computer will be programmed to examine the pupil at every stage of training and give revision exercises or prolonged practice sessions on any weak point he may display.

The first computer trainer will be installed at Croydon and the first full class of trainees should be under instruction by the end of the year.

MICRO SWITCH

amols, 18 F doz 16 amp. model

TOGELE SWITCH 3 kmp .250 V with fixing ting 3 amp .250 V w!

CONSTRUCTORS' PARCEL

. Pheacy mintaine ${ }^{2}$ gang tuming coucleuser Ferrlte in trimmerg and ware gang awitch. iuning condenjer. 3. Circilt dlagram giviog atl component values for θ transjator clrcult covering all niedlum Fave and the long wave band aronnd half of the prom of the foning condienecr which is

SLOW MOTION DRIVES

for coupling to turing condensers, elc, One end grub screws. Price s: (each, 48)-dozen.

LARGE PANEL MOUNTING

MOVING COIL METERS

ize Sin $\times 4$ ia Centre zepo $200-0.200$ winco amp. probably 48 . Our price $59 / 6$, Ditto hat $100-0-100$ 79ic.
A.C. Ammeter $0 . B$ umps. flush mountlug-ntoving
iron. Ex equipment but guaranteed perfect $29 / 6$.

CIRCUIT BOARDS

Leavy copper on $3 / 3{ }^{3}$ paxulin sheet Ideal for making prowet packs, etc., a sheet io very strong with hackeaw blade. $\delta \ln$ gin to be cut away 1sin \times bln, $4 / 8$ esch.
6 KVA Auto-transformer in ventilated sheet steel qua-tapped. $110 \mathrm{v}-140 \mathrm{v}$-170v-200v-230w, Ex ourriage at cout.

PP3 BATTERY
 ELIMINATOR

Kun your sinall teansistor wa from the riatns-fin wave clreuit: Made up read wire hino your bet ha Bis eltch.

REED SWITCHES
tilasm encased, switehes uperated by external
magnet - gold welded contacts. We can raw offer magnet-gold welded contacte. We can raw offer Mintatur
Mindature lin loug sc approximately tin dis. neler. tandard 2 in long x in diam
tandard, 2 in long x in diameter. This will olte currents of up to $1 /-$, vollages ap to 251 Fist. Flat type, 2 in long. just over of in thick, atteated out, so that fit can be fitted into amaller space or a larger quantity may be pscked
into a square solenold. Rating 1 amp 200 volis. Prlee of eqare solenoid per dozen
munll ceramic uagnets to operate these ree witches $1 / 9$ each. 18 - dozen.

0.005 mFd TUNING

CONDENSER
Proved deeign, dical for atralght or

SUB-MINIATURE MOVING COIL

 MICROPHONE
st ved in behind the ear deaf-zids

 Acte aleo as earphone size only t in $x ~ I n s x$ in Regular price probably si Fote these are ex equipment but if no
CHART RECORDER MOTOR

Smith fixing dinneter approx.) instratnent motor rith fixing flange and spindle (3 in jong, 1 in
diameter) integral gear bor gires 1 res. per $\% 4$ diameter) in

IGNITION (E.H.T.)TRANSFORMER Mado by Parmeko Lud., Primary 940 V totr itin 4 2lin thick. $29 / 6$ plus $4 / 6 \mathrm{P} . \& 8 \mathrm{~B}$.

12 VOLT EXTRACTOR FAN BY DELCO

Ideal for ventilation in Caravan, Car or Boait 6 Bladied 5 in diameter fun inside heavy duty fxing hole. Jength approx. 8 tin. Exceptional bargaln $27 / 6$ plua $5 / 6$ poet and ingarance.
NEED A SPECIAL SWITCHI Double Leaf Contact Very, alight pressure
closes both contacts, $1 / 8$
each, $12 /-$, doz. Platic
 cach, 12/-, doz. Platic operaling, $1 /-$ each

COMPUTER MULTI-CORE

 CABLESit, $14 / 0076$ coppler cores, efth one insulated by nietal braided cores separately screcued, the 12 covered overall making a cable just under $\frac{1}{5}$ in. dia, but quite pliable. Price 7/5 per $\$ 4$. Any 6 leath cat. Other sizes arafiable $?$ core $\mathrm{D} /-\mathrm{ft}$ 6 core 4/- ft - 4 enre $3 / 6$ ft

RE-CHARGEABLE TORCH

Seat fiat torch, its anobtrusively in your pocket, contalmes 2 Nicnd cells and bullt-in charger. Pluga Into sharer alaptor mate, sold originnlly at over 4 dollars. Our prlce only 124 10is

INTEGRATED CIRCUIT BARGAIN

 A parcel of integrated elrcuits made hy the famous Ptessey Company, acture. The parcel contains on lce all new and perlect, firat-grade manudefinftely not sub-btandard or secortin. The ICs are all single silficon chip General Purpose Amplifiers. Rexular price of which Is well over \&il each. Fult droult detaits of the ICs are inctuded and in audition you with recelve a llot of 50 different X Cu avaliable nt bargain prices $\overline{5} /-$ upwards with circuits atal technicsil data of each. Complete parcel only il post paid; or Eist and all lata 10/* post iree. Credited when you order ICa value $30 /=$ and upwarde,
15, 30 , 40 \& 100 WATT HI-FI SPEAKEAS

FULL II 12 浚CK LOODIPEAKER. Thly is undoubtedit produced by one of the country's most tsmons makern. It for HFFI lead and Rlaythan Gutiar and public address. Flux Density 11,000 gaysa-Total Flitx 44,000 MaxwellsFower Handing 15 walte R.M.S. Cone Moulded fibre-
 orer mountiog lugs-Bafle hole 11 in . Diam,-Mounting holes 4 , holes- $\frac{1}{2} \mathrm{~h}$. flam. ori pitch circle 11 ins. diam. Overall height 51 in . A $\mathbf{£ 6}$ greaker offered for only 88.19 .6
 plax 80\% P.

- THIS MONTH'S SNIP

25 Amp Electrical Programmer

Learn in yous uleep: Have Redio playling and kethe ing aio warise the All thee aud meny other thinge you cie do if sou inveat in an Electrical Programmer. Made by the fantoum Smiths Instrament Compant
 Thisin ea the uwitch-off ty a 230,240 volt ma inf operated clock und $a y 0$ ainp Switch. vartable not stepped). Similarly the switch-on time can be delayed. This ful a beauliful mit, sixe $\overline{\text { à }} \times 32 \times 23 \mathrm{in}$. deep. Metal encased, glase fronted with chrome surmund. Offered at 47;6 plus $3 / 9$ pootage and insurance.

MOTORISED SWITCH
 For Animated Signs, etc.

This is a motorised programmer fwitch operated, with six 15 amp changeover contacts operated by triggers on π rotating drum. Bix
triggers will put switches down. Also simple oniof triggers will put switches down. Also simple onjof operation or changeovers are possible. The
tiggare are exactly set to any ponition pround the drume which is rotited oy a one rev, per hour meator. (Motors with other mpeeds avallable.) A cost in excess of $£ 20$. Llmited quantity ndly ${ }^{2} .15$

DISTRIBUTION PANELS Just what you need for work bench or lab.
4×18 nanp socket and onfort switch with
 Takes atnndard 18 amp fused plugrs. Supplied complete with of feet of heary cable.

MICROSONIC KEYCHAIN RADIO
 Boft tenther zipped bag. Specification:Prequetucy range: 530 to $1,600 \mathrm{Kcly}$. Sensitivity: $5 \mathrm{my} / \mathrm{mm}$. Intermedinte frequency: 465 K c/o or $455 \mathrm{Kc/a}$, Powe
out puty: 40 nW . Antemn: ferrite rod. Loudapeaker: Permanent magnet type In translt from the Fast these seta suffere alight corrosion as the hatteries were left in them but when this corromion If cleared sway they should work periectls-offered without guarantee
 briterlee. 6 for 87 , post fre

THE 5.5 WATT STEREO AMPLIFIER
Made by one of our most famous makers for a de-luxe player. Thle amplifer has t quality of renroduction mueh better thaju ayerage. Ügiug a total 16 transielors
 tweeter mid-range anit trass thus giting option of 1 , 2 or 3 spentera per channel.
 insurnace.

3 kW TANGENTIAL HEATER UNIT

This heater unit is the very lateot type, thoot Hoorer snd blower heaters cosing atted in more. We have a hewters only. Cong $£ 15$ and
 element allowing awitching 1,2 and 3k atied Into any metal line cabe or cablnet. Only need control ewitch. $70 / \mathrm{a}$. $\quad 2 \mathrm{kWW}$ Model ass alova excepe 2 kilowatts $89 / 6$.

MAINS TRANSFORMERS
Nole ath these are first grade Tranoformern whit ail haye normaal $200 i^{2} 40$ volt 50 cycle primary Upright mountiag, tize s $\times 2 \frac{2 f}{} \times 2 i \mathrm{n}$, approximatoly. 2 secondaries one 28 volt 1 amap and the other $\mathrm{E} \cdot 6$ volt 1.6 amp. Earth sereen betreen prifuary and secondarien-this trapaformer will power a $6-5$ watt stereo amplifer (circuit diagram araithble, price $2 ; 6)$. Sulcable outpat trainisformer
is type 56787 desertbel below. Our price 17;
Malas Traniformer Tye 耳o. 56728
Chasale mount fing type, eize approsimately 3×2
Iff, 2 becondaries one 290 vole at 60 mat and prisuary and ecconday les. Thife will power a 5 wati nmpliser (circult swallable $2 / 8$). Hatchtar 0 PT, is 56734 described beiow, rice 16/6 plus $4 / 6$ poos. Kalan Transtormer Type Ito. 5686
Upright mounting, slze npproximately ${ }^{4} \times 8$ $6 \cdot 4$ volts at $3 \cdot 1 \mathrm{ma}$. There if a ocreen between primary and secondaries. This is a partner to out put tranaformer 56694 described below. Price 19/6 plus 4/6 post.

HEAVY DUTY MAINS
 TRANSFORMER

30Y, 37 A , Primary tapped $200 / 240$ In 10 y , stepa. A really beautiful "C"Core transformer. Made by Parmeko, impresnated and varnished. Weight npprox. 50 1b, size approx. Sin. Wide filin, deeD and $\begin{aligned} & \text { Hitm. high. Metal framed for frec etanding and }\end{aligned}$ fitted with E.S. Eereem, Probably priced 840.250 from Parmeko. Ex equipmient, but perfect, $\mathbf{8 1 7 . 1 0}$

OUTPUT TRANSFORMERS

OFT. Fel. 56894

Chatesis mountites-atze a $\times \frac{2}{} \times 2 \mathrm{ju}$. approx 1. tmately $\overline{7}$ watis. A pugh pull tranmformer for matching 2/EL84 or simitar vaives to 15 ohni loudspeaker. $14 / 6$ no extra for post if ordered mimplifiter available, grice \&:

OPT, rel. 58787

Cpright mounting, aize approximately $2 z \times$ 5 watt Matching innpedance 60 obms to 16 ohms. (Circult diagram aratable price $2 ; 6$), Price $8 / 6$ each, no extra for postage if ordered with mains OPT, ret. G95909 56786 .

OPT, rel. Ge5sont

Upright mounting, slze approxtmately $\underline{x} \times 2\}$ tmpedance $\$$ ohm, otherwise this in an 56787 . Impedance.
OPT. ret. 56784
Chasele mounting, size approximately $2 t \times{ }^{2}{ }^{2}$ a) 5 . Primary 600 ohm centre tapped. Ratio $27 / 3.5$ watto output wing twin ELI 80 or eimillar
Price 12;8. No extra for postage if ordered with 50 CYCLE TO 60 CYCLE INYERTERS

For operating american instruments and other

 equipment made for 60 cyclea 115 v . frota $230 j 260$ 115 volts A.C. Thed will handle a load of up to 100 watte. These are prectelon made and have reed type frequeacy meter which vibrates when the frequency li exactly 60 c.p.s. Adjuotment of the frequency la by a knob on control panel. Inpat by 3 core output from 3 pin socket. Original coos orthis fnercess of R60. A timtted quantity available 217.10, each MAINS OPERATED CONTACTOR M20/2407, 50 cycle solenoid with lammnted core θ very silent in
operation. Closes 4 circuits each rated at 10 amps. Extrenely well made by a German Electrical Company. Overall eize
AUTO-ELECTRIC CAR

with dastbiboard control switchfully extendable to 40 in. of fully retractable. Sultable for 12 v poaitive or negatise earth. Supplied complete with Gtting inetructions | and ready wired dashboard swltch. |
| :--- |
| 5.18 .6 plus $6 /-$ port and fins. |

$$
\text { 25.18.6 plam } 6 / \text { - poest and fis }
$$

MAINS MOTOR rrecision made an and tape recordersideal also for extractor lan, blower, heaters, Gnjp at 9/E. Postage - for hrat one then 1)-10r each ono ordered. 12 and

Where prostaga is not stated then orders
over $\mathbf{2 5}$ are post Iree. Below f^{5} add $2 / 9$.
S.A.E. W1th enquiries pleate.

Dept. PE, 266 London Road, Croydon CRO 2TH Ale 105/3 Tamworth Road, Croydon

WOM! a fast easy way TO LEARN BASIC RADIO AND ELECTRONICS

*

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics.
No soldering-but you learn the practical way.
Now you can learn basic Radio and Electronics at home--the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build . and enjoy every moment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning easy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
and what's more, YOU'LL UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.

You LEARN-but it's as

 fascinating as a hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a great new, sparetime interest.A 14 -year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set
here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.ER.E. and City and Guilds standards.
Send now for free 164-page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full detaits and a 164 -page book -'ENGINEERING OP-PORTUNITIES'-Free and without any obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept. 371B, Aldermaston Court, Aldermaston, Berkshire.

BI-PAK=LOW COST I.O's

BI-PAK Bemleonductors now iffer you the isrgeat and mont popular range of I.C's avallable at these RXOUEBIVE 10 W RMIO8. TTL Digital 74N Series fully coded, brand new. Dual in-line plagtic 14 and 16 pin packages.

BY-PAK

Order Mo.
BP00 7400N BP01 7401N
BP04 7404N BP10 7410N BP20 7420N grse 7430N BP4
BP4
74441 N

BP12 7442N BP60 7450N BP63 7453N HP60 7460N BP70 7470N BP72 7472N BP7s 3473N BP14 7474N \#P76 7476N

BP83 7483N BPOO 7490N BP92 7492N HP93 7493N BP94 7494N BP95 7495N BP96 7496N

Simular Typas to:- Deseription
Quad 2-Input NAND GATE
Quad 2-Imput NAND Gate-OPEN COELEETOR
gex Inverter
Triple g-Input NAND GATE
Dual 4-Input NAND GATE Dingle 8 -inpat NAND GATE BCD to decimal decoder and NIT Driver
BCD to decimal decode (TTL O/P). Dual 2 -Impat AND/OR/NOT GATE Single 8-Input iND/OR/NOTT QATE-expanda Dual 4-Input- expandable Single JK FLip-Flop-edge triggered Single Master Slave JK Flip-ilop Dual Master Slave JK Flip-ilop Dasl D FHp-fiop
Quad Blutable Latch

$$
\begin{aligned}
& \text { Dual Biater sla } \\
& \text { preset and clear }
\end{aligned}
$$

Four Bit Bicary Adde
BCD Decade Counter
Divide by 124 Bit blnary counter Divide by 164 Bit blary counter. Dual Entry 4 Bit Shift Register

Price and ofy, prices

Price		
1-24	$25-99$	100 up
$8!6$	8/8	/is
/18	$5 i$	$4 / 6$
$0 / 6$	$5 / 0$	$1 / 6$
6/6	6/8	4/8
8/8	5/8	4/6
$0 / 6$	$6 i 6$	416
$8 / 8$	$8 / 6$	$4 / 8$
28/8	20\%-	$17 / 6$
$28 / 6$	201-	17/6
$0 / 6$	6/6	4/8
$8 / 8$	$5 / 6$	4/6
$0 / 6$	$8 / 6$	$4 / 6$
O-	B/-	7i-
O-	81-	31)
101-	9 -	86
10\%	Of-	816
11/-	10\%	$0 / 6$
11/-	10f-	$9 / 6$
291-	28,6	201-
22/6	201-	17/6
20/6	201-	$17 / 8$
2¢/6	20%	$17 / 6$
28/6	801-	$17 / 6$
20/8	20J-	17/8
84/-	81/-	18/0

BRAND REW. FULL TO MANUFACTURERS'

8PECIFIOATION
Price ench
HP709 Operational Amplifer, dual-In-line 14 pin pack
age - SN 72709 and almillar to MTC709 and 2LD709C.. $10 / 6$ Thla is a high periormance opera
foputs and low impedance output.

TTL INTEGRATED CIRCUITS

Manufacturers' "Fatlouta"-out of apec, devloes Including functional units and part functional but clagsed an ont of epec. from the manufacturers very rigid specificatlona, Ideal for leaming about I.C's and experimental work, on testing, some wil be found perfect.

RTL FAIRCHILD (U.S.A.) I.C's

ETL Wictologlo Cirecuits
Epory case To-5 temp. range $15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ $\mu \mathrm{L} 800$ Buffer
$\mu \chi 814$ Dusl two-inp nt GÄTE
ML 823 J-K Flip-flop
Foll data and elrecuits for "C o in Booklet form price $10 / 8$ 10/EA70SE Linear RE-IF AMPLIFIER

1-11 Cty. pricen esch PLASTIC CASE To-5 6 lead up to $100 \mathrm{~m} / \mathrm{ce}$.

DTL DIGITAL I.C's

DTL dual in-line package.
Type MC84P expandable dual 4-juput NAND Power Gate Type MC84sp Clocked Fufp-fiop
Type 862 Triple \& Input NAND/NOR Gate.
To: B.I.E.T., Dept. 371B, ALDERMASTON COURT, ALDERMASTON, BERKS.
I would like to know more about your Practical Radio \& Electronics Course. Please
 send me full details and-FREE 164-page book. name.

FULL DATA SUYPLIED WITH UNITS
Pleape nend all orders difect to our warchouse and detpatch department.
BI-PAK SEMICONDUCTORS
P.O. BOX 6, WARE, HERTS.

Pottage and psokieg add 1/-. Oversens add extra for Airmall. Minimum erder 10/-. Caah with order plense.

K I N C

OF
TEI

ADI6I AD162
MARHE COMPLE OF GERH. POWFR : put stages of Armplilier and ltadlu receivers. OC'R 10WEST PRICE
OF 126 PER $17.47 R$ HICH POWER SILL CON PLANAR TR
SISTORS. TO. TERRANTI ZT1485
$\begin{array}{ll}\text { VCEA } & \text { Pt IT. } 85 \mathrm{~F} \\ \text { V'FBB } & \text { bFE15.45 }\end{array}$
P1RTCL 15:- H.ACH
 ORE PRTCL 18/6 FACH ZULL RASR DTOD YOETAGE EANGE 2-16V. 400 mV (DO-7 Hat) 3/8 ea. 10 W ($10-10$ marked. State voltage
ronuired.

GRAND NEW TEXAS GERM. TRANSISTOR

TL
Tu
T8
T4
Tb
TH
T
T
T

EN8060 TPN SHE DUAL TEX

120 VC8 MTXIE DRIYER
 CODED YD190, 1-443;6 esch. To
$3 /$ etach.

Sil, trans, Eultable for
P.E. Orgas. Metal TO-18 EqVUL, ZTX 300 1/-each,

FREE

One 10 jo Fack of your
own ehoive fres with orders valued $\begin{gathered}\text { tit or over. }\end{gathered}$ NPN DIPNESED
SILKON FIFOTOIS701 DIODE TYPE Readort, high switching
 OURPRICE $10 \% \mathrm{FACH}$, OO OR OVER B/G EACH,

FET'S

2) 3890
MPF105

LOW COST F.E.T.s Fulfy Testecl, Guaranteed 8450. $25-90$ 6/3 each: 100 up
$5 / 6$ each. Conled FEI9 Full data nent. TO-7ig

CADMIUM CELLS

 ORIOO, ORP618:- exchPHOTO TRANS.

LNEAR TEGRATED

AMPLEFLERS

 (20-5 8 lead)3P709C, Operational smpBP701C, Operationul autpput), $18: 6$ each. BP702C, Operatiossal munput), $18: 6$ each.
BP501, White. Iatal mmpllher, 18/- each. bawi unju, 14:- etuch. BPgolC, General purpose
amplifter (TO-5 8 leat). (rolitage or current smp.) 12/8 elach.

Typa 701C. Ideal for 1 , B Projecta, 8 Lead TO-5 cuse.

Our price $12 / 6$ each
5 ofll 11 /- umch.
Prices q̨uoteal fur.

tenenam

Ydentikal encapreuhatlun aud pin eonfiguration to the and ICA03. Each circul class A.B. Power simp stage 3 watto RMS: Fully lested conpleto with circait details anu data, CODED BR. 1010.
OUR LOWEST PRICE
 TAA2A3, Operational ahmp iner, $70 /$ - each. Her, 15 , 0 eath. atmonititer, $21 /=$ each.

CA8020 RCA (T.8.A.)
HNEAR INTEGRATED chrcuis

OTEER MONOLITKI 1331 Niticon Vuluteri slaleor Panar lithlo integratell mobocharacterintlos, but with an anote gate finul a buthl-in gate anil cathorle. Ful cuit avaltable on requert

Sylvania (U.8.A.)

 maxer. Mar. overall nolse faction 18.7 CB at $3,000 \mathrm{~m} / \mathrm{cs}$ Clesranee Priee and boxed.

EX-EQURPMENT MULLARD
AFI17 transistors. Large
ean t lead type. Jendla eut ehart but stIl usable
real value at 15 for $10 /=$.

KING OF THE PAKS Unequalied Value and Quality
NEW BI-PAK UNTESTED SEMICONDUCTORS

NEW LOW PRICE TESTED S.C.R.'s

2A POTTED BRIDGE RECTIFIERS

TRANSISTOR EQUIVALEATE BOOX

complete eross reference and equivalent Thusistors, Exclusive to B1-PAK, 25/-each

PRINTED CIRCUIT

Packed with somiconducturs ant woul 30 trans and so diodes. Our price 10 boards

PLEASE NOTE. To HYoid any furthe and enable us 10 keep our ${ }^{\text {'1 By Return Rosta }}$ service which is secand wone, Fe hate Order Department bad we now request you remittance, elfrect to our Warehouse and BI-PAK SEMLCORDUCTORS, Despatch out packing sial 1/- per, EYBT8. Postag

20 Red Spot AF Trams. PNP

10 A Siltcon Rects. 100 PLV. OC1 140 'Irame. NPN: Switching sil. Trans 25303 PN
$200 \mathrm{Mc} / \mathrm{A}$ Sll. Trane. NPN BSY20/2
Heper Diodes IW 33V $\%$
Power Trandistora $10 \mathrm{OC} 610 \mathrm{OC}_{3}$
sisicon kects, 400 PIV 253 max
OC75 Trangiators.
Power rana. Ocso 100 r
2 Low Nolse Trans, NPN 2N929j30
g1. Trane. NPN VCB 100 ZT8
OAd Diortes
GC7J Tranaiator
4 Sil. Rectif, 400 PIV 500 tn I
GET884 Trane Eqve. OC44
2N708 811. Trame. S009fe/a NPS
6 IN914 Bid, Diodea 75 PIV 75 mA
OA95 Germ. Dlodea Sub-min, 1268
0025 power trans, Germ
AC128 Trans. PNP High Gain
AC127/128 Comp. Palr PNP/KP CG162H Germ. Ditoles Gqung. as116 Type Trans.
Acorked Germi. Dfocles Market
AClio germ. PNP frann.
AFI17 Trans.
OC171 Trams
2N2928 84. Epoxy Trans. 0 OC7 Type Trans 10 A 600 PIV Sil. Rects. 1845 it BC108 GIl. NPN Figh (iain Trane 1000 PIV Sil Rect. 1-5 A 59310 B8Y90A BU. Trann. NPY 200Me/a

GFT888 Low Nolbe Germ. Trane
AFI39 PNP Figh Freq. Trand.
Yato Made's 2 UAT101 \& 1 MAT121 OCA4 Germ. Trans. AF 2N3906 gill PNP Trana. Motorole Silt Power Recte. B1Z13

2צ1182 FNP Epitaxial Planar si 3 2N697 Epitaxial Planar Trans. 81 Unflunction Trane, 2N2646.
2 Sit. Trans. 200 Mofa 80 Veb ZTB3/84』 Eqvt. Est................................ 25 BYı, and Germ. Trans. Mixeil,

GIRO No. 388-7006

GILCOLII RROIOLTD II \& 40 MAYIS ROAD, NIL 6 TI 888		
EDELIC LIGHT CONTROL UNIT Three Chanuel: Buse-Midile-Treble		CRESCENT CASSETTES Top quality eqssetres at umberatable prices (complete with standind atarage
\#t you requirc cuore intormation plense		IMPORTED PANEL METERS
	MAINS TRANSFORMER	
	Fosen Primary 240V. 8econdary 220 V at $80 \mathrm{M} / \mathrm{A}, 8.2 \mathrm{y}$ at 1 A . Thls transionmer is	BRITISH RECORDING TAPE of the finemt quakity (all guaranteed). Sin 600st, 8/8 each, g for $24 /-.5$ in $9001 t_{1} 10 / \mathrm{m}$ each. 3 for $88 / 6$. 71 n 1 1,2001t, $11 / 6$ each. 3 for $38 /=$. Please include $1 / 6$ on each order for P. \& P.
		COMPONENTS CORNER
Gnid, $20 \mathrm{db}, 300 \mathrm{M} / \mathrm{W}$; power, 8 -yolt dic, $200-1 \mathrm{kHz}$; nutput, $80 \mathrm{M} / \mathrm{W}$; pөwer, 9 V ; current, $15 \mathrm{M} / \mathrm{A}$. Dual flasher E1318: flabher time, J:4 вece; nower, 65 ; carrent, 120M汭 -henp, $6 \mathrm{~V} 1503 \mathrm{~F} / \mathrm{A}$. We algo etnek the muras cule pracileo morlales in this range. ALL AT 25/- Mus $\because /$ /- 1 . \& 5 .	EMI LOUDSPEAKER 450 10 watte. 1Yin Y. 8in + two 	8in x bia one bided printed elrcult boari $3 Y 100$ type rectifler 800 p. $2.5 .700 \mathrm{M} / \mathrm{A}$ ${ }_{6}^{4}$ pin tranglietor holders $2 \frac{1}{2}$ in 80 ohm loudspeaker $2 \cdot 1 \mathrm{in} 25 \mathrm{hm}$ loudspenker 2t in 8 ohns loulopeaker -2 in U2 battery holderg (blue plattic) Flick switches 1 in dolly mains type Model motors $6-12$ volt 10 ohm W/W pos loudapenker contrs! Tape recorder rev. counters Please include P, \& F . Send 8/- for our Component Citalogue und Flog Lists.
ARD "UNILEX"		These new modules from Mullard require onty a geremuriver to assemble, and are the lateed typ in unit audio. further details.

G. F. MILWARD MAIL ORDERS: DRAYTON BASSETT, TAMWORTH, STAFFS.

ELECTRONIC COMPONENTS

Wholesate/Retail :

RESISTORS:
 Carbon $\frac{1}{2} / 2 \mathrm{~W}$
 $\frac{1}{2} / 3 \mathrm{~W}$
 Wirewound, Multitapped
 1-3W
 5-7W
 10W
 PAPER CONDENSERS:

TV types, 500 V
Miniature
ELECTROLYTIC CONDENSERS
Mains radio/TV types
Transistor types
Mixed high/low voltage
POLYSTYRENE CONDENSERS
MULLARD POLYESTER CONDENSERS
SILVER MICA
WIRE-WOUND PRE-SET SLIDERS
VOLUME CONTROLS: Double, Mixed
NUTS AND BOLTS: Mixed lengths/types 8 B.A.
6 B.A.
2 B.A.
METAL SPEAKER GRILLES: $7 \frac{1}{2} \ln \times 3 \frac{1}{2}$ in
V.H.F./F.M. TUNERS: Need ECC85

VEROBOARD: Cutter $+52 \frac{1}{2}$ in $\times 1$ in Bds.

TRANSISTORS:
P.N.P. Untested.
N.P.N.

Light sensitive (ÖCP7i)
Light sensitive diodes
OC44 Mullard. 1st grade
OC45 Mullard. 1 1st grade
oC22 Mullard. 1st grade OC25 Mullard. 1st grade 2N378
ASY22
BY127 Rectifiers
1N4007 Rectifiers STC3/4 200 V
Unmarked $200 \mathrm{~V}^{\circ}$
Dlodes. OA81
WIRE:
Solta core, insulated yards 100 10/-
Stranded core, insulated yards 50 10/-
SOLAR CELLS:
Selenium, large. small.

coAX

Semi air spaced 15 yard's
10/-

CRYSTAL TAPE RECORDER MIKES
 10/*

EARPIECES

No plug 6 10/-
With 2.5 mm plug 4 10/.
With 3.5 mm plug

FREE \& FREE! FREE: ONE PACK EXTRA INCLUDED FREE WITH ORDERS YALUE ES. THREE PACKS EXTRA FOR \&IO ORDERS.
G, F. MILWARD, Drayton Bassetf, Tamworth, Staffs. Postage (minimum) pef order 2/-.

STEPHENS
 ELECTRONICS
 P.O. BOX 26
 AYLESBURY, BUCKS.

SEND S.A.E. FOR LISTS

 GUARANTEESatisfaction or money refunded.

VALVES

AZ31	$9 / 6$	EF184	$11 / 3$	PL38	18/-	$6 \cup 4$	15/-
DAF91	8/3	EH90	10/3	PL81	10/3	6AT6	9/9
DAF96	$8 / 3$	EL34	9/9	PL8IA	12/6	6U6A	15/6
DF91	$9 /-$	EL41	$101-$	PL82	7/3	6AV6	6/6
DF96	$9 /-$	EL. 81	$9 / 6$	PL83	10/3	6BA6	$9 / 6$
DK91	$11 / 6$	EL84	7/9	PL84	8/3	68E6	12\%-
DK96	$11 / 6$	EL95	9/-	PL500	1616	68R7	15 -
DL92	$7 / 6$	EM81	$11 / 6$	PL504	171-	6BRB	19\%-
DL94	7/6	EM84/7	12/9	PL505	291-	68W6	$16 / 6$
DL96	$9 / 3$	EY51	$7 / 6$	PL508	201-	68W7	
DYB6/7	$8 /-$	EY86/7	$7 / 9$	PL. 509	30/9	68W7	$13 / 9$ $28 /-$
DY802	$8 / 6$	EX40/1	$7 / 6$	PL802	$17 / 3$	6CD6G 6 V 6 G	$28 /-$ $8 /-$
EABC80	10/6	EZ80	6/6	PL805	17/3	6 6×4	816
EBC33	11/6	EZ81	5/9	PY32	$10 /-$	6×4 6×5	$7 / 6$ $9 / 6$
E8C41	$9 / 6$	GY501	14/6	PY33	$10 / 9$	${ }^{6 \times 5}$	15/6
EBCAI	6/6	GZ30	$9 / 6$	PY81	8/3	$12 \mathrm{l}{ }^{12 \mathrm{Cag}}$	$99 / 6$
E8C90	$9 / 6$	GZ32/4	$11 / 9$	PY800	8/3	$12 \mathrm{BA6}$	$9 / 6$
E8F80	$8 /$	GZ33/7	16/3	PY801	$8 / 3$	$12 \mathrm{BE6}$	12/-
EBF83	B/-	KT66	25/6	PY82	$7 /-$	128H7	$14 / 15$
EBF89	8 -	KT88	32/6	PY83	10/-	35W4	$9 / 6$
E891	5/3	N37	$15 / 6$	PY88	$8 / 3$	50C5	12/6
ECC81	$8 /-$	N339	$25 / 6$	PY500	201-	6F23	15/6
ECC82/3	$8 / 6$	PC86/8	10/3	PZ30	$16 /-$	6F24/5	12/6
ECC84/5	$8 / 6$	PC900	10/3	R19	13/-	6 F26	8/3
ECC88	11/-	PC95	7/3	R20	15/-	6 F28	11/6
E日8CC	12/5	PC97	8/3	UABC80	10/6	6/3012	15/6
ECF80/2	9/6	PCC84	$9 / 3$	UBF99	8/-	10FI	15/-
ECFB6	11/-	PCC85	$8 / 6$	U8C41	$9 / 9$	JOF18	10/-
ECH35	13/6	PCC88	14/-	UCC85	$9 / 3$	10 Pl 3	16/-
ECH42	$13 / 3$	PCC89	$12 / 3$	UCH42	13/9	10P14	191-
ECH81	10/3	PCCI89	12/3	UCH81	$10 / 9$	20P4	201-
ECH83	$8 / 6$	PCF80	$10 / 3$	UCL82	$10 / 3$	30 Cl	10/3
ECH84 ECLL800	2016	${ }_{\text {PCFE82 }}$	10/6	UCL83	$12 / 3$	30 Cl 15	$13 / 9$
ECL80	88.	PCF96	12/3	UF80/5	$71 / 6$	30 Cl 17	15/9
ECL82	$9 / 9$	PCF200/I	16/3	UFB9	$8 / 3$	30 Cl 18	$13 / 6$
ECL83	$11 / 6$	PCF801	12/3	UL41	$11 / 6$	30F5	16/6
ECL86	9/9	PCF802	12/3	UL84	111	30FLI	$12 / 9$
EF39	10/6	PCF805	13/-	UM80/4	$9 / \mathrm{H}$	$30 \mathrm{FLI2}$	17/6
EF80	8/-	PCF806	12/3	UY41	$8 /$ -	30FL 14	13/6
EF83	$10 /-$	PCF808	13/6	UY85	6/9	30LI	9/3
EF85	8/3	PCH200	11/6	U25	151-	30L15	15/3
EF86	13/3	PCL 82	10/3	U26	151-	30 L 17	14/6
EF99	$8 /-$	PCL83	12/3	U191	14/6	30P12	$15 / 6$
EF91	8/6	PCL84	10/3	U193	$8 / 3$	30PLI	$12 / 9$
EF92	$10 / \rightarrow$	PCL85	10/6	U301	171-	30P4MR	20/-
EF93	$9 / 6$	PCL86	10/3	W729	11/-	30P19	12/9
EF94	15/6	PD500	30/6	Z759	24/6	30 PLI 3	18/6
EF95	$12 / 6$	PFL200	$14 / 9$	5 Y 3	8/6	30PLI4	18/6
EF183	11/3	PL36	12/9	5Z4	$9 / 6$	30PL15	18/6

90% B.V.A. BOXED (NORMAL GUARANTEE) OR OWN VALVES SUPPLIED, I YEAR'S GUARANTEE. ADD Od PER VALVE ON ORDERS UNDER 6, OTHERWISE FREE POST AND PACKING.

SEMICONDUCTORS

AC117	12/-1	BCII5	6/6	BF225	6/-	2N1305	4/10
ACl26	4/4	BC117	7/9	BF257	$9 / 6$	2N1306	6/2
ACl27	4/9	8Cl18	7/9	BF22A	916	2N3055	15/-
AC128	4/6	8 Bl 34	$11 / 6$	NKT125	5/9	2N3392	5/-
ACl76	$7 / 4$	BC147	5/8	NKT28t	4/-	2N3702	5/6
ACYI7	$6 /$	BC148	4/4	NKT 401	17/6	2N3705	4/6
ACY20	6/-	BCl52	5/6	OC25	$9 / 6$	2N3711	4/9
ADI49	$11 / 8$	BC175	5/6	OC44	5/6	2N3819	$9 /$
ADI61	$6 / 9$	BC187	5/8	OC45	5/4	2N3826	6/1-
AD162	$6 / 9$	8C213L	5/4	0 O 71	$4 / 4$	2N4062	$4 / 6$
AFII4	$4 / 8$	BDY20	$30 / 6$	OC72	5/4	2N4289	4/6
AFII5	4/8	BFY50	5/-	0 C 77	$5 / 6$		
AFII6	4/9	BFX84	7/-	0 O 78	5/-		
AF! 17	4/6	BFX29	7/6	OC81	4/-		
AFII8	12/-	BFil5	5/6	OC810	4/-	RECTIFIE	S
AFI26	$4 / 8$	BFlit	$9 / 6$	(GET1\|3)	4,	BY/26	4/4
AF127	4/8	BFi63	7/-	OC84	5/-	BYI27	5/-
AF139	8/8	BF167	6/-	OC169	4/8		
AF178	9)-	BFI73	7/-	OC171	6/-		
AF179	$91-$	BFI78	7/-	OC200	6/6	DIODES	
AFI80	12/4	BF180	$8 /$	OC202	$9 / 6$	AAll9	2/-
AFI81	9/4	BF181	$8 /-$	OC203	$6 / 6$	OA47	1/9
AFI86	$13 / 4$	BF182	$8 /$	OCP71	12/6	OA79	1/10
AF239	$8 / 6$	BF184	5/-	P346A	4/6	OA81	$1 / 10$
BC107A	5/-	BFI94	5/-	2N456A	17/6	OA91	2/-
BCI08B	$4 / 6$	BF197	6/4	2N697	5/10	OA202	2/-
8C109C	5/-	BF200	7/4	2N698	10/6	BZY88	
BCl13	5/6	BF224	$61-$	2N1332	11/6	(SERIES)	6/6

ADD 5d. PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES.

CATHODE RAY TUBES

New and Budget rubes made by the leading British manufacturers Guaranteed for 2 years. In the evenc of failure under guarantee, replacemenc is made without the usual time wasting forms and postage expense.

Type

MW36-20	
MW36-21	
MW43-69Z	CRMI71
MW43-80Z	CRM172
AW43-80Z	CRM173
	CME1702
	CME1703
	CMEI706
	CI7AA
AW43-88	CI7AF
AW47-90	CMEI705
AW47-91	A47-14W
A47-14W	CME1901
	CME1902
	CME1903
A47-13W	CI9AH
A47-11W	CME1906
A47-26W	CME1905
A47-26W/R	CME1905
A50-120W/R	CME1913R
AW53-80	CME2013
AW53-88	CME2101
AW59-90	CME2303
AW59-91	CME2301
A59-15W	CME2302
	CME2303
A59-11W	CME2305
A59-13W	CME2306
A59-16W	CME2306
A59-23W	CME2305
A59-23W/R	
PORTABLE SET TUBES	
TSD217	
TSD282	
A28-14W	CME1601

$\underset{\mathbf{E}}{\mathrm{N}} \mathbf{w}$

	4.10 .0
6.12 .0	4.12 .6
6.12 .0	4.12 .6
6.12 .0	4.12.6
6.12 .0	4.12 .6
6.12 .0	4.12 .6
6.12 .0	4.12 .6
6.12 .0	4.12 .6
6.12 .0	4.12 .6
7.13 .4	5. 7.6
7.13 .4	5. 7.6
7.13 .4	5. 7.6
7.13 .4	5. 7.6
7.13.4	5. 7.6
10. 5.6	8.10 .0
8.17 .3	7. 0.0
8.17 .3	7.15.0
9. 6.8	
10.17 .0	
8.18 .8	4. 5.0
8.18.8	6. 5.0

$9.11 .8 \quad 7.4 .0$
$9.11 .8 \quad 7.4 .0$

13.13 .0	10.19 .6
13.13 .0	10.19 .6
12.12 .0	10.10 .0
12.12 .0	10.10 .0

10.10 .0
6.15 .0 6.15 .0

Not supplied
7.15 .0

A discount of 10% is also given for the purchase of 3 or more New tubes 25 any one time.
All types of tubes in stock. Carriage and insurance $15 / \mathrm{M}$

TRANSISTORISED UHF TUNER UNITS NEW AND GUARANTEED
 FOR 3 MONTHS

Complete with Aerial Socket and wires for Radio and Allied TV sets bus can be used for most makes.
Continuous Tuning, 90/-; Push Button, 100/-.

STYLII

TC8, GC2, GP59, GC8, DC284, Stereo 105, 106, 208, 2/- each (individually boxed): ST3/5, ST8/9, 9TA, 9TA/HC, GP91, 8/-, Diamond. Post and packing 5d per item for orders under 24.

TAPES (Polyester PVC)

4 in L.P., 8/6; 3 in L.P., 5/6.
Standard Play: 600ft 5in, B/6; 900ft 57in, 10/6; 1,200ft 7in, 12/6.
Long Play: $900 \mathrm{ft} 5 \mathrm{in}, 11 /-; 1,200 \mathrm{ft} 5$ zinn $13 /-; 1.800 \mathrm{ft} 7 \mathrm{in}, 18 / \mathrm{H}$.
Double Play: $1,200 f \mathrm{fin}$, $16 /-; 1,800$ fe 5 sin, $19 /-; 2,400$ fe $7 \mathrm{in}, 28 /-$
Philips rype Cassettes (in plastic library pack): C60, 10/6; C90, i2/6; C120, $19 / 6$.
Post and packing $1 / 6$ on all orders.

ACOS CARTRIDGES

GP91-1-Medium output Mono Crystal, 21/-inc. P. Tax.
GP91-3sc-High output Mono Crystal (TC8H, TC8M, BSR X3H, X3M), 2i/-inc. P. Tax.
GP93-1-Stereophonic Crystal, 24/9 inc. P. Tax.
GP94-1-Stereophonic Ceramic, 31/- inc. P. Tax
GP95-i-Stereophonic Crystal, $21 / 9$ inc. P. Tax.
GP96/1-Stereophonic Ceramic, $31 / 6$ inc. P. Tax.

TERMS, CASH WITH ORDER ONLY. POST AND PACKING PAYABLE ON ORDERS UP TO £3, AFTER THAT, FREE EXCEPT C.R.T.'s.

R.S.T. VALVE MAIL ORDER CO.

BLACKWOOD HALL, WELLFIELD RD., S.W. 16
SPECIAL EXPRESS MAIL ORDER SERVICE

TRANSISTORS (POSTAGE, PACKING \& INSURANCE) I/3 PER ORDER

SEND S.A.E. FOR LIST OF 3,000 TYPES VALVES, TUBES AND TRANSISTORS

[^4]

Colbert Pana-Vise work positioners are specifically designed to quickly and easily achieve the most convenient, comfortable and time-saving work position.

Available with vacuum clamp or screw-on base.
They can be rotated, tipped, tilted, angled, elevated, lowered.

The required work position is firmly secured with a patented one-knob control, a unique feature of Colbert Posifioners.

A series of special holders is avallable for various types of work.

Full details available on request.

Distrlbufors:

SPECIAL PRODUCTS DISTRIBUTORS LTD. Bf Piccadilly, London, W.I. Tel, 01-6299556 Cables: Speciprod London (Made in U.S.A.)

Let us give you the facts

From cover to cover Goodmans Manual is packed with fascinating articles on Stereo: a beginners guide to High Fidelity: Stage-built Systems: complete details of Goodmans High Fidelity Audio products. 28 pages you can't afford to miss and it's yours FREE 1

Please send me a free copy

Name
Address
Goodmans Loudspeakers Limited
Axiom Works, Wembley, Middlesex. Tol: 01-902 1200

FULLY TESTED AND MARKED

PACKS OF YOUR OWN CHOICE UPTO THE VALUE OF $10 /$ - WITH ORDERS OVER 24

SURPUUS IITEERRTED CIRCUITS

These are brand new genuline surplus seocks, marked and guaraneesd to full makers' specification and not re-marked rejects.

> NEBOBA
NESI6A
> NESI6A
NEB2SA
> NE82SA
> NEB40A
> NE870A
> SN7430
> SP616A
> SP631A
> SP670A
> SP806A
> SP808A
SPG16A
> SP916A
> SP925A
SPB40A
> SP840A
$5 P 855 A$
> 5Pg55A
> SPBBOA
> NES00K
> NESO1K
> NE806j
> NE8083
> NE8163
> NEE251
> NE8401
> ST620A
> ST659A

Single 8 Uf Nand Gate TTL Dual CliP Nand G3te TTL D.C. Clocked 1-K Flip-Flop TTL $7 / m$ Dual $41 / P$ Exclusive OR Gare TTL $7 / 6$ Dual 4 Power Gate TTL Triple 3 I/P Nand TTL 8 Inpue Positive Nand Gate TTL Dual 4 Nant Gate DTL Quad 2 I/P Gate Expander DTL Triple 3 Narid Gate TTL
Dual I/P Expander TTL
Single 8 liP Narid Gate TTL Dual $4 / 1 \mathrm{P}$ Nand Gase TTL D.C. Clocked $1 / \mathrm{P}$ Exclusive FR-Flop TTL Dual 4 Power Gate TTL Dual 4 Power Gate TTL Triple 3 I/P Nand iTL Video Amplifier
Video Amplifier 40 MHz Dual $4 / / \mathrm{P}$ Expander TTL Single 8 V/P Nand Gate TTL Dual 4 UPP Nand Gare TTL D.C. Clacked J-K Flip-Ftop TTL Dual \& Power Driver TT D-K Flipoflop DTL Disal 4 日uffer/Driver DTL

Suffix A $=$ DIP 14 lead; $K=10$ lead TOS; $J=$ Fla pack.

LOOK : TRANSISTORS
PNP SILICON A ALLOY
SPEC
ICER AT VCE $=20 \mathrm{y}$ HFE $15-100$
THESE ARE OF THE 25300 TYPE WHICH IS A DIRECT EqUIVALENT TO THE OC200/205 RANGE

tYpe B

PNP SILICON PLASTIC ENCAPSULATION
SPEC: ICER AT VCE $=10 \mathrm{y}$ ImA MAX
HFE 10-200
THESE ARE OF THE 2N3702/3 AND 2N4059/62 RANGE

ONLY 6d EACH

TYPE E

PNP GERMANIUM FULLY MARKED AND TESTED.

AF. or RF.
PLEASE STATE ON ORDER

NEW TESTED AND GUARANTEED PAKS

$\overline{81}$	4	$\begin{aligned} & \text { Phoro } \\ & 0.3 \text { ro } \end{aligned}$	10
$\overline{377}$	2	ADI61-ADI62 NPN/P	10
881	10	Aeed Switches, mixed large and smali	1
-89	2	5Sp5 Lighe Sensitive Cells. Light Res. 400 O Dark $1 \mathrm{M} \Omega$	101=
891	8	NKT163/164 PNP Germ. TO-S ceuivaient to OC44, OC45	10/-
892	4	NPN. Sil. Trans. AO6 = BS 220 , 2 N 2369500 MHz , 360 mW	10\%
B9	5	GETM13 Trans. equiv. ACYIT-21 PNP Germ.	10
B9	5	2N3136 PNP Sil. Trans. TO-18, HFE $100-300$ I.C. 600 mA .200 MHz	10/-
B98	10	XBII and X 8102 equiv. to ACl26. ACI56. OCBI/2. OC7\| 2 , NK Ti 271 , ete.	10/-
H	25	Mixed Resistors. Post an Packing 2:-	101\%
H7	40	Wirewound Resistors. Mixed types and values. Postage 1/6	10
H8	4	BY127 Sil. Recs 1000 PIV. 1 amp. plastic	10/m
H9	2	OCP71 Light Sensitic Photo Transistors	10

RETURN OF THE UNBEATABLE P.I PAK.
now greater yalue than ever
FULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS. APPROX 170. WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRANSISTORS PNP AND NPN. AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA. TION ON THE TRANSISTORS.
please ask for pak P.I only 10/-
2/- P. \& P. on ehis Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.
counter for any car.
21 - each
FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

TELEPHONE: SOUTHEND (0702) 46344

ELECTROVALUE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

BARGAINS
 IN NEW SEMICONDUCTORS

All power typea supplled with free insulating sets

1N914	1.33	2N3706	$8 \cdot 3$	40512	45／6	BC147	$3 / 8$	BFYōt	4／3
1N3754	4／－	2N3707	4／－	40602.	0／8	BC148	3／3	B9x20	$3: 9$
134149	$1 / 0$	233708	$8 /-$	AC10：	11.6	BC149	3；\％	8Y164	$10 /$
1 N 5054	4 1－	2さ8709	8 －	AC126	8.8	BC133	10／－	BY238	8,6
18940	1／－	2） 3710	38	AClig	8：－	BC154	11／－	C106B1	14，6
2N690	$6 / 6$	2\3711	3 311	AC128	$8{ }^{8}$	$\mathrm{BCl}^{\text {B7 }}$	$3 / 9$	MC149	51－
2N69\％	$5 / 6$	2N3731	24／－	AC176	11／－	BC158	$8 / 6$	MJ480	21）－
2N706	219	2N3794	313	ACY22	$3 / 9$	BC159	819	MJ481	271－
2N1302	4）－	2N3819	818	ACY40	4i－	${ }^{\text {BCl67 }}$	$2 \cdot 6$	HJ491	30\％－
2x1303	410	2N3820	2516	AcY41	$51 /$	BC169	2,8	MPF102	216
2N1304	$4 / 6$	2N3904	$7 / 6$	AD142	148	BCleg	$2 \cdot 6$	EKT403	15／8
2×1305	4／8	2N3906	$7 / 6$	AD14y ${ }^{\text {d }}$	17／6	${ }^{\text {BC17 }}$	\％／8	NKT405	151－
2S1306	$0 / 8$	2 L 4058	5／8	AD161／AD168		RC178	5／8	0.147	1／8
2N1307	$6 / 9$	2N4069	4 4－	（matehed）	16／－pr，	BCl7g	9／8	0 OA93	$1 / 3$
2N1308	818	2N4069	$4 / 8$	AF114	$71-$	BC182L BC183L	418	OA91	1／8
2NI909	818	2N4081	418	AFF115	$7 /-$ 80	BC183L	$2 / 8$	0．195	11／3
2 NT 13	6／－	2N4062	4，3	${ }_{\text {AF }}{ }^{\text {A }} 11176$	$8 / 6$ $8 / 6$	BC184L BC186	$88 / 6$	O．199	81－
2N1711	$7 /$	2 N 4284	88	Ab＇117	$8 / 6$ $7 / 6$	BC186	88	0A200	111
2N21s	18／8	2N4286	818	AFP124	$7 / 0$	BC212L	8／－	0A202	21－
2N2218	$9 / 3$	2N4289	$8 / 8$	${ }^{\text {AFP127 }}$	$7 / 1$ $8 / 6$	BC213L	$5 /-$ $5 / 8$	OC71	516
2N2270	1810	2N4291	$8 / 3$	AF139	－8／6	BC－214．	$5 / 8$	TIP3la	17／6
2×2484	1816	2X4992	313	AF180 AF949	18,8 819	BCY BD121	518 $18 / \mathrm{l}$	TYP32A	28,5
2X2646	10%	2N4410 2N5060	419 1988	AF939 ASY26	$8: 98$	BD121	18／7	TIS43	1018
2\％2904	11／	2N5069	18% $5 / 8$	ASY26	8；8	BD123 BD124	24／3	TTX300	10／8
	4／6	2N5163 2N319\％	2／3／－	ASY＇28	8／3／8	BD124 BF167	18／6	2Tx301	$8 / 6$ $3 / 6$
2N2905	4／6 2／8	${ }^{2} \mathrm{~N}$ 215195	28， 28	BS041	1510	BF178	10／6	2TX302	4 4，${ }^{\text {a }}$
2N3053	$8 / 6$	2N5457	$8 / 9$	BA102	01－	BF180	12／－	2TX303	${ }_{4}^{48}$
2×3054	145	2N0゙458	$0 \cdot 9$		$4 /$	BF194	$7 /-$	2TX304	${ }_{518}$
2 x 3055	18／－	2X5459	$9: 9$	BA180	418	BF195	76	2TX500	$51-$
2×3825	$10 / 9$	40250	1418	BA145	$5 / 8$	BFX29	$10 / 9$	ZTX501	5 －
2N3663	$11 / 6$	40361	12／6	HCl07	2／18	BFX84	$7 / 6$	2TX50\％	$81 /$
2N3709	8／6	40962	18／－	BC108	216	BFX85	8／8	ZTX 003	51.
2Na703	$8 / 8$	40406	$18 / 8$	BC109	$2 / 8$	BFX87	816	2TX504	12／－
253704	$3 / 0$	40408	14／8	BC125	18）－	BFX88	819	ZTX530	575
2N3700̌	815	40430	871	BCles	12，－	BFYO0	$4 / 6$	2TX531	88

RESISTORS

PEAK SOUND PRODUCTS ENGLEFIELD AMPLIFIER

Stereo ampliner In modulur hit form（fneluding cabinet 12 wattif per chanmel 288．9．0； 25 watt 258.15 .0 ．Cabinet kit ong 38，These prices nett．As recentiy reviewed

BAXANDALL

SPEAKER SYSTEM

Deakgned by Peter Baxandall．Buperd reproduction for ita size．Handles 10 watte
 19．8．8 netを．

STEREO AMPLIFIER SA． 10 －10
Developed from the very successful SA．8－8 ampliacer giving first clafi stereo amplificaeton featuring separate volume controls iog each channel，hasa and treble c19．7．8 10 matil 184.108 nett，guitable 80 wlde range speakern nvaila引le 18.15 .0 each net

MAINLINE AMPLIFIER KITS
RCA／SG自 debigned main amplifier kitt．Input genaltylty $500-700 \mathrm{mV}$ for full output into 8 』

	Cit price	8ultable nurog．
Power	facluding eomponenta	
12w	188）－nett	921－
25W	195／－nett	N／A
40W	810j－nctt	115／1
70W	258］－nett	138：10

30 WATT BAILEY AMPLIFIER KIT

Special summer redsiction（to Sent， 30 th，1970，only）． Senaitivity $2 \times 2 \mathrm{~V}$ for full oulput into 80 ．Tranalator： Ior one channel $\mathbf{4 . 5 . 6}$ liat， 38 only nett．Tranaistors for reaistora（melal oxide） $0 /-$－per chamal nett：Complete unregulated power sumply kit 87／6 nett．

ZENER DIODES

5% full range Eut Falues： 400 mW ： 2.75 to 30 V 4 ez ， clin to increabe 1．5V rating to 3 watto（type 266 F ） A ．

CARBON TRACK POTENTIOMETERS，long ypiddle． Double wiper enoures mintmum noise level．
Mingte gang linear
Ingle gang log
Dual gang linear
Dual gang log Loglantilog
$4.7 \mathrm{~K} \Omega$ to $g \cdot 2 \mathrm{Ma}$
10K 4 K 2以
any type with 1A D．P．mains only Please note：onty decades of 10,22 and $4 t$ are arailable rithin ranges gaoted．

CARBON SKELETON PRE－SETS

mall high quality，type PR，Jinear only $100 \mathrm{~g}, 2200$ ，
$170 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, M，2M5， $5 \mathrm{M}, 10 \mathrm{M} \Omega$ ．Fertical or horizontal mounting $1 /$－each．

COMPONENT DISCOUNTS

10% on ordera for componenti for f 5 or more． 16% on ordera for componenta for $\& 15$ or more（No discount on nett items ）

ostage and packing

Free on orders over t2．Rlease add $1 / 6$ if under．Over weas ordera welcome：earrlage charged at cost．

Foet \& Packing 1;6 par ordef. Data aheat tree il ordored with Ies. Send 2;0 lot catalogre
TELEPHONE
$01-4520161$
A. MARSHALL 18 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 CALLERS WELCOME 9-5.30

SATURDAY 9-5
EEE OUR MAIN ADVERTISEMENT OF PAME SOS FOR EEMICONDUCTORS

BULLD YOUR GIRCUITS

8 St. Chad's Place, Gray's Inn Road, London, W.C. 1 Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants
.. now the "GR.84", build it in only 70 hours
using our factory-made, fully tested units

* Includes 'String Bass' and
'Growl' features
\star Internal 10 watt amplifier and loudspeaker
* Uses latest integrated circuits $\star 49$-notes, 8 stops, glide, vibrato, etc.
\star All units available separately
Price $\mathcal{E} \mid$ |2.10.0 complete (terms available)

Harmonics

(Bromley) Ltd.

PE2, Clarion Works, Napier Road, Bromley, Kent. 01-460 2122

If you can put a'Yes' in every box, you might just make a RADIO TECHNICIAN in Air Traffic Control

An all-consuming interest in telecommunications \square
At least one year's practical experience in telecommunications, preferably with 'ONC' or 'C and G' technical qualifications
A highly developed sense of responsibility
\square

Willingness to undergo a rigorous programme of training \square

Aged 19 or over

To the right man, the National Air Traffic Control Service offers the prospect of an interesting and steadily developing career as a Radio Technician in air traffic control.
The work involves the installation and maintenance of some of the very latest electronic equipment at civil airports, radar stations and other specialist establishments all over the country. Important today. the job will become increasingly vital as Britain's air traffic continues to grow, and prospects for promotion are excellent. Starting salary varies from $£ 1044$ (at 19) to $£ 1373$ (at 25 or over). Scale maximum $£ 1590$ (higher rates at Heathrow). The annual leave allowance is good, and there is a non-contributory pension for established staff.
If you feel you can meet the demands of this rather special job-and you have a strong determination to succeed-you are invited to complete the coupon below.

Send this coupon for full details and application form To: A J Edwards, C Eng, MIEE, The Adelphi, Room 705, John Adam Street, London WC2. marking your envelope "Recruitment".

Name
Address
PEI/G2
Not applicable to residents outside the United Kingdom

National Air Traffic Control Service

Pructical Electronics Classified Advertisements

RATES: $1 / 6$ per word (minimum 12 words). Sox No. $1 / 6$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics " IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS

TOP TRANSISTORS

$\begin{array}{lllll}\text { ACY22 1/9 OC45 } & 1 / 9 & \text { ZTX300 I/9 }\end{array}$
BC168
BC169 1/9
BC169
B5Y27
1/9
BSY27 1/9
BFY51 1/9
OC201 1
OC202 $1 / 9 \quad 2 \mathrm{~N} 37061 / 9$
All the above types are available at 16 for El . Brand New, Individually Tested, unmarked, but guaranteed to be within their correct specification, or money refunded.

ANTEX SOLDER IRON

A lightweight iron with a 15 watt nickel plated bit. Designed to enable you to weld reliable joints accurately. Model CN240 volts.
Special low price. Act Now, Only 29/1I. MONEY BACK GUARANTEE. P. \& P.l/-
J. M. KiNG (O)

17 Buckridge, Portpool Lane, London, E.C.I

MUsICAL MIRACLE8! Drum, Oymbals, Waawas and Fuzz modules. New unique effects wifts, Percussion, etc, Good was-waa kits 48/=. Famous "Nister Bassman" bass pedal unit. Also bargain components list of reed switches, etc. Send S.A.E. NOW! D.E.W. LTD., 254 Ringwood Road, Feradown, Dorset.

ENAMELLED COPPER WIRE		
S.W.G.	Per 11 lb reel	Per 11 b reel
$18-22$	$111 / 3$	$16 / 6$
$23-30$	$11 / 8$	$17 / 8$
$31-35$	$12 / 3$	$18 / 6$
$36-40$	$16 / 6$	$24 / 6$
$41-44$	$17 / 9$	$29 / 6$

Orders despatched by return of post. Please add $1 /$ peritem P. \&P. Supplied by: BANAER TRANSFORMERS, 84 Old Lansdowne ROad, West Didsbury, Nanchester, 20. TRADE ENQUIRIES LNVITED.

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders, transeription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regnlators; sig-gens, M/C relays, components, etc. Lower Beeding 236.

ALL THO8E LITTLE ITEM8 which you can never find axe available from our stock. Also speaker fabrics, BAF wadding, Peerless speakers, cabinet kits, cross-over's. For full details send $8 d$. in stamps to: AUBIOSCAN, Dept. PE, 4 Princes Square, Harrogate, Yorks.

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE

becauso this GPO approved trarismitter/recoiver

 kit does nor use. R.F and you can ges one easily, Your erarismissionis will be virtually SECRET since Aetually it's TWO KITS IN ONE becauso yougorali the printed-circuic boards and companents for boch the erarismitter AND raceiver. You're going to fini this project REALLY FUN-TO-BUHLD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGEhas obvious applications for HOUSE-TO-HOUSE USE SCHOOL PROIECTS LANGUAGE LABORATORIES, SCOUT CAMPS, etc.GET YOURS! SEND 95/- NOW
TO: 'BOFFINKITS"
STONELEIGH, EWELL, SURREY

BIG BARGAIN PARCEL 13/-
 POST PAID

Convalning multi-contact relay, transistors, resistars (some high stab), rectifiers, diodes, capacitors, pots, knobs, etc.

"SHURE" TAPE HEADS

Record/playback and erase in one unit, mounted on bracket with tape guide, etc, $10 /^{\circ}$ post paid. "MARRIOT" single record/playbsck heads. 5/=post paid.

PHOTO ELECTRIC SWITCH KIT Lisht cell, transistor, rolay, etc. Elogant casz in hammer blue $5 z^{\prime \prime} \times 2 \frac{1}{2} \times 4 \frac{1}{2}$ fitted with light etc. $35 /$-post paid.

6 OR 12 VOLT

FLUORESCENT LIGHTS
12 ins, 8 Watt tube ample light for caravan, tent, etc. Fully transistorised, law battery drain. Unbeatable at 65/6 posz paid or in kitform $57 / 6$ \qquad

4 WATT GRAM AMPS.

Volume and tone controls, mains operation,
3Ω output, new and boxed
SALOP ELECTRONICS Callers welcomo
23 Wyle Cop
Shrewrbury, Shropshire
S.A.E. forlist

CASE8. Perfect West Hyde. $\operatorname{\theta in} \times 51 \mathrm{n} \times \mathrm{Bin}$, fitted handle, feet, cable hole. Without panel screws supplied. $35 / \mathrm{m}$ each, C.W.O C. PURVES, 145 North Station Road, Colchester.

LIVE WIRE8 can be dangerous. Now you can make electrical connections safely in seconds with the revolutionary new Keynector. Cuts out plags, sockets and bare wire dabgers. Ideal for bench and high speed testing of electrical equipment. ${ }^{\text {a }}$ a must for the do-it-
yourself fan. Send for a Leaflet to E. B. yourself fan. Send for a Leafiet to E. BS Road, London, N.W.1. (01-837 7781). Only 46/6 plus postage.

AMAZING VALUE NEW BRANDED FULL SPECIFICATION DEVICES

integrated Circuits Completo with Datn: N5709A Type 709 Op. Amp. $83 / 6$ GE PA234 IW Audio Amplifier, $17 / 6$
GE PA237 2 W Audio Amplifier, $31 / 6$ GE PA237 2W Audio Amplifier 3 I/6 1610) with instructions, 40/GE D40CI AW Darlington Amplifier Vory High Gain 10,000 min., $13 / 6$ MEL 11 Phozo Darlingeon Amp., $9 / 6$ C. $5,6 /=$

High dualicy Low Cost Tranaistora: GE 2N5172, 1/9 MUL BFXB6, 6/$\begin{array}{llll}\text { ME 0412, } & 3 / 9 & \text { MULBD124, } 12 /= \\ \text { TI 2N40S9. } & 3 / 5 & \text { S 2N3055. }\end{array}$ Triacs for Full Wave Power Control: Triacs for Full Wave Powe
RCA 40669 BA $400 \mathrm{~V}, 24$ I-
RCA 40669 BA 400V 24)-
RCA 40583 Trigger Diode, $5 / 3$
Iastic Rectifiers for Power Supplias: IT 1 Amp. 4000 series $1 \mathrm{~N} 4004.400 \mathrm{~V}, 2 / 5$
iN400I, $50 \mathrm{~V}, 1 / 9$ $\begin{array}{ll}\text { IN } 4001,50 \mathrm{~V}, 1 / 9 & \text { IN } 4004,400 \mathrm{~V}, 2 / 5 \\ \text { IN } 2002,100 \mathrm{~V}, 2 / \mathrm{I} & \text { IN } 4005,600 \mathrm{~V}, 2 / 9\end{array}$ $1 \mathrm{~N} 4003,200 \mathrm{~V}, 2 / 2,1000 \mathrm{~N} 4006,800 \mathrm{~V}$, $3 /$ W005 IA 50 V full wave bridse Si W005 lA 50 V full wave bridge $\mathrm{Si}, 7 / 6$
PD 402 A 400 V full wave bridge $\mathrm{Si}, 12 / 6$
JEF ELECTRONICS (P.E.10)
York House, 12 York Drive, Grappenhall
Warrington, Lancs. Mail Order Only
C.W.O. P. \& P. I/- per order, Overaeas 7/6. Money back if not satisfied

MORE ROBOTS

Synthetic Animals with "BRAINS" of their own. The LATEST range of projects include: an electronic 'animal' which "LEARNS", and an Electro Chemical device capable of "REPRODUCING" itself! Other projacts SURE TO INTRIGUE YOU are a transmitter/receiver which radiates without using r.f. so there's NO NEED TO WORRY ABOUT A LICENCE, also TEN new projects, one of which is an electronic dice machine. HOSTS OF EASY-TO. CONSTRUCT projects, for anyone with 2 basic knowledge of Electronics. DON'T WAIT. SEND $3 /-$ for your list-NOW! To: 'BOFFIN PROJECTS'

4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY
Designed by GERRY BROWN and JOHN SALMON and presented on T.V.

VICTORIA STREET's unique magazine and paperback centre, Hills Westminster, Pructical Wirelesg always in stock. HILLS WESTMmSTER, LTD., 5 Artillery Row, Victoria Street, S.W. 1 (01-222 6165).

PHOTOTRAN8I8TORS. Simllar OCP71, only $7 / 6$ each or two for 12/-. P.B. ELECTRONICS, 3 Fernslde, Amberlands, Backwell, Somerset.

BUILD IT in a DEWBOX quality cabinet 215×2 in \times any length. DEW LTD. Hingwood Road, Ferndown, Dorset, S.A.E. for leaflet. Write now-right now.

PARAPHYSICAL LABORATORY, DOwnton, Wilts. Telekinetic photographs/data. S.A.E for list. Samples 20s.

8ERVICE SHEETS

LARGE SUPPLIER OF

SERVICE SHEETS

T.V., RADIO, TRAKSISTORS, TAPES, CRR RLRIOS

3/- EACH, MANUALS FROM 10%
PLU' LARGE S.A.E.
(Uncrossed P.O.'s please, orlginal returned If service sheets notavallable.) FREE TV FAULT TRACING CHART OR TV C. CARANNA
$7 I$ BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

8ERVICE SHEET8. Radio, TV, ote., 8,000 models. List 2/-, S.A.E. enquirles. TELRAY, 11. Maudland Bank, Preston.

SERVICE SHEETS (1925-1970) for Televisions Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFinding Guide. Prices from 1/-. Over 8,000 models available. Catalogue 2/6. Please send S.A.E. with all orders/enquirles. HAMmDTON RADIO, 54 London Road, Bexhill, Sussez.

[^5]
WANTED

CASH PAID for New Valves. Payment by return. WLLLOW VALE ELBCTROY゙ICS 4 The Broadway, Janwell. London. W. 7 01-567.5400, 2971 .

HI-FI EQUIPMENT

8HURE GOLDRING Cartridges. Post Free. G800, M44/5/7 £7.17.6. M3D £5.5.0. 14.44 E £8.19.6. M55E £9.19.6. M75E/2 $\mathbf{2 1 6 . 1 0 . 0}$. Garrard SP25/2 £10.17.6. AP.75 £16.17.8. P. \& P. 7/0, ULTIMATH ELECTRONICS, 38 Achilles Road, London, N.W.6. Mall Order Only.

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes 1155 set Circuit and Notes H.R.O. Technical Instructions. 38 set Technical Instruccions. 46 set Working Instructions 88 set Technical Instructions BC. 221 Circuit and Notes Wavemeter Class D Tech. Instr Wavemeter Class D Tech. Inst 18 set Circuit and Nores BC. 1000 (31 set) Circuit \& Notes CR,100/B. 28 Circuit and Notes R. 107 Circuit and Notes.......... R. 107 Circuit and Notes......... 7/6 P.P. 9d
A.R.88D. Instruction Manual.... 18/6 P.P. 9d 62 set Circuit and Notes

Circuits 8 /

7/-P.P. 90

7/-P.P. 9 6)-PP. 98 6/-P.P. 9 d 6/-P.P. 90 6/-P.P. 9 d 716 P.P. 90 6/-P.P. 9 d 61-P.P. 9 6/-P.P. 9d
6/-P.P. 9d
6/- P.P. 98
$10 / 6$ P.P. $1 / 2$
$7 / 6$ P.P. 9 d
7/-P.P. 9d
52 set Sender \& Receiver Circuits 8 /- post free Circuit Diagrams $5 / 6$ each post free R.1116/A, R.1224/A, R.1355, R.F. 24, 25, \& 26 A. 1134 . T. 1154, CR. 300 , BC. 342 . BC. 312 BC.348,J.E.M.P. BC.624, 22, 1475(88), 1392. Colour Code Indicator 2/6 P.P. 6d.
S.A.E. with all enquiries please

Postage rates apply to U.K. only.
Mail order only to:
Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens

SPECIAL OFFER

THE FIRST VOLUME ON TRANSISTORS in a new series entitled THE
SEMICON INDEX
to be published in conjunction with

AVO LIMITED

will be ready at the end of September
Designed to provide comprehensive technical data on semiconductors and to be updated annually, the first volume covers over 16,000 transistors of international origin with 18 sections, a cross reference index, over 600 outline drawings, CV numbers, equivalents and manufacturers.
Invaluable to all Engineers \& Buyers
SECURE YOUR COPY NOW
Send the special pre-publication offer price
of $79 / 6 d+5 / 6 d p$ \& p, direct to
Functional Publication Services Ltd,
29, Denmark St., Wokingham. Berks.。
(Normal price to be 95/-)

SITUATIONS VACANT

A.M.I.E.R.E., A.M.S.E. (Elec.) City \& Gullds, G.C.E., etc., on "Satisfaction or Refund of Feen terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide-FREG. Please itate subject of interest. BRITISH iNSTITUTE OF ENGREEERING TECHNOLOGY (Dept. 12\&K), Aldermaston Court Aldermaston Berks.

ELECTRONICS TECHNICIANS

living in the
SOUTH YORKSHIRE AREA
SOUTH YORKSHIRE AUTOMATIC CONTROL ENGINEERING LIMITED
require rechnicians age $21 / 30$ having experionce in field of design and/or manufacture of Control Systems and electronic instruments.
Qualifications whilst of interest are not as necessary as a genuine desire to work hard and grow with a firm already well established. Salary range: $£ 700-£ 1,500$ per annum. Apply to:

The Managing Director
SYACE Limited, Abbeyfield House Rotherham, Yorkshir

EDUCATIONAL

GET INTO ELEGTRONJC8 - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoma, etc. For FIRE 100Radio T/V, Telecoma, etc, For FREE 100OOLLEGE, College House, 29-31. Wrights Lane, Kensington, London, W.8.

ENAINEER8. A technical certficate or quallfication will bring you security and much better pay. Elem. and ady. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.Y. A.I.O.B. and G.C.E. exams. Diploma courses in all branches of Engineering-Mech., Eleo., Auto, Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FREE 132-page gnide. BRITISH INSTTTUTE OF ENGINEERING TECHNOLOGY (Dept. 125K), Aldermaston Court, NOL.OGY (Dept. 12.

BOURNEMOUTH COLLEGE OF TECHNOLOGY

A CAREER FOR MEN OR WOMEN IN ELECTRICAL OR ELECTRONIC ENGINEERING

UNIVERSITY OF LONDON EXTERNAL DEGREE IN ELECTRICAL ENGINEERING

B.Sc. (Eng.) with Electronics 3 years full time
Entry requirements:
Maths (Pure \& Applied) ไ'A' level Physics
'O' level Study by the sea in Britain's foremost all-seasons' resort.
Enquiries for prospectus and further information to:
The Principal, Room 87
College of Technology
Lansdowne
Bournemouth BHI 3JJ

IIP TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
 Established 1891

First-class opporcunities in Radio and Electronics await the ICS trained man. Let I CS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, also Colour TV Servicing, Electronics, Computers, etc.
Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. \&. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.

RADIO AMATEURS' EXAMINATION.
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Scudents coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

POLY8TYRENE GAPACITORS: $125 / 350 \mathrm{~V}$ 150, $180,330,390, ~ 560,680,820,1,800,2,200$, $2,700,5,600,6,800,8,200 ; 125 \mathrm{~V}$ 18, 22,120 , $220,1,200,1,500,3,200,3,900,0.01,0.012$, 0.015 . Paper: 100 V a.0001, $0.001,0.002,0.005$, 3/- doz. Computer Panels: 5-BC108, Diodes, 3/-, 4-10/-; 8-0C76, 8-0A10, 7/6; 4-OC42, 3/mi 8-0C43/GET875, 24-0A81, 7/6; 24-A1678,
 550
Diodes $10 /-$ Mrixed Transistors on Panels $10020 /-$ Brand New Chassis: $2-0 \mathrm{CB5}, 2-0 \mathrm{C} 29$, 12-W.W Resistors, 25/- Electrolytics: 4,000, 60Y, 7/6. Post $1 / 6$ order. J,W.B. RADIO, 75, Hayfleld Road, Salford, 6, Lanes.

A CORNUGOPIA OF COMPONENT8! Scarce valves, selected TV components, speakers and cabinets. Computer panels-long leads, NOT printed circuits. Transistors, resistors-new and recovered. State your requirements. S.A.E. for details MLAIL-MART, 6 Eastbourne Road, Pevensey Bry, Sussex.

NEW MK. 2
 Psychodelic Lighting Unit

This new psychodelic lighting unit offers even greater sensitivity than our original unit, requiring typically only 1V r.m.s. for full drive. It features higher input impedance circuitry for less loading of speaker lines and is now manufactured on professional fibreglass printed-circuit board material.
Drive voltage is derived directly from amplifier output or across speakers. The unit converts the audio frequency signals into a three-coloured light display; the colour depending on the frequency of the signal and the intersity on the loudness of the audio source,
Uses latest full-wave triac circuitry and incorporates signal input level and minimum amblent light level controls. Will drive up to 1.5 kW per channel at 240 V a.c. Complete printed-circuit board assembly built and tested. Size

£17.10.0 net plus 10/-carriage
MAIL ORDER ONLY
Dabar Electronic Products 98a Liehnield Street, Walsall, Staffs.

GUARANTEED TUBES AT BEDUCED PRICES

We are the area stockists for Display Electronics Re-manufactured Tubes. These tubes have a complete new gun assembly, the glass is the only reconditioned part and that cannot wear out. We invite enquiries from the rade or the public, Dally 9.30 .5 .90 , Fri, $9.30 \cdot 8$. ctosed Monday. TELEVISION CITY
50 Richmond Road, Kingston, Surrey Telephone 01-546 3961 (100 yards from station)

FULL SPECIFICATION COMPONENTS

Electrolytics 50 uf at 50 volts $2 /-$ each. Plessey SL403A I.C. amplifters 45/- each. Plessey SL702C op. amplifiers $21 /$ - each. 2NI7It silicon planar transistors $5 / 6$ each. 2N706 3/-: 2N1305 3/3; BCIO日 2/3;
$2 /-$ p. \& p, on orders under $£ 2$. Catalogue
SPECIALIST ELEGTRONICS CO.
26 York Road, Crosby, Livarpool L235T5

DIODES sultable for line sync circuits in T/Vs, switehing circults. Organ 13uldersuntested, unmarked. 25 per 1,000 plus 1/P. \& P. C.W O. to MRS. M. EVANS, 3A High P. \& P, Teddington, Middx.

TOP PRICES PAID

for now valves and components

Write:

KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

R \& R RADIO
 51. Burnley Road, Rawtenstall Rossendale, Lancs

Tel.: Rossendale 3152
VALVES BOXED, TESTED GUARANTEED

EBF80	$3 /-$	PCC84	$3 /-$	PY81	$3 / 6$
EBFB9	$3 / 6$	PCF80	$3 /-$	PY82	$3 /-$
ECCB2	$3 /-$	PCF82	$3 / 6$	PY800	$3 / 6$
ECLB0	$3 /-$	PCL日2	$4 /-$	PY801	$3 / 6$
EF80	$1 / 6$	PCLB3	$4 /-$	U191	$4 / 6$
EF85	$3 /-$	PL36	$5 /-$	$30 F 5$	$2 / 6$
EY86	$4 /-$	PLB1	$4 /-$	$30 P 12$	$4 / 6$
EZA0	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 /-$
EBC41	$4 / 6$	PY33	$5 /-$	$50 C D 6 G$	$7 / 6$

POST, ONE VALVE 9d. TWOTO SIX6d. OVER SIX POST PAID.

BRAND NEW ELECTROLYTICS 15/16V $0-5,1,2,5 ; 10,20,30,40,50,100 \mathrm{mF}, 8.3 \mathrm{~d}$. El2 series 5% resistors, Carbon Film $\frac{1}{6} W$ 1Ω to $1 \mathrm{M} \Omega, 1.5 \mathrm{~d}$. Wirewound $5 \mathrm{~W} ~ 15 \Omega$ 1Ω to $1 \mathrm{M} \Omega$, 1.5 d , $1 /$. The $\mathrm{C} . \mathrm{R}$. SUPPLY CO. 127, Chesterfleld Rd., Sheffield, S8 ORX.

NEW MODEL V.H.F. KIT MK2

Our latest Kjt , improved design and performance plus extra Ampulfier Stage, receives Alrcraft, Amateurs, Moblle, Radio 2, 3, 4, etc.
This novel tittie set will give you eadless hours of pleasure and can be bullt th one eveniag. Powered by 9 Volt battery, complete with easy to follow tnstructions and bulle.in Jack Socket for use with Earplwnes or Amplifier. Only 68jes. P. 2 P. Free U.K. only Postal Orders, Cheques to:
Gatleon Trading Co., 25 Avelon Road, Romford, Essex

15 WATTS FOR f5.5.0!!

Now available for return of post delivery-"Hardcastle" 15 W Amplifier kic as described in Hi-Fi News. This outstandingly low price includes Fibreglass PCB with screened legend for, easy assembly, heatsink, transistors, low noise resistors, capacitors and misc. hardware, circuit diagrams and post packing and insurance. A unique feature is that the output power can be varied from 10 to 30 watts and the output impedance between 8 and 15 ohms. (Basic kit at $(5.5 .0$ gives 15 watts/ 15 ohms). An ideal educational project. Send now for your kit by return of post or send a stamped self-addressed envelope for details to:
L.S.T. ELEGTROHIC COMPOHENTS LTD.
DEPT. PET?

7 COPTFOLD ROAD, BRENTWOOD, ESSEX

PRINTED CIRCUIT8. Capacity now avallable. Send artwork for quote. S.A.E. Sample 1 offArtwork, reduction, negative, 4 d. . per. sq in. tif Fibreglass. $1 / 6$ per sq in. Incluaing timning. Drilling extra. FREEMANTLE, 18 Pennine Road, Millbrook, Southampton.

PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned complete with layout drawing.
EXAMPLES
Marine Tachometer (May 1970) 5i- ea. Musical Suve (May 1970) Bi- ea.
Wan-Waa pedal Vol. 4 No. 7 2/9 ea. Audio Sig. Gen. (Sine and \$quare on one board) Vol. 5 No
$108 / 6$ ea.
S.A.E.for Lise. Now available from:- HENRY'S RADIO LTD., Edgware Road, London, W. 2 P,H.ELECTRONICS, Industrial Estate, Sandwich, Kent. Tel. 2517

OFFER. Copper laminated timin fibregtass. Board single-sided 4d. per sq in, youble-sided $5 d$. per sq in, Any size cut. Minimum order 10/-. P. P P. plus 10%. FREEMCNTTLE, 18 Pennine Road, Millbrook, Southampton.

ELECTRICAL

240 vor

 ELECTRICITY ANYWHEREBEST EVER $200 / 240$ VOLT "MAINS ${ }^{\text {B* }}$
SUPPLYFROM 12 VOLT CAR BATTERY
Exclusive World Scoop Purchase. The fabulous Mk. I2D American Heavy Duty Dynamotor Unit with a Massive 220 watt outpue and giving tho most Britliant $200 / 240$ vole performance of alf time. Marvellous for Televisiong Drills, Power Thols, Mains Lighting, AC Fluorescent Lighting and all 200/240 volt Universal ACIDC mains equipment. Made at tremendous cost for U.S.A. Govt, by DeicoRemy. This magnificent machine is abie elsewhers, Brand New and Culy Dested. pleasure, relund guarantee. Please send S.A.E. for illustrated details.
Dept. PE, STANFORD ELECTRONICS Rear Darby Road North Promenade orth Promenade Blackpoof, Lancashire

FOR SALE

SEEN MY CAT? 5,000 iterns, Mechanical and Electrical Gear, and materials. S.A.E. K. F. WHISTON, Dept. PE, Jew Jills, Stockport.

COMPREHENSIVE STOCK of relays, counters, timers, switches, etc. Low prices, immediate despatch. 01-440-1293 after 3 p.m.

NEW CATALOGUE No. 18, containing credit vouchers value $10 /-$, now available. Manufacturers ${ }^{\circ}$ new and surplus electronic and mechanical components, price 4/6, post free. ARTHUK SALLIS RADIO CONTROLL LTD., 28 Gardner Street, Brighton, Sussex.

MORSE MADE !!

FACT Nor FICTION. If you start RIGHT you will be readtug annateur and commercial Miforse within a month (norinal progress to be expected). Eving sclentificalls prepared 3. speed records you automanticilly learn to recognine the code RHYTHM withont translating. You can't help it , it's as easy as learniug a tume. 18 W.P.M. in 4 weeks guaranteed.
For dotalls and course C.O.D. Fing S.T.D. $02-8602896$
or send 8d, stanip for explanatory or send 8 d . Atamp for explavatory booklet to:
Q3H8C (Boy 19), 45 GREEN LANE, PURLEY SURREY

PLEASE MENTION
PRACTICAL ELECTRONICS
When Replying to
Advertisements

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPERECORDER, AMPLIFIER, etc. Types available; $6 v, 9 y$, $12 v$
 $9 v+9 v: 6 y+6 v ;$ or $4 / \mathrm{y}+{ }^{+} 4 \mathrm{iv}$ (cwo separate
outputs) $42 / 6$ each. P. $\mathrm{P} .2 / 9$. Please state outpurs) $2 / 6$ each, P. \& P. 2/9. Please state ourpus required.
complecty isolated from mains by double wound transformer ensuring 100 ? safety.
R.C.S, PRODUCTS (RADIO) LTD
(Dept. P.E.), 31 Oliver Road, London, E.IT

AERIALS NEW CONDITION

Whip Type IIft.
12/6 each. Used condition 12 ft . $10 /$ e each. All collapsible Type. Post and packing 3/6.
Bases for the above $5 /$-, Post and packing 2/6.
C.W.O. Carriage Charges Mainland Only.
A. H. Thacker, Radio Dept.

High Street, Cheslyn Hay Near Walsali, Staffs.

NEW RAMGE U..I.F. TV AERMILS

All U.H.F. aerials now fited with tilting bracket and 4 element grid reflectors.

Loft Mounting Arrass, ? element, $40-7$ 11 element, $176 ; 14$ element, $53-i 18$ element, 6. 6, Wall Mounting with Cranked Arm, 7 element, $60-$ - 11 element, 67,$6 ; 14$ efement, 75 i- 18 element, 89 . . Mast illounting with
 14 element, 的-: 18 element, $70-$ Chimney Mounting Arrass, Complete, 7 element, Tiz $6 ; 11$ element, $80 .-$; 14 element, 87,$6 ; 18$ element. 95-: Complete assembly instructions with every amns from $\mathbf{7}$:- State clearly channel number required on alf orders.

BBC . ITV AERIALS

 ex.15.0. ITV (13and 3), 3 element foft 7 array, $30, \div 5$ etement, $50-$. Wall mounting, 7 element, $50-$ Wall mounting, 3 element, 50,5 element, $55-0$
 $60.51+5,70-8$ Chimney
$1+3,70,-1+5,80-1$ Y1tw transistor pre-amps,

COMB1NED REC1-1TV-BMCS AERIALS $1+3+9,70 \div 1+5+9,88-1+5+14,90 \%$ $1+7+14,100-$ Loft mounting only.
F.M. (Hand \#) Loft S D, 176 , "H", 35 a, 3 element, 576 . External units available, Co-ax. cable, 8d. yd. Co-ax. plugs, ${ }^{1}$ 6. Outlet boxes, 5 . P. \& P. 6;6. Send 6d. stamps for itlustrated lists, Callers welcome
OPEN ALL DAY SATURDAY

K.V.A. ELECTRONICS (Dept. P.E.) 40-41 Monarch Parade London Road, Mitcham, Surrey 01-648 4884

CLASSIFIED

Your classified advertisement will be seen by more than 480,000 readers of

PRACTICAL

ELECTRONICS

For details of how to send your instructions please see page 836.

ADVERTISEMENTS

MAKES 5 DIFFERENT

TRANSISTOR RADIOS
Last 250 TOTAL BUILDING PRICE
$39 / 6$
Amazing Radio Construction set 1 Become a radio expert for 39/6. A complete Fome Radio Course. Nio experience needed. Parts fucluding Instructions lor each design. Step-by-step plan. all Transistors, loudspeaker, 'personal phone, knobs, screws, etc.,
andl all you need. Box size $14^{*} \times 10^{*} \times 2^{\prime \prime}$ (parts avall. sep.), Send orly back guarantee. $39 / 6+4: 6$ P. \& P. Money

CONCORD ELECTRONICS LTD. (P.E.11) a Westbourne Grove, London, W. 2 (nr. Bayswater Tube)
(Calfers 9-6 inc. 5at.)

AUDIO EFFECTS

5 SHAW LANE, HALIFAX, YORKS.
Buy with conflence amid obtain the right results. Fiefunds without, queation it any of our products fail to give 100% sat iefaction.

AMATEUR BANDS ALL TRANBISTOR

SUPERHET EECEIVER KIT. No fuse, no drilliug. Just ft the components on our pristell circuit. Slows Motion tuning. Sinuple IF aligument. Yerspex frout panel. Push pull AF alup drives your $8-15$ ohat npeaker. Amp can be used separately. Desigued to

 Hange sT normally supplied with kit. Lees 9 Yolt battery. Easy step by step lnatructions. Complete
Kit. is. 19.8 plus 5i0 P.P. \& lus. Extrin ringe日 12;-per range.
POWER CONTROLLER. Power at your floger tips. Not merely halt wave control but full wave. UBea latest 15 smp 3 kW triac and special trigering device. Ideal for atl typen of lighting, fires, motors, drills, etc. Complete with thox, power socket, cables, etc. In kit form with easy to follow instructions 26.9, . Ready balit 29.4 .8 plets $5 / 6$ P. P. \& Ins. REVERBERATIOR AMPLIFIER. SEIP contalned tranimitorised, battery opergted. An entirely dinerent approach of sound reproduction. bes a flat one dimensional effect. With this unte, proper sound delay through reverberation, tonee, are created with a truly thirel dimension for concert ball orfginality. Two controls adjust volune and reverberation. sluply plug mierophone, guitar,
etc., in, and the cutput into your amplifer, surptied In 2 beautiful walnut cabinet 7 z in $\times 3$ in $\times 41 \mathrm{in}$. E10.4.0. P. P. \& Inge, 6/-.
YOX 8 WITCH. 'This sound operated switch is ideal for mobile TX work, tape recorder switching, etc, You speak, it owitches. HIgh and medrum inp, inputs. AF take oft point. Drives your 12 volt Ready built, tested andl guaranteel. 69;6 post paid. METRONOME UFIT. Variable beat. Listen while you play and keep in time. Easity built, pocket bize with personal mini earphone. In kit forn3 $27 j 6$, poat paid. Ready butle in an nttractive polythene
MORSE OSCMLATOR, PC board, transistors, high ntab, components, batters carrler, ear piece. Adjustsble tone. Just attach sour key. Drives phones or apeaker. In kit form 17/6 post pald. Ready built
in similar case as above 27,6 poal psid. in similar
STRAIGHT EROM THE PRESS. Latest Mullard mantual: Aadio Ampe, FM tuners, Stereo decoder, Recelver circuits, Hi FI, Tape, ele,, etc. $32 ; 6$ posi pald.
TEXAS TRANSISTORS. Complementary symmetry. Driver, NPN, PNP output. The set of three ONLY $6 / 6$ post paid.

gline studios limited

PRINTED CIRCUITS AND PRECISION PHOTO MECHANICAL REDUCTIONS

Copthorne Road, Felbridge, Surrey Telephone: East Grinstead 23540 works

Your local component stockist ast Anglia

AGLE
lectronics
agle St.

PSWNICH

VALVES
 SAME DAY SERVICE NEW！TESTED！GUARANTEED！

SETS

55．174． ，${ }^{2 \times 5}$

11AF91，DF91，DK91，DL92， DF90，DK96，DL96， 4 for $2 \theta_{j}$

品 $76 \mid 23$ 6｜251，6GT － 101991AIGT
$1 H 5 G T$
$1 N \pm 0 T$均菏

$5 / 9$	EL500
6＇8	

$5 / 9$	EL500
6＇8	

[^6]

 （ralue $5 /-$ for 1 igill，carriage paid．Choice of 13
and primer（Motor car qaalizy）alto avalasie．

DEPT：K：9 YUKAN，307a，EDGWARE ROAD，LONDON，W．2．
DEPT：Ki9 YUKAN，307a，EDGWARE ROAD，LONDON，W．2．Wै and Leading Industrizi Organisations－We Can supply you too．

BAKER 12in．MAJOR £9

The remarkable quality and performance of the＂Major＂makes possibte truly brilliane and rich sound from a single loudspeaker．Is recreates the entire musical spectrum from 30 to 14,500 c．D．s． The unie consists of the latest double cone，woofer and tweeter cone rogether with a special Baker CERAMIC mag－ net assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells，8ass resonance 40 e．
For Hi－Fi or P．A．Rated 20 watts． Voice coils available 3 or B or 15 ohms． Major Module $30.17,000$ eps with eweeter，erossover，baffle 11.10 .0

Send ad Stamp
Further Delails
Bensham Manor Road Passage，Thornton Heath，Surrey．
－ 61.1665

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our'Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics-Radar Tech.Frequency Modulation -Transistors.
rLECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmanship -Illuminating Eng. Rejrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng-General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.—Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

RADIO \& T.V. ENG. Advanced Radio -General Radio-Radio \& TV Servicing - TV Lingineering - Telecommumications - Somat Recording - Automation Practical Radio - Radio Amatetrs' Examination. MECHANICAL ENG. Advanced Mechanical Eng- Gen. Mech. Eng.-Mainterance Eng. - Diesel Eng. Press Tool Design -Shect Metal Work - Welding Eng. Pattern Making -Inspection-Draughrsmanship Eng. Merallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng,Gicneral Auto. Eng. - Aluto. Matimtenance - Repair Awo. Diesel Maincnance Atto. Electrical EquipmentGarage Managememp.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E. B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B.A A.M.I.EX., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., GITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
\star HOW to qualify for rapid promotion.
\star HOW to put some letters after your name and become a key man . . . quickly and ecsily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can sake advantoge of the chances you are now missing.
- HOW, irrespective of your age, educction or experience, YOU can succeed in any branch of Engineering. 164 PAGES OF EXPERT CAREER - GUIDANCE

PRACTICAL EQUIPMENT

Basic Practical and Theprelis Courses for beginners in Electronits, Radio,T.V., Ets., A.M,J.E.R.E. City \& Guilds Radio Amateurs' Exam. R.T.E.E. Certilicate P.M.G. Certificate Prartical Electronics Elestronits Engineering Prattical Radio
Radio \& Television Serviting Aulomation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
 316A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

COMPLETE STEREO SYSTEM FOR G39.10.0 HENELEC 5 -5 STEREO AMPLIFIER. Inputs for ceramic cartridge, AUX/Tuner, Output for 8 to is ohms speakers. Sjilver wish black and wood socket.
Complete system comprises 5-5 amplifier, Garrard 3000 or model 50 with 9 TAHC diamond cartridge. Pair E,M.I. IOW speakers, twin tweeters, and crossover with polished wood cabiners 1 Bin $\times \|$ in \times 7in. Also plinth and cover

- Complete stereo system (Rec. Price (50), ©39,10.0, P.P. 20j-
Amplifier only, R13.19.6, P.P. $7 / 6$. - Amplifier only, R13.19.6; P.P. 7/6. phares, 39/6.
UNBEATABLE VALUE ! !
BUILD THIS VHF FM TUNER 5 MULLARD TRANSISTORS 300kc/s BANDREPRODUCTION MONO AND STEREO A REPRODUCTON. MO No quality and reception popuar urf Mere. There is no doubs about it - VHF FM gives the REAL sourd. All parts sold separately. COST DECODER $\mathbf{~ 5 5 . 1 9 . 6}$ PAASTOTAL COST DECODER (S.1. ASK FOR BROCHURE P.P. 3/-.
No. 3.
New printed circuit design with BUHLD
 Mullard transistors. Fitted $\sin \mathrm{A}$ speaker, Reom filting power. Easy to build with terrifie results. QUALITY Two colour leathereloth cabinat RADIO with silvered front. All local and continental stations. Complete detailed instructions.
Total coss $\mathbf{6 6 . 1 9 . 6 , ~ p . p . ~ 6 / 6 . ~}$

SINCLA\|R $23075 /$ - each, stereo 60 20.10.0, PZ5 79/6 EQUIPMENT
SPECIAL OFFER ${ }^{2}$ of $\mathbf{Z 3 0}$, stereo 60, PZ5 (usually 423.10) $\mathbf{1 9}$
WHEN IN LONDON visit the NEW DISCOCENTRE at " 354 " and
COMPONENT SHOP at "356" Edgwara Road, W. 2

TEST EQUIPMENT FOR YOUR HOME

AFLOS 50kV mulcimeter (illus.). price 28.10 .0 . p.p. 3/6; leather 200 Hase , 28. 6
$200 \mathrm{H} 20 \mathrm{k} V$ mulcimeter, price 63.17.6, p.p. 3/=: case, $12 / 6$. TE20D R.F. Generator (llius.), price A15, P.p. $7 / 6$.
TE220 Matehing Audio Generator, price fi7, p.p. $7 / 6$.
TE6S Valve Valt \&i7.10.0, p.p. $7 / 6$. Full details and complete range in catalogue.

NEW

WORLD'S LOWEST COST STEREO MAG. NETIC CARTRIDGE O/P 7 mV . $20 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$. Diamond Stylus. Fits most decks. Recommended

HI-FI equipment to suit EVERY POGKET

FREE STOCK LIST
NO $16 / 17$ ON REQUEST
best value $\mathbb{I N}$ U.K.

Choose from 100 complete stereo systemsComplete range of individual units also in the New Demonstration

I00 STEREO SYSTEMS

LOW CASH AND CREDIT/HP PRICES

(Credir terms from E30 purchase-callers only)

HENRY'S LATEST CATALOGUE

New princ. Now 350 pages. bth impression. * COMPONENTS, TEST GEAR * EQUIPMENT, MODULES \star SPECIAL OFFERS, ETC.

Evarything for the constructor Complete with $10 /$-value discount voucher for use with purchase. Price 7/6, p.p. 2/WHY NOT SEND AWAY TODAY?
New 8-page Semiconductor List free No. 36 new ranges and a few eircuits.

You can Save 25% brand new GARRARD (Post 7/6) COMPLETE LIST FREE ON REQUEST AND GOLDRING
 SPECIAL Above with Sonotone 9TAHC diam. Addl OFFER $£ 2$, with magnetic add $70 /$, with Goldring Also Fitred wizh 9TAHC diamond 2025TC $\mathbf{8 9}$ 9.15.0, | Also Firred with 9TAHC diamond |
| :--- |
| 3000 LM E9.15.0, MODEL $50 ~$ |
| 9.15 .0 | Plinths/Covers: Standard $99 / 6$, p.p. 4/6. De luxe Type \& \%.is.0, p.p. 6/6.

- Goldring GL69 with plinth and cover and G800 cartridge (usually [51) ©39.10.0, p.p. $12 / 6$.

Tly kum SILICOH AMPLIFIERS
 LOOK AT THE SPECIFICATIONS:
 - 0.3% Distortion at full power - -Idb IIc/s to $40 \mathrm{kc} / \mathrm{s}$ at full power - Response - $1 \mathrm{db} 11 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{ke} / \mathrm{s}$

Pa25 10 Silicon Transistors, Differential input, 25 wate rms into Bohms, 700 mV input. Size only $5^{\prime \prime} \times 3^{\prime \prime} \times 2^{\circ}$. 4-hole fixing. 12 wate inte 15 ohms. Supplied with edge connector and harness.
PA50 12 -Transistor Version, 50 wate rms into 3 to fohms
MU442 Power supply for one or twa PA25 or one PA50

- PA25 67.10.0 - PA50 69.10.0 © MU442 66

NEW
 SELF-POWERED
 PREAMPLIFIERS

Mains operazed Stim Design Preamplifiers for ust with any power amplifier. All Siticon FET/TRANSISTOR design. Capabl
amolifiers. Pushbutton selection. A
MODEL FETI54 STEREO AMPLIFIER
Inputs for mag, Pick-up. Tuner/Aux, Tape in and out. Response $20 \mathrm{c} / \mathrm{s}$ to 3ke/s, Ourput adjustable up to I volt. $\pm 20 \mathrm{~dB}$ boost or cut-out conerols. Slim design. Size $12^{*} \times 5 \frac{1}{2}^{*} \times 1 \frac{2^{*}}{}$. Price $£ 16.10 .0$

MODEL FET 9/L

Mono Preamplifier with buitein mic, MC X EC input for all crystal and

NO SOLDERING JUST PLUG IN CONNECTORS!

ELECTRONIC ORGANS

COMPLETE RANGE OF
COMPONENTS IN STOCK FOR ALL
PURPOSES
4) MODERN ALL BRITISH TRANSIS-

TORISED AESIGNS AVAILABLE AS TORISED DESIGNS AVAILABLE AS CABINETS FOR ALL MODELS

1. 49 NOTE 61 NOTE SINGLE MANUAL 49 NOTE
CITS AVAILABLE IN SECTIONS AS
REQUIRED
NEW PA and DISCOTHEQUE CENTRE At '309' 303.309-354.356 EDGWARE ROAD LONDON W. 2

[^0]: 25/10A

[^1]: To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, RROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/- followed by 3 fornightly payments of $20-$ each. BASIC ELECTRONICS $90 /$-. Cash Price or Down Payment of 20/- followed by 4 fortnightly payments of 20/each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

 Tick Set required (Only one set allowed on free trial)
 BASIC ELECTRICITY
 BASIC ELECTRONICS
 Prices inclưe Postage and Packing.
 Signature
 (If under 18 signature reguired of parent or guardian)
 NAME
 BLOCK L.ETTERS
 FULL POSTAL
 ADDRESS.

[^2]: (c) IPC Magazines Limited 1970. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any pars of the world, 45 s .
 Practical Electronics, Fleetway House, Farringdon St., London, E.C.4. Phone: Editorial 01-634 4452; Advertisements 01-634 4202

[^3]: To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

 NAME:
 BLOCK CAPS
 ADDRESS
 PLEASE P.E. 10

[^4]: TERMS
 OPEN DAILY TO CALLERS
 C.W.O. Mon.-Sac. 9 a.m. -5.30 p.m. Closed Sat. 1.30 p.m. -2.30 p.m.
 no C.O.D. Tel. 01-769 0199/1649

[^5]: RADIO TELEVISION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London, W.B. SHE 8it1.

[^6]: Fostage on 1 ralve Mr．exira．Un 2 valves or more，postage Gd．per

